#!/usr/bin/env python # coding: utf-8 # In[1]: from pathlib import Path import matplotlib.pyplot as plt import numpy as np import xarray as xr from rich import pretty import quantify_core.data.dataset_attrs as dattrs from quantify_core.analysis.calibration import rotate_to_calibrated_axis from quantify_core.analysis.fitting_models import exp_decay_func from quantify_core.data import handling as dh from quantify_core.utilities import dataset_examples from quantify_core.utilities.examples_support import ( mk_iq_shots, mk_trace_for_iq_shot, mk_trace_time, round_trip_dataset, ) from quantify_core.utilities.inspect_utils import display_source_code from quantify_core.visualization.mpl_plotting import ( plot_complex_points, plot_xr_complex, plot_xr_complex_on_plane, ) pretty.install() dh.set_datadir(Path.home() / "quantify-data") # change me! # In[2]: display_source_code(dataset_examples.mk_two_qubit_chevron_dataset) # In[3]: dataset = dataset_examples.mk_two_qubit_chevron_dataset() assert dataset == round_trip_dataset(dataset) # confirm read/write dataset # In[4]: dataset_gridded = dh.to_gridded_dataset( dataset, dimension="main_dim", coords_names=dattrs.get_main_coords(dataset), ) dataset_gridded.pop_q0.plot.pcolormesh(x="amp", col="repetitions") _ = dataset_gridded.pop_q1.plot.pcolormesh(x="amp", col="repetitions") # In[5]: _ = dataset_gridded.pop_q0.mean(dim="repetitions").plot(x="amp") # In[6]: coord_dims = ("repetitions",) coord_values = ["A", "B", "C", "D", "E"] dataset_indexed_rep = xr.Dataset(coords=dict(repetitions=(coord_dims, coord_values))) dataset_indexed_rep # In[7]: # merge with the previous dataset dataset_rep = dataset_gridded.merge(dataset_indexed_rep, combine_attrs="drop_conflicts") assert dataset_rep == round_trip_dataset(dataset_rep) # confirm read/write dataset_rep # In[8]: _ = dataset_rep.pop_q0.sel(repetitions="E").plot(x="amp") # In[9]: for func in (mk_iq_shots, mk_trace_time, mk_trace_for_iq_shot): display_source_code(func) # In[10]: ground = -0.2 + 0.65j excited = 0.7 - 0.4j centers = ground, excited sigmas = [0.1] * 2 shots = mk_iq_shots( num_shots=256, sigmas=sigmas, centers=centers, probabilities=[0.4, 1 - 0.4], ) plt.hexbin(shots.real, shots.imag) plt.xlabel("I") plt.ylabel("Q") _ = plot_complex_points(centers, ax=plt.gca()) # In[11]: time = mk_trace_time() trace = mk_trace_for_iq_shot(shots[0]) fig, ax = plt.subplots(1, 1, figsize=(12, 12 / 1.61 / 2)) ax.plot(time * 1e6, trace.imag, ".-", label="I-quadrature") ax.plot(time * 1e6, trace.real, ".-", label="Q-quadrature") ax.set_xlabel("Time [µs]") ax.set_ylabel("Amplitude [V]") _ = ax.legend() # In[12]: # parameters of our qubit model tau = 30e-6 ground = -0.2 + 0.65j # ground state on the IQ-plane excited = 0.7 - 0.4j # excited state on the IQ-plane centers = ground, excited sigmas = [0.1] * 2 # sigma, NB in general not the same for both state # mock of data acquisition configuration # NB usually at least 1000+ shots are taken, here we use less for faster code execution num_shots = 256 # time delays between exciting the qubit and measuring its state t1_times = np.linspace(0, 120e-6, 30) # NB this are the ideal probabilities from repeating the measurement many times for a # qubit with a lifetime given by tau probabilities = exp_decay_func(t=t1_times, tau=tau, offset=0, n_factor=1, amplitude=1) # Ideal experiment result plt.ylabel("|1> probability") plt.suptitle("Typical processed data of a T1 experiment") plt.plot(t1_times * 1e6, probabilities, ".-") _ = plt.xlabel("Time [µs]") # In[13]: # convenience dict with the mock parameters mock_conf = dict( num_shots=num_shots, centers=centers, sigmas=sigmas, t1_times=t1_times, probabilities=probabilities, ) # In[14]: display_source_code(dataset_examples.mk_t1_av_dataset) # In[15]: dataset = dataset_examples.mk_t1_av_dataset(**mock_conf) assert dataset == round_trip_dataset(dataset) # confirm read/write dataset # In[16]: dataset.q0_iq_av.shape, dataset.q0_iq_av.dtype # In[17]: dataset_gridded = dh.to_gridded_dataset( dataset, dimension="main_dim", coords_names=dattrs.get_main_coords(dataset), ) dataset_gridded # In[18]: display_source_code(plot_xr_complex) display_source_code(plot_xr_complex_on_plane) # In[19]: plot_xr_complex(dataset_gridded.q0_iq_av) fig, ax = plot_xr_complex_on_plane(dataset_gridded.q0_iq_av) _ = plot_complex_points(centers, ax=ax) # In[20]: display_source_code(dataset_examples.mk_t1_av_with_cal_dataset) # In[21]: dataset = dataset_examples.mk_t1_av_with_cal_dataset(**mock_conf) assert dataset == round_trip_dataset(dataset) # confirm read/write dataset # In[22]: dattrs.get_main_dims(dataset), dattrs.get_secondary_dims(dataset) # In[23]: dataset.relationships # In[24]: dataset_gridded = dh.to_gridded_dataset( dataset, dimension="main_dim", coords_names=dattrs.get_main_coords(dataset), ) dataset_gridded = dh.to_gridded_dataset( dataset_gridded, dimension="cal_dim", coords_names=dattrs.get_secondary_coords(dataset_gridded), ) dataset_gridded # In[25]: fig = plt.figure(figsize=(8, 5)) ax = plt.subplot2grid((1, 10), (0, 0), colspan=9, fig=fig) plot_xr_complex(dataset_gridded.q0_iq_av, ax=ax) ax_calib = plt.subplot2grid((1, 10), (0, 9), colspan=1, fig=fig, sharey=ax) for i, color in zip( range(2), ["C0", "C1"] ): # plot each calibration point with same color dataset_gridded.q0_iq_av_cal.real[i : i + 1].plot.line( marker="o", ax=ax_calib, linestyle="", color=color ) dataset_gridded.q0_iq_av_cal.imag[i : i + 1].plot.line( marker="o", ax=ax_calib, linestyle="", color=color ) ax_calib.yaxis.set_label_position("right") ax_calib.yaxis.tick_right() fig, ax = plot_xr_complex_on_plane(dataset_gridded.q0_iq_av) _ = plot_complex_points(dataset_gridded.q0_iq_av_cal.values, ax=ax) # In[26]: rotated_and_normalized = rotate_to_calibrated_axis( dataset_gridded.q0_iq_av.values, *dataset_gridded.q0_iq_av_cal.values ) rotated_and_normalized_da = xr.DataArray(dataset_gridded.q0_iq_av) rotated_and_normalized_da.values = rotated_and_normalized rotated_and_normalized_da.attrs["long_name"] = "|1> Population" rotated_and_normalized_da.attrs["units"] = "" _ = plot_xr_complex(rotated_and_normalized_da) # In[27]: display_source_code(dataset_examples.mk_t1_shots_dataset) # In[28]: dataset = dataset_examples.mk_t1_shots_dataset(**mock_conf) dataset # In[29]: dataset_gridded = dh.to_gridded_dataset( dataset, dimension="main_dim", coords_names=dattrs.get_main_coords(dataset), ) dataset_gridded = dh.to_gridded_dataset( dataset_gridded, dimension="cal_dim", coords_names=dattrs.get_secondary_coords(dataset_gridded), ) dataset_gridded # In[30]: _ = plot_xr_complex(dataset_gridded.q0_iq_av) _, ax = plot_xr_complex_on_plane(dataset_gridded.q0_iq_av) _ = plot_complex_points(dataset_gridded.q0_iq_av_cal.values, ax=ax) # In[31]: chosen_time_values = [ t1_times[1], # second value selected otherwise we won't see both centers t1_times[len(t1_times) // 5], # a value close to the end of the experiment ] for t_example in chosen_time_values: shots_example = ( dataset_gridded.q0_iq_shots.real.sel(t1_time=t_example), dataset_gridded.q0_iq_shots.imag.sel(t1_time=t_example), ) plt.hexbin(*shots_example) plt.xlabel("I") plt.ylabel("Q") calib_0 = dataset_gridded.q0_iq_av_cal.sel(cal="|0>") calib_1 = dataset_gridded.q0_iq_av_cal.sel(cal="|1>") plot_complex_points([calib_0, calib_1], ax=plt.gca()) plt.suptitle(f"Shots for t = {t_example:.5f} [s]") plt.show() # In[32]: q0_iq_shots_mean = dataset_gridded.q0_iq_shots.mean(dim="repetitions", keep_attrs=True) plot_xr_complex(q0_iq_shots_mean) _, ax = plot_xr_complex_on_plane(q0_iq_shots_mean) _ = plot_complex_points(centers, ax=ax) # In[33]: display_source_code(dataset_examples.mk_t1_traces_dataset) # In[34]: dataset = dataset_examples.mk_t1_traces_dataset(**mock_conf) assert dataset == round_trip_dataset(dataset) # confirm read/write dataset # In[35]: dataset.q0_traces.shape, dataset.q0_traces_cal.shape # In[36]: dataset_gridded = dh.to_gridded_dataset( dataset, dimension="main_dim", coords_names=["t1_time"], ) dataset_gridded = dh.to_gridded_dataset( dataset_gridded, dimension="cal_dim", coords_names=["cal"], ) dataset_gridded = dh.to_gridded_dataset( dataset_gridded, dimension="trace_dim", coords_names=["trace_time"] ) dataset_gridded # In[37]: dataset_gridded.q0_traces.shape, dataset_gridded.q0_traces.dims # In[38]: trace_example = dataset_gridded.q0_traces.sel( repetitions=123, t1_time=dataset_gridded.t1_time[-1] ) trace_example.shape, trace_example.dtype # In[39]: trace_example_plt = trace_example[:200] trace_example_plt.real.plot(figsize=(15, 5), marker=".", label="I-quadrature") trace_example_plt.imag.plot(marker=".", label="Q-quadrature") plt.gca().legend() plt.show()