#!/usr/bin/env python # coding: utf-8 # In[1]: get_ipython().run_line_magic("matplotlib", "inline") import json import logging from pathlib import Path from typing import Tuple import lmfit import matplotlib import matplotlib.pyplot as plt import numpy as np import xarray as xr from directory_tree import display_tree import quantify_core.visualization.pyqt_plotmon as pqm from quantify_core.analysis.cosine_analysis import CosineAnalysis from quantify_core.analysis.fitting_models import CosineModel, cos_func from quantify_core.data.handling import ( get_latest_tuid, load_dataset, locate_experiment_container, set_datadir, ) from quantify_core.measurement import MeasurementControl from quantify_core.utilities.examples_support import ( default_datadir, mk_cosine_instrument, ) from quantify_core.utilities.inspect_utils import display_source_code from quantify_core.visualization.SI_utilities import set_xlabel, set_ylabel # In[2]: # We recommend to always set the directory at the start of the python kernel # and stick to a single common data directory for all # notebooks/experiments within your measurement setup/PC # This sets a default data directory for tutorial purposes. Change it to your # desired data directory. # In[3]: set_datadir(default_datadir()) # change me! # In[4]: meas_ctrl = MeasurementControl("meas_ctrl") plotmon = pqm.PlotMonitor_pyqt("plotmon") meas_ctrl.instr_plotmon(plotmon.name) # In[5]: # We create an instrument to contain all the parameters of our model to ensure # we have proper data logging. display_source_code(mk_cosine_instrument) # In[6]: pars = mk_cosine_instrument() meas_ctrl.settables(pars.t) meas_ctrl.setpoints(np.linspace(0, 2, 30)) meas_ctrl.gettables(pars.sig) dataset = meas_ctrl.run("Cosine experiment") plotmon.main_QtPlot # In[7]: tuid = get_latest_tuid(contains="Cosine experiment") dataset = load_dataset(tuid) dataset # In[8]: # create a fitting model based on a cosine function fitting_model = lmfit.Model(cos_func) # specify initial guesses for each parameter fitting_model.set_param_hint("amplitude", value=0.5, min=0.1, max=2, vary=True) fitting_model.set_param_hint("frequency", value=0.8, vary=True) fitting_model.set_param_hint("phase", value=0) fitting_model.set_param_hint("offset", value=0) params = fitting_model.make_params() # here we run the fit fit_result = fitting_model.fit(dataset.y0.values, x=dataset.x0.values, params=params) # It is possible to get a quick visualization of our fit using a build-in method of lmfit _ = fit_result.plot_fit(show_init=True) # In[9]: fit_result # In[10]: quantities_of_interest = { "amplitude": fit_result.params["amplitude"].value, "frequency": fit_result.params["frequency"].value, } quantities_of_interest # In[11]: # the experiment folder is retrieved with a convenience function exp_folder = Path(locate_experiment_container(dataset.tuid)) exp_folder # In[12]: with open(exp_folder / "quantities_of_interest.json", "w", encoding="utf-8") as file: json.dump(quantities_of_interest, file) # In[13]: # create matplotlib figure fig, ax = plt.subplots() # plot data dataset.y0.plot.line(ax=ax, x="x0", marker="o", label="Data") # plot fit x_fit = np.linspace(dataset["x0"][0], dataset["x0"][-1], 1000) y_fit = cos_func(x=x_fit, **fit_result.best_values) ax.plot(x_fit, y_fit, label="Fit") ax.legend() # set units-aware tick labels set_xlabel(ax, dataset.x0.long_name, dataset.x0.units) set_ylabel(ax, dataset.y0.long_name, dataset.y0.units) # add a reference to the origal dataset in the figure title fig.suptitle(f"{dataset.attrs['name']}\ntuid: {dataset.attrs['tuid']}") # Save figure fig.savefig(exp_folder / "Cosine fit.png", dpi=300, bbox_inches="tight") # In[14]: class MyCosineModel(lmfit.model.Model): """ `lmfit` model with a guess for a cosine fit. """ def __init__(self, *args, **kwargs): """Configures the constraints of the model.""" # pass in the model's equation super().__init__(cos_func, *args, **kwargs) # configure constraints that are independent from the data to be fitted self.set_param_hint("frequency", min=0, vary=True) # enforce positive frequency self.set_param_hint("amplitude", min=0, vary=True) # enforce positive amplitude self.set_param_hint("offset", vary=True) self.set_param_hint( "phase", vary=True, min=-np.pi, max=np.pi ) # enforce phase range def guess(self, data, **kws) -> lmfit.parameter.Parameters: """Guess parameters based on the data.""" self.set_param_hint("offset", value=np.average(data)) self.set_param_hint("amplitude", value=(np.max(data) - np.min(data)) / 2) # a simple educated guess based on experiment type # a more elaborate but general approach is to use a Fourier transform self.set_param_hint("frequency", value=1.2) params_ = self.make_params() return lmfit.models.update_param_vals(params_, self.prefix, **kws) # In[15]: def extract_data(label: str) -> xr.Dataset: """Loads a dataset from its label.""" tuid_ = get_latest_tuid(contains=label) dataset_ = load_dataset(tuid_) return dataset_ def run_fitting(dataset_: xr.Dataset) -> lmfit.model.ModelResult: """Executes fitting.""" model = MyCosineModel() # create the fitting model params_guess = model.guess(data=dataset_.y0.values) result = model.fit( data=dataset_.y0.values, x=dataset_.x0.values, params=params_guess ) return result def analyze_fit_results(fit_result_: lmfit.model.ModelResult) -> dict: """Analyzes the fit results and saves quantities of interest.""" quantities = { "amplitude": fit_result_.params["amplitude"].value, "frequency": fit_result_.params["frequency"].value, } return quantities def plot_fit( fig_: matplotlib.figure.Figure, ax_: matplotlib.axes.Axes, dataset_: xr.Dataset, fit_result_: lmfit.model.ModelResult, ) -> Tuple[matplotlib.figure.Figure, matplotlib.axes.Axes]: """Plots a fit result.""" dataset_.y0.plot.line(ax=ax_, x="x0", marker="o", label="Data") # plot data x_fit_ = np.linspace(dataset_["x0"][0].values, dataset_["x0"][-1].values, 1000) y_fit_ = cos_func(x=x_fit_, **fit_result_.best_values) ax_.plot(x_fit, y_fit_, label="Fit") # plot fit ax_.legend() # set units-aware tick labels set_xlabel(ax_, dataset_.x0.long_name, dataset_.x0.units) set_ylabel(ax_, dataset_.y0.long_name, dataset_.y0.units) # add a reference to the original dataset_ in the figure title fig_.suptitle(f"{dataset_.attrs['name']}\ntuid: {dataset_.attrs['tuid']}") def save_quantities_of_interest(tuid_: str, quantities_of_interest_: dict) -> None: """Saves the quantities of interest to disk in JSON format.""" exp_folder_ = Path(locate_experiment_container(tuid_)) # Save fit results with open(exp_folder_ / "quantities_of_interest.json", "w", encoding="utf-8") as f_: json.dump(quantities_of_interest_, f_) def save_mpl_figure(tuid_: str, fig_: matplotlib.figure.Figure) -> None: """Saves a matplotlib figure as PNG.""" exp_folder_ = Path(locate_experiment_container(tuid_)) fig_.savefig(exp_folder_ / "Cosine fit.png", dpi=300, bbox_inches="tight") plt.close(fig_) # In[16]: dataset = extract_data(label="Cosine experiment") fit_result = run_fitting(dataset) quantities_of_interest = analyze_fit_results(fit_result) save_quantities_of_interest(dataset.tuid, quantities_of_interest) fig, ax = plt.subplots() plot_fit(fig_=fig, ax_=ax, dataset_=dataset, fit_result_=fit_result) save_mpl_figure(dataset.tuid, fig) # In[17]: print(display_tree(locate_experiment_container(dataset.tuid), string_rep=True)) # In[18]: class MyCosineAnalysis: """Analysis as a class.""" def __init__(self, label: str): """This is a special method that python calls when an instance of this class is created.""" self.label = label # objects to be filled up later when running the analysis self.tuid = None self.dataset = None self.fit_results = {} self.quantities_of_interest = {} self.figs_mpl = {} self.axs_mpl = {} # with just slight modification our functions become methods # with the advantage that we have access to all the necessary information from self def run(self): """Execute the analysis steps.""" self.extract_data() self.run_fitting() self.analyze_fit_results() self.create_figures() self.save_quantities_of_interest() self.save_figures() def extract_data(self): """Load data from disk.""" self.tuid = get_latest_tuid(contains=self.label) self.dataset = load_dataset(tuid) def run_fitting(self): """Fits the model to the data.""" model = MyCosineModel() guess = model.guess(self.dataset.y0.values) result = model.fit( self.dataset.y0.values, x=self.dataset.x0.values, params=guess ) self.fit_results.update({"cosine": result}) def analyze_fit_results(self): """Analyzes the fit results and saves quantities of interest.""" self.quantities_of_interest.update( { "amplitude": self.fit_results["cosine"].params["amplitude"].value, "frequency": self.fit_results["cosine"].params["frequency"].value, } ) def save_quantities_of_interest(self): """Save quantities of interest to disk.""" exp_folder_ = Path(locate_experiment_container(self.tuid)) with open( exp_folder_ / "quantities_of_interest.json", "w", encoding="utf-8" ) as file_: json.dump(self.quantities_of_interest, file_) def plot_fit(self, fig_: matplotlib.figure.Figure, ax_: matplotlib.axes.Axes): """Plot the fit result.""" self.dataset.y0.plot.line(ax=ax_, x="x0", marker="o", label="Data") # plot data x_fit_ = np.linspace(self.dataset["x0"][0], self.dataset["x0"][-1], 1000) y_fit_ = cos_func(x=x_fit_, **self.fit_results["cosine"].best_values) ax_.plot(x_fit_, y_fit_, label="Fit") # plot fit ax_.legend() # set units-aware tick labels set_xlabel(ax_, self.dataset.x0.long_name, self.dataset.x0.attrs["units"]) set_ylabel(ax_, self.dataset.y0.long_name, self.dataset.y0.attrs["units"]) # add a reference to the original dataset in the figure title fig_.suptitle(f"{dataset.attrs['name']}\ntuid: {dataset.attrs['tuid']}") def create_figures(self): """Create figures.""" fig_, ax_ = plt.subplots() self.plot_fit(fig_, ax_) fig_id = "cos-data-and-fit" self.figs_mpl.update({fig_id: fig_}) # keep a reference to `ax` as well # it can be accessed later to apply modifications (e.g., in a notebook) self.axs_mpl.update({fig_id: ax_}) def save_figures(self): """Save figures to disk.""" exp_folder_ = Path(locate_experiment_container(self.tuid)) for fig_name, fig_ in self.figs_mpl.items(): fig_.savefig(exp_folder_ / f"{fig_name}.png", dpi=300, bbox_inches="tight") plt.close(fig_) # In[19]: a_obj = MyCosineAnalysis(label="Cosine experiment") a_obj.run() a_obj.figs_mpl["cos-data-and-fit"] # In[20]: print(display_tree(locate_experiment_container(a_obj.dataset.tuid), string_rep=True)) # In[21]: display_source_code(CosineModel) display_source_code(CosineAnalysis) # In[22]: a_obj = CosineAnalysis(label="Cosine experiment").run() a_obj.display_figs_mpl() # In[23]: print(display_tree(locate_experiment_container(a_obj.dataset.tuid), string_rep=True)) # In[24]: # activate logging and set global level to show warnings only logging.basicConfig(level=logging.WARNING) # set analysis logger level to info (the logger is inherited from BaseAnalysis) a_obj.logger.setLevel(level=logging.INFO) _ = a_obj.run()