{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "fa33d6d8", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:39.605913Z", "iopub.status.busy": "2023-09-26T17:43:39.605733Z", "iopub.status.idle": "2023-09-26T17:43:40.784239Z", "shell.execute_reply": "2023-09-26T17:43:40.783572Z" } }, "outputs": [], "source": [ "from pathlib import Path\n", "\n", "import matplotlib.pyplot as plt\n", "import xarray as xr\n", "from rich import pretty\n", "\n", "import quantify_core.data.dataset_adapters as dadapters\n", "import quantify_core.data.dataset_attrs as dattrs\n", "from quantify_core.data import handling as dh\n", "from quantify_core.utilities import dataset_examples\n", "from quantify_core.utilities.examples_support import round_trip_dataset\n", "from quantify_core.utilities.inspect_utils import display_source_code\n", "\n", "pretty.install()\n", "\n", "dh.set_datadir(Path.home() / \"quantify-data\") # change me!" ] }, { "cell_type": "code", "execution_count": 2, "id": "95aa4f0e", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:40.787086Z", "iopub.status.busy": "2023-09-26T17:43:40.786758Z", "iopub.status.idle": "2023-09-26T17:43:40.843101Z", "shell.execute_reply": "2023-09-26T17:43:40.842370Z" } }, "outputs": [ { "data": { "text/html": [ "
def mk_two_qubit_chevron_dataset(**kwargs) -> xr.Dataset:\n",
       "    """\n",
       "    Generates a dataset that look similar to a two-qubit Chevron experiment.\n",
       "\n",
       "    Parameters\n",
       "    ----------\n",
       "    **kwargs\n",
       "        Keyword arguments passed to :func:`~.mk_two_qubit_chevron_data`.\n",
       "\n",
       "    Returns\n",
       "    -------\n",
       "    :\n",
       "        A mock Quantify dataset.\n",
       "    """\n",
       "    amp_values, time_values, pop_q0, pop_q1 = mk_two_qubit_chevron_data(**kwargs)\n",
       "\n",
       "    dims_q0 = dims_q1 = ("repetitions", "main_dim")\n",
       "    pop_q0_attrs = mk_main_var_attrs(\n",
       "        long_name="Population Q0", unit="", has_repetitions=True\n",
       "    )\n",
       "    pop_q1_attrs = mk_main_var_attrs(\n",
       "        long_name="Population Q1", unit="", has_repetitions=True\n",
       "    )\n",
       "    data_vars = dict(\n",
       "        pop_q0=(dims_q0, pop_q0, pop_q0_attrs),\n",
       "        pop_q1=(dims_q1, pop_q1, pop_q1_attrs),\n",
       "    )\n",
       "\n",
       "    dims_amp = dims_time = ("main_dim",)\n",
       "    amp_attrs = mk_main_coord_attrs(long_name="Amplitude", unit="V")\n",
       "    time_attrs = mk_main_coord_attrs(long_name="Time", unit="s")\n",
       "    coords = dict(\n",
       "        amp=(dims_amp, amp_values, amp_attrs),\n",
       "        time=(dims_time, time_values, time_attrs),\n",
       "    )\n",
       "\n",
       "    dataset_attrs = mk_dataset_attrs()\n",
       "    dataset = xr.Dataset(data_vars=data_vars, coords=coords, attrs=dataset_attrs)\n",
       "\n",
       "    return dataset\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k}{def} \\PY{n+nf}{mk\\PYZus{}two\\PYZus{}qubit\\PYZus{}chevron\\PYZus{}dataset}\\PY{p}{(}\\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{xr}\\PY{o}{.}\\PY{n}{Dataset}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Generates a dataset that look similar to a two\\PYZhy{}qubit Chevron experiment.}\n", "\n", "\\PY{l+s+sd}{ Parameters}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ **kwargs}\n", "\\PY{l+s+sd}{ Keyword arguments passed to :func:`\\PYZti{}.mk\\PYZus{}two\\PYZus{}qubit\\PYZus{}chevron\\PYZus{}data`.}\n", "\n", "\\PY{l+s+sd}{ Returns}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ :}\n", "\\PY{l+s+sd}{ A mock Quantify dataset.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", " \\PY{n}{amp\\PYZus{}values}\\PY{p}{,} \\PY{n}{time\\PYZus{}values}\\PY{p}{,} \\PY{n}{pop\\PYZus{}q0}\\PY{p}{,} \\PY{n}{pop\\PYZus{}q1} \\PY{o}{=} \\PY{n}{mk\\PYZus{}two\\PYZus{}qubit\\PYZus{}chevron\\PYZus{}data}\\PY{p}{(}\\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)}\n", "\n", " \\PY{n}{dims\\PYZus{}q0} \\PY{o}{=} \\PY{n}{dims\\PYZus{}q1} \\PY{o}{=} \\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{repetitions}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{main\\PYZus{}dim}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", " \\PY{n}{pop\\PYZus{}q0\\PYZus{}attrs} \\PY{o}{=} \\PY{n}{mk\\PYZus{}main\\PYZus{}var\\PYZus{}attrs}\\PY{p}{(}\n", " \\PY{n}{long\\PYZus{}name}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Population Q0}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{has\\PYZus{}repetitions}\\PY{o}{=}\\PY{k+kc}{True}\n", " \\PY{p}{)}\n", " \\PY{n}{pop\\PYZus{}q1\\PYZus{}attrs} \\PY{o}{=} \\PY{n}{mk\\PYZus{}main\\PYZus{}var\\PYZus{}attrs}\\PY{p}{(}\n", " \\PY{n}{long\\PYZus{}name}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Population Q1}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{has\\PYZus{}repetitions}\\PY{o}{=}\\PY{k+kc}{True}\n", " \\PY{p}{)}\n", " \\PY{n}{data\\PYZus{}vars} \\PY{o}{=} \\PY{n+nb}{dict}\\PY{p}{(}\n", " \\PY{n}{pop\\PYZus{}q0}\\PY{o}{=}\\PY{p}{(}\\PY{n}{dims\\PYZus{}q0}\\PY{p}{,} \\PY{n}{pop\\PYZus{}q0}\\PY{p}{,} \\PY{n}{pop\\PYZus{}q0\\PYZus{}attrs}\\PY{p}{)}\\PY{p}{,}\n", " \\PY{n}{pop\\PYZus{}q1}\\PY{o}{=}\\PY{p}{(}\\PY{n}{dims\\PYZus{}q1}\\PY{p}{,} \\PY{n}{pop\\PYZus{}q1}\\PY{p}{,} \\PY{n}{pop\\PYZus{}q1\\PYZus{}attrs}\\PY{p}{)}\\PY{p}{,}\n", " \\PY{p}{)}\n", "\n", " \\PY{n}{dims\\PYZus{}amp} \\PY{o}{=} \\PY{n}{dims\\PYZus{}time} \\PY{o}{=} \\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{main\\PYZus{}dim}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\\PY{p}{)}\n", " \\PY{n}{amp\\PYZus{}attrs} \\PY{o}{=} \\PY{n}{mk\\PYZus{}main\\PYZus{}coord\\PYZus{}attrs}\\PY{p}{(}\\PY{n}{long\\PYZus{}name}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{V}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", " \\PY{n}{time\\PYZus{}attrs} \\PY{o}{=} \\PY{n}{mk\\PYZus{}main\\PYZus{}coord\\PYZus{}attrs}\\PY{p}{(}\\PY{n}{long\\PYZus{}name}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Time}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{s}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", " \\PY{n}{coords} \\PY{o}{=} \\PY{n+nb}{dict}\\PY{p}{(}\n", " \\PY{n}{amp}\\PY{o}{=}\\PY{p}{(}\\PY{n}{dims\\PYZus{}amp}\\PY{p}{,} \\PY{n}{amp\\PYZus{}values}\\PY{p}{,} \\PY{n}{amp\\PYZus{}attrs}\\PY{p}{)}\\PY{p}{,}\n", " \\PY{n}{time}\\PY{o}{=}\\PY{p}{(}\\PY{n}{dims\\PYZus{}time}\\PY{p}{,} \\PY{n}{time\\PYZus{}values}\\PY{p}{,} \\PY{n}{time\\PYZus{}attrs}\\PY{p}{)}\\PY{p}{,}\n", " \\PY{p}{)}\n", "\n", " \\PY{n}{dataset\\PYZus{}attrs} \\PY{o}{=} \\PY{n}{mk\\PYZus{}dataset\\PYZus{}attrs}\\PY{p}{(}\\PY{p}{)}\n", " \\PY{n}{dataset} \\PY{o}{=} \\PY{n}{xr}\\PY{o}{.}\\PY{n}{Dataset}\\PY{p}{(}\\PY{n}{data\\PYZus{}vars}\\PY{o}{=}\\PY{n}{data\\PYZus{}vars}\\PY{p}{,} \\PY{n}{coords}\\PY{o}{=}\\PY{n}{coords}\\PY{p}{,} \\PY{n}{attrs}\\PY{o}{=}\\PY{n}{dataset\\PYZus{}attrs}\\PY{p}{)}\n", "\n", " \\PY{k}{return} \\PY{n}{dataset}\n", "\\end{Verbatim}\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display_source_code(dataset_examples.mk_two_qubit_chevron_dataset)" ] }, { "cell_type": "code", "execution_count": 3, "id": "95b284c1", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:40.845478Z", "iopub.status.busy": "2023-09-26T17:43:40.845287Z", "iopub.status.idle": "2023-09-26T17:43:40.915328Z", "shell.execute_reply": "2023-09-26T17:43:40.914689Z" } }, "outputs": [], "source": [ "dataset = dataset_examples.mk_two_qubit_chevron_dataset()\n", "\n", "assert dataset == round_trip_dataset(dataset) # confirm read/write" ] }, { "cell_type": "code", "execution_count": 4, "id": "7ceb990a", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:40.917988Z", "iopub.status.busy": "2023-09-26T17:43:40.917793Z", "iopub.status.idle": "2023-09-26T17:43:40.932774Z", "shell.execute_reply": "2023-09-26T17:43:40.932071Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:  (repetitions: 5, main_dim: 1200)\n",
       "Coordinates:\n",
       "    amp      (main_dim) float64 0.45 0.4534 0.4569 0.4603 ... 0.5431 0.5466 0.55\n",
       "    time     (main_dim) float64 0.0 0.0 0.0 0.0 0.0 ... 1e-07 1e-07 1e-07 1e-07\n",
       "Dimensions without coordinates: repetitions, main_dim\n",
       "Data variables:\n",
       "    pop_q0   (repetitions, main_dim) float64 0.5 0.5 0.5 ... 0.4886 0.4818 0.5\n",
       "    pop_q1   (repetitions, main_dim) float64 0.5 0.5 0.5 ... 0.5243 0.5371 0.5\n",
       "Attributes:\n",
       "    tuid:                      20230926-194340-851-8a0f58\n",
       "    dataset_name:              \n",
       "    dataset_state:             None\n",
       "    timestamp_start:           None\n",
       "    timestamp_end:             None\n",
       "    quantify_dataset_version:  2.0.0\n",
       "    software_versions:         {}\n",
       "    relationships:             []\n",
       "    json_serialize_exclude:    []
" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset" ] }, { "cell_type": "code", "execution_count": 5, "id": "cb72f99e", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:40.935259Z", "iopub.status.busy": "2023-09-26T17:43:40.934943Z", "iopub.status.idle": "2023-09-26T17:43:41.516153Z", "shell.execute_reply": "2023-09-26T17:43:41.515405Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAANBCAYAAAAMTUR2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT5f4H8M9JmrYpXUDppBSQLbvIcgEyFNSLOHABIuJELrc/BzgQcICgDIEriihyFcEBisqqCAKyQZRZoLQUaNpSaJO2Sds0Ob8/QgIlaUnapOck+bxfL15tzsnJeVKeb06+51mCKIoiiIiIiIiIqFYUUheAiIiIiIjIFzC5IiIiIiIicgMmV0RERERERG7A5IqIiIiIiMgNmFwRERERERG5AZMrIiIiIiIiN2ByRURERERE5AZMroiIiIiIiNwgQOoCyJHZbEZ2djbCwsIgCILUxSEiIiIiIomIooiioiLEx8dDoai+bYrJlQPZ2dlITEyUuhhERERERCQTZ8+eRePGjat9DpMrB8LCwgBY/oDh4eGSlsVoNGLjxo0YOHAgVCqVpGUh6bAeEOsAsQ4Q6wABrAdS0Ol0SExMtOUI1WFy5YC1K2B4eLgskquQkBCEh4czgPwY6wGxDhDrALEOEMB6ICVnhgtxQgsiIiIiIiI3YHJFRLKh0RqwIz0fGq1B6qIQSYZxQMQ4IO/FboFEJAsr92Zh0qpDMIuAQgCmD+uA4Tc1kbpYRHWKcUDEOCDvxuSKiCSn0RowcdUhiKLlsVkEXlt1GLe1aoS4CLW0hSOqI4wDostx8MMhXA4D2cWBKIqoqKiAyWSSrAxGoxEBAQEoLS2VtBy+RKlUIiAgwC1LMDG5IiLJLdtxxvaF0sokisjM18viYkrkaaIo4r+b0xkH5NfMZhEz1x/HNWEgmzgoLy+HRqOBXq+XtByiKCI2NhZnz57leqxuFBISgri4OAQGBtbqdZhcEZFkKkxmTF93HEu2Z9jtUwoCmkaFSFAqorpVajTh9dWH8cOBc3b7GAfkL4pKjfjPyr/x27Fcu31yiAOz2YyMjAwolUrEx8cjMDBQssTGbDajuLgYoaGh113Qlq5PFEWUl5fjwoULyMjIQMuWLWv1d2VyRUR1SqM1ICO/BA3rBeLtX45h+6l8AEDb2DAcyykCYLmQvjesveR3KYk8xRoHoYEBeHPNEfx9thBKhYAWjeohLbcYAOOAfJ81DgIUAl5bfRin8ooRGKBAUoMQnMyTVxyUl5fDbDYjMTERISHSJ3rl5eUIDg5mcuUmarUaKpUKZ86csf1ta4rJFRHVmasHKVuFBCrx4YOdkFBfjXsX/ImG9VT4Zfytkl9IiTzFURxEhqiw8NGuKKsw4cml+9Asqh6Wj+3BOCCf5SgOYsKD8OmIbkjLLcIr3/+DzokR+PjxZFnFAZMZ3+Wu/1vWECKqExqtwe5CCgCLHk/GXR3iEBKoBACYRMjqQkrkTlXFwWcju+HmFlFQqyz3PBUC44B8V3Vx0Ckx0nY9CApQMg7I6zC5IqI6cTqvxO5CCgAqpeVjSB1o+VKpL+fMR+S7TuUVO4wDo8my0fql0sA4IB+WllPkMA6Kyyz13hYHRsaBN2vatCnmzp1reywIAn788cc6OZeUmFwRkccVl1Xgk63pdtuvHqQcorJcTMsrzDA5uuoSeblLJeWYk3rCbnulOLj8pVLPL5XkozRaA2asO263/eo4sLbg8mab++zcuRNKpRJDhgyRrAwajQZ33XUXACAzMxOCIODgwYOSlcdTmFwRkUeduViCYf/9E1tP5kMpCLBOrnTtIGX15S+VAKAvr5CiqEQec0yjw70LtuNAViEClQIU14kDfqkkX7Qv8xLumf8njucUISRQWWUcsAXX/ZYsWYIXX3wRW7duRXZ2tiRliI2NRVBQkCTnrktMrojIIzRaAz79Ix13z9+OE7nFaBQWhO+e64UdE/vhm7E9sX1iXwy/qYnt+UEBClvixQsq+QqN1oC5qSdw38I/ca7AgKSGIfhl/K34s4o4ULMFl3yQRmvAu78excOf7kR+cRnaxIZhw4Tbqo4D200G37zRptEasCM9HxqtoU7OV1xcjJUrV+K5557DkCFDsHTpUtu+LVu2QBAEbNiwAV26dIFarUa/fv2Ql5eHdevWoW3btggPD8ejjz5aaX2vPn36YNy4cRg3bhwiIiIQFRWFN998E+K1i/Vd5epugc2aNQMAdOnSBYIgoE+fPrbXnTBhQqXjhg4diieeeML2OC8vD/fccw/UajWaNWuGr7/+2u5chYWFeOqpp9CoUSOEh4ejX79++Pvvv137w9UQZwskIrdbsccyC5T1I7ZxfTW+f7Y3YiMsU5s6GqAsCAJCVEqUlJt41558wjd7svDaVXHQMjoU3z3bC5EhlgUqHcVBSOCVy7K+vAJhwaq6KCqRxyzffQavrT5se9whIQIrn+lpq+uO4sB6k0HO1wJRFGs0JuyH/efw1pojMIuWiWum3nsj7k9u7NJrBCldW1/r22+/RZs2bdC6dWs8/vjjmDBhAiZNmlRpna4pU6ZgwYIFCAkJwUMPPYSHHnoIQUFBWL58OYqLi3Hfffdh/vz5ePXVV23HfPnllxgzZgz27NmDffv24emnn0aTJk0wduzY65Zpz5496N69O3777TfceOONLi3c+8QTTyA7OxubN2+GSqXC+PHjkZeXV+k5Dz74INRqNdatW4eIiAh88sknuOOOO3DixAk0aNDA6XPVBJMrInKrzPwSTFx1qNK27EIDRFz/Lrw6MIDJFfmEk7lFmHRNHKRfKIbBaEJkNccFqywtuKJoacFlckXe7Gi2tlJiZd2mNRgr3Ui4lrVbYNnlFlylQprFeqtjMJrQbvKGWr2GWQTe/OkI3vzpiEvHHZ4ywKXnL1myBI8//jgA4M4774RWq8Uff/xhay0CgHfeeQc333wzAGDMmDGYNGkS0tPT0bx5cwDAAw88gM2bN1dKrhITEzFnzhwIgoDWrVvj0KFDmDNnjlPJVaNGjQAADRs2RGxsrNPv5cSJE1i3bh327NmDm266yfb+2rZta3vO9u3bsWfPHuTl5dm6IX7wwQf48ccf8f333+Ppp592+nw1IYtugQsXLkTTpk0RHByMHj16YM+ePVU+d+nSpRAEodK/6hb6evbZZyEIgmxmECHyZTnaUoz5cq/ddrMIZObrHRxRGWeIIl+QkV+CUV/YX8eciQNBEGx37RkH5M2OZGsxcol9HJiciIOrE69SxkGtpKWlYc+ePXjkkUcAAAEBARg+fDiWLFlS6XkdO3a0/R4TE4OQkBBbYmXddm3rUM+ePSu1fvXq1QsnT56EyeS5/7Njx44hICAAycnJtm1t2rRBZGSk7fHff/+N4uJiNGzYEKGhobZ/GRkZSE+3n1zL3SRvuVq5ciVSUlKwaNEi9OjRA3PnzsWgQYOQlpaG6Ohoh8eEh4cjLS3N9vjq/9irrV69Grt27UJ8fLxHyk5EVxzIKsCz/9uPvKIyu31XzwJVHQ5iJm/3x4kLeHH5AehK7ceKuBIHerbgkhf7+e9svPz93yg1mu32ORMHV7fg6stNqBck+ddVO2qVEkenDXLpmBxtKfrP/qPSNPQKAfgt5XZbt3lnBCkFFJU699wlS5agoqKi0ndhURQRFBSEBQsW2LapVFdayQVBqPTYus1stv//dDeFQmE3bstoNLr0GsXFxYiLi8OWLVvs9l2dhHmK5LV19uzZGDt2LEaPHg0AWLRoEX799Vd8/vnnmDhxosNjBEG4bhPi+fPn8eKLL2LDhg2STjtJ5Ms0WgMy8ktw+LwWH2w4gXKTGa1iQjG0cwI+3HgCJlG0mwWqOr4+iJl8k0ZrQMaFEuxMv4iFW07BLAJdm0TirvZxmLHueC3igMkVeQ+N1oD0vBJsPJKDZbvOAABua9UIfVs3wju/HHMpDqwtuPpyk2xvtgmCUG3XRkeaNwrF9GEd8Nqqw5X+Hs0bhbr0Os4mORUVFVi2bBk+/PBDDBw4sNK+oUOH4ptvvkGbNm1cOvfVdu/eXenxrl270LJlSyiVyiqOuMI6xuraVq5GjRpBo9HYHptMJhw+fBh9+/YFYGmlqqiowP79+23dAtPS0lBYWGg7pmvXrsjJyUFAQACaNm1ak7dWK5ImV+Xl5di/fz8mTZpk26ZQKNC/f3/s3LmzyuOKi4uRlJQEs9mMrl274r333sONN95o2282mzFixAi8/PLLlbZXpaysDGVlV+6263Q6AJZM2dVs2d2s55e6HCQtOdaD7/afwxs/Ha10B25A22jMvL89QoMCcHeHGGRd0qNJgxDERQQ7VXZ1gKWncpGhXFbvVQ7kWAfIcRw80DUBU+5pi6AABQa1a1SDOLB8MSkylFV6PusAybUOOIqDp25pipcGtIRSIeCO1lGux8Hl5EqnL4UxXPqxh0ajEaIowmw216oF58HkxrilRUOcuahHUsMQxEWoXX49a8uOtTxVWbNmDQoKCjB69GhERERU2jds2DAsWbIE77//PgBUel/X/rz6nFdvy8rKwn/+8x88/fTTOHDgAObPn49Zs2bZHXf1Y+t5oqKibBNOxMfHIzg4GBEREejTpw9eeukl/Pzzz7jhhhswZ84cFBYW2l6nZcuWGDRoEJ555hksXLgQAQEBSElJgVqttj2nX79+6NWrF4YOHYoZM2agVatWyM7Oxtq1azF06FB069bN4d/LbDZDFEUYjUa7BNGVmJM0ucrPz4fJZEJMTEyl7TExMTh+3H6BOQBo3bo1Pv/8c3Ts2BFarRYffPABevfujSNHjqBxY8tsK++//z4CAgIwfvx4p8oxffp0TJ061W77xo0bERJy/S4cdSE1NVXqIpAMyKUeFJYBUw4oIeLqLrkiegdnY+umyutnXATwl5OvqytQAFBgz4GDCDjv7FH+RS51gBzHgQAR7cUz2LTxTKXnuhIHZXolAAHbd+6BNs1+IhjWAZJTHagqDhL1p7Bh/alKz3UlDlBhiYNNf2xDepi7SltzAQEBiI2NRXFxMcrLy2v1WvUEoF2UCoAROl3NE+WioqJq93/66ae4/fbbIQiCreHAatCgQZg1axb27t1rey2FwnKDs7S0FKIoVjqmrKwMJpPJtq2iogLDhw+HVqtFjx49oFQq8cwzz+Dhhx+2PcdsNqO0tLTS6xgMBtvjGTNmYObMmXjrrbfQq1cv/PLLL3jggQewb98+jBo1CgEBAXjuuedwyy23wGg02o6bN28exo8fj759+6JRo0Z4/fXXcebMmUrnWr58Od555x08+eSTyM/PR3R0NHr37o2QkBC7v4VVeXk5DAYDtm7dioqKyj1orp6G/noEsboJ6T0sOzsbCQkJ2LFjB3r16mXb/sorr+CPP/6wa250xGg0om3btnjkkUfw9ttvY//+/RgyZAgOHDhg61/atGlTTJgwwW7efCtHLVeJiYnIz89HeHh47d5kLRmNRqSmpmLAgAF2/V/Jf8itHny37xxe++mo3favnuyGHs1qPsXphG//wa+HcvDaXa0xundSbYroc+RWBwhYtvMM3l6bZre9tnEw4vO92JVRgA8f6IB7O8XZtrMOkBzrwKKtp/Fh6im77bWNg8Hz/8TJvBJ8+UQyet/QsDZFdIvS0lKcPXvWNgGblERRRFFREcLCwqqcd8DT+vXrh06dOmHOnDmSnN8TSktLkZmZicTERLv/Y51Oh6ioKGi12uvmBpK2XEVFRUGpVCI3N7fS9tzcXKenZVSpVOjSpQtOnbIE9rZt25CXl4cmTa4sRmcymfB///d/mDt3LjIzM+1eIygoyOGK0SqVSjYfXnIqC0lHDvVg3SENpq21b1lWCgJuiAmvVflCgyzHlptEyd+nXMmhDpBlLbfp6+0TK3fEQT1rHJjh8HVYB0gOdUAURSz6w3Fi5Y44CLHFgf3kClIwmUwQBAEKhcLWwiMVazc7a3mkIvX53U2hUNgm87i2zrlSByVNrgIDA5GcnIxNmzZh6NChACwVZtOmTRg3bpxTr2EymXDo0CEMHjwYADBixAj079+/0nMGDRqEESNG2CbNICLXaLQGnM4rwW/HcvHFjkwAQIvoUJy+UAyzCJcG61eHA/lJzjRaA07lFePHv87jhwPnAQAdEsJxJFvHOCC/odEakKYpwle7s/DbMcvN8e7N6mNfZoFb4yBExQmOyDtJPltgSkoKRo0ahW7duqF79+6YO3cuSkpKbInQyJEjkZCQgOnTpwMApk2bhp49e6JFixYoLCzErFmzcObMGTz11FMALIuRNWxYuflYpVIhNjYWrVu3rts3R+QDVu7NwqRVhyoNVB5zSzNMuqsNLhSXITNfj6ZRIbW+kAJXpmLnl0qSG0dx8NLAVnihbwvk6Eo9Egdc34fk5to4UAjA1H+1x+M9mjAO/Iyjac7JQvLkavjw4bhw4QImT56MnJwcdO7cGevXr7dNcpGVlVWpybGgoABjx45FTk4O6tevj+TkZOzYsQPt2rWT6i0Q+SyN1mD3hVIQgKdubYYApQJxEWq3XESteDElOdJoDZi46hDEa9amuT+5MQRB8EAcWC7NvGNPcuIoDgCgf9toj8QBW3DJW0meXAHAuHHjquwGeG1mPGfOHJcHzzkaZ0VE1/fTwexKiRVgWdQxM1/v1ouoldr2pZIXU5KPb/Zk2X2hNHs0DvilkuTns22n6zQO2JOBvJUskisikhdRFPHZtgy8v87xxBVNozyzRAEvpiQnZrOID1PTsHBzut0+j8bB5bEmcl08lfxLeYUZU38+gq93Z9nt8+z1wPIVVW5xIOEk2+Rh7vq/ZXJFRAAsXT4y8ksQH6HGvE0nsfovy4D9bkn1cSDLvQOVq2JNrgxGdociaVjjICo0CO+vO45Nx/MAALe3jMK2U/l1EgdsuSKpWeMgQq3ClDVHsDezAIIADGwXg9+O5sLkh3FgnS1Or9dDrfbMeyZpWdeyqu3slEyuiMjhYH2lQsDku9thZK8ktw9UrkqwSl4XU/IvjuIgKECB9+/viKFdEqDRGuokDkLYPZYk5CgOwoICMO+RzujXJqbO4kCtktfNNqVSicjISOTlWW64hISESLbGlNlsRnl5OUpLS31qKnSpiKIIvV6PvLw8REZGQqlU1ur1mFwR+TlHk1YAwNzhnXBPpwQAcPtA5arYWq74pZLqWFVx8PHjXdGvjWWCpbqKA3Wg5cuSXL5Ukv+oKg4+HdkNvS4v5FvX1wM53WSwrsFqTbCkIooiDAYD1Gq1ZAmeL4qMjHR6nd3qMLki8nMZ+SV2F1IAiAqt+xXo5XgxJf+QccFxHKhVdX+ZtJ6TNxmorqXnOY4DKahleLNNEATExcUhOjoaRqNRsnIYjUZs3boVt912mywWWPYFKpWq1i1WVkyuiPyY0WTGD/vP2W335CDl6li/VDK5orpkKDfhiz8z7bZLFQe8yUBS0BqMWLD5pN12qePAIMOlOZRKpdu+iNf0/BUVFQgODmZyJUNMroj81MXiMjz/9QHszrgEABAAiPD8IOXqcJ0rqmvnCw14etk+HMnWQSFYYkCsg8H61ZHzl0ryTafyivH0sn04nV+CAKUAk1mUPA54s428FZMrIj+j0Rqw+XgePtp0Cjm6UoQGBWDO8M5onxBeJ4OUq3Pljn0FRFFkX3LyGI3WgHWHcvDRppMoNBjRoF4g/vtYVyQ1DJE8DuQ2Sxr5Lo3WgFX7z+G/W9JRUm5CfEQwPh3ZDQ1DAyWPA7bgkrdickXkR1buzcLEHw7B2qW+Yb1ArHi6J1rGhAGAZBdRK+uXSrMIlFWYbbMHErnTtXEQFxGM757thcb1Qy4/ljYO5Lq+D/mWFXssswJa46BZw3r47rleiAoNAiCHOLCOueLELuRdnEquGjRo4NKLCoKAAwcOICkpqUaFIiL3O1+gr/SFEgAK9OUIDZbPPRb1VcmUodzE5IrcLutiCV794VClbbm6UigV8mklZQsuedrpC8WYuKpyHJy5VAKjySxRiexxaQ7yVk59qyosLMTcuXMRERFx3eeKoojnn38eJhODgUgudKVGjFv+F66dBMosApn5esnvUFoFKBUIVCpQbjJDbzShvtQFIp+SX1yGscv22W2XWxywBZc86VyBHqO/2Gu3XW5xwKU5yFs5fcv64YcfRnR0tFPPffHFF2tcICJyr9MXijF22T6kXyix2yfVLFDVUQcqUW4wsysIudXh81o8vWwfsrWldvvkFgdswSVP2XX6Ip7/+gAulZTb7ZNbHNgW0zaa2IJLXsWp5Mpsdq2ZuKioqEaFISL30GgNyMgvQY62FG+tOYKi0grERQTj/uTG+HhzOkyiKOksUNUJCVRCazCyKwjVmjUOTuYVY/raYyg1mtE8qh7u65KAub+dlG0cqJQKqJQCjCYRBrbgUi1ptAZkXCjBgawCzP3tJCrMItonhOPujvGYtT5NtnFgbcE1mUUYTSICA5hckXdwuuXql19+weDBg6FQKDxZHiKqpZV7LYOUr14IMjmpPj5+vCuiw4LxWI8mks8CVR3OlEbu4CgO+rRuhHkPd0GEWoUHujWWdxyolDCaKhgHVCuO4uDeTvF4//6OUAcq8a/O8bKNA2u3QMDSghsYwO+f5B2cTq6GDh2KmJgYPPHEExg9ejRatGjhyXIRUQ1otAa7C6kAYPZDnRAdFgzAMgOU3C6iV+MaP1RbVcXBO0PbI0JtWXBT/nEQAF1pBcebUI1VFQcT72ptu4kl5zi4ugVXb6xABLhYLnkHp28DZGRk4JlnnsGKFSvQunVr3H777fjf//4Hg8HgyfIRkQv2ZhZUupAClkVRswvtx5nIVYiK01BT7fx5Mt9hHJy95D3Xq6tnDCSqiU3Hch3GwZmL3hMHas4YSF7I6eQqMTERkydPRnp6On777Tc0bdoUzz33HOLi4vDss89i7177mWeIqO7szbyEt346bLddboOUr4fdAqk2fj+ei7fWHLHb7rVxwBZcqoHVf53DtJ+P2m33tjjgmm/kjWq0wE3fvn3Rt29fLFiwACtWrMDSpUvRs2dPtG/fHn///be7y0hEVbAO2P/7rBazU9NgNImIiwhGrq4UZhGyHKR8PdY7lZwtkJxlHbC/9eQFfLL1NETRsiDqmUslXhsHnIaaXKXRGpCeV4K1hzVYvjsLANAmNgwncou8Ng54s428Ua1WDw0LC8Mdd9yBM2fO4Pjx4zh61P4uCRF5hqOBykM6xmHWAx2hNRhlO0j5ekJ4MSUXOIqDx3o0wVv33IiLJWVeGwdq6zTUjANygqM4eKHvDUgZ0Bp5RaXeGwcqdo8l71Oj5MpgMOC7777D559/jm3btqFZs2ZISUnBE0884ebiEZEjVQ1Ufn1wG4QEBiAkMMDrLqJWvFNJznIYBwIwrl8LBAYoZD1Y/3rUKkuvfbbg0vVUFQeP90yCUiF4dRywBZe8kUvzWu7atQtPP/20bZxV48aN8dtvv+HUqVN4/fXXkZCQUKNCLFy4EE2bNkVwcDB69OiBPXv2VPncpUuXQhCESv+Cg4Nt+41GI1599VV06NAB9erVQ3x8PEaOHIns7OwalY1IjjYfz/P6gcpV4WyB5Ky1hzT2cSACmfl6aQrkRraxJowDuo7v95/z2ThQ83pAXsjplqt27dohLS0NXbp0wfTp0/Hoo48iIiKi1gVYuXIlUlJSsGjRIvTo0QNz587FoEGDkJaWhujoaIfHhIeHIy0tzfb46lW79Xo9Dhw4gDfffBOdOnVCQUEB/v3vf+Pee+/Fvn37al1eIqmt+TsbU3/2/gH7VbnSHYp37MkxURTx1e4svPfrMbt9vhMHbMGl6omiiAW/n8KHqSfs9vlKHLCbOHkjp5Or/v3745tvvkGnTp3cWoDZs2dj7NixGD16NABg0aJF+PXXX/H5559j4sSJDo8RBAGxsbEO90VERCA1NbXStgULFqB79+7IyspCkyZN3Fp+orqg0ZYirVDA7p+PYvmecwCA1jGhOJlX7LUDlatypRuIWeKSkJxYJ29pHKnGx3+k45s9ZwEAnRpH4NB5re/FgYrdocieRluKk1oBpy8UY97m01h7KAcA0Kt5A+zOuOR7ccDZAskLOZ1cffTRR24/eXl5Ofbv349JkybZtikUCvTv3x87d+6s8rji4mIkJSXBbDaja9eueO+993DjjTdW+XytVgtBEBAZGelwf1lZGcrKymyPdTodAEsXQ6PR6OK7ci/r+aUuB0nnu/3n8MZPR2EWlQAsidXTtzZFSv+WyCsqQ9YlPZo0CEFcRLBP1JMgy3dKlJRJH39y4s+fBVdi4Mo2QQBeHtgST93cFDk6H4yDAEuPjOJSo93/vS+8P3Ld1deCBUd3AABUSgFT7m6Lh7o1hkZb6rNxUFRa7hPvx134WVD3XPlbC6Ioitd7UteuXbFp0ybUr1/fqRe95ZZbsHLlyuuOwcrOzkZCQgJ27NiBXr162ba/8sor+OOPP7B79267Y3bu3ImTJ0+iY8eO0Gq1+OCDD7B161YcOXIEjRs3tnt+aWkpbr75ZrRp0wZff/21w3JMmTIFU6dOtdu+fPlyhIR4f7M6ea/CMmDKASVEXOn6KkDElK4mRAZJWDAP2p0nYHm6Em0jzXi2LVuv/J2jGABEPHaDGd2jr3v58lq/nRfwc5YS3RuZ8VgLxoG/qyoOnmxlQqeGkhXL41ZnKrBFo8Ad8Wbcm8Q4IOno9Xo8+uij0Gq1CA8Pr/a5TrVcHTx4EH///TcaNGjgVAEOHjxYqSXInXr16lUpEevduzfatm2LTz75BG+//Xal5xqNRjz00EMQRREff/xxla85adIkpKSk2B7rdDokJiZi4MCB1/0DeprRaERqaioGDBgAlUolaVmo7n38x2mIOFVpmwgBN3TuiR7NnItHr3MoB8vT/0FoZEMMHnyT1KWRDX/9LNh1+hLEA9eOlxVw1+09fDcGAFzclYWfs46jQXQcBg+2dMf31zpAwM70ixAP7L9mq4B+t/jwtQBA2m+nsEVzGnGJSRg8uK3UxZENfhbUPWuvNmc43S3wjjvugBONXAAqTzBRnaioKCiVSuTm5lbanpubW+WYqmupVCp06dIFp05V/gJqTazOnDmD33//vdokKSgoCEFB9s0AKpVKNpVWTmUhzxNFEf/dko7Zv52y26cUBNwQE+6z9SEsJBAAUGo0++x7rA1/+iwwmUWsO5pnt93XYwAAQtWX46DCPg78qQ4QUFZhwrcHzttt9484sLy30grRp99nTfGzoO648nd2KrnKyMhwuRCOuuhdKzAwEMnJydi0aROGDh0KADCbzdi0aRPGjRvn1HlMJhMOHTqEwYMH27ZZE6uTJ09i8+bNaNjQh9vMyefoyyvwyvf/4Jd/NACAHs0aYG+mZaCyQoDPDFSuilrF2QIJ0OqNeHHFX9h64gIAyzpuInxrsH51riyeyoH8/ixPV4pnv9qPA1mFtg6BIvzjWgBwYhfyTk4lV0lJSR4rQEpKCkaNGoVu3bqhe/fumDt3LkpKSmyzB44cORIJCQmYPn06AGDatGno2bMnWrRogcLCQsyaNQtnzpzBU089BcCSWD3wwAM4cOAAfvnlF5hMJuTkWGbTadCgAQIDAz32XohqQ6M1YG/GJcz//RRO5hUjQCFgyr034vGeScjKL8K3azfjocF90SQqTOqiehQXjfRvGq0B20/mY95vJ3CusBTBKgVmPdAJ3ZrWR2a+Hk2jQnz+CyVwJQ5Kub6PX9JoDfjtaC7mbTqJ/OJyhAcHYMGjXdG0QbDfXAsArvfm76yzxDaLqudVn/tOdwv0lOHDh+PChQuYPHkycnJy0LlzZ6xfvx4xMTEAgKysLCgUV9Y6LigowNixY5GTk4P69esjOTkZO3bsQLt27QAA58+fx5o1awAAnTt3rnSuzZs3o0+fPnXyvohcsXJvFiauOgRrz9t6gUp8Mbo7ul/uSx8XEYyWESLiIoKreRXfYFvXhBdTv3NtHESqVfh6bA/cGG9ZU9GbLq61xXWu/NfKvVmY+MMhWAdiRIcF4dtneqFpVD0YjUa/uRYAV8cBezL4mxV7sjBp1SFbS+30YR0w/CbvWE5J8uQKAMaNG1dlN8AtW7ZUejxnzhzMmTOnytdq2rSp02PDiOQgu1Bf6UIKWO7SJTbwny+SV+OXSv/kKA50pUY0qOefvQ24vo9/OnupxC4O8ovLEKRSVHmML2NPBv+UmV+CiasO2R6bReC1VYdxW6tGXnGTzT+jlUgmyivMeOPHI7j2doBZBDLz9ZKUSWrWL5XlFWaYzLxR4g9Kyirwn5UHGQdXCeEde79TqC/Hc18dYBxchTfb/E+OthRjvtxrt90kil4TB7JouSLyRxeKyvDcV/ux70yB3T6lIKBplH+usWb9UglYWvBCg/gx5cvOXtJj7LJ9OJ5TZLfPn+OAE1r4l7ScIoxdtg9Zl+y/PPpzHFhvtjEO/MP+MwV49qv9uFBkv5yTN8VBjVquCgsL8dlnn2HSpEm4dOkSAODAgQM4f95+qlAiqkyjNeCrXZkY8tE27DtTgLDgAIzu3RTKy0sY+MtsaFUJClDAupoD79r7Lo3WgMVb03H3R9twPKcIUaFBeO725oyDy6w3GcrYguuzNFoDdqTn45vdWbjvv38i65IejeurMeGOloyDy6w3GTihhe+yxsGnW9PxyKe7cKGoDK1jwvDKoNZeGwcu3xL+559/0L9/f0RERCAzMxNjx45FgwYNsGrVKmRlZWHZsmWeKCeRT7h2oHJUaCC+faYXmjcKxdO3N/er2dCqIggC1Col9OUm9rP3UVcPVAaAhEg1vnu2F+Ij1RjZuynjAFfu2ANswfVFK/daYuDqvLlX84ZY+FhXNKgXiOHdExkHYPdYX+coDgbdGIPZD3VGvaAA3Nc1wSvjwOVP65SUFDzxxBOYOXMmwsKuTAM6ePBgPProo24tHJEvOVdgP2D/Ukm5rU95XITaqz48PCkk0JJcsSuI7zlzsfJAZcBy59LaWsk4sAi+agIDfXkFkysfotEa7L5QCgDef6CDbQIXxoGF2rYkgRlmswiFQrjOEeQtqoqDyXe3Q73Ln3feGgcudwvcu3cvnnnmGbvtCQkJtvWkiKgyrd6I57/mQGVncRCzb8rTleIpBwOVGQf2rC24AFBabpa4NOROu09fwrU9PUUA5wtKJSmPnF09Bre0gtcDX/JH2gWHcZB1ySBJedzJ5VthQUFB0Ol0dttPnDiBRo0auaVQRL7kVF4RnvpyHzIvcqCys0JUnIba1xw8W4hn/rcPuTrvHqhcl0IClTAYTdAb2SXKV/x5Kh+Tfzpst50x4FhwwJXkSl9uqtRdlrzXukMaTFlzxG67r8SBy7X03nvvxbRp0/Dtt98CsNxdy8rKwquvvor777/f7QUk8kbWVcXPXTJg2i9HUVxWgYRINe5PTsDC39NhEkWvG6BZl7hwpG+wxsGxbB3e35CG8gozWkSH4r4uCZi98QTj4DrUgUqghC243k6jNSDjQgn2ZFzC/M2nYDKLaFxfjexCA8yi9w3Wr0sKhaUF12DkGFxvp9EacDqvBL8dy8UXOzIBAC2iQ3H6QrHPxYHLydWHH36IBx54ANHR0TAYDLj99tuRk5ODXr164d133/VEGYm8iqMBmj2aNcB/H+uKhqFBeKR7E68coFmXbAtHcoYor+UoDvq3jcGc4Z0QFqzCMC8dqFyXuICq93MUB/d3bYx372uPAn05Y8AJthZcxoHXchQHY25phkl3tcGF4jKfiwOXk6uIiAikpqZi+/bt+Oeff1BcXIyuXbuif//+nigfkVepaoDmrAc7omFoEADvHaBZl/il0rtVFQdT722HsGAVAMaBM9Rc48erOYwDAfi/gS0RrFIyBpx0pQWXPRm8UVVx8NStzRCgVPhkHNS48+ott9yCW265xZ1lIfJ6e6oZqNykQT1JyuSNgrmAqlfbdjK/yoHKCfW9vz99XQlRsXusN9t4NNc+DkTgzEUD4iMZB86yrXXF64FX+ulgtsM4yMzX+1xSZeVUcvXRRx85/YLjx4+vcWGIvNnO9IscqOwm7BbovTYcycFbjAO3YAuu9/p231m88/NRu+2MA9eFcPZYrySKIj7bloH31x232+frceBUcjVnzpxKjy9cuAC9Xo/IyEgAQGFhIUJCQhAdHc3kivyKdaDyvjMFmLfpJExmEQmRami0HKhcGyG27lC8Y+8NrAOVN6fl4bPtGQCA5lH1kHmxhHFQC1ySwHtYJ29JrK/G539m4os/MwEAN8aH45hGxzioBVsc8Gab7FnjID5CjXmbTmL1X+cBADcl1cf+rAK/iQOnkquMjAzb78uXL8d///tfLFmyBK1btwYApKWlYezYsQ7XvyLyVY4GaA7tHI8Z93fkQOVa4pdK7+EoDp7o3RSvD2mLfB8cqFyXbN2h+KVS1hzFAABM6N8S4/u1RG5RKeOgFqw320p5PZA1R3GgVAiYfHc7jOyVhByd/8SBy2Ou3nzzTXz//fe2xAoAWrdujTlz5uCBBx7AY4895tYCEslRVQP2X7mzNQcqu0EI+9h7haoGKj9ze3OofHSgcl1it0D5cxQDADD9vg54pEcTAJy8pba4NIf8VRUHc4d3wj2dEgD4VxwoXD1Ao9GgosK+gptMJuTm5rqlUERy95ujgcqwDFSm2mPLlXf4+e+qBypT7XG2QPnLyC+xiwEAaBrFCYzcxTaxC1twZauqOIgKDa77wsiAy8nVHXfcgWeeeQYHDhywbdu/fz+ee+45TsdOfmHVgXOY9gsHKnuStRsIu0PJkyiK+Hx7Bmb44UDlunRlYhfesZcjs1lE6lH7m8qMAfdiC668GU1m/LD/nN12f44Dl5Orzz//HLGxsejWrRuCgoIQFBSE7t27IyYmBp999pknykgkCxUmM9755ShSvv0bRpOItnFhUAiWff4wQLMu8WIqX6VGE1767h9M++UozCLQtUl9xoGHcJY0+SoqNeLp/+23TVxxOQQYAx7AFlz5ulhchsc/240fDlgmrmAcWLg85qpRo0ZYu3YtTpw4gePHLXct27Rpg1atWrm9cERyoNEacPicFou3ncaezAIAwPh+LTChfysOVPaQYK7vIzsarQEHzhRgweZ0HNPooBCA14e0w5M3N/Wrgcp1id1j5UejNWBX+kXM23QSmRf1CAxQYPp9HdC7RUPGgIeoue6h7Gi0Bmw+noePNp1Cjq4UoUEBmDO8M9onhDMOUItFhFu1auW2hGrhwoWYNWsWcnJy0KlTJ8yfPx/du3d3+NylS5di9OjRlbYFBQWhtLTU9lgURbz11ltYvHgxCgsLcfPNN+Pjjz9Gy5Yt3VJe8h/Xzn6jUgqY93AXDO4QB8C/BmjWJd6xl5eVe7MwcdUhiJfjQK1SYvHIbrilZRQAxoGnsAVXXq6Ng/DgACwb0wOdEyMBgDHgIVfigDfb5GDl3ixM/OEQrEOsGtYLxMpneqJFdBgAxgFQg+TqySefrHb/559/7tLrrVy5EikpKVi0aBF69OiBuXPnYtCgQUhLS0N0dLTDY8LDw5GWlmZ7LAhCpf0zZ87ERx99hC+//BLNmjXDm2++iUGDBuHo0aMIDvbPwXXkOo3WUOkDBABMZhFdmkRKVSS/wUWE5cNRHJRVmHBDNAfse5paxbGHcpFdqLeLg+KyCsSEB0lWJn+h5vVANs4X2MdBgb4c9YJq3Fbjk1wec1VQUFDpX15eHn7//XesWrUKhYWFLhdg9uzZGDt2LEaPHo127dph0aJFCAkJqTZJEwQBsbGxtn8xMTG2faIoYu7cuXjjjTfwr3/9Cx07dsSyZcuQnZ2NH3/80eXykX8ym0V8uOEErp38xsyZ0OoEu0PJQ4XJjKlrjjAOJMI4kIdSowmvfH+IcSAR9mSQB12pEeOW/8U4cILLqebq1avttpnNZjz33HO44YYbXHqt8vJy7N+/H5MmTbJtUygU6N+/P3bu3FnlccXFxUhKSoLZbEbXrl3x3nvv4cYbbwRgWfA4Jyen0syFERER6NGjB3bu3ImHH37Y7vXKyspQVlZme6zT6QAARqMRRqPRpffkbtbzS10Of1JSVoFXVh3GxqN5dvsUApAQEVjn/x/+Vg8CFZaPb315hd+85+up6zpQoC/Hv1f+g52nL9ntkyoO/I0tDsoqKl2P+HevOxptKV745iAOndfZ7ZMiDvyxDgRebgawxgHVfT3IyC/Bs18fxOn8Ert9/nI9cOX9CaIoOpiZ3nVpaWno06cPNBqN08dkZ2cjISEBO3bsQK9evWzbX3nlFfzxxx/YvXu33TE7d+7EyZMn0bFjR2i1WnzwwQfYunUrjhw5gsaNG2PHjh24+eabkZ2djbi4ONtxDz30EARBwMqVK+1ec8qUKZg6dard9uXLlyMkxD+nkfRHhWXAKZ2ADecUyCsVoBREJEeJ2HtBgAgBAkQMb25Grxi3hAxVQ1sOTN4fAAEi5vQ04Zqev+RBhWXAsUIB688pUFguIFAhonsjEX/mMg7q2rkSYNY/AQhXiXi7G+/a16XCMuCfS5Y4KKkQUC/AEgdbNIyDunasUMCiY0okhIh4pRPjoK4UlgEXSgUUlgE/ZCpgMAmIDBTRvZEZqecVfhcHer0ejz76KLRaLcLDw6t9rts6SaanpztcXNjdevXqVSkR6927N9q2bYtPPvkEb7/9do1ec9KkSUhJSbE91ul0SExMxMCBA6/7B/Q0o9GI1NRUDBgwACqVStKy+LLv9p/DlJ+O2gYqhwYp8fnIZHRpEgmNthRZl/Ro0iAEcRHSjNnzt3pQVGrE5P2bIUJA/0F3IijA5R7MPqcu6sB3+89hyo9Hbd0+6oeo8L/R3dA6NkwWceBvMvJLMOufP2FWqDB48CC/+xyQyrVxEBMehG+eugmJ9UMkjwN/rAPRZwqw6NheqNT1MHjwLVIXRxY8XQ++238OU386Wmlh4OQmkZj/cCc0CguSPA6kYO3V5gyXk6urkxDAMsZJo9Hg119/xahRo1x6raioKCiVSuTmVl6ELzc3F7GxsU69hkqlQpcuXXDq1CkAsB2Xm5tbqeUqNzcXnTt3dvga1vW6HL22XD685FQWX5NdqMfrV11IAUvf7sSoUKhUKjSJUqFJVJhk5buav9SDMIXS9nuFKCDUD96zszxVB84X2MeB1mBEw3C17OLAX4SHWL60GIwmBARcuVz7y+eAFLIuldjFwYWiMqiDAmUVB/5UB8LUlu9nBqPJb96zszxRDzRaA964JrESAMwZ3hnxDSwTGcklDuqSK39nl28H//XXX5X+/fPPPwCADz/8EHPnznXptQIDA5GcnIxNmzbZtpnNZmzatKlS61R1TCYTDh06ZEukmjVrhtjY2EqvqdPpsHv3bqdfk/xHqdFkmVr3mu0coCktlVIBldLSF5CDmD2vuKwC/15xkHEgM9YJLUxmEeUms8Sl8X2XSsrxzP/2Mw5khhO71K29mQWVEisAEAGcLyx1+Hyy53LL1ebNm91agJSUFIwaNQrdunVD9+7dMXfuXJSUlNjWsho5ciQSEhIwffp0AMC0adPQs2dPtGjRAoWFhZg1axbOnDmDp556CoBlJsEJEybgnXfeQcuWLW1TscfHx2Po0KFuLTt5t1xdKZ75334cPFtot08pCGgaxfF2UlKrlDCaKnhB9bAzF0swdtk+nMgtttvHOJCWdZY0wLLWVT0VBx96ytFsHcYu24fzhQa7fYwDaXG9t7qzN/MS3vrpsN12xoBrXE6u+vXrh1WrViEyMrLSdp1Oh6FDh+L333936fWGDx+OCxcuYPLkycjJyUHnzp2xfv162/TqWVlZUCiuNLAVFBRg7NixyMnJQf369ZGcnIwdO3agXbt2tue88sorKCkpwdNPP43CwkLccsstWL9+Pde4Imi0BmTkl6CkrAKvrz6MvKIyRKhVeCC5MZb+mQmTKEIpCHhvWHsuhCexkMAA6EoreEH1AGscXCgqw+SfjkBrMCI6LAgPJjfGoj9OMw5kwtqCazSJMBhNqKfiWjLuZI2D0xdK8O6vx2AwmtC0YQiGdU3AvN9OMQ5kIuRyva8wizCazFApOQbXnaxxcPBsIeaknoDRJCIuIhi5ulKYRTAGasDlT+otW7agvLzcbntpaSm2bdtWo0KMGzcO48aNq/J8V5szZw7mzJlT7esJgoBp06Zh2rRpNSoP+aaVe7MwadWhSs3dLaNDsXhkNzSNqoenbm2GzHw9mkaF8ENEBq6sbeL5iXL8iaM46JwYiU9GJCMmPBiP90piHMhIpRbcECZX7uIoDm5tGYUFj3RFRIgKD3ZLZBzIhPqqFlx9uQkRaiZX7uIoDoZ0jMOsBzpCazAyBmrI6U9q69gqADh69ChycnJsj00mE9avX4+EhAT3lo7ITTRag90HCAB8/HgymkZZBmjGRaj5ASIjtn72RrZcuYujOBAAzB3eGTHhlpZ9xoG8qAOVbMF1s6ri4L372iMixDJonXEgH4EBCgQoBFSYRRjKTYhQc1ILd6gqDl4f3AYhgQEICQxgDNSQ08lV586dIQgCBEFAv3797Par1WrMnz/frYUjcpdD57R2iRVgmQWqRXRo3ReIrov97N3vwBnHA5U12lLbTQaSl5DAAABlHHvoRjtO5TuMg3MFpUhswDiQI3WgEkWlFezJ4Eabj+c5jIMzFw2Ij+T4qtpwOrnKyMiAKIpo3rw59uzZg0aNGtn2BQYGIjo6GkqlsppXIJLG8Rwd3vr5iN12DtCUN3Wg5eOJXyrdY/+ZS3jzJ8aBt1Gr2D3Wnbak5WHyGsaBtwmxJVe8HrjDmr+zMZXfizzG6eQqKSkJgGWqdCK5sw7QPJNfgrd/PQZ9uQn166mg1Rs5QNNLqFWWfvUGdgusMWscHDqnxQcb02A0iYgND0JeURnjwEuwBbf2NFoDMi6U4M9T+fj4j3SYRSCpQQjOFugZB17CepOB14Oa02gNSM8rwfojOfhq1xkAQOuYUJzMK2YcuJlTydWaNWtw1113QaVSYc2aNdU+995773VLwYhqytEAzZtbNMSCR7qitMLEAZpeIuRyy5WBd+xrxFEc3NU+Fh882Am6Ug5U9hZc46d2HMXBwzclYuq/bsSlknLGgZdgT4bacRQHz95+A14e1Bp5RaWMAzdzKrkaOnQocnJyEB0dXe1aUYIgwGRixSfpVDVAc8awDqhfLxAA+OHhJfilsuaqioM3hrRFvaAA1AviQGVvEcKJXWrMYRwIwPg7WiAoQMlJK7zIlRZc3mxzVVVxMKp3EpQKgXHgAU7NZ2k2mxEdHW37vap/TKxIartOX6xyoDJ5lxAVu0PV1JbjFxzGQdYl+wVSSd6sLbiljAOXrT+cYx8HomXAPnkXW3LFmwwuW3XgnMM4yMzXS1MgP8BFM8hnbDt5AZM5YN9nhLDlqkZ+/UfDgco+hC24NbN8dxbe/fWo3XbGgXe6MrEL48BZoijiv1vSMWvDCbt9jAPPciq5+uijj5x+wfHjx9e4MEQ1IYoilmzPwHtrj8EsAon11ThfaOAATS/HPvauMZtFzE49gQWbTwGwLJCdfoEDlb2d7Uulkd2hnFFeYca0X47gq11ZAIAOCRE4kq1lHHg5TuziGn15BV75/h/88o8GANCjWQPszbzEOKgjTiVXc+bMcerFBEFgckV1RqM1IC2nCCv2nsX6w5ZFrR9Ibox3hrZHgZ4Dlb3dlW4g/FJZHY3WgKPZOnzxZwa2n7oIAHj6tuZ4ZVBrXCguYxx4OX6pdI5Ga8DfZwux6I/TOHi2EIIAvDSwNZ7vcwNydByw7+14s805Gq0BezMuYf7vp3AyrxgBCgFT7r0Rj/dMgkZrYBzUEaeSq4yMDE+Xg8gl1858IwjA5Lvb4YneTSEIHKDpC9gd6vqujQOlQsAHD3bEfV0aAwDjwAcwDq5v5d4sTFx1COLlOAgKUOC/j3XFHW1jADAOfAG7iV/ftXFQL1CJL0Z3R/dmDQAwDupSrcZciZf/BwVBcEthiJyh0RoqfYAAlpnQ7mwfy7roQ9Sc0KJajuJAFEX0bN5QukKR23Fil+pptAZM/OEQrh6vbzSZ0S4+XLIykftduR6wJ4Mj2YV6uzgwGE1IbMBkSgpOzRZ4rSVLlqB9+/YIDg5GcHAw2rdvj88++8zdZSNy6IvtmZW+UAKAmTPf+BzODlU1URQxf9NJxoEfCLF1h+KXymuZzCKmrz2Oa8KAceCD2IJbtfIKM9748QjjQEZcbrmaPHkyZs+ejRdffBG9evUCAOzcuRP/+c9/kJWVhWnTprm9kESA5W7kO78cxZc7z9jt48w3vocXU8dKjSa88cNh/HQw224f48D3MA4c05Ua8e9v/sLmtAt2+xgHvofrvTmWX1yGF1f8g31nCuz2MQ6k43Jy9fHHH2Px4sV45JFHbNvuvfdedOzYES+++CKTK3I7jdaAf85pseiPdPyVVQgAGNAuBr8fy4WJM9/4LOsde3aHstBoS3EgX8B/P9mNtNxiKBUC7u4Yh1/+zmYc+DDrl8pSfqkEYLke/HkqHx9tOomsSwYEBShwX5cEfLfvHEyiyDjwUbY44PUAgOV6sD1HwDsLd+JCcTnCggPwQNfGWLbzDONABlxOroxGI7p162a3PTk5GRUV7LZA7nXtAM1ApYAFj3bFwBtjOfONj7sygJmfK1fiQAmgGPUClfhs1E3odUNDTLyrDePAh7Hl6oprrwcR6gB8NaYnOjSOwL/7t2Qc+DDOFnjFyr1Zl8dXKQGUIyo0ECuf6YUbGoXi6dubMw5kwOXkasSIEfj4448xe/bsSts//fRTPPbYY24rGJGjgcoVZhEdGkcA4Mw3vo6LRlo4igOD0WTr7sE48G2MAwtHA/aLSisQFRYIgHHg60JU7BYIAOcK7OPgUkm57WYk40AeajRb4JIlS7Bx40b07NkTALB7925kZWVh5MiRSElJsT3v2gSMyFlms4iZ66seqMwPD99nvViUVZhhMotQKvxvJkijyYzJ1QxUZhz4Plv3WD/+UmkoNyHl278ZB37synpv/tuTQas34vmvDzAOvIDLydXhw4fRtWtXAEB6ejoAICoqClFRUTh8+LDteZwSm2qqqNSI/6w8iN+O5dnt4wBN/2H9UglYvliGBtVq5Qivk19chue/PoA9GZfs9jEO/Ie/d489V6DHM//bjyPZOrt9jAP/4e/dY0/mFmHssn3IvGg/+x/jQH5c/rayefNmT5SD/JxGa0BGfgkCFAJeW30Yp/KKERigwH1d4vH9vvMcoOmHggKurBRhKPeP5MoaB+UVZry++jDOFxoQGhSAB5ITsGznGZhFQCGAceBH1LYJLcwwm6+9Z+2brHFQWFKON346gksl5WhYLxAPJDfGZ9syeD3wQ+pA/1vvzRoH5y4ZMO2Xoyguq0BCpBr3Jydgwe+neD2QMcm/rSxcuBCzZs1CTk4OOnXqhPnz56N79+7XPW7FihV45JFH8K9//Qs//vijbXtxcTEmTpyIH3/8ERcvXkSzZs0wfvx4PPvssx58F1QbK/dmYdKqQ7j6e0NseDA+GZGMTomRmNC/FQdo+iGFQoBapYTBaPKLC6qjOGgWVQ+LRyajRXQYnuydhG/XbsZDg/uiSVSYdAWlOmVtuQL8o2ugozi4MT4cn47shoRINZ64uSmvB34oROVfE1o4ioMezRrgv491RcPQIDzQJZ7XAxlzObkqLS3F/PnzsXnzZuTl5cFsNlfaf+DAAadfa+XKlUhJScGiRYvQo0cPzJ07F4MGDUJaWhqio6OrPC4zMxMvvfQSbr31Vrt9KSkp+P333/HVV1+hadOm2LhxI55//nnEx8fj3nvvdf6NUp3QaA12HyAAsHhUMjokRALgAE1/FhJoSa70Rt/uElVVHHwywpJYAUBcRDBaRoiIiwiWoIQkleAA/0muHMWBAGDBI12REGm5BvB64J/UVy0qbzaLUPjwGNyq4mDWgx3RMDQIAK8Hcqe4/lMqGzNmDGbOnImkpCTcfffd+Ne//lXpnytmz56NsWPHYvTo0WjXrh0WLVqEkJAQfP7551UeYzKZ8Nhjj2Hq1Klo3ry53f4dO3Zg1KhR6NOnD5o2bYqnn34anTp1wp49e1x9q1QH0nKK7L5QAkBxqW9/iSDn+Es/+yPZOodxcLG4vO4LQ7JibcEFfD+5OphVaBcHIoAcXakk5SH5uLoFt6zCXM0zvd+e05ccxsH5AsaBt3C55eqXX37B2rVrcfPNN9fqxOXl5di/fz8mTZpk26ZQKNC/f3/s3LmzyuOmTZuG6OhojBkzBtu2bbPb37t3b6xZswZPPvkk4uPjsWXLFpw4cQJz5syp8jXLyspQVlZme6zTWQbOGo1GGI3Gmrw9t7GeX+pyeIJGW4rpa4/ZbVcIQEJEoE++55ry5XpQHbXKcv+nSF/ms+/99IUSTFtz2G77tXHgr3WAAHWgAgajCUV6y3XKF+vA4fM6TP7p+nHg7/z1cyDgqjnytPpSBAiBEpbGc3advuRUHPhrPZCSK39rl5OrhIQEhIXVvn9nfn4+TCYTYmJiKm2PiYnB8ePHHR6zfft2LFmyBAcPHqzydefPn4+nn34ajRs3RkBAABQKBRYvXozbbrutymOmT5+OqVOn2m3fuHEjQkLkMQNLamqq1EVwi8Iy4EKpAH2FiG8zlCg2CghUiDCaARECBIh4qJkZf/35O/6SurAy5Cv1wFnleiUAAdt27kFhmu8M5rfGwaUyYFWmAqUmAWqliFLT9ePA3+oAAaiwxMGW7TvRNMx36oA1DrL1wM9nFDCKAsICRBRX8HpwPb5SB1yhUihhNAtYu+E3NPSh3nCFZUCeQcDpImDDOQXMEFA/UERhOa8HcqLX28/UWBWXk6sPP/wQr776KhYtWoSkpCRXD6+xoqIijBgxAosXL0ZUVFSVz5s/fz527dqFNWvWICkpCVu3bsULL7yA+Ph49O/f3+ExkyZNqrQ+l06nQ2JiIgYOHIjw8HC3vxdXGI1GpKamYsCAAVCpVJKWpba+238OU386Wqm5u01MKD5+rAuUCgFZl/Ro0iCEfYgd8KV64IpvcvbiTHEB2nXsjMEd46Qujls4ioNuSZGY/3AnGE1ilXHgr3WAgPmn/sSlCyXo0KUbik7t84k64CgObm8VhTkPdkBxmYnXgyr48+fAlL83o0BvRM+bb0PLmFCpi+MWjuLg3o5xeHdoOxTojbweyIi1V5szXE6uunXrhtLSUjRv3hwhISF2/6mXLtmvyeJIVFQUlEolcnNzK23Pzc1FbGys3fPT09ORmZmJe+65x7bNOplGQEAA0tLSEB8fj9deew2rV6/GkCFDAAAdO3bEwYMH8cEHH1SZXAUFBSEoKMhuu0qlkk2llVNZakKjNeCNaz5ABAD/fTwZzRpZPiQ54831eXs9cFW9IMt7LTfBJ953VXEw+6HOiKtfD8D148Df6gAB9S4vQ1B+eaiJt9eBquLg3fs6oEFYCBqE8XpwPd5eB2oiJDAABXojykXBJ957VXEwcXAbhIUEIywkmNcDGXHl7+xycvXII4/g/PnzeO+99xATE1PjxYIDAwORnJyMTZs2YejQoQAsydKmTZswbtw4u+e3adMGhw4dqrTtjTfeQFFREebNm4fExESUlpbCaDRCoag8T4dSqbSb1ZDq1t9nHQ9UztWVoXkj37gDRe4XHOhbA/n3ZhY4HqhcWIomDetJUiaSv6vX+HF5FioZ+vNkvsM4OHvJgMb15dEVn+RH7WMLav92NNdhHJy5aEB8JOPAm7mcXO3YsQM7d+5Ep06dan3ylJQUjBo1Ct26dUP37t0xd+5clJSUYPTo0QCAkSNHIiEhAdOnT0dwcDDat29f6fjIyEgAsG0PDAzE7bffjpdffhlqtRpJSUn4448/sGzZMsyePbvW5aWaOZKtxZQ1R+22c1Vxup4Qle/MFrj79EVM/tF+oDLjgK4nJNByqTYYTfD2FPy3o7mYvOaI3XbGAV1PiA8tJLzqwDlM+4Xfi3yVy8lVmzZtYDAY3HLy4cOH48KFC5g8eTJycnLQuXNnrF+/3jbJRVZWll0r1PWsWLECkyZNwmOPPYZLly4hKSkJ7777LhcRlsjPf2fj5e//RqnRjKjQQFwqKYdZtHyAcFVxuh5fuZh+tesMpqw5ggqzZV2SXF0p44CcdvWSBN6aXImiiP9uSccHG9MgipYFss9cLGEckNPUPnCzrcJkxox1x/HZ9gwAQNu4MNuSNIwD3+FycjVjxgz83//9H95991106NDBrg+iqxNAjBs3zmE3QADYsmVLtccuXbrUbltsbCy++OILl8pA7neuQI9Z69Pw09/ZAIDbWjXC/Ie7QG+sQGa+Hk2jQvgBQtelvnzH3hsvphqtASdzi7HqwDn8eNASB3d3jMOsBzqh0FDOOCCnWVtwS43e171dozXguEaH/+3Kwu/H8wAAI3omYfI97ZBfXMY4IKeFeHE3cY3WgMPntFi87TT2ZBYAAMb3a4EJ/Vsht6iUceBjXE6u7rzzTgDAHXfcUWm7KIoQBAEmk/dVenKvpTsyKnUDvL1lFD5/4iYoFQIioOKHBzntysXUu/rYr9ybhUmrDlXqT//qnW3w7O3NIQgC1IFqxgE5LcRLF9O+Ng6UAvDOfR3wSPcmAIC4CMYBOc/WPdbL40ClFDDv4S4Y3MEyAy7jwPe4nFxt3rzZE+UgH7Hr9EW78VXbT11EXlEpPzzIZd74pVKjNWDiqkMQr0qsFAIwtEt8jScAIv+mvmrMlbdwFAcigD6tG0lWJvJuam+9HvxwCFfPW2Eyi+jSJFKqIlEdcDm5uv3226vcd/iw/WBt8h+bj+fh+a/32203iSIy8/VMrshl3ngx/XrXmUpfKAHALIIxQDVWaayJF8y6LIoiPvnjNOOA3OrKGFzv6MlgNov4cMMJiNduZxz4vFrP6lpUVIRPP/0U3bt3d8sMguR9RFHEx1vS8eSXe2FwMCaAs99QTXnThBYms4jp645hweZ0u32MAaoNb4qDsgoTJv5wCEt3ZNrtYxxQbXjTzbaSsgo8//UBfH/gnN0+xoHvc7nlymrr1q1YsmQJfvjhB8THx2PYsGFYuHChO8tGMqfRGpCmKcJXu7Pw2zHLYtCPdG+C9vHhmPzTEZhEkbPfUK1cuWMv3zuVloHKOizZfhq7MiyLqPdp3QhbT1zgDFDkFmovGMiv0Rrw15kC/HdLOg5n66AQgDvbx2LD4RyYGAfkBrbrgczjYPfpS/ho00mczi9BoFKBezvFY/Vf5/mdyI+4lFzl5ORg6dKlWLJkCXQ6HR566CGUlZXhxx9/RLt27TxVRpKhawdoKgRg2r/a4/GeSQCAfm2jOfsN1dqVsSbynCXt2jgIUAqY81Bn3NMpHhqtgTFAbiH3sYcr92ZVGl8VHKDAJyO74fZWjRgH5DZyb8G9Ng5CgwLw5ZPdkZxUH/83qBXjwI84nVzdc8892Lp1K4YMGYK5c+fizjvvhFKpxKJFizxZPpIhRwOVAeCOttG23zn7DbmDnPvYO4oDs1lEt6b1ATAGyH2scVAqwzv2jgbsl5vMaBUTCoBxQO6jlvFsgdmFers40JdXID4yGADjwN84PeZq3bp1GDNmDKZOnYohQ4ZAqVR6slwkY4u3Vj1Qmcid5LpopCiKmJt6knFAdUKu671VmMx455ejVQ7YJ3KnEJl2Cyw1miw32q7ZzjjwX04nV9u3b0dRURGSk5PRo0cPLFiwAPn5+Z4sG8lMeYUZr60+hM//zLTbxwGa5Aly7AaiL6/AuOV/YeW+s3b7GAfkCXJcPFWrN2L00r349VCO3T7GAXmCHHsy5OpK8fCnu7D1hP33YcaB/3I6uerZsycWL14MjUaDZ555BitWrEB8fDzMZjNSU1NRVFTkyXKShDRaA9Yd0uDBRTuwfHcWBAG4s30MlJeX7OEATfIU66KReqMJ4rXNRHVIozVgR3o+9p+5hPs/3olfD2mgUgoY1iUBystrVzEOyFOsLbhS32SwxsGfp/Jx78Lt2HYyH2qVEo/1aMI4II+Ty2yB1jhIPZqDe+Zvx8GzhYhQqzDmlmaMAwJQg9kC69WrhyeffBJPPvkk0tLSsGTJEsyYMQMTJ07EgAEDsGbNGk+UkyRy7QDNoAAFPn68K/q1ieFAZfI468XUZBZRbjIjKKDuuyNfO2kFAESFBuLjx5NxU9MGePnO1owD8ijbl0oJW64cxUHj+mosHtkNbePCMa5fC8YBeVSIDMZcOYqDVjGhWDyyG5Ia1sNTtzZjHFDt1rlq3bo1Zs6ciXPnzuGbb75xV5lIJmwDla/6EDGazGgbFw7AMkCz1w0N+QFCHmO9Yw9Ic0HVaA12F1IA+GxkN9zUtAEAxgF5ntTdY6uKA2tiBTAOyPOkHoNbVRz897FkJDWsB4BxQBa1XkQYAJRKJYYOHcpWKx9iMot479fjHKBJkgoMUCBAYelmIcUF9URukd2FFJDv1PDkm0JUljv2FWYRFRJUvWMancM4KNQb674w5LeudAuUZszVoXNah3Fwoais7gtDsuaW5Ip8i9ZgxJgv9+Lnf7Lt9nGAJtU1qRZQzSsqxQcbTthtZwxQXbPGAACU13FydfaSHu/+esxuO+OA6pqUE7scz9HhrZ+P2G1nHJAjLo+5It+k0RqQkV8CAQJeW30IGfklCFYpcF+Xxvh271muLE6SCQlUoqi0ok66RFnjwFBuwuurDyNHV4qgAAWMJjPMIgcpkzSsLbgVZhF10YBrjYOLxWV486cjKNQbERoUAH15BeOAJGNNrowmEUaTGSqlZ9sHrHFwJr8Eb/96DPpyE+rXU0GrNzIOqFpMrsjhAM2ESDU+GZGM9gkRGH8HByqTdCyDmMs83i3QURzc0KgeFo/sBnWgkjFAklJfvsng6ZYrR3HQqXEEPhnRDSJExgFJ5uoWXIPR5NHkylEc3NyiIRY80hWlFSbGAVWLyZWfq2qA5qcjk3FjfAQArixO0royiNlz/eyrioNFjyejeaNQAGAMkKRC6iC5chQHAoB5D3dBbEQwAMYBSSdQqYBSIcBkFmEoNyE8WOWR81QVBzOGdUD9eoEAGAdUPY658nPHqxiorDPIZ5E+8m91MVPa4XOO4yC/uNxj5yRyhXUa6jIPNuAeOFNgFwciAI221HMnJXKSIAgIqYMZA3elX3QYB+cKGAfkHCZXfuzsJT3eXXvcbjsHaJKceHrhyBO5RZjy82G77YwDkpPgy18qy82CR17/r6wCTP6JA/ZJ3jw9Y+DWExfw5k+8HlDtSJ5cLVy4EE2bNkVwcDB69OiBPXv2OHXcihUrIAgChg4darfv2LFjuPfeexEREYF69erhpptuQlZWlptL7t12pl/Evxb+iVN5xQgNUuLybNccoEmyY+sW6IEZojYeycF9C//E+cJSRKpVjAOSLWsLrifuMXy37yyGf7ILF0vKERMexDgg2VJ7qCeDKIr4bNtpPPHFHhSXmZBYX804oBqTdMzVypUrkZKSgkWLFqFHjx6YO3cuBg0ahLS0NERHR1d5XGZmJl566SXceuutdvvS09Nxyy23YMyYMZg6dSrCw8Nx5MgRBAcHe/KteI3sQj0+3ZqBZTszYRaB9gnh+HRENwgCOECTZOlKt0D33ak8X6DHnN9O4vv95wAAPZs3wH8fS0YZByqTTNmSKzeNudJoDTiVV4yf/87Gt/sscTCwXQxmD++MolIj44Bkyd0LCWu0BqTlFGHFnrNYfyQHAPBAcmO8M7Q9CvTljAOqEUmTq9mzZ2Ps2LEYPXo0AGDRokX49ddf8fnnn2PixIkOjzGZTHjssccwdepUbNu2DYWFhZX2v/766xg8eDBmzpxp23bDDTd47D14k692ncEbP15p7u6cGIFvxvay3QnihwfJkfryWBODm75VLtuRiclrrnR/6t28Ab4c08M28xTjgOTI+qXSHWOuHM2E9u87WuLfd7SEQiEgNCiAcUCyFOLGbuLXxoEgAJPvbocnejeFIAiczItqTLLkqry8HPv378ekSZNs2xQKBfr374+dO3dWedy0adMQHR2NMWPGYNu2bZX2mc1m/Prrr3jllVcwaNAg/PXXX2jWrBkmTZrksPugVVlZGcrKrqywrdPpAABGoxFGo7Qr0FvPX9tyHMnWVUqsAOCfc1pc0OkRF8FWPblzVz3wRsEBlr4ZxaXltX7/+88UVEqsAGBXxiVoCkpkHwf+XAcICA6wJP9Gc+3qgEZbiomrDkG8KrFSCMD9XeJgMlXAVPfrs5IL/P1zIFhliYPaXg8cxYEA4I7WUaiokP+EXv5eD6Tgyt9asuQqPz8fJpMJMTExlbbHxMTg+HH7SRYAYPv27ViyZAkOHjzocH9eXh6Ki4sxY8YMvPPOO3j//fexfv16DBs2DJs3b8btt9/u8Ljp06dj6tSpdts3btyIkBB5DGBMTU2t8bFnioFPjilh+ei4wiwC367djJYRDqZJI1mqTT3wVuezFAAUOH7yNNaaTtX4dU5oBXx2XAFvjwN/rAME5OdY4qDcXLs6sP6sAFFUVtrmbTFA/vs5UHTJEgd7DxyE6vxfNX6dHzN9Iw78tR5IQa/XO/1cr1nnqqioCCNGjMDixYsRFRXl8Dlms6Xb0L/+9S/85z//AQB07twZO3bswKJFi6pMriZNmoSUlBTbY51Oh8TERAwcOBDh4eFufieuMRqNSE1NxYABA6BSub6mw08Hs7Hgp6Mor7DvUqUQgIcG95X9HXuqfT3wZme3ZmDj+ZNoFN8Ygwe3d/l4URTxv91nsWh3GkwO5lv3ljjw5zpAwMF1adiRdwZlJgEDBvR3uQ6YzSIWbEnHunOn7fZ5SwwQPwd+K/kHhwpycEPrdhjcO8nl440mM6avS8NmzVm7fd4UB/5eD6Rg7dXmDMmSq6ioKCiVSuTm5lbanpubi9jYWLvnp6enIzMzE/fcc49tmzWZCggIQFpaGhITExEQEIB27dpVOrZt27bYvn17lWUJCgpCUFCQ3XaVSiWbSutKWTRaA9LzSrD2sAbLd1tmSbyjTTRuaxWFaT8fg0kUbbPfNIkK82Sxyc3kVCfrSujlhSLLKkSX3rtGa8CJ3CJ8u/csfj1kGag8rEsCuibVx1s/HfHaOPDHOkBX4qDc7Pr14JhGh6V/ZmLryXwAwC0torAjPR9mEV4ZA+S/nwO1uR78fbYQn2w9jb+yCgEAA9rF4PdjuTB5cRz4az2Qgit/Z8mSq8DAQCQnJ2PTpk228VBmsxmbNm3CuHHj7J7fpk0bHDp0qNK2N954A0VFRZg3bx4SExMRGBiIm266CWlpaZWed+LECSQluX6Hwxs5Gqg8rm8LpAxoBYVCwMAbYzn7DXkV6+KprqxrYjdQGcDrQ9pizC3NIAgC7mgbzTggr2Jb58qFMVHXxoFSEDDj/g54sFsiNFoDY4C8jlp1+XrgwtIcK/dmVRpfFagUsODRrhh4YyzjgDxC0m6BKSkpGDVqFLp164bu3btj7ty5KCkpsc0eOHLkSCQkJGD69OkIDg5G+/aVuwRFRkYCQKXtL7/8MoYPH47bbrsNffv2xfr16/Hzzz9jy5YtdfW2JKPRGuwSK4UAPNazCRSXF2zg7DfkbYJdnB1KozXYD1QWgCEd4yAIjAPyTq5Oxe4oDkSIuKWlpVs9Y4C8kTrQMqGFs+tcabQGTPzhEK7uEF5hFtGhcQQAxgF5hqTJ1fDhw3HhwgVMnjwZOTk56Ny5M9avX2+b5CIrKwsKhWvrHN93331YtGgRpk+fjvHjx6N169b44YcfcMstt3jiLcjK9/vP4dohJWbRsn4VPzzIW4VcvmNvcPJO5Zc7zlT6QgkwDsj7WZMrZ6ZiF0URC38/xTggn+NKTwazWcT7647j2pG2jAPyNMkntBg3bpzDboAArtvatHTpUofbn3zySTz55JO1LJn3EEURC34/hQ9TT9jtUwoCmkbJY8ZDoppwdl2TCpMZ7609js//zLDbxzggb2dd7+16LVelRhNeW30Iqw6ct9vHOCBv5+wiwkWlRvxn5UH8dizPbh/jgDxN8uSKas46UHnZzjPYknYBgGVB1F0ZlyoNVObdGfJm1kWuq+oGotEacOicFp9uS8e+zEIAwB1to7HleF6lgcqMA/Jm1hZco1lwuF+jNeDAmQIs+P0UjuUUQakQMLh9LNYe0jAOyGdYb7aVOujJoNEakJFfggCFgNdWH8apvGIEBihwX5d4fL/vfKVJjBgH5ElMrryU/UBl4N37OuDh7k04QJN8irUbiKNugdfGQaBSwEePdMGd7eMYB+RTqusWeO2AfXWgEp+N7IabW0ThNcYB+RB1FT0ZHE3mFRsejE9GJKNTYiQm9G/FOKA6w+TKCzkeqAzc3roRAA7QJN9ypVtg5T72VQ1U7pQYCYBxQL5FXcWEFo7ioMxoQvNG9QAwDsi3XBlzdSW5cjSZFwAsHpWMDgmRABgHVLdcmy2CJCeKIhZtSa9yoDKRr1HbuoGYYb589TSbRXywIa3KgcpEvsb6pfLqG/ZGkxlT1hxhHJDfCHHQTTwtp8gusQKA4lIX1i0gciO2XHmRsgoT3lh9GN/tP2e3jwM0yVdZL6aApWugCCBl5UFsPJpr91zGAfmqa6div1RSjhe+PoCdpy/aPZdxQL7K1i3QaOnJkF1owIx1x+2exxggKbHlSuY02lKc1Ao4nK3Dw5/uwnf7z0EhAEM6xEF5eVwzB2iSLwsOuJJc/XkqH8P++yc2Hs1FoFKBB5MbQ3l57SrGAfky2yLCZgHbTubj3gXbsfP0RdQLVGJEzyTGAfkF62yBWr0R6w9rcO+C7TieU4R6gUoo+J2IZIItVzJ2ZYCmEguO7gIARKhVWPBoF9zashEH7JNf+G7/WdvvT/9vPwAgOiwIi0Yko2uT+kgZyIHK5PvWHdLYfn9y2QEAQFLDECwe2Q2tYsLwfN8bGAfk8zYft0ytriutwLNfWeKgbVw4Ph2RjAClwBggWWByJVNVDtAcmYzuzRoC4ABN8n3WOLjWZ6O6oWPjSACMA/J9Gq0BU34+Yrf90xHJaBUTBoBxQL5PozXgg41plbYJABY+2gWJDSxdABkDJAfsFihTGfklDgdomq6zgCSRL6kqDkoczUdN5KOqioNLJca6LwyRRBzFgQggV1cmSXmIqsLkSqaaRdWz9R+24gBN8jeMAyLGARHAOCDvweRKpuIi1Jg+rIPtg0QhgAM0ye9Y44CD9cmf8XpAxOsBeQ+OuZKx4Tc1Qa9m9fHt2s14aHBfNIkKk7pIRHVu+E1NcFurRhyoTH6N1wMiXg/IOzC5krm4iGC0jBARFxEsdVGIJMPB+kS8HhABvB6Q/LFbIBERERERkRswuSIiIiIiInIDdgt0QBQtc33qdDqJSwIYjUbo9XrodDqoVCqpi0MSYT0g1gFiHSDWAQJYD6RgzQmsOUJ1mFw5UFRUBABITEyUuCRERERERCQHRUVFiIiIqPY5guhMCuZnzGYzsrOzERYWBkEQrn+AB+l0OiQmJuLs2bMIDw+XtCwkHdYDYh0g1gFiHSCA9UAKoiiiqKgI8fHxUCiqH1XFlisHFAoFGjduLHUxKgkPD2cAEesBsQ4Q6wCxDhAA1oO6dr0WKytOaEFEREREROQGTK6IiIiIiIjcgMmVzAUFBeGtt95CUFCQ1EUhCbEeEOsAsQ4Q6wABrAdyxwktiIiIiIiI3IAtV0RERERERG7A5IqIiIiIiMgNmFwRERERERG5AZMrIiIiIiIiN2ByRUREfuWJJ57A0KFDPXoOQRDw448/AgAyMzMhCAIOHjzo0XMSEZH0AqQuABERUV2aN28e6nKi3MTERGg0GkRFRdXZOYmISBpMroiIyK9ERETU6fmUSiViY2Pr9JxERCQNdgskIiLZ6tOnD1588UVMmDAB9evXR0xMDBYvXoySkhKMHj0aYWFhaNGiBdatWwcAMJlMGDNmDJo1awa1Wo3WrVtj3rx5lV7z2m6Bffr0wfjx4/HKK6+gQYMGiI2NxZQpU5wu48mTJ3HbbbchODgY7dq1Q2pqaqX913YL3LJlCwRBwIYNG9ClSxeo1Wr069cPeXl5WLduHdq2bYvw8HA8+uij0Ov1Nfq7ERGRNJhcERGRrH355ZeIiorCnj178OKLL+K5557Dgw8+iN69e+PAgQMYOHAgRowYAb1eD7PZjMaNG+O7777D0aNHMXnyZLz22mv49ttvr3uOevXqYffu3Zg5cyamTZtmlyQ5YjabMWzYMAQGBmL37t1YtGgRXn31Vafe15QpU7BgwQLs2LEDZ8+exUMPPYS5c+di+fLl+PXXX7Fx40bMnz/fqdciIiJ5EMS67HhORETkgj59+sBkMmHbtm0ALC1TERERGDZsGJYtWwYAyMnJQVxcHHbu3ImePXvavca4ceOQk5OD77//HoCl5aqwsNA24cS15wCA7t27o1+/fpgxY0a15du4cSOGDBmCM2fOID4+HgCwfv163HXXXVi9ejWGDh2KzMxMNGvWDH/99Rc6d+6MLVu2oG/fvvjtt99wxx13AABmzJiBSZMmIT09Hc2bNwcAPPvss8jMzMT69etr8RckIqK6xJYrIiKStY4dO9p+VyqVaNiwITp06GDbFhMTAwDIy8sDACxcuBDJyclo1KgRQkND8emnnyIrK8vpcwBAXFyc7fWqc+zYMSQmJtoSKwDo1avX9d/UNeeMiYlBSEiILbGybnOmDEREJB9MroiISNZUKlWlx4IgVNomCAIASxe9FStW4KWXXsKYMWOwceNGHDx4EKNHj0Z5ebnL5zCbzW56B9c/57Xvqa7KQERE7sXZAomIyGf8+eef6N27N55//nnbtvT0dI+dr23btjh79iw0Gg3i4uIAALt27fLY+YiISN7YcnUdW7duxT333IP4+PhKi0J6SlFRESZMmICkpCSo1Wr07t0be/fu9eg5iYh8RcuWLbFv3z5s2LABJ06cwJtvvunRz9D+/fujVatWGDVqFP7++29s27YNr7/+usfOR0RE8sbk6jpKSkrQqVMnLFy4sE7O99RTTyE1NRX/+9//cOjQIQwcOBD9+/fH+fPn6+T8RETe7JlnnsGwYcMwfPhw9OjRAxcvXqzUiuVuCoUCq1evhsFgQPfu3fHUU0/h3Xff9dj5iIhI3jhboAsEQbDN/mRVVlaG119/Hd988w0KCwvRvn17vP/+++jTp4/Lr28wGBAWFoaffvoJQ4YMsW1PTk7GXXfdhXfeeccN74KIiIiIiDyBLVe1NG7cOOzcuRMrVqzAP//8gwcffBB33nknTp486fJrVVRUwGQyITg4uNJ2tVqN7du3u6vIRERERETkAUyuaiErKwtffPEFvvvuO9x666244YYb8NJLL+GWW27BF1984fLrhYWFoVevXnj77beRnZ0Nk8mEr776Cjt37oRGo/HAOyAioup8/fXXCA0NdfjvxhtvlLp4REQkM5wtsBYOHToEk8mEVq1aVdpeVlaGhg0bAgCOHz+Otm3bVvs6r776qm2hyv/973948sknkZCQAKVSia5du+KRRx7B/v37PfMmiIioSvfeey969OjhcN+1U6cTERExuaqF4uJiKJVK7N+/H0qlstK+0NBQAEDz5s1x7Nixal/HmogBwA033IA//vgDJSUl0Ol0iIuLw/DhwystLElERHUjLCwMYWFhUheDiIi8BJOrWujSpQtMJhPy8vJw6623OnxOYGAg2rRp4/Jr16tXD/Xq1UNBQQE2bNiAmTNn1ra4RERERETkQUyurqO4uBinTp2yPc7IyMDBgwfRoEEDtGrVCo899hhGjhyJDz/8EF26dMGFCxewadMmdOzYsdKMf87asGEDRFFE69atcerUKbz88sto06YNRo8e7c63RUREREREbsap2K9jy5Yt6Nu3r932UaNGYenSpTAajXjnnXewbNkynD9/HlFRUejZsyemTp2KDh06uHy+b7/9FpMmTcK5c+fQoEED3H///Xj33XcRERHhjrdDREREREQewuSKiIiIiIjIDXxuKnaTyYQ333wTzZo1g1qtxg033IC3334bzCGJiIiIiMiTfG7M1fvvv4+PP/4YX375JW688Ubs27cPo0ePRkREBMaPH+/Ua5jNZmRnZyMsLAyCIHi4xEREREREJFeiKKKoqAjx8fFQKKpvm/K5boF33303YmJisGTJEtu2+++/H2q1Gl999ZVTr3Hu3DkkJiZ6qohERERERORlzp49i8aNG1f7HJ9ruerduzc+/fRTnDhxAq1atcLff/+N7du3Y/bs2VUeU1ZWhrKyMttja76ZkZEh+fomRqMRmzdvRt++fblgpR9jPSDWAWIdINYBAlgPpFBUVIRmzZo5lRf4XMuV2WzGa6+9hpkzZ0KpVMJkMuHdd9/FpEmTqjxmypQpmDp1qt325cuXIyQkxJPFJSIiIiIiGdPr9Xj00Ueh1WoRHh5e7XN9LrlasWIFXn75ZcyaNQs33ngjDh48iAkTJmD27NkYNWqUw2OubbnS6XRITExEfn7+df+AnmY0GpGamooBAwbw7oQfYz0g1gFiHSDWAQJYD6Sg0+kQFRXlVHLlc90CX375ZUycOBEPP/wwAKBDhw44c+YMpk+fXmVyFRQUhKCgILvtKpVKNpVWTmUh6bAeEOsAsQ4Q6wABrAd1yZW/s89Nxa7X6+1m8VAqlTCbzRKViIiIiIjcQnseyNhq+enMdl88RpeNqKKjgC7bc+eRw/usbp+M+VzL1T333IN3330XTZo0wY033oi//voLs2fPxpNPPun2c5lMJhiNRre/7tWMRiMCAgJQWloKk8nk0XPVNZVKBaVSKXUxiIiIyBscWAb8/G9ANAOCArhnHtB1ZNXbffSYgJ//jZtFM8QFMz1zHpm8zyr3yZzPjbkqKirCm2++idWrVyMvLw/x8fF45JFHMHnyZAQGBjr1GjqdDhEREVX2qxRFETk5OSgsLHRz6e2JogiDwQC1Wu2Ta25FRkYiNjbWJ9+bOxmNRqxduxaDBw9mFwA/xTpArAPk13VAex6Y297yZbsSBQAHvZOEyzdvRUc3pnlMlcdIff6qjhGUwIRDQESCg9fyvOvlBlfzuZarsLAwzJ07F3PnzvXYOayJVXR0NEJCQjyaGJjNZhQXFyM0NPS6i5Z5E1EUodfrkZeXBwCIi4uTuEREREQkW5fSHSRWgOMEAVV8oecx1z1G6vNXdYxoAi6dliy5coXPJVeeZjKZbIlVw4YNPX4+s9mM8vJyBAcH+1RyBQBqtRoAkJeXh+joaHYRJCIiIsca3AAIAnB1hytBATy8AljxcOXES1AAT/1u+f2zfvb7eEzVx0h9/iqPUQINmsMb+Na39TpgHWPF9a/cw/p39PTYNSIiIvJiEQlAp0evPBaUlnE4rQdZflq7k1m3J3Sx/HO0z8uPES/vEz1xHhm9z8r75npFqxXgg2Ou3KG6fpWlpaXIyMhAs2bNEBwc7PGymM1m6HQ6hIeH+1zLFVD3f09v5df97AkA6wCxDhDrADZPB/6YAbQcBNw9p/KXbe15S7exBs3tv4RXtc9LjzFePIPd675Bj7segaphkmfOI4P3We2+OubXY66IiIiIyAcVnrH8bNLD/st2RELVX8Cr2uetx4TH42JYWyA83nPnkcP7rG6fjPleUwjVyBNPPIGhQ4dKXQwiIiIixwouJ1eRSdU/j0hCbLnyA9ebzfCtt97CvHnzwB6iREREJFuFWZafTK5Ixphc+QGNRmP7feXKlZg8eTLS0tJs20JDQxEaGipF0YiIiIiur6Ic0J23/F6fyRXJF7sFSkl7HsjYavnpQbGxsbZ/EREREASh0rbQ0FC7boF9+vTBiy++iAkTJqB+/fqIiYnB4sWLUVJSgtGjRyMsLAwtWrTAunXrKp3r8OHDuOuuuxAaGoqYmBiMGDEC+fn5Hn1/RERE5ON05wCIQIAaqNdI6tIQVYnJlTuIIlBe4tq/PYstK41/eY/l557FVT/XqHe83cPd+L788ktERUVhz549ePHFF/Hcc8/hwQcfRO/evXHgwAEMHDgQI0aMgF6vBwAUFhaiX79+6NKlC/bt24f169cjNzcXDz30kEfLSURERD7ONt6qiWW9KyKZYrdAdzDqgffir/+8qohmYO1Lln/XUACIrOq417KBwHo1P+91dOrUCW+88QYAYNKkSZgxYwaioqIwduxYAMDkyZPx8ccf459//kHPnj2xYMECdOnSBe+9957tNT7//HMkJibixIkTaNWqlcfKSkRERD7MOlMguwSSzDG5oip17NjR9rtSqUTDhg3RoUMH27aYmBgAQF5eHgDg77//xubNmx2O30pPT2dyRURERDVjm8yiibTlILoOJlfuoAqxtCI5S5cNLOxuabGyEpTAC7vt1iwwm83QFRUhPCzMfhFhVUgtCn191y5QKAhCpW3WWQjNZsv7KC4uxj333IP333/f7rXi4uI8WFIiIiLyaZyGnbwEkyt3EATXuudFtQTumQf8PAEQTZbE6p65lu3XMpsBlcny+tcmVzLTtWtX/PDDD2jatCkCAli1iIiIyE3YLZC8hLy/rfuyriOBCYeAUb9YfnYdKXWJau2FF17ApUuX8Mgjj2Dv3r1IT0/Hhg0bMHr0aJhMJqmLR0RERN6K3QLJSzC5klJEAtDsVstPHxAfH48///wTJpMJAwcORIcOHTBhwgRERkbad2kkIiIicobRABTnWn5nt0CSOfbd8jNPPPEEnnjiCbvtS5curfR4y5Ytds/JzMy02yZeMx18y5YtsWrVqlqUkIiIiOgqhWctPwPDAHV9actCdB1sTiAiIiIi+bp6vBXXuCKZY3JFRERERPJVkGn5yS6B5AWYXBERERGRfHEyC/IiTK6IiIiISL44DTt5ESZXRERERCRftpYrJlckf0yuaujaWfKoZvh3JCIiomoVXG65YrdA8gJMrlykUqkAAHq9XuKS+Abr39H6dyUiIiKyKSsCDJcsvzO5Ii/Ada5cpFQqERkZiby8PABASEgIBA9OC2o2m1FeXo7S0lKfWohXFEXo9Xrk5eUhMjISSqVS6iIRERGR3Fi7BKrrA8Hh0paFyAlMrmogNjYWAGwJlieJogiDwQC1Wu3RJE4qkZGRtr8nERERUSW2LoEcb0XegclVDQiCgLi4OERHR8NoNHr0XEajEVu3bsVtt93mc13nVCoVW6yIiIioapwpkLwMk6taUCqVHk8OlEolKioqEBwc7HPJFREREVG1uMYVeRnfGcRDRERERL6F3QLJy/hkcnX+/Hk8/vjjaNiwIdRqNTp06IB9+/ZJXSwiIiIicoW15ap+U0mLQeQsn+sWWFBQgJtvvhl9+/bFunXr0KhRI5w8eRL169eXumhERERE5CxRvDLmit0CyUv4XHL1/vvvIzExEV988YVtW7NmzSQsERERERG5zFAAlOksvzO5Ii/hc90C16xZg27duuHBBx9EdHQ0unTpgsWLF0tdLCIiIiJyhbVLYL1oQKWWtixETvK5lqvTp0/j448/RkpKCl577TXs3bsX48ePR2BgIEaNGuXwmLKyMpSVldke63SWuyRGo9HjU61fj/X8UpeDpMV6QKwDxDpA/lYHhIunEQDAHNkEJj95z87wt3ogB678rQVRFEUPlqXOBQYGolu3btixY4dt2/jx47F3717s3LnT4TFTpkzB1KlT7bYvX74cISEhHisrERERETl2Q+5atM9egXP1e2J/0+elLg75Mb1ej0cffRRarRbh4eHVPtfnWq7i4uLQrl27Stvatm2LH374ocpjJk2ahJSUFNtjnU6HxMREDBw48Lp/QE8zGo1ITU3FgAEDuM6VH2M9INYBYh0gf6sDivV/ANlAXNueGNx3sNTFkQ1/qwdyYO3V5gyfS65uvvlmpKWlVdp24sQJJCVVvT5CUFAQgoKC7LarVCrZVFo5lYWkw3pArAPEOkB+Uwd0ZwEAyobNoPSH9+siv6kHMuDK39nnJrT4z3/+g127duG9997DqVOnsHz5cnz66ad44YUXpC4aERERETnLOqEFZwokL+JzydVNN92E1atX45tvvkH79u3x9ttvY+7cuXjsscekLhoREREROUMUr0ququ59RCQ3PtctEADuvvtu3H333VIXg4iIiIhqouQCYNQDEICIRKlLQ+Q0n2u5IiIiIiIvZ221Co8HAgKlLQuRC5hcEREREZG8FGRafrJLIHkZJldEREREJC+FZyw/6zO5Iu/C5IqIiIiI5IUzBZKXYnJFRERERPJScLnlit0CycswuSIiIiIieWHLFXkpJldEREREJB9mM6A9a/mdY67IyzC5IiIiIiL5KNIApnJAEQCExUtdGiKXMLkiIiLyBrpsRBUdBXTZ9vu054GMrZaftdnOY2p2TF2d3511QM7HWLsEqhsCxbn2r0ckYwFSF4CIiIiu48AyBPz8b9wsmiHOfx/o9QLQcqBl38mNwK6FgCgCggD0vLzP1e01eS0eU6fnD9i5EDdDrH0dkPsxOxdafpbkAnPbA/fMA7qOdE8sEXmYIIqiKNXJ16xZ4/IxAwYMgFqt9kBprtDpdIiIiIBWq0V4eLhHz3U9RqMRa9euxeDBg6FSqSQtC0mH9YBYB/yY9rzlC6ZolrokRNIQlMCEQ0BEgtQlkQVeD+qeK7mBpC1XQ4cOden5giDg5MmTaN68uWcKREREJDeX0h0nVtYpqq2LrV6tXozlrr+z22vyWjxG+vP7yzGiCbh0mskVeQXJx1zl5OTAbDY79S8kJETq4hIREdWtBjcAwjWXa0EJjF5n+edo3yPfuLa9Jq/FY6Q/vz8d04A31sk7SJpcjRo1yqUufo8//rjk3fSIiIjqVEQCkDza9lAUlMA9cy3bIxIs41EEpWWndV/jZNe21+S1eEydn1+8vL1WdcBbj2GrFXkJScdcyRXHXJHcsB4Q64Cf27EA2Pg6LtRri8gnV0LV8Jq1f7TnLd2mGjSv/CXU1e08RtZ/T+PFM9i97hv0uOuR2tcBbz2GeD2QgNeMuaqOTqfD77//jtatW6Nt27ZSF4eIiEg6l8egFITegMhwB+v+WO/413Y7j6nZMXV1/vB4XAxrC7ijDnjrMUQyJ/mYK6uHHnoICxYsAAAYDAZ069YNDz30EDp27IgffvhB4tIRERFJqMCSXOkDG0lcECIiqo5skqutW7fi1ltvBQCsXr0aoiiisLAQH330Ed555x2JS0dERCShy4uq6gOjJC4IERFVRzbJlVarRYMGDQAA69evx/3334+QkBAMGTIEJ0+elLh0REREEhFFW7dAtlwREcmbbJKrxMRE7Ny5EyUlJVi/fj0GDrSs0l1QUIDg4GCJS0dERCSRknzAqIcIAYbAhlKXhoiIqiGbCS0mTJiAxx57DKGhoUhKSkKfPn0AWLoLdujQQdrCERERSeVyl0CExcKs4MxgRERyJpvk6vnnn0ePHj2QlZWFAQMGQKGwNKo1b96cY66IiMh/FWYCAMTIpOqfR0REkpNNcgUAycnJSE5OrrRtyJAhEpWGiIhIBi7PFIiIRGnLQURE1yXpmKuUlBSUlJQ4/fxJkybh0qVLHiwRERGRzFzuFihGNpG4IEREdD2SJlfz5s2DXq93+vkLFy5EYWGh5wpEREQkN5dnCmS3QCIi+ZO0W6AoimjVqhUEQXDq+a60chEREfkE64QWEYnA+SJpy0JERNWSNLn64osvXD4mJibGAyUhIiKSIbP5qm6BSQAOS1seIiKqlqTJ1ahRo6Q8PRERkbwV5wCmckBQAuHxYHJFRCRvsllEmIiIiK5h6xKYAChkNcEvERE54PPJ1YwZMyAIAiZMmCB1UYiIiFxjnYadk1kQEXkFn06u9u7di08++QQdO3aUuihERESuK2RyRUTkTXw2uSouLsZjjz2GxYsXo379+lIXh4iIyHXW5Ko+kysiIm8guw7cp06dQnp6Om677Tao1WqIouj0VO1Xe+GFFzBkyBD0798f77zzTrXPLSsrQ1lZme2xTqcDABiNRhiNRpfP7U7W80tdDpIW6wGxDvgn5aVMKABUhCWwDhDrAAFgPZCCK39r2SRXFy9exPDhw/H7779DEAScPHkSzZs3x5gxY1C/fn18+OGHTr/WihUrcODAAezdu9ep50+fPh1Tp061275x40aEhIQ4fV5PSk1NlboIJAOsB8Q64F/6a46jHoCdx87j0lnL/z3rALEOEMB6UJf0er3Tz5VNcvWf//wHAQEByMrKQtu2bW3bhw8fjpSUFKeTq7Nnz+Lf//43UlNTERwc7NQxkyZNQkpKiu2xTqdDYmIiBg4ciPDwcNfeiJsZjUakpqZiwIABUKlUkpaFpMN6QKwDfshcgYCDBQCAnnc+DKM6inXAz/FzgADWAylYe7U5QzbJ1caNG7FhwwY0bty40vaWLVvizJkzTr/O/v37kZeXh65du9q2mUwmbN26FQsWLEBZWRmUSmWlY4KCghAUFGT3WiqVSjaVVk5lIemwHhDrgB8pyAZEE6AMhKp+Y8BkAsA6QKwDZMF6UHdc+TvLJrkqKSlx2AXv0qVLDhOfqtxxxx04dOhQpW2jR49GmzZt8Oqrr9olVkRERLJkW+MqEVAobMkVERHJl2ySq1tvvRXLli3D22+/DQAQBAFmsxkzZ85E3759nX6dsLAwtG/fvtK2evXqoWHDhnbbiYiIZIszBRIReR3ZJFczZ87EHXfcgX379qG8vByvvPIKjhw5gkuXLuHPP/+UunhERER1y7aAcBNpy0FERE6TTXLVvn17nDhxAgsWLEBYWBiKi4sxbNgwvPDCC4iLi6vVa2/ZssU9hSQiIqor1m6BXECYiMhryCa5AoCIiAi8/vrrUheDiIhIeuwWSETkdWSVXJWWluKff/5BXl4ezGZzpX333nuvRKUiIiKSgK1bIJMrIiJvIZvkav369Rg5ciTy8/Pt9gmCABNnSSIiIn9RUQYUaSy/M7kiIvIaCqkLYPXiiy/iwQcfhEajgdlsrvSPiRUREfkV7TkAIqAKAepFSV0aIiJykmySq9zcXKSkpCAmJkbqohAREUmrINPyM7IJIAiSFoWIiJwnm+TqgQce4Kx+REREAGcKJCLyUrIZc7VgwQI8+OCD2LZtGzp06ACVSlVp//jx4yUqGRERUR0r5BpXRETeSDbJ1TfffIONGzciODgYW7ZsgXBVNwhBEJhcERGR/yjgNOxERN5INsnV66+/jqlTp2LixIlQKGTTW5GIiKjusVsgEZFXkk0WU15ejuHDhzOxIiIiYrdAIiKvJJtMZtSoUVi5cqXUxSAiIpJWuR4ouWD5nd0CiYi8imy6BZpMJsycORMbNmxAx44d7Sa0mD17tkQlIyIiqkPWLoFB4UBwpKRFISIi18gmuTp06BC6dOkCADh8+HClfQLX+CAiIn9h6xKYxDWuiIi8jGySq82bN0tdBCIiIulZW67YJZCIyOvIZswVERERASjItPzkZBZERF5H0parYcOGYenSpQgPD8ewYcOqfe6qVavqqFREREQSurpbIBEReRVJk6uIiAjbeKqIiAgpi0JERCQP7BZIROS1JE2uvvjiC0ybNg0vvfQSvvjiCymLQkREJA8FXOOKiMhbST7maurUqSguLpa6GERERNIr1QKlhZbfmVwREXkdyZMrURSlLgIRyZ32PJCx1fLT2X3uPEbq8wOALhtRRUcBXbb8yuYv/wd1cYy1S2BgGFCqs389IiKSNVlMxc51rIioSgeWAT//GxDNAASgxR1ATHvLvtzDwKlNAMTK+6raXpNj3PlatTgm4NQm3AwR4vz3ZVc2f/k/qJNjTm+x/CwvAua2B+6ZB3QdCSIi8g6CKHHTkUKhqDSxRVUuXbpURyUCdDodIiIioNVqER4eXmfndcRoNGLt2rUYPHgwVCqVpGUh6fhtPdCet3zBFM1Sl4RIGoISmHAIiEjw388BsmEdIID1QAqu5AayaLmaOnUqZwskInuX0h0nVu2GWn4e/dF+X9LNwJk/3XOMO1+Lx/D/oCbHiCbg0mkgIsH+GCIikh1ZJFcPP/wwoqOjpS4GEclNgxsAQVE5wRKUwKD3LL8fW2O/b8DbwJL+7jnGna/FY/h/UNNjGjQHERF5B8kntOB4KyKqUkQC0OO5K48FJXDPXMv2iATLeBRBWXlf42TH22tyjDtfq5bHiJf3iTIsm7/8H0h2DFutiIi8hizGXOXk5Miq5Ypjrkhu/Loe7F9qmdAiPhkY/j/7L5ra85ZuUw2aV95X1faaHOPO16rhMcaLZ7B73TfocdcjUDVMcuoYOb8fb/w/kPoYv/4cIACsA2TBelD3vGrMldnMgepEVA3rgqoJXRzfwbfe8Xd2e02Ocedr1fSY8HhcDGsLhMfLr2z+8n8g9TFERCR7kncLJCKqlnXdn8ik6p9HREREJDEmV0Qkb4WXW64im0hbDiIiIqLr8Mnkavr06bjpppsQFhaG6OhoDB06FGlpaVIXi4hqwtotsD5broiIiEjefDK5+uOPP/DCCy9g165dSE1NhdFoxMCBA1FSUiJ10YjIFUYDUJJn+Z3dAomIiEjmJJ/QwhPWr19f6fHSpUsRHR2N/fv347bbbpOoVETkMut4q8AwQF1f2rIQERERXYdPJlfX0mq1AIAGDRo43F9WVoaysjLbY51OB8Ay1aXRaPR8AathPb/U5SBp+Ws9EPLTEQBAjGyCiooKqYsjKX+tA3QF6wCxDhDAeiAFV/7Wkq9z5Wlmsxn33nsvCgsLsX37dofPmTJlCqZOnWq3ffny5QgJCfF0EYmoCk0v/IZO55ZBE9EVe5pPkLo4RERE5If0ej0effRRp9a58vnk6rnnnsO6deuwfft2NG7c2OFzHLVcJSYmIj8/XxaLCKempmLAgAFcKM6P+Ws9UGx6C8pdC2G66RmYB74rdXEk5a91gK5gHSDWAQJYD6Sg0+kQFRXlHYsIe9K4cePwyy+/YOvWrVUmVgAQFBSEoKAgu+0qlUo2lVZOZSHp+F090J0DACgbNoPSn953NfyuDpAd1gFiHSCA9aAuufJ39snkShRFvPjii1i9ejW2bNmCZs2aSV0kIqqJAq5xRURERN7DJ5OrF154AcuXL8dPP/2EsLAw5OTkAAAiIiKgVqslLh0ROc22gDCnYSciIiL588l1rj7++GNotVr06dMHcXFxtn8rV66UumhE5KxSHWAosPzOlisiIiLyAj7ZcuXjc3QQ+QfrGlfq+kCwtBPLEBERETnDJ1uuiMgHsEsgEREReRkmV0QkT9aWq/pMroiIiMg7MLkiInniTIFERETkZZhcEZE8WVuu2C2QiIiIvASTKyKSJ+uYq/pNJS0GERERkbOYXBGR/IgiuwUSERGR12FyRUTyYygAyossvzO5IiIiIi/B5IqI5MfaJTA0BlCppS0LERERkZOYXBGR/LBLIBEREXkhJldEJD+cKZCIiIi8EJMrIpKfQrZcERERkfdhckVE8mNtuarPlisiIiLyHkyuiEh+bGOumFwRERGR92ByRUTyIopXjblit0AiIiLyHkyuiEheSi4AFQYAAhCRKHVpiIiIiJzG5IqI5MXaJTA8AQgIlLYsRERERC5gckVE8sKZAomIiMhLMbkiInmxJlecKZCIiIi8DJMrIpIXzhRIREREXorJFRHJC2cKJCIiIi/F5IqI5IXdAomIiMhLMbkiIvkwm4DCs5bf2XJFREREXobJFRHJR1EOYDYCigDLVOxEREREXoTJFRHJh7VLYERjQKGUtixERERELmJyRUTyUcA1roiIiMh7MbkiIvmwzRTIySyIiIjI+zC5IiL54EyBRERE5MWYXBGRfLDlioiIiLyYzyZXCxcuRNOmTREcHIwePXpgz549UheJiK7HNuaKyRURERF5H59MrlauXImUlBS89dZbOHDgADp16oRBgwYhLy9P6qK5TpeNqKKjgC7bfp/2PJCx1fLTme1yPkbq88v9mKrqgZzL7OoxJiOgvbzGVUCQ/esRERERyVyA1AXwhNmzZ2Ps2LEYPXo0AGDRokX49ddf8fnnn2PixIkSl84FB5Yh4Od/42bRDHHBTOCeeUDXkbZ9+PnfgGgGBMWVfVVtl/MxUp/fC45xWA9kXmaXj9kxH4Bo+X1x38r7iIiIiLyAIIqiKHUh3Km8vBwhISH4/vvvMXToUNv2UaNGobCwED/99JPdMWVlZSgrK7M91ul0SExMRH5+PsLDw+ui2PZ02QhY0BmCaLZtEgEgqo3lQf5xCFc9XQSA+jcABen22+V8jNTn97VjpD6/O48RlKgY9xcQHg8CjEYjUlNTMWDAAKhUKqmLQxJgHSDWAQJYD6Sg0+kQFRUFrVZ73dzA55Kr7OxsJCQkYMeOHejVq5dt+yuvvII//vgDu3fvtjtmypQpmDp1qt325cuXIyQkxKPlrUpU0VHcfGqGJOcmkovtLSbhYlhbqYtBREREfkyv1+PRRx91KrnyyW6Brpo0aRJSUlJsj60tVwMHDpSw5aozxAUzK7dcCQqY7lkIAFCueR4CxMr7+r8DZerr9tvlfIzU5/e1Y6Q+v1uPUaLHXY+w5eoy3qkk1gFiHSCA9UAKOp3O6ef6XHIVFRUFpVKJ3NzcSttzc3MRGxvr8JigoCAEBdkPoFepVNJV2oZJwD3zIP48AYJogigoIdwzFwFdH738hArg5wmAaAJs+0YC6jAH2+V8jNTn945j7OuBf/w9VQ05a+C1JP1cIllgHSDWAQJYD+qSK39nn+sWCAA9evRA9+7dMX/+fACA2WxGkyZNMG7cOKcmtNDpdIiIiHCq6c/TjBfPYPe6b9Djrkfsv2hqzwOXTgMNmgMRCdffLudjpD6/zI+psh7IuMxuPYZgNBqxdu1aDB48mBdTP8U6QKwDBLAeSMGV3MDnWq4AICUlBaNGjUK3bt3QvXt3zJ07FyUlJbbZA71KeLxlzImjrlERCY6/gFa1Xc7HSH1+uR9TVT2Qc5ndeQwRERGRF/DJ5Gr48OG4cOECJk+ejJycHHTu3Bnr169HTEyM1EUjIiIiIiIf5ZPJFQCMGzcO48aNk7oYRERERETkJ3w2uaoN6zA0V2YG8RSj0Qi9Xg+dTsd+tX6M9YBYB4h1gFgHCGA9kII1J3BmqgomVw4UFRUBABITEyUuCRERERERyUFRUREiIiKqfY5PzhZYW2azGdnZ2QgLC4MgCJKWxbrm1tmzZyWfuZCkw3pArAPEOkCsAwSwHkhBFEUUFRUhPj4eCoWi2uey5coBhUKBxo0bS12MSsLDwxlAxHpArAPEOkCsAwSA9aCuXa/Fyqr61IuIiIiIiIicwuSKiIiIiIjIDZhcyVxQUBDeeustBAUFSV0UkhDrAbEOEOsAsQ4QwHogd5zQgoiIiIiIyA3YckVEREREROQGTK6IiIiIiIjcgMkVERERERGRGzC5IiIiIiIicgMmV0RE5FeeeOIJDB061KPnEAQBP/74IwAgMzMTgiDg4MGDHj0nERFJL0DqAhAREdWlefPmoS4nyk1MTIRGo0FUVFSdnZOIiKTB5IqIiPxKREREnZ5PqVQiNja2Ts9JRETSYLdAIiKSrT59+uDFF1/EhAkTUL9+fcTExGDx4sUoKSnB6NGjERYWhhYtWmDdunUAAJPJhDFjxqBZs2ZQq9Vo3bo15s2bV+k1r+0W2KdPH4wfPx6vvPIKGjRogNjYWEyZMsXpMp48eRK33XYbgoOD0a5dO6Smplbaf223wC1btkAQBGzYsAFdunSBWq1Gv379kJeXh3Xr1qFt27YIDw/Ho48+Cr1eX6O/GxERSYPJFRERydqXX36JqKgo7NmzBy+++CKee+45PPjgg+jduzcOHDiAgQMHYsSIEdDr9TCbzWjcuDG+++47HD16FJMnT8Zrr72Gb7/99rrnqFevHnbv3o2ZM2di2rRpdkmSI2azGcOGDUNgYCB2796NRYsW4dVXX3XqfU2ZMgULFizAjh07cPbsWTz00EOYO3culi9fjl9//RUbN27E/PnznXotIiKSB0Gsy47nRERELujTpw9MJhO2bdsGwNIyFRERgWHDhmHZsmUAgJycHMTFxWHnzp3o2bOn3WuMGzcOOTk5+P777wFYWq4KCwttE05cew4A6N69O/r164cZM2ZUW76NGzdiyJAhOHPmDOLj4wEA69evx1133YXVq1dj6NChyMzMRLNmzfDXX3+hc+fO2LJlC/r27YvffvsNd9xxBwBgxowZmDRpEtLT09G8eXMAwLPPPovMzEysX7++Fn9BIiKqS2y5IiIiWevYsaPtd6VSiYYNG6JDhw62bTExMQCAvLw8AMDChQuRnJyMRo0aITQ0FJ9++imysrKcPgcAxMXF2V6vOseOHUNiYqItsQKAXr16Xf9NXXPOmJgYhISE2BIr6zZnykBERPLB5IqIiGRNpVJVeiwIQqVtgiAAsHTRW7FiBV566SWMGTMGGzduxMGDBzF69GiUl5e7fA6z2eymd3D9c177nuqqDERE5F6cLZCIiHzGn3/+id69e+P555+3bUtPT/fY+dq2bYuzZ89Co9EgLi4OALBr1y6PnY+IiOSNLVdEROQzWrZsiX379mHDhg04ceIE3nzzTezdu9dj5+vfvz9atWqFUaNG4e+//8a2bdvw+uuve+x8REQkb0yuiIjIZzzzzDMYNmwYhg8fjh49euDixYuVWrHcTaFQYPXq1TAYDOjevTueeuopvPvuux47HxERyRtnCyQiIiIiInIDtlwRERERERG5AZMrIiKiKnz99dcIDQ11+O/GG2+UunhERCQz7BZIRERUhaKiIuTm5jrcp1KpkJSUVMclIiIiOWNyRURERERE5AbsFkhEREREROQGTK6IiIiIiIjcgMkVERERERGRGzC5IiIiIiIicgMmV0RERERERG4QIHUB5MhsNiM7OxthYWEQBEHq4hARERERkUREUURRURHi4+OhUFTfNsXkyoHs7GwkJiZKXQwiIiIiIpKJs2fPonHjxtU+R/bJ1datWzFr1izs378fGo0Gq1evxtChQ6s9ZsuWLUhJScGRI0eQmJiIN954A0888YTT5wwLCwNg+QOGh4fXovS1ZzQasXHjRgwcOBAqlUrSspB0WA+IdYBYB4h1gADWAynodDokJibacoTqyD65KikpQadOnfDkk09i2LBh131+RkYGhgwZgmeffRZff/01Nm3ahKeeegpxcXEYNGiQU+e0dgUMDw+XRXIVEhKC8PBwBpAfYz0g1gFiHSDWAQJYD6TkzHAh2SdXd911F+666y6nn79o0SI0a9YMH374IQCgbdu22L59O+bMmeN0ckVEREREROQq2SdXrtq5cyf69+9fadugQYMwYcKEKo8pKytDWVmZ7bFOpwNguTNgNBo9Uk5nWc8vdTlIWqwHxDpArAPEOkAA64EUXPlb+1xylZOTg5iYmErbYmJioNPpYDAYoFar7Y6ZPn06pk6dard948aNCAkJ8VhZXZGamip1EUgGWA+IdYBYB4h1gADp6oHWrMVF00U0VDZEhCJCkjLUNb1e7/RzfS65qolJkyYhJSXF9tg6aG3gwIHVjrkymUyoqKiAKIoeK1tFRQV27NiB3r17IyCA/12+QBAEBAQEQKlUOn2M0WhEamoqBgwYwP7Vfop1gFgHiHWAAGnrwY/pP+LD3R/CDDMUUOCNHm9g6A1D67QMUrD2anOGz31bj42NRW5ubqVtubm5CA8Pd9hqBQBBQUEICgqy265SqRxWWlEUkZOTg8LCQreUuTqiKCI2NhYajYZrbvmYyMhIxMbGuvT/WlWdJP/BOkCsA8Q6QEDd1wNNsQZv734bIiyNCmaY8c6ed3Br4q2IrRdbZ+WQgit/Z59Lrnr16oW1a9dW2paamopevXq57RzWxCo6OhohISEeTXrMZjOKi4sRGhp63UXLyDuIogi9Xo+8vDwAQFxcnMQlIiIiIqraGd0Z/N+W/7MlVlZm0YyzRWd9PrlyheyTq+LiYpw6dcr2OCMjAwcPHkSDBg3QpEkTTJo0CefPn8eyZcsAAM8++ywWLFiAV155BU8++SR+//13fPvtt/j111/dUh6TyWRLrBo2bOiW16yO2WxGeXk5goODmVz5EGsral5eHqKjo13qIkhERETkSTklOcjSZSE+NB7rM9fj44Mfo9xcbvc8haBAYliiBCWUL9knV/v27UPfvn1tj61jo0aNGoWlS5dCo9EgKyvLtr9Zs2b49ddf8Z///Afz5s1D48aN8dlnn7ltGnbrbCFymeiCvJe1DhmNRiZXREREJAurTq7C1J1TYRbNlbb3iuuF7nHdMe/APACAAAFv9XqLrVbXkH1y1adPn2onjFi6dKnDY/766y8Plsq5RcSIqsM6RERERHKSU5LjMLF69aZX8VjbxyAIAgpLC/Hl0S9xR5M7MKzlMIlKKl/sZ0ZERERERMjSZdklVgDQukFr203hLjFdAADnis/Vadm8BZMrqlN9+vSpdkHnun4dIiIiIrJoEt4ECqFyenDtuKpWka0AAKcLT6PCXFGn5fMGTK78xBNPPAFBECAIAgIDA9GiRQtMmzYNFRXyDootW7ZYmqCvmfZ+1apVePvtt+ukDF9++SVuuukmhISEICwsDLfffjt++eUXu+f9888/uPXWWxEcHIzExETMnDmzTspHRERE5A6x9WLxVq+3bI8djatKCEuAOkCNcnM5snRZjl7GrzG58iN33nknNBoNTp48if/7v//DlClTMGvWLKmLVSMNGjRAWFiYx8/z0ksv4ZlnnsHw4cPxzz//YM+ePbjlllvwr3/9CwsWLLA9T6fTYeDAgUhKSsL+/fsxa9YsTJkyBZ9++qnHy0hERETkLsNaDkPTiKYAgPduec9uXJVCUKBFZAsAwInCE3VdPNljciWhnJIc7NHsQU5JTp2cLygoCLGxsUhKSsJzzz2H/v37Y82aNQCAgoICjBw5EvXr10dIyP+zd+fhTZXZA8e/SZvuewtNV/ZdBEVAFnehiuPGqKijAi7jhugwM46MC+CGMyLiOrgh6ujIT0BcQBZRcGGTTQTZSylL01LovqbN/f0R7m3TJG3SJk1azud5eDQ3d3mT3KT33PO+5w3jyiuvZP/+/dq28+fPJyYmhiVLltCjRw9CQkLIyMjgyJEj2joTJkzguuuusznmI488wsUXX+y0TR999BHnnXcekZGRGI1Gbr31Vm3+p6ysLK1SZGxsLDqdjgkTJgD23QJdbf+KFSvo06cPERERWrDpzIYNG3jppZd48cUX+dvf/kb37t3p06cPzz33HI888ghTpkzRXv/HH39MdXU18+bNo1+/ftx8881MnjyZ2bNnO/9AhBBCCCH8ULm5HIAu0V0cPt8jtgcA+wv2O3z+TCbBlQcoikK5udytf5/u+ZSMhRnctfIuMhZm8OmeT52uW1FT4XB5Y1UUXREaGkp1tXXOggkTJrB582a+/PJL1q9fj6IojBkzRis9D1BeXs5zzz3Hhx9+yM8//0xhYSE333xzi9pgNpt55pln+PXXX1myZAlZWVlaAJWWlsaiRYsA2Lt3Lzk5ObzyyisO9+Nq+2fNmsVHH33EDz/8QHZ2Nn/729+ctu1///sfERER3HvvvXbP/fWvf8VsNmvtW79+PRdeeCFBQUHaOhkZGezdu5eCggK33xchhBBCCF8pqioCIDo42uHzPWIkuHLG70uxtwUVNRUM/WRos7e3YOG5jc/x3Mbn3Npu460bCTO4P9+WoiisXr2aFStW8NBDD7F//36+/PJLfv75Z4YPHw5YMzFpaWksWbKEG2+8EbAGQq+//jpDh1pf6wcffECfPn3YtGkTQ4YMcbsdAHfeeaf2/127duXVV19l8ODBlJaWEhERQVxcHAAdO3YkJibG4T7caf/cuXPp1q0bAJMmTeLpp5922rZ9+/bRrVs3m4BJlZycTFRUFPv2WdPhJpOJLl1s7+4kJiZqz8XGxrrydgghhBBC+FRFTQVVtVWA8+CqZ6y1qIUEV/Ykc3UG+frrr4mIiCAkJIQrr7yScePGMX36dHbv3k1gYKAWNAHEx8fTq1cvdu/erS0LDAxk8ODB2uPevXsTExNjs467tmzZwtVXX016erpWLAKwmRi6Ka62PywsTAusAJKSkrQuiM40lR10FHgJIYQQQrRVatYqUBdIhCHC4Tpqt8CjpUe1LoTCSjJXHhAaGMrGWze6vH5ueS7XLbkOC3XzCOh1epZcu4TEsESbdS0WCyUlJURGRqLX28bCoYGhbrXzkksu4T//+Q9BQUEkJycTGOjZj1+v19sFI/W75TVUVlZGRkYGGRkZfPzxx3To0IHs7GwyMjK07oqeZDAYbB7rdLpGg6cePXrw008/UV1dbRdEHT9+nOLiYnr2tN65MRqN5Obm2qyjPjYaZeZyIYQQQrQNanAVFRylzW3VUGxILAmhCeRX5HOg8ABndzi7NZvo1yRz5QE6nY4wQ5jL/7pEd2Ha8GnaPAJ6nZ5pw6bRJbqLw/VDA0MdLnd2wjsTHh5O9+7dSU9Ptwms+vTpQ01NDRs31gWIJ0+eZO/evfTt21dbVlNTw+bNm7XHe/fupbCwkD59+gDQoUMHuwIR27dvd9qePXv2cPLkSV544QUuuOACevfubZdJUoOa2tpap/txtf3uuuWWWygtLeWtt96ye27WrFmEhIQwbtw4AIYNG8YPP/xgE0yuWrWKXr16SZdAIYQQQrQZhVWFAMQExzS6noy7ckyCKx8Z22MsK/64gnkZ81jxxxV2ZS5bU48ePbj22mu55557+Omnn/j111+57bbbSElJ4dprr9XWMxgMPPTQQ2zcuJEtW7YwYcIEzj//fG281aWXXsrmzZv58MMP2b9/P9OmTWPnzp1Oj5uenk5QUBCvvfYamZmZfPnll3ZzV3Xq1AmdTsfXX3/NiRMnKC0tbXb73TVs2DAefvhh/v73v/PSSy9x8OBB9uzZwxNPPMGrr77KO++8Q3x8PAC33norQUFB3HXXXezatYsFCxbwyiuvMGXKlGYfXwghhBCitTVVzEKlVQwslOCqPgmufMgYbmSwcbDNxGy+8v777zNo0CD+8Ic/MGzYMBRFYdmyZTZd6cLCwvjHP/7BrbfeyogRI4iIiGDBggXa8xkZGTz55JM8+uijDB48mJKSEu644w6nx+zQoQPz58/ns88+o2/fvrzwwgvMmjXLZp2UlBRmzJjBY489RmJiIpMmTWp2+5tjzpw5vPnmm/zvf//jrLPOok+fPrz44ot899133Hbbbdp60dHRrFy5kkOHDjFo0CD++te/8tRTT/HnP/+5RccXQgghhGhNaubK5eBKMlc2dEpL63m3Q8XFxURHR1NUVERUVJTNc5WVlRw6dIguXboQEhLi9bZYLBaKi4uJioqyG3PVmubPn88jjzxCYWGhz9rgD7KysrjooosYNmwYH3/8MQEBAc3elzvnktlsZtmyZYwZM6bFAaNom+QcEHIOCDkHBHj/PHhnxzu8uu1Vrut+Hc+MeMbpertO7uLmr28mNjiWtePWuj1cpS1pLDZoSDJXQrihc+fOrFmzht69ezc6nkwIIYQQoi3SugUGNZ656hbdDb1OT0FVAScrT7ZG09oEqRYohJu6dOnC9OnTfd0MIYQQQgiP0wpahMQ0ul5IYAjpkelkFWexr2AfCaEJ3m9cGyCZK+GSCRMmnPFdAoUQQggh2jtXC1qAjLtyRIIrIYQQQgghBABF1a51CwQpx+6IBFdCCCGEEEIIwPV5rkDKsTsiwVUzWSwWXzdBtHFyDgkhhBDC3zSnW+DBwoPUWmq92q62QgpauCkoKAi9Xs/x48fp0KEDQUFBXi09abFYqK6uprKy0qel2IXnKIpCdXU1J06cQK/XExQU5OsmCSGEEEKgKIpbwVVqRCohASFU1lZypOQInaM7e7mF/q9NBFdvvPEGL774IiaTiQEDBvDaa68xZMgQh+uazWZmzpzJBx98wLFjx+jVqxf/+te/uOKKKzzSFr1eT5cuXcjJyeH48eMe2WdjFEWhoqKC0NDQdj1/wJkoLCyM9PR0CZqFEEII4RdKzaXUKtYMlCvdAgP0AXSL6cauk7vYX7hfgivaQHC1YMECpkyZwty5cxk6dChz5swhIyODvXv30rFjR7v1n3jiCf773//yzjvv0Lt3b1asWMH111/PunXrOOecczzSpqCgINLT06mpqaG21rspULPZzA8//MCFF14oEwa2IwEBAQQGBkrALIQQQgi/oY63CgkIISQwxKVtesT2sAZXBfsZ1WmUF1vXNvh9cDV79mzuueceJk6cCMDcuXNZunQp8+bN47HHHrNb/6OPPuLxxx9nzJgxANx///18++23vPTSS/z3v//1WLt0Oh0Gg8HrAU9AQAA1NTWEhIRIcCWEEEIIIbymuKoYgKjgKJe3kYqBtvw6uKqurmbLli1MnTpVW6bX67n88stZv369w22qqqoICbGNtENDQ/npp5+cHqeqqoqqqirtcXGx9cQym82YzeaWvIQWU4/v63YI35LzQMg5IOQcEHIOCPDueZBflg9Yy7C7uv+uUV0B2Fewr92em+68Lr8OrvLz86mtrSUxMdFmeWJiInv27HG4TUZGBrNnz+bCCy+kW7durF69msWLFzfafW/mzJnMmDHDbvnKlSsJCwtr2YvwkFWrVvm6CcIPyHkg5BwQcg4IOQcEeOc8+LX6VwBqSmtYtmyZS9uUWkoBOFJyhCVLlxCka3+FusrLy11e12vBVVFRESaTCQCj0Uh0dNMVRzzhlVde4Z577qF3797odDq6devGxIkTmTdvntNtpk6dypQpU7THxcXFpKWlMXr0aKKiXE+LeoPZbGbVqlWMGjVKugWeweQ8EHIOCDkH/FdueS7ZJdmkR6aTGJbY9AbNJOeAAO+eB8V7i2ELdEvqxpgLxri83VuL3qKgqoCe5/ekb3xfj7bJH6i92lzh8eDq3XffZfbs2ezdu9dmea9evfjrX//KXXfd5fK+EhISCAgIIDc312Z5bm4uRqPR4TYdOnRgyZIlVFZWcvLkSZKTk3nsscfo2rWr0+MEBwcTHBxst7w1xlS5yp/aInxHzgMh54CQc8C/LN6/mBnrZ2BRLOh1eqYNm8bYHmO9ekw5BwR45zworbFmoWJCY9zad8/Ynmw0bSSzJJMBxgEebZM/cOe98GgN6BdffJGHH36Ya6+9ltWrV7Nz50527tzJ6tWrue6663j44YeZNWuWy/sLCgpi0KBBrF69WltmsVhYvXo1w4YNa3TbkJAQUlJSqKmpYdGiRVx77bXNfl1CCCGEEA2ZykxaYAVgUSzMWD8DU5nJxy0TonnUaoGulGGvT51MeH+hFLXwaObq9ddf5/333+emm26yWd6nTx8uvvhiBgwYwN///nf+9re/ubzPKVOmMH78eM477zyGDBnCnDlzKCsr06oH3nHHHaSkpDBz5kwANm7cyLFjxxg4cCDHjh1j+vTpWCwWHn30Uc+9UCGEEEKc8bKLs7XASmVRLBwpOYIx3HEPGyFaKrc8l0xzJrnluaRGp3p030XV1gmEmx1cScVAzwZXeXl59O/f3+nz/fv3Jz8/3619jhs3jhMnTvDUU09hMpkYOHAgy5cv14pcZGdn20zCWllZyRNPPEFmZiYRERGMGTOGjz76iJiYmGa9JiGEEEIIR9Kj0tHr9DYBll6nJy0yzYetEu3Z4v2LmbFuBhYszF8yn2nDPdsNVc1cRQW5V3OgqXLspjIT2cXZpEelt/sbDx4NrgYPHswLL7zAe++9R2Cg7a5ra2v517/+xeDBg93e76RJk5g0aZLD59asWWPz+KKLLuL33393+xhCCCGEEO4whhuZNmwa09ZN05ZNGzat3V88Ct8wlZmYvm46CgoAFqzdUIcnD/fYOVdU2bzMVbeYbgCcrDzJnlN76B3XW3uusXGJ7THo8ni3wIyMDIxGIxdeeKGWXcrNzeWHH34gKCiIlStXevKQQgghhBA+c33363luw3NUW6qJDYn1ejELcebKLs7WAiuVp7uhamOuQmLc2m551nLt/2/86kYuTr2Y1MhUcstzWXW4rmS8RbEwfd10TpafJK8ijwV7F6CgtFoxmNbg0eDq7LPPZt++ffz3v/9lw4YNZGZmAtZS7M8++yy33nqrz0ubCyGEEEJ4SkFVAdWWagCKqoqotdQSoA/wcatEe5QelW63zNPdUNUxV9FBrk+hpBZ2qW/N0TVO11dQeHX7qzbL1GIwnszC+YrHS7FHRkZy//33c//993t610IIIYQQfiWnLEf7f4ti4VTlKTqEdfBhi0R7ZQw30jeuL7+fsg5/UbM9ngpGaiw1lFSXABAd7Hpw5aiwC8CYLmNIjkjmvd/es8m46dDRN64vu07tslm/vRSD8cokwseOHWPRokXs27ePoKAgevXqxU033URsbKw3DieEEEII4RMNy67nVeRJcCW8xhBQN9/S88Of56ruV3ls38XVdRPluhNcOSvs8pdBf8EYbiQtMs1uzNXw5OFkLMpol8VgPB5cvfnmm0yZMoXq6mqtC2BxcTFTpkzh3Xff5ZZbbkFRFLZv384555zj6cMLIYQQQrSahsFVfnk+xPuoMaLdy6+oq7pdUFXg0X0XVVm7BEYYIgjUux4iqIVdGgZQagZqbI+xDE8ezpGSI6RFpmnLpw2bZlOgo70Ug/FocLV06VImT57MI488wl//+leSkpIAyMnJ4cUXX2T8+PGkpaXx5ptv0rt3bwmuhBBCCOFV3q5GllOaY/P4RMUJjx/DFe2x6pqwpSgKeeV52uPMokyP7l8NrtzJWqmcBVAqY7jRbtnYHmNJDEvkvm/vIzooul0UswAPB1cvvvgijz32GM8++6zN8qSkJGbPnk1YWBijRo3CaDRqk/4KIYQQQnhDYyWgPcVUbs1cqd2iTpS3fnBVf+6j9lR1TdgqqirCbDFrjz0dXGmVAt0sw65yFEA15ZyO1kRLUXURRVVFzQrs/I2+6VVct3XrVm6//Xanz99+++1UVVWxdu1aOnXq5MlDCyGEEEJoTGUma8BxekyHWo2sYTe+llILWnSN7gq0fuZKe51493UK32t4bvlT5qq5wgxhdAztCFgLY7QHHg2uamtrMRgMTp83GAyEhoaSnm5fSlIIIYQQwlP2FezTAg6VWo2sKaYyE5tyNrkUoJhKresM6DAA8Exw5c7xs4uzm/06RduiZkVTI1IB65irU5WnPLZ/NXPV2tmjTtHWhEtWcVarHtdbPBpc9evXjy+++MLp80uWLKFfv36ePKQQQgghhI1aSy0f7frIbrkr1cgW719MxsIM7lp5FxmLMli8f7HTdc0WsxZM9U/oD9DiboHuHB+sldp06GyWtZeqa8JWXoV1vFVqRCqxemsF7sxCz2Wv1MxVc7sFNlenKGtwdbj4cKse11s8Glw9+OCDPP7447z55pvU1NRoy2tqanjjjTd44okneOCBBzx5SCGEEEIIG69sfYUNpg3odXWXOa7MCWQqMzF93XSXu9jlleehoBCkD6JnbE+gZZmr5nTxM4YbGZE8QnusQ9duqq4JW2rg3iGsAx311q50nuwa6ItugQCdozoDElw5NH78eB544AEmTZpEfHw85557Lueccw7x8fFMnjyZe++9lwkTJnjykEIIIYQQms/3f877u94HYObImYQEhADwzuh3mizykF2cbTPZKTTexU4NehLDE+kYZr3YPVlx0uGEqq5obhe/mJAY7f/H9hgrxSzaKTVw7xDagQ4B1rnUDhQe8Nj+W1rQornSI63DhSS4cmLWrFmsW7eOCRMmYDQaSUpKYsKECfz888+8/PLLnj6cEEIIIQQAW3K38PSGpwG4b8B9jOk6hi7RXQAoN5c3uX16lP2Y8Ma62KnFLJLCk4gPjUeHjlqlttnjYJrbxS+3PFf7/6MlR5t1bOH/1MxVQkhCXebKC90CfTXm6nDxYRRFaWJt/+fxSYQBzj//fM4//3xv7FoIIYQQwoapzMTm3M3M3DiTGksNozuN5v4B9wPW8Ry7T+126a64MdxIpCGSEnMJ0HRXQjVzZQw3EqgPJC4kjpOVJ8mvyCchNMHt12EMNzIyZSQ/HvvRenya7soIkFtWF1ztLdiLoijodLpGthBtkTrmqkNYB4oDigE4WHTQY/svqvbNmKu0iDT0Oj3lNeXkV+TTIaxDqx7f0zyeuRJCCCGEaC1qAYipP06luLqYpPAknh35rDbeSs1GuRJclVaXaoEVwJuXvdloF7v6wRWgXRTWn+jVXaGBodr//2PIP5rs4qcoik3mqrCq0OaxaD+0MVf1ugXmV+RrGaeW0qoFBrVu5soQYCAlIgVoHxUDJbgSQgghRJtkKjNZJwmuN04ptzzX5mJTrUTmyhw6DQOwkuoSJ2ta1e8WCGjZqvyKfBda71j98VUVNRVNrl9YVUhVbRVQ91r3Fexr9vGFf1IUxWbMVbAuGGOYNaj3VFELX1ULhPZVMVCCKyGEEEK0SdnF2XbFIxoWgNAGy5c0fdHW8CL1UNGhRtdXgys1c6UWtWhuOXZFUWzaru6/MWqWKi4kjrMSzgJgz6k9zTq+8F+FVYXUWKyVuBNCrEG8OnG1J4paVNVWacF8dEjrZq5AgishhBBCCJ9zpQCEetFmKjM1mQlSuySpXQoPFTceXKndAhtmrppbjr2gqoBSc6n2uP5YKmfUdYzhRnrF9gJg76m9zTq+8F9qV9PY4FgMAQagLrhypahFUxNTq1krvU5PhCHCE012i/o9lW6BQgghhBA+Ygw3Mq7XOO2xowIUMcExRAVFATRZ0lzNVJ3b8VwAsoqynK5bZi7Tug1qY65CreNgmpu5ath10Z3MVWJYIr3iTgdXBRJctTdal8B6xR7U4OpgYeNFLRbvX0zGosYnpq4/3qr+/HCtxZ3uu/7OK+9ebm4ut99+O8nJyQQGBhIQEGDzTwghhBDCE9Rs0bCkYaz44wq7AhA6nc7lCzf1rvklaZdoj52VhlYzAJFBkYQbwoG6C9/mjrlSg7+4kDjAteBKm2srLFHLXGUXZ7tUel60HfUnEFZpwVUjFQO1iamVxiem9lUZdpU6kXB2STa1llqftMFTvBJcTZgwga1bt/Lkk0+ycOFCFi9ebPPPXW+88QadO3cmJCSEoUOHsmnTpkbXnzNnDr169SI0NJS0tDT+8pe/UFlZ2dyXI4QQQgg/tb9wPwDDkoc5LVnuSsXAWksth4usz49MHUmgLpCKmgqnlfcaFrOAusyVWjLbXWpwNcQ4BIDi6mLKzGWNbqNlrsITiQ+Np0NoBxQUKWrRztQvZqHqEmWdwy2vPM9p8RVXJ6b2dXBlDDcSpA+ixlLD8bLjPmmDp3hlnquffvqJH3/8kYEDB7Z4XwsWLGDKlCnMnTuXoUOHMmfOHDIyMti7dy8dO3a0W/+TTz7hscceY968eQwfPpx9+/YxYcIEdDods2fPbnF7hBBCCOE/DhRYB/N3j+nudJ1OkU0Pls8py6HaUo1Bb6BTZCdSI1PJKs7iUNEhh0Gbo+BKLWiRX5HfrLmmskusmbXecb35+djPlJhLMJWZ6BbTzek26pirxLBEAHrG9eTEsRPsK9jHwI4D3Tq+8F/qmKv6wVVkUCQdwzqSV57HwcKDDj/v5Ihku2WOJqZWuwX6olIgWNuUHpXOgcIDHC4+3OTE2f7MK5mrtLQ0j82wPHv2bO655x4mTpxI3759mTt3LmFhYcybN8/h+uvWrWPEiBHceuutdO7cmdGjR3PLLbc0me0SQgghRNtSXVutdeXrEdvD6XquVCJTx1t1iupEgD6AztGdAecD7BvOcQUQHxIPQI2lRrtYdceRYms2IT0qHWOE0eY4zqiZK7UdvWN7A1IxsL1RuwWqAbyqW7Q18HZWjr3hOe9sYmxfZ66g/VQM9Ermas6cOTz22GO89dZbdO7cudn7qa6uZsuWLUydOlVbptfrufzyy1m/fr3DbYYPH85///tfNm3axJAhQ8jMzGTZsmXcfvvtTo9TVVVFVVWV9ri42Drrtdlsxmw2N7v9nqAe39ftEL4l54GQc0DIOWBvf8F+apVaIgwRxBninL43KWHWCUqzi7OdrnOwwDpupVNkJ8xmM+kR6dpyR9scL7F2XeoY0tHm+ZjgGAqrCjlefJyIAPeqrqmZq+TQZBJDE9lfsJ+jxUcxd7T97NX/KoqiBV/xQfGYzWa6R1kzeHtO7pFzpR1RM1dxQXE250HnqM6sz1nP/lP7HX7eyzKX2Tyee+lczks8z27dUxWnAIgMjPTZeZMWYc1WZRZk+t256057vBJcjRs3jvLycrp160ZYWBgGg8Hm+VOnTrm0n/z8fGpra0lMTLRZnpiYyJ49ju/I3HrrreTn5zNy5EgURaGmpob77ruPf/7zn06PM3PmTGbMmGG3fOXKlYSFhbnUVm9btWqVr5sg/ICcB0LOASHnQJ3t1dsBiLfE88033zhdr1KxjrvOr8zn86WfE6wLtlvnh/IfAKjJq2HZsmWUVFnHsGzO3MyyvGV26+8q3QVAzv4clh2uez7EHALANz98wwGD6/MPVVgqtGzXrnW7qK6oBuCnX38iZF+IzbrqOVBuKaey1vratv6wld90v3Gi1prh2HtyL18v/donld+E5x0psmY1923bR0WgdUqBVatWUV5lLVyy8cBGlplsz9MapYaVRSsBCCKIaqr5bv135AXZjwncWb4TgNzDuSzLtT/fW4OaPdt6aCvLTvimDc6Ul7teIMZrmStfWbNmDc8//zxvvvkmQ4cO5cCBAzz88MM888wzPPnkkw63mTp1KlOmTNEeFxcXk5aWxujRo4mKimqtpjtkNptZtWoVo0aNsgtSxZlDzgMh54CQc8Dege0H4HcY0nUIYwaPaXTdNxa9QUFVAb2H9aZPXB+755d8uwTy4LJzL2NMlzEkn0jm81WfUxZUxpgx9vue++VcKIUrhl+hlW4HWPr9Ukw5Jrr078KYro23qb7fT/0Oy60TxF5/1fUU7ipk06+biEiOYMww634angP7CvbBN9Zs2bVXXQtYC3O89dlbVNZW0v+C/lpXK9F2WRQL0z+dDsC1l11LfFC8dh4kFybzxaovKAkqsTtP1x5dS+UPlXQM7chQ41C+OvQVUV2jGHO2/Xm5+ofVcBSG9B/CmB6un7eelJSXxOfffk55cLnD75wvqb3aXOGV4Gr8+PEe2U9CQgIBAQHk5tpW6snNzcVodFwR6Mknn+T222/n7rvvBqB///6UlZXx5z//mccffxy93v4OTnBwMMHB9nexDAaD3/wB86e2CN+R80DIOSDkHKiTWWwdZ9IzrmeT70mnqE4UnCjgePlxzk482+75rJIsALrHdsdgMNAjzjqGy1RuwoyZMENdTxaLYtHGOqVFp9kcWx0Tc6rqlFufU065tUBGWpR1f8lR1kIEeRV5dvtRz4GT1ScB63grdR0DBrrHdGfnyZ0cLDlI93jnhT5E23Cy4iQ1Sg0AxigjnK5UbjAY6BnfE7Cep9VUa9MCAKw8Ys1aZXTJwBhm5KtDX5FZnOnwvCyqtmaNYsNiffb70i3OOn4spywHi95CcID9tbmvuPOeeC1XXFtby6JFi3j22Wd59tln+fzzz6mtda9ufVBQEIMGDWL16tXaMovFwurVqxk2bJjDbcrLy+0CKHVuLU8V2RBCCCGE7+0vsJZhb6yYhaqxwfIl1SXa3FRqIYuYkBitclrDbU5VnsJsMaNDZzPvENQFV2rpbFep463UKmlqFcLG5rrSilmE2d5w1iYTPiWTCbcH6rkZFxKHQW97kR8dHK3N9ZZZWFfUotxczpojawC4svOVdI+1BtkHCh13VVW75PmqWiBYX1+EIQIFRSvu0hZ5Jbg6cOAAffr04Y477tDmtrrtttvo168fBw82Pot0Q1OmTOGdd97hgw8+YPfu3dx///2UlZUxceJEAO644w6bghdXX301//nPf/j00085dOgQq1at4sknn+Tqq6+WCYyFEEKIdqKkukQLPBorw67SJhIusZ9IOKsoC7BOSBwZFKkt7xJtnUeoYcVAtYhEh7AOdhe76oWuWt3NVeoEx+mR1kIaanBlKjNpE8A2pJVhD7cdm64FVwUSXLUHjsqw16dWDKw/mfAPx36goqaClIgUzko4i56x1gxXdkk2lTX2c7+qmStfBlf1J/xuyxUDvdItcPLkyXTr1o0NGzYQF2edZfzkyZPcdtttTJ48maVLl7q8r3HjxnHixAmeeuopTCYTAwcOZPny5VqRi+zsbJtM1RNPPIFOp+OJJ57g2LFjdOjQgauvvprnnnvOsy9SCCGEED5zsNB6IdkxrKNL5aPViYQdlVZXl6nBlKpzVGe25W3TyrSr1KDO0fxXaibL3cyVOqmr2s4OYR3Q6/SYLWZOVZ7Sgrb61CBPneNK1TtOyrG3J9oEwmFOgquYbmw0bbTJXK04tAKAK7tciU6nIz4kXqtkmVmUSd/4vtq6iqL4fJ4rVaeoTuw6uYvDJRJc2Vi7dq1NYAUQHx/PCy+8wIgRI9ze36RJk5g0aZLD59asWWPzODAwkGnTpjFt2jS3jyOEEEKItmFfwT7AtS6BUC9zVWyfuVKDp85RnW2Wa5mr05ktlRrU1J9AWKVmF9SuXK5Sgyu1W6BBbyAhNIG88jxySnMcBldqt8CGmSs1S5FXnkdBZQGxIbFutUX4FzVz1XCOK5U6ybSauSqtLuWHo9bql1d0vgKwZoV6xPbgF9Mv7C/YbxNcldeUU2OxjumKCvJtITf1O9iWM1de6RYYHBxMSUmJ3fLS0lKCgoK8cUghhBBCnEHU8VY9Y3q6tL7a3a6wqlAbX6JqLHNV/3mVmrlyGFydzi7klee5PNa73FyuZSfU4Kr+/k3ljicSdjbmKtwQru1Huga2fWqg7qxbYNforkBdNvf7I99TbammS3QXLdCGuu6zDcddqd+HIH0QoYGhnm28m9SbIA1vaLQlXgmu/vCHP/DnP/+ZjRs3oigKiqKwYcMG7rvvPq655hpvHFIIIYQQZxD1AlEdqN+UMEMYHUOtd/4bZq+azFwVZ9mMe1IzVw67BZ6+ADZbzBRXu1a+Wc1aRQdH23Rx1IpalNoXtag/gXDDzBVAr1gpatFeNDnm6nTm6ljpMcrN5XxzyDrn25WdrV0CVWpwtb9wv8329bsE1l/fF9rDmCuvBFevvvoq3bp1Y9iwYYSEhBASEsKIESPo3r07r7zyijcOKYQQQogzhKIo2gVijxjXugWC43FXtZZa7UKuYeYqJTKFQF0gFTUV2gUuNB5cBQUEaQGSq0UtjpYctbbvdHZN1VjFwFJzKRU11slkHXUXk4qB7Yd6HjkbcxUbEktciHUozva87aw/vh6wlmCvT81iqVlflRpcRQX7tksg1H1HT1aepKTavhdcW+CV4ComJoYvvviCvXv3snDhQhYuXMjevXv5/PPPiY5uetCpEEIIIYQzJypOUFRVhF6np2tMV5e3c1Qx8HjpccwWM0H6ILtufga9gdTIVAAyi+qKBTRW0ALqMgx5FXkOn29IbY96LJW6fzWYq09dFh0c7bArl5a5km6BbZ7aZdTZmCuoy169teMtapQaesf11roLNlwnrzzPpmtscZU1w+rrYhYAkUGRxIfEA47HR7YFXpvnCqBHjx5cffXVXH311XTvLpPYCSGEEKLlDhRYuwSmR6a7NdGoele8fpejQ8XWLoGdojsRoLefsqVhUYvq2mptDIyjMVfgflELNbhqmLlSgytHmSutmEWYfZdAqKsYmFmYSXVttUvtEP7HoliaHHMFdeOutuZtBSCjc4bdOpFBkdo5W3/clb9UClS19a6BHqsWOGXKFJ555hnCw8OZMmVKo+vOnj3bU4cVQgghxBlG6xLoYqVAlaOKgc7GW6k6R3eGI3XrqUFNcEAwscGOq/Bp5dhd7BaoTpiqBn+q+nNdNaTOceUse2YMNxIZFElJdQmZRZlasCXallOVp6hVatGhIz403ul6alZKpVYJbKh7THdyynI4UHCAQYmDgLrgypUpDVpD5+jObM3bKsHVtm3bMJvN2v8LIYQQQniDVobdjfFWAJ0i6+6IK4qCTqdzWilQ1SXKdiLh+uOtnA3+1yYSdnGuK22OKydjrk5WnqSqtgp9vQ5HTWWudDodveN684vpF/ac2iPBVRulBuhxIXEE6p1fth8vOW7zeJNpk103U7DekPjx2I82RS3ULoL+ElxpFQMdzEnXFngsuPr+++8d/r8QQgghhCepXZrczVylRaWhQ0epuZRTlaeID41vMnOlBl3qeo0Vs1CpY2NcyVxV11Zr3f7ql2GHuvFUFTUV5JblkhRa1w3R2QTC9fWK7cUvpl+kqEUrMZWZyC7OJj0qvdHzwx2ujLcylZn48PcPbZbNWD+D4cnD7dqhVQwssA+u/KZbYGTb7hbolTFXd955p8N5rsrKyrjzzju9cUghhBBCnAFqLbXafD7uBlfBAcHaxaY6zkkdS9Vw8L9KDbpyy3MpN5fXFbMIc37xrGauXBlzdbT0KAoKYYFhWsU3lU6n04KnhuOunE0gXJ9WMVCKWnjd4v2LGb1wNHetvIuMRRks3r/YI/ttqlIgWLu5WrDYLLMoFi0jWp9WMbBwvzYPm791C6w/5srVueL8iVeCqw8++ICKigq75RUVFXz44YcOthBCCCGEaNqRkiNU1VYREhBCaoR9t6em1L9wK64u5mTlSZvlDcWExGhjq7KKs+omEI5wXMwC6rIM9cu3O1N/vJWjbobOyrGrY66aylwB7Mrf5XCuLOEZpjIT09dNR8EaCFgUCzPWz3A4Vs5dasXJxopZpEelo9fZXtLrdXq7TChYxzMF6AIoqS7Rzs+iav/qFlg/w6x+P9sSjwZXxcXFFBUVoSgKJSUlFBcXa/8KCgpYtmwZHTs6T2sKIYQQQjRG7RLYNaarw+p+TakfXKlZq46hHYkIinC6Tf2KgeoFs7NKgWCbuWrqzruaXXB0IQx1QVzDC3U1c9VY97Pf8n8DoLymnCsWXeGxbIqwlV2crQVWKotiYeqPU8kszMRUZmJTzqZmBVuuZK6M4UamDZumBVh6nZ5pw6Y5PDeCA4K1winquCt/6xYYHBBMckQy0DbLsXtszBVY57fS6XTodDp69uxp97xOp2PGjBmePKQQQgghziDqWBF3i1mo1KIRh4sP1423iu7c6DZq9bKs4rrgqrFugWqWobK2khJzCVFBzidndVaGXeVorqtScyml5lLAeebKVGbiuY3PaY8tWJyOwxEt4yzw2Zy7meu+uE4LvNSgZ2yPsS7vWx1z1VjmCmBsj7EMTx7OkZIjpEWmNfoZ94jpwaGiQxwoOMDIlJF13QKD/CNzBdabIMdKj3G4+DDnJp7r6+a4xaPB1ffff4+iKFx66aUsWrSIuLi6vsNBQUF06tSJ5ORkTx5SCCGEEGeQ5pZhV9Uvx95UpUCVWjHwUNGhuuAqwvnFa0hgiFYGPb8836XgymnmykG3QLU7V2RQJGGGMMf7Lc7GojgehyPBlWftOrnL5rFep+fes+9lx4kd/Hz8Z2252l3QnQBXy1w1EVyBNRB3Zb/dY7uz8vBK9hfup9ZSWzeJcEiMS21qDemR6axjHeuPr2dY8rA2dc56NLi66KKLADh06BBpaWno9V6do1gIIYQQZ5gWZ65Od4nKLsluslKgSs1s/Zb/m5YxaixzBdaL4ZLqEk5UnKBrjONiGeB8jiuVo4mEmyrDru5Pr9PbBFjOxuGIlvnm0DcA3NbnNi5Nv1TLHG3K2WQTXIH7Aa4aXDVWLdBdPWNOF7Uo2E+puVTLrPlT5kodB/ZN1jesOLzC7YyfL3kl+unUqRN6vZ7y8nL27NnDjh07bP4JIYQQQrirsqZSy/Q0N3OVGpFKgC6AipoKNuduBprOXKnB17HSY4B14L+zjJFKzTQ0VtSixlLD8VLr/ERNZa5MZSZt/JYrlQIbjsMBuLLzlW0qA9AWFFQWsO7YOgBu7HUjg42DtffYnUITjtRaasmvtFacbGzMlbu6x1rLsWcWZWoFI8ICwzAEGDx2jJYwlZlYfmi59tiTBUJag1eCqxMnTvCHP/yByMhI+vXrxznnnGPzTwghhBDCXZlFmVgUC9HB0VrRCHcZAgzaYHl1IH9TY65SIlNsJnBtrJiFSr0Ybqwce05ZDjVKDcEBwU4zE2p2qqKmguJqa/ctNWBrKns2tsdYVvxxBeN6jgNwWJpbtMyqw6uoUWroE9fHrpy/owC3d2xvlwPcgqoCLIoFvU5vV6a/JVIjUgkJCKGqtopd+dYujf5SzAKcFwhpK+evV4KrRx55hMLCQjZu3EhoaCjLly/ngw8+oEePHnz55ZfeOKQQQggh2jlt8uCYHg7Llruqfhe84IDgJoMlg95gk21oKqiBusyVWpDAEbVLYGpEql2GQxUSGKJdWJvKrXfuXclcaW0NN3LfwPsI0AWwI3+HViFReMayQ8sAGNNljMPn1QD36eFPA/D7qd9tJvBtjBpEx4XE2QT3LRWgD9C6qqrZW38pww4tz/j5mleCq++++47Zs2dz3nnnodfr6dSpE7fddhv//ve/mTlzpjcOKYQQQoh2Tr0o7R7TvUX76RRZN6dVp6hOTgOb+tSiFtB4+XOVmllTx8w4ohWziGr8orFhxUCtDLsLQZ7aluHJwwH4KvMrl7YRTTOVmdiSuwWAK7pc4XQ9Y7iR63tcz6hOowB4Z8c7Lu3fnWIW7lLHLG42WYMrf8pcuVNa3h95JbgqKyvT5rOKjY3lxAnrydG/f3+2bt3qjUMKIYQQop3Tilk0c7yVqn7mqqnxVqr6XQdduchTu/k1lrlqqgy7qmHFQDWj0VhBi4au6XYNAF8f/NquiqBoHnVc0KDEQS6dE38++8/W7bKWk1mU2eT66gTCnixmoVK/Q+o56E+ZK6jL+M3LmMeKP65oM8UswEvBVa9evdi7dy8AAwYM4K233uLYsWPMnTuXpKSm+ykLIYQQou1oySSp7thzag8ACSHNG2+lql8d0NV91Q/CQgNDm1y//kTCzqhjSFwNrtSMlSsTCDd0cdrFRBgiOF52XMu2iJZpqktgQ73jenNJ2iUoKC5lr/LLPV/MQtUw++tvwRVYz+/6BULaCq8EVw8//DA5Oda7K9OmTeObb74hPT2dV199leeff97t/b3xxht07tyZkJAQhg4dyqZNm5yue/HFF2sTGdf/d9VVVzX79QghhBDCscX7F5OxMIO7Vt5FxqIMFu9f7JXjfPz7x1pls7+s+UuLjrP71G7t/z/Z84lL+6o/VumFTS80uY2abWisWqA65srlboHlJqqUKkrMJYBrY65UIYEhjO48GoCvDkrXwJbKLMpk96ndBOoCGd1ptMvb3TvgXsAamB0uPtzoumrmyivdAhtkf/2pW2Bb55Xg6rbbbmPChAkADBo0iMOHD/PLL79w5MgRxo0b59a+FixYwJQpU5g2bRpbt25lwIABZGRkkJfn+Mdq8eLF5OTkaP927txJQEAAN954Y0tflhBCCCHqMZWZmLFuBhas3cy8VTLZVGbiX7/8S3tsofnHMZWZeG3ra9pjBaXJfZnKTLy/8323tlEzVxU1FZSZy+yer1/9rKmB+vXLsRdbrBUDIwwRhBvCG92uoau7Xg3AysMrqaipcGtbYUud22p4ynC3Jt/tF9+Pi1IvwqJYmsxeaWOuvJC56hDawWZya3/MXLVVrTLLb1hYGOeeey4JCe6n8WfPns0999zDxIkT6du3L3PnziUsLIx58+Y5XD8uLg6j0aj9W7VqFWFhYRJcCSH8Rmt1oRLC27KLs7XASmVRLOzM3+nx43iqNLOzNje2r+ZsE2YI04IfR0Ut8srzqLZUE6gLbLJaYf3MVZHFWj7enfFWqnMTzyUlIoUycxnfZ3/v9vbCSlEUlmW61yWwvnvPtmavvs78utFzSM16dgz1/JgrnU5nk72SzJXneKyu45QpU1xed/bs2S6tV11dzZYtW5g6daq2TK/Xc/nll7N+/XqX9vHee+9x8803Ex7u/O5OVVUVVVVV2uPiYutdIbPZjNlsduk43qIe39ftEL4l50H7seTgEp7d+CwWLOjR88TQJ7iu23VNbifngPDHcyA5LBkdOrvAZ9q6aVSaKxmQMIAjpUdIj0xvVjBQ/zgN6XV6kkKT3H4/ksOS0aO3CZaa2ldztgFrdqDMXEZOSQ4pYSk2z23NsRb46hjWEaVWwVzrfD8JwXWVBwtDC7V9N+dcGNN5DO/sfIcvDnzBqLRRbm8vYNfJXWSXZBMSEMJI40i3P4feMb0ZnjScdTnreHXLq1zf/XqH3xG1GEpsUKzNMTz1W9A1qqs2/i4iIMKvflv8jTvvjceCq23btrm0njvzUuTn51NbW0tiou3JlpiYyJ49e5rcftOmTezcuZP33nuv0fVmzpzJjBkz7JavXLmSsLDGZ2BvLatWrfJ1E4QfkPOgbSuyFDGreJZ2IWrBwjMbn6FidwXRete6ZMg5IPztHEgOSOZY7TEAdOiI1EVSXF3M1J/rbozq0HFt6LWcF3xes45hVsw2wY0OHdeEXMOWNc0rzHBN6DV8UfEFCorL+2rONrpy6zXPqvWryAuqG86wuWozSyqWAHC87DhPf/50o++NRbEQQAC11HK09igA5lNmli1b5srLtRFea73ZvD5nPQu+XkCkPtLtfZzpllVY3/ce+h6sWbWmWfs4q+Ys1rGO5YeXs/zwcrvvSK1Sy8kK6xjDHet2cEh/yG4fLf0tqJ9Y2PjLRop/LW7R/tqz8vJyl9f1WHD1/ff+l15+77336N+/P0OGDGl0valTp9pk3oqLi0lLS2P06NFERUU1sqX3mc1mVq1axahRozAYDD5ti/AdOQ/ah19yf0FZbXuHX0Ghx+AenJfY+EWnnAPCX8+B95e+D0UwecBkruxyJXHBcbyy/RU+2fuJto6CwpeVX3Jvxr3NymBtNG3E8p2FuJA4Zg6fSXpUyzJhYxjDveX3cqTkCGmRaS7tqznb/PTzTxw6fIjUXqmM6WPtPpZbnstTS56yWc+V9+btL9/maOlRsmuspbMH9RzEmLPd75IG8N3K79iRvwNzN7PWLuGa46XH+ffyfwNw57A7uSj1ombtJ7c8l7eXvK09bvgdOVF+AmWJgl6n54YxNxCgD9DW9dRvwYFtB+B0bZdPyj/hyf5PutST4kyk9mpzheeme/aChIQEAgICyM3NtVmem5uL0dh4WcaysjI+/fRTnn766SaPExwcTHBwsN1yg8HgN3/A/KktwnfkPGjbusZ2tetCpdfp6RLbxeXPVc4B4U/ngLnWrFU8u7rH1drYoMs6XWYTXIE1+5JTkUNqdKrbx9mcZ53odGTKSIanDW9hq61So1Pdbou726jV/E5VndI+s8ySTIfjt5p6b5IikjhaepQ8izUDlhyZ3Ozz4Nru17IjfwdLMpfQr0M/0qPS21y5a19YvH8x09dN137DC6oLmv0ZHC8/bres/nlQYC4ArFMFhASHONxHS34LTGUmPtz9ofZYQeHZTc9yQdoFci444M777JXg6pJLLmm0+993333n0n6CgoIYNGgQq1ev5rrrrgPAYrGwevVqJk2a1Oi2n332GVVVVdx2220ut1sIIbzJGG5kQIcBbD+xXVt2T/975A+ZaLOyirOoUWqIMETYZF3So9LR6/Q2k9Xqdfomq+I5syFnAwDnJ53fsga3MrXKmzp25mDhQf616V9267ny3hjDbH8n3CnD3lBG5wye3/g8mUWZ3LXyLvQ6PdOGTWtTE7W2NlOZiRnrZ9jcHHt247NckNq8YMTRd0SHTjsP1HPGG5UCofEiLfI3qWW8Ui1w4MCBDBgwQPvXt29fqqur2bp1K/3793drX1OmTOGdd97hgw8+YPfu3dx///2UlZUxceJEAO644w6bgheq9957j+uuu474+HiPvCYhhPCE8hprv+3Y4FjAdr4dIdqaA4UHAOgW083mpqox3Mi0YdPQ6+ouM27rc1uzLtqKqor4/eTvAAxNGtrCFrcudX6ig4UH+WT3J9yy9BayS7KJMESgP30JpgY2Tb03DZ9vSbfIipoKapVa7bG3Sui3J9nF2TaBEDS/YiU4/o4A7CvYB9RVCvTGHFdQF9zV15IbIKKOVzJXL7/8ssPl06dPp7S01K19jRs3jhMnTvDUU09hMpkYOHAgy5cv14pcZGdno9fbnhx79+7lp59+YuXKlc17AUII4QVVtVUcLDwIwIsXvci9q+7lh6M/sD1vOwM7DvRt44Rohv0F+wHoHtPd7rmxPcYyPHk4z254lrVH11JSXdKsY2wybUJBoWt0V21i3rZCvXmyt2AvMzfNBGCocSgvXPgCNZYabfyWK0FnUoRtufaWZBeyi7PtlknWonHpUel2y1oajKjfkezibD7d+ymrDq/ib2v/xryMeV7PXKnB3Yz1M7AoFpeDfNG0Vh1zddtttzFkyBBmzZrl1naTJk1y2g1wzZo1dst69eqFoij2KwshhA/tL9hPrVJLbHAsQ4xDuKbbNXx+4HPe2P4G74xufDJJ4ZypzER2cbaMG/EBNXNVf76c+ozhRib0m8Dao2v59vC3PH7+4wQH2I9xbszGnI1A2+sSaCoz8cGuD2yW6dDx9PCntQmG3Tlf68+FFRYYRoQhotltS49Kd1haXrIWzuWU5dg89lQwYgw3Ygw3ck7iOZStLmPd8XU8uPpBOkV1AiA0MLRF+2+MGty5E+SLprXKJMKq9evXExLieFCeEEK0d2rXpj7xfdDpdNw74F4C9YFsyNnAL6ZfWq0dzZnE2F8nPl68fzEZCzO4a+VdZCzKYPH+xS5t56+vp61RgytHmSvVuYnnkhiWSIm5hJ+O/uT2MdrqeCtHEx8rKBwrO9as/dUfc9UxrKNbU9vY7SvcyLTh07THeiRr0RhFUXhp80sAXNn5SuZlzGPFH1d4dIyaQW9g9sWz6RPXh1OVp9iWZ53i6KPfP3L5d605jOFGBhsHy2fvQV4JrsaOHWvz7/rrr+f8889n4sSJ3Hvvvd44pBBC+IQ7F+lqF6E+cX0ASIlI4Y89/gjA69teb5WM++L9i8lY5F4w0pxtwPsBjKnMxIx1M7S7766OG2nu6zlTuPq5lZvLOVpinXOpseBKr9NzZZcrAVh6aKlbbTleepzDxYcJ0AVwnrF5c2T5iqfHtNS/+G3JeCvV2B5jGdXJOonwLb1vkWIWjfg2+1t+PfEroYGh/H3w370WjIQbwpkx3HbeVQVFxsO1MV4JrqKjo23+xcXFcfHFF7Ns2TKmTZvW9A6EEKINcPciffdJa3DVN76vtuye/vcQpA9ia95W1h9f79X2qtWu1EHZrgQjzdkGWieAaazalTNaQObm6zlTuPO5HSo6hIJCXEgc8aGNF48a08U6l9LaI2sprXZ97LXaJbBfQj8ig9rWZLcNCxa0tBtZRFAE4YHWCYA99V6o2cDMokyP7K89MlvMzNkyB4Dx/cZ7bQyUytHYxJYUzhCtzytjrt5//31v7FYIIfyGs6BjePJwhxdPZotZqwLVJ76PtjwxPJFxvcfx0e8f8fr21xmWPKxF3X0a01i1K2cXfM3Zxt33prmaM8Bcyg875ywT6Oxz21/ovJhFQ73jetMluguHig6xOns113a/1qU2tdUugSpPjmlZvH8xZTVlAKzOXs3i/YtbnG06u8PZAPyW/5tW1EDY+mzvZ2SXZBMXEseEfhO8fjxPT2MgWp9Xv0WbN2/mo48+4qOPPmLLli3ePJQQQrQqd8vyZhZmYraYiTREkhphO1HoXWfdRWhgKL/l/8Y7v73jtbFQ6VHp6LAN3Jr6o92cbTxdstiZhNAEm+IIOnRNZga8UfGrvXA3E3igoOnxViqdTqdlr5YdWuZSexRFafPBFXhmTIt6w0Llqa5i3WO6ExoYSqm5lMxCyV41VFpdytxf5wLwwIAHCDeEe/2Yns54itbnleDq6NGjXHDBBQwZMoSHH36Yhx9+mMGDBzNy5EiOHj3qjUMKIUSrcjfoaFjMor740HgGdRwEwGvbXvPaWChjuNHuIvWmnjc1+kc7PjTeriqZKwGMuwFZc/x64leqaqvqjhuZ3uSdfGO4kZjgGJtljw99XC5ccP9z04pZxDYdXEFd18ANORvIr8hvcv39hfs5VXmK0MBQBnQY4NIx2itv3bAI1AdyVsJZAOzI39GifbVH83bOo6CqgM5RnRnbs/XGpI3tMZYVf1zhlcIZwvu8ElzdfffdmM1mdu/ezalTpzh16hS7d+/GYrFw9913e+OQQgjRqozhRjpHd7ZZ1ljQ0bCYRX2mMhPrjq/THntzLJQ6MWVyeDIAh4oPNbr+6uzVlJhLbMZ4XJh6YaPbGMON9IztabPsqfOf8ngA8+PRHwEYljQMgMMlhymsLGx0G1OZicKqQvToiQqKAtD+e6Yzhhu18s+qxs5ptVtgjxjHZdgbSo9Kp39CfyyKhRVZK5pcf8Nxa9bq3MRzCQoIcukY7ZU3J3w9O8HaNXDHCQmu6vvtxG/M3zUfgEcGPYJBb2jV40sVv7bLK8HV2rVr+c9//kOvXr20Zb169eK1117jhx9+8MYhhRCiVVXVVnG89Lj2OCwwjKu7Xe10fbWYRf3xVqrmFGZozp3snNIcDhYdRK/T88qlr6DX6dmYs7HRwez/2/0/AP7U509aIY6fjjVeTruyppLsEuskpWompHd870a3aQ61Hdd0v4Yu0V0AtPLFzqgl7/vG9+WW3rcAsGj/Io+3rS0y15ptgvPwwHCu6XaNw3WLq4u1QL1bTDeXj+FO18CNptPzWxnbbpdAT/FmVzF13NWvJ35t8b7ai8X7F3PrslsxW8wATd60EaI+rwRXaWlpmM1mu+W1tbUkJyd745BCCNGqtudtp6q2ig6hHYgOjqa8ppzfTvzmcN1aSy17C/YCjoMrR3elofGKYGXmMrtlTd3J/vn4z4D1TnXvuN5clHoRAAv2LHC4/u6Tu9mat5VAXSA39ryRkSkjgaaDq19Mv1BRU0FiWCKXd7ocgJVZKxvdxl25ZbnsLdiLDh0jkkdwbsdzgaaDqy251vG/gxIHcX2P69GhY0POBqnEhTW7WllbSUxwDJFBkZTVlGndWRs6WHgQsF70u1O5LqNzBnqdnh0ndjT6npstZi0QPj9ZgiuwdhVbeu1S7gy/k6XXLvVYVzE1uDpYeNBhpbozjanMxPR1022WPb3haakoKlzmleDqxRdf5KGHHmLz5s3ass2bN/Pwww8za9YsbxxSCCFalVoiemjSUK1bmhq8NHS4+DAVNRWEBobSKbKT3fMN70qrZv0yixpLjd36eeV5PLPhGbvl9599f6N3sn8+Zm3fiJQRANzc+2YAvjj4hcNg7ZM9nwAwqvMoOoZ15IKUCwBYd3ydw3ap1h5dC8BFqRcxuvNoAFYdXuXRebzUAK9/h/7EhsRybqI1uNqat7XR7dTg6jzjeaREpDAs2frZfb7/c4+1ra3ammt9787peA5DjEOAuvO8of0FrlcKrK9DWAdt398c+sbper+d+I2Kmgpig2PtupieyRLDEulq6OqRea5UCaEJpESkoKDwW77jG0RnEkeTP0spdOEOrwRXEyZMYPv27QwdOpTg4GCCg4MZOnQoW7du5c477yQuLk77J4QQbVH94EoNVtTgpaHfT1nv/veO602APsDhOvUHML87+l1CA0PZaNrIq1tftVmvsqaSh797mBMVJ+ge050vr/uSAQnWwf41ivOAx2wxa5XX1AzU+Unn0zmqM2XmMr4++LXN+gWVBSzLtHbdurX3rQD0T+hPdHA0JdUlTi/CFEWpC67SLuLClAsJCQjhSMkR9pza47R97vrxmHW8lRrwndPxHAB2ndxFZU2lw21OlJ8gqzgLHTotGFMncf7iwBeNBoxnAjUwPbfjuQxNGgrUlUJvSC1m4ep4q/q0roGZy5wG3OpxhyYNlfLgrUDNXsm4Kxxm/6WiqHCHV+a5mjNnjjd2K4QQfqGkuoSdJ3cC1gBFvfj7/eTvnKo8RVyI7Y0jbbyVg2IW9RnDjVrm6dkRz/LXtX/l/V3v0y+hH5emXIqiKDy76Vl2ntxJdHA0r176KmmRadzc52Z+/fFXVmSt4MGBDzqcJ2vHiR2UmkuJDY7Vxk7pdXpu7n0zL2x6gf/t+R839bpJ23bR/kVUW6rpG99Xq9QWoA9geNJwvsn6hh+P/qgFNPXtK9iHqcxESEAIQ4xDCAkMYWTKSL7N/pZVh1c57BbpLnOtWZtw+YJUa3CVGpFKh9AOnKg4wW/5vzHYONhuOzVr1Suul1bE4pK0S4gLiSOvIo+fjv3ExWkXt7h9bZGiKFqXynMSz9Hen21527Ssa33uVgqs7/JOl/Pshmc5WHSQxfsXMyJlhF3GVb150ZZLsLclAzoM4JtD30hwBRwrPWbzWEqhC3d5JbgaP368N3YrhBB+YbNpMxbFQqeoTtof3J6xPdlXsI/1x9dzVderbNbXKgW6EViM7jyaifkTeX/X+zz585NEXBDBl+Vf8kvRLwToAnjpope0O6mXpF1CcEAwWcVZ7C3YS+84++IRalZtWPIwm0zANd2u4ZWtr3Cw6CCbczcz2DiYGksNC/Zax2Hd2vtWm2BtZOpIvsn6hp+O/cTkcyfbHeeHo9aiRUOThhISGKK9lm+zv2Xl4ZU8dM5DLZ4keWveVspryokPidcCVp3Omo1akbWCbXnbHAZXm3OtXdXPSzxPW2YIMHBNt2uYv2s+i/YtOmODq0NFhyisKiQkIIS+cX0J1AfSMawjeeV5bMvbxvDk4dq6iqI0u1sgWMcSdovpxu5Tu5m+fjp69EwbPk0bQ1RmLtMu8tUMmvAu9QbKjvwdKIritYnM24KvMr8C4IrOV3BTr5taPPmzOPN4LddeW1vLokWLePbZZ3n22Wf5/PPPqa2t9dbhhBCi1ahVzIYa6y78RiRbuwbWL6kO1r76rmauGpp87mSGGodSUVPBfd/fxy9m6wD/jM4ZNhed4YZwrXucs3Es6hgltUugKjIokqu7Wqsc/m+PtTLg90e+x1RmIjY4liu6XGGzvnqRvfvUbodzFaldAuuXa78w9UKC9EEcLj7MvoJ9Lr5659QS7CNTRtoEimomzdm4K228Vb3gCuD6HtcD8MOxH8gty21x+9oi9T3r36E/hgADOp1Oyxo1HHd1svIkhVWF6NDRNbqr28cylZlsuohasDBt3TT+8+t/yCnN4dvD31Kj1GAMM5IamdrInoSn9IrtRXBAMEVVRRwuPuzr5vhMZU2lNk3AuF7jpBS6aBavBFcHDhygT58+3HHHHSxevJjFixdz22230a9fPw4ePOiNQwohRKupP95KVX/cVf0S6UdLjlJqLiVIH0TXGPcuRAP1gfxt8N/sli/PWm5XuUoNglZkrbAbx5Jfka9lz9QCDvWphS2+y/4OU5mJT3ZbC1nc0PMGggOCbdZNCE1wWpL9VOUpLeNQP7gKN4RrQd3Kwy2vGqiOtxqZahsoqhUDf837lVqL7c28gsoCrSubOt5K1TW6K+d2PBeLYuGLg1+0uH1tkdYlsF5XT2fBlfo+pkela9lJdzgqGADw5vY3Gb1oNE/8/AQApnKTS5Npi5YzBBi073VTkwmbykxsytnULqvnfX/ke8rMZaREpNj9TgjhKq8EV5MnT6Zbt24cOXKErVu3snXrVrKzs+nSpQuTJ9t3IxFCiLYivyKfA4UH0KHTqp6B9aI0NDCUk5UnbbIzajGLnrE9mzUJZXFVsd0yR5WrLky9kNDAUI6VHmNn/k6b59TxSX3i+pAQmmC3vx6xPTgv8TxqlVpe2PQCm3M3E6AL4KZeNzlsk7OS7D8d+wkFhd5xve3u9o7qPAqwlmRvSdXAoyVHySzKJEAXoFVpVPWM7Um4IZxSc6k2wa1KzVp1j+lObEis3X5v6HkDYJ3fpuH8YWcCtVKgGqBC3c2D30/+TlFVkbb8QMHp8VbN6BIIjqce0KGjV0wvu3VdmRhbeIY6mfCvec7nu1q8fzEZizK4a+VdZCzKaHfB75cHvwTgD13/IIVURLN5bRLhf//73zbVAOPj43nhhRdYu3atNw4phBCtQr2L3zuuNzEhMdryoIAgLdiqXzWwscmDXeHoQtRR5arQwFAuTr0YsGa26nPWJbA+NXu1Ons1YO3m6Kw7jLOS7GuP1JVgb+ji1Isx6A1kFWdpmY/mUF/LgA4DiA6OtnkuQB/AwA4DgbpgQaWOtxqUOMjhfi/vdDmRhkiOlR7jg10fOLygb6937PPK8zhaehS9Tq+NvQHoGNaRrtFdUVC0OaegXjGLZgZXjibEnT58Oo8OedRuXSmB3XoGdKwbd+WIOv+TevPBoljaVfCbX5GvdetubEJ4IZrileAqODiYkhL7iehKS0sJCgryxiGFEKLFXLl4dtQlUKWOR6o/31VLgytHF6LOKldldMkArMGVegFUa6nVLhjUrouOXJp+KZGGuslgfzz2o9O70v0T+hMVFGVTkt1ca9aO4yi4igiK0MalrTq8qvEX3QitBPvpKoENORt3tdl0upiF8Ty7bcAanKqFQGZvmW13V74937FX36tesb2ICIqwec5RSXY1K9icSoGq+lMPrPjjCsb2GOvyjQThHWrmal/BPsrN5XbPHy4+3K7nf1qauRSLYmFAhwF0irKfj1AIV3kluPrDH/7An//8ZzZu3IiiKCiKwoYNG7jvvvu45pprvHFIIYRokcX7F5OxsPGLZ0VRGg2u1MzQtrxtlJnLUBRFG+ukjmdojrE9xrL02qXcGX4nS69dqlVVc3T8CEMEeeV5bM/bDlgLTxRWFRJhiNDmsnHkZMVJSs2l2mMFxeld6QB9gBZIqsUltuRtodRcSlxIHP0S+jk8hjqh8Mqs5o27qqqtYlPOJqAue9aQOk5iW+42rfthUVWR1lWzYTELlanMpGW3wHrROH3ddP7y/V945PtHmLZuWru9Y78t1368larhuCtFUbRugc2Z46o+Y7jRpmCAOzcShOclhieSGJaIRbGw6+Quu+cdFaNpT8HvVwetVQKv6SbXqaJlvBJcvfrqq3Tr1o1hw4YREhJCSEgII0aMoHv37rzyyiveOKQQQjSbqczEjHUzsND4xfPRkqMcLztOoD7QZmyKKj0qndSIVGosNVoGrLCqkEBdYIsvRBPDEulq6EpiWKLTdYIDgrk0/VKgrmug2o3u/KTzGx3z5ajIQGN3pRuOu1K7BF6YeqHTsQoXpV1EoD6Qg0UHOVjofnGjzabNVNZW0jGsIz1jezpc56yEswjUB5JXkafNV7MtbxsKCp2jOjsccwaOX7+CwrfZ32pdJetrT3fs689v1dB5xvPQ6/RkFWdhKjORU5ZDeU05gfpA0qPSPd4WRxkt0XrUbqG/nrAdd1VUVcS7v71rt/4TQ59oF8Hv3lN72VuwF4PeQEbnDF83R7RxXgmuYmJi+OKLL9i3bx8LFy5k4cKF7N27l88//5zo6Oimd9DAG2+8QefOnQkJCWHo0KFs2rSp0fULCwt58MEHSUpKIjg4mJ49e7Js2bLmvhwhRDuXXZytBVYqRxfPG0zWrlFnJ5xNmCHM4b60qoHHf9aKWXSP7U5QQOt0iVYvDFZmraTWUquN/2qsSyC4PrZLpe5PLcmulmB31CVQFRUUpWW8mlM1UOsSmHKB03l4QgNDtSyhGjSoXQKdjbcC50UW/tz/z9x79r3osD1ee7ljX1pdyt6CvQCc08E+uIoKiuKs+LMAa9dAdbxVl+guzSrQ4oqGGS3RetTsdsPgas7WOZyqPEW36G58ed2XRAdZr+UMAd45B1rb15lfA3Bx2sV2YzmFcJdHgyuLxcK//vUvRowYweDBg3n33Xe5/PLLufrqq+nevXl9sxcsWMCUKVOYNm0aW7duZcCAAWRkZJCXl+dw/erqakaNGkVWVpYW1L3zzjukpKS05KUJIdqxyKBIu2U6dHYXz2rXKLWrlCPquKKfj/3c7PmtWmJY0jCigqI4WXmS7458pw1OV9vljLtdsuqXZP9498ccKTlCoD7QYan3+kZ1slYNXHZomVvFIUxlJlZlWcdqORtvpVKzimqFQG3yYCfjrcB5kYWHzn2ISedMYvrw6TbB16j0Ue3i4v/XE79iUSykRKSQGO44K1p/3FVLJg8W/k+bTPjEDq1b7a8nfmXhvoUAPHH+E3SJ7sJd/e8CYN7OeW2+umaNpUYLrtQ5/4RoCY8GV8899xz//Oc/iYiIICUlhVdeeYUHH3ywRfucPXs299xzDxMnTqRv377MnTuXsLAw5s2b53D9efPmcerUKZYsWcKIESPo3LkzF110EQMGDHC4vhBCqBcO9el1epvy0xbFoo33cTTeSjUkaQiB+kCOlh7VCjc0t5hFcxgCDFoA8+9f/o1FsdAtuhtJEUlNbutulyy1a+AHuz4AYHDiYMIN4Y1uc0naJejRk1WU5XJxiMX7FzN64WjyKqw31fLKHd9cU6nBlTr2TR335my8laqx168+N77veMA6H05mYWaj+2sL1GIWjWX16o+7UotZtLSbq/BPfeL7EKgP5FTlKY6VHqPGUsMz658B4Npu12o3KG7seSORhkgOFR1izZE1vmuwB2zM2Uh+RT6xwbGNVlQVwlWBntzZhx9+yJtvvsm9994LwLfffstVV13Fu+++i17vfhxXXV3Nli1bmDp1qrZMr9dz+eWXs379eofbfPnllwwbNowHH3yQL774gg4dOnDrrbfyj3/8g4CAAIfbVFVVUVVVpT0uLrbOK2M2mzGbzW6325PU4/u6HcK35DzwnsyiTBbutwZX/xr5L2KCYnhv13tsyt3Eoz88ykcZHxEaGMq+gn0UVBVYq8pF93b6WQQRxMCEgWzO20xmkfXiu0dUjxZ/du6cA5enXc6i/Yu0rNDZCWe7fPz4oHji4+NdOtawxGG8zduYLdb1BiQMaHKbksoSmy6Y6vi2IR2HOBxPlluey4x1M2zGQ72w6QUuSLrA6fizfrHWghqZRZl8e+hbLIqF1IhU4oPim2xfY68/PiieyQMms79gP+ty1jH1x6nMHz2fQL1H/5Q65Y3fga0ma3B1drzzc6RvbF+CA4LJr8jnhyM/ANAlsov8HvmAt/8W6NHTO7Y3O0/uZKtpK6cqT7G3YC/RQdFMHjBZO26wLpgbetzA+7+/zzs73mGkcaTTrrr+LLc8l3m/WW/WZ3TKAAva75k/k2uC1ufOe+3RvwjZ2dmMGTNGe3z55Zej0+k4fvw4qampbu8vPz+f2tpaEhNt/4AmJiayZ88eh9tkZmby3Xff8ac//Ylly5Zx4MABHnjgAcxmM9OmTXO4zcyZM5kxY4bd8pUrVxIW5nhcRWtbtar5pYtF+yHnged9VPoRFsVCH0MfzDvNnOAEl1kuY7duN5lFmfxlyV+4Juwafq60jl1KI41VKxr/HOIq42weH9p0iGO6Yx5pryvnQK1SSxBBVFMNwJKDS1COK5wX3Hjmxl0WxYIBA2asf3Te+u0tTAdMjR4n02yf7bEoFj5b9RldDV3tnttr3utwPJyz9VUd9B04YTnBqxtfBaBjdUePjb0daRnJVt1Wfj/1O1OXTOWSkEs8sl9Xeep3oEapYXvRdgCKdxezbJ/z9ydVl8pBDlJitk6zcmTbEZbtkLHMvuLNvwWR5dZu0h//8jEHzNYxdpcEXML672xvaidaEgkkkJ0nd/LmV2/SJbCL19rkDZurNvNFxRfajZucwzksy2tb57RcE7Se8nL76Qmc8WhwVVNTQ0hIiM0yg8HQqpG1xWKhY8eOvP322wQEBDBo0CCOHTvGiy++6DS4mjp1KlOmTNEeFxcXk5aWxujRo4mKimqtpjtkNptZtWoVo0aNwmBoHwNHhfvkPPCOjaaN7P1uL4G6QJ7PeN5mbpN0UzoPfPcAm6o3cdPQmyg5WALH4ar+VzGmz5hG9grZO7JhZ70FvWFMt8a3aYo750BueS7VS6q1xwoKX1Z+yb0Z9zZabdBdueW5mJfU/b67cpzc8lzmL5lvFzD1GNDDrkrXoaJDvPuDfYUyvU7PjaNubPS1bN20lcUHFpNnsXYhvPbcaxnTtWWfQX1Rh6J4Yv0TrK1ay92X3E2v2F4e27cznv4d2JG/g5qVNcQExzD+D+MbzTzk/Z7Hq9utgWqwPphb/3Cr06qQwnta429BQFYA69et53eztSDP2Qln88SoJxx+3gd/Ochn+z9jd+RuHrykZcNAWlNueS5PLXnKJiP+Y/WPPHblYx79jfQWuSZofWqvNld4NLhSFIUJEyYQHBysLausrOS+++4jPLyuH/7ixa5NvpiQkEBAQAC5ubk2y3NzczEaHQ8kTkpKwmAw2HQB7NOnDyaTierqaoeTGAcHB9u0WWUwGPzmpPWntgjfkfPAc2ottbyy3To1xE29bqJ7vO0A/ZFpI5lw1gTe3/k+0zdMp7rWGqwMTx3e6GdgKjPx7i7bgODZTc9yQdoFHimA4Mo5cLz8uN0yi2IhpyKH1Gj3exF48jip0alMGz6NGetn2AyEf2L9ExSYC7g8/XKOlBxhf+F+Xtn6ChU1FYQHhlNRU4EFi1Zoo6nXcZ7xPBYfqPtbMyR5iEe/O9f0uIY1x9bwbfa3TF03lccGP0a3mG6tUuTCU78Dv520TgB9TsdzHP5trK/SUqn9f5WliqWHnc+3JrzPm38Lcittr7lGpIwgOMj+GglgYv+JLDqwiHU56zhYclCbiNvfHS8/7jAj7unfSG+Ta4LW48777NHbTuPHj6djx45ER0dr/2677TaSk5NtlrkqKCiIQYMGsXp13RwjFouF1atXM2yY44pUI0aM4MCBA1gsdV+affv2kZSU1OQfDyHEmePrzK/Zc2oPEYYI7htwn8N1Hhr4EMnhyZSaS6m2WIOrnfk7Ha6ryi7Otque1dpzIrlbVr21j1O/cMTX13/N1V2vplap5d+//JvRi0Zz18q7eGHTC1TUVDDUOJSvx37Nihvcm/uoYdELtdKjp+h0Op44/wnCA8PJKsrivm/vc6k4hz/Zkmetpuhozrb6TGUm3t1he8OgPU2iLOqYyky8uu1Vm2Vv7XjL6WedFpmmZZzn7XRcaMwfpUelt9vpFYTveTRz9f7773tydwBMmTKF8ePHc9555zFkyBDmzJlDWVkZEydOBOCOO+4gJSWFmTNnAnD//ffz+uuv8/DDD/PQQw+xf/9+nn/+eSZPnuzxtgkh2qaKmgrtAuKes+8hNiTW4XonK0+SU5Zjs+yZDc8wMmWk0wyFGnDUD7Ba+4+2WlZczQ41VVbdF8cxhhu19Z4b+Rypkan859f/2KyjQ8fTw5/WJv51tf2OLhCf3vA0I1JGePQ9MFvMlNfU9cNXi3MMTx7u92Xac0pz+MX0C+B48uD6GpsHzt9fp3BPYzeHnH3Wd551J98c+oblh5ZzYeqFnJd4nt+fF8ZwIyNTRmpz53nrN1KcmVqnxFELjBs3jhMnTvDUU09hMpkYOHAgy5cv14pcZGdn21QiTEtLY8WKFfzlL3/h7LPPJiUlhYcffph//OMfvnoJQgg/8+a2N8krzyMxNJE/9fmT0/Wyi7Nt+uRD0xcarRXYNGVsj7EMTx7OkZIjpEWmee34njiOTqdzWCZdQeFY2TGSI5Pd2l9zLhCboznnhz9YvH8x09dN19q+79Q+bX4jR/zhhoFoHc35rHvH9aZ7THcOFB5g6o9Ttd88f+42WmOpYe8p6+TZDwx4gOt7XO/X31nRtvh9cAUwadIkJk2a5PC5NWvW2C0bNmwYGzZs8HKrhBBt0Qe7PmD+7/MByKvIY2mm87Ejzb2obK3Apin1s0P+fhxPXsC3VjDQFoMOU5mJGettS9s/u/FZLkh1PibQX24YCO9rzmdtKjNxsPCg9rgtZHDXHV9HXkUescGx3N3/bgwBMm5JeI6U+hFCnDFMZSZmbZ6lPVZQGh07ol5oqOOK3O32Ntg42G8vLvxNS95rb+7LneMAXJZ+mV9/5s0dE+juBNOi7XL3s24sg+uvPt//OQB/6PYHCayEx7WJzJUQQnjC7pO77ZY11Y3LX7JQZwJPvtet3S3yk92f8P6u99mVv4taSy0BeseT1vtaelS63TJXs22tlQkVvufOZ+0og6tD57cZ3FOVp1hzZA0A13e/3qdtEe2TZK6EEGeMLblb7Ja5cmEpWajW48n3urU+N2O4kQcGPkBMcAzHy46z5ugarx6vJfYV7LN5LF38REs5yuCGBIZg0PtnRuirg19Ro9RwVvxZ9Ijt4evmiHZIgishxBmhoqaCLw9+CaCV4JULS+EpIYEh/LHHHwH43+7/+bg1jp2sOMmTPz8JWDNu0sVPeIralfDtUW/TJboLFTUV/GvTv3zdLDuKomhdAq/vIVkr4R0SXAkhzghLDiyhoKqAlIgUvhn7jVxYCo8b12scep2ejaaNHCg44Ovm2FAUhenrp3Oq8hTdY7rzz6H/lGys8ChjuJFhycOYecFMAnQBfJP1Dd9nf+/rZtnYmb+Tg0UHCQ4I5souV/q6OaKdkuBKCNHu1Vhq+GDXBwCM7zeelMgUubAUHpcUkcSlaZcC8L89/pW9WrR/EWuOrMGgN/DCBS8QHBDs6yaJdqpffD/G9xsPwLMbnqWkusTHLaqz+IB1ku9RnUYRGRTp49aI9kqCKyFEu7cyayXHSo8RGxzLdd2v83VzRDt2a59bAfgq8yuKq4t93Bqrw8WH+fcv/wZg8jmT6RXXy8ctEu3d/QPup1NUJ/Iq8pi9ZbavmwNYu4Z/c+gbAOmxILxKgishRLumKArzds4DrBe+oYGhPm6RaM/OSzyPHrE9qKip0MZ2tAZTmYlNOZvsphU4VnKMyasnU1FTwRDjEO7od0ertUmcuUICQ5g+bDoAC/ctZPmh5Q7Pz9b07eFvKTOXkRqRyqDEQT5rh2j/pBS7EKJdW3d8HXsL9hIaGMotvW/xdXNEO6fT6bi1963MWD+DT/d8ym19bvN6WfbF+xczY90MLFjQoWN83/Gck3gOa4+s1bpBAYxMGWlT0U0IbzrPeB7jeo1jwd4F/P2HvwN1RYR8kTlavN/6Xbiu+3XyPRBeJWeXEKJdU7NWf+zxR6KDo33cGnEmuKrrVUQFRXG09Cg/HfvJq8cylZmYvm46FqxzDCkozP99Pg9//7BNYAUwZ+scn2YOxJnn1t632jy2KJZGJ273lq25W9mcuxmAa7tf26rHFmceCa6EEO3WzvydbDJtIlAXyB19pTuUaB2hgaHanfn3d73v1e5QWcVZKCh2y5PCkuyWqRNmC9Fa8ivy7ZZZFIvdfGvetHj/YiYsn6A9Xnd8XasdW5yZJLgSQrRLpjITszbPAuDKLleSFGF/sSmEt9zc+2Z06NiSu4W7Vt5FxqIMrVuSJx0rOWa3TK/T89LFL9l1fXJlwmwhPCk9Kt1hF7wnf36SrzO/Jqc0x6s3H0xlJmasm2FzA8IXmTNxZpHgSgjR7izev5jRC0ezJXcLgFxQilYXoAuwuaDzVneoJQeWAPYTY/fv0J9pw6ZpF7YyYbbwBWO40fY8RE9scCynKk8x9cepjF402qs3H/YV7NO6zKokgyu8TQpaCCHaNFOZiezibNKj0jGGGx3eqZy7Yy7X97heLixFq8kuzrZbZlEsZBVleew83J63ne0ntmPQG/jvlf+lrKaMtMg0bf9je4xlePJwjpQcsVkuRGtqeB7GhsTyxrY3eH/X+9o66s2H4cnDPXaellaX8ub2N+2WSwZXeJsEV0KINmvx/sXMWD8Di2KtknZh6oVkFmY6vVMpF5eitajdoSyK7bn40uaXeHrE08SGxNrcFGiO93daL06v7nY1fRP6OlzHGG6U8174XMPzcGTKSJvgCjz7O11SXcJ9397HrpO7CA4IxmwxY1EsksEVrUKCKyFEm6RmqOpXSVt7dK3DdeVOpWhtaneo+sF/UEAQewr2MO7rcVpmtbmlqbOKsvj+yPcAjO873uPtF8KbHN180KHzyO90UVUR9666l10ndxEdHM3bo94mLiROMrii1UhwJYRokxxlqADuPutu4kPjeXHzi3KnUvhUw+5Qep2eZ9Y/w5qja7R1mtsd6oPfP0BB4eLUi+ka09ULrRfCexrefADrxMPBAcHN3qepzMTv+b/z2vbXOFB4gJjgGN4d/S694nppxxSiNUhwJYRocxRFsZvDB6xZgHG9x2EMN3J5p8vlTqXwuYbdoW7ve7tNcAXud4c6WXGSLw98CcCEsyZ4qqlCtCr15sOhokM8v/F5soqzmL1lNs+MeMbtfdWfSBsgPDCc9zLeo2dsT083W4gmSbVAIUSb8/6u91mRtQIdOvQ4roZmDDcy2DhYAivhV5yVpo4NiXV5Hwv2LaDaUk3/hP6c2/FcTzZPiFZlDDcyLHkYz4x4Bh06lhxYwi+mX9zaR8OJtAEqaiuICorydHOFcIkEV0KINmX14dXM2TIHgKlDp7LihhXMy5jHij+ucHvcihCtrWFpatUz65+hoqaiye2rlWo+2/8ZABP6TUCn03mlnUK0poEdB3JTr5sAeHr901TXVru87fKs5XYTaUu5deFLbSK4euONN+jcuTMhISEMHTqUTZs2OV13/vz56HQ6m38hISGt2FohhLfsOrmLx358DAWFW3rfwi29b5EMlWhzxvYYy4o/Wm8KvHX5W0QaItmat5W/r/07Zou50W23Vm+lqLqItMg0Lku/rJVaLIT3TT53MgmhCWQVZ/Heb++5tM3CfQuZs3mO3XIpYiR8ye+DqwULFjBlyhSmTZvG1q1bGTBgABkZGeTl5TndJioqipycHO3f4cOHW7HFnpVbnkumOZPc8ly750xlJoczmztb7s/b+Pr4/r6Ns/PAn9vs6W1WHFrBg98+SGVtJSNSRvDo4EfttheirVBvCgxPGc5rl71GcEAwa4+uZfq66eSU5jj8HhwrPcaayjUA3NH3DgL0AT5ouRDeERUUxT+G/AOAd357h19Mvzj9e7Dh+AZmrJvBjPUzqKWW/gn9ZcJs4Tf8vqDF7Nmzueeee5g4cSIAc+fOZenSpcybN4/HHnvM4TY6nQ6jse1/qeoP0Jy/ZD7ThteV660/v0/9Ur7OlvvzNr4+fpvYxsF54Pdt9uQ29QYqdwztyIsXvkig3u9/voRwyaDEQbx00Us8/P3DfHnwS748aC1W0fB7MH3ddLvuT0K0JxmdMvgy5Ut+PPYjd664E7D/HtT/ewDwwMAHuO/s+8gtz5UiRsIv6BRF8dtf6urqasLCwli4cCHXXXedtnz8+PEUFhbyxRdf2G0zf/587r77blJSUrBYLJx77rk8//zz9OvXz+lxqqqqqKqq0h4XFxeTlpZGfn4+UVG+GRCZW57LVUuusis1HRYYBkB5TbndNiEBIVTWVtot9+dtfH389raNr4/fGtvodXqWXruUxLBEu/XbM7PZzKpVqxg1ahQGg8HXzRFe8PGej3lp60t2y+V7IFRnwu/AjhM7mLBqgt1yR98DHTqWXbfsjPsenAnngb8pLi4mISGBoqKiJmMDv771m5+fT21tLYmJtl+axMRE9uzZ43CbXr16MW/ePM4++2yKioqYNWsWw4cPZ9euXaSmpjrcZubMmcyYMcNu+cqVKwkLC2v5C2mGTLPjOXwcXYCqHF24+vs2vj5+e9vG18dvjW0sioXPVn1GV8OZObfPqlWrfN0E4SUF5gKHy+V7IBpqz78DmeZMh8sdfQ8UlDP6e9CezwN/U17u/FqlIb/OXB0/fpyUlBTWrVvHsGHDtOWPPvooa9euZePGjU3uw2w206dPH2655Raeecbx3AltJXOl1+l5+9K3Abhn9T023UP0Oj0vDH+Bf/z8D7vl/ryNr4/f3rbx9fFba5sz8Y693Kls/5z97sv3QKjOhN8B+R407Uw4D/xNu8lcJSQkEBAQQG6u7SD+3Nxcl8dUGQwGzjnnHA4cOOB0neDgYIKD7WcFNxgMPjtpU6NTmTZ8mt0YlKGpQwGYPny63XNXdr+SCqWiTW3j6+O3t218ffzW2iY12nEW+kzgy98l4V3OfvfleyAaas+/A/I9cF17Pg/8jTvvs19nrgCGDh3KkCFDeO211wCwWCykp6czadIkpwUt6qutraVfv36MGTOG2bNnu3TM4uJioqOjXYpOve1o0VE+W/UZN4660e4HxFRmcjh409lyf97G18f3922cnQf+3ObW2uZMYTabWbZsGWPGjJE/pu2cs/O9sb8H4sxwJv0OyN8D586k88BfuBMb+H1wtWDBAsaPH89bb73FkCFDmDNnDv/3f//Hnj17SExM5I477iAlJYWZM2cC8PTTT3P++efTvXt3CgsLefHFF1myZAlbtmyhb9++Lh3Tn4Ir+QIJkPNAyDkg5BwQcg4IKzkPWp87sYFfdwsEGDduHCdOnOCpp57CZDIxcOBAli9frhW5yM7ORq+vm66roKCAe+65B5PJRGxsLIMGDWLdunUuB1ZCCCGEEEII0Rx+H1wBTJo0iUmTJjl8bs2aNTaPX375ZV5++eVWaJUQQgghhBBC1GkTwVVrU3tKFhcX+7gl1tRveXk5xcXFkvo9g8l5IOQcEHIOCDkHBMh54AtqTODKaCoJrhwoKSkBIC0tzcctEUIIIYQQQviDkpISoqOjG13H7wta+ILFYuH48eNERkai0+l82hZ1zq0jR474vLiG8B05D4ScA0LOASHngAA5D3xBURRKSkpITk62qfXgiGSuHNDr9aSm+leZ26ioKPkCCTkPhJwDQs4BIeeAAOQ8aG1NZaxUjYdeQgghhBBCCCFcIsGVEEIIIYQQQniABFd+Ljg4mGnTphEcHOzrpggfkvNAyDkg5BwQcg4IkPPA30lBCyGEEEIIIYTwAMlcCSGEEEIIIYQHSHAlhBBCCCGEEB4gwZUQQgghhBBCeIAEV0IIIYQQQgjhARJcCSGEOKNMmDCB6667zqvH0Ol0LFmyBICsrCx0Oh3bt2/36jGFEEL4XqCvGyCEEEK0pldeeYXWLJSblpZGTk4OCQkJrXZMIYQQviHBlRBCiDNKdHR0qx4vICAAo9HYqscUQgjhG9ItUAghhN+6+OKLeeihh3jkkUeIjY0lMTGRd955h7KyMiZOnEhkZCTdu3fnm2++AaC2tpa77rqLLl26EBoaSq9evXjllVds9tmwW+DFF1/M5MmTefTRR4mLi8NoNDJ9+nSX27h//34uvPBCQkJC6Nu3L6tWrbJ5vmG3wDVr1qDT6VixYgXnnHMOoaGhXHrppeTl5fHNN9/Qp08foqKiuPXWWykvL2/W+yaEEMI3JLgSQgjh1z744AMSEhLYtGkTDz30EPfffz833ngjw4cPZ+vWrYwePZrbb7+d8vJyLBYLqampfPbZZ/z+++889dRT/POf/+T//u//mjxGeHg4Gzdu5N///jdPP/20XZDkiMViYezYsQQFBbFx40bmzp3LP/7xD5de1/Tp03n99ddZt24dR44c4aabbmLOnDl88sknLF26lJUrV/Laa6+5tC8hhBD+Qae0ZsdzIYQQwg0XX3wxtbW1/Pjjj4A1MxUdHc3YsWP58MMPATCZTCQlJbF+/XrOP/98u31MmjQJk8nEwoULAWvmqrCwUCs40fAYAEOGDOHSSy/lhRdeaLR9K1eu5KqrruLw4cMkJycDsHz5cq688ko+//xzrrvuOrKysujSpQvbtm1j4MCBrFmzhksuuYRvv/2Wyy67DIAXXniBqVOncvDgQbp27QrAfffdR1ZWFsuXL2/BOyiEEKI1SeZKCCGEXzv77LO1/w8ICCA+Pp7+/ftryxITEwHIy8sD4I033mDQoEF06NCBiIgI3n77bbKzs10+BkBSUpK2v8bs3r2btLQ0LbACGDZsWNMvqsExExMTCQsL0wIrdZkrbRBCCOE/JLgSQgjh1wwGg81jnU5ns0yn0wHWLnqffvopf/vb37jrrrtYuXIl27dvZ+LEiVRXV7t9DIvF4qFX0PQxG76m1mqDEEIIz5JqgUIIIdqNn3/+meHDh/PAAw9oyw4ePOi14/Xp04cjR46Qk5NDUlISABs2bPDa8YQQQvg3yVwJIYRoN3r06MHmzZtZsWIF+/bt48knn+SXX37x2vEuv/xyevbsyfjx4/n111/58ccfefzxx712PCGEEP5NgishhBDtxr333svYsWMZN24cQ4cO5eTJkzZZLE/T6/V8/vnnVFRUMGTIEO6++26ee+45rx1PCCGEf5NqgUIIIYQQQgjhAZK5EkIIIYQQQggPkOBKCCGEcOLjjz8mIiLC4b9+/fr5unlCCCH8jHQLFEIIIZwoKSkhNzfX4XMGg4FOnTq1couEEEL4MwmuhBBCCCGEEMIDpFugEEIIIYQQQniABFdCCCGEEEII4QESXAkhhBBCCCGEB0hwJYQQQgghhBAeIMGVEEIIIYQQQnhAoK8b4I8sFgvHjx8nMjISnU7n6+YIIYQQQgghfERRFEpKSkhOTkavbzw3JcGVA8ePHyctLc3XzRBCCCGEEEL4iSNHjpCamtroOhJcORAZGQlY38CoqCiftsVsNrNy5UpGjx6NwWDwaVuE78h5IOQcEHIOCDkHBMh54AvFxcWkpaVpMUJjJLhyQO0KGBUV5RfBVVhYGFFRUfIFOoPJeSDkHBByDgg5BwTIeeBLrgwXkoIWQgghhBBCCOEBbSK4euONN+jcuTMhISEMHTqUTZs2OV13/vz56HQ6m38hISGt2FohhBBCCCHEmcjvg6sFCxYwZcoUpk2bxtatWxkwYAAZGRnk5eU53SYqKoqcnBzt3+HDh1uxxZ5VYzIRevAgNSaT3XNmk4myDRsxN3jO2XJ/3sbXx/f3bZydB/7c5tbaRoj2xtn53tjfAyHaG/l7INoqvx9zNXv2bO655x4mTpwIwNy5c1m6dCnz5s3jsccec7iNTqfDaDS2ZjO9onDhQnKefIo0RSHrnXeJu/NOIi++CICSNWs5NW8eKArodNpzzpb78za+Pn5b2abhedAW2uzxbfR6kp6eQcwNN3jrayeETxV8thDTU085/R6kKQpZ774n3wPRrjX1PZC/B8Kf6RRFUXzdCGeqq6sJCwtj4cKFXHfdddry8ePHU1hYyBdffGG3zfz587n77rtJSUnBYrFw7rnn8vzzz9OvXz+nx6mqqqKqqkp7rFYEyc/P91lBixqTiayMK8Bi8cnxhfBbej2dVywnsB3cQHGH2Wxm1apVjBo1SgYwt1PVmZlkX3udayufod+DM92Z8Dtgzsnh8OgM11Y+Q78HZ8J54G+Ki4tJSEigqKioydjArzNX+fn51NbWkpiYaLM8MTGRPXv2ONymV69ezJs3j7PPPpuioiJmzZrF8OHD2bVrl9O69DNnzmTGjBl2y1euXElYWFjLX0gzhB48SJqDwKo6OhqAoKIiu+fM4eEYysra1Da+Pn5728bXx2+VbSwWfvzsMyq6dbNb/0ywatUqXzdBeEHQ8eOkvD8fR5dJ8j0QDbXb3wFFIemj/+Ko2LV8D+y12/PAD5WXl7u8rl9nro4fP05KSgrr1q1j2LBh2vJHH32UtWvXsnHjxib3YTab6dOnD7fccgvPPPOMw3XaTObq9B0awOFzqf/9iKO33d6mtvH18dvbNr4+fqtsA3RauQJDUhJnErlT9J42RQAAdZ9JREFU2T4pikLJ559z4vmZKPX+Dmka+R50mDGD6LHXt1JLhT9o778DJ197nYK337Z/oom/IZK5Et7mTuYKxY9VVVUpAQEByueff26z/I477lCuueYal/dzww03KDfffLPL6xcVFSmAUlRU5PI23lDw2WfK7336Kr/36q383qevUvDZZ00+1xa38fXx29s2vj6+V7c5/S//3feUM011dbWyZMkSpbq62tdNER5QnZOjlKxdqxyZ/LB2Xh++5x4lf/4HLn8Pfu93llK0cqWPX4loTe35dyD/3fe0c/vo3/7m0vdg/+gMxWKx+Ljlra89nwf+yp3YwK8zVwBDhw5lyJAhvPbaawBYLBbS09OZNGmS04IW9dXW1tKvXz/GjBnD7NmzXTpmcXEx0dHRrkWnXlZx5Ag/fvYZF9x4I6FpaTbPmU0mqg9nE9QpHUO9uzbOlvvzNr4+vr9v4+w88Oc2e2Obiu3bOfHyyxAYSOdPPib07LM5U5jNZpYtW8aYMWPkTmUbpxYrQv3zq9PR4ZFHiL/nbnR6vdPvgfo7MHLsWApef4Pir7+GwEBSZs0idOAAqrMOE9S5k933SrQf7fV3oGDB/2GaNg2ADlOmkPDnexr9e1C+bRvHH5sKVVWkvDybqCuv9FXTfaK9ngf+zJ3YwO+DqwULFjB+/HjeeusthgwZwpw5c/i///s/9uzZQ2JiInfccQcpKSnMnDkTgKeffprzzz+f7t27U1hYyIsvvsiSJUvYsmULffv2demY/hRcyRdIgJwHKkVROPaXKZQsX44hNZUuny8mINJR7/z2R86B9sFsMnHg0svsujZ1/251k0FR/XMgUK/n+NSpFH/5Feh01hWkglq7195+B8wmEwWfLuDk3LkAxP/5z3Sc8heXtj3xxhvkv/Y6gclJdFu6FH1oqDeb6lfa23nQFrgTG/j9PFfjxo1j1qxZPPXUUwwcOJDt27ezfPlyrchFdnY2OTk52voFBQXcc8899OnThzFjxlBcXMy6detcDqyEEP5Lp9OR9MzTGFJTMR89Ss6TT+Hn94eEsFGdddi+CqzFQvXhbLf2owsIIHnmTCIzMqxBlfo9sFjIeWqazAEk/F7hwoUcuORSLbAKGzqUDn95xOXt4++8k8DkJGqO53By3jwvtVII9/l9cAUwadIkDh8+TFVVFRs3bmTo0KHac2vWrGH+/Pna45dffllb12QysXTpUs455xwftFoI4Q0BkZGkzH4JAgMpWb6ck2+/IxNKijYjMMlBdkqvJ6hTutv70gUEEDNunP0TzQjWhGhNZpOJnKem1d0UAMp/+YWa3FyX96EPDSXx0UcBOPnOu5iPH/d4O4VojjYRXAkhRH2hZ59Nx79Yu46cePllsidM4MCll1G4cKGPWyZE48rWrLFdcLobX3PHSQV37VLXLbDePpsTrAnRWjyVwY3MyCDsvPNQKivJm/WSB1soRPNJcCWEaJMir7zCdoF0hxJ+zlJeTv7b7wDQ4a9TSP/gA7p/t7pF46MMRiPGp5+uW9DCYE2I1hDUuZP9wmbcFNDpdCQ+/k/Q6ShetoxTH34ofwOEz0lwJYRok8zZR+wXSnco4ccK/vcptSdPYkhNJX7CBMKHDvFIEBR74w1EXXM1ANHXXCPFLITfC+zQAV14eN2CFtwUCOnTh9BBgwDIfX6m9GIQPifBlRCiTQrq3An09j9h+phoH7RGiMbVlpZx8t13AUi4/350Hq7wFXWFtRR1+ebNUuRF+L2KX3eglJWhCw8n7b13W5TBNZtMVGzdWrdAejEIH5PgSgjRJhmMRpKenmEXYJkef4La0lIftUoIxwo+/pjaggIMndKJvvYaj+8//Pyh6AwGzEePUn0oy+P7F8KTSr9bDUDkxRcTMWJEizK4zsZvla1b35ImCtFsElwJIdqsmBtuoPt3q0n/4APSP5hPQGwslTt3cuS++6jKypIqgsIv1JaWaqWiOzz4ILrAQI8fQx8WRtjgwQCU/rDW4/sXwpNKVn8HQORll7Z4X856MeTMmEHBgv+TTK5odRJcCSHaNIPRSPjQIYQPHUr6e++ij4ykYvMWMq+40mkVQbPJJIGXaDWnPvwQS1ERQV26EHXVVV47TsRFFwJQ9sMPXjuGEC1VlZlJ9aFDYDAQfuGFLd6fXS8GvZ6g7t2hqgrTtGkcm/wwlfv2yW++aDWev30mhBA+EtK3L0nPP8+xhx6qW2ixkPPkU1QfO05QagoVO3dS+OkC6/wqpwdRSwEA4S2V+/dz8p3TY60mPYguIMBrxwq/4EKY+QLlv2zGUlaGvn7BACH8RMlqa5fA8KFDCYiI8Mg+Y264gfCRI6k+nE1Qp3QCO3bk1Acfkjd7NiWrVlGyapV1RfnNF61AMldCiHYlIDLSfqGicPI//yHn8Sco/N+ndRNXysBn4UWFCxdy6JprUSoqALCUlXn1eEFdOmNIS0MxmynbuNGrxxKiuUq/PT3e6vLLPLpftReDwWhEp9cTP3ECqa+/bruS/OaLViDBlRCiXXHY/16nI+Lyywk5+2z7DaR8u6jHU11GzSYTOU9NqwvkAdP0GV69qNPpdERccAEApWula6DwPzUnTlCxYwcAEZe0fLxVU/TBwfYL5TdfeJkEV0KIdsVR//ukZ54m7fXXSH31FfvAqxkTV4r2qXDhQg5cepnTsXruqPjtN4cVzLx9UaeOuyr98QcZyC/8Tsn334OiEHL22RgSO3r9eA5vtslvvvAyCa6EEO1O/SqC9edP0QIvlU7X7IkrRfuiZZrUgKgF3YfMeXnkzXrJ/olWuKgLGzIEXXAwNcdzqD5wwKvHEsJd6niryEu9n7UCx1N2hA3xzOTdQjgjwZUQol2q3/++vpgbbqDDX/4CWAtgyMBmAVCxc6dHMk3mnBwO33475sOH0UdF2WZQWyGQ14eGEjZkCAClP/zo1WMJ4Y7a0jLK128APFOC3VXqzbaO/3gUgIotWzDn5LTa8cWZR4IrIcQZR53EtfL336k5edLHrRG+VvHbTnKfedb+CTczTdVHj3L4ttsxH87GkJJCl0ULHWZQvS3idHnrUinJLvxI2U8/oVRXY+iUbi2V3ooMRiNxEyYQNmQIitlM/pv/adXjizOLBFdCiDOOwWgkpG9fUBRK18iEq2citXBF/rvvcvjWW6nJzSUgLs6m+1Bw794uZZrMJhNFX3xB1i23Yj52DEOndDp99CFBaWlOM6jeFHGhtahF+ZYt1JaWttpxxZmtqWIwJd+pXQIvQ6fTtWbTAGvBlw4PTwagcPFiqg8fbvU2iDODBFdCiDNSxOk+/yXff+fjlojWVr9wxYlZL6GYzURceindln9D9+9Wk/T8cwBU/f47Fb/tbHpfl1zK8X88Ru2JEwQkJNDpw48wJCe3xktxKKhTJ4I6dYKaGsrWr/dZO8SZo6liMIrZrFWw9HQJdneEDRpE+AUXQG0t+W++6bN2iPZNgishxBkp8tJLACj7eR2Wqioft0a0FrvCFQA6HYlPPE5AVBQGo5GYsWO1rqMnXnml6X3Vq8pXe+oUKBan27SW8NNVA8uka6DwMleKwZRv2YKlqIiAuDhCBw70TUNP6zDZmr0q+vIrqqToi/ACCa6EEGek4D59CDQaUSoqKN+wodn78dS8SKJ1VGcdti9coSiYjxy1WZQwaRIEBlL200+UbdrkcF9VBw74pNy6KyIuvAiwFrWQkuzCmxx+pywWir76Sjv3ir78CjhdzTIgoLWbaCO0/1lEjrocFIUTr73e9AZCuEmCKyHEGUmn0xFxycUAlHz3fbP2oXYJ88S8SKJ1BHXuBA3HezgoXBGUlkbMjdYCFCfmvGIXoCiKQuHCRfYH8JM5dMIGn4cuNJSa3Fyq9u3zdXNEO+bwOwWceGk2h2/9E7n/+jdFixcDULJihV/8TiZMegh0OkpWrKBgwQK5OSY8qk0EV2+88QadO3cmJCSEoUOHssnJXcSGPv30U3Q6Hdddd513GyiEaJPUuVZKv//e7bv7dl3CWjAvkmgZd7KHBqOR4J496xY0UiI94b770QUHU7F1q133ulMffEDJ8uXWi8pWLrfuCn1wMOFDhwJw6qP/ynkpvMZgNBLcp0/dAr2e8BEjrN+dbds49f77dc8pil/8Tob06knIWWcBYJo2XW6OCY/y++BqwYIFTJkyhWnTprF161YGDBhARkYGeXl5jW6XlZXF3/72Ny644IJWaqkQoq0JGzoUfVgYNXl5VO763a1tnXWFae0uYWdKt0Rnr7OpgfSO1J46BUDiE483WiLdkNiR2Nv+BEDenFdQTn/epT/+RN6/X7TuY+pjPim37gp9ZAQARaffI7l4FN5gqaqiOisLgMQZ063fh/fepdvKlURc5qB4hR90nTWbTFTurFesRm6OCQ/y++Bq9uzZ3HPPPUycOJG+ffsyd+5cwsLCmDdvntNtamtr+dOf/sSMGTPo2rVrK7ZWCNGW6IOCCB8xAoDS79yrGhjUuZODHbZul7DmBBZtkc3rvORSTM88y8n35nHsr38l54knGx1I35A5N4+aEydArydm7Ngms0zxd9+NPjycqt27KVmxgqpDhzg2ZQpYLET/cSyxt9/uk3LrTTGbTBQvXVa3wAMXj40F8mdKkH+mcOfzLFu/HqW8nECjkdibbtK+B4bEjhiffMJmegPAL7rOVmcdtilEA/hF0Cfah0BfN6Ax1dXVbNmyhalTp2rL9Ho9l19+OesbKS/79NNP07FjR+666y5+/LHpGeqrqqqoqlctrLi4GACz2YzZbG7BK2g59fi+bofwLTkPvCf0ogspWbWK4u++I+b++1zerrqszG5Zx2lPQXy8Vz6nhudA1f4D5Dz5lF23xOChQwn0o4v8lqppWIlMUSj4+GPnG1gslGdmEhYf7/Dpsl+3AxDUtSu1BgO1TX1WERHEjB/PqTffJPell1DMNVhKSggZOJCEf/6TmpqaZryq5nHnd6D84EGHmdXG3pvGFC9eTN6Mp6371OvpOO0posaObfI54Vmt8bfA3c+zeNW3AIRfdJH99yE+no7TnrLbn7d+J12lT0m2Bn31vyN6PfrkpDbxd1auCVqfO+91qwZXv/76K+eeey61tbUurZ+fn09tbS2JiYk2yxMTE9mzZ4/DbX766Sfee+89tm/f7nK7Zs6cyYwZM+yWr1y5krCwMJf3402rVq3ydROEH5DzwPMCqqroqtNRvWcPKz/+hJrYGJe2i/vuOxKAiuRkQnJy0CkKG8rLqVm2rMltmyOwsIjQk/n8eOgQUb/uIGrTJvQO7rz++NlnVHTr5pU2+ELowYOkNQwSgLJu3ahOMhLz08/UH0qv6HT8tP+ANTvlQPzKlcQDJ2Ki2eniZ6VP7EjXoCBqjh6zHgPITklhx7ffuvlqPMOV34HAwiK66HTo6p0jTb03je7rhRfq9mWxkDttOkdfnoNiCCToRH7dZ2CxkDt9Bhsqq6iJiXbrOMJ13vpb4PCzbuzztFjounIlgcCuiHDKHX2nQkII/Mc/MJzMxxyfwL6QEPDS76Q7oq6/nsTFi7XXWt65Myu3bvVxq9wj1wStp7y83OV1Wz1z5c2SsCUlJdx+++288847JCQkuLzd1KlTmTJliva4uLiYtLQ0Ro8eTVRUlDea6jKz2cyqVasYNWoUBoPBp20RviPngXcdXbqUyq3bGBqgJ3rMGJe2yX7nXaqBTvfdR/EXX1C5ZQtDAwNd3t4dxYsXk/fCC/bdWBrS67ngxhtbPXNVYzJRnZ1NUHq6x49tzjFx+O13bBfq9fSb+x8CjUbrezN9hvW90elInD6NHo3cZT/+1deUA90zMhjk4mdVYzKRVe+upQ7o+M03DHnk4VZ9r939HSgOCa7LGAD6kBAuuyKDgLg4t45bvmkTxxucezogqLDQ4fo6RWFkj+6EDR7s1nFE07z9t8DhZ93I51m5YwdHS0rQR0Rw0YMPomtLf5/GjKHmvnspWbWKk/9+kfBjx8g4/3y3vx++INcErU/t1eYKjwZXY5voBlBUVITOQblOZxISEggICCA3N9dmeW5uLkYHf9AOHjxIVlYWV199tbbMcvqPSmBgIHv37qWbgzu6wcHBBAcH2y03GAx+c9L6U1uE78h54B1Rl11G5dZtlK/9gYTbb29y/cp9+6g+cAAMBmKuyEApKKByyxYq1q13aXt3mE2muuChnuSXZmEpr8D0VF3XwKSnZxCalubR4zelcOHCum57p6vlebKoQ8Xvu2wXnD6G+jrjx41DV20m97nnCO7Zk/hx45zuS1EUqn63Fi4JHzDA5e9S9bHjDsdnWI7nYGjl9xtc/x2IHzeOqIsuoirzELnPPUf1wYOcmv0yyf96wa3jhXXr5rALVcorc1Cqqjj+90dt3x+9nrCuXeW3you89bfA2Wft7PMsWGutohlx4QUE+UlPH3cY0tIImTiRsqXLqNy1i5KFC+nw4IO+bpbL5Jqg9bjzPnu0oMVXX31FZWUl0dHRDv9FRES4tb+goCAGDRrE6tWrtWUWi4XVq1czbNgwu/V79+7Nb7/9xvbt27V/11xzDZdccgnbt28nzQd/BIUQ/i/ikksAKN+4kdpS+7FUDRV/8411uwsuICAqiogLrVVJyzZuxFJd7dG2ORx4DQQmdCD2xhvo9NGH1gUGA9GtPO2E2WSyjvtyo6CEO2qLizE99xwAsXfc4bQiX+Tl1opkVfv3N/r51eTkWCsFBgYS3KuXy+0I6tzJLwflu8JgNBIxfBjJzz8HOh1FX3xBmZuTZhuMRmJvu61uwekAN2rUKKL/8AeSnnna7jl/Ku4hXGcwGom9w/YGUUy9IhUNlXxnvT6LuORSr7fNW3Q6HXF3TgSg4ONPsFRW+rhFoq3zaOaqT58+/PGPf+Suu+5y+Pz27dv5+uuv3drnlClTGD9+POeddx5Dhgxhzpw5lJWVMXGi9Ytwxx13kJKSwsyZMwkJCeGs0/MWqGJiYgDslgshhCqoSxeCOnWi+vBhTs2fT8wNf3R6MaEoCsWnxwtEne5WFty7N4EdOlBz4gQVmzcTPny459rWRFXC0HPPRRcWhlJeTvXhwwS34nirxipueeLiOu+l2dSeyCeoc2c6/nUKegc9DAAMSUkYUlIwHztGxfbtRIwc4XC9itOll4N79nC6L4f7NxpJenqGXYauLQUQoQMGEHvLzRR88j9M02fQ5Yslbr0H+uAgAMIvuICkZ562ee0xN9xAwacLqNy5E+MTj/tVOXrhvsC40wVPTmewKnfsQFEUu55H1YcPU33gIAQGEnHRhT5oqedEZWSQ99JL1BzPoeiLL4kdd5OvmyTaMI9mrgYNGsTWRgYDBgcHk57u3p2+cePGMWvWLJ566ikGDhzI9u3bWb58uVbkIjs7m5ycnBa1WwhxZtPpdBhSUwHIf/31RsuaV+76HfPhbHQhIURecrG2ffjpOfVKf2i6QqmbjbN93ODCXqfXE9Kjh7VtTgr9eIshOdl+oYcyOuVbt1K4YAEAxhkzmgwEws47z7rd5l+crlO509rFMLSf+zfbYm64wW/ns3JVh7/8hYAOCVRnZXGy4Ti2JpRt2gRA1FVjHAaValBfW1La8oYKn6rcZf2exN85EV1oKJW//07ZunV265V89z0AYYPPI8DH49NbShcYSPz48QCcmj9fm9NOiObwaHA1d+5cXnzxRafP9+nTh0OHDrm930mTJnH48GGqqqrYuHEjQ0/POg+wZs0a5s+f73Tb+fPns2TJErePKYQ4c5hNJtuLh0a6t6lZq4hLLkYfHq4tV7sGlrow/YM7StesBSCod2+O/PkeOq9YbndhH9y7NwBVe/d59NhNMR89YrtAp/NIRkepribnqacAiP7jWMKHDmlym9DzBgFQsXmL03Uqd/4GQEgzezL443xW7giIjMT4z38CkP/WWxR+vsSlLpyWsjItMA13UqRCHXtWfUTmCfIVT801pgZX4SNGEHvTjQAOg/HS00M2Ii91MFFwGxT9xxvQR0ZSfeiQ9rsrRHN4NLgKDg72m9LlQgjhKlcnlFQsFm28VVSDSnPhw4dDQADVBw9iPnbMY20rXbMGgIhRl1PRrZvD6nTBvXoCULV3r8eO64qS79dY/+d0di0yI6PFGR2zyUTOjBlUHzhIQFwciX//u0vbqZmrih07sNSbt1ClKAoVpwOEkLP6taiNbVnkFVcQ1KMH1NSQM3WqS5NPl2/dBrW1GFJSMKSkOFwnKM2a+TUfOerxNoumeWpC8drCQsxHrZ9hSN++xE2YAAYD5Rs3UvHrr9p6NQUFlJ/uqRR56SUtbr8/CIgIJ/Zma0GcU/PmNWsfMpm2AA8HV6pjx47x6quvMmnSJKZMmcJbb71FQUGBNw4lhBAt5rBggU5n172tYvt2anJy0IeHE3Gh7RiDgKgoQgcOBDyXvbJUVlJ2esL08IsucrpeyOnMVWUrBleKolD6vbVbUMzpC5KKX391eboNRxchhQsXcuCSSylatBiAiMsuJeD0uNmmBHXuTEB8PEp1NZW//WZ/vCNHsBQXozMYtG6UZ6Ka3FyqDx6sW+BCEZLy010Cw4Y4zyCqmSvzkSNO1xHeYTaZrJleDxSWqTxdTdOQlkZAdDSGpCSiT1dgzn+nLntVumYtWCwE9+7tNOBui2Jvu80aTG7eTMWOHW5t66kAV7R9Hg+u3nzzTbp168YjjzzCf//7X+bNm8f9999Pamoq//vf/wDrH+Vt27Z5+tBCCNEsasECmwBLp8N8/LjNesVLrV0CIy+/3OEYoIgLRgJQ+uNPHmlX+caNKJWVBBqNBPXs6XS94NPP1ZhM1DqZe8jTqg8cwHz0KLqgIDo89BA6g4GanByqD2U1uW3Di5C8Oa9w6qOPrJUH6wVnRYsWu3yBqNPp6o27su8aWKkWs+jdG11QkEv7bI+qsw7bltkGh1na+lwJroLU4MpkQvFwxUzRuPKtW8HSdObdFRWnuwSG9KvL7sbffRfodJR+u5qqAwcAKP3uOwAiL227VQIdMSQmEn3VVQCcePM/LmehrAHuNK9VThVti0eDq6VLlzJ58mQmTZrEsWPHKCwspLCwkGPHjnHvvfcyfvx4fvrpJ/70pz/x1VdfefLQQgjRImrBgrQP5ltLs1ssHHvkL9Tk5wOg1NRQvHw5YB3U74ha1KJ8/XqPXGCWqF0CL76o0TkCAyIitIIcla007krtEhh2/lAC4+IIHWQd8+Ro4Ht9jsq3n5w7l9znnnepa2Zjwk63oXzzZrvn1C6Bof3P7Mqx7paVt5SVaRfcjU0KHJCQgC4kBCwWu5sSniTdrmzV5OdzYvbL9k80s7BM5S5r5iqkX19tWXDXrkRefjkAJ995F0tVFaU//wxYs8vtTdzpatRla9a4nIVqzk0L0X55NLh68cUXeeyxx5g1axZJSUna8qSkJGbPns2jjz7KqFGjWL9+PeNPV2URQgh/YTAaiRg6lJRZLxLUrRs1eXkc++vfUGpqKP/lF2pPniQgOppwB/PsAYT06UNAQgKW8nJtPEJzKYqiDaqOuPjiJtdX521qrXFXapfAyNNzhKnl55sKrpzN22Xo0sV+ZTcvEMMGnx53tW0bSk2NzXNq5iqkGZUC2xNHWdrIUZc7LdJRvm071NRgSE4mKNV59y+dTqeNu6r20rgr6XZlq7aoiOy77sZ89Cj66Oi6J1owVYBazCK0n+24xPg/3wNA0dKlFC1ejFJeTqDRSEjfvnb7aOsCohtUPnQhC9XUlBnizOLR4Grr1q3cfvvtTp+//fbbqaqqYu3atXTq5OBEFEIIP6APDyf11VfQhYVRvnEjpudncvJ0VdLIjAx0TmZq1+n1RIw83TWwhSXZq/btoyYnB11ICOHnn9/k+iGng6vKvd4vx15z6hQV27cDdYGfGlyVb9yIYjY73VYfFelgoZ5O788j6dln6i76m3GBGNyzJ/qICGt1uz11QaZisWgXjc2tFNieqFna2NMTpzbWldOVLoEqQ5r1QtKuiqQHeHvC6rbGUlZG9p//TNXevQR0SKDL/y0gqHNnAJJmzmxWYZnaoiJtzFzDoCm0f3/Chp0PNTWYnp8JQPj5QxvNqLdV1VmH7Rc2kYUK7NDBmrlVeahyqmibPBpc1dbWYnBy0QFgMBgIDQ11e64rIYRobcHdupH87DMAFH7yCWVrfwCwKb/uiFqSvezHH1p0/NLT3e7Czz8fff0/2k7UZa683y2wdO0PoCgE9+mD4XQvhZA+vQmIjrZ2I3NQUEJVvn6D7YJ6QVRL55LSBQQQOuhcACq21HUNrM46jKWsDF1ICMHdurq1z/bKYDTS4b770BkMVO3b57QYijvBlZa5yvZ8cFXy/ZoWdxttD2pMJsL27uX4ffdR+esOAqKjSX/vPYI6ddKCK6Wioln71opZpKY6LCSTcI81e8XpmydFX3zZLrOH7nadBWuPAaWyUnscc8MNbXIuPOEZHg2u+vXrxxdffOH0+SVLltCv35lbAlcI0baEnnsuNLgxe+qDDxq9Wx4+fDjo9VTtP4C5BROcayXYXegSCBDS+3RwtX+/XZe4hlo6bqWuS2Bd23QBAYSd7i5Z9rPjroGKolC4aBEAHf46xWEQ1dK5pMIGqUUt6oKryl2nuwT26YMuMLBZ+22PAqKirOMLgaIvv7R73lJeTsXp7pQuZa5STxe18HDmqqaggPy5/7F/wsVuV+1lnFbhwoVkZVxB6rz3qdz+K7qgINLefYeQ0wVt1Em9mzvmrdJBMYv67LruKkq7zB5qXWdVLmSh1Em2Of37Up2V5cUWCn/n0eDqwQcf5PHHH+fNN9+kpt4f95qaGt544w2eeOIJHnjgAU8eUgghvMY6PqjBwibulgfExBA6YADQ/K6BNadOaXPKRFzsvAR7fYa0NHShoShVVVRnO29fS8etWKqrKfvJWg1RvTBXhQ8/HVw5GXdVsW071ZmZ6EJDib3lFq9MyFu/YqBaFl4bbyVdAu1EX2Mts1389VKU2lqb58q3bXNpvJUqKF2dSNhzY66U2lqO//Wv1ObmERAXV/eEi91GCxb8HwcuubTNj9Oyq0aHtchOYIcO2mNDSsuCK0eVAm3a4Oh3r51mD2NuuIEOf/srYL0p01QWqnzTLwBapcHKXbtQGha4EGcMjwZX48eP54EHHmDSpEnEx8dz7rnncs455xAfH8/kyZO59957mTBhgicPKYQQXtOc7iFQ1zWw8IslzbqrW/pDvW53LgYfOr2e4J7W+Zuq9jged+WJcsHlm37BUl5OQIcEu4uw8OEjAOtEvrUlJXbbqhe2UVdeSUBEhMvHdEfoWf3QBQdTW1BAdWamtT2/7dSeE7bCL7wQfXQ0Nbm5lP/yi81z6gVjY1UC66s/15Wr85015cScVyhbtx5daCjp898npE8fAIxPPdnkBa/ZZMI0fXpdd0IPjNPyVRbMlWp0WuaqmZOYO6oUWF9zfw/bKi1Q2rOH2qIip+sptbVapjzm5nHoQkOxlJdL9uoM5vF5rmbNmsW6deuYMGECRqORpKQkJkyYwM8//8zLLzsoFyqEEH7KrrKai3fLLVXWMuyVW7c16255XZVA17JWqpBe6mTCjsddeaJcsNYl8OKL0TW40ApKTcHQKR1qa+0u1GtLy7RS9jE3/NHl47lLFxSkZQ7LN29BqamhcvduQDJXjuiDgoi64goAir60nSLFnfFWgDaZrKWsjNqCgha3rXjlSk6enrg2+blnCenZUxtb6Mr+HVambEGmRZ3k2hdZsKDOnaBh8YgGgY36/jcnc1VbXIz5dMbbWQXA5v4etlWGpCSCunUDi4WyhmNF66nauxdLcTH68HBC+/evm9T9dMZcnHm80vn8/PPP53wXqlsJIYS/i7nhBsJHjqT6cDZBndKbvJAwm0ycfPvtugWn75aHjxzp0kWIUq/bXaSL461Uwb2sYy+cZa60C7T6F5xu3HlWFEULrhp2CVSFDx9O4eFsyn5eZzPBaPE3y1DKywnq0oXQc85x6XjNFXbeIMo3baJ882ZCzxmIUlGBPixMG/AvbEVfczWFCxZQsmIFlqeeRB8SYh1vdbowSdhQ14IrfXAwgYmJ1OTmYj5yhMD63fjcYDaZKFu/HtOMpwGImzCBqDHWueWCTo/7qTp0qMn9eLI8tlatsEEWzNXvdUsZjEYMaWlaAOQosFEzVzV5eSjV1W5Nlq0Vs0hJITA21ul67v4etnURI0dw6uBByn7+iagrMhyuo463Cj1vEP/f3p3HN1Wl/wP/3OxJF1oKXUkX2gJlR5ZaQEGtoOgIIg6DMrI4Oo6iYMcNZ1j9OaAggzuj81XRwWVAQEVEarEoQguloKOUUqAbbdOydM92k9zfH0lumzZJkzZLl+f9evGivbm556Q9Te/Tc87zMCIRZCNHQnPqFDS//op+d93ly+6SbsLjM1eEENLbuJNkoauzQ+r8fJiamiDs3x+yUaPc6if/F9Nz9meuxJGRkI0ebXMs4IYbXL5B0p0rAltZCUYqdVjry1G9q/pd5kQWIfPu8Xr6Zn7f1ck8aC3Fg2XDh4MRCr3abk8lHzcO4pgYmJqb+eBZc/o0YDBAFB3Fz4i4QqLs2r4r657AqpXPg9NqIYmPR7hl7wsAPkB2lj7eShwZCUFQq9T/XZhp8Xe2Ql1RkTmwEghQsfB+xH97oN2ySGFYGBipFOA4t5ctdpTMorWuJp3pSQKspTWO/ORwqat1+WyAZYbXuvzYusyS9D0UXBFCiAfZ3ZfAMC7/tdyagj1w2rR2y+46IrVkDTNUVcFYV9fucZNaDV1REQAg+M47AQDqY8dc3qNhvfEOuP56CORyu+cEpKYCAgH0xcV8tkRdUZE5QYdIhH6zZ7v1mjpDPmYMIBTCUFmFxoMHAcDtQLUvYQQCBP/OPB6sSwOtf40PmDjRrWC4Zd+V+0GHvaQN+rIyGK5c4T+XJMSbjxcXd7ivy9jQAFOrvX+D3nqzU+mxdRcv4vLWre0f8OF+ozrLHycCpk1D86hRENkJbBiG6XTGQHeCq75EMWECGIkEhqoqfg9na633W1mXz1qXH2vPnGmXJIb0DRRcEUKIB7XblwAAHMfvX+mIuynYWxMGBfGzDPZmrxqzDoFTqyGOjUX0ppehSE0Fp9ej5p9b3eubgyWBgDm9t2yU+ebCOntlvTEMumk6RAMGuPhqOk8QEMDfJFr7LKNkFk71+505a2DTjz/CUFvbkszCxf1WVmJrratOzFy5MusriTMvbTU1NcHYKuiyR3f+vM3nnFrtdp/YykqULX0Qpvp6iKKjW/Y9+bBIrEmvR72lzE1wB/sVW5JauBdcdZQpsK8SyOX8THjzTz+1e7z1fitrshVJfDwECgU4jcZuQEZ6PwquCCHEw1oXww1dtAgAULVmLT9r5Ejz8RPQl5YCIhECpkzuVNt8MeGz7YvC1n9lrmXU7847wTAMIp59BmAYNOzbx6d+d0RTUGBeKgYg8KbpTs/llwb+dBScXs/XUOp3j/cSWbRlvSGyklMyC6ekiYnmG2uDAfW7d7fst3IzuJIozTM5bLn7ta7EllTuNtrMDgmkUv4PCB3tu9IV2QZX7hY3Nly9irKlD8KgUkEyeDASPt+FgStWAADkqZN8ViS26bvvYKyrgygiAorJzt8XOjNzZWxs5NOsO8oU2JcFTDFnQW2y7IVtre1+K8Bc80863BxoaSzLkknn9NQadRRcEUKIF1j3JUQ88zQCJqeB02hwafkKmJqb7Z5ft2sXyiyBGAwGNFoy67nLWkxYe842uDJcucIX97UuAZMNH45+d98NAKje+JLDZVZ1u3ahZG5LYNT8o/P6XYHW4OrYMTQeOgRjbS1E4eEItOxf8AXFhPH8x0xAAMSxvTNdtCdZx8WVt94GWBaiqCiIBw1y6xoS68zVJfdnrjQnT9oecLBHyprUoqN9V/zMlbWwqxvFjbUXLqDkvvuhLymBKDoKsf/3b4hCQ6G4zpyMxeDBWl4dsWYl7Df37g6LYPO1rtxIx27dG9RRMou+yrrvSn38BEw6nc1jbfdbWclHWJYGUsbATutqTUZ/8kpwVV1djT/+8Y+Ijo6GSCSCUCi0+UcIIX0FIxQietMmiMLDob94EVWr17QLYhqzD6Pq76tsNsx3th6PdIhl5qpNOvaG/d8ARiNko0dDark5BYCBy5eDkcuhOXUKjd9+2+56/D4YN/omHzMGjEIBY20tal7ZAgDod3fHN4aexLa6ueeam1H/+ec+a7unCp41CxAI+D8AyEeNdDv5iHXPlUGlgkmvd/l5Jo2GHyv9H3wQsdu3I+lQlt3Zodb7rpzRXzAHV4rx5kCbdTEguvbJpyi+406wpaUAgJDf/x7iqChz20lJ5mtVVMDUiWWG7tJfuoTmo8cAhkHIPR3PlHUmHTvtt3JOOiQZovBwcFqtzR8AbPdbpdo8h993RcFVh+zNTjUfP2HOztmFmoz+5JXfdIsXL0ZZWRlWrVqFqKgor2eGIoSQ7kwUFoaYf25B6QOL0PD115AOSYZ8zFhwBha1H3+CpkOH2j/JstfE3T0d1pkrXVEROKORz5BX/5U5UYF1b42VOCIcYQ8+iCtvvIGaza8g8KabIJBKAZhTr9ft3etwH4yjvjESCQImTkTT4cP88rCQe+a69Tq6glWpUL3xJZtjvkyb3VOJw8MhGTwYesuMT2Pmd6jbtcut5W/C/v0hUChgUqvBXqqAdHBCx08CcO2DD2BQqSCKjsLAx5dBIJM5PFfKz1y5tiww8KbpUOfmurRUkVWpUL1+vc2xK6+9jpA5cyCOjIQoNBTC0FAYa2uhKy6G3MsBifWv9QFpaZAMigHLsk7P78yyQAqunGMYBgFTpqB+zx40HfmJX/asPXvWvN8qMBCylGE2z7Hu8dSePQvOYPDpH5Z6krpdu1qS2DAMAqZOBVtRYX+vWid/J/qDV77bR44cwY8//oixY8d64/KEENLjKMaPR3hGBmo2bcLltgkk2taeAjqdiUysVIKRy82bqUvLIB2cAF1xMbT/+x8gFCJ41u3tnhO2dAnq/vtfsJcu4crbbyPg+jSY1M249t77/F9m3e2bIEBh87n6+HFIfLQ0z1lihJ7wi9lfWJUK+gsXWg5wnNtBKcMwECuV0BUWgr1U7lJwxdbU4Mq7/wYAhGf81WlgBbSqdVXiOLgy1tfDcPkyAHPmzZqNL4FVqTqs/+Ss8LD1ayBNTIQ6Lw/6Cxe8GlxxBgPqd+8BAITc61qAywdXKpXNH1ecoeCqYwFTzcFV85EjwDNPA2hZEqgYP75d8CSJi4MgMBCmpiboLlyAzLIXlrRolx2U41qWnAuFQNtMiz7MztlVXlkWqFQqO0yR6o4333wT8fHxkMlkSE1NxXEnWbd2796NCRMmICQkBAEBARg7diw++ugjj/WFEEI6K8hOYAMAsds/QNT/e6Elw2AX6vEwQiGkQ5IBALpCczHhhq/2ATDfIIjCwto9R6BQYOCTTwIArm77F8oWL8alRx+DOi/PXNPqhhvc6hurUqHhG9s9Y75c0mE3HX4P+sXsL84CC3e0ZAx0bY/T5VdfBadWQz5mDILvmNXh+dbgir1UAc7B0kPrfitRVBQk8fFgZDLAZOLLAzi8tguFhyVJiZY2LrQ/14OafvwRhpoaCENDEXjLLS49RxQebt5jZjDAUFPT4fnGxkZzEh1QMgtnAiZPBhgGunPnwFabv67WDLD2kr4wAgFkw81fT1oaaJ/dP4IBCPvLIxiSc8xjvxP9wSvB1datW/Hcc8+hpKSky9f67LPPkJGRgTVr1iA/Px9jxozBzJkzUePgTaN///7429/+hmPHjuGXX37BkiVLsGTJEnxrZy8BIYT4EuvoJpWzzTDoaK+Jq2SWfVfawkJwHNdqSeBdDp+jSLWTFY5hEPfRh4h99x23+uapm/TOapcOv4f9YvYXTwWlkkGWWlcuZOfTFhTwszPhzz3r0jYCUXg4BAoFYDQ6TJxhXRIoTUoCwzAtiTY62HcliogAWs9s2Rk70sGW4Oqid4Orup2WRBazZ0PgZLatNUYo5PvqytJA7ZkCAOYZL0pm4ZgoNJTfR9V89Kjd+lZtWc/XUHBll6P3m9D58yEMCvLo70Rf80pwNX/+fGRnZyMxMRFBQUHo37+/zT93bNmyBQ899BCWLFmC4cOHY9u2bVAoFHjvvffsnj99+nTcfffdSElJQWJiIpYvX47Ro0fjiJ0UmoQQ4ksd3bxaMwx2NQhonY5dc/o02PJyMAoFgm52XJ/K7o0wx8Gk0brdt+4wc9STfzH7i6eCUmtK9Y4yBuqrqlC58nmA4xA8axYU48a5dH2GYSCJjzdfw8G+K+vMldSSgEJsDfg6yBhoqKoC9HpAKITyvf+zO3aklpkrvRdnrjT/+5Wv0RbSQW2rttzZd0VLAl1nLY/RfOSIeb9VY6Pd/VZWcuu+K0rHbhf/fmNl5/3GU78Tfc0re6622qtk3gl6vR4nT57EypUr+WMCgQDp6ek4duxYh8/nOA6HDh1CYWEhXnrpJYfn6XQ66Fql12xoaAAAsCzb4eZRb7O27+9+EP+icdBLhIUhfM1q1Kxbb14OIRAgfM1qICysw++tO2NAZLn50xYWom6vufho4C03wygWw+jg+YKYaPNNdetlGgIBBNFR7o+7LrxOjwoLg8SyDLI3/Oz44n0gYPZsxKemQl9eDolSCVFkpNvtCSyZ9fRlZQ6f27B7N2rWruNnOEVDh7jVjiguDjhzBprz5yG78cZ2j2stNeVECQlgWRZCS4pybWmp03aaC80lDCTx8ZBOnAig/ddbEGdeOqgvL4e+udnpHq7OaPu1aTp5km/TlTEgtNyIasvLoejga6q21DMTpwzrFT8j3iS7/npg27/QdPQoxJbEQbLrroOB4wA7XzvRMHPQpSsshF6tBiMWe6wvveWeIGD2bDAbNoJrbkb0u+9CMWlit31Nbr0/eaMDi6y1WrroypUrMBqNiIiIsDkeERGBs2fPOnxefX09YmJioNPpIBQK8dZbb+HWW291eP6GDRuwbt26dscPHjwIhUJh5xm+l5mZ6e8ukG6AxkEvIJNB9OyzEF+9AjZsAM7JZMD+/S4/3ZUxINBokATzX+GvffEFhAAKwsNxsoN2gu++GxG7d4PhOHAMg+q778a5/HyX+2aji6+TOOaz9wFLQgh3iS9fRgLMgcz+r782J2xpRVRXj4SNG8G0Wjp6deuryJPJYQjp51Ib/VkWAwBc/PEIqu38VXvwmTMQAcirqYZ2/36ENDQgHED5iTwcdzIOQ374EeEArioU+NXReRyHRKkUQp0OWf/5D/Qe/Ku6va9N9dp1yNHqbL42zsZAmLoZYQAu5uQix5Ka3ZH4nBxIAPxWXYNG+vl0zmhEolQK1NZC9d57EAMoDQzEaWfjRC6DUKPFoQ8+gK6D70Vn9Ph7ApMJQyylH34svgjjlc695/iC2o3SC17LDWk0GrF3714UFJjX844YMQJ33XWXT+pcBQUF4fTp02hqakJWVhYyMjIwePBgTJ8+3e75K1euREZGBv95Q0MDlEolZsyYgeDgYK/31xmWZZGZmYlbb70VYg/+1YP0LDQOiLtjoOSdd2GorIRQq4VwwABMW7as43TAs2bB8Mif+VmL5B62FKO36ynvAxzL4sIrWyDQ6zEj9XqIBtgmUVEfP47KNnvyGI7D1OQkKCyzRR1pZBhUf/cdIoxGjJ9lmwTDWF+P4sZGAMD0hQshCAhAc2Agqr78CgOMBoyb5ThpRs3x42gAEDtlstPzyj/+BLpffkFqdAyCbpvpUp9d0dHXxpUx0KDTo+a7LESJRJjg5DXUffwJrtTWAgCidu7EmOEpCJ7ru5IJPVHVd1loPnQI4to6AMC4B/7odEllxZ690OTmYkJoKPo5+V64q6e8F3TEWF8P68LeGXPnenR2z9Osq9pc4ZXg6vz585g1axYqKiow1LL2f8OGDVAqlfj666+RmJjo0nUGDBgAoVCI6upqm+PV1dWIdPJLXyAQIMmyznrs2LEoKCjAhg0bHAZXUqkUUktdl9bEYnG3GbTdqS/Ef2gcEFfHgGzoUDRZ9lwETZ8OiVzu2vWVSsgthWBJ99Tt3wfEYoiiImGorAKnqoI4yvb3tcLePYBAAMXgwS6/LoW1mG9JSbvnsJZkWqLoKEhDQgAAcsseLbb8EkQikcPEGexF862eYsgQp32RJSVB98svMJaWevR7oUhMbF+awc7XxtkYkFn2vBmrqhyew6pUuLJxY8sBkwk169YjeNq0Hre/xZeCbrwBzZa6hIxCgcCRI53+0UoxehQ0ublgC8565We2278XdICzzAYxCgUk3WSlmCPufJ29ktDiiSeeQGJiIsrLy5Gfn4/8/HyUlZUhISEBTzzxhMvXkUgkGD9+PLKysvhjJpMJWVlZSEtLc/k6JpPJZk8VIYT0dhzXsneq7vPP+WKkhPgCnzHQXlILOzXd3E2cIbHsQTLW1sJYV2fzWNtkFgAgtizJMjU1tTu/pVscdJY6X5LEJLvnWEktAaLuwnmX++wKcWQk5GPGtBzoxNemdUILR2Vx/J3Rs6cyWmZEAXNgUL93r9PzZSPMGQMpHbt9xvp6AIDQz6vEPM0rM1eHDx9GTk6OTWbAsLAwbNy4EVOmTHHrWhkZGVi0aBEmTJiASZMmYevWrWhubsaSJUsAAA888ABiYmKwYcMGAOYZsgkTJiAxMRE6nQ779+/HRx99hLfffttzL5AQQroxVqVC8+EfWg50ohgsIV0hVg4Cjh+Hvqz9zXr9F+YkK7IxYxCekQFJXKzb41IQEABRRAQM1dXQFRfbZBpsScOe3HK+TAZReDgMNTVgL12ym3bccPkyTA0N5syWCfFO2/dmxkDrDefAjCfR76673M/WGBkJMAw4nQ7Gq1chGjCg3Tmu1PMitliVql0B+I7eV63p2LVFRTDp9S6n1O8rjPXmpXbCfq7ttewpvBJcSaVSNLaK7q2ampogcXNgzZ8/H5cvX8bq1auhUqkwduxYHDhwgE9yUVZWBkGrlL/Nzc149NFHcenSJcjlcgwbNgz/+c9/MH/+/K69KEII6SGc/VWagiviCxKl+SadbVNXiuM41O0x17UK/cMfEGCvvpqrbSQkwFBdDX1xiW1wZZl9aj1zBZiXvBpqasCWl0M+alS76+mts1axsR3eBEssM1f6khJwBkPH+xldZKyv59PLh9x7b6dqTzESiTmQrK4GW1lpN7gShYeDkcvBaTTmA1QLrkN2i9528L4qjomGMCQExro66ArPQT5qpA962nMY6+sA9L6ZK68sC7zzzjvx8MMPIzc3FxzHgeM45OTk4JFHHsFddzkuYunIsmXLUFpaCp1Oh9zcXKSmpvKPZWdn44MPPuA//3//7/+hqKgIGo0G165dw9GjRymwIoT0Kd2hzhTp28TWor1t6kppTp4EW1oGRqFA8AzHWXxdYZ1dalvrqmVZoO3eLskg54WEdZZZKElSx/vCxdHRYGQycCwLfXnHxZJdpfnFkho9LrZLRX07qnWlLy42B1ZSqcN6XsRWZ95XGYbhE15of6OlgW2ZLEkihC5mCe0pvBJcvfbaa0hMTERaWhpkMhlkMhmmTJmCpKQkvPrqq95okhBCiIWnisES0lkSS1KUtsWprbNWwbfdBkFAQJfakCYkAAD0JS3BlaG2FsYrV8yPt0mcIVY6LyRs3T8l7WC/FQAwAgGkgweb27/guaWBmp9/BgDIR4/p4Ezn+OCqosLu42pLiQXF6NEInDyZ3htc0Nn3VevSQA3tu2rHugRW0MtmrryyLDAkJARffPEFioqK+HpUKSkpfAY/Qggh3hUybx4Cpk6FvrSsU3taCOkKayBjqKmBSauFQCaDSa1G4zcHAAAhc+/uchsSS3ClazVzpbfMWomjo9sFbxKl85kr6/6ptjNeDttPTIT2zBnoLlxEULp7fXdE84sluBrTxeDKksCDrbA/c6XJP2Vu57rrutROX9OZ91XZSPPMlTr3OFiVit6LW2nZcxXi3454mNfqXAFAcnIykpOTOz6REEKIx4kjI+kXOfELYUgIBIGBMDU1ga2ogDQxEQ3fHoRJrYY4Lhby8eO73IY1uGJLy8AZjWCEQn5JoCS5/R9z+ZkrB8v4+EyBlhmpjng6YyDHcdD8/AsADwRXHSwL1JwyB1eK68bZfZw45u77KmvJwMiWl+P8zbcgav06WoJpQdkCO5CRkYEXXngBAQEBNgV57dmyZYunmiWEEEJIN8MwDMRKJXQFBdCXl0OamIj63bsBACF33+2wzpQ7xFFRYCQScHo92MpKSJRKft9U22QWACC27Lliq6rAsaxNwVLDtWsw1tYCDMMv9+sInzHwwsWuvhTzdUpKYKqvByORQDZ0SJeuJY5xHFwZrl2D3lILTD52bJfaIc6xKhVqWt/zmkyUubUVY4MluOple648FlydOnUKLMvyHxNCCCGk75JYgiu2rBz68nKoT5wAGAb9Zs/2yPUZoRCSuDjoioqgLy62BFeO902JBg40J6HQasFWVUES25KIwPo8cUwMBC4W3JYMtsxcXbwIzmQC0zbZgZu0v5hnrWQjRoDpYsrulmWBFeA4ziaYtc5aSZISe10K7O6mMxkG+xJTHc1cOfX999/b/ZgQQgghfU/rjIH1e/YCAALS0iCOivJYG5KEBD64wo03tgRXdpYFMgwDiXIQdEXnoS8vtwmurEkp2ibBcNp2rBIQi8FpNGArqyAZFNOl19KSzGJ0l64DgP8am5qbYWposAmi+GQW42i/lbfxGQbbBFjiLo6V3sJoyRYo6GVBvleyBS5dutRunavm5mYsXbrUG00SQgghpBvhMwaWlqF+714AQL+5cz3bRqukFobaWhivXgUAh0v7xIPs77vSWZb2uZKG3YoRiSC1FOPVX+x6xkB+v9XYru23AgCBXA5h//4A2i8NpGQWvtMuw6BF/eef+6lH3UvLnisKrjq0fft2aKyF6VrRaDT48MMPvdEkIYQQQroRayDTfPQo2MpKCIKCEJR+i0fbaKl1VQJdUZG53ZgYh2ne+dm0dsGV62nYbdq3nG/d69VZJq0W2sJCAF1PZmFlL6mFSa+H1pISnJJZ+EbIvHlIOpSF2O3bEfG3vwEArry9DU0/HvFzz/zPSHWuOtbQ0ID6+npwHIfGxkY0NDTw/2pra7F//36Eh4d7sklCCCGEdEOSWHNwxVn2YwffMQsCmcyjbfC1roqLWxUPdhwgSfiZK9t07O6mYefb91DGQO2ZM4DBAOHAARB5aNlk631XfDu//gaOZSHs3x/iWCoq7iviyEgEpE5C/z8uRMj8+QDHofKZZ8CqVP7umt+Y9HpzIWvQniunQkJCwDAMGIbBkCHtM90wDIN169Z5sklCCCGEdEPiqCiAYQCOA2DOEuhp1mWBhpoaaC3L6pwt7Wu9D8zKWF8Pw+XL5ucOdje4shYS7lrGQM3plvpWnsikCLQuJNwyc6U5Zd5vJb9unMfaIe6JeH4lNL/8Al1BASoy/orolzaCraiEJD6uTyW5MFmWBIJhIAgK8m9nPMyjwdX3338PjuNw88034/PPP0d/y3pfAJBIJIiLi0O05YedEEIIIb1X/Rdf8IEVAGjPFXlsyZuVMDgYwrAwGK9eRVN2NgBAmuS4via/D6ysnM+iZ91vJYqKgjDQ/nJCh9ezLgu8cKFdVj538MksPPj1sbcsUG3Zb0XJLPxHIJVi0KtbUTz3Hmjy83Fhxkzzz4lA0KdqYPHJLIKDu5xps7vxaHA1bdo0AEBxcTGUSiUEveyLRQghhJCOsSoVqlavsTmmWrMGgTd4vr6PJCEemqtX+c3xzpYFWpfKmZqaYKqvhzAkpNV+K/dmraxtQyCAqbERhprLEEd0buuDxpKGXT7ag8GVtdaVZVkgx3F8GnY57bfyK0lsLMKffhqqNWta/gDRx2pg9dYCwoCHgyuruDhz9hy1Wo2ysjLo9Xqbx0d7IM0oIYQQQronX9b3kcTHQ5N3kv/culTPHoFcDtHAgTBcvgx9+SXIQ0Ja9lt1IrgSSCSQKJXQl5ZCf/FCp4IrtroGhqoqQCCAfOQIt5/vCL/nyjJzxZaWwnjtmrlI8QjPtUM6R2K5V7bRh2pg8cFVL0vDDngpuLp8+TKWLFmCb775xu7jRqPRG80SQgghpBuwW99HIIAkzvNJFKxJLQBAPGgQBAqF0/PFSiUMly+DvVQO+aiR0FlqXEmcBGXOSJKSoC8the78BQSkpbn9fM0v5iWB0uRkh1kOO8O6LNBYVweTWs0vCZSNHAlBF4sUk67z5c9Id9SbZ668sm5vxYoVqKurQ25uLuRyOQ4cOIDt27cjOTkZX375pTeaJIQQQkg30a6+j2U/iTf+Ii9pE1x1eL5l35XekjHQGlw5W07ojLWmlq6Tta60XthvBQDCoCA+UQBbWckns6AU7N0D/zNixTBe+xnpjky9NA074KWZq0OHDuGLL77AhAkTIBAIEBcXh1tvvRXBwcHYsGED7rjjDm80SwghhJBuImTePARMnQp9aRkkcbFeu2nUFp7jP1bn5qJu1y6nSQHEypZCwsamJvOSPDguPNwRa/p2fSdrXfHFgz0cXAHmpYG6s2fBVlTwM1dUPLj7CJk3D5rfzqDuk08QmH5Ln0lmAQDGOvPMlYBmrlzT3NzM17MKDQ3FZUuK01GjRiE/P98bTRJCCCGkm7HW9/FWYMWqVLjy+ustBzgOVavXOK0fJGmVjl1/0ZwpUDhwAIQhIZ3qQ+uMge7iDAZoLEV95WM8vx/dujRQW3AWekv/5GPHerwd0nnBt90GANCczAfXdp9iL8YXEO4X4t+OeIFXgquhQ4ei0FJpfMyYMfjXv/6FiooKbNu2DVEeKo5HCCGEkL7NWeIMR8St0rHr+GQWnVsSCADSweZlicZr16Cx3Pu4SldUBE6jgSAwEJJOzpw5Yw2uGvbvB2BO/iFqVSaH+J9i3FgIFAoYr12DtqDA393xGdpz5ably5ejyjLNvmbNGnzzzTeIjY3Fa6+9hn/84x/eaJIQQgghfQyfFKC1DpICWPdlsVVV0BWeBdC5TIFW1sAFAErm3I26Xbtcfi6/JHD0KK/U+rEGV7pz5qWTtCSw+2EkEiiuvx4A0PzjET/3xneMDZbgqhfuufJKcLVw4UIsXrwYADB+/HiUlpbixIkTKC8vx/z5892+3ptvvon4+HjIZDKkpqbi+PHjDs999913ccMNNyA0NBShoaFIT093ej4hhBBCeqbOJM4QDRwIRioFTCY0HfkJQMu+KXe1q+flwrLE1qzFg2Ve2G8FtKRjt6JkFt1T4A1TAQDNR/pOcGWiPVddo1AocN1112HAgAFuP/ezzz5DRkYG1qxZg/z8fIwZMwYzZ85ETU2N3fOzs7OxYMECfP/99zh27BiUSiVmzJiBCksRPUIIIYT0HiHz5iHpUBZit29H0qGsDpMCMAwDsXXfFZ+GvXPBVWeWJbbGFw/2VnBlmbmyko+j4Ko7CphqDq7Up0/D2Njo5974Rsueq943c+WxbIEZGRkun7tlyxa3zn3ooYewZMkSAMC2bdvw9ddf47333sNzzz3X7vwdO3bYfP7vf/8bn3/+ObKysvDAAw+43C4hhBBCegZxZKRbSTMkg5Q22f06m4a9K7WKtEVFLUkmRns+mQUAiGNagitBUJBN2nrSfUiUSkji4qAvLUVzTg6Cb73V313yOioi7IJTp065dB7DMC5fU6/X4+TJk1i5ciV/TCAQID09HceOHXPpGmq1GizLor+TDZw6nQ46nY7/vMESTbMsC5ZlXe6vN1jb93c/iH/ROCA0BgiNAc8Rtg46QkPBBQV17usaFobwNatRs249H2AN/PvfgbAwp9dr2L0bNWtbahzVZ2YieO7cDptzdwzUHzzIf2xqbMS1nTtdaof4nnzKFOhLS9H4w4+QT5/u9Nye/l7AcRw/c8UpFD3idbjTR48FV99//72nLsW7cuUKjEYjIiIibI5HRETg7NmzLl3j2WefRXR0NNLT0x2es2HDBqxbt67d8YMHD0LRQaV3X8nMzPR3F0g3QOOA0BggNAa6LqShAeGWj5tCQrC/VVIKt8lkED3zNOJe2QIhy+JEQwP0Tq4nqqtHwsaNYDiOP1a9dh1ytDoYXNzc78oY4NtpdczddojvBEgkiAFw9btM5I2/DnBhMqKnvhcwOh2SDQYAQGZODjiJxM896pharXb5XK8UEe4uNm7ciE8//RTZ2dmQyWQOz1u5cqXNssaGhgZ+r1awnzfasSyLzMxM3HrrrRCLxX7tC/EfGgeExgChMeA5zQoFqr7aBwAIHz4co2fN6vI1L32XBW1eHiaFhSHYyfXUx4+jslVgBQAMx2FqchIUEyc6bcOdMdCVdojvmaZPx8UdOyCurUP68OFOl3D29PcCtqoKpQAgEuG22bPdWtXmL9ZVba7wSnB10003Of1CHTp0yKXrDBgwAEKhENXV1TbHq6urEdnB2urNmzdj48aN+O677zC6g7XMUqkUUqm03XGxWNxtBm136gvxHxoHhMYAoTHQdWxREf9x0/79aE67vsNEGB1RjBwJbV4e2IICiO91fC1FYqLdfVqKwYNd/r66MgY80Q7xoX79oJgwHupjOdDl5CBgyJAOn9JT3wuMllkgYUgIJD1g1gqAW19nr2QLHDt2LMaMGcP/Gz58OPR6PfLz8zFq1CiXryORSDB+/HhkZWXxx0wmE7KyspCWlubweS+//DJeeOEFHDhwABMmTOjSayGEEEJI78GqVLjyxpstB9xMn+6IbMQIAID2t9+cnieOjMSAZY+1HHAhfXxndCZNPfGvwKk3AACaenlKdmNd7y0gDHhp5uqf//yn3eNr165FU1OTW9fKyMjAokWLMGHCBEyaNAlbt25Fc3Mznz3wgQceQExMDDZs2AAAeOmll7B69Wp8/PHHiI+Ph8ryZhkYGIjAwMAuvCpCCCGE9HTO0qd3JfCQjbQEV2fPgjMYwIgc32KJLKVppCkpUL79ltcCnpB58xAwdSr0pWWQxMVSYNXNBUydCmzaBPXxEzBptRA42dLSk/EFhHthpkDAR3WurBYuXIj33nvPrefMnz8fmzdvxurVqzF27FicPn0aBw4c4JNclJWVoaqqij//7bffhl6vx7x58xAVFcX/27x5s0dfCyGEEEJ6Hj59emsupk93et24OAgCAsDpdNBduOD0XM2p0wCAwGk3ej3gEUdGIiB1EgVWPYB0SDJE4eHgtFqo8076uztew6dhp5mrrjt27JjTxBKOLFu2DMuWLbP7WHZ2ts3nJSUlnegZIYQQQvoC63K5qtVrzDNYHlouxwgEkI0YAfXx49D++htkQ4c6PFdjKV+joKK+pBWGYRAwdSrqd+9G85EjCJw6xd9d8gqTtYBwL81a6ZXgam6bGgocx6Gqqgp5eXlYtWqVN5okhBBCCHGJt5bL8cHVb78C99ivJ2WorYXe8odg+dixHmmX9B6BN5iDq6YjPyICz/q7O15h3XMlCKbgymX92qyhFAgEGDp0KNavX48ZM2Z4o0lCCCGEEJeJIyM9vlTOuu9K4ySphXXWSpKU2Gv3nJDOC0hLAwQC6M9fAFtVBXFUlL+75HHWAsK9dfx7Jbh6//33vXFZQgghhJBuS27JGKg7WwiOZcHYSd9MSwKJM8KQEMhHjYLm55/RdOQIQu+9t905BpUK8gsXYFCpIFYq/dDLrunte668mtAiLy8PH330ET766COcPNl7N+YRQgghhIhjYyEIDHSa1EJtCa7kYym4IvYF3GBOyV7/xZftSgTU7dqFkpm3QfnOuyiZeRvqdu3yRxe7xGTNFkh7rlx36dIlLFiwAD/99BNCQkIAAHV1dZg8eTI+/fRTDBo0yBvNEkIIIYT4DZ/UIjcX2t9+g2zYMJvHOb0e2v/9CgCQ08wVcYDT6wEAmrw8nL/pZsgnToAkKhqG2lo0//BDy4kmE6pWr0HA1Kk9Khtky54rmrly2Z/+9CewLIuCggJcu3YN165dQ0FBAUwmE/70pz95o0lCCCGEEL9zVkxYW1AATqeDMCQEkoR4H/eM9ASsSoWr//53ywGOg+b4CdR/8YVtYGVlqdHWk9Ceq044fPgwjh49iqGt0pAOHToUr7/+Om6wTHUSQgghhPQ2cmtSi1/bB1f8ksBx48AwjE/7RXoGu0WuAYT8/vcQRUfhyquvARzX8oAHarT5Gr/nioIr1ymVSrAs2+640WhEdHS0N5okhBBCCPE7GZ/U4my7pBbW4sG0JJA4whe5bh1gCQQY8OhfII6MBCMQ4PKWf/LHPVGjzZc4oxGmxkYAlNDCLZs2bcLjjz+OvLw8/lheXh6WL1+OzZs3e6NJQgghhBC/E8fGQhAUBE6vh+78ef44x3GtMgWO9VPvSHdnLXINgeUWvU0AFbZkCf/YoB3/Qci8ef7qaqdYAyug9wZXXpm5Wrx4MdRqNVJTUyESmZswGAwQiURYunQpli5dyp977do1b3SBEEIIIcTnGIYxJ7XIyTEntUhJAQCwFZUw1NQAIhFko0b5uZekO3NW5JoRiyGKioKhogKcTufHXrbHqlTQl5RCEh/ncDbNuiSQUSjASCS+7J7PeCW42rp1qzcuSwghhBDS7clGDIc6Jwea337jZxass1ay4cMhkMn82T3SAzgrci0eNAiGigqwly75uFeO1e3aharVa8zLGS2zbfZm1Xp7MgvAS8HVokWLvHFZQgghhJBuTz5yJABA2yqpBS0JJJ4iHjQImtzcbhNcsSpVS2AFOE0Rb03D3luXBAJeCq4Ac/KKvXv3oqCgAAAwYsQI3HXXXRAKhd5qkhBCCCHE7/ikFoWFfFIL9emWTIGEdIXYUi/WcKnCzz0xs5vh0JIivl1w1dC7MwUCXgquzp8/j1mzZqGiooJPx75hwwYolUp8/fXXSExM9EazhBBCCCF+J1YqIQgOhqmhAbrz5yFWxkJ3thAABVek60SW4Iqt6B7BlaMMh/ZSxLekYe+9M1deyRb4xBNPIDExEeXl5cjPz0d+fj7KysqQkJCAJ554whtNEkIIIYR0C+akFsMBAJpff4X2f78AJhPE0dEQR0T4uXekpxMrLcFVN1kWKI6MRMTK52yOOUoRb7LsuRLQzJV7Dh8+jJycHPTv358/FhYWho0bN2LKlCneaJIQQgghpNuQjxgB9TFzxkDD5cvmYzRrRTzAuizQePkyTBoNBHK5n3sESJOH8B8zcjn63XOP3fNa9lz13uDKKzNXUqkUja3y2Fs1NTVB0kvTLhJCCCGEWMlaJbWg4sHEkwTBwTBaMk52l6WBWkuOBQDgNBoYai7bPa8vZAv0SnB155134uGHH0Zubi44jgPHccjJycEjjzyCu+66yxtNEkIIIYR0G62TWlgzBcopUyDxAIZhwFpWh+nLy/3cGzNtwRmbz/XFxXbPoz1XnfTaa68hMTERaWlpkMlkkMlkmDJlCpKSkvDqq696o0lCCCGEkG5DPGgQBP36gWNZmJqawCgUkFmSfBHSVdbgii3vHvuutGfMwRWjUAAA9MUX7Z5nqu/92QK9ElyFhITgiy++wLlz57Br1y7s2rULhYWF2LNnD/p14ov55ptvIj4+HjKZDKmpqTh+/LjDc3/77Tfcc889iI+PB8MwVNCYEEIIIT7HMAzklqQWACAfPRqMyGsVcEgfw4ZZZq4ueWfmilWp0JyTC1al6vBck0YD/UXzTFXQLbcAAHQXnc9cCXpxnSuPBlcmkwkvvfQSpkyZgokTJ+Lf//430tPT8bvf/Q5JSUmduuZnn32GjIwMrFmzBvn5+RgzZgxmzpyJmpoau+er1WoMHjwYGzduRKSDytaEEEIIId5mXRoIAJLkzt0HEWKPN2eu6nbtwvmbb0HZ4sU4f/MtqNu1y+n5unPnAJMJwrAwKCZNBADoL9qfueL3XFFCC9e8+OKLeP755xEYGIiYmBi8+uqreOyxx7p0zS1btuChhx7CkiVLMHz4cGzbtg0KhQLvvfee3fMnTpyITZs24Q9/+AOkUmmX2iaEEEII6SxjYxP/cd1/dnR4k0qIq/jgysMzV6xKharVa1pqVplMqFq9xukMlnVJoGz4cEgttWx1DpYF8sFVCAVXLvnwww/x1ltv4dtvv8XevXvx1VdfYceOHTC1rdrsIr1ej5MnTyI9PZ0/JhAIkJ6ejmPHjnmq24QQQgghHsWqVKj7739bDnBchzephLiqJaHFJXAc57Hr6ktKbYsBA4DJBH1pmcPnaM+YMwXKUlIgSUgAABgqq2DSaGwvo9eDsxwT9uJlgR5d/FtWVoZZs2bxn6enp4NhGFRWVmKQJSe/O65cuQKj0YiINgX3IiIicPbs2S7310qn00Gn0/GfN1iiapZlwbKsx9rpDGv7/u4H8S8aB4TGAKEx0LOoL1ywe5OqvngRirCwTl2TxgABLPenISGAQABOq4VWpYJowACPXFsQEw0IBLZjVyCAIDrK4bjTWGauxEOGgAsMhCA0FKbaWqjPn4d02DD+PMPVq+YPGAZGmQymHjSO3fmZ82hwZTAYILPk3bcSi8Xd/k1gw4YNWLduXbvjBw8ehMKS9cTfMjMz/d0F0g3QOCA0BgiNgZ5BVFePBIYB02pWgWMYHCk6zxcV7iwaAwQiEdh+wRDX1uGH/+6ENj7OY5cemHY9Qn86yn9+bcoUnMvPt3+y0Yiks2chAHCsWgV2/34o+wVDXluL47v3oHHsGP5USXU14gEYZTJ8c+CAx/rrC2q12uVzPRpccRyHxYsX2+x10mq1eOSRRxAQEMAf2717t0vXGzBgAIRCIaqrq22OV1dXezRZxcqVK5GRkcF/3tDQAKVSiRkzZiDYz9OWLMsiMzMTt956K8RisV/7QvyHxgGhMUBoDPQ8DTIpatatN88CCASIWLMayXPndvp6NAYI0DIOAhOToMvLw0SlEkGtVo511eVff0N9q+BqcHIyJjm4vq7wHMqNRggCA5G+cCEYgQA1ubloKCnF8JB+CGv1PM2pU6gAIBswwGalW09gXdXmCo8GV4sWLWp3bOHChZ2+nkQiwfjx45GVlYU5c+YAMGckzMrKwrJlyzp93bakUqnd5BdisbjbvHl1p74Q/6FxQGgMEBoDPUfY/PkInjYN+tIySOJiIfbQH4ZpDBAAkMYqocvLg7Gq0qPjQWspeRQ4fTqasrOhzc11eP3moiIAgGzYMEgs99KyxCQ0ADCWlto8T9vUDMBc46qnjV93+uvR4Or999/35OUAABkZGVi0aBEmTJiASZMmYevWrWhubsaSJUsAAA888ABiYmKwYcMGAOYkGGcsaz/1ej0qKipw+vRpBAYGdjodPCGEEEJIZ4gjIz0WVBHSmsiSz8CT6dgNV65AV1gIABj45JPm4OrMGRhqayEKDW13vrbAfM8tHZ7CH5MMNie10BWX2JxrbOj9BYQBDwdX3jB//nxcvnwZq1evhkqlwtixY3HgwAE+yUVZWRkEgpakh5WVlRg3bhz/+ebNm7F582ZMmzYN2dnZvu4+IYQQQgghHie2BFeeLCTcnJMLwBwsyYYOgTQ5GbqiIqhzchB8++3tzm+dht1KOniwuV/FxeBMJjCW+3RTvTW46r2ZAoEeEFwBwLJlyxwuA2wbMMXHx3s0JaUjHMfBYDDAaDR6tR2WZSESiaDVar3eFvEdoVAIkUgEhmH83RVCCCGE9EBiL8xcNR8z77UKuD7N/P/kydAVFaH56NF2wRVnMkFXYM7eLUtpCa7EMTGAWAxOq4Whqsr8OQBjvXnfkoBmrkhber0eVVVVbmUO6SyO4xAZGYny8nK6Ee9lFAoFoqKiIJFI/N0VQgghhPQw1uDKUF0Nk04HgZ38Ae7gOA7NljqyAWnW4CoN17ZvR/NPR8FxnM29KFteDlNzMxiJBFLLUkAAYEQiSOJioT9/AbqLxa2CK8vMVTAFV6QVk8mE4uJiCIVCREdHQyKReDXoMZlMaGpqQmBgoM3yR9JzcRwHvV6Py5cvo7i4GMnJyfS9JYQQQohbBCEhEAQEwNTcDLaigl+O11lsWRkMlVVgxGIoxl8HAFBMnAiIxWArK8GWlUES15Ly3bokUDpkCJg2CR+kCYOhP38B+uJi4IapAACjJeMe7bkiNvR6PUwmE5RKpU9qYJlMJuj1eshkMroB70XkcjnEYjFKS0v57y8hhBBCiKsYhoFYqYTu7Fmw5eVdDq6ss1byceMgsNzjChQKKMaOhfrECTQfPdomuCoAYLvfykpi6Yuu+CJ/zFhfB6D377miu/VOokCHdBWNIUIIIYR0hURpSWrhgX1XzUetSwKvtzkeMGWyzeNW2gJrcJWCtiQJ8eZ+XSzmj5mse678XEPW2+jujhBCCCGEkB5IPEgJwLz/qSs4oxHNueZMgdb9VlbWz5tzc8FZkqtxHNeSKTClfXDFZwy82Grmqo8sC6TgihBCCCGEkB5IbJ25utS1mSvtmQKY6ushCAyEbORIm8dkI0dCEBwMU0MDtL/+CgAw1NTAeO0aIBRCOnRou+tJEswJLgyXL8PY1ASgVUILCq4I8Zzp06djxYoV3eY6hBBCCCE9lUTpmZmr5hzzkj9FaioYkW1KBkYoREBqqvm8o+ZU7Xwyi8EJENjZNy4MCoJo4EAAlnpXHEczV6R3Wbx4MRiGAcMwkEgkSEpKwvr162EwGPzdNaeys7PBMAzq6upsju/evRsvvPCCT/qwfft2TJw4EQqFAkFBQZg2bRr27dtnc45Wq8XixYsxatQoiEQizJkzxyd9I4QQQkjf1VJI+FKX6ryq26Rgb6vtvivrfiupnSWBVpJWSwNNzWrAcs8ppD1XxFtYlQrNOblgVSqftHfbbbehqqoKRUVF+Otf/4q1a9di06ZNPmnb0/r374+goCCvt/PUU0/hz3/+M+bPn49ffvkFx48fx9SpUzF79my88cYb/HlGoxFyuRxPPPEE0tPTvd4vQgghhBBxTAzAMODUavMyvU4wabVQ550E0D6ZhVXAZHNwpT59Gqbm5pb9VnYyBVpZk1roLhbD1GBeEsiIxWDk8k71s6eg4MoDOI6DSa1269+1jz/G+ZtvQdnixTh/8y249vHHjs/XaOwed/cvFFKpFJGRkYiLi8Nf/vIXpKen48svvwQA1NbW4oEHHkBoaCgUCgVuv/12FBUV8c/94IMPEBISgr179yI5ORkymQwzZ85Eeatp6MWLF7ebsVmxYgWmT5/usE8fffQRJkyYgKCgIERGRuK+++5DTU0NAKCkpAQ33XQTACA0NBQMw2Dx4sUA2i8LdLX/3377LVJSUhAYGMgHm47k5OTglVdewaZNm/DUU08hKSkJKSkpePHFF7FixQpkZGTwrz8gIABvv/02HnroIURGRjr+JhBCCCGEeIhAIoHIct/R2aWBmlOnwOn1EIWH87NNbYmVSnMgx7JQ5+VBZ03DnuI4uGqd1MK630rQr59X68N2B1TnygM4jQaF143v/AVMJlSvfwHV6x0vc6u2c2xo/kkwXai1JZfLcfXqVQDmwKioqAhffvklgoOD8eyzz2LWrFk4c+YMxJbCcGq1Gi+++CI+/PBDSCQSPProo/jDH/6An376qdN9YFkWL7zwAoYOHYqamhpkZGRg8eLF2L9/P5RKJT7//HPcc889KCwsRHBwMOQO/trhav83b96Mjz76CAKBAAsXLsRTTz2FHTt22L3mJ598gsDAQPz5z39u99hf//pXbNmyBZ9//jnt/SKEEEKI30gGDYKhqgr68kuQjx3r9vNbUrCnOQx8GIZBwOTJqNu5Ew3fHABbWQkAkKUMc9yvhJZaV8b6vrHfCqDgqk/iOA5ZWVn49ttv8fjjj/NByU8//YTJlmnfHTt2QKlUYu/evbj33nsBmAOhN954A6mWTY3bt29HSkoKjh8/jkmTJnWqL0uXLuU/Hjx4MF577TVMnDgRTU1NCAwMRP/+/QEA4eHhCAkJsXsNd/q/bds2JCYmAgCWLVuG9evXO+zbuXPnkJiYCIlE0u6x6OhoBAcH49y5c5163YQQQgghniBWKoETJ8Be6tzMVXNODgAgYLL9/VZWAVPMwVX911+b2x00yOn+Kelgc8ZAtrQMxlrzksXevt8KoODKIxi5HEPzT7p8PltdjYt33AmYTC0HBQIM/nofxBERNueaTCY0NDYiOCioXdFZd9es7tu3D4GBgWBZFiaTCffddx/Wrl2LrKwsiEQiPmgCgLCwMAwdOhQFlg2LACASiTBx4kT+82HDhiEkJAQFBQWdDq5OnjyJtWvX4ueff0ZtbS1Mlq9JWVkZhjtZx9taQUGBS/1XKBR8YAUAUVFR/BJERzpaemkv8CKEEEII8ZWuFBI21tfz6dUV1zsPrhSpqQDDACwLwPl+KwAQRUWBkcnAabX8Hq2+MHNFe648gGEYCBQKl/9JExIQtX4dYA2WBAJErV8HaUKC/efI5XaPu7tm9aabbsLp06dRVFQEjUaD7du3IyAgwGNfB4FA0C4YYS0/gPY0Nzdj5syZCA4Oxo4dO3DixAns2bMHAKDX6z3WLyvr8kArhmGcBk/Jycm4ePGi3b5UVlaioaEBQ4YM8Xg/CSGEEEJc1ZVCwg0HvgU4DuK4OIgjwp2eKwoNtQmorDW2HGEEAkji4wEA6lOnAADCfr1/5oqCKz8JmTcPSYeyELt9O5IOZSFk3jyvtxkQEICkpCTExsZC1KqGQUpKCgwGA3ItlbkB4OrVqygsLLSZPTIYDMjLy+M/LywsRF1dHVIsaTgHDhzYLkHE6dOnHfbn7NmzuHr1KjZu3IgbbrgBw4YNazeTZJ0ZMloqgtvjav/dtWDBAjQ1NeFf//pXu8c2b94MmUyG+fPnd/r6hBBCCCFdJelkIeG6XbugWrMGAMCWlqJu164OnyO0bNcAgGvvvd/hc6xLA7W//gbAnNCit6Pgyo/EkZEISJ0EsZ+zyyUnJ2P27Nl46KGHcOTIEfz8889YuHAhYmJiMHv2bP48sViMxx9/HLm5uTh58iQWL16M66+/nl8SePPNNyMvLw8ffvghioqKsGbNGvxqmWq2JzY2FhKJBK+//jouXryIL7/8sl3tqri4ODAMg3379uHy5ctoslT57kz/3ZWWlobly5fj6aefxiuvvIILFy7g7Nmz+Pvf/47XXnsN7777LsLCwvjzz5w5g9OnT+PatWuor6/H6dOnnQaXhBBCCCFdJbYUEjaoVDC5uPKHValQtXqNzbGq1WuclgdiVSo0HznScoDjOnyONakFp9UCAITBFFyRPuL999/H+PHjceeddyItLQ0cx2H//v02S+kUCgWeffZZ3HfffZgyZQoCAwPx2Wef8Y/PnDkTq1atwjPPPIOJEyeisbERDzzwgMM2Bw4ciA8++AA7d+7E8OHDsXHjRmzevNnmnJiYGKxbtw7PPfccIiIisGzZsk73vzO2bt2Kt956C5988glGjhyJlJQUbNq0CYcOHcLChQttzp01axbGjRuHr776CtnZ2Rg3bhzGjRvXpfYJIYQQQpwR9u9vzh7NcWArKlx6jq6kxHbvPwCYTNCXljl8jr6kFGi7naKD50gsM1d8X/vAzBUltOgjPvjgA6ePh4aG4sMPP+zwOnPnzsXcuXMdPr5u3TqsW7fO4ePZ2dk2ny9YsAALFiywOdZ2H9SqVauwatUqp9fpqP+LFy/ma2RZzZkzx6VaYUuXLuWzGpaUlGDatGl46623MGXKFAiFQv68kpKSDq9FCCGEEOJJDMNAMmgQdOfOgb10CdKEhA6fo87JbX9QIIAkLtbhcyTxceZ8AW0Ssjl7Ttu+0J4rQoiN+Ph4ZGdnY9iwYbTkjxBCCCHdgnVpoN6FpBb1X36Jq9u2mT+xJkezJFdztlVFHBlpNyGbs+dYE1pYCSgVOyGkrYSEBKxdu9bf3SCEEEIIAWAuJAwAbAfp2Jt++gmVz/8NANB/0SL0X7IY+tIySOJiXcoBEDJvHgKmTnX5OQKFAqLoKBgqzQnP+sKywB4xc/Xmm28iPj4eMpkMqampOH78uNPzd+7ciWHDhkEmk2HUqFHYv3+/j3raey1evBh1dXX+7gYhhBBCCGnDOnPlrJCw5rffUPH4E4DBgOBZsxD+7DOdSq7m7nOklqQWAAVX3cJnn32GjIwMrFmzBvn5+RgzZgxmzpzpsPjr0aNHsWDBAjz44IM4deoU5syZgzlz5jjNWkcIIYQQQkhPZU3Hrj1baDd7nzo/H2VLlsKkVkNx/fWI2rgBjMA3YYBkcEtwZdLpfNKmP3X74GrLli146KGHsGTJEgwfPhzbtm2DQqHAe++9Z/f8V199FbfddhuefvpppKSk4IUXXsB1112HN954w6P9ciURAiHO0BgihBBCiCdozpwBYC4kfP6mm1G9aTMav/sOdZ/vxqUVT6L0vvthamgAAASlp0NgqSPqC8a6Wv7jknvmuVRPqyfr1nuu9Ho9Tp48iZUrV/LHBAIB0tPTcezYMbvPOXbsGDIyMmyOzZw5E3v37nXYjk6ng65VJN1gGXwsy4Jl2XbncxyHpqYmSKVSd15Op1hvwDmOg6ltykzSozU1NfHfX3vjrDXr4x2dR3ovGgOExgChMUCA9uPAoFLhyuutJhE4Dtf+7/9wzcHzq//xD8in3QiRD+qsGlQqNOz7uuWAyYSq1WsgTU31Sfue4s7PXLcOrq5cuQKj0YiIiAib4xERETh79qzd56hUKrvnq5wUONuwYYPd9OEHDx6EQqFodzwoKAg6nQ5arRYSiQSMNdOKF129etXrbRDf4DgOer0eV65cQW1tLYqKilx+bmZmphd7RnoCGgOExgChMUCAlnEgv3ABSjt/gNeFh8MklULeNoOgyYQfd+6EJjHR632UX7gApZ3aWL5q31PUarXL53br4MpXVq5caTPb1dDQAKVSiRkzZiDYTspIjuNQU1PDz3B5E8dx0Gq1kMlkPgniiO8MHDgQI0aMcOn7yrIsMjMzceutt3a5MDLpmWgMEBoDhMYAAdqPA4NKhZJ//1+7+lNDd/wHAFAy87Z2j91w770+m7my1zdfte8p7tzzd+vgasCAARAKhaiurrY5Xl1djUgH35DIyEi3zgcAqVRqd4mfWCx2+OY1aNAgGI1Gr0/NsyyLH374ATfeeCO9kfYiYrHYpgCxO8+jcdC30RggNAYIjQECtIwDsVKJqPXrULV6jTmIsdSfklsyCDp7zOt97KBvPYU7P2/dOriSSCQYP348srKyMGfOHACAyWRCVlYWli1bZvc5aWlpyMrKwooVK/hjmZmZSEtL83j/hEJhp26Q3W3DYDBAJpPRGykhhBBCCGnHWf0pd2tT+bJvvVG3Dq4AICMjA4sWLcKECRMwadIkbN26Fc3NzViyZAkA4IEHHkBMTAw2bNgAAFi+fDmmTZuGV155BXfccQc+/fRT5OXl4Z133vHnyyCEEEIIIcRrxJGRDgMXZ4/5gr/b96VuH1zNnz8fly9fxurVq6FSqTB27FgcOHCAT1pRVlYGQas8/ZMnT8bHH3+Mv//973j++eeRnJyMvXv3YuTIkf56CYQQQgghhJA+oNsHVwCwbNkyh8sAs7Oz2x279957ce+993q5V4QQQgghhBDSokcEV75mrT3ki2yAHWFZFmq1Gg0NDbTnqg+jcUBoDBAaA4TGAAFoHPiDNSbg2qaVt4OCKzsaGxsBAMoelsmEEEIIIYQQ4h2NjY3o16+f03MYzpUQrI8xmUyorKxEUFCQ32tLWWtulZeX2625RfoGGgeExgChMUBoDBCAxoE/cByHxsZGREdH2+R6sIdmruwQCAQYNGiQv7thIzg4mH6ACI0DQmOA0BggNAYIABoHvtbRjJWV89CLEEIIIYQQQohLKLgihBBCCCGEEA+g4Kqbk0qlWLNmDaRSqb+7QvyIxgGhMUBoDBAaAwSgcdDdUUILQgghhBBCCPEAmrkihBBCCCGEEA+g4IoQQgghhBBCPICCK0IIIYQQQgjxAAquCCGEEEIIIcQDKLjq5t58803Ex8dDJpMhNTUVx48f93eXiJds2LABEydORFBQEMLDwzFnzhwUFhbanKPVavHYY48hLCwMgYGBuOeee1BdXe2nHhNv27hxIxiGwYoVK/hjNAZ6v4qKCixcuBBhYWGQy+UYNWoU8vLy+Mc5jsPq1asRFRUFuVyO9PR0FBUV+bHHxNOMRiNWrVqFhIQEyOVyJCYm4oUXXkDrHGQ0DnqXH374Ab/73e8QHR0NhmGwd+9em8dd+X5fu3YN999/P4KDgxESEoIHH3wQTU1NPnwVBKDgqlv77LPPkJGRgTVr1iA/Px9jxozBzJkzUVNT4++uES84fPgwHnvsMeTk5CAzMxMsy2LGjBlobm7mz3nyySfx1VdfYefOnTh8+DAqKysxd+5cP/aaeMuJEyfwr3/9C6NHj7Y5TmOgd6utrcWUKVMgFovxzTff4MyZM3jllVcQGhrKn/Pyyy/jtddew7Zt25Cbm4uAgADMnDkTWq3Wjz0nnvTSSy/h7bffxhtvvIGCggK89NJLePnll/H666/z59A46F2am5sxZswYvPnmm3Yfd+X7ff/99+O3335DZmYm9u3bhx9++AEPP/ywr14CseJItzVp0iTuscce4z83Go1cdHQ0t2HDBj/2ivhKTU0NB4A7fPgwx3EcV1dXx4nFYm7nzp38OQUFBRwA7tixY/7qJvGCxsZGLjk5mcvMzOSmTZvGLV++nOM4GgN9wbPPPstNnTrV4eMmk4mLjIzkNm3axB+rq6vjpFIp98knn/iii8QH7rjjDm7p0qU2x+bOncvdf//9HMfROOjtAHB79uzhP3fl+33mzBkOAHfixAn+nG+++YZjGIarqKjwWd8Jx9HMVTel1+tx8uRJpKen88cEAgHS09Nx7NgxP/aM+Ep9fT0AoH///gCAkydPgmVZmzExbNgwxMbG0pjoZR577DHccccdNt9rgMZAX/Dll19iwoQJuPfeexEeHo5x48bh3Xff5R8vLi6GSqWyGQP9+vVDamoqjYFeZPLkycjKysK5c+cAAD///DOOHDmC22+/HQCNg77Gle/3sWPHEBISggkTJvDnpKenQyAQIDc31+d97stE/u4Ase/KlSswGo2IiIiwOR4REYGzZ8/6qVfEV0wmE1asWIEpU6Zg5MiRAACVSgWJRIKQkBCbcyMiIqBSqfzQS+INn376KfLz83HixIl2j9EY6P0uXryIt99+GxkZGXj++edx4sQJPPHEE5BIJFi0aBH/fbb3u4HGQO/x3HPPoaGhAcOGDYNQKITRaMSLL76I+++/HwBoHPQxrny/VSoVwsPDbR4XiUTo378/jQkfo+CKkG7osccew6+//oojR474uyvEh8rLy7F8+XJkZmZCJpP5uzvED0wmEyZMmIB//OMfAIBx48bh119/xbZt27Bo0SI/9474yn//+1/s2LEDH3/8MUaMGIHTp09jxYoViI6OpnFASDdHywK7qQEDBkAoFLbLAlZdXY3IyEg/9Yr4wrJly7Bv3z58//33GDRoEH88MjISer0edXV1NufTmOg9Tp48iZqaGlx33XUQiUQQiUQ4fPgwXnvtNYhEIkRERNAY6OWioqIwfPhwm2MpKSkoKysDAP77TL8berenn34azz33HP7whz9g1KhR+OMf/4gnn3wSGzZsAEDjoK9x5fsdGRnZLuGZwWDAtWvXaEz4GAVX3ZREIsH48eORlZXFHzOZTMjKykJaWpofe0a8heM4LFu2DHv27MGhQ4eQkJBg8/j48eMhFottxkRhYSHKyspoTPQSt9xyC/73v//h9OnT/L8JEybg/vvv5z+mMdC7TZkypV0JhnPnziEuLg4AkJCQgMjISJsx0NDQgNzcXBoDvYharYZAYHuLJhQKYTKZANA46Gtc+X6npaWhrq4OJ0+e5M85dOgQTCYTUlNTfd7nPs3fGTWIY59++iknlUq5Dz74gDtz5gz38MMPcyEhIZxKpfJ314gX/OUvf+H69evHZWdnc1VVVfw/tVrNn/PII49wsbGx3KFDh7i8vDwuLS2NS0tL82Ovibe1zhbIcTQGervjx49zIpGIe/HFF7mioiJux44dnEKh4P7zn//w52zcuJELCQnhvvjiC+6XX37hZs+ezSUkJHAajcaPPSeetGjRIi4mJobbt28fV1xczO3evZsbMGAA98wzz/Dn0DjoXRobG7lTp05xp06d4gBwW7Zs4U6dOsWVlpZyHOfa9/u2227jxo0bx+Xm5nJHjhzhkpOTuQULFvjrJfVZFFx1c6+//joXGxvLSSQSbtKkSVxOTo6/u0S8BIDdf++//z5/jkaj4R599FEuNDSUUygU3N13381VVVX5r9PE69oGVzQGer+vvvqKGzlyJCeVSrlhw4Zx77zzjs3jJpOJW7VqFRcREcFJpVLulltu4QoLC/3UW+INDQ0N3PLly7nY2FhOJpNxgwcP5v72t79xOp2OP4fGQe/y/fff270HWLRoEcdxrn2/r169yi1YsIALDAzkgoODuSVLlnCNjY1+eDV9G8Nxrcp9E0IIIYQQQgjpFNpzRQghhBBCCCEeQMEVIYQQQgghhHgABVeEEEIIIYQQ4gEUXBFCCCGEEEKIB1BwRQghhBBCCCEeQMEVIYQQQgghhHgABVeEEEIIIYQQ4gEUXBFCCOlTFi9ejDlz5ni1DYZhsHfvXgBASUkJGIbB6dOnvdomIYQQ/xP5uwOEEEKIL7366qvgOM5n7SmVSlRVVWHAgAE+a5MQQoh/UHBFCCGkT+nXr59P2xMKhYiMjPRpm4QQQvyDlgUSQgjptqZPn47HH38cK1asQGhoKCIiIvDuu++iubkZS5YsQVBQEJKSkvDNN98AAIxGIx588EEkJCRALpdj6NChePXVV22u2XZZ4PTp0/HEE0/gmWeeQf/+/REZGYm1a9e63MeioiLceOONkMlkGD58ODIzM20eb7ssMDs7GwzD4Ntvv8W4ceMgl8tx8803o6amBt988w1SUlIQHByM++67D2q1ulNfN0IIIf5BwRUhhJBubfv27RgwYACOHz+Oxx9/HH/5y19w7733YvLkycjPz8eMGTPwxz/+EWq1GiaTCYMGDcLOnTtx5swZrF69Gs8//zz++9//dthGQEAAcnNz8fLLL2P9+vXtgiR7TCYT5s6dC4lEgtzcXGzbtg3PPvusS69r7dq1eOONN3D06FGUl5fj97//PbZu3YqPP/4YX3/9NQ4ePIjXX3/dpWsRQgjpHhjOlwvPCSGEEDdMnz4dRqMRP/74IwDzzFS/fv0wd+5cfPjhhwAAlUqFqKgoHDt2DNdff327ayxbtgwqlQq7du0CYJ65qqur4xNOtG0DACZNmoSbb74ZGzdudNq/gwcP4o477kBpaSmio6MBAAcOHMDtt9+OPXv2YM6cOSgpKUFCQgJOnTqFsWPHIjs7GzfddBO+++473HLLLQCAjRs3YuXKlbhw4QIGDx4MAHjkkUdQUlKCAwcOdOErSAghxJdo5ooQQki3Nnr0aP5joVCIsLAwjBo1ij8WEREBAKipqQEAvPnmmxg/fjwGDhyIwMBAvPPOOygrK3O5DQCIiorir+dMQUEBlEolH1gBQFpaWscvqk2bERERUCgUfGBlPeZKHwghhHQfFFwRQgjp1sRisc3nDMPYHGMYBoB5id6nn36Kp556Cg8++CAOHjyI06dPY8mSJdDr9W63YTKZPPQKOm6z7WvyVR8IIYR4FmULJIQQ0mv89NNPmDx5Mh599FH+2IULF7zWXkpKCsrLy1FVVYWoqCgAQE5OjtfaI4QQ0r3RzBUhhJBeIzk5GXl5efj2229x7tw5rFq1CidOnPBae+np6RgyZAgWLVqEn3/+GT/++CP+9re/ea09Qggh3RsFV4QQQnqNP//5z5g7dy7mz5+P1NRUXL161WYWy9MEAgH27NkDjUaDSZMm4U9/+hNefPFFr7VHCCGke6NsgYQQQgghhBDiATRzRQghhBBCCCEeQMEVIYQQ4sCOHTsQGBho99+IESP83T1CCCHdDC0LJIQQQhxobGxEdXW13cfEYjHi4uJ83CNCCCHdGQVXhBBCCCGEEOIBtCyQEEIIIYQQQjyAgitCCCGEEEII8QAKrgghhBBCCCHEAyi4IoQQQgghhBAPoOCKEEIIIYQQQjyAgitCCCGEEEII8QAKrgghhBBCCCHEAyi4IoQQQgghhBAP+P+SiO4cY/pykQAAAABJRU5ErkJggg==\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - specification_4_0.png" } }, "output_type": "display_data" } ], "source": [ "n_points = 110 # only plot a few points for clarity\n", "_, axs = plt.subplots(4, 1, sharex=True, figsize=(10, 10))\n", "dataset.amp[:n_points].plot(\n", " ax=axs[0], marker=\".\", color=\"C0\", label=dataset.amp.long_name\n", ")\n", "dataset.time[:n_points].plot(\n", " ax=axs[1], marker=\".\", color=\"C1\", label=dataset.time.long_name\n", ")\n", "_ = dataset.pop_q0.sel(repetitions=0)[:n_points].plot(\n", " ax=axs[2], marker=\".\", color=\"C2\", label=dataset.pop_q0.long_name\n", ")\n", "_ = dataset.pop_q1.sel(repetitions=0)[:n_points].plot(\n", " ax=axs[3], marker=\".\", color=\"C3\", label=dataset.pop_q1.long_name\n", ")\n", "for ax in axs:\n", " ax.legend()\n", " ax.grid()" ] }, { "cell_type": "code", "execution_count": 6, "id": "4881164a", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:41.519484Z", "iopub.status.busy": "2023-09-26T17:43:41.519287Z", "iopub.status.idle": "2023-09-26T17:43:42.796394Z", "shell.execute_reply": "2023-09-26T17:43:42.795639Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABYIAAAEiCAYAAABEP6blAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACuEUlEQVR4nOzdd5hU9fk28Gf67Ozu7Gzv7MLSexNEY4sodo2xhCiiJhpUooaYKImKRiMa1GCiCYkKmp9GTWJNUCwoVoqCCCK97cL23qee9w9eVhf2frawdfb+XNdeF+wzc+a055wzZ2a/t8kwDEOIiIiIiIiIiIiIKGyZe3oGiIiIiIiIiIiIiKhr8UYwERERERERERERUZjjjWAiIiIiIiIiIiKiMMcbwURERERERERERERhjjeCiYiIiIiIiIiIiMIcbwQTERERERERERERhTneCCYiIiIiIiIiIiIKc7wRTERERERERERERBTmeCOYiIiIiIiIiIiIKMzxRjB1uezsbFm8eLH6mHvuuUfGjx/fLfNDRJ2DvU0U3tjjROGJvU0UvtjfRNQa3gimTvPMM8+Ix+M56veff/65XH/99U3/N5lM8tprrzV7zG233SYrV67s4jnsWoZhyN133y2pqakSEREh06dPl507d/b0bBEds/7e26+88oqceeaZEh8fLyaTSTZu3NjTs0TUqfpzj/v9frn99ttlzJgxEhkZKWlpaXLVVVdJfn5+T88a0THrz70tcuhm1/DhwyUyMlJiY2Nl+vTpsnbt2p6eLaJO0d/7+7vmzJkjJpOp1RvgRHQIbwSHOZ/P19OzIImJieJyudTHREVFSXx8fDfNUdf4wx/+IH/6059kyZIlsnbtWomMjJQZM2ZIY2NjT88ahSH2dvepq6uT733ve/LQQw/19KxQP8Ie7x719fWyYcMGueuuu2TDhg3yyiuvyPbt2+WCCy7o6VmjMMXe7j5Dhw6Vxx9/XDZv3iyffPKJZGdny5lnniklJSU9PWsUptjf3e/VV1+VNWvWSFpaWk/PClHfYVBYOeWUU4ybbrrJuOWWW4z4+Hjj1FNPNQzDMDZv3mycddZZRmRkpJGUlGRceeWVRklJyVHPu+mmmwy3223Ex8cbd955pxEKhZoe09jYaPzyl7800tLSDJfLZUyZMsX44IMPDMMwjA8++MAQkWY/CxYsMAzDMLKysow//vGPTf/+7mOysrIMwzCMBQsWGOPGjWt6rWAwaNx7771Genq6YbfbjXHjxhlvvfVWU33v3r2GiBgvv/yyceqppxoRERHG2LFjjc8++6zpMfv27TPOO+88w+PxGC6Xyxg5cqSxfPnyTlzb3wqFQkZKSoqxaNGipt9VVlYaDofDeOGFF7rkNal/YW/3TG9/1+F5+/LLL7v8taj/YY/3fI8ftm7dOkNEjP3793fba1L4Ym/3nt6uqqoyRMR47733uu01Kbyxv3u2vw8cOGCkp6cbX3/9dbPlJiIdvxEchp599lmx2+3y6aefypIlS6SyslK+//3vy4QJE+SLL76QFStWSFFRkVx22WVHPc9qtcq6devksccek0cffVSeeuqppvrcuXNl9erV8uKLL8qmTZvk0ksvlbPOOkt27twpJ5xwgixevFjcbrcUFBRIQUGB3HbbbUfN2+effy4iIsuWLZOCgoKm/x/psccek0ceeUQefvhh2bRpk8yYMUMuuOCCo4Za+O1vfyu33XabbNy4UYYOHSozZ86UQCAgIiI33XSTeL1e+eijj2Tz5s3y0EMPSVRUFFxvc+bMkaioKPUH2bt3rxQWFsr06dObfhcTEyNTp06V1atXw+cRtQd7u/t7m6g7scd7R49XVVWJyWRq8U9uiTqCvd3zve3z+eTvf/+7xMTEyLhx49r8PKLWsL97pr9DoZDMmjVLfvWrX8moUaPUxxLREXr6TnRP+vDDD43zzjvPSE1NNUTEePXVV7v09Y78RO7wz4033thpr3HKKacYEyZMaPa7++67zzjzzDOb/S4vL88QEWP79u1NzxsxYkSzTyFvv/12Y8SIEYZhGMb+/fsNi8ViHDx4sNl0Tj/9dGP+/PmGYRjGsmXLjJiYmKPm6chP51pa10d+KpmWlmb8/ve/b/aY4447rmldHf5U8qmnnmqqb9myxRARY+vWrYZhGMaYMWOMe+6556j5QYqKioydO3eqP8inn35qiIiRn5/f7PeXXnqpcdlll7V5HogQ9nbP9PZ38RvB1JXY4z3f44ZhGA0NDcbEiRONH//4x21+DpGGvd2zvf3f//7XiIyMNEwmk5GWlmasW7euza9P1Br2d8/19wMPPGCcccYZTeuQ3wgmajtr99xu7p3q6upk3Lhxcu2118rFF1/c5a/3+eefSzAYbPr/119/LWeccYZceumlnfo6kyZNavb/r776Sj744IMWP1XbvXu3DB06VEREjj/+eDGZTE21adOmySOPPCLBYFA2b94swWCw6bGHeb3eTh9fqLq6WvLz8+XEE09s9vsTTzxRvvrqq2a/Gzt2bNO/U1NTRUSkuLhYhg8fLjfffLPccMMN8s4778j06dPlhz/8YbPHHykpKUmSkpI6cUmIOhd7m71N4Y093rM97vf75bLLLhPDMOSvf/3rMU+P6DD2ds/19mmnnSYbN26U0tJSefLJJ+Wyyy6TtWvX8rqAOg37u/v7e/369fLYY4/Jhg0bmq1DImqbfn0j+Oyzz5azzz4b1r1er/z2t7+VF154QSorK2X06NHy0EMPyamnntqh10tMTGz2/wcffFBycnLklFNO6dD0kMjIyGb/r62tlfPPP7/FoKPDB/DW1NbWisVikfXr14vFYmlW68k/q7bZbE3/PnwSCIVCIiLy05/+VGbMmCHLly+Xd955RxYuXCiPPPKI/PznP29xWnPmzJHnnntOfb3a2toWf5+SkiIiIkVFRc3WaVFRkYwfP77Ny0OkYW93f28TdSf2eM/1+OGbwPv375f3339f3G53exaHSMXe7rnejoyMlMGDB8vgwYPl+OOPlyFDhsjTTz8t8+fPb89iEUHs7+7v748//liKi4tlwIABTb8LBoPyy1/+UhYvXiz79u1rz2IR9Tv9+kZwa+bOnSvffPONvPjii5KWliavvvqqnHXWWbJ582YZMmTIMU3b5/PJc889J/PmzevyT7EmTpwoL7/8smRnZ4vVijf52rVrm/1/zZo1MmTIELFYLDJhwgQJBoNSXFwsJ510UovPt9vtzb7xjNhsNvVxbrdb0tLS5NNPP212k/zTTz+VKVOmtDr978rMzJQ5c+bInDlzZP78+fLkk0/Ck9Hvfve7FsdWaouBAwdKSkqKrFy5sunGb3V1taxdu1ZuuOGGDk2TqDXs7a7vbaKexB7vnh4/fBN4586d8sEHH4RNkjr1Xuztnjt/h0Ih8Xq9nTpNou9if3d9f8+aNatZNo+IyIwZM2TWrFlyzTXXdGiaRP0JbwQDubm5smzZMsnNzZW0tDQREbnttttkxYoVsmzZMnnggQeOafqvvfaaVFZWytVXX90Jc6u76aab5Mknn5SZM2fKr3/9a4mLi5Ndu3bJiy++KE899VTTp4y5ubkyb948+dnPfiYbNmyQP//5z/LII4+IiMjQoUPliiuukKuuukoeeeQRmTBhgpSUlMjKlStl7Nixcu6550p2drbU1tbKypUrZdy4ceJyucTlch01P9nZ2bJy5Uo58cQTxeFwSGxs7FGP+dWvfiULFiyQnJwcGT9+vCxbtkw2btwozz//fJuX+9Zbb5Wzzz5bhg4dKhUVFfLBBx/IiBEj4OOP5c9TTCaT3HrrrXL//ffLkCFDZODAgXLXXXdJWlqaXHTRRR2aJlFr2Ntd39siIuXl5ZKbmyv5+fkiIrJ9+3YROfSXAIf/GoCoK7DHu77H/X6/XHLJJbJhwwb53//+J8FgUAoLC0VEJC4uTux2e4emS6Rhb3d9b9fV1cnvf/97ueCCCyQ1NVVKS0vliSeekIMHD3b6sHxE38X+7vr+jo+PP+pDW5vNJikpKTJs2LAOTZOoX+npQYp7CzliEPX//e9/hogYkZGRzX6sVmtT+NfWrVtbDH/77s/tt9/e4uudeeaZxnnnndfpy3HKKacYt9xyy1G/37Fjh/GDH/zA8Hg8RkREhDF8+HDj1ltvbRpc/ZRTTjFuvPFGY86cOYbb7TZiY2ON3/zmN80GsPf5fMbdd99tZGdnGzabzUhNTTV+8IMfGJs2bWp6zJw5c4z4+HhDRIwFCxYYhnH0wO1vvPGGMXjwYMNqtRpZWVmGYRw9YH0wGDTuueceIz093bDZbMa4ceOMt956q6neUmhTRUWFISLGBx98YBiGYcydO9fIyckxHA6HkZiYaMyaNcsoLS3t2Iptg1AoZNx1111GcnKy4XA4jNNPP70pEIDoWLG3e663ly1b1uLx/fB6IOoM7PGe6fHD89PSz+H5IToW7O2e6e2GhgbjBz/4gZGWlmbY7XYjNTXVuOCCCxgWR52K/d1z1+dHYlgcUduZDMMwuvZWc99gMpnk1Vdfbfr25ksvvSRXXHGFbNmypcVxeVJSUsTn88mePXvU6cbHxx81NvD+/ftl0KBB8sorr8iFF17YqcvRUaeeeqqMHz9eFi9e3NOzQkSdiL1NFN7Y40Thib1NFL7Y30TUkzg0BNDWcXmGDx/e7mkvW7ZMkpKS5Nxzzz3W2SQiIiIiIiIiIiJqVb++EVxbWyu7du1q+v/evXtl48aNEhcX16ZxeToiFArJsmXLZPbs2erg8URERERERERERESdpV8PDbFq1So57bTTjvr97Nmz5ZlnnhG/3y/333+//OMf/5CDBw9KQkKCHH/88XLvvffKmDFjOvSa77zzjsyYMUO2b98uQ4cOPdZFICIiIiIiIiIiImpVv74RTERERERERERERKT56KOPZNGiRbJ+/XopKCholjOGrFq1SubNmydbtmyRzMxMufPOO+Xqq6/ulvlFzD366kRERERERERERES9WF1dnYwbN06eeOKJNj1+7969cu6558ppp50mGzdulFtvvVV++tOfyttvv93Fc6rr0RvBH330kZx//vmSlpYmJpNJXnvttVafs2rVKpk4caI4HA4ZPHiwPPPMM10+n0RERERERERERNQ/nX322XL//ffLD37wgzY9fsmSJTJw4EB55JFHZMSIETJ37ly55JJL5I9//GMXz6muR9PKDt9Nv/baa+Xiiy9u9fGH76bPmTNHnn/+eVm5cqX89Kc/ldTUVJkxY0abXjMUCkl+fr5ER0eLyWQ61kUg6pcMw5CamhpJS0sTs7n3/GEB+5vo2LG/icIX+5sofLG/icJXb+3v3qqxsVF8Pl+bHmsYxlHHJofDIQ6H45jnY/Xq1TJ9+vRmv5sxY4bceuutxzztY9GjN4LPPvtsOfvss9v8+O/eTRcRGTFihHzyySfyxz/+sc03gvPz8yUzM7ND80tEzeXl5UlGRkZPz0YT9jdR52F/E4Uv9jdR+GJ/E4Wv3tbfvVFjY6MMzIqSwuJgmx4fFRUltbW1zX63YMECueeee455XgoLCyU5ObnZ75KTk6W6uloaGhokIiLimF+jI3r0RnB7dcbd9OjoaBERybz3TjE7nUfVTT7lU0rlgxcjuRHWQgELrMWst+OX8+PXqz+9BtZs1hCsWT6IgbWEJz+Htd1/nABrj572T1j7xYc/hrXBN6+HNc3uRybD2gsz/gprMz+5HtYG/Adv9+IJNlgzxuLtEB9dB2u1b6XAWlD54Kl2qLJTKLGP1krc6mY/XvZgZMv7UqixUfIW3N/UT71Fa/1tblSa2IRXYCBBWe9+PM2I/dp6x5PMOW8PrG0rToQ1x2d4e1gb8OtVHO+FtWlD8Lys3jwE1tLew/uVvToAa3svwcfLSyZ9AWv/+XISrCV/hLdDbRqezwsu+xTWttXiHt7/Qg6smfDhWcon4PUiTnwhYynD5xFTAC9fyBle/W2pxb0YcigHyFR8/jaU7RW/8uh5OKwuGa/39DNz8fP8eFs2vIH3OVcR3j8Onotrm6b/A9bG/u8aWMt5CR8zZO1mWNr1J9ynm896BtYmfIKvJZJex9uhNh3vEzkX7Ya1Gh/eDvnv45sZrmK8n1WehvczRwQ+IXh3K32oXLIatpbnpc/2d73S33a83oOxysnWh6fpUs7f2nWabxDezleMWQdrL798MqwNWLoT1rbfnwVrF479CtZeX4+v64c8ha9fQ5u3wdruh/H1+e2n/Q/WHt54JqxlPYW3bcl4F6xdec27sPbawbGwFnwxCdZC+PJESqfg46w5UtkHS/Dxy9LYf67PLTW4Fw2lvyWzHj/PwOsvag3edzQ1x+GLaU8snpe6z+NhLe1TfMzYPxsv+8ZTnoe1scuV8/cv8LW0Zvdj+Pw9fMhBWNu2Ix3Whv61CtbyzsXr7IrL34e1L6rwMXH7Cnx97sCzIpXH4WsemxNfuwfz8X6mvR/oa+fv3sjn80lhcVD2rs8Sd7T+7enqmpAMnLRf8vLyxO12N/2+M74N3Jv1qRvBHbmb7vV6xev9tnlrag7duDM7nS3fCDZ38Eawdj7x4ysHi125EazMisWFLyosVuWGgR1fcFhN+IanOQI/zxWNl097nvZ6Gm2aUUqjq/NixSvb4lBuBCvbwRqJTwzadhDlmGOOUK5Cleskc6NyQ9KCl90AN4oO6+k/72pvf5u1JlZuBKvr3YqnaXEo612ZFVskPi5YXMqbBodSUz4QNUcoN22VeVF7yoanabXi3tDWtSOqY8coix1vB4sDz6f2ejZD2UZKf2sXfuaIjt0INjs7diNYwqy/LQGlqbQbwcr5W7sRrG1nbb+yRuKDvFW5Eayev23K/hGBa+6Onr+Vc6Z08FpCnRfluGe1adsB7xPacdZqw9tIPc4qNyzMyn5miVCuXVrY15t04EZw01P7WH+bQ0p/K+vd0M7flo6dv9XrNGU7O5VzirZfWc0dOw939JxpteBzUaiD/R0RpVwPaf1txdtWW2dO5fW0Y7Bo529lV9KOs2aX8kSlv81Kg4fb9blF+VKF9kGPuPB60G4Eq+/DFGaXsj+6lPffWn8rhxrt9Tp8/u6C99/a+VQ/1uCb4B3tb1tAuY5Sz9+wpL5P0q7dDaW/O3IjuOm5HF6lzSKjDv1ogv9/dbvd7mY3gjtLSkqKFBUVNftdUVGRuN3uHvs2sEgPh8V1h4ULF0pMTEzTD/8shSh8sL+Jwhf7myh8sb+Jwhf7m4h6g5AYbfrpStOmTZOVK1c2+927774r06ZN69LXbU2fuhHckbvp8+fPl6qqqqafvLy87phVIuoG7G+i8MX+Jgpf7G+i8MX+JqLewG8E2/TTHrW1tbJx40bZuHGjiIjs3btXNm7cKLm5h4Z+mz9/vlx11VVNj58zZ47s2bNHfv3rX8u2bdvkL3/5i/zrX/+SX/ziF522nB3Rp4aGmDZtmrz55pvNftfa3fTOSvsjot6H/U0UvtjfROGL/U0UvtjfRNQbtOUbv+39RvAXX3whp512WtP/582bJyIis2fPlmeeeUYKCgqabgqLiAwcOFCWL18uv/jFL+Sxxx6TjIwMeeqpp2TGjBntet3O1qM3gmtra2XXrl1N/z98Nz0uLk4GDBgg8+fPl4MHD8o//nEozGTOnDny+OOPy69//Wu59tpr5f3335d//etfsnz58va/uGE69HMEUxCPuRKIUsbZi8Jj3NRv88BaUBmiqA6PrS5JShBZgx+P/RP3FR7I3ncODnlIzS6DtSfyvg9rWthGR8Vsx2MibTkjDc+LGw/wX5OphOh9jbd7Mc7akLFx+bD2bloqrLnw08RWiretPx6PV4xCJURERAlg6bNQfyurwe9RQhaV8VmlTOm37fh5RZPxfmxVZjQ1phrWbGvxtvQm4AvynMH7Ye3ZrI9gbex/RsFa9OYCWAvs3gtrzlNPgLUHkjbBmu04vK7fXI1DeOw471HezR8Oa1Zl0OVa5S8gI3Gehlhq8D5hROP+DrjxvNhL+9TnvW0D+lsZDlCCTnyRp533Lfm4b8zKYcGv5HicnLAL1v53cDR+onKdagriYnwyPmYsrU6Gtag9yriWn23ENYUrF++PF+7EF8TxMfiaRwRfSKV+jJd9y/dw+F5sFL5WCihjzTm342O3KQ/PZ6NyzAgq/a0FwbY2xmCv1ZH+Vq7PTTa8TczKNZUo1wuBSLxufzoeh4y+uBuHLSVuwMf4okuGwZrTjU9iZmUhonYoY/YeKMK1YYNhLWYbPmZcfXExrD2fXAprgUjcp5FFePn+cwBfoJfX4oGcg8OV8d1rYUkPZY7H7xF9yr5r8faj87dyuglo72HqlLHeS3B/OypxD5eOwy932egNsPbm/pGwlrgJb+f6VLwMdic+971WFwlrznxlhXaQoxDvj74h+PWmjcVhl/tH42OboxLPy982fw/W5o79ENY2ReOQa7MS02EpxtvIOVS5v+DA+66tCq+zYF89f/dCITEk2Mk3gk899VQxDPycZ555psXnfPnll+16na7Wo2eYcLmbTkRERERERERERD2vK74RHC569EZwuNxNJyIiIiIiIiIiop7nNwzxK/cbDz+mPwrDvzkhIiIiIiIiIiKi/ijYhqEhWquHK94IJiIiIiIiIiIiorAQNA79tPaY/og3go8QciiBMkpYT3UFDh5w1uLgAUPJ6Qpk4nCBOh8etLx6VyyelxS8fLUZeGZ+P/hNWLOb8Ojqj751GayZYnBAW/WZI2DNVouXYVM9TlyZkIpTmnYE3LDmLMbbwZ+HU2PWOLNhzZeI9yVHOQ43sFfCkgSSlaOYMgC+FtAQbrTAKInEKynoxStJ6++aDPw8XxLeB74pwQFODfvwvpqWikMJKgbjeXki87+w9pvi42EtaaMX1rRAOE3iRhyocX8pDm9zWfC81ONsRsl4Dwdx7B6aCGv2TJwaExyMg6asuyJgzVGB96X6pI6FOgaVc1q4CUbgZTXH4v0jFMTr1lmMt0ldkjIzw/H+kWyrgrWirXiiw1bkwtr+KwfA2nlpO2BtpAOfF+14NlX+GcfBWsxufIwqORGfT38wYCOsPT/wDFiL/sYHa768eFizjMLbz5uCj93lw/H5WwuCrfbg55mUc1Oovv+cwNXrc2UdGUoYZFSukkCnlBqV6/NCL762rduLa6mleJ8rnoT3j2cnLYO1OOW8+MUGHFxXfSoOVHJvxEFyWiDvZh8OVHpx2EuwdtLxt8Fa5AH8ehXf4OuoE4//BtY+qcuBNc+7ODy0oVG5FkxRQgmteL9Wr1nDjLasZg8+joeUQD2rkjGqvf+2ZOMnhpTUyto9HliLr8PnjbIR+D39Pyc/hWsV02AtOg+vT+vgQbAW2LUH1lw4A1omxeXB2vv5Q2HNm4w3hHL4EqMQX0tvyMbXQ4EB+NgdUYIDXe1VSn9X4ntAooS+BV39p797UkjU7Nemx/RHvBFMREREREREREREYSFgmMSvfIBz+DH9EW8EExERERERERERUVgIikmC2p/4/P/H9Ee8EUxERERERERERERhgTeCMd4IJiIiIiIiIiIiorAQMkzq2N6HH9Mf8UbwEUJOZbjoEN5JLKV4oHdHJZ5kfQqunTAED9he2hgJa7aNOCwuZmMxrBWcjENqznXhwdVHfHYlrGUpe5jZiUMXYlbjQeeLz8qCtf/uHQ1rs4eshbXPJuAQqvgNOKQgZgfeDu7ReJ1lDa+Ata+LB8OaFWdQiaUMh1EEI/F+HbLjmjkQXgdGQwnlECVQxqIE+Ln34mlWDsbTPHk0DnBqDOLX27IOh81Ef4YD2g6eisMh0pS8obwGfDypT8bHPZmJQ+ZiN5TCWuSbX8Hay9eMg7UvJ+Owmb8lnw5rwUh8kHLvwtsvaxI+lm4twiE1lcOU/Qxn6YilBK/rUBJO1DAacRCHFuzTF2nnb6MBb2dLNa4F8CFeQsruf2IWPn//YdOZsBaZh/ePQDoON2tIwcv+ZUUGrO2tS4C15HfwebjqUtzfkf9eA2v2KWPwvFTjlb2mHB+/6jKV7R6hhK+W43VtNuHj+vihOLRv2wEcNKV94cRSgw/COD5TxFCCaMzaE/ugkEO5VlG2l7kEX2tqvHG4lppQCWtri/E1akQB3gmqhuGwxMZkvOz3554Ha9uL8HV9bDo+gDlLlfDchGhYs9fg7XDp59fD2m/HvgVr3ni87EkbcK2hGB/X8+tx6O7YbByguX0g7m/1+lw5fwc8Shgkr88P1Xz4+GipwNs5UgnorMrB6y+oBMiuVILPHGV4miGrEgacjrfz/L0Xw5rbpqWp4ZLU4Z217hJ8bk/593ZY++pH6bD22fh/wdqQnTfA2sDXcMCeNxYf19cewMfgKYP2w9qX+4fBmq0GlsRSgq8zQslKULFfuQYJs/7uSfxGMMYbwURERERERERERBQWAoZF/Ab+cOfQY3gjmIiIiIiIiIiIiKjP4jeCMd4IJiIiIiIiIiIiorAQNMwSbOUbwUFtKJUwxhvBREREREREREREFBZCYpKQ6DeCQ+qg2uGr/94INhmHfo5kVnaEBjxYvbUOf6Xci7OWxB+H0zzsZhwgsDMfB0AM2VwNa8WnKOl0HhxupvEWu2AtGIEHei87D4eiOSvwekn89xZY2zYRh76NG4sHiE8fUQRrDek4TCc6D2+jfXmJsHbq5M9g7cvUAbBm3a2EEiohBfURsCSiBaj11cHqQX8bStiM1OHDoaNUCXBScmh8A3DQYLkX983XOzJhLaEEv17VyThQKWZQJaw9VDIN1j79EocnDPnnalirv3gqrJWciHsjdvsuWKva74G1/xuG+zR+UDmsBW04fM9ZjveXjdtxnx4/EgeFrS3DYTP2vcopuQrvg42ROKhCO6eZlADUXg31tw1vL5MPXwQ6lf524l1Hysfh81SaowrWAkrwjacEby+fBx//x47HQZH/ynkT1ob9Fwe1pE/G6yx6Ty2smYfgfdzYgQPo/KXKsWYoPvDtGoB7P+DGB2jPbryuD47AF24NMbjfvMox35GnhHOV4H2wFudaiamDAai9Gro+V4Rq8TZxKaGAfpzPJo1ZeFuO9OBrxvd24P045+M6WKsYjq8Jho7BffOLzHdg7Sdf4YA293P4/G0dPgTWCk/D5++Ut3DQWvGUVFj7/vH4+LVsRAGshd7Bwayenfh8sHcUPmaMy8LL0JiKj/muXHxctyvn72AUPs4a9n50fa4E44kfryMtgDGoXJ97k/G2PC7zAKyt2zYQ1jz47bcEnXgZJozH14x/yn4F1k763y9hbeBB/P675Cy8DI4qvB0qzsTHhYId+HlPJ+MguYhMnMJWm4FPfrE78PY7OBpfS28vx8cvbxJ+T28K4mnaqpXrc5dyfR6O7797IZ9hEZuhpKKLiK9/3gfuxzeCiYiIiIiIiIiIKKwc+kawfmO9tXq44o1gIiIiIiIiIiIiCgshMUuQQ0O0iDeCiYiIiIiIiIiIKCy0LSyON4KJiIiIiIiIiIiI+iy/YRF/K2ME+/vnfWDeCD6KMkSIpUbfiZAAzn8QdxoeWf6rEjy4um0XTv8qmoZrIWWLj87Kh7XrD5wAa1F78Hoxf7gW1hyJx8NayIY3RMO0obDmLMDzstuHQyXinfWwtnMCHug9fgserD5CCXZbnjwK1kxK4JEWfGDxKrU6/ElYMEoJaAgzhtLf1kZctCo5itWD8dnDE48DlbYX4sBHRxFuVGsjfr2aDLyd7xy2Atb+WYiD3aJ34J4Knj4J1xzK+mzAy2AdkAFrzmIlvMrcAGsPDH8V1n456jpYS/gah21EHMDHhdJB+KDvSMDzGcyPhjUlO1QsNUp/u/pPf5sa8b5qUfrbhrNKpHoQ3lcjU3F//3f/aFhzfoPP0fZafE4pPB7vc+Xl8bC2LwsfwNzb8LHG9TIONa3+ET5/m4I4gSv6f/g6I+4rvP1OmbEV1kpS8eutPQlvh4Sv8bq27sTbKOP7OEyqrBLPiwm/nNjwriS2CrxeAjHKRMNtzDvt/F2lhDnjyztpwJeFYnbgdftFMQ50tW/H+07tAHw8rsnGC3hZ4nZYazTwcSF6t/4tKGT/RThQSbvWDOzDoczRe/B7mnsLZsDazdkrYe2ukVfBmrMMlsT5Nd5GZcn4/J2UhdNDqwvxOgspbx/N9XgbhbSwuHCjBMJp529tf6zFmb4yYDAOfNx4EO+r9mLcb2acLylV2XgnODMGh0HevO9iWItVzpnW9/D7b+uPcUB0xVA8zfQH8TVBxTB8n2B3I36/MyoJb4dNg3GYc+qn+Phs2++EtcjkSlircuIL7aAdXyvZlfeIlgbl+jxaO39TZwm2YWiIIIeGICIiIiIiIiIiIuq7QoZZQq0MDRHi0BBEREREREREREREfRe/EYzxRjARERERERERERGFhYCYWx0jOMAbwURERERERERERER9V9AwS7CVoSFaq4cr3gg+gqkR7wimgBI2gzPfxDsYDwaeE4fTDL7cjcMoEvbhTy5sShBTwSm4dknKelh7rXgCrGWswMtgysAD7hdP6ljTDfnjbljLzk+AtQ/PGgZrTgseIL4+HW8/hxLi4tmNQ0EKBnlgzezA8+JLxPMStRvPi70a77uNSqhXuDErg/Zb6/F68OP8H/HH4e2V6a6EtS3VqbDmUMKrIkrw6xWdhp/3biUOKMyvccOaWckysKzEx4zSB3FwhGHBx6HoFw7AmqsIJ398XIP7O1ZJC6oZhtenrR6HgjhLYUl27U2BtfgUfLIoy8Dz4ixQgiqq2N8iIiYlF8/sw+vBh/NIxB+LG2BSUiGsbTiAQw9j8/D+b1aii73JeP84LX0PrD1QcDasRZR07FsQJROU/SqEa+6vleuajfjA98Cuc2DtkWH/grUP04fDWmibFk4ES7JhWxaspWXiMKmCdHw8sdbj/taCkoLO/vPmxeTXAh9xLYRXu/g9uL/HZeJgw825abCWsF+5Pq/DB6nGNDwvI5w4oPDBPbi/Y7fjwFPzRHxN4E1QjgtKyWzHIckJm3GSVtnFkbB2rqsK1uZl43WW/j4+7x88DQez5ubj4E1nJF6GxhQlPPoAvj7XwrENa//5lpp2/tb6O4Bz/ySQqAT+WnHNr1z7pWzGMxq9F4cB75yFA8y+rMLnxWofTgl378fLUDMTB7qWjlX2OeX6XJP2Ke6NNSdmw9q/hj8Pa8cnzYM1b6wSqq0EhB4sjIW1iCicPNgQg/eJiBIltK9WOzf1n/N3TwqJSUKthOe2Vg9XvBFMREREREREREREYYHfCMZ4I5iIiIiIiIiIiIjCQtvC4ngjmIiIiIiIiIiIiKjPChiW1sPijP4zDM938UYwERERERERERERhYWQYZZQK0M/tFYPV7wRTERERERERERERGEhKCYJthIG11o9XPFG8BFMAbwjmHAgrDQm4JojEcdXammg9lxc01JSDQteBosHz8sV0cWwtuD9gbCWNBF/ihKyxsFa1Gicrm024a/oV39vEKy5XlkLa2u3T4a1P5+MU0vtE3FS+4ZcnLocvxnHjltL8Qa05uDnOWNwIm1tNU5CtdbjfcLsVdJj7eH1pxJmJXXcjMN3xR+Fa44YnDKbW+WBNesevA+kfob7tCYbPy8lrQTWhrqKYG1l2TBYG/znz2Ct7lKcSuweXQZrVjNOXa7/IZ5m8of4GPXqieNhbdZ4fFxIzqjA87I9EdY8u/EJoT4VpwvXe3CqekQc7m9/Jd4JrcoFjKVRSSx2hFd/a8uqnb99HrweTHb8xHIv7kVjTyR+Qe38loUvy5wJNbA2OvIgrD28bgasDXl+NayZx42ENS2NPSW1EtZMS/GyNybh9Zmfi2sbBmTD2mkTvoG1r9aPhTVnKSyJPxr3d3FUNKzFpVfBWlUVvlay+Hj+FhExK+shhDeJ+JVWjEythbUt+SmwZtmP90dvDH49iw9fL58xbjOsPbj7bFjLL/LA2pB3N8Ba2VVTYM0zAp+/KyrwCjXG4msJbyw+tm3KS4e115LjYc2dXg1rB0/D18SxO/Fx3R+D33s1ZsKSWGPxtbu/2gVr6vtOpSaWMOtv5fpc401Q1oMFX2vuyEvGTyvFBxRHNd53ysbh3kgaiK/Pn8h+FdZOXPVzWBv81uew5hqSA2s1lzlhraEOX6NWzp4Ga3Eb8flt+0F8k+SVDHzMsCfga2JvDL4mTl9VB2v7ovE2Mg3HPexKweeK+lo3rJmVHu5P5++e1FXfCH7iiSdk0aJFUlhYKOPGjZM///nPMmUKPq8uXrxY/vrXv0pubq4kJCTIJZdcIgsXLhSnE/djV+ONYCIiIiIiIiIiIgoLfsMsllbGCPYb+EOjlrz00ksyb948WbJkiUydOlUWL14sM2bMkO3bt0tSUtJRj//nP/8pd9xxhyxdulROOOEE2bFjh1x99dViMpnk0Ucfbddrd6YeHxDjiSeekOzsbHE6nTJ16lRZt26d+vjFixfLsGHDJCIiQjIzM+UXv/iFNDbiT3CIiIiIiIiIiIiofwga5jb9tMejjz4q1113nVxzzTUycuRIWbJkibhcLlm6dGmLj//ss8/kxBNPlB//+MeSnZ0tZ555psycObPV+55drUdvBB++m75gwQLZsGGDjBs3TmbMmCHFxS3/+e/hu+kLFiyQrVu3ytNPPy0vvfSS/OY3v+nmOSciIiIiIiIiIqLexhCThFr5MdoxRrDP55P169fL9OnTm35nNptl+vTpsnp1y8OtnXDCCbJ+/fqmG7979uyRN998U84555xjW7hj1KNDQ3z3brqIyJIlS2T58uWydOlSueOOO456/HfvpouIZGdny8yZM2XtWjz+IxEREREREREREfUPbfnG7+F6dXXzcecdDoc4HM3HjS8tLZVgMCjJyc3HGU9OTpZt27a1OP0f//jHUlpaKt/73vfEMAwJBAIyZ86cHv8ya4/dCD58N33+/PlNv2vL3fTnnntO1q1bJ1OmTGm6mz5r1iz4Ol6vV7zeb8OcmjawYTr0cwQzzgUT7cOCQIoP1rSVvGsPDqOIxuOuq/NZMQIPMJ6RUAlrL9TgwdyjduGxVeI24rClgpNxWMPPh6yCtbdKx8BaXhQOVan5MR7IPnqTEqh0Ch4bZnvF0WO9HNaYiNd10WQcDuEqgCWpTsRBFZZYPJ8BN66Z/Xj7aUE0gV4+WH17+1uUIYACeHNJwIMbztSIO9ynhC64cRaLVA7BQTQVI/DzLkjeC2tfVuOUE+cOPFC9NR4HtXhj8Il1evp2WBsegRvgX9tPhTXx4oAq5x7cNzIel05O3Q1rryXisLiI1Tgk0JWPd6bqbLy/5ChhfzuVgElTEE/TFNQ+5Q6v/taWVRseLBiJDwypKZWwtmN3KqxFK/0dUualZiDeJj8bjoPdEq04SM61HR+H6i+eCmsRJfi65rRRLV/sioisOZANa+bxOOAl8j/4T+Rc43CI5LjpubD2QflwWKsaitf1oFdxSE19Ku7vgB8fEysr8fNCbhxAZC3E/W024X0+GGbnb62/g3gXl4AHr9tYO97H62vwOSUOn2rFWY5fr3Aa3j8aivA5OlKZT/tefP42gnheog7i82mZH+9zUwftg7Vtk/EFSsp/8fPKRmfD2ruDcSjzCWl4Q7yb6IE1A5/2JQLn6oo3WQvHVmpR+BxjL8cnBDUgMSK8+ltbVu387Y/H1+cWK17vwQa8j8fuxPNSPhQ/ryEFb5OfDNgIa89VjYM11+aOBUn50nBq5ZVDPoa13fX4Pe+GD/F81g7GgWnOPbg3LFPxNvr1mHdg7YHcH+BpevG51o5vWUhdNb7OtrvwMVg7x9hLletzpYV7d3f3LX7DIuY2jhGcmdn8PLxgwQK55557jnkeVq1aJQ888ID85S9/kalTp8quXbvklltukfvuu0/uuuuuY55+R/XYjeDuupu+cOFCuffeezt13omod2B/E4Uv9jdR+GJ/E4Uv9jcR9QYhwyShlr4cdsRjRETy8vLE7f72Q40jvw0sIpKQkCAWi0WKipp/alhUVCQpKS1/wfOuu+6SWbNmyU9/+lMRERkzZozU1dXJ9ddfL7/97W/FbO6Z0Xp7PCyuPb57N33Dhg3yyiuvyPLly+W+++6Dz5k/f75UVVU1/eTl5XXjHBNRV2J/E4Uv9jdR+GJ/E4Uv9jcR9QYhMbfpR0TE7XY3+2npRrDdbpdJkybJypUrv32NUEhWrlwp06a1/Jfp9fX1R93stVgOfUvZMHru+9899o3g7rqb3tLYHkQUHtjfROGL/U0UvtjfROGL/U1EvUHQMEmwlW8Et1Y/0rx582T27NkyefJkmTJliixevFjq6uqacs+uuuoqSU9Pl4ULF4qIyPnnny+PPvqoTJgwoWloiLvuukvOP//8phvCPaHHbgR/9276RRddJCLf3k2fO3dui8/prXfTiYiIiIiIiIiIqOe1Z2iItrr88sulpKRE7r77biksLJTx48fLihUrmoa8zc3NbXbP8s477xSTySR33nmnHDx4UBITE+X888+X3//+9+1foE7UYzeCRXrp3XRlRwi68IDmrhgcLBII4Hlz5ttgzbMbDz5eNQhPM2FEKaw9Pex5WLt5z6Ww5qzAN9qDm7bCmvcHJ8Bapg2n6fx70HuwNiZ5CJ7mk9/AWpQSRvFs4fdg7ZyMLbD2puAQi8B2HDTlj4YlsecrwT5K8IEpCgd/BLx4vzb523fw68u0gfkDSmCUxY3Xrd2Ba/6dODxBC7fxufE2cQ7BKZJnxWyCtV8f+CGsReCMMgmU4T714dwnOS5qD6wNsJbDWsH3cThd0p8+g7XIA+mw9s8tx8HayHQcXGfOqYW14sl44bUwMEsuDqPIdeJwTbHj/TMUoRwXlACWcKNdx4WU87c48bm2sg5vL0cBPn87KvHLNSQqAUDJjbD2A/dXsHb9jpmwZsO7sVjr8XopmYCXfWHyB7A2Jwkv38/evxnW7GdMxLVqWJK7dl8Ea1dlroG1TQPSYO3gqZGwlvYxDorMjcDBPo7h+Nhdr+y8fg8exc1a26dGeDs2ygk85MQ1UyQ+R1cp/W090LGQprpUfAJwDamEtXtH/BfWfr3xYlhzKOFHmupsfBGy7rglsHZX8RRY26EEWYcSPLAWeRA/b9WewbCWk4zf7wST8HavS8XLHlGG96X6YnzMD2bhhXcm18Oaz4+PNZb6/tPfISte74FIXLNH4xCv6Eh8Pq3dh681zQH8elrAtmt4Ja6Z8Xz+K28SrFnxrqMqmIaPX/mN+FrTasLXQ/U4H1did+Llc1TgeXn+AD6epLpwCK6RhM/DFh/ub1s93n6O/fh55tF4XzLZlFBC5drT3KD1N7/g2FkCbQiLCxjKewRg7ty58Murq1atavZ/q9UqCxYskAULFrT7dbpSj94IDpe76URERERERERERNTzQkbr3/gN9dP77j16I1gkPO6mExERERERERERUc8LGWYJGfpfV7RWD1c9fiOYiIiIiIiIiIiIqDOExCQhaeUbwa3UwxVvBBMREREREREREVFY8IcsYtLCW/7/Y/oj3gg+QsimhFFE4wHUA0G8A3kr8SDpMUrIQ8iGP51oTMDPOzVpP6y9X4eD1rZtGgBrw9/JhbWai6bCmjceD759RoSSKqGoG4Cn2XDiUFhzFOFAv7Vf4jCKlGk44KWyFgeNBIfifcmzDW9bM863EF8ibtmYVJymU+XHf/JgrsThF+EmpCyqEYNXvDMChyDUluCgjyilvyML8P5RNgY/74fZOLxwcd4ZsFa91wNrwz7D4W0VV06DtdpBuBeTLDjk4cO64bBWNQRPMy0rE9YsfiXQsgIHQJwybgesNQZxv+1NxWFxSRvwMgRcuBcbilywZonDwRhBLz7/mIP951NuQzl/B6Pw+TvCjddtQzHub+WwoAYpNibg+Txj2DZYu3zTtbBWvs8Da9k78LEt4gsc6rj/XHy9UBjAQZjvV4+EtcrhuDdS/42vXSK+xr24dRi+dhk1GKdQjU3Ph7XNO/GyF09ywFpUHixJZRROiY3MwMfL2kblDUo/6u+Q8o4l5MT7ldOF9//GMnwN58SHBYkow8eTwql4e2VE1sHa3w+cDGte5dwwcCU+f5ddjc/f5WPwOvtXLU6F+kPyl7CWMwYHPyW+hJvDnYyXr6IYb6MbJ6+CtXvrzoO16gwcFBZRio/PUXm43ypi8XVGo0/pYbfyXijYf67PRfnLbCMaryNDGduzfL8H1rT+9kfh7VyXjl/w1FT8XvmdYnxezN+WBGvD/g9f84emjoW1+nTc35FWvPAnR+NrkLcTxsOa5ZPNsOZx4uflfpMCazHjcUDb7HE4CPb5vFNhLfFL5fo8Au+EtUX4WjA6DZ+/axqUdPhgPx2YtpuFxNT6GMH8RjARERERERERERFR32W0YWgIgzeCiYiIiIiIiIiIiPqukNGGbwS3Ug9XvBFMREREREREREREYSHQhjGCAxwjmIiIiIiIiIiIiKjvCrVhaAiOEUwiIhJy4EHExYwH9fbV4wH97SVKwNdeHDhRMQR/OmEdhoPBfhD3Baxdv24WrDlKlZH67Xj5zMpg56Z4JU2ng9KHFsOa9d8x+IkW3OSug0rYkgkvX3pcJazlBvH6rKvGwRhmJTfCUYj3pSoDh/eIEqJkWJTtF2bj2GthkBYH7sWGOhwCEnEAbxOLEkZRl6oEBmbhQJlUOw4vfKcGh7DF7MD7o6mqFtai9+OglsbLcADjO9WjYW1oRCGsJeWUwVrZyRmwFr0Ph0o0xuJl+Hz8QFi7Mn0trD00DB9r6g/gmmcXPseE7EroaCSuWTx4Rwv5cVipSTnd9UVBB+5vWxQ+F2mBUdZK5dygBHva6nEtclglrE1x4/C2j3JzYC16F57PiP04TMo7NhvWckbioLU8Pw5buj3xI1h7JwMfo4zEWFgTk3L+PoCX/ZZtP4K1EXH4OCRD8THR/i5OAmzEq0UiCpVrAouSLmhTjhnKNas5EF5vbNRljVYC4UqVQLiD+Pxtx/k/Up2lHI8H4yeOiS2AtVUHcGhx1B78eoYdL0P8hkpYK5+BQw/frxgBayWBA7CWPQoHMNadhqepcRbhvvnVlz+ENYcNX0wHM/D1Qn0BPmdGHVCuE4vwNmrIwPuuif0tIiJBJfDRZFUCvhrx/u9Utkkk3lWlIRHXIobha3CrCe8fCU58XR+1F+/jwSr8esXH4fNGxjB8rJkSuRvWzozAvTFxIn7ezrnHwVraMhx4FzF+FKy5JuPj+psH8PNMg/H5u7wRrzMbfppEKPcJaiLwe3pD628l7NWMdyVqp3AZGqKqqkoKCw9dt6akpEhMjHLPq42UO39EREREREREREREfcfhG8Gt/fRWTz31lIwcOVLi4uJk5MiRzf799NNPH9O0+Y1gIiIiIiIiIiIiCguBkFlMIf27r4FW6j1l0aJFcs8998jNN98sM2bMkOTkZBERKSoqknfeeUduueUWqaiokNtuu61D0+eNYCIiIiIiIiIiIgoLhrQ+BnBvHQnz8ccfl2XLlslll13W7PcjRoyQU089VcaNGye/+tWveCOYiIiIiIiIiIiI+re+PEZwcXGxjBkzBtbHjBkjpaWlHZ5+7/weNBEREREREREREVE79eUxgo877jh58MEHJRA4Ovw0GAzKQw89JMcdh4MaW9N/vxFsMg79HKmDt8bNZXZYi9mNv3BePgynUDYm4ee5LDiF8pPaYbAWqMBpuAm78OtVHpcCaw0JeKWdlLMN1jRrvDjt9+aB78Pa/RN/DGsZb+CI2Mw38eu9Onw8rJ04FCeoTorHycqv5E+FNXtlxw5G5jq8LwVj8PIZLhxNalGm2avB/sb7eLAK97C5Hq8HKw4ClgAOkpXGBDwvZyl981LuJFirLMFpuKml+JhRPyoV1krH2mDNZcERu/clfQ1rGtvglbD2sPNHsFY9EB/blCBnWbs5B9a2peHo6EAQ7xPegXjbGiZ8vHSUw5L4o/D+GYzCC2goSdyW+j76WTDqbyte74EqB6xpx05XEZ6NkHJ4rByG58URwE+sC+H5bKzFtfhcvA9UjouHtUAEPt88NHA5rJ3q1P6QDh+HsmPxTr73goGwlr7wM1iLmHoCrBUWeGAtNaoa1qJcXlirHB4JazG78Pr0RcOS2osBt7KutVM0Pu33bqi/lUujUCN+O2OpVfq7GE/Th3djqU9X+rulef//NpRlwFpNJb5gyFnfCGvmshpYKzktDdY87jJYWzbgY1jb5scXPSutw2Ht4EC8jdLew99o8kfGwVpBNj4m3nziB7D2tx0nwVqNMk2rcq5wlsCS+Nx42UMR+Bzdyl8z902gvw27cpzz4/VurlJ6H7eNmAP49RrxpZ+clYHf9+2uSYC17XtwL8Y14NczR0TAWgCfimR0bAGs5ftjYa0ihA+KsfZ6WNOuCIIjs2EtQvky47o9WbCWmYKvJeKi8dwUe/BK8+zEz/PG4HO0Lxa/TwrG+2GtxfPct0WlRu3Rl78R/Pjjj8uMGTMkJSVFTj755GZjBH/00Udit9vlnXfe6fD0+++NYCIiIiIiIiIiIgorwTaExQV7aVjc2LFjZceOHfLcc8/JmjVrZM+ePSIikpKSIvfff7/8+Mc/Frfb3eHp80YwERERERERERERhYWQmFoNi2ut3pOio6PlhhtukBtuuKHTp80bwURERERERERERBQW+vLQEIcdPHhQXn75ZdmxY4fY7XYZNmyYXHbZZRIbi4d5aQveCCYiIiIiIiIiIqKwYBgmMVq50dtavSf95S9/kXnz5onP52saBqK6ulrmzZsnTz31lMycOVMMw5CNGzfKhAkT2jVt3gg+kjJut6kGry5nKd6BTEE8Ub8yrEcwAQ8wnuGphLW38kfCWvROPOB+zMsbYM2cjQMuCn6Og2i0wIndARw0VRPywNoPoypg7Y6BOHTBn44/NQk68Hpx7MMhTdXZOKBqUxEOBgh5lBSXajzovHsv3pfqk/A+WG/Dy2dYtMHqw4wyBJDJh4vWOrxuzcqm1PrbnIZDF74oHgBrme5KWKt/OwnWbHV4Rl1f4WDD+rNxWMPmCf+BtfU+H6xNsuOeel4JUqwYg/t74OtKIIOSxdKYiINhho7GKRYHamNgrWoQDu7yl+PnaaF2zjK8DzbYtB0bl/oTUyNeR84S5fyt7DsG3nUkpASEaBec66pwYFrkVtw37k2Fyszghdh2Kw6CXbjvHFgbOeQlWPu4EYdP/nfoCljL2fQzWKu+chqsWRvxOSxqC15nX9nT8fOiccpQxCAcMtdQhfvbvU+5FozG+0RI6W+jdw5r1zW0w5wS4mWrxuvW2qAERsXi51nS8fk70Y2vbWMdOBWq8hvci4FIfP4ODcbJVmXj8fL9adh/YW2LHy/fKBsOW0p3VcHa1sH4OJT6Ce5Tz5tbYa181ChYeyEPJ6lHOvD1SWgg7u+6CtzfdpzZJxGFyvV5Bq71p+tz7VxrasD9bWnE6y+onKOrcvDzInMqYS3biUMW6wL4BfO/Vt7b7cPXC/7j8Xv6ugy80n4Y9wWsnR6hXKMqFzZ/z8ChrTkDx+BpKtcuhhJ46voav8eOyMDrzBfA92usmTjssqwBJ4RqYc7aOSZkx/PSi+89hpW+PEbw8uXL5eabb5Zbb71VfvnLX0pq6qHr64KCAlm0aJHMnj1bMjMz5S9/+YsMHz6cN4KJiIiIiIiIiIiofzLaMDREb/1G8KJFi+SOO+6Q+++/v9nvU1NT5dFHHxWXyyVnnHGGpKSkyMKFC9s9/d55+5uIiIiIiIiIiIionQwRMYxWfnp6JoENGzbIrFmzYH3WrFni9Xrlww8/lKws/Be8CL8RTERERERERERERGEhJCYxtTJOXqiXjqMXDAbFZsPDythsNomIiJABA/CQkhp+I5iIiIiIiIiIiIjCQjBkbtNPbzRq1Ch5/fXXYf21116TUcpY+a3hN4KPFFJCoZQB6bXvlNdk4ef54vCA7RlpeED6iZ48WHv+0xNgbdBXXjwvJ4+GtcY4vKtY4nGoiuaBghmwtrcaB9DtzlgPa9mj8mGtIB8H3sVux9shfRVeZ5uT8NfwfzRtDaytsIyAtUolYczsxdtBC6qwVeIDnN+jJDSEGZNPCX9pwOvIgVtRGvGuKt5UHGZwds52WCvxRsPa+s2DYG3g1zgAxbmrBNZqpuBPEt3ZlbB2xb5TYW1KzD5Ym2THNS1M6mTfRbBWvREH7cQuXQ1rESPw8fLzr3Jg7bqTV8Ha3oYEWHuvCB9nXbk4NcNeCUvij8L7biCyH/W3H/e3rQavIy1QJoizSqQxDff394btgrX6AA5O+XTjMFiLwTlTUvq9ZFhzVOF9YPJEPJ9nJ2yGtfn5+Pw9J2kVrF2T+31Yyx6Jz9++VTiALup/X8Ja6MeTYK22Gm+HuGScDFPREAFrdYl4Xdur8D5oVrIutXNTv+pv5fxtV65xQso7nYZ4JcRrAL4udDvxufakxN2w9vwaHHqYvgu/nrUWh8UVTsEHqdgcfPFyrgtfuz9UPhbWot2437QwqdEHsmGtZBIOYYtfjwPoPDvwm6+DaXGwZovEDWe14u3QmIT7zezH+6BFeZtk9ipBU8q5KdyYvHj92bRjpxKya1XOmTWZuKfGJRTD2q56HMr84TdDYW3ALvx6Xg++9vNH4gOYOQ7vWFMdOBRtbv7JsLa1El9L3Ji1CtaSh+JwZeMd3Ivxf8PHjMqr8fFy+x4cyJ49AG+/+Gi8XgoS8LHU7FcC6HC2plgalDBDZ28dkCC8HB7+obXH9EY33XST3HDDDeJwOOT6668Xq/XQfhgIBORvf/ub3HnnnfKXv/ylw9PnjWAiIiIiIiIiIiIKC4ZhajUMrreGxc2ePVs2b94sc+fOlfnz50tOTo4YhiF79uyR2tpaufnmm+Xqq6/u8PR5I5iIiIiIiIiIiIjCQl++ESwi8vDDD8sll1wiL7zwguzcuVNERE4++WSZOXOmHH/88cc0bd4IJiIiIiIiIiIiorAQDJnUoV+bHtOLHX/88cd807clbboR/MYbb7R7wmeccYZEROBx1IiIiIiIiIiIiIg606Exglv7RnA3zUwv06YbwRdddFG7JmoymWTnzp0yaBAONeqtLEognL1KCZJTgj4aE/De5U6vhrVUF07/+u9+HDjkKMWDzlfm4JqtHs9n+Qi87GcM3gZrmh2VeMB9mzL6/zmR+PW2x+LAqOVx6bAWvakI1qom4mlG7cIBBv9NwdtofMpBWFtdhT9AaUzC20/Myv6phCmYlQAWwxpeR0ZtWbVQCUM5Ugai8DrKzMLhCWXeKFjbUqjsc7vxPlCbgfdHewUOoCuZgKeZ5sIpCM9nr4K1mXtxKFSREoj4QNImWPv94Ndg7SdDb4C1yLOOg7XU1/bCmj9qIKy9mY9TWn0BvD4tHhw+2aiEUAUilCA0fBqRkE3pb1t49bcWFmfGq10M5bDqV/rbGoVP/IX1Sr/V4t53FOGZcZbheYndgEOhds/C4YXRSnDd7kZ8jvbY8AHz35VTYG3ZgI9hbZVy/XX91J/Bmj8SB8KFLHiakXvxus6LjYU1qw2fUJOUcK5SH94OEUUdu74M2ZU3N+Yw6++AcixTVoNNCdKtT8fryKT096jEQlj75yZ8voncgy8m3JvwNA0bfp4/Bgcczc7G4cr3lw6HtTcP4vNbXiIOfprh+RrWIh04YK8GZ0FK/LRxuPYpXmfV2XiioTF4Xo7P2Adr2yJxkFaxV3lPo7x/tGjX4Mq5SSxh1t9B5fpcCdvTer8+Da+jmGR8YEiLqIS1N7bgIMXIrfh86tqHA0jFhBdi10x8Lrr/uNdhLcqMjwtfluLw9BsHroK1Az6cjn16Kg7A/ve0k2Atu2gMrHm24fcfVYMjYS0vAh+jpmTvgzVzNt5fCmpx71uVQDh7Ba55lbDxcLs+70l9fWiIroTvGhyhsLBQQqFQm35cLlebZ+CJJ56Q7OxscTqdMnXqVFm3bp36+MrKSrnpppskNTVVHA6HDB06VN588802vx4RERERERERERGFJ6ONP+0VDvcw2/SN4NmzZ7drmIcrr7xS3G78ja/DXnrpJZk3b54sWbJEpk6dKosXL5YZM2bI9u3bJSnp6E9WfT6fnHHGGZKUlCT/+c9/JD09Xfbv3y8ej6fN80ZEREREREREREThqSu+ERwu9zDbdCN42bJl7ZroX//61zY97tFHH5XrrrtOrrnmGhERWbJkiSxfvlyWLl0qd9xxx1GPX7p0qZSXl8tnn30mNptNRESys7PbNW9EREREREREREQUpkImMVoLg2tnWFy43MNs89AQSHV1tbz22muydevWdj3P5/PJ+vXrZfr06d/OjNks06dPl9WrV7f4nDfeeEOmTZsmN910kyQnJ8vo0aPlgQcekGBQGQCViIiIiIiIiIiI+oVDYXGt/4gcuq/53R+v9+iAkZ64h1lUVCSzZs2StLQ0sVqtYrFYmv10VJu+Efxdl112mZx88skyd+5caWhokMmTJ8u+ffvEMAx58cUX5Yc//GGbplNaWirBYFCSk5sPvp2cnCzbtrUcBrZnzx55//335YorrpA333xTdu3aJTfeeKP4/X5ZsGBBi8/xer3NNmJ19f9P1TFMLY8wrwwSErLhmt+NnxiKx6EEdfUOWNtjxYOd1+7xwFryNyFYM+GS1GTizwVMQ2ph7ezYzbC2tBoPrm63BGAtyobX2b+qx8PaoIgS/HpDcKJS/jlpsJb2Cg6TMgcG4Glm4OFRvrbgxh+YigPG9lnwyPLeAB6+xVGpfNKl7BO9XXv72+LF68GEd0fx4lYUScIpFmU1OMygphH3vi8Ph0mlf45fz+/Gh/TKETi8yjQKh2ZcN+ATWJtzYBqsrd2VDWsbnDio4oKYDbB2khMvXzBdWS/ROMDDNxgH87mKlOCIb/CxbdiE/bBWXo33CSMRJ5oFQ3h/0YIqtH0+0MvDKNrb31oYpHb+DuHdQ4LR+Fj9PSV0ZGMhDidt2IfPDR6cI6oGBh6cgYPIApm4NybH5sLapiq8DFsL8f4/MBEHpt0SxD382+QPYC2QjIO7zF/hjWuuxye46AN42+am4fOpM6cC12xKslsy3g6NBg72sVV37LxlKPt1b9Cp52/lUObDWUsSTMDXmkkJ+LxY7cPby1SGj9Va8F/hdHwusvjwAgYH4eDG2+J2w5p2fV7nxTvP1xU4hC3biXt/5bjnYG1izfWwVqicM231uGZXQlRrD+Dn5SfEwFpGVBWsFafh43ogqOwvSkia9p5NDZLrBdp9/lb6O4hbSgIu5f13HO7vYfH4/eK6kixY0/o7qkAJn6yug7WS7+NrYttQvCNvqs+EtVeLJ+LXq8TvMZ7Ycxqs/d+oZ2Etx4qn+coIHPhYXID7Jm4bviaO3YbXdUkk7rfiZDyfWlB9MAafbL1+5RpEOUeblYDjYC+/Pu9L2jM0RGZm855asGCB3HPPPc1+1133ML/r6quvltzcXLnrrrskNTVVTErAZHu0+0bwRx99JL/97W9FROTVV18VwzCksrJSnn32Wbn//vvbfCO4I0KhkCQlJcnf//53sVgsMmnSJDl48KAsWrQIrsSFCxfKvffe22XzREQ9h/1NFL7Y30Thi/1NFL7Y30TUK6Avfx75GBHJy8trlnPmcCifQrVDR+5hftcnn3wiH3/8sYwfP75T5uewdg8NUVVVJXFxh74et2LFCvnhD38oLpdLzj33XNm5c2ebp5OQkCAWi0WKioqa/b6oqEhSUlr+VDw1NVWGDh3a7CvQI0aMkMLCQvH5Wv7Ub/78+VJVVdX0k5eX1+Z5JKLejf1NFL7Y30Thi/1NFL7Y30TUGxihtv2IiLjd7mY/Ld0I7q57mN+VmZkphtH53xJv943gzMxMWb16tdTV1cmKFSvkzDPPFBGRiooKcTrxV/GPZLfbZdKkSbJy5cqm34VCIVm5cqVMm9bynxufeOKJsmvXLgmFvv1bmR07dkhqaqrY7S3/GZPD4ThqoxJReGB/E4Uv9jdR+GJ/E4Uv9jcR9QaHh4Zo7aetuuse5nctXrxY7rjjDtm3b1+b57Mt2n0j+NZbb5UrrrhCMjIyJC0tTU499VQROTRkxJgxY9o1rXnz5smTTz4pzz77rGzdulVuuOEGqaura0rgu+qqq2T+/PlNj7/hhhukvLxcbrnlFtmxY4csX75cHnjgAbnpppvauxhEREREREREREQUjoxWftqpu+9hXn755bJq1SrJycmR6OhoiYuLa/bTUe0eI/jGG2+UqVOnSm5urpxxxhliNh+6lzxo0CC5//772zWtyy+/XEpKSuTuu++WwsJCGT9+vKxYsaJp8OXc3Nym6Ysc+jby22+/Lb/4xS9k7Nixkp6eLrfccovcfvvt7V2MDtECZQJuPKJ/TBweID7aiQdCP3AQB4PF7MWfXETl1sOayY/ns3QsDpOKjsQhJ9lWHA6xaM+ZsHZwGw6q0D6YeeCCV2Et0YyXL28gXp9vJB8Pa0XnD4Q1zy68/ZzFeFyZqgj8yXjSUBzMp62YYDRedp+BP/MxB5Rp2sNrsPqgQwmV0MIgY3GAQFYyDg6qasB/JVGlBCTE7MbbpD4FH4jqk/F2bsS7v0xMOwBrb5XhD/h+kfoOrL2zdiys+avxyv7l9stgbUoiDmEbnF4Ma3sn4VDH6H04FMpVjLe7owwntWzdj8N0RmXlw9o3efh5wSg8L14lNUYLWAo3Ss6HBCNw7wc8OM3D7sZ/srV2Pw6UCZTj3o/dgbeJez9+PYsXH+MPnopfL9qNw6RGR+De31aDw6v8BS5Y216Me8o9Hp8zbSZ8/Dpu8D5Y27x7KH49fMiQkA1vh8hcXKuMxMfuhlh8fI6NxdeCpfVK2Iyv3Zfq/U5Quz5PUQLhknAQU3IkDovbvAeHO0WU4n0nbitOi3MW4P1j7yUeWItx42t+zbrqQbBWm4v38VrBtSuHPw9rXsHrZVwGPi9u3jkE1mJ34WO3ax/etrnn4TfO23fgkMzoZHx97nLhY1tNDO5vayXu7/4UJmVYlHM0Pt1IIAaf+NNSKmFtW2kSrNXk4/fDMXvwNnFU4f1RC4SrHYCnOSQBB4gXefF81gfwPhdUztGFJbj2eNIpsPbH1PWwdloWHjr0vZRJsJawCV/zeGPwOovdAkuy242va4YNwsehtIxyWCsI4jdYlip8fa71N3We9oTFtVV338NcvHhxu+avrTp0dTlp0iSZNKl545577rkdmoG5c+fK3LlzW6ytWrXqqN9NmzZN1qxZ06HXIiIiIiIiIiIiojDWjrC49ujOe5izZ8/u0PNa06ahIebNmyd1dfiT6iPNnz9fysvxJydEREREREREREREna61YSE6ODxEdwsGg/Lyyy/L/fffL/fff7+8+uqrEgwqfwrZBm26EfzYY49JfX3b//ToiSeekMrKyo7OExEREREREREREVH7hcGN4F27dsmIESPkqquukldeeUVeeeUVufLKK2XUqFGye/fuDk+3TUNDGIYhQ4cOFZOpbV+bbs+3h4mIiIiIiIiIiIg6RRcNDdGdbr75ZsnJyZE1a9Y0hcOVlZXJlVdeKTfffLMsX768Q9Nt043gZcuWtXvChwdLJiIiIiIiIiIiIuoORujQT2uP6c0+/PDDZjeBRUTi4+PlwQcflBNPPLHD023TjeCuGqC4V1IGy/BH470kMgUnyVaVR8FafYQD1iJ24RjkiFL8HfbykZGw5scBo2IbXQVrT476P1hzmvD4JCM9RbBWtzUV1gJ4tciv9/4Q1qKsOB36gQGvw9qrOeNgzbILp7GHLErqeL7ydwYm3Hr743CacWIsTrEu9MXAWtCvJJLjoOOwYyj9HYzC/W2NxvuVpqoM9769CO8Dnl04WTziAE7CrsnEybXebLyh/y/7fVi7Lu8kXNsyC9Y8W/HKNuNgZTnv1K9hrV6Jhq/x4j61DcHrzLYFHxQjc/GQSP4ovG1NIXwA2+HESdXuGPx6NSac5Bz0t2mUp7AXiMDHXENJWLdE4B0yUkmCrzzohrWIfJwU7d6H+7s2Ax+rtT9d8w1pgLVpKXmwVhLA+3+sHe+Pkbl4nwvgSxDZWZEAa7+LwMea5wa+DWujRqXDmmkPjpuPKMDLZwoo/ebA26h+OD5GuWMrYa3UjDeu34OvsSx1/af3gw68jkIufP42Avg6raYBH6uLi/A1lXOfcn1eAktqf9cM8MBaaAj+S8v5w96CtWeq8flmczm+Bo/ZhverID7VyqXf4GuCj8e8CmvnJmyCtfWZWbBW0oi3g22Qci29ER+DS0TZRk58XEhPqYC1Bg+eZtCH17XJ37u/pdaZDOWORMjRsevz0ip8neavw9vEXobP3xFl+DjkLMLn4YY4PC+NA/D+WOPDx6jGIF5pJyXgPxffWzAQ1oLK+29vCL/eb4rHwtrPEj6EtTcHjIa14om439LeKYW1khPwdYY9H2/3HTb8JcbEBPz+W5z4HK31d9sGaKVjFgbfCHY4HFJTc/Q+WFtbK3Y7Pg+2hrsgERERERERERERhQWT0baf3uy8886T66+/XtauXSuGYYhhGLJmzRqZM2eOXHDBBR2eLm8EExERERERERERUXgIg7C4P/3pT5KTkyPTpk0Tp9MpTqdTTjzxRBk8eLA89thjHZ5um4aGICIiIiIiIiIiIur1wmBoCI/HI6+//rrs3LlTtm3bJiIiI0aMkMGDBx/TdHkjmIiIiIiIiIiIiMJD6P//tPaYPmDIkCEyZMiQTpteh28E79q1S3bv3i0nn3yyREREiGEYYjL17rvpbRFSAmXEjveSunIcSGJoXzffjVNVIgvwE6Ny8YD03jg8aPTBUXgA/FQXnmacGQ9k/149/jRi5a5hsJZcgtdnRDEO6Nn7PRyINWPgVlj7Xw0ekP4HI76CtVcKp8Kao0oJFChXAl78+HmlMXifKIjHo/g7PY2w5rfhdR0qxdPs7WPmtJdh7dgChQJ4FJ3c3ERYs5TjQ6yjHL+etR6HVx2Ygff/+jS8fEmJODDthRocrBBSEvaqanCQQ8ZufMxwFOLgm6dOwumnyQl4GT4b9zKs3V86HNaemXAqrNnq8HG9MQ6f70x40SWUh6dZ6cHH7thkHFRRGcDHk5CSwGLqIxc+baX1txGDN4pVOT7WKPu4tRKvW+WUKdVZOKxEO+ZWDsXFOeM/hrVd9TgwanVVDqx9WYBD2DI+xvtj6TgcQKcdM0p9OEzn5Tp8nL11LA67fDT/PFgzLHg+tf524kwo8RXgHt5r4O1gVwKP/PV4fwkpYVJhd/7u4PW5y4Ovbesr8P5oK8P9Hb2/YyvX2oCfVzQVb8uBifiC4YeRuBc/9+LnaUFa0fjyVZI/xOfhvcfjaS4sGwprV8Ssh7VXBx6AtS3lOPTK2oDXZ10q3rYxe/G+5I/C18sHvPg6yuzE13SGWzlZVHXsXNEXGRbl/K2ExRlB5d6DEsJpLcHr1qEc4+uSlfDJDHxOaUjF8zIi5yCs/T4bhyzu8+P3A/M+/hGsDXsH93D1YNzD7wweAWs7vr8U1syCj7O/OO49WHus7BxYK5uKlz1+Mz4mNiTibRQqwP1dplxfWrT32DH43B6qwNcL4dbfPaotQz/0wvU9b948ue+++yQyMlLmzZunPvbRRx/t0Gu0+0ZwWVmZXH755fL++++LyWSSnTt3yqBBg+QnP/mJxMbGyiOPPNKhGSEiIiIiIiIiIiI6Jn10aIgvv/xS/H5/07+7QrtvBP/iF78Qq9Uqubm5MmLEt58MXX755TJv3jzeCCYiIiIiIiIiIqIeYTJa/4Z1b/wG9gcffNDivzsT/ptf4J133pGHHnpIMjIymv1+yJAhsn///k6bMSIiIiIiIiIiIqJ2Mdr404tde+21UlNz9JAndXV1cu2113Z4uu2+EVxXVycu19FjHJaXl4vDgcdWISIiIiIiIiIiIupKJvn2W8Hwp6dnshXPPvusNDQcnXfQ0NAg//jHPzo83XYPDXHSSSfJP/7xD7nvvvtERMRkMkkoFJI//OEPctppp3V4Rrod+J644cQDfptcymD/dXhVWupxkI+9CpbEUYU/nqgYjgOH6tLwNGOHlcLajFQctHbltlmwNjq2ANasO/AA8TGr98Fawyi8EKFv8DRzk+Ng7caED2Ht/nw8IH3WWDyIf0FlBqwlbcD7izcGH3Ki98KSVNnwfuZ34poRwq+n7vMN7f6sqHdA/a0sjikKB3aEvLiHtcCoiEK83uO/wQECxRPxPh7AOQ5iSsGBgZdl4TCW4Y5CWHu65nuwZtmOgw2dn22GNe9UHCJp24vDEyaO2AJrmqs8n8PamyNGwVp5mRLuhLM2JOYg7ilHNd4JK4fhfanSqmx45aNsbdir3n7hA6H+1sLilB4OKH8TZirBH3BH58GSeHbh40l9Mt7OdalKSNlAvNMlWHE4ynnJm2DtX1WTYe3zr0fCmqUYnxeTXsAnsdrMsbA2aBS+Phlux9cZ8w9eDGsDxuTDWn4dDsNLXYPP31XZePtZ8SFYjDIcTuT3KScn5ZsqWsCSKdBHOxz1txIYJUpoXn05Pp9aqvG2jNqPp2ltUALFXPh51dl4OycML4G1+wa9BmtPVmXC2jP7p8GaeRs+fyf+A49HaIzCAdGWr/B5qmoI3g5v1+EgubOTvoa12rH4eiG/Gl+fOyphSQIOvP2ilGN+VQQ+xwSV0DItZ71fXZ8r52/tWBaqwfuA1ON1FFmEp2nDp1P1wkk5pUjaKHyd/fPMlbA23u6Etd8fwP3t3IfXS2MKXi++KFwzH8A9/P0tP4C1Xw58F9a21OKVFqFc81TVx8CaowrfI0nYgs/tpWPw+cBrwdvBSMUnfpPS+yHtPakS2Ent1EfHCBYRqa6uFsMwxDAMqampEafz2/0wGAzKm2++KUlJ+L1qa9p9I/gPf/iDnH766fLFF1+Iz+eTX//617JlyxYpLy+XTz/9tMMzQkRERERERERERHRM2jL0Qy8dGsLj8YjJZBKTySRDhx79ganJZJJ77723w9Nv943g0aNHy44dO+Txxx+X6Ohoqa2tlYsvvlhuuukmSU1N7fCMEBERERERERERER0LU+jQT2uP6Y0++OADMQxDvv/978vLL78scXHf/uW73W6XrKwsSUtThgJoRbtvBIuIxMTEyG9/+9sOvygRERERERERERFRp+vD3wg+5ZRTRERk7969kpmZKWZz5w4J1KEbwY2NjbJp0yYpLi6WUKj5LfQLLrigU2aMiIiIiIiIiIiIqF368I3gw7KyskREpL6+XnJzc8Xna54zNHYszt/QtPtG8IoVK+Sqq66S0tKjQz1MJpMEg318dGstlKMaB32YvcqA9Ac6NiB9IAI/L4DHQRff0KNTBQ8bE1MOa7fGbYS1El80rP33q3Gw5sHZFxJMj4c12ztfwFqSayqsbUjNgrU340bD2g8ScJDWMh8Oy2oYgAOBKmrw/qJxluOd0FaN9wm/KAPZK4ETogxk358Y9UrgYy0OAXEp/R19AK93b5xy+FU+8Gsc6MXz4sQBdNfH4DDI/9QOgLV9+Qmw5imGJak6B4eweT7HoRm2CfhPXN78GvfwjOpEWPt11gpYq6xTgvnG1MGa+UsctKP9iVFjLK7Zq/C+5DPw8SQU2cfPu51FCZtpKZymqaQEwjlL8TbRAl0DLtzEDXF4mnXDcQ/fORIHynzftRvWnqmcAmv/2jUB1uK/wTtyMMENa8Z+nKikhS09//VxsLbCMwLWfj30bVj7qGo4rOUOxOGypbX4uKAFRXp24HVWOQTvE4YZn2NCMUpQsfblkL4aFocEO7Y8ljq8bh0VHZumNwaveC0wqjENXzO6lMPXSBt+nse8C9YWFuAg5AGf4/2q7iz8pjLi1bWw5px8Aqz96yscTPl/Jz8Ja1814uuT7yXuwdPMwgE61gYcpOXAb5PEXos3kl3Zl3zK2+1QhHLBoJy36BCzEppnrVdC5pS3aBFl+JqqZDw+nvgH4tCwSBs+t/9fEe6bt+z4OnRjHj7YuGphSUwBvF/FPf0ZrAVvwvNZMBCHt+Wl43Ptb1LegbU/mE+HtTcrxsBaRTXu74gSvOxO5Z5FQAkBDRTh99/a+VvsSu/31TDIXgjkUx71mN6spKRErrnmGnnrrbdarHf0/mu797Kf//zncumll0pBQYGEQqFmP33+JjARERERERERERH1XYapbT+92K233iqVlZWydu1aiYiIkBUrVsizzz4rQ4YMkTfeeKPD0233N4KLiopk3rx5kpyc3OEXJSIiIiIiIiIiIupsfTks7rD3339fXn/9dZk8ebKYzWbJysqSM844Q9xutyxcuFDOPffcDk233d8IvuSSS2TVqlUdejEiIiIiIiIiIiKiLmO08acXq6urk6SkQ8MdxcbGSknJoXFMxowZIxs2bOjwdNv9jeDHH39cLr30Uvn4449lzJgxYrM1H2Tn5ptv7vDMEBEREREREREREXVYG8YI7u03gocNGybbt2+X7OxsGTdunPztb3+T7OxsWbJkiaSmpnZ4uu2+EfzCCy/IO++8I06nU1atWiUm07djaphMpj5/I9jkw1+SNinBG47yjgW7BfH44tKojFdSPwCPx3zm0O2wluGsgLUDyhjPu2pxYJQzF4+4b1KGjTbWbcZFhWHB68VegudlXVU2rO1z4OC6u7P+C2u/8F4GawcacVCFowyHDdjq8PJp69NWowXJKSE1ll5+9OtE2onApAXKKP1tVrZJdZa23vHz6rLxRAdm4DSDKCWM4u9VOGzp6W04AMK5GwdppfwD93CwBidhKtEJ4s5Nwc+LxPOSF4VT2H7b+ANYG5aEE+92luLjXm0OXgpTAJ9abfWwJAFlX3Io5x+fsjOF7P2nv0U5f1u9eP1ZlECZyAK8/hoS8POqs/E2aUjFG/qk4Tth7RQlEO7jBhyU+tp+JU34CxzwYmnE82l8gXvfOmwwrMVvxsE3dRk4gDHl1AJYG24vgrWVxkhYG5WJp7m5Eq9P2a+cK5TAR+2NhqMMP8+rXKobWkBimNGuwU1+JZS5VunvfLz+vB7lmkp599SYis8N507YBGs3JK6CtY8bcdjSP4uPhzXHfhya5HPjZY/+52pYM7vwmxrtGsu5G8/LtRFXw5o7CgdgX5L1JazFxOO0rKpsfNwLOpVw4MKOjSNpr9TO38p1oq3/9Ld2fDTX422irVst+M+CL5elZgB+PV88Pi8Oy8DnolMTd8CaTXlz99dNJ8OaaR/uxcgC/Lfu2rldk/ovvAx7E4bC2ouxOCjy40j8vEwXvmcxatBBWNtSjwMmzT7lehm/xRBbFa5ZGpT+DuGTRdDRj/q7J7XlG7+9fFPccsstUlBw6Jp1wYIFctZZZ8nzzz8vdrtdnnnmmQ5Pt903gn/729/KvffeK3fccYeYzUw0JCIiIiIiIiIiot4hHMYIvvLKK5v+PWnSJNm/f79s27ZNBgwYIAkJ+EtLrWn3jWCfzyeXX345bwITERERERERERERdTGXyyUTJ0485um0+0bw7Nmz5aWXXpLf/OY3x/ziRERERERERERERJ2mjw4NMW/evDY/9tFHH+3Qa7T7RnAwGJQ//OEP8vbbb8vYsWOPCovr6IwQERERERERERERHQtTG8LiWg2T6wFffonHwP+u7+a1tVe7bwRv3rxZJkyYICIiX3/9dafNCBEREREREREREdExMUSktTGAe+GN4A8++KDLX6PdN4K7YqaeeOIJWbRokRQWFsq4cePkz3/+s0yZMqXV57344osyc+ZMufDCC+W1117rlHnpaPKwvRJP0+LHtfpkXGtMxqmeEUk4efvcuK9g7cFdZ8HaO4XDYe3Adjyj8Ti4U+Ke+gzWtGTx4O79sBaIwNsh6Qu8zlZ7cDJpysAyWFtflglrOW78vIaBNlgrM3ACtK0aj7/twAGqYuAgVDGUD2mCOHQ27BLJO9rf2nr3R+FaCO8C0pCCz0rxWfgFrWb8vLOTvoa1P39zKqzVl+GdIHkf3gdMScoA9TU1uKbwfLAb1pxlWbC2NwEvw4hxOMnZbsbHjCuGfAFrH8Xi49f2QAasOUpwo1rxYV0M5Wxtq1HS7aO1aYZXf1u8eD2YlZqjEk+zPrlj69bvxn2aNBBHmVf7nbD2es0YWHtp3yRYqyjEMxpfCksS/fEuWAvgp+nW4OuT2IHHw9rmRNz7V9fOhrVLsvA3KtYX43N7XHYlrJWLB9ZEcH9bGvGzrErNsCiJ5DHarIRXf5sCyvlbOQaKUmqMVfrbjZ/njcfnjdFD82DttJiteF6Ug/x7VaNgbfVGfG0b2QBLYvbj/cOaiM/tgRJ80LA24Gm6ivC6Lk/Fx72Zoz+Gtef24PeKMzK3wdpmdxqsbfMPgDVTEF+fK5cSElKuz60NeL2ox9kw629Lo7JutXO7D09Tu25qUI6djcn4/G324Bf8aQbeV5/YdxqsjYvDb6QDtfiNRLR2/n5hDaz5zsV9EzF6GKzVZ+KDYsJXuAEOJCbBWnUm7v1RA/Nh7XsJ+PqkLCcS1opC+NhmL1f2QeVejl15uxNU7lkY2vcnw6y/e1JXfSO4N92/7Kh23wjubC+99JLMmzdPlixZIlOnTpXFixfLjBkzZPv27ZKUhA8c+/btk9tuu01OOumkbpxbIiIiIiIiIiIi6rW6YIzg7r5/edppp6kjL7z//vvtmt5hbboRfPHFF8szzzwjbrdbLr74YvWxr7zySrtm4NFHH5XrrrtOrrnmGhERWbJkiSxfvlyWLl0qd9xxR4vPCQaDcsUVV8i9994rH3/8sVRWVrbrNYmIiIiIiIiIiCj8dMU3grv7/uX48eOb/d/v98vGjRvl66+/ltmz8V/FtaZNN4JjYmKa7kLHxGh/h9Y+Pp9P1q9fL/Pnz2/6ndlslunTp8vq1avh8373u99JUlKS/OQnP5GPP8Z/hiEi4vV6xev1Nv2/urr62GeciHoF9jdR+GJ/E4Uv9jdR+GJ/E1GvEJLWxwhurf4d3XH/8kh//OMfW/z9PffcI7W1te2a1ne16UbwsmXL5He/+53cdtttsmzZsg6/2JFKS0slGAxKcnLz8WeTk5Nl27aWx3b65JNP5Omnn5aNGze26TUWLlwo995777HOKhH1QuxvovDF/iYKX+xvovDF/iai3qA93wg+8gMrh8MhDoej2e+64/5lW1155ZUyZcoUefjhhzv0/DaPEXzvvffKnDlzxOVSkqW6WE1NjcyaNUuefPJJSUhQQoq+Y/78+TJv3rym/1dXV0tmZuahEbpbGKXbpAz2rw0UHnTgWn0qrgWi8UcQ7gz86Wl6TBWslQSUBBtFcRV+XvQePIB64r+3wJr/lImwFvhwA37emZNhLfZ/OGzDlBgPa6VjceBdoSMW1s4fh8NtGpQ0sEExOBDIGKiEZgieF3sV3g4WJRTEqtRCNmUg+14eJtXe/jb78LJqva/1txYo44vFE03NwSkPVfU4POH7WdthrViZGS0QLvYrfCrwbMMpCIZLWTGK+h/iUKjIA/Ww5ovB8xn7Ne6NL104/OW64/Cnsm8VjIS16Sl4O2yPTIE1r9JShkVLfMQlk/JJtrZfa0EqvUF7+1sd40sJ5fApPaxdPPo8eOW60vAn9HYrjgC6MR2P87W6bgislZbj83fEAXyeSn5tJ6xJZAQsWVJwQJWh7I8NF02FtagDXliL3I/npcyFN+D+JHxNYDHjjTvIjY/PBQ48n7mCrzPslUp/48OXeu2pBSQGXeF1/taOZVp/ayGcPny5pZ6/LXF4H5gYi8Pi4i34uHDTNz+GtZIypb/z8X6V+ik+nzYk4+uMwOB0WBMlLC7mH/jbUL6zj4O1+lR8jPr7N9+DtTGpBbB2uhu/N6n04+uh7fG4hxsFX/NEFOIm1s4jNi1oyo5rWkB0b9De/rY04ia24t1Yvf7RAtkDMbi/o9PwRrlo4CZYu++bc2Ht4oH4veT/fY3Pi/HrcG/EbcNv7mp/hK+zPStx0Fr95IGw5ijDqaaWUrzOnONwOKMvBV+IekO4NjlyD6xti8U3Xorj8bHUa8YN51KOsw2JsKSGGVrMfff83ae0Y4zgzMzmIcILFiyQe+6555heviP3L9tq9erV4nTic3lr2vw20DA6f4dMSEgQi8UiRUXNE92LiookJeXoN9K7d++Wffv2yfnnn9/0u1Do0BnAarXK9u3bJScnp9lzWrqTT0Thgf1NFL7Y30Thi/1NFL7Y30TUK7TjRnBeXp643d9+uaClY1h33L880pEZbYZhSEFBgXzxxRdy11136cumaNf3gbS0uo6w2+0yadIkWblypVx00UUicmjFrFy5UubOnXvU44cPHy6bN29u9rs777xTampq5LHHHjvqLj4RERERERERERH1H+0ZGsLtdje7EdySnrh/eWRGm9lslmHDhsnvfvc7OfPMM1t9PtKuG8FDhw5t9WZweTn+c/iWzJs3T2bPni2TJ0+WKVOmyOLFi6Wurq4phe+qq66S9PR0WbhwoTidThk9enSz53s8HhGRo35PRERERERERERE/YsppA8hc/gx7dHd9y87M6Ptu9p1I/jee+896o70sbr88sulpKRE7r77biksLJTx48fLihUrmgZgzs3NFbNZGTyNiIiIiIiIiIiISKRdQ0O0VU/dv/ziiy9k69ZDWVkjR46USZMmHdP02nUj+Ec/+pEkJSUd0wu2ZO7cuS1+lVpEZNWqVepzn3nmmU6dF3NAGbhbGerIF4P3oKAbD0jvjMcDvcdH4oSLKCseffyxbd+HNa8fb3LzpihYs+BcDGmcigNs7FV4Pi3JeF8K+fBHMw3H49ez+PHzMlbhQe7zTscDbb8VOQLWzBa83eOj8fbzB/Cg8xFKyFCDJRLWbBV4mmacTdTqn0uEE3VZlT92qE9T+tuF9zlbAt7nHBa8UW4Z8QGsLfrqDFgLeHF/20twLfmzSlgzF1XAmkR0bIB693oc8BLYtx/Word7YK1+Jg52sx/AARBPWnAQzbABhbBW5sPHy3EDD8DaV3syYE3JMhRrDb6g0EIQtVrIEV7Nry2rFqwTUgJ5/Eqga1x2JaxV1eBws8REfG54sRSHxnywbRis2ffjC5SoXLydK7+PxyWLemkdrFli8ZcCTB5ci9qJjyemGpwIlFGL/1RvX4QH1j5y4+WblIr7tNSLz7VDY0pgrToLHxMrBa+XoEMJmlKuS/sTU7Bj68GrBMIFopSvAUXhc/TYjHxY8ysHm9u+uRTWyktwiJFzHz5I2XGutJg+2Qhr0aNw4GPdYLzSOhpLE7EPh1wnWT2wViz4XLuhAf9J7fzKi2Etxonfe9kdeLtH5uBjd5kNrzOrFhSp7NYW5ZwWsIfX+VvJBZOAklMfsuH1oAWyiwtvZ7sN10qUa79JKTgo8rlvcFiidSe+XrDV4+Wz7cLX0lEf4+vXxuk4kN3aoIRkVuP3NFWTcEiyQ3kb0bgFH/f+I+Nh7Q3rGFgzm/F2n5SFt9F6Ax9P6uw4tE97f6XdO1IDUKnzdMGNYJHuvX954MABmTlzpnz66adN3yaurKyUE044QV588UXJyMDvLTVtvlXd2eMDExEREREREREREXUmUxt/erOf/vSn4vf7ZevWrVJeXi7l5eWydetWCYVC8tOf/rTD023zN4INI7w+eSQiIiIiIiIiIqLw0hVjBHe3Dz/8UD777DMZNuzbvwwcNmyY/PnPf5aTTjqpw9Nt843gUKiXryEiIiIiIiIiIiLq37poaIjulJmZKX6//6jfB4NBSUtL6/B0mcJGRERERERERERE4cNo5aeXW7Rokfz85z+XL774oul3X3zxhdxyyy3y8MMPd3i67QqL6w+0QecNPJa7hNx4YPkIDw4lmJKeC2v1ARwOsSEPDwodqMMDmjvycS1+Cx613OrF6yViCw7NCBxUaieMhzVNQ6ISiFWLv7ke/SUeOD+iJB3W6pWANsswnNLhDeD5zPBUwppmv5J2VmdV5rNWCaroAwfAzhJSwjWCSgJKKAb3tyMGhydEOI7+9O6wOh/u72f2T8PzEsCf3zn24lQCRyUsiWzZBUs150yANXMAr8/a6an49ZQ/MElch/djLUwq8e9r8fN+ggO4qm14nW3z4U9ZE0bj0Jjiehwm4ozCAZo+K14xATM+dpvrlaBIvAuGnaBTOZgpH3uHHMoO6cTnxfRoHH40Kh6fb0LKaGQf7sJhqLaDeF9178XLnrgc93egGAef+WfgcBtLAQ41DbiU9L01X+HXOxMH2NgrcWJt2qe4pw7YcUDbZ414PqOj8XXb4KhSWPMoIVSNKbiHG8rxBaZ2/tYCEsONYcX7uF/Z5YLK9bnZrgQjKbX9VTgYrLAOhx9pgXC2fLwQjjJYktTnvoE1LYvIVIITnCK1XJixOEBZ9uAgpuDWHbBmHoCPNVrYZciCL9zKQ8q1UgreJ9wufE1XWae8EYzA01TymsVcr30nq//0tybgUvYB5fo8Lhm/R8t0V8LarrIEWPuqDL9fLKvB16+yD9fSPsbnsIAL7x9GopKEWYCvQcpH4mONqwhfD5m9OLXP/e42WLMpIe+lY/B50bcDHy+rE/B2T80shzW7EtRtsSnL7sbXIH6/FtisBT3DEnUik9FKWLy0Xu9pV199tdTX18vUqVPFaj10fykQCIjVapVrr71Wrr322qbHlpfj/f9IvBFMREREREREREREYSEcxghevHhxl0yXN4KJiIiIiIiIiIgoPITBGMGzZ8/ukunyRjARERERERERERGFhXAYGkLkUDDca6+9Jlu3bhURkVGjRskFF1wgFosy/GcreCOYiIiIiIiIiIiIwkMYfCN4165dcs4558jBgwdl2LBhIiKycOFCyczMlOXLl0tOTk6HpssbwUfQwqQMpaZxOfFo4J/sHQRrkS48MHnQqwSmFeOB16NwjoMEHXiw86i9NbBWekYWrMV+Ew9rB0/Eg847cAaPRBbh+Iuob3CIiz8zDtbiN+N1HbLggJ4GsxvWvJk4NKaqBgdOTMw8AGuRDrwvheLwgPSNPryuTUG83fvCJ2TtoYZBRuMAASOE11Gk0t92C95X7Vb8egeKcACEJRfvO5EHYUmSX8NBLYYL7x/RW3BPST3ex70x+LhQm6YEoFhwrXp8Mqy59uyDteR38IoJXqAERRr4WPrpdnzS9cTjIDlPJF5nhbU42MoUifeXkNLDhrI+w62/tTApw4kHADMs+HnxSfjc5wvhT+HXHsD7v68MBxzZS/C53VUAS2JRQkcqTsf7qsWLr0GsDXid7T8fH6OsePcX+6gTYC3x1a2wZnLjc60IriV8hddniRI0VZmIt+3n1gGwFu3AQVPREbhmisf7YEMAhwz1p/5Wz99KzZ2Ad0iLBe/jETactFlRi8+ZZeX4OG6rwPuVZ4cSylyOryUqz8HhbdH/XA1rYseBUbkX4Gv3aCW8LcapvK204mWP2IPDbSwNynV2DL4eCjnw+Tvfh5cva2AxrMXgzS5lPrx8QT/ez4Ju5dykBMGGW38HI5T1oJy/LS7cp7EROGC4SAl1bKjDvVFXjc8bWqCrA2czivPLvbAWKMNJkaYMfP1qmjIG1kJKm/oj8TnFUomvX4OVlbBmbcDHr7jt+PUqc/CMmn24VmDG1yd+JUTSUHrKMJT3LZF4+ULK9aVhxvMSbv3dk8JhjOCbb75ZcnJyZM2aNRIXd+h+VllZmVx55ZVy8803y/Llyzs0Xd4IJiIiIiIiIiIiovAQBt8I/vDDD5vdBBYRiY+PlwcffFBOPPHEDk+XN4KJiIiIiIiIiIgoLJgMQ0za173//2N6M4fDITU1R/+FYm1trdiVv+5pDf5OOhEREREREREREVFfYrTxpxc777zz5Prrr5e1a9eKYRhiGIasWbNG5syZIxdccEGHp8sbwURERERERERERBQWTEbbfnqzP/3pT5KTkyPTpk0Tp9MpTqdTTjzxRBk8eLA89thjHZ4uh4YgIiIiIiIiIiKisBAOYXEej0def/112bVrl2zdeihYecSIETJ48OBjmm7/vREMbv9rycMWj7dDL2VWvm8eqMHjelSX4/RRZzFOko08gOfFsxunVtcMwK9XNQKnIMd+Uwtr+ScrqaypSkp2CiyJ36UkDxfgSF9LPU6W9Sfi5OGMV/JgreLEDFzz4ml6E3DC6OeN2bDmjsPp141Kyq1hV6NQYcnU0Ef/aAD1t0NJJQ7gZdVSictLo2DNrjzPV4z3D7uSLB73jZI+7cCptiXnD4G12KU4WdwagROSc68aBGsNyR3b50om42NN/Nc4Adr43nj8ejvzYcm9H/ei2Y+3Q70fHy8ra3BauSv96DGeml7PhrdtVBQ+dlfX41O5FnRs8inF3qwD529x4O0c6cbr1uvH63bbTiWxW7modO3D04zZh59Yn6AkTIfwsjvL8bJH7CyBtZpxybDmjcev542DJQkV432u4uzh+HnK1Wr8BhzH7t6Fr0+8Hjes1TXg82lhXQKslSYqqerK8cQIKudaLXUcPyv8+ltZReYYH6zV1eFjdUjZJhUBvP5MDfh5zjI8o/YqWBJnRQDWItfswc8rx/t/5axpsOaPxMvXqPR3I979JeDA1/xJ/9sFa0ZyPKxZa/G2defiPrXXKOfvFHxAyfXh454lDs+LMwLX6r14XjSGVbk+94dZfzvxuc8cia+lA3X4equ4Bu+P1cX42t0UxOvWVo63Zco6fK61NOLlCyg9bBkxFNb88fg9b+VQ/B6jLgPvV3X4skacFbGwFmXG82mpwOdFsxf3cFQEPpZ6a5XrIQPvE2U+vAyWWHyfx+nE+2C98v7R7Mb7RLACL3uf7e/eqA+HxYVCIVm0aJG88cYb4vP55PTTT5cFCxZIRATu7/boo3d5iIiIiIiIiIiIiJrry0ND/P73v5ff/OY3EhUVJenp6fLYY4/JTTfd1GnT541gIiIiIiIiIiIiCg99OCzuH//4h/zlL3+Rt99+W1577TX573//K88//7yEQp0zlgVvBBMREREREREREVF4MAwxhfQfbcjCnpSbmyvnnHNO0/+nT58uJpNJ8vPxkIft0X/HCCYiIiIiIiIiIqKw0pahH3rr0BCBQECczuZZPTabTfx+PGZ1e/BG8BEMJawn5Fe+QK2M6V1c4IE1Sy0edN5RjidqxpkEEv81DkdpSFECqqrxslvr8WDn3jgcJtWYiDvLPQQPjl9ViQfA99Xi1yuaioMBEr7Cg9UbVryuQ3F4mtF7cHhVY2wkrJlCeLv73Hg/qwp0LNxAHXJe26/DjRb+ooRyhAJK0Iey3gN5eB+ILFTCKPBuJZH5SihOOg7FCeCSlN5wAn69Atz7frw7iiThAC6TEn5UV4t739qAj1+xm3AKT/3kbFhr9OD931GJj4kmJdzJVo1rDV4cUBWKwuu6Tmliw6wEyij7fNhR/lLKpKyj+gq8z0kj3pbWelxz5Svnb5wJJY5yXHRU4GlG7CqFtYIZqbAWiMDBSCXj8XHPko6DSzW+RnxM9Efh5XPvVS568gphqWY6DqBLXFcJa6ZJHlizK/1d34j3JSNO2fDKuxAt8FGU85b01bA4RDlvaH/WGfIqYZrKMcNaiZ9nq8Xr1lWAp2nCh3iJ3FkJa6GqaljznzYB1gIuPJ812XherJm4vx12vB9X+XHYa+BSnG6esAlfn9sq8bWEey0Oc/afngVrnl1Kv1nwcc/fiN9/1DuV4KcY/KY9pATJ9dabE11CCcfSrsHNShBsTRk+31gr8TRdBcp7BS2TtgyHjQVc+HhituN9p2A6Tmd05yrLnoWXwZqB7xP46vG8lIzHtfokPJ/J/9uH50W51+HJxQfoilNwf/uVc7Ro77+V9xi1bhxAp52k1S+a9qf+7kl9OCzOMAy5+uqrxeH49k18Y2OjzJkzRyIjvz2+vfLKKx2aPm8EExERERERERERUVgwhQ79tPaY3mj27NlH/e7KK6/stOnzRjARERERERERERGFhb58I3jZsmVdOn3eCCYiIiIiIiIiIqLwYLQhDK6XhsV1Nd4IJiIiIiIiIiIiorDQl8PiuhpvBB/B5MMDjBtKqJbZqwQO1XQsNEYLhLPi7ATxxuFUKGcRfmJtNh4kvWIIHiDej7OPxDwID0gfaccLeOXEdbD2ePA0WAs6lEQsAy+ftj4jv8HJXdXHpeBp1uOjihYE6CzFtcZ4PFi9L1YJO1NCEEUJUdKC0PoiU0gZ0F9bReV4vduU/o4owtO01+D17irGBwbDjF/PF41rWhhkfSp+Xl0aDlYI5uCAl6tHr4G1/+aNhrWSLPx6FVbc395YD6zZavG6Tvy4GNYMJ97upcfFwppFCT2J3otr9an4lByoVwJlHL30b5q6m5IPYlTjbWlWzu226o6FtrqK8T6nBT4GnUoA3Q4cCNc4KB5PE5++pWQC3q9Cw3Fg1IVDN8Pam3tHwFp9Gl72WmVGLY3K9puUA2sxnx+Etaop6bAWwJlQ4izD2zboUMJDvXgZApHK+Vvr7zA7R6u0QLhqvO+Y1cDHjoW+aUGpEaU4wMmshMU1ZClBayNwIFzFcC18GL9eIBEHmMVHKhfFisZsfL1cJzhI0VaHGy52qxJkXYevCfxKUF70fhzqVZeC50W7/rIo5+iA9v5RCUE0tDDIcKMcykzV+NpIC8q2VynbSzl/a7WgkhnmjcPHIWcx3ucqLsf9HZWP9//8E5X9Kgufv6dk5uJazF5Y+5MDv/+usSqhu+dkw1JkMT4o1icq1yfKHaz4b/CxrWyUci2h7Esh5RrSF6Ocv528Pu9xfTgsrqvxRjARERERERERERGFBVPIEFNIv9PbWj1c8UYwERERERERERERhQUODYHxRjARERERERERERGFBw4NASkj6nWfJ554QrKzs8XpdMrUqVNl3To8PuyTTz4pJ510ksTGxkpsbKxMnz5dfTwRERERERERERH1D4e/EdzaT3/U498Ifumll2TevHmyZMkSmTp1qixevFhmzJgh27dvl6SkpKMev2rVKpk5c6accMIJ4nQ65aGHHpIzzzxTtmzZIunpOPijrcxKWJxJCXZzVCij3CvjhGuBMibleVoIgj8KD65eNSgS1sx4bHVpSFHmMxWHSlw65CtYuz9pI54X5TOK2ok4yOGZDdPw88x4EH9XIV6fRdPTYM2zGw/+b3Er4QaGEi5YhTe8YcbbVkxKSI1TGXDfoRz9tCC5PsgUUIIjGnDNWqcEyiiBcFpImc+Np1mWiEMJUlbjAAhflBKm5sH7nNejBB2k4n38VxPehbWtdbhv1k74D6z9pTID17adDGu1DpyKo22/yII4WDMF8XqxNijrzKoETihnXS1c0K8EAfpi8LYNKcEm4dbfWiiUpVEJlKlUJqqc2u1VuFafpIQCJuI+jdmHg1NKTsbhpLUZyjWBEmTiGFQNa/NGfABrX9fhPh2VhHfkU4Zvh7WHTTNgrVwJbvQrx72oaHwc0q6xEjbhIMziiTh4Nm4b3n6Vg/B5WDv/+JRjt6FcEoRdfyvX59oxXrnckgicFSqWjuWlSdVAJdhT2ecilevQhgS8EI3xeDtbMnB425gU3KdVPnydfUrSLljbVIXfh+VFemCt3IrPww2J+H1LZCEOqIoswr1YMwAfMyz4kkfce5Vruhhl+yknkpBdq/Wf63MtdN3s61hoq/a+NjoXrz9/hPJeQdk/KgfhC7w4P369uhRl30nGr6e9/7Za8f6f5KiBteGOfFj70Yj1sPZ8/fGwVmXH66UuHR8vEzbjA6ajEm/cknG4v2N34Js5Pjeelzrlms7sxTWvcuxWz9/99c5kVwgZh35ae0w/1OPfCH700Ufluuuuk2uuuUZGjhwpS5YsEZfLJUuXLm3x8c8//7zceOONMn78eBk+fLg89dRTEgqFZOXKld0850RERERERERERNSbmIxDH8KqPx24DxwOIxr06I1gn88n69evl+nTpzf9zmw2y/Tp02X16tVtmkZ9fb34/X6Ji8OfJhMREREREREREVE/YBht+2mHwyMaLFiwQDZs2CDjxo2TGTNmSHFxy39mdHhEgw8++EBWr14tmZmZcuaZZ8rBgwc7Ywk7rEeHhigtLZVgMCjJyc3/7iE5OVm2bdvWpmncfvvtkpaW1uxm8nd5vV7xer/9O47qavxnkETUt7C/icIX+5sofLG/icIX+5uIeoO2jAHc3m8Ef3dEAxGRJUuWyPLly2Xp0qVyxx13HPX4559/vtn/n3rqKXn55Zdl5cqVctVVV7XvxTtRjw8NcSwefPBBefHFF+XVV18Vp7Pl8awWLlwoMTExTT+ZmZndPJdE1FXY30Thi/1NFL7Y30Thi/1NRL2C0cYfOfSB1Xd/vvth1mHhNKJBj34jOCEhQSwWixQVNQ8sKCoqkpQUHIoiIvLwww/Lgw8+KO+9956MHTsWPm7+/Pkyb968pv9XV1cfOhkZpkM/RzDhsdXFVoMHA7fhcdfVwcAbEpWAKpzxIPZq/NFFbTq+v1+vDDofiMYLb4nDo/HHe2rx85SkvJUNOLztjAg8mHuqrRLWcjJx8kdhDA6TqomMgjVHKd6AARcekD6IS+p+FrTj1/NHK9NUwgztygfxPg+uhZRl6A3a3d/KOrLWd6wXQ0p/16YrSVOKqHzc34XH4+AUbf/wJig7XTReMdOH4XCnOTH4T1pW2gth7aHywbD2UekQWBsYVw5rO4N4Q3jLcPDNwVNwCJUWIuaswDWzD2+/xni8TzjL8DS10DJ/lBJsoh1rXL07HKG9/a0FdmjHXC1QJohzwVQ2nOko3lhcKx+hnG+UefHF4nOtKQafv380eAOsnR+1E9bqlZPDH9PWwtrZ286HtXGD8mBtV0wCrFVG4ANfbQZen1acBycmZcO79+O+qRiiBLMqwY1aiJgWlKSFvWohab1Bu/tbCYWyKv2mrVstvDOITxviKsITbYzDK96Ps82kfAR+ni8eH8Dis/HJKMGFV8zg6BJYeyQFHxeqQ7hx1kbh64VfV/4Q1tLG4OuFvOhEWAtG4A1oq1Z6Eb/9kOhcvG19UVpgIZ6mOQbXtG+imYK494OR4XX+Vq/PlWO1KKvBoVynaYGu0Xl4H6gc3LFwXu1aMxCLF97ixge+iZkHYO2lQTg7KTeAb1q8UD0B1i7y4OPCgVH4wubD7fi6PuDFfVpqwv1tacTXINp2D0Tg7degXJ9rX500K/uudl2qnaNDEb27v/sSU9AQUytf+T0cDn7kB1YLFiyQe+65p9nvumNEg+7SozeC7Xa7TJo0SVauXCkXXXSRiEhT8NvcuXPh8/7whz/I73//e3n77bdl8uTJ6ms4HA5xOHr53Swi6hD2N1H4Yn8ThS/2N1H4Yn8TUW9gMgwxtTIG8OF6Xl6euN3ffnGwK45hh0c0WLVqFRzRoLv06I1gEZF58+bJ7NmzZfLkyTJlyhRZvHix1NXVNY25cdVVV0l6erosXLhQREQeeughufvuu+Wf//ynZGdnS2HhoU+Ro6KiJCoKf6uTiIiIiIiIiIiIwtx3hn5QHyMibre72Y3glnTHiAbdpcf/cOzyyy+Xhx9+WO6++24ZP368bNy4UVasWNH0devc3FwpKChoevxf//pX8fl8cskll0hqamrTz8MPP9xTi0BERERERERERES9gWG07aeNvjuiwWGHRzSYNm0afN4f/vAHue+++2TFihWtjmjQXXr8G8EiInPnzoVDQaxatarZ//ft29f1M0RERERERERERER9jilkiCnUytAQrdSPFC4jGvSKG8G9iRbKoQXK+JVtqD1PGwC/QQl2q8vAtUAUDpUwReOZsVhxEwxIwilGvxv0Oqzt8+OAl0QLDpl7twGv0CI/Tl2YnowH6d7oHABrXwXTYM0Xg9vEW4kTJ6y1eAB8LbxEC/yyV+GaVwme1MLOWshsCFvmgNLfShCN9iclWhiktRHXtODGUtw2ElT6OyIZp5UMjMGJgQ1+vB/XBZRUFcXpEXg+/1GM++2Rgf+BtV/uvQTWLh+KQyxe3j0O1uqdOBQqEIl73xernStwza6EWGjhRFrIkBaEpu2f4UY7rmrHwADOX1TP3w1JuGZRet/rUebFgzdmdCoOeJmWgkNjcmvxC17o/hLWVjXglPdbYvfB2k/yToK1GcnfwNpJrh2w9oYbB9i8UIe/WWFKwjuFtwj3vq0K/8FcbSrub+1aUAsV9it/iaj1t0k51hjKNV1fZFLO39qx06IFTSnHjKBy6isbjfcP7Zjri1M2pgvXsjNwsFuyC19LPz/wPVgzK38Uekv+cbB2d8oqWPuqIQvW/jT6JVh7r2YUrL1Wj/vUF4dXdm0+PrBb6pRgvhhc03pYC6DTaIGFIXt49bBGy3JSA12VITy1c7QWKFYyHu8D2nxqoY6ORHwRkhOPg5A1MxK+hrUbD06FtSviV8Pa7XG7YM2vpJvF2fH7j/gE3DgTEnHo9GcJ2bBWfxC/WfYroY5eJczThg+l4teuE5XDunafxxfTf/q7J5lC+vuDw49pj8svv1xKSkrk7rvvlsLCQhk/fvxRIxqYzd/ua98d0eC7Wgqj6068EUxEREREREREREThoS1DP7RjaIjDwmFEA94IJiIiIiIiIiIiovDQjrC4/oY3gomIiIiIiIiIiCgsmAxDTK1847e1erjijWAiIiIiIiIiIiIKDyFDJNjKjd52hsWFC94IJiIiIiIiIiIiorDAbwRjvBF8BMOCdwSfGycWixk/TwnZVBNhQ5FK+miMF9biXTiuPCO6CtYuT/kc1l4omAJrD+SeC2unJeAU8CuicUrqFfu+B2vPZ6+CtbuKR8PatSkfwdrLNpyQHGnF63r5bpx07HPhCGEjhPclcx1OQQ468M5kDsCSnkyq7NbhJmRT+jtG2SbKug06lR5WXs+IUSaqDFZkd+H4ZJfTB2tjY/Nh7YRonBKcZlWilZXUcc2zWbgXZ+0/B9bGxOBlGOosgLXnJq6HtT8XnQ5raw/iBPT6Spxkrq0WfzQ+7Zq9eB/Ukqo1BvtbRPTzt3be146P2vnbcGv9jZlt+Lw/a/A6WPugdCieprLz/LXkVFj7S/paWNP8KAE/ry6EI96Pc9hgLS5uDaxtyMiEtQY/nmajG6ecFxZ6YM3XiM/RJh/eYUJ2fGAwlGtIk3K9oO67YUbrNzHhdRTEu5wY1g6ev6Nxf7vj8X7lr8LnjUHpJbBmNeNI84cHvA5rZomGNc1jafj9gEgkrCRYa2DtJCeeYq4fn79/lIOveVaVDIE1V1IxrH19MBXW/LX4mBGIxL1v9ivnb62mpNVrtXDrfO1axefGNRM+Zar9XROr9LdyrIlOxft4WiTu/e8n4/fDaXZ8nb23MRHWrnUXwdogO97/kyz1sPZugwfWGg0XrJ0R8zWsRVnw++g4K15n9gH4OLvGng1r5cX4uKe0opiqO3h9HtQmikv96f13jzKkDWFx3TInvQ5vBBMREREREREREVF4MIw23Ajun3eCeSOYiIiIiIiIiIiIwoIpaIipla/8mlobQzhM8UYwERERERERERERhQd+IxjijWAiIiIiIiIiIiIKD7wRDPXfG8Emo8X0HSXHREJWPGq/4cA1SwQe7DzWgwdsr6jAgQxpHhz6lhWNB52fm7IS1sqDeBD4gJJ4d3riNlj7qhqHuMyuSYc1X6hju+Z9SXiw+p3+Wlg71YOX4aFtZ8Kaw4a37bAcPFC/Jq/aA2vVStCIv0EZ5L5BCbdRwijCjaGEv2ihb2pSlxYao/R3oxcHklw89CtYGxGBA9NWVQ6DtekxW2DtLwdOg7UEBw5yOFEJfdMsr8epMafHboW1FFslrJ0VgYPyGpQUkkQ7Pi7kxJfB2jZ/MqwleXCYSJETh1gEqpQTkBo207Egmj4LnL8NnM8pQS1USwmUMZTzfkwS3nfcETi0daQHB7xsLMXnxRgl4GVybC6sne3Gx5PjHZ1/GXiGcs0jgmshwes6xxoFa6NiCmFtf10crE2N3QNrX3oGwNqmojRYs1jwMlRX4/N3UDl/m5Tzt1kJSgo32vk74FBC31x4JZn8SrKnsh+7Y3Ev5sTh88aADBySvL4MXy8/OeT/YO2JshNhbYJrP6y9VjoB1rJceD631+Bz38s578Ka5s2ysbC2tyoe1i7O3AhrLjMOqKry4muQchd+L6Rdt/lqlROQdg0e6PyQ2L5IC2gLaYHsWqijDR+P41OqYc2krPiaOrzvDE/H53a/gfeBRCVk8dokPM37S4fD2rTInbA2xIbPp4+VTIS1+1JWwVqsGffN+9W4N66MwSG415bi9zSZ7kpYq67F2yg5Fq/rugQ8n5Vl+J6MeJX+9uJzTFhen/dGvBEM9d8bwURERERERERERBRWOEYwxhvBREREREREREREFB74jWCIN4KJiIiIiIiIiIgoPIRaHk7uqMf0Q7wRTEREREREREREROGB3wiGeCP4CCE83rcaKGNxKaES7gZYi3LgMINRg3EAihamllvrgbWfb50Ja78evALWkpw4FKc+iAOODtTFwNrrw/8Naw4TXr6X62JhTRMy8Ly8XDwJ1iYmH4C1LwpwoExulQfWxifhwC9nLN6XNtTgMBGTEoqgjUevhaWYfTjEoldDYZBKGIUoPeyIwkFksZG4v2sacW9cNGQTrG2uxGFEGXYc4lLY4Ia1SiUM8rnBL8PaPYWnwJqmOIiPGUsOnAVrYzy4N2ZGH4S1h8txaIYWsnVWDN4Oa0qzYW14Cg7w2F+Jj1FZiXj71XtwUEV+Lg7MESsOQzKUEAuzt4/2N6Cev5Xjoy0Wn4cDPjxRnx+fp0am4v3Dq5y/zcq3FgbZcQDpT2Jwb0zfcjGsRdvxsh8ftxfWborFAXRuMw5Fu6t4NKytKcvGrzfgA1ibHfcprL3vwMeFFCsO3X3qIA7gunTIl7D23KYpsGa1K6FlkX5YCyrXnqFapb+VEKpeDZ2/lVAoUQLhJIjXQ1xmJayNisfX4FYlpe+kGBzS9Fn1YFj71aB3YO2mPZfBWiCEr+HKfTjg6PnsVbDmNfD++FE07u//q0mAtb3eRFgLKYHU/x3zD1hbUIiDbgdFlMDauDh8vMyP8MDazgq8fFEufCzVwqv8Nfi835+uz5VdQAwllNkagffVCCeu5XhwqOOmwlRYm5qJAxi1cNIp0fh8unDn2bD2J+UcvWTIi7C2z4/f85665UJYi7Th9zvf+PB+vMePe+PGeBwsfeO+i2BteiIOj/73ARxqd9GwzbC2fM9IWBuehK+xCqx4HywuwyHQIRs+RxtaEKwSEE3tZIREQq0k8xn9M7mPN4KJiIiIiIiIiIgoPIQMkVbC4jg0BBEREREREREREVFfZoRa/8YvvxFMRERERERERERE1IdxjGCIN4KJiIiIiIiIiIgoPHBoCIg3go9gODr21fBQAI9yb7fgUIm8QjywfEQGHuTeF8QDjBfXKIOWh/Dg4387gEOhzkjCA7Z7lCAmpzK4+nM1ObD236KxsPbzzJWw9vtd58Ka3YLn5dL0DbC2bM80WPvFcDwv75bjAel3V+Pgp/xiD6zZnXgZgn4cOCGGMuh8fxqP3qIEPtpx73tr8botbsSH0YzkClh7Zfs4WDt3yBZYy/XifScrEgeRvVOOQ5osSkBVphNPc1Uj3nnerDoJ1krqo2AtObEa1t6ow2EUw5wFsPZpzRBYc5rxcTbahkM6rGa8vwSC+HygHZ/jI+tgLSa5Btbq6nCAR0A5N4Vd85uV/nbj7exvsOFpKr3hdOBprtw1DNYGJOGQGqtyvXDPrgtg7bmYUliLj8Dn6OFROBBrWiQOvTrvGxw8e1fO/2AtxorDNUvrcLBVTQgHVL1YgQPaVhXh3q/z4eP6kEQcNPXiNhwue3wODgTaVIRDQLVrM7+yD/q1QJmAlp7YBynv08xKEJ/Fio/VDuUadUNhBqzFRuKeynBWwlpenQfWvnHh/WNUjBJcZ8LLvr4cBwwvr8fnjY9r8PWJZmX+UFjTrjN+MGAjrM3PPwPWvijCyzdkEA5+2leHr6PqA/h8kBiJQ3DL6vHxy69cQ5qU61JRrrHCjaGFQSrHx0glpC/Ohfv0QC0OUxuZjMNeIyz4vJ8Sga9foy343HdhJg5ffWkvPt/8qRiHJa4tzoI1rd8+KcWBlnfvwSFzN2atgrWrt18Ja3OycJDclvp0WCupxu8j3q7HIbED4vD7sq/zcUhghBOH6EVG4X2wpgpfu6j7PMPiOk/IEJFW7u/xRjARERERERERERFRH8ahISDeCCYiIiIiIiIiIqLwEApJ698IZlgcERERERERERERUd/FbwRDvBFMRERERERERERE4SEYEjH4jeCW8EbwEUza4NzauN0OXKqsxQOFa8rrXbBWVoEHSR+YikNjKhrwNPMqPLD2z7rjYK2yCk8zIRYHKzy2BQ9yH+NqhLW5a34Ma/Ee/HqF5W5YW1RwJqyZlaCRv+/FgVhFpfj1EuNx8JPVgYM/Qkrom0kJSlL/IgK/XNgxeXFwVtDAASHmaBwOEazHh9GCchxGEfTjIJ8vy3FIjRYw6XThMAOfFy/f5lIckFCtBB1YbCfCmhaskByN9/8nNp8Maxnxlfj1bHgbVXtxKM4aczasBUN4f9F6sb4Gv54zEq+XfQcSYc1sw40abMD7oMnXjwInlECZYI0SCKdx4vVe36gEdCr25ePQQ5sSCOqw49qHBTgUTTs3lKfh/l5ZgAPvtFC7W778Eaw1KqFJYwYehLUHNp8Fa1qYpz0SHxdiXDi8Z2tBMqyZlfW5bj8O6LFY8InYV6/sS434OGQK9KP+VnIvQ9V4/YWUHq604v2/Udkm9bX4ov8Dwb1YXouvl9/w4pBkm9JvZbU4pMyj7OMP7DoH1hr8+Hjp9eHzjXaMsivn6P/snwBrCS4coqqFLD7+1amw5onB09RC7YqL8XW9dv4xKe8jDCXQVbus71eUY2C18h60qhz3hiihvuUxeJq+Bnx9bgTxPvBZ1EBYc9pxb2hW5uJjTaQDX2u+UzgC1g6We2DNplyHProbhzo6lLD2Fwpw2Ov24iRYi1CWz1Cuz7V7K0E/3icazfiY6CvH1/xayKlJ2V+o8xhGSIxWbgS3Vg9XvBFMRERERERERERE4cEwREIcGqIlvBFMRERERERERERE4cEwRP1qdtNj+h/eCCYiIiIiIiIiIqLwEAyKmFoZB9PoR+Nkfocy4lb3eeKJJyQ7O1ucTqdMnTpV1q1bpz7+3//+twwfPlycTqeMGTNG3nzzzW6aUyIiIiIiIiIiIuqtjFCoTT/9UY/fCH7ppZdk3rx5smDBAtmwYYOMGzdOZsyYIcXFxS0+/rPPPpOZM2fKT37yE/nyyy/loosukosuuki+/vrrbp5zIiIiIiIiIiIi6lUMo20//VCPDw3x6KOPynXXXSfXXHONiIgsWbJEli9fLkuXLpU77rjjqMc/9thjctZZZ8mvfvUrERG577775N1335XHH39clixZcszzY/Z3MMHRh9MkAxW4pr1aWVl8h2Zlb2l6h56naezg80pLcLKy+jxRkl4VZR18PW07aIeG4iKcFKpNs7SD21ajvR5zSQ8xKR/4mZRUYmnE+5VFeb1gHU4k17bJgbKUDj3PW6YkzyuqizvWN9of0tQKXvZaienQ6+UW4mn2JtonrD7lfKB/MotP19o+2J+YtR2yoYOfeyvP087tGq2HA4J7GOdud/xT/f3laR18Zsdo87nly+xOn2agEm+jMsHp4ZqOfm+kK7Zff2L2dfBKxouPnd6qKFjr6HVTfllyh57XKNEdfEWsoQumqfEqteoOTrNC4jr4TGWaHbzmYZ92HbO3gx2nXPd2tIf9Nfg9aEffa/mVc5G/9VlqN+19e1kHp6mdw7r7WFPTwfN3bQdfj+fvPixkiJg6f4zgJ554QhYtWiSFhYUybtw4+fOf/yxTpkyBj//3v/8td911l+zbt0+GDBkiDz30kJxzzjntft3O1KP7rs/nk/Xr18v06dObfmc2m2X69OmyevXqFp+zevXqZo8XEZkxYwZ8vNfrlerq6mY/RBQe2N9E4Yv9TRS+2N9E4Yv9TUS9gREMiREMtvLTvo/4w2VEgx69EVxaWirBYFCSk5t/ep6cnCyFhYUtPqewsLBdj1+4cKHExMQ0/WRmZnbOzBNRj2N/E4Uv9jdR+GJ/E4Uv9jcR9QpGqG0/7fDdEQ1GjhwpS5YsEZfLJUuXLm3x8d8d0WDEiBFy3333ycSJE+Xxxx/vjCXssLD/Nvv8+fOlqqqq6ScvL6+nZ4mIOgn7myh8sb+Jwhf7myh8sb+JqDcwQkabftqqO0Y06C49OkZwQkKCWCwWKSoqavb7oqIiSUlpeYzMlJSUdj3e4XCIw/HtWFDG/x8DJNTY0VFviehw/xg9PLg6+5uo87G/icIX+5sofLG/icJXb+nvviRgeFv9xm/g/4/UfeQQNkcex0T0EQ22bdvW4vTbO6JBd+nRG8F2u10mTZokK1eulIsuukhEREKhkKxcuVLmzp3b4nOmTZsmK1eulFtvvbXpd++++65MmzatTa9ZU1MjIiJ5C+4/pnknokP9FBPTseCvrsD+Juo87G+i8MX+Jgpf7G+i8NXb+rs3stvtkpKSIp8Uvtmmx0dFRR01hM2CBQvknnvu6YK56x169EawiMi8efNk9uzZMnnyZJkyZYosXrxY6urq5JprrhERkauuukrS09Nl4cKFIiJyyy23yCmnnCKPPPKInHvuufLiiy/KF198IX//+9/b9HppaWmSl5cn0dHRYjKZpLq6WjIzMyUvL0/cbneXLWd3CJdlCZflEAnfZYmOjpaamhpJS+vexPnWsL97v3BZDpHwXRb2d/cLl2UJl+UQCd9lYX93r3BZDhEuS2/F/u454bIcIlyW3qov9Hdv5HQ6Ze/eveLz+dr0eMMwxGQyNfvdkd8GFumeEQ26S4/fCL788sulpKRE7r77biksLJTx48fLihUrmr4+nZubK2bzt0MZn3DCCfLPf/5T7rzzTvnNb34jQ4YMkddee01Gjx7dptczm82SkZFx1O/dbnefP1AcFi7LEi7LIRKey9IbP4lkf/cd4bIcIuG5LOzvnhEuyxIuyyESnsvC/u5+4bIcIlyW3or93XPCZTlEuCy9VW/u797K6XSK0+ns1Gn2xIgGXaXHbwSLiMydOxeuuFWrVh31u0svvVQuvfTSLp4rIiIiIiIiIiIi6u+6e0SDrtIrbgQTERERERERERER9UbdPaJBV+n3N4IdDocsWLCgxTFA+ppwWZZwWQ4RLktP64vzjITLsoTLcohwWXpaX5xnJFyWJVyWQ4TL0tP64jy3JFyWQ4TL0lv1xWXpi/PcknBZDhEuS28VTssSTsJhRAOTYRhGT88EEREREREREREREXUdc+sPISIiIiIiIiIiIqK+jDeCiYiIiIiIiIiIiMIcbwQTERERERERERERhbk+fyP4iSeekOzsbHE6nTJ16lRZt25dm5734osvislkkosuuqjZ76+++moxmUzNfs4666xmjykvL5crrrhC3G63eDwe+clPfiK1tbW9blmOXI7DP4sWLWp6THZ29lH1Bx98sFuX5ZlnnjlqHpxOZ7PHGIYhd999t6SmpkpERIRMnz5ddu7c2ewxXbFdOnM5/H6/3H777TJmzBiJjIyUtLQ0ueqqqyQ/P7/ZdPrKNumOXmF/s78PY39337KIsL/bi/3N/hbpO9uE/d0+4dLf4dLbnb0s7G/2N/ub/c3+pn7H6MNefPFFw263G0uXLjW2bNliXHfddYbH4zGKiorU5+3du9dIT083TjrpJOPCCy9sVps9e7Zx1llnGQUFBU0/5eXlzR5z1llnGePGjTPWrFljfPzxx8bgwYONmTNn9rpl+e4yFBQUGEuXLjVMJpOxe/fupsdkZWUZv/vd75o9rra2tluXZdmyZYbb7W42D4WFhc0e8+CDDxoxMTHGa6+9Znz11VfGBRdcYAwcONBoaGhoekxnb5fOXo7Kykpj+vTpxksvvWRs27bNWL16tTFlyhRj0qRJzabTV7ZJV/cK+5v9zf7umWUxDPZ3e7C/2d+H9ZVtwv5uu3Dp73Dp7a5YFvY3+5v9zf5mf1N/06dvBE+ZMsW46aabmv4fDAaNtLQ0Y+HChfA5gUDAOOGEE4ynnnrKmD17dosnoiN/913ffPONISLG559/3vS7t956yzCZTMbBgwd71bIc6cILLzS+//3vN/tdVlaW8cc//rHD892S9i7LsmXLjJiYGDi9UChkpKSkGIsWLWr6XWVlpeFwOIwXXnjBMIyu2S6dvRwtWbdunSEixv79+5t+1xe2iWF0fa+wv9nf7O+2YX93zzx357Icif3ds8vREvZ3582zYbC/u7q/w6W3u2JZWsL+7rx5Ngz2N/u755alJexvIsPos0ND+Hw+Wb9+vUyfPr3pd2azWaZPny6rV6+Gz/vd734nSUlJ8pOf/AQ+ZtWqVZKUlCTDhg2TG264QcrKyppqq1evFo/HI5MnT2763fTp08VsNsvatWt73bIcVlRUJMuXL2/xsQ8++KDEx8fLhAkTZNGiRRIIBDq0HCIdX5ba2lrJysqSzMxMufDCC2XLli1Ntb1790phYWGzacbExMjUqVObptnZ26UrlqMlVVVVYjKZxOPxNPt9b98mh3VVr7C/2d/s755fFvZ369jf7G/2d+fMM/u76/o7XHq7q5alJezvzp1n9jf7u6eWpSXsbyIRa0/PQEeVlpZKMBiU5OTkZr9PTk6Wbdu2tficTz75RJ5++mnZuHEjnO5ZZ50lF198sQwcOFB2794tv/nNb+Tss8+W1atXi8VikcLCQklKSmr2HKvVKnFxcVJYWNirluW7nn32WYmOjpaLL7642e9vvvlmmThxosTFxclnn30m8+fPl4KCAnn00Ue7bVmGDRsmS5culbFjx0pVVZU8/PDDcsIJJ8iWLVskIyOjab22NM3Dtc7eLl2xHEdqbGyU22+/XWbOnClut7vp931hm4h0ba+wv9nf7O+eXRb2d9uwv9nf7O9jn2f2d9f2d7j0dlcty5HY3507z+xv9ndPLsuR2N9Eh/TZG8HtVVNTI7NmzZInn3xSEhIS4ON+9KMfNf17zJgxMnbsWMnJyZFVq1bJ6aef3h2z2qq2Lst3LV26VK644oqjBhyfN29e07/Hjh0rdrtdfvazn8nChQvF4XB06nwj06ZNk2nTpjX9/4QTTpARI0bI3/72N7nvvvu6ZR46Q3uWw+/3y2WXXSaGYchf//rXZrW+sk16U6+wv9nfXY39zf7uDOzv3on9zf7uDOHU3+HS2yLsb/Z352B/907s797XK9Q39NkbwQkJCWKxWKSoqKjZ74uKiiQlJeWox+/evVv27dsn559/ftPvQqGQiBz6lGT79u2Sk5Nz1PMGDRokCQkJsmvXLjn99NMlJSVFiouLmz0mEAhIeXl5i6/bG5bl448/lu3bt8tLL73U6rxMnTpVAoGA7Nu3T4YNG9bly9ISm80mEyZMkF27domIND2vqKhIUlNTm01z/PjxTY/pzO3SFctx2OGT0P79++X9999v9mlkS3rjNmlJZ/YK+5v9zf5uG/Y3+/uw3rgvsb973zZpCfu7Z5alu/o7XHq7q5blMPY3+7szl4X93X7s7+a6u7+pf+mzYwTb7XaZNGmSrFy5sul3oVBIVq5c2eyTlMOGDx8umzdvlo0bNzb9XHDBBXLaaafJxo0bJTMzs8XXOXDggJSVlTUdBKdNmyaVlZWyfv36pse8//77EgqFZOrUqb1yWZ5++mmZNGmSjBs3rtV52bhxo5jN5qP+pKCrlqUlwWBQNm/e3LTOBw4cKCkpKc2mWV1dLWvXrm2aZmdvl65YDpFvT0I7d+6U9957T+Lj41udTm/cJi3pzF5hf7O/2d9tw/5mfx/WG/cl9nfv2yYtYX/3zLJ0V3+HS2931bKIsL/Z352/LOzv9mN/N9fd/U39TI9G1R2jF1980XA4HMYzzzxjfPPNN8b1119veDweo7Cw0DAMw5g1a5Zxxx13wOcfmbpYU1Nj3Hbbbcbq1auNvXv3Gu+9954xceJEY8iQIUZjY2PT48466yxjwoQJxtq1a41PPvnEGDJkiDFz5sxetSyHVVVVGS6Xy/jrX/96VO2zzz4z/vjHPxobN240du/ebTz33HNGYmKicdVVV3Xrstx7773G22+/bezevdtYv3698aMf/chwOp3Gli1bmh7z4IMPGh6Px3j99deNTZs2GRdeeKExcOBAo6Ghoekxnb1dOns5fD6fccEFFxgZGRnGxo0bjYKCgqYfr9drGEbf2Sbd0Svsb7wsh7G/2d9dsSzs7/Zhf7O/DaPvbBP2d/uES3+HS293xbKwv9nf7G/2N/ub+ps+fSPYMAzjz3/+szFgwADDbrcbU6ZMMdasWdNUO+WUU4zZs2fD5x558K6vrzfOPPNMIzEx0bDZbEZWVpZx3XXXNTXrYWVlZcbMmTONqKgow+12G9dcc41RU1PTq5blsL/97W9GRESEUVlZeVRt/fr1xtSpU42YmBjD6XQaI0aMMB544IFmB5LuWJZbb7216bHJycnGOeecY2zYsKHZ9EKhkHHXXXcZycnJhsPhME7/f+3de2jN/wPH8dfHDjO0qTEsxchlkY7JZZLNJte0Ra5hs8kl1uQff0j5z1+YS6TMRiFyS+YWnRM1LMslxUIbytgfbs2lbN6/P5YPx9m33zkzm/P2fNSpfT6f87ltPXfq/dnns8xMU1VVFfCeP/Fzac3zqK6uNpKaffl8PmNM5PxM2qoV+m7+XL6jb/r+E+dC3+Gjb/qOlJ8JfYfPlr5tabu1z4W+6Zu+6Zu+8a9xjDGmLf7yGAAAAAAAAADQPiL2GcEAAAAAAAAAgNAwEAwAAAAAAAAAlmMgGAAAAAAAAAAsx0AwAAAAAAAAAFiOgWAAAAAAAAAAsBwDwQAAAAAAAABgOQaCAQAAAAAAAMByDAQDAAAAAAAAgOUYCMYf079/fxUVFbnTjuPozJkzbbKvcNXU1MhxHDmOI6/XG/b639ft3r17i48BiCT0DdiLvgF70TdgL/oGEAoGgv8BN27cUFRUlGbOnNmux1FbW6vp06dL+vGL/+7du+16TL+6cuWKrl69KkkqKChQcnJys+97/vy5oqKidPbsWUlN5/Y7H4RAS9F36OgbkYa+Q0ffiDT0HTr6RqSh79DRN9D2GAj+BxQXF6ugoEDXrl3Ty5cv2+04evfurejo6Hbbfyji4+MVHx8vScrPz9ejR49UXl4e9L7S0lIlJCRoxowZkprOLS4urk2PFZDoOxz0jUhD36Gjb0Qa+g4dfSPS0Hfo6BtoewwEW66+vl7Hjh3T6tWrNXPmTJWWlgYs9/v9chxHly5d0siRIxUTE6OMjAzV1dXpwoULSk5OVmxsrBYtWqRPnz6566Wnp2vt2rVau3at4uLi1KNHD23atEnGmP88lp9vTUlKSpIkjRw5Uo7jKD093d3uunXrAtbLzs5Wbm6uO11XV6dZs2YpJiZGSUlJOnz4cNC+3r17p+XLl6tnz56KjY1VRkaG7t27F/o3TpLX61VKSooOHDgQMN8Yo9LSUuXk5Mjj8YS1TaA10Td9w170Td+wF33TN+xF3/QN/O0YCLbc8ePHNXToUA0ZMkSLFy/WgQMHmv2w2Lx5s3bv3q3y8nK9ePFC8+bNU1FRkY4cOaKysjJdvnxZu3btCljn4MGD8ng8qqio0I4dO7Rt2zbt378/pOOqqKiQ1HQrSG1trU6dOhXyOeXm5urFixfy+Xw6ceKE9uzZo7q6uoD3zJ071/0wraysVEpKijIzM/XmzZuQ9yM1XZU8fvy4Pn786M7z+/2qrq5WXl5eWNsCWht90zfsRd/0DXvRN33DXvRN38Bfz8Bq48ePN0VFRcYYY75+/Wp69OhhfD6fu9zn8xlJ5sqVK+68LVu2GEnm6dOn7ryVK1eaqVOnutNpaWkmOTnZfPv2zZ23YcMGk5yc7E7369fPbN++3Z2WZE6fPm2MMaa6utpIMnfu3Ak43rS0NFNYWBgwLysry+Tk5BhjjKmqqjKSTEVFhbv84cOHRpK7r+vXr5vY2Fjz5cuXgO0MHDjQ7Nu3r9nv038dz9u3b03nzp1NSUmJO2/JkiVmwoQJQdsoKSkxcXFxzW4f+BPo+wf6hm3o+wf6hm3o+wf6hm3o+wf6Bv5O/EWwxaqqqlRRUaGFCxdKkjwej+bPn6/i4uKg944YMcL9ulevXurSpYsGDBgQMO/Xq37jxo2T4zjudGpqqh4/fqzGxsbWPhXXw4cP5fF4NGrUKHfe0KFDA/5b6L1791RfX6/4+Hh169bNfVVXV+vp06dh7a979+6aPXu2e3vKhw8fdPLkSeXn57fK+QAtRd/0DXvRN33DXvRN37AXfdM3EAl4wIrFiouL1dDQoMTERHeeMUbR0dHavXt3wMPVO3bs6H7tOE7A9Pd53759++PH3KFDh6BbZ75+/RrWNurr69WnTx/5/f6gZT9/YIUqPz9fmZmZevLkiXw+n6KiojR37tywtwO0Jvr2By2jb9iCvv1By+gbtqBvf9Ay+oYt6NsftIy+gb8PA8GWamho0KFDh7R161ZNmTIlYFl2draOHj2qVatW/dY+bt26FTB98+ZNDRo0SFFRUf933U6dOklS0NXLnj17qra21p1ubGzUgwcPNGnSJElNVx8bGhpUWVmp0aNHS2q68vru3Tt3nZSUFL169Uoej0f9+/dvyakFmDRpkpKSklRSUiKfz6cFCxaoa9euv71doKXom75hL/qmb9iLvukb9qJv+gYiBY+GsNS5c+f09u1b5efna/jw4QGvOXPmNHt7SrieP3+u9evXq6qqSkePHtWuXbtUWFgY0roJCQmKiYnRxYsX9fr1a71//16SlJGRobKyMpWVlenRo0davXp1wIfMkCFDNG3aNK1cuVK3bt1SZWWlli9frpiYGPc9kydPVmpqqrKzs3X58mXV1NSovLxcGzdu1O3bt8M+T8dxlJeXp7179+rGjRvcloJ2R9/0DXvRN33DXvRN37AXfdM3ECkYCLZUcXGxJk+eHHD7yXdz5szR7du3df/+/d/ax9KlS/X582eNGTNGa9asUWFhoVasWBHSuh6PRzt37tS+ffuUmJiorKwsSVJeXp5ycnK0dOlSpaWlacCAAe7VyO9KSkqUmJiotLQ0zZ49WytWrFBCQoK73HEcnT9/XhMnTtSyZcs0ePBgLViwQM+ePVOvXr1adK65ubl6//69hg0bprFjx7ZoG0BroW/6hr3om75hL/qmb9iLvukbiBSO+fWBMEAI0tPT5fV6VVRU1N6H0ipqamqUlJSkO3fuyOv1tmgbpaWlWrduXcAVVCAS0Xcw+oYt6DsYfcMW9B2MvmEL+g5G30DL8Ixg4Cfjx4+X1+tVeXl5WOt169ZNDQ0N6ty58x86MgC/i74Be9E3YC/6BuxF30DbYyAYkNS3b189fvxYkhQdHR32+nfv3pWkkB7UD6Bt0TdgL/oG7EXfgL3oG2g/PBoCAAAAAAAAACzHP4sDAAAAAAAAAMsxEAwAAAAAAAAAlmMgGAAAAAAAAAAsx0AwAAAAAAAAAFiOgWAAAAAAAAAAsBwDwQAAAAAAAABgOQaCAQAAAAAAAMByDAQDAAAAAAAAgOUYCAYAAAAAAAAAy/0PBdlPivTN7JwAAAAASUVORK5CYII=\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - specification_5_0.png" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABYIAAAEiCAYAAABEP6blAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACr+UlEQVR4nOzdd5hU9dk+8Gf6zNbZ3tmFpXdEQTB2FHuLJUQRa16MRA0xUYyKLUFjCcaYkGhA88aoyWuJCYpGBBtNQBCQDssu23vfqef3Bz9WF/Z+trh19v5c116X7jNz5pw55znnzHeH720yDMMQIiIiIiIiIiIiIgpZ5t5eASIiIiIiIiIiIiLqXhwIJiIiIiIiIiIiIgpxHAgmIiIiIiIiIiIiCnEcCCYiIiIiIiIiIiIKcRwIJiIiIiIiIiIiIgpxHAgmIiIiIiIiIiIiCnEcCCYiIiIiIiIiIiIKcRwIJiIiIiIiIiIiIgpxHAgmIiIiIiIiIiIiCnEcCKZul5WVJYsXL1Yf89BDD8nEiRN7ZH2IqGuwt4lCG3ucKDSxt4lCF/ubiNrCgWDqMi+99JK43e7jfv/FF1/Ij370o+b/N5lM8vbbb7d4zN133y0rV67s5jXsXoZhyIMPPigpKSnicrlkxowZsnfv3t5eLaLvbKD39ptvvinnnnuuxMXFiclkki1btvT2KhF1qYHc4z6fT+655x4ZN26chIeHS2pqqlx//fVSUFDQ26tG9J0N5N4WOTLYNXLkSAkPD5eYmBiZMWOGrF+/vrdXi6hLDPT+/ra5c+eKyWRqcwCciI7gQHCI83q9vb0KkpCQIGFhYepjIiIiJC4urofWqHv85je/kd/97neyZMkSWb9+vYSHh8vMmTOlqampt1eNQhB7u+fU19fL9773PXniiSd6e1VoAGGP94yGhgbZvHmzPPDAA7J582Z58803Zffu3XLJJZf09qpRiGJv95zhw4fL73//e9m2bZt89tlnkpWVJeeee66Ulpb29qpRiGJ/97y33npL1q1bJ6mpqb29KkT9h0Eh5fTTTzduv/1248477zTi4uKMM844wzAMw9i2bZtx3nnnGeHh4UZiYqJx3XXXGaWlpcc97/bbbzeioqKMuLg44/777zeCwWDzY5qamoyf/exnRmpqqhEWFmZMmTLFWLVqlWEYhrFq1SpDRFr8LFy40DAMw8jMzDR++9vfNv/3tx+TmZlpGIZhLFy40JgwYULzawUCAePhhx820tLSDLvdbkyYMMF47733musHDx40RMR44403jDPOOMNwuVzG+PHjjTVr1jQ/Jicnx7jooosMt9tthIWFGaNHjzaWL1/ehe/2N4LBoJGcnGw8+eSTzb+rqqoyHA6H8eqrr3bLa9LAwt7und7+tqPr9uWXX3b7a9HAwx7v/R4/asOGDYaIGIcOHeqx16TQxd7uO71dXV1tiIjx4Ycf9thrUmhjf/dufx8+fNhIS0sztm/f3mK7iUjHbwSHoJdfflnsdrt8/vnnsmTJEqmqqpKzzjpLJk2aJBs3bpQVK1ZIcXGxXH311cc9z2q1yoYNG+TZZ5+VZ555Rl588cXm+rx582Tt2rXy2muvyVdffSVXXXWVnHfeebJ3716ZPn26LF68WKKioqSwsFAKCwvl7rvvPm7dvvjiCxERWbZsmRQWFjb//7GeffZZefrpp+Wpp56Sr776SmbOnCmXXHLJcVMt/PKXv5S7775btmzZIsOHD5dZs2aJ3+8XEZHbb79dPB6PfPLJJ7Jt2zZ54oknJCIiAr5vc+fOlYiICPUHOXjwoBQVFcmMGTOafxcdHS1Tp06VtWvXwucRdQR7u+d7m6gnscf7Ro9XV1eLyWRq9Z/cEnUGe7v3e9vr9cqf//xniY6OlgkTJrT7eURtYX/3Tn8Hg0GZPXu2/PznP5cxY8aojyWiY/T2SHRv+vjjj42LLrrISElJMUTEeOutt7r19Y79i9zRnx//+Mdd9hqnn366MWnSpBa/e/TRR41zzz23xe/y8vIMETF2797d/LxRo0a1+CvkPffcY4waNcowDMM4dOiQYbFYjPz8/BbLOfvss40FCxYYhmEYy5YtM6Kjo49bp2P/Otfae33sXyVTU1ONX/3qVy0ec9JJJzW/V0f/Kvniiy8213fs2GGIiLFz507DMAxj3LhxxkMPPXTc+iDFxcXG3r171R/k888/N0TEKCgoaPH7q666yrj66qvbvQ5ECHu7d3r72/iNYOpO7PHe73HDMIzGxkbjhBNOMH74wx+2+zlEGvZ27/b2v//9byM8PNwwmUxGamqqsWHDhna/PlFb2N+919+//vWvjXPOOaf5PeQ3gonaz9ozw819U319vUyYMEFuuukmueKKK7r99b744gsJBALN/799+3Y555xz5KqrrurS15k8eXKL/9+6dausWrWq1b+q7d+/X4YPHy4iIieffLKYTKbm2rRp0+Tpp5+WQCAg27Ztk0Ag0PzYozweT5fPL1RTUyMFBQVyyimntPj9KaecIlu3bm3xu/Hjxzf/d0pKioiIlJSUyMiRI+WOO+6Q2267TT744AOZMWOGfP/732/x+GMlJiZKYmJiF24JUddib7O3KbSxx3u3x30+n1x99dViGIb88Y9//M7LIzqKvd17vX3mmWfKli1bpKysTF544QW5+uqrZf369bwvoC7D/u75/t60aZM8++yzsnnz5hbvIRG1z4AeCD7//PPl/PPPh3WPxyO//OUv5dVXX5WqqioZO3asPPHEE3LGGWd06vUSEhJa/P/jjz8u2dnZcvrpp3dqeUh4eHiL/6+rq5OLL7641aCjoyfwttTV1YnFYpFNmzaJxWJpUevNf1Zts9ma//voRSAYDIqIyC233CIzZ86U5cuXywcffCCLFi2Sp59+Wn7yk5+0uqy5c+fK3/72N/X16urqWv19cnKyiIgUFxe3eE+Li4tl4sSJ7d4eIg17u+d7m6gnscd7r8ePDgIfOnRIPvroI4mKiurI5hCp2Nu919vh4eEydOhQGTp0qJx88skybNgw+ctf/iILFizoyGYRQezvnu/vTz/9VEpKSmTQoEHNvwsEAvKzn/1MFi9eLDk5OR3ZLKIBZ0APBLdl3rx58vXXX8trr70mqamp8tZbb8l5550n27Ztk2HDhn2nZXu9Xvnb3/4m8+fP7/a/Yp1wwgnyxhtvSFZWlliteJevX7++xf+vW7dOhg0bJhaLRSZNmiSBQEBKSkrk1FNPbfX5dru9xTeeEZvNpj4uKipKUlNT5fPPP28xSP7555/LlClT2lz+t2VkZMjcuXNl7ty5smDBAnnhhRfgxeiRRx5pdW6l9hg8eLAkJyfLypUrmwd+a2pqZP369XLbbbd1aplEbWFvd39vE/Um9njP9PjRQeC9e/fKqlWrQiZJnfou9nbvXb+DwaB4PJ4uXSbRt7G/u7+/Z8+e3SKbR0Rk5syZMnv2bLnxxhs7tUyigYQDwUBubq4sW7ZMcnNzJTU1VURE7r77blmxYoUsW7ZMfv3rX3+n5b/99ttSVVUlN9xwQxesre7222+XF154QWbNmiW/+MUvJDY2Vvbt2yevvfaavPjii81/ZczNzZX58+fL//zP/8jmzZvlueeek6efflpERIYPHy7XXnutXH/99fL000/LpEmTpLS0VFauXCnjx4+XCy+8ULKysqSurk5WrlwpEyZMkLCwMAkLCztufbKysmTlypVyyimniMPhkJiYmOMe8/Of/1wWLlwo2dnZMnHiRFm2bJls2bJFXnnllXZv91133SXnn3++DB8+XCorK2XVqlUyatQo+Pjv8s9TTCaT3HXXXfLYY4/JsGHDZPDgwfLAAw9IamqqXHbZZZ1aJlFb2Nvd39siIhUVFZKbmysFBQUiIrJ7924ROfIvAY7+awCi7sAe7/4e9/l8cuWVV8rmzZvlP//5jwQCASkqKhIRkdjYWLHb7Z1aLpGGvd39vV1fXy+/+tWv5JJLLpGUlBQpKyuT559/XvLz87t8Wj6ib2N/d39/x8XFHfdHW5vNJsnJyTJixIhOLZNoQOntSYr7CjlmEvX//Oc/hogY4eHhLX6sVmtz+NfOnTtbDX/79s8999zT6uude+65xkUXXdTl23H66acbd95553G/37Nnj3H55ZcbbrfbcLlcxsiRI4277rqreXL1008/3fjxj39szJ0714iKijJiYmKM++67r8UE9l6v13jwwQeNrKwsw2azGSkpKcbll19ufPXVV82PmTt3rhEXF2eIiLFw4ULDMI6fuP2dd94xhg4dalitViMzM9MwjOMnrA8EAsZDDz1kpKWlGTabzZgwYYLx3nvvNddbC22qrKw0RMRYtWqVYRiGMW/ePCM7O9twOBxGQkKCMXv2bKOsrKxzb2w7BINB44EHHjCSkpIMh8NhnH322c2BAETfFXu793p72bJlrZ7fj74PRF2BPd47PX50fVr7Obo+RN8Fe7t3eruxsdG4/PLLjdTUVMNutxspKSnGJZdcwrA46lLs7967Pz8Ww+KI2s9kGIbRvUPN/YPJZJK33nqr+dubr7/+ulx77bWyY8eOVuflSU5OFq/XKwcOHFCXGxcXd9zcwIcOHZIhQ4bIm2++KZdeemmXbkdnnXHGGTJx4kRZvHhxb68KEXUh9jZRaGOPE4Um9jZR6GJ/E1Fv4tQQQHvn5Rk5cmSHl71s2TJJTEyUCy+88LuuJhEREREREREREVGbBvRAcF1dnezbt6/5/w8ePChbtmyR2NjYds3L0xnBYFCWLVsmc+bMUSePJyIiIiIiIiIiIuoqA3pqiNWrV8uZZ5553O/nzJkjL730kvh8Pnnsscfkr3/9q+Tn50t8fLycfPLJ8vDDD8u4ceM69ZoffPCBzJw5U3bv3i3Dhw//rptARERERERERERE1KYBPRBMREREREREREREpPnkk0/kySeflE2bNklhYWGLnDFk9erVMn/+fNmxY4dkZGTI/fffLzfccEOPrC9i7tVXJyIiIiIiIiIiIurD6uvrZcKECfL888+36/EHDx6UCy+8UM4880zZsmWL3HXXXXLLLbfI+++/381rquvVgeBPPvlELr74YklNTRWTySRvv/12m89ZvXq1nHDCCeJwOGTo0KHy0ksvdft6EhERERERERER0cB0/vnny2OPPSaXX355ux6/ZMkSGTx4sDz99NMyatQomTdvnlx55ZXy29/+tpvXVNeraWVHR9NvuukmueKKK9p8/NHR9Llz58orr7wiK1eulFtuuUVSUlJk5syZ7XrNYDAoBQUFEhkZKSaT6btuAtGAZBiG1NbWSmpqqpjNfecfFrC/ib479jdR6GJ/E4Uu9jdR6Oqr/d1XNTU1idfrbddjDcM47tzkcDjE4XB85/VYu3atzJgxo8XvZs6cKXfdddd3XvZ30asDweeff76cf/757X78t0fTRURGjRoln332mfz2t79t90BwQUGBZGRkdGp9iailvLw8SU9P7+3VaMb+Juo67G+i0MX+Jgpd7G+i0NXX+rsvampqksGZEVJUEmjX4yMiIqSurq7F7xYuXCgPPfTQd16XoqIiSUpKavG7pKQkqampkcbGRnG5XN/5NTqjVweCO6orRtMjIyNFRCTj4fvF7HQeVw+4gvC5Jh/+C6aj1AJrZh9eH+/oRljLSiqDteq/4+b3RuL1dJ5bCmuvjv47rF385zthLW473sCiaTZY23Tdi7BWF/TA2umv3g5rMTtx9mHlCPy+3HP5G7C2NPcUWDOWJsBa0IZfr/R8vH3DUktgLefjTFiz1cKS1Gfh49pw4Jq5qfW/NgabmiRv4WPN/dRXtNXfQWVbJYD3l70M97cm45Q8WGvw2WGt6tMkWEv+ognW8m7CF7vhybj3936eBWupn+O/pBachrdh07W4vzUnvHYzrGX/4RCsHbg1C9bSpxyGtZzCeFgb9Cr+a3tdOj631c/EzRgIKn/B3xsBS1Z8qZCmBKW/rficaPa3fsz32/52KtdvcC4TEbFX4Frw+JdpFj+xGNa0/ex/B183HFV4Gyw34dczC97PxWtSYS1xM75+F5yObxGfvvhlWDvL5Ye1Sf/A/Z11/wZYy71/Kqz9Y9azsHbF5/8Daxmv431Un4r723VlEaxp5/XabXGw5sC3e1I3WPkQY1P6m9dvERGxVSjXb+WLielT8XWjsDoK1iLew++rqxj3hvETfBCcl7wT1v72f2fBWlQOfs8qR+Lj/5Lz1sHawoTtsHbCq7fAWuJGfByXjcP76L3ZuL9nfIr7e8gL+PXKx4fDWv1pdbBmsSjXmM34mAgo1xFfdCfvzz0h1t/KrZFJibW3VeInGsoohz8D30s7w/F9r/VzvJ+1z/v2mbi/UyJrYG3np0NgbfCzO2DtwN1jYG3zrM7dn0/+X9zfcdvxsVo+Hu+jhEn4eqrdRwXewPdRAeXzd+TlBbBWUBENa7Zt+Jxhxqd1qc9Urt8W5frdz/q7L/J6vVJUEpCDmzIlKlL/9nRNbVAGTz4keXl5EhX1TY93xbeB+7J+NRDcmdF0j8cjHs83g261tUc+oJudzlYvRIY2EGzFJxaLUxkIVo49cxg+CVjD8cFnseO7CosDr6e2zEilSSwO/HpWm7LtTvxhKipSeZ5y8m9tv32zLvj9tDjx++KKwK2gvWeGDa+LNhBsDuvcPtL2g0X5lw9m5bhWbzTbmEa8t/95V0f7W5SBIu2DpNbfGm1fWpUBA7XflLO2OQzfcNjCldfTesqq9SJeptbfGrW/zZ3cBmU/mF2d23aLHZ/bLGHKpwHt046yDcrnT72/tYFg5Y+bIv2wv7Xrt0m7vmn7BJe048qk7GdDuX5bbcpAsHYcKwPBnb9+45NNuNLfUS7lmNP61KT0lPK8COXexRzW9f2tXqO9+BylbbtF+axhdnVyIJjXbxFp4/qtvAXqfvYp+1Ltb2UgWHk9p3KPqve3cj5x4uPDEdHJe3f1/hwfx9o+0j6b6Ndv5fW0z1BheB+pA8HKftCuI9oXkNT7c+WaJtIP+1trU2Ug2NLYuYHgoPIFPIvyGU3rN7PylmvX707fn5s6d73p7P25ui7KucasnGs6ex8lSg+L8vlb/TzQpF2jlf2uvJ3q9VsbCO7j/d2fhEcc+dEE/v+uiIqKajEQ3FWSk5OluLjllzmKi4slKiqq174NLNLLYXE9YdGiRRIdHd38w3+WQhQ62N9EoYv9TRS62N9EoYv9TUR9QVCMdv10p2nTpsnKlStb/O6///2vTJs2rVtfty39aiC4M6PpCxYskOrq6uafvDz8T7WJqH9hfxOFLvY3UehifxOFLvY3EfUFPiPQrp+OqKurky1btsiWLVtEROTgwYOyZcsWyc3NFZEj57/rr7+++fFz586VAwcOyC9+8QvZtWuX/OEPf5B//OMf8tOf/rTLtrMz+tXUENOmTZN33323xe/aGk3vqrQ/Iup72N9EoYv9TRS62N9EoYv9TUR9QXu+8dvRbwRv3LhRzjzzzOb/nz9/voiIzJkzR1566SUpLCxsHhQWERk8eLAsX75cfvrTn8qzzz4r6enp8uKLL8rMmTM79LpdrVcHguvq6mTfvn3N/390ND02NlYGDRokCxYskPz8fPnrX/8qIkdG03//+9/LL37xC7npppvko48+kn/84x+yfPnyLlsnE5icW0TEWqfMU4Wzv6QhDc+bkxyDQ4X27E+BtVQPPmBrY5R5Y3x4l7/fkAVrYUX49bS5cG2jqmHtqYpsWJvgwqFQrjGVsBZ5Hw7U8P5oOqz9reBkWKtuwHO3WBPxxEC2BuU9q8TzOu0x4aCwQCI+lmy1yrGr1Hzm7v3nEH2KoQTCVeJ9qQV1af1dVIPnGaotwBP9R+IMCymcjuepunnsf2HtUCMOKsorxK9nrVfmu81WaoovPPh55sH1+IlhuBcdFfhpI6JxAGNJLd4PFaPcsGYoc4I1VOL1TE3HK1oYHQZr1obOXZt88UqKRRtzBPc7yjyhZi+umZSpR/3huDjcjY+rVRtxUMvgQ3hC9+osfG04Kz4X1t49OArWErbiY8D+3hewFn37CFirD2of8JV5UFOVk5sicTP+tsaGqwfBWmZyOawVT0mDNS18tTQHh9QMGYwD/crdeBus9fiEos2BGTAG0PVbOV3ZqvH7p80v6onF+ySvIgbWvMX4HO9uxC9YPhbPvZtkxusSUDY+bgd+XuRGHHhXe7Ub1n6d+BWsaQJKfwct+NyWthp/iDp3Ig6oOnEIPifumTIc1sILlBC9CnyPdfrEXbD2cSE+B7uKlM8Kyv25t1/9u93uo93jaPfn9Rm4N05Sjp0vduCAtqyd+P61TOnvgBfX/MpcuImblJDFK8fiZSbj+4wdvgZY29KkhNGnKmE0W/D4QvRefE486Ty8H1Yo9zWO8M7d0+UcwJ+xR43A58tdKficH5GD95+tCve+en9OXSYohgS6eCD4jDPOEEO5/3rppZdafc6XX37Zodfpbr06EBwqo+lERERERERERETU+7rjG8GholcHgkNlNJ2IiIiIiIiIiIh6n88wxNfGv55qqx6q+tUcwURERERERERERERIoB1TQ7RVD1UcCCYiIiIiIiIiIqKQEDCO/LT1mIGIA8HHULIaxIrnVhcfzoQSZwoOPyqrDoc1RyGeWN6D843EG4tnSR8XWwZrj355AawN3oM33hTE3ZMdh4Na7o7dD2vbvHj2/5NTcJDc3hknwlrS8hxYa7oat8Ldo3AA18M534e18EN48nhXIZ48PnYYDtgrtUXAmrcc18zKfPQmJWAp1JiUwCizkoHgxxleYorDISdBJZwu/CA+BlwVuKfKsnAt1VYFa//JHwdryR/j84Kpqg7WYiLx+UuTasWBMjeOXgtrH9snwVpYMX5f/rt/JKy5I/C5rTwbn0ujd+P+DsvB5+66eByyZXLjgzBQjgNsbHgXiT9i4KTNmJTwO1sNrgVwBohIDN4n6/MzYc1ZjPu7Nh3vk6ox+JibHrEH1j604WCkiO041K7m+zgoNdpZAGt5Phw++YtivC73TX4P1l649nJYc5XigJ5fbcP3LjMH4wDZf8fjQF57Nd5Hznzc3xVJ+GLhzsDX9obyWFiz1uNjN2gfOJ9eTE14n2jhQEG8uyQyHacChjtw71d+je+3Ag68TxrS8YpG2fG9xF+247Djoat3w1rxVaNh7aej3oS1fzfg43hrAw5nnDgYhy1V1uLzZX0aDpJzh+HPEXek4vvzOUOGwlr8Fvxeuw7jC8KGBLzt9iT8ucVXi48XjXZchxptWy1KILs3GteiB+Fz7o4SHBoWuRt/JrR48P1rQwa+7p+bdgDWdlXhdXFU4mtf5EYcTnr+XfizcqoSdrxGCYJ1ReNtDyvC75lhxfevb22bCGsvn7oU1m7M+x9YG/w2Pnf7wvG67InE+yEYjgeIvG58bVI/fyvXNOo6wf//09ZjBiIOBBMREREREREREVFI8Bsm8SlfzDr6mIGIA8FEREREREREREQUEgJikoDoA71t1UMVB4KJiIiIiIiIiIgoJHAgGONAMBEREREREREREYWEoGFSM3uOPmYg4kDwsZTgLEOZXN0fgaeZjlfCiAoPxMNaOM6YU8NtzMk4sOCnae/D2ux182DNeigH1govHwxr50Z9BWtnf30xrP0gbSOsTYnCE+6vmTgR1lI+xME3h7ZOg7W3HTigypaOd1LUpzhIK+DAx9nhLBzCkz4Ih2bkx+FwD1uNErLiV05+ltAKojFrYXE4j0Ea43B/m834PaovxAEhGXtw8EBDPD7ZmBJxWMMhDz6fFG7HIQhhO3BAW8lPcEjN70c+D2si+JhLseDeuCsGhzu9ddIMWItbg0MzyibibT/7nC2wtsmVAWtVW3DNVoePs+pSvO1JaVWwVlqJw3Tslfi9tjQpQVNKqFF/pJ3LtOu3Lwr3txHEy2yoxaEjGVtxf5ePwiuTPT4P1jS1u2NgLXwS3s9a2GusE99LbK7BwU9LMj6CtVtycQ9rX8iwfYDvCXzn4Ov36DH4uv/lmCJYa9yiBMnhfDEpzVCSfC34ODMpx6B2/TYrAYmGNbT6u7PX76YE3IvWAH5vi0pwClXyLry/tDBIrb+rPPh8YuTh+7v603A4o0/Jc91Wnw5rcTZ8b3t//C5Yuy+Ir1MrU7Lx672Dl7l3PA57/UP4WXiZw/D9cs1gfK8UlYP7pjgD7wdTmJIKFY6PF2st+1tE7+9gJz9/2y2492tr8Adpt3KOLx+N+9ScjPtmUwm+ZyzfhY/HEYfwNaxmKl5mbiPeiI0enHD/QfkYWNsx7RVYm/DZbbAWuxOfoC2l+Jxx754rYC0quwrWGhPcsKaFt/nr8bCYyY6PM0+scv1W+tvSiGtB50CNL+t6/EYwxoFgIiIiIiIiIiIiCgl+wyI+Aw+6H3kMB4KJiIiIiIiIiIiI+i1+IxjjQDARERERERERERGFhIBhlkAb3wgOhNZMO+3GgWAiIiIiIiIiIiIKCUExSVDJrTnymIE5EjxwB4IN05GfY5iUubkDDlwLuvCE9IWFOMTFXo5nwI/ej1emcgQ+oM8fisOWlpaeBmvhecpE/ZVVsFafBkvyeNJWWPtv1A5Yu2/X5bC2ZuKrsLYoETeydUgWrEUo235gWCysOe14AvyycXgfJa/Dz3MW2GCt1I3DxwyHEnhkUcLi8KGrBiz1aaC/teAsL85OEEsSDk2KicRhkJU5OFikIQG/Xi3OYZKhKSWwVqRshNbfdT84GdcycE+Ns3tg7Z91ybCW58M9lWGrgLXKEXgb4lbiED2tv3fW4PX0BXAD1GbgZYbhXSSuw7i/a2PxRUYLjghaOxc202/D4tD1WzmX+cOVbY3xwlJ4BD7G/V/hMKn6RPxy2v3ohBgcDHPAixcaeVAJFVICLYum4pX5ZMiHsDavYAqsXb3vIliLd9bBWvkYvA0xkTiELXET3r4/jsT3PEElCLBxGK4pebViLVNuqzPxtSJoU24+a5V04AGUJ2NSwpz9YUp/R+ATg8+Hz/HWIhxi5AtX7iXwLb9kR5bBWrkH399VKv3tqMT3k40pePuGuEphLah8e+ryfefC2mvZy2Htn2Nw8Gz8WhyS7CrG276jFF+/r8v+AtZezMbbkL4Kn/MdRfgaHXFiFayVB/H5y6jHy1Tvz/vrJ/hOfP7WrplGJE7/qm3EwW72vfi86se37uLBt69y+7hPcFHxj/+didclxQ1rJZPxG/PpoE9hTevhw7X4vuapChz42JiMz8HOP+HP+xHDJ8LaWTP2wNrKwhGwVjEavy9JG/Hx4o3G9+dNmfg+UcLxMk3V+DqiHfMD6NLe7byGRWxtDGh4++nHoe+qv15GiIiIiIiIiIiIiFo48o1gfQ7gtuqhigPBREREREREREREFBKCYpYAp4ZoFQeCiYiIiIiIiIiIKCS0LyyOA8FERERERERERERE/ZbPsIivjTmCfQNzHJgDwcfSwigC4Xjqbocbhwt46/BE4WGFeF0a4/FfL5pG4GCkq2PXw9qdX/8A1pI/r4W1yisnwlpwMA5AaTTw+7Jg59Wwpnm2Ek8QH0jEk7kHEnCQVuJGvA25p+D9d9nQr2Dt9ZKTYK1iNJ6Q3oTnnBdPBQ4+sEUroUYefCxpAWqhRvuDoD8Sp3LYlLeotBQfV06cMaeG03kz8HEc68DH6mf5Q2AtZQ3ub0sZrtX9AKdm3Fd0OqytOjQM1tzh+I35fPybsHbvIHzeM2JwGIsWuHKoGif7qGFSmTigJzIXX1otjXiZ9WX4vbZG4tfzN+ED21qr/xU8lGjBeL4ofP2OjamHtYpSfFxF4LaRgJLv5RmHe/jDw8PxExXJH5fDmqkJHzueG/CxusmLz0Nby3FKrBayeHo8Dn/ZOREHP5VfMRbWovfj84nHhO/uR8TjsKz1qeF4mRX4nsBZooRyRiuJw0rgsC8SH7tmTwhevzsRJqWGQSr/5NNXq9yf1+L31lWO91f59/BN3PiIw7D2/GF8PY3Lw8usy8D3heGjKmHNosQRLTswDdZsZrztz1SMgTVJx31afBoOwkz5HJ+fD56E999rOZNhzZuGz4m1mXiZUQfxsVQ6CN/U2SPwudQXhj8PWOu163dojVxon7+9MfiYi4zB19PafHz9TshRzgsReF08WfizVq6SJPfm5hNgLS4K72f3vnxYMw1NhTXNzqIkWDMr4bIVfnxdtA3FN0TmCPy8lJU4QHPFzFGwNjwGX7/XpOH90LQP35848apIoxIQbXHh87N272keQJ+/e1OgHVNDBELsfNpeHAgmIiIiIiIiIiKikBA0zBJsY2qIIKeGICIiIiIiIiIiIuq/+I1gjAPBREREREREREREFBL8Ym5zjmA/B4KJiIiIiIiIiIiI+q+AYZZAG1NDtFUPVRwIPkbQjv8iEHTiCb8DfiWspxgHD1hwfoA04uwEcYbjJy4uOBfW6jfFwVpSGZ6Q3laPQ4zOzsbhLy4TDkepyHXDmvaHmTPH7oS1rSPSYW1/Np50Pmadktq3C0/GX5WJ3xeXGwdb+SJwOETCVhyKUGLFLRtUAgtNbny8GCVKgE2ICTjxgWWKxuEh3holHKgA78uIw/j1GhNwSMC5o7+GtQQ7DmTYuB0f4+YGHCbVMAqfbG4b8S6szY3G54zsNZNgrdAUAWu7RuFgmJEZRbBWMSET1pJe3AxrB1NwgMeEM/C5bb8FXw/qU/F51l4DS2Ktwn+x9tuUpKQofOwG/PjYDTUBl9LfyjmwvEgJfMzH/W3Bp3hpSMG1jHgc4FTVhFPmGrbiAJSqcfj4sDXg98VmxueFyXZ87BTsxucMw4pfb5Mb9+nEeByktTmYAGsVo/F1uG4Lrp16xRpYKxuEn3c4NwPWbFp/V+P+DiphkEHl2mSUD6D+dig3hjHKzXQQ359r12/3XtxTJZPwvkxJxolDThPel74d0bAWvjkH1sp/mAVryeH4eqr9U9mqQ3hdWgvyO2pPHA6hGpqMw50KwvF5oSkJh+HJQbwfLrxgE6z9n2cirNWn4uuBdkxYS/Cx5PHh99rkUD5bKgFqoUbtb+Vt8PrxMeAowzV7HX7fm+LwC07OzoW1Mg++t7Urx0fSW/hes+qsobB2WtY2WNN4y5U0Wz/e9l9PxwHpmvevOAXW4rfgc1TtlzhkbssofO1zKJ+/65PxPtICSR3KtcKj3O+JMnZk8unfUqWuERSTBLWTyP9/zEDEgWAiIiIiIiIiIiIKCfxGMMaBYCIiIiIiIiIiIgoJ7QuL40AwERERERERERERUb/lNyxth8UZDIsjIiIiIiIiIiIi6reChlmCbUz90FY9VHEgmIiIiIiIiIiIiEJCQEwSaCMMrq16qOJA8DGCdiUyUhGodMBaBA7KFYsHfxW9YVAA1s7NOABrOyqTYc1ejdfFn3MI1ipnpcFakgPHZJcHcRpo9Nf4a/pNOCBcLIL3UaQVJ4XWZOEmj/kCr0t4Pl6X1Tk4zXVSGn7iusohsNaUi9vShA8J8RfjFNigCz/RrCS8m0LsX0oE7XiDjCZ8DJiUmnZ8aAm09cNxerjWUx8VDYe1qIP49Qw7Pq6KJ+NapR+n9p614xK8LnvxX1ctHliShZPwMie48Zv9TkYWrNkumABrSV/g3tiUlQFrpw7dD2sfp7thzblVOZYO43NUdZTyz5qU/g7a8DFvVs4n/ZG2rRLAx6O5QUkWV66Zjhr8elXj8Zs7LqYQ1tYVZ8Ja9D7lXK2ca4qm4O37+6hXYS3XjxvV/TV+P304lFsWXfRvWFtYcAGsVQ3HvRG/FW98wInX8+WDJ8PanMHrYO2phFRYs9Xi99rShLfBX4kT0M0xXljTrmkh199K+rrZovR+Fb6+uYrx0xoS8LHjSfbDWrwL3/c+tgkf46mb8A5rHIvvwQ0cZi/xzgZYG+kogLWwfOV6o7zVFePDYO2UOPy55TUXPu95I/B+0PbfG/vxdT8uEu+jvCH4XtrSiN9sax1el4ALb4MRrly/lc+kZn9oDVxo5zIJw/3mKcLHXLTy+dsbid+/2iF4n0x14xvtv+0/CdZs+LZegoPw5/bysfjYqfU5Ye0LD/6M4Szs3D3PikZ8nRrjOgxrb+JLpiRuUM6lW/DxX5yNz+t3TFgFa78tOw+/3kalT834ePEq1wpRetgYQJ+/e1N3fSP4+eeflyeffFKKiopkwoQJ8txzz8mUKVPg4xcvXix//OMfJTc3V+Lj4+XKK6+URYsWidOJ+7i7cSCYiIiIiIiIiIiIQoLPMIuljTmCfUbHvgj6+uuvy/z582XJkiUydepUWbx4scycOVN2794tiYmJxz3+73//u9x7772ydOlSmT59uuzZs0duuOEGMZlM8swzz3TotbtSr0+I8fzzz0tWVpY4nU6ZOnWqbNiwQX384sWLZcSIEeJyuSQjI0N++tOfSlMT/hYoERERERERERERDQwBw9yun4545pln5NZbb5Ubb7xRRo8eLUuWLJGwsDBZunRpq49fs2aNnHLKKfLDH/5QsrKy5Nxzz5VZs2a1Oe7Z3Xp1IPjoaPrChQtl8+bNMmHCBJk5c6aUlJS0+vijo+kLFy6UnTt3yl/+8hd5/fXX5b777uvhNSciIiIiIiIiIqK+xhCTBNv4MTowR7DX65VNmzbJjBkzmn9nNptlxowZsnbt2lafM336dNm0aVPzwO+BAwfk3XfflQsuwNNF9YRenRri26PpIiJLliyR5cuXy9KlS+Xee+897vHfHk0XEcnKypJZs2bJ+vXre3S9iYiIiIiIiIiIqO9pzzd+j9ZralpO5u1wOMThaJkDVlZWJoFAQJKSklr8PikpSXbt2tXq8n/4wx9KWVmZfO973xPDMMTv98vcuXN7/cusvTYQfHQ0fcGCBc2/a89o+t/+9jfZsGGDTJkypXk0ffbs2fB1PB6PeDzfBJ4072CT0fpM3FrYjDJzt00Jo9CmJakchf8CkTioEtbWFw2CtercaFjL3Iknj6+ePQ3W6ofg510evQnWrt93JaxpQTtJG3DqwuzxN8HaL8e8B2v/HTcS1mp3xsNa7C489UjVaBxSsMuJE+/GDsOT6u8tHAxrkbmwJP5wfCwZNmUCfG2yel/fDqPocH8rPWwK4G211nUuGKnJqbx/Fjwf0acl2bBWsPv4uYeOysrBoUJF0/F5oWkwft6CuD2w9n7RKFgLKuc9LdfnysSNsHZVBE6xeG3kibA26F+1sBYMx0GfwWrc3ycpyXyfuvH+a4rHQTQ2vJpircJvqE95Q03am60c831Bx6/fyhxfjUqIV4MWEIIXWTUMv3+WMHzN3FeHrzelB+JgLToKv56rDIfbGNmNsDbZjsNfXqpJh7XEDbgXK8ZHwdpmDw7FuS8FX78vG43veYJf45NwyqoKWNs1IhbW/uQ7FdZscfieIJCPwzVNOBNHrHVKfzuUAFntmFcCEvuCDve3cioL1uIQL0elEvoWg5ep3bvbonCQ4p5SfO8XrML9poURWRvwwdMwHL8xrw7+CNa0sNeIw3iZPuVeM2jgWoEH34M0DMP3ILG78I4w+3Gttki5OcOnIbE48Xvti8THmRmf8sVSj49Bv3IPbmgBan08LK6j/W048TXMpBxXjnLl2o4PK6lPxcs0ReOd+coBfK9Zcxhf+1L3K6FhJrwu5lH4xjDMis9DuX58fUvcjI/x+mR8vXn8wPmwdnUaHgsIDsfhjCa/EgC/FyfsFVRGwtruBtzgpgi8b+tTcWiXFeduil05Br2pyr2ZA2+7qalvX7/7E59hEXM75wjOyGgZEr5w4UJ56KGHvvM6rF69Wn7961/LH/7wB5k6dars27dP7rzzTnn00UflgQce+M7L76xeGwjuqdH0RYsWycMPP9yl605EfQP7myh0sb+JQhf7myh0sb+JqC8IGib1j5RHHyMikpeXJ1FR3/xB59hvA4uIxMfHi8VikeLi4ha/Ly4uluTk1v8I8cADD8js2bPllltuERGRcePGSX19vfzoRz+SX/7yl2I2987Af7/6c8O3R9M3b94sb775pixfvlweffRR+JwFCxZIdXV1809eXl4PrjERdSf2N1HoYn8ThS72N1HoYn8TUV8QFHO7fkREoqKiWvy0NhBst9tl8uTJsnLlym9eIxiUlStXyrRprf/r+oaGhuMGey2WI99SNgzlX350s177RnBPjaa3NrcHEYUG9jdR6GJ/E4Uu9jdR6GJ/E1FfEDBMEmjjG8Ft1Y81f/58mTNnjpx44okyZcoUWbx4sdTX1zfnnl1//fWSlpYmixYtEhGRiy++WJ555hmZNGlS89QQDzzwgFx88cXNA8K9odcGgr89mn7ZZZeJyDej6fPmzWv1OX11NJ2IiIiIiIiIiIh6X0emhmiva665RkpLS+XBBx+UoqIimThxoqxYsaJ5ytvc3NwWY5b333+/mEwmuf/++yU/P18SEhLk4osvll/96lcd36Au1GsDwSJ9dDRdGU+21OG3y1miLFM5tnxJeNLylAg8SXpJAw5BaFImLXfl42U2JLlh7bITvoS1DCueCL2yEYctxb23F9ZKLh0Oaz4fDpL7QQQO2Fs77GtY+yQdT/5vacKTubuK8Owq9mz8vsQ68KzznlR8TLhKlECUCiXAw47XM6hMVh9ylFAOsxYmpQROaNeOhjR8DCQk4F4sqsaBE1H78L50FOPesGbh4Ihzx+De0OTm49CrUf/MwU+04vf6iUtnwlr90NX49bIKYa3wzCxYS3l9N6xFHBwBa2+MmARrMW4cjFE2BF9HXIdwf7uUa0zQid/PoHLMhxylGc2NuG9cRXiRShaL1A7HgSszh+Pjak81DpOKPIDXM2k97u+yifie4Oaxq2DNZ+BteHTDhbA2Yi++fkeH4bDER3ZdBGvPjnkd1obGl8FaoROHxhh23G/hh3Df2DLxudum3PNUKGEzziLlGoPz5ySo3HsGXXhdQk4nr99aiJemKQ33hk257puVUFrtmIvagq9hVSclwVpsPL7vrQzie02Tsp7R/9t6aLeISNMlU2BtdxEOs3305LdhbXNyBqxVDsPnS1cZ3gZHKX6vwzPxTZ3Hg6/DTVn4eZHbcRCgsxyWpMGp3J+bB05/mzz4fTArgc12fPiLH38EVe/PR6QXw1pRLb7eRO/Ex1xYEQ5trcvCIaOT01rPTRIR+UnSSli7au3/wNrwbfhc4yzFCZp7vofDbCuS8D3I7eM+gbXXx+B7fk803u/hObAkn6fj0PWTh+Kg5zWeobDm3obPC85SvC7+MPy8oG0A3Z/3In87wuL8RsfHQubNmwe/vLp69eoW/2+1WmXhwoWycOHCDr9Od+rVgeBQGU0nIiIiIiIiIiKi3hc02v7Gb3CAjsn36kCwSGiMphMREREREREREVHvCxpmCRr42+VHHzMQ9fpAMBEREREREREREVFXCIpJgto8rf//MQMRB4KJiIiIiIiIiIgoJPiCFjEF9TmCfW3UQxUHgo+hTlbfpATR4EwJqRuEJx6xR+EkmjofDh4oPIhDmmLwHPBSPB1PAl+TrYQuKBv4fAUOWivdjkMeYuw4xCLhcxwMUzUCT1a/bQqejP+2hNWw9m7mZFhz74MlcSghBaUHcTjXSUm5sBafUg1rNcV4v9tq8brYq/Cx64kbOH8FM3mV/vbg98FRgZdZn477ZtBwHDhR04RDhZrKXbCWvlkJf2nA55OqEXg9vx/3Baxt8uJwFHO5EoKQ6Ma1L3E4XdWeabD2dVoarC0e/E9YuzDzblgr/AEOhHPvx2EiB3enwJo9EZ+HMjNxqkR+BV6mrR4fn7YaXPO6B87EVyZv594jLY+ndpDyevbOBfnkHMDBT8lFOLCiZghOvqkZgvfzpZFblbVxwIq5GNcCdTgQsTEJn9tq9uBzW/1ofM9zadIWWFs0GgfDxG3F74sVt6lU5EfDWkI6vvCHp+JAP08tXqZDCZMyzPjY9ZkHzj9n1K7f9kqlv5WwuKYE5fzowP0dGY7T/Spy3bAWrRxzYuB1KZ2Et29MVBWsXb5zFqwd/gpfb0Yo17DwT/bAmnHaKFhLtuDPEePjC2BtVTy+77U24vcl4Uu8/w4n4vvzUyficK7P9uIgzIYUJSQwH6+ntY79LSJiCnTu+q1lQDXij6CSNRynxNYrn7+rD7lhLaUUX7/9YXjIpXgK3r4305fDWqIFB7RJPr7WBpRweGP9V7BmuQrfn58Zge/rtzbhGynt3DZ8CT4veAfhHt4/GF9rKyLxh+WMTCWUtioZ1qwNSn8rNV/kwLk/701BMbU9RzC/EUxERERERERERETUfxntmBrC4EAwERERERERERERUf8VNNrxjeA26qGKA8FEREREREREREQUEvztmCPYzzmCiYiIiIiIiIiIiPqvYDumhuAcwSQiIia/NuE3fl49zjASvxsHFgxPwBOTHyjDoWgR+/FfLhI24onQK8bjieXDhuGQsm3VqbA2LhpP5h6vZNT48/HzJB+XovZPh7UffnkzrP3zhBfwQtNwMEbFSBzQk/oxfs8akvFk9e/uGAtrFhsOGwjE4mPJpCQmWHCuiZiVgCXDGloT2auBcErwXwPOVBEjBb+5NiWFqqoiHNbC9+FTs6Ek31RMw2EGKRNwMMbvD58Na9o/l4nep1w4lZATz8VTYC1qP17mR8OHwdrumkRYs2bjAKfwDXg/RG7DwW5hI/B7HZ6FzydJLrwuh5RrRWMAHxNWpb+1a5pYQqy/tXOZkrnThLOI1Ot3dkYJrH2wYzSsufLwvjT78fm/Ng1vhCUbX/d/VXABrFlN+PXCCpT7oQx8TxD1CU5YrU8eDmtfN+EbqfkxB2HtlUn4huFwaTqs2WtgScJy8D4KaPvBrFy/U3Gj+nw4YE/7fKJd0wx7aPW3yae8EcqmBnDuk/jdOMDM7lJqFnxecBbhe7Hkz6pgrew0fKMRPRanCb419ANYG7vuh7DmLMfvZzAFp2wFt+JQKGcxXubfqifA2pL0z2BteCo+Z0R/ggNr/S7cp5F7cW1tTBasxcTikMwKH97vDX68nja8SAkMoP5Wz2VK63vduOZPwPfLxTWRsNbUgE8akQfwseOowq9Xn4yvKZYsfBBogXAX7jkf1lxFyvu5YRusabRQzl/suRLW0iPwZ+W4sUo4/En4PjsiD19Po7/GvVgxCH+mHxRdBWuHI/C13dKIX8+M87b1e1ZbaPV3b+LUENjAiSMlIiIiIiIiIiKikHZ0ILitn/5o69atYrF0floLfiOYiIiIiIiIiIiIQoI/aBZTUP/uq7+Nel9mGJ3/9jgHgomIiIiIiIiIiCgkGNL2HMB9dSKOK664Qq1XV1eLydT5bzNzIJiIiIiIiIiIiIhCQn+eI/jf//63nHPOOZKUlNRqPRDAeQXtwYFgIiIiIiIiIiIiCgn9eSB41KhR8v3vf19uvvnmVutbtmyR//znP51e/sAdCDZMrcaQWpTU0oAS6hwIw2mS6Zk4EbOsHifWe/NxLboYf4m9eDpOQm1MhCWZlnwY1uYk4kTfH22YDWtD9tTBmvY1fHMYTvVM/rAI1kouxof0C+WnwtqUzEOwtvHAKFgrPjka1tx78RaWuJUE4TScHmtEwZL4vA5YM/mVuW/66r+H+C5Af5twm6rJ4gEXfmJ8DD7GC6rw8WGqwseA1YPXxRTEO6xyJD5//WrwSlj7b+VYWFt9aCisDV5XBWvBL3GyuGMTLIn5f6bDmj+Aj+MRUSWwll+L90P5GHy+jNqBJ+B34dO6lO2LgzXTMPy8qER8LNU14ea3NuL3Rb2mhfXT5gf9rTH7cc0Th/vbkdCAl2nC75+pBl+LzEp/a/w4PFxOH7Qf1vIa3LBW48E3NombGmHNl5kAa9ZtB2EtZUUhrP3fRSfA2jVRX8Ha+JgCWHvflQ5rBm43iT6Ij4milBhYGz4uD9bMZny8VFfiC5BF6W/lEOy/l/ZOXL/9+JZRvT93J9bCWnUlvgcvLoqHtWjl2lA9Cl+Lagfhc9oPM7bB2r3FE2CtqREfV0M/wNse3Iqv39b0NFiz4dtX+eOXp8Ha1FPw+WvhSfhD7mO5V8Fawma83w3lljhQ7IK1Cg8+rzuim2DNW4fvJWz1Sn8H8TFh9NcOh/2tXNOV/eWLwvs5NqkG1mJc+Np+IB8f49q/MLdX4mOgaCq+13TY8Q3KfSXjYa2gBt8XOiphqdPit+H19JyCd9LfBr8Pa/+owwMTD0+8BtbqU/BJ3+yFJfX+vCIRn/PThpTCWoEXb4O9Cr8vZq9yf27rp/3dB/XngeDJkyfL5s2b4UCww+GQQYMGdXr5A3cgmIiIiIiIiIiIiEJKoB1hcYE+Gha3ZMkSdfqHUaNGycGD+MsXbeFAMBEREREREREREYWEoJjaDItrq95bHA78r727AgeCiYiIiIiIiIiIKCT056khjsrPz5c33nhD9uzZI3a7XUaMGCFXX321xMTgqcragwPBREREREREREREFBIMwyRGGwO9bdV70x/+8AeZP3++eL1eiYo6Mi94TU2NzJ8/X1588UWZNWuWGIYhW7ZskUmTJnVo2RwIPpYyN3fAhYuWJByq4rT6YC2/CI/khxXj+UoMJXTEogTRBIfiJIcfJ30Ea/cfvAwvMx9P2G7J2QdrSnaPBBvwJP6BFBy2UbkLB9+Myf4E1r4sx4Ey/gw8+b85F79eYzw+qdircK0pAi8zLrka1soacDv7ffj1THjqmf4aRQFpASFet7K1MTh5oLQUH49WJ+79sAK8Mu49+HnlY3G/edPwes504aCDCn8OrK3MwUE0wS/XwlrTpVNhLWINDoZJWo1D33YPxwFVU0fjc83ssWtg7fKq22CtYjIOBHLvwef8hiQcNlPswud8LSzOiMBnTK8fBw+albC4UGMK4G31RuP+Dobhk6ChBNjszUuCtej9SoAfvqRIwIFfr3EI7u+HUv4LaxdtvQnWqnfGwtogOz4P+SKVIMWqKlgzjcChFiVf46CWeeHfh7WZCTtg7YPxOCzI/L6SvqpwlOJ9uzsnBdaSk6tgrVIJJDX5O3f9DjVafwftuL8NJ35vrRYlUMyrXKN345qjBq+L2YdrTUNwv90SsxE/z8DLfKNwGqxZ8vB12Bg3Eta8Mfj6lvIRvs+oHYKvpwv3XwJrt2V+DGuSjT/TNB1Sgp/+WwVrOZe7Yc2f0LljyROlXL99+PptUu7dQ41hwcdxAF9uxJKI78WqqvD9ckU5Tl+NOqB8/lZ2Sd0gfMw1ZuD+vmnoBlhbVTYcv95ufD859H/xOcM8SAlRrcSfMxvj8I6o3I77+4dR58FanQ8HWvpT8D2PvwY/z52vJIua8L6tcuBl2hNwDxtuvG/9yvZZmgZOf/em/jxH8PLly+WOO+6Qu+66S372s59JSsqRe8zCwkJ58sknZc6cOZKRkSF/+MMfZOTIkRwIJiIiIiIiIiIiooHJaMfUEH31G8FPPvmk3HvvvfLYY4+1+H1KSoo888wzEhYWJuecc44kJyfLokWLOrz8vjn8TURERERERERERNRBhogYRhs/vb2SwObNm2X27NmwPnv2bPF4PPLxxx9LZmZmh5fPbwQTERERERERERFRSAiKSUzSRlhcG/XeEggExGbD0wfZbDZxuVwyaBCedk3DbwQTERERERERERFRSAgEze366YvGjBkj//rXv2D97bffljFjxnR6+fxG8DGCDmWy+gicyhFswm9lTjGeQN1ahCcRDyvE6+J34b9cNOCsErHb8WTn4/GqSK0HB5i5d+N1qTt5MKyF78WT3Ad27oE1Sx1Ow0te54C1z783FNZeGvEKrJ1b+WNYq1fea0cVrkUeUoKLlL/81EXj7TNZlWM3HE+cb6nrmye/bqH8wS+o9LeaDqE5iIMj3PvwPjH78b6sVf7lx4isQlibfQCHsTQF8Pkr5mv8ehrtHBXIxI1jbNwGa+7dibD24uFTYW1OGg61O28k3sAPD0yGNVcZfs/MODdC7MrzAkrApCMKn/ea/LiHTUElZSXEBG1aIBzut5jkWlirKsWBMjbl+h11CJ9PHBU4ACVvBg5i0o6BODO+RtsteF2SNuD3zPohDpuxnTgO1ixKEI1//VewljzoZFgzT8Hr6bbgcNlUNw6+OZyGw+L8YbinErbi+6iCKHz9LjLcsGZSgpK0a5O5jv0tIhJQwrhcMTidsbw0EtbsJUqIl5JF5KjC+6vgFHz+t4fj88JeHz4PzftqFqwlbMLvWeME/A0i59rdsGYvweeo6lOH4GWW4OtbQRUO3Y0cgsPAtM802r2SN9INaxF5+Hm1Frztxhi8/zS8Pz9CC3MOKmGaonz+tjhwL9pylc9TysvF7sY3eIfPxOcMZwwONtQC4SKs+LhyVCgBml78vOrvZcCatTEN1mKW4Xtp82wcTCnTcclswueoEZn4M83+Qtzg2rGknErFUoOvpwdz8eePyFh8D1Lj0a7RA+f63ZuOTv/Q1mP6ottvv11uu+02cTgc8qMf/Uis1iPnO7/fL3/605/k/vvvlz/84Q+dXj4HgomIiIiIiIiIiCgkGIapzTC4vhoWN2fOHNm2bZvMmzdPFixYINnZ2WIYhhw4cEDq6urkjjvukBtuuKHTy+dAMBEREREREREREYWE/jwQLCLy1FNPyZVXXimvvvqq7N27V0RETjvtNJk1a5acfDL+l3TtwYFgIiIiIiIiIiIiCgmBoEkkqA/0Btqo97aTTz75Ow/6tqZdA8HvvPNOhxd8zjnniMuF51IiIiIiIiIiIiIi6kpH5ghu6xvBPbQyfUy7BoIvu+yyDi3UZDLJ3r17ZcgQHBrQVwWUsDht8nirEwcWBJRghYhifGC6KvAk9+Vj8ATjxug6WEuMxLWLdl0Oa0U5cXiZTfg9C8vHE6ibgvgNtWbiieyDJuU9K8WT43/01ShYOykqB9aem/wqrN1tvwrWrO+6Ya0pBm+DsxSWpC4Ch48ZTiV8LByHGwR9OPBIO+b7o6C9c2d6i10JiizFIU2uYrzMmkycZhC04n0SzMDBKdelroO1/5RNhLWt27NgbdTaMljDZz2RsAIcbFV6Ig7oSdyBz5cJ66tgbfcEHFD1nOdMWJuduR7WPhqNAzzKq/A2xO/A70zpOHzZbczDyzTcuIdN2vFpU4LkQuzGR+1vM65VV4XBmqkO7y9HOX45a4MSGPU9fIx7MnHf3D/2v7D2w4PnwZp6/XZ27lsQJVOVHsYtJYFhSbio7L4v9+JgK82giEpY25eaDGvOUhz6UzMIHxNhONtG6uz4edZkfF73VuNQI+2YNyv5p/2RoQTimpVQKE+jEvpWg2sWnDEnMbtxn1YNx/vLn4zvUael4ZSyu3deCWu1xTj9yGnH/W37AIdBBqZNgLXGZHzPE702F9YakrJgrU45xh/ZczGsvTDxr7B2XcMtsOY4oJyDcY61WPFHGv36rYSdmey4FlDOz6HW3529fosSxhWsxv0dnYMXGcCHo5ROwMv0J+H+vnIoDkrVvPblSbA26p9FeF2UZXqi8XEVvQuPEzRcMgXW4j7HF79NZ2TB2stnvghrJQHcUw8Mi4W1xsPK/clmvI8qRuHPXjUOfP32ReFjUA2CVQJQQ+3+vDf196khulO740iLiookGAy26ycsDH+oOtbzzz8vWVlZ4nQ6ZerUqbJhwwb18VVVVXL77bdLSkqKOBwOGT58uLz77rvtfj0iIiIiIiIiIiIKTUY7fzoqFMYw2/WN4Dlz5nRomofrrrtOoqKi2nzc66+/LvPnz5clS5bI1KlTZfHixTJz5kzZvXu3JCYmHvd4r9cr55xzjiQmJsr//d//SVpamhw6dEjcbne7142IiIiIiIiIiIhCU3d8IzhUxjDbNRC8bNmyDi30j3/8Y7se98wzz8itt94qN954o4iILFmyRJYvXy5Lly6Ve++997jHL126VCoqKmTNmjVisx35pxlZWVkdWjciIiIiIiIiIiIKUUGTGG2FwXUwLC5UxjDbPTUEUlNTI2+//bbs3LmzQ8/zer2yadMmmTFjxjcrYzbLjBkzZO3ata0+55133pFp06bJ7bffLklJSTJ27Fj59a9/LYFAiE2URERERERERERERB12JCyu7R+RI+Oa3/7xeI7PA+iNMczi4mKZPXu2pKamitVqFYvF0uKns9r1jeBvu/rqq+W0006TefPmSWNjo5x44omSk5MjhmHIa6+9Jt///vfbtZyysjIJBAKSlNQyOCQpKUl27drV6nMOHDggH330kVx77bXy7rvvyr59++THP/6x+Hw+WbhwYavP8Xg8LXZiTU3Nkf8wGa3PxK3Mzm2OwGE9/io8s7yrGI+3Rx/EB0BNJt6xTYk4XCDchqeI/8NwHHz2aP6FsFa2Q5mMX5kI3bT/MKwV/nA0Xiaei1/SXt0La/VnZ8OaeyveD/+bMRXWRsbgxK+g8k8JqkbjfeQqxOtix9k2EpaHn1c/BO8HI6j8zUcJYDF5+/bk6R3t76ASqKcFbgUqlP4uwe+tWUlrsDXg971iPK5lp+I0wd/tOwvWEsNxAISjFPe3fxfuN03JCXg6IR/OcRBRwiDrsvETnSV4G2zD8b4t8eFpjKLCcFpQ2SAc3BhQQqFs9bAkgSp8LHkseJmGQ0l11I75xu/8t+Bu1eHrt015H5QwKUMJlNH6WwvzaEzAy2xKwutpD8P3GbEW3MNfF+MQtrA83BvR/7sG1swnjIE1Hz78pXiaEtTyHH696KTj/zndUVXDhsLa11F423+uBOxtT02BtfJ6HLDnysfHhKsMHxQBO35eo0mZfs2lHLta7zeEVn9rgbjanYpRj8+dzjL8HsV9jV+vfAy+J6gdip+XkFgNa4vS/w1r19XNhjXnYbx97pdxv9VfdTKs1aVqYbawJJHr8LanvHUQ1nxhg2GtNAyfT14tnwZr14/DqZV/LT0N1hK+UAL2GvD2lbjwedar9an2TTTl85UEQuv+XAuEM5RTmfY5xa7cU2mfM7XXa0zF+3JwRgmsTQo7BGtL80+BtYjtSnh0AQ6L0zThnDUpPDUa1lzlSvDZ4QJYC9uXCmvzk3Ho+j/HLYW1k9JwMOXnw3A4vGHG72dknhI6Gq2MyViUwOEofE9nKGGQff3+vD/pyNQQGRkZLX6/cOFCeeihh1r8rqfGML/thhtukNzcXHnggQckJSVFTMpn5Y7o8EDwJ598Ir/85S9FROStt94SwzCkqqpKXn75ZXnsscfaPRDcGcFgUBITE+XPf/6zWCwWmTx5suTn58uTTz4J38RFixbJww8/3G3rRES9h/1NFLrY30Shi/1NFLrY30TUJximIz9tPUZE8vLyWuScORz4j74d0ZkxzG/77LPP5NNPP5WJEyd2yfoc1eE/N1RXV0ts7JE/Ja1YsUK+//3vS1hYmFx44YWyd2/7vzkWHx8vFotFiotbftuyuLhYkpOTW31OSkqKDB8+vMVXoEeNGiVFRUXi9Xpbfc6CBQukurq6+ScvL6/d60hEfRv7myh0sb+JQhf7myh0sb+JqC8wgu37ERGJiopq8dPaQHBPjWF+W0ZGhhiG8i9EOqnDA8EZGRmydu1aqa+vlxUrVsi5554rIiKVlZXidDrbvRy73S6TJ0+WlStXNv8uGAzKypUrZdq01v+pzymnnCL79u2TYPCbf5axZ88eSUlJEbu99a/6OxyO43YqEYUG9jdR6GJ/E4Uu9jdR6GJ/E1FfcHRqiLZ+2qunxjC/bfHixXLvvfdKTk5Ou9ezPTo8EHzXXXfJtddeK+np6ZKamipnnHGGiByZMmLcuHEdWtb8+fPlhRdekJdffll27twpt912m9TX1zcn8F1//fWyYMGC5sffdtttUlFRIXfeeafs2bNHli9fLr/+9a/l9ttv7+hmEBERERERERERUSgy2vjpoJ4ew7zmmmtk9erVkp2dLZGRkRIbG9vip7M6PEfwj3/8Y5k6dark5ubKOeecI2bzkbHkIUOGyGOPPdahZV1zzTVSWloqDz74oBQVFcnEiRNlxYoVzZMv5+bmNi9f5Mi3kd9//3356U9/KuPHj5e0tDS588475Z577unoZmBKcFawCo/YO8qVxD7ljwxaIJxX+eNp5JAqWBsaWw5rvyq4ANbWbB8GazFKk0Tm4YnQvZNxeFutEm6m8YwbBGsxH+DpSSKHp8Pa3hPdsJYegcM9UqNxrW4kDpqqrMThNmYffl+sTfhgstbgv+v4tVBKm7Yf+nYYRUdp4U7SgE+HjjLcpw4l3M+kvO81Q5R9mYoTxW5J/wzWXiueAmtf7sN9k3BQCQycgv/AZ27Evd+Q3rn+bjxrLKzZa/Eb6lQC73IP4BCqIjcO2xgRg4M/wsbgf8pTVJ4Ga/YaLUwKHxMBuxLop1y3xDeAAic6ua1af4cpWSy+CFwrG4/3pRF7fArxUb+a9DasbW/MgLWGChw2NmRD2//srPUXxNfTph9MhjVDuR1KmjoeP085n9hwTp40lOFtNyt3+G5XI6xVJOHrt78KB8P4G/B+DytRet+lBEVql2EtTCrUKOFYRg1OftLuzy34EJCqoXifBJQv8IRn1cCay46P8QWHL4a1w/vxNWzEu/j1zCNwyKLZj4+d+gzluFJyz8pn4NA3TXiRsi7KZ68yL06t3F7V+j/RFRGxpOAdXzMYL9PswceStQGWJFiF7y8DYfgNNbRre6jRgqt9SoBfNd4nTpytLF6ciaYGyaWMwveF9w1+F9ZW1+IAs9278T1jXBVeF3M0Higo/8EEWPMqH+q9Mfj1YnbjBGzvafjarn1OKs/BL3iz44ewFmXH91ERg/Fnc085fj1rQ+f6216ljOVo3zS1KydT6jIdCYtrr54ew1y8eHGH1q+9OjwQLCIyefJkmTy55YeACy+8sFMrMG/ePJk3b16rtdWrVx/3u2nTpsm6des69VpEREREREREREQUwjoQFtcRPTmGOWfOnE49ry3t+vrM/Pnzpb4ef0PtWAsWLJCKiopOrxQRERERERERERFRh7U1LUQnp4foaYFAQN544w157LHH5LHHHpO33npLAgHtn3y3rV0Dwc8++6w0NCjfiT/G888/L1VVVZ1dJyIiIiIiIiIiIqKOC4GB4H379smoUaPk+uuvlzfffFPefPNNue6662TMmDGyf//+Ti+3XVNDGIYhw4cPF5OpfV+b7si3h4mIiIiIiIiIiIi6RDdNDdGT7rjjDsnOzpZ169Y1h8OVl5fLddddJ3fccYcsX768U8tt10DwsmXLOrzgo5MlExEREREREREREfUEI3jkp63H9GUff/xxi0FgEZG4uDh5/PHH5ZRTTun0cts1ENxdExT3RSYvni3DUo9rVuVL0E5luuQGZby8KRWnc85M2wdr0yNx7eHtONQvaic+HMKLcIc0JuJ41bpU/BeW8GE4RtRmxXOeGCtwSqq/vBzWvLHZeF124G0vS8cJ4ecnfw1rO+txYvFHaXGwZpjxumjJq9Z67a9ZSvq1q4//e4iupPS3Velv7Z+MWBtwsWYw3ieeRNzf1w3/Eta+asiAtSqPE9aituLk7fBCnGTui3LAmsWOk3JN6Xg6IS2dNWjDr+f4z0ZYS/rMhZf5o0mwti41C9ZOTMrDrxdWB2sHB+H3U8z4fGnGIcjiUKfdVxLJw/v43U0PsSqp7aKcOv349C9+fMiJLxb39/mj8HXjH8VTYG13eQKsOYrwcVU9BJYEX4lEiuaeiIvpjbCUFFsDa2UT8U1PRAF+z1Je2gZrxs3jYO2FrO/BmsOi3GMN2wlr7/nGwJpFOQf7XfhAsyi9b63D1yZ/xMDpb5MPv39mL66ZtCn0lMu+LxLXvAn42BE/vi6G27ywtrsiEdZch/Eyq0biFY16ZTus1Z2NX09ScX9HROCaNycW1pJf2aG8Hj4v1KXFw9pXKamwdsvwNbC21423fYVvNKzZ9uGTvrMMlsTAu08MCz52A337S2pdS/v83YTfCGcpXqS9Dt+fa+dj72h8jJfVhsPaz7ZfBWspUfi6GLEP358krMefa41Y/HnYUY233UjBFxyrTTth4vtz+ydfwVpyTjqsNaTgz8rWUfj6dkbcHlg7WHkyrDVq9+cmfB9lVWZINSuLVK/fkQPo83dvCoFvBDscDqmtrT3u93V1dWK348/3bWnXHMFEREREREREREREfZ3JaN9PX3bRRRfJj370I1m/fr0YhiGGYci6detk7ty5cskll3R6uRwIJiIiIiIiIiIiotAQAmFxv/vd7yQ7O1umTZsmTqdTnE6nnHLKKTJ06FB59tlnO73cdk0NQURERERERERERNTnhcDUEG63W/71r3/J3r17ZdeuXSIiMmrUKBk6dOh3Wi4HgomIiIiIiIiIiCg0BP//T1uP6QeGDRsmw4YN67LldXogeN++fbJ//3457bTTxOVyiWEYYjL17dH09tDCKOzHz9HczFAm2WjA86BLYzKelD0hAyeDxdjwrOVP7T0Hv14eDpUY9jneQMOshGzllsBa1a2DYS0lHCfsNfrwxNdl45TQqwQ8Qbxhxvs2fhue6T0nHYdR7IvC6RAVHhwoEJWIg6ZqlYSSoBUnTjhxnoAEHErIihJSY9j6+L+V6CCz0t9WnA2hhvTVZSiBE/G4v60R+Jh768B4WItw4rCZ0r04+inlML7KufYrYRQ2fJk4fAEOcclOOgRrTiWk6WAmDnWMHIpTr4J5Bfh5eXg/FBxww9qqOhz8FB6GG2fokCJY2+/F55MwJRBICy6y4wwSaVJ6X8yh1d8WD95Wm3L91oK6vDiLRRrT8XF8wqgcWCtsjIY1rTdqc/Dz0jfiY9wTrYSFnj0Z1nz4EqYGRlU34L4xR+BlOguVZV6AA9qSNuD7oX2DccCeKwMfFLPScVBkeTbeiPUNSijtfnwuNePTulibcM2w4WPesIZWf2vXb60WVD7paAFA3njci8mDcHpnRmQVXhclmbJyfwysDV2FV7Q2CweYVc+eBmuNSlj10BR8X392wm5YWxp3Ll5oJr721Q/GJ9qYPcr1OwVfGP9mPwnWbh6Cg+RWCA6L8yj3dIYFX79tyjXa2qBco5VSqPW3dv3W3iMfviyKJ065P3fje+LEWPwZ7ZTkA7C2pSIN1vZ8hYOeo5XzUGA77jdrEg49LB+N78+nDs6Bte0lKbBWNgFf+xID+HOLvQJfxDI+xNf9fW4cMvehGfeiFjg/ZHAxrB304m0Pz8H9rV6/lTYN2pXBI0to9Xevas/UD33w7Z4/f748+uijEh4eLvPnz1cf+8wzz3TqNTo8EFxeXi7XXHONfPTRR2IymWTv3r0yZMgQufnmmyUmJkaefvrpTq0IERERERERERER0XfST6eG+PLLL8Xn8zX/d3fo8EDwT3/6U7FarZKbmyujRo1q/v0111wj8+fP50AwERERERERERER9QqTceSnrcf0NatWrWr1v7uS8p301n3wwQfyxBNPSHp6y6/rDxs2TA4dwv8UmIiIiIiIiIiIiKhbGe386cNuuukmqa09fjqz+vp6uemmmzq93A4PBNfX10tYWNhxv6+oqBCHw9HpFSEiIiIiIiIiIiL6LkzyzbeC4U9vr2QbXn75ZWlsPH4+7cbGRvnrX//a6eV2eGqIU089Vf7617/Ko48+KiIiJpNJgsGg/OY3v5Ezzzyz0yvS48B8IWacDSFBW+dqvkg8Ib0lDqfUXJixA9Y+Kh4Oa6VFbliLyMVj/544HPDiD8OTpDvCcQBE02A8g/rj2W/C2j37vg9rRRPwMh1VeEfE7MYT0vvDcCs4S/B79v5XOMAmM7MU1i7Mwvv29Voc3uMP4FOVJ4DXU/snD1rISqC/hsWB/jYp/W3C2QLSiDMXxKcETjgTcQLE5DQcRpRfh9Mvcg7ghJfETXhf+o//+10zIwz/Ec+bgJ9YPwEHQLwz/B1Ye6AEH+Nbxw2CtZhdOAzPkYPfz8iVu2AtLhoHw5ROw8GUXhs+YILaXFNh+HmNyUpYaZUS+IVP3WrIij8itPrbrITNGPgSpgbxeWNwf0el4LCx7AgcJPruwVGw1lCKE9qi9+FjwFBOYM4KXCsfjXu/YRB+3rzsDbD2aTlONN4yEp9PghvwdTisGF/3fRH4eRE5+D1rTMLP+/3uM2DN48XPSxuM93uBBwf72CuVfat8ZcPkD8GwuE70tw1nO6nnx/pByv15FA50tVpwb9iVwMfPv8L37mFFeEc3pOCNCODLlPidyj3jINxTZyTsgbVoC76v0e75q8a6Yc3SpJxnPz8Ia41xQ2GtLAzfR62KHglr5438Gtb+ux8/zxfAoX1BK963FiVoaiD1txbWbtECM7Vreyw+rkTp78HROAzy4wJ8zFVW4Ot3/JdKYPknOOy46ZwTYc1rxctsSsPnoaHh+PPpZaPxXKT31lwBa2U+fI5KfmYjrFXfgAMtXYV4+3a48djDsAwcCOcP4l60J+BxggblQ5R2f64dn9pn837a3X1TP50jWESkpqZGDMMQwzCktrZWnM5v+iwQCMi7774riYn43rItHR4I/s1vfiNnn322bNy4Ubxer/ziF7+QHTt2SEVFhXz++eedXhEiIiIiIiIiIiKi76Q9Uz/00ZF3t9stJpNJTCaTDB9+/B+STSaTPPzww51efocHgseOHSt79uyR3//+9xIZGSl1dXVyxRVXyO233y4pKSmdXhEiIiIiIiIiIiKi78IUPPLT1mP6olWrVolhGHLWWWfJG2+8IbGxsc01u90umZmZkpqKvx3flg4PBIuIREdHyy9/+ctOvygRERERERERERFRl+vH3wg+/fTTRUTk4MGDkpGRIWZzh+PdVJ0aCG5qapKvvvpKSkpKJBhsOYR+ySWXdMmKEREREREREREREXVIPx4IPiozM1NERBoaGiQ3N1e83paTy48fP75Ty+3wQPCKFSvk+uuvl7Ky4wMxTCaTBAJK4lI/YPbiyaKDyrvlj8DfKbel4mAFkzJT+Ip8HGJUVIJDEBx5ODAtbVU1XhcPnjjfsOONP3SxG9YSE/GE9Cc58HpemvoVrP3diyfOr09JgLWIAvx6jtXbYC06YSKsiQkvs9iNE4jeqsYNm5lcDmvlkTiIoM6IgjUtZKXPR2V2IbMSvOGNwr0YdOCaoQROTEo9DGsljRGwlpOHj+Pw/bgXDTNez/h398Fa3bQhsFY6EScdxMTiY/WdhhhYMyvnvQnDcmFtz4nZsJaVkwVrDYPdsOasxOdueyl+r83x+HlldXjfnjIS74fPd+MQEq9yubZVK0Fy9j5+d9OFgsq2mpSgTV803pfmeBzoOi6xENb+sx8HiTbV43Qn52EluLQCb5/Fh2uuPBxqVzkM9+ngYXj75sfgAKcbo3EY6nz7TFhbe85YWIvKUc7BZrxvw4vx8zx78PW0YSgOjTGUlqqoU1I5Y3AqlFfwMWGtV4Jg++g/Z+wOWuiOF9/+SCAMv0lBJ65NycTXooPVsbD22Q4cluhS+jt2F/78FLDjYzz2qxpYyzsPf1a4dPwWWNtVh6f6uy/lPVh7MgzfD9Un42M8eS1OAzNi3bCmhS25cvH9+Re2TFg7bww+f8VF1cNaYY2S2qcw+7SgyIFz/dbOZV58GEvAhZ8YNghf+8Ls+Hy8KS8d1swWvE/CduDAtLjNlbBmuJR7gq/weejQTfieccYJW2Ht8uhNsDbRjrfhvyN3w9qanRNgTabhWszfcJCc84JJsBa046Bb7fN3mB2fo6LD8XW/Wpn91Cv4um+rUYIim0IwzLkPMhn6teLoY/qy0tJSufHGG+W991q//nZ2/LXD3y/+yU9+IldddZUUFhZKMBhs8dPfB4GJiIiIiIiIiIioHzNM7fvpw+666y6pqqqS9evXi8vlkhUrVsjLL78sw4YNk3feeafTy+3wN4KLi4tl/vz5kpSU1OkXJSIiIiIiIiIiIupq/Tks7qiPPvpI/vWvf8mJJ54oZrNZMjMz5ZxzzpGoqChZtGiRXHjhhZ1aboe/EXzllVfK6tWrO/ViRERERERERERERN3GaOdPH1ZfXy+JiYkiIhITEyOlpUemXh03bpxs3ry508vt8DeCf//738tVV10ln376qYwbN05stpZzMN1xxx2dXhkiIiIiIiIiIiKiTmvHHMF9fSB4xIgRsnv3bsnKypIJEybIn/70J8nKypIlS5ZISooygXUbOjwQ/Oqrr8oHH3wgTqdTVq9eLSbTN3NqmEymfj8QHHApgVFaEE0sDpRxK5OP2yx4XuWiCpx+YSlWJpbH+U1SeiKecT8yD0+g3hSLD5WmIXjC/Rgz/q79Y2UjYe3GmC9gLTIbv5+PleKvxtcW44nla244Adac5XgbnMdnJn7zevtxYJR5CA6cqGpywZrHh/eDNRm/L/4ivEyzr2/Pi9OVgrbO9bcRgft0cDoORCxqwIEFJbW4ZlX624zbVOL/vQfWvGNxOEp9Ik7haRqEX/CHg3CoY4UfH/+/TsTPey0sD9YWDMLbUD0uDtaiNxXBmnjw+asqOwvWmvbi83MwHQff7ChLhjWzDR9nwQgl7AxW2giKDDHaP+3SAuGCYfh9H5KET/L5dfh6Ggjgf3BlO4yvRXFf4/X0u7QwW1yry8bHas0YfPS4vHg9F5UPh7VJYTn49Xw4iMaTitfFvBdf+9w7cSBQzTAcCBeRh9+zahdez2CsH9Zc0TgcODoMnxeK/G5Y8yu36lrAcagxrJ27flsS8b2R3Yr7rcGPw8aq6vA9la1cCXxU7s+1QDj3p4dgreDKwbDWMBRf33bV4Cn+rkj+EtaG2fC1PcFdB2uFw3BP2epxn4YVK72Id5Ekr8fbfjgC32N9YBsFayal3azh+LxgisTr4hPl/nwAXb8DTuUeXOl9cyI+r6a7q2AtqMwJWu/Bx4dnH76eRiqfCSsmuGEtbgP+HFF8CQ6EaxiBxx4ujt0Ca7VB3FOaHRX4/rUhA99HVY7EYWoJlVmwFvFVMayZA/j8dTjSDWv16fh6MDIFv16EA7/XB2vxvZJ2f25SAsypC7XnG799fCD4zjvvlMLCIwHOCxculPPOO09eeeUVsdvt8tJLL3V6uR0eCP7lL38pDz/8sNx7771iNnd4ZgkiIiIiIiIiIiKibhEKcwRfd911zf89efJkOXTokOzatUsGDRok8fHxnV5uhweCvV6vXHPNNRwEJiIiIiIiIiIiIupmYWFhcsIJ+F+zt1eHB4LnzJkjr7/+utx3333f+cWJiIiIiIiIiIiIukw/nRpi/vz57X7sM88806nX6PBAcCAQkN/85jfy/vvvy/jx448Li+vsihARERERERERERF9F6Z2hMW1GSbXC778Es/V/20mbfL6NnR4IHjbtm0yadIkERHZvn17l60IERERERERERER0XdiiEhbcwD3wYHgVatWdftrdHgguDtW6vnnn5cnn3xSioqKZMKECfLcc8/JlClT2nzea6+9JrNmzZJLL71U3n777S5Zl6BNSS1VajFunBRdVoETdoMevAssFbjmKsGD7nHbcbKlo6Aa1g5fkAhrjTicUyKVbf9+Bv5rxvyYg7DmMXCi6da6QbCWnIS3r2wo3r6IPFiSpjg8H3bsLpxW64vA29BoxgnJtWkWWItTEpm1FGsjGqcZB2vwcdbXJ0/vKC1ZPBiOE2/dCTiVPr/SDWveBhxpbS3CqcQuHCAscTtw+nTR1SNgLfoAzq6tHobfF3ci3vZSbySs3RO3HdZ+dPg0WPtz+hpYe2M0PmdsrRgGa96IFFiLyMfvS+xu3DeVBu6bBjPu/Sov7m8x4/1gDcf73e9VUtXxq/XJv4B/F2rqeDTez3YX3s95FTH4BZX3zziIz/EOfJmSsHycaF0xFi/ToqTLl03A17CrJn8Ba79Jat+3EY6VH8DnDKtyUTlhxCFY21GEk9Mjc/F51r2tEtYqJ8bCmqMCv58e5da5woLv9+xhSn648j2KoEvrYrxvQ62/1ftzO36PfHX4WmuPxfevOw7j64apAJ9zo/fjnRnAqyJ+F35e49g0WKtLx+/LBeO3wdqN8Z/B2mQ7XtG5h6fB2lnJe2BttXJAFtXhDxlhJbAk1ga8TO34j96D3+tKK963gVjcw+54fH9eWYzvlSQM33uK4PuFUOtvw6rcnyvvkSmI92V1E/5cVFTkhjVrCb6muErx68XuqIc1sxffZzRm4nVRPvLK4HT8YSHVWgVrWn8vLB0Da5+PfxPWbo45BdY+rR4Pa9EHcW9UjMK9GL8Vn7tjd+D9XhkIg7UdDemwZlGu37FJNbBWYVF6v1r5/B1i/d2buusbwX1p/LKzOjwQ3NVef/11mT9/vixZskSmTp0qixcvlpkzZ8ru3bslMREP3OXk5Mjdd98tp556ag+uLREREREREREREfVZ3TBHcE+PX5555pnqzAsfffRRh5Z3VLsGgq+44gp56aWXJCoqSq644gr1sW++if9a1JpnnnlGbr31VrnxxhtFRGTJkiWyfPlyWbp0qdx7772tPicQCMi1114rDz/8sHz66adSVVXVodckIiIiIiIiIiKi0NMd3wju6fHLiRMntvh/n88nW7Zske3bt8ucOXM6tvLf0q6B4Ojo6OZR6Ojo6E6/2LG8Xq9s2rRJFixY0Pw7s9ksM2bMkLVr18LnPfLII5KYmCg333yzfPrpp+preDwe8Xi+mSqhpgZ/fZ+I+hf2N1HoYn8ThS72N1HoYn8TUZ8QlLbnCO7AVJg9MX55rN/+9ret/v6hhx6Sujo8LVFb2jUQvGzZMnnkkUfk7rvvlmXLlnX6xY5VVlYmgUBAkpJazg2VlJQku3btavU5n332mfzlL3+RLVu2tOs1Fi1aJA8//PB3XVUi6oPY30Shi/1NFLrY30Shi/1NRH1BR74RfOwfrBwOhzgcjha/64nxy/a67rrrZMqUKfLUU0916vntniP44Ycflrlz50pYGJ5ku7vV1tbK7Nmz5YUXXpD4+Ph2PWfBggUyf/785v+vqamRjIwMeFRok9WLEkZRXhQFa6YAntPDUouDAMIP4+clbsKTpDek4MnV69ITYC2ohFjYhuG/5EY4cTidFginebJ8HKw9m4rDbS5vwME+tSMdsOapw990T96AQ5rqU/CblrwO76PKEbiPqgN4kvtS5VhyuJQgGg8OlNFCVkxN+Hl9QYf724G31RaB93N1GQ4AEg/uYWs1rjmVQDgbzloS14EKWPOH4/4unI7DLyJH4WXGheHwC60X64I4GEMLhJt96HRYuyxhM6wVTMTn4MoGHEQTlYvP+a69+H2pUsIntaApr5IW5E/APezzKidoi3LdUq7yJp+SUNUHdLi/1dMV3lZfI+4N7e7RUor3iRMfOhJeqITi2PFGOKrw+as2Az/Pm4rPbXNiP4e1haUnwdr4sFxYy7bhENU/ZL0Da5824p5aMBL3cL4SWpmwBTdAZA4O5jMF8XW4RpmnzRvA9xneaKUZXTgMyRqBzwsB5bxg8g+c/tbu3cNi8H5urMf7y5KP76Wt+PZODYRLXovvpcuUa1jZOLzQuLH4ZuLEiBxYS7Pg88LKRnz8L0nH33jSgqbSI3BKZs0w/F6XNrhhLeNDvG8rR+BtiMzF2+6Nxu91QwBfK6pM+D7RpATBaiGxhk0Jg/SGWH87lc8iNlyz2vC5s+gQDgS11OH78+i9SiDcdiUQzofXpTENh70WTVGuUyeUwdrE2HxY+83h82Ht9SErYe3hhB2wppkYiVPX1w3PgrWSUnzeCyvBvVGbic8ZZvzxQyJxJq3UCu5vv1sJmPQrfWrGx672mbSvf/7uVzowR3BGRkaLXy9cuFAeeuih7/TynRm/bK+1a9eK04l7oS3tHgg2jK6PL4yPjxeLxSLFxcUtfl9cXCzJycnHPX7//v2Sk5MjF198cfPvgsEjTWS1WmX37t2SnZ3d4jmtjeQTUWhgfxOFLvY3UehifxOFLvY3EfUJHRgIzsvLk6iob/440do5rCfGL491bEabYRhSWFgoGzdulAceeEDfNkW7B4JFRE2r6wy73S6TJ0+WlStXymWXXSYiR96YlStXyrx58457/MiRI2Xbtm0tfnf//fdLbW2tPPvss8eN4hMREREREREREdHA0ZGpIaKioloMBLemN8Yvj81oM5vNMmLECHnkkUfk3HPPbfP5SIcGgocPH97mYHBFhfLvIVsxf/58mTNnjpx44okyZcoUWbx4sdTX1zen8F1//fWSlpYmixYtEqfTKWPHjm3xfLfbLSJy3O+JiIiIiIiIiIhoYDEFj/y09ZiO6Onxy67MaPu2Dg0EP/zww8eNSH9X11xzjZSWlsqDDz4oRUVFMnHiRFmxYkXzBMy5ubliNnOeFCIiIiIiIiIiImpDB6aGaK/eGr/cuHGj7Ny5U0RERo8eLZMnT/5Oy+vQQPAPfvADSUzEYR6dNW/evFa/Si0isnr1avW5L730UteujPaFZyVYRw2Ea8QHgrMYPy/uaxxmYGnEM6H7nXiZdRm41jAcv94PsrfB2iBHOaw9VYHnPLk7dj+s7aw7fo6Vo+5VwljeGvoBrJ3huRTW8pQguUIrnoQ78hA+c9QNwkEVEUV4/zUm4rb0+/G6NMUr7WwoB3YH/wrWnxlKqJavVgndCeL3z1qD+9tehdfFivOUJKhkV3kycSBi+WgcfuHJxKGO12d9CWu7lF6cc+g0WBsdWQBr22vTYO1/Mz+GNc3GBJwA8c5Q/AfMfLMWCISvd6mf4MCQKiUM0jArvWgoQRUxSvqFcnwaNuXupo+HxXWYEnxpdPL6ba3C59UInJcmtgb8vkcews1fNhFfN7SwrNoR+Pi49aRPYW2MDR+rt8euxy+oSLTg0KT8AE7CzLbhUJz7xq2AtUd8F8JadTXevsBIvG9TP8X9bVICXWsylZ1kwjWlu8Wvhb7Zlf7u42FxHaYERpmUsLjGYhzSZK/A10zl1lYM/DQJL8brWXwy/ienXuV7NvVDcGDg/CGfwNqqypGwVhvE1748Txysne3C9wta0NSPvfi8MD4J3y+sG6bcnzfgXnQq+696CL7f04IAI3KVz1cmfP0OOJU+DcMBYwPp/lyU67AElDDUUnwM2Kpwo4YV4ZezNimBrk7lPjseH6tl45TPdkNw6GF9I17m08k4QHmdB19VfMrh+FTFaFibFr4X1n7ixjdEb0fjkMycibgXLevxOcpRBUviC1fGZDx44221yjFowvtdvdRqA4w+ftGxR3TDQLBIz45fHj58WGbNmiWff/5587eJq6qqZPr06fLaa69Jenp6h5Z3VLuPwK6eH5iIiIiIiIiIiIioK5na+dOX3XLLLeLz+WTnzp1SUVEhFRUVsnPnTgkGg3LLLbd0ernt/kawYXRiqJyIiIiIiIiIiIioh3THHME97eOPP5Y1a9bIiBEjmn83YsQIee655+TUU0/t9HLbPRAcDPbxd4iIiIiIiIiIiIgGtm6aGqInZWRkiM93/BRRgUBAUlNTO71cTk5CREREREREREREocNo46ePe/LJJ+UnP/mJbNy4sfl3GzdulDvvvFOeeuqpTi+3Q2FxA4FJDc9RJh9vwGPqjgq8RJsSSlCbjoMHGpXJ1bWvtzek4VCCSdl4ovczI7+GtRI/Dr+oVkJVVjTibThYjYMqXslaDWuanw3+L6x9FDsK1t5uPAEvNIhbKOEr/F7XZCgBRPlKoJkyAb5hVoIIwpUQJSVALdSYPLhP1cBHpb8tOINNDSuxKoEFZiXJoXAaDo5oHIwDZS4Yux3WNlZlwtqfB78Na3NzcABjmBmHT96chMNtOivOhsOdMlLwSTg3EA9r9q/wOaohFYdYBJTAzuiDeN/WZCqBZkbn+nsghc2YmnCfmpXTnFkJdLXgw1h8kcq6KAGdJSfg66IXZ0FKUyru7xNG4rDE9wpx+EuTkkxZo4STXuDeCmu7PPjbCeeE74S1cXb8vnzRhINaIsJx+F7VGNzDzgLcU/ln4oCxmN3K9VS5q7Y0akGRePsCrr4+e10PURJ5TNX4jbfWK+cF3FLq/Xn0AXxiqEvDPdWAs1fFk4xXZkhWMaxdqaRWVgTwcXxBBL6v/0cA3/dedWAGrF2btBbWfp+Ga+/U45NpjRefh7ZV43sXQwl30j4nKbcuYlaeZ6vDx6fZi2t+ZZkD6v5cS9zy4X1pq8X9ba3DiwzgS4OqcgQ+HutT8PM8Gbi/ByVWwlqkDX/IuDEX/5PwZYNwSOzMXThg9aeZ+LPySBsOexXBYZB3Za2EtSeD58Ja3oQEWHMW4nN+eD4sSUQ+DtFrSMLn7sgcJSgyXbk/j1DuF/h1zB5hMo78tPWYvuyGG26QhoYGmTp1qlitR443v98vVqtVbrrpJrnpppuaH1tRoQw8HoMDwURERERERERERBQSQmGO4MWLF3fLcjkQTERERERERERERKEhBOYInjNnTrcslwPBREREREREREREFBJCYWoIkSPBcG+//bbs3HlkirUxY8bIJZdcIhYLnjqnLRwIJiIiIiIiIiIiotAQAt8I3rdvn1xwwQWSn58vI0aMEBGRRYsWSUZGhixfvlyys7M7tVwOBB/DFNQCo3BNC4SzK3Ore3HOmvjC8OsFlUnuG4fipIO4xBpYuyzxS1hbUT0e1u6M/xjWDtjwBPg3fXojrA1OK4W156oGwZoWRHNxGCzJI7uHwNrwoQWwtkdwKE65D7dXWDE+49Sl4/0eVoifZ69Sgip8eEZ6X4Ry9guxoAqzEhZn8eD3z44PYwlX9mXAhpfZkIhrWtiYFgiXnVUEaydE4DCpGYn7YK0ogP/S2OTHx/jzO06HtbhIHOxmKCFbpyXj9Twlci+sxafjk/DTZTj4pmaU1jdKOJESMiTKNUajhRrZq9jfInrgo1W5flsa8TK1MA8l30sNHPLH4ppnEH6izYUPgrvScMCLzYTDUU524ONYC4W6K+caWItw4nCb5GHVsHZPzsmw1uDHIS7RLhwWN3osDtlaYxoKa648/HravVlYEe4pvxL65sM5O+IRfBAGbQOnv7X7GHMTfm9d+BAQP85SE4sS6Fo2Ft+E+5V7TW88DhEenFUCa/cOfg/WIsw4vCrVVgVrjxWcD2vrDuMQNr8XnzMWZ+J7kH/U4Xv3j6pwYPOQiDJYE5yDKdvsGbBmK8b9bcenKDHwqVS9RmvXA8Os9Ld94PS3FhZnUfrbim8nxYovDeo5VwvmVgPhEpX+zsQnoggbPkCaArjfZsbiEOgcP77vLW/AJ77b11wLa5eNwSGxjydtgLWN9YNh7ZGh/4K1ZZE4DO9T2zBYs3jw+dkw49534VOweJVwYIfyGdGwdLK/tYRj6pBQmCP4jjvukOzsbFm3bp3Exh75EFFeXi7XXXed3HHHHbJ8+fJOLZcDwURERERERERERBQaQuAbwR9//HGLQWARkbi4OHn88cfllFNO6fRyORBMREREREREREREIcFkGGIy9JHetuq9zeFwSG3t8d/yr6urE7tdmSagDco/eiQiIiIiIiIiIiLqR4x2/vRhF110kfzoRz+S9evXi2EYYhiGrFu3TubOnSuXXHJJp5fLgWAiIiIiIiIiIiIKCSajfT992e9+9zvJzs6WadOmidPpFKfTKaeccooMHTpUnn322U4vl1NDEBERERERERERUUgIhbA4t9st//rXv2Tfvn2yc+dOEREZNWqUDB2KQ4/bY+AOBBumIz/HsCjJ4loibNCBa0o4p7pMn5JQ6UvDqdyuCFy7YhBO/Lw2EsdlXh5+GNaeq5wMa3vqk2DNVIWTO3OqUmHtP2bcrSdk5cDafZXjYe20lP2wdoV7I6z9wnslrJVERMGa5zBOedYSiz3R+Pg0lG424SBbMXvxMoOuPv4nMgT0t/Y+aP8sxId3pdRZ8Pun/ZsLT4ySLh+NV3TkkAJYOydxJ6zNCNsHa8UBfDzalDdtd1EirAWKXbBWJDhWPXUkPg/V+PF6Ljl8Oqwty/4nrG3OxunopU04VnqL4OdZqy2w5otU0u2VxGK/kjruV9KvtZsbA69m34b6W0l0tzbgmkVJFrfgy6k04MubVONAa/Gn4IVa7LjfpmYegrVhtjpYS7TgfssP4GRxq3LwNB3GB12T4NqLru/B2lmJu2GtTun9NCWy+/3SMbCWkVkGa3mmeFgLOPC9i7MUltQ+tdfgmjca1wZSf6v350rv+/GlSALK1Hr1qfj1fMp9vTcR39hPH4Ovw/4g3mFO5eT2/f3nwFqKC99Q1vnxBxdvvrKBisu+ugnWLMpXrh4f+QasbWvKgLXPiobAWnQCPrdV+/FNXdCK94OrGB8Tpk5+nrPj1RRfBH69QFho3Z9rn4eVy5va39o9v7Ue12qGKPfnSXhFw6MbYe2hIf+GtZdKcdjT7IQ1sPb3smmw9pGMgrXK/TGwpsmpj4O1s7ZfBWtRDnyTdXPMOljbUpwGa7FafzvwPY8nH99LWJpwv4UVwpL4lOuIdn8ponz+dvbT/u6L+nFYXDAYlCeffFLeeecd8Xq9cvbZZ8vChQvF5VJOfB3AqSGIiIiIiIiIiIgoJPTnqSF+9atfyX333ScRERGSlpYmzz77rNx+++1dtnwOBBMREREREREREVFo6MdhcX/961/lD3/4g7z//vvy9ttvy7///W955ZVXJBjsmrksOBBMREREREREREREocEwxBTUf8TomyPBubm5csEFFzT//4wZM8RkMklBAZ4msiMG7hzBREREREREREREFFLaM/VDX50awu/3i9PZcl5rm80mPp8yqXoHcCD4WEruU0AJhNMCZXwR+OjSJgM3onA4hDsWz3Lv8+Oggy3VOHThLSeeCb1BScP7+74TYa2+BAdORB5SvpCuNOTeyGRY+71jBqw1BfDhfmniFvx6Xvx6ZyXvgbU36ibCmkcJC2p04Vnn7dX4PdMmpFeywMSw9tGzXzeweHCDa++fH+cOqAFAvij8TzccqbiH48LwyszL+AjWfpd7Nqx9XDYc1ibH5MLa+wU4cMJXg88LsbvwsepVwvfynTikaUxMEay57Tik44nS02Btc0k6rHl8+JzhjMWv5wvDz/NU4f42LPjcrQY/KS1s9ilhM7bQ6n2tv71KWI9J6eGgcn4MOnDNlorT6ezK2z44oRzWpkXjUFPNX2vwNezJHThoqqECh1G4KnB/a6GHe504CPZQWSys/eXEl2Ht57txSM0FaTtgLajc8K214XTG3ZYUWPNF4d631eL3TA19U+5LTX4lQDbE+lu7V9H2pUm5d9fujbwxeKeYE/E12mnDCVVaAGNGOA493OHBoUmnxe6FtX8V4JDknP047TJGuX5roV7lVhxClTi4AtZ+uv1qWDshCYdVO634c1KT8hH3zIlfw9qq7fiep86FL8QO5ZyofUbU7ocMc2j1sEY7zwVxPqdYlXt3j5KJFgjHvWhE4ONKC3Q9Je0grP1fxUmwFmHB15tVtaNhbUcFvrYX5OHraWSecqwqwcRfOrNgLS69CtZOScTfXvzBjhtgzWXHJ5ufD3sf1h7beQGs+YfiDWzIwzeKjcHOjVlo13bqIf04LM4wDLnhhhvE4fjmRqapqUnmzp0r4eHfjLG9+eabnVo+B4KJiIiIiIiIiIgoJJiCbQ/I99UB+zlz5hz3u+uuu67Lls+BYCIiIiIiIiIiIgoJ/XkgeNmyZd26fA4EExERERERERERUWgw2hEG10fD4robB4KJiIiIiIiIiIgoJPTnsLjuxoHgYwQ7Ga7RmKyEvkXgieU1rkg8A/6pKQdgbXsVnjz+zLhdsPb4nvNgbUg0Dnmor8SBMuH78CEWkY+/h+/eigNzDrgTYG1dcAisOd34/Tw5Fqc1vFc4BtYSXDjwy6ScVVzhODkiPLYW1kqLo/Hr1eL32uxVUhgGkKCS0qSFxmjPMxzKcZxWA2sNjTg0LNqJg8iCooS4KMfc9DgcNPVZ2VBYKyzEaRuOIq2/cdiGFCihfR68zA/842AtLgsH7QTd+D3LiKqCtSgbPmccqImDtQoTThcMKEEjXis+CM1NStCUEgjXVwMQuoPWp5qAEvqmBcK5EvH5f0oaDmCMtePnaSqUZMo3a0fC2u92nAlr3lp8HnIW4IQeexUsScLmOljzuPE2NATwvcRv8s6HtRMS8mBtaw0Og7wj9UNYK/fi9fSk43NUYTW+l/CE49SyQA1epkm5fg+kDy9B5ROLdr/lVwKbjWgcRuSKxPdpnkbcG3PHfwZrSbZqWHsh93uwtt+J73vLG/H1Jmc3/jwQuU8JPqtS7mt24G3wRuD7hRITDq9KGVIGa0kOfE/cEIF7qrABBz9NjjwEazIWl7aW4tC+Cptyf+5RwrkalRAqpTSQ+CKVa7TyuT3owsdxYhq+Z2zw4uuizYrv4S6L2wRr/yzDYXGZLvwZe31FFqwVHsThyu6duL8Tv8D3IHWD8HVYDHwSLjPj4/+fFSfA2gMnLYe1NBt+XzQXDcIhsaVKcvAH1TiYzxOOr8PmWvxem5UQYzUhkbpOPw6L624cCCYiIiIiIiIiIqKQYAoaYgrqI71t1UMVB4KJiIiIiIiIiIgoJHBqCIwDwURERERERERERBQaODUE1CdmH3r++eclKytLnE6nTJ06VTZs2AAf+8ILL8ipp54qMTExEhMTIzNmzFAfT0RERERERERERAPD0W8Et/UzEPX6N4Jff/11mT9/vixZskSmTp0qixcvlpkzZ8ru3bslMTHxuMevXr1aZs2aJdOnTxen0ylPPPGEnHvuubJjxw5JS8OT+LeXGgqlzecfi0MlJIAnAx+aXgJrqWE4aMqjpGZUNODgiC21g2DNonTBF1/iMClnCX5jYvbiSfXD/rMZ1movwhPLx36NJ/+vVgI8GlPxZO4venFIxwmDcBDN9BgcwLWnDId7JEfhfbu/ED8vPAaHiNX7wmEtYFXCZvwDJ4gm4FT626JsrBI4YY/Cva8FwrmcXlg7K3E3rD22+wK8TDsOvnl1/4mwVpOLQx6i9ikhZcpb5onG/RaZi98z934l0M+Gz3vlQRxEUxGNg58yU3AwZYNfCcuy4DC8sUlFnVrmXhPufb8Hv5+BerxMkxYyF2L9rQW7aYEyZjfuxTg3DlVx2XC/1flxiNH2chzg9L1kHAT7t104bManhCxKJT4PuXcpxwc+7UnyuzgMr/J7GbDmwPk8YpjxMb7dnwVrhzJxQFVSJA6aeujAxbBW78X7r64Jv5/xkfh48YXh8MnioBvWtB42K9fvUGNYles3PgWKOQG/73HReH9lu3GAWZoLB6atqcyGNW8QH+NZkTgYafXu4bCm9bejCh87NiWzMupAA6wFvtoJa+Fjp8Ga1423vTCIQ69eUwJrJw3F56HLU7fCWpkfB0ZtKMiENZ8Pb4MlCl8PAjX4APUrnzsHUlCkdv02lOu3KQK/7w4Xvk/zBvC+dIfhz1oXpW2DtY31OLC8yos/m28qwtfM2kP4/jwiF/d39AG87bVZOBAu6p848M52/iRY88TiY9wTi9/rR9bg6/CwLHwvPSnmMKytLMDny0AQv2cThuDP+3k1blirtOHP337t/nwA9XevChpHftp6zADU698IfuaZZ+TWW2+VG2+8UUaPHi1LliyRsLAwWbp0aauPf+WVV+THP/6xTJw4UUaOHCkvvviiBINBWblyZQ+vOREREREREREREfUlJuPIFxvUn06MA4fCjAa9OhDs9Xpl06ZNMmPGjObfmc1mmTFjhqxdu7Zdy2hoaBCfzyexsfjbYERERERERERERDQAGEb7fjrg6IwGCxculM2bN8uECRNk5syZUlLS+r/0PzqjwapVq2Tt2rWSkZEh5557ruTn53fFFnZar04NUVZWJoFAQJKSklr8PikpSXbt2tWuZdxzzz2SmpraYjD52zwej3g83/wz5Joa/E/yiah/YX8ThS72N1HoYn8ThS72NxH1Be2ZA7ij3wj+9owGIiJLliyR5cuXy9KlS+Xee+897vGvvPJKi/9/8cUX5Y033pCVK1fK9ddf37EX70K9PjXEd/H444/La6+9Jm+99ZY4nc5WH7No0SKJjo5u/snIwPPwEFH/wv4mCl3sb6LQxf4mCl3sbyLqE4x2/siRP1h9++fbf8w6KpRmNOjVbwTHx8eLxWKR4uLiFr8vLi6W5GQcpiIi8tRTT8njjz8uH374oYwfPx4+bsGCBTJ//vzm/6+pqTlyMQJ/HtAC4SRSCQJoxG+ly42DKjRflyfBmhYKpXn/qzGwZi/GE5pH4swMiSjAiTLhH+BJ9c1xOADC9fZ6WAuehierj8jF61I0DU/m7qnBE+d/UYsn/98UgW9sYpSQoVgHDiJwZ+LJ6g9U4xNGvQ1vu2FWAmUsymT1SkhNX9Dh/nZq7xH+c2BcEv4mg0VJVPL48XnBpOySf+VNgLWaxtb/6CUiUlrkhjV7Ie7veCWgLfogPn/Z9xTCmr8A1+qvOhnWorbjwBxbDQ59K/Hj96UhBQc/5QRwQFtCIg4EKq/E6zJoaBWsFTcqwXVxeNsPlePe9/pxEIehhUH6+nbQVEf7WwubkTAcnOJ04bA4s+BlaqEjTUrv28z4nPHO1/h+JqjcZ9jKcc29B2+DD2cmScLv1sBaw/k4uM5Vgu9PTErQrVMJkmuoxe91nccNa3vj8HXf7MBhtlY7rvma8DaMSSyGtR0l+J7OooQaBZWASSXPr88HyXW0v0XZHDVMSvmqT00Dvm582ZAOa/nROMAp3IbPJ4er3LC2tQLfT1qLcSBczG68fe49OPTNvPFrWKu5HAc2OyNx8GzUfnzf2+TG1z5nBb6G1WXg3v+yaTCs7UvBAXT1dfieIDu1FC/z8PEh5kdp4d+5dvx5x1ONj0FD+VCqBU31BR2+P1fCICUcnx/NymefaCX0LTYM98b+Ynzs/LnkVFiLiMT3y7UF+GJrrVaC6w7BksTsxcHLjnz8uSXMjq9hAT++fodvLYC1zAI3rB26IArWgjX43LYnmAJr+5343n1wCh60cCpBzzsK8NhTgrsO1iKilP2u3Ccagve7ydO3+7s/MQUM9T7g6GNE5Lg/WC1cuFAeeuihFr/riRkNekqvDgTb7XaZPHmyrFy5Ui677DIRkebgt3nz5sHn/eY3v5Ff/epX8v7778uJJ+IbEhERh8MhDge+4BNR/8X+Jgpd7G+i0MX+Jgpd7G8i6gtMhiGmNuYAPlrPy8uTqKhv/nDRHeewozMarF69Gs5o0FN6dSBYRGT+/PkyZ84cOfHEE2XKlCmyePFiqa+vb55z4/rrr5e0tDRZtGiRiIg88cQT8uCDD8rf//53ycrKkqKiIhERiYiIkIgI/NdmIiIiIiIiIiIiCnHfmvpBfYyIREVFtRgIbk1PzGjQU3r9331fc8018tRTT8mDDz4oEydOlC1btsiKFSuav26dm5srhYXf/BPjP/7xj+L1euXKK6+UlJSU5p+nnnqqtzaBiIiIiIiIiIiI+gLDaN9PO317RoOjjs5oMG3aNPi83/zmN/Loo4/KihUr2pzRoKf0+jeCRUTmzZsHp4JYvXp1i//Pycnp/hUiIiIiIiIiIiKifscUNMQUbGNqiDbqxwqVGQ36xEBwn6IFbvmUL1BrWVwWvMw9B/BE6FYl3CZQjucssTbglXE24ZoVz4MuyWtxAIT1IA6FEjcO1Ggch4M4Ak4cAGH242ZtiMcTr1uUzD4XzngQMZRJ9Wvw65XV44CX8sNu/HpaYIISaCaGEgoVxDU1IDHUaOE5eHdJRTH+ZyKRcbg3astxUFGrYThHefFO0UIlIkrx9kXk4/OQoxIHI9nzcWCaFghnGTcS1sL/uQ7WGi+cAmthWw7DmmtQJqypyXwFOKiiIh0HhgQj8Hu2etsIWHNE43CPgBL6pgWSGkpiVBv5CKFF29gAPgb8Afy+a4GPpaVhsFbYFIfXRbmXsNbjmpJBJVEH8bZHFOB7CXs5vjBqh469SlmZtVvxuijLLL91OqxF5uF+M8x4//nLcX97Y/AWeiOVe0HlPnHTISXwSwmgCyj3CyYl5FQa8bYL3u39UlB5H7TW9zfi91a7JbA6cWhS7n4cGmZY8MrYyvG6ROMcJjEr+dBmZT97o/DrWaePhbWI1/E1WmMeMxzWYvbgXjwa1NOaqBx8jFcPxufn+nr8+SMYho+lvXWpsKYFmu3Nwf8kOMyNQ8tEOV6061aoUQMflffBUGrlVUrAcKEb1rQgUS20taEYH3ORh/F6Rh/Cr9eQoAQppuKesm/CoYe+8fgztueyqbCmBblbXXiu06TN+F6pZhB+P60N+Pylndv21ytjK8o9uKZaCRZtqMKB89rnOfUCRF3GFDzy09ZjOuKaa66R0tJSefDBB6WoqEgmTpx43IwGZvM3+/7bMxp8W2thdD2JA8FEREREREREREQUGtoz9UMHpoY4KhRmNOBAMBEREREREREREYWGDoTFDTQcCCYiIiIiIiIiIqKQYDIMMbXxjd+26qGKA8FEREREREREREQUGoKGiDIPffNjBiAOBBMREREREREREVFI4DeCMQ4EH8OkpTtq4Y5KinR9Pk4ttSjp4eZinIgZVq6si0JLRUz7TxGsBeLwNlSenQ1rkX9fC2u2gkJcgxWRxstxomn8xzh22TsoFtYaUhywZgooKe71sCQet5Isi8OFJagk5wbtuGY4lERt5bg2aXHbA4jJp6QSK8+rOxQFa2YlzdjsxTWLEmprbcA1ew2uxXyaB2v+w/mwVn/RFFhz7N0Pa6YapTkU3kh8rDrS42HN/epGWLNcORnWglblxG7CtaAV97cfny7FV4efp6XNi9bf2gFqDKBUYuV6qtU8Sp/6GnDatVlJfDYr5xOtv221uOaoxDVfOH495/q9+ImDcLo2zjEXkbVbtSpkTcEXv7gX1nRqmbU/mQ5rKWsa8fOycAq4x42T2huVFHd/OO5vr13pYVgRMZTzkHYdCTUmD+5hw4mPVvW+XunhYCW+E3XUKPcLyi7R+jsyD2+DNwJvQ8xWfGJoTIuENctn22BNu6RY09Pw8/JLYC04KBov04u3PewQ7mFLEz4/+yLssCaVSg/jRUrAqdyDK/fuDb5wvFDlGBxIt+cm7VzmxfsrqH2+UWoW5X23NOHet1fBknp/HlRGXOqT8fYlrq/Gz8vEN5uBqipYM3/yJay5YKUNZfg8FNbYhGv4NCRFFw6CtfAC3Bz1KfjNDjhxzRep9LDy+VtlVp6n3fMr96XUQYa0IyyuR9akz+FAMBEREREREREREYUGw2jHQPDAHAnmQDARERERERERERGFBFPAEFMbX/k1tTWHcIjiQDARERERERERERGFBn4jGOJAMBEREREREREREYUGDgRDHAg+hkmZnFsLWrPU4rdSnTxeSUWz4LnVxb3PD2theXWwZi6qgDXvMBwao00sL0NOhiXrkCxY8x/Iwc9LxesSsQdPSF9xSiqsmf24ya1NuBZ1CL/XZh9+XsCuhP3hnDzxxCjhJTYloMSsBKlYlYALNSwrtE6MZi00RulvawV+j6xKJppJSVuyKecF9z4frFWOwMdV3Da8MkYkDisxTRkHa873NuFlwopI3UTci+FReF0iXlvXqddrugSH2oUVemHNfggnb7pGJMJawIGPidp0fD2wV+Pnab0vBj52/eHKO6Mc8iHX31roDm4psVQpF2JllzjLcE0LhYrIxytjbcQnjcrhONzMVo/3pSkeB6VWjcIBTjIKX9sjXsd9qvEX4lBajfe8k2Atfhu+WapPx+9ZeCHeD41xOGgqMgeWpCFFCxHDgUABvJoStGvXdvy8gdTfUoPfCEuTEraHb+9U7r34vbXV45sJNZxU2V1a0JSpEp9s7JH4wDL8+PjX7gn8G3C6U+0Pp8GaFh6tabwYX9u1EL3oA3g/1Kbj50XivDv1ftnjxjWvUjPwaUGthVx/a2Gvyv25SbmXttV37t7dVaZ8tlPu/ey1+Hm+MPy8+E1VsFYzHAdSa9dhs0O5qFjwe+2bNgrW/C7lgFyOA5urLxwOa9rYSuzX+NpeNQxvX4QWJJes7L8qJTg4WvtsDksScGifv/HzQq2/exUHgiEOBBMREREREREREVFI4BzBGAeCiYiIiIiIiIiIKDTwG8EQB4KJiIiIiIiIiIgoNASNtqfaCHIgmIiIiIiIiIiIiKj/4jeCoYE7EGyYjvwcw9KohM0ooRLWRlyzdXJC+oZEvC4BJTykMT0C1pw2PNG7pQlvoNYeka/iyeqDLhesWYcOwc/Lx2lqpng3rEW9gsMoKm/EIRZa4IS9Ds9kb6/BwT4+nIelTiwfswe/201K4ETAgZfpi1AmwI9SJrJX1rNPA/2thrfV4vfIVo2fZ1VCHbWgqQDOIhJLE17R1PdxWGLQiRdqasAnKUsNDpisu3AyrBkWvIHhucqJLycflsx2vA3m+DhYa0jElzPXchx413j2JFgLOPF5QQv9UXLd1N7XwkssOO9OLF6lv/HlQILOfnrj04nrt3YRc+C8QAmE4ZoWchJejK+nvkh8Ha4dhA+QpI9w0Fr9qHhYq56EQw+1YKvwXTgNr+oaHCQXvQOfo0xNOKBK2wbXhzigquLqifh5Ffhcapjx8RJRgN8X7bwXtwM/r2wc3u/2KlhSQ2oMJQQxEBZa/W32KPfnyrXdgQ/H1l6mmRY45KjGL2ivwidra5XyYeFwMSyFZ+Lw1UAavi7K2q9gyTIGBzhJrQe/3skTYC36DRwsbc4eDGt1Y/E5yvUfHEIVnoaDpWtPSIO1tI9xwF59Br559zuVQLgoJYRKCYkNKvlbvkjl/ly5h+zTUH8r9zhmX+c+m5uV86N2TxCwd+5cE5mD+7tuEA43qxuCA+Gi3tkKa03n4xBV50r8vJqLJ8Ka9rklPB+fF8RQQjK1QEQlBN0fhp+oBWj6XcrnOeU+Ww3sVEIJzcr2BZX7Be347LfX777ICIoElRv2o48ZgAbuQDARERERERERERGFlqAh+lcahVNDEBEREREREREREfVrRrDtb/zyG8FERERERERERERE/RjnCIY4EExEREREREREREShgVNDQBwIPkbQqoRD1OAJvy1KYJStFi+zNl2ZlV1h9eCvsDe58azldSmRsKaFjblj8YT01UNwuE3cdjxxftUwHCQXtCXjddmPEwWcSgBdVA5+Xl06Tl1ojMfJT/UpuJawBU+qX5+GX087JrRJ7v1KOJ1ZCVNo69wYUpRtVSftx4eq+JUwLifOWhJDCRfwRuNTc83gBFiz1eMNrEtzw1rqhzgty+zFy7QqAZMV4/C5xjt9HKxpAVza9mnhjL4zcSCcrQbveHuFEpgTjs97hgn3d32yFkyJt68+VQmbUQLotOM6iLNL+iXDgt8/sxKopy6zc0+T8tG4h51KOF14sRJu5ujcLVtQCWPx2PGJyDcZBzhpy6ycEAtr2nkvIh9fo82DcPBT1CHcp5Y63ADVI/DJO+IwXqZ2fvYo91+OClgSv3KNUXu4vwa6doIWJmVRMozUexwl2NMXrtzze/ETfRH4xKpcpqRkxmhYS1qPb/48cfjmPXw4vicOuPDz6jPxmmr3xEnluE+rJ+B7F5PyIdw8PBvWik/FAZPOCnwzUfg9fH/iKlXWxY9rpkDnAmS1/tZC0gL2gXPzrr1/NiV/0a4EPXujcc3aqIT0KeuiBYlGHFJWVPtskoo/D2uvV3rjibDmqMK9EXkQp6LVDcLpuV4lkN29F297bZYSKt+A74ecVfha64nCO0nrYe2+Rvv8rV2Htc80HnyrRF0paIhIG1M/cCCYiIiIiIiIiIiIqB/j1BAQB4KJiIiIiIiIiIgoNASD0vY3ghkWR0RERERERERERNR/8RvBEAeCiYiIiIiIiIiIKDQEgiIGvxHcGg4EH8MUxBOF+/Ec6WpNTJ2bfFybyL42De86i0cLM8DL9CvBQWUT8EzokXn49SrGKJPAK5PxiygT4E/AQUzO9CRY80Z1LvUnoLwvWpBQzWAlMEoLfuqGrtS2QXmrQ442ab822b8WDmFSgvgaUnAtrAjXKofhg0ANJVDCSsKUAJSKE3BiQVOscv6qxSvTiHNhJKwYr4vWp01uZfvK8DJrMpUwyCRc03pRCy4yKae2AH45aUzqXCCpdlxrrxdqtCAy7TynBXY4KnEtqLyeFtBpUr55UJeqhb3iYCSPG7+eqxTXbMp1uCkGn/i0Y65JC0BR9kPQovTiEBxcp21D0IoDsTzReGUakrQLPy5p+70Rb4JYcT6PGiRnmAfOt1iC2rlMO66U52nnce36HbTh3tCO/7pU5cOCsisLp+PwtvAi5XxyOj7ovFH49bTwPe1ck38hvgfv7DFeORyf97TPNE1xWqoXLlUPxQeTtaGTnyOUMG7t/jI4gALhRPn8rd67K/dp9am45lLCnH0Ryn5WdknBqfhA1vaz9nmgPgX3vr0GP89ZqYUr4+0rmYxDVLXjWPts4olWznvKW90Yh6/DVuWeWJsFoE4JZNeOM22/a2NA2jK1gGPqOoYRFKONgeC26qGKA8FEREREREREREQUGgxDJMipIVrDgWAiIiIiIiIiIiIKDYYh6le6mx8z8HAgmIiIiIiIiIiIiEJDIKDPIyQiYrRRD1HKjDU95/nnn5esrCxxOp0ydepU2bBhg/r4f/7znzJy5EhxOp0ybtw4effdd3toTYmIiIiIiIiIiKivMoLBdv0MRL0+EPz666/L/PnzZeHChbJ582aZMGGCzJw5U0pKSlp9/Jo1a2TWrFly8803y5dffimXXXaZXHbZZbJ9+/YeXnMiIiIiIiIiIiLqUwyjfT8DUK9PDfHMM8/IrbfeKjfeeKOIiCxZskSWL18uS5culXvvvfe4xz/77LNy3nnnyc9//nMREXn00Uflv//9r/z+97+XJUuWtP+FTUar0e5Bp5I+rYRIa/xKMm9nNSnp07quP9AblWTlzr9e557XkN71y+yspmSt2rl18bk79bSBB/W3knjrdfTs8VEd3aMvJ41pnX1m178v3dEb9Vldv8y+xB/Z22vQh4D+NpQ7Gn9E546B7rh+1w/Sqj3db5oevmYmadXuWJe+c15gf39LD96fd5Y3ppPPi+va9RARacjQqj17jHfH9vUlvh6+bwtJqL9dSn8ri/NHdG41arvh2t5ZnvjOPU/rt7rBnVtmX7ouEnWJYOvnnBY6MRD8/PPPy5NPPilFRUUyYcIEee6552TKlCnw8f/85z/lgQcekJycHBk2bJg88cQTcsEFF3T4dbtSr34j2Ov1yqZNm2TGjBnNvzObzTJjxgxZu3Ztq89Zu3Zti8eLiMycORM+3uPxSE1NTYsfIgoN7G+i0MX+Jgpd7G+i0MX+JqK+wAgExQgE2vjp2NQQoTKjQa8OBJeVlUkgEJCkpJZfA0lKSpKioqJWn1NUVNShxy9atEiio6ObfzIy1D+dE1E/wv4mCl3sb6LQxf4mCl3sbyLqE4xg+3464NszGowePVqWLFkiYWFhsnTp0lYf/+0ZDUaNGiWPPvqonHDCCfL73/++K7aw03p9juDutmDBAqmurm7+ycvL6+1VIqIuwv4mCl3sb6LQxf4mCl3sbyLqC4yg0a6f9uqJGQ16Sq/OERwfHy8Wi0WKi4tb/L64uFiSk1uf1C45OblDj3c4HOJwfDMxqPH/5wAJNjV9l1UnGtCO9o/Ry5Ors7+Juh77myh0sb+JQhf7myh09ZX+7k/8hqfNb/z6xScictwUNseex0T0GQ127drV6vI7OqNBT+nVgWC73S6TJ0+WlStXymWXXSYiIsFgUFauXCnz5s1r9TnTpk2TlStXyl133dX8u//+978ybdq0dr1mbW2tiIjkLXzsO607ER3pp+jovpOewf4m6jrsb6LQxf4mCl3sb6LQ1df6uy+y2+2SnJwsnxW9267HR0REHDeFzcKFC+Whhx7qhrXrG3p1IFhEZP78+TJnzhw58cQTZcqUKbJ48WKpr6+XG2+8UURErr/+eklLS5NFixaJiMidd94pp59+ujz99NNy4YUXymuvvSYbN26UP//5z+16vdTUVMnLy5PIyEgxmUxSU1MjGRkZkpeXJ1FRfShCtBNCZVtCZTtEQndbIiMjpba2VlJTU3t7tVpgf/d9obIdIqG7Lezvnhcq2xIq2yESutvC/u5ZobIdItyWvor93XtCZTtEuC19VX/o777I6XTKwYMHxev1tuvxhmGIyWRq8btjvw0s0jMzGvSUXh8Ivuaaa6S0tFQefPBBKSoqkokTJ8qKFSuavz6dm5srZvM3UxlPnz5d/v73v8v9998v9913nwwbNkzefvttGTt2bLtez2w2S3p6+nG/j4qK6vcniqNCZVtCZTtEQnNb+uJfItnf/UeobIdIaG4L+7t3hMq2hMp2iITmtrC/e16obIcIt6WvYn/3nlDZDhFuS1/Vl/u7r3I6neJ0Ort0mb0xo0F36fWBYBGRefPmwTdu9erVx/3uqquukquuuqqb14qIiIiIiIiIiIgGup6e0aC79ImBYCIiIiIiIiIiIqK+qKdnNOguA34g2OFwyMKFC1udA6S/CZVtCZXtEOG29Lb+uM5IqGxLqGyHCLelt/XHdUZCZVtCZTtEuC29rT+uc2tCZTtEuC19VX/clv64zq0Jle0Q4bb0VaG0LaEkFGY0MBmGYfT2ShARERERERERERFR9zG3/RAiIiIiIiIiIiIi6s84EExEREREREREREQU4jgQTERERERERERERBTi+v1A8PPPPy9ZWVnidDpl6tSpsmHDhnY977XXXhOTySSXXXZZi9/fcMMNYjKZWvycd955LR5TUVEh1157rURFRYnb7Zabb75Z6urq+ty2HLsdR3+efPLJ5sdkZWUdV3/88cd7dFteeuml49bB6XS2eIxhGPLggw9KSkqKuFwumTFjhuzdu7fFY7pjv3Tldvh8Prnnnntk3LhxEh4eLqmpqXL99ddLQUFBi+X0l33SE73C/mZ/H8X+7rltEWF/dxT7m/0t0n/2Cfu7Y0Klv0Olt7t6W9jf7G/2N/ub/U0DjtGPvfbaa4bdbjeWLl1q7Nixw7j11lsNt9ttFBcXq887ePCgkZaWZpx66qnGpZde2qI2Z84c47zzzjMKCwubfyoqKlo85rzzzjMmTJhgrFu3zvj000+NoUOHGrNmzepz2/LtbSgsLDSWLl1qmEwmY//+/c2PyczMNB555JEWj6urq+vRbVm2bJkRFRXVYh2KiopaPObxxx83oqOjjbffftvYunWrcckllxiDBw82Ghsbmx/T1fulq7ejqqrKmDFjhvH6668bu3btMtauXWtMmTLFmDx5covl9Jd90t29wv5mf7O/e2dbDIP93RHsb/b3Uf1ln7C/2y9U+jtUers7toX9zf5mf7O/2d800PTrgeApU6YYt99+e/P/BwIBIzU11Vi0aBF8jt/vN6ZPn268+OKLxpw5c1q9EB37u2/7+uuvDRExvvjii+bfvffee4bJZDLy8/P71LYc69JLLzXOOuusFr/LzMw0fvvb33Z6vVvT0W1ZtmyZER0dDZcXDAaN5ORk48knn2z+XVVVleFwOIxXX33VMIzu2S9dvR2t2bBhgyEixqFDh5p/1x/2iWF0f6+wv9nf7O/2YX/3zDr35LYci/3du9vRGvZ3162zYbC/u7u/Q6W3u2NbWsP+7rp1Ngz2N/u797alNexvIsPot1NDeL1e2bRpk8yYMaP5d2azWWbMmCFr166Fz3vkkUckMTFRbr75ZviY1atXS2JioowYMUJuu+02KS8vb66tXbtW3G63nHjiic2/mzFjhpjNZlm/fn2f25ajiouLZfny5a0+9vHHH5e4uDiZNGmSPPnkk+L3+zu1HSKd35a6ujrJzMyUjIwMufTSS2XHjh3NtYMHD0pRUVGLZUZHR8vUqVObl9nV+6U7tqM11dXVYjKZxO12t/h9X98nR3VXr7C/2d/s797fFvZ329jf7G/2d9esM/u7+/o7VHq7u7alNezvrl1n9jf7u7e2pTXsbyIRa2+vQGeVlZVJIBCQpKSkFr9PSkqSXbt2tfqczz77TP7yl7/Ili1b4HLPO+88ueKKK2Tw4MGyf/9+ue++++T888+XtWvXisVikaKiIklMTGzxHKvVKrGxsVJUVNSntuXbXn75ZYmMjJQrrriixe/vuOMOOeGEEyQ2NlbWrFkjCxYskMLCQnnmmWd6bFtGjBghS5culfHjx0t1dbU89dRTMn36dNmxY4ekp6c3v6+tLfNorav3S3dsx7GamprknnvukVmzZklUVFTz7/vDPhHp3l5hf7O/2d+9uy3s7/Zhf7O/2d/ffZ3Z393b36HS2921Lcdif3ftOrO/2d+9uS3HYn8THdFvB4I7qra2VmbPni0vvPCCxMfHw8f94Ac/aP7vcePGyfjx4yU7O1tWr14tZ599dk+sapvauy3ftnTpUrn22muPm3B8/vz5zf89fvx4sdvt8j//8z+yaNEicTgcXbreyLRp02TatGnN/z99+nQZNWqU/OlPf5JHH320R9ahK3RkO3w+n1x99dViGIb88Y9/bFHrL/ukL/UK+5v93d3Y3+zvrsD+7pvY3+zvrhBK/R0qvS3C/mZ/dw32d9/E/u57vUL9Q78dCI6PjxeLxSLFxcUtfl9cXCzJycnHPX7//v2Sk5MjF198cfPvgsGgiBz5K8nu3bslOzv7uOcNGTJE4uPjZd++fXL22WdLcnKylJSUtHiM3++XioqKVl+3L2zLp59+Krt375bXX3+9zXWZOnWq+P1+ycnJkREjRnT7trTGZrPJpEmTZN++fSIizc8rLi6WlJSUFsucOHFi82O6cr90x3YcdfQidOjQIfnoo49a/DWyNX1xn7SmK3uF/c3+Zn+3D/ub/X1UXzyW2N99b5+0hv3dO9vSU/0dKr3dXdtyFPub/d2V28L+7jj2d0s93d80sPTbOYLtdrtMnjxZVq5c2fy7YDAoK1eubPGXlKNGjhwp27Ztky1btjT/XHLJJXLmmWfKli1bJCMjo9XXOXz4sJSXlzefBKdNmyZVVVWyadOm5sd89NFHEgwGZerUqX1yW/7yl7/I5MmTZcKECW2uy5YtW8RsNh/3Twq6a1taEwgEZNu2bc3v+eDBgyU5ObnFMmtqamT9+vXNy+zq/dId2yHyzUVo79698uGHH0pcXFyby+mL+6Q1Xdkr7G/2N/u7fdjf7O+j+uKxxP7ue/ukNezv3tmWnurvUOnt7toWEfY3+7vrt4X93XHs75Z6ur9pgOnVqLrv6LXXXjMcDofx0ksvGV9//bXxox/9yHC73UZRUZFhGIYxe/Zs495774XPPzZ1sba21rj77ruNtWvXGgcPHjQ+/PBD44QTTjCGDRtmNDU1NT/uvPPOMyZNmmSsX7/e+Oyzz4xhw4YZs2bN6lPbclR1dbURFhZm/PGPfzyutmbNGuO3v/2tsWXLFmP//v3G3/72NyMhIcG4/vrre3RbHn74YeP999839u/fb2zatMn4wQ9+YDidTmPHjh3Nj3n88ccNt9tt/Otf/zK++uor49JLLzUGDx5sNDY2Nj+mq/dLV2+H1+s1LrnkEiM9Pd3YsmWLUVhY2Pzj8XgMw+g/+6QneoX9jbflKPY3+7s7toX93THsb/a3YfSffcL+7phQ6e9Q6e3u2Bb2N/ub/c3+Zn/TQNOvB4INwzCee+45Y9CgQYbdbjemTJlirFu3rrl2+umnG3PmzIHPPfbk3dDQYJx77rlGQkKCYbPZjMzMTOPWW29tbtajysvLjVmzZhkRERFGVFSUceONNxq1tbV9aluO+tOf/mS4XC6jqqrquNqmTZuMqVOnGtHR0YbT6TRGjRpl/PrXv25xIumJbbnrrruaH5uUlGRccMEFxubNm1ssLxgMGg888ICRlJRkOBwO4+yzzzZ2797d4jHdsV+6cjsOHjxoiEirP6tWrTIMo//sk57qFfZ369tyFPub/d0d28L+7jj2N/u7v+wT9nfHhUp/h0pvd/W2sL/Z3+xv9jf7mwYak2EYRk9885iIiIiIiIiIiIiIeke/nSOYiIiIiIiIiIiIiNqHA8FEREREREREREREIY4DwUREREREREREREQhjgPBRERERERERERERCGOA8FEREREREREREREIY4DwUREREREREREREQhjgPBRERERERERERERCGOA8FEREREREREREREIY4DwdRtsrKyZPHixc3/bzKZ5O233+6R1+qonJwcMZlMYjKZZOLEiR1+/tHnut3uTq8DUX/C/iYKXexvotDF/iYKXexvImoPDgQPAGvXrhWLxSIXXnhhr65HYWGhnH/++SLyzYl/y5YtvbpOx/rwww9l5cqVIiLyk5/8REaNGtXq43Jzc8Viscg777wjIke27btcCIk6i/3dfuxv6m/Y3+3H/qb+hv3dfuxv6m/Y3+3H/ibqeRwIHgD+8pe/yE9+8hP55JNPpKCgoNfWIzk5WRwOR6+9fnvExcVJXFyciIjcfPPNsmvXLlmzZs1xj3vppZckMTFRLrjgAhE5sm3R0dE9uq5EIuzvjmB/U3/D/m4/9jf1N+zv9mN/U3/D/m4/9jdRz+NAcIirq6uT119/XW677Ta58MIL5aWXXmpRX716tZhMJnn//fdl0qRJ4nK55KyzzpKSkhJ57733ZNT/a+9eQqJqHziO/yan0hINUiMJaopSKWIyukk0llJtIlHsRqWpaJGgtGkRQbtWlaUUQjYVlBBdNhkhwQiB5aCUEZhUWLmwXKSGXcCx57+ITs07vfzV7K0evh8QPM/x3IQvA8/xHNPSFBcXpx07dujDhw/OdpmZmSovL1d5ebni4+OVkJCgw4cPyxjzr+fy/aMpHo9HkrRkyRK5XC5lZmY6+62srAzbLicnR4WFhc5yb2+vNm3apJiYGHk8Hl26dCniWP39/SopKVFiYqLi4uK0bt06tbe3j/wXJ8nr9So9PV3nzp0LGzfG6Pz58yooKJDb7R7VPoHxRN/0DXvRN33DXvRN37AXfdM38KdjIthyV65cUWpqqlJSUrRz506dO3fuhx8WR44cUU1NjZqbm9Xd3a0tW7aoqqpKly9fVkNDgxobG1VdXR22zYULF+R2uxUMBnXy5EkdP35cZ8+eHdF5BYNBSV8eBenp6dH169dHfE2FhYXq7u5WIBDQ1atXdfr0afX29ob9TH5+vvNh2tbWpvT0dGVlZent27cjPo705a7klStX9P79e2esqalJXV1dKioqGtW+gPFG3/QNe9E3fcNe9E3fsBd90zfwxzOwWkZGhqmqqjLGGDM0NGQSEhJMIBBw1gcCASPJ3Llzxxk7evSokWSeP3/ujJWVlZkNGzY4yz6fz6SlpZnPnz87YwcPHjRpaWnO8uzZs82JEyecZUnmxo0bxhhjurq6jCTz4MGDsPP1+XymoqIibGzz5s2moKDAGGNMZ2enkWSCwaCzvqOjw0hyjnX37l0TFxdnPn36FLafefPmmdra2h/+nv7tfPr6+kx0dLTx+/3O2K5du8zq1asj9uH3+018fPwP9w/8CvT9DX3DNvT9DX3DNvT9DX3DNvT9DX0Dfyb+IthinZ2dCgaD2r59uyTJ7XZr69atqquri/jZxYsXO9/PmDFDU6ZM0dy5c8PG/nnXb+XKlXK5XM7yqlWr9PTpUw0PD4/3pTg6Ojrkdru1dOlSZyw1NTXsv4W2t7drcHBQ06dPV2xsrPPV1dWl58+fj+p406ZNU25urvN4yrt373Tt2jUVFxePy/UAY0Xf9A170Td9w170Td+wF33TN/A34AUrFqurq1MoFFJycrIzZozR5MmTVVNTE/Zy9YkTJzrfu1yusOWvY58/f/7l5zxhwoSIR2eGhoZGtY/BwUHNnDlTTU1NEeu+/8AaqeLiYmVlZenZs2cKBAKKiopSfn7+qPcDjCf6bopYR9+wBX03Rayjb9iCvpsi1tE3bEHfTRHr6Bv48zARbKlQKKSLFy/q2LFjWr9+fdi6nJwc1dfXa+/evT91jJaWlrDl+/fva/78+YqKivq/206aNEmSIu5eJiYmqqenx1keHh7W48ePtXbtWklf7j6GQiG1tbVp2bJlkr7cee3v73e2SU9P1+vXr+V2uzVnzpyxXFqYtWvXyuPxyO/3KxAIaNu2bZo6depP7xcYK/qmb9iLvukb9qJv+oa96Ju+gb8Fr4aw1M2bN9XX16fi4mItWrQo7CsvL++Hj6eM1qtXr3TgwAF1dnaqvr5e1dXVqqioGNG2SUlJiomJ0e3bt/XmzRsNDAxIktatW6eGhgY1NDToyZMn2rdvX9iHTEpKijZu3KiysjK1tLSora1NJSUliomJcX4mOztbq1atUk5OjhobG/XixQs1Nzfr0KFDam1tHfV1ulwuFRUV6cyZM7p37x6PpeC3o2/6hr3om75hL/qmb9iLvukb+FswEWypuro6ZWdnhz1+8lVeXp5aW1v16NGjnzrG7t279fHjRy1fvlz79+9XRUWFSktLR7St2+3WqVOnVFtbq+TkZG3evFmSVFRUpIKCAu3evVs+n09z58517kZ+5ff7lZycLJ/Pp9zcXJWWliopKclZ73K5dOvWLa1Zs0Z79uzRggULtG3bNr18+VIzZswY07UWFhZqYGBACxcu1IoVK8a0D2C80Dd9w170Td+wF33TN+xF3/QN/C1c5p8vhAFGIDMzU16vV1VVVb/7VMbFixcv5PF49ODBA3m93jHt4/z586qsrAy7gwr8jeg7En3DFvQdib5hC/qORN+wBX1Hom9gbHhHMPCdjIwMeb1eNTc3j2q72NhYhUIhRUdH/6IzA/Cz6BuwF30D9qJvwF70Dfz3mAgGJM2aNUtPnz6VJE2ePHnU2z98+FCSRvSifgD/LfoG7EXfgL3oG7AXfQO/D6+GAAAAAAAAAADL8c/iAAAAAAAAAMByTAQDAAAAAAAAgOWYCAYAAAAAAAAAyzERDAAAAAAAAACWYyIYAAAAAAAAACzHRDAAAAAAAAAAWI6JYAAAAAAAAACwHBPBAAAAAAAAAGA5JoIBAAAAAAAAwHL/A6/GuanFmsruAAAAAElFTkSuQmCC\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - specification_5_1.png" } }, "output_type": "display_data" } ], "source": [ "dataset_gridded = dh.to_gridded_dataset(\n", " dataset,\n", " dimension=\"main_dim\",\n", " coords_names=dattrs.get_main_coords(dataset),\n", ")\n", "dataset_gridded.pop_q0.plot.pcolormesh(x=\"amp\", col=\"repetitions\")\n", "_ = dataset_gridded.pop_q1.plot.pcolormesh(x=\"amp\", col=\"repetitions\")" ] }, { "cell_type": "code", "execution_count": 7, "id": "5d4c4cc7", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:42.798998Z", "iopub.status.busy": "2023-09-26T17:43:42.798788Z", "iopub.status.idle": "2023-09-26T17:43:42.807860Z", "shell.execute_reply": "2023-09-26T17:43:42.807132Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:      (repetitions: 5)\n",
       "Coordinates:\n",
       "  * repetitions  (repetitions) <U1 'A' 'B' 'C' 'D' 'E'\n",
       "Data variables:\n",
       "    *empty*
" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "coord_dims = (\"repetitions\",)\n", "coord_values = [\"A\", \"B\", \"C\", \"D\", \"E\"]\n", "dataset_indexed_rep = xr.Dataset(coords=dict(repetitions=(coord_dims, coord_values)))\n", "\n", "dataset_indexed_rep" ] }, { "cell_type": "code", "execution_count": 8, "id": "0992b229", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:42.810254Z", "iopub.status.busy": "2023-09-26T17:43:42.810056Z", "iopub.status.idle": "2023-09-26T17:43:42.955354Z", "shell.execute_reply": "2023-09-26T17:43:42.954631Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:      (repetitions: 5, main_dim: 1200)\n",
       "Coordinates:\n",
       "    amp          (main_dim) float64 0.45 0.4534 0.4569 ... 0.5431 0.5466 0.55\n",
       "    time         (main_dim) float64 0.0 0.0 0.0 0.0 ... 1e-07 1e-07 1e-07 1e-07\n",
       "  * repetitions  (repetitions) <U1 'A' 'B' 'C' 'D' 'E'\n",
       "Dimensions without coordinates: main_dim\n",
       "Data variables:\n",
       "    pop_q0       (repetitions, main_dim) float64 0.5 0.5 0.5 ... 0.4818 0.5\n",
       "    pop_q1       (repetitions, main_dim) float64 0.5 0.5 0.5 ... 0.5371 0.5\n",
       "Attributes:\n",
       "    tuid:                      20230926-194340-851-8a0f58\n",
       "    dataset_name:              \n",
       "    dataset_state:             None\n",
       "    timestamp_start:           None\n",
       "    timestamp_end:             None\n",
       "    quantify_dataset_version:  2.0.0\n",
       "    software_versions:         {}\n",
       "    relationships:             []\n",
       "    json_serialize_exclude:    []
" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# merge with the previous dataset\n", "dataset_rep = dataset.merge(dataset_indexed_rep, combine_attrs=\"drop_conflicts\")\n", "\n", "assert dataset_rep == round_trip_dataset(dataset_rep) # confirm read/write\n", "\n", "dataset_rep" ] }, { "cell_type": "code", "execution_count": 9, "id": "d0410cb2", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:42.957770Z", "iopub.status.busy": "2023-09-26T17:43:42.957573Z", "iopub.status.idle": "2023-09-26T17:43:42.979347Z", "shell.execute_reply": "2023-09-26T17:43:42.978631Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:      (amp: 30, time: 40, repetitions: 5)\n",
       "Coordinates:\n",
       "  * amp          (amp) float64 0.45 0.4534 0.4569 0.4603 ... 0.5431 0.5466 0.55\n",
       "  * time         (time) float64 0.0 2.564e-09 5.128e-09 ... 9.744e-08 1e-07\n",
       "  * repetitions  (repetitions) <U1 'A' 'B' 'C' 'D' 'E'\n",
       "Data variables:\n",
       "    pop_q0       (repetitions, amp, time) float64 0.5 0.5 0.5 ... 0.5 0.5 0.5\n",
       "    pop_q1       (repetitions, amp, time) float64 0.5 0.5 0.5 ... 0.5 0.5 0.5\n",
       "Attributes:\n",
       "    tuid:                      20230926-194340-851-8a0f58\n",
       "    dataset_name:              \n",
       "    dataset_state:             None\n",
       "    timestamp_start:           None\n",
       "    timestamp_end:             None\n",
       "    quantify_dataset_version:  2.0.0\n",
       "    software_versions:         {}\n",
       "    relationships:             []\n",
       "    json_serialize_exclude:    []
" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset_gridded = dh.to_gridded_dataset(\n", " dataset_rep,\n", " dimension=\"main_dim\",\n", " coords_names=dattrs.get_main_coords(dataset),\n", ")\n", "dataset_gridded" ] }, { "cell_type": "code", "execution_count": 10, "id": "b3ed33a5", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:42.981690Z", "iopub.status.busy": "2023-09-26T17:43:42.981491Z", "iopub.status.idle": "2023-09-26T17:43:43.379413Z", "shell.execute_reply": "2023-09-26T17:43:43.378674Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHHCAYAAACle7JuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcjklEQVR4nO3de1iUZfoH8O/MwMyAnFQEREnUPJBnMUmttCKtLHOtNE3FU66mabKd3Eq0LHUt003LMsX6ZamVh3Y1rUzdTMtVs8w8K0Iq4IkzMjDz/v5wmRpB5X4GmBnm+7muuS4Z5vu+77wOw83zPO89Ok3TNBARERF5IL2rD4CIiIhIFQsZIiIi8lgsZIiIiMhjsZAhIiIij8VChoiIiDwWCxkiIiLyWCxkiIiIyGOxkCEiIiKPxUKGiIiIPBYLGaIaYOnSpdDpdEhJSbnuY7ds2QKdToctW7ZU+XEREVU1FjJEHuS1117DmjVrKvTYt99+G0uXLq3S4/EUVqsVkZGR0Ol0+PLLL119OERUiXT8rCUizxEQEICHH364TIFitVpRXFwMk8kEnU4HAGjdujVCQ0PLjLzYbDZYLBYYjUbo9d7xt8zXX3+Nnj17Ijo6Gt26dcNHH33k6kMiokriHe9iRJUgPz/f1YdwVQaDAWaz2V7EXIter4fZbPaaIgYAPvroI3Ts2BGTJk3CmjVr3Pr/kohkvOedjEhg6tSp0Ol0+O233zBo0CDUrl0bt956q/37H330EWJjY+Hn54c6derg0UcfRVpamsM2evTogdatW2P37t3o2rUr/Pz80LhxYyxcuLDM/oqKipCUlIQbb7wRJpMJUVFRePbZZ1FUVGR/jE6nQ35+Pj744APodDrodDoMGzYMQNk1MtHR0di/fz+2bt1qf2yPHj0AXH2NzKeffmp/TqGhoRg8eDBOnTrl8Jhhw4YhICAAp06dQt++fREQEIB69erh6aefhtVqdXjs8uXLERsbi8DAQAQFBaFNmzaYN2+e5L+hUhQWFmL16tV49NFH0b9/fxQWFmLt2rXVfhxEVDV8XH0ARO7skUceQbNmzfDaa6+hdBb21VdfxUsvvYT+/ftj1KhROHv2LN566y3cfvvt+OmnnxASEmLPX7x4Effddx/69++PgQMHYuXKlRg7diyMRiNGjBgB4PJUT58+fbBt2zaMHj0aMTEx2LdvH958800cPnzYvibm//7v/zBq1Ch07twZo0ePBgA0bdq03OOeO3cunnzySQQEBOCFF14AAISHh1/1eS5duhTDhw/HzTffjBkzZiAjIwPz5s3D999/X+Y5Wa1W9OrVC3FxcXj99dfxzTff4I033kDTpk0xduxYAJencgYOHIi77roLs2bNAgAcOHAA33//PSZOnHjNc37x4sUyRVF5/P394e/vf93HffHFF8jLy8Ojjz6KiIgI9OjRA8uWLcOgQYOumyUiD6ARURlJSUkaAG3gwIEO96ekpGgGg0F79dVXHe7ft2+f5uPj43B/9+7dNQDaG2+8Yb+vqKhIa9++vRYWFqZZLBZN0zTt//7v/zS9Xq999913DttcuHChBkD7/vvv7ffVqlVLS0hIKHO8ycnJGgDtxIkT9vtatWqlde/evcxjN2/erAHQNm/erGmaplksFi0sLExr3bq1VlhYaH/cv//9bw2ANmXKFPt9CQkJGgDt5Zdfdthmhw4dtNjYWPvXEydO1IKCgrSSkpIy+7+eRo0aaQCue0tKSqrQ9u6//36tW7du9q/fe+89zcfHR8vMzBQfGxG5H04tEV3DmDFjHL5etWoVbDYb+vfvj3PnztlvERERaNasGTZv3uzweB8fH/z1r3+1f200GvHXv/4VmZmZ2L17N4DLUzoxMTFo2bKlwzbvvPNOACizzcq2a9cuZGZm4oknnoDZbLbf37t3b7Rs2RLr1q0rk7nyvNx22204fvy4/euQkBDk5+fj66+/Fh/PsmXL8PXXX1/3NnTo0Otu6/z589i4cSMGDhxov++hhx6CTqfDypUrxcdGRO7Hq6eW/vOf/2D27NnYvXs3zpw5g9WrV6Nv375Vtr/o6GicPHmyzP1PPPEEFixYUGX7JXWNGzd2+PrIkSPQNA3NmjUr9/G+vr4OX0dGRqJWrVoO9zVv3hwAkJKSgltuuQVHjhzBgQMHUK9evXK3mZmZqXr4FVL6mmzRokWZ77Vs2RLbtm1zuM9sNpc51tq1a+PixYv2r5944gmsXLkS9957Lxo0aICePXuif//+uOeee657PN26dVN5GuVasWIFiouL0aFDBxw9etR+f1xcHJYtW4Zx48ZV2r6IyDW8upDJz89Hu3btMGLECPTr16/K9/ff//7XYe7/119/xd13341HHnmkyvdNavz8/By+ttls9l4kBoOhzOMDAgLE+7DZbGjTpg3mzJlT7vejoqLE26xK5T3vK4WFhWHv3r3YuHEjvvzyS3z55ZdITk7G0KFD8cEHH1wze/bs2QqtkQkICLju+V62bBmAqxdHx48fR5MmTa67LyJyX15dyNx777249957r/r9oqIivPDCC/jkk0+QlZWF1q1bY9asWfarP6Su/Ct25syZaNq0Kbp37660Pap+TZs2haZpaNy4sX1k5VpOnz6N/Px8h1GZw4cPA7g8Qle6zZ9//hl33XXXdS+frsjl1dLHNmrUCABw6NAh+3RWqUOHDtm/L2U0GvHAAw/ggQcegM1mwxNPPIF3330XL730Em688car5m6++eZyRy6vlJSUhKlTp171+ydOnMD27dsxfvz4Mj9jNpsNQ4YMwccff4wXX3yxws+JiNyPVxcy1zN+/Hj89ttvWL58OSIjI7F69Wrcc8892Ldv31WnFirKYrHgo48+QmJiouiXE7lWv379MHnyZEybNg0fffSRw/+dpmm4cOEC6tata7+vpKQE7777LhITEwFc/n9/9913Ua9ePcTGxgIA+vfvj/Xr12PRokX2q5FKFRYWwmaz2QuhWrVqISsrq0LHWtHHdurUCWFhYVi4cCFGjBgBk8kEAPjyyy9x4MABTJkypUL7+7Pz5887nAe9Xo+2bdsCgMMl5eVZtmwZCgsLr7uP642klI7GPPvss+WOar3//vtYtmwZCxkiD8dC5ipSU1ORnJyM1NRUREZGAgCefvppbNiwAcnJyXjttdec2v6aNWuQlZVl7wNCnqFp06aYPn06Jk+ejJSUFPTt2xeBgYE4ceIEVq9ejdGjR+Ppp5+2Pz4yMhKzZs1CSkoKmjdvjhUrVmDv3r1477337OtphgwZgpUrV2LMmDHYvHkzunXrBqvVioMHD2LlypXYuHEjOnXqBACIjY3FN998gzlz5iAyMhKNGzdGXFxcuccaGxuLd955B9OnT8eNN96IsLCwMiMuwOV1PbNmzcLw4cPRvXt3DBw40H75dXR0NCZNmiQ+T6NGjcKFCxdw5513omHDhjh58iTeeusttG/fHjExMdfMVtYamWXLlqF9+/ZXnZrr06cPnnzySezZswcdO3aslH0SkQu4+KoptwFAW716tf3r0ktPa9Wq5XDz8fHR+vfvr2maph04cOC6l4g+99xz5e6vZ8+e2v33318dT40UlF5+ffbs2XK///nnn2u33nqr/XXRsmVLbdy4cdqhQ4fsj+nevbvWqlUrbdeuXVqXLl00s9msNWrUSJs/f36Z7VksFm3WrFlaq1atNJPJpNWuXVuLjY3Vpk2bpmVnZ9sfd/DgQe3222/X/Pz8NAD2S7HLu/w6PT1d6927txYYGKgBsF+KfeXl16VWrFihdejQQTOZTFqdOnW0xx57TPv9998dHpOQkKDVqlXrquer1Geffab17NlTCwsL04xGo3bDDTdof/3rX7UzZ86Uez4r2+7duzUA2ksvvXTVx6SkpGgAtEmTJlXLMRFR1eBnLf2PTqdzuGppxYoVeOyxx7B///4yixsDAgIQEREBi8XicMlpeerWrVtmbczJkyfRpEkTrFq1Cg8++GClPg9yHz169MC5c+fw66+/uvpQiIhqLE4tXUWHDh1gtVqRmZmJ2267rdzHGI1GtGzZUrzt5ORkhIWFoXfv3s4eJhERkVfz6kImLy/PobfEiRMnsHfvXtSpUwfNmzfHY489hqFDh+KNN95Ahw4dcPbsWWzatAlt27ZVLkJsNhuSk5ORkJAAHx+vPv1ERERO8+rfpLt27cIdd9xh/7r0ypKEhAQsXboUycnJmD59Ov72t7/h1KlTCA0NxS233IL7779feZ/ffPMNUlNT7Z+zQ0REROq4RoaIiMhLqXS437JlCxITE7F//35ERUXhxRdfdOkVuPysJSIiIi9V2uG+oh+Tc+LECfTu3Rt33HEH9u7di6eeegqjRo3Cxo0bq/hIr44jMkRERFTm6t3yPPfcc1i3bp3D1ZiPPvoosrKysGHDhmo4yrK8bo2MzWbD6dOnERgYyI66RER0TZqmITc3F5GRkdDrq24S49KlS7BYLE5vR9O0Mr/bTCaTvWO3s3bs2IH4+HiH+3r16oWnnnqqUravxHUtbDRt69at2v3336/Vr1+/TEO6q9m8ebPWoUMHzWg0ak2bNtWSk5NF+0xLS7tuEzveeOONN954+/MtLS1N7RddBRQWFmoRYYZKOc6AgIAy9yUlJVXoOIDr/x5u1qyZ9tprrznct27dOg2AVlBQoHgGnOPSERnpp0+Xzs2NGTMGy5Ytw6ZNmzBq1CjUr18fvXr1qtA+AwMDAQBR016E3mwWHa/OojCCo1DAa+GXxBlbyfU/kfhKwbuN4gwA6IvlmYK7csUZXx+bOGPYHCzOAEDoov+KM8fe7CDOzLnjY3Fm0tZB4syNE3aLM6qOvdFJnPmk1zvizMBto6//oHLc8Jn85zazg684o7WVv8brBuaLM3lfRogzAGBV+IM8r7nCD7smj/hkqf0q0hfL/2+ttWTvK7ZLl5CWNN3+u6MqWCwWpGdacXJ3NIIC1Ud9cnJtaBSbgrS0NAQFBdnvr6zRGHfl0kLmep8+faWFCxeicePGeOONNwAAMTEx2LZtG958880KFzKlQ256s1leyOirqZDxl2dQLC9kDEbFQkbhNBj85W+IBh+rPGOU/Z+W8tHJf3Hp/eT78g+U/z+p7Efl+ahSOb4AhTdrlf0AgI+P/AVrMCkUMgqvcZ9aJeKM6mscCr/L9H7y16tKIaO/pFjIGOT/t5pZ/gcSIPvkeVUBgToEBKrvx4bL2aCgIIdCpjJFREQgIyPD4b6MjAwEBQXBz8+vSvZ5PR511dLV5uZ27NjhoiMiIiKqHFbN5vStqnXp0gWbNm1yuO/rr79Gly5dqnzfV+NRi33T09MRHh7ucF94eDhycnJQWFhYbjVYVFSEoqIi+9c5OTlVfpxERERSNmiwqQxp/Skvda0O9zfccAMmT56MU6dO4cMPPwQAjBkzBvPnz8ezzz6LESNG4Ntvv8XKlSuxbt065eN2lkeNyKiYMWMGgoOD7beoqChXHxIREZFb2LVrFzp06IAOHS6v+UtMTESHDh0wZcoUAMCZM2eQmppqf3zjxo2xbt06fP3112jXrh3eeOMNvP/++xVe3lEVPGpERmVubvLkyfaPHgAuj8iwmCEiIndjgw3OTA6ppHv06AHtGu3kli5dWm7mp59+Eu+rqnhUIdOlSxesX7/e4b7rzc1V5vXzREREVcWqabA60aPWmawnc+nUUl5eHvbu3Yu9e/cC+GNurnQYa/LkyRg6dKj98WPGjMHx48fx7LPP4uDBg3j77bexcuVKTJo0yRWHT0RERC7m0hGZ63369NXm5iZNmoR58+ahYcOG6nNzmu7yTUBnlV8WVxIgv4Q4KEDeR6bgYIg4Y1W8ijO/gTwTptAvo7BYfglsnZ8LxBkAsNwn74VSP/q8OLMg7U5xxv+kew+cBh+SX6K7/+5IccY/qFCcAYDcKHlvodBf5T+3mfK2Qmhb57Q483VkffmOAPjLdwXfc/KfweK68svQpb1d7Apq1jJPVyz2rQlc+g5ZE+bmiIiIKoMNGqwsZMRqVjlLREREXsW9x6yJiIi8BKeW1LCQISIicgO8akkNp5aIiIjIY3FEhoiIyA3Y/ndzJu+NWMgQERG5AauTVy05k/VkLGSIiIjcgFW7fHMm7424RoaIiIg8FkdkBGwmebmrC5R3ucy56C/OmPPkXYc1xTK2JEreeTjfYhRnco7WFmfMEWp/kuQ1lJ+MV29cf/0HXcGoKxFn5nzZX5zRBcu72QJATs8YccY3T37OfymQf3Brh/qnxBkAOFwSJM6YM+Wv8eK0AHHmB3O0OGOpJ39PAQDTBXmXXmOWfD8l4Qo/g/IfCwCAJm8q7da4RkYNCxkiIiI3YIMOVsj/KP1z3htxaomIiIg8FkdkiIiI3IBNu3xzJu+NWMgQERG5AauTU0vOZD0Zp5aIiIjIY3FEhoiIyA1wREYNCxkiIiI3YNN0sGlOXLXkRNaTcWqJiIiIPBZHZARsZoV2QzZ5hWw4J28eZ8oSR1AQIc8AQNdmx8WZc5dqiTO+e+UN8YL3ZoozAHDm9jBxpre/vGlazPbB4kwjhZ9SvdkkDwEI3pEmzmTe00ic+deJ1uJMQrMfxRkA2N6hpThTd49FnAk+LH+NB7WWv4YatbwozgDAr5k3ijM+BfL9GM7LG+9Za6m1crMZ5Tl9ifuOWnBqSQ0LGSIiIjdghR5WJyZKrJV4LJ6EhQwREZEb0JxcI6NxjQwRERGRZ+GIDBERkRvgGhk1LGSIiIjcgFXTw6o5sUbGSz+igFNLRERE5LE4IkNEROQGbNDB5sT4gg3eOSTDQoaIiMgNcI2MGu8tZHTa5ZuEXqHaLTSIIz758hdjkbx3HIrrqHUdMOpLxJkjp+UN55rtyxFnMrsrdvkLkTcmU1GU6S/OWP2KxZnz98ubnwGA+aL8NVHv0/3izMGO8iZ17dqeFGcAoEFMhjhT2CBUnAlMk/9cpKTVE2d6dNouzgDAT/VvEGd8jik05zwvf/8q8BNHLvNReE9244Z4pMZ7CxkiIiI34vxiX04tERERkYtcXiPjxIdGeunUEq9aIiIiIo/FERkiIiI3YHPys5Z41RIRERG5DNfIqGEhQ0RE5AZs0LOPjAKukSEiIiKPxREZIiIiN2DVdLBqTjTEcyLryVjISCi8Rgy58oZ4KkrkfdYQFClvOAcAP59tIM74HpV3vMroIs/YFF/RrRudFmdG/95VnAk4Ln896Lf+KM6Y6t0izgCAzVf+Ii/s0lycMZ+Rn4djlnBxBgDqmgvEmSMdfOX72S9vJuin0HBuXXgrcQYAdL42ccZqku/HUKSQyVebHLAGyJ+TO7M6udjXyqklIiIiIs/CERkiIiI3YNP0sDlx1ZKNVy0RERGRq3BqSQ2nloiIiMhjcUSGiIjIDdjg3JVHNWvpc8WxkCEiInIDzjfE885JFu981kRERFQjcESGiIjIDTj/WUveOTbBQoaIiMgN2KCDTaXz6p/y3oiFjIDukrza1ZXIX1i+Cg13i26UdxVtWue8fEcAfjoWJc6EpsgvC/QtlGfOdFe7/PDhiN3izJrMDuJMww3yc65rKO+knBlbfX+ZNXvzmDgTfTpUnNl6TwtxBgDMhhJxpqCB/OfJdFHerTjkmHx55pkmIeIMAOhN8vNgqSc/DwHH5OfBmKP2C/iSqWb94uaIjBrvfNZERERUI3BEhoiIyA043xDPO8cmWMgQERG5AZumg82ZPjJe+unX3lm+ERERUY3AERkiIiI3YHNyaslbG+KxkCEiInIDzn/6tXcWMt75rImIiKhG4IgMERGRG7BCB6sTTe2cyXoyFjICKs3tdPJ+Urgk7xUGU70CcSbHYpLvCIAxVZ4r8ZPvRzPIz7chRH4eAOCxwExxJunbxuJMWEf5IKjNp444E9D6gjgDAHqdvKFgzq1NxBn/VT+KMz8e6iTOAMBbty8TZ4wd5c3j9qS2Emfq7rskzvicU/hhAuDTVL4vc3ChOJOXU1uc8SlQ+wWsL5LnNKNa08zqwKklNd75rImIiKhG4IgMERGRG7DCuekhhQmAGoGFDBERkRvg1JIaFjJERERugB8aqcY7nzUREREBABYsWIDo6GiYzWbExcVh586d13z83Llz0aJFC/j5+SEqKgqTJk3CpUvyxeSVhYUMERGRG9Cgg82Jm6awvmbFihVITExEUlIS9uzZg3bt2qFXr17IzCz/Ss6PP/4Yzz//PJKSknDgwAEsXrwYK1aswN///ndnn74yFjJERERuoHRqyZmb1Jw5c/D4449j+PDhuOmmm7Bw4UL4+/tjyZIl5T5++/bt6NatGwYNGoTo6Gj07NkTAwcOvO4oTlVyeSHj6UNaRERE7iQnJ8fhVlRUVO7jLBYLdu/ejfj4ePt9er0e8fHx2LFjR7mZrl27Yvfu3fbf1cePH8f69etx3333Vf4TqSCXLvYtHdJauHAh4uLiMHfuXPTq1QuHDh1CWFhYmceXDmktWbIEXbt2xeHDhzFs2DDodDrMmTNHtnNNd/kmoJf3yILKlXQlERZxRuU/8ujxCIUUEJgtz6icu4sx8sZVDUOz5DsC8EmuvAthwFGDOFNn70Vx5szt8gZjTzbbIs4AwJfn2ogzaQHyhn25g7qIM4G/qF2WauhuE2cOXSz7/nM9l+rJX68ZnfzFGf8z4ggAIKeevJGlobb83JUEyTP6YvnPEgAYLPLXRIlbN8TTwSb8vXRlHgCioqIc7k9KSsLUqVPLPP7cuXOwWq0IDw93uD88PBwHDx4sdx+DBg3CuXPncOutt0LTNJSUlGDMmDHeO7VUE4a0iIiIKoP1f59+7cwNANLS0pCdnW2/TZ48udKOccuWLXjttdfw9ttvY8+ePVi1ahXWrVuHV155pdL2IeWyQqa6hrSKiorKDLMRERHVVEFBQQ43k6n80bjQ0FAYDAZkZGQ43J+RkYGIiPJH7F966SUMGTIEo0aNQps2bfCXv/wFr732GmbMmAGbTT4aVxlcVshca0grPT293MygQYPw8ssv49Zbb4Wvry+aNm2KHj16XHNIa8aMGQgODrbfrhxyIyIicgelU0vO3CSMRiNiY2OxadOmP47BZsOmTZvQpUv5078FBQXQ6x1LB4Ph8tSgprlm2s7li30lVIa0Jk+e7DDElpaWVo1HTEREVDE26J2+SSUmJmLRokX44IMPcODAAYwdOxb5+fkYPnw4AGDo0KEOU1MPPPAA3nnnHSxfvhwnTpzA119/jZdeegkPPPCAvaCpbi5b7OvskBYAtGnTBvn5+Rg9ejReeOGFMlUiAJhMpqsOqxEREXmzAQMG4OzZs5gyZQrS09PRvn17bNiwwT5bkpqa6vC79cUXX4ROp8OLL76IU6dOoV69enjggQfw6quvuuopuK6Q+fOQVt++fQH8MaQ1fvz4cjPuOKRFRERUGayaDlYnrlpSzY4fP/6qv3e3bNni8LWPjw+SkpKQlJSktK+q4NLLrxMTE5GQkIBOnTqhc+fOmDt3bpkhrQYNGmDGjBkALg9pzZkzBx06dEBcXByOHj3q8iEtIiKiylBZl197G5cWMjVhSIuIiKgyaE5++rXmpR8a6fJPv/aoIS2FatfqL78czT+4UJwpKZGPSJlP+4ozABByzCrOZDeRH19ozDlxZnGLZeIMAEw4/og4Y74on860/nJAnCn6S1dxJsr3vDgDAJ82+UacaRPeTJyJWvSbOBPQOlqcAYAP0m8VZ+5ruF+cWY9W4kzJoXriTHGgOAIAMJ42ijMFPvL3L11AsThTUqQ2kqAr9s4RCHLk8kKGiIiIACt0sKq0g/9T3huxkCEiInIDNs25dS42L73mxTsn1IiIiKhG4IgMERGRG7A5udjXmawnYyFDRETkBmzQwebEOhdnsp7MO8s3IiIiqhE4IkNEROQGXNXZ19OxkCEiInIDXCOjxjufNREREdUIHJERsPnKL9K3Bcq74JZY5V1wi7LM4kzwRXEEAGDzlQ9fXgqV76dH2Elx5tt8eZdZADj4yw3iTMuvUsWZ3L5x4kxRXXl31bv9SsQZVfk3yI+vsFtzccaUIe94DQA//nSjOBPRJVucycrzE2eszeXvKSEH1aYP9PKGu7DUk/+KCK6fI85kF6v9Ta3PUutO7q5scPKzlrx0sS8LGSIiIjegOXnVksZChoiIiFyFn36thmtkiIiIyGNxRIaIiMgN8KolNSxkiIiI3ACnltR4Z/lGRERENQJHZIiIiNwAP2tJDQsZIiIiN8CpJTUsZARsJnnjL+jlDa8sBfImT8azCo2rTsib9QHAxWbyhn0+LeRNsv5SZ5c4M3rnEHEGAEznFGZZjfL/J71V/nrQ1bWIM9WpQfNMccbn02D5jgxqb9L+p+SvV71O/v/UoE6WOJNqlb/u8nP8xRkA0Cv0SDSly99XsrUg+Y4Umo0CgGZQ+HlS2xW5MRYyREREboAjMmpYyBAREbkBFjJqeNUSEREReSyOyBAREbkBjsioYSFDRETkBjQ4dwm1t65jZiFDRETkBjgio4ZrZIiIiMhjcUSGiIjIDXBERo33FjI6Td4ZqZrGr/TnjeJM8DH57OiFFvJGYQBwKUy+L3+DvJngtrwW4kzJRbM4AwChR+XPKevmCHGmMFT+Irqt6UFxRtUPRfKuaRMafyvOTO84SJxp+MVpcQYAotbLn9Pqlu3FmW7Nj4kzsXV/F2dWnY4TZwDAmFU9v+T0+fL3FWuwQrc+AJq/vKmnQeH4qgsLGTWcWiIiIiKP5b0jMkRERG6EIzJqWMgQERG5AU3TQXOiGHEm68k4tUREREQeiyMyREREbsAGnVMN8ZzJejIWMkRERG6Aa2TUcGqJiIiIPBZHZIiIiNwAF/uqYSEjofCJXLpc+Sk2n5O/GHVW+cEVB4kjAABraLE40zAkS5z58vRN4kzgEbVmV8Gf7xFn9NENxZkzT9YVZ5Jv+E6cOVaSJ84AQK4tRJx5KOCiOPN8Y3mDxOIGtcUZALCa5K8JU4q8KWVOtLwZ4y8ZkeKMLUSteRxyfMWRoBPy95WCMPn7V4Gv2s+tZqhZH5PIqSU1LGSIiIjcAEdk1HCNDBEREXksjsgQERG5Ac3JqSVvHZFhIUNEROQGNACaE8t+ataKoYrj1BIRERF5LI7IEBERuQEbdNCxs68YCxkiIiI3wKuW1HBqiYiIiDwWR2QkbPJqV39JoUJWWLGV20i+H0sdq3xHABpGnhdnOoakiTPLvu8qzjT5uUicAQDL7a3FmUt15D8+hrqXxBkVr53ppZQ7kSNv2Hes4W5xJrrVaXHmzGl5A0IAqH1I/jpvsEX+OtoX1kicebTLD+LMBkOMOAMAWQodMPVF8te4MVccgW+W2t/UxSHyxoruzKbpoGNDPDEWMkRERG5A05y8aslLL1vi1BIRERF5LI7IEBERuQEu9lXDQoaIiMgNsJBRw0KGiIjIDXCxrxqukSEiIiKPxREZIiIiN8CrltSwkCEiInIDlwsZZ9bIVOLBeBAWMkRERFRtsrOzkZ6eDgCIiIhAcHCwU9tjISNgUOjSa8xW6AZcLI7gUqi8FA9qkCPfEYD6/vLWnf86Ke+cazpnEGeymsozAOBbID9/F2Lk/7d333hQnFFxOCtMKeerl3fBva+W/Dkdqh0hzqyr00CcAYDAXzLEmeyO8uMLOCpfcvivCPnPRfuIU+IMAOzI9hNnLoUp/DzpFd7z1JqMQ2+R70vzcd9hi5p+1dL777+POXPm4NChQw73t2jRAn/7298wcuRIpe2ykCEiInIDGpQ+ocYh765mz56NqVOnYsKECejVqxfCw8MBABkZGfjqq68wceJEXLx4EU8//bR42yxkiIiIqErNnz8fycnJ6N+/v8P9MTEx6NGjB9q1a4dnnnmGhQwREZGnqslTS5mZmWjTps1Vv9+mTRucO3dOadvsI0NEROQOtEq4uambb74ZM2fORElJSZnvWa1WzJo1CzfffLPStlnIEBERuYP/jcio3qA4IrNgwQJER0fDbDYjLi4OO3fuvObjs7KyMG7cONSvXx8mkwnNmzfH+vXrr5mZP38+vvrqK0RERKBfv34YO3Ysxo4di379+iE8PBxff/01FixYoHT8Li9kquMEEhERUVkrVqxAYmIikpKSsGfPHrRr1w69evVCZmZmuY+3WCy4++67kZKSgs8++wyHDh3CokWL0KDBta8qbNu2LQ4fPoxXXnkFgYGBOH78OI4fP47AwEBMnz4dBw8eROvW8qv4ABevkSk9gQsXLkRcXBzmzp2LXr164dChQwgLK3v5aOkJDAsLw2effYYGDRrg5MmTCAkJqf6DJyIiqkSu6Ow7Z84cPP744xg+fDgAYOHChVi3bh2WLFmC559/vszjlyxZggsXLmD79u3w9fUFAERHR1doX4GBgfaRmMrk0kKmOk8gERGRO6usxb45OY49wkwmE0wmU5nHWywW7N69G5MnT7bfp9frER8fjx07dpS7jy+++AJdunTBuHHjsHbtWtSrVw+DBg3Cc889B4Ph+n2HTp06hc8//xyHDx+G0WhEixYt0L9/f9SuXVvyVB24rJCprhNYVFSEoqIi+9f2/2CV+USFatfmK88UB8l3ZKtrEWfyC8q+sCviuE8dcSbveIg4E/6bTZzRySMAgNwo+SyrrlmeOHNv7X3izJKccHHGaCi7oK4iAnzlr6OVOe3FmSZ+Z8UZYzO1Bo6n74sUZyJXnRBn9CU3iDOnGwaJM78a1LrHNa4vvyIkxVBXnCkqkTfeM2Up/vJW/Hmv6aKiohy+TkpKwtSpU8s87ty5c7BarfaeLqXCw8Nx8GD5jS6PHz+Ob7/9Fo899hjWr1+Po0eP4oknnkBxcTGSkpKueVxvv/02EhMTYbFYEBR0+bWfk5ODxMREvP/++xg4cCA0TcPevXvRoUOHCj9flxUy1XUCZ8yYgWnTplX68RMREVUqJxbs2vMA0tLS7IUCgHJHY1TZbDaEhYXhvffeg8FgQGxsLE6dOoXZs2dfs5BZt24dJkyYgKeeegp/+9vfUL9+fQDAmTNnMHv2bCQkJCAqKgpvv/02WrZs6RmFjAqVEzh58mQkJibav87JySlTrRIREblaZa2RCQoKcihkriY0NBQGgwEZGY4f45GRkYGIiPI/pqN+/frw9fV1mAWJiYlBeno6LBYLjEZjubnZs2fj+eefx/Tp08tsb86cOfD398fdd9+NiIgIzJgx47rH/mcuu2pJ9QQ2b978qiewPCaTyf6fWtH/XCIioprOaDQiNjYWmzZtst9ns9mwadMmdOnSpdxMt27dcPToUdhsf8zrHT58GPXr179qEQMAe/bswZAhQ676/SFDhqCoqAhbt25Fo0aNRM/DZYVMdZ5AIiIit+eChniJiYlYtGgRPvjgAxw4cABjx45Ffn6+/SKcoUOHOqxlHTt2LC5cuICJEyfi8OHDWLduHV577TWMGzfumvuxWq32i3TK4+vrCz8/P9xwg3ytmUv7yFTXCSQiInJ3zjTDU73iacCAAXj99dcxZcoUtG/fHnv37sWGDRvs61dTU1Nx5swZ++OjoqKwceNG/Pe//0Xbtm0xYcIETJw4sdwrjf+sVatWWLt27VW/v2bNGrRq1Up8/ICL18gMGDAAZ8+exZQpU5Ceno727duXOYF6/R+1VukJnDRpEtq2bYsGDRpg4sSJeO6551z1FIiIiDza+PHjMX78+HK/t2XLljL3denSBT/88INoH+PGjcPYsWNhMpkwevRo+PhcLj9KSkrw7rvv4sUXX8Tbb78tPnbADRb7VscJJCIi8ghu/HlJzkhISMC+ffswfvx4TJ48GU2bNoWmaTh+/Djy8vIwYcIEDBs2TGnbLi9kiIiIqGZ/+jUAvP7663j44YfxySef4MiRIwCA22+/HQMHDsQtt9yivF0WMlXMprAGuSRI3uUpuE6+OBNoLrr+g8rx+yl5k6zgE/IfsIDUAnFGV6zWIetc20BxJrDWJXEm2ue8ODP7eE9x5tRBeRM9QK2FxWt9Vosz9fTy/6e0xvLXHQB8ES5/g8x4oLE4E3JU/vNkzpT398j2U7vyMqy5vIGjygvCGij/v7Voass19SUKx2d04yEPZz/B2o2fWqlbbrnFqaKlPBUqZL744gvxhu+++274+ck7PBIRERFVVIUKmb59+4o2qtPpcOTIETRp0kTlmIiIiLyQ7n83Z/Lep8Ljeenp6bDZbBW6+fv7V+UxExER1Twu6CNTE1SokElISBBNEw0ePJgddImIiKjKVWhqKTk5WbTRd955R+lgiIiIvJYXLPatCk539s3JycGaNWtw4MCByjgeIiIi71T66dfO3NxcRkYGhgwZgsjISPj4+MBgMDjcVIgvv+7fvz9uv/12jB8/HoWFhejUqRNSUlKgaRqWL1+Ohx56SOlAiIiIqGYbNmwYUlNT8dJLL6F+/frQ6ZwvvsSFzH/+8x+88MILAIDVq1dD0zRkZWXhgw8+wPTp01nIEBERKdC0yzdn8u5u27Zt+O6779C+fftK26a4kMnOzkadOnUAABs2bMBDDz0Ef39/9O7dG88880ylHZhbUpiIK1ZoDlUrQt64KvtCgDhT4CdvxgUAfkflXf78zsl/wi7cVEucKZb3tQMA+LbOFmcWtfo/ccass4ozN4VkiDP5B+qLMwBQovCSePaE/I+XAB+LOPPaDVf/wLlrWd20nThjOGoWZ2wG+V+WtU4r/ObRqfUxPfm/922JerVzxZl0S7A4Yy2++qciX4teraen+/KCNTJRUVHQKrniEv9qjoqKwo4dO5Cfn48NGzagZ8/LXUcvXrwIs1n+w09ERETeYe7cuXj++eeRkpJSadsUl/ZPPfUUHnvsMQQEBKBRo0bo0aMHgMtTTm3atKm0AyMiIvIqzi7Y9YDFvgMGDEBBQQGaNm0Kf39/+Po6jsZduHBBvE1xIfPEE08gLi4OqampuPvuu6HXXx7UadKkCaZPny4+ACIiIgJ02uWbM3l3N3fu3ErfptJka2xsLGJjYx3u6927d6UcEBERkVfygjUyCQkJlb7NCq2RSUxMRH5+xT9defLkyUrDQ0RERFSzWa1WfP7555g+fTqmT5+O1atXw2qVXwhRqkKFzLx581BQUFDhjS5YsABZWVmqx0REROR9vKAh3tGjRxETE4OhQ4di1apVWLVqFQYPHoxWrVrh2LFjStus0NSSpmlo3rx5hRvXSEZviIiICF4xtTRhwgQ0bdoUP/zwg72Vy/nz5zF48GBMmDAB69atE2+zSj5rCQDCw8PFGSIiIqq5tm7d6lDEAEDdunUxc+ZMdOvWTWmbFSpkqmJxDhEREf2JF4zImEwm5OaWbbSYl5cHo1HebBVQvGrJW9l8FV4lRnln3/wL/uKMUqPEY/LOuQBQ64x8ZwGpheJMUR35i/pUK7UPHavvLz++OvpiceabghvFmU1HW4gz4WflrzsA8MuUt0o9cWtdcaZXY/mHzP47t7U4AwB/iflZnFmVHifOmLLlrz2/C/IFjoZitdf4uWD5z/uZuvJWz+aQS+JMsa/a69V2Tn58bn2JshcUMvfffz9Gjx6NxYsXo3PnzgCAH3/8EWPGjEGfPn2Utun0p18TERERVcQ///lPNG3aFF26dIHZbIbZbEa3bt1w4403Yt68eUrb5IgMERGRO/CCzr4hISFYu3Ytjhw5goMHDwIAYmJicOON8tHqUixkiIiI3IA3dPYt1axZMzRr1qxStqVcyBw9ehTHjh3D7bffDj8/P2iaVuHLs4mIiMg7JCYm4pVXXkGtWrWQmJh4zcfOmTNHvH1xIXP+/HkMGDAA3377LXQ6HY4cOYImTZpg5MiRqF27Nt544w3xQRAREXm9GrrY96effkJxcbH935VNXMhMmjQJPj4+SE1NRUxMjP3+AQMGIDExkYUMERER2W3evLncf1cW8VVLX331FWbNmoWGDRs63N+sWTOcPHmy0g6MiIjIm+jwxzoZpZurn0AFjBgxotw+Mvn5+RgxYoTSNsWFTH5+Pvz9y/Y5uXDhAkwm+TX9RERE5B0++OADFBaW7dtVWFiIDz/8UGmb4qml2267DR9++CFeeeUVAIBOp4PNZsM//vEP3HHHHUoH4RIKy8M1s7xpk86/RJzR8uVrsA0F8iZZxmxxBABgypZPxF5sKW/ylx8pjqB2i3PyEIBe9eUN2gYfHCLOtK59RpzxOewnzgTvSBFnAKCwlfyk236TH19qeJ3rP+gKT4RuFWcAYPrp+8SZRm1PiTNnshpe/0FXCNsjf38oClb7uzvwhDyT7St/Lyo2yzOaTe05Kb0nF7px+7QafPl1Tk4ONE2DpmnIzc2F2Wy2f89qtWL9+vUICwtT2rb4FfePf/wDd911F3bt2gWLxYJnn30W+/fvx4ULF/D9998rHQQREZHXq6GLfYHL/WN0Oh10Oh2aN29e5vs6nQ7Tpk1T2ra4kGndujUOHz6M+fPnIzAwEHl5eejXrx/GjRuH+vXrKx0EERER1VybN2+Gpmm488478fnnnzt8aKTRaESjRo0QGakwDA/FPjLBwcF44YUXlHZIRERE5ajBIzLdu3cHAJw4cQJRUVHQ6ytvik+pkLl06RJ++eUXZGZmwmZznKNU/dAnIiIib+YNnX0bNWoEACgoKEBqaiosFovD99u2bSvepriQ2bBhA4YOHYpz58ouqtTpdLBa5Z/mSkRERDXf2bNnMXz4cHz55Zflfl+lhhCP7Tz55JN45JFHcObMGdhsNocbixgiIiJFWiXc3NxTTz2FrKws/Pjjj/Dz88OGDRvwwQcfoFmzZvjiiy+UtikekcnIyEBiYiLCw8OVdkhERETlqMFrZEp9++23WLt2LTp16gS9Xo9GjRrh7rvvRlBQEGbMmIHevXuLtykekXn44YexZcsW8Y6IiIjIu+Xn59v7xdSuXRtnz54FALRp0wZ79uxR2qZ4RGb+/Pl45JFH8N1336FNmzbw9fV1+P6ECROUDsQjKFS7Wo7v9R90BX2RfDV3rd/ljZB8y3aJrpASP/m+SuT98GBpXrb74/W0Cb4g3xGAp+rsFWfOWgLFmX/93E6cCTkrjsDaoK48BMD3q13iTJh/nDizp34jcWZ9ndbiDAD8JXS3OJNsuVWcKbyhWJy5mCt/f1BlviB/A/PNkf+sF8N8/QddQaWxHQBA7wFDEALesNi3RYsWOHToEKKjo9GuXTu8++67iI6OxsKFC5VbuIgLmU8++QRfffUVzGYztmzZAp3ujxe6Tqer2YUMERFRVanBnX1LTZw4EWfOXO5wnpSUhHvuuQfLli2D0WjE0qVLlbYpLmReeOEFTJs2Dc8//3ylXgdORETk1bxgjczgwYPt/46NjcXJkydx8OBB3HDDDQgNDVXapriQsVgsGDBgAIsYIiIicoq/vz86duzo1DbEhUxCQgJWrFiBv//9707tmIiIiP5QU9fIJCYmVvixc+bMEW9fXMhYrVb84x//wMaNG9G2bdsyi31VDoKIiMjr1dCppZ9++qlCj/vzmlsJcSGzb98+dOjQAQDw66+/VspBEBERUc20efPmKt2+uJCp6gMiIiLySk5OLbnriExVU/rQSCIiIqpkNXRq6c/uuOOOa87efPvtt+JtVqiQ6devH5YuXYqgoCD069fvmo9dtWqV+CA8hc4iv1JLVyKfbjNdqJ6Gc1Z53yoAwCWFXgUFN8g/h6tn80PiTEPzRXEGAH5X+Jywo3nySwXNqfIGaDqFjzDTdu6ThxRpBvnrwXhWfh52ZkeLMwCQYpI3B5zS6F/izKSi/uLM75fCxBnTeYM4AwC++fL/J5XXnm+uShM9tatgNYMH/OYmB+3bt3f4uri4GHv37sWvv/6KhIQEpW1WqJAJDg62V1DBwcFKOyIiIqJr8IIRmTfffLPc+6dOnYq8vDylbVaokElOTsbLL7+Mp59+GsnJyUo7IiIioqurqZdfV8TgwYPRuXNnvP766+Jshcfzpk2bplwtEREREV3Njh07YDarrXeo8GJfTfPgUo+IiIhc7sp1tpqm4cyZM9i1axdeeuklpW2KrlpinxgiIqIq4gVrZK5cZ6vX69GiRQu8/PLL6Nmzp9I2RYVM8+bNr1vMXLhwQelAiIiIvJk3rJGpinW2okJm2rRpvGqJiIiInLJr1y4cOHAAAHDTTTchNjZWeVuiQubRRx9FWJi87wERERFVgAeMqjjj999/x8CBA/H9998jJCQEAJCVlYWuXbti+fLlaNiwoXibFb5qietjiIiIqpBWCTc3N2rUKBQXF+PAgQO4cOECLly4gAMHDsBms2HUqFFK2+RVSwK6Ynkx55un0PU0SxyBoVieKQiXZwDgUri83adfWL4407vOz+LMzKP3iDMA8FV6S3Hm90PyE1j3lDiCOu9vF2d8Wtwo3xEA67GT4kyJn/w1HrZL/hraEdJcnAGAiMbnxZnd56PEmaZB8v0UNpZ3OD6v1RFnAMA3R94916TQKFtTaDysKf6hbFXoaK758HeZK23duhXbt29HixYt7Pe1aNECb731Fm677TalbVa4kLHZbEo7ICIiouvzhsW+UVFRKC4u+5e31WpFZGSk0jbVPuCCiIiIKpcXTC3Nnj0bTz75JHbt2mW/b9euXZg4caJSV1+An35NRERE1WTYsGEoKChAXFwcfHwulyAlJSXw8fHBiBEjMGLECPtjK9rOxS0KmQULFmD27NlIT09Hu3bt8NZbb6Fz587XzS1fvhwDBw7Egw8+iDVr1lT9gRIREVURb5hamjt3bqVv0+WFzIoVK5CYmIiFCxciLi4Oc+fORa9evXDo0KFrXuqdkpKCp59+WnlxEBERkVtxUWff6hxMSEhIUDvIa3D5Gpk5c+bg8ccfx/Dhw3HTTTdh4cKF8Pf3x5IlS66asVqteOyxxzBt2jQ0adKkGo+WiIio5igdTEhKSsKePXvQrl079OrVC5mZmdfMOTOYYLVa8fnnn2P69OmYPn06Vq9eDatVfiVjKZcWMhaLBbt370Z8fLz9Pr1ej/j4eOzYseOquZdffhlhYWEYOXLkdfdRVFSEnJwchxsREZHbccFi3+oeTDh69ChiYmIwdOhQrFq1CqtWrcLgwYPRqlUrHDt2TP4E4OJC5ty5c7BarQgPd+zHER4ejvT09HIz27Ztw+LFi7Fo0aIK7WPGjBkIDg6236Ki5P0hiIiIqlrpGhlnbgDK/PFeVFRU7v6qYzDhShMmTEDTpk2RlpaGPXv2YM+ePUhNTUXjxo0xYcIE8fYAN1gjI5Gbm4shQ4Zg0aJFCA0NrVBm8uTJSExMtH+dk5NzuZjRdJdvAjqFkS+9QqM6q0meKagvz5QEqvUGCmooH9VqEJwtzpwtCRRnVGVmy/cVeFz+d0C9T/eLM8XdO4ozJVv3iDMAUNyzkzhT+98HxBldvbrizLm2ah0c0021xZkH2smbMRba5M3tmgTLP2RXa6zWPO4C5OfBmC1/jRsKxRH4KGQAwOYrPxdu3RCvktbIXPkHe1JSEqZOnVrm4dcaTDh48GC5uygdTNi7d6/SIW7duhU//PAD6tT5o7Fj3bp1MXPmTHTr1k1pmy4tZEJDQ2EwGJCRkeFwf0ZGBiIiIso8/tixY0hJScEDDzxgv6+0UZ+Pjw8OHTqEpk2bOmRMJhNMJoXKgIiIyAOlpaUhKCjI/nVl/Q5UGUy4kslkQm5ubpn78/LyYDQalbbp0kLGaDQiNjYWmzZtQt++fQFcLkw2bdqE8ePHl3l8y5YtsW/fPof7XnzxReTm5mLevHmcNiIiIs9VSSMyQUFBDoXM1VTHYMKV7r//fowePRqLFy+2Xxn1448/YsyYMejTp891j7k8Lp9aSkxMREJCAjp16oTOnTtj7ty5yM/Px/DhwwEAQ4cORYMGDTBjxgyYzWa0bt3aIV/66ZlX3k9ERORJqruPjCsGE/75z38iISEBXbp0ga/v5enYkpIS9OnTB/PmzZM9gf9xeSEzYMAAnD17FlOmTEF6ejrat2+PDRs22OfsUlNTode7/CpxIiKiGqe6BxNCQkKwdu1aHD16FAcOXF5fFxMTgxtvVPugW8ANChkAGD9+fLnVHwBs2bLlmtmlS5dW/gERERFVNxc0xKuuwQSbzYbZs2fjiy++gMViwV133YWkpCT4+fk5vW23KGSIiIi8nas+oqA6BhNeffVVTJ06FfHx8fDz88O8efOQmZl5zX41FcU5GyIiIqpSH374Id5++21s3LgRa9aswb/+9S8sW7bMvljYGSxkiIiI3IELOvtWl9TUVNx33332r+Pj46HT6XD69Gmnt82pJQF9ibz5kkpzO0uw/NVoDZJ36zPXVetCVbdWvjgT4GMRZ+YdvFOcKSpWe0nrfwkQZwzlN8u8pktxzcQZY7b83BnCr/6Bq9dis8j/Oiq8Rf6cDMXy/TTcckmcAYC0u8zizJe1YsQZvUH+c1s3UP6zVFxiEGcAwC8yT5wpNNQSZ3wvyo9PXyKOAPCMT3sWcdGHRlaHkpISmM2OP4u+vr4oLlboGnsFFjJERERUpTRNw7Bhwxya8126dAljxoxBrVp/FMyrVq0Sb5uFDBERkRvQ/e/mTN5dJSQklLlv8ODBlbJtFjJERETuoAZPLSUnJ1fZtlnIEBERuQFXXX7t6XjVEhEREXksjsgQERG5gxo8tVSVWMgQERG5Cy8tRpzBqSUiIiLyWByREbD5yktlTeHzsGxB8u5QfiHy5nadG6SKMwBQUGIUZ/akNRRnSvJ9xRnTaXkGAOrulzcU9CmSvx789su7WJacUsh0bS/OqCqsJ38bMebJG+IF/pQuzgCA39kG4kyBQiM4Q4sccaaoRH7uGoZkiTOqTiqsHs33UTh3eWpN/mra6AUX+6phIUNEROQOuEZGCaeWiIiIyGNxRIaIiMgNcGpJDQsZIiIid8CpJSWcWiIiIiKPxREZIiIiN8CpJTUsZIiIiNwBp5aUsJAhIiJyByxklHCNDBEREXksjsgI2IwKnX0VMir8zRZxZtuJJkr7quVfJM5YixS6v2bKu/QGpIkjAACrSSff14lccebc3Y3Emdq/1RVnTnXzF2cAwJQtz9TKkHdFDvjtnDhTHFVHnAGAuvvkr1ebwSTOFOqDxJmiKHlH7uxchXbhADpG/S7O1DLJ31dsdeR/H1+yqL1edVb5z607ryPhGhk1LGSIiIjcAaeWlHBqiYiIiDwWR2SIiIjcgE7ToNPUh1WcyXoyFjJERETugFNLSji1RERERB6LIzJERERugFctqWEhQ0RE5A44taSEU0tERETksbx3REZhDE/zlZe7hhB5My4VeoVSvCTXqLSvnAvyZmHmTIM4U0vevwshxy7JQwByb5A/p+yYYHGm9m954szp2wPFmcL6an+aFUbIM8X+8v9bvzPyBmiGgmJxBgCK68kbyDVcJe+seLFbQ3mmSH5sRaHyBoQA8N9L0eJMUJ18ceZSvvx9RblxqMJVOrpC9/37nVNLary3kCEiInInnFpSwkKGiIjIDXBERo37jrERERERXQdHZIiIiNwBp5aUsJAhIiJyE946PeQMTi0RERGRx+KIDBERkTvQNKVLyh3yXoiFDBERkRvgVUtqWMgIaL42ccZWrDB7p5NHMs+EiDOGPHkjMwAwXZAfoN4i30/dX+XN4woj5A3GAMCYI/+/9SmQNyYrqmMWZy7Vk787BTW7KM4AQHaWvFGdJU/+nDLi5E3+Qn8uFGcAQPORv15tdeTHF3i8QJy5VLuWOKOzqf3cWoLk70XZJQHijM4qP98Kb3mXqby/Uo3DQoaIiMgd8KolJSxkiIiI3IDOdvnmTN4bcVyOiIiIPBZHZIiIiNwBp5aUsJAhIiJyA7xqSQ0LGSIiInfAPjJKuEaGiIiIPBZHZIiIiNwAp5bUsJAR0FnkA1iaQsMmfZE8Y8pVaFJXIo5czik0t/O5JM8U1TGJM+YMhR0ByIuWN9K72MwozhQHiSPQN5E3BqxlVPhPAjC4405xZr71DnHGapL/30JTa3ao8tqr9Zu8uV3OzRHijE+B/DePSkNKADCfk+cu1fUVZyy15c/JptBsFACgV/jNrdCwr9pwsa8STi0RERGRx+KIDBERkRvg1JIaFjJERETugFctKeHUEhEREXksjsgQERG5AU4tqWEhQ0RE5A541ZISTi0RERGRx+KIDBERkRvg1JIaFjJERETuwKZdvjmT90IsZAT0Cp19dQrdc00XFTpPKjTG9M9Ue9HrFPZV7C9/TsUBBnEmu0ktcQYA9MXyTGGE/Pzp6svbzD7S7GdxZnrYXnEGAPQKs815Hc3izNI9XeT70cs7KQOAf7r8tZcRHynOhBwrEmcMQfK3YJ2mtiLAlC3/wdX08p9B6OTnu8SssB8ANpPCe5hKN+DqwjUySrhGhoiIiDyWWxQyCxYsQHR0NMxmM+Li4rBz59U/72XRokW47bbbULt2bdSuXRvx8fHXfDwREZEn0OGPdTJKN1c/ARdxeSGzYsUKJCYmIikpCXv27EG7du3Qq1cvZGZmlvv4LVu2YODAgdi8eTN27NiBqKgo9OzZE6dOnarmIyciIqpEpZ19nbl5IZcXMnPmzMHjjz+O4cOH46abbsLChQvh7++PJUuWlPv4ZcuW4YknnkD79u3RsmVLvP/++7DZbNi0aVM1HzkRERG5mksLGYvFgt27dyM+Pt5+n16vR3x8PHbs2FGhbRQUFKC4uBh16tQp9/tFRUXIyclxuBEREbkbp6aVnLh029OXd7i0kDl37hysVivCw8Md7g8PD0d6enqFtvHcc88hMjLSoRj6sxkzZiA4ONh+i4qKcvq4iYiIKp1WCTehmrC8w+VTS86YOXMmli9fjtWrV8NsLv8S0MmTJyM7O9t+S0tLq+ajJCIick81YXmHS/vIhIaGwmAwICMjw+H+jIwMREREXDP7+uuvY+bMmfjmm2/Qtm3bqz7OZDLBZDJVyvESERFVFZ2mQefEgt3S7JVLKK72e7B0ecfkyZPt91X28o7q4NJCxmg0IjY2Fps2bULfvn0BwF7ZjR8//qq5f/zjH3j11VexceNGdOrUSW3nmu7yTUBnle/GN1d+QZxvrnw/mkI/qcJ6ahfr+RTIM8Yc+Q9nXgP5gGFB+PUfU56SQPl/rqGORZypG5In349Ct8NNhWrN4+72k3dwrO+bJc40jSp/2Ppa0oODxBkAyK0VIM6Yzsl/oEr85X8wWRX+xlJ5HwIAq1H+nIoD5ftRaQJqVFy6aAmRZ2zu/HetDUrNTR3yQJklFElJSZg6dWqZh19recfBgwcrtMvrLe+oDi7v7JuYmIiEhAR06tQJnTt3xty5c5Gfn4/hw4cDAIYOHYoGDRpgxowZAIBZs2ZhypQp+PjjjxEdHW1fSxMQEICAAPkbFhERUU2SlpaGoKA/Cv+qmpUoXd6xZcuWqy7vqA4uL2QGDBiAs2fPYsqUKUhPT0f79u2xYcMGe4WYmpoKvf6Pv8zfeecdWCwWPPzwww7buVrFSURE5Akqa2opKCjIoZC5mupY3lEdXF7IAMD48eOvOpW0ZcsWh69TUlKq/oCIiIiqWzV/1pJLl3dUIrcoZIiIiLyes915FbI1YXkHCxkiIiIvVROWd7CQISIicgPOdOctzavw9OUdLGSIiIjcgQumlmoCj+7sS0RERN6NIzICeou8gZy+WL6fYoX1Uir78SmUZwCgUKHpXH5DeaYkQN75SxeocCIAGHzkf8ncEHZenHm5yVpxJqU4VJypZ5A33gOArwvlL76M4mBxJj68Ys22/myv+QZxBgB+tkaKM5Zg+VtjUZa8CaFPnrxJnU6xYZpKcztjtjxTpNDgVaXJJiDuaer2dDb1/9/SvDdiIUNEROQOOLWkhFNLRERE5LE4IkNEROQOqrkhXk3BQoaIiMgNVNZHFHgbTi0RERGRx+KIDBERkTvgYl8lLGSIiIjcgQbAmUuovbOOYSFDRETkDrhGRg0LGQHNIH+RWIIUOjbp5fvRFFY72YxqL3pbLXmjOlNwkThT1/+SONMwUKGDF4ABEf8VZz4501mceS21tzhzR+hhceaxwAviDAA8lnKrOLMseos481Jma3FmRMR/xBkA+Nz3ZnGmlo/89bruWCtxxuIvb6Kn2dS6wOnz5c33rCb5G4u+RByBJVjxF3ANa4hHaljIEBERuQMNTq6RqbQj8SgsZIiIiNwBF/sq4eXXRERE5LE4IkNEROQObHBu3Q8/NJKIiIhchVctqeHUEhEREXksjsgQERG5Ay72VcJChoiIyB2wkFHCqSUiIiLyWN47IqPTLt8EbCb5bmw+8mXkmkmeMfjJ22nWDikQZwDg4sVa4kxkiLzjbqPAi+LM+IhN4gwAXLD6izMlCu2U76p3UJz5OSdKnEnIbSDOAIDFVj1vCa+E/SrOHCnOU9pXjxD5OZ91sKc4Y/KV/wy2aJopzqhKywkRZ3Ky/cSZ4kL5a0hfKO86DAC6mnaVDkdklHhvIUNEROROePm1EhYyREREboCXX6vhGhkiIiLyWByRISIicgdcI6OEhQwREZE7sMkvQimT90KcWiIiIiKPxREZIiIid8CpJSUsZIiIiNyCk4UMWMjQddhUejb5yF9YBn95Y62goEJxJsBUJM4AQKsb08UZlUZrqXkh4syTBwaKMwDw7I0bxJkws7xBW4FV3lXx9/xgcWZty0/FGQAw6eT/T5/n11bal5RNk58HAPg8M1ac6Rj+uziz68wN4kxqdog40z7stDgDAOba8veVPbnyZow6X3kzE9X2J7pi+eoIvcWZRi3kjljIEBERuQNOLSlhIUNEROQObBqcmh7iVUtEREREnoUjMkRERO5As12+OZP3QixkiIiI3AHXyChhIUNEROQOuEZGCdfIEBERkcfiiAwREZE74NSSEhYyApqpehZS2UrkA2VGg1WcSUuvI84AgF/DYnHGYpV3E8zMDRRnbDa1Zlfv/t5dnLk77IA4E2IoEGfMPvJGZh/lNhVnAOBfGW3FmSejNokzrx7tLc4YDfLzAACPNNgjziQf7yLOTGopPw9fX7hJnDmWU1ecAYDTmSHijNEsP+fWYqM4A02xSV1N622nwclCptKOxKNwaomIiIg8FkdkiIiI3AGnlpSwkCEiInIHNhvUP3mqNO99OLVEREREHosjMkRERO6AU0tKWMgQERG5AxYySji1RERERB6LIzJERETugB9RoISFjICuWKH7kkrDJpM8kpXnp7AjNRcK/MWZ8xcDxJnG9c+JMxcL5ccGAGkXQ8SZj/NvFmeysuXHF1o7T5yZt/8OcQYAgv0viTPjfxgkztQNkT+n9AtB4gwAzD7TU5zR+8iv/njvxG3iTMY5+XOqVzdXnAEAH5O8aaZNoVGdTq/wy1T1Yhv5U3JrmmaD5sQnWDuT9WQsZIiIiNyBpjk3qsI1MkRERESehSMyRERE7kBzco2Ml47IsJAhIiJyBzYboHNinYuXrpHh1BIRERF5LI7IEBERuQNOLSlhIUNEROQGNJsNmhNTS956+TWnloiIiMhjcURGQK/SEE+FxVccKbkoz6g+m/Pn6yomZU6ca1At+1Elbx2n5txZhQ6JqvtCrWrZz/lqfE4qr3OVAfrMDLM4o3Js56rp50+VynOqpndW98epJSVuMSKzYMECREdHw2w2Iy4uDjt37rzm4z/99FO0bNkSZrMZbdq0wfr166vpSImIiKqITXP+5oVcXsisWLECiYmJSEpKwp49e9CuXTv06tULmZmZ5T5++/btGDhwIEaOHImffvoJffv2Rd++ffHrr79W85ETERGRq7m8kJkzZw4ef/xxDB8+HDfddBMWLlwIf39/LFmypNzHz5s3D/fccw+eeeYZxMTE4JVXXkHHjh0xf/78aj5yIiKiSqRpl3vBKN84IlPtLBYLdu/ejfj4ePt9er0e8fHx2LFjR7mZHTt2ODweAHr16nXVxxcVFSEnJ8fhRkRE5G40m+b0zRu5tJA5d+4crFYrwsPDHe4PDw9Henp6uZn09HTR42fMmIHg4GD7LSoqqnIOnoiIqDI5NRpjU+7s6+nrVF0+tVTVJk+ejOzsbPstLS3N1YdERETkFmrCOlWXFjKhoaEwGAzIyMhwuD8jIwMRERHlZiIiIkSPN5lMCAoKcrgRERG5G1dMLdWEdaouLWSMRiNiY2OxadMm+302mw2bNm1Cly5dys106dLF4fEA8PXXX1/18URERB6hmqeWqmOdanVweUO8xMREJCQkoFOnTujcuTPmzp2L/Px8DB8+HAAwdOhQNGjQADNmzAAATJw4Ed27d8cbb7yB3r17Y/ny5di1axfee++9Cu1P+9+qbtul6mpnRkREnqr0d4VWDVcElaDYqX54JSgGgDIXtZhMJphMZZtQXmud6sGDB8vdh3SdanVweSEzYMAAnD17FlOmTEF6ejrat2+PDRs22E9Uamoq9Po/Bo66du2Kjz/+GC+++CL+/ve/o1mzZlizZg1at25dof3l5uYCANKSplf+kyEiohopNzcXwcHBVbJto9GIiIgIbEt3ftFsQEBAmYtakpKSMHXqVKe37a5cXsgAwPjx4zF+/Phyv7dly5Yy9z3yyCN45JFHlPYVGRmJtLQ0BAYGQqfzjMbYOTk5iIqKQlpaGtf4VBDPmRzPmQzPl5wnnjNN05Cbm4vIyMgq24fZbMaJEydgsVic3pamaWV+t5U3GgNUzzrV6uAWhUx10uv1aNiwoasPQwkXK8vxnMnxnMnwfMl52jmrqpGYPzObzTCb5Z/X5Yw/r1Pt27cvgD/WqV5tcKF0nepTTz1lv8/V61S9rpAhIiKiy6p7nWpVYCFDRETkpap7nWpVYCHjAUwmE5KSkq46z0ll8ZzJ8ZzJ8HzJ8Zy5p+pcp1oVdFp1XFNGREREVAVq/EcUEBERUc3FQoaIiIg8FgsZIiIi8lgsZIiIiMhjsZBxkQULFiA6OhpmsxlxcXHYuXNnhXLLly+HTqezNy/6swMHDqBPnz4IDg5GrVq1cPPNNyM1NbWSj9w1Kvt85eXlYfz48WjYsCH8/Pzsn/pak0jO2dKlS6HT6RxuVzbn0jQNU6ZMQf369eHn54f4+HgcOXKkqp9GtarMc1ZcXIznnnsObdq0Qa1atRAZGYmhQ4fi9OnT1fFUqk1lv87+bMyYMdDpdJg7d24VHDnVGBpVu+XLl2tGo1FbsmSJtn//fu3xxx/XQkJCtIyMjGvmTpw4oTVo0EC77bbbtAcffNDhe0ePHtXq1KmjPfPMM9qePXu0o0ePamvXrr3uNj1BVZyvxx9/XGvatKm2efNm7cSJE9q7776rGQwGbe3atVX4TKqP9JwlJydrQUFB2pkzZ+y39PR0h8fMnDlTCw4O1tasWaP9/PPPWp8+fbTGjRtrhYWF1fGUqlxln7OsrCwtPj5eW7FihXbw4EFtx44dWufOnbXY2NjqekpVripeZ6VWrVqltWvXTouMjNTefPPNKnwW5OlYyLhA586dtXHjxtm/tlqtWmRkpDZjxoyrZkpKSrSuXbtq77//vpaQkFDmF/OAAQO0wYMHV9Uhu1RVnK9WrVppL7/8ssN9HTt21F544YVKPXZXkZ6z5ORkLTg4+Krbs9lsWkREhDZ79mz7fVlZWZrJZNI++eSTSjtuV6rsc1aenTt3agC0kydPOnOobqOqztnvv/+uNWjQQPv111+1Ro0asZCha+LUUjWzWCzYvXs34uPj7ffp9XrEx8djx44dV829/PLLCAsLw8iRI8t8z2azYd26dWjevDl69eqFsLAwxMXFYc2aNVXxFKpVVZwv4HJ3yi+++AKnTp2CpmnYvHkzDh8+jJ49e1b6c6huqucsLy8PjRo1QlRUFB588EHs37/f/r0TJ04gPT3dYZvBwcGIi4u75jY9RVWcs/JkZ2dDp9MhJCSksg7dZarqnNlsNgwZMgTPPPMMWrVqVWXHTzUHC5lqdu7cOVitVnv751Lh4eFIT08vN7Nt2zYsXrwYixYtKvf7mZmZyMvLw8yZM3HPPffgq6++wl/+8hf069cPW7durfTnUJ2q4nwBwFtvvYWbbroJDRs2hNFoxD333IMFCxbg9ttvr9TjdwWVc9aiRQssWbIEa9euxUcffQSbzYauXbvi999/BwB7TrJNT1IV5+xKly5dwnPPPYeBAwd61AcmXk1VnbNZs2bBx8cHEyZMqNLjp5qDH1Hg5nJzczFkyBAsWrQIoaGh5T7GZrMBAB588EFMmjQJANC+fXts374dCxcuRPfu3avteF2tIucLuFzI/PDDD/jiiy/QqFEj/Oc//8G4ceMQGRnp8Bemt+jSpYvDp9d27doVMTExePfdd/HKK6+48Mjcl+ScFRcXo3///tA0De+88051H6rbuN452717N+bNm4c9e/ZAp9O58EjJk7CQqWahoaEwGAzIyMhwuD8jIwMRERFlHn/s2DGkpKTggQcesN9XWrj4+Pjg0KFDiIqKgo+PD2666SaHbExMDLZt21YFz6L6VMX5ioyMxN///nesXr0avXv3BgC0bdsWe/fuxeuvv+7xhYz0nJXH19cXHTp0wNGjRwHAnsvIyED9+vUdttm+ffvKOXAXqopzVqq0iDl58iS+/fbbGjEaA1TNOfvuu++QmZmJG264wf4Yq9WKv/3tb5g7dy5SUlIq7fip5uDUUjUzGo2IjY3Fpk2b7PfZbDZs2rTJ4S+VUi1btsS+ffuwd+9e+61Pnz644447sHfvXkRFRcFoNOLmm2/GoUOHHLKHDx9Go0aNqvw5VaWqOF/FxcUoLi52+ERXADAYDPaix5NJz1l5rFYr9u3bZy9aGjdujIiICIdt5uTk4Mcff6zwNt1ZVZwz4I8i5siRI/jmm29Qt27dSj92V6mKczZkyBD88ssvDj+/kZGReOaZZ7Bx48YqeR5UA7h6tbE3Wr58uWYymbSlS5dqv/32mzZ69GgtJCTEfhnikCFDtOeff/6q+fKuwlm1apXm6+urvffee9qRI0e0t956SzMYDNp3331XlU+lWlTF+erevbvWqlUrbfPmzdrx48e15ORkzWw2a2+//XZVPpVqIz1n06ZN0zZu3KgdO3ZM2717t/boo49qZrNZ279/v/0xM2fO1EJCQrS1a9dqv/zyi/bggw/WuMuvK/OcWSwWrU+fPlrDhg21vXv3OlxyXFRU5JLnWNmq4nV2JV61RNfDqSUXGDBgAM6ePYspU6YgPT0d7du3x4YNG+yL5lJTU8uMFlzPX/7yFyxcuBAzZszAhAkT0KJFC3z++ee49dZbq+IpVKuqOF/Lly/H5MmT8dhjj+HChQto1KgRXn31VYwZM6YqnkK1k56zixcv4vHHH0d6ejpq166N2NhYbN++3WG68tlnn0V+fj5Gjx6NrKws3HrrrdiwYcM1G5p5kso+Z6dOncIXX3wBAGWm3zZv3owePXpUy/OqSlXxOiOS0mmaprn6IIiIiIhUcI0MEREReSwWMkREROSxWMgQERGRx2IhQ0RERB6LhQwRERF5LBYyRERE5LFYyBAREZHHYiFDVMNER0dj7ty59q91Oh3WrFlTLfuSSklJgU6ng06nU/rMptJsSEiI8jEQkWdjIUNURXbs2AGDwWD/YEpXOXPmDO69914AfxQOe/fudekxXembb76xf2bPk08+iZiYmHIfl5qaCoPBYO+Ye+bMGacKKSLyfCxkiKrI4sWL8eSTT+I///kPTp8+7bLjiIiIgMlkctn+K6Ju3br2D1QcOXIkDh48iO3bt5d53NKlSxEWFob77rsPwOXnFhwcXK3HSkTuhYUMURXIy8vDihUrMHbsWPTu3RtLly51+P6WLVug0+mwceNGdOjQAX5+frjzzjuRmZmJL7/8EjExMQgKCsKgQYNQUFBgz/Xo0QPjx4/H+PHjERwcjNDQULz00ku41ieN/HlqqXHjxgCADh06QKfT2T/vp0ePHnjqqacccn379sWwYcPsX2dmZuKBBx6An58fGjdujGXLlpXZV1ZWFkaNGoV69eohKCgId955J37++eeKnzhc/lyijh07YsmSJQ73a5qGpUuXIiEhAT4+/Jg4IrqMhQxRFVi5ciVatmyJFi1aYPDgwViyZEm5xcbUqVMxf/58bN++HWlpaejfvz/mzp2Ljz/+GOvWrcNXX32Ft956yyHzwQcfwMfHBzt37sS8efMwZ84cvP/++xU6rp07dwK4PJVz5swZrFq1qsLPadiwYUhLS8PmzZvx2Wef4e2330ZmZqbDYx555BF7MbZ792507NgRd911Fy5cuFDh/QCXR2VWrlyJ/Px8+31btmzBiRMnMGLECNG2iKhmYyFDVAUWL16MwYMHAwDuueceZGdnY+vWrWUeN336dHTr1g0dOnTAyJEjsXXrVrzzzjvo0KEDbrvtNjz88MPYvHmzQyYqKgpvvvkmWrRogcceewxPPvkk3nzzzQodV7169QBcnsqJiIhAnTp1KpQ7fPgwvvzySyxatAi33HILYmNjsXjxYhQWFtofs23bNuzcuROffvopOnXqhGbNmuH1119HSEgIPvvsswrtp9SgQYNQXFyMTz/91H5fcnIybr31VjRv3ly0LSKq2VjIEFWyQ4cOYefOnRg4cCAAwMfHBwMGDMDixYvLPLZt27b2f4eHh8Pf3x9NmjRxuO/KUY9bbrkFOp3O/nWXLl1w5MgRWK3Wyn4qdgcOHICPjw9iY2Pt97Vs2dLhaqGff/4ZeXl5qFu3LgICAuy3EydO4NixY6L9hYSEoF+/fvbppZycHHz++ecYOXJkpTwfIqo5ONFMVMkWL16MkpISREZG2u/TNA0mkwnz5893WJzq6+tr/7dOp3P4uvQ+m81W5ces1+vLTH0VFxeLtpGXl4f69etjy5YtZb6ncnn0yJEjcdddd+Ho0aPYvHkzDAYDHnnkEfF2iKhmYyFDVIlKSkrw4Ycf4o033kDPnj0dvte3b1988sknGDNmjFP7+PHHHx2+/uGHH9CsWTMYDIbrZo1GIwCUGb2pV68ezpw5Y//aarXi119/xR133AHg8uhLSUkJdu/ejZtvvhnA5ZGnrKwse6Zjx45IT0+Hj48PoqOjVZ6agzvuuAONGzdGcnIyNm/ejEcffRS1atVyertEVLNwaomoEv373//GxYsXMXLkSLRu3drh9tBDD5U7vSSVmpqKxMREHDp0CJ988gneeustTJw4sULZsLAw+Pn5YcOGDcjIyEB2djYA4M4778S6deuwbt06HDx4EGPHjnUoUlq0aIF77rkHf/3rX/Hjjz9i9+7dGDVqFPz8/OyPiY+PR5cuXdC3b1989dVXSElJwfbt2/HCCy9g165d4uep0+kwYsQIvPPOO9ixYwenlYioXCxkiCrR4sWLER8fX25vk4ceegi7du3CL7/84tQ+hg4disLCQnTu3Bnjxo3DxIkTMXr06AplfXx88M9//hPvvvsuIiMj8eCDDwIARowYgYSEBAwdOhTdu3dHkyZN7KMxpZKTkxEZGYnu3bujX79+GD16NMLCwuzf1+l0WL9+PW6//XYMHz4czZs3x6OPPoqTJ08iPDxc6bkOGzYM2dnZaNWqFeLi4pS2QUQ1m067VgMKInIrPXr0QPv27WtMN9uUlBQ0btwYP/30k9JHFACXm+Q99dRTDiNIROQ9uEaGiFyua9euaN++fbndfK8lICAAJSUlMJvNVXRkROTuWMgQkcs0bNgQR44cAQClj1Eo/cyoiix0JqKaiVNLRERE5LG42JeIiIg8FgsZIiIi8lgsZIiIiMhjsZAhIiIij8VChoiIiDwWCxkiIiLyWCxkiIiIyGOxkCEiIiKPxUKGiIiIPNb/A/axLDADwqmYAAAAAElFTkSuQmCC\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - specification_9_0.png" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHHCAYAAACle7JuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcZklEQVR4nO3deViU5foH8O/MADPsqAiIIrhL7mGatqhFWtnisdQsFbc8mqZFq1miZaktpictyxTbtcWl37E0M/Rkmh41y8pdEVIBFdmXgZn394fHqQlU7meAmWG+n+ua65Jxvu/7zssw3DzP896j0zRNAxEREZEb0jv7AIiIiIhUsZAhIiIit8VChoiIiNwWCxkiIiJyWyxkiIiIyG2xkCEiIiK3xUKGiIiI3BYLGSIiInJbLGSIiIjIbbGQIXJzy5cvh06nQ2pq6hUfu3nzZuh0OmzevLnGj4uIqDawkCFyEy+99BLWrFlTpce++eabWL58eY0ej6uLiYmBTqeDTqeDXq9HSEgIOnTogHHjxmHHjh3OPjwiqiY6ftYSkXsICAjAvffeW6FAsVgsKCsrg9FohE6nAwC0b98eoaGhFUZerFYrzGYzfHx8oNfX7b9jYmJiUK9ePTz22GMAgPz8fOzfvx+fffYZMjIy8Oijj2LevHlOPkoicpSXsw+AyB0UFhbC39/f2YdRKYPBAIPBUKXH6vV6mEymGj4i19G4cWMMGzbM7r65c+fi/vvvx+uvv45WrVphwoQJTjo6IqoOdftPMiIFM2bMgE6nw++//477778f9erVw/XXX2/7/w8//BBxcXHw9fVF/fr1cd999yE9Pd1uG71790b79u2xe/du9OzZE76+vmjWrBkWL15cYX+lpaVISkpCy5YtYTQaERUVhSeffBKlpaW2x+h0OhQWFuK9996zTZeMHDkSQMU1MjExMfjtt9+wZcsW22N79+4N4NJrZD777DPbcwoNDcWwYcNw8uRJu8eMHDkSAQEBOHnyJAYMGICAgAA0bNgQjz/+OCwWi91jV6xYgbi4OAQGBiIoKAgdOnTAggULJN+GGuPr64sPPvgA9evXx4svvggOShO5N47IEF3CoEGD0KpVK7z00ku2X3YvvvginnvuOQwePBhjx47FmTNn8MYbb+DGG2/ETz/9hJCQEFv+/PnzuP322zF48GAMHToUn376KSZMmAAfHx+MHj0awIWpnrvuugtbt27FuHHjEBsbi3379uH111/HoUOHbGtiPvjgA4wdOxbdunXDuHHjAAAtWrSo9Ljnz5+Phx9+GAEBAZg2bRoAIDw8/JLPc/ny5Rg1ahSuueYazJ49G5mZmViwYAF++OGHCs/JYrGgX79+6N69O1599VV8++23eO2119CiRQvbyMbGjRsxdOhQ3HzzzZg7dy4AYP/+/fjhhx8wZcqUy57z8+fPVyiKKuPn5wc/P78rPu5SAgIC8I9//ANLly7F77//jnbt2ilvi4icTCMiO0lJSRoAbejQoXb3p6amagaDQXvxxRft7t+3b5/m5eVld3+vXr00ANprr71mu6+0tFTr3LmzFhYWppnNZk3TNO2DDz7Q9Hq99v3339ttc/HixRoA7YcffrDd5+/vryUkJFQ43uTkZA2Advz4cdt97dq103r16lXhsSkpKRoALSUlRdM0TTObzVpYWJjWvn17rbi42Pa4f//73xoAbfr06bb7EhISNADa888/b7fNLl26aHFxcbavp0yZogUFBWnl5eUV9n8l0dHRGoAr3pKSkqq0rf79+1/y/19//XUNgLZ27VrxcRKR6+CIDNEljB8/3u7rVatWwWq1YvDgwTh79qzt/oiICLRq1QopKSl45plnbPd7eXnhn//8p+1rHx8f/POf/8SECROwe/duXHvttfjss88QGxuLtm3b2m3zpptuAgCkpKSgZ8+eNfUUsWvXLmRlZWHGjBl2a2f69++Ptm3bYt26dZg5c6Zd5u/n5YYbbsAHH3xg+zokJASFhYXYuHEjbr31VtHxfPTRRyguLr7i45o3by7abmUCAgIAXFgETETuy6MLmf/85z945ZVXsHv3bpw+fRqrV6/GgAEDamx/MTExOHHiRIX7H3roISxatKjG9ktqmjVrZvf14cOHoWkaWrVqVenjvb297b6OjIyssEC4devWAIDU1FRce+21OHz4MPbv34+GDRtWus2srCzVw6+Si6/HNm3aVPi/tm3bYuvWrXb3mUymCsdar149nD9/3vb1Qw89hE8//RS33XYbGjdujL59+2Lw4MFVKmquu+46laehpKCgAAAQGBhYa/skourn0YVMYWEhOnXqhNGjR2PgwIE1vr///ve/dvP/v/76K2655RYMGjSoxvdNcr6+vnZfW61W6HQ6fP3115VeJXTxL3wJq9WKDh06XPIy4KioKPE2a1JVro4KCwvD3r17sWHDBnz99df4+uuvkZycjBEjRuC99967bPbMmTNVWiMTEBCgdL7/6tdffwUAtGzZ0qHtEJFzeXQhc9ttt+G222675P+XlpZi2rRp+OSTT5CTk4P27dtj7ty5titApP7+l+ycOXPQokUL9OrVS2l7VLtatGgBTdPQrFkz28jK5Zw6darCZduHDh0CcGF07uI2f/75Z9x88822HjCXcqX/V3lsdHQ0AODgwYO26ayLDh48aPt/KR8fH9x555248847YbVa8dBDD+Htt9/Gc889d9nC4Zprrql01PLvkpKSMGPGDKVjAy6MxqxevRpRUVGIjY1V3g4ROR8vv76MSZMmYfv27VixYgV++eUXDBo0CLfeeisOHz7s8LbNZjM+/PBDjB49WvQLipxn4MCBMBgMmDlzZoVLdjVNw7lz5+zuKy8vx9tvv2372mw24+2330bDhg0RFxcHABg8eDBOnjyJJUuWVNhfcXExCgsLbV/7+/sjJyenSsda1cd27doVYWFhWLx4sd3l3l9//TX279+P/v37V2l/f/X386DX69GxY0cAsNtHZT766CNs3LjxircRI0aIj+ui4uJiDB8+HNnZ2Zg2bRp//ojcnEePyFxOWloakpOTkZaWhsjISADA448/jvXr1yM5ORkvvfSSQ9tfs2YNcnJybL1AyPW1aNECs2bNwtSpU5GamooBAwYgMDAQx48fx+rVqzFu3Dg8/vjjtsdHRkZi7ty5SE1NRevWrbFy5Urs3bsX77zzjm09zfDhw/Hpp59i/PjxSElJwXXXXQeLxYIDBw7g008/xYYNG9C1a1cAQFxcHL799lvMmzcPkZGRaNasGbp3717pscbFxeGtt97CrFmz0LJlS4SFhVUYcQEurOuZO3cuRo0ahV69emHo0KG2y69jYmLw6KOPis/T2LFjkZ2djZtuuglNmjTBiRMn8MYbb6Bz585XHP2o7jUyJ0+exIcffgjgwijM77//buvs+9hjj9ktxiYiN+Xci6ZcBwBt9erVtq8vXn7q7+9vd/Py8tIGDx6saZqm7d+//4qXiT711FOV7q9v377aHXfcURtPjYQuXn595syZSv//iy++0K6//nrba6Jt27baxIkTtYMHD9oe06tXL61du3barl27tB49emgmk0mLjo7WFi5cWGF7ZrNZmzt3rtauXTvNaDRq9erV0+Li4rSZM2dqubm5tscdOHBAu/HGGzVfX18NgO1S7Mouv87IyND69++vBQYGagBsl2L//fLri1auXKl16dJFMxqNWv369bUHHnhA++OPP+wek5CQoPn7+1/yfF30+eefa3379tXCwsI0Hx8frWnTpto///lP7fTp05Wez5ry10u5dTqdFhQUpLVr10578MEHtR07dtTqsRBRzeFnLf2PTqezu2pp5cqVeOCBB/Dbb79VWOAYEBCAiIgImM1mHDt27LLbbdCgQYW1MSdOnEDz5s2xatUq3H333dX6PMg19O7dG2fPnrUtKCUioprBqaVL6NKlCywWC7KysnDDDTdU+hgfHx+0bdtWvO3k5GSEhYUprT8gIiKiP3l0IVNQUIAjR47Yvj5+/Dj27t2L+vXro3Xr1njggQcwYsQIvPbaa+jSpQvOnDmDTZs2oWPHjspFiNVqRXJyMhISEuDl5dGnn4iIyGEe/Zt0165d6NOnj+3rxMREAEBCQgKWL1+O5ORkzJo1C4899hhOnjyJ0NBQXHvttbjjjjuU9/ntt98iLS3N9lk7REREpI5rZIiIiDyUSof7zZs3IzExEb/99huioqLw7LPPOvUKXPaRISIi8lAXO9xX9WNyjh8/jv79+6NPnz7Yu3cvHnnkEYwdOxYbNmyo4SO9NI7IEBERUYWrdyvz1FNPYd26dXZXZN53333IycnB+vXra+EoK/K4NTJWqxWnTp1CYGAgO3oSEdFlaZqG/Px8REZGQq+vuUmMkpISmM1mh7ejaVqF321GoxFGo9HhbQPA9u3bER8fb3dfv3798Mgjj1TL9pU4r4WNpm3ZskW74447tEaNGlVoSHcpKSkpWpcuXTQfHx+tRYsWWnJysmif6enpV2xixxtvvPHGG29/vaWnp6v9oquC4uJiLSLMUC3HGRAQUOG+pKSkKh0HcOXfw61atdJeeuklu/vWrVunAdCKiooUz4BjnDoiI/306Ytzc+PHj8dHH32ETZs2YezYsWjUqBH69etXpX0GBgYCAKJmPgu9ySQ6XkORvBq3+mjijKVemTgDs/zY/E6offstCoW9uXmJOPNAh53izBdf3CjOAEDTZfLPzzo4K1qcubvjz+LM2t1dxJlW7xZe+UGVsO47IM4cfbWrOPNUn3+LM6/u7SvOAED0u/KfwTOd/cSZYaM2ijNrTnYUZywrwsQZALBe+YPLKzjb7cqfRP53en+F968zsvfiiwwl8lF1i79V9HhrSQnSk2bZfnfUBLPZjIwsC07sjkFQoPqoT16+FdFxqUhPT0dQUJDt/uoajXFVTi1krvTp03+3ePFiNGvWDK+99hoAIDY2Flu3bsXrr79e5ULm4pCb3mQSFzJ6q8ILTKGQ0XwV3nEM8mMzGBW//Qo/E3r57wWYArzFGYNR7Q3RS+8jzuh95fsyKjwnlf14GcrFGQCw6mrn+HwD5K89vZ/i99ZL/jOo8joyKTwnL3+FHyYftfOgU3hb0fsqFDJ+CjsSvhfb9gV5IaOZZIXMRbWxFCEgUIeAQPX9WP93PoKCguwKmeoUERGBzMxMu/syMzMRFBQEX1/fGtnnlbjVVUuXmpvbvn27k46IiIioelg0q8O3mtajRw9s2rTJ7r6NGzeiR48eNb7vS3Grxb4ZGRkIDw+3uy88PBx5eXkoLi6utBosLS1FaWmp7eu8vLwaP04iIiIpKzRYIR9B/Gte6nId7ps2bYqpU6fi5MmTeP/99wEA48ePx8KFC/Hkk09i9OjR+O677/Dpp59i3bp1ysftKLcakVExe/ZsBAcH225RUVHOPiQiIiKXsGvXLnTp0gVdulxYi5eYmIguXbpg+vTpAIDTp08jLS3N9vhmzZph3bp12LhxIzp16oTXXnsN7777bpWXd9QEtxqRUZmbmzp1qu2jB4ALIzIsZoiIyNVYYYUjk0Mq6d69e0O7TDu55cuXV5r56aefxPuqKW5VyPTo0QNfffWV3X1XmpurzuvniYiIaopF02BxoEetI1l35tSppYKCAuzduxd79+4F8Ofc3MVhrKlTp2LEiBG2x48fPx7Hjh3Dk08+iQMHDuDNN9/Ep59+ikcffdQZh09ERERO5tQRmSt9+vSl5uYeffRRLFiwAE2aNFGfm9N0F27CiJQlQH75os5bPjyoPyu/bFZ1DLPcX171j+38gziz4micONNwj0IPCwCZ97YRZ0xB+eKMXuGkBxxSuFT5j8wrP6iyXJuW4kzwAfnltiMHZokzH4WfFWcAoNw/Qpzxz5R/nz7/Q97vJ7tA3pfA0lbt8lyvAoVMjsJrr4G8Z5RZ4X0SAAylbjWpcEXOWOxbFzj1VVAX5uaIiIiqgxUaLCxkxOr8VUtERERUd9WtcTkiIiI3xaklNSxkiIiIXACvWlLDqSUiIiJyWxyRISIicgFWKF9Mast7IhYyRERELsDi4FVLjmTdGQsZIiIiF2DRLtwcyXsirpEhIiIit8URGQGrUV7u6vzLxRnNIu/cGZCm0O1TrUEoSqLknTszSoPFmcLj8kyjswrtSwFkxck7I78XlyzO1DeUijO79sg7HOf1biXOAEDQXnlHYJ3CxPw+c7E4s6LNSvmOANxw7ePijP8f8v2c/z1cnLnu2t/Fma2FLcQZAAjZKP/MueIS+ZtEfoRCl3EvtaEEi6luDUFwjYwaFjJEREQuwAodLKp/Yf4v74k4tURERERuiyMyRERELsCqXbg5kvdELGSIiIhcgMXBqSVHsu6MU0tERETktjgiQ0RE5AI4IqOGhQwREZELsGo6WDUHrlpyIOvOOLVEREREbosjMgJWo7zdkF4nX0auPyNvXKWitL5arlFojjizIytanPE9Lf/rIrdNgDgDACXh8u/trLQ7xJmDmWHiTL3GPuKM6ay8ESMAWEIDxRmffPlrfNB/x4kz0zp+Lc4AQGkD+fc2bI88U5wlfzs9VRQkznSMOSnOAMDBZvJGel5F8v0Yzshfr+Uhaq9Xq4/Ce3K5645acGpJDQsZIiIiF2CBHhYHJkos1Xgs7oSFDBERkQvQHFwjo3GNDBEREZF74YgMERGRC+AaGTUsZIiIiFyARdPDojmwRsZDP6KAU0tERETktjgiQ0RE5AKs0MHqwPiCFZ45JMNChoiIyAVwjYwazy1kdNqFWw2zFniLM37Z8hdjmUIfuJJoszwE4KqQTHHm20NtxJkW3xeKM+fb+okzANC6Q7o482jUN+LMmJ/ljeCCPtwuzni1bSXOAEBGn4biTMTX8gZtWd0aiTM3XXtcnAGA5NjT4oz1m3BxJuSwvDnb8Xah4kynaLWGeCWN5F1G/NIM4oxPrvz9yxKgNgqh+Si8h7twQzxS47mFDBERkQtxfLEvp5aIiIjISS6skXHgQyM9dGqJVy0RERGR2+KIDBERkQuwOvhZS7xqiYiIiJyGa2TUsJAhIiJyAVbo2UdGAdfIEBERkdviiAwREZELsGg6WDQHGuI5kHVnLGQkFF4jXrnyhlJeRfL9FMv7d0FvlDfIAoBdWVHijM9BX3GmoKm8wVh+jNoP8uCGB8WZEk3e7DDwaO0Mgp4YIG9sBwCGUnmmPPWEOBN4rLE4M/N0P3EGACbHbBJnnrtqhDhjOieOwPSr/OfiXLha08ew6GxxJi9D/jqyyt/yoC9S+7mwqjTEc2EWBxf7Wji1REREROReOCJDRETkAqyaHlYHrlqy8qolIiIichZOLanh1BIRERG5LY7IEBERuQArHLvySH55RN3AQoaIiMgFON4QzzMnWTzzWRMREVGdwBEZIiIiF+D4Zy155tgECxkiIiIXYIUOVpXOq3/JeyIWMgK6MvmLxDtfnrHKG8aiLETepbdT1Cn5jgDsS4sUZ0JPyC8L9C6UL10riVTrVhxrOinOzDl2mzhT72CZOKO/up04UxqqeBmmQkzv4yPOhO4zizPnBvqLMwDQ3y9XnEmMkb+OGn8nb8l9sk+gOJN2qoE4AwAmf/k5L4mQnwffP+Stfa3ear+ANa+6dbkxR2TUeOazJiIiojqBIzJEREQuwPGGeJ45NsFChoiIyAVYNR2sjvSR8dBPv/bM8o2IiIjqBI7IEBERuQCrg1NLntoQj4UMERGRC3D80689s5DxzGdNREREdQJHZIiIiFyABTpYHGhq50jWnbGQEdCba6m5nULfL/9GBeLMb6ci5DsCYDjhK86UBivsxywfMLyl0z75jgDMOSpvbncqM0ScabVxjzhzbkQ3cSYk9pw4AwDnz8tffFrHNuJMaT35W88v6Y3FGQBYEy5vIBfUOE+cOdmnnjhT77C84VxZsFGcAYCSKHnGq16JOFOW5yfO6MrVfgEr5Qyu20SPU0tqPPNZExERUZ3AERkiIiIXYIFj00NqH9Di/ljIEBERuQBOLalhIUNEROQC+KGRajzzWRMREREAYNGiRYiJiYHJZEL37t2xc+fOyz5+/vz5aNOmDXx9fREVFYVHH30UJSXyheHVhYUMERGRC9Cgg9WBm6awvmblypVITExEUlIS9uzZg06dOqFfv37Iysqq9PEff/wxnn76aSQlJWH//v1YunQpVq5ciWeeecbRp6+MhQwREZELuDi15MhNat68eXjwwQcxatQoXHXVVVi8eDH8/PywbNmySh+/bds2XHfddbj//vsRExODvn37YujQoVccxalJTi9k3H1Ii4iIyJXk5eXZ3UpLSyt9nNlsxu7duxEfH2+7T6/XIz4+Htu3b68007NnT+zevdv2u/rYsWP46quvcPvtt1f/E6kipy72vTiktXjxYnTv3h3z589Hv379cPDgQYSFhVV4/MUhrWXLlqFnz544dOgQRo4cCZ1Oh3nz5sl2ruku3AR0FvmwncVHHEF5iPwiuno+ZnGmKF+tsVb94/KMKVv+nDJ6yOvs4kyFrl8A/BXOn89xkzijWeTnIeBkmThzrkztR7t781Rx5kDXWHEm4v/k+znXPkacAYCNLduJMz0j5S/yjQ1DxBntqDgC30x5BgBKw+U/T1YvhUyAVZzxyTaIM4Bik1JfV26Ip4NV+Hvp73kAiIqyfx9MSkrCjBkzKjz+7NmzsFgsCA8Pt7s/PDwcBw4cqHQf999/P86ePYvrr78emqahvLwc48eP99yppbowpEVERFQdLP/79GtHbgCQnp6O3Nxc223q1KnVdoybN2/GSy+9hDfffBN79uzBqlWrsG7dOrzwwgvVtg8ppxUytTWkVVpaWmGYjYiIqK4KCgqyuxmNlY++h4aGwmAwIDPTfpgvMzMTERGVf4TNc889h+HDh2Ps2LHo0KED/vGPf+Cll17C7NmzYbXKR+Oqg9MKmcsNaWVkZFSauf/++/H888/j+uuvh7e3N1q0aIHevXtfdkhr9uzZCA4Ott3+PuRGRETkCi5OLTlyk/Dx8UFcXBw2bdr05zFYrdi0aRN69OhRaaaoqAh6vX3pYDBcmBrUNOdM2zl9sa+EypDW1KlT7YbY0tPTa/GIiYiIqsYKvcM3qcTERCxZsgTvvfce9u/fjwkTJqCwsBCjRo0CAIwYMcJuaurOO+/EW2+9hRUrVuD48ePYuHEjnnvuOdx55522gqa2OW2xr6NDWgDQoUMHFBYWYty4cZg2bVqFKhEAjEbjJYfViIiIPNmQIUNw5swZTJ8+HRkZGejcuTPWr19vmy1JS0uz+9367LPPQqfT4dlnn8XJkyfRsGFD3HnnnXjxxRed9RScV8j8dUhrwIABAP4c0po0aVKlGVcc0iIiIqoOFk0HiwNXLalmJ02adMnfu5s3b7b72svLC0lJSUhKSlLaV01w6uXXiYmJSEhIQNeuXdGtWzfMnz+/wpBW48aNMXv2bAAXhrTmzZuHLl26oHv37jhy5IjTh7SIiIiqQ3Vdfu1pnFrI1IUhLSIiouqgOfjp15qHfmik0z/92q2GtHTy6SurSZ7R+csboOUW+oozXn/IG7qpKmwkHzHza5UjzsyM/T9xBgCe3DtQnDGeV9qVWF6MvKvizmsWK+3ruaxu4syhcvl+rKEh4oz/Sfl+AGDzsZbiTIvws+KMJUz+c1vYSP699T2nNo1elOUtzlii5d9cU3iROGMu8xdnAMBQ5Jm/uMme0wsZIiIiAizQwaLwwY9/zXsiFjJEREQuwKo5ts7F6qHXvHBcjoiIiNwWR2SIiIhcgNXBxb6OZN0ZCxkiIiIXYIUOVgfWuTiSdWeeWb4RERFRncARGSIiIhfgrM6+7o6FDBERkQvgGhk1nvmsiYiIqE7giIyAVeFsWU1WccbkJ+8QWnJO3tnXVCqOAAB8z1nEmYzu8s6+TfwLxZl3/rhRnAGA0kw/cabZpmxx5tzIHuJMdgf5a+jTgkbiDAC8HP6TONOig7wbcMOV6eJMULj8ewQA57PkPxsPdd0szswsvEOcyWvSQJzxPavWLCQgXT7tcL6evPNwiVnhc++CFNpDA4BF3q3YlVnh4GcteehiXxYyRERELkBz8KoljYUMEREROQs//VoN18gQERGR2+KIDBERkQvgVUtqWMgQERG5AE4tqfHM8o2IiIjqBI7IEBERuQB+1pIaFjJEREQugFNLaljICFiN8sZk+kCF5nZnFZrbnZR/K33yxREAQF60vOGVoaV8Zx3qnRZnNv/RUpwBgIBj8uek+cjPeYM9OeJMdj+jOPPd+VhxBgDOlP8hzsS0OyXOFPZROz4Vpkz5DPoTP90jzhi95U3dLE1KxJmi0yZxBgAC/pA3sizOlP9cFDeRv0/qvOUZQPE9udwzf9nXZSxkiIiIXABHZNSwkCEiInIBLGTU8KolIiIiclsckSEiInIBHJFRw0KGiIjIBWhw7BJqtc9Fd38sZIiIiFwAR2TUcI0MERERuS2OyBAREbkAjsio8dxCRqdduIky8t1YS+Sn2FAgb0LllyWOwBwgzwBAUWP5TKxReq4B7DnXRJzJz/ETZwCgxW55YzL9OXmTvzN9IsWZkKBz4kxy0+/FGQA4UFYozmzyaivOnGwm/7mI/PasOAMAZf71xZnTMfImhJOvSxFn3j50gziTr3BsAOBVKH9fMZ2R78ccJP/eWn3VGuLVtY78LGTUcGqJiIiI3JbnjsgQERG5EI7IqGEhQ0RE5AI0TQfNgWLEkaw749QSERERuS2OyBAREbkAK3QONcRzJOvOWMgQERG5AK6RUcOpJSIiInJbHJEhIiJyAVzsq4aFjITC+JVOoQmVd578xehVLG84V1JP7UVvaFwkzjQMKhBn6hmLxZmc3yPEGQAo9y8XZ6wtG4oz5zrLv0//avN/4sxvZfLvEQC08/YXZxr75Yoz+1vKG6A12uojzgBAyFf7xZnsdu3EmU/SrxFn/I1mccbaLE+cAYDC88HijI+85yN8M+TvK0VN1N6LNEPd+phETi2pYSFDRETkAjgio4ZrZIiIiMhtcUSGiIjIBWgOTi156ogMCxkiIiIXoAHQHFj2U7dWDFUdp5aIiIjIbXFEhoiIyAVYoYOOnX3FWMgQERG5AF61pIZTS0REROS2OCIjoDPLq12fHHmtaFX4rhQ3UGhC1dQi3xGAIJO8idcNDY+KMx/92EOcaXxE7Tl5Fcgb4mV0M4kz9VqcE2f6+5WIM3OzO4ozABAY9JM4806TbeJM+z9ixJkzcfKGbgDQYLe8YV/IIfmyyZOR9cUZb/8yccbLS+01XhImb0KoL5O/fxnkL1foS9VGEqxGpZjLsmo66NgQT4yFDBERkQvQNAevWvLQy5Y4tURERERuiyMyRERELoCLfdWwkCEiInIBLGTUsJAhIiJyAVzsq4ZrZIiIiMhtcUSGiIjIBfCqJTUsZIiIiFzAhULGkTUy1XgwboSFDBEREdWa3NxcZGRkAAAiIiIQHKzW7PIiFjICunJ5paxSXHvnyzNFjeWluC5A3lUUANo1zBBnPv7lGnHG/5j85Rn0i/zYAEDzlu+rLFje2TchZrc4M+tsW3Hmq5PtxBkASG8o707bL+RXccbfKO8Ond9IHAEANOjRSZ75Qf46youRH6C1g/w8XNskVZwBgAP+4eJMVmmYOOOdK3/TMyh0TQcAzaAQMrjusEVdv2rp3Xffxbx583Dw4EG7+9u0aYPHHnsMY8aMUdouCxkiIiIXoP3v5kjeVb3yyiuYMWMGJk+ejH79+iE8/EJhnZmZiW+++QZTpkzB+fPn8fjjj4u3zUKGiIiIatTChQuRnJyMwYMH290fGxuL3r17o1OnTnjiiSdYyBAREbmrujy1lJWVhQ4dOlzy/zt06ICzZ88qbZt9ZIiIiFyBVg03F3XNNddgzpw5KC8vr/B/FosFc+fOxTXXyNdSAixkiIiIXMP/RmRUb0pXlwBYtGgRYmJiYDKZ0L17d+zcufOyj8/JycHEiRPRqFEjGI1GtG7dGl999dVlMwsXLsQ333yDiIgIDBw4EBMmTMCECRMwcOBAhIeHY+PGjVi0aJHS8Tu9kKmNE0hEREQVrVy5EomJiUhKSsKePXvQqVMn9OvXD1lZWZU+3mw245ZbbkFqaio+//xzHDx4EEuWLEHjxo0vu5+OHTvi0KFDeOGFFxAYGIhjx47h2LFjCAwMxKxZs3DgwAG0b99e6Tk4dY3MxRO4ePFidO/eHfPnz0e/fv1w8OBBhIVVvOzv4gkMCwvD559/jsaNG+PEiRMICQmp/YMnIiKqRs7o7Dtv3jw8+OCDGDVqFABg8eLFWLduHZYtW4ann366wuOXLVuG7OxsbNu2Dd7e3gCAmJiYKu0rMDDQNhJTnZxayNTmCSQiInJl1bXYNy8vz+5+o9EIo9FY4fFmsxm7d+/G1KlTbffp9XrEx8dj+/btle7jyy+/RI8ePTBx4kSsXbsWDRs2xP3334+nnnoKBsOVG/ucPHkSX3zxBQ4dOgQfHx+0adMGgwcPRr169SRP1Y7TCpnaOoGlpaUoLS21fW37BivMJxpK5S8wnUKFbFb4flpC5Y21wkIVOu8ByDPLG8HpzlX8IboSvUK/voz4CHkIgMEs/0ZZmheLM4/XPyrOLMuTNzIrLPURZwDg1/Pypm4xpnPizKZOH4ozV+ePE2cAICPPX5zxLpJnfPKu/Ji/K/hDvp9ToWpdUJsE5IozWZFB4ky5ReH9waL2y1tnlWeUmui5maioKLuvk5KSMGPGjAqPO3v2LCwWi62ny0Xh4eE4cOBApds+duwYvvvuOzzwwAP46quvcOTIETz00EMoKytDUlLSZY/rzTffRGJiIsxmM4KCLry28vLykJiYiHfffRdDhw6FpmnYu3cvunTpUuXn67RCprZO4OzZszFz5sxqP34iIqJq5cCCXVseQHp6uq1QAFDpaIwqq9WKsLAwvPPOOzAYDIiLi8PJkyfxyiuvXLaQWbduHSZPnoxHHnkEjz32GBo1uvBH0+nTp/HKK68gISEBUVFRePPNN9G2bVv3KGRUqJzAqVOnIjEx0fZ1Xl5ehWqViIjI2aprjUxQUJBdIXMpoaGhMBgMyMzMtLs/MzMTERGVj243atQI3t7edrMgsbGxyMjIgNlsho9P5aPBr7zyCp5++mnMmjWrwvbmzZsHPz8/3HLLLYiIiMDs2bOveOx/5bSrllRPYOvWrS95AitjNBpt39SqfnOJiIjqOh8fH8TFxWHTpk22+6xWKzZt2oQePXpUmrnuuutw5MgRWK1/zusdOnQIjRo1umQRAwB79uzB8OHDL/n/w4cPR2lpKbZs2YLo6GjR83BaIVObJ5CIiMjlOaEhXmJiIpYsWYL33nsP+/fvx4QJE1BYWGi7CGfEiBF2a1knTJiA7OxsTJkyBYcOHcK6devw0ksvYeLEiZfdj8VisV2kUxlvb2/4+vqiadOm4ufg1D4ytXUCiYiIXJ0jzfBUr3gaMmQIXn31VUyfPh2dO3fG3r17sX79etv61bS0NJw+fdr2+KioKGzYsAH//e9/0bFjR0yePBlTpkyp9Erjv2rXrh3Wrl17yf9fs2YN2rVrJz5+wMlrZIYMGYIzZ85g+vTpyMjIQOfOnSucQL3+z1rr4gl89NFH0bFjRzRu3BhTpkzBU0895aynQERE5NYmTZqESZMmVfp/mzdvrnBfjx498OOPP4r2MXHiREyYMAFGoxHjxo2Dl9eF8qO8vBxvv/02nn32Wbz55pviYwdcYLFvbZxAIiIit+DCn5fkiISEBOzbtw+TJk3C1KlT0aJFC2iahmPHjqGgoACTJ0/GyJEjlbbt9EKGiIiI6vanXwPAq6++invvvReffPIJDh8+DAC48cYbMXToUFx77bXK22UhU8MsCmuQyyMUmtuFybtxhfurNcTbd6yJOON7Vv4DVn+/vCOe6XShOAMAx+8NEWeCg4qU9iW1M6+5OFOQpnZ1XgHkuWFtPxJnSiF/PXRqckqcAYB9h1uJM/WOVPyE3ivxS5X/DKbdUV+cOXjo8p9pcymB4QXijJ9f6ZUf9Df5wZde0HkpXjlqv4r0ZfLXkcXbhYc8HP0Eaxd+ahdde+21DhUtlanSq+fLL78Ub/iWW26Br6+vOEdERERUVVUqZAYMGCDaqE6nw+HDh9G8ufwvSSIiIs+k+9/NkbznqfLl1xkZGbBarVW6+fn51eQxExER1T1O6CNTF1SpkElISBBNEw0bNowddImIiKjGVWlqKTk5WbTRt956S+lgiIiIPJYHLPatCQ539s3Ly8OaNWuwf//+6jgeIiIiz3Tx068dubm4zMxMDB8+HJGRkfDy8oLBYLC7qRBf8zZ48GDceOONmDRpEoqLi9G1a1ekpqZC0zSsWLEC99xzj9KBEBERUd02cuRIpKWl4bnnnkOjRo2g0zlefIkLmf/85z+YNm0aAGD16tXQNA05OTl47733MGvWLBYyRERECjTtws2RvKvbunUrvv/+e3Tu3LnatikuZHJzc1G//oUmTuvXr8c999wDPz8/9O/fH0888US1HZgrshjlrxKrn/XKD/obrVxeoeYXG8WZrMxgcQYATKnyLn++Z+T7KWgib6yV3zREviMA1lbyRnpT23wtzizPCxNn9mU3EmeCD6jNGltM8syg34eLM993WC3O9A/9RZwBgN1R0eLMmRL5a9y7uby5XcO98qaPZyD/uQCAfJO8r1fjiPPiTHGI/PgsZrXXq06hIZ5L84A1MlFRUdCqueISv3qioqKwfft2FBYWYv369ejbty8A4Pz58zCZFN4FiYiIyCPMnz8fTz/9NFJTU6ttm+IRmUceeQQPPPAAAgICEB0djd69ewO4MOXUoUOHajswIiIij+Logl03WOw7ZMgQFBUVoUWLFvDz84O3t/0IXnZ2tnib4kLmoYceQvfu3ZGWloZbbrkFev2FQZ3mzZtj1qxZ4gMgIiIiQKdduDmSd3Xz58+v9m0qfVJXXFwc4uLi7O7r379/tRwQERGRR/KANTIJCQnVvs0qrZFJTExEYWHVF0NOnTpVaXiIiIiI6jaLxYIvvvgCs2bNwqxZs7B69WpYLBbl7VWpkFmwYAGKioqqvNFFixYhJydH9ZiIiIg8jwc0xDty5AhiY2MxYsQIrFq1CqtWrcKwYcPQrl07HD16VGmbVZpa0jQNrVu3rnLjGsnoDREREcEjppYmT56MFi1a4Mcff7S1cjl37hyGDRuGyZMnY926deJt1shnLQFAeHi4OENERER115YtW+yKGABo0KAB5syZg+uuu05pm1UqZGpicQ4RERH9hQeMyBiNRuTn51e4v6CgAD4+8kaUgOJVS55K81Z4lfjIO/v6hRSLM0Xn5V07vc+pffsDT9TOT4tXsXw/md3V5oibNZQvTr/Hv+IP45X8t1S+n7O5AeJMoOK6ufAteeLM8Wvlxzf7XGtx5oHg3eIMAKxu9oc481t2M3HGq1j+2itsJP8ZDD4uf08BgLIAeffvP0pDxRm9qVyc0YLkHY4BALnyLsIufYmyBxQyd9xxB8aNG4elS5eiW7duAIAdO3Zg/PjxuOuuu5S26fCnXxMRERFVxb/+9S+0aNECPXr0gMlkgslkwnXXXYeWLVtiwYIFStvkiAwREZEr8IDOviEhIVi7di0OHz6MAwcOAABiY2PRsmVL5W2ykCEiInIBntDZ96JWrVqhVatW1bIt5ULmyJEjOHr0KG688Ub4+vpC07QqX55NREREniExMREvvPAC/P39kZiYeNnHzps3T7x9cSFz7tw5DBkyBN999x10Oh0OHz6M5s2bY8yYMahXrx5ee+018UEQERF5vDq62Penn35CWVmZ7d/VTVzIPProo/Dy8kJaWhpiY2Nt9w8ZMgSJiYksZIiIiMgmJSWl0n9XF/FVS9988w3mzp2LJk2a2N3fqlUrnDhxotoOjIiIyJPo8Oc6GaWbs59AFYwePbrSPjKFhYUYPXq00jbFhUxhYSH8/Pwq3J+dnQ2jUd6ngIiIiDzDe++9h+Liir3SiouL8f777yttUzy1dMMNN+D999/HCy+8AADQ6XSwWq14+eWX0adPH6WDcAqF5eGaUaERVZm8Ri7Klje3M+TJ120HnFCr372K5eehzE++r7wYeZuj0LZnxBkAeKH5GnFmSW6UOLP8RA9xRn/AX5xp+L7aPLTWTn4JpOFneUO83Fby1/iGQnkTPQC4LexXcaago7zD6Km8Jld+0N8Yc8QRlBvVfm4D0uWZXF+DOGPRyxdqqF4nopnk70W6Yhdun1aHL7/Oy8uDpmnQNA35+fkwmUy2/7NYLPjqq68QFhamtG3xb7+XX34ZN998M3bt2gWz2Ywnn3wSv/32G7Kzs/HDDz8oHQQREZHHq6OLfYEL/WN0Oh10Oh1at674R4lOp8PMmTOVti0uZNq3b49Dhw5h4cKFCAwMREFBAQYOHIiJEyeiUaNGSgdBREREdVdKSgo0TcNNN92EL774wu5DI318fBAdHY3IyEilbSv1kQkODsa0adOUdkhERESVqMMjMr169QIAHD9+HFFRUdDrq2+KT6mQKSkpwS+//IKsrCxYrfZzlKof+kREROTJPKGzb3R0NACgqKgIaWlpMJvNdv/fsWNH8TbFhcz69esxYsQInD17tsL/6XQ6WCyKH7tLREREddqZM2cwatQofP3115X+v0oNIR7befjhhzFo0CCcPn0aVqvV7sYihoiISJFWDTcX98gjjyAnJwc7duyAr68v1q9fj/feew+tWrXCl19+qbRN8YhMZmYmEhMTER4errRDIiIiqkQdXiNz0XfffYe1a9eia9eu0Ov1iI6Oxi233IKgoCDMnj0b/fv3F29TPCJz7733YvPmzeIdERERkWcrLCy09YupV68ezpy50PurQ4cO2LNnj9I2xSMyCxcuxKBBg/D999+jQ4cO8Pb2tvv/yZMnKx2IW7DUTrMhQ6G8CZXxfO01QioNlq82L2ws309JZJk446f4F8lV3vJ9heiPiDOzT98uzjT9b7k4U3irfMEcAPiu3iHOmLr2FGc+/bmrOPPBjUvEGQD4uaSpOHN9w2PizAfR8mZeXsXyxnvGbHEEAOBTIP/h8FF4XzErXENi9VVoNgq4x+pWAU9Y7NumTRscPHgQMTEx6NSpE95++23ExMRg8eLFyi1cxK+4Tz75BN988w1MJhM2b94M3V9aMup0urpdyBAREdWUOtzZ96IpU6bg9OnTAICkpCTceuut+Oijj+Dj44Ply5crbVNcyEybNg0zZ87E008/Xa3XgRMREXk0D1gjM2zYMNu/4+LicOLECRw4cABNmzZFaGio0jbFhYzZbMaQIUNYxBAREZFD/Pz8cPXVVzu0DXEhk5CQgJUrV+KZZ55xaMdERET0p7q6RiYxMbHKj503b554++JCxmKx4OWXX8aGDRvQsWPHCot9VQ6CiIjI49XRqaWffvqpSo/TKX4MuriQ2bdvH7p06QIA+PXXX6vlIIiIiKhuSklJqdHtiwuZmj4gIiIij+Tg1JKrjsjUNKUPjSQiIqJqVkenlv6qT58+l529+e6778TbrFIhM3DgQCxfvhxBQUEYOHDgZR+7atUq8UG4C125fOpMVybPeBfIM/6n5K/g0hC1qcAyhfK3pJG8qVv/Lr+IMxMabhZnAOD7kvrizMdZ14ozxhPyBmjmIPn3NvDj7eIMAOj9/MQZlb8gTUfl52G070j5jgAEBRSLM/dGV21O/6+CGxSIM7kxweKMxSRvmAkAfhm1M/Xvk6PQRE9TuwpW83aD39xkp3PnznZfl5WVYe/evfj111+RkJCgtM0q/UoKDg62VVDBwfIfPCIiIroCDxiRef311yu9f8aMGSgokP8xAFSxkElOTsbzzz+Pxx9/HMnJyUo7IiIiokurq5dfV8WwYcPQrVs3vPrqq+JslcfzZs6cqVwtEREREV3K9u3bYTKZlLJVXu2gaW5c6hEREZHT/X2draZpOH36NHbt2oXnnntOaZuiZZvsE0NERFRDPGCNzN/X2er1erRp0wbPP/88+vbtq7RNUSHTunXrKxYz2dmKnzFPRETkwTxhjUxNrLMVFTIzZ87kVUtERETkkF27dmH//v0AgKuuugpxcXHK2xIVMvfddx/CwsKUd0ZERESX4QajKo74448/MHToUPzwww8ICQkBAOTk5KBnz55YsWIFmjRpIt5mla9a4voYIiKiGqRVw83FjR07FmVlZdi/fz+ys7ORnZ2N/fv3w2q1YuzYsUrb5FVLAiqdfb3zFQpAhUhJPXmoLEi+HwAobWARZ9q3Thdn+gTvF2dKNLVP3fg2t504s31va3HGX95kFvoy+c+eV8NQ+Y4AlJ85K99Xsfz4/DLlr9fsRmqXZg5t/7048+GxbuJMv6gD4sy+oEhx5kBZU3EGAHQWefdcvfxHHVaFxsNexWp/KMv7hQMw8HeZM23ZsgXbtm1DmzZtbPe1adMGb7zxBm644QalbVb5Xd9qtSrtgIiIiK7MExb7RkVFoaysrML9FosFkZHywh4QTC0RERFRDfKAqaVXXnkFDz/8MHbt2mW7b9euXZgyZYpSV1+An35NREREtWTkyJEoKipC9+7d4eV1oQQpLy+Hl5cXRo8ejdGjR9seW9V2Li5RyCxatAivvPIKMjIy0KlTJ7zxxhvo1u3Kc9QrVqzA0KFDcffdd2PNmjU1f6BEREQ1xBOmlubPn1/t23R6IbNy5UokJiZi8eLF6N69O+bPn49+/frh4MGDl73UOzU1FY8//rjy4iAiIiKX4qTOvrU5mJCQkKB2kJfh9DUy8+bNw4MPPohRo0bhqquuwuLFi+Hn54dly5ZdMmOxWPDAAw9g5syZaN68eS0eLRERUd1xcTAhKSkJe/bsQadOndCvXz9kZWVdNufIYILFYsEXX3yBWbNmYdasWVi9ejUsFoVL5P7HqYWM2WzG7t27ER8fb7tPr9cjPj4e27dvv2Tu+eefR1hYGMaMGXPFfZSWliIvL8/uRkRE5HKcsNi3tgcTjhw5gtjYWIwYMQKrVq3CqlWrMGzYMLRr1w5Hjx6VPwE4uZA5e/YsLBYLwsPD7e4PDw9HRkZGpZmtW7di6dKlWLJkSZX2MXv2bAQHB9tuUVFRDh83ERFRdbu4RsaRG4AKf7yXlpZWur/aGEz4u8mTJ6NFixZIT0/Hnj17sGfPHqSlpaFZs2aYPHmyeHuAC6yRkcjPz8fw4cOxZMkShIZWreHX1KlTkZiYaPs6Ly/vQjGj6S7cBHQqI18KfZ68CuUZcz2VjNpQnqF+5T8Ul3N1PXlDvAaGAnFm4u/3izMAcOZcoDjje0re+avRD0XiTHG4vBFcecvG4gwAQKEhXvD7l37DuxTzbdeIM0WNvMUZAHjn9+vFmQ6NToszNwf9Js7klPmJMwcbhF/5QZUogVGc8c2Q/62rsuDUO1+eAQCLjzyjKTTsqzXVtEbm73+wJyUlYcaMGRUefrnBhAMHKm/weHEwYe/evUqHuGXLFvz444+oX7++7b4GDRpgzpw5uO6665S26dRCJjQ0FAaDAZmZmXb3Z2ZmIiIiosLjjx49itTUVNx55522+y426vPy8sLBgwfRokULu4zRaITRKP8BJiIickfp6ekICvqzdXt1/Q5UGUz4O6PRiPz8ipVrQUEBfHwUKlM4uZDx8fFBXFwcNm3ahAEDBgC4UJhs2rQJkyZNqvD4tm3bYt++fXb3Pfvss8jPz8eCBQs4bURERO6rmkZkgoKC7AqZS6mNwYS/u+OOOzBu3DgsXbrUdmXUjh07MH78eNx1111XPObKOH1qKTExEQkJCejatSu6deuG+fPno7CwEKNGjQIAjBgxAo0bN8bs2bNhMpnQvn17u/zFT8/8+/1ERETupLb7yDhjMOFf//oXEhIS0KNHD3h7X5guLi8vx1133YUFCxbInsD/OL2QGTJkCM6cOYPp06cjIyMDnTt3xvr1621zdmlpadDrnX6VOBERUZ1T24MJISEhWLt2LY4cOYL9+y98MHBsbCxatmyp/BycXsgAwKRJkyqt/gBg8+bNl80uX768+g+IiIiotjmhIV5tDSZYrVa88sor+PLLL2E2m3HzzTcjKSkJvr6+Dm/bJQoZIiIiT+esjyiojcGEF198ETNmzEB8fDx8fX2xYMECZGVlXbZfTVVxzoaIiIhq1Pvvv48333wTGzZswJo1a/B///d/+Oijj2yLhR3BQoaIiMgVOKGzb21JS0vD7bffbvs6Pj4eOp0Op06dcnjbnFoS0FkUutspKFVoblceoFDVBpTLMwA6NpG/8MoUulA9/vsgcSb7jLyxHQCYUuX9C3wUPu1Ct3WvOBPYrrU4U9hS4UUEQN56T41vaq44E+YVorSvLASIM3uK5a0cpuYMFGeCTcXijI9R7efWv4W80+Y5b/nryCtHoeOc4lurwSwPlvu48G97J31oZG0oLy+HyWT/DuPt7Y2ysjKHt81ChoiIiGqUpmkYOXKkXXO+kpISjB8/Hv7+/rb7Vq1aJd42CxkiIiIXoIPy4JQt76oSEhIq3Dds2LBq2TYLGSIiIldQh6eWkpOTa2zbLGSIiIhcgLMuv3Z3vGqJiIiI3BZHZIiIiFxBHZ5aqkksZIiIiFyFhxYjjuDUEhEREbktjsgIaF7yUrlM3mcNliB5wyu9j0WcMShkAOBErrxJVkahvFGdSnM771MKJxyA8Zw80+jD38UZlTOuO3NenPHXKV6I2TFWnjmWLo5Y9h8SZ/RNrxFnACAgTf5zazXIWwNmW+V/Fxoj5D/rQX4l4gwA5BQqfDifr/z4VNr16YtU/6Z25QuO5bjYVw0LGSIiIlfANTJKOLVEREREbosjMkRERC6AU0tqWMgQERG5Ak4tKeHUEhEREbktjsgQERG5AE4tqWEhQ0RE5Ao4taSEhQwREZErYCGjhGtkiIiIyG1xREbA6i0vdzWFTFBooThjMFjFGV/vMnEGAM4X+Ikz57KDxRnv8wZxJuSQ2p8kvtnynrs5t8u74AZ+vF2cgY+8W3HaXQ3k+wEQqNAFN9ik8DbiJf/e+h7Llu8HgKE4SJwpDZZ3wbUavcWZU2b59ym6WZY4AwDB8h9bnDPLv0+WMvl7kSVIngEArUh+fK68joRrZNSwkCEiInIFnFpSwqklIiIiclsckSEiInIBOk2DTlMfVnEk685YyBAREbkCTi0p4dQSERERuS2OyBAREbkAXrWkhoUMERGRK+DUkhJOLREREZHb8twRGYUxPE2h7NMHm8WZwkKjOGMtkzeGOl+uE2cAQFcs35fpnPzk+eSKIzCdL5eHAPj/eEy+r+zz4kzO8B7iTJm//PtU0kDtT7OSUHmm3BgozoT9+4g4o4WrNfnzKpD/DAalyZsQ+uTLfy6KIuRvwWnmcHEGAAz15efB5CvPFJXKz4MqzUv+OteVqb3v1QZOLanx3EKGiIjIlXBqSQkLGSIiIhfAERk1XCNDREREbosjMkRERK6AU0tKWMgQERG5CE+dHnIEp5aIiIjIbXFEhoiIyBVo2oWbI3kPxEKGiIjIBfCqJTUsZCQMCq8ShYi1VP5t0azy/XjlqH37vQvkDaX8Tsv3o7PIM/6Hc+QhANbcPHGmrE8XcabcT37u8mPEEXhFFcpDAIw+8oaCuWXB4kz5oJbiTOgvxeIMAHjnlIgzQTvSxZmym6PFmZAj8jcIzaDWcK6sxCTOFJnkjQF1wWXijFWxiZ6n/uImeyxkiIiIXAGvWlLCQoaIiMgF6KwXbo7kPRGvWiIiIiK3xREZIiIiV8CpJSUsZIiIiFwAr1pSw0KGiIjIFbCPjBKukSEiIiK3xREZIiIiF8CpJTUsZCRUmtvlyRtK6UvkA2VeRbXTpA4AygLkGd+z8u52eoWGeMXR8uZsAFAeK29ud76tvImXOUgcQXlDeYOxBv7yJnCqSmKKxJlC+Ikz3oXyhm4AUG+//JpUr0KjOFOm0Oww8ESpOFMYoXYeNL38+AxF8td4eZn8/Uuv0mwUgOZVx35zc7GvEk4tERERkdviiAwREZEL4NSSGhYyREREroBXLSnh1BIRERG5LY7IEBERuQBOLalhIUNEROQKeNWSEk4tERERkdviiAwREZEL4NSSGhYyRERErsCqXbg5kvdALGQE9GaFjruF8m6amsKEn2+WPGOoveavyG0m7xCqkzdkhX+G/HwDQHGo/KSXNJC/aRiayLvgdojIFGdyzWrdX3uFHRFnfsltLM6k+4eIM9le9cUZAChu6C/O+GfIOw/7Z8pbUec3lXcQNsibAQMAgo7LX6/mYPnPUzHkGauP2s+t1UfhF7fehX/Zc42MEq6RISIiIrflEoXMokWLEBMTA5PJhO7du2Pnzp2XfOySJUtwww03oF69eqhXrx7i4+Mv+3giIiJ3oMOf62SUbs5+Ak7i9EJm5cqVSExMRFJSEvbs2YNOnTqhX79+yMqqfK5k8+bNGDp0KFJSUrB9+3ZERUWhb9++OHnyZC0fORERUTW62NnXkZsHcnohM2/ePDz44IMYNWoUrrrqKixevBh+fn5YtmxZpY//6KOP8NBDD6Fz585o27Yt3n33XVitVmzatKmWj5yIiIiczamFjNlsxu7duxEfH2+7T6/XIz4+Htu3b6/SNoqKilBWVob69StfCFhaWoq8vDy7GxERkatxaFrJgUu33X15h1MLmbNnz8JisSA8PNzu/vDwcGRkZFRpG0899RQiIyPtiqG/mj17NoKDg223qKgoh4+biIio2mnVcBOqC8s7nD615Ig5c+ZgxYoVWL16NUymyi83nTp1KnJzc2239PT0Wj5KIiIi11QXlnc4tY9MaGgoDAYDMjPt+2RkZmYiIiListlXX30Vc+bMwbfffouOHTte8nFGoxFGo7xXAxERUW3SaRp0DizYvZj9+xKKS/0evLi8Y+rUqbb7qnt5R21waiHj4+ODuLg4bNq0CQMGDAAAW2U3adKkS+ZefvllvPjii9iwYQO6du2qtnNNd+EmoDfLd+NVKM+oNIKzKnwnLWo90+CXKT/Akvrywb8yeU8yZMeqDTKaG8ibmTWIOS/OhPrJXxAtA8+IM69F7BFnACDPWizO7Ag4KM48mXOPOBPZoWrTzX+XHthQnLH4yn+gvPPkTR+tPuIIAtMU3iAAmANUGnrK96MPlmdU13boLPILji3+Lnxlj/V/N0fyQIUlFElJSZgxY0aFh19ueceBAweqtMsrLe+oDU7v7JuYmIiEhAR07doV3bp1w/z581FYWIhRo0YBAEaMGIHGjRtj9uzZAIC5c+di+vTp+PjjjxETE2NbSxMQEICAgACnPQ8iIiJXkJ6ejqCgINvXNTUrcXF5x+bNmy+5vKM2OL2QGTJkCM6cOYPp06cjIyMDnTt3xvr1620VYlpaGvT6P/+SeOutt2A2m3HvvffabedSFScREZE7qK6ppaCgILtC5lJqY3lHbXB6IQMAkyZNuuRU0ubNm+2+Tk1NrfkDIiIiqm21/FlLTl3eUY1copAhIiLyeI5251XI1oXlHSxkiIiIPFRdWN7BQoaIiMgFONKd92Jehbsv72AhQ0RE5AqcMLVUF7h1Z18iIiLybByREdCVKzRfUri03iDvSabURMmi0IwLAM61l9e/mrxXGMz15U3q4KeQARDTRN50LtyvQJz5qNm34oxe4e+NKaeuEWcAYHrEZnHm5+JoceZf7VeKM9/mtxNnAGBNka84Y64vf8EWnPIXZwyF8u+tOVjt70/vfHlGpWGfCpWGngBg9albIxA6q1pD1L/mPRELGSIiIlfAqSUlnFoiIiIit8URGSIiIldQyw3x6goWMkRERC6guj6iwNNwaomIiIjcFkdkiIiIXAEX+yphIUNEROQKNCi10rDLeyAWMkRERC6Aa2TUsJARUGq+pFNoomeU70bzkh+b1VvtRa8FloszQQ0KxZmyXHkjs+aN5Y3tAMBLL/8z6NWma8UZPQLFGRULIv+rmJQ3dQv1kndau0GhUWRa2Wl5CMB9LcrEmc1nWokzfmFZ4syvJxuJM2UF3uIMAJT7y5v86cvk7186lYziKIRKzjN/1ddtLGSIiIhcgQYH18hU25G4FRYyREREroCLfZXw8msiIiJyWxyRISIicgVWAPIlRvZ5D8RChoiIyAXwqiU1nFoiIiIit8URGSIiIlfAxb5KWMgQERG5AhYySji1RERERG6LIzICmkIn3HKjQsddP4s4oytTqEl95R16ASCoXpE406L+OXGmaZNscWb3uShxBgCWtPpAnFl07jpxpovfCXFmzdku4ky0n/zcAcDB/HBx5osWG5X2JfXVuY5KueO5DcSZgVF7xRk/fak4k1sqb3Gc7ecnzgBASam8I7C5wEe+o2J5B2FdudqlOrq6NgDBERklLGSIiIhcAS+/VsJChoiIyAXw8ms1XCNDREREbosjMkRERK6Aa2SUsJAhIiJyBVbNsRXMVs8sZDi1RERERG6LIzJERESugFNLSljIEBERuQQHCxmwkPEsOvlcpFWhIR4UmtvBIm8kUD8qR5xp1yBDnAEAL738Od0QfFic2ZbXUpx5ovk34gwATDw2WJwpt8pnZrPN/uLMRzGbxZlSrUycAYD/BPqKMx/kh4ozx0sbijNWTW0m/P86vC/OJGX0EWea+54RZzrVPynOnPINEWcA4PB5+fcpwE/e5C+vQN7kryxfofEe1BqB6s2ONGohV+S5hQwREZEr4dSSEhYyRERErsCqwaHpIV61REREROReOCJDRETkCjTrhZsjeQ/EQoaIiMgVcI2MEhYyREREroBrZJRwjQwRERG5LY7IEBERuQJOLSlhISOh8BrR+8ibxxm85Au2jF7l4syejCbiDADU8y8SZ5qYcsSZ9MIQceZ3v0hxBgDaBcubA3rp5N/b3dlR4sy6InmDse/zO4kzqjadai3OGBQ+GO8fTfeKMwAw9dQt4syuTPn3qVXzLHEmtbCBOFNU7i3OAEBD/wJx5lyRvIFjWYG8uZ3OoPgLuKSONbfT4GAhU21H4lY4tURERERuiyMyREREroBTS0pYyBAREbkCqxWAA71grJ7ZR4ZTS0REROS2OCJDRETkCji1pISFDBERkStgIaOEU0tERETktjgiQ0RE5Ar4EQVKWMhIKIxfWfPkzaGsJnmjtRwvX3GmpEh+bABQVGAUZ1LQSpzJLvATZ74s7SjOAIC3QX7OzxXIm4WF+BWLMy8duV2cKS5Ta5pWapa/JRh95M0YfbzLxJnPT3QRZwAg1K9QnLFa5Y3WFv7cW5wJCZYfm0ozQQDIygqShxTOg06hoadWrjY5oK9jv7c1zQrNgU+wdiTrzljIEBERuQJNc2xUhWtkiIiIiNwLR2SIiIhcgebgGhkPHZFhIUNEROQKrFZA58A6Fw9dI8OpJSIiInJbHJEhIiJyBZxaUsJChoiIyAVoVis0B6aWPPXya04tERERkdviiIyA3ixvDqWkVP5tKc0NEGdq6dkAAE6dC6+V/ZQgsFb2o6rYxY9PRalCJq/aj+LSzqN+Le5N5nyWvLmkKv7V6gY4taTEJV7bixYtQkxMDEwmE7p3746dO3de9vGfffYZ2rZtC5PJhA4dOuCrr76qpSMlIiKqIVbN8ZsHcnohs3LlSiQmJiIpKQl79uxBp06d0K9fP2RlZVX6+G3btmHo0KEYM2YMfvrpJwwYMAADBgzAr7/+WstHTkRERM7m9EJm3rx5ePDBBzFq1ChcddVVWLx4Mfz8/LBs2bJKH79gwQLceuuteOKJJxAbG4sXXngBV199NRYuXFjLR05ERFSNNO1CLxjlG0dkap3ZbMbu3bsRHx9vu0+v1yM+Ph7bt2+vNLN9+3a7xwNAv379Lvn40tJS5OXl2d2IiIhcjWbVHL55IqcWMmfPnoXFYkF4uP1C0PDwcGRkZFSaycjIED1+9uzZCA4Ott2ioqKq5+CJiIiqk0OjMVblzr7uvk7V6VNLNW3q1KnIzc213dLT0519SERERC6hLqxTdWohExoaCoPBgMzMTLv7MzMzERERUWkmIiJC9Hij0YigoCC7GxERkatxxtRSXVin6tRCxsfHB3Fxcdi0aZPtPqvVik2bNqFHjx6VZnr06GH3eADYuHHjJR9PRETkFmp5aqk21qnWBqc3xEtMTERCQgK6du2Kbt26Yf78+SgsLMSoUaMAACNGjEDjxo0xe/ZsAMCUKVPQq1cvvPbaa+jfvz9WrFiBXbt24Z133qnS/rT/req2lpTUzBMiIqI64+LvCq0WrggqR5lD/fDKUQYAFS5qMRqNMBorNl+83DrVAwcOVLoP6TrV2uD0QmbIkCE4c+YMpk+fjoyMDHTu3Bnr16+3nai0tDTo9X8OHPXs2RMff/wxnn32WTzzzDNo1aoV1qxZg/bt21dpf/n5+QCA9KRZ1f9kiIioTsrPz0dwcHCNbNvHxwcRERHYmuH4otmAgIAKF7UkJSVhxowZDm/bVTm9kAGASZMmYdKkSZX+3+bNmyvcN2jQIAwaNEhpX5GRkUhPT0dgYCB0utps0q8uLy8PUVFRSE9P5xqfKuI5k+M5k+H5knPHc6ZpGvLz8xEZGVlj+zCZTDh+/DjMZrPD29I0rcLvtspGY4DaWadaG1yikKlNer0eTZo0cfZhKOFiZTmeMzmeMxmeLzl3O2c1NRLzVyaTCSaTqcb381d/Xac6YMAAAH+uU73U4MLFdaqPPPKI7T5nr1P1uEKGiIiILqjtdao1gYUMERGRh6rtdao1gYWMGzAajUhKSrrkPCdVxHMmx3Mmw/Mlx3PmmmpznWpN0Gm1cU0ZERERUQ2o8x9RQERERHUXCxkiIiJyWyxkiIiIyG2xkCEiIiK3xULGSRYtWoSYmBiYTCZ0794dO3furFJuxYoV0Ol0tuZFf7V//37cddddCA4Ohr+/P6655hqkpaVV85E7R3Wfr4KCAkyaNAlNmjSBr6+v7VNf6xLJOVu+fDl0Op3d7e/NuTRNw/Tp09GoUSP4+voiPj4ehw8frumnUauq85yVlZXhqaeeQocOHeDv74/IyEiMGDECp06dqo2nUmuq+3X2V+PHj4dOp8P8+fNr4MipztCo1q1YsULz8fHRli1bpv3222/agw8+qIWEhGiZmZmXzR0/flxr3LixdsMNN2h333233f8dOXJEq1+/vvbEE09oe/bs0Y4cOaKtXbv2itt0BzVxvh588EGtRYsWWkpKinb8+HHt7bff1gwGg7Z27doafCa1R3rOkpOTtaCgIO306dO2W0ZGht1j5syZowUHB2tr1qzRfv75Z+2uu+7SmjVrphUXF9fGU6px1X3OcnJytPj4eG3lypXagQMHtO3bt2vdunXT4uLiausp1biaeJ1dtGrVKq1Tp05aZGSk9vrrr9fgsyB3x0LGCbp166ZNnDjR9rXFYtEiIyO12bNnXzJTXl6u9ezZU3v33Xe1hISECr+YhwwZog0bNqymDtmpauJ8tWvXTnv++eft7rv66qu1adOmVeuxO4v0nCUnJ2vBwcGX3J7VatUiIiK0V155xXZfTk6OZjQatU8++aTajtuZqvucVWbnzp0aAO3EiROOHKrLqKlz9scff2iNGzfWfv31Vy06OpqFDF0Wp5Zqmdlsxu7duxEfH2+7T6/XIz4+Htu3b79k7vnnn0dYWBjGjBlT4f+sVivWrVuH1q1bo1+/fggLC0P37t2xZs2amngKtaomzhdwoTvll19+iZMnT0LTNKSkpODQoUPo27dvtT+H2qZ6zgoKChAdHY2oqCjcfffd+O2332z/d/z4cWRkZNhtMzg4GN27d7/sNt1FTZyzyuTm5kKn0yEkJKS6Dt1pauqcWa1WDB8+HE888QTatWtXY8dPdQcLmVp29uxZWCwWW/vni8LDw5GRkVFpZuvWrVi6dCmWLFlS6f9nZWWhoKAAc+bMwa233opvvvkG//jHPzBw4EBs2bKl2p9DbaqJ8wUAb7zxBq666io0adIEPj4+uPXWW7Fo0SLceOON1Xr8zqByztq0aYNly5Zh7dq1+PDDD2G1WtGzZ0/88ccfAGDLSbbpTmrinP1dSUkJnnrqKQwdOtStPjDxUmrqnM2dOxdeXl6YPHlyjR4/1R38iAIXl5+fj+HDh2PJkiUIDQ2t9DFWqxUAcPfdd+PRRx8FAHTu3Bnbtm3D4sWL0atXr1o7XmeryvkCLhQyP/74I7788ktER0fjP//5DyZOnIjIyEi7vzA9RY8ePew+vbZnz56IjY3F22+/jRdeeMGJR+a6JOesrKwMgwcPhqZpeOutt2r7UF3Glc7Z7t27sWDBAuzZswc6nc6JR0ruhIVMLQsNDYXBYEBmZqbd/ZmZmYiIiKjw+KNHjyI1NRV33nmn7b6LhYuXlxcOHjyIqKgoeHl54aqrrrLLxsbGYuvWrTXwLGpPTZyvyMhIPPPMM1i9ejX69+8PAOjYsSP27t2LV1991e0LGek5q4y3tze6dOmCI0eOAIAtl5mZiUaNGtlts3PnztVz4E5UE+fsootFzIkTJ/Ddd9/VidEYoGbO2ffff4+srCw0bdrU9hiLxYLHHnsM8+fPR2pqarUdP9UdnFqqZT4+PoiLi8OmTZts91mtVmzatMnuL5WL2rZti3379mHv3r2221133YU+ffpg7969iIqKgo+PD6655hocPHjQLnvo0CFER0fX+HOqSTVxvsrKylBWVmb3ia4AYDAYbEWPO5Oes8pYLBbs27fPVrQ0a9YMERERdtvMy8vDjh07qrxNV1YT5wz4s4g5fPgwvv32WzRo0KDaj91ZauKcDR8+HL/88ovdz29kZCSeeOIJbNiwoUaeB9UBzl5t7IlWrFihGY1Gbfny5drvv/+ujRs3TgsJCbFdhjh8+HDt6aefvmS+sqtwVq1apXl7e2vvvPOOdvjwYe2NN97QDAaD9v3339fkU6kVNXG+evXqpbVr105LSUnRjh07piUnJ2smk0l78803a/Kp1BrpOZs5c6a2YcMG7ejRo9ru3bu1++67TzOZTNpvv/1me8ycOXO0kJAQbe3atdovv/yi3X333XXu8uvqPGdms1m76667tCZNmmh79+61u+S4tLTUKc+xutXE6+zveNUSXQmnlpxgyJAhOHPmDKZPn46MjAx07twZ69evty2aS0tLqzBacCX/+Mc/sHjxYsyePRuTJ09GmzZt8MUXX+D666+viadQq2rifK1YsQJTp07FAw88gOzsbERHR+PFF1/E+PHja+Ip1DrpOTt//jwefPBBZGRkoF69eoiLi8O2bdvspiuffPJJFBYWYty4ccjJycH111+P9evXX7ahmTup7nN28uRJfPnllwBQYfotJSUFvXv3rpXnVZNq4nVGJKXTNE1z9kEQERERqeAaGSIiInJbLGSIiIjIbbGQISIiIrfFQoaIiIjcFgsZIiIiclssZIiIiMhtsZAhIiIit8VChqiOiYmJwfz5821f63Q6rFmzplb2JZWamgqdTgedTqf0mU0XsyEhIcrHQETujYUMUQ3Zvn07DAaD7YMpneX06dO47bbbAPxZOOzdu9epx/R33377re0zex5++GHExsZW+ri0tDQYDAZbx9zTp087VEgRkftjIUNUQ5YuXYqHH34Y//nPf3Dq1CmnHUdERASMRqPT9l8VDRo0sH2g4pgxY3DgwAFs27atwuOWL1+OsLAw3H777QAuPLfg4OBaPVYici0sZIhqQEFBAVauXIkJEyagf//+WL58ud3/b968GTqdDhs2bECXLl3g6+uLm266CVlZWfj6668RGxuLoKAg3H///SgqKrLlevfujUmTJmHSpEkIDg5GaGgonnvuOVzuk0b+OrXUrFkzAECXLl2g0+lsn/fTu3dvPPLII3a5AQMGYOTIkbavs7KycOedd8LX1xfNmjXDRx99VGFfOTk5GDt2LBo2bIigoCDcdNNN+Pnnn6t+4nDhc4muvvpqLFu2zO5+TdOwfPlyJCQkwMuLHxNHRBewkCGqAZ9++inatm2LNm3aYNiwYVi2bFmlxcaMGTOwcOFCbNu2Denp6Rg8eDDmz5+Pjz/+GOvWrcM333yDN954wy7z3nvvwcvLCzt37sSCBQswb948vPvuu1U6rp07dwK4MJVz+vRprFq1qsrPaeTIkUhPT0dKSgo+//xzvPnmm8jKyrJ7zKBBg2zF2O7du3H11Vfj5ptvRnZ2dpX3A1wYlfn0009RWFhou2/z5s04fvw4Ro8eLdoWEdVtLGSIasDSpUsxbNgwAMCtt96K3NxcbNmypcLjZs2aheuuuw5dunTBmDFjsGXLFrz11lvo0qULbrjhBtx7771ISUmxy0RFReH1119HmzZt8MADD+Dhhx/G66+/XqXjatiwIYALUzkRERGoX79+lXKHDh3C119/jSVLluDaa69FXFwcli5diuLiYttjtm7dip07d+Kzzz5D165d0apVK7z66qsICQnB559/XqX9XHT//fejrKwMn332me2+5ORkXH/99WjdurVoW0RUt7GQIapmBw8exM6dOzF06FAAgJeXF4YMGYKlS5dWeGzHjh1t/w4PD4efnx+aN29ud9/fRz2uvfZa6HQ629c9evTA4cOHYbFYqvup2Ozfvx9eXl6Ii4uz3de2bVu7q4V+/vlnFBQUoEGDBggICLDdjh8/jqNHj4r2FxISgoEDB9qml/Ly8vDFF19gzJgx1fJ8iKju4EQzUTVbunQpysvLERkZabtP0zQYjUYsXLjQbnGqt7e37d86nc7u64v3Wa3WGj9mvV5fYeqrrKxMtI2CggI0atQImzdvrvB/KpdHjxkzBjfffDOOHDmClJQUGAwGDBo0SLwdIqrbWMgQVaPy8nK8//77eO2119C3b1+7/xswYAA++eQTjB8/3qF97Nixw+7rH3/8Ea1atYLBYLhi1sfHBwAqjN40bNgQp0+ftn1tsVjw66+/ok+fPgAujL6Ul5dj9+7duOaaawBcGHnKycmxZa6++mpkZGTAy8sLMTExKk/NTp8+fdCsWTMkJycjJSUF9913H/z9/R3eLhHVLZxaIqpG//73v3H+/HmMGTMG7du3t7vdc889lU4vSaWlpSExMREHDx7EJ598gjfeeANTpkypUjYsLAy+vr5Yv349MjMzkZubCwC46aabsG7dOqxbtw4HDhzAhAkT7IqUNm3a4NZbb8U///lP7NixA7t378bYsWPh6+tre0x8fDx69OiBAQMG4JtvvkFqaiq2bduGadOmYdeuXeLnqdPpMHr0aLz11lvYvn07p5WIqFIsZIiq0dKlSxEfH19pb5N77rkHu3btwi+//OLQPkaMGIHi4mJ069YNEydOxJQpUzBu3LgqZb28vPCvf/0Lb7/9NiIjI3H33XcDAEaPHo2EhASMGDECvXr1QvPmzW2jMRclJycjMjISvXr1wsCBAzFu3DiEhYXZ/l+n0+Grr77CjTfeiFGjRqF169a47777cOLECYSHhys915EjRyI3Nxft2rVD9+7dlbZBRHWbTrtcAwoicim9e/dG586d60w329TUVDRr1gw//fST0kcUABea5D3yyCN2I0hE5Dm4RoaInK5nz57o3Llzpd18LycgIADl5eUwmUw1dGRE5OpYyBCR0zRp0gSHDx8GAKWPUbj4mVFVWehMRHUTp5aIiIjIbXGxLxEREbktFjJERETktljIEBERkdtiIUNERERui4UMERERuS0WMkREROS2WMgQERGR22IhQ0RERG6LhQwRERG5rf8HJGUV4uX9BNUAAAAASUVORK5CYII=\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - specification_9_1.png" } }, "output_type": "display_data" } ], "source": [ "_ = dataset_gridded.pop_q0.sel(repetitions=\"A\").plot(x=\"amp\")\n", "plt.show()\n", "_ = dataset_gridded.pop_q0.sel(repetitions=\"D\").plot(x=\"amp\")" ] }, { "cell_type": "code", "execution_count": 11, "id": "05c7b20c", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:43.381960Z", "iopub.status.busy": "2023-09-26T17:43:43.381757Z", "iopub.status.idle": "2023-09-26T17:43:43.384634Z", "shell.execute_reply": "2023-09-26T17:43:43.384072Z" } }, "outputs": [], "source": [ "# pylint: disable=line-too-long\n", "# pylint: disable=wrong-import-order\n", "# pylint: disable=wrong-import-position\n", "# pylint: disable=pointless-string-statement\n", "# pylint: disable=duplicate-code" ] }, { "cell_type": "code", "execution_count": 12, "id": "9460acee", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:43.386848Z", "iopub.status.busy": "2023-09-26T17:43:43.386660Z", "iopub.status.idle": "2023-09-26T17:43:43.414402Z", "shell.execute_reply": "2023-09-26T17:43:43.413762Z" } }, "outputs": [ { "data": { "text/html": [ "
\n",
       "{\n",
       "    'tuid': '20230926-194343-406-e5bcea',\n",
       "    'dataset_name': 'Bias scan',\n",
       "    'dataset_state': 'done',\n",
       "    'timestamp_start': '2023-09-26T19:43:43.406197+02:00',\n",
       "    'timestamp_end': '2023-09-26T19:45:43.406238+02:00',\n",
       "    'quantify_dataset_version': '2.0.0',\n",
       "    'software_versions': {},\n",
       "    'relationships': [],\n",
       "    'json_serialize_exclude': []\n",
       "}\n",
       "
\n" ], "text/plain": [ "\n", "\u001b[1m{\u001b[0m\n", " \u001b[32m'tuid'\u001b[0m: \u001b[32m'20230926-194343-406-e5bcea'\u001b[0m,\n", " \u001b[32m'dataset_name'\u001b[0m: \u001b[32m'Bias scan'\u001b[0m,\n", " \u001b[32m'dataset_state'\u001b[0m: \u001b[32m'done'\u001b[0m,\n", " \u001b[32m'timestamp_start'\u001b[0m: \u001b[32m'2023-09-26T19:43:43.406197+02:00'\u001b[0m,\n", " \u001b[32m'timestamp_end'\u001b[0m: \u001b[32m'2023-09-26T19:45:43.406238+02:00'\u001b[0m,\n", " \u001b[32m'quantify_dataset_version'\u001b[0m: \u001b[32m'2.0.0'\u001b[0m,\n", " \u001b[32m'software_versions'\u001b[0m: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m,\n", " \u001b[32m'relationships'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m,\n", " \u001b[32m'json_serialize_exclude'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import pendulum\n", "\n", "from quantify_core.utilities import examples_support\n", "\n", "examples_support.mk_dataset_attrs(\n", " dataset_name=\"Bias scan\",\n", " timestamp_start=pendulum.now().to_iso8601_string(),\n", " timestamp_end=pendulum.now().add(minutes=2).to_iso8601_string(),\n", " dataset_state=\"done\",\n", ")" ] }, { "cell_type": "code", "execution_count": 13, "id": "08efb357", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:43.417293Z", "iopub.status.busy": "2023-09-26T17:43:43.416609Z", "iopub.status.idle": "2023-09-26T17:43:43.419971Z", "shell.execute_reply": "2023-09-26T17:43:43.419348Z" } }, "outputs": [], "source": [ "# pylint: disable=line-too-long\n", "# pylint: disable=wrong-import-order\n", "# pylint: disable=wrong-import-position\n", "# pylint: disable=pointless-string-statement\n", "# pylint: disable=duplicate-code" ] }, { "cell_type": "code", "execution_count": 14, "id": "b5875ec8", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:43.422218Z", "iopub.status.busy": "2023-09-26T17:43:43.422030Z", "iopub.status.idle": "2023-09-26T17:43:43.430051Z", "shell.execute_reply": "2023-09-26T17:43:43.429347Z" } }, "outputs": [ { "data": { "text/html": [ "
\n",
       "{\n",
       "    'tuid': '20230926-194343-423-7ca250',\n",
       "    'dataset_name': 'My experiment',\n",
       "    'dataset_state': None,\n",
       "    'timestamp_start': '2023-09-26T19:43:43.423773+02:00',\n",
       "    'timestamp_end': '2023-09-26T19:45:43.423819+02:00',\n",
       "    'quantify_dataset_version': '2.0.0',\n",
       "    'software_versions': {\n",
       "        'lab_fridge_magnet_driver': 'v1.4.2',\n",
       "        'my_lab_repo': '9d8acf63f48c469c1b9fa9f2c3cf230845f67b18'\n",
       "    },\n",
       "    'relationships': [],\n",
       "    'json_serialize_exclude': []\n",
       "}\n",
       "
\n" ], "text/plain": [ "\n", "\u001b[1m{\u001b[0m\n", " \u001b[32m'tuid'\u001b[0m: \u001b[32m'20230926-194343-423-7ca250'\u001b[0m,\n", " \u001b[32m'dataset_name'\u001b[0m: \u001b[32m'My experiment'\u001b[0m,\n", " \u001b[32m'dataset_state'\u001b[0m: \u001b[3;35mNone\u001b[0m,\n", " \u001b[32m'timestamp_start'\u001b[0m: \u001b[32m'2023-09-26T19:43:43.423773+02:00'\u001b[0m,\n", " \u001b[32m'timestamp_end'\u001b[0m: \u001b[32m'2023-09-26T19:45:43.423819+02:00'\u001b[0m,\n", " \u001b[32m'quantify_dataset_version'\u001b[0m: \u001b[32m'2.0.0'\u001b[0m,\n", " \u001b[32m'software_versions'\u001b[0m: \u001b[1m{\u001b[0m\n", " \u001b[32m'lab_fridge_magnet_driver'\u001b[0m: \u001b[32m'v1.4.2'\u001b[0m,\n", " \u001b[32m'my_lab_repo'\u001b[0m: \u001b[32m'9d8acf63f48c469c1b9fa9f2c3cf230845f67b18'\u001b[0m\n", " \u001b[1m}\u001b[0m,\n", " \u001b[32m'relationships'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m,\n", " \u001b[32m'json_serialize_exclude'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import pendulum\n", "\n", "from quantify_core.utilities import examples_support\n", "\n", "examples_support.mk_dataset_attrs(\n", " dataset_name=\"My experiment\",\n", " timestamp_start=pendulum.now().to_iso8601_string(),\n", " timestamp_end=pendulum.now().add(minutes=2).to_iso8601_string(),\n", " software_versions={\n", " \"lab_fridge_magnet_driver\": \"v1.4.2\", # software version/tag\n", " \"my_lab_repo\": \"9d8acf63f48c469c1b9fa9f2c3cf230845f67b18\", # git commit hash\n", " },\n", ")" ] }, { "cell_type": "code", "execution_count": 15, "id": "ea04d5a6", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:43.432596Z", "iopub.status.busy": "2023-09-26T17:43:43.432183Z", "iopub.status.idle": "2023-09-26T17:43:43.435128Z", "shell.execute_reply": "2023-09-26T17:43:43.434423Z" } }, "outputs": [], "source": [ "# pylint: disable=duplicate-code\n", "# pylint: disable=wrong-import-position" ] }, { "cell_type": "code", "execution_count": 16, "id": "5de80ea5", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:43.437429Z", "iopub.status.busy": "2023-09-26T17:43:43.437239Z", "iopub.status.idle": "2023-09-26T17:43:43.441210Z", "shell.execute_reply": "2023-09-26T17:43:43.440608Z" } }, "outputs": [], "source": [ "from quantify_core.data.dataset_attrs import QDatasetIntraRelationship\n", "from quantify_core.utilities import examples_support\n", "\n", "attrs = examples_support.mk_dataset_attrs(\n", " relationships=[\n", " QDatasetIntraRelationship(\n", " item_name=\"q0\",\n", " relation_type=\"calibration\",\n", " related_names=[\"q0_cal\"],\n", " ).to_dict()\n", " ]\n", ")" ] }, { "cell_type": "code", "execution_count": 17, "id": "fa12dcbf", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:43.443538Z", "iopub.status.busy": "2023-09-26T17:43:43.443344Z", "iopub.status.idle": "2023-09-26T17:43:43.449935Z", "shell.execute_reply": "2023-09-26T17:43:43.449320Z" } }, "outputs": [ { "data": { "text/html": [ "
\n",
       "{\n",
       "    'tuid': None,\n",
       "    'dataset_name': '',\n",
       "    'dataset_state': None,\n",
       "    'timestamp_start': None,\n",
       "    'timestamp_end': None,\n",
       "    'quantify_dataset_version': '2.0.0',\n",
       "    'software_versions': {},\n",
       "    'relationships': [],\n",
       "    'json_serialize_exclude': []\n",
       "}\n",
       "
\n" ], "text/plain": [ "\n", "\u001b[1m{\u001b[0m\n", " \u001b[32m'tuid'\u001b[0m: \u001b[3;35mNone\u001b[0m,\n", " \u001b[32m'dataset_name'\u001b[0m: \u001b[32m''\u001b[0m,\n", " \u001b[32m'dataset_state'\u001b[0m: \u001b[3;35mNone\u001b[0m,\n", " \u001b[32m'timestamp_start'\u001b[0m: \u001b[3;35mNone\u001b[0m,\n", " \u001b[32m'timestamp_end'\u001b[0m: \u001b[3;35mNone\u001b[0m,\n", " \u001b[32m'quantify_dataset_version'\u001b[0m: \u001b[32m'2.0.0'\u001b[0m,\n", " \u001b[32m'software_versions'\u001b[0m: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m,\n", " \u001b[32m'relationships'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m,\n", " \u001b[32m'json_serialize_exclude'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from quantify_core.data.dataset_attrs import QDatasetAttrs\n", "\n", "# tip: to_json and from_dict, from_json are also available\n", "dataset.attrs = QDatasetAttrs().to_dict()\n", "dataset.attrs" ] }, { "cell_type": "code", "execution_count": 18, "id": "372c9538", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:43.452223Z", "iopub.status.busy": "2023-09-26T17:43:43.452032Z", "iopub.status.idle": "2023-09-26T17:43:43.457522Z", "shell.execute_reply": "2023-09-26T17:43:43.456898Z" } }, "outputs": [ { "data": { "text/html": [ "
('2.0.0', None)\n",
       "
\n" ], "text/plain": [ "\u001b[1m(\u001b[0m\u001b[32m'2.0.0'\u001b[0m, \u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dataset.quantify_dataset_version, dataset.tuid" ] }, { "cell_type": "code", "execution_count": 19, "id": "f1aec9ff", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:43.459790Z", "iopub.status.busy": "2023-09-26T17:43:43.459600Z", "iopub.status.idle": "2023-09-26T17:43:43.462430Z", "shell.execute_reply": "2023-09-26T17:43:43.461872Z" } }, "outputs": [], "source": [ "# pylint: disable=line-too-long\n", "# pylint: disable=wrong-import-order\n", "# pylint: disable=wrong-import-position\n", "# pylint: disable=pointless-string-statement\n", "# pylint: disable=duplicate-code" ] }, { "cell_type": "code", "execution_count": 20, "id": "e31b4558", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:43.464608Z", "iopub.status.busy": "2023-09-26T17:43:43.464417Z", "iopub.status.idle": "2023-09-26T17:43:43.470662Z", "shell.execute_reply": "2023-09-26T17:43:43.470032Z" } }, "outputs": [ { "data": { "text/html": [ "
\n",
       "{\n",
       "    'unit': '',\n",
       "    'long_name': '',\n",
       "    'is_main_coord': True,\n",
       "    'uniformly_spaced': True,\n",
       "    'is_dataset_ref': False,\n",
       "    'json_serialize_exclude': []\n",
       "}\n",
       "
\n" ], "text/plain": [ "\n", "\u001b[1m{\u001b[0m\n", " \u001b[32m'unit'\u001b[0m: \u001b[32m''\u001b[0m,\n", " \u001b[32m'long_name'\u001b[0m: \u001b[32m''\u001b[0m,\n", " \u001b[32m'is_main_coord'\u001b[0m: \u001b[3;92mTrue\u001b[0m,\n", " \u001b[32m'uniformly_spaced'\u001b[0m: \u001b[3;92mTrue\u001b[0m,\n", " \u001b[32m'is_dataset_ref'\u001b[0m: \u001b[3;91mFalse\u001b[0m,\n", " \u001b[32m'json_serialize_exclude'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from quantify_core.utilities import examples_support\n", "\n", "examples_support.mk_main_coord_attrs()" ] }, { "cell_type": "code", "execution_count": 21, "id": "cd9db098", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:43.472949Z", "iopub.status.busy": "2023-09-26T17:43:43.472759Z", "iopub.status.idle": "2023-09-26T17:43:43.478776Z", "shell.execute_reply": "2023-09-26T17:43:43.478137Z" } }, "outputs": [ { "data": { "text/html": [ "
\n",
       "{\n",
       "    'unit': '',\n",
       "    'long_name': '',\n",
       "    'is_main_coord': False,\n",
       "    'uniformly_spaced': True,\n",
       "    'is_dataset_ref': False,\n",
       "    'json_serialize_exclude': []\n",
       "}\n",
       "
\n" ], "text/plain": [ "\n", "\u001b[1m{\u001b[0m\n", " \u001b[32m'unit'\u001b[0m: \u001b[32m''\u001b[0m,\n", " \u001b[32m'long_name'\u001b[0m: \u001b[32m''\u001b[0m,\n", " \u001b[32m'is_main_coord'\u001b[0m: \u001b[3;91mFalse\u001b[0m,\n", " \u001b[32m'uniformly_spaced'\u001b[0m: \u001b[3;92mTrue\u001b[0m,\n", " \u001b[32m'is_dataset_ref'\u001b[0m: \u001b[3;91mFalse\u001b[0m,\n", " \u001b[32m'json_serialize_exclude'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "examples_support.mk_secondary_coord_attrs()" ] }, { "cell_type": "code", "execution_count": 22, "id": "c4f8dd4b", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:43.481091Z", "iopub.status.busy": "2023-09-26T17:43:43.480903Z", "iopub.status.idle": "2023-09-26T17:43:43.486850Z", "shell.execute_reply": "2023-09-26T17:43:43.486169Z" } }, "outputs": [ { "data": { "text/html": [ "
\n",
       "{\n",
       "    'unit': 'V',\n",
       "    'long_name': 'Amplitude',\n",
       "    'is_main_coord': True,\n",
       "    'uniformly_spaced': True,\n",
       "    'is_dataset_ref': False,\n",
       "    'json_serialize_exclude': []\n",
       "}\n",
       "
\n" ], "text/plain": [ "\n", "\u001b[1m{\u001b[0m\n", " \u001b[32m'unit'\u001b[0m: \u001b[32m'V'\u001b[0m,\n", " \u001b[32m'long_name'\u001b[0m: \u001b[32m'Amplitude'\u001b[0m,\n", " \u001b[32m'is_main_coord'\u001b[0m: \u001b[3;92mTrue\u001b[0m,\n", " \u001b[32m'uniformly_spaced'\u001b[0m: \u001b[3;92mTrue\u001b[0m,\n", " \u001b[32m'is_dataset_ref'\u001b[0m: \u001b[3;91mFalse\u001b[0m,\n", " \u001b[32m'json_serialize_exclude'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dataset.amp.attrs" ] }, { "cell_type": "code", "execution_count": 23, "id": "f27f5caa", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:43.489112Z", "iopub.status.busy": "2023-09-26T17:43:43.488923Z", "iopub.status.idle": "2023-09-26T17:43:43.491665Z", "shell.execute_reply": "2023-09-26T17:43:43.491152Z" } }, "outputs": [], "source": [ "# pylint: disable=line-too-long\n", "# pylint: disable=wrong-import-order\n", "# pylint: disable=wrong-import-position\n", "# pylint: disable=pointless-string-statement\n", "# pylint: disable=duplicate-code" ] }, { "cell_type": "code", "execution_count": 24, "id": "60a7875c", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:43.493922Z", "iopub.status.busy": "2023-09-26T17:43:43.493735Z", "iopub.status.idle": "2023-09-26T17:43:43.499767Z", "shell.execute_reply": "2023-09-26T17:43:43.499312Z" } }, "outputs": [ { "data": { "text/html": [ "
\n",
       "{\n",
       "    'unit': '',\n",
       "    'long_name': '',\n",
       "    'is_main_var': True,\n",
       "    'uniformly_spaced': True,\n",
       "    'grid': True,\n",
       "    'is_dataset_ref': False,\n",
       "    'has_repetitions': False,\n",
       "    'json_serialize_exclude': [],\n",
       "    'coords': ['time']\n",
       "}\n",
       "
\n" ], "text/plain": [ "\n", "\u001b[1m{\u001b[0m\n", " \u001b[32m'unit'\u001b[0m: \u001b[32m''\u001b[0m,\n", " \u001b[32m'long_name'\u001b[0m: \u001b[32m''\u001b[0m,\n", " \u001b[32m'is_main_var'\u001b[0m: \u001b[3;92mTrue\u001b[0m,\n", " \u001b[32m'uniformly_spaced'\u001b[0m: \u001b[3;92mTrue\u001b[0m,\n", " \u001b[32m'grid'\u001b[0m: \u001b[3;92mTrue\u001b[0m,\n", " \u001b[32m'is_dataset_ref'\u001b[0m: \u001b[3;91mFalse\u001b[0m,\n", " \u001b[32m'has_repetitions'\u001b[0m: \u001b[3;91mFalse\u001b[0m,\n", " \u001b[32m'json_serialize_exclude'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m,\n", " \u001b[32m'coords'\u001b[0m: \u001b[1m[\u001b[0m\u001b[32m'time'\u001b[0m\u001b[1m]\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from quantify_core.utilities import examples_support\n", "\n", "examples_support.mk_main_var_attrs(coords=[\"time\"])" ] }, { "cell_type": "code", "execution_count": 25, "id": "fa0c44fc", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:43.501995Z", "iopub.status.busy": "2023-09-26T17:43:43.501806Z", "iopub.status.idle": "2023-09-26T17:43:43.508140Z", "shell.execute_reply": "2023-09-26T17:43:43.507522Z" } }, "outputs": [ { "data": { "text/html": [ "
\n",
       "{\n",
       "    'unit': '',\n",
       "    'long_name': '',\n",
       "    'is_main_var': False,\n",
       "    'uniformly_spaced': True,\n",
       "    'grid': True,\n",
       "    'is_dataset_ref': False,\n",
       "    'has_repetitions': False,\n",
       "    'json_serialize_exclude': [],\n",
       "    'coords': ['cal']\n",
       "}\n",
       "
\n" ], "text/plain": [ "\n", "\u001b[1m{\u001b[0m\n", " \u001b[32m'unit'\u001b[0m: \u001b[32m''\u001b[0m,\n", " \u001b[32m'long_name'\u001b[0m: \u001b[32m''\u001b[0m,\n", " \u001b[32m'is_main_var'\u001b[0m: \u001b[3;91mFalse\u001b[0m,\n", " \u001b[32m'uniformly_spaced'\u001b[0m: \u001b[3;92mTrue\u001b[0m,\n", " \u001b[32m'grid'\u001b[0m: \u001b[3;92mTrue\u001b[0m,\n", " \u001b[32m'is_dataset_ref'\u001b[0m: \u001b[3;91mFalse\u001b[0m,\n", " \u001b[32m'has_repetitions'\u001b[0m: \u001b[3;91mFalse\u001b[0m,\n", " \u001b[32m'json_serialize_exclude'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m,\n", " \u001b[32m'coords'\u001b[0m: \u001b[1m[\u001b[0m\u001b[32m'cal'\u001b[0m\u001b[1m]\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "examples_support.mk_secondary_var_attrs(coords=[\"cal\"])" ] }, { "cell_type": "code", "execution_count": 26, "id": "1b1ee042", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:43.510395Z", "iopub.status.busy": "2023-09-26T17:43:43.510204Z", "iopub.status.idle": "2023-09-26T17:43:43.516228Z", "shell.execute_reply": "2023-09-26T17:43:43.515620Z" } }, "outputs": [ { "data": { "text/html": [ "
\n",
       "{\n",
       "    'unit': '',\n",
       "    'long_name': 'Population Q0',\n",
       "    'is_main_var': True,\n",
       "    'uniformly_spaced': True,\n",
       "    'grid': True,\n",
       "    'is_dataset_ref': False,\n",
       "    'has_repetitions': True,\n",
       "    'json_serialize_exclude': []\n",
       "}\n",
       "
\n" ], "text/plain": [ "\n", "\u001b[1m{\u001b[0m\n", " \u001b[32m'unit'\u001b[0m: \u001b[32m''\u001b[0m,\n", " \u001b[32m'long_name'\u001b[0m: \u001b[32m'Population Q0'\u001b[0m,\n", " \u001b[32m'is_main_var'\u001b[0m: \u001b[3;92mTrue\u001b[0m,\n", " \u001b[32m'uniformly_spaced'\u001b[0m: \u001b[3;92mTrue\u001b[0m,\n", " \u001b[32m'grid'\u001b[0m: \u001b[3;92mTrue\u001b[0m,\n", " \u001b[32m'is_dataset_ref'\u001b[0m: \u001b[3;91mFalse\u001b[0m,\n", " \u001b[32m'has_repetitions'\u001b[0m: \u001b[3;92mTrue\u001b[0m,\n", " \u001b[32m'json_serialize_exclude'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dataset.pop_q0.attrs" ] }, { "cell_type": "code", "execution_count": 27, "id": "95537e41", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:43.518517Z", "iopub.status.busy": "2023-09-26T17:43:43.518322Z", "iopub.status.idle": "2023-09-26T17:43:43.534408Z", "shell.execute_reply": "2023-09-26T17:43:43.533693Z" } }, "outputs": [ { "data": { "text/html": [ "
def write_dataset(path: Union[Path, str], dataset: xr.Dataset) -> None:\n",
       "    """\n",
       "    Writes a :class:`~xarray.Dataset` to a file with the `h5netcdf` engine.\n",
       "\n",
       "    Before writing the\n",
       "    :meth:`AdapterH5NetCDF.adapt() <quantify_core.data.dataset_adapters.AdapterH5NetCDF.adapt>`\n",
       "    is applied.\n",
       "\n",
       "    To accommodate for complex-type numbers and arrays ``invalid_netcdf=True`` is used.\n",
       "\n",
       "    Parameters\n",
       "    ----------\n",
       "    path\n",
       "        Path to the file including filename and extension\n",
       "    dataset\n",
       "        The :class:`~xarray.Dataset` to be written to file.\n",
       "    """  # pylint: disable=line-too-long\n",
       "    _xarray_numpy_bool_patch(dataset)  # See issue #161 in quantify-core\n",
       "    # Only quantify_dataset_version=>2.0.0 requires the adapter\n",
       "    if "quantify_dataset_version" in dataset.attrs:\n",
       "        dataset = da.AdapterH5NetCDF.adapt(dataset)\n",
       "    dataset.to_netcdf(path, engine="h5netcdf", invalid_netcdf=True)\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k}{def} \\PY{n+nf}{write\\PYZus{}dataset}\\PY{p}{(}\\PY{n}{path}\\PY{p}{:} \\PY{n}{Union}\\PY{p}{[}\\PY{n}{Path}\\PY{p}{,} \\PY{n+nb}{str}\\PY{p}{]}\\PY{p}{,} \\PY{n}{dataset}\\PY{p}{:} \\PY{n}{xr}\\PY{o}{.}\\PY{n}{Dataset}\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{k+kc}{None}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Writes a :class:`\\PYZti{}xarray.Dataset` to a file with the `h5netcdf` engine.}\n", "\n", "\\PY{l+s+sd}{ Before writing the}\n", "\\PY{l+s+sd}{ :meth:`AdapterH5NetCDF.adapt() \\PYZlt{}quantify\\PYZus{}core.data.dataset\\PYZus{}adapters.AdapterH5NetCDF.adapt\\PYZgt{}`}\n", "\\PY{l+s+sd}{ is applied.}\n", "\n", "\\PY{l+s+sd}{ To accommodate for complex\\PYZhy{}type numbers and arrays ``invalid\\PYZus{}netcdf=True`` is used.}\n", "\n", "\\PY{l+s+sd}{ Parameters}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ path}\n", "\\PY{l+s+sd}{ Path to the file including filename and extension}\n", "\\PY{l+s+sd}{ dataset}\n", "\\PY{l+s+sd}{ The :class:`\\PYZti{}xarray.Dataset` to be written to file.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}} \\PY{c+c1}{\\PYZsh{} pylint: disable=line\\PYZhy{}too\\PYZhy{}long}\n", " \\PY{n}{\\PYZus{}xarray\\PYZus{}numpy\\PYZus{}bool\\PYZus{}patch}\\PY{p}{(}\\PY{n}{dataset}\\PY{p}{)} \\PY{c+c1}{\\PYZsh{} See issue \\PYZsh{}161 in quantify\\PYZhy{}core}\n", " \\PY{c+c1}{\\PYZsh{} Only quantify\\PYZus{}dataset\\PYZus{}version=\\PYZgt{}2.0.0 requires the adapter}\n", " \\PY{k}{if} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{quantify\\PYZus{}dataset\\PYZus{}version}\\PY{l+s+s2}{\\PYZdq{}} \\PY{o+ow}{in} \\PY{n}{dataset}\\PY{o}{.}\\PY{n}{attrs}\\PY{p}{:}\n", " \\PY{n}{dataset} \\PY{o}{=} \\PY{n}{da}\\PY{o}{.}\\PY{n}{AdapterH5NetCDF}\\PY{o}{.}\\PY{n}{adapt}\\PY{p}{(}\\PY{n}{dataset}\\PY{p}{)}\n", " \\PY{n}{dataset}\\PY{o}{.}\\PY{n}{to\\PYZus{}netcdf}\\PY{p}{(}\\PY{n}{path}\\PY{p}{,} \\PY{n}{engine}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{h5netcdf}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{invalid\\PYZus{}netcdf}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{)}\n", "\\end{Verbatim}\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
def load_dataset(\n",
       "    tuid: TUID, datadir: str = None, name: str = DATASET_NAME\n",
       ") -> xr.Dataset:\n",
       "    """\n",
       "    Loads a dataset specified by a tuid.\n",
       "\n",
       "    .. tip::\n",
       "\n",
       "        This method also works when specifying only the first part of a\n",
       "        :class:`~quantify_core.data.types.TUID`.\n",
       "\n",
       "    .. note::\n",
       "\n",
       "        This method uses :func:`~.load_dataset` to ensure the file is closed after\n",
       "        loading as datasets are intended to be immutable after performing the initial\n",
       "        experiment.\n",
       "\n",
       "    Parameters\n",
       "    ----------\n",
       "    tuid\n",
       "        A :class:`~quantify_core.data.types.TUID` string. It is also possible to specify\n",
       "        only the first part of a tuid.\n",
       "    datadir\n",
       "        Path of the data directory. If ``None``, uses :meth:`~get_datadir` to determine\n",
       "        the data directory.\n",
       "    Returns\n",
       "    -------\n",
       "    :\n",
       "        The dataset.\n",
       "    Raises\n",
       "    ------\n",
       "    FileNotFoundError\n",
       "        No data found for specified date.\n",
       "    """\n",
       "    return load_dataset_from_path(_locate_experiment_file(tuid, datadir, name))\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k}{def} \\PY{n+nf}{load\\PYZus{}dataset}\\PY{p}{(}\n", " \\PY{n}{tuid}\\PY{p}{:} \\PY{n}{TUID}\\PY{p}{,} \\PY{n}{datadir}\\PY{p}{:} \\PY{n+nb}{str} \\PY{o}{=} \\PY{k+kc}{None}\\PY{p}{,} \\PY{n}{name}\\PY{p}{:} \\PY{n+nb}{str} \\PY{o}{=} \\PY{n}{DATASET\\PYZus{}NAME}\n", "\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{xr}\\PY{o}{.}\\PY{n}{Dataset}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Loads a dataset specified by a tuid.}\n", "\n", "\\PY{l+s+sd}{ .. tip::}\n", "\n", "\\PY{l+s+sd}{ This method also works when specifying only the first part of a}\n", "\\PY{l+s+sd}{ :class:`\\PYZti{}quantify\\PYZus{}core.data.types.TUID`.}\n", "\n", "\\PY{l+s+sd}{ .. note::}\n", "\n", "\\PY{l+s+sd}{ This method uses :func:`\\PYZti{}.load\\PYZus{}dataset` to ensure the file is closed after}\n", "\\PY{l+s+sd}{ loading as datasets are intended to be immutable after performing the initial}\n", "\\PY{l+s+sd}{ experiment.}\n", "\n", "\\PY{l+s+sd}{ Parameters}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ tuid}\n", "\\PY{l+s+sd}{ A :class:`\\PYZti{}quantify\\PYZus{}core.data.types.TUID` string. It is also possible to specify}\n", "\\PY{l+s+sd}{ only the first part of a tuid.}\n", "\\PY{l+s+sd}{ datadir}\n", "\\PY{l+s+sd}{ Path of the data directory. If ``None``, uses :meth:`\\PYZti{}get\\PYZus{}datadir` to determine}\n", "\\PY{l+s+sd}{ the data directory.}\n", "\\PY{l+s+sd}{ Returns}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ :}\n", "\\PY{l+s+sd}{ The dataset.}\n", "\\PY{l+s+sd}{ Raises}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ FileNotFoundError}\n", "\\PY{l+s+sd}{ No data found for specified date.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", " \\PY{k}{return} \\PY{n}{load\\PYZus{}dataset\\PYZus{}from\\PYZus{}path}\\PY{p}{(}\\PY{n}{\\PYZus{}locate\\PYZus{}experiment\\PYZus{}file}\\PY{p}{(}\\PY{n}{tuid}\\PY{p}{,} \\PY{n}{datadir}\\PY{p}{,} \\PY{n}{name}\\PY{p}{)}\\PY{p}{)}\n", "\\end{Verbatim}\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display_source_code(dh.write_dataset)\n", "display_source_code(dh.load_dataset)" ] }, { "cell_type": "code", "execution_count": 28, "id": "d586850a", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:43.537016Z", "iopub.status.busy": "2023-09-26T17:43:43.536575Z", "iopub.status.idle": "2023-09-26T17:43:43.559332Z", "shell.execute_reply": "2023-09-26T17:43:43.558623Z" } }, "outputs": [ { "data": { "text/html": [ "
class AdapterH5NetCDF(DatasetAdapterBase):\n",
       "    """\n",
       "    Quantify dataset adapter for the ``h5netcdf`` engine.\n",
       "\n",
       "    It has the functionality of adapting the Quantify dataset to a format compatible\n",
       "    with the ``h5netcdf`` xarray backend engine that is used to write and load the\n",
       "    dataset to/from disk.\n",
       "\n",
       "    .. warning::\n",
       "\n",
       "        The ``h5netcdf`` engine has minor issues when performing a two-way trip of the\n",
       "        dataset. The ``type`` of some attributes are not preserved. E.g., list- and\n",
       "        tuple-like objects are loaded as numpy arrays of ``dtype=object``.\n",
       "    """\n",
       "\n",
       "    @classmethod\n",
       "    def adapt(cls, dataset: xr.Dataset) -> xr.Dataset:\n",
       "        """\n",
       "        Serializes to JSON the dataset and variables attributes.\n",
       "\n",
       "        To prevent the JSON serialization for specific items, their names should be\n",
       "        listed under the attribute named ``json_serialize_exclude`` (for each ``attrs``\n",
       "        dictionary).\n",
       "\n",
       "        Parameters\n",
       "        ----------\n",
       "        dataset\n",
       "            Dataset that needs to be adapted.\n",
       "\n",
       "        Returns\n",
       "        -------\n",
       "        :\n",
       "            Dataset in which the attributes have been replaced with their JSON strings\n",
       "            version.\n",
       "        """\n",
       "\n",
       "        return cls._transform(dataset, vals_converter=json.dumps)\n",
       "\n",
       "    @classmethod\n",
       "    def recover(cls, dataset: xr.Dataset) -> xr.Dataset:\n",
       "        """\n",
       "        Reverts the action of ``.adapt()``.\n",
       "\n",
       "        To prevent the JSON de-serialization for specific items, their names should be\n",
       "        listed under the attribute named ``json_serialize_exclude``\n",
       "        (for each ``attrs`` dictionary).\n",
       "\n",
       "        Parameters\n",
       "        ----------\n",
       "        dataset\n",
       "            Dataset from which to recover the original format.\n",
       "\n",
       "        Returns\n",
       "        -------\n",
       "        :\n",
       "            Dataset in which the attributes have been replaced with their python objects\n",
       "            version.\n",
       "        """\n",
       "\n",
       "        return cls._transform(dataset, vals_converter=json.loads)\n",
       "\n",
       "    @staticmethod\n",
       "    def attrs_convert(\n",
       "        attrs: dict,\n",
       "        inplace: bool = False,\n",
       "        vals_converter: Callable[Any, Any] = json.dumps,\n",
       "    ) -> dict:\n",
       "        """\n",
       "        Converts to/from JSON string the values of the keys which are not listed in the\n",
       "        ``json_serialize_exclude`` list.\n",
       "\n",
       "        Parameters\n",
       "        ----------\n",
       "        attrs\n",
       "            The input dictionary.\n",
       "        inplace\n",
       "            If ``True`` the values are replaced in place, otherwise a deepcopy of\n",
       "            ``attrs`` is performed first.\n",
       "        """\n",
       "        json_serialize_exclude = attrs.get("json_serialize_exclude", [])\n",
       "\n",
       "        attrs = attrs if inplace else deepcopy(attrs)\n",
       "        for attr_name, attr_val in attrs.items():\n",
       "            if attr_name not in json_serialize_exclude:\n",
       "                attrs[attr_name] = vals_converter(attr_val)\n",
       "        return attrs\n",
       "\n",
       "    @classmethod\n",
       "    def _transform(\n",
       "        cls, dataset: xr.Dataset, vals_converter: Callable[Any, Any] = json.dumps\n",
       "    ) -> xr.Dataset:\n",
       "        dataset = xr.Dataset(\n",
       "            dataset,\n",
       "            attrs=cls.attrs_convert(\n",
       "                dataset.attrs, inplace=False, vals_converter=vals_converter\n",
       "            ),\n",
       "        )\n",
       "\n",
       "        for var_name in dataset.variables.keys():\n",
       "            # The new dataset generated above has already a deepcopy of the attributes.\n",
       "            _ = cls.attrs_convert(\n",
       "                dataset[var_name].attrs, inplace=True, vals_converter=vals_converter\n",
       "            )\n",
       "\n",
       "        return dataset\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k}{class} \\PY{n+nc}{AdapterH5NetCDF}\\PY{p}{(}\\PY{n}{DatasetAdapterBase}\\PY{p}{)}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Quantify dataset adapter for the ``h5netcdf`` engine.}\n", "\n", "\\PY{l+s+sd}{ It has the functionality of adapting the Quantify dataset to a format compatible}\n", "\\PY{l+s+sd}{ with the ``h5netcdf`` xarray backend engine that is used to write and load the}\n", "\\PY{l+s+sd}{ dataset to/from disk.}\n", "\n", "\\PY{l+s+sd}{ .. warning::}\n", "\n", "\\PY{l+s+sd}{ The ``h5netcdf`` engine has minor issues when performing a two\\PYZhy{}way trip of the}\n", "\\PY{l+s+sd}{ dataset. The ``type`` of some attributes are not preserved. E.g., list\\PYZhy{} and}\n", "\\PY{l+s+sd}{ tuple\\PYZhy{}like objects are loaded as numpy arrays of ``dtype=object``.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\n", " \\PY{n+nd}{@classmethod}\n", " \\PY{k}{def} \\PY{n+nf}{adapt}\\PY{p}{(}\\PY{n+nb+bp}{cls}\\PY{p}{,} \\PY{n}{dataset}\\PY{p}{:} \\PY{n}{xr}\\PY{o}{.}\\PY{n}{Dataset}\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{xr}\\PY{o}{.}\\PY{n}{Dataset}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Serializes to JSON the dataset and variables attributes.}\n", "\n", "\\PY{l+s+sd}{ To prevent the JSON serialization for specific items, their names should be}\n", "\\PY{l+s+sd}{ listed under the attribute named ``json\\PYZus{}serialize\\PYZus{}exclude`` (for each ``attrs``}\n", "\\PY{l+s+sd}{ dictionary).}\n", "\n", "\\PY{l+s+sd}{ Parameters}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ dataset}\n", "\\PY{l+s+sd}{ Dataset that needs to be adapted.}\n", "\n", "\\PY{l+s+sd}{ Returns}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ :}\n", "\\PY{l+s+sd}{ Dataset in which the attributes have been replaced with their JSON strings}\n", "\\PY{l+s+sd}{ version.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\n", " \\PY{k}{return} \\PY{n+nb+bp}{cls}\\PY{o}{.}\\PY{n}{\\PYZus{}transform}\\PY{p}{(}\\PY{n}{dataset}\\PY{p}{,} \\PY{n}{vals\\PYZus{}converter}\\PY{o}{=}\\PY{n}{json}\\PY{o}{.}\\PY{n}{dumps}\\PY{p}{)}\n", "\n", " \\PY{n+nd}{@classmethod}\n", " \\PY{k}{def} \\PY{n+nf}{recover}\\PY{p}{(}\\PY{n+nb+bp}{cls}\\PY{p}{,} \\PY{n}{dataset}\\PY{p}{:} \\PY{n}{xr}\\PY{o}{.}\\PY{n}{Dataset}\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{xr}\\PY{o}{.}\\PY{n}{Dataset}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Reverts the action of ``.adapt()``.}\n", "\n", "\\PY{l+s+sd}{ To prevent the JSON de\\PYZhy{}serialization for specific items, their names should be}\n", "\\PY{l+s+sd}{ listed under the attribute named ``json\\PYZus{}serialize\\PYZus{}exclude``}\n", "\\PY{l+s+sd}{ (for each ``attrs`` dictionary).}\n", "\n", "\\PY{l+s+sd}{ Parameters}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ dataset}\n", "\\PY{l+s+sd}{ Dataset from which to recover the original format.}\n", "\n", "\\PY{l+s+sd}{ Returns}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ :}\n", "\\PY{l+s+sd}{ Dataset in which the attributes have been replaced with their python objects}\n", "\\PY{l+s+sd}{ version.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\n", " \\PY{k}{return} \\PY{n+nb+bp}{cls}\\PY{o}{.}\\PY{n}{\\PYZus{}transform}\\PY{p}{(}\\PY{n}{dataset}\\PY{p}{,} \\PY{n}{vals\\PYZus{}converter}\\PY{o}{=}\\PY{n}{json}\\PY{o}{.}\\PY{n}{loads}\\PY{p}{)}\n", "\n", " \\PY{n+nd}{@staticmethod}\n", " \\PY{k}{def} \\PY{n+nf}{attrs\\PYZus{}convert}\\PY{p}{(}\n", " \\PY{n}{attrs}\\PY{p}{:} \\PY{n+nb}{dict}\\PY{p}{,}\n", " \\PY{n}{inplace}\\PY{p}{:} \\PY{n+nb}{bool} \\PY{o}{=} \\PY{k+kc}{False}\\PY{p}{,}\n", " \\PY{n}{vals\\PYZus{}converter}\\PY{p}{:} \\PY{n}{Callable}\\PY{p}{[}\\PY{n}{Any}\\PY{p}{,} \\PY{n}{Any}\\PY{p}{]} \\PY{o}{=} \\PY{n}{json}\\PY{o}{.}\\PY{n}{dumps}\\PY{p}{,}\n", " \\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n+nb}{dict}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Converts to/from JSON string the values of the keys which are not listed in the}\n", "\\PY{l+s+sd}{ ``json\\PYZus{}serialize\\PYZus{}exclude`` list.}\n", "\n", "\\PY{l+s+sd}{ Parameters}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ attrs}\n", "\\PY{l+s+sd}{ The input dictionary.}\n", "\\PY{l+s+sd}{ inplace}\n", "\\PY{l+s+sd}{ If ``True`` the values are replaced in place, otherwise a deepcopy of}\n", "\\PY{l+s+sd}{ ``attrs`` is performed first.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", " \\PY{n}{json\\PYZus{}serialize\\PYZus{}exclude} \\PY{o}{=} \\PY{n}{attrs}\\PY{o}{.}\\PY{n}{get}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{json\\PYZus{}serialize\\PYZus{}exclude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{p}{[}\\PY{p}{]}\\PY{p}{)}\n", "\n", " \\PY{n}{attrs} \\PY{o}{=} \\PY{n}{attrs} \\PY{k}{if} \\PY{n}{inplace} \\PY{k}{else} \\PY{n}{deepcopy}\\PY{p}{(}\\PY{n}{attrs}\\PY{p}{)}\n", " \\PY{k}{for} \\PY{n}{attr\\PYZus{}name}\\PY{p}{,} \\PY{n}{attr\\PYZus{}val} \\PY{o+ow}{in} \\PY{n}{attrs}\\PY{o}{.}\\PY{n}{items}\\PY{p}{(}\\PY{p}{)}\\PY{p}{:}\n", " \\PY{k}{if} \\PY{n}{attr\\PYZus{}name} \\PY{o+ow}{not} \\PY{o+ow}{in} \\PY{n}{json\\PYZus{}serialize\\PYZus{}exclude}\\PY{p}{:}\n", " \\PY{n}{attrs}\\PY{p}{[}\\PY{n}{attr\\PYZus{}name}\\PY{p}{]} \\PY{o}{=} \\PY{n}{vals\\PYZus{}converter}\\PY{p}{(}\\PY{n}{attr\\PYZus{}val}\\PY{p}{)}\n", " \\PY{k}{return} \\PY{n}{attrs}\n", "\n", " \\PY{n+nd}{@classmethod}\n", " \\PY{k}{def} \\PY{n+nf}{\\PYZus{}transform}\\PY{p}{(}\n", " \\PY{n+nb+bp}{cls}\\PY{p}{,} \\PY{n}{dataset}\\PY{p}{:} \\PY{n}{xr}\\PY{o}{.}\\PY{n}{Dataset}\\PY{p}{,} \\PY{n}{vals\\PYZus{}converter}\\PY{p}{:} \\PY{n}{Callable}\\PY{p}{[}\\PY{n}{Any}\\PY{p}{,} \\PY{n}{Any}\\PY{p}{]} \\PY{o}{=} \\PY{n}{json}\\PY{o}{.}\\PY{n}{dumps}\n", " \\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{xr}\\PY{o}{.}\\PY{n}{Dataset}\\PY{p}{:}\n", " \\PY{n}{dataset} \\PY{o}{=} \\PY{n}{xr}\\PY{o}{.}\\PY{n}{Dataset}\\PY{p}{(}\n", " \\PY{n}{dataset}\\PY{p}{,}\n", " \\PY{n}{attrs}\\PY{o}{=}\\PY{n+nb+bp}{cls}\\PY{o}{.}\\PY{n}{attrs\\PYZus{}convert}\\PY{p}{(}\n", " \\PY{n}{dataset}\\PY{o}{.}\\PY{n}{attrs}\\PY{p}{,} \\PY{n}{inplace}\\PY{o}{=}\\PY{k+kc}{False}\\PY{p}{,} \\PY{n}{vals\\PYZus{}converter}\\PY{o}{=}\\PY{n}{vals\\PYZus{}converter}\n", " \\PY{p}{)}\\PY{p}{,}\n", " \\PY{p}{)}\n", "\n", " \\PY{k}{for} \\PY{n}{var\\PYZus{}name} \\PY{o+ow}{in} \\PY{n}{dataset}\\PY{o}{.}\\PY{n}{variables}\\PY{o}{.}\\PY{n}{keys}\\PY{p}{(}\\PY{p}{)}\\PY{p}{:}\n", " \\PY{c+c1}{\\PYZsh{} The new dataset generated above has already a deepcopy of the attributes.}\n", " \\PY{n}{\\PYZus{}} \\PY{o}{=} \\PY{n+nb+bp}{cls}\\PY{o}{.}\\PY{n}{attrs\\PYZus{}convert}\\PY{p}{(}\n", " \\PY{n}{dataset}\\PY{p}{[}\\PY{n}{var\\PYZus{}name}\\PY{p}{]}\\PY{o}{.}\\PY{n}{attrs}\\PY{p}{,} \\PY{n}{inplace}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{,} \\PY{n}{vals\\PYZus{}converter}\\PY{o}{=}\\PY{n}{vals\\PYZus{}converter}\n", " \\PY{p}{)}\n", "\n", " \\PY{k}{return} \\PY{n}{dataset}\n", "\\end{Verbatim}\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display_source_code(dadapters.AdapterH5NetCDF)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.18" } }, "nbformat": 4, "nbformat_minor": 5 }