#!/usr/bin/env python # coding: utf-8 # In[1]: from pathlib import Path import matplotlib.pyplot as plt import numpy as np import xarray as xr from rich import pretty from quantify_core.analysis.calibration import rotate_to_calibrated_axis from quantify_core.analysis.fitting_models import exp_decay_func from quantify_core.data import handling as dh from quantify_core.utilities import dataset_examples from quantify_core.utilities.dataset_examples import ( mk_nested_mc_dataset, mk_shots_from_probabilities, mk_surface7_cyles_dataset, ) from quantify_core.utilities.examples_support import ( mk_iq_shots, mk_surface7_sched, round_trip_dataset, ) from quantify_core.utilities.inspect_utils import display_source_code pretty.install() dh.set_datadir(Path.home() / "quantify-data") # change me! # In[2]: display_source_code(mk_surface7_sched) # In[3]: # mock data parameters num_shots = 128 # NB usually >~1000 in real experiments ground = -0.2 + 0.65j excited = 0.7 + 4j centroids = ground, excited sigmas = [0.1] * 2 display_source_code(mk_iq_shots) display_source_code(mk_shots_from_probabilities) display_source_code(mk_surface7_cyles_dataset) # In[4]: dataset = mk_surface7_cyles_dataset( num_shots=num_shots, sigmas=sigmas, centers=centroids ) assert dataset == round_trip_dataset(dataset) # confirm read/write dataset # In[5]: dataset.A1_shots.shape, dataset.D1_shots.shape # In[6]: dataset_gridded = dh.to_gridded_dataset( dataset, dimension="dim_cycle", coords_names=["cycle"] ) dataset_gridded = dh.to_gridded_dataset( dataset_gridded, dimension="dim_final", coords_names=["final_msmt"] ) dataset_gridded # In[7]: dataset_gridded.A0_shots.real.mean("repetitions").plot(marker="o", label="I-quadrature") dataset_gridded.A0_shots.imag.mean("repetitions").plot(marker="^", label="Q-quadrature") _ = plt.gca().legend() # In[8]: fig, ax = plt.subplots() rng = np.random.default_rng(seed=112244) # random number generator num_t1_datasets = 7 t1_times = np.linspace(0, 120e-6, 30) for tau in rng.uniform(10e-6, 50e-6, num_t1_datasets): probabilities = exp_decay_func( t=t1_times, tau=tau, offset=0, n_factor=1, amplitude=1 ) dataset = dataset_examples.mk_t1_av_with_cal_dataset(t1_times, probabilities) round_trip_dataset(dataset) # confirm read/write dataset_g = dh.to_gridded_dataset( dataset, dimension="main_dim", coords_names=["t1_time"] ) # rotate the iq data rotated_and_normalized = rotate_to_calibrated_axis( dataset_g.q0_iq_av.values, *dataset_g.q0_iq_av_cal.values ) rotated_and_normalized_da = xr.DataArray(dataset_g.q0_iq_av) rotated_and_normalized_da.values = rotated_and_normalized rotated_and_normalized_da.attrs["long_name"] = "|1> Population" rotated_and_normalized_da.attrs["units"] = "" rotated_and_normalized_da.real.plot(ax=ax, label=dataset.tuid, marker=".") ax.set_title("Results from repeated T1 experiments\n(different datasets)") _ = ax.legend() # In[9]: display_source_code(mk_nested_mc_dataset) # In[10]: dataset = mk_nested_mc_dataset(num_points=num_t1_datasets) assert dataset == round_trip_dataset(dataset) # confirm read/write dataset # In[11]: fig, axs = plt.subplots(3, 1, figsize=(10, 10), sharex=True) _ = dataset.t1.plot(x="flux_bias", marker="o", ax=axs[0].twiny(), color="C0") x = "t1_tuids" _ = dataset.t1.plot(x=x, marker="o", ax=axs[0], color="C0") _ = dataset.resonator_freq.plot(x=x, marker="o", ax=axs[1], color="C1") _ = dataset.qubit_freq.plot(x=x, marker="o", ax=axs[2], color="C2") for tick in axs[2].get_xticklabels(): tick.set_rotation(15) # avoid tuid labels overlapping # In[12]: dataset_multi_indexed = dataset.set_index({"main_dim": tuple(dataset.t1.coords.keys())}) dataset_multi_indexed # In[13]: index = 2 dataset_multi_indexed.qubit_freq.sel( qubit_freq_tuids=dataset_multi_indexed.qubit_freq_tuids.values[index] ) # In[14]: dataset_multi_indexed.qubit_freq.sel(t1_tuids=dataset.t1_tuids.values[index]) # In[15]: try: assert dataset_multi_indexed == round_trip_dataset(dataset_multi_indexed) except NotImplementedError as exp: print(exp) # In[16]: dataset_multi_indexed.reset_index(dims_or_levels="main_dim") # In[17]: all(dataset_multi_indexed.reset_index("main_dim").t1_tuids == dataset.t1_tuids) # In[18]: dataset.t1_tuids.dtype, dataset_multi_indexed.reset_index("main_dim").t1_tuids.dtype # In[19]: dataset.t1_tuids.dtype == dataset_multi_indexed.reset_index("main_dim").t1_tuids.dtype