{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "54a8e1ce", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:27.857134Z", "iopub.status.busy": "2023-09-26T17:44:27.856956Z", "iopub.status.idle": "2023-09-26T17:44:28.918346Z", "shell.execute_reply": "2023-09-26T17:44:28.917487Z" } }, "outputs": [], "source": [ "%matplotlib inline\n", "\n", "import json\n", "import logging\n", "from pathlib import Path\n", "from typing import Tuple\n", "\n", "import lmfit\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import xarray as xr\n", "from directory_tree import display_tree\n", "\n", "import quantify_core.visualization.pyqt_plotmon as pqm\n", "from quantify_core.analysis.cosine_analysis import CosineAnalysis\n", "from quantify_core.analysis.fitting_models import CosineModel, cos_func\n", "from quantify_core.data.handling import (\n", " get_latest_tuid,\n", " load_dataset,\n", " locate_experiment_container,\n", " set_datadir,\n", ")\n", "from quantify_core.measurement import MeasurementControl\n", "from quantify_core.utilities.examples_support import (\n", " default_datadir,\n", " mk_cosine_instrument,\n", ")\n", "from quantify_core.utilities.inspect_utils import display_source_code\n", "from quantify_core.visualization.SI_utilities import set_xlabel, set_ylabel" ] }, { "cell_type": "code", "execution_count": 2, "id": "dfa3cb41", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:28.920854Z", "iopub.status.busy": "2023-09-26T17:44:28.920539Z", "iopub.status.idle": "2023-09-26T17:44:28.923221Z", "shell.execute_reply": "2023-09-26T17:44:28.922716Z" } }, "outputs": [], "source": [ "# We recommend to always set the directory at the start of the python kernel\n", "# and stick to a single common data directory for all\n", "# notebooks/experiments within your measurement setup/PC\n", "# This sets a default data directory for tutorial purposes. Change it to your\n", "# desired data directory." ] }, { "cell_type": "code", "execution_count": 3, "id": "f720b2fb", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:28.924791Z", "iopub.status.busy": "2023-09-26T17:44:28.924634Z", "iopub.status.idle": "2023-09-26T17:44:28.928115Z", "shell.execute_reply": "2023-09-26T17:44:28.927547Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Data will be saved in:\n", "/home/slavoutich/quantify-data\n" ] } ], "source": [ "set_datadir(default_datadir()) # change me!" ] }, { "cell_type": "code", "execution_count": 4, "id": "1d3ef659", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:28.929704Z", "iopub.status.busy": "2023-09-26T17:44:28.929536Z", "iopub.status.idle": "2023-09-26T17:44:30.227292Z", "shell.execute_reply": "2023-09-26T17:44:30.226583Z" } }, "outputs": [], "source": [ "meas_ctrl = MeasurementControl(\"meas_ctrl\")\n", "plotmon = pqm.PlotMonitor_pyqt(\"plotmon\")\n", "meas_ctrl.instr_plotmon(plotmon.name)" ] }, { "cell_type": "code", "execution_count": 5, "id": "76812208", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:30.229974Z", "iopub.status.busy": "2023-09-26T17:44:30.229789Z", "iopub.status.idle": "2023-09-26T17:44:30.290093Z", "shell.execute_reply": "2023-09-26T17:44:30.288772Z" } }, "outputs": [ { "data": { "text/html": [ "
def mk_cosine_instrument() -> Instrument:\n",
       "    """A container of parameters (mock instrument) providing a cosine model."""\n",
       "\n",
       "    instr = Instrument("ParameterHolder")\n",
       "\n",
       "    # ManualParameter's is a handy class that preserves the QCoDeS' Parameter\n",
       "    # structure without necessarily having a connection to the physical world\n",
       "    instr.add_parameter(\n",
       "        "amp",\n",
       "        initial_value=0.5,\n",
       "        unit="V",\n",
       "        label="Amplitude",\n",
       "        parameter_class=ManualParameter,\n",
       "    )\n",
       "    instr.add_parameter(\n",
       "        "freq",\n",
       "        initial_value=1,\n",
       "        unit="Hz",\n",
       "        label="Frequency",\n",
       "        parameter_class=ManualParameter,\n",
       "    )\n",
       "    instr.add_parameter(\n",
       "        "t", initial_value=1, unit="s", label="Time", parameter_class=ManualParameter\n",
       "    )\n",
       "    instr.add_parameter(\n",
       "        "phi",\n",
       "        initial_value=0,\n",
       "        unit="Rad",\n",
       "        label="Phase",\n",
       "        parameter_class=ManualParameter,\n",
       "    )\n",
       "    instr.add_parameter(\n",
       "        "noise_level",\n",
       "        initial_value=0.05,\n",
       "        unit="V",\n",
       "        label="Noise level",\n",
       "        parameter_class=ManualParameter,\n",
       "    )\n",
       "    instr.add_parameter(\n",
       "        "acq_delay", initial_value=0.02, unit="s", parameter_class=ManualParameter\n",
       "    )\n",
       "\n",
       "    def cosine_model():\n",
       "        sleep(instr.acq_delay())  # simulates the acquisition delay of an instrument\n",
       "        return (\n",
       "            cos_func(instr.t(), instr.freq(), instr.amp(), phase=instr.phi(), offset=0)\n",
       "            + np.random.randn() * instr.noise_level()\n",
       "        )\n",
       "\n",
       "    # Wrap our function in a Parameter to be able to associate metadata to it, e.g. unit\n",
       "    instr.add_parameter(\n",
       "        name="sig", label="Signal level", unit="V", get_cmd=cosine_model\n",
       "    )\n",
       "\n",
       "    return instr\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k}{def} \\PY{n+nf}{mk\\PYZus{}cosine\\PYZus{}instrument}\\PY{p}{(}\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{Instrument}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}A container of parameters (mock instrument) providing a cosine model.\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\n", " \\PY{n}{instr} \\PY{o}{=} \\PY{n}{Instrument}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{ParameterHolder}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} ManualParameter\\PYZsq{}s is a handy class that preserves the QCoDeS\\PYZsq{} Parameter}\n", " \\PY{c+c1}{\\PYZsh{} structure without necessarily having a connection to the physical world}\n", " \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n", " \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amp}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mf}{0.5}\\PY{p}{,}\n", " \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{V}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n", " \\PY{p}{)}\n", " \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n", " \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{freq}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mi}{1}\\PY{p}{,}\n", " \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Hz}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n", " \\PY{p}{)}\n", " \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n", " \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{t}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mi}{1}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{s}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Time}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\n", " \\PY{p}{)}\n", " \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n", " \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{phi}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{,}\n", " \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Rad}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Phase}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n", " \\PY{p}{)}\n", " \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n", " \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{noise\\PYZus{}level}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mf}{0.05}\\PY{p}{,}\n", " \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{V}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Noise level}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n", " \\PY{p}{)}\n", " \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n", " \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{acq\\PYZus{}delay}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mf}{0.02}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{s}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\n", " \\PY{p}{)}\n", "\n", " \\PY{k}{def} \\PY{n+nf}{cosine\\PYZus{}model}\\PY{p}{(}\\PY{p}{)}\\PY{p}{:}\n", " \\PY{n}{sleep}\\PY{p}{(}\\PY{n}{instr}\\PY{o}{.}\\PY{n}{acq\\PYZus{}delay}\\PY{p}{(}\\PY{p}{)}\\PY{p}{)} \\PY{c+c1}{\\PYZsh{} simulates the acquisition delay of an instrument}\n", " \\PY{k}{return} \\PY{p}{(}\n", " \\PY{n}{cos\\PYZus{}func}\\PY{p}{(}\\PY{n}{instr}\\PY{o}{.}\\PY{n}{t}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{instr}\\PY{o}{.}\\PY{n}{freq}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{instr}\\PY{o}{.}\\PY{n}{amp}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{phase}\\PY{o}{=}\\PY{n}{instr}\\PY{o}{.}\\PY{n}{phi}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{offset}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{)}\n", " \\PY{o}{+} \\PY{n}{np}\\PY{o}{.}\\PY{n}{random}\\PY{o}{.}\\PY{n}{randn}\\PY{p}{(}\\PY{p}{)} \\PY{o}{*} \\PY{n}{instr}\\PY{o}{.}\\PY{n}{noise\\PYZus{}level}\\PY{p}{(}\\PY{p}{)}\n", " \\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} Wrap our function in a Parameter to be able to associate metadata to it, e.g. unit}\n", " \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n", " \\PY{n}{name}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{sig}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Signal level}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{V}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{get\\PYZus{}cmd}\\PY{o}{=}\\PY{n}{cosine\\PYZus{}model}\n", " \\PY{p}{)}\n", "\n", " \\PY{k}{return} \\PY{n}{instr}\n", "\\end{Verbatim}\n" ], "text/plain": [ "def mk_cosine_instrument() -> Instrument:\n", " \"\"\"A container of parameters (mock instrument) providing a cosine model.\"\"\"\n", "\n", " instr = Instrument(\"ParameterHolder\")\n", "\n", " # ManualParameter's is a handy class that preserves the QCoDeS' Parameter\n", " # structure without necessarily having a connection to the physical world\n", " instr.add_parameter(\n", " \"amp\",\n", " initial_value=0.5,\n", " unit=\"V\",\n", " label=\"Amplitude\",\n", " parameter_class=ManualParameter,\n", " )\n", " instr.add_parameter(\n", " \"freq\",\n", " initial_value=1,\n", " unit=\"Hz\",\n", " label=\"Frequency\",\n", " parameter_class=ManualParameter,\n", " )\n", " instr.add_parameter(\n", " \"t\", initial_value=1, unit=\"s\", label=\"Time\", parameter_class=ManualParameter\n", " )\n", " instr.add_parameter(\n", " \"phi\",\n", " initial_value=0,\n", " unit=\"Rad\",\n", " label=\"Phase\",\n", " parameter_class=ManualParameter,\n", " )\n", " instr.add_parameter(\n", " \"noise_level\",\n", " initial_value=0.05,\n", " unit=\"V\",\n", " label=\"Noise level\",\n", " parameter_class=ManualParameter,\n", " )\n", " instr.add_parameter(\n", " \"acq_delay\", initial_value=0.02, unit=\"s\", parameter_class=ManualParameter\n", " )\n", "\n", " def cosine_model():\n", " sleep(instr.acq_delay()) # simulates the acquisition delay of an instrument\n", " return (\n", " cos_func(instr.t(), instr.freq(), instr.amp(), phase=instr.phi(), offset=0)\n", " + np.random.randn() * instr.noise_level()\n", " )\n", "\n", " # Wrap our function in a Parameter to be able to associate metadata to it, e.g. unit\n", " instr.add_parameter(\n", " name=\"sig\", label=\"Signal level\", unit=\"V\", get_cmd=cosine_model\n", " )\n", "\n", " return instr" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# We create an instrument to contain all the parameters of our model to ensure\n", "# we have proper data logging.\n", "display_source_code(mk_cosine_instrument)" ] }, { "cell_type": "code", "execution_count": 6, "id": "cddb397d", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:30.298076Z", "iopub.status.busy": "2023-09-26T17:44:30.297826Z", "iopub.status.idle": "2023-09-26T17:44:31.359441Z", "shell.execute_reply": "2023-09-26T17:44:31.359015Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting iterative measurement...\n", "\r", " 3% completed | elapsed time: 0s | time left: 4s \r", " 3% completed | elapsed time: 0s | time left: 4s " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 86% completed | elapsed time: 0s | time left: 0s \r", " 86% completed | elapsed time: 0s | time left: 0s \r", "100% completed | elapsed time: 0s | time left: 0s \n", "\r", "100% completed | elapsed time: 0s | time left: 0s " ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABFQAAAccCAYAAACKHtXMAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4nOzdeZCb+X3n98+Ds9ENoO/75H3fN4fkcC6NOEON5pAs2V47luxYSTm70W4qcTRytvxHViqtaxNFW9ldK1uO7KxtjRNpDs0MOYeG1wzv+2w22c1m3zfQ6Av3kz/6YLOJJhsckgDZ71eVy6oBHuDbQKP5PB98f9+fYZqmKQAAAAAAAMyYJdUFAAAAAAAAPG4IVAAAAAAAAJJEoAIAAAAAAJAkAhUAAAAAAIAkEagAAAAAAAAkiUAFAAAAAAAgSQQqAAAAAAAASSJQAQAAAAAASBKBCgAAAAAAQJIIVAAAAAAAAJJEoAIAAAAAAJAkAhUAAAAAAIAkEagAAAAAAAAkiUAFAAAAAAAgSQQqAAAAAAAASSJQAQAAAAAASBKBCgAAAAAAQJIIVAAAAAAAAJJEoAIAAAAAAJAkApUn1Pbt21NdAgAAAAAATywCFQAAAAAAgCQRqAAAAAAAACSJQAUAAAAAACBJBCoAAAAAAABJIlABAAAAAABIEoEKAAAAAABAkghUAAAAAAAAkkSgAgAAAAAAkCQCFQAAAAAAgCQRqAAAAAAAACSJQAUAAAAAACBJBCoAAAAAAABJIlABAAAAAABIEoEKAAAAAABAkghUAAAAAAAAkkSgAgAAAAAAkCQCFQAAAAAAgCQRqAAAAAAAACSJQAUAAAAAACBJBCoAAAAAAABJIlABAAAAAABIEoEKAAAAAABAkghUAAAAAAAAkkSgAgAAAAAAkCQCFQAAAAAAgCQRqAAAAAAAACSJQAUAAAAAACBJBCoAAAAAAABJIlABAAAAAABIEoEKAAAAAABAkghUAAAAAAAAkkSgAgAAAAAAkCQCFQAAAAAAgCQRqAAAAAAAACSJQAUAAAAAACBJBCoAAAAAAABJIlABAAAAAABIEoEKAAAAAABAkghUAAAAAAAAkkSgAgAAAAAAkCQCFQAAAAAAgCQRqAAAAAAAACSJQAUAAAAAACBJBCoAAAAAAABJIlABAAAAAABIEoEKAAAAAABAkghUAAAAAAAAkkSgAgAAAAAAkCRbqgvA7NLiG5Ek/fDtC5Kkhu4hSdK8oixJ0o9fXyFJKs12paA6AAAAAABmhg4VAAAAAACAJNGhgkdivDNl988OSpL8I9Hbbm/2DUuSdv30kCRpz/d3SJJKszMeVYkAAAAAAMwYHSoAAAAAAABJokMFj8T4zJSpnSlT+UcikqQf/PqcJOkX39n0cAsDAAAAAOA+0KECAAAAAACQJDpU8EiM7+YzU/Vdww+pEgAAAAAAvjw6VAAAAAAAAJJEhwoeiXlFWZJu7eZzL/OL3Q+zHAAAAAAAvhQ6VAAAAAAAAJJEhwoeiR+/vkKStOunhyTd2s1nqhzX6K/kT95Y8WgKAwAAAADgPtChAgAAAAAAkCQ6VPBIlGa7JEl7vr9DkvSDX5+TdGs3n6Jsp651DurjfzV6e5EnIwVVAgAAAAAwM3SoIC14M+xy2iz6rLYr1aUAAAAAAHBPdKjgkSrNHu08+cV3Nt1xW3PfsH7vPx/TtzdUPeqyAAAAAABICh0qSBuVeZnasaBQf3/sZqpLAQAAAADgrghUkFbefHmxfvRBbarLAAAAAADgrljyg7SS5bDpj7fP0c9+e03/4rkFqS4HAAAAADBJi29EkvTDty9Ikhq6hyRJ84qyJEk/fn2FpFsbkzzJ6FBB2vlXLyzU/7nvukLReKpLAQAAAAAgIcM0TTPVReDB2759uw4dOpTqMu7bLw43qrFnSH/5yrJUlwIAAAAAs954Z8runx2UJPlHognvl+OyS5L2fH+HpFsbkzyJ6FBBWvqjrTX66FKn2vtHUl0KAAAAAAB3YIYK0tabLy3Wjz6s1b//3TWpLgUAAAAAZrXxmSnTdaaM849EJEk/+PU5SdIvvrPp4RaWQnSoIG19bVWZGroHdaktkOpSAAAAAAC4DYEK0tqbLy3Rjz68kuoyAAAAAGBWa+gemtjRZybqu4ZV3zX8ECtKPQIVpLWn5hfIYhg6dK071aUAAAAAADCBQAVp74cvLda/+bA21WUAAAAAwKw1ryhL84qyZnz/+cVuzS92P8SKUo9ABWlvcalXi0s8eudMa6pLAQAAAABAErv84DHx5ktLtPtnh/TqmvJUlwIAAAAAs86PX18hSdr100OSbu3mM1WOazRm+MkbKx5NYSlEhwoeC0Uep3avKtPffH4j1aUAAAAAwKwWjZupLiEtGKZp8ko8gbZv365Dhw6luowHKho3tfgv9uj6j15KdSkAAAAAMCu19wf11E8+0/b5+TIMTezkMz4vZbwzpciTkbIaHxU6VPDYsFkM/csXFuqvPrqa6lIAAAAAYFb65/94Rj/91moZRqorST1mqOCx8mfPzNeKv/xI/83T8+TJ4NcXAAAAAB6Vf//ZdW2Zm6dXVpXplVVlqS4n5ehQwWPnzZeW6EcfXkl1GQAAAAAwaxy/0adD17r1P3xlUapLSRsEKnjs/O7GKh2p71Vj71CqSwEAAACAWeHbPz+qX/7p5lSXkVYIVPBYevOlxfrRh7WpLgMAAAAAnni/+38d1d//ySZZGJxyGwIVPJa+sqxEPQMhnW7ypboUAAAAAHhi/R+/vaaNNXnaMi8/1aWkHQIVPLbefHmJfvQBs1QAAAAA4GE41tCrw/W9+pcvLEx1KWmJQAWPrfXVucrNcuiTy52pLgUAAAAAnjjf+vlRvcXclGkRqOCxxo4/AAAAAPDgMYT23ghU8FibU5CljXPy9NaJ5lSXAgAAAABPhJ9+WqfNc/O1eS5zU+6GQAWPPbpUAAAAAODBONrQq6MNffr+8wtSXUraI1DBYy/bZdfvbarSf9xfn+pSAAAAAOCxZZqjWySz1GdmCFTwRPjzry7WX310VXHTTHUpAAA81hq6h/TOmVb97eFGHb/Rp+FQLNUlAQAekW/9/Ije+tMtqS7jsWFLdQHAg/LmS4v1ow9r9RcvL0l1KQAAPHba+4P641+cUEPvoKIxU9GYqQy7VQVuh77z1Bz98bY5qS4RAPAQ/e+f1Omp+QXaOCcv1aU8NuhQwRPjT7bP1TtnWtUzGEp1KQAAPFaaeof09L/dp8vtAQXDcUVjox2fwUhMLb4R/WRvrf7inYsprhIA8LAcru/VicY+/ffPMTclGXSo4IkyPqD2f/ud1akuBQCAx0IwEtPOf3dA8fj0y2bD0bjeOt4kd4Zd//NXFz3C6pIQC2pwOCLDkaksp/Wed48H/ers6tNg2FCGO1v5hXnKvPdhMxYd6lXvYFSGw6uCXNcMv8WMa8TXo0DYlC0rX/nuJE/V42EN9PWor39IoZhky8hSdn6R8rJsMu5xaGSwWx2dPg1FTNkzc1VcWiS3PbmnT8SMDsvf26f+wRFF4oasDpfc2XnKy3Gl5EIk5rum42dbZZ+7Xuuq3fd8XfComRpoPKlTN2KqWLNB83Me4IcS04qbpv7Zfz6mhh+/lOpSHjsEKniivL62XH99oF5XOwe0qNiT6nIAAEh7f/YPZ+4apoyLxE29c6ZZ395QoZr8rEdQ2cxF+mp16OPPddUXVfbq1/TtLcXTBxjhHl05clDHajs1Er/1ny2ZRVqw5iltXVGijC97lR1q1pF3P9TF/rgsZdv0+6+skHsGjxntPqUP3jmp7qhFeete1zc3Fs4oiDFDPbp+9rTOXmlUz8iUmTeGXdnVq7V9xzpVZiUoItKry4d+q6N1vQpN+jUwnAVatOVZbVuSr/vJVaKBmzp/4pQuNXRpMHrn75fVVaCqZZu1Y32lMh9ZqhFX58WjOlc7KKPHrTlV65VPopJezD5dPXFaV3pMNduqNHd7GUsqHoFv/fVRvfU9htDeDwIVPHHefHmJfvTBFf3tdzemuhQAANLevtrOGd+3sz+sz2q79N2n0mWeSlT+a1/o44NX1Bs2pXv1G8R6dXbPezraFpLhKtL8hXNU7LEq7G/VtatNuvrF++odfklf31wmx33XFFTj4QO61B+/910ni3To5L4z6o4m+XSmT2ff/7WOdsVk2L0qXzhHZfkeZdjiCvrb1XCtUb2NJ7R3MK5XXtuo4sln/+ag6j57XwcbhmW4CjV/4VwVZRka6b6hq/Wdqj3wvsLWN/SVhcl0csQ10PC59uy7PPqeWJzKLilTSZ5bGXYpPNSv3s52dQ/0yRdzyPlIAw1DOeWVyr52Q/bKMnkJU9KP4VFpRb4yBqKqqsh5csMUc0C1n32s63k79NKamQWnD8u/+/iqdiws1IYa5qbcDwKVhGIKDg4rcrcva2wueVzTvXwxDfd2qLNvQKGYTa6cQpUUZ9/7H4x4UL6ODvUERhSzZshbUKqS3Iwn9w/JQ/L0wkL9pwP1OlLfqy3z8lNdDgAAaau2PSCn3aaR8Myu4k2ZOlLfmx6BSiyg+sMf68ClbkUyK7W8eliXr/Xd5QBTgUuf62RbSEbOEr349adVM9EasUqrlp7T3veOqOXcAZ2s/qa2lt7fafJw/ec6dHVI2dXVUvNNBWZ0VFitx/bpXJ9LVTUutTT2zvwJjVwt3bRGvptZWrZmsYozJ585rtLalVf00a8PqLHnvE7Xr9CuRa5bz9p0QkdvDEuuGu14/UUt8VomjltW9ane/qxeN44c183qZ1XjnFk5obaj+vDTS+qLGXKVr9XTO9ZqTs7UHpeoBjs7NOIt0qNd0GEoc+5O/e7cnY/0WZEMh8q3fEPfecI3mTGHmnStvlt+RySldXx+vUdnmvz6L3+yKaV1PM4IVBKJNeuLt/aoLjz9XazzvqLvfmXeHS9gvL9eh397SJc6R3TrewlD9pw52vDsTq0qTvSvkamh5hP6bP9ZtQxObtO0yVO5Sk8/syFxiyam9eZLS/Tmry/oN/98W6pLAQAAD1xYzZ+/p08uD8iWv1TPf/Up5dT9WpfvdojZr/prHYrIoTnrN08KU0bZ81fq6fWN+qfP21V7oVHrSufr1llbTMHAkOIurzLvsv7FHKzToc+vayhzoV5YlqFjTTdn9NOEmo5o/6V+2St3aFVJrVoap7tn4jqcFRv0bEXiIyzehVpWfUw3a4Pq6fYpvmh8nktITVdvaMi0qGDFJi32Tg5iLPIs2KRVlxp1uKNBl25sUc1iV+InmCzaqTMHL6gvZshZsVWv7FqpvIRXGza5iyvkvuuDxRUNRxSz2OW0zfTrRVOxcFgR0yK7wy7rAzh9jkdDisRtcjisM+/SiUcVCsdkcThlfwDfjJqxsMJRQ3aHXZaHfEkQj4QUMZP8eRVXJBRW3OpI4r2aeEKFwvEv8VrFFQlFJPt0x5uKhkdrc8z4F2L09yiqZF+HW8fGLHY57vJajDTdUEdMykjqsR+saNzUH/3NcV3/EXNTvgwClUQiQQVjkqyZysv3yJ7gU2TNdt754Qre1KH3P9XlgCln3hwtnF8qrzWkvpt1utbWoCMfhGS8tlsrc2//cEU6juvDvafVE7XLW7lICypy5Yz2q+XaVTU3n9LeD0298uomFT+AwWCzxYrybFXnZ+r98+3avbI01eUAAPBQ3ewd1ttnWu/r2GAkuTUm4VhcP/30WtLPU5OfqVfXlCd9XGIOla/ZqOVGRIs3L1OBI66ee82BifnU64tLljyVJvyCy5B33gKVHGlTS1uzOqLzVW2TpLg6j/9K753qVdy9UC984znNTZQtmAHVHvxCN0ayNP8rm1VjP6XDM/lRRm7oiwNXNOCo1I7ti+SquzTNHWdYR6KfbOzU02KZdA4a71Zre1iy5Kq6OufO81rDq+qafB3t6FJHU5vCi+fdcxlU6OZ5XfHHJVup1u9YMU2YcjdxjXTW6syZy6pv6dFgxJRkkcNbpOqFq7Ru9VzlJjgfjvTV6+zp86pr6tZAKCZTkmF1yp1XrPKaJVq9eq5ybZJkauDyx/rN6W4ZVdv1OzuqJzpk4r1n9P7ey4oseE6vrXXp5tkTOnf1pjoDYcVlyJqRo9J5K7Rx41IVJxyyE9dw+2WdPHlR9e2+0WsJi1Pekjlatm6DVla4k+w6D6m79pROnr+mlr5hRU3JYnersHqx1mxcoznZ4y9uTL1n9+qjiz4pe5le2LVGhVNe93j/ZX2y57S6Yx4tfv4lrS+2S/E2HfnVZ2pwLtNXdy+TWXdMR05fU1t/SHFJVle+Khau1MZ1i1UwTXdSbKBJ50+c1uUbnQqE45JhVUZOmeav2KANS4unzCIKq2H/r3S4rUAbX31BCywduvDF5zpT363hmGQp367f/9pyuY2x+7WYKt7wql5YlDl2/Ph751PF9je0NbdFZ46dUW3j2Iwei0PekvlavWWzlhU5FRto0rmTZ1R7o0P9obhk2JSZX6kl67dq3Rxv4s6oiE/1Z07o7NUmdQ9GZMqQLTNflQtXacO6hcq/7QNwez3b8jt1/uQZXWlokz8Ul2SR01usmqXrtWlVhbLG3vz4QJPOHDuhC/VdikoavvqJ/uHmeDUOzX3mG9pa/mjWJ3z7r4/ol997wluBHgEClQTM4IiCpmTJXabnX5/psKqYOs8eVm0gLnvpZr3y8hoVjP/BX7VCcw++oz2XW3XySJ3m7VqsiYYT069Lh8+pJ2pV/qqX9PWtZRPfhqxauVDH3ntPp7vP6YuLC/XamlwmkSfhB7uW6Hd+foRABQDwxDNlSrr3YNlE5hRkqaF7aEb3zXLYNCc/876e6/6qm57Fu1DbdiTx+LGwInFJhl32RN+WSVJGjrJdhpqHffINmarONiSNqKfTr6gkDXWqMxDXXNfUC564+i8d0JGmsDxLntO2uZkyWuK65xQVc0jXPz+kuqEM1Tz7tJZ4DfXGpztqJnUkEGpVQ3NQppGhktK8iYt6c6hPvqApWfNUkJPocQx5C/LlNLoU6u2WPz5PRXd9uohabzQraEqOyqVamJ3sWWtUfZc+1Qef39Bg3JDdU6CyUpeskUH1dnXo2skONd5Yrhd2b1P1pO6iaPdp/ea94+oMW+TKL1VNlUuW8LAGAj75eppUFyvU8rVzJ+5vRoY0MDAgIxi9/XcmFtLQYECBlqs61tmgc61RuXILVFblkIJ+dXX71HLpoDq7RvT119ar8LYr8rj8tZ/oNwcaNGja5SmqVoXXpkigS23ttTryQbPad7yiF5fMcCaIOaQbB97Tp1f8itqyVFgxTznOuIZ62tRx/aQ+am7Tpq+9pDWFdklW5S9br3l17+p0ywntP12u1zYW3brIi/t16cBR3fBFlL18p1ZMfEMbVXBwUAF/sy4fblDdxR4ZngKVVmXICAXU3d2rm+f2qa2lVy9+7SlVTgnvIt1ntfeDo2oZMeTMKdGcqixZQn51tDfr4sE2NXc9r6/vnHvrmkemIiMDGhiwyu9r1pEv9upcb0x2l1c5TsnIyxkbTjx+P1PeSFyTJyONvnf9ar1+Qp+2ntfNiFv5xZXKM0Lyd3Up0HZZh97vV/T5BWrff0A3ghnKLSxTlSOuoZ4u9fbc0KmPezWy6xt6umpKShRq1dH39+psV1iGK1/lc/PkMofV29GuG2d/q5aWHn31la2qmHTYRD31J/XpwfOqH3Eop6BMVU4pFOhRt79dV49+oM7Bl/X69go5JcX9rWoOGMp02TQyFJVsTrkyHWM/o12OR7QG7q8+uqpnFhdpfXXuo3nCJxiBSgLjgYoyXDOf8h5r19Vr/YobXi3buPJWmCJJhktVG9eq6vpnamy+rLr+RVqTM/rA8b5rquuOychYoPXrynTbR9tRrLUbF6j2wyvqunJFXau2qpiBKjNWnuvSc4uL9HdHbuoPt1SnuhwAAB6amvwsff/5hfd17J89M1+L/mKv4ubdIwmb1aI/2lqt//Gri+/reVLOliGnTVJkWINDcSlRGBEZ0nDYlMygRoKmlG1IylT53HJltTUrWjBf1Xl3Hhfvu6D9x1oVyV6uF7dUKUO6d5giU4N1h/R5/bCy5r+gHQvdMhS/SzB07zqmPn6or0FnDh3SlQFDWXM2a0P1ra/YzeEhDZuSkeme+PZ8KiPTrSxDGhka0KApFd3t6eJ+dfdEJFmUX1aqGY5cmRDtPKlPPr+hQXk07+ld2rk0f6IjJj7cqlOffKxTbZf02f5CfXPX4rFdkyJqOX9OXWFDBWu/rlc3Fd+2I1FksFOdI14VJHH+HO+8rHOuSm167TmtLnaNXeiaCnWc1Ifvn1RHz3mdbVypF+bdei3jvWf12aEGDVryteLFl7W1KmssOIlrsP6A3v20Vo1fHNCl8le04p6TcE0N1O7Xvlq/4t6Fen73Ti3IHrvKNkfUcuR97TnXpuP7zqjiGxtVaJFkL9a6Z9ap5d3j6jq7XyerX9PmYrukuPwXD+h4a0iWvNXaubnizvcl2qqLl7K16NlvafvCnInXL9J3Rfs+OKj63gvaf7RC33qm+laHUqRdJz49ppagQ6Xrd+mr60snrpmivsv69L2DunH1oL6oKNVXFkxJYsyAru3/rQZjpdrw8g6tqvImuYtUXP668wpVbdHrz69S4dgPZA436dC7e3TJ36ojH7bJmrdMu17fqhq3dbwwXfzoXX3eFFDd+QZtqFqizInHDOrGF7/V2a6IXNXbtPuFFcofLyrcpdN73tfxtvPaf6xK39pRMaXeuPxXz2m4eLV2v7ZRle7xX7aIei98rN980SR/7RldX1OuZW5DtsoterUyru7j/69+fcqnzHk79Noj3sno0LUenW/x6//5Y+amPAhcnidghoIKmZIlI2PG/xjEfW1qHzZlZFaopjhBtOiq0pwSmxTvUXPL0Ng/lqaG29rki0u2sprbEs9x9rIaVToNmQMtavIlOS0e+sFLS/TjD6+kugwAANKW3WrRwf9pp+x3We/vsFr0zzZVPr5hiiRZC1VabJfiPtXXderOUZBhtZ8+o5thSTJ1K18ylLPsZf3Bf/2n+s4bG1U29eov1qMz+0+oPZanVc9sUvkMtwcyA1d04HCjQp7F2rFt3qSLu+ncow6Z8l36VO+9+67efftXeuu//N/6xVuf6spwvpY8tVtvfGWxbhuTEg4rLMmwOxIub5ckORyjF4/xsML3mp1pDo0GVbLJ481Msqs6qBtnL6svbsi9cLuenhSmSJIls1zrn92ocrupYNNpXegaPyeOaGg4IlNWZefn3nFhbncXq6LQlWQtNpWtf3pSmCJJhpwla7R+fqYMM6yuzr5JgVlETefOqytqUc7yp7VlIkyRJIvc8zZrfZVDinToytXeewdt8S5dPNuikLK0cNv2W2GKJBkuVWzYpPmZhuJ9tbrSdmv2oq1wjZ5ZXyp7rFfn9p9Qe0SK+y7owIk2hW2FWvPMBpUmTC4MueZv0VOTwhRJsuct0Y6tc+UyTA3WX9aNkVu3Ddef0WV/XNaitdo5KUyRJFvuEm1ZXSyLOaLGy/UanJoQmhEFhrK05qtf1fqkw5QxliKt3rZyIkyRJCOzUmtXlMgqyZRHi5/acitMGS1MS9fMl9uQYr1d6pv0Rpj+KzpzbUimo0qbdk4KUyTJUaTVW5Yq22Jq4Npl3QwlqidPK5+eHKZIkl35yzZqSY5Finarsyc9ruMisbi++4sThCkPEIFKAtGREUVlyOma+Q47UV+fAnHJkluovIStWk7lF3hkUVy93eN/hE35+nwyZVF2QV7iPyjWfBXkGlK8Xz29qZ0C/Thy2a363tPz9NNP61JdCgAAaasiN1OH//xZLS/zymW3yjo2+TLDZlFFjktvvrxEf/nK8hRX+WVlat6qRcq2xOW/8In2HrumDv+QRkYG5Wu/rlOfvK0Pa0Ny2SUZNtmm9HEbFkuCC/OoOk/t0+kuU4Vrn9H6khleHsb9urD/iJrD2Vr69BZVJzGZMnEdkmQqHOhSW1ub2jq61DcQUlyGZEY07O9Wd2DKeWQ8rrgpyWKZ/nx34ra4pl2JNPH0McVikgyrbMlOg412qLk1LBmZql6QoItCkuGZp0XldskcUNPN8WAiQwUFbhmK6MaxfTrXOqhYgmOTYilUTXWibaKtysnLliFToWDoVidRrFM3m4MyDY9q5hYmmM2RoZLSXFkUl7+zS4muxyeL995UUyAuw1mhuYnSOXuxygotkjmirq7ApI4mi/JW7tTmCqfMvgvaf+SiTu4/obawXcXrntHaoukWJthUVpP4Nc+omq9KpyFFO9XePf7KhtR6s00RWVQwd47uXNllyFNSKq9FivV0qDvBG+KoWq2V09Zzb5bcSlV6pj6xoUxvtuyGZDjLVF1y5+Mb3hx5DMkMhxSa+H02NdjcpO64ZCudq5oEyaYlv0wlDkOKdKmz784PgiW7WjW5CT5Flhzl5RiSogoGk90P/eH41l8f1Vvf25zqMp4oLPm5g6ng2B9JS7BH9Vf6NDQSVsywyZnpVUFJmYrvGEhranhwWHFJ9qysabpaLMp0Z8mQT5HBQYUkZSqiocGwTBnKyspK/I+j4VJWplVSTEMDQzKVYBgu7ur7zy/Qkv9lr7739Dy57I92cz4AAB4XhR6n3v8X23WjZ0gXWvvlGwprWXm2VpRly/kgtipJA46KLdr1dFh7P69Ty+lP1XL61m0Wd6U2vrhafXs/U10sQ5kzWPcdaT+h/Wd7ZZRs1jNrC2d4Yh1T77l9Ot4WU97q0QvgB8Oioo3f1HfXxmWaMUWCQ/L3tutm7UVduXREN69d15pdr2hT2dhFutUiqyFF4rHpQ4jY+G1WWe51CjUeQoWiikSTm5hjDverP2JKllzl5073RA7l5rllafQp4A8opkJZZFHx2p1a2/GRTnc06PB7N3W2sEaLli7VkgUVyr6f9ge7V9mZid97Y2yorzlpeZw57JM/aEoK6ubRD9WboPz4UP9o8BEMKmhKrrv8asX8o1/SmrF2nd77vi7ccQ9TI72jM5OCI8HbZozIkqNlO7eo6VcHdPPSIZ2SIUfZVj27On/67amNTHnc09xqy1We15C6whoYHL16UTwgnz8myVSg7hJ5k1MAACAASURBVKA+aEnww0QDGjYlxYIaiWjKFadFOcWFSS8Ju61kt1fuRH+SLIYskozMLCV6Cw3DGN0lyZzcgWaqv88/OoWq96I+ff96ggcOyR+dtBRw6uN6sm/v/rp1i8bnQJtm6jtU/u1HV/X8kiKtrWJuyoNEoHKH0UBFMjVw/bA+nfqZMuzyVq7U9h3rVeWZGOulSDgsaXQ7s+m7Jkf/qpvhkMKmlKmwwhFTklV2x3RvhUUOh02GogqFwrf/0cSM/bc75+vNty+ob3B0L+zx4XvzirIkST9+fYUkqTR7huPyAQB4Qs0pyNKcgqxUl/GQ2JS7+Dl9q2qlGhua1NU/rIjhlCevTHPmVcgbPK93I5LsHnnudtUrSaEWHd1/Xj5bubY9s1L3HGkyJtp9RvtOdsosWDe6RONL/0y3GNZbQy2dGZly5xSqYt4izfnibf3mfLfOHr6gBW+sU54hyZkhpyGNjJ2XJjrBNMOh0aVRVqcy7nXVYGTKnWmRQjENBIZkyjvzc9ZIZHTYruxyTPuCjJ5nS5IZCSsqjb52zjJt/Pq3VX31jE6dq1VTd73OHKjX2aN5mrtykzavrpE3iSsew2ZLbrvlyOjSKZlh9Xe2KTDN3SxWqyzGvYcnR8KR0ftEB9XdNt2waENWq0VGgkczPAu1ev5pNV0IyDRcmrt6iRLOHJ44wCbrdGmLYZfDYUgyFY1Ex65DIgqFxwIdX7va/NMcaxnrdEvwA9vtX/IS1GabPiCSJItFxozfQ1Ph8Og1Vny4V20j0x1oldU6zQtpt9+9njRwsK5bF1v79Xff3ZjqUp44BCp3sKho9bPabrmh4Yxs5XjdyrBJsdCQfJ03VVd7Q71Np7TnvSG9+Pozqhm7/o7HR4eI3bYd3dRHnogox6e+j7dP3kovEx439uGN37PX8nb79u27478988wzST3Gk+L1teV64z8eVk1+pjLoUgEAYFazZBZq7vJCzZ3y3yOt3fKZkiW/8B4BialA7Qld9seljEFd/e07mrq42AwHFDQls+ec9rx9TVY5NWfbM8o6dVbdUckRuqlD7zXf8cjRwYDiiitQu0/vtNgkS5k2fm2zKu779MWp0iULlHfxuHr62tQ+vE55WZLF7ZXbkHwjgxqKKeEgAHNoUIOmZHF7xobA3oUlRwX5dskXUm9bu4KrvJrx11R2+9hFSUSRqJR4f+bRi3pJMqy2KU0PLhUv2aqXlmxQoPWaLl+4oMuNfao/sVet7U/p1ZdXKNGKjOkk9eWl1Tp6MW2t0PY/2K2lX/K7OetYumEp2KBvvrFWuUl+kxrrPaejtQGZhiHDHNa1Y6e1tGyTiqcLqsyIotOtRjGjikRGYxSbzTb2ulhls0qSQ/O/8kd6fs7jf149+prH5F7+in7vqdInbiZGOBrXn/zdSdX9r7tSXcoTiUAlASOjWEs3Ft/x36vnLdbKZbX6+J39uhGo09Hzy1W1qVAWjabOhqR4bPrQIxYba6i0jP3hlXUsEY7rLodNHGedNj5ObLaGJ5O1+EYnaO3+2UFFYnEduxG87fZm37AkaddPD0mS9nx/dP/F0uwkFjMDAIAnQEgt15sVMi0qqqq8Z4AQi46en5lBv7qCd7ljeEA9nQOSkan8sClnLK7ReSfd6pyunUFSdKhXnUOSrFkKxqUv9RW4bSyAMKOKxsbaUZwFKvRa1OzvUVdfXPPv2EoyLn9XjyKmZM8vUPY9rzLtKqsuk+P6DYVbLqvOv1CrcmaWBhiZ2fLapY6wX33+uJSZ6Mmi8vsGFJchT7Z3mpfDLm/5Um0uX6xVrSe196PT6mg9pbMtS/RM1cO57DEyvfLYpM6IXz7/NLtHJcHu9cplSIOBPvmjUm4yLUyRTp367JQ6I3aVbn5Ri7s+0/6Gs/rsWIXe2FY+TU41rMBAVCpJcGvML1/AlAyHstxji3QsHmV7LFJ/VH5fQOac3Me8e94iT7ZHFvVo2OdTUKUzGBCdPsavdX749ujisERd+H/8tyf0T9/bkpoCZwEClSRZshdpw7ILunmiR/2tLQqYhcoxDGVkOCWZCodC07Ty3WonM5xOOQxJcijDaYwdF5YS5vgxhUNRmTLkzGB+ypdht1o0k00MAQDA7BPpOKMTDSOSs0bLFuXc45zLUPaKl/R7C6cfgRpvP6a3P7umUNF6ff35xcoyDNkzM2XN/11VTjuf0lTf2Q+092JA3uVf1cur82TINjoo90sItrepLy4ZrhzljA+XsOSrusqtM75BNdZ3aVNxye0hRbxPDTd8isuu0sqZLU3KmLNcCzyNujTQqVOHLqjypZXTbNYwha1EVWVO1d0Y0s36dm0qK7/z+UZu6nprVDJcKqvIv0cXgUWu8rVaXXVBe6+FNTgY1kO77LGXqLLErutNg2q42qINpVWJg4sZshRWqDzjoq4Gm3S1YVhzFs308j6sthP7dKYnJmf5U9q5qlLZwW1q7vxE1y/t1+HKN7Qz4fTjmDqaWhVeMOeOusOtDWoOmpK1UCWF42+kS2UVBbK0dKr3Wp26V21S0WPdpGIop6JCnhM96m+v07X+JVp156TdB84ytiYpluQKhGT9h33XtXNRkVZX5jzU55nNnrSOpkfAUE5ezuiWXMHR7ZUlQy6PW3ZJ0aFBjSRMVMyxobKGnG7P2CAmm9yeLBljtyX8OJlDGhga/Vpi9L5Ixg/fvqAfvn1B/pGo/CPTT9f2j0TkH4noB78+px/8+twjrBAAAKRWTANNx7Vn71n1xp0qW79ZC267hjU12HBI7/zjP+j/++SSescbjh2Z8ng80/9f5thcPWuG3B6PPB63MqyG7K67HONxK9M5enpucWaOHecaiwIS12EOt6r2apsCkcRf6YW6L2j/sZsKyyLP/EUqn8gVLCpeslRFtrj6L3+hUx2T958Jq+vMFzrfF5fhnqdlc2a4jsVeofVbF8htMRVqOaLffHBU9X2JvmyMKzzQp8DEU2ZozurFyrGYCtR+oWNNI7cfEwuo7vNjuhkyZS1YrhUTP0RUvrZpfvZwt9p7opLhlNfzoAb/JpKpeasXyWsxNXj1gD671DM6U+U2cYX87eoZnsGwXnuVVi4vkNUMqfHIpzrVPnLn62dGFGjv0sCki4dg0xHtu+CTmVGpzTuXK8ciGZnztG3bfLnNgGoPfq76hM9vaqThpE62Bm97HnOkSceOXNOQachVs0RzJz4ThnIWr9LcTEPxvnP67cFr8ic4xY6P9Kqj726tW+nDUrRMK8sdUrRdJz85oqbBBFdl0UF1dfoTbLd+X8+ozKzM0R2jOlrUfR8bALX4RtTiG9Hunx3U7p8d1IG6bh2o61azb1jNvmHtv9qt/Ve79cvjzfqHo01q7w+qvf/xeD8eN3So3IdoJKK4JMPhGOs0kawFRcqzXFNHX7d6YpJ76itrDqu7e1CmLMorzBtLsizKK8qXTQEFunsUUsGdPSqRXnX74pIlTwV5vF0AAAD3zRzUtcNH1Sa3XHZDsdCA+tpb1do7rJjhVPHqr+iFlblTvnEcUdOlK2r3x6TAeV1buUT5dyyPeRSmqSPcpUv7j2rfAZdyCotUmOtRptMmMzqigd4OtXb0K2wachav0bMbym47+TdyV2jbmht670SnTr37j2qqrFJhlqGRnmY1dQ0pZvFq0VObVJlEy0Xm3Kf18vao9nzeoEDrGX381nm5cgtVkJMlhyWuaGhYA74++YbtWrL7D/R0xehraSvZoOc2dOv94226sOeXaq2oUUV+pqyRAXU1N6qtPyIjq1pbn12t/ImXP6L20+/rYIdLBaVlKs73KtNuKDriV8fNRrUF4nKUrNTy8ofbQmEv36zn1/fqgxPtunHwV/r7C2UqL8mWy2oqOjIoX0+nugNWLd79B3p6mh2EbrGoYM2z2tr1G31xs1XH3/0H1ZZUqCwvUzZFFRrsV09Xl3zhar3wnRflsUgabtAXB64oYLo0Z8sOLfHeeg7X3Ke0bWG7Prp6XYcOVqr4xUW3L2ez5Ki0cFjn3/+lWqtqVJ6bKUvEr9aGG+oajsvinq+nNs/Vbb0trnna9myHfB+dV2/tp/qnprMqLy+S12lRPDKsQF+3unqH5F7zur65MSP9v8E3vFq682l1vveZ6rrP6YN/rFdRRZkK3A4ZsbCGA73q6uzTSNFT+v1XcmR/AN9wZ1TOVZmjWc19Z7XnnQEtqPTKEh6Rc85Wra34Mj1Ot8tycv34sPEKJ21EzTc7FZehzKJijf+9MtxVqi44ovbuJjU0h1Uz5/YPgjnYqPrOmGQpVmX5rdjEWV6tUvsNNbXXq3F4sZZM6eoLNtWrJSJZsitVOcN1qLhlfB3hTNV3DT+kSgAAQOpFNdhZr8udk76BtjiVXb5Ey9au1/IKd4LZHA55s10yWgZl2rzKzkrV+VjiOozMCi1dWqVYQ5v6Om7K3zH5GIsc3jItXrpG61ZUJdjtxqai9S/pa44vdOj0dXXfvKru0UeVI7taq7du1/qazCQ7pG3KW/qivlF8XedOn9fVm10a9HWo2TfpLlaXcstqVHLblb1dRWtf1us5p3X0xEXdbKpVX9P4/TNVuGCdNm1epcrb9su1qaBqjgp9N9XdVKfuplu3WBzZqlyxVps2LJ4UwDwsdhWv26038s7q2KlLauxuUb2vZeJWw+5R8byFqp7pUhJrnpZ/9Q3lXDihE+fr1dneoNr2iUeTLatAc5bOVb5VkjmoukOHdG1Qypz3lLYv8kx5v1yas3WHFrft0ZXGL7T/coleWpY9KeRwqmb7Lq2sO6TDF2t1rnGsT8XiUE7NCm3dtl7VnjvrdlU+pVdfK9Kp46dV29Sjpms9t260OJVTukALy93pH6aMsXjm69nXPSo5eVzn6trU1VinrolbrXLlV2rx/GI5H9DH3/As0c7n/PrtwYtq676u892SZNec4pnNOhmfmXK3DvzR20d7asY78H/xnU33XTMSM8zJG6lDiveqoXZYefMqlDP1ExMfVtvZz/TJ8WYNWwq18fXXta7g1tbJQ7V79Na+m4rkLtOuV7arajyBjvl1+eN3dbBxRI6aZ/TtXYsmDTsKqXHfW9pbO6ysec/q688vnNjHPD5Yr/3vfqqrAYtKtn5Tr66613reW7Zv365Dhw59qZfiSbD9J6M7HY0Pn72XytzRd+bQnzPQFwCAJ1E8NCB/YEihqGR1uOT2jnY13P2gYXW39iiWXaoS74Pc6DhJd60jrvDQgAaGg4pE4zKsDmW4vfKOLz2652OHNODzaygi2TOzlePNeDBbwcYjGgr0aygYUdS0yO50ye31yGW7W1VxhQf88g+FJbtLnmzvPe8fGuxXYCioSNwie0aWsrPdcqTkat5UdCQgf2BYkbhFtoxMeb0eOe/7xYwpGPArMBxWTDY5Mt3K9rh015djJuJN2ve3H6o2nKcN3/iG1udbZEaG5PcPKGTalenNkTdjZkXHI0MK+Ac1Eo3LYncpy+uVOzUv/oMRD2nA36+hUEyyOuRK5nOULDOsQZ9fQxFDjqxsZbsdMwqh/qu/OS5JOlDXPaOn2bmoQBKBysNAh8pUZkANh/fqo0MZyi4oUH6uV5l2i2KhgHra2tQ9FJUsbs3Z9pxWF0z+dTeUtXCrNl7v1OfNl7Tnl+0qryqR1xZSX2uTOgIRyVWtLVsXTJkc7VT1xq2a1/JbXa//TP/Uc0VVZblyRvvV1tQqf0hylKzX9uUzD1Nwy/iE65kGKvOL3Q+zHAAAkGIWp0d5hZ4kD8pUYWXVwynogdVhkSMrW/lZ2ff52E558ouV5Cszg8e1KyunQFnJHSSHJ09FMy7GIqc7V4VpcRpnyObKVoHrPt+HO1iV4c1XhvcBPVwC49+uG/Ys5RYm905JksWepZzCLD0xY08tTnnyih78ZyERwyF3XpGS/dWlCz99EKhMZSnQ/JXzFKhrVndXi/q7Jt+WodyqJVq5fp2WFLvuDDgsOVr+4iuyHTmk47Xtar7WN3aDTe7yFdq8fZMWJNhzzsiar2e/bpHn4BFdbGlTfX/b6A3WTBUvXq9tW5ep4LGeng0AAAAAwJOFQGUqw6OajV9RzUZT0ZEBBQZHFI5KVkeG3NnZct3rFbPna/GOV7Voy5B8vgGFTasyvLnKuceBVu9cbd49V+tH/PL1jyhuzZA7J0dZD2Lq0Sz249dXSJJ2/XR0+dP4OsKpxt+fn7yx4tEUBgAAAAD3gS789EGgMi1DNpdXea77668z7FnKK0q+Zc7mylGh64lpmAMAAAAA4IlEoIInWmn26I5Ke76/Q9KtCdf1XcPq6A9qTU2ushzWic6UIk9G4gcCAAAAnhhO5ZSUqizilYeO+McOXfjpg0AFs5bVYigUiSnLwYAaAAAAzCKWYq3Z9XWtSXUdwGOObZOfUGybfG9vvn1By8uy9Xub0mBqPwAAAAAkob0/KGm0C793MKzrXUMqcDsnZqbQhf/wPcYbhANfTnmOS63+kVSXAQAAAABfSigWk9Vg+dajxpIfzFplOS4drOtOdRkAAAAAkLTS7NHOk198Z5N++uk1Saa+//zC1BY1y9ChglmLDhUAAAAAT4KuQFBFXpb2PGoEKpi1ynJcaiNQAQAAAPCY6xoIqcjjTHUZsw5LfjBrleVkqM0fTHUZAACkXItv9AuGH759QZLU0D0kSZpXlCXp1hadpdmuFFQHALiXzkBQxXSoPHJ0qGDWshiGijxOdQQIVQAAAAA8vghUUoMOFcxq48t+SvjjAwCYhcY7U3b/7KAkyT8Sve32Zt+wJGnXTw9JkvZ8f4ekW4MQAQDpgSU/qUGHCma18lyXWn3MUQEAAADweCJMSR06VDCrsdMPAGA2G5+ZMrUzZSr/SESS9INfn5M0ukUnACA9sMNP6tChglmNnX4AAAAAPM46AyEVe+lQSQU6VDCrleVk6GBdd6rLAACkkdm04834zzZT9V3DD6kSAMD96hwIqthDh0oqEKhgVmPJDwAgnaQizInGzQf2WACAR68rEFIRHSopQaCCWY0lPwCAcbNlx5uLrf060ejTicY+dQ4EZbUYMz52frH7IVYGALgfXYGglldkp7qMWYlABbNatsuuaMzUUDiqLAcfBwBAajysMCcWN3WisU8nGn06fqNPJxv7NK/IrQ01udq9slT+4bAcNov2X2X5KwA8rjoHgnrOU5zqMmYlriAx65XlZKjNH9SCIr51A4DZ7EnY8aZ/JDIRnBxv7NP5ln5tqMnThppc/emOOfr5H66Ty26duP+aqhxJt4Ka8Z9tqhzX6CnjT95Y8ZB/AgBAsljykzoEKpj1ynNdavWNEKgAAFLmfsOcf/PqSh1v7BvtQrnRp66BkDbOydP6mjz9693LJgITAMCTqzMQVDHbJqcEgQpmPeaoAACk5He8OX7DL4sh/fjDK3Jn2OV22uTJsMnttMmdYZNn7P9nOUf/d5bzwZ12XW4PqH84ot/5+RFtrMnThpo8feepOUl/OTA+3HZ8CdF4UFPfNayugZCWlnmVk2mf6EwpYhcJAEg7XQMhFXnoUEkFAhXMeuz0AwC4Hy67VXHTVJ7bqcFgRE1DIQ0EoxoMRTUYjGpg7P8PhUb/91Aoekfo4nba5XZadbLRJ4sx8+GwsZih/KwMffHnzz60n89qGIrE4g/t8QEAXx5hSmoRqGDWK8tx6WAdw/gAYLYb35p4fADsvaysHN1R4Xs75s74OQZD0dtCl8FQRIOhmI419CmZ3YszHdZ73ykJ48NtJ8+D+dfvXtT8Io/+cEv1A30uAMCDw3Kf1CJQwaxHhwoA4FFxO0e7U6Z660STJM14t51HsX1xgdupnsHQQ38eAMD9YyBtahGoYNZjhgoAQJJ+/PronBB2vBlV4HHqYkt/qssAANxF50BQxcy3ShkCFcx649smAwCQKukY5hS6neqmQwUA0hodKqlFoIJZz2IYKvI41REIqoT1hwAwa023483+qz2qzM2cWGYzW3a8YckPAKS/rkBQyyuyU13GrEWgAkgqz3Wp1TdCoAIAuE04Gpc1id137tfdti+WlJIwp8DtUM9g+KE/DwDg/nUOBPWcpzjVZcxaBCqAbs1RWVedm+pSAAApNnnHm/Mt/fqLdy7ovf9uW4qrevQKPE71DNChAgDpjCU/qUWgAoidfgAAiXX0j6hkrHvkUUi0fXGquOxWWQxDQ+GoshycMgJAOmLb5NSypLoAIB2w0w8AIJH2/uBEyDEb5bsd6mXZDwCkra6BkIo8dKikCoEKIHb6AQAk1tEfVMksDlQYTAsA6YswJfUIVACx5AcAkFh7IKjSWdxKzRwVAEhfLPdJPQIVQCz5AQAkNtuX/LDTDwCkLwbSph6BCiAp22VXNGZqKBxNdSkAgDTyqIfSpptCt1PdLPkBgLTUORBUsWf2hv7pgEAFGFOe61Krjy4VAMAtzFBhhgoApKuuQFBFLPlJKQIVYAyDaQEAk/mGw8p02OS0zd7TJWaoAED6YslP6s3eMwRgCuaoAAAmm+3dKRIzVAAgnbHkJ/UIVIAx7PQDAJhstg+klVjyAwDpjA6V1CNQAcbQoQIAmIwOFanQ41Q3S34AIC2xbXLqEagAY+hQAQBM1t4/otJZvMOPJLmdNoVjcYWj8VSXAgCYomsgpCIPHSqpRKACjKFDBQAwWUcgpBJaqVn2AwBpiDAlPRCoAGPY5QcAMFlH/4hKZnmHiiQVup3qJlABgLTCcp/0QKACjLEYhoq9TrX3E6oAABhKO67A41DPADv9AEA6IVBJDwQqwCQs+wEAjCNQGcWSHwBIPyz5SQ8EKsAkBCoAAEkaDEVlSMpy2lJdSsoRqABA+ukKBFVEh0rKEagAk7DTDwBAojtlMgIVAEg/XYGQihicnnIEKsAkdKgAACSpoz+oEgIVSVKhx6FuZqgAQFrpHAiq2MO/U6lGoAJMwk4/AACJHX4mo0MFANJPZyCkYjpUUo5ABZiEJT8AAIklP5Plu53qJVABgLTCDJX0QKACTMKSHwCAxJKfyQrcDvUMsuQHANIJu/ykBwIVYJJsl13RuKmhUDTVpQAAUogOlVtyMx0KBCOKxc1UlwIAEGFKOiFQAaZg2Q8AoD0QVCmt1BOYowIA6aMzEFQx/0alBQIVYAoG0wIAOvuDKqZDZQLLfgAgfRCopA8CFWAK5qgAwOwWisY1HI4qN9OR6lLSBh0qAJA+WPKTPghUgClY8gMAs1t7/4hK2TL5NgUep3oGCFQAIB2ww0/6IFABpqBDBQBmN3b4uVOh26luOlQAIC10BUIq8tKhkg4IVIAp6FABgNmNHX7uxAwVAEgfnQNBFXv4dyodEKgAU9ChAgCzGx0qd2KGCgCkj85ASMV0qKQFAhVgCjpUAGB2Y4bKnfLdTvUSqABAWmCGSvogUAGmMAypxJuh9n62TgaA2agjEFIJ3/zdptDtUDdLfgAgLbDLT/ogUAESYNkPAMxeHf0jKqFD5Tbs8gMA6aEzEFQx3Slpg0AFSIBABQBmL4bS3okZKgCQHuhOSS8EKkACzFEBgNkpFjfVNxRWISerd8h3O9TLsh8ASCk6VNILgQqQAB0qADA7scPP9ArdTnXTpQIAKUWHSnohUAESKMvJUJufobQAMNu0B4Iq5Zu/hFj2AwCpxw4/6YVABUiAJT8AMDvRoTI9BtMCQOp1BkIqZie6tEGgAiRAoAIAsxM7/EyPDhUASL2ugaCKPAT/6YJABUjA67IrFjc1FIqmuhQAwCPEDj/TK3A71MNQWgBIKTpU0guBCjANulQAYPZhyc/06FABgNRjhkp6IVABpsFgWgCYfehQmR6BCgCkHrv8pBcCFWAabJ0MALMPgcr0WPIDAKnVGQiqmO6UtEKgAkyDJT8AMPtwsjo9dvkBgNSiOyX9EKgA06BDBQBml66BkArcDlkMI9WlpCWW/ABAahH6px8CFWAadKgAwOzS3j+iUrZMnpbNYsidYZN/OJLqUgDg/2fvzmLkvO90vz9v7dVV1V3dXVXdzSYpSpRojWSJI1n7jGXLwIFiW/GKg5MAOcERcnGAXPkiQOD4PsbcGXORi+TCRi6Cg5PEnnhsyzPHi0aSJcu2NJatlRRliey1qnqpraveWt43F2RzaXaTvVTV+3/f+n6AwQBik/yLgtytp5/f7zeSilVbBS78GIVABdgDgQoAjBYu/NweLRUA8E6x1lIhw+cpkxCoAHtg5AcARgsLaW+PQAUAvLNatTVDQ8UoBCrAHixLmh1PaLnC6WQAGAU0VG6PQAUAvENDxTwEKsAt0FIBgNGxUm1plmV/t5TPxFSqcToZALxAQ8U8BCrALRCoAMDoYOTn9qZTca01aKgAgBe48mMeAhXgFlhMCwCjY6XS1CxXfm4pl4mrXCNQAQAvlGq28hkaKiYhUAFugYYKAIwOGiq3l0vHVK4z8gMAw0Y7xUwEKsAtHMsmtLTJUloACLr1RlvpeESxCF8a3Uo+HVeJpbQAMHTFmq0C7RTj8FUDcAvHs0kt0FABgMDjws/+cOUHALxBQ8VMBCrALTDyAwCjgXGf/WGHCgB4o1i1VeDCj3EIVIBbGE9G1XNcNeyu108BAAwQ3/nbn3gkpGg4pDqfFwFgqIq1lgoZPk+ZhkAFuA0u/QBA8C1Xmprjws++5DNxlWipAMBQrVZtzdBQMQ6BCnAbLKYFgOBj5Gf/2KMCAMNHQ8VMBCrAbbBHBQCCj6W0+8fpZAAYPhoqZiJQAW6DkR8ACD4aKvs3nY5rjYYKAAwVu77MRKAC3AYNFQAIPhoq+8fIDwAMX6lmK5+hoWIaAhXgNmioAECw1e2uLEtKxSJeP8UX8pmYSjVGfgBgWGinmItABbgNAhUACDbGfQ6GhgoADBf7U8xFoALcBiM/ABBsK5WmZjmZvG8EKgAwXFz4MReBCnAbliXNjie0XOF0MgAEEQ2VgyFQAYDhKlZtFWioGIlABdgHWioAEFwEKgeTy8RUZocKLSz15QAAIABJREFUAAwNDRVzEagA+0CgAgDBxYWfg0nFInJcV81Oz+unAMBIYIeKuQhUgH1gMS0ABBeBysHlMnGVa4z9AMAwcOXHXAQqwD7QUAGA4FqutjTHF6oHkkvHVK4z9gMAw1Cs2SpkaKiYiEAF2AcaKgAQXFz5OTgW0wLA8NBQMReBCrAP89mEFje58gMAQdPq9NTqOMqORb1+iq8QqADA8JRqtvI0VIxEoALsAyM/ABBMXPg5HEZ+AGA4aKeYjUAF2IfxZFQ9x1XD7nr9FABAH7GQ9nBoqADAcHDhx2wEKsA+sUcFAIJnpdrSLN/5OzCu/ADAcBRrLRUyfJ4yFYEKsE/HsgktsUcFAAKFhsrh5NNxlWioAMDAFau2CjRUjEWgAuwTe1QAIHiWK03NceHnwBj5AYDhYIeK2QhUgH1i5AcAgoeltIfDUloAGI5izVaBCz/GIlAB9olABQCCh5GfwxlPRtVs99TpOV4/BQACjYaK2QhUgH1i5AcAgoeGyuEx9gMAg0dDxWwEKsA+0VABgGDpOq42t9rKpflC9TAY+wGAwaOhYjYCFWCfaKgAQLCsVlqaoZ1yaDRUAGCwXFcq123laagYi0AF2CfLkmbHE1qucDoZAIJgudrSHN/1O7RcJq5yjUAFAAalWGupkOHzlMkIVIADoKUCAMGxUmlqlpPJh8bIDwAM1mrV1sw47RSTEagAB0CgAgDBwULao8mn4yox8gMAA0NDxXwEKsABsJgWAIKDQOVoGPkBgMEqVm0VaKgYjUAFOAACFQAIjpVKS7MEKofGUloAGCwu/JiPQAU4AEZ+ACA4CFSOhh0qADBYxZqtAhd+jEagAhzAfDahxU2u/ABAEDDyczQ0VABgsGiomI9ABTgAGioAEBwr1aZmx7nyc1hTqZg2ttpyXa9fAgDBRKBiPgIV4ADGk1H1HFcNu+v1UwAAR7BavXw5wbK8fom/0VIBgMFh5Md8BCrAAbGYFgD8j/0p/UGgAgCD4bpSuW4rT6BiNAIV4ICOZRNaYo8KAPga+1P6g0AFAAajWLvcpITZCFSAA2KPCgD430q1pVnm0o8sn4mpVOPSDwD022rV1sw47RTTEagAB3Q8m9QCgQoA+BojP/1BQwUABoOFtP5AoAIcEA0VAPC/5UpTcxNc+DkqAhUAGIxSjf0pfkCgAhwQgQoA+B87VPqDQAUABoOGij8QqAAHxJUfAPA/Rn76gx0qADAYnEz2BwIV4IBoqACA/9FQ6Q8aKgAwGDRU/IFABTggy5JmxxNarnA6GQD8aL3RViYRUTTMl0FHNZ2Oa41ABQD6jkDFHyJeP8BXXFuV0qZabkjJybzGY3t9YE9baytaXa/J7kWUzOY1OzOhuHWbX99paWNlReVqU71wQuO5Oc1OJki9DLTdUuG7mwDgP4z79E8uHVO5zsgPAPQbIz/+QKCyb4423/5n/fA3C7I1pvue+/f63PGbow6nckGv/vJlvbPalHP1r1qKZu/Uo1/4vM7O7PYvhavGpd/rVy/+UQv13nV/PaLMibP63DOP6kTqdmkMhmk7UPnMHZNePwUAcECM+/RPyLKUHYtqvdHWVGrP7zQBAA7AdaVynSs/fkCgsk/O+p/04usLsl1Je2UbrU/08k9+oXerruJTd+rM3XMaD9ta/+Sczi99pNd+asv6+nN6cPLGIKaz8jv97OdvqtyNavzEp3TP8UnFuxUtnP9Aly69oZ//zNVXvva4ZqID/9vEPh3PJrXAHhUA8KWValOz45xM7pftPSoEKgDQH8VaS4UMwb8fEKjsR6+kf/31H7QSPqk7c4v6y8quH6TVP76q96uOonNP6Ctffki57QDk7AO666V/0AvvLuoPr53T6S/eq6uFE3dT77z6lsrdsKbPfklffeqYtnPIsw+e0es//rHeLL2l37x9Rl9/aHLPLAfDdSyb1LlizetnAAAOgYZKf22P/ZyZ8folABAMq1VbM+O0U/yA9Ry31dHqH17UG0VXhbMP6eRe33zpLeuD8xU51rjufezBa2GKJFlJnXzsYZ2MSfald3Wu4l79IWf9vM6VerISd+mRz1wLUyRJsRk9/Ng9GrN6Kr73noqOYAgu/QCAfxGo9BeXfgCgv1hI6x8EKrfRWf69XnyrrNDMw3r6wQm5vd0/ztlY0vKWK2vsuE7NhG/+gORJ3TkbkZyyLi00dDlScbW1tKQNR4ocO6Xju4SQ0WOndCJuya0t6OIGiYop5rMJLW5y5QcA/Gi10tIMgUrf5DJxlWsEKgDQL6Ua+1P8gkDlVuwF/fbFP2sjfEyPPvOQcmFXjuPu+qHdjXVVHSk0mdfULnmKFNd0LqOQHK2V1q8srHW1sb4hVyFN5Ka064qU8LRyk5bkVFRe6/Tr7wxHREMFAPyLhkp/5dNxlWioAEDf0FDxDwKVPbX0yWv/oncrUR1/4vN6YPJWf1SutupbciRFUintniWGNJZOyZKrTr2uy192dNSot+XKUiqV2n0/ipVUaiwsyVGjtt1sgdfGk1H1HFcNu+v1UwAAB8TZ5P7idDIA9BeBin8QqOxh66NX9NL7NcVP/Y0+f9/Ebf6gXHXabUmWorHonotjY7HLHRS3bavtSnLbandcSSFFY3vtBw4pFovIkivbbhOoGGQ+m9QiLRUA8JVaq6tQSErt+XkXB8XIDwD0V7Fmq8DIjy/w1cQu3Pp5vfzyh2qMnda/efqM0vs4reM4jlxJodDe0cvVH3OdKyM/jhxHkizd4qcpFA5d/T0O4vvf//6eP/b8888f6NfCzY5lE1rabOnMTMbrpwAA9mm50tTcBCeT+2k6Fddag0AFAPqFhop/EKjs5Nb0/ku/0V9aaX3q2b/V6bH9HSoOhcOyJDm9vUOPXq+3/cG6vGYlrHBYkhzd4qdd/Xnh8K7LWfZEaDJY89kxLW5uef0MAMABMO7Tf/lMTKUaIz8A0C80VPyDkZ8bOKq886Jeu2hr4r7P66lT+/0OlqVEIi7JVdu29xjLcdVuXx7ZseJxxSxJVkyJuHXl5+31hUhPbbsrV5biifie40QYPi79AID/sJC2/zibDAD947pSuc6VH7+goXI9Z0Fv/n5RthtRdPl3+ukPf7fjA3ra2nAlt6W/vPIjrcUshXJn9ezTp5XMpBWV1GnU1XS1y5iQe2WprKVEOnNlcW1E6UxKlupq1BpylLw54XIbqjUcSeErHwtTHMsm9eK5ktfPAAAcwEq1pVlq1H0VDYeUjIVVbXY0ntz1ZiEAYJ9Way3NZPg85RcEKtdze+r1XEkd1ddWVd/7A9XcKKopKRTeUs+VErmCpkLntbJeUrknpXf+ybpbKpXqchXSVH7qSnAS0lRhWhFVVS2VZSunmzoxnTWVNhwpNKXcFP+4TMLpZADwn5VKSw8en/D6GYGzfemHQAUAjqZYtVUYp53iF/wX+vXCJ/S3/81/p8f3OqXjNvT+L/4//aEY1z1f+LoenwtJ4YRSlmSlT+qO3GtaLl3UR5faOnVn7MafWv9YF1Z7UmhGJ+avxSbx+Ts0F/2LLi5f0Mdb9+qvxm78LVsXL2ihI4UmTuhEln6KSbjyAwD+s1xp6tn7Z71+RuBsj/3clU95/RQA8DUW0voLO1RuEFEinVEms9f/pZUIS5Kl6NiVvzZ25UyyNaEz959Q3G3q/Ou/1cWt61KZ3qbee+UNLXctxU/erzMT1wUjY3fp/tMpWZ1L+sMr51S9bjmtU7+gV1//i2w3osJ99yrPPy2j0FABAP9hKe1g5NNxldijAgBHVqqxP8VPaKj0jaXUmaf02IereuXSO3rhPy1r/uSsxiO21hcvaqXakZJ36Mmn7tGNJZS47njsKZ1e+KU+vPAr/efyezp5bFLxbkVLFxe1aUux2Uf02U9n2Z9iGMuSZscTLDgEAB/hf7MHI5eJq1wjUAGAo6Kh4i8EKv0UyurTz35Fkdde1u/eX9al8+tXfiCi9PwDeuKzj+ueiZtrJlbqbn3hqyFlXnpNby8s6UJl6fIPhMc0c+8j+tun7lfuYBeTMSTbLRW+OAcA8zU7PbW7jibY89F3XPoBgP5Yrbb01ycnvX4G9olA5SCstB746n/UA7f6mOi07n36a/rUkw1tbNTUdsNKjE8qm7z1H3V4/C498dxdeqS5qY1KU044oXQ2q1SUXorJtveofOYO/kcPAEzHuM/g5NIx/Wmh4vUzAMD3ijVbBUZ+fINAZUCsaEpThYMvZosks8onswN4EQaBxbQA4B8EKoNDQwUA+oORH39hzSlwBCymBQD/YH/K4BCoAEB/rFZtzXA22TcIVIAjIFABAP9YqTQ1O5H0+hmBlEvHVK63vX4GAPia60prDVu5NIGKXxCoAEcwn01ocbPl9TMAAPuwXG1pjhr1QHDlBwCObrXW0kyGz1N+QqACHAENFQDwD3aoDE4yGlbIstRod71+CgD4VrFqq8C4j68QqABHMJ6Mque4ath8AQkApiNQGaxcJqZyjbEfADgsFtL6D4EKcERc+gEAf2Ap7WCxmBYAjqZYa6nAyI+vEKgAR0SgAgDm6zquNrfaLPobIAIVADgaRn78h0AFOCL2qACA+Rj3GTwCFQA4GkZ+/IdABTgiLv0AgPmWK03NcTJ5oPKZmErsUAGAQyvWbBUyNFT8hEAFOCIaKgBgPhoqgzedimutQUMFAA6Lhor/EKgAR0SgAgDmW6m2NMsXqQOVy8RVrhGoAMBhrVZtzbBDxVcIVIAjYiktAJiPCz+Dl0vHVK4z8gMAh+G60lrDZnm6zxCoAEdEQwUAzMfIz+CxlBYADm+11tIMJ5N9h0AFOCLLkmbHE1qusJgWAEzFUtrBy2fiKjHyAwCHwslkfyJQAfqAsR8AMBsNlcFLxyPq9BzZXcfrpwCA77CQ1p8IVIA+YOwHAMzGDpXhYDEtABxOsdZSgZEf3yFQAfqAhgoAmIsLP8PDHhUAOBxGfvyJQAXoAxoqAGCu1UpLM7RThiKfjqtEoAIAB8bIjz8RqAB9QKACAOZi3Gd4OJ0MAIezWrU1Q0PFdwhUgD6Yzya0uMmVHwAwEYHK8Eyn41qjoQIAB8YOFX8iUAH6gIYKAJhrpdLULCeTh4IdKgBwODRU/IlABeiD8WRUPcdVw+56/RQAwA40VIYnn4mpVGPkBwAOwnWltYatXJpAxW8IVIA+OZ5NaoGWCgAYhys/w0NDBQAObrXW0gzjPr5EoAL0CWM/AGCmlUpLszRUhoJABQAOjgs//kWgAvQJgQoAmImRn+EhUAGAgytWbRXYn+JLBCpAn3DpBwDMs95oK5OIKBrmS55hyI5FVW911XVcr58CAL7BhR//4qsLoE9oqACAeWinDB8tFQA4GBoq/kWgAvQJgQoAmGe50tQcJ5OHKpeJq1wjUAGA/WKHin8RqAB9Mp9NapFABQCMwkLa4ZtOxbTW4HQyAOzXatXWDA0VXyJQAfqEhgoAmIeTycNHQwUADoYdKv5FoAL0iWVJs+NJLVcIVQDAFOxQGb58Oq4SO1QAYN9oqPgXgQrQR1z6AQCzMPIzfLl0TOU6Iz8AsB+O62q90VYuTaDiRwQqQB8x9gMAZmEp7fBx5QcA9q9Ys1XIEKb4FYEK0EcspgUAs9BQGT52qADA/nHhx98IVIA+oqECAOaoNjuKhEMai4W9fspIoaECAPtXrNoqsD/FtwhUgD4iUAEAc3DhxxsspQWA/ePCj78RqAB9xFJaADAH4z7emE7HtMZSWgDYFy78+BuBCtBHNFQAwBycTPYOYz8AsD/FaksF2pS+RaAC9NF4MirHcVW3u14/BQBGHoGKdzidDAD7Q0PF3whUgD7j0g8AmGGl0tQsJ5M9QUMFAPaHHSr+RqAC9BljPwBgBhoq3uF0MgDsDw0VfyNQAfqMQAUAzMBSWu/QUAGA23NcV+uNtnJpAhW/IlAB+oxLPwBgBs4me4cdKgBwe8WarUKGMMXPCFSAPqOhAgDea3Z6ancdTSSjXj9lJOXTcZVoqADALa1WW5oh+Pc1AhWgzwhUAMB7jPt4ix0qAHB7xaqtAvtTfI1ABegzrvwAgPdYSOstdqgAwO1x4cf/CFSAPpufTGpxg0AFALy0XGlqjpPJnmGHCgDcHhd+/I9ABRiAuYmkliuEKgDgFUZ+vEVDBQBur1htqcAOFV8jUAEGgEs/AOAtLvx4KxyylElEtLnV8fopAGAsGir+R6ACDACLaQHAWzRUvEdLBQBubbXW0gw7VHyNQAUYABbTAoC3WErrPQIVALg1rvz4H4EKMAA0VADAWyyl9R6BCgDszXFdrTfayqUJVPyMQAUYAAIVAPBOt+eq0uxoOh3z+ikjLZ+JqVTj0g8A7KZYs1XIEKb4HYEKMAAspQUA79BOMQMNFQDY22q1pRmWp/segQowAPOTY1rc2PL6GQAwkrjwYwYCFQDYG/tTgoFABRiATCIi15XqdtfrpwDAyOHCjxkIVABgb8VaSwUu/PgegQowIFz6AQBvcOHHDLlMTGV2qADArlartmZoqPgegQowICymBQBv0FAxQz4dV4mGCgDsqlhtqcB4qu8RqAADQqACAN5gKa0ZptNxrRGoAMCuaKgEA4EKMCBc+gEAbzDyY4Z4JKRoOMQ+MQDYxWqtpRl2qPgegQowIDRUAMAbnKI0Rz4TV6lGSwUAduLKTzAQqAADQqACAN6goWIOLv0AwM0c19V6o61cmkDF7whUgAE5PpnUwgaBCgAM00q1pVnaKcbIpWMq17n0AwDXY39KcBCoAANCQwUAho8LP2bJZeIqM/IDADco1loqsD8lEAhUgAGam0hquUKoAgDDwriPWRj5AYCbsT8lOAhUgAHi0g8ADBcnk82ST8dVIlABgBvQUAkOAhVggBj7AYDhYuTHLOxQAYCbsUMlOAhUgAGazya1SKACAENDoGIWdqgAwM1Wqy3NsEA9EAhUgAGioQIAw8WVH7NMp+JaaxCoAMD12KESHAQqwAARqADAcLGU1iy5TEzlGiM/AHC91VpLM+xQCQQCFWCA5ieTWtwgUAGAYWEprVlSsYgc11Wz0/P6KQBgDBoqwUGgAgwQO1QAYHjW6m1NJKOKhC2vn4LrsEcFAK5xXFfrjbZyaQKVICBQAQYok4jIdaW63fX6KQAQeLRTzMSlHwC4hgs/wUKgAgwYLRUAGA4W0popl46rXKehAgCSVKy1VGB/SmAQqAADxmJaABgOTiabKZ+Oq0SgAgCS2J8SNAQqwIARqADAcHDhx0zsUAGAa1arLc3QpgwMAhVgwOazCS1utrx+BgAEHg0VMzHyAwDXFGu2ChkaKkFBoAIMGA0VABgOltKaiaW0AHANDZVgIVABBmx+MqnFDQIVABg0Rn7MREMFAK5hh0qwEKgAA8aVHwAYDr7rZyYCFQC4ZrXW0gxXfgKDQAUYMEZ+AGDwqs2OIuGQxmJhr5+CHRj5AYBrCP+DhUAFGIK5iaSWK4QqADAoy9WW5vgC1Ujjyaia7Z46PcfrpwCApxzX1Uajo+l0zOunoE8IVIAh4NIPAAwWF37MxtgPAEirVVsz7E8JFAIVYAgY+wGAwWIhrdnymZhKNcZ+AIy2Yq2lAvtTAoVABRgCFtMCwGCtVJqa5WSysWioAAAXfoKIQAUYAhoqADBYjPyYjUAFAFhIG0QEKsAQzE8mtbhBoAIAg8LIj9lymbjKNQIVAKOtWLNVyNBQCRICFWAIaKgAwGDRUDEbp5MBgIZKEBGoAEPADhUAGCzOJpuNkR8AYIdKEBGoAEOQSUTkulLd7nr9FAAInK12T92eo/Fk1OunYA8EKgAgrdZamuHKT6AQqABDQksFAAaDcR/zMfIDAIz8BBGBCjAk7FEBgMFYrjQ1x8lko9FQATDqHNfVRqOj6XTM66egjwhUgCEhUAGAwViptjTLd/yMNpWKaXOrI8d1vX4KAHhitWprhv0pgUOgAgzJfDahxc2W188AgMBh5McfGPsBMMqK1ZYKhP+BQ6ACDMn85JgWN7a8fgYABM5ypaU5AhXj5TJxlWuM/QAYTcWarUKGhkrQEKgAQ3Ism9ASDRUA6DsaKv7AHhUAo4yFtMFEoAIMCVd+AGAwWErrD/l0XCUCFQAjioZKMBGoAEPCUloAGAxGfvxhOh3TGjtUAIwoGirBRKACDNHcRFLLFUIVAOiXbs9VtdXRVIozlKZj5AfAKCNQCSYCFWCIuPQDAP3FuI9/EKgAGGWM/ARTxOsHAEG3sHG5kfKdH/1ZF9e39B//zzc0FgvrdCElSfruNx6QJP6DAAAOgXEf/8hnYirVGPkBMJpoqAQTDRVgiOKRsLqO4/UzACAwVqotzfIFqi/QUAEwqhzX1Uajo+k046lBQ0MFGJDtZspzf/+SJGmz2b36Y5VmR5c2tiRJX/zey5KkF771tCTxnVYAOAAaKv5BoAJgVK1Wbc2MM+4TRDRUAACAb61UmpplZNIXCFQAjKpitaUCbcpAoqECDMh3fvRnSTc2U3az2exIkr79w7ckST94/vHBPgwAAmSl0tJjd057/Qzsg2VJk2MxrTfaXGUCMFJYSBtcNFQAAIBvMfLjL/l0XCVaKgBGDAtpg4uGCjAgH5UaB/r4C8WtAb0EAIJrpdLSLIGKb+QycZVrtj41k/H6KQAwNAQqwUVDBQAA+BZXfvxlOhXTWoPTyQBGCyM/wUVDBRiQ04WUJF295nM7d8+kB/kcAAgcxn38Z7uhAgCjhIZKcNFQAQAAvsS4j/+wQwXAKKKhElw0VIAB+e43HpAkffF7L0u6ds1np2zy8r+Gf/fNB4bzMAAICMZ9/CeXjumj8sF2jAGA39FQCS4aKgAAwJeWK03NTSS9fgYOgJEfAKOm57ja3OpoOs25+CCioQIMyPYX+S9862lJ0rd/+JYk6b2luja22vqbe3KSrjVTChlSawA4CEZ+/CeXjqvMyA+AEcK4T7DRUAGGLByy1HNcr58BAL7HUlr/IVABMGqK1ZYKjPsEFg0VYMC2v9j/wfOPX/1rd/8vP9P/8d8/okjI8upZAOB7NFT8h6W0AEYNDZVgo6ECeGB+MqnFjabXzwAAX2OHiv9EwpZSsYgqeyxqB4CgYSFtsBGoAB6Yzya1uEmgAgBHQUPFnxj7ATBKCFSCjUAF8MD85JgWN7a8fgYA+NZava2JsSijkz40nY5prd72+hkAMBSM/AQbgQrggflsQoubLa+fAQC+xbiPf7FHBcAooaESbAQqgAcY+QGAo+HCj3/lMnGVawQqAEYDDZVgI1ABPMDIDwAcDftT/IsdKgBGCQ2VYCNQATxAQwUAjma52tIcX6D6Ui4dU5kdKgBGQM9xtbnV0XQ65vVTMCAEKoAHCFQA4GhWKk3NskPFl2ioABgVjPsEH4EK4IFI2NLUWExFZsgB4FAY+fGvfCauEp//AIyAYrWlAm3KQCNQATwyP5nU4gYtFQA4DJbS+hcNFQCjgv0pwUegAnhkPjumxU0W0wLAYdBQ8S92qAAYFYz8BB+BCuCR45NJLdBQAYADqzQ7ikVCSkbDXj8Fh5CIhhUOWWrYXa+fAgADRUMl+AhUAI8cyya1xGJaADgwxn38j5YKgFFAQyX4Il4/wGRup6H18poqDVtdN6TY2ISm89PKxKzb/MyettZWtLpek92LKJnNa3ZmQvHb/TSnpY2VFZWrTfXCCY3n5jQ7mSD1Cqj5bFL/cq7o9TMAwHcY9/G/7T0qd0yPef0UABgYGirBR6Cyi87mX/TnN/5V73xUVL3r3viDkbTm739Kn3v8tCZ2aRo7lQt69Zcv653Vppyrf9VSNHunHv3C53V2ZreE0lXj0u/1qxf/qIV67/rfTJkTZ/W5Zx7VidTt0hj4DUtpAeBwVqotzfIFqq+xmBbAKFit2poZp6ESZAQqO7j19/TP/++LutiWIukZnT51XPmJMUVlq1r8ROcvrGrxrV/op92ovvn0Sd3wr0frE738k1/o3aqr+NSdOnP3nMbDttY/OafzSx/ptZ/asr7+nB6cvLFz0ln5nX728zdV7kY1fuJTuuf4pOLdihbOf6BLl97Qz3/m6itfe1wz0aH+UWDA2KECAIezUmlqdiLp9TNwBAQqAEZBsdZSIcM3AIKMQGUHK32PHn1kRWnrHj18/3FlbmihPKy/Pv2ifvRP76vy/ht6/+wJnZ3Ybo70tPrHV/V+1VF07gl95csPKbcdgJx9QHe99A964d1F/eG1czr9xXt1tXDibuqdV99SuRvW9Nkv6atPHbsa0px98Ixe//GP9WbpLf3m7TP6+kOToqcSHOl4RJYl1VpdZRL8qwgA+7Vcaenhk5NePwNHkM/EVKqxQwVAcPUcV5tbHU2nY14/BQPEeo6bRFQ4+4w+9+DOMEWSLI3dcb9OT4Sk3pqKa9eGetRb1gfnK3Kscd372IPXwhRJspI6+djDOhmT7Evv6lzl2hiRs35e50o9WYm79Mhnjt3YeInN6OHH7tGY1VPxvfdUdISAmZ8c0+IGp5MB4CBYSut/NFQABB0LaUcDgcqBWQpZV/7/dX96zsaSlrdcWWPHdWpml+UqyZO6czYiOWVdWmjocqTiamtpSRuOFDl2Ssd3+fcteuyUTsQtubUFXdwgUQma49mkFrj0AwAHwlJa/yNQARB0xWpLBfZ9BR6BygH1yh/p44ojRWd1LH/tj6+7sa6qI4Um85raJU+R4prOZRSSo7XS+pWFta421jfkKqSJ3JR2XZESnlZu0pKcisprnUH8LcFDLKYFgINbrjQ1xw4VX8tl4irXCFQABBcXfkYDgcp+uR1VL76pf/qnP2rNTWj+0cd1z7VFKNqqb8mRFEmltHuxK6SxdEqWXHXqdV3+EqKjRr0tV5ZSqdTu+1GspFJjYUmOGrXtZguC4lg2qSUaKgCwb1vtnnqOy+4pn8ulYyrX2aECILgY+RkNfDWyF7euD1/+td7ZcOT2bDUqm6q1w8rM3KPHn35ED962Y9E+AAAgAElEQVQxft0fnqtOuy3JUjQW3XNxbCx2uYPitm21XWlMbbU7rqSworG9/lGEFItFZKkr227LlVhMGyDz2aT+vLDp9TMAwDcY9wmGfDquEiM/AAKMhspoIFDZU1e18pKWVq/bWxKKyO1uqVIqqjKb0XT8WrThOI5cSaHQ3qWfqz/mOldGfhw5jrRzH8tNPy8cuvp7HMSvf/3rm/7aM888c6BfA4PF6WQAOBjGfYIhFY+o23Nkdx3FIxSmAQTPatXWI6e4SBd0BCp7sSb04H/9vO5zXLlOR3ajqvXVizr39rv64PeX9OH5Rf2br35Op8Yuf3goHJYlyentHXr0er3tD9blNSthhcOS5OgWP+3qzwuHd13OsifCE/PNZ5NaZOQHAPaNhkpwbO9RmZ8kIAMQPMVaS4UMn6+Cjm8J7MlSOBpTPB5XIpnWRO6Y7rz/CT37za/o0ZmIupvv6TdvLql35WMTibgkV23b3mPPiat2+8rITjyumCXJiikRt678vL3miHtq2125shRPxBn3CZh8Jq7NrY46t0rUAABXcTI5OLj0AyDIVqu2ZsbZoRJ0BCoHFcnpr+6dVViu6ktL2nQlyVIyk1ZUUrdRV3PXRMW9slTWUjydubK4NqJ05vKi2katoV3/k9ptqNZwJIWvfCyChpYKAOwfgUpwsEcFQJDRUBkNBCqHEIlcmZTqddW7Ep6EcwVNhSR3vaRyb5ef5G6pVKrLVUhT+akrf/AhTRWmFZGjaqmsXb+k6KyptOFIoQnlppjQCiJOJwPA/q1Um5odZ0QkCLj0AyCoeo6rza2OptMxr5+CASNQObCOVpZKciSFs5Mav/InaKVP6o5cSK59UR9duvmLA7f+sS6s9qRQTifmr30hGJ+/Q3NRqbt8QR9v3fy7tS5e0EJHCo2f0Iks/ZQgoqECAPvHDpXg2N6hAgBBQztldBCo7NBZPa93L23K3nX+pqvNcy/rlQ8acq2kTp25Q1f/NbEmdOb+E4q7TZ1//be6uHXd3E9vU++98oaWu5biJ+/XmYnrgpGxu3T/6ZSsziX94ZVzql73+zr1C3r19b/IdiMq3Hev8vzTCiQaKgCwf4z8BAc7VAAEVbFqq8D+lJHADMkO3fVzeuXFX+jl+LjyhbwmJ1JKRCx1W3VtrC5qeaMlR1FN3f+Mnrrr+i/oLKXOPKXHPlzVK5fe0Qv/aVnzJ2c1HrG1vnhRK9WOlLxDTz51j8Zu+B3juuOxp3R64Zf68MKv9J/L7+nksUnFuxUtXVzUpi3FZh/RZz+dZX9KQM1nk/rtR2tePwMAjNfpOaq1uppKUaEOglw6rj98vO71MwCg71arLc2ME/6PAgKVHWJzn9IDd7X04aWSVi9VtXrpuh+0okrP3K1Pnf2MHjo9pejOnxzK6tPPfkWR117W795f1qXz218kRJSef0BPfPZx3TNxc83ESt2tL3w1pMxLr+nthSVdqCxd/oHwmGbufUR/+9T9yh3sYjJ8hJEfANjdwpX23nd+9GdJ0rnVulxX+g/f/50k6bvfeECSNDfBThU/yqdjKrFDBUAAFWu2ChkaKqOAQGWHcPZuPfns3XrS6ahZr6nebKvrSOFoQqnxcaVit5m7iU7r3qe/pk892dDGRk1tN6zE+KSyyVv/UYfH79ITz92lR5qb2qg05YQTSmezSkXppQQdIz8AsD89x1U4xOfFoGCHCoCgoqEyOghU9hKKKjk+peT44X66FU1pqpA68M+LJLPKJ7OH+03hSzRUAOBG282U5/7+JUnSZrN7w4+/+EFJkvTF770sSXrhW09LErtVfGY6Fddag0AFgL/tbFN+VGpovdHW8amk3vhknTZlwLHmFPBYOGQpn45rpdry+ikAAAxNdiyqequrruPe/oMBwEd6jqt4hP/UHgU0VAADHMsmtbTZ1CzVQAC4+l2+nc2UnTabHUnSt3/4liTpB88/PtiHoe+2L/3w+Q+A39yuTfmnhYok2pRBR6ACGGB7j8rDJye9fgoA3GC3KrMknb4y1kqVGUexvUeFQAUA4EcEKoABjmeTWmCPCgBIuhba7NeF4taAXoJBy6VjKnPpB4AP0aaERKACGGF+Mqn3V2pePwMArrpdlfnSxuUQYxBVZsd11emxV2MUbI/8AADgRwQqgAGOZZP61ftFr58BAENVrNn6sFjX+dWaPizVdX61rg+LdW0220rFwvv+de6eSQ/wlRikfDquEoEKAB+iTQmJQAUwwvYOFQAwRT+rzAsbzcvBSbF2JUCp68NSXYlISHcX0rpnJqMzhYy+/MCc7i6k9T/935d/re3zyAiuXCauJUZeAQA+RaACGIAdKgCCYKvd0z+/s6LzxfqVAOXy/8+lY5eDk0JGD5+c1L979ITuzqc1nozu+utsL7rdHifaDm12yiYvfxnzd998YAB/NxiGXDquPy1sev0MADiw7eXs2yOwt0ObMpgIVAADpOIRRUKWKs2OJvb4DwwAGKaDVplf/KCsSCik/2dsUfcU0nr6TF7/w9/eqbsLaSWi+x/fwWiZTse0xlJaAIBPEagAhjiWTWpps0mgAsCXTkyOSZL+93//mSP/WtsnmLcX3W6PE23Pn29/l2+7mVLIcHLXr1hKC8CvaFNCIlABjHF8MqmFjab+am7c66cAAFVmDAVLaQEAfkagAhhiPpvUIntUAOCq7RPMuy26RTAw8gPAr/ZqU/72woYyiYg+fXxCEm3KoCNQAQzBpR8AJqHKjGHZHvvJpeNePwUAjsxxXYVCltfPwJAQqACGmM8m9a8XuXQAABgtuUxc5RqBCgB/2tmmfPK7v9IP/8cnrzZYEGwEKoAhGPkBYJK9qswvnVvT3ERCZ2Yzkqgy4+jy6ZhK9bbu9fohANAH6w1bUykC4lER8voBAC5j5AeA6VxXcl1XIYsqM/qHSz8AgqJhdxUJhxSP8J/Zo4KGCmCIXDquaqujdtdRjP8RBmCI66vMy5WWvvG//UYv/8/PePwqBAmBCoCgWGu0NZ2Kef0MDBH/1QYYhLEfACYr1WzlM9SY0V/bO1QAwO/WG21NEaiMFAIVwCAEKgBMVqy12JWCvsulYio3OJ0MwP/W6m1NpwlURgmBCmAQ9qgAMBkNFQwCDRUAQcFC2tFDoAIYhIYKAJMRqGAQ2KECICjKjbZyjPyMFAIVwCA0VACYrFizVSBQQZ/l0jGV64z8APC/9XpbU4z8jBQCFcAgx7NJLdBQAWAoGioYBBoqAIKCpbSjh0AFMMixbFJLBCoADEWggkEIhyyNJ6La2KKlAsDf1hq2ptmhMlIIVACDMPIDwGSluq18mi8U0X+M/QAIAhoqo4dABTBIyLI0Mx7XcqXl9VMA4CbFakuFcc4mo/+49AMgCMr1tnLsUBkpBCqAYbj0A8BEtVZXsUhI8QhfOqD/2KMCIAhoqIwevioCDMMeFQAmYn8KBimfjqtEoALAx7baPYUsKRENe/0UDBGBCmAY9qgAMFGx1lIhw7gPBmM6HdMaO1QA+BjtlNFEoAIY5vhkUgsEKgAMQ0MFg8TIDwC/48LPaCJQAQwznx3T4uaW188AgBsQqGCQCFQA+N1ava1pFtKOHAIVwDCM/AAwUbFmq0CgggHJZWIq1xj5AeBfjPyMJgIVwDDHsgktbXI2GYBZaKhgkFhKC8Dv1hptTROojBwCFcAwqVhE0Yilza2O108BgKtoqGCQGPkB4HfrdVtTaT5PjhoCFcBA89mkFjmdDMAgpbqtPF8oYkBikZDikZBqra7XTwGAQ6GhMpoIVAADzU+OaXGDxbQAzFGstlQY52wyBoeWCgA/YyntaCJQAQw0n01okT0qAAzhuK42tzos28NA5TNxlWoEKgD8iaW0o4lABTAQIz8ATMJCWgwDDRUAfrbWsDWd4nPlqCFQAQzEyA8Ak7CQFsMwnY5prc7pZAD+RENlNBGoAAaioQLAJDRUMAw0VAD4VavTk+NKY7Gw10/BkBGoAAYiUAFgEgIVDEM+HVeJQAWAD7GQdnQRqAAGmk7HVG91ZXcdr58CAAQqGIpcOqYyIz8AfIiTyaOLQAUw1PxkUosbtFQAeK9Ya6mQ4WQyBiuXiavMlR8APsT+lNFFoAIYaj47psVNFtMC8B4NFQwDO1QA+BUXfkYXgQpgqOOTSS3QUAFgAAIVDAOBCgC/oqEyughUAEMdyya1xGJaAAbgbDKGYfs6xla75/FLAOBgWEo7ughUAENx6QeAKWioYFhoqQDwI5bSji4CFcBQjPwAMEHD7ioUspSMhr1+CkYAgQoAP1pv2Jpih8pIIlABDEVDBYAJGPfBME2nY1rjdDIAn2HkZ3QRqACGYocKABMw7oNhyqfjKtFQAeAzLKUdXQQqgKEsS5odT2q5QqgCwDs0VDBMuUxc5RqBCgB/oaEyughUAIOxRwWA12ioYJjYoQLAb+yuo67jKBWLeP0UeIB/6oDB5ieTWtxo6tFTXr8EwKgq1loqZBJePwMBtv2Ng+/86M8q1Wx9XN7Sr98v6XQhJUn67jcekCTNTSQ9eyMA7IWFtKONhgpgMBbTAvAaDRUMUywSUs91vX4GAOwb4z6jjYYKYLD5bFJvL1W8fgaAEUaggkHZbqY89/cvSZI2m92rP3ZpY0uXNrYkSV/83suSpBe+9bQkaW6CxhQAc7CQdrTRUAEMtj3yAwBeKdVt5dMEKgAA7KZcbytHQ2Vk0VABDMbIDwCvFau2CuMEKui/7/zoz5JubKbsZrPZkSR9+4dvSZJ+8Pzjg30YABwAO1RGGw0VwGA0VAB4rVy3laOhAgDArtYabU0z8jOyaKgABktGw0pEw9rYamtyjP+hBjBc7E/BIH1Uahzo4y8Utwb0EgA4vPVGW6emU14/Ax6hoQIYjpYKAK8Ua7YKBCoAAOyJpbSjjUAFMBx7VAB4hYYKBul0IaXThf1/V/fumbTunkkP8EUAcHCcTR5tBCqA4WioAPBKqdZSPsOJWgAA9rLWsDXNUtqRxQ4VwHA0VAB4hYYKBum733hAkvTF770s6do1n52yyctfrv7dNx8YzsMA4ABoqIw2GiqA4QhUAHiFHSoAAOyt03Nkdx2l4/QURhX/5AHDMfIDwCulmq1H75zy+hkIqLmJpCTphW89LUn69g/fkiS9u1RXpdnRU3dPS7rWTCkwfgbAMJxMBg0VwHA0VAB4pVS3lU/TUMFwhUOWeo7r9TMA4LbW621NMe4z0mioAIabSsXUbPfU7PSUjIa9fg6AEVKs2iqME6hgsOYmLjdPfvD845Kkht3VY//rL/X9//Col88CgNtiIS1oqAA+cCyb1BItFQBDxlJaeCEVj8hxXDU7Pa+fAgC3xEJaEKgAPsAeFQDDttXuyZWrVIwyK4Yvn4mrVLO9fgYA3NJ6o60pdqiMNAIVwAeOZ5NaoKECYIhop8BLBCoA/ICltCBQAXyAhgqAYSvWWlxVgWcIVAD4AQ0VEKgAPsAOFQDDRkMFXsql4yrXCVQAmK1ct5XjGt5II1ABfIDTyQCGjUAFXqKhAsAPaKiAQAXwgeOTSS0w8gNgiIo1WwUCFXiEQAWAHxCogEAF8AFGfgAMGw0VeCmfjqvEyA8Aw7GUFgQqgE+wmBbAMBGowEuFTFxFGioADNZ1XG3ZXY0no14/BR4iUAF8gj0qAIaJKz/wEktpAZhurW5rmoW0I49ABfAJAhUAw0RDBV5ihwoA07E/BRKBCuAbjPwAGKZS3Vae77zBI7FISIloWNVmx+unAMCu2J8CiUAF8A0aKgCGZa1++btuluX1SzDKWEwLwGQ0VCARqAC+QaACYFjYnwITMPYDwGRr9bam0wQqo45ABfAJRn4ADAv7U2ACFtMCMNlaw9Z0is+Vo45ABfAJGioAhoVABSbgdDIAk63X25qioTLyCFQAn0hEwxqLhbXeaHv9FAABV6zZKhCowGOM/AAwGUtpIRGoAL5CSwXAMNBQgQkIVACYjKW0kAhUAF9hjwqAYaChAhOwQwWAydihAolABfAVGioAhqFUt5VP80UivEVDBYDJuPIDiUAF8BUaKgCGoVhtqTDO2WR4i0AFgKl6jqu63dVEMur1U+AxAhXAR45nk1qgoQJgwNihAhPk03GVGPkBYCD2p2AbgQrgI8eySS0RqAAYoFanp67jKh2PeP0UjDjLkqZSMa3VuW4HwCxc+ME2AhXARxj5ATBoLKSFSWipADARDRVsI1ABfGRyLCa729NWu+f1UwAEFOM+MAl7VACYaK1ua5rl7RCBCuA7XPoBMEgEKjAJgQoAEzHyg20EKoDPsEcFwCARqMAkjPwAMBEjP9hGoAL4DHtUAAxSsdZSIcPJZJiBhgoAE63V25pOE6iAQAXwHU4nAxgkGiowSS4dV5mGCgDDrDdsTaX4XAkCFcB35ifHtLix5fUzAARUqW4rz6I9GIKGCgATsUMF2whUAJ9h5AfAIBWrtgrjBCowA4EKABMx8oNtBCqAz8xnE1rcbHn9DAABxcgPTEKgAsBELKXFNgIVwGfmJpJaqTblul6/BEAQMfIDk0yOxVRrddR1+KQHwAyuK20225ocI1ABgQrgS/PZpBZZTAugz9YbbU0kowqHLK+fAlzFYloAJqGdgusRqAA+xGJaAINQrNkqMO4DwzD2A8Ak5YatHBd+cAWBCuBD7FEBMAjsT4GJCFQAmGS93tYUC2lxBYEK4EOM/AAYBAIVmIhABYBJOJmM6xGoAD7EyA+AQSjWWipkEl4/A7gBgQoAk7BDBdcjUAF8iIYKgEGgoQITsZQWgEnWG7am2KGCKwhUAB86PpnUwgaBCoD+IlCBiWioADBJud5Wjh0quIJABfChY9mklmioAOizUt1WPk2gArPk03GVaKgAMAQjP7gegQrgQ/FISOlERGv1ttdPARAgxaqtwjiBCsxCQwWASVhKi+sRqAA+dTw7poVNFtMC6B8aKjBRIRNXkUAFgCHW67am+FyJKwhUAJ+an0xqkT0qAPqk3XXU6vQ0nox6/RTgBql4RD3HVavT8/opAEBDBTcgUAF8ij0qAPqpWLNVYCEtDMXYDwBTsEMF1yNQAXyK08kA+okLPzAZi2kBmIAwBTsRqAA+xelkAP1UqrWUzyS8fgawKxoqAEzAuA92IlABfIqGCoB+YuQHJsul4yrTUAHgMRbSYicCFcCn2KECoJ8Y+YHJaKgAMAENFexEoAL4VHYsqk7XVaPd9fopAAKAQAUm43QyABOs1duaThOo4BoCFcDHOJ0MoF9KdVt5aswwFA0VACagoYKdCFQAH2OPCoB+KVZtFcYJVGAmAhUAJlhv2JpK8bkS1xCoAD5GQwVAv7CUFiZjKS0AE3A2GTsRqAA+RkMFQL+U6i3l05xNhploqAAwASM/2IlABfAxGioA+mFjq61MPKpI2PL6KcCu4pGQYpGQai0WsQPwDktpsROBCuBjNFQA9AMXfuAHtFQAeG2tYWuaHSq4DoEK4GM0VAD0A4EK/CCfSahUa3n9DAAjjB0q2IlABfCx2fGEijVbjut6/RQAPkagAj/Ip2Mq1dtePwPAiNrYaiubjMliOhbXIVABfI6WCoCj4sIP/ICRHwBeop2C3RCoAD7HHhUAR0VDBX6QT8dV4nQyAI+wkBa7IVABfI6GCoCjKtVt5dMEKjAbDRUAXuJkMnYT8foBZuuqsVbSerWhVi+keHpS+fykkuHb/byettZWtLpek92LKJnNa3ZmQvHbzds5LW2srKhcbaoXTmg8N6fZyQSpF27peDapBRoqAI6gWG2pMJ7w+hnALbGUFoCX1hu2prjwgx0IVHbj1LX07hv6/R/Pa7nW0fXrPkOJnO5+5Gn9zQMz2u1LT6dyQa/+8mW9s9qUc/WvWopm79SjX/i8zs7s9i+hq8al3+tXL/5RC/XedX89osyJs/rcM4/qRIrtR9jdsWxSb17c8PoZAHyMkR/4QS4dU5mltAA8wsgPdkOgslOvqDd//BP9bsWWG0mpcOc9ms+NKx5qq7r8kT68VNa5V/5Rlc7X9NWHc7qhrNL6RC//5Bd6t+oqPnWnztw9p/GwrfVPzun80kd67ae2rK8/pwcnb+ycdFZ+p5/9/E2Vu1GNn/iU7jk+qXi3ooXzH+jSpTf085+5+srXHtdMdKh/EvCJ+cmk/vGtJa+fAcDHGPmBHzDyA8BL6422TuVSXj8DhiFQ2Sk8rTvuLOhC8pie+JuzOpG5PjJ5RA/+6Wf60asLWv3jG/ro/md1z9WvP3ta/eOrer/qKDr3hL7y5YeU2w5Azj6gu176B73w7qL+8No5nf7ivbpaOHE39c6rb6ncDWv67Jf01aeOafuXPPvgGb3+4x/rzdJb+s3bZ/T1hyZFTwU7sZQWwFF0e67qdlfZMVJ7mI1ABYCXyvW2Hjk16fUzYBjWc9wkrOm/fk7/9r96eEeYcvnHJu97UKfiltQuamXt2lCPesv64HxFjjWuex978FqYIklWUicfe1gnY5J96V2dq1wbInLWz+tcqScrcZce+cy1MEWSFJvRw4/dozGrp+J776noCLjJ8cmkFlhKC+CQirWWChn2p8B8IctSdiyq9QZjPwCGjx0q2A2BykGFEkrGJamn3nXrTpyNJS1vubLGjuvUzC5ba5MndedsRHLKurTQuLKXxdXW0pI2HCly7JSO7/LvZ/TYKZ2IW3JrC7q4QaKCm0XDIU0koypzShLAIbA/BX5SyMRVpKUCwAPrjbamuPKDHQhUDqpbV63pSlZa45lrAzjdjXVVHSk0mdfUrleA4prOZRSSo7XS+pWFta421jfkKqSJ3JR2LVuHp5WbtCSnovJaZxB/RwgATicDOKxizVaBQAU+kUvH+QYCAE9wNhm7IVA5oOYn57XQkUJTd+qOiauLULRV35IjKZJKafcvS0MaS6dkyVWnXtflLwU6atTbcmUplUrtvh/FSio1FpbkqFFr3HBxCNjG6WQAh0VDBX7CHhUAXqGhgt0QqBxE66Je/90nspXS3Z+5T9NXExBXnXZbkqVoLLrn4thY7HIHxW3baruS3LbaHVdSSNHYXvuBQ4rFIrLkyrbbBCrYFQ0VAIdFQwV+QqACwAubWx1lEhGFQ5wIwY248rNfvQ29/ctf6f2qNH7vZ/XUXckbfthxHLmSQqG9M6qrP+Y6V0Z+HDmOJFm6xU9TKBy6+nscxPe///09f+z5558/0K8Fsx3LJvVxueH1MwD4UKlm675jGa+fAexLPhNXsUqgAmC4aKdgLwQq++FUdf7XP9NvLrYUn39Sz372TiV3fEgoHJYlyentHXr0trfYhsK6vGYlrHBYkhzd4qdd/Xnh8K7LWfZEaDI65rNJ/ebDstfPAOBDpbqtfDrn9TOAfcmn43pnqer1MwCMmLWGrWku/GAXjPzcjlPXhX/5qX59vqZI4SE9++xZ5W6KoSwlEnFJrtq2vcdYjqt2+/LIjhWPK2ZJsmJKxK0rP2+vE4A9te2uXFmKJ+J7jhNhtHE6GcBhFastFcY5mwx/yGXiKjPyA2DIaKhgLwQqt+LW9dFL/6hfvr+pUP6snv3S4zq2azBpKZlJKyqp26iruWui4l5ZKmspns5cWVwbUTpzeVFto9bQriUVt6Faw5EUvvKxwM3ms0ktspQWwCFcbqjwXTf4AztUAHiBCz/YC4HKXtyG/vLST/TL9yoKzzysLz33pI7vnPO5TjhX0FRIctdLKvd2+/W2VCrV5SqkqfzUlT/4kKYK04rIUbVU1q5fHnTWVNpwpNCEclNMaGF348moHMdV3e56/RQAPsOVH/hJPh1XibPJAIZsrd7WdJpABTcjUNmNu6WPX/6JfvHupsKzn9GXvvy4jt2mDW2lT+qOXEiufVEfXbp5fMetf6wLqz0plNOJ+WvJTHz+Ds1Fpe7yBX28dfOv27p44fKZ5vETOpGln4K90VIBcFCVZkfJaFixCF8OwB+mUjFVmh31HO4eAhie9YatKXaoYBd8BbWTu6WLr/xE/+WdDUWOPaYvf/lRze3n3x1rQmfuP6G429T513+ri1vXfaLvbeq9V97QctdS/OT9OjNxXTAydpfuP52S1bmkP7xyTtXr5n6c+gW9+vpfZLsRFe67V3n+aeEWOJ0M4KBop8CPcum4yrRUAAwRDRXshRmSHXoXf6tfvL2mriR37U964f/6054fa0Xv0jP/7dM6Gfr/2bvzOLkLOs//77rv7uquqs6dQC7CkSBXAghBriCgqOAxjrgu6+yMK/NAVudYfq6jO8tvGWYeKh7rtcOCCg4/ZdBx5A5XghCuQEgI4UhCks7V1Ud1V1V33fX7o+kQoI+q7qr6Vn2/r+dfTtIJHzSZ+vb7+zkkyabA8rO1+s3DenLfK7r/roOat3C22pxZ9e/fq0NDecm3SGedvUz+d/0uHi1afbaWdD+iN3c+ql/3vqqFczvkKQzqwN79SmQl9+zTde5JYfanYFIEKgCqRaCCVjS2R2UWy5QBNAhLaTERApX3KhY0tgKlmB3RpN+eFnIqHt1xag/rpEuukPPpjXp2x0Hte6P/7Z9wKjhvpc48d42Wtb+/zcQWWKoLPmZXaMPT2tZ9QDsHD4z+hMOvWStO1zlnn6hodReTYUGM/ACoFgtp0YrYowKg0VhKi4kQqLyHY/E6/ef/MoPfwBXRirUf13FnpTUwkFSu7JC3rUNh3+T/VTvaFuvMjyzW6SMJDQyOqOTwKhgOK+CiLwWVmRf26ZUDQ0aXAaCFcDIZrYhLPwAarS+VVYQXEBgHgUqd2FwBdXYFqv51Tl9YMV+4DhXB7Bj5AVAtRn7QighUADQaIz+YCGtOAZNg5AdAtRj5QStiKS2ARhoaycvvccppZ3IA70egApjErDav+lJZFTglCaBCPUNZdbURqKC10KECoJHYn4LJEKgAJsLYD4BqMPKDVtQV8qiHQAVAgzDug8kQqAAmMjfs0wHGfgBUiJEftCI6VAA0EgtpMRkCFcBE2JzzafAAACAASURBVKMCoFLFUlmDI3neuqHlEKgAaCRGfjAZAhXAROZ3+NTNyA+ACvQks+pi3ActKOhxKl8sKVsoGV0KAAtg5AeTIVABTIQOFQCVYn8KWhldKgAahQ4VTIZABTARdqgAqBSBCloZgQqARqFDBZMhUAFMhCs/ACrVk8yoK+Q1ugxgWmIhr+LJjNFlALAAltJiMgQqgInMD/vVnRg2ugwALYAOFbSyWNCjeIoOFQD1x8gPJkOgApiI02FTp9+tHtqgAUyBk8loZbGQW/FkzugyAFhAfyqnziCBCsZHoAKYDGM/ACrRM5RVVxuBCloTO1QANAodKpgMgQpgMlz6AVAJRn7Qyhj5AdAIqWxBHqddLgffNmN8/MkATIZABUAlGPlBK2MpLYBG6E1lFeWzEpMgUAFMZl6HX/sHWEwLYHJ0qKCVMfIDoBE4mYypEKgAJkOHCoCpJDMFuRw2eV0Oo0sBpiUadKs3xVJaAPXVl8opwkJaTIJABTCZeWGv9idogwYwMbpT0Oq8LoecdptS2YLRpQAwMTpUMBUCFcBkGPkBMJV4MqNYyGt0GcCMMPYDoN4IVDAVAhXAZEJep6TRln4AGE9PMqsuOlTQ4ghUANQbS2kxFQIVwIToUgEwGUZ+YAZdIY96CFQA1BEdKpgKgQpgQuxRATAZAhWYQTToUW+KQAVA/fSlc4oQqGASBCqACXHpB8BkelJZddHCjBbHyA+AeqNDBVMhUAFMiJEfAJPpGcqqq41ABa2NQAVAvXE2GVMhUAFMiA4VAJOJp7KK0aGCFkegAqDe+tJZRQJ8XmJiBCqACc3v8Kl7gEAFwPg4mwwzYIcKgHpKZwtyOexyO/mWGRPjTwdgQnPDPh2gQwXAOErlsgbSeVqY0fLoUAFQTyykRSUIVAAT6gp51D+cU6FYNroUAE2GCz8wi1jQozgdKgDqhIW0qASBCmBS88N+dSdYTAvg3QhUYBYOu03tPpf60zmjSwFgQiykRSUIVACTmtfh0372qAB4DxbSwkzoUgFQLyykRSUIVACTYo8KgPFwMhlmEg151MseFQB1wA4VVIJABTApTicDGA8jPzATFtMCqJf+VE6djPxgCgQqgElxOhnAeBj5gZkw8gOgXlhKi0oQqAAmRYcKgPH0DGXU1eY1ugygJuhQAVAv7FBBJQhUAJNiKS2A8TDyAzMhUAFQL1z5QSUIVACTYiktgPEw8gMziQY96mXkB0AdsJQWlSBQAUzKabcpEvTo8FDG6FIANBE6VGAmdKgAqBd2qKASBCqAibFHBcDR0tmCbDab/G6H0aUANdEV8qiHQAVAjQ3nirLbJK+Lz0tMjkAFMDH2qAA4Wk8yqy66U2AinQG3EsN5lcplo0sBYCJ0p6BSBCqAidGhAuBojPvAjBj7AVBrfamsIuwbQwUIVAATI1ABcDQ6VGBG0aBbvamc0WUAMBEW0qJSBCqAiTHyA+BodKjAjOhQAVBrjPygUgQqgIkRqAA4GieTYUaxkFfxJBftANQOHSqoFIEKYGKM/AA4Gh0qMCM6VADUWn8qq05eQKACBCqAiQU9TtntNg2N5I0uBUAT6BnKqKvNa3QZQE3Fgh7FUwQqAGqnN51TlA4VVIBABTA5ulQAjGHkB2YUC7kVT7KUFkDt9Kdy6gwSqGBqBCqAyc3v8KmbPSoAxMgPzIkOFQC1xlJaVIpABTA5OlQAjCFQgRmxlBZArfWls4oE+LzE1AhUAJObG/bpAIEKYHmEKTArltICqDU6VFApAhXA5DidDEAiUIF5hbxO5QolZQslo0sBYAIj+aLKZcnvdhhdCloAgQpgcvPDPnXToQJYHgtpYWbRkEe9dKkAqAEW0qIaBCqAydGhAkDiZDLMjcW0AGqlL51ThHEfVIhABTC5aNCjwZG88kVaoQErY+QHZsYeFQC1wv4UVINABbAATicDYOQHZkagAqBWuPCDahCoABbA6WQAPUNZdbXxgAhzYuQHQK30pXKKsEMFFSJQASyAPSoA6FCBmdGhAqBWGPlBNQhUAAugQwUAO1RgZgQqAGqFpbSoBoEKYAEEKgAY+YGZEagAqJX+dFad7FBBhQhUAAtg5AewtuFcUWWVFXA7jS4FqAt2qACoFXaooBo8WQEmNXbV5+u/3apMvqgX9iR07s2PaUlXQJJ005UrJUlz2n2G1QigMRj3gdlFQx710qECoAYY+UE16FABLMDjcqhQKhldBgCDsJAWZudzOWS325TOFowuBUCL60/l1EmHCipEhwpgMmOdKR/5/gZJUmLknYfLfQPD2jcwLEm69JaNkqT7r18rSZrT7m1kmQAaqGcoo642/o7D3LpCHvUkszrWw+MtgOnJFkoqlEqMyKJidKgAAGByjPzAClhMC2CmWEiLahG9ASbz9d9ulfTuzpTxJEbykqQb7tkiSbr9mjX1LQyAYRj5gRWwmBbATLGQFtWiQwUAAJPjZDKsgMW0AGaKhbSoFh0qgMnsiqer+vqdPcN1qgRAs2DkB1ZAhwqAmaJDBdWiQwUAAJNj5AdWwA4VADPFDhVUiw4VwGSWdAUk6cg1n6ksnRWsZzkAmgAdKrACAhUAM8XID6pFhwoAACbXk8yoK8TZZJgbgQqAmepP59RJoIIq0KECmMxNV66UJF16y0ZJ71zzea+wb/Sv/81XrWxMYQAM0ZcafTi02YyuBKivaNCjXnaoAJgBdqigWnSoAABgYvFkRjG6U2ABdKgAmKm+dFYRdqigCnSoACYzp90nSbr/+rWSpBvu2SJp9JpP98CIzl0elcNuO9KZwhgAYG49yay62J8CC3DabQp5XRoYzqnDzxtmANVj5AfVokMFsBCHXcoXS0aXAaCBWEgLK6FLBcBMMPKDatGhApjUnPbRzpPbr1lz5Mcu//5G/ffLT9CJc9uMKgtAg/WksuriZDIsYixQWT4rZHQpAFpMvlhStlBS0MO3yKgcHSqAhXT43RoYzhldBoAGokMFVhINutWb4nMOQPV6UzlF6U5BlQhUAAsJ+11KDI9/9QeAOfUMZdXVRqACa4iFvIonM0aXAaAFsT8F00GgAlhI2O9Wgg4VwFLiqaxijPzAItihAmC6+tNZdXLhB1UiUAEshA4VwHo4mwwriQU9iqcIVABUj4W0mA4CFcBC2KECWA8jP7ASOlQATBcjP5gOAhXAQsI+lxIjdKgAVpHJF1UolblYAMuIBd2Ks5QWwDT0pnOKEqigSgQqgIWwQwWwFi78wGpYSgtguvpTWXWycwxVIlABLIQdKoC1sJAWVhMJutWfzqlcNroSAK2mL51ThA4VVIlABbAQdqgA1sL+FFgRi2kBTAc7VDAdBCqAhdChAlgLIz+womjIo14W0wKoEoEKpoNABbCQdp9LgyylBSyDkR9YER0qAKajN5VVlM9MVIlABbAQh90mv9uhZKZgdCkAGqBnKKOuNq/RZQANxelkANUqFMsayRcV8nIVD9UhUAEshks/gHXQoQIrIlABUK2+dFaRAJ+XqB6BCmAxHX6XBtijAlgCO1RgRQQqAKrF/hRMF4EKYDHtPrcGR+hQAayAQAVWxA4VANXiZDKmi0AFsBg6VADr6Elm1UWgAouhQwVAtfpSOUWCBCqoHoEKYDGcTgasoT+dU7vPJYfdZnQpQEMRqACoFjtUMF0EKoDFdPjdGmApLWB6LKSFVTHyA6Ba7FDBdBGoABbT7ndpkA4VwPR6hrLqaiNQgfW0+VzK5IvKFUpGlwKgRfSncupk5AfTQKACWAwdKoA1sJAWVhYNetRLlwqACrGUFtNFoAJYDDtUAGtg5AdWxh4VANXoS2UV4TMT00CgAlgMHSqANfQMZdTV5jW6DMAQXSGPeghUAFSIDhVMF4EKYDHtPpcGR+hQAcyOkR9YGYtpAVSDpbSYLgIVwGLoUAGsgZEfWBkjPwAqVSyVlcoW1O5zGV0KWhCBCmAx7FABrIEOFVgZS2kBVIruFMwEgQpgQYQqgPn1JLPqIlCBRdGhAqBSLKTFTBCoABYU9rmVGGHsBzCrXKGkTL6oNtqXYVEEKgAqxUJazASBCmBBdKgA5sa4D6yOQAVApRj5wUwQqAAWRKACmBvjPrA6AhUAlaJDBTNBoAJYEJd+AHOLJzOKhbxGlwEYxudyyG6zKZ0rGF0KgCZHhwpmgkAFsCA6VABz42QyQJcKgMr0prKK8pmJaSJQASyo3efWIEtpAdNihwpAoAKgMnSoYCYIVAAL6vC7NECHCmBaPUNZdbURqMDaCFQAVIJABTNBoAJYUNjvVoIdKoBpMfIDEKgAqExfKqdIkEAF00OgAlgQHSqAuXHlB5CiQY96UwQqACZHhwpmgkAFsKB2v0uDBCqAaTHyA9ChAmBqpXJZgyN5dfgJVDA9BCqABXE2GTC3eCqjWJCzybC2WNCjOB0qACZBdwpmikAFsKCwz6XECB0qgBklhvMKepxyOmxGlwIYig4VAFPpS+cUIVDBDBCoABbU5nMplSmoVC4bXQqAGmMhLTAqFnIrnqQbE8DE+lM5dbKQFjNAoAJYVNjvUoI9KoDp9Axl1NXGuA8QC3oVT2WMLgNAE6NDBTNFoAJYFIEKYE7xZFYxLvwAcjpsCnqcfNYBmFBfKqsIXZ2YAQIVwKLCPrcSI7RCA2bDyA/wDhbTApgMS2kxUwQqgEV1BFwaSPPWDjAbTiYD72AxLYDJMPKDmSJQASyKDhXAnOhQAd4RDXrUS4cKgAnQoYKZIlABLIodKoA5sUMFeAcdKgAmQ4cKZopABbCosN+txDAdKoDZEKgA7yBQATAZltJipghUAIvq8Ls0QIcKYDo9yYy6QpxNBiQCFQCTY+QHM0WgAlgUIz+A+RSKZaWyBYX9LqNLAZpCV8ijHgIVABMgUMFMEagAFsXID2A+8VRGsSDdKcAYltICmAhhCmqBQAWwqLDPpcQIHSqAmXAyGXg3Rn4ATISFtKgFAhXAojr8bg3QoQKYSk8yqy4W0gJH0KECYCIspEUtEKgAFsUOFcB84qmsYjwcAu9ClwqA8dChglogUAEsKuBxKpsvqlAqG10KgBrhZDLwfgQqAMbTn8qpM0iggpkhUAEsjMW0gLmwQwV4P8Z+AIyHDhXUAoEKYGGM/QDmwsgP8H50qAAYT386q84An5mYGafRBbSGknLDaWWLTnmDPrlsU319UcN9h3S4P6ls0SlfOKbZs9rlmerXlTIaOHRIvUMjKjq8aovO0ewOL6kX6obFtIC5xJMZxUKcTQaO1hX0qIcOFQDv0ZfKac1iOlQwMwQqUykNq/uF9Xpk834N2xbq/C9crhWTBJmlwZ166pGNeuXwiEpHftQmV/hYnXHBh3TyrPF+cVnpfc/p0cdfUneqeNSPOxVacLLOO/8MLQhMmeIAVaNDBTAXrvwA7xcLedSdGDG6DABNhpEf1AKByiTKIwf04qOP6Lm9qdFwxDHFL8js0cY/rNf2obI8ncdq+dI5anNk1b/ndb1xYJeevjcr2yc+olUd7+45yR96Vvc9sFm9BZfaFhynZfM75CkMqvuN17Rv3wt64L6yrvj4Gs1y1evfFFbFDhXAXFhKC7xfLOTRi/sSRpcBoMn0p3PqJFDBDBGojKuszOGX9djDz+itpF2R40+Qb9er6i5M9muKOvzSU9oxVJJrzpm64vJTFB0LQE5eqcUbfqf7t+/X80+/riWXrtCRhpNyQq88tUW9BYciJ1+mj509V2OPwievWq5nfv97bY5v0R+3LdcnTukQfSqopbDPpcQIHSqAGQyN5OV1OeR2MigKHI2ltADG05fOKsIOFcwQT13jKA9u1YP//pTeSnu18MyP6mPnzJenOMVp2eJBvfbGoEq2Nq1YveqdMEWSbD4tXH2qFrql7L7ten3wnd+r1P+GXo8XZfMu1umnvROmSJLcs3Tq6mXy24rqefVV9ZQE1FSH36UBRn4AU2AhLTA+ltICGA8dKqgFApVx2NpXaM2px+vUD1+pS0+ZJY/KKk+Rp5QGDujgcFk2/3wdM2uc2SDfQh072ymVerWvO63R366s4QMHNFCSnHOP0fxxnoNdc4/RAo9N5WS39g6QqKC2GPkBzIOTycD4CFQAvFd/OqcOv1s22v8xQwQq43Jr9qkf0ppFwdH/gqYIUySpMNCvoZJk74ipc9xdKx5FoiHZVVJfvP/thbVlDfQPqCy72qOdGndFiiOiaIdNKg2qt49OAtQWS2kB86BDBRhfu8+l4VxR+SIvpgCMojsFtUKgUhNlDaeGVZLkDAQ0/uOsXf5gQDaVlU+lNPqeJK90KqeybAoEAuPvR7H5FPA7JJWUTqYryXaAitGhApgHC2mBidGlAuBoBCqoFQKVmigrn8tJssnldk24ONbtHu1BKeeyypUllXPK5cuS7HK5J9oPbJfb7ZRNZWWzOQIV1BQ7VADz6BnKqKvNa3QZQFOKBT2Ks5gWwNs4mYxa4cpPjZRKJZUl2e0TZ1RHfq5cenvkp6RSSZJsmuSXye6wH/lnVOOxxx5734+df/75Vf0eMDdGfgDziKeyOm52m9FlAE2JDhUAR+tPZ9XJhR/UAIFKjdgdDtkklSaZzy0Wi2NfrNE1Kw45HJJU0mRjvWO/zuEYdznLhAhPMBVGfgDzYOQHmBiBCoCj9aZyigbpUMHMMfJTEzZ5vR5JZeWy2QnGcsrK5UZHdmwej9w2STa3vB7b279uom9qi8plCyrLJo/XM+E4ETAdPpdDxXJZuQKL+oBWx5UfYGIEKgCOxg4V1AqBSk3Y5AsF5ZJUSKc0Mm6iUn57qaxNnmDo7cW1TgVDo4tq08m0xv2WtpxWMl2S5Hj7a4Ha6vC7NUCXCtDyuPIDTCwa9KiXHSoA3taXyilChwpqgEClRhzRLnXapXJ/XL3Fcb6gPKx4PKWy7OqMdb79X7xdnV0ROVXSULxX437M5/sUHyhJ9nZFO5nQQu2FfS4lRtijArSyYqmswZE8b9uACdChAuBo7FBBrRCo1IgtuFCLonaVs3u1a9/73/aXU29p5+GiZI9qwTzfkR/3zFukOS6pcHCn3hp+/++b2btT3XnJ3rZAC8L0p6D2wgG3Emk6VIBWRncKMDkCFQBHY+QHtUKgUiu2di0/cYE85RG98cwm7R0+au6nmNCrT76ggwWbPAtP1PL2o4IR/2KduCQgW36fnn/ydQ0dNfdTSu3UU8/sVrbsVNcJKxTjfy3UAR0qQOtjfwowOc4mAzgaS2lRK8yQ1IxNgeVna/Wbh/Xkvld0/10HNW/hbLU5s+rfv1eHhvKSb5HOOnuZ/O/6dR4tWn22lnQ/ojd3Pqpf976qhXM75CkM6sDe/UpkJffs03XuSWH2p6AuOvwuDXA6GWhpXPgBJkeHCoCj0aGCWiFQqSV7WCddcoWcT2/UszsOat8b/W//hFPBeSt15rlrtKz9/W0mtsBSXfAxu0Ibnta27gPaOXhg9Cccfs1acbrOOftERau7mAxUjNPJQOtj5AeYnN89+iA1nCse+c8ArCkxnFebzym7jdfVmDkClUq4luqSP19a4ddGtGLtx3XcWWkNDCSVKzvkbetQ2Df5f9WOtsU68yOLdfpIQgODIyo5vAqGwwq4+IuO+mr3uzRIhwrQ0nqGMupq8xpdBtDUxrpUFkX8U38xANOiOwW1RKBSJzZXQJ1dgap/ndMXVswXrkNFwPg6/G7t6U0bXQaAGYinslreFTK6DKCpje1RIVABrK0vnVWECz+oEdacAhbHUlqg9bFDBZgae1QASFJfKqcIC2lRIwQqgMWxlBZofQQqwNQIVABIjPygtghUAItr97s1yFJaoKX1JLPqIlABJhUNetTL6WTA8vrSOUUIVFAjBCqAxdGhArQ+OlSAqdGhAkCS+tNZdbJDBTVCoAJYHGeTgdaWyhbktNvkdXEKFpgMgQoAiR0qqC0CFcDiPE677DabRvJFo0sBMA09Q1l1tfGmDZgKgQoAiZEf1BaBCgCF/S4lGPsBWlI8mVEs5DW6DKDpdYU86iFQASyPQAW1RKACgLEfoIXFU1nFgnSoAFNhKS0ASepPZdXJ5yZqhEAFAB0qQAvjwg9QGZfDLr/bocERPu8AK+NsMmqJQAWAOvxuDdChArSk+FBWMXaoABVhjwpgbUMjefk9TjntNqNLgUkQqABQ2OdSgjd2QEvqSWXVResyUBECFcDa2J+CWiNQAaBwwK1Emg4VoBXFk1nFGPkBKhILehRnjwpgWQQqqDUCFQB0qAAtjB0qQOWiIY966VABLIuFtKg1AhUA6vC7NMBSWqAlcTYZqBwjP4C10aGCWiNQAcDZZKBFlcuj1woiQR4OgUp0BT3qYeQHsCwu/KDWCFQAcDYZaFHxVFYxWpeBitGhAlhbX4qXEKgtAhUAdKgALapnKKOuNsZ9gEpFgx710qECWFZfOqtIgBcRqB0CFQDsUAFaFB0qQHXoUAGsjZEf1BqBCgCFfW4lRuhQAVoNJ5OB6hCoANbGUlrUGoEKADkdNnkcDqVzBaNLAVCFnqGsutoIVIBqMPYDWFd/KqdOdqighghUAEiSwgGXEmnGfoBWwsgPUD26VADrokMFtUagAkCSFPa5lBghUAFaCSM/QPXoUAGsKZkpyOuyy+XgW2DUDn+aAEiSOvxuDXDpB2gpBCpA9bpCHvXQoQJYDhd+UA8EKgAkSWG/Swku/QAtpSeZUVeIs8lANRj5AayJCz+oBwIVAJKksN+tBB0qQEuhQwWoHoEKYE19qZwiLKRFjRGoAJBEhwrQatK5gmyyye92GF0K0FIIVABrokMF9UCgAkASO1SAVsPJZGB6WEoLWFNfKqsIl/FQYwQqACRx5QdoNYz7ANNDhwpgTZxMRj04jS4AQHNghwrQ3LoHRiRJX//tVknStv1DGskV9R9ve1aSdNOVKyVJc9p9xhQItIhY0KM4HSqA5fSnczppXrvRZcBk6FABIIkdKkCrKZXKsvMpDlQt7HcplS2oUCwbXQqABqJDBfVAhwoASexQAZrVWGfKR76/QZKUGCm86+cffy0uSbr0lo2SpPuvXytJmtPOOWVgIrGgV/FUho4uwEJYSot64N0WAEl0qAAArCMWciue5CUCYCUspUU90KECQBKBCtCsxnamvLcz5b3GlkrfcM8WSdLt16ypb2FAC2MxLWA9jPygHuhQASBJsttsCngcSmYm/6YNAIBWx2JawFrS2YJcDrvcTr79RW3RoQLgiLE9KiEv/68BaBa74umqvn5nz3CdKgHMgw4VwFroTkG9ENEBOIKxHwCAFcRCXsWTGaPLANAgLKRFvfAaGsARYb9bCS79AE1lSVdAkrRvoLLOk6WzgvUsBzCFaNCtTbv4vAOsojeVVZSFtKgDOlQAHBH2uY4stgQAwKwY+QGshQ4V1AsdKgCO6Ai4NZDmjR3QTG66cqUk6dJbNkrShKFn2Df6kX7zVSsbUxjQwghUAGthhwrqhQ4VAEfQoQIAsAICFcBa+lM5dQYJVFB7dKgAOKLd71J3/4jRZQA4ypx2nyTp/uvXSpJuuGeL+tM5vX4orVjIc2RnylhnSlfIa0yhQAsJuJ0qq6zhXFF+t8PocgDUWX86pxVzQkaXAROiQwXAEWNnkwE0t0KpLLvNZnQZQEuLBj3qTdGlAlgBS2lRL3SoADiCs8lA85rTPtp5cvs1a3TXc/v00t4B/cNVqwyuCmhdY2M/Czv9RpcCoM5YSot6oUMFwBF0qACtIZnJK+R1GV0G0NLYowJYB0tpUS8EKgCOaPe5NMhSWqDpJTMFhbw0mQIzQaACWAcdKqgXAhUAR9ChArSGVKagIIEKMCPsUAGsYThXlN0meV0soEbtEagAOIIdKkBrGMrk1cbIDzAjdKgA1tCXyirCQlrUCYEKgHchVAGaHyM/wMzFgh7F6VABTI9xH9RT0zyNlQsjGkoMamhoUEPDRbmDbWpvC6s9HJSH2AdomLDPrcRITmE/b7+BZpXKFhT0NM1HONCSukIe9dChApgeC2lRT8Y9jZVS2vP8Bm189kW9vHWrtr1xQMl8+T1fZJPd26ljjl+pVSd/QKef/SGdfXxEfJsH1M+RDpWI0ZUAmAhXfoCZY+QHsAY6VFBPjQ9U8nG9+Ptf6Pa7HtCLhzJ6d4Rik93lVcBnVy49rFyxrFKmT7tefFy7Xnxcv/v5DxVefoE+fc01+tQH58vb8OIB82PkB2h+jPwAM8dSWsAa6FBBPTXwaays1I7f6bs3/VTrd6dVkl3+OSfpjDNO0cqVK7XyhKWaFw0r5HeNLnYpF5VJDarv4Jva/vJWvfzyi3r+uW3a/9pD+tkNG3Tfuf9JN/zNZ7SqnXkgoJa49AM0PwIVYObcTru8LoeGRvJq89HxBZhVXyqrKEtpUScNexor996r//GV7+qZjF8LP/hZ/clnrtRFJ8+W1zbBL7A55A11al5oteYtX62LPymVs3G98thvdde//E4bN/5YXxv26Y5vf1yzyFSAmqFDBWh+jPwAtTG2mJZABTCvvnROx80KGV0GTKpxgUp+RJp/sa677sv6+MmRaf2DbZ6YTvrwn+vGiz+t7ff+TN/fMCK+7QNqK+x3K0GHCtC08sWSSmXJ4+RtAjBTY3tUlsSCRpcCoE76Uzl1Bhn5QX00LFCxBU/R5//2Ih2/vGPm/1BHWCdc8Tf64bqMyjxPAjUV9rm0qzdtdBkAJsC4D1A7LKYFzI+ltKinxnWopDbrp1/6ifYsOF3nX7xO6y46RyfN9mqiiZ9KOL2spQVqrSPg1sCeAaPLADABAhWgdsZGfgCYV186q0iAHSqoj8Y9kdmdctoLGtz1tH7306f1b//Hrzkrz9VFl6zTuvNO06I2R8NKATCxsM+lxAjDdECzSmULCnoIVIBaoEMFML++VE4RRn5QJw17IrPP+oT+6a7j9fSj6/Xw+ke1aUefDmx5UL/Y8qB+eUunlp95odatW6cLz1qhCH/eAcOwQwVo4XZ2ZAAAIABJREFUbiykBWonFvJoZzxldBkA6mQkX5Qk+Vy8vEd9NPAVl03u6PE679PH67xPX6t094t64uGHtX79Bm3e16/XNvxGr224Wz8KLdSp512kdesu1tqT58nPjhSgobjyAzQ3Rn6A2qFDBTA3FtKi3gx6IrMrMP80XXbNabrsmq+p/7Wn9cjDD2v9o5u0o3ePnvvDrXru3tv07a4T9MEL12nduvO1eknYqGIBS+nwuzVAhwrQtAhUgNphhwpgbn3pnCIspEUdNcETmUudx63Vp45bq099Oa3ulzbokfWP6JENm/XW4W165Ffb9Mi//EDhxWfogkuu0mc/s1qz6VoB6ibkdSqdLapULstum8naaAD1wMgPUDvRkEe9dKgApsWFH9RbEwQqR7EHNP/US/WFUy/VF746qD0vP6OnNz2lRx/coB07n9I9/+zSqk+s1myO+wB1NTb2wwcQ0HzoUAFqhw4VwNz6UllFglz4Qf005RNZOXNYrzz1uB7f8KQ2bd6ufYm8ypJsDmdzFgyYDIEK0LxS2YLCfjpUgFqw2aTOgJsrIIBJMfKDemuefKIwqF3PPab169dr/ZNbdWi4NBqi2L2KnXihLrp4ndZdsFpL6E4B6i7scysxkpMUMLoUAO8xlMlrYaff6DIA04iFvIonMwQqgAkx8oN6MzZQKWd0aNuTowtpH39OOwdGO1Fkcyi08Aydd/HFWnfxeTp5nl+sTQEapyPg0kCaSz9AM2LkB6itsbGfFUYXAqDm+tI5LYnxghD1Y8ATWUGDu5/X4w8/rIfXP6mth4ZVGk1R5O48TmdeuE7r1l2os1ZERJYIGOOdDhUAzSaVKShIoALUTCzkVjzJZx5gRv3prDoD7FBB/TTuiSzbrafu+Y3+7aHH9NzOAeXfDlHs/jk6+ZyLte6SdTr/tEUKORpWEYAJjO1QAdB8uPID1BaLaQHz6k3lFGWcD3XUsECl1P+U7vw/9+jlvGRztWvx6efr4ovX6aJzT9JsL6dZgWYS9ruVGOZtHdCMGPkBaisW8ujQEIEKYEbsUEG9Ne6JzOZR7IQL9NnzL9bFF6zRsg7ergHNqsPv0o5DGaPLADCOZLagkIdABaiVWMirrfsHjS4DQB30p3LqpEMFddSwJzL77I/pWz/8WKP+cQBmgJEfoHkx8gPUVizkUTxJhwpgNtlCSYVSSQE3LyFQPxzPAfA+jPwAzYuRH6C2okG3elN85gFmw0JaNILxT2TljHpefUGbd+xVfCijQqk8ejp5PI5F+tDnLtRi46sGTC3scykxQocK0GzS2YICjPsANUWHCmBOLKRFIxj6VFZObtHPv/53+vlL/SpMmKIcxX2eFn2GQAWotw6/WwN0qABNZyhTUBvdKUBNdfjdSmbyKpTKcto5lAC0qu6BEUnS13+7VZK0/cCQkpmC/uNtz0qSbrpypSRpTrvPmAJhSgY+lWX0ws9u1G0v9qtsD2j+qlN1woIO+RyTfJA5l2keZ5WBumOHCtCc2J8C1MdYl8qcdq/RpQCokWJZchCSos6MC1Ty2/T4xh6VnQv00f/3B/ra2REWugBNIuBxKlsoqlAsyzlZyAmgoVLZgoKM/AA1Fw161JsiUAFa0Vhnyke+v0GSlBgpvOvnH38tLkm69JaNkqT7r18rSfx9R00YlmGUhw/r8FBJjuM+qs+eSZgCNJuwz63ECGM/QDNhIS1QH+xRAQBMh2FPZTanS067TbZASEFegANNp8Pv0sBwXtEg29GBZsHID1AfBCpA6xrbmfLezpT3Gju4cMM9WyRJt1+zpr6FwRKMawzxLdPxixwq7n9L3ZP/2QdgAE4nA82HDhWgPghUAADTYVygYl+kSz5xhgIHH9Bt/7ZbfIQBzYXFtEDzIVAB6iMW9Cie4mkUaEW74mntiqcr/vqdPcPa2TNcx4pgJQY+ldk167L/pm/t+7r+/od/oS/88UJddNaJWhQLyeucIOexR7XirOMVY+EKUHd0qADNh6W0QH1EQx49u7vf6DIAAC3G2KeyUlYjBcmhjPY//wf9/Pk/TP717vP0rXtv1IUsZAbqbmyHCoDmkczktbAzYHQZgOnQoQK0riVdo5+L+wYq6zpZOitYz3JgMQYGKgW9ccd/19//5nXlyja52uZowZywvJOdaHXNVxvdKUBDhH2uI8u7ADSHoUxBbYz8ADXHDhUAwHQY91RW2K4H7ntTOVuHVv/F/9I3/uQkhR2GVQPgPcIBt7oHBo0uA8BRUpmCggQqQM11hTzqIVABWtJNV66UJF16y0ZJmvCFYNg3+vl581UrG1MYLMGwfo9yulv7ektyHPMx/RfCFKDp0KECNB/OJgP1EfA4VSqVNZIvGl0KAKCFGPeayzY62mOPzWLJLNCEWEoLNB+u/AD1Ew151JvMakGn3+hSAFRhTrtPknT/9Wv1Zk9KX7rjeZ1xTMeRSz5jO1PGOlO6QizkRO0Y9lRmCyzRsvkOPRs/rJ6S1E6HCtBUWEoLNB+u/AC10z0wIkn6+m+3SpIOD2b0yR8/rePnhiS9M0Yw9s0agOZ3z+b9mhcmMEHjGPdU5liqy688Rf96y4O6++lP6G/P6TRu/gjA+4T9LiUIVICmMpTJq42RH6AuHHabiqWy0WUAmKY57V799sVuvfUPlxtdCizEwNdcds294hv6+wP/Td/85p9p/7ordMmZK7V4boeC7gnaVex+xebH5J/kEBCA2mDkB2g+jPwAMzfWmfKR72+QJCVGCkd+biRf1OOvxSW9s+Dy/uvXShr9Zg1A87pj0x5dfeYio8uAxRj3VFbao3v+n7/Vrc8dVDpX0pY/3Kotf5ji17jP07fuvVEX8nkG1J3P5VCxXFauUJLbSf8YYLR8saRyWfx9BABgHHds2qNb/uQUo8uAxRgXqJSzGjjcp5GyQ05XhQtUXE7RnAI0ToffrYHhnGa1kWICRqM7BaiNsZ0pR3emjGfs0t0N92yRJN1+zZr6FgZg2l7YM6CAx6kVs0NGlwKLMXCHynJ98baH9UXDCgAwlbHTyQQqgPHYnwIAwPgY94FReNUFYELhgFuJNHtUgGaQyhQUpEMFmLFd8XRVXz92ehVAc0rnCnrolcP67mc+YHQpsKCGDWKXhw9ob7yWF0Py6t17QGmWsQN1M9ahAsB4jPwAAPB+d2zaq6vPXGh0GbCoxgUqg0/qH7/4F/pfd7+kmeYqhb6Xdc/NX9YXb3pc/QQqQN10+F0a4HQy0BSSmbxCjPwAM7akK6AlXYGKv37prKCWzgrWsSIAM8G4D4zUsFddNv88LfC+pXu/d50e+/9O0Yc/+Ul99OIztbyz0ofDggZ3PauHf/+vuvu+53UgY1ds3dUKsqUWqBtOJwPNI5ktKOShQwUAgDEb34jrmEhACzr9RpcCi2pcoNL+Qf31z76nY2/5R9362Gb97oeb9W8/DmjW0hO1atUqrTxxuRbEwmpvb1eb365sclCDgwn17d+pV17eoi0vb9UbB5LKlyWbZ67O+uJf66+vPl0dBCpA3YT9LiXoUAGaAiM/QG3cdOVKSdKlt2yUpAlHW8O+0b9vN1+1sjGFAajaLzft1ecZ94GBGvpkZg+v1Ke/9X91wZUP6K47f6MHnn1Lh157Vodee1YP/WaqX22T3TtbH7joKn3u6o/rzHlcHQHqLex3663e6pb3AagPAhUAAN4RT2b14t4B/ezzpxldCizMgCczl6KrPqq/XPVR/UX/Tr20+SVt3bZV27bv1P7ehAaHkhrOleX0BBRqb1fnrGN03IkrtXLVyTrt1OM129+wtS+A5bFDBWgeqUxenUGP0WUALW9Ou0+SdP/1ayVJN9yzRdLoNZ/eVFZLZwUVDXqOdKZ0hXiJBzQjdqegGRj6qsvVuURnXLREZ1x01bt+vFQqyW4nOAGMxpUfoHkkMwUtila+SBNA9Rw2m3KFktFlAKjALzft0fqvnmd0GbC4puwdJkwBmkM44FYizVJaoBkMZQpqY+QHqJk57aOdJ7dfs+bIj33n4dfltNt03YXLjCoLQAXu33ZIa47tVGfAbXQpsDiSCwATokMFaB6pbF5BD2eTgXqKBNzq40UC0PTu3LRHn2PcB02AQAXAhDr8bg1wNhloCiylBeovGvKoN5k1ugwAk3irL63ugRGdszRqdCkAgQqAibmddjlsNo3ki0aXAlheKlNQkEAFqKtowK1eOlSApnbHpr26mlPJaBIEKgAmFfa7laBLBTAcO1SA+osEPepL0aECNDOu+6CZEKgAmFTY71KC08mA4ZKZvEJedqgA9RQNetRLoAI0rX99oVuXr5ojr8thdCmAJAIVAFMgUAGaQypbUNBDhwpQT2G/S8lMQcVS2ehSAIzjjmf26Oo1dKegeTTmySw7oP2Hh1SY6WeT3a/Y/Jj8tppUBaACLKYFjEeYAjTO2KWfrpDH6FIAHGX7gSFlCyWdsjBsdCnAEQ15Oivs+IWuv+5uHSrN8Ddyn6dv3XujLvTWpCwAFeB0MmA8xn2Axhm79EOgAjQXdqegGTXmdZfNKZfbJddMD4W4nKI5BWiscMCtBBcPAENxMhlonEjAo740e1SAZlIql3XXc/u068qVRpcCvEtDns6cq67Vrx6+thH/KAA1Fva5WNAHGIxABWicWMiteJIXCUAz4VQymhVLaQFMqsPv0gBLaQFDEagAjUOHCtB87ty0R59j3AdNiEAFwKTCfrcSLKUFDJXK5hX0sEMFaIRI0K2+FJ97QLN47q1+tflcOm5WyOhSgPdpmtdd5VxC3Tvf0sFESrlyVMefuUIR4h7AcJxNBow3lCmojQ4VoCFiQY/e6EkZXQaAt7GMFs3M8KezcvpNPXDrj/Tze1/QgeGSypJsvot0473f1Nq3A5X89l/pmz99Ru61X9E3rlosh6EVA9ZChwpgPEZ+gMaJBD3qY3cY0BRS2YIeebVH3/uTU4wuBRiXoT0g5fRW3fpfr9VNv3lO+4fLsnsC8rnef8fHtWie3G+8qMfveUivz/RSEICqsEMFMF4qk1eQs8lAQzDyAzSPX27ao8/TnYImZmCgkteOO/9Jd+7IqO3Eq3TDj+/WAw/dra+uHueB0b9Sp65wqnhwm16JlxpfKmBhYZ9biREeLAEj0aECNE406OG6HdAkGPdBszMuUCns0PpH9qjUcYH+6uav6LKTuuSdqBpbSHPntslejOtQL4EK0EhOh00ep0PpbMHoUgDLIlABGicadKuXDhXAcE+8HtfSWFDzOnxGlwJMyLBApTzcrX3xspwnnKUz2t8/5vNuNrncLkl55XLlRpQH4CgspgWMlcwWFPIQqACN4HLY5XM7NDTC5x5gJLpT0AoMv6Njs9k0VZwiZdXbM6SyLaBgwPCSAcvp8Ls1wGJawDDJTF4hdqgADRMJuNWX5nMPMMrhoYxe7h7UxSfMMroUYFKGpRM2/0IdM8um/PZntTk1eddJKf6EHtqckfxLddwCbvwAjRb2uZTgTR1gGEZ+gMZijwpgLLpT0CqMa/dwHqeLLzpWjv6H9Z3/+WttGxx/N0r+0NP6yd/9QJuSUuxDl+oMf4PrBMDpZMBgqUxBQQIVoGHYowIY645Ne3X1mQuNLgOYkoFPZ04t++xf6U83fU2/eOp/69pP3a0Vp5wg966CVNiph37yHT2xd5ue3/ym+nOSY/Y6XffF00WeAjQeO1QAYw1l8mpj5AdomEjQoz46VABD3Lf1oM5aElGH3210KcCUjH3d5T9JX/z2d9XxvZv1z+t3a/tTh97+id164te7R/+jzanOVVfqq1//ks6LsD8FMEKH36UBAhXAMIz8AI1FhwpgnDs27dFfXrDM6DKAihj+dGZrO0FXfeM2ffial/THP76g7bsPqj+Vk9xBReYt0UlnnKsPrpwt79SbawHUSdjv1oHEiNFlAJaUK5Rks41eHgHQGNGgRzsOJY0uA7Cc3b1pHRzM6OwlEaNLASpiYKCSVyZjl9frkGRXYP6pWveZU7XOuIIATCDsd2n7gSGjywAsie4UoPFGR356jS4DsJxfbtqjz7OMFi3EuNddxZ36xZc/pT//ux/pd5v2KDn+TloATSDscysxQuszYIRkNq+Qh/0pQCMx8gMYg+s+aDXGvvLK9evVx/5Frz52l34YO1HnfvgyXX7ZBTp1fsDApAfAe7GUFjAOHSpA43E2GWi8u1/o1hUnz5XbyXeCaB3G/Wl1LNWnv3mjrvv0eVoRcSkX36b1v/xHffVzH9dn/vJG3XrfizowTNsK0Aw6/G4NcDYZMASBCtB4kYBbfWk+94BGYtwHrcjQs8nhZefoU8vO0ae+nNSeFx7Tgw8+pIc3btXhLQ/q9i0P6Rffm6MPfOhSXXb5h3WeFRbTljIaOHRIvUMjKjq8aovO0ewOL906MBwdKoBxUpm8gpxMBhqqzefSSK6ofLHEQmigAbbtH1SxVNbJC8JGlwJUpTleeTlCWrT6Cv356iv0ZyMH9fKGh/TgQw9rw+a92nzfrdp8/2367vzTdMFln9F/+NM1mm26z7Wy0vue06OPv6TuVPGoH3cqtOBknXf+GVoQMHuahGZGoAIYhw4VwBhje1TmtHuNLgUwPXanoFU13ROa3TdHH7jkC/rAJV/QVwd26vmNj2vDk0/qj88/r3+/za/TPrlGs032uZY/9Kzue2CzegsutS04Tsvmd8hTGFT3G69p374X9MB9ZV3x8TWaxQtKGMRusyngcfCNHWCAoUxBbfy9Axpu9NJPlkAFqLNCqay7X+jWP1y1yuhSgKo17xNaKaVDu17XG2/u1O63DilZKEtmDBTKCb3y1Bb1FhyKnHyZPnb2XHne/qmTVy3XM7//vTbHt+iP25brE6d0iD4VGGVsjwqBCtBYqWxBQQ9/74BG49IP0Bh0p6CVNdkTWl4DbzyjRx56UA+tf1o7erMqS7I523XsWVfpssuv0GrPlL9JSyn1v6HX40XZvMt0+mnvhCmSJPcsnbp6mXbc96p6Xn1VPSefrVmmG3dCqxgb+1nYaXQlgLUkM3lFgyb78ANawFiHCoD6unPTHv3o6tOMLgOYliYIVMrK9LyiP65/SA8++Kie3z2o/GiKorZjz9KFl16mS9d9UMdHTNmeouEDBzRQkpxzj9H8cZ6XXXOP0QLPDr2W7NbegZJmRUhUYIyw360El36AhktmCjo2GjC6DMByYkGP4gQqQF09u7tfHQG3lnUFjS4FmBbjApVyWjsf/Y1+/e8P6okX9ytdKkuyyRFapNUXXKrLLrtE554QlduwAhuhrIH+AZVlV3u0c/yJJkdE0Q6bXjs4qN6+vBThLSWMEfa5lBhhMS3QaOwuAowRCbrVM0SgAtQTp5LR6ox7Qivt0yO33a779hRlswe04IwLdOlll+nD556omMcqm0LySqdyKsumQCAw/n4Um08Bv0NSUelkWmV52KMCQ3QE3BpI06ECNFoyk1eIs8lAw0UCHr16cMjoMgDTGhrJ64nX4/rBZ08xuhRg2gx85eWQf95puvziS3TZh9dq5Syv9YKCck65fFmSQy73RP9T2OV2O2VTQdlsbnSnTANLBMbQoQIYgw4VwBixkFvxJC8SgHphGS3MwLgnNMcyXX3zt4/8n+VcQvt2vqWDiZRy5aiOP3OFzL8upKRSSZJssk/y72p3jP5kafSLK3buuedW9HUbN26s6veFNYX9bu3tTxtdBmA5XPkBjBEJeNSXZuQHqJc7ntmru790ltFlADNi+BNaOf2mHrj1R/r5vS/owHBptAPDd5FuvPebWvt2yJDf/it986fPyL32K/rGVYvlMLTiWnLI4ZCkkoqTZCXFYnH0qx3V/ZsTlKCWwn6XXu6mQwVoNEZ+AGNEgm71cTYZqIvHXuvRcbNCmhv2GV0KMCOG9oCU01t163+9Vjf95jntHy7L7gnI53r/QItr0Ty533hRj9/zkF4vGlBovdjc8npsksrKZSf6wC4qly2oLJs8XvanwDgdfrcGuPIDNNxQpqA2Rn6AhosGPerlyg9QF4z7wCwMDFTy2nHnP+nOHRm1nXiVbvjx3Xrgobv11dXjvIXzr9SpK5wqHtymV+LVjb00N6eCoYBsKiudTGvcf7NyWsl0SZLj7a8FjBH2u5QYpkMFaLR0tqAAIz9AwznsNoW8Tj77gBo7OJjR9gNDuvD4LqNLAWbMuEClsEPrH9mjUscF+qubv6LLTuqSd6JqbCHNndsmezGuQ71mClTs6uyKyKmShuK9GvcdSL5P8YGSZG9XtJMHahiHQAVoPBbSAsaiSwWoPbpTYCaGBSrl4W7ti5flPOEsndE+Vd+FTS63S1JeuVy5EeU1jGfeIs1xSYWDO/XW8Pt/PrN3p7rzkr1tgRaE6U+BccI+txIjjPwAjcT+FMBYkaBHfQQqQE3d+cwefW4NgQrMwfA7OjabrYIxlqx6e4ZUtgUUDBhecm35F+vEJQHZ8vv0/JOva+ioBpxSaqeeema3smWnuk5YoZjJ/tXRWuhQARovmS0oxLgPYJhowK3eNC8TgFr5w8sHdc7SqMJ+XhbAHAx7SrP5F+qYWTY9s/1ZbU5dpHOCE8cqpfgTemhzRvIv1XELzHPjZ5RHi1afrSXdj+jNnY/q172vauHcDnkKgzqwd78SWck9+3Sde1KY/Skw3Fiowocg0BiM/ADGioY86k3SoQLUyh2b9uj6i5YZXQZQM8b1PDiP08UXHStH/8P6zv/8tbYNjr8bJX/oaf3k736gTUkp9qFLdYa/wXU2gC2wVBd87GKdsiAkDR3Qzldf0fY3upUo+DRrxbn66GWnKGq2HAktiUs/QGMx8gMYKxJwq48OFaAmdsZTiiezOnNxxOhSgJox8LWXU8s++1f6001f0y+e+t+69lN3a8UpJ8i9qyAVduqhn3xHT+zdpuc3v6n+nOSYvU7XffF0mTBPkSQ52hbrzI8s1ukjCQ0Mjqjk8CoYDiswzhlpwCjtPpcGRxj7ARollSkoSIcKYJho0KNtBwaNLgNoGd0DI5Kkr/92qyRpVzwtSVrSFdCbPSl96rQFOjg4ojntPsNqBGrJ2Kc0/0n64re/q47v3ax/Xr9b25869PZP7NYTv949+h9tTnWuulJf/fqXdF7E/EtEnL6wYr6w0WUA42KPCtBYjPwAxooG3epN0aEC1ML+xIiuPHWe0WUANWX4U5qt7QRd9Y3b9OFrXtIf//iCtu8+qP5UTnIHFZm3RCedca4+uHK2vDRqAIZj5AdorKFMXm2M/ACG4coPUJmxzpSPfH+DJCkxUnjXz+8bGD1n+tEfPClJuv/6tZKkOe3eRpUI1IXhgcoouwLzT9W6z5yqdUaXAmBCdKgAjZXKFhTkyg9gmGjQo14CFQDABHhKA1CxsN+tBB0qQMMkMwXFoh6jywAsi5EfoDJjO1Pe25nyXom3d/HdcM8WSdLt16ypb2FAnTUmUMkOaP/hIRXKM/x97H7F5sfkZ/wHMETY59Ku3rTRZQCWwVJawFgBj1OFYknZQkkep/l3+QEAqtOQp7TCjl/o+uvu1qHxLyNXzn2evnXvjbqQUTvAEB0Btwb2DBhdBmAZ7FABjBcNedSbzGpeB1dJgImMXfOp1M6e4TpVAjRWY1572ZxyuV1yFWf4+7icojkFME7Y5zrSqgmg/rjyAxgvGvCoN02gAgB4v4Y8pTlXXatfPXxtI/5RAOqIHSpAY7GUFjBeJOhWH3tUgEkt6QpIeueaz1SWzgrWsxygYRgGBVAxrvwAjZXM5BVi5AcwFJd+AAAT4bUXgIp1+N0aoEMFaBhGfgDj0aECTO2mK1dKki69ZaMkTTgiHvaNfqbdfNXKxhQG1BkdKgAqFvI6lc4WVSrP9GQXgEoQqADGiwU9itOhAgAYB09pAKoyNvbTGXAbXQpgatlCSXab5HLw7gMwUiTo0ZbuhNFlAE1tTvvo0ub7r18rSbrhni2SpOd2J+Rx2nXywrCkdzpTukKcbYU58JQGoCrsUQEag/0pQHNg5AeYvnJZstm40wrzokMFQFXe2aMSMLoUwNQY9wGaA0tpgcrNaR/tPLn9mjWSpP/wf5/Vn51zrNYujxlZFlA3dKgAqAodKkBjEKgAzSEadKuXDhVgWtLZggIePstgXgQqAKoS9ruV4NIPUHeM/ADNIRLwqC9NhwowHQQqMDsCFQBVCftcE57CA1A7qWxBQR5CAcPZbKPjrv1pXiYA1UpmCwrxWQYTa8yf7uyA9h8eUmGml1btfsXmx+RnrxFgmHd2qACoJ0Z+gOYxtkeFC3dAdehQgdk15E93YccvdP11d+tQaYa/kfs8feveG3UhV7YAw4T9Lu04lDG6DMD0hjJ5tTHyAzSFsT0qy2cZXQnQWui2hNk15k+3zSmX2yVXcYa/j8spmlMAY7FDBWiMVKagIB0qQFOIBD3q49IPUJVsoSSHzSang+/gYF4NeVJzrrpWv3r42kb8owDUGVd+gMZIZgrqavMYXQYAcekHmA7GfWAFLKUFUBWW0gKNwZUfoHmM7VABUDnGfWAFBCoAqsJSWqAxeBAFmgcjP0D1GF2FFRj/J7w0pN3PP63Nrx9QfzqnYnmSU0DOxbroC+u0lBd2gGEY+QEaYyhTUBsPokBTiATc6uNsMlAVXgzACgz9E15OPK+f/M3f6a4dSZUqOansPk/LriZQAYwU8DiVLRRVKJZZMgbUESM/QPOIhTyKJ+lQAaqRzhUUcBOowNwM/BOe0Yu33ay7Xk1JwUU64+xTtDji0J7Hf6dn/3/27jw8sru+8/3n1HJOLadKpa2ltt3tvW284rVN25htBmLsYAduhiG587BNJtyH3IRMJsMlPDOTmzAPSZ4kQ5jJkOcmYZlwQ0JuIEPAZgK2wTY2tvGGjbd2G7u73S11Sy2pFqmWU3XuH2p1t1olqSRV1dnerz9bJflHU9Xn6HO+S+tK3XrzuYpXprX/6cf05MG6zrntN/Sb79uji1iZDHiHMmIsAAAgAElEQVSukDY1u1DXiM3ATKBXKJUG/IMKFWDjuI4hCrx7hzvP6b4HjsjNvF4f/bM/0nvPTkoq6a5Xv6HH5m/W+3/lPRqLSWrN6om/+Lg+8bWv65Fb36zLPDswgCWDmaRm5hsEKkAPlaqOctyIAr4wkrM0RYUKsCG0/CAKPBtK685P6NBMS4krfkY/s3OppDkpMxmTW6vqxCUrVtBVH/p3+vnxvfryH/2t9jU9OjCAEwoZU7MMpgV6qlRzlONGFPCFdDIuw5Dm69yIAp1ibTKiwLstP64ryVA8k1HqxBiGuLJ2SirNqdg65bWJc3XD9eNq/vRBPXSwtfJnAegrBtMCveW60nydG1HAT9j0A2wMFSqIAs8CFSMzpKGMIefIYR09kZHENDw6LPfoK9pfPnVKbUy5fE6x1pSOThOoAF6jQgXoLQbSAv4zYpuaKnPtAzpVrjVlW3GvjwH0lHcVKokLdelFSTX3/lCPnkhU4jpr1wXKNp7Sd+6d0InoxC3rpb2vqSVLFiMbAM8tzVAB0Bs81QP8Z8S2NEWFCtAxWn4QBd4FKsag3vCWq5SqP627vz95IjxJXfUm3ZCv6rH//pv67S/eqft+8H1943P/Sf/t+yXJvkiXnMOHEvBaIZ3U7AKBCtArxaqjPANpAV9h0w+wMQxXRxR4+A6PaeSffVS/N2Zo1zXbTyQ7hn2j3v+ha/XwZx7RvX/5ad279HIjpdf9/Pu0J+vRcQGcUMiaOjgz5/UxgNCi5QfwHzb9ABtDhQqiwNt3eOocXX3d6X8Y1847fleftf+HPv+1H+iFI1VZw+fp2lv+lT5w+0UyvTgngGWoUAF6i5YfwH+Gs5b2H6t4fQwgMCp1R1mTaxnCzZ/vcCOj8/75R/Spf/4Rr08CoI3BjKkZhtICPUOZNOA/ozlTj7064/UxgMDgWoYo8G6GCoDAYm0y0Fu0/AD+M5y1NF2h5QfoFC0/iAICFQAbxtpkoLd4qgf4z7Btapq1yUDHaF9FFHj+Dq8delj/8/+7Uw8+84qOzM2r0Vrjxcnd+tjn/51uTPXteADaoEIF6C0CFcB/WJsMbAyBCqLA03d446df1b//lT/V48W1UpRTmLOq9vZIADqQTsbVcl3VnJasBIVuQLeVqg2N5Xl6APjJUHZxfpjrSobh9WkAf3OarlquK5P7RIScd4GKO6fv/eUX9WTRVWrnzfqXv3ibrj13RJm1ThTLaTtrfgBfWGr74Zc+oPt4qgf409IclRHb8voogK9xHUNUePcubzyrR5+syM1cq4/+0e/qjnHSSyBIBjNJzczzFB3oBVp+AH8ayVmaKhGoAOshUEFUeJZiuPPTOjbfUuKiG7VnG2EKEDQDGVNzDKYFeqJYdZQnUAF8ZyRraqrCtQ9YD4EKosKzJMNIWjJjhpQ0laAPFQicpQoVAN1XrjZkszYZ8J2lChUAa2NlMqLCu9KQ9EW69Ly4mgde0cGmZ6cAsEmFdFKzCwQqQC/Q8gP403DW1DQVKsC6qFBBVHgXqMTO0tvf/QblJv9J/+9dB8WvZUCwLA2lBdB9BCqAP7E6GegMgQqiwsN3eUyj7/i4fufVj+uTf/wR/fKPfla33nyVdp01olwqrrZdQLGMRs8aVYYWIcBzhUxSs7T8AD1RqjWUs2j5AfxmxDb18lTF62MAvkfLD6LCu3d561V97bc+rr989LAqTkt77/myPnPPl9f+HvNN+u1vfUpvY6kI4LlCxtQr3FQCXVdtNJWIxZSI8/QA8Jth29I0FSrAuspVRzaVlogA797lbk0zk9NacONKJOOdfU8y0b5yBUDfMZQW6A3afQD/GrZNTZdpdwXWQ8sPosK7d3l8lz78he/ow54dAMBWMJQW6A1uQgH/GrUtHaVCBVhXpeZoyLa8PgbQc94NpQUQaIWsqVk2HQBdV6w2lGdlMuBLtPwAnSnVHOV4OIAIIFABsClUqAC9Qd854F9WIqZkPKZyzfH6KICvMZQWUUGgAmBTBjOmZlibDHQdM1QAf2N1MrC+Sq2prNXhnEwgwDzc8nNQd/3hZ/XdyWbn32MYisWSyg6eoXMu2623vfU67cgyphbwgpmIKW4YWmg0le50sDSAdZWqDeVo+QF8a2kw7TnDWa+PAvgWLT+ICg+3/FR04OlH9MgrGwhUTnXn3+lLn79WH/rd39H/fpnN9h/AA4WMqdn5utIDaa+PAoQGN6GAv1GhAqyPlh9EhYdbfi7Sv/7zv9Prv/RJ/ce/fkE682rdfNNV2rVjVPm0KaNZVfnYa9r7xH269+GDsl7/L/SBd54nq1HV7OHn9NA/3aMnJx7VX/zHP9G5X/gt3TRApAL0WyGT1Ox8Q9sJVICuoeUH8DdWJwPrI1BBVHj4Lne18OxX9Nm/fUkjP/uf9V9+/SaNtusaeN+H9IHv/4F+9be/pe/f/Dn94Xt2Kq479C9/4XZ96Tf/rT7/zL36+3v/jfbcMcpAGKDPBjNJzcwzmBboplLV0XieVZOAX1GhAqyvXHNkE6ggArzLIFpH9L++9A0dyLxZv/SRVcIUSVJC227+Zf3C1TU9/j/+Wo9WF//UyF6iX/zlW7XdqOu5p18Qv9IB/bfU8gOge8rVhmxmqAC+RaACrI+NdYgK7wKV2rN68rm64udfpksy67zWKGjXReMy5p7Rj0+ZuZLc9TpdkJTq01Mqub09LoCVllp+AHQPLT+Av9HyA6yt5bqqOS2WFiASPAtU3IWyKo4rGTEZHYw/cV1J7rzK862Tf2gYMghSAM9QoQJ0X7HqKE+gAvjWqG3pKBUqwKpYmYwo8SxQMewhDaUNOS/8UI9Ot9Z+cfOAfvTYIbVigxoePPnhbJWKKrmSkc4ozUxaoO+YoQJ0X7nWkG3R8gP4FRUqwNq4jiFKvGv5SV6hm64fkFF+SP/tP/yZHjhUbfsyd/5Vffe//N/6q+cdxc7arRt2nDxy87VX9VrT0ND4mBjfB/RfIZ3U7AKBCtBNtPwA/jactTRdoUIFWE251pRNhQoiwrs7NiOnm/71R7Tn8T/QD575in7rF7+lnZddpcvOP0NDOVOqlTV1cK+efuIneq3clJI7dPtH36tdJ07c1KuPPaEpN6UbLzlPfGSB/qPlB+g+AhXA3wqZpMpVR07LVSJGiTRwOlYmI0o8fafHz7xVv/2nWf3FH3xWf//kUb365Pf16pOnv8qQNXa93vsbH9eHbhjQictW66herezQnjffrHfttsXlDOg/htIC3cdmBMD/hm1L0+WaxvIpr48C+A4PBhAlnr/TrbPerI9+9ka978VH9OCjz2jv/iOaq9TUTGQ0OL5Tu67YrT3XXaih09vwYuN6269+Sm/z5NQAJGkwY2qGChWga1quq4VGU1nT88szgDUszVEhUAFWokIFUeKTd3pSQ7tu1G27bvT6IAA2gAoVoLt4qgcEw4htaYpNP0BbBCqIEu+G0gIIvELa1OwCFSpAt9DuAwTDiG1qik0/QFulmqMcgQoion/v9OqEnn78p4pfcI0u2WZKqmv28ITm6m7nPyOW0ehZo8owMAXwhUTckJWI8yQC6JJStaFcilWTgN9RoQKsjvtCREmf3umOfvznv6r/86uHpbH36E++8jG9PvayvvqbH9Ffvdrs/MeYb9Jvf+tTehvtqoBvLLX9cOEEtq5YdZSnQgXwvaWhtABWKtcc5Xk4gIjo011bTLnhYVnGhGIjo8rFFv8snkwqmdxA11EywTYfwGeWBtOeOZj2+ihA4JVrjmzCScD3RrKmXpwseX0MwJfKNUdnDHBfiGjoW6By7i/8V339nRXFcgNKxyVplz78he/ow/05AIAeKaSTml1gMC3QDQylBYJhJGdpqkSFCtAOLT+Ikj6+0xPKFgb6958D0BeFjKlZVicDXcEMFSAYhrOmpitc+4B2yrWmbCvu9TGAvvDvlp9WQ9Waow2MrAXgAVYnA93DZgQgGJihAqyuXG3I5uEAIqKPd20tTT70D3qwebnevPtCDa7yGWvNPKW//eyf6qsPvKDpmpTI79Dr3/Yv9Esfvk2vy/s3/wGiajCT1AyBCtAVtPwAwTBqWzpKoAK0Vak1laVCBRHRv4SidUD/9Pn/qj/+5L/Xnz9RbfsSt/KEPvexf6vPffc5TVVbct2WGnOv6tGv/aF+7df/XE9VqFcB/IaWH6B7eKoHBEMibihjJlRkhhiwAgPWESV9C1TcY0/osX1NxQo36E1Xttt7XNNPvvRH+ruf1mXkL9V7Pv4Zff7LX9b/83sf1dt2mqru/Vv98VdelNOvAwPoCC0/QPdQoQIEx4htaqrMAwXgdAQqiJK+vdOd/S9rf1NKXnSFLjZXft09do/+6hv71TTGdMsnfk+/dlNhcUXy2WfrP5zV0sSH/kzPffsuPfP+i/R6Ht4BvlFIm5pd4IYS6AYCFSA4RmxLU+WazhvNen0UwFcIVBAl/atQKc6p5BrKj48pY5z+1ZYOfPt/6tF5KXX5e/WBPcfDlOPiO96qf/a6hFrTz+rZiVa/jgygA4PZpGYqVKgA3cBQWiA42PQDtMfaZERJ3wKVVqspV1I8HteKPKXxvL71refVUEbXv+vt2n76qWLD2j5uyWjNaOoYgQrgJ1SoAN3D2mQgOEZylqZKDKYFTkWYgqjpW6CSGN6mQcPVzIEDKi2bLetq7v6v6s6DTcUGb9Y7bxxYGbhIcl1XUlPNZn/OC6AzzFABuoeWHyA4hrOWpisEKsCpaPdB1PQvULnwKl2RM1R/4u/1lR+XtZSpOBP36E8+d6/m3KTOv/3ntbtdG6pb0excXa6RUXZlvxAADxGoAN1TrjqyCVSAQGAoLbASK5MRNf27a8vcoP/t9nN171+9pL/59X+lx6+9UmclpvTC40/rtYqrxNl36Ffee0H7AzVf0UuvNKXYqMa29W/TM4D1xQxDdmpxdWQ+TasCsBW0/ADBsTiUdsrrYwC+Uqo1lLO4jiE6+phOJPW69/8n/dobx5VwpvTCQ3fr7vuf0sGKK/Ost+o3/vNHdHW2ffVJ89Un9NRUS/HxXdo1QIUK4DeFdFKzC1SpAFux0GgqGY8pEeM6BwTBsG1qmgoVYBkqVBA1/a0rNs/V7Z/6oq565F7d/+P9mnOzGjv/at100+Uas1b7ppam900qc/Fl2n3zm3UBn0/AdwYzpmbm69o5lPH6KEBg0e4DBMvS2mQAJzGUFlHT/3e7kdXO3bfpF3d3+g0xbXv7/6U/fXsvDwVgKwYySc0xRwXYEgbSAsFCoAKsxLUMUcNAEgBbNphJaoZABdgS5qcAwZJLJVRttNRotrw+CuAbVKggaghUAGxZIWNqdp4+cmArSjVHOW5CgUChSgVYrlx3ZJtcyxAdBCoAtoyhtMDWUSYNBA+rk4HlmAeGqCFQAbBlVKgAW0fLDxA8bPoBlqPlB1FDoAJgywqZpGaZoQJsCU/1gOCh5QdYrlxzZBOoIEIIVABs2dLaZACbV6w6yhOoAIFCoAIsR6CCqCFQAbBlVKgAW0fLDxA8zFABlqPlB1FDoAJgywhUgK3jqR4QPMO2pWkqVIATuJYhaghUAGxZIW1qdoEndMBWsOUHCB4qVIDlmAeGqCFQAbBlVKgAW0fLDxA8zFABlivXmrKtuNfHAPqGQAVAVxCqAFtDhQoQPLT8AMtV6o6yJtcyRAeBCoCuYNMPsDUEKkDwDGdNTVe49gFLaPlB1BCoAOiKgXRScwtUqACbxSA/IHjiMUP5VJIHCoCkhUZTViKmmGF4fRSgbwhUAHQFFSrA1jBDBQimYdvUNINpAVYmI5IIVAB0BTNUgM1rtlzVnJYyJoP8gKBhMC2wiNZVRBGBCoCuoEIF2DzafYDgYnUysIgKFUQRgQqArhjIJDVHhQqwKTzVA4KLTT/AIgIVRBGBCoCuoEIF2DzmpwDBRcsPsKhUc5QjUEHEEKgA6ApmqACbR4UKEFwMpQUWVWpNZS1mgSFaCFQAdMVgJqkZAhVgUwhUgOAayZqaqhCoALT8IIoIVAB0xUDa1NwCN5TAZtDyAwTXSM7SVImWH4CWH0QRgQqArqBCBdg8tvwAwTWctTRdIVABqFBBFBGoAOiKQsbULENpgU2h5QcIrpGcqakS1z+AhwOIIgIVAF2RSyVUqTXVcl2vjwIETrHaUJ6WHyCQsmZCTddVtdH0+iiAp8pVRzYPBxAxBCoAuoZNP8Dm8FQPCDY2/QC0/CCaCFQAdA2BCrA5tPwAwTZiW5oqM0cF0cbDAUQRgQqArhnMmJphjgqwYWz5AYJtxDY1RYUKIo5ABVFEoAKga6hQATaHChUg2Nj0A9Dyg2giUAHQNWz6ATaHQAUItpGcpakSgQqijQoVRBGBCoCuKaSTml2gQgXYKFp+gGAbyZqaqvBAAdFGoIIoIlAB0DXMUAE2h5tQINioUAG4liGaCFQAdA0zVIDNoeUHCLbhrKlpKlQQYXWnpZhhKBE3vD4K0FcEKgC6hhkqwMbN15uyEjHFY9yEAkE1bFuaZm0yIozqFEQVgQqArqFCBdg4bkKB4Bu1LR0lUEGEcS1DVBGoAOgaZqgAG8dAWiD4hm1T02Wuf4guViYjqghUAHQNW36AjStXHdnMTwECbyhr6hhzVBBRVKggqghUAHRNIZvUbIVABdiIYtVRnkAFCDzafhBlBCqIKgIVAF2TNROqNZtymq7XRwECg5YfIBxo+0GU0fKDqCJQAdBVzFEBNoanekA4jNiWpqhQQUSVa03ZVtzrYwB9R6ACoKuYowJsTKnqKEfLDxB4BCqIsnK1IZtqS0QQgQqArhrMmpphKB/QMVp+gHCg5QdRRoUKoopABUBXDaSTmqNCBegYFSpAOFChgihjhgqiikAFQFcxQwXYGAIVIByoUEGUMQ8MUUWgAqCrCpmkZuepUAE6RcsPEA5UqCDKCFQQVQQqALqKobTAxnATCoQDgQqijJYfRBXv+o60VJ+vqNZMKGWnlTTWe31T89MTmjxWUq2ZULowqvGxAVnrfV+rqpmJCU0VF9SMp5Qf2a7xwRSpFwKlkDV1cGbO62MAgVGsOsrT8gMEHi0/iDIeDiCqeNevpzWvg499V3c//prmjZ16y/tv1cXWGi+f26cH775fP5lcUOvEnxpKFs7VdW99s64ca/fNrioHHtU933tSB8vNU/48odyOK/Wmt1ynHdl1UxzAF6hQATaGlh8gHNLJuGKGoUrdUdbkFhvRQqCCqOJdvwZ34ZCeuOduPbq/vBiOrLcJrPqq7v/md/Vs0ZU1dK52XbBd+XhNx159UXsPvayHvlWT8XO36YrB5TUnjYlHdOe3H9eUk1R+x0W68KxBWc6cDu59QQcOPKZv3+nqXXfs1hj32wgAhtICG1OuOrKpUAFCYalKJTvEZxrRQssPoop3fVuuqpM/1r3feVivlGIaft0lSr/8nA46a31PU5NPPqjniy0lt9+gd916lUaWApArL9d59/2D7nr2Nf3ooRd1/i0X60TBiTurnzz4lKacuIavfKdu33OGlmpYrrxilx7+xjf0+NGn9INndunnrhoUdSrwO4bSAhvDlh8gPJYClZ1DGa+PAvQV1zJEFeM52nDnntb/+scH9UolpZ03/Kxuv+ksWU137W9qHtYLe+fUMvK6+PorToYpkmSktfP6q7XTlGoHntWLcyd/VuvYXr14tCkjdZ6uveZkmCJJMsd09fUXKmM0deS553SkJcD3ChlTs1SoAB1xWq4azZbSyfVKIAEEAYNpEVVUqCCqCFTaMAYu1u6rX6erf+bduuWqMVly5a6Tp7RmDunwvCsjc5bOGWtzY5zeqXPHE1JrSgcOVrT441zNHzqkmZaUOOMcndVmvEryjHO0wzLklg5q/wyJCvyPChWgc7T7AOFCoIIoclqumi1XVoJfLRE9vOvbMjV+9Zu1+2x78S9onTBFkpyZYyq2pNjgqIbaPmi0NDySU0wtTR89dnxgrauZYzNyFdPAyJDajkiJD2tk0JBac5qa5pdU+F86GVfLdVVzCACB9TCQFggXNv0ging4gCgjUOkKV/PlebUkJbJZtV8CFFPGzsqQq0a5rMVnFw1VynW5MpTNZtvPRzHSymbiklqqlCqdZDuA52j7ATpDzzkQLlSoIIpo90GUEah0hatGvS7JUNJMrjo41jQXn0K69ZrqriS3rnrDlRRTctX1ejGZZkKGXNVqdQIVBMJgJqkZ2n6AdbFmEgiXEdvUFBUqiJhy3ZHNqnBEFO/8Lmm1WnIlxWKrZ1Qnvua2jrf8tNRqSZKhNb5NsXjsxH9jI+69994Vf/aWt7xlQz8D2IyBjKk5KlSAdRWrDeVp+QFCgwoVRBEtP4iy6L3zW0W99tIhlU7LJoz0Np179pDMTf7YWDwuQ1KruXro0Ww2l16sxTErccXjktTSGt924vvi8Y1tgSA8gVeoUAE6Q8sPEC7DtqVpAhVEDC0/iLLovfObR/TM9+7Vy83lfxwbu0FjO4dkrtavsyZDqZQlyVW9VlulLcdVvb7YsmNY1vH/jqmUZRz/vrqkdLsDq15z5MqQlbJWbScC/KSQTmp2gUAFWA9P9YBwGc6amq5QoYlooX0VURa9d358SOdfc62GTqsIidnbldp0WmEonbOVlNSolLXgSvaKn+UeHyprKGXnjg+uTcjOZWWorEqpopbSK4fauBWVKi1J8eOvBfxvMGNqhpYfYF1s+QHCZShrana+oZbrKmZw14ZoIFBBlEXvnR8b0gXXDHX9x8ZHtmkotlcTx45qqinZp//NuvM6erQsVzENjQ4dD05iGto2rISKKh6dUk0jK2tUGtM6OtOSYkMaGYre/10IpoFMUrO0/ADrKtUcZqgAIbO0Onk0137vIxA2BCqIMrb8dIlh79TZIzG5tf16+cDKJ/Nu+RXtm2xKsRHtOPNkbGKdeba2JyXn8D69Mr/y51b379PBhhTL79COAk86EAxUqACdYYYKED7MUUHUVGpNZa2NzXoEwoJApVuMAe26dIcsd0F7H/6h9s+fMkmlOavnHnhMhx1D1s5LtWvglGAkc54uPT8ro3FAP3rgRRVPaUVqlffpwYd/qpqb0LZLLtYo/28hIApUqAAdoeUHCJ9R29RRVicjQsrVhmyuZYgoHot1jaHsrj26/qVJPXDgJ7rrbw7rzJ3jyidqOvbafk0UG1L6bL1hz4XKLPs+S2dfv0fnH7xbL+27R1+dek47zxiU5czp0P7XNFuTzPFr9cbLCsxPQWBQoQJ0hjJpIHyoUEHUlGtN7RymQgXRxF1cN8UKuuwd71Liofv1yPOHdWDvseNfSMg+83Ld8MbdunBgZZmJkb1Ab709ptx9D+mZg4e0b+7Q4hfiGY1dfK1u2nOpRvg3CgEykElqjgoVYF20/ADhM2JbmiJQQYRU6o6yJtcyRBPv/E4kL9A7/s0FHb52WBfffIcuekNFMzMl1d24UvlBFdJr/1XH8+fphtvO07ULs5qZW1ArnpJdKCibpC4FwUOFCtCZYtVRnkAFCJWlobRAVJSrjmyuZYgo3vk9YiSzGtqW3fD3JdIFjaYLPTgR0D+FdFKzC1SoAOuh7xwIn5GsqZePVrw+BtA3tK8iyhhzCqDrzERMccPQQqPp9VEAX6PlBwifkZylqRItP4iOSs1RlkAFEUWgAqAnChlTs7T9AGsiUAHCZzhrabpCoILooEIFUUagAqAnWJ0MrG2+3lQqGVPMYFYWECYjtqkpZqggQghUEGUEKgB6YjCT1AyBCrCqUrWhHPNTgNBhyw+ihpYfRBmBCoCeoOUHWBvtPkA4mYmYzHhM5Zrj9VGAnmu5rqqNljJm3OujAJ4gUAHQE7T8AGujRBoIr9GcpaMMpkUEVGpNZS3CFEQXgQqAnqBCBVgbLT9AeA1nTU1XuAYi/Hg4gKgjUAHQE8xQAdZWrDrK0/IDhNKwbWmaOSqIAAIVRB2BCoCeKKSTml0gUAFWU646sglUgFBiMC2igoG0iDoCFQA9QcsPsDZafoDwYnUyooIKFUQdgQqAnmAoLbA2tvwA4UXLD6KCaktEHYEKgJ4YzJiaoUIFWFWp5ijHUz0glKhQQVTQ8oOoI1AB0BNUqABro0IFCC9mqCAqaPlB1BGoAOgJZqgAa2OGChBeBCqICgIVRB2BCoCeSMQMWcm4KjXH66MAvkTfORBew7apaVp+EAEEKog6AhUAPTOYSWqGth+gLVp+gPAaSCdVqTlyWq7XRwF6ihkqiDoCFQA9Q9sPsLpSraGcRcsPEFa0/SAKqFBB1BGoAOgZKlSA1VGhAoQbbT+IgnKtKduKe30MwDMEKgB6ZiBtam6Bm0mgHQIVINyGbUvTVKgg5Gj5QdQRqADomcFsUjMVKlSA0zktV06zpVSSp3pAWI3alo4SqCDkGLCOqCNQAdAzhXRSswsEKsDpWJkMhB8tP4gCZqgg6ghUAPTMYMbUDENpgRVo9wHCj6G0iAJafhB1BCoAemYgk9QcQ2mBFSiRBsKPChVEQanmKEeggggjUAHQM4W0qVmG0gIr0PIDhB8VKogCKlQQdQQqAHqGobRAe8WqozwVKkCoEagg7Cp1R1mTaxmijUAFQM9QoQK0xxA/IPxo+UHY0b4KEKgA6KFCJqlZZqgAKzCUFgi/kaylqQoVKgivSq2prBX3+hiApwhUAPQMgQrQHjNUgPBLxA1lzYTmFrgOIpyotgQIVAD0UMwwZKcSKnIzCSxDmTQQDbT9IMwIVAACFQA9VkgnNUugAizDUFogGhhMizBjww9AoAKgxwYzpmbmeToHnIqWHyAaCFQQZlSoAAQqAHpsIJPUHHNUgGW4CQWigZYfhBntqwCBCoAeG8wkNUOgAizDlh8gGqhQQZiV645sk2sZoo1ABUBPFTKmZmn5AZah5QeIhhHb1BQVKggpZqgABCoAeowKFWClUs1RjptQIPSGs5amK1SoIJwIVAACFQA9NpA2NbfA0zngVLT8ANFs6QUAACAASURBVNEwkrM0VSJQQThxLQMIVAD0GBUqwEq0/ADRMJw1NV3hoQLCiQoVQOITAKDrDs4sSJI++fWndaxS197Jst74yr06f1tWkvTpd18uSdo+kPbsjIBXKnVHmWRChuH1SQD02mjO0lEqVBBS5VpTthX3+hiAp6hQAdBTybihlut6fQzANyiRBqLDthKqN1uqOy2vjwJ0XbnWkG1RbYlo444OQNcsVabc9tn7JEmzC86Jrx2YmdeBmXlJ0i2fuV+SdNfHbpYkbR9I9fOYgKfKVUc2gQoQGUuDaanKRNhUak1lqVBBxFGhAgBAH1GhAkTLaM7U0RJzVBA+5ZojmxkqiDg+AQC65pNff1rS8sqUdmYXFofUfuJrT0mSvvjB3b09GOAjDKQFooXVyQgrAhWAChUAAPqqVHOU4wYUiIxh29R0mQoVhA9bfgAqVAB00ctHKxt6/b4j8z06CeBftPwA0TJqWzpapkIF4VJtNJWMxxSPsbIO0UaFCgAAfUTLDxAtVKggjGj3ARbxKQDQNedvy0rSiW0+67lgzO7lcQBfYssPEC0jtqVnDhW9PgbQVQQqwCIqVAAA6CNafoBoGbYtTdPyg5BhZTKwiDs6AF3z6XdfLkm65TP3Szq5zed0hfTiPz2//57L+3MwwEeK1YbyqbzXxwDQJyO2qSlafhAy5WpDNu2rABUqAAD0E2XSQLSM2JamqFBByJRrTdlUqABUqADonu0DaUnSXR+7WZL0ia89JUl69lBZcwsN7blgWNLJypRtuZQHpwS8RcsPEC0MpUUYVeqOsibXMoAKFQA9FzcMNVuu18cAfIEtP0C0xAxDA+mkZuYJVRAeDFgHFvEpANB12wcWK0+++MHdkqT5elPXfuo7+sIHrvPyWIAvUKECRM/SHJXBjOn1UYCuoH0VWESFCoCey5hxxWOGSlXH66MAniNQAaKHTT8Im0rNUZZABSBQAdAf4/mUJopVr48BeI6WHyB6GEyLsCnVHOUIVAACFQD9MZZPaZJABRHnNF01XVdWgssvECWsTkbYUKECLOKODkBfjA2kNDlHoIJoK1YbylOdAkQOLT8IGwIVYBGBCoC+oEIFYH4KEFVUqCBsuJ4BiwhUAPQFM1QAtiIAUcUMFYQNFSrAIgIVAH0xnrc0UeRmEtHGQFogmoZtU9NUqCBEyvWmbDPu9TEAzxGoAOgLWn4ASqSBqKJCBWFTrjZk84AAIFAB0B8MpQUIVICookIFYVOpNZW1qFABCFQA9MVYLqXJEoEKoo2WHyCasmZCLdfVQqPp9VGArmAmGLCIQAVAXxiGNGpbOlKi5BnRxQ0oEF1UqSAs6k5LhiEl4/wqCfApANA34wMpTdD2gwij5QeIrmHb0jRzVBACPBwATiJQAdA3DKZF1BWrDeVp+QEiadS2dJRABSHAymTgJAIVAH1DoIKoK1cd2VSoAJFEyw/CggoV4CQCFQB9Q6CCqKPlB4guWn4QFgQqwEkEKgD6ZjxvaaLIzSSiiy0/QHSN2KamqFBBCLAyGTiJQAVA31ChgqjjqR4QXSO2pSkqVBAC5VpDtsXDAUAiUAHQR2MDKU2y5QcRVqw6ytPyA0QSgQrColxryqZCBZBEoAKgj8bzKU1QoYIIo+UHiC6G0iIs2PIDnESgAqBvBtJJVRtN1ZyW10cBPEHLDxBdI1lLUxUqVBB8DFgHTiJQAdBX4wMpTdD2gwiq1BxlzIQMw+uTAPACFSoICypUgJMIVAD0FYNpEVXMTwFAqIIwIFABTiJQAdBXBCqIKtp9AND2gzAo1RzluJ4BkghUAPQZg2kRVQykBTCSszRVIlBBsFGhApxEoAKgr8byliaL3EwiehjiB2A4a2q6QssPgo2KS+AkAhUAfcVQWkQVgQoAKlQQBgQqwEkEKgD6alsupSMlAhVEDy0/AEaypqaoUEHA0fIDnESgAqCvqFBBVFGhAmDYtjRdpkIFwUaFCnASgQqAvmIoLaKKG1AAI7alKQIVBFy56sjmAQEgiUAFQJ+ZiZgyZlyz8w2vjwL0FS0/AEZsU1NlWn4QXE7LVbPlykrwayQgEagA8ABVKoiiYtVRnid6QKTR8oOgY34KsByBCoC+25ZP6QiBCiKGEmkAVKgg6LiWAcsRqADoOypUEEW0/ABIJeOKG4YqdcfrowCbUq47sk0CFWAJgQqAvmPTD6KIobQAJGkkZ2qqRJUKgomWH2A5AhUAfTeWtzRZpIcc0cLaZACSNJy1NF3hGohgouUHWI5ABUDfjeVTmqTlBxFTrDaUp+UHiLxh29Q0c1QQUFRbAssRqADoOwIVRBFP9QBI0qht6SibfhBQtPwAyxGoAOg7htIiahrNllquZCW47AJRR4UKgqxUc5QjUAFO4M4OQN+N5ixNl+tqua7XRwH6gvkpAJYM25amqVBBQFVqTWWtuNfHAHyDQAWAJxhMiyghUAGwZMS2NEWggoCi5QdYjkAFgCeYo4IoKVUbyjGQFoCkEdvUFC0/CCgeEADLEagA8ASBCqKEG1AAS6hQQZBV6o6yJtczYAmBCgBPjA+kNDFHoIJoYM0kgCUMpUWQ0fIDLEegAsATbPpBlBSrDeVp+QEgaTBjam6hwWB2BBIVl8ByBCoAPLEtb+kIQ2kREdyAAjgVc1QQVFSoAMsRqADwBBUqiJJy1ZFNoALgOFYnI6hoYQWWI1AB4AmG0iJK2PID4FRUqCCoqFABliNQAeAJhtIiSmj5AXAqNv0gqKhQAZYjUAHgCdtKyHUX1+8BYVeqOcpxAwrgOFp+EESuKy00msqYca+PAvgGgQoAzzCYFlFByw+AU9HygyCq1B1lTR4OAKciUAHgGdp+EBW0/AA4FS0/CCKuZcBKBCoAPMNgWkQFW34AnGrYNjVNhQoChoG0wEoEKgA8w+pkREWx6ihPoALgOCpUEEQEKsBKBCoAPEOFCqKCGSoATsUMFQQRA9aBlQhUAHhmLG9pkqG0iADWTAI41XDW0nSF6x+ChQoVYCUCFQCeYSgtooAwBcDpzERMViKmUtXx+ihAx7ieASsRqADwzFgupckSgQrCjXYfAO0wRwVBw4B1YCUCFQCeGRtIaZIKFYQcayYBtEOggqCh5QdYiUAFgGcSMUMDmSSrIxFqBCoA2mF1MoKmXG/KNuNeHwPwFQIVAJ5i0w/Cjp5zAO0wmBZBU642ZNPCCixDoALAU+P5lCYIVBBizFAB0M5oztTREhUqCI5KramsRYUKcCoCFQCeokIFYVesOsrT8gPgNFSoIGiouARWIlAB4CkCFYQdWxEAtMMMFQQNgQqwEoEKAE+ND6Q0waYfhBgtPwDaYcsPgoZABViJQAWAp8byliaL3FAivNjyA6AdAhUEDWuTgZUIVAB4iqG0CLtSzVGOG1AApxmxTU3R8oMAoYUVWIlABYCnmKGCsKNCBUA7+XRS83VHTtP1+ihAR2j5AVYiUAHgqaGsqWK1wQ0lQosZKgBWM5K1NMWmHwREpe4oaxKoAKciUAHgOdp+EGaUSANYzUjO0lSJQAX+V6k7yiQTMgyvTwL4C4EKAM/R9oMwo+UHwGqGs6amK8xRgf9Vak1lrbjXxwB8h0AFgOeoUEGYFasN5Wn5AdAGm34QFGz4AdojUAHgOSpUEGYM8QOwGjb9ICiotgTaI1AB4LmxgZQm5whUED51pyVJMhNcbgGsNGxbmqZCBQFAhQrQHnd4ADxHyw/Ciid6ANZCyw+CgmpLoD0CFQCeG8tbmixyQ4nwKdUaylnMTwHQHi0/CAoCFaA9AhUAnmOGCsKKChUAa6HlB0FByw/QHp+KNTmqTB/VsWJF1WZMlj2o0dFBpdfdGNbU/PSEJo+VVGsmlC6ManxsQNZ6e9tbVc1MTGiquKBmPKX8yHaND6ZIvRB6BCoIKwIVAGuhQgVBQYUK0B6finZaZR169jE9+uReHS415J7ypVhqRBdce7NuvHxMqXbfOrdPD959v34yuaDWiT81lCycq+ve+mZdOWa1+S5XlQOP6p7vPamD5eYpf55QbseVetNbrtOO7HppDBBcGTOueMzgl0+ETrnakM3KZACroEIFQUGgArTHp+J0zSN6/Bvf1CMTNbmJrLade6HOHMnLitVVPPyyXjowpRcf+EfNNe7Q7VePaFmxSvVV3f/N7+rZoitr6FztumC78vGajr36ovYeelkPfasm4+du0xWDy2tOGhOP6M5vP64pJ6n8jot04VmDspw5Hdz7gg4ceEzfvtPVu+7YrTHuyRFiS4Npcynb66MAXUNICGAtiZihrJXQ3EJDA2lu9OBflZqj4Wy7B8NAtHGXd7r4sM4+d5v2pc/QDTdeqR25UyOTa3XFj+/U1x88qMknH9PLl75DF574d6WpyScf1PPFlpLbb9C7br1KI0vXxSsv13n3/YPuevY1/eihF3X+LRfrRMGJO6ufPPiUppy4hq98p27fc4aWfuSVV+zSw9/4hh4/+pR+8Mwu/dxVg6JOBWG11PZz4TYCFYRHseooT6ACYA1Lm34IVOBn5VpTtrXu3AMgchjPsUJcw6+/TT//M1efFqYsfm3wkit0jmVI9SOamD7Z1KPmYb2wd04tI6+Lr7/iZJgiSUZaO6+/WjtNqXbgWb04d7KJqHVsr1482pSROk/XXnMyTJEkmWO6+voLlTGaOvLcczrSEhBaYwMpTc4xRwXhQok0gPUM26ammaMCn6OFFWiPQGWjYimlLUlqqnnKuJPWzCEdnndlZM7SOWNt0tv0Tp07npBaUzpwsHJ8Lour+UOHNNOSEmeco7PaVNElzzhHOyxDbumg9s+QqCC8GEyLMCpVG8pxAwpgDaO2paPMUYHPUaECtEegslFOWaUFVzJs5XMnG3CcmWMqtqTY4KiG2v5bY2l4JKeYWpo+euz4wFpXM8dm5CqmgZEhtb3ljg9rZNCQWnOamm704n8R4AtLM1SAMClXHdm0/ABYAxUqCALWJgPtEahs0MKre3WwIcWGztXZAycGoWi+PK+WpEQ2q/bjmmLK2FkZctUol7X4HKKhSrkuV4ay2Wz7+ShGWtlMXFJLlVJl2cYhIEzG85YmijyhQ7gwQwXAetj0gyCghRVoj0BlI6r79fAjr6qmrC645hINn0hAXDXqdUmGkmZy1cGxprlYg+LWa6q7kty66g1XUkxJc7V/oGIyzYQMuarV6gQqCC1afhBGtPwAWA8tPwgCAhWgPT4VnWrO6Jm779HzRSl/8Ru157z0si+3Wi25kmKx1TOqE19zW8dbflpqtSTJ0Brfplg8duK/sRFf+MIXVv3aBz/4wQ39LKDXGEqLMOIGFMB6aPlBENDyA7QXvU9Fq6jXXjqk0mnZhJHepnPPHpK5yvfsvfdO/WB/VdaZb9A73niu0qe9JBaPy5DUaq4eejSXptjG4locsxJXPC5JLa3xbSe+Lx7f2CAoQhMEyVgupckSgQrCpVR1lKPlB8AaaPlBEPCAAGgvep+K5hE987179XJz+R/Hxm7Q2M4hmaf367TK2vf9b+nevSUltl2ld7zjSo2s+FszlEpZklzVa7VV2nJc1euLLTuGZR3/75hKWcbx76tLK2IaSWqqXnPkypCVslZtJwKCzjAWy56PlGralms/iQgIGlp+ALRzcGZBkvTJrz+thUZTTx6Y0xt//16dvy0rSfr0uy+XJG0faHdvCPRXtdFUMh5TPMZvIsDpoheoxId0/jXXaui0ipCYvV2p0/+NcMt6+b5/1N3Pzyo2+nq94527dUbb3/MMpXO2kpIalbIWXMle8e+Ne3yorKGUnTs+uDYhO5eVobIqpYpaSq8cauNWVKq0JMWPvxYIr/GBlCbmqgQqCA0qVACsx4zH1GoxJQ/+Vak1lWVlMtBW9O7yYkO64Jqh9V/nVvTT+76pu5+bU3zsat3yzt06I7X6y+Mj2zQU26uJY0c11ZTs0/9m3XkdPVqWq5iGRoeOBycxDW0bVkJFFY9OqaaRlTUqjWkdnWlJsSGNDEXv/y5Ey8nBtANeHwXoCkqkAZxqqTLlts/eJ0maXXBOfO3AzLwOzMxLkm75zP2SpLs+drMkafvAGjehQI+Vag3lLKotgXbY8tOOO69X7v+mvvvsrOLj1+idt64dpkiSYe/U2SMxubX9evnAysFibvkV7ZtsSrER7TjzZGxinXm2ticl5/A+vTK/8udW9+9bXNOc36EdBepTEG5s+kGYUJ0CAAgDKlSA1RGonM6d1/4Hvqnv/GRGiTOu1623XqftnXQfGAPadekOWe6C9j78Q+2fP6V0szmr5x54TIcdQ9bOS7Vr4JRgJHOeLj0/K6NxQD964EUVT2lFapX36cGHf6qam9C2Sy7WKP9vIeQIVBAm5VpDNk/0AJzik19/Wp/8+tOaXXCWVaecbnahodmFhj7xtaf0ia891ccTAiux4QdYHZ+M0zT3/1DffWZajiR3+se6669/vOprjeR5esv7btbOmCQZyu7ao+tfmtQDB36iu/7msM7cOa58oqZjr+3XRLEhpc/WG/ZcqMyyn2Lp7Ov36PyDd+ulfffoq1PPaecZg7KcOR3a/5pma5I5fq3eeFmB+SkIvfG8pUdemfH6GEBXFKuO8lSoAAACjopLYHV8Mk7XdLS0AKhZW9DCWq916mqeOkMsVtBl73iXEg/dr0eeP6wDe48d/0JC9pmX64Y37taFAyvLTIzsBXrr7THl7ntIzxw8pH1zhxa/EM9o7OJrddOeSzVClR0iYGkoLRAG3IACON3LRysbev2+I236wYE+q9QdZU2uZ0A7fDJOEz/v7fql/2MLPyA5rItvvkMXvaGimZmS6m5cqfygCum1/6rj+fN0w23n6dqFWc3MLagVT8kuFJRNUpeC6NiWT+kILT8IiXLVkU2gAgAIOAasA6vjk9EjRjKroW3ZDX9fIl3QaLrQgxMB/jeeT2mCQAUhUao2lEsxQwXASecfvzdc2uazngvG7F4eB+gIDwiA1THmFIBvDKSTqjaaqjmt9V8M+BwtPwCAMGAoLbA6PhkAfGVpjsrZw5n1Xwz4WKnmKMcNKIBTfPrdl0uSbvnM/ZIWt/m0s9Qq/vvvubw/BwPWUK45OqOQ9voYgC9RoQLAV1idjLCg5QcAEAbMUAFWxycDgK8QqCAsSlVHoyOW18cA4CPbBxaf8t/1sZslSZ/42lOSpOcPlzVdqeumC0cknaxM2ZZLeXBKYDlafoDVUaECwFcYTIuwYIgfgE7FDEOtluv1MYC2qFABVscnA4CvjOUtTRRrXh8D2LJitaE8LT8A2tg+sFh58sUP7pYkVRtNvf53vqMvfOA6L48FtMUDAmB1VKgA8JWlobRA0LHlB0CnUsm4pMVgBfCbcr0p24x7fQzAlwhUAPjKtlxKR0oEKgg+SqQBbEQhnVx16w/gJWaoAKsjUAHgK1SoICzY8gNgIwpZU7OVutfHAFag5QdYHYEKAF9hKC3CgpYfABtBhQr8iopLYHUEKgB8xUzElDHjmp3nphLBRqACYCMGM0nNcO2DzzSaLUlSMs6vjUA7fDIA+A5VKgi6mtNSzOAGFEDnChlTs/O0/MBfeDgArI07PQC+sy2f0hECFQQY/eYANqqQSVKdCd9hIC2wNgIVAL5DhQqCrlhtKM9AWgAbMJgxNUOFCnyGQAVYG4EKAN9h0w+CjhJpABtFhQr8qFxvyjbjXh8D8C0CFQC+M5a3NFmseX0MYNPYiABgo6hQgR/RwgqsjUAFgO+M5VOapOUHAVaqNpSj5QfABgykk5pjbTJ8hgcEwNoIVAD4DoEKgo6WHwAbNZg1NVOhQgX+wgwVYG0EKgB8h6G0CDoCFQAbVUgnNUuFCnyGChVgbQQqAHxnNGdpulxXy3W9PgqwKbT8ANgoZqjAjwhUgLURqADwJQbTIsioUAGwUYm4ISseV6XueH0U4ARafoC1EagA8CXmqCDIeKIHYDMK2aRmK7T9wD/Y8gOsjUAFgC8RqCDIaPkBsBnMUYHf8IAAWBuBCgBfGh9IaWKOQAXBVKw6yvNED8AGMUcFflOpO8qaXM+A1RCoAPAlNv0gyCiRBrAZhUxSs/NUqMA/mAkGrI1ABYAvbctbOsJQWgQULT8ANqOQMTVLhQp8hKG0wNoIVAD4EhUqCDKe6AHYDCpU4DeVWlNZK+71MQDfIlAB4EsMpUWQlWqOcjzRA7BBzFCB35RqDeUsKi6B1RCoAPAlhtIiqFxXmq9TIg1g46hQgd9QoQKsjUAFgC/ZVkKuuzhdHggS5qcA2KxC2tTsAhUq8Idmy1Wj2VIqSaACrIZABYBvMZgWQVSuObKpTgGwCYPZpGYqVKjAH7ieAesjUAHgW7T9IIiKVUd5BtIC2AQqVOAnbPgB1kegAsC3GEyLIOKJHoDNYoYK/ITrGbA+AhUAvsXqZAQRM1QAbBaBCvyEQAVYH4EKAN+iQgVBVKo6ytHyA2ATYoYhO5VQcYFQBd6j5QdYH4EKAN8ay1uaZCgtAqZcdWQTqADYpEI6qVkCFfhAudaUzcpkYE0EKgB8i6G0CKJitaE8LT8ANmkwY2pmnsG08F652pDN9QxYE4EKAN8ay6U0WSJQQbDQ8gNgKwYySc0xRwU+QIUKsD4CFQC+NTaQ0iQVKggYhvgB2IrBTFIzBCrwAWaoAOsjUAHgW4mYoYFMUtNlSp8RHGz5AbAVhYypWVp+4AM8IADWR6ACwNfY9IOgoeUHwFZQoQK/IFAB1kegAsDXxvMpTRCoIEAIVABsxUDa1NwCFSrwHi0/wPoIVAD4GhUqCBpafgBsBRUq8AsqVID1EagA8DUCFQQNFSoAtoIZKvALAhVgfQQqAHxtfCClCTb9IEC4AQWwFVSowC9o+QHWR6ACwNfG8pYmizWvjwF0rFhtKE/LD4BNokIFfkHFJbA+AhUAvsZQWgRJtdFUIhZTIm54fRQAAVXIJDVLhQp8gAoVYH0EKgB8jRkqCBLafQBs1UA6qWK1Idf1+iSIukqtqawV9/oYgK8RqADwtaGsqWK1IafJnSX8j/JoAN1QSJuaZXUyPOS60nzDUdbkmgashUAFgO/R9oOgYH4KgG6g7Qdeq9QJU4BOEKgA8D3afhAU5aojmwoVAFtEoAKv0cIKdIZABYDvUaGCoKDlB0A3DGZMzbDpBx7iAQHQGQIVAL5HhQqColRtKEfLD4AtokIFXmPDD9AZAhUAvjc2kNLkHIEK/K9Uc5TjBhTAFhUypmapUIGHaPkBOkOgAsD3aPlBUNDyA6AbCumkZheoUIF3CFSAzhCoAPC9sbylyWLN62MA66LnHEA3MEMFXiNQATpDoALA95ihgqBghgqAbmCGCrxWqTWVteJeHwPwPQIVAL5HoIKgoOUHQDcwQwVeK1cbsnlAAKyLQAWA72XMuOIxQ6Wq4/VRgDUxlBZAN1ChAq+V603ZJhUqwHoIVAAEAoNpEQS0/ADoBmaowGusTQY6Q6ACIBBo+0EQ0PIDoBsGM0nNUKECDzFkHegMgQqAQBgbSGlyjkAF/sYNKIBuyFoJ1RpNOS3X66MgotjyA3SGQAVAIFChgiCgQgVAtzCYFl6i5QfoDIEKgEBghgr8ruW6Wmg0lTW5AQWwdQymhZcYsg50hkAFQCCM5y1NFGteHwNYFe0+ALqJwbTwEhUqQGcIVAAEAi0/8DvafQB0ExUq8BKBCtAZAhUAgcBQWvgdK5MBdBMzVOAlHhIAnSFQARAIY7mUJksEKvAv+s0BdFMhndTsAhUq8Eal7jATDOgAgQqAQDAMadS2dKTEHBX4E0/zAHTTYCapGVp+4IH5elPpZFyG4fVJAP8jUAEQGOMDKU3Q9gOfIlAB0E20/MAr5Zojm4pLoCMEKgACg8G08LNyrSHbYoYKgO5gKC28wkBaoHMEKgACg0AFflasOspToQKgS6hQgVeoUAE6R6ACIDAIVOBntPwA6CZmqMAr5aojm+sZ0BECFQCBMZ63NFFkKC38qVxtyGZtMoAuoeUHXqFCBegcgQqAwGAoLfyMChUA3UTLD7zCDBWgcwQqAAJjWz6lI7T8wKcIVAB0UzoZV9N1VXdaXh8FEUOFCtA5AhUAgTGeT2mCQAU+Vao5ynEDCqCLBjOmZqhSQZ8RqACdI1ABEBgD6aSqjaZqPK2DD5WqDeWYoQKgixhMCy/Q8gN0jkAFQKAwRwV+xVYEAN02kDE1R4UK+qxSayprxb0+BhAIBCoAAoXVyfArZqgA6DYqVOAFWliBzhGoAAgUAhX4FS0/ALqtkE5qdoFABf1Fyw/QOQIVAIHCYFr4UbXRVCIeUyJmeH0UACHCUFp4gaG0QOcIVAAEylje0mSx5vUxgGVo9wHQCwOZpOZo+UGfMRMM6ByBCoBAYSgt/IhABUAvUKECL9DyA3SOQAVAoDBDBX5UqjWUs5ifAqC7CpmkZqlQQZ+V645sk0AF6ASBCoBAIVCBH1GhAqAXqFCBF2j5ATpHoAIgUBhKCz8iUAHQC8xQgRdo+QE6R6ACIFDMREwZM04JNHylXG3IZmUygC6jQgX9VnNaiscMttYBHSJQARA4VKnAb6hQAdALhXRSsws8QED/0O4DbAyBCoDAYY4K/KZYdZTnBhRAl5mJmBIxQ/P1ptdHQUSUa45s2n2AjhGoAAgcAhX4DTegAHplIG1qboG2H/QH81OAjSFQARA44wMpTcwRqMA/StWGcsxQAdADg9mkZiq0/aA/eEAAbAyBCoDAGctbmizWvD4GcAIzVAD0CoNp0U8EKsDGEKgACBxafuA3BCoAeoXBtOgnWn6AjSFQARA4BCrwG1p+APRKIWNqlgoV9Emp5ihHoAJ0jEAFQOCwNhl+Q4UKgF4pZJKanadCBf1BhQqwMQQqAAJnNGdpulxXy3W9PgogiZ5zAL0zmElqhkAFfUKgAmwMgQqAQGIwLfyElh8AvULLD/qJiktgYwhUAAQSc1TgF82Wq5rTUsaMe30UACFEyw/6gfjNnwAAIABJREFUiQoVYGMIVAAEEoEK/IJ2HwC9RIUK+qlca8q2eEAAdIpABUAgjQ+kNDFHoALvUR4NoJeYoYJ+Ktcasi1aWIFOEagACCQ2/cAvytWGbOanAOiRQtrU7AIVKuiPSq2pLBUqQMcIVAAE0ra8pSMMpYUPFKuO8lSoAOgRZqign2hjBTaGQAVAIFGhAr+g5QdAL8VjhtLJuMo1x+ujIAIIVICNIVABEEgMpYVfcPMJoNf+f/buNDbOA7/z/K/uk3VQFMkSJUqyLkqyrEi+5W4fnWTbnnG6E3uPIDPZWMBidt8MYAywQLw9k513Ti+wgNFYYLF5sdaeyGZ33dne6did7bRly22nfcitsWWRknWT4iWxqsgqVhVZx76gSicp1vE89dRT9f0AASYiq/gPPcXjx/8RD3mVzDL2A/Nx5QeoD4EKAFtiKS3axUJ+WT3sUAFgoljAo1SOsR+Yjz8SAPUhUAFgS2GfW5WKlF2iBRrWYuQHgNk4nYxWWC6VValIXje/IgK14tUCwLZYTIt2sFAoqoe/5gEwEYtp0Qp0pwD1I1ABYFuM/aAdMPIDwGzxoEdJAhWYjJPJQP0IVADYFotp0Q4Y+QFgtnjQqyQjPzBZJr+sMH8gAOpCoALAtjidjHaQyRcVJlABYKJo0KM0HSowWWappLCXDhWgHgQqAGyLDhW0g/n8siL8RQ+AiehQQStwMhmoH4EKANsaiPg0zVJaWIyRHwBmYyktWoHvZ0D9CFQA2BZLadEOuIoAwGx0qKAV6FAB6kegAsC2Bnr8ml4gUIG1uPIDwGzRgEfpHB0qMBeBClA/AhUAtjUQ9WuaDhVYjBZpAGajQwWtsFAoqodABagLgQoA23I7HYoGPbqR4YdMWCO3XJLX5ZTL6bC6FAAdjB0qaAU6VID6EagAsDUu/cBKdKcAaBVCFZiNnWBA/XjFALC1wYhfU/N57dsUsboUdIHxZE6S9KOffiVJGptaUDK7rNfe/lSS9OYrByRJiWjAmgIBdKxYwKtUbkmxIDubYI5MvqgwfyQA6kKHCgBbo0MFVqpUJAfTPgBagA4VmC27VFTIS6AC1INXDABbI1BBK1Q7U17+yYeSpFSueNfbj4/NSpJeeuuEJOnd15+VJCWi/laVCKDDEajAbJlCSWGfy+oyAFuhQwWArQ1G/Zri0g8AoMNx6Qdmy+SXFfYzUgbUgw4VALY2EPFper5gdRnocNWdKfd2ptwrlVv56/Eb75ySJB07+qS5hQHoGnSowGzZQkkhOlSAutChAsDWqktpAQDoZLGgVyk6VGAirvwA9eMVA8DW2KGCVrgwm63r/c/PLJpUCYBuFQ969e3MgtVloIMRqAD1o0MFgK31hryazy+rWKpYXQoAAKZh5AdmKpUrWi6V5fcw8gPUgwgSgO1Vx342xwNWl4IOtaM/JEm6mqyt82TnQNjMcgB0oXjQoySBCkySLRQVojsFqBsdKgBsj7EfAECniwa8SufYoQJzMO4DNIZXzQNUlrOau35D6WxBxYpT3mBUGzZuUI/Xsc4jS1q8MaXpuQUVSm4FYhs1OBCVb72HlfNKTk3p+nxOJZdfkb6EBuN+Ui9gHSymhdnefOWAJOmlt05Iun3N516xwMq31R+/eqA1hQHoGnSowEwEKkBjeNWsYjl1UV998aVOX5hRpnjPXgZ3WEP7j+i5J3cousqIYTl9Xh//wwmdns6pfOtfHfLEtuvx7z2vgwO+VT5iRdmrn+lXx3+r8Uzpzg+mni0H9dwLj2tLaL00BuhedKgAADodV35gJk4mA40hULlHJXNGf/9/H9eVJckdHtCObZu1MRqURwXNz1zWufPTmjj1S/286NGrzw7rrngkf1kn/t0v9c18Rb7e7dq9M6GIq6C5y2d17toFffLzghx/9LIeid/dc7I89an+7r2Tul70KLJlj3ZtjstXTGv83JiuXv1C7/1dRT/4wyc14GnppwKwjYGoX9NpAhWYJxFd2c/z7uvPSpL+1d98qZOXk+rvWfn36s6UamdKf4/fgioBdLIev1uLSyWVyhW5nPyhDcbKFJYV9vHLBlAvApV7OMK79PhjUwo7dunw/s3quSuoPazf2XFcP/3FqNKjX2j04BYdjFa/oZU0/duPNTpflifxlH7wTw+pr/o16eABPfTh3+rdbyb0+SdnteOlEd1qOKmkdPrjU7pedGnDwX+iHx7ZdCukOfjIbv3mZz/TydlT+vXXu/VHh+Li2ydwv8GIX99cS1tdBrrIXHZJvSGv1WUA6DLRgEfp3DJff2C4TKGkMB0qQN0IVO7jVv/BF9S/6tscCm7drx3Rs/oydUMzN8q6NfdTmtTYubTKjoj2P/HI7TBFkhwBDT9xWMPf/kqXrn6js+k9OhRbiUbKc+d0drYkh3+XHnt0090dL94BHX5il0b/7oxmzpzRzMEjGmChCnCfgYhP0/MFq8tAF0hEVzpPHuoL6we/M6SXHh60uCIA3SQe9Cq5SKAL43HlB2gMv57XzaGVLkuHnHd89srJa5pcrMgR3KxtA6uku4FhbR90S+Xrujqe1cpmlooWr11Tsiy5N23T5lXWq3g2bdMWn0OVhXFdSZbvfwcA7FBByx0fm9XzezZaXQaALhMLepRiMS1MsJAvqsdPoALUi0ClTqXrF3QpXZY8g9q08fanr5ic03xZcsY3qnfVbjmfNvT1yKmybszO3VxYW1FyLqmKnIr29WrVqUXXBvXFHVI5res3+AYKrIZABa306cU5HdgcVcBDazSA1qp2qABGo0MFaAyBSq0qy5q/clK/+MVvdaPi19DjT2rX7UUoWswsqizJHQpptTs+klPBcEgOVbScyWhlOGFZ2cySKnIoFAqtvh/FEVAo6JJUVnah2tkC4E5Br0sup0ML+aLVpaALHD87q+d3050CoPWiQY/SdKjABAQqQGN41aylktG3J97X6WRZlVJB2XRKC0su9Qzs0pPPPqZHtkbu+ORVtLy0JMkhj9ez5uJYr3elB6WyVNBSRQpqSUvLFUkuebxr/adwyut1y6GiCoUlVSQW0wKrGIz4NTWfV48/bHUp6HAfjM3ov/kPD1pdBoAuRIcKzLJQKGooHrC6DMB2CFTWVNTC9Wu6Nn3H3hKnW5XiotKzM0oP9miD73a0US6XVZHkdK7d9HPrbZXyzZGfsspl6d59LPc9zuW89THq8f7779/3by+88EJdzwHYRXXsZ1c/gQrMcz1T0PR8Qfs3RawuBUAXigU8SuXoUIHx6FABGtN9r5ryvCa+vaaFe7IJR6Bf27f26tbOdEdUj/zBUe0rV1QpL6uQndfc9BWd/fobjX12Vd+em9Dv//A5bQuuvLvT5ZJDUrm0duhRKpWq76yVyXuXXC5JKusBD7v1OJervnl9whN0k4GoX9Np9qjAXB+Mzeo5ltECsEg85NE31/heB+NlCkWFCVSAunXfq6Y0o6+Pv68Lpbv/2TnwlAaGe+W91XTikMvjvRl8+OQPhBXt26Tte3bqi5/9VJ9On9GvT+7Slu9skksO+f0+SRUtFQpr7DmpaGnp5siOz3fz43jl9zluPm5J0mptdiUtFYqqyCGf38e4D7AGFtOiFd4fm9WLDw9YXQaALhUNeJXOMfID4xGoAI3pvleNq1c7Hn1Mvfd0hDjDCflrSSvcfdo7MqgvpseVuXZNqcombXA4FOgJyyNpOZtRriKF73uuys2lsg75wz03F9e6Fe4JyaGMsgtZlRW4f0twJauFbFmS6+b7AljNYMSvb2cWrC4DHe742Iz+8tUDVpcBoEvFgx4lWUoLEzDyAzSm+141zl7tfLS3qadwu29+2kpFlW5uiXX19avXeU5Tc7O6XpLC935mK4uanc2oIqd6N/beDE6c6u3fILfmNT97XQX13d+jsnxDs8my5OxVX2/3/ecCajUY8emjb69bXQY62MkrSe0e6OEveAAsw1JamIUOFaAxnE2u27Kmrs2qLMkViyty8zPoCA9ra59TlcIVXbh6/ze6SuaSzk+XJGeftgzdjk18Q1uV8EjFyfO6tHj/R8tfOa/xZckZ2aItMfpTgLUw8gOzHR+b1fPsTwFgoVjQoxQdKjBBtlBSyFffvkYABCr3WZ4+p2+uplRYdUlsUamzJ/TRWFYVR0Dbdm+Vv/omR1S792+Rr5LTud/8o64s3rFJpZTSmY++0GTRId/wfu2O3hGMBB/S/h0hOZav6vOPzmr+jo9bzpzXx7+5qELFrf59I9rIfy1gTSylhdlYSAvAarGgVyk6VGCCTL6osJ8OFaBevGruUZw7q4+O/1InfBFt7N+oeDQkv9uhYj6j5PSEJpN5leVR7/4XdOQh/x2PdCi0+4ie+HZaH109rXf/elJDw4OKuAuam7iiqfllKbBVTx/ZpeBdH9GnrU8c0Y7xf9C353+lv7l+RsOb4vIV07p2ZUKpguQdfEzffTjG/hTgAQZ6/JpeIFCBOZKLS7oyt6iDm2NWlwKgiwW9Li2XKlouleVx8Zc2GCe7VFTIy6+GQL141dzDm9ijAw/l9e3VWU1fndf01Tve6PAoPLBTew4+qkM7euW598HOmB7+/g/k/uSEPh2d1NVzczff4FZ46ICe+u6T2hW9/5ufI7RT3/uhUz0ffqKvx6/pfPrayhtcQQ2MPKbvHNmvPjrwgAdyOKSNYZ9mFgrq7/FZXQ46DN0pANpFdTEt3+tgFBbSAo3jlXMPV2ynnv7+Tj1dXlYus6BMbknFsuTy+BWKRBTyrvPXAM8GjTz7h9rzdFbJ5IKWKi75I3HFAg/+VLsiD+mplx/SY7mUkumcyi6/wrGYQh76UoBaDUb9mkrn+SEThjt+dlbP7yZQAWC96tgP3+tglIVCUT0EKkBDeOWsxelRINKrQKSxhzs8IfX2h+p+nDsQ08YALeVAI24vpo1aXQo6zAdjs/qv/2Cf1WUAAItpYTg6VIDGMXwJoGNw6QdmODWe0nBvUPGg1+pSAIDFtDAcJ5OBxhGoAOgYBCowA+eSAbST6g4VwChc+AEaR6ACoGMMRnyami9YXQY6DAtpAbSTWMCjVI5ABcZh5AdoHIEKgI5RXUoLGGUhX9S5mQUdHo5bXQoASJJiIa9SWUZ+YJxMoaSwj5OiQCMIVAB0jP6IXzOM/MBAH5yd0XO7+60uAwBuoUMFRmOHCtA4AhUAHWMw4tcUgQoM9P7YrF5g3AdAG4kHvUqylBYGYuQHaByBCoCOEQ14lF8uqVAsW10KOgT7UwC0G84mw2h0qACNI1AB0FHYowKjnL42r4GIT31hn9WlAMAtnE2G0QhUgMYRqADoKJxOhlE+GJvRc3vYnwKgvXA2GUYjUAEaR6ACoKMQqMAox8/O6vndjPsAaC90qMBo7FABGkegAqCjsJgWRsgtl/TVeFpPbO+1uhQAuIvP7ZTT4VBuuWR1KegQmXxRYT+BCtAIAhUAHWUg4tP0fMHqMmBzx8dm9TzLaAG0KRbTwkiM/ACNI1AB0FFYSgsjHB+b0fPsTwHQphj7gZEY+QEaR6ACoKOwQwVG4FwygHZGhwqMRIcK0DgCFQAdhUAFzRqdWlAs6NFgxG91KQCwqnjQqyQdKjAIgQrQOAIVAB2FpbRo1gdnZ/Uc130AtLFYwKNUjg4VGCNbKCnkc1ldBmBLBCoAOorX7VTQ66IVGg1jfwqAdhcLeZXK0qGC5i0uleT3rFyOAlA/AhUAHYcuFTRquVTW55eSenrHBqtLAYA10aECo7CQFmgOgQqAjsMeFTSKc8kA7CAe9ChJJyYMwP4UoDkEKgA6DoEKGkWgAsAOOJsMoxCoAM0hUAHQcQajfk2lCVRQv+NnZ/T8bvanAGhvnE2GURj5AZpDoAKg4wxEfJqeL1hdBmzm25mMAh6XhuIBq0sBgAeiQwVGoUMFaA6BCoCOw8gPGsG5ZAB2wQ4VGCWTLyrsJ1ABGkWgAqDjcOUHjeBcMgC7iAW8SuXoUEHzsktFhbwEKkCjCFQAdBw6VFCvcqWiX397Q9/d1Wd1KQCwLrfLIZ/bpWyhaHUpsLlMoaSwz2V1GYBtEagA6Dgbe3y6kVlSuVKxuhTYBNd9ANgNYz8wQia/rLDfY3UZgG0RqADoSCymRT3YnwLAblhMCyNkCyWF6FABGkagAqAjMfaDerA/BYDd0KECI3DlB2gOgQqAjkSgglpdupGVQw5t3RC0uhQAqFk04FWaxbRoEoEK0BwCFQAdaTDq11SaQAXrY38KADuKhzxKZulQQXMIVIDmEKgA6EicTkatPhib1XMEKgBsJhbwKJUjUEFzsoWiQgQqQMMIVAB0pP6ITzMspUUNjp+d0fO72Z8CwF7iQa+SLKVFkzL5osJ+AhWgUQQqADoSHSqoxYdnZ/XdXRvlcFhdCQDUJxr0KM1SWjQps1RU2EugAjSKQAVAR2IpLWpx/OysnudcMgAbokMFRmDkB2gOgQqAjsRSWtSCc8kA7CoW9ChFhwqaxMgP0BxePQA6xngyJ0n60U+/kiRlCyV95y9/pZ0DYUnSm68ckCQlogFrCkRbGU/mtFQs66GNIatLAYC60aGCZhWKZbmcDrmdzL0CjaJDBUDHcjkdKpWtrgLtiu4UAHYWDXiU5soPmsC4D9A8XkEAbK/amfLyTz6UJKVyxVtvm5zPaXJ+5e0vvXVCkvTu689KkhJRfyvLRJv54Oys/uPHtlhdBgA0hA4VNGshX1QP4z5AU+hQAQB0pffHZvQCHSoAbMrhkHr8Hs3TpYIG0aECNI9XEADbq+5MubMzZTWpmz90vvHOKUnSsaNPmlsY2tbH52/oiW29cruYGwdgX/GgR8nFZUUCHqtLgQ1lCkWFCVSAptChAgDoOuxPAdAJYkGvUoz9oEEEKkDzeAUBsL0Ls9m63v/8zKJJlcAujo/N6r/7k0NWlwEATYkFPLe6L4F6MfIDNI8OFQBAV5lM57WQX9bugR6rSwGApsRDXiWzdKigMXSoAM3jFQTA9nb0hyRJV5O1dZ7sHAibWQ7aHOM+ADoFHSpoBoEK0Dw6VAAAXeWDs7N6bvdGq8sAgKaxQwXNYOQHaB6vIAC29+YrByRJL711QpLW/GtdLLDyJe/Hrx5oTWFoS8fHZvXWf/I7VpcBAE2LBT26dL2+PWJAVaZQ0mDEZ3UZgK3RoQIA6BqfXpzTI5uj8ntcVpcCAE2LB71K0qGCBmXyywr7ObkNNIMOFQC2l4gGJEnvvv6sJOmNd05Jun3NZ+dAWO+Pzejv/9VzkqT+Hr8FVaIdvD82oxfYnwKgQ8SCHqUW2aGCxmQKJYV9/IEBaAYdKgC6wuZYUP/H51etLgMWY38KgE5CoIJmsEMFaB6vIAAdIxFd6Tw5dvTJ+9526UZWr/2Pn+lfvrCr1WWhTcwuFDS7UNC+TRGrSwEAQ8QCXqVyjPygMVz5AZpHhwqArrBtQ0hbNwT1wdlZq0uBRTiXDKDTxIMeJelQQYMIVIDmEagA6BpHn9mut3990eoyYBHGfQB0mkjAo4X8sioVqyuBHTHyAzSPQAVA13h+z0ZdvJ7V5RuLVpcCC7w/NqsX9hCoAOgsXPpBo+hQAZpHoAKgq7x2ZLuOfUyXSrf54nJSI4M9/CUOQMeJBjxK5xj7Qf0IVIDmEagA6CpHn9mmt399yeoy0GLsTwHQqehQQSOKpYrKlYq8bn4dBJrBKwhA1/mzI9v0P318yeoy0ELsTwHQqTidjEYsFJbV4/NYXQZgewQqALrOa0e26RiBSteYyy5pPJnTI5ujVpcCAIajQwWNyBZKCvlcVpcB2B6BCoCus70vpOFeTih3C7pTAHQyOlTQCPanAMYgUAHQlV57ZpuOsUulK7A/BUAniwW9StGhgjpxMhkwBoEKgK70wp5+Xbie4YRyF6BDBUAniwc9StKhgjrRoQIYg0AFQNfihHLnO3U1pa0bQooFWbwHoDMx8oNGEKgAxiBQAdC1WE7b+d4fm9ULe+hOAdC5GPlBIxj5AYxBoAKgazkc0n/6NCeUO9kHZ2f03G72pwDoXLGAR6kcHSqoTyZfVNhPoAI0i0AFQFejS6VzzeeWdX42q0PDMatLAQDTcDYZjWDkBzAGgQqArra9L6QtvUF9yAnljsMyWgDdgB0qaAQjP4AxCFQAdL2jz2zT25xQ7jjHx2b1PPtTAHS4kM+tQrGkYqlidSmwkYVCUT0EKkDTCFQAdD1OKHem42dn9Dz7UwB0gVjAq1SOsR/Ujg4VwBgEKgAg6c+OsJy2k3w9kVYiGtCGsNfqUgDAdPGgR0nGflCHbKGkkM9ldRmA7RGoAICko0e26+2PL1pdBgzC/hQA3YTTyagXIz+AMQhUAECcUO407E8B0E1YTIt6MfIDGINABQBu4oRyZ8guFfXNtXk9vq3X6lIAoCXoUEG9CFQAYxCoAMBNnFDuDB+Mzeo5ulMAdBF2qKBeC/mievwEKkCzCFQA4A6cULY/xn0AdJt40KskHSqoAx0qgDEIVADgDi/s6df52YyuzHFC2a5YSAug20SDHqXpUEGNypWKCsWyAh6u/ADNIlABgHu89sw2HaNLxZZGJ+cVD3k1EPFbXQoAtAwdKqhHJl9UmHEfwBAEKgBwD04o29fxs7N6nu4UAF0mFvAolaNDBbXJLhUV8hKoAEYgUAGAezgc0p8+tVX/8yeXrS4FdWJ/CoBuxFJa1CNTKCnsY9wHMAKBCgCs4ugz2/X2r+lSsZOlYlknryT11EMbrC4FAFoqGvQqzcgPasTID2AcXkkAsIo7Tyg/ywhJWxlP5iRJP/rpV5KkC7NZSVI06FbE79ZkeuXtiWjAmgIBoMXoUEE9MoWiwlz4AQxBhwoArOG1I9t07ONLVpeBGs1ll9Qb8lpdBgC0nN/jUuXm5RZgPZxMBozDKwkA1vC9kX7925+d1pW5RQ33Bq0up+tVO1Ne/smHkqRUrrjq+7301glJ0ruvPytJSkS5+AOg81Uv/Qxy5QzroEMFMA4dKgDwAJxQBgDYQSzoUYqxH9SAQAUwDq8kAHiA145s087/6l39xR/ss7qUrlfdmbJWZ0pV9XToG++ckiQdO/qkuYUBQBuIBb1KsZgWNWDkBzAOHSoA8ABOh0P//KlhTigDANoaHSqoFVd+AOMQqADAOl47sl3HPuaEstUuzGZvXfSpxfmZRZ2fWTSxIgBoH9UdKsB6MktFhb0EKoARCFQAYB0PbQxpKBbUiXOzVpcCAMCqYgHPrZFH4EEY+QGMQ6ACADU4+sw2vc1yWkvt6A9pR3+o5vffORDWzoGwiRUBQPuIhbxKZelQwfoW8kX1MPIDGIJABQBq8L2Rfp2byejqHCMkAID2Q4cKakWHCmAcXkkAUKOjR7bp7Y8v6S9e5uKPFd585YAk6aW3TkjSmr84xAIr39p+/OqB1hQGAG0gHvQoyVJa1CBbKCnkc1ldBtAR6FABgBq99sw2HWPsBwDQhjibjFotFJbV4/NYXQbQEehQAYAaOR0O/bOnhvW/fHJZf/r0VqvL6TqJaECS9O7rz0qS3njnlCTpk/NJRQMe7R+KSLrdmdLf47egSgCwBmeTUSs6VADj0KECAHU4emS73uaEclsplspyOx1WlwEAluJsMmqVKRQVZocKYAheSQBQhztPKH9310ary+lKiehK58mxo09Kkrb9+c/18Rvfs7IkALBcu3eojCdzkqQf/fQrSdKF2awk3breVt2TVe1GhHlYSgsYhw4VAKjTa0e26djHl6wuA5Im0zl++AYASR6XU16XU9mlotWloI0RpgDG4tUEAHX63b39+rf/72ldnVvUlt6g1eV0tYlUXkMxdqUAgCRFgx6lF5cV8rbPj/jVzpSXf/KhJCmVuzvwuZpclHT7glt1T1a1GxHGYtwHMBYdKgDQgOoJZVhrIpnTUJwOFQCQOJ2M9RGoAMbi1QQADfizI9u0+1+/q794eZ/VpXS1a6mcNsUIVABAas/TydWdKfd2ptwrlVsJgqoX3Kp7smAsAhXAWHSoAEADXE6H/uTJlRPKsM5EKqchAhUAkESHCtbHyWTAWAQqANAgTihbjw4VALgtGvAqnWuvDpULs9lbF31qcX5mUednFk2sqLtl8ssK+z1WlwF0DAIVAGjQygnlgE6cu251KV2LHSoAcFs85FEyS4cK1pYplBSmQwUwDIEKADThtSPbdYwuFcsw8gMAt8UCnlu7SNrFjv6QdvSHan7/nQNh7RwIm1hRd+NsMmAsAhUAaMLv7u3X2emMrs7RntxqC/miHA6xXA8AbooHvUq22VJatBeW0gLG4tUEAE167cg2Hfv4kv4NF39aiu4UALhbNOhRus2W0r75ygFJ0ktvnZCkNTtoYoGVX0t+/OqB1hTWpQhUAGPRoQIATaoGKmgt9qcAwN3oUMF6GPkBjMWrCQCadOcJ5T99eqvV5XQNLvwAwN3aMVBJRFe+Tr/7+rOSpDfeOaULs1mlc0V5XU6VKhUd3BK71ZnS3+O3rNZusFAoqodABTAMHSoAYAC6VFqPQAUA7hYLepRqs5Gf1WQKK2GKz+1Uus2W6HY6OlQAYxGoAIABdmwMa1PMzwnlFmKHCgDcrZ0DlUTUr0TUr2NHn5TP7dLP/uV39NGff087N4b15y+NqL/HT3dKCxCoAMbi1QQABhhP5vTyI0N6/a+/1MNDUV2YzUrSrVOR1aV81dZnNI9ABQDu5nQ4FPK5tJAvqsffnj/mz+eWlV0qKRFdCU8Ob43r5OWk9gz0WFxZd2jn/78B2BEdKgBgkGd2blC2UFR+uWR1KV2BkR8AuF877lG50+jUgkYGb4cnh4djOnklZWFF3YUOFcBYvJoAoAnjyZwk6eWffChJyhfL+s3FuVtvv5pclHT7XGR1KV/1L3NoTKUiTc3n+TwCwD2qYz/DvVZXsrp7A5VDw3H9Dx9esLCi7pIplBT2uawuA+gYdKgAAGyH7hQAWF0s6FWqrTtU5jUyGLn1v+/sD2usz9lOAAAgAElEQVR6Pq+FfNHCqrpHprCssM9jdRlAx6BDBQCa8KOffiVJSuUe/INg6uYVgzfeOSVJOnb0SXML63DsTwGA1cUCnlvfc9rR2NSCXj28+a5/Ozwc18krST23e6NFVXWPbKGkEB0qgGHoUAEA2A6BCgCsLh7yKplt5w6Vu0d+pNuLaWGu3HJJPrdTTofD6lKAjkGHCgA0oXrNp1bnZxZNqqS7MPIDAKtr5w6V8WRO8aDnvqWoh4fj+qsPz1tUVffI5IsKc+EHMBQdKgAA26FDBQBW1847VO7dn1J1eGtMJy9z6cdsmUJRYS78AIYiUAGAJuzoD2lHf6jm9985ENbOgbCJFXWHiWROQ3ECFQC4V/XKTzsam1rQnnvGfSQp5HVrczygsekFC6rqHpxMBoxHoAIAsB1GfgBgdfGgV8m27VC5f39KFXtUzEeHCmA8AhUAaMKbrxzQm68cUCzgUSyw9hnCWMCtWMCtH796QD9+9UALK+xM11J5bYr5rS4DANpOO3eojE7OayRx/8iPJB0ajunLK4z9mIlABTAegQoAwFbSuWW5XQ6FvPxQCAD3atdApVyp6PxsVrv6Vx97rZ5Ohnk4mQwYj59GAaAJiejK2Mm7rz8rSXrjnVOSVq75zGWXNLwhqMGo/1ZXSn8PXRXNYtwHANYWC3iVyrXfyM9a+1OqdvaHNT2f10K+qB4u0ZgiU1hW2Ld2Ny2A+tGhAgAm8bicWigUrS6j44wnc9rMQloAWFW7dqg8aH9KFV0q5soUSgrToQIYivgXAAyQiK50nhw7+uStf/vk/A395Ffn9PZrj1tVVkeiQwUAHqy6mDYe9Fpdyi0P2p9SVV1M+9zujS2qqrtw5QcwHh0qAGCSkUSPRic5AWk0AhUAeLB27FKhQ8V6LKUFjEegAgAmiQe98rmdmprPW11KR5lI5TXEhR8AWFM7Birr7VCRpMNbYzp5mUs/ZsnkiwqznwYwFIEKAJhobyKiM5PzVpfRUSZSixqKBa0uAwDaVrstpk0tLitfLGkw8uAwPOR1ayge0NlpujvNwMgPYDwCFQAwEWM/xruWymsTHSoAsKZ4yKNktn06VMam5rVn8MH7U6oOD8d08gpdKmZg5AcwHoEKAJhoXyKib+hQMUypXNH1TEED6/yVEwC6Wbt1qNSyP6WqupgWxiNQAYxHoAIAJhpJRDRKoGIYFtICwPrabYdKLftTqlhMax5GfgDj8YqqR6Wg9GxK+YpTgfhGRda8RFfS4o0pTc8tqFByKxDbqMGBqHyOdZ6/nFdyakrX53MqufyK9CU0GPeTegE2tqs/rIvXsyqWK3I71/sigPVMpHIaIlABgAeKBb36dqZ9xk3PTM3rP3psS03vu7M/rOn5vBbyRfWwQNVQdKgAxuMVVbOyUl//vd759bgKCmrfy3+q5zbfH3WU0+f18T+c0OnpnMq3/tUhT2y7Hv/e8zo44FvluSvKXv1Mvzr+W41nSnf8u1s9Ww7quRce15YQv4gBdlVdTHtgKGp1KbZHoAIA64sHPUratENFut2l8tzujSZW1X0IVADj0fxQo/Lcv9fx34yrUHnAO+Uv68S/+6W+ms7L07tdB544omeeflR7N4VVSV3QJz//hf59snzfw5anPtXfvfeFxjNORbbs06NPP6Mjjz+s4ZhDmatf6L2/+1TT7fM9EUCdGPsxDgtpAWB97TTyc3VuURvCPgW9rpofwx4VcxCoAMbjFVWL0qy+fP9zTbmGtb1vQhenVn0nTf/2Y43Ol+VJPKUf/NND6vPcfNPBA3row7/Vu99M6PNPzmrHSyO61XBSSen0x6d0vejShoP/RD88sknVHpaDj+zWb372M52cPaVff71bf3QoLvpUAPvZm+jRGS79GOJaKqdHNtPpAwAPEgt6lVpsj6W09SykrTo8HNdffXjepIq601KxLKfDIbeL3yYAI9Ghsq5lTX9+XF/MVNR/8JCG19qbUprU2Lm0yo6IRp545HaYIkmOgIafOKxhr1S4+o3Opm+3uZTnzunsbEkO/0N67NHbYYokyTugw0/sUtBR0syZM5q5v7kFgA1w6cc448mcNscZ+QGAB4kFPErl2qNDpbFAhdPJRqM7BTAHgco6lic/0/FT1+UcOKxnH4mqUlr9/crJa5pcrMgR3KxtA6u0NAaGtX3QLZWv6+p4ViuRSkWL164pWZbcm7Zp8yrrVTybtmmLz6HKwriurDIuBKD9jQxGNDpFoGIErvwAwPriIa+S2fboUBmbmteewUhdjwn53BqKBXR2mu5OoxCoAObgVfUghXH94/GvlHRt0tMvHFKfa1GT5dWXqBSTc5ovS874RvWuOiLq04a+HjmvpHRjdk5lheVSRcm5pCpyKtrXK89qD3NtUF/cobHJtK7fWJY2rLbUFkA7iwU9CnhcmkznlYiy/6MZBCoAsL6wz63cckmlckUuiy/MjU4t6PXf213346pdKrsH6utuaSfjyZwk6Uc//UqSdGE2K0na0R+SJL35ygFJUiJq/vc1TiYD5qBDZU15Xf7kA32T9mjzU8/rQPxBn6qKFjOLKktyh0JaPfJwKhgOyaGKljMZFSRJy8pmllSRQ6FQaPX9KI6AQkGXpLKyC9XOFgB2Q5dK85KLS/J7XAp4al9sCADdqh0W05bKFV28ntXO/nDdj2UxrbE4Qw2Yg1fVGhYvfKQPRxfk2/aCnt8XXSd5qmh5aUmSQx6vZ83FsV7vSg9KZamgpYoU1JKWliuSXPJ41/pP4ZTX65ZDRRUKS6pILKYFbGjvpojOXJvXC3v6rS7FtiaSOQ2xPwUAahIPepVcXNKG8FoLAM3XyP6UqpXFtBcMrqg1qp0pL//kQ0lSKle86+1Xk4uSpJfeOiFJevf1ZyXJ1C7W7FJRoTV/3wDQKF5Vq6hkzunEiW+VDe7Q7z+7W+EaEoxyuayKJKdz7ejl1tsqZa1sQymrXJYkhx7wMDldzlsfox5vv/32mm87evRoXc8FoDn7Ej167+tpq8uwNcZ9AKB27bCYdnRqXiN17k+p2tkf1vR8ns4KgzDyA5ij+15V5XlNfHtNC/dkE45Av7Zv7ZW3sqDRD3+ti/mw9nz/O9oRrK0fxOlyySGpXFo79CiVStV31krDuksulySV9YCH3Xqcy1VfmzuhCdA+RgYjeuuX56wuw9YmUnkNxdhBAwC1aIfFtGNTC9rTYIeKtNKlcvJKUs/t3mhgVear7ky5tzPlXtXA6413TkmSjh190rSaCKYAc3Tfq6o0o6+Pv68L91zrcQ48pYHhmHKnj+uTKwVF9/+ejmyr9S+hDvn9PkkVLRUKa+w5qWhp6ebIjs8nr0OSvPL7HDcftyRptY9X0lKhqIoc8vl9jPsANrWzP6xLN7Iqlipyu3glN4IOFQCoXTTgUdriDpUzkwv6F8/2Nfz46h4VuwUq7YgOFcAc3feqcvVqx6OPqfeejhBnOCF/ZVyffDahQsUtz+Sn+vk7n97z4JIWkxWpktfFj36qG16HnH0H9f1ndyjQE5ZH0nI2o1xFq4wJVW4ulXXIH+65ubjWrXBPSA5llF3IqqzA/btaKlktZMuSXDffF4Bd7UtE9M3kvB7ZHLW6FFuaSOV0aDhmdRkAYAvVHSpWauRk8p0OD8f0Vx9eNLCi1qhe86nV+ZlFkyq5LVMoKexjqTtgtO4LVJy92vlo7+pvK11UqVSRtKzMjWll1nySinLJGeUkOV2LKlUkf1+/ep3nNDU3q+slKXzvZ7ayqNnZjCpyqndj783gxKne/g1ya17zs9dVUN/9PSrLNzSbLEvOXvX1dt9/LqCTVC/9EKg0ZiKV0xAdKgBQE6uv/CQXl7Rcqqi/Z/X7l7VYGfk5aWBV7WkhX5TPY+zx1XtPNp+8nJLL6dBvr6YktfZkM9DJ+A39Tq4t+s4f/3M9udZt4kpWo7/8f/T5jE+7vvdHejLhlFx+hRySIzysrX2faHL2ii5cXdK27XdvVK9kLun8dElyDmjL0O0vXL6hrUp4LurK5HldWhzR3uDdHzJ/5bzGlyVndIu2xOhPAexsbyKiM5OcTm4UIz8AULt40KuJVNqyj9/s/hRJCvncGooFdHZ6QbsHmnuuVtrRH5J0+5rPesIBt9KLyxr5N+/p8W29enxbXE9s79Vj23rldhrz83+lUpHDwe8SgNEIVO7ilj/cozVXHlYc8rskySFPsEc9PXckyY6odu/foi/fv6xzv/lH7Rz4roarC21LKZ356AtNFh3ybduv3dE7vpgFH9L+HZ/p6uhVff7RWQ393m5Fbj5tOXNeH//mogoVtwb3jWijscE1gBbbm+jRL05PWV2GLRVLFSUXl7Sxib90AkA3iQY9SlvYoXJmckF7E82HIIeHYzp5JWWrQKVeu/rDkqT//p8d1meX5vTZpaTe+uU5fX5pTgc2R2+GLCv/Ewt6HvhcDzzZvCQdH5uV1NqTzUAnI1AxjEOh3Uf0xLfT+ujqab3715MaGh5UxF3Q3MQVTc0vS4GtevrILt3dhOLT1ieOaMf4P+jb87/S31w/o+FNcfmKaV27MqFUQfIOPqbvPhxjfwpgc3SoNG48tajNseD67wgAkGT9DpWxqXn9znC86ec5vDWuzy8l9cePbzGgqtaojtNUQ4u1zlfHAiu/iv341ZX393tc+u6ujfrurttLeL+8ktJnl+b0N59f1X/5f53SxrBvJVzZvhKwbI7TuQlYiUDFSM6YHv7+D+T+5IQ+HZ3U1XNzN9/gVnjogJ767pPaFb2/zcQR2qnv/dCpng8/0dfj13Q+fW3lDa6gBkYe03eO7FcfO6QA24sGPAp63ZpM55hZrtO1VF6bOJkMADWLBTxr/iLfCqNTC/rjJ4abfp7Dw3H91YcXDKjIng4Nx3RoOKZ/8exDkqRzMxl9dmlOH56d1X/792MqlSt6bFuvnrg5KvTmu6OS2utkM9DJCFTq4QjrwA//cx140Pt4Nmjk2T/UnqezSiYXtFRxyR+J30qg1+KKPKSnXn5Ij+VSSqZzKrv8CsdiCnnoSwE6yd5Ej85MLhCo1In9KQBQn3jIo2TWukDFiB0qkrSzP6zp+bwW8kX1+O3xq0v1e3x1nOa/+F8/05Ubiwr7VnYs7hxYGfGpdqb099T+B4Nd/WHt6g/rT26GVZPpvD6/NKdPL83pf/v0is5NLygaePBYEADj2OOrkg05PCH13lxIVQ93IKaNAc6CAp2qOvbzvZF+q0uxFS78AEB9ogGv0jlrRn4u31hUf8SngMeYFuuVaz9JPbd74/rv3IZmFwrq6/Epv7TW5YvGJaJ+/cHBTfqDg5skSc/85a+0VCzX/PhWnGwGOhmBCgC00N5ERO99PWl1GbYzkczpsW3Nz+IDQLcIel0qlitaKpbldbf2ssHY1Lz2DEYMe75Dw3F9acNApbrodbkk/e//2dMtWazudDjkNyjIArA+7sYAQAtVR35QH0Z+AKB+Vu1RGZ1a0IgB4z5Vj26N6YvLKcOer5VOXklqSzzYsit1O/pDt84212LnQPjWCBKA+hGoAEAL7dgY1pW5RS2Xam/HBSM/ANAIqy79GLU/pao68mNH7309pRcfHrS6DAAmIVABgBajS6V+dKgAQP2iQY/Si63vUDkzNa+9Bo78hHxuDcUCOjttv++drQ5U3nzlgN585YBiAY9iD1hOGwu4FQu49eNXD9xajgugfgQqANBi1cW0qM2NzJLCfrd8Ld4BAAB2Z0WHSrFU0ZW5RT20sf7jDA9yeDimk1fsNfZzZnJeIZ9bw71Bq0sBYBKW0gJAixGo1IdxHwBoTDzoUbLFHSqjU/MaMbA7perw1rg+v5TUHz++xfDnNssvTk/p+/tbO+5z78nmN945Jen2NZ9mTjYDuB9/7gOAFts72KMzU/ZrW7YK4z4A0JhY0KtUiztUjF5IW2XHPSrsTwE6Hx0qANBidKjUh0AFABoTC3qUanmHijmBys7+sKbSeWUKRYV97f8rzKUbWeWXy6Z8LmpRPdl87OiTlnx8oFvQoQIALRYJeBT2uXUtlbO6FFsYT+W0mUAFAOpmRYfK2NS89pgw8iOtjP2cvGyPLhW6U4DuQKACABbg0k/t6FABgMZYs0PFnA4VyV5jPwQqQHcgUAEACzD2UzsCFQBoTCzgUSrXukBlLrukUrmijT0+U57/0a0xfXG5/S/9TM/nNZnO63e2xKwuBYDJCFQAwAIEKrXjyg8ANCYW8iqVbd3Ij5ndKZJ9OlToTgG6B4EKAFhg72BEZ6YIVNZTKJaVyRe1Iey1uhQAsJ1Wd6iYdTK5KuRzaygW0Nnp9h6ZteJcMgBrEKgAgAUe2hjSeDKnpWLZ6lLaGuM+ANC4eNCrZAuX0o5NLWiPyVdtDg/HdPJK+479LOSL+moirSM7NlhdCoAWIFABAIvQpbI+xn0AoHFet1Muh0O55VJLPt7o5IJGEiYHKm1+6ee9ryf14sMJq8sA0CIEKgBgES79rI8OFQBoTitPJ5s98iNJh4bj+rKN96i8d3pKLzLuA3QNAhUAsAiLadc3kcxpKE6gAgCNigU9SrXgdPKlG1klogH53Ob+erGrP6zJdF6ZQtHUj9OIYqmiD87O6nf39ltdCoAWIVABAIsQqKyPkR8AaE486FGyBYFKK/anVLXr2M97pyf14n7GfYBuQqACABYhUFkfIz8A0JxWjfycmVzQXpP3p1S16/nk976e1osPD1hdBoAWIlABAIv0+N2KBDyaSOasLqVtXUvltSnmt7oMALCtVo38jE3Na4/J+1OqHt0a0xeX2+/SDx0qQPchUAEAC3Hp58HGU4vaHAtaXQYA2FarTiePTi1opFUjP23YofIPZ2b03O6NcrscVpcCoIUIVADAQlz6WdvsQkHxoJcfTgGgCa3oUFkqljWRyml7X8jUj1MV8rk1FAvo7HT7fP/kug/QnQhUAMBCI4mIRtmjsir2pwBA81rRodLK7pSqw8MxnbzSPmM/7309qRcfZtwH6DYEKgBgoX2JiL4hUFkVF34AoHnRgEfpnLkdKq3cn1J1aDiuL9tk7Ofj8zd0YCiqHr/b6lIAtBiBCgBYaHtfSNdSORWKZatLaTsEKgDQvHjIq2S2AztU2uh08i9OT+n7jPsAXYlABQAsxtjP6hj5AYDmxQIepUzuULEiUNnVH9ZkOq9ModjSj7ua976e0osPE6gA3YhABQAsxtjP6iZSeQ1xMhkAmtKaHSrzGmnxyI/UHl0qv72aUiLq10CE71dANyJQAQCL7U1EdIZA5T50qABA86JBj9ImXvm5kVkJazaEvaZ9jLW0w/lkulOA7kagAgAWGxns0ehU+5x+bBcTyZyG4gQqANAMt9Mhv8dl2miMVd0pkvTo1pi+uGztpR8CFaC7EagAgMX2bYrom2t0qNwpt1xSfrmkeLD1f/EEgE4TC3qUMqlLxYr9KVVWd6iMTi3I73Fq24aQZTUAsBaBCgBYLOxzKxr0aCKZs7qUtsG4DwAYx8w9KlYGKiGfW0OxgM5OW9PlSXcKAAIVAGgDLKa9G4EKABjHzA6Vsal57bFo5EeSDg3H9OUVa8Z+OJcMgEAFANoAi2nvNp7MaTP7UwDAELGgV6kO7FCRrBv7uTK3qGyhqL0J68IkANYjUAGANsBi2rvRoQIAxjGrQ+Xi9ayGYgF53db9SmHV6WTGfQBIBCoA0BboULnbtVRem2J+q8sAgI5g1g4Vq7tTJGlXf1iT6bxpV4zWQqACQCJQAYC2sL0vpMl0XvnlktWltIWJVE5DdKgAgCFiAY9SOeM7VKzen1LV6i6V2YWCriYXdXg43rKPCaA9EagAQJtg7Oc2Rn4AwDhm7VBphw4VqfV7VOhOAVBFoAIAbYJLP7fRoQIAxomHPEpmje9QGZ1c0EjC+kDl0a0xfXG5dZd+uO4DoIpABQDaxEgiolECFU3P59UX9snldFhdCgB0hFjAq1TO2A6VQrGsyXRO2zaEDH3eRhwajuvLFnWoZAtFfXk1pe/s7GvJxwPQ3ghUAKBN7E306MwkIz8spAUAY5lx5Wd0al4jbbA/RZLCPrcSUb/OzWRM/1iM+wC4E4EKALQJRn5WMO4DAMYyJVBpk3GfqlYtpn3v9JReZNwHwE0EKgDQJkI+t+JBj8aTOatLsRSBCgAYy4yzyWNTC9rTBgtpq1qxmLZUruhXozP6/X0Dpn4cAPZBoAIAbWRvIqIzXd6lwoUfADBeNOBR2sDTye008iO1pkOF7hQA9yJQAYA2wtgPgQoAmMHoLpV2OZlctas/rMl0XplC0bSPwf4UAPciUAGANsKlH0Z+AMAM0aBHaYP2qMwuFORyOtQb8hryfEYxu0uFc8kA7kWgAgBthEs/0kQyp6E4gQoAGCke9ChpUKDSbt0pVWbuUXl/bEbP7OiT182vTwBu4ysCALSRbRtCmp7PK7dcsroUS2SXiiqWKooGPFaXAgAdJRb0KmXQyM/Y1Lz2tNH+lKrDwzGdvJIy5bkZ9wGwGgIVAGgzI4kejXZpl8q1VF6bYn6rywCAjtMVHSomjvwQqABYDYEKALSZbr70w0JaADBHNOBVOmdMh0q7Biphn1uJqF/nZjKGPu8/XrihvYkI3ZMA7kOgAgBtZu9gRGemujNQYX8KAJjD2A6V9jqZfCczulToTgGwFgIVAGgzezdFdOZalwYqXPgBAFMYtUPlwmxWw71BuV0OA6oynhmLabnuA2AtBCoA0Ga6+dIPIz8AYA6jOlTauTtFMr5D5dR4Sv09fiWi7PcCcD8CFQBoMyGvW71hr67OLVpdSsvRoQIA5jCqQ6Vd96dU7eoPazKdV6ZQNOT5GPcB8CAEKgDQhrp1MS2BCgCYIxb0KGVIh0p7ByqSsV0qBCoAHoRABQDa0L5Ej77pwrEfRn4AwBzxoFdJAzpUxqbmtaeNR34k6fBwTCevpJp+nrPTC/K4nNreFzKgKgCdiEAFANrQyGBEo1126WcynddgxC9He+45BABb6/G7lS2UVK5UGn6O3HJJM/MFbd0QNLAy4xm1mJbuFADrIVABgDbUjSM/dKcAgLmaHfsZm1rQnjYf95GMG/nhug+A9RCoAEAb2rohqJn5gnLLJatLaRn2pwCAuZoNVOywP0WSwj63ElG/zs1kGn6O8WRO6dyy9m9q7/EmANYiUAGANtVtXSoEKgBgrmb3qNhhf0pVs10q7309qRcfThhYEYBORKACAG2q2wIVRn4AwFzNdqicmVzQ3kT7d6hIze9RYX8KgFoQqABAm9qb6NGZLrr0Q6ACAOaKBb1KNdWhYo8dKlJzHSo3Mku6eCOrx7bGDa4KQKchUAGANtVtHSoTyZyG4gQqAGCWWMCjVK6xDpWZhYI8LofiQa/BVZljV39Yk+m8MoVi3Y997/SkXtzPuA+A9RGoAECb6rpAhR0qAGCqZnao2Gl/StWh4bi+bGDsh3EfALUiUAGANhX0utQX9unK3KLVpZguUyiqUpF6/G6rSwGAjtXMDhU77U+penRrTF9cTtX1mMWlkr64nNR3d/WZVBWATkKgAgBtrFu6VOhOAQDzNbNDxU77U6oaWUxLdwqAehCoAEAb65bFtOxPAQDzNdOhMjo1rxGbjfw0spj2vdNTenE/gQqA2hCoAEAb65YOFS78AID5mtuhYr8OlbDPrUTUr3MzmZrev1KR/r9vpvQfEKgAqBGBCgC0sW4JVBj5AQDzNXrl59uZjLb1heR2Okyoylz1dKnQnQKgXgQqANDGhnuDup4paHGpZHUppqJDBQDMFwt5lMrWH6iMTi1oxGbdKVX17FF57+tJvfgw55IB1I5ABQDaXDd0qbBDBQDMF/K6tVQqa7lUrutxdjyZXFVPh8ovTk/r+/sHTK4IQCchUAGANtcVgUoqr6GY3+oyAKDjNbKY1s4dKrv6w7qWzitbKD7w/T44O6snt/fK73G1qDIAnYBABQDaXDdc+plM55SI0qECAGZrZDGtnQMVqbaxH84lA2gEgQoAtLlO71BhfwoAtE69HSqLSyXdyBS0pTdoYlXmenRrTF9cTj3wfQhUADSCQAUA2lynByrjyZw2sz8FAFoiFvQqVUeHih3PJd9rvQ6VTy/OaddAWPGgt4VVAegEBCoA0OYCHpf6Iz5dvrFodSmmoEMFAFqn3tPJZ6bmtdemC2mr1ltMS3cKgEYRqACADXRylwqBCgC0TjzoUbKOkZ9O6FAJ+9xKRP06N5NZ9e3vfj2llwhUADSAQAUAbGBkMKLRqc4MVLjwAwCtU+/Ij90X0lat1aXy1URafWEvi9EBNIRABQBsYF+iR9906KWfidSihmL2XXYIAHZS71Lasal57bH5yI8kHRqO68tV9qgw7gOgGQQqAGADnT3yk9cmOlQAoCXq6VCZms/L73YpFvSYXJX5Dg/HdPLK/Zd+CFQANINABQBsYEtvUHOZJWWXilaXYriJVE5D7FABgJaoZ4dKJ+xPqdo90KOJVE7Zwu3vo9/OZORwSDs2hi2sDICdEagAgE3sTfToTIeN/cznluVyOhTyua0uBQC6Qj1Xfjplf0rVveeT6U4B0Cx+ggUAm9i7KaIz1+b12Na41aUYhu4UAGitWMirVLa2kZ+xqXl9Z+dGkysy33gyJ0m6MpfVv/7b0yqXK5KkZG5JewZ6NJleeTuLaQHUiw4VALCJvYMRnemwSz8EKgDQWvV0qJyZXNDeROd0qET8Hs3f/L+9VK5ouVRWj5+/LwNoHF9BAMAm9iYi+j+/uGp1GYZiIS0AtJbf45Ik5ZdLt/7fa7H7DpVqZ8rLP/lQkpTKrexPSd6xlPf42KxeeuuEJOnd15+VJCWifF8CUBs6VADAJkYSPRrtsB0q11I5baJDBQBaqpbFtOdmMtqxMSSnw9GiqgDAfuhQAQCbCHhcGoj4delGVts2hKwuxxDjyZweHopYXQYAdJVo0Kv04tIDOzFGJ+c1krD31+cf/fQrSbc7U+k8b+0AACAASURBVNZSHYF6451TkqRjR580tzAAHYMOFQCwkU679EOHCgC0Xi0dKp124QcAzECgAgA2MpKIaHSycxbTEqgAQOvVspjW7vtTJOnCbFYXZrM1v//5mUWdn1k0sSIAnYZABQBsZF8iom86JFApVyqaWShoMMLyPwBopXjQe9di1tWMTs1rZNDeIz8AYDZ2qACAjexNRHSmQwKViWROQ3G6UwCg1aJBj9IPGPnJFopKLi5rs82/Ru/oX9k3djVZW9fJzoGwmeUA6EB0qACAjWyOB5RcXFa28OAFe3bAuA8AWGO9DhX2pwBAbehQAQCbqY79PL6t1+pSmjKRymsoxrgPALRaLOjRtzOZNd/eCftTJOnNVw5Ikl5664Qkrbk3JhZY+ZXox68eaE1hADoGHSoAYDMjiR6NdsClHzpUAMAa63eosD8FAGpBhwoA2MzeRERfj6etLqNpE6mcHtkctboMAOg60YBH6Qdc+RmdWtDLj2xqYUXmSERXQvt3X39WkvTGO6ck6dYln+rOlGpnSn8PXZMA6kOHCgDYTKdc+plI5TREhwoAtFw85FUyyw4VAGgWHSoAYDMjgz0anWLkBwDQmFjAs+Y+kcl0XiGvS5GAp8VVmScRXek8OXb0SYsrAdBp6FABAJvxe1xKRP26eD1rdSlNIVABAGs8aIdKpyykBYBWIFABABvam4jojI3HfpKLS/K5XQp6XVaXAgBdx+1yyOdyKbtUvO9tZ6bmtZeFtABQEwIVALAhu4/9XEvltYmTyQBgmVjIo1T2/rEfOlQAoHYEKgBgQ3bvUGHcBwCstdYeFRbSAkDtCFQAwIbsHqhw4QcArLXWHpWxqXntYeQHAGpCoAIANrQ5HlBqcVmZwv3z73ZAhwoAWCsW9Cp1T6AyNr2g3f09cjgsKgoAbIZABQBsat+miL65Zs8ulYlkTkNxAhUAsEos6FFq8e6RH/anAEB9CFQAwKbsvJiWkR8AsFY86FHynkCF/SkAUB8CFQCwKTvvUWHkBwCstdrIz+jkvEYS7E8BgFoRqACATe1LRPSNDQOVYrmiueyS+nt8VpcCAF1rtZEfOlQAoD4EKgBgUyOJiEZtGKiwPwUArBcLeJXK3e5QyRSKms8t0z0IAHUgUAEAm/K5ndoUC+ji9azVpdSFcR8AsF485FEye7tDhe4UAKgfgQoA2Jgdx34IVADAevd2qLA/5f9v786j4zrvO80/twr7vhEguID7vi8iqYWStViybEm2ZSd2T8dx251OenPsTLp74k4mM+2ZiceTScZ256QTd9J2nG5b3mRZ1matliiRIiVuEvedBAhiI/a1ClV3/gB3AiSKJAgReD7n6BwdVNWti8sX9733e3/v+0pS6gxUJOkWdisO+3GFH0kafZfOoWKFiiSlzkBFkm5hCyrz2Xvq1lo62UBFkkbfpYHK/roO5hmoSFJKDFQk6Ra2YGIBe+turQoVh/xI0uiLBAF5WWm09wyEKvvq2pk/0SE/kpSKtNHeAUnStZtcnE17T5yO3n7ys26NU7oVKpL0wVCUnU5rT5zOvn7ys9JvmX5Ekj4orFCRpFvcgsoC9t5C86jUtvYyqShrtHdDksa94pwMWrpjzp8iSdfIQEWSbnG3UqDS3BUjJyNKVnp0tHdFksa9wpx02rrjzp8iSdfIQEWSbnG3UqDicB9J+uAozkmnpTvu/CmSdI0cKClJt7gFlfn8cPOJ0d6NYXFCWkkaPTUtPQD88c/fB2Dr8Rbe2N9ELJmgtrWHNTOKAags9DwtScNhhYok3eJupZV+rFCRpA+OaBCQDEO6+hLkZvqcVZJS5ZlTkm5xGWkRphRnc6Sxi5kTckd7d67oZEsPk4sNVCTpZjpbmfLIt98AoLWn/7L3/Hp/Iw9/cwMAz3/lbgAqC51AXJKuxAoVSRoDbpUqFYf8SJIkaaywQkWSxoCzE9N+bEnlaO/KFblksiTdfGfnTBmsMuVCrT1xAL765E4AvveFtSO7Y5J0i7NCRZLGgFtlpR/nUJEkSdJYYYWKJI0BCyrz2XuqY7R344pi/Unae+OU5WWO9q5I0rhypLErpfcfbugeoT2RpLHFChVJGgMmFWXT2ddP+5ly7Q8iq1MkSZI0lhioSNIY8UEf9uOEtJI0OmaV5zKrfPirwM2uyGN2Rd4I7pEkjQ0GKpI0RiyYmM/eug/usB8DFUmSJI0lzqEiSbewmpYeYGAFh1Ntvfzk3Rr+fsPRc08iv/74EgAqC0c/yHDIjySNjrN9wcPf3ACcX83nUkXZA7cG3/jUkpuzY5J0i7NCRZLGiLzMKPFEcrR3Y0gnW3uZ7JLJkiRJGiOsUBlUgt7ObuLhFd6Slk1+9lCHL0H36TrqmzvoS6SRXTSBiRWFZAZX+dpkLy11dTS195CIZlFQVsnE4ixTL0mXOVuZ8si33wCgtaf/3GvVLd1Utwys0HD2aeTzX7kbgMrC0Qs0Bob8TBq175ek8epsleLZvuCrT+4Ezq/mc3a+lLOVKeX5ht+SNBwGKoNJVPPWj57nQGzot0RnPcgXH5x12QFMth1m4ysb2F3fw/nnxAHpRTO47b4PsaxisOVCQ7qq3+HVX++gpjNxwc/TyJ+6jHvuvY2puVdLYyTpg805VCRJkjSWGKgMJt5LbwKI5lBSmk/6IFlGtDCTy37ce5wNz7zMnvaQzJIZzJ1dSUG0j+bjBzhYe4RNz/YRfPIRlhZfXHMSr9vCcy9so6k/nYKp85gzpZjM/jZqDu6nunorLzwX8tgn1lKRPlK/sKRbzR///H3g4sqUwZwdJ3/2aeT3vrB2ZHfsCmpaephSbKAiSaPlbJXiaPYFkjSWGKgMIuztoTeESPEiHnh8NaXDKg5JUL9jI/vak6RXruOxj62g7GwAsmwJM994iuf3nOTdTQeY9fB8zhWchK3s3riTpv4opcs+ysfvmMTZGpZlS+ey+emn2da4k7d2zeWTK4ovD3Ek6RbQ1NlHYXY66VEHMUqSJGls8Mp2EGcDFbKyyRpugpE4xf6DbSSDAuavWXo+TAEIsqlas5KqDOir3sOBtvOTsySbD3KgMUGQNZPVq86HKQBkVLByzRxyggQNe/fS8MGda1LSTXaksYsjjV3Dfv/hhu5zY+VHgyv8SJIkaawxUBlE2NdLXwiRrCwGm/FkMMmWWk51hwQ5U5heEb38DdlVzJiYBskmqmu6GIhUQrpra2lJQtqk6UwZ5MvSJ01namZA2FHDiRYTFUm3ptrWXia5wo8kSZLGEAOVQfT39NBPQGb28FfY6W9ppj0JkeIJlAySp0AmpWX5REhyurH5zIS1IS3NLYREKCwrYdApUqKllBUHkGyj6XT82n4hSWPOrPJcZpXnDvv9syvyzq3iMBpOtnQzuThn1L5fkiRJutGcQ+UyIb29fYRApLeJw3ub6eqJkQjSyMwpoGziJCoum5A2pLuzmySQnps7RFVLhJy8XAJaiHd20gfkEKerM0ZIQG5u7uDzowTZ5OZEgQRdHV2EDDIZriR9wNW29jKlxCE/kiRJGjsMVC4zEKhASMehjbx86JKXg3QKpi5l/d2rqcqPnPtMPBYDAtIz0ocMPDIyBmpQwlgfsRByiBGLh0CU9Iyh/ikiZGSkEdBPX1+MEAxUJPH1x5cA8PA3NwDnV/O5VFH2wLnlG59acnN2bAgnW3tYO7NkVPdBkiRJupEMVC4ToXz5fayPHKU7q5Cigjyy0iDR10VL/XEO7DvK6RNbef7pLh56/F6mn3ngmkwmB6paIkMPEjr3Wpg8M+QnSTIJEHCFjxE5sypGMpnaHCqvvfbaZT+79957U9qGJN0Ita09THJSWkmSJI0h4y9QSbZz8lAtHZdkE0F2OTOmlZABBFkVLFxTcdlHp82az9JF+3jxqV9ztP0Ab7+3mKq1E4gAkWiUAEgmhg49EonEwP9EogxMsxIlGgVIcoWPnftcNDro5CxDMjyRxq7KwoFw4vmv3A3AV5/cCXBuJZ/ZFXkcrO/kM2um8JnVUynPH90JYV3lR5IkSWPN+AtUEg3s+vVrHElc/ONIxToqqkrIuMp4mkjhPG5b9D7H32mi7WQN7eEEioKArKxMICTW10c46CdDYrEzQ3YyM898TwZZmcGZz8WAwW42EsT6+gkJyMxy/hRJwze9LIe/e+Mon1k9dVT3ozeeoDuWoCQ3Y1T3Q5IkSbqRxl+gEi1h1qrVlFxSERLJqyRrWGlFQFFJEVGa6O8dWF6ZICA7P490IN7VSU8IeZdtKzwzqWxAVl7+mYlr08jLzyWgk66OLpJkX76qUNhFR1cSiJ55rySdV1k4UHnyvS+sHfT1//UXu/jVrno+d/u0m7lbF3HJZEmSJI1F4y9QiZQwe9X1TYzYH4+TBIKMjHMVLdGyckoiB6lrbqQpAXmXHtmwm8bGTkIilEwoOROcRCgpLyWNdtobm+ij7PIalfhpGluSECmhrGT8/XNJuj5fuX8uD37z9VENVBzuI0mSpLHoClOhanA9VB+vJ0lAdnkFBWcClSCvimllEcK+Exypjl32qbDzGIfrExApY+rk8zcWmZOnUZkO/acOc6z78m/rPXGYmjhECqYytcj6FEmpKc3L4KFFE/nB5hOjtg8GKpIkSRqLDFQulTzNkT3VtPYNMhNKspvaba/w1pFewmgZixZO4tw0sUEhcxdNJTPs4eDmtznRfcHnE63sfXMrp/oDMqsWMbfwgmAkZyaLZuUSxKt5980DtF8wFCnZeZiNm4/SF6ZRvnA+E/zXknQNvvLAXL758oFR+35X+JEkSdJY5BiSS4XtHNn4Ar/akEVhWRmlxQXkpEdI9LXTVFtLY1c/RPKYcdf9LC+7MOEIyJ17B2sO1fNm9W6ef+IUk6smUpDWR/PJE9S1xyF7GrffMYeci74wk2lr7mBWzSscOvwqP27aS9WkYjL726g9cZLWPsiYuJr1i4ucP0XSNSnPz+S++eU88U41n73t5k9Qe7K1hztmlt7075UkSZJGkoHKpSJlzF46i/YD1TQ21NDWcOFrWRRXLWDp6lUsqMi+POCIFLH4ocdI27SBLftOUX2w+cwLaeRNXsK69WuZU3h5mUmQO5v7Ph4h/41N7Kqp5XBb7cAL0Rwq5q/mrjsWUZbaismSdJEvPzCHx/9606gEKlaoSJIkaSwyULlUkM/0NQ8yfU1If08H7Z09xPohmpFFXmEh2Vc7YumlzL/7E8y7vYuWlg5iYZSsgmKKrvLBaMFM1j0yk9U9rbS09ZCMZpFXVERuunUpkq5fZWE2d80p4yfvVvMbN3kZ5ZMtPUwuNlCRJEnS2GKgMqSAtOwCSrILru3T6bmUlOem/Lm07CImZBdd03dK0pV8+f45fPY7m256oGKFiiRJksYipzmVpHFiSnE2a2eU8rNtNTftOxs6+ijJzSAtYrWdJEmSxhYDFUkaR37//jl8+5WDN+37rE6RJEnSWGWgIknjyLTSHFZUFfPU9pM35ftqWnqY4vwpkiRJGoMMVCRpnPny/XP41k2qUrFCRZIkSWOVgYokjTMzynJZPLmQX+6sHfHvMlCRJEnSWGWgIknj0M2qUjnZ2sNkAxVJkiSNQQYqkjQOzS7PY25FPs+9f2pEv8dARZIkSWOVgYokjVNffmAO33p5ZKtUHPIjSZKkscpARZLGqXkV+Uwvy+VXu+tGZPvdsQSx/iRFOekjsn1JkiRpNBmoSNI49pUH5vDNEapSsTpFkiRJY5mBiiSNYwsqC5hSnM1Le+pv+LadP0WSJEljmYGKJI1zI7Xij4GKJEmSxjIDFUka5xZPLqQ8P5NX9zXc0O065EeSJEljmYGKJGlEVvwxUJEkSdJYZqAiSWLZlCKKctJ5/UDjDdvmydZeJhdl3bDtSZIkSR8kBiqSJODGV6mcbOlmcnHODdueJEmS9EFioCJJAmBlVTG5mVE2HGy6Idurbe1lkhUqkiRJGqMMVCRJ5/z+/XP49g1Y8aeuvZfy/EwiQXAD9kqSJEn64DFQkSSdc9v0EtKjARsPn76u7TghrSRJksY6AxVJ0kW+fP8cvnWdVSonW3qYXGygIkmSpLHLQEWSdJG1M0sB2Hzk2qtUTrb2MNkKFUmSJI1hBiqSpMtcb5WKQ34kSZI01hmoSJIuc8esUuKJkHeONV/T513hR5IkSWOdgYokaVDXs+JPTWsPU6xQkSRJ0hhmoCJJGtT6OWV09SXYdqIl5c865EeSJEljnYGKJGlIX35gDt96ObUqla6+fhLJkILs9BHaK0mSJGn0GahIkoZ0z9wJtHbH2VnTOuzPuMKPJEmSxgMDFUnSFaVapWKgIkmSpPHAQEWSdEX3zS+noaOPXSfbhvV+50+RJEnSeGCgIkm6qi/fP4dvDXPFn5OtvUx2yWRJkiSNcQYqkqSr+vDCCmpaeth7qv2q77VCRZIkSeOBgYokaVi+8sAcvjmMuVROtvQwudhARZIkSWObgYokaVgeWjSRY01d7K/vuOL7nJRWkiRJ44GBiiRp2Iaz4o9DfiRJkjQeGKhIkobto0sqOVDfwaGGzkFfP9XWQ2WhYYokSZLGPgMVSVJKrrTiT01LD1OcP0WSJEnjgIGKJCkljy6bxK6TbRxt6rrstdrWXia5ZLIkSZLGAQMVSVLKhqpScf4USZIkjRcGKpKklH1ixWS2n2jh+Onui37uCj+SJEkaLwxUJEnX5Pfvn8O3L6lSOdnSw2TnUJEkSdI4kDbaOyBJujWtnVHKn7+wn8/87Say0qMcaeyirq2Xzr44/7DxGF9/fAmAq/5IkiRpTLJCRZJ0zb5w54yLhv0kkiFZ6dFR3CNJkiTp5gjCMAxHeyd0461fv54NGzaM9m5IGoNqWnoAeOTbbwDQ2tM/6PuKstMBeP4rdwNQWejqP5IkSRo7rFCRJEmSJElKkXOoSJJS8sc/fx8YujLlrNaeOABffXInAN/7wtqR3TFJkiTpJrJCRZIkSZIkKUVWqEiSUnKksSul9x9u6L76myRJkqRbjBUqkiRJkiRJKbJCRZKUklnluQBUtwyv8mR2Rd5I7o4kSZI0KqxQkSRJkiRJSpEVKpKklHz98SUAPPzNDcD51XwuVZQ90MV841NLbs6OSZIkSTeRFSqSJEmSJEkpskJFkpSSysJsAJ7/yt0AfPXJncD51XzOzplytjKlPD/rZu+iJEmSNOKsUJEkSZIkSUqRFSqSpGtSWThQefK9L6wd5T2RJEmSbj4rVCRJkiRJklJkoCJJkiRJkpQiAxVJkiRJkqQUGahIkiRJkiSlyEBFkiRJkiQpRQYqkiRJkiRJKTJQkSRJkiRJSpGBiiRJkiRJUooMVCRJkiRJklJkoCJJkiRJkpQiAxVJkiRJkqQUGahIkiRJkiSlyEBFkiRJkiQpRQYqkiRJkiRJKTJQkSRJkiRJSpGBiiRJkiRJUooMVCRJkiRJklJkoCJJkiRJkpQiAxVJkiRJkqQUGahIkiRJkiSlyEBFkiRJkiQpRQYqkiRJkiRJKTJQkSRJkiRJSpGBiiRJkiRJUooMVCRJkiRJklJkoCJJkiRJkpQiAxVJkiRJkqQUGahIkiRJkiSlyEBFkiRJkiQpRQYqkiRJkiRJKTJQkSRJkiRJSpGBiiRJkiRJUooMVCRJkiRJklJkoCJJkiRJkpQiAxVJkiRJkqQUGahIkiRJkiSlyEBFkiRJkiQpRQYqkiRJkiRJKTJQ0ahav379aO+CJEmSJOk6jNf7OgMVSZIkSZKkFBmoSJIkSZIkpchARZIkaQR997vfHe1dkCRJI8BARZIkSZIkKUUGKtIY99prr432LoxpHt+R5zEeWR5fjQW245Hl8R15HuOR5fHVSDFQkSRJkiRJSpGBiiRJkiRJUooMVCRJkiRJklJkoCJJkiRJkpSiIAzDcLR3Qjfe+vXrR3sXJEmSJEn6QNmwYcMN25aBiiRJkiRJUooc8iNJkiRJkpQiAxVJkiRJkqQUGahIkiRJkiSlyEBFkiRJkiQpRQYqkiRJkiRJKTJQkSRJkiRJSpGBiiRJkiRJUooMVCRJkiRJklJkoCJJkiRJkpQiAxVJkiRJkqQUpY32Dmh8inc2UlffQlc8JD2nmIrKcvLSR3uvbgHJXlrq6mhq7yERzaKgrJKJxVnXnowme2hpOE1bVw/9QQY5hWWUl+SSFtzInb61hH3t1Nc10NbTT5CRR+nESkpzojdo60l6Wppoj4Wk5ZZSmjceT8EJuk/XUd/cQV8ijeyiCUysKCTzettcMkZHcxMt7d309YcE6ZkUTJhE+Tg8xje8DSd7aW1opKWrlwQZ5BSVMqEkj/RxfJ5ITZJYdxd9iTSy8rI9bqlI9NLZHSfIyCE389rbcLKvnabGFjp6Y5CWQ0HpBErzM3yqOGJt077uvDg9nb30RzLJzbkBbc6+7jLJvi66YiHp2XlkXcdhSMbaaWpopqMnDunZFJSWe54YDu8lDFR0k8VPs2fDK7x94DR94fkfB5llzLv9Pu5aUIq5ymBCuqrf4dVf76CmM3HBz9PIn7qMe+69jam5wz9zhT0N7N/+Dtv31dDal7zglYCMouksX7+eFVNyx1kn0kfdjtd47d1jtMYvaJyRbCYuXs/962ZRcJ25Sn/jVp596l0a+yOUrHqc31gzYVwd42TbYTa+soHd9T2cb3UB6UUzuO2+D7GsIjP1jfa3c2zH27yz6yhNPRe35cLln+Szt1eMo2N8g9twsoua7W/y1s5jNF9ynkgvmMriO+7ithmF3Ki4cUxKdlOz9WVe2XaS7qCKez//MeZfQzMfj+LN+9jw4pvsb+m/5r/lWPNhdryzlT3HTnPx6SGdgimLuePu25hxvSf2W9UIts3x3ted01fPztdeYvPRDsKKdXzmkysoutabTPu6QSRoP7KJl369i4a+DOZ99PPcN+0a/p5763l/4wa2Hmy8+DxBGnmT5rPmrnXMK/Xu5FLeS5xnoKKbJ+zkwKvP8MaRboLsCcyeO5Py3ICexqPsP1zPvtefIRb9FA/OzWMchZrDEq/bwnMvbKOpP52CqfOYM6WYzP42ag7up7p6Ky88F/LYJ9ZSMYzzfdi6h+d/sYHj3Uki2aVUzZ9KeWEWaYkuGo4d5FjTUbY810rvxx7nzskZI//LfSAkad75As+9XUtfJI/K+XOZVppFsqOew/uPUPfeyzzTn87j91SRda1fEa/j3de209h/I/f7FtJ7nA3PvMye9pDMkhnMnV1JQbSP5uMHOFh7hE3P9hF88hGWFqfQ9fbVsuXZF9hW3wcZRUyZP4Mp5UXkpgf093UTz88eR+eSG92G+6jZ+Euee7+FZEYJM5fPZ9qEPNIT3TSd2MeewyfY/uLTdD7wKR6YlTPCv9utKeypZfurr/DOic6BAHGc3renrp/Wg2/x4ht7OR0L4Zr+ikO6Dr/KU68coD0RIbNoCnOrKijOSSfZc5oTh45QX72dF3/RxYc/dT8zx1kTHtG2Od77ujNijbv49UubONw2cCCu66bSvu5yyU6Ob36JV3fW0Rte/e1DSjSy9blfsqU+TlpBFUsWzqSiIIOwp4WTB3dzoHYXrz3dTuLxj7KwcNwd5SF5L3ExAxXdNLET7/D20W7Ins7djz/EgoKz3csyFlW9zM9fPczRTVs4Pu0+pvsE77ywld0bd9LUH6V02Uf5+B2TOHt4li2dy+ann2Zb407e2jWXT64ovmqnGhROYWZlCYmCVaxfNZOiC0OYVcs5+PKTvHK4hT3v7mfppCXkj4f+o/sgm7eeoo985n34ce6dkXPuOC5b8B7PP7WRmn1vsX3eZG6feC1XnjFObn6Nnc3ZVE3PpubY6Ru597eABPU7NrKvPUl65Toe+9gKys62u2VLmPnGUzy/5yTvbjrArIfnM6xiq7CT/a+9yLb6GJmTVvHhD69mSs54eA4yhBvchsPOQ2zf20IiUsbKRz/B2vLzJ4pZ8xYwu+QX/GxLA4d37Gf1zOt46jomhfTWv8drL23mWEeE0gULyT6yl5pxfoM5LIl2Dm98kdd3NxLPmcriad3sOdh8DRsKyJ00i8klbUxdfDdr55VdNKxw1YoTbHjqeXa3HuKdXcuYvqZsXDxFHfm2Od77OoA4p/e+wUtvHaAlWcisxSU07D5K17Vuzr7uMsmuat59+RW21/aSMXEJ88Pd7Ku/tm3Fju1gZ32coGAhD336HqouuP+Yu3Au5c/9lA3V1WzfXc/8OyaOk/PE1XkvcTHbhW6SPk7sP0pXGKF0yVrmF1zY9CLkz1nLsoooYfcRdh/tGbW9/CBKNh/kQGOCIGsmq1edD1MAyKhg5Zo55AQJGvbupSE51FYuEBQw/8Hf4NF1l5wAASJ5zFo2h4IA+hvraEwMuoUxJqTzyH6q+0LSJq9kzfSci0KptJLFrF1YRCTZxv491cSv4Rv6Tmzi17vbSJ+6imUTx+FpN3GK/QfbSAYFzF+z9HyYAhBkU7VmJVUZ0Fe9hwNtw3vUFK/ZypZjPZA3j3sfWjPOLzBvfBsO25tpTUCkeDqzyy49UaRRMnMGJRFItrXQOpzzzjgStr3Pr365kWNdWVSte5SP3zWFzMT1PEIdL2JUv/k0L+1qJFmykAc+8REWFl3H5rKn86FPP87d88sum6MpyJ7KsgUTiJCkrb6e8XLVMdJtc9z3dUD3wVd5+vUDtEYnsuLhT3DfzFyu5wjb110i0cC7zz7H1toY+bPv5uOPrKD8mssDQjpaWokTkFM1mymXPsyNFDBzZjkRQrpaWold566PKd5LXGSc/1Xqpkk2cvJUDCJFTJtWdHkVRVDAtOmlRIhTd6LWk9Y5Id21tbQkIW3S9MtP9kD6pOlMzQwIO2o40XL9dzZBVjZZAZBMkBgXN0px6k42kCBC+fSqQaojIpRNryIvCOmtqR5eaHWhnqO89fpeOjKmsm79PLIT46BnuUSypZZT3SFBzhSmVwxSHZFdxYyJaZBshf0E6QAAG/RJREFUorqmaxgXn30c33OYzjBKxdJVTLvmcVhjxQi04fRM0gMI47FBz8dhPEYcCDIyr39C4TEmKJzP2pULWPmRx3l4RQWZhITmKcOQweQVa1i86G4+8Yl7mFUQIUyO1IELyMrOIgDCRILxkneNaNu0rwMgZ+ZqbluwlPs/+SjrpuYQCZNc+6WUfd1louUsWbuMBese4fEHFlKSFnI9p4mMzIHhKP19MS5vsSHxeIwQSMvMdFhHCsbbvYSBim6KsKuZlt4QoiWUFQ3W7AIKykrJDKD/dKNPPM8JaWluISRCYVnJ4BP2RkspKw4g2UbT6Wupn7jkGzvb6QwhyC1gXEwan2zjdEsCghxKS3MGHTIVKZlAaRTCniaaOlPoucMuDr25gQNdWUy/8x4WFASEyfHXuPtbmmlPQqR4AiWDjjbJpLQsnwhJTjc2X/3is/8UJ2pjEJnAzBn542/s+KVGoA1HSqYxrSBC2HGArbuauWhEQLKTwzsP0paMUjxnNuVeSVwig4krP8TaaXkDF1nj5Gb9RogUzOWuuxdRdmbI/cgduiSd7Z2EQHp+Pjnj5iQyQm3Tvu68aCmL77mTOUU34ALKvm5Q2dPW8aEVkwZu2K9LQN7UKiZEQ/qObWN73SWPD3pr2LmnkWSQz6y5kw1UUjDe7iXGwa+oD4Kwu4vuEIKcPHKHuPgOcvLIDaCnq4POEMpv7i5+QMXp6owREpCbmzt4Zxpkk5sTBRJ0dXQRknkdnW6ck4eO0x0G5E+bzoTxcKMUdtPVnYQgl7yhJu9IyyU3K4CuTjo6QygY1iQfdB7YwJuHu8md/WHunptHQHIc3luFdHd2kwTSc3MZfHqkCDl5uQS0EO/spA+40hyRYftpTsdCgtxyyvOgt+kw+w6coKG9l2Qkk7zSScycN4dJeeNkFtCRaMPRClZ9aAW1z22leuNTPNm0mjtuW0hFoprtb77J9upucqbdyQOrKpxrVbee5GkOHWkhGWQxdfokL4avi33dSLGvG3lB0VLuWVfDLzfWsPWZn9G8Yh3rlkwl2vA+G994lyPtGVSufoB1VWN/YtUbZ/zdS9iH6OaIDZSNB+kZpA91HZ+RMVCBkYwRi+OKCABhjFg8BKKkZwz15xohIyONgH76+gZKE681UInXb2PT/k7IrGLFssrxcYJIxoj1A0E6GUM2zjOvhTH6YsO7TAzb9/L6xmP05c/nI3fNumJAMLaFxGMxICA9I33ItpmRMVB/Fcb6iIVc8YlxsqOdjhCCvEy6djzDi+/U0J0MiKZFSPYnCA/v5/3tO5h/z8PcM6dw7JdijlAbzqhcwyOPZvHrlzdzZP9b/PLgZqL0k4gWMmPdx1i/bMqQAbn0wZWk5f2N7GpOkla+lJUznAX/etjXjRz7upshSunSh/l45gZeenM/R7e8wPGtaZDoJ8ibwsqH7mH1jAJvSVIwHu8lxsPvqA+CZHJgjGMkMvQJ/9xrScZrpejlzh6LgMgVespI9MyRu44DF3Ye4vWXdnA6mc30O9azYKxPyX1W8uz45sgVjvHZ14Y5VjfZyvu/3kR1rJBFH7593I97TiYHnlZGrtCIz702jPHm/X299IcQnn6P10/nMn3dx1g1fwpFmRESPac5tmMDb+w8xb5fv0RByeOsKh3jl5kj0YYHNkx/PEk0PUpAPwHJgbHQYS/tp0/T1juJ3PE+QaJuOT3VG3lxcy3xjErWfmg5Y/30MKLs60aUfd1NEvYTT0RISwsgFkCYGOhT+zppbmqmq6qAAhOVYRmv9xIGKro5ohGiAcSTiUEmfTojcfa1KBFPXGdEiUaBszcyQ0icmfwtGr22Axf2nODN517jYEeUCSse5L75BeNnrO4FQd7Qc+glzrwWIXrV65UEp3e+xpbaBCXLP8S6wWYSHmci0SgDc5MN3YjPtmEi0as+CUrEB2b0COMZzPzIY9w7Pfvca9HsUmbd/hDJ9id45UgTe/acYvn6yWP76dINb8MAcRp3/orn3q6mJ72MeXd/lLVzi+ip3s32d3dy6OBGnq45wdqHH2JFhaXQujX01b3DCy/topkiFtz/IMtLx/SZYYTZ1400+7qbINnK/pef5deH24kWzWLdfetYXJHk1N4dvLt9P8fefYFTJ5bx4Y/eztTsq29uPBvP9xJGmbo5MrPIDM6X8w8mjPUNLOcZzSTLqG9AkEFWZgCExPqGWvsoQayvn5CAzKzU508Je2rY9MyL7DodUrzwAR5eO2mIeS7GqGgWWRkBhH1XGAoRIxYLIcg88+8xtP7G7bz2bj1h2QruXV05+ETC40pAVlYmA224b4hx9SGx2JnhapmZZFylEZ+tZomULmDZtMGucLKZPnsyaYR0NzaSyjzCt6Qb3IYB4rXv8PLb1fRkTOWOj3+SexdNJCc9i9KZq3jg07/JR5eVk95bw+ZfbcCV7nUriDVs44Xnt1IXz2XWPR/l7umDT+Cs4bGvG3n2dSMtyekdr/DG4XaiFat45PEHWTG1gPSMIqqWfYhPfvYx1k7JItawk5de3UOHx3dI4/1ewttW3RSRvALyAmjp6aQrwaBRXtjVSWcIkbx88rzKOSONvPxcAjrp6ugiSfblhy7soqMrCUTPvDcFvSd5+9kX2NmUpGj+/TyyfvogS66OcUEeBXkB9HbR0RVC8SAHINZJR18IQR75V2ycvRx5dweN/ZDRd5wNT1df9o7+znaSJGnf9xpP1aRBZBJrHl3HlDH7WCkgOz+PdCDe1UlPyCB/3+GZCZUDsvLyr9oJp+dkkwbEMzIYqjYimpVNRgA98dhAiDuW2/UNbcMAcWr27KM1GWHCsjtZUnrJpUIkj6rbP8xtDU/w1qnD7DqyjhmLcm/YryPdaPHG7bzw7BZqY7nMWP8I989zvonrY193M9jXjbBkPfv2NNIfFLD09lVMvOTiI8iqZOUDd9Lww1c4WrObAy0LWFXiAb6M9xIGKrpJMsuYUBChurWJhuYksysuvZRJ0trQRDyE9NIyCr3SOSNCSXkpabTT3thEH2Vc9owifprGliRESigrSeFPuq924ATYGFKy8MN8bP0M8sbjcQ8KmFCWRdDYS1NjO+GUosuuRxKnG2lOQpBbSukV19cM6R+YZIJYeyP17UO/s7/rNPVdQDSX3oE8bMyKlpVTEjlIXXMjTQkuX0Iv7KaxsZOQCCUTSq56oxMpLqU4AvWtp2kebHtAsq+PeAikZ1y14uWWd0PbMBD20N4RhyCD0rLCIVYXy6OiIo/gVAedHV0kyfUGVR9I8cadvPDsZk7G8ph1zyPcP79oLJ9ubxL7upvBvm6E9XfQ3h1CpJiykiEaZlY5E4sCjjZ00t4ZgoHKxbyXAAxUdLNESplWlcf2lk6OHW5gbcXEi/vUZDNHjraQJJ3KqZaOXihz8jQq049y4tRhjnXPZ8ElU+j3njhMTRwihVOZWjTME31fLVuefZ4dDSElix/kkbumXXFVlbEtysRpU8jad4CmI0dpW76Ciw9jnFOHj9EVBmRPmXqV5d+ymHP/P2Fq/1CvhzTveJYXdrVTsPgjfGx5CQFpZI/xBh/kVTGtbBOnGk9wpDrG9BkXP2sLO49xuD4BkQqmTr76IOUgfxrTy96mrvEY+4/3UjXr0pkQ+2k4WUecgJyysnFQ8XYj2zAQpJOZEUAYp7OzBxis+iROZ0cvIZCVneVDUX0gxZve41fPbqKmL5859z3KfXMKDP5uCPu6m8G+boRFM8hIA+JddHaFMNhw2GTnQOVnkEW2ky5fzHuJc+xXdJNEqFiwkPK0JG173mJrXd8Fr8Vo2P4W7zUnCfJmsWiGsz5dJGcmi2blEsSreffNA7RfMK9nsvMwGzcfpS9Mo3zh/ItulJIt+3jlZz/ghz9/nYPtFwz87KvjnedeYFt9SNmyh3h0HJ8Az0qvWsy8wgjJxh28+f7pgbl8AAjpqXmHTfs6CSNFzFs45YKwr5eaLc/wxA9+zHPbTjEww01AenY++flD/ZdHTuaZMdGZOeTl55Ofnz32k+2gkLmLppIZ9nBw89uc6L6gPSZa2fvmVk71B2RWLWJu4QWNMd7Azhd+zA+e+CWbjnefn38lKGL+ilnk0MPhja+zp+XCq/qQnpotbNzXQRgpZM68ynHxQPTa2nBI55ENPPXDH/DTl3Zz+tyEtllMmlpOGglqt2/hSOelkwmH9FRv4d1jfRAtZVpVvoGKRs1QfV3/6V28+OxGqmOFzHvgMcOUa2ZfN9KGvF6zr7tBhujrohVUTcqE5Gl2bdlL62WTuvdRv20LBzpDgvxpTHMVpfO8l7iI5zbdNEHxEu5acZSn36ln6y9+yImpVUzIDehpquZEQxeJSAHz7lzLVBeMuEQm09bcwayaVzh0+FV+3LSXqknFZPa3UXviJK19kDFxNesXX1jmH9J65H0ONbSRpIP3jyxn9vJCApLUb3uVrXV9hERpO/AKPzow9DdHJ93Bpx+ce/kwo7EmWsHK9Qs5/twuqt96kicOVzGlNItkRz3VNafpSaZRumw9KysuuFxJ1LL3vWpa4tC6Yx91yyupsq8dQkDu3DtYc6ieN6t38/wTp5hcNZGCtD6aT56grj0O2dO4/Y45XFiAlWw8wHvHTtMZwvu7q1k5bd65+VWyZ97JvYua+NWuI7z+syYOTpvKhNwIvS0nOV7TTG8ynbLld1/8bzaWXUsbpocTu/dyqjUB7e9xcOkCSisiQEDBgjtYeeiXvFO/jxd/3MDUmdOYWJRNNNlLe8MJjhxvoifMZOJtd7NksDlbpJtiiL4ubOX9198aCG8jXRzf8DO+v2GobUQoXfkYjyy9fKicsK8bcUNdrw2wr7sRhurrspm1bi0H6jZw4ugb/PRHh5k5vZLi3HTo66Cx5gjH6rtIpJWwZP1KKj3EZ3gvcSkDFd1EaZSv/iiPZrzFhm2HaDy+n0YAAjIKp7H8jvWsdtb9QQW5s7nv4xHy39jErppaDrfVDrwQzaFi/mruumMRZRed6ANyCgvJCJroJYuiwuxzxzXRfzaCTxDrufLyHNHYkPW8Y07mlDt59KM5bHhzJ8fqjrCvbuDnkaxSZi+/i7uWT7p4Urggn8KCCJxOEi0sstT2aiJFLH7oMdI2bWDLvlNUH2w+80IaeZOXsG79WuZcMnlSkFdIYRp0xiPkFRVc0mFlU3XXJ3is9B22bN/PyUO7GfirCEjLq2ThqjtYt7B8XM0yn3IbJoOCwmyCmk7CtAIKL5xFLr2cVY8+TuG2zWzbe5wTe5s5ce7FCNllM1m1ai0rZxZ5IaFRNFRflzi/hHgyTm9PfOhNEKEv7vIdQ7KvG2FDX68NsK+7fkP3dZGiRXzkU/ns2PwOu4+eZP/OmvMfi2RSVLWMlWtXM6/Mp70X8l7iYkEYhvYiuvmSfXS0tNIVh/ScQooKsixVHKb+nlZa2npIRrPIKyoiN32oq5t+OupraYmUMnlCrsd32BL0trfQ1tVPkJlLYVE+mUM8jQt7mzlZ30teZSVFzgY3bGG8i5aWDmJhlKyCYoqyh74lj7XVcqojk/JJpWQP9VQ07Ke3s5327jiRrAKKCsd7afnw2zDJbhpPNpEorGRiwVATHCToaW+lsydOIkgnO7+Qguw0w299QNjXjTT7upE2zDZsX3fthtPXJfvoaG2nO5aAaBZ5RYVXuMaWzjNQkSRJkiRJSpGjICVJkiRJklJkoCJJkiRJkpQiAxVJkiRJkqQUGahIkiRJkiSlyEBFkiRJkiQpRQYqkiRJkiRJKTJQkSRJkiRJSpGBiiRJkiRJUooMVCRJkiRJklJkoCJJkiRJkpQiAxVJkiRJkqQUGahIkiRJkiSlyEBFkiRJkiQpRQYqkiRJkiRJKTJQkSRJkiRJSpGBiiRJkiRJUooMVCRJkiRJklJkoCJJkiRJkpQiAxVJkiRJkqQUGahIkiRJkiSlyEBFkiRJkiQpRQYqkiRJkiRJKTJQkSRJkiRJSpGBiiRJkiRJUorSRnsHJEmShq+XtvpWesIUPpKWR2lZHulhC9ue+Hueb5zHb/zOI8zNCUZsL0dc2EtrQyu9QTYl5YVkpPThPtrqW+ghi6LyIrJu4cMgSdJoMlCRJEm3jvgWvvm5P+HlFBKV6LTP8Tf/8LvMa3md7//XX7C1P4v4sgf53+/JHMEdHUkxDj/x7/g3f7OHsk//JX/7peWpBSphnAP/4w/4D79oYdG/+mv+v8/OJH2kdlWSpDHMQEWSJN06gkKmLV3O8r4LA5WQ9hO7ONqcJHPiXOZNzObCoovIxEpyAggKF3LbohL21S3httm3boQQP/wE3/j79+gpf4QvfXEZualuIMhj9b/4Eg++9VWe//s/58dr/zP/dIaXhJIkpSoIwzCVollJkqQPmDhv/h+P8h9f7GX657/Dd39nLtHR3qWRkmzkmf/lc/w/m5Os+p+/z198YuI1ToiX5NTP/oDf/tYO0u/8Kv/4Zx+h1KE/kiSlxElpJUmSBhH299LR3k08OcQbknG6OrroS6TwbCqM09PRRmdv4pr2qf/gz/nRO10ExR/i0x++QpiSjNPd0UZ7Vx+Df1OEyo98mnuKofPtJ/jF4WvbH0mSxjPrOyVJ0vgQ385f/96f8Vp3Fb/xjT/nN6edjSO6eP0b/4K/2jGXL/7VH3Pb8Z/yX//bU7z+/im6khDJnsCC9Z/id//1Z1lZGtK88+d89/tP89r2Y7THgfQCpq14kH/6r3+Hh2blMFihR7xuMz/+b//IL9/YTW1XP0TSKahawf2f+iJffGwRhcN6xBVn969e5kQiQtndD7H6srE+fdRu+in/8MTzbNxdTVtfkjAISMspo2r+Cu586Df5Jx+ZR/7ZHcy9jQfvKuWlp4/y0ot7+e3Zi70wlCQpBfabkiRpnOilraGBus4cOuIXz8HS01JPXW0Xb/3gz/n+z39FU9FM5q1eS2ZPLfv3VrP7xb/hPxzt4mu/1cx//j+fpT57MnOWrmVB2MKRvQc5vuUnfP1QA5G/+xoPTrg4Hek98EP+6A//hm1tAXlTFnPnugmkdVSze+c7PPmX29my53/j2390DxOuFqokDrFpcwPJSBFr7lzMxVPqJqj5xZ/wr/5yM21BPlMX38Gqikz6muupPXGU49tepnPyQ/z2wxd+Joult68k/5lfcWrTJo783mLmjtmxUpIk3XgGKpIkSQDJZl7/6Rss/ty3+OsvLqc4AhDSsevv+MM/+Ef2HvrvfPU/Rah84I/53r9/iKqsgY/1173C17/0NV6sf4ufvFDNA5+bdn4oTu9O/u5r32Fbew5L/tk3+LN/tvRcNUrv8V/wn778l7z5q/+Xb69ZwtceKBm0uuXc7jXuYtepBEHGQpYvumRdn/49/PwHW2hlEo/933/LH64rvGA4UIzTB3ZQV7iarEu2mbloOfPTXmTzyfd4/3SSueWOBpckabjsNSVJks6ITv04X/r82TAFICB/8f/EZ9blEIRJyL+H3/vyg+fCFIC0iffyW4/OJi1McGz/QXrPvRLS/Or/4JcnEqQt/G3+6IIwBSBr2qP8m88uJD1sY+PTr9Ew1FwtZySOHeJYAiKTZjMz55LoJdnM6eYQouXMmpV/yQVeBqVz17Co4vLLvqBgJrMqIpA4yqGjzqMiSVIqDFQkSZIAiFCyci1zLltROYtJU8qIEJC+aB2r8i+tI4lQObmSSBCS6Oig61ww0sW2jTvpCaPMvXs9ky+76opQuXQpEyMh8QO72R+/0r6FtNfV052ESHkllxWSpM1g7qw0gv6dfP/r32NjTS/Dmio3Uk5leQSS3dTVdQzvM5IkCXDIjyRJ0hkRyivLB11yORqNAAG5E0rJHmRcTjQtSgCEiQTn8pRELUdP9BEScurFv+DfvzvIc6zeWppDCGNttHWFkDnUoJ+Qjo5OQgIyCwq4tECFSBWP/+G/ZPt/+C9sfue7/NFvPcmMdQ/y6GOP8tC6GeQP9QgtyKMgL0JAgo72DkKuPOxIkiSdZ6AiSZIEQEBGZuYV35GWljb8wCHspqsrhCCk9dhOth8f4n3RdNLTA65cHhLSH4sTEpCWNvjlW9ac3+Qb31/Jqz/+Pj94agOH3voJ39r4M74zeS2f/Of/ks/fP/PyIIYoaekRoJ94LG6FiiRJKTBQkSRJOuPGVmekk5EBkMP9X3uaP12fcbUPXEFAekYGASGxWGzId0XyZ/PAP/8aD/xWI7tef4Ynf/JzXtu/iR987T22H/8LvvXPF5F90ScSxGKJgcqXzHSrUyRJSoFzqEiSJI2E6EQmT4wShH2cOFbLVeacvYqAwuJCAkL6W5ppu1opSeYEFj/4Bf70Oz/gv/zb2ykJutj3o3/k9Us/mGyhuTU8s/0iAxVJklJgoCJJkjQSgmJWrJ5DWpDg0Msvsn/owpLhbIzcykoKI5CoraZ2uAvyBHnMf/yfcl95hDDeQN3pSwKVxClqTiUgUkRlZY6BiiRJKTBQkSRJGhERpj78Ge4uDkgc/RH/11+8THXv5e+Ktxxi15G2q85fkjZjLjPTApJNBzh4+pJ6l+Qp3n/3OB2DlMHETrzHvpaQIGMik8oujkySDQc42JokSJ/FvJmOBJckKRX2nJIkSSMkKLmXr/zxLo7/yU859NzX+PzbP2DVqvlUFqTR39VM3dH97DnUSPlvfYfvziwcdIWhc9sqWsrymVG27N/Pu9s7ePwjhecrShIHefI//glvZM9k6YolzJlaSl5aP+0n9/L2G+9yIpbOjM9+hrsKLgxUQtp2bOVQP0QXrmRZgfUpkiSlwkBFkiRpxAQUrfkSf/U38/mH7/x3nttyiLdfOnj+1bR8pix7kI+snHD1suHIVO66awb/bd8htr++idaHPkLx2QwkOo019y5lz+u72PrKYd499wURsiqW8LHf+V3+xeNLyblwe2ELm17fSR/pzF9/J5OsW5YkKSVBGIaukCdJknQTJLobqampp60nSVpOIRMmTWZC7vCfbyXrnuQPPvdNtrOU3/+Hb/PpS1OQRBeNJ2tpbO2mP5JJXtlkplbkkz5I8Uny5I/5/c//Fe9Fb+Pf/eOf81i5iYokSamwQkWSJOkmieZMYNrcCdf8+cjEh/n8R3/Ezp+/z09/vJNHvrKCrIu+IJcJVXOYUHW1LfWw4yc/4/1YhMm/8ds8aJgiSVLK7D0lSZJuGdms+OKXeLAcap/5W356pP+attJ/5Gd855lTBBUP8/ufX3pxKCNJkobFQEWSJOkWEhTeyZf/9IvcOQe2PreZllQHb4ctbH52K8y5ky/+6b9lnZPRSpJ0TZxDRZIkSZIkKUVWqEiSJEmSJKXIQEWSJEmSJClFBiqSJEmSJEkpMlCRJEmSJElKkYGKJEmSJElSigxUJEmSJEmSUmSgIkmSJEmSlCIDFUmSJEmSpBQZqEiSJEmSJKXIQEWSJEmSJClFBiqSJEmSJEkpMlCRJEmSJElKkYGKJEmSJElSigxUJEmSJEmSUmSgIkmSJEmSlCIDFUmSJEmSpBQZqEiSJEmSJKXIQEWSJEmSJClFBiqSJEmSJEkpMlCRJEmSJElKkYGKJEmSJElSiv5/oQJ36c4/mucAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "execution_count": 6, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/tutorials/Tutorial 3. Building custom analyses - the data analysis framework_5_2.png" } }, "output_type": "execute_result" } ], "source": [ "pars = mk_cosine_instrument()\n", "\n", "meas_ctrl.settables(pars.t)\n", "meas_ctrl.setpoints(np.linspace(0, 2, 30))\n", "meas_ctrl.gettables(pars.sig)\n", "dataset = meas_ctrl.run(\"Cosine experiment\")\n", "plotmon.main_QtPlot" ] }, { "cell_type": "code", "execution_count": 7, "id": "49595c0b", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:31.362066Z", "iopub.status.busy": "2023-09-26T17:44:31.361894Z", "iopub.status.idle": "2023-09-26T17:44:31.402399Z", "shell.execute_reply": "2023-09-26T17:44:31.401849Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:  (dim_0: 30)\n",
       "Coordinates:\n",
       "    x0       (dim_0) float64 0.0 0.06897 0.1379 0.2069 ... 1.793 1.862 1.931 2.0\n",
       "Dimensions without coordinates: dim_0\n",
       "Data variables:\n",
       "    y0       (dim_0) float64 0.534 0.4959 0.3205 0.1488 ... 0.2888 0.4951 0.5225\n",
       "Attributes:\n",
       "    1d_2_settables_uniformly_spaced:  False\n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         False\n",
       "    name:                             Cosine experiment\n",
       "    tuid:                             20230926-194430-301-508488
" ], "text/plain": [ "\n", "Dimensions: (dim_0: 30)\n", "Coordinates:\n", " x0 (dim_0) float64 0.0 0.06897 0.1379 0.2069 ... 1.793 1.862 1.931 2.0\n", "Dimensions without coordinates: dim_0\n", "Data variables:\n", " y0 (dim_0) float64 0.534 0.4959 0.3205 0.1488 ... 0.2888 0.4951 0.5225\n", "Attributes:\n", " 1d_2_settables_uniformly_spaced: False\n", " grid_2d: False\n", " grid_2d_uniformly_spaced: False\n", " name: Cosine experiment\n", " tuid: 20230926-194430-301-508488" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ " tuid = get_latest_tuid(contains=\"Cosine experiment\")\n", " dataset = load_dataset(tuid)\n", " dataset\n", "\n" ] }, { "cell_type": "code", "execution_count": 8, "id": "1f95f2ad", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:31.404374Z", "iopub.status.busy": "2023-09-26T17:44:31.404211Z", "iopub.status.idle": "2023-09-26T17:44:31.597441Z", "shell.execute_reply": "2023-09-26T17:44:31.596860Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACybElEQVR4nOzdd3ib5dX48e8jyZb33rFjO9Nx9t57EAKEvVtmaV9aShm/Fuik8LZASxmlUF42FCgrBVJGyCYhCdk7znKc5b330Hh+f8hS7MRDtmU9knU+1+UrRH4kHYdEOrrvc5+jqKqqIoQQQgjhg3RaByCEEEIIoRVJhIQQQgjhsyQREkIIIYTPkkRICCGEED5LEiEhhBBC+CxJhIQQQgjhsyQREkIIIYTPkkRICCGEED5LEiEhhBBC+CxJhIQQbqUoCo8++miX73fy5EkUReGtt9664Hs//elPWbhwYc+D62V//etfGTBgAHq9njFjxmgay5QpU/jVr36laQxCeAJJhITwUW+99RaKoqAoCt99990F31dVlZSUFBRF4dJLL9UgQufk5OTw2muv8etf/1rrUDq0cuVKfvWrXzF9+nTefPNN/vznP2saz0MPPcSLL75IQUGBpnEIoTVJhITwcQEBAbz//vsX3P7tt99y9uxZjEajBlE57/nnnyc9PZ25c+dqHUqH1q5di06n4/XXX+eWW25hyZIlmsZz+eWXExYWxksvvaRpHEJoTRIhIXzckiVL+PjjjzGbza1uf//99xk/fjwJCQkaRdY5k8nEe++9x3XXXad1KJ0qKioiMDAQf39/rUMBQKfTcc011/DOO+8gs7eFL5NESAgfd+ONN1JaWsqqVasctzU1NfHJJ59w0003XXB9bW0tDz74ICkpKRiNRoYOHcrTTz99wZtpY2Mj999/P7GxsYSGhrJ06VLOnj3bZgy5ubnccccdxMfHYzQaGT58OG+88UansX/33XeUlJSwYMGCC77X0NDAo48+ypAhQwgICCAxMZGrrrqK7OzsLv8sq1atYsaMGURERBASEsLQoUO7tBWnKApvvvkmtbW1ju3It956q8O6p/NrqR599FEUReH48ePcdtttREREEB4ezu23305dXd0F93/33XeZNGkSQUFBREZGMmvWLFauXNnqmoULF3Lq1Cn27Nnj9M8iRF9j0DoAIYS20tLSmDp1Kv/+97+5+OKLAfj666+prKzkhhtu4O9//7vjWlVVWbp0KevWrePOO+9kzJgxfPPNN/zyl78kNzeXZ5991nHtj370I959911uuukmpk2bxtq1a7nkkksueP7CwkKmTJmCoijcc889xMbG8vXXX3PnnXdSVVXFfffd127smzdvRlEUxo4d2+p2i8XCpZdeypo1a7jhhhv4xS9+QXV1NatWreLAgQMMHDjQ6Z/l4MGDXHrppYwaNYrHHnsMo9HI8ePH2bRpk9N/xv/617945ZVX2LZtG6+99hoA06ZNc/r+LV133XWkp6fzxBNPsGvXLl577TXi4uJ46qmnHNf88Y9/5NFHH2XatGk89thj+Pv7s3XrVtauXcuiRYsc140fPx6ATZs2XfBnKITPUIUQPunNN99UAXX79u3qP/7xDzU0NFStq6tTVVVVr732WnXu3Lmqqqpqamqqeskll6iqqqqfffaZCqj/+7//2+qxrrnmGlVRFPX48eOqqqrqnj17VED96U9/2uq6m266SQXUP/zhD47b7rzzTjUxMVEtKSlpde0NN9yghoeHO2LKyclRAfXNN990XPODH/xAjY6OvuBne+ONN1RAfeaZZy74ntVq7dLP8uyzz6qAWlxc3MafovNuvfVWNTg4uNVtbf1Mduf/Of3hD39QAfWOO+5odd2VV17Z6s/g2LFjqk6nU6+88krVYrG0utb+s7fk7++v3n333d34iYToG2RrTAjBddddR319PV988QXV1dV88cUXbW6LffXVV+j1eu69995Wtz/44IOoqsrXX3/tuA644LrzV3dUVWXZsmVcdtllqKpKSUmJ4+uiiy6isrKSXbt2tRt3aWkpkZGRF9y+bNkyYmJi+PnPf37B9xRF6dLPEhERAcDnn3+O1WptNxZ3+Z//+Z9Wv585cyalpaVUVVUB8Nlnn2G1Wvn973+PTtf6Jd7+s7cUGRlJSUlJ7wUshIeTREgIQWxsLAsWLOD999/nP//5DxaLhWuuueaC606dOkVSUhKhoaGtbh82bJjj+/ZfdTodAwcObHXd0KFDW/2+uLiYiooKXnnlFWJjY1t93X777YCtyLgjahuFvtnZ2QwdOhSDof3df2d/luuvv57p06fzox/9iPj4eG644QY++ugjzZKi/v37t/q9PREsLy8HbD+7TqcjMzPTqcdTVbXNBEkIXyE1QkIIAG666SbuuusuCgoKuPjiix0rIb3Jnkz84Ac/4NZbb23zmlGjRrV7/+joaEcC0FsCAwPZsGED69at48svv2TFihV8+OGHzJs3j5UrV6LX67v92O0lIBaLpd37tPd8bSWEzqioqCAmJqZb9xWiL5AVISEEAFdeeSU6nY7vv/++zW0xgNTUVPLy8qiurm51++HDhx3ft/9qtVpbndACOHLkSKvf20+UWSwWFixY0OZXXFxcuzFnZGRQXl5OZWVlq9sHDhzIkSNHMJlM7d7X2Z8FbEfN58+fzzPPPMOhQ4f405/+xNq1a1m3bl27j+8M+2pORUVFq9vtq1HdMXDgQKxWK4cOHer02tzcXJqamhyrYEL4IkmEhBAAhISE8M9//pNHH32Uyy67rM1rlixZgsVi4R//+Eer25999lkURXGcOrP/2vLEGcBzzz3X6vd6vZ6rr76aZcuWceDAgQuer7i4uMOYp06diqqq7Ny5s9XtV199NSUlJRfECedWTpz9WcrKyi54DPt4jMbGxg7j60xYWBgxMTFs2LCh1e09aXJ4xRVXoNPpeOyxxy7Yvjt/1cj+59bdE2xC9AWyNSaEcGhve8russsuY+7cufzmN7/h5MmTjB49mpUrV/L5559z3333OWqCxowZw4033shLL71EZWUl06ZNY82aNRw/fvyCx3zyySdZt24dkydP5q677iIzM5OysjJ27drF6tWr20xE7GbMmEF0dDSrV69m3rx5jttvueUW3nnnHR544AG2bdvGzJkzqa2tZfXq1fz0pz/l8ssvd/pneeyxx9iwYQOXXHIJqampFBUV8dJLL5GcnMyMGTO688fcyo9+9COefPJJfvSjHzFhwgQ2bNjA0aNHu/14gwYN4je/+Q2PP/44M2fO5KqrrsJoNLJ9+3aSkpJ44oknHNeuWrWK/v37y9F54du0Oq4mhNBWy+PzHWl5fF5VVbW6ulq9//771aSkJNXPz08dPHiw+te//vWCo9n19fXqvffeq0ZHR6vBwcHqZZddpp45c+aCY+GqqqqFhYXqz372MzUlJUX18/NTExIS1Pnz56uvvPKK45r2jprfe++96qBBgy6Iu66uTv3Nb36jpqenOx7zmmuuUbOzs7v0s6xZs0a9/PLL1aSkJNXf319NSkpSb7zxRvXo0aMd/rmdr63j8/Y477zzTjU8PFwNDQ1Vr7vuOrWoqKjd4/PnH+O3/3/Myclpdfsbb7yhjh07VjUajWpkZKQ6e/ZsddWqVY7vWywWNTExUf3tb3/bpZ9DiL5GUVXprS6E8F4nTpwgIyODr7/+mvnz52sdjtf47LPPuOmmm8jOziYxMVHrcITQjCRCQgivd/fdd3P8+PFWY0JEx6ZOncrMmTP5y1/+onUoQmhKEiEhhOiB4uLiDo+7+/v7ExUV5caIhBBdIYmQEEL0QFpaWofH3WfPns369evdF5AQokvk1JgQQvTAe++9R319fbvfb2sEiBDCc8iKkBBCCCF8ljRUFEIIIYTPkq2xTlitVvLy8ggNDZXBhEIIIYSXUFWV6upqkpKS0OnaX/eRRKgTeXl5pKSkaB2GEEIIIbrhzJkzJCcnt/t9SYQ6ERoaCtj+IMPCwjSORgghhBDOqKqqIiUlxfE+3h5JhDph3w4LCwuTREgIIYTwMp2VtUixtBBCCCF8liRCQgghhPBZkggJIYQQwmdJIiSEEEIInyWJkBBCCCF8liRCQgghhPBZkggJIYQQwmdJIiSEEEIInyWJkBBCCCF8lnSW1oLVAqc2Q00hhMRD6jTQ6bWOSgghhPA5kgi526HlsOIhqMo7d1tYEix+CjKXaheXEEII4YNka8ydDi2Hj25pnQQBVOXbbj+0XJu4hBBCCB8liZC7WC22lSDUNr7ZfNuKh23XCSGEEMItJBFyl1ObL1wJakWFqlzbdUIIIURfZ7VAzkbY/4ntV40WAqRGyF1qCl17nRBCCOGtPKheVlaE3CUk3rXXCSGEEN7Iw+plJRFyl9RptmwXpZ0LFAjrZ7tOCCGE6Is8sF5WEiF30eltS37AhclQ8+8XPyn9hIQQQvRdHlgvK4mQO2UuhevegbDE1reHJdlulz5CQggh+jIPrJeVYml3y1wKGZdIZ2khhBC+xwPrZWVFSAs6PbuDQ/ifwtXU9BsrSZAQQgjfcF697BF/P94KC21RMeT+ellJhDRgsph4aMNDbMrdxE9W/YSqpqquPYCH9F4QQgjh47r6ftSiXrZIr+dn8bH8LTqS98JC0apeVlFVta3SbdGsqqqK8PBwKisrCQsLc9njHio9xI9X/ZjKxkoyozN5ZeErhBvDnbij5/ReEEII4cN68H5Ut/9jbtv2R7IMCgOaTPwrv4CwkCRbEuSi9zJn378lEepEbyVCADvyDnL/hv+horGCoZFDeWXRK0QFRLV/B3vvhQuOHTZn0VJwLUS3qKpKVVMVRXVFFNcXU1JfQlFdEbWmWq4dci1JIUlah9glxdWNnCmvY2xKBIrSXssOIXqgB+9HFquF+9bdx/qz64nyC+G9IXeQHJ3h8npZZ9+/pVhaQ+9/Z6LxzE8ISXqFI+VHuPObO3l10avEBMZceHGnvRcUW++FjEuk5kiIZqqqUt5YTnFdMcX1xRTXnUtySupLWt3WZG1q8zF2Fe7ircVveU1C8c3BAn758V6qGsyMT43kk/+Z6jWxCy/Rw/ejp3c8zfqz6zHqjfx94cskx47u7Yg7JImQRqobTGw/WUZRWSRK9R1EDHid4xXHuX3F7by26DXig8+rmO9K74X0mb0auxDeoMnSxA+++gFZZVlO3yfcGE5sYKztKyiWlSdXsqtoF6tOrWJR2iLnn9xqcfvJ0CazlSe+zuLNTScBUBQY02JFSFVVqhrMhAf69Wocwgf04P3o34f/zbtZ7wLwpxl/YrTGSRBIIqSZ0AA/Vt0/m5fWZ/Pytzoqsu8iOPVVTlad5LYVt/PGRa+TGNKi35AH9l4QwpMtO/qxIwmK8gshJiSJ2KDYVolObGAsMYExxAXFERMYg7/e/9wDWC0kmcy8fPorntn6Z2b3m4HRL6jzJ9agju90aR33/HsX+85WAnDXzHT+Z/ZAdC1WgrafLOfWN7Zx7YRk7pyRTmp0cK/EInxAN9+PNpzdwJPbngTgF+N+wUVpF7k6sm6RREhDAX56Hlg4hKvH9eOx/x5ibfaPCer/GmdrznDzl7fyzpI3SA5Ntl3sgb0XhPBU9fs/4ZUdT4BO4bclZVxffRrCKpxPRpqTmdur8/lPciK5DaW89+oE7pjTSSFne3UT9hlKvVDHd7q0jkv+vpHqRjMRQX48fc1oFmRe+Dqw4kAB9SYL72w5xb++P8VFmQncNSud8akd1CUK0ZZuvB8dKTvCL7/9JVbVylWDr+LOEXf2UnBdJ8fnPUBqdDCv3zaRV29cRETlvSimWIob8rn9m9s5XXW6+SKZVSaEUw4t56NV91OiU0gymbmqusZ2u7MDHVsMhAxSVe4tt62yvBKoUPrJbe3fX6MZSilRgcwcEsO4/hF8ee/MNpMggN9dOoz3fzSZOUNjUVVYcbCAq/+5hStf2sRX+/OxWOXcjHBSF9+PiuqK+Nman1FnrmNy4mR+O+W3HlW3JomQB1mQGc+aX1zBi/NeJT08nYLaAm5bcRvPfbuRWpMqs8qE6IzVQt2Kh3g9IhSA/6mo5FxFjBPJSBvJzGU1tWQ2NlKr0/FiZHj793fjDKVTpbVUNZgAUBSFv14zmg9/MpV+EYHt3kdRFKYNiuGt2yex6v5ZXD8hBX+9jt2nK3hqxeEexyR8SBdmZ9aZ6rhnzT0U1hUyIHwAz8x5Bj+dZ9WpSSLkYQL89MwcMJA3LnqDQRGDKK4v5tXjv2Lu8x/wX9ME1OvellllQrTn1GbeU2oo1+vpbzJxWU3teRd0koy0kczogF+VVgCwLDSYo/VFbd/fTXV8X+zL45K/f8fDy/Zh734SbDTgp3f+5XxwfChPXTOK7x6ey8/nDeLn8waj19newBrNFp5bfZTy2rZP0QkBODU702K18NCGh8gqyyIqIIoX579ImL9r29C4gtQIeaiYwBjeuOgNbvriDs7WHqc2+h/84j/1/Dt5JH+8cQuDG/bLrDIhzlNVcYo3w20vtHeXV7b/AtdeMtLO7eMbG1lYW8eq4CD+Gh3BK9UFF24K9HIdX4PJwuNfHOK9rbbt8uLqRmqbLIQYu/8yHhcawIOLhra67fPdeTy3+hgrDxby+T3Tu5RgCR/TyezMVsfk5/39XM2rh5G/4R4sMiCSDy57i2FRmegMtQSlvsr3uXu5+IXN/DkrhpohV9iOJkoSJAQA/6rYT7Vex8CmJi6urWv/wvaSkQ6SlPvLyvFTVb4PDGRDU/GFF/RiHd+J4hqufGmzIwn62dyB/PuuKT1KgtqTHBlIRJAfh/KreOO7HJc/vuhjdHrb+9DIa1q9H3niMfn2SCLk4cKN4bx+0WuMih2Foq8nLP11rP6neGXDCW54ZYsUOArRrLyhnH/lfwvAz8qraPvjQSfJSAfJTIrZwg8qqwF4+szXmKym1hd0oW6iKz7fk8tlL3xHVn4V0cH+vH3HJH55UQaGXlqpmTYoht8sGQbAs6uPcqasg4RSiDZ46jH59kgi5AVC/UN5ZeErjIsbh4V6oga+SWZ6Kb++eJhjX18IX/fmwTepNdUyLCiR+XX1dCsZ6SSZ+XFFFVGGYE5WneSjIx9deH8n6ia6orbRzBNfHaa2ycLk9Ci++sVMZg+J7dJjdMc145OZMiCKBpOV3352AJnEJJzlycfk2yOzxjrRm7PGuqrOVMfP1/6cbQXbCDQE8uL8F5mYMFHTmITwBCX1JVy87GIaLA38Y94/mF1d2UZTw37OD3Rssymi7f4f6Rt4/PvHCfMP46urvmp7WLILO0tvyynju2PF3Dt/cK+tArUlu7iGi5/bSJPFygs3juWy0d41b024X1FdETd9eROFdYVMTpzMPxf8U9MTYjJ01UU8KRECqDfXc9+6+9ict5nogGhWXbuKJpNCcC/UCgjhLZ7a9hTvZr3LqJhRvLvkXVuPkp4mI+3c32w1c+1/r+V4xXF+MOwHPDTpIZf/PA0mCwF+2tf+Pb/6GM+uPkpieAAbfjVXCqdFu+pMddy24jayyrIYED6Afy35l+YnxJx9/5a/1V4m0BDI3+f9neiAaEobSvn11x8z5c9rOFxQpXVoQmiioLaAD498CMA9Y+8516itnSJOp7Vzf4POwC8n/hKADw5/QE6lawuKDxdUMeWJNby0/rjmW1L/M2cAV43tx5u3T5QkSLTLW47Jt0f+Znsho97IJQMuAWBH6SqqG838cfkhzV80hdDCq/texWQ1MT5+PFMSp7jlOaclTWNW8izMqplndjzj0sf+y4ojVNSZOJBbqXn3XaNBzzPXjyEjwXve1IT7ecsx+fZIIuSllg601TlUsAejfz1bTpTyzcECjaMSwr3OVp/lP8f+A8A9Y+5xa+Lw4IQHMSgG1p9dz/f537vkMb8/Ucraw0XodQr/77z+Pp7gcEEVTWar1mEID7Lx7EavOSbfHkmEvNTQqKFkRGVgVs3MGnsWgP/9MosGk2vnGAnhyV7e+zJm1cy0pGlMSJjg1uceED6A64ZeB8Bftv8FSw9niKmqypNf20Zd3DgphQGxIT2O0ZVeXHecS/7+Ha9uPKF1KMKDfHb8MwBuGHqDxx+Tb48kQl7MvipUZfiexPAAzpbX85q8SAkfkVOZw39P/BewrQZp4e7RdxPmH8ax8mP85/h/evRY3xwsZM+ZCgL99Nw7f7CLInSdfhGBWKwqz685xsmS80eXCF9U01TDt2dtvbuuHHylxtF0nyRCXmxJ+hIMioFDZQe5Y24QAC+uy6agskHjyIToff/c+0+sqpU5yXMYGTtSkxgiAiK4e/TdAPxj9z+oaarp1uOYLVb+8o1tNeiumenEhQa4LEZXuXxMEjMHx9BktvKbz/ZLTaJg7Zm1NFoaSQtLY1jUMK3D6TZJhLxYdGA0M5JnAFBj+J4JqZGYrVa2nyzTODIhetfR8qOsyFkBwM/G/kzTWK7PuJ60sDTKGsp4df+r3XqMXacrOFVaR1SwP3fNGuDiCF1DURT+94oRGA06Nh0v5dPduVqHJDT2Vc5XACwZsETzwv6ekETIy10+8HIAvjjxBX+6KpOV98+Wxmeiz3tpz0uoqCxKXURGVIamsfjp/HhwwoMA/OvQvzhbfbbLjzEpPYqV98/ib9eOJjRAuwZ0nUmNDnZs2/3vl1kyod6HldaX8n2e7ZDAkvQlGkfTM5IIeblZybMIN4ZTVF9EqfkQ6THBWockRK86WHqQNafXoKDw0zE/1TocAGYnz2Zy4mRMVhPP7ny2W48xMDaEuRlxLo7M9X48awBD40Mpq23iz19laR2O0MjKUyuxqBaGRw8nNSxV63B6RBIhL+ev9+fitIsB+Dz7c8ft+89Wsu5wkVZhCdFrXtz9IgCXDLiEgREDNY7GRlEUfjnhl+gUHStPrWRX4S6n7lde28SRgupejs61/PQ6/nzVCEIDDIxMbmO8iPAJX51o3hbz8tUgkESoT7h8kG17bO3ptbYq/qPFLH3xO375yT6qG0yd3FsI77GnaA8bczeiV/SOImVPMTRqKFcOsp2c+cv2v2BVO++38491x1n8/Ab+sfZYb4fnUuNTo9j88DxumZqmdShCA2erz7KneA8KCovTF2sdTo9JItQHDI8ezoDwATRYGlh5aiVTB0STFh1MSU0j/1h3XOvwhHCZf+z5B2BL/vuH9dc4mgvdM/Yegv2COVh6kC9PfNnhtWfK6vjXllOoKoxKjnBPgC7UspbJapUTZL5kxUnbQYVJCZOIC/L87dzOSCLUByiK4ugp9Pnxz/E36PjdpbajjG98l0OO9PwQfcC2/G1szd+KQWfgJ6N+onU4bYoJjOFHI38EwHO7nqPOVNfutc+uOkqTxcr0QdHMHBzjrhBd7tujxSx6bgPHi7rXOkB4n5anxfoCSYT6iEsHXIpO0bGraBdnqs8wd2gcs4fEYrKo/OnLQ1qHJ0SPqKrqWA26ZvA1JIV47snIH2b+kH4h/SiqK+Ktg2+1ec2hvCo+3WM7fv7Q4gyvPnr89uaTHC+q4TefSm8hX3C0/CjHyo/hp/Njfv/5WofjEpII9RHxwfGOgZP/zf4viqLwu0szMegUVmcV8e3RYo0jFKL7NudtZnfRbox6I3eNukvrcDpk1Bu5b/x9ALx54E0qGiouuOYv3xxGVeHSUYleuS3W0h+XDifQT8/WnDI+3tn11gHCu3yd8zUAM/rNINzYN4rlvS4RevHFF0lLSyMgIIDJkyezbds2p+73wQcfoCgKV1xxRe8GqCH79tjy7OVYVSuD4kK4dVoaAI/99yAmiwxLFN5HVVVe2P0CANcPvd4rahIuSr2IQRGDaLA0sCF3Q6vvbc4uYf2RYgweOli1q1Kigrh/oa230J+/yqK0plHjiERvUVX13GmxPrItBl6WCH344Yc88MAD/OEPf2DXrl2MHj2aiy66iKKijo+Jnzx5kv/3//4fM2fOdFOk2pjXfx7BfsHk1uQ6ju/eO38wg+NCuGNGOjovXn4XvmvdmXUcLD1IoCGQO0bcoXU4TlEUhXn95wGw/sz6Vt8rq20iIsiPmyb3J62P9P26Y3o6mYlhVNSZ+N8vpbdQX7W3eC95tXkEGYKYnTxb63BcxqsSoWeeeYa77rqL22+/nczMTF5++WWCgoJ444032r2PxWLh5ptv5o9//CMDBnhm63pXCTQEOqb/Ls9eDkB4oB/f3DeLmyenotdJIiS8i1W18uIeW9+gm4fdTHRgtMYROW9uylwANuVuoslyrgPzpaOS2PCruTywcIhWobmcQa/jiatGoijw6e5cvjtWonVIohfYT0LO7z+fQEOgxtG4jtckQk1NTezcuZMFCxY4btPpdCxYsIAtW7a0e7/HHnuMuLg47rzzTqeep7GxkaqqqlZf3sS+Pbby1ErqzfUA6FokQBY55iq8yKpTqzhafpQQvxBuG36b1uF0SWZ0JjGBMdSZ69hRsKPV98IC/IgI8tcost4xOiWCW5v7Cq3OKtQ2GOFyZquZladWAn1rWwy8KBEqKSnBYrEQHx/f6vb4+HgKCgravM93333H66+/zquvOj8I8YknniA8PNzxlZKS0qO43W1c3DiSQ5KpNdWy5vSaVt/7en8+c59ez6E870ruhO/67PhnANw07CavK8zUKTrH9sG6M+v4cl8+3xws6NMnqx5cNIRXfjieP1yWqXUowsW25m+lrKGMqIAoJidO1jocl/KaRKirqqur+eEPf8irr75KTIzzPToeeeQRKisrHV9nzpzpxShdr2VPoeXHl7f63pf78zldVscf/3uwT78Yi76h3lzP9oLtACxO887utXNS5gC2OqHfLz/AT/61k//uy9c0pt4UGuDHouEJXt0OQLTN3jtoUeoi/HSeOxi4O7wmEYqJiUGv11NY2HrJtbCwkISEhAuuz87O5uTJk1x22WUYDAYMBgPvvPMOy5cvx2AwkJ2d3ebzGI1GwsLCWn15m8sGXgbA9/nfU1B7brXskSXDMBp0bM0p4+sDba+iCeEpthdsp9HSSEJwAoMiBmkdTrdMTpxMgD6AgroCyk0n6R8VxOLhF75e9UXVDSaKq+UEWV/QYG5g9anVQN/bFgMvSoT8/f0ZP348a9ac2+6xWq2sWbOGqVOnXnB9RkYG+/fvZ8+ePY6vpUuXMnfuXPbs2eN1W15dkRyazPj48aiofHHiC8ft/SIC+Z/ZtiGVf/oyiwaTRasQhejUhrO2Y+ez+s3y2hWGQEMg4+ImAmAIyeL/XTQUf4PXvOx22/tbTzPpT2t4fs1RrUMRLvDt2W+pM9eRFJzE6NjRWofjcl71L/KBBx7g1Vdf5e233yYrK4u7776b2tpabr/9dgBuueUWHnnkEQACAgIYMWJEq6+IiAhCQ0MZMWIE/v59q1DxfJcPtA1iXZ69vNU22P/MHkhSeAC5FfW8t/W0VuEJ0SFVVdl4diMAs5JnaRxNzzRW2sbdhEYf5dKRiRpH4x5p0UHUmyx8vjuPuiaz1uGIHrL3Dro4/WJ0ilelDU7xqp/o+uuv5+mnn+b3v/89Y8aMYc+ePaxYscJRQH369Gny8/vu/ntXLExdSIA+gJzKHA6UHHDcHuiv5+65tm2Gj7afkVoh4ZFOVJ4grzYPf50/ExMmah1Ot50pq2PT/lgAmvSnKG3wjWPlUwZE0z8qiOpGM1/tl214b1bVVMXGXNuHkr64LQZelggB3HPPPZw6dYrGxka2bt3K5MnnqtfXr1/PW2+91e5933rrLT777LPeD9IDhPiHMD/VNgfm8+zPW31v6egkjAYdRwqrOSgnyIQHsm+LTUycSJBfkMbRdN/fVh7B1BRKkJoO2LYYfIFOp3D9RFv5wQfbZOXZm605tQaT1cSgiEEMiew7va9a8rpESDjPfnrs65yvWzV0Cw/043eXZvLvu6aQmeh9xeCi77N/Ap3Zz7u7wV8+ph8ZCaFcMtD2oeTbM76RCAFcOz4ZvU5hx6lyjhdVax2O6KYvc2xNFC8ZcInGkfQeSYT6sMkJk4kLiqOqqeqCT6I/mJLK1IHRrZotCuEJqpuq2V24G/D++qC5GXF8/YuZXD/cdvz/+/zvHY1O+7q4sADmZdjmwn2wzbvakAib4rpituXb5nl6awsLZ0gi1IfpdXouG2A7Sn9+TyEhPNXmvM2YVTNpYWmkhHr/6U5FURgSOYTE4EQaLA1szd+qdUhuc0Pz9thne/Kkq70XWnFyBSoqo2NHkxyarHU4vUYSoT5u6SDb9th3ud9RWl/a6nu5FfU8uvwg932wW4vQhGhTXzgt9sG20/xzfTaFVQ2ALRlq2VzRV8weEssjF2fw359Pl1mHXsgxaT69bxZJ20ki1McNCB/AyJiRmFWzozOoXZPZylubT7J8bx4FlQ0aRSjEOVbVeq4+KNk764NUVeWf32bz1IrDbDp+7pTYnOQ5gK1g2qpaNYrOvQx6HT+ZPZDE8L4zoNNXnK46zYHSA+gVPYvSFmkdTq+SRMgHOEZuZLfeHkuPCWZiWiRWFf6z+6wWoQnRSlZpFmUNZQT7BTM+brzW4XTLrtMVnCqtI8hfz0UtukhPSJhAsF8wJfUlHCo9pGGE2pF2Hd7D/sF5SuIUYgKdH1PljSQR8gEXp1+Mn86Pw2WHOVJ2pNX3rh1v28P/ZMdZeZESmrMfm5+aOBU/vXfOM/q0+UPF4uEJBBsNjtv99f5MS5oG2Iaw+pJtOWXc8sY2nl19TOtQhBNUVeXLE7bTYn21d1BLkgj5gHBjuKM+4fxVoSWjEgn003OipJZdp8s1iE6Ic7x9W6zRbOG/e21NXa8c1++C789NmQv41jF6gOLqRjYcLebD7acxW3xjW9CbHS47zMmqkxj1RualzNM6nF4niZCPsG+PfXniS8zWcy3vQ4wGLh5pW77/eIdsjwntlNaXOrqgz+g3Q+Noumfd4WIq603EhxmZNvDC7YSZ/WaiU3QcKT9CXk2eBhFqY0FmHFHB/hRWNfLt0WKtwxGdsG+LzUqeRYh/iMbR9D5JhHzE9H7TiQqIorShlM15m1t9z7499sW+fOqbZBCr0MamvE2oqAyLGkZcUJzW4XSLfVvsijH92jwlFREQwZjYMYDvdJkGMBr0XN28QvZv6Snk0ayqla9zvgbgkvS+20SxJUmEfISfzs9xBPLz461HbkxOj2J8aiQ3T+5Po1kSIaENe32Qt26LqapKiNEPo0HX5raYnS8eowccIzfWHSlytBUQnmdX4S4K6woJ9QtlRrJ3rsx2lSRCPuTyQbaJ9OvOrKOysdJxu06nsOzuaTyyZBgRQf5ahSd8mMlqYnOubaXSW8dqKIrC364bza7fLSQjof3RNbNTZgOwrWAbNU017gpPc4PiQpmYFonFqvLJTtmG91T2bbEFqQsw6o0aR+Mekgj5kIyoDIZEDsFkNfHNyW+0DkcIh71Fe6k2VRNpjGRkzEitw+mRlifF2pIelk5qWCpmq/mCbeq+7vqJ/QH4cPsZrNJp2uOYLCZWnloJ+MZpMTtJhHzM0uaRG5/vewNyNoL13FaYxary7dFiVhwo0Co84aM25Nq2xab3m45ep9c4mq4rqmrgSIFzg0UVRWF2sm1VyJfqhAAuGZnIjEEx3DN3EBZp1+FxNudtprKxkpjAGCbGT9Q6HLeRRMiXHFrOJaueQq+q7KvLJef9K+C5EXDIdqT+y/353PrGNv78VZZ8WhNuZR+r4a3bYu9uPc1Fz23g958fcOp6e53QhrMbsFh9py4v0F/Puz+azHUTU/DTy9uPp7FPml+cttgrP5B0l/xN9BWHlsNHtxBTmcf0eluh4srgIKjKh49ugUPLWTgsnhCjgdNldWw7WaZxwMJX5Nfkc7ziODpFx/R+07UOp8tUVeWz3bkAjE+NdOo+Y+PGEuYfRkVjBXuL9/ZmeEI4pc5U5yjg7+uzxc4niZAvsFpgxUOAbZVnVl09ANsCAhy3seJhAg1w6ahEQHoKCfexN1EcHTuacGO4xtF03c5T5ZwuqyPYX8+izITO7wAYdAbH6ThfOz0GUFHXxFubcvh8T67WoYhm68+sp95cT0poCiNiRmgdjltJIuQLTm2GqnPN2yY12FaE9hiNNCoAKlTlwqnNXDshGYCv9udT02hu48GEcC37sXlvnTa/bJftzfzikYkE+ju/nWAfwrr+7PpeiMqzfbEvn0f/e4h/rD0uo308hP202JL0JSjKhT2w+jJJhHxBTWGr36aZzMSazTTpFPYZja2uG9c/kgExwdSbLHy1P9/NgQpf02hpZGv+VsA764MaTBa+3Gf7kHHV2PZ7B7Vler/pGBQDOZU5nKo61RvheaylY5II9NNzrKiGXacrtA7H51U0VLApdxPge9tiIImQbwiJb/VbBZjY0AjA1oCAVtcpisLV422rQp/I9pjoZdsLttNgaSAuKI4hkUO0DqfL1h0uoqrBTGJ4AFMGRHfpvqH+oYxPGA/43vZYWIAflzRvw3+w7bTG0YiVp1ZiVs0MixrGgIgBWofjdpII+YLUaRCWhC0FspnUXDC9PdBouz2sn+064OpxyegUKK9roq5JtsdE73F0k+430yuX479ubjVxxdh+6NoYqdEZxxBWHztGD3DDxHOjfaobTBpH49tabov5IkmEfIFOD4ufav6N7cXaXie0z2ikTlFg8ZO264CE8ABWPTCblffPIsi/4+ZwQnSXqqqOY/PeWh/09LWjeeWH47mxuVFgV9n7Ce0q3NWq27svGJ8ayaC4EOpNFpbv9Z0BtJ6mpqmGPUV7AFiYtlDbYDQiiZCvyFwK170DYbbl6GSzhUSzGbOisGfRb23fb2FgbIhXfkIX3iOnKoezNWfx0/kxJXHKhRdYLbamn/s/uaD5p6fwN+hYNDyB/tFB3bp/cmgygyIGYVEtfJf7nYuj82yKojhWhT7cLoNYtbK7aDcW1UJySDL9QrpW59ZXSCLkSzKXwn0H4NYvUK5+nYn9bAP1tnVw0qWuySwDEkX3dZDM2FeDJsRPIMjvvETi0HJbs8+3L4Vld9p+bdH80xO46rSTrw5hBbhqXDKBfnoSwwOob/K8RNcXbC/YBsBEY4zHfuDobZII+RqdHtJnwshrmDzYNm5je8H2Ni/9bHcuk/60hj9/leXOCEVf0Uky0+62WHPzz5YtH4BWzT+1ll1cw8y/rOP51cd6nBDZE6FNuZswWXyrViYq2J/tv13A//1wQpdaDwgXObScnXveBGDi4dUe+YHDHSQR8mGTEiYBcLD0YJtTsNNjgqlpNLPiQAGV9b71Ai16qJNkpmb/R+ws2gngaCwIXND8s7VzzT+1/tT66a5czpbXs/dsRY+3kEfGjCQqIIpqU7Xjz8SXhHQypFb0kkPLqf34Vg42//FPqLedJPakDxzuIomQD0sITiAlNAWLamFX0a4Lvj8qOZwh8SE0mq18sU+KGYWTnEhmvv/2UcxWM6lhqaSGpZ779nnNP9u8f3PzT61YrSqfNo/UuLKLvYPaolN054awnvG902N2J0tq2X/WtwrGNdP8b3R3gD8WRSHZZCLRYv9w4TkfONxFEiEfZ18V2pa/7YLvKYrCteNtxYyf7JSeQsJJTiQzG7GNebmgieJ5zT/b5ex1vWDbyTJyK+oJNRpYmBnf+R2cMDvFlgitO7POJzstL9t5ljlPr+fxLw5pHYpvaP43uj3A1lB3QnNfuXO0/8DhTpII+ThHIlRwYSIEtv4oep3C7tMVHC+qdmdowlt1kqSowMZAWyPPVtticEHzz3Y5e10v+M8u24eCJSMTCfBzTV3L1MSp+Ov8ya3JJbsi2yWP6U2mD4pBp9iSzONFF27TCxdr/je6o7mh7sQLEqHW1/V1kgj5uIkJEwE4XHa4zT4msaFG5g6NA+BjWRUSzugkScny96PYYCBQZ2RC/ITW32yj+WdrrZt/uluDycLX+21NFK8c57qjxkF+QUxOnAz45uyxhPAA5mXYXmc+2iFH6XtdSDy1isJBoz8AExraORms4QcOd5JEyMfFBsWSHp6OisqOwh1tXnNN88iNz3bnYrX63rK96KJOkpmNQbaj8lOSpuKv92/9zTaaf57T/PsWzT/dbdWhQqobzfSLCGRSWpRLH9uXj9EDXN/clHLZzrM0ma0aR9PHpU5jd1QSFkWhn8lMkvn8WiBtP3C4myRCwrE91t4x+nkZcfy/RUP4+CfTujVGQPiYTpKZDc3bYrOa62IucF7zT4ewJNvt5zX/dKdBcSHcOCmFH0xJdfm/BXvB9L7ifZTWl7r0sb3B3KGxxIUaKa1tYnWWb2zJaEanZ8cQ23iXiResBmn/gcPdJBESndYJ+Rt03DNvcLe75wof1E4yUx6exP7muoQZzQ09271/c/NPrn7d9ut9+zVNggCGJYbxxFWjuHvOQJc/dnxwPJnRmaiojhlsvsSg13HtBNvq879lEGuv226pAGAiga2/4QEfONxNGjgIR53QsfJjlDWUERXg2iV/4aMyl0LGJbaTJzWFEBLPd5Zy1E2/YWjkUBKCEzq+v735pw+ZkzyHQ6WHWH9mPVcOvlLrcNzu2vEpvLgum92nK6hvskiTxV5SZ6rjYMlBACbc8g2UnnT8GyV1ms+sBNnJipAgMiCSwZGDgfa3xwC2ZJfyo7e38+73p9wVmvB2LTqZkz6TjXm2eVoXnBbzAi+uO87u0+W9erzdXie0JW8zjdlrPXrOWm9Iiwnm3Tsns/03CyQJ6kX2+WL9QvqRFJbS6t+oryVBIImQaDY5wXZipaNE6HBBFauzivhguyxbi64zW81syt0EeN+0+WOF1fz1myNc+/IWyut6r8t6RlQG8X7h1Fsa2PrJjR47Z603zRgcI0lQL7O/zl9watNHSSIkgHPbY1vzt7Z7zeVj+uGnVziQW0VWfpW7QhN9xP6S/VQ1VRHmH8bImJFah9Ml/2nuJD1naBxRwf6dXN19StZ/mV1qe65vg1rUbvjg2ANw3WBb0dr2QlsiZH/d93WSCAkAxsePR0HhZNVJiuqK2rwmKtifBcNsfSWk07ToKnsB8PR+0zHovKc80WpV+aw5EbrKhb2DLnwi29iDOXV1AKwPCmwxpMS3xh688V0Oi579ltVZbb8Wie6rM9VxqMTWwXtCgqwIgSRColm4MZxh0cOAjrfH7Kc6Ptudi9kivT6E8+yJkLdti31/opT8ygZCAwyOpn+9onnswaSGBgKtVooMBrL8/Vpc4DtjD06X1XG0sIaVBwu0DqXP2VO0B7Nqpl9IP/qF9GJi70UkERIOnfUTApg1OJbIID9Ka5vYcarcXaEJL1dQW8DR8qMoKExPmq51OF1i3xa7dFSSy0ZqtKl5nIFRhWn1tt4u64PaaFnhA2MPFg23rTyvziqUD1wuZt8WGx8/XuNIPIckQsLBmTohg17H3OZPxasP9f0XZOEaG3M3AjAqdhSRAZEaR+O8+iYLX+/PB3p5WwxajTOYXWcbSruluflke9f1VZPSoggP9KO8zsRO+cDlUvYPulIfdI4kQsJhfPx49IqeszVnya/Jb/e6i4YnMCE1kiEJoW6MTnizjWdtidAF0+Y9XE5JLWGBfqREBTIhtZcTuBajSezTwA8Y/WlQ7B2sfWfsgUGvY/4w2weulfKBy2Va9g+SROgcSYSEQ7BfMMNjhgPtd5kGWyL0yd3TuG5CirtCE16sydLE9/nfA95XH5SZFMZ3D83j33dNQVF6ebxMi9EkyWYLMWYLZkXhoL8/vjj2YFGmreHmykMFcnrMRez1QUnBSVIf1IIkQqKVzsZtCNFVOwp3UG+uJzYwloyoDK3D6TK9TiE50k3jZZpHkyhhiYxrngG1K8Dok2MPZg2JwWjQcaasnsMF1VqH0yfYB2vLabHWJBESrdiXS7cVbOv0U1h5bRNrZDii6IRjWyx5Zu+vqrhQcXUjFqsGKxHNc9bGjb4NgF0Dp3vEnDV3C/I3cNnoJK4el4yf3nv+3ngyqQ9qm/c08xBuMTZuLAadgYLaAs5WnyUlrO3tr4q6Jib+aTVmq8q2X88nLqyNok4hOFcoPaufd22L/fzfuzhWWMOz149h1pBY9z65Ts/YYddA9sfsqTmFBfCNDbHWnr52tNYh9Bl1pjoOlBwApKP0+WRFSLQSaAhkVMwooOPtsYggf4b3CweQpmeiXWeqz3Cq6hQGnYHJiZO1DsdplXUmtp8sp7S2ibToYE1iGBI5hGC/YGpMNRyvOK5JDKLv2FNsqw9KDE6U+qDzSCIkLjAp0VYntLWg/WP0AAubT3Wslu0x0Y7dRbsBGBE9ghD/EI2jcd76o0VYrCpD4kPoH+2m+qDzGHQGRsfaVkR2Fe3SJAZPoKoq+89WyjH6HtpRYKsPmpgw0au2qN1BEiFxgZaNFTuqE1rYfKrju+Ml1Daa3RKb8C67Cm1v4GPjxmocSdesaj6ybR8po5VxceOAc3+Ovui9rae57B/f8ddvDmsdileTQavtk0RIXGBU7CiMeiMl9SXkVOW0e92Q+BD6RwXRZLay8VixGyMU3sK+IuRNiVCT2cq3R2x/n+drnQjFn0uEfPUI+ezm+qxtOWWU1zZpHI13qjPVcaDUVh8khdIXkkRIXMCoNzImdgwA2/LbrxNSFIWFmbY3Cml6Js5X0VDBicoTAIyJG6NtMF2w/WQZ1Y1mYkL8GZMSoWksI2JGYNAZKKovIq82T9NYtJISFcSwxDCsKqw5LPWI3bG3eC9mq9QHtcfrEqEXX3yRtLQ0AgICmDx5Mtu2tf9G/eqrrzJz5kwiIyOJjIxkwYIFHV4vzml5jL4j9q2D9UeKsWpx1Fh4rD3FewBID0/3qrEa9m2xuUPj0Ou0raUINASSGZ0J+Pb22CL7By4ZwtotLbfFpD7oQl6VCH344Yc88MAD/OEPf2DXrl2MHj2aiy66iKKitj8lrF+/nhtvvJF169axZcsWUlJSWLRoEbm5uW6O3PvYC6Z3FOzAqrY/9HBiWiRPXT2SFffNRKfxm4bwLPYCX3udi7e4ZnwyP50zkCvHesYnZ0edkA8XTNuHsG44Vkx9k0XjaLyPvZGibIu1zasSoWeeeYa77rqL22+/nczMTF5++WWCgoJ444032rz+vffe46c//SljxowhIyOD1157DavVypo1a9wcufcZET2CQEMg5Y3lHR7dNeh1XD+xP3Gh0kdItLanaA/gXdtiACP6hfOrxRlMGxSjdSiAFEwDZCaG0S8ikAaT1CN2VZ2pjv0l+wHpKN0er0mEmpqa2LlzJwsWLHDcptPpWLBgAVu2bHHqMerq6jCZTERFRfVWmH2Gn97P8QLcUZ2QEG1ptDQ6mrd524qQp7EnkicqT1De4JtHyBVFcawKrT8qiVBX2OuDEoITSA5J1jocj+Q1iVBJSQkWi4X4+NanOOLj4ykocG7f+KGHHiIpKalVMnW+xsZGqqqqWn35KmfrhADe33qam1/7nmOFMhNIwKHSQ5isJqIDokkJ9Z7hvC+tP86arEIazZ6z/RIZEMmA8AHAuVU2X/SDKam8f9dk/rh0uNaheBXHWI146R/UHq9JhHrqySef5IMPPuDTTz8lIKD9bZwnnniC8PBwx1dKive8iLuavRPwjsIdWKwdvzGsPFTApuOlcnpMAK37B3nLi29JTSN//eYId769gzIPO6btOEbvw3VCA2NDmDYwBj+9z7xtucTOwp2A1Ad1xGv+RsXExKDX6yksbP1GW1hYSEJCQof3ffrpp3nyySdZuXIlo0aN6vDaRx55hMrKSsfXmTNnehy7t8qIyiDEL4TqpmoOl3fczMx+jF66TAvwzv5Baw8Xoaowol8YieGBWofTihRMi+6oN9ezr2QfII0UO+I1iZC/vz/jx49vVehsL3yeOnVqu/f7y1/+wuOPP86KFSuYMKHzvwhGo5GwsLBWX77KoDMwPn48ANvzt3d4rf0Y/Z4zFRRVN/R6bMJzWVWr4+i8fSXDG6z2kG7SbbH/OR4qOUS9uV7jaLRTWtPIo8sPct3/bfHZBpNdYa8Pig+KJzlU6oPa4zWJEMADDzzAq6++yttvv01WVhZ33303tbW13H777QDccsstPPLII47rn3rqKX73u9/xxhtvkJaWRkFBAQUFBdTU1Gj1I3gdZ+uE4sMCGJ0cjqrCWhnC6tNyKnOobKwk0BDI0KihWofjlAaThY3HSgDPTISSgpOIC4rDrJodRei+KMjfwAfbT7Mtp4ysfKlH7IyjPkjmi3XIqxKh66+/nqeffprf//73jBkzhj179rBixQpHAfXp06fJz893XP/Pf/6TpqYmrrnmGhITEx1fTz/9tFY/gtex1wntLNyJyWrq8Fr7G8gqqRPyafbtm5ExI/HT+WkcjXO2ZJdSb7KQEBbA8CTPWwVWFEWO0QOB/npmDraN3Fh5SJordqbloFXRPq9KhADuueceTp06RWNjI1u3bmXy5MmO761fv5633nrL8fuTJ0+iquoFX48++qj7A/dSQyKHEG4Mp85cx6HSQx1eu7D5eOt3x0uoa5IhrL7KfrLJm+qDVjXXts0fFuexn5ylYNrmXJdp+cDVkZb1QRPjJRHqiNclQsK9dIrOUWRnX2Ztz9D4UAbEBjNlQDSlNZ516ka4jzdOnD9RbNsuX5DpedtidvYVoT1FezBbffeDxvxh8egUOJRfxZmyOq3D8Vj7ivdJfZCTJBESnZqUYBu30VljRUVRWHnfLN6+YxIpUUHuCE14mOK6Ys7WnEWn6BgdO1rrcJz2wY+nsubB2UwbGK11KO0aFDGIEL8Q6sx1HCs/pnU4mokK9mdimq0prmzDt88xXyxB5ot1RhIh0Sl7IrS7aDdNlo5XegzS48On2Y/ND44YTIh/iMbRdM3A2BCMBr3WYbRLr9M7ukz7/PbYcFvLFKkTal/LRoqiY/KuJTo1MGIgUQFRNFgaHDNrOpNfWU9BpRyj9zXe2D/IZGl/qLCnkYJpm0WZ8SSFB5CZGC7H6NtQb653vFZLoXTnJBESnVIUpUvjNp7+5ghTn1jLG5tyejs04WHsiZC39A/Kr6xn3GOruOf9XVisnv+G2rJg2pcTgJSoIDY9PI/fX5Yp2z5t2Fe8D5PVRFxQnFeNuNGKJELCKfbtse352yBnI+z/xPZrG6M3hiXajh+vOlTo0y/WvqbOVMfhMlsHcm9ZEVqTVUR1o5m8inr0Os9/Qx0RMwI/nR8l9SWcrT6rdTiakgSofdI/qGskERJOsSdCewq20/DOZbDsTnj7UnhuBBxa3ura2UNj8dfryCmpJbtYmlf6in0l+7CoFhKDE0kI7njsjaewj4Tx5NNiLRn1RoZH24aO+nqdEIDZYrX1gGrynCG5nmBHYXP/IKkPcookQsIpqWf3Emc2Y1IU9hr9z32jKh8+uqVVMhRiNDCl+fTNqkPSZdpXeFt9UG2jmc3ZpYBndpNuj/QTOufKlzZz46vfs/FYsdaheIwGcwP7ipv7B0l9kFMkERKds1pQvnmYSQ2NAGwLCGjxzeatrxUPt9omsw9hXSWnOnzG7kLvSoQ2HiuhyWylf1QQg+O854SbFEyfYz9Gv1KO0Ts46oMCpT7IWZIIic6d2gxVeUyqt50C2xYYcN4FKlTl2q5rtrD5E/buMxUUVze6K1KhEbPVzN7ivYD3JEKrvaCbdFvsR+hPVp2krKFM22A0tqi5m/2arELMXnT6rzdtL5T+QV0liZDoXI3tDWNigy0ROmD0p66tf2A15z6VJYQHMKp5COuaLPm01tcdKz9GnbmOUL9QBkUM0jqcTlmsKusO27ZtF3rRthhAuDHc8WdsX4XzVRNSI4kM8qO8zsT2k+Vah+MRWhZKC+dIIiQ6F2J7o0g2W0gymTErCrsDjO1eZ/fTOYN4/oYxXDwy0R1RCg3Z61VGxY1Cr/PcpoR2TWYrt09PY9rAaCamR2kdTpc5tsd8vE7IoNcxvzmRleaKUh/UXZIIic6lToOwJEBhUvOq0LZWiZACYf1s17WweEQCl4/pR3igd0wgF91nH7Rqf4P2dIH+eu6ZN5j375qCnxd2Q3cUTEudUKshrL7ermN/yX5HfVD/0P5ah+M1vO8VQLifTg+LnwI4VzDtqBNq3iJb/KTtOuFzVFX1ykGr3syecGaVZVFn8u3BozMHxxLgpyO3op6s/Gqtw9GUzBfrHkmEhHMyl8J17zDREA7AIX9/ahXFtlJ03Tu277chr6KeF9cd58V1x90ZrXCjvNo8iuqLMCgGRsSM0DqcThVUNrB8bx6V9SatQ+m2xBBbryaLanF67E1fFeiv54mrRrL8nukMSwzVOhxNtUyEhPMkERLOy1xKwr0HSDJGYVUU9l/2V7hvf7tJEMDJklr++s0R3vguxytGGIius/cPyozOJNAQqHE0nftqfz73/ns3d7+7U+tQekSO0Z9z5dhkRiVH+PQqSKOl8Vx9kDRS7BJJhETX6PSMTpoMwF69tdPtsInpUYQFGCitbWL3aTnV0RfZTy7Zj3V7Ovux+XkZcRpH0jNSMC1a2le8jyZrE7GBsaSGpWodjleRREh02ZjYMQDsKd7T6bV+eh1zm99wVknTsz7J/kbsDYXSlfUmtuXYeu94UzfpttgLpvcW78VsNWscjfZ2nCzjlx/v5cPtp7UORRNSH9R9kgiJLrN/8t9bvBer2nkTs3NdpiUR6msqGyvJrsgGvGNF6NujxZitKoPiQkiLCdY6nB4ZGDGQUP9Q6s31HCk7onU4mtt3tpKPd57lP7tytQ5FE9I/qPskERJdNiRyCIGGQKqbqsmpzOn0+tlDYvHTK5yQIax9zt7ivaiopIalEh0YrXU4nVrTopu0t9MpOscpPdkeO/eBa/vJMspqmzSOxr2kPqhnJBESXWbQnTsdZO8f05HQAD+mDLAPYZVVob7E/v/fG47NmyxWr+0m3R4pmD4nJSqIzMQwrD7Yzd5eHxQTGCP1Qd0giZDoFnudkH2+VGcWZcYT7K+nrsnS+cXCa3hTfdCB3EqqGsxEBfsztn+k1uG4RMtJ9L7eTBBgQfOq0LojRRpH4l47C20nICfES31Qdxi0DkB4J3s9iDMF0wDXjE/huokpGA3SdLGvMFlMHCg5AHhHfdDY/pFsfngeOSW16HV9481iePRw/HX+lDWUcbr6tM+vBswdGsvf1xxj47ESTBarV3YN7w7767A3rMx6It/4WyJcblTMKAByKnOoaKjo9PpAf70kQX3MobJDNFoaiTRGkhaWpnU4TkmKCGT6oBitw3AZf72/Y5tatsdgVHIEUcH+VDeY2XXKN9p1WFUr+4ps9UHe8IHEE0kiJLolIiDC8ea3r2Rfl+5bWNXQCxEJd2vZP0iW47XTcnvM1+l1CrMGxzA4LoTaJt9oKXCi4gTVpmoCDYEMiRyidTheSbbGRLeNiRvDyaqT7Cnaw6zkWZ1eX1LTyHUvbyGvsp7dv1tEoL+sEHkzb6oPeuO7HL49Wsyt01KZl9E3CqXtpGC6tb9cMxp/g+98xrfXaY6IGYFBJ2/p3eE7f1uEy3W1YDo62J9Gs5UGk5Xvjpf0YmSit6mqeu7EWLzn1yV8tT+fb48Wk1ter3UoLjc6bjQKCqerT1NSL/+ufCkJgnP1QfbXY9F1vvU3RriUfT96f8l+pzrbKori6PWxWo7Re7WTVScpbyzHqDeSGZWpdTgdKq1pZGfzeJd5feTYfEth/mGOLRH73DcBDSaLT2zD2z+QSH1Q90kiJLotPTzd0dn2aPlRp+5jn+/07dFiOe7rxewvviNiRuCn99M2mE6sO1KMqkJmYhj9Ijx/KGx3OBoryvYYAMv35jH2sVX87rMDWofSqyoaKjhZdRI4d4BFdJ0kQqLbdIqOUbG2f3zONFYEmJQeRaCfnoKqBg4XVPdidKI3eVN9kH31cUEf6CbdHimYbm1ATDD1JgubjpfQaO67vcvsB1XSwtKICIjQNhgvJomQ6JGuDGAFCPDTM22grcu0rzU980pWC+RshP2f2H612t5U7Fswnr4c32CysOFYMXCu2V5fZF8ROlx2mFpTrcbRaC8zMYzYUCO1TRZ2nOy7x+hlW8w1JBESPWL/B2ifc+OMOc3bY+sPF/dGSMJVDi2H50bA25fCsjttvz43gtK973Oq6hQKCqNjR2sdZYe+P1FKXZOFuFAjI5LCtQ6n1yQEJ9AvpB9W1er04YW+TKdTmD0kFoD1ffgDlxRKu4YkQqJHRsaMRKfoyK3JpajOuRecuUNjuWlyf34ye0AvRye67dBy+OgWqMprfXtVPnu+eRCwTT8PN3p2cuFv0DFtYDSLRySg6yPdpNtjXxWSgmmbuUNtH7jWHembH7jMVrOjs7unfyDxdJIIiR4J9gt2nFhx9pNocmQQf75yJPP74AmePsFqgRUPAW0Vs6vsCjACMM4L2vlPGxjD+3dN4Y9Lh2sdSq9z1AlJwTQAMwbHoNcpHC+q4UxZndbhuNzR8qPUm+sJ9QtlQIR8qOwJSYREj9k/jThbMC083KnNF64EtbDH6A/AWCXYXRH1mC90vrYXru8r3ofJatI4Gu2FB/oxPtU2XLcvbo/ZX29HxY1Cp8hbeU/In57oMUci5GTBNIDVqrLzVBkvrDmG1SrH6D1KTfs9nuoVhUP2RMjg2dtiRwqqKaru+31k7AaEDyDCGEGDpYHDpYe1Dscj/GBKKg9fnMGs5nqhvkTqg1xHEiHRY/aC6azSLBotjU7dx2xVueX1bfxt1VEO5Vf1YnSiy0La37I8YPTHrCjEmc0kRXn2XKPffX6ASX9aw+d7crUOxS0URXH8W5Rj9DZLRyfxP7MHkhrtPauXzrIfUJH6oJ6TREj0WHJIMtEB0ZisJrJKs5y6j79B55gCvu5w31u29mqp0yAsCbhwO2m3sbk+yKJDSZvu5sCcV1lvYmfz9PGxKZEaR+M+MnfMNxTVFZFbk4tO0TEyZqTW4Xg9SYREj7X8JNqVOqG5GfZTHZIIeRSdHhY/1fyb1smQvVB6zOCltus81KbjJVisKgNjg+kfHaR1OG5jL5jeXbRbOrc3q6hr4j+7zrJs51mtQ3EZ+8GUwRGDCfEP0Tga7yeJkHCJ7tQJzRlq27ffc6aC8tqm3ghLdFfmUrjuHQhLdNxkAfYFBAAwbtQtGgXmHPsqo/0Ita/IjMokQB9AeWM5OVU5WofjEbbmlPHAR3t5Ye0xrUNxmb1FtkTIsS3WTuNT4RyD1gGIvqHlipCqqk6d0kkMDyQjIZTDBdVsOFbM5WP69XKUoksyl0LGJbZTZDWFHMdE9a4/E+wXzODIwVpH1y6rVWX9UVvvmDk+lgj56f0YGTuS7QXb2V24mwHhcqx6+qAY/PQKJ0vryCmpJT3G++uFHIXScWNsPb9WPNT6pGdYkm1VN3OpJvF5G1kREi6RGZ2JQWegtKGU3Brni1Ptb1Tr+2jTM6+n00P6TBh5Dbv9bMntqJhRGHSe+xnqUH4VxdWNBPnrmZjuO/VBdo4BrFIwDUCI0cDEtCigbxyjb7Q0cqj0EABjKkvabXzKR7fYkiTRKUmEhEsY9UYyozOBrm2PzW3eHtt3tkJqGjycvWPx2HjPbqRof7ObPigGo8Fz65h6y7jm49S7zmyUbZJmfanLdFZpFiariaiAKJLX/4X2Gp8CsOJh+f/vBEmEhMs4BrB2oWB6XGoky+6exsr7Z/tE0ztv5kiEPLyj9I2T+vPs9aO5bVqa1qG436HljP74x+hUlbNN5RS9e7ltXpyPrwzMzbB94LLNnjNrHE3P2AulRwcno3TQ+BRUqMq1bW2LDkkiJFzGXrjXlaGPfnod41Mj0ffxOVDerqC2gPzafPSKnlExo7QOp0PRIUauHJvsaM/gM5rnw4VU5jG0ydZZerfRX7ZJgIGxIfSLCKTJbGVLdqnW4fSIY+K80cn6tw4apAobSYSEy9gLpo+WH6XWVNvl+8vWmOeyrwZlRGUQ5Oc7x9G9xnnz4UY32hqb7gkwItskthYf9lWhLC9u4KqqaouO0k5+IOmgQaqwkURIuExcUBxJwUlYVatjKrIzLFaVR/6znxlPraOkxrnO1MK97A36PH1b7J/rs/m/b7MpqPSd0RrABfPhxjTY/h3tbW6AKdsk8NM5g9j2m/ncM89zTzx2Jq82j5L6EgyKgczM69ptfGqjQFg/W4NU0SFJhIRLjY7r+gBWvU5h39kKcivq2XDU+4sZ+yL7p1BPToSsVpVXN57gia8Pc7K06yuSXu287Y+xzStCWUZ/GlrW3vnwNklSRCBxoQFah9Ej9tfVYdHDCPAPbrfxqeP3i5/06MannkISIeFSjoLpLpwcg751qqOvqW6q5mj5UcCzE6F9uZWU1TYRajQ4po77jPO2PxLNFuLMZsyKwkF//3av81Xeug1vT4QcjRTbaHwK2FaKrntH+gg5yXObgQivZF8R2lu8F6tqRac4l2vPGRrLP9YdZ8PRYixWVYqnPci+4n1YVSvJIcnEBnnuFG/7sfkZg2Pw0/vYZzz7fLiqfEBFAUY3NrHKYGB3gJHxjU227/v4NsmB3Eqe+DoLg07H23dM0jqcLrMfRLHXYwIXND4lJN72/1lWgpzmY68WorcNiRxCoCGQ6qZqciqdb/E/JiWC8EA/KutN7DlT3osRiq6yF0rb51h5Kvtqoq+N1QDanA93QZ2QbJMQYjSw6Xgpm7NLqGn0rmP0daY6x8rsBRPnWzQ+JX2mz/9/7ipJhIRL+en8GBEzAujaMXqDXsesIbbVhnWHZXvMk9gToVafQj1MSU0j+85WADB7qOeuWvWq87ZJxjYnQnsCA1CvfVu2SYC0mGDSY4IxWVQ2HS/ROpwuOVByAItqISE4gYTgBK3D6VO8LhF68cUXSUtLIyAggMmTJ7Nt27YOr//444/JyMggICCAkSNH8tVXX7kpUt/VncaKcK7L9Pqj3t8Gv68wW83sL9kPwNhYz60P2nC0GFWFzMQw4sO8uyC2RzKXwn0H4NYvyLjkHxh1flToFE4lj+78vj7CPuzZ28ZtnDs2P0bTOPoir0qEPvzwQx544AH+8Ic/sGvXLkaPHs1FF11EUVHbf6E3b97MjTfeyJ133snu3bu54ooruOKKKzhwwPmj3aLrHANYu1gwPWtILANig5mcHo3V6p3FjH3NkfIj1JvrCfUPZUCE5w7wLK5uJMBP5+gV49Oat0n8Rl/P8JiRwLlVPXFuvuG6w8VeVTTtaKTowSuz3qrLidCtt97Khg0beiOWTj3zzDPcdddd3H777WRmZvLyyy8TFBTEG2+80eb1zz//PIsXL+aXv/wlw4YN4/HHH2fcuHH84x//cHPkvsXeeTinMoeKhgqn7xcTYmTtg3P43aWZ6KRY2iO0PKXibOG7Fn4yeyB7fr+IH88aqHUoHsX+ptmVbeq+bnJ6FAF+OgqqGjhcUK11OE6xqlb2lewD2qgPEj3W5Ve2yspKFixYwODBg/nzn/9Mbq7zk8Z7oqmpiZ07d7JgwQLHbTqdjgULFrBly5Y277Nly5ZW1wNcdNFF7V4P0NjYSFVVVasv0TURARGkhaUBOP7xCu9kT4Q8+di8XYCfnvBAP63D8Cjd3abuywL89EwfaBu/ss5TtsesFtuA3P2ftDko92TVSSobKwnQBzA0aqhGQfZdXU6EPvvsM3Jzc7n77rv58MMPSUtL4+KLL+aTTz7BZDL1RowAlJSUYLFYiI9v3QcjPj6egoKCNu9TUFDQpesBnnjiCcLDwx1fKSkpPQ/eBzm2x7rxAtxktrLpeAkmi9W1QYku84ZBq7VedvrHnez/DrMrs6lsrNQ2GA9y0fAEZg+JZUBMiNah2GbAPTcC3r4Ult1p+/W8Qbl7i2wresNjhuOnk2Tf1bq11h0bG8sDDzzA3r172bp1K4MGDeKHP/whSUlJ3H///Rw7dszVcbrNI488QmVlpePrzJkzWofkleyfRLu6JK+qKvOfWc/Nr21l5yk5Rq+l/Jp8CusK0St6hkcP1zqcdl33f1tY+My37D8rb/TniwyIdKzOyvbYOddNTOHtOyaxeITGp6+aB+Vy/hT58wblOibOy7ZYr+jRpn9+fj6rVq1i1apV6PV6lixZwv79+8nMzOTZZ591VYwAxMTEoNfrKSxs3SK+sLCQhIS2/zInJCR06XoAo9FIWFhYqy/RdfZPovtL9mO2Ov+JXVEUJqRGAR60bO2j7MXunjxotaiqgYN5VRwrqiExwodPi3XA/uYp22Me5rxBua21HpTrKJSWE2O9osuJkMlkYtmyZVx66aWkpqby8ccfc99995GXl8fbb7/N6tWr+eijj3jsscdcGqi/vz/jx49nzZo1jtusVitr1qxh6tSpbd5n6tSpra4HWLVqVbvXC9dJD08n1D+UenO9owmYs+zHW7+VcRua8ob+QeubZ9ONSg4nJsTYydW+SQqm25dfWc/3J0q1efLzBuVeyDYot/L4arIrs4FznfuFa3V5xEZiYiJWq5Ubb7yRbdu2MWbMmAuumTt3LhERES4Ir7UHHniAW2+9lQkTJjBp0iSee+45amtruf322wG45ZZb6NevH0888QQAv/jFL5g9ezZ/+9vfuOSSS/jggw/YsWMHr7zyistjE63pFB2jYkexKXcTe4r2kBmd6fR9Zw2ORVHgcEE1eRX1JEUE9mKkoj3ecFzX3gtmji92k3aSfRXBvjpr0MlkJYCdp8q5+p+biQkxsu3X891/UtXJAbj7inYBkBqWSlRAVG9G5LO6vCL07LPPkpeXx4svvthmEgQQERFBTo7z4xWcdf311/P000/z+9//njFjxrBnzx5WrFjhKIg+ffo0+fn5juunTZvG+++/zyuvvMLo0aP55JNP+OyzzxgxYoTLYxMX6m6dUGSwP2NTIgBYL6tCmmjZzt9Tl+NNFisbj9m6A8/11W7SThgQMaDbq7N92ch+4QT76ympaeRQvgang50cgLvXZKuVlPqg3tPlROiHP/whAQHa7cXfc889nDp1isbGRrZu3crkyZMd31u/fj1vvfVWq+uvvfZajhw5QmNjIwcOHGDJkiVujth39WRJ3j4vytu6v/YV+0r2YVEtJAYnemw7/12nyqluMBMZ5Meo5Aitw/FYOkXneBOVxorn+Bt0zBjcfIz+sAavM/ZBubS3EqVAWD/2NJUBkgj1Js/tkCa83siYkegUHbk1uRTVde2Fxr7Vsel4CY1mSydXC1fzhm0x+5DV2UNi0UsDzg45VmeLpE6oJUeXaS0+cLUxKPcc2+8tF/3ZMeLGk/8tejtJhESvCfYLZnDEYKDrq0LDk8L4zZJhfPw/0/DXy19Td/OGRoozBsVw3YRkLhmVpHUoHq+7Y2/6OvvBjN1nKiirbXJ/AOcNynUIS4Lr3uF44jDqzHUE+wUzMFy6pvcWqZoTvWpM3BiOlB9hT9EeFqYudPp+Op3CXbM8d7ZVX2axWhyJq6fWBwHMGBzj2NoQHRsZMxK9oie/Np+C2gKP3e50t8TwQDISQjlcUM3GY8VcPqaf+4PIXAoZl9hOkdUU2mqHUqeBTs+ewx8CtrFFep3e/bH5CPmoLXqVfV9bju56j+zKbGpMNQQZghgcOVjrcIQLBPkFMSRyCCCrQuebm2EfwqphPWLzoFxGXmP7tTnpcUycl22xXiWJkOhV9n/Ah0oP0Whp7PL9v9yXzwMf7uFMWZ2LIxPtsW+LjYwd6bFHrf+7N4+9ZyqwWr1nerjWHIcXpE6olavH9eOFG8fyx6Wed5pYGim6hyRColclhyQTHRCNyWoiqzSry/d/e/NJ/rM7V06PuZGnzxdrMlt5eNk+Ln9xkzbHnr2UDGBt26C4UC4bnUR4kGfN8CqpL+FszVkUFEbGjtQ6nD5NEiHRqxRF6VGL/9nNxYzST8h9HIXSsZ6ZCO04WUZtk4WYECOZiTICx1n2FaHDZYepN9drG4zolL2cYGDEQEL9QzWOpm+TREj0up6cWLH3E9qUXUKDSY7R9zZv+BS6ztFNOtb93YC9WGJwInFBcZhVMwdLDmodjkcprWnkhTXHeOiTfVqH4mDfwpT6oN4niZDodS0bK6pq12o6hiWGEh9mpMFkZWtOWS9EJ1qyrwYNjhzssZ9C7auDc2WsRpcoinJue0wKpluxqCp/W3WUD3ecobi667WMvcFRKC31Qb1OEiHR6zKjMzHoDJTUl5Bbk9ul+yqKIl2m3cjT64POlNVxrKgGvU6Ro/Pd4FidlTqhVuJCAxjZLxyAb49qvw1vspgcq3bSUbr3SSIkep1Rb3QMXe3OJ9E5UifkNvY3SE998bVPmx/fP5LwQM8qbvUGLVeEuro629fZX2c06TJ9nqyyLJqsTUQYI0gNS9U6nD5PEiHhFj0pmJ4+KAY/vUKAn56qBpOLIxN2DeYGDpUdAjx3Rej77FIA5mTIkNXuyIjOIEAfQGVjJSerTmodjkexj9vYcLQYk8WqaSwtj80ritTB9TZJhIRbdHcSPUBogB/bfr2Ar38xk7AAWQXoLQdLD2K2mokJjKFfiAYddp3w3A1j+PDHU7hCiw7AfYCfzo/hMcMB2R4735iUCKKC/aluMLPjZLmmsdhfJ0fHeebKbF8jiZBwC3ttwtHyo9SZut4cMTLY38URifO1rA/y1E+hfnodkwdEkxQRqHUoXksKptum1ymO7bE1WYWaxaGqqsdvUfc1kggJt4gLiiMpOAmranVMU+6O+iYLTWZtl637KsdxXTml0qdJwXT7FgyLJ8SobTf1gtoCiuqL0Ct6RsR4XrfrvkgSIeE29mXe7r4A/+qTvYx+bCWbjpe4MCoBzZ9CPXyu0Q9f38rvPz9AUXWD1qF4Nfsqw4nKE1Q2VmocjWdZMCyenb9bwG8vzdQsBvu/w4yoDAINsvLpDpIICbdxFEx3c0neT6+jyWz1iFMdfU1OVQ4VjRUY9UaGRQ3TOpwL5JTUsvFYCe9vPU2gn0zh7onIgEjSwtIAGYZ8Pn+DDqNB279fjvog2RZzG0mEhNu0bKxoVbu+vWU/1bH2cJEc/XUx+7bY8Ojh+Ok9ryDd3kNqYloUoVIw32OyPdYxVVXJrdBmDInjxJiHrsz2RZIICbcZEjmEQEMg1U3VnKw82eX7TxsYjb9ex9nyeo4X1bg+QB/m6Y0UHd2k5di8S0jBdPuqG0zM+9u3zPrLOirqmtz63PXmeo6UHQGkVs+dJBESbuOn83MU/3XnBTjYaGDqwGgAVmfJ9pgreXIiVN9kYcuJ5v5BMlbDJeyrDQdKDmCySm+ulkID/PDX67BYVbc3cT1YchCzaiYuMI6E4AS3Prcvk0RIuJX9U87Owp3duv+CzHgAVmt4vLWvKW8odzTX88S6hC0nSmgyW+kXEcjguBCtw+kT0sPTCfUPpd5cz9Hyo1qH43HmD7Ml3O5+nbF/QBwdN9pjW1j0RZIICbcaFz8OgF2Fu7p1/wXNL1C7TpdTUuMZwxG9nb04Mz08nYiACG2DacO6w7ZP5XOGxsqbg4voFN257TGpE7rA/GG2D1zfurnLtLSw0IYkQsKtxsSOQafoOFtzloLagi7fPzE8kJsn9+d3l2Tip5O/vq5gfyP0xG0xgLhQI8mRgbIt5mJSMN2+MSkRRDd3md5+sswtz6mqquNDiRRKu5e8kwi3CvEPISMqA+j+qtCfrhzJHTPSCQ+S00OuYK8P8tRPoT+fP5iNv5rL/AxJhFxJCqbbp9cpzG3++7bGTfWIp6tPU95Yjr/O3yNbWPRlkggJtxsfPx7ofp2QcB2TxcTB0oOAZ38KVRQFnU62xVxpRMwI9IqegtqCbq3O9nX2bfg1WYVuaddhX5kbHuOZLSz6MkmEhNu5IhEqrm7kw+2n2XOmwkVR+aassiwaLY1EGCMcTfY8yf6zlZpPAu+rgvyCGBo1FJDtsbbMHBzLTZP78zs3dZl2dHb30JXZvkwSIeF24+JsBdPZldmUNXRv//3va47x0LL9fLj9tCtD8zktt8U8rRC5vLaJy1/8jgn/u9rt/Vx8hWyPtS/YaODPV45k/rB4t/zbkEGr2pFESLhdZEAkgyIGAbC7cHe3HuPcMfoirFbpMt1dntzFdu3hIqwqJIYHEBHkr3U4fZIUTHuGqqYqsiuygXMzGYX7SCIkNGHfHttRuKNb958yIIoQo4Hi6kb25crgyO7w9EGrqw7Zergsak56hevZV4QOlx2mzlSnbTAeauepcp5acZjy2t5bldxVuAsVlbSwNGICY3rteUTbJBESmpgQPwHofp2Q0aBn9hDbuIXVh6S5YnecrTlLSX0JBp2B4dHDtQ6nlQaThW+P2voHLcyUDru9JSE4gbigOCyqxVE0L1r7zaf7+ef6bNYf7b3TY9sLtgPnPiAK95JESGjC3ljxSPkRqpuqu/UYCzK16f7aV9i3QzKjMwkwBGgbzHk2HS+h3mQhMTyAEf3CtA6nz1IUxdE/SrbH2nauy3TvJUL2lfGJCRN77TlE+yQREu5ltUDORuKyN9A/IBarau32C/DcoXHodQqHC6o5UybL+l3lqA/ywFMq9m2xhZnuKVT1ZVIw3TF7l+kNR4ppMrv+BGN1UzWHyw4D51bKhXtJIiTc59ByeG4EvH0pLLuT8cU5AOw8+EG3Hi4iyJ8JqZHoFNh7tsKFgfqG3cWeOWjVYlUdq3wLpT6o19nrw/YW78WqSquC841JjiAmxJ/qxt7pMr27aDdW1UpKaArxwfL3XQuSCAn3OLQcProFqvIcN41vsM0K23lyle373fC/V4xgx28XcumoJJeE6Suqm6o5Xn4c8LxCaZ0Cb90+ifsXDGFyerTW4fR5Q6OGEqAPoLKx0jF8V5yj0ynMy+i9bfgdBbZtMVkN0o4kQqL3WS2w4iGg9TH38Q0NABww+lO/4mHbdV00OD6UqGA5Wt1V+4r3oaKSHJLscadUFEVhRL9wfrFgMP4GeYnqbX46P4bH2IrlpU6obfbtsTVZRS7vMi31QdqTVxnR+05tbrUSZNfPbCHebMasKOxvKrFd1wPST8h59kaKnrYtJrQhBdMdmzk4Bn+DjppGM8U1jS573FpTLYdKDwGyIqQlSYRE76tpezlZ4dz22I6AgHav68zWE6Vc9/IWHvx4b3cj9Dme2j8ou7iGBz/ayxo5CehWUjDdsSB/A1/+fAbbf7OAuFDXnbDcU7QHi2qhX0g/EkMSXfa4omskERK9L6T9AkBHnVCAscPrOmLQK2w7WcbqrEKZS+UEs9XMvuJ9gOclQt8cLGDZrrO8veWU1qH4lFGxowDIqcyhoqFC22A81OD4UPQuHvxr3xaT/kHakkRI9L7UaRCWhG0NqLUJzXVCewOMmJK7t0c+JiWS6GB/qhvMbM9x/amOvuZo+VHqzfWE+IUwMHyg1uG00vLYvHCfyIBIx9DdvcWystoRVVUxu+gDl72RotQHaUsSIdH7dHpY/FTzb1onQ+kmC5EWC42KwsHyw916eL1OcTQ9WyVbKp1qOdxRr9NrG0wLRVUN7DlTAcDCYZIIuZujTki2x9r10vrjTHliDZ/vubDmsavqTHUcLLF185b6IG1JIiTcI3MpXPcOhLXeB1fCkhgfY1uW7+7cMYAFw+xDWAtdfqqjr/HUQaurs4pQVRidHE5CuGd1uvYFMoC1c/VNFgqrGllzuOcfuPYW78WsmkkITqBfSD8XRCe6SxIh4T6ZS+G+A3DrF3D167Zf79vP+EGXAt2fOwYwY3AMRoOOM2X1HC2scVXEfZK9kaKnJUKrDhUAsGi4zBbTgr1g+kDJAUxWk7bBeChHl+mjJT3uMm3/4DchfoJ0T9eYJELCvXR6SJ8JI6+x/arTOwoFdxftxtKNXkJgO9UxY5CtH47MHmtfQW0BBbUF6BU9o5pX4jxBTaOZTdmlgNQHaSUtPI0w/zAaLA0cLTuqdTgeaVS/cGJDjdQ0mtmaU9qjx7I3UpT6IO1JIiQ0NyRyCCF+IdSaajlSfqTbj7NkZCILhsUzND7UhdH1LfZtjyGRQwjyC9I2mBbyKupJiw4iNTqIwXEhWofjk3SKjtGxo4FzfaZEazqdwryhtnrENT0YwtpgbmB/yX5A6oM8gSRCQnN6nd5RqNmT7bGrxyfz2q0TWCArCu2yv8F52rbYkPhQVt4/m//+fIZsE2hICqY7d24afffrEfcV78NkNREXGEdKaIorwxPdIImQ8Aj27bGeJEKic/Y3OE/tKB0W4Kd1CD5NCqY7N6O5y/TZ8u7XIzr6ByWMl8TfAxi0DkAIaJ0IqaraoxeH06V1HC6okqLb89SZ6jhSZtt6tBfGeoKy2iYC/fQE+nvOUX5fNTx6OHpFT2FdIQW1BSQEy7+h8wX5G7huQjJGg56gbv6dbVkoLbQnK0LCIwyPHk6APoCKxgpOVJ7o9uMcL6ph1l/X8fN/76auyezCCL3fgZIDWFQL8UHxHtXO/4W1xxj7+Ere2pSjdSg+L8gviKFRQwGpE+rI/14xkt9dmklKVNfr7BotjewtsjWtlEJpzyCJkPAIfno/R6FmT7bHBsYGkxwZSKPZynfHSlwVXp/giYNWVVVl5cFCGkxWkiICtQ5HIANYe9v+4v00WZuIDoh2dPMW2pJESHgM+/ZYTxorKorSqrmiOMcT+wdl5VeTW1FPgJ+OmYNjtQ5HcG7bdFfRLm0D8XBNZisbjxWz+3R5l+7n2BZLkP5BnkISIeExJiTY9svtdULdZe9DsyarCItVukwDWFUr+4o8b9CqfbbYzMGxUiPkIez/Dg+XHaa8oWtv8r7kn+uz+eHr2/i/b7u2lS/1QZ7HaxKhsrIybr75ZsLCwoiIiODOO++kpqb9iv2ysjJ+/vOfM3ToUAIDA+nfvz/33nsvlZWVboxadMXImJEYdAaK6oo4W3O2248zKT2K0AADpbVNjtlVvi67IptqUzWBhkCGRA7ROhyHlc3dpKWJoueICYxhcORgALYWbNU4Gs81N8O2grnxWDGNZucawZosJqkP8kBekwjdfPPNHDx4kFWrVvHFF1+wYcMGfvzjH7d7fV5eHnl5eTz99NMcOHCAt956ixUrVnDnnXe6MWrRFQGGAEbGjATOdV3tDj+9jjlDz/X6EOfqg0bGjMRP5xlH1HMr6jmYV4VOgfkZcVqHI1qYkjgFgO/zvtc4Es81IimcuFAjtU0Wvj9R5tR9DpQeoMHSQFRAFAPCB/RyhMJZXpEIZWVlsWLFCl577TUmT57MjBkzeOGFF/jggw/Iy2t7CvCIESNYtmwZl112GQMHDmTevHn86U9/4r///S9ms5wm8lSu6ie0oLnp2bdHinscU1+wt9j2KdSTtsVWN2+LTUiNIjrEqHE0wsFqYaouDIAtp9ehWuT1si06neJorrjGyQ9c9g944+Olf5An8YpEaMuWLURERDBhwrk91QULFqDT6di61fml28rKSsLCwjAYpH2Sp3JVIjQ3I46XfzCOj/9nqivC8nqOjtIe1D9oXkYcj1ycwS3TUrUORdgdWg7PjWD8Fw9jUFXyGss4+8JI2+3iAvMzztUjOlPX6Gik2Pw6JzyDVyRCBQUFxMW1Xjo3GAxERUVRUFDg1GOUlJTw+OOPd7idBtDY2EhVVVWrL+E+Y2LHoFN0nK05S0Gtc/9v2xIW4MfiEYkEGyXpLakv4Uz1GRQURseN1joch5SoIH4yeyCXjkrSOhQBtmTno1ugKo8gVWV0QyMAWyxVttslGbrA9EExGA06civqOVxQ3eG1JqvJ8YFE6oM8i6aJ0MMPP4yiKB1+HT58uMfPU1VVxSWXXEJmZiaPPvpoh9c+8cQThIeHO75SUmQOjDuF+IeQEZUBwK5COb7rCvbl+EGRgwjzD9M4GuGRrBZY8RBwblVjSkMDAN8HBthuWPGw7TrhEOivZ/qgGAA2He+4b9mh0kPUm+sJN4YzKGKQO8ITTtI0EXrwwQfJysrq8GvAgAEkJCRQVNR60q/ZbKasrIyEhI5bwFdXV7N48WJCQ0P59NNP8fPruFD0kUceobKy0vF15syZHv+comtctT1msao8u+ooS//xHRV1Ta4IzSttztsMwNREz9kmfG3jCZbtPEtVg0nrUATAqc1Q1brecmq9LRHaGmDEggpVubbrRCsPLBzCV/fO5M4Z6R1e56gPihuPTvGKzRifoem+QWxsLLGxnTdRmzp1KhUVFezcuZPx421vkmvXrsVqtTJ58uR271dVVcVFF12E0Whk+fLlBAQEdPpcRqMRo1EKN7U0Pn48/zr0rx4nQnqdwjcHCzhcUM36I8VcMbafiyL0HqqqOhKhaUnTNI7GptFs4dlVR6ltsvB53HRGp0RoHZKoubDYd3hjEyFWK1V6PYf9/Rne1NTmdb5uRL9wp65r2UhReBavSEuHDRvG4sWLueuuu9i2bRubNm3innvu4YYbbiApyVZfkJubS0ZGBtu2bQNsSdCiRYuora3l9ddfp6qqioKCAgoKCrBYZHnXk42LGwdAdmU2ZQ3OHUttj73L9CofPUZ/ovIEhXWF+Ov8GRc/TutwANicXUptk4X4MCMjnXwTEb0s5MI+TgZgYvOq0Bb79lgb14nOma1mR32QNFL0PF6RCAG89957ZGRkMH/+fJYsWcKMGTN45ZVXHN83mUwcOXKEuro6AHbt2sXWrVvZv38/gwYNIjEx0fEl212eLTIg0rGHvruwZ4MfFzQ36vv2iPNNz/oS+2rQ+PjxBBo8Y5aXvZv0gmHx6HRyhNgjpE6DsCSg9f8P+/bY94EBENbPdp24wJGCau77YDe/+mRvm98/XHaYWlMtof6hHtXQVNh4zZGaqKgo3n///Xa/n5aW1ur44pw5c3o0pkFoa3z8eI5XHGdH4Q7mp87v9uOM6hdObKiR4upGtp4oY9YQ35pn5WnbYlar6ugftGh4x/V9wo10elj8lO10GAr2oml7wfSuACP10x8lUCdjUNpislj5bE8egX56Hrt8BAF+rf+cWtYH6eXP0ON4zYqQ8C2uKpjW6RRHc0Vf6zLdaGl0vABPTfKMQum9Zysoqm4kxGhgyoAorcMRLWUuhevegbBEx01pJjPxFhWTorA7StoctGd4UhgJYQHUmyxsOVF6wfelPsizSSIkPJK9TuhI+RGqmzruz9EZxzT6Q4U+tUq4u2g3DZYGYgJjPGY53r4tNntoLEaDfDL2OJlL4b4DcOsXcPXrKLd+wdQhVwDwfb6M22iPoijMa/7AtWJ/6/5nFqvF0QpE6oM8kyRCwiPFB8eTEpqCVbWyp2hPjx5r+qAYEsICmJgeRW2T79QJtdwW85R2/gWVDSgKLJIhq55Lp4f0mTDyGkifyZTm1URJhDp2WXNj0K8O5NNgOvc6c6T8CNWmakL8QhgaNVSr8EQHJBESHstV22MBfno2PzyP528YS4gPdZrenNvcP8hDtsUAnrl+DFt/PV+mzXuRyYm2FiVZZVmUN5RrHI3nmpweRWJ4ANUNZtYfOdf3zr49PTZuLAad77z+eBNJhITHclUiBPjc6aSS+hKOlB8BPKuRIkBcaABB/vKG4C1iAmMYHDkYgK35zs929DU6ncLSMbZVoU935zpul/ogzyeJkPBY9kToQOkB6s31PX48VVU5XFBFeW3f7zK9JW8LAMOihhEdGK1xNDa1jTLF3FvZk2nZHuvYlWP7MTguhIlptoMAVtXq+CAn9UGeSxIh4bGSQ5KJC4rDbDWzr3hfjx/vp+/tYvFzG/lyf74LovNsjrEaHrItVlLTyNjHVnHza9/7ZD8nbzclcQpgS7B96cBBV2UkhLHy/ln8aOYAAI6VH6OqqYogQxDDoodpHJ1ojyRCwmMpiuLS7bFRyREAfNXHEyGranWsCE1Pmq5xNDZrs4posliprDfJaTEvND5+PAadgbzaPM5US0PajrQ8mGDfFhsbNxY/XcdzLoV2JBESHs2+nOyKROjSUbb+KFtOlJJb0fOtNk91rPwYpQ2lBBoCGRM3RutwAFh5yHakeOEwaaLojYL8ghgTOwaQ7TFn1DdZ+HxPLt+dsdVUSX2QZ5NESHg0+4rQ3uK9mCw9m1SeEhXElAFRqCp8uuusK8LzSPZtsQnxE/DX+2scDdQ1mdl4rASARcPltJi3sm+PSSLUubvf28kvPtjNDqkP8gqSCAmPNiB8AJHGSBotjRwsPdjjx7t6XDIAy3bl9tlah015mwCY3s8ztsU2Hiuh0WwlOTKQjIRQrcMR3TQlyZYIbc3fisUqdV4dWTIiEZ1/EQ3WKgIMAQyPHq51SKIDkggJj9ayTsi+394TF49MJNBPT05JLbtOV/T48TxNvbne0cXWUwqlVx5sni2WmeAxjR1F1w2PHk6oXyhVTVVklWVpHY5HWzwyAf/QHAAGhY3ATy/1QZ5MEiHh8VxZMB1iNHDxCFudytd9sGh6Z+FOTFYTCcEJpIelax0OZouVtYdtiZA0UfRuBp2BiQkTAdke60xYgB+J8c29hOoHaBuM6JQkQsLj2ROh3UW7XbIkf9esAbx9xyQeWdL3jrNuym3eFkua7hGrLyrwyJJhzB0ay8S0SK3DET1k3x77Pk8SoY6oqkqD/hgAR0/FYbH2zW34vkISIeHxhkQOIcQvhFpTraNbck8MSwxj9pBY9H2w27T92LynbIv56XVcNyGFN2+fhEEvLzfezl4wvatol0uanPZVOVU51JgrwGqgtCyBLdkXTqQXnkNemYTH0+v0jI0bC7hme6ylvlQwXVBbQHZlNjpF53jDEsKV0sLSSAhOwGQ1sbtwt9bheCz7fLEYvyGgGth1Wma0eTJJhIRXcGWdEIDFqvLE11lMf3ItRdUNLnlMrdlXg0ZEjyDcGK5xNLB8bx6vf5dDmQ+MNPEViqLIMXon2BOhiwZOZ8Mv53Lv/MEaRyQ6IomQ8AotEyFXrOLodQrbcsrIq2zg8915PX48T9DuWA2rBXI2wv5PbL+64eizqqq8tO44j39xiC/39Y0/X2EjiVDHVFV1nHCdnz6V/tFBGkckOiOJkPAKw6OHE6APoKKxghOVJ1zymOd6Cp31+i0yi9XClnzbitC0pGnnvnFoOTw3At6+FJbdafv1uRG223vRvrOVHC6oxmjQsXRMv159LuFekxMnA5BVlkVZQ5nG0Xie09WnKa4vxk/nx8iYkY7b65pk6LCnkkRIeAU/vR+jY0cDrtseu2xUEv4GHYcLqjmYV+WSx9RKVlkWlY2VhPiFMDK2+cX30HL46BaoOm9FpirfdnsvJkMf7rDNo1o8IoHwQOmh0pfEBMYwJHIIANvyt2kcjefZXrAdgFGxowgwBNBgsvCjt3cw7vFVlNY0ahydaIskQsJruLKxIkB4kB8Lh9l62yzz8pEb9m2xSQmTbMMdrRZY8RC2A+zna75txcO9sk1W32Thv3tsydf1E1Jc/vhCe7I91j7765N9rEaAn56i6gYaTFa+7IO9y/oCSYSE13B1nRDA1eNt2zbL9+Rhslhd8phasCdCjrEapzZfuBLUigpVubbrXOzrA/lUN5pJiQpkyoBolz++0J49EdqSt8Xrt5VdSVVVR6F0y0GrlzdvD3+6O1eTuETHJBESXmNk7EgMOgNFdUUuqxOaNTiWmBB/Smub+PZIsUse091qmmrYW7QXaFEoXVPo5J2dvK4LPmreFrt2fAq6PtirSdg+lBh0BvJq8zhTfUbrcDzG2ZqzFNYVYtAZHFv5AJeNTkSnwO7TFZwsqdUwQtEWSYSE1wg0BDo+ia4+tdolj2nQ67hlahq3TUsjPTbYJY/pbtsLtmNWzaSEppAS2rwVFeLkOAtnr3OSyWIlKtgff4OOq8cnu/SxhecI8gtiTOwYQLbHWrKvBo2MGUmgIdBxe1xoADMGxwLw2R5ZFfI0kggJr7IwdSEAq06tctlj3jt/MI8uHc7A2BCXPaY72bfFWp0WS50GYUlAeysyCoT1s13nQn56HS/dPJ6dv11Av4jAzu8gvFbL7TFhc359UEtXjk0C4LPdubKd6GEkERJeZW7KXPSKniPlRzhddVrrcDxCm4mQTg+Ln2r+zfnJUPPvFz9pu64XhAbISbG+zj53bGvBVpfMAOwLHPVBbSRCizITCPTTc7K0jr1nK90dmuiAJELCq0QGRDqKEF25KmS1qnx/opTnVx9z2WO6w5nqM5yuPo1BMTApYVLrb2YuhevegbDE1reHJdluz1zq0liOF1VzorjGpY8pPNfw6OGE+oVS3VRNVlmW1uFoLq8mj7zaPPSKnjFxYy74frDRwN1zBvLHpcNJkyaLHsWgdQBCdNWi1EVszd/K6lOruXPknS55zLK6Jm5+bSsWq8oloxIZFOcd22T2bYlRsaMI8W8j5sylkHGJ7XRYTaGtJih1Wq+sBD2z6ihf7S/g95dmcseMdJc/vvAsBp2BiQkTWXtmLd/nf8+ImBFah6Qp+7bY8JjhBPm1nejIqA3PJCtCwuvM6z8PBYUDpQfIq3HN+IaYECNzhtiKGb2pp1Cb22Ln0+khfSaMvMb2ay8kQaU1jaw6ZDuBNm2QHJn3FfbtMakTgo1nNwIwMX6ixpGIrpJESHidmMAYxsWPA1x3egxwnHL6dFcuFqvnFzOarWa25m8FOkmE3ODT3bmYLCqjksPJSAjTNBbhPlMTbe0adhftpt5cr3E02qkz1fHt2W8BWJC6oMNrqxpM/HvbaV5cd9wdoQknSCIkvJL99Njq065LhOYPiyM80I+CqgY2Z5e47HF7y4GSA9SYagg3hpMZnalZHKqqOnoHXSedpH1KalgqCcEJmKwmdhfu1joczWw4u4F6cz3JIckMjx7e4bU5xbU88p/9vLD2GDWNMn/ME0giJLxHiynq85VQwPZJtKiuyCUPbzTouWy0rbB42U7P3x7blLcJsB1j1vfS6S9n7D1bydHCGowGHZeNTtIsDuF+iqKcO0af77vbYytOrgDg4vSLUZSOm4iOSg5nQEwwDSYrKw8WuCM80QlJhIR3OG+KesIHP2SUybZ9teb0Gpc9jX0i/YqDBVQ3mFz2uL3BqfogN7CvBi0ZmSgDVn2Qr88dq26qdtQHXZR2UafXK4oiIzc8jCRCwvO1M0V9UZWtF8eqQ/922VONSYlgQGwwcaEBnC6rc9njulplYyUHSg4A2iZCVqvKhqO20STXTpBO0r5ocuJkAA6XHaasoUzjaNxv3Zl1NFmbGBA+gCGRQ5y6zxXNzRU3HS+hqKqhN8MTTpBESHi2Dqaoz6+zzezZWXWC0lrXzAlTFIV/3zWFb385h+FJ4S55zN6wrWAbVtXKgPABJAQnaBaHTqew+oHZ/PPmcUxJl9NivigmMMaRAGzL36ZxNO63Ise2LbY4fXGn22J2qdHBjOsfgVWF5Xtdc/JVdJ8kQsKzdTBFPdlsIbOxEauisHbvay57yviwAKdf0LSyKddWH6T1thhAgJ+ei0cmyoBVH+ardUIVDRWO1gGL0xZ36b5XjrVtj8nsMe1JIiQ8WyfT0RfW2o7sri7Y6vKnbjRbOF7keZ2SVVV1vPhqmQg1mCwyM0kAMDXJdox+S94Wn/o7sfr0asyqmYyoDNLDu9ZE9JJRSRgNOqKCjdQ3yYgSLUkiJDxbJ9PRF9ba6ni21eRQ2ei6+T17z1Qw6U9ruOOt7R73wn6q6hR5tXn46fwYHz9eszheWHuMeX/7lq/252sWg/AM4+LGYdAZyK/N50z1Ga3DcRv7abGurgYBRAX7s/23C3jnjkkE+mt36lNIIiQ8XSdT1FPNFoaYVcyqlXVn1rnsaQfHh2C2WDldVsf2k+Uue1xXsB+bHxc3rt1W/r3NbLHyyc6z5JTUavL8wrME+QUxJnYM4DtdpkvqS9hesB1w7rRYW8JkOLFHkERIeDYnpqgv6G/r5OrKIaxB/gaWjPTMnkKObbF+2m2LbThWTGFVI5FBfswfFqdZHMJz+Nox+pUnV2JVrYyKGUVyaM9OTOZX1nO23HNPqfZ1kggJz9fJFPVFE38O2BKE6qZqlz2tfeTGl/vztd3Db9FI0pS9jm0FtpM5WtYHfbTdlhxeOTYZo0GW9cW5OqGtBVuxWPt+zcs3J78Bur8aZPfP9dlMe3ItL63PdkVYohtk+rzwDh1MUR8IpIenk1OZw7dnv+XSAZe65CknpUWRHBnI2fJ6Vh4qcDRBc6tDy23tA5pPzu0JMFKfGE+UIdjpniWuVlLTyOosWxH7dROld5CwyYzOJNQvlOqmarLKsvr0NPqC2gJ2Fe1CQelxIjQqORxVhS/35fOHyzLlg4UGJBES3sM+Rb0NC1MX8sq+V1h9arXLEiGdTuHqcck8v+YYn+w86/5EyN5IskUPpc2BAQBMqyhCl/WFLUF0s+W7zxIbpGNYQihpEf40NEhDOE/i7++PTuf+xX6DzsDEhImsPbOWLXlb+nQiZF8NGhc/jvjgjg90dGbKgGjiw4wUVjWy/kgxFw3Xri+Yr5JESPQJ9kTou9zvqDPVuayI2J4IbTpeQnF1I7GhRpc8bqfaaSTpSITqG2DFw7ZVMjfNGVNVlfz8fFL0lTw2L5aIIH9ycnLc8tzCeTqdjvT0dPz9/d3+3FOTprL2zFq+z/+eu0bd1fUHsFraXPX1NI4mit04LXY+vc42cuOVDSf4bHeuJEIakERI9AlDI4eSEprCmeozbMzd2OPlarv+0UE8fsUIpg6Icl8SBG02kizT6chqfnObWl8Pllrbde2skrlaQUEBlZWVZA5IpgkDcWEB6DVYeRDts1qt5OXlkZ+fT//+/d3eGNReML27aDf15noCDYHO3/m8bWDAVge4+ClNVj7bc6bqDAdKD6BTdCxMXeiSx7yiORFak1VEUXUDcaEBLnlc4RxJhESfoCgKC1IX8OaBN1l1apXLEiGAH05JddljOa2NRpLfBwagKgpDG5uIsVjbva43WCwWKioqiIuLIzpaRml4stjYWPLy8jCbzfj5ufd4dmpYKgnBCRTUFrC9YDuzkmc5d8c2toEBqMq33X7dOx6TDNl7B01OmEx0oGv+LQxLDGVMSgR7zlTw0rpsHl063CWPK5wjH+dEn7EodREAG85uoMHcRt1Ki9NX5Gy0/d5TtdFIstW2WAfX9QaTyQRAUJA2fYuE8+xbYhaL+/9+K4rCvJR5ACw7usy5O3UwT9Bx24qHPebf69cnvwZss8VcRVEU/t+ioQCsOlRIo9kzflZfIYmQ6DOGRw8nMTiRenO9o+mgw6Hl8NwIePtSWHan7dfnRthud8KB3Ep+9v4u/vxVVi9E3obzGkmqwJbmRGhqfb3t9rB+tuvcpL7JQnF1Iw0meZH2ZFrPybtu6HUArD+7noLags7v0ME8QRsVqnJt12ksuyKbY+XHMOgMzO8/36WPPX1QNM9eP5pVD8ySk2NuJomQ6DPs22MAq0+tPvcN+7L7+S+29mV3J5Kh0tomvtyXz0c7zrjn09p5jSSP+/lRZDAQYLUyrrHJdvPiJ91aSFrTaKa8romqepPbnlN4n4ERA5mYMBGrauXjox93fgdnt3fdtA3cEfu22PSk6YQbw1362IqicOXYZIL8pWLF3SQREn2KvXhx/Zn1NFmaXLbsPmNQDAlhAVTUmfj31tMujbldLRpJ2rfFxjc0YgxNcnvNxNnyOhrNVhQgMsj9p5F6Ys6cOdx3331OX3/y5EkURWHPnj0ufdz169ejKAoVFRXtXlNQUMDChQsJDg4mIiICsL1BfvbZZ04/jye4fuj1gG17zGTpJHF2dnvXTdvA7VFV1XFazJU1iG2xWlV2nCzr1ecQ50giJPqU0bGjiQ2MpcZUY2v176Jld71O4Z55gwB4fs0xKt21KpK5FO47wIYBkwGYNuIHcN9+txeOrjhg2+IIMhrwM3jXy8Z//vMfHn/8caevT0lJIT8/nxEjbH1w2ktguvq4znj22WfJz89nz549HD16FID8/HwuvvhiwPkkTWvz+s8jNjCW0oZS1pxe0/HFncwT1GIbuC1Hyo9wsuokRr2RuSlze+15GkwWLn3hO655eQuH8qp67XnEOd71iiZEJ3SKzrF3v+rUKpcuu98wMYXBcSGU15l4cd3xnoTZJccqT7Ct8qjtZxt7l9v7qpgtVr45aEuEwgO8b9k+KiqK0NBQp6/X6/UkJCRgMHT8s3b1cZ2RnZ3N+PHjGTx4MHFxthluCQkJGI1ubN3gAn46P64Zcg0AHxz5oOOLnZgn6O5t4LZ8nWMrkp6VPIsQ/5Bee54APz0DYoMBeGbVkV57HnGO1yRCZWVl3HzzzYSFhREREcGdd95JTU2NU/dVVZWLL77YK5eYRdctSrOdHlt3Zh2moBjn7uTEsrtBr+PXS4YB8Namk5wpc8+QxHez3gVgfv/59Atx/5iPDceKKattQq9AcBvTsuuazO1+nV9Y7Ypru+r8Lay0tDT+/Oc/c8cddxAaGkr//v155ZVXHN9vuepy8uRJ5s61ffqPjIxEURRuu+22Nh/3X//6FxMmTCA0NJSEhARuuukmioqKnI4zLS2NZcuW8c4777R6npavW+np6QCMHTsWRVGYM2dOl/883OXqwVejV/TsLNzJsfJjHV/cyTxBt6yAdnCqVFVVl80Wc8b9C4egU2B1VhG7Tpf3+vP5Oq/5eHfzzTeTn5/PqlWrMJlM3H777fz4xz/m/fff7/S+zz33nOYnKYT7jIsbR1RAFGUNZWw3GpgWlmQrjG6zTkixvdg6uew+Z2gs0wdFs+l4Ka9uPMFjl/fuGIGS+hK+yP4CgFsyb+nV52qLqqq8ttHWPTrQaEDXxr+jzN9/0+795w6N5c3bJzl+P/7x1dS3c+pscnoUH/5kquP3M55aR1lt0wXXnXzyEqfjb8/f/vY3Hn/8cX7961/zySefcPfddzN79myGDh3a6rqUlBSWLVvG1VdfzZEjRwgLCyMwsO0mgSaTiccff5yhQ4dSVFTEAw88wG233cZXX33lVEzbt2/nlltuISwsjOeff77N59m2bRuTJk1i9erVDB8+XJPu0c6KD45nXv95rDq1ig+PfMhvp/y24zt0ME+w13XSzHF/yX5ya3IJNAQ63xupBwbGhnDN+GQ+2nGWp785wvt3Ten15/RlXrEilJWVxYoVK3jttdeYPHkyM2bM4IUXXuCDDz4gL6+j+g/Ys2cPf/vb33jjjTfcFK3Qml6nZ15/Wy+T1WfWunTZXVEUfrMkk18vyeA3lwxzTcAd+OjIRzRZmxgVM4rRsaN7/fnOZ1Vh5uBYwgIMhBj7zpHeJUuW8NOf/pRBgwbx0EMPERMTw7p16y64Tq/XExUVBUBcXBwJCQmEh7d9WuiOO+7g4osvZsCAAUyZMoW///3vfP31106vXMfGxmI0GgkMDGz3eWJjYwGIjo4mISHBEZunshdN/zf7v9Saaju/g32e4MhrbL+6Kwnq5FSpfVtsbsrctrtl90KPsnvnD8ZPr7A5u5RNx0t6/HiifV6xIrRlyxYiIiKYMGGC47YFCxag0+nYunUrV155ZZv3q6ur46abbuLFF18kIcG5+S2NjY00NjY6fl9VJcVq3mhh/4V8cvQT1pxew2+u/Q36695p5xPfk11eds9MCiMzKczFEV+owdzAh0c+BOCHw3+oyaqmXqdw95yB3Dgugfzctk/LHXqs/a2C81eQdv5ugdPXfvdQ7xWkjho1yvHfiqKQkJDQpW2stuzcuZNHH32UvXv3Ul5ejtVq6/59+vRpMjMze/TY3mpSwiTSwtI4WXWSL7K/4PqM67UOqbVOT5UqWFc8zMpk2/tHm7PFemk0SHJkEDdPTuWtzSf56zdHmDYwWnY2eolXrAgVFBQ4CgftDAYDUVFRFBS037Dr/vvvZ9q0aVx++eVOP9cTTzxBeHi44yslJaXbcQvtTEycSJh/GGUNZewq2uU4fcWtX8DVr9t+dcHpK7PFyqlSJz7pdsOXJ76krKGMxOBEFvRvP4HoLap67s0hwL/9T+ZB/oZ2vwL89C6/1hXOHz2hKIojcemO2tpaLrroIsLCwnjvvffYvn07n376KQBNTRdu7/kKRVG4IeMGwFY03fLvlEdw4lTprqYSiuqLCfULZXq/6a2/7YIeZR356dyBBPjpUFWVijrp39VbNE2EHn74YRRF6fDr8OHD3Xrs5cuXs3btWp577rku3e+RRx6hsrLS8XXmzJluPb/Qlp/Oz3HEddWpVbYbXbzsfryohsXPb+QHr291eZNFVVV559A7ANw87GYMOvcu3h4trGbJ379jc7YsyTszsuLw4cOUlpby5JNPMnPmTDIyMnq8wtTdWDzNZQMvI9AQyPGK47YPJZ7EidOiK4JtY2Xmp87HX9+iJssNo0HiQgP44ucz+Oxn04kM9tx6sO4yW6z8ZcVhSmoaO7+4F2maCD344INkZWV1+DVgwIA2l63NZjNlZWXtbnmtXbuW7OxsIiIiMBgMjqOwV199dYcnLYxGI2FhYa2+hHeynx5bc2oNVrX7n/bbkxQRQFW9iTNl9byz+ZRLH3tT3iZOVJ4g2C+YqwZf5dLH7oyqqvz+8wNk5Vfx5qaTbn1uT5SamoqiKHzxxRcUFxe3WfPTv39//P39eeGFFzhx4gTLly93eY8hsNUpBQYGsmLFCgoLC6msrHT5c7hamH8YS9KXAPDh4Q81juY8nZwWNQOrmhOhC7bF3DQaZFBcaJ/dEnt1Yw4vrc/mmn9uxmxx/Wu0szRNhGJjY8nIyOjwy9/fn6lTp1JRUcHOnTsd9127di1Wq5XJkye3+dgPP/ww+/btY8+ePY4vsDUse/PNN93x4wmNTUmcQohfCEX1Rewr3ufyxw/yNzgGJb6w9hjlbZxw6q53DtpWg64afBWh/q7tVdOZ5Xvz+P5EGUaDjt9f6pu1LS3169ePP/7xjzz88MPEx8dzzz33XHBNbGwsb731Fh9//DGZmZk8+eSTPP300y6PxWAw8Pe//53/+7//IykpqUvb/lqyb4+tOr2KknoPWmXspJnjtoAAyvR6Io2RTEqc1Pqbbh4NUt1g4rWNJzRNGFwpu7iGZ1fbmob+bO4gDHrt0hFF9bhN27ZdfPHFFBYW8vLLLzuOz0+YMMFxfD43N5f58+fzzjvvMGnSpDYfQ1EUPv30U6644gqnn7eqqorw8HAqKytldcgLPbzxYb488SW3ZN7CLyf+0uWPb7GqXPL3jRwuqOa2aWk8unR4jx/zaPlRrl5+NTpFx1dXfeXW3kHVDSbm/+1biqobeXDhEH4+fzAADQ0N5OTkkJ6eTkBAgNviEV3nqf+vfvDVD9hbvJefj/05Px71Y63DOcde5wO03uZS+H1MJJ+GhnDdkOv43dTftb5fzkbb8ObO3PqFbSu+B1RVZeGzGzheVMNTV4/k+on9e/R4WrNYVa77vy3sPFXOrCGxvH37xF5Z9XL2/dsriqUB3nvvPTIyMpg/fz5LlixhxowZrZqgmUwmjhw5Ql2de5rcCe+wsL9t9tjqU6t7pVBTr1P47SW2VZN3vz/FiWLnjkp35F+H/gXAgv4L3N5A8fnVxyiqbiQtOoi7Zg1w63OLvs1+lP7jox9jtna9MWavaaeZoyksidURtoasi9PbOC3mxtEgiqJww0TbwZ3nVx9zz+DnXqRT4OpxySSEBfDEVSM13/rzmkQoKiqK999/n+rqaiorK3njjTcICTnX5jwtLQ1VVTus/1FVtUurQcL7Te83nUBDIHm1eRwqPdQrzzFjcAxzh8Zitqo8+XX3ivvtSupL+PLElwDcMty9DRSPFFTz5uaTADy6dPgFp7iE6IlFaYuINEZSUFvAhrMbtA6ntTZOlW6+5kWqLQ3EBsYyLm7chfdx82iQH0xJJTE8gLzKBt531+DnXqIoCjdN7s+3v5pDv4i2G5S6k9ckQkJ0R4AhgJn9bMvSK0+t7LXn+fWSYeh1CpX1pgtGRXTFB4c/wGQ1MTp2tNsbKC7bdRaLVWXx8ATmDI3r/A5CdIFRb+TKwbaeb/b+WB7lvFOlX586N1JD314y48bRIAF+en4+z7ZV/eK6490aN6M1VVWpbTwXt9HgGR+2JBESfd7CtN7dHgMYHB/KFz+fwQc/ntLtlZSWDRS1GKfxyMUZPH/DGH53mRRIi95x7ZBrUVDYnLeZU1WuPWnpSg3mBtadtnUa73S2WC/1KGvLtROSSY0OoqSmyStPdH6w/QyLnt3AxmPFWofSiiRCos+b1W8WRr2R09WnOVp+tNeeZ1hiWI/2uv974r9UNFbQL6SfY0SIOymKwuVj+nnEUrXom5JDk5mZbFuh/ejIRxpH076NuRupM9eRFJzk3Mqsm0aD+Ol13L9gCAD/9202lfXe02Qxv7KeP32ZRW5FPUcKqrUOpxVJhESfF+QXxPQkW0dYR3PFXlRZZ+KZVUe7tEVmVa2OIml3N1BccSDfq15QhXezF01/dvwz6s31GkfTNvtssYvSL9K8kPd8l41OIiMhlPnD4r2maFpVVX79n/3UNJoZkxLB7dPTtQ6pFUmEhE9YkGobUdHbiZCqqtz02vf8fc0xXv8ux+n7fZf7HTmVOYT4hXDloLZn5/WGQ3lV/PS9Xcz/23rNu7sK3zA9aTr9QvpR1VTFipwVWodzgVpTraOYu83ZYhrT6xQ++9l0nr1+DHGhntMeoSOf7cll3ZFi/PU6/nrNKPQ6z0ouJRESPmFOyhwMOgMnKk9wouJErz2PoijcNdN27PyldccprnYuubCP07h68NWE+Id0crVr2DtIW1WYlB5FTIjRLc8rfJtep+e6odcBnlk0vf7MehotjaSGpTIsapjW4bTJm050Flc38sf/2k7s3jt/EIPj3dsg1hmSCAmfEOofytTEqQCsONm7n0KXjk5iVHI4tU0WR+fUjhwpO8LW/K3oFT03DbupV2NradmuXHacKifIX8/vfKyD9Jw5c7jvvvu0DsNnXTnoSvx1/hwsPciBkgNah9OKfZVqcdpij9sWO9+J4hru+2A3eRWeucUI8IflB6ioM5GZGMZPZg/UOpw2SSIkfMaSAbZ5R28dfKtXT6zoWjRZ/GDbaY4WdlwYaF8NWpi6kKSQpF6Lq6XKehNPfJUFwL3zB5MY7sYCaavF1pV3/ye2X3swlNId1q9fj6IoVFRUaB1KnxEZEOk4jfXB4Q80juacysZKvsv7DvDMbbHz/fazA3y2J48X1h7TOpQ22WuYDDqFv147Cj8Nx2h0xDOjEqIXLElfwuSEydSb6/n1xl/3anfbSelRXDQ8HqsKf25OONpSXFfMVzlfAe49Mv+3lUcorW1iUFwId7izcPHQcnhuhG00wbI7bb8+N8J2u/Ap12fYiqZXnFxBRUOFtsE0W3t6LWarmUERgxgUOUjrcDr1wELbCbKPdpzlZEmtxtFcyGjQ89LN41lx30yGJ4VrHU67JBESPkOn6Hh8+uOE+IWwr2Qfr+9/vVef7+GLh2HQKaw/Utxu34x/H/43ZquZsXFjGRk7slfjsTuQW8m739tWxB5bOhx/g5teBuwznc6f2F2Vb7u9l5Kh2tpabrnlFkJCQkhMTORvf/tbq+//61//YsKECYSGhpKQkMBNN91EUVERACdPnmTu3LkAREZGoigKt912GwArVqxgxowZREREEB0dzaWXXkp2dnav/Ax90aiYUQyLGkajpZHPsz/v+QO6YKXRvm1+cfrFPY/HDSakRTF3aCwWq+rUNrxWBsV5Xl1QS5IICZ+SGJLIryf/GoCX977MwdKDvfZc6THB3DYtjRsnpTA04cIXgnpzPR8dtfVScedqUEJ4AFeNS2bp6CSmDYpxz5NaLbDiIVoPtbRrvm3Fw72yTfbLX/6Sb7/9ls8//5yVK1eyfv16du3a5fi+yWTi8ccfZ+/evXz22WecPHnSkeykpKSwbNkyAI4cOUJ+fj7PP/88YEuwHnjgAXbs2MGaNWvQ6XRceeWVWK19Yzp4b1MUxXGU/sMjH2JVe/Dn5oKVxoOlB9mavxXwjm0xuwcXDQVg+d48DhdUaRyNzdrDhdzz/i5KveQkqtdMn9eKTJ/ve1RV5cFvH2TVqVUMCB/Ah5d+SIChd46hqqrabsHlR0c+4vHvH6dfSD++vPLL9tv49xKLVXX6GGuPJ5q7cVJ3SzU1NURHR/Puu+9y7bXXAlBWVkZycjI//vGPee655y64z44dO5g4cSLV1dWEhISwfv165s6dS3l5OREREe0+V0lJCbGxsezfv58RI0a47GfoKk+dPt+WOlMdCz5eQLWpmpcXvMz0ftO7/iCO6fHnv5U1/912YtRFWUMZ139xPQW1BczvP5/n5j7X9Tg09LP3dvHl/nz6RQTy6i0TyEzS7r2qqsHEomc2UFDVwM/mDuSXF2VoF0tfmz4vhKsoisLvp/yemMAYTlSe4Pldz/fqc7VktdperFs2UPzBsB+4JQkyWVp/4nZrL4+aQtde56Ts7GyampqYPHmy47aoqCiGDh3q+P3OnTu57LLL6N+/P6GhocyePRuA06c7Hmx57NgxbrzxRgYMGEBYWBhpaWlO3U+cE+QXxOWDLgfggyPdKJp2wUqj2Wrm/337/yioLSAtLI3Hpz/e9Tg09utLhpEeE0xuRT1f7s/r/A696ImvsiioaiA1Ooh75g7WNBZnSSIkfFJEQASPTXsMgHez3uX7/O979fmyi2u4863tPPyffTSZ/397dx4XdbX+AfwzAwz7qrIKJCaoiOISCMkVAgVTkxuWZG79XMoLKilerZsRea9QWppGml4VM4PcUK8Yksu4IhqigQuprG6ggCyyz5zfHyOTE+vgDLM979eLl/KdM9/veTizPHPmLEKcuXsG+ZX5ogUU+3XPAorR/7uGOTsuoaispluuJ8HISrblZOTp06cIDAyEiYkJdu3ahUuXLiEpKQkA0NDQ0O59J06ciLKyMmzZsgXp6elIT0/v1P2IpOY1hU7fPY371VK+iRecbznmTAIDKu+JyrVhbcZaXHp4CQbaBljntw7GPOUez9IaOzN9HPjHq1jk3w+Lx7h0fAc5OXf7MRIuFgEAvggZDH2eaqx3RIkQ0Vg+vX3wlrPo65JPzn6Cygb5fb9+q7gax2+WYPdvdzEp7hw2Zm4DAEx2ngxDHUO5XbfZ73efYFd6IY7dKME9Raw54ugt2pEbbfVCcQATO1E5Gerbty90dHTESQoAlJeX448/RANLb968idLSUsTGxsLHxwf9+/cXD5RuxuPxAAACwZ+9CqWlpcjJycEnn3wCf39/DBgwAOXl5TKtu6boY9oHI21GQsiE2PPHHunu/II9jcm5yeLlK/4z6j/oa6ac69x0hqmBDj4c4yzu6a1vEuDr1ByJ3d7l6Wl9E5bv/x0AMH2kI0Y69eiW68oCJUJEo0WOiISDsQOKa4oRkx4jt+sEDbJG3NRhMDfQQU7ZDVwrvwwOuHjLOVRu12xWXd+EFQeywRgQ7G6rmBcorhYQ9MWzX/6aDD37PShW5ptVGhkZYfbs2Vi6dClOnDiB7OxszJo1C1yu6KXPwcEBPB4PGzZsQG5uLg4dOoSVKyW/GnF0dASHw8Hhw4fx6NEjVFdXw9zcHD169MDmzZtx+/ZtnDhxAosXL5Zp3TVJqIvoebD/1n40CKToUXuBnsabZTfx2fnPAABz3eaKt+FRF9H/u471J24jZOP5bukFXn00B0VltbAz08eycYobF9QVlAgRjWagY4BVPqvA5XBxOPcwUvNT5Xat8YNtkPrhaDg6ZQAAGircELYjT247Mdc1CvDfM7n425cncfVuBYx0tfHx6wrcMmDgG6KBqyY2ksdNbDs1oLWrVq9eDR8fH0ycOBEBAQEYNWoUhg8fDgDo1asX4uPjsWfPHgwcOBCxsbFYs2aNxP3t7OwQHR2N5cuXw8rKCuHh4eByuUhMTERGRgYGDRqEDz/8EKtXr5ZL/TXBaPvRsDSwRFldmXT7AXaxp/FJ3RNEnIxAnaAOr9q9ijD3sC7XXVmFDLNDTyNd3HxYhUlx55CeWyq3az2tb8Kv10W9bjFvusFIt/s2jZYFmjXWAZo1phnWX16PLVlbYKpriqQ3ktDLoJdcrlP8tBhB+4LQxJrAub8IlRU2GDvQCptnjJDtdSrrEBx3Dg8q6gAATj0NsTJ4EF7t4nR5mc5EEgpEYzaqi0Wf1B29Zd4TpMkUOmvsBdp209VNiLsSh6GWQ/HDuB86f03xrDFActB067PGBEIB5h+bj7QHaeht1BuJExJhqqu8i/29iPtPajFv52/IvlcJbS4Hn08ahKmeDnK5VlVdI1KvFSNkeG+5nL8raNYYIVKYP2Q+BlgMQEV9BT49/ynk9fkgMScRTawJwyyH4VjYNExyt8Xnk2Q/1drSWBe9zfVha6qHL0LckPrh37qcBMkcV0s0Rd5tsuhfSoLUwwuu5RPSLwTaHG1klmQipyyn89eVsqdxfeZ6pD1Ig762Pr557Ru1TYIAwNZMH3ve98aEwTZoEjJ8nJSFTw9mt5hBKq2ahibsy7iL6VvTUVnXCAAw1tNRqiRIGpQIEQJAR0sHMT4x4HF5OHvvbMtBmzJYtbamsQa7c/5cQNHSRA/fhA6Ftemfn9r/lZSFzafvQCDsfCLGGMOJm8WY8n0aKmpEL0ocDgfrQofiRKQvprziAG0l3eOHqAkZrBrey6AX/B39AQDbr22XboHFgW8AEdmidahCtor+jchqkQSl5KdgW7ZoosLn3p/D2dy589dQUfo8LWx4ZyiWBopmkx3IvIeHz3qKpcEYQ3puKZbuuYpX/n0MS/ZcxZlbj5H8+wNZV7nbqdYXeYTIUV+zvogYHoEvL32JNb+tgaeNJxxNHEUv4inLJF/kTWxFg3+lGNdy6M4hVDZUordRb/ja+7a4PaOgDLvSRWvQHL1WjDVvDUGfnu3PKLuQW4rVR3OQUSCasfTfs7nilWbtzLpxI1WiuTpcy4cjWsun//gOe/9CXUJxNP8oknOTcb/6PqK8ojo/k6u5p7ENt8pv4dNznwIA3nN9D0F9VGf16BfF4XAQ5vcynK2MoavNhb2FQafvW/a0ATvTCrDv8l0UPjfo+qUeBpg8vDd8XeQzjKA70cdEQp7z7oB3/9yY9ezHaLqWJJP9sYRMiB9v/AgAmDaw9QUUhzmYI/bZQMOMgnKM++Y0tp3NEy/C+LysuxWYse0iQjdfQEZBOfR0uHh/tBNmj+rGDVQJAWSylk+zEdYjsGLkChhoGyCzJBOT/zcZG69slG4mWSsq6iuw6OQi1DbVwtPGEwuHLXyh86mqMQOt8DfnPxOXs7ceI/Xawxblnh8a0CgQ4pvjf6CwrAZGutqYMsIeez/wwslIX4S/1g82pqr/gYsGS3eABktrngfVD/DmoTdR3ViNBTUCzCu+10ZJjqhnKCKrzU+6DYIGJOcm48cbP+KP8j9grGOMY28dg4FO25/I7pbXYNm+33HutmiWh0cfC6yZPAQOPQwgFDIsTMzE4Wfd0dpcDt7xcED4ay/DykR+A2NVadsGTdftbZW1VzQmqCMhW0XjwjrhQfUD/Dv93zh99zQAwMnUCdHe0XC3dJe6egKhAOEnwnH23lnYGtoicUIizPXMpT6Puikqq8H49WdQWdeEyLHO+Ifvy/itoBx7M4pQUduI76f/OYFjzdEc9LU0RKCrNQx4qvNFUmffv1UnIkK6SfPGrB+f/Rgb9bkYxdPBwIbGVko+90n3L13ypbWl2J2zG4k5iSirKwMA6GvrY5nHsnaTIADobW6AH2d7Yld6IVYduYGLeWWYvi0dJ5b4QovLgSFPGxwO8Hd3O0QEOMOhR+e7uQmROTmsGm5jZINvX/sWR/OPIuZiDHIrcjHjlxl42+VtRAyLgBHPqNPn+u7qdzh77yx0tXSxzm8dJUHPWJvqIXioHX5IK8Ca1D+w9WweysVjDEUzzmyffb0eGai41aq7A/UIdYB6hDQTYwxLDoXi1yfX0behAYn3i6HX1lPluU+6t8pvYef1nUjOTUaDUNSdb2lgian9p2Ky82SpZ6gUldVg6d6r+L9X+2CsqzUA4GFFHSrrGuFs1X1bAVCPkOro9rYSCkSzwyofoPVxQh33nLanor4CX/32FZJui7Y+sTSwxL88/4XXHF7r8L7HC48j4mQEAGDVqFWY2Hei1NdXdz+lF+LTg9loEjIY8rQwfrANJg+3xysvmbe5YbSq6Oz7NyVCHaBESHM9+eMX/P3MEjzW1sK0ikosK3vSajnhjEM4y+Ng5/WdEnuWDeoxCNMHTseYl8ZAh6vT5Xq0t4N9d6FESHUopK2kXMunK9IfpCM6LRpFVaK9rMY4jsFHHh+1ueZX7pNcTD0yFU8bn2LagGlY5rHsha6vzrLvVaCgtAZ+/Xup1FdfHaFESEYoEdJgQgHOxLnhHyaiT7H/fVAMz7p68c21HC7+19MWP9r2RV5lHgCAy+HC38Ef0wdOh3svd4UnMLJCiZDqUFhbtTq70k60dYqMVg2va6rDpqubEH8tHgImgLGOMRaPWIw3+70JLufPuT9VDVWYmjwV+ZX5GGE1ApvHbn6hDyNENVEiJCOUCGm464fw+fFF2GNiBOumJuy79wC1HC4STYyxx9gQFVqiJMlQxxBv9nsTU/tPRW9j1VxUrD2qnAj5+vrC3d0d69atU3RVcODAAURGRiIvLw8LFiyAu7s7IiIi8OTJE5ldQ1VXlpZG8z5h10qvAQCGWw1HlFcU+pj2gZAJsejkIvCL+LAysMLPE35GD33V2QCUyA4NliZEFga+gUhBPS5cikaRtjbetbHGXR1tND3r6bEzssO0AdMQ/HKwVAM4ifrg8/nw8/NDeXk5zMzM2i37/vvv47333sPChQthbGwMbW1tvP766+LbP/vsMxw4cABXrlyRb6XlpYO1fGSlv0V/7Hp9F3bd2IVvr3yLjOIMTD40GfMGz0OjsBH8Ij54XB7W+a2jJIh0iBIhQjpg4PYWVln2xcyUWcjnibrXh1kOw4yBM+Br79vqmkCE/FV1dTVKSkoQGBgIW1tb8XF9fdVfh0URtLhamOE6A/6O/lh5YSXO3TuHb698K779k5GfYFBP2W9fQ9QPLahISCe4Ww3Df3xWIdQlFIkTErFj3A74O/pTEqQimpqaEB4eDlNTU/Ts2RMrVqyQWDSuvr4ekZGRsLOzg6GhITw9PcHn88W3FxQUYOLEiTA3N4ehoSFcXV1x5MgR5Ofnw8/PDwBgbi6aZTNr1qwW1+fz+TA2Fs3ye+2118DhcMDn8xEfHy/uRYqPj0d0dDSuXr0KDocDDoeD+Ph4ef1J1IadkR02+m9ErE8szHVFU+OnuEzB3/v9XcE1I6qCeoQI6aQJThMwwWmCoquhNBhjqG2qVci19bX1pRqIvmPHDsyePRsXL17Eb7/9hnnz5sHBwQFz584FAISHh+P69etITEyEra0tkpKSEBQUhKysLPTr1w9hYWFoaGjA6dOnYWhoiOvXr8PIyAj29vbYt28fQkJCkJOTAxMTk1Z7eLy9vZGTkwMXFxfs27cP3t7esLCwQH5+vrjMlClTkJ2djZSUFBw7dgwAYGqqvhuCyhKHw8F4p/EYZTcK10uvw9PGU9FVIiqEEiFCukM3DSLtTrVNtfD8STFvOOlT0ztcmPJ59vb2WLt2LTgcDlxcXJCVlYW1a9di7ty5KCwsxPbt21FYWCj+yioyMhIpKSnYvn07Vq1ahcLCQoSEhMDNzQ0A4OTkJD63hYUFAMDS0rLNMUI8Hg+Wlpbi8tbW1i3K6Ovrw8jICNra2q3eTjpmqmsKL1svRVeDqBhKhAiRNxlt2kq6buTIkRI9SF5eXvjqq68gEAiQlZUFgUAAZ2fJncjr6+vRo4dooO3ChQsxf/58pKamIiAgACEhIRg8eHC3xkAIkQ9KhAiRJ/FCc39ZpaJ501YZLDSnKPra+kifmq6wa8tKdXU1tLS0kJGRAS0tyV46IyPRTMA5c+YgMDAQycnJSE1NRUxMDL766issWLBAZvUghCgGJUKEyItQIOoJanXbAQaAA6QsB/qPV8mvyTgcjlRfTylSerpkwnbhwgX069cPWlpaGDp0KAQCAUpKSuDj0/bUb3t7e3zwwQf44IMP8NFHH2HLli1YsGABeDweAEAgELxwPXk8nkzOQwjpPJo1Roi8FJyX/Dqshec2bSVyVVhYiMWLFyMnJwcJCQnYsGEDFi1aBABwdnbGu+++ixkzZmD//v3Iy8vDxYsXERMTg+TkZABAREQEjh49iry8PFy+fBknT57EgAEDAACOjo7gcDg4fPgwHj16hOrq6i7X86WXXkJeXh6uXLmCx48fo76+vuM7EUJeCCVChMhLdbFsy5EumzFjBmpra+Hh4YGwsDAsWrQI8+bNE9++fft2zJgxA0uWLIGLiwuCg4Nx6dIlODg4ABD19oSFhWHAgAEICgqCs7MzvvvuOwCAnZ0doqOjsXz5clhZWSE8PLzL9QwJCUFQUBD8/PzQq1cvJCQkvFjghJAO0RYbHaAtNkiX5Z0BdnRiuv3Mw92yGu+LUOUtNjQNtRUhIp19/6YeIULkxdFbNDsMba13wxFtSuno3Z21IoQQ8hxKhAiRF66WaIo8gJbJ0LPfg2JVcqA0IYSoC0qECJGngW+Ipsib2EgeN7FV6anzhBCiLmj6PCHyNvAN0RR5NVtZmhBC1AElQoR0B66W0g+IJoQQTURfjRFCOo0mmSo/aiNCpEOJECGkQzo6OgCAmpoaBdeEdKShoQEAWmwXQghpHX01RgjpkJaWFszMzFBSUgIAMDAwkNjElCgHoVCIR48ewcDAANra9PJOSGfQM4UQ0inW1tYAIE6GiHLicrlwcHCgRJWQTqJEiBDSKRwOBzY2NrC0tERjY6Oiq0PawOPxwOXSqAdCOosSIUKIVLS0tGj8CSFEbdDHBkIIIYRoLEqECCGEEKKxKBEihBBCiMaiMUIdaF6crLKyUsE1IYQQQkhnNb9vd7TIKCVCHaiqqgIA2NvbK7gmhBBCCJFWVVUVTE1N27ydw2g99nYJhULcv38fxsbGMl2Xo7KyEvb29igqKoKJiYnMzqtM1D1Gik/1qXuM6h4foP4xUnxdxxhDVVUVbG1t211SgnqEOsDlctG7d2+5nd/ExEQtH9zPU/cYKT7Vp+4xqnt8gPrHSPF1TXs9Qc1osDQhhBBCNBYlQoQQQgjRWJQIKYiuri6ioqKgq6ur6KrIjbrHSPGpPnWPUd3jA9Q/RopP/miwNCGEEEI0FvUIEUIIIURjUSJECCGEEI1FiRAhhBBCNBYlQoQQQgjRWJQIyVBcXBxeeukl6OnpwdPTExcvXmy3/J49e9C/f3/o6enBzc0NR44ckbidMYZPP/0UNjY20NfXR0BAAG7duiXPENolTXxbtmyBj48PzM3NYW5ujoCAgBblZ82aBQ6HI/ETFBQk7zDaJU2M8fHxLeqvp6cnUUaV29DX17dFfBwOB+PHjxeXUaY2PH36NCZOnAhbW1twOBwcOHCgw/vw+XwMGzYMurq6ePnllxEfH9+ijLTPa3mRNr79+/djzJgx6NWrF0xMTODl5YWjR49KlPnss89atF///v3lGEX7pI2Rz+e3+hh9+PChRDlVbcPWnl8cDgeurq7iMsrUhjExMXjllVdgbGwMS0tLBAcHIycnp8P7Kfq9kBIhGfn555+xePFiREVF4fLlyxgyZAgCAwNRUlLSavnz58/jnXfewezZs5GZmYng4GAEBwcjOztbXObLL7/E+vXrsWnTJqSnp8PQ0BCBgYGoq6vrrrDEpI2Pz+fjnXfewcmTJ5GWlgZ7e3uMHTsW9+7dkygXFBSEBw8eiH8SEhK6I5xWSRsjIFoN9fn6FxQUSNyuym24f/9+idiys7OhpaWFt956S6KcsrTh06dPMWTIEMTFxXWqfF5eHsaPHw8/Pz9cuXIFERERmDNnjkSy0JXHhLxIG9/p06cxZswYHDlyBBkZGfDz88PEiRORmZkpUc7V1VWi/c6ePSuP6neKtDE2y8nJkYjB0tJSfJsqt+E333wjEVdRUREsLCxaPAeVpQ1PnTqFsLAwXLhwAb/++isaGxsxduxYPH36tM37KMV7ISMy4eHhwcLCwsS/CwQCZmtry2JiYlot//bbb7Px48dLHPP09GTvv/8+Y4wxoVDIrK2t2erVq8W3P3nyhOnq6rKEhAQ5RNA+aeP7q6amJmZsbMx27NghPjZz5kw2adIkWVe1y6SNcfv27czU1LTN86lbG65du5YZGxuz6upq8TFla8NmAFhSUlK7Zf75z38yV1dXiWNTpkxhgYGB4t9f9G8mL52JrzUDBw5k0dHR4t+joqLYkCFDZFcxGepMjCdPnmQAWHl5eZtl1KkNk5KSGIfDYfn5+eJjytyGJSUlDAA7depUm2WU4b2QeoRkoKGhARkZGQgICBAf43K5CAgIQFpaWqv3SUtLkygPAIGBgeLyeXl5ePjwoUQZU1NTeHp6tnlOeelKfH9VU1ODxsZGWFhYSBzn8/mwtLSEi4sL5s+fj9LSUpnWvbO6GmN1dTUcHR1hb2+PSZMm4dq1a+Lb1K0Nt27ditDQUBgaGkocV5Y2lFZHz0FZ/M2UiVAoRFVVVYvn4K1bt2BrawsnJye8++67KCwsVFANu87d3R02NjYYM2YMzp07Jz6ubm24detWBAQEwNHRUeK4srZhRUUFALR4zD1PGd4LKRGSgcePH0MgEMDKykriuJWVVYvvqps9fPiw3fLN/0pzTnnpSnx/tWzZMtja2ko8mIOCgvDDDz/g+PHj+OKLL3Dq1CmMGzcOAoFApvXvjK7E6OLigm3btuHgwYP48ccfIRQK4e3tjbt37wJQrza8ePEisrOzMWfOHInjytSG0mrrOVhZWYna2lqZPO6VyZo1a1BdXY23335bfMzT0xPx8fFISUnBxo0bkZeXBx8fH1RVVSmwpp1nY2ODTZs2Yd++fdi3bx/s7e3h6+uLy5cvA5DNa5eyuH//Pn755ZcWz0FlbUOhUIiIiAi8+uqrGDRoUJvllOG9kHafJ3IXGxuLxMRE8Pl8icHEoaGh4v+7ublh8ODB6Nu3L/h8Pvz9/RVRVal4eXnBy8tL/Lu3tzcGDBiA77//HitXrlRgzWRv69atcHNzg4eHh8RxVW9DTfHTTz8hOjoaBw8elBg/M27cOPH/Bw8eDE9PTzg6OmL37t2YPXu2IqoqFRcXF7i4uIh/9/b2xp07d7B27Vrs3LlTgTWTvR07dsDMzAzBwcESx5W1DcPCwpCdna3QMWedRT1CMtCzZ09oaWmhuLhY4nhxcTGsra1bvY+1tXW75Zv/leac8tKV+JqtWbMGsbGxSE1NxeDBg9st6+TkhJ49e+L27dsvXGdpvUiMzXR0dDB06FBx/dWlDZ8+fYrExMROvagqsg2l1dZz0MTEBPr6+jJ5TCiDxMREzJkzB7t3727xFcRfmZmZwdnZWSXary0eHh7i+qtLGzLGsG3bNkyfPh08Hq/dssrQhuHh4Th8+DBOnjyJ3r17t1tWGd4LKRGSAR6Ph+HDh+P48ePiY0KhEMePH5foMXiel5eXRHkA+PXXX8Xl+/TpA2tra4kylZWVSE9Pb/Oc8tKV+ADRSP+VK1ciJSUFI0aM6PA6d+/eRWlpKWxsbGRSb2l0NcbnCQQCZGVlieuvDm0IiKa21tfXY9q0aR1eR5FtKK2OnoOyeEwoWkJCAt577z0kJCRILHvQlurqaty5c0cl2q8tV65cEddfHdoQEM3Gun37dqc+jCiyDRljCA8PR1JSEk6cOIE+ffp0eB+leC+UyZBrwhITE5muri6Lj49n169fZ/PmzWNmZmbs4cOHjDHGpk+fzpYvXy4uf+7cOaatrc3WrFnDbty4waKiopiOjg7LysoSl4mNjWVmZmbs4MGD7Pfff2eTJk1iffr0YbW1tUofX2xsLOPxeGzv3r3swYMH4p+qqirGGGNVVVUsMjKSpaWlsby8PHbs2DE2bNgw1q9fP1ZXV9ft8XUlxujoaHb06FF2584dlpGRwUJDQ5menh67du2auIwqt2GzUaNGsSlTprQ4rmxtWFVVxTIzM1lmZiYDwL7++muWmZnJCgoKGGOMLV++nE2fPl1cPjc3lxkYGLClS5eyGzdusLi4OKalpcVSUlLEZTr6mylzfLt27WLa2tosLi5O4jn45MkTcZklS5YwPp/P8vLy2Llz51hAQADr2bMnKykp6fb4GJM+xrVr17IDBw6wW7dusaysLLZo0SLG5XLZsWPHxGVUuQ2bTZs2jXl6erZ6TmVqw/nz5zNTU1PG5/MlHnM1NTXiMsr4XkiJkAxt2LCBOTg4MB6Pxzw8PNiFCxfEt40ePZrNnDlTovzu3buZs7Mz4/F4zNXVlSUnJ0vcLhQK2YoVK5iVlRXT1dVl/v7+LCcnpztCaZU08Tk6OjIALX6ioqIYY4zV1NSwsWPHsl69ejEdHR3m6OjI5s6dq5AXp+dJE2NERIS4rJWVFXv99dfZ5cuXJc6nym3IGGM3b95kAFhqamqLcylbGzZPpf7rT3NMM2fOZKNHj25xH3d3d8bj8ZiTkxPbvn17i/O29zfrTtLGN3r06HbLMyZaLsDGxobxeDxmZ2fHpkyZwm7fvt29gT1H2hi/+OIL1rdvX6anp8csLCyYr68vO3HiRIvzqmobMiaaKq6vr882b97c6jmVqQ1biw2AxPNKGd8LOc8qTwghhBCicWiMECGEEEI0FiVChBBCCNFYlAgRQgghRGNRIkQIIYQQjUWJECGEEEI0FiVChBBCCNFYlAgRQgghRGNRIkQIIYQQjUWJECGEEEI0FiVChBBCCNFYlAgRQjTKo0ePYG1tjVWrVomPnT9/Hjwer8Uu2IQQ9Ud7jRFCNM6RI0cQHByM8+fPw8XFBe7u7pg0aRK+/vprRVeNENLNKBEihGiksLAwHDt2DCNGjEBWVhYuXboEXV1dRVeLENLNKBEihGik2tpaDBo0CEVFRcjIyICbm5uiq0QIUQAaI0QI0Uh37tzB/fv3IRQKkZ+fr+jqEEIUhHqECCEap6GhAR4eHnB3d4eLiwvWrVuHrKwsWFpaKrpqhJBuRokQIUTjLF26FHv37sXVq1dhZGSE0aNHw9TUFIcPH1Z01Qgh3Yy+GiOEaBQ+n49169Zh586dMDExAZfLxc6dO3HmzBls3LhR0dUjhHQz6hEihBBCiMaiHiFCCCGEaCxKhAghhBCisSgRIoQQQojGokSIEEIIIRqLEiFCCCGEaCxKhAghhBCisSgRIoQQQojGokSIEEIIIRqLEiFCCCGEaCxKhAghhBCisSgRIoQQQojGokSIEEIIIRrr/wEVXLn2AERfkAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/tutorials/Tutorial 3. Building custom analyses - the data analysis framework_7_0.png" } }, "output_type": "display_data" } ], "source": [ "# create a fitting model based on a cosine function\n", "fitting_model = lmfit.Model(cos_func)\n", "\n", "# specify initial guesses for each parameter\n", "fitting_model.set_param_hint(\"amplitude\", value=0.5, min=0.1, max=2, vary=True)\n", "fitting_model.set_param_hint(\"frequency\", value=0.8, vary=True)\n", "fitting_model.set_param_hint(\"phase\", value=0)\n", "fitting_model.set_param_hint(\"offset\", value=0)\n", "params = fitting_model.make_params()\n", "\n", "# here we run the fit\n", "fit_result = fitting_model.fit(dataset.y0.values, x=dataset.x0.values, params=params)\n", "\n", "# It is possible to get a quick visualization of our fit using a build-in method of lmfit\n", "_ = fit_result.plot_fit(show_init=True)" ] }, { "cell_type": "code", "execution_count": 9, "id": "bae155da", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:31.599578Z", "iopub.status.busy": "2023-09-26T17:44:31.599395Z", "iopub.status.idle": "2023-09-26T17:44:31.603206Z", "shell.execute_reply": "2023-09-26T17:44:31.602727Z" } }, "outputs": [ { "data": { "text/html": [ "

Model

Model(cos_func)

Fit Statistics

fitting methodleastsq
# function evals36
# data points30
# variables4
chi-square 0.10567419
reduced chi-square 0.00406439
Akaike info crit.-161.457760
Bayesian info crit.-155.852971

Variables

name value standard error relative error initial value min max vary
frequency 0.99552039 0.00993607 (1.00%) 0.8 -inf inf True
amplitude 0.51456828 0.01636804 (3.18%) 0.5 0.10000000 2.00000000 True
offset -0.00463899 0.01262911 (272.24%) 0 -inf inf True
phase 0.00583566 0.07054150 (1208.80%) 0 -inf inf True

Correlations (unreported correlations are < 0.100)

frequencyphase-0.8878
frequencyoffset-0.3862
offsetphase0.3425
frequencyamplitude-0.1252
amplitudephase0.1106
" ], "text/plain": [ "" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fit_result" ] }, { "cell_type": "code", "execution_count": 10, "id": "59f7bb5a", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:31.605038Z", "iopub.status.busy": "2023-09-26T17:44:31.604873Z", "iopub.status.idle": "2023-09-26T17:44:31.608759Z", "shell.execute_reply": "2023-09-26T17:44:31.608370Z" } }, "outputs": [ { "data": { "text/plain": [ "{'amplitude': 0.5145682806048846, 'frequency': 0.9955203924378577}" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "quantities_of_interest = {\n", " \"amplitude\": fit_result.params[\"amplitude\"].value,\n", " \"frequency\": fit_result.params[\"frequency\"].value,\n", "}\n", "quantities_of_interest" ] }, { "cell_type": "code", "execution_count": 11, "id": "aec01769", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:31.610606Z", "iopub.status.busy": "2023-09-26T17:44:31.610433Z", "iopub.status.idle": "2023-09-26T17:44:31.614272Z", "shell.execute_reply": "2023-09-26T17:44:31.613714Z" } }, "outputs": [ { "data": { "text/plain": [ "PosixPath('/home/slavoutich/quantify-data/20230926/20230926-194430-301-508488-Cosine experiment')" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# the experiment folder is retrieved with a convenience function\n", "exp_folder = Path(locate_experiment_container(dataset.tuid))\n", "exp_folder" ] }, { "cell_type": "code", "execution_count": 12, "id": "88b93e44", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:31.616202Z", "iopub.status.busy": "2023-09-26T17:44:31.616038Z", "iopub.status.idle": "2023-09-26T17:44:31.618982Z", "shell.execute_reply": "2023-09-26T17:44:31.618597Z" } }, "outputs": [], "source": [ "with open(exp_folder / \"quantities_of_interest.json\", \"w\", encoding=\"utf-8\") as file:\n", " json.dump(quantities_of_interest, file)" ] }, { "cell_type": "code", "execution_count": 13, "id": "119db984", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:31.620826Z", "iopub.status.busy": "2023-09-26T17:44:31.620662Z", "iopub.status.idle": "2023-09-26T17:44:31.981194Z", "shell.execute_reply": "2023-09-26T17:44:31.980565Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHgCAYAAABNbtJFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7kElEQVR4nOzdd3hUZfbA8e+dSe8JqZCQhAChhN6LooKCYsHesKKrLq6uuhZcXcWy1lV3lbWwdnR1bT9XXbEigvSEFnoJpJBCCOllkpn398edGTIkgQSS3JnkfJ4nD8mdOzMnCTM5933Pe15NKaUQQgghhOhGTEYHIIQQQgjR2SQBEkIIIUS3IwmQEEIIIbodSYCEEEII0e1IAiSEEEKIbkcSICGEEEJ0O5IACSGEEKLbkQRICCGEEN2OJEBCCCGE6HYkARJCtEjTNB599FGjw/A4SUlJXH/99UaHIYQ4BkmAhPAQe/bs4ZZbbqFPnz74+fkREhLCpEmT+Pvf/05NTY3R4QkPs3XrVh599FH27dtndChCGMLL6ACEEMf3zTffcOmll+Lr68u1115LWloaFouF5cuXc++997JlyxbeeOONdn/empoavLzkbaKtduzYgcnk3teXW7duZf78+Zx22mkkJSUZHY4QnU7e2YRwc1lZWVxxxRUkJiby888/ExcX57xt7ty57N69m2+++aZDntvPz69DHrcrUkpRW1uLv78/vr6+RocjhDgO975EEULw7LPPUllZyZtvvumS/Dj07duXO++80/l1Q0MDjz/+OCkpKfj6+pKUlMSDDz5IXV2dy/3WrVvH9OnTiYyMxN/fn+TkZG688UaXc46uAXr00UfRNI3du3dz/fXXExYWRmhoKDfccAPV1dVNYlu0aBGjRo3C39+fiIgIrrjiCnJyclr1fefl5XHjjTcSExODr68vgwcP5q233nLeXlNTw4ABAxgwYIDLFGBJSQlxcXFMnDgRq9UKwPXXX09QUBB79+5l+vTpBAYG0rNnTx577DGUUi7Pa7PZeOmllxg8eDB+fn7ExMRwyy23cPjwYZfzkpKSOPfcc/nuu+8YPXo0/v7+vP76687bGtcAvfPOO2iaxvLly7njjjuIiooiLCyMW265BYvFQmlpKddeey3h4eGEh4dz3333nXRcy5cvZ+zYsfj5+dGnTx/ee+89l3guvfRSAE4//XQ0TUPTNH755ZdW/W6E6BKUEMKt9erVS/Xp06fV51933XUKUJdccolasGCBuvbaaxWgZs2a5TynsLBQhYeHq/79+6vnnntOLVy4UP35z39WAwcOdHksQD3yyCPOrx955BEFqBEjRqiLLrpI/fOf/1Q33XSTAtR9993nct8nnnhCaZqmLr/8cvXPf/5TzZ8/X0VGRqqkpCR1+PDhY34PBQUFKj4+XiUkJKjHHntMvfrqq+r8889XgHrxxRed561atUqZzWZ11113OY9dccUVyt/fX+3YscPlZ+Ln56f69eunrrnmGvXKK6+oc889VwHq4Ycfdnnum266SXl5eambb75Zvfbaa+r+++9XgYGBasyYMcpisTjPS0xMVH379lXh4eHqgQceUK+99ppasmSJ87brrrvOee7bb7+tADV8+HA1Y8YMtWDBAnXNNdc4f26TJ09WV111lfrnP//pjOvdd9894bhSU1NVTEyMevDBB9Urr7yiRo4cqTRNU5mZmUoppfbs2aPuuOMOBagHH3xQvf/+++r9999XBQUFx/y9CNGVSAIkhBsrKytTgLrgggtadf6GDRsUoG666SaX43/6058UoH7++WellFJffPGFAtTatWuP+XgtJUA33nijy3kXXnih6tGjh/Prffv2KbPZrJ588kmX8zZv3qy8vLyaHD/anDlzVFxcnCouLnY5fsUVV6jQ0FBVXV3tPDZv3jxlMpnUr7/+qj755BMFqJdeesnlfo6k8A9/+IPzmM1mUzNnzlQ+Pj7q4MGDSimlli1bpgD1wQcfuNx/8eLFTY4nJiYqQC1evLhJ/C0lQNOnT1c2m815fMKECUrTNHXrrbc6jzU0NKj4+Hg1ZcoU57ETievXX391HisqKlK+vr7qnnvucR5z/KwcSZsQ3Y1MgQnhxsrLywEIDg5u1fn/+9//ALj77rtdjt9zzz0AzlqhsLAwAL7++mvq6+vbHNett97q8vUpp5zCoUOHnPF+/vnn2Gw2LrvsMoqLi50fsbGx9OvXjyVLlrT42EopPvvsM8477zyUUi73nz59OmVlZWRkZDjPf/TRRxk8eDDXXXcdv//975kyZQp33HFHs499++23Oz/XNI3bb78di8XCjz/+CMAnn3xCaGgoZ555psvzjho1iqCgoCZxJycnM3369Fb/3ObMmYOmac6vx40bh1KKOXPmOI+ZzWZGjx7N3r17ncfaGtegQYM45ZRTnF9HRUWRmprq8phCdHdSBC2EGwsJCQGgoqKiVefv378fk8lE3759XY7HxsYSFhbG/v37AZgyZQoXX3wx8+fP58UXX+S0005j1qxZXHXVVa0q4O3du7fL1+Hh4QAcPnyYkJAQdu3ahVKKfv36NXt/b2/vFh/74MGDlJaW8sYbb7S4sq2oqMj5uY+PD2+99RZjxozBz8+Pt99+2yXJcDCZTPTp08flWP/+/QGcS8F37dpFWVkZ0dHRx31e0BOgtjj65xYaGgpAQkJCk+ONa3vaGtfRzwP67+joeiEhujNJgIRwYyEhIfTs2ZPMzMw23a+5BODo2z/99FNWrVrFV199xXfffceNN97I3/72N1atWkVQUNAx7282m5s9ruyFuzabDU3T+Pbbb5s991iPb7PZAJg9ezbXXXdds+cMHTrU5evvvvsOgNraWnbt2tXmxKTxc0dHR/PBBx80e3tUVJTL1/7+/m16/JZ+bs0dV42KoNsa1/F+P0IISYCEcHvnnnsub7zxBitXrmTChAnHPDcxMRGbzcauXbsYOHCg83hhYSGlpaUkJia6nD9+/HjGjx/Pk08+yYcffsjVV1/NRx99xE033XRSMaekpKCUIjk52TnK0lpRUVEEBwdjtVqZNm3acc/ftGkTjz32GDfccAMbNmzgpptuYvPmzc7RFQebzcbevXtd4tm5cyeAsw9OSkoKP/74I5MmTWpzctOROiKu4yXJQnR1UgMkhJu77777CAwM5KabbqKwsLDJ7Xv27OHvf/87AOeccw4AL730kss5L7zwAgAzZ84E9Kmqo0cDhg8fDtBkufyJuOiiizCbzcyfP7/J8yilOHToUIv3NZvNXHzxxXz22WfNjnwdPHjQ+Xl9fT3XX389PXv25O9//zvvvPMOhYWF3HXXXc0+9iuvvOISxyuvvIK3tzdTp04F4LLLLsNqtfL44483uW9DQwOlpaXH/L47SkfEFRgYCGDY9ySE0WQESAg3l5KSwocffsjll1/OwIEDXTpBr1ixgk8++cTZc2bYsGFcd911vPHGG5SWljJlyhTWrFnDu+++y6xZszj99NMBePfdd/nnP//JhRdeSEpKChUVFSxcuJCQkBBnEnWyMT/xxBPMmzePffv2MWvWLIKDg8nKyuKLL77gd7/7HX/6059avP/TTz/NkiVLGDduHDfffDODBg2ipKSEjIwMfvzxR0pKSgB44okn2LBhAz/99BPBwcEMHTqUv/zlLzz00ENccsklLt+Ln58fixcv5rrrrmPcuHF8++23fPPNNzz44IPOKaQpU6Zwyy238NRTT7FhwwbOOussvL292bVrF5988gl///vfueSSS07659NWHRHX8OHDMZvNPPPMM5SVleHr68sZZ5zRYp2REF2OMYvPhBBttXPnTnXzzTerpKQk5ePjo4KDg9WkSZPUyy+/rGpra53n1dfXq/nz56vk5GTl7e2tEhIS1Lx581zOycjIUFdeeaXq3bu38vX1VdHR0ercc89V69atc3lOWlgG71g27uBY5p2VleVy/LPPPlOTJ09WgYGBKjAwUA0YMEDNnTvXpUdPSwoLC9XcuXNVQkKC8vb2VrGxsWrq1KnqjTfeUEoplZ6erry8vFyWtiulLyMfM2aM6tmzp7Pf0HXXXacCAwPVnj171FlnnaUCAgJUTEyMeuSRR5TVam3y3G+88YYaNWqU8vf3V8HBwWrIkCHqvvvuUwcOHHCek5iYqGbOnNls7C0tgz+67UBLP09HvO0Z15QpU1yW1iul1MKFC1WfPn2U2WyWJfGi29GUkqo4IUTXdv311/Ppp59SWVlpdChCCDchNUBCCCGE6HYkARJCCCFEtyMJkBBCCCG6HakBEkIIIUS3IyNAQgghhOh2JAESQgghRLcjCZDweO+88w6apjk3tDyWpKQkZ9NAIYQQ3ZckQMJQK1as4NFHH/WIdvzbt2/nvvvuY/jw4QQHBxMXF8fMmTNZt25ds+fn5eVx2WWXERYWRkhICBdccAF79+51OScnJ4f58+czduxYwsPDiYyM5LTTTuPHH39s8ni//vor559/PgkJCfj5+REbG8uMGTP47bffmn3+FStWMHnyZAICAoiNjeWOO+5otg9Oeno6M2bMICQkhODgYM466yw2bNjgck51dTULFizgrLPOIi4ujuDgYEaMGMGrr76K1Wpt9vn37NnDVVddRXR0NP7+/vTr148///nPzZ57tO+//545c+aQlpaG2Wx27tXVnN27d3PJJZcQHh5OQEAAkydPZsmSJcd8/Pr6egYNGoSmaTz//PPHPPeDDz5A07RmN3BduHAhU6ZMISYmBl9fX5KTk7nhhhtaTMbffPNNBg4ciJ+fH/369ePll18+5nN39HPt2LGDu+66i4kTJ+Ln59fqC4nGNE1r9uPpp59ucm5rXhMAZWVl3HffffTr1w9/f38SExOZM2cO2dnZx4zlzDPPRNM0br/99pN6zB9//JHTTz+dyMhIwsLCGDt2LO+//34bfirCIxjbh1F0d88991yzHYTboqGhQdXU1CibzXbcc4/u0NsW99xzjwoLC1Nz5sxRr7/+unr22WdVSkqKMpvN6ocffnA5t6KiQvXr109FR0erZ555Rr3wwgsqISFBxcfHq+LiYud5L7/8svL391dXXnmleuWVV9RLL72kRo4cqQD11ltvuTzmwoUL1QUXXKCeeOIJ9a9//Us999xzatiwYcpkMqlvv/3W5dz169crPz8/NWLECPXqq6+qP//5z8rX11fNmDHD5bz09HTl5+en+vXrp55//nn17LPPqqSkJBUSEqK2b9/uPG/z5s1K0zQ1bdo09eyzz6rXXntNXXjhhQpQ1157bZOf1fr161VoaKgaNGiQevrpp9XChQvVww8/rK6//vpW/ayvu+465efnpyZOnKji4+NVYmJis+dlZ2eryMhIFRMTo5588kn10ksvqWHDhikvLy+1dOnSFh//b3/7mwoMDFSAeu6551o8r6KiQvXs2dPZyfpot912m7ruuuvU888/r95880310EMPqZiYGBUZGany8vJczn3ttdcUoC6++GL1xhtvqGuuuUYB6umnn27Vz6Qjnuvtt99WJpNJpaWlqeHDh5/QaxFQZ555pnr//fddPjIzM13Oa+1rwmq1qjFjxqjAwEB17733qoULF6r7779fBQcHq169eqny8vJm4/jss8+cv9O5c+e63NaWx/zyyy+Vpmlq4sSJ6uWXX1avvPKKOvXUUxWgXnjhhTb9bIR7kwRIGKo9EqC2OJkEaN26daqiosLlWHFxsYqKilKTJk1yOf7MM88oQK1Zs8Z5bNu2bcpsNqt58+Y5j2VmZjbZBqG2tlYNGDBAxcfHHzemqqoqFRMTo6ZPn+5y/Oyzz1ZxcXGqrKzMeWzhwoUKUN99953z2DnnnKPCw8Nd/gAdOHBABQUFqYsuush57ODBg03+oCml1A033KAAtWvXLucxq9Wq0tLS1Lhx41R1dfVxv4fm5OXlKYvFopRSaubMmS0mQL///e+Vl5eXS7JWVVWlEhIS1MiRI5u9T2FhoQoNDVWPPfbYcROg+++/X6Wmpqqrr7662QSoOevWrVOAeuqpp5zHqqurVY8ePZpsUeF43JKSklY9dns/16FDh5x//E/0tdhcwtGc1r4mfvvtNwWoV155xeX+b731lgLU559/3uSxa2pqVFJSkvN3enQ8bXnMM888U/Xs2bPJ9jIpKSlq6NChx/0+heeQKTBhmEcffZR7770XgOTkZOfQ+b59+9i3bx+apvHOO+80uZ+maTz66KPOr5urAVJK8cQTTxAfH09AQACnn346W7ZsaTaOPXv2sGfPnuPGO2rUqCbTID169OCUU05h27ZtLsc//fRTxowZw5gxY5zHBgwYwNSpU/nPf/7jPDZ48GAiIyNd7uvr68s555xDbm4uFRUVx4wpICCAqKgolynE8vJyfvjhB2bPnk1ISIjz+LXXXktQUJDL8y9btoxp06bRo0cP57G4uDimTJnC119/7Zwyi4yMZPDgwU2e/8ILLwRw+f6///57MjMzeeSRR/D396e6urrFabKW9OzZE29v7+Oet2zZMkaMGEFqaqrzWEBAAOeffz4ZGRns2rWryX0eeOABUlNTmT179jEfe9euXbz44ou88MILeHm1ft9ox3Rd49/JkiVLOHToEL///e9dzp07dy5VVVV88803rX789nyuiIgIgoODT+i5j1ZTU0NtbW2Lt7f2NVFeXg5ATEyMy/3j4uIA8Pf3b/LYzz77LDabrcUNdtvymOXl5YSHh+Pr6+s85uXlRWRkZLPPLTyXJEDCMBdddBFXXnklAC+++CLvv/8+77//vnNn7pPxl7/8hYcffphhw4bx3HPP0adPH8466yyqqqqanDt16lSmTp16ws9VUFDgksTYbDY2bdrE6NGjm5w7duxY9uzZc9zEpqCggICAAAICAprcVl5eTnFxMdu3b+fBBx8kMzPTJf7NmzfT0NDQ5Pl9fHwYPnw469evdx6rq6tr9k09ICAAi8VCZmbmceMEXL5/R/2Sr68vo0ePJjAwkICAAK644grnLu7t5Vjxg17f1NiaNWt49913eemll9A07ZiP/cc//pHTTz/dZUf5lhw6dIiioiLWrVvHDTfcAODyO3H8zI/+nYwaNQqTyeTyO3Gn52qtd955h8DAQPz9/Rk0aBAffvihy+1teU04/s88/PDD/Pzzz+Tl5bF06VLuu+8+xowZw7Rp01zun52dzdNPP80zzzzTYoLSlsc87bTT2LJlCw8//DC7d+9mz549PP7446xbt4777rvvZH9Uwo20/rJGiHY2dOhQRo4cyb///W9mzZrlUuh68ODBE37cgwcP8uyzzzJz5ky++uor5x+6P//5z/z1r3892bBdLFu2jJUrV/LQQw85j5WUlFBXV+e8umzMcezAgQMuoxaN7d69m88//5xLL70Us9nc5PbLLruM7777DtCTmltuuYWHH37YeXt+fr7Lcx39/MuWLXN+nZqayqpVq7Barc7nslgsrF69GtCLVltisVh46aWXSE5Odrmqd4y6XHbZZcyYMYN58+axceNGnnrqKXJycli+fPlxk4/WSk1NZdmyZVRUVLiMZCxfvrxJ/Eop/vCHP3D55ZczYcKEYxb7fvPNN3z//fds3LixVXH06tWLuro6QB8V/Mc//sGZZ57pvD0/Px+z2Ux0dLTL/Xx8fOjRowcHDhxo1fN09nO1xsSJE7nssstITk7mwIEDLFiwgKuvvpqysjJuu+02oG2vicjISD7++GNuvvlml8Ru+vTpfPrpp01G4+655x5GjBjBFVdc0WKMbXnMhx9+mKysLJ588kmeeOIJQE+oP/vsMy644IIT+AkJdyUJkOhyfvzxRywWC3/4wx9c/tD+8Y9/bDYBauuqF4eioiKuuuoqkpOTXa4Ma2pqAFyG0B38/PxczjladXU1l156Kf7+/s2uogF4+umnueeee8jJyeHdd9/FYrHQ0NDQ6udv/Ny///3vue2225gzZw733XcfNpuNJ554wplEtRQnwO23387WrVv55ptvXP6AOKbNxowZw6JFiwC4+OKLCQgIYN68efz0009NruJP1G233cZXX33F5ZdfzpNPPklgYCD//Oc/nSvzGsf/zjvvsHnzZj799NNjPqbFYuGuu+7i1ltvZdCgQa2K49tvv6W2tpZt27axaNGiJiONNTU1+Pj4NHvfo38n7vRcrXH0KsQbb7yRUaNG8eCDD3L99dfj7+/f5tdEVFQUI0aM4Pbbb2fw4MFs2LCBZ599lhtuuIFPPvnEed6SJUv47LPPnAn7sbT2MX19fenfvz+XXHIJF110EVarlTfeeIPZs2fzww8/MH78+Lb9gITbkgRIdDn79+8HoF+/fi7Ho6KiCA8Pb5fnqKqq4txzz6WiooLly5e71AY5huEdV+mNOWokmhuqt1qtXHHFFWzdupVvv/2Wnj17Nvvcw4cPd34+e/ZsRo4cyfXXX+/8w36852/83Lfeeis5OTk899xzvPvuu4A+XXDffffx5JNPNrv0G+C5555j4cKFPP74402miByP75jedLjqqquYN28eK1asYNq0aZSVlbn80fPx8SEiIqLZ52vJ2Wefzcsvv8wDDzzAyJEjAejbty9PPvkk9913nzP+8vJy5s2bx7333ktCQsIxH/PFF1+kuLiY+fPntzqO008/3RnPBRdcQFpaGkFBQc7l2P7+/lgslmbv2/h3UllZ6dKqwGw2N5kSbq/naouDBw+61HEFBQW1+H/Dx8eH22+/nVtvvZX09HQmT57cptfE3r17Of3003nvvfe4+OKLAbjgggucPby+/fZbzj77bBoaGrjjjju45pprXEYgm9PaxwQ9sV+1ahUZGRmYTHqVyGWXXcbgwYO58847W5VsCc8gNUDCLbU0RdLWYtqOYLFYuOiii9i0aRNffvklaWlpLrdHRETg6+vrHEVpzHGsueTm5ptv5uuvv+add97hjDPOaFUsPj4+nH/++Xz++efOZMIxpdDS8x/93E8++SSFhYUsW7aMTZs2sXbtWmw2GwD9+/dv8hjvvPMO999/P7feeqvL1J+D4/GPLjh1TMkcPnwYgDvvvJO4uDjnx0UXXdSq7/lot99+O4WFhaxYsYJ169axfft2QkNDXeJ//vnnsVgsXH755c4i+9zcXGc8+/btw2KxUFZWxhNPPMHNN99MeXm589zKykqUUuzbt4+ioqJjxpOSksKIESP44IMPnMfi4uKwWq1N7muxWDh06JDzZ/b888+7/EyO94f9ZJ6rLcaMGeMS1/F6JzmSTEfNV1teE++88w61tbWce+65Luedf/75wJERp/fee48dO3Zwyy23OH9PjtHciooK9u3bR3V1dZse02Kx8OabbzJz5kxn8gPg7e3N2Wefzbp161pMLoXnkREgYaiWEh3HSM3RDRIdozvHkpiYCOi1KH369HEeP3jwoPOP74my2Wxce+21/PTTT/znP/9hypQpTc4xmUwMGTKk2QaJq1evpk+fPk1W3tx77728/fbbvPTSS01GTo6npqYGpRQVFRX4+/uTlpaGl5cX69at47LLLnOeZ7FY2LBhg8sxh/DwcCZPnuz8+scffyQ+Pp4BAwa4nPfll19y0003cdFFF7FgwYJm4xk1ahQLFy5sUj/kqD1xjGjcd999LiuxTmZ0LjAwkAkTJrjE7+/vz6RJkwC9UPbw4cPNrmT761//yl//+lfWr19PWFgYlZWVPPvsszz77LNNzk1OTuaCCy7g//7v/44ZT01Njctoh2PUbt26dS4jZuvWrcNmszlvv/baa11+D60ZrTnR52qLDz74wGW0rvHrqjmO5oaO33VbXhOFhYUopZpc7NTX1wM4p3uzs7Opr693/o4be++993jvvff44osvmDVrVqsf89ChQzQ0NDR7oVVfX4/NZnOLizDRToxcgy/Eq6++qgC1fv36JrdFRkaqCy+80OXYPffcowD1yCOPOI+9/fbbLv1LioqKlLe3t5o5c6ZLc8QHH3xQAU36AO3evVvt3r27VfH+/ve/V4B6/fXXj3ne008/rQC1du1a57Ht27crs9ms7r//fpdzn332WQWoBx988JiPWVhY2OTY4cOHVUJCgkpISHA5PmPGDBUXF+fS4O1f//qXApo0TTzaRx99pAD1/PPPuxxfunSp8vPzU6effrpLj5Sj5efnK19fXzV58mRltVqdx+fNm9ekD0xrHKsPUHN+++03ZTab1e233+48lp6err744guXj9dff10B6vrrr1dffPGFKi0tVVVVVU3O++KLL9Tpp5+u/Pz81BdffKFWrVqllNJ7wzTXv2f16tXKbDara665xnmsurpaRUREqHPPPdfl3NmzZ6uAgAB16NChY35PnfFcJ9IHqKioqMmx8vJylZKSoiIjI1VdXZ3zeGtfE88//7wC1Ntvv+3yuC+99JIC1EcffaSU0nsINfe7AtQ555yjvvjiC3XgwIE2PWZDQ4MKCwtT/fv3d4m9oqJCxcfHqwEDBrT6ZyPcnyRAwlBr1qxxvmG999576t///reqrKxUSin1wAMPKEDNmTNHvfrqq+rKK69Uo0aNOm4CpNSRP7bnnHOOeuWVV9ScOXNUz549VWRkZJMEKDExsVV/YF988UUFqAkTJjTpevv+++8741bqyB+B6Oho9eyzz6oXX3xRJSQkqJ49e7r80fj8888VoPr169fsYxYUFDjPHTlypDr//PPVk08+6eysHB8fr0wmk/rkk09cYk1PT1e+vr4unaD9/PzUWWed5XLe0qVL1dSpU9Uzzzyj/vWvf6mbbrpJmc1mNWPGDFVfX+88b9++fSo0NFT5+/urBQsWNIlz48aNLo/raEh35plnqgULFqjf/e53StM0deWVVx7356yUUhs3blSPP/64evzxx1VqaqoKCwtzfv3f//7XJa6xY8c6u2Pfddddyt/fX40YMaLFjsEOWVlZx22E6HDdddc1aYR4+PBhFRgYqG688Ub1t7/9Tb322mtq7ty5KiAgQEVERKidO3e6nL9gwQIFqEsuuUQtXLhQXXvttQpQTz755HGfv6Oeq7S01PlznTFjhgLUPffcox5//HH18ssvHzeuRx55RA0bNkw99NBD6o033lDz589XiYmJStM0tWjRIpdzW/uaKC4uVrGxscrHx0fdcccd6vXXX1e33HKLMpvNavDgwS6JSXNophFiWx7ziSeeUIAaMWKEevHFF9Xzzz+vBg4cqIAm35PwbJIACcM9/vjjqlevXspkMrkkMtXV1WrOnDkqNDRUBQcHq8suu0wVFRW1KgGyWq1q/vz5Ki4uTvn7+6vTTjtNZWZmNtsJurUJ0HXXXaeAFj+OvnLOyclRl1xyiQoJCVFBQUHq3HPPdemYrJT+B+RYj7lkyRLnua+88oqaPHmyioyMVF5eXioqKkqdd9556tdff2023mXLlqmJEycqPz8/FRUVpebOndskKdi9e7c666yzVGRkpPL19VUDBgxQTz31VJM/MkuWLDlmnI1/H0opZbPZ1Msvv6z69++vvL29VUJCgnrooYec3Z2Px/E7be6j8e+vpKREXXDBBc4/bsnJyer+++8/bvKj1MknQHV1derOO+9UQ4cOVSEhIcrb21slJiaqOXPmtDiK8sYbb6jU1FTl4+OjUlJS1IsvvtiqLVw66rkcP4PmPlrzmvj+++/VmWeeqWJjY5W3t7cKCwtTZ511lvrpp5+aPb81rwmllMrNzVU33nijSk5OVj4+PiouLk7dfPPNTbqmN6e5BKitj/nBBx+osWPHqrCwMOXv76/GjRunPv300+M+t/AsmlJKnfD8mRBCCCGEB5JVYEIIIYTodiQBEkIIIUS3IwmQEEIIIbodSYCEEEII0e1IAiSEEEKIbkcSICGEEEJ0O5IACSGEEKLbkQRICCGEEN2OJEBCCCGE6HYkARJCCCFEt+NldADuyGazceDAAYKDg9E0zehwhBBCCNEKSikqKiro2bMnJtOxx3gkAWrGgQMHSEhIMDoMIYQQQpyAnJwc4uPjj3mOJEDNCA4OBvQfYEhIiMHRCCGEEKI1ysvLSUhIcP4dPxZJgJrhmPYKCQmRBEgIIYTwMK0pX5EiaCGEEEJ0O5IACSGEEKLbkQRICCGEEN2OJEBCCCGE6HYkARJCCCFEtyMJkBBCCCG6HUmAhBBCCNHtSAIkhBBCiG5HEiAhhBBCdDvSCboTWW2KNVklFFXUEh3sx9jkCMwm2WxVCCGE6GySAHWSxZn5zP9qK/lltc5jcaF+PHLeIGakxRkYmRBCCNH9yBRYJ1icmc9tizJckh+AgrJabluUweLMfIMiE0IIIbonSYA6mNWmmP/VVlQztzmOzf9qK1Zbc2cIIYQQoiNIAtTB1mSVNBn5aUwB+WW1rMkq6byghBBCCINYbYqVew7x5YY8Vu45ZNgAgNQAdbCiipaTnxM5TwghhPBU7lQPKyNAHSw62K9dzxNCCCE8kbvVw0oC1MHGJkcQF+rHsRa7m00aYQHenRaTEEII0ZncsR5WEqAOZjZpPHLeIIAWkyCrTXHRP1fwxfrczgtMCCGE6CTuWA8rCVAnmJEWx6uzRxIb6jrNFRfqx3OXDOWUfpHU1Fu56+ON/PmLzdQ1WA2KVAghhGh/y3cfbNV5nVkPK0XQnWRGWhxnDoptthP0RSPj+ftPu3j55118sDqbzXllLLhqJAkRAUaHLYQQQpywHQUVPPXtNn7Z0boEqDPrYSUB6kRmbEzY/DCE9ARbIpSdAuFJmE0ad5/Zn5G9w/jjxxvYlFvGuS8v58XLh3HGgBijwxai6yjeBdkr4fA+aKiDoBiIGwa9J4CXj9HRCdFlFJXX8uKPO/l4bQ42BWYNfL3N1Fis+FHLZFMmAdTypW0yoJeIxIbqAwOdRVNKSQe+o5SXlxMaGkpZWRkhISHt+MD58MIA12MJ42HyH6H/DNA0cg9XM/eDDDbmlgFw++l9uevM/gCyj5gQJ0Ip2PYVLH8RDmQ0f45fKIy+ESb8AQJ7dG58QniYY+1rWW1p4I1f9/LGr3uptujlHDMGx3L/2QPYl7WLvC8fY5b5N4K0WvJUDybV/QPNXiH76uyRJ70Uvi1/vyUBakaHJUDVJZD+NpTlQeEWyF0Lyl7v0+8sOO8fEBJHXYOVJ7/Zxnsr9wOQGhPE4ep6iirqnA8l+4gJ0QqlOfB/t8G+ZfrXJi/9oiNmEJh9oDwP9i2HKvvwvH8EnP0MDL3MuJiFcGMt9fF5eOYgymvreeGHnc6/VcMTwnho5kBG9w6DNW/Aj49CQw0AObYoltqG8njDNUSEhrTb3zNJgE5ShyVAR6sogFX/hJX/BFs9BEbDZe9B4gQAvtyQx72fbsLSYGtyV8fYT3tkzEJ0SVm/wsezobYMvANgwlwYewsERbmeZ7PBzm/h5yehaIt+bPSNcPazYJb2FEI4OPr4HC9p6B0RwP0zBnDOkFi0hlr47CbY/rX9xglYp8xjjRpMUWVdu89oSAJ0kjotAXI4uBM+uV5/8/Xygys+hL5TsdoU4/76I8WVlmbv5pgzXX7/GTIdJkRjW/4PPr8ZrBboNQou/hdE9Dn2faz1sOxv8MvTgIIB58Ilb0ttkBDo016Tn/n5mEvZNWDeOQO4bmISvl5mfdbj31dAzmp9xHX6X2HMTaB13N+rtvz9lmXw7iCqP9z0I/SbDg21+n+Y3T+xJqukxeQHZB8xIZq141v49AY9+Rl4Plz/v+MnP6CP9pz2gH4BYvbVr1g/uQ6sDa1+anfZ40iI9na8Pj6g/00a0itMT34s1fDhZXry4xcK1/wfjL25Q5OftpJVYO7CJwAuX6S/cW//Gj65nppJ77fqrrKPmBB2uetQn9yApmxkJ8wib+RzjDX7Ym7l3a02xRrvcaixLzN+zR8w7fgffDcPznnuuPd1pz2OhGhvbdrX0tqg/y3LXQt+YXDD/yBmcMcGeAJkBMidePnoQ+6Jk6CunImr5xJO+XHvJvuICQFUFFL3/uVoDTX8bB3OGbsu4so31zL5mZ9btcfQ4sx8Jj/zM1cuXMVVS4K4pWYuNjS9eHPtv457X3fa40iI9tamfS2XPAk7F+slHVd97JbJD0gC5H68fOCy9yE8Gb+qXP4R8C+0FkrONPQrzM7smyCEW7JZOfTetfjWFbPNlsDt9XfQYB/gbk0S0lwC84NtNM/VX64//P8egAMbmr2vO+5xJER7O96+ls6/Rw3rYPkL+sFZ/4Te4zsrxDaTKTB3FNgDLn8fFp7BKdZ1XG3+kQ+sZzb7BvvIeYOkAFp0e7Zf/0aPg6uoUr7cXn8H1Ry5WlXob87zv9rKmYNim7xejpXAvGo9j2GmPcwwr6Xm4xv5ZcqnFNRoFFXUUVReR1FFLfuKq1q9x9GEFOkxJDyTY1/L2xY17aXleEU9eWYU5v+7QP9izM2QdnHnBXgCZBVYMzp9FVhLVi6A7x7EavLlCq8XWFse7rzJpMGCq0Zy9hCpLRDdXNE2bK+dgslWz12W2/jCdkqLpwb7eeHvbcbbbMLHy4SXScPSYGN/SXWL9wmjgu987ydGK+XthunMb7juhML8+xXDuWB4rxO6rxDuYnFmPrd/uJ6GRiOazlq3LffBtv9C7BC46Sfw8u30+Nry91tGgNzZuNtg53eYs5byn/hPWTXxX+SV1TDvs83U2xR9ooKMjlAIY9ms8OXtmGz1/GAdxRf2tvotqahtoKK29au6AEoJ5k/1t/K+z9Nc5/U9RckXUBM1nKhgX6KDfSmpsvDUt9uP+zhSqye6gvF9ejiTnydmpZESFaT38dn+Xz35MXnBrFcNSX7aShIgd2Yywbkvwj8noO1dwoQRv8CoS/h6Uz6/7DjILzuKSI0NNjpKIYyz7i3IW0eDdxAP1d4ALVYo6J6/ZCgDe4bQYFXUW21YrDY25Zbx9HESmGW2oRxMnkVU1v9xf8PrcO4SMOlry6w2xTsr9lFQVtvsNJoRexwJ0VHW7TsMQJ+oQGaPT9QP1lXC/+7TP5/0R30EyANIEbS765ECp/5J//y7B6Gugin99U62S3e2bnddIbqkmsP6ahPANO0RTKE9WzzVUaB54ch4BvcMZVhCGKOTIpiYEsnNp/RpVXFnxIXP6v1M8jfC2jedtztqIxznHn1fkFo90XWs3af3nRvXOKH/7SWoLIDwZDj1XmMCOwGSAHmCSXfq/7EqC2HFy5yWGg3o/xEr69o2nC9El7H0WT0Jih6EafSNziTkaMdLQlqdwITEwBkP25/7aX2LDbsZaXG8OnsksaGu01yxoX6yXY3oUlbbG++OSbInQGW5sOJl/fOzHgdvz5nqlQTIE3j5wrRH9M9XvEySTzm9IwKot+pdZ4Xodg7t0fvzAEx/EsxezEiLc70qtWtNEtLqBGbUDdCjH1Qfgt/+3uQxlt9/Bv+4cjigL1T48e4pkvyILqPa0kBmnp74O6d0f5yv72CQOFnfPsaDSA2Qpxg0C+LHQO5atKVPc1rqzby3cj+/7CjizEExRkcnROf65WmwNUC/syDlDACUUuw/pK/mevCcgcSE+LZpo8UZaXGcOSiWNVklFFXUNn9fsxecOR8+ukrfxHjMTRByZOrNbNI4b2hPHvtqG8WVdWwvKGdUotT+iK5hfXYpDTZFz1A/4sMDIH8TbP4PoOkXIm60zUVryAiQp9A0OPNx/fP1i5jeS98jbOnOg0gnA9GtHNwJmZ/qn5/+Z+fhvcVVFJTX4uNl4toJiVwwvBcTUnq0qfbGbNKYkNLj2PdNPQcSxkNDDSx/qcnNmqYxPCEM0P9gCNFVOKa/nKM/S5/R/027GHoONyaokyAJkCdJnADJU8DWwNi8d/Exm8g9XMPe4iqjIxOi8yx9BpQNUme6vOmu2F0MwKje4fh5t3b3rxOgaXD6PP3zjHehorDJKSN6hwGwPqe04+IQopOtydJLLsYm94CCTH3fSjSYcp+xgZ0gSYA8jf0/mvemD5ne2wbALztkNZjoJoq2Q+Zn+uenPeBy02+79TfnSX07odty8hSIH6vXPqx8ucnNI+wjQBtkBEh0EZYGm3NEc2xyOPz6rH7D4AshKtW4wE6CJECeJmky9J4IVgu3mL8CZDm86EaWvwgovdgybqjzsNWmWLlXT4Am9o3s+Dg07chy37VvQZXrYoQh8aFoGuSV1nCwoq7j4xGig23OK6WuwUZEoA8pKhu2fqnf4KGjPyAJkGeaor/xDsr/nHDKWbX3EDUWq8FBCdHByg8cqf055W6Xm7YeKKespp5gXy+G9grtnHj6nQlxw6C+Cla/5nJTsJ83/aL1Tu0bZBpMdAFrsvQGiGOTItBWvKIfHHg+RA80MKqTIwmQJ+pzOsQNx2St49agZVgabKzKkuXwootb84a+8qv3ROg1yuWm3/bo9T/j+kTgZe6ktzVNg8n2RGzdm1DvuiGqoxB6Q87hzolHiA7kqP85taftyIXIpDsNjOjkSQLkiTQNxv8egCv4Dm8aWCp1QKIrq6vUt70AmHh7k5t/sxdAT0zphOmvxgacC6EJel+gzZ+43DQ8Qd+8WEaAhKez2pRzC4xpVV+B1aLXwMWPNjiykyMJkKcafCEExRDaUMzZptVSByS6tg0f6p2XI/pA/xkuN9U1WJ3t+Sd1Rv1PY2YvGPs7/fNVr0KjlhSOEaBNOWXYbNKqQniu7QXlVNQ1EOFrI2r7B/rBCb83Nqh2IAmQp/Ly0ZuwAXO8FpNVXMn+Q7IcXnRBNtuRGpvxv3duQuqwPruU2nobkUG+9I8J6vz4Rl4D3gFQtAX2LXMe7h8ThL+3mYq6BvYcrOz8uIRoJ2vs/X/m9shAqy7WRz0HnGdwVCdPEiBPNuoGMPsyzLSHkdouGQUSXdO+X6FkD/gEw7Arm9y8wjn91QPNiE60/uFH4lp1pBjay2xiSLxekC39gIQn0xMgxfmWb/QDY2/WRz89nCRAniwoSu/ACVxp/ln6AYmuyVH7M+xy8G06wvPbnk7s/9OScbfo/+78FsrynIdHSEdo4eGUUqzdV8IQLYuoyh1g9oUR1xgdVruQBMjTjboegHPNq9i8J4faelkOL7qQikLYbr/qHHVDk5sr6xrYaB9d6fQC6MaiUvXVacoGGz5wHnZ0hJZCaOGp9hZXUVxpYbb3z/qBQRdAQNfY304SIE+XMBYVNQB/zcJ026/OYlAhuoT17+tL3xPGQWxak5vXZB2iwaboHRFAQkSAAQE2Muo6/d+M9/W6JY6sBNtRUE61pcGoyIQ4YWuySgiimgvMK/QD9ovurkASIE+naWj2/5BXmX9m6fYiY+MRor3YbJD+rv55M6M/0MnbXxzPoAvALxTKsmHvEgBiQ/2IDfHDpmBzbpnBAQrRdmuzSjjfvBI/VQuR/SFxotEhtRtJgLqCoZdjNfkwyLSf/O0rjY5GiPaxb5meTPiFwuBZzZ5iWP+f5nj7w9DL9c8z3nUePtIQsbTzYxLiJK3OKuFK80/6F6Ou1/vQdRFunQA9/fTTaJrGH//4R+ex2tpa5s6dS48ePQgKCuLiiy+msNB1N+bs7GxmzpxJQEAA0dHR3HvvvTQ0dOHh54AIrKn6ksSJZf8j93C1wQEJ0Q42/lv/N+1iPbk4SnFlHdsLKgB9BZhbGGmfBtv+DVTpydlwqQMSHiqvtIbAsp0MMe1Dmbxh6BVGh9Su3DYBWrt2La+//jpDhw51OX7XXXfx1Vdf8cknn7B06VIOHDjARRdd5LzdarUyc+ZMLBYLK1as4N133+Wdd97hL3/5S2d/C53KZ7RelT/TvIpl2w8YHI0QJ6muErb+V/+8maXvACvtq78GxAbTI8i3syI7ttg06DlCr1vK/ByQESDhudZmlXCReTkAWv/pEOgmFxrtxC0ToMrKSq6++moWLlxIeHi483hZWRlvvvkmL7zwAmeccQajRo3i7bffZsWKFaxatQqA77//nq1bt7Jo0SKGDx/O2WefzeOPP86CBQuwWCxGfUsdL/lUKn0iCdOqOLzha6OjEeLkbP9a32Q0og/Ej2n2lBX2/b86vfvz8TimwTZ9DMCQXqGYNMgvq6WwvPYYdxTCvazZe5ALzL/pXzj+X3chbpkAzZ07l5kzZzJt2jSX4+np6dTX17scHzBgAL1792blSr32ZeXKlQwZMoSYmBjnOdOnT6e8vJwtW7Y0+3x1dXWUl5e7fHgck5maVH0krG/B/7A02AwOSIiT4Jj+GnZlizUHblUA3VjaxaCZIW8dHNpDoK8X/WOCAekHJDxL/Z5fidNKqPcJhf7TjQ6n3bldAvTRRx+RkZHBU0891eS2goICfHx8CAsLczkeExNDQUGB85zGyY/jdsdtzXnqqacIDQ11fiQkJLTDd9L5ekzQp8GmkM6GXfsNjkaIE1SWB3uX6p8PvazZU3JKqskuqcbLpDE22c0SoKBoSDld/3zTf4Aj/YDWy87wwkMUV9YxruIHAGwDZ4GXm0wztyO3SoBycnK48847+eCDD/Dz8+u05503bx5lZWXOj5ycnE577vZkihtCvm8yvloDxWs+MjocIU7M5v8AChInQXhSs6c4pr+GJYQR5OuGLfkbT4MpdaQOSEaAhIfI2J3HDNMaAHxHNl+H5+ncKgFKT0+nqKiIkSNH4uXlhZeXF0uXLuUf//gHXl5exMTEYLFYKC0tdblfYWEhsbGxAMTGxjZZFeb42nHO0Xx9fQkJCXH58EiaRknKhQDEZ39lcDBCnCD7qMmxag6c01/usvrraANmgncgHM6C3HWM6K3XMm7OK8MqO8MLD1C58UuCtFpKfOKg93ijw+kQbpUATZ06lc2bN7Nhwwbnx+jRo7n66qudn3t7e/PTTz8577Njxw6ys7OZMGECABMmTGDz5s0UFR1pCPjDDz8QEhLCoEGDOv176my9TrkWgKHWLRTl7DI4GiHaqGg7FG0FkzcMOr/ZU5RSrLCvAJvobgXQDj6BehIEsOljUqKCCPL1otpiZWdhhbGxCdEK8bn6FjQHk2d1qd4/jblVAhQcHExaWprLR2BgID169CAtLY3Q0FDmzJnD3XffzZIlS0hPT+eGG25gwoQJjB+vZ6hnnXUWgwYN4pprrmHjxo189913PPTQQ8ydOxdf3643h3m0sLhkNnsPASD/t38bHI0QbbT1//R/U87Qd1lvxs7CSoor6/DzNjlra9ySYwRryxeYsTHUvjO8LIcX7q6itJjhlgwAIsZ1zekvcLMEqDVefPFFzj33XC6++GJOPfVUYmNj+fzzz523m81mvv76a8xmMxMmTGD27Nlce+21PPbYYwZG3bkOJswAIGTf/wyORIg22vKF/u/gC1s8xdH9eUxSBL5e5s6I6sT0maIncdXFsP83qQMSHiN31Wf4aFaytASi+gwzOpwO44bVg65++eUXl6/9/PxYsGABCxYsaPE+iYmJ/O9/3fePf+TYS7HteZ7k2m00lOzHKyLR6JCEOL6ibXBwO5h9IPXsFk9z2/4/RzN769Ng6xfB1i8ZnnQvICNAwv15b9ebkO6KnEqywbF0JI8bARLHN7h/fzK0AQAcWPkfg6MRopW2/J/+b8pU8A9r9pQGq43Ve0sAmOQO+38dz6BZ+r/bvmJ4vN4LaGdRBZV1XXhrHuHZastILNUbC9sc/3+7KEmAuiCzSSMr+kz9821fGhyNEK2gVKPpr1ktnrYpr4yKugZC/b0Z1NMDVmsmT9E3c60sJLp0I73C/FEKNuWWGh2ZEM2ybP0GbxrYZevFgCFjjQ6nQ0kC1EUFDLsQm9LoVblZbywnhDsr2gbFO44//WWv/5nQpwdmkwesTPHygVT7arCtX8q+YMLtVWZ8CsAvXhNJ7BFgcDQdSxKgLmrs0MGsU/0BqNzw+XHOFsJgztVfU/URkxa47fYXxzLoAv3frV8yPF4ftZItMYRbqi0jNO9XAIoSzkbrosvfHSQB6qKign3ZEHQqALUbPzM4GiGOY7t90UILvX8AauutpGfrW0m4bf+f5qScDr4hUJHPZP8sQB8BUkoaIgo3s/N7zKqe3baeJKSONDqaDicJUBdmHXAeABElG6Cy6NgnC2GUw/uhcDNoJujX8oaL6/YdxtJgIzbEjz6RgZ0Y4Eny8nVO6/U79DNeJo2DFXUcKJOd4YV7sW3Xmx9+ZxvN2D4eNMp6giQB6sJGDRnCRlsfTChsOxYbHY4Qzdvxrf5v7wkQ2PKb7m/25e8T+/bwvKH5AecC4LXzWwbEBgHSD0i4mQYLape++elKr/H0jw42OKCOJwlQFzaydxjLTKMBKN/4X4OjEaIFO/SrTlLPOeZpjgJoj1j+frSUM/QC78NZnBldBsAG2RleuJN9yzDXV1KkwvBPGo3JExYZnCRJgLowL7OJ0gR9OXxg7q9QX2NwREIcpeYw7PtN/3xAywlQWU09m/P0xMHtGyA2xzcIkvWavNM1fYsBWQkm3Ip9JPZH6wjG9PHA19gJkASoi+s3ZBx5qgfetjrI+tXocIRwtesHUFaIGggRfVo8bdXeQ9gU9IkKJDbUrxMDbEeOOqDDywB9Z/h6q83IiITQKYVyJEC2UYxJijA4oM4hCVAXd2pqND9a9Wr+usyvDY5GiKPYiy6PNfoDHj795dBf36PPr2Advf2qqa23saNAdoYXbqBgE1p5LtXKlwzzMNJ6tdyKoiuRBKiLiwv1Z0foZADUzm/BJlecwk001MHuH/XPHc0CW/DbHg/s/3O00HiIHYqGYnbEdkCmwYSbsI/+LLMNIS0xBm9z90gNusd32c2FDTydCuWPX+1ByF9vdDhC6LKWgaUSgmKh54gWTyssr2V3USWaBuM9fWmuvdD7NNIBaYgo3IR9JPZH28huM/0FkgB1C5MH9mKpbSgAO5b+h5V7DmG1SRM2YbAd9uaHqWeDqeW3Isfu72k9QwkL8OmMyDpOqj4N1qd8Nb5YZCWYMF5ZLhRswobGz9YRjE2WBEh0IYcqLfxkHQWAbfv/uHLhKiY/8zOLM/MNjkx0W0rpBdBwzL2/4Mj2FxM9efrLIW44BMfh1VDNBNNW9hysoqym3uioRHdmn/5Kt/Wj3BzGiN5hxsbTiSQB6uIWZ+Zzx7/X87NtOA3KxEBTNr04SEFZLbctypAkSBjj4A4oywazLySd0uJpSqmuUQDtoGnOhG9WwCZAdoYXBrNfiPxsHcnQ+DD8vM0GB9R5JAHqwqw2xfyvtqKAMoLIUP0AmGLehGMCbP5XW2U6THS+3fbRn6TJ4NPyjtP7DlVzoKwWH7Op69Qm2FeDncJ6QElHaGGc+lpne5RfbMO61fQXSALUpa3JKiG/0X5DS63DAJhi2giAAvLLalmTVWJEeKI7c0x/9TvzmKf9Zh/9GdE7DH+fLnJlmjQZzL70aCgkRTsgK8GEcfb/Bg01HNQi2KZ6M7arXGS0kiRAXVhRhetmi45C6ImmLXjT0OJ5QnSoukrYv0L/vO+xEyBHAbRHdn9uiU8gJE4EYIppk+wML4yz+ycAfq4fiqZpjEoKNzigziUJUBcWHezaMXeLSuKgCiFYq2GUaWeL5wnRobKWgq0ewpOgR0qLp9lsipVdof9Pc/pOA+B080YOVVnIPSzb1AgD2Keif7ENY1BcCCF+3gYH1LkkAerCxiZHEBfqh2NLO4WJX+2jQFNMG9GAuFC/bjfvKwzmnP46Sy8KbsHW/HIOV9cT6GNmaHxY58TWWewJ0DjTNvyoY71Mg4nOdng/FO/EipnfbGldp8auDSQB6sLMJo1HzhsE4EyCHHVAp9nrgB45bxDmbrDrr3ATSh3p/tzK6a9xfXp0vc60UakQEo8P9Yw3bWN9tvQDEp3M/jrcZk6lnEDGdcML4S72riKONiMtjldnj3RuILnMNgSb0hhoyuati3sxIy3O4AhFt3JwB5Tl2Je/T272FKt96uuLjDwAxvfpgm/MmgZ9pwL6aKwUQotOZ0+Avq1LA2BMN0yAvIwOQHS8GWlxnDkoljVZJXy5IY9NG/swXNvD6ebNwHCjwxNdkNWmWJNVQlFFLdHB+jSr2aTBru/1E1pY/r44M5/5X211Wb34xq976R0R0PWS9X5nQsa7nGraxFMHyrE02PDxkmtS0QkaLKi9S9GAX6zDiAv1I9zTu6yfAHm1dRNmk8aElB78cVp/ltr0abC67d8bHJXoihZn5jP5mZ+5cuEq7vxog2vn8d2N6n+aud9tizJckh/QO5l3yaadyaeiTF6kmPKJseazLb/c6IhEN7Hm12/Q6qs4qELZqhLJL6vtlrsDSALUzcSG+rEvfAIAWtYvYG049h2EaIOWkpiCslruWrQS2/6V+gH79I9D46adR+uyTTv9QtESxgFHlsML0dEWZ+az/udPAVhqG4aypwHdcXcASYC6oZ6DJlGqAvGpL4e8dUaHI7qI4yUxY0w7MNnqUSG9qAhMJPdwNZl5ZazYXcwrP+9qkjQdff8u2bRT6oBEJ3K8Rk8xbQZgqXWo87Yue6FxDFID1A2dNjCO5SvSONe8GtueJZh6jzc6JNEFHN15/GiT7G+6nx7uy73zfzih5+hyTTtTpsJPjzHBtJVnsouNjkZ0cWuySrCUFTLIbz8Av9nSXG5vfKExIaWL9d5qhowAdUMjEsLIMOt1QFXbfzQ4GtFVHC85mWzKBGCZdQgAPl4mooJ96RcdRP+YoFY9R5dr2hk7FJt/BEFaLaElmyitthgdkejCiipqmWjaAsBWWyIlhLR4XncgI0DdkJfZhC35NMh6g4Ci9frWBL6t+wMkREuOlZxEUM5gk37Vef6FV/Ds8EEuu05bbYrJz/xMQVlts1NoGnr9Wpdr2mkyYUo+Fbb+H5NNmWzIKeW01GijoxJdVHSwH5PsFyLLjxr9Ofq87kBGgLqpoUOGkW2LwqysR/ZlEuIkHN15vDHHm+4uLZHTR6W5JD/QfNNOB8fXXbZpZ5/TAJho3sJ62RledKCxSeFM8dJfi0dPfwHdbncASYC6qVP7R/Gb0l8AMg0m2oMjiWluBMcx/eXV94wWk5ijm3Y6xIb68erskV2vD5CDPQEaqe1i2/7uswJHdD5zaRZxFGNRZtbYUl1u6/IXGs2QKbBuKjLIl9ywsVCxhPpdPxsdjugiZqTFceGIXnyxPq/RUcWp9qvO5LHnHvf+jqadTZoodlURydQFJ+BbkYNP3kqUOhXtGHukCXHC9v4CQFHoMGqKml5oPHLeoK57odEMSYC6sZBBU2H1M4RV7ILKIgiS2gNx8ipq9d5Ss8f1ZkxyBL1VPnFfFoPZBxInHPf+jqad3YlXyumw4T2G1W9k36FqkiMDjQ5JdEX2BOhAj/FQBOOSw7lqXGL3uNBohkyBdWPj01LZYksEoGHPL8YGI7oEpRQZ9o09LxwZzwXDezGiYYN+Y8I48JE/7M0x9z0N0KcK31q+l5V7DnWbXiyik9iskPUrAEsbBgMwJTWaC4b3YkJKj26X/IAkQN3akF6hpNuXw5dskm0xxMnLKq6ipMqCj5eJtF72Jbb2q076TDEsLnf3U90AAAaasvnfqs2u24cI0R7yN0JtKfiG8O2hWED/G9CdSQLUjZlMGjUJpwDgm7MMlFxxipOTvl8f/RnaKxRfL7PLVSd9zjAwMve1ODOfmz7Zx1b7aKyjT0t33JpAdCD7hUh970nsLakDIK2nJECiG0sYdgYWZSbUUgAle40OR3g4x/TXqKRw/cCBDVBbBr6h0HO4YXG5q8bbhzj6sjhaBnTHrQlEB7InQDlhYwGID/cnPLD77QDfmCRA3dykgYlkqP4AHM6UaTBxctbtsydAve0JUNYv+r/Jp4DJ3PydurHG24c4+rJMNmfiSH+67B5oonPV10D2KgDWavr+X919+gskAer2QgO8yQoZA0D5VukHJE5cWXU9u4oqARiV6EiAlun/Jkv9T3MabzmwxpaKRZmJ14rprRW1eJ4QbZa9Cqx1ENyTZYf112aaJECSAAnw7qfXZvQ4uBpsNoOjEZ7KMf2VHBlIjyBfaLBAzmr9xqTJBkbmvhpvOVCDH+tVP+BI48jmzhOizfYt1/9NPoXMA+WAjACBJEACGDTqVCqVH0G2CuoOZB7/DkI0w1EA7Rz9ObAe6qshoAdEDTAwMvd19PYhv1n1abDxpq1A99uaQHQQewJU02si+w5VA5IAgSRAAhjYK4JNpoEA5KyXOiBxYtbt1+tUnAnQPvvqr6TJYJK3muYcvQfaapv+Ohxn2oajDqg7bU0gOoClCvLSAdjqq9f/9AqTAmiQBEgAmqZRFq2vDKjf/avB0QhPVG+1sTGnDGicANmH3ZNOMSgqz9B4D7QNKoU65U2MVspQ/+KuvQea6Bw5a8BWDyHxpJfpvblk9EcnCZAAIGyQXgfUsyxD6oBEm23Pr6Cm3kqInxd9o4L0+p9sqf9prRlpcSy//wzeuflU9vjpI0I3J+RJ8iNOnvNCZDKbD1QAMCReEiCQBEjYpY0+lSrlSygV5O5MNzoc4WEc018jE8MxmTR9yL2hBgIipf6nlRx7oJmSJgEQWrja4IhEl9AoAcrM00dpZQWYThIgAUBwYAC7/fQCzJyMHwyORngaRwH06CbTX5NBdjZvk/BBUwHoX7uJWkuDwdEIj9ao/qei53iyiqsAmQJzkARIONX1mgiAV85vBkciPI0jARrpTIDs/X9k+qvNogdNog5vYrXD7Nq+0ehwhCdrVP+TWam/NnuF+RMhBdCAJECikbjhZwLQt3oj1XUWg6MRnuJAaQ35ZbWYTRrDE8Kgoe5I/5/kUw2NzRNp3v7ss9cBHd7ys8HRCI/WePrL3v/HuUmxkARIHBE/aALV+BGuVbAxfZXR4QgPsc4++jMoLoQAHy97/U8tBEZBZH+Do/NMFbH6qky/vJUGRyI8WuMCaHv9j0x/HSEJkHDSvHw4EKz3iSjO/MngaISnyDi6AaLU/5y0wP6nA5BYuR4lqzLFiWhU/yMF0M2TBEi40JL1ni3BBatQSnagFsfXtAGi1P+crOThU7AoL2IooWDfNqPDEZ6oUf1PhX8v9koBdBNulQA99dRTjBkzhuDgYKKjo5k1axY7duxwOae2tpa5c+fSo0cPgoKCuPjiiyksLHQ5Jzs7m5kzZxIQEEB0dDT33nsvDQ2ymqI14u11QEOsW9hVWG5wNMLdVdU1sC1f7y0yKjHcXv+zRr8xSep/TpRfQBC7vFMBKNgkmxSLE9BoJHaL/TXaM9RP36dPAG6WAC1dupS5c+eyatUqfvjhB+rr6znrrLOoqqpynnPXXXfx1Vdf8cknn7B06VIOHDjARRdd5LzdarUyc+ZMLBYLK1as4N133+Wdd97hL3/5ixHfksfxTRxNneZHD62CDVIHJI5jY24pVpuiZ6gfPcP8IXedvf4nGiL7GR2eRyuO1OuAzPuXGxyJ8EjS/+e43CoBWrx4Mddffz2DBw9m2LBhvPPOO2RnZ5Oers9jlpWV8eabb/LCCy9wxhlnMGrUKN5++21WrFjBqlX6H+vvv/+erVu3smjRIoYPH87ZZ5/N448/zoIFC7BYZGXTcZm9KY4YAUDVzl+MjUW4vfR9Ry9/l/qf9uLdVx9BiyvLAJmOFm1xVP2PFEA3z60SoKOVlem/tIgIfSfk9PR06uvrmTZtmvOcAQMG0Lt3b1au1FdLrFy5kiFDhhATE+M8Z/r06ZSXl7Nly5Zmn6euro7y8nKXj+4ssN8UAOIOr6O8tt7gaIQ7S88+qgFi9gr938SJBkXUdSQNm0Kd8iLKVkxt0R6jwxGepFH9D+FJzgQoTbbAcOG2CZDNZuOPf/wjkyZNIi1N71BcUFCAj48PYWFhLufGxMRQUFDgPKdx8uO43XFbc5566ilCQ0OdHwkJCe383XgWx75gY7Rt/LbzoMHRCHdls6lGK8AiwNoAOWv1GyUBOmlxkRFsM+nTiAc2fG9wNMKj7LdfiCRNotJilQ7QLXDbBGju3LlkZmby0UcfdfhzzZs3j7KyMudHTk5Ohz+nW+s5gnqTLz20CrZsWmt0NMJN7T5YSXltA/7eZgbGBUPBRqivAr8wiBpodHgeT9M0DoSNAqB+r9QBiTbItveP6j2BLXllKAVxoX5ESgG0C7dMgG6//Xa+/vprlixZQnx8vPN4bGwsFouF0tJSl/MLCwuJjY11nnP0qjDH145zjubr60tISIjLR7fm5UNV1HAALFm/yXJ40ax19vqf4QlheJlNsN/xpjseTG751uJ5eusjaRGHMgwORHiMBou+GAEgceKR6S8Z/WnCrd6llFLcfvvtfPHFF/z8888kJye73D5q1Ci8vb356acjTfp27NhBdnY2EyZMAGDChAls3ryZoqIi5zk//PADISEhDBo0qHO+kS4gqJ/eDyjVsoUtB7p3TZRonnMD1CRH/c+Rq07RPuLSTsGqNKIa8lFleUaHIzxB/kZoqAH/CIjs71wBJtNfTblVAjR37lwWLVrEhx9+SHBwMAUFBRQUFFBTUwNAaGgoc+bM4e6772bJkiWkp6dzww03MGHCBMaPHw/AWWedxaBBg7jmmmvYuHEj3333HQ899BBz587F11eG/1rLK0m/8hyr7eCXHUXHOVt0R+n2BogjE8P1VUqOBEjqf9rNoORebCMJgOKtvxgai/AQjoUIvSeApskKsGNwqwTo1VdfpaysjNNOO424uDjnx8cff+w858UXX+Tcc8/l4osv5tRTTyU2NpbPP//cebvZbObrr7/GbDYzYcIEZs+ezbXXXstjjz1mxLfkuRLGYsNEgukgG7duNToa4WaKK+vYd6gagJEJ4VC8E6oPgZc/xA03NrguxNfLTFaAvj1N+c5lBkcjPEK2vX9b4gQq6xqcHaBlCqwpr9ac9N///rfND3zmmWfi7+/fpvu0ptbEz8+PBQsWsGDBghbPSUxM5H//+1+bnlscxTeYhug0fIo2EZC/hsNVZxMe6GN0VMJNOFZ/9Y8JIjTAG7barzrjR4OX/D9pT3VxY2HvlwTkrzE6FOHubLZGU9ET2XqgHKUgNsSPqGCZATlaqxKgWbNmtelBNU1j165d9OnT50RiEm7Cp89kKNrEKG0Hv+46yAXDexkdknAT6UdvgCr1Px0mbOAU2AsxtXuhphT8w4wOSbir4h1Qcxi8AyBuKJtX5gIy+tOSVk+BFRQUYLPZWvUREBDQkTGLztJbr6saY9rOLzukH5A4Ir1x/x9wXQEm2lVa/37stcViQlG7d6XR4Qh3tr/RSKzZWwqgj6NVCdB1113Xpums2bNny1LyrsB+NZ+q5ZKxIwurTZbDC6hrsLLJ/sY6KjEcynKhLBs0EySMNTi6ric21I+tXvoKVimEFsfkqP+xt09wFkDHy9/j5rQqAXr77bcJDg5u9YO++uqrREZGnnBQwk0ERaMi+mLSFCm1mWzMLTU6IuEGMvPKsTTY6BHoQ1KPgCOjP7FDwbf17xOi9Q5HjQbAlCMjQOIYnCsxJ1BV18Ceg5WATIG1pNVTYJdccgmLFy+WpnjdjJbomAbbwaKV+/hyQx4r9xyS0aBurPHyd03TZP+vTuCXMhmAqPKtUF9rcDTCLZXmQFkOaGboNZqt+XoBdEyIL9HBfkZH55ZanQAdPnyYmTNn0rt3b/7yl7+wd+/ejoxLuAv7UOoY0w4+X3+AOz/awJULVzH5mZ9ZnJlvcHDCCM4GiI4C6P1SAN3R+g0YykEVijf1KMcu30I05hj9iRsGvkFszpX6n+NpdQL0008/sXfvXubMmcOiRYvo168fZ5xxBh9++CF1dXUdGaMw0NK6vgAM1fbgi8V5vKCsltsWZUgS1M0opUjfXwrY63+qS+DgNv1GSYA6zKCeoaSrAQAc3rbU4GiEWzqqEWmmbIFxXG1qhJiYmMijjz7K3r17+eGHH+jZsyc333wzcXFxzJ07l/R0uTLpSqw2xQM/V1CkwvDRrAzX9jhvc0yAzf9qq0yHdSPZJdUUV9bhYzbpb6w5q/UbevSDoChjg+vCfLxMHAgdAUDd3hUGRyPc0lEjsdIB+vhOuBP0GWecwaJFiygoKOCpp57io48+Yty4ce0ZmzDYmqwS8svrWGNLBWC0aYfL7QrIL6tlTVaJAdEJIzimv9J6heDnbT6y7DZRRn86nL3FQPihDLBZDQ5GuBWXkdjxVFuOFEBLAtSyk9oKIysri+eff56//vWvlJWVMW3atPaKS7iBogq92HKtTR96H2vafszzRNe3rsUGiFIA3dF6DhhLhfLHz1YFhVuMDke4E8fy98j+EBjJ1gPl2BREB/sSHSIF0C1pcwJUW1vLokWLOOOMM+jXrx/vvfcec+bMISsri8WLF3dEjMIgjpUD6+wjQCNNuzBha/E80fVlNG6AaKmGA+v1G2QEqMONTOpBhq0fALV7fzM4GuFWsmX660S0OgFas2YNt956K3Fxcdx8883ExsayePFi9u7dy1/+8hcSEhI6Mk5hgLHJEcSF+rFd9aZc+ROs1TBQy3bergFxoX6MTY4wLkjRacpq6tlRWAHYR4Dy1oGtAYJ7QliiwdF1fdHBfuz0TQOgYsevBkcj3MpRBdCbpQC6VVqdAI0fP57Vq1fz+OOPc+DAAT788EOmTZum9wERXZLZpPHIeYOwYSLD1h/Qt8UAPfkBeOS8QZhN8n+gO9iQU4pSkNgjQN9Y0dl1djzI+0CnqOmpd9r2L1gD0pNNgOtIrL1OTLbAaJ1WJ0Dr1q1j/fr13H777YSHh3dkTMKNzEiL49XZI9nuMxiA0aadgN6e/9XZI5mRFmdkeKITpe/Ti91H9ba//h0rwGT/r04T0W8CFmUmyFIMh/cZHY5wB3npLiOx1ZYGdhfZC6DjJQE6llbtBg8wcuRI5+e1tbVs2rSJoqIibDbXmpDzzz+//aITbmFGWhxW/yvg/Q8ZadrJ6MRwPr5lgoz8dDPp2fb6n6RwsNkgZ61+g+z/1WmGJcexRSUzQtuNLWcNpohko0MSRstxjMSOA01zFkBHBfsSIwXQx9TqBMhh8eLFXHvttRQXFze5TdM0rFZZntkVmRNGozQzPSmB8lxJfrqZBquNDdmlgL3+p3gH1JWBdwDEpBkbXDcyIC6YRaQygt2U71xO2LDLjQ5JGM15IaKPxEoBdOu1eRXYH/7wBy699FLy8/Ox2WwuH5L8dGE+gTRE63/o4so3Um1pMDgg0Zm2F1RQZbES7OtFv+hgyFmj39BrFJi9jQ2uG/E2myiJ0BsiKscUpOi+bDbItb8W7SOxUgDdem1OgAoLC7n77ruJiYnpiHiEG/O2b4w6UtvFrsJKg6MRnSnDPv01IjFcH/3LcX3TFZ3Ht4++1Dm0fBfUlhscjTDUod1Qcxi8/CF2CCAF0G3R5gTokksu4ZdffumAUITb6613+h5l2ulcDi26h3X77PU/RxdAJ0j3986W2rcf2bYovSdX3jqjwxFGcrwO7SOxLgXQkgAdV5trgF555RUuvfRSli1bxpAhQ/D2dh3+vuOOO9otOOFm7H/sBmn7+V9eIYyW3k/dhXMH+KRwqDoEh3bpN8SPMTCq7mlE7zCWqf705iC1e1fil3KG0SEJozgvRPTX4bZ8vQA6MsiXmBBfAwPzDG1OgP7973/z/fff4+fnxy+//OLSB0jTNEmAurLQeKr9YgioLcSWmw6MNjoi0QkKymrJK63BpMGwhDDY96N+Q2R/CJAmmJ0tMsiXff6DwfIb1XtW4Hem0REJwzinovWL0825jumvEOnR1wptngL785//zPz58ykrK2Pfvn1kZWU5P/bu3dsRMQo3UhenX2mEHVpvcCSiszhGfwbGhRDk63XkqjNe6n+MYu2l/8ELPLheNkbtrqpL9NWY4Hwtbs7Ta8Jk+qt12pwAWSwWLr/8ckymk9pHVXiogBS91frA+q2UVFkMjkZ0hnX77Q0QHRugSgG04WL7j6RS+eFrrYKibUaHI4yQa6//6tEXAnsARwqgZQVY67Q5i7nuuuv4+OOPOyIW4QF8++gJ0EjTLnbklxkcjegMGY13gLfW651nQQqgDTQisQfrbX0BsGXLcvhu6aiFCDUWK7uK9MUp0gG6ddpcA2S1Wnn22Wf57rvvGDp0aJMi6BdeeKHdghNuKCaNOs2PUKop2rsR+k4zOiLRgWosVrYc0IfVRyWGQ2EmNNSAX6heAyQMkRoTzOumAZxCJhW7lhM6do7RIYnOdlT/n63OAmgfYqUDdKu0OQHavHkzI0bojbgyMzNdbpOiq27A7E1h8CB6l2dgzV4NSALUlW3MLaXBpogJ8aVXmD/stL/pxo8FmQY3jJfZRHnkSDj0KSbHH0LRfVgbINd1JLbx9Jf8LW6dNidAS5Ys6Yg4hAepiR0D5RmEFUshdFfnXP6eGKG/qUr/H7cR2Gc8tmKN4JpcqCiEYGlO220UbYH6KvANhchUQLbAOBFyCSfazFEI3acmE6WUwdGIjuRIgEZKAbTbSUuJZ4ey9+KSbTG6F8frMH60cyRWCqDbrlUJ0EUXXUR5eetbrl999dUUFRWdcFDCvcUMOgWAJC2fgvxcg6MRHcVmU84tMEYnhkNZHpTlgGbSO88KQ41ICCfd1g+A2r0rDY5GdKqjRmJr663skg7QbdaqBOjLL7/k4MGDlJeXH/ejrKyMr776ispK2Suqq/IJ7sE+k37leXDbcoOjER3BalN8vj6X0up6vM0aqbHBR4ouY9LAN8jYAAXhgT7kBOn7P9VlSQLUrTgToCMF0FabokegD3GhUgDdWq2qAVJK0b+/rPgQRxwIHkpSWQ7WfSuBK40OR7SjxZn5zP9qK/lltQDUWxWnP/8L/05YQhLI9Jc7SRgHuyCwJBPqa8Fb/vh1eeX5UJrtMhIrBdAnplUJ0IkUPvfq1avN9xGeozpmNJR9Q2hxhtGhiHa0ODOf2xZlcHRlV0FZLaU1y/UxYymAdhuJKYM5uDOUKMogfwP0Hm90SKKjOUZioweDXwjQeAsMmf5qi1YlQFOmTOnoOISH8U+ZCDshvmY7NFjAy8fokMRJstoU87/a2iT5AfDBwiBtn35erzGYOzUy0ZJRSRGk2/ozw7wW6/5VmCUB6vqaWYiwWQqgT4isAhMnJCFlCIdUMD7U05Any+G7gjVZJc5pr6MN0fbio1kpUmGsORzcyZGJlvSLDiLTpC+DrtqzwuBoRKc4VgG0dIBuE0mAxAmJjwhgI/obb+kOKYTuCooqmk9+AEaZdgGQbutHUWVdZ4UkjsNk0qiKGQ2Az4E1IG0purb6WsjfqH+eoG9Mvc1eAB0R6ENPKYBuE0mAxAkxmTTnCpT6fbICpSuIDm75zXOUaScA6bb+xzxPdL6wlDHUKS/8LIehZK/R4YiOlL8RrBYIjILwZEAKoE+GJEDihFVF6ysQgg9myJVnFzA2OYK4UD+avoUqRtpHgPYHpDE2OaKzQxPHMDw5hs2qj/5FjmyL0aU1nv6yJztHOkCHGBWVx5IESJywgKTRWJSZoPpDULrf6HDESTKbNB45b1CT44laIZFaOXXKi0vOnYnZJFeZ7mR4QhjrbHqbkpq9vxkcjehQR/X/AdicpzcplhVgbdeqVWAjRoxo9dBaRoYsi+4u+vaMYotKZoS2G7JXQ3iS0SGJkzQjLY5XZ4/kjn+vx2LVR/VGafr0V3XkEKYPSzQyPNGMUH9v8oOHQs3XNOyXLTG6LKUarQAbh9WmWL77IDsK9ARoYJyMALVVqxKgWbNmdXAYwhOlxgbzf7b+jDDtpmH/KryGXW50SKIdzEiLIyJwCwXlddx1Zj8uL/gKdkF4/0lGhyZa4JU4DrZDUNkuqCkF/zCjQxLt7fA+qCoCkzffH47lkQ9+dlm1efkbq3j0vEHMSIszLkYP06oE6JFHHunoOIQHigzyYYfPILD9j/p9K1v3n0m4vdp6KwXl+kqva8YnEfHeZv0GaYDotlJTUsjaGkOyqRBy10G/aUaHJNqbffSnNGwQt/x7S5N+XYVltdy2KINXZ4+UJKiVTqgGqLS0lH/961/MmzePkpISQJ/6ysvLa9fghHvTNI3qqJEA+JXsgNrWb5gr3FdOSTUAwb5ehJtroHCLfoNsgeG2RiaGkaH0OqBta39g5Z5DWG2yMKFLsdf//K+sd7PNSh3H5n+1VX73rdTmBGjTpk3079+fZ555hueff57S0lIAPv/8c+bNm9fe8Qk3F90riRxbFBo2yEs3OhzRDvYf0hOg3j0C0PLSAQVhiRAca2xgokU7CypJtxdCH9q2jCsXrmLyMz+zODPf4MhEu7GPAC2r6dPiKQrIL6tlTVZJJwXl2dqcAN19991cf/317Nq1Cz+/I/1AzjnnHH799dd2DU64v9TYYNJVP/0LWYLbJey3jwAl9Qh0KboU7mlxZj5zP8wg3aa/Doeb9mDCRoF9SkSSoC6grgKK9JFYR6J7LMdqaiqOaHMCtHbtWm655ZYmx3v16kVBQUG7BCU8R/+Y4CMvyBxZgdIV7D9UBegjQM0tuxXuo/H+bbtUPOXKnyCtllQtR6ZEupK8dFA2agN7UUT4cU+XZqWt0+YEyNfXl/LyprUeO3fuJCoqql2CEp6jf0wQGfYESOWsAZvN4IjEyXJMgSWF++oFtSAjQG6q8f5tNkxssPUFjnTulimRLsI+EmvtNRbzMTrSaEBcqJ80K22lNidA559/Po899hj19fWAXgibnZ3N/fffz8UXX9zuAQr3FuznTUVIf6qUL5qlAg5uNzokcZKy7VNgqeYDUFcOPkEQ3bRBojDe0VMdGfbpaEfn7pbOEx7GPhK7cF8k1hYG8xx50SPnDZJmpa3U5gTob3/7G5WVlURHR1NTU8OUKVPo27cvwcHBPPnkkx0Ro3BzfePCnFeeMg3m2RqsNnIP20eAqjP1g71GglmaHLijo6c6HNPRjuaVLZ0nPIjNhs0+AvRDRRIJEf789cI04o7a+DQ21E+WwLdRm9/VQkND+eGHH1i+fDmbNm2isrKSkSNHMm2a9J3orlJjg0nf3Y9JbNGHakffYHRI4gTll9VSb1X4eJkIPbRePyjTX27LsX9bQVktCthg64tNaSSaioiilGLCiJUpEY92aP8metSVU618qQhJ5d83jyc+PIDLx/RmTVYJRRW1RAfrv2MZ+WmbNidAOTk5JCQkMHnyZCZPntwRMQkPkxqjd4QGZATIwznqfxLC/dFkBZjbc+zfdtuiDDSgggB2qHgGajmMNO3ie9sYmRLxYMWVdbz38X+4G9hm6scHt0wiPjwA0H/3E1J6GBugh2vzFFhSUhJTpkxh4cKFHD58uCNiEh4mNTaYDMcUWMkeqCo2NiBxwvaX6CvA0sLq9d8lQPxoAyMSx+PYvy3WPiXiWJRwqv9emRLxYIcq67h64WoSKvVO7H1HnUFCRIDBUXUtbU6A1q1bx9ixY3nssceIi4tj1qxZfPrpp9TV1XVEfMID9IkKpMoUzE5bL/1A7lpjAxInLNs+AjTex578RA0A/+MvuxXGmpEWx/L7z+C9G8ew3l4IfXFUniQ/HupwlYWr/7WaHYUVjPXaDUBof5lxaW9tToBGjBjBc889R3Z2Nt9++y1RUVH87ne/IyYmhhtvvLEjYjxhCxYsICkpCT8/P8aNG8eaNdKoryP4epnpExko/YC6gH32HkBpVvtqPun/4zHMJo1T+0dTET0KAO+ijdAgF6aeprRaT362F1SQElhHIgf0G+LHGBtYF3RCe4GBvvz99NNPZ+HChfz4448kJyfz7rvvtmdsJ+Xjjz/m7rvv5pFHHiEjI4Nhw4Yxffp0ioqKjA6tS+ofG+xcgisdoT2XswaoSjZA9VQxiQMpViGYbfWQv9HocEQblNXUc82ba9iaX05kkA/vn2Wv3YrsDwFSyN7eTjgBys3N5dlnn2X48OGMHTuWoKAgFixY0J6xnZQXXniBm2++mRtuuIFBgwbx2muvERAQwFtvvdXk3Lq6OsrLy10+RNsMaNwROi8drPXGBiTaTClFdkk13jQQUmJfAi8JkMcZlhBOhk0uRjyB1aZYuecQX27I46dthVzz5mo255UREejDBzeNp2fFJv1EGYntEG1eBfb666/z4Ycf8ttvvzFgwACuvvpqvvzySxITEzsivhNisVhIT0932ZzVZDIxbdo0Vq5c2eT8p556ivnz53dmiF1O/9hg9qo4yrVgQhoqoGAT9BpldFiiDQ5W1lFtsTLctA+TtVav/enR1+iwRBsNSwjjU1s/zjKnY8tejWni7UaHJJqxODOf+V9tdXbydgj0MfPBTeNIjQ2Gb2UlZkdq8wjQE088wbhx40hPTyczM5N58+a5VfIDUFxcjNVqJSYmxuV4TExMs/uVzZs3j7KyMudHTk5OZ4XaZaTGBAMa66xy5empHAXQpwXs0w/EjwVNlk97mj6RgWzzGgiALXsVKNkHzN0szszntkUZTZIfgCqLVd+Pz1qvj6aDJEAdpM0jQNnZ2Whd7E3R19cXX19fo8PwaL0jAvDzNrHO2pczTBl6IfT424wOS7SBo/5nnPduaECG3T2UyaRBrxHU55nxri6C0mwId6+L1O6s8Qa2zdHQN7A9Mywcc0MN+IVCj36dGWK30eYRIE3TWLZsGbNnz2bChAnk5eUB8P7777N8+fJ2D/BEREZGYjabKSwsdDleWFhIbGysQVF1bSaTRv+YYDKUYyWYjAB5mv32PcAGNjhWgMlVp6ca1DuGLSpJ/0Jei26l8Qa2zXFsYJu9YYl+IH4smE64XFccQ5t/qp999hnTp0/H39+f9evXO/v/lJWV8de//rXdAzwRPj4+jBo1ip9++sl5zGaz8dNPPzFhwgQDI+vaUmOC2Wjrgw0zlOdBWa7RIYk22H+oijgOEVZfBJpZ3wNMeKRh8WHSlsJNtXZjWu98ez81uRDpMCdUA/Taa6+xcOFCvL29nccnTZpERkZGuwZ3Mu6++24WLlzIu+++y7Zt27jtttuoqqrihhtkn6qOkhobTA1+5Pim6Afkjdej7D9UzSiTfRPN2CHgE2hsQOKEDU8II92+EsyWLa9Dd9LajWmjDm/QP5Gp6A7T5hqgHTt2cOqppzY5HhoaSmlpaXvE1C4uv/xyDh48yF/+8hcKCgoYPnw4ixcvblIYLdpPamwwAOm2fiSyUx96T7vY4KhEa2WXVHOBIwGSq06PFhvqR05gGtSDVpQJdZXgG2R0WIKmG9geTQOGhFTiW50PmklW03agNo8AxcbGsnv37ibHly9fTp8+fdolqPZy++23s3//furq6li9ejXjxsmbekfSV4LBL9XJ+gEZAfIY5bX1lFRZGGnapR+Qq06PF5uQQq6KRFO2I6uJhOEcG9g2x7G8aP5IvR6PmMGSuHagNidAN998M3feeSerV69G0zQOHDjABx98wJ/+9Cduu01W/XRnUcG+hAd4s85qrz3I3wSWKmODEq2SfagaP+oYbNqvH5ARII83PCFMGiK6qRlpcfzjyhFNjseG+vHq7JGMwDESO76TI+te2jwF9sADD2Cz2Zg6dSrV1dWceuqp+Pr68qc//Yk//OEPHRGj8BCapq8EW51lodovhoDaQjiwHpJkEz93t/9QNUO1vXhhheCeEBpvdEjiJA2LD+NHWz/ON6+U0Vg3NDQ+FABvs8bzlwwjOsSPsckRmE0arLT/vmQktkOd0DL4P//5z5SUlJCZmcmqVas4ePAgjz/+eEfEJzzMgFi9IeL+gDT9gLzxeoT9JVWMck5/jZEGiF3AkPhQ50owW+5asNkMjkg0llNSA0Bij0AuGNGLCSk99OSnvubIHm6SAHWoE24u4OPjw6BBg5z7gAkB+pYYABk26QfkSbIPVTPSUQAdL2+6XUGovze1PQZSo3ww1ZbCoV1GhyQayT2s1/nEh/u73nBgPdgaICgGwqSBZUdq1RTYRRdd1OoH/Pzzz084GOH5HIXQP1UmcTXoCZBSMqLg5vYVVx5ZAt9b6g66iiEJkWzcksJ4bZs+GhuVanRIwi73sD4C1CQBymk0/SXvmx2qVQlQaGhoR8chugjHCNCyyjhUkB9aTQkc2gORsqmmO1PFe4jQKrGZfTDFDjU6HNFOhsaHkr65H+NN9gRo5LVGhyTsjowABbjekCMNEDtLqxKgt99+u6PjEF1EiJ83PUP9OFBWS0XEEEKK1upvvJIAua26BisJ1ZvBG6yxIzB5+RgdkmgnwxLCeNk+Ha1y1iDjCe6j2REgpRqNAEkC1NFkgxHR7hwNEbMDh+gHpBDareWU1DBS06e/vBJl+qsrGRgXQqamL4XXindCdYnBEQmHIwlQoxGgkr1QXQxmH4gbZlBk3YckQKLdOabBNiCF0J5g/6EjK8A0qf/pUvy8zcTGxbPHFqcfyF1rbEAC0EddC+17grmMADneK3uOAC9fAyLrXiQBEu1ugD0BWlKVpB84uA1qSg2LRxxbfkEBqSb7xrWy7LbLkY1R3U9+aS1KgZ+3iR6BjaacHb+f+DHGBNbNSAIk2l1/+0qwtUUmVIR9Y9TcdQZGJI7J/rsp8UuAwEiDgxHtbVhCGOlKRmPdSePpL63xSi/H70fqfzqFJECi3aVEBWE2aZTXNlAbY9/IT6483VZIsb5PVGmPpq35hecbFh/q3BJD5aWDtcHgiESzPYBqy6Boq/65jMR2ilatAvvHP/7R6ge84447TjgY0TX4eZtJ6hHAnoNV5AQNoT//kQTIjcVXbgZASQPELqlPVBAFPr0pVwGE1FdDYSb0HG50WN2aYwQooXEBdF46oPTmh8GxxgTWzbQqAXrxxRdb9WCapkkCJAAYEBvCnoNVbNT666XQjitPc5u3nxMdyNpQT2rDDtAgsO8ko8MRHcBs0kjrFU5GTj9OM2/Up1kkATJUsyNAMv3V6Vr11ygrK6uj4xBdTP+YYL7ZnM/qimgu9Q2BunJ9eDdOmuy5k+I9GcRodVQof6L6yLLbrmpYQhjp+x0J0GoY9zujQ+rWml0CnyMboHY2qQESHSI1Vt8fbntRFcSP1g/KNJjbqdq9AoBtXgMwm80GRyM6yvCEUCmEdiNNmiDarEcWisgIUKc5ofmI3Nxc/vvf/5KdnY3FYnG57YUXXmiXwIRnS40NAWBXYSW2tLGY9vysv/GOvdngyERjplz9j2Fe0BCDIxEdaVhCGBttKViVhrksG8oPQEhPo8PqlprtAXRwuz5K7h0I0YMMjK57aXMC9NNPP3H++efTp08ftm/fTlpaGvv27UMpxciRIzsiRuGBekcE4OdtorbeRmHoMOJARoDcUFjJegAqokYZHInoSLEhfgQEh7G9rjeDtf36xcjgWUaH1S0dsPcA8vc2E+HoAeTs/zNK6iQ7UZunwObNm8ef/vQnNm/ejJ+fH5999hk5OTlMmTKFSy+9tCNiFB7IbNLoF633A9Jb8WtQuh8qCowNTBxRnk9YXT5WpaHFSwLUlWmadlRDRJkGM0rjAmhnDyApgDZEmxOgbdu2ce21+o7CXl5e1NTUEBQUxGOPPcYzzzzT7gEKz+VoiLjlkIKYwfpBeeN1H/bprx2qN71iow0ORnS04QmhpNv7AclorHGa3QRVEiBDtDkBCgwMdNb9xMXFsWfPHudtxcXF7ReZ8HiOLTF2FlYcWdkgb7xuQ2Xrv4t0Wz96RwQaHI3oaMMSwshQ9gQofyPU1xgbUDd1ZATIvgKsqhhK7H9HHQtGRKdocwI0fvx4li9fDsA555zDPffcw5NPPsmNN97I+PGykaI4wrEp6vaCiiNXNrIZo9to2L8KgAzVn4QI/+OcLTzd0F5h5KhoDqpQsNXDgQ1Gh9QtNRkBcoz+RA0A/3CDouqe2pwAvfDCC4wbp/8xmz9/PlOnTuXjjz8mKSmJN998s90DFJ7LMQK0r7iKujj7lc2B9dBQZ2BUAoD6WsyFmwDIDRyCr5csge/qQgO86RMZJBujGqxJDyDp/2OYNpeb9+nTx/l5YGAgr732WrsGJLqO6GBfQv29KaupZ5clkrTAKKg6qA+/y4vdWPkbMNnqOahC8eqRbHQ0opMMjQ8l/XA/ZpjXymisQZp0gZb6H8OccCNEi8VCbm4u2dnZLh9COGiaRqqjDqio8sgLXK48jZfjqP/pT2Kk1P90F8MSwlxHgJQyNqBupq7BSmG5PgIeH+4PDRY4kKHfKHvxdbo2J0A7d+7klFNOwd/fn8TERJKTk0lOTiYpKYnkZLmSFK5S7SvBdkghtHuxX3Wm2/rRu0fAcU4WXcWwhDC2qCQseOmjsYdlm6POdKBUb4Do7AFUsBkaavXanx59DY6u+2nzFNgNN9yAl5cXX3/9NXFxcUf6GAjRDEch9I6CChjsGAFao195yv8dYyjlMgJ0Uw8ZAeouBsWFYDX5stmWzCjTLv21GNHn+HcU7aJJDyB7Kwrix4JJdqbqbG1OgDZs2EB6ejoDBgzoiHhEF+NcCl9QAXGTwOQNlYV6U8TwJGOD664OZ0HVQSx4sUUl0TtCRoC6Cz9vMwPjQkgv7G9PgFbDsCuMDqvbcBRAJ0RIAbQ7aHPKOWjQIOn3I1qtv70b9IGyWsoazNBzuH6DNEQ0jv1nv9mWTB0+JMoUWLcyzKUhorwOO5MUQLuXNidAzzzzDPfddx+//PILhw4dory83OVDiMZCA7yJC/UDYFdhxZFCP6kDMk6j6a+IQB+C/bwNDkh0pqHxYWQ4EqDCLVAr79udxaUHUFkulOeBZoZeso+mEdo8BTZt2jQApk6d6nJcKYWmaVit1vaJTHQZ/aKDyC+r5eN1OQRHDCQVJAEyUqMCaBn96X6GJ4RxkHByVRTx2kHIWwcpZxgdVrfg0gMoZ4V+MHYI+EgdnhHanAAtWbKkI+IQXdTizHzS9x8G4JN1uSxFY40fqIItaHUV4BtscITdTG25ftUPZNj6MUnqf7qdlKggAn3MrLP1I958UE+IJQHqFC5TYJv0Tuwy/WWcNidAU6ZM6Yg4RBe0ODOf2xZl0LjTSBHh5KpI4rVi1iz/gbFTLzIsvm4pbx2gKPGJ42BtOL1lBVi3YzZpDIkPJX1/f2aZV8hobCeprW/cAygAslfqNyROMDCq7q3NCdCmTZuaPa5pGn5+fvTu3RtfX9+TDkx4NqtNMf+rrTTXZi3d1p94czEbVnzHqNMvxGyS5fCdJlu/6txqHghAoowAdUvDEsJYnmVviJi7Dmw2WYbdwQ6U6tNfAT5mwk3VzpFYEmQPTaO0OQEaPnz4MXv/eHt7c/nll/P666/j5+d3UsEJz7Umq4T8stpmb0u39eMC8wr6W7axJquECSk9Ojm6bsx+1bmiXv/jlxQpCVB3NDw+jH+pBGrww7+uHA5uh5hBRofVpTUugNby1oGy6a1AQuKMDawba3PK/8UXX9CvXz/eeOMNNmzYwIYNG3jjjTdITU3lww8/5M033+Tnn3/moYce6oh4hYcoqmg++QGcrfhHmnZRVF7dWSEJa71+tQ/8WK03v+sdIVNg3dGwhDCsmFlvS9EPyDRYh3MpgLaPxNJbpr+M1OYRoCeffJK///3vTJ8+3XlsyJAhxMfH8/DDD7NmzRoCAwO55557eP7559s1WOE5ooNbHv3brnpTrXwJ0apJtOUCCZ0XWHeWvwnqq7H6hrGrticBPmYig3yMjkoYIC7Uj8ggX9bV9mOiaYteCD36BqPD6tJcCqCdCZBMfxmpzSNAmzdvJjExscnxxMRENm/eDOjTZPn5+ScfnfBYY5MjiAv1o7nJUitmNtivPIeqHZ0bWHdmn/463GMkChO9IwJkK5tuStM0hieEktF4Y1TRoRwjQL1DvZwjsTICZKw2J0ADBgzg6aefxmKxOI/V19fz9NNPO7fHyMvLIyYmpv2iFB7HbNJ45Dy9puDoP7EakKH0N15T7trODaw7sydA+wKHAJAkK8C6tWHxYWTY7BtwluyBKunw35EcI0ADtX3QUAP+ERDZ39igurk2J0ALFizg66+/Jj4+nmnTpjFt2jTi4+P5+uuvefXVVwHYu3cvv//979s9WOFZZqTF8erskcSGuk6HhQV4M37K2foXcuXZOZRyDrtv1PTEVJogdm/DEsIoJ4h9Wrx+QF6LHcoxApRcZV9J3Xu8bAhtsDbXAE2cOJGsrCw++OADdu7cCcCll17KVVddRXCw3tTummuuad8ohceakRbHmYNiWZNVwj9/2c2yXcWcN6wnoyeNht+AQ7ug6hAEykqwDnVoN1QXg5cfq+sSgFJ6SwLUrQ2NDwVgZX0/krxy9RHCATMNjqprqq23UlSh9wCKLFmvH5T6H8O1OQECCA4O5tZbb23vWEQXZTZpTEjpweFqC8t2FbMmqwQC0iAyFYp36FeeA84xOsyuzdF0rdco9pTUAzIF1t2FBfiQHBnI2pJUrmQJ7F9pdEhd1pEeQCa8D9hH2qT+x3CtSoD++9//cvbZZ+Pt7c1///vfY557/vnnt0tgousZmxwBwPaCCkqqLEQkTtAToOwVkgB1NPv0ly1hPDm77cWY0gSx2xsaH8qaQ3pTTPI3gKVK9qXqAI7prwkhh9EqD4GXH8QNMzgq0aoEaNasWRQUFBAdHc2sWbNaPE82QxXHEhnkS/+YIHYWVrIm6xAzek+E9Hdg/wqjQ+v67D/jkshRWKw2vM0aPcP8DQ5KGG1YfBhfboikxBxFhPUg5K6FPqcZHVaX40iAJvvuhkqg1yjwkh0TjNaqImibzUZ0dLTz85Y+JPkRxzO+j17rs2pvCSRO1A/mb4S6SgOj6uIqCuBwFqCxx1cvgI4PD5AtSATDEsIAjTW2VP2ATIN1CMcKsOFqm35A6n/cgmz+IjrVkQToEIQlQGgC2Br0K0/RMRxN12LSyKowA7ICTOgG9wzBy6Sx3NJPP5Ato7EdwTEC1KdG75Un9T/uodUJ0MqVK/n6669djr333nskJycTHR3N7373O+rq6to9QNG1HF0H5BwFypYrzw7TaNfp/SX6lahsgioA/LzNDIgLZrXNXgeUsxYaLMe+k2iz3MPVRFFKaE0OoEH8GKNDErQhAXrsscfYsmWL8+vNmzczZ84cpk2bxgMPPMBXX33FU0891SFBiq7DUQcEsCbr0JErIakD6jiOBKj3ePYfqtI/lRVgwm5YfBi7VU9qzCF6g778jUaH1OXkHK5hlElvG0PMYPAPMzQeoWt1ArRhwwamTp3q/Pqjjz5i3LhxLFy4kLvvvpt//OMf/Oc//+mQIEXX4loHNEk/mCtXnh2irgIKjgy77z8kI0DC1bD4MBQmMr3su8HLNFi7qq23crCijjEm+7Y/Uv/jNlqdAB0+fNhle4ulS5dy9tlnO78eM2YMOTk57Rud6JJc6oAi+0FAJDTU6stwRfvKWQPKBmGJqOA4su0JUFKkJEBCpxdCwy819m0xpBC6XeXZewCNMzsSIKn/cRetToBiYmLIysoCwGKxkJGRwfjxRzLZiooKvL292z9C0eW41AFV10OiYxrsNwOj6qKcu05P4HB1PRV1DWiavgpMCIC+0UEE+JhZXm/flyp7JdhsxgbVheQeriGQGn0PMJARIDfS6gTonHPO4YEHHmDZsmXMmzePgIAATjnlFOftmzZtIiUl5YQDqa+v5/7772fIkCEEBgbSs2dPrr32Wg4cOOByXklJCVdffTUhISGEhYUxZ84cKitdl1Bv2rSJU045BT8/PxISEnj22WdPOC7R/prWAdkLoeXKs/01qv/ZZ6//iQ3xw8/bbGBQwp2YTRpDeoWyRSXRYPaH2lI4uM3osLqM3MPVDDftxoxNX/UaGm90SMKu1QnQ448/jpeXF1OmTGHhwoUsXLgQHx8f5+1vvfUWZ5111gkHUl1dTUZGBg8//DAZGRl8/vnn7Nixo0ln6auvvpotW7bwww8/8PXXX/Prr7/yu9/9znl7eXk5Z511FomJiaSnp/Pcc8/x6KOP8sYbb5xwbKL9udYB2UeAsleBTXpJtRtrPeSu0z9PnOic/pIO0OJoQ+NDacCL7V56PyDbPqkDai+5h2sYa9qufyHTX26l1XuBRUZG8uuvv1JWVkZQUBBms+sV5CeffEJQUNAJBxIaGsoPP/zgcuyVV15h7NixZGdn07t3b7Zt28bixYtZu3Yto0ePBuDll1/mnHPO4fnnn6dnz5588MEHWCwW3nrrLXx8fBg8eDAbNmzghRdecEmUhLHG9+nBeyv363VAMyeCTzDUlUHRVogdYnR4XUP+Rn1Vj38ERPZn/8bdgOwBJlwtzsznk/RcAL6v7Eua9wZ+/O7/sAWey4y0OIOj83y5h2uYbbKPqCVNMjYY4aLNjRBDQ0ObJD8AERERLiNC7aGsrAxN0wgLCwP0XkRhYWHO5Adg2rRpmEwmVq9e7Tzn1FNPdYll+vTp7Nixg8OHDzf7PHV1dZSXl7t8iI7lUgdUa4OEsfoNshy+/ThqqnqPB01jf4ljCbyMAAnd4sx8bluUQWm1vkHuWqWPAA2xbuW2Rekszsw3MrwuobCklOHaHv2LxMnGBiNcuG0n6NraWu6//36uvPJKQkJCAJz7kTXm5eVFREQEBQUFznMar1YDnF87zjnaU089RWhoqPMjISGhvb8dcZQmdUCOhoiSALWfffYEyN5qwLkEXhIgAVhtivlfbUU1Orbe1heLMhOnlRCvHWT+V1ux2lSLjyGOL7xkE75aPfX+UdDjxOtkRfszLAH64IMPCAoKcn4sW7bMeVt9fT2XXXYZSileffXVDo9l3rx5lJWVOT9kOX/naHZfsP0rQMkb7kmzWY8UQCfpV51HegDJFJiANVkl5JfVuhyrxZdMlQzAWG07+WW1rMkqMSK8LqG23kpq7SYAVOIk0GT/PXdiWAJ0/vnns2HDBueHY1rLkfzs37+fH374wTn6AxAbG0tRUZHL4zQ0NFBSUkJsbKzznMLCQpdzHF87zjmar68vISEhLh+i47n0A+o5Esy+UFUEJXsNjqwLKNgEdeXgGwqxQ6iqa6C4Ut+qRqbABEBRRW2zx9fYt8UYYy/cbek8cXx5pTWMs9f/ePc55Thni85mWAIUHBxM3759nR/+/v7O5GfXrl38+OOP9OjRw+U+EyZMoLS0lPT0dOexn3/+GZvNxrhx45zn/Prrr9TX1zvP+eGHH0hNTSU8PLxzvjnRKi51QBYT9Bql3yD9gE6ec/prApjMZNv3AAsP8CbUX/p1CYgO9mv2uGNneEfn4pbOE8eXV1zGSNMuALQkqf9xN25TA1RfX88ll1zCunXr+OCDD7BarRQUFFBQUIDFom+RMHDgQGbMmMHNN9/MmjVr+O2337j99tu54oor6NmzJwBXXXUVPj4+zJkzhy1btvDxxx/z97//nbvvvtvIb080o+U6IOkHdNL2Ldf/ddb/yB5gwtXY5AjiQv04elJmna0/NqWRYspnUEit80JFtF3t/rX4axbKTWEQlWp0OOIobpMA5eXl8d///pfc3FyGDx9OXFyc82PFiiOFsR988AEDBgxg6tSpnHPOOUyePNmlx09oaCjff/89WVlZjBo1invuuYe//OUvsgTeTTXbD0hGgE6OzXpkP6ej6n+SZPpL2JlNGo+cp+//1TgJKieIHUpv1vfkyHLMJqlbOVG+eXon9tyQ4VL/44Za3QeooyUlJaFaUfwaERHBhx9+eMxzhg4d6lJULdyXSz+g6eNAM0HpfijLg9BeRofnmQq3QG2Z3lspdigA+0tkE1TR1Iy0OF6dPZL5X211KYjeYEpjIDmMsGYaGJ3niz6kNyItjR5rcCSiOW4zAiS6J5c6oAZfiBum3yCjQCfOMf3VezyY9WscZxdomQITR5mRFsfy+8/g3zePZ2TvMABCB52u35glF5InzFpPUvVmAGy9pQGiO5IESBiqSR1Qkn2lRNavBkbl4RzJY6OiS8c+YNIDSDTHbNKYkNKDqQP1nmnL6lMBDYp3QGXRse8smpe/EX9qKVWBhCUNMzoa0QxJgIThXOqAkk/VD+6TK88TYrM1SYAsDTYOlNYAkgCJYxsQGwzA+oMmiEnTD8pr8YTU79V/bmttA4iX3ltuSRIgYTiXfkC9x4NmhsP7oDTb2MA8UdFWqDkMPkHO6cS80hpsCgJ8zEQF+RocoHBn/WP0BGjPwUqsjhFEmQY7IZbd+ij2etNgaT3hpiQBEoZrUgfUa6R+g7zxtp1j9CdhHJj1N13H9FfviAA0WYkijiE+3J9AHzP1VkVB+Bj9oIwAtZ3Nim/+GgCyg0fI685NSQIkDNdiHZC88bad42fWaNdpZwG0rAATx6FpGv3t02CbzYMADQ7thnLZFLVNCjbjVV9JufKnLnKQ0dGIFkgCJNyCax2QoxB6mewL1hY225HNZJOOtN139gCKlDoEcXyOOqDMEhPE6W0UnCsLRevYf17rbKn0igg2OBjREkmAhFtwqQNKGA8mbyjPhcNZBkfmQQ5uh+pD4B0APUc4D2eXHJkCE+J4Uu11QNsLKhqNxsqqzDbJWgrACttg4sP9DQ5GtEQSIOEWXOqA6r0gXt8cV+qA2sBxlZ4w1ln/A7DPsQu8rAATreCYAttZWHFkVaa8DlvPWu8ciZUEyL1JAiTcgtQBtQP7VafzjxZgsynnRqiJshRXtIJjBCi7pJqqmDF6d/bDWVCWa3BkHiIvAyyVlBLMNtWb+HC58HBXkgAJtyF1QCfBZj2SLCaf5jxcWFGLpcGGl0mjZ5js6i2Or0eQL5H2dgm7yk0QN1y/QeqAWsfexPU360AUJhIkAXJbkgAJt+FSBxQ/Fsy+UFmgr0IRx5a/Qd//yzcUeg53HnYUQMeH++Nllpe7aB1HIfSOgnLXixFxfPaR2JW2wQT7ehHi7zZbboqjyDuicBsudUAWk17LAkemdkTL9tp/RkmTwWR2Ht7v6AEke4CJNkiNbVwI7ejOLoXQx1VfAzmrAfjNlkavcH/pAeTGJAESbqPlfcHkyvO4HElin9NcDjtGgGQXeNEWjjqgnYUVR7qzl2bD4f0GR+bmsleB1UKVbzRZKlbqf9ycJEDCrTRbB7RvudQBHUt9rf7GC9BnistN+0tkBZhou1TnFFgF+AY16s4uo0DHZP/57A0eDWiyAszNSQIk3IpLHVCvUeDlD9XFULTN4MjcWM5qaKiFoFiI7O9yU7ZzCbxMgYnW6xcThKZBcaWF4so6SLYn1nt/MTQut2cfiV1vHgIgCZCbkwRIuBWXOqA6DRIn6DfIG2/LnNNfU8Beb2C1KVbuKWZXUQUgb8SibQJ8vJyNM3cWVEDK6foNe3/RO46LpmrL4MB6AJbW69tfyBSYe5MESLiVJnVAfexvvHt+NjAqN+cogLZfpS/OzGfyMz9z5cLV1Nbrf6xueHsNizNlPyfRei4doePHgnegPhpbmGlwZG5q32+gbBCRwsZyfcRVLjzcmyRAwu241AGlnKEf3P8bNNQZGJWbqi2DAxn6532msDgzn9sWZZBfVutyWmF5HbctypAkSLRaauOO0F4++gpDgL1LDIzKjdnrfxoST6W40gIgPYDcnCRAwu241AHFDIbAaKivdi4vFY3sW+686rQG92L+V1tprlzccWz+V1ux2qSgXByfy1J4ODINtkcSoGbZp6IPRo0DkB5AHkASIOF2XOqAquvljfdY9h5Z/r4mq6TJyE9jCsgvq2VNVknnxCY8mmMKbFdhBTabOjIdnb1SX3kojqgohKKtAOwJ0jcilh5A7k8SIOF2pA6oDRoVQBdVtO6PUmvPE91bUmQgPmYTVRYreaU1EJUKwXH6isPslUaH514c701xw8mq1ut+pADa/UkCJNySax2QPQHK3whVhwyMys2U58PB7YAGSacQHdy6vb5ae57o3rzNJlKi9QuRHQUV+gpDx8WI1AG52vOT/m/KGeQePrL9jHBvkgAJt+RSBxQcC9GDAAVZvxgal1txvOn2HAEBEYxNjiAutOXkRgPiQv2cU4xCHE+qfSR2R6HUAbXIZjvy8+g7ldzDNYAkQJ5AEiDhllzqgKosR1aDyRvvEbvtCVDfaQCYTRr3zxjQ7KmOSoRHzhuE2SR1CaJ1UmNDgEaF0I6tVgo2QVWxMUG5m4JNensAnyCIH9soAZIpMHcnCZBwSy3XAS2RbTEAbNYjdQf2BAhg3X69wPnoHCc21I9XZ49kRlpcZ0UouoDUWP01uNORAAVFQ0ya/rk0J9U5RmKTTwUvH/LsU2AJETIC5O5kjZ5wW+P79GBnYSWr9pYwY8ZEMPtAeS4c2g2R/YwOz1gH1kNtKfiG6luGAL/uPMiiVdkAvHvDWLzMJooqaokO1qe9ZORHtJVjBGjPwUosDTZ8vEz6KFBhpl4HNOQSYwN0B7vtFyIpZ1BjsTp7AMkIkPuTESDhtlzqgHwC9F2pQVaDAez+Uf835TQwe1FWU899n24C4LoJiZzSP4oJKT24YHgvJqT0kORHnJCeoX4E+3rRYFNkFVfpB53T0b/IaGxdxZH+ZClnkFeqj/4E+3kR6u9tYGCiNSQBEm6r5TogSYCc9T8pUwGY/9UWCsprSY4M5IGzBxoYmOhKNE2jv7MhYrl+MHEiePnpo7EHdxgYnRvYtxxs9RCeBD1SyJH6H48iCZBwW03qgBwJUNay7r0tRnUJ5K3TP+87le+2FPB5Rh4mDZ6/dBj+PmZj4xNdiqMj9A5HHZC3PySdon++63uDonITR12IyAowzyIJkHBrjmmwL9bn8WVBDyz+0VBfpe8N1l3t/UXf/iJqAMXmKB78fDMAt0xJYVRiuLGxiS7H0RF6p2MpPEC/s/R/u3sC1Kj/D0BuifQA8iSSAAm35uul/xf9bkshd368kS8qBgGwb+UXRoZlLPubrkqZykNfZHKoysKA2GD+OK2bF4aLDtFkTzCAfmfq/2avhNpyA6JyAyVZULIXTF76CjCQJfAeRhIg4bYWZ+azcFmWy7GfbcMBUDu/7547myvlHHZfoQ1j8ZYCvM0af7tsGL5eMvUl2p9jBCj3cA2VdQ36wYhk6NEXbA3ddzm8Y/QrYRz46avlpAu0Z5EESLglq00x/6utTY7/ZkvDoswkmwp488sfu9/O5kVboSIf5eXPHSv1q8w7p/ZjcM9QgwMTXVV4oA/Rwb6ATIO52LlY/7f/DOchqQHyLJIACbfU0s7mlQSw1qZ3O06rXt39dja3v+lu8BrKoVoTwxLCuHVKisFBia6uSSE0HJkG2/VD91sOX1eprwADZwJUbWngUJX0APIkkgAJt3SsHcuX2KfBTjdt6H47m+/QE6BPKtLw9TLxt0uH4WWWl7HoWI5pMJcEKHESeAdAZYG+HUR3svcXsFogPNnZlDXPPvojPYA8h7xzCrd0rB3LHQnQONM2Yv2snRSRG6g8iMpdC8BP1hHcN2MAfe27dQvRkZodAfLyPbI3WHebBms8/aXpTUalANrzSAIk3JJjZ/Pm+hfvUT3JtkXhqzUwWnWfK0/bzu/QUGy2JZHcpy83TEwyOiTRTQywb4nhUgMErtNg3YXNdiTh63+W87AUQHseSYCEWzKbNB45T1/y3jQJ0vjZNgIAUze68ty/8jMAftVG89wlwzDJ9haik/SNDkLT4FCVhYMVjZqQ9rUnQLlr9Qad3UH+Bqgs1Hd/T5zkPCwF0J5HEiDhtmakxfHq7JHEhrpOhwX7ebHEngBVbP4fymYzIrwOZ7UpVu45xJcb8vhs9R6iilYA0HfyJSREyDC76Dz+PmaSegQCR02DhSVA9GC9MefO7wyKrpM5vs+U0/VpQDuZAvM8shu8cGsz0uI4c1Asa7JKXHY2/3B5b6p/eomQ+oO8/p8v+N3lF6FpXWdEZHFmPvO/2upcCXeqaSMX+9RySIvgrKnTDY5OdEf9Y4LIKq5iR2EFk/tFHrlhwEwo2gLbv4bhVxoXYGdpZvk7HJkCS5ARII8hI0DC7ZlNWpOdza85dSDFsfp+RJbM//LgF5nYukhPoMWZ+dy2KMOlDcBUUwYA39UP57uthUaFJrqxVHsd0I6Cozo/DzxX/3f3T2Cp7uSoOllFgT4FBkf6INnJCJDnkQRIeKzeEy8DYLppLf9ek829n27y+MaIjgaQrt+FYqp5PQA/2UYy/6utHv99Cs8zwLESrLDS9YbYoRCaAA01J9QVuvFU78o9h9z7//aOb/V/e46EoGjn4cY9gHrJCJDHkCkw4bn6nwUmL/qTR4qpgM8yoN5q44XLPLc3TnMNIAdoOcRrxdQoH5bb0qgrq2VNVgkTUnoYFKXojvrbewHtKqzAZlNHivA1TZ8GW/0abP8GBpzT6sc8eqoXIC7Uj0fOG8SMtLh2jb9dbP9a/9cx6mXn6AEUIj2APIpn/pUQAsA/HJL0abAFIw/gZdL478YD/OHf67E0eGZhdHONHc8yrQPQkx98WjxPiI6U1CMAHy8T1Rarc7rHacBM/d8d/wNrQ6ser7mpXoCCslpuW5Thfnv91ZTC3qX65wPPd7lJpr88kyRAwrPZ33gHlC7ltdmj8DGb+DazgNsWpVNbb/Ws4XWabwB5tnk1AN/ZxhzzPCE6kpfZRN8ovfHm9qPrgHpPBL8wqCmBnNXHfazmp3p1jmNuN9W763uw1UPUAGf3Z4cc6QHkkSQBEp7NceWZu5Zp8TYWXjcaXy8TP20v4sJ//sakp3/iyoWruPOjDVy5cBWTn/nZ/a4sGzm6AWSSls9AUw71yswP1lFo6FMEY5MjjAxTdFMDmusIDWD2gv9v787joqzXx/+/ZgYGlFVkVwRXUBH3Nc0lFyzNTpuaWlrZL1upTqfl9/m41PmkdjqVdUzP6aRYkVq5tKrlgppLKq64oCK4IIqK7LLN3N8/bhkdWQcGhoHr+XjMg5l77rnv680t43W/19DR6vMTv1R6nPLW+iuhAKk3m3rrjeM/qj87ji31ltQA2SdJgIR9cw+EFr3U5wm/MLiDD0un9Uav03I8NZtLWQVmu9fb6vWbSiaALLnvHa1Vl77YZexEFurd96yxndDJJIjCBkxLYtw5IzTcuhk58XOli6NWtQm33jT1FubBqY3q8zITIKkBskeSAAn7V9Ih8bjaQbFv6+a4OZfdv7/eVq/fJjI8gIl9gtTnuj0ArDP2wd/DmUWTe9TPzqGiUehQXg0QQNth4OAMGWfhcnyFx6lqE269aepN3KSOcvNspY56u4PMAm2fJAES9i/s5h1Z8na4cZ09SemmIallqZfV63e4kl1IC67QVXsGBS0PTvz/+OONYZL8CJsqaQJLuppLQfEdCxHrXaDdcPX50bUVHqeitf6A+tfUe/wn9WfH+02Ln95OmsDskyRAwv55twOfjmAshhO/2l/1+h0Kig3sTLxqqv3RBA+gd3ioNHsJm/N3d8bN2YFio8KZK7mld+j8F/Xn0dUVNoPd2dR7J4V61NRbXAAJN2d/LqP5K7egmHSZA8guSQIkGobwB9Wf8avsr3r9DvuSr5NXaOB+vTr8nU7jbBuQEDdpNJryO0KDujyEQxNIPwOphyo8VmR4AOO6BZb5nmcTR4aE+pb5nrVVOlL09CYoyARXf2jZu9TnUzJkDiB7VW8ToGeffRaNRsPHH39stj09PZ1Jkybh7u6Op6cnTz31FDk55jOTHj58mEGDBuHs7ExQUBDvv/9+HUYubCL8IfXnmVj6+Brtq3r9DrEJafhzja5KgrrhjknXhLClCjtCO7mqE5SCWgtUgWKD0dQM/dyQtiyY0I1lT/Ym0MOZjBtFLNuZbM2wy7Q+PpWB8zdXPFI0/nv1Z/iDoNWVOsatDtDS/GVv6mUCtGbNGnbv3k1gYOm7g0mTJnH06FF+//13fv75Z7Zt28Yzzzxjej8rK4uRI0cSHBxMXFwc//jHP5g9ezb/+c9/6rIIoq41bwsB3UAxoDvxA7PGdgIoNwmqN9XrZYhNuMJY3S71RasB6kg3IeqJUL8KaoAAOpfUxq6psBnst2OXSc3Mx9tVz8vD2zOuWwsGd/Dl1ZGhAHwWm0jmjSKrxn67Kk3EWJh7a/mL8IdLHcNgVNh+6ioATfW6ejuwQpSt3iVAKSkpvPjii8TExODoaF6dePz4cdavX89///tf+vbty8CBA/n0009ZsWIFFy9eBCAmJobCwkKWLFlC586dmTBhAi+99BIffvhhuecsKCggKyvL7CHsUEktUPxqIsMDWDS5B/4epZu53hodVm87E6dk3OBUWg4P6HaoGyIesW1AQtzh1qKo5SRA7UeC3hUyz8GFfeUeJ/pmDc/EPq1wcrhVs/KX7i3o4OdK5o0iFm9NtFrct6vqRIzGE79CUR40aw0tepjtV1J7tHSHWo59Z6/X+3nGhLl6lQAZjUamTJnC66+/TufOnUu9v2vXLjw9PenVq5dp2/Dhw9Fqtfz555+mfe6++270er1pn1GjRpGQkMD169fLPO/cuXPx8PAwPYKCgqxcMlEnSvoBnd0JmSlEhgfwxxvDWD69HwsmdGPAzbWzTpRVdV9PbE24QjvNBTprz4LWETo9YOuQhDBTUgOUknGD7Pwyamj0TW9NilhOM9jx1Cz2JKXjoNUwqW+w2Xs6rYbXR4UBsHRHEpezrD9YoaoTMZ7ZsgyA623Gkl1QjHKzRsvulvEQZapXCdD8+fNxcHDgpZdeKvP9S5cu4etr3jHOwcEBLy8vLl26ZNrHz8/PbJ+S1yX73Omtt94iMzPT9Dh//nxNiyJswaMltOoPKHB0DaB+mfZv25xx3Vrwt0j1S/WnQxfr7Qiw2IS0W7U/7YZD0/rZT0k0Xh5NHfF3V2tWT5Z3M1HSDHZ0DRgNpd4u6d8zKty/zFra4R196RXcjPwiIx9vPGWVuG9Xlb9/D3Jolb4TgEd3tqTL7N/oNHMDd7+/mReXH7CvZTxEmWyWAMXExODq6mp6bN26lQULFhAdHY2mjHkWapOTkxPu7u5mD2GnTM1g35d6q1uQJz2Dm1FkUPh697k6DqxyhcVGdpy+wjit+qUrzV+ivjJ1hL6UU/YO7e4BZw/IToWkbWZvZeQVsvZgCgBTB4SU+XGNRsMbo9Ublm/3nefMlXLOU01VGQEaqduLXmMgURtMqj4EgBtFBs6l36DIUH5yYw/zjAmVzRKg+++/n4MHD5oeO3fuJC0tjVatWuHg4ICDgwNnz57ltddeIyQkBAB/f3/S0tLMjlNcXEx6ejr+/v6mfS5fvmy2T8nrkn1EA9bpAdA6wMUDkHai1NtP3tUagJjdZ8kvKn1nakv7zqYTWnSCIO0VFL0rdBht65CEKNOtBKic/pIOTrc6DR/8xuytlXvPk19kpFOAO72Cm5V7jt4hXtwT5ovBqPDP305aJe4SfVp70VRfekRXCQ3wiF4diNB26BPEzxnFsXdGEfvXIbx0T/tyP3e7+lrLLG6xWQLk5uZGu3btTI9nnnmGw4cPmyVFgYGBvP7662zYsAGA/v37k5GRQVxcnOk4mzdvxmg00rdvX9M+27Zto6joVtv077//TmhoKM2alf/HJhoIVx+1EybAwa9LvT2qsx+BHs5cyy3kx4MX6zi4im09ecXU/KUJG6P2pRCiHjKNBKuoP123SerP4z9Bfiagdj7+avdZQK39qay2//XIUDQa+OVIKocvZNQ47hI/HbpIXmHZN0AaoKUmjV5KvPqqi1oT21TvQIi3C/3bNK/SOerrPGPilnrTB6h58+aEh4ebPRwdHfH39yc0VB0W2bFjRyIjI5k+fTp79uxhx44dvPDCC0yYMME0ZP6xxx5Dr9fz1FNPcfToUVauXMmCBQt49dVXbVk8UZdKvngPrQSDeSdNB52WJ25Wuy/ZkWTq1Fgf7DyRwv06af4S9V/obZMhlvs31KIHeIeqa2jdXBpj0/HLXLh+g2ZNHbm/nEkQbxfm785furUAYP760jW61XHycjZvrT4CwL3h/gTc0QfJ38OZpd1u9jtqfbe6/tdt7G4ZD1GuepMAVVVMTAxhYWHcc8893HvvvQwcONBsjh8PDw9+++03kpKS6NmzJ6+99hozZ840mytINHAdRkFTb8hNg9MbS709oXcrmjjqOHEpm12J12wQYGmpmTcIubIFT00uRrcW0GaorUMSolztfF3RauB6XhFXcgrK3kmjgW6Pqc8PLQdg2a5kAMb3boWzY/lNULd7ZUQH9DotO05fY/upKzWKO6egmGe/juNGkYGB7bz59LEeZiNFl0/vxx9/G0K7izfX/uo+pdQxSpbxgNLzjJW8rs/zjIlbyl4yu55ITk4utc3Ly4tvvvmm9M63iYiIYPv27bUU1S0Gg8GsqU1YxtHREZ2ual+CFtE5QsR42L0QDnx9a0juTR5NHXmkV0u+3HWWJTuSGNDO2/oxWGhrwhUe1cUCoO0+qcwZZ4WoL5wddYR4u3DmSi4Jl7LLb+6JGA+b5sC5XSSfPMyO09fQamByv1Zl71+GIK+mTOrXiqU7kpm//gR3tfVGW43kQlEU3lh1mDNXcvF3d2bBhG6mJKV/29uatc5sVecwcvIodxb2knnG5vx0zGwovL+HM7PGdqq384wJc/U6AaqvFEXh0qVLZGRk2DoUu+fp6Ym/v7/1R/51n6QmQCfXQ+5VcDFPcqYOCOHLXWfZdCKNpKu5tPZ2se75LXQk/ggTdPHqi+6TbBqLEFUR6udmSoAGtfcpeyf3AGh7D5z+neRNnwORjOjkZ/GyES8Mbcd3+y4Qn5LFr/GpjImwfHb06J3J/HI4FQethoWTetDc1ansHQ/GqD/DHwTH8hc3jQwPYEQnf/YkpZOWnY+vm9rsJTU/9kMSoGooSX58fX1p2rRpnQ/bbwgURSEvL880qi8gwMp3TH6d1aUxUg/C4ZXQ/3mzt9v4uDIszJfNJ9KI3pHEnHHh1j2/BYoMRlqeXQ0ayA4ciFuzEJvFIkRVhfq7sS7+UvkzQpfo9hic/p2Ol37CgeGmPniWaO7qxPRBbfho40k+2JDAqM7+OOqq3oMj7ux1/u+X4wC8fW9HepY3+uzGdTj2o/q8++RKj1syz5iwT5IAWchgMJiSn+bN5R9+TTRpot5dpaWl4evra/3msO6T1QRo31Lo95zaJ+E2T97Vms0n0vgu7gKvjgy12UrO+5Oucj9bAHDpN80mMQhhqSqNBAMIG8MNvRd+hek87nWc/m3ur9b5nh7Umi93JZN8LY+Ve88zuV9w5R8CruUU8MI3+yk2KtwXEcC0u0LK3/ngcrXTtm9naNGzWnEK+2F3naBtraTPT9OmMkTZGkp+j7XSlypivLom0bVTcCa21Nt3tWtOqJ8beYUGvt1ru9m/U/asoYXmGrlad7Sy8ruwEyUjwU5ezsZYwazHRq0j3yvDAJjeZHO1a8xdnBx4cVg7ABZsOkVeYXGlnzEYFaJWHiQ1M582Pi7Mfyii/PMbjbD3v+rzPk+XumESDY8kQNUkzV7WUau/R2d36DpRfV7yxXbHuZ8cGAKo/QOKDcbai6UCbc6o8xWltHkUHGXuEGEfgpu74OSgJb/IyLn0vHL323ryCouzB2FAQ8C1P+FK9Sc1fKxvMEFeTbiSXWBahLQiCzadYvupqzRx1LF4ck9cnSpo9DizBdITwckdujxa7RiF/ZAESDRsvZ9Wfyb8Chmla3nGdWuBl4uelIwb/H7scqn3a9vVMwfpVnwYg6LBZ9hzdX5+IapLp9XQ3s8VgBMV9AOK3plMCj6c9hyobti3pNrn1DtoeW2EOi/c4thErucWlrtvbEIan25W5/OZ+2AXOtxssivX3i/Un10ngpNrtWMU9kMSIBsyGBV2JV7jh4Mp7Eq8Jovn1QbfMHUyM8VY5hevs6OOSX3VIblf/JFU19GRGfsvAP506k+zwLZ1fn4haiLUT103sbxFUc9cyWHryStoNNDs7hnqxoPfQEEl/YYqcH/XQDoGuJNdUMyirYll7nPheh5RKw+iKOqQ+we6t6j4oBnn4OQ69XnJTZNo8CQBspH18akMnL+ZiZ/v5uUVB5n4+W4Gzt/M+vjUWjvn1KlT0Wg0aDQaHB0d8fPzY8SIESxZsgSjserNP9HR0Xh6etZanFbXe7r6My4aCnNLvT2lXzCOOg37zl7n0PmMuovrRgYtz6sTrl3o8HjdnVcIKwn1V2tKyhsJ9uUuddmLYaG++HYbDc3bQ0Em7P+y2ufUajX8LVKtBYremczFjBtm7xcUG3g+Zj8ZeUVEtPTgf8d0qvyguxepN0mtB4NPh2rHJuyLJEA2sD4+lRlf7zebQAvgUmY+M77eX6tJUGRkJKmpqSQnJ7Nu3TqGDh3Kyy+/zJgxYygurrxToV0KvReahcCNdHVixDv4ujsz9ua8Ikt31F0tkGHPf3FS8jluDKJd71F1dl4hrCXUX60BKmskWE5BMd/HXQDg8QEhoNXCgBfVN3d9VmqZGksM6eBD39ZeFBYb+fD3BLOa9Hd+OsahC5l4NHFk4WM9cHKoZHRpXjrELVOf3/VStWMS9kcSICtQFIW8wuIqPbLzi5j141HKauwq2Tb7x2Nk5xdV6XiWrmXl5OSEv78/LVq0oEePHrz99tv88MMPrFu3jujoaAA+/PBDunTpgouLC0FBQTz33HPk5OQAEBsby7Rp08jMzDTVJs2ePRuAr776il69euHm5oa/vz+PPfaYaZ4fm9I5wICbX2w7Py3zi3fazVXifz6cyuWsOljFuTAP467PAPhK9wBdg2ShXmF/wm6OBEu6mktBsfnioqv3XyCnoJg23i4MKpltPWI8uPhC1gWIX13t82o0Gt4YHQbA93EpZjXpMX+eA+Dj8d0I8qrCaN19X0BRLvh1USdtFI2GzANkBTeKDHSaucEqx1KAS1n5dJn9W5X2P/bOKJrqa3YZhw0bRteuXVm9ejVPP/00Wq2WTz75hNatW3PmzBmee+45/va3v/HZZ58xYMAAPv74Y2bOnElCQgIArq5qNXhRURHvvvsuoaGhpKWl8eqrrzJ16lR+/fXXGsVnFd0eg9i5kHle/eLtOt7s7S4tPegT4sWe5HS+2nWWv44Krd14DnyNY/41zht9yA0bJ7PHCrvk6+aERxNHMm8UcToth86BHoB6U7hsZzIAj/cPvrV0haMz9HsWNr0DOxZAxKPVHm6eVsmNyp0JWZmKbsDuxerzu16Woe+NjNQACQDCwsJMa69FRUUxdOhQQkJCGDZsGH//+9/59ttvAdDr9Xh4eKDRaPD398ff39+UAD355JOMHj2aNm3a0K9fPz755BPWrVtnqj2yKccm0O9mJ8wdH6tzftyhZEh8zJ9nyS+qwpdndRUXql/+wGLDWO4OlXWDhH3SaDRm8wGV+OP0VRKv5OKi1/FQz5bmH+r1JDi6QNpROFm9G0eDUWHOT8fKjwuY89OxygeWHPga8q6CRyvo/JdqxSLsl9QAWUETRx3H3qlaH449SelMXbq30v2ip/WmT2uvKp3bGhRFMc3Js3HjRubOncuJEyfIysqiuLiY/Px88vLyKpwAMi4ujtmzZ3Po0CGuX79u6lh97tw5OnWqQkfE2tbrKdj+EaQdg+M/QucHzN4e0cmfls2acOH6DdYcSGFin6ov2GiRI99C1gXSFE++N9xNVIdy1lESwg6E+rmxJyndbCh8Se3Pwz1b4uZ8xwzrTZqpEw3uWABb/g7tR6r9gyywJym9VB/K2ylAamY+e5LSy1+qougGbP+n+vyul9SmctGoSA2QFWg0GprqHar0GNTehwAPZ8qraNUAAR7ODGrvU6XjWWsiwePHj9O6dWuSk5MZM2YMERERrFq1iri4OBYuXAhAYWH5c27k5uYyatQo3N3diYmJYe/evaxZs6bSz9WpJp631gTb/HcwmHf61mk1TL25TtGSP5Is7l9VJcUFEDsfgM+L76VDCx983MpZlFEIO2CqAbqZAJ27lsemE2rfv8fLW/frrijQu8GlI+rNiIXSsqvWT6/C/fb+F7JTwSMIesgozMZIEqA6ptNqmDVWrQ25M3UpeT1rbKc67ROyefNmjhw5wkMPPURcXBxGo5F//vOf9OvXjw4dOnDx4kWz/fV6PQaDeRPRiRMnuHbtGvPmzWPQoEGEhYXVjw7Qd+r/PDRtri6PceibUm8/2jsIF72OU2k5/HH6qvXPv28JZJ4jQ+fNl4aRDAmV2h9h30o6QpcMhf9qdzKKAoPae9PWp5wJBZt63boZ2fIeGC1rcvZ1q9qM6eXul58F2z9Unw95ExzkJqQxkgTIBiLDA1g0uQf+HuZ/nP4eziya3IPI8NrrE1JQUMClS5dISUlh//79vPfee4wbN44xY8bw+OOP065dO4qKivj00085c+YMX331FYsXLzY7RkhICDk5OWzatImrV6+Sl5dHq1at0Ov1ps/9+OOPvPvuu7VWjmpzdodBr6nPY+dBkfkdoruzI4/0CgLUWiCrKsiGbf8AYIHhIQrQM1iav4Sda39zhuWLmflczspn5c119aZWtup7/+fA2ROuJsDhlRads09rryrVpJfbjWDXQnVajObtIWKCRecWDYckQDYSGR7AH28MY/n0fiyY0I3l0/vxxxvDajX5AVi/fj0BAQGEhIQQGRnJli1b+OSTT/jhhx/Q6XR07dqVDz/8kPnz5xMeHk5MTAxz5841O8aAAQN49tlnGT9+PD4+Prz//vv4+PgQHR3Nd999R6dOnZg3bx4ffPBBrZal2no9Be4tISsFdv2r1NtTB4Sg0cCWhCskXrFiB+5tH0DeNfLd2/Bl/kDcnR3oFuRpveMLYQMeTRwJcFdrUF74Zj9Z+cUENWvCkFDfij/o7AEDX1Gfb5xj0ezQNapJz7wAOz9Rnw99W/r+NGIapVY6Oti3rKwsPDw8yMzMxN3d3ey9/Px8kpKSaN26Nc7OsnBlTdns93loJax5BhyawAt7wTPI7O2nl+1j4/HLTOkXzLsPhNf8fFdOwqL+YCxmTdg/eeVgAPdFBLDwsR41P7YQNrQ+PpWXVxykoPjWyEo3Zwf+8XBE5Td0xQXwWT9IP6PO1TXSslrj9fGpzPnpmFmH6AAPZ2aN7VT+ub+bCkfXQKv+MG2dDH1vYCr6//tOkvqKxiniUXVpjHM7YcNbMN58huinBrZm4/HLfLfvPHd38Cav0ICvm1qlbnH/LEWBda+DsRg6RLL0ahiQyRBp/hJ2rmRW+zvvonPyi5nx9f7Km/QdnCByHnzzqLocRffJ4FP1ObgiwwMY0cmfPUnppGXnV/43emarmvxotHDvPyT5aeSkCUw0ThoN3PcBaHRw/Cf1cZt+bbxo4dmE/GIj07+Mq9l6bQdj4Ews6JxIv/sdDl/IBGCwdIAWdqxkLp6KZrWv0lw8HUZBh0gwFsHaGaVGZ1ZGp9XQv21zxnVrQf+2zctPfgpy4MebS3H0fhr8u1h0HtHwSAIkGi+/zrfW/vkpCnKumN7acPQSKXcssgjVWK8t4xyse1N9PvQtYtNcAOgc6F7lkSxC1EeWzMVTqfs+BCcPSImDXZ9aL8jb/f6/kHFWHfY+7H9r5xzCrkgCJBq3IW+BX7g6G+yPL4KiVDjLrEV3toZiWPscFGZDUF8Y8BJbT6pJloz+EvbOKnPxlPBoAZE3B1tseQ9S9tcgsjKc3KBOQQEwbqE6GlQ0epIAicbNwQn+8m/Q6eHkOtj+gfXubDfNhuTt6rT/DyzCgJZtNxOgSkfICFHP1Xgunjt1ewzCxoChEL59HHKv1SC621xLhFXT1ed9n4U2g61zXGH3JAESwj8c7r05ZH/z/6E9WbXFWyu8sz38nbryPMADC6F5Ww5fyOB6XhFuzg70aOVZs5iFsLEaz8VT6gMatXbGq426aPH3U9VRYjWRnwkrJ0NBJrTsAyPq4dxkwmYkARICoOcTasdIFHrve43+2qOVfqTcO9uEdbD2WfX5wFdMiyzGJqi1P4Pae+Ogkz89Yd9qZVb7Jp4wPkatNU3aBquesrhTtElhLsQ8oq795+ILj34JDvrqHUs0SPItLESJyHnQIRKtoYAl+g+4Sxtf7q4ueh09g5uVfiNhnVp9byyG8IfNOlvGljR/dZDmL9Ew1Mqs9n6dYEKM2ix9/Cc1CSoqPSChQjcy4JvxcP5PdcLFyavAvXYnmRX2R+YBEqKEzlG9S1zxGE1ObyTacT5/L57MMsNI7rzHzS008OzXcSyY0E1d7dpoUGeX3TgHUKDjWLVvkVYHQHpuIYcvZABwt3SAFg2IxXPxVEXbofDwUvjuCTi2Vp29efxX4B5Y+WfTTqifu3IC9K4weTUERFQ/FtFgSQ2QYMiQIURFRdk6jPrBwUmtgu/yCI4aA3Mcl/G143t01iQDap+G6YNa4+SgZfOJNB5etIvLR7fD0nth42xAgZ5T1S/v26bY337qCoqiLhx5592yEPauynPxWKLjGJiyVl0vLGUfLOwLuxeXWr/PpCAbYufDv+9Wkx+3AJj6C7TsVfNYRIMkNUCNyNSpU1m2bFmp7X/++ScdO3Y0vQ4JCSEqKqrxJkWOzvDg59CiJ8rGOQzkKL/o3ibLpyeunUeh9WrD5KY5/LZ9J72v78PvuzPq5/SuMOr/oMcTpWaYLen/I6O/hLBA60EwfTOsnq7OEbT+DXVB4bD7ILC7Opw9Lx0u7IMTv6hTTgC0GwHj/gVu/raNX9RrkgA1MpGRkSxdutRsm4+PDzqdzkYR1VMaDfSbgab9SIidC0e+x/1KHMTGARAMTAfQQrGiZa1yN26D/39G9exT6lBGo3Lb8Hdp/hLCIs3bwlO/Q9xS2P4RZF2A/cvUR6l926kLnHZ+UJa5EJWSBMgaFAWK8mxzbsemFv2hOzk54e9vflc0ZMgQunXrxscff8yQIUM4e/Ysr7zyCq+8oq7U3KjXy23eFh76L4x4B47/DBf3q/0RADxbUeDXnbePB7PqZBH8dIWXchOIGt4B7W1NAEdSMrmWW4irk0PZHaeFEBXT6tRRmj2eUEeHJW6GqyfVztF6F3VW93Yj1AlHtdKzQ1SNJEDWUJQH71Whc15tePui+gVgJatXr6Zr164888wzTJ8+3WrHtXvugdD3mVKbnYB/9FXw2ZDA4q2JfLL5NIlXcvngka7oHbTsSUrnq13JAAxo64WjDH8Xovp0jtDuHvUhRA1JAtTI/Pzzz7i6uppejx492ux9Ly8vdDodbm5upWqKRNm0Wg1vjg6jrY8Lb685wi9HUom/mMmNQgNp2bcmcvsz6Trr41OrNzRYCCGEVUkCZA2OTdWaGFud2wJDhw5l0aJFptcuLi5MnDjR2lE1So/0CqKVV1OejN7L2Wulm0QzbxQx4+v91Z8fRQghhNVIAmQNGo1Vm6Fqk4uLC+3atbN1GA1WrxAvmuodyC00lLvPnJ+OMaKTv3WGCgshhKgW6ZAgStHr9RgM5f8HLsq3JymdKznlr19U5YVUhRBC1CpJgEQpISEhbNu2jZSUFK5evWrrcOxKhQukVmM/IYQQtUMSIFHKO++8Q3JyMm3btsXHR+atsUS5C6RWcz8hhBC1Q/oANSLR0dFlbo+NjTV73a9fPw4dOlT7ATVAfVp7EeDhzKXMfMqaPUmDulBkn9ZedR2aEEKI20gNkBBWpNNqmDW2E3Dn8qm3Xs8a20k6QAshhI1JAiSElUWGB7Boco9Si576ezjLEHghhKgnpAlMiFoQGR7AiE7+7ElKJy07H183tdlLan6EEKJ+kARIiFqi02ro37a5rcMQQghRBmkCq6ZGvUCoFcnvUQghhC1IAmQhR0dHAPLybLT6ewNT8nss+b0KIYQQdUGawCyk0+nw9PQkLS0NgKZNm6LRSL8OSymKQl5eHmlpaXh6eqLT6WwdkhBCiEZEEqBqKFklvSQJEtXn6ekpq84LIYSoc5IAVYNGoyEgIABfX1+KiopsHY7dcnR0lJofIYQQNiEJUA3odDr5D1wIIYSwQ9IJWgghhBCNjiRAQgghhGh0JAESQgghRKMjfYDKUDI5X1ZWlo0jEUIIIURVlfy/XZVJdiUBKkN2djYAQUFBNo5ECCGEEJbKzs7Gw8Ojwn00iqxFUIrRaOTixYu4ublZfZLDrKwsgoKCOH/+PO7u7lY9dn3Q0MsHDb+MUj7719DLKOWzf7VVRkVRyM7OJjAwEK224l4+UgNUBq1WS8uWLWv1HO7u7g32HzY0/PJBwy+jlM/+NfQySvnsX22UsbKanxLSCVoIIYQQjY4kQEIIIYRodCQBqmNOTk7MmjULJycnW4dSKxp6+aDhl1HKZ/8aehmlfPavPpRROkELIYQQotGRGiAhhBBCNDqSAAkhhBCi0ZEESAghhBCNjiRAQgghhGh0JAGqQwsXLiQkJARnZ2f69u3Lnj17bB1SlVgS9+eff86gQYNo1qwZzZo1Y/jw4aX2nzp1KhqNxuwRGRlZ28WwiCVljo6OLlUeZ2fnOoy2cpaUZ8iQIaXKo9FouO+++0z72MM1LMu2bdsYO3YsgYGBaDQa1q5da+uQKmVpzKtXr2bEiBH4+Pjg7u5O//792bBhg9k+s2fPLnX9wsLCarEUlrG0zLGxsWX+m7106VLdBFwJS8tT1t+XRqOhc+fOpn3q+zUsy9y5c+nduzdubm74+vrywAMPkJCQYLN4JAGqIytXruTVV19l1qxZ7N+/n65duzJq1CjS0tJsHVqFLI07NjaWiRMnsmXLFnbt2kVQUBAjR44kJSXFbL/IyEhSU1NNj+XLl9dFcaqkOtfK3d3drDxnz56tw4grZml5Vq9ebVaW+Ph4dDodjzzyiNl+9fkalic3N5euXbuycOFCW4dSZZbGvG3bNkaMGMGvv/5KXFwcQ4cOZezYsRw4cMBsv86dO5tdvz/++KM2wq+W6l6nhIQEszL5+vrWUoSWsbQ8CxYsMCvH+fPn8fLyKvU3WJ+vYVm2bt3K888/z+7du/n9998pKipi5MiR5Obm2iYgRdSJPn36KM8//7zptcFgUAIDA5W5c+faMKrK1TTu4uJixc3NTVm2bJlp2xNPPKGMGzfO2qFajaVlXrp0qeLh4VFH0Vmuptfwo48+Utzc3JScnBzTtvp+DasCUNasWWPrMCxS3Zg7deqkzJkzx/R61qxZSteuXa0XWC2qSpm3bNmiAMr169frJKaaqM41XLNmjaLRaJTk5GTTNnu6huVJS0tTAGXr1q02Ob/UANWBwsJC4uLiGD58uGmbVqtl+PDh7Nq1y4aRVcwacefl5VFUVISXl5fZ9tjYWHx9fQkNDWXGjBlcu3bNqrFXV3XLnJOTQ3BwMEFBQYwbN46jR4/WRbiVssY1/OKLL5gwYQIuLi5m2+vrNRTmjEYj2dnZpf4GT506RWBgIG3atGHSpEmcO3fORhFaT7du3QgICGDEiBHs2LHD1uFYzRdffMHw4cMJDg42227v1zAzMxOg1L/NuiIJUB24evUqBoMBPz8/s+1+fn71po26LNaI+4033iAwMNDsP+DIyEi+/PJLNm3axPz589m6dSujR4/GYDBYNf7qqE6ZQ0NDWbJkCT/88ANff/01RqORAQMGcOHChboIuUI1vYZ79uwhPj6ep59+2mx7fb6GwtwHH3xATk4Ojz76qGlb3759iY6OZv369SxatIikpCQGDRpEdna2DSOtvoCAABYvXsyqVatYtWoVQUFBDBkyhP3799s6tBq7ePEi69atK/U3aO/X0Gg0EhUVxV133UV4eLhNYpDV4EWtmTdvHitWrCA2NtasU/CECRNMz7t06UJERARt27YlNjaWe+65xxah1kj//v3p37+/6fWAAQPo2LEj//73v3n33XdtGFnNffHFF3Tp0oU+ffqYbW9o17Ch+uabb5gzZw4//PCDWX+Y0aNHm55HRETQt29fgoOD+fbbb3nqqadsEWqNhIaGEhoaano9YMAAEhMT+eijj/jqq69sGFnNLVu2DE9PTx544AGz7fZ+DZ9//nni4+Nt2m9JaoDqgLe3NzqdjsuXL5ttv3z5Mv7+/jaKqnI1ifuDDz5g3rx5/Pbbb0RERFS4b5s2bfD29ub06dM1jrmmrHGtHB0d6d69u92XJzc3lxUrVlTpy7Q+XUOhWrFiBU8//TTffvutWQ1sWTw9PenQoUODun59+vSx+/IoisKSJUuYMmUKer2+wn3t6Rq+8MIL/Pzzz2zZsoWWLVvaLA5JgOqAXq+nZ8+ebNq0ybTNaDSyadMms5qD+qa6cb///vu8++67rF+/nl69elV6ngsXLnDt2jUCAgKsEndNWONaGQwGjhw5Yvfl+e677ygoKGDy5MmVnqc+XUMBy5cvZ9q0aSxfvtxs+oLy5OTkkJiY2KCu38GDB+2+PFu3buX06dNVugmxh2uoKAovvPACa9asYfPmzbRu3drmAYk6sGLFCsXJyUmJjo5Wjh07pjzzzDOKp6encunSJVuHVqHK4p4yZYry5ptvmvafN2+eotfrle+//15JTU01PbKzsxVFUZTs7Gzlr3/9q7Jr1y4lKSlJ2bhxo9KjRw+lffv2Sn5+vk3KeCdLyzxnzhxlw4YNSmJiohIXF6dMmDBBcXZ2Vo4ePWqrIpixtDwlBg4cqIwfP77Udnu4huXJzs5WDhw4oBw4cEABlA8//FA5cOCAcvbsWVuHVq7KYn7zzTeVKVOmmPaPiYlRHBwclIULF5r9DWZkZJj2ee2115TY2FglKSlJ2bFjhzJ8+HDF29tbSUtLq/PylcXSMn/00UfK2rVrlVOnTilHjhxRXn75ZUWr1SobN260VRHMWFqeEpMnT1b69u1b5jHr+zUsy4wZMxQPDw8lNjbW7N9mXl6eTeKRBKgOffrpp0qrVq0UvV6v9OnTR9m9e7etQ6qSiuIePHiw8sQTT5heBwcHK0Cpx6xZsxRFUZS8vDxl5MiRio+Pj+Lo6KgEBwcr06dPr3eJoCVljoqKMu3r5+en3Hvvvcr+/fttEHX5LCmPoijKiRMnFED57bffSh3LXq5hWUqGS9/5uLP89UllMT/xxBPK4MGDTfsPHjy40jKOHz9eCQgIUPR6vdKiRQtl/PjxyunTp+u2YBWwtMzz589X2rZtqzg7OyteXl7KkCFDlM2bN9sm+DJYWh5FUZSMjAylSZMmyn/+858yj1nfr2FZyvodAMrSpUttEo/mZlBCCCGEEI2G9AESQgghRKMjCZAQQgghGh1JgIQQQgjR6EgCJIQQQohGRxIgIYQQQjQ6kgAJIYQQotGRBEgIIYQQjY4kQEIIIYRodCQBEkLYhalTp5ZaEbsuREdHo9Fo0Gg0REVFVekzU6dONX1m7dq1tRqfEKJ6HGwdgBBCaDSaCt+fNWsWCxYswFYT17u7u5OQkICLi0uV9l+wYAHz5s2r1wtTCtHYSQIkhLC51NRU0/OVK1cyc+ZMEhISTNtcXV1xdXW1RWiAmqD5+/tXeX8PDw88PDxqMSIhRE1JE5gQwub8/f1NDw8PD1PCUfJwdXUt1QQ2ZMgQXnzxRaKiomjWrBl+fn58/vnn5ObmMm3aNNzc3GjXrh3r1q0zO1d8fDyjR4/G1dUVPz8/pkyZwtWrVy2O+bPPPqN9+/Y4Ozvj5+fHww8/XNNfgxCiDkkCJISwW8uWLcPb25s9e/bw4osvMmPGDB555BEGDBjA/v37GTlyJFOmTCEvLw+AjIwMhg0bRvfu3dm3bx/r16/n8uXLPProoxadd9++fbz00ku88847JCQksH79eu6+++7aKKIQopZIE5gQwm517dqV//mf/wHgrbfeYt68eXh7ezN9+nQAZs6cyaJFizh8+DD9+vXjX//6F927d+e9994zHWPJkiUEBQVx8uRJOnToUKXznjt3DhcXF8aMGYObmxvBwcF0797d+gUUQtQaqQESQtitiIgI03OdTkfz5s3p0qWLaZufnx8AaWlpABw6dIgtW7aY+hS5uroSFhYGQGJiYpXPO2LECIKDg2nTpg1TpkwhJibGVMskhLAPkgAJIeyWo6Oj2WuNRmO2rWR0mdFoBCAnJ4exY8dy8OBBs8epU6csasJyc3Nj//79LF++nICAAGbOnEnXrl3JyMioeaGEEHVCmsCEEI1Gjx49WLVqFSEhITg41Ozrz8HBgeHDhzN8+HBmzZqFp6cnmzdv5sEHH7RStEKI2iQ1QEKIRuP5558nPT2diRMnsnfvXhITE9mwYQPTpk3DYDBU+Tg///wzn3zyCQcPHuTs2bN8+eWXGI1GQkNDazF6IYQ1SQIkhGg0AgMD2bFjBwaDgZEjR9KlSxeioqLw9PREq63616GnpyerV69m2LBhdOzYkcWLF7N8+XI6d+5ci9ELIaxJo9hqalUhhLAD0dHRREVFVat/j0ajYc2aNTZZwkMIUTGpARJCiEpkZmbi6urKG2+8UaX9n332WZvOXC2EqJzUAAkhRAWys7O5fPkyoDZ9eXt7V/qZtLQ0srKyAAgICKjyGmJCiLojCZAQQgghGh1pAhNCCCFEoyMJkBBCCCEaHUmAhBBCCNHoSAIkhBBCiEZHEiAhhBBCNDqSAAkhhBCi0ZEESAghhBCNjiRAQgghhGh0/h/LJeX/SwL8AQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/tutorials/Tutorial 3. Building custom analyses - the data analysis framework_12_0.png" } }, "output_type": "display_data" } ], "source": [ "# create matplotlib figure\n", "fig, ax = plt.subplots()\n", "\n", "# plot data\n", "dataset.y0.plot.line(ax=ax, x=\"x0\", marker=\"o\", label=\"Data\")\n", "\n", "# plot fit\n", "x_fit = np.linspace(dataset[\"x0\"][0], dataset[\"x0\"][-1], 1000)\n", "y_fit = cos_func(x=x_fit, **fit_result.best_values)\n", "ax.plot(x_fit, y_fit, label=\"Fit\")\n", "ax.legend()\n", "\n", "# set units-aware tick labels\n", "set_xlabel(ax, dataset.x0.long_name, dataset.x0.units)\n", "set_ylabel(ax, dataset.y0.long_name, dataset.y0.units)\n", "\n", "# add a reference to the origal dataset in the figure title\n", "fig.suptitle(f\"{dataset.attrs['name']}\\ntuid: {dataset.attrs['tuid']}\")\n", "\n", "# Save figure\n", "fig.savefig(exp_folder / \"Cosine fit.png\", dpi=300, bbox_inches=\"tight\")" ] }, { "cell_type": "code", "execution_count": 14, "id": "87598309", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:31.983378Z", "iopub.status.busy": "2023-09-26T17:44:31.983186Z", "iopub.status.idle": "2023-09-26T17:44:31.989363Z", "shell.execute_reply": "2023-09-26T17:44:31.988926Z" } }, "outputs": [], "source": [ "class MyCosineModel(lmfit.model.Model):\n", " \"\"\"\n", " `lmfit` model with a guess for a cosine fit.\n", " \"\"\"\n", "\n", " def __init__(self, *args, **kwargs):\n", " \"\"\"Configures the constraints of the model.\"\"\"\n", " # pass in the model's equation\n", " super().__init__(cos_func, *args, **kwargs)\n", "\n", " # configure constraints that are independent from the data to be fitted\n", "\n", " self.set_param_hint(\"frequency\", min=0, vary=True) # enforce positive frequency\n", " self.set_param_hint(\"amplitude\", min=0, vary=True) # enforce positive amplitude\n", " self.set_param_hint(\"offset\", vary=True)\n", " self.set_param_hint(\n", " \"phase\", vary=True, min=-np.pi, max=np.pi\n", " ) # enforce phase range\n", "\n", " def guess(self, data, **kws) -> lmfit.parameter.Parameters:\n", " \"\"\"Guess parameters based on the data.\"\"\"\n", "\n", " self.set_param_hint(\"offset\", value=np.average(data))\n", " self.set_param_hint(\"amplitude\", value=(np.max(data) - np.min(data)) / 2)\n", " # a simple educated guess based on experiment type\n", " # a more elaborate but general approach is to use a Fourier transform\n", " self.set_param_hint(\"frequency\", value=1.2)\n", "\n", " params_ = self.make_params()\n", " return lmfit.models.update_param_vals(params_, self.prefix, **kws)" ] }, { "cell_type": "code", "execution_count": 15, "id": "8fdfc07e", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:31.991478Z", "iopub.status.busy": "2023-09-26T17:44:31.991295Z", "iopub.status.idle": "2023-09-26T17:44:31.999933Z", "shell.execute_reply": "2023-09-26T17:44:31.999485Z" } }, "outputs": [], "source": [ "def extract_data(label: str) -> xr.Dataset:\n", " \"\"\"Loads a dataset from its label.\"\"\"\n", " tuid_ = get_latest_tuid(contains=label)\n", " dataset_ = load_dataset(tuid_)\n", " return dataset_\n", "\n", "\n", "def run_fitting(dataset_: xr.Dataset) -> lmfit.model.ModelResult:\n", " \"\"\"Executes fitting.\"\"\"\n", " model = MyCosineModel() # create the fitting model\n", " params_guess = model.guess(data=dataset_.y0.values)\n", " result = model.fit(\n", " data=dataset_.y0.values, x=dataset_.x0.values, params=params_guess\n", " )\n", " return result\n", "\n", "\n", "def analyze_fit_results(fit_result_: lmfit.model.ModelResult) -> dict:\n", " \"\"\"Analyzes the fit results and saves quantities of interest.\"\"\"\n", " quantities = {\n", " \"amplitude\": fit_result_.params[\"amplitude\"].value,\n", " \"frequency\": fit_result_.params[\"frequency\"].value,\n", " }\n", " return quantities\n", "\n", "\n", "def plot_fit(\n", " fig_: matplotlib.figure.Figure,\n", " ax_: matplotlib.axes.Axes,\n", " dataset_: xr.Dataset,\n", " fit_result_: lmfit.model.ModelResult,\n", ") -> Tuple[matplotlib.figure.Figure, matplotlib.axes.Axes]:\n", " \"\"\"Plots a fit result.\"\"\"\n", " dataset_.y0.plot.line(ax=ax_, x=\"x0\", marker=\"o\", label=\"Data\") # plot data\n", "\n", " x_fit_ = np.linspace(dataset_[\"x0\"][0], dataset_[\"x0\"][-1], 1000)\n", " y_fit_ = cos_func(x=x_fit_, **fit_result_.best_values)\n", " ax_.plot(x_fit, y_fit_, label=\"Fit\") # plot fit\n", " ax_.legend()\n", "\n", " # set units-aware tick labels\n", " set_xlabel(ax_, dataset_.x0.long_name, dataset_.x0.units)\n", " set_ylabel(ax_, dataset_.y0.long_name, dataset_.y0.units)\n", "\n", " # add a reference to the original dataset_ in the figure title\n", " fig_.suptitle(f\"{dataset_.attrs['name']}\\ntuid: {dataset_.attrs['tuid']}\")\n", "\n", "\n", "def save_quantities_of_interest(tuid_: str, quantities_of_interest_: dict) -> None:\n", " \"\"\"Saves the quantities of interest to disk in JSON format.\"\"\"\n", " exp_folder_ = Path(locate_experiment_container(tuid_))\n", " # Save fit results\n", " with open(exp_folder_ / \"quantities_of_interest.json\", \"w\", encoding=\"utf-8\") as f_:\n", " json.dump(quantities_of_interest_, f_)\n", "\n", "\n", "def save_mpl_figure(tuid_: str, fig_: matplotlib.figure.Figure) -> None:\n", " \"\"\"Saves a matplotlib figure as PNG.\"\"\"\n", " exp_folder_ = Path(locate_experiment_container(tuid_))\n", " fig_.savefig(exp_folder_ / \"Cosine fit.png\", dpi=300, bbox_inches=\"tight\")\n", " plt.close(fig_)" ] }, { "cell_type": "code", "execution_count": 16, "id": "eadfbabc", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:32.001921Z", "iopub.status.busy": "2023-09-26T17:44:32.001739Z", "iopub.status.idle": "2023-09-26T17:44:32.272848Z", "shell.execute_reply": "2023-09-26T17:44:32.272158Z" } }, "outputs": [], "source": [ "dataset = extract_data(label=\"Cosine experiment\")\n", "fit_result = run_fitting(dataset)\n", "quantities_of_interest = analyze_fit_results(fit_result)\n", "save_quantities_of_interest(dataset.tuid, quantities_of_interest)\n", "fig, ax = plt.subplots()\n", "plot_fit(fig_=fig, ax_=ax, dataset_=dataset, fit_result_=fit_result)\n", "save_mpl_figure(dataset.tuid, fig)" ] }, { "cell_type": "code", "execution_count": 17, "id": "25a328bc", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:32.275451Z", "iopub.status.busy": "2023-09-26T17:44:32.275248Z", "iopub.status.idle": "2023-09-26T17:44:32.279168Z", "shell.execute_reply": "2023-09-26T17:44:32.278710Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "20230926-194430-301-508488-Cosine experiment/\n", "├── Cosine fit.png\n", "├── dataset.hdf5\n", "├── quantities_of_interest.json\n", "└── snapshot.json\n", "\n" ] } ], "source": [ "print(display_tree(locate_experiment_container(dataset.tuid), string_rep=True))" ] }, { "cell_type": "code", "execution_count": 18, "id": "b57a1d6b", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:32.281314Z", "iopub.status.busy": "2023-09-26T17:44:32.281123Z", "iopub.status.idle": "2023-09-26T17:44:32.293145Z", "shell.execute_reply": "2023-09-26T17:44:32.292449Z" } }, "outputs": [], "source": [ "class MyCosineAnalysis:\n", " \"\"\"Analysis as a class.\"\"\"\n", "\n", " def __init__(self, label: str):\n", " \"\"\"This is a special method that python calls when an instance of this class is\n", " created.\"\"\"\n", "\n", " self.label = label\n", "\n", " # objects to be filled up later when running the analysis\n", " self.tuid = None\n", " self.dataset = None\n", " self.fit_results = {}\n", " self.quantities_of_interest = {}\n", " self.figs_mpl = {}\n", " self.axs_mpl = {}\n", "\n", " # with just slight modification our functions become methods\n", " # with the advantage that we have access to all the necessary information from self\n", " def run(self):\n", " \"\"\"Execute the analysis steps.\"\"\"\n", " self.extract_data()\n", " self.run_fitting()\n", " self.analyze_fit_results()\n", " self.create_figures()\n", " self.save_quantities_of_interest()\n", " self.save_figures()\n", "\n", " def extract_data(self):\n", " \"\"\"Load data from disk.\"\"\"\n", " self.tuid = get_latest_tuid(contains=self.label)\n", " self.dataset = load_dataset(tuid)\n", "\n", " def run_fitting(self):\n", " \"\"\"Fits the model to the data.\"\"\"\n", " model = MyCosineModel()\n", " guess = model.guess(self.dataset.y0.values)\n", " result = model.fit(\n", " self.dataset.y0.values, x=self.dataset.x0.values, params=guess\n", " )\n", " self.fit_results.update({\"cosine\": result})\n", "\n", " def analyze_fit_results(self):\n", " \"\"\"Analyzes the fit results and saves quantities of interest.\"\"\"\n", " self.quantities_of_interest.update(\n", " {\n", " \"amplitude\": self.fit_results[\"cosine\"].params[\"amplitude\"].value,\n", " \"frequency\": self.fit_results[\"cosine\"].params[\"frequency\"].value,\n", " }\n", " )\n", "\n", " def save_quantities_of_interest(self):\n", " \"\"\"Save quantities of interest to disk.\"\"\"\n", " exp_folder_ = Path(locate_experiment_container(self.tuid))\n", " with open(\n", " exp_folder_ / \"quantities_of_interest.json\", \"w\", encoding=\"utf-8\"\n", " ) as file_:\n", " json.dump(self.quantities_of_interest, file_)\n", "\n", " def plot_fit(self, fig_: matplotlib.figure.Figure, ax_: matplotlib.axes.Axes):\n", " \"\"\"Plot the fit result.\"\"\"\n", "\n", " self.dataset.y0.plot.line(ax=ax_, x=\"x0\", marker=\"o\", label=\"Data\") # plot data\n", "\n", " x_fit_ = np.linspace(self.dataset[\"x0\"][0], self.dataset[\"x0\"][-1], 1000)\n", " y_fit_ = cos_func(x=x_fit_, **self.fit_results[\"cosine\"].best_values)\n", " ax_.plot(x_fit_, y_fit_, label=\"Fit\") # plot fit\n", " ax_.legend()\n", "\n", " # set units-aware tick labels\n", " set_xlabel(ax_, self.dataset.x0.long_name, self.dataset.x0.attrs[\"units\"])\n", " set_ylabel(ax_, self.dataset.y0.long_name, self.dataset.y0.attrs[\"units\"])\n", "\n", " # add a reference to the original dataset in the figure title\n", " fig_.suptitle(f\"{dataset.attrs['name']}\\ntuid: {dataset.attrs['tuid']}\")\n", "\n", " def create_figures(self):\n", " \"\"\"Create figures.\"\"\"\n", " fig_, ax_ = plt.subplots()\n", " self.plot_fit(fig_, ax_)\n", "\n", " fig_id = \"cos-data-and-fit\"\n", " self.figs_mpl.update({fig_id: fig_})\n", " # keep a reference to `ax` as well\n", " # it can be accessed later to apply modifications (e.g., in a notebook)\n", " self.axs_mpl.update({fig_id: ax_})\n", "\n", " def save_figures(self):\n", " \"\"\"Save figures to disk.\"\"\"\n", " exp_folder_ = Path(locate_experiment_container(self.tuid))\n", " for fig_name, fig_ in self.figs_mpl.items():\n", " fig_.savefig(exp_folder_ / f\"{fig_name}.png\", dpi=300, bbox_inches=\"tight\")\n", " plt.close(fig_)\n", "\n" ] }, { "cell_type": "code", "execution_count": 19, "id": "ba48e957", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:32.295404Z", "iopub.status.busy": "2023-09-26T17:44:32.295213Z", "iopub.status.idle": "2023-09-26T17:44:32.671849Z", "shell.execute_reply": "2023-09-26T17:44:32.671111Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHgCAYAAABNbtJFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7jElEQVR4nOzdd3hUZfbA8e+dSe8JqZCQhAChhN4RRQUBxYK9YUVXXVx31bXg6iqWta66q6yFtaOra/vZVqyIID2hhV4CKaQQQnqZZOb9/XFnhgxJIIEkdyY5n+fJQ3LnzsxJQmbOfd/znldTSimEEEIIIboRk9EBCCGEEEJ0NkmAhBBCCNHtSAIkhBBCiG5HEiAhhBBCdDuSAAkhhBCi25EESAghhBDdjiRAQgghhOh2JAESQgghRLcjCZAQQgghuh1JgIQQLdI0jUceecToMDxOUlIS119/vdFhCCGOQRIgITzEnj17uOWWW+jTpw9+fn6EhIRwyimn8I9//IOamhqjwxMeZuvWrTzyyCPs27fP6FCEMISX0QEIIY7vm2++4dJLL8XX15drr72WtLQ0LBYLy5cv55577mHLli28/vrr7f68NTU1eHnJy0Rb7dixA5PJva8vt27dyvz58zn99NNJSkoyOhwhOp28sgnh5rKysrjiiitITEzk559/Ji4uznnb3Llz2b17N998802HPLefn1+HPG5XpJSitrYWf39/fH19jQ5HCHEc7n2JIoTgmWeeobKykjfeeMMl+XHo27cvf/zjH51fNzQ08Nhjj5GSkoKvry9JSUk88MAD1NXVudxv3bp1TJ8+ncjISPz9/UlOTubGG290OefoGqBHHnkETdPYvXs3119/PWFhYYSGhnLDDTdQXV3dJLZFixYxatQo/P39iYiI4IorriAnJ6dV33deXh433ngjMTEx+Pr6MnjwYN58803n7TU1NQwYMIABAwa4TAGWlJQQFxfHxIkTsVqtAFx//fUEBQWxd+9epk+fTmBgID179uTRRx9FKeXyvDabjRdffJHBgwfj5+dHTEwMt9xyC4cPH3Y5LykpiXPPPZfvvvuO0aNH4+/vz2uvvea8rXEN0Ntvv42maSxfvpw77riDqKgowsLCuOWWW7BYLJSWlnLttdcSHh5OeHg4995770nHtXz5csaOHYufnx99+vTh3XffdYnn0ksvBeCMM85A0zQ0TeOXX35p1e9GiC5BCSHcWq9evVSfPn1aff51112nAHXJJZeoBQsWqGuvvVYBatasWc5zCgsLVXh4uOrfv7969tln1cKFC9Vf/vIXNXDgQJfHAtTDDz/s/Prhhx9WgBoxYoS66KKL1L/+9S910003KUDde++9Lvd9/PHHlaZp6vLLL1f/+te/1Pz581VkZKRKSkpShw8fPub3UFBQoOLj41VCQoJ69NFH1SuvvKLOP/98BagXXnjBed6qVauU2WxWd955p/PYFVdcofz9/dWOHTtcfiZ+fn6qX79+6pprrlEvv/yyOvfccxWgHnroIZfnvummm5SXl5e6+eab1auvvqruu+8+FRgYqMaMGaMsFovzvMTERNW3b18VHh6u7r//fvXqq6+qJUuWOG+77rrrnOe+9dZbClDDhw9XM2bMUAsWLFDXXHON8+c2adIkddVVV6l//etfzrjeeeedE44rNTVVxcTEqAceeEC9/PLLauTIkUrTNJWZmamUUmrPnj3qjjvuUIB64IEH1Hvvvafee+89VVBQcMzfixBdiSRAQrixsrIyBagLLrigVedv2LBBAeqmm25yOf7nP/9ZAernn39WSin1+eefK0CtXbv2mI/XUgJ04403upx34YUXqh49eji/3rdvnzKbzeqJJ55wOW/z5s3Ky8uryfGjzZkzR8XFxani4mKX41dccYUKDQ1V1dXVzmPz5s1TJpNJ/frrr+rjjz9WgHrxxRdd7udICv/whz84j9lsNjVz5kzl4+OjDh48qJRSatmyZQpQ77//vsv9Fy9e3OR4YmKiAtTixYubxN9SAjR9+nRls9mcxydMmKA0TVO33nqr81hDQ4OKj49XkydPdh47kbh+/fVX57GioiLl6+ur7r77bucxx8/KkbQJ0d3IFJgQbqy8vByA4ODgVp3/v//9D4C77rrL5fjdd98N4KwVCgsLA+Drr7+mvr6+zXHdeuutLl+feuqpHDp0yBnvZ599hs1m47LLLqO4uNj5ERsbS79+/ViyZEmLj62U4tNPP+W8885DKeVy/+nTp1NWVkZGRobz/EceeYTBgwdz3XXX8fvf/57Jkydzxx13NPvYt99+u/NzTdO4/fbbsVgs/PjjjwB8/PHHhIaGctZZZ7k876hRowgKCmoSd3JyMtOnT2/1z23OnDlomub8ety4cSilmDNnjvOY2Wxm9OjR7N2713msrXENGjSIU0891fl1VFQUqampLo8pRHcnRdBCuLGQkBAAKioqWnX+/v37MZlM9O3b1+V4bGwsYWFh7N+/H4DJkydz8cUXM3/+fF544QVOP/10Zs2axVVXXdWqAt7evXu7fB0eHg7A4cOHCQkJYdeuXSil6NevX7P39/b2bvGxDx48SGlpKa+//nqLK9uKioqcn/v4+PDmm28yZswY/Pz8eOutt1ySDAeTyUSfPn1cjvXv3x/AuRR8165dlJWVER0dfdznBT0Baoujf26hoaEAJCQkNDneuLanrXEd/Tyg/46OrhcSojuTBEgINxYSEkLPnj3JzMxs0/2aSwCOvv2TTz5h1apVfPXVV3z33XfceOON/P3vf2fVqlUEBQUd8/5ms7nZ48peuGuz2dA0jW+//bbZc4/1+DabDYDZs2dz3XXXNXvO0KFDXb7+7rvvAKitrWXXrl1tTkwaP3d0dDTvv/9+s7dHRUW5fO3v79+mx2/p59bccdWoCLqtcR3v9yOEkARICLd37rnn8vrrr7Ny5UomTJhwzHMTExOx2Wzs2rWLgQMHOo8XFhZSWlpKYmKiy/njx49n/PjxPPHEE3zwwQdcffXVfPjhh9x0000nFXNKSgpKKZKTk52jLK0VFRVFcHAwVquVqVOnHvf8TZs28eijj3LDDTewYcMGbrrpJjZv3uwcXXGw2Wzs3bvXJZ6dO3cCOPvgpKSk8OOPP3LKKae0ObnpSB0R1/GSZCG6OqkBEsLN3XvvvQQGBnLTTTdRWFjY5PY9e/bwj3/8A4BzzjkHgBdffNHlnOeffx6AmTNnAvpU1dGjAcOHDwdoslz+RFx00UWYzWbmz5/f5HmUUhw6dKjF+5rNZi6++GI+/fTTZke+Dh486Py8vr6e66+/np49e/KPf/yDt99+m8LCQu68885mH/vll192iePll1/G29ubKVOmAHDZZZdhtVp57LHHmty3oaGB0tLSY37fHaUj4goMDAQw7HsSwmgyAiSEm0tJSeGDDz7g8ssvZ+DAgS6doFesWMHHH3/s7DkzbNgwrrvuOl5//XVKS0uZPHkya9as4Z133mHWrFmcccYZALzzzjv861//4sILLyQlJYWKigoWLlxISEiIM4k62Zgff/xx5s2bx759+5g1axbBwcFkZWXx+eef87vf/Y4///nPLd7/qaeeYsmSJYwbN46bb76ZQYMGUVJSQkZGBj/++CMlJSUAPP7442zYsIGffvqJ4OBghg4dyl//+lcefPBBLrnkEpfvxc/Pj8WLF3Pdddcxbtw4vv32W7755hseeOAB5xTS5MmTueWWW3jyySfZsGED06ZNw9vbm127dvHxxx/zj3/8g0suueSkfz5t1RFxDR8+HLPZzNNPP01ZWRm+vr6ceeaZLdYZCdHlGLP4TAjRVjt37lQ333yzSkpKUj4+Pio4OFidcsop6qWXXlK1tbXO8+rr69X8+fNVcnKy8vb2VgkJCWrevHku52RkZKgrr7xS9e7dW/n6+qro6Gh17rnnqnXr1rk8Jy0sg3csG3dwLPPOyspyOf7pp5+qSZMmqcDAQBUYGKgGDBig5s6d69KjpyWFhYVq7ty5KiEhQXl7e6vY2Fg1ZcoU9frrryullEpPT1deXl4uS9uV0peRjxkzRvXs2dPZb+i6665TgYGBas+ePWratGkqICBAxcTEqIcfflhZrdYmz/3666+rUaNGKX9/fxUcHKyGDBmi7r33XnXgwAHnOYmJiWrmzJnNxt7SMvij2w609PN0xNuecU2ePNllab1SSi1cuFD16dNHmc1mWRIvuh1NKamKE0J0bddffz2ffPIJlZWVRocihHATUgMkhBBCiG5HEiAhhBBCdDuSAAkhhBCi25EaICGEEEJ0OzICJIQQQohuRxIgIYQQQnQ7kgAJj/f222+jaZpzQ8tjSUpKcjYNFEII0X1JAiQMtWLFCh555BGPaMe/fft27r33XoYPH05wcDBxcXHMnDmTdevWNXt+Xl4el112GWFhYYSEhHDBBRewd+9el3NycnKYP38+Y8eOJTw8nMjISE4//XR+/PHHJo/366+/cv7555OQkICfnx+xsbHMmDGD3377rdnnX7FiBZMmTSIgIIDY2FjuuOOOZvvgpKenM2PGDEJCQggODmbatGls2LDB5Zzq6moWLFjAtGnTiIuLIzg4mBEjRvDKK69gtVqbff49e/Zw1VVXER0djb+/P/369eMvf/lLs+ce7fvvv2fOnDmkpaVhNpude3U1Z/fu3VxyySWEh4cTEBDApEmTWLJkyTEfv76+nkGDBqFpGs8999wxz33//ffRNK3ZDVwXLlzI5MmTiYmJwdfXl+TkZG644YYWk/E33niDgQMH4ufnR79+/XjppZeO+dwd/Vw7duzgzjvvZOLEifj5+bX6QqIxTdOa/XjqqaeanNuavwmAsrIy7r33Xvr164e/vz+JiYnMmTOH7OzsY8Zy1llnoWkat99++0k95o8//sgZZ5xBZGQkYWFhjB07lvfee68NPxXhEYztwyi6u2effbbZDsJt0dDQoGpqapTNZjvuuUd36G2Lu+++W4WFhak5c+ao1157TT3zzDMqJSVFmc1m9cMPP7icW1FRofr166eio6PV008/rZ5//nmVkJCg4uPjVXFxsfO8l156Sfn7+6srr7xSvfzyy+rFF19UI0eOVIB68803XR5z4cKF6oILLlCPP/64+ve//62effZZNWzYMGUymdS3337rcu769euVn5+fGjFihHrllVfUX/7yF+Xr66tmzJjhcl56erry8/NT/fr1U88995x65plnVFJSkgoJCVHbt293nrd582alaZqaOnWqeuaZZ9Srr76qLrzwQgWoa6+9tsnPav369So0NFQNGjRIPfXUU2rhwoXqoYceUtdff32rftbXXXed8vPzUxMnTlTx8fEqMTGx2fOys7NVZGSkiomJUU888YR68cUX1bBhw5SXl5daunRpi4//97//XQUGBipAPfvssy2eV1FRoXr27OnsZH202267TV133XXqueeeU2+88YZ68MEHVUxMjIqMjFR5eXku57766qsKUBdffLF6/fXX1TXXXKMA9dRTT7XqZ9IRz/XWW28pk8mk0tLS1PDhw0/obxFQZ511lnrvvfdcPjIzM13Oa+3fhNVqVWPGjFGBgYHqnnvuUQsXLlT33XefCg4OVr169VLl5eXNxvHpp586f6dz5851ua0tj/nFF18oTdPUxIkT1UsvvaRefvllddpppylAPf/882362Qj3JgmQMFR7JEBtcTIJ0Lp161RFRYXLseLiYhUVFaVOOeUUl+NPP/20AtSaNWucx7Zt26bMZrOaN2+e81hmZmaTbRBqa2vVgAEDVHx8/HFjqqqqUjExMWr69Okux88++2wVFxenysrKnMcWLlyoAPXdd985j51zzjkqPDzc5Q3owIEDKigoSF100UXOYwcPHmzyhqaUUjfccIMC1K5du5zHrFarSktLU+PGjVPV1dXH/R6ak5eXpywWi1JKqZkzZ7aYAP3+979XXl5eLslaVVWVSkhIUCNHjmz2PoWFhSo0NFQ9+uijx02A7rvvPpWamqquvvrqZhOg5qxbt04B6sknn3Qeq66uVj169GiyRYXjcUtKSlr12O39XIcOHXK++Z/o32JzCUdzWvs38dtvvylAvfzyyy73f/PNNxWgPvvssyaPXVNTo5KSkpy/06PjactjnnXWWapnz55NtpdJSUlRQ4cOPe73KTyHTIEJwzzyyCPcc889ACQnJzuHzvft28e+ffvQNI233367yf00TeORRx5xft1cDZBSiscff5z4+HgCAgI444wz2LJlS7Nx7Nmzhz179hw33lGjRjWZBunRowennnoq27Ztczn+ySefMGbMGMaMGeM8NmDAAKZMmcJ///tf57HBgwcTGRnpcl9fX1/OOecccnNzqaioOGZMAQEBREVFuUwhlpeX88MPPzB79mxCQkKcx6+99lqCgoJcnn/ZsmVMnTqVHj16OI/FxcUxefJkvv76a+eUWWRkJIMHD27y/BdeeCGAy/f//fffk5mZycMPP4y/vz/V1dUtTpO1pGfPnnh7ex/3vGXLljFixAhSU1OdxwICAjj//PPJyMhg165dTe5z//33k5qayuzZs4/52Lt27eKFF17g+eefx8ur9ftGO6brGv9OlixZwqFDh/j973/vcu7cuXOpqqrim2++afXjt+dzRUREEBwcfELPfbSamhpqa2tbvL21fxPl5eUAxMTEuNw/Li4OAH9//yaP/cwzz2Cz2VrcYLctj1leXk54eDi+vr7OY15eXkRGRjb73MJzSQIkDHPRRRdx5ZVXAvDCCy/w3nvv8d577zl35j4Zf/3rX3nooYcYNmwYzz77LH369GHatGlUVVU1OXfKlClMmTLlhJ+roKDAJYmx2Wxs2rSJ0aNHNzl37Nix7Nmz57iJTUFBAQEBAQQEBDS5rby8nOLiYrZv384DDzxAZmamS/ybN2+moaGhyfP7+PgwfPhw1q9f7zxWV1fX7It6QEAAFouFzMzM48YJuHz/jvolX19fRo8eTWBgIAEBAVxxxRXOXdzby7HiB72+qbE1a9bwzjvv8OKLL6Jp2jEf+09/+hNnnHGGy47yLTl06BBFRUWsW7eOG264AcDld+L4mR/9Oxk1ahQmk8nld+JOz9Vab7/9NoGBgfj7+zNo0CA++OADl9vb8jfh+D/z0EMP8fPPP5OXl8fSpUu59957GTNmDFOnTnW5f3Z2Nk899RRPP/10iwlKWx7z9NNPZ8uWLTz00EPs3r2bPXv28Nhjj7Fu3Truvffek/1RCTfS+ssaIdrZ0KFDGTlyJP/5z3+YNWuWS6HrwYMHT/hxDx48yDPPPMPMmTP56quvnG90f/nLX/jb3/52smG7WLZsGStXruTBBx90HispKaGurs55ddmY49iBAwdcRi0a2717N5999hmXXnopZrO5ye2XXXYZ3333HaAnNbfccgsPPfSQ8/b8/HyX5zr6+ZctW+b8OjU1lVWrVmG1Wp3PZbFYWL16NaAXrbbEYrHw4osvkpyc7HJV7xh1ueyyy5gxYwbz5s1j48aNPPnkk+Tk5LB8+fLjJh+tlZqayrJly6ioqHAZyVi+fHmT+JVS/OEPf+Dyyy9nwoQJxyz2/eabb/j+++/ZuHFjq+Lo1asXdXV1gD4q+M9//pOzzjrLeXt+fj5ms5no6GiX+/n4+NCjRw8OHDjQqufp7OdqjYkTJ3LZZZeRnJzMgQMHWLBgAVdffTVlZWXcdtttQNv+JiIjI/noo4+4+eabXRK76dOn88knnzQZjbv77rsZMWIEV1xxRYsxtuUxH3roIbKysnjiiSd4/PHHAT2h/vTTT7ngggtO4Cck3JUkQKLL+fHHH7FYLPzhD39weaP905/+1GwC1NZVLw5FRUVcddVVJCcnu1wZ1tTUALgMoTv4+fm5nHO06upqLr30Uvz9/ZtdRQPw1FNPcffdd5OTk8M777yDxWKhoaGh1c/f+Ll///vfc9tttzFnzhzuvfdebDYbjz/+uDOJailOgNtvv52tW7fyzTffuLyBOKbNxowZw6JFiwC4+OKLCQgIYN68efz0009NruJP1G233cZXX33F5ZdfzhNPPEFgYCD/+te/nCvzGsf/9ttvs3nzZj755JNjPqbFYuHOO+/k1ltvZdCgQa2K49tvv6W2tpZt27axaNGiJiONNTU1+Pj4NHvfo38n7vRcrXH0KsQbb7yRUaNG8cADD3D99dfj7+/f5r+JqKgoRowYwe23387gwYPZsGEDzzzzDDfccAMff/yx87wlS5bw6aefOhP2Y2ntY/r6+tK/f38uueQSLrroIqxWK6+//jqzZ8/mhx9+YPz48W37AQm3JQmQ6HL2798PQL9+/VyOR0VFER4e3i7PUVVVxbnnnktFRQXLly93qQ1yDMM7rtIbc9RINDdUb7VaueKKK9i6dSvffvstPXv2bPa5hw8f7vx89uzZjBw5kuuvv975xn6852/83Lfeeis5OTk8++yzvPPOO4A+XXDvvffyxBNPNLv0G+DZZ59l4cKFPPbYY02miByP75jedLjqqquYN28eK1asYOrUqZSVlbm86fn4+BAREdHs87Xk7LPP5qWXXuL+++9n5MiRAPTt25cnnniCe++91xl/eXk58+bN45577iEhIeGYj/nCCy9QXFzM/PnzWx3HGWec4YznggsuIC0tjaCgIOdybH9/fywWS7P3bfw7qaysdGlVYDabm0wJt9dztcXBgwdd6riCgoJa/L/h4+PD7bffzq233kp6ejqTJk1q09/E3r17OeOMM3j33Xe5+OKLAbjgggucPby+/fZbzj77bBoaGrjjjju45pprXEYgm9PaxwQ9sV+1ahUZGRmYTHqVyGWXXcbgwYP54x//2KpkS3gGqQESbqmlKZK2FtN2BIvFwkUXXcSmTZv44osvSEtLc7k9IiICX19f5yhKY45jzSU3N998M19//TVvv/02Z555Zqti8fHx4fzzz+ezzz5zJhOOKYWWnv/o537iiScoLCxk2bJlbNq0ibVr12Kz2QDo379/k8d4++23ue+++7j11ltdpv4cHI9/dMGpY0rm8OHDAPzxj38kLi7O+XHRRRe16ns+2u23305hYSErVqxg3bp1bN++ndDQUJf4n3vuOSwWC5dffrmzyD43N9cZz759+7BYLJSVlfH4449z8803U15e7jy3srISpRT79u2jqKjomPGkpKQwYsQI3n//feexuLg4rFZrk/taLBYOHTrk/Jk999xzLj+T472xn8xztcWYMWNc4jpe7yRHkumo+WrL38Tbb79NbW0t5557rst5559/PnBkxOndd99lx44d3HLLLc7fk2M0t6Kign379lFdXd2mx7RYLLzxxhvMnDnTmfwAeHt7c/bZZ7Nu3boWk0vheWQESBiqpUTHMVJzdINEx+jOsSQmJgJ6LUqfPn2cxw8ePOh88z1RNpuNa6+9lp9++on//ve/TJ48uck5JpOJIUOGNNsgcfXq1fTp06fJypt77rmHt956ixdffLHJyMnx1NTUoJSioqICf39/0tLS8PLyYt26dVx22WXO8ywWCxs2bHA55hAeHs6kSZOcX//444/Ex8czYMAAl/O++OILbrrpJi666CIWLFjQbDyjRo1i4cKFTeqHHLUnjhGNe++912Ul1smMzgUGBjJhwgSX+P39/TnllFMAvVD28OHDza5k+9vf/sbf/vY31q9fT1hYGJWVlTzzzDM888wzTc5NTk7mggsu4P/+7/+OGU9NTY3LaIdj1G7dunUuI2br1q3DZrM5b7/22mtdfg+tGa050edqi/fff99ltK7x31VzHM0NHb/rtvxNFBYWopRqcrFTX18P4Jzuzc7Opr6+3vk7buzdd9/l3Xff5fPPP2fWrFmtfsxDhw7R0NDQ7IVWfX09NpvNLS7CRDsxcg2+EK+88ooC1Pr165vcFhkZqS688EKXY3fffbcC1MMPP+w89tZbb7n0LykqKlLe3t5q5syZLs0RH3jgAQU06QO0e/dutXv37lbF+/vf/14B6rXXXjvmeU899ZQC1Nq1a53Htm/frsxms7rvvvtczn3mmWcUoB544IFjPmZhYWGTY4cPH1YJCQkqISHB5fiMGTNUXFycS4O3f//73wpo0jTxaB9++KEC1HPPPedyfOnSpcrPz0+dccYZLj1Sjpafn698fX3VpEmTlNVqdR6fN29ekz4wrXGsPkDN+e2335TZbFa3336781h6err6/PPPXT5ee+01Bajrr79eff7556q0tFRVVVU1Oe/zzz9XZ5xxhvLz81Off/65WrVqlVJK7w3TXP+e1atXK7PZrK655hrnserqahUREaHOPfdcl3Nnz56tAgIC1KFDh475PXXGc51IH6CioqImx8rLy1VKSoqKjIxUdXV1zuOt/Zt47rnnFKDeeustl8d98cUXFaA+/PBDpZTeQ6i53xWgzjnnHPX555+rAwcOtOkxGxoaVFhYmOrfv79L7BUVFSo+Pl4NGDCg1T8b4f4kARKGWrNmjfMF691331X/+c9/VGVlpVJKqfvvv18Bas6cOeqVV15RV155pRo1atRxEyCljrzZnnPOOerll19Wc+bMUT179lSRkZFNEqDExMRWvcG+8MILClATJkxo0vX2vffec8at1JE3gejoaPXMM8+oF154QSUkJKiePXu6vGl89tlnClD9+vVr9jELCgqc544cOVKdf/756oknnnB2Vo6Pj1cmk0l9/PHHLrGmp6crX19fl07Qfn5+atq0aS7nLV26VE2ZMkU9/fTT6t///re66aablNlsVjNmzFD19fXO8/bt26dCQ0OVv7+/WrBgQZM4N27c6PK4joZ0Z511llqwYIH63e9+pzRNU1deeeVxf85KKbVx40b12GOPqccee0ylpqaqsLAw59dffvmlS1xjx451dse+8847lb+/vxoxYkSLHYMdsrKyjtsI0eG6665r0gjx8OHDKjAwUN14443q73//u3r11VfV3LlzVUBAgIqIiFA7d+50OX/BggUKUJdccolauHChuvbaaxWgnnjiieM+f0c9V2lpqfPnOmPGDAWou+++Wz322GPqpZdeOm5cDz/8sBo2bJh68MEH1euvv67mz5+vEhMTlaZpatGiRS7ntvZvori4WMXGxiofHx91xx13qNdee03dcsstymw2q8GDB7skJs2hmUaIbXnMxx9/XAFqxIgR6oUXXlDPPfecGjhwoAKafE/Cs0kCJAz32GOPqV69eimTyeSSyFRXV6s5c+ao0NBQFRwcrC677DJVVFTUqgTIarWq+fPnq7i4OOXv769OP/10lZmZ2Wwn6NYmQNddd50CWvw4+so5JydHXXLJJSokJEQFBQWpc88916VjslL6G8ixHnPJkiXOc19++WU1adIkFRkZqby8vFRUVJQ677zz1K+//tpsvMuWLVMTJ05Ufn5+KioqSs2dO7dJUrB79241bdo0FRkZqXx9fdWAAQPUk08+2eRNZsmSJceMs/HvQymlbDabeumll1T//v2Vt7e3SkhIUA8++KCzu/PxOH6nzX00/v2VlJSoCy64wPnmlpycrO67777jJj9KnXwCVFdXp/74xz+qoUOHqpCQEOXt7a0SExPVnDlzWhxFef3111Vqaqry8fFRKSkp6oUXXmjVFi4d9VyOn0FzH635m/j+++/VWWedpWJjY5W3t7cKCwtT06ZNUz/99FOz57fmb0IppXJzc9WNN96okpOTlY+Pj4qLi1M333xzk67pzWkuAWrrY77//vtq7NixKiwsTPn7+6tx48apTz755LjPLTyLppRSJzx/JoQQQgjhgWQVmBBCCCG6HUmAhBBCCNHtSAIkhBBCiG5HEiAhhBBCdDuSAAkhhBCi25EESAghhBDdjiRAQgghhOh2JAESQgghRLcjCZAQQgghuh1JgIQQQgjR7XgZHYA7stlsHDhwgODgYDRNMzocIYQQQrSCUoqKigp69uyJyXTsMR5JgJpx4MABEhISjA5DCCGEECcgJyeH+Pj4Y54jCVAzgoODAf0HGBISYnA0QgghhGiN8vJyEhISnO/jxyIJUDMc014hISGSAAkhhBAepjXlK1IELYQQQohuRxIgIYQQQnQ7kgAJIYQQotuRBEgIIYQQ3Y4kQEIIIYTodiQBEkIIIUS3IwmQEEIIIbodSYCEEEII0e1IAiSEEEKIbkc6QXciq02xJquEoopaooP9GJscgdkkm60KIYQQnU0SoE6yODOf+V9tJb+s1nksLtSPh88bxIy0OAMjE0IIIbofmQLrBIsz87ltUYZL8gNQUFbLbYsyWJyZb1BkQgghRPckCVAHs9oU87/aimrmNsex+V9txWpr7gwhhBBCdARJgDrYmqySJiM/jSkgv6yWNVklnReUEEIIYRCrTbFyzyG+2JDHyj2HDBsAkBqgDlZU0XLycyLnCSGEEJ7KnephZQSog0UH+7XreUIIIYQncrd6WEmAOtjY5AjiQv041mJ3s0kjLMC702ISQgghOpM71sNKAtTBzCaNh88bBNBiEmS1KS761wo+X5/beYEJIYQQncQd62ElAeoEM9LieGX2SGJDXae54kL9ePaSoZzaL5Kaeit3frSRv3y+mboGq0GRCiGEEO1v+e6DrTqvM+thpQi6k8xIi+OsQbHNdoK+aGQ8//hpFy/9vIv3V2ezOa+MBVeNJCEiwOiwhRBCiBO2o6CCJ7/dxi87WpcAdWY9rCRAnciMjQmbH4KQnmBLhLJTITwJs0njrrP6M7J3GH/6aAObcss496XlvHD5MM4cEGN02EJ0HcW7IHslHN4HDXUQFANxw6D3BPDyMTo6IbqMovJaXvhxJx+tzcGmwKyBr7eZGosVP2qZZMokgFq+sE0C9BKR2FB9YKCzaEop6cB3lPLyckJDQykrKyMkJKQdHzgfnh/geixhPEz6E/SfAZpG7uFq5r6fwcbcMgBuP6Mvd57VH0D2ERPiRCgF276C5S/AgYzmz/ELhdE3woQ/QGCPzo1PCA9zrH0tqy0NvP7rXl7/dS/VFr2cY8bgWO47ewD7snaR98WjzDL/RpBWS57qwSl1/0SzV8i+MnvkSS+Fb8v7tyRAzeiwBKi6BNLfgrI8KNwCuWtB2et9+k2D8/4JIXHUNVh54pttvLtyPwCpMUEcrq6nqKLO+VCyj5gQrVCaA/93G+xbpn9t8tIvOmIGgdkHyvNg33Kosg/P+0fA2U/D0MuMi1kIN9ZSH5+HZg6ivLae53/Y6XyvGp4QxoMzBzK6dxiseR1+fAQaagDIsUWx1DaUxxquISI0pN3ezyQBOkkdlgAdraIAVv0LVv4LbPUQGA2XvQuJEwD4YkMe93yyCUuDrcldHWM/7ZExC9ElZf0KH82G2jLwDoAJc2HsLRAU5XqezQY7v4Wfn4CiLfqx0TfC2c+AWdpTCOHg6ONzvKShd0QA980YwDlDYtEaauHTm2D71/YbJ2CdPI81ajBFlXXtPqMhCdBJ6rQEyOHgTvj4ev3F18sPrvgA+k7BalOM+9uPFFdamr2bY850+X1nynSYEI1t+T/47GawWqDXKLj43xDR59j3sdbDsr/DL08BCgacC5e8JbVBQqBPe016+udjLmXXgHnnDOC6iUn4epn1WY//XAE5q/UR1+l/gzE3gdZx71dtef+WZfDuIKo/3PQj9JsODbX6f5jdP7Emq6TF5AdkHzEhmrXjW/jkBj35GXg+XP+/4yc/oI/2nH6/fgFi9tWvWD++DqwNrX5qd9njSIj2drw+PqC/Jw3pFaYnP5Zq+OAyPfnxC4Vr/g/G3tyhyU9bySowd+ETAJcv0l+4t38NH19PzSnvtequso+YEHa561Af34CmbGQnzCJv5LOMNftibuXdrTbFGu9xqLEvMX7NHzDt+B98Nw/Oefa493WnPY6EaG9t2tfS2qC/l+WuBb8wuOF/EDO4YwM8ATIC5E68fPQh98RToK6ciavnEk75ce8m+4gJAVQUUvfe5WgNNfxsHc6Zuy7iyjfWMunpn1u1x9DizHwmPf0zVy5cxVVLgrilZi42NL14c+2/j3tfd9rjSIj21qZ9LZc8ATsX6yUdV33klskPSALkfrx84LL3IDwZv6pc/hnwb7QWSs409CvMzuybIIRbslk59O61+NYVs82WwO31d9BgH+BuTRLSXALzg200z9Zfrj/8/+6HAxuava877nEkRHs73r6WzvejhnWw/Hn94Kx/Qe/xnRVim8kUmDsK7AGXvwcLz+RU6zquNv/I+9azmn2Bffi8QVIALbo9269/p8fBVVQpX26vv4NqjlytKvQX5/lfbeWsQbFN/l6OlcC8Yj2PYaY9zDCvpeajG/ll8icU1GgUVdRRVF5HUUUt+4qrWr3H0YQU6TEkPJNjX8vbFjXtpeX4i3rirCjM/3eB/sWYmyHt4s4L8ATIKrBmdPoqsJasXADfPYDV5MsVXs+ztjzceZNJgwVXjeTsIVJbILq5om3YXj0Vk62eOy238bnt1BZPDfbzwt/bjLfZhI+XCS+ThqXBxv6S6hbvE0YF3/neR4xWylsN05nfcN0JhfmPK4ZzwfBeJ3RfIdzF4sx8bv9gPQ2NRjSdtW5b7oVtX0LsELjpJ/Dy7fT42vL+LSNA7mzcbbDzO8xZS/lv/Cesmvhv8spqmPfpZuptij5RQUZHKISxbFb44nZMtnp+sI7ic3tb/ZZU1DZQUdv6VV0ApQTz5/pbec/nKa7z+p6i5AuoiRpOVLAv0cG+lFRZePLb7cd9HKnVE13B+D49nMnP47PSSIkK0vv4bP9ST35MXjDrFUOSn7aSBMidmUxw7gvwrwloe5cwYcQvMOoSvt6Uzy87DvLLjiJSY4ONjlII46x7E/LW0eAdxIO1N0CLFQq65y4ZysCeITRYFfVWGxarjU25ZTx1nARmmW0oB5NnEZX1f9zX8BqcuwRM+toyq03x9op9FJTVNjuNZsQeR0J0lHX7DgPQJyqQ2eMT9YN1lfC/e/XPT/mTPgLkAaQI2t31SIHT/qx//t0DUFfB5P56J9ulO1u3u64QXVLNYX21CWCa+jCm0J4tnuoo0LxwZDyDe4YyLCGM0UkRTEyJ5OZT+7SquDPiwmf0fib5G2HtG87bHbURjnOPvi9IrZ7oOtbu0/vOjWuc0P/2IlQWQHgynHaPMYGdAEmAPMEpf9T/Y1UWwoqXOD01GtD/I1bWtW04X4guY+kzehIUPQjT6BudScjRjpeEtDqBCYmBMx+yP/dT+hYbdjPS4nhl9khiQ12nuWJD/WS7GtGlrLY33h2TZE+AynJhxUv659MeA2/PmeqVBMgTePnC1If1z1e8RJJPOb0jAqi36l1nheh2Du3R+/MATH8CzF7MSItzvSq1a00S0uoEZtQN0KMfVB+C3/7R5DGW33cm/7xyOKAvVPjxrsmS/Iguo9rSQGaenvg7p3R/nK/vYJA4Sd8+xoNIDZCnGDQL4sdA7lq0pU9xeurNvLtyP7/sKOKsQTFGRydE5/rlKbA1QL9pkHImAEop9h/SV3M9cM5AYkJ827TR4oy0OM4aFMuarBKKKmqbv6/ZC86aDx9epW9iPOYmCDky9WY2aZw3tCePfrWN4so6theUMypRan9E17A+u5QGm6JnqB/x4QGQvwk2/xfQ9AsRN9rmojVkBMhTaBqc9Zj++fpFTO+l7xG2dOdBpJOB6FYO7oTMT/TPz/iL8/De4ioKymvx8TJx7YRELhjeiwkpPdpUe2M2aUxI6XHs+6aeAwnjoaEGlr/Y5GZN0xieEAbobxhCdBWO6S/n6M/Sp/V/0y6GnsONCeokSALkSRInQPJksDUwNu8dfMwmcg/XsLe4yujIhOg8S58GZYPUmS4vuit2FwMwqnc4ft6t3f3rBGganDFP/zzjHagobHLKiN5hAKzPKe24OIToZGuy9JKLsck9oCBT37cSDSbfa2xgJ0gSIE9j/4/mvekDpve2AfDLDlkNJrqJou2Q+an++en3u9z02279xfmUvp3QbTl5MsSP1WsfVr7U5OYR9hGgDTICJLoIS4PNOaI5Njkcfn1Gv2HwhRCValxgJ0ESIE+TNAl6TwSrhVvMXwGyHF50I8tfAJRebBk31HnYalOs3KsnQBP7RnZ8HJp2ZLnv2jehynUxwpD4UDQN8kprOFhR1/HxCNHBNueVUtdgIyLQhxSVDVu/0G/w0NEfkATIM03WX3gH5X9GOOWs2nuIGovV4KCE6GDlB47U/px6l8tNWw+UU1ZTT7CvF0N7hXZOPP3OgrhhUF8Fq191uSnYz5t+0Xqn9g0yDSa6gDVZegPEsUkRaCte1g8OPB+iBxoY1cmRBMgT9TkD4oZjstZxa9AyLA02VmXJcnjRxa15XV/51Xsi9BrlctNve/T6n3F9IvAyd9LLmqbBJHsitu4NqHfdENVRCL0h53DnxCNEB3LU/5zW03bkQuSUPxoY0cmTBMgTaRqM/z0AV/Ad3jSwVOqARFdWV6lvewEw8fYmN/9mL4CemNIJ01+NDTgXQhP0vkCbP3a5aXiCvnmxjAAJT2e1KecWGFOrvgKrRa+Bix9tcGQnRxIgTzX4QgiKIbShmLNNq6UOSHRtGz7QOy9H9IH+M1xuqmuwOtvzn9IZ9T+Nmb1g7O/0z1e9Ao1aUjhGgDbllGGzSasK4bm2F5RTUddAhK+NqO3v6wcn/N7YoNqBJECeystHb8IGzPFaTFZxJfsPyXJ40QXZbEdqbMb/3rkJqcP67FJq621EBvnSPyao8+MbeQ14B0DRFti3zHm4f0wQ/t5mKuoa2HOwsvPjEqKdrLH3/5nbIwOtulgf9RxwnsFRnTxJgDzZqBvA7Msw0x5GartkFEh0Tft+hZI94BMMw65scvMK5/RXDzQjOtH6hx+Ja9WRYmgvs4kh8XpBtvQDEp5MT4AU51u+0Q+MvVkf/fRwkgB5sqAovQMncKX5Z+kHJLomR+3PsMvBt+kIz297OrH/T0vG3aL/u/NbKMtzHh4hHaGFh1NKsXZfCUO0LKIqd4DZF0ZcY3RY7UISIE836noAzjWvYvOeHGrrZTm86EIqCmG7/apz1A1Nbq6sa2CjfXSl0wugG4tK1VenKRtseN952NERWgqhhafaW1xFcaWF2d4/6wcGXQABXWN/O0mAPF3CWFTUAPw1C9NtvzqLQYXoEta/py99TxgHsWlNbl6TdYgGm6J3RAAJEQEGBNjIqOv0fzPe0+uWOLISbEdBOdWWBqMiE+KErckqIYhqLjCv0A/YL7q7AkmAPJ2modn/Q15p/pml24uMjUeI9mKzQfo7+ufNjP5AJ29/cTyDLgC/UCjLhr1LAIgN9SM2xA+bgs25ZQYHKETbrc0q4XzzSvxULUT2h8SJRofUbiQB6gqGXo7V5MNg034ObF9pdDRCtI99y/Rkwi8UBs9q9hTD+v80x9sfhl6uf57xjvPwkYaIpZ0fkxAnaXVWCVeaf9K/GHW93oeui3DrBOipp55C0zT+9Kc/OY/V1tYyd+5cevToQVBQEBdffDGFha67MWdnZzNz5kwCAgKIjo7mnnvuoaGhCw8/B0RgTdWXJE4s+x+5h6sNDkiIdrDxP/q/aRfrycVRiivr2F5QAegrwNzCSPs02PZvoEpPzoZLHZDwUHmlNQSW7WSIaR/K5A1DrzA6pHbltgnQ2rVree211xg6dKjL8TvvvJOvvvqKjz/+mKVLl3LgwAEuuugi5+1Wq5WZM2disVhYsWIF77zzDm+//TZ//etfO/tb6FQ+o/Wq/HPNq1i2/YDB0QhxkuoqYeuX+ufNLH0HWGlf/TUgNpgeQb6dFdmxxaZBzxF63VLmZ4CMAAnPtTarhIvMywHQ+k+HQDe50GgnbpkAVVZWcvXVV7Nw4ULCw8Odx8vKynjjjTd4/vnnOfPMMxk1ahRvvfUWK1asYNWqVQB8//33bN26lUWLFjF8+HDOPvtsHnvsMRYsWIDFYjHqW+p4yadR6RNJmFbF4Q1fGx2NECdn+9f6JqMRfSB+TLOnrLDv/9Xp3Z+PxzENtukjAIb0CsWkQX5ZLYXltce4oxDuZc3eg1xg/k3/wvH/ugtxywRo7ty5zJw5k6lTp7ocT09Pp76+3uX4gAED6N27NytX6rUvK1euZMiQIcTExDjPmT59OuXl5WzZsqXZ56urq6O8vNzlw+OYzNSk6iNhfQv+h6XBZnBAQpwEx/TXsCtbrDlwqwLoxtIuBs0Meevg0B4Cfb3oHxMMSD8g4Vnq9/xKnFZCvU8o9J9udDjtzu0SoA8//JCMjAyefPLJJrcVFBTg4+NDWFiYy/GYmBgKCgqc5zROfhy3O25rzpNPPkloaKjzIyEhoR2+k87XY4I+DTaZdDbs2m9wNEKcoLI82LtU/3zoZc2eklNSTXZJNV4mjbHJbpYABUVDyhn655v+CxzpB7RedoYXHqK4so5xFT8AYBs4C7zcZJq5HblVApSTk8Mf//hH3n//ffz8/DrteefNm0dZWZnzIycnp9Oeuz2Z4oaQ75uMr9ZA8ZqPjA5HiBOz+b+AgsRTIDyp2VMc01/DEsII8nXDlvyNp8GUOlIHJCNAwkNk7M5jhmkNAL4jm6/D83RulQClp6dTVFTEyJEj8fLywsvLi6VLl/LPf/4TLy8vYmJisFgslJaWutyvsLCQ2NhYAGJjY5usCnN87TjnaL6+voSEhLh8eCRNoyTlQgDis780OBghTpB91ORYNQfO6S93Wf11tAEzwTsQDmdB7jpG9NZrGTfnlWGVneGFB6jc+AVBWi0lPnHQe7zR4XQIt0qApkyZwubNm9mwYYPzY/To0Vx99dXOz729vfnpp5+c99mxYwfZ2dlMmDABgAkTJrB582aKio40BPzhhx8ICQlh0KBBnf49dbZep14LwFDrFopydhkcjRBtVLQdiraCyRsGnd/sKUopVthXgE10twJoB59APQkC2PQRKVFBBPl6UW2xsrOwwtjYhGiF+Fx9C5qDybO6VO+fxtwqAQoODiYtLc3lIzAwkB49epCWlkZoaChz5szhrrvuYsmSJaSnp3PDDTcwYcIExo/XM9Rp06YxaNAgrrnmGjZu3Mh3333Hgw8+yNy5c/H17XpzmEcLi0tms/cQAPJ/+4/B0QjRRlv/T/835Ux9l/Vm7CyspLiyDj9vk7O2xi05RrC2fI4ZG0PtO8PLcnjh7ipKixluyQAgYlzXnP4CN0uAWuOFF17g3HPP5eKLL+a0004jNjaWzz77zHm72Wzm66+/xmw2M2HCBGbPns21117Lo48+amDUnetgwgwAQvb9z+BIhGijLZ/r/w6+sMVTHN2fxyRF4Otl7oyoTkyfyXoSV10M+3+TOiDhMXJXfYqPZiVLSyCqzzCjw+kwblg96OqXX35x+drPz48FCxawYMGCFu+TmJjI//7Xfd/8I8deim3PcyTXbqOhZD9eEYlGhyTE8RVtg4PbwewDqWe3eJrb9v85mtlbnwZbvwi2fsHwpHsAGQES7s97u15DuityCskGx9KRPG4ESBzf4P79ydAGAHBg5X8NjkaIVtryf/q/KVPAP6zZUxqsNlbvLQHgFHfY/+t4Bs3S/932FcPj9V5AO4sqqKzrwlvzCM9WW0Ziqd5Y2Ob4/9tFSQLUBZlNGlnRZ+mfb/vC4GiEaAWlWjX9tSmvjIq6BkL9vRnU0wNWayZP1jdzrSwkunQjvcL8UQo25ZYaHZkQzbJs/QZvGthl68WAIWONDqdDSQLURQUM099EelVu1hvLCeHOirZB8Q4w+x57+ste/zOhTw/MJg9YmeLlA6n21WBbv5B9wYTbq8z4BIBfvCaS2CPA4Gg6liRAXdTYoYNZa+sPQOWGz45zthAGc6z+6jsF/Foe2XHb7S+OZdAF+r9bv2B4vP69yZYYwi3VlhGa9ysARQlno3XR5e8OkgB1UVHBvqwPmgxA7cZPDY5GiOPYbl+0MPC8Fk+prbeSnq1vJeG2/X+ak3IG+IZART6T/LMAfQRIKWmIKNzMzu8xq3p223qSkDrS6Gg6nCRAXZh1gP5mElGyASqLjn2yEEY5vB8KN4Nmgn4tb7i4bt9hLA02YkP86BMZ2IkBniSvI9N6/Q79jJdJ42BFHQfKZGd44V5s2/Xmh9/ZRjO2jweNsp4gSYC6sFFDhrDR1gcTCtuOxUaHI0Tzdnyr/9t7AgS2/KL7m335+8S+PTxvaH7AuQB47fyWAbFBgPQDEm6mwYLapW9+utJrPP2jgw0OqONJAtSFjewdxjLTaADKN8reYMJN7dCvOkk955inOQqgPWL5+9FSztT7Gx3O4qzoMgA2yM7wwp3sW4a5vpIiFYZ/0mhMnrDI4CRJAtSFeZlNlCVMBSAw91eorzE4IiGOUnMY9v2mfz6g5QSorKaezXl64uD2DRCb4xsEyacBcIambzEgK8GEW7GPxP5oHcGYPh74N3YCJAHq4voOGU+e6oG3rQ6yfjU6HCFc7foBlBWiBkJEnxZPW7X3EDYFfaICiQ3168QA25GjDujwMkDfGb7eajMyIiF0SqEcCZBtFGOSIgwOqHNIAtTFnZYazY9WvZq/LvNrg6MR4ij2ostjjf6Ah09/OfTX9+jzK1hHb79qautt7CiQneGFGyjYhFaeS7XyJcM8jLReoUZH1CkkAeri4kL92RE6CQC181uwyRWncBMNdbD7R/1zR7PAFvy2xwP7/xwtNB5ih6KhmB2xHZBpMOEm7KM/y2xDSEuMwdvcPVKD7vFddnNhA8+gQvnjV3sQ8tcbHY4QuqxlYKmEoFjoOaLF0wrLa9ldVImmwXhPX5prL/Q+nXRAGiIKN2Efif3RNrLbTH+BJEDdwqSBvVhqGwrAjqX/ZeWeQ1ht0oRNGGyHvflh6tlgavmlyLH7e1rPUMICfDojso6Tqk+D9SlfjS8WWQkmjFeWCwWbsKHxs3UEY5MlARJdyKFKCz9ZRwFg2/4/rly4iklP/8zizHyDIxPdllJ6ATQcc+8vOLL9xURPnv5yiBsOwXF4NVQzwbSVPQerKKupNzoq0Z3Zp7/Sbf0oN4cxoneYsfF0IkmAurjFmfnc8Z/1/GwbToMyMdCUTS8OUlBWy22LMiQJEsY4uAPKsvXNT5NObfE0pVTXKIB20DRnwjcrYBMgO8MLg9kvRH62jmRofBh+3maDA+o8kgB1YVabYv5XW1FAGUFkqH4ATDZvwjEBNv+rrTIdJjrfbvvoT9Ik8Gl5x+l9h6o5UFaLj9nUdWoT7KvBTmU9oKQjtDBOfa2zPcovtmHdavoLJAHq0tZklZDfaL+hpdZhAEw2bQRAAflltazJKjEiPNGdOaa/+p11zNN+s4/+jOgdhr9PF7kyTZoEZl96NBSSoh2QlWDCOPt/g4YaDmoRbFO9GdtVLjJaSRKgLqyownWzRUch9ETTFrxpaPE8ITpUXSXsX6F/3vfYCZCjANojuz+3xCcQEicCMNm0SXaGF8bZ/RMAP9cPRdM0RiWFGxxQ55IEqAuLDnbtmLtFJXFQhRCs1TDKtLPF84ToUFlLwVYP4UnQI6XF02w2xcqu0P+nOX31LWrOMG/kUJWF3MOyTY0wgH0q+hfbMAbFhRDi521wQJ1LEqAubGxyBHGhfji2tFOY+NU+CjTZtBENiAv163bzvsJgzumvaXpRcAu25pdzuLqeQB8zQ+PDOie2zmJPgMaZtuFHHetlGkx0tsP7oXgnVsz8ZkvrOjV2bSAJUBdmNmk8fN4gAGcS5KgDOt1eB/TweYMwd4Ndf4WbUOpI9+dWTn+N69Oj63WmjUqFkHh8qGe8aRvrs6UfkOhk9r/DbeZUyglkXDe8EO5iryriaDPS4nhl9kjnBpLLbEOwKY2BpmzevLgXM9LiDI5QdCsHd0BZjn35+6RmT7Hap74+z8gDYHyfLvjCrGnQdwqgj8ZKIbTodPYE6Nu6NADGdMMEyMvoAETHm5EWx1mDYlmTVcIXG/LYtLEPw7U9nGHeDAw3OjzRBVltijVZJRRV1BIdrE+zmk0a7PpeP6GF5e+LM/OZ/9VWl9WLr/+6l94RAV0vWe93FmS8w2mmTTx5oBxLgw0fL7kmFZ2gwYLauxQN+MU6jLhQP8I9vcv6CZC/tm7CbNKYkNKDP03tz1KbPg1Wt/17g6MSXdHizHwmPf0zVy5cxR8/3ODaeXx3o/qfZu5326IMl+QH9E7mXbJpZ/JpKJMXKaZ8Yqz5bMsvNzoi0U2s+fUbtPoqDqpQtqpE8stqu+XuAJIAdTOxoX7sC58AgJb1C1gbjn0HIdqgpSSmoKyWOxetxLZ/pX7APv3j0Lhp59G6bNNOv1C0hHHAkeXwQnS0xZn5rP/5EwCW2oah7GlAd9wdQBKgbqjnoFMoVYH41JdD3jqjwxFdxPGSmDGmHZhs9aiQXlQEJpJ7uJrMvDJW7C7m5Z93NUmajr5/l2zaKXVAohM5/kZPNW0GYKl1qPO2LnuhcQxSA9QNnT4wjuUr0jjXvBrbniWYeo83OiTRBRzdefxop9hfdD853Jd75v9wQs/R5Zp2pkyBnx5lgmkrT2cXGx2N6OLWZJVgKStkkN9+AH6zpbnc3vhCY0JKF+u91QwZAeqGRiSEkWHW64Cqtv9ocDSiqzhecjLJlAnAMusQAHy8TEQF+9IvOoj+MUGteo4u17Qzdig2/wiCtFpCSzZRWm0xOiLRhRVV1DLRtAWArbZESghp8bzuQEaAuiEvswlb8umQ9ToBRev1rQl8W/cGJERLjpWcRFDOYJN+1Xn+hVfwzPBBLrtOW22KSU//TEFZbbNTaBp6/VqXa9ppMmFKPg22/h+TTJlsyCnl9NRoo6MSXVR0sB+n2C9Elh81+nP0ed2BjAB1U0OHDCPbFoVZWY/syyTESTi683hjjhfdXVoiZ4xKc0l+oPmmnQ6Or7ts084+pwMw0byF9bIzvOhAY5PCmeyl/y0ePf0FdLvdASQB6qZO6x/Fb0r/A5BpMNEeHElMcyM4jukvr75ntpjEHN200yE21I9XZo/sen2AHOwJ0EhtF9v2d58VOKLzmUuziKMYizKzxpbqcluXv9BohkyBdVORQb7kho2FiiXU7/rZ6HBEFzEjLY4LR/Ti8/V5jY4qTrNfdSaPPfe493c07WzSRLGrikimLjgB34ocfPJWotRpaMfYI02IE7b3FwCKQodRU9T0QuPh8wZ13QuNZkgC1I2FDJoCq58mrGIXVBZBkNQeiJNXUav3lpo9rjdjkiPorfKJ+6IYzD6QOOG493c07exOvFLOgA3vMqx+I/sOVZMcGWh0SKIrsidAB3qMhyIYlxzOVeMSu8eFRjNkCqwbG5+WyhZbIgANe34xNhjRJSilyLBv7HnhyHguGN6LEQ0b9BsTxoGPvLE3x9z3dECfKnxz+V5W7jnUbXqxiE5is0LWrwAsbRgMwOTUaC4Y3osJKT26XfIDkgB1a0N6hZJuXw5fskm2xRAnL6u4ipIqCz5eJtJ62ZfY2q866TPZsLjc3U91AwAYaMrmf6s2u24fIkR7yN8ItaXgG8K3h2IB/T2gO5MEqBszmTRqEk4FwDdnGSi54hQnJ32/PvoztFcovl5ml6tO+pxpYGTua3FmPjd9vI+t9tFYR5+W7rg1gehA9guR+t6nsLekDoC0npIAiW4sYdiZWJSZUEsBlOw1Ohzh4RzTX6OSwvUDBzZAbRn4hkLP4YbF5a4abx/i6MviaBnQHbcmEB3IngDlhI0FID7cn/DA7rcDfGOSAHVzpwxMJEP1B+BwpkyDiZOzbp89AeptT4CyftH/TT4VTObm79SNNd4+xNGXZZI5E0f602X3QBOdq74GslcBsFbT9//q7tNfIAlQtxca4E1WyBgAyrdKPyBx4sqq69lVVAnAqERHArRM/zdZ6n+a03jLgTW2VCzKTLxWTG+tqMXzhGiz7FVgrYPgniw7rP9tpkkCJAmQAO9+em1Gj4OrwWYzOBrhqRzTX8mRgfQI8oUGC+Ss1m9MmmRgZO6r8ZYDNfixXvUDjjSObO48Idps33L93+RTyTxQDsgIEEgCJIBBo06jUvkRZKug7kDm8e8gRDMcBdDO0Z8D66G+GgJ6QNQAAyNzX0dvH/KbVZ8GG2/aCnS/rQlEB7EnQDW9JrLvUDUgCRBIAiSAgb0i2GQaCEDOeqkDEidm3X69TsWZAO2zr/5KmgQmealpztF7oK226X+H40zbcNQBdaetCUQHsFRBXjoAW331+p9eYVIADZIACUDTNMqi9ZUB9bt/NTga4YnqrTY25pQBjRMg+7B70qkGReUZGu+BtkGlUKe8idFKGepf3LX3QBOdI2cN2OohJJ70Mr03l4z+6CQBEgCEDdLrgHqWZUgdkGiz7fkV1NRbCfHzom9UkF7/ky31P601Iy2O5fedyds3n8YeP31E6OaEPEl+xMlzXohMYvOBCgCGxEsCBJIACbu00adRpXwJpYLcnelGhyM8jGP6a2RiOCaTpg+5N9RAQKTU/7SSYw80U9IpAIQWrjY4ItElNEqAMvP0UVpZAaaTBEgAEBwYwG4/vQAzJ+MHg6MRnsZRAD26yfTXJJCdzdskfNAUAPrXbqLW0mBwNMKjNar/qeg5nqziKkCmwBwkARJOdb0mAuCV85vBkQhP40iARjoTIHv/H5n+arPoQadQhzex2mF2bd9odDjCkzWq/8ms1P82e4X5EyEF0IAkQKKRuOFnAdC3eiPVdRaDoxGe4kBpDflltZhNGsMTwqCh7kj/n+TTDI3NE2ne/uyz1wEd3vKzwdEIj9Z4+sve/8e5SbGQBEgcET9oAtX4Ea5VsDF9ldHhCA+xzj76MyguhAAfL3v9Ty0ERkFkf4Oj80wVsfqqTL+8lQZHIjxa4wJoe/2PTH8dIQmQcNK8fDgQrPeJKM78yeBohKfIOLoBotT/nLTA/mcAkFi5HiWrMsWJaFT/IwXQzZMESLjQkvWeLcEFq1BKdqAWx9e0AaLU/5ys5OGTsSgvYiihYN82o8MRnqhR/U+Ffy/2SgF0E26VAD355JOMGTOG4OBgoqOjmTVrFjt27HA5p7a2lrlz59KjRw+CgoK4+OKLKSwsdDknOzubmTNnEhAQQHR0NPfccw8NDbKaojXi7XVAQ6xb2FVYbnA0wt1V1TWwLV/vLTIqMdxe/7NGvzFJ6n9OlF9AELu8UwEo2CSbFIsT0Ggkdov9b7RnqJ++T58A3CwBWrp0KXPnzmXVqlX88MMP1NfXM23aNKqqqpzn3HnnnXz11Vd8/PHHLF26lAMHDnDRRRc5b7darcycOROLxcKKFSt45513ePvtt/nrX/9qxLfkcXwTR1On+dFDq2CD1AGJ49iYW4rVpugZ6kfPMH/IXWev/4mGyH5Gh+fRiiP1OiDz/uUGRyI8kvT/OS63SoAWL17M9ddfz+DBgxk2bBhvv/022dnZpKfr85hlZWW88cYbPP/885x55pmMGjWKt956ixUrVrBqlf5m/f3337N161YWLVrE8OHDOfvss3nsscdYsGABFousbDouszfFESMAqNr5i7GxCLeXvu/o5e9S/9NevPvqI2hxZRkg09GiLY6q/5EC6Oa5VQJ0tLIy/ZcWEaHvhJyenk59fT1Tp051njNgwAB69+7NypX6aomVK1cyZMgQYmJinOdMnz6d8vJytmzZ0uzz1NXVUV5e7vLRnQX2mwxA3OF1lNfWGxyNcGfp2Uc1QMxeof+bONGgiLqOpGGTqVNeRNmKqS3aY3Q4wpM0qv8hPMmZAKXJFhgu3DYBstls/OlPf+KUU04hLU3vUFxQUICPjw9hYWEu58bExFBQUOA8p3Hy47jdcVtznnzySUJDQ50fCQkJ7fzdeBbHvmBjtG38tvOgwdEId2WzqUYrwCLA2gA5a/UbJQE6aXGREWwz6dOIBzZ8b3A0wqPst1+IJJ1CpcUqHaBb4LYJ0Ny5c8nMzOTDDz/s8OeaN28eZWVlzo+cnJwOf0631nME9SZfemgVbNm01uhohJvafbCS8toG/L3NDIwLhoKNUF8FfmEQNdDo8DyepmkcCBsFQP1eqQMSbZBt7x/VewJb8spQCuJC/YiUAmgXbpkA3X777Xz99dcsWbKE+Ph45/HY2FgsFgulpaUu5xcWFhIbG+s85+hVYY6vHecczdfXl5CQEJePbs3Lh6qo4QBYsn6T5fCiWevs9T/DE8LwMptgv+NFdzyY3PKlxfP01kfSIg5lGByI8BgNFn0xAkDixCPTXzL604RbvUoppbj99tv5/PPP+fnnn0lOTna5fdSoUXh7e/PTT0ea9O3YsYPs7GwmTJgAwIQJE9i8eTNFRUXOc3744QdCQkIYNGhQ53wjXUBQP70fUKplC1sOdO+aKNE85waoSY76nyNXnaJ9xKWdilVpRDXko8ryjA5HeIL8jdBQA/4RENnfuQJMpr+acqsEaO7cuSxatIgPPviA4OBgCgoKKCgooKamBoDQ0FDmzJnDXXfdxZIlS0hPT+eGG25gwoQJjB8/HoBp06YxaNAgrrnmGjZu3Mh3333Hgw8+yNy5c/H1leG/1vJK0q88x2o7+GVH0XHOFt1Rur0B4sjEcH2VkiMBkvqfdjMouRfbSAKgeOsvhsYiPIRjIULvCaBpsgLsGNwqAXrllVcoKyvj9NNPJy4uzvnx0UcfOc954YUXOPfcc7n44os57bTTiI2N5bPPPnPebjab+frrrzGbzUyYMIHZs2dz7bXX8uijjxrxLXmuhLHYMJFgOsjGrVuNjka4meLKOvYdqgZgZEI4FO+E6kPg5Q9xw40Nrgvx9TKTFaBvT1O+c5nB0QiPkG3v35Y4gcq6BmcHaJkCa8qrNSd9+eWXbX7gs846C39//zbdpzW1Jn5+fixYsIAFCxa0eE5iYiL/+9//2vTc4ii+wTREp+FTtImA/DUcrjqb8EAfo6MSbsKx+qt/TBChAd6w1X7VGT8avOT/SXuqixsLe78gIH+N0aEId2ezNZqKnsjWA+UoBbEhfkQFywzI0VqVAM2aNatND6ppGrt27aJPnz4nEpNwEz59JkHRJkZpO/h110EuGN7L6JCEm0g/egNUqf/pMGEDJ8NeiKndCzWl4B9mdEjCXRXvgJrD4B0AcUPZvDIXkNGflrR6CqygoACbzdaqj4CAgI6MWXSW3npd1RjTdn7ZIf2AxBHpjfv/gOsKMNGu0vr3Y68tFhOK2r0rjQ5HuLP9jUZizd5SAH0crUqArrvuujZNZ82ePVuWkncF9qv5VC2XjB1ZWG2yHF5AXYOVTfYX1lGJ4VCWC2XZoJkgYazB0XU9saF+bPXSV7BKIbQ4Jkf9j719grMAOl7ej5vTqgTorbfeIjg4uNUP+sorrxAZGXnCQQk3ERSNiuiLSVOk1GayMbfU6IiEG8jMK8fSYKNHoA9JPQKOjP7EDgXf1r9OiNY7HDUaAFOOjACJY3CuxJxAVV0Dew5WAjIF1pJWT4FdcsklLF68WJridTNaomMabAeLVu7jiw15rNxzSEaDurHGy981TZP9vzqBX8okAKLKt0J9rcHRCLdUmgNlOaCZoddotubrBdAxIb5EB/sZHZ1banUCdPjwYWbOnEnv3r3561//yt69ezsyLuEu7EOpY0w7+Gz9Af744QauXLiKSU//zOLMfIODE0ZwNkB0FEDvlwLojtZvwFAOqlC8qUc5dvkWojHH6E/cMPANYnOu1P8cT6sToJ9++om9e/cyZ84cFi1aRL9+/TjzzDP54IMPqKur68gYhYGW1vUFYKi2B18szuMFZbXctihDkqBuRilF+v5SwF7/U10CB7fpN0oC1GEG9QwlXQ0A4PC2pQZHI9zSUY1IM2ULjONqUyPExMREHnnkEfbu3csPP/xAz549ufnmm4mLi2Pu3Lmkp8uVSVditSnu/7mCIhWGj2ZluLbHeZtjAmz+V1tlOqwbyS6ppriyDh+zSX9hzVmt39CjHwRFGRtcF+bjZeJA6AgA6vauMDga4ZaOGomVDtDHd8KdoM8880wWLVpEQUEBTz75JB9++CHjxo1rz9iEwdZklZBfXscaWyoAo007XG5XQH5ZLWuySgyIThjBMf2V1isEP2/zkWW3iTL60+HsLQbCD2WAzWpwMMKtuIzEjqfacqQAWhKglp3UVhhZWVk899xz/O1vf6OsrIypU6e2V1zCDRRV6MWWa2360PtY0/Zjnie6vnUtNkCUAuiO1nPAWCqUP362KijcYnQ4wp04lr9H9ofASLYeKMemIDrYl+gQKYBuSZsToNraWhYtWsSZZ55Jv379ePfdd5kzZw5ZWVksXry4I2IUBnGsHFhnHwEaadqFCVuL54muL6NxA0RLNRxYr98gI0AdbmRSDzJs/QCo3fubwdEIt5It018notUJ0Jo1a7j11luJi4vj5ptvJjY2lsWLF7N3717++te/kpCQ0JFxCgOMTY4gLtSP7ao35cqfYK2GgVq283YNiAv1Y2xyhHFBik5TVlPPjsIKwD4ClLcObA0Q3BPCEg2OruuLDvZjp28aABU7fjU4GuFWjiqA3iwF0K3S6gRo/PjxrF69mscee4wDBw7wwQcfMHXqVL0PiOiSzCaNh88bhA0TGbb+gL4tBujJD8DD5w3CbJL/A93BhpxSlILEHgH6xorOrrPjQV4HOkVNT73Ttn/BGpCebAJcR2LtdWKyBUbrtDoBWrduHevXr+f2228nPDy8I2MSbmRGWhyvzB7Jdp/BAIw27QT09vyvzB7JjLQ4I8MTnSh9n17sPqq3/e/fsQJM9v/qNBH9JmBRZoIsxXB4n9HhCHeQl+4yElttaWB3kb0AOl4SoGNp1W7wACNHjnR+Xltby6ZNmygqKsJmc60JOf/889svOuEWZqTFYfW/At77gJGmnYxODOejWybIyE83k55tr/9JCgebDXLW6jfI/l+dZlhyHFtUMiO03dhy1mCKSDY6JGG0HMdI7DjQNGcBdFSwLzFSAH1MrU6AHBYvXsy1115LcXFxk9s0TcNqleWZXZE5YTRKM9OTEijPleSnm2mw2tiQXQrY63+Kd0BdGXgHQEyascF1IwPigllEKiPYTfnO5YQNu9zokITRnBci+kisFEC3XptXgf3hD3/g0ksvJT8/H5vN5vIhyU8X5hNIQ7T+RhdXvpFqS4PBAYnOtL2ggiqLlWBfL/pFB0POGv2GXqPA7G1scN2It9lESYTeEFE5piBF92WzQa79b9E+EisF0K3X5gSosLCQu+66i5iYmI6IR7gxb/vGqCO1XewqrDQ4GtGZMuzTXyMSw/XRvxzXF13ReXz76EudQ8t3QW25wdEIQx3aDTWHwcsfYocAUgDdFm1OgC655BJ++eWXDghFuL3eeqfvUaadzuXQontYt89e/3N0AXSCdH/vbKl9+5Fti9J7cuWtMzocYSTH36F9JNalAFoSoONqcw3Qyy+/zKWXXsqyZcsYMmQI3t6uw9933HFHuwUn3Iz9zW6Qtp//5RXCaOn91F04d4BPCoeqQ3Bol35D/BgDo+qeRvQOY5nqT28OUrt3JX4pZxodkjCK80JE/zvclq8XQEcG+RIT4mtgYJ6hzQnQf/7zH77//nv8/Pz45ZdfXPoAaZomCVBXFhpPtV8MAbWF2HLTgdFGRyQ6QUFZLXmlNZg0GJYQBvt+1G+I7A8B0gSzs0UG+bLPfzBYfqN6zwr8zjI6ImEY51S0fnG6Odcx/RUiPfpaoc1TYH/5y1+YP38+ZWVl7Nu3j6ysLOfH3r17OyJG4Ubq4vQrjbBD6w2ORHQWx+jPwLgQgny9jlx1xkv9j1GsvfQ3vMCD62Vj1O6qukRfjQnOv8XNeXpNmEx/tU6bEyCLxcLll1+OyXRS+6gKDxWQordaH1i/lZIqi8HRiM6wbr+9AaJjA1QpgDZcbP+RVCo/fK1VULTN6HCEEXLt9V89+kJgD+BIAbSsAGudNmcx1113HR999FFHxCI8gG8fPQEaadrFjvwyg6MRnSGj8Q7w1nq98yxIAbSBRiT2YL2tLwC2bFkO3y0dtRChxmJlV5G+OEU6QLdOm2uArFYrzzzzDN999x1Dhw5tUgT9/PPPt1twwg3FpFGn+RFKNUV7N0LfqUZHJDpQjcXKlgP6sPqoxHAozISGGvAL1WuAhCFSY4J5zTSAU8mkYtdyQsfOMTok0dmO6v+z1VkA7UOsdIBulTYnQJs3b2bECL0RV2ZmpsttUnTVDZi9KQweRO/yDKzZqwFJgLqyjbmlNNgUMSG+9Arzh532F934sSDT4IbxMpsojxwJhz7B5HgjFN2HtQFyXUdiG09/yXtx67Q5AVqyZElHxCE8SE3sGCjPIKxYCqG7Oufy98QI/UVV+v+4jcA+47EVawTX5EJFIQRLc9puo2gL1FeBbyhEpgKyBcaJkEs40WaOQug+NZkopQyORnQkRwI0Ugqg3U5aSjw7lL0Xl2yL0b04/g7jRztHYqUAuu1alQBddNFFlJe3vuX61VdfTVFR0QkHJdxbzKBTAUjS8inIzzU4GtFRbDbl3AJjdGI4lOVBWQ5oJr3zrDDUiIRw0m39AKjdu9LgaESnOmoktrbeyi7pAN1mrUqAvvjiCw4ePEh5eflxP8rKyvjqq6+orJS9oroqn+Ae7DPpV54Hty03OBrREaw2xWfrcymtrsfbrJEaG3yk6DImDXyDjA1QEB7oQ06Qvv9TXZYkQN2KMwE6UgBttSl6BPoQFyoF0K3VqhogpRT9+8uKD3HEgeChJJXlYN23ErjS6HBEO1qcmc/8r7aSX1YLQL1VccZzv/CfhCUkgUx/uZOEcbALAksyob4WvOXNr8srz4fSbJeRWCmAPjGtSoBOpPC5V69ebb6P8BzVMaOh7BtCizOMDkW0o8WZ+dy2KIOjK7sKymoprVmujxlLAbTbSEwZzMGdoURRBvkboPd4o0MSHc0xEhs9GPxCgMZbYMj0V1u0KgGaPHlyR8chPIx/ykTYCfE126HBAl4+RockTpLVppj/1dYmyQ+ADxYGafv083qNwdypkYmWjEqKIN3WnxnmtVj3r8IsCVDX18xChM1SAH1CZBWYOCEJKUM4pILxoZ6GPFkO3xWsySpxTnsdbYi2Fx/NSpEKY83h4E6OTLSkX3QQmSZ9GXTVnhUGRyM6xbEKoKUDdJtIAiROSHxEABvRX3hLd0ghdFdQVNF88gMwyrQLgHRbP4oq6zorJHEcJpNGVcxoAHwOrAFpS9G11ddC/kb98wR9Y+pt9gLoiEAfekoBdJtIAiROiMmkOVeg1O+TFShdQXRwyy+eo0w7AUi39T/meaLzhaWMoU554Wc5DCV7jQ5HdKT8jWC1QGAUhCcDUgB9MiQBEiesKlpfgRB8MEOuPLuAsckRxIX60fQlVDHSPgK0PyCNsckRnR2aOIbhyTFsVn30L3JkW4wurfH0lz3ZOdIBOsSoqDyWJEDihAUkjcaizATVH4LS/UaHI06S2aTx8HmDmhxP1AqJ1MqpU15ccu5MzCa5ynQnwxPCWGfT25TU7P3N4GhEhzqq/w/A5jy9SbGsAGu7Vq0CGzFiRKuH1jIyZFl0d9G3ZxRbVDIjtN2QvRrCk4wOSZykGWlxvDJ7JHf8Zz0Wqz6qN0rTp7+qI4cwfViikeGJZoT6e5MfPBRqvqZhv2yJ0WUp1WgF2DisNsXy3QfZUaAnQAPjZASorVqVAM2aNauDwxCeKDU2mP+z9WeEaTcN+1fhNexyo0MS7WBGWhwRgVsoKK/jzrP6cXnBV7ALwlMnGR2aaIFX4jjYDkFlu6CmFPzDjA5JtLfD+6CqCEzefH84loff/9ll1eblr6/ikfMGMSMtzrgYPUyrEqCHH364o+MQHigyyIcdPoPA9j/q961s3X8m4fZq660UlOsrva4Zn0TEu5v1G+KlA7S7Sk1JIWtrDMmmQshdB/2mGh2SaG/20Z/SsEHc8p8tTfp1FZbVctuiDF6ZPVKSoFY6oRqg0tJS/v3vfzNv3jxKSkoAfeorLy+vXYMT7k3TNKqjRgLgV7IDalu/Ya5wXzkl1QAE+3oRbq6Bwi36DbIFhtsamRhGhtLrgLat/YGVew5htcnChC7FXv/zv7LezTYrdRyb/9VW+d23UpsToE2bNtG/f3+efvppnnvuOUpLSwH47LPPmDdvXnvHJ9xcdK8kcmxRaNggL93ocEQ72H9IT4B69whAy0sHFIQlQnCssYGJFu0sqCTdXgh9aNsyrly4iklP/8zizHyDIxPtxj4CtKymT4unKCC/rJY1WSWdFJRna3MCdNddd3H99deza9cu/PyO9AM555xz+PXXX9s1OOH+UmODSVf99C9kCW6XsN8+ApTUI9Cl6FK4p8WZ+cz9IIN0m/53ONy0BxM2CuxTIpIEdQF1FVCkj8Q6Et1jOVZTU3FEmxOgtWvXcssttzQ53qtXLwoKCtolKOE5+scEH/mDzJEVKF3B/kNVgD4C1NyyW+E+Gu/ftkvFU678CdJqSdVyZEqkK8lLB2WjNrAXRYQf93RpVto6bU6AfH19KS9vWuuxc+dOoqKi2iUo4Tn6xwSRYU+AVM4asNkMjkicLMcUWFK4r15QCzIC5KYa799mw8QGW1/gSOdumRLpIuwjsdZeYzEfoyONBsSF+kmz0lZqcwJ0/vnn8+ijj1JfXw/ohbDZ2dncd999XHzxxe0eoHBvwX7eVIT0p0r5olkq4OB2o0MSJynbPgWWaj4AdeXgEwTRTRskCuMdPdWRYZ+OdnTubuk84WHsI7EL90VibWEwz5EXPXzeIGlW2kptToD+/ve/U1lZSXR0NDU1NUyePJm+ffsSHBzME0880RExCjfXNy7MeeUp02CercFqI/ewfQSoOlM/2GsUmKXJgTs6eqrDMR3taF7Z0nnCg9hs2OwjQD9UJJEQ4c/fLkwj7qiNT2ND/WQJfBu1+VUtNDSUH374geXLl7Np0yYqKysZOXIkU6dK34nuKjU2mPTd/TiFLfpQ7egbjA5JnKD8slrqrQofLxOhh9brB2X6y2059m8rKKtFARtsfbEpjURTEVGUUkwYsTIl4tEO7d9Ej7pyqpUvFSGp/Ofm8cSHB3D5mN6sySqhqKKW6GD9dywjP23T5gQoJyeHhIQEJk2axKRJ0hlWQGqM3hEakBEgD+eo/0kI90dzrgCTAmh35di/7bZFGWhABQHsUPEM1HIYadrF97YxMiXiwYor63j3o/9yF7DN1I/3bzmF+PAAQP/dT0jpYWyAHq7NU2BJSUlMnjyZhQsXcvjw4Y6ISXiY1NhgMhxTYCV7oKrY2IDECdtfoq8ASwur13+XAPGjDYxIHI9j/7ZY+5SIY1HCaf57ZUrEgx2qrOPqhatJqNQ7sfcddSYJEQEGR9W1tDkBWrduHWPHjuXRRx8lLi6OWbNm8cknn1BXV9cR8QkP0CcqkCpTMDttvfQDuWuNDUicsGz7CNB4H3vyEzUA/I+/7FYYa0ZaHMvvO5N3bxzDensh9MVReZL8eKjDVRau/vdqdhRWMNZrNwCh/WXGpb21OQEaMWIEzz77LNnZ2Xz77bdERUXxu9/9jpiYGG688caOiPGELViwgKSkJPz8/Bg3bhxr1kijvo7g62WmT2Sg9APqAvbZewClWe2r+WT6y2OYTRqn9Y+mInoUAN5FG6FBLkw9TWm1nvxsL6ggJbCORA7oN8SPMTawLuiE9gIDffn7GWecwcKFC/nxxx9JTk7mnXfeac/YTspHH33EXXfdxcMPP0xGRgbDhg1j+vTpFBUVGR1al9Q/Nti5BFc6QnsuZw1QlX0DVCmA9jgxiQMpViGYbfWQv9HocEQblNXUc80ba9iaX05kkA/vTbPXbkX2hwApZG9vJ5wA5ebm8swzzzB8+HDGjh1LUFAQCxYsaM/YTsrzzz/PzTffzA033MCgQYN49dVXCQgI4M0332xybl1dHeXl5S4fom0GNO4InZcO1npjAxJtppQiu6QabxoIKbEvgZcEyOMMSwgnwyYXI57AalOs3HOILzbk8dO2Qq55YzWb88qICPTh/ZvG07Nik36ijMR2iDavAnvttdf44IMP+O233xgwYABXX301X3zxBYmJiR0R3wmxWCykp6e7bM5qMpmYOnUqK1eubHL+k08+yfz58zszxC6nf2wwe1Uc5VowIQ0VULBJ7x8jPMbByjqqLVaGm/ZhstbqtT89+hodlmijYQlhfGLrxzRzOrbs1Zgm3m50SKIZizPzmf/VVmcnb4dAHzPv3zSO1Nhg+Fb24utIbR4Bevzxxxk3bhzp6elkZmYyb948t0p+AIqLi7FarcTExLgcj4mJaXa/snnz5lFWVub8yMnJ6axQu4zUmGBAY51Vrjw9laMA+vSAffqBhHGgyfJpT9MnMpBtXgMBsGWvAiX7gLmbxZn53LYoo0nyA1Blser78Vnr9dF0kASog7R5BCg7Oxuti70o+vr64uvra3QYHq13RAB+3ibWWftypilDL4Qef5vRYYk2cNT/jPPeDQ3IsLuHMpk06DWC+jwz3tVFUJoN4e51kdqdNd7Atjka+ga2Z4WFY26oAb9Q6NGvM0PsNto8AqRpGsuWLWP27NlMmDCBvLw8AN577z2WL1/e7gGeiMjISMxmM4WFhS7HCwsLiY2NNSiqrs1k0ugfE0yGcqwEkxEgT7PfvgfYwAb7CrB4SYA81aDeMWxRSfoX8rfoVhpvYNscxwa22RuW6Afix4LphMt1xTG0+af66aefMn36dPz9/Vm/fr2z/09ZWRl/+9vf2j3AE+Hj48OoUaP46aefnMdsNhs//fQTEyZMMDCyri01JpiNtj7YMEN5HpTlGh2SaIP9h6qI4xBh9UWgmaHXSKNDEidoWHyYtKVwU63dmNY7395PTaa/OswJ1QC9+uqrLFy4EG9vb+fxU045hYyMjHYN7mTcddddLFy4kHfeeYdt27Zx2223UVVVxQ03yD5VHSU1Npga/MjxTdEPyAuvR9l/qJpRJvsmmrFDwCfQ2IDECRueEEa6fSWYLVv+Dt1JazemjTq8Qf9EpqI7TJtrgHbs2MFpp53W5HhoaCilpaXtEVO7uPzyyzl48CB//etfKSgoYPjw4SxevLhJYbRoP6mxwQCk2/qRyE596D3tYoOjEq2VXVLNBY4ESK46PVpsqB85gWlQD1pRJtRVgm+Q0WEJmm5gezQNGBJSiW91PmgmWU3bgdo8AhQbG8vu3bubHF++fDl9+vRpl6Day+23387+/fupq6tj9erVjBsnL+odSV8JBr9UJ+sHZATIY5TX1lNSZWGkaZd+QK46PV5sQgq5KhJN2Y6sJhKGc2xg2xzH8qL5I/V6PGIGS+LagdqcAN1888388Y9/ZPXq1WiaxoEDB3j//ff585//zG23yaqf7iwq2JfwAG/WWe21B/mbwFJlbFCiVbIPVeNHHYNN+/UDMgLk8YYnhElDRDc1Iy2Of145osnx2FA/Xpk9khE4RmLHd3Jk3Uubp8Duv/9+bDYbU6ZMobq6mtNOOw1fX1/+/Oc/84c//KEjYhQeQtP0lWCrsyxU+8UQUFsIB9ZDkmzi5+72H6pmqLYXL6wQ3BNC440OSZykYfFh/Gjrx/nmlTIa64aGxocC4G3WeO6SYUSH+DE2OQKzSYOV9t+XjMR2qBNaBv+Xv/yFkpISMjMzWbVqFQcPHuSxxx7riPiEhxkQqzdE3B+Qph+QF16PsL+kilGNp7+6WK+v7mhIfKhzJZgtdy3YbAZHJBrLKakBILFHIBeM6MWElB568lNfc2QPN0mAOtQJNxfw8fFh0KBBzn3AhAB9SwyADJv0A/Ik2YeqGeksgJYX3a4g1N+b2h4DqVE+mGpL4dAuo0MSjeQe1ut84sP9XW84sB5sDRAUA2HSwLIjtWoK7KKLLmr1A3722WcnHIzwfI5C6J8qk7ga9ARIKRlRcHP7iiuPLIGXuoMuY0hCJBu3pDBe26aPxkalGh2SsMs9rI8ANUmAchpNf8nrZodqVQIUGhra0XGILsIxArSsMg4V5IdWUwKH9kCkbKrpzlTxHiK0SmxmX0yxQ4wOR7STofGhpG/ux3iTPQEaea3RIQm7IyNAAa435EgDxM7SqgTorbfe6ug4RBcR4udNz1A/DpTVUhExhJCitfoLryRAbquuwUpC9WbwBmvcCExePkaHJNrJsIQwXrJPR6ucNch4gvtodgRIqUYjQJIAdTTZYES0O0dDxOxA+0iCFEK7tZySGkZq+vSXV6JMf3UlA+NCyNT0pfBa8U6oLjE4IuFwJAFqNAJUsheqi8HsA3HDDIqs+5AESLQ7xzTYBqQQ2hPsP3RkBZgmV51dip+3mdi4ePbY4vQDuWuNDUgA+qhroX1PMJcRIMdrZc8R4OVrQGTdiyRAot0NsCdAS6qS9AMHt0FNqWHxiGPLLygg1WTfuFZWgHU5sjGq+8kvrUUp8PM20SOw0ZSz4/cTP8aYwLoZSYBEu+tvXwm2tsiEirBvjJq7zsCIxDHZfzclfgkQGGlwMKK9DUsII13JaKw7aTz9pTVe6eX4/chIbKeQBEi0u5SoIMwmjfLaBmpj7Bv5yZWn2wop1veJKu3RtDW/8HzD4kOdW2KovHSwNhgckWi2B1BtGRRt1T+XkdhO0apVYP/85z9b/YB33HHHCQcjugY/bzNJPQLYc7CKnKAh9Oe/kgC5sfjKzQCoeHnR7Yr6RAVR4NObchVASH01FGZCz+FGh9WtOUaAEhoXQOelA0pvfhgca0xg3UyrEqAXXnihVQ+maZokQAKAAbEh7DlYxUatv14K7bjyNLd5+znRgawN9aQ27AANAvueYnQ4ogOYTRppvcLJyOnH6eaN+jSLJECGanYESKa/Ol2r3o2ysrI6Og7RxfSPCeabzfmsrojmUt8QqCvXh3fjhhodmmikeE8GMVodFcqfqD6y7LarGpYQRvp+RwK0Gsb9zuiQurVml8DnyAaonU1qgESHSI3V94fbXlQF8aP1gzIN5naqdq8AYJvXAMxms8HRiI4yPCFUCqHdSJMmiDbrkYUiMgLUaU5oPiI3N5cvv/yS7OxsLBaLy23PP/98uwQmPFtqbAgAuworsaWNxbTnZ/2Fd+zNBkcmGjPl6m+GeUGy/UVXNiwhjI22FKxKw1yWDeUHIKSn0WF1S832ADq4XR8l9w6E6EEGRte9tDkB+umnnzj//PPp06cP27dvJy0tjX379qGUYuTIkR0Ro/BAvSMC8PM2UVtvozB0GHEgI0BuKKxkPQAVUaMMjkR0pNgQPwKCw9he15vB2n79YmTwLKPD6pYO2HsA+XubiXD0AHL2/xkldZKdqM1TYPPmzePPf/4zmzdvxs/Pj08//ZScnBwmT57MpZde2hExCg9kNmn0i9b7Aemt+DUo3Q8VBcYGJo4ozyesLh+r0tDiJQHqyjRNO6ohokyDGaVxAbSzB5AUQBuizQnQtm3buPZafUdhLy8vampqCAoK4tFHH+Xpp59u9wCF53I0RNxySEHMYP2gvPC6D/v01w7Vm16x0QYHIzra8IRQ0u39gGQ01jjNboIqCZAh2pwABQYGOut+4uLi2LNnj/O24uLi9otMeDzHlhg7CyuOrGyQF163obL130W6rR+9IwINjkZ0tGEJYWQoewKUvxHqa4wNqJs6MgJkXwFWVQwl9vdRx4IR0SnanACNHz+e5cuXA3DOOedw991388QTT3DjjTcyfrzsJC2OcGyKur2g4siVjWzG6DYa9q8CIEP1JyHC/zhnC083tFcYOSqagyoUbPVwYIPRIXVLTUaAHKM/UQPAP9ygqLqnNidAzz//POPG6W9m8+fPZ8qUKXz00UckJSXxxhtvtHuAwnM5RoD2FVdRF2e/sjmwHhrqDIxKAFBfi7lwEwC5gUPw9ZIl8F1daIA3fSKDZGNUgzXpAST9fwzT5nLzPn36OD8PDAzk1VdfbdeARNcRHexLqL83ZTX17LJEkhYYBVUH9eF3+WM3Vv4GTLZ6DqpQvHokGx2N6CRD40NJP9yPGea1MhprkCZdoKX+xzAn3AjRYrGQm5tLdna2y4cQDpqmkeqoAyqqPPIHLleexstx1P/0JzFS6n+6i2EJYa4jQEoZG1A3U9dgpbBcHwGPD/eHBgscyNBvlL34Ol2bE6CdO3dy6qmn4u/vT2JiIsnJySQnJ5OUlERyslxJClep9pVgO6QQ2r3YrzrTbf3o3SPgOCeLrmJYQhhbVBIWvPTR2MOyzVFnOlCqN0B09gAq2AwNtXrtT4++BkfX/bR5CuyGG27Ay8uLr7/+mri4uCN9DIRohqMQekdBBQx2jACt0a885f+OMZRyGQG6qYeMAHUXg+JCsJp82WxLZpRpl/63GNHn+HcU7aJJDyB7Kwrix4JJdqbqbG1OgDZs2EB6ejoDBgzoiHhEF+NcCl9QAXGngMkbKgv1pojhScYG110dzoKqg1jwYotKoneEjAB1F37eZgbGhZBe2N+eAK2GYVcYHVa34SiAToiQAmh30OaUc9CgQdLvR7Raf3s36ANltZQ1mKHncP0GaYhoHPvPfrMtmTp8SJQpsG5lmEtDRPk77ExSAO1e2pwAPf3009x777388ssvHDp0iPLycpcPIRoLDfAmLtQPgF2FFUcK/aQOyDiNpr8iAn0I9vM2OCDRmYbGh5HhSIAKt0CtvG53FpceQGW5UJ4Hmhl6yT6aRmjzFNjUqVMBmDJlistxpRSapmG1WtsnMtFl9IsOIr+slo/W5RAcMZBUkATISI0KoGX0p/sZnhDGQcLJVVHEawchbx2knGl0WN2CSw+gnBX6wdgh4CN1eEZocwK0ZMmSjohDdFGLM/NJ338YgI/X5bIUjTV+oAq2oNVVgG+wwRF2M7Xl+lU/kGHrxylS/9PtpEQFEehjZp2tH/Hmg3pCLAlQp3CZAtukd2KX6S/jtDkBmjx5ckfEIbqgxZn53LYog8adRooIJ1dFEq8Vs2b5D4ydcpFh8XVLeesARYlPHAdrw+ktK8C6HbNJY0h8KOn7+zPLvEJGYztJbX3jHkABkL1SvyFxgoFRdW9tToA2bdrU7HFN0/Dz86N37974+vqedGDCs1ltivlfbaW5Nmvptv7Em4vZsOI7Rp1xIWaTLIfvNNn6VedW80AAEmUEqFsalhDG8ix7Q8TcdWCzyTLsDnagVJ/+CvAxE26qdo7EkiB7aBqlzQnQ8OHDj9n7x9vbm8svv5zXXnsNPz+/kwpOeK41WSXkl9U2e1u6rR8XmFfQ37KNNVklTEjp0cnRdWP2q84V9fqbX1KkJEDd0fD4MP6tEqjBD/+6cji4HWIGGR1Wl9a4AFrLWwfKprcCCYkzNrBurM0p/+eff06/fv14/fXX2bBhAxs2bOD1118nNTWVDz74gDfeeIOff/6ZBx98sCPiFR6iqKL55AdwtuIfadpFUXl1Z4UkrPX61T7wY7Xe/K53hEyBdUfDEsKwYma9LUU/INNgHc6lANo+Ektvmf4yUptHgJ544gn+8Y9/MH36dOexIUOGEB8fz0MPPcSaNWsIDAzk7rvv5rnnnmvXYIXniA5uefRvu+pNtfIlRKsm0ZYLJHReYN1Z/iaor8bqG8au2p4E+JiJDPIxOiphgLhQPyKDfFlX24+Jpi16IfToG4wOq0tzKYB2JkAy/WWkNo8Abd68mcTExCbHExMT2bx5M6BPk+Xn5598dMJjjU2OIC7Uj+YmS62Y2WC/8hyqdnRuYN2ZffrrcI+RKEz0jgiQrWy6KU3TGJ4QSkbjjVFFh3KMAPUO9XKOxMoIkLHanAANGDCAp556CovF4jxWX1/PU0895dweIy8vj5iYmPaLUngcs0nj4fP0moKj32I1IEPpL7ym3LWdG1h3Zk+A9gUOASBJVoB1a8Piw8iw2TfgLNkDVdLhvyM5RoAGavugoQb8IyCyv7FBdXNtToAWLFjA119/TXx8PFOnTmXq1KnEx8fz9ddf88orrwCwd+9efv/737d7sMKzzEiL45XZI4kNdZ0OCwvwZvzks/Uv5MqzcyjlHHbfqOmJqTRB7N6GJYRRThD7tHj9gPwtdijHCFBylX0lde/xsiG0wdpcAzRx4kSysrJ4//332blzJwCXXnopV111FcHBelO7a665pn2jFB5rRlocZw2KZU1WCf/6ZTfLdhVz3rCejD5lNPwGHNoFVYcgUFaCdahDu6G6GLz8WF2XAJTSWxKgbm1ofCgAK+v7keSVq48QDphpcFRdU229laIKvQdQZMl6/aDU/xiuzQkQQHBwMLfeemt7xyK6KLNJY0JKDw5XW1i2q5g1WSUQkAaRqVC8Q7/yHHCO0WF2bY6ma71GsaekHpApsO4uLMCH5MhA1pakciVLYP9Ko0Pqso70ADLhfcA+0ib1P4ZrVQL05ZdfcvbZZ+Pt7c2XX355zHPPP//8dglMdD1jkyMA2F5QQUmVhYjECXoClL1CEqCOZp/+siWMJ2e3vRhTmiB2e0PjQ1lzSG+KSf4GsFTJvlQdwDH9NSHkMFrlIfDyg7hhBkclWpUAzZo1i4KCAqKjo5k1a1aL58lmqOJYIoN86R8TxM7CStZkHWJG74mQ/jbsX2F0aF2f/WdcEjkKi9WGt1mjZ5i/wUEJow2LD+OLDZGUmKOIsB6E3LXQ53Sjw+pyHAnQJN/dUAn0GgVesmOC0VpVBG2z2YiOjnZ+3tKHJD/ieMb30Wt9Vu0tgcSJ+sH8jVBXaWBUXVxFARzOAjT2+OoF0PHhAbIFiWBYQhigscaWqh+QabAO4VgBNlxt0w9I/Y9bkM1fRKc6kgAdgrAECE0AW4N+5Sk6hqPpWkwaWRVmQFaACd3gniF4mTSWW/rpB7JlNLYjOEaA+tTovfKk/sc9tDoBWrlyJV9//bXLsXfffZfk5GSio6P53e9+R11dXbsHKLqWo+uAnKNA2XLl2WEa7Tq9v0S/EpVNUAWAn7eZAXHBrLbZ64By1kKD5dh3Em2We7iaKEoJrckBNIgfY3RIgjYkQI8++ihbtmxxfr1582bmzJnD1KlTuf/++/nqq6948sknOyRI0XU46oAA1mQdOnIlJHVAHceRAPUez/5DVfqnsgJM2A2LD2O36kmNOURv0Je/0eiQupycwzWMMultY4gZDP5hhsYjdK1OgDZs2MCUKVOcX3/44YeMGzeOhQsXctddd/HPf/6T//73vx0SpOhaXOuATtEP5sqVZ4eoq4CCI8Pu+w/JCJBwNSw+DIWJTC/7bvAyDdauauutHKyoY4zJvu2P1P+4jVYnQIcPH3bZ3mLp0qWcffbZzq/HjBlDTk5O+0YnuiSXOqDIfhAQCQ21+jJc0b5y1oCyQVgiKjiObHsClBQpCZDQ6YXQ8EuNfVsMKYRuV3n2HkDjzI4ESOp/3EWrE6CYmBiysrIAsFgsZGRkMH78kUy2oqICb2/v9o9QdDkudUDV9ZDomAb7zcCouijnrtMTOFxdT0VdA5qmrwITAqBvdBABPmaW19v3pcpeCTabsUF1IbmHawikRt8DDGQEyI20OgE655xzuP/++1m2bBnz5s0jICCAU0891Xn7pk2bSElJOeFA6uvrue+++xgyZAiBgYH07NmTa6+9lgMHDricV1JSwtVXX01ISAhhYWHMmTOHykrXJdSbNm3i1FNPxc/Pj4SEBJ555pkTjku0v6Z1QPZCaLnybH+N6n/22et/YkP88PM2GxiUcCdmk8aQXqFsUUk0mP2hthQObjM6rC4j93A1w027MWPTV72GxhsdkrBrdQL02GOP4eXlxeTJk1m4cCELFy7Ex8fHefubb77JtGnTTjiQ6upqMjIyeOihh8jIyOCzzz5jx44dTTpLX3311WzZsoUffviBr7/+ml9//ZXf/e53ztvLy8uZNm0aiYmJpKen8+yzz/LII4/w+uuvn3Bsov251gHZR4CyV4FNekm1G2s95K7TP0+c6Jz+kg7Q4mhD40NpwIvtXno/INs+qQNqL7mHaxhr2q5/IdNfbqXVe4FFRkby66+/UlZWRlBQEGaz6xXkxx9/TFBQ0AkHEhoayg8//OBy7OWXX2bs2LFkZ2fTu3dvtm3bxuLFi1m7di2jR48G4KWXXuKcc87hueeeo2fPnrz//vtYLBbefPNNfHx8GDx4MBs2bOD55593SZSEscb36cG7K/frdUAzJ4JPMNSVQdFWiB1idHhdQ/5GfVWPfwRE9mf/xt2A7AEmXC3OzOfj9FwAvq/sS5r3Bn787v+wBZ7LjLQ4g6PzfLmHa5htso+oJZ1ibDDCRZsbIYaGhjZJfgAiIiJcRoTaQ1lZGZqmERYWBui9iMLCwpzJD8DUqVMxmUysXr3aec5pp53mEsv06dPZsWMHhw8fbvZ56urqKC8vd/kQHculDqjWBglj9RtkOXz7cdRU9R4Pmsb+EscSeBkBErrFmfnctiiD0mp9g9y1Sh8BGmLdym2L0lmcmW9keF1CYUkpw7U9+heJk4wNRrhw207QtbW13HfffVx55ZWEhIQAOPcja8zLy4uIiAgKCgqc5zRerQY4v3acc7Qnn3yS0NBQ50dCQkJ7fzviKE3qgBwNESUBaj/77AmQvdWAcwm8JEACsNoU87/aimp0bL2tLxZlJk4rIV47yPyvtmK1qRYfQxxfeMkmfLV66v2joMeJ18mK9mdYAvT+++8TFBTk/Fi2bJnztvr6ei677DKUUrzyyisdHsu8efMoKytzfshy/s7R7L5g+1eAkhfck2azHimATtKvOo/0AJIpMAFrskrIL6t1OVaLL5kqGYCx2nbyy2pZk1ViRHhdQm29ldTaTQCoxFNAk/333IlhCdD555/Phg0bnB+OaS1H8rN//35++OEH5+gPQGxsLEVFRS6P09DQQElJCbGxsc5zCgsLXc5xfO0452i+vr6EhIS4fIiO59IPqOdIMPtCVRGU7DU4si6gYBPUlYNvKMQOoaqugeJKfasamQITAEUVtc0eX2PfFmOMvXC3pfPE8eWV1jDOXv/j3efU45wtOpthCVBwcDB9+/Z1fvj7+zuTn127dvHjjz/So0cPl/tMmDCB0tJS0tPTncd+/vlnbDYb48aNc57z66+/Ul9f7zznhx9+IDU1lfDw8M755kSruNQBWUzQa5R+g/QDOnnO6a8JYDKTbd8DLDzAm1B/6dclIDrYr9njjp3hHZ2LWzpPHF9ecRkjTbsA0JKk/sfduE0NUH19PZdccgnr1q3j/fffx2q1UlBQQEFBARaLvkXCwIEDmTFjBjfffDNr1qzht99+4/bbb+eKK66gZ8+eAFx11VX4+PgwZ84ctmzZwkcffcQ//vEP7rrrLiO/PdGMluuApB/QSdu3XP/XWf8je4AJV2OTI4gL9ePoSZl1tv7YlEaKKZ9BIbXOCxXRdrX71+KvWSg3hUFUqtHhiKO4TQKUl5fHl19+SW5uLsOHDycuLs75sWLFkcLY999/nwEDBjBlyhTOOeccJk2a5NLjJzQ0lO+//56srCxGjRrF3XffzV//+ldZAu+mmu0HJCNAJ8dmPbKf01H1P0ky/SXszCaNh8/T9/9qnASVE8QOpTfre2JkOWaT1K2cKN88vRN7bshwqf9xQ63uA9TRkpKSUK0ofo2IiOCDDz445jlDhw51KaoW7sulH9D0caCZoHQ/lOVBaC+jw/NMhVugtkzvrRQ7FID9JbIJqmhqRlocr8weyfyvtroURG8wpTGQHEZYMw2MzvNFH9IbkZZGjzU4EtEctxkBEt2TSx1Qgy/EDdNvkFGgE+eY/uo9Hsz6NY6zC7RMgYmjzEiLY/l9Z/Kfm8czsncYAKGDztBvzJILyRNmrSepejMAtt7SANEdSQIkDNWkDijJvlIi61cDo/JwjuSxUdGlYx8w6QEkmmM2aUxI6cGUgXrPtGX1qYAGxTugsujYdxbNy9+IP7WUqkDCkoYZHY1ohiRAwnAudUDJp+kH98mV5wmx2ZokQJYGGwdKawBJgMSxDYgNBmD9QRPEpOkH5W/xhNTv1X9ua20DiJfeW25JEiBhOJd+QL3Hg2aGw/ugNNvYwDxR0VaoOQw+Qc7pxLzSGmwKAnzMRAX5GhygcGf9Y/QEaM/BSqyOEUSZBjshlt36KPZ602BpPeGmJAEShmtSB9RrpH6DvPC2nWP0J2EcmPUXXcf0V++IADRZiSKOIT7cn0AfM/VWRUH4GP2gjAC1nc2Kb/4aALKDR8jfnZuSBEgYrsU6IHnhbTvHz6zRrtPOAmhZASaOQ9M0+tunwTabBwEaHNoN5bIpapsUbMarvpJy5U9d5CCjoxEtkARIuAXXOiBHIfQy2ResLWy2I5vJJh1pu+/sARQpdQji+Bx1QJklJojT2yg4VxaK1rH/vNbZUukVEWxwMKIlkgAJt+BSB5QwHkzeUJ4Lh7MMjsyDHNwO1YfAOwB6jnAezi45MgUmxPGk2uuAthdUNBqNlVWZbZK1FIAVtsHEh/sbHIxoiSRAwi241AHVe0G8vjmu1AG1geMqPWGss/4HYJ9jF3hZASZawTEFtrOw4siqTPk7bD1rvXMkVhIg9yYJkHALUgfUDuxXnc43LcBmU86NUBNlKa5oBccIUHZJNVUxY/Tu7IezoCzX4Mg8RF4GWCopJZhtqjfx4XLh4a4kARJuQ+qAToLNeiRZTD7debiwohZLgw0vk0bPMNnVWxxfjyBfIu3tEnaVmyBuuH6D1AG1jr2J62/WgShMJEgC5LYkARJuw6UOKH4smH2hskBfhSKOLX+Dvv+Xbyj0HO487CiAjg/3x8ssf+6idRyF0DsKyl0vRsTx2UdiV9oGE+zrRYi/22y5KY4ir4jCbbjUAVlMei0LHJnaES3ba/8ZJU0Ck9l5eL+jB5DsASbaIDW2cSG0ozu7FEIfV30N5KwG4DdbGr3C/aUHkBuTBEi4jZb3BZMrz+NyJIl9Tnc57BgBkl3gRVs46oB2FlYc6c5emg2H9xscmZvLXgVWC1W+0WSpWKn/cXOSAAm30mwd0L7lUgd0LPW1+gsvQJ/JLjftL5EVYKLtUp1TYBXgG9SoO7uMAh2T/eezN3g0oMkKMDcnCZBwKy51QL1GgZc/VBdD0TaDI3NjOauhoRaCYiGyv8tN2c4l8DIFJlqvX0wQmgbFlRaKK+sg2Z5Y7/3F0Ljcnn0kdr15CIAkQG5OEiDhVlzqgOo0SJyg3yAvvC1zTn9NBnu9gdWmWLmnmF1FFYC8EIu2CfDxcjbO3FlQASln6Dfs/UXvOC6aqi2DA+sBWFqvb38hU2DuTRIg4Vaa1AH1sb/w7vnZwKjcnKMA2n6Vvjgzn0lP/8yVC1dTW6+/Wd3w1hoWZ8p+TqL1XDpCx48F70B9NLYw0+DI3NS+30DZICKFjeX6iKtceLg3SYCE23GpA0o5Uz+4/zdoqDMwKjdVWwYHMvTP+0xmcWY+ty3KIL+s1uW0wvI6bluUIUmQaLXUxh2hvXz0FYYAe5cYGJUbs9f/NCSeRnGlBUB6ALk5SYCE23GpA4oZDIHRUF/tXF4qGtm33HnVaQ3uxfyvttJcubjj2PyvtmK1SUG5OD6XpfBwZBpsjyRAzbInQAejxgFIDyAPIAmQcDsudUDV9fLCeyx7jyx/X5NV0mTkpzEF5JfVsiarpHNiEx7NMQW2q7ACm00dmY7OXqmvPBRHVBRC0RYA9gTpGxFLDyD3JwmQcDtSB9QGjQqgiypa96bU2vNE95YUGYiP2USVxUpeaQ1EpUJwnL7iMHul0eG5F8drU9xwsqr1uh8pgHZ/kgAJt+RaB2RPgPI3QtUhA6NyM+X5cHA7oEHSqUQHt26vr9aeJ7o3b7OJlGj9QmRHQYW+wtBxMSJ1QK4cCVDKmeQePrL9jHBvkgAJt+RSBxQcC9GDAAVZvxgal1vZ85P+b88REBDB2OQI4kJbTm40IC7UzznFKMTxpNpHYncUSh1Qi2y2IwlQ3ynkHq4BJAHyBJIACbfkUgdUZTmyGkxeeI/YbU+A+k4FwGzSuG/GgGZPdVQiPHzeIMwmqUsQrZMaGwI0KoR2bLVSsAmqio0Jyt0UbNLbA/gEQfzYRgmQTIG5O0mAhFtquQ5oiWyLAWCzNrrqnOo8vG6/XuB8dI4TG+rHK7NHMiMtrrMiFF1Aaqz+N7jTkQAFRUNMmv65NCfVOUZik08DLx/y7FNgCREyAuTuZI2ecFvj+/RgZ2Elq/aWMGPGRDD7QHkuHNoNkf2MDs9YB9ZDbSn4hupbhgC/7jzIolXZALxzw1i8zCaKKmqJDtanvWTkR7SVYwRoz8FKLA02fLxM+ihQYaZeBzTkEmMDdAe7j9T/1Fiszh5AMgLk/mQESLgtlzognwB9V2qQ1WAAu3/U/005HcxelNXUc+8nmwC4bkIip/aPYkJKDy4Y3osJKT0k+REnpGeoH8G+XjTYFFnFVfpB53T0LzIaW1dxpD9ZypnkleqjP8F+XoT6exsYmGgNSYCE22q5DkgSIGf9T8oUAOZ/tYWC8lqSIwO5/+yBBgYmuhJN0+jvbIhYrh9MnAhefvpo7MEdBkbnBvYtB1s9hCdBjxRypP7Ho0gCJNxWkzogRwKUtax7b4tRXQJ56/TP+07huy0FfJaRh0mD5y4dhr+P2dj4RJfi6Ai9w1EH5O0PSafqn+/63qCo3MRRFyKyAsyzSAIk3JpjGuzz9Xl8UdADi3801Ffpe4N1V3t/0be/iBpAsTmKBz7bDMAtk1MYlRhubGyiy3F0hN7pWAoP0G+a/m93T4AcBdD2i7PcEukB5EkkARJuzddL/y/63ZZC/vjRRj6vGATAvpWfGxmWsewvuiplCg9+nsmhKgsDYoP509RuXhguOkSTPcEA+p2l/5u9EmrLDYjKDZRkQcleMHnpK8BAlsB7GEmAhNtanJnPwmVZLsd+tg0HQO38vnvubK6Uc9h9hTaMxVsK8DZr/P2yYfh6ydSXaH+OEaDcwzVU1jXoByOSoUc/sDV03+XwjtGvhHHgp6+Wky7QnkUSIOGWrDbF/K+2Njn+my0NizKTbCrgjS9+7H47mxdthYp8lJc/d6zUrzL/OKUfg3uGGhyY6KrCA32IDvYFZBrMxc7F+r/9ZzgPSQ2QZ5EESLillnY2rySAtTa923Fa9erut7O5/UV3g9dQDtWaGJYQxq2TUwwOSnR1TQqh4cg02K4fut9y+LpKfQUYOBOgaksDh6qkB5AnkQRIuKVj7Vi+xD4NdoZpQ/fb2XyHngB9XJGGr5eJv186DC+z/BmLjuWYBnNJgBIngncgVBbo20F0J3t/AasFwpOdTVnz7KM/0gPIc8grp3BLx9qx3JEAjTNtI9bP2kkRuYHKg6jctQD8ZB3BvTMG0Ne+W7cQHanZESAv3yN7g3W3abDG01+a3mRUCqA9jyRAwi05djZvrn/xHtWTbFsUvloDo1X3ufK07fwODcVmWxLJffpyw8Qko0MS3cQA+5YYLjVA4DoN1l3YbEcSvv7TnIelANrzSAIk3JLZpPHwefqS96ZJkMbPthEAmLrRlef+lZ8C8Ks2mmcvGYZJtrcQnaRvdBCaBoeqLBysaNSE1JEA5a7VG3R2B/kboLJQ3/098RTnYSmA9jySAAm3NSMtjldmjyQ21HU6LNjPiyX2BKhi8/9QNpsR4XU4q02xcs8hvtiQx6er9xBVtAKAvpMuISFChtlF5/H3MZPUIxA4ahosNF7fHV7ZYOd3BkXXyRzfZ8oZ+jSgnUyBeR7ZDV64tRlpcZw1KJY1WSUuO5t/sLw31T+9SEj9QV777+f87vKL0LSuMyKyODOf+V9tda6EO820kYt9ajmkRTBtynSDoxPdUf+YILKKq9hRWMGkfpFHbhgwU98dfvvXMPxK4wLsLM0sf4cjU2AJMgLkMWQESLg9s0lrsrP5NacNpDhW34/IkvklD3yeia2L9ARanJnPbYsyXNoATDFlAPBd/XC+21poVGiiG0u11wHtKDiq8/OAmfq/u38CS3UnR9XJKgr0KTA40gfJTkaAPI8kQMJj9Z54GQDTTWv5z5ps7vlkk8c3RnQ0gHT9LhRTzOsB+Mk2kvlfbfX471N4ngGOlWCFla43xA6F0ARoqDmhrtCNp3pX7jnk3v+3d3yr/9tzJARFOw837gHUS0aAPIZMgQnP1X8amLzoTx4ppgI+zYB6q43nL/Pc3jjNNYAcoOUQrxVTo3xYbkujrqyWNVklTEjpYVCUojvqb+8FtKuwAptNHSnC1zR9FGj1q7D9GxhwTqsf8+ipXoC4UD8ePm8QM9Li2jX+drH9a/3fgee6HHb0AAqRHkAexTPfJYQA8A+HJH0abMHIA3iZNL7ceIA//Gc9lgbPLIxurrHjNNM6AD35wafF84ToSEk9AvDxMlFtsTqne5wc02A7/gfWhlY9XnNTvQAFZbXctijD/fb6qymFvUv1zwee73KTTH95JkmAhGezv/AOKF3Kq7NH4WM28W1mAbctSqe23upZw+s03wDybPNqAL6zjTnmeUJ0JC+zib5ReuPN7UfXAfWeCH5hUFMCOauP+1jNT/XqHMfcbqp31/dgq4eoAc7uzw450gPII0kCJDyb48ozdy1T420svG40vl4mftpexIX/+o1TnvqJKxeu4o8fbuDKhauY9PTP7ndl2cjRDSCTtHwGmnKoV2Z+sI5CQ58iGJscYWSYopsa0FxHaACzF6SerX++/ZvjPk5Le/05KCDfPtXrNrZ9qf878LwmN8kIkGeSBOj/27vzuCjr9fH/r5mBAWUV2RXBFVQE9y3NJRcszU6bmlpa2S9bqU6n5ff5uNT5pHY6lXVMz+mkWJFaubSq5YKaSyquuKAiuKKoyC7bzP3945bRkXVgYBi4no/HPJi573vmvt7cMl73exX2zT0QWvRUnyf+wqAOPiyZ2gu9Tsux1GwuZRWYHV5vq9dvKpkAsuS+d5RWXfpip7ETWah33zPHdEInkyAKGzAtiXHnjNBw62bk+M+VLo5a1SbcetPUW5gHJzeoz8tMgKQGyB5JAiTsX0mHxGNqB8U+rZvj5lx2//56W71+m6jwACb0DlKf63YDsNbYG38PZxZO6l4/O4eKRqFDeTVAAG2HgoMzZJxR5wWqQFWbcOtNU2/SRnWUm2crddTbHWQWaPskCZCwf2E378hStsGN6+xOTjcNSS1Lvaxev8OV7EJacIVI7WkUtDw44f/jjzeGSvIjbKqkCSz5ai4FxXcsRKx3gXbD1OdH1lT4ORWt9QfUv6beYz+pPzveb1r89HbSBGafJAES9s+7Hfh0BGMxHP/V/qrX71BQbGBH0lVT7Y8muD+9wkOl2UvYnL+7M27ODhQbFU5fyS19QOe/qD+PrKqwGezOpt47KdSjpt7iAki8OftzGc1fuQXFpMscQHZJEiDRMIQ/qP5MWGl/1et32JtynbxCA/fr1eHvdBpr24CEuEmj0ZTfERrU5SEcmkD6aUg9WOFnRYUHMLZrYJn7PJs4MjjUt8x91lbpSNFTG6EgE1z9oWWvUu+/kCFzANmrepsAPfvss2g0Gj7++GOz7enp6UycOBF3d3c8PT156qmnyMkxn5n00KFDDBw4EGdnZ4KCgnj//ffrMHJhE+EPqT9Px9Hb12hf1et3iEtMw59rRCqJ6oY7Jl0TwpYq7Ajt5KpOUApqLVAFig1GUzP0c4PbMn98V5Y+2YtAD2cybhSxdEeKNcMu07qEVAbM21TxSNGE79Wf4Q+CVlfqM251gJbmL3tTLxOg1atXs2vXLgIDS98dTJw4kSNHjvD777/z888/s3XrVp555hnT/qysLEaMGEFwcDDx8fH84x//YNasWfznP/+pyyKIuta8LQR0BcWA7vgPzBzTCaDcJKjeVK+XIS7xCmN0O9UXrfqrI92EqCdC/SqoAQLoXFIbu7rCZrDfjl4mNTMfb1c9Lw9rz9iuLRjUwZdXR4QC8FlcEpk3iqwa++2qNBFjYe6t5S/CHy71GQajwraTVwFoqtfV24EVomz1LgG6cOECL774IrGxsTg6mlcnHjt2jHXr1vHf//6XPn36MGDAAD799FOWL1/OxYsXAYiNjaWwsJDFixfTuXNnxo8fz0svvcSHH35Y7jkLCgrIysoyewg7VFILlLCKqPAAFk7qjr9H6Waut0aF1dvOxBcybnAyLYcHdNvVDRGP2DYgIe5wa1HUchKg9iNA7wqZZ+H83nI/J+ZmDc+E3q1wcrhVs/KXbi3o4OdK5o0iFm1Jslrct6vqRIzG479CUR40aw0tupsdV1J7tGS7Wo69Z67X+3nGhLl6lQAZjUYmT57M66+/TufOnUvt37lzJ56envTs2dO0bdiwYWi1Wv7880/TMXfffTd6vd50zMiRI0lMTOT69etlnnfOnDl4eHiYHkFBQVYumagTJf2AzuyAzAtEhQfwxxtDWTatL/PHd6X/zbWzjpdVdV9PbEm8QjvNeTprz4DWETo9YOuQhDBTUgN0IeMG2fll1NDom96aFLGcZrBjqVnsTk7HQathYp9gs306rYbXR4YBsGR7MpezrD9YoaoTMZ7evBSA623GkF1QjHKzRsvulvEQZapXCdC8efNwcHDgpZdeKnP/pUuX8PU17xjn4OCAl5cXly5dMh3j5+dndkzJ65Jj7vTWW2+RmZlpepw7d66mRRG24NESWvUDFDiyGlC/TPu1bc7Yri34W5T6pfrTwYv1dgRYXGLardqfdsOgaf3spyQaL4+mjvi7qzWrJ8q7mShpBjuyGoyGUrtL+veMDPcvs5Z2WEdfegY3I7/IyMcbTlol7ttV5e/fgxxape8A4NEdLeky6zc6zVjP3e9v4sVl++1rGQ9RJpslQLGxsbi6upoeW7ZsYf78+cTExKApY56F2uTk5IS7u7vZQ9gpUzPY96V2dQ3ypEdwM4oMCl/vOlvHgVWusNjI9lNXGKtVv3Sl+UvUV6aO0Jdyyj6g3T3g7AHZqZC81WxXRl4haw5cAGBK/5Ay367RaHhjlHrD8u3ec5y+Us55qqkqI0CjdHvQawwkaYNJ1YcAcKPIwNn0GxQZyk9u7GGeMaGyWQJ0//33c+DAAdNjx44dpKWl0apVKxwcHHBwcODMmTO89tprhISEAODv709aWprZ5xQXF5Oeno6/v7/pmMuXL5sdU/K65BjRgHV6ALQOcHE/pB0vtfvJu1oDELvrDPlFpe9MbWnvmXRCi44TpL2ConeFDqNsHZIQZbqVAJXTX9LB6Van4QPfmO1asecc+UVGOgW40zO4Wbnn6BXixT1hvhiMCv/87YRV4i7Ru7UXTfWlR3SV0ACP6NWBCG2HPEHC7JEcfWckcX8dzEv3tC/3fberr7XM4habJUBubm60a9fO9HjmmWc4dOiQWVIUGBjI66+/zvr16wHo168fGRkZxMfHmz5n06ZNGI1G+vTpYzpm69atFBXdapv+/fffCQ0NpVmz8v/YRAPh6qN2wgQ48HWp3SM7+xHo4cy13EJ+PHCxjoOr2JYTV0zNX5qw0WpfCiHqIdNIsIr603WdqP489hPkZwJq5+Ovdp0B1Nqfymr7X48KRaOBXw6ncuh8Ro3jLvHTwYvkFZZ9A6QBWmrS6KkkqK+6qDWxTfUOhHi70K9N8yqdo77OMyZuqTd9gJo3b054eLjZw9HREX9/f0JD1WGRHTt2JCoqimnTprF79262b9/OCy+8wPjx401D5h977DH0ej1PPfUUR44cYcWKFcyfP59XX33VlsUTdanki/fgCjCYd9J00Gl54ma1++LtyaZOjfXBjuMXuF8nzV+i/gu9bTLEcv+GWnQH71B1Da2bS2NsPHaZ89dv0KypI/eXMwni7cL83flL1xYAzFtXuka3Ok5czuatVYcBuDfcn4A7+iD5ezizpOvNfket71bX/7qN3S3jIcpVbxKgqoqNjSUsLIx77rmHe++9lwEDBpjN8ePh4cFvv/1GcnIyPXr04LXXXmPGjBlmcwWJBq7DSGjqDblpcGpDqd3je7WiiaOO45ey2Zl0zQYBlpaaeYOQK5vx1ORidGsBbYbYOiQhytXO1xWtBq7nFXElp6DsgzQa6PqY+vzgMgCW7kwBYFyvVjg7lt8EdbtXhndAr9Oy/dQ1tp28UqO4cwqKefbreG4UGRjQzptPH+tuNlJ02bS+/PG3wbS7eHPtr26TS31GyTIeUHqesZLX9XmeMXFL2Utm1xMpKSmltnl5efHNN9+UPvg2ERERbNu2rZaiusVgMJg1tQnLODo6otNV7UvQIjpHiBgHuxbA/q9vDcm9yaOpI4/0bMmXO8+weHsy/dt5Wz8GC21JvMKjujgAtN0mljnjrBD1hbOjjhBvF05fySXxUnb5zT0R42DjbDi7k5QTh9h+6hpaDUzq26rs48sQ5NWUiX1bsWR7CvPWHeeutt5oq5FcKIrCGysPcfpKLv7uzswf39WUpPRre1uz1ukt6hxGTh7lzsJeMs/Y7J+Omg2F9/dwZuaYTvV2njFhrl4nQPWVoihcunSJjIwMW4di9zw9PfH397f+yL9uE9UE6MQ6yL0KLuZJzpT+IXy58wwbj6eRfDWX1t4u1j2/hQ4nHGa8LkF90W2iTWMRoipC/dxMCdDA9j5lH+QeAG3vgVO/k7LxcyCK4Z38LF424oUh7fhu73kSLmTxa0IqoyMsnx09ZkcKvxxKxUGrYcHE7jR3dSr7wAOx6s/wB8Gx/MVNo8IDGN7Jn93J6aRl5+PrpjZ7Sc2P/ZAEqBpKkh9fX1+aNm1a58P2GwJFUcjLyzON6gsIsPIdk19ndWmM1ANwaAX0e95sdxsfV4aG+bLpeBox25OZPTbcuue3QJHBSMszq0AD2YEDcGsWYrNYhKiqUH831iZcKn9G6BJdH4NTv9Px0k84MMzUB88SzV2dmDawDR9tOMEH6xMZ2dkfR13Ve3DEn7nO//1yDIC37+1Ij/JGn924Dkd/VJ93m1Tp55bMMybskyRAFjIYDKbkp3lz+YdfE02aqHdXaWlp+Pr6Wr85rNskNQHauwT6Pqf2SbjNk3e1ZtPxNL6LP8+rI0JttpLzvuSr3M9mAFz6TrVJDEJYqkojwQDCRnND74VfYTqPex2jX5v7q3W+pwe25sudKaRcy2PFnnNM6htc+ZuAazkFvPDNPoqNCvdFBDD1rpDyDz6wTO207dsZWvSoVpzCfthdJ2hbK+nz07SpDFG2hpLfY630pYoYp65JdO0knI4rtfuuds0J9XMjr9DAt3tsN/v3hd2raaG5Rq7WHa2s/C7sRMlIsBOXszFWMOuxUevI98pQAKY12VTtGnMXJwdeHNoOgPkbT5JXWFzpewxGhegVB0jNzKeNjwvzHooo//xGI+z5r/q899OlbphEwyMJUDVJs5d11Orv0dkdIieoz0u+2O4495MDQgC1f0CxwVh7sVSgzWl1vqILbR4FR5k7RNiH4OYuODloyS8ycjY9r9zjtpy4wqLsgRjQEHDtT7hS/UkNH+sTTJBXE65kF5gWIa3I/I0n2XbyKk0cdSya1ANXpwoaPU5vhvQkcHKHLo9WO0ZhPyQBEg1br6fVn4m/QkbpWp6xXVvg5aLnQsYNfj96udT+2nb19AG6Fh/CoGjwGfpcnZ9fiOrSaTW093MF4HgF/YBidqRwAR9OeQ5QN+xdXO1z6h20vDZcnRduUVwS13MLyz02LjGNTzep8/nMebALHW422ZVrzxfqz8gJ4ORa7RiF/ZAEyIYMRoWdSdf44cAFdiZdk8XzaoNvmDqZmWIs84vX2VHHxD7qkNwv/kiu6+jIjPsXAH869aNZYNs6P78QNRHqp66bWN6iqKev5LDlxBU0Gmh293R144FvoKCSfkMVuD8ykI4B7mQXFLNwS1KZx5y/nkf0igMoijrk/oFuLSr+0IyzcGKt+rzkpkk0eJIA2ci6hFQGzNvEhM938fLyA0z4fBcD5m1iXUJqrZ1zypQpaDQaNBoNjo6O+Pn5MXz4cBYvXozRWPXmn5iYGDw9PWstTqvrNU39GR8Dhbmldk/uG4yjTsPeM9c5eC6j7uK6kUHLc+qEa+c7PF535xXCSkL91ZqS8kaCfblTXfZiaKgvvl1HQfP2UJAJ+76s9jm1Wg1/i1JrgWJ2pHAx44bZ/oJiA8/H7iMjr4iIlh787+hOlX/oroXqTVLrQeDTodqxCfsiCZANrEtIZfrX+8wm0AK4lJnP9K/31WoSFBUVRWpqKikpKaxdu5YhQ4bw8ssvM3r0aIqLK+9UaJdC74VmIXAjXZ0Y8Q6+7s6MuTmvyJLtdVcLZNj9X5yUfI4Zg2jXa2SdnVcIawn1V2uAyhoJllNQzPfx5wF4vH8IaLXQ/0V1587PSi1TY4nBHXzo09qLwmIjH/6eaFaT/s5PRzl4PhOPJo4seKw7Tg6VjC7NS4f4perzu16qdkzC/kgCZAWKopBXWFylR3Z+ETN/PEJZjV0l22b9eJTs/KIqfZ6la1k5OTnh7+9PixYt6N69O2+//TY//PADa9euJSYmBoAPP/yQLl264OLiQlBQEM899xw5OTkAxMXFMXXqVDIzM021SbNmzQLgq6++omfPnri5ueHv789jjz1mmufHpnQO0P/mF9uOT8v84p16c5X4nw+lcjmrDlZxLszDuPMzAL7SPUBkkCzUK+xP2M2RYMlXcykoNl9cdNW+8+QUFNPG24WBJbOtR4wDF1/IOg8Jq6p9Xo1GwxujwgD4Pv6CWU167J9nAfh4XFeCvKowWnfvF1CUC35d1EkbRaMh8wBZwY0iA51mrLfKZynApax8usz6rUrHH31nJE31NbuMQ4cOJTIyklWrVvH000+j1Wr55JNPaN26NadPn+a5557jb3/7G5999hn9+/fn448/ZsaMGSQmJgLg6qpWgxcVFfHuu+8SGhpKWloar776KlOmTOHXX3+tUXxW0fUxiJsDmefUL97IcWa7u7T0oHeIF7tT0vlq5xn+OjK0duPZ/zWO+dc4Z/QhN2yszB4r7JKvmxMeTRzJvFHEqbQcOgd6AOpN4dIdKQA83i/41tIVjs7Q91nY+A5snw8Rj1Z7uHlaJTcqdyZkZSq6AbsWqc/velmGvjcyUgMkAAgLCzOtvRYdHc2QIUMICQlh6NCh/P3vf+fbb78FQK/X4+HhgUajwd/fH39/f1MC9OSTTzJq1CjatGlD3759+eSTT1i7dq2p9simHJtA35udMLd/rM75cYeSIfGxf54hv6gKX57VVVyofvkDiwxjuDtU1g0S9kmj0ZjNB1Tij1NXSbqSi4tex0M9Wpq/qeeT4OgCaUfgRPVuHA1Ghdk/HS0/LmD2T0crH1iy/2vIuwoeraDzX6oVi7BfUgNkBU0cdRx9p2p9OHYnpzNlyZ5Kj4uZ2overb2qdG5rUBTFNCfPhg0bmDNnDsePHycrK4vi4mLy8/PJy8urcALI+Ph4Zs2axcGDB7l+/bqpY/XZs2fp1KkKHRFrW8+nYNtHkHYUjv0InR8w2z28kz8tmzXh/PUbrN5/gQm9q75go0UOfwtZ50lTPPnecDfRHcpZR0kIOxDq58bu5HSzofAltT8P92iJm/MdM6w3aaZONLh9Pmz+O7QfofYPssDu5PRSfShvpwCpmfnsTk4vf6mKohuw7Z/q87teUpvKRaMiNUBWoNFoaKp3qNJjYHsfAjycKa+iVQMEeDgzsL1PlT7PWhMJHjt2jNatW5OSksLo0aOJiIhg5cqVxMfHs2DBAgAKC8ufcyM3N5eRI0fi7u5ObGwse/bsYfXq1ZW+r0418by1Jtimv4PBvNO3Tqthys11ihb/kWxx/6oqKS6AuHkAfF58Lx1a+ODjVs6ijELYAVMN0M0E6Oy1PDYeV/v+PV7eul93RYPeDS4dVm9GLJSWXbV+ehUet+e/kJ0KHkHQXUZhNkaSANUxnVbDzDFqbcidqUvJ65ljOtVpn5BNmzZx+PBhHnroIeLj4zEajfzzn/+kb9++dOjQgYsXL5odr9frMRjMm4iOHz/OtWvXmDt3LgMHDiQsLKx+dIC+U7/noWlzdXmMg9+U2v1oryBc9DpOpuXwx6mr1j//3sWQeZYMnTdfGkYwOFRqf4R9K+kIXTIU/qtdKSgKDGzvTVufciYUbOp162Zk83tgtKzJ2detajOml3tcfhZs+1B9PvhNcJCbkMZIEiAbiAoPYOGk7vh7mP9x+ns4s3BSd6LCa69PSEFBAZcuXeLChQvs27eP9957j7FjxzJ69Ggef/xx2rVrR1FREZ9++imnT5/mq6++YtGiRWafERISQk5ODhs3buTq1avk5eXRqlUr9Hq96X0//vgj7777bq2Vo9qc3WHga+rzuLlQZH6H6O7syCM9gwC1FsiqCrJh6z8AmG94iAL0DJLmL2Hn2t+cYfliZj6Xs/JZcXNdvSmVrfre7zlw9oSriXBohUXn7N3aq0o16eV2I9i5QJ0Wo3l7iBhv0blFwyEJkI1EhQfwxxtDWTatL/PHd2XZtL788cbQWk1+ANatW0dAQAAhISFERUWxefNmPvnkE3744Qd0Oh2RkZF8+OGHzJs3j/DwcGJjY5kzZ47ZZ/Tv359nn32WcePG4ePjw/vvv4+Pjw8xMTF89913dOrUiblz5/LBBx/UalmqredT4N4Ssi7Azn+V2j2lfwgaDWxOvELSFSt24N76AeRdI9+9DV/mD8Dd2YGuQZ7W+3whbMCjiSMB7moNygvf7CMrv5igZk0YHOpb8RudPWDAK+rzDbMtmh26RjXpmedhxyfq8yFvS9+fRkyj1EpHB/uWlZWFh4cHmZmZuLu7m+3Lz88nOTmZ1q1b4+wsC1fWlM1+nwdXwOpnwKEJvLAHPIPMdj+9dC8bjl1mct9g3n0gvObnu3ICFvYDYzGrw/7JKwcCuC8igAWPda/5ZwthQ+sSUnl5+QEKim+NrHRzduAfD0dUfkNXXACf9YX00+pcXSMsqzVel5DK7J+OmnWIDvBwZuaYTuWf+7spcGQ1tOoHU9fK0PcGpqL/v+8kqa9onCIeVZfGOLsD1r8F48xniH5qQGs2HLvMd3vPcXcHb/IKDfi6qVXqFvfPUhRY+zoYi6FDFEuuhgGZDJbmL2HnSma1v/MuOie/mOlf76u8Sd/BCaLmwjePqstRdJsEPlWfgysqPIDhnfzZnZxOWnZ+5X+jp7eoyY9GC/f+Q5KfRk6awETjpNHAfR+ARgfHflIft+nbxosWnk3ILzYy7cv4mq3XdiAWTseBzon0u9/h0PlMAAZJB2hhx0rm4qloVvsqzcXTYSR0iAJjEayZXmp0ZmV0Wg392jZnbNcW9GvbvPzkpyAHfry5FEevp8G/i0XnEQ2PJECi8fLrfGvtn5+iIeeKadf6I5e4cMcii1CN9doyzsLaN9XnQ94iLs0FgM6B7lUeySJEfWTJXDyVuu9DcPKAC/Gw81PrBXm73/8XMs6ow96H/m/tnEPYFUmAROM2+C3wC1dng/3xRVCUCmeZtejO1lAMa56DwmwI6gP9X2LLCTXJktFfwt5ZZS6eEh4tIOrmYIvN78GFfTWIrAwn1qtTUACMXaCOBhWNniRAonFzcIK//Bt0ejixFrZ9YL07242zIGWbOu3/AwsxoGXrzQSo0hEyQtRzNZ6L505dH4Ow0WAohG8fh9xrNYjuNteSYOU09XmfZ6HNIOt8rrB7kgAJ4R8O994csr/p/9CeqNrirRXe2R76Tl15HuCBBdC8LYfOZ3A9rwg3Zwe6t/KsWcxC2FiN5+Ip9QaNWjvj1UZdtPj7KeoosZrIz4QVk6AgE1r2huH1cG4yYTOSAAkB0OMJtWMkCr32vkY/7ZFK31LunW3iWljzrPp8wCumRRbjEtXan4HtvXHQyZ+esG+1Mqt9E08YF6vWmiZvhZVPWdwp2qQwF2IfUdf+c/GFR78EB331Pks0SPItLESJqLnQIQqtoYDF+g+4S5tQ7qEueh09gpuV3pG4Vq2+NxZD+MNmnS3jSpq/Okjzl2gYamVWe79OMD5WbZY+9pOaBBWVHpBQoRsZ8M04OPenOuHipJXgXruTzAr7I/MACVFC56jeJS5/jCanNhDjOI+/F09iqWEEd97j5hYaePbreOaP76qudm00qLPLbpgNKNBxjNq3SKsDID23kEPnMwC4WzpAiwbE4rl4qqLtEHh4CXz3BBxdo87ePO4rcA+s/L1px9X3XTkOeleYtAoCIqofi2iwpAZIMHjwYKKjo20dRv3g4KRWwXd5BEeNgdmOS/na8T06a1IAtU/DtIGtcXLQsul4Gg8v3MnlI9tgyb2wYRagQI8p6pf3bVPsbzt5BUVRF468825ZCHtX5bl4LNFxNExeo64XdmEvLOgDuxaVWr/PpCAb4ubBv+9Wkx+3AJjyC7TsWfNYRIMkNUCNyJQpU1i6dGmp7X/++ScdO3Y0vQ4JCSE6OrrxJkWOzvDg59CiB8qG2QzgCL/o3ibLpweunUei9WrDpKY5/LZtB72u78Xvu9Pq+/SuMPL/oPsTpWaYLen/I6O/hLBA64EwbROsmqbOEbTuDXVB4bD7ILCbOpw9Lx3O74Xjv6hTTgC0Gw5j/wVu/raNX9RrkgA1MlFRUSxZssRsm4+PDzqdzkYR1VMaDfSdjqb9CIibA4e/x/1KPMTFAxAMTAPQQrGiZY1yN26D/n9G9uhd6qOMRuW24e/S/CWERZq3had+h/glsO0jyDoP+5aqj1LHtlMXOO38oCxzISolCZA1KAoU5dnm3I5NLfpDd3Jywt/f/K5o8ODBdO3alY8//pjBgwdz5swZXnnlFV55RV2puVGvl9u8LTz0Xxj+Dhz7GS7uU/sjAHi2osCvG28fC2bliSL46Qov5SYSPawD2tuaAA5fyORabiGuTg5ld5wWQlRMq1NHaXZ/Qh0dlrQJrp5QO0frXdRZ3dsNVycc1UrPDlE1kgBZQ1EevFeFznm14e2L6heAlaxatYrIyEieeeYZpk2bZrXPtXvugdDnmVKbnYB/9FHwWZ/Ioi1JfLLpFElXcvngkUj0Dlp2J6fz1c4UAPq39cJRhr8LUX06R2h3j/oQooYkAWpkfv75Z1xdXU2vR40aZbbfy8sLnU6Hm5tbqZoiUTatVsObo8Jo6+PC26sP88vhVBIuZnKj0EBa9q2J3P5Mvs66hNTqDQ0WQghhVZIAWYNjU7UmxlbntsCQIUNYuHCh6bWLiwsTJkywdlSN0iM9g2jl1ZQnY/Zw5lrpJtHMG0VM/3pf9edHEUIIYTWSAFmDRmPVZqja5OLiQrt27WwdRoPVM8SLpnoHcgsN5R4z+6ejDO/kb52hwkIIIapFOiSIUvR6PQZD+f+Bi/LtTk7nSk756xdVeSFVIYQQtUoSIFFKSEgIW7du5cKFC1y9etXW4diVChdIrcZxQgghaockQKKUd955h5SUFNq2bYuPj8xbY4lyF0it5nFCCCFqh/QBakRiYmLK3B4XF2f2um/fvhw8eLD2A2qAerf2IsDDmUuZ+ZQ1e5IGdaHI3q296jo0IYQQt5EaICGsSKfVMHNMJ+DO5VNvvZ45ppN0gBZCCBuTBEgIK4sKD2DhpO6lFj3193CWIfBCCFFPSBOYELUgKjyA4Z382Z2cTlp2Pr5uarOX1PwIIUT9IAmQELVEp9XQr21zW4chhBCiDNIEVk2NeoFQK5LfoxBCCFuQBMhCjo6OAOTl2Wj19wam5PdY8nsVQggh6oI0gVlIp9Ph6elJWloaAE2bNkWjkX4dllIUhby8PNLS0vD09ESn09k6JCGEEI2IJEDVULJKekkSJKrP09NTVp0XQghR5yQBqgaNRkNAQAC+vr4UFRXZOhy75ejoKDU/QgghbEISoBrQ6XTyH7gQQghhh6QTtBBCCCEaHUmAhBBCCNHoSAIkhBBCiEZH+gCVoWRyvqysLBtHIoQQQoiqKvl/uyqT7EoCVIbs7GwAgoKCbByJEEIIISyVnZ2Nh4dHhcdoFFmLoBSj0cjFixdxc3Oz+iSHWVlZBAUFce7cOdzd3a362fVBQy8fNPwySvnsX0Mvo5TP/tVWGRVFITs7m8DAQLTainv5SA1QGbRaLS1btqzVc7i7uzfYf9jQ8MsHDb+MUj7719DLKOWzf7VRxspqfkpIJ2ghhBBCNDqSAAkhhBCi0ZEEqI45OTkxc+ZMnJycbB1KrWjo5YOGX0Ypn/1r6GWU8tm/+lBG6QQthBBCiEZHaoCEEEII0ehIAiSEEEKIRkcSICGEEEI0OpIACSGEEKLRkQSoDi1YsICQkBCcnZ3p06cPu3fvtnVIVWJJ3J9//jkDBw6kWbNmNGvWjGHDhpU6fsqUKWg0GrNHVFRUbRfDIpaUOSYmplR5nJ2d6zDayllSnsGDB5cqj0aj4b777jMdYw/XsCxbt25lzJgxBAYGotFoWLNmja1DqpSlMa9atYrhw4fj4+ODu7s7/fr1Y/369WbHzJo1q9T1CwsLq8VSWMbSMsfFxZX5b/bSpUt1E3AlLC1PWX9fGo2Gzp07m46p79ewLHPmzKFXr164ubnh6+vLAw88QGJios3ikQSojqxYsYJXX32VmTNnsm/fPiIjIxk5ciRpaWm2Dq1ClsYdFxfHhAkT2Lx5Mzt37iQoKIgRI0Zw4cIFs+OioqJITU01PZYtW1YXxamS6lwrd3d3s/KcOXOmDiOumKXlWbVqlVlZEhIS0Ol0PPLII2bH1edrWJ7c3FwiIyNZsGCBrUOpMktj3rp1K8OHD+fXX38lPj6eIUOGMGbMGPbv3292XOfOnc2u3x9//FEb4VdLda9TYmKiWZl8fX1rKULLWFqe+fPnm5Xj3LlzeHl5lfobrM/XsCxbtmzh+eefZ9euXfz+++8UFRUxYsQIcnNzbROQIupE7969leeff9702mAwKIGBgcqcOXNsGFXlahp3cXGx4ubmpixdutS07YknnlDGjh1r7VCtxtIyL1myRPHw8Kij6CxX02v40UcfKW5ubkpOTo5pW32/hlUBKKtXr7Z1GBapbsydOnVSZs+ebXo9c+ZMJTIy0nqB1aKqlHnz5s0KoFy/fr1OYqqJ6lzD1atXKxqNRklJSTFts6drWJ60tDQFULZs2WKT80sNUB0oLCwkPj6eYcOGmbZptVqGDRvGzp07bRhZxawRd15eHkVFRXh5eZltj4uLw9fXl9DQUKZPn861a9esGnt1VbfMOTk5BAcHExQUxNixYzly5EhdhFspa1zDL774gvHjx+Pi4mK2vb5eQ2HOaDSSnZ1d6m/w5MmTBAYG0qZNGyZOnMjZs2dtFKH1dO3alYCAAIYPH8727dttHY7VfPHFFwwbNozg4GCz7fZ+DTMzMwFK/dusK5IA1YGrV69iMBjw8/Mz2+7n51dv2qjLYo2433jjDQIDA83+A46KiuLLL79k48aNzJs3jy1btjBq1CgMBoNV46+O6pQ5NDSUxYsX88MPP/D1119jNBrp378/58+fr4uQK1TTa7h7924SEhJ4+umnzbbX52sozH3wwQfk5OTw6KOPmrb16dOHmJgY1q1bx8KFC0lOTmbgwIFkZ2fbMNLqCwgIYNGiRaxcuZKVK1cSFBTE4MGD2bdvn61Dq7GLFy+ydu3aUn+D9n4NjUYj0dHR3HXXXYSHh9skBlkNXtSauXPnsnz5cuLi4sw6BY8fP970vEuXLkRERNC2bVvi4uK45557bBFqjfTr149+/fqZXvfv35+OHTvy73//m3fffdeGkdXcF198QZcuXejdu7fZ9oZ2DRuqb775htmzZ/PDDz+Y9YcZNWqU6XlERAR9+vQhODiYb7/9lqeeesoWodZIaGgooaGhptf9+/cnKSmJjz76iK+++sqGkdXc0qVL8fT05IEHHjDbbu/X8PnnnychIcGm/ZakBqgOeHt7o9PpuHz5stn2y5cv4+/vb6OoKleTuD/44APmzp3Lb7/9RkRERIXHtmnTBm9vb06dOlXjmGvKGtfK0dGRbt262X15cnNzWb58eZW+TOvTNRSq5cuX8/TTT/Ptt9+a1cCWxdPTkw4dOjSo69e7d2+7L4+iKCxevJjJkyej1+srPNaeruELL7zAzz//zObNm2nZsqXN4pAEqA7o9Xp69OjBxo0bTduMRiMbN240qzmob6ob9/vvv8+7777LunXr6NmzZ6XnOX/+PNeuXSMgIMAqcdeENa6VwWDg8OHDdl+e7777joKCAiZNmlTpeerTNRSwbNkypk6dyrJly8ymLyhPTk4OSUlJDer6HThwwO7Ls2XLFk6dOlWlmxB7uIaKovDCCy+wevVqNm3aROvWrW0ekKgDy5cvV5ycnJSYmBjl6NGjyjPPPKN4enoqly5dsnVoFaos7smTJytvvvmm6fi5c+cqer1e+f7775XU1FTTIzs7W1EURcnOzlb++te/Kjt37lSSk5OVDRs2KN27d1fat2+v5Ofn26SMd7K0zLNnz1bWr1+vJCUlKfHx8cr48eMVZ2dn5ciRI7YqghlLy1NiwIAByrhx40ptt4drWJ7s7Gxl//79yv79+xVA+fDDD5X9+/crZ86csXVo5aos5jfffFOZPHmy6fjY2FjFwcFBWbBggdnfYEZGhumY1157TYmLi1OSk5OV7du3K8OGDVO8vb2VtLS0Oi9fWSwt80cffaSsWbNGOXnypHL48GHl5ZdfVrRarbJhwwZbFcGMpeUpMWnSJKVPnz5lfmZ9v4ZlmT59uuLh4aHExcWZ/dvMy8uzSTySANWhTz/9VGnVqpWi1+uV3r17K7t27bJ1SFVSUdyDBg1SnnjiCdPr4OBgBSj1mDlzpqIoipKXl6eMGDFC8fHxURwdHZXg4GBl2rRp9S4RtKTM0dHRpmP9/PyUe++9V9m3b58Noi6fJeVRFEU5fvy4Aii//fZbqc+yl2tYlpLh0nc+7ix/fVJZzE888YQyaNAg0/GDBg2qtIzjxo1TAgICFL1er7Ro0UIZN26ccurUqbotWAUsLfO8efOUtm3bKs7OzoqXl5cyePBgZdOmTbYJvgyWlkdRFCUjI0Np0qSJ8p///KfMz6zv17AsZf0OAGXJkiU2iUdzMyghhBBCiEZD+gAJIYQQotGRBEgIIYQQjY4kQEIIIYRodCQBEkIIIUSjIwmQEEIIIRodSYCEEEII0ehIAiSEEEKIRkcSICGEEEI0OpIACSHswpQpU0qtiF0XYmJi0Gg0aDQaoqOjq/SeKVOmmN6zZs2aWo1PCFE9DrYOQAghNBpNhftnzpzJ/PnzsdXE9e7u7iQmJuLi4lKl4+fPn8/cuXPr9cKUQjR2kgAJIWwuNTXV9HzFihXMmDGDxMRE0zZXV1dcXV1tERqgJmj+/v5VPt7DwwMPD49ajEgIUVPSBCaEsDl/f3/Tw8PDw5RwlDxcXV1LNYENHjyYF198kejoaJo1a4afnx+ff/45ubm5TJ06FTc3N9q1a8fatWvNzpWQkMCoUaNwdXXFz8+PyZMnc/XqVYtj/uyzz2jfvj3Ozs74+fnx8MMP1/TXIISoQ5IACSHs1tKlS/H29mb37t28+OKLTJ8+nUceeYT+/fuzb98+RowYweTJk8nLywMgIyODoUOH0q1bN/bu3cu6deu4fPkyjz76qEXn3bt3Ly+99BLvvPMOiYmJrFu3jrvvvrs2iiiEqCXSBCaEsFuRkZH8z//8DwBvvfUWc+fOxdvbm2nTpgEwY8YMFi5cyKFDh+jbty//+te/6NatG++9957pMxYvXkxQUBAnTpygQ4cOVTrv2bNncXFxYfTo0bi5uREcHEy3bt2sX0AhRK2RGiAhhN2KiIgwPdfpdDRv3pwuXbqYtvn5+QGQlpYGwMGDB9m8ebOpT5GrqythYWEAJCUlVfm8w4cPJzg4mDZt2jB58mRiY2NNtUxCCPsgCZAQwm45OjqavdZoNGbbSkaXGY1GAHJychgzZgwHDhwwe5w8edKiJiw3Nzf27dvHsmXLCAgIYMaMGURGRpKRkVHzQgkh6oQ0gQkhGo3u3buzcuVKQkJCcHCo2defg4MDw4YNY9iwYcycORNPT082bdrEgw8+aKVohRC1SWqAhBCNxvPPP096ejoTJkxgz549JCUlsX79eqZOnYrBYKjy5/z888988sknHDhwgDNnzvDll19iNBoJDQ2txeiFENYkCZAQotEIDAxk+/btGAwGRowYQZcuXYiOjsbT0xOttupfh56enqxatYqhQ4fSsWNHFi1axLJly+jcuXMtRi+EsCaNYqupVYUQwg7ExMQQHR1drf49Go2G1atX22QJDyFExaQGSAghKpGZmYmrqytvvPFGlY5/9tlnbTpztRCiclIDJIQQFcjOzuby5cuA2vTl7e1d6XvS0tLIysoCICAgoMpriAkh6o4kQEIIIYRodKQJTAghhBCNjiRAQgghhGh0JAESQgghRKMjCZAQQgghGh1JgIQQQgjR6EgCJIQQQohGRxIgIYQQQjQ6kgAJIYQQotH5f4b64/1ICKJhAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "execution_count": 19, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/tutorials/Tutorial 3. Building custom analyses - the data analysis framework_18_0.png" } }, "output_type": "execute_result" } ], "source": [ "a_obj = MyCosineAnalysis(label=\"Cosine experiment\")\n", "a_obj.run()\n", "a_obj.figs_mpl[\"cos-data-and-fit\"]" ] }, { "cell_type": "code", "execution_count": 20, "id": "3515d291", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:32.674339Z", "iopub.status.busy": "2023-09-26T17:44:32.674131Z", "iopub.status.idle": "2023-09-26T17:44:32.678155Z", "shell.execute_reply": "2023-09-26T17:44:32.677701Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "20230926-194430-301-508488-Cosine experiment/\n", "├── cos-data-and-fit.png\n", "├── Cosine fit.png\n", "├── dataset.hdf5\n", "├── quantities_of_interest.json\n", "└── snapshot.json\n", "\n" ] } ], "source": [ "print(display_tree(locate_experiment_container(a_obj.dataset.tuid), string_rep=True))" ] }, { "cell_type": "code", "execution_count": 21, "id": "4024a001", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:32.680203Z", "iopub.status.busy": "2023-09-26T17:44:32.680013Z", "iopub.status.idle": "2023-09-26T17:44:32.719168Z", "shell.execute_reply": "2023-09-26T17:44:32.718515Z" } }, "outputs": [ { "data": { "text/html": [ "
class CosineModel(lmfit.model.Model):\n",
       "    """\n",
       "    Exemplary lmfit model with a guess for a cosine.\n",
       "\n",
       "    .. note::\n",
       "\n",
       "        The :mod:`lmfit.models` module provides several fitting models that might fit\n",
       "        your needs out of the box.\n",
       "    """\n",
       "\n",
       "    def __init__(self, *args, **kwargs):\n",
       "        # pass in the model's equation\n",
       "        super().__init__(cos_func, *args, **kwargs)\n",
       "\n",
       "        # configure constraints that are independent from the data to be fitted\n",
       "        self.set_param_hint("frequency", min=0, vary=True)  # enforce positive frequency\n",
       "        self.set_param_hint("amplitude", min=0, vary=True)  # enforce positive amplitude\n",
       "        self.set_param_hint("offset", vary=True)\n",
       "        self.set_param_hint(\n",
       "            "phase", vary=True, min=-np.pi, max=np.pi\n",
       "        )  # enforce phase range\n",
       "\n",
       "    # pylint: disable=missing-function-docstring\n",
       "    def guess(self, data, x, **kws) -> lmfit.parameter.Parameters:\n",
       "        """\n",
       "        guess parameters based on the data\n",
       "\n",
       "        Parameters\n",
       "        ----------\n",
       "        data: np.ndarray\n",
       "            Data to fit to\n",
       "        x: np.ndarray\n",
       "            Independet variable\n",
       "        """\n",
       "\n",
       "        self.set_param_hint("offset", value=np.average(data))\n",
       "        self.set_param_hint("amplitude", value=(np.max(data) - np.min(data)) / 2)\n",
       "\n",
       "        # Guess frequency and phase using Fourier Transform\n",
       "        freq_guess, phase_guess = fft_freq_phase_guess(data, x)\n",
       "        phase_wrap = (phase_guess + np.pi) % (2 * np.pi) - np.pi\n",
       "        self.set_param_hint("frequency", value=freq_guess)\n",
       "        self.set_param_hint("phase", value=phase_wrap)\n",
       "\n",
       "        params = self.make_params()\n",
       "        return lmfit.models.update_param_vals(params, self.prefix, **kws)\n",
       "\n",
       "    # Same design patter is used in lmfit.models to inherit common docstrings.\n",
       "    # We adjust these common docstrings to our docs build pipeline\n",
       "    __init__.__doc__ = get_model_common_doc() + mk_seealso("cos_func")\n",
       "    guess.__doc__ = get_guess_common_doc()\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k}{class} \\PY{n+nc}{CosineModel}\\PY{p}{(}\\PY{n}{lmfit}\\PY{o}{.}\\PY{n}{model}\\PY{o}{.}\\PY{n}{Model}\\PY{p}{)}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Exemplary lmfit model with a guess for a cosine.}\n", "\n", "\\PY{l+s+sd}{ .. note::}\n", "\n", "\\PY{l+s+sd}{ The :mod:`lmfit.models` module provides several fitting models that might fit}\n", "\\PY{l+s+sd}{ your needs out of the box.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\n", " \\PY{k}{def} \\PY{n+nf+fm}{\\PYZus{}\\PYZus{}init\\PYZus{}\\PYZus{}}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{,} \\PY{o}{*}\\PY{n}{args}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)}\\PY{p}{:}\n", " \\PY{c+c1}{\\PYZsh{} pass in the model\\PYZsq{}s equation}\n", " \\PY{n+nb}{super}\\PY{p}{(}\\PY{p}{)}\\PY{o}{.}\\PY{n+nf+fm}{\\PYZus{}\\PYZus{}init\\PYZus{}\\PYZus{}}\\PY{p}{(}\\PY{n}{cos\\PYZus{}func}\\PY{p}{,} \\PY{o}{*}\\PY{n}{args}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} configure constraints that are independent from the data to be fitted}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n+nb}{min}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{)} \\PY{c+c1}{\\PYZsh{} enforce positive frequency}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n+nb}{min}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{)} \\PY{c+c1}{\\PYZsh{} enforce positive amplitude}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{offset}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{)}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\n", " \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{phase}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{,} \\PY{n+nb}{min}\\PY{o}{=}\\PY{o}{\\PYZhy{}}\\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\\PY{p}{,} \\PY{n+nb}{max}\\PY{o}{=}\\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\n", " \\PY{p}{)} \\PY{c+c1}{\\PYZsh{} enforce phase range}\n", "\n", " \\PY{c+c1}{\\PYZsh{} pylint: disable=missing\\PYZhy{}function\\PYZhy{}docstring}\n", " \\PY{k}{def} \\PY{n+nf}{guess}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{,} \\PY{n}{data}\\PY{p}{,} \\PY{n}{x}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kws}\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{lmfit}\\PY{o}{.}\\PY{n}{parameter}\\PY{o}{.}\\PY{n}{Parameters}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ guess parameters based on the data}\n", "\n", "\\PY{l+s+sd}{ Parameters}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ data: np.ndarray}\n", "\\PY{l+s+sd}{ Data to fit to}\n", "\\PY{l+s+sd}{ x: np.ndarray}\n", "\\PY{l+s+sd}{ Independet variable}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{offset}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{n}{np}\\PY{o}{.}\\PY{n}{average}\\PY{p}{(}\\PY{n}{data}\\PY{p}{)}\\PY{p}{)}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{p}{(}\\PY{n}{np}\\PY{o}{.}\\PY{n}{max}\\PY{p}{(}\\PY{n}{data}\\PY{p}{)} \\PY{o}{\\PYZhy{}} \\PY{n}{np}\\PY{o}{.}\\PY{n}{min}\\PY{p}{(}\\PY{n}{data}\\PY{p}{)}\\PY{p}{)} \\PY{o}{/} \\PY{l+m+mi}{2}\\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} Guess frequency and phase using Fourier Transform}\n", " \\PY{n}{freq\\PYZus{}guess}\\PY{p}{,} \\PY{n}{phase\\PYZus{}guess} \\PY{o}{=} \\PY{n}{fft\\PYZus{}freq\\PYZus{}phase\\PYZus{}guess}\\PY{p}{(}\\PY{n}{data}\\PY{p}{,} \\PY{n}{x}\\PY{p}{)}\n", " \\PY{n}{phase\\PYZus{}wrap} \\PY{o}{=} \\PY{p}{(}\\PY{n}{phase\\PYZus{}guess} \\PY{o}{+} \\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\\PY{p}{)} \\PY{o}{\\PYZpc{}} \\PY{p}{(}\\PY{l+m+mi}{2} \\PY{o}{*} \\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\\PY{p}{)} \\PY{o}{\\PYZhy{}} \\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{n}{freq\\PYZus{}guess}\\PY{p}{)}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{phase}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{n}{phase\\PYZus{}wrap}\\PY{p}{)}\n", "\n", " \\PY{n}{params} \\PY{o}{=} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{make\\PYZus{}params}\\PY{p}{(}\\PY{p}{)}\n", " \\PY{k}{return} \\PY{n}{lmfit}\\PY{o}{.}\\PY{n}{models}\\PY{o}{.}\\PY{n}{update\\PYZus{}param\\PYZus{}vals}\\PY{p}{(}\\PY{n}{params}\\PY{p}{,} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{prefix}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kws}\\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} Same design patter is used in lmfit.models to inherit common docstrings.}\n", " \\PY{c+c1}{\\PYZsh{} We adjust these common docstrings to our docs build pipeline}\n", " \\PY{n+nf+fm}{\\PYZus{}\\PYZus{}init\\PYZus{}\\PYZus{}}\\PY{o}{.}\\PY{n+nv+vm}{\\PYZus{}\\PYZus{}doc\\PYZus{}\\PYZus{}} \\PY{o}{=} \\PY{n}{get\\PYZus{}model\\PYZus{}common\\PYZus{}doc}\\PY{p}{(}\\PY{p}{)} \\PY{o}{+} \\PY{n}{mk\\PYZus{}seealso}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cos\\PYZus{}func}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", " \\PY{n}{guess}\\PY{o}{.}\\PY{n+nv+vm}{\\PYZus{}\\PYZus{}doc\\PYZus{}\\PYZus{}} \\PY{o}{=} \\PY{n}{get\\PYZus{}guess\\PYZus{}common\\PYZus{}doc}\\PY{p}{(}\\PY{p}{)}\n", "\\end{Verbatim}\n" ], "text/plain": [ "class CosineModel(lmfit.model.Model):\n", " \"\"\"\n", " Exemplary lmfit model with a guess for a cosine.\n", "\n", " .. note::\n", "\n", " The :mod:`lmfit.models` module provides several fitting models that might fit\n", " your needs out of the box.\n", " \"\"\"\n", "\n", " def __init__(self, *args, **kwargs):\n", " # pass in the model's equation\n", " super().__init__(cos_func, *args, **kwargs)\n", "\n", " # configure constraints that are independent from the data to be fitted\n", " self.set_param_hint(\"frequency\", min=0, vary=True) # enforce positive frequency\n", " self.set_param_hint(\"amplitude\", min=0, vary=True) # enforce positive amplitude\n", " self.set_param_hint(\"offset\", vary=True)\n", " self.set_param_hint(\n", " \"phase\", vary=True, min=-np.pi, max=np.pi\n", " ) # enforce phase range\n", "\n", " # pylint: disable=missing-function-docstring\n", " def guess(self, data, x, **kws) -> lmfit.parameter.Parameters:\n", " \"\"\"\n", " guess parameters based on the data\n", "\n", " Parameters\n", " ----------\n", " data: np.ndarray\n", " Data to fit to\n", " x: np.ndarray\n", " Independet variable\n", " \"\"\"\n", "\n", " self.set_param_hint(\"offset\", value=np.average(data))\n", " self.set_param_hint(\"amplitude\", value=(np.max(data) - np.min(data)) / 2)\n", "\n", " # Guess frequency and phase using Fourier Transform\n", " freq_guess, phase_guess = fft_freq_phase_guess(data, x)\n", " phase_wrap = (phase_guess + np.pi) % (2 * np.pi) - np.pi\n", " self.set_param_hint(\"frequency\", value=freq_guess)\n", " self.set_param_hint(\"phase\", value=phase_wrap)\n", "\n", " params = self.make_params()\n", " return lmfit.models.update_param_vals(params, self.prefix, **kws)\n", "\n", " # Same design patter is used in lmfit.models to inherit common docstrings.\n", " # We adjust these common docstrings to our docs build pipeline\n", " __init__.__doc__ = get_model_common_doc() + mk_seealso(\"cos_func\")\n", " guess.__doc__ = get_guess_common_doc()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
class CosineAnalysis(ba.BaseAnalysis):\n",
       "    """\n",
       "    Exemplary analysis subclass that fits a cosine to a dataset.\n",
       "    """\n",
       "\n",
       "    def process_data(self):\n",
       "        """\n",
       "        In some cases, you might need to process the data, e.g., reshape, filter etc.,\n",
       "        before starting the analysis. This is the method where it should be done.\n",
       "\n",
       "        See :meth:`~quantify_core.analysis.spectroscopy_analysis.ResonatorSpectroscopyAnalysis.process_data`\n",
       "        for an implementation example.\n",
       "        """  # pylint: disable=line-too-long\n",
       "\n",
       "    def run_fitting(self):\n",
       "        """\n",
       "        Fits a :class:`~quantify_core.analysis.fitting_models.CosineModel` to the data.\n",
       "        """\n",
       "        # create a fitting model based on a cosine function\n",
       "        model = CosineModel()\n",
       "        guess = model.guess(self.dataset.y0.values, x=self.dataset.x0.values)\n",
       "        result = model.fit(\n",
       "            self.dataset.y0.values, x=self.dataset.x0.values, params=guess\n",
       "        )\n",
       "        self.fit_results.update({"cosine": result})\n",
       "\n",
       "    def create_figures(self):\n",
       "        """\n",
       "        Creates a figure with the data and the fit.\n",
       "        """\n",
       "        fig, ax = plt.subplots()\n",
       "        fig_id = "cos_fit"\n",
       "        self.figs_mpl.update({fig_id: fig})\n",
       "        self.axs_mpl.update({fig_id: ax})\n",
       "\n",
       "        self.dataset.y0.plot(ax=ax, x="x0", marker="o", linestyle="")\n",
       "        qpl.plot_fit(ax, self.fit_results["cosine"])\n",
       "        qpl.plot_textbox(ax, ba.wrap_text(self.quantities_of_interest["fit_msg"]))\n",
       "\n",
       "        adjust_axeslabels_SI(ax)\n",
       "        qpl.set_suptitle_from_dataset(fig, self.dataset, "x0-y0")\n",
       "        ax.legend()\n",
       "\n",
       "    def analyze_fit_results(self):\n",
       "        """\n",
       "        Checks fit success and populates :code:`quantities_of_interest`.\n",
       "        """\n",
       "        fit_result = self.fit_results["cosine"]\n",
       "        fit_warning = ba.check_lmfit(fit_result)\n",
       "\n",
       "        # If there is a problem with the fit, display an error message in the text box.\n",
       "        # Otherwise, display the parameters as normal.\n",
       "        if fit_warning is None:\n",
       "            self.quantities_of_interest["fit_success"] = True\n",
       "            unit = self.dataset.y0.units\n",
       "            text_msg = "Summary\\n"\n",
       "            text_msg += format_value_string(\n",
       "                r"$f$", fit_result.params["frequency"], end_char="\\n", unit="Hz"\n",
       "            )\n",
       "            text_msg += format_value_string(\n",
       "                r"$A$", fit_result.params["amplitude"], unit=unit\n",
       "            )\n",
       "        else:\n",
       "            text_msg = fit_warning\n",
       "            self.quantities_of_interest["fit_success"] = False\n",
       "\n",
       "        # save values and fit uncertainty\n",
       "        for parameter_name in ["frequency", "amplitude"]:\n",
       "            self.quantities_of_interest[parameter_name] = ba.lmfit_par_to_ufloat(\n",
       "                fit_result.params[parameter_name]\n",
       "            )\n",
       "        self.quantities_of_interest["fit_msg"] = text_msg\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k}{class} \\PY{n+nc}{CosineAnalysis}\\PY{p}{(}\\PY{n}{ba}\\PY{o}{.}\\PY{n}{BaseAnalysis}\\PY{p}{)}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Exemplary analysis subclass that fits a cosine to a dataset.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\n", " \\PY{k}{def} \\PY{n+nf}{process\\PYZus{}data}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{)}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ In some cases, you might need to process the data, e.g., reshape, filter etc.,}\n", "\\PY{l+s+sd}{ before starting the analysis. This is the method where it should be done.}\n", "\n", "\\PY{l+s+sd}{ See :meth:`\\PYZti{}quantify\\PYZus{}core.analysis.spectroscopy\\PYZus{}analysis.ResonatorSpectroscopyAnalysis.process\\PYZus{}data`}\n", "\\PY{l+s+sd}{ for an implementation example.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}} \\PY{c+c1}{\\PYZsh{} pylint: disable=line\\PYZhy{}too\\PYZhy{}long}\n", "\n", " \\PY{k}{def} \\PY{n+nf}{run\\PYZus{}fitting}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{)}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Fits a :class:`\\PYZti{}quantify\\PYZus{}core.analysis.fitting\\PYZus{}models.CosineModel` to the data.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", " \\PY{c+c1}{\\PYZsh{} create a fitting model based on a cosine function}\n", " \\PY{n}{model} \\PY{o}{=} \\PY{n}{CosineModel}\\PY{p}{(}\\PY{p}{)}\n", " \\PY{n}{guess} \\PY{o}{=} \\PY{n}{model}\\PY{o}{.}\\PY{n}{guess}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{y0}\\PY{o}{.}\\PY{n}{values}\\PY{p}{,} \\PY{n}{x}\\PY{o}{=}\\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{x0}\\PY{o}{.}\\PY{n}{values}\\PY{p}{)}\n", " \\PY{n}{result} \\PY{o}{=} \\PY{n}{model}\\PY{o}{.}\\PY{n}{fit}\\PY{p}{(}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{y0}\\PY{o}{.}\\PY{n}{values}\\PY{p}{,} \\PY{n}{x}\\PY{o}{=}\\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{x0}\\PY{o}{.}\\PY{n}{values}\\PY{p}{,} \\PY{n}{params}\\PY{o}{=}\\PY{n}{guess}\n", " \\PY{p}{)}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{fit\\PYZus{}results}\\PY{o}{.}\\PY{n}{update}\\PY{p}{(}\\PY{p}{\\PYZob{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cosine}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{:} \\PY{n}{result}\\PY{p}{\\PYZcb{}}\\PY{p}{)}\n", "\n", " \\PY{k}{def} \\PY{n+nf}{create\\PYZus{}figures}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{)}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Creates a figure with the data and the fit.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", " \\PY{n}{fig}\\PY{p}{,} \\PY{n}{ax} \\PY{o}{=} \\PY{n}{plt}\\PY{o}{.}\\PY{n}{subplots}\\PY{p}{(}\\PY{p}{)}\n", " \\PY{n}{fig\\PYZus{}id} \\PY{o}{=} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cos\\PYZus{}fit}\\PY{l+s+s2}{\\PYZdq{}}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{figs\\PYZus{}mpl}\\PY{o}{.}\\PY{n}{update}\\PY{p}{(}\\PY{p}{\\PYZob{}}\\PY{n}{fig\\PYZus{}id}\\PY{p}{:} \\PY{n}{fig}\\PY{p}{\\PYZcb{}}\\PY{p}{)}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{axs\\PYZus{}mpl}\\PY{o}{.}\\PY{n}{update}\\PY{p}{(}\\PY{p}{\\PYZob{}}\\PY{n}{fig\\PYZus{}id}\\PY{p}{:} \\PY{n}{ax}\\PY{p}{\\PYZcb{}}\\PY{p}{)}\n", "\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{y0}\\PY{o}{.}\\PY{n}{plot}\\PY{p}{(}\\PY{n}{ax}\\PY{o}{=}\\PY{n}{ax}\\PY{p}{,} \\PY{n}{x}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{x0}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{marker}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{o}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{linestyle}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", " \\PY{n}{qpl}\\PY{o}{.}\\PY{n}{plot\\PYZus{}fit}\\PY{p}{(}\\PY{n}{ax}\\PY{p}{,} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{fit\\PYZus{}results}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cosine}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{)}\n", " \\PY{n}{qpl}\\PY{o}{.}\\PY{n}{plot\\PYZus{}textbox}\\PY{p}{(}\\PY{n}{ax}\\PY{p}{,} \\PY{n}{ba}\\PY{o}{.}\\PY{n}{wrap\\PYZus{}text}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{fit\\PYZus{}msg}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{)}\\PY{p}{)}\n", "\n", " \\PY{n}{adjust\\PYZus{}axeslabels\\PYZus{}SI}\\PY{p}{(}\\PY{n}{ax}\\PY{p}{)}\n", " \\PY{n}{qpl}\\PY{o}{.}\\PY{n}{set\\PYZus{}suptitle\\PYZus{}from\\PYZus{}dataset}\\PY{p}{(}\\PY{n}{fig}\\PY{p}{,} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{p}{,} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{x0\\PYZhy{}y0}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", " \\PY{n}{ax}\\PY{o}{.}\\PY{n}{legend}\\PY{p}{(}\\PY{p}{)}\n", "\n", " \\PY{k}{def} \\PY{n+nf}{analyze\\PYZus{}fit\\PYZus{}results}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{)}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Checks fit success and populates :code:`quantities\\PYZus{}of\\PYZus{}interest`.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", " \\PY{n}{fit\\PYZus{}result} \\PY{o}{=} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{fit\\PYZus{}results}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cosine}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\n", " \\PY{n}{fit\\PYZus{}warning} \\PY{o}{=} \\PY{n}{ba}\\PY{o}{.}\\PY{n}{check\\PYZus{}lmfit}\\PY{p}{(}\\PY{n}{fit\\PYZus{}result}\\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} If there is a problem with the fit, display an error message in the text box.}\n", " \\PY{c+c1}{\\PYZsh{} Otherwise, display the parameters as normal.}\n", " \\PY{k}{if} \\PY{n}{fit\\PYZus{}warning} \\PY{o+ow}{is} \\PY{k+kc}{None}\\PY{p}{:}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{fit\\PYZus{}success}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]} \\PY{o}{=} \\PY{k+kc}{True}\n", " \\PY{n}{unit} \\PY{o}{=} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{y0}\\PY{o}{.}\\PY{n}{units}\n", " \\PY{n}{text\\PYZus{}msg} \\PY{o}{=} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Summary}\\PY{l+s+se}{\\PYZbs{}n}\\PY{l+s+s2}{\\PYZdq{}}\n", " \\PY{n}{text\\PYZus{}msg} \\PY{o}{+}\\PY{o}{=} \\PY{n}{format\\PYZus{}value\\PYZus{}string}\\PY{p}{(}\n", " \\PY{l+s+sa}{r}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{\\PYZdl{}f\\PYZdl{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{fit\\PYZus{}result}\\PY{o}{.}\\PY{n}{params}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{,} \\PY{n}{end\\PYZus{}char}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+se}{\\PYZbs{}n}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Hz}\\PY{l+s+s2}{\\PYZdq{}}\n", " \\PY{p}{)}\n", " \\PY{n}{text\\PYZus{}msg} \\PY{o}{+}\\PY{o}{=} \\PY{n}{format\\PYZus{}value\\PYZus{}string}\\PY{p}{(}\n", " \\PY{l+s+sa}{r}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{\\PYZdl{}A\\PYZdl{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{fit\\PYZus{}result}\\PY{o}{.}\\PY{n}{params}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{n}{unit}\n", " \\PY{p}{)}\n", " \\PY{k}{else}\\PY{p}{:}\n", " \\PY{n}{text\\PYZus{}msg} \\PY{o}{=} \\PY{n}{fit\\PYZus{}warning}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{fit\\PYZus{}success}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]} \\PY{o}{=} \\PY{k+kc}{False}\n", "\n", " \\PY{c+c1}{\\PYZsh{} save values and fit uncertainty}\n", " \\PY{k}{for} \\PY{n}{parameter\\PYZus{}name} \\PY{o+ow}{in} \\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{:}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{n}{parameter\\PYZus{}name}\\PY{p}{]} \\PY{o}{=} \\PY{n}{ba}\\PY{o}{.}\\PY{n}{lmfit\\PYZus{}par\\PYZus{}to\\PYZus{}ufloat}\\PY{p}{(}\n", " \\PY{n}{fit\\PYZus{}result}\\PY{o}{.}\\PY{n}{params}\\PY{p}{[}\\PY{n}{parameter\\PYZus{}name}\\PY{p}{]}\n", " \\PY{p}{)}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{fit\\PYZus{}msg}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]} \\PY{o}{=} \\PY{n}{text\\PYZus{}msg}\n", "\\end{Verbatim}\n" ], "text/plain": [ "class CosineAnalysis(ba.BaseAnalysis):\n", " \"\"\"\n", " Exemplary analysis subclass that fits a cosine to a dataset.\n", " \"\"\"\n", "\n", " def process_data(self):\n", " \"\"\"\n", " In some cases, you might need to process the data, e.g., reshape, filter etc.,\n", " before starting the analysis. This is the method where it should be done.\n", "\n", " See :meth:`~quantify_core.analysis.spectroscopy_analysis.ResonatorSpectroscopyAnalysis.process_data`\n", " for an implementation example.\n", " \"\"\" # pylint: disable=line-too-long\n", "\n", " def run_fitting(self):\n", " \"\"\"\n", " Fits a :class:`~quantify_core.analysis.fitting_models.CosineModel` to the data.\n", " \"\"\"\n", " # create a fitting model based on a cosine function\n", " model = CosineModel()\n", " guess = model.guess(self.dataset.y0.values, x=self.dataset.x0.values)\n", " result = model.fit(\n", " self.dataset.y0.values, x=self.dataset.x0.values, params=guess\n", " )\n", " self.fit_results.update({\"cosine\": result})\n", "\n", " def create_figures(self):\n", " \"\"\"\n", " Creates a figure with the data and the fit.\n", " \"\"\"\n", " fig, ax = plt.subplots()\n", " fig_id = \"cos_fit\"\n", " self.figs_mpl.update({fig_id: fig})\n", " self.axs_mpl.update({fig_id: ax})\n", "\n", " self.dataset.y0.plot(ax=ax, x=\"x0\", marker=\"o\", linestyle=\"\")\n", " qpl.plot_fit(ax, self.fit_results[\"cosine\"])\n", " qpl.plot_textbox(ax, ba.wrap_text(self.quantities_of_interest[\"fit_msg\"]))\n", "\n", " adjust_axeslabels_SI(ax)\n", " qpl.set_suptitle_from_dataset(fig, self.dataset, \"x0-y0\")\n", " ax.legend()\n", "\n", " def analyze_fit_results(self):\n", " \"\"\"\n", " Checks fit success and populates :code:`quantities_of_interest`.\n", " \"\"\"\n", " fit_result = self.fit_results[\"cosine\"]\n", " fit_warning = ba.check_lmfit(fit_result)\n", "\n", " # If there is a problem with the fit, display an error message in the text box.\n", " # Otherwise, display the parameters as normal.\n", " if fit_warning is None:\n", " self.quantities_of_interest[\"fit_success\"] = True\n", " unit = self.dataset.y0.units\n", " text_msg = \"Summary\\n\"\n", " text_msg += format_value_string(\n", " r\"$f$\", fit_result.params[\"frequency\"], end_char=\"\\n\", unit=\"Hz\"\n", " )\n", " text_msg += format_value_string(\n", " r\"$A$\", fit_result.params[\"amplitude\"], unit=unit\n", " )\n", " else:\n", " text_msg = fit_warning\n", " self.quantities_of_interest[\"fit_success\"] = False\n", "\n", " # save values and fit uncertainty\n", " for parameter_name in [\"frequency\", \"amplitude\"]:\n", " self.quantities_of_interest[parameter_name] = ba.lmfit_par_to_ufloat(\n", " fit_result.params[parameter_name]\n", " )\n", " self.quantities_of_interest[\"fit_msg\"] = text_msg" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display_source_code(CosineModel)\n", "display_source_code(CosineAnalysis)" ] }, { "cell_type": "code", "execution_count": 22, "id": "031c5f76", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:32.721510Z", "iopub.status.busy": "2023-09-26T17:44:32.721299Z", "iopub.status.idle": "2023-09-26T17:44:33.746892Z", "shell.execute_reply": "2023-09-26T17:44:33.746236Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtUAAAHgCAYAAABq7JHoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAADglUlEQVR4nOzdeXxU5fX48c+Zyb5vZCGEPexb2ARFQFFBcd+t1mrrUmurtq6tVeu3P61Va6VutS5Vi3UHl6q4L6ggQkD2nUAIIQmErJN15vn9cWeGSchOksly3q/XvCB3nrn3ZJnk3Oeeex4xxqCUUkoppZRqO5u/A1BKKaWUUqq706RaKaWUUkqpo6RJtVJKKaWUUkdJk2qllFJKKaWOkibVSimllFJKHSVNqpVSSimllDpKmlQrpZRSSil1lDSpVkoppZRS6ihpUq2UUkoppdRR0qRaKeVXInKFiBgRGejvWLoTEZnt/rrN9ncsSimlNKlWqlOISIyI/EtECkSkXES+EJGJXfE4InKOiHwoIgdEpFpE9onI6yJyYnvHq3o+EfmJiNzk7ziUUqqjiTHG3zEo1aOJiA1YCowHHgIOAL8C0oBJxphtXeE4IiLA88AVwGrgTWA/kAKcA0wCjjPGfNce8foc1w4EAlVGfyG1mPv7HQRUG2Nc/o6nMSLyP2CMMWagv2NRSqmOpEm1Uh1MRC4EXgMuMMa86d7WB9gKfGiM+UlXOI6I3IKVjD8K/K5+gisiPwW2GGNWtEe8qm1EJIQunkj70qRaKdVbaPmHUm0gIqEistn9CPXZHiciuSLynXsGFuB8IA9Y5BlnjCkAXgfOEpHgJo5zgrtu9pwGnvuJ+7np7XCcUOD3wGbgloZmjI0x//FNqEVksIi8ISKFIuIQkeUiMr+Bff9GRDa4xxwSkZUi8hOf54+oqRaRLBH5n4jMEJEVIlIpIjtF5PIG9h8jIo+KSLaIVInIdhG53T2T2ywROVVElrrLZUpF5H0RGe3z/Iki4hKR/6v3Os/X/zqfbUZEHheRS0VkizvuVSIys4HjporI8yKS5457g4j8vN4YT930xSLy/0QkB3AAUQ3VVIvIlyKyXkTGichX7q/5dhE53/38LBH5XkQq3PGddJRxXSgid4rIXvfn+pmIDPWNB5gPDHCPNyKS1ZLvi1JKdTeaVCvVBsaYCuBnwFDgPp+nngCigSuMMU73tgwgs4GZxRVAGDCsiUN9CWQDlzbw3KXADmPMsnY4zgwgDvivT9yNEpEk4DtgLvAkcCcQArzrewIgIlcD/wA2AjcB9wBrgGOaOwbW1/ZN4BPgZuAQ8EK9hDcM+Aq4DHgJuAH4FvgL8EgLPo+fAu8DZcDtwJ+BUcA3niTfGPO5+3P8vbjr00UkBXgM+BT4Z73dzsKa7V8I3A3EA0tEZIzPcZOA5cBJwOPAjcB24DlpuP74Lqzk9GHgD0B1E59WLPA/4HvgNqAKeFVELgJeBT4A7gDCgTdFJPIo4roDqzToYayv+TTgZZ/n78P6fh8Afup+NLQfpZTq/owx+tCHPtr4AO4HnMDxWDPFBrix3pgy4LkGXnuae/zcFhyjEoj22dYHqAH+1B7HwUpGDXB2Cz/vv7vHz/DZFgHsBHYBNve2t4H1zezrCve+Bvpsy3JvO77e51wJPOyz7Y/uzzu93j7/AtQCaU0cNwIrUf9Xve1JQJHvdqyTkm3AeiAYK2ktBvrXe61xPyb5bOsPVACLfLY9C+wD4uu9/hX3sUPdH89272+HZ5vPWM9zs322fenedonPtuHubU7gGJ/tp7i3X3EUcW0Eghr4ORrjs+1/QJY/3p/60Ic+9NGZD52pVuro/AnYALyINZv5FdbMrK9QrNnC+ip9nm/KS1iJ3Pk+2y4CArBmQ9vjOFHuf0ubicXjNGCFMeYbzwZjTBnwL2Ag1mwvWIlYPxGZ0sL9+tpojFnqs/8CYAsw2GfMBVg3Zx4SkQTPA2sG2Q4cUXbh42QgBnil3mudWLO8J/gc24GV/I8EvsaaNf6tMWZPA/tdZoxZ5fPaPcA7wFwRsYuIAOcB72HdH+p77I+wrnTU79jyorGujrREGdaMtOf4W7C+D5uMMd/7jPP8fzB4b1RtbVz/Nsb4zpp7vl+DUUqpXibA3wEo1Z0ZY6rd9aY/YCWvVxpj6tcjV2AlxfWF+DzvuanQ7vN8mTGmzBizWUR+wCr3eM793KXAcmPM9tYepxEl7n8jmxjjawCHkzJfm3yeXw/8FauUYIWIbAc+xiox+bYFx2goYT2EVd7gkQ6MAwoa2UdiE/tPd//7eSPPl/h+YIz5VkSeAq4HPjLGPN/I6xrqsrIVa7a7D+DCSuavcT8aUj/uXY2Ma8jeBn4Gi7HKiLyMMcVWHu39evZpQ1z1v0eH3P/GopRSvYwm1Uodvbnuf0OwErX6CVAuVlu6+jzb9rn//QErGfW4F2smHKzZ6gUi0g8rcZ4G/LqNx2nIZve/Y7FKNtqFMWaTiAwHTgfmYc2E/kpE/s8Yc08zL2+stlt8/m/Dqrl+sJGxW5vYv+dK3U+xWgfWV1vnoNaNnrPdHw4RkTD3DHZreY67EOsKR0PW1vu4pbPU0PjXrbmvZ1viasn3SCmlegVNqpU6CiIyDutmtH8DE4BnRWSsMabYZ9ga4HgRsZm6NxEeg9XJwZP4XUrdEo2dPv9/FevGu0vcY2qw2uf5aulxGvIN1izjJSJyv2n+ZsXdWLW69Y3weR4AY0y5O9bXRCQIqzvJnSLyF2NMZQP7aI0dQIQx5tM2vhYgv4Wvvxer/OMWrBn4B7BqiOtLb2DbMKzvgWdGvRSwtzHujlJAx8SlfVuVUr2C1lQr1UYiEgi8gDUDfCNWzW0S1k18vt50bz/X57UJWPXA7xljqsAqLzDGfOrz8CbVxpgDwIdYXS4uBZa4t7X6OA1xz7j+FStp/Ku7vrb+53uZiEx1f/gBMFUOt/NDRMKxygaysG5gQ0Ti6x2n2v2cYC34crReB6aLyNz6T4jVaq+piYOPsEo8/uD+XtZ/fR+f/x+DlUw/aoz5G1Y/71+LyKwG9jtdfFaxFJE04CzgY2OM033C8hZwnm9HkIaO25k6MK5yrHpspZTq0XSmWqm2+yPW7PQcY0wpsFasXsb/T0TeNMZ84B73Jlabsn+LyCgOr3Rox2ox11IvufcFVou1+o72OA8Bo7Ha150gIp4VFZOBs4GpwLHusQ9gzZp/KCL/AAqxWgwOAs7zmSn/WET2Y7W5y8NK2n8NvO/+mh2th4Azgf+JyAvAKqxWcWOxbuwciPV1OIIxpkSsHtP/ATJF5FWs2dr+WDcifouVOIdglUNsw2odCNbX8wysr/VY92y8x3rgI/fXpQrre+B5jccdWDdCfi8iz2CdaMRh3Qh4kvv//tARca0CLhKRR7BKnMqMMe+1U7xKKdV1+Lv9iD700R0fWElGDfCPetvtWH2hc4AYn+2xWO3KDmDN3H0JTG7lMYOwktciIKSRMe1xnPOwZnEPuj/HfVjlJ7PqjRsMvIFVNlKBdePi/HpjrsHqiHIA60bO7Vj1z1E+Y66g4ZZ6/2sgti+BL+tti8BqO7gNK4ktwEqIbwYCW/D5zgaWuL+uFe4Y/427LR5W2U0tMLXe6ya5vz5P+mwzWP2dL8Uqt6kEMvFpe+czNtE9dg9W3+lcrK4lV9eLzQDnNxJ3Qy31jmhh2MTX0wCPt1dcWCcx9dv0hWP1rj7kfi7L3+9ffehDH/roiIcuU65UN+EuZdiHVcrxC3/Ho44kIgZ4whhT/yZSpZRSPZzWVCvVfZyN1fbsJT/HoZRSSql6tKZaqS7OfZPcOKw66tXGmK/8HJJSSiml6tGZaqW6vuuAp4B84HI/x6KUUkqpBmhNtVJKKaWUUkdJZ6qVUkoppZQ6SppUK6WUUkopdZQ0qVbdnohcISJGRAa2YGyWe5EQpZRSSql2o0m18isROVZE/iQiMf6OpTkiMkJEHhSRNSJSKiK5IvK+iExuZHyqiLwuIkUiUiIi74jI4Hpj0kTkHhFZISKHROSAiHwpIic1sL+ZIvKuiGSLSKWI7BeRJSJyXCPHP1ZEvhERh3vsP0QkooFxk9z7KXF/Xh+LyIR6Y8JE5Hr3c7nucatF5DoRsTdy/CEi8l8RyReRChHZJiL3NfEl9n3tKSLynIisFxGniGQ1MXaoiLzp/vo53J/zCc3sP1BENrpPxm5pZuyl7nFlDTx3tYh8JSJ5IlIlIrtE5N+NneCJyC9EZJP7+7dNRH7T1LE7+lgiMlxE/i4i37nHtejktN4+TCOPOxoY2+x7wj0u2v1e2+b+2dnt/nno30wsn7iP/fjR7FNEThKRL9zvxyL3+/Onrfm6KKV6H22pp/ztWKzlm1/AWtGuLf6DteJfVfuE1KirgF8AbwFPAtHAtcByEZlnjPnUM9CdvH7hHnM/1sp7vwW+EpEJxpiD7qFnAbcDb2MthR2A1eHjExH5uTHm3z7HHwa4gH9iLR8eC1wGfC0i840xS3yOPwH4DNgE/A7oB9wCpAOn+oybCHwDZAP3Yp1o/8od51RjzBb30MHAY+59PgKUAHPdX4dpWEuU47PfCVir++UAf8NanbE/kNbUF9jHT4CLsFYj3NfYIBFJA5YBTqwly8uBK7GWR59jjPm6kZf+xh1Pk9zfxwfd+21IBrALeBdrxcBBwNXA6SIy3hjjjV1ErsX63r2F9TU8HviHiIQZY/7aXCwddKzpwA1Yy5FvAia0II6GfMKR/dNX+37Q0veEiNjc+xuF9fO1FRiK9XM5V0RGmgaWuBeRc92fzxFas08RORPr/bgM+BPWKpAXAi+JSIIx5u8t/qoopXoXfy/pqI/e/cBK9OosUd3Bx8sCXmjjaycBEfW2xWO1uvum3vbb3J/XFJ9tI7CWu77fZ9toIKHea4OxEpzsFsQUhpVgL6m3/QOsZNR3OfCr3DGd4rPtfaylz+N9tqUApcBbPtsSgNENHP959z6H+myzAeuA5UBoG7/WfXEvMQ78j0aWtgaewErOhtf7muwBVjXymkSsE7i73LHf0kQcDwCbgYVAWSt+Tgxwh8+2UKyl2v9Xb+xCoAyIPYqfyTYfC4gDIt3/b9N7kQaWOm9kXEvfE8e6x11f7/VXuref08C+Q7BOOO5qKJ7W7BP4GOtkMNhnWwDW8vU/tuX7pA996KN3PLT8Q/mNiPwJa3YRYJfPZeOB7ocRkSsaeJ1xv9bz8RE11WL5o4jsFask4AsRGd1IHENEZEhz8RpjVhljyuptOwgsBUbWG34+8IMx5gefsZuxZnov9Nm2wRhzoN4+q7CS4n4iEtlMTA6gAIjx+XyigJOBhcaYEp/hL2ElVRf6bDse+NQcnjnHGJMLfIU1Axrh3nbAGLOhgRAWu//1/fxPAcYA9xpjKsQqHWmwRKSJz2ufMaamBUOPx1oQxzOj7vmavAtMFJH0Bl7zALAFK8lslPu1v8Wa6a9taexYJ27g8z0BTsA6AXuy3tgngHBgfiv2327HMsYUmgZmfdtCREJFJKSJIS16TwBR7n/z6r0+1/1vRQP7vg3rZO7hRo7dmn1GAYfc70NPnLVYJyoNHVsppQCtqVb+tQh4xf3/3wI/dT8K2mHf/wf8GfgRuBXYiTUDFd7A2M/cj7ZKxvqDC3gvNY8DVjYwdgUwpLlk2b1Ph/tRh4hEiUiCWDXe92MlsL7xj8WaWatzfGNMNbAGq4zAI5iGEwUHEOTed3Nxgs/nD3jqwatEZCVW6YRDRF4Vkbhm9tdaTcUP1kyul4hMxSpVuQlrhrIpjwJfGGM+aC4IEYkXkUSx6us9JTu+3xPP17z+z8QqrJKeDFqoM4/VCldgfZ8rxKpV/4nvk618T3h+Zv4sIie667BnYZXh/AB86vtid030HcDtxpjGkt7W7PNLYLSI/Fmsev0hInIXMNk9XimlGqQ11cpvjDFrRSQTuAR42xiT5XlORPq0db/u196GVdpwhjHGuLffB/zhqII+8ljHY9Vx/j+fzXFYyV5uAy/xbOuLNVva0D6HAucCbxhjnA0MeR2rnhmgGnga6wTCI6Xeseof/3ifj7cA00TE7jmWiAQBx7ifT20oRp9xN2Fddv/B5ynP7PDrwBLgL8B44PdAmojM8HxP2sEW4HgRiaw34zrD/a83fhERrLrw14wxy6SJG/JEZD7WjPv4FsaRg/U9B6t+/AZjzCc+z6cATmNMvu+LjDHVInIQ6+ehpTrzWC3xHdb3epd739cDL4tItDHmKfeYFr8njDEHROQi4Bnqnix8BJzvnjX29TesqxWvNhZgK/f5Z6x69TuBP7q3OYDzjDHvNHYMpZTSpFr1RCdhzbI+Vi95e5QGkmpjzMC2HEREEoH/YiUTvjNYoe5/G7pxsrLemPr7DAPewJp9PaJ7gtsdWIlEGtasaxB138vNHd/32E9iLYH+nIg8iHX16o8cTswbjNPtcawbv+bXS0o8HUZ+MMZc5v7/WyLiwEqw51BvtvEoPAWcAbwmIndizUb+CmtWsX78V2DN4p/f1A7dJwt/B/5pjNnYwjhOxarrHYl182j9KyKhWCdADan/PelKx2qWMaZO9xkReR5rVvx+EXnBPXvc2vdEAdaNjo8DG7BuoLwNa2b+Ap9jnQCcx+GTwKa0aJ/uGLcCb2JdTbMD1wALReRkY8zyFhxLKdULaVKteqIB7n+3+W40xhSIyKH2OICIhGPdQBcJzKhXa+25BB18xAutZMh3jO8+7VhdTEYBpxqfbg6+jDFrfF6zEKtDxgscThabO7732MaYf7o7aNzK4Q4eK7FOEu7EqsE+gojcitV54q4GyiM8+3+l3vb/YiXVxwKfikg0dROpamNMYUPHa4wx5kOxWsU9gPV1AOuGsjvdn0OZO94o97EfMsZkN7Pb32LdmHlPK+L4wv3fD0XkHWC9iJQZYzyt3SqwTn4a4v2euGvYfdseOo0xdcqh2utYreG++uNbF19W//4Cn/iqxWpp90+s8ptvaMV7QqwWe18Alxtj3nI/945YbRVfEJFT3d/3AOAfwH9867Qbib9F+3Rvfxyro81EY4zL/frXsRLxBbQsgVdK9UJaU626qgbLA1p7w1tHcM9kLsKqET3LGLO+3pBCrNmulPqv9dnWUML8DHA6cIUx5vOWxOKuk34XOFdEPAmq53J6Y8evc2xjzJ1AElZZyDhjzBQO/27YWn8H7ptH/4o1k/v/6j/vs//6N4V5yhFi3f8ucMfqeSxqYF/NcieTSVjJ+mSsjhLF9eK/BSvRfM1zIyxWm0GAWPe2IHei/0es70WUz9gIrAqSge4rFE3FswNrRvRSn825gL3+a90/S/Ec/prdQt2vSZPJ4lEeqzV+qBdXk729sVo0glX2Aa17T1yBlWj/r964d93/embGLweGA0/L4ZubB7qfi3R/HNaafbq/Rr8A3vck1ADum2Y/BCa7xyil1BF0plr5W2O1tZ4Z5Zh62wfQvN3uf9OxblAEvLNtsQ2+ooXcN1y9hFXCcKEx5qv6Y4wxLhFZx+ESBF/HADvrd1wQkYew2nvdZIypP8PbnFBAsGbNK4D1WN0qJmPVunqOEYR1yfv1+jswxhzCmlH0OAnYi9VOzjfOs4BnsRLg6xuJZxXWLHb9emxPLa9n5vVB6nbgaPNVBGNMOVZfYU+cJ2F9Lb51b+qP9b1vqIPJH9yPDKxWexFYZQG3NTB2F/AOcHYzIYVSd1Z2jfvfyVidXfD52Obz/EvU/T60ZFa5rcdqjUupe1VhZ2MD3TwLuhRAq98TSVg/z/VPoAPd/3r+bvV3b/uWI13ufpyD1XO6pfuMd/+/oZP3QKyvn99P7JVSXVRH9OnThz5a+gB+iZVYT2jguQJgUb1tD7vH/8ln2xX49NcF+mDVlP4PEJ9x97nHvVBvn0OAIS2M9wn3Pq5pZtzt7nGTfbYNx0p2H6g39lb32Pua2WdiA9tisHoy76m3/UOsmb9In22/cB9nXjPHucg97uZ622diJXmf49PDt4HXJ2PVyS4FbD7b76den+IWfs0b7VPdyPhj3V/nx3y2TcRKhH0f17jj+bf742isHtf1x53t/pwr3P8/xr3PABroLw1MdR//JZ9toVg3Fb5Xb+x/sOrA45r5nDr8WLShTzXQp4FtkVglOAVAUGvfE8DN7nFX1Nvvje7tF7k/HtHI98pg3aR8NpDSyn3asU7uttSLPQJr9n1Ta3529aEPffSuhxjTXjfhK9V6IjIFq6XWB1j1xDVYyUC5iPwF66a857DqfGdirSo4CasH8p/c+7gCKzEaZNwdRNyt5n7v3u8HWLOQp2KVALxvjLnCJ4YsaP6GRRG5CesGtmUc2QMYYLGxZkxxtwdbjZVgPOz+vH6H9Ud7gnHXyYrIOVizvtuw2gDW94kxJs89dhXW7PH3WKUU/bFmt/tiJQVv+sQ6Easrw0bgX1ilDjcDXxtj5vqMmwncjdVu8CBWLemVWKvPnWHcNyCKyACs9oRBWMmXb/9rgLXGmLU++73L/fl8gjVTOB5r9vpVY8xPaIaIjAPOdH94GdZM49/cH/9ojHnPJ67XsS7j78daTOeXWDPss0wTPZjdpQK7gFuNMY31N/aMfQGrS0SEz7YYrO/Ha1gz4OVYN0JeiXVSMc0Ys81n/K+wTsrexOo6cTzWbOqdxpj7mzl+hxzLXe7iWb78OGAe1te5CCgyh+u0G4vrT1jJ63tYJ3cpwM+xfjZ/aox52WdsS98T8VhXW+Kw6rI3YJ0UXYX1fZ1orLKnxmIywBPGmF/7bGvxPt03vP4/d6wvueP7Be4bQ30/J6WUqsPfWb0+9IFVw7oXa6lp3xnnUKxSgyKsJO41rFnoJmeq3dtsWMniPqx2WF9gJVxZHDlTnUULZkKxbgY0TTwG1hvfD6uTRzHWCoXv4bPyoHvMn5rZ52yfsddjzf4WYCUk+VjJ5PGNxDsD69J4hXvs4/jMXLvHDMFKugqwkrNNWCcyQfXGzW4mzj/VGy/Ar7Fm/KqxEq4/414lsQVf6yuaONYLPuNisZL2XKya3Z1YNy1GtuAYA2lmRcV63/uyetuCsDrK/Oj+Hle7f5aerf+z4POaq7GSuCqs2dyb8Lma0sTxO+RYPl+Dhh4teU+cjHVCluuO6ZD75+nERsY3+55wj0vFOpne6Y5/H9bJYUILYjI0sMJja/YJ/ATr5PUQ1u+P5Vgt9Trkd6A+9KGPnvHQmWqllFJKKaWOknb/UEoppZRS6ihpUq2UUkoppdRR0qRaKaWUUkqpo6RJtVJKKaWUUkdJk2qllFJKKaWOkibVSimllFJKHSVNqpVSSimllDpKmlQrpZRSSil1lLpcUi0iqSKyUEQOikiFiKwTkck+z4uI/J+I5Lqf/1RE0uvtI05EXhaREhEpEpHnRCTiyKMppZRSSil19LpUUi0isVjLKtcApwKjgJuxlor1uA24AfglcAxQDnwkIiE+Y17GWpL6ZOB0YCbWcrRKKaWUUkq1uy61TLmIPAAcZ4w5vpHnBdgH/M0Y87B7WzSQB1xhjHlVREYCG4EpxpiV7jHzgA+AfsaYfQ3sNxgIrrc5Dihsn89MKaWUUp0kEthnulKCo3qFAH8HUM+ZWLPObwCzgBzgSWPMM+7nBwHJwKeeFxhjikXke2A68Kr73yJPQu32KeDCmtle3MBxfw/c086fi1JKKaX8ox9WDqFUp+lqSfVg4DrgEeB+YArwDxGpNsa8iJVQgzUz7SvP57lkIN/3SWNMrYgU+oyp7y/uY3pEAnuzs7OJiopq6+eilFJKqU5UUlJCWloaQKm/Y1G9T1dLqm3ASmPMH9wfrxaRMVj10y921EGNMVVAledjq8oEoqKiNKlWSimllFLN6lI3KgK5WPXQvjYB/d3/3+/+N6nemCSf5/YDib5PikgAVo30fpRSSimllGpnXS2p/hYYXm/bMGC3+/+7sBLjOZ4nRSQKq1Z6mXvTMiBGRCb57ONErM/1+w6IWSmllFJK9XJdrfzj78B3IvIH4HVgKnCN+4ExxojIo8AfRWQbVpL9Z6yOIG+7x2wSkSXAMyLySyAQeBx4taHOH0oppZRSSh2tLpVUG2N+EJFzsG4cvBsrab7JGPOyz7AHgXCsvtMxwDfAPGNMpc+YS7ES6c+wun68hdXbWimllFJKqXbXpfpUdxXukpLi4uJivVFRKaWU6iZKSkqIjo4GiDbGlPg7HtW7dLWaaqWUUkoppbodTaqVUkoppZQ6SppUK6WUUkopdZQ0qVZKKaWUUuoodanuH0oppZRSXZGIxAEjgXisdr2qd6kGCoCNjd0Eq0m1UkoppVQjRCQkPDz8J6NGjTqmf//+cQMHDiQkJERERNun9RLGGHE4HGbnzp1kZ2cfCAkJ+aqqqupNY0yt7zhNqpVSSimlGiAiweHh4VeedNJJJ1199dV5s2bN2hwREeH0d1zKP4qKigI++eSTPs8+++x5X331VaCI/NcY4/150KTaDxwOByEhIdhsWtKuVFdijKGiogKn00lYWBh2u93fISml/Gvs5MmTZ/3pT3/KmjBhQqm/g1H+FRMTU3vBBRfkJiQkVBUVFZ2yYsWK74Gtnuc1qe5ETpdh+fYCPn3lKWw2O/3S+jF61CjGjRtHSEiIv8NTqlfLzc3lhRdeoLq62rstOTmZ9PR0Jk2a5FlQQinVi4SEhIydPHmyXRNq5WvWrFmFo0ePTl25cuVofJJqnSrtJEvW5zLjr59z1fPfAuByOdmzezcffvghCxYsYPny5bhcLj9HqVTvYYyhsrLS+3FcXBw1NTUAiAgA+/fvZ+nSpSxYsIBvv/3WL3EqpfxDRCQpKWns+PHji/0di+pabDYbEyZMcCQmJo7y3a4z1Z1gyfpcrluYiXVHQxAvVEwkSqroZythWEABMZWVfPTRR2zatIlzzz1XZ8SU6mAVFRW8++67lJaWcuWVV2K32wkODuZXv/oVsbGx2Gw2SktLycrKYvXq1WRlZZGUlOTvsJVSnSsgMDAwODo6usbfgaiuJyoqqjowMDDCd5sm1R3M6TLc+95GfG8RNtgoNqEUO0PZ5ExkUkQxE+17yMnJobCwUJNqpTpQcXExL7/8MgUFBdhsNnJycujfvz8ACQkJ3nFRUVGMGzeOcePGkZubS0pKive56upqgoKCOj12pXoCp8uwYlch+aWVJEaGMHVQHHab+DushojNZhO73a5dPtQR7Ha7sdW7OU6T6g62YlchucWVjT7vQvihLIZfXjyd/uFOBg0a1InRKdW7FBYW8uKLL1JSUkJkZCSXXHJJnWS5Mb5jDh48yAsvvMCJJ55IRkZGR4arVI+zZH0u9763sc7fxZToEO45YxTzxjT/XuxqtmzZEnbdddedkJmZOaysrCw8NDS0Mi0tbf9tt9321RVXXJHt7/hU59KkuoPllzaeUPsqI5j09FTvx8XFxTidTuLi4joqNKV6lfLycl5++WVKSkpISEjgsssua9NVoR9//JGysjLee+89wsLCGD58eAdEq1TPU7cU8rD9xZVctzCTpy6b2O0S6/nz519UW1trf+CBBxZPmDDh0K5duyLef//9Qfv37w/zd2ztoayszK4tBFtOb1TsYImRLevq4TsuPz+f5557joULF1JeXt5RoSnVa9TU1PDf//6XwsJCYmJi+NnPftbmMqsTTjiBiRMnYozhzTffJCcnp52jVarnaagU0sOz7d73NuJ0dZ9Kiz179oTs2LGj/5133vnJL3/5y6xp06YVX3LJJTkLFy785o477tiybNmyGBG5Z/Hixcm+rxGRe/71r38NBPjXv/41UETuWbBgwZDU1NRrAwMD7xw2bNjPNm3aFP7II48MTUpKuj4kJOT3xxxzzHkHDhzwruKYnp5+xcknn3zqvHnz5oWGht4eERFxy4033jgxPz8/cMaMGWcFBwf/PiEh4YZHHnlkqOc11dXVMnPmzDPj4uJuDAwMvDMxMfHXV1999TG+n9Nxxx139oQJEy7+yU9+cnxUVNTN/fv3//VFF100Kzk5+Vf1P//U1NRfnnfeeSd0yBe3m9KkuoNNHRRHSnQIjVWLCdalr6mDDs9Ie/rjHjp0iMWLF2NM9/klo1RXdODAAQoLCwkNDeWyyy4jIiKi+Rc1QkSYP38+Q4cOpba2ltdffx2Hw9GO0SrV8zRXCmmA3OJKVuwq7LygjlJiYmJ1UFBQ9aJFi0aUlJQcVVP7v//977Pvu+++D1577bXnCgsLo84888wLnn322WlPPfXUW0888cTL69evH/K73/1uqu9rli5dOiE2NtbxwQcfPHPGGWesePzxx08/8cQTL5w0aVL2kiVLnh4/fvyOu+6661xPMl5bWytJSUklTz311BtffvnlE1ddddVXL7744px77rlntO9+N23aNCgrKyvh1VdffWnhwoX/ve2221bn5+cnvPrqq309YxYtWpScm5ub9Nvf/nbN0XzePY0m1R3MbhPuOcPquFI/sfZ8fM8Zo+rcpBEREcEll1xCQEAAO3bs4JtvvumcYJXqoVJSUrj22mu55JJLiI+PP+r92Ww2zj//fOLi4igpKeGdd97Rk1+lmtDSUsiWjusKQkJCXH/84x/f/uqrrybEx8ffMXjw4J+fffbZc959991Wtwq67bbbPr/iiiuyzz333P2nnnrq6u3btw/417/+9f655567/xe/+MWeY445ZuPKlSvr3HSVmpq6/5VXXvn6hBNOKHzxxReXBgQE1EZFRTkWLFiQecIJJxQuWLDgK4fDEbpkyZIkgLCwMNcbb7zx5UUXXbTvuOOOK7r//vvXzZo1a83//ve/Okl1UFBQzccff/zuaaedVnDaaacVTJo0qWTUqFE7nnnmGe9NJP/85z8zhg4dmjVjxoxDbf369USaVHeCeWNSeOqyiSRH1y0FSY4OabSGLDExkVNPPRWAL774gn379nVKrEr1VDExMaSlpbXb/oKDg7nggguw2+1s3bqVlStXttu+lepp2lIK2R3cddddm/bt2/e3Rx555JWpU6du//HHHweec845195yyy0TWrOfOXPm5Hn+n5iYWBYYGFjjm7DGx8eXlZSUhPu+ZtCgQd7XBAUFmbCwMMewYcO820aNGlUGsHfvXu/rrrvuuilpaWnXhIeH3xocHPyHL774YtKBAwfq1MKlpqbm1a+jvuSSS1Z99913Y4qKigLKysrs33777dhzzz13dWs+x95Ab1TsJPPGpHDyqORWtRHKyMhg586dbNiwgXfeeYdrrrlGl01WqoWMMbz77ruMGDGiw24mTE5O5uSTTyY7O5uRI0d2yDGU6gk8pZD7iysbrKsWrIkm31LI7iImJqb2N7/5zc7f/OY3O4GvZ86ceeZzzz03+8ILL/w3UOcqVkVFRYOTmaGhod7V30QEu91eZzU4EcEYUydhCAgIOGKM7zZPtzeXyyUAd91115hnn332lKuvvvrjk046KTs+Pr76T3/607Fbt27t57ufkJCQI/py33zzzVsfeOAB58MPPzwiODjY6XQ6bbfddtvGZr40vY4m1Z3IVltDyt030j8picB+/ag4ZirhU6cigYENjhcRTj31VHbu3El+fj7ff/89xx57bCdHrVT3tHbtWtasWcO6deu48cYbiQgOpuy776hYlUn13mxMdQ0BCQmEjBxBxKxZBLagtV5Dpk6dyjHHHNP8QKV6MU8p5HULM+lbdoBpueuxGxdvDDux0VLI7mro0KEFq1atGjF06NBygF27dkUC+wE+/vjj5CZf3IGWL1+eNnjw4Ownn3zyB8+23NzcFp3FhISEuE444YQ1b731VkZAQIBz+vTp6+Pi4mo7LtruSZPqTlRbUEDFqlVUuD8++K9/EZCYSNzPfkbsTy/D1sBiEuHh4VZivWsXtbEDeWdNTldvlq+U31VVVfHJJ58AMPO446j67yvkvvACzkONlP+JEHnSSST85teEDBvWqmN5ljT3qKysJCSke13CVqo12rp4y8zq/SzavpCQ9WsAKA4K58302STHhHXLPtXbt28PPe200y4877zzVk+fPj0vPj6+6pNPPun7xhtvHDdp0qTNcXFxtQMGDNj71FNPzRgzZsyhPXv2hD/88MMn+iveQYMGFS5dunT8ggULhowdO7boiSeeGJeVldU3Pj6+qCWv/+1vf5t50kkn/RrgpZdeeq5Dg+2mNKnuRLboGFIf/Ts1ufup2rqVsq+/pjY/n/yHHqLozTfp++CDhI4dc8TrciSBBzbkk/vd4fKl7twsX6mOtnTpUsrLy4kNDyfpvvsp2LsXAHufBCJnzyY4PR0JCqImdz+OFSuoWL2a0k8+ofTzz4n/xS/oc8NvkIDW/XosLy/n/fffJzc3l+uvv56AVr5eqe6gLYu3uBwO8v76IEWvvUYIgM1GzbiJVI+ZxH/Pn8zUYcndcpIoMTGxeuTIkXsXLlw47dFHH41zOp22mJiYklNOOWXVM888sxTg6aeffueXv/zlWWeccca1ffr0OXDHHXd8csMNN/zUH/E+/PDDKzdu3Jh8xx13XACYY489dv3cuXN/WLlyZXpLXn/CCScUDho0KLusrCz00ksv1V6iDRC9Y/1IIhIFFBcXFxMVFdVhx3FVV1Py7rvk//1RnAcPIoGBJN97LzHnnuMdc2SzfEMQTmrc50PdsVm+Uh3p0KFDPPHEEzidTmZ8vZS+OTkE9E0h8aabiDrttAaT5art2ylYsIDSTz4FIGzqVPr9YwH2mJgWH7e6uprHH3+c0tJS5syZw4wZM9rrU1KqS2hs8RZPOtzQ36OavHyyr72Wqs2bAYg+/zxir72WwJSUDjnxLCkp8fSgjzbGlBzNvkQkaNiwYY8+8sgjzJ8/P799Iuy+XC4XiYmJN5x55pk/PP/888v8HY+//ec//+l31113HczKyrrds027f/iRLSiImPPPZ8gH7xNx0hxMTQ25f/gDhS/9BziyWX64VHFK0DZOCd6KcW/tbs3ylepon3zyCU6nk6T9+0nJySHq9NMZ/O67RJ95ZqOzz8FDh9LvscdIffTv2MLCcKxYwe4rrqS2sOU9c4OCgpgzZw5weKZcqZ6iLYu3VO3cRdbFF1O1eTP2hAT6v/Bv+v6//8fq7Gwee+wxNm7U+9y6C/dy7FNLS0sj7r77bu360QhNqrsAe3Q0/R57jLgrrwQg7/77KVz48hHN8p3GRqKtjD42B2m24m7ZLF+pjpSfn8+mTZsQl4vxmavpc/319H3oQewtXOwlat48Brz6CvaEBKo2b2bPz36Gs7i4xccfPWYskXF9qK6u5s0PPtcTXtVjtHbxlpr9+9nzi19Qm5tL0KBBDHz1FcKnTaOqqopvvvmGkpISqqqqOil6dbRGjBhx68KFC2fdcsst7w0cOLD7NBPvZJpUdxEiQuJttxJ/3S8BK7Eu//LLOmMqCWRTbSIAGYE5eOYHulOzfKU6UtB333H8l18xev16as64mO2nXUJr8lqny7DaHs/2PzyEKz6Bqm3b2XvTTZiaIzpMHWHJ+lyOf/ALFuVaLV+3bVjDiQ8sYcn63LZ+Okp1Ga1ZvMVZUsKeq67yJtQDXl5IUD+ra9uKFSuoqKggPj6e8ePHd2TIqh0ZY+4tLy9/6L777lvn71i6Mk2quxARoc8NNxBzwfngctH3sfsYUFL3D/L62mRqjI14WwX9bUVA92uWr1RHqNiwgX1/vJuU3Fw2VvXh8rJ0LnlmOTP++nmLEtsl63OZ8dfPueSZ5fzq64P8etzlVAYE4Vi2nP3339/sa69bmElucSV7XdEUuMIIFBeJjt1ctzBTE2vV7bV48ZaIYPbd8Xuqt+8gICmJ/s89S0Cc1bWtpqaG5cuXAzBz5kxvH2Wlegr9ie5iRITku+8mbNo0pLKCP2b+l2Dn4VmyKgLYUGutgJoRuI+UqOBu2SxfqfbkLC1l869vRGprWJY8mudHz/c+t7+4stnE1jcp9tgV3ZcHJl2KC6HolVcpWbKk4WMfUWsqrKnpC0B/exGCS+99UN2eZ/GWxnp0CFYXkKFfvE3Z558jgYH0e+IJAvv29Y4JDAzkggsuYPz48YwZc2SnK6W6O02quyAJDCT1bw9jT0igX1EuV61/r84vsg21SVQbG3G2Cm6cEtktWxEp1Z7W/9+fWTJ9KivGT+SRiRdi5PCvtsZuovJo6gas71NG8/owq61s7t33ULNv3xFjGqo13euK5uvqQbxdNRoXNr33QXV7nsVbgCMSa8/H940K4MCjjwKQdOedhI4ZfcR+Bg4cyNlnn62z1KpH0p/qLiogPp6+DzwAwOm7vuPE8izvc9UEkGO32hbZDu32R3hKdRmln33G6oJ8qoOD+WHQWMqCwo8Y09RNvc3dgLVwxClsjk3DVVLCvj/cSf02pA3Xmgo7nPE4fX7F6r0PqrubNyaFpy6bSHJ03VKQ5OgQnrpoLAOf/zs4nUTOm0fMRRfWGdPT2/dee+21U2NjY2+y2+13z58//xR/x6P8Q5PqLixixnHEXnopAL/f/A6vXJ7Bgosn8MrV03jk1+dz1llnce655/o5SqX8x1lczM77/0J2//4ALJdBTY5vKLFtLtl12uw8OOlSXIFBOJYvp+Tdd+s833ytqSFcqvTeB9UjzBuTwje3n8grV0/z/j365vYTmfTte1Rt2YI9Npbku++qs9KoMYbnnnuOjz/+mIqKiib23j29/fbbSc8+++zcP/7xj++vXr36kRdffPGLpsbn5uYGzZs3b15sbOxNgYGBdw4aNOgXr776at/Wjrnwwgtni8g9vo/ExMRfN3XstrymOS2JtT1e01bHHXfc2RMmTLi4/vZ//etfA0Xknj179rTbL2dd8quL6/Pbmyj99FNqsrMZ8vHrTL/pJu9zcbET/BaXUl1BwYIFbImPw2W3k+8M54BpunVeQ4ltS5Ld3IgEqn5yJaEvPk3eXx8kYtYs78IwnlrT/cWVR5SQREsFJwbtIMhmmDzgrJZ+Wkp1aXabMH1IvPfj6uxsDj79NABJf7zTe2Oix7Zt28jJyeHAgQPMnj27M0PtFK+//vqwAQMG5Nx8883bWjL+zDPPPDM7OzvxoYceWpyenl76xBNPjLviiisuHz58+BMZGRmlLR0DkJSUVPDpp5++5Pk4ODjY1dzxW/ua9PT0K84666w1Dz/88Jq2fj7t8ZruQGequzh7RARJf7wTgIPPPU/1nj1HjDHGUNOCll9K9SRV27dT8OZb7Bg6FIC9wWnN3kTV0E29Lb0Ba9xvryNo6BCchYXkL1jgfb6pWtNyE0SI1BJGFdu2bmnV56dUd5H/4EOYmhrCj51O1GmnHfH8999/D8DEiRMJCgrq7PA6VEJCwg2vvPLKibt27UoTkXuOPfbYc5oaX1hYGJCZmTnqlltu+eSqq67aPWvWrMLXX3/9yz59+hT++c9/ntLSMR52u901ZsyYMs8jPT3d0VzMbXnN0Xw+7fEasJL7k08++dR58+bNCw0NvT0iIuKWG2+8cWJ+fn7gjBkzzgoODv59QkLCDY888sjQ1n4ey5Yti6k/gy8i96Snp1/Rmv1oUt0NRJ18MuEzZkBNDfl/e6TOcxs3buSxxx7j66+/9lN0SvlH3l8fJKt/f6qDg4mNjeWXZ1rLgjd2E9U9Z4xq8KbeltyAdc8ZowgICSb57rsBKHr9Dap27vSOa6zWtE90OINHjgUOJxZK9STl36+g9JNPwGYj8Y476pR9gLUg086dOxERpk6d6qcoO87SpUufi4uLO/Szn/3sk3Xr1v1t3LhxOSJyT2Pjq6qqbC6XS8LCwmp9twcGBtauW7euf0vHeBQUFMRFRUXdHB8ff+O0adPOXbFiRXRzMbflNUfz+bTHazyWLl06ITY21vHBBx88c8YZZ6x4/PHHTz/xxBMvnDRpUvaSJUueHj9+/I677rrr3AMHDgS25vOYNGlS8bp16/7meSxatOjpsLCwivHjx7fqxjUt/+gmEm+7lV3ffUfpRx/hyFxN2MQM73OHDh1i9erVzJ49G7vd7scoleocZUuXUr50KTtPnQfA1KlTmTY2lacus3Hvexvr3HiYHB3CPWeMYt6YlEb350mKm3tt+NSpRJx4ImWff07+w38j7ckn6uzj5FHJrNhVSH5pJYmR1sx4eVkpj25Zw549eygoKKBPnz7t/eVQyi+M00me+4b6mIsuJGTYsCPGeE4mR44cSYy7ZKon6dOnT/WhQ4diTjrppD1jxowpS0tLK+nTp8/BxsanpKRUDxw4cO/f//73Wccee+yBUaNGld1zzz1js7Ky+iUkJBS2dAzAtGnT9o4aNertiRMnHty1a1fEo48+Onvu3LlXbty48cmUlJTqho7fktdceumlx7/55pvHe15TU1MTsGDBgn6PPfaY9zLE0qVLn5g6dWpxS2Nt7degMampqftfeeWVrwGOO+64pYsWLZoRFRXlWLBgQab7+/HV2LFjJy9ZsiTpsssu2+t53bp164YFBwf/wXdfLpfLewYYFBRkxowZUwZQVFQUcPrpp188ZMiQ7FdfffXLpuKpT5PqbiJk2DBizjuXojfeJP/hhxnw8kJEhOHDhxMREUFZWRmbNm3S3p+qxzMuF/kP/w2AU/oksntihndltsYS25a0nWzpaxNvuZmyr76i7PPPcaxcSdjkyd7n6teaAkRFRTF8+HA2b97MypUrOfXUU4/2S6BUl1Dy4RKqNm3CFhlJnxtuOOL56upq1q9fD8CUKY1e1e/WlixZkgRwyimn5AHceeedm++8887NTb3mxRdfXPTzn//8rIyMjN/ZbDbTr1+/3KlTp67ftWtXSmvG/O53v9vus9u8c845J2fYsGE3Pfjgg6P//ve/r27o2C15zZ///OeV11xzzQbPoMsvv/zc2bNnb/r5z3++ybNt3Lhx3rrnlsTalq9BQwYNGpTn+X9QUJAJCwtzDBs2zLtt1KhRZQB79+6t0wYqPT1919NPP/2+77aPPvoo9S9/+csR3R7mzp17VmVlZdCyZcteCggIaFXbGk2qu5GE3/yG4nfepSIzE8fy5YRPn47dbmfixIl8/fXXrFy5UpNq1eOVfvYZVVu2YAsPZ+ivrmNkvdmvhhLblmrJa4MHDybm/PMpeu01Cp54ggH//nez+508eTKbN2/mxx9/ZM6cOT2urlT1Psbp5MCTTwIQ//MrCYiNPWLM+vXrqa6uJj4+ngEDBnR2iJ1i+fLlyQkJCYWJiYktvrFp5syZh7Zv3/5Cfn5+4P79+4PHjRtXNmXKlPP79OlzqDVj6uvfv39lYmLiwZ07d7Z4RbiGXjN48OCKwYMHe9u0BAUF1fbp06d81qxZDc4ityXWtrwGICAgoM5NlSJSZ5un/7nvLDRASEhITf34t2zZElV//5dccsnMdevWDVmyZMkzjc32N0VrqruRwMREYi60en8WPPGEt+/npEmTEBF2795Nfn6+P0NUqkMZl4sDT1h/yGMv/6m3A0dnS7j2GggMxLFsOY7MzGbHDx48mNjYWKqqqtiyRW9YVN1fyYdLqN65E1t0NLGXXdbgmAEDBjBt2jSmTZt2RK11T7Fx48bk/v375zU/8kiJiYk148aNK8vKygpZv3790BNPPPGIXw4tGeORl5cXdODAgbikpKSylsbQltc0pjWxHs1rOsqf//znkW+88cashx9++I2ZM2c2mdw3Rmequ5n4q6+i6LXXqFi5CseKHwg/Zmqdy8urVq3Sy8uqxyr7/HOqNm9m18iRbEhKYnpODqmpqZ0eR2DfvsScfRZFb7zJgSefov+zzzQ5XkSYO3cuQUFBDBw4sHOCVKqDGKeTA089BUD8FT/DHhnZ4Lj4+Hjmzp3bmaF1up07dyYfd9xx3kTwvvvuG7FgwYKT8vPzH2/sNQsWLBhijJEpU6YcyMzMjHvggQdOSUpKOvDAAw+sbs2Y+fPnn3L22WdvGTNmTPHWrVsj//KXv8wWEdfNN9+8zjPml7/85dQvvvhixJYtW15q6Wvy8vKCCgoKvJfTFi9e/CbA+vXrvT1Lhw0bVh4UFGRaGmv9OFryms70/vvvJ/75z38+56yzzvpm5syZBZ7PNSwszOk7a98cTaq7mcCkJGIuuIBD//0vB554gvBjrLupMzIy2Lx5M+vXr+eUU07RGxZVj2OMoeDJJzHAjokZFG7ZQtqgQX5JqgHir7mGokWLKf/mGyp+/JFQd113Y4YPH95JkSnVsUo//pjqHTuanKXuDWpra2Xfvn2JGRkZX3m2HTp0KKSgoKDJGrLCwsKQxx9/fE5xcXFUWFhYxTHHHLPp+eef/ywsLMzVmjH5+flRN9988/kOhyM0PDzcMWzYsD0ffvjhs8OHD3f47CesoKAgrjWv+c1vfnPsG2+8Maupz+G7775bMH369KJWfD514mjJazrTF1980bempiZw0aJFMxctWjTTs33o0KG7t23b9kJL9yM9fenQthCRKKC4uLiYqKgjSm78riY3l+2nzIWaGga+/hqh48bhcrlYsmQJI0eOZODAgT32Upvqvcq/+449P/8FhX378umsmQQEBPC73/2O0NBQv8W07/d/oHjxYiLmzCHtiUYnpo5gjNH3qOqWjDFkXXAhlevXk3D99fT5zZGL8dXU1PD+++8zbtw4Bg0a1Kk/6yUlJURHRwNEG2NKjmZfIhI0bNiwRx955BHmz5+vtZWqjv/85z/97rrrroNZWVm3e7ZpTXU3FJiSQrS7wX7hCy8CVnH+aaed1um/wJTqLAdftH7Wc2dZEygjRozwa0INEH/VLwCrLKWhhZnqq6io4MMPP+Tpp5/G5fLLhIxSR6UiM5PK9euR4GBiL/1Jg2M2bdrEjz/+yHvvvdfJ0SnlX5pUd1NxV/wMgJKPPqImN9fP0SjVsap27KD8q69x2WzsDLZK/caNG+fnqCB4yBDCjz8ejKFw4cJmxwcFBbFu3Try8vLY6bN4jFLdReELLwAQfdZZRyxH7rFunVWeO378eJ3kUb2KJtXdVMjIkYRNnQpOJ4deftm7vaCggCVLlrBmzRr/BadUOyt86T8AFM2dS0VVFeHh4QwZMsTPUVniLr8cgOI338JZWtrkWLvd7m17+eOPP3Z4bEq1p+o9eyj99DMA4n52eYNjysrK2LFjBwBjx47ttNiU6go0qe7GPLPVh15/A1d5OQA7d+7k+++/Z8WKFf4MTal2U3voEMVvvw1A9gjrZr8xY8Z4+5H6W/iM4wgaMgSXw0HRW281O37ChAkAbN68mcrKyqYHK9WFFL70HzCG8FkzCW7kpHbDhg0YY0hNTSU+vm394pXqrrrGXyXVJhGzZxM4oD+ukhKK/2ctFORJNnJzc7VnteoRihctxlRVETxqJP3HjiUhIcG7gmJXICLe2epDC1/GNFMrnZKSQp8+faitrWXjxo2dEaJSR83lcHhPbj0/7w1Zu3YtoLPUqnfSpLobE5uN2IsvAaDo9dcBCA8PJz09HcC7PKxS3ZUxxvuzHXvxxRx77LH86le/Ijk52c+R1RV95hnYIiOp2buX8u+WNTlWRLwnBZ7aU6W6upIPPsBVVkZg//6ET5/e4JiDBw+yb98+RKRXru67aNGiZLvdfld6evoVbXn9hRdeOFtE7vF9JCYm1mmv8uyzzw4YN27cJVFRUTeLyD3333//iNbuo7WaO6bH6tWrI6dNm3ZuWFjYbYGBgXempKRc99prr/U9mmPXN27cuEtGjRrVYB/H5557rr+I3PPuu+8mtecxW0OT6m4u+uyzkMBAKjdsoGL9BgBGjx4NHL4Mp1R35VjxA9W7d2MLCyPqtPmAlZR2tZufbKGhRJ95JnD4BLcpnvfo7t27KSs76oXMlOpwh15zn9xedCHSSOlVaWkp8fHxDBkyhPDw8M4Mr0u49dZbTz399NO/27t3b5uTuqSkpIJ169b9zfP49ttvn/d9vqSkJHDo0KF5t99++/tt3Ud96enpV9xyyy0TGnu+JcfMysoKmTNnzi8CAgKczz333MtffvnlE7///e8/TklJafHCKS1x8cUXr968efPgVatWHdHv+IUXXshIS0vbd+aZZ7Zphcv2oEl1NxcQG0uke8WqotdeA2DYsGEEBARQWFjI/v37/RmeUkfFk6AGnn46m3dnUV1d7eeIGhdz4YUAlH7+ObUFBU2PjYlh1KhRHHPMMXriq7q8ig0bqFy3DgkMJPqccxodN3DgQK6//nrOP//8Toyua7jzzjvHhoeHV959990/VFZWhixbtiymLfux2+2uMWPGlHke6enpDt/nf/e7321ftGjR53feeefmtu6jtVpyzBtvvHFGbGxs8TfffPPOJZdcknPccccV3XDDDTuaWu47PT39ipNPPvnUefPmzQsNDb09IiLilhtvvHFifn5+4IwZM84KDg7+fUJCwg2PPPLIUJ9YtoaHhzsefvjhCb77ysvLC1qxYsWoM8880y8rMnpoUt0DxFx4AQDF77+Ps6yc4OBgbwnIhg0b/BmaUm1We+gQpR9/DEDuxIm8+eabvPLKK36OqnEhw4dZqyrW1lK0+O1mx19wwQXMnTuXyEaWeFaqqyhyz1JHnnxyo230PESE4ODgzgiry8jPzw986qmn5jz00EOfTJo0qSQkJKTqiy++qFOjdsstt0wQkXua21dBQUFcVFTUzfHx8TdOmzbt3BUrVkS3Np722EdrLV++fPiwYcP2TZo06YKIiIhbU1NTr73xxhsnNve6pUuXToiNjXV88MEHz5xxxhkrHn/88dNPPPHECydNmpS9ZMmSp8ePH7/jrrvuOvfAgQOBACEhIa7Zs2f/+Mknn0zw7fX/4IMPjjLG2G6//Xa/1tRpUt0DhE2ZQtCgQRiHg5L//Q+wbliMjIwkJCTEz9Ep1TbFb7+DqakhZNQothVZkx3Dhg3zc1RN88xWF73xRrM3LCrVHbh8/q7EXHRRo+MKCgqoqanprLC6lGuvvfb4CRMmbJ87d+4BgOTk5II1a9bUSapjY2Mr+/Tpc7Cp/UybNm3vH/7wh7cXLly48O677/5fXl5e7Ny5c6/Mzc0NamksLdnHpZdeenxwcPAfPI8dO3b0X7Bgwem+21qbiBcWFsZ++umnU9LS0gpfeuml/5x33nkrn3zyyVNvvfXWJu8qT01N3f/KK698fcIJJxS++OKLSwMCAmqjoqIcCxYsyDzhhBMKFyxY8JXD4QhdsmSJt6TmhhtuWH3w4MHYZ599dqBn2zvvvJMxadKkjWlpaVWtibu9Bfjz4M0RkTuAvwALjDE3ubeFAH8DLgaCgY+AXxlj8nxe1x94CjgBKANeBH5vjKnt1E+gk4gIMRdcQP6DD1L89tvEXnwRI0aMYOTIkV2u9lSpljDGUPTGGwAEnnsuu3dsB2DUqFH+DKtZUafOI+8vf6EmOxvHDysJP2Zqk+NdLhe7du0C6DJ9t5XyVfrpp7gcDgLT0gibOqXBMcYYXnnlFcrLy7nssstIS0vr5Cj955tvvon9+OOPJ3///fdPerYNGDAgf+vWrXWS6jvvvHNzU+UTYJVZ+HyYd8455+QMGzbspgcffHD03//+9xaVNbRkH3/+859XXnPNNd7L2Jdffvm5s2fP3vTzn/98k2fbuHHjmm66X48xRtLS0va9/fbbnwGce+65+zdv3pz4xhtvTH7ooYcabco/aNAgb+4WFBRkwsLCHMOGDfNuGzVqVBnA3r17vUX6J5988oFBgwZlv/DCCxnXXHNN1ldffRW3Y8eO/rfddtsXrYm5I3TZpFpEpgDXAmvrPfV3YD5wAVAMPA4sAo5zv84OvA/sB44FUoCXgBrgD50Ruz9EnT6f/IcfpmLNGqqzsggaONDfISnVZpXr1lG9cycSEkLOgP6wYzupqalER3f4VcyjYgsLI3LeXIrffIvid99pNqletWoVH3zwAf369dOkWnVJxW+/A1grKDY2SZOXl8ehQ4cICAggKclvjRf84vrrr5/rcDhCx48f/zvPNmOMxMTEFB/tvvv371+ZmJh4cOfOnU3X3LRyH4MHD64YPHiw9wbCoKCg2j59+pTPmjWrsK3HiYyMLE1LS6tzM0l6enrB999/P7Kp1wUEBNS5pCcidbZ51iNwuVx1fvjOPvvs1Y8//vipubm57z/66KMT4uPjD1111VVZbY2/vXTJ8g8RiQBeBq4GDvlsjwZ+AfzOGPO5MWYVcCVwrIhMcw87BRgFXGaMWWOM+RC4C7heRBq8hCIiwSIS5XkA3a7IMTAxkfDjjgOg+N33vNtdLhe7d+/Wm6FUt+L5GY6cM4dN7tXZuvostYenC0jpRx/jamZxlxEjrM5Ue/fupaioqKNDU6pVavLyKF9mtYiMPuvMRsd5+q0PHTqUoKAWVyp0e//4xz+GbN++vf+iRYuefvfdd//pefz2t79959ChQ9F79uw5qvrLvLy8oAMHDsQlJSW1uUVQe+yjJYYNG5adk5NTZ7WfnTt3xsfFxR31yUVDbr/99g0iYu6///6xX3zxxfi5c+eu7goLgvk/goY9AbxvjPm03vZJQCDg3W6M2QzsATyNM6cD63zLQbBKRKKA0Y0c7/dYs96ex96j/QT8wfPHvPjddzHGYIzhscce44UXXmDfvn1+jk6pljE1NZR88AEAAfPmsnv3bqD7JNVhkycT0DcFV1kZZZ9/3uTYyMhIBrqvKm3atKnJsUp1tpL33gNjCJ00iaBGSjqMMd6kuru8R9uDw+Gw3XffffPOO++8b88555z98+fPz/c8Lrrool0AS5Ys8ZaA3HfffSOa6xc9f/78U5555pkBy5Yti3nxxRfTZs2adZGIuG6++WbvzXd5eXlBixcvTl68eHEywI4dO2IWL16c7KmBbuk+1q9fH+F5LF68+M0rrrhiu++26upqaekxAX77298uy8rK6nfppZce/9VXX8XdeeedYz/77LNJl1xySYcs75yUlFR9zDHHbHjuuedOKi0tjbz11lvXdMRxWqvLlX+IyMXARKCh4q1koNoYU1Rve577Oc+Y+j0K83yea8hfgEd8Po6kGybWkSfNwRYWRs3evVRkZhI2aRJ9+/alqKiIzZs3k5qa6u8QlWpW+Xff4SwsxB4XR35iIgCpqanExMT4N7AWEpuN6DPO5ODTT1P8zrtEnXZak+NHjBhBVlYWW7ZsYXoji2oo1dmMMRS5V1BsapY6Pz+fgwcPYrfbu/yNxO3pN7/5zdTy8vLQhx9++IikcfLkycWBgYE1K1asSL7mmmuyAA4dOhRSUFDQ5Lrt+fn5UTfffPP5DocjNDw83DFs2LA9H3744bPDhw/3tsR75513+l577bU/83z8/PPPz33++ec59thjf/z222/fbsk+fvOb3xz7xhtvzGoqlu+++27B9OnTi1pyTICLL754X3Z29muPPPLInNdff31WXFzcoeuuu27J/fff32HdOK6++urMpUuXZowePXrbhAkTWlUD3lGkK5UFiEgasBI42Riz1r3tS2CNMeYmEfkJ8G9jTHC9160AvjDG3C4i/wIGGGPm+jwfBpQDp7nLQZqLIwooLi4uJirqiP7iXdq+3/+B4sWLibnwQlL+717WrVvHokWLSEhI4Prrr/d3eEo1K+d3N1PywQfE/vSnJN/5BwoLC6moqOhWJ4VVO3ey87T5YLeT/vVXBMQ3/re0qKiIBQsWICLcfPPNvXLRDNX1VGzYQNZ55yNBQaR/sxR7I38Lv/jiC77++muGDx/OxRdf3MlRHqmkpMRz70W0MabkaPYlIkHDhg179JFHHmH+/Pn57ROh6in+85//9LvrrrsOZmVl3e7Z1tXKPyYBiUCmiNSKSC0wC7jB/f88IEhEYuq9LgnrxkTc/9a/UyLJ57keLfqsswAoWbIEV1UV6enp2Gw2Dhw4wIEDB/wcnVJNc5aVUfrZZ8Dhcqa4uLhulVADBA8eTMjYseB0UvL+B02OjYmJISUlBWMMW7du7aQIlWpa8TvWDYoRc05sNKEG2LzZamgxcmST96Mp1St0taT6M2AsMMHnsRLrpkXP/2uAOZ4XiMhwoD+wzL1pGTBWRBJ99nsyUAJs7MDYu4SwqVMISEnBVVJC2VdfERISwqBBg4DDv/yU6qpKP/kUU1VF0KBBhIxp7BaI7sF7j8N77zUzEoYPHw7Anj17OjQmpVrCuFyUfrgEgOgzzmhy7Pnnn89JJ53UU0s/XE6n09TU1GhvWnWE2tpam8vlcvpu61JJtTGm1Biz3veBVbZx0P1xMfAc8IiInCAik4B/A8uMMcvdu/kYK3n+j4iMF5G5wP8DnjDG+LUpeGcQm42oefMAKF3yEXC4w4Am1aqr8ywyEXXG6bz77ru8+uqr5OTk+Dmqtok67VSw2az2gHubvkUjIyODa6+9ljPPbLx2VanOUpGZSW1BAbbISMJnzGhybJ8+fTjuuOMIDQ3tpOg6jzGmtrq6uuzAgQO6ipo6wsGDB4MrKyvrLMPepZLqFvot8D/gLeBrrJKOcz1PGmOcwOmAE2vWeiFWn+q7Oz1SP4k61Z1Uf/klrspK7yxYTk4OpaVdopZfqSPUHjpE+XLr3Dhi7lw2bdrEli1bum07yID4eMKmWn2qS5csaXJsVFQUycnJuliT6hJK3LPUkXPmYOtFLfIasm/fvsxVq1Z1uza7qmO5XC5WrFgRUlBQsN53e5dPqo0xsz2rKbo/rjTGXG+MiTPGhBtjzjXG7K/3mt3GmNOMMWHGmD7GmFt66mqKDQkZO5bAvn0xDgdlX39NZGQkp556KldddRURERH+Dk+pBpV9/jk4nQSPGME+oKqqivDw8G5XT+0rap51v3SJ+6pRS3TXkwjVMxink5KPrZ9XzwRNQyorK3nzzTdZu3Ztj/6ZdTqd6zMzMyvef//9xOZHq97i5Zdf7rd58+ZDwAbf7V0+qVatJyJE1isBmTp1KqmpqToTprosT+IZNW8uW7ZsAWDYsGHd+mc28uSTrRKQ9eubLQGpqKhg8eLFPPbYYzidzibHKtVRHKtW4Sw4gC0qivAmWjxu376dDRs2sHTp0m79Hm2BTZmZmYsfeuihuH/84x9D1q5dG+FyuZp/lepx3LPT0Q899NCwJ554InjdunWvAdm+Y7pcn2rVPqLmzaXw+eetEpCKCmw9sN5N9RzO4mLvym0RJ5/ClnetzgOe0qXuKiA+nrApU3B8/z2lH31E/C9+0ejY4OBgtm/fjsPhIDs727sojFKdyVOqFHnSSUgTpR+eTjXd/T3aHGOMS0Te/uqrr0q3b98+6+WXX+4fFRU1MDg4GBHpuVP0qg5jjFRWVlJUVFSWk5OzZf/+/Z8D35h6l2k0qe6hPCUgNfv2Ufb1UqLmnsLOnTtZv349Y8aMYfDgwf4OUSmv0s8+h9pagocNoyg8jJKSEgICAnrEz2nUvLk4vv+ekiVNJ9U2m42hQ4eydu1atm3bpkm16nTG6aTko4+Bpks/nE4n27ZtA3p+Ug1WYg18IiKf5+TkDADigN5dbN47VQP5QHb9ZNpDk+oeylMCUvj885R+tISouaewefNmVq9ejYj0iGRF9RwlH7lnx+bNZYO7S82QIUMIDAz0Z1jtIvLkk9n/5//n7gKSQ1C/xmvE09PTvUn1ySef3IlRKgWOH1biPHgQe3Q04dOmNTpuz549VFZWEhYW1q3veWgtdyOEne6HUkfQmuoezNsF5AurC4inj+j27dt79I0lqntxlpRQ/p1V+hE1dy6xsbEMGDCgxywmEZCQQNiUKQCUftR0F5AhQ4YgIhQUFFBUVNQJ0Sl1WOmnnwIQMWcO0sQJre89DzabphFKeei7oQcLGTOGgORkTEUF5cuXM3DgQAIDAykpKSEvL8/f4SkFQNkXX0BNDcHpQwkeMoTx48dzxRVXMH78eH+H1m4iT7FmnUs/+7zJcaGhoaSlpQF4L68r1RmMMZR+bq1mGnnSnCbHeeqpe+iCL0q1mSbVPZiIEHniCQCUffY5AQEB3tUV9Q+26ipKP/8CgIiTTvJzJB0n8sQTAahYvZragwebHJueng7oe1R1rqrNm6ndl4uEhDTZ9aOqqorQ0FDsdruWESpVjybVPVzEidaMQ+mXX2BcLv2DrboUV3U15UuXAhB54hyys7NxOBx+jqr9BaakEDJqFBhD2ZdfNTk2PT2d5ORk74y1Up3BcxUlfMZxTXaLCgkJ4eqrr+aWW24hODi4s8JTqlvQpLqHC586BVtEBM6CA1SuXetNqvfu3dsjkxfVvTi+/x6Xw0FAYiJBI0fwyiuv8NBDD5Gbm+vv0NpdxBxrtrr086ZLQJKSkrj22ms5/vjjOyMspQAo/cxd+nFi46UfvkJCdOVuperTpLqHk6AgImZaf5xLP/uc6OhokpKSiI+Pp7i42M/Rqd7Ok2BGnHACufv3U1FRQXBwMElJSX6OrP15SkDKv/0WV0WFn6NR6rCanByqNm0Cm42IE2Y3Os7pdFJVVdVpcSnV3WhS3Qt4S0C+sBKYK6+8kuuvv56UlBR/hqV6OWMMZe566sgTT2D79u0ADB48uEd2FAgeMYKAvimYykrKly1vdnx1dTXbtm3TTj2qw3nuawidmEFAbGyj47KysnjwwQdZtGhRZ4WmVLfS8/5yqSNEzDweAgKo3r6D6t27tQ5OdQmVGzdSm5eHhIYSNm2aN6keOnSonyPrGCJC5AmeEpDPmhzrdDp55JFH+O9//8uBAwc6IzzVi3m7fsxp+mbh7du343K5sNvtnRGWUt2OJtW9gD0qirDJkwFY/p/FLNtxEKfL6KU85VeeWeqIGcdR6XSSk5MD9NykGiDSXVdd9sWXGKez0XF2u51+/foBsGPHjk6JTfVOzuJiHCt+AA7/fDbG87PYk9+jSh0NTap7gSXrc3nGZf2B3v/hx1zyzHIuv/9F7v/LA6xYscLP0aneylOOFHHiHO8f68TERKKiovwZVocKmzzZunH44EEq1q5tcqynXdnOnbp4m+o4ZV9/DU4nwelDCerfv9FxxcXFFBQU6Iq8SjVBk+oebsn6XK5bmMnHMVaT/lEHs4iqKudghcHlrOWHtZv8HKHqjWpyc6na6L4xatbMHl/64WHdODwTgLJmuoAMGTIEsOpYa2trOzw21TuVffElABEnND1L7XmP9uvXj9AmWu4p1ZtpUt2DOV2Ge9/biAHyw+LYGZWCHcPE/C3kuKzZwOID+6mo1BIQ1bk8XT9CMzIIiIvjpJNO4swzz2TcuHF+jqzjRbi7gJR9+WWT4xITEwkPD6empoa9e/d2QmSqtzFOJ2XffgtAxOxZTY7V0g+lmqdJdQ+2YlchucWV3o9XJo0AYHLeZkpNCCWuYGwYPvl+vb9CVL1U2ddfA4f/kEdGRpKRkdEjW+nVFzHjOLDZqNq2nZom+nGLiHe2WuuqVUeo+HEtruJibFFRhDZxQut0Or1lSJpUK9U4Tap7sPzSyjofe5Pq/C2IcbHPPVudvWdXp8emei9XVRWO761a/oiZTc+O9UT2mBhvAlP29dImx3pqVzWpVh2hbKn75HbGcUhAQKPjXC4XJ554IqNHj9ZWrEo1QZPqHiwxsu6KVxvjBlIeEEJ0dTnpRXvZ57SS6ooD+/wRnuqlHCt+wFRWEpCURPCwdD777DOWLVtGeXm5v0PrNOHuBZk8SU1jhg4dyqmnnsq5557bGWGpXqb8K+vnL/z4mU2OCwwMZOrUqZx//vmISGeEplS3pEl1DzZ1UBwp0SF4fgU6bXZWJ1rLlE/O28x+VyQGKC85pKsrqk5T/o01Oxt+/Axqa2tZtmwZH3/8MRW9aJXBCHcS4/huGaa6utFx4eHhTJ06lYSEhM4KTfUStQUFVG7cCEDE8TP8HI1SPYMm1T2Y3Sbcc8YoAG9i/UOiVQIyJW8z1QSQPGQ0c+bMIaCJS39KtSdPyUPE8TPJzs7G6XQSFRVFfHy8nyPrPCGjR2GPj8flcODIXO3vcFQvVLb0GwBCRo8moImTtsrKSjIzMzl06FBnhaZUt6VJdQ83b0wKT102keRoqxRklbuuetihbJ4+cwi/vOx8ZsyYQXh4uD/DVL1E9d69VO/aBXY74cdO9978NHjwYO9lZafLsGzHQd5Zk+NdqKinEZvNumGR5ktAqqurWbVqFe+++64uWa7ajbeeelbTpR9ZWVm89957vPzyy50RllLdmk5P9gLzxqRw8qhkVuwqJL+0EufW/2LftYNjDm4HRvg7PNUDOV3G+/OWGBnC1EFx2G1C+VJrljo0YwL2yEhvUj1o0CDA6qt+73sb63StSYkO4Z4zRjFvTM+6QSr8+JkUv/Mu5V8vhVtvbXSciPDhhx/idDqZPn06ffr06cQoVU9kamsp//Y7ADKTRxK146D3PVpf/feoUqpxmlT3EnabMH2IdXk9/6QTOPjMDsq+/proM06nvLycnTt3kpqaSlxcnJ8jVd1dU4nxaJ/SD4fDQa67pdygQYO8CxXVn4vdX1zJdQszeeqyiT0qsQ4/7lh3a71t1OTmEthIV4XAwEAGDBjAzp072bFjhybV6qh9ufhzkktKKAkM47pVlbgylzd68rprl9UdSldRVKp5Wv7RC4Ufb3UeKP/mG4zLxf/+9z8WLVrEhg0b/ByZ6u48ibFvQg1WYvybF1dQsmwZABEzjycrKwuAPn36EBYe4V2oqD7Ptnvf29ijSkECYmMJHTsWgLKlLWutp0uWq6O1ZH0uX/3nHQBWJQ3HJVYa4Dl5XbL+cO/0kpISDhw4AMDAgQM7PValuhtNqnuhsIwMbBEROA8donL9eu9lPU+So1Rb+K7gWZ8BRhfuwlZZiT0hgeARIyguLsZutzN48OAjFipq6PW5xZWs2FXYUeH7hae1XnkzSbVnEZjdu3fjdDo7PC7VM3neoxPztgCwKnG497mGTl49s9R9+/bVpcmVagFNqnshCQwkfPo0AMq/+86bVO/Zs4fa2lp/hqa6seYS48l5mwFwTJiKiDB9+nRuv/12Zs6cecRCRY1p6bjuImKmdZNY+XfLME2895KSkggNDaW6utpbMqNUa63YVUh5/kGGFFtrE2QmDqvzfP2TV09SrfXUSrWMJtW9VPixxwJQ/u13JCQkEB4eTm1tLXv37vVzZKq7ai7hnZi/FYCDozK82wIDAwkLCztioaLGtHRcdxEyahT26Ghc5eVUrFvX6DgRYcCAAcDhREep1sovrWT8gW3YMOyKSuZQSFSj4+Dw1Uutp1aqZTSp7qU8SbVjzRpMRYWWgKij1lTCG1tZwqASa4Y1fNp0XC5XnefrL1RUn2Dd7Dh1UM+6kVbsdsKmua8auevNGzNw4EBEhNLS0s4ITfVAiZEhZORvA2B1n2FNjgO49tprufDCC0lLS+uU+JTq7jSp7qUC+/cnsG9fqKnBsXKl9yYUnQVTbdVUYjy+YDsAu+P6MWXCYBYvXsw///lPtm+3tje0UJGH5+N7zhjVYMuv7s571ei775ocN2HCBG677TZOO+20zghL9UBTBsYy5YA7qXavruur/slraGgoI0eOJDAwsDPDVKrb0qS6lxIRq6UXVgmIZ6Z679691NTU+DM01U01lRhnFFh/yGOOPw6bWF0s8vLy6vyxrr9QkUdydEiPa6fnK/zY6QBUrPkRV3l5o+OCg4MJCelZ5S+qc7n2ZpNQXkiN2FkfX7eko6efvCrVGbRPdS8WfuyxFL3xJuXLljHojts5//zzSUtL01kJ1WaexLhOn2pjmHTQmpEec8bJFBQU4HA4CAgIoF+/fke83nehIt+FY3qqoLQ0Avv1o2bvXsp/+IHI2bObfY0xxrsCpVIt5bka4hw5htj46Do3Fif79Kl2uVy88sorpKamcuyxxxIUFOSvkJXqVjSp7sXCpk0DEaq2bsV54ACjR4/2d0iqB6ifGCeX5BP1ziEkKIiwyZPYuHYtAP3798dutx/xet+FinqL8GOPpej113EsW9ZkUp2Tk8OSJUsIDAzk8ssv77wAVY/gSarTTpnNN9ec2OjJ6/79+9m+fTvZ2dnMnNn0MuZKqcO0/KMXC4iNJWTkSADKly/3czSqJ/EkxmdNSCV97yYAQidOxBYSwu7duwG83SzU4RKQgi+/4Z01OSzbcbDBhW5CQkLYu3cve/bs0TIt1Sqmtpby5d8D1kmc73t0+pD4OleDPDesDxgwAJtN0wSlWkrfLb2c5495+bffYYzh22+/5eWXX6aysmf1A1b+43B3tQifPh1jjPcPtq7Qdtjy6IG4EOy7d/KnF77mkmeWM+Ovn9dZ3Q4gLi6OyMhInE4n2dnZfopWdUeVGzbgKi3FFhVFSDNXJfXEV6m20aS6l6vfeSAzM5Pt27ezZ88ef4alegjjdPrMjk2vU0+dmprq5+i6hiXrc7n2nR1sj7G+HhPcN3U2tGy0iGj7S9Umnt/x4cccgzRQduXhcrm8SbWe+CrVOppU93KhkyYhwcHU5udTvXOnttZT7arO7NioUYgI48ePZ/To0Q3WU/c2vku7r+ljtTjzLJLT0LLRgL5HVZuUf+tOqt1dnxqTl5dHVVUVwcHBJCcnd0ZoSvUYmlT3crbgYMImTQTqttbTWTDVHsq/c5d+uGfH+vTpw9lnn83ZZ5/t38C6CN+l3Ve7l4yeULANjJVE1182Gg4vGb1v3z6qqqo6N2DVLbnKy3H8+CNw+OpkYzy/+/v376/11Eq1kr5j1OESkGXLvH+w9+/fj8Ph8GdYqgfwXnJ21+6runyXdt8QN5AqWwAJlSWkleU3Oi4mJoaYmBhcLpeWaakWcaxcCTU1BKamEtS/f5Nja2trCQkJ0dIPpdpAk2pF2HQr4XGsWEFYcDAJCQkA+gdbHRWXw0HF6tWAdZNieXk5+/fvx5gju1r0Vr5Lu9fYA9ngXpAjw10C0tA4gJEjRzJy5EhdDEa1SPn3KwAImz6t2bHHH388t956K1OmTOnosJTqcTSpVoSMHIktOhpXeTmVGzd67/j23KyiVFs4VmViamoI6JtC4IABbNiwgaeffprXXnvN36F1GfWXdl/TZygA4w/sAI5cNtrjlFNO4cILLyQtLa0To1XdleN7983CxxzTovE2m00XAVOqDTSpVojNRtjkyQCUf/89AwYMICAggNraWj9Hprozxwprdiz8mGmIiPckrW/fvv4Mq0upv7T72oQhAIw9sAObcQG6bLQ6Os6SEio3Wb3iw6ZObXKs9j5X6ujoiooKgPBjplL22Wc4VvzAyCuvZNSoUdqdQR2V8hXW7FjYMVO1P3UTfJd23+7qhyMgmMiaCia7Cvn5z05h3piUBl9njOHQoUMEBAQQFRXVyVGr7sKxchW4XAQNGEBgUlKTYxctWsT+/fs57bTTSE9P76QIleo5NKlWwOEZDMeqVdiNQQL0R0O1nbOsnMr1GwAInzpV+1M3w3dpd7NnPKxZwZOjIaGRhBpgyZIlrFixghkzZjBnzpxOjFZ1J57Sj7BmSj88J76VlZWEhYV1RmhK9Tha/qEACB42DHtMDMbhoGL9eu92p9Ppx6hUd1WxOhOcTgLT0gjs27dOmy69AtIwz7LRg046HoAKd/lMYzw9hPWGYtWUcvfPUdgxTZd+5OXlUVlZSVBQECkpjZ/MKaUap0m1Atx11e67vR0rfmDv3r08+eSTvPjii36OTHVH3tmxqdbPlC573HKeGUXHypWYJk5qPV/LnJwcrYVVDXIWFVG1eTNgXTFqivanVuro6TtHeXlLQL7/nvDwcAoKCvQPtmqT8hU/ANYfcq2nbp2QkSOxhYfjKimh0p0QNSQ2NpaIiAicTic5OTmdGKHqLhwrV4IxBA0eTECfPk2O1RNfpY6eJtXKy3N50LF6NdFhYURFReFyudi7d6+fI1PdibOsjMoNVj11mDupPu+885g1a5bWU7eABAR4u/E43CcnDY4T8SZAWgKiGuLtT91M6YcxxptU64mvUm2nSbXyCh46FHtsLKaigsoNG7RftWqTikx3PXX//gSmpGCz2Rg8eDCzZ8/WeuoW8r1q1BR9j6qmtLQ/dX5+PhUVFQQGBmo9tVJHQZNq5SU2W50/5v3dy9nqH2zVGuX16qlV67W2rjo7O1tvKlZ11BYWUrXVWpkzrJnVEQMCApgyZQrjx4/XE1+ljoIm1aoOz2XC8hUrvH+w9+7dq3+wVYs5fOqpAb766is2b96siwm1QsjIEdgiI3GVlVG5cVOj4/r06cNxxx3Heeed14nRqe7A8z4MTh9KQHx8k2Pj4+M57bTTmD9/fmeEplSP1aWSahH5vYj8ICKlIpIvIm+LyPB6Y0JE5AkROSgiZSLylogk1RvTX0TeFxGHez8PiYg2Xm4BTyJUkbmauKgowsLCqK2tZd++fX6OTHUH9eupS0pK+PLLL3n99df1xKwVxG73qatuvLWeiHDSSScxfPhwnWFUdXh+bsKmtmxpcqXU0etSSTUwC3gCmAacDAQCH4tIuM+YvwNnABe4x/cFFnmeFBE78D4QBBwL/Ay4Avi/jg+/+wsaMgR7fDymqoqqtWsZM2YMEyZMICgoyN+hqW6gYpW1elvggP4EJid7S4eSk5MJDg72c3Tdi6cUy7MypVKt4buiaVMcDgd79uzRK0lKtYMuNXtrjJnn+7GIXAHkA5OAr0UkGvgF8BNjzOfuMVcCm0RkmjFmOXAKMAo4yRiTB6wRkbuAv4rIn4wx1fWPKyLBgO9f/Mj2/+y6BxEhbOoUSj9cQvmKFZx6/fX+Dkl1I55uA54rHp6uFJ76fNVy4e5kqGLlKkxtbaOrnLpcLrKyssjOzmbmzJmISGeGqbqg2gMHqN6+A0Sarafevn07ixcvJi0tjZ///OedFKFSPVNXm6muL9r9b6H730lYs9efegYYYzYDe4Dp7k3TgXXuhNrjIyAKGN3IcX4PFPs8enUPOc+d4o7vm17RTan6Dl9yrptUa+/b1gsePhxbVBSu8nIqN25scuxrr73Gl19+SX5+fidFp7oyxw/ueuphwwiIjW1yrOdqUr9+/To8LqV6ui6bVIuIDXgU+NYY41k3OxmoNsYU1Rue537OMyavgefxGVPfX7ASeM+jV/928dTgVaxZg6u6GpfLRW5uLqWlpX6OTHVlztJSb/IXNnUqFRUV3iQvLS3Nn6F1S2K3e2cZy5torWez2bxfX+3UowAcP6wEDp/cNkWvJinVfrpsUo1VWz0GuLijD2SMqTLGlHgeQK/OHoMGDbTqqqurqVy3jrfeeot//etfrFu3zt+hqS7M4a6nDhowgMCkJLKzswGrs0BERISfo+uewqZYNytWrFzV5Dhtf6l8OVZZPy9hkyY1Pc7h4MCBA4Am1Uq1hy6ZVIvI48DpwAnGGN9SjP1AkIjE1HtJkvs5z5ikBp7HZ4xqgoh4fxk7flhJ3759AbxJklINqXD/IQ91J4KejjH6x7rtwiZbM9WOzMwW9avevXs3xphOiU11Tc7i4sP9qSc3nVR7ZqkTEhIICwvr8NiU6uladKOiiJzZhn1/YoypaM0LxLrD5jHgHGC2MWZXvSGrgBpgDvCW+zXDgf7AMveYZcCdIpJojPEUGJ4MlABNFyYqr7DJkyn9+GMcq1bRf/5pgPUL2BijN0KpBjkyVwMQNtH6Qz5r1izGjRvnz5C6vZARw7GFheEqLaVq2zZCRoxocFxqaip2u53y8nIKCwuJb6Yvseq5HJmZYAxBAwcSkJDQ5Fgt/VCqfbW0+8fbrdyvAdKBna183RPAT4CzgFIR8dRAFxtjKowxxSLyHPCIiBRiJcqPAcvcnT8APsZKnv8jIrdh1VH/P+AJY0xVK+PptTwzHBWZmQxOTMRut+NwOPQPtmqQy10qBBA2MQOwrnjExcX5M6xuTwICCM3IoPzbb3GsXNVoUh0QEEC/fv3YvXs3u3fv1vdoL+ZY6a6ndl8xaoom1Uq1r9aUfyQbY2wteQCONsZzHdaNgl8CuT6Pi3zG/Bb4H9ZM9ddYJR3nep40xjixSkecWLPWC4GXgLvbGFOvFDx8OLaICFzl5dRu305qaipw+JewUr4q12/AVFdjj4sjUDt9tCvPCa4nWWqM52bFnJycDo9JdV2e+vvQZuqpAU477TROPvlkBg0a1NFhKdUrtHSm+kWgNaUcC7FmkVvFGNNsXYExphK43v1obMxu4LTWHl8dJnY7oRMzKP96KRWrVpGWlsaePXvIzs4mIyPD3+GpLqZidSYAoRMzEBFWrFhBVlYWGRkZpKen+zm67s27suKqlU2WX02aNIkxY8bQp0+fzgxPdSEuh4MKz4qmk5vuTw3Qt29f7z0zSqmj16KZamPMlcaYFnfEMMZcZ4w50PawVFfgvUnqh5Xey4M6U60a4q2nzpgIwNatW9m0aROHDh3yZ1g9Qsi4cUhgIM6CA9Q08f6LiYkhKSkJm61L3n+uOkHF2rVQW0tAcjKBqZosK9XZWvzbV0TeFJF5onep9Rrey86rVtGvXz9mz57N/Pnz/RyV6mqMMVSstpLq0IkZuFwub6cYrdU8erbgYELGjgXA0UxrPdW7eX4+wiZPbvaG8uXLl/Pjjz9SUdGqfgJKqSa0ZkojFngf2CMi/ycigzsoJtVFhIwZgwQH4ywsxL5/P7NmzdLaO3WE6qwsnIWFSFAQIaNHk5eXR3V1NcHBwSQmJvo7vB7B2+Kymbrq3bt3s3jxYr777rvOCEt1Md6bFJtppedyufjiiy94++23KSlpdaWmUqoRLU6qjTFzgMHAc8BlwDYR+VxEfiIiwR0VoPIfW1AQoe6WaGU/rGTZjoO8syaHZTsO4nRpL1xlqXCXfoSMHYstKMi7AElaWpqWIrQT36tGTSkqKmLt2rVs2rSpM8JSXYiprqZizRqg+UVf9u/frye+SnWAlt6oCHhvAPwT8CcRORH4OfAM8LiIvAI8b4zR65M9SOjkSTh++IG3X/wff1kdQqqthHCp5lDEAO45YxTzxqT4O0TlZw73TYqeVnrapqv9hU6cCCLU7NlDTV4+gUkNJ0KeDiC5ubnU1tYSENCqX/GqG6vcuBFTWYk9JoagIUOaHOv7HtWKTqXaT5unkYwxnxtjLsPqA/17rOXEv2+vwFTXsDHBqvIZkrudUKnhxOAdTA7cS0Gxg+sWZrJkfa6fI1T+5pmpDs2YiDHG+wd7gLbWazf2yEiC3T2qK1Y1XgISGxtLeHg4TqfTu6Kl6h08VzFCJ01CmrlCpCe+SnWMo7o2KyKDgFuAP2D1l/60PYJSXYPTZfjTDjtOsZFUcYiQcgcOE4BdDHG2cgDufW+jloL0YrWHDlG901rjKTRjAlVVVcTExBAUFKStutrZ4brqxi8Gioh26umlHD946qmbXvTF98RXk2ql2lerk2oRCRGRy0Tkc2AbcDlWnfUgY8y89g5Q+c+KXYVkOQzbo62FX8YczCLfFQlAkq0MA+QWV7JiV6Efo1T+VLF6DQBBgwcTEBtLSEgIV111FbfddpuWHrSzltZVe0pAPB1YVM9nXC5reXKav0mxsLCQ8vJy7Ha7nvgq1c5a01Jvqoj8E2uFw2ewVjKcBww2xvyfMUZ/g/cw+aWVAKyPtzp+jD64kzxnOACJtrIjxqnex3fRF192u90f4fRonpnqqq1bcRYXNzrOM/uYnZ2NMXoVqTeo2rYNV0kJEhZGyMiRTY7dv38/YC38oie+SrWv1sxULweOAe4C+hpjfmKM+dTob+0eKzEyBID17rrqsQd31pmpBlNnnOp96i/6UlNT489werSAPn0IGjAAjPHOSjYkOTmZwMBAIiMjcTgcnRih8hdvK70JE5BmEuXRo0dz8803c/rpp3dGaEr1Kq05TZ1sjGn8N7nqcaYOiiMlOoSN1dZMdf/SfGorXdQE2wgWJzFSSWhULFMHxfk5UuUPrupqKtetAyBs0kSqqqp46KGHSExM5IorriAoKMjPEfY8oZMnUb17NxWrVhF5wgkNjrHb7dx6660EBgZ2cnTKX7xJ9ZSm66k9IiIiiIiI6MiQlOqVWtOn2ptQu+uqp4rI6SJypu+jY8JU/mC3CfecMYrSoHCyIpMAGHUwiwMuqwSkj62ce84Yhd2mLZl6o8r1GzDV1djj4ggcMICcnBycTicVFRWaUHeQsElW0tTcyoqaUPcexhgqVh7u/KGU8p9WF1SJyDzgJSChgacNoMWUPci8MSk8ddlEdm5MZ2BpHqMO7uKt1JOIDQnj1nMztE91L+ZbTy0i3hvjPDfKqfbnmYmsWL8eV0UFttDQJsc7nU6tb+/harKzqS0oQAIDvYt1NSYrK4tvvvmG4cOHM2XKlE6KUKneoy0t9R4D3gBSjDG2eg/97d0DzRuTwiU/t+rvTpN8nrzqRD654zROHat3jvdm9eupPUl1v379/BZTTxfYrx8BiYlQW0vFj2sbHedyuXjhhRd44IEHKCsra3Sc6v48Vy1Cxo7FFtL0/S1ZWVns2LGDvXv3dkZoSvU6bUmqk4BHjDF57R2M6rrC3W2aQnfv4Ji+YVry0csZY6hY7V70ZWIGxhjvH2qdqe44IuLTWq/xRWBsNhsVFRXU1tZqa70ezvM+DKvXgachejVJqY7VlqT6TWB2O8ehurjA1FQC+vSBmhoq1q1j7dq1vPbaa2zbts3foSk/qM7KwllYiAQFETJ6NAUFBVRVVREYGEhSUpK/w+vRQidaSbVnJcvGeBInXQSmZ3N4y7AmNjnO5XLpia9SHawtTSp/DbwhIscD64A6PbSMMf9oj8BU1yIihE6cSOlHH1GRuZrstH5s3ryZ6Oho0tPT/R2e6mSehC5k7FhsQUF1Sj9szSyRrI6OZ0ayYs0ajNOJNFIz3b9/f1atWqUz1T2Ys6iI6u07AAidMKHJsQUFBVRXVxMUFESfPn06ITqlep+2JNWXAKcAlVgz1r59qg2gSXUPFTYxg9KPPsKxOpP+xx3LypUr9Q92L+WZHfMkeLGxsYwZM4bU1FR/htUrBA8bhi0sDFd5OVXbthEyYkSD4zyzkbm5udTU1GhHkB6o4scfAQgaOJCAuKZbm+qJr1Idry1J9X3APcADxhhXO8ejujDP5cWK1WtIc9+Mlpub6539UL2HZ6Y61H2T4uDBgxk8eLA/Q+o1JCCA0AnjKf9uGY7MzEaT6piYGCIiIigrK2Pfvn0MGDCgkyNVHc1zs3BzpR+g9dRKdYa2nK4GAa9pQt37hIwYgYSG4iopIaSggMjISIwx7Nu3z9+hqU5Ue+gQ1Tt3AhCaMcG/wfRSnpOZpuqqRcS7ZLnWVfdM3puFW/A+tNlsBAUFaVKtVAdqS1L9InBReweiuj4JDCR07FjAPVvt/uWs7Zl6l4rVawAIGjyYgNhYioqKKCgowBjT9AtVuwn11FWvbvpmxaFDhzJ8+HDi4+M7IyzViUxNDRVrrbaKYS2YqT7rrLO4/fbbGTRoUEeHplSv1ZbyDztwm4jMBdZy5I2Kv2uPwFTXFDoxA8eKFVRkZtLv7LPYuHGj1lX3Mr6LvgCsXLmSb7/9lsmTJzN//nx/htZrhI4fDzYbNTk51OTlE5iU2OC4jIwMMjKab7Wmup/KzVswlZXYoqMJamGirLXUSnWstrzDxgKrARcwBsjweUxot8hUl+SZEXGsXk1aWhp2ux0R7Vndm9Rf9MVzpaJvX10MqLPYIyIIHjYMOHySo3oXz/c9bMIEpJlkuba2tjNCUqrXa/VMtTHmhI4IRHUPoRMmgAg1e/bQPyiIO+64g4CAtlzwUN2Rq7qaynXrAGum2ul0kpOTA+hKip0tbGIGVZs348jMJGrevEbHGWMoLi7GGENsbGwnRqg6kvcmxRZciXjppZcoLy/nrLPO8tbZK6Xan14LUq1ij4oi2N2XunLNGk2oe5nK9Rsw1dXY4+IIGjiQvLw8amtrCQkJISEhwd/h9SotuVkR4Ouvv2bBggUsXbq0M8JSncAYQ0Vm3TKsxtTW1rJv3z4KCwuJiIjojPCU6rValFSLyCIRiWrpTkXkZRFpuMhPdXvem6R8/pi7XNoMpjfwracWkTpturQMqHN5eoRXbtqEy+FodJxnhUu9objnqN23j9r8fAgI8N483pjc3FycTidhYWF6pUKpDtbSmeqzgD4iEtWCRzRwBqCnxD3U4brqTPbv388///lPnnnmGT9HpTpD/Xpq3wUlVOcK6NuXgKQkcDqpWLuu0XGeLj0FBQVUVlZ2VniqAzncHXhCRo7EFhra5Fg98VWq87Q0qRZgK3CoBY9CILzdI1VdhmehgcqNmwgNCCAvL4/9+/dTVVXl58hURzLGHO6L654l1QUl/EdEfFrrNX6zYnh4uHeGUmerewZP6UdYM6UfcPh7ru9RpTpeSwti23JzYk4bXqO6gcDUVAL69KG2oIDAXbuIiYmhqKiIvXv3MmTIEH+Hp9qB02VYsauQ/NJKEiNDmDoojtrdWTgLC5GgIEJGj8YYw+mnn86ePXt0eXI/CcuYSOmHS7xXEBqTlpbGoUOHyM7OZujQoZ0UneoojjUtu0nRGKMnvkp1ohYl1caYrzo6ENV9WDNkEyn96CMcmVZrPU2qe44l63O5972N5BYfLhVIiQ7hwfDdJAAhY8dicy9Ln56eTrr7xlXV+TxXjSrWrMG4XI22VuvXrx9r167VmeoewFlWTtXmLcDhm1UbU1RURFlZGTabjZSUlM4IT6leTbt/qDYJ896smOmtp9VFYLq/JetzuW5hZp2EGmB/cSWr3rfOrVtyyVl1jpARw5GwMFylpVRt397oON/VT/Wm4u6tct1acLkI7Nu30UV/fE2cOJHRo0cTGBjYCdEp1btpPzTVJp4ZMseaNfRzX/rfu3cvxhi9GaabcroM9763kYYWGzfAyINZAARPsJLqH374gejoaAYNGqR/sP1EAgIIHTcOx/LlVGSuJsS9IEx9iYmJTJ8+ndTUVF1OvptzeFvpNb80eWxsLGeccUZHh6SUctOZatUmISNGIKGhuIqLiS0vJzAwkKqqKgoKCvwdmmqjFbsKj5ih9oisLqd/WT4Am+IGUlNTw5IlS3jllVcoLy/vzDBVPWEtuFnRZrNxyimnMHr0aOx2e2eFpjqAp5Vpc/2plVKdT5Nq1SYSGOjtj1q5Zg0jR45k3LhxOkvdjeWXNt5ubZR7lnpPRCJ5Esy+fftwuVxEREQQHR3dSRGqhnhuVmvuZkXV/Rmnk4offwQgrJmbFGtqasjJycHpdHZGaEopNKlWR8HbzmtVJueccw7nnHMOffr08XNUqq0SI0MafW5UYRYAG+MHkhgZUqdNl55I+VfohAkgQk12NrVNXClyOp3s2rWLFStWdF5wql1Vbd+Oq6wMW1gYwY2U+nhkZ2fz7LPP8tRTT3VSdEqpFtVUi8hqaLDU8gjGmOYLvVSPEDZxIgcBx2qdIesJpg6KIyU6hP3FlUe82T1J9b7UdKYOiuONH3TRl67CHhlJcHo6VVu34shcTdTcUxocV11dzUsvvQTAmDFjCAsL68wwVTvw9omfMB5ppozHc+O4dv1QqvO09EbFtzsyCNU9eWfI9uyh9sAB7PHxFBQUEBMTQ5C75ZrqPuw24Z4zRnHdwkyEw2fRgc5ahh2y/kDPvfgUbKKLvnQ1oRMzqNq6lYrMzEaT6tDQUBISEjhw4ADZ2dkMHz68k6NUR8t7k2IzrfRAF31Ryh9a2qf63o4ORHU/9qgogocOpWrbNhyZmby2ezf79u3jkksuYVgzlyZV1zRvTApPXTaxTp/qoUV7CXLV4oyKYc7JUzh06BAOhwO73a6zYF1E2MSJFL36mndRkMb069ePAwcOsHfvXk2qu6EK9/LkoRkZDS7QZLdZpVi66ItS/tGmlnoiEgOcDwwBHjLGFIrIRCDPGKMrKfYioRMnUrVtGxWZq0kcOYJ9+/axd+9eTaq7sXljUjh5VLL3D3baxzthKURPmYSIeGfAUlJSCAjQrpxdgae9WuXGTbgqK7GFNFwfn5aWxpo1a3QRmG6otqCAmuxssNn4NiiJP/318yMWaLrnjFHMG5NCQUEBVVVVBAYGkpSU5MeolepdWn2jooiMA7YCtwO3ADHup84F/tJukaluwdPOy7FaF4HpSew2YfqQeM6akEqf3dbqbZ7v9dixY7n++uuZN2+eP0NUPgJTUwno0wdqaqhct67RcZ5Zy5ycHF0EppvxdHep7j+IXy7a0uACTdctzGTJ+lzv7+DU1FRsjayyqZRqf215tz0CvGCMSQd839UfADPbJSrVbfjOkKUmWqt76R/snsMYc/jmKPf3WkRISEgg1b3oj/I/ESHE3WJt5ftfsmzHQZyuI+8tT0hIICQkhJqaGvLy8jo7THUUPO/Db4L7NrpAE8C9721kj5Z+KOUXbUmqpwBPN7A9B0g+unBUdxPYrx/2PglQU0Pk/v0EBwfrH+wepDorC2dhIRIURMjo0f4ORzViyfpcnjkUCcDOL5ZxyTPLmfHXz1myPrfOOBHRK0rdlMO9uM/KiMYTZQPkFlcS2ncYc+bMYcSIEZ0UnVIK2pZUVwFRDWwfBuhyer2MiBA2wbOi2xrvH2yt2ewZPKu3hYwdiy0oiD179vDWW2+xdu1aP0emPJasz+W6hZksD7OuHIwqzEKMq045gK/Zs2dz9dVXM2nSJH+Eq9rAVVlJ5cZNAGyMG9Ds+KqgaGbMmEHfvn07OjSllI+2JNXvAneLSKD7YyMi/YG/Am+1W2Sq2/CUBVSsXq2zYD2MZ3bMU0+9c+dO1q9fz/bt2/0ZlnJzugz3vrcRA+yITqXSHkhkTQX9ygrqlAP4loKkpqbSt29fXa68G6lcvx5qanDFxZMXFtfs+KYWclJKdZy2JNU3AxFAPhAKfAVsB0qBO9svNNVdeBKuitWrSU9PZ+bMmToL1kN4Zqo9fXE9VyB00ZeuYcWuQu8Na06bna0xVmmAZ1l5TznAil2FfopQtQfPAltRkyeREhNKY2uYCjAuspzw8n2UlZV1WnxKKUurk2pjTLEx5mTgDOAG4HHgNGPMLGNMeXsHqLq+kJEjkeBgnEVFJFRVc8IJJzBgQPOXKFXXVnvoENU7dwIQmjEBY4wuKNHF5JfW7QCxMX4QcHgFzMbGbdmyhXfffZed7u+v6to8J7dhEzO454xRAEck1p6PZ8cUsXjxIrZu3dp5ASqlgLa11EsDMMZ8Y4x50hjzoDHm0/YPTXUXEhREyNgxAFS4ywVU9+dZaCJo8GACYmO1920XVP8yv6fetn5SXX/ctm3bWL16tZbxdAO+HXjCJk70LtCUHF33e5ocHcITP5lARZF1a1P//v07PValeru2rNyQJSLfAAuBN40xh9o5JtUNhWVMpGLlKhyZmQSfdhp79uzBZrORnp7u79BUG3lOkELd5T2eOvl+/fpp79suYuqgOFKiQ9hfXIkBNsUNBKBfWQHRVWWUBEeQHG2ttucrLS2NVatW6Q3F3UD1riycRUVIcDAh7m4e9Rdo8qyomLc/lx9qawkJCSE+Pt7PkSvV+7TlL+NkYAVwN5ArIm+LyPkiEty+oanuJDTjcAeQLVu28Oqrr7J06VI/R6WOhmexiTB3PbVvUq26BrtN6pQDlAWFsSfS6hc/snA3APecMcq7fLWH53u4b98+nE5n5wWsWs17cjt2LBIU5N3uu0DT9CHx2G1S5z0q0ljltVKqo7Slpnq1MeZWoD9wKlYbvX8BeSLyfDvHp7qJ0IwJAFTv3ElKlNVxUf9gd1+u6mrvynyemerq6mpEROupu5j65QAb4qy66inl2Tx1mVUuUF9cXBxhYWE4nU5yc3OPeF51HZ6bFD0TF03Rex6U8q+2lH8AYIwxwBfAFyLyFPAc8DPg5+0Um+pGAmJjCRo0iOpduwjdlUVoaCgVFRXk5ubqzGY3VLl+A6a6GntcHEEDBwJw4YUXUl1draUfXZBvOUDle3nwz+85L6iQgQ0k1HB4EZitW7eSnZ2t79EuzNuBZ2LzSbVeTVLKv9r811FE+onIbSKyBqscpAy4vr0Caw8icr2IZIlIpYh8LyJT/R1TT+b5pV+5Zo13pkRrNrsn7yXnjIw6l5GDgoIICGjzubjqQJ5ygGPPOgGwehu7qqsbHa/v0a6vTgeeCROaHFtaWkpxcTEiQmpqaidEp5Sqry3dP64Vka+ALOBy4DVgiDHmeGPMP9s5vjYTkYuAR4B7gYnAj8BHIpLo18B6sDD3IjCO1Zm6CEw35/Bp4QVWBwLVPQQNHIg9NhZTXU3lhg2NjvO8Rx0OR2eFpupxugzLdhzknTU5LNtxsM4iPQAVa9YAhzvwNCUyMpKbbrqJSy65hOBgvcVJKX9oy5TTH4FXgBuMMT+2czzt6XfAM8aYfwOIyC+B+VjlKQ/4DnTfZOn7Wyiys4LsSTw1f5Xr1tMvORnQWbDuyLeFl2fRl4ULF1JVVcW8efP00nIXJyKEZmRQ9vnnVKxeQ1gjtbhpaWnceuuthIWFdXKECqzl5e99b6N38R6AlOgQ7jljlLcO3tPWsiWlHwDR0dFER0e3e6xKqZZpS/lHf2PMbV05oRaRIGAS4O2fbYxxuT+e3sBLfg8U+zw0E2yDoEGDsMfEYKqqiCspQUQoKSmhuLjY36GpVqjOysJZWGj1Hx8zGqfTyZ49e8jJySEkRJc/7g4Or3LaeN94u92uCbWfLFmfy3ULM+sk1AD7iyu5bmEmS9ZbN49WZFrfv8ZOjJRSXUtbun8YETleRBaKyDIRSQUQkZ+KyIz2D7FNEgA7kFdvex6Q3MD4vwDRPg+dimsDzwwZQO3adVx44YX8+te/JsrdDUR1D54bo0LGjsUWFEReXh612vu2Wwn1lmKtaVHpjpb3dB6ny3Dvextp6Cvu2XbvexuprayiwtOBx33FqDG1tbXeNqbacUkp/2lLTfV5wEdABZDB4bKJaOAP7Rda5zHGVBljSjwPoNTfMXVXh/tVr2bEiBHEx8drv9RuxuGe3Qyrt+hLWlqafi+7iZDRo5HAQJwHDlDTxH0NeXl5vPjii7z00kudGF3vtmJX4REz1L4MkFtcSebnKzBVVdhjYggaNLDJfebm5rJlyxa+//577c6jlB+15d33R+CXxpirgRqf7d9i3RDYFRwAnED9tZSTgP2dH07v4UnEHKszdfarm/K28NJFX7otW3AwIaNHA+DIbLwEJDg4mKysLPbs2UNNTU2j41T7yS9tPKH21VgHnobooi9KdQ1tSaqHA183sL0YiDmqaNqJMaYaWAXM8WwTEZv742X+iqs3CBkzBgIDcRYcoGrPHpYvX86bb76pf7C7iTotvNwL+vjOVKvuw3eV08ZER0cTERGBy+Vi3759nRRZ75YY2bL7EmJ2bgZatuiLvkeV6hraklTvB4Y2sH0GsPPowmlXjwBXi8jPRGQk8BQQDvzbv2H1bLaQEEJGjQSsftXfffcdGzZs0D/Y3YQnAfO08CopKaHEfdOp9r7tXjwdIyqamKn2XSFTO/V0jqmD4kiJDqGx+WQBUqKCCd1qtUMMa6bzhzHG+73Tq0lK+VdbkupngAUicgxW+VdfEbkUeBgrce0SjDGvAbcA/wesASYA84wx9W9eVO0szF02ULF6tfcPtvar7h68l5zdf8hramoYNWoUQ4cOJSgoyJ+hqVbydIyo2r4dZ0lJo+M8iZgm1Z3DbhPuOWMUwBGJtefj/5sWj7OgAAIDrat/TSgqKqKsrAybzUbfvn3bP2ClVIu1Jal+APgv8BkQgVUK8izwtDHmsXaM7agZYx43xgwwxgQbY44xxnzv75h6A9/LzroITPfiXfTFfWIUHx/PBRdcwE9+8hN/hqXaICAhgcD+/cEYKn5svAOq74mv3gfROeaNSeGpyyaSHF23FCQ5OoSnLpvI1HLrBCdk1EhszbSx9JwMpaSkEBgY2DEBK6VapNWLvxjrt+59IvIQVhlIBLDRGFPW3sGp7slzubJq61ZS3S3YPH+w9SaarstVXU2lp4VXCxebUF1bWEYGxXv24MjMJOL44xsck5KSgt1up7y8nKKiImKbWblPtY95Y1I4eVQyK3YVkl9aSWJkCFMHxWG3CfsX1T25bUp5eTkBAQFa+qFUF9CWFRUB782AG9sxFtVDBPTpQ2BaGjXZ2UTn7sdut1NRUUFhYaH2Oe7CKtdvwFRXY4+LI2jgQGpraykpKSE2NlZPhrqp0IkTKX7nnSZvVgwICGDw4MEYY6iuru684BR2mzB9yJG/Ex3eDjzNn9xOmzaNKVOm6M3gSnUBLUqqRWRRS3dojDm37eGoniI0YwI12dlU//gjqamp7Nmzh+zsbE2qu7D6LbxycnJ44YUXSEpK4pe//KWfo1Nt4engUrF2Laa2Fglo+Fe+lvd0Hc6yMqq2bgUOf/+aY7fbsdvtHRiVUqolWlpTXdyKh1KEeVd0y6Rfv37YbDZKmrhZSvmft5663qIvcXFxfotJHZ3goUOxRUZiHA4qt2zxdziqBSp+/BFcLgL79SMwMbHJsVoDr1TX0qKZamPMlR0diOpZPAuHVPy4luP+8Q9mz56tN9F0YcYYKlbXXfTFcwOU9r7tvsRmI3TCBMqXLqUiczWh7gVhGlNaWkpoaCgBjcxoq47nXXypBfc1fPvtt/z4448cc8wxTJ48uaNDU0o1Q9czVR0ieOgQbBERGIcDW3a2JtRdXHVWFs7CQiQoiJAxozHG6IISPYTnyoOnvKcx//73v3nkkUfYs2dPZ4SlGuE5uQ1r4aIvBw4coLa2tqPDUkq1gCbVqkOI3U7ohAnA4bIC1XV5ZsdCxozBFhREYWEhDocDu91OSkqKn6NTR8Nz5cHRxM2KYK2uCNr+0p+M0+ltfxg6senOH74nvtr5Q6muQZNq1WG8K7qtXs3atWt55pln+Oqrr/wclWqIwz2LWb+eOjU1VW+A6uZCx40Fu53a3FxqcnMbHac95f2vautWXOXl2CIiCB7a0MLFhx08eJCKigo98VWqC9GkWnUYz+VLx+pMampq2LdvH7t37/ZzVKohh+s4JwHoDFgPYgsLI2TECOBwaUFDfJcrd7lcnRKbqsvhua9h/HikmZNZzz0Pffv21RNfpboITapVhwkdNw5sNmr35ZLsXhUsJydH/2B3MbWHDlG9cydwuIXXmDFjOPbYYxk2bJgfI1PtxdPvuKlSrKSkJIKCgqiqqqKgoKCzQlM+WnOTot7zoFTX09I+1Te0dIfGmH+0PRzVk9jCwwkeMZyqjZsI372b4OBgqqqqyM/PJzk52d/hKTfPwiBBgwcT4F5Nb9CgQQwaNMiPUan2FDYxg0MLF1KR2fjNijabjdTUVHbt2kV2djZJSUmdGKGC1t2kqN15lOp6Wto36bctHGcATaqVV1jGRKo2bqJy9Rr6DejPjh07yM7O1qS6C/Eu+qJLk/dYnpveKrdssWp2w8MbHJeWluZNqrVFW+eqycunJicHbDZCxo1vcqwxhtTUVJxOp5ZoKdWFtLRPtU5ZqTYJnZjBoZdfpiIzk37HHetNqqdMmeLv0JSbd9EXd5eIrKws7x/r4OBgf4am2klgcjIBKSnU5uZSsW4d4dOmNThu6NChOBwO0tPTOzlC5ZmlDh4+HHtEwyc9HiLCmWee2RlhKaVaQWuqVYfyXMas3LyZfu7VwbS7QNfhqq6mct064PBM9dKlS1m4cCHr3NtVz+B5LzZ3s+L8+fO1lt4PPFeMWlL6oZTqmtq0bJaI9APOBPoDQb7PGWN+1w5xqR4isG9fApKTqd2/n7jCQ0RHR3svW+od6/5XuX4Dproae1wcQQMH4nK5tFazhwrNyKDkgw+0b3wX5fDepNh0f2qAwsJCYmJisNl0XkyprqTVSbWIzAHeBXYCI4D1wEBAgKaX7FK9UtjEDEo++BDXurXcdNNN/g5H+fDWU2dkICLk5eVRXV1NcHAwffr08XN0qj15+8avWYP5/+3dd3ic1bXo4d+epplRl2w1N8ndRsa2XLAx2Ka4BDAYCASCCSSEFgIkuQTCPTnhODkXEtIgcEJOEkgjEFIIYDDN2ICb3LvlLsuWJUu2ei8z+/4xxSNp1KUp0nqfZx6sma3R+jSMZn37W3ttpxPVTkLW3NxMQUEBTqeT9PT0AEY4eDnr6qjPyQHA7u7A0x6tNb/97W9xOp3cf//9JCYmBiBCIURX9OQ09xngZ1rrKUA9cDMwAvgM+EcfxiYGCNs0T79qmSELNd566labvgwfPlxmwQYY64QJKLsdZ1UVDceOtTvuwIED/OEPf2Dt2rUBjG5wq9u3D5qbMSUnY0pL63DsuXPnaGhoACDe3a1HCBEaevKpOQn4s/vfzYBNa10N/AB4oq8CEwOH53Jm3e49aKcTrTXl5eXBDUqgtfbW13q2spZNXwYuZTK5esdzoR+yP56yn4KCApqbmwMS22DnaWvpuWLUEd/dTuXEV4jQ0pN3ZA0X6qgLgTE+jw3pdURiwLFOGI+y2XBWVlJ24AA//elPeeGFF+QDO8gaT57EUVqKsliwZl4EyIYSA53nioSn7Mef+Ph47HY7DoeDwg62NRd9x9M/3N6Ftpay5kGI0NWTpDobuMz979XAz5VS/wG84n5MiBaU2eydIePAQQwGA06nk4KCguAGNsh5ZiutmZkYLBaqqqooLy9HKSUz1QOUd2dF98yoP0opRo4cCUinnkDQTid1u3cDF16fjsiJrxChqydJ9XeALe5/PwV8AnwJOAnc0zdhiYHGs0iqftcu74eBfGAHV+2ulrNjkZGRPPDAA9x0003Sn3qAsk2bBkrRdOoUzefPtzvOc1Il79H+15ibi6OiAmW1Yp04scOxtbW1lJSUAFKiJUQo6nZSrbU+obXe6/53jdb6Aa31xVrrm7XWeX0fohgIPL1Xa3dfSKo9lzFFcNS1auFlMBhITk4mMzMzmGGJfmSMjibCvbFLRwuHfU98tdYBiW2wqnWXftimTEGZzR2O9fzNTExMxGaz9XtsQoju6fEqB6WURSk1XCk10vfWl8GJgcM7Q5Z3irToaEA+sIOpubSUxhMngK5dchYDh+f17mixYlpaGkajkZqaGsrKygIV2qDkXaTYhf7UiYmJXHHFFbKFvBAhqid9qscDLwOXtn4I0IDs6CHaMMbEEDF2LA1HjxJTUNDiAzshISHY4Q06nq4flrFjMMXH09zczLvvvsvw4cPJysqSrgIDmD1rOuVvvOFdHOePyWTi+uuvJyEhgdjY2ABGN/h0Z5FiYmIi8+fP7++QhBA91JMdFf+Aq5Xedbi6f8hUo+gS2/TpNBw9StOevaSmppKfn8/p06clqQ6C2h2eLZFds2OFhYXs2bOHY8eOMWPGjGCGJvqZt8XlwYM4GxowtFM/f7FncbHoN81lZTSePAmAberU4AYjhOi1nkxHTQPu11q/r7XerbXe43vr4/jEAOLd0W3nTqZOncq8efNITk4OclSDU92OHQDYZrTsTz1ixIhO++SK8GYePhzjkCHQ1ET9/v3BDmdQ871iZIyL63BsaWkpBw8epLq6OgCRCSF6oidJ9UGkH7XoAbt7hqz+wAGypkzh6quvJiUlJchRDT7O+nrqDh4EwO6elZZNXwYPpZR34XBdB4sVtdbs2bOHd999l/r6+kCFN6h4fv/2LqxryMnJ4R//+Afvvfdef4clhOihniTVTwDPKqUWKqUSlVIxvre+DlAMHOYRIzAmJqKbmqg/cCDY4Qxa9fv2QVMTpqFDMQ8fjtZaet8OMt5+1R0sVlRK8dlnn7Fjxw7p1NNPPL9/z46mHZH3qBChrydJ9RpgDq7+1MVAmftW7v6vEH4ppS7s6LZzJ/X19Rw7dszbd1UEhqee2jZjBkopysvLqampwWAwkJaWFuToRCBc2FlxV4cdeKSnfP9xNja6TnAB2/RpHY7VWnPq1CkA78Y8QojQ05OFilf0eRRi0LBNm07Vx2uo3bWbzxIS2LdvHwsXLmTBggXBDm3QqN3pqqf2lON4PqzT0tIwmXryJ0GEG+vkySiLBYd7oVxERobfcSNGjGDv3r0yU90PGg4eRDc2YoyPx5Ke3uHYkpIS6urqMJlMpKamBiZAIUS3dfsTVGv9WX8EIgYuh1OzNbeU4qp6UpPHEI1rhmz4XV9h3759MgsWQNrhuNAX171Isby8HJB66sFEWSxYp0yhbscO6nbu6jCpBtemI06nU1ot9iHvFaPp0ztdHOw58R02bBhGo3StFSJU9aRPdXt9ljRQD5zSWjf0KioxYHywv5CVqw5SWOFa6GR2NPMvgwlKS0lxfzjk5+ejtZauEwHQcOwYzqoqlN2OdcIEABYsWMAll1yCw+EIcnQikOxZ011J9e5dxN18k98xQ4cOJSIigoaGBoqLi2VhcR/y7KRo70ILS6mnFiI89GTaYTewy89tN3AIqFBK/UkpZe2jGEWY+mB/IQ++utObUAM0GU0ciXPNiOZu3IPFYvF+YIv+591oYtpUlE+ph9VqJTIyMlhhiSDoymJFg8HgvYIhV5T6jnY6vW0t7TM7T6qlnlqI8NCTpPpG4ChwH66e1dPc/z4MfBm4B7gS+O8+iVCEJYdTs3LVQb87Ax1MTAcg5+ONDHN/YHs+NET/8l5yzpINXgY7T1LdePw4DncJkD+epFoWFPedxhMncJSXo6xWrJMmdTr+zjvv5MYbb5SZaiFCXE9WJf0H8KjW+kOf+/YppfKBH2mtZyulaoCfA4/1RZAi/GzNLW0xQ+3rQEIGt/Ap6WePcz7qi8AJTp06xaxZswIb5CDkXaTorqdet24dJ0+eZM6cOUzqwoe7GDhM8fFYMjJozM2ldvduohcu9Dtu1qxZzJw5k6ioqMAGOIDVbndvvjR1Kspi6XR8XFwccZ1sDiOECL6ezFRPAfL83J/nfgxcpSCyRHkQK65qf7OIQwmjABhVVYTBaAdcM9UdtfYSvddUUEBzQSEYjdjcW1CfOOE6oWlsbAxydCIYPLPVdR2UgERGRkpC3ccunNzKFSMhBpKeJNWHgO8ppbyn10opM/A992MAw4Ci3ocnwlVSdPsl9RURUeRHDQVgdFU51157LStWrAhUaIOWp3bWOmkShshImpqaKCgoAKRWc7Dy7VctAqdue9frqT/++GM2btxITU1Nf4clhOilnpR/PAS8A+Qrpfa675sCGIHr3F+PBn7d+/BEuJqdkUBqrJWzFfX+66oT0hlefY6MohMk33FDwOMbjOrcs2M2dyJVUFCA0+kkKipKLi0PUt6Z6n370E1NKLPZ77jjx4+zefNmkpOTWbRoUSBDHHCaCgtpKihwXTGaOrXjsU1NZGdn43Q6ueiiiwIUoRCip7o9U6213gRkAD8A9rpvPwAytNbZ7jF/0Vr/tC8DFeHFaFA8tWwyAK0b5SkgJyEdgHqZIQsYz0y13b1I0bejgLQzHJwsGRkYY2PR9fXU5+S0O66hoYHjx49z7NixAEY3MHkWC3uuGHXkzJkzOJ1OoqOjiY2NDUR4Qohe6FEnf611ldb6N1rr77hv/6u1rurr4ER4W5qZyksrskiJbVkKkhJr5Yt3XwO4ZsjqqqrYtm0bH374ob+nEX3AUVVFw+HDwIWZamnTJZTBcKG1njvZ88fz/0hxcTF1dXUBiW2gqt2xHeh+f2o58RUi9HWp/EMpdT3wvta6yf3vdmmt3+mTyMSAsDQzlUWTU7w7KiZFW5mdkYABzZHYWJwVFdQeOsTq1asBuPzyy7Hb7UGOeuCp270btMY8ciTmpCScTqf3A1uS6sHNPmsm1Z9+Su2O7SR+9W6/Y6KiokhMTKSkpITTp08zfvz4wAY5gHjqqT07mnZETnyFCC9dral+C0gBit3/bo/GVVsthJfRoJg7JrHVvQp7VhbV69bBvv0MGTKE8+fPc+rUKSZOnBiUOAeyWs9GE1muD/L6+nrS09MpKioiOTk5mKGJIPPMmNZt34F2OlHtbEU+cuRISkpKyMvLk6S6hxzl5TQcPQp0PlOttZadFIUIM10q/9BaG7TWxT7/bu8mCbXoMvvMmQDUbt/unYmRTWD6R51n0xf37Jjdbue2227jkUcewdBOEiUGB+vkySibDUd5OY3Hj7c7Tt6jvVfrXkNiycjAlNh6oqGl4uJiGhoaMJvNsj28EGFCPk1F0NhnuZPqHTsY6Z6JkQ/svqcbG6nb62rU45mp9pA6TaEsFmzTXF0oardvb3fcqFGu/vIFBQU0NTUFJLaBxrM1eVdKP0pLSzEajQwfPlxOfIUIE11+pyql5iqlrmt131eUUrlKqWKl1G+VUhF9H6IYqKyTJ6PsdpwVFaQ4HAAUFhbKB3YfqztwAN3QgDEuDktGBlprysvLZbMd4eW9arSt/aQ6Li6OxMRE0tPTqa2tDVRoA4pnJ0X7jJmdjp00aRLf+973WL58eT9HJYToK905/f0B4G2UqZSaArwMrAF+DCwDnuzT6MSApkwm7O7OA6aDOURHR+N0OsnPzw9yZAOLJ1Gyz5qJMhgoLy/n+eef51e/+hVOpzPI0YlQYJ85C3DNVLd3sqWU4qGHHuLOO++U9m494Kyvp+7AAaBrm74AmEwmYmJi+jMsIUQf6k5SPQ34xOfr24AtWut7tda/AB4Bbu3D2MQg4CkBqduxg1GjRqGUoqSkJMhRDSy127cBF2YjPSU2UVFRcllZAGCbejGYzTQXF9PkXhznj5QL9Vzd3r3Q1IQpKQnz8OHBDkcI0Q+684kaT8utxxcA7/t8vQ2QJcqiW3wXK1599dU88cQTzJzZ+aVR0TW6udm7SNE+yzUb6UmqpaOA8DBYrdimTAE6LgHxqK6ulqsc3eRbT93ZycnevXv5zW9+Q3Z2diBCE0L0ke4k1UW4dlJEKWUBsgDfd3w0IMWwolusU6agLBYc589jLS0lIkLK8vtS/aHDOGtqMERHEzFhAoD0pxZ++Z7gduT3v/89P//5zzl79mwgwhowulNPnZubS1FREVVVsqeaEOGkO0n1auDHSqnLgWeAWmC9z+MXA+33YxLCD0NEBLap7s4D27YFOZqBx/M7tWdloYxGamtrOXfuHCBJtWjJ242nk6TaszmTdOrpOt3cTJ27nV5X6qk9v1tPxxUhRHjoTlL9n0Az8BlwL3Cv1rrR5/GvAR/1NBCllFkp9ROl1D6lVI1SqkAp9WelVFqrcQlKqb8qpSqVUuVKqZeVUlGtxlyslFqvlKpXSp1WSj3e07hE//P9MN+9ezcvv/wyW7duDXJUA4MnQbLPdpV+eGaphwwZIjtXihZs06eDwUDT6dM0dTALLf2qu6/+8GGctbUYoqKIGDeuw7FVVVWUlpYCcuIrRLjpclKttT6vtZ6Pq7Y6Xmv971ZDbgFW9iIWO66Skh+5/3sTMAFove35X3F1IVkEXAfMB37reVApFYMruc8DZgDfBf5LKXVfL2IT/cj3snN1dTX5+fmcPHkyuEENANrppM6TVLt/x3l5eYB8WIuWHE7N1qIG6tPHAlDdQV215/+dvLw8acvYRZ73oS1rOsrY8R5pnvdoSkoKVqu132MTQvSdrm5T7qW1rmjn/tLeBOJ+3kW+9ymlvglsVUqN1FqfUkpNApYCs7TW291jHgZWK6Ue01oXAHcAFuBr7pn0A0qpacB38Em+ReiwTZsGJhPNBYWk2WzAhQ9s6TbQcw1Hj+GoqEDZ7VgnTwZg/PjxOJ1Oxo4dG+ToRKj4YH8hK1cdpLCinntVCjdxhNd/9zajM2awNDO1zfi0tDSM7lKikpIShgwZEoSow0vNVlcZVuTs2Z2O9STVUvohRPgJ9X5asYAGyt1fzwXKPQm12xrACVziM+bzVqUpHwITlFLx/n6IUipCKRXjueFadCkCxGC3Y73IlfTFnjrV4gNb9Jy3nnraNJTZDEB6ejpLly6VpFoAroT6wVd3UlhRD8D+xNEAjC48yoOv7uSD/YVtvsdkMjHc3RJOSkA6p51OnzIsSaqFGMhCNqlWSlmBnwCva60r3XenAMW+47TWzUCp+zHPGN/Wf/h8nYJ/TwIVPjfZfSTAIt3t3hp27PB+YEsJSO94k2p3PbUQvhxOzcpVB/Et4DiQmAHAqKoiYhqqWbnqIA5n2xIPTztGSao713DkCM6KCtfkgfuKUXucTidpaWnExcVJiZYQYShoSbVS6g6lVLXP7XKfx8zA3wEFPBiAcJ7BNSvuuUln/gCzuWt+67ZtJz09HbgwYyO6T2t9YXbMfcJy4sQJcnNzZRt4AcDW3FLvDLVHZUQkedHJAFxUkkthRT1bc9tW9o0bN46srCwmTZoUkFjDWa170bVtxgyUqeOKS4PBwPLly3n00UeJjIwMRHhCiD7U7ZrqPvQOsMXn6zPQIqEeBVzpM0sNcBZI8n0SpZQJSHA/5hmT3OpnJfs81obWugFo8HnO7hyH6AP2rCxQisa8PIa7t0A+efKk1FX3UGNuLo6SElREBFb3ph5r167lzJkzLF++nKnuNoZi8Cquqvd7//7E0YyqKiKz5ASb0qb4HTdy5EiZSe2iGndSLVeMhBj4gjZTrbWu0lof87nV+STU44Crtdati2o3A3FKKd9Gn1fiOo4tPmPmu5/LYxFwWGtd1j9HI3rLGBNDxMSJACQUFBATE8PIkSNlVrWHPLvi2aZOxWCx0NDQQEFBASC1msIlKdp/Z4l9Q1x11ZnnT3Q4TnROO53Uud+LXVmkeP78eemoIkQYC5maancS/E9gJq4OHkalVIr7ZgHQWucAHwC/U0rNVkrNA14E/ubu/AHwGtAIvKyUukgp9SXgUeAXAT4k0U2etm+NO3byrW99i1tuuQWLxRLkqMKTt57a/Ts9ffo0Wmvi4uKIi4sLYmQiVMzOSCA11krr60CeuurRFQVk2DSzMxL8fr/T6eTMmTMcPXq0nyMNXw1Hj7bpwNOe+vp6fv3rX/Pss89SX+//KoIQIrSFTFINDAOux1XPvBso9Lld6jPuDuAQ8AmuXR43AN4e1O7WfItxbam+A/g58EOttbTTC3G+m8BIyUfPaa3bLFKUjgKiNaNB8dQyV6Ln+247b4uj0J6IEc1TGc0YDf7fiydOnOD3v/89q1evDkC04al2i7v0IyvL24GnPZ4TX7vdLv2phQhTIZNUa61Paq1VO7dPfcaVaq2/rLWO1lrHaq2/prWubvVce7XWl2utrVrr4VrrnwT8gES3eWZVG44cobmsDK01JSUlcjm0m5ry82kuKgKz2bsFvCep9iwCFQJgaWYqL63IIiW2ZRJ3LM2169+kovZnoUeMGIFSivLycsrLy/szzLBVu81TT931VnpSqy5E+ArmQkUhWjAlJGAZM4bG48ep3raNP+XkUF5ezsMPP0xCgv9L0KItbz11ZiYGm43GxkbOnDkDyEy1aGtpZiqLJqewNbeU4qp6kqKtTNzXzNnvZXtnWv2JiIhg2LBh5Ofnk5eXJ2VFrWin0/te9FyF64ic+AoR/kJmploIgMhLXHv41G/ZSkxMDCD9qrurdT11fn4+TqeTmJgYSXyEX0aDYu6YRG6YNoy5YxKJmjsHgPqDB3FU+N1EF7hwkibv0bYajh7DUV6OstmwZWZ2OLaxsVEWEgsxAEhSLUKKfY4rqa7Zki39qntAa03NlmwA7O4TlPT0dO677z6uu+46qVUXXWJOTsaSng4+uwH643mPSlLdlqc/dVfqqX1PfGPdLUWFEOFHkmoRUuyzZrn6VR87zgj3rKqnX7XoXNPp0zQXFILZjD1rOuDaUCI1NZVx48YFOToRTi6c4G5pd8zIkSOlrrod3qS6C/XUubm5AGRkZMiJrxBhTJJqEVJM8fFETHL1q447fRqj0UhlZSVlZdJivCtqst2z1FOnYrDbgxyNCGeeUqza7PaTaovFwrBhwwCZrfalfWb4PTuadmTSpEnMnz+fzE7KRIQQoU0WKoqQE3nJHBoO5tC0bTvDRmdw6tQpTp48KYsVu8CTANnnuGpi8/Pz2bFjB+PHj5ctpUW3eGZYG44cobm0FFM7778rr7wSg8HgTa4FNBw7hqOszF1PfVGn49PS0khLSwtAZEKI/iQz1SLkRPpcdvYs2pG66s656qldSbXnd3j06FF2797NwYMHgxmaCEOmxEQi3CVDnlIGfzIyMhg1ahQmk8zReHj7U0+fhpINrIQYNCSpFiHHNmMmGI00nTrFmPh45syZw1R3v2XRvsZjx3CUlKCsVmwXXwy0rNUUors8Vzw6qqsWbXnLsObM7XTsoUOHOHTokOyiKMQAIEm1CDnGqEhvC6rY3JMsWbKE0aNHBzmq0FfjKf2YMQNlsbToTy1JteiJyEtcJSAd1VWD6+Rt9erVHD58OBBhhTTd3Oyd2Y90tybsyGeffcYbb7zBsWPH+js0IUQ/k6RahCTPDFmtuz2c6Jy3lZ679CMvLw+n00lcXBzx8fHBDE2EKW83ntxcmoqK2x134sQJtm3bRk5OTgCjC031Bw7grKrCEBODdfLkDsfW1tZy9uxZQDZ9EWIgkKRahCRvXXX2Fpqamjhx4gT79u0LclShSzsc1G51bfoS6T4hkdIP0VvG2FhvYli7tf3Zak9CmJubO+jbX9Zsdp/czp6FMho7HOtZKzJ06FCioqL6PTYhRP+SpFqEJNv06SizmeaiIvJ27OAvf/kLH3zwwaD/wG5Pfc4hnJWVGKKjsbq7fEhSLfqCZxMhT52wPyNGjMBgMEj7Sy78niLndl5P7XmPyiy1EAODJNUiJBmsVmzTXZuXxOWexGKxUFtbS1FRUZAjC0212ZsB1+V6ZTLR3NzsPQGRpFr0hueqkaejhT8Wi4URI0YArlKQwcpZX0/dzp1A15JqT29veY8KMTBIUi1Clqc2uH7rhdZ6g/kDuyOeRYqeBMhkMvHAAw/w3e9+Vy4ri16xZc1wdePJz6cx/0y74zyLiQfze7Ru5050YyOmpCQsnSTK1dXVnDt3DpCZaiEGCkmqRciK9C5W3EqGT82maEk3NlK7YwcA9ktadhuwy66KopeMUZHYpkwBOl447Emqc3NzcTqdAYkt1HjqqSPnzu10u/FTp04BkJKSgs1m6/fYhBD9T5JqEbJsmZkoux1HaSnD3At+8vLycDgcQY4stNTt3Yuuq8OYkEDEuLEANDc3BzkqMZBEXuoqZajZuKndMWlpaURERGCz2aiqqgpUaCHF25+6C630Jk2axMMPP8y1117b32EJIQJEtsASIUtZLNhnzqDm8/XY9x8gMjKSmpoa8vPzveUgAmo2uRKdyLlzUQYDFRUVvPDCC8QlpTF81iKSY+zMzkjAaOh45kyI9kTOm8f5X79EzaZNaKcTZWg7H2MwGHj44YeJjIwMQoTB56iooH7/fqBr9dRKKRISEkhoZ/t3IUT4kZlqEdKi5s0DoHbTJu9iHtmyvKXqDRsBV+ID8M76XTgcDnLOlPKtN/Zy+++yuewna/lgf2EwwxRhzHbxxRgiI3GUl1N/sP1e1IM1oQao2boVtMYyejTm5ORghyOECAJJqkVI8ySKtdu3c+ns2TzwwANcfvnlQY4qdDjKy6l39++OnHcpH+wv5OMtrq8LHdHecWcr6nnw1Z2SWIseUWbzhdZ6Gzd2Ot7pdA66uupaTz31nM5LP3bv3s0bb7whO1AKMcBIUi1CmmXMGEzJyeiGBqJPnSI5ObnTBUCDSU12NmhNxLixGIYmsfKdA6QaXfWshc4Y7zhPd++Vqw7icEqvb9F9kfMuBTpPqt99912effZZb7u4waJms7utZRfqqQ8fPsyhQ4coLm5/l0ohRPiRpFqENKUUkZe5ZqtrNnQ+QzbYeBKcyEvnsTW3lNqqcuyqiWatKHa2bKWngcKKerbmlgYhUhHuvKVYu3bhrK1td5zD4aChoYHjx48HKrSgayospDE3FwwGImfP7nCsw+HwdjEaM2ZMIMITQgSIJNUi5Hk+zGs2buT06dP8+9//5vPPPw9yVMGntabak1RfNo/iqnqGGysAKHJG42jn7V1cVR+wGMXAYR41CvOwYdDURO22be2O86x9GEztL6s3bABctefG2NgOx545c4aGhgZsNhupqamBCE8IESCSVIuQZ587F5Si4cgRyvLz2bt3L/vdq+wHs8bcXJoLCt1dUmaSFG1lmKESgDM+pR+tJUVbAxWiGECUUt41DtUdlIB4+lUXFhZS28GM9kBSs96VVEdedlmnYz0z+KNHj5ZSNiEGGEmqRcgzxcdjzcwEICn/DEopzp07R0VFRZAjCy5POYx95gwMNhuzMxIotwzljCOGfEfb2TIFpMZamZ0hLbxEz0R6rxq13686KiqKpKQkYHDMVuvmZm89ddTlnSfVnh0npfRDiIFHkmoRFjyLpBxbtjBs2DCAQVWz6Y+3ntqd6BgNiq8tv4qPG8dTqVvu0OaZD3tq2WTpVy16LHLOJWAw0Hj8OE2F7XeS8ZSADIb3aN3evTirqjDGxnpP/tsdW1fHmTOurd49M/pCiIFDkmoRFrx11Zs2eWd4jh07FsyQgsrZ2Ojqi8uFpBpgaWYqL63IIiW2ZYlHSqyVl1ZksTRTajhFzxljY71blns2HfJn7FjXzp7Hjx9H64HdbaZ6/XrAdeKv3Du/tqempobhw4eTlJREbCe110KI8CM7KoqwYJs6FYN7y/KR7g+uEydO4HA4MHbyQTYQ1e3a7dqafMgQIsaPB+DgwYMMHz6cpZmpLJqcwtbcUoqr6kmKtsqOiqLPRM6bR92ePdRs3EjczTf7HTNq1CjS09PJyMjA4XBgMg3cj5oL9dSd988fMmQIX/va1wZdD28hBguZqRZhQVks2N2bKkQdzMFms9HQ0EB+fn6QIwuOGne3gchLL2xN/o9//IPnnnuO+vp6jAbF3DGJ3DBtGHPHJEpCLfqMt8Xlps1oh8PvGLPZzF133cX8+fMHdELdXFpK/YEDQMsrRp0x+NnmXQgR/uSdLcKGp666buNGxo4dS0pKCk1NTUGOKjiqN7qS6ih3twFP7WpaWhpWq3T3EP3HNmUKhujoFrt5DlY1Gze5Nl+aMAFzclKHY+vr66mrqwtQZEKIYJCkWoQNTwJZu3Mny66+mvvvv99buzmYNBUX03AwB4DIS10nGp6kWjoKiP6mzGbvrGzVZ591OLauro79+/fT2NgYiNACznPFqCtdP/bu3ctPf/pT3nvvvf4OSwgRJJJUi5DncGo2Hy/h/TITjmEjoLmZuk2bgx1W0NS4N76xXnwxpiFDcDqd3jZdg/EkQwRe1IIFAFR3klS//PLL/Otf//L+/zmQaKfTZ/OlzpPqo0ePorUmLi6unyMTQgSLJNUipH2wv5DLfrKW23+XzaN/281bVlerrsNvvw9AY2MjVVVVwQwx4Ko+/RSAqAXzASgoKKC+vp6IiAhvu0Eh+lPU/MtdGzIdzKGpqLjdcZ62cQOxU099Tg6O8+dRdju2rKwOxzY1NXHy5EkAxo0bF4DohBDBIEm1CFkf7C/kwVd3UlhxYVvtbSmTAGjatJE/v7OWZ599lo8//jhYIQacs7GRGvcsfdSChQAcOXIEcJV+yAIoEQimxESsntZ66z9vd5znysmxY8cGXGu96nWfAq7FwgaLpcOxubm5NDc3Exsby9ChQwMQnRAiGOQTWIQkh1OzctVBWn8MH0jMoMZkJb6hms/WH8LhcHDs2LFB06Kqdts2dG0tpqFDsU52nWB4ZgHHu1vrCREInislHZWApKenYzQaqaio4Pz584EKLSCq3VeMohcu7HSs58R33LhxsjW5EAOYJNUiJG3NLW0xQ+3RbDCxM8mVPKYdycFktlBXV0dhB7u7DSTVn7oSmMgF81HuWek777yTm266SS4ri4DyXCmp2bgJZzsLES0WC6NGjQIGVglIU1Ex9fv3Axfqy9ujtebo0aOAnPgKMdBJUi1CUnFV24TaY6u7BGTW2Rwih6QBF2aCBjKttXdW0PeD3GazMWXKFOx2e7BCE4OQdfIkjEOH4KytpW779nbHeUpAPInlQFD92aeAe7FwJ+UcxcXFVFZWYjKZSE9P7//ghBBBI0m1CElJ0e33Wt6WPBEninEVZxgxJBkYHEl1Y+5Jmk6dcrU0m3tpsMMRg5wyGIi6vPMSEM/s7KlTpwZMaz1PPXX0FQs7HRsTE8OyZcu4/PLLMZvN/RqXECK4JKkWIWl2RgKpsVb8VR9WRERzJH4EAHPqy1BKcfbsWSoqKgIbZIB5ajjts2ZhjIqkqamJP/3pT2zYsAFHOzvbCdGfvK31Pm0/qU5MTGT58uU88sgjWDpZ0BcOnPX11Gx2Lxa+4opOx9tsNrKyspg/f35/hyaECDJJqkVIMhoUTy2bDNAmsVbAtmRXCYhz40ZGjHAl2IcPHw5ghIHnLf1Y6EpkcnNzOXnyJNu3b5euHyIoIuddCmYzjXl5NOTmtjtu6tSpxMTEBDCy/lOTnY2ur8eUmkrEhAnBDkcIEULkk1iErKWZqby0IouU2JalICmxVq762k0A1GzaxKzp01myZAkTBtgHnGfTm7d3nyF7z0lqd+wALswOSkcBEWzGqCgiZ80CoPqTT4IcTWB4Sj+iFi7o9H138uRJsrOzKSsrC0BkQohgMwU7ACE6sjQzlUWTU9iaW0pxVT1J0VZmZyRgUHDsl6k0FxYyqrSM6Cs7vwwbTj7YX8jKVQe9HVCuOL2Dx5ubaRw+CsuoUdJRQISM6EVXU7NpE1UfryHx619vd9yePXvYt28fl112Wdgu2NNaX2il14XSjx07drB//36qqqpYtGhRP0cnhAg2makWIc9oUMwdk8gN04Yxd0wiRoNCKUX01VcDUDXANn/xt+nNpQWu9l1v2sfywf5CioqKqKysxGw2k5GREaxQhSDqyqsAqNuzp8PdFU+ePMnx48c5dOhQoELrcw05OTQXFaHsduyXXNLhWIfD4T3xnThxYiDCE0IEmSTVImx5kurqtWuprapi165dZGdnBzmq3vG36Y3F0cTMYlcisiltCitXHSTHnZhkZGRgMskFJxE85uQkbFOnAlC9tv0SEM8VlcOHD7fYXdG3zGnz8RIcztDdebFqzRrAvYtiRESHY3Nzc2loaCAqKorhw4cHIjwhRJDJp7EIW/YZWRjj43GUlXFq/Xre2bYNm83G7Nmzw3bhnr9Nb7KKD2N1NFFki+No7DCoqGfX3pOAzICJ0BC96Grq9uyh6uM1xN9+u98xY8aMwWg0Ul5ezrlz50hKSmpT5gSQGmvlqWWTWZqZGqjwu6zyo48AiFm8uNOxnhn5CRMmyJoHIQaJ8Mw8hACUyUTUVVcCELNtOzabjbq6Ok6fPh3kyHrO36Y3ntKPzalTQCkMODFYo4iIiBhwizNFePJcNarZuhVHO60tLRYLo0ePBlyz1f7KnADOVtTz4Ks7+WB/aO2S2nDiBI3HjoPZTFQnW5Nrrb3diOTEV4jBQ5JqEdZi3It/atau9W7T7VuzGU6XlqHtpjcGp4NLzh4EYFNaJgBODFxy1XV897vflV0URUiwpKcTMW4sNDd3uBGM5yTw0KFDbcqcPDz3rVx1MKTer1XuWerIuXMwdtIeMD8/n+rqaiIiImTNgxCDiCTVIqzZ587FEBlJc1ERY6yuhDQnJwetNR/sL+Syn6zl9t9l8+jfdnP777K57CdrQ24GzFfrTW+mlJwgpqmWCkskBxIzULguj8/OSMBoNAYzVCFaiPIuHF7T7hhPXXVBQQGVlZXtjtNAYUU9W3NL+zTG3qj6yLUgOroLXTzOnz+P0Whk3Lhx8j4VYhCRpFqENYPF4u3bPGT/fsxmMxUVFfxr/d6wurTs0XrTm0sL9gGQnXIRWhmw0MzjC9MwGqRGU4QW78LhDRtw1tX5HxMdTXp6OlFD07DQ3Olz+iuHCobG/HzqDx4Eg4Hoq67qdPz06dN5/PHHpY2eEIOMJNUi7EUvdn1w1a5Z450JW/XZtrC6tOzLs+lNarSFy9xJ9ca0TFJirfzfuVHs/ejvvPnmm0GOUoiWrJMnY05LQ9fVUb1hQ7vj7rzzTi5dchNluvPSpdblUMHimaW2z5qFKSGhS99jsVgGzC6SQoiukaRahL2oyy9HWSw05Z1iXFwcKIWzsf0ZrlC8tNza0sxUPrwymoSGKhyR0Xzne3ey4YkrMVQWAJCcnBzkCIVoSSlF9JIlAFS9/3674wwGQ5sypzbPxYUyp1Dgqaf2nMB3pKGhob/DEUKEKEmqRdgzREYSOf9yAIbu2ctFi29nfVPni4NC5dJye6rdiUnCFxYzd2IKDfV15ObmAjBp0qRghiaEXzHXXANA1dp1OGtq2h1nNCievHoU8aq2TWLt+fqpZZNDosypqbCQut27AYi+uuOkWmvN7373O/73f/+Xc+fOBSA6IUQoCdmkWin1G6WUVkp9q9X9CUqpvyqlKpVS5Uqpl5VSUa3GXKyUWq+UqldKnVZKPR7Q4EXAxV53HQC1q1czbEh8l74nVC4t+6ObmryzY7HuRMWzADM5OZmELl6CFiKQrJkXYR41El1fT9W6T9sdt3//fnat/isrhpWSEtvyfZgSa+WlFVkB61PdWYegytWrAVfphzk5qcPnKioqoqSkhHPnzknphxCDUEhu/qKUuhGYAxT4efivQCqwCDADfwB+C3zZ/b0xwEfAGuABYArwilKqXGv92/6PXgRD1MKFGOx2ms6cYUrlaVJjrZRXVFGHCVrNhSlcH9yhcmnZn5rsbBzl5RgTE7HPng24EhGAzMzMYIYmRLuUUsRccw0lL/2GytWrib3uWr/jRowYAUBVyVne/9bt5JxvoriqnqRod2ebAM1Qd2XzmYp33wMgxn3i7svh1GzNLfXGXp3reo+OGzeOiE52XBRCDDwhl1QrpYYBLwBLgPdaPTYJWArM0lpvd9/3MLBaKfWY1roAuAOwAF/TWjcCB5RS04Dv4Eq+xQBksFqJuvoqKt9ZRdV77/GloWmUNZzm3YbJlPgsiAq1S8vtqXzPNTsWs2QJymSisrKSkydPApJUi9AWe+21lLz0G6rXr8dRUYExNrbtmNhYhg8fTn5+PkcOH2Ku+8QxkDybz7ReruzpEPTSiiyusNbQkJMDZnObeuq2CbnmS7b92IGLLrooEIcghAgxIVX+oZQyAH8Bfqq1PuBnyFyg3JNQu60BnMAlPmM+dyfUHh8CE5RSfusClFIRSqkYzw2I7u2xiMCLvdY1K1b1wQekxUdiUDDF3nJ3t0BfWu4JZ0MDVWtcvX5jrnWVfhw86NoAZsSIEcTFxQUrNCE6FTF2LBHjx0NTk/f/Y38mT3a1jvRcgQkkh1N3afOZcvcsddRll2GKv/Dx4W83yCGqFjsNNGkDec1S+iHEYBRqM9VPAM3Ar9p5PAUo9r1Da92slCp1P+YZk9vq+4p8Hivz87xPAk/1JGAROiIvvRRjXByOkhLGWSzkABdHVnLfbTdwrqYx4JeWe6pm/Xqc1dWYUlKwTZ8OwMyZM4mLi8NkCrW3rBBtxVxzDeeOHKHyvdXE3Xyz3zGZmZl8/PHHnD59mrKyMuLju7YWoi9szS1t08PelwYKy+s49+E7GIEYnzKW9hLyDKOrm1C+I5b/fv8oSy8eEfJ/a4QQfStoM9VKqTuUUtU+twXAo8DdWutANxB+Boj1uQ0P8M8XfUCZzUQvdbX0GrJtO1arlaqqKlKMVdwwbRhzxySGxYdcxdtvA67ERBlcb1GTycTEiRMZO3ZsMEMToks8V1hqsrNpKi72OyY6Otq7hffevXsDFht0rfPPhLJTGM8WoOx2oq+4wnu//4Rck250zdfkOhJCvmWnEKJ/BLP84x1gms/tUiAJOKWUalZKNQOjgJ8rpU66v+ese4yXUsoEJLgf84xp3cQ32eexNrTWDVrrSs8NqOrxUYmg8pSA1H74IZMnTABg3759wQypW5pLS71dE2KX3xDcYIToIcuIEdiyssDppPKdd9odd/HFFwOuzjaB1JXOP1fk7wIg+qqrMNgvrMvwl5ArILtpJCeaE8h3xrY7TggxsAUtqdZaV2mtj3luuBYRXkzLRLsA+CmuRYsAm4E4pdQMn6e6EtdxbPEZM18pZfYZswg4rLX2V/ohBhDbjBmYhw/HWVPDGHef3IMHD9LU1BTkyLqm8t13obkZa2Ym1vHj0Vrz+uuvs3btWmpra4MdnhBdFnfTjQCUv/lv2rv4OHHiRK6//nq++tWvBjK0TjefMTubufKMK6mOXday64e/hFyjOO2M47Om0TjcH6uh3LJTCNE/Qmahota6RGu93/cGNAFntdaH3WNygA+A3ymlZiul5gEvAn9zd/4AeA1oBF5WSl2klPoSrrKSXwT8oETAKYOBuJtvAsD+4UfExsbS2NjIkSNHghxZ15T/+y0AYm9cDkBBQQFHjhxh8+bNGAwh83YVolPRS7+AstloPHGC+j17/I6JiIhg+vTpAW8/ZzQonlrmWijpb/OZSwoPEt1QgykpichLL23xeLjtBimECJxw/JS+AzgEfAKsBjYA93ke1FpXAIuBDGAH8HPgh9KjevCIXb4clKJu61YumzKF66+/njFjxgQ7rE7V5+TQkJODMpu9O9Pt2uWaLZs8eTJWq8x8ifBhjIokZvFiwDVb3RWBXE6zNDOVl1Zk+d185jvNhwDX3xLVanFw64R8pKGM6aYzRKv6sGnZKYToHyHdSkBrne7nvlLcG7108H17gcv7KSwvh8MRNmUF4cpsNmM0Grv3PampRM6bR82GDYzcv5+kRx/tp+j6VsVbbwEQdeWVmOLjaWpq8rYbmzZtWvACE6KHYm+8kYq336Zy9WqSn/weBpvN77hdu3axbds2FixYwAT3WohAWJqZyqLJKS02cJluayT3alfXVs9VL3/f99KKLFauOsjkumJSjVU4URRHjm6xcYwQYnAJ6aQ6VGmtOXv2LOXl5cEOZVCIi4sjJSUFpbo+8xN3803UbNhAxb/fYug3v4nqZmIeaLqxkYp3VgEXalFzcnJoaGggLi6O9PT0IEYnRM/YZ8/CPGwYTWfOULVmDbHLlvkdV1xcTGFhIbt27QpoUg2umee5YxK9X5//zf+C04l95kwso0a1+31LM1OZlWblxRc2APDorYtYkDlKZqiFGMQkqe4BT0KdlJSE3W7vVrInuk5rTW1tLcXullypqV2f/Ym66iqMsbE0nz1L+fr1HLHZOHHiBLfddltIvl5Vn3yCo6wM09ChRM6bB8Du3bsBmDp1akjGLERnlMFA7I03cv7FFyn/xz/bTapnzJhBdnY2R44cobKykpiY4Gyeop1Oyt98E4DYdvpr+9q/z9UKMCMjgysvTu/P0IQQYUCS6m5yOBzehDoxMbHzbxC9YnNfLi4uLiYpKanLpSAGi4WY66+n7C9/ofxf/2JtWhqNjY2cPHnS2xs3lJT99TUA4m65BWUyUV5eTm6uaw8jKf0Q4Szu5ps4/+tfU7t1Kw3HjhHhp9f6kCFDGDVqFHl5eezatYsFCxYEIVKo2biJplOnMERFEbNkcYdjnU6nd83D1KlTAxGeECLEheNCxaDy1FDbffqWiv7l+V13t349/ku3AlD/yVouci9U3LlzZ98G1wfqjxyhdvt2MBqJc8cMkJWVxaRJk2RbchHWzKmpRF3p2jyl7LXX2x2XlZUFuOqrnU5nQGJrrew118lt7E03tuhN7c+xY8eoqKjAarV6t1wXQgxuklT3kFyOD5ye/q4jxo7FPmcOOJ2MOZkHuOqUQ63fc/nf/ga4NpkwJ7v2KYqLi2PZsmXceuutHX2rEGEh4cuuteUVb7+No7rG75hJkyZhtVqpqKjg+PHjgQwPgMb8fKo//RSA+Ntv73T89u2uxYzTpk3DbDZ3MloIMRhIUi0GtIQVdwBgfvNNUlNScDgc3lrlUOCorqHiLde25PFf7vyDXIhwZJ87F0tGBs6aGireedvvGLPZ7C2jCMYVpbLXXwetiZw3j4hOSsS01sTHxxMREcHMmTMDFKEQItRJUi1YuHAh3/rWt4IdRr+IWrgQU1oqjvJyJhlc9djbt28P2uXl1ir+/W+ctbVYRo/GfsklAHz++eecOXMmyJEJ0XeUUt7Z37LXXmu3H3VWVhYTJkxgxowZfh/vL876eir++S8A4u+4o9PxSim+8IUv8Nhjj8naGiGElyTVg8jdd9+NUqrN7dlnn+VHP/qRd1x6ejrPPfdc8ALtQ8pk8n6YJ33wAVarlbKyspDYYVE3N1P6xz8CkHDnCpRSnD17lnXr1vHKK69QU+P/MrkQ4Sj2xuUY7HYajx2n5vPP/Y5JSkritttuY6yfxYz9qeKtt3FUVGAeNoyoBfO7/H0mk6z1F0JcIEn1ILN06VIKCwtb3GbMmEF0dHSwQ+s3cV/8Ispmw3ngAFOTU5g4cSKxsbHBDovKDz+k6cwZjAkJxN7o6k29detWwFVfGhkZGczwhOhTxuho4r70JQBKfvf7IEdzgW5upuTllwFIuOuuTnvanzhxglOnTgV090chRHiQ0+w+oLVG19UF5Wcrm61bC/kiIiJISUlpcd/ChQuZNm0azz33HAsXLiQvL49vf/vbfPvb3wYCu3VwfzDFxxN/6y2U/unPTPzkE9L/8udgh4TW2vtBHr/iDgxWK9XV1ezd6+p7O2vWrGCGJ0S/SLj7LkpffZXa7dup270bWzvtIisrK9myZQtDhw7ttKWkw6lb7Ig4OyOhWxuwVH30EU2nT2OMiyPuix33ptZa8/7773P+/HmWL18urfSEEC1IUt0HdF0dh7MCWwPoMWHnDlQftvd78803mTp1Kvfddx/33ntvnz1vsCV89auUvvY6ddu2UbtrF/bp04MaT212Ng0Hc1A2m7c8JTs7G4fDwfDhwxk5cmRQ4xOiP5iTk4ldtoyKN9/k/O9/z4gXX/Q77tChQ2zatImEhIQONz/6YH8hK1cdpLCi3ntfaqy1y1uFa6057541j79zRadt9I4ePcr58+eJiIhg4sSJnT6/EGJwkfKPQebdd98lKirKe7vllltaPJ6QkIDRaCQ6OpqUlJQ2s9rhypySQuz1rt3cSn77OyoqKnjvvfeCstW81przL/0GgLibb8YUH09DQ4O3Rde8efOkZaMYsBLv+RoA1Z+speHYMb9jpk2bhtVqpbS0lJycHL9jPthfyIOv7myRUAOcrajnwVd38sH+wk5jqdmwkYYc98mtu+1fRzZt2gS4doCMiIjodLwQYnCRmeo+oGw2JuzcEbSf3R1XXHEFL730kvfryMhIbu9CT9aBIPGer1Px5r+pXreOda+/Tm5REVprrrvuuoDGUbt5M7Vbt6LMZm+CsX37dhoaGhgyZAgTJkwIaDxCBFLEmDFEL7qaqo/XcO6FFxn+/HNtxlgsFmbNmsX69ev5/PPPmTRpUosTTYdTs3LVQfwVpmlAAStXHWTR5JR2S0G01px74QUA4m+9BVN8fIdx5+fnk5eXh8Fg4BJ3px4hhPAlM9V9QCmFwW4Pyq27M5qRkZGMHTvWe0tN7fwS6UARMTqDmGuvBWDi3n0A7N69m8rKyoDFoLWm+LnnAYi7/TbM7t+/3W4nOjpaZqnFoDDk4YdBKao+/JC6/Qf8jpk7dy4Wi4WioiIOHz7c4rGtuaVtZqh9aaCwop6tuaXtjqlas4b6vXtRdjuJXSh1+9S9MczFF19MTExMp+OFEIOPJNWiDYvFgsPhCHYY/WLoo4+A2Uz02rUMj4/H4XCwcePGgP386nWfuj7IbTaG3Hef9/7p06fz6KOPMmXKlIDFIkSwWMePJ2aZ6wrRuXbad9psNmbPng3AZ5991mLBdHFV+wm1r/bGaYeDc8+7Tm4TvnInpiFDOnyeU6dOcfz4cQwGA/Pnd73lnhBicJGkWrSRnp7u3YDk/PnzwQ6nT1lGjCDevfX3pJ27ANixY0dAZqt1c7M3gUhYsaLNB7nRaMTYSTsvIQaKod/8JphM1GzYQM2WrX7HzJ07F7PZzNmzZ1v0lk+KtnbpZ7Q3ruKdVTQeO44xNpbEe+7p9HmampqIj49n2rRpxHdSJiKEGLwkqRZt/PCHP+TkyZOMGTOGoUOHBjucPjfkwQdQdjtx2dmkRUXhcDhYt25dv//csr//nYYjRzDExnprqbdt28bevXtDZodHIXrC4dRsPl7C27vPsPl4CQ5n5204LSNHEnfLFwEoeuYZtJ+rY3a7nTlz5jBz5kyGDx/uvX92RgKpsVbaK5RSuLqAzM5IaPOYs6bGe3KbeN+9GLvQo3/MmDE89NBDLFq0qNOxQojBSxYqDiJ/dO/e15qnVtBjzpw57Nmzp/8DChLTkCEkfv0ezv/qBTLXrqNg9ix2797NJZdc0m/dTprLyjj3/K8AGPrIwxjj4qipqWHNmjU0NjZitVoZP358v/xsIfpTb9raDX34YSrfW03DoUOUvfEGCX46cFxxxRVt1hkYDYqnlk3mwVd3oqDFgkXPyKeWTfa7SPH8Sy/RXFSEecSILm1J7v2ZciVJCNEJmakWg1LiPfdgHjmSuOPHmWAwMG/ePOLi4tqM68kMnD/nfvFLnBUVREyYQLx7V7m1a9fS2NhIamoq48aN683hCBEUvW1rZ0pIcK1zAM499zzNpW0XFrZOqD1XdZZmpvLSiixSYluWeKTEWnlpRZbfhL7h+HFK/vgnAJL/4/9isHZcRrJ//362bt0qV5KEEF0iM9ViUDJERJDyn9/n9L33cfHf3iBj+Y1YW33A9nZjCY+aTZso/8c/AEj5z++jTCbOnDnDzp07AdfW8dLxQ4SbvmhrBxB/222U//NfNOTkcHblDxn23C/9vh/OnTvHhx9+SHJysrcMY2lmKosmp3RpR0XtcFD4H9+H5mairriC6IULOzy+hoYGPvzwQ6qrqzEajcyYEZwNvoQQ4UNmqsWgFXX55cRccw3K4aDg8cdx1tXhdDppamrqk40lABzV1RR8//sAxN9xB/aZM3E6nbz//vuAqz2X7J4owlFftLUDUEYjqf/9IzCZqPrwQypXr/Y7rqysjOPHj5OdnU1RUZH3fqNBMXdMIjdMG8bcMYntJvAlL79C3e7dGKKiSPnP73d6fJ988gnV1dUkJCR0ulW6EEKAJNVikEv5wX9iSkqiMTeXQ88+yyuvvMLHH6/pcAYOXDNwnZWCaK05u/KHNBcUYh4xgqT/8x3AtR35mTNnsFgsXH311X17QEIESG/b2vmyXXQRQx54AICzP/wRTWfOtBkzfvx4Jk6ciNPp5J133ulWSUb9wYPejV6S/+M/MKeldTg+Ly+Pbdu2AXDttddKLbUQokskqRaDmjEujtRnngageO06zpw5w7ZtW9FVxe1+T1dn4Mpee43KVavAaCTtx89gsNupra31LgxdsmQJ0V3oPCBEKOptW7vWhtx/H9YpU3BWVJD/8CM469sm49dccw0REREUFBR4twzvTHNpKae/+U1oaiLq6quIXX5Dh+ObmppYtWoV4OofP3r06C79HCGEkKRaDHpR8+aR+MD9JBcVkZF7EoD5llwiaOrw+zqagavJ3kLRj38CQNJ3H8Purse02+3ceeedzJw5k+nTp/fNAQgRBL1pa+d3vNnM8OefwxgfT/3BgxT+4AfoVrPR0dHRLFmyBIB169aRn5/f4XPqxkbOfPs7rqtFo0aS9vTTna5fWL16NSUlJURHR7N48eIuxS6EECBJtRAADH3kEaKuvJLp27YRXV1NpGricstJlN8iEJf2ZuDq9u4l/xvfgKYmYq75Agl33dXi8REjRnDttdfK4kQR1jxt7YA2iXVnbe3aY05LY9gvfwEGA5XvrKLomR+32EkRYNq0aVx00UU4nU7++c9/UldX5/e5dHMzZ/7PY9Ru2YLBbmfEiy9i7GR78ZKSEvbt24dSiptuuqnN4mUhhOiIJNVCAMpgIO3ZnxA1aRJz16/H4HAwwljBLPPptmNpfwaudtcuTt17H87aWuxz55D6zDMopdi7d2+LxVVCDAQ9aWvXmcg5c0j9f/8PgLK//IXiH/+4xcYwSimWLVtGfHw8VquV5ubmNs/hbGyk4PHHqfr4Y5TZzLDnnyeiC20rExMTueeee7jmmmtIT0/vduxCiMFNtZ4FEKCUigEqKioqiGk1s1FfX09ubi4ZGRkyixEggfydOyoqOPW1ezhSVUX2vEsB+Lwxg+OORODCDFzrhEFrTcXbb3P2qf9CNzRgmzqVES+/jDEqkn379vHmm29iMpm49957SUpK6tdjECLQHE7dpbZ23VH2+uucXflDAKIWLiTtp8+22P2wpKSEqKgoIiIiWnxfU1ExZ77zHep27ACTieG/+hXRV17R4c9yOp0YDDLHNBBUVlYSGxsLEKu1rgx2PGJwkb8iQvgwxsYy8pWXmTR8OFN27yGmooIbd3zE0NoywP8MXGNeHmceeYTC7z2JbmggasECRv7hFYxRkRw4cIC33noLgKlTpw7Ibd+F6Gpbu+6Iv/120n72M5TFQvWnn3Li2uuoXL3aO2udmJjYIqE+tH8/5157jRPLllG3YweGqChG/OY3nSbUhYWFvPjiixQUFPQ6ZiHE4CYz1X4M9Jnqs2fP8swzz/Dee++Rn59PbGwsY8eOZcWKFdx1113Y7fZgh9hCMH7n2uGg+LnnOfvnP2NpaEAbDDTNnkfqooXYR44E7aTxZB7VG9ZTs2EjOJ1gNDL04W+SeO+9YDCwYcMG1q5dC7j6US9fvlzqqIXoprq9eznz3e/SlHcKAPOokcQsXoL1ooswxkTjKC9n586dfOZwkFRUxJxNm4gbO460Z39CRCedOw4fPsybb75JY2MjY8aMYcWKFYE4JNGPZKZaBJMk1X4M5KT6xIkT3i25V65cyZQpU4iIiGDfvn389re/5f777+f6668PdpgtBPN3XnfgAMU//Rm12dkcnjCBvPRRZG3fwZCSkhbjIudfTtL/eQzrhPEUFxfz/vvvc/LkSQBmz57NkiVL5PKyED3krK+n5PcvU/rnP+OsbJsnFSUns/Hyy2g2m7EbjSy57jqmTJ3a7klsTU0Na9eu9e5qmp6ezm233damlESEH0mqRTBJUu1HT5PqxsbGdp/TYDBgMpm6NFYphdls7nSsxWLp6DD8Wrp0KQcOHODQoUNERka2eVxrTV5eHhkZGezatcu7k1h5eTnx8fGsW7eOhe7tfffv3893v/td1q9fT2RkJIsXL+aXv/wlQ4YMAeCf//wnK1eu5NixY9jtdqZPn87bb79NZGQkn376KY8//jgHDhzAbDZz0UUX8dprrzFq1Kg2MYXCiUzl/gP85s1/Ued+v6RUVTHG4WDE6NEMvfpqbOnp2Gw2ADZs2MAnn3yC2Wxm6dKlTJ8+XWaohegDjuoaqj/9lJoNG2jIPYGuq8dgtxMxfjz1M2fw/unTnDt/HoChQ4cydepUJkyY4P2bVFpaysaNG9m3bx9NTa6WmXPmzOGqq65q8fdZhC9JqkUwyV+RPvTMM8+0+9i4ceP48pe/7P36Zz/7mfePemujRo3i7rvv9n79/PPPU1tb22bcU0891a34SkpK+Oijj3j66af9JtRAl5O/8vJyrrzySr7+9a/zy1/+krq6Op544gluvfVW1q5dS2FhIbfffjvPPvssN954I1VVVaxfvx6tNc3NzSxfvpx7772X119/ncbGRrZu3RrSiWdM5kV8I30Un3zyCXv27OFsdDRnAUpL4e9/Z9asWVxzzTUAXHLJJZSVlTFn7qUcq4B39hT02eItIQYzY1QksdddS+x11/p9/L7mZjZv3syGDRs4d+4ca9asobKyki984QsA1NXVeWenU1NTWbJkid8TeSGE6AlJqgeRY8eOobVmwoQJLe4fMmQI9e7dyx566CEefPDBTp/rxRdfZPr06Tz99NPe+1555RVGjBjBkSNHqK6uprm5mZtuusn7oTVlyhTANVtUUVHBddddx5gxYwCYNGlSnxxjf4qKiuKGG25g4cKF7N69m+PHj3P+/Hnq6upatPUym82YM2Zy/e92U1hxYYOY1FgrTy2b3KM2Y0KIzplMJi6//HJmzZrFvn37OHr0KAkJF1pfpqSkMGPGDDIzMxk1alRIn8gLIcKPJNV96Mknn2z3sdb1tI899li7Y1v/oX/00Ud7F1gntm7ditPp5I477qChoaFL37Nnzx7WrVtHVFRUm8eOHz/O4sWLueqqq5gyZQpLlixh8eLFfPGLXyQ+Pp6EhATuvvtulixZwqJFi7j66qu59dZbSU0Nj2QzNjaWBQsWsGDBAsBVMuP7mn2wv5AHX93ZZtuYsxX1PPjqzh737xVCdI3VamXWrFnMmjWrxf1Go5HrrrsuSFEJIQY6WTnVhywWS7u31vV6HY31rafuaGx3jR07FqUUhw8fbnH/6NGjGTt2rLcm2HMC4Ftv37pUpbq6mmXLlrF79+4Wt6NHjzJ//nyMRiMff/wx77//PpMnT+aFF15gwoQJ5ObmAvCHP/yBzZs3c+mll/LGG28wfvx4srOzu31MocA3oXY4NStXHfS7D6PnvpWrDuJwyloGIYQQYiCRpHoQSUxMZNGiRbz44ovU1NS0O87TS7mwsNB73+7du1uMycrK4sCBA6SnpzN27NgWN0+9tlKKefPmsXLlSnbt2oXFYuHf//639zmmT5/Ok08+yaZNm8jMzOS1117rw6MNjq25pS1KPlrTQGFFPVtzSwMXlBBCCCH6nSTVg8yvf/1rmpubmTlzJm+88QY5OTkcPnyYV199lUOHDmE0GrHZbMyZM4cf//jH5OTk8Nlnn/H973+/xfM89NBDlJaWcvvtt7Nt2zaOHz/Ohx9+yFe/+lUcDgdbtmzh6aefZvv27Zw6dYo333yTc+fOMWnSJHJzc3nyySfZvHkzeXl5fPTRRxw9ejQs6qo7U1zVfkLdk3FCCCGECA9SUz3IjBkzhl27dvH000/z5JNPkp+fT0REBJMnT+axxx7jG9/4BuBadHjPPfcwY8YMJkyYwLPPPsvixYu9z5OWlsbGjRt54oknWLx4MQ0NDYwaNYqlS5diMBiIiYnh888/57nnnqOyspJRo0bx85//nC984QsUFRVx6NAh/vSnP1FSUkJqaioPPfQQ999/f7B+LX0mKbprLf+6Ok4IIYQQ4UH6VPsxkDd/CUfh9Dt3ODWX/WQtZyvq/dZVK1xbnW944kppryeEEH1M+lSLYJLyDyH6kNGgeGrZZMCVQPvyfP3UssmSUAshhBADjCTVQvSxpZmpvLQii5TYlrPqKbFWaacnhBBCDFBSUy1EP1iamcqiySlszS2luKpedlQUQgghBjhJqoXoJ0aDYu6YxGCHIYQQQogAkPKPHpIFnoEjv2shhBBChDpJqrvJs9thbW1tkCMZPDy/69Y7TQohhBBChAop/+gmo9FIXFwcxcXFANjt9hbbVIu+o7WmtraW4uJi4uLiMBqNwQ5JCCGEEMIvSap7ICUlBcCbWIv+FRcX5/2dCyGEEEKEIkmqe0ApRWpqKklJSTQ1NQU7nAHNbDbLDLUQQgghQp4k1b1gNBol4RNCCCGEELJQUQghhBBCiN6SpFoIIYQQQohekqRaCCGEEEKIXpKa6g5UVlYGOwQhhBBCdJF8botgUrJbXVtKqWFAfrDjEEIIIUSPDNdanwl2EGJwkaTaD+XazSUNqOqHp4/GlbAP76fnD7aBfnww8I9Rji/8DfRjlOMLf/15jNFAgZYERwSYlH/44X4j9ssZrs/ui1Va6wF3nWqgHx8M/GOU4wt/A/0Y5fjCXz8f44D8nYnQJwsVhRBCCCGE6CVJqoUQQgghhOglSaoDrwFY6f7vQDTQjw8G/jHK8YW/gX6McnzhbzAcoxhkZKGiEEIIIYQQvSQz1UIIIYQQQvSSJNVCCCGEEEL0kiTVQgghhBBC9JIk1UIIIYQQQvSSJNUBpJR6SCl1UilVr5TaopSaHeyYuqI7cSul7lVKrVdKlblva1qPV0r9USmlW90+6P8j6bpuHvPdfo6nPpDxdqabx/Opn+PRSqn3fMaE/Gvoj1JqvlJqlVKqwB3z8mDH1JnuxqyUukkp9bFS6pxSqlIptVkptaTVmP/y8/od6tcD6YYeHPPCdv6fTQlQyB3qwfH4e39ppdQBnzEh/Rr6o5R6Uim1TSlVpZQqVkq9pZSaEOy4hOgrklQHiFLqS8AvcLUQygL2AB8qpZKCGlgnehD3QuB14ApgLnAa+EgpNazVuA+AVJ/b7X0efA/18LWqpOXxjOrvOLuqB8dzEy2PJRNwAP9oNS5kX8MOROI6/oeCHUg3dDfm+cDHwDXADGAdsEopNb3VuAO0fP0u65No+0ZPX6cJtDym4j6Oq6e6ezyP0vI4RgCltH0PhvJr6M8C4H+AOcAiwIzr8yEyqFEJ0Ve01nILwA3YArzo87UB11bo3wt2bP0ZN2DElXB+xee+PwJvBfvY+uqYgbuB8mDH3Y+v4bfcr2FkuLyGXTwuDSwPdhyBiBlX8vUDn6//C9gd7OPpq2PGdTKvgbhgx9sfryGwHHACo8LxNezguIa6fx/zgx2L3OTWFzeZqQ4ApZQF14zRGs99Wmun++u5wYqrM30Utx3XbERpq/sXui//HVZKvaSUSuyLmHurF8ccpZTKU0qdVkq9rZS6qJ9D7ZI+eg3vAf6mta5pdX9IvoaiJaWUAYim7XtwnLsc4YRS6q9KqZFBCK+v7VZKFbrLX+YFO5g+dA+wRmud1+r+cH8NY93/bf3/phBhSZLqwBiCa8a2qNX9RUBI1Py1oy/i/glQgE9Sh6ts4CvAVcATuC4Jvq+UMvYq2r7Rk2M+DHwNuAFYget9tUkpNby/guyGXr2G7trrTOD3rR4K5ddQtPQYEAX83ee+LbiusCwFHgQygPVKqeiAR9c3CoEHgJvdt9PAp0qprKBG1QeUUmnAF2j7Hgzr19B9svccsFFrvT/I4QjRJ0zBDkAMXEqp7wG3AQu11t6Fe1rrv/kM26eU2gscx3UJ95OABtkHtNabgc2er5VSm4Ac4H7gP4MVVx+5B9intd7qe+dAew0HKqXUl4GngBu01t76Yq31+z7D9iqltgB5wK3Ay4GNsve01odxndx6bFJKjQG+DdwZnKj6zF1AOfCW750D4DX8H1wn7KFeBy5El8lMdWCcx7XQK7nV/cnA2cCH02U9jlsp9RjwPWCx1npvR2O11ifcP2tsz0PtM71+rbTWTcAuwvx43IuHbqMLH9Ah9hoKQCl1G67ZzVu11ms6Gqu1LgeOMLBev62E+fEopRSuq2B/0Vo3djQ2nF5DpdSLwHXAFVrr/GDHI0RfkaQ6ANx/DHfgulQOeC99XYXPDGeo6WncSqnHcc3QLtVab+/s57jLJBJxXcINqr54rdwlEFMI/+O5BYgAXu3s54TSayhAKXU78Afgdq31e10YHwWMYWC9ftMI/+NZgCtJ7vTENhxeQ+XyInAjcKXWOjfYMQnRl6T8I3B+AfxJKbUd1wzKt3C1WfpDMIPqgg7jVkr9GTijtX7S/fUTwA+BLwMnffrEVmutq91/+J8C/oVrpnQM8CxwDPgwUAfVie4e8w+AbFzHEAd8F1dLvdY1kMHSrePxcQ+uDh8lvneGyWvolzt235m8DKXUNKBUa30qOFF1rLOYlVLPAMO01l9xj/8y8Cdcbdm2+LwH67TWFe4xPwNW4SoXSMPVbtGBqx1m0PXgmL8F5OLqcmIFvg5cCSwOZNzt6e7x+LgH2OKv5jjUX8N2/A+uz4YbgCqf/zcrtNZ1wQtLiD4S7PYjg+kGfBPXH8AGXItMLgl2TL2NG/gU+KPP1ydxtUhqffsv9+M2XIlXMdDoHv9bIDnYx9mLY/6lz9izwHvA9GAfQ0+Px33fBPfrtsjPc4XFa9jO72FhO/9//jHYsfU0ZlztDT9t9Xp2eIzA33AtIG4A8t1fjwn2sfbimB/HdVJXB5Tg6s19RbCPo6fH474vFqgF7m3nOUP6NWwnZn+/Aw3cHezY5Ca3vrgprTVCCCGEEEKInpOaaiGEEEIIIXpJkmohhBBCCCF6SZJqIYQQQgghekmSaiGEEEIIIXpJkmohhBBCCCF6SZJqIYQQQgghekmSaiGEEEIIIXpJkmohhBBCCCF6SZJqIURYUEr9USn1VhB+7t1KKe2+PdfF7/mjz/cs798IhRBChAJTsAMQQgilVGdbu64EHgVUAMLxpxLX1u01XRz/KPA9oLDfIhJCCBFSJKkWQoSCVJ9/fwn4Ia4k1qNaa10d2JBa0Frrs90YXAFUKBWscwAhhBCBJuUfQoig01qf9dyACtxJrM+tunX5h1LqU6XUC0qp55RSZUqpIqXUvUqpSKXUH5RSVUqpY0qpL/j+LKVUplLqfaVUtft7/qKUGtLdmJVS31BKHVVK1buf55+9/kUIIYQIW5JUCyHC2V3AeWA28ALwEvAPYBOQBXwE/EUpZQdQSsUBa4FdwExgKZAM/L07P1QpNRP4FfADXDPqS4HPe300QgghwpaUfwghwtkerfV/AyilnsFVx3xea/07930/BB4ELgaygW8Cu7TW/9fzBEqprwGnlVLjtdZHuvhzR+Kqr35Xa10F5OFK1IUQQgxSMlMthAhnez3/0Fo7gBJgn8/jRe7/Jrn/OxW4wl36Ua2UqgYOuR8b042f+zGuRPqEu3zkDs9suBBCiMFJkmohRDhravW19r1Pa+3pKuL5WxcFrAKmtbqNoxvlG+7Z6SzgdlwdPn4I7HGXlwghhBiEpPxDCDGY7ARuBk5qrZt780Tu718DrFFKrQTKgSuBN3sbpBBCiPAjM9VCiMHkf4AE4HWl1Cyl1Bil1BJ3txBjV59EKXWdUuoRpdQ0pdQo4Cu4/p4e7qe4hRBChDhJqoUQg4bWugCYBxhxdQbZBzyHa5bZ2Y2nKgduwtVJJAd4ALhda32g76IVQggRTtSFkkMhhBCtKaXuBp7TWsf14Hs1cKPW+q0+DksIIUSIkZlqIYToXKy7W8hPujJYKfUbd2cRIYQQg4TMVAshRAeUUtG4NogBKNdan+/C9yQBMe4vC7XWNf0VnxBCiNAgSbUQQgghhBC9JOUfQgghhBBC9JIk1UIIIYQQQvSSJNVCCCGEEEL0kiTVQgghhBBC9JIk1UIIIYQQQvSSJNVCCCGEEEL0kiTVQgghhBBC9JIk1UIIIYQQQvTS/wei+TXhgN1xMQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/tutorials/Tutorial 3. Building custom analyses - the data analysis framework_21_0.png" } }, "output_type": "display_data" } ], "source": [ "a_obj = CosineAnalysis(label=\"Cosine experiment\").run()\n", "a_obj.display_figs_mpl()" ] }, { "cell_type": "code", "execution_count": 23, "id": "28669dcc", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:33.749290Z", "iopub.status.busy": "2023-09-26T17:44:33.749087Z", "iopub.status.idle": "2023-09-26T17:44:33.753506Z", "shell.execute_reply": "2023-09-26T17:44:33.752937Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "20230926-194430-301-508488-Cosine experiment/\n", "├── analysis_CosineAnalysis/\n", "│ ├── dataset_processed.hdf5\n", "│ ├── figs_mpl/\n", "│ │ ├── cos_fit.png\n", "│ │ └── cos_fit.svg\n", "│ ├── fit_results/\n", "│ │ └── cosine.txt\n", "│ └── quantities_of_interest.json\n", "├── cos-data-and-fit.png\n", "├── Cosine fit.png\n", "├── dataset.hdf5\n", "├── quantities_of_interest.json\n", "└── snapshot.json\n", "\n" ] } ], "source": [ "print(display_tree(locate_experiment_container(a_obj.dataset.tuid), string_rep=True))" ] }, { "cell_type": "code", "execution_count": 24, "id": "2201766c", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:33.755690Z", "iopub.status.busy": "2023-09-26T17:44:33.755484Z", "iopub.status.idle": "2023-09-26T17:44:34.436826Z", "shell.execute_reply": "2023-09-26T17:44:34.436132Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "INFO:CosineAnalysis:Executing `.analysis_steps` of CosineAnalysis\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:CosineAnalysis:extracting data: >\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:CosineAnalysis:executing step 1: >\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:CosineAnalysis:executing step 2: >\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:CosineAnalysis:executing step 3: >\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:CosineAnalysis:executing step 4: >\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:CosineAnalysis:executing step 5: >\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:CosineAnalysis:executing step 6: >\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:CosineAnalysis:executing step 7: >\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:CosineAnalysis:executing step 8: >\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:CosineAnalysis:executing step 9: >\n" ] } ], "source": [ "# activate logging and set global level to show warnings only\n", "logging.basicConfig(level=logging.WARNING)\n", "\n", "# set analysis logger level to info (the logger is inherited from BaseAnalysis)\n", "a_obj.logger.setLevel(level=logging.INFO)\n", "_ = a_obj.run()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.18" } }, "nbformat": 4, "nbformat_minor": 5 }