#!/usr/bin/env python # coding: utf-8 # In[1]: # pylint: disable=line-too-long # pylint: disable=wrong-import-order # pylint: disable=wrong-import-position # pylint: disable=pointless-string-statement # pylint: disable=pointless-statement # pylint: disable=invalid-name # pylint: disable=duplicate-code # pylint: disable=missing-function-docstring # In[2]: get_ipython().run_line_magic('matplotlib', 'inline') import numpy as np # In[3]: import quantify_core.visualization.pyqt_plotmon as pqm from quantify_core.analysis import base_analysis as ba from quantify_core.analysis import cosine_analysis as ca from quantify_core.data.handling import set_datadir from quantify_core.measurement import MeasurementControl from quantify_core.utilities.examples_support import ( default_datadir, mk_cosine_instrument, ) from quantify_core.utilities.experiment_helpers import create_plotmon_from_historical # In[4]: from quantify_core.utilities.inspect_utils import display_source_code from quantify_core.visualization.instrument_monitor import InstrumentMonitor # In[5]: # We recommend to always set the directory at the start of the python kernel # and stick to a single common data directory for all # notebooks/experiments within your measurement setup/PC # This sets a default data directory for tutorial purposes. Change it to your # desired data directory. # In[6]: set_datadir(default_datadir()) # change me! # In[7]: meas_ctrl = MeasurementControl("meas_ctrl") # Create the live plotting intrument which handles the graphical interface # Two windows will be created, the main will feature 1D plots and any 2D plots will go to the secondary plotmon = pqm.PlotMonitor_pyqt("plotmon") # Connect the live plotting monitor to the measurement control meas_ctrl.instr_plotmon(plotmon.name) # The instrument monitor will give an overview of all parameters of all instruments insmon = InstrumentMonitor("Instruments Monitor") # In[8]: # We create an instrument to contain all the parameters of our model to ensure # we have proper data logging. display_source_code(mk_cosine_instrument) # In[9]: pars = mk_cosine_instrument() # In[10]: # by setting this to a non-zero value we can see the live plotting in action for a slower experiment pars.acq_delay(0.0) # In[11]: meas_ctrl.settables( pars.t ) # as a QCoDeS parameter, 't' obeys the JSON schema for a valid Settable and can be passed to the meas_ctrl directly. meas_ctrl.setpoints(np.linspace(0, 2, 50)) meas_ctrl.gettables( pars.sig ) # as a QCoDeS parameter, 'sig' obeys the JSON schema for a valid Gettable and can be passed to the meas_ctrl directly. dataset = meas_ctrl.run("Cosine test") # In[12]: plotmon.main_QtPlot # In[13]: # The dataset has a time-based unique identifier automatically assigned to it # The name of the experiment is stored as well dataset.attrs["tuid"], dataset.attrs["name"] # In[14]: dataset # In[15]: # By default the meas_ctrl updates the datafile and live plot every 0.1 seconds (and not faster) to reduce overhead. meas_ctrl.update_interval( 0.1 ) # Setting it even to 0.01 creates a dramatic slowdown, try it out! # In[16]: meas_ctrl.settables(pars.t) meas_ctrl.setpoints(np.linspace(0, 50, 1000)) meas_ctrl.gettables(pars.sig) dataset = meas_ctrl.run("Many points live plot test") # In[17]: plotmon.main_QtPlot # In[18]: pars.noise_level(0) # let's disable noise from here on to get prettier figures # In[19]: a_obj = ca.CosineAnalysis(label="Cosine test").run() a_obj.display_figs_mpl() # In[20]: pars.acq_delay(0.0001) meas_ctrl.update_interval(2.0) # In[21]: times = np.linspace(0, 5, 500) amps = np.linspace(-1, 1, 31) meas_ctrl.settables([pars.t, pars.amp]) # meas_ctrl takes care of creating a meshgrid meas_ctrl.setpoints_grid([times, amps]) meas_ctrl.gettables(pars.sig) dataset = meas_ctrl.run("2D Cosine test") # In[22]: plotmon.secondary_QtPlot # In[23]: a_obj = ba.Basic2DAnalysis(label="2D Cosine test").run() a_obj.display_figs_mpl() # In[24]: r = np.linspace(0, 1.2, 200) dt = np.linspace(0, 0.5, 200) f = 3 theta = np.cos(2 * np.pi * f * dt) def polar_coords(r_, theta_): x_ = r_ * np.cos(2 * np.pi * theta_) y_ = r_ * np.sin(2 * np.pi * theta_) return x_, y_ x, y = polar_coords(r, theta) setpoints = np.column_stack([x, y]) setpoints[:5] # show a few points # In[25]: pars.acq_delay(0.0001) meas_ctrl.update_interval(2.0) # In[26]: meas_ctrl.settables([pars.t, pars.amp]) meas_ctrl.setpoints(setpoints) meas_ctrl.gettables(pars.sig) dataset = meas_ctrl.run("2D radial setpoints") # In[27]: plotmon.secondary_QtPlot # In[28]: plotmon_loaded = create_plotmon_from_historical(label="2D radial setpoints") plotmon_loaded.secondary_QtPlot