{ "cells": [ { "cell_type": "markdown", "id": "c80cd461", "metadata": {}, "source": [ "(analysis-framework-tutorial)=\n", "# Tutorial 3. Building custom analyses - the data analysis framework\n", "\n", "```{seealso}\n", "\n", "The complete source code of this tutorial can be found in\n", "\n", "{nb-download}`Tutorial 3. Building custom analyses - the data analysis framework.ipynb`\n", "\n", "```\n", "\n", "Quantify provides an analysis framework in the form of a {class}`~quantify_core.analysis.base_analysis.BaseAnalysis` class and several subclasses for simple cases (e.g., {class}`~quantify_core.analysis.base_analysis.BasicAnalysis`, {class}`~quantify_core.analysis.base_analysis.Basic2DAnalysis`, {class}`~quantify_core.analysis.spectroscopy_analysis.ResonatorSpectroscopyAnalysis`). The framework provides a structured, yet flexible, flow of the analysis steps. We encourage all users to adopt the framework by sub-classing the {class}`~quantify_core.analysis.base_analysis.BaseAnalysis`.\n", "\n", "To give insight into the concepts and ideas behind the analysis framework, we first write analysis scripts to *\"manually\"* analyze the data as if we had a new type of experiment in our hands.\n", "Next, we encapsulate these steps into reusable functions packing everything together into a simple python class.\n", "\n", "We conclude by showing how the same class is implemented much more easily by extending the {class}`~quantify_core.analysis.base_analysis.BaseAnalysis` and making use of the quantify framework." ] }, { "cell_type": "code", "execution_count": 1, "id": "114e888a", "metadata": { "mystnb": { "code_prompt_show": "Imports and auxiliary utilities" }, "tags": [ "hide-cell" ] }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_677/2040176852.py:12: DeprecationWarning: This package has reached its end of life. It is no longer maintained and will not receive any further updates or support. For further developments, please refer to the new Quantify repository: https://gitlab.com/quantify-os/quantify.All existing functionalities can be accessed via the new Quantify repository.\n", " import quantify_core.visualization.pyqt_plotmon as pqm\n" ] } ], "source": [ "import json\n", "import logging\n", "from pathlib import Path\n", "from typing import Tuple\n", "\n", "import lmfit\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import xarray as xr\n", "\n", "import quantify_core.visualization.pyqt_plotmon as pqm\n", "from quantify_core.analysis.cosine_analysis import CosineAnalysis\n", "from quantify_core.analysis.fitting_models import CosineModel, cos_func\n", "from quantify_core.data.handling import (\n", " default_datadir,\n", " get_latest_tuid,\n", " load_dataset,\n", " locate_experiment_container,\n", " set_datadir,\n", ")\n", "from quantify_core.measurement import MeasurementControl\n", "from quantify_core.utilities.examples_support import mk_cosine_instrument\n", "from quantify_core.utilities.inspect_utils import display_source_code\n", "from quantify_core.visualization.SI_utilities import set_xlabel, set_ylabel" ] }, { "cell_type": "markdown", "id": "97036a87", "metadata": {}, "source": [ "Before instantiating any instruments or starting a measurement we change the\n", "directory in which the experiments are saved using the\n", "{meth}`~quantify_core.data.handling.set_datadir`\n", "\\[{meth}`~quantify_core.data.handling.get_datadir`\\] functions.\n", "\n", "----------------------------------------------------------------------------------------\n", "\n", "⚠️ **Warning!**\n", "\n", "We recommend always setting the directory at the start of the python kernel and stick\n", "to a single common data directory for all notebooks/experiments within your\n", "measurement setup/PC.\n", "\n", "The cell below sets a default data directory (`~/quantify-data` on Linux/macOS or\n", "`$env:USERPROFILE\\\\quantify-data` on Windows) for tutorial purposes. Change it to your\n", "desired data directory. The utilities to find/search/extract data only work if\n", "all the experiment containers are located within the same directory.\n", "\n", "----------------------------------------------------------------------------------------" ] }, { "cell_type": "code", "execution_count": 2, "id": "efe3fa65", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Data will be saved in:\n", "/root/quantify-data\n" ] } ], "source": [ "set_datadir(default_datadir()) # change me!" ] }, { "cell_type": "markdown", "id": "6795b2b8", "metadata": {}, "source": [ "## Run an experiment\n", "\n", "We mock an experiment in order to generate a toy dataset to use in this tutorial." ] }, { "cell_type": "code", "execution_count": 3, "id": "881bb888", "metadata": { "mystnb": { "code_prompt_show": "Source code of a mock instrument" }, "tags": [ "hide-cell" ] }, "outputs": [ { "data": { "text/html": [ "
def mk_cosine_instrument() -> Instrument:\n",
       "    """A container of parameters (mock instrument) providing a cosine model."""\n",
       "\n",
       "    instr = Instrument("ParameterHolder")\n",
       "\n",
       "    # ManualParameter's is a handy class that preserves the QCoDeS' Parameter\n",
       "    # structure without necessarily having a connection to the physical world\n",
       "    instr.add_parameter(\n",
       "        "amp",\n",
       "        initial_value=0.5,\n",
       "        unit="V",\n",
       "        label="Amplitude",\n",
       "        parameter_class=ManualParameter,\n",
       "    )\n",
       "    instr.add_parameter(\n",
       "        "freq",\n",
       "        initial_value=1,\n",
       "        unit="Hz",\n",
       "        label="Frequency",\n",
       "        parameter_class=ManualParameter,\n",
       "    )\n",
       "    instr.add_parameter(\n",
       "        "t", initial_value=1, unit="s", label="Time", parameter_class=ManualParameter\n",
       "    )\n",
       "    instr.add_parameter(\n",
       "        "phi",\n",
       "        initial_value=0,\n",
       "        unit="Rad",\n",
       "        label="Phase",\n",
       "        parameter_class=ManualParameter,\n",
       "    )\n",
       "    instr.add_parameter(\n",
       "        "noise_level",\n",
       "        initial_value=0.05,\n",
       "        unit="V",\n",
       "        label="Noise level",\n",
       "        parameter_class=ManualParameter,\n",
       "    )\n",
       "    instr.add_parameter(\n",
       "        "acq_delay", initial_value=0.02, unit="s", parameter_class=ManualParameter\n",
       "    )\n",
       "\n",
       "    def cosine_model():\n",
       "        sleep(instr.acq_delay())  # simulates the acquisition delay of an instrument\n",
       "        return (\n",
       "            cos_func(instr.t(), instr.freq(), instr.amp(), phase=instr.phi(), offset=0)\n",
       "            + np.random.randn() * instr.noise_level()\n",
       "        )\n",
       "\n",
       "    # Wrap our function in a Parameter to be able to associate metadata to it, e.g. unit\n",
       "    instr.add_parameter(\n",
       "        name="sig", label="Signal level", unit="V", get_cmd=cosine_model\n",
       "    )\n",
       "\n",
       "    return instr\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{mk\\PYZus{}cosine\\PYZus{}instrument}\\PY{p}{(}\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{Instrument}\\PY{p}{:}\n", "\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}A container of parameters (mock instrument) providing a cosine model.\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\n", " \\PY{n}{instr} \\PY{o}{=} \\PY{n}{Instrument}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{ParameterHolder}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} ManualParameter\\PYZsq{}s is a handy class that preserves the QCoDeS\\PYZsq{} Parameter}\n", " \\PY{c+c1}{\\PYZsh{} structure without necessarily having a connection to the physical world}\n", " \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n", " \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amp}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mf}{0.5}\\PY{p}{,}\n", " \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{V}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n", " \\PY{p}{)}\n", " \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n", " \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{freq}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mi}{1}\\PY{p}{,}\n", " \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Hz}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n", " \\PY{p}{)}\n", " \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n", " \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{t}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mi}{1}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{s}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Time}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\n", " \\PY{p}{)}\n", " \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n", " \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{phi}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{,}\n", " \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Rad}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Phase}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n", " \\PY{p}{)}\n", " \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n", " \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{noise\\PYZus{}level}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mf}{0.05}\\PY{p}{,}\n", " \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{V}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Noise level}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n", " \\PY{p}{)}\n", " \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n", " \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{acq\\PYZus{}delay}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mf}{0.02}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{s}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\n", " \\PY{p}{)}\n", "\n", " \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{cosine\\PYZus{}model}\\PY{p}{(}\\PY{p}{)}\\PY{p}{:}\n", " \\PY{n}{sleep}\\PY{p}{(}\\PY{n}{instr}\\PY{o}{.}\\PY{n}{acq\\PYZus{}delay}\\PY{p}{(}\\PY{p}{)}\\PY{p}{)} \\PY{c+c1}{\\PYZsh{} simulates the acquisition delay of an instrument}\n", " \\PY{k}{return} \\PY{p}{(}\n", " \\PY{n}{cos\\PYZus{}func}\\PY{p}{(}\\PY{n}{instr}\\PY{o}{.}\\PY{n}{t}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{instr}\\PY{o}{.}\\PY{n}{freq}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{instr}\\PY{o}{.}\\PY{n}{amp}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{phase}\\PY{o}{=}\\PY{n}{instr}\\PY{o}{.}\\PY{n}{phi}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{offset}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{)}\n", " \\PY{o}{+} \\PY{n}{np}\\PY{o}{.}\\PY{n}{random}\\PY{o}{.}\\PY{n}{randn}\\PY{p}{(}\\PY{p}{)} \\PY{o}{*} \\PY{n}{instr}\\PY{o}{.}\\PY{n}{noise\\PYZus{}level}\\PY{p}{(}\\PY{p}{)}\n", " \\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} Wrap our function in a Parameter to be able to associate metadata to it, e.g. unit}\n", " \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n", " \\PY{n}{name}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{sig}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Signal level}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{V}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{get\\PYZus{}cmd}\\PY{o}{=}\\PY{n}{cosine\\PYZus{}model}\n", " \\PY{p}{)}\n", "\n", " \\PY{k}{return} \\PY{n}{instr}\n", "\\end{Verbatim}\n" ], "text/plain": [ "def mk_cosine_instrument() -> Instrument:\n", " \"\"\"A container of parameters (mock instrument) providing a cosine model.\"\"\"\n", "\n", " instr = Instrument(\"ParameterHolder\")\n", "\n", " # ManualParameter's is a handy class that preserves the QCoDeS' Parameter\n", " # structure without necessarily having a connection to the physical world\n", " instr.add_parameter(\n", " \"amp\",\n", " initial_value=0.5,\n", " unit=\"V\",\n", " label=\"Amplitude\",\n", " parameter_class=ManualParameter,\n", " )\n", " instr.add_parameter(\n", " \"freq\",\n", " initial_value=1,\n", " unit=\"Hz\",\n", " label=\"Frequency\",\n", " parameter_class=ManualParameter,\n", " )\n", " instr.add_parameter(\n", " \"t\", initial_value=1, unit=\"s\", label=\"Time\", parameter_class=ManualParameter\n", " )\n", " instr.add_parameter(\n", " \"phi\",\n", " initial_value=0,\n", " unit=\"Rad\",\n", " label=\"Phase\",\n", " parameter_class=ManualParameter,\n", " )\n", " instr.add_parameter(\n", " \"noise_level\",\n", " initial_value=0.05,\n", " unit=\"V\",\n", " label=\"Noise level\",\n", " parameter_class=ManualParameter,\n", " )\n", " instr.add_parameter(\n", " \"acq_delay\", initial_value=0.02, unit=\"s\", parameter_class=ManualParameter\n", " )\n", "\n", " def cosine_model():\n", " sleep(instr.acq_delay()) # simulates the acquisition delay of an instrument\n", " return (\n", " cos_func(instr.t(), instr.freq(), instr.amp(), phase=instr.phi(), offset=0)\n", " + np.random.randn() * instr.noise_level()\n", " )\n", "\n", " # Wrap our function in a Parameter to be able to associate metadata to it, e.g. unit\n", " instr.add_parameter(\n", " name=\"sig\", label=\"Signal level\", unit=\"V\", get_cmd=cosine_model\n", " )\n", "\n", " return instr" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display_source_code(mk_cosine_instrument)" ] }, { "cell_type": "code", "execution_count": 4, "id": "f58b3e02", "metadata": { "mystnb": { "remove-output": true } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting iterative measurement...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "dc9387fd707a411e9921f1648c4ab7c3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "meas_ctrl = MeasurementControl(\"meas_ctrl\")\n", "plotmon = pqm.PlotMonitor_pyqt(\"plotmon\")\n", "meas_ctrl.instr_plotmon(plotmon.name)\n", "pars = mk_cosine_instrument()\n", "\n", "meas_ctrl.settables(pars.t)\n", "meas_ctrl.setpoints(np.linspace(0, 2, 30))\n", "meas_ctrl.gettables(pars.sig)\n", "dataset = meas_ctrl.run(\"Cosine experiment\")" ] }, { "cell_type": "code", "execution_count": 5, "id": "0e3dbd26", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAGhCAIAAACBOXXdAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4nOzdeUCTd544/k/uBAhPwg2BQICoIDcqiFLxQCtSq4y1K7Xt2nam7ex0pt2Z2e10OjvtbHfOdreznen8Zn4zdWtbnXbaqQeKIIhFUVEpN8gVrgBigNyQO98/HifGcAaSPDner7/IcyTvIOadz/X+kMxmMwIAAADAipGJDgAAAADwEpBTAQAAAMeAnAoAAAA4BuRUAAAAwDEgpwIAAACOATkVAAAAcAwq0QEguVw+OTmJEOJyuVwud/bZiYkJKpUaFRVFo9FszhqNxrGxMY1Gw+Vyg4ODXRQxAAAAMBcic6pWq7148eLAwIDlyLp169avX295WFtb297eTiaTTSYTg8HYsWMHn8+3nJVIJOXl5Wq1mkKhGI1GgUBQWFhIoVBc+RYAAAAACxJRNR/MZvPJkyenpqY2bdokEAjMZvPk5KTJZIqJicEvaG1tvXLlSk5OTkZGhlarraiomJiYOHTokL+/P0LIYDAcP36cRqMVFRVhGNbT01NdXZ2WlpaXl2f9Kvn5+ZcvXybg7QEAAPA9hI2ndnV13blzZ+vWrWvWrGEwGEwmk8fjWRIqQqipqSksLCwrK4tMJrNYrIKCAr1e397ejp/t7e1Vq9WbNm3CMAwhJBQKExMT29ra9Ho9Me8HAACAzyMypwYEBMTHxyOETCaTzVmZTKZSqeLi4ixHOBwOh8MRi8X4Q7FYTKVSo6OjLRfExsbiw6tODx0AAACYC2HjqRKJhM/nNzU1NTU1zczM+Pv7r127Nisri0QiIYTkcjlCiMPhWN+CYdidO3fwn2UyGZvNJpPvfyfAL8ZvBAAAAFyPmJxqMBj0er1YLBaLxevWrQsICOjr67tx44ZWq8UHRHU6HUKITqdb30Wn0/Hj+AVMJtPmLEJIq9W66D0AAAAADyJ43u8jjzyC99/Gx8drNJrW1tasrCxLsrRr/hR+Md7MtXb06FHrh0eOHFlR0AAAAMA8iMmpVCqVQqGQyWTrAVGBQCAWiycmJqKjoxkMBprV6NRqtZZ0y2QyNRqNzVmEEH6jNUiiAAAAXIOwOUpBQUHWo6EIIXxpKd7cxIs/SKVS6wukUqmlKASXy1UqlQaDwfqs5UYAAADA9QjLqbGxsVqtdmpqynJkdHQUIRQUFIQQYrPZXC5XJBJZun8lEolSqbTUfODz+SaTybpehEgkotPpERERLnsLAAAAgDXCcmpqaiqTyayqqhobG1MoFI2NjT09PUKhEC/pgBDKzs6WSqW1tbUKhWJ8fLy6uprFYiUnJ+NnBQIBl8utq6sbHh5WqVQNDQ2Dg4OZmZlQRwkAAABRCKujhBCSSCRVVVUymQx/KBQKt2zZYl3Ut7Gx8datW3gHL4ZhhYWFoaGhlrMKhaKyslIikSCEyGRySkpKXl6ezRwlqKMEAADAZYjMqTipVKrT6QIDA1ks1uyzer1eKpVSqVS8T3g2mUym1WoxDLNZWoODnAoAAMBliN+XZuFZRTQaLSwsbIELbOpCAAAAAESB/VMBAAAAx4CcCgAAADgG8X2/bq55WH6yaQQhVJLFS+VhRIcDAADAfUFOXUht9/jLn7VMqXQIoZNNo+8dyticGEJ0UAAAANwU9P3Oq3lY/vKn9xIqQkiq1r50vLF1REZsVAAAANwW5NR5nWwamVLrrI9Ip3WnGkeJigcAAICb8/6+35qaGsvPW7duJTASAAAA3s37c+qy82hJFu/LxhHZ9P2mKsai78/kOSguAAAA3gb6fueVysN+V5rJ9b+/L/ofDmeuham/AAAA5uH97dSV2JwYcuyZ9fgYap9ENa7QLnoLAAAAnwU5dRGpPE4qj4MQ+npI+lZZJ/T9AgAAmA/0/S5VFp+rMRg7RhVEBwIAAMBNQU61w+Hc2I+vDxIdBQAAADcFOdUOpRv4n94aNpoI3h0PAACAeyJsPFWr1c7MzNgcnL1xm1wun5iYoFKpUVFR1tuV44xG49jYmEaj4XK5wcHBTgz3H57Mjf3o+uA/58W54LUAAAA4hMsqtxOWU3t6embvFv7888+TyfebzrW1te3t7WQy2WQyMRiMHTt28Pl8y1mJRFJeXq5WqykUitFoFAgEhYWFFArFqWEfzo194eMGyKkAAOApXFm5neB5v4888oh169M6oba2tra3t+fk5GRkZGi12oqKisrKykOHDvn7+yOEDAZDeXk5jUYrLS3FMKynp6e6urq+vj4vL8+pASeGBYQEMK6LJnPjXdEsBgAAsBL3KrerH6jcfuzZ9fiCDocjeDw1NDQ03Ir1qaamprCwsKysLDKZzGKxCgoK9Hp9e3s7fra3t1etVm/atAnDMISQUChMTExsa2vT6/XOjvnJjbEfXYOZSsAnNA/L3zzT8eaZjtYROdGxALAcLq7cTvwcJZPJNPugTCZTqVRxcXGWIxwOh8PhiMVi/KFYLKZSqdHR0ZYLYmNj8eFVJ8eL9qRGXhNN2vwjAeB9arvHj3x442hd/9G6/qc+uHmld4LoiABwdwTn1BMnTvzxj3/885//XFlZKZff/yKM/2wzZQnDMJns3lZrMpmMzWZb9xXjF1s/ifPAohrg9WCvQ+AdSrJ4HD+69RGnVm4nLKfSaDShUJidnV1QUCAUCvv7+7/44guF4l5FBZ1OhxCi0x/4RdDpdPw4fsHsswghrdYV5QPx2b8ueCEAiAJ7HQLvgFdut6yAxFg0p1ZuJ2yO0urVq1evXo3/nJSUJBAIzp4929DQYL2NjNlsx0pQ/GISiWRzPD8/f/bFs6cc2yWUzcjicyva7+xaG7GS5wHAbYml00SHAIBj/Kr89ruPp7ePKBBC+zN5Tt0KxV3q/fL5fA6HYxkNZTAYaFajU6vVMplM/Gcmk6nRaGzOWm60tsL0OZ/DubF/qu2DnAo8yKJL9GTT+qrO8Qsd41Wd45l8LotOndEZLGdhr0PgiV77svXQBv7+zOj9ma54OXfJqQghKpVq6drlcrkIIalUan2BVCrFj+MXdHd3GwwGKpVqOWu50QXyhSE/Odk2MKmOC/Z3zSsCsBILLNHrk6gudIxXdYz3SlQ7ksJLsnjvP5FFIZOu9E68dKJRqtYhhAIYVNjrEHicT28OG03m0hz+4pc6iLvkVKlUOjU1ZSnpwGazuVyuSCRav3493p0rkUiUSuXatWvxC/h8/u3btwcGBhITE/EjIpGITqdHRLiu4YgvqvlJcbLLXhGA5Zlzid6/717dd1dd1TlOJpEKk8NfLUpaF/vAV1LLXocdYwquHy0vwVnL5AFwhs4xxf9dHSj/3hzDf85DWE49e/ZsfHw8h8OhUqkSieTWrVsIoczM+43z7Ozsqqqq2trazMzMmZmZmpoaFouVnHwvgQkEAi6XW1dXx2AwuFxuV1fX4OBgTk6Os+soWTucG5v2RgXkVOD+5pxw9O6FnmfzBR/883pByLx9LfhehyazOfG1cueHCYAjPfLeldtv7XbxixJZ7/fSpUuWhxwOp6CgwLqVKRQKVSrVrVu3Ojo6EEIYhu3Zs8cyXEomk4uKiiorK8vKyvCHaWlp1inZBRhU8t4M3t9uDT+2LsaVrwuAQxSnRX4zP34pV5JJpMfXx5y4MXRog+v60ABYiZL3r372wkYq2XbWqrOR7Jpb61harValUun1ej8/v8DAwDmv0ev1UqmUSqUGBQXNeYFMJtNqtRiGWaYvWcvPz3fSHCVci1j++snW09/Z7LyXAGDlWkfkT/7lhmz6flMVY9GPP7dh6eOjbSPyV//eWvYS/KkDD/DG6fa4EH9CCrMTWfOBwWAEBwdHRETMl1ARQjQaLSwsbL6EihDicDjh4eFzJlQXSIvGSIjULIaF8MCt4Uv0KP/4zr6MJXopPIxCgj914AG++Fqs1BiI2unEXeYoea7DufyPrw+lH3BKOWYAHGVaa1gv4KZEYmi5S/SeyOV/An/qwL313lX94VJf1b9uISoA4uv9errH1sWcbhrRGuaoWgyA+/htdc9P9qx9vTj59eLk5S2JObgu5u+NYoORsNEiABb1yHtXzhA6QgE51QGe3Bj30bUBoqMAYF5VneORGGtt1LyDLEsEVTmBOzv4x2sfPrOBRXPd6o/ZIKc6AN79S3QUAMzrt1U939shXPnzPJET+0k95FTgjt4627kzOXyDYN7JN64BOdUB4oL9Y4JYl3tgJyzgjmq67oYEMOYsRmivxLCAIH/6jf6plT8VAA50pnl0XKF5bmlrw5wKcqpjQJ8YcFvvVvW87IhGKg42OgTuZmBS/U5l93uHXFqfYD7eP++3pqbG8rP1pjeOtXNtxI9PtkmU2lC2bRF/AAj0VbeEw6Klxzhssu7e9KjX/t6q0hoCGIt8etyRazA/GrGDW8Ar2ewG8ch7V66+up3ooO7x/pzqvDxqA2+q/mvhKte8HABL8W5V938Ur3Xsc+JN1Re2JMx3gWLG8OQH9UOTaqXGULAm7M9PrVv2a6nVarlczuFw/Pz8bE6ZzWa1Ws1gMGg0ml33KhQKlUoVFBQ037r26elpk+neTH4SieTv/0DtRrlcrlKp2Gz2Agvr8ZdgsVgYhpHJ9nUHymSykZERS21z99fe3s7j8TgcFy2ystkNgsdh/uFwNpvpLrnMXeLwAk9ujN329leQU4H7uNwzEcCgZvId/GH3RA6/9M/18+VUvdFU8HaNpbzwxY7xZ47e/ODI+mW8UHNz882bN4OCgqampnJzc1NSUqzPNjQ03Lx5Mzc3d86ipHPeazKZqqqqRkdHuVzuxMTEQw89JBTO0Sv++eef6/V6PBfSaLTDhw/jx3U63YULF8bGxjAMUyqVW7ZsSUiw/SXIZLLq6mp8Ey2DwaDVajdv3hwfb8c4n0Kh6O3t9aCc2tvby2aznZRTm5ubyWRyamrqvYezdoPQ6AwYy40SmRuF4um4fvS8hOCzrWN7UiOJjgUAhBD6bVX3q0VJDn/amCC/uGD/yz2SfGHo7LP/ebbDul6/CaGGIemlLknB6jkuXoBMJrt27dr+/fvDw8Pv3Llz6tSp2NhYNpuNn52amurr6wsNnfs557u3o6NjfHy8tLSUTqePjIyUl5dHR0ezWKzZz1BUVBQZafsfuba21mg0Pv300zQazWw2GwwGmwu0Wu3p06ejo6MfffRRfBtKqVQ6Pj5u1xvn8/mWHbo8wqOPPuq8J1coFNYN/dm7QczojacaR1N57lKKBHKqIz25Mfbdqh7IqcAd1PVOMGgUm+3bHAVfPzbn7m9Dk9M2R1QaY/+kKt9kezGJhMikeUucDwwMhISEhIeHI4QiIiK4XG5/f39aWhpCyGw2X7p0KT8/v76+3vqWxsbGxMRENps937137tzh8/l0Oh0hxOPxqFTq4ODgmjVrrO+dL56ZmZne3t7HHnsM72omkUiz+5w7OztJJNKWLVssG2RxuVx8U2ej0VhfX9/X12c0GqOjo/Pz8/EdQVpaWpqbm7VaLYPBWLduXVJS0sjISFtb265duxBC5eXlcXFxnZ2dk5OTYWFh27dvDwgIQAjJZLIrV67cvXuXwWCkpKSkp6fP8Q8xNHTjxg25XM5ms/Py8qKjo1Uq1fnz5wsKCkJCQhBCFy9e5HA4WVlZDQ0NJpNpYmJiZGQkMDAwPz8f/z5hNpubm5s7Ojo0Gk1oaOiWLVvw7u7y8vLY2NjOzs6JiYlDhw5du3YtJSWFx+MNDQ11d3djGNba2kqhUDZt2sRmsy9duqRUKuPi4rZt24ZnxzmDb2hoQAhNTU0NDAwEBARs2bIlKipKJBL19PSQSCSxWOzv719cXDzfv477gJzqSLnxwROqtt67qsSwAKJjAb7ut9U9P9i52klPvmttxI/+3rrq9Tk2gDPN2pbDaDa9dabjrbJOm+Pr4oI+/VbufC8hk8msuxM5HI5Mdq/acHNzc1BQUFRU1AOvazJdv349NDSUzWbPdy+NRtPpdJbrDQYDftz6XvzsuXPnjEYjl8vdsGFDbGwsQkgikVCp1IGBgZMnT5LJ5ISEhLy8PLwxajE2NhYVFTXnjpO3bt0aHR0tKSmh0WgXL168ePHi7t275XL5zZs3Dxw4gGHY9PT0zMwMQkin08nlcssvobW1tbCwMCAg4OLFi/X19du3b9fr9adPn87Ozi4qKlKpVGfPng0ICLDphZZIJFVVVbt3746IiBgdHa2oqHjsscfYbPaaNWsqKysPHDhw+/bt8fHx/Px8hJBKperq6tq1a9euXbu6urrOnTt3+PBhBoPR0tLS29tbXFwcEBDQ0tJy/vz5xx57jEQiyWQymUy2c+fOwMBAMpksl8vx36pOp+vr68vNzX3qqaf6+/svXbrE4/H27NlDoVBOnTrV3d29Zs2a+YJXqVS9vb07d+7ctm1ba2trdXX1k08+GRcXl5CQQCaTc3Nz8Y20S7J4X3wtVszoLe8UY9H3Z/Lm+ytyPcipDobPVHpzr8eMhQCvdF00SSaRnLr+/cncWDKZ9L3tc4xH5v+qZlh6r7VKIZMPrYt+qyTV3uc3GAzWDUEajYb3tcrl8vb29gMHDthcTyaTjxw5grdB57s3ISHh3LlzAwMDYWFhzc3NBoNBr9fb3IsQ2rp1a0hICIlE6urqOn/+fElJSWhoqE6n0+v1ExMTTz31lE6nKysru3XrVm7uA98J8D2y5nw7XV1d+fn5+HSnvLy8Tz75RKPRmM1ms9msVCoDAwP9/Pxmz8NCCKWlpeEt3aSkpLq6OoSQSCTy9/dPSkpCCAUEBKSkpPT29trk1La2tqSkpPDwcLPZHBkZyePxBgYGUlNTU1JSRkdHy8vLJyYm9u3bZ/ktxcTE4F8dkpKS2tra+vv716xZ09ramp+fj7eMU1NTm5qapqamgoOD8Yf4Dzb8/PzwdqdQKLx06VJSUhJ+e1xcnEQiWbNmzQLBx8XFxcTEIIRSUlKuXbs2MzPDYrHIZDKZTLbE2XtXxaSSSX40+bQeLWs3CGeDnOpgh3NjV71eDjkVEMuxa1Ln9ERubPH/Xp4zp9b8oODZYze/HpRq9KaD66Lf2m93QkUPtikRQjqdDk85ly9fXr16tVqtVqvVBoNhenpaoVDgfZKWebzz3RsdHb1169avv/56ZmaGz+dbb2llPQcY/2RHCKWnpw8NDeEDt/jH+rp162g0Go1GS01NbW1ttcmpTCZzetq26xshZDKZ1Gq1Jd3izTulUhkaGpqTk/PVV19pNJqYmJicnJzZKdmSaGk0Gv4NQKFQyGSyTz/91HLN7PSmUCiGhoYGBgYsR/CecITQ+vXr//rXv65du9b6Lus5zBiGqVQqs9msUqmuXLliGc5kMBharXb29das50hTqVTLQxqNhv9mFgjecjGVSiWRSDqdzmao+/WTbWqt4caPd7SOyE41jqLl7gbhVG6RU7Va7czMDJVKxb/RWJPL5RMTE1QqNSoqavbohdFoHBsb02g0XC53zi9Nrkchkx5fF3P8xlAp7N4MCHKjf8pkNufGO/d/RBibkR7DudAxXpgcbnOKSiF9eGSDwWimUpa/IzSXy+3svN9dPDU1FR0djRAymUxdXV1dXV0IIbVarVKp1Gr1zp07l3IvQkgoFOJzffV6/UcffbRu3SLrfGg0mtFoxJ8TIWTp16VQKJb1NhbR0dG3bt3S6/U2H1ZkMhlPt/i2lTMzMyaTCU+WqampqampSqXyxo0b1dXVJSUli/5m/Pz8goOD9+3bt8A1LBYrMjJyw4YNNsfNZnNtbW18fHxPT491WsW7nXFqtZrH45FIJCaTuWXLFsuvziGWEvxsM3pjyftXn8jhH86NRQil8jjuMynJBvF1lMxm89mzZ0+cOFFbW2tzqra29vjx41VVVefOnfvoo4+Ghh6oqSuRSD755JMzZ85cvHjxs88+O3/+PP6nT7gcQfBvKrrePNPROiInOhbgi35b3TNn89HhFq6ptJKEihCKj4+XyWT4//rBwUGlUikQCBBCe/fufeIfQkNDMzIy8IRqNpuvXr2Kj0TOdy/erkUIGY3GK1euBAYG4gnD+l6VSmUZzhweHh4cHMSbrYGBgeHh4R0dHfjtXV1dPJ7tMN7q1asZDEZ1dbVGo8GPiMXi5uZmhJBAIGhubsbTcGNjY1hYmL+/P97aRgix2ezo6GjrtvUCYmNjJycnRSIR/lCv10ulUptrhEJhR0eHZQQa/+aBELp586bBYCgsLFy/fn1lZSXe8EUIDQwM4O96fHxcIpHgE4+FQmFDQ4MlKolEYp41WG6vpQRvzc/Pb2BsIutnF/77YDqeUN0c8e3UlpaW6elpm6F+hFBra2t7e3tOTk5GRoZWq62oqKisrDx06BDeP2AwGMrLy2k0WmlpKYZhPT091dXV9fX1eXl5RLyJ+2q7x9882y5V647W9Z9sGn3vUMbmxDnmRgLgJLcGpVq9cZNL/uq2rAp97cvWEekMjzvHcpQVCggIKCgoqKysZLFYGo1m27Ztcw43WuCTVPl8PoZh892r1WpPnDhBp9NnZmYiIiJ2796Nz3yxvlelUpWVleHDeEajMTc317KyZfv27eXl5SKRyGAw4N22NjHQaLRHH320trb2ww8/9Pf31+v1+JxbhFBubm5VVdWxY8eoVCqdTse/BygUivLychaLRaVSNRpNQUHBEn8zu3bt+uqrr65du0ahUDQaTU5ODt6MthAIBEql8ssvv2SxWEaj0WQyPfzww1KptK2t7cCBA2QyOS0tbWRk5PLly9u2bUMI8fn8iooKhJBSqXzooYfwuVo5OTl1dXUff/xxQEDAzMwMk8nE5ygtJciVBG/tioSmm5D/UGBovXw+6eDBlby0a5BW/r1jJeRy+WeffbZr164LFy5ERkYWFRVZTn300Ud+fn7f+MY38IcymezEiRPZ2dl4b8bt27dramr27Nlj+XOvqqoSiURHjhyx7nXJz8+/fPmyy95O87D8yP/dsF4+xfWjH3t2vdt2UwDv8+Rf6r/1UEK+0EXf5P5wqU+h0f/7w2uc9PwGg0GtVvv7+8/+2r28e41Go0qlotPpcy5LxeHDn3gFpdkpRKlU0ul0fCXMfPR6/fT0tJ+fn00nsFarNRqN1l8O8NdCCAUEBNibrqanp41Go7+//3ylmvAxUQqFsvDXka+++orBYOTk5CiVSn9/f5t5yyaTSalUMpnMhd+yvRYNHiH01Ac3MmM4r3hUIR2C+34vXboUHx8/e4GzTCZTqVRxcXGWIxwOh8PhiMVi/KFYLKZSqdYd/bGxsfjwqvOjntfs9cjSaR0+lg6ACzQOyVRag8sSKkLoiRz+J/VO3OiQSqViGLaMhDrfvRQKBcOwBRIqQohMJrPZ7PmSHJvNXjS70Gg0DMNmTwFhMBg26Q1/LTabvYz2n5+fH5vNXiAnkUgkNpu9cEK1vjgwMHD2QiAymYxhmGMTKlos+K5x5dqfVjy3WeBZCRUR2/fb1tY2NTWFL222gffs2xS7wjDszp07+M8ymczm3wO/2DIQAoAPereq++UdLv0MCmTRHhKGlrWMFqdFLX41cEuRkZHL+9biJMdvDH1YN3Djte3+i+3T4IYIi1ipVF6/fn3Lli1zlrHGR8Uty8VwdDrdMlqu0+lsbsQvtkz1JkRJFu/LxhHZ9P2mKpNGdav1yMCLNQ/LZDP6LavsKwG4codz+e9W9UBO9VyrVhHZFrTZZOb7f2tmUMgVrzxEYEgrQVhOvXTpUmRk5JwFrC3sGuvFL57df3L06FHrh0eOHFn6c9orlYf9rjTzpRONUrUOIYSxaFEcpkprWxQUAGdwwZrUOeXGB99Vtook6vhQ/8WvBsCK9SYzXzaOMmmkH+5c/Y1sR67ecTFicqpIJBKLxTt27LAMf5rNZq1WOzY2FhgY6O/vj/fd2zQ6tVqt9QJty2x1y1mE0OxOf6cm0dk2J4Yce2a99Xrk1Dcqrr663X22IgJeqXVEPqHSbl0dRsirH86J/bh+8D+Kkwl5deChbDaZkU1rA5m0VRGeXdiVmA96fIlYVVWV9cE7d+6cPHly06ZNllpcNuuW8O2T8J+5XG53d7fBYLAMA+AXLzAn22Vs1iOf/95DD/+2tu7ftxEYEvB6v63q+R4RjVTcE7mxaW9UQE4Fdpk9qVOh0bvVJjPLQExOXbVqlaX6F+5vf/tbWFjYli1b8Pl4bDaby+WKRKL169fj3bkSiUSpVFr2FOTz+bdv3x4YGEhMTMSPiEQiOp0eERHh2reyOB6X9cYja7957Nb/v4KdmQFYQPuoYkw+syPJtp6RyzCo5OL0qC8axB7dawfAyhGzloZOp2MPIpFI+MR3y7yk7OxsqVRaW1urUCjGx8erq6tZLFZy8r0vwgKBgMvl1tXVDQ8Pq1SqhoaGwcHBzMzMOXeEIFxhcngKD/ufC91EBwK8k+un+86Gd/8SGwPwLCVZPI7fAxNR3W2TmWVw30E+oVCoUqlu3bqFFwPDMGzPnj2W4VIymVxUVFRZWVlWVoY/TEtLy8zMJDLiBX1vu/CFjxvOt915OMXtWtLAo90eUwxLZ2YX3XWxTD5Hozd1jimSIueurg6ADXxS57c/+Rrfu80NN5lZBoLrKC0KrwZJpVLx2tOzyWQyfH+lOdfkuLiO0qK2/Kbm2DM5scFLWoINwFK88HHDvgyeO3xXO14/1DYq//mydqEBPuuX5Z213ZK8hBA33GRmGdy3nYqj0WhhYQtNZbSpC+Hmzn0vf8Nb1e0/m6PMBQB2wVf1Sad1t8eUDx8mPqEihEpz+HGvnoWcCuwyNDXznW3CotRIogNxDOL3pfEp/nTqh89uOPCHq0QHAjxbbff4kQ9vHK3rP9k4IlHprvROEB3RPU/kxH4Co6rAHtdFk87el9CVIKe62rpY7qMZvJ+caiM6EOCp7q3qU91bhKDW6l863tg6IiM2KtzhXP6fLw+8eaYD9joES9FzVxXsTw/ypy9+qYeAnEqAJzfGGozmEzecWHkceDF33qpBopwZlturJBoAACAASURBVKqP1vUfret/6oOb7tOABu6pXjSZ40WNVAQ5lSi/KEn9683h5mG3aFsA4BB4A9pgvDftUarWuk8DGrgnL+v4RZBTCXTqXzY99sdrOoOJ6ECAh3HbVX3u3IAG7um6aCo3fu41HR4KciqRyr+Xv/u3brTUB3iEVB72YkEClXLvP693rOoDPqhPosJYtJAAB+/MSix3X0uzcjU1NZaft27dSmAksyWEBrxSKPzO8cZv5sdb73ZEdFzA3Z1tGf31gdSOEQX6x1YNREeE0Fx7HbpJAxq4p3rRVI53NVKRL+RUd8ujNorToirax/7pz9dmtEaE0Mmm0fcOZWxODCE6LuC+zraOxXD9SjKjS9ysbpjNXodkEgka0GAB10STO4mu/+Vw0PdLsOZheV3vFJ5QEUzrAEvwi3OdPypKIjqKueF7HT63WfDcZsG+9Kj2UQXREQH35X2TfpEvtFPd3HzTOjx6tyPgPJ/UD25ZFRbNZREdyLys9zpc91bV/kyelw2YAYfon1D7M6hhbG/724B2KgCe5Ofnbr9WtIboKJbq3X/KePmvTURHAdyR962iwUFOJZjbrosAbui9i73PbIrzZ3hM99LmxJBwjPlFg5joQIDbqe+fyhF42wQlBDmVcPi0Du4/SnP50SkwrQPMyWA0/7a6+/s7VxMdiH3eeSz9h5+3mNx7/yvgetf7JnMToJ0KnMAyrWNDHLcoJTIvASb9gjn8vLzztd1uOjVpYdADDGwMTk4zaOSIwDk26PR0RObUmZkZsVjc29srFotnZmbmvEYul/f19Q0ODur1+tlnjUYj/gyTk5NODta5Unmc14uTXylcPSKf+/cAfNxdpbasefSZzQKiA1mOvelRSo2hpusu0YEAd+Gtg6mIwHm/165da2q6/9WVTCanpKRs3LiRTL6f5mtra9vb28lksslkYjAYO3bs4PP5lrMSiaS8vFytVlMoFKPRKBAICgsLKRSKS9+GQ6XHcKACMJjTL8s7X/XMRiru3X/KeOjXNc0/3Ul0IMAt1PdPbk4MJToKpyAsp0ZEROzcuTM0NJTFYk1PT9+6daulpSUgICA9PR2/oLW1tb29PScnJyMjQ6vVVlRUVFZWHjp0yN/fHyFkMBjKy8tpNFppaSmGYT09PdXV1fX19Xl5eUS9o5Xzo1N4HFbPXZUwLIDoWIAb6RpXto8o/vtgBtGBLB/Gor1SuOqN0+1v7F1LdCyAeNf6pn64y8NmBiwRYX2/AoEgISEhMDCQRqNhGLZt2zYajSYW358f2NTUFBYWlpWVRSaTWSxWQUGBXq9vb2/Hz/b29qrV6k2bNmEYhhASCoWJiYltbW1zdhF7kLQYTgs0VcGD3LnIw9L9c15c47AMemLA8NQ0lUKKxNx3jfVKuMscJaPRaDKZ/Pz88IcymUylUsXFxVku4HA4HA7HknTFYjGVSo2OjrZcEBsbazQax8bGXBi142VEc5rE8KED7qsXTc7oTQWrvaGj7N3HM17+FCYr+TovHkxFhOdUuVw+OTk5NDSEd+RmZGRYjiOEOJwHaglhGCaT3cs3MpmMzWZbD77iF+M3eq60GKxl2LPfAnCsn5fffm23xxR5WJggxP+R9Kj/re4hOhBApOv9U7neuDIVR/Di8bKyMoVCgRBisVg7d+7kcrn4cZ1OhxCi0x8ohkCn0/Hj+AVMJtPmLEJIq9W6IGznSY/mNEM7FfxDedudKIyZHuM9hSr/tXBV/q9r9mfyYoL8iI4FEKNeNPnKjlVER+EsBOfU4uJig8GgVCpbW1vLysp27twpENxfLWC2Z504fjGJRLI5fvToUeuHR44cWUG8roCn1fRo7/kYBcv2y/LOY8/kEB2Fg+E9wF+86MHTCcGyjUhnzAi5c8HqFSI4p+IzjIKDg/l8/meffXb16lU8pzIYDDSr0anVai1tUyaTqdFobM5abrTm/knURnoM1jwsh5wKjt8Y2pQQEhvsbe257FhuUmTgx9cHD+fGEh0LcLXr/ZO5Aq8dTEWEj6dakMnkkJAQhUJhMpkQQngnsFQqtb5GKpVaOoe5XK5SqTQYDNZnLTd6NOj+BTjvmO47p7f2pfyi/LZaa1j8UuBdroumcr1uH3Jr7pJTjUbj3bt3/fz88GlHbDaby+WKRCJL969EIlEqlZaaD3w+32QyDQwMWJ5BJBLR6fSIiAiXx+5gUPkBIITer+l9cmMcm+kx5fLtBXOAfZNX7plqjbCceubMmY6OjtHR0YmJCZFIVFZWJpfLLQUfEELZ2dlSqbS2tlahUIyPj1dXV7NYrOTkZPysQCDgcrl1dXXDw8MqlaqhoWFwcDAzM9Oj6yjhEsMCRmUz0zoj0YEAwhhN5ncudP+bly6KxxUmh9Mp5LOtnr34DdhlTD6jN5r5Xj09jchvwZcvX8Z7ehFCLBYrLy/POqcKhUKVSnXr1q2Ojg6EEIZhe/bssQyXksnkoqKiysrKsrIy/GFaWlpmZqbL34RT4E3Vjd64aQNYil+U3/6Rt6yfWcD/PJ6R8kbFntRIogMBLuL1Hb8IIZJdc2sdS6/XK5VKfFUMhmGzp+zi10ilUiqVGhQ097+ETCbTarUYhtksrcHl5+dfvnzZwXE73y/Lb3P8aC9sSSA6EECASZVu57tfNbxeSHQgrvDpzeGvh6S/+kYa0YEAV/j3L1qy+NzH18cQHYgTEdlOpdFo82VK62vCwsIWuMCmLoR3SI/hnG4aIToKQAzP3dNtGR5fH/Nl48gn14d6JSqEUEkWLxU2D/Ze9aKpFwu8vKngLnOUgLX0aKxZDNWUfFHPXVXLsOwb2dGLX+otDm3g/eR069G6/qN1/U99cPNK7wTREQGnuKPQaPTGuGB/ogNxLq+dVejRojgsncE0odKGBNgutwVeqXlYfrJpBCHUPir36D3d7NU8LH/zzO1/TKtAUrX2peONx55dn8rzwv4nH1cvmsrx9sFUBDnVbeGVH7YnLdTvDbxDbff4y5+1TKl0CCEqhcKg+VDv0cmmkSm1zvqIdFp3qnEUcqr38e7S+RY+9L/Xs0DlBx/RPCx/+dN7CRUhZDAaXzre2DoC//TA20BOBUSCyg8+Yr6GGlHxuFhJFo/j98BWGRiLvj+TR1Q8wEkkSq1KaxCEePlgKoKc6ragnQp8QSoP+11pJtf/XlrFWLQ/HM5cC1N/vY6PNFKRL4yn1tTUWH7eunUrgZHYheNHw1i0wclp7yuhDqyVZPG+bByRTd9vqvpaQ21zYsixZ9afahz9oK7/o2c2pHnRxnbAwheqPeCWmVPNZvP09DSLxbLeFdw9eVAetZEWzWkRyyCneje8ofbiJ18rZ/TIVxtqqTxOKo9zc0BqnqPuC/AG10WTz2yOIzoKV7Ajp5pMpqtXr9bW1jY3N9+5c8dkMpHJ5NDQ0PT09Ly8vIceeohGozkvUB+UEcNpGpY9kh5FdCDAuTYnhhzaEF3XPbkxIXh/Js/XEqpFclRgx6gCdjn0PpMqnWxGlxAaQHQgrrCknGoymU6fPn3s2DGJRBIcHJyUlLRhwwZ/f3+1Wj01NdXY2FhZWcnlch9//PGDBw9CZnWUtGjsfNsdoqMArjCl0h/ZLDjgS6UeZkuODOwYUxAdBXC8a6LJjb4xmIqWmFO/+93vDg4OFhcX79q1Ky4ubvYFYrG4srLyiy++KCsrO3HihINj9FV4O5XoKIArtI0qntssIDoKgiVHBZ6EkpzeqL5/Mser9yG3tqSc+vDDD2/fvp3FYs13QXR09DPPPPPkk0+ePXvWcbH5OhqFnBAWcHtMsSYykOhYgBMZTeaecSX8K+N9v0RHARzvet/kUxvjiI7CRZY0w+ihhx6i0+mLXkaj0fbt27fikMB9GdFYExT+9XZtI/IUXx1DtcaiUSIwZv+EmuhAgCNNqXWTap0wzCcGU9ESc2ptbW1JScn7778/MDDg5HjAA9JiOC3Q/evt2kblKVGQUxGCIVVv5DsrU3FLyqmJiYnh4eEnTpx48sknn3/++VOnTqnVDvguqdPpRkdHe3t7x8bG9Hr9nNfI5fK+vr7BwcE5LzAajWKxuLe3d3JycuXxuKGMaE4TVH7wdm0jihSer3f84qD71/vU90/lCHxiZSpuSeOpa9as+dOf/jQwMHDu3LnKysq33377vffe27JlS1FRUVZW1px7iS/q/Pnzg4ODpn9sSMFisTZu3Lh69Wrra2pra9vb28lksslkYjAYO3bs4PP5lrMSiaS8vFytVlMoFKPRKBAICgsLKRTKMoJxW8lRgd13lAaTmUqGhXteq3VE/kQOf/HrfEByVOCxq4NERwEc6XrfZKkv/XnbsT41Li7u29/+9gsvvFBfX3/u3LmamprKysqIiIjdu3cXFRVFRETY9cIqlWrjxo2xsbF+fn5TU1O1tbUXL14MDAyMjIzEL2htbW1vb8/JycnIyNBqtRUVFZWVlYcOHfL390cIGQyG8vJyGo1WWlqKYVhPT091dXV9fX1eXp5dYbg/vPBvdiyX6ECAs8B4qgX0/XoZ2bR+XKlZHc4mOhDXsbsKEplM3rhx43/+53+eOnXqlVde4XA4R48ePXjw4G9+8xu7nucb3/hGWloahmE0Gi08PHzbtm0Iob6+PssFTU1NYWFhWVlZZDKZxWIVFBTo9fr29nb8bG9vr1qt3rRpE4ZhCCGhUJiYmNjW1jZfH7LngsK/3q19VLE2Cjp+7wkPZOqNJptNBYDn8qlVNLjlVxZks9klJSU//OEP161bZzab+/v77brdpsc4ICAAIWQ0GvGHMplMpVJZr4XlcDgcDkcsFuMPxWIxlUqNjr6/Rj42NtZoNI6NjS3r3bgv2KDGu0Ej1cbaqMB2GFL1Fr42QQktu96vVCqtrKw8d+6cSCQik8kbNmw4cODASuLo7e1FCFlypFwuRwhxOA9UKcMw7M6de3WFZDIZm822rjaMX4zf6E3SorF3q7qJjgI4S+uIPBVyqhW8+zdfGEJ0IMABroumDq6LIToKl7IvpxoMhqtXr547d+769etGo5HH4z333HNFRUWhoaErCUImk12/fj0qKio+Ph4/otPpEEI2i2LpdDp+HL+AyWTanEUIabXalUTihgQh/pNqnWJGH8iCoo9eqG1E7uMlCW0kR2EXb48THQVwAMWMfkQ2k+RjxUyWmlN7enrOnTt34cIFuVzOZDILCwv37NmTkZGx8gjUavXZs2fx57TpEDabzUt/Hvzi2ZOQjx49av3wyJEjy42UMOnRWLNYDt/cvRIsTrWRHBX4u4s9REcBHMDXVtHglpRTKyoq3nrrLYRQSkrKCy+8sG3bNj8/x2xANj09ffr0aZPJtG/fPuvnZDAYaFajU6vVWtqmTCZTo9HYnLXcaM0Tk6gNfEgVcqr36RpXJoQEUCmwUOo+YVhA/6TaYDTDr8XT+VTpfIsl5VQ/P7/S0tI9e/ZYLw9duZmZmdOnT+v1+n379rHZD0y25nK5CCGpVGp9UCqV4sfxC7q7uw0GA5VKtZy13Ohl0qM5n90aJjoK4HhtYnlKNDRSba2NxNrH5LDpm6erF01+40A60VG42pLm/ebn57/44osOT6inTp3SarV79+4NDLTtcGez2VwuVyQSWbp/JRKJUqm0xMDn800mk3WtRJFIRKfT7V0m6xFg6q+3go7fOUE1JS+g0hoGJ6d9cJ2Y3fN+JRLJ3/72t+7ubqlUaj3euWrVqtdff33pz3P69GmpVJqenj42NmZZABMQEBATc2+SWHZ2dlVVVW1tbWZm5szMTE1NDYvFSk5Oxs8KBAIul1tXV8dgMLhcbldX1+DgYE5OjpfVUcKFsRkUMmlMronEmItfDTxH24iiKDWS6CjcDlR+8AI+uIoGZ19OnZiYeO655+RyeVJSUlRUlPWpsLCwpT+PyWSamppCCDU3N1sfj42NteRUoVCoUqlu3brV0dGBEMIwbM+ePZbhUjKZXFRUVFlZWVZWhj9MS0vLzMy06+14kLRoTotYFol5YSvcl8Hi1DnBRqpe4LpoKjfe5yYoIXtzalVV1czMzIcffhgbG7uSVyWTyS+++OKil2VmZqakpEilUiqVGhRk+88TGBh44MABmUym1WoxDLNZWuNl8P3Jd62FnOo9+iSqKA6LRfPCnpUVgr5fL1Avmvx5SSrRURDAvjpKMplMKBSuMKHahUajhYWFzU6oFhwOJzw83LsTKkIoLRprgY1UvQtsRzMf2EjV06l1BpFE7ZvFTOzLqWlpaWKx2Ptq6ro/vJ1KdBTAkaDjdwFJkYGdMKTqsepFUzk+2fGL7M2pGzdu3LBhw3/9139JJBInBQTm5M+ghgcyRBL45u49YNLvAmCakodqHpa/eabjvy90x4b4Ex0LMewbTyWRSAcPHvzBD35QUlLi5+dHo92vlpecnPzrX//a0eGB+/Cmanyoj/6lep9WsTwVFqfOIzkq8OPrsJGqh6ntHn/5s5YplQ4hNDg1s31N2OZEn6tUY19OHRoa+va3v02hULZu3crhcKwLAfJ4PEfHBh6AT/0tyYLfszcYnJwODqAHMJa5iYXXg2lKHqd5WP7ypy2WffqUM7qXjjcee3Z9Ks+3anfYPe+XSqV+/PHHwcG+uPCIWBkxnJONsMDAS0DH78IiApk6o2lKrQvypy9+NXADJ5tGbDa+lU7rTjWO+lpOtW88Va/XCwQCSKiEgKm/3gSqEi4KhlSBJ7Ivp2ZnZw8ODk5PTzspGmeosUJ0LCtCJpHWRgW2jkBa9QbQTl0UdP96lpIsHsfvgU4FjEXfn+lzY1X29f1mZWUVFRW9+uqrzz//fFxcnPUcJRKJZP3QfWzdupXoEBwGH1L1zVVfXgYWpy4qOTLwUjesL/AYqTzsd6WZ3/7ka8WMHiGEsWh/OJy51vc+rOzLqTU1NX/9618RQi+88ILNqdTU1Pfff99hcYG5ZMRgNwakT+QQHQdYmVHZDItO4frBSOFCkqMC37/UR3QUwA6bE0Mey+bdEElz4oP2Z/J8MKEie3NqQkLCc889N+ep8PBwR8QDFpIWw/nz5X6iowAr1Toih86GRa0KZ4skKoPJTCXDRqoeo31U+ePiJN+sno+zL6fGxcXFxcU5JxKwuNXh7MGpaY3eyIQisZ4MKigtET6kmgaTuTzEtM7YIpb5ckJF9s5RAoSD2b9eAAZTlwim/nqW6s7x7Um+3mG5pJy69AK/UArY2aDwrxeASb9LlByFdYzCN0iPUX377vY1dmz66ZWWlFNffPHF48ePq9ULFZvVaDR///vfDx8+7KDAwNzSYzjNkFM92bhCQyaRQtkMogPxALCcxrNUdYzvSPb1duqSxlMPHz78+9///i9/+cvmzZuzs7NXr14dHBzs7+8/MzMzOTnZ1dXV2NhYW1vr5+f3rW99y94IFAqFyWQKDAwkk+dI8HK5fGJigkqlRkVFzV6rYzQax8bGNBoNl8v1kUoU6dGcX5zrJDoKsHzQ8bt00PfrQW70TyVHBUK5zSW9/4KCgry8vPPnz3/55ZcXL16cfYFAIHjhhReKiopYLNYSX3hsbOzGjRsSiQTvLi4tLcUw296w2tra9vZ2MplsMpkYDMaOHTv4fL7lrEQiKS8vV6vVFArFaDQKBILCwkIKxcsn70RzWdM6I9Rs81zQ8bt0fnRKGJs5MKmOC4atI9wdDKbilvqdgk6n7927d+/evXfu3Glpablz545KpQoICAgPD09LS4uMjLT3hfGe5OTkZIVC0d8/x/qQ1tbW9vb2nJycjIwMrVZbUVFRWVl56NAhf39/hJDBYCgvL6fRaHgy7unpqa6urq+vz8vLszcSj5MezWkWy7au9vVxCw/VNiI/uC6G6Cg8Bt79CznV/VV13v3TU9lER0E8u9vpERERERERK3/hxMTExMREhFBDQ8OcObWpqSksLCwrKwshxGKxCgoKTpw40d7evmHDBoRQb2+vWq3es2cP3roVCoWDg4NtbW3r1693z3JODoQPqUJO9VBtI/KfPZpCdBQeA+/+LUq1+1s7cKXByWmDyZQQGkB0IMRz07U0MplMpVJZr4XlcDgcDkcsFuMPxWIxlUqNjo62XBAbG4sPr7o4VNdLj8Gah2EypEeaUuu0BlMkxiQ6EI8B05Q8AnT8WrhpTpXL5QghDueBTYIwDJPJ7k15lclkbDbbeloTfjF+o3fD+36JjgIsB1R7sBfkVI8Aq2gs3DSn6nQ6hBCd/sA0HDqdjh/HL5h9FiGk1WpdFSNhgvzpfnSKWDpDdCDAblCV0F6WjVSJDgTMS6M3NgxKNyWGEB2IW3Drec9ms9nei0kk29KgR48etX545MiRlQdGOLzyQzR3qbOsgZtoG5HvzfC53a9WCB9S3Qwf2e4KGqnW3DSnMhgMNKvRqdVqmcx7A1FMJlOj0dictdxozTuSqA1807fiNJi44WHaRhWvFSURHYWHwbt/Iae6LRhMteamfb9cLhchJJVKrQ9KpVL8OH6BUqk0GAzWZy03ej2oUOiJFDN6+Yw+JsiP6EA8DFR+cHNVnXd3JEE79Z4l5VSlUilfzMKVC+3FZrO5XK5IJLJ0/0okEqVSaan5wOfzTSbTwMCA5RaRSESn0x2yzsf9QSV9TwSDqcsD05Tc2a1B6aqwgECWl69gXLol9f0+/fTTEolk4Wvs3ZNcq9WKRCKEEP7MfX19LBaLwWDEx8fjF2RnZ1dVVdXW1mZmZs7MzNTU1LBYrOTkZPysQCDgcrl1dXUMBoPL5XZ1dQ0ODubk5Hh9HSUck0aJDfLrGleuDmcTHQtYqrZRRUoUVCW0G2yk6s6qO8a3+3yNX2tLyqnf/OY3p6enF74mJMS+0Q61Wn3p0iXLw/r6eoRQUFCQJacKhUKVSnXr1q2Ojg6EEIZhe/bssQyXksnkoqKiysrKsrIy/GFaWlpmZqZdMXi0tBhOy7AMcqoHaRuR74RPn2WBjVTdVvXtu78r9aEP3kUtKafu3r3b4S8cFBT04osvLnxNZmZmSkqKVCqlUqlBQUE2ZwMDAw8cOCCTybRaLYZhlulLPiIjBmsalj8GVe48R9uI/F8LVxEdhUfCh1Qhp7qb4anpGb1xFXyzt7Kceb8mk+n27dujo6M8Hi8pKQkhZDQayWTy7HUsK0ej0cLCFhr9tqkL4TvSojl/vTFMdBRgqdQ6w12FVhACdWuX4x8bqcI3SPcCq2hms3veb2dn5xNPPPH888+/+eabFy5cQAgZjcaSkpITJ044ITwwr1Qe1j6qMNmzhBcQqH1EsRa2eFsumKbknmAVzWz25VS5XP79738fw7Df/OY3BQUF+EEKhbJjx47Lly87Pjowv+ZheZA//bsnmlpHYAKwB4CqhCsBy2nckN5oui6ayhfCuuEH2JdTq6qqyGTyO++8k5ubGxBwfwuC+Pj44WHoh3Sd2u7xIx/emFBpy1pGn/rg5pXeCaIjAouAbVNXwrKRKtGBgPtgWeqc7Mupo6OjQqEQ38HUmr+/v1KpdFxUYCHNw/KXP22ZUt2rgCpVa1863tg6AiUg3FqrWJ4KU2xWALp/3Q10/M7JvpwaGBh49+7d2cd7e3uDg4MdFBJYxMmmEZuS4tJp3anGUaLiAYvSGUyDU9PCMNhdcvmg+9fdVHfe3Q7t1Fnsy6m5ublDQ0OnTp2yPtjX1/f5559v2rTJoYEB4D2g43floJ3qVr4ekgpC/Ll+9MUv9TH2raVZvXp1SUnJ22+/XVlZqVAomEzma6+9du3ataCgIK8sVe+eSrJ4XzaOyKbvN1UxFn1/Jux24r6g43flIKe6FWikzsfu9amvvPKKUCj8/PPPBwcHzWbz8PBwYWHh888/P7smg5uoqamx/Lx161YCI3GUVB72u9LMl040StU6hBCZRPrD4cy1MKfUjbWNKjbE+cTuDs5j2Ug1yB/aRsSr7hx/95+gfNIcllPzobi4uLi4WK/X63Q6Pz8/Z5R6cCDvyKM2NieGHHtmPT6GWt46FonBRqpurW1E/symOKKj8HiwkaqbGJXNKDSGNRFQPmkO9uVUiURCp9MxDEMI0Wg0Gg32IiBMKo+TyuMghJh0ytmWse9sSyQ6IjA3k9ncdUeZFAkFH1YKNlJ1E7CKZgH2zVFqaWnZt2/fj3/84ytXrhiNRifFBOxSnBZV1gKTft0XbPHmKDD1103AKpoF2JdTMzMzDx482NHR8aMf/Wj//v3vvfcevl8bINCaCLbBZO69qyI6EDA3qEroKDBNyR0YTOa63oktq0KJDsRN2ZdT8c1kvvjii3feeSc7O/vUqVNPP/30s88++8UXX8jlUCGPMNBUdWdQldBRLBupEh2IT7vYOb4NGqnzs7uGPkKITCZv2LDhpz/96alTp/7t3/6NwWC8++67r732msODA0v0SHrkmeYxoqMAc4PFqQ4ETVXCwWDqwpaTUy1YLFZUVFRkZCSNRjMTsUGK0WgUi8W9vb2Tk5Ouf3X3kRAaQKOQbt+B8pDuCMZTHQiGVAlX1Tm+A9qp81vOWhqEkFgsLi8vP3/+/N27d7lc7v79+4uLix0b2aIkEkl5eblaraZQKEajUSAQFBYWUigUF4fhJvDu3zURq4kOBDygY1SRFBno3svNPAlspEqs5mFZTJAfLBFegH05dWZmprq6+ty5c62trVQqdePGja+88srGjRtdn8kMBkN5eTmNRistLcUwrKenp7q6ur6+Pi8vz8WRuIni9Mh//uDmD3ZCTnUv0PHrWMlRgaebRoiOwndBI3VR9uXUq1ev/upXvxIKhd/97nd37tyJL1QlRG9vr1qt3rNnDx6DUCgcHBxsa2tbv369b66ajQv2D2BSYTqMu4F/EceCvl9iVd+++/aBdKKjcGv25dRVq1b93//9X0JCgpOiWTqxWEylUqOjoy1HYmNje3p6xsbG+Hw+gYERqDgtsqxlDD7B3UrriHx/ZvTi14GlsWykGhdsu+MkcLYxuUaq1iVHwcKwqSaJEQAAIABJREFUhdg3RykmJiYhIcFkMnV0dFRVVXV2duLHjUaji+coyWQyNptNJt+Pn8PhIIR8eUkPrKhxQ20jihRYnOpQMPWXKBdvj29bAx2/i7B73m9nZ+cTTzzx/PPPv/nmmxcuXEAIGY3GkpKSEydOOCG8eel0Ojr9gXFy/KFWq3VlGG4lmssKDmA0D8Pm5O6ie1wpCPGnUVY0ux7YgO5folR13N2RDKtoFmFf369cLv/+97/P5/O/973vnT17Fj9IoVB27Nhx+fLl0tJSJ0S4VHhDeXZB//z8/NkXX7582RUxudwjaZFnWsbSYzhEBwIQglU0zpEcFfjx9UGio/A5ZjO61H336JH1RAfi7uzLqVVVVWQy+Z133vH39//qq68sx+Pj4ysqKhwd20KYTKZGo7E+grdQGQyGzZXemj7nVJwete93da/vSSI6EIAQVCV0jqTIwE5op7oczPhdIvt6pUZHR4VCob+/7ewAf39/pdKlBQe4XK5SqTQYDJYjUqkUP+7KMNxNRCAzmsu6NSglOhCAECykcY5IjKnRm6TTOqID8S1QN3+J7MupgYGBd+/enX28t7c3ODjYQSEtCZ/PN5lMAwMDliMikYhOp0dERLgyDDe0Jy3qLMxUcg+wkMZJYJqS61Xfvrt9DQymLs6+nJqbmzs0NHTq1Cnrg319fZ9//vmmTZscGtgiBAIBl8utq6sbHh5WqVQNDQ2Dg4OZmZk+W0fJAmr/ugmRRB2BMf3ovv4H6QwwTcnFWsTySIwZyrYdWQOz2Teeunr16pKSkrfffruyslKhUDCZzNdee+3atWtBQUFHjhxxUohzIpPJRUVFlZWVZWVl+MO0tLTMzExXxuCeQgIYCWEB9aLJnHiX9hwAG9Dx6zzJUYG13RKio/AhsIpm6eyu9/vKK68IhcLPP/98cHDQbDYPDw8XFhY+//zzQUFBzohvAYGBgQcOHJDJZFqtFsMwJpPp4gDcFj77F3IqsaDj13mSowL/v0t9REfhQ6o67/6yJJXoKDzDcmroFxcXFxcX6/V6nU7n5+c3e/mKK+GlHoC14rSotytr3tqXQnQgPq1tRP6dbUKio/BOq8PZvRKV0WSmkGF3Aqe7q9TeVWjgC+ISLXNfGoQQjUbzzcq67o/jR1sbhdX1TmxKDCE6Ft8Fi1OdCh9Shd+wUzUPy082jXTdUWbF+vR6CrssKacqlUqTybTIE1Gps9fYAKLgtX8hpxKieVj+0fVBhEgDk2r40HcSfOov/Hqdp7Z7/OXPWqZUOoRQAJN2pXdiM3yeLMGScurTTz8tkSwyIyA1NfX99993REjAAR5Jj/qvs52/gCEQl7P+JHrqg5vvHcqATyJngKm/TtU8LH/505Yp9b1FwCqN/qXjjceeXZ/Kg7G2RSwpp37zm9+cnp5e+JqQEPjgcCMBDGp2LPerbsmWVaFEx+JDbD6JpGotfBI5CZ1KOd92h0wilWTxoLXqcCebRix/xjjptO5U4yj8JS9qSTl19+7dzo4DONwj6VFnmkchp7oSfBK5Rm33+K8rb0tVuqN1/SebRqEzALgP2DHDa+1JizzbAsUfgLfBOwOkqgc6A1pHYDsmRyrJ4nH8Htj4C2PR92fyiIrHg0BO9VosGiUvMbi6c45aksBJ4JPIBebrDCAqHq+UysN+V5rJ9b/3x4yxaH84nLkW+tiXwPtzao0VomNxNdil3MVSedh/7U+xrNiGTyLguTYnhrz7eLofjfLcZsHx53LyEqB3fUmWvz7VU2zdupXoEAjzSFrUDz9v/p/HM4gOxIdcvH335e2JSo0BIbQ/kwcJ1eFKsnhfNo7IrPalgc4AJzGZUU588OvFyUQH4km8P6f6MiqFtG1NeGX7nZ1rfX27Htfok6iahmTvPJZOdCDeDO+WfOlEo1StQwiRSOhnjybDdxdn6BxVJEXBBsD2gZzq5fDav5BTXeOX5bdf3b2G6Ci83+bEkGPPrMfHUOOC/T5vGHk0A9qpjtcxpnw4BUrn2wfqKHm54rSo7/618b1DsGOP0309JJ1U6QqT4TPIFVJ5HMsKpbq+yfK2O7tT4Iujg3WOKV4phJrV9oE6Sl6OREJFKZFnW8f2pEYSHYuXg0YqUX5ekrrt7a8gpzqW3mgamppOCA0gOhAPA3WUvF9xetTpphHIqU5V03XXn07dIHD1jocAIcT1o38zX/Driq5/27Wa6Fi8R8eYIjkSBlPtRnwdJYVCYTKZAgMDyeQ5FvbI5fKJiQkqlRoVFTV7Gxyj0Tg2NqbRaLhcbnAwbBc6t90pEf/yydcms5lM6K583u2X527/byl0sBPm21sTN/3q4hMb+Dwui+hYvETnmDIpkk10FJ6HsDlKY2NjN27ckEgker0eIVRaWophtjP3amtr29vbyWSyyWRiMBg7duzg8/mWsxKJpLy8XK1WUygUo9EoEAgKCwspFIpL34aHwLep2ZseRXQg3ulk40hSVODqcPgAItIvS1Jf/XvrR89uIDoQL9E5pkiCdqr97M6pJpPp4sWLDQ0NMpnMaDRajgsEghdffHHpz6NWqxFCycnJCoWiv79/9gWtra3t7e05OTkZGRlarbaioqKysvLQoUP4TCiDwVBeXk6j0fBk3NPTU11dXV9fn5eXZ+878gWPpEd9dmsYcqqT/LL89snvbCI6Cl+XLwz9pH7ofNudh2Fg1RE6xxQwYLQM9tVRMplMr7766ptvvtnQ0HDlyhWxWNzS0nLt2rXu7m6Fwr59lxITEx999NG8vLzQ0LmLvDc1NYWFhWVlZZHJZBaLVVBQoNfr29vb8bO9vb1qtXrTpk1461YoFCYmJra1teGtXmCjMDn8q26JzrDI5G2wDB9eHdiVEhERyCQ6EIB+UZL6o7+3Eh2Fl+gYVSTD4lT72ZdT6+vrr1279uabb3722WcIobfeequ8vPwnP/mJwWDYu3evA8OSyWQqlSouLs5yhMPhcDgcsViMPxSLxVQqNTo62nJBbGwsPrzqwDC8ySNpUWegTqETwHRf98H1oz+XL/hNRRfRgXi84alprj89gAEFDOxmX05tbW1NSEjYtm2b5QiJRNq5c+fevXt///vfOzAsuVyOEOJwHtghC8Mwmeze7hMymYzNZltPa8Ivxm8Es8E2Nc7wv9U933wonkWDUXx38S9bE082jYxIZ4gOxLPBYOqy2ZdTDQaDZXotjUZTKpX4z8nJyZ2dnQ4MS6fTIYTo9Ae2+KDT6fhx/ILZZxFCWq3WgWF4k21rwq6LJqd1xsUvBUujN5reu9j7r4WriA4EPOAX+1N/9CX0AK9Ix5gyGSb9Lot9TfuQkJD6+nr85+jo6JaWlvT0dIRQb28vkznveNL09LSl+UgikSIiljqDwGw2Lz02/GLSrOUiR48etX545MiRpT+nl8G3qTm4LoboQLzEL8pv/wh6fd3PQ6tCj9+AyUor0jmmKMmCco/LYV9OzczM/P3vfz8+Ph4eHl5YWPiXv/xldHQUIXT+/PnCwsL57hKJRJcvX8Z/plAo3/rWtxZ9IQaDgWY1OrVarSVzM5lMjUZjc9ZyozVfTqI21kYFvlvV0zmmLMnipULN8ZWZUGlPN43een0H0YGAOfx8f+qO//4KcuqydY4pkiKTiI7CI9mXU4VC4c9+9jO8RVhaWiqTySorKxFChYWF3/3ud+e7a82aNfHx8fjPs9uRc+JyuQghqVRqfVAqleLH8Qu6u7sNBgOVSrWctdwIZqvtHv/txZ4ple5oXf/JptH3DmVsToTSV8sHjVR3FuRPf3az4DcVXT+Eykr2U+sMkyodP8iP6EA8kt17km/ZsgXvvKVQKC+99NKZM2fOnDnz2muvBQTMWxaSSqX6/QOLtaQqJ2w2m8vlikQiS/evRCJRKpWWmg98Pt9kMg0MDFhuEYlEdDp96R3LPqV5WP7ypy1Tqnuj0VK19qXjja0jMmKj8lz4nm7fyI5e/FJAkH/Zmvhl48ioDCYr2Q0qKK2E3TnVUbRabWdnZ2dnJ16dv6+vr7OzUyQSWS7Izs6WSqW1tbUKhWJ8fLy6uprFYiUn39sdVyAQcLncurq64eFhlUrV0NAwODiYmZkJdZTmdLJpZEqtsz4indbhW2WBZYD1Mx4Br6xEdBSeB7ZNXYllLj/SaDRTU1PWG8AxGIz5qjfMSa1WX7p0yfIQn/oUFBRk6SUWCoUqlerWrVsdHR0IIQzD9uzZYxkuJZPJRUVFlZWVZWVl+MO0tLTMTCi4CpwO9nTzFA+tCv2kfqii/c4u2D/YHp1jipRomG+xTCS75tYihGpqav70pz9Zai9YOGmvN71eL5VKqVRqUNDcO37IZDKtVoth2JwTj/Pz8y3To3xZ64j8yb/ckE3fb6piLPrx5zashZlK9jv4x2s/2LkatqDxCFNq3Y7//urrn8w7gxLMtu/3dW/sXZsRw1n8UjCLfe3Urq6uN954IyEh4aWXXgoKCrKecGRTn8FRaDRaWFjYAhc46XW9TCoP+11p5ksnGqVqHUKIRiH/4XAmJNRlgD3dPEuQP/2ZTYK3K7t+sBMmKy0V7PK2Evbl1OvXr3M4nPfff3+B1ajAPW1ODDn2zPpTjaMavfFMy2heAkz6XQ7Y083jfGdbYt4vL5Zu4EdxYBu4xYkk6mgui04lbKqNp7Mvp2q12ujoaEioHiqVx0nlcRBCjcOy9lHFWpiGYCfY081D4bX1P3wGtoFbHDRSV8i+LyM5OTkikQjfpg14roLVYZe67hIdheeB6b4easuqUCaN8sevRG+e6XjzTEfrCFQFnxdU+l0h+3Jqamrq/v37X3311ba2NrVarbMCm6x5kC2rQr/qlhAdhYeBPd082t70iF9WdB6t6z9a1//UBzev9E4QHZGbgpy6Qvb1/dbU1Hz00UcIodnbjztp3i9whg2CoLYR+bTO6EeH5byLaB6Wn2waQQiduDHU+B8wfdQjNQ/Lf3Kqw/yPpX94zZNjz67Hh0KANcipK2RfTk1ISHjuuefmPBUeDsv1PAneVN0NBVEXVNs9/vJn9+pPMenUhsH/196dBzR1Zg0Df7InQLgJS0CWQJCIIqKASgWt6ICttFq3mVan00qrdHnbGWem71e7uXRspzOd6TLtvE470+rYsYu2rjhUKi5YqlisbEFZDCCRLZCNJGTP98e1tzEssiS5ITm/v5J7nxtP6C2HZ7nnUUJBx8louJonkFOdqPTmAbN1CgaDMeM3tpwaHx/vuE84mLwWJwnONfRATh3BrYKOP/4uNpgs0LkBvg06qRM3tpxqsVicdoPBUSgUDofjuEO49zhz5gzxesmSJSRG4lVyksLf+aaR7Ci8GnRufMaa9OjDV2461TxZnQZ7mTmDnDpxY8up586d27Fjx5CnqFRqfHz8qlWrVq1aNcrNZzwD8uiQIoPZGIfR0N0PT4YAn+dU8ySASYOaJ0OSdGqyEkLJjmJyG1tOnTZt2j333PPNN98sWLBALBbT6fQbN26cPXs2JSVl5syZVVVVb731lkKhePzxx90ULnChnKTwsw1yyKnDgc6NLyFqntxQ6JU6E9Q8GdLVTs3j2SKyo5jcxpZTmUzmhQsX3nrrrYyMDOJgQUHBU089VVBQUFhY+M4773z22We/+tWvmEymq0MFLrY4SfD+6aYn7k4gOxAvhXduNu+rHDBZEUIYhwGdm0mNqHmS/odvFDpTSCD8jnIGY78TN7YZ0FOnTgmFQseEihCKiYnJyck5evQoQujBBx80Go03btxwZYzAPbKmhn7fqjRbbXdu6q8WJoalRAUvS47YtFD06aZM6Nz4hrXpMV/94LwLCLjW1Z8UwfWmibtJaWw5ValUDrmPjd1uVyqVCCF89xir1eqS4IC74cO/ZEfh1eo7+t9+aM7L9ydDD9VnrJsb82Ul5FRn0El1ibHl1KlTp169evXChQuOB1tbW0tLS6dOnYoQ6uzsRD9mVuD9IKeOTNKhiQ8LCGSOc5th4J2SIrhMOhUqFDqBnOoSY/tlkZeXd+TIkeeff37u3LnEGqVvv/2Wz+dv2LABIXTmzJnIyMhRbk5uMpl6e3v1en1gYGBYWBiDwRjcRq1W9/b20un0qKiowQ2sVmtnZ6fBYODz+aGhsFxtzBZPE+w+e53sKLxXhbQvE5ZB+qJ1GTFfXpbNgrEHB1c7NYV3TyU7iklvbDmVTqe/++67+/btO3ny5Pfff48QwjDs3nvv3bRpE57SCgoKCgoKRvNRX3/9dVtbm812azKPw+EsWLAgKem2PQ7LysokEgmVSrXZbCwWKzc3VygUEmflcnlxcbFOp6PRaFarVSQS5eXl0WhQbG8MYvgcFp12Xa6dGh5Edize6GKLYl06LPT1QevmxszfVbpz5UyyA/EisCONS4x5UIvNZhcWFhYWFhoMBpvNFhAQML5/WKvVLliwIC4uLiAgQKFQlJWVnT59Ojg4eMqUKXiD2tpaiUSSmZk5Z84co9F48uTJkpKS9evXBwYGIoQsFktxcTGDwdiwYQOGYU1NTaWlpRUVFVlZWeOLx28tTgo/1yCHnDqkSy19f16bSnYUwPUCmfS7p4UV13VBKTGcvN9IpVBCg2At9ESNv/IRm80ed0JFCK1duzY1NRXDMAaDERERsXTpUoTQ9es/jUNWVVUJBIL09HQqlcrhcHJycsxms0Qiwc82NzfrdLrs7GwMwxBCYrE4MTGxrq4OtscZqyVJ4WdgSnUoDd39EVw2L2CIKQngA9ZmxHx1GVYq3QKTqa4yqpza39+vVqsRQmazWT2MsW6q6lRrKSgoCDksGFapVFqt1rG2MI/H4/F4Mtmt/wdkMhmdTo+JiSEaxMXF4dOrYwoDLBKHf9ssH2o1t7+7JFXMT4DVdj4rd0ZEZZtCpYe/whFCSNKpmQk51RVGNfb76KOP9vX1nTt3rqysbLjahBPc6625uRkhRORIPIXzeLcVVsUwrKurC3+tUqm4XK5jhWG8MX4hGJOcaYKzjT1LkgRkB+JdKlr67k2ZQnYUwI3WZcR+ebl90yIoe4Kudmhyk2FvMRcYVU7dvHkzXjo/KSlpy5YtQ7YJCxv/4/AqlerixYtRUVEJCbdubpPJhBByKsbEZDLx43gDNpvtdBYhZDQaxx2G38KnVCGnOqloUWxfAWtYfNm6jJgtn1+BnIoQutqpefZnYrKj8AWjyqnLly/HX8TExDgOt46SXq8nuo8UCiUy8rZFATqd7sSJE2w2Oy8vz2lAeMj6EsPBGw8u379nzx7Ht6NcluxXFk8L//d3rWRH4V1aenVBLHo4l0V2IMCNpkdy6TRq3U11in8/VGOx2Vt6dWIBLFR0gfE/zN7T01NUVNTV1RUVFbVy5coR6jxIpdLz58/jr2k0WmFhIXFKr9cfO3bMZrOtWrXKccUTi8VCgzqdRqOR6Juy2WynXefwxviFjiCJ3pEoLNBmt7f16eNCx7/ozMdUtCgyRTCZ6vvwB1X9PKfCAiUXGlVOVSgUjzzyyObNmx944AH8iFQqffLJJwcGBvC3hw8f/uc//ykQDD14OH36dGJQ17EfOTAwcOzYMbPZvGrVKi73tt1R+Hw+Qgivd0hQKpX4cbxBY2OjxWKh0+nEWeJCMFaLp4Wfa5Q/siCO7EC8RYW07+5poypdAia1dRkxd71eusO/H1SFnOpCo1r3+8MPP/T39y9atIg48re//c1oND7//POHDh168cUX+/v79+7dO9zldDo94EccDgc/ODAwcPToUaPRuHLlyuBg5/+cXC6Xz+dLpVJi+Fcul/f39xM1H4RCoc1ma21tJS6RSqVMJtNpYBmMUk6S4GxDD9lReBHop/qJIBY9OzHspKSL7EDIBDnVhUaVU9va2qZMmUKM7mo0mitXruTk5Nx///3h4eHLly+/55578LJKo3fs2DGlUikWizs7O6/+qL29nWiQkZGhVCrLyso0Gk13d3dpaSmHw0lOTsbPikQiPp9fXl7e3t6u1WovX77c1taWlpYGdZTGB++nkh2Ft5ApB6gUFMXjkB0I8AR8+JfsKMhU39mfPAX2UXaNUY39qtVqx2q6NTU1NpttwYIFxJEZM2b897//Hf2/arPZFAoFQqi6utrxeFxcXGxsLP5aLBZrtdrKysr6+nqEEIZh9913HzFdSqVS8/PzS0pKioqK8LepqalpaWmjjwE4olEpWVNDzzf1LhLDdmaooqUvUwRlfv1FXnLEcwer1QNmjOOn9T2gn+pCo8qpfD5fLv+pE1NTU4MQmjFjBnGERqONaRNyKpX61FNP3bFZWlpaSkqKUqmk0+mD10AFBwevW7dOpVIZjUYMw5werQFjhXdVIacihCqkikyo9uBP8K7q4wtFZAdCgg7VQBCLHuyvf0+43KjGfqdNm9bZ2Xnu3DmEkE6nO3XqVERERFzcT+tZbty4MdwCpQliMBgCgWCERcU8Hi8iIgIS6sTBlCrhUotiPkym+hN/Hv6VdGhmRkEn1WVG1U/NysqaNm3atm3bEhISent7VSqVU+WH8vLylJQU90QIPCRREKQ3WTtUA34+j9itMQyYrfGhgWQHAjxnxpRgCgXVd2iS/S+7wMCva42qn0qhUN588838/HyDwTBlypQtW7asWbOGOFtfX2+32xcvXuy2IIGHwBblCDqp/spvu6qQU11rtDUfQkJCnn/++SFPJScn79+/33UhAdLkTAv/8oebGzKFd27quy5KFXfBZKr/+XlGbNYbpdtWJJMdiKdd7ex/fjks+nWZ8e/1BnwPTKkihC619M2HRb/+h8umL5gaVuJnD6oOmK3dGgPMdLgQ5FTwEyadmi7kX5T2kR0IaRQ6U5/OBIVP/dPPM2IO+tnwLwz8uhzkVHAbfI8asqMgDUym+rO85IiL0r5+g4XsQDwHcqrLQU4Ft1kyLfyMHxdUgmoPfu7nGbEHL7ffuZ2vqO/oT46CyVRX8v2cesYB2bFMAtOnBCu0xp5+P92GFsr8+jl/W/0L/VSXG/9eb5PFkiVLyA5hksFXKv1ibizZgXia1mi50af3wycUASE5Kthu96NM4z/f1GN8v58Kxspvp1ShJCFA/rRSqaVXF4mxOQzYd8SVIKcCZ35b+QEmUwFCaG1GzFf+kVOhk+oOkFOBs0AmfcYUbmWb8s5NfQv0UwFCCOMw5otCvqnvJjsQt4Oc6g6QU8EQ/LD4g9Fiu9almR3DIzsQQD4/Wal0tbN/Bmyb6mqQU8EQ/HBKtULal5kAA78AIYTumRlZ3tyrNfr4g6r1nZpk6Ke6Gpk5dWBgQCaTNTc3y2SygYGBIduo1err16+3tbWZzebBZ61WK/4JfX3+W/rHHWZFYzdVAwqdiexAPAeeogGOfj435mClL3dVNQNmrdHi55tQuQNpz9JcuHChqqqKeEulUlNSUhYsWECl/pTmy8rKJBIJlUq12WwsFis3N1co/Km8u1wuLy4u1ul0NBrNarWKRKK8vDwaDdawuQa+UmlNejTZgXhIhbRva/4MsqMA3mJdRuz/+7K6IDue7EDcBSZT3YS0nBoZGbls2bLw8HAOh6PX6ysrK2tqaoKCgmbPno03qK2tlUgkmZmZc+bMMRqNJ0+eLCkpWb9+fWBgIELIYrEUFxczGIwNGzZgGNbU1FRaWlpRUZGVlUXWN/IxOUmCU/XdfpJTbXb7DzdUc+P4ZAcCvMXMqGCrzX6tq396pG/OONZ39ifDZKobkDb2KxKJpk6dGhwczGAwMAxbunQpg8GQyX4abKmqqhIIBOnp6VQqlcPh5OTkmM1miUSCn21ubtbpdNnZ2RiGIYTEYnFiYmJdXd2QQ8RgHBZPCz/nN0UKYcUvGMy3VypBP9VNvGWNktVqtdlsAQEB+FuVSqXVauPj44kGPB6Px+MRSVcmk9Hp9JiYGKJBXFyc1Wrt7Oz0YNS+DOMwRGGBVe0qsgPxBJhMBYOty4j94vv2ncfrdx6vr72pJjscF4Oc6iYk51S1Wt3X13fjxg18IHfOnDnEcYQQj3fbgw0YhqlUt37Fq1QqLpfrOPmKN8YvBC7hP8UfoNoDGKxGpjBYrHvKW/aUtzzy8fffNveSHZErwaJfNyE5pxYVFR04cODEiRN9fX3Lli3j829NaJlMJoQQk8l0bMxkMvHjeIPBZxFCRqOfFn93h8XTBOca/eIpVdjiDTipbldv+aLGbLHhb5U647OfXqm96SPDNo3d/VPDg2hUCtmB+CBPrFHS6/VE95FCoURGRhKn7r//fovF0t/fX1tbW1RUtGzZMpFIRJy12+2j/1fwxhSK812yZ88ex7cFBQVjjd9vpQl51+U6zYA5mMMgOxY3qmxTpsXy4PcLcHSk6qbTs2RKvenolY5Z0b5QFQSqPbiPJ3KqVCo9f/48/ppGoxUWFhKn8BVGoaGhQqHwwIED3333HZ5TWSwWGtTpNBqNbDYbf81msw0Gg9NZ4kJHkEQnAl+ptGJ2FNmBuNElad98qPYA/AlMprqPJ3Lq9OnTExIS8NeD+5E4KpUaFhbW1NRks9moVCo+CKxU3lZyVqlUEoPDfD6/sbHRYrHQ6XTiLH7cTd/CP+FTqr6dUy+2KDYtFN25HfAna9KjD1+5qdL/1FXFOMzVaT7yaFl9pwbueTfxxHwqnU4P+BGHM3TZDqvV2tPTExAQgC874nK5fD5fKpUSw79yuby/v5+o+SAUCm02W2trK/EJUqmUyWQ6DiyDiQsPYp+o7fTJdY8EmEwFg82Kxt7fkMYPvLVog8um7344bWY0Rm5UrgL9VPchrebD8ePHp06dyuPxmEymRqOpra1Vq9ULFiwgGmRkZJw6daqsrCwtLW1gYODMmTMcDic5ORk/KxKJ+Hx+eXk5i8Xi8/kNDQ1tbW2ZmZlQR8mFyhq7txyoMZite8pbjlR1vLd+zsLEMLKDcrFqmSopgsuGLSTBIAsTw/Y9Nu/olY7LbcqUaCxrqo/c/H1ak81uD+c6T5MBlyAtpyKEzp8cLDGxAAAgAElEQVQ/b7PdWlbH4XCysrKIIkoIIbFYrNVqKysr6+vrEUIYht13333EdCmVSs3Pzy8pKSkqKsLfpqampqWlefxL+Cx83SOxTANf97jv8Xm+sUaDAJ1UMIJZ0bxZ0bzrcm3hvstkx+Iy8BSNW5GWU1esWGE2m/v7+00mE5vNxjBs8FRrWlpaSkqKUqmk0+khIc6/+IKDg9etW6dSqYxGI4ZhxPIl4BK+ve6RUCFVPDQ/luwogFebGh7EYdLqbqpTfGLsFwZ+3YrMfiqDwRicKQe3EQgEIzRwqgsBwJhUtPS9/eAcsqMA3m7VnKgjVR0+k1PvnhZOdhQ+y1tqEwJvsyY9mhdwW1UNX1r3iLvaqYnhB3DZZP5lCSaFB+ZEH626SXYUrlHfoUmOgn6qu0BOBUNzWveIEPKldY84KPMLRimcyxILgr67Pun3abbZ7U092qQIKPjgLvAXOhgWse4RIXRdru3R+Frdxwpp38o5PtXzBu6zKi36yJWbWVMnd3kQqKDkbtBPBSOZFc17+f7kl+9P3pI7bc93rWSH42LQTwWjt2pO9JHJP/wLC5TcDXIqGJXZsTyEULUPbf3W3KMNCWSGBDLv3BQAhJh06s+mC4rrusgOZELgQRp3g5wKRmtjVvxeH+qqwpOpYKx8YKUS9FPdDXIqGK3VadGl13o0A2ayA3GNi9K+u6B0PhiLe1Miz1zrMf64AdzkUt2u3nm8/nKbagy7fYGx8/2cesYB2bFMegVZ8T4zqwqTqWAc8JVKZEcxZmWN3QX/vrSnvMVksf7Pp1d8bH91r+L7OXWJA7JjmfQezYr/t0/k1LY+PZtBjQiG2ltgbCbjSqVbdUa1t9UZ9Zn91b2N7+dU4EIhgczsxLDj1R1kBzJRFS19mSIY+AVjtmBqaHOPVt4/mZ4rG67OKFnx+DbIqWBsCrLj95S3kh3FRMHALxi3ydhVBR4DORWMTbqQb7baJvt2qhXSvkxYoATGZdJNqfpDnVHvATkVjNlkf6imUz1gtaEYPofsQMCkNDMq2GixNfdoyQ5ktGZFY6KwgKAf61pjHIbv1Rn1HpBTwZitzYg5WdelNVrIDmScLkoVdyXAwC8Yv8k1/Pv3M81ZU8M+25y5aaFo00LRp5syfWZ/dS/kFfV+jUbjwMAAnU4PCgpyOqVWq3t7e+l0elRUFIPBcDprtVo7OzsNBgOfzw8NhaE8z9mYHb+3vPWZpYlkBzIeUO0BTNADc6I2/KviuWVJZAdyZxelfeebej8vvAsh5GObH3sn8nOq3W4/ceJEd3d3XFxcfn6+46mysjKJREKlUm02G4vFys3NFQqFxFm5XF5cXKzT6Wg0mtVqFYlEeXl5NBrN49/AH23Mir/3nfOTNKdelPYV3p1AdhRgEosNCQgPYv1wQ5ku5JMdy0hMFtsjH19q3LWc7ED8CPljvzU1NXq9nk53zu61tbUSiSQzM3Pz5s0bN24MCQkpKSnR6XT4WYvFUlxczGAwNmzYUFhYmJub29raWlFR4fHw/VRYECtTFHKitpPsQMamul299VBtp9oweQeugZeYFCuVVv9f+eGns8mOwr+QnFPVavWlS5fuvvtuKtU5kqqqKoFAkJ6eTqVSORxOTk6O2WyWSCT42ebmZp1Ol52djWEYQkgsFicmJtbV1ZnNPlI5z/vhw79kRzEGeCmZzy/dMJitj3z8PZSSAROxak7UkSqvfsTzlaN1D80TzoTtxz2L5Jx69uzZhIQExxFdnEql0mq18fHxxBEej8fj8WQyGf5WJpPR6fSYmBiiQVxcHD696v6oAUIIzYsP0Zks9R0asgMZFSglA1wrmMNIF/LONsjJDmRoh6/c1Bosv1oQR3YgfofMnFpXV6dQKLKzhxiaUKvVCCEe77YZdQzDVKpbvwRVKhWXy3Xs3eKN8QuBZ0yih2qglAxwOa9d/dvWp3/nVOPbD84hOxB/RFpO7e/vv3jx4sKFC9nsIWqumkwmhBCTedtzykwmEz+ONxh8FiFkNE6mmmGT3S/mxhbVdOhNVrIDAYAEXjulumZ3+aGnYBqVHJ5Y96vX64nuI4VCiYyMRAidPXt2ypQpYrF4hAvt9jHsSoQ3plAoTsf37Nnj+LagoGD0nwnuCK+q/1TOVLIDuYM16dH7K26YLD+lfyglAybugTlRR6s6HpgTRXYgP9m8r/KNNamhQcw7NwVu4ImcKpVKz58/j7+m0WiFhYVSqVQmk+Xm5hLTn3a73Wg0dnZ2BgcHBwYGslgsNKjTaTQaiU4tm802GAxOZxFC+IWOIIm61cas+JXvl3t/Tv3i+/YN82OPVncodSYEpWSAi6xKi973XZv35NTd564nhgflJUeQHYj/8kROnT59ekLCrccB8X6kXq9HCJ06dcqxWVdX15EjR7Kzs1NTU/l8PkJIqVQ6NlAqlfhxhBCfz29sbLRYLMRDOHhjogHwjIhgdrqQV1zXtTwlkuxYhvXS4boZU7gP3xW3NiMan0NdnRYNCRVM3JIkwa8/u9JvsHDZ5D/rf6lFceZaz4EnFpAdiF/zxH1Ap9OdHj+dNm1abGys45GDBw8KBILFixdzOByEEJfL5fP5Uql03rx5eBqWy+X9/f0zZ87E2wuFwmvXrrW2tiYm3io7IJVKmUwmPrAMPGljVvxbp5q8Nqe+eLh2ZlTwLzPjEEKzonlQSga4Fj6rSvoKW4vVvuFfF5tfy79zU+BO5KxRYjKZ2O0oFAqdTscwjFh5lJGRoVQqy8rKNBpNd3d3aWkph8NJTk7Gz4pEIj6fX15e3t7ertVqL1++3NbWlpaWBnWUPC8zIVStN13r6ic7kCG8eKg2JQrDEyoA7uAlq3+hvIOXIH+8YjhisVir1VZWVtbX1yOEMAy77777iOlSKpWan59fUlJSVFSEv01NTU1LSyMzYj+Gr1T645pZZAdymxcO1c6KwTbMd376GQAXyojjd2sMMuUAiTsdbT8mWZcRMwumM7wAZUxraz3PbDYrlUo6nR4SMnTRc5VKZTQaMQwb8pmcRYsWEcujgFslvVxcs+MeFp38ape4rV/VzI7lrYeECtzvzZMNAUza/ywhp/z1seqOU/Xdf1sPPQqv4L39VByDwRAIBCM0cKoLAciC1394wjtq0z//VU2akP/QvNg7NwVgwlalRT/9n8uezKnV7Wp8wHlhYtifv7727fNLPfZPg5F5e04Fk8XG7Pg1/3fBG3Lq//uyJiOO/yAkVOApYkEQg06t79Ake6S4bllj95YDtwpt7v2u7f31UC/Ji3jLSB2Y7KZgnFkxWImki9ww/vfLmrnxkFCBp3lspZJT5Wq73fbykTqoXO09IKcClyG9/O9zB6vnx/N/MRcSKvA0j9UphMrVXg5yKnCZrKmh8n5jU492HNdWt6t3Hq/feby+9uY4d0H4/cHquxJCfw4JFZBBwGUlhAddlPaRHQggGcynAlcqyBbtKW95ffXYHqpxnB86UtXx3vo5CxPD7ngVsUxjTXr03vLWrKmhazNi7ngVAG6Cd1XvSgh167+yJj368JWbKv1PXVWoXO1VoJ8KXGlDpvBAZbvFOoYHtMa3sym+wfie8pY95S1rd18I4zIhoQJyeWaX8lnR2Iv506nUW5uFQOVqbwP9VOBiG7NEr//3Kp5U16RHj/wceqd64J1TjYPnh57Zf+WuqaH8ACY/kMkPYPADmLwARkggE39RK9Ns+aKGuMpksR74XnZ/6hSoOwhIxGbQFk8LPynpumeme+t0FtV0bl8xo71vAEHlau/j+zn1zJkzxOslS5aQGImfSJ4S9NyXtTabHQ01kDtgtlbdUFW1q660q6puKGlU6pBlIqZFBKUL+Uq9SaE1Xu/RKvUmld6s0JnwF3Qa1XHXNvTjMg3IqYBc+NZvbs2p5xrlFIQeXSBy3z8BJsL3cyrkUU+qblfvOnENT6jox4HcVx9I1hqtVe2qqhuqGwr9HCFvTixvXXr0rlUpAi6r9qb6Vx9dcpof2pI7bYS/vl86XLe/os3tXwaAMcqfNeXXn1VtPyahUih3HKQZn53HJf96ZJ7LPxa4iu/nVOBJQy703360/p6UyHQh/7GFoqQIrtMls6Kx9zekPfvZldHvbPrQ/NgTtZ2wTAN4m7LGbhoN/fu7VjSW1Xaj92nFjbsSQhPCA134mcC1IKcCt1uTHv3y/ckjNFiYGLbvsXmj39l0HGkYAHfDV9sZzTb8LT5Is+/xeS6ckth5XFKz4x5XfRpwB8ipwJXGvdB/rDubjjUNA+Buw1VjcFVO/dPX17bkTvOebSrAkCCnAlfyZA8SNhgH/qNPazpQ2X755TyyAwF3ADkVuBj0IIF/cms1hp3HJdtXzHTJRwG3Ii2nGo3GgYEBp4ODN25Tq9W9vb10Oj0qKorBYDidtVqtnZ2dBoOBz+eHhrq3fAkYPehBAj/kNEhDpaBt989wyd+U1TJVW59+5eyoiX8UcDfScmpTU9Pg3cKfeOIJKvWn2YKysjKJREKlUm02G4vFys3NFQp/2mJaLpcXFxfrdDoajWa1WkUiUV5eHo1G89AXAACA2zkO0qycHbVm93cuKe/16vH6bStGWuUHvAfJY78rVqxw7H06JtTa2lqJRJKZmTlnzhyj0Xjy5MmSkpL169cHBgYihCwWS3FxMYPB2LBhA4ZhTU1NpaWlFRUVWVlZJHwNAABACN0+SHPsmYX5fzv/318vmsgHnqjtjAxmZ8TxXREdcDuSl5CFh4dHOHA8VVVVJRAI0tPTqVQqh8PJyckxm80SiQQ/29zcrNPpsrOzMQxDCInF4sTExLq6OrPZTMLXAACAQZKjgjcvSvjtF1UT+ZA/HK9/BTqpkwf5y7JtNtvggyqVSqvVxsfHE0d4PB6Px5PJZPhbmUxGp9NjYn4aV4mLi8OnV90cLwAAjNbqtOjIYPbuc9fHd/mHZdKVc6Iig9mujQq4D8ljv5999tnAwACDwRAKhZmZmXinEyGkVqvRoCVLGIZ1dXXhr1UqFZfLdRwrxhvjFwIAgJd4fvn0x/Z+nxTBXTpdMKYLrTb7n76+dv31fDcFBtyBtJzKYDDEYnFERASdTu/p6bl27ZpMJlu3bl1wcDBCyGQyIYSYTKbjJUwmEz+ON2Cz2U5nEUJGo9FDXwAAAEbn443zsv90OiliQTSfM/qrXi2q3zZiATLghTyRU/V6PdF9pFAokZGRCKGkpKSkpCT84IwZM0Qi0YkTJy5fvuxY8t5uH8M2nHhjCoXidHzRoiEWCAxecgwAAO5T8tu75+8qlbw62sqCbX36sw09O1fCFiCTjCdyqlQqJXIYjUYrLCwc3EYoFPJ4PGI2lMVioUGdTqPRSPRN2Wy2wWBwOktc6AjSJwCAdIFM+n82Za7+v/LDT2ePpv0fiupfgU7qJOSJnDp9+vSEhAT89eB+5E+h0OnE0C6fz0cIKZVKxwZKpRI/jjdobGy0WCx0Op04S1wIAADeJk3Ie3CecOtXNW+sTR255XfX+/QmS+6MiJGbAS/kiXW/dDo94EccztDTCUqlUqFQhISE4G+5XC6fz5dKpcTwr1wu7+/vJ2o+CIVCm83W2tpKfIJUKmUymfjAMgAAeKGH5sUGMOkfl7eM3AxmUicv0p6lOXHixNWrVzs7O+VyeX19/fHjxxFCaWlpRIOMjAylUllWVqbRaLq7u0tLSzkcTnLyrftMJBLx+fzy8vL29natVnv58uW2tra0tDSoowQA8GbbViSXXu0pb+4drsHByvZZ0dj0KcGejAq4CmVM64Bc6NChQ93d3cRbHo+XnZ3tWHoQIXTlypXKykqLxYIQwjAsLy8vPDycOKvRaEpKSuRyOUKISqWmpKRkZWU5jS0vWrQI5lMBAN5m7q5TX29ZFBbkvP4DIZSy/eTFF38WxIINTiYl0nIqQshoNGq1WrPZHBAQgD9CM5jZbFYqlXQ6nRgWdqJSqYxGI4ZhTo/W4CCnAgC8kEJnyn3r3A+vOO/d9s6pRoQoW3LFpEQFJo7MP4VYLNbgZbpOGAyGQDDSg9KDt7IBAAAvFxLI/L9fpj/04cXPC+8iDmoGzB+Xt9ZsX0ZiYGCCYHgBAABIcFdC6PKU/u3HJGvSYo5U3UQItSv0sDRpsoOcCgAA5Hg0K/6xvRUb/nVRZ7QghGhU6sbseLKDAhNCfg19AADwT9Xt6qp2DZ5QEUJWm+3ZT6/U3lSRGxWYCMipAABAjiNVNxU6k+MRpd6Eb2kOJinIqQAAAIBrQE4FAAByrEmP5gXctvsWxmGuTosmKx4wcZBTAQCAHLOisfc3pPEDb6VVjMPY/XDazGiM3KjARPj+ut8zZ84Qrx03kgMAANItTAzb99g8fA51dVo0JNTJjsw6Sh4AdZQAAAB4DIz9AgAAAK4BORUAAABwDcipAAAAgGtATgUAAABcA3IqAAAA4BrkP0ujVqv7+voQQnw+n8/nDz7b29tLp9OjoqIYDIbTWavV2tnZaTAY+Hx+aGiohyIGAAAAhkJmTjUajadPn25tbSWOzJ07d968ecTbsrIyiURCpVJtNhuLxcrNzRUKhcRZuVxeXFys0+loNJrVahWJRHl5eTQazZNfAQAAACCQNvZrt9v/+9//dnR0LFmy5LHHHisoKFi5cmVkZCTRoLa2ViKRZGZmbt68eePGjSEhISUlJTqdDj9rsViKi4sZDMaGDRsKCwtzc3NbW1srKircFO2iRYvc9MlgSPAD9zz4mXsY/MA9zwM/c9JyakNDQ1dX15IlS6ZPn85isdhsdnR0dGxsLNGgqqpKIBCkp6dTqVQOh5OTk2M2myUSCX62ublZp9NlZ2djGIYQEovFiYmJdXV1ZrOZnO8DAADA75GZU4OCghISEhBCNpvN6axKpdJqtfHx8cQRHo/H4/FkMhn+ViaT0en0mJgYokFcXBw+ver20Cdmz549XvU5XvtRruKF384LQ3Ih7/x23vlRruKF384LQ/IM0nKqXC6PiIioqqrau3fvBx98sG/fvsuXLxOFEtVqNUKIx+M5XoJhmEp1a7delUrF5XKp1J/ixxvjF46JY0HgiXDV53jnR3lhSC78KC8MyYUf5YUhufCjvDAk7/woLwzJhR/lPSGRs0bJYrGYzWaZTCaTyebOnRsUFHT9+vVLly4ZjcasrCyEkMlkQggxmbftgsRkMvHjeAM2m+10FiFkNBo99B0AAACA23kip+r1eqL7SKFQiIVIRqNxxYoV+PhtQkKCwWCora1NT08nkuWY6vvjjSkUitNxp3GDgoKCcX0JAAAA4A48sS9NXV0dsTkMjUYrLCxECH344YdUKnXTpk1OzfAse+PGjRMnTuTm5orFYqLBiRMn5HL5xo0bEUKHDh0yGAwbNmwgznZ3dx86dGjRokUpKSnEQVhZBwAAwLVG2O7ME/3U6dOn42uRkEM/MiQkRKPRODbDHy3Fczxe/EGpVDo2UCqVRFEIPp/f2NhosVjodDpxlriQABu9AQAA8BhPrFGi0+kBP+JwOPjBuLg4o9GoUCiIZh0dHQihkJAQhBCXy+Xz+VKplOhGy+Xy/v5+ouaDUCi02WyO9SKkUimTyXR8whUAAADwJNLW/c6aNYvNZp86daqzs1Oj0Vy5cqWpqUksFgcGBuINMjIylEplWVmZRqPp7u4uLS3lcDjJycn4WZFIxOfzy8vL29vbtVrt5cuX29ra0tLSoI4SAAAAsnhiPnU4crn81KlTxOMxYrF48eLFjkV9r1y5UllZabFYEEIYhuXl5YWHhxNnNRpNSUmJXC5HCFGp1JSUlKysrMFrlAAAAADPIDOn4pRKpclkCg4OJoaFHZnNZqVSSafT8THhwVQqldFoxDDM6dEaV4Ey/e4z8gYJTi2dblQ2m+2m/+K+Ta/Xm0ymgIAApwfVhmQwGDo7O+12u0AgCAoK8kB4vsdkMun1eiaTGRAQMHJLuMknzmQy9fb26vX6wMDAsLCwkX+r4Fx+k5OfU70ZlOl3n5E3SHCyZ88eg8HgeCQjI2P+/PnuD9NHDAwMnDlzRi6X6/V6hFBOTs6MGTNGvuTatWtlZWU2m41Codjt9nnz5mVkZHgkWB9RVlYmk8nwxwjFYnFubu7I7eEmn6Cvv/66ra2NqMrH4XAWLFiQlJQ0wiXuuMnJ3+vNazmW6ccwrKmpqbS0tKKiAq9KASaC2CBhzpw5RqPx5MmTJSUl69evJ2bTB0tMTExNTSXejtASDGaxWPR6fXx8PIPBqK6uvmN7uVx+9uzZ+Pj4pUuX0mi0CxcuXLp0KTQ01LFcKBiZSqUSCAQzZ868cOHCKC+Bm3witFrtggUL4uLiAgICFApFWVnZ6dOng4ODp0yZMmR7N93ksCf5sKBMv/uMvEHCkAICAiIcwFDkmHC53HXr1i1evFgkEo2mfU1NDZVKXbJkCZPJpNFo2dnZQUFBVVVV7o7Tl6xcuTI3N3f27NmjvwRu8olYu3ZtamoqhmEMBiMiImLp0qUIoevXrw/X3k03OeTUYU3eMv1e7o4bJAzHbrfDVIVnyGSyKVOmsFgs/C2FQhEKhV1dXfAHpbvBTT5uTgtU8b9IrFbrcO3ddJPD2O+wXFimHzgaboOErq6uEa5qaGioq6uz2Wx8Pj8lJcWxWhZwLbPZrNfrnXq0PB7PbrdrNBpYqec+cJO7UHNzM0LIsVPkyH03OeTUYUGZfje54wYJg4WFhUVGRnK5XIPB0NDQcP78ebVanZ2d7fZY/dJw/4EQ3PzuBDe5C6lUqosXL0ZFRREl/Jy47yaHnDoGw5XpB+MwpgGuFStWEK9TU1OPHTtWW1s7a9as4OBgN4QGhgA3v7vBTe4qOp3uxIkTbDY7Ly9vTHesS25ymE8dFpvNdlrajv/9Qoy/g/HBf4BOfwwajcZRPoqH1/ew2+3d3d1uic/vDfcfCCEEj0t6Btzk46bX648dO2az2VauXDnCM8Huu8khpw6Lz+f39/fjVZxwQ5bpB2N1xw0S7gh/RJh4EA24Fp1O53K5g/8DUalU6DN5DNzk4zAwMHDs2DGz2fzAAw9wudwRWrrvJoecOiwo0+8md9wgwW63G43GERbs4evjYbGMC5nNZse/2YVCYXd3t1arxd9aLJYbN27ExMRAwRNXgZvc5QYGBo4ePWo0GleuXDlkXjSZTI5ret10k9N27Ngxket9GI/Hk0qlLS0toaGhNBqttra2vr5+7ty50dHRZIc26bFYrPr6er1eHxISolKpTp8+TaFQli5diu/c19fXt3//foQQ/qO+du1aQ0OD3W63WCwKheLSpUtNTU1CoXDOnDkkf41JpbGxsaenp7u7u6uri8ViGQyG3t7ekJAQfGX7N998c+bMmYyMDHwyicfj1dfXd3V1CQQCk8l0/vz53t7eJUuWjPy3P3Akk8lu3rzZ29vb1taG39i9vb1sNhsfdYSb3OUOHTqkVCqTk5MtFkvvjwwGA15gACG0d+/e9vZ2ooKYm25yWKM0LCqVmp+fX1JSUlRUhL9NTU1NS0sjOy5fIBaLtVptZWVlfX09QgjDsPvuu2+4iWo6nd7Q0FBTU4O/pVKpM2bMgPWQY1VeXk6sD2hoaGhoaEAIiUSiIf8qxzDs3nvvPX369IEDBxBCTCZz6dKlw9WjAUOSSCRSqRR/3d3djc+MLlu2bMhf2XCTT5DNZsN3DnUqExYXFxcbGzvkJW66yaHe7525u0y/37rjBgkEu93e398/MDBApVJ5PN5oSmODicN/T9nt9pCQEBj1dTe4yUnh8psccioAAADgGrBGCQAAAHANyKkAAACAa0BOBQAAAFwDcioAAADgGpBTAQAAANeAnAoAAAC4BtRRAj7CZrPduHFDrVar1WqtVstkMvHiNX5Fr9d3dHSw2Wyn7y6Xy5VK5SgLmX755ZenT5+eP3/+kGflcvmbb74pEAjCw8MnHnBXV1dfX596GBQKpa6u7sMPP5w3b57TtlzuYzAY/vznP0dHR49cgNpsNv/lL38JDQ11yc8B+Ay/+6UDfJVKpXr44Ycdj8TFxT355JMLFy4kK6TR6+zsfPvtt3/1q1/NmjVrIp9z4cKFHTt2/OlPf8rKynI8/sYbbzQ0NOAVwe6orq6uqanpmWeeGfJsf39/aWlpTk5OcnLyRELFbd++Ha+lNaSCgoKQkJDS0tJf//rXgYGBE//nRmP//v319fXx8fEjN2MwGCwW6+233/7ggw9gCzxAgJwKfMq99977i1/8wm63t7e3/+tf/3rxxRffeeed9PR0suO6A61We+HChfz8fLID8bStW7fq9Xr89cmTJw8fPvzyyy/HxMTgRwQCAZ1OF4vFHtsPR6PRfP7557/97W/xMsgj++Uvf7lu3bpvv/120aJFHogNTAqQU4FP4fF4YrEYITRt2rTo6OjNmzcXFxfjOVWhULS1tfX390dERIjFYsdfmmq12maz8fn8np6epqamiIiIxMTEUV7S1dXV3NwcGhpK1OZub29va2uLjY2Ni4tzCs9kMl29elWtVkdGRorFYrx/g9doRAhpNBq5XI4Q4nK5RCFMjUZz9epVs9k8depUx2Kker1ep9OFhYXp9XqJREKhUObNmzf6H5Tdbm9ubu7s7MQwLDk5eeRKeFqttra2lkajpaamDtlg3EGKRCLi9ZUrVxBCCQkJ+H9BnMFgEAgExE9eLpcHBAQEBgY2NTV1d3eLRCK8Br3dbr927ZpKpRKLxWFhYaMMb7Di4mK73Z6Tk+N4UK1WX79+XafTYRiWmJhI7MoZHh6elpZ2+PBhyKmAADkV+KypU6cihPr6+hBCr7zyyrlz5ygUCp1ON5lMCQkJb7zxBvHr9dVXX1Wr1ZmZmZ988ondbl++fPmLL744mksWLFjw73//m0Kh2Gy2hQsXvvrqq2+99VZRURGVSrXZbGvXrt2yZQsRz9mzZ//yl7+o1Womk2kymWbOnPnaa6+Fhob+8MMPzz33HELozTffxFv+/jYuIWYAAAkrSURBVPe/X7Vqld1u/+ijjz799FOLxUKn0y0WS35+/nPPPYfPlR46dOiDDz7Ytm3bm2++OTAwEBkZefDgwVH+ZLq6ul566aXGxkYGg2E2m0NDQ7dt2zZcb76srOy1117T6/UsFovNZm/atMnxrPuCxH399dd//etfjx49iheFfvDBB1esWCGTyb7//nuEEIVCeeKJJ/Lz859//vlr167ZbDYGg/Hiiy/m5uaOJrzBTp06NXv2bMe9rL/66qvdu3dbLBYOh6PVamk02v79+4nNqbKyst5//32VSsXj8cb0vYCvgpwKfBa+9Qrea0lPTy8oKIiLi6NSqRKJZNu2ba+99tr7779PNG5paaFQKB999JFQKNRoNKO8JCgo6MCBA2FhYV988cU//vGPLVu2hIeHHz16lMvl7t69++DBg8uWLcPnHWtqarZv356bm/vMM8/w+fyrV6++8sorO3bseO+99+bNm7d79+6nnnrqlVdewXs8+Hqc//znP/v27Xv66adXr17NYDDOnDmza9cugUDw2GOPETF88MEHO3bsSEtLw2PGdXd3Ezui4AYGBojXNptt69atcrn87bffTk9Pv3nz5iuvvPLCCy988sknAoHA6WfY0dGxc+fOGTNm7Ny5k8/nnz9//o9//KNjg3EHOW5FRUVr1qx59dVXKRTKrl27Pvzww7KyspycnHfffddoNOKj/QsXLsQ7+qMJj6DX6xsbGx955BHiiEKh+Nvf/rZu3bonnniCyWQaDIaKigrHmd2ZM2fa7faqqiqnri3wW/AsDfApcrm8pqamurq6qKho586dFAoFn6RcvXp1QkICjUajUCgpKSmPPvpodXW1SqUiLrRYLNu3bxeLxSwWC1/JecdLbDbbtm3bIiMj6XT6+vXrg4KC2tratm7dGhISwmAwHn/8cYTQ5cuX8cZ79+6Niop64YUX8NWkM2bMePLJJ6uqqqRSKZVKxfe5YzKZHA6Hw+HQaDSTybR///577733oYceYrFYVCr1Zz/7WX5+/qFDhxz3vSgoKMjKyuJwOBEREcTBt95669Hb1dbWEmcrKyuvX7/++OOPz507l0qlxsbGvvTSS3q9/siRI4N/nseOHbNYLC+//HJoaCiVSl28eLHjpO9Eghy32NjYp59+OjAwMCAgYOPGjVarlcvlrl+/ns1mYxi2fv16tVrd3Nw8+vAIMpnMZrNFRkYSRzo7O20221133YX/lcNmsxcvXuzYJcXHLdra2ib+vYBvgH4q8CmlpaWlpaUIISqVmpCQ8Lvf/Q7f1Vmv1x87dqyurk6lUtlstv7+foRQT08P8fsxPDycWBqDu+MlUVFRxC51VCo1PDw8JCSEmAcNDAwMDAzs7e1FCNnt9urq6unTp3/zzTfE5+OnWlpaEhISBn+RxsZGnU5Ho9GKi4uJgyaTSa1WK5VK4t8dcsD22WefdZr4fPfdd9vb2/HX+Dpbx4XB+BzkkOtvr169Ghsb65hm5s+fT4zfTiTIcUtJSSHW2eJJOiUlhTiLH8F/tqMMj6BWqxFCjvubJiQkhISE7Nq167777svIyEhNTXWaeMYXT+EXAoAgpwIfs2LFikceeYRKpYaEhBBzZgaDobCwUKVS5eXlzZ49m8FgtLS0tLa2ms1m4kKn+bDRXMLhcBwvodFoTkfodLrVakUIGY1Gk8kkk8m++uorxwZJSUnD7cSOp/CqqqqmpianS/DPHDJsXExMzPTp0x2POE4Q6nS6wRfyeDz8uBN8YY7jEcenNicS5Lg5/pDxDS8HH8H/9VGGR8D/Wzj9J/773//+8ccfHz58+JNPPgkICFi1atUTTzxBrJkyGo3EhQAgyKnAxwQGBjp2qnDnz59va2vbvXs30aG545Oa47hkBCwWi8lkpqenb9++fZSX4B2g9evXr1y5ctz/7gif3NfXRyy0wd86rrZ1bNzZ2el4RKFQeCBIlxhreKGhoQghx+F9hFBMTMy2bdvsdntjY+Phw4c//fTTKVOmrFq1Cj+L91AHd3mB34L5VOD78KUxQqGQOFJWVubyS0ZAoVAyMjIuXbrk9PuagE/XGQwG4si0adOCg4NLSkqGnPmbCHxY2PHrVFdXK5XKIZ+TmTVr1s2bNx3nCx0vdF+QLjHW8KKiong83vXr1wefolAoSUlJW7duZbPZjY2NxHF84nbmzJmuihlMdpBTge/DB0L/8Y9/9PX1dXR0vPfeezU1NS6/ZGSbN282GAy/+93vLl26pFAoOjo6ysvLX375ZXykMSoqisPhFBUVXbhw4cqVK729vQwGY/PmzdXV1du3b7927ZparW5tbT1x4sQ777wzkTAQQrNnz541a9bHH39cXFzc29tbWVm5a9cuDMOG7MytXLkyICBg27ZtV69eVSgUBw8ePHv2LHHWfUG6xFjDwx+fraurI458//337733nkQiUalUCoXiiy++MBgMSUlJRIOamprg4GDHI8DPwdgv8H0zZ87cuHHjvn37jh8/jhBKSUl59tln33jjDddeMjKxWPzOO+/89a9//f3vf48fYTAY+Mpb/PXWrVs/+uijF154wWq14s+nrlq1ik6n//Of/zxz5gx+SXBw8OrVq8cdA+H111/ftWvX66+/jr+Nj49/7bXXhixvGxoa+sc//nHnzp2FhYUIocjIyN/+9rd/+MMfiAbuC9Ilxhre/fff/5vf/EYqleILxzgczrlz5w4cOICfZbPZDz/88IoVK/C3Npvt9OnTy5cvxydxAUAIUbxz0AYAl1Or1Tdv3sQwzHEe0eWX3FFXV1dvby+Xy42MjBzN2habzdbW1qbT6UJCQiIiIlz461sul3d3dwcHBzsOcQ/JYrE0NzfT6fSEhIQhi/a5L0iXGFN4jz322OzZs3/zm98QR3p6enp7e9lsdlRUFLGuGyF04cKFl156af/+/SPXZgJ+BXIqAAD85Icffvjf//3fzz///I4bzhQWFqampg632QDwT5BTAQDgNs3NzeHh4U4PETnB++7x8fGOPVcAIKcCAAAArgHrfgEAAADXgJwKAAAAuAbkVAAAAMA1IKcCAAAArgE5FQAAAHANyKkAAACAa0BOBQAAAFwDcioAAADgGpBTAQAAANeAnAoAAAC4BuRUAAAAwDX+P7wvm0AyQMhjAAAAAElFTkSuQmCC", "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "plotmon.main_QtPlot" ] }, { "cell_type": "markdown", "id": "b2e180c6", "metadata": {}, "source": [ "## Manual analysis steps\n", "\n", "### Loading the data\n", "\n", "The {class}`~xarray.Dataset` contains all the information required to perform a basic analysis of the experiment.\n", "We can alternatively load the dataset from disk based on its {class}`~quantify_core.data.types.TUID`, a timestamp-based unique identifier. If you do not know the tuid of the experiment you can find the latest tuid containing a certain string in the experiment name using {meth}`~quantify_core.data.handling.get_latest_tuid`.\n", "See the {ref}`data-storage` documentation for more details on the folder structure and files contained in the data directory." ] }, { "cell_type": "code", "execution_count": 6, "id": "6210845e", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 480B\n",
       "Dimensions:  (dim_0: 30)\n",
       "Coordinates:\n",
       "    x0       (dim_0) float64 240B 0.0 0.06897 0.1379 0.2069 ... 1.862 1.931 2.0\n",
       "Dimensions without coordinates: dim_0\n",
       "Data variables:\n",
       "    y0       (dim_0) float64 240B 0.5518 0.4097 0.3378 ... 0.3927 0.4381 0.5119\n",
       "Attributes:\n",
       "    tuid:                             20250904-040956-121-5874f8\n",
       "    name:                             Cosine experiment\n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         False\n",
       "    1d_2_settables_uniformly_spaced:  False
" ], "text/plain": [ " Size: 480B\n", "Dimensions: (dim_0: 30)\n", "Coordinates:\n", " x0 (dim_0) float64 240B 0.0 0.06897 0.1379 0.2069 ... 1.862 1.931 2.0\n", "Dimensions without coordinates: dim_0\n", "Data variables:\n", " y0 (dim_0) float64 240B 0.5518 0.4097 0.3378 ... 0.3927 0.4381 0.5119\n", "Attributes:\n", " tuid: 20250904-040956-121-5874f8\n", " name: Cosine experiment\n", " grid_2d: False\n", " grid_2d_uniformly_spaced: False\n", " 1d_2_settables_uniformly_spaced: False" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tuid = get_latest_tuid(contains=\"Cosine experiment\")\n", "dataset = load_dataset(tuid)\n", "dataset" ] }, { "cell_type": "markdown", "id": "868ba095", "metadata": {}, "source": [ "### Performing a fit\n", "\n", "We have a sinusoidal signal in the experiment dataset, the goal is to find the underlying parameters.\n", "We extract these parameters by performing a fit to a model, a cosine function in this case.\n", "For fitting we recommend using the lmfit library. See [the lmfit documentation](https://lmfit.github.io/lmfit-py/model.html) on how to fit data to a custom model." ] }, { "cell_type": "code", "execution_count": 7, "id": "e8f19380", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC0WUlEQVR4nOzdeXhU5dn48e+ZNfu+h0DCGkKAsEgAQdlBENRqXVuXou3PXfFt1bZva/Vt1da6tG51q9pqXaAqbsguq+yBQNjCEkL2fV9mOb8/JjMQyJ6ZOWdmns915YqZnDlzB5Mz93me+7kfSZZlGUEQBEEQBB+kUToAQRAEQRAEpYhESBAEQRAEnyUSIUEQBEEQfJZIhARBEARB8FkiERIEQRAEwWeJREgQBEEQBJ8lEiFBEARBEHyWSIQEQRAEQfBZIhESBEEQBMFniURIEAS3kiSJJ554otfPO336NJIk8e677170vXvuuYe5c+f2PzgX+8tf/sLgwYPRarVkZGQoGsvkyZP51a9+pWgMgqAGIhESBB/17rvvIkkSkiSxZcuWi74vyzJJSUlIksSVV16pQIQ9c+rUKd566y1+/etfKx1Kl1avXs2vfvUrLr30Uv75z3/ypz/9SdF4Hn30UV555RWKi4sVjUMQlCYSIUHwcX5+fnz44YcXPf79999z9uxZjEajAlH13EsvvURKSgozZ85UOpQurV+/Ho1Gw9tvv82tt97KwoULFY3nqquuIiQkhFdffVXROARBaSIREgQft3DhQj799FPMZnO7xz/88EMmTJhAXFycQpF1z2Qy8cEHH3D99dcrHUq3SktL8ff3x2AwKB0KABqNhuuuu473338fsfe24MtEIiQIPu6mm26ioqKCNWvWOB5rbW1l+fLl3HzzzRcd39DQwCOPPEJSUhJGo5ERI0bw3HPPXfRm2tLSwsMPP0x0dDTBwcEsWbKEs2fPdhhDQUEBP/vZz4iNjcVoNDJq1CjeeeedbmPfsmUL5eXlzJkz56LvNTc388QTTzB8+HD8/PyIj4/nRz/6ESdOnOj1z7JmzRqmTZtGWFgYQUFBjBgxoldTcZIk8c9//pOGhgbHdOS7777bZd3ThbVUTzzxBJIkkZuby+23305YWBihoaHccccdNDY2XvT8f//730yaNImAgADCw8O57LLLWL16dbtj5s6dS15eHllZWT3+WQTB2+iUDkAQBGUlJyczZcoU/vOf/3DFFVcA8O2331JTU8ONN97I3/72N8exsiyzZMkSNmzYwNKlS8nIyOC7777jl7/8JQUFBbzwwguOY++8807+/e9/c/PNNzN16lTWr1/PokWLLnr9kpISJk+ejCRJ3HfffURHR/Ptt9+ydOlSamtreeihhzqNfdu2bUiSxLhx49o9brFYuPLKK1m3bh033ngjDz74IHV1daxZs4aDBw8yZMiQHv8shw4d4sorr2TMmDE8+eSTGI1GcnNz2bp1a4//jf/1r3/xxhtvsHPnTt566y0Apk6d2uPnn+/6668nJSWFp59+mr179/LWW28RExPDs88+6zjmD3/4A0888QRTp07lySefxGAwsGPHDtavX8+8efMcx02YMAGArVu3XvRvKAg+QxYEwSf985//lAF5165d8ssvvywHBwfLjY2NsizL8o9//GN55syZsizL8qBBg+RFixbJsizLn3/+uQzI//d//9fuXNddd50sSZKcm5sry7IsZ2VlyYB8zz33tDvu5ptvlgH597//veOxpUuXyvHx8XJ5eXm7Y2+88UY5NDTUEdOpU6dkQP7nP//pOOYnP/mJHBkZedHP9s4778iA/Pzzz1/0PavV2quf5YUXXpABuaysrIN/xZ677bbb5MDAwHaPdfQz2V347/T73/9eBuSf/exn7Y675ppr2v0bHD9+XNZoNPI111wjWyyWdsfaf/bzGQwG+e677+7DTyQI3kFMjQmCwPXXX09TUxNfffUVdXV1fPXVVx1Oi33zzTdotVoeeOCBdo8/8sgjyLLMt99+6zgOuOi4C0d3ZFlmxYoVLF68GFmWKS8vd3zMnz+fmpoa9u7d22ncFRUVhIeHX/T4ihUriIqK4v7777/oe5Ik9epnCQsLA+CLL77AarV2Gou7/L//9//afT19+nQqKiqora0F4PPPP8dqtfK73/0Ojab9Jd7+s58vPDyc8vJy1wUsCConEiFBEIiOjmbOnDl8+OGH/Pe//8VisXDddddddFxeXh4JCQkEBwe3e3zkyJGO79s/azQahgwZ0u64ESNGtPu6rKyM6upq3njjDaKjo9t93HHHHYCtyLgrcgeFvidOnGDEiBHodJ3P/vf0Z7nhhhu49NJLufPOO4mNjeXGG2/kk08+USwpGjhwYLuv7YlgVVUVYPvZNRoNaWlpPTqfLMsdJkiC4CtEjZAgCADcfPPN3HXXXRQXF3PFFVc4RkJcyZ5M/OQnP+G2227r8JgxY8Z0+vzIyEhHAuAq/v7+bNq0iQ0bNvD111+zatUqPv74Y2bNmsXq1avRarV9PndnCYjFYun0OZ29XkcJYU9UV1cTFRXVp+cKgjcQI0KCIABwzTXXoNFo+OGHHzqcFgMYNGgQhYWF1NXVtXv8yJEjju/bP1ut1nYrtACOHj3a7mv7ijKLxcKcOXM6/IiJiek05tTUVKqqqqipqWn3+JAhQzh69Cgmk6nT5/b0ZwHbUvPZs2fz/PPPk5OTwx//+EfWr1/Phg0bOj1/T9hHc6qrq9s9bh+N6oshQ4ZgtVrJycnp9tiCggJaW1sdo2CC4ItEIiQIAgBBQUG89tprPPHEEyxevLjDYxYuXIjFYuHll19u9/gLL7yAJEmOVWf2z+evOAN48cUX232t1Wq59tprWbFiBQcPHrzo9crKyrqMecqUKciyzJ49e9o9fu2111JeXn5RnHBu5KSnP0tlZeVF57Bvj9HS0tJlfN0JCQkhKiqKTZs2tXu8P00Or776ajQaDU8++eRF03cXjhrZ/936uoJNELyBmBoTBMGhs+kpu8WLFzNz5kx+85vfcPr0acaOHcvq1av54osveOihhxw1QRkZGdx00028+uqr1NTUMHXqVNatW0dubu5F53zmmWfYsGEDmZmZ3HXXXaSlpVFZWcnevXtZu3Zth4mI3bRp04iMjGTt2rXMmjXL8fitt97K+++/z7Jly9i5cyfTp0+noaGBtWvXcs8993DVVVf1+Gd58skn2bRpE4sWLWLQoEGUlpby6quvMmDAAKZNm9aXf+Z27rzzTp555hnuvPNOJk6cyKZNmzh27Fifzzd06FB+85vf8NRTTzF9+nR+9KMfYTQa2bVrFwkJCTz99NOOY9esWcPAgQPF0nnBtym1XE0QBGWdv3y+K+cvn5dlWa6rq5MffvhhOSEhQdbr9fKwYcPkv/zlLxctzW5qapIfeOABOTIyUg4MDJQXL14s5+fnX7QsXJZluaSkRL733nvlpKQkWa/Xy3FxcfLs2bPlN954w3FMZ0vNH3jgAXno0KEXxd3Y2Cj/5je/kVNSUhznvO666+QTJ0706mdZt26dfNVVV8kJCQmywWCQExIS5Jtuukk+duxYl/9uF+po+bw9zqVLl8qhoaFycHCwfP3118ulpaWdLp+/cBm//f/jqVOn2j3+zjvvyOPGjZONRqMcHh4uX3755fKaNWsc37dYLHJ8fLz829/+tlc/hyB4G0mWRW91QRA818mTJ0lNTeXbb79l9uzZSofjMT7//HNuvvlmTpw4QXx8vNLhCIJiRCIkCILHu/vuu8nNzW23TYjQtSlTpjB9+nT+/Oc/Kx2KIChKJEKCIAj9UFZW1uVyd4PBQEREhBsjEgShN0QiJAiC0A/JycldLne//PLL2bhxo/sCEgShV8SqMUEQhH744IMPaGpq6vT7HW0BIgiCeogRIUEQBEEQfJbHNVR85ZVXSE5Oxs/Pj8zMTHbu3Nnl8dXV1dx7773Ex8djNBoZPny4Y0NIQRAEQRB8m0dNjX388ccsW7aM119/nczMTF588UXmz5/P0aNHO2zD39rayty5c4mJiWH58uUkJiaSl5fXqz2UrFYrhYWFBAcHi40JBUEQBMFDyLJMXV0dCQkJaDRdjPso1L+oTyZNmiTfe++9jq8tFouckJAgP/300x0e/9prr8mDBw+WW1tb+/ya9gZw4kN8iA/xIT7Eh/jwvI/8/Pwu3+c9pkaotbWVgIAAli9fztVXX+14/LbbbqO6upovvvjioucsXLiQiIgIAgIC+OKLL4iOjubmm2/m0Ucf7XQH55aWlnb7B9XU1DBw4EDy8/MJCQlx+s8lCIIgCILz1dbWkpSURHV1NaGhoZ0e5zFTY+Xl5VgsFmJjY9s9Hhsb69gt+kInT55k/fr13HLLLXzzzTfk5uZyzz33YDKZ+P3vf9/hc55++mn+8Ic/XPR4SEiISIQEQRAEwcN0V9biccXSvWG1WomJieGNN95gwoQJ3HDDDfzmN7/h9ddf7/Q5jz/+ODU1NY6P/Px8N0YsCIIgCII7ecyIUFRUFFqtlpKSknaPl5SUEBcX1+Fz4uPj0ev17abBRo4cSXFxMa2trRgMhoueYzQaMRqNzg1eEARBEARV8pgRIYPBwIQJE1i3bp3jMavVyrp165gyZUqHz7n00kvJzc3FarU6Hjt27Bjx8fEdJkGCIAiCIPgWj0mEAJYtW8abb77Je++9x+HDh7n77rtpaGjgjjvuAODWW2/l8ccfdxx/9913U1lZyYMPPsixY8f4+uuv+dOf/sS9996r1I8gCIIgCIKKeMzUGMANN9xAWVkZv/vd7yguLiYjI4NVq1Y5CqjPnDnTrldAUlIS3333HQ8//DBjxowhMTGRBx98kEcffVSpH0EQBEEQBBXxmOXzSqmtrSU0NJSamhqxakwQBEEQPERP3789ampMEARBEATBmUQiJAiCIAiCzxKJkCAIgiAIPsujiqW9htUCedugvgSCYmHQVNB0vOWHIAiCIAiuIxIhd8tZCasehdrCc4+FJMCCZyFtiXJxCYIgCIIPElNj7pSzEj65tX0SBFBbZHs8Z6UycQmCIAiCjxKJkLtYLbaRIDrqVtD22KrHbMcJgiAIguAWIhFyl7xtF48EtSNDbYHtOEEQBEEQ3EIkQu5SX9L9Mb05ThAEQRCEfhOJkLsExTr3OEEQBEEQ+k0kQu4yaKptdRhSJwdIEJJoO04QBEEQBLcQiZC7aLS2JfLAxclQ29cLnhH9hARBEATBjUQi5E5pS+D69yEkvv3jIQm2x0UfIUEQBEFwK9FQ0d3SlkDqItFZWhAEQRBUQCRCStBoIWW60lEIgiAIgs8TiZAgCIIgCO6nkn03RSIkCIIgCIJ7qWjfTVEsLQiCIAiC+6hs302RCAmCIAiC4B4q3HdTJEKCIAgdsVrg1GbIXm77LDZEFoT+U+G+m6JGSBAE4UIqql8QBK+iwn03xYiQIAjC+VRWvyAIXkWF+26KREghzeZmVp1apXQYgiCcT4X1C4LgVS7Yd/O0TsfbocHn/cW5f99NkQgpwGQx8fM1P+eXm37J9R88T2lts9IhCYIAqqxf6K3immbe3XpK6TAEoWPn7buZq9dze3wsL0aE81FwEErtuykSIQXotXrGRk0AIMf0LrNee5U3Np2g1WxVODJB8CJ9KXZWYf1Cb6w/UsLCv23miS9z+Ca7yPH4Z/vOsj+/WrnABOF8aUs4cuUz/CwhjgqdluEtrcxraFRs301RLK2QZRMf4FRVEd8XfY0c8y+e2eDHR7vSeGLxKC4bHq10eILg2dqKnU82lXJaryfMYiXMP5Lwmb8jZPT1aDu721Rh/UJPtJqt/HnVEd7aYhsJGpUQQmpcMAC1zSZ++9lBGlotTBwUzp3TU5ibFodWIykZsuDDssuy+cXx96nTSIwKGsg/xtxIaFiyYp2lJVmWO5oMF9rU1tYSGhpKTU0NISEhTj232WrmgfUPsrlgE1j8aTh9N9bWGOamxfL7xWkMCA9w6usJgk9oK3Yu0Gm4OjGeZk37gW8JiRBjCOHGcMKMYYT5hRFmDGv7OoTwTc8T2lBJuMVClMXKALMZ6bxnE5IAD2WrZqPkvIoG7v/PPg6crQHg9qnJPL4wFaPOFl9JbTPPfnuELw8UYrLYLvdJEf7cPjWF6ycOINhPr1jsgu/ZW7KXe9bdQ4OpgYzoDF6d8yrBhmCXvFZP379FItQNVyZCAI2mRu5afRcHyg8QoImi4vjPwRzKqoemMzTGNb8cguC1rBZ4MR1qC1kWE8WawACizBYCZCtVGi112t5XA9xTVc3d1bU46hcUGLrvzLfZRfxy+QHqW8yEBej5y3VjmZvW8WhVSW0z728/zQc7zlDdaAIg2KjjhRsymNPJcwTBmX4o+oEH1j9Ak7mJS+Iu4eVZLxOgd90Nf0/fv8XUmMIC9AG8PPtlbv32Vk7XniZ17Mdcl/CndknQwYIaRiWEIEliKFsQutRW7LzDz8iawAC0sswbxaUMM9ne+M1AjUZD9Y/+QVXUYGpaaqhqqaK6pZqqZtvn6pZqqqtOUVF7hgKtxDuhIVxb10BMYJytiFMlSRCATquhvsXMpOQIXropg/hQ/06PjQ3x45fzU7lv5jD+u+8sb285RV5FIyMTzr1BNLaaCTCItwXB+Taf3cxDGx6i1drK1ISpvDjzRfx1nf++upP4jVeBcL9wXpvzGj/99qfk1Z/g+5q/cJPldYxaI4cKa1jy8hYmD47kiSWjGB4rRokEoVP1JZiBZyLDAbi+tt6RBIHtghdptRIpayBuYpenki1mblt5HftqT/DapBv4/dyXVTEd1myy4Ke3xTE3LZZ/3n4J04dFoevhaJe/QcstmYO46ZKB5BTVkhh27s3o/g/3UdnYytJpKSwYFdfjcwpCV9adWcf/fP8/mK1mZiTN4K+X/xWD1qB0WA7it1wlBgQP4LU5rxGoD2R3yW4e3/w4FquFI0V16LUatp2o4IqXNvOHLw9R02Tq/oSC4IuCYvk4JIhcg4Ewi4V7q2s6Pa47klbHw5f+HoDPSrZzsi7PmZH2mizL/OuHPGb8ZSNFNU2Ox2emxvQpYdFoJNITQx1fV9S3sCW3nH1nqrnvw33c88FeROWE0F+rTq3ikY2PYLaamTdoHs/PeF5VSRCIREhVUiNSeWnmS+g0OtbkreHPu/7Mj8YnsnbZ5cwfFYvFKvPPraeZ9dxGPt51BqtVXKQE4XxVsSN5Jdw2GnR/VQ2h1gtbUvSuWdu4mHHMTJqJRbbwt71/c3K0PVfTaOKeD/byv58fpLi2mQ9+OOP014gMMrLl0Vk8MHsYBp2G1TklfJHVVU8lQejaF7lf8OjmR7HIFhYPXsyzlz2LXqO+4nyRCKlMZnwmf5r2JwA+PPIh7xx8h6SIAP7x04n8a+kkhkQHUtHQyqMrsvn5v3aLOzZBOM/f979KnUZiREsr19Y1XPDdvjVre3D8g2gkDevOrCOrNMtpsfbUnrwqFv5tM98eLEavlfjtopEsmzvcJa8VHWxk2dzhPDBrKABPfpVDZUOrS15L8G6fHP2E3279LVbZyrXDruX/pv0fOo06q3FEIqRCV6Rcwa8u+RUAL+59kS9yvwBg+rBovn3wMn6zcCRBRh2jE8OwiFEhQQDgSOURlh9bDsDjY+9FGxLf/oA+NmsbEjaEq4deDcALe15w282H1SrzyoZcrv/HdgqqmxgYEcDy/zeVO6cPRuPiHkA/v2wII2KDqWxo5f++znHpawne5985/+apH54C4ObUm/ndlN+hkdSbbojl891w9fL5rvx1919599C7aCUtL89+mWmJ0xzfa2q14G9QvnBTENRAlmVuX3U7e0v3ckXyFfz58j/bltLnbbN1gQ6K7VeztuKGYq787EpaLC28POtlLk+63Mk/wcXe2XKKJ7+yJSFLxibwx2vS3drzZ9+ZKn702jYiA42sfvgyIgLVVdchqNNb2W/x0t6XALgj/Q4eHv+wYiueRR8hJ1EyEbLKVn695dd8ffJr/HX+vDP/HdKj0i86TpZlsbRe8GnfnvqWX236FX5aP7685kviAuOc/hov7HmBdw6+w9CwoSxfvLzz7tRO0tRq4cY3f+CWzIH8eMIARf7GV+4v5PJh0YQGqK+uQ1AXWZZ5bf9rvLb/NQDuHns3d4+9W9H3pp6+f6t3rEpAI2l4aupTTImfQpO5iXvX3UtebfuVK7tOV3LNq9s4XX5hPYQg+IZGUyN/3f1XAJaOXuqSJAjgZ+k/I8QQQm51Ll+e/NIlr3E+f4OWz+6eyvUTkxR7M1kyNkEkQUK3ZFnmhb0vOJKgB8c/yD0Z93jMDbpIhFROr9XzwswXGBkxksrmSn6x5heUN5U7vv/y+lyy8qsdQ+iC4GvePvg2JY0lJAYlcvuo2132OqHGUH4+5ucAvLzvZZrNzS55nZ2nKh0rQl1dC9RTsizz+b4CDhZ00o5A8FmyLPPMzmf458F/AvDoJY9y5+g7FY6qd0Qi5AEC9YG8OudVBgQNoKC+gHvW2vZpAfjd4jT0Won1R0pZf0SdO2ILgqucrTvLuwffBeB/Jv4Pfjo/l77ejak3EhcYR0ljCR8d+cjp5997porr/7GdH722jVbzhUv/lfOPTSd56OMsfrX8ACaLeuISlPfdqW/58MiHAPzv0Jv4SepNCkfUeyIR8hBR/lG8Pvd1wo3hHK48zMMbHsZkMTEkOoifXZoCwJNf5tBitigcqSC4z3O7n6PV2kpmfCazB852+esZtUbuy7gPgDez36SmxXkjJLIs8/Q3hwEYFhOEQaeey/O14wcQ6q8np6iWt9t2uBcEclayfP0vAbizuobr1zxr2+svZ6XCgfWOev7ShG4NChnEq3NexV/nz/ai7fxxxx8BuG/WUKKDjZyuaOStzeIiJfiG7YXbWXdmHVpJy2OXPOa2eoQrB1/J0LCh1LbW8vbBt5123jU5Jew6XYWfXsOyea7pE9RX0cFGfrNoJAAvrDlGXoWoSfR5OSs5+9872KHXIMkyP66rtz1eWwSf3OpRyZBIhDxMelQ6f73cVhj6We5nlDSUEOyn5/ErUgFbzdD57fcFwRuZrCae3fksYJuuGho+1G2vrdVoeXjCwwB8kPMBxQ3F/T6n2WLlmVVHAFg6LaXLzVOV8uMJA5g6JJIWs5Vff5Ytmrn6MqsFVj3KF0GBAExubibBMRvR9nux6jHbcR5AJEIeaPqA6YyLGYdVtvLNqW8AuGZcIhMGhdNksvDRznyFIxQE1/rk6CecqDlBmDGMu8fe7fbXn544nQmxE2i1tvJq1qv9Pt/Hu/M5WdZARKCBX1w+xAkROp8kSfzpmtEYdRq25lawYm+B0iEJSsnbhqW2kM+DbYnQNRd1cZehtsDWx8sDiETIQy0eshiAlSdWOvoIPXnVKF64YSwPzRmmcHSC4DqVzZW8su8VAO4fdz+hxtBunuF8kiQ5RoW+OPEFuVW5fT5XfYuZF9YcB+DB2cMIcWPTxN5KjgrkoTm2abs/fp1DQ4tZ4YgERdSXsMPPj2KdjmCLlVmNjZ0e5wlEIuSh5g2ah16jJ7c6l6NVRwEYlRDKNeOUabwmCO7y931/p85UR2pEKtcOu1axOMZGj2XOwDlYZSsv7Xupz+cpr2shLtRIcmQAN00a6MQIXePO6SksHB3Haz+ZQKBRnXtHCS4WFOsYDVrY0ICxs1nSoFj3xdQPIhHyUKHGUGYkzQBso0IXqms2sft0pZujEgTXOlxxmBXHVgDw2KTHXN7duTsPjH8AraRlY/5G9pbs7dM5kqMCWXnvNP7z88mqWinWGb1Ww6u3TGDy4EilQxEUUhOXzrrAAACusRdJtyNBSKJtWxsPoP6/OqFTiwfbpse+OfkNZuu5IeqTZfXM+uv3LH1vt9g5WvAasizz9M6nkZG5IuUKJsROUDokUkJT+NGwHwH925BVo5FUWSDdE/mVjWKKzMd8m/cdrZLE8JZW0lov/H/fNiOx4Jk+7+3nbiIR8kRWC5zazLSqUsL1QVQ0V7C9cLvj24MiA4kKMlLTZOK51UcVDFQQnOfbU9+yr3Qf/jp/lk1YpnQ4DnePvRt/nT9ZZVlsyN/Q4+cdL6njpbXHPTqJ+HR3PvNe2CSuMz7ms9zPALhm6DVIIfHtvxmSANe/D2lLFIisb0Qi5GlyVtoaVr13JfrPfs4V5UUAfLnvdcchWo3EH5aMAuA/O8+ItviCx2s0NfLXPba2EXeOvtNl+4n1RXRAND8Z+RMAXtr7UrvR2a48u+oIL6w9xhMrD7kyPJeKCfGjyWTh3W2nycqvVjocwQ2OVh4lpyIHnUbHoqmPwkMH4bav4Nq3bZ8fyvaoJAhEIuRZclbaGlXVFjoeWlxvW7a4vjyL+uxPHI9PSolgydgEZBl+v/KQ6PkheLS3st+itLGUxKBEbht1m9LhXOSO9DsIM4ZxsuYkX+R+0e3xP5ysYO3hUrQaif83Q53L5Xvi8uHRXDMuEVmGx1aI7Td8wee5nwMwM2km4X7htumvlOkw+jrbZw+ZDjufxyVCr7zyCsnJyfj5+ZGZmcnOnTt79LyPPvoISZK4+uqrXRugq7Q1sHI0q2ozqrWVlFYTLRoNazb9oV0Dq18vHEmAQcuevCo+2yd6fgieKb8un/cOvQfALyf+EqPWqHBEFws2BDs2ZH0161WazJ03NbVaz22lcdOkJIZEB7klRlf57aKRhAfoOVJcxxubTiodjuBCrZZWvjr5FWCbFvMWHpUIffzxxyxbtozf//737N27l7FjxzJ//nxKS0u7fN7p06f5n//5H6ZPn+6mSF0gb1u7kSA7CVjSNir0pba1XQOruFA/7ptl67j79LdHqGs2uSVUQXCm53bZ9hObHD+ZWQNnKR1Op24YcQMJgQmUNpXyweEPOj3u6+wi9p+tIcCg5cHZ6tpKoy8ig4z8bnEaAC+tO87Jso5WEQneYGP+RqpbqokJiGFqgmesCOsJj0qEnn/+ee666y7uuOMO0tLSeP311wkICOCdd97p9DkWi4VbbrmFP/zhDwwePNiN0TpZF42pFrUlQrv8/SisaF+0uHRaCilRgVw6JBKTRUyPCZ5le+F21uevt+0nNsl9+4n1hUFr4L5xtg1Z38l+h+rm6ouOaTFb+PN3tq00fnHZEKKD1Te61RdXZyRy2fBoWsX2G56nbfEN2cttn7vYFsNeJH3VkKsUb13hTB6TCLW2trJnzx7mzJnjeEyj0TBnzhy2b9/e6fOefPJJYmJiWLp0qTvCdJ0uGlPFWyxMamoG4KuG9kPTRp2WL++fxos3jiMi0ODSEAXB2T488iEA14+4niFh6q+lWTR4ESPCR1BnquOt7Lcu+v6/fzhDfmUT0cFG7rosRYEIXUOSJP54dTrBfjouSY7AbBWJkEc4b/ENK5baPneye3xxQzHbCm0zDlcPvdrNgbqWxyRC5eXlWCwWYmPbJwSxsbEUF3e86eGWLVt4++23efPNN3v8Oi0tLdTW1rb7UIVBU23LEun4jtheNP1l5cV3Y0Gi+6vggRpNjY62EEp2kO4NjaRxbL3x4ZEPKaxvP509d2Qsi8cm8Mjc4QQYvOvvMikigK2PzeKReSPQaz3mrcV3dbD4Buh09/gvT3yJVbYyIXYCA0PU3wG9N7z2t7Wuro6f/vSnvPnmm0RFRfX4eU8//TShoaGOj6SkJBdG2QsaLSx4tu2LC5MhibkNTfhp9JyuPc3B8oMdnuJsVSP3fLCH1Yf6v1u2ILja9sLttFhaSAxKZHi459TSTE2YSmZcJiariVeyXmn3vYGRAfz9pnHc6AFbafSFmvdJE87TyeIbm4t3j5dluV3vIG/jMYlQVFQUWq2WkpL2tTIlJSXExV3cU+TEiROcPn2axYsXo9Pp0Ol0vP/++6xcuRKdTseJEyc6fJ3HH3+cmpoax0d+vop2ck9bYmtU1UEDq8Afv8esQXMB+PLklx0+/T87z/BNdjFPfZ1Ds6nzeWBBUIN1Z9YBMGvgLFXXBl1IkiQemvAQYLuLLqwvxOJDU0VWq8z3x8p4dPkBzGI5vTp1svjmnPa7x+8p2UN+XT4BugDmtr3PeBOPSYQMBgMTJkxg3bp1jsesVivr1q1jypQpFx2fmppKdnY2WVlZjo8lS5Ywc+ZMsrKyOh3pMRqNhISEtPtQlbQlnTawWjLE1sTq21PfYrJcvELsnhlDiQvxI7+yiTfFMldBxUxWE9+f/R6A2QNnKxxN76VHpTMhdgIyMhvyN/DoigM8+NE+Cqo7X1bvLVotVh76aB8f787n+2NlSocjdKSnu8K3HWcfDboi5QoC9AGuikoxHpMIASxbtow333yT9957j8OHD3P33XfT0NDAHXfcAcCtt97K448/DoCfnx/p6entPsLCwggODiY9PR2DwYMLhztpYJUZn0mUfxTVLdVsLth80dMCjToeX5gKwCsbc33ioix4pr0le6ltrSXcGE5GdIbS4fTJzKSZAHydu5YVe8/yRVYh5XUtCkflen56LdeOHwDYRqEFFerprvBBsTSYGliTtwbwviJpO49KhG644Qaee+45fve735GRkUFWVharVq1yFFCfOXOGoqIihaNUjk6jY1HKIgBH06sLLRmbwKSUCJpNVt7aLEaFBHVaf2Y9ADOSZnjsMt0ZSTMAyK7Yhyw1s3hsAmOTwhSNyV1uyrTVQK0/UkpRjbjhUp1uFt+cv3v8d6e/o8ncRHJIMmOjx7ozSrfxqEQI4L777iMvL4+WlhZ27NhBZmam43sbN27k3Xff7fS57777Lp9//rnrg1TQ4iG2Hek35m+kpuXiPcYkSeLuy23LkD/fV0CrWczhC+oiyzLr822JkCdOi9kNChlErP9AkCwYg4/xy3kjlA7JbYZEB5GZEoFVhk92nVU6HOFC3Sy+ARy7x392vK1Ietg1HlWr1xselwgJXRsRMYLh4cMxWU18d/q7Do+ZPiyK2BAjVY0m1h7u4VyxILhJTmUOxQ3F+Ov8yWwx96jRmxpZrDINVbbkZ2hyHgMjva+2ois3t40KfbzrjE8Vi3uMLhbf2HePP1lzkqyyLLSSlsWDFysTpxt4VyMLAYAlQ5bw3O7n+PLEl1w/4vqLvq/Tarh35lBaTFYyUyIUiFAQOmefFpvW0IDfv3907hshCba7WA/Z2frzfQWUFg8hIHkNlfIBTFYTeo3vLC+fPyqO8AA9hTXNfH+slFmpPaxLEdwnbQmkLrKtDqsvsdUODZrqqDu1b7A6PXE60QHRCgbqWmJEyAstTFmIRtKQVZbFmdqOixVvnZLMXZcNJjLIO1r8C95j/fHPAZhZU9n+G500elMj2WJm69rPWNhSQIAUQL2pjqzSLKXDcit70fSI2GClQxG60sniG5PVxMpc29/a1cOuVjBA1xOJkBeKDohmSrytpUBnRdOCoEZ51SfJbSpFJ8tc1nRhke3Fjd5UKWcl0kujeb7pt/zd8Apzam2bQm/IelvhwNzvf+aPYNVD08VokAfaWrCViuYKIvwiuGzAZUqH41IiEfJS9qLplSdWdroBYovZwoo9Z3nwo31YxRy+oAIbDrwLwMTmZkI7/J1s3+hNdTrYtmBmoy2h23h2I/KhL5SKTBF+eq3XFth6O3uR9OLBi71+SlckQl5q1sBZBOgCKKgvYF/pvg6PsVhlfr/yEF9kFbLzdGWHxwiCO60v3Q3ArIZullz3tCGcO7VtWyBfsG3B1KZm9LJMvl7PybWPq3s0y0UaWsys2HNWFE17iPKmcjad3QR4b++g84lEyEv56/wdrdA723IjwKBj8VjbioFPdqtoKxHBJ5U3lZPVYFtqbR9F6VRPG8K5U9u2BReOfwTIMplNzQBssNapdzTLRaxWmfkvbuKRT/ezSXSa9ghfn/was2xmTNQYhoYPVToclxOJkBezb7nx3anvaLF03NH2xxNtW418k11EbfPF23IIgrtszN+IjEy6WSau0z2qzjV6U50uRqnsid33Af7qHM1yIY1GYl6abT/ID0WnadWTZdkxLebtRdJ2IhHyYhPjJhIXGEedqY6N+RttD1ottp4sbb1ZxiUGMzQmiGaTla/2+25XbkF59mXzswbNa3uk60ZvqtPFKNVlbYnQfqOBCoNv9RMCuDnTdsO1/kgpxTXNCkcjdCW7PJsTNSfw0/qxIHmB0uG4hUiEvJhG0nDl4CsB+OrEV7ZCzhfT4b0rYcVSeO9KpJdG86uBRwExPSYop8HUwA9FPwAwa+K93TZ6U6VBU6kzxNBRGUycxcLIllZkSWKT5HtbTgyNCWZScgQWqyyuMypn7x00d9Bcgg2+0fpAJEJezt4NdEvBJiqX395uNQsAtUXMPfgrFmp3kZVfzbGSOvcHKfi8zQWbMVlNDAoZxODQwbZk56GDcNtXcO3bts8PZas3CQJkScOzkm0DaLmD0axzq8c2uTkydbipbVTo4135omhapZrMTXx76lvAtqWGrxCJkJcbHDaYUZFpmGUr3wb5d3CE7ZL9f37/5tLBYTSbfG9Fi6A8x7TYwFnnllt30uhNrXbnVfHvmrE8LC9DDr54NGvGpb8GYHvRdprNvjc9dEV6PKH+egqqm9h0XBRNq9HavLXUm+pJDEpkQuwEpcNxG5EI+YDFYaMA+DIosJMjZCIsZXww18qYAWFui0sQAEwWE5vPbgZgVtIshaPpu//uta1404++Gs3DF49mpU78BbEBsTSZm9hZvFPhaN3P3mlakuBA/sUbQgvKs0+LXT30ajSS76QHYq8xH3BFwCCek2UOGY2c1OsYbDJ3fKCPrWYR1GFX8S7qTfVE+kUyJnqM0uH02dy0WMrqWrhuwoBzo1nnkYAZSTP4+OjHbMzf6PXdejvy88sGc8elySRF+F7BuNrl1+Wzs3gnEhJXDblK6XDcyndSPh8WET6YaW31CZ2PCgFBsZTWNfP1AbF6THCfdWfWATBz4EyPvgudlRrLW7ddwuTBkZ0eMyNpBgDf53+PVe6sRYD3igv1E0mQSn2Ra+t6PiVhCvFB8d0c7V0896oj9NygqSy22jZX/SookIsvv7beLKXh45n69Hru/89eSmp9r4ZBcD+rbGVD/gYAZg+crXA0rjcpbhIBugBKm0o5XHFY6XAUVVzTLLb2UQmL1cIXJ2yJ0DVDfadI2k4kQr5Ao+XyGU8RbLFSrNOx2+/8HefP9WaJCQtk3MAwrDIs33NWkVAF33Kw/CBlTWUE6gOZFDdJ6XD6pLS2mRfXHiO/srHbYw1aA5cmXgrgSAB90bJPspj6zDo255YrHYoA7CjaQXFDMSGGEGYOnKl0OG4nEiEfYUy/lvlxmQCsPH967ILeLPZO05/uzu90s1ZBcBb7arHpidMxaA0KR9M3n+0r4MW1x3n446weHW+fHnM0OfVBIX56rDL8Z4foNK0Gn+XaOkkvGrwIo9bYzdHeRyRCPmTJxPsBWBMWSdM1r3fYm2XR6HgCDVpOVzSy63SVUqEKPsJeH+Sp02KyLLOibbXYj8YP6NFzpidORyNpOFp1lML6wu6f4IVuzhwIwJrDJZSKaXhFtVpaHUn5VUN9q0jaTiRCPiQjOoMBQQNotLSwPjikw94sgUYdV45JAGyNzwTBVU7WnOR07Wl0Gh3TEqcpHU6fHCyo5VhJPQadhkVjelZgGu4XTkZ0BgDfn/3ehdGp1/DYYCYOCsdilflUTMMran/ZfpotzUT6RZIWkaZ0OIoQiZAPkSSJxUNsnaa/PNHxjvQA119iu7P9JruIOrERq+Ai9mmxzPhMggxBCkfTN/bRoHlpsYT663v8PDE9BjdNso0K/WfnGVE0rSD71jaZ8Znnmpn6GJEI+Rj7lhvbi7ZT1thxd9fxA8MZHB2IRZbJPisanwmuseGMrVjYU5sotpqtfJFVAMC1E3o2LWZnT4R2Fu+kvrXe2aF5hEVj4gnx03G2qkkUTSvInghNjp+scCTKEYmQj0kKSSIjOgOrbOW70991eIwkSfztxnHs+vUcpg6NcnOEgi8oaSjhQPkBJCRmDfTMRGjD0VKqGk1EBxuZ3su/k5TQFJJDkjFbzWwt3OqiCNXNT6911FV9KjZiVURdax0Hyw8CIhESfIy9MNV+J9CR9MRQQgN6PtQvCL1hnxIaEz2GKH/PTLZLa5sJNGi5ZlwiOm3vL6Viegx+MnkQ/3d1Ok//aLTSofik3cW7scpWBoUM8rkmiucTW2z4oEnxtn4tu0t2Y7aa0Wm6/jWoamglPNAzlzYL6rQ+/9wmq57qp1OSuXbCAFrNfesQffmAy3n30LtsLtjco79DbzQ0JoihMZ5ZH+YNxLSYjRgR8kGpEamEGEJoMDVwqOJQp8cVVDdx1StbmfvCJkwW39sOQHCN2tZadhbZNh311PoguwCDjrCAvt0kZMRkEGoMpaalhqzSLOcG5qFE7zL3EomQjUiEfJBG0ji6+O4o2tHpcTHBRgqqmiivb2HDkVJ3hSd4uc1nN2OWzQwJHUJyaLLS4fTJsZK6fr9p6zQ6Lku0bbzqy9NjAJ/tO8uVf9/MFlE07TaljaWcrDmJhMQlcZcoHY6iRCLkozLjbV2m7XfmHdFrNVw7IRGAT0Qxo+Ak9mXznjotdqykjnkvbGLR37Zg7udIqb1OaEP+Bp8eDck6U83Bglr+s1N0mnYX+01wWmQaocZQhaNRlkiEfJS9Tmhf6T5aLC2dHvfjCbYtNzYcLRMdYIV+a7G0sKVgC+C5idCKtgaAieH+fSqSPt+liZei1+g5U3eGU7WnnBGeR7qprdP06kMllNV1fj0SnEdMi50jEiEflRKSQox/DK3W1i7rE4bGBDGhrQPsf/cVuC9AwSvtKNpBo7mRmIAY0iI9r4utxSrzWdvfwbU93FKjK+dvNuvL02OpcSGMHxiG2SqLDZ/dQJbldo0UfZ1IhHyUJEmOUaGu6oQArp9ou+B/sktsxCr0j2NaLGkWGsnzLj9bcssprWshPEDPrNQYp5zz8qTLAfg+/7ztNqwWOLUZspfbPlstTnktNROdpt3nVO0pShtLMWgMjIsZp3Q4ivO8K5HgNI6C6eKuE6FFYxIIMGg5Wd7A7jyxEavQNxarhQ35bd2kPXxabMnYBAw651w+ZwyYAUBWWRaVzZWQsxJeTIf3roQVS22fX0y3Pe7FrhyTQLCfjjOVjWw7UaF0OF7th0LbaNC4mHH46fwUjkZ5IhHyYfYh0UPlh7ps8x9k1PHL+SN4/SfjGTsgzE3RCd7mQPkBKpsrCTYEMzFuotLh9Fpts4nvDhUDPd9pvifig+JJjUjFKlvZvPNv8MmtUHvBrvS1RbbHvTgZ8m9rTgnw4c48haPxbvZZgMkJoj4IRCLk0xKCEkgKTsIiW9hTsqfLY++4NIUF6fFOuwsWfMR5Uzzrst8DbI0E9RrP61r+3cFiWsxWhsYEMWaAc1fZOLpMH/kU6GhaqO2xVY959TTZTZMGsnB0HFeOSVA6FK9ltprZVbwLEIXSdr7XylRoJzM+k/y6fHYU73DUKgiCU+SshFWPQm0hMrB+QDzo9cySgpWOrE+uGZdIVLARi0V2+i7dM5Jm8Pr+19mqhxYJjB2WyMhQWwB52yBlulNfXy1Gxofw6i0TlA7Dq+VU5FBnqiPYEMzIiJFKh6MK4vbex2XG2abHuiuYBttWGy+tPc4D/9nn6rAET5ezst0UT65eT75ej8Eqc+m6v3jkFI9Oq2HmiBjmpMU6/dxpEWnE6INp0mjY6ddNzUZ9idNfX/Ad9mv9pLhJaDVahaNRB5EI+Th7R9FjVcdshZpdMFms/G39cVbuLyS3tPOaIsHHWS22kaDzpnjWB/oDMKW5mQBZ9vopnt6SJInLo8YC8H2Af9cHBzk/EVOb3NI6Xt2YS4tZ/I44m+gfdDGRCPm4SP9IhoUPA3DMG3cmJsSPGcOjAfh0j+g0LXQib9tFxb7rAgIAmN3QSLspHg9gtcr8+PVtPP3tYaobW132OjNG3gDAhgD/DquEQIKQRBg01WUxqIHVKnPLWzv486qjYvWYkzWZm9hXahvRF/2DzhGJkNCr6bHrL7F1ml6xpwCL6PUhdOSCqZsirZbDRgMaWebyxqZOj1OrXacr2XW6ig9+OINR57qphMyEKfhr9JTqdBw2XLiRa1tN0oJnwMunMzQaiXlpcYCtQF1wnn2l+zBZTcQGxJIckqx0OKohEiHh3L5jxZ3vO2Y3KzWGUH895fUt7BE9hYSOXDB1Y58Wy2hpIcJq7fQ4tVqx19Y7aOHoOPwNrktCjFojUwe0bcIafkGzxpAEuP59SFvistdXk/mjbInQmpwSccPlROdPizm74N+TiURIYELsBDSShrzaPIobur4D02s1zG7rqLv6kLhbEzowaKrtjbttFGND27TYrAb7aJDnTPE0tVr4Jtv2e+6MLTW641hGPyANbvsKrn3b9vmhbJ9JggAyB0cQ6q+noqFV3HA5kb2RopgWa08kQgLBhmDSI9OBnk2PzRtlu5NfnVMittwQLqbRwoJnAajRaNjtZwRgVmMjnjbF892hYupbzCRF+HNJcoTLX2964nQkJA5XHqE4ZhiMvs62VN4D/q2cSa/VMHuk7YZrlZgec4rq5mqOVB4BRKH0hUQiJAD0eN8xgMuGRxMbYmRicjhNJrGqQ+hA2hK4/n32hMdjkSRSWk0kmS0eN8Vjnxb70bgBaDSun0qI9I9kbHTb6rHz9x7zQfbpse8OFYsbLifYWbwTGZmhYUOJDohWOhxVEYmQAJwbKt1RvKPbi06AQccPj8/m+eszCDCInpxCJ9KWsDvzNgAmJkz2uCmeopomtuSWA+6ZFrOzT49tOLvBba+pRpcNi8Zfr6W6sZWzVU3dP0Hokv0mV0yLXUwkQgIAGdEZGDQGShtLyavtfp8fUWgn9MTutq1bJo683iOneG6dPIh5abEMjAxw22vOTJoJwM6inTSYGtz2umrjb9Dy8S8ms+d/55IU4b5/f28l+gd1TiRCAgB+Oj8yYjKAnk2PAciyzMGCGirqW1wYmeCp6lrrOFp1FLAV5Hua+FB//nBVOm/c6t4NYlNCUxgYPBCT1cS2Qs/oteQqYwaE4af3rORZjQrrCzlTdwatpGVirOdteOxqIhESHCbFtdUJFfcsEbrvw31c+fctfLm/sPuDBZ+zr3QfVtlKUnASsYGesVReDSRJOrd6LH+jkqGoitli7f4goUP2m9v0qHSCDEEKR6M+IhESHOxzx7uKd2GVu7/ojBsYBthWjwnChXaX7AbwyDvQfWeq2HGyQrEeNpcmXgrA7uLdiry+mizfc5ZZf93Im5tPKR2Kx9petB0Q02KdEYmQ4DAqahQBugCqW6o5VnWs2+Pntm0+ueNUpUu3HhA8057itvqgOM9LhF7ZcIIb3viB178/ocjrZ0RnoJW0FDYUUljv2yOuLWYLJ8saWCX6lvWJLMuOESGRCHVMJEKCg16jd9Ry9KROaFBkIKlxwVisMuuPlLo6PMGDNJoayanIATyvPqip1cKW3DIAZo6I6eZo1wjQB5AWmQbAnraCc181Ny0WSYL9+dUU1YjVY711vPo4lc2V+Ov8Ha0ZhPZEIiS041hG38OC6Xlto0JrxPSYcJ6ssizMspn4wHgSgxKVDqdXNh8vo9lkJTHMn5HxwYrFYU8gfT0Rign2Y/zAcABWHxLXmd6yd5MeHzsevVavcDTq5HGJ0CuvvEJycjJ+fn5kZmayc2fn+2O9+eabTJ8+nfDwcMLDw5kzZ06XxwvnEqE9JXswWU3dHj+vrenZ98fKaBbNFYU29toWT6wPsif1tpEI5dpEiETonAXnNVcUese+bH5K/BSFI1Evj0qEPv74Y5YtW8bvf/979u7dy9ixY5k/fz6lpR1Py2zcuJGbbrqJDRs2sH37dpKSkpg3bx4FBQVujtxzDA8fTpgxjEZzI4fKD3V7/KiEEBJC/WhstbC1rfmcINjfvD2tPuj8aV77aKdSxsWMQ0LidO1pypt8+2/L3mV6x6lKqhpEPWJPmawmx6IF0Uixcx6VCD3//PPcdddd3HHHHaSlpfH6668TEBDAO++80+HxH3zwAffccw8ZGRmkpqby1ltvYbVaWbdunZsj9xwaScMlcZcAPZsekySJ316Zxod3ZnLZcNG2XYBmczPZ5dmA59UH7T1TRUVDKyF+Oi5Jcf3eYl0JNYYyLHyYLa6SvYrGorSBkQGOesS1h8X0WE9ll2XTZG4i3BjO8PDhSoejWh6TCLW2trJnzx7mzJnjeEyj0TBnzhy2b9/eo3M0NjZiMpmIiOj8AtfS0kJtbW27D1+TGXduu42eWDg6nqlDo9BrPebXSXCh7PJsTFYT0f7RDAweqHQ4vbL5WFuRdGqMKn6fxfTYOT+emMT1EwcwLFa5ui1PY58Wy4zPRCMp//usVh6zUVR5eTkWi4XY2PbD1bGxsRw5cqRH53j00UdJSEhol0xd6Omnn+YPf/hDv2L1dPYh1KzSLJrNzfjp/BSOSPAk59cHedpWLA/NGc6skbEYdep405gQO4H/HPmPY3rDly2dlqJ0CB5H7C/WM+r4a3eDZ555ho8++ojPPvsMP7/O39gff/xxampqHB/5+flujFIdBoUMIiYgBpPVxL7SfT16zrGSOp78MkexviuCethHLzxtWgxAo5HISApjZHyI0qEA5/4Nj1cdp6alRuFoBE/SYGrgQNkBQPQP6o7HJEJRUVFotVpKStrPD5eUlBAXF9flc5977jmeeeYZVq9ezZgxY7o81mg0EhIS0u7D10iS5PjD2Vncs1V2J8vqeWfrKT7ccabb3esF72WymNhfth/wvEJpNYryjyI5JBkZucc3Jd5MlmWy8qv5IksseOnOnpI9mGUziUGJDAgeoHQ4quYxiZDBYGDChAntCp3thc9TpnS+LPDPf/4zTz31FKtWrWLiRHFh7inHvmM97Cd02fBojDoNZyobOVpS58rQBBU7WHGQZkszEX4RDA4drHQ4vXLX+7v51fL95Fc2Kh1KO6JO6Jx9+dVc/cpWfvvZQVrNYu+xrojd5nvOYxIhgGXLlvHmm2/y3nvvcfjwYe6++24aGhq44447ALj11lt5/PHHHcc/++yz/O///i/vvPMOycnJFBcXU1xcTH19vVI/gsewzykfqjhEXWv3iU2AQcf0YVEArBFNz3zW+dNinlQfVFbXwtrDJXyy+yw6rbriFonQORkDwogONlLXYmbbCd9uKdAdRyKUIBKh7nhUInTDDTfw3HPP8bvf/Y6MjAyysrJYtWqVo4D6zJkzFBUVOY5/7bXXaG1t5brrriM+Pt7x8dxzzyn1I3iMuMA4BoUMwipbe3wBnpdmm6IUm7D6LnuhtKfVB60/UoIsw+jEUOJD/ZUOpx17U8qcihwaTeoarXI3jUZy9Hf6Ttxwdaq8qZzjVceBc6P7Quc8KhECuO+++8jLy6OlpYUdO3aQmXmuGn7jxo28++67jq9Pnz6NLMsXfTzxxBPuD9wD9XZ6bPbIGDQSZBfUUFgt9gTyNWar2VHH4mkdpc/vJq028UHxJAQmYJEtZJVlKR2O4hak22641uQUY7GKesSO7Cyy1XamRqQS4adsPyxP4HGJkOA+jn3HethPKDLIyMRBtj86sfeY7zlccZhGcyPBhmBHI0BP0NhqZvNx2zSLGhMhENNj55s8OJIQPx3l9a3sPVOldDiqJOqDekckQkKn7B2mj1cdp6KpokfPmTcqlvhQPzyoPERwEkd9UMwEj2retuV4OS1m2yarqXHqbNYnEqFz9FoNs0faEtZVB8XeYxeSZbldI0Whex7TUFFwvwi/CEaEj+Bo1VF2Fe9iQcqCbp9z65Rklk5L8ahCWcE57E3/PG3ZvFo2We2KPRHKLsumxdKCUWtUOCJlzR8Vx2f7Cth9ulLpUNTBaoG8bVBfQr5WoqihCJ1Gx/iY8UpH5hFEIiR0aVL8JI5WHeWHoh96lAgZVNKRV3Avi9Xi2A/L0+qDBkcHMSQ6UPFNVrsyKGQQkX6RVDRXcLD8oMcVozvb5cOj+ejnk5k4KFzpUJSXsxJWPQq1hQD8EBwEURFkBCYRoA9QODjPIN61hC71trGincUqc1z0E/IZx6uPU2eqI1AfyIiIEUqH0yt3zxjCukdmMGVIpNKhdEqSJDE9dh5/g5bJgyPRqWA/OEXlrIRPbnUkQQA/+Nt2Tsg8k2X7vtAtH/8tErozPmY8WklLfl0+hfWF3T8BKKxu4pI/ruWqV7bSbLK4OEJBDezL5jNiMtBpPHOgWa3TYnYiEeqYz3ayt1psI0Gc+/ktwE4/27Tp5KZmWPWY7TihSyIREroUZAgiPSod6Pky+vhQP/x0GhpbLWzNFU3PfIGjPsjDpsW25pZ7TLJuT4T2le7DbDUrHI3yZFnmyS9zmPL0ek6VNygdjvvlbWs3EgRwxKCnRqsl0GolvaUFagtsxwldEomQ0C17P6GeTo9JksS8UW3NFUXTM693ftNNT0qEckvrueWtHUx+eh0tZvUnQ8PChxFsCKbJ3MSRyiNKh6M4SZI4VlJHcW0z3x3ywdVj9RdfW+3TYpc0NZ8rAO7gOKE9kQgJ3XL0Eyra0eNhaHvh6drDJaLpmZc7WX2S6pZq/LR+jIocpXQ4PWZfLTZmQBhGnVbhaLqnkTRMiBHTY+eb39Zc0ScToaCLi/t3tCVCk5ubuzxOaE8kQkK3MmIyMGgMlDWVcar2VI+ec0lKBKH+eioaRNMzb2efFhsbMxa9Vq9wND23Jsf25qnWJoodsU+P2WuyfJ39hmvfmWqKa5q7OdrLDJoKIQmArbatRYK9xvPqg5AgJNF2nNAlkQgJ3TJqjYyLGQf0vE5Ir9UwKzUGgNW+eLfmQzyxPqisroV9+dUAzBkZo2wwveAomC7dg1UWu6/HhvgxfmAYcC6x9RkaLSx4tu0LiSyjkRaNhmizmcH2urcFz9iOE7okEiGhR+zTY/Y9bHrCfre2OqfEd1d2eDlZltvtOO8p1h1W7yarXUmNTMVf509da51jU01fN3+UfXrMB2th0pbA9e9DSLxjWiyzuQUpJMH2eNoShQP0DCIREnpkUvy5gmlLD5djXjY8mntnDuFvN45zZWiCgvJq8yhvKsegMTAmeozS4fTY2sPq3WS1K3qNnozoDEDUCdnZE6EfTlZQ3diqcDQKSFsCDx3kh6SxAEwefzc8lC2SoF4QiZDQI6MiRxGoD6S2tZajVUd79JxAo45fzk9lbFKY6nu0CH1jnxYbHT3aY7Z9aGq1qH6T1a6IfkLtJUcFMis1hlunJNNq8c3pwlpzA4fqzwCQOeanYjqslzyz85ngdjqNjomxE/n+7PfsLNpJWmSa0iEJKuCJ9UF+eg1f3T+NLbnlqt1ktSv2vdz2lOxBlmVxkwG8c/slSoegqF3Fu7DKVpJDkokLjFM6HI8jRoSEHrP3E/qh+IdePW/DkVIeXX6AwuomV4QlKESWZcfqJU+qD5IkiWGxwdxxqWduDpwelY5BY6CiuYK82jylwxFUwP53KHab7xuRCAk9Zv8j21uyF5PF1OPnvbbxBB/vznf0bRG8Q0F9ASWNJegkHWOjxyodjs8wao2Mjh4NiOmx85ksVrbmlnOwoEbpUNxub6ltw2Ox23zfiERI6LFh4cMIN4bTZG4iuzy7x8+b61g95mPLW72cfVpsVNQoj9nleu+ZKu79YC+rDnr276KoE7rY82uOcctbO3hr80mlQ3GrBlODo9P4+FiRCPWFSISEHtNIGsfqsR3FPesnBOcSoR9OVlLT2PORJEHdPHHZ/KqDxXydXcSqg0VKh9IvIhG62Oy2vmXrjpTSavadoukDZQewylbiA+NFfVAfiURI6BV7nVBPGyuCbVXHiNhgLFaZ9UfF9Ji3sNcleEqhtCzLjunZuWme/YaREZ2BVtJS2FBIYX1h90/wAeMHhhMVZKSu2cwPJyuUDsdt9pXuA3A0vRV6TyRCQq9Mjp8MwP6y/TSbe97Sft6otukxX2x65oWKG4o5W38WjaTxmAvwibJ6TpU3YNBquHxEtNLh9EuAPsCxclOMCtloNBJz09pGhQ77znXGXh/kSSOzaiMSIaFXkoKTiPaPxmw1c7D8YI+fN6/tDvz7Y2U0m9S/07fQNXt90MiIkQQZghSOpmfW5JQCMHlIJEFGz+8cIqbHLjYr1XbDtf5oqU90szdZTRwoOwCIEaH+EImQ0CuSJDn+4OxDsj2RnhhCfKgf8aF+FIhl9B7PE+uDPHGT1a6IROhilw6NxKDTkF/ZxImyeqXDcbljlcdoMjcRbAhmSNgQpcPxWCIREnrNvjLBPiTbE5Ik8fUD01n3yAyGRHvGCILQOU+rDzp/k9W5I70jERoXMw4JidO1pylvKlc6HFUIMOiYPDgSwNE93JvZr8HjYsahkcTbeV+Jfzmh1+wjQvtL9/d43zGAiECDq0IS3Ki8qZzTtaeRkDxmuW5pXTNjEkMZOyCUuFA/pcNxilBjKMPChwG23l6CzSNzh/PV/dO4fWqy0qG4nCiUdg6RCAm9Njx8OAG6AOpMdeRW5/b6+c0mi29ujugl7PVBw8KHEWoMVTianhmVEMoX903j419MUToUp7JPj9n/nwgwNimM9MRQj+wa3huyLDsSYNFIsX9EIiT0mk5zrpNwb+qEAN7bdprxT63hlQ29T6AEddhTbKtJ8ZRpsfP56b1rM0pRJ+S78uvyqWiuQK/RMypqlNLheDSRCAl9Mi7WNhTbmzohgMggA42tFtYfKXVFWIIbODZajfOMRKi4ppm6Zu9s5GlPhI5XHaemxfe2lujMocIaln2cxZNf5igdisvYr73pUekYtUaFo/FsIhES+sQ+FNvbEaHpw6LRaiROlDVwpqLRFaEJLlTVXOWYDvWU4fjnVh9l/FNr+Nf200qH4nRR/lEkhyQjI/f6b9Gb1TaZ+e++Ar7IKsBq9c5l9KI+yHlEIiT0yeio0WglLcUNxRTV93y7glB/PRMHhQOw/ojvND3zFva70MGhg4n0j1Q4mu5ZrDLrj5Rissheu1pRTI9dbGJyOMF+OioaWtl/tlrpcFxC1Ac5j0iEhD4J0AcwMmIk0PvpsVltewJtOFrm9LgE1/K0ZfN78qqobGglxE/HJSkRSofjEiIRupheq+GyYbbu4Ru8cBq+srmS07WnAciIyVA0Fm8gEiGhz+x1Qr0dkrcnQttPVtDYanZ6XILr2N9sPaU+aG3bVguzUmPQa73zcmdPSnMqcmg0ielmu5lt15n1R70vEbJfc4eGDfWYlZtq5p1XBsF1rBY4tRmylzMeWz+W3o4IDY0JYkC4P61mK9tyfWdzRE9X21rLkcojgGd0lPamTVa7Eh8UT0JgAhbZQlZZltLhqMaMEdFIEhwsqKW0tuf7InoC+7SYqA9yDs/fcEdwn5yVsOpRqLXtdp2h0cCgAeRW5VLTUtPjOxNJklg6LYUmk4XU+GBXRiw4UVZpFjIyA4MHEhMQo3Q43TpZ3sCp8gb0WsnjN1ntzoTYCRSeLGRPyR6mJkxVOhxViAoyMmZAGPvzq9lwtJQbLhmodEhOIwqlnUuMCAk9k7MSPrnVkQQBRFmtDDKZkJHZv+eNXp3ujktTuGfGUAaEBzg7UsFFHPVBHjItZq8NyUzxjk1WuyLqhDo2OzWG1Lhgr+of1Whq5HDFYQCP6eyudt59dRCcw2qxjQRx8TLUcc0t5On17Nv/LpdNXgYa77ngCO3Z+wd5wrQYwMLR8Rh0GuJCvGNLja7Y/59kl2XTYmkRfWXa3DdzKA/MHqZ0GE51sPwgZtlMbEAsCYEJSofjFcSIkNC9vG3tRoLON765BYC9mlbbcb1Q3djKF1kFrM0Ry+jVrtHUSE6FrTmdp6wYSwjz59Ypycwb5b31QXaDQgYR6RdJq7WVg+UHlQ5HNTQa79tmw16TOT5mvNdvI+IuIhESulffeaIyri0ROmgw0lpb0KvTfnmgiAc/yuL170/0KzzB9bJKs7DIFhICE0gIEnehaiNJkpge60JTq4XjJXVKh+EUjvqgWFEf5CwiERK6FxTb6bcGmc1EWCy0aiRy5N6tzLAvo997poqqBrEJq5p52rYa7207zQc78qiob1E6FLcRiVDHdp+uZOyTq/n5vzz/38VsNZNVmgWIRorOJBIhoXuDpkJIAnDxMKzEuVGhvdre9QRKDPNnRGwwVhk2HRfNFdXMk+qDrFaZv6/P5TefHeRwkXeMAvSE/f/NvtJ9mK2iP5ddanwIsixzqm0VoSc7XnWcRnMjQfoghoYNVTocryESIaF7Gi0seLbtiwuTIcmRCO0r3d/rUzuannlh91dv0WxuJrs8G/CM+qCDhTWU17cQaNAyyUu7SXdkWPgwgg3BNJmbHKuKBAgy6hy/B55+nbHXB42NGYtWLExxGpEICT2TtgSufx9C4ts/HpLA+GmPA7CvbB9W2dqr084eaUuEvj9WhsVLN0f0dAfKDmC2monxjyEpOEnpcLplf7ObNiwKg853LnEaScOEGDE91pGZI+w3XJ69MMNeHySmxZzLd64SQv+lLYGHDsJtX8G1b9s+P5RN6sSf46f1o6alhlM1p3p1ynFJYYT666luNLHvTJWLAhf64/xpMU9YpWLvH2SvQfMlok6oY/bfhZ2nKqlv8cxpQ1mW2VciGim6gkiEhN7RaCFlOoy+zvZZo0Wv0TMmegzQ++02dFoNlw+3df09cLbG6eEK/edJ+4uV1bWwv+33yD4K4EsciVDpnl6PznqzwdFBJEcGYLLIbPHQesSC+gJKm0rRaXSkR6UrHY5XEYmQ4BT2OxT7HUtvLJs7nB2/ns3PpqU4Oyyhn0xWEwfKDgCeMRy/sW2DzfTEEGJ8oJHihVIjU/HX+VPXWsfxquNKh6Mqnl6PaJ8WS4tMw1/nr3A03kV0lhacwv4m2dsRIYDkqEBnhyM4yeGKwzRbmgk1hjI4bLDS4XQrv6oJrUZilg+OBgHoNXoyojPYXrSdPSV7GBExQumQVOOacYkkhvkze2Tn7UDU7PxGioJziREhwSnGRI9BI2koqC+gpKHvBYmyLAqm1cTRvC16HBpJ/ZeLZXOHs/e3c7n9Ut8dXbRPYYo6ofbGDAjjzumDSfHQGy9RH+Q66r+yCR4hyBDEiHDb3ee+st5Pj+3Pr+anb+/g3g97P6IkuI79zdSTNncMDdATEWhQOgzFnF8wLW4svEN1czUnamwd+DNiMpQNxguJREhwmv7UCem0EpuPl7PhSBnNJouzQxP6QJblcyNCHnAX2moWxcEA6VHpGDQGKporOF17WulwVKW+xcwnu/J5+lvP6rOUVZYFQEpoChF+vtMby11EIiQ4jX3vG/ubZ2+kxYcQF+JHk8nCDycrnB2a0Aenak5R3VKNUWtkVOQopcPp1uK/b+GaV7eSW+o73aQ7YtQaHauK9paIEdbzNbaY+dWKA/zj+5OU1XnO9iv2/4+iPsg1ep0I3XbbbWzatMkVsQgezv5HerTqKPWt9b16riRJzEy1LaPf4KGrOryNvThzdNRo9Fq9wtF0Lb+ykaMldRw4W0N0sO+tFruQfXqsL4sXvFlMiB/piSHAuRWGnsD+/9ETRmY9Ua8ToZqaGubMmcOwYcP405/+REFB73Yc769XXnmF5ORk/Pz8yMzMZOfOnV0e/+mnn5Kamoqfnx+jR4/mm2++cVOkvicmIIYBQQOwylbHkuvecHR/PVoqahtUwHEX6gH1QfYl0RMHhRPqr+6kzR3s/8/EiNDF7CsKN3hIItRsbuZQxSHAM/4WPVGvE6HPP/+cgoIC7r77bj7++GOSk5O54oorWL58OSaTyRUxOnz88ccsW7aM3//+9+zdu5exY8cyf/58Sks7/oXetm0bN910E0uXLmXfvn1cffXVXH311Rw8eNClcfoyxwW4D3eilw6NwqDVkF/ZxImy3o0oCc5n/39o37ZBzdb7cDfpjmREZ6CRNJytP0tpo2e84buLvZ/Q5mPlmCzqrys7WH4Qs9VMtH80A4IGKB2OV+pTjVB0dDTLli1j//797Nixg6FDh/LTn/6UhIQEHn74YY4fd00jr+eff5677rqLO+64g7S0NF5//XUCAgJ45513Ojz+pZdeYsGCBfzyl79k5MiRPPXUU4wfP56XX37ZJfEJ5xVM96FOKNCoI3Owd2yO6OmKG4opqC9AI2kcXcPVqrHVzPa2ujKRCNmcv4pTjAq1N3ZAGJGBBupazOw6Xal0ON06f8GCJ2xx44n6VSxdVFTEmjVrWLNmDVqtloULF5KdnU1aWhovvPCCs2IEoLW1lT179jBnzhzHYxqNhjlz5rB9+/YOn7N9+/Z2xwPMnz+/0+MBWlpaqK2tbfch9Jy9TuhA2QFM1t6PEM4fFcf0YVEMjPDMXh/ewn7xHRE+giBDkMLRdG1bbgWtZisDwv0ZGqPuWN3JPjor+gm1p9FIXD7Cc+oRHY0UxbSYy/Q6ETKZTKxYsYIrr7ySQYMG8emnn/LQQw9RWFjIe++9x9q1a/nkk0948sknnRpoeXk5FouF2Nj2XUFjY2MpLi7u8DnFxcW9Oh7g6aefJjQ01PGRlKT+3bbVJCU0hTBjGM2WZo5UHOn1838yeRD/WprJgvQ4F0Qn9JRH1Qe11XrMHBEj7pjPYx+dFQXTF5uVGoMkofqVYxarhf2l+wFRKO1Kvd5iIz4+HqvVyk033cTOnTvJyMi46JiZM2cSFhbmhPDc7/HHH2fZsmWOr2tra0Uy1AuSJJERk8HG/I3sLd3L6OjRSock9IEntfO/bFgUVQ2tzB8lkufz2VeOHa86Tm1rLSGGEIUjUo/ZqbHs/s0cIoOMSofSpdzqXOpMdQToAhgePlzpcLxWr0eEXnjhBQoLC3nllVc6TIIAwsLCOHXqVH9jaycqKgqtVktJSfvtG0pKSoiL6/gCGBcX16vjAYxGIyEhIe0+hN6xv3n2pU7IrrimWfQTUkhta61jw05PGBFakB7Paz+ZwLRhUUqHoipR/lEMDB6IjExWaZbS4aiKv0Gr+iQIzl1Dx0aPRacRW4O6Sq8ToZ/+9Kf4+bm/T4fBYGDChAmsW7fO8ZjVamXdunVMmTKlw+dMmTKl3fEAa9as6fR4wTnOL5juyzL4PXlVTH56Hfd9uBerVSyjd7es0ixkZAYGDyTKXyQXnkzUCXVPzZ3sHf2DYsW0mCt5VGfpZcuW8eabb/Lee+9x+PBh7r77bhoaGrjjjjsAuPXWW3n88ccdxz/44IOsWrWKv/71rxw5coQnnniC3bt3c9999yn1I/iEtMg0jFojlc2V5NXm9fr5oxNDCTLqKK9vJbugxgURCl2x34V6wmjQF1kFnBStFjplH50VK8cuVtts4vp/bGf8U2tobDUrHU6HHH+LHjBF7ck8KhG64YYbeO655/jd735HRkYGWVlZrFq1ylEQfebMGYqKihzHT506lQ8//JA33niDsWPHsnz5cj7//HPS09OV+hF8gkFrcLT478v0mEGnYdpQ20iEWEbvfp7Szr+qoZWHP85i1l+/p6imSelwVMleJ3Sw4iDN5maFo1GXYKOOwuomGlstbM1V3zR8UX0RxQ3FaCUto6NEraUreVQiBHDfffeRl5dHS0sLO3bsIDMz0/G9jRs38u6777Y7/sc//jFHjx6lpaWFgwcPsnDhQjdH7Jscd6J9XLFi7wfjKd1fvUWLpYXs8mxA/SNCm46XYZVhRGww8aH+SoejSknBSUT5R2G2mjlYLhrJnk+SJMd1Ro03XPZr58iIkQToAxSOxrt5XCIkeIb+NFYEmNG279iBszWU1ok7WXc5VH4Ik9VEhF8EA4MHKh1Ol+xvXjNFE8VOSZLU75sSb2b/3dmo9LY+Vguc2gzZy22frZZzjRRFfZDLiTJ0wSXGxoxFQiKvNo/ypvJeF93GBPsxOjGU7IIaNh4t4/qJooWBOzi21YidYOvJY7VA3jaoL4GgWBg0FTRahaMEi1Xm+2NlgOgm3Z3xseNZnbda1Al1YMrgSPz0GopqmjlcVEdaggKrhHNWwqpHobbw3GMhCewdkAiof4raG4gRIcElQgwhDAsfBtDnpbv2uzVP6P7qLexvluNixtku0C+mw3tXwoqlts8vptseV9i+M1VUN5oI9dczfmCY0uGomr1OKKssC4tVvSuklOCn13LpENtNmiLT8Dkr4ZNb2ydBQE19MbmNtsa/GTEZ7o/Lx4hESHCZ/na2vTojgZduzOBP14hCQXewWC2OpHV8Q32HF2hqi2yPK5wM2d+0LhsejU4rLmPtXDDNMixkMEH6IBpMDRytOqp0dKozU6k6IavFNhLExVNy+40GZElikEUmyhju3rh8kJgaE1xmfMx4Pj76MftK+lYnNDg6iMHRYu8odzm/i+2IzX+jowu07TEJVj0GqYsUmybbkmvfZDVakddXrQ6mWbQhCYwdPJKtNcfZW7KXtMg0BQNUn1mpMcxOjWFOWmz3BztT3raLbzTa7POzNXsc39hgOy5lujsj8zniVkpwGfuqo8OVh2k0NSocjdAd+8jd2KCB6Dq5QNvIUFtgu0Ar5D93ZfLWrROZNcLNb15q1sk0C7VFTDi1CxAF0x1JCPPn7dsv4aZJbl4cUF/S6bf2tiVC45pbujxOcA6RCAkuExcYR3xgPBbZ4liS3Vs1jSZe2ZDLQx/1fbsOoWfsI3fj/Xu4Z5eCF+gAg445abGEBugVi0FVuphmAZnxzbbNRfeU7FF2dZRwTlDHSXyLBNnGthGh5pZOjxOcRyRCgkv1t05I0sALa47xeVYhZyrEqJKryLLMnlLbNgzjo8f27EniAq0eXUyzAKS3tqCXZSqbKzlTd8aNgXmO/MpG/v1DHmaL1T0vOGgqhCQAUruHcwwGTJJEhMXCwIC2lZqCS4lESHApxwasfawTCvHTMzHZViy4/ogYInaVwoZCShtL0Uk6Ro+6scML9DkShCQqcoFuNlm45tWt/HnVEVXvEeV23YzOGWUY3WIbFRLL6C9mscosfnkLv/38IPvyq93zohotLHi27Ytzf2v2abHxzS1IC55RRbsKbycSIcGl7M3A9pftx2zt234+ju6vR8ucFpfQnv3NMS0yDX9DUIcX6HZfK3SB3nGqkn1nqlmx9yxGnbh8OfRgdO786TGhPa1G4rJhtsJ7t64eS1sC178PIfGOh/a1bWo+LvU62/cFlxNXEsGlhoYNJVgfTKO5kWNVx/p0Dnsi9MPJCtVujujp7G+Ojm01OrhAA7aRouvfV+wCbe8pNXNEjK3ho2DTyTTLORLjNbYVmKJgumOzlOpblrYEHjoIt32F9UdvsS8kEoDxY37q3jh8mEiEBJfSSBpHQ7C+brcxJDqIAeH+tJqtqtwc0Rs42vnHnNfO/7wLNNe+bfv8ULZiSZAsy2Jbjc50Ms1y/tcZlz+BhER+XT5ljWJ09UKXD49GI8GR4jryK91cj6jRQsp0TiaNo9bciL/OnxERI9wbgw8TiZDgcvZRhr7WJqh9c0RPV9Vcxcmak0AH7fzbLtCMvs72WcF6hRNlDZypbMSg1TBtaO+2bPEJ3YziBY+53vHmai+MF84JDzQwMTkCgHWHlalHtI/WjYkag14jVkS6i0iEBJc7fwPWvi7dnZkaQ4BBi0bMhjidfTRoSOgQwvzClA2mC/Ypi8zBEQQaRS/YDnUziudYxSkKpjs0d6St1mrtYWVuuMRGq8oQiZDgculR6eg1esqayjhbf7ZP55g2NIp9v5vLH8V2G07n2F9M5Rdf+2ig2GS1G12M4vV3dNbb2btL7z1TpciqxA6nqAWXE4mQ4HJGrZFRkaOAvtcJ6bUajDqxjNQV7P9P1LzLtSzLJEX4Ex6gF4lQP0yIsW3AeqzqGLWttQpHoz4pUYG8fdtEdvx6Nn56915vihuKKagvQCNpGNvTXl6CU4hESHAL+2iDM+5Ei2ua+30OwabR1EhORQ5w3ooxFZIkiT9fN5bdv53LoMhApcPxWNEB0SQFJyEjOzbYFdqbPTKWYD/31+fY/3+MCB9BoF78jruTSIQEt3A0VuzjiBBAQ4uZ2X/dyNRn1lHZ0Oqs0HzawfKDmGUzsQGxJAQmKB1Ot7SiSKzfnPG3KDifvVBazTck3kokQoJbZERnAHCy5iRVzVV9OkegUYdBp8Uqi9VjzuLYViNmvGr78litMjmFtWKPLCeZEGubHhN1Qp17d+spFv99C9tyy932mqI+SDkiERLcIswvjCGhQwD6NSQ/t62YcU1OsTPC8nmOjVZVfBd6oKCGhX/bzNwXNolkyAns/6+zy7NpsbQoHI065RTVkl1Qw+oc9yyjr22tdTScVXOtnrcSiZDgNvY6of4Myc9rS4Q2HSsXe031k9lqZn/ZfkDdiZB99G9YTJBqR608ycDggUT6RWKymjhYflDpcFRpjmMZfYlbku89xXuwylaSQ5KJDoh2+esJ7YlESHAb+51Of1r8j0oIITHMnyaThS3H3Tds7Y2OVh6l0dxIsCGYoWFDlQ6nU+dvqyH0nyRJYhl9N6YNi8Ko03C2qomjJXUuf71dJbsAuCTuEpe/lnAxkQgJbmOf+z5UcYhmc99WfkmSxJyRtjfENW4atvZW9oR0XMw4NJI6LwWltc1kF9QAMCNV3Ck7i71OSHSY7liAQefoXr7WDdeZXcUiEVKSOq9+gldKDEokxj8Gs9XcryH5uWlxgG3Y2mIVNSN95WikqOLizI1HbXtijU4MJSbYT+FovIf9//n+0v1YrGKKuSPn6hFdmwjVtNRwtPIoIBIhpYhESHAbSZIY17YB694D78OpzdCHi3Dm4AhuzhzIM9eOEcWzfSTLsmNEyD46oEZr2/Z8EpusOpe9V029qd5RpCu0N6tt5Hn/2RpKal3Xu2x3yW5kZAaHDibKX+yhpwSRCAnuk7OS8TnfArD75Dfw3pXwYjrkrOzVafRaDX+6ZjRz02LRacWvcF/k1eZR2VyJQWNwdP1Wm6ZWC5uO20aE7EXygnNoNVpHS4v+1Ox5s5hgP6YPi+LKMfE0tbpu1ExMiylPvIsI7pGzEj65lcwq2x3+PqORVoDaIvjk1l4nQ0L/2FfupUelY9AaFI6mYwadhn/ePon7Zw1lVEKI0uF4HVEw3b1/Lc3k5ZvHkxzluk7PO4t3AiIRUpJIhATXs1pg1aOAzGCTmUizhWaNhgN+RqBtamvVY72eJss+W8Nz3x3lVHmD00P2dntKbEWyap4W02okpgyJ5JF5I8SyeRc4fxWnmGJWRlVzFcerjgMwMXaiwtH4LpEICa6Xtw1qCwGQgEnNtvn2XX7GtgNkqC2wHdcLz60+yssbcvn2YJETg/UNooutMDp6NHqNnvKmcvLr8pUOR7VkWeZYSR25pfVOP/fukt0ADA0bSqR/pNPPL/SMSIQE16tvv+rCngjt8PPr8rjuzBtlqxtZfUgso++N8qZyztSdQUIio614XW325FXxxMpD7D5dqXQoXsuoNZIelQ6cGyEULvbSuuPMe2ETr39/wunn3lkkpsXUQCRCgusFtS90zWyytfXf72ek6fwpj6DeFcTau79m5VdT6sJVHd7G/qY3PHw4wYZghaPp2MqsAt7ddppPdouRCldyRpNTbzcpJQKwdTh3drsO+4jQpLhJTj2v0DsiERJcb9BUCEnANjEGA8xm4sxmzJJEltFgezwk0XZcL8SG+DE2KQyANYfFqFBP2afF1LqthizLjj2e5rX1jBJcQxRMd++S5AhC/HRUNrSy70zfNozuSEVTBbnVuYC6a/V8gUiEBNfTaGHBs21fSLY6oSbbCM5Of3/bwwuesR3XS/Pc1PTMm9jf9NS6uWN2QQ1FNc0EGLRMGyb6qrhSRkwGEhJn6s5Q3iS2rOmIXqthVqrzu9nbt9UYHj6ccL9wp51X6D2RCAnukbYErn8fQuIByGy2TY/tDAy2PZ62pE+ntSdC23IrqG8xOydWL1bfWs/RKlsXW7UWSn93qBiAGSOi8dP3PjkWei7EEMLw8OHAeXVCVout2Wn28j43PfU2c+w3XE4ced5dLKbF1EKndACCD0lbAqmLIG8bkyqPwcEXOWTQUT90FkF9POXQmCCSIwOoaTJxorTeMVUmdGx/2X6sspXEoERiA9XZpPC7Q2JazJ3GxYzjaNVR9pbsZX5ji63VRdsqT8A2rb3g2T7frHiDy4ZHo9dKnCxr4ERZPUOi+3rFOsfeP2hinFg2rzQxIiS4l0YLKdOJm7CUgcEDsciWfhVqSpLEv5Zmsus3c0QS1Jnz7vD3HvsCUG9NwomyenJL69FpJLGthpvYfxf2ndlga256fhIEoukpEOKnZ/Jg2/L2dU4YFSprLONUzSkkJNE/SAXEiJCgmEnxkzhTd4YdRTu4bMBlfT5PUkSAE6PyMjkr293h742LAX8/xlvUeQ9UVN1MQqgfQ2KCCPXXKx2OT7AXTB9tKKRegqCLFkbJgGRrepq6qE+1fN7g3plDWTotxZEQ9Yd9W43UiFRCjaH9Pp/QP+q8Ggo+wT43br8o9JcsyzS2ijohh7ZtTexJkAnINtq20xi35TVV3uFPGxbF1sdm8fJN6izk9kYxATEM8IvCKklkOZqcXqhvTU+9yeTBkcwYEeOUujV7obSYFlMHkQgJirE3ETtSeYTq5up+neuLrAKmPrOeP6866oTIvMB525rYHTIaaNFoCLdYSDGZ+7StiTtIkkRogBgNcqfxAYkA7O00EWrTy6anQsfsN3+iUFodRCIkKCbKP4qhYUORkR2Nxfoq0KCjqKaZNTklYt8kaLetid2+tje5cc0tSCq8wy+ta8ZssSodhk+aENnWYbq7RKiXTU+9TX5lI09/c5gnv8zp8zlKGkrIq81DI2lU28vL14hESFCUfVTIvoKir6YNi8Jfr6WguolDhbXOCM2zdXDnvtdoe5Mb39a6oLPjlPLIJ/uZ+Me1rD+inph8xfi06wE4aDDS2uERfWt66m1qmkz8Y9NJ/rPzDM2mvo2m2qfFUiNSCTGEODM8oY9EIiQoKjMuEzi3505f+em1TG9rvieaK3LRnbuVc9Me7RIhldzh1zSZ2H6igupGE8mRgUqH43MGhaYQoQukVSNx0HjhqFDbNjh9bHrqTUYlhBAf6keTycK2E31rQCmmxdRHJEKCoibGTURC4kTNiX53tp03ytZ3ZrVIhC7a1uSkXk+tVou/1Upqaytqu8PfeLQUs1VmaEwQg53Qo0XoHUmSmJBo+13YG3pBN++QhH41PfUmkiQ59jhck1Pap3OIjVbVRyRCgqJCjaGkRqQC/V89Nis1Bo0Eh4tqya9sdEZ4nuuCbU3so0FjWlrRq/AO395Nev4odYxQ+SL7lit7hl0Gt30F175t+/xQtkiCzmPvMr3ucAnWXm7CWlRfxNn6s2glrWq3uPFFIhESFGcfIt5RtKNf54kINDAx2bZTtJgeo922Ju2mxVR2h99ssrDxaBkA80eJbtJKGRdr23Ilq2w/lkFTYfR1kDJdNcmyWkweHEGQUUdpXQvZBTW9eq69PigtMo0ggxj5VAuRCAmKmxRvS4T6WzANcP3EJO64NJlJKRH9PpdXSFsCDx1kb2QSAOMv+1/V3eFvzS2nsdVCfKgfoxNFczmljAgfQYAugHpTvWNXdOFiRp2Wy4dHA72/4RLTYuokEiFBcRNiJ6CVtOTX5VNUX9Svc103YQC/XzyKdPGG6lDUWEpRSyVaScuY0beo7g7fPi02Ly0WSZIUjsZ36TQ6MmIygPM2YBU6NCcthqggI0Zd795C7W1CRCKkLiIREhQXqA9kVNQowDmjQkJ7PxT9ANiG4wP06tuO5PapKdw/ayhXj0tUOhSfZ69b6c/+f77gyjEJ7Pz1bO6fPazHzymoL6CgvgCdpBP1QSojEiFBFRzL6J2QCJksVrbmlvPxrjP9Ppc32FZoa5o4NUEdK8QulJYQwiPzRjBuYLjSofg8e4O/vSV7RWPSLui1GjSa3o1e2qfFRkWNUuUNiS8TiZCgCuc3VuzvBfhwUS23vLWDP3yZ0+emZ97CYrWwvWg7AJcmXqpwNILajY4ajU6jo6ypjLN1Z5UOR/WsVpnc0roeHSumxdTLYxKhyspKbrnlFkJCQggLC2Pp0qXU19d3efz999/PiBEj8Pf3Z+DAgTzwwAPU1PSuyl9wj4yYDPQaPcUNxeTX5ffrXKMTQ4kL8aOx1cL2ExVOitAz5VTkUNNSQ7A+mNFRo5UOpx1ZlnnqqxxWHyqm1Sy21lADP50f6fbtNkpFnVBXqhtbmfSndSx4cTM1TaYuj5Vl2THaLRIh9fGYROiWW27h0KFDrFmzhq+++opNmzbx85//vNPjCwsLKSws5LnnnuPgwYO8++67rFq1iqVLl7oxaqGn/HX+jI0eC8CO4v4to5ckibltvT5W5xT3OzZPtrVwKwCZ8ZnoNDqFo2kvp6iWt7ec4oGP9mHpZT8WwXXOnx4TOhcWYCA8QI/ZKrPxaNfNFc/WnaW4odhWkB6d4Z4AhR7ziETo8OHDrFq1irfeeovMzEymTZvG3//+dz766CMKCws7fE56ejorVqxg8eLFDBkyhFmzZvHHP/6RL7/8ErPZ7OafQOgJez+hXUX9a6wIOBKhNTmlvW565k0c9UGJ6qsPWn3ItvT4smHR+BvUtZLNl02InQA4Z5ra29mbK6493HUiZO8fNDpqtKgPUiGPSIS2b99OWFgYEydOdDw2Z84cNBoNO3b0fPSgpqaGkJAQdLrO74xbWlqora1t9yG4h72f0I7iHf2+AE8eHEmwUUd5fQv78qudEJ3nqW2t5UDZAQAuTVBffdC5btKiiaKaTIydiF6jp6C+gNO1p5UOR9Xs221sPFra5fSumBZTN49IhIqLi4mJiWn3mE6nIyIiguLink19lJeX89RTT3U5nQbw9NNPExoa6vhISkrqc9xC74yJGoOf1o/K5kpOVJ/o17kMOg0zUm2/M77aZXpH0Q4ssoWU0BQSghKUDqedMxWNHCmuQ6uRmD0ypvsnCG4ToA9wjAptKdiicDTqNi4pjKggA3XNZnaequzwGFmWHaPcYqNVdVI0EXrssceQJKnLjyNHjvT7dWpra1m0aBFpaWk88cQTXR77+OOPU1NT4/jIz+9f4a7Qc3qtnnExtjb/zlhGb58eO3C2ut/n8kRbC2z1QWocDbLXbmWmRBAWYFA4GuFC0xKnASIR6o5GIzE71T491vEN15m6M5Q2laLX6B11kIK6KJoIPfLIIxw+fLjLj8GDBxMXF0dpafs5WLPZTGVlJXFxXQ+r19XVsWDBAoKDg/nss8/Q6/VdHm80GgkJCWn3IbiPM7fbmJUaw1f3T+ODOzP7fS5PI8uyqvsHiWkxdZueOB2A3cW7aTI3KRyNus1x1COWdDilb7+WjYkeg5/Oz62xCT2j6DKS6OhooqOjuz1uypQpVFdXs2fPHiZMsA3Zrl+/HqvVSmZm529ytbW1zJ8/H6PRyMqVK/HzE7+EaucomC7ehVW2opH6nqsHGXU+u9XGqdpTFDUUYdAYmBg3sfsnuFGL2UJds23Bgn3UTlCXlNAUEgITKGwoZFfxLi4bcJnSIanWtKFR/OLywY56oQuJaTH184gaoZEjR7JgwQLuuusudu7cydatW7nvvvu48cYbSUiw1T4UFBSQmprKzp227Lu2tpZ58+bR0NDA22+/TW1tLcXFxRQXF2Ox+HaTPTVLi0wjUB9IbWstRyuPOu28vrZybFuBbTRofOx4/HX+CkfTnlGnZdVDl7Hl0ZkkhKkrNsFGkiRHA87NZzcrHI26+Ru0PH7FSC5JjrhorzxZlh0rxkShtHp5RCIE8MEHH5Camsrs2bNZuHAh06ZN44033nB832QycfToURobGwHYu3cvO3bsIDs7m6FDhxIfH+/4EHU/6qXT6JgYaxvBcMb0mNli5ZFP9jPxj2spq2vp9/k8hb1/kBrrg+wGhItlxGpmrxOy/y4JvXeq9hTlTeUYNAbGRI9ROhyhEx6TCEVERPDhhx9SV1dHTU0N77zzDkFBQY7vJycnI8syM2bMAGDGjBnIstzhR3JysjI/hNAj9junHUX9a6wIoNNqOF5aR2VDK+s6KWb0Ni2WFnYX29r5q61/UIvZ4vPbnngKexPO/Lp88mrzlA5H9b4/VsZvP8+mpLbZ8Zh9WiwjJgOj1qhUaEI3PCYREnxHZryt7mtPyR5M1q5b1/fE3JHnihl9wZ6SPTRbmonxj2FYWM93x3aH1YdKGPfkGp76KkfpUIRuBOoDmRAjltH31Itrj/HvH860u87Yp8XUVqcntCcSIUF1hocPJ9QYSqO5kZyK/r9hzmtbmbQ5t5yGFu/vKm6vD5qaOPWimgWlfXeomCaTBb1WXHo8gX16bHOBqBPqjn0F5Mr9tt0OZFlmV7EolPYE4mokqI5G0nBJbNtu9EX9rxMaHhvEwIgAWs1WNh8v6/f51E6t9UEtZgsbj9r+/eeNEqvFPIE9EdpdvJtmc3M3R/u2qzISkCTYeaqS/MpGTlSfoLK5Ej+tn+o2PBbaE4mQoErO7CfUbhPWQ949PVbSUEJudS4SEpPjJysdTjvbTlRQ32ImJthIxoAwpcMRemBI2BDiAuNosbQ4RjeEjsWH+jN1SCQAn+8rcEyLjY0Zi0ErmoaqmUiEBFXKjLPVCe0r3UerpbXf55vXlgitO1KK2dL5nkCezt5EMT0qnTC/MGWDucDqtiaK80bFotGoa8pO6JgkSY6RRVEn1L1rxg0A4LN9BY7RbDEtpn4iERJUKSU0hSj/KFosLewv29/v800YFM6klAh+OnkQzV1sjujp1NpN2mKVHUWk89JEN2lPYu8yLZbRd29Behz+ei0ny+v4QTRS9BgiERJUSZIkxzJ6ZwzJ67QaPvnFFP5n/giCjIo2VHcZi9XC9qLtAI5meGqx70wV5fWtBPvpmDw4UulwhF7IjM9EJ+nIq80jv1b0YOtKkFHH/FGxJMbUUm+qwV/nz6jIUUqHJXRDJEKCatmnx5zRT8gX5FTkUNNSQ7A+WHXFmUkRATx2RSp3TR+MQScuO54kyBDEuFjbZshi9Vj3nro6nbsX2DrZj4sZh17b9f6WgvLEFUlQLfuQ8oHyA07b+LHFbOHb7CL2nqlyyvnUZEuhrYbD3ghPTWJD/Ph/lw/hgdnq6msk9IzYjb7ngv30jlFssa2GZxCJkKBaA4IHEB8Yj9lqZl/pPqec82/rjnP3B3t5feMJp5xPTez9g9Q2LSZ4PnsitKt4Fy0W39mqpi+sspXdJbbO7iGkKhyN0BMiERJUS5Ikx6iQM/oJASwZmwjA+iOlVNR7zwW9trWW7PJsQH39g77NLuKzfWepaex/l3BBGcPChhETEEOzpdmxfYvQsWNVx6htrQWrkd9+VC1+7z2ASIQEVXNmPyGAEXHBjBkQitkq83lWoVPOqQY7inZgkS2khKYQHxSvdDjtvLwhl4c/3s93OcVKhyL0kSRJYnqsh+w3bUbLEFotEl9le891xluJREhQNfuI0KGKQ9S11jnlnD+eYOv1sXzPWaecTw22Fqizm3ReRQOHCmvRSDA7NUbpcIR+EIlQz9gbKU6Ise0v9tneAiXDEXpAJEKCqsUFxjEoZBBW2crekr1OOeeSsYkYtBoOF9VysKDGKedUkizLqu0f9Mlu23LrS4dGERkkdt/2ZJPjJ6OTdJyuPc3ZOu+5iXAmi9XCnuI9ANw8dhYaCXbnVZFX0aBwZEJXRCIkqJ595cWOYucsow8N0DO3ba8rbxgVOlV7iqKGIgwag6p2uTZbrHy62/bve9OkgQpHI/RXsCGYsTFjATEq1JkjVUeoM9URpA/i0qSxXDo0CrB1mhbUSyRCgurZ+wk5c68j+/SYN9yp2afFxseOx1/nr3A052w4WkZpXQuRgQbmjBSbrHoDMT3WNXsh+fjY8eg0On403rY447N9BciyrGRoQhdEIiSonn2U40jlEaqbq51yzunDolm77DL+eYfnt79X627zH+86A8C1EwaIJopewr7dxs7inWIZfQfsizrstY3zR8URYNCSV9HIocJaJUMTuiCuToLqRflHMTRsKHCuELG/tBqJoTHBTjmXklosLY6aBDX1D7JYZVrMViQJrp+YpHQ4gpMMDx9OtH80TeYm9pTsUTocVTFbzY5/E/t0foBBx1+uG8vaZZeTnhiqZHhCF0QiJHgEZ/cTOl9No4naZs/s9bGnZA/NlmZiAmIcyaIaaDUS/1qaybbHZjE0JkjpcAQnkSTJkXCL6bH2DlccpsHUQLAhmBHhIxyPLxoTL/4GVE4kQoJHcHY/IbuX1h7nkj+t5T87zjj1vO5i7yY9NWEqkiQpHM3F4kPVU7MkOIe9TshemybY2K9NE2InoNVoOzxG1Ampk0iEBI8wMXYiEhIna05S1ljmtPPGhBhpNVv5dM9Zj7xIqbE+KL+ykdK6ZqXDEFxkSsIUtJKWkzUnKay/oFmg1QKnNkP2cttnq0WZIBWw7sw6oOMWFsdK6rj3g7088FGWm6MSekIkQoJHCDWGkhph27fHmavHFo2Jx0+vIbe0nv1nPaunUElDCbnVuUhITI6frHQ4Dn/57ihTnl7Pv3/IUzoUwQVCDCGMje5gGX3OSngxHd67ElYstX1+Md32uJc7W3eW7PJsNJKGuYPmXvR9WYavs4tYdbCIqoZWBSIUuiISIcFjZMbbltE7c3osxE/PglFxAHza1vzPU9ibKKZHpRPmF6ZsMG2qGlpZdbAYi1UmIylM6XAEF7FPj20u2Gx7IGclfHIr1F4wQlRbZHvcy5Oh705/B8AlsZcQ5R910fdHxAWTFh+CySLz1QGx5YbaiERI8BiOxopFzmmsaHfdBNuqppX7C2k2ec5Qvn1aTE3dpD/bV0CrxUp6YohYJePF7InQjqIdtJqaYNWjQEdTy22PrXrMq6fJVp1eBcD8lPmdHmPvKfRf0VxRdUQiJHiMCbET0Ek6ztafJa/WedMuU4dEkhjmT12zmTU5JU47rytZrBa2F24H1LNsXpZlPt5lG1W74RLRSdqbpUakEuUfRZO5ib3Z/754JKgdGWoLIG+b2+Jzp9M1pzlSeQSdpGPOwDmdHrckIwGNBPvOVHOyrN6NEQrdEYmQ4DEC9YFkJtimx745+Y3TzqvRSFzbdre2Yq9nbLlxqOIQta21BOuDGR01WulwAMjKr+ZoSR1+eg1LxiYoHY7gQpIkOQr0t/a0t1e9Z9xk9JZ9NCgzIZNwv/BOj4sJ9uOy4dEAfC5GhVRFJEKC57BaWBRk65Xz9bHlyBaz007944lJ/HphKn++bozTzulK9mmxyQmT0Wl0CkdjYx8NWjg6nlB/vcLRCK7m2G6j/nTPnhDkndusrDplS4QWJC/o9thrxp2bHrNaPW+VqrcSiZDgGdpWpMz+7v/ws1rJayrl0MujnVaEmRQRwM8vG0JMsJ9Tzudq5/cPUgOTxeqYVrxRTIv5hCkJU9BIGnIbiygOSwA662MlQUgiDFLH76ozHa86zomaE+g1emYNnNXt8fPS4pgwKJzbpiRjslrdEKHQEyIREtTvvBUpAbLMzMYmAL6WmnxiRcqFaltryS7PBtTTP0iv1bD+kRn8+boxXJLc+fSA4D1CjaGMibKNoG7OuLbt0QuTobavFzwDnTQZ9GT2abFLEy8lxBDS7fH+Bi0r7p7KXZcNxqjzvn8PTyUSIUHdrJaLVqQsqrftGP9tYABmcOqKlK8OFHLTGz+wJ6/SKedzhR1FO7DIFlJCU4gPilc6HIfQAD3XT0xSZYdrwTUc02PWOrj+fQi54PcxJMH2eNoSBaJzLVmWezUtJqiXSIQEdcvbdtGKlKlNzYRZLFTotOz0Mzp1RcqGI2VsP1nBp7vVWzRt39pALaNBJosY4vdV0wbYEqEfin7ANOIKeOgg3PYVXPu27fND2V6ZBAEcrjzMmboz+Gn9mJk0s1fPrW8xs3zPWX44WeGi6ITeEImQoG4drDTRA/MbGgH4Oiig0+P64scTBwDw1YEiGludV4ztLLIsq65/0J++OcxVr2xly/FypUMR3GxkxEgi/CJoNDeyr3SfbforZTqMvs722Qunw+zs02LTB0wnQB/Qq+e+vvEE//Ppft7afNIVoQm9JBIhQd06WWlinx5bFxhAsyQ5bUXKpOQIkiL8qW8x892hYqec05lO1ZyiuKEYg8bAxLiJSodDs8nCZ/sK2J9fjVkUf/ocjaQ5Nz1W6Du70cuyzHenbN2k+zItdvU4W3uJjUfLqKhvcWpsQu+JREhQt0FTbXUGFxRhZrS0kmgy06DRsDHSeStSNBqJ68bbOk2rcXrMPho0PnY8/jrld3ZfnVNCdaOJxDB/pg+LVjocQQH2Kdp2+455uQPlByhsKCRAF8D0AdN7/fyhMcGMGRCK2Srz5X6x5YbSRCIkqJtGCwuebfviXDIkAQvt02NJaU4dgr92gq3Xx7YTFeRXNjrtvM5gT4Tsd+FK+2jnGcA2pajViCJpXzQ1YSoaScPxquMUN6hvFNUV7EXSM5Jm9PmGxN5T6DPRXFFxIhES1C9tSYcrUhYSCMCW2lxqWpy3c/yA8ACmDokE4L971XORarG0sKd4D6CO+qC8iga2nahAkmwNKQXfFOYXRnpUOnCukN+bWWUrq0+vBvq3Wmzx2AS0Gon9Z2vILRVbbihJJEKCZ0hbctGKlKH3ZzMifARmq9mx+7OzXD8xicmDIxgZH+zU8/bHnpI9NFuaiQmIYWjYUKXD4ZPdtk7Slw2LJjFM+Wk6QTmOOiEfmB7bW7KX0qZSgvXB/drnLyrIyIy2LTc+26e+aXhfIhIhwXN0sCJl0eBFAHxzynl7jwFcPS6Rj34+hXmj4px63v44v5u00r16zBaro4bqxkvEaJCvm55oq5P5oegHTFaTwtG4ln212KyBszBoDbYHrRY4tRmyl9s+97Cv2TVtexwWVTe7JFahZ9SxSZEg9NEVKVfwwp4X2FOyh6L6IlU1GHQ2e32QWvoHPXnVKL46UMTskd65h5TQc2mRaUT4RVDZXElWaRaXxF2idEguYbaaWZO3BoAFKW3TYjkrbU1fz+93FpJgq23spofSnJGxbH1slhhRVZgYERI8WlxgnGMZubNHhQDK6lp4a/NJ6luU7SlU3FBMbnUuEhKT4ycrGguATqthQXo8L988HoNOXEZ8nUbSOOrWvLlOaFfxLiqbKwkzhpEZn9lu+592aot6tP2Pn14rkiAVECNCgsdblLKIXcW7+PrU1ywdvdSp577lrR84VlJPiL9t+wilbC/cDkB6VDphfmGKxQFgsVgwmbx7+sOTGQwGNBr3J6eXJl7KVye/YkvBFh6a8JDbX98d7LWIcwbNQY/mou1/zpEBybb9T+qiHq1qLa1rJsRPj5/ee5tQqpVIhASPN2fQHP64448crzrOsapjDA8f7rRzX5WRyF++O8ryPWcVTYTsRahKrhaTZZni4mLOFJeBDIFGnVgyr0IajYaUlBQMBoNbX/fShEuRkDhadZTSxlJiAmLc+vquZrKYWHtmLdC2WqyD7X/ak89t/5PSda+hx/+bzSe783nxhgwWj01wYtRCT4hESPB4ocZQpidOZ33+er4++TXDJzgvEfrR+ET+uvooO09VklfRwKDIQKedu6cqmirYkL8BoNd7GjlTcXEx1dXVBIRGYJX0RIf6Exrg3jdboWtWq5XCwkKKiooYOHCgW4vqw/3CSY9KJ7s8m60FW7lm2DVue2132F60nZqWGiL9IpkYOxEOfdazJ/Zg+5+oIAMWq8x/954ViZACRCIkeIVFgxexPn8935z6hgfHP4hGcs7UQHyoP9OGRbPpWBkr9pxl2bwRTjlvb3x67FNMVhNjosYwKmqU218fbNNh1dXVhIRHUmE2oJMkosOC0YgRIdWJjo6msLAQs9mMXq9362tPS5xGdnk2mws2e10iZJ8Wm5c8D61G2/NtfXpw3DXjEvn7+lw2HS9X7IbLl4kqR8ErXJ50OUH6IIobitlbstep575ugm0j1hV7C7BaO6oHcB2TxcTHRz8G4JaRt7j1tdvF0VYT1CLb7p3CAvQiCVIp+5SYxdKzJdzOZO8n9EPhD5it6tu0uK9aLC2sP7MeOK+JYifb/5wjQUjPtv8ZHB3EZcOjsVhlXlhzzDlBCz0mEiHBKxi1RuYMmgM4f/XYvLRYgv10FFQ3sf1khVPP3Z3v8r6jvKmcaP9o5g6a69bXvpDVKlPfantzjQgUU2JqpWSPqVGRowgzhlFnqrPtRu8lthRsod5UT2xALBkxGbYHO9n+p93XC57p8fY/v2wbbf5ifyGHi2r7HbPQcyIREryGvbni6rzVmCzOW9Xkp9eyZGwCBp3G7a3wPzz8IQA3jLgBvda90xwXamy1IMsy/not/gYxqy5cTKvRMmvgLAD+c+Q/CkfjPPad5ucnz28/7d7J9j+EJNge76aP0PlGDwhl0Zh4ZBme++6oM8IWekgkQoLXuCT2EqL9o6lpqXF6q/8HZw9j16/ncNvUZKeetyv7y/aTXZ6NQWPgxyN+7LbX7YgsyzS02qY6PG00aMaMGTz00EM9Pv706dNIkkRWVpZTz7tx40YkSaK6urrTY4qLi5k7dy6BgYGEhYUBthGezz//vMevo7SfjvwpAGvz1pJXm6dwNP3XaGpk49mNQCd7i3Ww/Q8PZfcqCbJ7ZO5wtBqJrPxqyutb+hm50FPitk7wGlqNlgUpC/hXzr/4+tTXzBzovBVWMSF+TjtXT32Q8wEAC1OuIKLokG31SVCsreagh8PtztJismLQadBqNIQGKDsy1Vv//e9/e1U0nJSURFFREVFRUYAtgZk5cyZVVVWO5KQv5+2JF154gaKiIrKysggNDQWgqKiI8PBwwJakpaSksG/fPjIyMpz62s4yNHwolw24jE1nN/H+off53yn/q3RI/bKpYBNN5iYSgxIdm8texL79Tz8Njg7ijZ9OIHNwJEFG8fbsLmJESPAq9umxjfkbqW91zTTWDycrOFPR6JJz25U0lDha+d+yZwW8dyWsWGr7/GJ6tx1rnc3PoCU8wMDg6EB0CjTr64+IiAiCg3u+ea5WqyUuLg6drus3ot6etydOnDjBhAkTGDZsGDExtj48cXFxGI1Gp76Oq90x6g4AvjjxBRVN7q2rczb7tNiC5AVuqb+aPTJWJEFu5llXNEHoRlpEGskhybRYWlh3Zp3Tz//KhlxufOMH/vTNYaef+3wfH/0Ys2xmQlMzqVV9a9/vCpoO3ggaW82dfjSbLE4/trcunMJKTk7mT3/6Ez/72c8IDg5m4MCBvPHGG47vnz81dvr0aWbOtI0shoeHI0kSt99+e4fn/de//sXEiRMJDg4mLi6Om2++mdLS0h7HmZyczIoVK3j//ffbvc75U2MpKSkAjBs3DkmSmDFjRq//PdxhQuwERkeNpsXS4tG1QvWt9Wwu2Ayct7eYm8iyzIYjpW5fqeqLPCbtrKys5P777+fLL79Eo9Fw7bXX8tJLLxEUFNTtc2VZZuHChaxatYrPPvuMq6++2vUBC4qQJIlFgxfxStYrfH3ya64aepVTzz9nZCx/XX2UVYeK+eFkBZMHRzr1/GBbqrv82HIAflJb18ERvW/f3x+7TldixEJnk0Bpv/uu0+fOHBHNP++Y5Ph6wlNraTJ1vKw7MyWCj38xxfH1tGc3UNnQetFxp59Z1LPAu/DXv/6Vp556il//+tcsX76cu+++m8svv5wRI9r3iUpKSmLFihVce+21HD16lJCQEPz9O94bymQy8dRTTzFixAhKS0tZtmwZt99+O99807NVjLt27eLWW28lJCSEl156qcPX2blzJ5MmTWLt2rWMGjXK7d2je0qSJO5Iv4NlG5fx0dGP+Fn6zwjQBygdVq9tyN9Ai6WF5JBkRoS7r4eYLMv85O0dbM2t4KUbM7gqI9Ftr+2LPGZE6JZbbuHQoUOsWbOGr776ik2bNvHzn/+8R8998cUXFV1SKrjXohTbG+WO4h2UN5U79dwj4oK5adJAAJ76KgeLC+7Wvjn5DVUtVSSYzMxobOrkqPPa97tQs8nCI5/s5+4P9tCg8MazzrRw4ULuuecehg4dyqOPPkpUVBQbNmy46DitVktERAQAMTExxMXFOWp3LvSzn/2MK664gsGDBzN58mT+9re/8e2331Jf37Mp2ujoaIxGI/7+/p2+TnR0NACRkZHExcU5YlOjWUmzGBg8kJqWGj7L7WEXZpWxN1FckOKeaTE7SZKY0naT9fyaY5gsVre9ti/yiBGhw4cPs2rVKnbt2sXEibadxv/+97+zcOFCnnvuORISOm9JnpWVxV//+ld2795NfHx8p8cJ3iMpJIkx0WM4UHaAVadW8ZO0nzj1/MvmDmdlViGHCmtZsde5e5DJssy/D/8bgBvr6rr/A+1B+/7+eGVDLmcqGxkbH4C/oeORp5wn53f6/Aun0vb875weH7vlUddtJzJmzBjHf0uSRFxcXK+msTqyZ88ennjiCfbv309VVRVWq+3N68yZM6SlpfXr3J5Iq9Fya9qt/N+O/+NfOf/ihhE3oNN4xFsOADUtNWwt3Ap0slrMxe64NIV3t50mr6KRj3fl85PJg9weg6/wiBGh7du3ExYW5kiCAObMmYNGo2HHjh2dPq+xsZGbb76ZV155hbi4uB69VktLC7W1te0+BM9jHxX6+uTXTj93ZJCR+2cPBeAv3x116kjJ7pLdHKs6hr/GwI/qejCS0NM2/31woqyef3x/EoB7Zw7psD4IIMCg6/Tjwp20nXGsM1y42kuSJEfi0hcNDQ3Mnz+fkJAQPvjgA3bt2sVnn9lGQVpbL57e8xVXDb2KCL8ICuoLHMX/nmL9mfWYrWaGhQ9jSNgQt79+oFHH/bOGAfDSuuM0tbq/U7iv8IhEqLi42LGCwk6n0xEREUFxcXGnz3v44YeZOnUqV13V8zqRp59+mtDQUMdHUpJyO44LfTc/eT5aScvBioMu6WVy29RkBkUGUFbXwuvfn3DaeT84bFsyv3joVYQGxeOM9v19Icsyv/viIK0WKzNGRDN9WLRLXscT9GTLiiNHjlBRUcEzzzzD9OnTSU1N7fcIU19jURM/nR83pt4IwD8P/hNZ9pzC31WnVwHKjAbZ3TRpIAPC/Smra+Gf204pFocruaK8oLcUTYQee+wxJEnq8uPIkSN9OvfKlStZv349L774Yq+e9/jjj1NTU+P4yM/P79PrC8qK9I9kcsJkwDWjQkadlsevGElCqB+pcSFOOWdBfYFjl/mbR97i1Pb9vbVyfyFbcysw6jQ8uSTdp2vsBg0ahCRJfPXVV5SVlXVY8zNw4EAMBgN///vfOXnyJCtXruSpp55yeiwxMTH4+/uzatUqSkpKqKmpcfprONtNI27CX+fP4crD7CzeqXQ4PVLZXMmOIttsg5KJkEGnYdnc4QC8vvEENY3O65ivBqV1zcx9/nu+OlDY/cEupGgi9Mgjj3D48OEuPwYPHtzh/L3ZbKaysrLTKa/169dz4sQJwsLC0Ol0jp4g1157bZdLTo1GIyEhIe0+BM90/vSYK+5E54+KZf3/zGDRGOfUnv3n8H+wylamxE+xDcU7sX1/b9S3mPm/r23tAe6bOZSBkZ632seZEhMT+cMf/sBjjz1GbGws991330XHREdH8+677/Lpp5+SlpbGM888w3PPPef0WHQ6HX/729/4xz/+QUJCQq9Gu5US5hfG1UOvBmyjQp5gbd5aLLKFtMg0BoYMVDSWqzISGREbTFJEAGX1zYrG4mwRAQauvySJ97adVnRkSJI9YKzy8OHDpKWlsXv3biZMmADA6tWrWbBgAWfPnu2wWLq4uJjy8vYrhkaPHs1LL73E4sWLHf04ulNbW0toaCg1NTUiKfIwjaZGZnwygyZzEx8u/JDR0aOVDqlTjaZG5nw6hzpTHa/MfoXLBlx27ptWi211mJs6S8uyzOdZBfxnRz7/unMSRp2W5uZmTp06RUpKCn5+7u+yLfScGv9fna07y6LPFmGVrSxfvJwREe5bit4XP/vuZ+wq3sWyCcu4I/0OpcOhpLaZ6CAjGo13jsxarbJLfraevn97RI3QyJEjWbBgAXfddRc7d+5k69at3Hfffdx4442OJKigoIDU1FR27rQNvcbFxZGent7uA2xD2D1NggTPFqAPYEbSDAC+PuX86TE7i1Xmo51nuOv93X0eefryxJfUmeoYFDKIaYnT2n/T3r5/9HW2zy7uGyRJEteMG8DHv5iMUeferTwE7zQgeADzBs0D4N1D7yobTDfKGsvYXbwbsNUaqkFsiJ9XJUHVja3tGqgq/bN5RCIE8MEHH5Camsrs2bNZuHAh06ZNa9cN1mQycfToURobXbv1geBZrhx8JQCrTq3CbHVNH5yKhhae/CqHNTklrNzf+7luq2zlgyO2IumbUm9qv7u1G1msMrXN52oQfLkuSHC+29NvB2x/i0X1RcoG04XVeauRkRkbPZaEoM5bsyihocXMy+uPc7q8QelQ+kyWZf7n0/1c+fctHCxQR42bxyRCERERfPjhh9TV1VFTU8M777zTrqt0cnIysix3Wf8jy7LoKu1jpiRMIcwYRkVzBTuLXFOoGRPsxz0zbMtrn/32SK+XuW4v3M6pmlME6gO5aohyNR8f7jzDrOe+55ts9b5JCZ5rVOQoMuMyMctm/nX4X0qHczGrBU5tZtUh203JgrYRLDX59WfZPLf6GM+vOaZ0KH32eVYBaw+XklfRgF6rjhREHVEIgovoNXrH8LYrp8funD6YxDB/CmuaeXPzyV49195A8Zqh1xBk6H7LGFcoq2vhz6uOUF7fQmmtdxVkCuphHxVacWwFNS3qGA0AbPv2vZhO8b+vIqshH0mWmbf6aUX28+vKzy8bDNhWdR4qVNG/Xw+V1jbzxMocAB6cPYwRcc7dtLivRCIkeD37jvRr89bSZO5sy4r+8dNrefSKVABe23iCkh4mE6drTrOlYAsSEjen3uyS2Hri6W8OU9dsZlRCCD+dkqxYHIJ3uzThUoaFD6PR3Minxz5VOhybnJW2TYxrC/ku0LZCckJzCzE1ym1u3JlRCaEsHmubrvvLd0cVjqZ3ZFnm158dpKbJxOjEUP7f5e5vUtkZkQgJXi8jOoPEoEQazY18n/+9y15n8Zh4xg8Mo8lk4c+renaR+vDIhwBcPuBykkKUad65/UQF/91XgCTBH68ZjdaLijIFdZEkiTtG2VZhfXD4A1otCnfdtlpg1aPYNjKGb4NsidCChkbHY6x6zHacSjwydzg6jcTGo2XsOFmhdDg9ZpsSK0GvlfjLj8egU8m0GIhESPABkiSxMGUh0I/mim31A2Qvt33u4MIoSRK/WzwKgM/2nSW/suvC/brWOr7I/QKAm0cqMxrUarbyv18ctMUwaSAZSWGKxCH4jgUpC4gLjKO8qZyvTn6lbDB526DWtsDhe38/DhmNaGWZOQ32v133bG7cG8lRgdxwie2m6c/fHfWIbt0XTok5qwmts4hESPAJ9umxLQVbqG6u7t2T2+oHeO9KWLHU9vnF9A6HzDOSwvjl/BH8955LSYo4rxFhB4nUZ8c/o9HcyNCwoUyOn9yPn67v3tx8ktzSeqKCDPxqfqoiMQi+Ra/R85ORto2Q/3nwn1hlBXdWb9u0uESr5bfRtt3eb6qtI/LCfedcvLlxbz0wexh+eg178qpYd9j5W7k4m0WWGZ0YSnpiCL9Q0ZSYnedsBSwI/TAkbAipEakcqTzCd6e/44bUG3r2RHv9ABfcddW21Q900OH53plDLz7Hqkcdd54AlpAE/pNg2z/v5pE3K7ZUvaDaVjP164UjCQ3Qd3O095gxYwYZGRm93oJHcI7rhl/HP/b/g9O1p/k+/3tmDpypTCBBsViAx6MjqdZqGdnSysOV1R0epyaxIX7ccWkKZ6uaGBqjzAKL3ogP9edfSydR1WhSzUqx86kvIkFwEXtPoZez/n97dx7W1LH/D/ydBAIIhEXZBQQVFETRWilUL1pRaC1qf7YutaK32sWi1bq0eltrud6v4lK1Wq9tvRaoWqgWUasWV6KtICqgglhUZHNBFkUIIEsyvz8iqZE1EMj2eT0Pj+acOSczmSTnk5k5M9+ioKINa8g9N35AXtvGD5Rc2Af2dCDms87WP8KdmocQ8Ixk+VKF1W944dC8l/HGYIeue9I2dDOqE6FQCA6Hg7KyMlVnRWsY6xtjsvtkAEDENRUuu+Hsh//ZOOCikSGMJBKsKyoBXy5B5y5u3BGfBrpj67TB6NXDWNVZaVa9+O+WNQ6HA0tjfgupVYcCIaIzpvR9E54mTiirKcPH8XNQWVPe8gHPjB9oWsvjB3acuYG6I5+iqUBqj0B62+gkUSWMuKr9chjY07zrWqQU6GYk2m16/+nQ5+ojrSgNl4suqyQPqcVXsP1pS+gXpY/Qq/7ZSVc7f3HjjlD3CU8ZY5i7JxXL96ej4ol6LxZLgRDRDZmHYPjtUHyTmYQe9WLcqrqH5T/5QnLtQPPHtHVcQDPp3J5kwI7zsNHa8Tf09ZFsZAgeY5hWfL/LB2JW1dZj+f6ruPOoi2dhf+Y2ZTnlnXubcmVlJUJCQmBiYgI7Ozt8/fXXcvt37dqFoUOHwtTUFLa2tnj77bdlizzn5uZi1Chpt42FhQU4HA5mzZoFAIiPj8fw4cNhbm6O7t274/XXX0d2dnanlEEbWXWzQnDvYACqWYz1cc1jfPbHZxBDgte7e2M810w+QScvbqwsBQ+rsOiXy9h1Pk/VWZFz8PI9nMh8gF9TCmRd8OqKAiGi/Z65ANuIxdhcVAx9xpDA52LbiY+bvwC3dVxAM+lG2DXd5fPz09agV6qqYScWd/lAzC2nbiH6QgHejbzYdXecKKGbsb2WLl2KM2fO4ODBgzh+/DiEQiFSU1Nl++vq6rBq1SpcuXIFBw4cQG5urizYcXR0RGxsLAAgKysL9+/fxzfffANAGmAtWrQIly5dwqlTp8DlcvHGG29A8vxAW9KsmR4zAQAJBQnIfZzbZd2mjDGsTFyJwspCOJk64YvA74CFGcDMw8CkndJ/F6arfRAEAMIbxdifdhffnLyJyprOWUZIUUUVT7Dy0DUAwMevqN9dYs+jwdJEuzVxAR5UU4uVJQ/xhVV3/GBhhr6nlyOo37jGzd/OftJfheX30fQFnCPd38z4Aa6pbaNtZVwuDj+dq+SdxxXSjV04EPPGgwr87+nM158F9eu65nVFuhldRijtaUUiEXbu3Indu3dj9OjRAICoqCj07NlTlubdd9+V/d/V1RVbtmzBiy++CJFIBBMTE1haWgIArK2tYW5uLks7adIkuef68ccfYWVlhczMTNkiz6RlruauGOk4EsICIaLO/Rsr/0qSf58I7IGgtUoPSPZm7cWp/FPQ4+phnf86GOs/HWejxPdeV5n6oiP+98dt5JVWIey3a/i/N7xUOiCZMYbPn06cOMBBgA9Hqt9dYs+jFiGi3Zq5AE8QVWLmY+kYoRXGwPVrvzQ+lsuTfgkDQKMOrjaMH3gaSD0bQv1qaoIaLhf9a2oxuKa2SwdiMsbwxYEM1EsYxnjYYHT/LrwTpoPdjO2VnZ2N2tpa+Pj4yLZZWlrC3d1d9jglJQXBwcFwcnKCqakp/P39AQD5+fktnvvmzZuYNm0aXF1dIRAI0KtXrzYdR+Q1TLB46MEFlIgK5Xd2Qrdp1sMsrLu4DgDwyZBP4NndU2nnVgV9HhfLX+0PANh76Q5Cdl5AqahGZfk5dEXaJabP42D9m4PU8i6x56l/DgnpiBYurJ88LMPLVdV4wuXi4/RtKKkuaZzIY7x0nIDATn57W8YPyAIpDiQMqAMQI5De6jq9vEIaSnXhQMz9qXdxIechjPR5+Gp8F3/5d7CbsbNUVlYiMDAQAoEAe/bswcWLFxEXFwcAqK1tedbj4OBgPHz4EDt27EBycjKSk5PbdByRN7jHQAyqY6jlcvCz2fNrTym327Sqrgqfnv0UtZJajHAYgRkeMzp8TnUQNMAW3894AcZ8HpJul2L8t+dUshbZs11i81/pi/526t0l1oACIaLdWriw8gCsKy5Br9o6FNaV45OET5qe8t9jfPvHD3iMB2fyTxAZWON0NyM80NODpViMV7nmXToQs6yqFquPXgcALAjoCwdzoy55XpmGbsZGLWsNOuc25d69e0NfX18WpADAo0ePcOOGdPXuv/76C6WlpQgPD8eIESPQr18/2UDpBny+9K4+sfjvC3FpaSmysrLwxRdfYPTo0ejfvz8ePXqk1LzrCk5+Ev75UPoj5BdTE1Q16q5V3uzO6y6uw+3Ht2FlZIX/DP+P2t95pYhAT1vEhb6MXt274W5ZNf79W2aXzzqdU1wJDoABDgLM1YAusQYUCBHt1soFWCABtlRyYapvgsvFl/Gf8/9p+suDy5OOH/B6U/qvIq04HuOhtygD3zm+AACY7BIM/sJ0lDgFtqNA7fPD2dsoraxFX2sTvPuyS5c9r0xHuxnbycTEBLNnz8bSpUtx+vRpZGRkYNasWeBypV99Tk5O4PP52Lp1K27fvo1Dhw5h1apVcudwdnYGh8PB4cOHUVxcDJFIBAsLC3Tv3h0//PADbt26hdOnT2PRokVKzbvOED3AyKpq9KqtQzmPh/2mzUwQ2MFu0/iceMTejAUHHKwZsQaWhpYdOp86crMxxcHQ4fh/gx2weap3lwd6Pq7dcWKRP7ZOG6IRXWINNCenhLRHGy7ALmPDsd5/A7gcLuJuxckWQlWWOnEddt+Iwq3afOhx9TDZZwnS74nwcvhpbDyehdr6zr/LaP4rfTFvVB/8Z+IA8PVU9LHvSDdjB6xfvx4jRoxAcHAwAgICMHz4cLzwgjQotbKyQmRkJPbt2wcPDw+Eh4djw4YNcsc7ODggLCwMy5Ytg42NDebNmwcul4uYmBikpKRgwIAB+OSTT7B+/fpOyb/WM7EBD0BIuXTM3k9mpmhy1pkOdJveqbiDsKQwAMAcrznwsfNp5QjNZdZNHxuneMPO7O9W37i0O3hc1TVz+fQwMYCLGk/y2BQO04QV21SovLwcZmZmePz4MQQCzejvJE1oYpkLCBykrRBPL8BR16Kw4dIG8Dg8bA/YDl973w4/beK9RKxJXoPc8lwAwNv93sZyn+VYG/8Xtgulc86425hi/VsDMbCneYefr0F+aRW2nL6J+a/0gXP3jn8pPXnyBDk5OXBxcYGhoWHHTiYRS7s5RA+kFzdnP7WcsE5TKbWuuoJEDGwegJqK+xjraI+HPB7Ci0owTrbw6dO7Mxemt+t9Uiepw6zfZ+FqyVV4W3kjIigCelzduWH69/T7mLsnFb26d8MPIUPhZvP8OKyOYYzhX3Hp+EdfK7zqZdf6AV2orddv3Xk3EN3mMR7oN67FC3CIRwhuPLqBQ9mHsOTMEkSPi4aTwKldT1dYWYh1F9fhRN4JAEB3w+5YPHSxbDmNz4L6YYC9Gb48mIGsBxV447+J+OAfrk8XU2x/UHD/cTW2nr6FvRcLUC9hkDCGjZO9232+TtHQzUgIIGu1NdgbgumPK7DV0hz/190S2Xx9TCsXwUos6VC36bdp3+JqyVWY8k2x9h9rdSoIAgCn7t3gYG6E3NIqvLHtHDZO8UagZ+OpPRR1r6wacWl3EZt6B7eLK7Hv0h0kOJjJLzatIahFqBXUIqRbasQ1eDf+XVwtuQpXM1fseW0PTPhtX9SwTlyHnzJ/wvdXv0d1fTW4HC7e7vc2PvL+CKb8xr/ESkU1+Oq3TPx2RdpS1cfaBOvfHIjBThYK5bu4ogb/Fd7CnuR8WVfbP9yssHiMGwY5mit0rqZoXCuDDtPYuso8hPJjn+GfxhLcMJAOUNdnDK9ZvYAZvv+Cu6V7KydoLPFuIj44+QEAYOPIjRjjPEapWdYUpaIahP6civO3HwIAFozuiwWj+4LLVWwMUWVNPeIzCrE/7Q4Ss0vRED0Y6nOx4nUPTPdxVnbWO6St128KhFpBgZDuKa4qxtTDU1FUXQT/nv74ZtQ34LXh12jSvSSsTl4t6wYbYj0E//Jp2xd4fMZ9fHEgAyWiWvx7gidCfHu1Ob/fnr6JbQnZqK6T3tU0zMUSS8a6Y5iL8gaDauzFVQdpdF1JxBDn/omEO2cRVXoJl8tvy3b52vlipudM+Nn7tWkQcEl1Cd489CZKn5RisttkrPBd0Zk5V3t1YglWH72OiHO5AIAxHjbYOHkQTA3123yOXefzsOJAhuyxj4slJr3QE68OsFXoPF2FAiEloUBIN2WUZGBW/CzUiGswx2sOFgxZ0GzawspCrL+4HsfzjgMALA0tsWToErzu+rpCd208qqzFnuQ8fDSyj+yX2pM6catdZZtP3sDmkzcxyNEcS8a6YXifHkq/W0SjL646Rpvq6krxFezK3IUTeScgYdKWzj7mfRDiEYLXXF+DAc+gyeMkTIK5J+ci8V4i+pj3QfS4aBjqafZroSz7LhXg8wMZqK2XYPv0Ic2O68kuFmF/6h242wowfpA9AOk0HJO/T8LrA+3xxmAHte8Go0BISSgQ0l1Hbh/Bsj+WAQDWjliL11xfk9tfJ67Druu78N2V72TdYNP6TcNH3h9BwO/4e6Wyph7jtvyBMR42WDzWHYb6PFTV1iMqMQ+DHM3g17sHAKDiSR2Sbz/E6P7WnXa7rDZdXLWdNtbVXdFd7M7cjf0396OqXjqI2tLQEtP6TcMU9ymwMJTvSo7IiMDGlI0w5Bkielw0+lj0UUW21dblgjL8ebMY817pK7e9rKoWv129j9iUO7hcUAYAGOxkjriPXlZBLjuOAiEloUBIt21O2YydGTthwDNAVFAUPHtIZ2ROupeENRfWIOdxDgBgsPVgfO7zebvGMTTnQNpdLPzlMgDApYcxJnjbY/f5PJSIajHI0RwHPmpbF4EyaOPFVVtpc11V1FYg9kYsdl/fjQdV0nmFDHgGGN97PN7xeAeuZq64WnwVM3+fiXpWjy99v8Rbbm+pONfq70H5E7zzv2TklVahVixteeNxOfB3s8KkIT3xmpetRk4+SYGQklAgpNvEEjEWJCzAmTtnYN3NGltGbUHEtQgcyz0GQPqrdPHQxQh2De6UL4qEv4qwfH86CsufyLY5WXbDwoC+mOjtoPBgx/bS5ourttGFuqqT1OFE7glEZUYhszRTtt2/pz9uld3CXdFdjHUeiw3+GzTyAt6V6sUSTNtxHhdzpTOj97cTYNIQB4z3toe1qWa/fygQUhIKhIioVoTpR6fj9uO/B25yOVxMdZ+K0MGhSukGa8nj6jqE//4XUvMeYaZfL7w1tGeXz9qqCxdXbaFLdcUYQ8qDFERlRuFMwRmwp2uT2RvbY9/4fZ3+2dQWB9Lu4mZRBcZ52cPDXnteMwqElIQCIQIA+eX5mHZkGspry+Ft5Y3PX/oc/Sz7qTpbXUaXLq6aTlfrKvdxLnZf342MkgyseGmFrBub6C6aUJEQJXISOCFmXAwKKgrwkv1L4HJodRpNMXLkSHh7e2Pz5s2qzgoOHDiAJUuWICcnB/Pnz4e3tzcWLlyIsrIyVWdN4/Uy64UvXvpC1dkgGoi+zQlpI0eBI/wc/CgIInKEQiE4HE6bgpkPPvgAb775JgoKCrBq1SpMmTIFN27ckO3/6quv4O3t3XmZJYQ0Qi1ChBDSBUQiEYqKihAYGAh7e3vZdiMjoxaOIoR0NvppSwjRevX19Zg3bx7MzMzQo0cPrFixAs8Oj6ypqcGSJUvg4OAAY2Nj+Pj4QCgUyvbn5eUhODgYFhYWMDY2hqenJ44ePYrc3FyMGjUKAGBhYQEOh4NZs2Y1en6hUAhTU+kSK6+88go4HA6EQiEiIyNhbm4OAIiMjERYWBiuXLkCDocDDoeDyMjIznpJCCFPUYsQIaRdGGOorq9WyXMb6RkpdFt0VFQUZs+ejQsXLuDSpUt4//334eTkhPfeew8AMG/ePGRmZiImJgb29vaIi4tDUFAQ0tPT0bdvX4SGhqK2thZnz56FsbExMjMzYWJiAkdHR8TGxmLSpEnIysqCQCBosoXHz88PWVlZcHd3R2xsLPz8/GBpaYnc3FxZmilTpiAjIwPx8fE4efIkAMDMzKxjLxQhpFUUCBFC2qW6vho+P/uo5LmT305GN/22T+/v6OiITZs2gcPhwN3dHenp6di0aRPee+895OfnIyIiAvn5+bIuqyVLliA+Ph4RERFYvXo18vPzMWnSJHh5eQEAXF1dZee2tJSu6WZtbS1r3Xken8+HtbW1LL2tbePVv42MjGBiYgI9Pb0m95NWSMRAXiIgegCY2ADOfu1esZ7oFgqECCFa76WXXpJrQfL19cXXX38NsViM9PR0iMViuLm5yR1TU1OD7t27AwA+/vhjzJ07F8ePH0dAQAAmTZqEgQMHdmkZSAsyDwHxnwHl9/7eJrAHgtYCHuNVly+iESgQIoS0i5GeEZLfTlbZcyuLSCQCj8dDSkoKeDz5FgQTExMAwJw5cxAYGIgjR47g+PHjWLNmDb7++mvMnz9fafkg7ZR5CNgbAuC5KfHK70u3T/6JgiHSIgqECCHtwuFwFOqeUqXkZPmA7fz58+jbty94PB4GDx4MsViMoqIijBgxotlzODo64sMPP8SHH36I5cuXY8eOHZg/fz74fD4AQCwWdziffD5fKefRGRKxtCXo+SAIeLqNA8QvA/qNo24y0iy6a4wQovXy8/OxaNEiZGVlITo6Glu3bsWCBQsAAG5ubpg+fTpCQkKwf/9+5OTk4MKFC1izZg2OHDkCAFi4cCGOHTuGnJwcpKamIiEhAf379wcAODs7g8Ph4PDhwyguLoZIJGp3Pnv16oWcnBxcvnwZJSUlqKmp6XjhtVleonx3WCMMKL8rTUdIMygQIoRovZCQEFRXV2PYsGEIDQ3FggUL8P7778v2R0REICQkBIsXL4a7uzsmTpyIixcvwsnJCYC0tSc0NBT9+/dHUFAQ3Nzc8N///hcA4ODggLCwMCxbtgw2NjaYN29eu/M5adIkBAUFYdSoUbCyskJ0dHTHCq7tRA+Um47oJFprrBW01hghurt+lSbSqbrK+QOIer31dDMPAy7Nd3sS7dTW6ze1CBFCCNFMzn7Su8PQ3JxSHEDgIE1HSDMoECKEEKKZuDzpLfIAGgdDTx8HhdNAadIiCoQIIYRoLo/x0lvkBXby2wX2dOs8aRO6fZ4QQohm8xgvvUWeZpYm7UCBECGEEM3H5dGAaNIu1DVGCGkzuslU/VEdEaIYCoQIIa3S19cHAFRVVak4J6Q1tbW1ANBouRBCSNOoa4wQ0ioejwdzc3MUFRUBALp16ya3iClRDxKJBMXFxejWrRv09OjrnZC2oE8KIaRNbG1tAUAWDBH1xOVy4eTkRIEqIW1EgRAhpE04HA7s7OxgbW2Nuro6VWeHNIPP54PLpVEPhLQVBUKEEIXweDwaf0II0Rr0s4EQQgghOosCIUIIIYToLAqECCGEEKKzaIxQKxomJysvL1dxTgghhBDSVg3X7dYmGaVAqBUVFRUAAEdHRxXnhBBCCCGKqqiogJmZWbP7OYzmY2+RRCLBvXv3YGpqqtR5OcrLy+Ho6IiCggIIBAKlnVedaHsZqXyaT9vLqO3lA7S/jFS+9mOMoaKiAvb29i1OKUEtQq3gcrno2bNnp51fIBBo5Zv7WdpeRiqf5tP2Mmp7+QDtLyOVr31aaglqQIOlCSGEEKKzKBAihBBCiM6iQEhFDAwMsHLlShgYGKg6K51G28tI5dN82l5GbS8foP1lpPJ1PhosTQghhBCdRS1ChBBCCNFZFAgRQgghRGdRIEQIIYQQnUWBECGEEEJ0FgVCSrRt2zb06tULhoaG8PHxwYULF1pMv2/fPvTr1w+Ghobw8vLC0aNH5fYzxvDll1/Czs4ORkZGCAgIwM2bNzuzCC1SpHw7duzAiBEjYGFhAQsLCwQEBDRKP2vWLHA4HLm/oKCgzi5GixQpY2RkZKP8GxoayqXR5DocOXJko/JxOByMGzdOlkad6vDs2bMIDg6Gvb09OBwODhw40OoxQqEQQ4YMgYGBAfr06YPIyMhGaRT9XHcWRcu3f/9+jBkzBlZWVhAIBPD19cWxY8fk0nz11VeN6q9fv36dWIqWKVpGoVDY5Hu0sLBQLp2m1mFTny8OhwNPT09ZGnWqwzVr1uDFF1+EqakprK2tMXHiRGRlZbV6nKqvhRQIKckvv/yCRYsWYeXKlUhNTcWgQYMQGBiIoqKiJtMnJiZi2rRpmD17NtLS0jBx4kRMnDgRGRkZsjTr1q3Dli1b8N133yE5ORnGxsYIDAzEkydPuqpYMoqWTygUYtq0aUhISEBSUhIcHR0xduxY3L17Vy5dUFAQ7t+/L/uLjo7uiuI0SdEyAtLZUJ/Nf15entx+Ta7D/fv3y5UtIyMDPB4Pb731llw6danDyspKDBo0CNu2bWtT+pycHIwbNw6jRo3C5cuXsXDhQsyZM0cuWGjPe6KzKFq+s2fPYsyYMTh69ChSUlIwatQoBAcHIy0tTS6dp6enXP39+eefnZH9NlG0jA2ysrLkymBtbS3bp8l1+M0338iVq6CgAJaWlo0+g+pSh2fOnEFoaCjOnz+PEydOoK6uDmPHjkVlZWWzx6jFtZARpRg2bBgLDQ2VPRaLxcze3p6tWbOmyfSTJ09m48aNk9vm4+PDPvjgA8YYYxKJhNna2rL169fL9peVlTEDAwMWHR3dCSVomaLle159fT0zNTVlUVFRsm0zZ85kEyZMUHZW203RMkZERDAzM7Nmz6dtdbhp0yZmamrKRCKRbJu61WEDACwuLq7FNJ9++inz9PSU2zZlyhQWGBgoe9zR16yztKV8TfHw8GBhYWGyxytXrmSDBg1SXsaUqC1lTEhIYADYo0ePmk2jTXUYFxfHOBwOy83NlW1T5zosKipiANiZM2eaTaMO10JqEVKC2tpapKSkICAgQLaNy+UiICAASUlJTR6TlJQklx4AAgMDZelzcnJQWFgol8bMzAw+Pj7NnrOztKd8z6uqqkJdXR0sLS3ltguFQlhbW8Pd3R1z585FaWmpUvPeVu0to0gkgrOzMxwdHTFhwgRcu3ZNtk/b6nDnzp2YOnUqjI2N5barSx0qqrXPoDJeM3UikUhQUVHR6DN48+ZN2Nvbw9XVFdOnT0d+fr6Kcth+3t7esLOzw5gxY3Du3DnZdm2rw507dyIgIADOzs5y29W1Dh8/fgwAjd5zz1KHayEFQkpQUlICsVgMGxsbue02NjaN+qobFBYWtpi+4V9FztlZ2lO+53322Wewt7eXezMHBQXhp59+wqlTp7B27VqcOXMGr776KsRisVLz3xbtKaO7uzt+/PFHHDx4ELt374ZEIoGfnx/u3LkDQLvq8MKFC8jIyMCcOXPktqtTHSqquc9geXk5qqurlfK+VycbNmyASCTC5MmTZdt8fHwQGRmJ+Ph4bN++HTk5ORgxYgQqKipUmNO2s7Ozw3fffYfY2FjExsbC0dERI0eORGpqKgDlfHepi3v37uH3339v9BlU1zqUSCRYuHAhXn75ZQwYMKDZdOpwLaTV50mnCw8PR0xMDIRCodxg4qlTp8r+7+XlhYEDB6J3794QCoUYPXq0KrKqEF9fX/j6+soe+/n5oX///vj++++xatUqFeZM+Xbu3AkvLy8MGzZMbrum16Gu+PnnnxEWFoaDBw/KjZ959dVXZf8fOHAgfHx84OzsjL1792L27NmqyKpC3N3d4e7uLnvs5+eH7OxsbNq0Cbt27VJhzpQvKioK5ubmmDhxotx2da3D0NBQZGRkqHTMWVtRi5AS9OjRAzweDw8ePJDb/uDBA9ja2jZ5jK2tbYvpG/5V5JydpT3la7BhwwaEh4fj+PHjGDhwYItpXV1d0aNHD9y6davDeVZUR8rYQF9fH4MHD5blX1vqsLKyEjExMW36UlVlHSqquc+gQCCAkZGRUt4T6iAmJgZz5szB3r17G3VBPM/c3Bxubm4aUX/NGTZsmCz/2lKHjDH8+OOPmDFjBvh8fotp1aEO582bh8OHDyMhIQE9e/ZsMa06XAspEFICPp+PF154AadOnZJtk0gkOHXqlFyLwbN8fX3l0gPAiRMnZOldXFxga2srl6a8vBzJycnNnrOztKd8gHSk/6pVqxAfH4+hQ4e2+jx37txBaWkp7OzslJJvRbS3jM8Si8VIT0+X5V8b6hCQ3tpaU1ODd955p9XnUWUdKqq1z6Ay3hOqFh0djX/+85+Ijo6Wm/agOSKRCNnZ2RpRf825fPmyLP/aUIeA9G6sW7dutenHiCrrkDGGefPmIS4uDqdPn4aLi0urx6jFtVApQ64Ji4mJYQYGBiwyMpJlZmay999/n5mbm7PCwkLGGGMzZsxgy5Ytk6U/d+4c09PTYxs2bGDXr19nK1euZPr6+iw9PV2WJjw8nJmbm7ODBw+yq1evsgkTJjAXFxdWXV2t9uULDw9nfD6f/frrr+z+/fuyv4qKCsYYYxUVFWzJkiUsKSmJ5eTksJMnT7IhQ4awvn37sidPnnR5+dpTxrCwMHbs2DGWnZ3NUlJS2NSpU5mhoSG7du2aLI0m12GD4cOHsylTpjTarm51WFFRwdLS0lhaWhoDwDZu3MjS0tJYXl4eY4yxZcuWsRkzZsjS3759m3Xr1o0tXbqUXb9+nW3bto3xeDwWHx8vS9Paa6bO5duzZw/T09Nj27Ztk/sMlpWVydIsXryYCYVClpOTw86dO8cCAgJYjx49WFFRUZeXjzHFy7hp0yZ24MABdvPmTZaens4WLFjAuFwuO3nypCyNJtdhg3feeYf5+Pg0eU51qsO5c+cyMzMzJhQK5d5zVVVVsjTqeC2kQEiJtm7dypycnBifz2fDhg1j58+fl+3z9/dnM2fOlEu/d+9e5ubmxvh8PvP09GRHjhyR2y+RSNiKFSuYjY0NMzAwYKNHj2ZZWVldUZQmKVI+Z2dnBqDR38qVKxljjFVVVbGxY8cyKysrpq+vz5ydndl7772nki+nZylSxoULF8rS2tjYsNdee42lpqbKnU+T65Axxv766y8GgB0/frzRudStDhtupX7+r6FMM2fOZP7+/o2O8fb2Znw+n7m6urKIiIhG523pNetKipbP39+/xfSMSacLsLOzY3w+nzk4OLApU6awW7dudW3BnqFoGdeuXct69+7NDA0NmaWlJRs5ciQ7ffp0o/Nqah0yJr1V3MjIiP3www9NnlOd6rCpsgGQ+1yp47WQ8zTzhBBCCCE6h8YIEUIIIURnUSBECCGEEJ1FgRAhhBBCdBYFQoQQQgjRWRQIEUIIIURnUSBECCGEEJ1FgRAhhBBCdBYFQoQQQgjRWRQIEUIIIURnUSBECCGEEJ1FgRAhRKcUFxfD1tYWq1evlm1LTEwEn89vtAo2IUT70VpjhBCdc/ToUUycOBGJiYlwd3eHt7c3JkyYgI0bN6o6a4SQLkaBECFEJ4WGhuLkyZMYOnQo0tPTcfHiRRgYGKg6W4SQLkaBECFEJ1VXV2PAgAEoKChASkoKvLy8VJ0lQogK0BghQohOys7Oxr179yCRSJCbm6vq7BBCVIRahAghOqe2thbDhg2Dt7c33N3dsXnzZqSnp8Pa2lrVWSOEdDEKhAghOmfp0qX49ddfceXKFZiYmMDf3x9mZmY4fPiwqrNGCOli1DVGCNEpQqEQmzdvxq5duyAQCMDlcrFr1y788ccf2L59u6qzRwjpYtQiRAghhBCdRS1ChBBCCNFZFAgRQgghRGdRIEQIIYQQnUWBECGEEEJ0FgVChBBCCNFZFAgRQgghRGdRIEQIIYQQnUWBECGEEEJ0FgVChBBCCNFZFAgRQgghRGdRIEQIIYQQnUWBECGEEEJ01v8H8JaQohTt/jIAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# create a fitting model based on a cosine function\n", "fitting_model = lmfit.Model(cos_func)\n", "\n", "# specify initial guesses for each parameter\n", "fitting_model.set_param_hint(\"amplitude\", value=0.5, min=0.1, max=2, vary=True)\n", "fitting_model.set_param_hint(\"frequency\", value=0.8, vary=True)\n", "fitting_model.set_param_hint(\"phase\", value=0)\n", "fitting_model.set_param_hint(\"offset\", value=0)\n", "params = fitting_model.make_params()\n", "\n", "# here we run the fit\n", "fit_result = fitting_model.fit(dataset.y0.values, x=dataset.x0.values, params=params)\n", "\n", "# It is possible to get a quick visualization of our fit using a build-in method of lmfit\n", "_ = fit_result.plot_fit(show_init=True)" ] }, { "cell_type": "markdown", "id": "488679bd", "metadata": {}, "source": [ "The summary of the fit result can be nicely printed in a Jupyter-like notebook:" ] }, { "cell_type": "code", "execution_count": 8, "id": "e6f191c1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "

Fit Result

Model: Model(cos_func)

Fit Statistics
fitting methodleastsq
# function evals41
# data points30
# variables4
chi-square 0.05214626
reduced chi-square 0.00200563
Akaike info crit.-182.647006
Bayesian info crit.-177.042217
R-squared 0.98681996
Parameters
namevaluestandard errorrelative errorinitial valueminmaxvary
frequency 0.99512133 0.00713261(0.72%)0.8 -inf infTrue
amplitude 0.50339062 0.01150053(2.28%)0.5 0.10000000 2.00000000True
offset-0.00273339 0.00887287(324.61%)0.0 -inf infTrue
phase 0.04872971 0.05041312(103.45%)0.0 -inf infTrue
Correlations (unreported values are < 0.100)
Parameter1Parameter 2Correlation
frequencyphase-0.8867
frequencyoffset-0.3866
offsetphase+0.3431
frequencyamplitude-0.1257
amplitudephase+0.1120
" ], "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fit_result" ] }, { "cell_type": "markdown", "id": "3a6641e6", "metadata": {}, "source": [ "### Analyzing the fit result and saving key quantities" ] }, { "cell_type": "code", "execution_count": 9, "id": "4c8a7ea6", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'amplitude': 0.5033906186611168, 'frequency': 0.9951213308215564}" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "quantities_of_interest = {\n", " \"amplitude\": fit_result.params[\"amplitude\"].value,\n", " \"frequency\": fit_result.params[\"frequency\"].value,\n", "}\n", "quantities_of_interest" ] }, { "cell_type": "markdown", "id": "54821380", "metadata": {}, "source": [ "Now that we have the relevant quantities, we want to store them in the same\n", "`experiment directory` where the raw dataset is stored.\n", "\n", "First, we determine the experiment directory on the file system." ] }, { "cell_type": "code", "execution_count": 10, "id": "2084197a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "PosixPath('/root/quantify-data/20250904/20250904-040956-121-5874f8-Cosine experiment')" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# the experiment folder is retrieved with a convenience function\n", "exp_folder = Path(locate_experiment_container(dataset.tuid))\n", "exp_folder" ] }, { "cell_type": "markdown", "id": "033c7543", "metadata": {}, "source": [ "Then, we save the quantities of interest to disk in the human-readable JSON format." ] }, { "cell_type": "code", "execution_count": 11, "id": "57d7ca8f", "metadata": {}, "outputs": [], "source": [ "with open(exp_folder / \"quantities_of_interest.json\", \"w\", encoding=\"utf-8\") as file:\n", " json.dump(quantities_of_interest, file)" ] }, { "cell_type": "markdown", "id": "9054cdd5", "metadata": {}, "source": [ "### Plotting and saving figures\n", "\n", "We would like to save a plot of our data and the fit in our lab logbook but the figure above is not fully satisfactory: there are no units and no reference to the original dataset.\n", "\n", "Below we create our own plot for full control over the appearance and we store it on disk in the same `experiment directory`.\n", "For plotting, we use the ubiquitous matplotlib and some visualization utilities." ] }, { "cell_type": "code", "execution_count": 12, "id": "81af206d", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHgCAYAAAChG7dTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9iElEQVR4nOzdd3iUVfbA8e87k957g3RKCAihV2mCYAGx4trAXld31dXFhqD+LOtadnV1ZXXtq64ddVEpKkgvAUJPIKT33pOZ9/fHOzNkSAIJJnknyfk8Tx7InXdmDinDmXvPPVdRVVVFCCGEEKIXM+gdgBBCCCFEV5OERwghhBC9niQ8QgghhOj1JOERQgghRK8nCY8QQgghej1JeIQQQgjR60nCI4QQQoheTxIeIYQQQvR6kvAIIYQQoteThEcIYaMoCo8//rjeYfQ4MTExLF68WO8whBCnIAmPEA4qLS2NW2+9lbi4ONzc3PDx8WHy5Mm8/PLL1NbW6h2e6GH279/P448/Tnp6ut6hCKELJ70DEEK09O2333L55Zfj6urKddddx7Bhw2hoaGDDhg386U9/Yt++fbzxxhud/ry1tbU4OcnLQkcdOnQIg8Gx3z/u37+fZcuWMX36dGJiYvQOR4huJ69sQjiYY8eOceWVVxIdHc3atWsJDw+33XbnnXeSmprKt99+2yXP7ebm1iWP2xupqkpdXR3u7u64urrqHY4Q4jQc+y2JEH3Qc889R1VVFW+++aZdsmM1YMAA7rnnHtvnTU1NPPHEE8THx+Pq6kpMTAwPPfQQ9fX1dvfbvn07c+bMISgoCHd3d2JjY7nhhhvsrjm5hufxxx9HURRSU1NZvHgxfn5++Pr6cv3111NTU9Mitvfff5/Ro0fj7u5OQEAAV155JZmZme36d2dnZ3PDDTcQGhqKq6srQ4cO5a233rLdXltbS0JCAgkJCXZLeiUlJYSHhzNp0iRMJhMAixcvxsvLi6NHjzJnzhw8PT2JiIhg+fLlqKpq97xms5mXXnqJoUOH4ubmRmhoKLfeeiulpaV218XExHDhhRfy/fffM2bMGNzd3fnnP/9pu615Dc/bb7+Noihs2LCBu+++m+DgYPz8/Lj11ltpaGigrKyM6667Dn9/f/z9/XnggQd+c1wbNmxg3LhxuLm5ERcXx7vvvmsXz+WXXw7AjBkzUBQFRVH46aef2vW9EaJXUIUQDqVfv35qXFxcu69ftGiRCqiXXXaZ+uqrr6rXXXedCqgLFiywXZOfn6/6+/urgwYNUv/yl7+oK1asUB9++GF1yJAhdo8FqEuXLrV9vnTpUhVQR44cqV5yySXqP/7xD/Wmm25SAfWBBx6wu++TTz6pKoqiLly4UP3HP/6hLlu2TA0KClJjYmLU0tLSU/4b8vLy1P79+6uRkZHq8uXL1ddee02dP3++Cqgvvvii7brNmzerRqNR/eMf/2gbu/LKK1V3d3f10KFDdl8TNzc3deDAgeq1116rvvLKK+qFF16oAuqjjz5q99w33XST6uTkpN58883q66+/rj744IOqp6enOnbsWLWhocF2XXR0tDpgwADV399f/fOf/6y+/vrr6rp162y3LVq0yHbtv//9bxVQk5KS1Llz56qvvvqqeu2119q+blOmTFGvuuoq9R//+IctrnfeeeeM4xo8eLAaGhqqPvTQQ+orr7yijho1SlUURU1JSVFVVVXT0tLUu+++WwXUhx56SH3vvffU9957T83Lyzvl90WI3kQSHiEcSHl5uQqoF110UbuuT05OVgH1pptushu///77VUBdu3atqqqq+sUXX6iAum3btlM+XlsJzw033GB33cUXX6wGBgbaPk9PT1eNRqP61FNP2V23d+9e1cnJqcX4yW688UY1PDxcLSoqshu/8sorVV9fX7WmpsY2tmTJEtVgMKi//PKL+t///lcF1JdeesnuftYk8Pe//71tzGw2qxdccIHq4uKiFhYWqqqqquvXr1cB9YMPPrC7/6pVq1qMR0dHq4C6atWqFvG3lfDMmTNHNZvNtvGJEyeqiqKot912m22sqalJ7d+/vzpt2jTb2JnE9csvv9jGCgoKVFdXV/W+++6zjVm/VtYkTYi+Rpa0hHAgFRUVAHh7e7fr+u+++w6Ae++91278vvvuA7DV+vj5+QHwzTff0NjY2OG4brvtNrvPzz77bIqLi23xfv7555jNZq644gqKiopsH2FhYQwcOJB169a1+diqqvLZZ58xb948VFW1u/+cOXMoLy9n586dtusff/xxhg4dyqJFi7jjjjuYNm0ad999d6uPfdddd9n+rigKd911Fw0NDaxevRqA//73v/j6+jJ79my75x09ejReXl4t4o6NjWXOnDnt/rrdeOONKIpi+3z8+PGoqsqNN95oGzMajYwZM4ajR4/axjoaV2JiImeffbbt8+DgYAYPHmz3mEL0dVK0LIQD8fHxAaCysrJd1x8/fhyDwcCAAQPsxsPCwvDz8+P48eMATJs2jUsvvZRly5bx4osvMn36dBYsWMBVV13VroLbqKgou8/9/f0BKC0txcfHhyNHjqCqKgMHDmz1/s7Ozm0+dmFhIWVlZbzxxhtt7jwrKCiw/d3FxYW33nqLsWPH4ubmxr///W+7pMLKYDAQFxdnNzZo0CAA29bsI0eOUF5eTkhIyGmfF7SEpyNO/rr5+voCEBkZ2WK8eW1OR+M6+XlA+x6dXO8jRF8mCY8QDsTHx4eIiAhSUlI6dL/W/sM/+fZPP/2UzZs3s3LlSr7//ntuuOEG/vrXv7J582a8vLxOeX+j0djquGoptDWbzSiKwv/+979Wrz3V45vNZgCuueYaFi1a1Oo1w4cPt/v8+++/B6Curo4jR450OBFp/twhISF88MEHrd4eHBxs97m7u3uHHr+tr1tr42qzouWOxnW6748QQhIeIRzOhRdeyBtvvMGmTZuYOHHiKa+Njo7GbDZz5MgRhgwZYhvPz8+nrKyM6Ohou+snTJjAhAkTeOqpp/jwww+5+uqr+eijj7jpppt+U8zx8fGoqkpsbKxtFqW9goOD8fb2xmQyMWvWrNNev2fPHpYvX871119PcnIyN910E3v37rXNnliZzWaOHj1qF8/hw4cBbH1o4uPjWb16NZMnT+5wMtOVuiKu0yXFQvR2UsMjhIN54IEH8PT05KabbiI/P7/F7Wlpabz88ssAnH/++QC89NJLdte88MILAFxwwQWAtvR08rv9pKQkgBbb18/EJZdcgtFoZNmyZS2eR1VViouL27yv0Wjk0ksv5bPPPmt1ZquwsND298bGRhYvXkxERAQvv/wyb7/9Nvn5+fzxj39s9bFfeeUVuzheeeUVnJ2dOeeccwC44oorMJlMPPHEEy3u29TURFlZ2Sn/3V2lK+Ly9PQE0O3fJITeZIZHCAcTHx/Phx9+yMKFCxkyZIhdp+WNGzfy3//+19bzZcSIESxatIg33niDsrIypk2bxtatW3nnnXdYsGABM2bMAOCdd97hH//4BxdffDHx8fFUVlayYsUKfHx8bEnTb435ySefZMmSJaSnp7NgwQK8vb05duwYX3zxBbfccgv3339/m/d/5plnWLduHePHj+fmm28mMTGRkpISdu7cyerVqykpKQHgySefJDk5mTVr1uDt7c3w4cN57LHHeOSRR7jsssvs/i1ubm6sWrWKRYsWMX78eP73v//x7bff8tBDD9mWhKZNm8att97K008/TXJyMueeey7Ozs4cOXKE//73v7z88stcdtllv/nr01FdEVdSUhJGo5Fnn32W8vJyXF1dmTlzZpt1QkL0OvpsDhNCnM7hw4fVm2++WY2JiVFdXFxUb29vdfLkyerf//53ta6uznZdY2OjumzZMjU2NlZ1dnZWIyMj1SVLlthds3PnTvV3v/udGhUVpbq6uqohISHqhRdeqG7fvt3uOWljW7p1G7eVddv1sWPH7MY/++wzdcqUKaqnp6fq6empJiQkqHfeeaddj5y25Ofnq3feeacaGRmpOjs7q2FhYeo555yjvvHGG6qqquqOHTtUJycnu63mqqpt6x47dqwaERFh6/ezaNEi1dPTU01LS1PPPfdc1cPDQw0NDVWXLl2qmkymFs/9xhtvqKNHj1bd3d1Vb29v9ayzzlIfeOABNScnx3ZNdHS0esEFF7Qae1vb0k9uA9DW19Mab2fGNW3aNLut7qqqqitWrFDj4uJUo9EoW9RFn6OoqlS1CSF6l8WLF/Ppp59SVVWldyhCCAchNTxCCCGE6PUk4RFCCCFErycJjxBCCCF6PanhEUIIIUSvJzM8QgghhOj1JOERQgghRK8nCY/osd5++20URbEdBHkqMTExtmZ9Qoi+Y9WqVSQlJeHm5oaiKNJpug+ThEfoYuPGjTz++OM94sXn4MGDPPDAAyQlJeHt7U14eDgXXHAB27dvb/X67OxsrrjiCvz8/PDx8eGiiy7i6NGjdtdkZmaybNkyxo0bh7+/P0FBQUyfPp3Vq1e3eDxrYtfaR15eXovrv/76a0aNGoWbmxtRUVEsXbqUpqamFtf9+OOPTJkyBQ8PD/z9/bnsssvaTB7b+5jN3XzzzSiKwoUXXnjK60725ptvMmTIENzc3Bg4cCB///vfT3uf2bNnoygKd9111296zI8++sj27wwODubGG2+kqKioxXVtfT+eeeaZVh/3448/ZuLEiXh6euLn58ekSZNYu3btaf9dAE899RTz588nNDQURVF4/PHHW73u888/Z+HChcTFxeHh4cHgwYO57777Wv0d+/jjj7nmmmsYOHAgiqIwffr0dsVi1ZGfybq6Op5++mkSExPx8PCgX79+XH755ezbt8/uuunTp7f5mM7Ozm3GkpaWZktmTv6dLC4u5oorrsDd3Z1XX32V9957z3bExurVq5kxYwZBQUH4+fkxbtw43nvvvQ59HUTPIkdLCF1s3LiRZcuWsXjxYvz8/M7oMa699lquvPJKXF1dOze4k/zrX//izTff5NJLL+WOO+6gvLycf/7zn0yYMIFVq1bZHXhZVVXFjBkzKC8v56GHHsLZ2ZkXX3yRadOmkZycTGBgIABfffUVzz77LAsWLGDRokU0NTXx7rvvMnv2bN566y2uv/76FnEsX768xangJ3/t/ve//7FgwQKmT5/O3//+d/bu3cuTTz5JQUEBr732mu26b775hosuuohRo0bxzDPPUFFRwcsvv8yUKVPYtWuX3Wnc7X3M5rZv387bb7+Nm5tbh77W//znP7ntttu49NJLuffee1m/fj133303NTU1PPjgg63e5/PPP2fTpk2/+TFfe+017rjjDs455xxeeOEFsrKyePnll9m+fTtbtmxp8W+ZPXs21113nd3YyJEjWzz/448/zvLly7nssstYvHgxjY2NpKSkkJ2d3a6vySOPPEJYWBgjR460nRLfmltuuYWIiAiuueYaoqKi2Lt3L6+88grfffcdO3futDuE9LXXXmPHjh2MHTv2lOecnU57fiavvvpqvv76a26++WZGjRpFTk4Or776KhMnTmTv3r22A24ffvjhFofYVldXc9ttt3Huuee2GcMf//hHnJycWj0Tbtu2bVRWVvLEE0/Y/Z5+/fXXLFiwgIkTJ/L444+jKAqffPIJ1113HUVFRW2ezSZ6OH0bPYu+6i9/+UurRxN0lZNb/3fE9u3b1crKSruxoqIiNTg4WJ08ebLd+LPPPqsC6tatW21jBw4cUI1Go7pkyRLbWEpKSovjBerq6tSEhAS1f//+duNtHVPQmsTERHXEiBFqY2Ojbezhhx9WFUVRDxw4YHfdgAED1Pr6ettYcnKyajAY1HvvvfeMHtPKbDarEydOVG+44YZTHsdwspqaGjUwMLDF9VdffbXq6emplpSUtLhPbW2tGhMToy5fvlwF1DvvvPOMHrO+vl718/NTp06dqprNZtt1K1euVAH1b3/7m939W3uu1mzatElVFEV94YUXTnttW6y/I4WFhS2O/miutWMi3nnnHRVQV6xYYTeekZFhO2Jj6NChLY6gOJ32/kxmZWWpgHr//ffbja9du1YFTvt1ee+991RA/eCDD1q9fdWqVaqLi4v6yCOPtBqP9d9/8vjs2bPViIiIFke0xMfHq8OHDz9lTKLnkiUt0e0ef/xx/vSnPwEQGxtrm7ZOT08nPT0dRVF4++23W9zv5On81mp4VFXlySefpH///nh4eDBjxowWU+dWaWlppKWlnTbe0aNH4+XlZTcWGBjI2WefzYEDB+zGP/30U8aOHcvYsWNtYwkJCZxzzjl88skntrGhQ4cSFBRkd19XV1fOP/98srKyqKysbDWWyspKTCZTq7ft37+f/fv3c8stt+DkdGLy9o477kBVVT799FMASkpK2L9/PxdffDEuLi6260aMGMGQIUP46KOPOvyYzb333nukpKTw1FNPtRpnW9atW0dxcTF33HGH3fidd95JdXU13377bYv7PPfcc5jN5jYPJm3vY6akpFBWVsbChQtRFMV23YUXXoiXl5fd16S52tpa6urq2vw3vfTSS4SFhXHPPfegquoZHXURExPTrutaW5a6+OKLAVr8nEZGRmIwdM7L/6l+Jq0/x6GhoXbj4eHhAHazTq358MMP8fT05KKLLmpxW2NjI/fccw/33HMP8fHxLW6fPn06ixYtAmDs2LEoimKr46uoqMDf399udtjJyYmgoKDTxiR6Lkl4RLe75JJL+N3vfgfAiy++yHvvvcd7771nt4xyph577DEeffRRRowYwV/+8hfi4uI499xzqa6ubnHtOeecwznnnHPGz5WXl2eXtJjNZvbs2cOYMWNaXDtu3DjS0tLaTGSaP6aHhwceHh4tbpsxYwY+Pj54eHgwf/58jhw5Ynf7rl27AFo8f0REBP3797fdbp36b+2F3cPDg5ycHFsdRnsf06qyspIHH3yQhx56iLCwsFP+W0/W1nONHj0ag8HQ4rkyMjJ45plnePbZZ9v8T6q9j3mqr4m7uzu7du3CbDbbjb/99tt4enri7u5OYmIiH374YYv7rlmzhrFjx/K3v/2N4OBgWw3YK6+80ubXoTNZv48nJ9ed5XQ/k/Hx8fTv35+//vWvrFy5kqysLLZu3cptt91GbGwsV155ZZuPXVhYyI8//siCBQtsdTfNvfTSS5SWlvLII4+0ev+HH36YW265BdCW3t577z1uvfVWQEuG9u3bx6OPPkpqaippaWk88cQTbN++nQceeOBMvxzCwUkNj+h2w4cPZ9SoUfznP/9hwYIFdu9gCwsLz/hxCwsLee6557jgggtYuXKl7Z36ww8/zP/93//91rDtrF+/nk2bNtm92JaUlFBfX29799qcdSwnJ4fBgwe3+pipqal8/vnnXH755RiNRtu4h4cHixcvtv3nsmPHDl544QUmTZrEzp07iYyMBCA3N9fuuU5+/pycHEB7t+3n58evv/5qd01xcTH79+8HtMLrsLCwdj+m1fLly3F3dz+jGojc3FyMRiMhISF24y4uLgQGBrZ4rvvuu4+RI0ee8j/N9j6mtXj3119/taufOnTokO1nsrS01FaDNWnSJK644gpiY2NtNSlXX3015eXl3H777bbri4qK+PXXX1m7di1Lly4lKiqKf//73/z+97/H2dnZ9h9wV3n22WcxGo1cdtllnfq47f2ZdHZ25rPPPuOqq65i/vz5tvuPHj2ajRs3nrJ+7+OPP6apqYmrr766xW15eXk88cQTPP/88/j4+LR6/9mzZ5Odnc0bb7zBeeedZ5f0Pvrooxw7doynnnqKJ5980vZv+uyzz1qdTRK9gyQ8otdYvXo1DQ0N/P73v7dblvjDH/7QasLTnu3srSkoKOCqq64iNjbW7t1gbW0tQKtF1NaCV+s1J6upqeHyyy/H3d29xU6fK664giuuuML2+YIFC5gzZw5Tp07lqaee4vXXX2/X81dUVABgMBi49dZbefbZZ1myZAk33HADFRUVPPDAAzQ0NNg9VnsfE+Dw4cO8/PLL/Oc//zmjQvLa2lq7JbaTn6v5127dunV89tlnbNmypVMeMygoiCuuuIJ33nmHIUOGcPHFF5OdnW1LTBobG+2e/+Rk8YYbbmD06NE89NBDLF68GHd3d9vyVXFxMR999BELFy4E4LLLLuOss87iySef7NKE58MPP+TNN9/kgQceYODAgZ362O39mQTw9/cnKSmJyy+/nAkTJpCamsrTTz/N5Zdfzo8//thmYfuHH35IcHAws2fPbnHbgw8+SFxcXIsi5/ZydXVl0KBBXHbZZVxyySWYTCbeeOMNrrnmGn788UcmTJhwRo8rHJssaYle4/jx4wAtXtyDg4Px9/fvlOeorq7mwgsvpLKykq+++squtse6HNLabhFrnUdrSyYmk4krr7yS/fv38+mnnxIREXHaOKZMmcL48ePttrGf7vmbP/fy5cu58cYbee655xg0aBBjxozBycmJG2+8EcD27+rIY95zzz1MmjSJSy+99JSxFxYWkpeXZ/uwJgbu7u62hOtUz9XU1MTdd9/Ntddea1cr1Zr2PiZou7nOP/987r//fuLj45k6dSpnnXUW8+bNA2hRx9Wci4sLd911F2VlZezYscP23KDNcjSfYTEYDCxcuJCsrCwyMjIA7L4eeXl5bSbG7bV+/XpuvPFG5syZ0+FaKquGhoYWcbVVqwOt/0yWl5dz9tlnM3HiRJ5++mkuuugi7rvvPj777DM2bNjAv//971Yf6+jRo2zatImFCxfa1Y4BbN68mffee48XX3zxjOuQ7rrrLlauXMlHH33ElVdeydVXX83q1asJDw/nnnvuOaPHFI5PEh7hUJrPzDR3qhfa7tLQ0MAll1zCnj17+Oqrrxg2bJjd7QEBAbi6utqWgZqzjrWWzNx888188803vP3228ycObPd8URGRlJSUmL73Lrs1NbzN39uFxcX/vWvf5GTk8Mvv/zCoUOH+P777ykvL8dgMDBgwIAOPebatWtZtWoV99xzj634PD09naamJmpra0lPT7fNBo0dO5bw8HDbx/PPP297LpPJREFBgd3zNDQ0UFxcbHuud999l0OHDnHrrbfaPRdoNUTp6enU1NR06DEBfH19+eqrrzh+/Dg///wz6enpvPfee+Tm5hIcHHza9gnWZRzr9yQgIAA3NzcCAwPtligB2xJbaWmpLc7mHx9//PEpn+tUdu/ezfz58xk2bBiffvppi4ShvTZu3NgirszMzFPe5+Sfyc8++4z8/Hy75SyAadOm4ePj02KmzMpaD9XactYDDzzA2WefTWxsrO17b+2VlJuba0si29LQ0MCbb77JBRdcYJcwOTs7c95557F9+/Y2k2TRs8mSltBFW4mNdSbm5GZp1tmbU7H28zhy5AhxcXG28cLCQtt/LGfKbDZz3XXXsWbNGj755BOmTZvW4hqDwcBZZ53VakPCLVu2EBcXh7e3t934n/70J/7973/z0ksv2Qq52+vo0aN2hd5JSUmA1gNn3LhxtvGcnByysrJsBZzNhYaG2nbQmEwmfvrpJ8aPH2+bzWjvY1r/k7nkkktaPEd2djaxsbG8+OKL/OEPf+CDDz6wm8Gwfq+aP9f5559vu3379u2YzWbb7RkZGTQ2NjJ58uQWz/Xuu+/y7rvv8sUXX7BgwYJ2P2ZzUVFRREVFAdhmbE43awXYmktavycGg4GkpCS2bdtGQ0OD3dKatXbIeu2PP/5o91hDhw497fO1Ji0tjblz5xISEsJ33313ylmp0xkxYkSLuE5XiH7yz2R+fj7Q8g2LqqqYTKY2m1d++OGHxMfHt7q0lJGRwfHjx1v0/wGYP38+vr6+p2xoWlxcTFNTU6tvohobGzGbzQ7xBkt0AV03xYs+67XXXlMBddeuXS1uCwoKUi+++GK7sfvuu69FDxJrLxBrn5KCggLV2dlZveCCC+x6qTz00EMq0KIPT2pqqpqamtqueO+44w4VUP/5z3+e8rpnnnmmRd+PgwcPqkajUX3wwQftrn3uuedUQH3ooYdO+ZgFBQUtxr799lsVUO+++2678YSEBHXEiBFqU1OTbeyRRx5RFUVR9+/f367YP/300w4/5vHjx9UvvviixUdwcLA6ZswY9Ysvvjjt17qmpkYNCAhQL7zwQrvxa665RvXw8FCLi4tVVdX6GrX2XIB6/vnnq1988YWak5PTocdsy2233aYaDAa7vkqtfT8qKirU+Ph4NSgoyK630YsvvqgC6htvvGEbq62tVePi4tTExMRTPvfJTteHJzc3V42Li1MjIiI61N/qTPrwtPdn8tNPP2015i+//FIF1GeeeabF4+zcuVMF1EcffbTV5/7+++9bfO9///vfq4D6/PPPq998843t2tb6BTU1Nal+fn7qoEGD7L5XlZWVav/+/dWEhIR2fx1EzyIzPEIXo0ePBrQdVFdeeSXOzs7MmzcPT09PbrrpJp555hluuukmxowZwy+//MLhw4dP+5jBwcHcf//9PP3001x44YWcf/757Nq1i//973+tbsu1bkk/XfHySy+9xD/+8Q8mTpyIh4cH77//vt3tF198sW3b7B133MGKFSu44IILuP/++3F2duaFF14gNDSU++67z3afL774wlZMOmTIkBaPOXv2bNvMy6RJkxg5ciRjxozB19eXnTt38tZbbxEZGclDDz1kd7+//OUvzJ8/n3PPPZcrr7ySlJQUXnnlFW666SaGDBliu+7999/ns88+Y+rUqXh5ebF69Wo++eQTbrrpphazGe15zOazIs394Q9/IDQ0lAULFpzyawxazcsTTzzBnXfeyeWXX86cOXNYv34977//Pk899RQBAQGA1tcoISGh1ceIjY21e672PibAM888Q0pKCuPHj8fJyYkvv/ySH374gSeffNKuVujVV1/lyy+/ZN68eURFRZGbm8tbb71FRkYG7733nt1Mzq233sq//vUv7rzzTg4fPkxUVBTvvfcex48fZ+XKlaf9mgC2663LdL/88ottZ9G1115rm9mcO3cuR48e5YEHHmDDhg1s2LDB9hihoaF2xb+//PILv/zyC6DNgFZXV9sec+rUqUydOvWUMbX3Z3LevHkMHTqU5cuXc/z4cVvR8iuvvEJ4eLitZqy5Dz74AGh9OQtoteuydUZn2rRprbaFaM5oNHL//ffzyCOPMGHCBK677jpMJhNvvvkmWVlZLX4XRS+id8Yl+q4nnnhC7devn2owGOxmampqatQbb7xR9fX1Vb29vdUrrrhCLSgoOO0Mj6qqqslkUpctW6aGh4er7u7u6vTp09WUlJRWOy1HR0er0dHRp41z0aJFKtDmx8nvpjMzM9XLLrtM9fHxUb28vNQLL7xQPXLkiN01S5cuPeVjNu+a+/DDD6tJSUmqr6+v6uzsrEZFRam33367mpeX12q8X3zxhZqUlKS6urqq/fv3Vx955BG1oaHB7potW7aoU6dOVf39/VU3Nzd1xIgR6uuvv243M9bRx2xNRzotW73xxhvq4MGDVRcXFzU+Pl598cUX24yrOU7R/bg9j/nNN9+o48aNU729vVUPDw91woQJ6ieffNLisX744Qd19uzZalhYmOrs7Kz6+fmp5557rrpmzZpWnzs/P19dtGiRGhAQoLq6uqrjx49XV61a1Y6vhGbatGnt+jk51c/TyTM4p/r5a2sGqbmO/EyWlJSof/zjH9VBgwaprq6ualBQkHrllVeqR48ebXGtyWRS+/Xrp44aNardXx9Vbbvz86k6Qn/wwQfquHHjVD8/P9Xd3V0dP358i9lN0bsoqqqqXZhPCSGEEELoTnZpCSGEEKLXk4RHCCGEEL2eJDxCCCGE6PUk4RFCCCFErycJjxBCCCF6PUl4hBBCCNHrScIjhBBCiF5PEh4hhBBC9HqS8AghhBCi13PIhOfVV18lJiYGNzc3xo8fz9atW095fVlZGXfeeSfh4eG4uroyaNAgvvvuu26KVgghhBCOzuEOD/3444+59957ef311xk/fjwvvfQSc+bM4dChQ4SEhLS4vqGhgdmzZxMSEsKnn35Kv379OH78OH5+fu1+TrPZTE5ODt7e3iiK0on/GiGEEEJ0FVVVqaysJCIiAoPhNHM4Op/l1cK4cePsDgA0mUxqRESE+vTTT7d6/WuvvabGxcW16yDDtmRmZp7y4D35kA/5kA/5kA/5cNyPzMzM0/5f71CHhzY0NODh4cGnn37KggULbOOLFi2irKyMr776qsV9zj//fAICAvDw8OCrr74iODiYq666igcffBCj0djq89TX11NfX2/7vLy8nKioKDIzM/Hx8en0f5cQQgghOl9FRQWRkZGUlZXh6+t7ymsdakmrqKgIk8lEaGio3XhoaCgHDx5s9T5Hjx5l7dq1XH311Xz33XekpqZyxx130NjYyNKlS1u9z9NPP82yZctajPv4+EjCI4QQQvQw7SlHccii5Y4wm82EhITwxhtvMHr0aBYuXMjDDz/M66+/3uZ9lixZQnl5ue0jMzOzGyMWQgghRHdzqBmeoKAgjEYj+fn5duP5+fmEhYW1ep/w8HCcnZ3tlq+GDBlCXl4eDQ0NuLi4tLiPq6srrq6unRu8EEIIIRyWQ83wuLi4MHr0aNasWWMbM5vNrFmzhokTJ7Z6n8mTJ5OamorZbLaNHT58mPDw8FaTHSGEEEL0PQ6V8ADce++9rFixgnfeeYcDBw5w++23U11dzfXXXw/Addddx5IlS2zX33777ZSUlHDPPfdw+PBhvv32W/7v//6PO++8U69/ghBCCCEcjEMtaQEsXLiQwsJCHnvsMfLy8khKSmLVqlW2QuaMjAy7vfaRkZF8//33/PGPf2T48OH069ePe+65hwcffFCvf4IQQgghHIxDbUvXS0VFBb6+vpSXl8suLSGEEKKH6Mj/3w63pCWEEEII0dkk4RFCCCFErycJjxBCCCF6PYcrWu5NTGaVrcdKKKisI8TbjXGxARgNcjipEEII0d0k4ekiq1JyWbZyP7nldbaxcF83ls5LZO6wcB0jE0IIIfoeWdLqAqtScrn9/Z12yQ5AXnkdt7+/k1UpuTpFJoQQQvRNkvB0MpNZZdnK/bS21986tmzlfkzmPt8NQAghhOg2kvB0sq3HSlrM7DSnArnldWw9VtJ9QQkhhBB9nCQ8naygsu1k50yuE0IIIcRvJwlPJwvxduvU64QQQgjx20nC08nGxQYQ7utGW5vPFbTdWuNiA7ozLCGEEKJPk4SnkxkNCkvnJQK0SHqsny+dlyj9eIQQQohuJAlPF5g7LJzXrhlFmK/9spWfhzOvXTNK+vAIIYQQ3UwaD3aRucPCmZ0YxtZjJfzzlzR+OlTIxPhASXaEEEIIHUjC04WMBoWJ8YF4uTrx06FC1hwooLKuEW83Z71DE0IIIfoUWdLqBsP6+RAX7El9k5nv9+XrHY4QQgjRLUxmlU1pxXyVnM2mtGJdm+7KDE83UBSFi0b048XVh/kqOZvLRvfXOyQhhBCiSznamZIyw9NNLkqKAODX1CJpOiiEEKJXc8QzJSXh6SYxQZ4kRfphVuGb3XJ4qBBCiN7JUc+UlISnGy2wzPJ8lZytcyRCCHCs+gIhegtHPVNSani60YUjInji2wPszirnWFE1sUGeeockRJ/laPUFQvQWjnqmpMzwdKMgL1emDAgC4MtdMssjhF4csb5AiN7CUc+UlISnK1UXwfGNYGqyDS0YeWJZS1Vl+lyILmE2Q1EqHPwOUj6DtHVQkQM4bn2BEL2F9UxJAA/qGK0cYr7hVxKVdEC/MyVlSasr7f8Kvr0XXH1hyIUw4Q7OTUzA3TmF9OIadmeVkxTpp3eUQvQeFTmw+R+w91OobGWWJmQox6Muobw8Fmj93WXz+oKJ8YFdGq4QvZFRgWfPyqVpywrONuzFWTEB8LemBRxoigH0OVNSEp6u1FQH7gFQWwLJH0DyB3iOvJaLBl/ORylVfLkrWxIeIX4Dk1ll67ESCssrGZn+Fv33/xOlybJM5eQGwYPBxRuqC1CLU1EK9hFXsI91rn4sb7yOb80T2nxsaR8hxBkoPIz69e+ZmrkZjNpQrhrAMXMY2WowYTrWySmqrKtQUVGBr68v5eXl+Pj4dO6Dm02QuRW2vA77vwSgziOChaW3ke05lM1LZuJklJVFITrKWnRsKs9lhctfGWE4CkBJ4GgCZt8HA2aRVWni6905fLUrh7z8XOYZN3GL8RuiDIUAfNw0nceaFlOPS4vH/8/NE2SGR4iO2P0RrLwHmuqoVV34UJ3N9Cvvp8A1moLKOkK8tWWszpzZ6cj/35Lw0MUJT3PHN8FXd0DJUepw5taGe7lx8c1MHRTcdc8pRC9kLToerGTwlstzRCgllKpeLG1czErzRK4cF0VqQRXb0ktt93ExGpiREMyCoYHkfPMki02fYVRUtpgTuKHhT1TjDmj1BWG+bmx4cGa3T7kL0SOpKvz0NPz8LAC/qsO5v/5mrj9/MrdMje/Sp5aEp4O6LeEBqCuHz26CIz/QoBr5IPJxrr/p7q59TiF6EZNZZcqza/GqSOUTl+X4K1WkmiO4vvFPZKqhdtcqCkyIDWTByAjmDgvH1107uHdVSi7vf/gO/3B+CR+llmRzPNc1/JkKPFGA164ZJVvThWiv1ctgwwsAfOF5BfcWz2dsTBD/uWVCl79p6Mj/37KW0t3cfOHKDymJuQAXxcTVmcuoT/tV76iE6DG2HivBWJHBey5P469UkWyO45KGx1skO9eMj2Ljn2fyn1smsHBslC3ZAZg7LJxrrlrE3S7LKVW9SDKk8ZrzS/i6qJLsCNERG16yJTu/DvozfyxegLuLM89fPsLhZkgl4dGD0Rn/a9/lF8N4XJQmlI+vguI0vaMSokcoLi3hX85/JUwp5ZC5P4sbHqQCrxbXjY0NINzXvc3HmTssnDeX3EzGhR9Rb/BgsnEfywz/4pyEkK4MX4je4+C3sHopAIUTHub6/UkAPHJBIlGBHjoG1jpJeHSiGJ3YOeZZdpvjcGkog0+ug0bZFSLEKakqE1KWkWDIpED147qGP1OGd6uXtqepmdGgMGLs2Thd8W9MGFjAOo5+/0pnRy1E71OUCl/cBoBp3K3ccGQSDU1mpg8O5nfjInUOrnWS8OjogtEDuLnhPopVH8hPgR8f1TskIRzbjrcJSl9JE0buaribfFo2LjuTpmbGhLmsjrgdgLjtT0L+/s6KWIjep6ke/rsI6isgahKvOi1mb3Y5vu7OPHvpcBTFsZayrCTh0dHAUG+CwqO5r1HLktn6Bhz+Xt+ghHBUpenw/cMApA6/j61qQotLrC+zZ9LULOjce/nJNAJntQHzf6/XXtSFEC39/Kz2Jt0jkP1TXuJvP6UD8MSCYYT6dO9xER0hCY/OFoyM4CdzEt94XKwNfPNHqK/UNyghHI3ZDF/dBY3VED2ZhAVLGBrRckdGmK/bGRcdj4oO5K+ef6BQ9cFQdBA2vNgZkQvRu2Rtt/1uNJz3And/k0eTWeWC4eHMHxGhc3CnJgmPzuaP6IeiwP0l82nyjYaKbFjzhN5hCeFYkj+A9PXg7AkXvcqxklr25VQA8NLCEbx8ZRL/uXkCGx6cecY7rBRFYUpSIssaF2kD6/8KhYc6618gRM9nNsHKP4BqhrMu57njg0gtqCLY25UnLxqmd3SnJQmPzsJ83ZgQG0gdrnwX/YA2uPUNyN6pb2BCOIraMlj9uPb3GUsgIJZ3N6UDMDMhhAUj+3NRUj8mxgf+5m2wFyVF8I15AuvMI8HUAN/cqzVVE0LAjn9D/l5w82P7kAd589djADx76Vn4e7bsVu5oJOFxANYT1F89HgVnXQGo8P1D8kIrBGj1AjVFEDQIxt1KVX0T/92eBcDiSTGd+lQJYT4MDvXh4YbraTK4wfENcGBlpz6HED1STQmsfRKA+qlL+MPKTFQVrhwbycyE0NPc2TFIwuMA5g4Lx8Vo4FB+JUeG3wdO7pCxCQ58rXdoQuir4CBs+af29/OeBScXPt+ZRVV9E3HBnkwZENTpTzk/KYIcgljpeak28ONjUsAsxNonobYUQoayPHccWaW19Pd355ELE/WOrN0k4XEAvu7OzEjQztP6NFWFSb/XbvjxMWhq0DEyIXS29glQTTD4AoifiaqqvLMxHYBFE2MwdEEnV2vh5aNF52DyDIHSY7B1Rac/jxA9hakwFXXH2wB8Gf57PtiWi6LA85ePwMvVSd/gOkASHgexIKkfACuTczBPuhu8QrVtuMkf6BuYEHrJ3gkHvwHFALMeB2BDahFphdV4uTpx6ej+XfK0kQEejIzyo0p1Y1O01puHDS9AQ3WXPJ8QjmxVSi4/vvZHFNXEWlMSf9ii7Y6cOTiECXGBOkfXMZLwOIgZCSF4uzmRU17H1pwGmPJH7Yb1f5VZHtE3rfs/7c/hCyF4EIBtduey0f279J3lRZZZnhcKxoB/LNQUyyyP6HNWpeTy1w++5lzTegBeaLrMdtvagwWsSsnVK7QzIgmPg3BzNnLesDAAvkrOhtGLwSsMyjNh13v6BidEd8vYAqk/gmKEadruxYziGtYcLADguonRXfr0FwyPwKDAzqxKikbfow1u/BvUV3Xp8wrhKExmlWUr9/MHp08xKCr/M40lRY2zu2bZyv2YzD1nc40kPA7Euqz17Z5c6hWXZrM8L0jRpOhbfnpa+3Pk1RCgvci+tzkdVYWpg4KJC255WGhnCvZ2ZbKlIPrj+glaDDXFsE1meUTfsPVYCd4VR7jAuBWzqvBis9kdABXILa9j67ESfQI8A5LwOJDxcYGE+rhSUdfET4cKtVke73CoyILdH+kdnhDdI3c3HF2nze6cfT8ANQ1NfLwtE4DFk7p2dsdqnmVZ68vdBahT/6QNbvw7NNZ2y/MLoaeCyjpudfoGgFXmsRxWWz8QtKCy5xx6LQmPAzEaFNsOka+Ss8HZDSbeqd246VWtvb4Qvd3Gv2t/Dr0Y/LXk5otd2VTUNREd6MH0QSHdEsbcYWG4OBk4UlDFweC54BulzfLs/k+3PL8QeupvKGW+YSMArzfNa/O6EG/HPTvrZJLwOJiLLMtaqw8UUFnXCKMWgasPFB2C1NU6RydEFyvLgJTPtb9PvhvAbiv6dV20Fb01Pm7OzBistYv4ak8BTLDs2JI3H6KXU1UVZevrOCsmNpuHsEeNb3GNAoT7ujEuNqD7AzxDkvA4mKERPgwI8aKhycyqlDxw84FR12k3bvybvsEJ0dU2v6b13YmdBuEjANh0tJjD+VV4uBi5fEzXbEVvi/UNyMrdOZiTrgFXXyhOhSPfd2scQnQXk1nlmS+3MjDzUwD+2XQhJ7/FsH6+dF7ibz7OpTtJwuNgFEVhQZK2rPXOxnS+Ss5mR/hCVMWoHZ6Yu1vnCIXoInXlsOMd7e+W2R04sRX9klH98HFz7taQZiaE4OXqRHZZLTvzm2C05WDRja90axxCdIe6RhN3/2cXpu3v4K3UUuoZz8LfXU+Yr/2yVZivG69dM+qMD+rVS89pkdiH+Hloh7Cl5FRwz0fJALzhMYlz1fXaO+CLX9cxOiG6yO6PobEaghMg/hwAskpr+HF/PqB1Vu5ubs5Gzh0ayuc7s/l6dw5jpt8Gm/+hnbGVuwfCh3d7TEJ0hYq6Rm55dztbjhbxk6tWPuE/827mntWP2UMj2HqshILKOkK8tWWsnjSzYyUzPA5mVUouj36Z0mL8tdpZAJj2fq4d4iZEb6KqsO1f2t/H3gSK9mL6/uYMzCpMHhDIwFBvXUK7qFm7iCavcBgyX7th+1u6xCNEZ8uvqOOK1zex+WgJs133E63ka8u3Z10OaBtqJsYHclFSPybGB/bIZAck4XEo1kZPrbVx2qUOYJ85GqO5HnPyh90emxBdKn29Vpjv4qV1VkabXv9oWwagz+yO1eT4QAI9XSiubuDXtGIYc4N2w97/Qn2lbnEJ0RnSCqu45B8bOZhXSbC3K8/HbNNuSLoKXDz1Da6TOWTC8+qrrxITE4Obmxvjx49n69at7brfRx99pNXALFjQtQF2ka3HSsgtb6ungcIHJm2Wp37zv7R3xEL0FtbZneELtUJ9tNYMZTWN9Pd355whobqF5mQ0cMHwcFtMxEyBoEHQUAV7PtYtLiF+q50ZpVz22kayy2qJDfLkq6sj8clYo9049kZ9g+sCDpfwfPzxx9x7770sXbqUnTt3MmLECObMmUNBQcEp75eens7999/P2Wef3U2Rdr7TNXD6yjSJStUd94pjcOyXbopKiC5WkQsHtAZn1hdZVVV5e+NxAK6dEK37FLq1P9b3KXnUNZlPzPJse0vefAiHZzKrbEor5qvkbDalFWMyq6w5kM9VKzZTWtPIiP6+fHrbRCJSPwLVrO2SDBqod9idzuESnhdeeIGbb76Z66+/nsTERF5//XU8PDx4662218tNJhNXX301y5YtIy4urs3rHN3pGjhV486XpsnaJ9vf7IaIhOgGuz/UtqJHTYTQoQBsSy/lQG4Fbs4GFo5tvcNrdxoV5U8/P3eqG0ysPVgAI64EJ3co2AeZ7ZuBFkIPq1JymfLsWn63YjP3fJTM71ZsZtQTP3Lzu9upazQzfXAw/7llAoHuRrCWS/TC2R1wsISnoaGBHTt2MGvWLNuYwWBg1qxZbNq0qc37LV++nJCQEG68sX3fpPr6eioqKuw+HMG42ADCfd1a9Dxo7gf387S/HPxOipdFz6eqJ15kR15jG7ZuRb94ZD/brkU9GQyK7aiJr5Kzwd0fhl2i3SiH+woHtSoll9vf39miVKK8thGzChNiA1lx3Rg8XJy041yq8sA9AAadp1PEXcuhEp6ioiJMJhOhofbr9aGhoeTl5bV6nw0bNvDmm2+yYkX7D/V7+umn8fX1tX1ERur/DhK0Svil8xIB2kx65s6aDWHDwdwIez/tvuCE6AqZW7VGfs4ekHgRALnltazap/2+L5oUo2Nw9i6y9Mdad6iQ8tpGragTYN+X0FCjX2BCtOJUm2CsjpdUY7DsiGTX+9qfw68AJ/3fZHQFh0p4OqqyspJrr72WFStWEBQU1O77LVmyhPLycttHZmZmF0bZMXOHhfPaNaNaNHpyNmo/lF8n52Ae8TttcLfs1hI9XLLlRTZxAbhq284/2JyByawyPjaAhDAf/WI7SUKYNwMtXdC/35cHUZPALxoaKuHgt3qHJ4SdU2+C0dhOO68pgUPfaYNJV3dDdPpwqMaDQUFBGI1G8vPz7cbz8/MJCwtrcX1aWhrp6enMm3fiYDOz5YwbJycnDh06RHx8yzNAXF1dcXV17eToO8/cYeHMTgyza/QU6uPKhX/fwJZjJbwXN45FBifI2QUFByBkiN4hC9FxDTWQ8oX2d8tsSV2jif9s1baiL3ag2R3QuqBflBTB8z8cZuXuHK4YEwkjfgc/PwPJH8Dwy/UOUQib9p5iXlBZB8XfgakBws7q1c00HWqGx8XFhdGjR7NmzRrbmNlsZs2aNUycOLHF9QkJCezdu5fk5GTbx/z585kxYwbJyckOs1R1Jk5u9BQX7GVb7nrypwIqImdqF0pPHtFTHVipzY74RUO0Voz/7Z5ciqsbiPB1Y3aiflvR2zJ/hNaE8NfUIu0/ihFXajcc/QnKs/ULTIiTtPcU8xBvtxPLWUnXnPriHs6hEh6Ae++9lxUrVvDOO+9w4MABbr/9dqqrq7n++usBuO6661iyZAkAbm5uDBs2zO7Dz88Pb29vhg0bhotL71qHvGJMJOcmhtJoUnmhcIw2uOcTMDXpG5gQZyL5A+3PpKvAYLBsRU8H4OoJ0TgZHe7liahAD5Ii/TCr8N2eXAiItSRrqvTkEQ7ldJtgbKede+RCbjIYnG2dlXsrh3tFWbhwIc8//zyPPfYYSUlJJCcns2rVKlshc0ZGBrm5uTpHqQ9FUXjm0uEEe7vyQUkCNUZfrar+6E96hyZEx1TknOglZalJ25lRxt7sclycDPxuXJSOwZ2atXj5q9052oCtpu4/0pNHOIzmm2BOZnfaecp/tU8GzQHPwO4JTicOl/AA3HXXXRw/fpz6+nq2bNnC+PHjbbf99NNPvP32223e9+233+bLL7/s+iB1EuDpwnOXDacRJz6un6ANyjtL0dPs+wJQIXICJt8oNqUV89S3+wGYPzycAE/HnZ29YHg4BgV2ZZSRUVwDQxdoPXmKDmt1dUI4COsmGDdn+//qbaedDw2DlM+1weFX6BBh93LIhEec2ozBIVw3MZqVJq2uST34LTTW6hyVEB2Q8hkA+wNn2Zqi7cwoA+Cnw4WsSnHcWdwQbzcmxWu7QlfuydF2lw2eq92473MdIxOipbnDwgm0vIG4a0Y8/7l5AhsenMncYeGQtQ3KM8DFGwaeq3OkXU8Snh5qyXlDKA9MIksNQmmsRj3yg94hCdE+JccgewcqBhZt7tdi62xxVQO3v7/ToZMe61ET/9l6nK+SszkUNFu7Yd+XsqwlHEpRVT3ZZXUoCtw6Ld7+tHNrL7eEC8DZXb8gu4kkPD2Uu4uRl383iu/M2rJW1voPdI5IiHayzO5sU4ZRiG+Lm63pwrKV+zGZHTN5MFr6YmWV1nHPR8nM/96DatyhPFN71yyEg9idWQbAgGAvvN2cT9xgNlmWloFhl3Z/YDqQhKcHG9bPF9+x2rbYoJx1ZOUV6hyREO1gqRn4tGF8m5eoNGuK5mBWpeRy/ye77cbqceEH02gA0n9+V4+whGhVsiXhSYr0s78hfT1UF2jHpMTP6Pa49CAJTw932QUXkGuMwF1p4L8frnDYd8RCAFqjzIJ9mBUnVpnGnv7ydjZP6y6nate/0qTNtnqmfoOpSVpFCMdgTXhGnJzwWGZaSbwIjM70BZLw9HBGowGPUVrvhKGlq3n95zSdIxLiFCyzO2X9plGB12kvb2/ztO5yqnb9683DKVc9CKaUg1u+7+bIhGjJbFZtS1p2MzxNDbD/a+3vfWQ5CyTh6RV8x2jLWtMMu1nxYzJ7ssr0DUiItuz/CgC/sQsJ9207mbE1RYsN6KbA2udUM06NOLHKNA4AjyNfdVdIQrTpWHE1FXVNuDoZGBzmfeKG9F+grgw8Q2xdzvsCSXh6g9BE1OAEXJUmprGDP3ycTFVdE5vSivkqOZtNacWy1CX0V3gYig6BwRnD4LlcOyG61cvsmqIZ2uoTq4/TzTh9Y9lE0C9vtVYUKoSOki2tHs7q54tz887lB1Zqfw65EAzG7g9MJw51eKg4c8qQeVB4kItcd/JV4RTG/d9qahpOvOCG+7qxdF6i1ntBCD0ctLzIxk0DN1/2ZqcC4O5spLbxxM9qmAP/rFrb9eeV17Vax7PZnEgFnvjUFUPmVohueQagEN1lt2W23245y2yCg5aT0RMu7PaY9CQJT2+RcAH88hemKLtxpYGaBvtOtXnlddz+/k6tu6YD/kci+gDbu8p5HC2sYtW+PAC+uGMSpTWNFFTWEeKtLWM52syOlbVd/+3v70SBFklPI05URp2DT8bXcPAbSXiErlotWM7cqu3OcvOFmLN1iUsvsqTVW4Qnofr2x8VcyxTD3hY394TeJqIXK8u0HLugwODzWbH+GKoKs4aEkBDuw8T4QC5K6mffFM1BWdv1h7VSg+Tr7kTQmIu1Tw5+I00IhW7qGk0cyK0ATprhOfiN9uegueDkuEe4dAVJeHoLRSEvfBYAcwzbW73EkXubiF7u4Lfan1ETKFB9+GxnFqB1fu2J5g4LZ8ODM/nPzRN4+cok3r1hLP383CivbeKtvAHg5Aal6VCwX+9QRR+1P7eCRpNKkJcL/f0tXZRVFQ5Ydmf1seUskISnVzkaOA2AWcYdGGm7YNLRepuIPsD6rnLIPN7+NZ2GJjOjovwYE+2vb1y/gdGg2Gampg4K4YG5CQC8siGH+ijtd5ED3+gYoejLrAXLI/r7oSiWWdO8vVCWoR12O+Ac/YLTiSQ8vYghZjKlqhcBShVjlMNtXudovU1EL1ddDMd/BaAqdi7vbT4OwG3T4k+8EPcC84ZHMLy/L9UNJr5tHKUNHpSER+ij1YJlax3dgHPAxbPbY9KbJDy9yLj4EDYate61c4wtz/Nx1N4mopc79B2oZggbzn8OK1TWNREf7MmsIaF6R9apDAaFh84fAsDTaTGoigHy9kDpcZ0jE31RqwXLzWZa+yJJeHoRo0EhfMJlAJxr3E7zPSSO3NtE9HKWF9mmwRfy5oZjANw6NR5DL/w5nBAXyKwhIRSavTnsepY2eOg7fYMSfU5JdQPHi2uAZglPcZpWU2ZwgkFz9AtOR5Lw9DKjZlxKk9Gd/koRQ5UT7yzDfN1kS7rofg01cPQnANaoY8irqCPE25WLRkboG1cX+vN5CRgNCh9XDtcGpI5HdDPrclZcsCe+7pZzsg6v0v6MnqwdGNoHScLT2zi74zRQK0b7c9xRABLDfdjw4ExJdkT3O/YLNNWh+vbn+V1aR9cbpsTi6tR7u7sOCPFm4dhIfjCPAUDN2Ag1sjNSdB9rwXJSf78Tg9aEZ9Dcbo/HUUjC0xtZfqBHN2h1PLnltfTC1QPRExzRDtHMCprKkcJqvF2duGp8lM5Bdb0/zBpIiXMYB82RKKoZ0tbqHZLoQ6z1O0lRftpAXQUc36j9vY8uZ4EkPL3TwNkAeBTuJkQpt3Sxrdc5KNHnqCoc1hKe90oGA3DVhCh83Jz1jKpbhHi7cevUeNaZkwAwHVqlb0Ciz1BVteUOrbS1YG6CwAEQ2DN7X3UGSXh6I+8wCB8BwGW+BwFsHTeF6Db5+6AiG7PRjXdyo3ExGrhhcqzeUXWbm6fGstNVOz298dCPcpio6BbHi2soq2nExclAQpiPNnjkB+3PPrycBZLw9F4DtWnL2U7JABzMq9QxGNEnWWoG9romUY8LF4/sR6hP3+kB5eHixDmzL6Rc9cCtsYyqtM16hyT6AOvsztAIH1ycDGA222ZaGXiufoE5AEl4eivLOm1i7XacaOKgzPCI7mZ5kf24fCiKArdMi9M5oO532dgYdjqPBmD32o91jkb0BbusBcvW5aycnVBTBK4+ENW3D7OVhKe3ihgFHkG4mqoZazgkMzyie1UXQ5ZWNL/OlMTsIaHEB3vpHFT3czIaCB2tNXkLyPmJzJIanSMSvZ2tYNma8Fhnd+Jn9LnDQk8mCU9vZTDYipenG5JJLaiiocmsc1Ciz0j9EVA5oEaTS2CPPSS0Mww5+xLMKAxRjvOvb9frHY7oxRqazOzPOemEdNmObiMJT29mWa+d5ZRMk1klrbBK54BEn2F5V7naNJJxMQGM7sGHhP5WilcwdSEjAWg4+D17s8p1jkj0VgdyK2gwmfH3cCYqwAMqcrTjTVBgwGy9w9OdJDy9WfxMUIzEk01/pYCDeVLHI7qBqQk1dTWgLWfd2gdrd07mMfR8AGYakvm/7w6gqupp7iFExzU/P0tRFDjyo3ZDv9HgFaxfYA5CEp7ezN3PVqQ207CLg7lSxyO6QfYOlPoKSlUvaoJHMGNwiN4R6W+QNts62ZDCzqO5rDtUoHNAojfafXL9Ttoa7c+BMrsDkvD0fpYf9GmGPRyQwmXRDZos7yp/NQ/jpmmDeuUhoR0WNhy8wvBQ6hljOMTT3x2kySQ1daJz2Z2QbmqynWNH/Dl6heRQJOHp7QZoP+gTDftJyynWORjRF5Tv1ep3druOZv6I3ntIaIcoirbEDMx22ceRgio+3p7JprRivkrOZlNaMSazLHOJM1de08jRomrAcoZWzk6oKwc3X4gYqW9wDsJJ7wBEFwsZitkzBI/qAiJrUiiumkmgl6veUYleylxdgl9ZCgCx4+dpjc+EJn4m7P6QeV4HebwOHv0yheY5TrivG0vnJcohv+KMWBsOxgR64O/pAlsty1lx08Eo/9WDzPD0fgYDhvgZAJxt2MMhWdYSXWjP+q8wYiaV/syfOlbvcBxL3HQAAqsOE0wZJ0/o5JXXcfv7O1mVktv9sYkez245C04cWCvLWTaS8PQFlqn0qVLHI7qAyaxqSzO7ssnZ8Q0AZeFn4+Uq7yrteAWjWs64m2xIaXGzNf9ZtnK/LG+JDrMrWK4thezt2g2W138hCU/fEKfN8JxlSCczM0PnYERvsiollynPruV3KzZzz8e7SGrYCUB15HR9A3NQOQHarsmpxj2t3q4CueV1bD1W0o1RiZ5OVVX7DstHfwbVDEGDwC9S19gciSQ8fYF3KBW+CQB4ZEunV9E5VqXkcvv7O8ktrwNggJJNhFJCverMrb+4ytJMK9L9xgNwtmEvCm3v0iqorOuukEQvkFVaS3F1A85GhSHhPie2o8tylh1JePoI1VLHE1+xVbbDit/MZFZZtnI/zRdephr2ArDFnEA9LrI00wpj9ARqVFeClXISlMw2rwvx7junyovfzjq7kxjug5uTAdLWaTcMkISnOUl4+gjvRO309MnKHtKL5IgJ8dtsPVZim9mxmmrQlml+MQ+XpZk2jB0Qzi7jMEDbRHAyBW231rjYgG6OTPRkdgXLRUegPBOMLhA9Sde4HI0kPH2EIXoi9bgQppSSdXin3uGIHu7kJRdXGhhvOABoCU9b1/V1RoNCwFnamw/rjJiVtT3j0nmJGKVZo+gAu/od63JW1ERw8dQtJkckCU9f4ezGca8kANTUtfrGInq8k5dcxhgO4a40kKf6c1jt3+Z1AoZMuRiAscZDuFFvGw/zdeO1a0ZJHx7RIY0mMynZ2oG0WsJjeX2X5awWJOHpQ8r7TQUgKP9XnSMRPd242ADCfd1ssxJnW2Yr1pvOAhRZmjmVoIHg0x9XGnlqlHag74AQTzY8OFOSHdFhh/IqqW8y4+PmRIyvE6Rv0G6Q7egtSMLTh7gN1s7VGlS3BxprdY5G9GRGg8LSeYm2z6dY+sqsN58lSzOnoygwQPvPaIaTlijmV9QjXypxJnY1q98x5GyHxhrwDIbQYfoG5oAk4elDohJGkaf640oDVakyyyN+m7nDwnntmlGEO9eQqBwHYJN5qCzNtIfl3bdf7q8YFKisa6Kwsv40dxKiJWvDwZGRfnDsF20wdqqWWAs7kvD0Ib4eLiQbtYLSiv1rdI5G9AZzh4Vzkd9RDIpKgVssf7t5rizNtEeMtrxsKDzACP9GAI4UyO5J0XF2O7SO/qwNxk7VLR5HJglPH5MTMA4A54wNOkciegNVVYmp2AaAy8DpTIwPlGWs9vAMhNCzAJjreQSAVEl4RAdV1DWSVqj93IwIdTpxnETsNB2jclyS8PQxTVFTAAgo3wd1FTpHI3q67LJaxqpa/Y7XkFk6R9PDWN6Fj1O0r58kPKKj9maVo6rQ39+doOKdYG4CvygIiNU7NIckCU8fExEziHRzKEZMcHyj3uGIHu74sVTiDbmYMOAUO0XvcHoWS8IzsFrri3WkQA72FR1j13/nmCxnnY4kPH1MQpgPG81DAVCt671CnKH6I1oL+0zXQeDup28wPU30JFCMeFVnEEERqQXVekckepgWB4YCxE7XKRrHJwlPHxMT6MFWRduu2Jj2k77BiB7PK0ebJSwKHq9zJD2Qmw/0GwXARMN+iqrqKatp0Dko0VM0PyF9dLAKeZbO3bFn6xeUg5OEp49xMhooDtIKl12K9kN1kc4RiR5LVYmt1IokVZlGPzOWr9ssN+1YDqnjEe2VU15HYWU9TgaFoY17ABWCE8A7TO/QHJYkPH1QWEQUB82R2ifp6/UNRvRY5qI0gs1F1KtOBA6RXSFnxJLwjFf2AaokPKLdrP13EsK9cbHuupXdWackCU8flBB+oo7H1qhKiA4q2/cjAMkMJCo0UOdoeqjI8WB0IcBURKySJwmPaDdb/53+ftJ/p50cMuF59dVXiYmJwc3NjfHjx7N169Y2r12xYgVnn302/v7++Pv7M2vWrFNeL2BImLckPOI3a0jVXmQPuY/CyeiQLyWOz9ldS3qASYZ90nxQtFtyRhkAE4LqofgIKAaIkZ2Sp+Jwr1Iff/wx9957L0uXLmXnzp2MGDGCOXPmUFBQ0Or1P/30E7/73e9Yt24dmzZtIjIyknPPPZfs7OxujrznGBzmzVZzAiZVgeJUKJevleggsxnfPK1guSRkgs7B9HCWZYiJhn0ywyPapclkZq/lhPRxWIqVw0fITsnTcLiE54UXXuDmm2/m+uuvJzExkddffx0PDw/eeuutVq//4IMPuOOOO0hKSiIhIYF//etfmM1m1qxp++iE+vp6Kioq7D76kkAvV9y8A9irxmkDMssjOqpgH+5N5VSrrrhGj9U7mp7NsgwxybCPnLJqahqadA5IOLrD+VXUNprwdnUipGiLNij1O6flUAlPQ0MDO3bsYNasEx1bDQYDs2bNYtOmTe16jJqaGhobGwkICGjzmqeffhpfX1/bR2Rk5G+OvaeROh7xm1hqBraaExgQ3vbvmmiHfqPA2ZMApYoEJZOjhdKPR5za7qwyAIb390E5Ztl4IvU7p+VQCU9RUREmk4nQ0FC78dDQUPLy8tr1GA8++CARERF2SdPJlixZQnl5ue0jMzPzN8XdE7Wo41FVfQMSPYpqSZI3mocyKNRL52h6OKOz1oQQax2PdFwWp2at35kWXA0VWWBwhqiJ+gbVAzhUwvNbPfPMM3z00Ud88cUXuLm5tXmdq6srPj4+dh99TUK4N9vNg2jEWfuFKTmqd0iipzCbUC3Hkuw0DCPS30PngHqBZstaUscjTse6Q2uyk9a/if5jwEV+D0/HoRKeoKAgjEYj+fn5duP5+fmEhZ26mdLzzz/PM888ww8//MDw4cO7MsxeISHMhzpc2c0AbSBdTk8X7ZS3F0NDJRWqO43BQzHI6ei/nSXhGWs4SFp+uc7BCEdWVd/EYcssYFz1bm0werKOEfUcDpXwuLi4MHr0aLuCY2sB8sSJbU/XPffcczzxxBOsWrWKMWPGdEeoPV58sBdOBoWNTYO1geO/6huQ6DksPyvbzYMZEOanbyy9RdhZNDl74aPUoual6B2NcGDWE9IjfN1wz9msDcZIwtMeDpXwANx7772sWLGCd955hwMHDnD77bdTXV3N9ddfD8B1113HkiVLbNc/++yzPProo7z11lvExMSQl5dHXl4eVVUyLXwqLk4GBoR4scU8RBtI/1XqeET7pGsJzxbzEAaFeuscTC9hMNLUX+vHE1mxi4Yms84BCUdlXc6aGV4H5ZlgcLL1chKn5nAJz8KFC3n++ed57LHHSEpKIjk5mVWrVtkKmTMyMsjNzbVd/9prr9HQ0MBll11GeHi47eP555/X65/QYySEebPTPBCTYtTqeMqO6x2ScHRmM2Ro9TtawiMFy53FNV5b1hqn7Od4sezUEq2zHilxjvsRbSBiJLh46hdQD+KkdwCtueuuu7jrrrtave2nn36y+zw9Pb3rA+qlEsJ9+DLZjeOuCcTV7dPeufvH6B2WcGQF+6G2lGrVlRQ1hoEhMsPTWRRLl9yxhkNsyq9goMyeiVZYZ3iGNezRBqS7crs53AyP6D4JYdoL6hZzgjYgdTzidCw/IzvMg3B1caWfn7vOAfUi4SOoV9zxV6ooTd+tdzTCAeWV15FXUYdBgcDi7dpgtCQ87SUJTx82JFzbjv99lezUEu1k+RnZbB7CgFBv2aHVmYzO5PuNAMA1q32NVkXfYTKrfLxN6xk30qcaQ9lxUIwQJfU77dWuJa1Ro0Z16EEVReHrr7+mX79+ZxSU6B4h3q74ezizrWYQqmJEKTsO5Vng21/v0IQjUlXbDM9mcyKDQqR+p7M19JsIpZsJK92udyjCgaxKyWXZyv3kltcBEFm5C1ygzC8RP1dZ+myvdiU8ycnJ3HfffXh5nf4FTlVVnnnmGerr639zcKJrKYrCkHAfNqY1UuozhIDyFDi+EYZfoXdowhEVHoSaYhoUV/aqcZwnNSadznPwNEh5kSENKZhMZoxyCn2ftyoll9vf30nzPbTjDVrDwU8Ko4hKyWXusHB9guth2l20/Kc//YmQkJB2XfvXv/71jAMS3SshzIeNacUcdBvOpPIUbclCEh7RGstyVoohgUacGBQmCU9nC0mYRJ3qTKBSQc7R3UQMHKl3SEJHJrPKspX7OblhiDXh2WIewr9X7md2YhhGWV4+rXa9fTh27BjBwcHtftD9+/cTHR19xkGJ7pMQrv2nJQ0IxWlZfjZ+rh8EIFvSu4DR2ZWDzlpvrIqDP+kbjNDd1mMltmUsqxBKiTPkYVIVtpkHk1tex9ZjJTpF2LO0K+GJjo5m37597X7QyMhIjEbjGQclus+QMK1w+evSGFQUKE6FyvYd1Cr6EFW1NRzcZErA29WJMJ+2z6sTZy7bV6uZdMrcqHMkQm8FlXUtxiZYZnf2q9FU4NnmdaKldi8QDx8+nPHjx7NixQoqK+U0395iYKgXBgUyapxpCracni6zPOJkxalQXYDJ4MJuNZ6BoV4oikyhd4Xa8AkABJfskO7nfVyId8s3Fc2Xs051nWip3QnPzz//zNChQ7nvvvsIDw9n0aJFrF+/vitjE93AzdlIbJD2LiE/wHIOWbokPOIklvqdHK9h1OMiR0p0Ic/4CdSrTvg2FUPJUb3DEToaFxtAuK8bzd9aNE94FCDc141xsQG6xNfTtDvhOfvss3nrrbfIzc3l73//O+np6UybNo1Bgwbx7LPPkpcnyyA9VYKlH89+l2HagMzwiJNZfiZ2G7VZQEl4uk5ceBDJqtYbS5XeWH2a0aCwdF6irWg5iHIGGHIwqwrbLA1jl85LlILldurwnkdPT0+uv/56fv75Zw4fPszll1/Oq6++SlRUFPPnz++KGEUXG2LZbbO+bqA2UHgQqot0jEg4lGb1O2tqrQXLkvB0lZggD7Za/jOrS/1F52iE3uYOC+eSUVpPu3GW2Z2DahTuvkG8ds0o2ZLeAb+pycOAAQN46KGHeOSRR/D29ubbb7/trLhEN0qwFC5vLzJCSKI2eFwKJoVF6TGozEE1urCqPBKQHVpdydXJyHEvbTu64fivUscjKKluAOC6iCwA/BNnsOHBmZLsdNAZJzy//PILixcvJiwsjD/96U9ccskl/PqrLIX0RNat6akFlZiiJmmDsqwlrCzLKjXBI6hVXfB1dybY21XnoHq32rDRNKpGXGtyoey43uEIHTWazLZt50mmFADCh58jy1hnoEMJT05ODv/3f//HoEGDmD59Oqmpqfztb38jJyeHFStWMGHChK6KU3Shfn7ueLs60WhSyfcbrQ1K4bKwssz2Zflo26UHh3rLDq0uFhUWzF41VvtEfhf7tD1ZZdQ0mIhxr8Ot9LA2GD1J36B6qHYnPOeddx7R0dH8/e9/5+KLL+bAgQNs2LCB66+/Hk9Pz66MUXQxRVFsszx7nCxLWvkpUCPNrASQoR1kmWzQfjYGynJWlxsQ7HVi27HMtvZpG1OLAVgYlq0NBA0GzyAdI+q52p3wODs78+mnn5KVlcWzzz7L4MGDuzIu0c2sdTy7Sl0hcCCgQuZWfYMS+qvIhdJ0UAysr40BpGC5OwwMlYRHaDamaQnPVLc0bSB6oo7R9GztPkvr66+/7so4hM6sMzwHcyu1X6jiI5CxEQbP1TkyoSvL7A6hw9hTqBXPygxP14sP9mKHeRBmVcFQmq51P/cO0zss0c3qGk3syCgFIL52rzYYJQnPmWrXDM8ll1xCRUVFux/06quvpqCg4IyDEt3POsNzMK/ixC9UxmYdIxIOwfIz0Nh/PJmlNYBWwyO6lqerE96+ARxUo7QBa+Ip+pSdx0tpaDIT5Q2uBXu0wSiplT1T7Up4vvrqKwoLC6moqDjtR3l5OStXrqSqqqqrYxedaLClF09+RT1lwZaOy9k7obFWx6iE7iz/0eb4JKGqEOjpQqCX7NDqDgNCvdlqth7qKwlPX7TpqLacdUV4IYq5EbzDwU8O5j5T7VrSUlWVQYMGdXUsQkderk5EBXiQUVLD/lp/JnmFQVWelvTETNY7PKGHugqteB3Ya0wEcmU5qxsNCPZie+pgFvODzPD0Udb6nWnuqdpA1ASQHZJnrF0Jz7p16zr8wP369evwfYS+EsK8ySip4WBeFZOiJ8K+L7Q6Hkl4+qasbaCawT+GveXugBQsd6cBIV58a53hyU/RElA3H32DEt2mqr6J3ZllAAys0954ECXb0X+LdiU806ZN6+o4hANICPfhh/35J+p49n0hdTx9mfV7HzWRw/mVgCQ83WlgqBf5BJCthNJPzYesrTBglt5hiW6yLb2EJrNKtL8Lbnk7tEGp3/lNftPREqJ3sZ6pdTCv8kThcuZWMJt0jEroxrqMEjWBw/laTZ4kPN1nQLC2fLi5yVJOIHU8fcomy3LWxREVUF8BLt4QOlTnqHo2SXiEjfXU9EN5lZiCE8HVR/tFy9+nc2Si2zU1QNZ2AKrDxpJdphWvyxla3cff04VATxe2WZe1ZLa1T9mYph3gPNPT0n8nchwYjDpG1PNJwiNsogI8cHc2Ut9kJr20TvsFAymY7Ivy9kBTLbgHcLhJO6Aw2NsVPw8XnQPrWwaEeJ1IeLK3Q1O9vgGJblFW08C+HK0VzKB6a/2O9N/5rSThETZGg2Lbnn4wt/LEerEkPH2PbTlrIkcKqgHpv6OHASFepKkR1Dj5QVMd5O7WOyTRDTYfLUFVYUCwJ245lo73Ur/zm0nCI+wMsXZcbt6A8PgmUFUdoxLdzlawPMFWsCxb0rvfgBAvQOGQi6V2w3KQq+jdNlmWs86PbITKXDA4Q7/ROkfV87Vrl9bIkSPbfTryzp07f1NAQl/WjssHcithxmjtF60qTztPKSBW3+BE91BVuxmeQwdlh5ZeBoZoX/PNTYMYya9Sx9NHWBsOzrLW70QkgYuHfgH1Eu1KeBYsWNDFYQhHkRDWbIbH2R0iRmrbYTM2ScLTVxQdgZpicHKD8BEcyV8PSMGyHrQZHvixOo7bndF+D81mMMjkfG9VWFnP4fwqFAUG11s2jMhyVqdoV8KzdOnSro5DOAjrDE9WaS0VdY34RE88kfAkXaVzdKJbWGd3+o2hvFEhr6IOgIEyw9PtQn1c8XJ1Yk99NGZ3Nwx1ZVB0CEKG6B2a6CLW2Z0hYT645lrrd6RguTOc0duEsrIy/vWvf7FkyRJKSkoAbSkrOzu7U4MT3c/Xw5kIXzcADjfvxyM9QPoO67JJ9ERSC7TlrHBfN3zcnHUMqm9SFIX4EC+acKLEf4Q2KHU8vZq1fuecaCcoPKgNRsoMT2focMKzZ88eBg0axLPPPsvzzz9PWVkZAJ9//jlLlizp7PiEDqw7tT7ensk2k6XpWfERqC7SMSrRbZo1HDyUpzUclNkd/Qy0LGuluQ3XBqSOp1eznp81yztdGwgaDJ6B+gXUi3Q44bn33ntZvHgxR44cwc3NzTZ+/vnn88svv3RqcKL7rUrJZWu6Nmv33+1ZXP7uQdKUSO1G2Z7e+1XmQekxUAzQf9yJIyVCpH5HL9Y6nm2qtQGh/B72VlmlNRwvrsFoUEhokPqdztbhhGfbtm3ceuutLcb79etHXl5epwQl9LEqJZfb399Jdb39URKbGrVZnmM7V+sRluhO1v9MQ4eCmw9HCmSHlt6sR0ysrYoCxQjlmVCWqXNUoitYj5MY3t8X1+wt2qDU73SaDic8rq6uVFRUtBg/fPgwwcHBnRKU6H4ms8qylftprduOtdNrbeoGTGbpx9OrNTswFDhxhlaYJDx6sfY/Sikyo4adpQ1mbtExItFVrAnP1BhPyNmlDcoMT6fpcMIzf/58li9fTmNjI6AV1WVkZPDggw9y6aWXdnqAontsPVZCbnldq7dtMycAMMh8lO2Hs7ozLNHdmtXvlFY3UFipHWUwUJa0dNPf3wMXJwMNTWYqQ8dqg1K43Ouoqnqi/45vDpgbwSsM/GP0DawX6XDC89e//pWqqipCQkKora1l2rRpDBgwAG9vb5566qmuiFF0g4LK1pMdgByCyFYDcVLMNMk7y96rvhLy9mp/j5poq9/p5+eOp2u7OliILmA0KMQFeQKQ7iGFy71VenENueV1uBgNJDRa6neiJ0I7m/6K0+vwq5ivry8//vgjGzZsYM+ePVRVVTFq1ChmzZrVFfGJbhLi7XbK27eZB9PPuJGoyj3AZd0TlOhemVtBNYNfNPhEcHj/cUAaDjqCgaHeHMyrZJeSwHCAgv1QWwru/nqHJjqJ9XT0kVF+OGdJ/U5X6HDCk5mZSWRkJFOmTGHKlCldEZPQwbjYAMJ93cgrr2u1jme7eTALjBvpX5nc3aGJ7nJS/c4R6w4tqd/RnbVweW+ZKwTEQ0malqAOmqNzZKKzWLejT47zh+3WhEfqdzpTh5e0YmJimDZtGitWrKC0tLQrYhI6MBoUls5LBKC1CVRrHY+StR1Mjd0Ymeg2zep3AA7lWbekS8KjN+vW9NSCKm2ZA6SOpxcxm1U2WxKemYFFUF8BLt4QMlTnyHqXDic827dvZ9y4cSxfvpzw8HAWLFjAp59+Sn19fVfEJ7rR3GHhvHbNKMJ87Ze3vFyN/PGqeeDmC43VJ+o8RO9haoSs7drfrTM8BZYdWrIlXXfWnVqpBVWo1q67UsfTaxwuqKS4ugF3Z+OJ/juRY8EotXOdqcMJz8iRI/nLX/5CRkYG//vf/wgODuaWW24hNDSUG264oStiFN1o7rBwNjw4k//cPIHrJkYDWtHq3LP6nWhvLo3Pep/cPdBUC+4BEDyYoqp6SqobUJQTswtCPzGBnhgNClX1TRQFjtEGc3ZCY62+gYlOsTFVm90ZGxuAk9TvdJkzPnJXURRmzJjBihUrWL16NbGxsbzzzjudGZvQidGgMDE+kD/OGoRBgUP5VeSU1Z6YSpeEp/fJsCyPRE0ARbHt0IoK8MDdxahjYALAxclAdIAHAIfqg8AzBEwNJ3q1iB7NWr8zKS7gxLmFkvB0ujNOeLKysnjuuedISkpi3LhxeHl58eqrr3ZmbEJn/p4ujIzSdoGsO1Rw4hcwYzOo0oCwV7EVLGuzeIct9TsDpX7HYVhn2o4UVp0oZpU3Hz2eyayy5ZiW8EwLrYXKHDA4Qb/ROkfW+3Q44fnnP//JtGnTiImJ4d1332XhwoWkpaWxfv16brvttq6IUehoZkIIAOsOFkDESDC6QnUhlBzVOTLRaVS1WcGypcOyrX5HlrMchV3hcvM3H6JH25dTTmVdE95uTgyut9TvhCeBi4eucfVGHU54nnzyScaPH8+OHTtISUlhyZIlREdHd0VswgFMH6wdF/JrajF1qhP0G6XdIDtEeo/iVKgpBic3CB8BNNuSLgXLDqPVnVoZW8Bs1jEq8VtZl7PGxwZiyLSfaRWdq8Ml4BkZGSjS+bHPSAz3IczHjbyKOrYcK2Fa1ERtNiBjM4y6Vu/wRGewzu70Gw1OrqiqeuIMLUl4HIZdwhM6Fpw9ob5ca0IYNkzn6MSZstXvxAfCbvteWKJzdXiGR1EU1q9fzzXXXMPEiRPJzs4G4L333mPDhg2dHqDQl6IozEjQZnnWHWxexyO1A73GSQ0HCyrrKa9txKBAXLCnjoGJ5uItzQeLqxsorTNr25ZBfhd7sIYmM9uOlQAwpb8BCg9oN8gMT5focMLz2WefMWfOHNzd3dm1a5et/055eTn/93//1+kBCv1NH6zV8aw9WIDafyygaJ1eqwr0DUx0DuvypO2EdG05KybQEzdn2aHlKDxdnejn5w5AaqHU8fQGu7PKqG00EejpwoBaS/1O0CDwDNI3sF7qjGp4Xn/9dVasWIGzs7NtfPLkyezcubNTgxOOYcqAIFyMBjJKajha7QwhWkdmeaHtBSrzoPQYoNhmDKzLWQOlYNnhxFt3auU336klv4c9lbX/zoT4QAxZUr/T1Tqc8Bw6dIipU6e2GPf19aWsrKwzYjojr776KjExMbi5uTF+/Hi2bt2qWyy9jaerE+PjAgDrspa80PYa1u9h6DCtkzYnCpYHS/2OwxnYvI6n3xhQjFCRBWWZOkcmzoT1wNBJ8YEtlpZF5+twwhMWFkZqamqL8Q0bNhAXF9cpQXXUxx9/zL333svSpUvZuXMnI0aMYM6cORQUyJJLZ7Eua9n345GdWj1eRst3ldYlrYGS8DgcW+FyYRW4etl21cmbj56nrtHErowyACZHe0K2ZYVEZni6TIcTnptvvpl77rmHLVu2oCgKOTk5fPDBB9x///3cfvvtXRHjab3wwgvcfPPNXH/99SQmJvL666/j4eHBW2+9pUs8vZG1H8/WYyVUh4/TBnP3QH2VjlGJ38xa8GrZ5qyqqrZcguzQckTWhCfN0idJNhH0XDuOl9JgMhPu60Z03SEwN4JXKPjH6h1ar9Xhbel//vOfMZvNnHPOOdTU1DB16lRcXV25//77+f3vf98VMZ5SQ0MDO3bsYMmSJbYxg8HArFmz2LSp9ReB+vp6u8NOKyoqujzOni42yJPYIE+OFVWzPt+Fub6RUJ4J2dshbrre4YkzUV8JeXu0v1vOScstr6Oyvgkng0JskOzQcjQDLDu1sstqqa5vwjNqAmx+VRKeHsi6nDUxLhAlc402GDURpO1LlzmjbekPP/wwJSUlpKSksHnzZgoLC3niiSe6Ir7TKioqwmQyERoaajceGhpKXl5eq/d5+umn8fX1tX1ERkZ2R6g9nrUJ4bqDhVLH0xtkbQPVDH5R4NsPaLZDK8gTF6czPnlGdBF/TxeCvFwASGt+xETBfqgt1TEy0VHW/jsT4wPl/KxucsavaC4uLiQmJtrO0epJlixZQnl5ue0jM1MK/trDdszEoQJUOTm952ulSNK6nCUFy47L2o8ntaAKvEIgIF67IVM2avQUlXWN7MkqB2BirN+J753U73Spdi1pXXLJJe1+wM8///yMgzkTQUFBGI1G8vPz7cbz8/MJCwtr9T6urq64urp2R3i9yrjYADxcjBRU1pPqfhYDATK3gakJjB1eHRV6s52fdeJF9pCtYLlnvYnpSwaGerHlWAlHrHU80RO1vlgZm2DQHH2DE+2yLb0Ek1klOtCD/o3HtY7ZLl7abknRZdo1w9N8+ed0H93NxcWF0aNHs2bNGtuY2WxmzZo1TJwo04OdydXJyOQBWkOsVfl+4OoLjdWQv1ffwETHmRoha7v296hJtmE5Q8vxDWg+wwPSgLAHsvbf0bajW9549B8rbxy7WLu+uv/+97+7Oo7f5N5772XRokWMGTOGcePG8dJLL1FdXc3111+vd2i9zsyEEH7cn8/aw0X8Pmo8HPlBW3+OGKl3aKIjcvdAYw24+2udXQGzWbXNGsgp6Y5rQIiWjLbYqZW9AxrrwNlNp8hEe52o3wmCI5ZENXrSKe4hOkOvqEpcuHAhzz//PI899hhJSUkkJyezatWqFoXM4rebYenHk5xZRnWYZXu61PH0PNbvWeR4MGgvA9lltdQ0mHAxGogOlB1ajsq63JheXE19kwkC4sAzGEwNkJusb3DitEqrG9ifq+0MnhgbYP+7KLpUr0h4AO666y6OHz9OfX09W7ZsYfx4+eHpCmG+bgwJ90FVYYeqzQyQsRlUVd/ARMdktNwVYt2hFRfsibOx17w09Doh3q54uzphViG9qEbbxmytwzouzUAd3eaj2uzOoFAvgs0FUJENBifoP0bnyHo/eVUTHTbTcnr6F/mhYHSB6gIoOapzVKLdVLXVHVonztCS+h1HpiiK7UwtqePpOUxmlU1pxXy4NQOA8bEBJ75f4SPARWZVu5okPKLDrNvT1xwpR7XW7sgLbc9RnAY1RWB0hYgkQHsx3piqNUJzdzJgMsuMnSOzdlw+UqDNytkSnszNYDbrFJVoy6qUXKY8u5bfrdjM+iPa79nKPblkJDdrOCi6nCQ8osOSIv3x83Cmoq6JPF9rwiN1PD2GbVfIGHBytb0Yr7ckPJ/syGLKs2tZlZKrY5DiVAaePMMTNhycPaGuHAoP6hiZONmqlFxuf38nueV1duPlNY3UpP6qfSL9d7pFu3Zp/e1vf2v3A959991nHIzoGYwGhWmDgvkqOYdfGwdyGUjC05M0679jfTE+eT4nr7yO29/fyWvXjGLusPBuD1GcWpzl2I+dx0vZlFbMuNgAjP3HwLGfte9vaKLOEQrQZk6Xrdzf4vcLwJsqEgxa01tT/wkYuze0PqldCc+LL77YrgdTFEUSnj5iZkIIXyXn8FFuhJbwFKdCVSF4BesdmjgdS8Jj6j+BZZ+3/mKsAgqwbOV+ZieGYTTI+T6OYlVKLo9+uQ+AnPI6frdiM+G+brwXN4wB/KwtL4+9UecoBWiHLZ88s2M12nAEgDRzOAUFBiZK6VyXa1fCc+zYsa6OQ/QwUwcGY1Bge4FKY78EnIsPavUDQ+bpHZo4lcp8S4G5wg7zQHLL97d5qYp2mOjWYyXaeT9Cd6eakXt8tw/vuyD1dA6koLL1ZAdgnEFbetxmHoz7Ka4TnUdqeMQZ8fd0YWSUPwDHPM7SBuWF1vFlWr5HoUPJrXdp111O9aItus+plkdUYJd5IE0YoDwDyrO6OzzRihDvtptAjjEcAmC7OviU14nOc0Z9rLOysvj666/JyMigoaHB7rYXXnihUwITjm9mQgg7jpfyc90ABoHU8fQEtu3oE9r9Iisvxo7hVMsjANW4sc8cwwjDUe37fNZl3RidaM242ADCfd3IK6+zS1RdaWC4orXyOO45nHGxAfoE2Md0OOFZs2YN8+fPJy4ujoMHDzJs2DDS09NRVZVRo0Z1RYzCQU0fHMxfvj/ER3n9uNkI5O6GhmrpJ+HImjUctL4Yt/WfqILWaFJejB1De2batpsHWxKeTZLwOACjQWHpvERuf3+n3fhZylFclSYKVV9unDdTauS6SYeXtJYsWcL999/P3r17cXNz47PPPiMzM5Np06Zx+eWXd0WMwkElhvsQ5uNGWqM/dR5hYG46cSClcDz1VdoZWgBREzEaFB6YM7jVS60vv0vnJcqLsYNoz0zbNrPl+ynLyw5j7rBwXrtmFN5uJ+YXxhoOA2DqP565Z0XoFVqf0+GE58CBA1x33XUAODk5UVtbi5eXF8uXL+fZZ5/t9ACF41IUhRkJwYDCEddh2qC80DqurG2gmsA3Cnz7AVBUpS1Jn5zUhPm6yZZ0B2OdkTtV+pnpZamny98HtWXdEZZoh7nDwpk7NAyAOUPDuCUmH4Cws2bqGVaf0+ElLU9PT1vdTnh4OGlpaQwdOhSAoqKizo1OOLzpg0P4z9ZMfqyK4yyQOh5H1qx+B6ChycybG7QdmE8tGEZ0oCcFlXWEeGvLWDKz41iaL48o0Grx8u/nT4a1cdpOvKxtMHB2d4cp2nCsqBqAC84KxX+VZYlLGg52qw7P8EyYMIENGzYAcP7553Pffffx1FNPccMNNzBhgnzz+popA4JwMRr4oSpOG8jaBqYmfYMSrWvWcBBg5e4c8irqCPF25eJR/ZgYH8hFSdqfkuw4JuvySJhvy+UtJ4PCiEi/E8cUyEGiDkNVVVILta7YiU7ZWkdsZ08IPUvnyPqWDs/wvPDCC1RVad+4ZcuWUVVVxccff8zAgQNlh1Yf5OnqxPi4AH490kS9kxeuDVWQn2I7o0k4CFPjifqqqImoqsobv2i7RK6fHIurk/R57SnmDgtndmIYW4+VWGbkXHnhx8NsSy/llbWpPBU9EZI/kOVlB1JS3UBZTaN2sH2lpY4uciwYz2ijtDhDHf5qx8XF2f7u6enJ66+/3qkBiZ5n+uAQ1h8p4oDTEJKatmkvtJLwOJa8vdBYDW5+EJzAT4cLOZRfiZerE1eNj9I7OtFBRoNi1wzyfkVh4Rub+XhbJncNTyIcIHsHNNWDk6tucQqN9cyzfn7uuORs0QblwNBud8aNBxsaGsjKyiIjI8PuQ/Q9ttPTqy3JcIZMpTuc5stZBgP//DkNgN+Ni8TX3VnHwERnGB8XyNkDg2gyq/x1hwk8gsBUDznJeocmgLRCrX5nQIhXi1o60X06nPAcPnyYs88+G3d3d6Kjo4mNjSU2NpaYmBhiY2O7Ikbh4GKDPIkN8mRL0yBtIGMzqK2VVArdNEt4dmeWsfloCU4GhRumyO9sb3HfudqW9M93ZVMVNlYblE0EDsE6wzPSpwrKM0ExQv+xOkfV93R4Sev666/HycmJb775hvDwcBRFihuF1oTww1/jaVKccarKh9JjEBB3+juKrqeqzd5VTrTV7sxPiiDc113HwERnSor0Y9aQUFYfyOeHylguAanjcRBploLlsUat/w7hI6RBqw46nPAkJyezY8cOEhISuiIe0UPNTAjh37+ms484RnBIe6GVhMcxlByF6kIwunLcbRD/S9He9d8yVb4/vc195w5i9YF83skK4xJXtLPTzGYwyLGJerLO8MTX7tUGpH5HFx3+LUhMTJR+O6KFcbEBeLgY2dRoXdaSqXSHYf1e9BvFvzbmYFa1GbmEMB994xKdbki4DxcOD2efGkO94ga1pVB0SO+w+rSahiayy2oBCCzZpQ1K/Y4uOpzwPPvsszzwwAP89NNPFBcXU1FRYfch+iZXJyOTBwSxzdysjkc4BkvCUxs2lk+2ZwJw69R4PSMSXegPswZhVpzY3mT5HsubD10dtRQsR7o34FS4XxuUhEcXHU54Zs2axebNmznnnHMICQnB398ff39//Pz88Pf374oYRQ8xMyGEHdaEp+gwVMtMoEM4rv2H931lLPVNZob392VCnBwI2lsNCPHi4pH92a7KuVqOwFq/c57fcUCFgHjwCtE3qD6qwzU869at64o4RC8wY3AIS/DmsLkfgwzZ2gvtkAv1DqtvqyqAkjRUFF446Adoszuy2aB3u+ecgTy6W0t46o/+inTi0U+apX5notMRbUDqd3TT4YRn2rRpXRGH6AXCfN0YEu7D9sLBloRnkyQ8erO8uy/zGkBGkStRAR7MHRamc1Ciq0UFehA7cgamvc/gWpWFWp6F4ttf77D6JOuREgmN+7SBaEl49NLhhGfPnj2tjiuKgpubG1FRUbi6yvuJvmpmQjBb8xO4irWUHPyFQwOK5SBKPVkSnp/qtHqOm8+Ole9FH3Hr7OEc2BvDMI5xaOtqEmYv1jukPimtoBoXGgmpsCQ8MsOjmw4nPElJSaecDnd2dmbhwoX885//xM2t5QF3onfzcDHaage8S/Zx/Yqf8ff1Zem8ROYOC9c5uj7IUrC6riaeAE8XLhsdqXNAoruE+7pzPHQsFBwjbcdqBs9aJEuZ3azJZOZYUTXDlGMYzQ3gGSztOnTU4aLlL774goEDB/LGG2+QnJxMcnIyb7zxBoMHD+bDDz/kzTffZO3atTzyyCNdEa9wYKtScnn++8NkqUHkqgE4KyaSDGnklddx+/s7WZWSq3eIfUtDNWrubgC2mwdz3cRo3F3kkNC+ZMj4cwGIrdnD2oMFOkfT92SV1tJgMjPRydJwMGoCSNKpmw7P8Dz11FO8/PLLzJkzxzZ21lln0b9/fx599FG2bt2Kp6cn9913H88//3ynBiscl8mssmzlfrQDJRS2mwcxz7iZscpBNpOIAixbuZ/ZiWGypNJdsrahqCay1UBKnEO4bmKM3hGJbuY76GwAEpQMHvt+FzMGz8Egv3/dxtpwcKrbEWhElrN01uEZnr179xIdHd1iPDo6mr17tS6SSUlJ5ObKu/m+ZOuxEnLL62yfbzNry1pjDVrTMxXILa9j67ESPcLrmyz1O9vMg7liTCQBni46ByS6nXcYJr8YDIqKZ8FO/peSp3dEfUpaYRUKZoaZDmoD0n9HVx1OeBISEnjmmWdoaGiwjTU2NvLMM8/YjpvIzs4mNDS086IUDq+gss7u8+2WhGeU4QhGTG1eJ7pO9ZH1AOw0D+amKVI30FcZoycBMMZwiBd+PITJLAf7dpfUgioGKtl4mivB2QPChusdUp/W4SWtV199lfnz59O/f3+GD9e+eXv37sVkMvHNN98AcPToUe64447OjVQ4tBBv+wL1g2oUFao7PkotCUom+9SYVq8TXaSpAeecbQC4DDibqEAPnQMSuomeCLs/ZKLTYf5aWM1XydlcMkq2qHeHtMIqxhksszuR48HorG9AfVyHE55JkyZx7NgxPvjgAw4f1gqxLr/8cq666iq8vb0BuPbaazs3SuHwxsUGEO7rRl55HSpgxsBO8yCmG3czxnCI/aYYwnzdGBcrHX67Q+GRrQSr9ZSoXsyfNUPvcISeLHUjSYY0nGnipdVHmDciAmejHCjalVRVJbWgihsMB7SB6Mn6BiQ6nvAAeHt7c9ttt3V2LKIHMxoUls5L5Pb3d6Kg1exsMw9munE3Yw2HeNc0h6XzEqVguZvs2fAt5wBp7sMZGylJZp8WOAA8AnGqKWaKZybrSmL5dEcWvxsXpXdkvVpRVQMVdY2Mc7XM8FiWFoV+2pXwfP3115x33nk4Ozvz9ddfn/La+fPnd0pgoueZOyyc164ZxbKV+8ktr7PV8YwzHua1K0ZKH55uUl7biFPWJlDAf8h0vcMRelMUbZbn4DfcHlvIupRYXl59mAg/N8pqGgnxdpPmoF0gtaCKGCWPEKUMjK7Qb7TeIfV57Up4FixYQF5eHiEhISxYsKDN6xRFwWQytXm76P3mDgtndmIYW4+VcN8HZhpMRkKUEub2q9c7tD7jw81HuRrtXWX82HN1jkY4hKgJcPAbRiuH8HOfTF5FPYve2ma7OdzXTZqDdrK0wirGW+t3+o8BZ6lf1Fu7FnHNZjMhISG2v7f1IcmOAG15a2J8IBMSIklRY7VBObG5S5nMKpvSivlsRyY//bwOH6WWRicvFNkVIsBWx2M6vony2pZvPqQ5aOdLLahinK1+R5azHIFUrYkuMyE20NaPh4yN+gbTi61KyWXKs2v53YrN3PffPQxtTAGgJHAUGKSzsgDCR6A6uePSUEa8ktPiZutG9WUr98u29U5iN8MjBcsOod0Jz6ZNm2zbzq3effddYmNjCQkJ4ZZbbqG+XpYtxAnjYgPYatZ6M5nTf9U5mt5pVUout7+/067p43jLu8p/Z0XIO3ahMTpTEZQEwATrrMNJpDlo56rOP0p/pQiz4gSR4/QOR9CBhGf58uXs27fP9vnevXu58cYbmTVrFn/+859ZuXIlTz/9dJcEKXqm6EAPjnmMwKwqGErSoEL+8+1M9sd5aBTMjLW8q9xqTpB37MImx28McCIhbos0B/3tquubiK7SzrEzh40AF0+dIxLQgYQnOTmZc845x/b5Rx99xPjx41mxYgX33nsvf/vb3/jkk0+6JEjRMymKwtD4KParlqNIjsssT2c6+TgPgIFKNgFKFTWqK3vVOHnHLmxMUdqyijbD03YSLM1Bf7ujhdW2xNIpborO0Qirdic8paWldsdF/Pzzz5x33nm2z8eOHUtmZmbnRid6vHGxAWw2D9E+Sd+gbzC9TGvvxK1dXXeaB9Bo2YQp79gFwJAx06nHhWClnDil5WyrgrZbS5qD/nZ2HZalfsdhtDvhCQ0N5dixYwA0NDSwc+dOJkw4cRBaZWUlzs7SNlvYmxAbwBZLwqNKwtOpWnsnbn1XudWaZLZxneh7jC7uVAUnAW3X8Uhz0M6Rm5VOnCEPM4p2pIRwCO1OeM4//3z+/Oc/s379epYsWYKHhwdnn3227fY9e/YQHx/fJUGKnmtAiBdH3M7CrCooxUegMl/vkHoN63EeJ/57Um27QraYh8g7dtFCYOJMAKa7HrYb93Ax8to1o6QPTydxztoEQIn3YHD30zcYYdPuhOeJJ57AycmJadOmsWLFClasWIGLi4vt9rfeeotzz5UmZ8KeoigMjo3ioGppYy91PJ3GepyHlbWra73qxG5Ve/Mh79iFnRitnmS2Zyr/uWk8t06NA8DTxci5iWF6RtarhJTsAKAuXGZ3HEm7E56goCB++eUXSktLKS0t5eKLL7a7/b///S9Lly7t9ABFzzc+NpAtlu3pUsfTueYOC+cfV4/CoJyo39mtxuPv6yPv2EVL/ceA0QWlMpeJ/uXce+4gvF2dKKxqYFdmmd7R9QpNJjMJDXsAcBt49mmuFt2pw40HfX19MRpbNjMLCAiwm/ERwkorXNZmIlSZ4el0Z/X3xayeqMuIGD6LDQ/OlGRHtOTsDv3Han9P34Crk5GZQ7Qu+tKzqXNkZWcxSMkCICBhur7BCDvSaVl0uSHhPux3GQqAUngQqgp1jqh32Z1ZDsBkZ60uo3/SObKMJdpm3TVkmW2dO1Rbylq1Lw9VlZ5Nv1XZwZ8BOG6MwuAdrHM0ojlJeESXMxoUBsbEcNAcqQ3ILE+n2pNVRj8KCTUXgGKUXSHi1Cx1PBz/FVSVaYODcXM2kFlSy/7cCn1j6wUUyzE6mV5J+gYiWpCER3QLu348kvB0quTMshM9PyKSwNVL13iEg+s/FgzOUJENpel4uDgxbZA2E7EqJU/n4Hq+wCLtFPrKMHnj4Wgk4RHdYrz04+kSJrPK3uzyE8cFyKnM4nRcPKDfaO3vlt/F8yz1XpLw/EZ15UTUpQLgLB2WHY4kPKJbDOvnyx6jpY6nYD9UF+scUe+QWlBFTYOJSUZrwiMvsqIdmi9rATMSQnA2KhwpqCK1oErHwHo2Nf1XDKgcNYcRGS196RyNQyU8qqry2GOPER4ejru7O7NmzeLIkSOnvM/TTz/N2LFj8fb2JiQkhAULFnDo0KFuili0l7PRQGx0DIfN/bQBWdbqFLuzyoigiCglX6vfkRke0R4x9oXLvu7OTIoPAuD7fTLLc6ZqD68DYLOaSEyQh87RiJM5VMLz3HPP8be//Y3XX3+dLVu24OnpyZw5c6ira/ssoJ9//pk777yTzZs38+OPP9LY2Mi5555LdXV1N0Yu2mN8s+3pkvB0jt2ZZUw07Nc+iRgJbj76BiR6hsjxYHCC8kwoPQ7AecMsu7VkWeuMqcfWA3DEYxSuTi3btwh9OUzCo6oqL730Eo888ggXXXQRw4cP59133yUnJ4cvv/yyzfutWrWKxYsXM3ToUEaMGMHbb79NRkYGO3bsaPM+9fX1VFRU2H2IrjdO6ng63e6sMiYZ92mfxEqTM9FOLp4QMUr7u+V3cXZiKAYF9maXk1lSo2NwPVR1MZ6l2tJyWYgULDsih0l4jh07Rl5eHrNmzbKN+fr6Mn78eDZt2tTuxykv13qSBAS0fX7Q008/ja+vr+0jMjLyzAMX7TYi0o9dBssMT/4+qCnRN6Aerq7RxMHcCiZYZ3hip+obkOhZTqrjCfRytZ27JstaZ+C4ljgeMvcnJFz+T3FEDpPw5OVpv2ChoaF246GhobbbTsdsNvOHP/yByZMnM2zYsDavW7JkCeXl5baPzMzMMw9ctJubs5H+kTGkmiNQUCGj/YmsaGlfTgX91Dz6KcWoBmeInKB3SKInOamOB5o1IZRlrY6zLGdtMicSHyytIRyRbgnPBx98gJeXl+2jsbHxNz/mnXfeSUpKCh999NEpr3N1dcXHx8fuQ3SP5tvTrS8Q4szsyTpRv6P0H6ttNxaivSInaIXuZcehLAOAOZY6nh0ZpRRUtF07KVpx7BcANpmHEh8iCY8j0i3hmT9/PsnJybaPoCBth0B+fr7ddfn5+YSFnf4U37vuuotvvvmGdevW0b9//y6JWfx242MD2WQtXLa8QIgzszuzjEkGqd8RZ8jVC/pZ6ngsv4vhvu4kRfqhqvDD/vxT3FnYqcyHokOYVYXN5iEMkBkeh6RbwuPt7c2AAQNsH4mJiYSFhbFmzRrbNRUVFWzZsoWJEye2+TiqqnLXXXfxxRdfsHbtWmJjY7sjfHGGRkX7sRXLcmPBPjlX6zew26EVIwmPOAOx07Q/j/5sG5oru7U6Ll2brT6gRuHsFYivh7POAYnWOEwNj6Io/OEPf+DJJ5/k66+/Zu/evVx33XVERESwYMEC23XnnHMOr7zyiu3zO++8k/fff58PP/wQb29v8vLyyMvLo7a2Vod/hTgdDxcn+vWP5IA5Shs49vOp7yBaVVbTgKHkCMFKOaqT24kTsIXoiDhLwnPsZ7AcHGqt49l0tJiymga9IutZLDNkG81DiQ/21DkY0RaHSXgAHnjgAX7/+99zyy23MHbsWKqqqli1ahVubm62a9LS0igqKrJ9/tprr1FeXs706dMJDw+3fXz88cd6/BNEO4yLDeBXs9Z1WRKeM7Mnq9y2nKVEjgNnt9PcQ4hW9B8HTm5QlQ+FWsPWmCBPEsK8MZlVfpRlrfZJP1GwPEDqdxyWQyU8iqKwfPly8vLyqKurY/Xq1QwaNMjumvT0dB5//HHb56qqtvqxePHi7g1etNv42AB+NVuWtY5KwnMmmhcsy3Z0ccac3SDKsruv2ZsP69lasj29HcqzoOQoJgxsNSfIDi0H5lAJj+gbxsQEsE1NoFG17BApTdc7pB5nd0Zps/odSXjEb3CKOp5fjhRRVd+kR1Q9h2W36WFDPFV4yAyPA5OER3Q7HzdnosND2a1aDteTWZ4OUVWVqsw9+CtVmJw8Tuy0EeJMWOt40jeASUtuBoV6ERvkSUOTmXUHC3QMrgew1O/83Ki125At6Y5LEh6hi/GxgVLHc4Zyy+sYUpesfRI1EYyyI0T8BuFJ4OYL9eWQuxvQygtsu7VkWattqmqr3/nVlIiHi5EIX6mnc1SS8AhdjIsNYKPJUsdz7BfbDhFxelr9jlawbIyT5SzxGxmMJ9oaHPvJNmzdrbXuYAF1jSYdAusBSo9BeSZmxZnt5kHEB3uhKIreUYk2SMIjdDEuNoBd6gBqVReoLoSC/XqH1GPsOV7MBIN2SCFx03WNRfQSrdTxDO/vS4SvGzUNJtYfKWrjjn1c2joAcn3OohY32ZLu4CThEboI8HQhJtSfbebB2oDU8bRbzdHNeCu11Ln4Q9hwvcMRvYG1jidzCzRqR0ooimI7auJ/Kbl6RebYjmoJz26XkQBSsOzgJOERuhnXfHu6HDPRLiazSmjRRgDqI6eAQX6FRScIGgReYdBUpyU9FtZlrdX782k0mfWKzjGZTbbXrXUN2nE5siXdscmrpdCNXeHy8V9tO0RE244WVjFe1QpLvYbM1jka0Wsoin3XZYsxMQEEeblQUdfE5qPFOgXnoHJ2QV05qpsv35f1A2SGx9FJwiN0My42gP1qDGWqJ9RXaC8g4pT2H8tkhJIGgHHATJ2jEb2KtYFls+Vlo0FhdqJ1WUt2a9lJWwtAff8pVNSbMRoUogOlhseRScIjdBPq40ZUoFez09N/0jWenqD64DqMikqRWxT4ReodjuhNrIXLOTuhrtw2fJ6ljueHffmYzLKb0sZSsJwdoHWqjg7wwMVJ/kt1ZPLdEbrSlrUsdTyWFxDRNr+8DQBURsjp6KKT+UVCQDyoZlv3YIAJcYH4uDlRVFXPjuOlOgboQOorIWsrcKJgOU7qdxyeJDxCV+NiA/jFbNlplLkF6ir0DciB1TeZSKzdCYBXotTviC4Qb1kmTVtjG3JxMjArMRSAVbKspUn/FcxN4BdNcrU/IPU7PYEkPEJX42IDyFBDSVfDtBeQ9PWnv1MflXZ4PzFKHk0YCBom9TuiCwyYpf2ZusauGah1t9b3+/JQpUmobTs68TNILajS/io9eByeJDxCV5EBHvTzc+dn01naQOqaU9+hDytL+QGAo66JKG6+OkcjeqWYKWBw1g71LTlqG546KBgPFyPZZbXszS4/xQP0Edbl9/iZpBVqCY/M8Dg+SXiE7uyWtVJXyzETbfDI1Hp+FIdO0jkS0Wu5ekGUVoRL6mrbsJuzkRmDQwBZ1qI8G4oOgWKgImIS+RX1gBwa2hNIwiN0Nz42gE3moTTh1OKdpbAwm4ir3A6Ay6BZOgcjerUB52h/njTbau26vCqljy9rHf1J+zNiJGkVTgCEeLvi4yaH+Do6SXiE7sbFBlCD24ljJmRZq4Wq9O34UEWF6kHM8Cl6hyN6M2sdT/p6aKq3Dc9MCMHFaOBoUTVHLHUrfZK1fiduBmmF1YB0WO4pJOERuosN8iTIy/VEHU+aJDwnK07+DoBdTmcR6CPFkaILhQ4Dr1BorIGMTbZhL1cnzh4YBMD/9vbRZS2z6cQbsviZtoJlqd/pGSThEbpTFIXxcc3qeI7Zv7MU4JKudXXNCpL+O6KLKcqJ7eltLWvt66MJT84uqC0BV1+IHGcrWJYdWj2DJDzCIYyPDWC/Gk2ZIQAaqyFjs94hOY6aEkIr9gKgxEv9jugG1mUty/EJVrOHhGI0KBzIreDLXVl8lZzNprTivtOB+Yi2U5L46WB0Js02w+OtX0yi3Zz0DkAI0Doug8JPpmEsUH7RlrWshxn2dWlrMaBywBzFgIGD9Y5G9AVxMwAF8lOgIhd8wgHw93RhYIgnB/Oq+MPHu22Xh/u6sXReInOHhesUcDc58qP258BzaWgyc7ykBoD4EJnh6Qlkhkc4hIEhXvh5OLO20dqPZ+2p79CH1O77HwA/m0cwrJ+PztGIPsEzECKStL83m+VZlZLLwbyWBct55XXc/v5OVqXkdlOAOqgq1M4ZAxgwi+PF1ZjMKp4uRsJ83PSNTbSLJDzCIRgMCmNjAthgPgsVBfL3QmUfrRNozmzGeFSro0j1m4SHi0zKim5i67qs9eMxmVWWrdzf6qXWBa1lK/f33uUt62aKsOHgHXaififEC0VRdAxMtJckPMJhjI8NoAQf0l0GagPNGp/1WTm7cGkopUJ1xyVmgt7RiL6keR2PqYmtx0rILa9r83IVyC2vY+uxku6Jr7tZ63cGngtwYoeWbEnvMSThEQ5Dq+OB7xpGaAOH/qdjNA4iVasZWG8+i2GRQToHI/qUfmPA3R/qyiBrKwWVbSc7zbX3uh6l+Xb0gdrBvbYePLIlvceQhEc4jMQIHzxdjPyvXkt4TKlrMTX0whfPDlAPa+8qfzInMSJSzs8S3cjoBAO0/9w59D9CvNtXp9Le63qUrO1a4ufmpyWC0OzQUEl4egpJeITD+HF/Hk1mlRQ1ljzVH2NTDff+5dXeXQh5KtVFtiLJLYYkBoXK1lfRzQbP1f48/D3jYgMI93WjrWoVBW231rjYgO6KrvtYZlqJnwlGJ1RVbXZoqOzQ6ikk4REOYVVKLre/v5P6JjOgsNaUBMCo2s29f/dHW1LXoKCyzxxNSEQszkb5dRXdLP4cUIxQdAhj2TGWzksEaJH0WD9fOi8Ro6EXFvCeVL+TW15HTYMJJ4NCdKAkPD2FvIIK3Vl3fzTf27HWPAqAmYZdgNq7d3+05ZB2nMQ6cxLD+/vpG4vom9z9IHqS9vfD3zN3WDivXTOKMF/7ZaswXzdeu2ZU7+zDU54NubsBxVbIbZ3diQr0kDciPYh8p4TuWtv98at5KPWqM5GGQgYo2b1790drmuptRZI/mkZL/Y7Qz6A52p+HVwEwd1g4Gx6cyQc3jcfb1QjAc5cO753JDsBhy+aJyHHgFQzIDq2eShIeobvWdnXU4sav5qEAzDLsbPO6Xit9PTRUkq/6s0eNIynST++IRF816Dztz/Rfoa4CAKNBYfKAIM47S0ty1hws0Cu6rndQm2ll8Pm2oeY9eETPIQmP0F1buzrWmkcCMNO485TX9UqWF9k1ppH4ergSFeChc0CizwoaAAHxYG6Eo+vsbpo1JBSA1QfyUdVeuORcVwHHftH+3izhkRmenkkSHqG7tnZ/rDVpCc8o5QgJPg29c/dHa1TV1oPoB/NoRvT3k06uQl+DLLu1Dq2yG54yMAhXJwNZpbUcyq/UIbAulrpaS/QCB0DwINuw9ODpmSThEbozGpRWd3/kEMQBcxRGReW5EXm9c/dHa3J2QWUO9Yo7m8xDGdFf6neEzqzb0498rzXhs/BwceLsgVpDzNX78/WIrGsdarmcVV7bSGFlPQDxwbJDqyeRhEc4hP9v777jm6rXB45/krTpoi0UuimlrEKBAmWDyCpQkOFGHIAKXhEUrvdex70qIMr6KSBeRVRsERFENohVVkG5zBaQLaMMoYNRaEvpSs7vj9BAoLtpM/q8X6+8mpycc/J8c9rmyXcWNfpjo74tAOEZv1siLMu4/U92t6YNOWhpJf13hKXV6wzOnpB1Fc7vMnmqoFlr4zE768ejy7szHL3pQ8bNBf13/DyccXd2tERkopwk4RFWo2D0x5LRnZj1ZCs8nB2I1bU3PHlqE+TetGyAVeV2c9bqW4YZp2VIurA4jeOdWo5j60ye6tXMB4CDF66Tkm5HAwvO/Q+yb4BrHajb3rjZOMOyTDhocyThEVZFo1bRuWFtHo2oy+NtgziqBHPZMQDys+HkRkuHV/nSzkLKYRSVhi261gTWdMHb3cnSUQkBzQYbfh5bZ+hndpuPu7NxFOFme6rlKWjOahIFasPwe51e4beTlwGooXWofnOD2ThJeITVejQiEFCxJscwCeG93yzt0u3anUserbmOu8y/I6xHw57g6AbpfxmXPCnQJ+zOaC27oCh3Ep6mhpqt2MNJPDBjC+sOGmZ9/+VoCg/M2FI9Z4G3UZLwCKvVPMCDUF93NuQZFuvjz18ME/LZs9tJ3f8cOgDQSpqzhLVwdDGuFM7RtSZPFfTj+f3UFbJy86s6MvNLOgjXz4ODCzToaVz65t4JUpNvZFffpW9skCQ8wmqpVCoejQhkv9KIa+rakJsBZ+IsHVblyUg29BsAvs9oDSAdloV1CSto1lpr0qzVxLcG9bxcyc3X89vJKxYKzoyOrjb8bNwHnYPLfUvfFCjYVi2XvrFBkvAIq/Zwm0BUKjXrcguatdYWf4AtO7YOUMjzi2B/ujtqFbQMlCYtYUUa9wWNE1w7A6nHjJtVKtWdSQhtfXi6osCR1Yb7zR8udOkbk92h+i19Y6Mk4RFWzdfDmQcaexOrNzTxcHwD6Oygyrwwt//JJvoamg0a+7jj5uRgwYCEuIeTOzTsZbh/z5ePyDDDaK0tx1Ntu7Yj+Q9ISwQHZ2jcr9RL2lSrpW9slCQ8wuo9FhHIHn1TruMOt67BuR2WDsn8MlKM5YrTGFanDpcJB4U1ajbI8POeQQTt63vh4ezA1Zu57D+fZoHAzKSgdqdxH3CqUeolbarV0jc2ShIeYfX6hvnhrNXyS75hEkKOrrFsQJXh2FpAgcB2/HbZBZD+O8JKhfYHlQZSDsOVU8bNjho1PZsaank22upoLUW5038n7GHAsPSNn0fRU0OoAH9P5+qz9I0Nk4RHWD0XrYYBLf35Sd/RsOHoasMsqPbkdhKnhA3h4IXrALJCurBOrl7QoIfh/uEVJk8Zh6fbaj+e5EOG/kkOzsb1wzRqFc0CPArdvWCxm4mDwqrP0jc2TBIeYRMejajLDn0LruJhmN7enkZrZaYam7P+8u9HenY+Wgc1oX7uFg5MiCK0fMLw89CPJqO1HmzijaNGxenLNzlzewkGm1JQu9MoEpwMC4PuPnOVuBOGyQZruWpNdvfzdGbesxFEtfCvyihFOUmPSGETOoZ44VezBusyOzHS4Vc4tPzOnCC27shqUPQQ2Jb4G4Z/ss0DPHDUyPcRYaWaPmSoBbl60jBnTUBrADycHenUoDa/nbzCpmMpvORtQ6uJKwocXmm43/wRALJy8/nX8j9QFBjaLoipj7ZkT+I1UjOy8XE3NGNJzY7tkP+owiao1SoeaRPIWp2hQy/H10NulmWDMpc/fgBA3+Jxfr49gZmPu5Ntj3QR9s3ZA5r0M9w/vNzkqTvD021smYm/9hpGZzm6GfopATNjT3D+Whb+ns78Z2Az49I3Q1oH0rlhbUl2bIwkPMJmPBIRSILSmAuKN+RmwslfLB1SxV09DRf3oVdpGLjVl1+OGPo+/HJEpq0XVs7YrLUC9Hrj5t63FxPdd+4a127mWiKy8rn9xYNmg0Drxq4zV4n531kApj8WjoesjG7zJOERNqOhdw1aB9Vina6zYcOh5cUfYAtu/5Pdlt+Co+mmw1pl2nph1Rr1ASdPyLgE5/9n3Fy3lith/h7oFdh63EZqefJz73TAbjWUrNx83lj+BwBPtQ+iexNvCwYnzMWqEh5FUXjvvffw9/fHxcWFyMhITp48Werjp0+fjkqlYsKECZUXpLCoxyICWVPQrHXyV7h13aLxVIiioNxOeFbpHrj/6ds/Zdp6YZUcne/MyXPPl49IW1tM9NQmuJUGNXwhpDszfj7O+WtZBHg685+Hmlk6OmEmVpXwzJw5k7lz5/LFF1+we/du3Nzc6NevH9nZJc9guXfvXubPn094eHgVRCosZWB4AGfUwRzXB4EuF46ssnRI5XdhD6q0s2Qqzvyqb1foLjJtvbBqLR83/DyyEvLu/J/uc7sfz7Y/L5Odp7NEZGXzx1LDz5ZPsDPxOgt3ngNgxuPhuEtTlt2wmoRHURTmzJnDO++8w5AhQwgPD+fbb7/l0qVLrF69uthjMzMzeeaZZ/jqq6+oVatW1QQsLKKWm5ZeTX1YrnvQsGH/d5YNqCJu1+78om9PNkVPbAYybb2wUiEPgkddyL5hGEhwW4tAD3w9nMjK1bHzzFULBlgKt67DiVjD3WaP86/lBwEY1qEe3RpLU5Y9sZqEJzExkeTkZCIjI43bPD096dixIzt37iz22LFjx/LQQw+ZHFucnJwc0tPTTW7CdjwaUZfVugfIRwMX95ksYmgz8nMM34qBlYU0Z91Lpq0XVkmtgdZPG+7f9eXDphYTPboGdDng3Yyp8Q78lXaLwJou/HtAU0tHJszMahKe5ORkAHx9fU22+/r6Gp8rzNKlS0lISGDatGmlfq1p06bh6elpvAUFBZUvaGERPUN9yHetw2ZdG8MGW6zlOb4ebqWhr+HPXloUuZtMWy+sXkHCcyYOrp83br67H4+iWHEftIRvAThbdxCLdhvin/GYNGXZI4slPIsXL6ZGjRrGW15e2ZcKuHDhAuPHj2fx4sU4O5f+G/Dbb7/NjRs3jLcLFy6U+bWF5Wgd1AxuFcAyXXfDhoNLbW+pifiFAPzk0JtcfeFzeci09cImeIVA/W6AAgeWGDd3aVgbN62GlPQcDl+00lr0lCNwcR+K2oFXjxk6Jz/dsR4PNK5j4cBEZbBYwjN48GAOHDhgvNWpY/gFS0kxrf5MSUnBz8+v0HPEx8eTmppKREQEDg4OODg4sG3bNubOnYuDgwM6XeGd5ZycnPDw8DC5CdvyaERd4vStSVVqQtYV+DPW0iGV3rUzkLgNBRXTk9ujdVDzr36h+HuaJu0ybb2wGW2eM/w88J1xTh4nBw0P3h7ObbWLid7+4nHE/QEOXXe63ZQlo7LslcWWlnB3d8fd/c5aQYqi4Ofnx+bNm2ndujUA6enp7N69mzFjxhR6jt69e3Po0CGTbc8//zxNmzblzTffRKPRVFr8wrJa1fUk2NuDFWndGOOwztCsVTBE1tolLAJgu64lF/Hmsydb81C4Py93byjT1gvbFDYYNvzL0KR1drtxcdHIZr78fDiZTUdTeL1PE8vGeK+8W8bRWf932bAw8czHw6nhJCsu2Sur6cNTMH/OBx98wNq1azl06BDDhw8nICCAhx9+2Lhf7969+e9//wsYkqYWLVqY3Nzc3KhduzYtWhTdL0LYPpVKxWMRdfmxoFnr5K9w3QaaJnV55OwzJDxLdT15u39THgo31ODItPXCZjm6QMvHDPf3RRs392zqg1oFR5PS+SvNypaCObYOsm+QjDe/6VvybKd6dG0kTVn2zGoSHoA33niDV199lZdeeon27duTmZlJbGysSf+c06dPc+XKFQtGKazFw20COaMEsEPX3LD45r5vLB1Sic7+bzlO2Ze5onhQp+3DvPRgA0uHJIR5tHvB8PP4eki/BICXm5Z2wYYO95uPWdmsy7cTs+/zuhNQy423+0tTlr1TKVbdfb5qpKen4+npyY0bN4rtz6PT6crVuVoYaLVa1Grz5tjDvtyFx9lY5mtng2tt+PtRwwywVuivtCxSPomkLUdY5/EU/cfPw0FWRBf25Jv+hmUmur8JPf8NwFfbz/DhhmN0a1yHRS92tGh4Or3CnsRr5FxIoEfc4+QpGrrmzGXO6Ci6NJTaHVtU2s9vsGAfHluiKArJyclcv37d0qHYNLVaTUhICFqt1mznfDQikLfORJCiqoNv1hXDzMuth5nt/OaSnp3HBwuW8QVH0KGm57P/lmRH2J8Oow0Jz75o6PZPcNASGebLhxuOsevMVdKz8yy2CGfs4SQmrztK0o1s/s/hC3CADfqONGvSRJKdakISnlIoSHZ8fHxwdXVFpZK+FWWl1+u5dOkSSUlJ1KtXz2zvYf+W/ry75jALc3vzhuMPsOdLq0t4cvP1jPkunsHXV4ED5DYZSA2fYEuHJYT5NRsE7v6QkWSY0C/8CULquNHQ243Tl2+y/c/LDAwPqPKwYg8nMea7BBSgNjcYrDEsdhqT348Df14m9nCSjIasBiThKYFOpzMmO7Vr17Z0ODbN29ubS5cukZ+fj6Ojeb7l1XByIKq5H0sP9OR17UocLiXA+d1Qz7JV5wUUReE/qw5x9FQi3zjtAMDlgXEWjkqISqJxNPTl2foh7J5nWGtLpSIyzJfT286w6WhKlSc8Or3C5HVHjYvxDtNswUmVzwF9Q/YrjVFhWKC3T5ifDBSwc1KnXoKCPjuurq4WjsT2FTRlFTU/Unk9GlGXa3iwXrm9RMOOT8p1Hp1eYefpq6w5cJGdp6+aZYXyz7ae4sf4v3jGYQtOqjwIaANBHSp8XiGsVtuRoHGCi/FwzpDkFywmuuV4Knk6fZWGsyfxGkk3DGvRacnjOYeNAETn9wNkgd7qRGp4SkmasSqust7Dro3q4OPuxKeZAxjiFIfqxE+Qehx8Sr8Wzt3t+wX8PZ2ZOCis1FXdBR0iC+bRSb5xi49+/RMXshnnshHygE5jQX6XhD2r4QNtnoV9C+D32VD/AdrUq0VtNy1Xb+ay9+y1Ku0zc/fCu49ptuOruk6yUosN+k5F7ifsk9TwCJunUat4pE0gp5VA9rt2NWwsQy1PQfv+3ckOQPKNbMZ8l0Ds4aRSneOBGVsY9tUuxi89wLCvdvH3ZYZVlz9pfBDnvDSoVR+aP1LquISwWV1eBZUaTm2CpD/QqFX0auoDwKajVTs8vWDhXQ06XtasA+DL/IHk3fN9XxbotX+S8FSRymguEXc8GlEXgKnphmpqDi2DG3+VeNy97ft3K9g2ed3RYq9XUQkTGKrQH7x8e32hrhNAI5WqohrwCrmT3O+YA9xZTHTjseQqXUy0Q4gX/p7ODFTvJFidylXFnSW6nsbnZYHe6kP++1YBczSXlMfIkSNZuNCwVoyDgwNeXl6Eh4czbNgwRo4cWeo5cWJiYpgwYYJVD8sP9XOnRaAH+y42JLFWBCEZCST/NA3vp/5bbEfE309dLjRRKVDQvj9w7m808K5BnRpaatdwok4NJ2rX0FLLVcu7q48UmjABPK7ZjnN2Kop7AKqCVaWFqA66ToDDKwxTRXR/i26NG6B1UHPh2i1OpmbSxNe9xFOYg0at4r2HmtJw+asAfJPfn1sYanNkgd7qRRKeSnb3cMi7FTSXVPbikFFRUURHR6PT6UhJSSE2Npbx48ezfPly1q5di4OD/fwKNPPz4PDFdN6+OoCl2gRqn1jCk9O7MHpwL+N7nJ2nY//56+w6c5VdZ66y71xaqc59LDmDY8kZZYpHSx5jNGsBOBv6AiEOTmUrkBC2zD8cmvSHP3+GrR/i+uRCHmhUhy3HU9l4NKXKEh6AoJSNNFFfJF1xYZGuj3G7XxV88RTWw34+7aqQoijcyit5pJFOrzBxbeHf/hUM3y4mrT1K10Z1SvXtwsVRU+aOv05OTsbV5gMDA4mIiKBTp0707t2bmJgYRo0axaxZs4iOjubMmTN4eXkxaNAgZs6cSY0aNYiLi+P5558H7nQ6njhxIpMmTWLRokV88sknnDhxAjc3N3r16sWcOXPw8fEpU4zmEHs4iR/jDU1Yu/RhbNe15EHNIZ659T0vf1eTh1r6cyUzh/0XrpObX/ZRIq/2aoSXm5YrmTlczczlSmYOlzNzuXDtJtduFj779nOajQSpL5Os1OKI3yOEVKiEQtig3u/Cn7FwdDVcOkBkM1+2HE9lZcJf1K3lUiWL5Cr5OdTeNR2A/YFPM793b1mgt5qShKccbuXpCHvvlwqfRwGS07NpOenXUu1/9P1+uGorfsl69epFq1atWLlyJaNGjUKtVjN37lxCQkI4c+YMr7zyCm+88Qaff/45Xbp0Yc6cObz33nucOHECgBo1agCGIftTpkwhNDSU1NRUXn/9dUaOHMmGDRsqHGNZFPTDudv/5Q/lQc0hHlbvYJ5qMD8duvOcj7sTnRrUplOD2rSvX4vnvtlDyo3sQhNTFYZvgRMimxT6j3Hn6asM+2rXfds9uMk4h9UAzM5/nIdr1apACYWwUb7NoeUThj51m99HEzoHgNOXbzJ+6QGg8pv3E3/9nAa6JC4rnoQ9+h+868h8atWVJDzVVNOmTfnjjz8AmDBhgnF7/fr1+eCDD3j55Zf5/PPP0Wq1eHp6olKpjDVFBV544QXj/QYNGjB37lzjoq8FSVFVuHuejQKHlAZs0HVggGYPbzosYVTevxj1QAhPd6xHSB03k5qySYPCGPNdAiowSXpK075f0CEy+Z6E6W8O66ilyuSkPpAdbn2ZKh0iRXXV8204shJOb2btsSVAC5OnK7V5PyeD2vtmA7AzaDSDJdmp1iThKQcXRw1H3+9X4n57Eq8xMnpvifvFPN++VCMEXBw1pYqvNBRFMX7ob9q0iWnTpnH8+HHS09PJz88nOzubrKysYidcjI+PZ9KkSRw8eJC0tDT0ekNT0fnz5wkLCzNbrCUpav6Mj/OfoI86nkjNfnrr4mlZtzUNvO9PxKJa+DPv2Yj7OpaXpn1fo1Yx8Z6Eqa7qMi9oYgFDTdM7g1tKtbmovrwaoG/7POq9XzHJYSEDcqeZDAkvaN6vjNmOk3+aip/+BmcUfyIefs1s5xW2SYall4NKpcJV61DirVtjb/w9nSnqz7dgOGS3xt6lOp85J+47duwYISEhnD17loEDBxIeHs6KFSuIj4/ns88+AyA3N7fI42/evEm/fv3w8PBg8eLF7N27l1WrVpV4XGUoav6M00ogC3QDAJjo8C1+LkWfI6qFP7+/2YslozvxyVOtWTK6E7+/2atU3zgLEiY/T2dAYZJDDC6qXOJVLXh02GjpECmqvX0hr3BF8aCx+iIvaH6+7/lKme049Th1/vgSgO31xlG3jqf5zi1skiQ8lajg2z9wX9JjyeGQW7Zs4dChQzz22GPEx8ej1+v5+OOP6dSpE02aNOHSpUsm+2u12vuWgzh+/DhXr15l+vTpdOvWjaZNm5KaWrUTihUoaFYq7F2cm/8IlxQv6qkv0/5iTLHn0ahVdG5YmyGtA+ncsHaZrktBwhTbL4NIzX70akdav7yAqJZVv1CiENYmKdeJaXmGaRnGO6zEn6uF7me22Y4VhZurXsOBfDbpInhw8EjznFfYNEl4Kpnpt/87/DydK31IOkBOTg7JyclcvHiRhIQEpk6dypAhQxg4cCDDhw+nUaNG5OXl8emnn3LmzBkWLVrEF198YXKO+vXrk5mZyebNm7ly5QpZWVnUq1cPrVZrPG7t2rVMmTKlUstSlOISy1s4MyVvOADqHXMg+XDlxZGdRtOEyYbX6voaGt/SL20hhD3zcXdmhb4be/ShuKpymOr4NRQyTMBssx3HR+OWtJssxYntjd8otClbVD+S8FSBijSXVFRsbCz+/v7Ur1+fqKgotm7dyty5c1mzZg0ajYZWrVoxa9YsZsyYQYsWLVi8eDHTpk0zOUeXLl14+eWXGTp0KN7e3sycORNvb29iYmL48ccfCQsLY/r06Xz00UeVXp6iFJdYDhn2NwgdALpcWPkS5FXCmjmKAuv/DhlJULsRdPun+V9DCBtlqIV14Z28F8lRHOmpOcizmk0m+5httuMrp9DH/hsw9ON7um/Xip9T2AWVUpVzfFup9PR0PD09uXHjBh4eHibPZWdnk5iYSEhICM7OstZKRVTFe3nvAp7GeTYyL8O8znDzMnR6BaKmlXyysjjwPaweA2oHeHEjBEaY9/xC2LiCSVif1/zMe46LuKVoGZT7AacUw7Iw/326DQPDK9gEnJ8L3/SDSwns0DVnYaM5fDmigxmiF9aquM/ve0kNj7ArRfbDqeENg/9ruL/rczj4g/le9GKCoXYHoMdbkuwIUYiCWthYtyH8pmuBiyqXLx1n4UkmAMeTyjaT+X0UBX56HS4lcENx4x95LzO2VxMzRC7shSQ8ovoIjYJu/zDcX/sq/LWv4udMT4Klz0B+NjSJggder/g5hbBTUS38+e2tSJyHfkOWiz8N1MlsrLcQB/L5LO4Uu88U3pm5VHbPh/2L0KNmfN5YGjcOpVVQTbPFLmyfJDyieun5jmF9H10OfPcYJP1R/nNlpsK3gyHjEtQJhUe/ArX55koSwh5p1CratwjFdfgycHTFJ3UHK3yiUSs6Xl92kBu3Cl+qpVj7v4PYtwCYqXuaOH1rXu3V2MyRC1snCY+oXtRqeOwrqNsBsq8bEpby1PTcuAgLB8GVP8EjEJ5ZBs7Ftx8LIe7iHw5PLAS1I63St/K12zyuXL/BO6sPU6aupfELYc04QGGP9+N8kdefDvW9zNMBWtgVSXhE9ePkDs8uh8C2cCsNovtDwiJDH4DSOPc/+KonXD4O7gEwcj3Uql+pIQthl5r0hSe/BbUjPXX/Y7l2MvEH/2DV/oslH5ufA7Fvw7rXAIVbrZ9nePJjgIpxvRpVduTCBknCI6onZ08YvgaaDjQMV187Dr4fCpdPFH1MRjL89A+IHgCZKeDTHF6IBa8GVRe3EPam6QB4dgW4eNFSncgvTm9ycs0MLqQU0Z9HUeDUJpjf3TAAAaD7m3zq9Dey8xTC63rSrXGdqotf2AxZS0tUX07u8OQi+P1jiJsBJ38x3EK6Q6NIw3w6ag1cPw+J2+HPXwx9fwDaPAtR0w3nEEJUTIPu8FIcyvIXcb+4lzf5lhtfrEbf5hHUQR2hhi/kZkLKYTj+E6QeNRzn5g2DPuFGvb58O2MLAON6NjLrMjzCfkjCI6o3tRoe/Bc0Gwyb3zf8M03cZrgVpm576PWu4R+0EMJ8agWjevFX0nZ8zc1NM6nLZUhYaLjdy8EZ2o8yjIp0q83CzSfJzMkn1NedyGa+VR+7sAmS8AgB4B0KTy2Ga4lwfD1c2AM3Lhiqz2v4gn8raDYI/FqCfHsUonKo1dTq9hK/ufXjP8sX00N9gMeCMvFQ0sHBBeo0hnqdDX+LLjUBuJmTzzc7EgEY26sR6ipem1DYDkl4qqEePXrQunVr5syZY+lQrI9XCHR51dJRCFGtDY4IZuvJAUze34oF1134eXw33J0dC9138e5zXM/KI6SOGw+1rPzleoTtkk7LdmzkyJGoVKr7bjNnzjRZ6LN+/fqS/AghrMr7Q5oT5OXCX2m3mLjmSKH7ZOfp+HK7oXZnTI+Gd2ZWF6IQkvDYuaioKJKSkkxubdu2xd1dOtsKIayXu7Mjc4a2Rq2ClfsvsubA/UPVl+27wJXMHAJruvBIm0ALRClsiSQ85aEokHuz6m/lWOfVyckJPz8/k1vv3r2ZMGECYGjeOnfuHH//+9+NNUBCCGEN2gZ7GWdMfmfVYS5cyzI+l5uv54u40wC83L0Bjhr5OBPFkz485ZGXBVMruKpvefz7EmjdzHrKlStX0qpVK1566SVGjx5t1nMLIURFvdqrEdtPXmb/+eu8vuwAi0d1Iv5cGmsPXuTSjWzq1NDyRLsgS4cpbIAkPHZu/fr11KhRw/i4f//+Js97eXmh0Whwd3fHz8+vqsMTQohiOWjUfDK0DQPm/sbes2lETNlIZk6+8fmcfD1xJ1KJaiEdlkXxJOEpD0dXQ22LJV63jHr27Mm8efOMj93c3Bg2bJg5oxJCiEpVr7Yrj7cNJOZ/50ySHYDM7HzGfJfAvGcjJOkRxZKEpzxUKrM3LVUWNzc3GjWSdWWEELZLp1eIPZJS6HMKoAImrztKnzA/GakliiS9vARarRadTmfpMIQQolB7Eq+RfCO7yOcVIOlGNnsSr1VdUMLmSMIjqF+/Ptu3b+fixYtcuXLF0uEIIYSJ1Iyik53y7CeqJ0l4BO+//z5nz56lYcOGeHt7WzocIYQw4ePubNb9RPUkfXjsWExMTKHb4+LiTB536tSJgwcPVn5AQghRDh1CvPD3dCb5RjaFzUamAvw8nekQ4lXVoQkbIjU8QgghrJpGrWLioDDAkNzcreDxxEFh0mFZFEsSHiGEEFYvqoU/856NwM/TtNnKz9NZhqSLUpEmLSGEEDYhqoU/fcL82JN4jdSMbHzcDc1YUrMjSkMSHiGEEDZDo1bRuWFtS4chbJA0aZWSUo6FO4UpeQ+FEEJYiiQ8JXB0dAQgKyurhD1FSXJzcwHQaDQWjkQIIUR1I01aJdBoNNSsWZPU1FQAXF1dUamkvbis9Ho9ly9fxtXVFQcH+bUTQghRteSTpxQKVhEvSHpE+ajVaurVqycJoxBCiConCU8pqFQq/P398fHxIS8vz9Lh2CytVotaLa2oQgghqp4kPGWg0Wik/4kQQghhg+TrthBCCCHsniQ8QgghhLB7kvAIIYQQwu5JHx7uTIiXnp5u4UiEEEIIUVoFn9ulmdhWEh4gIyMDgKCgIAtHIoQQQoiyysjIwNPTs9h9VIrM949er+fSpUu4u7ubfY6Y9PR0goKCuHDhAh4eHmY9tzWQ8tk+ey+jlM/22XsZpXzlpygKGRkZBAQElDjtidTwYJgQr27dupX6Gh4eHnb5i1xAymf77L2MUj7bZ+9llPKVT0k1OwWk07IQQggh7J4kPEIIIYSwe5LwVDInJycmTpyIk5OTpUOpFFI+22fvZZTy2T57L6OUr2pIp2UhhBBC2D2p4RFCCCGE3ZOERwghhBB2TxIeIYQQQtg9SXiEEEIIYfck4alEn332GfXr18fZ2ZmOHTuyZ88eS4dUorLE/NVXX9GtWzdq1apFrVq1iIyMvG//kSNHolKpTG5RUVGVXYwyKUuZY2Ji7iuPs7NzFUZbsrKUp0ePHveVR6VS8dBDDxn3sYVrWJjt27czaNAgAgICUKlUrF692tIhlUpZ4165ciV9+vTB29sbDw8POnfuzC+//GKyz6RJk+67hk2bNq3EUpReWcsbFxdX6O9scnJy1QRcgrKWp7C/L5VKRfPmzY37WPP1K860adNo37497u7u+Pj48PDDD3PixAmLxSMJTyX54YcfeP3115k4cSIJCQm0atWKfv36kZqaaunQilTWmOPi4hg2bBhbt25l586dBAUF0bdvXy5evGiyX1RUFElJScbbkiVLqqI4pVKe6+Th4WFSnnPnzlVhxMUra3lWrlxpUpbDhw+j0Wh44oknTPaz5mtYlJs3b9KqVSs+++wzS4dSJmWNe/v27fTp04cNGzYQHx9Pz549GTRoEPv37zfZr3nz5ibX8Pfff6+M8MusvNfpxIkTJuXx8fGppAjLpqzl+eSTT0zKceHCBby8vO77G7TW61ecbdu2MXbsWHbt2sXGjRvJy8ujb9++3Lx50zIBKaJSdOjQQRk7dqzxsU6nUwICApRp06ZZMKriVTTm/Px8xd3dXVm4cKFx24gRI5QhQ4aYO1SzKWuZo6OjFU9PzyqKruwqeg1nz56tuLu7K5mZmcZt1n4NSwNQVq1aZekwyqy8cYeFhSmTJ082Pp44caLSqlUr8wVWSUpT3q1btyqAkpaWViUxVUR5rt+qVasUlUqlnD171rjNVq5fSVJTUxVA2bZtm0VeX2p4KkFubi7x8fFERkYat6nVaiIjI9m5c6cFIyuaOWLOysoiLy8PLy8vk+1xcXH4+PgQGhrKmDFjuHr1qlljL6/yljkzM5Pg4GCCgoIYMmQIR44cqYpwS2SOa7hgwQKeeuop3NzcTLZb6zUU99Pr9WRkZNz3d3jy5EkCAgJo0KABzzzzDOfPn7dQhObRunVr/P396dOnDzt27LB0OGazYMECIiMjCQ4ONtluD9fvxo0bAPf9blYVSXgqwZUrV9DpdPj6+pps9/X1tZp25nuZI+Y333yTgIAAkw/cqKgovv32WzZv3syMGTPYtm0b/fv3R6fTmTX+8ihPmUNDQ/nmm29Ys2YN3333HXq9ni5duvDXX39VRcjFqug13LNnD4cPH2bUqFEm2635Gor7ffTRR2RmZvLkk08at3Xs2JGYmBhiY2OZN28eiYmJdOvWjYyMDAtGWj7+/v588cUXrFixghUrVhAUFESPHj1ISEiwdGgVdunSJX7++ef7/gbt4frp9XomTJhA165dadGihUVikNXShVlMnz6dpUuXEhcXZ9KJ96mnnjLeb9myJeHh4TRs2JC4uDh69+5tiVArpHPnznTu3Nn4uEuXLjRr1oz58+czZcoUC0ZWcQsWLKBly5Z06NDBZLu9XUN79v333zN58mTWrFlj0qelf//+xvvh4eF07NiR4OBgli1bxosvvmiJUMstNDSU0NBQ4+MuXbpw+vRpZs+ezaJFiywYWcUtXLiQmjVr8vDDD5tst4frN3bsWA4fPmzRvkdSw1MJ6tSpg0ajISUlxWR7SkoKfn5+FoqqeBWJ+aOPPmL69On8+uuvhIeHF7tvgwYNqFOnDqdOnapwzBVljuvk6OhImzZtbL48N2/eZOnSpaX652lN11DcsXTpUkaNGsWyZctMalkLU7NmTZo0aWI317BDhw42XxZFUfjmm2947rnn0Gq1xe5ra9dv3LhxrF+/nq1bt1K3bl2LxSEJTyXQarW0bduWzZs3G7fp9Xo2b95sUjtgTcob88yZM5kyZQqxsbG0a9euxNf566+/uHr1Kv7+/maJuyLMcZ10Oh2HDh2y+fL8+OOP5OTk8Oyzz5b4OtZ0DYXBkiVLeP7551myZInJlAJFyczM5PTp03ZzDQ8cOGDzZdm2bRunTp0q1ZcOW7l+iqIwbtw4Vq1axZYtWwgJCbF4QKISLF26VHFyclJiYmKUo0ePKi+99JJSs2ZNJTk52dKhFamkmJ977jnlrbfeMu4/ffp0RavVKsuXL1eSkpKMt4yMDEVRFCUjI0P55z//qezcuVNJTExUNm3apERERCiNGzdWsrOzLVLGe5W1zJMnT1Z++eUX5fTp00p8fLzy1FNPKc7OzsqRI0csVQQTZS1PgQceeEAZOnTofdtt4RoWJSMjQ9m/f7+yf/9+BVBmzZql7N+/Xzl37pylQytWSXG/9dZbynPPPWfcf/HixYqDg4Py2WefmfwdXr9+3bjPP/7xDyUuLk5JTExUduzYoURGRip16tRRUlNTq7x89ypreWfPnq2sXr1aOXnypHLo0CFl/PjxilqtVjZt2mSpIpgoa3kKPPvss0rHjh0LPac1X7/ijBkzRvH09FTi4uJMfjezsrIsEo8kPJXo008/VerVq6dotVqlQ4cOyq5duywdUomKi7l79+7KiBEjjI+Dg4MV4L7bxIkTFUVRlKysLKVv376Kt7e34ujoqAQHByujR4+2uqSvLGWeMGGCcV9fX19lwIABSkJCggWiLlpZyqMoinL8+HEFUH799df7zmUr17AwBcOX773dW35rU1LcI0aMULp3727cv3v37iWWc+jQoYq/v7+i1WqVwMBAZejQocqpU6eqtmBFKGt5Z8yYoTRs2FBxdnZWvLy8lB49eihbtmyxTPCFKGt5FEVRrl+/rri4uChffvlloee05utXnMLeB0CJjo62SDyq20EJIYQQQtgt6cMjhBBCCLsnCY8QQggh7J4kPEIIIYSwe5LwCCGEEMLuScIjhBBCCLsnCY8QQggh7J4kPEIIIYSwe5LwCCGEEMLuScIjhKg2YmJiqFmzZrH7TJo0idatW1dJPPeqX78+c+bMqfLXHTlyJCqVCpVKxerVq0t1TP369Y3HXL9+vVLjE8IcJOERwsLu/rDRarU0atSI999/n/z8fEuHVm5l+eAsydmzZ1GpVBw4cOC+53r06MGECRPM8jqVKS4uzniNi7rFxcWxd+9eXnrpJYvEGBUVRVJSEv379y/V/nv37mXFihWVHJUQ5uNg6QCEEIYPm+joaHJyctiwYQNjx47F0dGRt99+u8zn0ul0qFQq1Grb/z6Tl5dn6RDKJS8vD0dHR+PjLl26kJSUZHw8fvx40tPTiY6ONm7z8vJCq9VWaZx3c3Jyws/Pr9T7e3t74+XlVYkRCWFetv8fUQg7UPBhExwczJgxY4iMjGTt2rUAzJo1i5YtW+Lm5kZQUBCvvPIKmZmZxmMLmmnWrl1LWFgYTk5OnD9/nr1799KnTx/q1KmDp6cn3bt3JyEhweR1VSoV8+fPZ+DAgbi6utKsWTN27tzJqVOn6NGjB25ubnTp0oXTp0+bHLdmzRoiIiJwdnamQYMGTJ482VgjVb9+fQAeeeQRVCqV8XFJxxXEM2/ePAYPHoybmxsffvhhmd7HtLQ0hg8fTq1atXB1daV///6cPHmy2GOmT5+Or68v7u7uvPjii2RnZ9+3z9dff02zZs1wdnamadOmfP7558bnCmqgfvjhB7p3746zszOLFy82OV6r1eLn52e8ubi4GK95wU2r1d7XpFUZ16e0cnNzGTduHP7+/jg7OxMcHMy0adPKdA4hrIkkPEJYIRcXF3JzcwFQq9XMnTuXI0eOsHDhQrZs2cIbb7xhsn9WVhYzZszg66+/5siRI/j4+JCRkcGIESP4/fff2bVrF40bN2bAgAFkZGSYHDtlyhSGDx/OgQMHaNq0KU8//TR/+9vfePvtt9m3bx+KojBu3Djj/r/99hvDhw9n/PjxHD16lPnz5xMTE2NMTvbu3QtAdHQ0SUlJxsclHVdg0qRJPPLIIxw6dIgXXnihTO/byJEj2bdvH2vXrmXnzp0oisKAAQOKrClatmwZkyZNYurUqezbtw9/f3+TZAZg8eLFvPfee3z44YccO3aMqVOn8u6777Jw4UKT/d566y3Gjx/PsWPH6NevX5niLo65r09pzZ07l7Vr17Js2TJOnDjB4sWLTZJXIWyORdZoF0IYjRgxQhkyZIiiKIqi1+uVjRs3Kk5OTso///nPQvf/8ccfldq1axsfR0dHK4By4MCBYl9Hp9Mp7u7uyrp164zbAOWdd94xPt65c6cCKAsWLDBuW7JkieLs7Gx83Lt3b2Xq1Kkm5160aJHi7+9vct5Vq1aZ7FPa4yZMmGCyT2JiogIoLi4uipubm8lNrVYr48ePVxRFUf78808FUHbs2GE89sqVK4qLi4uybNky43vl6elpfL5z587KK6+8YvJ6HTt2VFq1amV83LBhQ+X777832WfKlClK586dTeKbM2eOUlp3X/O7BQcHK7NnzzY+rqzrU5p4Xn31VaVXr16KXq8v8ritW7cqgJKWllbkPkJYC+nDI4QVWL9+PTVq1CAvLw+9Xs/TTz/NpEmTANi0aRPTpk3j+PHjpKenk5+fT3Z2NllZWbi6ugKGJpPw8HCTc6akpPDOO+8QFxdHamoqOp2OrKwszp8/b7Lf3cf5+voC0LJlS5Nt2dnZpKen4+HhwcGDB9mxY4dJjYFOp7svpnuV9rh27doVevwPP/xAs2bNTLY988wzxvvHjh3DwcGBjh07GrfVrl2b0NBQjh07Vug5jx07xssvv2yyrXPnzmzduhWAmzdvcvr0aV588UVGjx5t3Cc/Px9PT0+T44qKu6Kq6vrca+TIkfTp04fQ0FCioqIYOHAgffv2NVOphKh6kvAIYQV69uzJvHnz0Gq1BAQE4OBg+NM8e/YsAwcOZMyYMXz44Yd4eXnx+++/8+KLL5Kbm2v88HJxcUGlUpmcc8SIEVy9epVPPvmE4OBgnJyc6Ny5s7GprMDdnWsLzlHYNr1eD0BmZiaTJ0/m0Ucfva8czs7ORZaxtMe5ubkVenxQUBCNGjUy2ebi4lLk65lDQV+pr776yiSRAtBoNCaPi4q7oqrq+twrIiKCxMREfv75ZzZt2sSTTz5JZGQky5cvL1c5hLA0SXiEsAJubm73fZgDxMfHo9fr+fjjj42jrpYtW1aqc+7YsYPPP/+cAQMGAHDhwgWuXLlS4VgjIiI4ceJEofEWcHR0RKfTlfm4imjWrBn5+fns3r2bLl26AHD16lVOnDhBWFhYkcfs3r2b4cOHG7ft2rXLeN/X15eAgADOnDljUptkzcz5Pnt4eDB06FCGDh3K448/TlRUFNeuXZPRWcImScIjhBVr1KgReXl5fPrppwwaNIgdO3bwxRdflOrYxo0bs2jRItq1a0d6ejr/+te/zFIj8t577zFw4EDq1avH448/jlqt5uDBgxw+fJgPPvgAMIzU2rx5M127dsXJyYlatWqV6riKaNy4MUOGDGH06NHMnz8fd3d33nrrLQIDAxkyZEihx4wfP56RI0fSrl07unbtyuLFizly5AgNGjQw7jN58mRee+01PD09iYqKIicnh3379pGWlsbrr79e4bjNzVzv86xZs/D396dNmzao1Wp+/PFH/Pz8Spy4UQhrJaO0hLBirVq1YtasWcyYMYMWLVqwePHiUg8NXrBgAWlpaURERPDcc8/x2muv4ePjU+GY+vXrx/r16/n1119p3749nTp1Yvbs2QQHBxv3+fjjj9m4cSNBQUG0adOm1MdVVHR0NG3btmXgwIF07twZRVHYsGGDSRPQ3YYOHcq7777LG2+8Qdu2bTl37hxjxowx2WfUqFF8/fXXREdH07JlS7p3705MTAwhISFmi9uczPU+u7u7M3PmTNq1a0f79u05e/YsGzZssIv5nUT1pFIURbF0EEIIISxn5MiRXL9+vcyzY8fFxdGzZ0/S0tKk5kdYPUnVhRBCGEcKrl+/vlT7N2/evNTLUAhhDaSGRwghqrnU1FTS09MB8Pf3L9WIs3PnzhkndGzQoIE0dQmrJwmPEEIIIeyepORCCCGEsHuS8AghhBDC7knCI4QQQgi7JwmPEEIIIeyeJDxCCCGEsHuS8AghhBDC7knCI4QQQgi7JwmPEEIIIeze/wPQ8tTlTor+ZQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# create matplotlib figure\n", "fig, ax = plt.subplots()\n", "\n", "# plot data\n", "dataset.y0.plot.line(ax=ax, x=\"x0\", marker=\"o\", label=\"Data\")\n", "\n", "# plot fit\n", "x_fit = np.linspace(dataset[\"x0\"][0].values, dataset[\"x0\"][-1].values, 1000)\n", "y_fit = cos_func(x=x_fit, **fit_result.best_values)\n", "ax.plot(x_fit, y_fit, label=\"Fit\")\n", "ax.legend()\n", "\n", "# set units-aware tick labels\n", "set_xlabel(dataset.x0.long_name, dataset.x0.units)\n", "set_ylabel(dataset.y0.long_name, dataset.y0.units)\n", "\n", "# add a reference to the origal dataset in the figure title\n", "fig.suptitle(f\"{dataset.attrs['name']}\\ntuid: {dataset.attrs['tuid']}\")\n", "\n", "# Save figure\n", "fig.savefig(exp_folder / \"Cosine fit.png\", dpi=300, bbox_inches=\"tight\")" ] }, { "cell_type": "markdown", "id": "ccfab7e1", "metadata": {}, "source": [ "## Reusable fitting model and analysis steps\n", "\n", "The previous steps achieve our goal, however, the code above is not easily reusable and hard to maintain or debug.\n", "We can do better than this! We can package our code in functions that perform specific tasks.\n", "In addition, we will use the objected-oriented interface of `lmfit` to further structure our code.\n", "We explore the details of the object-oriented approach later in this tutorial." ] }, { "cell_type": "code", "execution_count": 13, "id": "652768c7", "metadata": {}, "outputs": [], "source": [ "class MyCosineModel(lmfit.model.Model):\n", " \"\"\"\n", " `lmfit` model with a guess for a cosine fit.\n", " \"\"\"\n", "\n", " def __init__(self, *args, **kwargs):\n", " \"\"\"Configures the constraints of the model.\"\"\"\n", " # pass in the model's equation\n", " super().__init__(cos_func, *args, **kwargs)\n", "\n", " # configure constraints that are independent from the data to be fitted\n", "\n", " self.set_param_hint(\"frequency\", min=0, vary=True) # enforce positive frequency\n", " self.set_param_hint(\"amplitude\", min=0, vary=True) # enforce positive amplitude\n", " self.set_param_hint(\"offset\", vary=True)\n", " self.set_param_hint(\n", " \"phase\", vary=True, min=-np.pi, max=np.pi\n", " ) # enforce phase range\n", "\n", " def guess(self, data, **kws) -> lmfit.parameter.Parameters:\n", " \"\"\"Guess parameters based on the data.\"\"\"\n", "\n", " self.set_param_hint(\"offset\", value=np.average(data))\n", " self.set_param_hint(\"amplitude\", value=(np.max(data) - np.min(data)) / 2)\n", " # a simple educated guess based on experiment type\n", " # a more elaborate but general approach is to use a Fourier transform\n", " self.set_param_hint(\"frequency\", value=1.2)\n", "\n", " params_ = self.make_params()\n", " return lmfit.models.update_param_vals(params_, self.prefix, **kws)" ] }, { "cell_type": "markdown", "id": "47143c62", "metadata": {}, "source": [ "Most of the code related to the fitting model is now packed in a single object, while the analysis steps are split into functions that take care of specific tasks." ] }, { "cell_type": "code", "execution_count": 14, "id": "d288a58c", "metadata": {}, "outputs": [], "source": [ "def extract_data(label: str) -> xr.Dataset:\n", " \"\"\"Loads a dataset from its label.\"\"\"\n", " tuid_ = get_latest_tuid(contains=label)\n", " dataset_ = load_dataset(tuid_)\n", " return dataset_\n", "\n", "\n", "def run_fitting(dataset_: xr.Dataset) -> lmfit.model.ModelResult:\n", " \"\"\"Executes fitting.\"\"\"\n", " model = MyCosineModel() # create the fitting model\n", " params_guess = model.guess(data=dataset_.y0.values)\n", " result = model.fit(\n", " data=dataset_.y0.values, x=dataset_.x0.values, params=params_guess\n", " )\n", " return result\n", "\n", "\n", "def analyze_fit_results(fit_result_: lmfit.model.ModelResult) -> dict:\n", " \"\"\"Analyzes the fit results and saves quantities of interest.\"\"\"\n", " quantities = {\n", " \"amplitude\": fit_result_.params[\"amplitude\"].value,\n", " \"frequency\": fit_result_.params[\"frequency\"].value,\n", " }\n", " return quantities\n", "\n", "\n", "def plot_fit(\n", " fig_: matplotlib.figure.Figure,\n", " ax_: matplotlib.axes.Axes,\n", " dataset_: xr.Dataset,\n", " fit_result_: lmfit.model.ModelResult,\n", ") -> Tuple[matplotlib.figure.Figure, matplotlib.axes.Axes]:\n", " \"\"\"Plots a fit result.\"\"\"\n", " dataset_.y0.plot.line(ax=ax_, x=\"x0\", marker=\"o\", label=\"Data\") # plot data\n", "\n", " x_fit_ = np.linspace(dataset_[\"x0\"][0].values, dataset_[\"x0\"][-1].values, 1000)\n", " y_fit_ = cos_func(x=x_fit_, **fit_result_.best_values)\n", " ax_.plot(x_fit, y_fit_, label=\"Fit\") # plot fit\n", " ax_.legend()\n", "\n", " # set units-aware tick labels\n", " set_xlabel(dataset_.x0.long_name, dataset_.x0.units, ax_)\n", " set_ylabel(dataset_.y0.long_name, dataset_.y0.units, ax_)\n", "\n", " # add a reference to the original dataset_ in the figure title\n", " fig_.suptitle(f\"{dataset_.attrs['name']}\\ntuid: {dataset_.attrs['tuid']}\")\n", "\n", "\n", "def save_quantities_of_interest(tuid_: str, quantities_of_interest_: dict) -> None:\n", " \"\"\"Saves the quantities of interest to disk in JSON format.\"\"\"\n", " exp_folder_ = Path(locate_experiment_container(tuid_))\n", " # Save fit results\n", " with open(exp_folder_ / \"quantities_of_interest.json\", \"w\", encoding=\"utf-8\") as f_:\n", " json.dump(quantities_of_interest_, f_)\n", "\n", "\n", "def save_mpl_figure(tuid_: str, fig_: matplotlib.figure.Figure) -> None:\n", " \"\"\"Saves a matplotlib figure as PNG.\"\"\"\n", " exp_folder_ = Path(locate_experiment_container(tuid_))\n", " fig_.savefig(exp_folder_ / \"Cosine fit.png\", dpi=300, bbox_inches=\"tight\")\n", " plt.close(fig_)" ] }, { "cell_type": "markdown", "id": "c9d139bd", "metadata": {}, "source": [ "Now the execution of the entire analysis becomes much more readable and clean:" ] }, { "cell_type": "code", "execution_count": 15, "id": "358959d4", "metadata": {}, "outputs": [], "source": [ "dataset = extract_data(label=\"Cosine experiment\")\n", "fit_result = run_fitting(dataset)\n", "quantities_of_interest = analyze_fit_results(fit_result)\n", "save_quantities_of_interest(dataset.tuid, quantities_of_interest)\n", "fig, ax = plt.subplots()\n", "plot_fit(fig_=fig, ax_=ax, dataset_=dataset, fit_result_=fit_result)\n", "save_mpl_figure(dataset.tuid, fig)" ] }, { "cell_type": "markdown", "id": "31482522", "metadata": {}, "source": [ "If we inspect the experiment directory, we will find a structure that looks like the following:\n", "\n", "```{code-block}\n", "20230125-172712-018-87b9bf-Cosine experiment/\n", "├── Cosine fit.png\n", "├── dataset.hdf5\n", "├── quantities_of_interest.json\n", "└── snapshot.json\n", "```\n", "\n", "## Creating a simple analysis class\n", "\n", "Even though we have improved code structure greatly, in order to execute the same analysis against some other dataset we would have to copy-paste a significant portion of code (the analysis steps).\n", "\n", "We tackle this by taking advantage of the Object Oriented Programming (OOP) in python.\n", "We will create a python class that serves as a structured container for data (attributes) and the methods (functions) that act on the information.\n", "\n", "Some of the advantages of OOP are:\n", "\n", "- the same class can be instantiated multiple times to act on different data while reusing the same methods;\n", "- all the methods have access to all the data (attributes) associated with a particular instance of the class;\n", "- subclasses can inherit from other classes and extend their functionalities.\n", "\n", "Let's now observe what such a class could look like.\n", "\n", "```{warning}\n", "This analysis class is intended for educational purposes only.\n", "It is not intended to be used as a template!\n", "See the end of the tutorial for the recommended usage of the analysis framework.\n", "```" ] }, { "cell_type": "code", "execution_count": 16, "id": "da4a3264", "metadata": {}, "outputs": [], "source": [ "class MyCosineAnalysis:\n", " \"\"\"Analysis as a class.\"\"\"\n", "\n", " def __init__(self, label: str):\n", " \"\"\"This is a special method that python calls when an instance of this class is\n", " created.\"\"\"\n", "\n", " self.label = label\n", "\n", " # objects to be filled up later when running the analysis\n", " self.tuid = None\n", " self.dataset = None\n", " self.fit_results = {}\n", " self.quantities_of_interest = {}\n", " self.figs_mpl = {}\n", " self.axs_mpl = {}\n", "\n", " # with just slight modification our functions become methods\n", " # with the advantage that we have access to all the necessary information from self\n", " def run(self):\n", " \"\"\"Execute the analysis steps.\"\"\"\n", " self.extract_data()\n", " self.run_fitting()\n", " self.analyze_fit_results()\n", " self.create_figures()\n", " self.save_quantities_of_interest()\n", " self.save_figures()\n", "\n", " def extract_data(self):\n", " \"\"\"Load data from disk.\"\"\"\n", " self.tuid = get_latest_tuid(contains=self.label)\n", " self.dataset = load_dataset(tuid)\n", "\n", " def run_fitting(self):\n", " \"\"\"Fits the model to the data.\"\"\"\n", " model = MyCosineModel()\n", " guess = model.guess(self.dataset.y0.values)\n", " result = model.fit(\n", " self.dataset.y0.values, x=self.dataset.x0.values, params=guess\n", " )\n", " self.fit_results.update({\"cosine\": result})\n", "\n", " def analyze_fit_results(self):\n", " \"\"\"Analyzes the fit results and saves quantities of interest.\"\"\"\n", " self.quantities_of_interest.update(\n", " {\n", " \"amplitude\": self.fit_results[\"cosine\"].params[\"amplitude\"].value,\n", " \"frequency\": self.fit_results[\"cosine\"].params[\"frequency\"].value,\n", " }\n", " )\n", "\n", " def save_quantities_of_interest(self):\n", " \"\"\"Save quantities of interest to disk.\"\"\"\n", " exp_folder_ = Path(locate_experiment_container(self.tuid))\n", " with open(\n", " exp_folder_ / \"quantities_of_interest.json\", \"w\", encoding=\"utf-8\"\n", " ) as file_:\n", " json.dump(self.quantities_of_interest, file_)\n", "\n", " def plot_fit(self, fig_: matplotlib.figure.Figure, ax_: matplotlib.axes.Axes):\n", " \"\"\"Plot the fit result.\"\"\"\n", "\n", " self.dataset.y0.plot.line(ax=ax_, x=\"x0\", marker=\"o\", label=\"Data\") # plot data\n", "\n", " x_fit_ = np.linspace(\n", " self.dataset[\"x0\"][0].values, self.dataset[\"x0\"][-1].values, 1000\n", " )\n", " y_fit_ = cos_func(x=x_fit_, **self.fit_results[\"cosine\"].best_values)\n", " ax_.plot(x_fit_, y_fit_, label=\"Fit\") # plot fit\n", " ax_.legend()\n", "\n", " # set units-aware tick labels\n", " set_xlabel(self.dataset.x0.long_name, self.dataset.x0.attrs[\"units\"], ax_)\n", " set_ylabel(self.dataset.y0.long_name, self.dataset.y0.attrs[\"units\"], ax_)\n", "\n", " # add a reference to the original dataset in the figure title\n", " fig_.suptitle(f\"{dataset.attrs['name']}\\ntuid: {dataset.attrs['tuid']}\")\n", "\n", " def create_figures(self):\n", " \"\"\"Create figures.\"\"\"\n", " fig_, ax_ = plt.subplots()\n", " self.plot_fit(fig_, ax_)\n", "\n", " fig_id = \"cos-data-and-fit\"\n", " self.figs_mpl.update({fig_id: fig_})\n", " # keep a reference to `ax` as well\n", " # it can be accessed later to apply modifications (e.g., in a notebook)\n", " self.axs_mpl.update({fig_id: ax_})\n", "\n", " def save_figures(self):\n", " \"\"\"Save figures to disk.\"\"\"\n", " exp_folder_ = Path(locate_experiment_container(self.tuid))\n", " for fig_name, fig_ in self.figs_mpl.items():\n", " fig_.savefig(exp_folder_ / f\"{fig_name}.png\", dpi=300, bbox_inches=\"tight\")\n", " plt.close(fig_)" ] }, { "cell_type": "markdown", "id": "b56c4016", "metadata": {}, "source": [ "Running the analysis is now as simple as:" ] }, { "cell_type": "code", "execution_count": 17, "id": "ba6ee364", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHgCAYAAAChG7dTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9iElEQVR4nOzdd3iUVfbA8e87k957g3RKCAihV2mCYAGx4trAXld31dXFhqD+LOtadnV1ZXXtq64ddVEpKkgvAUJPIKT33pOZ9/fHOzNkSAIJJnknyfk8Tx7InXdmDinDmXvPPVdRVVVFCCGEEKIXM+gdgBBCCCFEV5OERwghhBC9niQ8QgghhOj1JOERQgghRK8nCY8QQgghej1JeIQQQgjR60nCI4QQQoheTxIeIYQQQvR6kvAIIYQQoteThEcIYaMoCo8//rjeYfQ4MTExLF68WO8whBCnIAmPEA4qLS2NW2+9lbi4ONzc3PDx8WHy5Mm8/PLL1NbW6h2e6GH279/P448/Tnp6ut6hCKELJ70DEEK09O2333L55Zfj6urKddddx7Bhw2hoaGDDhg386U9/Yt++fbzxxhud/ry1tbU4OcnLQkcdOnQIg8Gx3z/u37+fZcuWMX36dGJiYvQOR4huJ69sQjiYY8eOceWVVxIdHc3atWsJDw+33XbnnXeSmprKt99+2yXP7ebm1iWP2xupqkpdXR3u7u64urrqHY4Q4jQc+y2JEH3Qc889R1VVFW+++aZdsmM1YMAA7rnnHtvnTU1NPPHEE8THx+Pq6kpMTAwPPfQQ9fX1dvfbvn07c+bMISgoCHd3d2JjY7nhhhvsrjm5hufxxx9HURRSU1NZvHgxfn5++Pr6cv3111NTU9Mitvfff5/Ro0fj7u5OQEAAV155JZmZme36d2dnZ3PDDTcQGhqKq6srQ4cO5a233rLdXltbS0JCAgkJCXZLeiUlJYSHhzNp0iRMJhMAixcvxsvLi6NHjzJnzhw8PT2JiIhg+fLlqKpq97xms5mXXnqJoUOH4ubmRmhoKLfeeiulpaV218XExHDhhRfy/fffM2bMGNzd3fnnP/9pu615Dc/bb7+Noihs2LCBu+++m+DgYPz8/Lj11ltpaGigrKyM6667Dn9/f/z9/XnggQd+c1wbNmxg3LhxuLm5ERcXx7vvvmsXz+WXXw7AjBkzUBQFRVH46aef2vW9EaJXUIUQDqVfv35qXFxcu69ftGiRCqiXXXaZ+uqrr6rXXXedCqgLFiywXZOfn6/6+/urgwYNUv/yl7+oK1asUB9++GF1yJAhdo8FqEuXLrV9vnTpUhVQR44cqV5yySXqP/7xD/Wmm25SAfWBBx6wu++TTz6pKoqiLly4UP3HP/6hLlu2TA0KClJjYmLU0tLSU/4b8vLy1P79+6uRkZHq8uXL1ddee02dP3++Cqgvvvii7brNmzerRqNR/eMf/2gbu/LKK1V3d3f10KFDdl8TNzc3deDAgeq1116rvvLKK+qFF16oAuqjjz5q99w33XST6uTkpN58883q66+/rj744IOqp6enOnbsWLWhocF2XXR0tDpgwADV399f/fOf/6y+/vrr6rp162y3LVq0yHbtv//9bxVQk5KS1Llz56qvvvqqeu2119q+blOmTFGvuuoq9R//+IctrnfeeeeM4xo8eLAaGhqqPvTQQ+orr7yijho1SlUURU1JSVFVVVXT0tLUu+++WwXUhx56SH3vvffU9957T83Lyzvl90WI3kQSHiEcSHl5uQqoF110UbuuT05OVgH1pptushu///77VUBdu3atqqqq+sUXX6iAum3btlM+XlsJzw033GB33cUXX6wGBgbaPk9PT1eNRqP61FNP2V23d+9e1cnJqcX4yW688UY1PDxcLSoqshu/8sorVV9fX7WmpsY2tmTJEtVgMKi//PKL+t///lcF1JdeesnuftYk8Pe//71tzGw2qxdccIHq4uKiFhYWqqqqquvXr1cB9YMPPrC7/6pVq1qMR0dHq4C6atWqFvG3lfDMmTNHNZvNtvGJEyeqiqKot912m22sqalJ7d+/vzpt2jTb2JnE9csvv9jGCgoKVFdXV/W+++6zjVm/VtYkTYi+Rpa0hHAgFRUVAHh7e7fr+u+++w6Ae++91278vvvuA7DV+vj5+QHwzTff0NjY2OG4brvtNrvPzz77bIqLi23xfv7555jNZq644gqKiopsH2FhYQwcOJB169a1+diqqvLZZ58xb948VFW1u/+cOXMoLy9n586dtusff/xxhg4dyqJFi7jjjjuYNm0ad999d6uPfdddd9n+rigKd911Fw0NDaxevRqA//73v/j6+jJ79my75x09ejReXl4t4o6NjWXOnDnt/rrdeOONKIpi+3z8+PGoqsqNN95oGzMajYwZM4ajR4/axjoaV2JiImeffbbt8+DgYAYPHmz3mEL0dVK0LIQD8fHxAaCysrJd1x8/fhyDwcCAAQPsxsPCwvDz8+P48eMATJs2jUsvvZRly5bx4osvMn36dBYsWMBVV13VroLbqKgou8/9/f0BKC0txcfHhyNHjqCqKgMHDmz1/s7Ozm0+dmFhIWVlZbzxxhtt7jwrKCiw/d3FxYW33nqLsWPH4ubmxr///W+7pMLKYDAQFxdnNzZo0CAA29bsI0eOUF5eTkhIyGmfF7SEpyNO/rr5+voCEBkZ2WK8eW1OR+M6+XlA+x6dXO8jRF8mCY8QDsTHx4eIiAhSUlI6dL/W/sM/+fZPP/2UzZs3s3LlSr7//ntuuOEG/vrXv7J582a8vLxOeX+j0djquGoptDWbzSiKwv/+979Wrz3V45vNZgCuueYaFi1a1Oo1w4cPt/v8+++/B6Curo4jR450OBFp/twhISF88MEHrd4eHBxs97m7u3uHHr+tr1tr42qzouWOxnW6748QQhIeIRzOhRdeyBtvvMGmTZuYOHHiKa+Njo7GbDZz5MgRhgwZYhvPz8+nrKyM6Ohou+snTJjAhAkTeOqpp/jwww+5+uqr+eijj7jpppt+U8zx8fGoqkpsbKxtFqW9goOD8fb2xmQyMWvWrNNev2fPHpYvX871119PcnIyN910E3v37rXNnliZzWaOHj1qF8/hw4cBbH1o4uPjWb16NZMnT+5wMtOVuiKu0yXFQvR2UsMjhIN54IEH8PT05KabbiI/P7/F7Wlpabz88ssAnH/++QC89NJLdte88MILAFxwwQWAtvR08rv9pKQkgBbb18/EJZdcgtFoZNmyZS2eR1VViouL27yv0Wjk0ksv5bPPPmt1ZquwsND298bGRhYvXkxERAQvv/wyb7/9Nvn5+fzxj39s9bFfeeUVuzheeeUVnJ2dOeeccwC44oorMJlMPPHEEy3u29TURFlZ2Sn/3V2lK+Ly9PQE0O3fJITeZIZHCAcTHx/Phx9+yMKFCxkyZIhdp+WNGzfy3//+19bzZcSIESxatIg33niDsrIypk2bxtatW3nnnXdYsGABM2bMAOCdd97hH//4BxdffDHx8fFUVlayYsUKfHx8bEnTb435ySefZMmSJaSnp7NgwQK8vb05duwYX3zxBbfccgv3339/m/d/5plnWLduHePHj+fmm28mMTGRkpISdu7cyerVqykpKQHgySefJDk5mTVr1uDt7c3w4cN57LHHeOSRR7jsssvs/i1ubm6sWrWKRYsWMX78eP73v//x7bff8tBDD9mWhKZNm8att97K008/TXJyMueeey7Ozs4cOXKE//73v7z88stcdtllv/nr01FdEVdSUhJGo5Fnn32W8vJyXF1dmTlzZpt1QkL0OvpsDhNCnM7hw4fVm2++WY2JiVFdXFxUb29vdfLkyerf//53ta6uznZdY2OjumzZMjU2NlZ1dnZWIyMj1SVLlthds3PnTvV3v/udGhUVpbq6uqohISHqhRdeqG7fvt3uOWljW7p1G7eVddv1sWPH7MY/++wzdcqUKaqnp6fq6empJiQkqHfeeaddj5y25Ofnq3feeacaGRmpOjs7q2FhYeo555yjvvHGG6qqquqOHTtUJycnu63mqqpt6x47dqwaERFh6/ezaNEi1dPTU01LS1PPPfdc1cPDQw0NDVWXLl2qmkymFs/9xhtvqKNHj1bd3d1Vb29v9ayzzlIfeOABNScnx3ZNdHS0esEFF7Qae1vb0k9uA9DW19Mab2fGNW3aNLut7qqqqitWrFDj4uJUo9EoW9RFn6OoqlS1CSF6l8WLF/Ppp59SVVWldyhCCAchNTxCCCGE6PUk4RFCCCFErycJjxBCCCF6PanhEUIIIUSvJzM8QgghhOj1JOERQgghRK8nCY/osd5++20URbEdBHkqMTExtmZ9Qoi+Y9WqVSQlJeHm5oaiKNJpug+ThEfoYuPGjTz++OM94sXn4MGDPPDAAyQlJeHt7U14eDgXXHAB27dvb/X67OxsrrjiCvz8/PDx8eGiiy7i6NGjdtdkZmaybNkyxo0bh7+/P0FBQUyfPp3Vq1e3eDxrYtfaR15eXovrv/76a0aNGoWbmxtRUVEsXbqUpqamFtf9+OOPTJkyBQ8PD/z9/bnsssvaTB7b+5jN3XzzzSiKwoUXXnjK60725ptvMmTIENzc3Bg4cCB///vfT3uf2bNnoygKd9111296zI8++sj27wwODubGG2+kqKioxXVtfT+eeeaZVh/3448/ZuLEiXh6euLn58ekSZNYu3btaf9dAE899RTz588nNDQURVF4/PHHW73u888/Z+HChcTFxeHh4cHgwYO57777Wv0d+/jjj7nmmmsYOHAgiqIwffr0dsVi1ZGfybq6Op5++mkSExPx8PCgX79+XH755ezbt8/uuunTp7f5mM7Ozm3GkpaWZktmTv6dLC4u5oorrsDd3Z1XX32V9957z3bExurVq5kxYwZBQUH4+fkxbtw43nvvvQ59HUTPIkdLCF1s3LiRZcuWsXjxYvz8/M7oMa699lquvPJKXF1dOze4k/zrX//izTff5NJLL+WOO+6gvLycf/7zn0yYMIFVq1bZHXhZVVXFjBkzKC8v56GHHsLZ2ZkXX3yRadOmkZycTGBgIABfffUVzz77LAsWLGDRokU0NTXx7rvvMnv2bN566y2uv/76FnEsX768xangJ3/t/ve//7FgwQKmT5/O3//+d/bu3cuTTz5JQUEBr732mu26b775hosuuohRo0bxzDPPUFFRwcsvv8yUKVPYtWuX3Wnc7X3M5rZv387bb7+Nm5tbh77W//znP7ntttu49NJLuffee1m/fj133303NTU1PPjgg63e5/PPP2fTpk2/+TFfe+017rjjDs455xxeeOEFsrKyePnll9m+fTtbtmxp8W+ZPXs21113nd3YyJEjWzz/448/zvLly7nssstYvHgxjY2NpKSkkJ2d3a6vySOPPEJYWBgjR460nRLfmltuuYWIiAiuueYaoqKi2Lt3L6+88grfffcdO3futDuE9LXXXmPHjh2MHTv2lOecnU57fiavvvpqvv76a26++WZGjRpFTk4Or776KhMnTmTv3r22A24ffvjhFofYVldXc9ttt3Huuee2GcMf//hHnJycWj0Tbtu2bVRWVvLEE0/Y/Z5+/fXXLFiwgIkTJ/L444+jKAqffPIJ1113HUVFRW2ezSZ6OH0bPYu+6i9/+UurRxN0lZNb/3fE9u3b1crKSruxoqIiNTg4WJ08ebLd+LPPPqsC6tatW21jBw4cUI1Go7pkyRLbWEpKSovjBerq6tSEhAS1f//+duNtHVPQmsTERHXEiBFqY2Ojbezhhx9WFUVRDxw4YHfdgAED1Pr6ettYcnKyajAY1HvvvfeMHtPKbDarEydOVG+44YZTHsdwspqaGjUwMLDF9VdffbXq6emplpSUtLhPbW2tGhMToy5fvlwF1DvvvPOMHrO+vl718/NTp06dqprNZtt1K1euVAH1b3/7m939W3uu1mzatElVFEV94YUXTnttW6y/I4WFhS2O/miutWMi3nnnHRVQV6xYYTeekZFhO2Jj6NChLY6gOJ32/kxmZWWpgHr//ffbja9du1YFTvt1ee+991RA/eCDD1q9fdWqVaqLi4v6yCOPtBqP9d9/8vjs2bPViIiIFke0xMfHq8OHDz9lTKLnkiUt0e0ef/xx/vSnPwEQGxtrm7ZOT08nPT0dRVF4++23W9zv5On81mp4VFXlySefpH///nh4eDBjxowWU+dWaWlppKWlnTbe0aNH4+XlZTcWGBjI2WefzYEDB+zGP/30U8aOHcvYsWNtYwkJCZxzzjl88skntrGhQ4cSFBRkd19XV1fOP/98srKyqKysbDWWyspKTCZTq7ft37+f/fv3c8stt+DkdGLy9o477kBVVT799FMASkpK2L9/PxdffDEuLi6260aMGMGQIUP46KOPOvyYzb333nukpKTw1FNPtRpnW9atW0dxcTF33HGH3fidd95JdXU13377bYv7PPfcc5jN5jYPJm3vY6akpFBWVsbChQtRFMV23YUXXoiXl5fd16S52tpa6urq2vw3vfTSS4SFhXHPPfegquoZHXURExPTrutaW5a6+OKLAVr8nEZGRmIwdM7L/6l+Jq0/x6GhoXbj4eHhAHazTq358MMP8fT05KKLLmpxW2NjI/fccw/33HMP8fHxLW6fPn06ixYtAmDs2LEoimKr46uoqMDf399udtjJyYmgoKDTxiR6Lkl4RLe75JJL+N3vfgfAiy++yHvvvcd7771nt4xyph577DEeffRRRowYwV/+8hfi4uI499xzqa6ubnHtOeecwznnnHPGz5WXl2eXtJjNZvbs2cOYMWNaXDtu3DjS0tLaTGSaP6aHhwceHh4tbpsxYwY+Pj54eHgwf/58jhw5Ynf7rl27AFo8f0REBP3797fdbp36b+2F3cPDg5ycHFsdRnsf06qyspIHH3yQhx56iLCwsFP+W0/W1nONHj0ag8HQ4rkyMjJ45plnePbZZ9v8T6q9j3mqr4m7uzu7du3CbDbbjb/99tt4enri7u5OYmIiH374YYv7rlmzhrFjx/K3v/2N4OBgWw3YK6+80ubXoTNZv48nJ9ed5XQ/k/Hx8fTv35+//vWvrFy5kqysLLZu3cptt91GbGwsV155ZZuPXVhYyI8//siCBQtsdTfNvfTSS5SWlvLII4+0ev+HH36YW265BdCW3t577z1uvfVWQEuG9u3bx6OPPkpqaippaWk88cQTbN++nQceeOBMvxzCwUkNj+h2w4cPZ9SoUfznP/9hwYIFdu9gCwsLz/hxCwsLee6557jgggtYuXKl7Z36ww8/zP/93//91rDtrF+/nk2bNtm92JaUlFBfX29799qcdSwnJ4fBgwe3+pipqal8/vnnXH755RiNRtu4h4cHixcvtv3nsmPHDl544QUmTZrEzp07iYyMBCA3N9fuuU5+/pycHEB7t+3n58evv/5qd01xcTH79+8HtMLrsLCwdj+m1fLly3F3dz+jGojc3FyMRiMhISF24y4uLgQGBrZ4rvvuu4+RI0ee8j/N9j6mtXj3119/taufOnTokO1nsrS01FaDNWnSJK644gpiY2NtNSlXX3015eXl3H777bbri4qK+PXXX1m7di1Lly4lKiqKf//73/z+97/H2dnZ9h9wV3n22WcxGo1cdtllnfq47f2ZdHZ25rPPPuOqq65i/vz5tvuPHj2ajRs3nrJ+7+OPP6apqYmrr766xW15eXk88cQTPP/88/j4+LR6/9mzZ5Odnc0bb7zBeeedZ5f0Pvrooxw7doynnnqKJ5980vZv+uyzz1qdTRK9gyQ8otdYvXo1DQ0N/P73v7dblvjDH/7QasLTnu3srSkoKOCqq64iNjbW7t1gbW0tQKtF1NaCV+s1J6upqeHyyy/H3d29xU6fK664giuuuML2+YIFC5gzZw5Tp07lqaee4vXXX2/X81dUVABgMBi49dZbefbZZ1myZAk33HADFRUVPPDAAzQ0NNg9VnsfE+Dw4cO8/PLL/Oc//zmjQvLa2lq7JbaTn6v5127dunV89tlnbNmypVMeMygoiCuuuIJ33nmHIUOGcPHFF5OdnW1LTBobG+2e/+Rk8YYbbmD06NE89NBDLF68GHd3d9vyVXFxMR999BELFy4E4LLLLuOss87iySef7NKE58MPP+TNN9/kgQceYODAgZ362O39mQTw9/cnKSmJyy+/nAkTJpCamsrTTz/N5Zdfzo8//thmYfuHH35IcHAws2fPbnHbgw8+SFxcXIsi5/ZydXVl0KBBXHbZZVxyySWYTCbeeOMNrrnmGn788UcmTJhwRo8rHJssaYle4/jx4wAtXtyDg4Px9/fvlOeorq7mwgsvpLKykq+++squtse6HNLabhFrnUdrSyYmk4krr7yS/fv38+mnnxIREXHaOKZMmcL48ePttrGf7vmbP/fy5cu58cYbee655xg0aBBjxozBycmJG2+8EcD27+rIY95zzz1MmjSJSy+99JSxFxYWkpeXZ/uwJgbu7u62hOtUz9XU1MTdd9/Ntddea1cr1Zr2PiZou7nOP/987r//fuLj45k6dSpnnXUW8+bNA2hRx9Wci4sLd911F2VlZezYscP23KDNcjSfYTEYDCxcuJCsrCwyMjIA7L4eeXl5bSbG7bV+/XpuvPFG5syZ0+FaKquGhoYWcbVVqwOt/0yWl5dz9tlnM3HiRJ5++mkuuugi7rvvPj777DM2bNjAv//971Yf6+jRo2zatImFCxfa1Y4BbN68mffee48XX3zxjOuQ7rrrLlauXMlHH33ElVdeydVXX83q1asJDw/nnnvuOaPHFI5PEh7hUJrPzDR3qhfa7tLQ0MAll1zCnj17+Oqrrxg2bJjd7QEBAbi6utqWgZqzjrWWzNx888188803vP3228ycObPd8URGRlJSUmL73Lrs1NbzN39uFxcX/vWvf5GTk8Mvv/zCoUOH+P777ykvL8dgMDBgwIAOPebatWtZtWoV99xzj634PD09naamJmpra0lPT7fNBo0dO5bw8HDbx/PPP297LpPJREFBgd3zNDQ0UFxcbHuud999l0OHDnHrrbfaPRdoNUTp6enU1NR06DEBfH19+eqrrzh+/Dg///wz6enpvPfee+Tm5hIcHHza9gnWZRzr9yQgIAA3NzcCAwPtligB2xJbaWmpLc7mHx9//PEpn+tUdu/ezfz58xk2bBiffvppi4ShvTZu3NgirszMzFPe5+Sfyc8++4z8/Hy75SyAadOm4ePj02KmzMpaD9XactYDDzzA2WefTWxsrO17b+2VlJuba0si29LQ0MCbb77JBRdcYJcwOTs7c95557F9+/Y2k2TRs8mSltBFW4mNdSbm5GZp1tmbU7H28zhy5AhxcXG28cLCQtt/LGfKbDZz3XXXsWbNGj755BOmTZvW4hqDwcBZZ53VakPCLVu2EBcXh7e3t934n/70J/7973/z0ksv2Qq52+vo0aN2hd5JSUmA1gNn3LhxtvGcnByysrJsBZzNhYaG2nbQmEwmfvrpJ8aPH2+bzWjvY1r/k7nkkktaPEd2djaxsbG8+OKL/OEPf+CDDz6wm8Gwfq+aP9f5559vu3379u2YzWbb7RkZGTQ2NjJ58uQWz/Xuu+/y7rvv8sUXX7BgwYJ2P2ZzUVFRREVFAdhmbE43awXYmktavycGg4GkpCS2bdtGQ0OD3dKatXbIeu2PP/5o91hDhw497fO1Ji0tjblz5xISEsJ33313ylmp0xkxYkSLuE5XiH7yz2R+fj7Q8g2LqqqYTKY2m1d++OGHxMfHt7q0lJGRwfHjx1v0/wGYP38+vr6+p2xoWlxcTFNTU6tvohobGzGbzQ7xBkt0AV03xYs+67XXXlMBddeuXS1uCwoKUi+++GK7sfvuu69FDxJrLxBrn5KCggLV2dlZveCCC+x6qTz00EMq0KIPT2pqqpqamtqueO+44w4VUP/5z3+e8rpnnnmmRd+PgwcPqkajUX3wwQftrn3uuedUQH3ooYdO+ZgFBQUtxr799lsVUO+++2678YSEBHXEiBFqU1OTbeyRRx5RFUVR9+/f367YP/300w4/5vHjx9UvvviixUdwcLA6ZswY9Ysvvjjt17qmpkYNCAhQL7zwQrvxa665RvXw8FCLi4tVVdX6GrX2XIB6/vnnq1988YWak5PTocdsy2233aYaDAa7vkqtfT8qKirU+Ph4NSgoyK630YsvvqgC6htvvGEbq62tVePi4tTExMRTPvfJTteHJzc3V42Li1MjIiI61N/qTPrwtPdn8tNPP2015i+//FIF1GeeeabF4+zcuVMF1EcffbTV5/7+++9bfO9///vfq4D6/PPPq998843t2tb6BTU1Nal+fn7qoEGD7L5XlZWVav/+/dWEhIR2fx1EzyIzPEIXo0ePBrQdVFdeeSXOzs7MmzcPT09PbrrpJp555hluuukmxowZwy+//MLhw4dP+5jBwcHcf//9PP3001x44YWcf/757Nq1i//973+tbsu1bkk/XfHySy+9xD/+8Q8mTpyIh4cH77//vt3tF198sW3b7B133MGKFSu44IILuP/++3F2duaFF14gNDSU++67z3afL774wlZMOmTIkBaPOXv2bNvMy6RJkxg5ciRjxozB19eXnTt38tZbbxEZGclDDz1kd7+//OUvzJ8/n3PPPZcrr7ySlJQUXnnlFW666SaGDBliu+7999/ns88+Y+rUqXh5ebF69Wo++eQTbrrpphazGe15zOazIs394Q9/IDQ0lAULFpzyawxazcsTTzzBnXfeyeWXX86cOXNYv34977//Pk899RQBAQGA1tcoISGh1ceIjY21e672PibAM888Q0pKCuPHj8fJyYkvv/ySH374gSeffNKuVujVV1/lyy+/ZN68eURFRZGbm8tbb71FRkYG7733nt1Mzq233sq//vUv7rzzTg4fPkxUVBTvvfcex48fZ+XKlaf9mgC2663LdL/88ottZ9G1115rm9mcO3cuR48e5YEHHmDDhg1s2LDB9hihoaF2xb+//PILv/zyC6DNgFZXV9sec+rUqUydOvWUMbX3Z3LevHkMHTqU5cuXc/z4cVvR8iuvvEJ4eLitZqy5Dz74AGh9OQtoteuydUZn2rRprbaFaM5oNHL//ffzyCOPMGHCBK677jpMJhNvvvkmWVlZLX4XRS+id8Yl+q4nnnhC7devn2owGOxmampqatQbb7xR9fX1Vb29vdUrrrhCLSgoOO0Mj6qqqslkUpctW6aGh4er7u7u6vTp09WUlJRWOy1HR0er0dHRp41z0aJFKtDmx8nvpjMzM9XLLrtM9fHxUb28vNQLL7xQPXLkiN01S5cuPeVjNu+a+/DDD6tJSUmqr6+v6uzsrEZFRam33367mpeX12q8X3zxhZqUlKS6urqq/fv3Vx955BG1oaHB7potW7aoU6dOVf39/VU3Nzd1xIgR6uuvv243M9bRx2xNRzotW73xxhvq4MGDVRcXFzU+Pl598cUX24yrOU7R/bg9j/nNN9+o48aNU729vVUPDw91woQJ6ieffNLisX744Qd19uzZalhYmOrs7Kz6+fmp5557rrpmzZpWnzs/P19dtGiRGhAQoLq6uqrjx49XV61a1Y6vhGbatGnt+jk51c/TyTM4p/r5a2sGqbmO/EyWlJSof/zjH9VBgwaprq6ualBQkHrllVeqR48ebXGtyWRS+/Xrp44aNardXx9Vbbvz86k6Qn/wwQfquHHjVD8/P9Xd3V0dP358i9lN0bsoqqqqXZhPCSGEEELoTnZpCSGEEKLXk4RHCCGEEL2eJDxCCCGE6PUk4RFCCCFErycJjxBCCCF6PUl4hBBCCNHrScIjhBBCiF5PEh4hhBBC9HqS8AghhBCi13PIhOfVV18lJiYGNzc3xo8fz9atW095fVlZGXfeeSfh4eG4uroyaNAgvvvuu26KVgghhBCOzuEOD/3444+59957ef311xk/fjwvvfQSc+bM4dChQ4SEhLS4vqGhgdmzZxMSEsKnn35Kv379OH78OH5+fu1+TrPZTE5ODt7e3iiK0on/GiGEEEJ0FVVVqaysJCIiAoPhNHM4Op/l1cK4cePsDgA0mUxqRESE+vTTT7d6/WuvvabGxcW16yDDtmRmZp7y4D35kA/5kA/5kA/5cNyPzMzM0/5f71CHhzY0NODh4cGnn37KggULbOOLFi2irKyMr776qsV9zj//fAICAvDw8OCrr74iODiYq666igcffBCj0djq89TX11NfX2/7vLy8nKioKDIzM/Hx8en0f5cQQgghOl9FRQWRkZGUlZXh6+t7ymsdakmrqKgIk8lEaGio3XhoaCgHDx5s9T5Hjx5l7dq1XH311Xz33XekpqZyxx130NjYyNKlS1u9z9NPP82yZctajPv4+EjCI4QQQvQw7SlHccii5Y4wm82EhITwxhtvMHr0aBYuXMjDDz/M66+/3uZ9lixZQnl5ue0jMzOzGyMWQgghRHdzqBmeoKAgjEYj+fn5duP5+fmEhYW1ep/w8HCcnZ3tlq+GDBlCXl4eDQ0NuLi4tLiPq6srrq6unRu8EEIIIRyWQ83wuLi4MHr0aNasWWMbM5vNrFmzhokTJ7Z6n8mTJ5OamorZbLaNHT58mPDw8FaTHSGEEEL0PQ6V8ADce++9rFixgnfeeYcDBw5w++23U11dzfXXXw/Addddx5IlS2zX33777ZSUlHDPPfdw+PBhvv32W/7v//6PO++8U69/ghBCCCEcjEMtaQEsXLiQwsJCHnvsMfLy8khKSmLVqlW2QuaMjAy7vfaRkZF8//33/PGPf2T48OH069ePe+65hwcffFCvf4IQQgghHIxDbUvXS0VFBb6+vpSXl8suLSGEEKKH6Mj/3w63pCWEEEII0dkk4RFCCCFErycJjxBCCCF6PYcrWu5NTGaVrcdKKKisI8TbjXGxARgNcjipEEII0d0k4ekiq1JyWbZyP7nldbaxcF83ls5LZO6wcB0jE0IIIfoeWdLqAqtScrn9/Z12yQ5AXnkdt7+/k1UpuTpFJoQQQvRNkvB0MpNZZdnK/bS21986tmzlfkzmPt8NQAghhOg2kvB0sq3HSlrM7DSnArnldWw9VtJ9QQkhhBB9nCQ8naygsu1k50yuE0IIIcRvJwlPJwvxduvU64QQQgjx20nC08nGxQYQ7utGW5vPFbTdWuNiA7ozLCGEEKJPk4SnkxkNCkvnJQK0SHqsny+dlyj9eIQQQohuJAlPF5g7LJzXrhlFmK/9spWfhzOvXTNK+vAIIYQQ3UwaD3aRucPCmZ0YxtZjJfzzlzR+OlTIxPhASXaEEEIIHUjC04WMBoWJ8YF4uTrx06FC1hwooLKuEW83Z71DE0IIIfoUWdLqBsP6+RAX7El9k5nv9+XrHY4QQgjRLUxmlU1pxXyVnM2mtGJdm+7KDE83UBSFi0b048XVh/kqOZvLRvfXOyQhhBCiSznamZIyw9NNLkqKAODX1CJpOiiEEKJXc8QzJSXh6SYxQZ4kRfphVuGb3XJ4qBBCiN7JUc+UlISnGy2wzPJ8lZytcyRCCHCs+gIhegtHPVNSani60YUjInji2wPszirnWFE1sUGeeockRJ/laPUFQvQWjnqmpMzwdKMgL1emDAgC4MtdMssjhF4csb5AiN7CUc+UlISnK1UXwfGNYGqyDS0YeWJZS1Vl+lyILmE2Q1EqHPwOUj6DtHVQkQM4bn2BEL2F9UxJAA/qGK0cYr7hVxKVdEC/MyVlSasr7f8Kvr0XXH1hyIUw4Q7OTUzA3TmF9OIadmeVkxTpp3eUQvQeFTmw+R+w91OobGWWJmQox6Muobw8Fmj93WXz+oKJ8YFdGq4QvZFRgWfPyqVpywrONuzFWTEB8LemBRxoigH0OVNSEp6u1FQH7gFQWwLJH0DyB3iOvJaLBl/ORylVfLkrWxIeIX4Dk1ll67ESCssrGZn+Fv33/xOlybJM5eQGwYPBxRuqC1CLU1EK9hFXsI91rn4sb7yOb80T2nxsaR8hxBkoPIz69e+ZmrkZjNpQrhrAMXMY2WowYTrWySmqrKtQUVGBr68v5eXl+Pj4dO6Dm02QuRW2vA77vwSgziOChaW3ke05lM1LZuJklJVFITrKWnRsKs9lhctfGWE4CkBJ4GgCZt8HA2aRVWni6905fLUrh7z8XOYZN3GL8RuiDIUAfNw0nceaFlOPS4vH/8/NE2SGR4iO2P0RrLwHmuqoVV34UJ3N9Cvvp8A1moLKOkK8tWWszpzZ6cj/35Lw0MUJT3PHN8FXd0DJUepw5taGe7lx8c1MHRTcdc8pRC9kLToerGTwlstzRCgllKpeLG1czErzRK4cF0VqQRXb0ktt93ExGpiREMyCoYHkfPMki02fYVRUtpgTuKHhT1TjDmj1BWG+bmx4cGa3T7kL0SOpKvz0NPz8LAC/qsO5v/5mrj9/MrdMje/Sp5aEp4O6LeEBqCuHz26CIz/QoBr5IPJxrr/p7q59TiF6EZNZZcqza/GqSOUTl+X4K1WkmiO4vvFPZKqhdtcqCkyIDWTByAjmDgvH1107uHdVSi7vf/gO/3B+CR+llmRzPNc1/JkKPFGA164ZJVvThWiv1ctgwwsAfOF5BfcWz2dsTBD/uWVCl79p6Mj/37KW0t3cfOHKDymJuQAXxcTVmcuoT/tV76iE6DG2HivBWJHBey5P469UkWyO45KGx1skO9eMj2Ljn2fyn1smsHBslC3ZAZg7LJxrrlrE3S7LKVW9SDKk8ZrzS/i6qJLsCNERG16yJTu/DvozfyxegLuLM89fPsLhZkgl4dGD0Rn/a9/lF8N4XJQmlI+vguI0vaMSokcoLi3hX85/JUwp5ZC5P4sbHqQCrxbXjY0NINzXvc3HmTssnDeX3EzGhR9Rb/BgsnEfywz/4pyEkK4MX4je4+C3sHopAIUTHub6/UkAPHJBIlGBHjoG1jpJeHSiGJ3YOeZZdpvjcGkog0+ug0bZFSLEKakqE1KWkWDIpED147qGP1OGd6uXtqepmdGgMGLs2Thd8W9MGFjAOo5+/0pnRy1E71OUCl/cBoBp3K3ccGQSDU1mpg8O5nfjInUOrnWS8OjogtEDuLnhPopVH8hPgR8f1TskIRzbjrcJSl9JE0buaribfFo2LjuTpmbGhLmsjrgdgLjtT0L+/s6KWIjep6ke/rsI6isgahKvOi1mb3Y5vu7OPHvpcBTFsZayrCTh0dHAUG+CwqO5r1HLktn6Bhz+Xt+ghHBUpenw/cMApA6/j61qQotLrC+zZ9LULOjce/nJNAJntQHzf6/XXtSFEC39/Kz2Jt0jkP1TXuJvP6UD8MSCYYT6dO9xER0hCY/OFoyM4CdzEt94XKwNfPNHqK/UNyghHI3ZDF/dBY3VED2ZhAVLGBrRckdGmK/bGRcdj4oO5K+ef6BQ9cFQdBA2vNgZkQvRu2Rtt/1uNJz3And/k0eTWeWC4eHMHxGhc3CnJgmPzuaP6IeiwP0l82nyjYaKbFjzhN5hCeFYkj+A9PXg7AkXvcqxklr25VQA8NLCEbx8ZRL/uXkCGx6cecY7rBRFYUpSIssaF2kD6/8KhYc6618gRM9nNsHKP4BqhrMu57njg0gtqCLY25UnLxqmd3SnJQmPzsJ83ZgQG0gdrnwX/YA2uPUNyN6pb2BCOIraMlj9uPb3GUsgIJZ3N6UDMDMhhAUj+3NRUj8mxgf+5m2wFyVF8I15AuvMI8HUAN/cqzVVE0LAjn9D/l5w82P7kAd589djADx76Vn4e7bsVu5oJOFxANYT1F89HgVnXQGo8P1D8kIrBGj1AjVFEDQIxt1KVX0T/92eBcDiSTGd+lQJYT4MDvXh4YbraTK4wfENcGBlpz6HED1STQmsfRKA+qlL+MPKTFQVrhwbycyE0NPc2TFIwuMA5g4Lx8Vo4FB+JUeG3wdO7pCxCQ58rXdoQuir4CBs+af29/OeBScXPt+ZRVV9E3HBnkwZENTpTzk/KYIcgljpeak28ONjUsAsxNonobYUQoayPHccWaW19Pd355ELE/WOrN0k4XEAvu7OzEjQztP6NFWFSb/XbvjxMWhq0DEyIXS29glQTTD4AoifiaqqvLMxHYBFE2MwdEEnV2vh5aNF52DyDIHSY7B1Rac/jxA9hakwFXXH2wB8Gf57PtiWi6LA85ePwMvVSd/gOkASHgexIKkfACuTczBPuhu8QrVtuMkf6BuYEHrJ3gkHvwHFALMeB2BDahFphdV4uTpx6ej+XfK0kQEejIzyo0p1Y1O01puHDS9AQ3WXPJ8QjmxVSi4/vvZHFNXEWlMSf9ii7Y6cOTiECXGBOkfXMZLwOIgZCSF4uzmRU17H1pwGmPJH7Yb1f5VZHtE3rfs/7c/hCyF4EIBtduey0f279J3lRZZZnhcKxoB/LNQUyyyP6HNWpeTy1w++5lzTegBeaLrMdtvagwWsSsnVK7QzIgmPg3BzNnLesDAAvkrOhtGLwSsMyjNh13v6BidEd8vYAqk/gmKEadruxYziGtYcLADguonRXfr0FwyPwKDAzqxKikbfow1u/BvUV3Xp8wrhKExmlWUr9/MHp08xKCr/M40lRY2zu2bZyv2YzD1nc40kPA7Euqz17Z5c6hWXZrM8L0jRpOhbfnpa+3Pk1RCgvci+tzkdVYWpg4KJC255WGhnCvZ2ZbKlIPrj+glaDDXFsE1meUTfsPVYCd4VR7jAuBWzqvBis9kdABXILa9j67ESfQI8A5LwOJDxcYGE+rhSUdfET4cKtVke73CoyILdH+kdnhDdI3c3HF2nze6cfT8ANQ1NfLwtE4DFk7p2dsdqnmVZ68vdBahT/6QNbvw7NNZ2y/MLoaeCyjpudfoGgFXmsRxWWz8QtKCy5xx6LQmPAzEaFNsOka+Ss8HZDSbeqd246VWtvb4Qvd3Gv2t/Dr0Y/LXk5otd2VTUNREd6MH0QSHdEsbcYWG4OBk4UlDFweC54BulzfLs/k+3PL8QeupvKGW+YSMArzfNa/O6EG/HPTvrZJLwOJiLLMtaqw8UUFnXCKMWgasPFB2C1NU6RydEFyvLgJTPtb9PvhvAbiv6dV20Fb01Pm7OzBistYv4ak8BTLDs2JI3H6KXU1UVZevrOCsmNpuHsEeNb3GNAoT7ujEuNqD7AzxDkvA4mKERPgwI8aKhycyqlDxw84FR12k3bvybvsEJ0dU2v6b13YmdBuEjANh0tJjD+VV4uBi5fEzXbEVvi/UNyMrdOZiTrgFXXyhOhSPfd2scQnQXk1nlmS+3MjDzUwD+2XQhJ7/FsH6+dF7ibz7OpTtJwuNgFEVhQZK2rPXOxnS+Ss5mR/hCVMWoHZ6Yu1vnCIXoInXlsOMd7e+W2R04sRX9klH98HFz7taQZiaE4OXqRHZZLTvzm2C05WDRja90axxCdIe6RhN3/2cXpu3v4K3UUuoZz8LfXU+Yr/2yVZivG69dM+qMD+rVS89pkdiH+Hloh7Cl5FRwz0fJALzhMYlz1fXaO+CLX9cxOiG6yO6PobEaghMg/hwAskpr+HF/PqB1Vu5ubs5Gzh0ayuc7s/l6dw5jpt8Gm/+hnbGVuwfCh3d7TEJ0hYq6Rm55dztbjhbxk6tWPuE/827mntWP2UMj2HqshILKOkK8tWWsnjSzYyUzPA5mVUouj36Z0mL8tdpZAJj2fq4d4iZEb6KqsO1f2t/H3gSK9mL6/uYMzCpMHhDIwFBvXUK7qFm7iCavcBgyX7th+1u6xCNEZ8uvqOOK1zex+WgJs133E63ka8u3Z10OaBtqJsYHclFSPybGB/bIZAck4XEo1kZPrbVx2qUOYJ85GqO5HnPyh90emxBdKn29Vpjv4qV1VkabXv9oWwagz+yO1eT4QAI9XSiubuDXtGIYc4N2w97/Qn2lbnEJ0RnSCqu45B8bOZhXSbC3K8/HbNNuSLoKXDz1Da6TOWTC8+qrrxITE4Obmxvjx49n69at7brfRx99pNXALFjQtQF2ka3HSsgtb6ungcIHJm2Wp37zv7R3xEL0FtbZneELtUJ9tNYMZTWN9Pd355whobqF5mQ0cMHwcFtMxEyBoEHQUAV7PtYtLiF+q50ZpVz22kayy2qJDfLkq6sj8clYo9049kZ9g+sCDpfwfPzxx9x7770sXbqUnTt3MmLECObMmUNBQcEp75eens7999/P2Wef3U2Rdr7TNXD6yjSJStUd94pjcOyXbopKiC5WkQsHtAZn1hdZVVV5e+NxAK6dEK37FLq1P9b3KXnUNZlPzPJse0vefAiHZzKrbEor5qvkbDalFWMyq6w5kM9VKzZTWtPIiP6+fHrbRCJSPwLVrO2SDBqod9idzuESnhdeeIGbb76Z66+/nsTERF5//XU8PDx4662218tNJhNXX301y5YtIy4urs3rHN3pGjhV486XpsnaJ9vf7IaIhOgGuz/UtqJHTYTQoQBsSy/lQG4Fbs4GFo5tvcNrdxoV5U8/P3eqG0ysPVgAI64EJ3co2AeZ7ZuBFkIPq1JymfLsWn63YjP3fJTM71ZsZtQTP3Lzu9upazQzfXAw/7llAoHuRrCWS/TC2R1wsISnoaGBHTt2MGvWLNuYwWBg1qxZbNq0qc37LV++nJCQEG68sX3fpPr6eioqKuw+HMG42ADCfd1a9Dxo7gf387S/HPxOipdFz6eqJ15kR15jG7ZuRb94ZD/brkU9GQyK7aiJr5Kzwd0fhl2i3SiH+woHtSoll9vf39miVKK8thGzChNiA1lx3Rg8XJy041yq8sA9AAadp1PEXcuhEp6ioiJMJhOhofbr9aGhoeTl5bV6nw0bNvDmm2+yYkX7D/V7+umn8fX1tX1ERur/DhK0Svil8xIB2kx65s6aDWHDwdwIez/tvuCE6AqZW7VGfs4ekHgRALnltazap/2+L5oUo2Nw9i6y9Mdad6iQ8tpGragTYN+X0FCjX2BCtOJUm2CsjpdUY7DsiGTX+9qfw68AJ/3fZHQFh0p4OqqyspJrr72WFStWEBQU1O77LVmyhPLycttHZmZmF0bZMXOHhfPaNaNaNHpyNmo/lF8n52Ae8TttcLfs1hI9XLLlRTZxAbhq284/2JyByawyPjaAhDAf/WI7SUKYNwMtXdC/35cHUZPALxoaKuHgt3qHJ4SdU2+C0dhOO68pgUPfaYNJV3dDdPpwqMaDQUFBGI1G8vPz7cbz8/MJCwtrcX1aWhrp6enMm3fiYDOz5YwbJycnDh06RHx8yzNAXF1dcXV17eToO8/cYeHMTgyza/QU6uPKhX/fwJZjJbwXN45FBifI2QUFByBkiN4hC9FxDTWQ8oX2d8tsSV2jif9s1baiL3ag2R3QuqBflBTB8z8cZuXuHK4YEwkjfgc/PwPJH8Dwy/UOUQib9p5iXlBZB8XfgakBws7q1c00HWqGx8XFhdGjR7NmzRrbmNlsZs2aNUycOLHF9QkJCezdu5fk5GTbx/z585kxYwbJyckOs1R1Jk5u9BQX7GVb7nrypwIqImdqF0pPHtFTHVipzY74RUO0Voz/7Z5ciqsbiPB1Y3aiflvR2zJ/hNaE8NfUIu0/ihFXajcc/QnKs/ULTIiTtPcU8xBvtxPLWUnXnPriHs6hEh6Ae++9lxUrVvDOO+9w4MABbr/9dqqrq7n++usBuO6661iyZAkAbm5uDBs2zO7Dz88Pb29vhg0bhotL71qHvGJMJOcmhtJoUnmhcIw2uOcTMDXpG5gQZyL5A+3PpKvAYLBsRU8H4OoJ0TgZHe7liahAD5Ii/TCr8N2eXAiItSRrqvTkEQ7ldJtgbKede+RCbjIYnG2dlXsrh3tFWbhwIc8//zyPPfYYSUlJJCcns2rVKlshc0ZGBrm5uTpHqQ9FUXjm0uEEe7vyQUkCNUZfrar+6E96hyZEx1TknOglZalJ25lRxt7sclycDPxuXJSOwZ2atXj5q9052oCtpu4/0pNHOIzmm2BOZnfaecp/tU8GzQHPwO4JTicOl/AA3HXXXRw/fpz6+nq2bNnC+PHjbbf99NNPvP32223e9+233+bLL7/s+iB1EuDpwnOXDacRJz6un6ANyjtL0dPs+wJQIXICJt8oNqUV89S3+wGYPzycAE/HnZ29YHg4BgV2ZZSRUVwDQxdoPXmKDmt1dUI4COsmGDdn+//qbaedDw2DlM+1weFX6BBh93LIhEec2ozBIVw3MZqVJq2uST34LTTW6hyVEB2Q8hkA+wNn2Zqi7cwoA+Cnw4WsSnHcWdwQbzcmxWu7QlfuydF2lw2eq92473MdIxOipbnDwgm0vIG4a0Y8/7l5AhsenMncYeGQtQ3KM8DFGwaeq3OkXU8Snh5qyXlDKA9MIksNQmmsRj3yg94hCdE+JccgewcqBhZt7tdi62xxVQO3v7/ToZMe61ET/9l6nK+SszkUNFu7Yd+XsqwlHEpRVT3ZZXUoCtw6Ld7+tHNrL7eEC8DZXb8gu4kkPD2Uu4uRl383iu/M2rJW1voPdI5IiHayzO5sU4ZRiG+Lm63pwrKV+zGZHTN5MFr6YmWV1nHPR8nM/96DatyhPFN71yyEg9idWQbAgGAvvN2cT9xgNlmWloFhl3Z/YDqQhKcHG9bPF9+x2rbYoJx1ZOUV6hyREO1gqRn4tGF8m5eoNGuK5mBWpeRy/ye77cbqceEH02gA0n9+V4+whGhVsiXhSYr0s78hfT1UF2jHpMTP6Pa49CAJTw932QUXkGuMwF1p4L8frnDYd8RCAFqjzIJ9mBUnVpnGnv7ydjZP6y6nate/0qTNtnqmfoOpSVpFCMdgTXhGnJzwWGZaSbwIjM70BZLw9HBGowGPUVrvhKGlq3n95zSdIxLiFCyzO2X9plGB12kvb2/ztO5yqnb9683DKVc9CKaUg1u+7+bIhGjJbFZtS1p2MzxNDbD/a+3vfWQ5CyTh6RV8x2jLWtMMu1nxYzJ7ssr0DUiItuz/CgC/sQsJ9207mbE1RYsN6KbA2udUM06NOLHKNA4AjyNfdVdIQrTpWHE1FXVNuDoZGBzmfeKG9F+grgw8Q2xdzvsCSXh6g9BE1OAEXJUmprGDP3ycTFVdE5vSivkqOZtNacWy1CX0V3gYig6BwRnD4LlcOyG61cvsmqIZ2uoTq4/TzTh9Y9lE0C9vtVYUKoSOki2tHs7q54tz887lB1Zqfw65EAzG7g9MJw51eKg4c8qQeVB4kItcd/JV4RTG/d9qahpOvOCG+7qxdF6i1ntBCD0ctLzIxk0DN1/2ZqcC4O5spLbxxM9qmAP/rFrb9eeV17Vax7PZnEgFnvjUFUPmVohueQagEN1lt2W23245y2yCg5aT0RMu7PaY9CQJT2+RcAH88hemKLtxpYGaBvtOtXnlddz+/k6tu6YD/kci+gDbu8p5HC2sYtW+PAC+uGMSpTWNFFTWEeKtLWM52syOlbVd/+3v70SBFklPI05URp2DT8bXcPAbSXiErlotWM7cqu3OcvOFmLN1iUsvsqTVW4Qnofr2x8VcyxTD3hY394TeJqIXK8u0HLugwODzWbH+GKoKs4aEkBDuw8T4QC5K6mffFM1BWdv1h7VSg+Tr7kTQmIu1Tw5+I00IhW7qGk0cyK0ATprhOfiN9uegueDkuEe4dAVJeHoLRSEvfBYAcwzbW73EkXubiF7u4Lfan1ETKFB9+GxnFqB1fu2J5g4LZ8ODM/nPzRN4+cok3r1hLP383CivbeKtvAHg5Aal6VCwX+9QRR+1P7eCRpNKkJcL/f0tXZRVFQ5Ydmf1seUskISnVzkaOA2AWcYdGGm7YNLRepuIPsD6rnLIPN7+NZ2GJjOjovwYE+2vb1y/gdGg2Gampg4K4YG5CQC8siGH+ijtd5ED3+gYoejLrAXLI/r7oSiWWdO8vVCWoR12O+Ac/YLTiSQ8vYghZjKlqhcBShVjlMNtXudovU1EL1ddDMd/BaAqdi7vbT4OwG3T4k+8EPcC84ZHMLy/L9UNJr5tHKUNHpSER+ij1YJlax3dgHPAxbPbY9KbJDy9yLj4EDYate61c4wtz/Nx1N4mopc79B2oZggbzn8OK1TWNREf7MmsIaF6R9apDAaFh84fAsDTaTGoigHy9kDpcZ0jE31RqwXLzWZa+yJJeHoRo0EhfMJlAJxr3E7zPSSO3NtE9HKWF9mmwRfy5oZjANw6NR5DL/w5nBAXyKwhIRSavTnsepY2eOg7fYMSfU5JdQPHi2uAZglPcZpWU2ZwgkFz9AtOR5Lw9DKjZlxKk9Gd/koRQ5UT7yzDfN1kS7rofg01cPQnANaoY8irqCPE25WLRkboG1cX+vN5CRgNCh9XDtcGpI5HdDPrclZcsCe+7pZzsg6v0v6MnqwdGNoHScLT2zi74zRQK0b7c9xRABLDfdjw4ExJdkT3O/YLNNWh+vbn+V1aR9cbpsTi6tR7u7sOCPFm4dhIfjCPAUDN2Ag1sjNSdB9rwXJSf78Tg9aEZ9Dcbo/HUUjC0xtZfqBHN2h1PLnltfTC1QPRExzRDtHMCprKkcJqvF2duGp8lM5Bdb0/zBpIiXMYB82RKKoZ0tbqHZLoQ6z1O0lRftpAXQUc36j9vY8uZ4EkPL3TwNkAeBTuJkQpt3Sxrdc5KNHnqCoc1hKe90oGA3DVhCh83Jz1jKpbhHi7cevUeNaZkwAwHVqlb0Ciz1BVteUOrbS1YG6CwAEQ2DN7X3UGSXh6I+8wCB8BwGW+BwFsHTeF6Db5+6AiG7PRjXdyo3ExGrhhcqzeUXWbm6fGstNVOz298dCPcpio6BbHi2soq2nExclAQpiPNnjkB+3PPrycBZLw9F4DtWnL2U7JABzMq9QxGNEnWWoG9romUY8LF4/sR6hP3+kB5eHixDmzL6Rc9cCtsYyqtM16hyT6AOvsztAIH1ycDGA222ZaGXiufoE5AEl4eivLOm1i7XacaOKgzPCI7mZ5kf24fCiKArdMi9M5oO532dgYdjqPBmD32o91jkb0BbusBcvW5aycnVBTBK4+ENW3D7OVhKe3ihgFHkG4mqoZazgkMzyie1UXQ5ZWNL/OlMTsIaHEB3vpHFT3czIaCB2tNXkLyPmJzJIanSMSvZ2tYNma8Fhnd+Jn9LnDQk8mCU9vZTDYipenG5JJLaiiocmsc1Ciz0j9EVA5oEaTS2CPPSS0Mww5+xLMKAxRjvOvb9frHY7oxRqazOzPOemEdNmObiMJT29mWa+d5ZRMk1klrbBK54BEn2F5V7naNJJxMQGM7sGHhP5WilcwdSEjAWg4+D17s8p1jkj0VgdyK2gwmfH3cCYqwAMqcrTjTVBgwGy9w9OdJDy9WfxMUIzEk01/pYCDeVLHI7qBqQk1dTWgLWfd2gdrd07mMfR8AGYakvm/7w6gqupp7iFExzU/P0tRFDjyo3ZDv9HgFaxfYA5CEp7ezN3PVqQ207CLg7lSxyO6QfYOlPoKSlUvaoJHMGNwiN4R6W+QNts62ZDCzqO5rDtUoHNAojfafXL9Ttoa7c+BMrsDkvD0fpYf9GmGPRyQwmXRDZos7yp/NQ/jpmmDeuUhoR0WNhy8wvBQ6hljOMTT3x2kySQ1daJz2Z2QbmqynWNH/Dl6heRQJOHp7QZoP+gTDftJyynWORjRF5Tv1ep3druOZv6I3ntIaIcoirbEDMx22ceRgio+3p7JprRivkrOZlNaMSazLHOJM1de08jRomrAcoZWzk6oKwc3X4gYqW9wDsJJ7wBEFwsZitkzBI/qAiJrUiiumkmgl6veUYleylxdgl9ZCgCx4+dpjc+EJn4m7P6QeV4HebwOHv0yheY5TrivG0vnJcohv+KMWBsOxgR64O/pAlsty1lx08Eo/9WDzPD0fgYDhvgZAJxt2MMhWdYSXWjP+q8wYiaV/syfOlbvcBxL3HQAAqsOE0wZJ0/o5JXXcfv7O1mVktv9sYkez245C04cWCvLWTaS8PQFlqn0qVLHI7qAyaxqSzO7ssnZ8Q0AZeFn4+Uq7yrteAWjWs64m2xIaXGzNf9ZtnK/LG+JDrMrWK4thezt2g2W138hCU/fEKfN8JxlSCczM0PnYERvsiollynPruV3KzZzz8e7SGrYCUB15HR9A3NQOQHarsmpxj2t3q4CueV1bD1W0o1RiZ5OVVX7DstHfwbVDEGDwC9S19gciSQ8fYF3KBW+CQB4ZEunV9E5VqXkcvv7O8ktrwNggJJNhFJCverMrb+4ytJMK9L9xgNwtmEvCm3v0iqorOuukEQvkFVaS3F1A85GhSHhPie2o8tylh1JePoI1VLHE1+xVbbDit/MZFZZtnI/zRdephr2ArDFnEA9LrI00wpj9ARqVFeClXISlMw2rwvx7junyovfzjq7kxjug5uTAdLWaTcMkISnOUl4+gjvRO309MnKHtKL5IgJ8dtsPVZim9mxmmrQlml+MQ+XpZk2jB0Qzi7jMEDbRHAyBW231rjYgG6OTPRkdgXLRUegPBOMLhA9Sde4HI0kPH2EIXoi9bgQppSSdXin3uGIHu7kJRdXGhhvOABoCU9b1/V1RoNCwFnamw/rjJiVtT3j0nmJGKVZo+gAu/od63JW1ERw8dQtJkckCU9f4ezGca8kANTUtfrGInq8k5dcxhgO4a40kKf6c1jt3+Z1AoZMuRiAscZDuFFvGw/zdeO1a0ZJHx7RIY0mMynZ2oG0WsJjeX2X5awWJOHpQ8r7TQUgKP9XnSMRPd242ADCfd1ssxJnW2Yr1pvOAhRZmjmVoIHg0x9XGnlqlHag74AQTzY8OFOSHdFhh/IqqW8y4+PmRIyvE6Rv0G6Q7egtSMLTh7gN1s7VGlS3BxprdY5G9GRGg8LSeYm2z6dY+sqsN58lSzOnoygwQPvPaIaTlijmV9QjXypxJnY1q98x5GyHxhrwDIbQYfoG5oAk4elDohJGkaf640oDVakyyyN+m7nDwnntmlGEO9eQqBwHYJN5qCzNtIfl3bdf7q8YFKisa6Kwsv40dxKiJWvDwZGRfnDsF20wdqqWWAs7kvD0Ib4eLiQbtYLSiv1rdI5G9AZzh4Vzkd9RDIpKgVssf7t5rizNtEeMtrxsKDzACP9GAI4UyO5J0XF2O7SO/qwNxk7VLR5HJglPH5MTMA4A54wNOkciegNVVYmp2AaAy8DpTIwPlGWs9vAMhNCzAJjreQSAVEl4RAdV1DWSVqj93IwIdTpxnETsNB2jclyS8PQxTVFTAAgo3wd1FTpHI3q67LJaxqpa/Y7XkFk6R9PDWN6Fj1O0r58kPKKj9maVo6rQ39+doOKdYG4CvygIiNU7NIckCU8fExEziHRzKEZMcHyj3uGIHu74sVTiDbmYMOAUO0XvcHoWS8IzsFrri3WkQA72FR1j13/nmCxnnY4kPH1MQpgPG81DAVCt671CnKH6I1oL+0zXQeDup28wPU30JFCMeFVnEEERqQXVekckepgWB4YCxE7XKRrHJwlPHxMT6MFWRduu2Jj2k77BiB7PK0ebJSwKHq9zJD2Qmw/0GwXARMN+iqrqKatp0Dko0VM0PyF9dLAKeZbO3bFn6xeUg5OEp49xMhooDtIKl12K9kN1kc4RiR5LVYmt1IokVZlGPzOWr9ssN+1YDqnjEe2VU15HYWU9TgaFoY17ABWCE8A7TO/QHJYkPH1QWEQUB82R2ifp6/UNRvRY5qI0gs1F1KtOBA6RXSFnxJLwjFf2AaokPKLdrP13EsK9cbHuupXdWackCU8flBB+oo7H1qhKiA4q2/cjAMkMJCo0UOdoeqjI8WB0IcBURKySJwmPaDdb/53+ftJ/p50cMuF59dVXiYmJwc3NjfHjx7N169Y2r12xYgVnn302/v7++Pv7M2vWrFNeL2BImLckPOI3a0jVXmQPuY/CyeiQLyWOz9ldS3qASYZ90nxQtFtyRhkAE4LqofgIKAaIkZ2Sp+Jwr1Iff/wx9957L0uXLmXnzp2MGDGCOXPmUFBQ0Or1P/30E7/73e9Yt24dmzZtIjIyknPPPZfs7OxujrznGBzmzVZzAiZVgeJUKJevleggsxnfPK1guSRkgs7B9HCWZYiJhn0ywyPapclkZq/lhPRxWIqVw0fITsnTcLiE54UXXuDmm2/m+uuvJzExkddffx0PDw/eeuutVq//4IMPuOOOO0hKSiIhIYF//etfmM1m1qxp++iE+vp6Kioq7D76kkAvV9y8A9irxmkDMssjOqpgH+5N5VSrrrhGj9U7mp7NsgwxybCPnLJqahqadA5IOLrD+VXUNprwdnUipGiLNij1O6flUAlPQ0MDO3bsYNasEx1bDQYDs2bNYtOmTe16jJqaGhobGwkICGjzmqeffhpfX1/bR2Rk5G+OvaeROh7xm1hqBraaExgQ3vbvmmiHfqPA2ZMApYoEJZOjhdKPR5za7qwyAIb390E5Ztl4IvU7p+VQCU9RUREmk4nQ0FC78dDQUPLy8tr1GA8++CARERF2SdPJlixZQnl5ue0jMzPzN8XdE7Wo41FVfQMSPYpqSZI3mocyKNRL52h6OKOz1oQQax2PdFwWp2at35kWXA0VWWBwhqiJ+gbVAzhUwvNbPfPMM3z00Ud88cUXuLm5tXmdq6srPj4+dh99TUK4N9vNg2jEWfuFKTmqd0iipzCbUC3Hkuw0DCPS30PngHqBZstaUscjTse6Q2uyk9a/if5jwEV+D0/HoRKeoKAgjEYj+fn5duP5+fmEhZ26mdLzzz/PM888ww8//MDw4cO7MsxeISHMhzpc2c0AbSBdTk8X7ZS3F0NDJRWqO43BQzHI6ei/nSXhGWs4SFp+uc7BCEdWVd/EYcssYFz1bm0werKOEfUcDpXwuLi4MHr0aLuCY2sB8sSJbU/XPffcczzxxBOsWrWKMWPGdEeoPV58sBdOBoWNTYO1geO/6huQ6DksPyvbzYMZEOanbyy9RdhZNDl74aPUoual6B2NcGDWE9IjfN1wz9msDcZIwtMeDpXwANx7772sWLGCd955hwMHDnD77bdTXV3N9ddfD8B1113HkiVLbNc/++yzPProo7z11lvExMSQl5dHXl4eVVUyLXwqLk4GBoR4scU8RBtI/1XqeET7pGsJzxbzEAaFeuscTC9hMNLUX+vHE1mxi4Yms84BCUdlXc6aGV4H5ZlgcLL1chKn5nAJz8KFC3n++ed57LHHSEpKIjk5mVWrVtkKmTMyMsjNzbVd/9prr9HQ0MBll11GeHi47eP555/X65/QYySEebPTPBCTYtTqeMqO6x2ScHRmM2Ro9TtawiMFy53FNV5b1hqn7Od4sezUEq2zHilxjvsRbSBiJLh46hdQD+KkdwCtueuuu7jrrrtave2nn36y+zw9Pb3rA+qlEsJ9+DLZjeOuCcTV7dPeufvH6B2WcGQF+6G2lGrVlRQ1hoEhMsPTWRRLl9yxhkNsyq9goMyeiVZYZ3iGNezRBqS7crs53AyP6D4JYdoL6hZzgjYgdTzidCw/IzvMg3B1caWfn7vOAfUi4SOoV9zxV6ooTd+tdzTCAeWV15FXUYdBgcDi7dpgtCQ87SUJTx82JFzbjv99lezUEu1k+RnZbB7CgFBv2aHVmYzO5PuNAMA1q32NVkXfYTKrfLxN6xk30qcaQ9lxUIwQJfU77dWuJa1Ro0Z16EEVReHrr7+mX79+ZxSU6B4h3q74ezizrWYQqmJEKTsO5Vng21/v0IQjUlXbDM9mcyKDQqR+p7M19JsIpZsJK92udyjCgaxKyWXZyv3kltcBEFm5C1ygzC8RP1dZ+myvdiU8ycnJ3HfffXh5nf4FTlVVnnnmGerr639zcKJrKYrCkHAfNqY1UuozhIDyFDi+EYZfoXdowhEVHoSaYhoUV/aqcZwnNSadznPwNEh5kSENKZhMZoxyCn2ftyoll9vf30nzPbTjDVrDwU8Ko4hKyWXusHB9guth2l20/Kc//YmQkJB2XfvXv/71jAMS3SshzIeNacUcdBvOpPIUbclCEh7RGstyVoohgUacGBQmCU9nC0mYRJ3qTKBSQc7R3UQMHKl3SEJHJrPKspX7OblhiDXh2WIewr9X7md2YhhGWV4+rXa9fTh27BjBwcHtftD9+/cTHR19xkGJ7pMQrv2nJQ0IxWlZfjZ+rh8EIFvSu4DR2ZWDzlpvrIqDP+kbjNDd1mMltmUsqxBKiTPkYVIVtpkHk1tex9ZjJTpF2LO0K+GJjo5m37597X7QyMhIjEbjGQclus+QMK1w+evSGFQUKE6FyvYd1Cr6EFW1NRzcZErA29WJMJ+2z6sTZy7bV6uZdMrcqHMkQm8FlXUtxiZYZnf2q9FU4NnmdaKldi8QDx8+nPHjx7NixQoqK+U0395iYKgXBgUyapxpCracni6zPOJkxalQXYDJ4MJuNZ6BoV4oikyhd4Xa8AkABJfskO7nfVyId8s3Fc2Xs051nWip3QnPzz//zNChQ7nvvvsIDw9n0aJFrF+/vitjE93AzdlIbJD2LiE/wHIOWbokPOIklvqdHK9h1OMiR0p0Ic/4CdSrTvg2FUPJUb3DEToaFxtAuK8bzd9aNE94FCDc141xsQG6xNfTtDvhOfvss3nrrbfIzc3l73//O+np6UybNo1Bgwbx7LPPkpcnyyA9VYKlH89+l2HagMzwiJNZfiZ2G7VZQEl4uk5ceBDJqtYbS5XeWH2a0aCwdF6irWg5iHIGGHIwqwrbLA1jl85LlILldurwnkdPT0+uv/56fv75Zw4fPszll1/Oq6++SlRUFPPnz++KGEUXG2LZbbO+bqA2UHgQqot0jEg4lGb1O2tqrQXLkvB0lZggD7Za/jOrS/1F52iE3uYOC+eSUVpPu3GW2Z2DahTuvkG8ds0o2ZLeAb+pycOAAQN46KGHeOSRR/D29ubbb7/trLhEN0qwFC5vLzJCSKI2eFwKJoVF6TGozEE1urCqPBKQHVpdydXJyHEvbTu64fivUscjKKluAOC6iCwA/BNnsOHBmZLsdNAZJzy//PILixcvJiwsjD/96U9ccskl/PqrLIX0RNat6akFlZiiJmmDsqwlrCzLKjXBI6hVXfB1dybY21XnoHq32rDRNKpGXGtyoey43uEIHTWazLZt50mmFADCh58jy1hnoEMJT05ODv/3f//HoEGDmD59Oqmpqfztb38jJyeHFStWMGHChK6KU3Shfn7ueLs60WhSyfcbrQ1K4bKwssz2Zflo26UHh3rLDq0uFhUWzF41VvtEfhf7tD1ZZdQ0mIhxr8Ot9LA2GD1J36B6qHYnPOeddx7R0dH8/e9/5+KLL+bAgQNs2LCB66+/Hk9Pz66MUXQxRVFsszx7nCxLWvkpUCPNrASQoR1kmWzQfjYGynJWlxsQ7HVi27HMtvZpG1OLAVgYlq0NBA0GzyAdI+q52p3wODs78+mnn5KVlcWzzz7L4MGDuzIu0c2sdTy7Sl0hcCCgQuZWfYMS+qvIhdJ0UAysr40BpGC5OwwMlYRHaDamaQnPVLc0bSB6oo7R9GztPkvr66+/7so4hM6sMzwHcyu1X6jiI5CxEQbP1TkyoSvL7A6hw9hTqBXPygxP14sP9mKHeRBmVcFQmq51P/cO0zss0c3qGk3syCgFIL52rzYYJQnPmWrXDM8ll1xCRUVFux/06quvpqCg4IyDEt3POsNzMK/ixC9UxmYdIxIOwfIz0Nh/PJmlNYBWwyO6lqerE96+ARxUo7QBa+Ip+pSdx0tpaDIT5Q2uBXu0wSiplT1T7Up4vvrqKwoLC6moqDjtR3l5OStXrqSqqqqrYxedaLClF09+RT1lwZaOy9k7obFWx6iE7iz/0eb4JKGqEOjpQqCX7NDqDgNCvdlqth7qKwlPX7TpqLacdUV4IYq5EbzDwU8O5j5T7VrSUlWVQYMGdXUsQkderk5EBXiQUVLD/lp/JnmFQVWelvTETNY7PKGHugqteB3Ya0wEcmU5qxsNCPZie+pgFvODzPD0Udb6nWnuqdpA1ASQHZJnrF0Jz7p16zr8wP369evwfYS+EsK8ySip4WBeFZOiJ8K+L7Q6Hkl4+qasbaCawT+GveXugBQsd6cBIV58a53hyU/RElA3H32DEt2mqr6J3ZllAAys0954ECXb0X+LdiU806ZN6+o4hANICPfhh/35J+p49n0hdTx9mfV7HzWRw/mVgCQ83WlgqBf5BJCthNJPzYesrTBglt5hiW6yLb2EJrNKtL8Lbnk7tEGp3/lNftPREqJ3sZ6pdTCv8kThcuZWMJt0jEroxrqMEjWBw/laTZ4kPN1nQLC2fLi5yVJOIHU8fcomy3LWxREVUF8BLt4QOlTnqHo2SXiEjfXU9EN5lZiCE8HVR/tFy9+nc2Si2zU1QNZ2AKrDxpJdphWvyxla3cff04VATxe2WZe1ZLa1T9mYph3gPNPT0n8nchwYjDpG1PNJwiNsogI8cHc2Ut9kJr20TvsFAymY7Ivy9kBTLbgHcLhJO6Aw2NsVPw8XnQPrWwaEeJ1IeLK3Q1O9vgGJblFW08C+HK0VzKB6a/2O9N/5rSThETZGg2Lbnn4wt/LEerEkPH2PbTlrIkcKqgHpv6OHASFepKkR1Dj5QVMd5O7WOyTRDTYfLUFVYUCwJ245lo73Ur/zm0nCI+wMsXZcbt6A8PgmUFUdoxLdzlawPMFWsCxb0rvfgBAvQOGQi6V2w3KQq+jdNlmWs86PbITKXDA4Q7/ROkfV87Vrl9bIkSPbfTryzp07f1NAQl/WjssHcithxmjtF60qTztPKSBW3+BE91BVuxmeQwdlh5ZeBoZoX/PNTYMYya9Sx9NHWBsOzrLW70QkgYuHfgH1Eu1KeBYsWNDFYQhHkRDWbIbH2R0iRmrbYTM2ScLTVxQdgZpicHKD8BEcyV8PSMGyHrQZHvixOo7bndF+D81mMMjkfG9VWFnP4fwqFAUG11s2jMhyVqdoV8KzdOnSro5DOAjrDE9WaS0VdY34RE88kfAkXaVzdKJbWGd3+o2hvFEhr6IOgIEyw9PtQn1c8XJ1Yk99NGZ3Nwx1ZVB0CEKG6B2a6CLW2Z0hYT645lrrd6RguTOc0duEsrIy/vWvf7FkyRJKSkoAbSkrOzu7U4MT3c/Xw5kIXzcADjfvxyM9QPoO67JJ9ERSC7TlrHBfN3zcnHUMqm9SFIX4EC+acKLEf4Q2KHU8vZq1fuecaCcoPKgNRsoMT2focMKzZ88eBg0axLPPPsvzzz9PWVkZAJ9//jlLlizp7PiEDqw7tT7ensk2k6XpWfERqC7SMSrRbZo1HDyUpzUclNkd/Qy0LGuluQ3XBqSOp1eznp81yztdGwgaDJ6B+gXUi3Q44bn33ntZvHgxR44cwc3NzTZ+/vnn88svv3RqcKL7rUrJZWu6Nmv33+1ZXP7uQdKUSO1G2Z7e+1XmQekxUAzQf9yJIyVCpH5HL9Y6nm2qtQGh/B72VlmlNRwvrsFoUEhokPqdztbhhGfbtm3ceuutLcb79etHXl5epwQl9LEqJZfb399Jdb39URKbGrVZnmM7V+sRluhO1v9MQ4eCmw9HCmSHlt6sR0ysrYoCxQjlmVCWqXNUoitYj5MY3t8X1+wt2qDU73SaDic8rq6uVFRUtBg/fPgwwcHBnRKU6H4ms8qylftprduOtdNrbeoGTGbpx9OrNTswFDhxhlaYJDx6sfY/Sikyo4adpQ1mbtExItFVrAnP1BhPyNmlDcoMT6fpcMIzf/58li9fTmNjI6AV1WVkZPDggw9y6aWXdnqAontsPVZCbnldq7dtMycAMMh8lO2Hs7ozLNHdmtXvlFY3UFipHWUwUJa0dNPf3wMXJwMNTWYqQ8dqg1K43Ouoqnqi/45vDpgbwSsM/GP0DawX6XDC89e//pWqqipCQkKora1l2rRpDBgwAG9vb5566qmuiFF0g4LK1pMdgByCyFYDcVLMNMk7y96rvhLy9mp/j5poq9/p5+eOp2u7OliILmA0KMQFeQKQ7iGFy71VenENueV1uBgNJDRa6neiJ0I7m/6K0+vwq5ivry8//vgjGzZsYM+ePVRVVTFq1ChmzZrVFfGJbhLi7XbK27eZB9PPuJGoyj3AZd0TlOhemVtBNYNfNPhEcHj/cUAaDjqCgaHeHMyrZJeSwHCAgv1QWwru/nqHJjqJ9XT0kVF+OGdJ/U5X6HDCk5mZSWRkJFOmTGHKlCldEZPQwbjYAMJ93cgrr2u1jme7eTALjBvpX5nc3aGJ7nJS/c4R6w4tqd/RnbVweW+ZKwTEQ0malqAOmqNzZKKzWLejT47zh+3WhEfqdzpTh5e0YmJimDZtGitWrKC0tLQrYhI6MBoUls5LBKC1CVRrHY+StR1Mjd0Ymeg2zep3AA7lWbekS8KjN+vW9NSCKm2ZA6SOpxcxm1U2WxKemYFFUF8BLt4QMlTnyHqXDic827dvZ9y4cSxfvpzw8HAWLFjAp59+Sn19fVfEJ7rR3GHhvHbNKMJ87Ze3vFyN/PGqeeDmC43VJ+o8RO9haoSs7drfrTM8BZYdWrIlXXfWnVqpBVWo1q67UsfTaxwuqKS4ugF3Z+OJ/juRY8EotXOdqcMJz8iRI/nLX/5CRkYG//vf/wgODuaWW24hNDSUG264oStiFN1o7rBwNjw4k//cPIHrJkYDWtHq3LP6nWhvLo3Pep/cPdBUC+4BEDyYoqp6SqobUJQTswtCPzGBnhgNClX1TRQFjtEGc3ZCY62+gYlOsTFVm90ZGxuAk9TvdJkzPnJXURRmzJjBihUrWL16NbGxsbzzzjudGZvQidGgMDE+kD/OGoRBgUP5VeSU1Z6YSpeEp/fJsCyPRE0ARbHt0IoK8MDdxahjYALAxclAdIAHAIfqg8AzBEwNJ3q1iB7NWr8zKS7gxLmFkvB0ujNOeLKysnjuuedISkpi3LhxeHl58eqrr3ZmbEJn/p4ujIzSdoGsO1Rw4hcwYzOo0oCwV7EVLGuzeIct9TsDpX7HYVhn2o4UVp0oZpU3Hz2eyayy5ZiW8EwLrYXKHDA4Qb/ROkfW+3Q44fnnP//JtGnTiImJ4d1332XhwoWkpaWxfv16brvttq6IUehoZkIIAOsOFkDESDC6QnUhlBzVOTLRaVS1WcGypcOyrX5HlrMchV3hcvM3H6JH25dTTmVdE95uTgyut9TvhCeBi4eucfVGHU54nnzyScaPH8+OHTtISUlhyZIlREdHd0VswgFMH6wdF/JrajF1qhP0G6XdIDtEeo/iVKgpBic3CB8BNNuSLgXLDqPVnVoZW8Bs1jEq8VtZl7PGxwZiyLSfaRWdq8Ml4BkZGSjS+bHPSAz3IczHjbyKOrYcK2Fa1ERtNiBjM4y6Vu/wRGewzu70Gw1OrqiqeuIMLUl4HIZdwhM6Fpw9ob5ca0IYNkzn6MSZstXvxAfCbvteWKJzdXiGR1EU1q9fzzXXXMPEiRPJzs4G4L333mPDhg2dHqDQl6IozEjQZnnWHWxexyO1A73GSQ0HCyrrKa9txKBAXLCnjoGJ5uItzQeLqxsorTNr25ZBfhd7sIYmM9uOlQAwpb8BCg9oN8gMT5focMLz2WefMWfOHNzd3dm1a5et/055eTn/93//1+kBCv1NH6zV8aw9WIDafyygaJ1eqwr0DUx0DuvypO2EdG05KybQEzdn2aHlKDxdnejn5w5AaqHU8fQGu7PKqG00EejpwoBaS/1O0CDwDNI3sF7qjGp4Xn/9dVasWIGzs7NtfPLkyezcubNTgxOOYcqAIFyMBjJKajha7QwhWkdmeaHtBSrzoPQYoNhmDKzLWQOlYNnhxFt3auU336klv4c9lbX/zoT4QAxZUr/T1Tqc8Bw6dIipU6e2GPf19aWsrKwzYjojr776KjExMbi5uTF+/Hi2bt2qWyy9jaerE+PjAgDrspa80PYa1u9h6DCtkzYnCpYHS/2OwxnYvI6n3xhQjFCRBWWZOkcmzoT1wNBJ8YEtlpZF5+twwhMWFkZqamqL8Q0bNhAXF9cpQXXUxx9/zL333svSpUvZuXMnI0aMYM6cORQUyJJLZ7Eua9n345GdWj1eRst3ldYlrYGS8DgcW+FyYRW4etl21cmbj56nrtHErowyACZHe0K2ZYVEZni6TIcTnptvvpl77rmHLVu2oCgKOTk5fPDBB9x///3cfvvtXRHjab3wwgvcfPPNXH/99SQmJvL666/j4eHBW2+9pUs8vZG1H8/WYyVUh4/TBnP3QH2VjlGJ38xa8GrZ5qyqqrZcguzQckTWhCfN0idJNhH0XDuOl9JgMhPu60Z03SEwN4JXKPjH6h1ar9Xhbel//vOfMZvNnHPOOdTU1DB16lRcXV25//77+f3vf98VMZ5SQ0MDO3bsYMmSJbYxg8HArFmz2LSp9ReB+vp6u8NOKyoqujzOni42yJPYIE+OFVWzPt+Fub6RUJ4J2dshbrre4YkzUV8JeXu0v1vOScstr6Oyvgkng0JskOzQcjQDLDu1sstqqa5vwjNqAmx+VRKeHsi6nDUxLhAlc402GDURpO1LlzmjbekPP/wwJSUlpKSksHnzZgoLC3niiSe6Ir7TKioqwmQyERoaajceGhpKXl5eq/d5+umn8fX1tX1ERkZ2R6g9nrUJ4bqDhVLH0xtkbQPVDH5R4NsPaLZDK8gTF6czPnlGdBF/TxeCvFwASGt+xETBfqgt1TEy0VHW/jsT4wPl/KxucsavaC4uLiQmJtrO0epJlixZQnl5ue0jM1MK/trDdszEoQJUOTm952ulSNK6nCUFy47L2o8ntaAKvEIgIF67IVM2avQUlXWN7MkqB2BirN+J753U73Spdi1pXXLJJe1+wM8///yMgzkTQUFBGI1G8vPz7cbz8/MJCwtr9T6urq64urp2R3i9yrjYADxcjBRU1pPqfhYDATK3gakJjB1eHRV6s52fdeJF9pCtYLlnvYnpSwaGerHlWAlHrHU80RO1vlgZm2DQHH2DE+2yLb0Ek1klOtCD/o3HtY7ZLl7abknRZdo1w9N8+ed0H93NxcWF0aNHs2bNGtuY2WxmzZo1TJwo04OdydXJyOQBWkOsVfl+4OoLjdWQv1ffwETHmRoha7v296hJtmE5Q8vxDWg+wwPSgLAHsvbf0bajW9549B8rbxy7WLu+uv/+97+7Oo7f5N5772XRokWMGTOGcePG8dJLL1FdXc3111+vd2i9zsyEEH7cn8/aw0X8Pmo8HPlBW3+OGKl3aKIjcvdAYw24+2udXQGzWbXNGsgp6Y5rQIiWjLbYqZW9AxrrwNlNp8hEe52o3wmCI5ZENXrSKe4hOkOvqEpcuHAhzz//PI899hhJSUkkJyezatWqFoXM4rebYenHk5xZRnWYZXu61PH0PNbvWeR4MGgvA9lltdQ0mHAxGogOlB1ajsq63JheXE19kwkC4sAzGEwNkJusb3DitEqrG9ifq+0MnhgbYP+7KLpUr0h4AO666y6OHz9OfX09W7ZsYfx4+eHpCmG+bgwJ90FVYYeqzQyQsRlUVd/ARMdktNwVYt2hFRfsibOx17w09Doh3q54uzphViG9qEbbxmytwzouzUAd3eaj2uzOoFAvgs0FUJENBifoP0bnyHo/eVUTHTbTcnr6F/mhYHSB6gIoOapzVKLdVLXVHVonztCS+h1HpiiK7UwtqePpOUxmlU1pxXy4NQOA8bEBJ75f4SPARWZVu5okPKLDrNvT1xwpR7XW7sgLbc9RnAY1RWB0hYgkQHsx3piqNUJzdzJgMsuMnSOzdlw+UqDNytkSnszNYDbrFJVoy6qUXKY8u5bfrdjM+iPa79nKPblkJDdrOCi6nCQ8osOSIv3x83Cmoq6JPF9rwiN1PD2GbVfIGHBytb0Yr7ckPJ/syGLKs2tZlZKrY5DiVAaePMMTNhycPaGuHAoP6hiZONmqlFxuf38nueV1duPlNY3UpP6qfSL9d7pFu3Zp/e1vf2v3A959991nHIzoGYwGhWmDgvkqOYdfGwdyGUjC05M0679jfTE+eT4nr7yO29/fyWvXjGLusPBuD1GcWpzl2I+dx0vZlFbMuNgAjP3HwLGfte9vaKLOEQrQZk6Xrdzf4vcLwJsqEgxa01tT/wkYuze0PqldCc+LL77YrgdTFEUSnj5iZkIIXyXn8FFuhJbwFKdCVSF4BesdmjgdS8Jj6j+BZZ+3/mKsAgqwbOV+ZieGYTTI+T6OYlVKLo9+uQ+AnPI6frdiM+G+brwXN4wB/KwtL4+9UecoBWiHLZ88s2M12nAEgDRzOAUFBiZK6VyXa1fCc+zYsa6OQ/QwUwcGY1Bge4FKY78EnIsPavUDQ+bpHZo4lcp8S4G5wg7zQHLL97d5qYp2mOjWYyXaeT9Cd6eakXt8tw/vuyD1dA6koLL1ZAdgnEFbetxmHoz7Ka4TnUdqeMQZ8fd0YWSUPwDHPM7SBuWF1vFlWr5HoUPJrXdp111O9aItus+plkdUYJd5IE0YoDwDyrO6OzzRihDvtptAjjEcAmC7OviU14nOc0Z9rLOysvj666/JyMigoaHB7rYXXnihUwITjm9mQgg7jpfyc90ABoHU8fQEtu3oE9r9Iisvxo7hVMsjANW4sc8cwwjDUe37fNZl3RidaM242ADCfd3IK6+zS1RdaWC4orXyOO45nHGxAfoE2Md0OOFZs2YN8+fPJy4ujoMHDzJs2DDS09NRVZVRo0Z1RYzCQU0fHMxfvj/ER3n9uNkI5O6GhmrpJ+HImjUctL4Yt/WfqILWaFJejB1De2batpsHWxKeTZLwOACjQWHpvERuf3+n3fhZylFclSYKVV9unDdTauS6SYeXtJYsWcL999/P3r17cXNz47PPPiMzM5Np06Zx+eWXd0WMwkElhvsQ5uNGWqM/dR5hYG46cSClcDz1VdoZWgBREzEaFB6YM7jVS60vv0vnJcqLsYNoz0zbNrPl+ynLyw5j7rBwXrtmFN5uJ+YXxhoOA2DqP565Z0XoFVqf0+GE58CBA1x33XUAODk5UVtbi5eXF8uXL+fZZ5/t9ACF41IUhRkJwYDCEddh2qC80DqurG2gmsA3Cnz7AVBUpS1Jn5zUhPm6yZZ0B2OdkTtV+pnpZamny98HtWXdEZZoh7nDwpk7NAyAOUPDuCUmH4Cws2bqGVaf0+ElLU9PT1vdTnh4OGlpaQwdOhSAoqKizo1OOLzpg0P4z9ZMfqyK4yyQOh5H1qx+B6ChycybG7QdmE8tGEZ0oCcFlXWEeGvLWDKz41iaL48o0Grx8u/nT4a1cdpOvKxtMHB2d4cp2nCsqBqAC84KxX+VZYlLGg52qw7P8EyYMIENGzYAcP7553Pffffx1FNPccMNNzBhgnzz+popA4JwMRr4oSpOG8jaBqYmfYMSrWvWcBBg5e4c8irqCPF25eJR/ZgYH8hFSdqfkuw4JuvySJhvy+UtJ4PCiEi/E8cUyEGiDkNVVVILta7YiU7ZWkdsZ08IPUvnyPqWDs/wvPDCC1RVad+4ZcuWUVVVxccff8zAgQNlh1Yf5OnqxPi4AH490kS9kxeuDVWQn2I7o0k4CFPjifqqqImoqsobv2i7RK6fHIurk/R57SnmDgtndmIYW4+VWGbkXHnhx8NsSy/llbWpPBU9EZI/kOVlB1JS3UBZTaN2sH2lpY4uciwYz2ijtDhDHf5qx8XF2f7u6enJ66+/3qkBiZ5n+uAQ1h8p4oDTEJKatmkvtJLwOJa8vdBYDW5+EJzAT4cLOZRfiZerE1eNj9I7OtFBRoNi1wzyfkVh4Rub+XhbJncNTyIcIHsHNNWDk6tucQqN9cyzfn7uuORs0QblwNBud8aNBxsaGsjKyiIjI8PuQ/Q9ttPTqy3JcIZMpTuc5stZBgP//DkNgN+Ni8TX3VnHwERnGB8XyNkDg2gyq/x1hwk8gsBUDznJeocmgLRCrX5nQIhXi1o60X06nPAcPnyYs88+G3d3d6Kjo4mNjSU2NpaYmBhiY2O7Ikbh4GKDPIkN8mRL0yBtIGMzqK2VVArdNEt4dmeWsfloCU4GhRumyO9sb3HfudqW9M93ZVMVNlYblE0EDsE6wzPSpwrKM0ExQv+xOkfV93R4Sev666/HycmJb775hvDwcBRFihuF1oTww1/jaVKccarKh9JjEBB3+juKrqeqzd5VTrTV7sxPiiDc113HwERnSor0Y9aQUFYfyOeHylguAanjcRBploLlsUat/w7hI6RBqw46nPAkJyezY8cOEhISuiIe0UPNTAjh37+ms484RnBIe6GVhMcxlByF6kIwunLcbRD/S9He9d8yVb4/vc195w5i9YF83skK4xJXtLPTzGYwyLGJerLO8MTX7tUGpH5HFx3+LUhMTJR+O6KFcbEBeLgY2dRoXdaSqXSHYf1e9BvFvzbmYFa1GbmEMB994xKdbki4DxcOD2efGkO94ga1pVB0SO+w+rSahiayy2oBCCzZpQ1K/Y4uOpzwPPvsszzwwAP89NNPFBcXU1FRYfch+iZXJyOTBwSxzdysjkc4BkvCUxs2lk+2ZwJw69R4PSMSXegPswZhVpzY3mT5HsubD10dtRQsR7o34FS4XxuUhEcXHU54Zs2axebNmznnnHMICQnB398ff39//Pz88Pf374oYRQ8xMyGEHdaEp+gwVMtMoEM4rv2H931lLPVNZob392VCnBwI2lsNCPHi4pH92a7KuVqOwFq/c57fcUCFgHjwCtE3qD6qwzU869at64o4RC8wY3AIS/DmsLkfgwzZ2gvtkAv1DqtvqyqAkjRUFF446Adoszuy2aB3u+ecgTy6W0t46o/+inTi0U+apX5notMRbUDqd3TT4YRn2rRpXRGH6AXCfN0YEu7D9sLBloRnkyQ8erO8uy/zGkBGkStRAR7MHRamc1Ciq0UFehA7cgamvc/gWpWFWp6F4ttf77D6JOuREgmN+7SBaEl49NLhhGfPnj2tjiuKgpubG1FRUbi6yvuJvmpmQjBb8xO4irWUHPyFQwOK5SBKPVkSnp/qtHqOm8+Ole9FH3Hr7OEc2BvDMI5xaOtqEmYv1jukPimtoBoXGgmpsCQ8MsOjmw4nPElJSaecDnd2dmbhwoX885//xM2t5QF3onfzcDHaage8S/Zx/Yqf8ff1Zem8ROYOC9c5uj7IUrC6riaeAE8XLhsdqXNAoruE+7pzPHQsFBwjbcdqBs9aJEuZ3azJZOZYUTXDlGMYzQ3gGSztOnTU4aLlL774goEDB/LGG2+QnJxMcnIyb7zxBoMHD+bDDz/kzTffZO3atTzyyCNdEa9wYKtScnn++8NkqUHkqgE4KyaSDGnklddx+/s7WZWSq3eIfUtDNWrubgC2mwdz3cRo3F3kkNC+ZMj4cwGIrdnD2oMFOkfT92SV1tJgMjPRydJwMGoCSNKpmw7P8Dz11FO8/PLLzJkzxzZ21lln0b9/fx599FG2bt2Kp6cn9913H88//3ynBiscl8mssmzlfrQDJRS2mwcxz7iZscpBNpOIAixbuZ/ZiWGypNJdsrahqCay1UBKnEO4bmKM3hGJbuY76GwAEpQMHvt+FzMGz8Egv3/dxtpwcKrbEWhElrN01uEZnr179xIdHd1iPDo6mr17tS6SSUlJ5ObKu/m+ZOuxEnLL62yfbzNry1pjDVrTMxXILa9j67ESPcLrmyz1O9vMg7liTCQBni46ByS6nXcYJr8YDIqKZ8FO/peSp3dEfUpaYRUKZoaZDmoD0n9HVx1OeBISEnjmmWdoaGiwjTU2NvLMM8/YjpvIzs4mNDS086IUDq+gss7u8+2WhGeU4QhGTG1eJ7pO9ZH1AOw0D+amKVI30FcZoycBMMZwiBd+PITJLAf7dpfUgioGKtl4mivB2QPChusdUp/W4SWtV199lfnz59O/f3+GD9e+eXv37sVkMvHNN98AcPToUe64447OjVQ4tBBv+wL1g2oUFao7PkotCUom+9SYVq8TXaSpAeecbQC4DDibqEAPnQMSuomeCLs/ZKLTYf5aWM1XydlcMkq2qHeHtMIqxhksszuR48HorG9AfVyHE55JkyZx7NgxPvjgAw4f1gqxLr/8cq666iq8vb0BuPbaazs3SuHwxsUGEO7rRl55HSpgxsBO8yCmG3czxnCI/aYYwnzdGBcrHX67Q+GRrQSr9ZSoXsyfNUPvcISeLHUjSYY0nGnipdVHmDciAmejHCjalVRVJbWgihsMB7SB6Mn6BiQ6nvAAeHt7c9ttt3V2LKIHMxoUls5L5Pb3d6Kg1exsMw9munE3Yw2HeNc0h6XzEqVguZvs2fAt5wBp7sMZGylJZp8WOAA8AnGqKWaKZybrSmL5dEcWvxsXpXdkvVpRVQMVdY2Mc7XM8FiWFoV+2pXwfP3115x33nk4Ozvz9ddfn/La+fPnd0pgoueZOyyc164ZxbKV+8ktr7PV8YwzHua1K0ZKH55uUl7biFPWJlDAf8h0vcMRelMUbZbn4DfcHlvIupRYXl59mAg/N8pqGgnxdpPmoF0gtaCKGCWPEKUMjK7Qb7TeIfV57Up4FixYQF5eHiEhISxYsKDN6xRFwWQytXm76P3mDgtndmIYW4+VcN8HZhpMRkKUEub2q9c7tD7jw81HuRrtXWX82HN1jkY4hKgJcPAbRiuH8HOfTF5FPYve2ma7OdzXTZqDdrK0wirGW+t3+o8BZ6lf1Fu7FnHNZjMhISG2v7f1IcmOAG15a2J8IBMSIklRY7VBObG5S5nMKpvSivlsRyY//bwOH6WWRicvFNkVIsBWx2M6vony2pZvPqQ5aOdLLahinK1+R5azHIFUrYkuMyE20NaPh4yN+gbTi61KyWXKs2v53YrN3PffPQxtTAGgJHAUGKSzsgDCR6A6uePSUEa8ktPiZutG9WUr98u29U5iN8MjBcsOod0Jz6ZNm2zbzq3effddYmNjCQkJ4ZZbbqG+XpYtxAnjYgPYatZ6M5nTf9U5mt5pVUout7+/067p43jLu8p/Z0XIO3ahMTpTEZQEwATrrMNJpDlo56rOP0p/pQiz4gSR4/QOR9CBhGf58uXs27fP9vnevXu58cYbmTVrFn/+859ZuXIlTz/9dJcEKXqm6EAPjnmMwKwqGErSoEL+8+1M9sd5aBTMjLW8q9xqTpB37MImx28McCIhbos0B/3tquubiK7SzrEzh40AF0+dIxLQgYQnOTmZc845x/b5Rx99xPjx41mxYgX33nsvf/vb3/jkk0+6JEjRMymKwtD4KParlqNIjsssT2c6+TgPgIFKNgFKFTWqK3vVOHnHLmxMUdqyijbD03YSLM1Bf7ujhdW2xNIpborO0Qirdic8paWldsdF/Pzzz5x33nm2z8eOHUtmZmbnRid6vHGxAWw2D9E+Sd+gbzC9TGvvxK1dXXeaB9Bo2YQp79gFwJAx06nHhWClnDil5WyrgrZbS5qD/nZ2HZalfsdhtDvhCQ0N5dixYwA0NDSwc+dOJkw4cRBaZWUlzs7SNlvYmxAbwBZLwqNKwtOpWnsnbn1XudWaZLZxneh7jC7uVAUnAW3X8Uhz0M6Rm5VOnCEPM4p2pIRwCO1OeM4//3z+/Oc/s379epYsWYKHhwdnn3227fY9e/YQHx/fJUGKnmtAiBdH3M7CrCooxUegMl/vkHoN63EeJ/57Um27QraYh8g7dtFCYOJMAKa7HrYb93Ax8to1o6QPTydxztoEQIn3YHD30zcYYdPuhOeJJ57AycmJadOmsWLFClasWIGLi4vt9rfeeotzz5UmZ8KeoigMjo3ioGppYy91PJ3GepyHlbWra73qxG5Ve/Mh79iFnRitnmS2Zyr/uWk8t06NA8DTxci5iWF6RtarhJTsAKAuXGZ3HEm7E56goCB++eUXSktLKS0t5eKLL7a7/b///S9Lly7t9ABFzzc+NpAtlu3pUsfTueYOC+cfV4/CoJyo39mtxuPv6yPv2EVL/ceA0QWlMpeJ/uXce+4gvF2dKKxqYFdmmd7R9QpNJjMJDXsAcBt49mmuFt2pw40HfX19MRpbNjMLCAiwm/ERwkorXNZmIlSZ4el0Z/X3xayeqMuIGD6LDQ/OlGRHtOTsDv3Han9P34Crk5GZQ7Qu+tKzqXNkZWcxSMkCICBhur7BCDvSaVl0uSHhPux3GQqAUngQqgp1jqh32Z1ZDsBkZ60uo3/SObKMJdpm3TVkmW2dO1Rbylq1Lw9VlZ5Nv1XZwZ8BOG6MwuAdrHM0ojlJeESXMxoUBsbEcNAcqQ3ILE+n2pNVRj8KCTUXgGKUXSHi1Cx1PBz/FVSVaYODcXM2kFlSy/7cCn1j6wUUyzE6mV5J+gYiWpCER3QLu348kvB0quTMshM9PyKSwNVL13iEg+s/FgzOUJENpel4uDgxbZA2E7EqJU/n4Hq+wCLtFPrKMHnj4Wgk4RHdYrz04+kSJrPK3uzyE8cFyKnM4nRcPKDfaO3vlt/F8yz1XpLw/EZ15UTUpQLgLB2WHY4kPKJbDOvnyx6jpY6nYD9UF+scUe+QWlBFTYOJSUZrwiMvsqIdmi9rATMSQnA2KhwpqCK1oErHwHo2Nf1XDKgcNYcRGS196RyNQyU8qqry2GOPER4ejru7O7NmzeLIkSOnvM/TTz/N2LFj8fb2JiQkhAULFnDo0KFuili0l7PRQGx0DIfN/bQBWdbqFLuzyoigiCglX6vfkRke0R4x9oXLvu7OTIoPAuD7fTLLc6ZqD68DYLOaSEyQh87RiJM5VMLz3HPP8be//Y3XX3+dLVu24OnpyZw5c6ira/ssoJ9//pk777yTzZs38+OPP9LY2Mi5555LdXV1N0Yu2mN8s+3pkvB0jt2ZZUw07Nc+iRgJbj76BiR6hsjxYHCC8kwoPQ7AecMsu7VkWeuMqcfWA3DEYxSuTi3btwh9OUzCo6oqL730Eo888ggXXXQRw4cP59133yUnJ4cvv/yyzfutWrWKxYsXM3ToUEaMGMHbb79NRkYGO3bsaPM+9fX1VFRU2H2IrjdO6ng63e6sMiYZ92mfxEqTM9FOLp4QMUr7u+V3cXZiKAYF9maXk1lSo2NwPVR1MZ6l2tJyWYgULDsih0l4jh07Rl5eHrNmzbKN+fr6Mn78eDZt2tTuxykv13qSBAS0fX7Q008/ja+vr+0jMjLyzAMX7TYi0o9dBssMT/4+qCnRN6Aerq7RxMHcCiZYZ3hip+obkOhZTqrjCfRytZ27JstaZ+C4ljgeMvcnJFz+T3FEDpPw5OVpv2ChoaF246GhobbbTsdsNvOHP/yByZMnM2zYsDavW7JkCeXl5baPzMzMMw9ctJubs5H+kTGkmiNQUCGj/YmsaGlfTgX91Dz6KcWoBmeInKB3SKInOamOB5o1IZRlrY6zLGdtMicSHyytIRyRbgnPBx98gJeXl+2jsbHxNz/mnXfeSUpKCh999NEpr3N1dcXHx8fuQ3SP5tvTrS8Q4szsyTpRv6P0H6ttNxaivSInaIXuZcehLAOAOZY6nh0ZpRRUtF07KVpx7BcANpmHEh8iCY8j0i3hmT9/PsnJybaPoCBth0B+fr7ddfn5+YSFnf4U37vuuotvvvmGdevW0b9//y6JWfx242MD2WQtXLa8QIgzszuzjEkGqd8RZ8jVC/pZ6ngsv4vhvu4kRfqhqvDD/vxT3FnYqcyHokOYVYXN5iEMkBkeh6RbwuPt7c2AAQNsH4mJiYSFhbFmzRrbNRUVFWzZsoWJEye2+TiqqnLXXXfxxRdfsHbtWmJjY7sjfHGGRkX7sRXLcmPBPjlX6zew26EVIwmPOAOx07Q/j/5sG5oru7U6Ll2brT6gRuHsFYivh7POAYnWOEwNj6Io/OEPf+DJJ5/k66+/Zu/evVx33XVERESwYMEC23XnnHMOr7zyiu3zO++8k/fff58PP/wQb29v8vLyyMvLo7a2Vod/hTgdDxcn+vWP5IA5Shs49vOp7yBaVVbTgKHkCMFKOaqT24kTsIXoiDhLwnPsZ7AcHGqt49l0tJiymga9IutZLDNkG81DiQ/21DkY0RaHSXgAHnjgAX7/+99zyy23MHbsWKqqqli1ahVubm62a9LS0igqKrJ9/tprr1FeXs706dMJDw+3fXz88cd6/BNEO4yLDeBXs9Z1WRKeM7Mnq9y2nKVEjgNnt9PcQ4hW9B8HTm5QlQ+FWsPWmCBPEsK8MZlVfpRlrfZJP1GwPEDqdxyWQyU8iqKwfPly8vLyqKurY/Xq1QwaNMjumvT0dB5//HHb56qqtvqxePHi7g1etNv42AB+NVuWtY5KwnMmmhcsy3Z0ccac3SDKsruv2ZsP69lasj29HcqzoOQoJgxsNSfIDi0H5lAJj+gbxsQEsE1NoFG17BApTdc7pB5nd0Zps/odSXjEb3CKOp5fjhRRVd+kR1Q9h2W36WFDPFV4yAyPA5OER3Q7HzdnosND2a1aDteTWZ4OUVWVqsw9+CtVmJw8Tuy0EeJMWOt40jeASUtuBoV6ERvkSUOTmXUHC3QMrgew1O/83Ki125At6Y5LEh6hi/GxgVLHc4Zyy+sYUpesfRI1EYyyI0T8BuFJ4OYL9eWQuxvQygtsu7VkWattqmqr3/nVlIiHi5EIX6mnc1SS8AhdjIsNYKPJUsdz7BfbDhFxelr9jlawbIyT5SzxGxmMJ9oaHPvJNmzdrbXuYAF1jSYdAusBSo9BeSZmxZnt5kHEB3uhKIreUYk2SMIjdDEuNoBd6gBqVReoLoSC/XqH1GPsOV7MBIN2SCFx03WNRfQSrdTxDO/vS4SvGzUNJtYfKWrjjn1c2joAcn3OohY32ZLu4CThEboI8HQhJtSfbebB2oDU8bRbzdHNeCu11Ln4Q9hwvcMRvYG1jidzCzRqR0ooimI7auJ/Kbl6RebYjmoJz26XkQBSsOzgJOERuhnXfHu6HDPRLiazSmjRRgDqI6eAQX6FRScIGgReYdBUpyU9FtZlrdX782k0mfWKzjGZTbbXrXUN2nE5siXdscmrpdCNXeHy8V9tO0RE244WVjFe1QpLvYbM1jka0Wsoin3XZYsxMQEEeblQUdfE5qPFOgXnoHJ2QV05qpsv35f1A2SGx9FJwiN0My42gP1qDGWqJ9RXaC8g4pT2H8tkhJIGgHHATJ2jEb2KtYFls+Vlo0FhdqJ1WUt2a9lJWwtAff8pVNSbMRoUogOlhseRScIjdBPq40ZUoFez09N/0jWenqD64DqMikqRWxT4ReodjuhNrIXLOTuhrtw2fJ6ljueHffmYzLKb0sZSsJwdoHWqjg7wwMVJ/kt1ZPLdEbrSlrUsdTyWFxDRNr+8DQBURsjp6KKT+UVCQDyoZlv3YIAJcYH4uDlRVFXPjuOlOgboQOorIWsrcKJgOU7qdxyeJDxCV+NiA/jFbNlplLkF6ir0DciB1TeZSKzdCYBXotTviC4Qb1kmTVtjG3JxMjArMRSAVbKspUn/FcxN4BdNcrU/IPU7PYEkPEJX42IDyFBDSVfDtBeQ9PWnv1MflXZ4PzFKHk0YCBom9TuiCwyYpf2ZusauGah1t9b3+/JQpUmobTs68TNILajS/io9eByeJDxCV5EBHvTzc+dn01naQOqaU9+hDytL+QGAo66JKG6+OkcjeqWYKWBw1g71LTlqG546KBgPFyPZZbXszS4/xQP0Edbl9/iZpBVqCY/M8Dg+SXiE7uyWtVJXyzETbfDI1Hp+FIdO0jkS0Wu5ekGUVoRL6mrbsJuzkRmDQwBZ1qI8G4oOgWKgImIS+RX1gBwa2hNIwiN0Nz42gE3moTTh1OKdpbAwm4ir3A6Ay6BZOgcjerUB52h/njTbau26vCqljy9rHf1J+zNiJGkVTgCEeLvi4yaH+Do6SXiE7sbFBlCD24ljJmRZq4Wq9O34UEWF6kHM8Cl6hyN6M2sdT/p6aKq3Dc9MCMHFaOBoUTVHLHUrfZK1fiduBmmF1YB0WO4pJOERuosN8iTIy/VEHU+aJDwnK07+DoBdTmcR6CPFkaILhQ4Dr1BorIGMTbZhL1cnzh4YBMD/9vbRZS2z6cQbsviZtoJlqd/pGSThEbpTFIXxcc3qeI7Zv7MU4JKudXXNCpL+O6KLKcqJ7eltLWvt66MJT84uqC0BV1+IHGcrWJYdWj2DJDzCIYyPDWC/Gk2ZIQAaqyFjs94hOY6aEkIr9gKgxEv9jugG1mUty/EJVrOHhGI0KBzIreDLXVl8lZzNprTivtOB+Yi2U5L46WB0Js02w+OtX0yi3Zz0DkAI0Doug8JPpmEsUH7RlrWshxn2dWlrMaBywBzFgIGD9Y5G9AVxMwAF8lOgIhd8wgHw93RhYIgnB/Oq+MPHu22Xh/u6sXReInOHhesUcDc58qP258BzaWgyc7ykBoD4EJnh6Qlkhkc4hIEhXvh5OLO20dqPZ+2p79CH1O77HwA/m0cwrJ+PztGIPsEzECKStL83m+VZlZLLwbyWBct55XXc/v5OVqXkdlOAOqgq1M4ZAxgwi+PF1ZjMKp4uRsJ83PSNTbSLJDzCIRgMCmNjAthgPgsVBfL3QmUfrRNozmzGeFSro0j1m4SHi0zKim5i67qs9eMxmVWWrdzf6qXWBa1lK/f33uUt62aKsOHgHXaififEC0VRdAxMtJckPMJhjI8NoAQf0l0GagPNGp/1WTm7cGkopUJ1xyVmgt7RiL6keR2PqYmtx0rILa9r83IVyC2vY+uxku6Jr7tZ63cGngtwYoeWbEnvMSThEQ5Dq+OB7xpGaAOH/qdjNA4iVasZWG8+i2GRQToHI/qUfmPA3R/qyiBrKwWVbSc7zbX3uh6l+Xb0gdrBvbYePLIlvceQhEc4jMQIHzxdjPyvXkt4TKlrMTX0whfPDlAPa+8qfzInMSJSzs8S3cjoBAO0/9w59D9CvNtXp9Le63qUrO1a4ufmpyWC0OzQUEl4egpJeITD+HF/Hk1mlRQ1ljzVH2NTDff+5dXeXQh5KtVFtiLJLYYkBoXK1lfRzQbP1f48/D3jYgMI93WjrWoVBW231rjYgO6KrvtYZlqJnwlGJ1RVbXZoqOzQ6ikk4REOYVVKLre/v5P6JjOgsNaUBMCo2s29f/dHW1LXoKCyzxxNSEQszkb5dRXdLP4cUIxQdAhj2TGWzksEaJH0WD9fOi8Ro6EXFvCeVL+TW15HTYMJJ4NCdKAkPD2FvIIK3Vl3fzTf27HWPAqAmYZdgNq7d3+05ZB2nMQ6cxLD+/vpG4vom9z9IHqS9vfD3zN3WDivXTOKMF/7ZaswXzdeu2ZU7+zDU54NubsBxVbIbZ3diQr0kDciPYh8p4TuWtv98at5KPWqM5GGQgYo2b1790drmuptRZI/mkZL/Y7Qz6A52p+HVwEwd1g4Gx6cyQc3jcfb1QjAc5cO753JDsBhy+aJyHHgFQzIDq2eShIeobvWdnXU4sav5qEAzDLsbPO6Xit9PTRUkq/6s0eNIynST++IRF816Dztz/Rfoa4CAKNBYfKAIM47S0ty1hws0Cu6rndQm2ll8Pm2oeY9eETPIQmP0F1buzrWmkcCMNO485TX9UqWF9k1ppH4ergSFeChc0CizwoaAAHxYG6Eo+vsbpo1JBSA1QfyUdVeuORcVwHHftH+3izhkRmenkkSHqG7tnZ/rDVpCc8o5QgJPg29c/dHa1TV1oPoB/NoRvT3k06uQl+DLLu1Dq2yG54yMAhXJwNZpbUcyq/UIbAulrpaS/QCB0DwINuw9ODpmSThEbozGpRWd3/kEMQBcxRGReW5EXm9c/dHa3J2QWUO9Yo7m8xDGdFf6neEzqzb0498rzXhs/BwceLsgVpDzNX78/WIrGsdarmcVV7bSGFlPQDxwbJDqyeRhEc4hP9v777jm6rXB45/krTpoi0UuimlrEKBAmWDyCpQkOFGHIAKXhEUrvdex70qIMr6KSBeRVRsERFENohVVkG5zBaQLaMMoYNRaEvpSs7vj9BAoLtpM/q8X6+8mpycc/J8c9rmyXcWNfpjo74tAOEZv1siLMu4/U92t6YNOWhpJf13hKXV6wzOnpB1Fc7vMnmqoFlr4zE768ejy7szHL3pQ8bNBf13/DyccXd2tERkopwk4RFWo2D0x5LRnZj1ZCs8nB2I1bU3PHlqE+TetGyAVeV2c9bqW4YZp2VIurA4jeOdWo5j60ye6tXMB4CDF66Tkm5HAwvO/Q+yb4BrHajb3rjZOMOyTDhocyThEVZFo1bRuWFtHo2oy+NtgziqBHPZMQDys+HkRkuHV/nSzkLKYRSVhi261gTWdMHb3cnSUQkBzQYbfh5bZ+hndpuPu7NxFOFme6rlKWjOahIFasPwe51e4beTlwGooXWofnOD2ThJeITVejQiEFCxJscwCeG93yzt0u3anUserbmOu8y/I6xHw57g6AbpfxmXPCnQJ+zOaC27oCh3Ep6mhpqt2MNJPDBjC+sOGmZ9/+VoCg/M2FI9Z4G3UZLwCKvVPMCDUF93NuQZFuvjz18ME/LZs9tJ3f8cOgDQSpqzhLVwdDGuFM7RtSZPFfTj+f3UFbJy86s6MvNLOgjXz4ODCzToaVz65t4JUpNvZFffpW9skCQ8wmqpVCoejQhkv9KIa+rakJsBZ+IsHVblyUg29BsAvs9oDSAdloV1CSto1lpr0qzVxLcG9bxcyc3X89vJKxYKzoyOrjb8bNwHnYPLfUvfFCjYVi2XvrFBkvAIq/Zwm0BUKjXrcguatdYWf4AtO7YOUMjzi2B/ujtqFbQMlCYtYUUa9wWNE1w7A6nHjJtVKtWdSQhtfXi6osCR1Yb7zR8udOkbk92h+i19Y6Mk4RFWzdfDmQcaexOrNzTxcHwD6Oygyrwwt//JJvoamg0a+7jj5uRgwYCEuIeTOzTsZbh/z5ePyDDDaK0tx1Ntu7Yj+Q9ISwQHZ2jcr9RL2lSrpW9slCQ8wuo9FhHIHn1TruMOt67BuR2WDsn8MlKM5YrTGFanDpcJB4U1ajbI8POeQQTt63vh4ezA1Zu57D+fZoHAzKSgdqdxH3CqUeolbarV0jc2ShIeYfX6hvnhrNXyS75hEkKOrrFsQJXh2FpAgcB2/HbZBZD+O8JKhfYHlQZSDsOVU8bNjho1PZsaank22upoLUW5038n7GHAsPSNn0fRU0OoAH9P5+qz9I0Nk4RHWD0XrYYBLf35Sd/RsOHoasMsqPbkdhKnhA3h4IXrALJCurBOrl7QoIfh/uEVJk8Zh6fbaj+e5EOG/kkOzsb1wzRqFc0CPArdvWCxm4mDwqrP0jc2TBIeYRMejajLDn0LruJhmN7enkZrZaYam7P+8u9HenY+Wgc1oX7uFg5MiCK0fMLw89CPJqO1HmzijaNGxenLNzlzewkGm1JQu9MoEpwMC4PuPnOVuBOGyQZruWpNdvfzdGbesxFEtfCvyihFOUmPSGETOoZ44VezBusyOzHS4Vc4tPzOnCC27shqUPQQ2Jb4G4Z/ss0DPHDUyPcRYaWaPmSoBbl60jBnTUBrADycHenUoDa/nbzCpmMpvORtQ6uJKwocXmm43/wRALJy8/nX8j9QFBjaLoipj7ZkT+I1UjOy8XE3NGNJzY7tkP+owiao1SoeaRPIWp2hQy/H10NulmWDMpc/fgBA3+Jxfr49gZmPu5Ntj3QR9s3ZA5r0M9w/vNzkqTvD021smYm/9hpGZzm6GfopATNjT3D+Whb+ns78Z2Az49I3Q1oH0rlhbUl2bIwkPMJmPBIRSILSmAuKN+RmwslfLB1SxV09DRf3oVdpGLjVl1+OGPo+/HJEpq0XVs7YrLUC9Hrj5t63FxPdd+4a127mWiKy8rn9xYNmg0Drxq4zV4n531kApj8WjoesjG7zJOERNqOhdw1aB9Vina6zYcOh5cUfYAtu/5Pdlt+Co+mmw1pl2nph1Rr1ASdPyLgE5/9n3Fy3lith/h7oFdh63EZqefJz73TAbjWUrNx83lj+BwBPtQ+iexNvCwYnzMWqEh5FUXjvvffw9/fHxcWFyMhITp48Werjp0+fjkqlYsKECZUXpLCoxyICWVPQrHXyV7h13aLxVIiioNxOeFbpHrj/6ds/Zdp6YZUcne/MyXPPl49IW1tM9NQmuJUGNXwhpDszfj7O+WtZBHg685+Hmlk6OmEmVpXwzJw5k7lz5/LFF1+we/du3Nzc6NevH9nZJc9guXfvXubPn094eHgVRCosZWB4AGfUwRzXB4EuF46ssnRI5XdhD6q0s2Qqzvyqb1foLjJtvbBqLR83/DyyEvLu/J/uc7sfz7Y/L5Odp7NEZGXzx1LDz5ZPsDPxOgt3ngNgxuPhuEtTlt2wmoRHURTmzJnDO++8w5AhQwgPD+fbb7/l0qVLrF69uthjMzMzeeaZZ/jqq6+oVatW1QQsLKKWm5ZeTX1YrnvQsGH/d5YNqCJu1+78om9PNkVPbAYybb2wUiEPgkddyL5hGEhwW4tAD3w9nMjK1bHzzFULBlgKt67DiVjD3WaP86/lBwEY1qEe3RpLU5Y9sZqEJzExkeTkZCIjI43bPD096dixIzt37iz22LFjx/LQQw+ZHFucnJwc0tPTTW7CdjwaUZfVugfIRwMX95ksYmgz8nMM34qBlYU0Z91Lpq0XVkmtgdZPG+7f9eXDphYTPboGdDng3Yyp8Q78lXaLwJou/HtAU0tHJszMahKe5ORkAHx9fU22+/r6Gp8rzNKlS0lISGDatGmlfq1p06bh6elpvAUFBZUvaGERPUN9yHetw2ZdG8MGW6zlOb4ebqWhr+HPXloUuZtMWy+sXkHCcyYOrp83br67H4+iWHEftIRvAThbdxCLdhvin/GYNGXZI4slPIsXL6ZGjRrGW15e2ZcKuHDhAuPHj2fx4sU4O5f+G/Dbb7/NjRs3jLcLFy6U+bWF5Wgd1AxuFcAyXXfDhoNLbW+pifiFAPzk0JtcfeFzeci09cImeIVA/W6AAgeWGDd3aVgbN62GlPQcDl+00lr0lCNwcR+K2oFXjxk6Jz/dsR4PNK5j4cBEZbBYwjN48GAOHDhgvNWpY/gFS0kxrf5MSUnBz8+v0HPEx8eTmppKREQEDg4OODg4sG3bNubOnYuDgwM6XeGd5ZycnPDw8DC5CdvyaERd4vStSVVqQtYV+DPW0iGV3rUzkLgNBRXTk9ujdVDzr36h+HuaJu0ybb2wGW2eM/w88J1xTh4nBw0P3h7ObbWLid7+4nHE/QEOXXe63ZQlo7LslcWWlnB3d8fd/c5aQYqi4Ofnx+bNm2ndujUA6enp7N69mzFjxhR6jt69e3Po0CGTbc8//zxNmzblzTffRKPRVFr8wrJa1fUk2NuDFWndGOOwztCsVTBE1tolLAJgu64lF/Hmsydb81C4Py93byjT1gvbFDYYNvzL0KR1drtxcdHIZr78fDiZTUdTeL1PE8vGeK+8W8bRWf932bAw8czHw6nhJCsu2Sur6cNTMH/OBx98wNq1azl06BDDhw8nICCAhx9+2Lhf7969+e9//wsYkqYWLVqY3Nzc3KhduzYtWhTdL0LYPpVKxWMRdfmxoFnr5K9w3QaaJnV55OwzJDxLdT15u39THgo31ODItPXCZjm6QMvHDPf3RRs392zqg1oFR5PS+SvNypaCObYOsm+QjDe/6VvybKd6dG0kTVn2zGoSHoA33niDV199lZdeeon27duTmZlJbGysSf+c06dPc+XKFQtGKazFw20COaMEsEPX3LD45r5vLB1Sic7+bzlO2Ze5onhQp+3DvPRgA0uHJIR5tHvB8PP4eki/BICXm5Z2wYYO95uPWdmsy7cTs+/zuhNQy423+0tTlr1TKVbdfb5qpKen4+npyY0bN4rtz6PT6crVuVoYaLVa1Grz5tjDvtyFx9lY5mtng2tt+PtRwwywVuivtCxSPomkLUdY5/EU/cfPw0FWRBf25Jv+hmUmur8JPf8NwFfbz/DhhmN0a1yHRS92tGh4Or3CnsRr5FxIoEfc4+QpGrrmzGXO6Ci6NJTaHVtU2s9vsGAfHluiKArJyclcv37d0qHYNLVaTUhICFqt1mznfDQikLfORJCiqoNv1hXDzMuth5nt/OaSnp3HBwuW8QVH0KGm57P/lmRH2J8Oow0Jz75o6PZPcNASGebLhxuOsevMVdKz8yy2CGfs4SQmrztK0o1s/s/hC3CADfqONGvSRJKdakISnlIoSHZ8fHxwdXVFpZK+FWWl1+u5dOkSSUlJ1KtXz2zvYf+W/ry75jALc3vzhuMPsOdLq0t4cvP1jPkunsHXV4ED5DYZSA2fYEuHJYT5NRsE7v6QkWSY0C/8CULquNHQ243Tl2+y/c/LDAwPqPKwYg8nMea7BBSgNjcYrDEsdhqT348Df14m9nCSjIasBiThKYFOpzMmO7Vr17Z0ODbN29ubS5cukZ+fj6Ojeb7l1XByIKq5H0sP9OR17UocLiXA+d1Qz7JV5wUUReE/qw5x9FQi3zjtAMDlgXEWjkqISqJxNPTl2foh7J5nWGtLpSIyzJfT286w6WhKlSc8Or3C5HVHjYvxDtNswUmVzwF9Q/YrjVFhWKC3T5ifDBSwc1KnXoKCPjuurq4WjsT2FTRlFTU/Unk9GlGXa3iwXrm9RMOOT8p1Hp1eYefpq6w5cJGdp6+aZYXyz7ae4sf4v3jGYQtOqjwIaANBHSp8XiGsVtuRoHGCi/FwzpDkFywmuuV4Knk6fZWGsyfxGkk3DGvRacnjOYeNAETn9wNkgd7qRGp4SkmasSqust7Dro3q4OPuxKeZAxjiFIfqxE+Qehx8Sr8Wzt3t+wX8PZ2ZOCis1FXdBR0iC+bRSb5xi49+/RMXshnnshHygE5jQX6XhD2r4QNtnoV9C+D32VD/AdrUq0VtNy1Xb+ay9+y1Ku0zc/fCu49ptuOruk6yUosN+k5F7ifsk9TwCJunUat4pE0gp5VA9rt2NWwsQy1PQfv+3ckOQPKNbMZ8l0Ds4aRSneOBGVsY9tUuxi89wLCvdvH3ZYZVlz9pfBDnvDSoVR+aP1LquISwWV1eBZUaTm2CpD/QqFX0auoDwKajVTs8vWDhXQ06XtasA+DL/IHk3fN9XxbotX+S8FSRymguEXc8GlEXgKnphmpqDi2DG3+VeNy97ft3K9g2ed3RYq9XUQkTGKrQH7x8e32hrhNAI5WqohrwCrmT3O+YA9xZTHTjseQqXUy0Q4gX/p7ODFTvJFidylXFnSW6nsbnZYHe6kP++1YBczSXlMfIkSNZuNCwVoyDgwNeXl6Eh4czbNgwRo4cWeo5cWJiYpgwYYJVD8sP9XOnRaAH+y42JLFWBCEZCST/NA3vp/5bbEfE309dLjRRKVDQvj9w7m808K5BnRpaatdwok4NJ2rX0FLLVcu7q48UmjABPK7ZjnN2Kop7AKqCVaWFqA66ToDDKwxTRXR/i26NG6B1UHPh2i1OpmbSxNe9xFOYg0at4r2HmtJw+asAfJPfn1sYanNkgd7qRRKeSnb3cMi7FTSXVPbikFFRUURHR6PT6UhJSSE2Npbx48ezfPly1q5di4OD/fwKNPPz4PDFdN6+OoCl2gRqn1jCk9O7MHpwL+N7nJ2nY//56+w6c5VdZ66y71xaqc59LDmDY8kZZYpHSx5jNGsBOBv6AiEOTmUrkBC2zD8cmvSHP3+GrR/i+uRCHmhUhy3HU9l4NKXKEh6AoJSNNFFfJF1xYZGuj3G7XxV88RTWw34+7aqQoijcyit5pJFOrzBxbeHf/hUM3y4mrT1K10Z1SvXtwsVRU+aOv05OTsbV5gMDA4mIiKBTp0707t2bmJgYRo0axaxZs4iOjubMmTN4eXkxaNAgZs6cSY0aNYiLi+P5558H7nQ6njhxIpMmTWLRokV88sknnDhxAjc3N3r16sWcOXPw8fEpU4zmEHs4iR/jDU1Yu/RhbNe15EHNIZ659T0vf1eTh1r6cyUzh/0XrpObX/ZRIq/2aoSXm5YrmTlczczlSmYOlzNzuXDtJtduFj779nOajQSpL5Os1OKI3yOEVKiEQtig3u/Cn7FwdDVcOkBkM1+2HE9lZcJf1K3lUiWL5Cr5OdTeNR2A/YFPM793b1mgt5qShKccbuXpCHvvlwqfRwGS07NpOenXUu1/9P1+uGorfsl69epFq1atWLlyJaNGjUKtVjN37lxCQkI4c+YMr7zyCm+88Qaff/45Xbp0Yc6cObz33nucOHECgBo1agCGIftTpkwhNDSU1NRUXn/9dUaOHMmGDRsqHGNZFPTDudv/5Q/lQc0hHlbvYJ5qMD8duvOcj7sTnRrUplOD2rSvX4vnvtlDyo3sQhNTFYZvgRMimxT6j3Hn6asM+2rXfds9uMk4h9UAzM5/nIdr1apACYWwUb7NoeUThj51m99HEzoHgNOXbzJ+6QGg8pv3E3/9nAa6JC4rnoQ9+h+868h8atWVJDzVVNOmTfnjjz8AmDBhgnF7/fr1+eCDD3j55Zf5/PPP0Wq1eHp6olKpjDVFBV544QXj/QYNGjB37lzjoq8FSVFVuHuejQKHlAZs0HVggGYPbzosYVTevxj1QAhPd6xHSB03k5qySYPCGPNdAiowSXpK075f0CEy+Z6E6W8O66ilyuSkPpAdbn2ZKh0iRXXV8204shJOb2btsSVAC5OnK7V5PyeD2vtmA7AzaDSDJdmp1iThKQcXRw1H3+9X4n57Eq8xMnpvifvFPN++VCMEXBw1pYqvNBRFMX7ob9q0iWnTpnH8+HHS09PJz88nOzubrKysYidcjI+PZ9KkSRw8eJC0tDT0ekNT0fnz5wkLCzNbrCUpav6Mj/OfoI86nkjNfnrr4mlZtzUNvO9PxKJa+DPv2Yj7OpaXpn1fo1Yx8Z6Eqa7qMi9oYgFDTdM7g1tKtbmovrwaoG/7POq9XzHJYSEDcqeZDAkvaN6vjNmOk3+aip/+BmcUfyIefs1s5xW2SYall4NKpcJV61DirVtjb/w9nSnqz7dgOGS3xt6lOp85J+47duwYISEhnD17loEDBxIeHs6KFSuIj4/ns88+AyA3N7fI42/evEm/fv3w8PBg8eLF7N27l1WrVpV4XGUoav6M00ogC3QDAJjo8C1+LkWfI6qFP7+/2YslozvxyVOtWTK6E7+/2atU3zgLEiY/T2dAYZJDDC6qXOJVLXh02GjpECmqvX0hr3BF8aCx+iIvaH6+7/lKme049Th1/vgSgO31xlG3jqf5zi1skiQ8lajg2z9wX9JjyeGQW7Zs4dChQzz22GPEx8ej1+v5+OOP6dSpE02aNOHSpUsm+2u12vuWgzh+/DhXr15l+vTpdOvWjaZNm5KaWrUTihUoaFYq7F2cm/8IlxQv6qkv0/5iTLHn0ahVdG5YmyGtA+ncsHaZrktBwhTbL4NIzX70akdav7yAqJZVv1CiENYmKdeJaXmGaRnGO6zEn6uF7me22Y4VhZurXsOBfDbpInhw8EjznFfYNEl4Kpnpt/87/DydK31IOkBOTg7JyclcvHiRhIQEpk6dypAhQxg4cCDDhw+nUaNG5OXl8emnn3LmzBkWLVrEF198YXKO+vXrk5mZyebNm7ly5QpZWVnUq1cPrVZrPG7t2rVMmTKlUstSlOISy1s4MyVvOADqHXMg+XDlxZGdRtOEyYbX6voaGt/SL20hhD3zcXdmhb4be/ShuKpymOr4NRQyTMBssx3HR+OWtJssxYntjd8otClbVD+S8FSBijSXVFRsbCz+/v7Ur1+fqKgotm7dyty5c1mzZg0ajYZWrVoxa9YsZsyYQYsWLVi8eDHTpk0zOUeXLl14+eWXGTp0KN7e3sycORNvb29iYmL48ccfCQsLY/r06Xz00UeVXp6iFJdYDhn2NwgdALpcWPkS5FXCmjmKAuv/DhlJULsRdPun+V9DCBtlqIV14Z28F8lRHOmpOcizmk0m+5httuMrp9DH/hsw9ON7um/Xip9T2AWVUpVzfFup9PR0PD09uXHjBh4eHibPZWdnk5iYSEhICM7OstZKRVTFe3nvAp7GeTYyL8O8znDzMnR6BaKmlXyysjjwPaweA2oHeHEjBEaY9/xC2LiCSVif1/zMe46LuKVoGZT7AacUw7Iw/326DQPDK9gEnJ8L3/SDSwns0DVnYaM5fDmigxmiF9aquM/ve0kNj7ArRfbDqeENg/9ruL/rczj4g/le9GKCoXYHoMdbkuwIUYiCWthYtyH8pmuBiyqXLx1n4UkmAMeTyjaT+X0UBX56HS4lcENx4x95LzO2VxMzRC7shSQ8ovoIjYJu/zDcX/sq/LWv4udMT4Klz0B+NjSJggder/g5hbBTUS38+e2tSJyHfkOWiz8N1MlsrLcQB/L5LO4Uu88U3pm5VHbPh/2L0KNmfN5YGjcOpVVQTbPFLmyfJDyieun5jmF9H10OfPcYJP1R/nNlpsK3gyHjEtQJhUe/ArX55koSwh5p1CratwjFdfgycHTFJ3UHK3yiUSs6Xl92kBu3Cl+qpVj7v4PYtwCYqXuaOH1rXu3V2MyRC1snCY+oXtRqeOwrqNsBsq8bEpby1PTcuAgLB8GVP8EjEJ5ZBs7Ftx8LIe7iHw5PLAS1I63St/K12zyuXL/BO6sPU6aupfELYc04QGGP9+N8kdefDvW9zNMBWtgVSXhE9ePkDs8uh8C2cCsNovtDwiJDH4DSOPc/+KonXD4O7gEwcj3Uql+pIQthl5r0hSe/BbUjPXX/Y7l2MvEH/2DV/oslH5ufA7Fvw7rXAIVbrZ9nePJjgIpxvRpVduTCBknCI6onZ08YvgaaDjQMV187Dr4fCpdPFH1MRjL89A+IHgCZKeDTHF6IBa8GVRe3EPam6QB4dgW4eNFSncgvTm9ycs0MLqQU0Z9HUeDUJpjf3TAAAaD7m3zq9Dey8xTC63rSrXGdqotf2AxZS0tUX07u8OQi+P1jiJsBJ38x3EK6Q6NIw3w6ag1cPw+J2+HPXwx9fwDaPAtR0w3nEEJUTIPu8FIcyvIXcb+4lzf5lhtfrEbf5hHUQR2hhi/kZkLKYTj+E6QeNRzn5g2DPuFGvb58O2MLAON6NjLrMjzCfkjCI6o3tRoe/Bc0Gwyb3zf8M03cZrgVpm576PWu4R+0EMJ8agWjevFX0nZ8zc1NM6nLZUhYaLjdy8EZ2o8yjIp0q83CzSfJzMkn1NedyGa+VR+7sAmS8AgB4B0KTy2Ga4lwfD1c2AM3Lhiqz2v4gn8raDYI/FqCfHsUonKo1dTq9hK/ufXjP8sX00N9gMeCMvFQ0sHBBeo0hnqdDX+LLjUBuJmTzzc7EgEY26sR6ipem1DYDkl4qqEePXrQunVr5syZY+lQrI9XCHR51dJRCFGtDY4IZuvJAUze34oF1134eXw33J0dC9138e5zXM/KI6SOGw+1rPzleoTtkk7LdmzkyJGoVKr7bjNnzjRZ6LN+/fqS/AghrMr7Q5oT5OXCX2m3mLjmSKH7ZOfp+HK7oXZnTI+Gd2ZWF6IQkvDYuaioKJKSkkxubdu2xd1dOtsKIayXu7Mjc4a2Rq2ClfsvsubA/UPVl+27wJXMHAJruvBIm0ALRClsiSQ85aEokHuz6m/lWOfVyckJPz8/k1vv3r2ZMGECYGjeOnfuHH//+9+NNUBCCGEN2gZ7GWdMfmfVYS5cyzI+l5uv54u40wC83L0Bjhr5OBPFkz485ZGXBVMruKpvefz7EmjdzHrKlStX0qpVK1566SVGjx5t1nMLIURFvdqrEdtPXmb/+eu8vuwAi0d1Iv5cGmsPXuTSjWzq1NDyRLsgS4cpbIAkPHZu/fr11KhRw/i4f//+Js97eXmh0Whwd3fHz8+vqsMTQohiOWjUfDK0DQPm/sbes2lETNlIZk6+8fmcfD1xJ1KJaiEdlkXxJOEpD0dXQ22LJV63jHr27Mm8efOMj93c3Bg2bJg5oxJCiEpVr7Yrj7cNJOZ/50ySHYDM7HzGfJfAvGcjJOkRxZKEpzxUKrM3LVUWNzc3GjWSdWWEELZLp1eIPZJS6HMKoAImrztKnzA/GakliiS9vARarRadTmfpMIQQolB7Eq+RfCO7yOcVIOlGNnsSr1VdUMLmSMIjqF+/Ptu3b+fixYtcuXLF0uEIIYSJ1Iyik53y7CeqJ0l4BO+//z5nz56lYcOGeHt7WzocIYQw4ePubNb9RPUkfXjsWExMTKHb4+LiTB536tSJgwcPVn5AQghRDh1CvPD3dCb5RjaFzUamAvw8nekQ4lXVoQkbIjU8QgghrJpGrWLioDDAkNzcreDxxEFh0mFZFEsSHiGEEFYvqoU/856NwM/TtNnKz9NZhqSLUpEmLSGEEDYhqoU/fcL82JN4jdSMbHzcDc1YUrMjSkMSHiGEEDZDo1bRuWFtS4chbJA0aZWSUo6FO4UpeQ+FEEJYiiQ8JXB0dAQgKyurhD1FSXJzcwHQaDQWjkQIIUR1I01aJdBoNNSsWZPU1FQAXF1dUamkvbis9Ho9ly9fxtXVFQcH+bUTQghRteSTpxQKVhEvSHpE+ajVaurVqycJoxBCiConCU8pqFQq/P398fHxIS8vz9Lh2CytVotaLa2oQgghqp4kPGWg0Wik/4kQQghhg+TrthBCCCHsniQ8QgghhLB7kvAIIYQQwu5JHx7uTIiXnp5u4UiEEEIIUVoFn9ulmdhWEh4gIyMDgKCgIAtHIoQQQoiyysjIwNPTs9h9VIrM949er+fSpUu4u7ubfY6Y9PR0goKCuHDhAh4eHmY9tzWQ8tk+ey+jlM/22XsZpXzlpygKGRkZBAQElDjtidTwYJgQr27dupX6Gh4eHnb5i1xAymf77L2MUj7bZ+9llPKVT0k1OwWk07IQQggh7J4kPEIIIYSwe5LwVDInJycmTpyIk5OTpUOpFFI+22fvZZTy2T57L6OUr2pIp2UhhBBC2D2p4RFCCCGE3ZOERwghhBB2TxIeIYQQQtg9SXiEEEIIYfck4alEn332GfXr18fZ2ZmOHTuyZ88eS4dUorLE/NVXX9GtWzdq1apFrVq1iIyMvG//kSNHolKpTG5RUVGVXYwyKUuZY2Ji7iuPs7NzFUZbsrKUp0ePHveVR6VS8dBDDxn3sYVrWJjt27czaNAgAgICUKlUrF692tIhlUpZ4165ciV9+vTB29sbDw8POnfuzC+//GKyz6RJk+67hk2bNq3EUpReWcsbFxdX6O9scnJy1QRcgrKWp7C/L5VKRfPmzY37WPP1K860adNo37497u7u+Pj48PDDD3PixAmLxSMJTyX54YcfeP3115k4cSIJCQm0atWKfv36kZqaaunQilTWmOPi4hg2bBhbt25l586dBAUF0bdvXy5evGiyX1RUFElJScbbkiVLqqI4pVKe6+Th4WFSnnPnzlVhxMUra3lWrlxpUpbDhw+j0Wh44oknTPaz5mtYlJs3b9KqVSs+++wzS4dSJmWNe/v27fTp04cNGzYQHx9Pz549GTRoEPv37zfZr3nz5ibX8Pfff6+M8MusvNfpxIkTJuXx8fGppAjLpqzl+eSTT0zKceHCBby8vO77G7TW61ecbdu2MXbsWHbt2sXGjRvJy8ujb9++3Lx50zIBKaJSdOjQQRk7dqzxsU6nUwICApRp06ZZMKriVTTm/Px8xd3dXVm4cKFx24gRI5QhQ4aYO1SzKWuZo6OjFU9PzyqKruwqeg1nz56tuLu7K5mZmcZt1n4NSwNQVq1aZekwyqy8cYeFhSmTJ082Pp44caLSqlUr8wVWSUpT3q1btyqAkpaWViUxVUR5rt+qVasUlUqlnD171rjNVq5fSVJTUxVA2bZtm0VeX2p4KkFubi7x8fFERkYat6nVaiIjI9m5c6cFIyuaOWLOysoiLy8PLy8vk+1xcXH4+PgQGhrKmDFjuHr1qlljL6/yljkzM5Pg4GCCgoIYMmQIR44cqYpwS2SOa7hgwQKeeuop3NzcTLZb6zUU99Pr9WRkZNz3d3jy5EkCAgJo0KABzzzzDOfPn7dQhObRunVr/P396dOnDzt27LB0OGazYMECIiMjCQ4ONtluD9fvxo0bAPf9blYVSXgqwZUrV9DpdPj6+pps9/X1tZp25nuZI+Y333yTgIAAkw/cqKgovv32WzZv3syMGTPYtm0b/fv3R6fTmTX+8ihPmUNDQ/nmm29Ys2YN3333HXq9ni5duvDXX39VRcjFqug13LNnD4cPH2bUqFEm2635Gor7ffTRR2RmZvLkk08at3Xs2JGYmBhiY2OZN28eiYmJdOvWjYyMDAtGWj7+/v588cUXrFixghUrVhAUFESPHj1ISEiwdGgVdunSJX7++ef7/gbt4frp9XomTJhA165dadGihUVikNXShVlMnz6dpUuXEhcXZ9KJ96mnnjLeb9myJeHh4TRs2JC4uDh69+5tiVArpHPnznTu3Nn4uEuXLjRr1oz58+czZcoUC0ZWcQsWLKBly5Z06NDBZLu9XUN79v333zN58mTWrFlj0qelf//+xvvh4eF07NiR4OBgli1bxosvvmiJUMstNDSU0NBQ4+MuXbpw+vRpZs+ezaJFiywYWcUtXLiQmjVr8vDDD5tst4frN3bsWA4fPmzRvkdSw1MJ6tSpg0ajISUlxWR7SkoKfn5+FoqqeBWJ+aOPPmL69On8+uuvhIeHF7tvgwYNqFOnDqdOnapwzBVljuvk6OhImzZtbL48N2/eZOnSpaX652lN11DcsXTpUkaNGsWyZctMalkLU7NmTZo0aWI317BDhw42XxZFUfjmm2947rnn0Gq1xe5ra9dv3LhxrF+/nq1bt1K3bl2LxSEJTyXQarW0bduWzZs3G7fp9Xo2b95sUjtgTcob88yZM5kyZQqxsbG0a9euxNf566+/uHr1Kv7+/maJuyLMcZ10Oh2HDh2y+fL8+OOP5OTk8Oyzz5b4OtZ0DYXBkiVLeP7551myZInJlAJFyczM5PTp03ZzDQ8cOGDzZdm2bRunTp0q1ZcOW7l+iqIwbtw4Vq1axZYtWwgJCbF4QKISLF26VHFyclJiYmKUo0ePKi+99JJSs2ZNJTk52dKhFamkmJ977jnlrbfeMu4/ffp0RavVKsuXL1eSkpKMt4yMDEVRFCUjI0P55z//qezcuVNJTExUNm3apERERCiNGzdWsrOzLVLGe5W1zJMnT1Z++eUX5fTp00p8fLzy1FNPKc7OzsqRI0csVQQTZS1PgQceeEAZOnTofdtt4RoWJSMjQ9m/f7+yf/9+BVBmzZql7N+/Xzl37pylQytWSXG/9dZbynPPPWfcf/HixYqDg4Py2WefmfwdXr9+3bjPP/7xDyUuLk5JTExUduzYoURGRip16tRRUlNTq7x89ypreWfPnq2sXr1aOXnypHLo0CFl/PjxilqtVjZt2mSpIpgoa3kKPPvss0rHjh0LPac1X7/ijBkzRvH09FTi4uJMfjezsrIsEo8kPJXo008/VerVq6dotVqlQ4cOyq5duywdUomKi7l79+7KiBEjjI+Dg4MV4L7bxIkTFUVRlKysLKVv376Kt7e34ujoqAQHByujR4+2uqSvLGWeMGGCcV9fX19lwIABSkJCggWiLlpZyqMoinL8+HEFUH799df7zmUr17AwBcOX773dW35rU1LcI0aMULp3727cv3v37iWWc+jQoYq/v7+i1WqVwMBAZejQocqpU6eqtmBFKGt5Z8yYoTRs2FBxdnZWvLy8lB49eihbtmyxTPCFKGt5FEVRrl+/rri4uChffvlloee05utXnMLeB0CJjo62SDyq20EJIYQQQtgt6cMjhBBCCLsnCY8QQggh7J4kPEIIIYSwe5LwCCGEEMLuScIjhBBCCLsnCY8QQggh7J4kPEIIIYSwe5LwCCGEEMLuScIjhKg2YmJiqFmzZrH7TJo0idatW1dJPPeqX78+c+bMqfLXHTlyJCqVCpVKxerVq0t1TP369Y3HXL9+vVLjE8IcJOERwsLu/rDRarU0atSI999/n/z8fEuHVm5l+eAsydmzZ1GpVBw4cOC+53r06MGECRPM8jqVKS4uzniNi7rFxcWxd+9eXnrpJYvEGBUVRVJSEv379y/V/nv37mXFihWVHJUQ5uNg6QCEEIYPm+joaHJyctiwYQNjx47F0dGRt99+u8zn0ul0qFQq1Grb/z6Tl5dn6RDKJS8vD0dHR+PjLl26kJSUZHw8fvx40tPTiY6ONm7z8vJCq9VWaZx3c3Jyws/Pr9T7e3t74+XlVYkRCWFetv8fUQg7UPBhExwczJgxY4iMjGTt2rUAzJo1i5YtW+Lm5kZQUBCvvPIKmZmZxmMLmmnWrl1LWFgYTk5OnD9/nr1799KnTx/q1KmDp6cn3bt3JyEhweR1VSoV8+fPZ+DAgbi6utKsWTN27tzJqVOn6NGjB25ubnTp0oXTp0+bHLdmzRoiIiJwdnamQYMGTJ482VgjVb9+fQAeeeQRVCqV8XFJxxXEM2/ePAYPHoybmxsffvhhmd7HtLQ0hg8fTq1atXB1daV///6cPHmy2GOmT5+Or68v7u7uvPjii2RnZ9+3z9dff02zZs1wdnamadOmfP7558bnCmqgfvjhB7p3746zszOLFy82OV6r1eLn52e8ubi4GK95wU2r1d7XpFUZ16e0cnNzGTduHP7+/jg7OxMcHMy0adPKdA4hrIkkPEJYIRcXF3JzcwFQq9XMnTuXI0eOsHDhQrZs2cIbb7xhsn9WVhYzZszg66+/5siRI/j4+JCRkcGIESP4/fff2bVrF40bN2bAgAFkZGSYHDtlyhSGDx/OgQMHaNq0KU8//TR/+9vfePvtt9m3bx+KojBu3Djj/r/99hvDhw9n/PjxHD16lPnz5xMTE2NMTvbu3QtAdHQ0SUlJxsclHVdg0qRJPPLIIxw6dIgXXnihTO/byJEj2bdvH2vXrmXnzp0oisKAAQOKrClatmwZkyZNYurUqezbtw9/f3+TZAZg8eLFvPfee3z44YccO3aMqVOn8u6777Jw4UKT/d566y3Gjx/PsWPH6NevX5niLo65r09pzZ07l7Vr17Js2TJOnDjB4sWLTZJXIWyORdZoF0IYjRgxQhkyZIiiKIqi1+uVjRs3Kk5OTso///nPQvf/8ccfldq1axsfR0dHK4By4MCBYl9Hp9Mp7u7uyrp164zbAOWdd94xPt65c6cCKAsWLDBuW7JkieLs7Gx83Lt3b2Xq1Kkm5160aJHi7+9vct5Vq1aZ7FPa4yZMmGCyT2JiogIoLi4uipubm8lNrVYr48ePVxRFUf78808FUHbs2GE89sqVK4qLi4uybNky43vl6elpfL5z587KK6+8YvJ6HTt2VFq1amV83LBhQ+X777832WfKlClK586dTeKbM2eOUlp3X/O7BQcHK7NnzzY+rqzrU5p4Xn31VaVXr16KXq8v8ritW7cqgJKWllbkPkJYC+nDI4QVWL9+PTVq1CAvLw+9Xs/TTz/NpEmTANi0aRPTpk3j+PHjpKenk5+fT3Z2NllZWbi6ugKGJpPw8HCTc6akpPDOO+8QFxdHamoqOp2OrKwszp8/b7Lf3cf5+voC0LJlS5Nt2dnZpKen4+HhwcGDB9mxY4dJjYFOp7svpnuV9rh27doVevwPP/xAs2bNTLY988wzxvvHjh3DwcGBjh07GrfVrl2b0NBQjh07Vug5jx07xssvv2yyrXPnzmzduhWAmzdvcvr0aV588UVGjx5t3Cc/Px9PT0+T44qKu6Kq6vrca+TIkfTp04fQ0FCioqIYOHAgffv2NVOphKh6kvAIYQV69uzJvHnz0Gq1BAQE4OBg+NM8e/YsAwcOZMyYMXz44Yd4eXnx+++/8+KLL5Kbm2v88HJxcUGlUpmcc8SIEVy9epVPPvmE4OBgnJyc6Ny5s7GprMDdnWsLzlHYNr1eD0BmZiaTJ0/m0Ucfva8czs7ORZaxtMe5ubkVenxQUBCNGjUy2ebi4lLk65lDQV+pr776yiSRAtBoNCaPi4q7oqrq+twrIiKCxMREfv75ZzZt2sSTTz5JZGQky5cvL1c5hLA0SXiEsAJubm73fZgDxMfHo9fr+fjjj42jrpYtW1aqc+7YsYPPP/+cAQMGAHDhwgWuXLlS4VgjIiI4ceJEofEWcHR0RKfTlfm4imjWrBn5+fns3r2bLl26AHD16lVOnDhBWFhYkcfs3r2b4cOHG7ft2rXLeN/X15eAgADOnDljUptkzcz5Pnt4eDB06FCGDh3K448/TlRUFNeuXZPRWcImScIjhBVr1KgReXl5fPrppwwaNIgdO3bwxRdflOrYxo0bs2jRItq1a0d6ejr/+te/zFIj8t577zFw4EDq1avH448/jlqt5uDBgxw+fJgPPvgAMIzU2rx5M127dsXJyYlatWqV6riKaNy4MUOGDGH06NHMnz8fd3d33nrrLQIDAxkyZEihx4wfP56RI0fSrl07unbtyuLFizly5AgNGjQw7jN58mRee+01PD09iYqKIicnh3379pGWlsbrr79e4bjNzVzv86xZs/D396dNmzao1Wp+/PFH/Pz8Spy4UQhrJaO0hLBirVq1YtasWcyYMYMWLVqwePHiUg8NXrBgAWlpaURERPDcc8/x2muv4ePjU+GY+vXrx/r16/n1119p3749nTp1Yvbs2QQHBxv3+fjjj9m4cSNBQUG0adOm1MdVVHR0NG3btmXgwIF07twZRVHYsGGDSRPQ3YYOHcq7777LG2+8Qdu2bTl37hxjxowx2WfUqFF8/fXXREdH07JlS7p3705MTAwhISFmi9uczPU+u7u7M3PmTNq1a0f79u05e/YsGzZssIv5nUT1pFIURbF0EEIIISxn5MiRXL9+vcyzY8fFxdGzZ0/S0tKk5kdYPUnVhRBCGEcKrl+/vlT7N2/evNTLUAhhDaSGRwghqrnU1FTS09MB8Pf3L9WIs3PnzhkndGzQoIE0dQmrJwmPEEIIIeyepORCCCGEsHuS8AghhBDC7knCI4QQQgi7JwmPEEIIIeyeJDxCCCGEsHuS8AghhBDC7knCI4QQQgi7JwmPEEIIIeze/wPQ8tTlTor+ZQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a_obj = MyCosineAnalysis(label=\"Cosine experiment\")\n", "a_obj.run()\n", "a_obj.figs_mpl[\"cos-data-and-fit\"]" ] }, { "cell_type": "markdown", "id": "6b1d19bb", "metadata": {}, "source": [ "The first line will instantiate the class by calling the {code}`.__init__()` method.\n", "\n", "As expected this will save similar files into the `experiment directory`:\n", "\n", "```{code-block}\n", "20230125-172712-018-87b9bf-Cosine experiment/\n", "├── cos-data-and-fit.png\n", "├── Cosine fit.png\n", "├── dataset.hdf5\n", "├── quantities_of_interest.json\n", "└── snapshot.json\n", "```\n", "\n", "## Extending the BaseAnalysis\n", "\n", "While the above stand-alone class provides the gist of an analysis, we can do even better by defining a structured framework that all analyses need to adhere to and factoring out the pieces of code that are common to most analyses.\n", "Besides that, the overall functionality can be improved.\n", "\n", "Here is where the {class}`~quantify_core.analysis.base_analysis.BaseAnalysis` enters the scene.\n", "It allows us to focus only on the particular aspect of our custom analysis by implementing only the relevant methods. Take a look at how the above class is implemented where we are making use of the analysis framework. For completeness, a fully documented {class}`~quantify_core.analysis.fitting_models.CosineModel` which can serve as a template is shown as well." ] }, { "cell_type": "code", "execution_count": 18, "id": "0909e0d6", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
class CosineModel(lmfit.model.Model):\n",
       "    """\n",
       "    Exemplary lmfit model with a guess for a cosine.\n",
       "\n",
       "    .. note::\n",
       "\n",
       "        The :mod:`lmfit.models` module provides several fitting models that might fit\n",
       "        your needs out of the box.\n",
       "    """\n",
       "\n",
       "    def __init__(self, *args, **kwargs):\n",
       "        # pass in the model's equation\n",
       "        super().__init__(cos_func, *args, **kwargs)\n",
       "\n",
       "        # configure constraints that are independent from the data to be fitted\n",
       "        self.set_param_hint("frequency", min=0, vary=True)  # enforce positive frequency\n",
       "        self.set_param_hint("amplitude", min=0, vary=True)  # enforce positive amplitude\n",
       "        self.set_param_hint("offset", vary=True)\n",
       "        self.set_param_hint(\n",
       "            "phase", vary=True, min=-np.pi, max=np.pi\n",
       "        )  # enforce phase range\n",
       "\n",
       "    # pylint: disable=missing-function-docstring\n",
       "    def guess(self, data, x, **kws) -> lmfit.parameter.Parameters:\n",
       "        """\n",
       "        Guess parameters based on the data\n",
       "\n",
       "        Parameters\n",
       "        ----------\n",
       "        data: np.ndarray\n",
       "            Data to fit to\n",
       "        x: np.ndarray\n",
       "            Independet variable\n",
       "        """\n",
       "\n",
       "        self.set_param_hint("offset", value=np.average(data))\n",
       "        self.set_param_hint("amplitude", value=(np.max(data) - np.min(data)) / 2)\n",
       "\n",
       "        # Guess frequency and phase using Fourier Transform\n",
       "        freq_guess, phase_guess = fft_freq_phase_guess(data, x)\n",
       "        phase_wrap = (phase_guess + np.pi) % (2 * np.pi) - np.pi\n",
       "        self.set_param_hint("frequency", value=freq_guess)\n",
       "        self.set_param_hint("phase", value=phase_wrap)\n",
       "\n",
       "        params = self.make_params()\n",
       "        return lmfit.models.update_param_vals(params, self.prefix, **kws)\n",
       "\n",
       "    # Same design patter is used in lmfit.models to inherit common docstrings.\n",
       "    # We adjust these common docstrings to our docs build pipeline\n",
       "    __init__.__doc__ = get_model_common_doc() + mk_seealso("cos_func")\n",
       "    guess.__doc__ = get_guess_common_doc()\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k}{class}\\PY{+w}{ }\\PY{n+nc}{CosineModel}\\PY{p}{(}\\PY{n}{lmfit}\\PY{o}{.}\\PY{n}{model}\\PY{o}{.}\\PY{n}{Model}\\PY{p}{)}\\PY{p}{:}\n", "\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Exemplary lmfit model with a guess for a cosine.}\n", "\n", "\\PY{l+s+sd}{ .. note::}\n", "\n", "\\PY{l+s+sd}{ The :mod:`lmfit.models` module provides several fitting models that might fit}\n", "\\PY{l+s+sd}{ your needs out of the box.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\n", " \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf+fm}{\\PYZus{}\\PYZus{}init\\PYZus{}\\PYZus{}}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{,} \\PY{o}{*}\\PY{n}{args}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)}\\PY{p}{:}\n", " \\PY{c+c1}{\\PYZsh{} pass in the model\\PYZsq{}s equation}\n", " \\PY{n+nb}{super}\\PY{p}{(}\\PY{p}{)}\\PY{o}{.}\\PY{n+nf+fm}{\\PYZus{}\\PYZus{}init\\PYZus{}\\PYZus{}}\\PY{p}{(}\\PY{n}{cos\\PYZus{}func}\\PY{p}{,} \\PY{o}{*}\\PY{n}{args}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} configure constraints that are independent from the data to be fitted}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n+nb}{min}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{)} \\PY{c+c1}{\\PYZsh{} enforce positive frequency}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n+nb}{min}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{)} \\PY{c+c1}{\\PYZsh{} enforce positive amplitude}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{offset}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{)}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\n", " \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{phase}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{,} \\PY{n+nb}{min}\\PY{o}{=}\\PY{o}{\\PYZhy{}}\\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\\PY{p}{,} \\PY{n+nb}{max}\\PY{o}{=}\\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\n", " \\PY{p}{)} \\PY{c+c1}{\\PYZsh{} enforce phase range}\n", "\n", " \\PY{c+c1}{\\PYZsh{} pylint: disable=missing\\PYZhy{}function\\PYZhy{}docstring}\n", " \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{guess}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{,} \\PY{n}{data}\\PY{p}{,} \\PY{n}{x}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kws}\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{lmfit}\\PY{o}{.}\\PY{n}{parameter}\\PY{o}{.}\\PY{n}{Parameters}\\PY{p}{:}\n", "\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Guess parameters based on the data}\n", "\n", "\\PY{l+s+sd}{ Parameters}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ data: np.ndarray}\n", "\\PY{l+s+sd}{ Data to fit to}\n", "\\PY{l+s+sd}{ x: np.ndarray}\n", "\\PY{l+s+sd}{ Independet variable}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{offset}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{n}{np}\\PY{o}{.}\\PY{n}{average}\\PY{p}{(}\\PY{n}{data}\\PY{p}{)}\\PY{p}{)}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{p}{(}\\PY{n}{np}\\PY{o}{.}\\PY{n}{max}\\PY{p}{(}\\PY{n}{data}\\PY{p}{)} \\PY{o}{\\PYZhy{}} \\PY{n}{np}\\PY{o}{.}\\PY{n}{min}\\PY{p}{(}\\PY{n}{data}\\PY{p}{)}\\PY{p}{)} \\PY{o}{/} \\PY{l+m+mi}{2}\\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} Guess frequency and phase using Fourier Transform}\n", " \\PY{n}{freq\\PYZus{}guess}\\PY{p}{,} \\PY{n}{phase\\PYZus{}guess} \\PY{o}{=} \\PY{n}{fft\\PYZus{}freq\\PYZus{}phase\\PYZus{}guess}\\PY{p}{(}\\PY{n}{data}\\PY{p}{,} \\PY{n}{x}\\PY{p}{)}\n", " \\PY{n}{phase\\PYZus{}wrap} \\PY{o}{=} \\PY{p}{(}\\PY{n}{phase\\PYZus{}guess} \\PY{o}{+} \\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\\PY{p}{)} \\PY{o}{\\PYZpc{}} \\PY{p}{(}\\PY{l+m+mi}{2} \\PY{o}{*} \\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\\PY{p}{)} \\PY{o}{\\PYZhy{}} \\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{n}{freq\\PYZus{}guess}\\PY{p}{)}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{phase}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{n}{phase\\PYZus{}wrap}\\PY{p}{)}\n", "\n", " \\PY{n}{params} \\PY{o}{=} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{make\\PYZus{}params}\\PY{p}{(}\\PY{p}{)}\n", " \\PY{k}{return} \\PY{n}{lmfit}\\PY{o}{.}\\PY{n}{models}\\PY{o}{.}\\PY{n}{update\\PYZus{}param\\PYZus{}vals}\\PY{p}{(}\\PY{n}{params}\\PY{p}{,} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{prefix}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kws}\\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} Same design patter is used in lmfit.models to inherit common docstrings.}\n", " \\PY{c+c1}{\\PYZsh{} We adjust these common docstrings to our docs build pipeline}\n", " \\PY{n+nf+fm}{\\PYZus{}\\PYZus{}init\\PYZus{}\\PYZus{}}\\PY{o}{.}\\PY{n+nv+vm}{\\PYZus{}\\PYZus{}doc\\PYZus{}\\PYZus{}} \\PY{o}{=} \\PY{n}{get\\PYZus{}model\\PYZus{}common\\PYZus{}doc}\\PY{p}{(}\\PY{p}{)} \\PY{o}{+} \\PY{n}{mk\\PYZus{}seealso}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cos\\PYZus{}func}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", " \\PY{n}{guess}\\PY{o}{.}\\PY{n+nv+vm}{\\PYZus{}\\PYZus{}doc\\PYZus{}\\PYZus{}} \\PY{o}{=} \\PY{n}{get\\PYZus{}guess\\PYZus{}common\\PYZus{}doc}\\PY{p}{(}\\PY{p}{)}\n", "\\end{Verbatim}\n" ], "text/plain": [ "class CosineModel(lmfit.model.Model):\n", " \"\"\"\n", " Exemplary lmfit model with a guess for a cosine.\n", "\n", " .. note::\n", "\n", " The :mod:`lmfit.models` module provides several fitting models that might fit\n", " your needs out of the box.\n", " \"\"\"\n", "\n", " def __init__(self, *args, **kwargs):\n", " # pass in the model's equation\n", " super().__init__(cos_func, *args, **kwargs)\n", "\n", " # configure constraints that are independent from the data to be fitted\n", " self.set_param_hint(\"frequency\", min=0, vary=True) # enforce positive frequency\n", " self.set_param_hint(\"amplitude\", min=0, vary=True) # enforce positive amplitude\n", " self.set_param_hint(\"offset\", vary=True)\n", " self.set_param_hint(\n", " \"phase\", vary=True, min=-np.pi, max=np.pi\n", " ) # enforce phase range\n", "\n", " # pylint: disable=missing-function-docstring\n", " def guess(self, data, x, **kws) -> lmfit.parameter.Parameters:\n", " \"\"\"\n", " Guess parameters based on the data\n", "\n", " Parameters\n", " ----------\n", " data: np.ndarray\n", " Data to fit to\n", " x: np.ndarray\n", " Independet variable\n", " \"\"\"\n", "\n", " self.set_param_hint(\"offset\", value=np.average(data))\n", " self.set_param_hint(\"amplitude\", value=(np.max(data) - np.min(data)) / 2)\n", "\n", " # Guess frequency and phase using Fourier Transform\n", " freq_guess, phase_guess = fft_freq_phase_guess(data, x)\n", " phase_wrap = (phase_guess + np.pi) % (2 * np.pi) - np.pi\n", " self.set_param_hint(\"frequency\", value=freq_guess)\n", " self.set_param_hint(\"phase\", value=phase_wrap)\n", "\n", " params = self.make_params()\n", " return lmfit.models.update_param_vals(params, self.prefix, **kws)\n", "\n", " # Same design patter is used in lmfit.models to inherit common docstrings.\n", " # We adjust these common docstrings to our docs build pipeline\n", " __init__.__doc__ = get_model_common_doc() + mk_seealso(\"cos_func\")\n", " guess.__doc__ = get_guess_common_doc()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
class CosineAnalysis(ba.BaseAnalysis):\n",
       "    """\n",
       "    Exemplary analysis subclass that fits a cosine to a dataset.\n",
       "    """\n",
       "\n",
       "    def process_data(self):\n",
       "        """\n",
       "        In some cases, you might need to process the data, e.g., reshape, filter etc.,\n",
       "        before starting the analysis. This is the method where it should be done.\n",
       "\n",
       "        See :meth:`~quantify_core.analysis.spectroscopy_analysis.ResonatorSpectroscopyAnalysis.process_data`\n",
       "        for an implementation example.\n",
       "        """  # pylint: disable=line-too-long\n",
       "\n",
       "    def run_fitting(self):\n",
       "        """\n",
       "        Fits a :class:`~quantify_core.analysis.fitting_models.CosineModel` to the data.\n",
       "        """\n",
       "        # create a fitting model based on a cosine function\n",
       "        model = CosineModel()\n",
       "        guess = model.guess(self.dataset.y0.values, x=self.dataset.x0.values)\n",
       "        result = model.fit(\n",
       "            self.dataset.y0.values, x=self.dataset.x0.values, params=guess\n",
       "        )\n",
       "        self.fit_results.update({"cosine": result})\n",
       "\n",
       "    def create_figures(self):\n",
       "        """\n",
       "        Creates a figure with the data and the fit.\n",
       "        """\n",
       "        fig, ax = plt.subplots()\n",
       "        fig_id = "cos_fit"\n",
       "        self.figs_mpl.update({fig_id: fig})\n",
       "        self.axs_mpl.update({fig_id: ax})\n",
       "\n",
       "        self.dataset.y0.plot(ax=ax, x="x0", marker="o", linestyle="")\n",
       "        qpl.plot_fit(ax, self.fit_results["cosine"])\n",
       "        qpl.plot_textbox(ax, ba.wrap_text(self.quantities_of_interest["fit_msg"]))\n",
       "\n",
       "        adjust_axeslabels_SI(ax)\n",
       "        qpl.set_suptitle_from_dataset(fig, self.dataset, "x0-y0")\n",
       "        ax.legend()\n",
       "\n",
       "    def analyze_fit_results(self):\n",
       "        """\n",
       "        Checks fit success and populates :code:`quantities_of_interest`.\n",
       "        """\n",
       "        fit_result = self.fit_results["cosine"]\n",
       "        fit_warning = ba.check_lmfit(fit_result)\n",
       "\n",
       "        # If there is a problem with the fit, display an error message in the text box.\n",
       "        # Otherwise, display the parameters as normal.\n",
       "        if fit_warning is None:\n",
       "            self.quantities_of_interest["fit_success"] = True\n",
       "            unit = self.dataset.y0.units\n",
       "            text_msg = "Summary\\n"\n",
       "            text_msg += format_value_string(\n",
       "                r"$f$", fit_result.params["frequency"], end_char="\\n", unit="Hz"\n",
       "            )\n",
       "            text_msg += format_value_string(\n",
       "                r"$A$", fit_result.params["amplitude"], unit=unit\n",
       "            )\n",
       "        else:\n",
       "            text_msg = fit_warning\n",
       "            self.quantities_of_interest["fit_success"] = False\n",
       "\n",
       "        # save values and fit uncertainty\n",
       "        for parameter_name in ["frequency", "amplitude"]:\n",
       "            self.quantities_of_interest[parameter_name] = ba.lmfit_par_to_ufloat(\n",
       "                fit_result.params[parameter_name]\n",
       "            )\n",
       "        self.quantities_of_interest["fit_msg"] = text_msg\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k}{class}\\PY{+w}{ }\\PY{n+nc}{CosineAnalysis}\\PY{p}{(}\\PY{n}{ba}\\PY{o}{.}\\PY{n}{BaseAnalysis}\\PY{p}{)}\\PY{p}{:}\n", "\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Exemplary analysis subclass that fits a cosine to a dataset.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\n", " \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{process\\PYZus{}data}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{)}\\PY{p}{:}\n", "\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ In some cases, you might need to process the data, e.g., reshape, filter etc.,}\n", "\\PY{l+s+sd}{ before starting the analysis. This is the method where it should be done.}\n", "\n", "\\PY{l+s+sd}{ See :meth:`\\PYZti{}quantify\\PYZus{}core.analysis.spectroscopy\\PYZus{}analysis.ResonatorSpectroscopyAnalysis.process\\PYZus{}data`}\n", "\\PY{l+s+sd}{ for an implementation example.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}} \\PY{c+c1}{\\PYZsh{} pylint: disable=line\\PYZhy{}too\\PYZhy{}long}\n", "\n", " \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{run\\PYZus{}fitting}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{)}\\PY{p}{:}\n", "\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Fits a :class:`\\PYZti{}quantify\\PYZus{}core.analysis.fitting\\PYZus{}models.CosineModel` to the data.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", " \\PY{c+c1}{\\PYZsh{} create a fitting model based on a cosine function}\n", " \\PY{n}{model} \\PY{o}{=} \\PY{n}{CosineModel}\\PY{p}{(}\\PY{p}{)}\n", " \\PY{n}{guess} \\PY{o}{=} \\PY{n}{model}\\PY{o}{.}\\PY{n}{guess}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{y0}\\PY{o}{.}\\PY{n}{values}\\PY{p}{,} \\PY{n}{x}\\PY{o}{=}\\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{x0}\\PY{o}{.}\\PY{n}{values}\\PY{p}{)}\n", " \\PY{n}{result} \\PY{o}{=} \\PY{n}{model}\\PY{o}{.}\\PY{n}{fit}\\PY{p}{(}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{y0}\\PY{o}{.}\\PY{n}{values}\\PY{p}{,} \\PY{n}{x}\\PY{o}{=}\\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{x0}\\PY{o}{.}\\PY{n}{values}\\PY{p}{,} \\PY{n}{params}\\PY{o}{=}\\PY{n}{guess}\n", " \\PY{p}{)}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{fit\\PYZus{}results}\\PY{o}{.}\\PY{n}{update}\\PY{p}{(}\\PY{p}{\\PYZob{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cosine}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{:} \\PY{n}{result}\\PY{p}{\\PYZcb{}}\\PY{p}{)}\n", "\n", " \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{create\\PYZus{}figures}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{)}\\PY{p}{:}\n", "\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Creates a figure with the data and the fit.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", " \\PY{n}{fig}\\PY{p}{,} \\PY{n}{ax} \\PY{o}{=} \\PY{n}{plt}\\PY{o}{.}\\PY{n}{subplots}\\PY{p}{(}\\PY{p}{)}\n", " \\PY{n}{fig\\PYZus{}id} \\PY{o}{=} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cos\\PYZus{}fit}\\PY{l+s+s2}{\\PYZdq{}}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{figs\\PYZus{}mpl}\\PY{o}{.}\\PY{n}{update}\\PY{p}{(}\\PY{p}{\\PYZob{}}\\PY{n}{fig\\PYZus{}id}\\PY{p}{:} \\PY{n}{fig}\\PY{p}{\\PYZcb{}}\\PY{p}{)}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{axs\\PYZus{}mpl}\\PY{o}{.}\\PY{n}{update}\\PY{p}{(}\\PY{p}{\\PYZob{}}\\PY{n}{fig\\PYZus{}id}\\PY{p}{:} \\PY{n}{ax}\\PY{p}{\\PYZcb{}}\\PY{p}{)}\n", "\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{y0}\\PY{o}{.}\\PY{n}{plot}\\PY{p}{(}\\PY{n}{ax}\\PY{o}{=}\\PY{n}{ax}\\PY{p}{,} \\PY{n}{x}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{x0}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{marker}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{o}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{linestyle}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", " \\PY{n}{qpl}\\PY{o}{.}\\PY{n}{plot\\PYZus{}fit}\\PY{p}{(}\\PY{n}{ax}\\PY{p}{,} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{fit\\PYZus{}results}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cosine}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{)}\n", " \\PY{n}{qpl}\\PY{o}{.}\\PY{n}{plot\\PYZus{}textbox}\\PY{p}{(}\\PY{n}{ax}\\PY{p}{,} \\PY{n}{ba}\\PY{o}{.}\\PY{n}{wrap\\PYZus{}text}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{fit\\PYZus{}msg}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{)}\\PY{p}{)}\n", "\n", " \\PY{n}{adjust\\PYZus{}axeslabels\\PYZus{}SI}\\PY{p}{(}\\PY{n}{ax}\\PY{p}{)}\n", " \\PY{n}{qpl}\\PY{o}{.}\\PY{n}{set\\PYZus{}suptitle\\PYZus{}from\\PYZus{}dataset}\\PY{p}{(}\\PY{n}{fig}\\PY{p}{,} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{p}{,} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{x0\\PYZhy{}y0}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", " \\PY{n}{ax}\\PY{o}{.}\\PY{n}{legend}\\PY{p}{(}\\PY{p}{)}\n", "\n", " \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{analyze\\PYZus{}fit\\PYZus{}results}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{)}\\PY{p}{:}\n", "\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Checks fit success and populates :code:`quantities\\PYZus{}of\\PYZus{}interest`.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", " \\PY{n}{fit\\PYZus{}result} \\PY{o}{=} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{fit\\PYZus{}results}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cosine}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\n", " \\PY{n}{fit\\PYZus{}warning} \\PY{o}{=} \\PY{n}{ba}\\PY{o}{.}\\PY{n}{check\\PYZus{}lmfit}\\PY{p}{(}\\PY{n}{fit\\PYZus{}result}\\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} If there is a problem with the fit, display an error message in the text box.}\n", " \\PY{c+c1}{\\PYZsh{} Otherwise, display the parameters as normal.}\n", " \\PY{k}{if} \\PY{n}{fit\\PYZus{}warning} \\PY{o+ow}{is} \\PY{k+kc}{None}\\PY{p}{:}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{fit\\PYZus{}success}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]} \\PY{o}{=} \\PY{k+kc}{True}\n", " \\PY{n}{unit} \\PY{o}{=} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{y0}\\PY{o}{.}\\PY{n}{units}\n", " \\PY{n}{text\\PYZus{}msg} \\PY{o}{=} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Summary}\\PY{l+s+se}{\\PYZbs{}n}\\PY{l+s+s2}{\\PYZdq{}}\n", " \\PY{n}{text\\PYZus{}msg} \\PY{o}{+}\\PY{o}{=} \\PY{n}{format\\PYZus{}value\\PYZus{}string}\\PY{p}{(}\n", " \\PY{l+s+sa}{r}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{\\PYZdl{}f\\PYZdl{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{fit\\PYZus{}result}\\PY{o}{.}\\PY{n}{params}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{,} \\PY{n}{end\\PYZus{}char}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+se}{\\PYZbs{}n}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Hz}\\PY{l+s+s2}{\\PYZdq{}}\n", " \\PY{p}{)}\n", " \\PY{n}{text\\PYZus{}msg} \\PY{o}{+}\\PY{o}{=} \\PY{n}{format\\PYZus{}value\\PYZus{}string}\\PY{p}{(}\n", " \\PY{l+s+sa}{r}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{\\PYZdl{}A\\PYZdl{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{fit\\PYZus{}result}\\PY{o}{.}\\PY{n}{params}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{n}{unit}\n", " \\PY{p}{)}\n", " \\PY{k}{else}\\PY{p}{:}\n", " \\PY{n}{text\\PYZus{}msg} \\PY{o}{=} \\PY{n}{fit\\PYZus{}warning}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{fit\\PYZus{}success}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]} \\PY{o}{=} \\PY{k+kc}{False}\n", "\n", " \\PY{c+c1}{\\PYZsh{} save values and fit uncertainty}\n", " \\PY{k}{for} \\PY{n}{parameter\\PYZus{}name} \\PY{o+ow}{in} \\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{:}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{n}{parameter\\PYZus{}name}\\PY{p}{]} \\PY{o}{=} \\PY{n}{ba}\\PY{o}{.}\\PY{n}{lmfit\\PYZus{}par\\PYZus{}to\\PYZus{}ufloat}\\PY{p}{(}\n", " \\PY{n}{fit\\PYZus{}result}\\PY{o}{.}\\PY{n}{params}\\PY{p}{[}\\PY{n}{parameter\\PYZus{}name}\\PY{p}{]}\n", " \\PY{p}{)}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{fit\\PYZus{}msg}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]} \\PY{o}{=} \\PY{n}{text\\PYZus{}msg}\n", "\\end{Verbatim}\n" ], "text/plain": [ "class CosineAnalysis(ba.BaseAnalysis):\n", " \"\"\"\n", " Exemplary analysis subclass that fits a cosine to a dataset.\n", " \"\"\"\n", "\n", " def process_data(self):\n", " \"\"\"\n", " In some cases, you might need to process the data, e.g., reshape, filter etc.,\n", " before starting the analysis. This is the method where it should be done.\n", "\n", " See :meth:`~quantify_core.analysis.spectroscopy_analysis.ResonatorSpectroscopyAnalysis.process_data`\n", " for an implementation example.\n", " \"\"\" # pylint: disable=line-too-long\n", "\n", " def run_fitting(self):\n", " \"\"\"\n", " Fits a :class:`~quantify_core.analysis.fitting_models.CosineModel` to the data.\n", " \"\"\"\n", " # create a fitting model based on a cosine function\n", " model = CosineModel()\n", " guess = model.guess(self.dataset.y0.values, x=self.dataset.x0.values)\n", " result = model.fit(\n", " self.dataset.y0.values, x=self.dataset.x0.values, params=guess\n", " )\n", " self.fit_results.update({\"cosine\": result})\n", "\n", " def create_figures(self):\n", " \"\"\"\n", " Creates a figure with the data and the fit.\n", " \"\"\"\n", " fig, ax = plt.subplots()\n", " fig_id = \"cos_fit\"\n", " self.figs_mpl.update({fig_id: fig})\n", " self.axs_mpl.update({fig_id: ax})\n", "\n", " self.dataset.y0.plot(ax=ax, x=\"x0\", marker=\"o\", linestyle=\"\")\n", " qpl.plot_fit(ax, self.fit_results[\"cosine\"])\n", " qpl.plot_textbox(ax, ba.wrap_text(self.quantities_of_interest[\"fit_msg\"]))\n", "\n", " adjust_axeslabels_SI(ax)\n", " qpl.set_suptitle_from_dataset(fig, self.dataset, \"x0-y0\")\n", " ax.legend()\n", "\n", " def analyze_fit_results(self):\n", " \"\"\"\n", " Checks fit success and populates :code:`quantities_of_interest`.\n", " \"\"\"\n", " fit_result = self.fit_results[\"cosine\"]\n", " fit_warning = ba.check_lmfit(fit_result)\n", "\n", " # If there is a problem with the fit, display an error message in the text box.\n", " # Otherwise, display the parameters as normal.\n", " if fit_warning is None:\n", " self.quantities_of_interest[\"fit_success\"] = True\n", " unit = self.dataset.y0.units\n", " text_msg = \"Summary\\n\"\n", " text_msg += format_value_string(\n", " r\"$f$\", fit_result.params[\"frequency\"], end_char=\"\\n\", unit=\"Hz\"\n", " )\n", " text_msg += format_value_string(\n", " r\"$A$\", fit_result.params[\"amplitude\"], unit=unit\n", " )\n", " else:\n", " text_msg = fit_warning\n", " self.quantities_of_interest[\"fit_success\"] = False\n", "\n", " # save values and fit uncertainty\n", " for parameter_name in [\"frequency\", \"amplitude\"]:\n", " self.quantities_of_interest[parameter_name] = ba.lmfit_par_to_ufloat(\n", " fit_result.params[parameter_name]\n", " )\n", " self.quantities_of_interest[\"fit_msg\"] = text_msg" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display_source_code(CosineModel)\n", "display_source_code(CosineAnalysis)" ] }, { "cell_type": "markdown", "id": "4c1eee01", "metadata": {}, "source": [ "Now we can simply execute it against our latest experiment as follows:" ] }, { "cell_type": "code", "execution_count": 19, "id": "c030ad1e", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAAHgCAYAAABjBzGSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAADkjUlEQVR4nOzdd3hUVfrA8e+ZSZn0QEinJPQSIPSqAopgwa5r3bWXn2vFtuuq67qudVVWd10VsSy7FhQLCigWFBWk995bSEghvc6c3x937jAJk2QSkswkeT/PMw/kzrn3vklmMuee+573KK01QgghhBBCCO9ZfB2AEEIIIYQQrY10ooUQQgghhGgg6UQLIYQQQgjRQNKJFkIIIYQQooGkEy2EEEIIIUQDSSdaCCGEEEKIBpJOtBBCCCGEEA0knWghhBBCCCEaSDrRQgghhBBCNJB0ooUQLUopda1SSiulUnwdS2uilJrg/LlN8HUsQgghpBMtRLNQSkUrpV5XSh1VShUrpb5XSg31x/MopS5USi1QSmUrpSqUUoeVUh8qpSY1dbyi7VNKXamUutvXcQghRHNTWmtfxyBEm6KUsgBLgMHAc0A28H9AF2CY1nqHP5xHKaWAWcC1wBrgI+AIkAhcCAwDxmmtf2mKeN3OawUCgXItf4C85vx9BwEVWmuHr+OpjVLqCyBNa53i61iEEKI5SSdaiCamlLoM+AC4VGv9kXNbLLAdWKC1vtIfzqOUug+j8/0ScG/NDq1S6hpgm9Z6eVPEKxpHKWXDzzvO7qQTLYRoLySdQwgvKKVClFJbnY8Qt+0dlVIZSqlfnCOsAJcAmcBcs53W+ijwIXC+Uiq4jvNMdOa9XujhuSudz41pgvOEAH8AtgL3eRoR1lr/x70DrZTqrpSao5TKVUqVKKWWKaXO8XDsO5RSm5xt8pRSK5VSV7o9f0JOtFJqr1LqC6XUeKXUcqVUmVJqt1Lqtx6OH62UekkpdUApVa6U2qmUetA5UlsvpdRZSqklzvSXQqXUl0qpAW7PT1JKOZRSf6mxn/nzv81tm1ZKvaKUukoptc0Z9yql1KkezpuslJqllMp0xr1JKXV9jTZm3vPlSqm/KqUOASVApKecaKXUYqXURqXUIKXUD86f+U6l1CXO509TSv2qlCp1xnfGScZ1mVLqYaXUQef3+q1Sqqd7PMA5QDdne62U2uvN70UIIVob6UQL4QWtdSnwO6An8KTbU/8EooBrtdZ257YhwGoPI4fLgVCgdx2nWgwcAK7y8NxVwC6t9dImOM94oCPwP7e4a6WUigd+AaYA/wIeBmzA5+4dfqXUTcA/gM3A3cBjwFpgVH3nwPjZfgQsAqYDecDbNTq4ocAPwNXAu8CdwM/AU8ALXnwf1wBfAkXAg8ATQH/gJ7NTr7X+zvk9/kE588uVUonAy8A3wL9rHPY0jNH82cCjQAywUCmV5nbeeGAZcAbwCnAXsBN4U3nOH34EozP6PPBHoKKOb6sD8AXwK/AAUA68r5T6DfA+MB94CAgDPlJKRZxEXA9hpPo8j/EzHw381+35JzF+39nANc6Hp+MIIUTrp7WWhzzk4eUD+BtgB07BGAnWwF012hQBb3rY92xn+ylenKMMiHLbFgtUAn9uivNgdD41cIGX3/eLzvbj3baFA7uBPYDFue1TYGM9x7rWeawUt217ndtOqfE9lwHPu237k/P77lXjmE8BVUCXOs4bjtExf73G9njgmPt2jIuQHcBGIBijk5oPdK2xr3Y+hrlt6wqUAnPdts0EDgMxNfZ/z3nuEOfXE5zH22Vuc2trPjfBbdti57Yr3Lb1cW6zA6Pctp/p3H7tScS1GQjy8DpKc9v2BbDXF+9PechDHvJoyYeMRAvRMH8GNgHvYIxW/oAx8uouBGM0sKYyt+fr8i5Gx+0St22/AQIwRjub4jyRzn8L64nFdDawXGv9k7lBa10EvA6kYIzmgtHx6qyUGuHlcd1t1lovcTv+UWAb0N2tzaUYkynzlFKdzAfGCLEVOCGNws1kIBp4r8a+doxR3Ilu5y7B6Oz3A37EGBW+R2u938Nxl2qtV7ntux/4DJiilLIqpRRwMTAPYz6n+7m/wriTUbOiyjvauPvhjSKMEWfz/Nswfg9btNa/urUz/98dXBNLGxrXW1pr91Fx8/fVHSGEaGcCfB2AEK2J1rrCmS+6AqOzep3WumY+cSlGJ7gmm9vz5iRAq9vzRVrrIq31VqXUCoz0jTedz10FLNNa72zoeWpR4Pw3oo427rpxvBPmbovb8xuBZzBSA5YrpXYCX2OkjPzsxTk8dVDzMNIVTL2AQcDRWo4RV8fxezn//a6W5wvcv9Ba/6yUehW4HfhKaz2rlv08VUHZjjGaHQs4MDrvNzsfntSMe08t7Tw56OE1mI+RFuSitc43+s2un2dsI+Kq+TvKc/7bASGEaGekEy1Ew01x/mvD6JjV7PBkYJSJq8ncdtj57wqMzqfpcYyRbjBGo2copTpjdJRHA79v5Hk82er8dyBGCkaT0FpvUUr1Ac4FpmKMdP6fUuovWuvH6tm9ttxs5fZ/C0bO9LO1tN1ex/HNO2/XYJTyq6mq2kmNiZkTnF/2UEqFOkeoG8o872yMOxierK/xtbej0FD7z62+n2dj4vLmdySEEO2CdKKFaACl1CCMyWNvAenATKXUQK11vluztcApSimLrj7pbxRGpQWzo3cV1VMudrv9/32MiXJXONtUYpSzc+fteTz5CWMU8Qql1N90/ZML92Hk2tbU1+15ALTWxc5YP1BKBWFUD3lYKfWU1rrMwzEaYhcQrrX+ppH7AmR5uf/jGOkc92GMsD+NkQNcUy8P23pj/A7MEfNCwNrIuJvLUZonLqmbKoRoFyQnWggvKaUCgbcxRnjvwsiZjceYdOfuI+f2i9z27YSRzztPa10ORrqA1vobt4erE621zgYWYFShuApY6NzW4PN44hxRfQajk/iMMz+25vd7tVJqpPPL+cBIdby8HkqpMIw0gL0YE85QSsXUOE+F8zmFscDKyfoQGKOUmlLzCWWUvqtrYOArjJSNPzp/lzX3j3X7/yiMzvNLWuu/Y9TT/r1S6jQPxx2j3FaJVEp1Ac4HvtZa250XKB8DF7tX7PB03pbUjHEVY+RTCyFEmyYj0UJ4708Yo8+na60LgfXKqCX8V6XUR1rr+c52H2GUDXtLKdWf4ysJWjFKvnnrXeexwCh5VtPJnuc5YABGObmJSilzxcIE4AJgJDDW2fZpjFHxBUqpfwC5GCX/UoGL3UbCv1ZKHcEoO5eJ0Un/PfCl82d2sp4DzgO+UEq9DazCKN02EGMiZgrGz+EEWusCZdR4/g+wWin1PsZobFeMiYM/Y3SUbRjpDTswSvmB8fOchvGzHugcbTdtBL5y/lzKMX4H5j6mhzAmLv6qlHoD48KiI8bEvTOc//eF5ohrFfAbpdQLGClLRVrreU0UrxBC+A9flweRhzxawwOjU1EJ/KPGditGXeZDQLTb9g4Y5cOyMUbmFgPDG3jOIIzO6jHAVkubpjjPxRijtDnO7/EwRjrJaTXadQfmYKSBlGJMNDynRpubMSqWZGNMvNyJkb8c6dbmWjyXuPvCQ2yLgcU1toVjlAHcgdFpPYrRAZ4OBHrx/U4AFjp/rqXOGN/CWaYOI42mChhZY79hzp/Pv9y2aYz6yldhpM+UAatxK0Pn1jbO2XY/Rt3nDIyqIjfViE0Dl9QSt6cSdyeUFKzj56mBV5oqLoyLlppl88IwakfnOZ/b6+v3rzzkIQ95NMdDlv0Wwk85UxMOY6Rm3ODreMSJlFIa+KfWuuakTyGEEG2c5EQL4b8uwChD9q6P4xBCCCFEDZITLYSfcU5qG4SRB71Ga/2Dj0MSQgghRA0yEi2E/7kNeBXIAn7r41iEEEII4YHkRAshhBBCCNFAMhIthBBCCCFEA0knWgghhBBCiAaSTrRotZRS1yqltFIqxYu2e52Lcwgh2hGl1FSl1FqlVJnz70W0r2MSQrQN0okWPqGUGquU+nNr+EBTSvVVSj3r/CAuVEplKKW+VEoNr6V9slLqQ6XUMaVUgVLqM6VU9xptuiilHlNKLVdK5SmlspVSi5VSZ3g4nnmx4OmR4KH9eUqp1c5Ow36l1OOelsNWSk1WSv2klCpxxvBRbRck3h6zxj5vOGP8oq52Hva7QSm1xXmuHUqpO7zYZ5HzXK+czDGVUpe7fZ9HlVJvOpdSr9mutt/HQ7Uc9zdKqaVKqWLn6+IXpdSk+r4v574PK6U+V0plOs/x51raXaSU+kAptdv5O92mlPq7p/eYM57Zzp+FVkot9iYWt/29fk0qpWxKqT8opTY74zqklJqjlBpQo93iOo5ZWUcsPdTxDvLwGs/FYCwVXwrcDlyDsSgRSqkzlFLfO997x5zvxWsa8nMQQrRvUuJO+MpYjGWR38ZYOa4x/oOxsl5504RUqxuBG4CPgX8BUcAtwDKl1FSt9TdmQ6VUOPC9s83fMFa4uwf4QSmVrrXOcTY9H3gQ+BRjiekAjEoci5RS12ut3/IQx6PAnhrbjrl/oZQ6y3nMxcAdGMth/wljVbrb3NqdC3yGsbreQ0AkcBfwk1JqiNb6aEOPWSOO4RgrE5Z5er42SqlbgH9j/KxfAE4B/qGUCtVaP1PLPhcBY072mMpYEvxfwLfAvUBnjJ/JcKXUKK11ze9lESfW8F7j4fx/xvjdfYTxeg8E0oDk2mKu4a8Yy7GvAabU0e51jMV5ZmOsPjgQY8n1s5VSQ7XWpW5tb8NYgXEFEONlHJ7U+5rEWL3wPOANjNdbEkaHdqkyllDf52z3JMbqm+7CMH53X9cRw4sYK0wGe3huBBABPFLjfXoexmt6KfBnjJUVLwPeVUp10lq/WMf5hBDC4OslE+XRPh/AfdRY+rmZz7cXeLuR+w4Dwmtsi8EoQfdTje0POL+vEW7b+mJ8yP/NbdsAoFONfYOBLcCBGtuvdR6z3uW8gU3AWiDAbdtfAQfQt0a7HUCQ27bBgB34e2OO6facAn4B3qSW5adriT0EY7nwL2psnw0UAR087GPD6MQ9guclrb06JsYS63kYS5Yrt3bnOo97R439TzhXLd/TaOfP6Z6TeO2mOP/t5Dzvn2tpN8HDtt8697mxxvYugMX5/43UWFrdi5i8ek1iXCho4Lka2yc6t9f5cwGudra7spbnp2BcRD/hKR6377/m9q+BQ0Cw27YAjCXg1zX2dyUPecijfT0knUO0OOfI3HPOL/e43bJNcT60UupaD/tVu5WtPOREK8OflFIHnbeOv69529itbQ+lVI/64tVar9JaF9XYlgMsAfrVaH4JsEJrvcKt7VaM0c3L3LZt0lpn1zhmOTAf6KyUiqgl5gillLWW5/oD/YHXtdZVbk/9C6Nje4mzXUdnu0+01hVu51+H0Ym/vKHHrOEajJHWhz3FWYeJGBcn/6qx/Z8YI5LneNjnAYy0tOdP8phpQDTwgdbaVfdTa/0FRmf7cjxQSoUopWy1nBvgboxR5BnO12Z4HW090lrv9bLdYg+bP3H+W+11qrU+oLV2NDQWT+p6TWKMAgNk1tie4fy3lLpdiZF+8ZmH8wYCM5yPXR6eX4xxlwdghfNvxdvOryOBPOd7DgDn6zvbi5iEEAKQnGjhG3OB95z/vwej03UNcLTWPbz3F4xRqXXA/cBujFGnMA9tv3U+GisB40MXAKWUBWOlwZUe2i4HetTWOa5xzBLno6bvgQKgxJkj26vG80Oc/1Y7v9b6MHDQ7XnztrenzkIJkOSW1+rtMQGjQwU8gzHqfsTD8evi8VzAKozR3Jrn6oqRivKgrp6q0Jhj1vUzKQWGOH+/7q7F6OCVOvN9r/Sw7+kYKRN3Yry+zZz639cSb1Mzf4/ZdbZqvPpek7swXifTlVLTlFKdlVIjMVI09mCkY3mklIoFJgOfaq2LPTS5G+iAcVfEkycxUlzASDu5BnjN+fViYIBS6gmlVE/nBfUjwHDg2bq+YSGEMElOtGhxWuv1SqnVwBUYH5B7zeecH5yN4tz3AeBLYJo5oqiUehL440kFfeK5TsHIw3X/AO+I0RnL8LCLuS0J2FbLMXsCFwFztNZ2t6dKMHJpzQ7LMIyc3V+cua4HnO0Sa5yr5vmTnP/PxMhbHVfj/DEYo85g3IY/0oBjmh7F6HQ2Jqc0EbBrrbPcN2qtK5RSOR7O9XeMZdFr7Yg14Jg7MG77jwNc+ehKqT6A+ZrsAJg57b9gTFjbw/Ec3/8qpaK01q869+2AkYIxDpgEPI6Rq3wd8LJSqlJrbXbqmsuDGCk6HzXxcb16TWqtK5VSFwP/Az53238VMFZrfayOc/wG4zPqvzWfcF7kPQLcp7UuUEqdsLPWepFSKhm4GVigtXa/kHoCSMW4W/Int+/pYq31CaPeQgjhiXSiRVtyBkZu68vut+SBl/DQidZapzTmJEqpOIxOwR6qj1qFOP/1NNGxrEabmscMBeZgdECrVXjQWn+I0WEzfaqU+gr4EaMTcKuX5490Hs+hlHoNeFAp9RQwy/ncsxg/P/djeXVM5/fQG2Mi3hXut8kbIASoqOW5MrdYUEpNBC4GRjXFMbXW2UqpD4HfKaW2YKRBJAMvY0wODXQ/v9a65gXILIyO4d+UUm87R8bN1I0Y4HKt9QfOth8BGzA6b83WiXaOjN8APKu13tGUx27AaxKMXPO1GK/vZUBP4A/AHKXUZH3ihE3TlRij94s8PPcMxl2mmhMRvVUObMe4uJgLWDE627OdMS1r5HGFEO2IdKJFW9LN+W+1DoPW+qhSKq8pTqCUCgO+wMj1HF8jV9pMBfBUJcBWo437Ma0Yt7X7A2c5UyXqpLX+SSn1K8aFg7fndz/3oxijpA9wvNP+NcZkwFsx8oAbeswZwC9a64/rit15x8A9h7bI+XMs5XgnvtZzKaO03j+A/7jnntfCq2M63YLRUX6e4znWszFSEi7i+M/kBM6R7Vcw0hSGAT+5HbsSt5Fg50XMB8DjSqmuWuv96sRShfl1pKjUy3mn5E3gKxqem24eIwjj7oq7ozXukrh4ek0qpaIw5g48p7X+u9v2lRgpFdcBr3o4d3eMOz2v1MjFRyk1GiM14/STyOt+BWPS51DzGM6LqE0Yr+P6Ls6EEEJyooXf0Z421jFxqcU4OxVzMfKez9dab6zRJBdjhCux5r5u2zx1kN/AqAJxrdb6uwaEdIDqnRwz5aK287vOrbWu0FrfiJGKcCrQR2s9BaM0nwOjSoHXx1RGzeOpGBPozAmiKRgX6iHOr81R6xXO45qP+9zOZXWO9Ls4f+4xbvH/FugDvFbjXAARzq9DG3hMtNb5WuvzMS7GTsOoinGN8/s8Wk/qARi/Dzj+O8nFGO3O8dDxNNNLOrjF6f74TT3nqpVSajBG6sRG4JKandAGGOshri717FPzNXkxEE/1VA601j9gpIFUG9F3Y+aXn5DKgXHHZAnGpGTzd2/W8k505srXyvm7vwH40r0TrrWuBBZglDSs7cJLCCFcZCRa+IrHzjLGrV8wKiW460b9zHqzvTBu9QKukc8OHvfwknNS2bsYE8Uuc3YCqnGOMG7AmJxU0yhgt9a6sMZxn8MYjbtba/2eh/3q0p3qkzHXOv8djjGR0TxHEkbN49epQWudibNygvNCZQLwq9sIu7fHNDsucz3EmYyR+nIPRmrNVVRPazF/V+7nmu/2/HCMC37z+a4Y6RU/ezjXb52PCzHqAHt7TBet9X6M3GWUsVDJMIwa0/UxF9Q56jyOQym1FhihlApyr4TC8Vxs8/c3ucaxNnlxvhMoo9rMQoxO+tk1q8o00DoPcdU3WbTmazLe+W+1i2BlJDFbqf0z6EpgVy1pFV0x/h7UrE8NRmc9nxP/friLcZ7X04V5IMbrwucX7UII/yedaOEr5mz7aPeNzklC2Rijoy+5PfV/XhzzG4xb53copb52y4u+21NjZ4cDrfUJ5bE8eBljdPAWrbWnjqLpI+BppdRwcyKTc3LaJGqUYVNK3Y8xCvs3rfWM2g6olIrVboufOLedjdG5+4e5TWu9SSm1FbhZKfWa2+jnbRgXLfVNLrsPY9TVtZpfA475HUbHtabXMS5unsTIA0Zr7anzax4j13ls9w7vbRiTvr50fv0+Hjq/GHnM8zFG9n9t4DFr8xTG30nXRMlafh8RGK+zbIzcaNMHGGkDv3PGhTJK4l0FbDZTd7TbQiCN5UwJ+RrjTsKUmjE2lNY6D+M95elcXr0mMfKOwSgR+Ge37edhVMzxtDjNEIySfE/UEtrNQGiNbZMwXrf3AVtr2c+UhTGx9kKl1KPmxY0yyg9OA7aeTCqNEKL9kE608BWzo/GkUup9jM7vPGcpq5nAQ0qpmRilyU4Fetd3QGfu8/MYk5a+UErNxyhhdhaeS3yZ5e1S6jquUupujE78UoxSXlfXaPKJWwmufwE3AV86Y6nEqFqQiVFNwjzmhRi3pXcAWzwcc5FzlBiMigdrMH4W+cBQ4HqMW+d/q7Hf/RijcV87f65pGKvWzdRab3E7/9UYt9p/xMj1PQOjjvVMDznN9R7TffS2xs/uJSBTa/1pzedq0lqXOsuM/VMpNQcjn/cUjAU3HtZa5zrbbcVDR8lZoWGP+7m8PaZz/4ec39uvGIvjXACcCfypRu717UqpC4B5zu85EeP30RW4psaI82sYK17+0znxcj9GPm83jA5bvZSxFHU3jnccT1VKmRUl/qOPr/i3EGMk+FlgvFJqvNthMrXWrgl6SqlTMd5XYFQfCXM75o9a6x/rCcvb1+Q8jFH1R5VS3Tg+sfD3GOkhb3o49lXOfz2lcqC1PmH1QnV8afMfalTh8LS/3fne/CvGqqPvYow834Bxd6Xme1EIITzTfrDiizza5wOjOsFBjBJcrtULMW71z8QYLSrAGM2LpcZqbRxfNS3FbZsFY9LcYYyRxu8xVgfcS40VC53b9noR59vO89T2SKnRvjNGJYJ8oBCjI9GzRps/13PMCW5t/4oxYncMo9LEPozOenwt8V7gbF+G0al5Agis0WYkxup8uRgT4NZiTKxTjT1mLfvtxcsVC932uQmjk1yOkZt9d21x1div1lUEvTkmxsIrvzpfc8UYF02XejjWZIwR3wzn7yMPo3M+qZZzxzlfQznOn98yjJFib38ei718ndT1elrcgNffn72IyevXJEYq1QsYpR3LMNI93gNSPbS1YPxNWNXA18y1eF6Z0ON253NXOn/feRh/K5ZhlLg7qb9r8pCHPNrPQ2ldW2qqEEIIIYQQwhOpziGEEEIIIUQDSSdaCCGEEEKIBpJOtBBCCCGEEA0knWghhBBCCCEaSDrRQgghhBBCNJB0ooUQQgghhGgg6UQLIYQQQgjRQNKJFkIIIYQQooGkEy2EEEIIIUQDSSdaCCGEEEKIBgrwdQD+QCmlgCSg0NexCCGEEKJBIoDDWmvt60BE++KXnWil1O3A/UACsA64Q2u9vI720cCTwEVAR2AfcLfWer6Xp0wCDp5MzEIIIYTwmc7AIV8HIdoXv+tEK6V+A7wA3Ar8CtwNfKWU6qO1zvLQPghYBGQBl2C8iboBxxpw2kKAAwcOEBkZeTLhCyGEEKKFFBQU0KVLF5A7ycIHlL/d/VBK/Qqs0Fr/3vm1BTgAvKy1ftpD+1sxRq37aq0rG3nOSCA/Pz9fOtFCCCFEK1FQUEBUVBRAlNa6wNfxiPbFryYWOkeVhwHfmNu01g7n12Nq2e08YCnwT6VUplJqo1Lqj0opax3nCVZKRZoPjHwqIYQQQgghvOJXnWigE2AFMmtsz8TIj/akO0YahxU4G3gCmA78qY7z/AHId3tIPrQQQgghhPCav3WiG8OCkQ99s9Z6ldb6A4xJhrfWsc9TQJTbo3OzRymEEEIIIdoMf5tYmA3Ygfga2+OBI7XskwFUaq3tbtu2AAlKqSCtdUXNHbTW5UC5+bVR4U4IIYQQQgjv+NVItLPDuwo43dzmnFh4Okbesyc/Az2d7Uy9gQxPHWghhBBCCCFOll91op1eAG5SSv1OKdUPeBUIA94CUEq9q5R6yq39qxi1oWcopXorpc4B/gj8s4XjFkIIIYQQ7YS/pXOgtf5AKRUL/AVjMuFaYKrW2pxs2BVwuLU/oJSaArwIrMeoEz0DeKYl4xZCCCGEEO2H39WJ9gWpEy2EEEK0PlInWviSP6ZzCCGEEEII4df8Lp1DCCGEEMKXnMUKUoCeGPOyZNCxfdFAKbAH2Km1rvLUSDrRQgghhBBOSqnUuLi433Xt2jW1e/fuYfHx8TogQLpL7Yndbic3N1ft2rWrfP/+/fuVUu9rrdfVbCevimZkd2iW78klq7CMuAgbI1M7YrVITWohhBDCHymlUlJSUm6/+OKLu1111VX7Bw8evMdikUHo9mrHjh2h77//fup77713q1Lq3zU70tKJbiYLN2bw+LzNZOUXo4AqLCRGhfDYtP5MTUv0dXhCCKCqqorS0lICAgIICQnxdThCCB8LCwubOm3atO5//etfN9psNkf9e4i2rFevXiUPP/zwVofD0e/f//73RUqpDVpr1+tCOtHNYOHGDG6bvRoN9LbmMi5oHyU6kIySCP7yvyz0Fadx1sAkX4cpRLt07Ngx1qxZw/bt28nMzERrTXR0NHfddZevQxNC+JBSKqpv377pZ5xxRqZ0oIXJYrFw3nnnHfziiy9Sjhw50g0jTxqQTnSTszs0j8/bjFk4MFgZueihqpIeAbn0CMjl608yGBB9GV27dPZdoEK0M2VlZXz33XesWrUKh6P652N4eLjr/1prPv/8c3r06MGAAQNQSlKwhGgnusbGxnYYP378Dl8HIvzL4MGDCzt37txt5cqV0oluTsv35JKRX+b6ekNVIluq4uhkKSbFmkdPaw7RFPLWW7OYOGECp5xyinxIC9ECPv74Y3bu3AlAamoq6enppKSkEBERgXu9/O3bt7N27VrWrl3L1q1bmTZtGsHBwb4KWwjRcmzBwcHW6Ohoj5UYRPtlsViIiorSgM19u3Sim1hWYdkJ26qwcsQRyRFHJOsqExkReJAeAbls2bKFUaNGyQe0EC3g9NNPJz8/n6lTp9K9e/dqz7lfyHbv3p3TTjuNJUuWsGnTJrKzs7n66qurjVYLIdokZbVatUwkFJ5YrVaAaqOe8kppYnERtjqfLyWIHyu7M3DcmVx11VXSgRaiGZWVHb+oTUhI4LbbbjuhA11TYGAgEyZM4NprryUsLIzMzEzeeust8vPzmztcIYSf27ZtW+ikSZPOiY6OvicgIOBPERER9/Xv3//qt99+u4uvYxMtTzrRTWxkakcSo2zUlqChgMQoG+dPGl1tZGv//v3IEuxCNJ3t27fz0ksvuVI4gAalTnXp0oXrr7+eqKgocnNz+e9//1utUy6EaH/OOeec3+zevTvx6aef/uSnn356+fXXX39v6NChe48cORLq69iaQlFRkdXXMbQm0oluYlaL4rFp/QFO6EibXz82rX+1etFLly7lrbfe4ttvv22ZIIVo4w4fPsycOXMoLy9n8+bNjT5Ox44due6664iIiCAnJ4eDBw82YZRCiNZk//79tl27dnV9+OGHF9166617R48enX/FFVccmj179k8PPfTQtqVLl0YrpR775JNPEtz3UUo99vrrr6cAvP766ylKqcdmzJjRIzk5+ZbAwMCHe/fu/bstW7aEvfDCCz3j4+Nvt9lsfxg1atTF2dnZgeZxevXqde3kyZPPmjp16tSQkJAHw8PD77vrrruGZmVlBY4fP/784ODgP3Tq1OnOF154oae5T0VFhTr11FPP69ix412BgYEPx8XF/f6mm24a5f49jRs37oL09PTLr7zyylMiIyOnd+3a9fe/+c1vTktISPi/mt9/cnLyrRdffPHEZvnhtlLSiW4GU9MSefXqoSREVU/tSIiy8erVQ0+oEx0aalzA/vzzz2zZsqXF4hSiLSotLWXOnDlUVVXRs2dPzjnnnJM6XlRUFFdeeSVXXXUVPXv2rH8HIUSbFBcXVxEUFFQxd+7cvgUFBSc1Yvviiy9OePLJJ+d/8MEHb+bm5kaed955l86cOXP0q6+++vE///nP/27cuLHHvffeO9J9nyVLlqR36NChZP78+W9MmzZt+SuvvHLupEmTLhs2bNiBhQsXvjZ48OBdjzzyyEVm57uqqkrFx8cXvPrqq3MWL178zxtvvPGHd9555/THHntsgPtxt2zZkrp3795O77///ruzZ8/+3wMPPLAmKyur0/vvv++qxTt37tyEjIyM+HvuuWftyXzfbY1MLGwmU9MSmdw/wasVCwcPHkxmZiZLly7l888/JzExkejo6JYPWohWzixPd+zYMTp06MDFF19sTgY5KQkJCfU3EkK0aTabzfGnP/3p06eeeuq8mJiY4V26dMkYNGjQvuuvv37jeeedl9mQYz3wwAPfXXvttQcAPvnkkzWzZ88+fcmSJf8YP358HsB///vfzStXrkwFfjb3SU5OPvLee+/9CDBu3Lglc+fOHR8ZGVkyY8aM1QCxsbE/DBw4cPjChQvjr7766oOhoaGOOXPmLDb3Hzdu3LEVK1Z0+eKLLwY8/vjjm8ztQUFBlV9//fXn4eHhdnNb//79d73xxhtDLr/88sMA//73v4f07NlzrxmfMMhIdDOyWhRjesRwfnoyY3rE1Lnk9+mnn05ycjJlZWXMnTtX8qOFaIQ1a9awdetWrFYrl1xyCTZb3RN9GyMzM5O3336b4uLiJj+2EMK/PfLII1sOHz789xdeeOG9kSNH7ly3bl3KhRdeeMt9992X3pDjnH766a5Od1xcXFFgYGClewc1JiamqKCgIMx9n9TUVNc+QUFBOjQ0tKR3796ubf379y8COHjwoGu/2267bUSXLl1uDgsLuz84OPiP33///bDs7Owo9+MmJydnunegAa644opVv/zyS9qxY8cCioqKrD///PPAiy66aE1Dvsf2QDrRfsL80A8KCuLAgQOsWLHC1yEJ0aoUFBTw9ddfAzBp0iSSkpp+VVCtNfPmzWPfvn189dVXTX58Idoau0OzdFcOn609xNJdOdgdrX+AKDo6uuqOO+7Y/f777/+4Z8+eN8eNG7f2zTffnGC1WjVQbRCstLTUYz8rJCTEteKTUgqr1VptBSilFFrraiNvAQEBJ7Rx32aW5nM4HArgkUceSZs5c+aZ06ZNW/Of//znP19//fW/TznllDVVVVXVbs/ZbLbKmvFNnz59e0BAgP3555/v++KLL/a22+2WBx54oPETTNooSefwI9HR0Zx++uksWLCAb7/9ln79+hEREeHrsIRoFWw2G+np6Rw6dIjRo0c3yzmUUpx99tnMnDmTDRs2MHDgQHr16tUs5xKitVu4MYPH522utgBZYpSNx6b1P2FuUGvWs2fPo6tWrerbs2fPYoA9e/ZEAEcAvv76a5/lgi1btqxL9+7dD/zrX/9yjcplZGR09GZfm83mmDhx4tqPP/54SEBAgH3MmDEbO3bsKIvQ1CCdaD8zfPhwdu7cSb9+/WRxByEaICgoiKlTp2K322nOxRKSkpIYNWoUy5YtY/78+fzf//0fgYGB9e8oRDuycGMGt81eTc1x5yP5Zdw2e7XHSfb+bufOnSFnn332ZRdffPGaMWPGZMbExJQvWrQoac6cOeOGDRu2tWPHjlXdunU7+Oqrr45PS0vL279/f9jzzz8/yVfxpqam5i5ZsmTwjBkzegwcOPDYP//5z0F79+5NiomJOebN/vfcc8/qM8444/cA77777pvNGmwrJZ1oP2OxWLjyyit9HYYQrYZ569SsAd2QiYR2h/Zq8m9NEydOZPPmzRw7doxff/2V8ePHNy54Idogu0Pz+LzNJ3SgATRGudfH521mcv8Er95v/iIuLq6iX79+B2fPnj36pZde6mi32y3R0dEFZ5555qo33nhjCcBrr7322a233nr+tGnTbomNjc1+6KGHFt15553X+CLe559/fuXmzZsTHnrooUsBPXbs2I1TpkxZsXLlSq9un02cODE3NTX1QFFRUchVV111qJnDbZWUTGADpVQkkJ+fn09kZKSvw6mmsrKSgICABi0SIUR7snz5crZs2cKUKVMaVEXjZG81r1+/nk8++YSgoCDuuOMOuXMkhNPSXTlc8cYy19cKB9rDFKz3bhrNmB4xJ3WugoICoqKiAKK01gUncyyl1MgpU6bcv3Dhwk31t277HA4HcXFxd5533nkrZs2atdTX8fjaDTfcMGDWrFmztNYLzG0ysdCPbd68mVdeeYX169f7OhQh/FJZWRmLFy9m7969HDhwwOv9zFvN7h1oOH6reeHGjHqPMXDgQJKSkqioqODXX39tcOxCtFVZhe7vK83UoO2MC9yLjco62gl/sm3bttDbbrttZGFhYfijjz4qVTlqIekcfiw3N5eCggJ+/PFHBg4c2Kx5nkK0Rr/88gulpaXExsYybNgwr/ZpqlvNSinOOusscnJyGDhwYKPiF6Itios4XloyyVJAgrWITrqY1ZVJtbYT/qVv3773h4aGltx3333zUlJS5GqnFtKJbkYlq1aRM/NNwk87lfCJkwiMj2vQ/iNHjmTp0qXk5uayfv160tPTmydQIVqh0tJSli9fDhg5yuZFpr2omKLvvqVkxQrK9+xBl5ZhjY4mqEd3wk85hQ3xvU8YgXangYz8Mpbvya33VnPnzp3p3Llzk31PQrQFI1M7khhlI/DAXsYe2Uh0SDFhjnImOcr5MnUsCmMF35GpXhWKED6gtX7c1zG0BtKJbkaF331H0fffU/T99/DXJ4k652xi77qLQC/r1wYFBTF27Fi++eYb12h0U6y+JkRbsGzZMsrLy4mLi6Nv377Y8/PJmTmT3P/+D11SckL74p9/Ju/d/xDWKZ6zksfzVcooHKr2uzsNvdVcVVVFZWUlISEhDf5ehGhLyteu4V8r3sC2eV217Ud6hmDe23lsWv9WNalQCE+kE92Moi+6CGtkFEXffUfpunXkf/Y5BV8vIu7+++hwxRVeTRYcMWIES5cuJS8vj/Xr1zNkyJAWiFwI/1ZWVubKQ07oM5Rv3v6UpDf+jiU3B4Cgbt2IOHMywX37YgkLw56TQ+m69RQuWgTZmdyZ/TFT9i3n2eFXcjg81uM5GnKreceOHXzxxRf06NGD88477+S/QSFaIUdpKZnPPsux994nGHAEBLAuoS+/dujBofBOHAyPI6EN1okW7Zd0optRcI8eBPfoQadbbqZ0w0Yyn3ma0pWryPzLE5SuWUvSk39FBQXVeQxzNHrRokX8/PPPpKenS6UO0e6tXLmS8vJyCgnlp3/O4fpN87GgORIZh+X/7uTU3110wvsk+uKLif/jH8j94EP2Pf8ifY4d4B+LZ/D0iKtYGd/P1a4xt5ptNhsFBQWsW7eOCRMm+F2VHyGaW2VWFgf/73bKNm4EoPjSS1gWE8Npk04nNSypwWUkhWgNZKZaCwkZmEa3//yHuIcehIAACubN48Dvf4+jrP5bxsOGDSM4OJicnBz27t3b/MEK4ecKIrrxU3k3Om7Zx42bvsSC5suUMdx62j1cu9XGV5uOeNzPYrPR6Xe/JfeVd9jUMYWwqjIeXfY24w8Zt50be6u5S5cudOvWDYfD4crTFqK9qNi/n72/uZyyjRuxRkfTddab7OjXj9z8fA4ePMCYHjGcn57MmB4xbaYDfcstt4zs0KHD3Var9dFzzjnnTF/HI3xDOtEtSClFzLXX0uXf/0bZbBT/uISD/3c7uvKEZeurCQ4O5uyzz+b6668nNTW1haIVwj/ZHZonvtzGKRt+5cK13+JA8erA83kl/WLKrcbKgY/P24zdUXsN/MmnDSL8X6/za8owArWdh1bMZuzhDSRE2Rq9ktqYMWMAWLVqFRUVFY375oRoZSqPHGH/dddTlZFBUEoKKR9+QEmvXuzYsQOA0aNH+zjCpvfpp5/Gz5w5c8qf/vSnL9esWfPCO++8831d7TMyMoKmTp06tUOHDncHBgY+nJqaesP777+f1NA2l1122QSl1GPuj7i4uN/Xde6ZM2d2GzRo0BWRkZHTlVKP/e1vf+vb+O/c0LFjx7trxqGUeuyMM844uyXjqM24ceMuSE9Pv7zm9tdffz1FKfXY/v37m6wsjHSifSB8/Di6znwDFRpK8S+/kPHnP1PfojeDBg2iS5cuLRShEP5Ja82vu3MYs+orLt2xGIB/pF/C5z1OOd6G49U16jI1vQtXz3ub8slnY0Xzp7XvsWhqTKNzNXv37k3Hjh0pKytjzRopqyraPntREftvvJHKQ4cI7NaVbv95l6CuXVm2zFhopW/fvnTs2PYqcHz44Ye9u3Xrdmj69Ok7Bg0aVNSpU6c6R8LOO++889auXdv9ueee++Sbb755dcSIEbuuvfba365ZsyaiIW0A4uPjj27YsOHv5uPnn3+eVde5CwoKAnv27Jn54IMPfunt99erV69r77vvvvTanl+6dOnr7jG8/PLL/wG47LLLNjdlHK2BdKJ9JHT4cJJf+DtYLOR/PJfcWXW+D6qprGfkWoi2avfu3Sz5cCaTSo2/1TMHnMtXKaM8tvWmukZAYACDX3yGsNNORVVUcPj3v6fyiOdUkPoopVyjbr/++isOh6NRxxGiNdAOB4cfeoiKnbsIiI+n26xZBMTGUlxc7FogrC2OQnfq1OnO9957b9KePXu6KKUeGzt27IV1tc/NzQ1YvXp1//vuu2/RjTfeuO+0007L/fDDDxfHxsbmPvHEEyO8bWOyWq2OtLS0IvPRq1evE0sRubn33nt3zp0797uHH35468l/94Y+ffqUuMfwxRdf9I6Jicm78cYb9zZlHL169bp28uTJZ02dOnVqSEjIg+Hh4ffdddddQ7OysgLHjx9/fnBw8B86dep05wsvvNCzod/D0qVLoz2Npvfq1evahhxHOtE+FDFhAvEP/xGArBdepKSe0SuHw8GCBQt44YUXKCwsbIkQhfArS3/4gbLKcvKjo/m66wg+7nlarW29ra6hAgLo/MILBPftiz0nh8P3P4C22xsV3+DBgwkJCSEvL0/mL4g2LWfmmxR98y0qMJDOL/+DwORkwEhnqqqqIikpia5du/o4yqa3ZMmSNzt27Jj3u9/9btGGDRv+PmjQoENKqcdqa19eXm5xOBwqNDS0yn17YGBg1YYNG7p628Z09OjRjpGRkdNjYmLuGj169EXLly+Pasrvr6GKioqsS5YsGTRlypQ1zbEg3JIlS9I7dOhQMn/+/DemTZu2/JVXXjl30qRJlw0bNuzAwoULXxs8ePCuRx555KLs7OzAhhx32LBh+e6j6XPnzn0tNDS0dPDgwfsachypzuFjHa68ktLVayj48ksOT7+P1E/mYo3y/J6wWCxkZGS4bhefeuqpLRytEL6Tm5PDrv37QSlCswr515DrwUOlmsZU17CEhdF5xkvsufAiSlasIPvf/yb29tsbHGNQUBDnnnsuUVFRJHlZD16I1qZ04yaO/uMfAMQ/8idCBg0CjIGe1atXA8ZiYW2xklRsbGxFXl5e9BlnnLE/LS2tqEuXLgWxsbE5tbVPTEysSElJOfjiiy+eNnbs2Oz+/fsXPfbYYwP37t3buVOnTrnetgEYPXr0wf79+386dOjQnD179oS/9NJLE6ZMmXLd5s2b/5WYmNjoiRhXXXXVKR999JErJ66ysjJgxowZnV9++WVXjvOSJUv+OXLkyPya+z733HN9y8rKbPfff//axp6/LsnJyUfee++9HwHGjRu3ZO7cueMjIyNLZsyYsRogNjb2h4EDBw5fuHBh/NVXX33Q3G/Dhg29g4OD/+h+LIfD4XpBBgUF6bS0tCKAY8eOBZx77rmX9+jR48D777+/uCHxSSfax5RSJDz+Z0rXr6fywAEyn3mWpL89WWv74cOHc+DAAVatWsX48eNlKXDRbiyd/V9QivisLCIefISKb7NQUG357pNZyCGoWzcS/vwYhx94kOx/vUr4hAmEDBjQ4Dj79+/f4H2EaC0c5eUcfuhBqKoi4qypdLjsMtdzSinOPfdc1q9f32bfBwsXLowHOPPMMzMBHn744a31pSi88847c6+//vrzhwwZcq/FYtGdO3fOGDly5MY9e/YkNqTNvffeu9PtsJkXXnjhod69e9/97LPPDnjxxRcbPRHjiSeeWHnzzTdvMr/+7W9/e9GECRO2XH/99VvMbYMGDfJ4+3vOnDlDBgwYsCM9Pb1Zbo+npqZmmv8PCgrSoaGhJb1793Zt69+/fxHAwYMHw9z369Wr157XXnutWv71V199lfzUU09dVPMcU6ZMOb+srCxo6dKl7wYEBNQ9Qa0G6UT7AWt4OEnPPMO+q64if+5coqadS5hzpn9N/fv3Z+HChRQUFLBz50569+7dwtEK0fJK9+9nY0YGhNgYMnAQoyaP4NXEDB6ft7naEt4nu5BD1HnnUbR4MQXzF5DxyCOkfvghKqDxfyYdDodc6Io2JfuVf1KxcxfWTp1IePTRas8ppejZsyc9ezY4RbXVWLZsWUKnTp1y4+LivJ6cdOqpp+bt3Lnz7aysrMAjR44EDxo0qGjEiBGXxMbG5jWkTU1du3Yti4uLy9m9e/dJzd7s3r17affu3UvNr4OCgqpiY2OLTzvttDpnZy9btixq69at3Z988skPTub8dQkICKg2uUQpVW2b+ffVfZQZwGazVdaMf9u2bScU8L/iiitO3bBhQ4+FCxe+0ZjRfPnr7idChw6hwxVXAJDx6GM4Sks9tgsICCA9PR0wFpwQoj1Y9eJLlIXYsFXZGXbD9QBMTUvkpwcn8d5No5lxeTrv3TSanx6cdNIrocX/8Y9YoqIo37yF3HfeadQxSktLmTdvHq+88gr2RuZXC+FvynfvIefttwFI/PNjBHTo4NuAfGDz5s0JXbt2zay/5Yni4uIqBw0aVLR3717bxo0be06aNGlbY9qYMjMzg7KzszvGx8cXNSaek/XCCy8MCQ8PL77nnnt2+OL8J+uJJ57oN2fOnNOef/75OaeeemqtFyt1kZFoPxJ77z0UfvcdlQcOkPPWW8T+3/95bDds2DCWLl3Kjh07yM/PJ6qWHGoh2oKiJT+xubgYoqMYPDCNgMDj80esFsWYHjFNer6ATp2If+ABMh5+mKP//BeR06YRGBfXoGMEBQWxfft2ioqK2Lp1KwMakRYihD/RWpP5t79BZSVhp51KxBlnVHt++fLlFBQUMGzYMDq04c717t27E8aNG+fq2D755JN9Z8yYcUZWVtYrte0zY8aMHlprNWLEiOzVq1d3fPrpp8+Mj4/Pfvrpp9c0pM0555xz5gUXXLAtLS0tf/v27RFPPfXUBKWUY/r06RvMNrfeeuvI77//vu+2bdveBaOj/csvv7hGqnft2hX9ySefJCQnJ5eaOc6ZmZlBR48edS2f/Mknn3wEsHHjxnBzW+/evYuDgoJcqQ5VVVVq0aJF6RMnTlxns9lOKEXUmDha0pdffhn3xBNPXHj++ef/dOqppx41v9fQ0FC7+6h8faQT7Ues4eHE3X8fh6ffR84bM4m++BIC40/88I6JiSElJYW9e/eybt06mWAo2ixdUUHmk0/Su7SEkC6dGXH66S1y3qiLLuTYhx9Sum4dR1+aUec8BU+sVitDhgxhyZIlrF27VjrRotUr+u47in/6CRUYSMIf/lDtOa01v/zyC/n5+cTGxrbZTnRVVZU6fPhw3JAhQ34wt+Xl5dmOHj1a55V8bm6u7ZVXXjk9Pz8/MjQ0tHTUqFFbZs2a9W1oaKijIW2ysrIip0+ffklJSUlIWFhYSe/evfcvWLBgZp8+fUrcjhN69OhRV2f1s88+S7rlllt+Z349a9asKbNmzWLs2LHrfv75508B7rjjjrFz5sypvdQR8Msvv8wYM2bMMfPrf/3rX92PHTsWddddd3nMxW5MHC3p+++/T6qsrAycO3fuqXPnznV1onr27Llvx44db3t7HFXfIh/tgVIqEsjPz88nMvKElJkWpbVm3xVXUrp2LVEXXkjSU3/z2G7r1q0cPnyY9PT0NlnMXgiA3HfeIfOpp7HGxNBj4QKsERH179REStasYd8VV4JSpHw0p8GTDHNycnjllVdQSnHvvfcSHh5e/05C+KGq8gq2Tj0ba8Yhyi67hkF//kO1ibu7du1i9uzZ2Gw27r33XgIDG1Rt7KQUFBSYd2OjtNYFJ3MspdTIKVOm3L9w4cJN9bcW7c0NN9wwYNasWbO01gvMbZIT7WeUUsT/4SEA8j/9lLLt2z2269u3L5MmTZIOtGizHMXFZL/2OgCxd93Zoh1ogNAhQ4g8+2zQmqN/f6HB+8fExNC5c2e01q7FJ4RobRZuzOBPtz6FNeMQucERXFHSl/HPfMfCjRmuNubrOy0trUU70EL4mnSi/VDI4MFEnHkmaE32P//l63CE8Inc2f/lqNZsPPUUKsaN80kMsffeAwEBFP/yCyXO+rcNMXjwYADpRItWaeHGDO5851fOXmsMvH3QexJlAcEcyS/jttmrWbgxg4qKCrZsMSqhDXLWixaivZBOtJ/q9PvbQSkKv/qKsm2eJ+c6HA62bt3K3Llzqaqq8thGiNbIXlBAzptvsqd7dzYnJ7N0xQqfxBHUuTPRF14AwNGXX27w/gMGDMBqtZKZmcmRRi4nLoQv2B2ax+dt5qy9y4gtzedoSBQLUoxlvM0k0MfnbWbzlq1UVlbSoUMHOnfu7LuAhfAB6UT7KVvv3kRMnQJA9iu1Tvpl/vz5bNiwge21pH0I0Rrlvv0OlUVFHExNAWDgwIE+iyXmllshMJCSpcsoaWBZyZCQEEaMGMFpp51GWFhY/TsI4SeW78klNyef32z/FoD3+kym0no8VUMDGfll/LR8FWC8R9viCoVC1EU60X4s9nbnaPSibyjbsuWE5y0Wi+v22bp161o6PCGahb2omNzZszmSmEB5YCDh4eGkpqb6LJ6gzslEX2QscnX0lX82eP8pU6YwYcIEIlo4p1uIk5FVWMaZ+1fQobyIjNCOfN11hIdWGhUcTkhIiKRyiHZJOtF+LLhnTyLPmgpAzqy3PLYxcy537txJaS0LtAjRmhz7aA6OggIO9DeqYaSlpfl81b9Ot9wMAQGULFtG6YaNPo1FiJYQFxrARTuNSm4f9zwNu8XqoZVi6LhJTJ8+nZiYpq3X3hrMnTs3wWq1PtKrV69rG7P/ZZddNkEp9Zj7Iy4u7vc12912220jOnbseHdgYOCfunXrduN7772XbD53++23D09KSrrNZrP9wWaz/SElJeWGF1544aSWjJw5c2a3QYMGXREZGTldKfXY3/72t74121x99dXju3btelNwcPAfwsPD709PT7/8m2++afIXwaBBg67o37//1Z6ee/PNN7sqpR77/PPP45v6vN6STrSf63idsTpbwfz5VGZknPB8bGws8fHxrvxoIVozXVlJ7jvvUhEYyKHYToB/TFYKTEoi8uyzAMh9y/MFbV0qKyvZsmWLrDIqWo2+21eSUJJHflAY33gYhVZAYpSNkakdsVo9dbDbvvvvv/+sc88995eDBw82uhMXHx9/dMOGDX83Hz///PMs9+cfffTRAW+88caU6667bvG8efNeS01Nzbz++uuv3rJlSxhAt27dCqZPn/7NggULXps/f/7rQ4YM2fPAAw9cMX/+/NjaztmrV69r77vvvvTani8oKAjs2bNn5oMPPvhlbW1Wr16dctlll6345JNPZs6ePfvdqqoqy6WXXnpNVlZWk5Znufzyy9ds3bq1+6pVq06oP/z2228P6dKly+HzzjuvUStINgXpRPu5kIFphI4cCXY7ue/+x2MbcyGHTZuktKVo3QoWLKAqI4OMvn2xa02nTp1ISEjwdVgAxFx3HQAFX31F5aFDDdr30KFDfPjhh3z77beyDLjwe1pr8ma9CcDn3cdRERBU7XkFhFDBvWNjsLTTNOiHH354YFhYWNmjjz66oqyszLZ06dLoxhzHarU60tLSisxHr169Styff+edd8ZMnDhx9d///ve1U6dOPfrNN998ERQUVPm3v/1tCMADDzywffr06TsmTpyYO2nSpJxPPvnku6CgoIpFixY1epbnvffeu3Pu3LnfPfzww7WOzG3evHn2888/v/bss88+esEFF2R+/PHHnx47dizq888/T6ptn169el07efLks6ZOnTo1JCTkwfDw8PvuuuuuoVlZWYHjx48/Pzg4+A+dOnW6030k/d57790eFhZW8vzzz6e7HyszMzNo+fLl/c877zyPi720FOlE+ym7Q7N0Vw6frT1E1lmXAHDsww+xFxae0LZ///4A7N69m5KSkhOeF6I10FqT86YxCBM8dgwhISEMGDDAbyYr2fr1I2zsmDovaGvTtWtXwsPDKSsrY/fu3c0UoRBNo2TZMso3b0GFhDDhwdtIiLJVez4hysZ9I2xsXvwZc+fO9VGUvpOVlRX46quvnv7cc88tGjZsWIHNZiv//vvvq13t33fffelKqcfqO9bRo0c7RkZGTo+Jiblr9OjRFy1fvjzKfK6oqMh68ODBpIkTJ7r+aAQEBOi0tLTd69evP6GTXFFRoR555JG0ioqKwClTphw82e+zIY4cOWIDSExMrDOvdMmSJekdOnQomT9//hvTpk1b/sorr5w7adKky4YNG3Zg4cKFrw0ePHjXI488clF2dnYggM1mc0yYMGHdokWL0h2O46uLP/vss/211pYHH3xwQ60nawGy7LcfWrgxg8fnbSYjvwwApWFmVAJJ+Uc4NucjYq6/rlr7mJgYEhISUEpRUFBAaGioL8IW4qSUrFhB+bZtqNBQTr3+ek6LiPC70o0dr7uO4l+WcmzOHDr9/navF4CxWCz069ePFStWsGnTJnr16tXMkQrReLmz/wtA9IUX0HdMX04f1Yfle3LJKiwjLsJI4Xhz5hsApKSk+DBS37jllltOSU9P3zllypRsgISEhKNr165NAFwjtx06dCiLjY3Nqes4o0ePPti/f/9Phw4dmrNnz57wl156acKUKVOu27x5878SExMrdu7cGepwOFSXLl2K3Pfr2LFj8cGDBzuZX8+bNy/ukksuubGqqiogKCio4plnnvlg6tSpR83nr7rqqlM++uijU8yvKysrA2bMmNH55ZdfPtvctmTJkn+OHDkyvzE/j6qqKvX73/9+ampq6oFzzjknq662ycnJR957770fAcaNG7dk7ty54yMjI0tmzJixGiA2NvaHgQMHDl+4cGH81VdffRDgzjvvXPPFF1+MnTlzZsrNN9+8F+Czzz4bMmzYsM1dunQpb0zMTUU60X5m4cYMbpu9GvfF2LWyMCd1PHet/YhD786m47W/Q9WYaHXdddcRFFT9lpsQrUne/94DIGraNKzGMr5+95oOGz+eoJ49qNi5i/xPP6PjNR7nu3g0YMAAVqxYwdatW6mqqiIgQP78Cv9TefgwRd9/D0CHq64CwGpRjOlxfM5YXl4eGRkZKKXo2/eEOWdt2k8//dTh66+/Hv7rr7+6VkLr1q1b1vbt26uNRD/88MNb60qHACNtwu3LzAsvvPBQ796973722WcHvPjii16nKUycODHn66+//ndWVlbw7Nmz+z/66KMXDBgw4G2zI/3EE0+svPnmm135nr/97W8vmjBhwpbrr7/eVfZr0KBBJ97m9tKZZ5559qFDh+IWLVo0q762qamprvzloKAgHRoaWtK7d2/Xtv79+xcBHDx40FUTdPLkydmpqakH3n777SE333zz3h9++KHjrl27uj7wwAPfNzbmpiJ/xf2IWdxee3ju+85DuHHjF4QdOUzhz78Qecr4as/7W2dDiIaozMyi8JtvAHCcey5aa79J43CnlKLD5VeQ+de/kvf++3S4+iqv4zRTOoqKiti9eze9e/du5miFaLi89z8Ah4PQ0aMJ7tHDYxtz/k1KSkq7q39+++23TykpKQkZPHjwveY2rbWKjo5u1Ciuu65du5bFxcXl7N69uyNAz549SywWiz5w4EC4e7vc3Nyw6Oho1+h0eHi4/bTTTssFuPTSSzP69u2b/Mwzz4yaOnXqFwDdu3cv7d69uyvNIigoqCo2NrbY3OdkTJ48+ezVq1f3/vLLL98aNmxYQX3tAwICHO5fK6WqbTMrMTkcjmp/WC+44II1r7zyylkZGRlfvvTSS+kxMTF5N954496Tjf9k+WVOtFLqdqXUXqVUmVLqV6XUSC/3u1wppZVSnzZziM1i+Z5cVwpHTeUBwXzTdTgAe2a9W+sxysvLycmp8w6SEH7n2Jw5UFWFdeQI3vpqIS+99BJFRUX17+gDUeefhwoJoWLXLkoasJKiUso1f0EmAQt/5Kio4NhHHwHQ4coram1nLvNtvp7bi3/84x89du7c2XXu3Lmvff755/82H/fcc89neXl5Ufv377fVf5TaZWZmBmVnZ3eMj48vAqNz3Llz58Pff/+9q1B+VVWV2rhxY/dBgwbVmvPscDhURUVFsw6SOhwOJk+efPby5cv7fvLJJ++MGzfuWHOe78EHH9yklNJ/+9vfBn7//feDp0yZssbXpU/BD0eilVK/AV4AbgV+Be4GvlJK9dFa15pro5RKAZ4HlrRAmM0iq9BzB9o0P2U05+/+icBlP1OZkUFgYmK157ds2cLHH39Mt27duOaaa5ozVCGajK6s5NgHHwCQd8YZ2PfsITAw0G9HuKwREUSdey7H5szh2PsfEDbSq2t8wEjpWL58OceOHfPb0XbR9tgd+oScZquHshqFX32FPTeXgIQEIiZN8nisvLw8Dh8+jFKKfv36NXfofqOkpMTy5JNPTr344ot/vvDCC4+4PxcbG1v+wgsvsHDhwgQzZ/fJJ5/sO2PGjDOysrJqXXL4nHPOOfOCCy7YlpaWlr99+/aIp556aoJSyjF9+nTXZLnf/e53S5966qkL77///sNnnHHGoaeffnp0RUVF4EMPPbQG4Pzzzz992rRpOwcMGJCfnZ0dNHPmzIE7d+5MueOOO1yznzMzM4OOHj3qul39ySeffASwceNG1wh37969i4OCgrTZ/pdffuloPrdr167oTz75JCE5ObnUzJuePHnyOb/88svAf/zjH+/FxsZWmMdKSkoq69ixY5NPZomPj68YNWrUpjfffPOM8vLy4Pvvv39tU5+jMfyuEw3cC7yhtX4LQCl1K3AOcD3wtKcdlFJW4L/AY8ApQHSLRNrE4iLqvojdH5nA+pjuDMrZzbE5c4i9885qz8fHx2O329m7dy+lpaWEhIQ0Z7hCNInCxYupOnoUa6dO7A00Soz279/frzuYHa64nGNz5lCwaBHx2dkEdOpU/05Aly5duPPOO+nQoUMzRyiEoeZEdTDqOz82rT9T06oPxOQ5L2ajL7sUVUvO/vbt2wHo1q2b317oNoc77rhjZHFxccjzzz+/vOZzw4cPzw8MDKxcvny5qxOdl5dnO3r0aJ2Lj2RlZUVOnz79kpKSkpCwsLCS3r1771+wYMHMPn36uMps/eUvf9mUlZUVNnPmzIkvvvhieHJy8pGZM2fOHjBgQLHzPGEPPPDAhQUFBeE2m628c+fOmTNmzPjPHXfc4arocccdd4ydM2fOaXXF8ssvv8wYM2bMMYDPPvss6ZZbbvmd+dysWbOmzJo1i7Fjx677+eefPwX47rvvhgPcfPPN17ofZ/r06Z89//zza+s6V2PddNNNq5csWTJkwIABO9LT0xudw92UlNaeMnB9QykVBJQAl2itP3Xb/g4QrbU+v5b9HgcGaa0vVEq97Wx7QR3nCQaC3TZFAAfz8/OJjDyhnneLsTs045/5jiP5ZR7zohUwLXcTt/34FgFxcfT8/jtUjSL3r776KllZWVx44YV+sUiFEPU5cOttFC1eTOSNN/B2eTlVVVXccsstflMfujZ7fvMbytatJ3b6vXS66SZfhyPECTxNVAfjswTg1auHujrSFfv2sWvKVLBY6Pn9dwTGe14/RGvN/v37UUrRtWvX5gveSwUFBUQZE5GjtNb15uTWRSk1csqUKfcvXLhQ8q3ECW644YYBs2bNmqW1XmBu831CSXWdACtQc/WZTMDjJ6pSajxwA9CQT7E/APlujxatp1gbq0Xx2DQjx6zmGJz59dm3/QZLVBRVWVkUL112wjH69OkDIKsXilah6uhRipYYGVi5I0ZQVVVFdHQ08bV8gPuT6EuM+u35n35GYwYjKioqGrWfEN6oa6K6ue3xeZuxO4yvjn3yCQBh48fV2oEGI7e/W7duftGBFsLX/K0T3SBKqQjgP8BNWuvsBuz6FBDl9mj0yj5NbWpaIq9ePdRjcftXrx7K1CHdiDrnHADynX/03Jnlhnbu3EllZWXzByzEScj//HOw2wlJT2f3sWOAcSHoz6kcpsipU1HBwVTs2kXZxo0N2nfu3Lk899xzHD58uJmiE+1dXRPVwehIZ+SXsXxPLtpuJ//TzwCIvuiiForQLzmqqqqU+6IeQpicfapqLw5/y4nOBuxAzcvgeODIic3pAaQA89w+dC0ASqkqoI/WelfNnbTW5YCrQLe/fWBPTUtkcv+EWieCRF14IXn/+x+F33yDvaAAq1sKSmJiIpGRkRQUFLBnzx4poyX8ltaaY3ONC8GICy9w5Vqad1P8nTUigojJkyn44gvyP/mEkIEDvd7X4XBQVVXF1q1bSU5ObsYoRXtV30R193bFvyyl6sgRrFFRhNcyoRDgiy++AGDMmDHExNSZ7ttalZSVlVVmZGQEJycn+3QRD+FfKioqVG5urgKK3bf71Ui01roCWAWcbm5TSlmcXy/1sMtWYCCQ7vb4HPje+f8DzRhuszKL25+fnsyYHjHVZlLb0gYQ3KsnurycggULq+2nlJKUDtEqlK1fT8WuXSibjaizz+bSSy9l7Nixreo2cdSFFwCQ/+V8HOXef+bKe1Q0t/omqru3y//EWLo78txzsdSy5kBlZSXr1q1j1apVbfku554jR45k/fjjj97NFBbtxtKlSzscPHgwH6g2MOtXnWinF4CblFK/U0r1A14FwgCzWse7SqmnALTWZVrrje4P4BhQ6Py6wkffQ7NSShF1wYWA55SO9PR0pkyZwqmnntrSoQnhtWMfGx/cEWdOJiAigpSUFCZPnoy1xmRZfxY2ejQBCQk48vNdq7x5o1evXlgsFrKzs6Wuu2gWI1M7khhlO2F+jUlhVOkY1tFK4TffAhB10YW1Hm/Pnj1UVVURGRnZKuYsNIbWuvTgwYMrFyxY0CkjI0NWMBMAFBUVWT/++OPkAwcObKNGVoTfdaK11h8A9wF/AdZijChP1Vqbkw27Aoked25HIqedC1YrpWvXUr5nT7XnkpKSGD16NNHR0b4JToh6OMrLKVhgTHBuzTmYymol6nyjaFD+J596vZ/NZiMlJQWQ0WjRPLyZqP7YtP4Uf7UQXVFBcJ8+2OpYPGXbtm1A65mz0Fjl5eVfLliwYOVDDz3U74MPPkjKysoK9HVMwjcKCgqsn3/+efyDDz444NNPP92Rm5v7nq4xG9zfcqIB0Fq/AngsUK61nlDPvtc2Q0h+JzAujvDx4yn64QfyP/uMuLvv9nVIQnit6McfcRQWEpCQQEmPnnzw/lyCYrrQo3v3WheC8FdR559PzmuvUfTTT1Q1oGZ0nz592L17N9u3b2fcuHHNHKVoj8yJ6jXrRCe41Yne9/SXAESdd16tnWOtdaubs9BYWutcpdSrH3744Xm//PLLsMTExB6hoaEBgYGBUkqnHbHb7aqkpMSRmZmZe+jQoUWFhYXztNYnVHLzy0608E7kedMo+uEHCuYvIPauu6r9ASwvL2fTpk1kZWUxdepUH0YpxIkKvpwPQM6IU3jktfn0s+/hsH0vf/o2q9aFIPxVcPdUbIMGUbZ+PQVffUXHq67yar/evXuzYMECDhw4IIsjiWZT10T1yiNHKFm1CoDIs8+q9RiHDh2iqKiIoKAg1x2UtkxrnQu8rZT6cOfOnT0wUkr97s69aFYaKAX2aK3za2sknehWLGLiRFRICJX791O2cRMhA9Ncz9ntdr744gu01owZM8YsRi+Ez9mLil35w48UJtMjJBuscMAeDcCR/DJum7262kIQ/sh9KeUuI08jZP16CuYv8LoTHR0dTXp6OrGxsW369rjwPXOiek0F8xeA1oQMH0ZgYu3vNTOVo1evXq1qzsLJ0lqXABvqbSjaLbmyasUsoaFETJwA4MovNYWGhtK5s1H+eufOnS0cmRC1K/r+O3R5OUciY9kXFU+8xVi9db8jGvC8EIS/Wbgxg/HPfMcVbyzjrvfXctOBaBwoSletojIjw+vjnH/++YwdOxabzbtKCkI0pYIvnakczrUHamOz2ejYsaOUTBWiBulEt3IRZxm34AoWLEDXKBDfs2dPAHbs2NHicQlRm4IvjA/ubxPTSQ4oxKIgz2GjSAe72rgvBOFvzKWU3XNMc0Ki2ByTAsDytz70UWRCeK9i717KNm0Cq5WIKVPqbDtu3DjuuOMOBjagFroQ7YF0olu58FNPxRIWRlVGBqVr11Z7rlevXgDs3r2bqqoqH0QnRHVVeXkU/fwzAD90TifZYqSaHbJ7TjfydsGIllLXUsqLk9MBOPblggaNoBcVFbF27Vqysxuy6KoQJyffOQodNmYMAR07erWPpB0JUZ10ols5S3AwEWecARyfrGVKSEggPDycyspK9u3b54vwhKim8OtFUFWFPbUnByLiSLYWAHDQ4bkT7e2CES2lrqWUf0oehB1F95x9rPzF+zTK+fPn89lnn7GxgUuHC9FYWmvX50VkPakcR48exW63t0RYQrQ60oluAyLPORuAgq++Qrv9sVNKuUajJaVD+IOChUbufvyF55ESacGhFZXaQpYjvFo7cyGIkanejZC1lLpGxvODI1gXa7zfKhZ95fUx5T0qWlr5jh1U7N6NCgoi4ozTa21nt9t58803efbZZ2VRICE8kE50GxA2ZgzWqCjs2dmUrFgJGLedl+7KIS+gIyhFcUmJj6MU7V1VXh4ly1cAEDV1Cg+dN4SPygfySXkadrc/Re4LQfhbvej6RsZ/SB4MQIflP3h9THPuwuHDhykqKmp8cEJ4qXDRIgDCxo3DGhFRa7tDhw5RXl6O1WqlQ4cOLRWeEK2GdKLbABUYSPjpxmhC4TffVKsc8Jcf8/hvyWCe3xbFwo3eVw0QoqkVLf4B7HaC+/QhqGtX50IQw4iMjKzWLiHK5rfl7epbSnlp0kDsyoJ1zy4qDhzw6pgREREkOsuL7dq1q4kiFaJ2hYu+ASBi8uQ625l3R3r06IHFIt0FIWqSd0UbYeZFH134Nbf9Z5Urb9OOhQoCXLV3pSMtfMUc/YqYPBmHw4HD4WBqWiI/PTiJ924azYzL03nvptH89OAkv+xAQ/1LKRcFhVIxwBiNNjsq3pBKOqKlVOzfT/nWrWC1Ej5xQp1tzYs68/UphKhOOtFtRNi4saiQEAKys+h57ISVKdGAFYdf194VbZejuJjin34CjE709u3bee655/j6669dC0Gcn57MmB4xfpfCUZO5lHJCVPXUDnMEPeUCY6JW4Tfed6LNvOhdu3bhqFGqUoimZF7chY4cQUAdKRpFRUVkOGue9+jRo0ViE6K1kRUL2whLcDDlQ0cR9PNixmZsZEeHLq7ngqnkjKCdRFnKeD9/MMv35HpcvUqI5lK0ZAm6ooLArl0J7t2LnV9+SVlZWastvVjnUsoxk8j8618pXbOGquxsAjp1qvd4ycnJBAcHU1ZWxtGjR4mPj2+B70K0R+53hOpijkKbVZ6EECeSkeg2JGfIGADGZlQvr1VOABGWcoKVnThLkd/V3hVtX+HX5ge3kXbUFm4T1zaCHpiYiC0tDbSm8NvvvDqWxWLh8ssvZ/r06dKBFs2mMjPLtZ5AxOm1V+WA4yvdtub3qBDNTTrRbUjIqadRqax0Lcyic2GW2zOKw3Zj8laSpcDvau+Kts1RUUHRD0a1isjJk8nJyeHYsWNYrVZSUlJ8G1wzMecoNCSlIyUlRUb8RLMq+u5bAEIGDyawnou1cePGMXHiRAYMGNASoQnRKkknug0ZmdaVrYm9gRNHow87jE50t6Aiv6u9K9q2kqVLcRQXExAXh23QINcIV7du3QgKCvJxdM3DHHEvXrYMe2Ghj6MRwuBK5Tiz7lQOMNI4Tj31VBISEpo7LCFaLelEtyFWiyLp3KkAjD1cffWzDOdIdLQuorystMVjE+1XgfnBfcYZKIvFlcrRlicrBffoQVBqKlRWUvTDj17vt3r1at59910pdSeanP3YMYp/XQ4cv1MihDg50oluY0ZfcyFaKfocO0Cn0mOu7ZFRkYREGjOx9+zZ46PoRHujHQ6Kvl8MGKOzVVVVriXo23InGhqX0nHo0CH27Nkjpe5Ekyv68UejTnvv3gR161Zn259//pmNGzdSXl7eQtEJ0TpJJ7qNCYiNJTQ9HYDXuhdXq707qJ+R6rF7924fRijak7ING7Dn5GAJDyd0+HCqqqoYPXo0vXr1Ii4uztfhNStXSsePP+KoqPBqn+7duwPyHhVNr2jxYgDCJ06ss11lZSXff/89H3/8McXFxS0QmRCtl5S4a4PCJ02kdM0aYjetZNhdN7u29+nTh4KCAlJTU30YnWhPCp0f3GHjx6MCA7EFBjJp0iTfBtVCbGlpWGM7YT+aTcmKFYSPG1fvPuZ78+jRoxQWFhJRx5LMQnhLV1ZStMSo0x4+4bQ62+7fvx+73U5UVJQs9S1EPWQkug0KP834I1ny63Icpcfzn1NTU7nssstIS0vzVWiinSlabFTlqO+Duy1SFovrvWhWJ6lPaGgoSUlJgCwBLppOyeo1OAoLsXboQMigQXW2Ne+CpKamopR/L3wkhK9JJ7oNCu7Vi8CkJHR5OcXLlvk6HNFOVR45QvmWLaAU4aeeSkVFBdu2baOsrP3UKXd1ohf/gNberRQqKR2iqblSOU49FWW11tnWnDNjvg6FELWTTnQbpJRyjfyZI4EmrTU5OTkycUk0O/O1FzJ4MAEdO7J3717ef/99Zs6c6ePIWk7YmLEQGEjl/v1U7Nnr1T7mhMvdu3d73fEWoi7H86En1NmupKTEtdS3pP0JUT/pRLdR7reR3T+Ijxw5wiuvvMLHH3+Mw+HwVXiiHTBTGMInTACOj6x2q6cyQFtiDQ8jbMQIwPuUjs6dOxMWFkZSUlK7GrUXzaNi3z4q9uyBgADC6snL37t3LwBxcXGy8I8QXpBOdBsVOmoUymaj6sgRyrdvd22Pj4/HZrNRXl7O4cOHfRihaMscZWUUL10KHB/9aq+3iV13hbzsRAcEBHDvvfdy5ZVXEhIS0pyhiXbAfN2FDh+OtZ6JqpmZmYCMQgvhLelEt1EWm42w0aOB6ikdFovFtdSyOeogRFMr+fVXdFkZAYmJBPfuTVFREVlZxlL07e0D2jXRd+VK7EVFXu1jscifZtE0XKkcXkzunThxIvfccw9jx45t5qiEaBvkL3UbdjwvenG17WYnWhZdEc2l0O2DWynleq0lJCQQGhrqw8haXlC3bsbqhVVVFP/0c4P2LSgokLQr0Wj2oiKKV6wEIMKZVlWfyMhIIiMjmzEqIdoO6US3YeGnngpA6bp1VOXlubabI4EHDhzAbrf7JDbRdmmtXXc/zA9usxPd3kahTQ0tdQcwc+ZMXnzxRddELyEaqvjnX6Cy0riQcw6eCCGajnSi27DApCSCe/cGh4Pin35ybY+NjSU0NJTKykoOHTrkwwhFW1SxcydVGRmo4GBCR41Ca+2aVNje8qFNrrtCP/6I9nJk2ZzYJXeMRGMV/7QEgLDTTq237bx58/jvf//L/v37mzssIdoM6US3ccdHwH50bVNKuUYE5QNaNLUiZ8pC6IgRWGw2AK655hrOOeccunbt6svQfCZ06FAs4eHYc3Io27TZq33MtKt9+/Y1Y2SirdJau96L4aecUm/bbdu2sXPnTimrKEQDSCe6jQs7ZTwAxb/8Um0EbNSoUVxxxRWMGjXKV6GJNsq86xE23iinpZQiJiaG4cOHExQU5MvQfEYFBRE62nivFf/sXV60eyda0q5EQ1Xs2mXcEQoKInT48DrbZmdnU1xcTEBAAJ07d26hCIVo/aQT3caFpqdjCQ3FnptL2ZYtru1dunShd+/e2JwjhUI0BUdZGSUrjYlM4ePH+zga/2L+PMyLDLtDs3RXDp+tPcTSXTnYHdVHAOPj4wkJCaGyslLKUYoGK3K+zkKHD8dST6lEs1JTly5dsNazoqEQ4rgAXwcgmpcKCiJ01CiKvv+e4p9/IWTAAF+HJNqwkhUr0eXlBCQkENSjB1pr5s2bR0JCAunp6e12JBpwLXRRsnYtX63YxZ+/2UtG/vHFVBKjbDw2rT9T0xIBYwQ/JSWFLVu2sHfvXrp06eKTuEXrZFaCCfPiYtZMGUqRyYdCNIiMRLcD5m1198mFYBTW//bbb1m9erUvwhJthPuI6o4vvwGM15xSiry8PNasWcPXX3+NUsrHkfpWUJcuBHbrClVVvPXKx9U60ABH8su4bfZqFm48Xo1DarqLxnCUlVGyYgVw/O9/bbTWrteXdKKFaBjpRLcD4eYI2Jo1OIqLXdsPHTrETz/9xNq1a30UmWjtFm7MYPwz33HFG8u46/21ZH67GICdXY07HuaHc3JyMoGBgT6K0n+EjjXei0Oytp3wnJnM8fi8za7Ujh49ejB06FCG15PTKoS7kpWrjDtC8fEE9+pVZ1v3fOikpKQWilCItkE60e1AYLduBHbuDJWVFC9f7tpuVug4dOgQFRUVvgpPtFILN2Zw2+zVrhHVTiXH6FaYiR3F7VsDWLgxw3WbuFu3br4M1W8c6jkYgGFZ2z0+r4GM/DKW78kFICYmhmnTptGvX7+WClG0Ae6Te+u7A1RVVUX37t3p3r07AQGS4SlEQ0gnuh1QSrmldByvDBAdHU1UVBQOh4MDBw74KjzRCtkdmsfnbcZ9KtxQ5+jq9g5dKQoK5fHPN7FHbhNXcyS1H1XKQnJxNgnFObW2yyosq/U5IepT/LPRifZmcm9iYiLXXHMNl19+eXOHJUSbI53odsKc1OReXkvqRYvGWr4n94Sc3mHOTvSquN5ooKgwn8KCAiwWi0yKc+oUH8OWjinA8YsOT+IijlfNsdvtHDhwgHXr1jV3eKINqDxyhPIdO8FiIWzMGK/3a+9zFoRoDOlEtxNho0eD1UrF3r1UHDy+SqEs6CAao+ZIqUU7GHJ0BwCr4vsAkGApAiQf2t3I1I7s6Nof8JzSoTCqdIxM7ejalpeXx6xZs5g3bx5VVVUtFapopcyBEtvANKzR0XW2LSsro9htnowQomGkE91OWCMiCElPB6qPRpu5qocPH5a8aOE195FSgN55B4ioLKUwMITt0caoc5gqRykl+dBurBbFmN+cA8DgozuxOo4vomKOAz42rT9Wy/FRwZiYGMLDw10j0kLUpWiJM5VjXP2pHBs3buT555/n008/beaohGibpBPdjoSNGwtUL3UXFRVFZGQkwcHB5Obm+io00cqMTO1IYpTN1fEzUxPWxvbCYbGigMywHtx3/wOMacAt5fZg4rRTsEdEElZVRt+8/a7tCVE2Xr16qKtOtMk97UpK3Ym6aLud4qVLgYbVh46uZ8RaCOGZTMVtR8LHjyf7Hy9TvGwZuqoKFRCAUoobbriBiIgIyYkTXrNaFI9N689ts1ejwJXKsTqud7UR1dAQWRGzJmW10uGU8RTMn89fk4vZf0E6cRFGCof7CLS7rl27smHDBvbv3+/xeSEAyjZvwZGfjyU8nJBBA+tsK/WhhTh5MhLdjtgGDMAaFYWjsJDSDRtc2yMjI6UDLRpsaloir149lG6hir65xojW2theJETZ+NdVQ04YURXHmRN9o7es5vz0ZMb0iKm1Aw3H064OHjyI3W6vtZ1o34qXGaPQoSNHouopV5ebm0tRURFWq5XOnTu3RHhCtDnSiW5HlNVK6KhRAJT8+usJz2ut0VqfsF2I2kxNS+TzU8MI0A4qYxN48e5z+OnBSVTuWcnMmTPZsWOHr0P0S2FjjRSXsg0bsRcW1tu+U6dOhIaGUlVVxeHDh5s7PNFKlSxdBjgnktfDHIXu3Lmz1IcWopGkE93OhI42OtHFzj+2pgULFvDSSy9x8OBBX4QlWrFS5wVZp9PGuUZU9+zZw6FDh+QORy0CExMJ6tYNHA5KVqyst71Siq5duwJSSUd45qiooGT1agDCxtTfiZaFkIQ4edKJbmfCRhsjYKVr1uAoO16mrLCwkIKCAvmAFg1WvMwc/TJeW8eOHePYsWMopaQ+dB1CnaOFJb8uq6elYfz48Vx//fWM9mKUUbQ/pWvWosvKsMZ2IqhnzzrbSj60EE1DOtHtTFBqCgHx8eiKCkrXrHFtl1Eu0RhVeXmUb9kCQJjzLof5GkpKSiI4ONhnsfk7c7Sw5l2h2iQnJ9OlSxe59S48Mi/GwkaNrvcOkNaa008/naFDh0o+tBAnQTrR7YxSytXZcf/wNm/pHThwAIfD4ZPYROtj5tYH9+pFQKdOgNwm9lboyJEAlG/fTlVO7UuAC+GNYlc+9Kh621osFgYPHsy0adNkISQhToJ0otuhUOdt92K328jx8fEEBwdTXl5OZmamr0ITrYz5wR3qlmJgLghi3t0QngV07Ehw376A54m+nuzdu5cvvviCjRs3NmdoopWxFxW7Ki6Zf9+FEM1POtHtkDlS4V4ZwGKxSEqHaLASMx/aTE0oLiY7OxtA8qG9EDbK80Tf2uzfv59Vq1axxZlCIwRAycoVUFVFYJcuBHVOrrf96tWrOXTokNx1FOIkSSe6HaqtMoDZiZYFHYQ3KjMyqNi3DywWQkeMAKCiooL+/fuTmppKaGiojyP0f6HmxYeXI9Fmisz+/fulHKVwaUhpu+LiYubNm8fMmTMpLy9v7tCEaNOkE91OmbffzeL8YHxAJyQkEBcX56uwRCtijp7aBqZhjYgAoEOHDlx66aX89re/9WVorUbo8OFgtVK5fz+Vhw7V2z45ORmr1UpRURG5ubktEKFoDcyLMG9K25mDJHFxcYSEhDRrXEK0dX7ZiVZK3a6U2quUKlNK/aqUGllH25uUUkuUUnnOxzd1tRcG849tybLjI2BdunThlltuYcKECT6KSrQm5gVYmORgNpo1PJyQgcbyzMXL6h+NDggIIDnZuF0vd4wEQFVuLuVbtwLV5ybUxnzdSLqVECfP7zrRSqnfAC8AjwNDgXXAV0qp2oZHJwDvAROBMcAB4GulVP2JYe2YVAYQJ0NrffwWsvOCrKqqipycHEkzaCDXAkjLvMuLlrQr4c5VIadPHwI6dqy3vfm6keo5Qpw8v+tEA/cCb2it39JabwZuBUqA6z011lpfpbX+l9Z6rdZ6K3Ajxvd1em0nUEoFK6UizQcQ0fTfhn+rqzJAZWUlR48e9UVYopWo2L2bqqNHUUFBhAwZAhhVOV555RXeeOMNH0fXupgj+SXLlnl1AWJ2fmQCsAD30nb1j0JXVFSQkZEBSPUcIZqCX3WilVJBwDDgG3Ob1trh/Nrbe8ahQCBQV8LgH4B8t0e7XOvaU2WAQ4cO8fTTTzN79mwZURS1Ml8zIUOHYnEuqGKOcMXExPgsrtYoZEg6KjiYqqNHqdi9u972Xbp0cS2mIRPDhHkHI9SLfOiDBw+itSYqKoqoqKjmDk2INs+vOtFAJ8AK1CxUnAkkeHmMZ4DDuHXEPXgKiHJ7tMslmzxVBoiNjQWgoKCAY8eO+SIs0Qq4VkdzG/2SXMvGsQQHEzLUGM33JqUjODiY6dOnc+edd8qKkO1c5eHDVO7fD1YrocNH1NvefI/KKLQQTcPfOtEnRSn1EHA5cKHWuqy2dlrrcq11gfkAClssSD/iqTJAUFAQiYmJwPFFM4Rwp91KI4aOMnLrHQ4HBw8aN3Qk17LhwkaZE329y4sOCwtrznBEK1GyYgUAtrQBWMPrf02MGzeOa6+9ltFepH4IIernb53obMAOxNfYHg8cqWtHpdR9wEPAmVrr9c0TXttiDQ8nJC0NgOLlK1zbzZFEmbgkPCnfsRP7sWOokBDX6yczM5OKigqCg4NddzOE98wFkEqWr0A3YAEMSblq34qXLwcgbET9o9AAgYGBdOvWjaSkpOYMS4h2w6860VrrCmAVbpMClVLmJMGlte2nlHoAeASYqrVeWVs7caLQkcYf3xLnH2M4fqtPRqKFJ+boV+iQIajAQOD4JLcuXbpgsfjVn5VWwTZgACo0FHt+PuU7dtTb3m6389///pdnn32W0tLSFohQ+CPXHaGRUtVVCF/wx0+7F4CblFK/U0r1A14FwoC3AJRS7yqlnjIbK6UeBJ7AqN6xVymV4HyE+yD2Vsf842t2jOD4SHRWVhZlZbVmxYh2yrzgMi/A4PgFl+RaNo4KDCTUWeWkxO2uUG2sVit5eXmUlZW50mhE+1J55IiRD22xEDJ0aL3tN2zYwIIFC+QOoxBNyO860VrrD4D7gL8Aa4F0jBFmc7JhVyDRbZfbgCDgIyDD7XFfy0TcuoUMGWrkRR88SKWz9FF4eDgdOnQAkA9oUY3WmpKVJ45+DRs2jLFjx9KrVy9fhdbqmUunu1/Q1kXSrto3Vz70gAFYw+sfM9q8eTPLly+X14sQTSjA1wF4orV+BXillucm1Pg6pQVCarOs4WHY+venbMMGSlasIOq88wAYPXo0drtd8ltFNRW7dmHPzUXZbK58aIDu3bvTvXt3H0bW+rlSq1asQGvtKmNXmy5durB27VpJu2qnzDsWoV7kQ2utZZEVIZqB341Ei5bnaQRs5MiRjBkzRmqJimrMiUwhQ9JRQUE+jqZtCUlLQ9ls2PPyqNi5s9725kj0oUOHsNvtzR2e8DOe0qpqk5ubS0lJCVar1VV9SQhx8rwaiVZKrW7gcTVwntb6UMNDEi0tdMRwcmfN8ioXU7RvrkmFbqNfW7duJTAwkC5duhAkHetGU0FBhKSnU7JsGcUrVhBcT2pMp06dsNlslJWVceTIEZKTk1soUuELdodm+Z5csgrLiK8oImrfPrBYCB02rN59zYm/ycnJBAT45Q1oIVolb99N6cDfgSIv2iqMUnOyCkArETpsGFgsVOzbR2VmFoHxcQDk5eWxb98+unXr5sqRFu2X1tp1oeVeUuubb74hJyeHK664gt69e/sqvDYhdOQISpYto2TFCjpeeWWdbZVSdOnShR07dnDgwAHpRLdhCzdm8Pi8zWTkGxO9Tzu4hoeA8pSeWCMi6t1fJv4K0Twackn6nNY6y5uGSqnpjYxH+IA1MhJb376Ubd5s5EWfew4ACxYsYMeOHUyZMkWK8wsq9uzBnpODCg7GNmgQAMXFxeTk5ACyUmFTCBsxgmyM0mXe5EV3796dqqoqIrzoSInWaeHGDG6bvRr3iuADs3cB8KVK4MjGDKam1Z2iISsVCtE8vM2JTgWONuC4/YF9DQ9H+IqnvGizUyQTlwQcn8gUMngwFudy0+aHc1xcHCEhIT6Lra2wDRqECgrCnp1NxZ699bYfPXo0v/3tbxkwYEDzBydanN2heXzeZmouqTPI2Yne0KkHj8/bjN1R+6I7FRUVVFVVAXKhK0RT86oTrbXeB3j9V1prfUBrLTNdWhH3ygAm9xJasjKaOD6R6XhpO/MCSz6cm4YlOJiQwYOB6gsgifZp+Z5cVwqHqUNZAV2KjuJAsTEmlYz8Mpbvya31GEFBQdxzzz1Mnz4dm83W3CEL0a40pDrHeqXUr0qpm5RScu+wjQkdNgyUomL3bqqyswFjEorFYqGoqIj8/HwfRyh8SWvtcVKhWUdcOtFNp6H1osFIqykoKGiukISPZBWeuNjVwOzdAOyJSqQoKLTWdjWFe1FLWgjRMA3pRJ8GbMKYYJihlHpHKXVK84QlWpo1OprgPn0AXItpBAYGusohSYH+9q1i716qjh51VpAwRkqrqqo4fPgwIJ3oplSzXnR9fvzxR55//nmWLFnS3KGJFhYXceLI8cAcI5VjfacedbYzyV1EIZqP151orfUSrfX1GKsF3gGkAD8opbYrpR5USiU0U4yihbhGwNxuI0tetIDjo6Ihgwa58qGPHDmC3W4nNDRUqrc0oZDBg1GBgVRlZRnLOtejU6dOgLxH26KRqR1JjLLhPr3UlQ8d0wMFJEbZGJna0eP+drudl156if/973+UldU/Wi2EaJgGL7aitS7WWr+ltT4N6A3MAW4H9iulPm/qAEXLCR0xHJDJheJEJSvMpb6Pp3IkJSVx6623csEFF9RbRUJ4zxIS4qp+4k1Kh/kezczMlI5SG2O1KB6b1h8wasdGlRfStTDLyIfuZKwQ+ti0/lgtnt9/R44coaCggIMHDxIcLFVnhWhqJ7ViodZ6J/A34K9AIXBOUwQlfMMciS7fsZOqvDwAUlNT+c1vfsM111zjy9CEDxn1oU+cVGixWIiPj6dXPYuCiIYzL2iLvZhcGBERQXR0NGCsXijalqlpibx69VASomyufOi9kQmEx3bk1auH1lnezhz86Ny5s1zoCtEMGt2JVkqdqpR6GzgCPAfMBcY1UVzCBwI6dCC4V0/A7fZ9SAh9+/YlLCzMl6EJH6o8cICqzEwIDHRVjhDN6/jkwpVe5bSa9X9l7kLbNDUtkZ8enMR98cUAJE8Yx08PTqq3PrQ58bdz587NHqMQ7VGDOtFKqSSl1B+VUtuBxUBP4E4gSWt9k9Z6WTPEKFqQ+4e3EHA8Rz5k0CAszlrQBQUFfPLJJ6xatcqXobVZoUOGQEAAVRkZVHoxuixpV22f1aKI3LYBgO5nnFJrCoc7KUEpRPPyuhOtlFqAsYDKHcAnQD+t9XhnfnRxcwUoWpZ5u949FzM/P5/FixezaNEiX4UlfOh4abvhrm379+9n/fr10oluJpbQUELS0oDji9zUxewkHTx4EIfD0ayxCd+oysujfMcOoHqZydoUFBRQUFCAUkqWhBeimTRkJLoSuATorLV+UGu9rZliEj4UOtzoKJVv24b92DHj/+Xl/PDDD6xYsQK7XdbQaW9KVq0GIHS41IduSZ6q5dQmNjaW4cOHc/bZZ0snuo0qXW28D4N69iDAi2o45ih0fHw8QUFBzRqbEO1VQ0rcnae1/kxWImzbAjp1Iqh7d9CaktVrAOMD2mazUVlZSWZmpo8jFC2pMjOTyoMHwWJx1YeG6hOWRPNw1YteWX9qlcVi4ZxzziE9PZ2AgIDmDk34gOtidugwr9oHBgbSrVs3UlNTmzMsIdo1rzrRSqm5SqlIbw+qlPqvUiqu8WEJXwodZvyRLlllfHgrpaotAS7aj1Jnuoatb1+szhXPKisrOXLkCCAj0c0pZMgQsFioPHiQSrl4bffMv8ehw73rRPfu3Ztrr72WM888sznDEqJd83Yk+nwgVikV6cUjCpgGyBqjrVTIsKEAlK48nu/qnnMp2o8S52sgZNjxD+7Dhw/jcDgIDw8nKirKV6G1edbwcIL7GquIlnqRe+5wODh06BArvRi5Fq2Lo7SUsk2bAQjxciRaCNH8vL3vp4DtzRmI8B9mXnTppk04SkuxhIS4btvL7P/2pcSZhxnq1ol2z4eW2rPNK3ToMMo3b6Fk5Soizz67zrZVVVW8+eabaK3p1auXXOC0IaXr1kNVFQEJCQQmJ9XfvrQUMEqUCiGaj7ed6ImNOLZU/W+lApOTCYiPpyozk9L1GwgbNZLk5GSUUq4Z35GRXmf3iFbKXlhI+TZj/nCo8+4EGLP+QfKhW0Lo8GHkzZ5NiRcj0UFBQSQkJJCRkcGBAwekE92GlKw2fv+hQ4d6deG6evVqvvnmG0aMGMHZ9Vx8CSEaz6tOtNb6h+YORPgPpRShw4ZRMH8+JatWEjZqJEFBQcTHx5Obm0tubq50otuB0jVrQGsCu3UlIDbWtf2ss85i4sTGXFeLhjLvAJRv3469oABrPe+7Ll26uDrRac4SeaL1M1PrQrzMhzbvFsmFlBDN66SW/RZtl6e86KuuuooHH3yQlJQUH0UlWlJd1QBsNhs2m62lQ2p3AmJjCezWFbQ2LmrqYd4dkLkLbYeuqqJ07VqgelpVre21lkVWhGgh0okWHrnyoteuRVdVARAeHo7FIi+Z9qKh1QBE8wgdZrwXS1bWn9JhdpqOHDlCZWVls8YlWkbZ1m04SkqwREQQ3KtXve2PHTtGcXExFouFxMS6lwUXQpwc6REJj4J79cISGYmjpISyLVt9HY5oYY6KCsrWG0sMhww9ng/91VdfMWvWLLZtk7WWWoqZj+5NXnRUVBTh4eE4HA4yMjKaOzTRAkqd+dAhQ4egvBjEMEehExMTCQwMbNbYhGjvpBMtPFIWC6FDhgDH/4gDLFy4kH/84x9SpaONK9u4EV1RgTUmhiC39J29e/dy4MABWbmyBZm38Ms2bMBRXl5nW6WUVNJpY8w7EOYdifqYqTwy8VeI5iedaFErcxKL+23kvLw88vLyJOeyjTNHPd2rAVRUVLhWrJQP6JYT2K0b1k6d0JWVlG3YUG/7cePG8bvf/Y4RI0bU21b4N621W5nJofW0NriXoBRCNC+vqnMopdYA2pu2Wmvv3unC7x1fuXAVWmvXyoXbt2+XTnQb56oG4PbBfejQIbTWREVFSXWWFmRWyyn86itKVq5yzVeojVzgtB2V+/Zhz85GBQZi87LayogRI9i/f790ooVoAd7Wif60OYMQ/smWloYKCsKem0vFnr0Ed0+tdqvY7FiLtkU7HJQ4K0G430I20wOkk9byXJ1oL/KiRdthVsixDRqEJTjYq32GDBnCEGcqnhCieXlbJ/rx5g5E+B9LUBAhgwZRsnIlpatXEdw9laSkJJRSFBYWUlBQIHVI26DyHTtxFBSgQkOx9evr2i65lr7jKjm5Zg3abkdZrXW23717N9u2baN379706NGjJUIUzcA9rUoI4X8alROtlIpWSt2olHpKKdXRuW2oUiq5acMTvlYzL9pcFQ1k4lJbZU4kDU0fjAowrrO11pJr6UO2vn2xhIXhKCqifPv2ettv27aN5cuXSxWVVq7U7ER7WWZy+/btZGRk4HA4mjMsIYRTgzvRSqlBwHbgQeA+INr51EXAU00WmfAL7nnRJlnQoW0zL5hC3BZZKS8vp2vXrkRFRbkuokTLUVYrIc5b9A2pFy3v0darKjubin37QCnX774uWms+++wzXn/9dQ4fPtwCEQohGjMS/QLwtta6F1Dmtn0+cGqTRCV8yu7QLN2Vw2drD7EhuhtYLFQeOEBlZhYAXbt2JS4ujoiICB9HKpqDqxqA2+iXzWbj8ssv5+6778ZaTyqBaB7m78ObvGjzQjczM1MWXWmlzHzo4N69613uHSA3N5eSkhKsVqsssiJEC/F2YqG7EcAtHrYfAmSIqpVbuDGDx+dtJiP/+PXRv6OT6JZ7kNJVKwk8+2zS0tJI83KmuGhdKg8doiojAwICCBk0yNfhCDfH7wqtrHdSr7noSlFREYcPH6Zbt24tFaZoIq60Ki9L25npdUlJSXKhK0QLacxIdDng6bK4N3D05MIRvrRwYwa3zV5drQMNsDY6BYAti5b4ICrRksxRaFv//lhCQ13bCwoK0NqrKpeimdgGDoTAQOxHs6ncv7/OtmY5SpC5C62VK61qmHf50DLxV4iW15hO9OfAo0opcz1RrZTqCjwDfNxkkYkWZXdoHp+32WMx8I0xqQAcW7YCu+N4C7vdTlFRUQtFKFqCa3U0t2oAZWVlvPjii7zwwguU17Ninmg+FpuNEOcdIPNWf11k7kLrZS8qpmzLFuD4HYj6mBdLMvFXiJbTmE70dCAcyAJCgB+AnUAh8HDThSZa0vI9uSeMQJs2OTvRnfMOs2LDPgDWr1/PU089xZdfftliMYrm57qF7JYPbXbCAgMDCfayVq1oHsfzolfW29bsTBUUFDRrTKLpla5bCw4HgcnJBHoxkbe8vJysLGPOinSihWg5Dc6J1lrnA5OVUuOBQRgd6tVa62+aOjjRcrIKPXegAfJskRwK60RycTZFq1fD4BSioqKw2+0cPHhQFl1pI6ry8ijfsROAELeRaClt5z9Chg2DN2a6VpSsS1JSEnfffbfUcm+FSp13GkK8zIc+dOgQANHR0YSHhzdbXEKI6hrciVZKddFaH9Ba/wT81AwxCR+Ii7DV+fymmFSSi7OJ2W3cYkxKSsJisVBUVER+fj7R0dEtEKVoTqVr1gIQ1L07AR07urZLrqX/CB0yBJSiYt8+qo4eJSA2tta2VqtVOtCtlGuRlWF1L/Fu6ty5M9dcc42kWwnRwhqTzrFXKfWDUuompVSHJo9I+MTI1I4kRtmobTzZTOnosGszYNzal0VX2hYzRcC9GoD7IivSifY9a1QUwb16AVCyeo2PoxHNQVdWUrpuHeB9ZY6goCC6d+9Ov379mjM0IUQNjelEDweWA48CGUqpT5VSlyilJFmyFbNaFI9N6w9wQkdacbwTXbZhAw7naIdMXGpbjt9CPp4PffToUcrLywkMDCQ+Pt5XoQk3DcmLzs7O5r333mP27NnNHZZoImWbN6PLyrBGRxMkS7YL4dca3InWWq/RWt8PdAXOwihr9zqQqZSa1cTxiRY0NS2RV68eSkJU9dSOhCgbj9xyJtZOndCVlZRt2AAgJbTaEEdZGaWbNgHVqwGYv9vk5GQslsZcc4umZl7keJMXHRgYyPbt29m9ezcVFRXNHZpoAmbllZChQ72aa5Kbm8tXX30lS7wL4QONWWwFAG0Ujf0e+F4p9SrwJvA74Pomik34wNS0RCb3T2D5nlyyCsuIi7AxMrUjVovi4LBhFH71FSUrVxE6fPgJq6IFBgbWc3Thr0rXr4fKSgLi4gh0S9tISEhg9OjRdOrUyYfRCXfmRU7Z1q3Yi4qw1jGRLCoqioiICAoLCzl8+DApKSktFKVorOP50N6Vttu7dy/Lli3jyJEj9OnTpzlDE0LU0OhOtFKqM3Cl85EGLAVub6K4hA9ZLYoxPWJO2B46bKjRiXaWQYuKimLw4MF06tQJu90unehWrHT18WoA7qNfycnJJCcn+yos4UFgQgKByclUHjpE6dp1hI8fV2f7Ll26sHnzZg4ePCidaD+ntaZ0VeNWKpQ5C0K0vAbfn1VK3aKU+gHYC/wW+ADoobU+RWv97yaOT/gR123kNWvRdjtKKS644ALGjx+PzVZ3dQ/h31yLrHhZDUD4lpkXbdb1rovMXWg9Knbvxn7sGMpmw9a/v1f7SAlKIXynMUmOfwJ+BYZprdO01k9prfc1cVzCD9n69MESGoqjsJDyHTt8HY5oItpup3SNUenBffQrJyeHPXv2SC6tHwoZ6pxc6EVetNmJPnDggCzd7ufMVI6QQYNQQUH1ti8tLSU7OxuQkWghfKExneiuWusHtNbrmjwa4ddUQAAhQ4YAx//Ya605duwYmzZtkg/oVqp82zYcxcVYwsMJ7t3btX3dunW8++67LFiwwIfRCU9cI9Hr16PruchJTEzEarVSUlJCXl5eS4QnGsmVyjHcu3xocxQ6JiaG0NDQZotLCOFZY6pzaKXUKUqp2UqppUqpZACl1DXOVQxFG2auoGX+sbfb7bz88st89NFH8gHdSrmqAQwZgrJaXdsl19J/BXXvjjU6Gl1WRtnmzXW2DQgIoGvXrnTt2lUW4/BzxytzeNeJlveoEL7VmJzoi4GvgFJgCGDWh44C/th0oQl/ZObMlqxchdaagIAAEhMTAcm5bK1KPExkcjgcrqWEJdfS/yilXHMUzI5XXa655hquu+4613tV+J/KzEwqDx4Ei4WQ9MFe7WOmcsh7VAjfaGxO9K1a65uASrftPwPeTScWrVbIoIEQGEhVVhaVzk6We86laF2qVwM4Pvplli0MDg4mto6lpYXvhA41/tyaF0F18abesPAt831o69u3zrKF7i699FLuvPNO+ns5CVEI0bQa04nuA/zoYXs+EH1S0Qi/ZwkJIcT5B9v8o2+OgshIdOtTeeAAVUePQmAgtoEDXdvdl/qWDph/Ol6hYzXa4fBqn7KyMux2e3OGJRrJnCQa4mV9aDAujjp06EBISEhzhSWEqENjOtFHgJ4eto8Hdp9cOI2nlLpdKbVXKVWmlPpVKTXSV7G0da7byM4/+u6Lrkglh9bFlYOZlobFrUyh5Fr6P1u/fiibDfuxY1Tsrv9P7+zZs3nmmWfYv39/C0QnGqrEWavd20VWhBC+15hO9BvADKXUKEADSUqpq4DngVebMjhvKaV+A7wAPI6RUrIO+EopFeeLeNo6cwTM/KMfFRVFZGQkWmsOHz7sy9BEA5WsWgmcuLCD1J71fyooiJDBRu6sN3nRwcHG9BW5Y+R/7AUFlDuX7fZ2kZWvvvqKDz74QC6KhPChxnSinwb+B3wLhGOkdswEXtNav9yEsTXEvcAbWuu3tNabgVuBEmQJ8mZhlrmr2LWLKmdFDsmLbp1KzZHoGqNfl156KWeddZaMRPs5s8PlzaIrknblv0rXrgWtCezWlQAv5yBs27aNrVu3yt0/IXyowct+a6MY8JNKqecw0jrCgc1a66KmDs4bSqkgYBjwlFuMDqXUN8CYWvYJ5nhVEYCIZg2yjQno0IGgnj2o2LmL0tWriTj9dEaMGEH//v3p1q2br8MTXqrKyaFizx4AQp0XRqbExESp5NAKNGbRlYMHD6K1llx3P+JaMdTL0nbFxcWukqJyoSuE7zRmJBoArXWF1nqz1nq5rzrQTp0AK5BZY3smkFDLPn/AmAhpPmRopoHMP/bmbeSUlBQGDBhAuJezyoXvmek4wb16YY2O9m0wolFC0tPBYqHy0CEqjxyps637oiu5ubktE6DwSsnqhi2yYt7xi42NxeY2l0EI0bK8GolWSs319oBa64saH06LeQojh9oUgXSkGyR02FCOffihK6dWtD6lrmoA1XMwf/rpJ0JDQ+nXr5/M+vdz1vAwbH37UrZ5MyWrVhF1zjm1t7VaSUpK4sCBAxw8eJCYmJgWjFTUxlFRQdn6DQCEDPUuH9q9eo4Qwne8HYnOb8CjpWUDdiC+xvZ4jEoiJ9Bal2utC8wHUNjMMbY5Ic5FV8o2bcZRWgrA4cOH+fHHH9njTBEQ/u14NYDhrm12u50ffviBefPmUVxc7KvQRAOEmKXuvJhcKHMX/E/Zxo3oigqsMTEEpaR4tY/5+5OJv0L4llcj0Vrr65o7kMbSWlcopVYBpwOfAiilLM6vX/FhaG1aYHISAfHxVGVmUrpuPWGjR7Fx40aWLl3KsGHDSE1N9XWIog6O4mLXctHu1QCOHDlCVVUVISEhMlLZSoQOHUbeu//xatGVnj17UlJSQo8ePVogMuGN4/nQQ73KU7fb7a4qSNKJFsK3Gp0T7WdeAG5SSv1OKdUPo9ReGPCWb8Nqu5RSrnqmZj6fzP5vPUrXrwe7nYCkRAKTklzb3etDy8Sz1sG8CCrfvh17QUGdbbt3784FF1xAv379WiI04QXXiqFe5kMXFxeTkJBAeHi4XOgK4WMNrs7hj7TWHyilYoG/YEwmXAtM1VrXnGwomlDIsKEUzJ/vyq01O9GZmZmUl5e76tIK/1NbNQDJtWx9AmJjCezWlcp9+ylds4bw007zdUjCS9rhoGTNGuB4pZX6REZGcsMNN+BwOORCVwgfaysj0WitX9Fad9NaB2utR2mtf/V1TG1d6HAjl7Z07Vp0VRXh4eFEO6s8HDp0yIeRifrUVg1Aci1bJzOv3ZtFVxwOB0eOHJGFkfxA+Y6dOAoKUKGh2Pr1bdC+Fkub+fgWotWSd6FotOCePbFEROAoKaFsq7Haltn5kolL/ktXVlK6bj1QvRpAQUEBBQUFKKVITk72VXiiEcyUjhIvFl1ZsWIFr732GosXL27mqIQ7u0OzdFcOn609xNJdOdgd2rVITmj6YFSAdzeGZXEVIfxHm0jnEL6hrFZChg6h+IcfKV29ipC0AXTu3JkNGzZIJ9qPlW3dii4pwRIVRXDPnoDxAb947Q4AwqM7YQ0I9GWIooHMi6Gy9RtwVFRgCQqqta0sutLyFm7M4PF5m8nIL3NtS4yy8fKunwjjxBVDa1NQUMBLL71EQkICN954o4xGC+Fj3taJvtPbA2qt/9H4cERrEzp0GMU//EjJqtV0/O1vXSPRWVlZ8gHtp8wqDqFDhqAslmof8EGkE1JWyZxnvuOxaf2ZmiarFvoju0OzfE8uWYVlxEXYGJHSDWtMDPacHMo2biS0jnrDCQkJBAQEUFpaSk5ODp06dWrByNufhRszuG32anSN7UfyyyhetZowcE3Sro954aO1lg60EH7A25Hoe7xspwHpRLcjZk5tyapVaK2Jj4/n5ptvJj4+XjrQfsqsBhAybOgJH/AVBFChAyjIL+O22at59eqh0pH2M7WOavbsT1jOEkpWrqqzE20uurJ//34OHDggnehmZHdoHp+3+YQONEBsSS5xpceoUhaC0gZ6dTz36jlCCN/z6lJWa53q5aN7cwcs/IstLQ0VGIg9O5vK/fuxWCwkJibKKImf0lq7Jp/Zhg6r9QPe3Pb4vM3YHZ5aCF8wL3rcO9BgjGrOLu4AHL9Iqot7SodoPsv35J7wuzINyNkLwM7oZFZmem5Tk/n7kom/QvgH6emIk2IJDsY2aBBwvGya8F8Ve/Ziz81FBQWxISzR9QHfSRUxNWgbaQHHF/nUQEZ+Gcv35PooWuGurlFNDWyOMRY4KlmzBu1w1HksqeneMrIKa+8cD8gxVnbd1DG1znamqqoqWWRFCD/TqImFSqnOwHlAV6DaDBat9b1NEJdoRUKHDqV01SpKVq8i+uKLKCgoYPHixRQXF3PFFVf4OjzhxqwGEDJoENvKjne0EqxFJFoLqcB6wj7efMCL5lfXqCbAzqgkSq1BhBQUUL5jJ7Y+vWtt6z53oaysDJvN1uTxCoiLqP3nOiBnNwCbYrpzeh3tTBkZGTgcDsLCwlylRIUQvtXgTrRS6nTgc2A30BfYCKQACqi/SKloc0KHDyPnjTdci64EBASwxrmAQElJCaGhob4MT7gx7xaEDBtW7QM+zlIEQJYj/IR96uoIiJZT38WMw2JlS8duDD26g9LVq+rsRIeFhTFlyhTi4uII8LK0mmi4kakdSYyycSS/rNodhPCKElIKjbXAclL7MDK1Y73Hcq/hLvNNhPAPjUnneAp4Xms9ECgDLga6AD8Ac5owNtFKhKSng1JU7NtHVXY2oaGhruVo5XaxfylZbVznhg4f5vqAV2hiXZ3oMFdbhTFhzZsPeNH8vLmY2WSmdHiRWjV69Gi6d+8unehmZLUoHpvWHzDeTyYzlWN/eBz3XjoKq6X+TnFcXBwDBw6kV69ezRGqEKIRGtOJ7ge86/x/FRCitS4CHgUebKrAROthjYoi2PmH3Zy0JjmX/qcyK4vK/ftBKULS010f8OGqglBVhV0rcpydaPMj/bFp/b36gBfN7/hFj2cKyOjaBzh+sSR8b2paIq9ePZSEqOMXQQNyjU50h1HDva5+07NnTy666CKG1lF5RQjRshrTiS7meB50BtDD7TmpldROmaXuzJxbc/a/LLriP0qdHavgvn2xRkQAxgf8g6cYb9scHYrd+SchIcom5e38TG2jmu5fX/7bqRAQQFVGBpWHDtV5PLvdzpYtW1i0aBGOeiYiipMzNS2Rnx6cxHs3jWbG5elcaM0GoPfkU3wcmRDiZDTmPt4yYDywBZgP/F0pNRC4yPmcaIdChg4j73/vuW4jmyPRhw4dwuFwSMk7P2DeJahZQ7iDLgRgRP+enNknnbgII4VDRqD9jzmqWbNOdEKUjcem9WdKWiJ7+venbP16SlavJqqO5duVUnz66adUVFQwcOBAEhISWuJbaLesFsWYHjE4ysrYtmsb4P0iK7m5uVRVVREbGyv50EL4kcZ0ou8FzNlHjzn//xtgh/M50Q6ZI9FlW7ZgLyomNjaW4OBgysvLyczMJDFRRjR9rWTVSgBCh1XvRFssFmw2GyPSejFgQO2dLuEfpqYlMrl/QrUVC90vekKHDjU60StXETVtWq3HsVgsdO7cmd27d3PgwAHpRLeQsg0boLKSgNhYAr1cNGXp0qWsXLmSMWPGcOaZZzZzhEIIbzW4E6213u32/2Lg1iaNSLRKgQkJBCYlUXn4MGXr1xE2dixduvx/e3ce31Z1Jv7/cyTLlnc7drxkc5yE7IHsZCGQjSTQhK2UvSwF2gJTlrZTyrRTSmd+LfBtO8BAGcrQshXosBOWkAVCAtlx9s1ZHCexnTiObXmRN0nn98eVFO+WbMuS7Of9et1XYt1zpedKlvXo3OecM5jy8nJqamqCHV6f56yqou6A0fsV3az367LLLmPJkiVoLYuqhAtPr2ZrYqZOofTll72lVe0ZPHgwR48e5eTJk0ybNq27wxStsHtWDJ06xedeZc/YkoHtXFkQQvS8Tg/LVkpFAmk0q6vWWh/valAiPEVPnULDR4XYt31L7KxZ3HDDDZjNLecdFj2vZvsOcLmwDBqEJT29xX6llFwm7iWi3eU6dYcO4ygrIyI5uc22nrIrGbvQc86VVflWylFfX8/p08Z0eLLIihChxe9CVaXUSKXUeqAGyAfy3Nsx97+ij/J8KHhmBpAEOnTY3b2SzWswGxoaghGOCKCIfv2IHDYMcH95aoenZ7OsrIyqqqpAh9bnaaeTGvcc+p4SuI4UFBSgtSYhIYGEhIRAhieE8FNnRnv9HXABS4EpwGT3Nsn9r+ijvDN07NyJbpScuVwunE5nsMISQI279yu6WT3022+/zVNPPcXhw4eDEZYIEE/de0clHVarlbS0NEB6o3tCXW4urqoqTHFxRI1sezGcxhovsiKECC2dSaInAj/SWn+mtd6htd7ZeOvm+EQYiRw2DHNiIrqmhtr9+wFYvnw5jz/+OLm5uUGOru/S9fXU7DTemjFTp567XWtOnDiBzWaTVSV7GU/duy+LrniSs6KiooDGJBqtGDppEsrHK3WeemhJooUIPZ1Jovch80GLViiTqcWHt1KKhoYG6eUKotp9+9B1dZiTk4nMzvbeXlJSQm1tLREREaS3UictwpenbKdm715cte0vFz579mzuv/9+5s2b1xOh9Wnnyqp8u2irtfYm0YN8nMlDCNFzOpNEPww8qZSaq5RKUUolNN66O0ARXjwfDp4PC1m5MPi8swFMmdxk8GDjEf9Sv967WAYNIqJ/f2hooGbXrnbbJicnk5ycLANLA0xr7S2r8nV+aK0111xzDRdffLFMQShECOpMEr0amAGsAYqBMvdW7v5X9GHeHrBvc9Bae3tPCgsLcTgcwQytz2prNgDP1QHp4ep9lFJEe1cRlSXAQ0HDyZM4iovBYsE6YYJPx5hMJkaMGMG8efPki64QIagzU9zJNT/RJuvYsaioKJxlZdTn5dEvO5uYmBjsdjunTp2ShK2HaZeLGndPdPPZAGTAUu8WM3kKlZ+t8Kku+sCBA+zatYsRI0YwebKMDw8E7xWhceMwWa1BjkYI0R387onWWn/V3haIIEX4UJGRRJ9/PgD2bdtQSnkTZ6mL7nn1R4/itNlQVivWMWO8t9fU1FBSUgJIT3Rv5Z0tZ/t2dAez45SUlLB//36ZpSWA2voy254NGzZw8OBBmYpSiBDVmXmiz29jm6CUOk8pFRWIQEX4sLpLOg6u/pqNR84y0J2kSV10z/OUckRfcAHKYvHe7nA4mDZtGqNHjyY2NjZY4YkAiho5ElNcHK7qauoOHmy3beNFV2TlysDwvhd9XGSltraWVatW8dZbb1FfXx/I0IQQndSZco4dQHt/ZRuUUv/EmAav/WHhotdZsaeIdw6b+Blg35bDD17cxOj4epakDyYrKyvY4fU59m+3AS0HMsXHx3P55ZcHIyTRQ5TZTPSkSVSvX4/92xysY8e22XbAgAGYTCaqqqqw2WwkJSX1XKB9gKO0lPqjRwGImTzJp2M8nQ79+vWTL7pChKjODCy8GjgE/BBjzuiJ7v8fBG4C7gTmA//ZLRGKsLFiTxH3vJ7DhqgBOFFk2s/Sr8bGwcpInj6WTmmM1N72tLYWWRF9Q/PZctpisVjIzMwEpOwqEDyDO6POG4HZxy8oMvBXiNDXmST6V8ADWuuXtNa73dtLwEPAz7TW/wB+gpFsiz7C6dI8tnwfGrBbrOQlDgBgXGme97LFY8v34XTJpeKe0nDqFA0FBWA2E33BRO/tLpeL48ePS51lH+CdLWfbtx2WacjYhcDxlnL4OLUdyCIrQoSDziTRE4D8Vm7Pd+8Do+Qjs5MxiTC0Ja+UItu56p09KcaiHuNL8gCj/qfcVsGaHFm5sKd4ZgOwjh6NOe7c5eDi4mL+/ve/89RTT0n9ay9nnTABLBYcZ87Q0MGYBJnTPXA870Vf54d2uVySRAsRBjqTRB8AfqmUivTcoJSyAL907wMYCJzuengiXBRXNi1/3+tOoseVGkn0EFMZN0TvYsc3q3s8tr6qo6ntMjIyZIGNXs5ktRI9fjzQ8RLggwcPxmw2Y7FYcLlcPRFen+Cy26ndtw/wPYk+c+YM9fX1REZG0r9//0CGJ4Togs4MLLwP+Ag4qZTyLIU1ATADS90/DwP+0vXwRLhIi28676knic62FRHTUMPZyBgAam2lNDQ0YGk0U4QIDPtWY1Bh89kApIerb4mZMpma7dupyfmWpKuvarNdQkICv/zlL4mI6MzHgmhLzY4d4HAQkZmJZcAAn44pKCgAjBIbk6kzfV1CiJ7g919LrfUGpVQ2cDMw0n3z28AbWutKd5vXui9EEQ6mZ/cjM9HKKVstGiizJlAYm8KA6rOMKc0nJ30UtURi1fUUFhbKTB0B5igro+7QIQBipk1tsk8GLPUtxpeol3xadEUS6O5n3+aeIafZ+7A9kyZNIisrS6a2EyLEdeorrta6Umv9P1rrn7q3FzwJtOibzCbFo8uMKbQ8BQLeuuizeYBiwMCBgAxc6gmeUo7IEcOJ6NfPe3tlZSVlZWUopaQnuo/wTKlWn5eHo7TUp2OcHSzOInxn37IVgJhp03w+RilFSkqKd8YUIURo8imJVkpd4a579vy/zS2w4YpQtmR8Js/fMpmMRKO0Y28/I4meZMvn+VsmM3XceYAk0T3BvrX1D27Pc5+enk5UlKyL1BeYk5KIOm8EcG6Am9Ol2XjkLB/uKGDjkbPeWXNsNhsvvPACf/7zn2XQaTdw1dVRs8uoeoyZ6ntPtBAiPPh67e4DIAModv+/LRqjNlr0UUvGZ3Lp2Ay25JVSdjAVdrzN6LLjjByZQmGx0bvlWRVNBrUFTrUniW72wX38+HFA6qH7mugpU6g7dJiab3PYkDmex5bvazKbTmailUeXjeXSMWmUlJTgcDgoKSmRQW1dVLtrF7q+HnP/VCKHDvXpmNzcXHbu3MmYMWMY7x4UKoQITT71RGutTVrr4kb/b2uTBFpgNilmDk/hssumY05JQdfXU7tnL5mZmURERFBTU0NJSUmww+y1nJWV1O03Jspp3hM9efJkFi1axLhx44IRmggSz6wQRV9v4p7Xc5ok0ACnbLXc83oOq/YXM9BddiVT3XWd58ts7LRpPncaHDlyhH379skVOyHCgAz7FQGjlCJmsnvFtG+3YTabWbBgAddccw3x8fFBjq53aXx5PufjtaA1kVlZWNLSmrRLS0tj5syZMrCzj/Ek0eYjuUQ66lrsb7wg0kD3gFPPVQvReZ6yqmg/Sjk8z/uQIUMCEpMQovv4nEQrpWYqpZY2u+1WpVSeUqpYKfVXpZQUWYomPMtNe0aoz5gxgwkTJmC1Wts7TPhhxZ4iLnriC258cRMPvLWDz/7xKQBnR0hvszBYBgzA1T+NCO1iTGlra2UZiXSRrZaayGRAkuiu0vX11GzfARg90b6oq6vj9GljiQUpuRIi9PnTE/0bwPuprJSaALwErAYeB5YBj3RrdCLsxU6fDkDNtzlohyPI0fQ+K/YUtbg8P+HsUQBeKEtkxZ4i7+0HDx5kx44dVFRU9HicIviqRp8PwISSo+22a4g2kujS0lKqqqoCHldvVbN3L7q2FnNyMpEjRvh0zMmTJ9Fak5SUREJCQoAjFEJ0lT9J9ERgTaOfbwA2a63v1lr/GbgfuK4bYxO9QNSoUZji43FVVVHrrtM9ceIEX3/9tXxAd5HTpXls+T4az6FgddRxXrlRy7o7dRiPLd/nnXlh8+bNfPjhh+TmytLrfVHEJKOk4PyzR9ptN6BfIunp6YD0RneFZ7GjmKlTfK6HllIOIcKLP0l0Mk2X8r4E+KzRz1sBuf4kmlBms3eGCPuWLQB8+umnrFmzhmPHjgUxsvC3Ja+0xQCxsaXHMGsXp6OTKY5JpshWy5a8UpxOp3egmHxA901jL58LwKjS40Q5Wi7ioTBm6Zie3Y/Ro0czYcIE4uLiejbIXqStaSbb4xlMKKUcQoQHf5Lo00A2gFIqEpgMbGq0Px5o6L7QRG8R4y7p8HyoeJI46eXqmuLK2ha3eS7V704d1qTd6dOnaWhowGq1yrRlfZQ1awiOlP5YtJMxZU3roj39pI8uG4vZpJg7dy7XXHONfOHqJO1weBc88jWJ1lqjtcZkMsnzLkSY8CeJ/hR4XCk1B/gDYAfWN9p/PtD+dULRJ3k+ROzbtqGdTu8HhEzh1DVp8S0HZ44/60mihzdp13h+aJmfu29SStFv9gwAZlY2TaIzEq08f8tkloyXFfK6Q+3+A7jsdkzx8USNHOnTMUopbrvtNh5++GH5oitEmPB1sRWAfwfeA74CqoDbtNaNrwn+AFjZjbGJXsI6ZjSmuDhvXfSQLCOJPn36NLW1tTJTRydNz+5HZqKVU7ZaNBDpbGBUmZEs704dhsJIjqZn9+O9HLlMLIwvtBUfLed6yxkuvnsGxZW1pMUbvyNmU9MvV1przpw5Q1RUFImJiUGKODx5SzmmTEGZ/Vs+ITIyMhAhCSECwOeeaK11idb6Yoza6GSt9fvNmnwPeKw7gxO9Q5O66K1biY+PJzk5Ga21LOjQBWaT4tFlYwHjcvzo0nwsLicl1gROxaQAxuV5k5IBS8LgmS2ndtcuLhwYy5UTBzJzeEqLBBrg448/5vnnnycnJ6enwwx7namHdjqdgQpHCBEgfi+2orW2aa1bvNu11qXNeqaF8PKWdLgHF0pddPdYMj6T52+ZTEailQklRjXV7tThZCRFey/P22w2qqqqMJvN3tXoRN9kGTKEiPR0dEMDNTt2ttt2wIABgLxH/aVdLuzeemjfFlnRWvPMM8/w4osvUl5eHsDohBDdSVYsFD3CO7jQXRftKSsoKCgIZli9wpLxmXz98HyujzoLwIVXLeDrh+d761uTkpL42c9+xs0330xEhD8VXKK3UUqdey+6v9C2xfNF9+TJk9JL6oe63FxcFRWYYmKwjh3r0zFlZWVUVFRw+vRpmRFFiDAin6iiR3jroisrqT1wgNGjR5Oenk5mpgxk6g7K0UDkwb1oYPxlc1tcno+Li5MPZwEYvaMVy5d3mESnpqYSHR1NTU0NRUVFDHIvBy7aZ9/iXup78mSUj19aPb39AwYMkC+6QoQR6YkWPUJFRBAzZQpg1AvGxsYyaNAgzH4OuhGtq929G11Xhzklhchhwzo+QPRZ3lVEd+3CVVfXZjullJRddYK3Hnqqb6UcQJPZc4QQ4UOSaNFjYqZ76qK3BjmS3ufc6mhTm0xhZ7fbee211/jqq6/QWrd1uOhDLFlZRKSloevrO6yLliTaP1pr7Nvc78Xp/i+yIgN/hQgvkkSLHtO8LvrMmTN8/PHHrFixIsiRhT/PpfnmvV8nTpzg6NGj7NmzR+aHFoC7LrrZQN+2NE6i5UtYx+oPH8ZZVoayWrGOH+/TMdXV1ZSUlADSEy1EuAmpJFoZfqeUKlJK1SilViulzuvgmEeUUluVUpVKqWKl1AdKqVE9FbPwnXXMGEyxsbgqKqjLzaWuro5vv/2WXbt2yQd0F7jq67G7pyGLnXFhk30ytZ1oja+DCzMzM5kzZw7XXHONvEd9UL1pMwAxkydh8nG+Z08vdP/+/YmJiQlYbEKI7hdSSTTwC+B+4MfAhUA18LlSqr3VOC4BngNmAJcCFmClUio2wLEKP6mICKKnTAaMD+/MzEwiIiKoqanh7NmzQY4ufNXu3ImurTXqoUeMaLJPai1FazylBjU7d7ZbF202m5k/fz4jRozAZAq1j4vQU715EwAxF87w+ZiYmBjGjRvHqFHS9yNEuAmZv4rKuNb8IPCfWusPtda7gFuBAcBVbR2ntV6itX5Za71Xa70TuB0YAkwJeNDCb55BTdVbtjaZt1hqLjuverPRmxh74YVNSjbq6+spLCwEICsrKyixidAUOXQoEf37G3XRO9uvixa+0U6nd2xC8ytC7RkyZAjXXnstCxYsCFRoQogACZkkGsgGMoDVnhu01jZgMzDTj/vxrE9b2lYDpVSUUirBswHxnYhXdEKTumiXSwYudQP7Jk/vV9MP7pMnT+JyuUhISCApKSkIkYlQ1bQuuv2Bvg6Hg9zcXNavX98ToYWt2gMHcNlsmGJjsY4bF+xwhBA9IJSS6Az3v6eb3X660b52KaVMwFPAN1rrPe00fQSwNdpk7ekeYh07FlNMDC6bjbrcXG8SnZ+fH+TIwpOrpga7uyexee/XsWPHABg6dKgMKhQt+FoX7XQ6eeutt/jiiy+oqKjoidDCkt1TDz11qs/zQ9tsNkpKSqTeXIgwFbQkWil1s1KqyrNh1DJ31XPAeOCGDtr9AaPH2rPJKgI9xKiLds8XvXkzgwcPRilFeXk5NpstyNGFH3tODjQ0EJGZiaXZ4EGXy0VkZKSUcohWeZLojuqio6KiyMgw+jHkilHbqre4k+gZvtdDb926leeee47PPvssUGEJIQIomD3RHwETG20l7tvTm7VLB051dGdKqWeBpcA8rXW7Pcta6zqtdYVnAyr9ilx0iWdQU/XmLURFRTFgwACSk5Oll6sT7J566OnTW/Q2L1y4kIcffpjzzz8/GKGJEBeZPRRz/1R0XV2H80V7BqbKFaPW6YYGajpRD+15PgcMGBCQuIQQgRW0JFprXam1PuzZgH0YybJ3dIW7XvlCYGNb9+OeFu9Z4GpgvtY6L8Chiy6KnWGUuNu3bEE7HNx6663cf//9MoNEJ3hnA2ij98tkMskywqJVSinve7F6U5t/YgGjJAgkiW5LzZ49uOx2zImJRPk4y4YM/BUi/IVMTbQ2isKeAn6tlLpCKTUBeBUoBD7wtFNKrVFK/UujQ58DbgFuAiqVUhnuLbrHghd+sY4dgykhAVdVFbV79hDp43yqoilnVRW1e/YCEHvh9Cb7GhoaghGSCDOx7i9f9g3tJ9GeJO/MmTNUV1cHPK5wY9/sLuWYPh3l41SAMvBXiPAXMkm025PAfwN/BbYCccASrXVtozbDgdRGP9+DUde8FihqtF3fA/GKTlBmszfpq3bPLAFGDa/T6QxWWGHHvm0bOJ1YhgzB0uxy8JtvvskzzzxDXp5cmBFti51pJNE1e/bgrKpqs11MTAxpaWmA9Ea3ptqTRHeilCMrK0sG/goRpkIqidaG32itM7TWVq31Qq11brM2Q7XWv230s2pje7mn4xe+i5npvoy80UiiV6xYwRNPPMHevXuDGVZY8cwGENtsajun08mJEycoKysjLi4uGKGJMGEZMIDIrCxwOjuc6s5T0lFQUNADkYUPV10dNTnbgXM9+75onEQLIcJTSCXRou/w1GLW5OTgqqnBZDJRX18vvVx+aKv3q7CwEIfDQUxMDKmpqa0dKoRXjLs3uqO66BkzZnDfffexcOHCnggrbNTs2Imuq8PcP5XIYcN8OsbhcHDypDH+XZJoIcKXJNEiKCKzhxKRno5uaMCek+P9IJEk2jeOsjLq9u8HWvZEe+aHlsvEwhfegb4b20+ik5OTSU1Nld+pZjz10LHTL/T5uVFKcd1113HxxReTkpISyPCEEAEkSbQICqUUse6SDvumTd4k+uzZs1RWyoyDHbFvNS69R44YTkSz3ma5TCz8EXPhdFCKukOHcZw5E+xwwk5n6qHNZjMjR45k3rx58qVEiDAmSbQIGs+gpuqNm7Bard4FHaQ3umPn6qGb1mC6XC5OnDgBSBItfBORnIx1zBgAqt2/V23Jz8/nnXfe4csvv+yJ0EKey26nZtcuwL96aCFE7yBJtAiaGPdl5Nq9e3GWl3uTPk85gmhbtfvSe/Per6KiIurr67FaraSnN1+3SIjWeeuiOyjpqK6uZu/evRw4cKAnwgp59m3boKEBy4ABWAb5tvCt0+nkiy++4PDhw7hcrgBHKIQIJEmiRdBY0tOMgThaU71liyzo4KOGwkLq8/LAZGpRDx0ZGcmUKVM4//zz5TKx8FnszFmAMbjQmLK/dZ4vusXFxdjt9h6JLZRVf/MNALGzZ/n8fissLGT9+vW899578h4VIsxJEi2CqnlddHZ2NuPHj2/3g7yvq96wAYDo88/HnJDQZF///v1ZunQpl112WTBCE2EqZspklMWCo7CIhuPH22wXGxtL//79AfmyC+fei7GzZ/t8jMwPLUTvIUm0CKrGddHR0dHceuutXHLJJfLh0o4qT+/XrFlBjkT0FqboaKInTgQ6LunwXDHq62VXDadPU3foMChFzIW+Dyr0LIDkeR6FEOFLkmgRVDHTp4PJRH1eHg2nTgU7nJCnnU7vEs2xFzXt/bLZbJw4cUJWfRSdEjur6QJIbZEk2lDtfh9ax40jIjnZp2McDgfH3T392dnZAYtNCNEzJIkWQWVOSMA6bhxw7sPbbrdz6NChYIYVsmr37cdps2GKjSV6woQm+3bv3s3f/vY33n///SBFJ8JZjHt2Cfvmzeh2BrxJXbShM6UcBQUFOByOJmUxQojwJUm0CLpY7xLgG6itreWPf/wjb7zxBlVVVUGOLPR4PrhjZsxAWSxN9nkuEw8ZMqTH4xLhL3rCBEyxsTjLy6l1L+TTmtjYWNLT0xk4cGCffY9ql+tcEu1HWdXRo0cBoxdaStaECH+SRIug8/TkVH+zgajISO/UbJ6kUJxzrver6Qe3XCYWXaUiIry90dVff9Nu2x/+8IfcddddpKWl9URoIacuNxfn2bOomBiiJ030+biioiJA6qGF6C0kiRZBFzNpIqaYGJxnz1K7f783CfT02giDy27HnpMDQFyz3q+TJ0/icDiIi4sjtdkKhkL4Ks5dZ1+9fn277Uymvv3R4ZnaLmbaVEyRkT4fd+ONN/LjH/+YMe7FbYQQ4a1v/yUUIUFFRjbpARs2bBhg9ETLVHfneBd2GDgQS7PVCD299nKZWHRF7EUXAWDfsQOnD6UadXV1NDQ0BDqskFP9jXFFKM6PemgApRTp6enExMQEIiwhRA+TJFqEhLg5xod39fr1DBkyBJPJhM1mo6ysLMiRhY7qRlPbNU+UZdos0R0iBw8mMisLHA7sm9qfpeOjjz7iySefZH879dO9kau21vhCi0wzKURfJ0m0CAmNe8DM9fUMci+hK3XR57Q1G0B9fT0FBQWA1EOLroudMweAqvVft9suJiYGl8vV596j9m+/RdfXE5GWRuTw4T4f9+abb/Lee+9RWloawOiEED1JkmgREpr3gHmSwb72Ad2Wxgs7xM5ourBDREQEd9xxB4sXLybZx/lqhWiL96rQ11+3W07VeOxCXyq7avxl1tfSqZqaGnJzc9m9ezeWZrPqCCHCV0SwAxDCI3bOHOrz86la/zXj/uU+kpKSpGfVzTNbgnX8eMxJSU32mUwmBg0a5O29F6IrYqZNQ1ksNBQUUJ93jKhhrb8HhwwZgtlspqKigtLSUlJSUno40uCodvfQ+1PK4VnqOzU1lfj4+IDEJYToedITLUKGZwW+6q+/JjU1lYkTJ5KYmBjkqEJDlXu2hLiLLw5yJKK3M8XEEDNtKmC8F9tisVi8c5L3lZl0Gk6doi4317gidJHvgwo9z4+MWRCid5EkWoSM2OnTm/SACYNuaPAOKoy7eE6TfTU1NSxfvpw9e/b0qUvqIrBiZxslHVVftz/VXV+bjrJq3ToAoi+4wOelvuHcEulyZU2I3kWSaBEyTDExRE+dAhg9YFVVVWzcuJG1a9cGN7Agq9mxA1dlJebkZKzjxzfZd+zYMXJycli3bp1MbSe6Tay7Ltq+ZSuuuroW+50uzcYjZznhiAOM30NXO0uF9xaeJDruEt+vCFVWVnLmzBlAeqKF6G0kiRYhJe4i98wAX6+nqqqKlStXsnHjRpxOZ5AjCx7PB3fsnItQZnOTfUeOHAHkw1l0r6jzziMiPR3daDo3jxV7irjoiS+48cVN/OrzAo44+vFtw0BW7C4IUrQ9w1Vfj33DRgBi/Sir8vTSZ2ZmyvzQQvQykkSLkNK4B6x/UhIxMTFNpnDri6q+cvd+XXxJk9u11t4kesSIET0el+i9VKOa3+pGU92t2FPEPa/nUGSrBUCjWNcwjK1Vydz35i5W7CkKSrw9oebbb3HZ7ZhTU7H6seKg2WwmIyOD4X5MhyeECA+SRIuQ0rgHrGbrNm8PqydZ7GsaioqMgUwmE7Gzm84GUFZWRnl5OSaTSXqiRbeL884XbdRFO12ax5bvo7XKe89tjy3fh9PVO2vzvV9m58xB+bHs+fjx4/nRj37E/PnzAxWaECJIJIkWIUUp5Z2BomrtWm/vTV9NoqvWGQlMawOZDh8+DBhTjUVGRvZ4bKJ3i501CyIiqD9yhPoTJ9iSV+rtgW5KE69qGWkupthmZ0te71xMpDP10I3JmAUheh9JokXIiZs3D4CqL7/0JtGFhYXY7fZghhUU7X1we2ot5TKxCARzQgIxU4yBvlVffklxZWsJtOGyyIPMijxOuqmy3Xbhqv7ECeqPHgWz2a/5ocvKyqivrw9gZEKIYJIkWoQUp0uzJ30kLkskDYWFWIpOkZaWhta6z0yj5eGqr6d6ozGQqfn80FprqqqqAEmiReDEzZ0LQOWXX5IWb22jlaLAZcznPtBc0U678OX5MhszaRLmhASfj1u+fDlPPvkk+/btC1RoQoggkiRahAzvqP/XdrC1n5EY/ul3L2FKzPCujNaX1GzbhrbbMfdPJarZQCalFHfddRcPPvggGRkZQYpQ9Hbx8+YCYN+6jSn9I8lMtNJaUcJJp5FYDo2oYHp2vx6Lr6dUu8uqYv0o5aivr+f48eM4nU7S0tICFZoQIogkiRYhofmo/80ZYwEYe2wX/7XLxKSltzHLj8uovUGle37suDkXt1lPmZiYKLWWImAihw4lMjsbHA5qN3zDo8uM92Xz37hTrgRcGuKoobLC1vOBBpDLbqd60yag5Qw57cnPz8fpdJKYmNhnlkQXoq+RJFoEXWuj/rdmGD2vo0uPY62r4T8/y+21o/5bo7Wmas0XAMTPn9dif1+eN1v0rMZjFJaMz+T5WyaTkdi0ZKNfYhwJqelA7xsEXL1hA7quDsvAgUSNPM/n4zzPw/Dhw+WLrhC9VESwAxCitVH/JdFJHE4cyAhbAVNPH2B1VDxb8kqZlpVIRETv/7Wty82loaAAFRXVYiCT3W7n6aefJisri+uvvx5zswVYhOhOcXMvofRvf6Pqq3Vop5Ml4zO5dGwGW/JKKa6sJS3eyvTsfnzztYUvvzzN4cOHmeIekNgbVLq/zMYtmO9XMtw4iRZC9E7SEy2Crq3R/FvcvdEXntpHmqmKdR+9wRtvvNGToQVN5Zo1gDHNmKnZKmdHjhyhvr6eiooKSaBFwMVMnowpMRFneTk1O3cCYDYpZg5P4cqJA5k5PAWzSXkX/MnPz+81S4Brh4OqL78EIH7+Ap+Ps9lslJSUoJQiOzs7UOEJIYJMkmgRdG2N5vfURU8uzsXhUNRWlJKfn98npoyqWm0k0fELWi7Q4OnhGjZsWI/GJPomFRFxbuEVd0LZmszMTK6//noeeOABTH4sRhLKarZvx1lejikxkZipvveue+ZwHzhwINHR0YEKTwgRZL3jL50Ia9Oz+7U66v9Q0iBKo+KJcdQx2X6apKQkXC4XeXl5QYmzpzQUFVG7bx8o5Z1izENrzaFDhwA47zzf6zOF6IrGU921RSnF6NGjiYqK6qGoAs9TyhE/9xKUH2VkI0aMYPHixUyfPj1QoQkhQoAk0SLozCbV6qh/rUxscfdG/9B80nu5uLcNXGqu8gvjgzt60iQiUlOb7CsoKMButxMVFcWQIUOCEZ7og+IunmOsXnj4CHW9/Eush9ba+16M86OUA4xZc2bMmMGECRMCEZoQIkRIEi1CQluj/vePmAxAUs4GhrvLFzyXSnsr76wcrZRyeHqhhw8fLvXQoseYExKIvfBCACpXrW6zndaatWvX8uKLL1JZWdlT4QVE/eHDNBw/joqMJO6i2cEORwgRgnr/NAcibLQ26n/awIUcmfM6zjMlZFZUYDKZKCsro6SkhNRmvbS9gbOiguotWwCIm98yic7NzQWklEP0vPhFi6j+5hsqV64k9Yd3t9pGKcWhQ4coLCzk8OHDTJo0qYej7D6eUo6YmTMwxcb6fFxOTg4Ao0aNItaP44QQ4Ud6okVIaT7qP8IaRdy8uQDUffGld6T7wYMHgxdkAFWtWw8OB5HDhhHVbFS/1poJEyaQlZUlSbTocfEL5oNS1O7ZQ0NBQZvtPL+bni984cpTytF4Vg6nS7PxyFk+3FHAxiNnW8xdr7Vm/fr1LF++nJMnT/ZovEKInic90SLkJSxaRMVHy6lctYrxf/4TsbGxDBw4MNhhBUTlGuNSeWulHEopZs2a1edWbhShISI1lZgpU7Bv20bFqlWk3H57q+1GjRrFV199xZEjR3A4HGE5r3vD6dPU7toF4P0Sv2JPEY8t39dkTvvMRCuPLhvLkvGZAJSUlFBeXo7ZbJap7YToA6QnWoS82NmzUdHRNBQWMsocwdVXX83QoUODHVa3c9XUULX2K8C4dC5EqPH8XrZXF52RkUF8fDwNDQ1hO5NO5eefAxA9eTKWtDRW7CnintdzWiwKdcpWyz2v57BiTxFwrvc9OzubyMjIng1aCNHjJIkWIc8UHU3cxRcDULlqVZCjCZyqr9aha2qwDByIdfz4JvscDgc7d+6kuro6SNEJAfGXLgSgJicHx5kzrbZRSjFy5EggfMuuKj5bAUDCkiU4XZrHlu9Dt9LOc9tjy/fhdMn0k0L0NZJEi7AQv+hSACpXrsTlcnHq1Cn27t0b5Ki6V8Xnxgd3/JLFLZYXPnbsGB988AF//etf0bq1j3MhAs+SmYn1/PNBaypXt90bPWrUKMDomQ2339eGU6eo2b4dgPjFi9iSV9qiB7oxDRTZavnmQCHHjx8HJIkWoq+QJFqEhbhL5qIsFuqPHSN/82ZeeOEFPvroI5xOZ7BD6xaNSzkSllzWYr+nh2vEiBEtEmwhelKC+wttxcqVbbbJzs4mPj6erKyssFthtNJ9XtFTpmBJT6e4su0EurGjeUfQWtO/f3+Sk5MDGaIQIkRIEi3CgjkultjZxlytsVu3ERcXR319PceOHQtuYN3EW8oxaBDW8eOa7NNaey+LSw+XCDZPXbR9y1YcZWWttomIiOChhx7iu9/9btitYOgt5Vi8GIC0eGt7zb0i6qtRSsl7VIg+RJJoETYSLlsCQOVnn/WaabQ8KlZ4ajBblnKcOnUKm81GREQEw4cPD0Z4QnhFDhlC1Ngx4HRS+XnbvdHheMWkeSkHwPTsfmQmWmnrbBTGLB03XrmEn/3sZ8ycObNnghVCBJ0k0SJsxC1YiIqKoj4vj6HR0UB41lw256qpoeor96wcrZRy7N+/HzB6oS0WS4/GJkRrEr+zFICKjz9ut53WmuLiYux2e0+E1WXeWTncpRxgzF3/6LKxAC0Sac/Pjy4bi9mkiI2NJS4uroeiFUIEmyTRImyY42KJmz8PgH7f5hAREUF5eTnFxcVBjqxrqtauPVfKMW5si/0HDhwAYPTo0T0dmhCtSvjO5aAU9m3baCgqarPdO++8w/PPPx82g4ArPv0MOFfK4bFkfCbP3zKZjMSmpR0ZiVaev2UyC0b1vtVThRAdkyRahJXEpUYPWM2nnzJ82DAA9u3bF8yQusz20XIA4i+/nE1HS5ushmaz2Thz5gwmk0lqLUXIsGRkEDN1KgAVn37aZrvMTGMREs8XwVBWn59Pzc6dYDIRv2Rxi/1Lxmfy9cPzefPuGTx9w0TevHsGXz88n0Vj03nmmWd4+eWXsdlsQYhcCBEs4beUlOjTYufMwZSQgKO4mOFWKweBvLw85s2bF+zQOsVRWkrV+vUA3HM6jZwXN3n3eVZD+9nPfkZhYSHR7hIWIUJBwtKl2LduxfbxJ6TceWerbcaOHcuaNWvIy8vDbrcTExPTw1H6zvNlNnbWLCxpaa22MZsUM4enNLktP/84VVVVOBwOKeUQoo+RnmgRVkyRkSS4B/yk5Wznlltu4bbbbgtyVJ1X8eln4HBwKGkQOSqpyT7PamhfH6v0Ll4hRKiIX3QpWCzU7d9P3eHDrbbp168fGRkZaK1Dujdaa41tuZFEJ155hV/Hes5r5MiRmM3mbo9NCBG6JIkWYSfBPaipduVKsgcPDusPLtuHHwKwZvCUFvuar4YmRCiJSE4m7qKLALB98kmb7caMGQOcGyAbimq276Dh+HFUTAzxCxb4fFzjLwcyZkGIviekkmhl+J1SqkgpVaOUWq2U8rkQVCn1S6WUVko9FcAwRZDFTJtKRFoaLpvNO6tFOM7QUXc0j9rdu3EqE2sHTWyxf5S5mMWRB4msLGJLXmnPByhEBxKWfgeAio+Wo12uVtuMG2fMe3706FFqamp6LDZ/2D4yvswmXLoQkx8lJ6dOnaK8vJyIiAhGjBgRqPCEECEqpJJo4BfA/cCPgQuBauBzpVSHs90rpaYBPwJ2BTRCEXTKbPZeci1/9z1Wr17N008/zdmzZ4McmX9syz8C4Nu0kdii4lvsH2YuJdNcSZypzudV04ToSfELFmCKj6ehoAD7li2ttklJSSEtLQ2Xy+VdNCiUuOrrzy2wcoV/pRx79uwBjFIOmX5SiL4nZJJoZczM/yDwn1rrD7XWu4BbgQHAVR0cGwf8A7gbaH0Jrabto5RSCZ4NaJnBiJCWePU1AFSvW0dh/nFsNltIXy5uTrtcVLgHMn3RSilHrKonw1yF1pDn6OfzqmlC9CST1WpMdweUv/Num+0WLFjAzTffzIQJE3oqNJ9VffUVLpuNiLQ0YmfM8Pk4rbV36j5Pb7sQom8JmSQayAYygNWeG7TWNmAz0NESUM8Bn2itV3fQzuMRwNZoO+l3tCKoooZlEz1lCrhcZFVUAOE11Z19yxYaCgowxcZybNSUFos4DDUb5RunXXEkJiYwPbtfzwcphA+SvnstAJUrV+JsY4q3kSNHMmLEiJAcv2B79z0AEpYtRfkRn9aauXPnMnr0aJl+Uog+KpSS6Az3v6eb3X660b4WlFI3AJMxEmNf/QFIbLQN8uNYESKSrjF6o1NWr0IpRVFRESUlJUGOyjfl//d/gPHB/cjVE4Gmq6ENcyfRec5+3tXQhAhF1vHjiBo5El1fj62DFQxDTcOpU1StWwec+zLgK5PJxMSJE7n++uullEOIPipoSbRS6malVJVnA/z+K6SUGgw8Ddystfa5aFRrXae1rvBsQKW/jy2CL2HJYkwxMZiPHGVoqrFi2O7du4McVcccZWVUrjIumiRfd12L1dASVC2pJjsu4L5rLmHJ+MwgRitE+5RSJF37XeBcr25rKioqWLlyJe+//35Phdah8nffBZeLmGnTiBqWHexwhBBhJpg90R8BExttni7E9Gbt0oFTbdzHFCANyFFKOZRSDuAS4H73z6F37VB0G1NsLPGXXwbA0JMFgJFEh/pMHbYPPkQ3NGAdNw7rWGOZ78arod03MQqAEcOHs2zKsGCGKoRPEpYtQ1ks1O7bR20bYxOcTicbN25k165dVFYGv99CO53eOu6k677n17GFhYVs2LBBVigUoo8LWhKtta7UWh/2bMA+jGTZO0mne9DfhcDGNu5mDTCBpsn4NoxBhhO11s5AxS9CQ9J3jR6wfp9/jsVioaysjIKCgiBH1TattbeUI+m665rs86yGNm+SUT96wfnnByNEIfwWkZxMnHt+5TL373dzycnJDB48GAiNK0bV33yDo6gIU2Ii8YsW+XVsTk4Oq1at4iv3FJtCiL4pZGqitdF9+BTwa6XUFUqpCcCrQCHwgaedUmqNUupf3MdUaq33NN4wpsU76/6/6OWiJ04katQozNXVjI2yMm3atJBeHtu+dSv1eXmomBgSvvOdVtuMHDmSm2++mfMliRZhJPl640uh7cOPcLbR0+yZnSMUkuiyfxrJfuKVV2CKivL5OIfD4R3ELLNyCNG3RQQ7gGaeBGKBvwJJwNfAkmb1zsOB1J4Pzbgc2dDQEIyH7hMsFovfo/eVUiTffBOnfvMo4z/7jOEPPuDXCPueVvba6wAkfuc7mONigxyNEN0nZsYMIkcMp/7wEWzvv0+/W29t0WbcuHGsWLGCU6dOcebMGfr379+jMTpdmi15pZQeySP7iy9QGOMS/JGbm0tNTQ3x8fFkZ0sdtRB9WUgl0e7e6N+4t7baDO3gPuZ2b1TGJXjPylQisJKSksjIyMCYNtw3icuWUfzHP9Fw8iRV69YRP29eACPsvPqTBVSuWQNA8vdvabHf6XSyefNmxo8fT0JCQk+HJ0SXKKXod/PNnHrsd5T+4x8k33ILytT0YmdMTAznnXceBw8eZNeuXSzwY4ntrlqxp4jHlu+jyFbLXbs/YpjW7MkcTX5tLEv8uJ8dO3YAcMEFF2AyhczFXCFEEIRUEh2qPAl0WloaMTExfiV4wjdaa+x2O8XFxQBkZvo+I4UpOpqk736X0r//ndLX/0HpsGEUFxczbdq0QIXbKWVvvAEuF7GzZmIdObLF/kOHDrFq1So2bdrEQw89JL9nIuwkXnEFxX/+Lxryj1P9zTfEzZnTos2ECRM4ePAgu3fvZv78+T3ye75iTxH3vJ6DBqyOOhbnG6srvp01i62v5/D8LZN9mgWnsrKSw4cPAzBx4sQARiyECAeSRHfA6XR6E+iUlJRgh9OreWqZi4uLSUtL86u0I/mmGyl9+WUK9+5h5csvYzabGTduHDExMYEK1y8uu53yd94BIPn732+1jaeHa8KECZJAi7Bkio0l6ZqrKX3lVUpfe63VJHrkyJEkJyczcuRIGhoaiIyMDGhMTpfmseX78MzZs/D4NuIctZyMTWVr+mgAHlu+j0vHZnQ4H/uuXbvQWjN48GD5PBBChM7AwlDlqYEOlWSst/M8z/7WnkcOHkzc/PkkldtIdblwOp3s3LnTr/twujQbj5zlwx0FbDxyFqer+6bKK//gA1wVFViyhhB3ySUt9ldVVZGbmwtID5cIb8k33QQmE9Xr1lN78GCL/RaLhZ/85CcsWbIk4Ak0wJa8UopsxrAapV1cefRrAJYPuwitTGigyFbLlrzSDu+rtraWiIgIeY8KIQDpifaZ9Az2jK48z6l330XVmjUM2bGDksmTycnJYcaMGT7dZ+N6SY/MRCuPLhvr82InnkFLxZW1pMVbmZ7dD7NJoRsaKH3pbwD0u+X7LepE4dz81gMHDuzxwVZCdKfIrCziFy+i8rMVnH3xfxn4x//Xok1P/j0trjz3np5duJtBVWeoirCyasjUNtu1ZcGCBcyePTskly8XQvQ86YkWvUb0xInETJtG1pGjRAAlJSWcPHmyw+M89ZKNE2iAU7Za7nk9hxV7iny6j4ue+IIbX9zEA2/t4MYXN3HRE1+wYk8Rtk8+oaGgAHO/ft6V3RrTWrN9+3ZAeqFF75B6990AVHz6KfUnTrTaRmtNXl6e9wpMoKTFWz0PyPW5XwDw0bCLqLFYW2/XAavVKst8CyEASaL7pLlz5/Lggw8GO4yASPnhD7E4HAw6fhwwFkVoT/N6ycY8tz22fF+7pR3tJeH3vbaN4//9PAD97rgdUytzWB8/fpwzZ85gsVgYP358u/EKEQ6sY8cSe9FF4HJx9m9/a7XN7t27efXVV/n8888Dusro9Ox+ZCZamXb6ACNsBdSYI/lw+LlabYVx1Wl6dr8276Ouro5Tp9paOFcI0VdJEt2L3X777SilWmxPPvkk//Ef/+FtN3ToUJ566qngBdqNrLNm4Rh2HsPctZh79+6ltrbty7SN6yVb01G9ZEdJ+KzC3VgKjmNKSCD5xhtbvY+zZ89isViYMGECVqtvvWFChLoUd2+07d33aDh9usX+0aNHExkZSWlpKfn5+QGLw2xSPLp0DDfkrgbg0+yZVEQZc7R7ikoeXTa23UGFO3bs4IUXXuDDDz8MWJxCiPAjSXQvt2TJEoqKippsU6ZMIT4+PtihdbsVe4qY8+SX/CF1FiklZ4m32aioV3yy7XCbx/hSB9leu/aScJN2ceNB44PbvvS7mOPiWm03efJkfvrTnzJ37lyfYhEiHMRMn0b0lCno+npKnvtLi/2RkZHeKy/btm0LaCwXVeQxtjSfBlME7444N7A3I9Ha4fR2Wmu2bt0KwIABAwIapxAivMjAwk7QWqNranr8cVV0tN8DcqKiosjIyGhy29y5c5k4cSJPPfUUc+fOJT8/n4ceeoiHHnoIIKCXVgOl8TywRZnjOZQ0iIvXfsWqjMn8vDaf2KSUVj8ofa2DbKtde0n4vBM5ZFcUUWmJ5vT8ZUxq5/6tVqv0QoteRSlF2k8fIv/mWyh/911SfnAHkUOHNhmAa804D8hh3759VFRUBGSRIe1yUfynPwHQ/+Yb+csNi1oM/m1PXl4eZ8+eJTIykvPPP7/b4xNChC9JojtB19RwcPKUHn/cUTnforp5qr333nuPCy64gB/+8Ifc7b78Gm5alFQoxd/HXs4fNvyV7xzbyAfDL25zHlhPveQpW22rJRkKo7eqrXrJtpJri7OBW/evAOCfI+dzbWZay7idTk6fPi29W6LXipkyhbhLLqHqq68488wz7P7Bv7aYBeeKmERStI0tW7awcOHCbo+h4pNPqNu3H1NcHP3vvYfM5GS/jvf0Qp9//vlERUV1e3xCiPAl5Ry93Mcff0xcXJx3+973vtdkf79+/TCbzcTHx5ORkdGi1zoctFZSsSNtJDtSR2BxObnlwOeYK0+1WtdsNikeXTYWOFcf6eFLvaQnCW++94qjX5NWU05xdBJbJi1sNQnfu3cvL774Im+++aYvpylEWOr/0IMAVHz6GX969qOW79XaVAA2bdlGfX19tz62q76eM089DUDKXXcR4WcCXVpayoEDBwBCbgVUIUTwSU90J6joaEblfBuUx/XXvHnzeP75570/x8bGcmMbA9zCVVslFX8fdzl/+vo5aiYP5NKow+SfLGDm8JarjC0Zn8nzt0xu0UOW4cM80Z4k/J7Xc1AYgwkT6yq9U2m9NmYxv7rqghZJuNaaDRs2ADBw4EA/z1iI8GEdPZr4ZcuoXL6ce3e+x08v/he0Otd/c8KVRIUrClODidLSMjIy0rvtsctee42GggIi0tLod9utfh/veY+ed955pKW1vJokhOjbJInuBKVUt5dVBEpsbCwjRowIdhgB1VZJRW7yEFYNmkrqmRJOZA2h4theuKT1msYl4zO5dGxGq4uldKR5En7Xno+Jb6ghv98grn34rlaT8CNHjnD69GksFov0cIle7+R1d2L5bCWjy46zOH8LK4bO8O7TKFbUj6RaR3JNdQTddS2sobCQM88+B0D/Bx9sdXrJ9rhcLo4dOwbA7NmzuykqIURvIuUcgsjISJxOZ7DD6LS2SirA6I0eeDgPgFPHcikrK2vzfswmxczhKVw5cSAzh6f4lEB7LBmfydcPz+ft6ZEsPPEtWiku+ssfWXLBoFbbf/PNNwBMmTKF6E5cYRAinJy2xPHa6MUA/GDvJyTWVTXZX62jAOXzbDm+OPWf/x+6poboqVNIvOpKv483mUzcc8893HDDDQwZMqTb4hJC9B6SRAuGDh3KunXrKCgooKSkJNjh+K29uuaqyFjeH3ARGYWFaOCrFSsCFoeqraHfC8YsAP1uvIG4iRe02q6goIBjx45hMpmYMWNGq22E6E3S4q18NGw2RxMyiW+o4Ue7W59vOSU6gh07dnR5hqCKzz6j6osvICKCzEcfRZk691FnNpsZNWpUjy5TLoQIH5JEC373u99x7Ngxhg8fTv/+/YMdTqd4SioyEpuWdmQkWrnq337EZKcLgN0HD1J+9mxAYjj9+BPU5+cTkZ5O/3ZWhFy7di0AEyZMIDExMSCxCBFKpmf3Iz05lv+eeC1OZWLeye1ccnK7d78CMhOi2LHqHT788EP279/f6cdqOHWKot8+BkDK3XcRdd55ft9HYWFhWF+dE0L0DKmJ7sVefvnlVm/3JHEeM2bMYOfOnYEPKMDaq2tueOy3bHv8cYpTU1n94v9y7S8f7tbHrlyzhvL/+z9QigFPPI65jflua2pqKC0txWQycfHFF3drDEKEqnMDcGt5a+QCbj64in/Z8S77+2VxJsaYuebRK8YRdcbMunXrWLduHWPGjPG7B1g7nRT+8hFcNhvWCRPof++9fsdaU1PDq6++SnR0NLfddhtJSUl+34cQom+QnmjRq7RV12wZOJA5M2cCUHEol4o1X3TbY9YdOULhw78EoN8ddxDbTolGdHQ09913H7fddhv9+rU+97QQvZHnatGX05dyIHkIcY5afrP5ZYbEKO+qgTNmzCAyMpLTp0+zd+9evx+j+M9/xr5pEyo6mgFPPoGyWPy+j2+++Ya6ujqioqLkSpEQol2SRIs+Y/xNN/FdYOY3Gyj613+lNje3y/fpLC/nxL334qqqInrqFNIefKDDY0wmkwxUEn3SkvGZrHvkUjL//GccCUkMtxXyesnnLB5rTGsXHR3NrFmzAFizZg0Oh8Pn+y5//wNKX/obAAP+v/8kKjvb7/iqqqrYsmULYEwPKrXQQoj2SBIt+pRx//ZvxEyfjstu5/idd1J3NK/T9+W02Th+19005B/HMnAgg555BhUZ2Wpbl8vFtm3b/EoKhOiNzCbFjJnjGP4/z4HFQtXKlZx69FG0yxi3MGvWLOLj4ykvL2fz5s0+3WfFypUU/fu/A5Byz49JuPzyTsW2Zs0aGhoaGDhwICNHjuzUfQgh+g5JokWfoiwWBj79FM7x49mVlk7+7bdTd+iQ3/fjKC3l+J13UbtnD+bkZAb/z/NEtFOesXXrVj755BNeeeWVLs88IERvEDN5MgMe/wOYTJS//Y6RSDc0YLFYmD9/PgDr16+nurq63fupWLGCgp/+DBwOEq5YRv+f/KRT8RQUFLBjxw4AFi9eLL3QQogOSRIt+p74eFZMn8be8yeQGx9P3vU3ULFypc+H1+zdy7HvXedNoIe8/HK7MwBUV1fz5ZdfAnDBBRfIh7MQbonf+Q4Dnnjcm0gf/8GdOM6e5YILLiAjI4PsdkoytMPBmWefo+DBh4wEeulSBvzhD52azk5rzWeffQYY79HBgwd3+pyEEH2HJNGiz4mIiOAi98wYu6ZMwe5yUXD/AxT8/F9pKCxs8zinzUbxn/7MsetvoKGgAMuQIWS9/hrWUe1f9l2xYgV1dXVkZmYyefLkbj0XIcJd4rJlDPrvZzDFxmLfupWjS5dhe/ddvn/jjVx//fXExsa2OMaes51jN91MybPPApD8/e8z4PE/oMzmTsVQX19PbGwskZGRLFiwoEvnI4ToO5RcWgalVAJgs9lsJDSbmqy2tpa8vDyys7OxWltfXlp0n556vl0uFy+99BKFhYVkm81M/ccbKK3BbCZu3lziLppD5NChKLOJ+oIC7Ju3ULlyJS73peX4RYvIeOy3RCQnt/s4+/bt4+2330YpxV133cWAAQMCdk5ChLO6I0coePAhb3lVRGYmCUuWED1xIuaUfjiqq3EcOkTlqtXUuKfkNMXHk/HrX5F4pf8rEjantaa0tJSUlJQu35foORUVFZ5ZVBK11hXBjkf0LZJEI0l0KOnJ5/vUqVO8+OKLuFwuFk+aTOZ772HftKndY6LOO4/+Dz5AvA+9VVVVVTz//PPY7XbmzJnjrfMUQrRONzRQ+trrnH3pJZzuRZHqLRa2TZ9GhMPB9M3GzBmYzSRefRX9f/ITLOnpnX48l8uFUkpKrMKYJNEimGSxFdFnZWRkMH/+fFavXs2a3bu4+8knSC8ro3LlKmp27DBKO7QmIjUV67ixxF96KdGTJ/tcc/npp59it9tJT0/nkksuCfDZCBH+lMVCyg/uIPnmm6j68kuq1q3neGEBBYMHo5ViSP80Ljj/fOKXLMaSltblx1u9ejU2m40rrriCqKiobjgDIURfIkm06NNmzZpFXl4eR44c4euvv+aaa67BOmpUt9z34sWLqa2t5fLLL8fcyVpNIfoiU1QUCUuWkLBkCQOAuq++Yu3atWzsl8yohQvo1w0J9L59+9i4cSNgDCaUKe2EEP6SgYW93KlTp3jggQcYMWIEVquV9PR0Zs+e7S0z6OuUUlx99dVMnz6dZcuWdet9JyYmcuutt5Kamtqt9ytEXzNnzhyGDx9OQ0MDb7zxBmVlZV26v2PHjvH+++8DMHPmTEmghRCdIkl0L3b06FEmTZrEypUr+f3vf8/27dvZuHEjv/jFL/j4449ZvXp1sEMMCbGxsVx22WVY3EsEa607vSjK9u3b2bVrV3eGJ0SfZzKZ+N73vkd6ejrV1dW89tprnU6kCwoKePPNN3E4HIwaNYqFCxd2c7RCiL5CkuguqK+vb3NrnoS117ahoaHDtp1x7733EhERwbZt27juuusYM2YMw4YN48orr+STTz5h2bJlHDt2DKWUd5EBgPLycpRSrF271nvbnj17uOyyy4iLiyM9PZ3vf//7lJSUePe/8847TJgwgejoaFJSUli4cKF3kYS1a9cyffp0YmNjSUpKYvbs2eTn53fqnAJNa82qVat49dVXO1zkoflx69ev56OPPuL999/n+PHjAYxSiL4nKiqKm266ieTkZMrKynjrrbf8Xrjo0KFDvPLKK9TX15OVlcW1116LqRPzSgshBEhNdJf84Q9/aHPfeeedx0033eT9+Y9//GOLZNkjKyuL22+/3fvz008/3aLU4tFHH/UrtrNnz3p7oFubZxXweUR6eXk58+fP56677uK//uu/qKmp4eGHH+a6667jiy++oKioiBtvvJEnn3ySq6++msrKStavX+/t0b3qqqu4++67efPNN6mvr2fLli0hOxq+srKS7du3U1tbywsvvMCVV17J8OHD2z2mqqqK5cuXk5ubCxiXh2WxBiG6X0JCArfedjuv/ONNkkZfyKajpUzP7ofZ1PHfE4fDwfLly2loaGDYsGFcd911RETIR6AQovPkL0gvdfjwYbTWjGo2SC41NZXa2loA7rvvPu65554O7+vZZ59l0qRJ/P73v/fe9re//Y3BgweTm5tLVVUVDoeDa665hqysLAAmTJgAQGlpKTabjaVLl3qT0TFjxnTLOQZCQkICd9xxB2+//TYlJSW8/vrrjBw5kgsvvJCsrKwmAwRLS0vZvn07mzdvpqGhAbPZzOLFi5k2bVoQz0CI3mvFniIeW76PIttAOF4AFJCZaOXH42DS0P6MHj2ayMhIb3u73Y7ZbCYqKoqIiAiuvvpq9u3bx5IlS2SwrxCiyySJ7oJHHnmkzX3NLxH+/Oc/b7Nt817ZBx54oGuBtWPLli24XC5uvvlm6urqfDpm586dfPnll8TFxbXYd+TIERYtWsSCBQuYMGECixcvZtGiRVx77bUkJyfTr18/br/9dhYvXsyll17KwoULue6668jMzOzuU+s2aWlp3H333XzxxRds2bKF3NxccnNziYyM5Cc/+Yn3eXj//fc5efIkAAMHDmTp0qVkZGQEM3Qheq0Ve4q45/UcjAKOc38zqypsHMnZw7HtGpPJREpKClarFbvdztmzZ1mwYAEXXXQRANnZ2e0uJS6EEP6QJLoLGvd4BKttW0aMGIFSioMHDza5fdiwYQBER0cD55L9xrWFzctOqqqqWLZsGU888USLx8nMzMRsNrNq1So2bNjAypUr+e///m9+9atfsXnzZrKzs/n73//O/fffz4oVK/jnP//Jr3/9a1atWsWMGTO6fJ6BEhkZyZIlS5g6dSqbN29m79691NTUeJ83gCFDhhAZGcnUqVMZPXp0yJaoCBHunC7NY8v30VoFdL02s9ORyWjLWWJcdZw5c6bJfs8XXSGE6G6SRPdSKSkpXHrppTz77LP85Cc/abMuun///gAUFRUxadIkgCaDDAEmT57Mu+++y9ChQ9usIVRKMXv2bGbPns1vfvMbsrKyeP/99/npT38KwKRJk5g0aRKPPPIIM2fO5I033gjpJNojNTWV73znO1x++eWUlJQ0uQS8cOFCSZyF6AFb8kopstW2uq+OCHY6BrDTMYC/3TiWrDgXdXV1REdH079//1avoAkhRHeQYcm92F/+8hccDgdTp07ln//8J/v37+fgwYO8/vrrHDhwALPZTHR0NDNmzODxxx9n//79fPXVV/z6179ucj/33XcfpaWl3HjjjWzdupUjR47w+eefc8cdd+B0Otm8eTO///3v2bZtG8ePH+e9997jzJkzjBkzhry8PB555BE2btxIfn4+K1eu5NChQyFdF90apZT3C0fj24QQgVdc2XoC3VyljmT48OGMHTuW7OxsSaCFEAElPdG92PDhw9m+fTu///3veeSRRzh58iRRUVGMHTuWn//859x7772AMUjwzjvvZMqUKYwaNYonn3ySRYsWee9nwIABfPPNNzz88MMsWrSIuro6srKyWLJkCSaTiYSEBNatW8dTTz1FRUUFWVlZ/OlPf+Kyyy7j9OnTHDhwgFdeeYWzZ8+SmZnJfffdx49+9KNgPS1CiDCTFm/t1nZCCNEdlL/zbPZGSqkEwGaz2UhISGiyr7a2lry8PLKzs7Fa5Q90oMnzLYRozunSXPTEF5yy1bZaF62AjEQrXz8836fp7kTvUVFRQWJiIkCi1roi2PGIvkXKOYQQQoQ0s0nx6LKxQON5OWjy86PLxkoCLYToUZJECyGECHlLxmfy/C2TyUhseoUqI9HK87dMZsn40J02UwjRO0lNtBBCiLCwZHwml47NYEteKcWVtaTFW31esVAIIbqbJNFCCCHChtmkmDk8JdhhCCGElHP4SgZg9gx5noUQQggRDiSJ7oDFYgHAbrcHOZK+wfM8e553IYQQQohQJOUcHTCbzSQlJVFcXAxATEyMLLIRAFpr7HY7xcXFJCUlNVkZUAghhBAi1EgS7YOMjAwAbyItAicpKcn7fAshhBBChCpJon2glCIzM5O0tDQaGhqCHU6vZbFYpAdaCCGEEGFBkmg/mM1mSfKEEEIIIYQMLBRCCCGEEMJfkkQLIYQQQgjhJ0mihRBCCCGE8JPURDdSUVER7BCEEEII4SP53BbBpGSFOFBKDQROBjsOIYQQQnTKIK11QbCDEH2LJNGAMlZPGQBUBuDu4zES9EEBuv9gk/MLf739HOX8wl9vP0c5v67ff6GWhEb0MCnnANxvvIB8g220umGl1rrXXXeS8wt/vf0c5fzCX28/Rzm/Lut1z5kIDzKwUAghhBBCCD9JEi2EEEIIIYSfJIkOvDrgMfe/vZGcX/jr7eco5xf+evs5yvkJEYZkYKEQQgghhBB+kp5oIYQQQggh/CRJtBBCCCGEEH6SJFoIIYQQQgg/SRIthBBCCCGEnySJDiCl1H1KqWNKqVql1Gal1PRgx9QRf2JWSt2tlFqvlCpzb6ubt1dKvayU0s22FYE/E9/5ec63t3I+tT0Zb0f8PJ+1rZyPVkp90qhNyL+GrVFKXayUWq6UKnTHfFWwY/KFv3Erpa5RSq1SSp1RSlUopTYqpRY3a/PbVl7DAwE9ER914nzntvE7m9FDIberE+fT2vtLK6X2NmoTsq9fe5RSjyiltiqlKpVSxUqpD5RSo4IdlxDdRZLoAFFKXQ/8GWNan8nATuBzpVRaUANrRydingu8CcwDZgIngJVKqYHN2q0AMhttN3Z78J3UydepgqbnkxXoOH3VifO5hqbnMh5wAm83axeyr2E7YjHO/75gB+Inf+O+GFgFXA5MAb4EliulJjVrt5emr+FF3RJt13X2dRpF0/Mp7ua4Osvf83mApucxGCil5XswVF+/9lwCPAfMAC4FLBifEbFBjUqI7qK1li0AG7AZeLbRzyaMpcV/GezYAhUzYMZIMG9tdNvLwAfBPrfuOmfgdqA82HEH8DV80P0axobLa+jjeWngqmDH0VNxYyRcv2n082+BHcE+n+44X4wv7xpICna8gXj9gKsAF5AVbq+fD+fW3/2cXBzsWGSTrTs26YkOAKVUJEaP0GrPbVprl/vnmcGKqz3dFHMMRk9DabPb57ov5R1USj2vlErpjpi7qgvnHKeUyldKnVBKfaiUGhfgUH3STa/hncBbWuvqZreH5GsoWlJKmYB4Wr4Pz3OXGBxVSv1DKTUkCOF1px1KqSJ3KcvsYAfTje4EVmut85vd3htev0T3v81/N4UIS5JEB0YqRq/s6Wa3nwZCom6vFd0R8xNAIY2SOIwygFuBBcDDGJf3PlNKmbsUbffozDkfBH4AXAncgvEe2qCUGhSoIP3QpdfQXTs9HvjfZrtC+TUULf0ciAP+r9FtmzGuoiwB7gGygfVKqfgej67rioAfA991byeAtUqpyUGNqhsopQYAl9HyPRj2r5/7y91TwDda6z1BDkeIbhER7ABE76CU+iVwAzBXa+0daKe1fqtRs91KqV3AEYxLsmt6NMhuoLXeCGz0/KyU2gDsB34E/Huw4uomdwK7tdZbGt/Y217D3kwpdRPwKHCl1tpbI6y1/qxRs11Kqc1APnAd8FLPRtk1WuuDGF9mPTYopYYDDwHfD05U3eY2oBz4oPGNveT1ew7jS3o41HIL4RPpiQ6MEozBWenNbk8HTvV8OD7pdMxKqZ8DvwQWaa13tddWa33U/VgjOh9qt+ny66S1bgC2E+bn4x7ocwM+fCCH2Gso3JRSN2D0YF6ntV7dXlutdTmQS+95DbcQ5ueilFIYV7le01rXt9c23F4/pdSzwFJgntb6ZLDjEaK7SBIdAO4/gN9iXP4GvJeyFtCoFzOUdDZmpdQvMHpgl2itt3X0OO6yhxSMS7JB1R2vk7ukYQLhfz7fA6KA1zt6nFB6DYVBKXUj8HfgRq31Jz60jwOG03tew4mE/7lcgpEUd/hFNlxeP2V4FrgamK+1zgt2TEJ0JynnCJw/A68opbZh9JI8iDH10d+DGVQH2o1ZKfUqUKC1fsT988PA74CbgGON5mmt0lpXuf/QPwq8i9ETOhx4EjgMfN5TJ9UBf8/5N8AmjHNIAv4VY4q75jWMweLX+TRyJ8YMHGcb3xgmr2Gr3LE37qnLVkpNBEq11seDE1XHOopbKfUHYKDW+lZ3+5uAVzCmStvc6H1Yo7W2udv8EViOUQIwAGMKRCfGFJVB1YnzfRDIw5iBxArcBcwHFvVk3G3x93wauRPY3Fq9cCi/fh14DuPz4UqgstHvpk1rXRO8sIToJsGeHqQ3b8C/YPzRq8MYGHJhsGPqSszAWuDlRj8fw5iuqPn2W/f+aIxEqxiod7f/K5Ae7PPswjn/V6O2p4BPgEnBPofOno/7tlHu1+3SVu4rLF7DNp6HuW38fr4c7Ni6EjfGlINrm72m7Z4n8BbGoN864KT75+HBPtdOnu8vML7E1QBnMebFnhfs8+js+bhvSwTswN1t3GfIvn4dPBetPQ8auD3YsckmW3dsSmuNEEIIIYQQwndSEy2EEEIIIYSfJIkWQgghhBDCT5JECyGEEEII4SdJooUQQgghhPCTJNFCCCGEEEL4SZJoIYQQQggh/CRJtBBCCCGEEH6SJFoIIYQQQgg/SRIthOgzlFK3K6XKO2jzW6XUjp6JqMVjH3Mva93Tj/uyUkq7t6t8POZYo2OSAhuhEEKEHkmihQiyZglMvVLqsFLqN0qpiGDH1ln+JGM+3NdQ9/1NbGXfWqXUU93xOIGklJrb6DVua5sLTMNYVj0YVgCZwGc+tp8GfDdw4QghRGgL2w9pIXqZFcAdQBRwOfAc0AD8wd87UkqZAa21dnVrhEGglLIEO4bOUEpZtNYNjW7agJGgejwNJGC85h6lWuv6noivDXVa61O+NtZan1FKlQYyICGECGXSEy1EaKjTWp/SWudrrZ8HVgNXACilfqqU2q2UqlZKnVBK/UUpFec50FOioJS6Qim1D6gDhiilpimlVimlSpRSNqXUV0qpyY0f1N0D+iOl1MdKKbtSar9SaqZSaoS7l7daKbVBKTW82XFXKqVylFK1SqmjSqlHPT3nSqlj7mbvu+//mC/HNYrnHqXUR0qpauBX/jyJSqlkpdSrSqky9/l8ppQ6r4NjfqmUOq2UqlRKvQRYW2lzl/u5qVVKHVBK3dton6en/Hr3c1wL3Nz4eK11vfv1PeVOVGs495p7tvrm5RyBeH38eC4jlVLPKqWK3PeTr5R6xJ/7EEKI3kySaCFCUw0Q6f6/C7gfGAfcBswHnmzWPgZ4GLjL3a4YiAdeAS4CZgCHgE+VUvHNjv134FVgInAAeAN4AaMXfCqggGc9jZVSc9ztnwbGAj8CbudcwjvN/e8dGL2v03w8zuO3wPvABOBvrT89bXrZHfMVwEx37J+21aOtlLrO/Xj/5j6uCLi3WZubgd+54xzjbvsfSqnbmt3d4+5zGwN87mfc7enu18dX92M8j9cBozC+GBzr7EkIIUSvo7WWTTbZgrhhJH4fuP+vgIVALfD/2mh/LVDS6OfbAQ1c0MHjmIAKYGmj2zTwH41+nuG+7QeNbrsBqGn082rgkWb3fQtQ2Ox+r2rWxtfj/qtZm6Hu2+1AVbPNCTzlbneeu92sRsemuI/7XqPnqrzR/g3Ac80ebxOwo9HPh4Ebm7X5NbChWXwPdOY1b3b7MeDBQL8+vsQDPAOsAVQ7x811x5MUzPeQbLLJJlswNqmJFiI0LFVKVQEWjGT3DYweUpRSC4FHgNEYdbQRgFUpFaO1truPrwd2Nb5DpVQ68J8YiU4aYMbosR7S7LEbH3fa/e/uZrdZlVIJWusK4AJgtlKqcc+muZWYmvP1uG1tHH89sL/Zbf9o9P8xgAPY7LlBa31WKXXQva81Y4D/aXbbRmAegFIqFhgOvKSUerFRmwjA1uy4tuLuqp56fZp7GVgFHFRKrQA+1lqv7NQZCCFELyRJtBCh4UvgHoxkuFBr7QCj3hb4GHge43J8KUZ5xksY5R6ehKhGa62b3ecrGD2xDwD5GLXSGzlXJuLReACcbuc2T/lXHPAo8F4r51Hbzjn6elx1G8ef0FofbnyDUqqmncfrDp7a87tplJy7OZv93FbcXdVTr08TWuscpVQ2cBnG1ZH/U0qt1lpf6+t9CCFEbyZJtBChobp5gug2BSM5+pl2z7bhruP1xWzgXq31p+7jBgOp3RBrDjCqjXg9GjB6P/09riv2Y/xNuxCjTAOlVApGPe++do65EKOG2GOG5z9a69NKqUJgmNb6H80PDlHd9jy7e7b/CfxTKfUOsEIp1U9rLbNyCCH6PEmihQhthzFKPH6ilFqOkRj/2MdjDwHfV0ptwygD+X8YAxa76nfAx0qp48A7GAMfLwDGa61/7W5zDFiglPoGYxaKMh+P6zSt9SGl1IfAi0qpHwGVGIP9CoAP2zjsaeBl93P0DcbguXHA0UZtHgWeUUrZMKYijMIY0Jestf5zV+MOgG55npVSP8UYaLndfR/fA04B5d0dsBBChCOZnUOIEKa13gn8FGPmjT0YSZ6v04zdCSRj9Ey+hjFQrLgbYvocWAosArZiDMR7CKNkxONnwKXACYwkzNfjuuoO4FuMEpiNGAM1L9dN52xufC7/BP4DY7aTb4EsjNKZxm3+F2PWkzswapG/whigmNeNcXebbnyeK4FfYNR6b8UYQHm57gXzjwshRHdQLcsohRBC9CVKqZcxZti4ys/j5mLU8ydrrcu7Oy4hhAhl0hMthBAC3DPEKKWW+tJYKbUX35cIF0KIXkd6ooUQoo9TSqVh1M0DFGmtO5xpRCmVhVGvD3BUyjyEEH2NJNFCCCGEEEL4Sco5hBBCCCGE8JMk0UIIIYQQQvhJkmghhBBCCCH8JEm0EEIIIYQQfpIkWgghhBBCCD9JEi2EEEIIIYSfJIkWQgghhBDCT5JECyGEEEII4af/HwDoKdWbWwWKAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "a_obj = CosineAnalysis(label=\"Cosine experiment\").run()\n", "a_obj.display_figs_mpl()" ] }, { "cell_type": "markdown", "id": "5f30a46e", "metadata": {}, "source": [ "Inspecting the `experiment directory` will show something like this:\n", "\n", "```{code-block}\n", "20230125-172712-018-87b9bf-Cosine experiment/\n", "├── analysis_CosineAnalysis/\n", "│ ├── dataset_processed.hdf5\n", "│ ├── figs_mpl/\n", "│ │ ├── cos_fit.png\n", "│ │ └── cos_fit.svg\n", "│ ├── fit_results/\n", "│ │ └── cosine.txt\n", "│ └── quantities_of_interest.json\n", "├── cos-data-and-fit.png\n", "├── Cosine fit.png\n", "├── dataset.hdf5\n", "├── quantities_of_interest.json\n", "└── snapshot.json\n", "```\n", "\n", "As you can conclude from the {class}`!CosineAnalysis` code, we did not implement quite a few methods in there.\n", "These are provided by the {class}`~quantify_core.analysis.base_analysis.BaseAnalysis`.\n", "To gain some insight into what exactly is being executed we can enable the logging module and use the internal logger of the analysis instance:" ] }, { "cell_type": "code", "execution_count": 20, "id": "62be0929", "metadata": { "myst_nb": { "output_stderr": "show" } }, "outputs": [], "source": [ "# activate logging and set global level to show warnings only\n", "logging.basicConfig(level=logging.WARNING)\n", "\n", "# set analysis logger level to info (the logger is inherited from BaseAnalysis)\n", "a_obj.logger.setLevel(level=logging.INFO)\n", "_ = a_obj.run()" ] } ], "metadata": { "file_format": "mystnb", "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.23" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "09cb9dd174b14f31b07901329eee6cdb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1a3d528c4fa0428bb9345b3d33db2fe8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1bfd65741c8c4348aad06156243d0a76": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "63a45a7222ea40b897e436ccddd1665e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "6711973d8c6d46caaf163fe7aeacc625": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e17d6698c0e54a89b9b96f8e757311f7", "placeholder": "​", "style": "IPY_MODEL_63a45a7222ea40b897e436ccddd1665e", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ] " } }, "908fca793e9f4a9aa52c44872efc05cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1a3d528c4fa0428bb9345b3d33db2fe8", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9f0eed0eb8c74a728e8d38591161e4a5", "tabbable": null, "tooltip": null, "value": 100.0 } }, "9f0eed0eb8c74a728e8d38591161e4a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "ace4ccae705a4d7d99908e62290b1cea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "dc9387fd707a411e9921f1648c4ab7c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_de55c5bae0fc468684f48ccc5195ff8d", "IPY_MODEL_908fca793e9f4a9aa52c44872efc05cc", "IPY_MODEL_6711973d8c6d46caaf163fe7aeacc625" ], "layout": "IPY_MODEL_09cb9dd174b14f31b07901329eee6cdb", "tabbable": null, "tooltip": null } }, "de55c5bae0fc468684f48ccc5195ff8d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1bfd65741c8c4348aad06156243d0a76", "placeholder": "​", "style": "IPY_MODEL_ace4ccae705a4d7d99908e62290b1cea", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "e17d6698c0e54a89b9b96f8e757311f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }