{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "89871c4c", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:30.529469Z", "iopub.status.busy": "2023-09-26T17:43:30.529217Z", "iopub.status.idle": "2023-09-26T17:43:31.800877Z", "shell.execute_reply": "2023-09-26T17:43:31.800155Z" } }, "outputs": [], "source": [ "from pathlib import Path\n", "\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import xarray as xr\n", "from rich import pretty\n", "\n", "import quantify_core.data.dataset_attrs as dattrs\n", "from quantify_core.analysis.calibration import rotate_to_calibrated_axis\n", "from quantify_core.analysis.fitting_models import exp_decay_func\n", "from quantify_core.data import handling as dh\n", "from quantify_core.utilities import dataset_examples\n", "from quantify_core.utilities.examples_support import (\n", " mk_iq_shots,\n", " mk_trace_for_iq_shot,\n", " mk_trace_time,\n", " round_trip_dataset,\n", ")\n", "from quantify_core.utilities.inspect_utils import display_source_code\n", "from quantify_core.visualization.mpl_plotting import (\n", " plot_complex_points,\n", " plot_xr_complex,\n", " plot_xr_complex_on_plane,\n", ")\n", "\n", "pretty.install()\n", "\n", "dh.set_datadir(Path.home() / \"quantify-data\") # change me!" ] }, { "cell_type": "code", "execution_count": 2, "id": "adf11c78", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:31.803914Z", "iopub.status.busy": "2023-09-26T17:43:31.803445Z", "iopub.status.idle": "2023-09-26T17:43:31.863458Z", "shell.execute_reply": "2023-09-26T17:43:31.862838Z" } }, "outputs": [ { "data": { "text/html": [ "
def mk_two_qubit_chevron_dataset(**kwargs) -> xr.Dataset:\n",
       "    """\n",
       "    Generates a dataset that look similar to a two-qubit Chevron experiment.\n",
       "\n",
       "    Parameters\n",
       "    ----------\n",
       "    **kwargs\n",
       "        Keyword arguments passed to :func:`~.mk_two_qubit_chevron_data`.\n",
       "\n",
       "    Returns\n",
       "    -------\n",
       "    :\n",
       "        A mock Quantify dataset.\n",
       "    """\n",
       "    amp_values, time_values, pop_q0, pop_q1 = mk_two_qubit_chevron_data(**kwargs)\n",
       "\n",
       "    dims_q0 = dims_q1 = ("repetitions", "main_dim")\n",
       "    pop_q0_attrs = mk_main_var_attrs(\n",
       "        long_name="Population Q0", unit="", has_repetitions=True\n",
       "    )\n",
       "    pop_q1_attrs = mk_main_var_attrs(\n",
       "        long_name="Population Q1", unit="", has_repetitions=True\n",
       "    )\n",
       "    data_vars = dict(\n",
       "        pop_q0=(dims_q0, pop_q0, pop_q0_attrs),\n",
       "        pop_q1=(dims_q1, pop_q1, pop_q1_attrs),\n",
       "    )\n",
       "\n",
       "    dims_amp = dims_time = ("main_dim",)\n",
       "    amp_attrs = mk_main_coord_attrs(long_name="Amplitude", unit="V")\n",
       "    time_attrs = mk_main_coord_attrs(long_name="Time", unit="s")\n",
       "    coords = dict(\n",
       "        amp=(dims_amp, amp_values, amp_attrs),\n",
       "        time=(dims_time, time_values, time_attrs),\n",
       "    )\n",
       "\n",
       "    dataset_attrs = mk_dataset_attrs()\n",
       "    dataset = xr.Dataset(data_vars=data_vars, coords=coords, attrs=dataset_attrs)\n",
       "\n",
       "    return dataset\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k}{def} \\PY{n+nf}{mk\\PYZus{}two\\PYZus{}qubit\\PYZus{}chevron\\PYZus{}dataset}\\PY{p}{(}\\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{xr}\\PY{o}{.}\\PY{n}{Dataset}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Generates a dataset that look similar to a two\\PYZhy{}qubit Chevron experiment.}\n", "\n", "\\PY{l+s+sd}{ Parameters}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ **kwargs}\n", "\\PY{l+s+sd}{ Keyword arguments passed to :func:`\\PYZti{}.mk\\PYZus{}two\\PYZus{}qubit\\PYZus{}chevron\\PYZus{}data`.}\n", "\n", "\\PY{l+s+sd}{ Returns}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ :}\n", "\\PY{l+s+sd}{ A mock Quantify dataset.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", " \\PY{n}{amp\\PYZus{}values}\\PY{p}{,} \\PY{n}{time\\PYZus{}values}\\PY{p}{,} \\PY{n}{pop\\PYZus{}q0}\\PY{p}{,} \\PY{n}{pop\\PYZus{}q1} \\PY{o}{=} \\PY{n}{mk\\PYZus{}two\\PYZus{}qubit\\PYZus{}chevron\\PYZus{}data}\\PY{p}{(}\\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)}\n", "\n", " \\PY{n}{dims\\PYZus{}q0} \\PY{o}{=} \\PY{n}{dims\\PYZus{}q1} \\PY{o}{=} \\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{repetitions}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{main\\PYZus{}dim}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", " \\PY{n}{pop\\PYZus{}q0\\PYZus{}attrs} \\PY{o}{=} \\PY{n}{mk\\PYZus{}main\\PYZus{}var\\PYZus{}attrs}\\PY{p}{(}\n", " \\PY{n}{long\\PYZus{}name}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Population Q0}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{has\\PYZus{}repetitions}\\PY{o}{=}\\PY{k+kc}{True}\n", " \\PY{p}{)}\n", " \\PY{n}{pop\\PYZus{}q1\\PYZus{}attrs} \\PY{o}{=} \\PY{n}{mk\\PYZus{}main\\PYZus{}var\\PYZus{}attrs}\\PY{p}{(}\n", " \\PY{n}{long\\PYZus{}name}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Population Q1}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{has\\PYZus{}repetitions}\\PY{o}{=}\\PY{k+kc}{True}\n", " \\PY{p}{)}\n", " \\PY{n}{data\\PYZus{}vars} \\PY{o}{=} \\PY{n+nb}{dict}\\PY{p}{(}\n", " \\PY{n}{pop\\PYZus{}q0}\\PY{o}{=}\\PY{p}{(}\\PY{n}{dims\\PYZus{}q0}\\PY{p}{,} \\PY{n}{pop\\PYZus{}q0}\\PY{p}{,} \\PY{n}{pop\\PYZus{}q0\\PYZus{}attrs}\\PY{p}{)}\\PY{p}{,}\n", " \\PY{n}{pop\\PYZus{}q1}\\PY{o}{=}\\PY{p}{(}\\PY{n}{dims\\PYZus{}q1}\\PY{p}{,} \\PY{n}{pop\\PYZus{}q1}\\PY{p}{,} \\PY{n}{pop\\PYZus{}q1\\PYZus{}attrs}\\PY{p}{)}\\PY{p}{,}\n", " \\PY{p}{)}\n", "\n", " \\PY{n}{dims\\PYZus{}amp} \\PY{o}{=} \\PY{n}{dims\\PYZus{}time} \\PY{o}{=} \\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{main\\PYZus{}dim}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\\PY{p}{)}\n", " \\PY{n}{amp\\PYZus{}attrs} \\PY{o}{=} \\PY{n}{mk\\PYZus{}main\\PYZus{}coord\\PYZus{}attrs}\\PY{p}{(}\\PY{n}{long\\PYZus{}name}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{V}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", " \\PY{n}{time\\PYZus{}attrs} \\PY{o}{=} \\PY{n}{mk\\PYZus{}main\\PYZus{}coord\\PYZus{}attrs}\\PY{p}{(}\\PY{n}{long\\PYZus{}name}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Time}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{s}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", " \\PY{n}{coords} \\PY{o}{=} \\PY{n+nb}{dict}\\PY{p}{(}\n", " \\PY{n}{amp}\\PY{o}{=}\\PY{p}{(}\\PY{n}{dims\\PYZus{}amp}\\PY{p}{,} \\PY{n}{amp\\PYZus{}values}\\PY{p}{,} \\PY{n}{amp\\PYZus{}attrs}\\PY{p}{)}\\PY{p}{,}\n", " \\PY{n}{time}\\PY{o}{=}\\PY{p}{(}\\PY{n}{dims\\PYZus{}time}\\PY{p}{,} \\PY{n}{time\\PYZus{}values}\\PY{p}{,} \\PY{n}{time\\PYZus{}attrs}\\PY{p}{)}\\PY{p}{,}\n", " \\PY{p}{)}\n", "\n", " \\PY{n}{dataset\\PYZus{}attrs} \\PY{o}{=} \\PY{n}{mk\\PYZus{}dataset\\PYZus{}attrs}\\PY{p}{(}\\PY{p}{)}\n", " \\PY{n}{dataset} \\PY{o}{=} \\PY{n}{xr}\\PY{o}{.}\\PY{n}{Dataset}\\PY{p}{(}\\PY{n}{data\\PYZus{}vars}\\PY{o}{=}\\PY{n}{data\\PYZus{}vars}\\PY{p}{,} \\PY{n}{coords}\\PY{o}{=}\\PY{n}{coords}\\PY{p}{,} \\PY{n}{attrs}\\PY{o}{=}\\PY{n}{dataset\\PYZus{}attrs}\\PY{p}{)}\n", "\n", " \\PY{k}{return} \\PY{n}{dataset}\n", "\\end{Verbatim}\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display_source_code(dataset_examples.mk_two_qubit_chevron_dataset)" ] }, { "cell_type": "code", "execution_count": 3, "id": "7024353e", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:31.865700Z", "iopub.status.busy": "2023-09-26T17:43:31.865493Z", "iopub.status.idle": "2023-09-26T17:43:31.947406Z", "shell.execute_reply": "2023-09-26T17:43:31.946784Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:  (repetitions: 5, main_dim: 1200)\n",
       "Coordinates:\n",
       "    amp      (main_dim) float64 0.45 0.4534 0.4569 0.4603 ... 0.5431 0.5466 0.55\n",
       "    time     (main_dim) float64 0.0 0.0 0.0 0.0 0.0 ... 1e-07 1e-07 1e-07 1e-07\n",
       "Dimensions without coordinates: repetitions, main_dim\n",
       "Data variables:\n",
       "    pop_q0   (repetitions, main_dim) float64 0.5 0.5 0.5 ... 0.4886 0.4818 0.5\n",
       "    pop_q1   (repetitions, main_dim) float64 0.5 0.5 0.5 ... 0.5243 0.5371 0.5\n",
       "Attributes:\n",
       "    tuid:                      20230926-194331-870-ca305f\n",
       "    dataset_name:              \n",
       "    dataset_state:             None\n",
       "    timestamp_start:           None\n",
       "    timestamp_end:             None\n",
       "    quantify_dataset_version:  2.0.0\n",
       "    software_versions:         {}\n",
       "    relationships:             []\n",
       "    json_serialize_exclude:    []
" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset = dataset_examples.mk_two_qubit_chevron_dataset()\n", "\n", "assert dataset == round_trip_dataset(dataset) # confirm read/write\n", "dataset" ] }, { "cell_type": "code", "execution_count": 4, "id": "00872a95", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:31.949747Z", "iopub.status.busy": "2023-09-26T17:43:31.949543Z", "iopub.status.idle": "2023-09-26T17:43:33.350239Z", "shell.execute_reply": "2023-09-26T17:43:33.349582Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABYIAAAEiCAYAAABEP6blAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACuEUlEQVR4nOzdd5hU9fk28Gf67Ozu7Gzv7MLSexNEY4sodo2xhCiiJhpUooaYKImKRiMa1GCiCYkKmp9GTWJNUCwoVoqCCCK97cL23qee9w9eVhf2frawdfb+XNdeF+wzc+a055wzZ2a/t8kwDEOIiIiIiIiIiIiIKGyZe3oGiIiIiIiIiIiIiKhr8UYwERERERERERERUZjjjWAiIiIiIiIiIiKiMMcbwURERERERERERERhjjeCiYiIiIiIiIiIiMIcbwQTERERERERERERhTneCCYiIiIiIiIiIiIKc7wRTERERERERERERBTmeCOYiIiIiIiIiIiIKMzxRjB1uezsbFm8eLH6mHvuuUfGjx/fLfNDRJ2DvU0U3tjjROGJvU0UvtjfRNQa3gimTvPMM8+Ix+M56veff/65XH/99U3/N5lM8tprrzV7zG233SYrV67s4jnsWoZhyN133y2pqakSEREh06dPl507d/b0bBEds/7e26+88oqceeaZEh8fLyaTSTZu3NjTs0TUqfpzj/v9frn99ttlzJgxEhkZKWlpaXLVVVdJfn5+T88a0THrz70tcuhm1/DhwyUyMlJiY2Nl+vTpsnbt2p6eLaJO0d/7+7vmzJkjJpOp1RvgRHQIbwSHOZ/P19OzIImJieJyudTHREVFSXx8fDfNUdf4wx/+IH/6059kyZIlsnbtWomMjJQZM2ZIY2NjT88ahSH2dvepq6uT733ve/LQQw/19KxQP8Ie7x719fWyYcMGueuuu2TDhg3yyiuvyPbt2+WCCy7o6VmjMMXe7j5Dhw6Vxx9/XDZv3iyffPKJZGdny5lnniklJSU9PWsUptjf3e/VV1+VNWvWSFpaWk/PClHfYVBYOeWUU4ybbrrJuOWWW4z4+Hjj1FNPNQzDMDZv3mycddZZRmRkpJGUlGRceeWVRklJyVHPu+mmmwy3223Ex8cbd955pxEKhZoe09jYaPzyl7800tLSDJfLZUyZMsX44IMPDMMwjA8++MAQkWY/CxYsMAzDMLKysow//vGPTf/+7mOysrIMwzCMBQsWGOPGjWt6rWAwaNx7771Genq6YbfbjXHjxhlvvfVWU33v3r2GiBgvv/yyceqppxoRERHG2LFjjc8++6zpMfv27TPOO+88w+PxGC6Xyxg5cqSxfPnyTlzb3wqFQkZKSoqxaNGipt9VVlYaDofDeOGFF7rkNal/YW/3TG9/1+F5+/LLL7v8taj/YY/3fI8ftm7dOkNEjP3793fba1L4Ym/3nt6uqqoyRMR47733uu01Kbyxv3u2vw8cOGCkp6cbX3/9dbPlJiIdvxEchp599lmx2+3y6aefypIlS6SyslK+//3vy4QJE+SLL76QFStWSFFRkVx22WVHPc9qtcq6devksccek0cffVSeeuqppvrcuXNl9erV8uKLL8qmTZvk0ksvlbPOOkt27twpJ5xwgixevFjcbrcUFBRIQUGB3HbbbUfN2+effy4iIsuWLZOCgoKm/x/psccek0ceeUQefvhh2bRpk8yYMUMuuOCCo4Za+O1vfyu33XabbNy4UYYOHSozZ86UQCAgIiI33XSTeL1e+eijj2Tz5s3y0EMPSVRUFFxvc+bMkaioKPUH2bt3rxQWFsr06dObfhcTEyNTp06V1atXw+cRtQd7u/t7m6g7scd7R49XVVWJyWRq8U9uiTqCvd3zve3z+eTvf/+7xMTEyLhx49r8PKLWsL97pr9DoZDMmjVLfvWrX8moUaPUxxLREXr6TnRP+vDDD43zzjvPSE1NNUTEePXVV7v09Y78RO7wz4033thpr3HKKacYEyZMaPa7++67zzjzzDOb/S4vL88QEWP79u1NzxsxYkSzTyFvv/12Y8SIEYZhGMb+/fsNi8ViHDx4sNl0Tj/9dGP+/PmGYRjGsmXLjJiYmKPm6chP51pa10d+KpmWlmb8/ve/b/aY4447rmldHf5U8qmnnmqqb9myxRARY+vWrYZhGMaYMWOMe+6556j5QYqKioydO3eqP8inn35qiIiRn5/f7PeXXnqpcdlll7V5HogQ9nbP9PZ38RvB1JXY4z3f44ZhGA0NDcbEiRONH//4x21+DpGGvd2zvf3f//7XiIyMNEwmk5GWlmasW7euza9P1Br2d8/19wMPPGCcccYZTeuQ3wgmajtr99xu7p3q6upk3Lhxcu2118rFF1/c5a/3+eefSzAYbPr/119/LWeccYZceumlnfo6kyZNavb/r776Sj744IMWP1XbvXu3DB06VEREjj/+eDGZTE21adOmySOPPCLBYFA2b94swWCw6bGHeb3eTh9fqLq6WvLz8+XEE09s9vsTTzxRvvrqq2a/Gzt2bNO/U1NTRUSkuLhYhg8fLjfffLPccMMN8s4778j06dPlhz/8YbPHHykpKUmSkpI6cUmIOhd7m71N4Y093rM97vf75bLLLhPDMOSvf/3rMU+P6DD2ds/19mmnnSYbN26U0tJSefLJJ+Wyyy6TtWvX8rqAOg37u/v7e/369fLYY4/Jhg0bmq1DImqbfn0j+Oyzz5azzz4b1r1er/z2t7+VF154QSorK2X06NHy0EMPyamnntqh10tMTGz2/wcffFBycnLklFNO6dD0kMjIyGb/r62tlfPPP7/FoKPDB/DW1NbWisVikfXr14vFYmlW68k/q7bZbE3/PnwSCIVCIiLy05/+VGbMmCHLly+Xd955RxYuXCiPPPKI/PznP29xWnPmzJHnnntOfb3a2toWf5+SkiIiIkVFRc3WaVFRkYwfP77Ny0OkYW93f28TdSf2eM/1+OGbwPv375f3339f3G53exaHSMXe7rnejoyMlMGDB8vgwYPl+OOPlyFDhsjTTz8t8+fPb89iEUHs7+7v748//liKi4tlwIABTb8LBoPyy1/+UhYvXiz79u1rz2IR9Tv9+kZwa+bOnSvffPONvPjii5KWliavvvqqnHXWWbJ582YZMmTIMU3b5/PJc889J/PmzevyT7EmTpwoL7/8smRnZ4vVijf52rVrm/1/zZo1MmTIELFYLDJhwgQJBoNSXFwsJ510UovPt9vtzb7xjNhsNvVxbrdb0tLS5NNPP212k/zTTz+VKVOmtDr978rMzJQ5c+bInDlzZP78+fLkk0/Ck9Hvfve7FsdWaouBAwdKSkqKrFy5sunGb3V1taxdu1ZuuOGGDk2TqDXs7a7vbaKexB7vnh4/fBN4586d8sEHH4RNkjr1Xuztnjt/h0Ih8Xq9nTpNou9if3d9f8+aNatZNo+IyIwZM2TWrFlyzTXXdGiaRP0JbwQDubm5smzZMsnNzZW0tDQREbnttttkxYoVsmzZMnnggQeOafqvvfaaVFZWytVXX90Jc6u76aab5Mknn5SZM2fKr3/9a4mLi5Ndu3bJiy++KE899VTTp4y5ubkyb948+dnPfiYbNmyQP//5z/LII4+IiMjQoUPliiuukKuuukoeeeQRmTBhgpSUlMjKlStl7Nixcu6550p2drbU1tbKypUrZdy4ceJyucTlch01P9nZ2bJy5Uo58cQTxeFwSGxs7FGP+dWvfiULFiyQnJwcGT9+vCxbtkw2btwozz//fJuX+9Zbb5Wzzz5bhg4dKhUVFfLBBx/IiBEj4OOP5c9TTCaT3HrrrXL//ffLkCFDZODAgXLXXXdJWlqaXHTRRR2aJlFr2Ntd39siIuXl5ZKbmyv5+fkiIrJ9+3YROfSXAIf/GoCoK7DHu77H/X6/XHLJJbJhwwb53//+J8FgUAoLC0VEJC4uTux2e4emS6Rhb3d9b9fV1cnvf/97ueCCCyQ1NVVKS0vliSeekIMHD3b6sHxE38X+7vr+jo+PP+pDW5vNJikpKTJs2LAOTZOoX+npQYp7CzliEPX//e9/hogYkZGRzX6sVmtT+NfWrVtbDH/77s/tt9/e4uudeeaZxnnnndfpy3HKKacYt9xyy1G/37Fjh/GDH/zA8Hg8RkREhDF8+HDj1ltvbRpc/ZRTTjFuvPFGY86cOYbb7TZiY2ON3/zmN80GsPf5fMbdd99tZGdnGzabzUhNTTV+8IMfGJs2bWp6zJw5c4z4+HhDRIwFCxYYhnH0wO1vvPGGMXjwYMNqtRpZWVmGYRw9YH0wGDTuueceIz093bDZbMa4ceOMt956q6neUmhTRUWFISLGBx98YBiGYcydO9fIyckxHA6HkZiYaMyaNcsoLS3t2Iptg1AoZNx1111GcnKy4XA4jNNPP70pEIDoWLG3e663ly1b1uLx/fB6IOoM7PGe6fHD89PSz+H5IToW7O2e6e2GhgbjBz/4gZGWlmbY7XYjNTXVuOCCCxgWR52K/d1z1+dHYlgcUduZDMMwuvZWc99gMpnk1Vdfbfr25ksvvSRXXHGFbNmypcVxeVJSUsTn88mePXvU6cbHxx81NvD+/ftl0KBB8sorr8iFF17YqcvRUaeeeqqMHz9eFi9e3NOzQkSdiL1NFN7Y40Thib1NFL7Y30TUkzg0BNDWcXmGDx/e7mkvW7ZMkpKS5Nxzzz3W2SQiIiIiIiIiIiJqVb++EVxbWyu7du1q+v/evXtl48aNEhcX16ZxeToiFArJsmXLZPbs2erg8URERERERERERESdpV8PDbFq1So57bTTjvr97Nmz5ZlnnhG/3y/333+//OMf/5CDBw9KQkKCHH/88XLvvffKmDFjOvSa77zzjsyYMUO2b98uQ4cOPdZFICIiIiIiIiIiImpVv74RTERERERERERERKT56KOPZNGiRbJ+/XopKCholjOGrFq1SubNmydbtmyRzMxMufPOO+Xqq6/ulvlFzD366kRERERERERERES9WF1dnYwbN06eeOKJNj1+7969cu6558ppp50mGzdulFtvvVV++tOfyttvv93Fc6rr0RvBH330kZx//vmSlpYmJpNJXnvttVafs2rVKpk4caI4HA4ZPHiwPPPMM10+n0RERERERERERNQ/nX322XL//ffLD37wgzY9fsmSJTJw4EB55JFHZMSIETJ37ly55JJL5I9//GMXz6muR9PKDt9Nv/baa+Xiiy9u9fGH76bPmTNHnn/+eVm5cqX89Kc/ldTUVJkxY0abXjMUCkl+fr5ER0eLyWQ61kUg6pcMw5CamhpJS0sTs7n3/GEB+5vo2LG/icIX+5sofLG/icJXb+3v3qqxsVF8Pl+bHmsYxlHHJofDIQ6H45jnY/Xq1TJ9+vRmv5sxY4bceuutxzztY9GjN4LPPvtsOfvss9v8+O/eTRcRGTFihHzyySfyxz/+sc03gvPz8yUzM7ND80tEzeXl5UlGRkZPz0YT9jdR52F/E4Uv9jdR+GJ/E4Wv3tbfvVFjY6MMzIqSwuJgmx4fFRUltbW1zX63YMECueeee455XgoLCyU5ObnZ75KTk6W6uloaGhokIiLimF+jI3r0RnB7dcbd9OjoaBERybz3TjE7nUfVTT7lU0rlgxcjuRHWQgELrMWst+OX8+PXqz+9BtZs1hCsWT6IgbWEJz+Htd1/nABrj572T1j7xYc/hrXBN6+HNc3uRybD2gsz/gprMz+5HtYG/Adv9+IJNlgzxuLtEB9dB2u1b6XAWlD54Kl2qLJTKLGP1krc6mY/XvZgZMv7UqixUfIW3N/UT71Fa/1tblSa2IRXYCBBWe9+PM2I/dp6x5PMOW8PrG0rToQ1x2d4e1gb8OtVHO+FtWlD8Lys3jwE1tLew/uVvToAa3svwcfLSyZ9AWv/+XISrCV/hLdDbRqezwsu+xTWttXiHt7/Qg6smfDhWcon4PUiTnwhYynD5xFTAC9fyBle/W2pxb0YcigHyFR8/jaU7RW/8uh5OKwuGa/39DNz8fP8eFs2vIH3OVcR3j8Onotrm6b/A9bG/u8aWMt5CR8zZO1mWNr1J9ynm896BtYmfIKvJZJex9uhNh3vEzkX7Ya1Gh/eDvnv45sZrmK8n1WehvczRwQ+IXh3K32oXLIatpbnpc/2d73S33a83oOxysnWh6fpUs7f2nWabxDezleMWQdrL798MqwNWLoT1rbfnwVrF479CtZeX4+v64c8ha9fQ5u3wdruh/H1+e2n/Q/WHt54JqxlPYW3bcl4F6xdec27sPbawbGwFnwxCdZC+PJESqfg46w5UtkHS/Dxy9LYf67PLTW4Fw2lvyWzHj/PwOsvag3edzQ1x+GLaU8snpe6z+NhLe1TfMzYPxsv+8ZTnoe1scuV8/cv8LW0Zvdj+Pw9fMhBWNu2Ix3Whv61CtbyzsXr7IrL34e1L6rwMXH7Cnx97sCzIpXH4WsemxNfuwfz8X6mvR/oa+fv3sjn80lhcVD2rs8Sd7T+7enqmpAMnLRf8vLyxO12N/2+M74N3Jv1qRvBHbmb7vV6xev9tnlrag7duDM7nS3fCDZ38Eawdj7x4ysHi125EazMisWFLyosVuWGgR1fcFhN+IanOQI/zxWNl097nvZ6Gm2aUUqjq/NixSvb4lBuBCvbwRqJTwzadhDlmGOOUK5Cleskc6NyQ9KCl90AN4oO6+k/72pvf5u1JlZuBKvr3YqnaXEo612ZFVskPi5YXMqbBodSUz4QNUcoN22VeVF7yoanabXi3tDWtSOqY8coix1vB4sDz6f2ejZD2UZKf2sXfuaIjt0INjs7diNYwqy/LQGlqbQbwcr5W7sRrG1nbb+yRuKDvFW5Eayev23K/hGBa+6Onr+Vc6Z08FpCnRfluGe1adsB7xPacdZqw9tIPc4qNyzMyn5miVCuXVrY15t04EZw01P7WH+bQ0p/K+vd0M7flo6dv9XrNGU7O5VzirZfWc0dOw939JxpteBzUaiD/R0RpVwPaf1txdtWW2dO5fW0Y7Bo529lV9KOs2aX8kSlv81Kg4fb9blF+VKF9kGPuPB60G4Eq+/DFGaXsj+6lPffWn8rhxrt9Tp8/u6C99/a+VQ/1uCb4B3tb1tAuY5Sz9+wpL5P0q7dDaW/O3IjuOm5HF6lzSKjDv1ogv9/dbvd7mY3gjtLSkqKFBUVNftdUVGRuN3uHvs2sEgPh8V1h4ULF0pMTEzTD/8shSh8sL+Jwhf7myh8sb+Jwhf7m4h6g5AYbfrpStOmTZOVK1c2+927774r06ZN69LXbU2fuhHckbvp8+fPl6qqqqafvLy87phVIuoG7G+i8MX+Jgpf7G+i8MX+JqLewG8E2/TTHrW1tbJx40bZuHGjiIjs3btXNm7cKLm5h4Z+mz9/vlx11VVNj58zZ47s2bNHfv3rX8u2bdvkL3/5i/zrX/+SX/ziF522nB3Rp4aGmDZtmrz55pvNftfa3fTOSvsjot6H/U0UvtjfROGL/U0UvtjfRNQbtOUbv+39RvAXX3whp512WtP/582bJyIis2fPlmeeeUYKCgqabgqLiAwcOFCWL18uv/jFL+Sxxx6TjIwMeeqpp2TGjBntet3O1qM3gmtra2XXrl1N/z98Nz0uLk4GDBgg8+fPl4MHD8o//nEozGTOnDny+OOPy69//Wu59tpr5f3335d//etfsnz58va/uGE69HMEUxCPuRKIUsbZi8Jj3NRv88BaUBmiqA6PrS5JShBZgx+P/RP3FR7I3ncODnlIzS6DtSfyvg9rWthGR8Vsx2MibTkjDc+LGw/wX5OphOh9jbd7Mc7akLFx+bD2bloqrLnw08RWiretPx6PV4xCJURERAlg6bNQfyurwe9RQhaV8VmlTOm37fh5RZPxfmxVZjQ1phrWbGvxtvQm4AvynMH7Ye3ZrI9gbex/RsFa9OYCWAvs3gtrzlNPgLUHkjbBmu04vK7fXI1DeOw471HezR8Oa1Zl0OVa5S8gI3Gehlhq8D5hROP+DrjxvNhL+9TnvW0D+lsZDlCCTnyRp533Lfm4b8zKYcGv5HicnLAL1v53cDR+onKdagriYnwyPmYsrU6Gtag9yriWn23ENYUrF++PF+7EF8TxMfiaRwRfSKV+jJd9y/dw+F5sFL5WCihjzTm342O3KQ/PZ6NyzAgq/a0FwbY2xmCv1ZH+Vq7PTTa8TczKNZUo1wuBSLxufzoeh4y+uBuHLSVuwMf4okuGwZrTjU9iZmUhonYoY/YeKMK1YYNhLWYbPmZcfXExrD2fXAprgUjcp5FFePn+cwBfoJfX4oGcg8OV8d1rYUkPZY7H7xF9yr5r8faj87dyuglo72HqlLHeS3B/OypxD5eOwy932egNsPbm/pGwlrgJb+f6VLwMdic+971WFwlrznxlhXaQoxDvj74h+PWmjcVhl/tH42OboxLPy982fw/W5o79ENY2ReOQa7MS02EpxtvIOVS5v+DA+66tCq+zYF89f/dCITEk2Mk3gk899VQxDPycZ555psXnfPnll+16na7Wo2eYcLmbTkRERERERERERD2vK74RHC569EZwuNxNJyIiIiIiIiIiop7nNwzxK/cbDz+mPwrDvzkhIiIiIiIiIiKi/ijYhqEhWquHK94IJiIiIiIiIiIiorAQNA79tPaY/og3go8QciiBMkpYT3UFDh5w1uLgAUPJ6Qpk4nCBOh8etLx6VyyelxS8fLUZeGZ+P/hNWLOb8Ojqj751GayZYnBAW/WZI2DNVouXYVM9TlyZkIpTmnYE3LDmLMbbwZ+HU2PWOLNhzZeI9yVHOQ43sFfCkgSSlaOYMgC+FtAQbrTAKInEKynoxStJ6++aDPw8XxLeB74pwQFODfvwvpqWikMJKgbjeXki87+w9pvi42EtaaMX1rRAOE3iRhyocX8pDm9zWfC81ONsRsl4Dwdx7B6aCGv2TJwaExyMg6asuyJgzVGB96X6pI6FOgaVc1q4CUbgZTXH4v0jFMTr1lmMt0ldkjIzw/H+kWyrgrWirXiiw1bkwtr+KwfA2nlpO2BtpAOfF+14NlX+GcfBWsxufIwqORGfT38wYCOsPT/wDFiL/sYHa768eFizjMLbz5uCj93lw/H5WwuCrfbg55mUc1Oovv+cwNXrc2UdGUoYZFSukkCnlBqV6/NCL762rduLa6mleJ8rnoT3j2cnLYO1OOW8+MUGHFxXfSoOVHJvxEFyWiDvZh8OVHpx2EuwdtLxt8Fa5AH8ehXf4OuoE4//BtY+qcuBNc+7ODy0oVG5FkxRQgmteL9Wr1nDjLasZg8+joeUQD2rkjGqvf+2ZOMnhpTUyto9HliLr8PnjbIR+D39Pyc/hWsV02AtOg+vT+vgQbAW2LUH1lw4A1omxeXB2vv5Q2HNm4w3hHL4EqMQX0tvyMbXQ4EB+NgdUYIDXe1VSn9X4ntAooS+BV39p797UkjU7Nemx/RHvBFMREREREREREREYSFgmMSvfIBz+DH9EW8EExERERERERERUVgIikmC2p/4/P/H9Ee8EUxERERERERERERhgTeCMd4IJiIiIiIiIiIiorAQMkzq2N6HH9Mf8UbwEUJOZbjoEN5JLKV4oHdHJZ5kfQqunTAED9he2hgJa7aNOCwuZmMxrBWcjENqznXhwdVHfHYlrGUpe5jZiUMXYlbjQeeLz8qCtf/uHQ1rs4eshbXPJuAQqvgNOKQgZgfeDu7ReJ1lDa+Ata+LB8OaFWdQiaUMh1EEI/F+HbLjmjkQXgdGQwnlECVQxqIE+Ln34mlWDsbTPHk0DnBqDOLX27IOh81Ef4YD2g6eisMh0pS8obwGfDypT8bHPZmJQ+ZiN5TCWuSbX8Hay9eMg7UvJ+Owmb8lnw5rwUh8kHLvwtsvaxI+lm4twiE1lcOU/Qxn6YilBK/rUBJO1DAacRCHFuzTF2nnb6MBb2dLNa4F8CFeQsruf2IWPn//YdOZsBaZh/ePQDoON2tIwcv+ZUUGrO2tS4C15HfwebjqUtzfkf9eA2v2KWPwvFTjlb2mHB+/6jKV7R6hhK+W43VtNuHj+vihOLRv2wEcNKV94cRSgw/COD5TxFCCaMzaE/ugkEO5VlG2l7kEX2tqvHG4lppQCWtri/E1akQB3gmqhuGwxMZkvOz3554Ha9uL8HV9bDo+gDlLlfDchGhYs9fg7XDp59fD2m/HvgVr3ni87EkbcK2hGB/X8+tx6O7YbByguX0g7m/1+lw5fwc8Shgkr88P1Xz4+GipwNs5UgnorMrB6y+oBMiuVILPHGV4miGrEgacjrfz/L0Xw5rbpqWp4ZLU4Z217hJ8bk/593ZY++pH6bD22fh/wdqQnTfA2sDXcMCeNxYf19cewMfgKYP2w9qX+4fBmq0GlsRSgq8zQslKULFfuQYJs/7uSfxGMMYbwURERERERERERBQWAoZF/Ab+cOfQY3gjmIiIiIiIiIiIiKjP4jeCMd4IJiIiIiIiIiIiorAQNMwSbOUbwUFtKJUwxhvBREREREREREREFBZCYpKQ6DeCQ+qg2uGr/94INhmHfo5kVnaEBjxYvbUOf6Xci7OWxB+H0zzsZhwgsDMfB0AM2VwNa8WnKOl0HhxupvEWu2AtGIEHei87D4eiOSvwekn89xZY2zYRh76NG4sHiE8fUQRrDek4TCc6D2+jfXmJsHbq5M9g7cvUAbBm3a2EEiohBfURsCSiBaj11cHqQX8bStiM1OHDoaNUCXBScmh8A3DQYLkX983XOzJhLaEEv17VyThQKWZQJaw9VDIN1j79EocnDPnnalirv3gqrJWciHsjdvsuWKva74G1/xuG+zR+UDmsBW04fM9ZjveXjdtxnx4/EgeFrS3DYTP2vcopuQrvg42ROKhCO6eZlADUXg31tw1vL5MPXwQ6lf524l1Hysfh81SaowrWAkrwjacEby+fBx//x47HQZH/ynkT1ob9Fwe1pE/G6yx6Ty2smYfgfdzYgQPo/KXKsWYoPvDtGoB7P+DGB2jPbryuD47AF24NMbjfvMox35GnhHOV4H2wFudaiamDAai9Gro+V4Rq8TZxKaGAfpzPJo1ZeFuO9OBrxvd24P045+M6WKsYjq8Jho7BffOLzHdg7Sdf4YA293P4/G0dPgTWCk/D5++Ut3DQWvGUVFj7/vH4+LVsRAGshd7Bwayenfh8sHcUPmaMy8LL0JiKj/muXHxctyvn72AUPs4a9n50fa4E44kfryMtgDGoXJ97k/G2PC7zAKyt2zYQ1jz47bcEnXgZJozH14x/yn4F1k763y9hbeBB/P675Cy8DI4qvB0qzsTHhYId+HlPJ+MguYhMnMJWm4FPfrE78PY7OBpfS28vx8cvbxJ+T28K4mnaqpXrc5dyfR6O7797IZ9hEZuhpKKLiK9/3gfuxzeCiYiIiIiIiIiIKKwc+kawfmO9tXq44o1gIiIiIiIiIiIiCgshMUuQQ0O0iDeCiYiIiIiIiIiIKCy0LSyON4KJiIiIiIiIiIiI+iy/YRF/K2ME+/vnfWDeCD6KMkSIpUbfiZAAzn8QdxoeWf6rEjy4um0XTv8qmoZrIWWLj87Kh7XrD5wAa1F78Hoxf7gW1hyJx8NayIY3RMO0obDmLMDzstuHQyXinfWwtnMCHug9fgserD5CCXZbnjwK1kxK4JEWfGDxKrU6/ElYMEoJaAgzhtLf1kZctCo5itWD8dnDE48DlbYX4sBHRxFuVGsjfr2aDLyd7xy2Atb+WYiD3aJ34J4Knj4J1xzK+mzAy2AdkAFrzmIlvMrcAGsPDH8V1n456jpYS/gah21EHMDHhdJB+KDvSMDzGcyPhjUlO1QsNUp/u/pPf5sa8b5qUfrbhrNKpHoQ3lcjU3F//3f/aFhzfoPP0fZafE4pPB7vc+Xl8bC2LwsfwNzb8LHG9TIONa3+ET5/m4I4gSv6f/g6I+4rvP1OmbEV1kpS8eutPQlvh4Sv8bq27sTbKOP7OEyqrBLPiwm/nNjwriS2CrxeAjHKRMNtzDvt/F2lhDnjyztpwJeFYnbgdftFMQ50tW/H+07tAHw8rsnGC3hZ4nZYazTwcSF6t/4tKGT/RThQSbvWDOzDoczRe/B7mnsLZsDazdkrYe2ukVfBmrMMlsT5Nd5GZcn4/J2UhdNDqwvxOgspbx/N9XgbhbSwuHCjBMJp529tf6zFmb4yYDAOfNx4EO+r9mLcb2acLylV2XgnODMGh0HevO9iWItVzpnW9/D7b+uPcUB0xVA8zfQH8TVBxTB8n2B3I36/MyoJb4dNg3GYc+qn+Phs2++EtcjkSlircuIL7aAdXyvZlfeIlgbl+jxaO39TZwm2YWiIIIeGICIiIiIiIiIiIuq7QoZZQq0MDRHi0BBEREREREREREREfRe/EYzxRjARERERERERERGFhYCYWx0jOMAbwURERERERERERER9V9AwS7CVoSFaq4cr3gg+gqkR7wimgBI2gzPfxDsYDwaeE4fTDL7cjcMoEvbhTy5sShBTwSm4dknKelh7rXgCrGWswMtgysAD7hdP6ljTDfnjbljLzk+AtQ/PGgZrTgseIL4+HW8/hxLi4tmNQ0EKBnlgzezA8+JLxPMStRvPi70a77uNSqhXuDErg/Zb6/F68OP8H/HH4e2V6a6EtS3VqbDmUMKrIkrw6xWdhp/3biUOKMyvccOaWckysKzEx4zSB3FwhGHBx6HoFw7AmqsIJ398XIP7O1ZJC6oZhtenrR6HgjhLYUl27U2BtfgUfLIoy8Dz4ixQgiqq2N8iIiYlF8/sw+vBh/NIxB+LG2BSUiGsbTiAQw9j8/D+b1aii73JeP84LX0PrD1QcDasRZR07FsQJROU/SqEa+6vleuajfjA98Cuc2DtkWH/grUP04fDWmibFk4ES7JhWxaspWXiMKmCdHw8sdbj/taCkoLO/vPmxeTXAh9xLYRXu/g9uL/HZeJgw825abCWsF+5Pq/DB6nGNDwvI5w4oPDBPbi/Y7fjwFPzRHxN4E1QjgtKyWzHIckJm3GSVtnFkbB2rqsK1uZl43WW/j4+7x88DQez5ubj4E1nJF6GxhQlPPoAvj7XwrENa//5lpp2/tb6O4Bz/ySQqAT+WnHNr1z7pWzGMxq9F4cB75yFA8y+rMLnxWofTgl378fLUDMTB7qWjlX2OeX6XJP2Ke6NNSdmw9q/hj8Pa8cnzYM1b6wSqq0EhB4sjIW1iCicPNgQg/eJiBIltK9WOzf1n/N3TwqJSUKthOe2Vg9XvBFMREREREREREREYYHfCMZ4I5iIiIiIiIiIiIjCQtvC4ngjmIiIiIiIiIiIiKjPChiW1sPijP4zDM938UYwERERERERERERhYWQYZZQK0M/tFYPV7wRTERERERERERERGEhKCYJthIG11o9XPFG8BFMAbwjmHAgrDQm4JojEcdXammg9lxc01JSDQteBosHz8sV0cWwtuD9gbCWNBF/ihKyxsFa1Gicrm024a/oV39vEKy5XlkLa2u3T4a1P5+MU0vtE3FS+4ZcnLocvxnHjltL8Qa05uDnOWNwIm1tNU5CtdbjfcLsVdJj7eH1pxJmJXXcjMN3xR+Fa44YnDKbW+WBNesevA+kfob7tCYbPy8lrQTWhrqKYG1l2TBYG/znz2Ct7lKcSuweXQZrVjNOXa7/IZ5m8of4GPXqieNhbdZ4fFxIzqjA87I9EdY8u/EJoT4VpwvXe3CqekQc7m9/Jd4JrcoFjKVRSSx2hFd/a8uqnb99HrweTHb8xHIv7kVjTyR+Qe38loUvy5wJNbA2OvIgrD28bgasDXl+NayZx42ENS2NPSW1EtZMS/GyNybh9Zmfi2sbBmTD2mkTvoG1r9aPhTVnKSyJPxr3d3FUNKzFpVfBWlUVvlay+Hj+FhExK+shhDeJ+JVWjEythbUt+SmwZtmP90dvDH49iw9fL58xbjOsPbj7bFjLL/LA2pB3N8Ba2VVTYM0zAp+/KyrwCjXG4msJbyw+tm3KS4e115LjYc2dXg1rB0/D18SxO/Fx3R+D33s1ZsKSWGPxtbu/2gVr6vtOpSaWMOtv5fpc401Q1oMFX2vuyEvGTyvFBxRHNd53ysbh3kgaiK/Pn8h+FdZOXPVzWBv81uew5hqSA2s1lzlhraEOX6NWzp4Ga3Eb8flt+0F8k+SVDHzMsCfga2JvDL4mTl9VB2v7ovE2Mg3HPexKweeK+lo3rJmVHu5P5++e1FXfCH7iiSdk0aJFUlhYKOPGjZM///nPMmUKPq8uXrxY/vrXv0pubq4kJCTIJZdcIgsXLhSnE/djV+ONYCIiIiIiIiIiIgoLfsMsllbGCPYb+EOjlrz00ksyb948WbJkiUydOlUWL14sM2bMkO3bt0tSUtJRj//nP/8pd9xxhyxdulROOOEE2bFjh1x99dViMpnk0Ucfbddrd6YeHxDjiSeekOzsbHE6nTJ16lRZt26d+vjFixfLsGHDJCIiQjIzM+UXv/iFNDbiT3CIiIiIiIiIiIiofwga5jb9tMejjz4q1113nVxzzTUycuRIWbJkibhcLlm6dGmLj//ss8/kxBNPlB//+MeSnZ0tZ555psycObPV+55drUdvBB++m75gwQLZsGGDjBs3TmbMmCHFxS3/+e/hu+kLFiyQrVu3ytNPPy0vvfSS/OY3v+nmOSciIiIiIiIiIqLexhCThFr5MdoxRrDP55P169fL9OnTm35nNptl+vTpsnp1y8OtnXDCCbJ+/fqmG7979uyRN998U84555xjW7hj1KNDQ3z3brqIyJIlS2T58uWydOlSueOOO456/HfvpouIZGdny8yZM2XtWjz+IxEREREREREREfUPbfnG7+F6dXXzcecdDoc4HM3HjS8tLZVgMCjJyc3HGU9OTpZt27a1OP0f//jHUlpaKt/73vfEMAwJBAIyZ86cHv8ya4/dCD58N33+/PlNv2vL3fTnnntO1q1bJ1OmTGm6mz5r1iz4Ol6vV7zeb8OcmjawYTr0cwQzzgUT7cOCQIoP1rSVvGsPDqOIxuOuq/NZMQIPMJ6RUAlrL9TgwdyjduGxVeI24rClgpNxWMPPh6yCtbdKx8BaXhQOVan5MR7IPnqTEqh0Ch4bZnvF0WO9HNaYiNd10WQcDuEqgCWpTsRBFZZYPJ8BN66Z/Xj7aUE0gV4+WH17+1uUIYACeHNJwIMbztSIO9ynhC64cRaLVA7BQTQVI/DzLkjeC2tfVuOUE+cOPFC9NR4HtXhj8Il1evp2WBsegRvgX9tPhTXx4oAq5x7cNzIel05O3Q1rryXisLiI1Tgk0JWPd6bqbLy/5ChhfzuVgElTEE/TFNQ+5Q6v/taWVRseLBiJDwypKZWwtmN3KqxFK/0dUualZiDeJj8bjoPdEq04SM61HR+H6i+eCmsRJfi65rRRLV/sioisOZANa+bxOOAl8j/4T+Rc43CI5LjpubD2QflwWKsaitf1oFdxSE19Ku7vgB8fEysr8fNCbhxAZC3E/W024X0+GGbnb62/g3gXl4AHr9tYO97H62vwOSUOn2rFWY5fr3Aa3j8aivA5OlKZT/tefP42gnheog7i82mZH+9zUwftg7Vtk/EFSsp/8fPKRmfD2ruDcSjzCWl4Q7yb6IE1A5/2JQLn6oo3WQvHVmpR+BxjL8cnBDUgMSK8+ltbVu387Y/H1+cWK17vwQa8j8fuxPNSPhQ/ryEFb5OfDNgIa89VjYM11+aOBUn50nBq5ZVDPoa13fX4Pe+GD/F81g7GgWnOPbg3LFPxNvr1mHdg7YHcH+BpevG51o5vWUhdNb7OtrvwMVg7x9hLletzpYV7d3f3LX7DIuY2jhGcmdn8PLxgwQK55557jnkeVq1aJQ888ID85S9/kalTp8quXbvklltukfvuu0/uuuuuY55+R/XYjeDuupu+cOFCuffeezt13omod2B/E4Uv9jdR+GJ/E4Uv9jcR9QYhwyShlr4cdsRjRETy8vLE7f72Q40jvw0sIpKQkCAWi0WKipp/alhUVCQpKS1/wfOuu+6SWbNmyU9/+lMRERkzZozU1dXJ9ddfL7/97W/FbO6Z0Xp7PCyuPb57N33Dhg3yyiuvyPLly+W+++6Dz5k/f75UVVU1/eTl5XXjHBNRV2J/E4Uv9jdR+GJ/E4Uv9jcR9QYhMbfpR0TE7XY3+2npRrDdbpdJkybJypUrv32NUEhWrlwp06a1/Jfp9fX1R93stVgOfUvZMHru+9899o3g7rqb3tLYHkQUHtjfROGL/U0UvtjfROGL/U1EvUHQMEmwlW8Et1Y/0rx582T27NkyefJkmTJliixevFjq6uqacs+uuuoqSU9Pl4ULF4qIyPnnny+PPvqoTJgwoWloiLvuukvOP//8phvCPaHHbgR/9276RRddJCLf3k2fO3dui8/prXfTiYiIiIiIiIiIqOe1Z2iItrr88sulpKRE7r77biksLJTx48fLihUrmoa8zc3NbXbP8s477xSTySR33nmnHDx4UBITE+X888+X3//+9+1foE7UYzeCRXrp3XRlRwi68IDmrhgcLBII4Hlz5ttgzbMbDz5eNQhPM2FEKaw9Pex5WLt5z6Ww5qzAN9qDm7bCmvcHJ8Bapg2n6fx70HuwNiZ5CJ7mk9/AWpQSRvFs4fdg7ZyMLbD2puAQi8B2HDTlj4YlsecrwT5K8IEpCgd/BLx4vzb523fw68u0gfkDSmCUxY3Xrd2Ba/6dODxBC7fxufE2cQ7BKZJnxWyCtV8f+CGsReCMMgmU4T714dwnOS5qD6wNsJbDWsH3cThd0p8+g7XIA+mw9s8tx8HayHQcXGfOqYW14sl44bUwMEsuDqPIdeJwTbHj/TMUoRwXlACWcKNdx4WU87c48bm2sg5vL0cBPn87KvHLNSQqAUDJjbD2A/dXsHb9jpmwZsO7sVjr8XopmYCXfWHyB7A2Jwkv38/evxnW7GdMxLVqWJK7dl8Ea1dlroG1TQPSYO3gqZGwlvYxDorMjcDBPo7h+Nhdr+y8fg8exc1a26dGeDs2ygk85MQ1UyQ+R1cp/W090LGQprpUfAJwDamEtXtH/BfWfr3xYlhzKOFHmupsfBGy7rglsHZX8RRY26EEWYcSPLAWeRA/b9WewbCWk4zf7wST8HavS8XLHlGG96X6YnzMD2bhhXcm18Oaz4+PNZb6/tPfISte74FIXLNH4xCv6Eh8Pq3dh681zQH8elrAtmt4Ja6Z8Xz+K28SrFnxrqMqmIaPX/mN+FrTasLXQ/U4H1did+Llc1TgeXn+AD6epLpwCK6RhM/DFh/ub1s93n6O/fh55tF4XzLZlFBC5drT3KD1N7/g2FkCbQiLCxjKewRg7ty58Murq1atavZ/q9UqCxYskAULFrT7dbpSj94IDpe76URERERERERERNTzQkbr3/gN9dP77j16I1gkPO6mExERERERERERUc8LGWYJGfpfV7RWD1c9fiOYiIiIiIiIiIiIqDOExCQhaeUbwa3UwxVvBBMREREREREREVFY8IcsYtLCW/7/Y/oj3gg+QsimhFFE4wHUA0G8A3kr8SDpMUrIQ8iGP51oTMDPOzVpP6y9X4eD1rZtGgBrw9/JhbWai6bCmjceD759RoSSKqGoG4Cn2XDiUFhzFOFAv7Vf4jCKlGk44KWyFgeNBIfifcmzDW9bM863EF8ibtmYVJymU+XHf/JgrsThF+EmpCyqEYNXvDMChyDUluCgjyilvyML8P5RNgY/74fZOLxwcd4ZsFa91wNrwz7D4W0VV06DtdpBuBeTLDjk4cO64bBWNQRPMy0rE9YsfiXQsgIHQJwybgesNQZxv+1NxWFxSRvwMgRcuBcbilywZonDwRhBLz7/mIP951NuQzl/B6Pw+TvCjddtQzHub+WwoAYpNibg+Txj2DZYu3zTtbBWvs8Da9k78LEt4gsc6rj/XHy9UBjAQZjvV4+EtcrhuDdS/42vXSK+xr24dRi+dhk1GKdQjU3Ph7XNO/GyF09ywFpUHixJZRROiY3MwMfL2kblDUo/6u+Q8o4l5MT7ldOF9//GMnwN58SHBYkow8eTwql4e2VE1sHa3w+cDGte5dwwcCU+f5ddjc/f5WPwOvtXLU6F+kPyl7CWMwYHPyW+hJvDnYyXr6IYb6MbJ6+CtXvrzoO16gwcFBZRio/PUXm43ypi8XVGo0/pYbfyXijYf67PRfnLbCMaryNDGduzfL8H1rT+9kfh7VyXjl/w1FT8XvmdYnxezN+WBGvD/g9f84emjoW1+nTc35FWvPAnR+NrkLcTxsOa5ZPNsOZx4uflfpMCazHjcUDb7HE4CPb5vFNhLfFL5fo8Au+EtUX4WjA6DZ+/axqUdPhgPx2YtpuFxNT6GMH8RjARERERERERERFR32W0YWgIgzeCiYiIiIiIiIiIiPqukNGGbwS3Ug9XvBFMREREREREREREYSHQhjGCAxwjmIiIiIiIiIiIiKjvCrVhaAiOEUwiIhJy4EHExYwH9fbV4wH97SVKwNdeHDhRMQR/OmEdhoPBfhD3Baxdv24WrDlKlZH67Xj5zMpg56Z4JU2ng9KHFsOa9d8x+IkW3OSug0rYkgkvX3pcJazlBvH6rKvGwRhmJTfCUYj3pSoDh/eIEqJkWJTtF2bj2GthkBYH7sWGOhwCEnEAbxOLEkZRl6oEBmbhQJlUOw4vfKcGh7DF7MD7o6mqFtai9+OglsbLcADjO9WjYW1oRCGsJeWUwVrZyRmwFr0Ph0o0xuJl+Hz8QFi7Mn0trD00DB9r6g/gmmcXPseE7EroaCSuWTx4Rwv5cVipSTnd9UVBB+5vWxQ+F2mBUdZK5dygBHva6nEtclglrE1x4/C2j3JzYC16F57PiP04TMo7NhvWckbioLU8Pw5buj3xI1h7JwMfo4zEWFgTk3L+PoCX/ZZtP4K1EXH4OCRD8THR/i5OAmzEq0UiCpVrAouSLmhTjhnKNas5EF5vbNRljVYC4UqVQLiD+Pxtx/k/Up2lHI8H4yeOiS2AtVUHcGhx1B78eoYdL0P8hkpYK5+BQw/frxgBayWBA7CWPQoHMNadhqepcRbhvvnVlz+ENYcNX0wHM/D1Qn0BPmdGHVCuE4vwNmrIwPuuif0tIiJBJfDRZFUCvhrx/u9Utkkk3lWlIRHXIobha3CrCe8fCU58XR+1F+/jwSr8esXH4fNGxjB8rJkSuRvWzozAvTFxIn7ezrnHwVraMhx4FzF+FKy5JuPj+psH8PNMg/H5u7wRrzMbfppEKPcJaiLwe3pD628l7NWMdyVqp3AZGqKqqkoKCw9dt6akpEhMjHLPq42UO39EREREREREREREfcfhG8Gt/fRWTz31lIwcOVLi4uJk5MiRzf799NNPH9O0+Y1gIiIiIiIiIiIiCguBkFlMIf27r4FW6j1l0aJFcs8998jNN98sM2bMkOTkZBERKSoqknfeeUduueUWqaiokNtuu61D0+eNYCIiIiIiIiIiIgoLhrQ+BnBvHQnz8ccfl2XLlslll13W7PcjRoyQU089VcaNGye/+tWveCOYiIiIiIiIiIiI+re+PEZwcXGxjBkzBtbHjBkjpaWlHZ5+7/weNBEREREREREREVE79eUxgo877jh58MEHJRA4Ovw0GAzKQw89JMcdh4MaW9N/vxFsMg79HKmDt8bNZXZYi9mNv3BePgynUDYm4ee5LDiF8pPaYbAWqMBpuAm78OtVHpcCaw0JeKWdlLMN1jRrvDjt9+aB78Pa/RN/DGsZb+CI2Mw38eu9Onw8rJ04FCeoTorHycqv5E+FNXtlxw5G5jq8LwVj8PIZLhxNalGm2avB/sb7eLAK97C5Hq8HKw4ClgAOkpXGBDwvZyl981LuJFirLMFpuKml+JhRPyoV1krH2mDNZcERu/clfQ1rGtvglbD2sPNHsFY9EB/blCBnWbs5B9a2peHo6EAQ7xPegXjbGiZ8vHSUw5L4o/D+GYzCC2goSdyW+j76WTDqbyte74EqB6xpx05XEZ6NkHJ4rByG58URwE+sC+H5bKzFtfhcvA9UjouHtUAEPt88NHA5rJ3q1P6QDh+HsmPxTr73goGwlr7wM1iLmHoCrBUWeGAtNaoa1qJcXlirHB4JazG78Pr0RcOS2osBt7KutVM0Pu33bqi/lUujUCN+O2OpVfq7GE/Th3djqU9X+rulef//NpRlwFpNJb5gyFnfCGvmshpYKzktDdY87jJYWzbgY1jb5scXPSutw2Ht4EC8jdLew99o8kfGwVpBNj4m3nziB7D2tx0nwVqNMk2rcq5wlsCS+Nx42UMR+Bzdyl8z902gvw27cpzz4/VurlJ6H7eNmAP49RrxpZ+clYHf9+2uSYC17XtwL8Y14NczR0TAWgCfimR0bAGs5ftjYa0ihA+KsfZ6WNOuCIIjs2EtQvky47o9WbCWmYKvJeKi8dwUe/BK8+zEz/PG4HO0Lxa/TwrG+2GtxfPct0WlRu3Rl78R/Pjjj8uMGTMkJSVFTj755GZjBH/00Udit9vlnXfe6fD0+++NYCIiIiIiIiIiIgorwTaExQV7aVjc2LFjZceOHfLcc8/JmjVrZM+ePSIikpKSIvfff7/8+Mc/Frfb3eHp80YwERERERERERERhYWQmFoNi2ut3pOio6PlhhtukBtuuKHTp80bwURERERERERERBQW+vLQEIcdPHhQXn75ZdmxY4fY7XYZNmyYXHbZZRIbi4d5aQveCCYiIiIiIiIiIqKwYBgmMVq50dtavSf95S9/kXnz5onP52saBqK6ulrmzZsnTz31lMycOVMMw5CNGzfKhAkT2jVt3gg+kjJut6kGry5nKd6BTEE8Ub8yrEcwAQ8wnuGphLW38kfCWvROPOB+zMsbYM2cjQMuCn6Og2i0wIndARw0VRPywNoPoypg7Y6BOHTBn44/NQk68Hpx7MMhTdXZOKBqUxEOBgh5lBSXajzovHsv3pfqk/A+WG/Dy2dYtMHqw4wyBJDJh4vWOrxuzcqm1PrbnIZDF74oHgBrme5KWKt/OwnWbHV4Rl1f4WDD+rNxWMPmCf+BtfU+H6xNsuOeel4JUqwYg/t74OtKIIOSxdKYiINhho7GKRYHamNgrWoQDu7yl+PnaaF2zjK8DzbYtB0bl/oTUyNeR84S5fyt7DsG3nUkpASEaBec66pwYFrkVtw37k2Fyszghdh2Kw6CXbjvHFgbOeQlWPu4EYdP/nfoCljL2fQzWKu+chqsWRvxOSxqC15nX9nT8fOiccpQxCAcMtdQhfvbvU+5FozG+0RI6W+jdw5r1zW0w5wS4mWrxuvW2qAERsXi51nS8fk70Y2vbWMdOBWq8hvci4FIfP4ODcbJVmXj8fL9adh/YW2LHy/fKBsOW0p3VcHa1sH4OJT6Ce5Tz5tbYa181ChYeyEPJ6lHOvD1SWgg7u+6CtzfdpzZJxGFyvV5Bq71p+tz7VxrasD9bWnE6y+onKOrcvDzInMqYS3biUMW6wL4BfO/Vt7b7cPXC/7j8Xv6ugy80n4Y9wWsnR6hXKMqFzZ/z8ChrTkDx+BpKtcuhhJ46voav8eOyMDrzBfA92usmTjssqwBJ4RqYc7aOSZkx/PSi+89hpW+PEbw8uXL5eabb5Zbb71VfvnLX0pq6qHr64KCAlm0aJHMnj1bMjMz5S9/+YsMHz6cN4KJiIiIiIiIiIiofzLaMDREb/1G8KJFi+SOO+6Q+++/v9nvU1NT5dFHHxWXyyVnnHGGpKSkyMKFC9s9/d55+5uIiIiIiIiIiIionQwRMYxWfnp6JoENGzbIrFmzYH3WrFni9Xrlww8/lKws/Be8CL8RTERERERERERERGEhJCYxtTJOXqiXjqMXDAbFZsPDythsNomIiJABA/CQkhp+I5iIiIiIiIiIiIjCQjBkbtNPbzRq1Ch5/fXXYf21116TUcpY+a3hN4KPFFJCoZQB6bXvlNdk4ef54vCA7RlpeED6iZ48WHv+0xNgbdBXXjwvJ4+GtcY4vKtY4nGoiuaBghmwtrcaB9DtzlgPa9mj8mGtIB8H3sVux9shfRVeZ5uT8NfwfzRtDaytsIyAtUolYczsxdtBC6qwVeIDnN+jJDSEGZNPCX9pwOvIgVtRGvGuKt5UHGZwds52WCvxRsPa+s2DYG3g1zgAxbmrBNZqpuBPEt3ZlbB2xb5TYW1KzD5Ym2THNS1M6mTfRbBWvREH7cQuXQ1rESPw8fLzr3Jg7bqTV8Ha3oYEWHuvCB9nXbk4NcNeCUvij8L7biCyH/W3H/e3rQavIy1QJoizSqQxDff394btgrX6AA5O+XTjMFiLwTlTUvq9ZFhzVOF9YPJEPJ9nJ2yGtfn5+Pw9J2kVrF2T+31Yyx6Jz9++VTiALup/X8Ja6MeTYK22Gm+HuGScDFPREAFrdYl4Xdur8D5oVrIutXNTv+pv5fxtV65xQso7nYZ4JcRrAL4udDvxufakxN2w9vwaHHqYvgu/nrUWh8UVTsEHqdgcfPFyrgtfuz9UPhbWot2437QwqdEHsmGtZBIOYYtfjwPoPDvwm6+DaXGwZovEDWe14u3QmIT7zezH+6BFeZtk9ipBU8q5KdyYvHj92bRjpxKya1XOmTWZuKfGJRTD2q56HMr84TdDYW3ALvx6Xg++9vNH4gOYOQ7vWFMdOBRtbv7JsLa1El9L3Ji1CtaSh+JwZeMd3Ivxf8PHjMqr8fFy+x4cyJ49AG+/+Gi8XgoS8LHU7FcC6HC2plgalDBDZ28dkCC8HB7+obXH9EY33XST3HDDDeJwOOT6668Xq/XQfhgIBORvf/ub3HnnnfKXv/ylw9PnjWAiIiIiIiIiIiIKC4ZhajUMrreGxc2ePVs2b94sc+fOlfnz50tOTo4YhiF79uyR2tpaufnmm+Xqq6/u8PR5I5iIiIiIiIiIiIjCQl++ESwi8vDDD8sll1wiL7zwguzcuVNERE4++WSZOXOmHH/88cc0bd4IJiIiIiIiIiIiorAQDJnUoV+bHtOLHX/88cd807clbboR/MYbb7R7wmeccYZEROBx1IiIiIiIiIiIiIg606Exglv7RnA3zUwv06YbwRdddFG7JmoymWTnzp0yaBAONeqtLEognL1KCZJTgj4aE/De5U6vhrVUF07/+u9+HDjkKMWDzlfm4JqtHs9n+Qi87GcM3gZrmh2VeMB9mzL6/zmR+PW2x+LAqOVx6bAWvakI1qom4mlG7cIBBv9NwdtofMpBWFtdhT9AaUzC20/Myv6phCmYlQAWwxpeR0ZtWbVQCUM5Ugai8DrKzMLhCWXeKFjbUqjsc7vxPlCbgfdHewUOoCuZgKeZ5sIpCM9nr4K1mXtxKFSREoj4QNImWPv94Ndg7SdDb4C1yLOOg7XU1/bCmj9qIKy9mY9TWn0BvD4tHhw+2aiEUAUilCA0fBqRkE3pb1t49bcWFmfGq10M5bDqV/rbGoVP/IX1Sr/V4t53FOGZcZbheYndgEOhds/C4YXRSnDd7kZ8jvbY8AHz35VTYG3ZgI9hbZVy/XX91J/Bmj8SB8KFLHiakXvxus6LjYU1qw2fUJOUcK5SH94OEUUdu74M2ZU3N+Yw6++AcixTVoNNCdKtT8fryKT096jEQlj75yZ8voncgy8m3JvwNA0bfp4/Bgcczc7G4cr3lw6HtTcP4vNbXiIOfprh+RrWIh04YK8GZ0FK/LRxuPYpXmfV2XiioTF4Xo7P2Adr2yJxkFaxV3lPo7x/tGjX4Mq5SSxh1t9B5fpcCdvTer8+Da+jmGR8YEiLqIS1N7bgIMXIrfh86tqHA0jFhBdi10x8Lrr/uNdhLcqMjwtfluLw9BsHroK1Az6cjn16Kg7A/ve0k2Atu2gMrHm24fcfVYMjYS0vAh+jpmTvgzVzNt5fCmpx71uVQDh7Ba55lbDxcLs+70l9fWiIroTvGhyhsLBQQqFQm35cLlebZ+CJJ56Q7OxscTqdMnXqVFm3bp36+MrKSrnpppskNTVVHA6HDB06VN588802vx4RERERERERERGFJ6ONP+0VDvcw2/SN4NmzZ7drmIcrr7xS3G78ja/DXnrpJZk3b54sWbJEpk6dKosXL5YZM2bI9u3bJSnp6E9WfT6fnHHGGZKUlCT/+c9/JD09Xfbv3y8ej6fN80ZEREREREREREThqSu+ERwu9zDbdCN42bJl7ZroX//61zY97tFHH5XrrrtOrrnmGhERWbJkiSxfvlyWLl0qd9xxx1GPX7p0qZSXl8tnn30mNptNRESys7PbNW9EREREREREREQUpkImMVoLg2tnWFy43MNs89AQSHV1tbz22muydevWdj3P5/PJ+vXrZfr06d/OjNks06dPl9WrV7f4nDfeeEOmTZsmN910kyQnJ8vo0aPlgQcekGBQGQCViIiIiIiIiIiI+oVDYXGt/4gcuq/53R+v9+iAkZ64h1lUVCSzZs2StLQ0sVqtYrFYmv10VJu+Efxdl112mZx88skyd+5caWhokMmTJ8u+ffvEMAx58cUX5Yc//GGbplNaWirBYFCSk5sPvp2cnCzbtrUcBrZnzx55//335YorrpA333xTdu3aJTfeeKP4/X5ZsGBBi8/xer3NNmJ19f9P1TFMLY8wrwwSErLhmt+NnxiKx6EEdfUOWNtjxYOd1+7xwFryNyFYM+GS1GTizwVMQ2ph7ezYzbC2tBoPrm63BGAtyobX2b+qx8PaoIgS/HpDcKJS/jlpsJb2Cg6TMgcG4Glm4OFRvrbgxh+YigPG9lnwyPLeAB6+xVGpfNKl7BO9XXv72+LF68GEd0fx4lYUScIpFmU1OMygphH3vi8Ph0mlf45fz+/Gh/TKETi8yjQKh2ZcN+ATWJtzYBqsrd2VDWsbnDio4oKYDbB2khMvXzBdWS/ROMDDNxgH87mKlOCIb/CxbdiE/bBWXo33CSMRJ5oFQ3h/0YIqtH0+0MvDKNrb31oYpHb+DuHdQ4LR+Fj9PSV0ZGMhDidt2IfPDR6cI6oGBh6cgYPIApm4NybH5sLapiq8DFsL8f4/MBEHpt0SxD382+QPYC2QjIO7zF/hjWuuxye46AN42+am4fOpM6cC12xKslsy3g6NBg72sVV37LxlKPt1b9Cp52/lUObDWUsSTMDXmkkJ+LxY7cPby1SGj9Va8F/hdHwusvjwAgYH4eDG2+J2w5p2fV7nxTvP1xU4hC3biXt/5bjnYG1izfWwVqicM231uGZXQlRrD+Dn5SfEwFpGVBWsFafh43ogqOwvSkia9p5NDZLrBdp9/lb6O4hbSgIu5f13HO7vYfH4/eK6kixY0/o7qkAJn6yug7WS7+NrYttQvCNvqs+EtVeLJ+LXq8TvMZ7Ycxqs/d+oZ2Etx4qn+coIHPhYXID7Jm4bviaO3YbXdUkk7rfiZDyfWlB9MAafbL1+5RpEOUeblYDjYC+/Pu9L2jM0RGZm855asGCB3HPPPc1+1133ML/r6quvltzcXLnrrrskNTVVTErAZHu0+0bwRx99JL/97W9FROTVV18VwzCksrJSnn32Wbn//vvbfCO4I0KhkCQlJcnf//53sVgsMmnSJDl48KAsWrQIrsSFCxfKvffe22XzREQ9h/1NFL7Y30Thi/1NFL7Y30TUK6Avfx75GBHJy8trlnPmcCifQrVDR+5hftcnn3wiH3/8sYwfP75T5uewdg8NUVVVJXFxh74et2LFCvnhD38oLpdLzj33XNm5c2ebp5OQkCAWi0WKioqa/b6oqEhSUlr+VDw1NVWGDh3a7CvQI0aMkMLCQvH5Wv7Ub/78+VJVVdX0k5eX1+Z5JKLejf1NFL7Y30Thi/1NFL7Y30TUGxihtv2IiLjd7mY/Ld0I7q57mN+VmZkphtH53xJv943gzMxMWb16tdTV1cmKFSvkzDPPFBGRiooKcTrxV/GPZLfbZdKkSbJy5cqm34VCIVm5cqVMm9bynxufeOKJsmvXLgmFvv1bmR07dkhqaqrY7S3/GZPD4ThqoxJReGB/E4Uv9jdR+GJ/E4Uv9jcR9QaHh4Zo7aetuuse5nctXrxY7rjjDtm3b1+b57Mt2n0j+NZbb5UrrrhCMjIyJC0tTU499VQROTRkxJgxY9o1rXnz5smTTz4pzz77rGzdulVuuOEGqaura0rgu+qqq2T+/PlNj7/hhhukvLxcbrnlFtmxY4csX75cHnjgAbnpppvauxhEREREREREREQUjoxWftqpu+9hXn755bJq1SrJycmR6OhoiYuLa/bTUe0eI/jGG2+UqVOnSm5urpxxxhliNh+6lzxo0CC5//772zWtyy+/XEpKSuTuu++WwsJCGT9+vKxYsaJp8OXc3Nym6Ysc+jby22+/Lb/4xS9k7Nixkp6eLrfccovcfvvt7V2MDtECZQJuPKJ/TBweID7aiQdCP3AQB4PF7MWfXETl1sOayY/ns3QsDpOKjsQhJ9lWHA6xaM+ZsHZwGw6q0D6YeeCCV2Et0YyXL28gXp9vJB8Pa0XnD4Q1zy68/ZzFeFyZqgj8yXjSUBzMp62YYDRedp+BP/MxB5Rp2sNrsPqgQwmV0MIgY3GAQFYyDg6qasB/JVGlBCTE7MbbpD4FH4jqk/F2bsS7v0xMOwBrb5XhD/h+kfoOrL2zdiys+avxyv7l9stgbUoiDmEbnF4Ma3sn4VDH6H04FMpVjLe7owwntWzdj8N0RmXlw9o3efh5wSg8L14lNUYLWAo3Ss6HBCNw7wc8OM3D7sZ/srV2Pw6UCZTj3o/dgbeJez9+PYsXH+MPnopfL9qNw6RGR+De31aDw6v8BS5Y216Me8o9Hp8zbSZ8/Dpu8D5Y27x7KH49fMiQkA1vh8hcXKuMxMfuhlh8fI6NxdeCpfVK2Iyv3Zfq/U5Quz5PUQLhknAQU3IkDovbvAeHO0WU4n0nbitOi3MW4P1j7yUeWItx42t+zbrqQbBWm4v38VrBtSuHPw9rXsHrZVwGPi9u3jkE1mJ34WO3ax/etrnn4TfO23fgkMzoZHx97nLhY1tNDO5vayXu7/4UJmVYlHM0Pt1IIAaf+NNSKmFtW2kSrNXk4/fDMXvwNnFU4f1RC4SrHYCnOSQBB4gXefF81gfwPhdUztGFJbj2eNIpsPbH1PWwdloWHjr0vZRJsJawCV/zeGPwOovdAkuy242va4YNwsehtIxyWCsI4jdYlip8fa71N3We9oTFtVV338NcvHhxu+avrTp0dTlp0iSZNKl545577rkdmoG5c+fK3LlzW6ytWrXqqN9NmzZN1qxZ06HXIiIiIiIiIiIiojDWjrC49ujOe5izZ8/u0PNa06ahIebNmyd1dfiT6iPNnz9fysvxJydEREREREREREREna61YSE6ODxEdwsGg/Lyyy/L/fffL/fff7+8+uqrEgwqfwrZBm26EfzYY49JfX3b//ToiSeekMrKyo7OExEREREREREREVH7hcGN4F27dsmIESPkqquukldeeUVeeeUVufLKK2XUqFGye/fuDk+3TUNDGIYhQ4cOFZOpbV+bbs+3h4mIiIiIiIiIiIg6RRcNDdGdbr75ZsnJyZE1a9Y0hcOVlZXJlVdeKTfffLMsX768Q9Nt043gZcuWtXvChwdLJiIiIiIiIiIiIuoORujQT2uP6c0+/PDDZjeBRUTi4+PlwQcflBNPPLHD023TjeCuGqC4V1IGy/BH470kMgUnyVaVR8FafYQD1iJ24RjkiFL8HfbykZGw5scBo2IbXQVrT476P1hzmvD4JCM9RbBWtzUV1gJ4tciv9/4Q1qKsOB36gQGvw9qrOeNgzbILp7GHLErqeL7ydwYm3Hr743CacWIsTrEu9MXAWtCvJJLjoOOwYyj9HYzC/W2NxvuVpqoM9769CO8Dnl04WTziAE7CrsnEybXebLyh/y/7fVi7Lu8kXNsyC9Y8W/HKNuNgZTnv1K9hrV6Jhq/x4j61DcHrzLYFHxQjc/GQSP4ovG1NIXwA2+HESdXuGPx6NSac5Bz0t2mUp7AXiMDHXENJWLdE4B0yUkmCrzzohrWIfJwU7d6H+7s2Ax+rtT9d8w1pgLVpKXmwVhLA+3+sHe+Pkbl4nwvgSxDZWZEAa7+LwMea5wa+DWujRqXDmmkPjpuPKMDLZwoo/ebA26h+OD5GuWMrYa3UjDeu34OvsSx1/af3gw68jkIufP42Avg6raYBH6uLi/A1lXOfcn1eAktqf9cM8MBaaAj+S8v5w96CtWeq8flmczm+Bo/ZhverID7VyqXf4GuCj8e8CmvnJmyCtfWZWbBW0oi3g22Qci29ER+DS0TZRk58XEhPqYC1Bg+eZtCH17XJ37u/pdaZDOWORMjRsevz0ip8neavw9vEXobP3xFl+DjkLMLn4YY4PC+NA/D+WOPDx6jGIF5pJyXgPxffWzAQ1oLK+29vCL/eb4rHwtrPEj6EtTcHjIa14om439LeKYW1khPwdYY9H2/3HTb8JcbEBPz+W5z4HK31d9sGaKVjFgbfCHY4HFJTc/Q+WFtbK3Y7Pg+2hrsgERERERERERERhQWT0baf3uy8886T66+/XtauXSuGYYhhGLJmzRqZM2eOXHDBBR2eLm8EExERERERERERUXgIg7C4P/3pT5KTkyPTpk0Tp9MpTqdTTjzxRBk8eLA89thjHZ5um4aGICIiIiIiIiIiIur1wmBoCI/HI6+//rrs3LlTtm3bJiIiI0aMkMGDBx/TdHkjmIiIiIiIiIiIiMJD6P//tPaYPmDIkCEyZMiQTpteh28E79q1S3bv3i0nn3yyREREiGEYYjL17rvpbRFSAmXEjveSunIcSGJoXzffjVNVIgvwE6Ny8YD03jg8aPTBUXgA/FQXnmacGQ9k/149/jRi5a5hsJZcgtdnRDEO6Nn7PRyINWPgVlj7Xw0ekP4HI76CtVcKp8Kao0oJFChXAl78+HmlMXifKIjHo/g7PY2w5rfhdR0qxdPs7WPmtJdh7dgChQJ4FJ3c3ERYs5TjQ6yjHL+etR6HVx2Ygff/+jS8fEmJODDthRocrBBSEvaqanCQQ8ZufMxwFOLgm6dOwumnyQl4GT4b9zKs3V86HNaemXAqrNnq8HG9MQ6f70x40SWUh6dZ6cHH7thkHFRRGcDHk5CSwGLqIxc+baX1txGDN4pVOT7WKPu4tRKvW+WUKdVZOKxEO+ZWDsXFOeM/hrVd9TgwanVVDqx9WYBD2DI+xvtj6TgcQKcdM0p9OEzn5Tp8nL11LA67fDT/PFgzLHg+tf524kwo8RXgHt5r4O1gVwKP/PV4fwkpYVJhd/7u4PW5y4Ovbesr8P5oK8P9Hb2/YyvX2oCfVzQVb8uBifiC4YeRuBc/9+LnaUFa0fjyVZI/xOfhvcfjaS4sGwprV8Ssh7VXBx6AtS3lOPTK2oDXZ10q3rYxe/G+5I/C18sHvPg6yuzE13SGWzlZVHXsXNEXGRbl/K2ExRlB5d6DEsJpLcHr1qEc4+uSlfDJDHxOaUjF8zIi5yCs/T4bhyzu8+P3A/M+/hGsDXsH93D1YNzD7wweAWs7vr8U1syCj7O/OO49WHus7BxYK5uKlz1+Mz4mNiTibRQqwP1dplxfWrT32DH43B6qwNcL4dbfPaotQz/0wvU9b948ue+++yQyMlLmzZunPvbRRx/t0Gu0+0ZwWVmZXH755fL++++LyWSSnTt3yqBBg+QnP/mJxMbGyiOPPNKhGSEiIiIiIiIiIiI6Jn10aIgvv/xS/H5/07+7QrtvBP/iF78Qq9Uqubm5MmLEt58MXX755TJv3jzeCCYiIiIiIiIiIqIeYTJa/4Z1b/wG9gcffNDivzsT/ptf4J133pGHHnpIMjIymv1+yJAhsn///k6bMSIiIiIiIiIiIqJ2Mdr404tde+21UlNz9JAndXV1cu2113Z4uu2+EVxXVycu19FjHJaXl4vDgcdWISIiIiIiIiIiIupKJvn2W8Hwp6dnshXPPvusNDQcnXfQ0NAg//jHPzo83XYPDXHSSSfJP/7xD7nvvvtERMRkMkkoFJI//OEPctppp3V4Rrod+J644cQDfptcymD/dXhVWupxkI+9CpbEUYU/nqgYjgOH6tLwNGOHlcLajFQctHbltlmwNjq2ANasO/AA8TGr98Fawyi8EKFv8DRzk+Ng7caED2Ht/nw8IH3WWDyIf0FlBqwlbcD7izcGH3Ki98KSVNnwfuZ34poRwq+n7vMN7f6sqHdA/a0sjikKB3aEvLiHtcCoiEK83uO/wQECxRPxPh7AOQ5iSsGBgZdl4TCW4Y5CWHu65nuwZtmOgw2dn22GNe9UHCJp24vDEyaO2AJrmqs8n8PamyNGwVp5mRLuhLM2JOYg7ilHNd4JK4fhfanSqmx45aNsbdir3n7hA6H+1sLilB4OKH8TZirBH3BH58GSeHbh40l9Mt7OdalKSNlAvNMlWHE4ynnJm2DtX1WTYe3zr0fCmqUYnxeTXsAnsdrMsbA2aBS+Phlux9cZ8w9eDGsDxuTDWn4dDsNLXYPP31XZePtZ8SFYjDIcTuT3KScn5ZsqWsCSKdBHOxz1txIYJUpoXn05Pp9aqvG2jNqPp2ltUALFXPh51dl4OycML4G1+wa9BmtPVmXC2jP7p8GaeRs+fyf+A49HaIzCAdGWr/B5qmoI3g5v1+EgubOTvoa12rH4eiG/Gl+fOyphSQIOvP2ilGN+VQQ+xwSV0DItZ71fXZ8r52/tWBaqwfuA1ON1FFmEp2nDp1P1wkk5pUjaKHyd/fPMlbA23u6Etd8fwP3t3IfXS2MKXi++KFwzH8A9/P0tP4C1Xw58F9a21OKVFqFc81TVx8CaowrfI0nYgs/tpWPw+cBrwdvBSMUnfpPS+yHtPakS2Ent1EfHCBYRqa6uFsMwxDAMqampEafz2/0wGAzKm2++KUlJ+L1qa9p9I/gPf/iDnH766fLFF1+Iz+eTX//617JlyxYpLy+XTz/9tMMzQkRERERERERERHRM2jL0Qy8dGsLj8YjJZBKTySRDhx79ganJZJJ77723w9Nv943g0aNHy44dO+Txxx+X6Ohoqa2tlYsvvlhuuukmSU1N7fCMEBERERERERERER0LU+jQT2uP6Y0++OADMQxDvv/978vLL78scXHf/uW73W6XrKwsSUtThgJoRbtvBIuIxMTEyG9/+9sOvygRERERERERERFRp+vD3wg+5ZRTRERk7969kpmZKWZz5w4J1KEbwY2NjbJp0yYpLi6WUKj5LfQLLrigU2aMiIiIiIiIiIiIqF368I3gw7KyskREpL6+XnJzc8Xna54zNHYszt/QtPtG8IoVK+Sqq66S0tKjQz1MJpMEg318dGstlKMaB32YvcqA9Ac6NiB9IAI/L4DHQRff0KNTBQ8bE1MOa7fGbYS1El80rP33q3Gw5sHZFxJMj4c12ztfwFqSayqsbUjNgrU340bD2g8ScJDWMh8Oy2oYgAOBKmrw/qJxluOd0FaN9wm/KAPZK4ETogxk358Y9UrgYy0OAXEp/R19AK93b5xy+FU+8Gsc6MXz4sQBdNfH4DDI/9QOgLV9+Qmw5imGJak6B4eweT7HoRm2CfhPXN78GvfwjOpEWPt11gpYq6xTgvnG1MGa+UsctKP9iVFjLK7Zq/C+5DPw8SQU2cfPu51FCZtpKZymqaQEwjlL8TbRAl0DLtzEDXF4mnXDcQ/fORIHynzftRvWnqmcAmv/2jUB1uK/wTtyMMENa8Z+nKikhS09//VxsLbCMwLWfj30bVj7qGo4rOUOxOGypbX4uKAFRXp24HVWOQTvE4YZn2NCMUpQsfblkL4aFocEO7Y8ljq8bh0VHZumNwaveC0wqjENXzO6lMPXSBt+nse8C9YWFuAg5AGf4/2q7iz8pjLi1bWw5px8Aqz96yscTPl/Jz8Ja1814uuT7yXuwdPMwgE61gYcpOXAb5PEXos3kl3Zl3zK2+1QhHLBoJy36BCzEppnrVdC5pS3aBFl+JqqZDw+nvgH4tCwSBs+t/9fEe6bt+z4OnRjHj7YuGphSUwBvF/FPf0ZrAVvwvNZMBCHt+Wl43Ptb1LegbU/mE+HtTcrxsBaRTXu74gSvOxO5Z5FQAkBDRTh99/a+VvsSu/31TDIXgjkUx71mN6spKRErrnmGnnrrbdarHf0/mu797Kf//zncumll0pBQYGEQqFmP33+JjARERERERERERH1XYapbT+92K233iqVlZWydu1aiYiIkBUrVsizzz4rQ4YMkTfeeKPD0233N4KLiopk3rx5kpyc3OEXJSIiIiIiIiIiIupsfTks7rD3339fXn/9dZk8ebKYzWbJysqSM844Q9xutyxcuFDOPffcDk233d8IvuSSS2TVqlUdejEiIiIiIiIiIiKiLmO08acXq6urk6SkQ8MdxcbGSknJoXFMxowZIxs2bOjwdNv9jeDHH39cLr30Uvn4449lzJgxYrM1H2Tn5ptv7vDMEBEREREREREREXVYG8YI7u03gocNGybbt2+X7OxsGTdunPztb3+T7OxsWbJkiaSmpnZ4uu2+EfzCCy/IO++8I06nU1atWiUm07djaphMpj5/I9jkw1+SNinBG47yjgW7BfH44tKojFdSPwCPx3zm0O2wluGsgLUDyhjPu2pxYJQzF4+4b1KGjTbWbcZFhWHB68VegudlXVU2rO1z4OC6u7P+C2u/8F4GawcacVCFowyHDdjq8PJp69NWowXJKSE1ll5+9OtE2onApAXKKP1tVrZJdZa23vHz6rLxRAdm4DSDKCWM4u9VOGzp6W04AMK5GwdppfwD93CwBidhKtEJ4s5Nwc+LxPOSF4VT2H7b+ANYG5aEE+92luLjXm0OXgpTAJ9abfWwJAFlX3Io5x+fsjOF7P2nv0U5f1u9eP1ZlECZyAK8/hoS8POqs/E2aUjFG/qk4Tth7RQlEO7jBhyU+tp+JU34CxzwYmnE82l8gXvfOmwwrMVvxsE3dRk4gDHl1AJYG24vgrWVxkhYG5WJp7m5Eq9P2a+cK5TAR+2NhqMMP8+rXKobWkBimNGuwU1+JZS5VunvfLz+vB7lmkp599SYis8N507YBGs3JK6CtY8bcdjSP4uPhzXHfhya5HPjZY/+52pYM7vwmxrtGsu5G8/LtRFXw5o7CgdgX5L1JazFxOO0rKpsfNwLOpVw4MKOjSNpr9TO38p1oq3/9Ld2fDTX422irVst+M+CL5elZgB+PV88Pi8Oy8DnolMTd8CaTXlz99dNJ8OaaR/uxcgC/Lfu2rldk/ovvAx7E4bC2ouxOCjy40j8vEwXvmcxatBBWNtSjwMmzT7lehm/xRBbFa5ZGpT+DuGTRdDRj/q7J7XlG7+9fFPccsstUlBw6Jp1wYIFctZZZ8nzzz8vdrtdnnnmmQ5Pt903gn/729/KvffeK3fccYeYzUw0JCIiIiIiIiIiot4hHMYIvvLKK5v+PWnSJNm/f79s27ZNBgwYIAkJ+EtLrWn3jWCfzyeXX345bwITERERERERERERdTGXyyUTJ0485um0+0bw7Nmz5aWXXpLf/OY3x/ziRERERERERERERJ2mjw4NMW/evDY/9tFHH+3Qa7T7RnAwGJQ//OEP8vbbb8vYsWOPCovr6IwQERERERERERERHQtTG8LiWg2T6wFffonHwP+u7+a1tVe7bwRv3rxZJkyYICIiX3/9dafNCBEREREREREREdExMUSktTGAe+GN4A8++KDLX6PdN4K7YqaeeOIJWbRokRQWFsq4cePkz3/+s0yZMqXV57344osyc+ZMufDCC+W1117rlHnpaPKwvRJP0+LHtfpkXGtMxqmeEUk4efvcuK9g7cFdZ8HaO4XDYe3Adjyj8Ti4U+Ke+gzWtGTx4O79sBaIwNsh6Qu8zlZ7cDJpysAyWFtflglrOW78vIaBNlgrM3ACtK0aj7/twAGqYuAgVDGUD2mCOHQ27BLJO9rf2nr3R+FaCO8C0pCCz0rxWfgFrWb8vLOTvoa1P39zKqzVl+GdIHkf3gdMScoA9TU1uKbwfLAb1pxlWbC2NwEvw4hxOMnZbsbHjCuGfAFrH8Xi49f2QAasOUpwo1rxYV0M5Wxtq1HS7aO1aYZXf1u8eD2YlZqjEk+zPrlj69bvxn2aNBBHmVf7nbD2es0YWHtp3yRYqyjEMxpfCksS/fEuWAvgp+nW4OuT2IHHw9rmRNz7V9fOhrVLsvA3KtYX43N7XHYlrJWLB9ZEcH9bGvGzrErNsCiJ5DHarIRXf5sCyvlbOQaKUmqMVfrbjZ/njcfnjdFD82DttJiteF6Ug/x7VaNgbfVGfG0b2QBLYvbj/cOaiM/tgRJ80LA24Gm6ivC6Lk/Fx72Zoz+Gtef24PeKMzK3wdpmdxqsbfMPgDVTEF+fK5cSElKuz60NeL2ox9kw629Lo7JutXO7D09Tu25qUI6djcn4/G324Bf8aQbeV5/YdxqsjYvDb6QDtfiNRLR2/n5hDaz5zsV9EzF6GKzVZ+KDYsJXuAEOJCbBWnUm7v1RA/Nh7XsJ+PqkLCcS1opC+NhmL1f2QeVejl15uxNU7lkY2vcnw6y/e1JXfSO4N92/7Kh23wjubC+99JLMmzdPlixZIlOnTpXFixfLjBkzZPv27ZKUhA8c+/btk9tuu01OOumkbpxbIiIiIiIiIiIi6rW6YIzg7r5/edppp6kjL7z//vvtmt5hbboRfPHFF8szzzwjbrdbLr74YvWxr7zySrtm4NFHH5XrrrtOrrnmGhERWbJkiSxfvlyWLl0qd9xxR4vPCQaDcsUVV8i9994rH3/8sVRWVrbrNYmIiIiIiIiIiCj8dMU3grv7/uX48eOb/d/v98vGjRvl66+/ltmz8V/FtaZNN4JjYmKa7kLHxGh/h9Y+Pp9P1q9fL/Pnz2/6ndlslunTp8vq1avh8373u99JUlKS/OQnP5GPP8Z/hiEi4vV6xev1Nv2/urr62GeciHoF9jdR+GJ/E4Uv9jdR+GJ/E1GvEJLWxwhurf4d3XH/8kh//OMfW/z9PffcI7W1te2a1ne16UbwsmXL5He/+53cdtttsmzZsg6/2JFKS0slGAxKcnLz8WeTk5Nl27aWx3b65JNP5Omnn5aNGze26TUWLlwo995777HOKhH1QuxvovDF/iYKX+xvovDF/iai3qA93wg+8gMrh8MhDoej2e+64/5lW1155ZUyZcoUefjhhzv0/DaPEXzvvffKnDlzxOVSkqW6WE1NjcyaNUuefPJJSUhQQoq+Y/78+TJv3rym/1dXV0tmZuahEbpbGKXbpAz2rw0UHnTgWn0qrgWi8UcQ7gz86Wl6TBWslQSUBBtFcRV+XvQePIB64r+3wJr/lImwFvhwA37emZNhLfZ/OGzDlBgPa6VjceBdoSMW1s4fh8NtGpQ0sEExOBDIGKiEZgieF3sV3g4WJRTEqtRCNmUg+14eJtXe/jb78LJqva/1txYo44vFE03NwSkPVfU4POH7WdthrViZGS0QLvYrfCrwbMMpCIZLWTGK+h/iUKjIA/Ww5ovB8xn7Ne6NL104/OW64/Cnsm8VjIS16Sl4O2yPTIE1r9JShkVLfMQlk/JJtrZfa0EqvUF7+1sd40sJ5fApPaxdPPo8eOW60vAn9HYrjgC6MR2P87W6bgislZbj83fEAXyeSn5tJ6xJZAQsWVJwQJWh7I8NF02FtagDXliL3I/npcyFN+D+JHxNYDHjjTvIjY/PBQ48n7mCrzPslUp/48OXeu2pBSQGXeF1/taOZVp/ayGcPny5pZ6/LXF4H5gYi8Pi4i34uHDTNz+GtZIypb/z8X6V+ik+nzYk4+uMwOB0WBMlLC7mH/jbUL6zj4O1+lR8jPr7N9+DtTGpBbB2uhu/N6n04+uh7fG4hxsFX/NEFOIm1s4jNi1oyo5rWkB0b9De/rY04ia24t1Yvf7RAtkDMbi/o9PwRrlo4CZYu++bc2Ht4oH4veT/fY3Pi/HrcG/EbcNv7mp/hK+zPStx0Fr95IGw5ijDqaaWUrzOnONwOKMvBV+IekO4NjlyD6xti8U3Xorj8bHUa8YN51KOsw2JsKSGGVrMfff83ae0Y4zgzMzmIcILFiyQe+6555heviP3L9tq9erV4nTic3lr2vw20DA6f4dMSEgQi8UiRUXNE92LiookJeXoN9K7d++Wffv2yfnnn9/0u1Do0BnAarXK9u3bJScnp9lzWrqTT0Thgf1NFL7Y30Thi/1NFL7Y30TUK7TjRnBeXp643d9+uaClY1h33L880pEZbYZhSEFBgXzxxRdy11136cumaNf3gbS0uo6w2+0yadIkWblypVx00UUicmjFrFy5UubOnXvU44cPHy6bN29u9rs777xTampq5LHHHjvqLj4RERERERERERH1H+0ZGsLtdje7EdySnrh/eWRGm9lslmHDhsnvfvc7OfPMM1t9PtKuG8FDhw5t9WZweTn+c/iWzJs3T2bPni2TJ0+WKVOmyOLFi6Wurq4phe+qq66S9PR0WbhwoTidThk9enSz53s8HhGRo35PRERERERERERE/YsppA8hc/gx7dHd9y87M6Ptu9p1I/jee+896o70sbr88sulpKRE7r77biksLJTx48fLihUrmgZgzs3NFbNZGTyNiIiIiIiIiIiISKRdQ0O0VU/dv/ziiy9k69ZDWVkjR46USZMmHdP02nUj+Ec/+pEkJSUd0wu2ZO7cuS1+lVpEZNWqVepzn3nmmU6dF3NAGbhbGerIF4P3oKAbD0jvjMcDvcdH4oSLKCseffyxbd+HNa8fb3LzpihYs+BcDGmcigNs7FV4Pi3JeF8K+fBHMw3H49ez+PHzMlbhQe7zTscDbb8VOQLWzBa83eOj8fbzB/Cg8xFKyFCDJRLWbBV4mmacTdTqn0uEE3VZlT92qE9T+tuF9zlbAt7nHBa8UW4Z8QGsLfrqDFgLeHF/20twLfmzSlgzF1XAmkR0bIB693oc8BLYtx/Word7YK1+Jg52sx/AARBPWnAQzbABhbBW5sPHy3EDD8DaV3syYE3JMhRrDb6g0EIQtVrIEV7Nry2rFqwTUgJ5/Eqga1x2JaxV1eBws8REfG54sRSHxnywbRis2ffjC5SoXLydK7+PxyWLemkdrFli8ZcCTB5ci9qJjyemGpwIlFGL/1RvX4QH1j5y4+WblIr7tNSLz7VDY0pgrToLHxMrBa+XoEMJmlKuS/sTU7Bj68GrBMIFopSvAUXhc/TYjHxY8ysHm9u+uRTWyktwiJFzHz5I2XGutJg+2Qhr0aNw4GPdYLzSOhpLE7EPh1wnWT2wViz4XLuhAf9J7fzKi2Etxonfe9kdeLtH5uBjd5kNrzOrFhSp7NYW5ZwWsIfX+VvJBZOAklMfsuH1oAWyiwtvZ7sN10qUa79JKTgo8rlvcFiidSe+XrDV4+Wz7cLX0lEf4+vXxuk4kN3aoIRkVuP3NFWTcEiyQ3kb0bgFH/f+I+Nh7Q3rGFgzm/F2n5SFt9F6Ax9P6uw4tE97f6XdO1IDUKnzdMGNYJHuvX954MABmTlzpnz66adN3yaurKyUE044QV588UXJyMDvLTVtvlXd2eMDExEREREREREREXUmUxt/erOf/vSn4vf7ZevWrVJeXi7l5eWydetWCYVC8tOf/rTD023zN4INI7w+eSQiIiIiIiIiIqLw0hVjBHe3Dz/8UD777DMZNuzbvwwcNmyY/PnPf5aTTjqpw9Nt843gUKiXryEiIiIiIiIiIiLq37poaIjulJmZKX6//6jfB4NBSUtL6/B0mcJGRERERERERERE4cNo5aeXW7Rokfz85z+XL774oul3X3zxhdxyyy3y8MMPd3i67QqL6w+0QecNPJa7hNx4YPkIDw4lmJKeC2v1ARwOsSEPDwodqMMDmjvycS1+Cx613OrF6yViCw7NCBxUaieMhzVNQ6ISiFWLv7ke/SUeOD+iJB3W6pWANsswnNLhDeD5zPBUwppmv5J2VmdV5rNWCaroAwfAzhJSwjWCSgJKKAb3tyMGhydEOI7+9O6wOh/u72f2T8PzEsCf3zn24lQCRyUsiWzZBUs150yANXMAr8/a6an49ZQ/MElch/djLUwq8e9r8fN+ggO4qm14nW3z4U9ZE0bj0Jjiehwm4ozCAZo+K14xATM+dpvrlaBIvAuGnaBTOZgpH3uHHMoO6cTnxfRoHH40Kh6fb0LKaGQf7sJhqLaDeF9178XLnrgc93egGAef+WfgcBtLAQ41DbiU9L01X+HXOxMH2NgrcWJt2qe4pw7YcUDbZ414PqOj8XXb4KhSWPMoIVSNKbiHG8rxBaZ2/tYCEsONYcX7uF/Z5YLK9bnZrgQjKbX9VTgYrLAOhx9pgXC2fLwQjjJYktTnvoE1LYvIVIITnCK1XJixOEBZ9uAgpuDWHbBmHoCPNVrYZciCL9zKQ8q1UgreJ9wufE1XWae8EYzA01TymsVcr30nq//0tybgUvYB5fo8Lhm/R8t0V8LarrIEWPuqDL9fLKvB16+yD9fSPsbnsIAL7x9GopKEWYCvQcpH4mONqwhfD5m9OLXP/e42WLMpIe+lY/B50bcDHy+rE/B2T80shzW7EtRtsSnL7sbXIH6/FtisBT3DEnUik9FKWLy0Xu9pV199tdTX18vUqVPFaj10fykQCIjVapVrr71Wrr322qbHlpfj/f9IvBFMREREREREREREYSEcxghevHhxl0yXN4KJiIiIiIiIiIgoPITBGMGzZ8/ukunyRjARERERERERERGFhXAYGkLkUDDca6+9Jlu3bhURkVGjRskFF1wgFosy/GcreCOYiIiIiIiIiIiIwkMYfCN4165dcs4558jBgwdl2LBhIiKycOFCyczMlOXLl0tOTk6HpssbwUfQwqQMpaZxOfFo4J/sHQRrkS48MHnQqwSmFeOB16NwjoMEHXiw86i9NbBWekYWrMV+Ew9rB0/Eg847cAaPRBbh+Iuob3CIiz8zDtbiN+N1HbLggJ4GsxvWvJk4NKaqBgdOTMw8AGuRDrwvheLwgPSNPryuTUG83fvCJ2TtoYZBRuMAASOE11Gk0t92C95X7Vb8egeKcACEJRfvO5EHYUmSX8NBLYYL7x/RW3BPST3ex70x+LhQm6YEoFhwrXp8Mqy59uyDteR38IoJXqAERRr4WPrpdnzS9cTjIDlPJF5nhbU42MoUifeXkNLDhrI+w62/tTApw4kHADMs+HnxSfjc5wvhT+HXHsD7v68MBxzZS/C53VUAS2JRQkcqTsf7qsWLr0GsDXid7T8fH6OsePcX+6gTYC3x1a2wZnLjc60IriV8hddniRI0VZmIt+3n1gGwFu3AQVPREbhmisf7YEMAhwz1p/5Wz99KzZ2Ad0iLBe/jETactFlRi8+ZZeX4OG6rwPuVZ4cSylyOryUqz8HhbdH/XA1rYseBUbkX4Gv3aCW8LcapvK204mWP2IPDbSwNynV2DL4eCjnw+Tvfh5cva2AxrMXgzS5lPrx8QT/ez4Ju5dykBMGGW38HI5T1oJy/LS7cp7EROGC4SAl1bKjDvVFXjc8bWqCrA2czivPLvbAWKMNJkaYMfP1qmjIG1kJKm/oj8TnFUomvX4OVlbBmbcDHr7jt+PUqc/CMmn24VmDG1yd+JUTSUHrKMJT3LZF4+ULK9aVhxvMSbv3dk8JhjOCbb75ZcnJyZM2aNRIXd+h+VllZmVx55ZVy8803y/Llyzs0Xd4IJiIiIiIiIiIiovAQBt8I/vDDD5vdBBYRiY+PlwcffFBOPPHEDk+XN4KJiIiIiIiIiIgoLJgMQ0za173//2N6M4fDITU1R/+FYm1trdiVv+5pDf5OOhEREREREREREVFfYrTxpxc777zz5Prrr5e1a9eKYRhiGIasWbNG5syZIxdccEGHp8sbwURERERERERERBQWTEbbfnqzP/3pT5KTkyPTpk0Tp9MpTqdTTjzxRBk8eLA89thjHZ4uh4YgIiIiIiIiIiKisBAOYXEej0def/112bVrl2zdeihYecSIETJ48OBjmm7/vREMbv9rycMWj7dDL2VWvm8eqMHjelSX4/RRZzFOko08gOfFsxunVtcMwK9XNQKnIMd+Uwtr+ScrqaypSkp2CiyJ36UkDxfgSF9LPU6W9Sfi5OGMV/JgreLEDFzz4ml6E3DC6OeN2bDmjsPp141Kyq1hV6NQYcnU0Ef/aAD1t0NJJQ7gZdVSictLo2DNrjzPV4z3D7uSLB73jZI+7cCptiXnD4G12KU4WdwagROSc68aBGsNyR3b50om42NN/Nc4Adr43nj8ejvzYcm9H/ei2Y+3Q70fHy8ra3BauSv96DGeml7PhrdtVBQ+dlfX41O5FnRs8inF3qwD529x4O0c6cbr1uvH63bbTiWxW7modO3D04zZh59Yn6AkTIfwsjvL8bJH7CyBtZpxybDmjcev542DJQkV432u4uzh+HnK1Wr8BhzH7t6Fr0+8Hjes1TXg82lhXQKslSYqqerK8cQIKudaLXUcPyv8+ltZReYYH6zV1eFjdUjZJhUBvP5MDfh5zjI8o/YqWBJnRQDWItfswc8rx/t/5axpsOaPxMvXqPR3I979JeDA1/xJ/9sFa0ZyPKxZa/G2defiPrXXKOfvFHxAyfXh454lDs+LMwLX6r14XjSGVbk+94dZfzvxuc8cia+lA3X4equ4Bu+P1cX42t0UxOvWVo63Zco6fK61NOLlCyg9bBkxFNb88fg9b+VQ/B6jLgPvV3X4skacFbGwFmXG82mpwOdFsxf3cFQEPpZ6a5XrIQPvE2U+vAyWWHyfx+nE+2C98v7R7Mb7RLACL3uf7e/eqA+HxYVCIVm0aJG88cYb4vP55PTTT5cFCxZIRATu7/boo3d5iIiIiIiIiIiIiJrry0ND/P73v5ff/OY3EhUVJenp6fLYY4/JTTfd1GnT541gIiIiIiIiIiIiCg99OCzuH//4h/zlL3+Rt99+W1577TX573//K88//7yEQp0zlgVvBBMREREREREREVF4MAwxhfQfbcjCnpSbmyvnnHNO0/+nT58uJpNJ8vPxkIft0X/HCCYiIiIiIiIiIqKw0pahH3rr0BCBQECczuZZPTabTfx+PGZ1e/BG8BEMJawn5Fe+QK2M6V1c4IE1Sy0edN5RjidqxpkEEv81DkdpSFECqqrxslvr8WDn3jgcJtWYiDvLPQQPjl9ViQfA99Xi1yuaioMBEr7Cg9UbVryuQ3F4mtF7cHhVY2wkrJlCeLv73Hg/qwp0LNxAHXJe26/DjRb+ooRyhAJK0Iey3gN5eB+ILFTCKPBuJZH5SihOOg7FCeCSlN5wAn69Atz7frw7iiThAC6TEn5UV4t739qAj1+xm3AKT/3kbFhr9OD931GJj4kmJdzJVo1rDV4cUBWKwuu6Tmliw6wEyij7fNhR/lLKpKyj+gq8z0kj3pbWelxz5Svnb5wJJY5yXHRU4GlG7CqFtYIZqbAWiMDBSCXj8XHPko6DSzW+RnxM9Efh5XPvVS568gphqWY6DqBLXFcJa6ZJHlizK/1d34j3JSNO2fDKuxAt8FGU85b01bA4RDlvaH/WGfIqYZrKMcNaiZ9nq8Xr1lWAp2nCh3iJ3FkJa6GqaljznzYB1gIuPJ812XherJm4vx12vB9X+XHYa+BSnG6esAlfn9sq8bWEey0Oc/afngVrnl1Kv1nwcc/fiN9/1DuV4KcY/KY9pATJ9dabE11CCcfSrsHNShBsTRk+31gr8TRdBcp7BS2TtgyHjQVc+HhituN9p2A6Tmd05yrLnoWXwZqB7xP46vG8lIzHtfokPJ/J/9uH50W51+HJxQfoilNwf/uVc7Ro77+V9xi1bhxAp52k1S+a9qf+7kl9OCzOMAy5+uqrxeH49k18Y2OjzJkzRyIjvz2+vfLKKx2aPm8EExERERERERERUVgwhQ79tPaY3mj27NlH/e7KK6/stOnzRjARERERERERERGFhb58I3jZsmVdOn3eCCYiIiIiIiIiIqLwYLQhDK6XhsV1Nd4IJiIiIiIiIiIiorDQl8PiuhpvBB/B5MMDjBtKqJbZqwQO1XQsNEYLhLPi7ATxxuFUKGcRfmJtNh4kvWIIHiDej7OPxDwID0gfaccLeOXEdbD2ePA0WAs6lEQsAy+ftj4jv8HJXdXHpeBp1uOjihYE6CzFtcZ4PFi9L1YJO1NCEEUJUdKC0PoiU0gZ0F9bReV4vduU/o4owtO01+D17irGBwbDjF/PF41rWhhkfSp+Xl0aDlYI5uCAl6tHr4G1/+aNhrWSLPx6FVbc395YD6zZavG6Tvy4GNYMJ97upcfFwppFCT2J3otr9an4lByoVwJlHL30b5q6m5IPYlTjbWlWzu226o6FtrqK8T6nBT4GnUoA3Q4cCNc4KB5PE5++pWQC3q9Cw3Fg1IVDN8Pam3tHwFp9Gl72WmVGLY3K9puUA2sxnx+Etaop6bAWwJlQ4izD2zboUMJDvXgZApHK+Vvr7zA7R6u0QLhqvO+Y1cDHjoW+aUGpEaU4wMmshMU1ZClBayNwIFzFcC18GL9eIBEHmMVHKhfFisZsfL1cJzhI0VaHGy52qxJkXYevCfxKUF70fhzqVZeC50W7/rIo5+iA9v5RCUE0tDDIcKMcykzV+NpIC8q2VynbSzl/a7WgkhnmjcPHIWcx3ucqLsf9HZWP9//8E5X9Kgufv6dk5uJazF5Y+5MDv/+usSqhu+dkw1JkMT4o1icq1yfKHaz4b/CxrWyUci2h7Esh5RrSF6Ocv528Pu9xfTgsrqvxRjARERERERERERGFBVPIEFNIv9PbWj1c8UYwERERERERERERhQUODYHxRjARERERERERERGFBw4NASkj6nWfJ554QrKzs8XpdMrUqVNl3To8PuyTTz4pJ510ksTGxkpsbKxMnz5dfTwRERERERERERH1D4e/EdzaT3/U498Ifumll2TevHmyZMkSmTp1qixevFhmzJgh27dvl6SkpKMev2rVKpk5c6accMIJ4nQ65aGHHpIzzzxTtmzZIunpOPijrcxKWJxJCXZzVCij3CvjhGuBMibleVoIgj8KD65eNSgS1sx4bHVpSFHmMxWHSlw65CtYuz9pI54X5TOK2ok4yOGZDdPw88x4EH9XIV6fRdPTYM2zGw/+b3Er4QaGEi5YhTe8YcbbVkxKSI1TGXDfoRz9tCC5PsgUUIIjGnDNWqcEyiiBcFpImc+Np1mWiEMJUlbjAAhflBKm5sH7nNejBB2k4n38VxPehbWtdbhv1k74D6z9pTID17adDGu1DpyKo22/yII4WDMF8XqxNijrzKoETihnXS1c0K8EAfpi8LYNKcEm4dbfWiiUpVEJlKlUJqqc2u1VuFafpIQCJuI+jdmHg1NKTsbhpLUZyjWBEmTiGFQNa/NGfABrX9fhPh2VhHfkU4Zvh7WHTTNgrVwJbvQrx72oaHwc0q6xEjbhIMziiTh4Nm4b3n6Vg/B5WDv/+JRjt6FcEoRdfyvX59oxXrnckgicFSqWjuWlSdVAJdhT2ecilevQhgS8EI3xeDtbMnB425gU3KdVPnydfUrSLljbVIXfh+VFemCt3IrPww2J+H1LZCEOqIoswr1YMwAfMyz4kkfce5Vruhhl+yknkpBdq/Wf63MtdN3s61hoq/a+NjoXrz9/hPJeQdk/KgfhC7w4P369uhRl30nGr6e9/7Za8f6f5KiBteGOfFj70Yj1sPZ8/fGwVmXH66UuHR8vEzbjA6ajEm/cknG4v2N34Js5Pjeelzrlms7sxTWvcuxWz9/99c5kVwgZh35ae0w/1OPfCH700Ufluuuuk2uuuUZGjhwpS5YsEZfLJUuXLm3x8c8//7zceOONMn78eBk+fLg89dRTEgqFZOXKld0850RERERERERERNSbmIxDH8KqPx24DxwOIxr06I1gn88n69evl+nTpzf9zmw2y/Tp02X16tVtmkZ9fb34/X6Ji8OfJhMREREREREREVE/YBht+2mHwyMaLFiwQDZs2CDjxo2TGTNmSHFxy39mdHhEgw8++EBWr14tmZmZcuaZZ8rBgwc7Ywk7rEeHhigtLZVgMCjJyc3/7iE5OVm2bdvWpmncfvvtkpaW1uxm8nd5vV7xer/9O47qavxnkETUt7C/icIX+5sofLG/icIX+5uIeoO2jAHc3m8Ef3dEAxGRJUuWyPLly2Xp0qVyxx13HPX4559/vtn/n3rqKXn55Zdl5cqVctVVV7XvxTtRjw8NcSwefPBBefHFF+XVV18Vp7Pl8awWLlwoMTExTT+ZmZndPJdE1FXY30Thi/1NFL7Y30Thi/1NRL2C0cYfOfSB1Xd/vvth1mHhNKJBj34jOCEhQSwWixQVNQ8sKCoqkpQUHIoiIvLwww/Lgw8+KO+9956MHTsWPm7+/Pkyb968pv9XV1cfOhkZpkM/RzDhsdXFVoMHA7fhcdfVwcAbEpWAKpzxIPZq/NFFbTq+v1+vDDofiMYLb4nDo/HHe2rx85SkvJUNOLztjAg8mHuqrRLWcjJx8kdhDA6TqomMgjVHKd6AARcekD6IS+p+FrTj1/NHK9NUwgztygfxPg+uhZRl6A3a3d/KOrLWd6wXQ0p/16YrSVOKqHzc34XH4+AUbf/wJig7XTReMdOH4XCnOTH4T1pW2gth7aHywbD2UekQWBsYVw5rO4N4Q3jLcPDNwVNwCJUWIuaswDWzD2+/xni8TzjL8DS10DJ/lBJsoh1rXL07HKG9/a0FdmjHXC1QJohzwVQ2nOko3lhcKx+hnG+UefHF4nOtKQafv380eAOsnR+1E9bqlZPDH9PWwtrZ286HtXGD8mBtV0wCrFVG4ANfbQZen1acBycmZcO79+O+qRiiBLMqwY1aiJgWlKSFvWohab1Bu/tbCYWyKv2mrVstvDOITxviKsITbYzDK96Ps82kfAR+ni8eH8Dis/HJKMGFV8zg6BJYeyQFHxeqQ7hx1kbh64VfV/4Q1tLG4OuFvOhEWAtG4A1oq1Z6Eb/9kOhcvG19UVpgIZ6mOQbXtG+imYK494OR4XX+Vq/PlWO1KKvBoVynaYGu0Xl4H6gc3LFwXu1aMxCLF97ixge+iZkHYO2lQTg7KTeAb1q8UD0B1i7y4OPCgVH4wubD7fi6PuDFfVpqwv1tacTXINp2D0Tg7degXJ9rX500K/uudl2qnaNDEb27v/sSU9AQUytf+T0cDn7kB1YLFiyQe+65p9nvumNEg+7SozeC7Xa7TJo0SVauXCkXXXSRiEhT8NvcuXPh8/7whz/I73//e3n77bdl8uTJ6ms4HA5xOHr53Swi6hD2N1H4Yn8ThS/2N1H4Yn8TUW9gMgwxtTIG8OF6Xl6euN3ffnGwK45hh0c0WLVqFRzRoLv06I1gEZF58+bJ7NmzZfLkyTJlyhRZvHix1NXVNY25cdVVV0l6erosXLhQREQeeughufvuu+Wf//ynZGdnS2HhoU+Ro6KiJCoKf6uTiIiIiIiIiIiIwtx3hn5QHyMibre72Y3glnTHiAbdpcf/cOzyyy+Xhx9+WO6++24ZP368bNy4UVasWNH0devc3FwpKChoevxf//pX8fl8cskll0hqamrTz8MPP9xTi0BERERERERERES9gWG07aeNvjuiwWGHRzSYNm0afN4f/vAHue+++2TFihWtjmjQXXr8G8EiInPnzoVDQaxatarZ//ft29f1M0RERERERERERER9jilkiCnUytAQrdSPFC4jGvSKG8G9iRbKoQXK+JVtqD1PGwC/QQl2q8vAtUAUDpUwReOZsVhxEwxIwilGvxv0Oqzt8+OAl0QLDpl7twGv0CI/Tl2YnowH6d7oHABrXwXTYM0Xg9vEW4kTJ6y1eAB8LbxEC/yyV+GaVwme1MLOWshsCFvmgNLfShCN9iclWhiktRHXtODGUtw2ElT6OyIZp5UMjMGJgQ1+vB/XBZRUFcXpEXg+/1GM++2Rgf+BtV/uvQTWLh+KQyxe3j0O1uqdOBQqEIl73xernStwza6EWGjhRFrIkBaEpu2f4UY7rmrHwADOX1TP3w1JuGZRet/rUebFgzdmdCoOeJmWgkNjcmvxC17o/hLWVjXglPdbYvfB2k/yToK1GcnfwNpJrh2w9oYbB9i8UIe/WWFKwjuFtwj3vq0K/8FcbSrub+1aUAsV9it/iaj1t0k51hjKNV1fZFLO39qx06IFTSnHjKBy6isbjfcP7Zjri1M2pgvXsjNwsFuyC19LPz/wPVgzK38Uekv+cbB2d8oqWPuqIQvW/jT6JVh7r2YUrL1Wj/vUF4dXdm0+PrBb6pRgvhhc03pYC6DTaIGFIXt49bBGy3JSA12VITy1c7QWKFYyHu8D2nxqoY6ORHwRkhOPg5A1MxK+hrUbD06FtSviV8Pa7XG7YM2vpJvF2fH7j/gE3DgTEnHo9GcJ2bBWfxC/WfYroY5eJczThg+l4teuE5XDunafxxfTf/q7J5lC+vuDw49pj8svv1xKSkrk7rvvlsLCQhk/fvxRIxqYzd/ua98d0eC7Wgqj6068EUxEREREREREREThoS1DP7RjaIjDwmFEA94IJiIiIiIiIiIiovDQjrC4/oY3gomIiIiIiIiIiCgsmAxDTK1847e1erjijWAiIiIiIiIiIiIKDyFDJNjKjd52hsWFC94IJiIiIiIiIiIiorDAbwRjvBF8BMOCdwSfGycWixk/TwnZVBNhQ5FK+miMF9biXTiuPCO6CtYuT/kc1l4omAJrD+SeC2unJeAU8CuicUrqFfu+B2vPZ6+CtbuKR8PatSkfwdrLNpyQHGnF63r5bpx07HPhCGEjhPclcx1OQQ468M5kDsCSnkyq7NbhJmRT+jtG2SbKug06lR5WXs+IUSaqDFZkd+H4ZJfTB2tjY/Nh7YRonBKcZlWilZXUcc2zWbgXZ+0/B9bGxOBlGOosgLXnJq6HtT8XnQ5raw/iBPT6Spxkrq0WfzQ+7Zq9eB/Ukqo1BvtbRPTzt3be146P2vnbcGv9jZlt+Lw/a/A6WPugdCieprLz/LXkVFj7S/paWNP8KAE/ry6EI96Pc9hgLS5uDaxtyMiEtQY/nmajG6ecFxZ6YM3XiM/RJh/eYUJ2fGAwlGtIk3K9oO67YUbrNzHhdRTEu5wY1g6ev6Nxf7vj8X7lr8LnjUHpJbBmNeNI84cHvA5rZomGNc1jafj9gEgkrCRYa2DtJCeeYq4fn79/lIOveVaVDIE1V1IxrH19MBXW/LX4mBGIxL1v9ivnb62mpNVrtXDrfO1axefGNRM+Zar9XROr9LdyrIlOxft4WiTu/e8n4/fDaXZ8nb23MRHWrnUXwdogO97/kyz1sPZugwfWGg0XrJ0R8zWsRVnw++g4K15n9gH4OLvGng1r5cX4uKe0opiqO3h9HtQmikv96f13jzKkDWFx3TInvQ5vBBMREREREREREVF4MIw23Ajun3eCeSOYiIiIiIiIiIiIwoIpaIipla/8mlobQzhM8UYwERERERERERERhQd+IxjijWAiIiIiIiIiIiIKD7wRDPXfG8Emo8X0HSXHREJWPGq/4cA1SwQe7DzWgwdsr6jAgQxpHhz6lhWNB52fm7IS1sqDeBD4gJJ4d3riNlj7qhqHuMyuSYc1X6hju+Z9SXiw+p3+Wlg71YOX4aFtZ8Kaw4a37bAcPFC/Jq/aA2vVStCIv0EZ5L5BCbdRwijCjaGEv2ihb2pSlxYao/R3oxcHklw89CtYGxGBA9NWVQ6DtekxW2DtLwdOg7UEBw5yOFEJfdMsr8epMafHboW1FFslrJ0VgYPyGpQUkkQ7Pi7kxJfB2jZ/MqwleXCYSJETh1gEqpQTkBo207Egmj4LnL8NnM8pQS1USwmUMZTzfkwS3nfcETi0daQHB7xsLMXnxRgl4GVybC6sne3Gx5PjHZ1/GXiGcs0jgmshwes6xxoFa6NiCmFtf10crE2N3QNrX3oGwNqmojRYs1jwMlRX4/N3UDl/m5Tzt1kJSgo32vk74FBC31x4JZn8SrKnsh+7Y3Ev5sTh88aADBySvL4MXy8/OeT/YO2JshNhbYJrP6y9VjoB1rJceD631+Bz38s578Ka5s2ysbC2tyoe1i7O3AhrLjMOqKry4muQchd+L6Rdt/lqlROQdg0e6PyQ2L5IC2gLaYHsWqijDR+P41OqYc2krPiaOrzvDE/H53a/gfeBRCVk8dokPM37S4fD2rTInbA2xIbPp4+VTIS1+1JWwVqsGffN+9W4N66MwSG415bi9zSZ7kpYq67F2yg5Fq/rugQ8n5Vl+J6MeJX+9uJzTFhen/dGvBEM9d8bwURERERERERERBRWOEYwxhvBREREREREREREFB74jWCIN4KJiIiIiIiIiIgoPIRaHk7uqMf0Q7wRTEREREREREREROGB3wiGeCP4CCE83rcaKGNxKaES7gZYi3LgMINRg3EAihamllvrgbWfb50Ja78evALWkpw4FKc+iAOODtTFwNrrw/8Naw4TXr6X62JhTRMy8Ly8XDwJ1iYmH4C1LwpwoExulQfWxifhwC9nLN6XNtTgMBGTEoqgjUevhaWYfTjEoldDYZBKGIUoPeyIwkFksZG4v2sacW9cNGQTrG2uxGFEGXYc4lLY4Ia1SiUM8rnBL8PaPYWnwJqmOIiPGUsOnAVrYzy4N2ZGH4S1h8txaIYWsnVWDN4Oa0qzYW14Cg7w2F+Jj1FZiXj71XtwUEV+Lg7MESsOQzKUEAuzt4/2N6Cev5Xjoy0Wn4cDPjxRnx+fp0am4v3Dq5y/zcq3FgbZcQDpT2Jwb0zfcjGsRdvxsh8ftxfWborFAXRuMw5Fu6t4NKytKcvGrzfgA1ibHfcprL3vwMeFFCsO3X3qIA7gunTIl7D23KYpsGa1K6FlkX5YCyrXnqFapb+VEKpeDZ2/lVAoUQLhJIjXQ1xmJayNisfX4FYlpe+kGBzS9Fn1YFj71aB3YO2mPZfBWiCEr+HKfTjg6PnsVbDmNfD++FE07u//q0mAtb3eRFgLKYHU/x3zD1hbUIiDbgdFlMDauDh8vMyP8MDazgq8fFEufCzVwqv8Nfi835+uz5VdQAwllNkagffVCCeu5XhwqOOmwlRYm5qJAxi1cNIp0fh8unDn2bD2J+UcvWTIi7C2z4/f85665UJYi7Th9zvf+PB+vMePe+PGeBwsfeO+i2BteiIOj/73ARxqd9GwzbC2fM9IWBuehK+xCqx4HywuwyHQIRs+RxtaEKwSEE3tZIREQq0k8xn9M7mPN4KJiIiIiIiIiIgoPIQMkVbC4jg0BBEREREREREREVFfZoRa/8YvvxFMRERERERERERE1IdxjGCIN4KJiIiIiIiIiIgoPHBoCIg3go9gODr21fBQAI9yb7fgUIm8QjywfEQGHuTeF8QDjBfXKIOWh/Dg4387gEOhzkjCA7Z7lCAmpzK4+nM1ObD236KxsPbzzJWw9vtd58Ka3YLn5dL0DbC2bM80WPvFcDwv75bjAel3V+Pgp/xiD6zZnXgZgn4cOCGGMuh8fxqP3qIEPtpx73tr8botbsSH0YzkClh7Zfs4WDt3yBZYy/XifScrEgeRvVOOQ5osSkBVphNPc1Uj3nnerDoJ1krqo2AtObEa1t6ow2EUw5wFsPZpzRBYc5rxcTbahkM6rGa8vwSC+HygHZ/jI+tgLSa5Btbq6nCAR0A5N4Vd85uV/nbj7exvsOFpKr3hdOBprtw1DNYGJOGQGqtyvXDPrgtg7bmYUliLj8Dn6OFROBBrWiQOvTrvGxw8e1fO/2AtxorDNUvrcLBVTQgHVL1YgQPaVhXh3q/z4eP6kEQcNPXiNhwue3wODgTaVIRDQLVrM7+yD/q1QJmAlp7YBynv08xKEJ/Fio/VDuUadUNhBqzFRuKeynBWwlpenQfWvnHh/WNUjBJcZ8LLvr4cBwwvr8fnjY9r8PWJZmX+UFjTrjN+MGAjrM3PPwPWvijCyzdkEA5+2leHr6PqA/h8kBiJQ3DL6vHxy69cQ5qU61JRrrHCjaGFQSrHx0glpC/Ohfv0QC0OUxuZjMNeIyz4vJ8Sga9foy343HdhJg5ffWkvPt/8qRiHJa4tzoI1rd8+KcWBlnfvwSFzN2atgrWrt18Ja3OycJDclvp0WCupxu8j3q7HIbED4vD7sq/zcUhghBOH6EVG4X2wpgpfu6j7PMPiOk/IEJFW7u/xRjARERERERERERFRH8ahISDeCCYiIiIiIiIiIqLwEApJ698IZlgcERERERERERERUd/FbwRDvBFMRERERERERERE4SEYEjH4jeCW8EbwEUza4NzauN0OXKqsxQOFa8rrXbBWVoEHSR+YikNjKhrwNPMqPLD2z7rjYK2yCk8zIRYHKzy2BQ9yH+NqhLW5a34Ma/Ee/HqF5W5YW1RwJqyZlaCRv+/FgVhFpfj1EuNx8JPVgYM/Qkrom0kJSlL/IgK/XNgxeXFwVtDAASHmaBwOEazHh9GCchxGEfTjIJ8vy3FIjRYw6XThMAOfFy/f5lIckFCtBB1YbCfCmhaskByN9/8nNp8Maxnxlfj1bHgbVXtxKM4aczasBUN4f9F6sb4Gv54zEq+XfQcSYc1sw40abMD7oMnXjwInlECZYI0SCKdx4vVe36gEdCr25ePQQ5sSCOqw49qHBTgUTTs3lKfh/l5ZgAPvtFC7W778Eaw1KqFJYwYehLUHNp8Fa1qYpz0SHxdiXDi8Z2tBMqyZlfW5bj8O6LFY8InYV6/sS434OGQK9KP+VnIvQ9V4/YWUHq604v2/Udkm9bX4ov8Dwb1YXouvl9/w4pBkm9JvZbU4pMyj7OMP7DoH1hr8+Hjp9eHzjXaMsivn6P/snwBrCS4coqqFLD7+1amw5onB09RC7YqL8XW9dv4xKe8jDCXQVbus71eUY2C18h60qhz3hiihvuUxeJq+Bnx9bgTxPvBZ1EBYc9pxb2hW5uJjTaQDX2u+UzgC1g6We2DNplyHProbhzo6lLD2Fwpw2Ov24iRYi1CWz1Cuz7V7K0E/3icazfiY6CvH1/xayKlJ2V+o8xhGSIxWbgS3Vg9XvBFMRERERERERERE4cEwREIcGqIlvBFMRERERERERERE4cEwRP1qdtNj+h/eCCYiIiIiIiIiIqLwEAyKmFoZB9PoR+Nkfocy4lb3eeKJJyQ7O1ucTqdMnTpV1q1bpz7+3//+twwfPlycTqeMGTNG3nzzzW6aUyIiIiIiIiIiIuqtjFCoTT/9UY/fCH7ppZdk3rx5smDBAtmwYYOMGzdOZsyYIcXFxS0+/rPPPpOZM2fKT37yE/nyyy/loosukosuuki+/vrrbp5zIiIiIiIiIiIi6lUMo20//VCPDw3x6KOPynXXXSfXXHONiIgsWbJEli9fLkuXLpU77rjjqMc/9thjctZZZ8mvfvUrERG577775N1335XHH39clixZcszzY/Z3MMHRh9MkAxW4pr1aWVl8h2Zlb2l6h56naezg80pLcLKy+jxRkl4VZR18PW07aIeG4iKcFKpNs7SD21ajvR5zSQ8xKR/4mZRUYmnE+5VFeb1gHU4k17bJgbKUDj3PW6YkzyuqizvWN9of0tQKXvZaienQ6+UW4mn2JtonrD7lfKB/MotP19o+2J+YtR2yoYOfeyvP087tGq2HA4J7GOdud/xT/f3laR18Zsdo87nly+xOn2agEm+jMsHp4ZqOfm+kK7Zff2L2dfBKxouPnd6qKFjr6HVTfllyh57XKNEdfEWsoQumqfEqteoOTrNC4jr4TGWaHbzmYZ92HbO3gx2nXPd2tIf9Nfg9aEffa/mVc5G/9VlqN+19e1kHp6mdw7r7WFPTwfN3bQdfj+fvPixkiJg6f4zgJ554QhYtWiSFhYUybtw4+fOf/yxTpkyBj//3v/8td911l+zbt0+GDBkiDz30kJxzzjntft3O1KP7rs/nk/Xr18v06dObfmc2m2X69OmyevXqFp+zevXqZo8XEZkxYwZ8vNfrlerq6mY/RBQe2N9E4Yv9TRS+2N9E4Yv9TUS9gREMiREMtvLTvo/4w2VEgx69EVxaWirBYFCSk5t/ep6cnCyFhYUtPqewsLBdj1+4cKHExMQ0/WRmZnbOzBNRj2N/E4Uv9jdR+GJ/E4Uv9jcR9QpGqG0/7fDdEQ1GjhwpS5YsEZfLJUuXLm3x8d8d0WDEiBFy3333ycSJE+Xxxx/vjCXssLD/Nvv8+fOlqqqq6ScvL6+nZ4mIOgn7myh8sb+Jwhf7myh8sb+JqDcwQkabftqqO0Y06C49OkZwQkKCWCwWKSoqavb7oqIiSUlpeYzMlJSUdj3e4XCIw/HtWFDG/x8DJNTY0VFviehw/xg9PLg6+5uo87G/icIX+5sofLG/icJXb+nvviRgeFv9xm/g/4/UfeQQNkcex0T0EQ22bdvW4vTbO6JBd+nRG8F2u10mTZokK1eulIsuukhEREKhkKxcuVLmzp3b4nOmTZsmK1eulFtvvbXpd++++65MmzatTa9ZU1MjIiJ5C+4/pnknokP9FBPTseCvrsD+Juo87G+i8MX+Jgpf7G+i8NXb+rs3stvtkpKSIp8Uvtmmx0dFRR01hM2CBQvknnvu6YK56x169EawiMi8efNk9uzZMnnyZJkyZYosXrxY6urq5JprrhERkauuukrS09Nl4cKFIiJyyy23yCmnnCKPPPKInHvuufLiiy/KF198IX//+9/b9HppaWmSl5cn0dHRYjKZpLq6WjIzMyUvL0/cbneXLWd3CJdlCZflEAnfZYmOjpaamhpJS+vexPnWsL97v3BZDpHwXRb2d/cLl2UJl+UQCd9lYX93r3BZDhEuS2/F/u454bIcIlyW3qov9Hdv5HQ6Ze/eveLz+dr0eMMwxGQyNfvdkd8GFumeEQ26S4/fCL788sulpKRE7r77biksLJTx48fLihUrmr4+nZubK2bzt0MZn3DCCfLPf/5T7rzzTvnNb34jQ4YMkddee01Gjx7dptczm82SkZFx1O/dbnefP1AcFi7LEi7LIRKey9IbP4lkf/cd4bIcIuG5LOzvnhEuyxIuyyESnsvC/u5+4bIcIlyW3or93XPCZTlEuCy9VW/u797K6XSK0+ns1Gn2xIgGXaXHbwSLiMydOxeuuFWrVh31u0svvVQuvfTSLp4rIiIiIiIiIiIi6u+6e0SDrtIrbgQTERERERERERER9UbdPaJBV+n3N4IdDocsWLCgxTFA+ppwWZZwWQ4RLktP64vzjITLsoTLcohwWXpaX5xnJFyWJVyWQ4TL0tP64jy3JFyWQ4TL0lv1xWXpi/PcknBZDhEuS28VTssSTsJhRAOTYRhGT88EEREREREREREREXUdc+sPISIiIiIiIiIiIqK+jDeCiYiIiIiIiIiIiMIcbwQTERERERERERERhbk+fyP4iSeekOzsbHE6nTJ16lRZt25dm5734osvislkkosuuqjZ76+++moxmUzNfs4666xmjykvL5crrrhC3G63eDwe+clPfiK1tbW9blmOXI7DP4sWLWp6THZ29lH1Bx98sFuX5ZlnnjlqHpxOZ7PHGIYhd999t6SmpkpERIRMnz5ddu7c2ewxXbFdOnM5/H6/3H777TJmzBiJjIyUtLQ0ueqqqyQ/P7/ZdPrKNumOXmF/s78PY39337KIsL/bi/3N/hbpO9uE/d0+4dLf4dLbnb0s7G/2N/ub/c3+pn7H6MNefPFFw263G0uXLjW2bNliXHfddYbH4zGKiorU5+3du9dIT083TjrpJOPCCy9sVps9e7Zx1llnGQUFBU0/5eXlzR5z1llnGePGjTPWrFljfPzxx8bgwYONmTNn9rpl+e4yFBQUGEuXLjVMJpOxe/fupsdkZWUZv/vd75o9rra2tluXZdmyZYbb7W42D4WFhc0e8+CDDxoxMTHGa6+9Znz11VfGBRdcYAwcONBoaGhoekxnb5fOXo7Kykpj+vTpxksvvWRs27bNWL16tTFlyhRj0qRJzabTV7ZJV/cK+5v9zf7umWUxDPZ3e7C/2d+H9ZVtwv5uu3Dp73Dp7a5YFvY3+5v9zf5mf1N/06dvBE+ZMsW46aabmv4fDAaNtLQ0Y+HChfA5gUDAOOGEE4ynnnrKmD17dosnoiN/913ffPONISLG559/3vS7t956yzCZTMbBgwd71bIc6cILLzS+//3vN/tdVlaW8cc//rHD892S9i7LsmXLjJiYGDi9UChkpKSkGIsWLWr6XWVlpeFwOIwXXnjBMIyu2S6dvRwtWbdunSEixv79+5t+1xe2iWF0fa+wv9nf7O+2YX93zzx357Icif3ds8vREvZ3582zYbC/u7q/w6W3u2JZWsL+7rx5Ngz2N/u755alJexvIsPos0ND+Hw+Wb9+vUyfPr3pd2azWaZPny6rV6+Gz/vd734nSUlJ8pOf/AQ+ZtWqVZKUlCTDhg2TG264QcrKyppqq1evFo/HI5MnT2763fTp08VsNsvatWt73bIcVlRUJMuXL2/xsQ8++KDEx8fLhAkTZNGiRRIIBDq0HCIdX5ba2lrJysqSzMxMufDCC2XLli1Ntb1790phYWGzacbExMjUqVObptnZ26UrlqMlVVVVYjKZxOPxNPt9b98mh3VVr7C/2d/s755fFvZ369jf7G/2d+fMM/u76/o7XHq7q5alJezvzp1n9jf7u6eWpSXsbyIRa0/PQEeVlpZKMBiU5OTkZr9PTk6Wbdu2tficTz75RJ5++mnZuHEjnO5ZZ50lF198sQwcOFB2794tv/nNb+Tss8+W1atXi8VikcLCQklKSmr2HKvVKnFxcVJYWNirluW7nn32WYmOjpaLL7642e9vvvlmmThxosTFxclnn30m8+fPl4KCAnn00Ue7bVmGDRsmS5culbFjx0pVVZU8/PDDcsIJJ8iWLVskIyOjab22NM3Dtc7eLl2xHEdqbGyU22+/XWbOnClut7vp931hm4h0ba+wv9nf7O+eXRb2d9uwv9nf7O9jn2f2d9f2d7j0dlcty5HY3507z+xv9ndPLsuR2N9Eh/TZG8HtVVNTI7NmzZInn3xSEhIS4ON+9KMfNf17zJgxMnbsWMnJyZFVq1bJ6aef3h2z2qq2Lst3LV26VK644oqjBhyfN29e07/Hjh0rdrtdfvazn8nChQvF4XB06nwj06ZNk2nTpjX9/4QTTpARI0bI3/72N7nvvvu6ZR46Q3uWw+/3y2WXXSaGYchf//rXZrW+sk16U6+wv9nfXY39zf7uDOzv3on9zf7uDOHU3+HS2yLsb/Z352B/907s797XK9Q39NkbwQkJCWKxWKSoqKjZ74uKiiQlJeWox+/evVv27dsn559/ftPvQqGQiBz6lGT79u2Sk5Nz1PMGDRokCQkJsmvXLjn99NMlJSVFiouLmz0mEAhIeXl5i6/bG5bl448/lu3bt8tLL73U6rxMnTpVAoGA7Nu3T4YNG9bly9ISm80mEyZMkF27domIND2vqKhIUlNTm01z/PjxTY/pzO3SFctx2OGT0P79++X9999v9mlkS3rjNmlJZ/YK+5v9zf5uG/Y3+/uw3rgvsb973zZpCfu7Z5alu/o7XHq7q5blMPY3+7szl4X93X7s7+a6u7+pf+mzYwTb7XaZNGmSrFy5sul3oVBIVq5c2eyTlMOGDx8umzdvlo0bNzb9XHDBBXLaaafJxo0bJTMzs8XXOXDggJSVlTUdBKdNmyaVlZWyfv36pse8//77EgqFZOrUqb1yWZ5++mmZNGmSjBs3rtV52bhxo5jN5qP+pKCrlqUlwWBQNm/e3LTOBw4cKCkpKc2mWV1dLWvXrm2aZmdvl65YDpFvT0I7d+6U9957T+Lj41udTm/cJi3pzF5hf7O/2d9tw/5mfx/WG/cl9nfv2yYtYX/3zLJ0V3+HS2931bKIsL/Z352/LOzv9mN/N9fd/U39TI9G1R2jF1980XA4HMYzzzxjfPPNN8b1119veDweo7Cw0DAMw5g1a5Zxxx13wOcfmbpYU1Nj3Hbbbcbq1auNvXv3Gu+9954xceJEY8iQIUZjY2PT48466yxjwoQJxtq1a41PPvnEGDJkiDFz5sxetSyHVVVVGS6Xy/jrX/96VO2zzz4z/vjHPxobN240du/ebTz33HNGYmKicdVVV3Xrstx7773G22+/bezevdtYv3698aMf/chwOp3Gli1bmh7z4IMPGh6Px3j99deNTZs2GRdeeKExcOBAo6Ghoekxnb1dOns5fD6fccEFFxgZGRnGxo0bjYKCgqYfr9drGEbf2Sbd0Svsb7wsh7G/2d9dsSzs7/Zhf7O/DaPvbBP2d/uES3+HS293xbKwv9nf7G/2N/ub+ps+fSPYMAzjz3/+szFgwADDbrcbU6ZMMdasWdNUO+WUU4zZs2fD5x558K6vrzfOPPNMIzEx0bDZbEZWVpZx3XXXNTXrYWVlZcbMmTONqKgow+12G9dcc41RU1PTq5blsL/97W9GRESEUVlZeVRt/fr1xtSpU42YmBjD6XQaI0aMMB544IFmB5LuWJZbb7216bHJycnGOeecY2zYsKHZ9EKhkHHXXXcZycnJhsPhME7/f+3de2jN/wPH8dfHDjO0qTEsxchlkY7JZZLNJte0Ra5hs8kl1uQff0j5z1+YS6TMRiFyS+YWnRM1LMslxUIbytgfbs2lbN6/P5YPx9m33zkzm/P2fNSpfT6f87ltPXfq/dnns8xMU1VVFfCeP/Fzac3zqK6uNpKaffl8PmNM5PxM2qoV+m7+XL6jb/r+E+dC3+Gjb/qOlJ8JfYfPlr5tabu1z4W+6Zu+6Zu+8a9xjDGmLf7yGAAAAAAAAADQPiL2GcEAAAAAAAAAgNAwEAwAAAAAAAAAlmMgGAAAAAAAAAAsx0AwAAAAAAAAAFiOgWAAAAAAAAAAsBwDwQAAAAAAAABgOQaCAQAAAAAAAMByDAQDAAAAAAAAgOUYCMYf079/fxUVFbnTjuPozJkzbbKvcNXU1MhxHDmOI6/XG/b639ft3r17i48BiCT0DdiLvgF70TdgL/oGEAoGgv8BN27cUFRUlGbOnNmux1FbW6vp06dL+vGL/+7du+16TL+6cuWKrl69KkkqKChQcnJys+97/vy5oqKidPbsWUlN5/Y7H4RAS9F36OgbkYa+Q0ffiDT0HTr6RqSh79DRN9D2GAj+BxQXF6ugoEDXrl3Ty5cv2+04evfurejo6Hbbfyji4+MVHx8vScrPz9ejR49UXl4e9L7S0lIlJCRoxowZkprOLS4urk2PFZDoOxz0jUhD36Gjb0Qa+g4dfSPS0Hfo6BtoewwEW66+vl7Hjh3T6tWrNXPmTJWWlgYs9/v9chxHly5d0siRIxUTE6OMjAzV1dXpwoULSk5OVmxsrBYtWqRPnz6566Wnp2vt2rVau3at4uLi1KNHD23atEnGmP88lp9vTUlKSpIkjRw5Uo7jKD093d3uunXrAtbLzs5Wbm6uO11XV6dZs2YpJiZGSUlJOnz4cNC+3r17p+XLl6tnz56KjY1VRkaG7t27F/o3TpLX61VKSooOHDgQMN8Yo9LSUuXk5Mjj8YS1TaA10Td9w170Td+wF33TN+xF3/QN/O0YCLbc8ePHNXToUA0ZMkSLFy/WgQMHmv2w2Lx5s3bv3q3y8nK9ePFC8+bNU1FRkY4cOaKysjJdvnxZu3btCljn4MGD8ng8qqio0I4dO7Rt2zbt378/pOOqqKiQ1HQrSG1trU6dOhXyOeXm5urFixfy+Xw6ceKE9uzZo7q6uoD3zJ071/0wraysVEpKijIzM/XmzZuQ9yM1XZU8fvy4Pn786M7z+/2qrq5WXl5eWNsCWht90zfsRd/0DXvRN33DXvRN38Bfz8Bq48ePN0VFRcYYY75+/Wp69OhhfD6fu9zn8xlJ5sqVK+68LVu2GEnm6dOn7ryVK1eaqVOnutNpaWkmOTnZfPv2zZ23YcMGk5yc7E7369fPbN++3Z2WZE6fPm2MMaa6utpIMnfu3Ak43rS0NFNYWBgwLysry+Tk5BhjjKmqqjKSTEVFhbv84cOHRpK7r+vXr5vY2Fjz5cuXgO0MHDjQ7Nu3r9nv038dz9u3b03nzp1NSUmJO2/JkiVmwoQJQdsoKSkxcXFxzW4f+BPo+wf6hm3o+wf6hm3o+wf6hm3o+wf6Bv5O/EWwxaqqqlRRUaGFCxdKkjwej+bPn6/i4uKg944YMcL9ulevXurSpYsGDBgQMO/Xq37jxo2T4zjudGpqqh4/fqzGxsbWPhXXw4cP5fF4NGrUKHfe0KFDA/5b6L1791RfX6/4+Hh169bNfVVXV+vp06dh7a979+6aPXu2e3vKhw8fdPLkSeXn57fK+QAtRd/0DXvRN33DXvRN37AXfdM3EAl4wIrFiouL1dDQoMTERHeeMUbR0dHavXt3wMPVO3bs6H7tOE7A9Pd53759++PH3KFDh6BbZ75+/RrWNurr69WnTx/5/f6gZT9/YIUqPz9fmZmZevLkiXw+n6KiojR37tywtwO0Jvr2By2jb9iCvv1By+gbtqBvf9Ay+oYt6NsftIy+gb8PA8GWamho0KFDh7R161ZNmTIlYFl2draOHj2qVatW/dY+bt26FTB98+ZNDRo0SFFRUf933U6dOklS0NXLnj17qra21p1ubGzUgwcPNGnSJElNVx8bGhpUWVmp0aNHS2q68vru3Tt3nZSUFL169Uoej0f9+/dvyakFmDRpkpKSklRSUiKfz6cFCxaoa9euv71doKXom75hL/qmb9iLvukb9qJv+gYiBY+GsNS5c+f09u1b5efna/jw4QGvOXPmNHt7SrieP3+u9evXq6qqSkePHtWuXbtUWFgY0roJCQmKiYnRxYsX9fr1a71//16SlJGRobKyMpWVlenRo0davXp1wIfMkCFDNG3aNK1cuVK3bt1SZWWlli9frpiYGPc9kydPVmpqqrKzs3X58mXV1NSovLxcGzdu1O3bt8M+T8dxlJeXp7179+rGjRvcloJ2R9/0DXvRN33DXvRN37AXfdM3ECkYCLZUcXGxJk+eHHD7yXdz5szR7du3df/+/d/ax9KlS/X582eNGTNGa9asUWFhoVasWBHSuh6PRzt37tS+ffuUmJiorKwsSVJeXp5ycnK0dOlSpaWlacCAAe7VyO9KSkqUmJiotLQ0zZ49WytWrFBCQoK73HEcnT9/XhMnTtSyZcs0ePBgLViwQM+ePVOvXr1adK65ubl6//69hg0bprFjx7ZoG0BroW/6hr3om75hL/qmb9iLvukbiBSO+fWBMEAI0tPT5fV6VVRU1N6H0ipqamqUlJSkO3fuyOv1tmgbpaWlWrduXcAVVCAS0Xcw+oYt6DsYfcMW9B2MvmEL+g5G30DL8Ixg4Cfjx4+X1+tVeXl5WOt169ZNDQ0N6ty58x86MgC/i74Be9E3YC/6BuxF30DbYyAYkNS3b189fvxYkhQdHR32+nfv3pWkkB7UD6Bt0TdgL/oG7EXfgL3oG2g/PBoCAAAAAAAAACzHP4sDAAAAAAAAAMsxEAwAAAAAAAAAlmMgGAAAAAAAAAAsx0AwAAAAAAAAAFiOgWAAAAAAAAAAsBwDwQAAAAAAAABgOQaCAQAAAAAAAMByDAQDAAAAAAAAgOUYCAYAAAAAAAAAy/0PBdlPivTN7JwAAAAASUVORK5CYII=\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - examples_3_0.png" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABYIAAAEiCAYAAABEP6blAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACr+UlEQVR4nOzdd5hU9dk+8Gf6zNbZ3tmFpXdEQTB2FHuLJUQRa16MRA0xUYyKLUFjCcaYkGhA88aoyWuJCYpGBBtNQBCQDssu23vfqef3Bz9WF/Z+trh19v5c116X7jNz5pw55znnzHeH720yDMMQIiIiIiIiIiIiIgpZ5t5eASIiIiIiIiIiIiLqXhwIJiIiIiIiIiIiIgpxHAgmIiIiIiIiIiIiCnEcCCYiIiIiIiIiIiIKcRwIJiIiIiIiIiIiIgpxHAgmIiIiIiIiIiIiCnEcCCYiIiIiIiIiIiIKcRwIJiIiIiIiIiIiIgpxHAgmIiIiIiIiIiIiCnEcCKZul5WVJYsXL1Yf89BDD8nEiRN7ZH2IqGuwt4lCG3ucKDSxt4lCF/ubiNrCgWDqMi+99JK43e7jfv/FF1/Ij370o+b/N5lM8vbbb7d4zN133y0rV67s5jXsXoZhyIMPPigpKSnicrlkxowZsnfv3t5eLaLvbKD39ptvvinnnnuuxMXFiclkki1btvT2KhF1qYHc4z6fT+655x4ZN26chIeHS2pqqlx//fVSUFDQ26tG9J0N5N4WOTLYNXLkSAkPD5eYmBiZMWOGrF+/vrdXi6hLDPT+/ra5c+eKyWRqcwCciI7gQHCI83q9vb0KkpCQIGFhYepjIiIiJC4urofWqHv85je/kd/97neyZMkSWb9+vYSHh8vMmTOlqampt1eNQhB7u+fU19fL9773PXniiSd6e1VoAGGP94yGhgbZvHmzPPDAA7J582Z58803Zffu3XLJJZf09qpRiGJv95zhw4fL73//e9m2bZt89tlnkpWVJeeee66Ulpb29qpRiGJ/97y33npL1q1bJ6mpqb29KkT9h0Eh5fTTTzduv/1248477zTi4uKMM844wzAMw9i2bZtx3nnnGeHh4UZiYqJx3XXXGaWlpcc97/bbbzeioqKMuLg44/777zeCwWDzY5qamoyf/exnRmpqqhEWFmZMmTLFWLVqlWEYhrFq1SpDRFr8LFy40DAMw8jMzDR++9vfNv/3tx+TmZlpGIZhLFy40JgwYULzawUCAePhhx820tLSDLvdbkyYMMF47733musHDx40RMR44403jDPOOMNwuVzG+PHjjTVr1jQ/Jicnx7jooosMt9tthIWFGaNHjzaWL1/ehe/2N4LBoJGcnGw8+eSTzb+rqqoyHA6H8eqrr3bLa9LAwt7und7+tqPr9uWXX3b7a9HAwx7v/R4/asOGDYaIGIcOHeqx16TQxd7uO71dXV1tiIjx4Ycf9thrUmhjf/dufx8+fNhIS0sztm/f3mK7iUjHbwSHoJdfflnsdrt8/vnnsmTJEqmqqpKzzjpLJk2aJBs3bpQVK1ZIcXGxXH311cc9z2q1yoYNG+TZZ5+VZ555Rl588cXm+rx582Tt2rXy2muvyVdffSVXXXWVnHfeebJ3716ZPn26LF68WKKioqSwsFAKCwvl7rvvPm7dvvjiCxERWbZsmRQWFjb//7GeffZZefrpp+Wpp56Sr776SmbOnCmXXHLJcVMt/PKXv5S7775btmzZIsOHD5dZs2aJ3+8XEZHbb79dPB6PfPLJJ7Jt2zZ54oknJCIiAr5vc+fOlYiICPUHOXjwoBQVFcmMGTOafxcdHS1Tp06VtWvXwucRdQR7u+d7m6gnscf7Ro9XV1eLyWRq9Z/cEnUGe7v3e9vr9cqf//xniY6OlgkTJrT7eURtYX/3Tn8Hg0GZPXu2/PznP5cxY8aojyWiY/T2SHRv+vjjj42LLrrISElJMUTEeOutt7r19Y79i9zRnx//+Mdd9hqnn366MWnSpBa/e/TRR41zzz23xe/y8vIMETF2797d/LxRo0a1+CvkPffcY4waNcowDMM4dOiQYbFYjPz8/BbLOfvss40FCxYYhmEYy5YtM6Kjo49bp2P/Otfae33sXyVTU1ONX/3qVy0ec9JJJzW/V0f/Kvniiy8213fs2GGIiLFz507DMAxj3LhxxkMPPXTc+iDFxcXG3r171R/k888/N0TEKCgoaPH7q666yrj66qvbvQ5ECHu7d3r72/iNYOpO7PHe73HDMIzGxkbjhBNOMH74wx+2+zlEGvZ27/b2v//9byM8PNwwmUxGamqqsWHDhna/PlFb2N+919+//vWvjXPOOaf5PeQ3gonaz9ozw819U319vUyYMEFuuukmueKKK7r99b744gsJBALN/799+3Y555xz5KqrrurS15k8eXKL/9+6dausWrWq1b+q7d+/X4YPHy4iIieffLKYTKbm2rRp0+Tpp5+WQCAg27Ztk0Ag0PzYozweT5fPL1RTUyMFBQVyyimntPj9KaecIlu3bm3xu/Hjxzf/d0pKioiIlJSUyMiRI+WOO+6Q2267TT744AOZMWOGfP/732/x+GMlJiZKYmJiF24JUddib7O3KbSxx3u3x30+n1x99dViGIb88Y9//M7LIzqKvd17vX3mmWfKli1bpKysTF544QW5+uqrZf369bwvoC7D/u75/t60aZM8++yzsnnz5hbvIRG1z4AeCD7//PPl/PPPh3WPxyO//OUv5dVXX5WqqioZO3asPPHEE3LGGWd06vUSEhJa/P/jjz8u2dnZcvrpp3dqeUh4eHiL/6+rq5OLL7641aCjoyfwttTV1YnFYpFNmzaJxWJpUevNf1Zts9ma//voRSAYDIqIyC233CIzZ86U5cuXywcffCCLFi2Sp59+Wn7yk5+0uqy5c+fK3/72N/X16urqWv19cnKyiIgUFxe3eE+Li4tl4sSJ7d4eIg17u+d7m6gnscd7r8ePDgIfOnRIPvroI4mKiurI5hCp2Nu919vh4eEydOhQGTp0qJx88skybNgw+ctf/iILFizoyGYRQezvnu/vTz/9VEpKSmTQoEHNvwsEAvKzn/1MFi9eLDk5OR3ZLKIBZ0APBLdl3rx58vXXX8trr70mqamp8tZbb8l5550n27Ztk2HDhn2nZXu9Xvnb3/4m8+fP7/a/Yp1wwgnyxhtvSFZWlliteJevX7++xf+vW7dOhg0bJhaLRSZNmiSBQEBKSkrk1FNPbfX5dru9xTeeEZvNpj4uKipKUlNT5fPPP28xSP7555/LlClT2lz+t2VkZMjcuXNl7ty5smDBAnnhhRfgxeiRRx5pdW6l9hg8eLAkJyfLypUrmwd+a2pqZP369XLbbbd1aplEbWFvd39vE/Um9njP9PjRQeC9e/fKqlWrQiZJnfou9nbvXb+DwaB4PJ4uXSbRt7G/u7+/Z8+e3SKbR0Rk5syZMnv2bLnxxhs7tUyigYQDwUBubq4sW7ZMcnNzJTU1VURE7r77blmxYoUsW7ZMfv3rX3+n5b/99ttSVVUlN9xwQxesre7222+XF154QWbNmiW/+MUvJDY2Vvbt2yevvfaavPjii81/ZczNzZX58+fL//zP/8jmzZvlueeek6efflpERIYPHy7XXnutXH/99fL000/LpEmTpLS0VFauXCnjx4+XCy+8ULKysqSurk5WrlwpEyZMkLCwMAkLCztufbKysmTlypVyyimniMPhkJiYmOMe8/Of/1wWLlwo2dnZMnHiRFm2bJls2bJFXnnllXZv91133SXnn3++DB8+XCorK2XVqlUyatQo+Pjv8s9TTCaT3HXXXfLYY4/JsGHDZPDgwfLAAw9IamqqXHbZZZ1aJlFb2Nvd39siIhUVFZKbmysFBQUiIrJ7924ROfIvAY7+awCi7sAe7/4e9/l8cuWVV8rmzZvlP//5jwQCASkqKhIRkdjYWLHb7Z1aLpGGvd39vV1fXy+/+tWv5JJLLpGUlBQpKyuT559/XvLz87t8Wj6ib2N/d39/x8XFHfdHW5vNJsnJyTJixIhOLZNoQOntSYr7CjlmEvX//Oc/hogY4eHhLX6sVmtz+NfOnTtbDX/79s8999zT6uude+65xkUXXdTl23H66acbd95553G/37Nnj3H55ZcbbrfbcLlcxsiRI4277rqreXL1008/3fjxj39szJ0714iKijJiYmKM++67r8UE9l6v13jwwQeNrKwsw2azGSkpKcbll19ufPXVV82PmTt3rhEXF2eIiLFw4ULDMI6fuP2dd94xhg4dalitViMzM9MwjOMnrA8EAsZDDz1kpKWlGTabzZgwYYLx3nvvNddbC22qrKw0RMRYtWqVYRiGMW/ePCM7O9twOBxGQkKCMXv2bKOsrKxzb2w7BINB44EHHjCSkpIMh8NhnH322c2BAETfFXu793p72bJlrZ7fj74PRF2BPd47PX50fVr7Obo+RN8Fe7t3eruxsdG4/PLLjdTUVMNutxspKSnGJZdcwrA46lLs7967Pz8Ww+KI2s9kGIbRvUPN/YPJZJK33nqr+dubr7/+ulx77bWyY8eOVuflSU5OFq/XKwcOHFCXGxcXd9zcwIcOHZIhQ4bIm2++KZdeemmXbkdnnXHGGTJx4kRZvHhxb68KEXUh9jZRaGOPE4Um9jZR6GJ/E1Fv4tQQQHvn5Rk5cmSHl71s2TJJTEyUCy+88LuuJhEREREREREREVGbBvRAcF1dnezbt6/5/w8ePChbtmyR2NjYds3L0xnBYFCWLVsmc+bMUSePJyIiIiIiIiIiIuoqA3pqiNWrV8uZZ5553O/nzJkjL730kvh8Pnnsscfkr3/9q+Tn50t8fLycfPLJ8vDDD8u4ceM69ZoffPCBzJw5U3bv3i3Dhw//rptARERERERERERE1KYBPRBMREREREREREREpPnkk0/kySeflE2bNklhYWGLnDFk9erVMn/+fNmxY4dkZGTI/fffLzfccEOPrC9i7tVXJyIiIiIiIiIiIurD6uvrZcKECfL888+36/EHDx6UCy+8UM4880zZsmWL3HXXXXLLLbfI+++/381rquvVgeBPPvlELr74YklNTRWTySRvv/12m89ZvXq1nHDCCeJwOGTo0KHy0ksvdft6EhERERERERER0cB0/vnny2OPPSaXX355ux6/ZMkSGTx4sDz99NMyatQomTdvnlx55ZXy29/+tpvXVNeraWVHR9NvuukmueKKK9p8/NHR9Llz58orr7wiK1eulFtuuUVSUlJk5syZ7XrNYDAoBQUFEhkZKSaT6btuAtGAZBiG1NbWSmpqqpjNfecfFrC/ib479jdR6GJ/E4Uu9jdR6Oqr/d1XNTU1idfrbddjDcM47tzkcDjE4XB85/VYu3atzJgxo8XvZs6cKXfdddd3XvZ30asDweeff76cf/757X78t0fTRURGjRoln332mfz2t79t90BwQUGBZGRkdGp9iailvLw8SU9P7+3VaMb+Juo67G+i0MX+Jgpd7G+i0NXX+rsvampqksGZEVJUEmjX4yMiIqSurq7F7xYuXCgPPfTQd16XoqIiSUpKavG7pKQkqampkcbGRnG5XN/5NTqjVweCO6orRtMjIyNFRCTj4fvF7HQeVw+4gvC5Jh/+C6aj1AJrZh9eH+/oRljLSiqDteq/4+b3RuL1dJ5bCmuvjv47rF385zthLW473sCiaTZY23Tdi7BWF/TA2umv3g5rMTtx9mHlCPy+3HP5G7C2NPcUWDOWJsBa0IZfr/R8vH3DUktgLefjTFiz1cKS1Gfh49pw4Jq5qfW/NgabmiRv4WPN/dRXtNXfQWVbJYD3l70M97cm45Q8WGvw2WGt6tMkWEv+ognW8m7CF7vhybj3936eBWupn+O/pBachrdh07W4vzUnvHYzrGX/4RCsHbg1C9bSpxyGtZzCeFgb9Cr+a3tdOj631c/EzRgIKn/B3xsBS1Z8qZCmBKW/rficaPa3fsz32/52KtdvcC4TEbFX4Frw+JdpFj+xGNa0/ex/B183HFV4Gyw34dczC97PxWtSYS1xM75+F5yObxGfvvhlWDvL5Ye1Sf/A/Z11/wZYy71/Kqz9Y9azsHbF5/8Daxmv431Un4r723VlEaxp5/XabXGw5sC3e1I3WPkQY1P6m9dvERGxVSjXb+WLielT8XWjsDoK1iLew++rqxj3hvETfBCcl7wT1v72f2fBWlQOfs8qR+Lj/5Lz1sHawoTtsHbCq7fAWuJGfByXjcP76L3ZuL9nfIr7e8gL+PXKx4fDWv1pdbBmsSjXmM34mAgo1xFfdCfvzz0h1t/KrZFJibW3VeInGsoohz8D30s7w/F9r/VzvJ+1z/v2mbi/UyJrYG3np0NgbfCzO2DtwN1jYG3zrM7dn0/+X9zfcdvxsVo+Hu+jhEn4eqrdRwXewPdRAeXzd+TlBbBWUBENa7Zt+Jxhxqd1qc9Urt8W5frdz/q7L/J6vVJUEpCDmzIlKlL/9nRNbVAGTz4keXl5EhX1TY93xbeB+7J+NRDcmdF0j8cjHs83g261tUc+oJudzlYvRIY2EGzFJxaLUxkIVo49cxg+CVjD8cFnseO7CosDr6e2zEilSSwO/HpWm7LtTvxhKipSeZ5y8m9tv32zLvj9tDjx++KKwK2gvWeGDa+LNhBsDuvcPtL2g0X5lw9m5bhWbzTbmEa8t/95V0f7W5SBIu2DpNbfGm1fWpUBA7XflLO2OQzfcNjCldfTesqq9SJeptbfGrW/zZ3cBmU/mF2d23aLHZ/bLGHKpwHt046yDcrnT72/tYFg5Y+bIv2wv7Xrt0m7vmn7BJe048qk7GdDuX5bbcpAsHYcKwPBnb9+45NNuNLfUS7lmNP61KT0lPK8COXexRzW9f2tXqO9+BylbbtF+axhdnVyIJjXbxFp4/qtvAXqfvYp+1Ltb2UgWHk9p3KPqve3cj5x4uPDEdHJe3f1/hwfx9o+0j6b6Ndv5fW0z1BheB+pA8HKftCuI9oXkNT7c+WaJtIP+1trU2Ug2NLYuYHgoPIFPIvyGU3rN7PylmvX707fn5s6d73p7P25ui7KucasnGs6ex8lSg+L8vlb/TzQpF2jlf2uvJ3q9VsbCO7j/d2fhEcc+dEE/v+uiIqKajEQ3FWSk5OluLjllzmKi4slKiqq174NLNLLYXE9YdGiRRIdHd38w3+WQhQ62N9EoYv9TRS62N9EoYv9TUR9QVCMdv10p2nTpsnKlStb/O6///2vTJs2rVtfty39aiC4M6PpCxYskOrq6uafvDz8T7WJqH9hfxOFLvY3UehifxOFLvY3EfUFPiPQrp+OqKurky1btsiWLVtEROTgwYOyZcsWyc3NFZEj57/rr7+++fFz586VAwcOyC9+8QvZtWuX/OEPf5B//OMf8tOf/rTLtrMz+tXUENOmTZN33323xe/aGk3vqrQ/Iup72N9EoYv9TRS62N9EoYv9TUR9QXu+8dvRbwRv3LhRzjzzzOb/nz9/voiIzJkzR1566SUpLCxsHhQWERk8eLAsX75cfvrTn8qzzz4r6enp8uKLL8rMmTM79LpdrVcHguvq6mTfvn3N/390ND02NlYGDRokCxYskPz8fPnrX/8qIkdG03//+9/LL37xC7npppvko48+kn/84x+yfPnyLlsnE5icW0TEWqfMU4Wzv6QhDc+bkxyDQ4X27E+BtVQPPmBrY5R5Y3x4l7/fkAVrYUX49bS5cG2jqmHtqYpsWJvgwqFQrjGVsBZ5Hw7U8P5oOqz9reBkWKtuwHO3WBPxxEC2BuU9q8TzOu0x4aCwQCI+lmy1yrGr1Hzm7v3nEH2KoQTCVeJ9qQV1af1dVIPnGaotwBP9R+IMCymcjuepunnsf2HtUCMOKsorxK9nrVfmu81WaoovPPh55sH1+IlhuBcdFfhpI6JxAGNJLd4PFaPcsGYoc4I1VOL1TE3HK1oYHQZr1obOXZt88UqKRRtzBPc7yjyhZi+umZSpR/3huDjcjY+rVRtxUMvgQ3hC9+osfG04Kz4X1t49OArWErbiY8D+3hewFn37CFirD2of8JV5UFOVk5sicTP+tsaGqwfBWmZyOawVT0mDNS18tTQHh9QMGYwD/crdeBus9fiEos2BGTAG0PVbOV3ZqvH7p80v6onF+ySvIgbWvMX4HO9uxC9YPhbPvZtkxusSUDY+bgd+XuRGHHhXe7Ub1n6d+BWsaQJKfwct+NyWthp/iDp3Ig6oOnEIPifumTIc1sILlBC9CnyPdfrEXbD2cSE+B7uKlM8Kyv25t1/9u93uo93jaPfn9Rm4N05Sjp0vduCAtqyd+P61TOnvgBfX/MpcuImblJDFK8fiZSbj+4wdvgZY29KkhNGnKmE0W/D4QvRefE486Ty8H1Yo9zWO8M7d0+UcwJ+xR43A58tdKficH5GD95+tCve+en9OXSYohgS6eCD4jDPOEEO5/3rppZdafc6XX37Zodfpbr06EBwqo+lERERERERERETU+7rjG8GholcHgkNlNJ2IiIiIiIiIiIh6n88wxNfGv55qqx6q+tUcwURERERERERERERIoB1TQ7RVD1UcCCYiIiIiIiIiIqKQEDCO/LT1mIGIA8HHULIaxIrnVhcfzoQSZwoOPyqrDoc1RyGeWN6D843EG4tnSR8XWwZrj355AawN3oM33hTE3ZMdh4Na7o7dD2vbvHj2/5NTcJDc3hknwlrS8hxYa7oat8Ldo3AA18M534e18EN48nhXIZ48PnYYDtgrtUXAmrcc18zKfPQmJWAp1JiUwCizkoHgxxleYorDISdBJZwu/CA+BlwVuKfKsnAt1VYFa//JHwdryR/j84Kpqg7WYiLx+UuTasWBMjeOXgtrH9snwVpYMX5f/rt/JKy5I/C5rTwbn0ujd+P+DsvB5+66eByyZXLjgzBQjgNsbHgXiT9i4KTNmJTwO1sNrgVwBohIDN4n6/MzYc1ZjPu7Nh3vk6ox+JibHrEH1j604WCkiO041K7m+zgoNdpZAGt5Phw++YtivC73TX4P1l649nJYc5XigJ5fbcP3LjMH4wDZf8fjQF57Nd5Hznzc3xVJ+GLhzsDX9obyWFiz1uNjN2gfOJ9eTE14n2jhQEG8uyQyHacChjtw71d+je+3Ag68TxrS8YpG2fG9xF+247Djoat3w1rxVaNh7aej3oS1fzfg43hrAw5nnDgYhy1V1uLzZX0aDpJzh+HPEXek4vvzOUOGwlr8Fvxeuw7jC8KGBLzt9iT8ucVXi48XjXZchxptWy1KILs3GteiB+Fz7o4SHBoWuRt/JrR48P1rQwa+7p+bdgDWdlXhdXFU4mtf5EYcTnr+XfizcqoSdrxGCYJ1ReNtDyvC75lhxfevb22bCGsvn7oU1m7M+x9YG/w2Pnf7wvG67InE+yEYjgeIvG58bVI/fyvXNOo6wf//09ZjBiIOBBMREREREREREVFI8Bsm8SlfzDr6mIGIA8FEREREREREREQUEgJikoDoA71t1UMVB4KJiIiIiIiIiIgoJHAgGONAMBEREREREREREYWEoGFSM3uOPmYg4kDwsZTgLEOZXN0fgaeZjlfCiAoPxMNaOM6YU8NtzMk4sOCnae/D2ux182DNeigH1govHwxr50Z9BWtnf30xrP0gbSOsTYnCE+6vmTgR1lI+xME3h7ZOg7W3HTigypaOd1LUpzhIK+DAx9nhLBzCkz4Ih2bkx+FwD1uNErLiV05+ltAKojFrYXE4j0Ea43B/m834PaovxAEhGXtw8EBDPD7ZmBJxWMMhDz6fFG7HIQhhO3BAW8lPcEjN70c+D2si+JhLseDeuCsGhzu9ddIMWItbg0MzyibibT/7nC2wtsmVAWtVW3DNVoePs+pSvO1JaVWwVlqJw3Tslfi9tjQpQVNKqFF/pJ3LtOu3Lwr3txHEy2yoxaEjGVtxf5ePwiuTPT4P1jS1u2NgLXwS3s9a2GusE99LbK7BwU9LMj6CtVtycQ9rX8iwfYDvCXzn4Ov36DH4uv/lmCJYa9yiBMnhfDEpzVCSfC34ODMpx6B2/TYrAYmGNbT6u7PX76YE3IvWAH5vi0pwClXyLry/tDBIrb+rPPh8YuTh+7v603A4o0/Jc91Wnw5rcTZ8b3t//C5Yuy+Ir1MrU7Lx672Dl7l3PA57/UP4WXiZw/D9cs1gfK8UlYP7pjgD7wdTmJIKFY6PF2st+1tE7+9gJz9/2y2492tr8Adpt3KOLx+N+9ScjPtmUwm+ZyzfhY/HEYfwNaxmKl5mbiPeiI0enHD/QfkYWNsx7RVYm/DZbbAWuxOfoC2l+Jxx754rYC0quwrWGhPcsKaFt/nr8bCYyY6PM0+scv1W+tvSiGtB50CNL+t6/EYwxoFgIiIiIiIiIiIiCgl+wyI+Aw+6H3kMB4KJiIiIiIiIiIiI+i1+IxjjQDARERERERERERGFhIBhlkAb3wgOhNZMO+3GgWAiIiIiIiIiIiIKCUExSVDJrTnymIE5EjxwB4IN05GfY5iUubkDDlwLuvCE9IWFOMTFXo5nwI/ej1emcgQ+oM8fisOWlpaeBmvhecpE/ZVVsFafBkvyeNJWWPtv1A5Yu2/X5bC2ZuKrsLYoETeydUgWrEUo235gWCysOe14AvyycXgfJa/Dz3MW2GCt1I3DxwyHEnhkUcLi8KGrBiz1aaC/teAsL85OEEsSDk2KicRhkJU5OFikIQG/Xi3OYZKhKSWwVqRshNbfdT84GdcycE+Ns3tg7Z91ybCW58M9lWGrgLXKEXgb4lbiED2tv3fW4PX0BXAD1GbgZYbhXSSuw7i/a2PxRUYLjghaOxc202/D4tD1WzmX+cOVbY3xwlJ4BD7G/V/hMKn6RPxy2v3ohBgcDHPAixcaeVAJFVICLYum4pX5ZMiHsDavYAqsXb3vIliLd9bBWvkYvA0xkTiELXET3r4/jsT3PEElCLBxGK4pebViLVNuqzPxtSJoU24+a5V04AGUJ2NSwpz9YUp/R+ATg8+Hz/HWIhxi5AtX7iXwLb9kR5bBWrkH399VKv3tqMT3k40pePuGuEphLah8e+ryfefC2mvZy2Htn2Nw8Gz8WhyS7CrG276jFF+/r8v+AtZezMbbkL4Kn/MdRfgaHXFiFayVB/H5y6jHy1Tvz/vrJ/hOfP7WrplGJE7/qm3EwW72vfi86se37uLBt69y+7hPcFHxj/+didclxQ1rJZPxG/PpoE9hTevhw7X4vuapChz42JiMz8HOP+HP+xHDJ8LaWTP2wNrKwhGwVjEavy9JG/Hx4o3G9+dNmfg+UcLxMk3V+DqiHfMD6NLe7byGRWxtDGh4++nHoe+qv15GiIiIiIiIiIiIiFo48o1gfQ7gtuqhigPBREREREREREREFBKCYpYAp4ZoFQeCiYiIiIiIiIiIKCS0LyyOA8FERERERERERERE/ZbPsIivjTmCfQNzHJgDwcfSwigC4Xjqbocbhwt46/BE4WGFeF0a4/FfL5pG4GCkq2PXw9qdX/8A1pI/r4W1yisnwlpwMA5AaTTw+7Jg59Wwpnm2Ek8QH0jEk7kHEnCQVuJGvA25p+D9d9nQr2Dt9ZKTYK1iNJ6Q3oTnnBdPBQ4+sEUroUYefCxpAWqhRvuDoD8Sp3LYlLeotBQfV06cMaeG03kz8HEc68DH6mf5Q2AtZQ3ub0sZrtX9AKdm3Fd0OqytOjQM1tzh+I35fPybsHbvIHzeM2JwGIsWuHKoGif7qGFSmTigJzIXX1otjXiZ9WX4vbZG4tfzN+ED21qr/xU8lGjBeL4ofP2OjamHtYpSfFxF4LaRgJLv5RmHe/jDw8PxExXJH5fDmqkJHzueG/CxusmLz0Nby3FKrBayeHo8Dn/ZOREHP5VfMRbWovfj84nHhO/uR8TjsKz1qeF4mRX4nsBZooRyRiuJw0rgsC8SH7tmTwhevzsRJqWGQSr/5NNXq9yf1+L31lWO91f59/BN3PiIw7D2/GF8PY3Lw8usy8D3heGjKmHNosQRLTswDdZsZrztz1SMgTVJx31afBoOwkz5HJ+fD56E999rOZNhzZuGz4m1mXiZUQfxsVQ6CN/U2SPwudQXhj8PWOu163dojVxon7+9MfiYi4zB19PafHz9TshRzgsReF08WfizVq6SJPfm5hNgLS4K72f3vnxYMw1NhTXNzqIkWDMr4bIVfnxdtA3FN0TmCPy8lJU4QHPFzFGwNjwGX7/XpOH90LQP35848apIoxIQbXHh87N272keQJ+/e1OgHVNDBELsfNpeHAgmIiIiIiIiIiKikBA0zBJsY2qIIKeGICIiIiIiIiIiIuq/+I1gjAPBREREREREREREFBL8Ym5zjmA/B4KJiIiIiIiIiIiI+q+AYZZAG1NDtFUPVRwIPkbQjv8iEHTiCb8DfiWspxgHD1hwfoA04uwEcYbjJy4uOBfW6jfFwVpSGZ6Q3laPQ4zOzsbhLy4TDkepyHXDmvaHmTPH7oS1rSPSYW1/Np50Pmadktq3C0/GX5WJ3xeXGwdb+SJwOETCVhyKUGLFLRtUAgtNbny8GCVKgE2ICTjxgWWKxuEh3holHKgA78uIw/j1GhNwSMC5o7+GtQQ7DmTYuB0f4+YGHCbVMAqfbG4b8S6szY3G54zsNZNgrdAUAWu7RuFgmJEZRbBWMSET1pJe3AxrB1NwgMeEM/C5bb8FXw/qU/F51l4DS2Ktwn+x9tuUpKQofOwG/PjYDTUBl9LfyjmwvEgJfMzH/W3Bp3hpSMG1jHgc4FTVhFPmGrbiAJSqcfj4sDXg98VmxueFyXZ87BTsxucMw4pfb5Mb9+nEeByktTmYAGsVo/F1uG4Lrp16xRpYKxuEn3c4NwPWbFp/V+P+DiphkEHl2mSUD6D+dig3hjHKzXQQ359r12/3XtxTJZPwvkxJxolDThPel74d0bAWvjkH1sp/mAVryeH4eqr9U9mqQ3hdWgvyO2pPHA6hGpqMw50KwvF5oSkJh+HJQbwfLrxgE6z9n2cirNWn4uuBdkxYS/Cx5PHh99rkUD5bKgFqoUbtb+Vt8PrxMeAowzV7HX7fm+LwC07OzoW1Mg++t7Urx0fSW/hes+qsobB2WtY2WNN4y5U0Wz/e9l9PxwHpmvevOAXW4rfgc1TtlzhkbssofO1zKJ+/65PxPtICSR3KtcKj3O+JMnZk8unfUqWuERSTBLWTyP9/zEDEgWAiIiIiIiIiIiIKCfxGMMaBYCIiIiIiIiIiIgoJ7QuL40AwERERERERERERUb/lNyxth8UZDIsjIiIiIiIiIiIi6reChlmCbUz90FY9VHEgmIiIiIiIiIiIiEJCQEwSaCMMrq16qOJA8DGCdiUyUhGodMBaBA7KFYsHfxW9YVAA1s7NOABrOyqTYc1ejdfFn3MI1ipnpcFakgPHZJcHcRpo9Nf4a/pNOCBcLIL3UaQVJ4XWZOEmj/kCr0t4Pl6X1Tk4zXVSGn7iusohsNaUi9vShA8J8RfjFNigCz/RrCS8m0LsX0oE7XiDjCZ8DJiUmnZ8aAm09cNxerjWUx8VDYe1qIP49Qw7Pq6KJ+NapR+n9p614xK8LnvxX1ctHliShZPwMie48Zv9TkYWrNkumABrSV/g3tiUlQFrpw7dD2sfp7thzblVOZYO43NUdZTyz5qU/g7a8DFvVs4n/ZG2rRLAx6O5QUkWV66Zjhr8elXj8Zs7LqYQ1tYVZ8Ja9D7lXK2ca4qm4O37+6hXYS3XjxvV/TV+P304lFsWXfRvWFtYcAGsVQ3HvRG/FW98wInX8+WDJ8PanMHrYO2phFRYs9Xi99rShLfBX4kT0M0xXljTrmkh199K+rrZovR+Fb6+uYrx0xoS8LHjSfbDWrwL3/c+tgkf46mb8A5rHIvvwQ0cZi/xzgZYG+kogLWwfOV6o7zVFePDYO2UOPy55TUXPu95I/B+0PbfG/vxdT8uEu+jvCH4XtrSiN9sax1el4ALb4MRrly/lc+kZn9oDVxo5zIJw/3mKcLHXLTy+dsbid+/2iF4n0x14xvtv+0/CdZs+LZegoPw5/bysfjYqfU5Ye0LD/6M4Szs3D3PikZ8nRrjOgxrb+JLpiRuUM6lW/DxX5yNz+t3TFgFa78tOw+/3kalT834ePEq1wpRetgYQJ+/e1N3fSP4+eeflyeffFKKiopkwoQJ8txzz8mUKVPg4xcvXix//OMfJTc3V+Lj4+XKK6+URYsWidOJ+7i7cSCYiIiIiIiIiIiIQoLPMIuljTmCfUbHvgj6+uuvy/z582XJkiUydepUWbx4scycOVN2794tiYmJxz3+73//u9x7772ydOlSmT59uuzZs0duuOEGMZlM8swzz3TotbtSr0+I8fzzz0tWVpY4nU6ZOnWqbNiwQX384sWLZcSIEeJyuSQjI0N++tOfSlMT/hYoERERERERERERDQwBw9yun4545pln5NZbb5Ubb7xRRo8eLUuWLJGwsDBZunRpq49fs2aNnHLKKfLDH/5QsrKy5Nxzz5VZs2a1Oe7Z3Xp1IPjoaPrChQtl8+bNMmHCBJk5c6aUlJS0+vijo+kLFy6UnTt3yl/+8hd5/fXX5b777uvhNSciIiIiIiIiIqK+xhCTBNv4MTowR7DX65VNmzbJjBkzmn9nNptlxowZsnbt2lafM336dNm0aVPzwO+BAwfk3XfflQsuwNNF9YRenRri26PpIiJLliyR5cuXy9KlS+Xee+897vHfHk0XEcnKypJZs2bJ+vXre3S9iYiIiIiIiIiIqO9pzzd+j9ZralpO5u1wOMThaJkDVlZWJoFAQJKSklr8PikpSXbt2tXq8n/4wx9KWVmZfO973xPDMMTv98vcuXN7/cusvTYQfHQ0fcGCBc2/a89o+t/+9jfZsGGDTJkypXk0ffbs2fB1PB6PeDzfBJ4072CT0fpM3FrYjDJzt00Jo9CmJakchf8CkTioEtbWFw2CtercaFjL3Iknj6+ePQ3W6ofg510evQnWrt93JaxpQTtJG3DqwuzxN8HaL8e8B2v/HTcS1mp3xsNa7C489UjVaBxSsMuJE+/GDsOT6u8tHAxrkbmwJP5wfCwZNmUCfG2yel/fDqPocH8rPWwK4G211nUuGKnJqbx/Fjwf0acl2bBWsPv4uYeOysrBoUJF0/F5oWkwft6CuD2w9n7RKFgLKuc9LdfnysSNsHZVBE6xeG3kibA26F+1sBYMx0GfwWrc3ycpyXyfuvH+a4rHQTQ2vJpircJvqE95Q03am60c831Bx6/fyhxfjUqIV4MWEIIXWTUMv3+WMHzN3FeHrzelB+JgLToKv56rDIfbGNmNsDbZjsNfXqpJh7XEDbgXK8ZHwdpmDw7FuS8FX78vG43veYJf45NwyqoKWNs1IhbW/uQ7FdZscfieIJCPwzVNOBNHrHVKfzuUAFntmFcCEvuCDve3cioL1uIQL0elEvoWg5ep3bvbonCQ4p5SfO8XrML9poURWRvwwdMwHL8xrw7+CNa0sNeIw3iZPuVeM2jgWoEH34M0DMP3ILG78I4w+3Gttki5OcOnIbE48Xvti8THmRmf8sVSj49Bv3IPbmgBan08LK6j/W048TXMpBxXjnLl2o4PK6lPxcs0ReOd+coBfK9Zcxhf+1L3K6FhJrwu5lH4xjDMis9DuX58fUvcjI/x+mR8vXn8wPmwdnUaHgsIDsfhjCa/EgC/FyfsFVRGwtruBtzgpgi8b+tTcWiXFeduil05Br2pyr2ZA2+7qalvX7/7E59hEXM75wjOyGgZEr5w4UJ56KGHvvM6rF69Wn7961/LH/7wB5k6dars27dP7rzzTnn00UflgQce+M7L76xeGwjuqdH0RYsWycMPP9yl605EfQP7myh0sb+JQhf7myh0sb+JqC8IGib1j5RHHyMikpeXJ1FR3/xB59hvA4uIxMfHi8VikeLi4ha/Ly4uluTk1v8I8cADD8js2bPllltuERGRcePGSX19vfzoRz+SX/7yl2I2987Af7/6c8O3R9M3b94sb775pixfvlweffRR+JwFCxZIdXV1809eXl4PrjERdSf2N1HoYn8ThS72N1HoYn8TUV8QFHO7fkREoqKiWvy0NhBst9tl8uTJsnLlym9eIxiUlStXyrRprf/r+oaGhuMGey2WI99SNgzlX350s177RnBPjaa3NrcHEYUG9jdR6GJ/E4Uu9jdR6GJ/E1FfEDBMEmjjG8Ft1Y81f/58mTNnjpx44okyZcoUWbx4sdTX1zfnnl1//fWSlpYmixYtEhGRiy++WJ555hmZNGlS89QQDzzwgFx88cXNA8K9odcGgr89mn7ZZZeJyDej6fPmzWv1OX11NJ2IiIiIiIiIiIh6X0emhmiva665RkpLS+XBBx+UoqIimThxoqxYsaJ5ytvc3NwWY5b333+/mEwmuf/++yU/P18SEhLk4osvll/96lcd36Au1GsDwSJ9dDRdGU+21OG3y1miLFM5tnxJeNLylAg8SXpJAw5BaFImLXfl42U2JLlh7bITvoS1DCueCL2yEYctxb23F9ZKLh0Oaz4fDpL7QQQO2Fs77GtY+yQdT/5vacKTubuK8Owq9mz8vsQ68KzznlR8TLhKlECUCiXAw47XM6hMVh9ylFAOsxYmpQROaNeOhjR8DCQk4F4sqsaBE1H78L50FOPesGbh4Ihzx+De0OTm49CrUf/MwU+04vf6iUtnwlr90NX49bIKYa3wzCxYS3l9N6xFHBwBa2+MmARrMW4cjFE2BF9HXIdwf7uUa0zQid/PoHLMhxylGc2NuG9cRXiRShaL1A7HgSszh+Pjak81DpOKPIDXM2k97u+yifie4Oaxq2DNZ+BteHTDhbA2Yi++fkeH4bDER3ZdBGvPjnkd1obGl8FaoROHxhh23G/hh3Df2DLxudum3PNUKGEzziLlGoPz5ySo3HsGXXhdQk4nr99aiJemKQ33hk257puVUFrtmIvagq9hVSclwVpsPL7vrQzie02Tsp7R/9t6aLeISNMlU2BtdxEOs3305LdhbXNyBqxVDsPnS1cZ3gZHKX6vwzPxTZ3Hg6/DTVn4eZHbcRCgsxyWpMGp3J+bB05/mzz4fTArgc12fPiLH38EVe/PR6QXw1pRLb7eRO/Ex1xYEQ5trcvCIaOT01rPTRIR+UnSSli7au3/wNrwbfhc4yzFCZp7vofDbCuS8D3I7eM+gbXXx+B7fk803u/hObAkn6fj0PWTh+Kg5zWeobDm3obPC85SvC7+MPy8oG0A3Z/3In87wuL8RsfHQubNmwe/vLp69eoW/2+1WmXhwoWycOHCDr9Od+rVgeBQGU0nIiIiIiIiIiKi3hc02v7Gb3CAjsn36kCwSGiMphMREREREREREVHvCxpmCRr42+VHHzMQ9fpAMBEREREREREREVFXCIpJgto8rf//MQMRB4KJiIiIiIiIiIgoJPiCFjEF9TmCfW3UQxUHgo+hTlbfpATR4EwJqRuEJx6xR+EkmjofDh4oPIhDmmLwHPBSPB1PAl+TrYQuKBv4fAUOWivdjkMeYuw4xCLhcxwMUzUCT1a/bQqejP+2hNWw9m7mZFhz74MlcSghBaUHcTjXSUm5sBafUg1rNcV4v9tq8brYq/Cx64kbOH8FM3mV/vbg98FRgZdZn477ZtBwHDhR04RDhZrKXbCWvlkJf2nA55OqEXg9vx/3Baxt8uJwFHO5EoKQ6Ma1L3E4XdWeabD2dVoarC0e/E9YuzDzblgr/AEOhHPvx2EiB3enwJo9EZ+HMjNxqkR+BV6mrR4fn7YaXPO6B87EVyZv594jLY+ndpDyevbOBfnkHMDBT8lFOLCiZghOvqkZgvfzpZFblbVxwIq5GNcCdTgQsTEJn9tq9uBzW/1ofM9zadIWWFs0GgfDxG3F74sVt6lU5EfDWkI6vvCHp+JAP08tXqZDCZMyzPjY9ZkHzj9n1K7f9kqlv5WwuKYE5fzowP0dGY7T/Spy3bAWrRxzYuB1KZ2Et29MVBWsXb5zFqwd/gpfb0Yo17DwT/bAmnHaKFhLtuDPEePjC2BtVTy+77U24vcl4Uu8/w4n4vvzUyficK7P9uIgzIYUJSQwH6+ntY79LSJiCnTu+q1lQDXij6CSNRynxNYrn7+rD7lhLaUUX7/9YXjIpXgK3r4305fDWqIFB7RJPr7WBpRweGP9V7BmuQrfn58Zge/rtzbhGynt3DZ8CT4veAfhHt4/GF9rKyLxh+WMTCWUtioZ1qwNSn8rNV/kwLk/701BMbU9RzC/EUxERERERERERETUfxntmBrC4EAwERERERERERERUf8VNNrxjeA26qGKA8FEREREREREREQUEvztmCPYzzmCiYiIiIiIiIiIiPqvYDumhuAcwSQiIia/NuE3fl49zjASvxsHFgxPwBOTHyjDoWgR+/FfLhI24onQK8bjieXDhuGQsm3VqbA2LhpP5h6vZNT48/HzJB+XovZPh7UffnkzrP3zhBfwQtNwMEbFSBzQk/oxfs8akvFk9e/uGAtrFhsOGwjE4mPJpCQmWHCuiZiVgCXDGloT2auBcErwXwPOVBEjBb+5NiWFqqoiHNbC9+FTs6Ek31RMw2EGKRNwMMbvD58Na9o/l4nep1w4lZATz8VTYC1qP17mR8OHwdrumkRYs2bjAKfwDXg/RG7DwW5hI/B7HZ6FzydJLrwuh5RrRWMAHxNWpb+1a5pYQqy/tXOZkrnThLOI1Ot3dkYJrH2wYzSsufLwvjT78fm/Ng1vhCUbX/d/VXABrFlN+PXCCpT7oQx8TxD1CU5YrU8eDmtfN+EbqfkxB2HtlUn4huFwaTqs2WtgScJy8D4KaPvBrFy/U3Gj+nw4YE/7fKJd0wx7aPW3yae8EcqmBnDuk/jdOMDM7lJqFnxecBbhe7Hkz6pgrew0fKMRPRanCb419ANYG7vuh7DmLMfvZzAFp2wFt+JQKGcxXubfqifA2pL0z2BteCo+Z0R/ggNr/S7cp5F7cW1tTBasxcTikMwKH97vDX68nja8SAkMoP5Wz2VK63vduOZPwPfLxTWRsNbUgE8akQfwseOowq9Xn4yvKZYsfBBogXAX7jkf1lxFyvu5YRusabRQzl/suRLW0iPwZ+W4sUo4/En4PjsiD19Po7/GvVgxCH+mHxRdBWuHI/C13dKIX8+M87b1e1ZbaPV3b+LUENjAiSMlIiIiIiIiIiKikHZ0ILitn/5o69atYrF0floLfiOYiIiIiIiIiIiIQoI/aBZTUP/uq7+Nel9mGJ3/9jgHgomIiIiIiIiIiCgkGNL2HMB9dSKOK664Qq1XV1eLydT5bzNzIJiIiIiIiIiIiIhCQn+eI/jf//63nHPOOZKUlNRqPRDAeQXtwYFgIiIiIiIiIiIiCgn9eSB41KhR8v3vf19uvvnmVutbtmyR//znP51e/sAdCDZMrcaQWpTU0oAS6hwIw2mS6Zk4EbOsHifWe/NxLboYf4m9eDpOQm1MhCWZlnwY1uYk4kTfH22YDWtD9tTBmvY1fHMYTvVM/rAI1kouxof0C+WnwtqUzEOwtvHAKFgrPjka1tx78RaWuJUE4TScHmtEwZL4vA5YM/mVuW/66r+H+C5Af5twm6rJ4gEXfmJ8DD7GC6rw8WGqwseA1YPXxRTEO6xyJD5//WrwSlj7b+VYWFt9aCisDV5XBWvBL3GyuGMTLIn5f6bDmj+Aj+MRUSWwll+L90P5GHy+jNqBJ+B34dO6lO2LgzXTMPy8qER8LNU14ea3NuL3Rb2mhfXT5gf9rTH7cc0Th/vbkdCAl2nC75+pBl+LzEp/a/w4PFxOH7Qf1vIa3LBW48E3NombGmHNl5kAa9ZtB2EtZUUhrP3fRSfA2jVRX8Ha+JgCWHvflQ5rBm43iT6Ij4milBhYGz4uD9bMZny8VFfiC5BF6W/lEOy/l/ZOXL/9+JZRvT93J9bCWnUlvgcvLoqHtWjl2lA9Cl+Lagfhc9oPM7bB2r3FE2CtqREfV0M/wNse3Iqv39b0NFiz4dtX+eOXp8Ha1FPw+WvhSfhD7mO5V8Fawma83w3lljhQ7IK1Cg8+rzuim2DNW4fvJWz1Sn8H8TFh9NcOh/2tXNOV/eWLwvs5NqkG1mJc+Np+IB8f49q/MLdX4mOgaCq+13TY8Q3KfSXjYa2gBt8XOiphqdPit+H19JyCd9LfBr8Pa/+owwMTD0+8BtbqU/BJ3+yFJfX+vCIRn/PThpTCWoEXb4O9Cr8vZq9yf27rp/3dB/XngeDJkyfL5s2b4UCww+GQQYMGdXr5A3cgmIiIiIiIiIiIiEJKoB1hcYE+Gha3ZMkSdfqHUaNGycGD+MsXbeFAMBEREREREREREYWEoJjaDItrq95bHA78r727AgeCiYiIiIiIiIiIKCT056khjsrPz5c33nhD9uzZI3a7XUaMGCFXX321xMTgqcragwPBREREREREREREFBIMwyRGGwO9bdV70x/+8AeZP3++eL1eiYo6Mi94TU2NzJ8/X1588UWZNWuWGIYhW7ZskUmTJnVo2RwIPpYyN3fAhYuWJByq4rT6YC2/CI/khxXj+UoMJXTEogTRBIfiJIcfJ30Ea/cfvAwvMx9P2G7J2QdrSnaPBBvwJP6BFBy2UbkLB9+Myf4E1r4sx4Ey/gw8+b85F79eYzw+qdircK0pAi8zLrka1soacDv7ffj1THjqmf4aRQFpASFet7K1MTh5oLQUH49WJ+79sAK8Mu49+HnlY3G/edPwes504aCDCn8OrK3MwUE0wS/XwlrTpVNhLWINDoZJWo1D33YPxwFVU0fjc83ssWtg7fKq22CtYjIOBHLvwef8hiQcNlPswud8LSzOiMBnTK8fBw+albC4UGMK4G31RuP+Dobhk6ChBNjszUuCtej9SoAfvqRIwIFfr3EI7u+HUv4LaxdtvQnWqnfGwtogOz4P+SKVIMWqKlgzjcChFiVf46CWeeHfh7WZCTtg7YPxOCzI/L6SvqpwlOJ9uzsnBdaSk6tgrVIJJDX5O3f9DjVafwftuL8NJ35vrRYlUMyrXKN345qjBq+L2YdrTUNwv90SsxE/z8DLfKNwGqxZ8vB12Bg3Eta8Mfj6lvIRvs+oHYKvpwv3XwJrt2V+DGuSjT/TNB1Sgp/+WwVrOZe7Yc2f0LljyROlXL99+PptUu7dQ41hwcdxAF9uxJKI78WqqvD9ckU5Tl+NOqB8/lZ2Sd0gfMw1ZuD+vmnoBlhbVTYcv95ufD859H/xOcM8SAlRrcSfMxvj8I6o3I77+4dR58FanQ8HWvpT8D2PvwY/z52vJIua8L6tcuBl2hNwDxtuvG/9yvZZmgZOf/em/jxH8PLly+WOO+6Qu+66S372s59JSsqRe8zCwkJ58sknZc6cOZKRkSF/+MMfZOTIkRwIJiIiIiIiIiIiooHJaMfUEH31G8FPPvmk3HvvvfLYY4+1+H1KSoo888wzEhYWJuecc44kJyfLokWLOrz8vjn8TURERERERERERNRBhogYRhs/vb2SwObNm2X27NmwPnv2bPF4PPLxxx9LZmZmh5fPbwQTERERERERERFRSAiKSUzSRlhcG/XeEggExGbD0wfZbDZxuVwyaBCedk3DbwQTERERERERERFRSAgEze366YvGjBkj//rXv2D97bffljFjxnR6+fxG8DGCDmWy+gicyhFswm9lTjGeQN1ahCcRDyvE6+J34b9cNOCsErHb8WTn4/GqSK0HB5i5d+N1qTt5MKyF78WT3Ad27oE1Sx1Ow0te54C1z783FNZeGvEKrJ1b+WNYq1fea0cVrkUeUoKLlL/81EXj7TNZlWM3HE+cb6nrmye/bqH8wS+o9LeaDqE5iIMj3PvwPjH78b6sVf7lx4isQlibfQCHsTQF8Pkr5mv8ehrtHBXIxI1jbNwGa+7dibD24uFTYW1OGg61O28k3sAPD0yGNVcZfs/MODdC7MrzAkrApCMKn/ea/LiHTUElZSXEBG1aIBzut5jkWlirKsWBMjbl+h11CJ9PHBU4ACVvBg5i0o6BODO+RtsteF2SNuD3zPohDpuxnTgO1ixKEI1//VewljzoZFgzT8Hr6bbgcNlUNw6+OZyGw+L8YbinErbi+6iCKHz9LjLcsGZSgpK0a5O5jv0tIhJQwrhcMTidsbw0EtbsJUqIl5JF5KjC+6vgFHz+t4fj88JeHz4PzftqFqwlbMLvWeME/A0i59rdsGYvweeo6lOH4GWW4OtbQRUO3Y0cgsPAtM802r2SN9INaxF5+Hm1Frztxhi8/zS8Pz9CC3MOKmGaonz+tjhwL9pylc9TysvF7sY3eIfPxOcMZwwONtQC4SKs+LhyVCgBml78vOrvZcCatTEN1mKW4Xtp82wcTCnTcclswueoEZn4M83+Qtzg2rGknErFUoOvpwdz8eePyFh8D1Lj0a7RA+f63ZuOTv/Q1mP6ottvv11uu+02cTgc8qMf/Uis1iPnO7/fL3/605/k/vvvlz/84Q+dXj4HgomIiIiIiIiIiCgkGIapzTC4vhoWN2fOHNm2bZvMmzdPFixYINnZ2WIYhhw4cEDq6urkjjvukBtuuKHTy+dAMBEREREREREREYWE/jwQLCLy1FNPyZVXXimvvvqq7N27V0RETjvtNJk1a5acfDL+l3TtwYFgIiIiIiIiIiIiCgmBoEkkqA/0Btqo97aTTz75Ow/6tqZdA8HvvPNOhxd8zjnniMuF51IiIiIiIiIiIiIi6kpH5ghu6xvBPbQyfUy7BoIvu+yyDi3UZDLJ3r17ZcgQHBrQVwWUsDht8nirEwcWBJRghYhifGC6KvAk9+Vj8ATjxug6WEuMxLWLdl0Oa0U5cXiZTfg9C8vHE6ibgvgNtWbiieyDJuU9K8WT43/01ShYOykqB9aem/wqrN1tvwrWrO+6Ya0pBm+DsxSWpC4Ch48ZTiV8LByHGwR9OPBIO+b7o6C9c2d6i10JiizFIU2uYrzMmkycZhC04n0SzMDBKdelroO1/5RNhLWt27NgbdTaMljDZz2RsAIcbFV6Ig7oSdyBz5cJ66tgbfcEHFD1nOdMWJuduR7WPhqNAzzKq/A2xO/A70zpOHzZbczDyzTcuIdN2vFpU4LkQuzGR+1vM65VV4XBmqkO7y9HOX45a4MSGPU9fIx7MnHf3D/2v7D2w4PnwZp6/XZ27lsQJVOVHsYtJYFhSbio7L4v9+JgK82giEpY25eaDGvOUhz6UzMIHxNhONtG6uz4edZkfF73VuNQI+2YNyv5p/2RoQTimpVQKE+jEvpWg2sWnDEnMbtxn1YNx/vLn4zvUael4ZSyu3deCWu1xTj9yGnH/W37AIdBBqZNgLXGZHzPE702F9YakrJgrU45xh/ZczGsvTDxr7B2XcMtsOY4oJyDcY61WPFHGv36rYSdmey4FlDOz6HW3529fosSxhWsxv0dnYMXGcCHo5ROwMv0J+H+vnIoDkrVvPblSbA26p9FeF2UZXqi8XEVvQuPEzRcMgXW4j7HF79NZ2TB2stnvghrJQHcUw8Mi4W1xsPK/clmvI8qRuHPXjUOfP32ReFjUA2CVQJQQ+3+vDf196khulO740iLiookGAy26ycsDH+oOtbzzz8vWVlZ4nQ6ZerUqbJhwwb18VVVVXL77bdLSkqKOBwOGT58uLz77rvtfj0iIiIiIiIiIiIKTUY7fzoqFMYw2/WN4Dlz5nRomofrrrtOoqKi2nzc66+/LvPnz5clS5bI1KlTZfHixTJz5kzZvXu3JCYmHvd4r9cr55xzjiQmJsr//d//SVpamhw6dEjcbne7142IiIiIiIiIiIhCU3d8IzhUxjDbNRC8bNmyDi30j3/8Y7se98wzz8itt94qN954o4iILFmyRJYvXy5Lly6Ve++997jHL126VCoqKmTNmjVisx35pxlZWVkdWjciIiIiIiIiIiIKUUGTGG2FwXUwLC5UxjDbPTUEUlNTI2+//bbs3LmzQ8/zer2yadMmmTFjxjcrYzbLjBkzZO3ata0+55133pFp06bJ7bffLklJSTJ27Fj59a9/LYFAiE2URERERERERERERB12JCyu7R+RI+Oa3/7xeI7PA+iNMczi4mKZPXu2pKamitVqFYvF0uKns9r1jeBvu/rqq+W0006TefPmSWNjo5x44omSk5MjhmHIa6+9Jt///vfbtZyysjIJBAKSlNQyOCQpKUl27drV6nMOHDggH330kVx77bXy7rvvyr59++THP/6x+Hw+WbhwYavP8Xg8LXZiTU3Nkf8wGa3PxK3Mzm2OwGE9/io8s7yrGI+3Rx/EB0BNJt6xTYk4XCDchqeI/8NwHHz2aP6FsFa2Q5mMX5kI3bT/MKwV/nA0Xiaei1/SXt0La/VnZ8OaeyveD/+bMRXWRsbgxK+g8k8JqkbjfeQqxOtix9k2EpaHn1c/BO8HI6j8zUcJYDF5+/bk6R3t76ASqKcFbgUqlP4uwe+tWUlrsDXg971iPK5lp+I0wd/tOwvWEsNxAISjFPe3fxfuN03JCXg6IR/OcRBRwiDrsvETnSV4G2zD8b4t8eFpjKLCcFpQ2SAc3BhQQqFs9bAkgSp8LHkseJmGQ0l11I75xu/8t+Bu1eHrt015H5QwKUMJlNH6WwvzaEzAy2xKwutpD8P3GbEW3MNfF+MQtrA83BvR/7sG1swnjIE1Hz78pXiaEtTyHH696KTj/zndUVXDhsLa11F423+uBOxtT02BtfJ6HLDnysfHhKsMHxQBO35eo0mZfs2lHLta7zeEVn9rgbjanYpRj8+dzjL8HsV9jV+vfAy+J6gdip+XkFgNa4vS/w1r19XNhjXnYbx97pdxv9VfdTKs1aVqYbawJJHr8LanvHUQ1nxhg2GtNAyfT14tnwZr14/DqZV/LT0N1hK+UAL2GvD2lbjwedar9an2TTTl85UEQuv+XAuEM5RTmfY5xa7cU2mfM7XXa0zF+3JwRgmsTQo7BGtL80+BtYjtSnh0AQ6L0zThnDUpPDUa1lzlSvDZ4QJYC9uXCmvzk3Ho+j/HLYW1k9JwMOXnw3A4vGHG72dknhI6Gq2MyViUwOEofE9nKGGQff3+vD/pyNQQGRkZLX6/cOFCeeihh1r8rqfGML/thhtukNzcXHnggQckJSVFTMpn5Y7o8EDwJ598Ir/85S9FROStt94SwzCkqqpKXn75ZXnsscfaPRDcGcFgUBITE+XPf/6zWCwWmTx5suTn58uTTz4J38RFixbJww8/3G3rRES9h/1NFLrY30Shi/1NFLrY30TUJximIz9tPUZE8vLyWuScORz4j74d0ZkxzG/77LPP5NNPP5WJEyd2yfoc1eE/N1RXV0ts7JE/Ja1YsUK+//3vS1hYmFx44YWyd2/7vzkWHx8vFotFiotbftuyuLhYkpOTW31OSkqKDB8+vMVXoEeNGiVFRUXi9Xpbfc6CBQukurq6+ScvL6/d60hEfRv7myh0sb+JQhf7myh0sb+JqC8wgu37ERGJiopq8dPaQHBPjWF+W0ZGhhiG8i9EOqnDA8EZGRmydu1aqa+vlxUrVsi5554rIiKVlZXidDrbvRy73S6TJ0+WlStXNv8uGAzKypUrZdq01v+pzymnnCL79u2TYPCbf5axZ88eSUlJEbu99a/6OxyO43YqEYUG9jdR6GJ/E4Uu9jdR6GJ/E1FfcHRqiLZ+2qunxjC/bfHixXLvvfdKTk5Ou9ezPTo8EHzXXXfJtddeK+np6ZKamipnnHGGiByZMmLcuHEdWtb8+fPlhRdekJdffll27twpt912m9TX1zcn8F1//fWyYMGC5sffdtttUlFRIXfeeafs2bNHli9fLr/+9a/l9ttv7+hmEBERERERERERUSgy2vjpoJ4ew7zmmmtk9erVkp2dLZGRkRIbG9vip7M6PEfwj3/8Y5k6dark5ubKOeecI2bzkbHkIUOGyGOPPdahZV1zzTVSWloqDz74oBQVFcnEiRNlxYoVzZMv5+bmNi9f5Mi3kd9//3356U9/KuPHj5e0tDS588475Z577unoZmBKcFawCo/YO8qVxD7ljwxaIJxX+eNp5JAqWBsaWw5rvyq4ANbWbB8GazFKk0Tm4YnQvZNxeFutEm6m8YwbBGsxH+DpSSKHp8Pa3hPdsJYegcM9UqNxrW4kDpqqrMThNmYffl+sTfhgstbgv+v4tVBKm7Yf+nYYRUdp4U7SgE+HjjLcpw4l3M+kvO81Q5R9mYoTxW5J/wzWXiueAmtf7sN9k3BQCQycgv/AZ27Evd+Q3rn+bjxrLKzZa/Eb6lQC73IP4BCqIjcO2xgRg4M/wsbgf8pTVJ4Ga/YaLUwKHxMBuxLop1y3xDeAAic6ua1af4cpWSy+CFwrG4/3pRF7fArxUb+a9DasbW/MgLWGChw2NmRD2//srPUXxNfTph9MhjVDuR1KmjoeP085n9hwTp40lOFtNyt3+G5XI6xVJOHrt78KB8P4G/B+DytRet+lBEVql2EtTCrUKOFYRg1OftLuzy34EJCqoXifBJQv8IRn1cCay46P8QWHL4a1w/vxNWzEu/j1zCNwyKLZj4+d+gzluFJyz8pn4NA3TXiRsi7KZ68yL06t3F7V+j/RFRGxpOAdXzMYL9PswceStQGWJFiF7y8DYfgNNbRre6jRgqt9SoBfNd4nTpytLF6ciaYGyaWMwveF9w1+F9ZW1+IAs9278T1jXBVeF3M0Higo/8EEWPMqH+q9Mfj1YnbjBGzvafjarn1OKs/BL3iz44ewFmXH91ERg/Fnc085fj1rQ+f6216ljOVo3zS1KydT6jIdCYtrr54ew1y8eHGH1q+9OjwQLCIyefJkmTy55YeACy+8sFMrMG/ePJk3b16rtdWrVx/3u2nTpsm6des69VpEREREREREREQUwjoQFtcRPTmGOWfOnE49ry3t+vrM/Pnzpb4ef0PtWAsWLJCKiopOrxQRERERERERERFRh7U1LUQnp4foaYFAQN544w157LHH5LHHHpO33npLAgHtn3y3rV0Dwc8++6w0NCjfiT/G888/L1VVVZ1dJyIiIiIiIiIiIqKOC4GB4H379smoUaPk+uuvlzfffFPefPNNue6662TMmDGyf//+Ti+3XVNDGIYhw4cPF5OpfV+b7si3h4mIiIiIiIiIiIi6RDdNDdGT7rjjDsnOzpZ169Y1h8OVl5fLddddJ3fccYcsX768U8tt10DwsmXLOrzgo5MlExEREREREREREfUEI3jkp63H9GUff/xxi0FgEZG4uDh5/PHH5ZRTTun0cts1ENxdExT3RSYvni3DUo9rVuVL0E5luuQGZby8KRWnc85M2wdr0yNx7eHtONQvaic+HMKLcIc0JuJ41bpU/BeW8GE4RtRmxXOeGCtwSqq/vBzWvLHZeF124G0vS8cJ4ecnfw1rO+txYvFHaXGwZpjxumjJq9Z67a9ZSvq1q4//e4iupPS3Velv7Z+MWBtwsWYw3ieeRNzf1w3/Eta+asiAtSqPE9aituLk7fBCnGTui3LAmsWOk3JN6Xg6IS2dNWjDr+f4z0ZYS/rMhZf5o0mwti41C9ZOTMrDrxdWB2sHB+H3U8z4fGnGIcjiUKfdVxLJw/v43U0PsSqp7aKcOv349C9+fMiJLxb39/mj8HXjH8VTYG13eQKsOYrwcVU9BJYEX4lEiuaeiIvpjbCUFFsDa2UT8U1PRAF+z1Je2gZrxs3jYO2FrO/BmsOi3GMN2wlr7/nGwJpFOQf7XfhAsyi9b63D1yZ/xMDpb5MPv39mL66ZtCn0lMu+LxLXvAn42BE/vi6G27ywtrsiEdZch/Eyq0biFY16ZTus1Z2NX09ScX9HROCaNycW1pJf2aG8Hj4v1KXFw9pXKamwdsvwNbC21423fYVvNKzZ9uGTvrMMlsTAu08MCz52A337S2pdS/v83YTfCGcpXqS9Dt+fa+dj72h8jJfVhsPaz7ZfBWspUfi6GLEP358krMefa41Y/HnYUY233UjBFxyrTTth4vtz+ydfwVpyTjqsNaTgz8rWUfj6dkbcHlg7WHkyrDVq9+cmfB9lVWZINSuLVK/fkQPo83dvCoFvBDscDqmtrT3u93V1dWK348/3bWnXHMFEREREREREREREfZ3JaN9PX3bRRRfJj370I1m/fr0YhiGGYci6detk7ty5cskll3R6uRwIJiIiIiIiIiIiotAQAmFxv/vd7yQ7O1umTZsmTqdTnE6nnHLKKTJ06FB59tlnO73cdk0NQURERERERERERNTnhcDUEG63W/71r3/J3r17ZdeuXSIiMmrUKBk6dOh3Wi4HgomIiIiIiIiIiCg0BP//T1uP6QeGDRsmw4YN67LldXogeN++fbJ//3457bTTxOVyiWEYYjL17dH09tDCKOzHz9HczFAm2WjA86BLYzKelD0hAyeDxdjwrOVP7T0Hv14eDpUY9jneQMOshGzllsBa1a2DYS0lHCfsNfrwxNdl45TQqwQ8Qbxhxvs2fhue6T0nHYdR7IvC6RAVHhwoEJWIg6ZqlYSSoBUnTjhxnoAEHErIihJSY9j6+L+V6CCz0t9WnA2hhvTVZSiBE/G4v60R+Jh768B4WItw4rCZ0r04+inlML7KufYrYRQ2fJk4fAEOcclOOgRrTiWk6WAmDnWMHIpTr4J5Bfh5eXg/FBxww9qqOhz8FB6GG2fokCJY2+/F55MwJRBICy6y4wwSaVJ6X8yh1d8WD95Wm3L91oK6vDiLRRrT8XF8wqgcWCtsjIY1rTdqc/Dz0jfiY9wTrYSFnj0Z1nz4EqYGRlU34L4xR+BlOguVZV6AA9qSNuD7oX2DccCeKwMfFLPScVBkeTbeiPUNSijtfnwuNePTulibcM2w4WPesIZWf2vXb60WVD7paAFA3njci8mDcHpnRmQVXhclmbJyfwysDV2FV7Q2CweYVc+eBmuNSlj10BR8X392wm5YWxp3Ll5oJr721Q/GJ9qYPcr1OwVfGP9mPwnWbh6Cg+RWCA6L8yj3dIYFX79tyjXa2qBco5VSqPW3dv3W3iMfviyKJ065P3fje+LEWPwZ7ZTkA7C2pSIN1vZ8hYOeo5XzUGA77jdrEg49LB+N78+nDs6Bte0lKbBWNgFf+xID+HOLvQJfxDI+xNf9fW4cMvehGfeiFjg/ZHAxrB304m0Pz8H9rV6/lTYN2pXBI0to9Xevas/UD33w7Z4/f748+uijEh4eLvPnz1cf+8wzz3TqNTo8EFxeXi7XXHONfPTRR2IymWTv3r0yZMgQufnmmyUmJkaefvrpTq0IERERERERERER0XfST6eG+PLLL8Xn8zX/d3fo8EDwT3/6U7FarZKbmyujRo1q/v0111wj8+fP50AwERERERERERER9QqTceSnrcf0NatWrWr1v7uS8p301n3wwQfyxBNPSHp6y6/rDxs2TA4dwv8UmIiIiIiIiIiIiKhbGe386cNuuukmqa09fjqz+vp6uemmmzq93A4PBNfX10tYWNhxv6+oqBCHw9HpFSEiIiIiIiIiIiL6LkzyzbeC4U9vr2QbXn75ZWlsPH4+7cbGRvnrX//a6eV2eGqIU089Vf7617/Ko48+KiIiJpNJgsGg/OY3v5Ezzzyz0yvS48B8IWacDSFBW+dqvkg8Ib0lDqfUXJixA9Y+Kh4Oa6VFbliLyMVj/544HPDiD8OTpDvCcQBE02A8g/rj2W/C2j37vg9rRRPwMh1VeEfE7MYT0vvDcCs4S/B79v5XOMAmM7MU1i7Mwvv29Voc3uMP4FOVJ4DXU/snD1rISqC/hsWB/jYp/W3C2QLSiDMXxKcETjgTcQLE5DQcRpRfh9Mvcg7ghJfETXhf+o//+10zIwz/Ec+bgJ9YPwEHQLwz/B1Ye6AEH+Nbxw2CtZhdOAzPkYPfz8iVu2AtLhoHw5ROw8GUXhs+YILaXFNh+HmNyUpYaZUS+IVP3WrIij8itPrbrITNGPgSpgbxeWNwf0el4LCx7AgcJPruwVGw1lCKE9qi9+FjwFBOYM4KXCsfjXu/YRB+3rzsDbD2aTlONN4yEp9PghvwdTisGF/3fRH4eRE5+D1rTMLP+/3uM2DN48XPSxuM93uBBwf72CuVfat8ZcPkD8GwuE70tw1nO6nnx/pByv15FA50tVpwb9iVwMfPv8L37mFFeEc3pOCNCODLlPidyj3jINxTZyTsgbVoC76v0e75q8a6Yc3SpJxnPz8Ia41xQ2GtLAzfR62KHglr5438Gtb+ux8/zxfAoX1BK963FiVoaiD1txbWbtECM7Vreyw+rkTp78HROAzy4wJ8zFVW4Ot3/JdKYPknOOy46ZwTYc1rxctsSsPnoaHh+PPpZaPxXKT31lwBa2U+fI5KfmYjrFXfgAMtXYV4+3a48djDsAwcCOcP4l60J+BxggblQ5R2f64dn9pn837a3X1TP50jWESkpqZGDMMQwzCktrZWnM5v+iwQCMi7774riYn43rItHR4I/s1vfiNnn322bNy4Ubxer/ziF7+QHTt2SEVFhXz++eedXhEiIiIiIiIiIiKi76Q9Uz/00ZF3t9stJpNJTCaTDB9+/B+STSaTPPzww51efocHgseOHSt79uyR3//+9xIZGSl1dXVyxRVXyO233y4pKSmdXhEiIiIiIiIiIiKi78IUPPLT1mP6olWrVolhGHLWWWfJG2+8IbGxsc01u90umZmZkpqKvx3flg4PBIuIREdHyy9/+ctOvygRERERERERERFRl+vH3wg+/fTTRUTk4MGDkpGRIWZzh+PdVJ0aCG5qapKvvvpKSkpKJBhsOYR+ySWXdMmKEREREREREREREXVIPx4IPiozM1NERBoaGiQ3N1e83paTy48fP75Ty+3wQPCKFSvk+uuvl7Ky4wMxTCaTBAJK4lI/YPbiyaKDyrvlj8DfKbel4mAFkzJT+Ip8HGJUVIJDEBx5ODAtbVU1XhcPnjjfsOONP3SxG9YSE/GE9Cc58HpemvoVrP3diyfOr09JgLWIAvx6jtXbYC06YSKsiQkvs9iNE4jeqsYNm5lcDmvlkTiIoM6IgjUtZKXPR2V2IbMSvOGNwr0YdOCaoQROTEo9DGsljRGwlpOHj+Pw/bgXDTNez/h398Fa3bQhsFY6EScdxMTiY/WdhhhYMyvnvQnDcmFtz4nZsJaVkwVrDYPdsOasxOdueyl+r83x+HlldXjfnjIS74fPd+MQEq9yubZVK0Fy9j5+d9OFgsq2mpSgTV803pfmeBzoOi6xENb+sx8HiTbV43Qn52EluLQCb5/Fh2uuPBxqVzkM9+ngYXj75sfgAKcbo3EY6nz7TFhbe85YWIvKUc7BZrxvw4vx8zx78PW0YSgOjTGUlqqoU1I5Y3AqlFfwMWGtV4Jg++g/Z+wOWuiOF9/+SCAMv0lBJ65NycTXooPVsbD22Q4cluhS+jt2F/78FLDjYzz2qxpYyzsPf1a4dPwWWNtVh6f6uy/lPVh7MgzfD9Un42M8eS1OAzNi3bCmhS25cvH9+Re2TFg7bww+f8VF1cNaYY2S2qcw+7SgyIFz/dbOZV58GEvAhZ8YNghf+8Ls+Hy8KS8d1swWvE/CduDAtLjNlbBmuJR7gq/weejQTfieccYJW2Ht8uhNsDbRjrfhvyN3w9qanRNgTabhWszfcJCc84JJsBa046Bb7fN3mB2fo6LD8XW/Wpn91Cv4um+rUYIim0IwzLkPMhn6teLoY/qy0tJSufHGG+W991q//nZ2/LXD3y/+yU9+IldddZUUFhZKMBhs8dPfB4GJiIiIiIiIiIioHzNM7fvpw+666y6pqqqS9evXi8vlkhUrVsjLL78sw4YNk3feeafTy+3wN4KLi4tl/vz5kpSU1OkXJSIiIiIiIiIiIupq/Tks7qiPPvpI/vWvf8mJJ54oZrNZMjMz5ZxzzpGoqChZtGiRXHjhhZ1aboe/EXzllVfK6tWrO/ViRERERERERERERN3GaOdPH1ZfXy+JiYkiIhITEyOlpUemXh03bpxs3ry508vt8DeCf//738tVV10ln376qYwbN05stpZzMN1xxx2dXhkiIiIiIiIiIiKiTmvHHMF9fSB4xIgRsnv3bsnKypIJEybIn/70J8nKypIlS5ZISooygXUbOjwQ/Oqrr8oHH3wgTqdTVq9eLSbTN3NqmEymfj8QHHApgVFaEE0sDpRxK5OP2yx4XuWiCpx+YSlWJpbH+U1SeiKecT8yD0+g3hSLD5WmIXjC/Rgz/q79Y2UjYe3GmC9gLTIbv5+PleKvxtcW44nla244Adac5XgbnMdnJn7zevtxYJR5CA6cqGpywZrHh/eDNRm/L/4ivEyzr2/Pi9OVgrbO9bcRgft0cDoORCxqwIEFJbW4ZlX624zbVOL/vQfWvGNxOEp9Ik7haRqEX/CHg3CoY4UfH/+/TsTPey0sD9YWDMLbUD0uDtaiNxXBmnjw+asqOwvWmvbi83MwHQff7ChLhjWzDR9nwQgl7AxW2giKDDHaP+3SAuGCYfh9H5KET/L5dfh6Ggjgf3BlO4yvRXFf4/X0u7QwW1yry8bHas0YfPS4vHg9F5UPh7VJYTn49Xw4iMaTitfFvBdf+9w7cSBQzTAcCBeRh9+zahdez2CsH9Zc0TgcODoMnxeK/G5Y8yu36lrAcagxrJ27flsS8b2R3Yr7rcGPw8aq6vA9la1cCXxU7s+1QDj3p4dgreDKwbDWMBRf33bV4Cn+rkj+EtaG2fC1PcFdB2uFw3BP2epxn4YVK72Id5Ekr8fbfjgC32N9YBsFayal3azh+LxgisTr4hPl/nwAXb8DTuUeXOl9cyI+r6a7q2AtqMwJWu/Bx4dnH76eRiqfCSsmuGEtbgP+HFF8CQ6EaxiBxx4ujt0Ca7VB3FOaHRX4/rUhA99HVY7EYWoJlVmwFvFVMayZA/j8dTjSDWv16fh6MDIFv16EA7/XB2vxvZJ2f25SAsypC7XnG799fCD4zjvvlMLCIwHOCxculPPOO09eeeUVsdvt8tJLL3V6uR0eCP7lL38pDz/8sNx7771iNnd4ZgkiIiIiIiIiIiKibhEKcwRfd911zf89efJkOXTokOzatUsGDRok8fHxnV5uhweCvV6vXHPNNRwEJiIiIiIiIiIiIupmYWFhcsIJ+F+zt1eHB4LnzJkjr7/+utx3333f+cWJiIiIiIiIiIiIukw/nRpi/vz57X7sM88806nX6PBAcCAQkN/85jfy/vvvy/jx448Li+vsihARERERERERERF9F6Z2hMW1GSbXC778Es/V/20mbfL6NnR4IHjbtm0yadIkERHZvn17l60IERERERERERER0XdiiEhbcwD3wYHgVatWdftrdHgguDtW6vnnn5cnn3xSioqKZMKECfLcc8/JlClT2nzea6+9JrNmzZJLL71U3n777S5Zl6BNSS1VajFunBRdVoETdoMevAssFbjmKsGD7nHbcbKlo6Aa1g5fkAhrjTicUyKVbf9+Bv5rxvyYg7DmMXCi6da6QbCWnIS3r2wo3r6IPFiSpjg8H3bsLpxW64vA29BoxgnJtWkWWItTEpm1FGsjGqcZB2vwcdbXJ0/vKC1ZPBiOE2/dCTiVPr/SDWveBhxpbS3CqcQuHCAscTtw+nTR1SNgLfoAzq6tHobfF3ci3vZSbySs3RO3HdZ+dPg0WPtz+hpYe2M0PmdsrRgGa96IFFiLyMfvS+xu3DeVBu6bBjPu/Sov7m8x4/1gDcf73e9VUtXxq/XJv4B/F2rqeDTez3YX3s95FTH4BZX3zziIz/EOfJmSsHycaF0xFi/ToqTLl03A17CrJn8Ba79Jat+3EY6VH8DnDKtyUTlhxCFY21GEk9Mjc/F51r2tEtYqJ8bCmqMCv58e5da5woLv9+xhSn648j2KoEvrYrxvQ62/1ftzO36PfHX4WmuPxfevOw7j64apAJ9zo/fjnRnAqyJ+F35e49g0WKtLx+/LBeO3wdqN8Z/B2mQ7XtG5h6fB2lnJe2BttXJAFtXhDxlhJbAk1ga8TO34j96D3+tKK963gVjcw+54fH9eWYzvlSQM33uK4PuFUOtvw6rcnyvvkSmI92V1E/5cVFTkhjVrCb6muErx68XuqIc1sxffZzRm4nVRPvLK4HT8YSHVWgVrWn8vLB0Da5+PfxPWbo45BdY+rR4Pa9EHcW9UjMK9GL8Vn7tjd+D9XhkIg7UdDemwZlGu37FJNbBWYVF6v1r5/B1i/d2buusbwX1p/LKzOjwQ3NVef/11mT9/vixZskSmTp0qixcvlpkzZ8ru3bslMREP3OXk5Mjdd98tp556ag+uLREREREREREREfVZ3TBHcE+PX5555pnqzAsfffRRh5Z3VLsGgq+44gp56aWXJCoqSq644gr1sW++if9a1JpnnnlGbr31VrnxxhtFRGTJkiWyfPlyWbp0qdx7772tPicQCMi1114rDz/8sHz66adSVVXVodckIiIiIiIiIiKi0NMd3wju6fHLiRMntvh/n88nW7Zske3bt8ucOXM6tvLf0q6B4Ojo6OZR6Ojo6E6/2LG8Xq9s2rRJFixY0Pw7s9ksM2bMkLVr18LnPfLII5KYmCg333yzfPrpp+preDwe8Xi+mSqhpgZ/fZ+I+hf2N1HoYn8ThS72N1HoYn8TUZ8QlLbnCO7AVJg9MX55rN/+9ret/v6hhx6Sujo8LVFb2jUQvGzZMnnkkUfk7rvvlmXLlnX6xY5VVlYmgUBAkpJazg2VlJQku3btavU5n332mfzlL3+RLVu2tOs1Fi1aJA8//PB3XVUi6oPY30Shi/1NFLrY30Shi/1NRH1BR74RfOwfrBwOhzgcjha/64nxy/a67rrrZMqUKfLUU0916vntniP44Ycflrlz50pYGJ5ku7vV1tbK7Nmz5YUXXpD4+Ph2PWfBggUyf/785v+vqamRjIwMeFRok9WLEkZRXhQFa6YAntPDUouDAMIP4+clbsKTpDek4MnV69ITYC2ohFjYhuG/5EY4cTidFginebJ8HKw9m4rDbS5vwME+tSMdsOapw990T96AQ5rqU/CblrwO76PKEbiPqgN4kvtS5VhyuJQgGg8OlNFCVkxN+Hl9QYf724G31RaB93N1GQ4AEg/uYWs1rjmVQDgbzloS14EKWPOH4/4unI7DLyJH4WXGheHwC60X64I4GEMLhJt96HRYuyxhM6wVTMTn4MoGHEQTlYvP+a69+H2pUsIntaApr5IW5E/APezzKidoi3LdUq7yJp+SUNUHdLi/1dMV3lZfI+4N7e7RUor3iRMfOhJeqITi2PFGOKrw+as2Az/Pm4rPbXNiP4e1haUnwdr4sFxYy7bhENU/ZL0Da5824p5aMBL3cL4SWpmwBTdAZA4O5jMF8XW4RpmnzRvA9xneaKUZXTgMyRqBzwsB5bxg8g+c/tbu3cNi8H5urMf7y5KP76Wt+PZODYRLXovvpcuUa1jZOLzQuLH4ZuLEiBxYS7Pg88LKRnz8L0nH33jSgqbSI3BKZs0w/F6XNrhhLeNDvG8rR+BtiMzF2+6Nxu91QwBfK6pM+D7RpATBaiGxhk0Jg/SGWH87lc8iNlyz2vC5s+gQDgS11OH78+i9SiDcdiUQzofXpTENh70WTVGuUyeUwdrE2HxY+83h82Ht9SErYe3hhB2wppkYiVPX1w3PgrWSUnzeCyvBvVGbic8ZZvzxQyJxJq3UCu5vv1sJmPQrfWrGx672mbSvf/7uVzowR3BGRkaLXy9cuFAeeuih7/TynRm/bK+1a9eK04l7oS3tHgg2jK6PL4yPjxeLxSLFxcUtfl9cXCzJycnHPX7//v2Sk5MjF198cfPvgsEjTWS1WmX37t2SnZ3d4jmtjeQTUWhgfxOFLvY3UehifxOFLvY3EfUJHRgIzsvLk6iob/440do5rCfGL491bEabYRhSWFgoGzdulAceeEDfNkW7B4JFRE2r6wy73S6TJ0+WlStXymWXXSYiR96YlStXyrx58457/MiRI2Xbtm0tfnf//fdLbW2tPPvss8eN4hMREREREREREdHA0ZGpIaKioloMBLemN8Yvj81oM5vNMmLECHnkkUfk3HPPbfP5SIcGgocPH97mYHBFhfLvIVsxf/58mTNnjpx44okyZcoUWbx4sdTX1zen8F1//fWSlpYmixYtEqfTKWPHjm3xfLfbLSJy3O+JiIiIiIiIiIhoYDEFj/y09ZiO6Onxy67MaPu2Dg0EP/zww8eNSH9X11xzjZSWlsqDDz4oRUVFMnHiRFmxYkXzBMy5ubliNnOeFCIiIiIiIiIiImpDB6aGaK/eGr/cuHGj7Ny5U0RERo8eLZMnT/5Oy+vQQPAPfvADSUzEYR6dNW/evFa/Si0isnr1avW5L730UteujPaFZyVYRw2Ea8QHgrMYPy/uaxxmYGnEM6H7nXiZdRm41jAcv94PsrfB2iBHOaw9VYHnPLk7dj+s7aw7fo6Vo+5VwljeGvoBrJ3huRTW8pQguUIrnoQ78hA+c9QNwkEVEUV4/zUm4rb0+/G6NMUr7WwoB3YH/wrWnxlKqJavVgndCeL3z1qD+9tehdfFivOUJKhkV3kycSBi+WgcfuHJxKGO12d9CWu7lF6cc+g0WBsdWQBr22vTYO1/Mz+GNc3GBJwA8c5Q/AfMfLMWCISvd6mf4MCQKiUM0jArvWgoQRUxSvqFcnwaNuXupo+HxXWYEnxpdPL6ba3C59UInJcmtgb8vkcews1fNhFfN7SwrNoR+Pi49aRPYW2MDR+rt8euxy+oSLTg0KT8AE7CzLbhUJz7xq2AtUd8F8JadTXevsBIvG9TP8X9bVICXWsylZ1kwjWlu8Wvhb7Zlf7u42FxHaYERpmUsLjGYhzSZK/A10zl1lYM/DQJL8brWXwy/ienXuV7NvVDcGDg/CGfwNqqypGwVhvE1748Txysne3C9wta0NSPvfi8MD4J3y+sG6bcnzfgXnQq+696CL7f04IAI3KVz1cmfP0OOJU+DcMBYwPp/lyU67AElDDUUnwM2Kpwo4YV4ZezNimBrk7lPjseH6tl45TPdkNw6GF9I17m08k4QHmdB19VfMrh+FTFaFibFr4X1n7ixjdEb0fjkMycibgXLevxOcpRBUviC1fGZDx44221yjFowvtdvdRqA4w+ftGxR3TDQLBIz45fHj58WGbNmiWff/5587eJq6qqZPr06fLaa69Jenp6h5Z3VLuPwK6eH5iIiIiIiIiIiIioK5na+dOX3XLLLeLz+WTnzp1SUVEhFRUVsnPnTgkGg3LLLbd0ernt/kawYXRiqJyIiIiIiIiIiIioh3THHME97eOPP5Y1a9bIiBEjmn83YsQIee655+TUU0/t9HLbPRAcDPbxd4iIiIiIiIiIiIgGtm6aGqInZWRkiM93/BRRgUBAUlNTO71cTk5CREREREREREREocNo46ePe/LJJ+UnP/mJbNy4sfl3GzdulDvvvFOeeuqpTi+3Q2FxA4FJDc9RJh9vwGPqjgq8RJsSSlCbjoMHGpXJ1bWvtzek4VCCSdl4ovczI7+GtRI/Dr+oVkJVVjTibThYjYMqXslaDWuanw3+L6x9FDsK1t5uPAEvNIhbKOEr/F7XZCgBRPlKoJkyAb5hVoIIwpUQJSVALdSYPLhP1cBHpb8tOINNDSuxKoEFZiXJoXAaDo5oHIwDZS4Yux3WNlZlwtqfB78Na3NzcABjmBmHT96chMNtOivOhsOdMlLwSTg3EA9r9q/wOaohFYdYBJTAzuiDeN/WZCqBZkbn+nsghc2YmnCfmpXTnFkJdLXgw1h8kcq6KAGdJSfg66IXZ0FKUyru7xNG4rDE9wpx+EuTkkxZo4STXuDeCmu7PPjbCeeE74S1cXb8vnzRhINaIsJx+F7VGNzDzgLcU/ln4oCxmN3K9VS5q7Y0akGRePsCrr4+e10PURJ5TNX4jbfWK+cF3FLq/Xn0AXxiqEvDPdWAs1fFk4xXZkhWMaxdqaRWVgTwcXxBBL6v/0cA3/dedWAGrF2btBbWfp+Ga+/U45NpjRefh7ZV43sXQwl30j4nKbcuYlaeZ6vDx6fZi2t+ZZkD6v5cS9zy4X1pq8X9ba3DiwzgS4OqcgQ+HutT8PM8Gbi/ByVWwlqkDX/IuDEX/5PwZYNwSOzMXThg9aeZ+LPySBsOexXBYZB3Za2EtSeD58Ja3oQEWHMW4nN+eD4sSUQ+DtFrSMLn7sgcJSgyXbk/j1DuF/h1zB5hMo78tPWYvuyGG26QhoYGmTp1qlitR443v98vVqtVbrrpJrnpppuaH1tRoQw8HoMDwURERERERERERBQSQmGO4MWLF3fLcjkQTERERERERERERKEhBOYInjNnTrcslwPBREREREREREREFBJCYWoIkSPBcG+//bbs3HlkirUxY8bIJZdcIhYLnjqnLRwIJiIiIiIiIiIiotAQAt8I3rdvn1xwwQWSn58vI0aMEBGRRYsWSUZGhixfvlyys7M7tVwOBB/DFNQCo3BNC4SzK3Ore3HOmvjC8OsFlUnuG4fipIO4xBpYuyzxS1hbUT0e1u6M/xjWDtjwBPg3fXojrA1OK4W156oGwZoWRHNxGCzJI7uHwNrwoQWwtkdwKE65D7dXWDE+49Sl4/0eVoifZ69Sgip8eEZ6X4Ry9guxoAqzEhZn8eD3z44PYwlX9mXAhpfZkIhrWtiYFgiXnVUEaydE4DCpGYn7YK0ogP/S2OTHx/jzO06HtbhIHOxmKCFbpyXj9Twlci+sxafjk/DTZTj4pmaU1jdKOJESMiTKNUajhRrZq9jfInrgo1W5flsa8TK1MA8l30sNHPLH4ppnEH6izYUPgrvScMCLzYTDUU524ONYC4W6K+caWItw4nCb5GHVsHZPzsmw1uDHIS7RLhwWN3osDtlaYxoKa648/HravVlYEe4pvxL65sM5O+IRfBAGbQOnv7X7GHMTfm9d+BAQP85SE4sS6Fo2Ft+E+5V7TW88DhEenFUCa/cOfg/WIsw4vCrVVgVrjxWcD2vrDuMQNr8XnzMWZ+J7kH/U4Xv3j6pwYPOQiDJYE5yDKdvsGbBmK8b9bcenKDHwqVS9RmvXA8Os9Ld94PS3FhZnUfrbim8nxYovDeo5VwvmVgPhEpX+zsQnoggbPkCaArjfZsbiEOgcP77vLW/AJ77b11wLa5eNwSGxjydtgLWN9YNh7ZGh/4K1ZZE4DO9T2zBYs3jw+dkw49534VOweJVwYIfyGdGwdLK/tYRj6pBQmCP4jjvukOzsbFm3bp3Exh75EFFeXi7XXXed3HHHHbJ8+fJOLZcDwURERERERERERBQaQuAbwR9//HGLQWARkbi4OHn88cfllFNO6fRyORBMREREREREREREIcFkGGIy9JHetuq9zeFwSG3t8d/yr6urE7tdmSagDco/eiQiIiIiIiIiIiLqR4x2/vRhF110kfzoRz+S9evXi2EYYhiGrFu3TubOnSuXXHJJp5fLgWAiIiIiIiIiIiIKCSajfT992e9+9zvJzs6WadOmidPpFKfTKaeccooMHTpUnn322U4vl1NDEBERERERERERUUgIhbA4t9st//rXv2Tfvn2yc+dOEREZNWqUDB2KQ4/bY+AOBBumIz/HsCjJ4loibNCBa0o4p7pMn5JQ6UvDqdyuCFy7YhBO/Lw2EsdlXh5+GNaeq5wMa3vqk2DNVIWTO3OqUmHtP2bcrSdk5cDafZXjYe20lP2wdoV7I6z9wnslrJVERMGa5zBOedYSiz3R+Pg0lG424SBbMXvxMoOuPv4nMgT0t/Y+aP8sxId3pdRZ8Pun/ZsLT4ySLh+NV3TkkAJYOydxJ6zNCNsHa8UBfDzalDdtd1EirAWKXbBWJDhWPXUkPg/V+PF6Ljl8Oqwty/4nrG3OxunopU04VnqL4OdZqy2w5otU0u2VxGK/kjruV9KvtZsbA69m34b6W0l0tzbgmkVJFrfgy6k04MubVONAa/Gn4IVa7LjfpmYegrVhtjpYS7TgfssP4GRxq3LwNB3GB12T4NqLru/B2lmJu2GtTun9NCWy+/3SMbCWkVkGa3mmeFgLOPC9i7MUltQ+tdfgmjca1wZSf6v350rv+/GlSALK1Hr1qfj1fMp9vTcR39hPH4Ovw/4g3mFO5eT2/f3nwFqKC99Q1vnxBxdvvrKBisu+ugnWLMpXrh4f+QasbWvKgLXPiobAWnQCPrdV+/FNXdCK94OrGB8Tpk5+nrPj1RRfBH69QFho3Z9rn4eVy5va39o9v7Ue12qGKPfnSXhFw6MbYe2hIf+GtZdKcdjT7IQ1sPb3smmw9pGMgrXK/TGwpsmpj4O1s7ZfBWtRDnyTdXPMOljbUpwGa7FafzvwPY8nH99LWJpwv4UVwpL4lOuIdn8ponz+dvbT/u6L+nFYXDAYlCeffFLeeecd8Xq9cvbZZ8vChQvF5VJOfB3AqSGIiIiIiIiIiIgoJPTnqSF+9atfyX333ScRERGSlpYmzz77rNx+++1dtnwOBBMREREREREREVFo6MdhcX/961/lD3/4g7z//vvy9ttvy7///W955ZVXJBjsmrksOBBMREREREREREREocEwxBTUf8TomyPBubm5csEFFzT//4wZM8RkMklBAZ4msiMG7hzBREREREREREREFFLaM/VDX50awu/3i9PZcl5rm80mPp8yqXoHcCD4WEruU0AJhNMCZXwR+OjSJgM3onA4hDsWz3Lv8+Oggy3VOHThLSeeCb1BScP7+74TYa2+BAdORB5SvpCuNOTeyGRY+71jBqw1BfDhfmniFvx6Xvx6ZyXvgbU36ibCmkcJC2p04Vnn7dX4PdMmpFeywMSw9tGzXzeweHCDa++fH+cOqAFAvij8TzccqbiH48LwyszL+AjWfpd7Nqx9XDYc1ibH5MLa+wU4cMJXg88LsbvwsepVwvfynTikaUxMEay57Tik44nS02Btc0k6rHl8+JzhjMWv5wvDz/NU4f42LPjcrQY/KS1s9ilhM7bQ6n2tv71KWI9J6eGgcn4MOnDNlorT6ezK2z44oRzWpkXjUFPNX2vwNezJHThoqqECh1G4KnB/a6GHe504CPZQWSys/eXEl2Ht57txSM0FaTtgLajc8K214XTG3ZYUWPNF4d631eL3TA19U+5LTX4lQDbE+lu7V9H2pUm5d9fujbwxeKeYE/E12mnDCVVaAGNGOA493OHBoUmnxe6FtX8V4JDknP047TJGuX5roV7lVhxClTi4AtZ+uv1qWDshCYdVO634c1KT8hH3zIlfw9qq7fiep86FL8QO5ZyofUbU7ocMc2j1sEY7zwVxPqdYlXt3j5KJFgjHvWhE4ONKC3Q9Je0grP1fxUmwFmHB15tVtaNhbUcFvrYX5OHraWSecqwqwcRfOrNgLS69CtZOScTfXvzBjhtgzWXHJ5ufD3sf1h7beQGs+YfiDWzIwzeKjcHOjVlo13bqIf04LM4wDLnhhhvE4fjmRqapqUnmzp0r4eHfjLG9+eabnVo+B4KJiIiIiIiIiIgoJJiCbQ/I99UB+zlz5hz3u+uuu67Lls+BYCIiIiIiIiIiIgoJ/XkgeNmyZd26fA4EExERERERERERUWgw2hEG10fD4robB4KJiIiIiIiIiIgoJPTnsLjuxoHgYwQ7Ga7RmKyEvkXgieU1rkg8A/6pKQdgbXsVnjz+zLhdsPb4nvNgbUg0Dnmor8SBMuH78CEWkY+/h+/eigNzDrgTYG1dcAisOd34/Tw5Fqc1vFc4BtYSXDjwy6ScVVzhODkiPLYW1kqLo/Hr1eL32uxVUhgGkKCS0qSFxmjPMxzKcZxWA2sNjTg0LNqJg8iCooS4KMfc9DgcNPVZ2VBYKyzEaRuOIq2/cdiGFCihfR68zA/842AtLgsH7QTd+D3LiKqCtSgbPmccqImDtQoTThcMKEEjXis+CM1NStCUEgjXVwMQuoPWp5qAEvqmBcK5EvH5f0oaDmCMtePnaSqUZMo3a0fC2u92nAlr3lp8HnIW4IQeexUsScLmOljzuPE2NATwvcRv8s6HtRMS8mBtaw0Og7wj9UNYK/fi9fSk43NUYTW+l/CE49SyQA1epkm5fg+kDy9B5ROLdr/lVwKbjWgcRuSKxPdpnkbcG3PHfwZrSbZqWHsh93uwtt+J73vLG/H1Jmc3/jwQuU8JPqtS7mt24G3wRuD7hRITDq9KGVIGa0kOfE/cEIF7qrABBz9NjjwEazIWl7aW4tC+Cptyf+5RwrkalRAqpTSQ+CKVa7TyuT3owsdxYhq+Z2zw4uuizYrv4S6L2wRr/yzDYXGZLvwZe31FFqwVHsThyu6duL8Tv8D3IHWD8HVYDHwSLjPj4/+fFSfA2gMnLYe1NBt+XzQXDcIhsaVKcvAH1TiYzxOOr8PmWvxem5UQYzUhkbpOPw6L624cCCYiIiIiIiIiIqKQYAoaYgrqI71t1UMVB4KJiIiIiIiIiIgoJHBqCIwDwURERERERERERBQaODUE1CdmH3r++eclKytLnE6nTJ06VTZs2AAf+8ILL8ipp54qMTExEhMTIzNmzFAfT0RERERERERERAPD0W8Et/UzEPX6N4Jff/11mT9/vixZskSmTp0qixcvlpkzZ8ru3bslMTHxuMevXr1aZs2aJdOnTxen0ylPPPGEnHvuubJjxw5JS8OT+LeXGgqlzecfi0MlJIAnAx+aXgJrqWE4aMqjpGZUNODgiC21g2DNonTBF1/iMClnCX5jYvbiSfXD/rMZ1movwhPLx36NJ/+vVgI8GlPxZO4venFIxwmDcBDN9BgcwLWnDId7JEfhfbu/ED8vPAaHiNX7wmEtYFXCZvwDJ4gm4FT626JsrBI4YY/Cva8FwrmcXlg7K3E3rD22+wK8TDsOvnl1/4mwVpOLQx6i9ikhZcpb5onG/RaZi98z934l0M+Gz3vlQRxEUxGNg58yU3AwZYNfCcuy4DC8sUlFnVrmXhPufb8Hv5+BerxMkxYyF2L9rQW7aYEyZjfuxTg3DlVx2XC/1flxiNH2chzg9L1kHAT7t104bManhCxKJT4PuXcpxwc+7UnyuzgMr/J7GbDmwPk8YpjxMb7dnwVrhzJxQFVSJA6aeujAxbBW78X7r64Jv5/xkfh48YXh8MnioBvWtB42K9fvUGNYles3PgWKOQG/73HReH9lu3GAWZoLB6atqcyGNW8QH+NZkTgYafXu4bCm9bejCh87NiWzMupAA6wFvtoJa+Fjp8Ga1423vTCIQ69eUwJrJw3F56HLU7fCWpkfB0ZtKMiENZ8Pb4MlCl8PAjX4APUrnzsHUlCkdv02lOu3KQK/7w4Xvk/zBvC+dIfhz1oXpW2DtY31OLC8yos/m28qwtfM2kP4/jwiF/d39AG87bVZOBAu6p848M52/iRY88TiY9wTi9/rR9bg6/CwLHwvPSnmMKytLMDny0AQv2cThuDP+3k1blirtOHP337t/nwA9XevChpHftp6zADU698IfuaZZ+TWW2+VG2+8UUaPHi1LliyRsLAwWbp0aauPf+WVV+THP/6xTJw4UUaOHCkvvviiBINBWblyZQ+vOREREREREREREfUlJuPIFxvUn06MA4fCjAa9OhDs9Xpl06ZNMmPGjObfmc1mmTFjhqxdu7Zdy2hoaBCfzyexsfjbYERERERERERERDQAGEb7fjrg6IwGCxculM2bN8uECRNk5syZUlLS+r/0PzqjwapVq2Tt2rWSkZEh5557ruTn53fFFnZar04NUVZWJoFAQJKSklr8PikpSXbt2tWuZdxzzz2SmpraYjD52zwej3g83/wz5Joa/E/yiah/YX8ThS72N1HoYn8ThS72NxH1Be2ZA7ij3wj+9owGIiJLliyR5cuXy9KlS+Xee+897vGvvPJKi/9/8cUX5Y033pCVK1fK9ddf37EX70K9PjXEd/H444/La6+9Jm+99ZY4nc5WH7No0SKJjo5u/snIwPPwEFH/wv4mCl3sb6LQxf4mCl3sbyLqE4x2/siRP1h9++fbf8w6KpRmNOjVbwTHx8eLxWKR4uLiFr8vLi6W5GQcpiIi8tRTT8njjz8uH374oYwfPx4+bsGCBTJ//vzm/6+pqTlyMQJ/HtAC4SRSCQJoxG+ly42DKjRflyfBmhYKpXn/qzGwZi/GE5pH4swMiSjAiTLhH+BJ9c1xOADC9fZ6WAuehierj8jF61I0DU/m7qnBE+d/UYsn/98UgW9sYpSQoVgHDiJwZ+LJ6g9U4xNGvQ1vu2FWAmUsymT1SkhNX9Dh/nZq7xH+c2BcEv4mg0VJVPL48XnBpOySf+VNgLWaxtb/6CUiUlrkhjV7Ie7veCWgLfogPn/Z9xTCmr8A1+qvOhnWorbjwBxbDQ59K/Hj96UhBQc/5QRwQFtCIg4EKq/E6zJoaBWsFTcqwXVxeNsPlePe9/pxEIehhUH6+nbQVEf7WwubkTAcnOJ04bA4s+BlaqEjTUrv28z4nPHO1/h+JqjcZ9jKcc29B2+DD2cmScLv1sBaw/k4uM5Vgu9PTErQrVMJkmuoxe91nccNa3vj8HXf7MBhtlY7rvma8DaMSSyGtR0l+J7OooQaBZWASSXPr88HyXW0v0XZHDVMSvmqT00Dvm582ZAOa/nROMAp3IbPJ4er3LC2tQLfT1qLcSBczG68fe49OPTNvPFrWKu5HAc2OyNx8GzUfnzf2+TG1z5nBb6G1WXg3v+yaTCs7UvBAXT1dfieIDu1FC/z8PEh5kdp4d+5dvx5x1ONj0FD+VCqBU31BR2+P1fCICUcnx/NymefaCX0LTYM98b+Ynzs/LnkVFiLiMT3y7UF+GJrrVaC6w7BksTsxcHLjnz8uSXMjq9hAT++fodvLYC1zAI3rB26IArWgjX43LYnmAJr+5343n1wCh60cCpBzzsK8NhTgrsO1iKilP2u3Ccagve7ydO3+7s/MQUM9T7g6GNE5Lg/WC1cuFAeeuihFr/riRkNekqvDgTb7XaZPHmyrFy5Ui677DIRkebgt3nz5sHn/eY3v5Ff/epX8v7778uJJ+IbEhERh8MhDge+4BNR/8X+Jgpd7G+i0MX+Jgpd7G8i6gtMhiGmNuYAPlrPy8uTqKhv/nDRHeewozMarF69Gs5o0FN6dSBYRGT+/PkyZ84cOfHEE2XKlCmyePFiqa+vb55z4/rrr5e0tDRZtGiRiIg88cQT8uCDD8rf//53ycrKkqKiIhERiYiIkIgI/NdmIiIiIiIiIiIiCnHfmvpBfYyIREVFtRgIbk1PzGjQU3r9331fc8018tRTT8mDDz4oEydOlC1btsiKFSuav26dm5srhYXf/BPjP/7xj+L1euXKK6+UlJSU5p+nnnqqtzaBiIiIiIiIiIiI+gLDaN9PO317RoOjjs5oMG3aNPi83/zmN/Loo4/KihUr2pzRoKf0+jeCRUTmzZsHp4JYvXp1i//Pycnp/hUiIiIiIiIiIiKifscUNMQUbGNqiDbqxwqVGQ36xEBwn6IFbvmUL1BrWVwWvMw9B/BE6FYl3CZQjucssTbglXE24ZoVz4MuyWtxAIT1IA6FEjcO1Ggch4M4Ak4cAGH242ZtiMcTr1uUzD4XzngQMZRJ9Wvw65XV44CX8sNu/HpaYIISaCaGEgoVxDU1IDHUaOE5eHdJRTH+ZyKRcbg3astxUFGrYThHefFO0UIlIkrx9kXk4/OQoxIHI9nzcWCaFghnGTcS1sL/uQ7WGi+cAmthWw7DmmtQJqypyXwFOKiiIh0HhgQj8Hu2etsIWHNE43CPgBL6pgWSGkpiVBv5CKFF29gAPgb8Afy+a4GPpaVhsFbYFIfXRbmXsNbjmpJBJVEH8bZHFOB7CXs5vjBqh469SlmZtVvxuijLLL91OqxF5uF+M8x4//nLcX97Y/AWeiOVe0HlPnHTISXwSwmgCyj3CyYl5FQa8bYL3u39UlB5H7TW9zfi91a7JbA6cWhS7n4cGmZY8MrYyvG6ROMcJjEr+dBmZT97o/DrWaePhbWI1/E1WmMeMxzWYvbgXjwa1NOaqBx8jFcPxufn+nr8+SMYho+lvXWpsKYFmu3Nwf8kOMyNQ8tEOV6061aoUQMflffBUGrlVUrAcKEb1rQgUS20taEYH3ORh/F6Rh/Cr9eQoAQppuKesm/CoYe+8fgztueyqbCmBblbXXiu06TN+F6pZhB+P60N+Pylndv21ytjK8o9uKZaCRZtqMKB89rnOfUCRF3GFDzy09ZjOuKaa66R0tJSefDBB6WoqEgmTpx43IwGZvM3+/7bMxp8W2thdD2JA8FEREREREREREQUGtoz9UMHpoY4KhRmNOBAMBEREREREREREYWGDoTFDTQcCCYiIiIiIiIiIqKQYDIMMbXxjd+26qGKA8FEREREREREREQUGoKGiDIPffNjBiAOBBMREREREREREVFI4DeCMQ4EH8OkpTtq4Y5KinR9Pk4ttSjp4eZinIgZVq6si0JLRUz7TxGsBeLwNlSenQ1rkX9fC2u2gkJcgxWRxstxomn8xzh22TsoFtYaUhywZgooKe71sCQet5Isi8OFJagk5wbtuGY4lERt5bg2aXHbA4jJp6QSK8+rOxQFa2YlzdjsxTWLEmprbcA1ew2uxXyaB2v+w/mwVn/RFFhz7N0Pa6YapTkU3kh8rDrS42HN/epGWLNcORnWglblxG7CtaAV97cfny7FV4efp6XNi9bf2gFqDKBUYuV6qtU8Sp/6GnDatVlJfDYr5xOtv221uOaoxDVfOH495/q9+ImDcLo2zjEXkbVbtSpkTcEXv7gX1nRqmbU/mQ5rKWsa8fOycAq4x42T2huVFHd/OO5vr13pYVgRMZTzkHYdCTUmD+5hw4mPVvW+XunhYCW+E3XUKPcLyi7R+jsyD2+DNwJvQ8xWfGJoTIuENctn22BNu6RY09Pw8/JLYC04KBov04u3PewQ7mFLEz4/+yLssCaVSg/jRUrAqdyDK/fuDb5wvFDlGBxIt+cm7VzmxfsrqH2+UWoW5X23NOHet1fBknp/HlRGXOqT8fYlrq/Gz8vEN5uBqipYM3/yJay5YKUNZfg8FNbYhGv4NCRFFw6CtfAC3Bz1KfjNDjhxzRep9LDy+VtlVp6n3fMr96XUQYa0IyyuR9akz+FAMBEREREREREREYUGw2jHQPDAHAnmQDARERERERERERGFBFPAEFMbX/k1tTWHcIjiQDARERERERERERGFBn4jGOJAMBEREREREREREYUGDgRDHAg+hkmZnFsLWrPU4rdSnTxeSUWz4LnVxb3PD2theXWwZi6qgDXvMBwao00sL0NOhiXrkCxY8x/Iwc9LxesSsQdPSF9xSiqsmf24ya1NuBZ1CL/XZh9+XsCuhP3hnDzxxCjhJTYloMSsBKlYlYALNSwrtE6MZi00RulvawV+j6xKJppJSVuyKecF9z4frFWOwMdV3Da8MkYkDisxTRkHa873NuFlwopI3UTci+FReF0iXlvXqddrugSH2oUVemHNfggnb7pGJMJawIGPidp0fD2wV+Pnab0vBj52/eHKO6Mc8iHX31roDm4psVQpF2JllzjLcE0LhYrIxytjbcQnjcrhONzMVo/3pSkeB6VWjcIBTjIKX9sjXsd9qvEX4lBajfe8k2Atfhu+WapPx+9ZeCHeD41xOGgqMgeWpCFFCxHDgUABvJoStGvXdvy8gdTfUoPfCEuTEraHb+9U7r34vbXV45sJNZxU2V1a0JSpEp9s7JH4wDL8+PjX7gn8G3C6U+0Pp8GaFh6tabwYX9u1EL3oA3g/1Kbj50XivDv1ftnjxjWvUjPwaUGthVx/a2Gvyv25SbmXttV37t7dVaZ8tlPu/ey1+Hm+MPy8+E1VsFYzHAdSa9dhs0O5qFjwe+2bNgrW/C7lgFyOA5urLxwOa9rYSuzX+NpeNQxvX4QWJJes7L8qJTg4WvtsDksScGifv/HzQq2/exUHgiEOBBMREREREREREVFI4BzBGAeCiYiIiIiIiIiIKDTwG8EQB4KJiIiIiIiIiIgoNASNtqfaCHIgmIiIiIiIiIiIiKj/4jeCoYE7EGyYjvwcw9KohM0ooRLWRlyzdXJC+oZEvC4BJTykMT0C1pw2PNG7pQlvoNYeka/iyeqDLhesWYcOwc/Lx2lqpng3rEW9gsMoKm/EIRZa4IS9Ds9kb6/BwT4+nIelTiwfswe/201K4ETAgZfpi1AmwI9SJrJX1rNPA/2thrfV4vfIVo2fZ1VCHbWgqQDOIhJLE17R1PdxWGLQiRdqasAnKUsNDpisu3AyrBkWvIHhucqJLycflsx2vA3m+DhYa0jElzPXchx413j2JFgLOPF5QQv9UXLd1N7XwkssOO9OLF6lv/HlQILOfnrj04nrt3YRc+C8QAmE4ZoWchJejK+nvkh8Ha4dhA+QpI9w0Fr9qHhYq56EQw+1YKvwXTgNr+oaHCQXvQOfo0xNOKBK2wbXhzigquLqifh5Ffhcapjx8RJRgN8X7bwXtwM/r2wc3u/2KlhSQ2oMJQQxEBZa/W32KPfnyrXdgQ/H1l6mmRY45KjGL2ivwidra5XyYeFwMSyFZ+Lw1UAavi7K2q9gyTIGBzhJrQe/3skTYC36DRwsbc4eDGt1Y/E5yvUfHEIVnoaDpWtPSIO1tI9xwF59Br559zuVQLgoJYRKCYkNKvlbvkjl/ly5h+zTUH8r9zhmX+c+m5uV86N2TxCwd+5cE5mD+7tuEA43qxuCA+Gi3tkKa03n4xBV50r8vJqLJ8Ka9rklPB+fF8RQQjK1QEQlBN0fhp+oBWj6XcrnOeU+Ww3sVEIJzcr2BZX7Be347LfX777ICIoElRv2o48ZgAbuQDARERERERERERGFlqAh+lcahVNDEBEREREREREREfVrRrDtb/zyG8FERERERERERERE/RjnCIY4EExEREREREREREShgVNDQBwIPkbQqoRD1OAJvy1KYJStFi+zNl2ZlV1h9eCvsDe58azldSmRsKaFjblj8YT01UNwuE3cdjxxftUwHCQXtCXjddmPEwWcSgBdVA5+Xl06Tl1ojMfJT/UpuJawBU+qX5+GX087JrRJ7v1KOJ1ZCVNo69wYUpRtVSftx4eq+JUwLifOWhJDCRfwRuNTc83gBFiz1eMNrEtzw1rqhzgty+zFy7QqAZMV4/C5xjt9HKxpAVza9mnhjL4zcSCcrQbveHuFEpgTjs97hgn3d32yFkyJt68+VQmbUQLotOM6iLNL+iXDgt8/sxKopy6zc0+T8tG4h51KOF14sRJu5ujcLVtQCWPx2PGJyDcZBzhpy6ycEAtr2nkvIh9fo82DcPBT1CHcp5Y63ADVI/DJO+IwXqZ2fvYo91+OClgSv3KNUXu4vwa6doIWJmVRMozUexwl2NMXrtzze/ETfRH4xKpcpqRkxmhYS1qPb/48cfjmPXw4vicOuPDz6jPxmmr3xEnluE+rJ+B7F5PyIdw8PBvWik/FAZPOCnwzUfg9fH/iKlXWxY9rpkDnAmS1/tZC0gL2gXPzrr1/NiV/0a4EPXujcc3aqIT0KeuiBYlGHFJWVPtskoo/D2uvV3rjibDmqMK9EXkQp6LVDcLpuV4lkN29F297bZYSKt+A74ecVfha64nCO0nrYe2+Rvv8rV2Htc80HnyrRF0paIhIG1M/cCCYiIiIiIiIiIiIqB/j1BAQB4KJiIiIiIiIiIgoNASD0vY3ghkWR0RERERERERERNR/8RvBEAeCiYiIiIiIiIiIKDQEgiIGvxHcGg4EH8MUxBOF+/Ec6WpNTJ2bfFybyL42De86i0cLM8DL9CvBQWUT8EzokXn49SrGKJPAK5PxiygT4E/AQUzO9CRY80Z1LvUnoLwvWpBQzWAlMEoLfuqGrtS2QXmrQ442ab822b8WDmFSgvgaUnAtrAjXKofhg0ANJVDCSsKUAJSKE3BiQVOscv6qxSvTiHNhJKwYr4vWp01uZfvK8DJrMpUwyCRc03pRCy4yKae2AH45aUzqXCCpdlxrrxdqtCAy7TynBXY4KnEtqLyeFtBpUr55UJeqhb3iYCSPG7+eqxTXbMp1uCkGn/i0Y65JC0BR9kPQovTiEBxcp21D0IoDsTzReGUakrQLPy5p+70Rb4JYcT6PGiRnmAfOt1iC2rlMO66U52nnce36HbTh3tCO/7pU5cOCsisLp+PwtvAi5XxyOj7ovFH49bTwPe1ck38hvgfv7DFeORyf97TPNE1xWqoXLlUPxQeTtaGTnyOUMG7t/jI4gALhRPn8rd67K/dp9am45lLCnH0Ryn5WdknBqfhA1vaz9nmgPgX3vr0GP89ZqYUr4+0rmYxDVLXjWPts4olWznvKW90Yh6/DVuWeWJsFoE4JZNeOM22/a2NA2jK1gGPqOoYRFKONgeC26qGKA8FEREREREREREQUGgxDJMipIVrDgWAiIiIiIiIiIiIKDYYh6le6mx8z8HAgmIiIiIiIiIiIiEJDIKDPIyQiYrRRD1HKjDU95/nnn5esrCxxOp0ydepU2bBhg/r4f/7znzJy5EhxOp0ybtw4effdd3toTYmIiIiIiIiIiKivMoLBdv0MRL0+EPz666/L/PnzZeHChbJ582aZMGGCzJw5U0pKSlp9/Jo1a2TWrFly8803y5dffimXXXaZXHbZZbJ9+/YeXnMiIiIiIiIiIiLqUwyjfT8DUK9PDfHMM8/IrbfeKjfeeKOIiCxZskSWL18uS5culXvvvfe4xz/77LNy3nnnyc9//nMREXn00Uflv//9r/z+97+XJUuWtP+FTUar0e5Bp5I+rYRIa/xKMm9nNSnp07quP9AblWTlzr9e557XkN71y+yspmSt2rl18bk79bSBB/W3knjrdfTs8VEd3aMvJ41pnX1m178v3dEb9Vldv8y+xB/Z22vQh4D+NpQ7Gn9E546B7rh+1w/Sqj3db5oevmYmadXuWJe+c15gf39LD96fd5Y3ppPPi+va9RARacjQqj17jHfH9vUlvh6+bwtJqL9dSn8ri/NHdG41arvh2t5ZnvjOPU/rt7rBnVtmX7ouEnWJYOvnnBY6MRD8/PPPy5NPPilFRUUyYcIEee6552TKlCnw8f/85z/lgQcekJycHBk2bJg88cQTcsEFF3T4dbtSr34j2Ov1yqZNm2TGjBnNvzObzTJjxgxZu3Ztq89Zu3Zti8eLiMycORM+3uPxSE1NTYsfIgoN7G+i0MX+Jgpd7G+i0MX+JqK+wAgExQgE2vjp2NQQoTKjQa8OBJeVlUkgEJCkpJZfA0lKSpKioqJWn1NUVNShxy9atEiio6ObfzIy1D+dE1E/wv4mCl3sb6LQxf4mCl3sbyLqE4xg+3464NszGowePVqWLFkiYWFhsnTp0lYf/+0ZDUaNGiWPPvqonHDCCfL73/++K7aw03p9juDutmDBAqmurm7+ycvL6+1VIqIuwv4mCl3sb6LQxf4mCl3sbyLqC4yg0a6f9uqJGQ16Sq/OERwfHy8Wi0WKi4tb/L64uFiSk1uf1C45OblDj3c4HOJwfDMxqPH/5wAJNjV9l1UnGtCO9o/Ry5Ors7+Juh77myh0sb+JQhf7myh09ZX+7k/8hqfNb/z6xScictwUNseex0T0GQ127drV6vI7OqNBT+nVgWC73S6TJ0+WlStXymWXXSYiIsFgUFauXCnz5s1r9TnTpk2TlStXyl133dX8u//+978ybdq0dr1mbW2tiIjkLXzsO607ER3pp+jovpOewf4m6jrsb6LQxf4mCl3sb6LQ1df6uy+y2+2SnJwsnxW9267HR0REHDeFzcKFC+Whhx7qhrXrG3p1IFhEZP78+TJnzhw58cQTZcqUKbJ48WKpr6+XG2+8UURErr/+eklLS5NFixaJiMidd94pp59+ujz99NNy4YUXymuvvSYbN26UP//5z+16vdTUVMnLy5PIyEgxmUxSU1MjGRkZkpeXJ1FRfShCtBNCZVtCZTtEQndbIiMjpba2VlJTU3t7tVpgf/d9obIdIqG7Lezvnhcq2xIq2yESutvC/u5ZobIdItyWvor93XtCZTtEuC19VX/o777I6XTKwYMHxev1tuvxhmGIyWRq8btjvw0s0jMzGvSUXh8Ivuaaa6S0tFQefPBBKSoqkokTJ8qKFSuavz6dm5srZvM3UxlPnz5d/v73v8v9998v9913nwwbNkzefvttGTt2bLtez2w2S3p6+nG/j4qK6vcniqNCZVtCZTtEQnNb+uJfItnf/UeobIdIaG4L+7t3hMq2hMp2iITmtrC/e16obIcIt6WvYn/3nlDZDhFuS1/Vl/u7r3I6neJ0Ort0mb0xo0F36fWBYBGRefPmwTdu9erVx/3uqquukquuuqqb14qIiIiIiIiIiIgGup6e0aC79ImBYCIiIiIiIiIiIqK+qKdnNOguA34g2OFwyMKFC1udA6S/CZVtCZXtEOG29Lb+uM5IqGxLqGyHCLelt/XHdUZCZVtCZTtEuC29rT+uc2tCZTtEuC19VX/clv64zq0Jle0Q4bb0VaG0LaEkFGY0MBmGYfT2ShARERERERERERFR9zG3/RAiIiIiIiIiIiIi6s84EExEREREREREREQU4jgQTERERERERERERBTi+v1A8PPPPy9ZWVnidDpl6tSpsmHDhnY977XXXhOTySSXXXZZi9/fcMMNYjKZWvycd955LR5TUVEh1157rURFRYnb7Zabb75Z6urq+ty2HLsdR3+efPLJ5sdkZWUdV3/88cd7dFteeuml49bB6XS2eIxhGPLggw9KSkqKuFwumTFjhuzdu7fFY7pjv3Tldvh8Prnnnntk3LhxEh4eLqmpqXL99ddLQUFBi+X0l33SE73C/mZ/H8X+7rltEWF/dxT7m/0t0n/2Cfu7Y0Klv0Olt7t6W9jf7G/2N/ub/U0DjtGPvfbaa4bdbjeWLl1q7Nixw7j11lsNt9ttFBcXq887ePCgkZaWZpx66qnGpZde2qI2Z84c47zzzjMKCwubfyoqKlo85rzzzjMmTJhgrFu3zvj000+NoUOHGrNmzepz2/LtbSgsLDSWLl1qmEwmY//+/c2PyczMNB555JEWj6urq+vRbVm2bJkRFRXVYh2KiopaPObxxx83oqOjjbffftvYunWrcckllxiDBw82Ghsbmx/T1fulq7ejqqrKmDFjhvH6668bu3btMtauXWtMmTLFmDx5covl9Jd90t29wv5mf7O/e2dbDIP93RHsb/b3Uf1ln7C/2y9U+jtUers7toX9zf5mf7O/2d800PTrgeApU6YYt99+e/P/BwIBIzU11Vi0aBF8jt/vN6ZPn268+OKLxpw5c1q9EB37u2/7+uuvDRExvvjii+bfvffee4bJZDLy8/P71LYc69JLLzXOOuusFr/LzMw0fvvb33Z6vVvT0W1ZtmyZER0dDZcXDAaN5ORk48knn2z+XVVVleFwOIxXX33VMIzu2S9dvR2t2bBhgyEixqFDh5p/1x/2iWF0f6+wv9nf7O/2YX/3zDr35LYci/3du9vRGvZ3162zYbC/u7u/Q6W3u2NbWsP+7rp1Ngz2N/u797alNexvIsPot1NDeL1e2bRpk8yYMaP5d2azWWbMmCFr166Fz3vkkUckMTFRbr75ZviY1atXS2JioowYMUJuu+02KS8vb66tXbtW3G63nHjiic2/mzFjhpjNZlm/fn2f25ajiouLZfny5a0+9vHHH5e4uDiZNGmSPPnkk+L3+zu1HSKd35a6ujrJzMyUjIwMufTSS2XHjh3NtYMHD0pRUVGLZUZHR8vUqVObl9nV+6U7tqM11dXVYjKZxO12t/h9X98nR3VXr7C/2d/s797fFvZ329jf7G/2d9esM/u7+/o7VHq7u7alNezvrl1n9jf7u7e2pTXsbyIRa2+vQGeVlZVJIBCQpKSkFr9PSkqSXbt2tfqczz77TP7yl7/Ili1b4HLPO+88ueKKK2Tw4MGyf/9+ue++++T888+XtWvXisVikaKiIklMTGzxHKvVKrGxsVJUVNSntuXbXn75ZYmMjJQrrriixe/vuOMOOeGEEyQ2NlbWrFkjCxYskMLCQnnmmWd6bFtGjBghS5culfHjx0t1dbU89dRTMn36dNmxY4ekp6c3v6+tLfNorav3S3dsx7GamprknnvukVmzZklUVFTz7/vDPhHp3l5hf7O/2d+9uy3s7/Zhf7O/2d/ffZ3Z393b36HS2921Lcdif3ftOrO/2d+9uS3HYn8THdFvB4I7qra2VmbPni0vvPCCxMfHw8f94Ac/aP7vcePGyfjx4yU7O1tWr14tZ599dk+sapvauy3ftnTpUrn22muPm3B8/vz5zf89fvx4sdvt8j//8z+yaNEicTgcXbreyLRp02TatGnN/z99+nQZNWqU/OlPf5JHH320R9ahK3RkO3w+n1x99dViGIb88Y9/bFHrL/ukL/UK+5v93d3Y3+zvrsD+7pvY3+zvrhBK/R0qvS3C/mZ/dw32d9/E/u57vUL9Q78dCI6PjxeLxSLFxcUtfl9cXCzJycnHPX7//v2Sk5MjF198cfPvgsGgiBz5K8nu3bslOzv7uOcNGTJE4uPjZd++fXL22WdLcnKylJSUtHiM3++XioqKVl+3L2zLp59+Krt375bXX3+9zXWZOnWq+P1+ycnJkREjRnT7trTGZrPJpEmTZN++fSIizc8rLi6WlJSUFsucOHFi82O6cr90x3YcdfQidOjQIfnoo49a/DWyNX1xn7SmK3uF/c3+Zn+3D/ub/X1UXzyW2N99b5+0hv3dO9vSU/0dKr3dXdtyFPub/d2V28L+7jj2d0s93d80sPTbOYLtdrtMnjxZVq5c2fy7YDAoK1eubPGXlKNGjhwp27Ztky1btjT/XHLJJXLmmWfKli1bJCMjo9XXOXz4sJSXlzefBKdNmyZVVVWyadOm5sd89NFHEgwGZerUqX1yW/7yl7/I5MmTZcKECW2uy5YtW8RsNh/3Twq6a1taEwgEZNu2bc3v+eDBgyU5ObnFMmtqamT9+vXNy+zq/dId2yHyzUVo79698uGHH0pcXFyby+mL+6Q1Xdkr7G/2N/u7fdjf7O+j+uKxxP7ue/ukNezv3tmWnurvUOnt7toWEfY3+7vrt4X93XHs75Z6ur9pgOnVqLrv6LXXXjMcDofx0ksvGV9//bXxox/9yHC73UZRUZFhGIYxe/Zs495774XPPzZ1sba21rj77ruNtWvXGgcPHjQ+/PBD44QTTjCGDRtmNDU1NT/uvPPOMyZNmmSsX7/e+Oyzz4xhw4YZs2bN6lPbclR1dbURFhZm/PGPfzyutmbNGuO3v/2tsWXLFmP//v3G3/72NyMhIcG4/vrre3RbHn74YeP999839u/fb2zatMn4wQ9+YDidTmPHjh3Nj3n88ccNt9tt/Otf/zK++uor49JLLzUGDx5sNDY2Nj+mq/dLV2+H1+s1LrnkEiM9Pd3YsmWLUVhY2Pzj8XgMw+g/+6QneoX9jbflKPY3+7s7toX93THsb/a3YfSffcL+7phQ6e9Q6e3u2Bb2N/ub/c3+Zn/TQNOvB4INwzCee+45Y9CgQYbdbjemTJlirFu3rrl2+umnG3PmzIHPPfbk3dDQYJx77rlGQkKCYbPZjMzMTOPWW29tbtajysvLjVmzZhkRERFGVFSUceONNxq1tbV9aluO+tOf/mS4XC6jqqrquNqmTZuMqVOnGtHR0YbT6TRGjRpl/PrXv25xIumJbbnrrruaH5uUlGRccMEFxubNm1ssLxgMGg888ICRlJRkOBwO4+yzzzZ2797d4jHdsV+6cjsOHjxoiEirP6tWrTIMo//sk57qFfZ369tyFPub/d0d28L+7jj2N/u7v+wT9nfHhUp/h0pvd/W2sL/Z3+xv9jf7mwYak2EYRk9885iIiIiIiIiIiIiIeke/nSOYiIiIiIiIiIiIiNqHA8FEREREREREREREIY4DwUREREREREREREQhjgPBRERERERERERERCGOA8FEREREREREREREIY4DwUREREREREREREQhjgPBRERERERERERERCGOA8FEREREREREREREIY4DwdRtsrKyZPHixc3/bzKZ5O233+6R1+qonJwcMZlMYjKZZOLEiR1+/tHnut3uTq8DUX/C/iYKXexvotDF/iYKXexvImoPDgQPAGvXrhWLxSIXXnhhr65HYWGhnH/++SLyzYl/y5YtvbpOx/rwww9l5cqVIiLyk5/8REaNGtXq43Jzc8Viscg777wjIke27btcCIk6i/3dfuxv6m/Y3+3H/qb+hv3dfuxv6m/Y3+3H/ibqeRwIHgD+8pe/yE9+8hP55JNPpKCgoNfWIzk5WRwOR6+9fnvExcVJXFyciIjcfPPNsmvXLlmzZs1xj3vppZckMTFRLrjgAhE5sm3R0dE9uq5EIuzvjmB/U3/D/m4/9jf1N+zv9mN/U3/D/m4/9jdRz+NAcIirq6uT119/XW677Ta58MIL5aWXXmpRX716tZhMJnn//fdl0qRJ4nK55KyzzpKSkhJ57733ZNT/a+9eQqJqHziO/yan0hINUiMJaopSKWIyukk0llJtIlHsRqWpaJGgtGkRQbtWlaUUQjYVlBBdNhkhwQiB5aCUEZhUWLmwXKSGXcCx57+ITs07vfzV7K0evh8QPM/x3IQvA8/xHNPSFBcXpx07dujDhw/OdpmZmSovL1d5ebni4+OVkJCgw4cPyxjzr+fy/aMpHo9HkrRkyRK5XC5lZmY6+62srAzbLicnR4WFhc5yb2+vNm3apJiYGHk8Hl26dCniWP39/SopKVFiYqLi4uK0bt06tbe3j/wXJ8nr9So9PV3nzp0LGzfG6Pz58yooKJDb7R7VPoHxRN/0DXvRN33DXvRN37AXfdM38KdjIthyV65cUWpqqlJSUrRz506dO3fuhx8WR44cUU1NjZqbm9Xd3a0tW7aoqqpKly9fVkNDgxobG1VdXR22zYULF+R2uxUMBnXy5EkdP35cZ8+eHdF5BYNBSV8eBenp6dH169dHfE2FhYXq7u5WIBDQ1atXdfr0afX29ob9TH5+vvNh2tbWpvT0dGVlZent27cjPo705a7klStX9P79e2esqalJXV1dKioqGtW+gPFG3/QNe9E3fcNe9E3fsBd90zfwxzOwWkZGhqmqqjLGGDM0NGQSEhJMIBBw1gcCASPJ3Llzxxk7evSokWSeP3/ujJWVlZkNGzY4yz6fz6SlpZnPnz87YwcPHjRpaWnO8uzZs82JEyecZUnmxo0bxhhjurq6jCTz4MGDsPP1+XymoqIibGzz5s2moKDAGGNMZ2enkWSCwaCzvqOjw0hyjnX37l0TFxdnPn36FLafefPmmdra2h/+nv7tfPr6+kx0dLTx+/3O2K5du8zq1asj9uH3+018fPwP9w/8CvT9DX3DNvT9DX3DNvT9DX3DNvT9DX0Dfyb+IthinZ2dCgaD2r59uyTJ7XZr69atqquri/jZxYsXO9/PmDFDU6ZM0dy5c8PG/nnXb+XKlXK5XM7yqlWr9PTpUw0PD4/3pTg6Ojrkdru1dOlSZyw1NTXsv4W2t7drcHBQ06dPV2xsrPPV1dWl58+fj+p406ZNU25urvN4yrt373Tt2jUVFxePy/UAY0Xf9A170Td9w170Td+wF33TN/A34AUrFqurq1MoFFJycrIzZozR5MmTVVNTE/Zy9YkTJzrfu1yusOWvY58/f/7l5zxhwoSIR2eGhoZGtY/BwUHNnDlTTU1NEeu+/8AaqeLiYmVlZenZs2cKBAKKiopSfn7+qPcDjCf6bopYR9+wBX03Rayjb9iCvpsi1tE3bEHfTRHr6Bv48zARbKlQKKSLFy/q2LFjWr9+fdi6nJwc1dfXa+/evT91jJaWlrDl+/fva/78+YqKivq/206aNEmSIu5eJiYmqqenx1keHh7W48ePtXbtWklf7j6GQiG1tbVp2bJlkr7cee3v73e2SU9P1+vXr+V2uzVnzpyxXFqYtWvXyuPxyO/3KxAIaNu2bZo6depP7xcYK/qmb9iLvukb9qJv+oa96Ju+gb8Fr4aw1M2bN9XX16fi4mItWrQo7CsvL++Hj6eM1qtXr3TgwAF1dnaqvr5e1dXVqqioGNG2SUlJiomJ0e3bt/XmzRsNDAxIktatW6eGhgY1NDToyZMn2rdvX9iHTEpKijZu3KiysjK1tLSora1NJSUliomJcX4mOztbq1atUk5OjhobG/XixQs1Nzfr0KFDam1tHfV1ulwuFRUV6cyZM7p37x6PpeC3o2/6hr3om75hL/qmb9iLvukb+FswEWypuro6ZWdnhz1+8lVeXp5aW1v16NGjnzrG7t279fHjRy1fvlz79+9XRUWFSktLR7St2+3WqVOnVFtbq+TkZG3evFmSVFRUpIKCAu3evVs+n09z58517kZ+5ff7lZycLJ/Pp9zcXJWWliopKclZ73K5dOvWLa1Zs0Z79uzRggULtG3bNr18+VIzZswY07UWFhZqYGBACxcu1IoVK8a0D2C80Dd9w170Td+wF33TN+xF3/QN/C1c5p8vhAFGIDMzU16vV1VVVb/7VMbFixcv5PF49ODBA3m93jHt4/z586qsrAy7gwr8jeg7En3DFvQdib5hC/qORN+wBX1Hom9gbHhHMPCdjIwMeb1eNTc3j2q72NhYhUIhRUdH/6IzA/Cz6BuwF30D9qJvwF70Dfz3mAgGJM2aNUtPnz6VJE2ePHnU2z98+FCSRvSifgD/LfoG7EXfgL3oG7AXfQO/D6+GAAAAAAAAAADL8c/iAAAAAAAAAMByTAQDAAAAAAAAgOWYCAYAAAAAAAAAyzERDAAAAAAAAACWYyIYAAAAAAAAACzHRDAAAAAAAAAAWI6JYAAAAAAAAACwHBPBAAAAAAAAAGA5JoIBAAAAAAAAwHL/A6/GuanFmsruAAAAAElFTkSuQmCC\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - examples_3_1.png" } }, "output_type": "display_data" } ], "source": [ "dataset_gridded = dh.to_gridded_dataset(\n", " dataset,\n", " dimension=\"main_dim\",\n", " coords_names=dattrs.get_main_coords(dataset),\n", ")\n", "dataset_gridded.pop_q0.plot.pcolormesh(x=\"amp\", col=\"repetitions\")\n", "_ = dataset_gridded.pop_q1.plot.pcolormesh(x=\"amp\", col=\"repetitions\")" ] }, { "cell_type": "code", "execution_count": 5, "id": "ea7db017", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:33.352542Z", "iopub.status.busy": "2023-09-26T17:43:33.352322Z", "iopub.status.idle": "2023-09-26T17:43:33.539104Z", "shell.execute_reply": "2023-09-26T17:43:33.538335Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHACAYAAAC4foLWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABN4UlEQVR4nO3deXhU5fk+8HuWzEwWkhBCVgIBlFUQCBKDC1qjuBSkWkVEQEAsCG5prfC1gqAVtYqgIlQkYH9VQet6NRbQlOBChALiguwQEpaENfsyyZzz+wMZHRMgzztJ5kzm/vSa66rD3HPOnMxMnrzve55j0nVdBxEREZEfMvt6B4iIiIhUsZAhIiIiv8VChoiIiPwWCxkiIiLyWyxkiIiIyG+xkCEiIiK/xUKGiIiI/BYLGSIiIvJbLGSIiIjIb7GQISIiIr8V0IXM559/jmHDhiEhIQEmkwkffvhhs24vOTkZJpOp3m3q1KnNul0iIqLWKqALmYqKClx88cVYuHBhi2zvf//7H44cOeK+ffrppwCA2267rUW2T0RE1NoEdCFzww034KmnnsLvfve7Bv+9pqYGf/rTn5CYmIjQ0FCkpqYiJydHeXvt27dHXFyc+/bvf/8bXbt2xZAhQ5Sfk4iIKJAFdCFzPtOmTUNubi5WrFiB7777Drfddhuuv/567N692+vndjqd+Oc//4kJEybAZDI1wd4SEREFHpOu67qvd8IITCYTPvjgA4wYMQIAkJ+fjy5duiA/Px8JCQnux6Wnp2PQoEF4+umnvdreO++8gzvvvLPe8xMREVHjcUTmLL7//nu4XC5069YNYWFh7tu6deuwd+9eAMCOHTsaXLz7y9v06dMbfP6lS5fihhtuYBFDRETkBauvd8CoysvLYbFYsHnzZlgsFo9/CwsLAwB06dIF27dvP+fztGvXrt59Bw4cwGeffYb333+/6XaYiIgoALGQOYv+/fvD5XLh6NGjuOKKKxp8jM1mQ48ePcTPvWzZMsTExOCmm27ydjeJiIgCWkAXMuXl5dizZ4/7v/fv34+tW7ciKioK3bp1w+jRozF27Fi88MIL6N+/P44dO4bs7Gz07dtXuQjRNA3Lli3DuHHjYLUG9OEnIiLyWkAv9s3JycHVV19d7/5x48Zh+fLlqK2txVNPPYV//OMfOHToEKKjo3HppZdi9uzZ6NOnj9I216xZg6FDh2Lnzp3o1q2bty+BiIgooAV0IUNERET+jWctERERkd9iIUNERER+K+BWm2qahsOHD6NNmzbsqEtEROek6zrKysqQkJAAs7n5/vavrq6G0+n0+nlsNhscDkcT7JEf0X1o3bp1+m9/+1s9Pj5eB6B/8MEH582sXbtW79+/v26z2fSuXbvqy5YtE22zoKBAB8Abb7zxxhtvjb4VFBSo/aJrhKqqKj0uxtIk+xkXF6dXVVU1274akU9HZM5cfXrChAm45ZZbzvv4/fv346abbsLkyZPx5ptvIjs7G/fccw/i4+MxdOjQRm2zTZs2AICkWY/DLKxaLVXyERzdqoszrrga+XZc8r8UIr6xiTMAoCm8a0xDTokzYXb5cShbEyfOAEDc+lJxZve98r965l/2ljjz0H/HiDPdXzoqzgCAdrhInNn9jPwMvplDPhRn5mwcJs4AQPJb8s/g8b52cebS328VZw5URIkzRz/qKM4AgEX+ccLJQbXijNlWJ86YCtVGEMx18u9kl0P2ftCqq1Ew+0n3747m4HQ6UXjUhQObkxHeRn3Up7RMQ6eUPDidzoAalfFpIXPDDTfghhtuaPTjFy9ejM6dO+OFF14AAPTs2RNffvklXnzxxUYXMmemk8wOh7iQMestU8jowQrbUShkLDa1QsYUpJAJkf9isCp8Di12tQ+vVeFb3hws31ZoG8v5H9QE27Ga5ccbADST/D2hsn8hLXQcAMCq8Bm02OXHzxYmP3ZWyLdjsakdB4v8MMAcrPBzsisUMoq/dFUKGV1YyJzREksRwtqYENZGfTsaAnO5hF8t9s3NzUV6errHfUOHDkVubq6P9oiIiKhpuHTN61sg8qvFvoWFhYiNjfW4LzY2FqWlpaiqqkJwcHC9TE1NDWpqfv5ru7RUPoVARETU3DTo0KA2YnQmH4j8akRGxdy5cxEREeG+JSUl+XqXiIiIqIn4VSETFxeHoiLPxYhFRUUIDw9vcDQGAGbMmIGSkhL3raCgoCV2lYiISERrgv8FIr+aWkpLS8Mnn3zicd+nn36KtLS0s2bsdjvsCgv3iIiIWpJL1+Hy4qpB3mT9mU9HZMrLy7F161Zs3boVwM9Xn87PzwdwejRl7Nix7sdPnjwZ+/btw5///Gfs2LEDr776Kt555x08/PDDvth9IiIi8jGfjshs2rTJ4+rTGRkZAH6++vSRI0fcRQ0AdO7cGVlZWXj44YexYMECdOjQAa+//nqjT732hbpQ+VCfWeE8ScthhVM/K9Wq95IL5Kf4XZuwX5z5X5G8X0bUj2qdMSs6hokz7WNPijOHauV9Q0L3yU+BdR1Qm0LVXS5xJnS/fP9U9Ew+rJQraSd/H4XnyY/DV4e6iDNdok6IM5VqrZIQekiesR6T91rQO8pPv3aFqU2JmItb5r3XUrjYV41PC5mrrroK+jmGwpYvX95g5ptvvmnGvSIiImp5GnS4WMiI+dViXyIiIqJf8qvFvkRERK0Vp5bUsJAhIiIyAJ61pIZTS0REROS3OCJDRERkANpPN2/ygYiFDBERkQG4vDxryZusP2MhQ0REZAAu/fTNm3wg4hoZIiIi8lsckRFwOeTlrimiVpzRauXdKoPlTWZRFyzv0AsArk5V4kxJbcMX9TyXEzujxZmISvm+AcDxvvLOyC/1fE+cOeGSdxCO/l7+HrK0k3cQBgC0ke9f6BH552JXtbw9bVqUvDs0ALzbIVmcif5B3iG6Yl+EOFMaVi7OOJNqxBkACD0sv+ac47h8O+Ux8u8vPUhtdYfL3rr+FucaGTUsZIiIiAxAgwkuqP2BeSYfiFpXOUtEREQBhSMyREREBqDpp2/e5AMRCxkiIiIDcHk5teRN1p9xaomIiIj8FkdkiIiIDIAjMmpYyBARERmAppug6V6cteRF1p9xaomIiIj8FkdkBDSbwpLwOnmtaDkeJM7YysQRVMp7kgEAuncoEmfySuUN2kLz5X9dmKtd4gwAVCTJW0ltqUoWZ/59uI84Y1boO17XJUGcAQDrCXmDtsjt8sz7+y8WZ5656H1xBgCWdR4izsR9LW9CGFogb6ro6iP/fujeqVCcAYC8A53EGWulfDsq3191UXXyDQHQgxSalNYZd9SCU0tqWMgQEREZgAtmuLyYKFH7M87/sZAhIiIyAN3LNTI618gQERER+ReOyBARERkA18ioYSFDRERkAC7dDJfuxRqZAL1EAaeWiIiIyG9xRIaIiMgANJigeTG+oCEwh2RYyBARERkA18ioYSEjYVWodqss4oj9hPzNqCn8JGvi1JpQxQWXijPb8+LFmQ558q4IFZ1CxRkASOhxVJy5MewHceaVXdeKMz0LToozVZ0ixRkAqI6NFmfC/pcvzpQWdBRnqnvJG60BQNQF8uPnjIwQZyL2y9+v+YfaiTMXdzkozgBAdbz88x6aJ/9isZ+Sf3+5wtRGIVpbQzxSw0KGiIjIALxf7MupJSIiIvKR02tkvLhoZIBOLfGsJSIiIvJbHJEhIiIyAM3Lay3xrCUiIiLyGa6RUcNChoiIyAA0mNlHRgHXyBAREZHf4ogMERGRAbh0E1y6Fw3xvMj6MxYyEpo8Yi2XD3pZq+XbqUiQZ8LjyuQhABsPdxJnHPvt4kxtmHyYtDxe7YP8m3byJmP/KkkRZyJ2yBskavsLxJmqgfLGdgDgUug5F1otf8OG5cmPw+HatuIMANzY4Udx5r1+V4oz0dvkDecce+Wfi5JEhzgDALaIGnHGZZP/irBWiSOwlqlNDtSFKXwpG5jLy8W+Lk4tEREREfkXjsgQEREZgKaboXlx1pLGs5aIiIjIVzi1pIZTS0REROS3OCJDRERkABq8O/OodS19bjwWMkRERAbgfUO8wJxkCcxXTURERK0CR2SIiIgMwPtrLQXm2AQLGSIiIgPQYIIGb9bIsLMvnYepTv4msVTJMyrdVeui5F1Fu0adkG8IwNa8DuJM9AH5aYEhRbXiTNHlan+RtLOVizO5JzuLMxH75T8nc6y8S++J3opfaAqxdhXyVq6xm+TdgLNv7inOAMDkhLXizP/reJk4U7dH/t6zF4sjyCtoLw8BCG0r/zlVxLrEGet+eddma4Xa+9XlaF2/uDkioyYwXzURERG1ChyRISIiMgDvG+IF5tgECxkiIiID0HQTNG/6yATo1a8Ds3wjIiKiVoEjMkRERAageTm1FKgN8VjIEBERGYD3V78OzEImMF81ERERtQockSEiIjIAF0xwedHUzpusP2MhI2Cukb9JTPI+cKiJkmcs4U5xZt8phQ0BCDrgEGesVfLrspYnyDsDxnQ8Ls4AQDdHoTizPG+wONPji53iTFXqheKMrXuJOAMAJoXvwdrLe4sztmOV4sw3ezuKMwBwqL38fZ58ofz9cGp7ojgTuVve9LEq1ibOAIAzVL6t0Dh5o8iakghxxlIjjpzOVcvfsJpCw9GWwqklNYH5qomIiKhVYCFDRERkAC78PL2kdlOzcOFCJCcnw+FwIDU1FRs3bjzn4+fPn4/u3bsjODgYSUlJePjhh1FdLb/sSFPh1BIREZEB+GJqaeXKlcjIyMDixYuRmpqK+fPnY+jQodi5cydiYmLqPf6tt97C9OnTkZmZicGDB2PXrl24++67YTKZMG/ePOV99wZHZIiIiAzgzEUjvblJzZs3D5MmTcL48ePRq1cvLF68GCEhIcjMzGzw8evXr8dll12GO++8E8nJybjuuuswatSo847iNCcWMkRERAHI6XRi8+bNSE9Pd99nNpuRnp6O3NzcBjODBw/G5s2b3YXLvn378Mknn+DGG29skX1uCKeWiIiIDECHCZoXp1DrP2VLS0s97rfb7bDb7fUef/z4cbhcLsTGxnrcHxsbix07djS4jTvvvBPHjx/H5ZdfDl3XUVdXh8mTJ+P//u//lPfbWz4fkfH3RUZERERNoammlpKSkhAREeG+zZ07t8n2MScnB08//TReffVVbNmyBe+//z6ysrLw5JNPNtk2pHw6ItMaFhkREREZSUFBAcLDw93/3dBoDABER0fDYrGgqKjI4/6ioiLExcU1mHn88ccxZswY3HPPPQCAPn36oKKiAvfeey8ee+wxmM0tPz7i00Lml4uMAGDx4sXIyspCZmYmpk+fXu/xv1xkBADJyckYNWoUNmzY0CL7a65TaL6kcITrourEmWCbPFNyrI04AwCRR+SZumD5sTvZS76dK9sp7ByAbZXyZmah2+WNyUyhIeKMyyH/Yrim425xBgBO1sr3Ly+yhzhjK5I3SAzZpdYITrtU/t7rFnFMnPlvhwRxJjxf/rN1qPV8RGmivBOcxSL/OdVFyE8CNh+ziDMAYFL4TkaQQpfSFqLpJmi6+tTSmWx4eLhHIXM2NpsNKSkpyM7OxogRI04/h6YhOzsb06ZNazBTWVlZr1ixWE7//HTdN8fWZ1NLrWWRERERUVNw/XT1a29uUhkZGViyZAneeOMNbN++HVOmTEFFRYV7gGHs2LGYMWOG+/HDhg3DokWLsGLFCuzfvx+ffvopHn/8cQwbNsxd0LQ0n43ItNQio5qaGtTU/Nz/+teLoIiIiALVyJEjcezYMcycOROFhYXo168fVq1a5f7dnJ+f7zEC85e//AUmkwl/+ctfcOjQIbRv3x7Dhg3DX//6V1+9BP86a+mXi4xSU1OxZ88ePPjgg3jyySfx+OOPN5iZO3cuZs+e3cJ7SkREJNNUU0tS06ZNO+tUUk5Ojsd/W61WzJo1C7NmzVLaVnPwWSHTUouMZsyYgYyMDPd/l5aWIikpqQlfCRERkfc0mKF5seLDm6w/89mr/uUiozPOLDJKS0trMKOyyMhut7sXPjV2ARQRERH5B59OLWVkZGDcuHEYOHAgBg0ahPnz59dbZJSYmOg+B37YsGGYN28e+vfv755a8vUiIyIioqbg0k1weTG15E3Wn/m0kGkNi4yIiIiagq/WyPg7ny/29fdFRkRERE1B9/Lq17oXWX/m80LGn6gUu64weYMgS5ta+YYU2A7JG2QBgLVS/pqc4fKD57iwRJyZ0P4LcQYAHtl5mzhjk+8etFPF4kxxl87izPC2W8QZAKjW5e+JvyTKOxeGb3WKM2EH1Zpt/X3vFeJMSkyBOGNKrhRnyveHijP2YrXjYDsobyiodZf/nEyh8u+vumq1X8CWqsAcgSBPLGSIiIgMwAUTXF5cNNKbrD9jIUNERGQAmu7dOhfNuFdfaFaBOaFGRERErQJHZIiIiAxA83KxrzdZf8ZChoiIyAA0mKB5sc7Fm6w/C8zyjYiIiFoFjsgQEREZADv7qmEhQ0REZABcI6MmMF81ERERtQockRHQrfKT9F1t6sQZh02eqToq7xAaWiGOAADMLnmmIl6euSoxT5yZf/g6+YYAFO2OFmd6fFYoztRcKu+CW95ZE2dURZrl3WlLu8r3L6GySpwJ3yfPAMDeve3Eme7Jm8SZ/THy7ezrKP/cRv0ojgAAgo/JMyVRweKMLUb+c6oJVftVZHK1rosFa/DyWksButiXhQwREZEB6F6etaSzkCEiIiJf4dWv1XCNDBEREfktjsgQEREZAM9aUsNChoiIyAA4taQmMMs3IiIiahU4IkNERGQAvNaSGhYyREREBsCpJTUsZARcDnlDPItD3tyuptQuztiL5I2h7KfEEQBAdZT8wxLUrVSc6R16WJz5f0cHiTMAELZPYZZVoambbo0SZ9okl4gzhXUR4gwADHLkizOJPYvEmcoBHcWZ4IIycQYAQgpCxJk1x3rKt2OtFWfQVd6VUqX5JQBYFfoJBh+Rf69U2uTfX6YgtaaPmk3+uTXVBeYv+9aMhQwREZEBcERGDQsZIiIiA2Aho4ZnLREREZHf4ogMERGRAXBERg0LGSIiIgPQ4d0p1PLTUVoHFjJEREQGwBEZNVwjQ0RERH6LIzJEREQGwBEZNSxkJCzyGUhXlfwQW0vkmeBj4gjq5H3CAAAVHeTHISlc3sxsU2knceZEYbg4AwAd8l3ijCupvThTfIFNnOkfu0ucuVmhmSAAaJA3QLu0/QFx5tOu8eJMcJ78ZwQA4fnyZmvb9yWIM5d0yxNnoiPKxZmjHdQ+uBG7FRpZyncP1mL591ddhNrPFkHy7yIjN8RjIaOGU0tERETktzgiQ0REZAAckVHDQoaIiMgAdN0E3YtixJusP+PUEhEREfktjsgQEREZgAaTVw3xvMn6MxYyREREBsA1Mmo4tURERER+iyMyREREBsDFvmpYyDQzc6W8wVhQqfzNaJL3/IKzjTwDAEioFkfs1jpxptoVJM6Eb5NnACAsr0ScMVXVijPFPeTNzCbEfCHOVOry463qxoit4sx7XQeJM9HfhYkzABB8XP5zCt5rF2eKkuT753TJvx8snSrEGQCoLJHvX/Bx+XbsJ+XfX5pNbXJAb2VzCpxaUsNChoiIyAA4IqOmldWzREREFEg4IkNERGQAupdTS4E6IsNChoiIyAB0ALr8Opge+UDEqSUiIiLyWxyRISIiMgANJpjY2VeMhQwREZEB8KwlNZxaIiIiIr/FERkBU6282g0qk9eKZoVeZjWR8kx1olrTtD6JR8SZxJBicWbVpovFmaS9aq+ptq1DnKnsES7OhHc+Jc60McsbEM47fpk4AwC9Qw6JM0lBJ8SZuO7HxJmypBhxBgCiPvhenImIuUicyVfYv4t7HRBnjlpc4gwAHIkLFmcsNfKGfdYqcQTWCrW/qetCFTqBGpimm2BiQzwxFjJEREQGoOtenrUUoKctcWqJiIiI/BZHZIiIiAyAi33VsJAhIiIyABYyaljIEBERGQAX+6rhGhkiIiLyWxyRISIiMgCetaSGhQwREZEBnC5kvFkj04Q740c4tURERER+iyMyAmanvFK2yJuywqTQnLY6Rl6KB7evlG8IQFhQjTjz3/3dxJmQA/KuopaaWnEGAIJOyX9QJ6+yizNDE/aJM0EmeffS70sSxBkA0BT+thncLk+c+W3iD+LMG92vEWcAIKLvBeJMmzx5e9rSTqHizK727cWZjlHy7tAAUNGhVJ6pihRn7CcUOqCXiyMAAC1Ivi1d/rXSYnjWkhoWMkRERAag/3TzJh+IOLVEREREfosjMkRERAbAqSU1LGSIiIiMgHNLSnw+tbRw4UIkJyfD4XAgNTUVGzduPOfji4uLMXXqVMTHx8Nut6Nbt2745JNPWmhviYiImslPIzKqNyiOyPj772GfjsisXLkSGRkZWLx4MVJTUzF//nwMHToUO3fuRExMTL3HO51OXHvttYiJicG//vUvJCYm4sCBA4iMjGz5nSciIvJzreH3sE8LmXnz5mHSpEkYP348AGDx4sXIyspCZmYmpk+fXu/xmZmZOHnyJNavX4+goCAAQHJyckvuMhERUbPwRWff1vB72GdTS06nE5s3b0Z6evrPO2M2Iz09Hbm5uQ1mPv74Y6SlpWHq1KmIjY3FRRddhKeffhoul6uldpuIiKhZeDOt9MuFwqWlpR63mpqGe3+1lt/DPhuROX78OFwuF2JjYz3uj42NxY4dOxrM7Nu3D//9738xevRofPLJJ9izZw/uu+8+1NbWYtasWQ1mampqPH6IpaXyplBnqDTEU2m+VNNWnnFFyxvBRYbKm34BwN7iaHGm7qC8WVjUAXkjOM2mNkd8fECEOKN3qxBnro74UZx54+Rl4sz+4+3EGQAorXGIMxeHHBBn7m37jTiT2TVNnAGAkz1DxJmIPHnTx4g8+fu1KKaNOFPRRv6+A4DIEPnnvSw2WJxxuuSNIq0Vap9bU53Kd3LrXxGblJTk8d+zZs3CE088Ue9xLfV7uLn51VlLmqYhJiYGr732GiwWC1JSUnDo0CH87W9/O+sBnDt3LmbPnt3Ce0pERCTkxYJddx5AQUEBwsPD3Xfb7fLi8mxUfg83N58VMtHR0bBYLCgqKvK4v6ioCHFxcQ1m4uPjERQUBIvl52GOnj17orCwEE6nEzabrV5mxowZyMjIcP93aWlpvWqViIjI15pqjUx4eLhHIXM2LfV7uLn5bI2MzWZDSkoKsrOz3fdpmobs7GykpTU8hHzZZZdhz5490LSfh3B37dqF+Pj4sx48u93u/qE29odLRETU2rXU7+Hm5tM+MhkZGViyZAneeOMNbN++HVOmTEFFRYV79fTYsWMxY8YM9+OnTJmCkydP4sEHH8SuXbuQlZWFp59+GlOnTvXVSyAiImoaehPchFrD72GfrpEZOXIkjh07hpkzZ6KwsBD9+vXDqlWr3AuP8vPzYTb/XGslJSVh9erVePjhh9G3b18kJibiwQcfxKOPPuqrl0BERNQkfHGJgtbwe9jni32nTZuGadOmNfhvOTk59e5LS0vD119/3cx7RUREFBj8/fewzwsZIiIi+knrPzu8ybGQISIiMgBe/VoNCxkBXWFpdJ28nxRqo+rEmXbRZeKM06XQrQ/AiYOR4kzEfvkHLPi4vMmfblb7IJd3kGfio0rEmVpd/pErr5OfCVBzSN6AEAAOm+S5I4nyDo5lmryJ3uDk/eIMAGzs2FucsZcGiTO2Ynln09CD8u0UtJE3pASADh1PiDPBofLGgJXh8tcETe27yCTvQWhsvPq1kkZ9q3788cfiJ7722msRHKzwW5yIiIiokRpVyIwYMUL0pCaTCbt370aXLl1U9omIiCgAmX66eZMPPI2eLCksLISmaY26hYTIr21CREQU0HzQR6Y1aFQhM27cONE00V133cUOukRERNTsGjW1tGzZMtGTLlq0SGlniIiIAhYX+yrx+hIFpaWl+PDDD7F9+/am2B8iIqLAdObq197cDO7HH3/Efffdh/79+yM+Ph7x8fHo378/7rvvPvz4449Kzyk+F/T222/HlVdeiWnTpqGqqgoDBw5EXl4edF3HihUrcOuttyrtCBEREbVe//nPfzBixAgMGDAAN998s/syCEVFRfj0008xYMAAfPTRRxg6dKjoecWFzOeff47HHnsMAPDBBx9A13UUFxfjjTfewFNPPcVChoiISIGun755kzey6dOn49FHH8WcOXPq/dsTTzyBJ554Ao888kjzFzIlJSWIiooCAKxatQq33norQkJCcNNNN+GRRx6RPp1f0YPk7xKXQ96xyRIqbwRXVSNvQlVV6hBnAMBxUN7ULeyQvFmYyyGf+SyPV+vxWHthlThzd1KuOFNQGyXOnHLKm9SF71GbNdYUepltKO4szpgVOpnd3n6jOAMAX10gbwNRUyDvgRVcJG8eF35A3gjOZVf4IQE4EhwhzsRGl4ozlSHy7xVXrdqUiLna+FMpIq18jcyuXbswevTos/77qFGj8Oyzz4qfV/xtl5SUhNzcXFRUVGDVqlW47rrrAACnTp2Cw6H2i5GIiIhat+TkZGRlZZ3137OystCpUyfx84r/fH3ooYcwevRohIWFoVOnTrjqqqsAnJ5y6tOnj3gHiIiICN4v2DX4Yt85c+bgzjvvRE5ODtLT0z3WyGRnZ2PVqlV46623xM8rLmTuu+8+pKamIj8/H9deey3M5tODOl26dMFTTz0l3gEiIiICTPrpmzd5I7vtttuQmJiIl156CS+88AIKCwsBAHFxcUhLS0NOTg7S0tLEz6u0oCAlJQUpKSke9910000qT0VERERAq18jAwCDBw/G4MGDm/Q5G7VGJiMjAxUVFY1+0hkzZuDkyZPKO0VERETUGI0akVmwYAFmzJiB0NDGnT2xcOFCTJo0yX12ExEREZ1HK18jc0b//v1hMjVuX7ds2XLexzSqkNF1Hd26dWv0hiWjN0RERISAmFoCgOuvvx6vvvoqevXq5V4T8/XXX2Pbtm2YMmWK6NqOQDNdawmAezUyERER0RnHjh3DAw88gCeffNLj/lmzZqGgoACZmZmi52tUITNu3DjRkxIREZFQgIzIvPvuu9i0aVO9+++66y4MHDiweQoZOk1T6Oyr2+UdTFVUldnFGWuhTWlbjhPyjG6Wz91Wtpd3py3urvZJ7t3hiDhzoa1QnNlSnSzObMpPEmc67nCKMwBg0uTHb+slieJMn/BD4ky3oOPiDACMvuh/4sybhVeIM9YqeUNQlePtUDsMcCp0Kz7ilHcetoXJ33tOxV/Ami7vcmxyGXgdSYAUMsHBwfjqq69w4YUXetz/1VdfKTXWZSFDRERELeahhx7ClClTsGXLFgwaNAgAsGHDBmRmZuLxxx8XPx8LGSIiIiMIkLOWpk+fji5dumDBggX45z//CQDo2bMnli1bhttvv138fCxkiIiIDKC1d/b9pdtvv/28Rcvbb7+N4cOHn7f1i9olcgHs2bMHq1evRlXV6asG60a/fjgRERH5jT/84Q8oKio67+PEhcyJEyeQnp6Obt264cYbb8SRI6cXSU6cOBF//OMf5XtKREREPy/29ebWijR2gERcyDz88MOwWq3Iz89HSEiI+/6RI0di1apV0qcjIiIiUiZeI7NmzRqsXr0aHTp08Lj/wgsvxIEDB5psx4iIiAKJCV6ukWmyPfEv4hGZiooKj5GYM06ePAm7Xd7LhIiIiEiVeETmiiuuwD/+8Q93a2GTyQRN0/Dcc8/h6quvbvIdNBJdoSGeSWE5tatSfjKZtUSeCZX3gAMAtDnkEmcqo+WNtaoUrnLR5kK1q66Pit8ozhRr9Qv681l/6gJxJmiHfDuObfvFGQCo6xQjzlh3Ne5isr90sGtbcaY6XP4eAgCLSd6UMv6i8y8w/LUTpXHiTNQ2+XdKUKXan+yhR+R/r5cHyRvOOVtwWEC3KnwnG7ohXmCcft3UxL/9nnvuOVxzzTXYtGkTnE4n/vznP2Pbtm04efIkvvrqq+bYRyIiotYvQDr7NlanTp0Q1IhiWlzIXHTRRdi1axdeeeUVtGnTBuXl5bjlllswdepUxMfHK+0sERERBZZNmzZh+/btAE43xBs4cKDHv//www+Neh6lhngRERF47LHHVKJERETUkAAZkTl48CBGjRqFr776CpGRkQCA4uJiDB48GCtWrKh3MtH5KBUy1dXV+O6773D06FFomuf88/Dhw1WekoiIKKAFSmffe+65B7W1tdi+fTu6d+8OANi5cyfGjx+Pe+65R9zKRVzIrFq1CmPHjsXx4/UvwWoymeByyReCEhERUWBYt24d1q9f7y5iAKB79+54+eWXccUV8ivPi8+puf/++3HbbbfhyJEj0DTN48YihoiISFGAdPZNSkpCbW1tvftdLhcSEhLEzycuZIqKipCRkYHYWIVzY4mIiKhhAVLI/O1vf8P999+PTZs2ue/btGkTHnzwQTz//PPi5xNPLf3+979HTk4OunbtKt4YERERBba7774blZWVSE1NhdV6ugypq6uD1WrFhAkTMGHCBPdjT548f28wcSHzyiuv4LbbbsMXX3yBPn361DvH+4EHHpA+ZevmlHfEs1bIM45j8kZIQeVq5XudQ76t6ij5diq7OcWZPhHF8g0B6Gc/KM78t6L7+R/0Kxv3dRJnog/If0413eXDswBgWbtZnAnrNVic+Wx7D3Em2lYuzgDANW22iTM728hHnA91ljf5Ky2Xd0N3nFL73AaVKTTfK5V/1nWTvImeFqa4LEGh4aiRBcpi3/nz5zfp84kLmbfffhtr1qyBw+FATk4OTKaf3+gmk4mFDBERkYoA6ew7bty4Jn0+cSHz2GOPYfbs2Zg+fTrM5lZWDhMREflKgPSRAU4v7P3www/dDfF69+6N4cOHw2KRX4pEXMg4nU6MHDmSRQwRERGJ7dmzBzfeeCMOHTrkPgV77ty5SEpKQlZWlngNrrgaGTduHFauXCmNERER0TmcWSPjzc0fPPDAA+jatSsKCgqwZcsWbNmyBfn5+ejcubPS8hTxiIzL5cJzzz2H1atXo2/fvvUW+86bN0+8E0RERAEvQKaW1q1bh6+//hpRUT+fBdKuXTs888wzuOyyy8TPJy5kvv/+e/Tv3x9A/Qs6/XLhLxEREdGv2e12lJWV1bu/vLwcNptN/HziQmbt2rXijRAREdF5eDs95CcjMr/97W9x7733YunSpRg0aBAAYMOGDZg8ebLS9Rq5YpeIiMgIAqSz70svvYSuXbsiLS0NDocDDocDgwcPxgUXXIAFCxaIn69RIzK33HILli9fjvDwcNxyyy3nfOz7778v3gl/YaqTT52ZnQqN6krkGVupOAJnG7WpwOooea6is7zhVVq3veLMNVHbxRkA2OGMEWf+kXepOGPf7RBnQorqX5PkfIK++l6cAQBd4dTH8APyxoUV++SN4NbFXiDOAMBxZ5g40z2sSJzJj5c3xDtU0V6c0Q/If0YAYC+WZ8zyHy3sJ+XfD05d7TVpQX7ym5s8REZG4qOPPsKePXvw448/AgB69eqFCy5Q+4w3qpCJiIhwr3+JiIhQ2hARERGdQ4As9gWApUuX4sUXX8Tu3bsBABdeeCEeeugh3HPPPeLnalQhs2zZMsyZMwd/+tOfsGzZMvFGiIiI6NwC5RIFM2fOxLx583D//fcjLS0NAJCbm4uHH34Y+fn5mDNnjuj5Gr3Yd/bs2Zg8eTJCQkJke0xERET0k0WLFmHJkiUYNWqU+77hw4ejb9++uP/++8WFTKMX++q6n5R6REREZFi1tbUYOHBgvftTUlJQV1cnfj7RWUvsE0NERNRMAuSspTFjxmDRokX17n/ttdcwevRo8fOJ+sh069btvMXMyZMnxTtBREQU6AJljQxwerHvmjVrcOmlp8/+3LBhA/Lz8zF27FhkZGS4H9eYqwWICpnZs2fzrCUiIiJS9sMPP2DAgAEAgL17T7fZiI6ORnR0tMcVAxo7CyQqZO644w7ExMj7bRAREVEj+NGoiqqmvkJAowsZro8hIiJqRgHUR6YpNbqQ4VlLal16rRUKnX3LxRG45I1S4WwjzwBATXtNnIlMKhFn+oYfFGf2VMeKMwDwbfEAcebogajzP+hX2h4VRxCy5YA8FKk2BayVV4gzQaU14kz0d/JOrgfbR4szABDeu1qcqXIFiTMXtzskzpgUFjUc1NTe47pFfkUalc6+JoWMZlP7Q7kuVJ7ReWGeVqfRhYymyX95ERERUeME0mLfpiS++jURERE1A04tKeEgGxEREfktQxQyCxcuRHJyMhwOB1JTU7Fx48ZG5VasWAGTyYQRI0Y07w4SERE1szNTS97cApHPC5mVK1ciIyMDs2bNwpYtW3DxxRdj6NChOHr03Ksi8/Ly8Kc//QlXXHFFC+0pERFRMwqQzr5NzeeFzLx58zBp0iSMHz8evXr1wuLFixESEoLMzMyzZlwuF0aPHo3Zs2ejS5cuLbi3REREZCQ+LWScTic2b96M9PR0931msxnp6enIzc09a27OnDmIiYnBxIkTz7uNmpoalJaWetyIiIgMx0cjMv6+vMOnhczx48fhcrkQG+vZFyE2NhaFhYUNZr788kssXboUS5YsadQ25s6di4iICPctKSnJ6/0mIiJqar5YI9Malnf41enXZWVlGDNmDJYsWYLo6MY1x5oxY4bHBahKS0uVixlTrbxpk0l+RXJoCj+VWoXmds62ar2B2iTJR7W6tj0hzgSZXOJMUY1al78dBXHiTJud8qZucdlF4kxd1wRxxrqzQJwBAPToLI5YTlWKMyHiBBBaoPaz3RUhbyDXq/e3StsSbydS/n44Fh+mtK1KyLvHOY4r/K2r8LVikfdUPL2pIPl3ssth4IUkPjj9+pfLOwBg8eLFyMrKQmZmJqZPn95g5pfLO7744gsUFxd7sdPe82khEx0dDYvFgqIizw9zUVER4uLq/2LZu3cv8vLyMGzYMPd9Zxr1Wa1W7Ny5E127dvXI2O122O0KbW+JiIhasTPLO2bMmOG+T7q844svvmiJXT0nnxYyNpsNKSkpyM7Ods+xaZqG7OxsTJs2rd7je/Toge+//97jvr/85S8oKyvDggULOG1ERET+q4lGZH69FvRsf9Cfa3nHjh07GtzEmeUdW7du9WJHm5bPp5YyMjIwbtw4DBw4EIMGDcL8+fNRUVHhHuYaO3YsEhMTMXfuXDgcDlx00UUe+cjISACodz8REZE/aapLFPz6j/pZs2bhiSeeUH/in6gs72gJPi9kRo4ciWPHjmHmzJkoLCxEv379sGrVKneFmJ+fD7PZ52eJExER+YWCggKEh4e7//tsyytaYnlHS/B5IQMA06ZNa3AqCQBycnLOmV2+fHnT7xAREVFLa6KppfDwcI9C5mxay/IOQxQyREREgc4XV79uDcs7WMgQEREFqNawvIOFDBERkRH4oI8M4P/LO1jICJgUGj3pCke4JkqeqWsjbx5nja6WbwhAmEPevapD8Clx5uPDfcWZgkKFgwfAttchzoQWqTUUlLLuOSQPRag1jzOXyJvboUr+PjLb5R+MqB3y9zgA1AXLf7YfW/uIMzFty8SZMJvCZ6ltsTgDAAcVMtUWeevCoGJ5o0hN7UcLhZ6ZxuajQsbfGXu8iIiIiOgcOCJDRERkAKafbt7kAxELGSIiIiPg1JISFjJEREQG4IvTr1sDrpEhIiIiv8URGSIiIiPg1JISFjJERERGEaDFiDc4tURERER+iyMyAlqQvFR2yXtxwRVeJ87Ywp3iTGJUsTijauOxTuJM4dEIcSbogMIBBxC5W/6zbbux6PwP+jWF5nFwNHzl2nNu5oJo+Xag1vTRUVAs3051rTgTukfeVBEA2kS1E2dKrfJGcEeS5I3gOsSfFGfa2qvEGQAItsuPuStK/n6tNck/g+ZKtb+pzbWt64RjLvZVw0KGiIjICLhGRgmnloiIiMhvcUSGiIjIADi1pIaFDBERkRFwakkJp5aIiIjIb3FEhoiIyAA4taSGhQwREZERcGpJCQsZIiIiI2Aho4RrZIiIiMhvcURGQLfJy13NIW+VarLJM5FhleJMZa1NnAGA8mp5rrI4WJwJOiLfTliBOAIACN8rP356qEIXYZWMyyWOnOyl9rO1yg8DLDVtxJmgw8XijKlK3r0aAKK2lYszLof8NekmeQfmg5q863Bl+zJxBgCCg+SdfausQeKM1kb+c9J0tferbpV39jW5jNsNmGtk1LCQISIiMgJOLSnh1BIRERH5LY7IEBERGYBJ12HS1YdVvMn6MxYyRERERsCpJSWcWiIiIiK/xREZIiIiA+BZS2pYyBARERkBp5aUcGqJiIiI/BZHZAQ0hYZ4CJY3MzNb5Q3xSirlDeecpfIGXgCAKnn96zhmEWci9siPd1CF/NgBio21FBq0aWHyY37s0mhxpjxJ7U8zpaFpXf7ea1+hcOxsal9XlooacSZqW5V8O9XyZocqzSVPlrcVZwDAEl0tzyh8F+m6/LOkKzQBPR2UfxexIV7rw0KGiIjICDi1pISFDBERkQFwREYN18gQERGR3+KIDBERkRFwakkJCxkiIiKDCNTpIW9waomIiIj8FkdkiIiIjEDXT9+8yQcgFjJEREQGwLOW1LCQkVBqFiZvvqTVypvH1VQEiTPWEvl2AMBxVP6arPL+Ygg9LG+apjpZaj1VKc6cGthevp0q+ZuoPEkcgTWpQh4C4HLJD2BFRYjCliLEifabihW2A6W/Ui2VdeJM6BF5RrfIP7cWp9qbvLpaoWlmuLyhJ4Lkze2Um9QF6C9u8sRChoiIyAh41pISFjJEREQGYNJO37zJByKetURERER+iyMyRERERsCpJSUsZIiIiAyAZy2pYSFDRERkBOwjo4RrZIiIiMhvcUSGiIjIADi1pIaFjITKm6Rc3nTOrNDwKqhM3lAqqFQcOZ1T6LUWfEJ+XqAWpNJ4T6GBF4Dybm3Fmar28p9TlbyHHlxd5d0EB3UokG8IQLVL3qBta20HcUa3OMQZkx4pzgBAaJG8UV3I/hJxpi5E3hjQXiz/XLhsagPp5lr558lZIf8VURsu/6LUbAF63vCvcbGvEk4tERERkd/iiAwREZEBcGpJDQsZIiIiI+BZS0o4tURERER+iyMyREREBsCpJTUsZIiIiIyAZy0p4dQSERER+S2OyBARERkAp5bUsJAhIiIyAk0/ffMmH4BYyAiYa+QzcZYaeTdNi7yRK4LK5Jngk2pv+jqH/DVVxMqPnW6Rvz0rbfLOtABQFSV/TZWJ8uNnSqoUZ4ZesEOcibEpvCEApIXuFmdyIy4UZ/6fNVWcKbbJuwEDQHVb+fvIZZN3eg4qk3cQdkbI9y2oUu1zq/J5r6yVf25VOgjXtpF3QAcALUjhWMh3r+VwjYwSrpEhIiIiv2WIQmbhwoVITk6Gw+FAamoqNm7ceNbHLlmyBFdccQXatm2Ltm3bIj09/ZyPJyIi8gcm/LxORunm6xfgIz4vZFauXImMjAzMmjULW7ZswcUXX4yhQ4fi6NGjDT4+JycHo0aNwtq1a5Gbm4ukpCRcd911OHToUAvvORERURM609nXm1sA8nkhM2/ePEyaNAnjx49Hr169sHjxYoSEhCAzM7PBx7/55pu477770K9fP/To0QOvv/46NE1DdnZ2C+85ERER+ZpPCxmn04nNmzcjPT3dfZ/ZbEZ6ejpyc3Mb9RyVlZWora1FVFRUg/9eU1OD0tJSjxsREZHReDWt5OWp2/7Mp4XM8ePH4XK5EBsb63F/bGwsCgsLG/Ucjz76KBISEjyKoV+aO3cuIiIi3LekpCSv95uIiKjJ6U1wC0A+n1ryxjPPPIMVK1bggw8+gMPR8KmZM2bMQElJiftWUFDQwntJREREzcWnfWSio6NhsVhQVFTkcX9RURHi4uLOmX3++efxzDPP4LPPPkPfvn3P+ji73Q673d4k+0tERNRcTLoOkxcLdr3J+jOfFjI2mw0pKSnIzs7GiBEjAMC9cHfatGlnzT333HP461//itWrV2PgwIEttLdqjZ6UmttVyDNmTZ6pbqt2sp6tVP5h0c3ybZUnyAcMayLFEQCAM8olzlja1Ygzl3TMF2fGtftKnAkyyV/P6Zz8jRRidooz3RKKzv+gX8mzN7wO7nwqwkLFmboweYO2oDKbOGOW99CD44TaL6vKaIWmlApj9gpvB1jkH6XTdPn3imY38C977aebN/kA5POppYyMDCxZsgRvvPEGtm/fjilTpqCiogLjx48HAIwdOxYzZsxwP/7ZZ5/F448/jszMTCQnJ6OwsBCFhYUoLy/31UsgIiLyW/7ey83nhczIkSPx/PPPY+bMmejXrx+2bt2KVatWuRcA5+fn48iRI+7HL1q0CE6nE7///e8RHx/vvj3//PO+eglEREReOzO15M1NqjX0cjPEtZamTZt21qmknJwcj//Oy8tr/h0iIiJqaT641tIve7kBwOLFi5GVlYXMzExMnz693uPffPNNj/9+/fXX8d577yE7Oxtjx45V2m1v+XxEhoiIiNBknX1/3TutpqbhRUgt0cutJbCQISIiakWSkpI8+qfNnTu3wce1RC+3lmCIqSUiIqJA52133jPZgoIChIeHu+9vrhYkZ3q55eTknLWXW0tgIUNERGQE3l748adseHi4RyFzNi3Ry60lcGqJiIgoAP2yl9sZZ3q5paWlnTX33HPP4cknn8SqVatatJfb2XBERkClx5hKwyuXvK+WEoXeZwCAsk4KTaiC5NupjZQf8KDoavmGACRHFcu3ZZHv392xX4ozTl3enC3EXCvOAMC+2mhxpqdDftqlPUa+f9tCEsUZANho6yjOlLWVD5M7j8kz1jL535LOCLVGlhaVj4bCd4RLYYZB9bsIaofCsEyaF8cCatmMjAyMGzcOAwcOxKBBgzB//vx6vdwSExPd62yeffZZzJw5E2+99Za7lxsAhIWFISwsTH3nvcBChoiIyAiaaGpJYuTIkTh27BhmzpyJwsJC9OvXr14vN7P554L7l73cfmnWrFl44okn1PfdCyxkiIiIApi/93JjIUNERGQEPmiI1xqwkCEiIjIAXv1aDc9aIiIiIr/FERkiIiIj8MFi39aAhQwREZER6FA65d0jH4BYyBARERkA18ioYSEjoFvlb5LaNi3Tsclpke+bZld707vC5I3gbG2c4kywVb6dAQkHxRkAiHeUijNtrRXijFOXf+R62U6JM4mWNuIMAJRp8uNwzHX+Vui/1s+RL84k246LMwDQKfiEOPNjebw4syM8Rpw5cVR+7Jwute8Uc4W8saKlSr6M0puGbvKNBeYvbvLEQoaIiMgIdHi5RqbJ9sSvsJAhIiIyAi72VcLTr4mIiMhvcUSGiIjICDR4dyHMllyfZCAsZIiIiAyAZy2p4dQSERER+S2OyBARERkBF/sqYSFDRERkBCxklHBqiYiIiPwWR2QENJs8o1vky8j1IIWq2ibfTmhUpXw7ii5oJ+/KmhhSLM7E2MrEGQAYFLpXnNldEyfOnHSFiTNba8QRFFrlHXoBYH1ld3HmnogfxRm7Sf7Vk1tTJc4AQEeFjsA/Qt7Z96J2heLMLou8e7Wuq53WUlZtF2cqSoLlG6pW6AZco/Y3tUlTOBZGHrTgiIwSFjJERERGwNOvlbCQISIiMgCefq2Ga2SIiIjIb3FEhoiIyAi4RkYJCxkiIiIj0HTA5EUxogVmIcOpJSIiIvJbHJEhIiIyAk4tKWEhQ0REZAheFjKGbpLTfFjICGhW+ZtED5Y3vLKG1IkzISHyrmntQivEGQCID5U3W2tjle/fiRp58zjVhng7qxPEme0V8qZpCY5icaa9wvG2Qf6+A4CkoJPizPvlncQZTaFZRpBJ7TXV6hZxpn94vjjzTWlHcSbK0XJNKS1meZMRlUyZQhM9zSr/GQFqjfTMis33yLhYyBARERkBp5aUsJAhIiIyAk2HV9NDPGuJiIiIyL9wRIaIiMgIdO30zZt8AGIhQ0REZARcI6OEhQwREZERcI2MEq6RISIiIr/FERkiIiIj4NSSEhYyEhb5m8QUJF981VLvxVNV8sZVAFBZaxNnekYVybdTFyTOHKiKEmcAwG6WNyFUyVRr8tf0bZW80VpObag4AwDHnPImhJFBVeLMSad8/2Lt8saAANA2SN74cUuxvMmfWeFifyqNAU9Uqv1s6zSF5nFm+Wuy2uWNC2t1+XEAANQp5oxKh5eFTJPtiV/h1BIRERH5LY7IEBERGQGnlpSwkCEiIjICTQPgRS8YLTD7yHBqiYiIiPwWR2SIiIiMgFNLSljIEBERGQELGSWcWiIiIiK/xREZIiIiI+AlCpSwkJFwKTRfqpAfYi1E3lCqvMwhzpgUGngBQKVCk78NlfIGYyp7dyCorUIKqK2ziDMqzcJUOGy1LbIdAKhzyQdpK6vs4kx8VIk48/3xeHEGADSFZmvOWvn7wRYk/9yqbMei+L6rrJI3stQ1+bHTFF4TahQnB2pb16SCrmvQvbiCtTdZf8ZChoiIyAh03btRFa6RISIiIvIvHJEhIiIyAt3LNTIBOiLDQoaIiMgINA0webHOJUDXyHBqiYiIiPwWR2SIiIiMgFNLSljIEBERGYCuadC9mFoK1NOvObVEREREfosjMgLmWoWGeCqZamPXl/K2X2oZFS3XOq7lVPl6B5rBwUMhvt6FJlft6x0wCGN/exkcp5aUGOI9t3DhQiQnJ8PhcCA1NRUbN2485+Pfffdd9OjRAw6HA3369MEnn3zSQntKRETUTDTd+1sA8nkhs3LlSmRkZGDWrFnYsmULLr74YgwdOhRHjx5t8PHr16/HqFGjMHHiRHzzzTcYMWIERowYgR9++KGF95yIiIh8zeeFzLx58zBp0iSMHz8evXr1wuLFixESEoLMzMwGH79gwQJcf/31eOSRR9CzZ088+eSTGDBgAF555ZUW3nMiIqImpOune8Eo3zgi0+KcTic2b96M9PR0931msxnp6enIzc1tMJObm+vxeAAYOnToWR9fU1OD0tJSjxsREZHR6Jru9S0Q+bSQOX78OFwuF2JjYz3uj42NRWFhYYOZwsJC0ePnzp2LiIgI9y0pKalpdp6IiKgpeTUao7Gzb2s1Y8YMlJSUuG8FBQW+3iUiIiJqIj49/To6OhoWiwVFRUUe9xcVFSEuLq7BTFxcnOjxdrsddru9aXaYiIiomeiaDt2kPj2kc41My7PZbEhJSUF2drb7Pk3TkJ2djbS0tAYzaWlpHo8HgE8//fSsjyciIvILnFpS4vOGeBkZGRg3bhwGDhyIQYMGYf78+aioqMD48eMBAGPHjkViYiLmzp0LAHjwwQcxZMgQvPDCC7jpppuwYsUKbNq0Ca+99lqjtnemYtWq2b6KiIjO7czvipYY7ahDrVf98OpaZUvQRtAN4OWXX9Y7duyo22w2fdCgQfrXX3/t/rchQ4bo48aN83j8O++8o3fr1k232Wx679699aysrEZvq6Cg4EzrRN5444033nhr1K2goKCpfuXVU1VVpcfFxTXJfsbFxelVVVXNtq9GZNL1wJpU0zQNhw8fRps2bWAyKVw+wAdKS0uRlJSEgoIChIeH+3p3/AKPmRyPmQyPl5w/HjNd11FWVoaEhASYzc23GqO6uhpOp9Pr57HZbHA4HE2wR/7D51NLLc1sNqNDhw6+3g0l4eHhfvPhNwoeMzkeMxkeLzl/O2YRERHNvg2HwxFwBUhTafWnXxMREVHrxUKGiIiI/BYLGT9gt9sxa9Ys9sMR4DGT4zGT4fGS4zGj5hBwi32JiIio9eCIDBEREfktFjJERETkt1jIEBERkd9iIeMjCxcuRHJyMhwOB1JTU7Fx48ZG5VasWAGTyYQRI0bU+7ft27dj+PDhiIiIQGhoKC655BLk5+c38Z77RlMfr/LyckybNg0dOnRAcHAwevXqhcWLFzfDnvuO5JgtX74cJpPJ4/brnha6rmPmzJmIj49HcHAw0tPTsXv37uZ+GS2qKY9ZbW0tHn30UfTp0wehoaFISEjA2LFjcfjw4ZZ4KS2mqd9nvzR58mSYTCbMnz+/GfacWg1fthUOVCtWrNBtNpuemZmpb9u2TZ80aZIeGRmpFxUVnTO3f/9+PTExUb/iiiv0m2++2ePf9uzZo0dFRemPPPKIvmXLFn3Pnj36Rx99dN7n9AfNcbwmTZqkd+3aVV+7dq2+f/9+/e9//7tusVj0jz76qBlfScuRHrNly5bp4eHh+pEjR9y3wsJCj8c888wzekREhP7hhx/q3377rT58+HC9c+fOraYdelMfs+LiYj09PV1fuXKlvmPHDj03N1cfNGiQnpKS0lIvqdk1x/vsjPfff1+/+OKL9YSEBP3FF19sxldB/o6FjA8MGjRInzp1qvu/XS6XnpCQoM+dO/esmbq6On3w4MH666+/ro8bN67eL+aRI0fqd911V3Ptsk81x/Hq3bu3PmfOHI/7BgwYoD/22GNNuu++Ij1my5Yt0yMiIs76fJqm6XFxcfrf/vY3933FxcW63W7X33777Sbbb19q6mPWkI0bN+oA9AMHDnizq4bRXMfs4MGDemJiov7DDz/onTp1YiFD58SppRbmdDqxefNmpKenu+8zm81IT09Hbm7uWXNz5sxBTEwMJk6cWO/fNE1DVlYWunXrhqFDhyImJgapqan48MMPm+MltKjmOF4AMHjwYHz88cc4dOgQdF3H2rVrsWvXLlx33XVN/hpamuoxKy8vR6dOnZCUlISbb74Z27Ztc//b/v37UVhY6PGcERERSE1NPedz+ovmOGYNKSkpgclkQmRkZFPtus801zHTNA1jxozBI488gt69ezfb/lPrwUKmhR0/fhwulwuxsbEe98fGxqKwsLDBzJdffomlS5diyZIlDf770aNHUV5ejmeeeQbXX3891qxZg9/97ne45ZZbsG7duiZ/DS2pOY4XALz88svo1asXOnToAJvNhuuvvx4LFy7ElVde2aT77wsqx6x79+7IzMzERx99hH/+85/QNA2DBw/GwYMHAcCdkzynP2mOY/Zr1dXVePTRRzFq1Ci/us7Q2TTXMXv22WdhtVrxwAMPNOv+U+sRcBeN9DdlZWUYM2YMlixZgujo6AYfo2kaAODmm2/Gww8/DADo168f1q9fj8WLF2PIkCEttr++1pjjBZwuZL7++mt8/PHH6NSpEz7//HNMnToVCQkJHn9hBoq0tDSkpaW5/3vw4MHo2bMn/v73v+PJJ5/04Z4Zl+SY1dbW4vbbb4eu61i0aFFL76phnO+Ybd68GQsWLMCWLVtgMpl8uKfkT1jItLDo6GhYLBYUFRV53F9UVIS4uLh6j9+7dy/y8vIwbNgw931nCher1YqdO3ciKSkJVqsVvXr18sj27NkTX375ZTO8ipbTHMcrISEB//d//4cPPvgAN910EwCgb9++2Lp1K55//nm/L2Skx6whQUFB6N+/P/bs2QMA7lxRURHi4+M9nrNfv35Ns+M+1BzH7IwzRcyBAwfw3//+t1WMxgDNc8y++OILHD16FB07dnQ/xuVy4Y9//CPmz5+PvLy8Jtt/aj04tdTCbDYbUlJSkJ2d7b5P0zRkZ2d7/KVyRo8ePfD9999j69at7tvw4cNx9dVXY+vWrUhKSoLNZsMll1yCnTt3emR37dqFTp06Nftrak7Ncbxqa2tRW1sLs9nz7W+xWNxFjz+THrOGuFwufP/99+6ipXPnzoiLi/N4ztLSUmzYsKHRz2lkzXHMgJ+LmN27d+Ozzz5Du3btmnzffaU5jtmYMWPw3XffeXx+ExIS8Mgjj2D16tXN8jqoFfD1auNAtGLFCt1ut+vLly/Xf/zxR/3ee+/VIyMj3achjhkzRp8+ffpZ8w2dhfP+++/rQUFB+muvvabv3r1bf/nll3WLxaJ/8cUXzflSWkRzHK8hQ4bovXv31teuXavv27dPX7Zsme5wOPRXX321OV9Ki5Ees9mzZ+urV6/W9+7dq2/evFm/4447dIfDoW/bts39mGeeeUaPjIzUP/roI/27777Tb7755lZ3+nVTHjOn06kPHz5c79Chg75161aPU45ramp88hqbWnO8z36NZy3R+XBqyQdGjhyJY8eOYebMmSgsLES/fv2watUq96K5/Pz8eqMF5/O73/0Oixcvxty5c/HAAw+ge/fueO+993D55Zc3x0toUc1xvFasWIEZM2Zg9OjROHnyJDp16oS//vWvmDx5cnO8hBYnPWanTp3CpEmTUFhYiLZt2yIlJQXr16/3mK7885//jIqKCtx7770oLi7G5ZdfjlWrVp2zoZk/aepjdujQIXz88ccAUG/6be3atbjqqqta5HU1p+Z4nxFJ8erXRERE5Le4RoaIiIj8FgsZIiIi8lssZIiIiMhvsZAhIiIiv8VChoiIiPwWCxkiIiLyWyxkiIiIyG+xkCEiIiK/xUKGqJVJTk7G/Pnz3f9tMpnw4Ycftsi2pPLy8mAymWAymZQuPnkmGxkZqbwPROTfWMgQNZPc3FxYLBb3FbZ95ciRI7jhhhsA/Fw4bN261af79GufffaZ++KD999/P3r27Nng4/Lz82GxWNyt/48cOeJVIUVE/o+FDFEzWbp0Ke6//358/vnnOHz4sM/2Iy4uDna73Wfbb4x27dq5rww9ceJE7NixA+vXr6/3uOXLlyMmJgY33ngjgNOvLSIiokX3lYiMhYUMUTMoLy/HypUrMWXKFNx0001Yvny5x7/n5OTAZDJh9erV6N+/P4KDg/Gb3/wGR48exX/+8x/07NkT4eHhuPPOO1FZWenOXXXVVZg2bRqmTZuGiIgIREdH4/HHH8e5Lpn2y6mlzp07AwD69+8Pk8nkvnDhVVddhYceesgjN2LECNx9993u/z569CiGDRuG4OBgdO7cGW+++Wa9bRUXF+Oee+5B+/btER4ejt/85jf49ttvG3/gcPoCiwMGDEBmZqbH/bquY/ny5Rg3bhysVl7vlohOYyFD1Azeeecd9OjRA927d8ddd92FzMzMBouNJ554Aq+88grWr1+PgoIC3H777Zg/fz7eeustZGVlYc2aNXj55Zc9Mm+88QasVis2btyIBQsWYN68eXj99dcbtV8bN24EcHoq58iRI3j//fcb/ZruvvtuFBQUYO3atfjXv/6FV199FUePHvV4zG233eYuxjZv3owBAwbgmmuuwcmTJxu9HeD0qMw777yDiooK9305OTnYv38/JkyYIHouImrdWMgQNYOlS5firrvuAgBcf/31KCkpwbp16+o97qmnnsJll12G/v37Y+LEiVi3bh0WLVqE/v3744orrsDvf/97rF271iOTlJSEF198Ed27d8fo0aNx//3348UXX2zUfrVv3x7A6amcuLg4REVFNSq3a9cu/Oc//8GSJUtw6aWXIiUlBUuXLkVVVZX7MV9++SU2btyId999FwMHDsSFF16I559/HpGRkfjXv/7VqO2cceedd6K2thbvvvuu+75ly5bh8ssvR7du3UTPRUStGwsZoia2c+dObNy4EaNGjQIAWK1WjBw5EkuXLq332L59+7r/f2xsLEJCQtClSxeP+3496nHppZfCZDK5/zstLQ27d++Gy+Vq6pfitn37dlitVqSkpLjv69Gjh8fZQt9++y3Ky8vRrl07hIWFuW/79+/H3r17RduLjIzELbfc4p5eKi0txXvvvYeJEyc2yeshotaDE81ETWzp0qWoq6tDQkKC+z5d12G32/HKK694LE4NCgpy/3+TyeTx32fu0zSt2ffZbDbXm/qqra0VPUd5eTni4+ORk5NT799UTo+eOHEirrnmGuzZswdr166FxWLBbbfdJn4eImrdWMgQNaG6ujr84x//wAsvvIDrrrvO499GjBiBt99+G5MnT/ZqGxs2bPD476+//hoXXnghLBbLebM2mw0A6o3etG/fHkeOHHH/t8vlwg8//ICrr74awOnRl7q6OmzevBmXXHIJgNMjT8XFxe7MgAEDUFhYCKvViuTkZJWX5uHqq69G586dsWzZMqxduxZ33HEHQkNDvX5eImpdOLVE1IT+/e9/49SpU5g4cSIuuugij9utt97a4PSSVH5+PjIyMrBz5068/fbbePnll/Hggw82KhsTE4Pg4GCsWrUKRUVFKCkpAQD85je/QVZWFrKysrBjxw5MmTLFo0jp3r07rr/+evzhD3/Ahg0bsHnzZtxzzz0IDg52PyY9PR1paWkYMWIE1qxZg7y8PKxfvx6PPfYYNm3aJH6dJpMJEyZMwKJFi5Cbm8tpJSJqEAsZoia0dOlSpKenN9jb5NZbb8WmTZvw3XffebWNsWPHoqqqCoMGDcLUqVPx4IMP4t57721U1mq14qWXXsLf//53JCQk4OabbwYATJgwAePGjcPYsWMxZMgQdOnSxT0ac8ayZcuQkJCAIUOG4JZbbsG9996LmJgY97+bTCZ88sknuPLKKzF+/Hh069YNd9xxBw4cOIDY2Fil13r33XejpKQEvXv3RmpqqtJzEFHrZtLP1YCCiAzlqquuQr9+/VpNN9u8vDx07twZ33zzjdIlCoDTTfIeeughjxEkIgocXCNDRD43ePBg9OvXr8FuvucSFhaGuro6OByOZtozIjI6FjJE5DMdOnTA7t27AUDpMgpnrhnVmIXORNQ6cWqJiIiI/BYX+xIREZHfYiFDREREfouFDBEREfktFjJERETkt1jIEBERkd9iIUNERER+i4UMERER+S0WMkREROS3WMgQERGR3/r/XseMrPzFUHkAAAAASUVORK5CYII=\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - examples_4_0.png" } }, "output_type": "display_data" } ], "source": [ "_ = dataset_gridded.pop_q0.mean(dim=\"repetitions\").plot(x=\"amp\")" ] }, { "cell_type": "code", "execution_count": 6, "id": "e0b47d29", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:33.541450Z", "iopub.status.busy": "2023-09-26T17:43:33.541233Z", "iopub.status.idle": "2023-09-26T17:43:33.550327Z", "shell.execute_reply": "2023-09-26T17:43:33.549797Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:      (repetitions: 5)\n",
       "Coordinates:\n",
       "  * repetitions  (repetitions) <U1 'A' 'B' 'C' 'D' 'E'\n",
       "Data variables:\n",
       "    *empty*
" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "coord_dims = (\"repetitions\",)\n", "coord_values = [\"A\", \"B\", \"C\", \"D\", \"E\"]\n", "dataset_indexed_rep = xr.Dataset(coords=dict(repetitions=(coord_dims, coord_values)))\n", "\n", "dataset_indexed_rep" ] }, { "cell_type": "code", "execution_count": 7, "id": "60ab8df3", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:33.552595Z", "iopub.status.busy": "2023-09-26T17:43:33.552382Z", "iopub.status.idle": "2023-09-26T17:43:33.638250Z", "shell.execute_reply": "2023-09-26T17:43:33.637586Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:      (amp: 30, time: 40, repetitions: 5)\n",
       "Coordinates:\n",
       "  * amp          (amp) float64 0.45 0.4534 0.4569 0.4603 ... 0.5431 0.5466 0.55\n",
       "  * time         (time) float64 0.0 2.564e-09 5.128e-09 ... 9.744e-08 1e-07\n",
       "  * repetitions  (repetitions) <U1 'A' 'B' 'C' 'D' 'E'\n",
       "Data variables:\n",
       "    pop_q0       (repetitions, amp, time) float64 0.5 0.5 0.5 ... 0.5 0.5 0.5\n",
       "    pop_q1       (repetitions, amp, time) float64 0.5 0.5 0.5 ... 0.5 0.5 0.5\n",
       "Attributes:\n",
       "    tuid:                      20230926-194331-870-ca305f\n",
       "    dataset_name:              \n",
       "    dataset_state:             None\n",
       "    timestamp_start:           None\n",
       "    timestamp_end:             None\n",
       "    quantify_dataset_version:  2.0.0\n",
       "    software_versions:         {}\n",
       "    relationships:             []\n",
       "    json_serialize_exclude:    []
" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# merge with the previous dataset\n", "dataset_rep = dataset_gridded.merge(dataset_indexed_rep, combine_attrs=\"drop_conflicts\")\n", "\n", "assert dataset_rep == round_trip_dataset(dataset_rep) # confirm read/write\n", "\n", "dataset_rep" ] }, { "cell_type": "code", "execution_count": 8, "id": "fa8c2e00", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:33.640511Z", "iopub.status.busy": "2023-09-26T17:43:33.640291Z", "iopub.status.idle": "2023-09-26T17:43:33.867901Z", "shell.execute_reply": "2023-09-26T17:43:33.867214Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHHCAYAAACle7JuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABb90lEQVR4nO3deXhTZfo+8DtJm6R7C6UthdKWspW1WKCAC6gVHHFhGAFRoGwyIAhaV1woKAoMijAC4iAUHR0BlcXfoCxiYURQvoAoMuxQWqEbS/fStMn5/cEQDS3Q56Rtkub+XFeui6a5zzk5pOnT933PE42iKAqIiIiIXJDW0QdAREREpBYLGSIiInJZLGSIiIjIZbGQISIiIpfFQoaIiIhcFgsZIiIiclksZIiIiMhlsZAhIiIil8VChoiIiFwWCxmiBmLlypXQaDRIT0+/6WO3b98OjUaD7du31/lxERHVJRYyRC7mzTffxPr162v02CVLlmDlypV1ejzOLioqChqNptrbvffe6+jDIyI7afhZS0SuxdfXFw8//HCVAsVsNqOiogIGgwEajQYA0LFjRwQHB1cZebFYLDCZTNDr9dBqG/bfM1FRUQgKCsIzzzxT5Xvh4eG46667HHBURFRbPBx9AESupKSkBD4+Po4+jGrpdDrodLoaPVar1cJoNNbxETmPZs2aYfjw4Y4+DCKqAw37TzEiO8yYMQMajQb//e9/8eijjyIoKAi33Xab9fsff/wx4uPj4eXlhUaNGuGRRx5BZmamzTb69u2Ljh07Yt++fejduze8vLwQHR2NpUuXVtlfeXk5UlJS0KpVKxgMBkREROD5559HeXm59TEajQYlJSX48MMPrdMjo0aNAlB1jUxUVBQOHTqEHTt2WB/bt29fANdfI/PZZ59Zn1NwcDCGDx+Os2fP2jxm1KhR8PX1xdmzZzFw4ED4+vqiSZMmePbZZ2E2m20eu2rVKsTHx8PPzw/+/v7o1KkTFi5cKPlvICK6IY7IEN3E4MGD0bp1a7z55pu4OhP7xhtv4NVXX8WQIUMwbtw45OXl4d1338Udd9yBn376CYGBgdb8pUuXcN9992HIkCEYNmwY1qxZg4kTJ0Kv12PMmDEArkz1PPjgg9i5cyfGjx+P2NhYHDx4EO+88w6OHTtmXRPzz3/+E+PGjUOPHj0wfvx4AEBMTEy1x71gwQI8+eST8PX1xcsvvwwACA0Nve7zXLlyJUaPHo3u3btj9uzZyMnJwcKFC/H9999XeU5msxn9+/dHQkIC3nrrLXzzzTd4++23ERMTg4kTJwIAtm7dimHDhuHuu+/G3LlzAQCHDx/G999/j6lTp97wnF+6dKlKUVQdb29veHt73/RxFRUVOH/+fJX7fXx84OXlddM8ETkxhYiqlZKSogBQhg0bZnN/enq6otPplDfeeMPm/oMHDyoeHh429/fp00cBoLz99tvW+8rLy5W4uDglJCREMZlMiqIoyj//+U9Fq9Uq3333nc02ly5dqgBQvv/+e+t9Pj4+SlJSUpXjTU1NVQAop0+ftt7XoUMHpU+fPlUem5aWpgBQ0tLSFEVRFJPJpISEhCgdO3ZUysrKrI/797//rQBQpk+fbr0vKSlJAaC89tprNtvs2rWrEh8fb/166tSpir+/v1JZWVll/zcTGRmpALjpLSUlxa5tzZ49W3xsRORcOCJDdBMTJkyw+Xrt2rWwWCwYMmSIzV/5YWFhaN26NdLS0vDSSy9Z7/fw8MBf//pX69d6vR5//etfMXHiROzbtw89e/bEZ599htjYWLRr185mm1cXoqalpaF379519RSxd+9e5ObmYsaMGTZrZwYMGIB27dph48aNmDlzpk3m2vNy++2345///Kf168DAQJSUlGDr1q3iq4M++eQTlJWV3fRxLVu2rNH2EhISMGvWrCr3t27dWnRcROR83LqQ+c9//oN58+Zh3759yMrKwrp16zBw4MA6219UVBTOnDlT5f4nnngCixcvrrP9kn2io6Ntvj5+/DgURbnuL0FPT0+br8PDw6ssEG7Tpg0AID09HT179sTx48dx+PBhNGnSpNpt5ubmqj38Grn6umzbtm2V77Vr1w47d+60uc9oNFY51qCgIFy6dMn69RNPPIE1a9bgT3/6E5o1a4Z+/fphyJAhNSpqbr31VjVP47qCg4ORmJhYq9skIufg1oVMSUkJunTpgjFjxmDQoEF1vr//+7//s5n3//XXX3HPPfdg8ODBdb5vUu/aNRQWiwUajQZff/11tVcJ+fr6ivdhsVjQqVMnzJ8/v9rvR0REiLdZl2pydVRISAgOHDiAzZs34+uvv8bXX3+N1NRUjBw5Eh9++OENs3l5eTVaI+Pr66vqfBNRw+HWhcyf/vQn/OlPf7ru98vLy/Hyyy/j008/RX5+Pjp27Ii5c+dar/yQuvYv2Dlz5iAmJgZ9+vRRtT1yjJiYGCiKgujoaOvIyo2cO3euymXbx44dA3BllO7qNn/++Wfcfffd1h4w13Oz76t5bGRkJADg6NGjVfqqHD161Pp9Kb1ejwceeAAPPPAALBYLnnjiCbz//vt49dVX0apVq+vmunfvXu3o5bVSUlIwY8YMVcdGRA0DL7++gcmTJ2P37t1YtWoVfvnlFwwePBj33nsvjh8/bve2TSYTPv74Y4wZM0b0i4kcb9CgQdDpdJg5c6b1KqarFEXBhQsXbO6rrKzE+++/b/3aZDLh/fffR5MmTRAfHw8AGDJkCM6ePYtly5ZV2V9ZWRlKSkqsX/v4+CA/P79Gx1rTx3br1g0hISFYunSpzeXeX3/9NQ4fPowBAwbUaH9/dO150Gq16Ny5MwDY7KM6n3zyCbZu3XrT28iRI8XHRUQNi1uPyNxIRkYGUlNTkZGRgfDwcADAs88+i02bNiE1NRVvvvmmXdtfv3498vPzrT1AyHXExMRg1qxZmDZtGtLT0zFw4ED4+fnh9OnTWLduHcaPH49nn33W+vjw8HDMnTsX6enpaNOmDVavXo0DBw7gH//4h3U9zYgRI7BmzRpMmDABaWlpuPXWW2E2m3HkyBGsWbMGmzdvRrdu3QAA8fHx+OabbzB//nyEh4cjOjoaCQkJ1R5rfHw83nvvPcyaNQutWrVCSEhItZ1sPT09MXfuXIwePRp9+vTBsGHDrJdfR0VF4emnnxafp3HjxuHixYu466670Lx5c5w5cwbvvvsu4uLiEBsbe8Nsba+ROXv2LD7++OMq9/v6+tbpujgiqgeOvWjKeQBQ1q1bZ/366mWnPj4+NjcPDw9lyJAhiqIoyuHDh296eegLL7xQ7f769eun3H///fXx1Eilq5df5+XlVfv9L774Qrntttusr4127dopkyZNUo4ePWp9TJ8+fZQOHTooe/fuVXr16qUYjUYlMjJSWbRoUZXtmUwmZe7cuUqHDh0Ug8GgBAUFKfHx8crMmTOVgoIC6+OOHDmi3HHHHYqXl5cCwHopdnWXX2dnZysDBgxQ/Pz8FADWS7Gvvfz6qtWrVytdu3ZVDAaD0qhRI+Wxxx5TfvvtN5vHJCUlKT4+Ptc9X1d9/vnnSr9+/ZSQkBBFr9crLVq0UP76178qWVlZ1Z7PunKjy68jIyPr9ViIqPbxs5b+R6PR2Fy1tHr1ajz22GM4dOhQlYWNvr6+CAsLg8lkwqlTp2643caNG1dZG3PmzBm0bNkSa9euxUMPPVSrz4OcS9++fXH+/Hn8+uuvjj4UIqIGiVNL19G1a1eYzWbk5ubi9ttvr/Yxer0e7dq1E287NTUVISEhqtYdEBER0e/cupApLi7GiRMnrF+fPn0aBw4cQKNGjdCmTRs89thjGDlyJN5++2107doVeXl52LZtGzp37qy6CLFYLEhNTUVSUhI8PNz69BMREdnNrX+T7t27F3feeaf16+TkZABAUlISVq5cidTUVMyaNQvPPPMMzp49i+DgYPTs2RP333+/6n1+8803yMjIsH7GDhEREanHNTJERERuSk2H++3btyM5ORmHDh1CREQEXnnlFYdegcs+MkRERG7qaof7mn5MzunTpzFgwADceeedOHDgAJ566imMGzcOmzdvruMjvT6OyBAREVGVq3er88ILL2Djxo02V2I+8sgjyM/Px6ZNm+rhKKtyuzUyFosF586dg5+fHzvqEhHRDSmKgqKiIoSHh0OrrbtJjMuXL8NkMtm9HUVRqvxuMxgMMBgMdm8bAHbv3l3lA1j79++Pp556qla2r4rjWtgoyo4dO5T7779fadq0aZWGdNeTlpamdO3aVdHr9UpMTIySmpoq2mdmZuZNm9jxxhtvvPHG2x9vmZmZ6n7R1UBZWZkSFqKrleP09fWtcl9KSkqNjgO4+e/h1q1bK2+++abNfRs3blQAKKWlpSrPgH0cOiIj/fTpq3NzEyZMwCeffIJt27Zh3LhxaNq0Kfr371+jffr5+QEAIma+Aq3RKDpeXZG8Glf0ijiDiFL5fhT56JLvD97ijFpF3cvEmcAg+Xko+b/G4gwAhH9/WZw5kyT/vz3Q5xNxpvPG0eJMzNN7xRm1Ti6MF2fatT4rzhw51kycAYA27xWIM5kD5K+jx4Z+K87sLYgUZ45uihFnAMAgPw3I737jz8SqjqexUpwxn1P3XqSxyDOKp+zn1nL5MjJTZll/d9QFk8mE7FwzzuyLgr+f+lGfwiILIuPTkZmZCX9/f+v9tTUa46wcWsjc7NOnr7V06VJER0fj7bffBgDExsZi586deOedd2pcyFwdctMajfJCpkL+ArOoKWS85T+dagoZnV72/O2h9ZafB523WZ4xqHtOalr6qHlO/n66mz/o2v14yZ+Th8ZTnFFLzfF5+ujrZT8A4KGTF6lqXkdGX/mLyLNSfh7UvsZ18l1B6yV/X9F6yQsZRfhefFV9FDLWfdXDUgRfPw18/dTvx4IrWX9/f5tCpjaFhYUhJyfH5r6cnBz4+/vDy8urTvZ5My511dL15uZ2797toCMiIiKqHWbFYvetrvXq1Qvbtm2zuW/r1q3o1atXne/7elxqsW92djZCQ0Nt7gsNDUVhYSHKysqqrQbLy8tRXv778GhhYWGdHycREZGUBQosUDdidDUvdaMO9y1atMC0adNw9uxZfPTRRwCACRMmYNGiRXj++ecxZswYfPvtt1izZg02btyo+rjt5VIjMmrMnj0bAQEB1ltERISjD4mIiMgp7N27F127dkXXrl0BXOlw37VrV0yfPh0AkJWVhYyMDOvjo6OjsXHjRmzduhVdunTB22+/jQ8++KDGyzvqgkuNyKiZm5s2bZr1oweAKyMyLGaIiMjZWGCBPZNDatJ9+/aFcoN2citXrqw289NPP4n3VVdcqpDp1asXvvrqK5v7bjY3V5vXzxMREdUVs6LAbEePWnuyrsyhU0vFxcU4cOAADhw4AOD3ubmrw1jTpk3DyJEjrY+fMGECTp06heeffx5HjhzBkiVLsGbNGjz99NOOOHwiIiJyMIeOyNzs06evNzf39NNPY+HChWjevLn6uTlFc+UmicivnEWlj4qBwhL5dZIeefLLbQ356qr3813kmSEd94szX51pL840+UV+yTYAlDaVn3O9sUScWV/iI84Yz6l44dUjQ7b8bcTUWv6cenU+Ls4AwJmObcUZQ758P+8fvE2cmdx5hzjzi19rcQYAtPKroqHLlf9cGNvIe0YVGdRNqHgWyF9HZpWXX9cHRyz2bQgcWsg0hLk5IiKi2mCBAjMLGbEGf9USERERNVwutdiXiIiooeLUkjosZIiIiJwAr1pSh1NLRERE5LI4IkNEROQELP+72ZN3RyxkiIiInIDZzquW7Mm6MhYyRERETsCsXLnZk3dHXCNDRERELosjMgJmo7zc1QaaxBlLufy/xUPeZBaKyjJWFyXfmUXYRRkAik8FijONSyrEGQC4ECvvYPqvbh/IM5eu/7lg1+OXKX/debRqKc4AQOWJU+KMd5Z8P/GNMsWZb8+1ke8IQHmo/IWuK5fvR8mu/oNrb2R/VAtxprLFZXEGALzyjOKMvkD+c1uU7y3OQGW3XbN3wxqC4BoZdVjIEBEROQELNDBDXjz+Me+OOLVERERELosjMkRERE7Aoly52ZN3RyxkiIiInIDZzqkle7KujFNLRERE5LI4IkNEROQEOCKjDgsZIiIiJ2BRNKpaVfwx7444tUREREQuiyMyAoqHfEm4YtKJM7pL8v8Wn3PiCApi1FXvZrO8/t2mopmZ4YL8+Cwe6p5TaTN5K6lppweJM/6eajqtySMoKVURAkoe7inOhH12VJz5+ZFm4syuuDXiDAC0Pj5RnIleL2+sWB5kEGd+/C1SnOnR8ow4AwA/nWkrzngWyfejy/MUZyyhKn4uAFgq5D/v2krnHbXg1JI6LGSIiIicgBlamO2YKDHX4rG4EhYyRERETkCxc42MwjUyRERERK6FIzJEREROgGtk1GEhQ0RE5ATMihZmxY41Mm76EQWcWiIiIiKXxREZIiIiJ2CBBhY7xhcsqno1uD4WMkRERE6Aa2TUcd9CRqNcuQkoennTNFTIq2uvLPmL0SzvxYXyUHVdB7pH/CbO7DkSLc4EFoojMBvV/TXTNe6UOPP3qLXizO3/fkaciT4rb86Wd6/8fAOAoUD+Gr/Ur7U4k3VMvp/lofImegDgFSHv6lbc3F+cCTom/3k621H+Fnz0YhNxBgDKQyrFGY1ZfnyehfL3r8ve8iZ6AAAVTUrhxA3xSB33LWSIiIiciP2LfTm1RERERA5yZY2MHR8a6aZTS7xqiYiIiFwWR2SIiIicgMXOz1riVUtERETkMFwjow4LGSIiIidggZZ9ZFTgGhkiIiJyWRyRISIicgJmRQOzYkdDPDuyroyFjISK5na6y/IXlq5cHEFxC3mmRasceQjAgbPyxmT6XHnDK61JHEFBlE4eAtAvIFOcmZI+SJwJ+ll+fB7f/CjPPNpLnAGAS23kx9dszi75ftr2FmdOXg4RZwCgQ4j8df5LqwBxpun38oZ4nmeM4oxPaL44AwAFRnlDPLNe/itCf1kcga5M3eSA2U9dU09nZbZzsa+ZU0tEREREroUjMkRERE7AomhhseOqJQuvWiIiIiJH4dSSOpxaIiIiIpfFERkiIiInYIF9Vx7JP1O+YWAhQ0RE5ATsb4jnnpMs7vmsiYiIqEHgiAwREZETsP+zltxzbIKFDBERkROwQAML7Fkjw86+dBMaFSupPIvkL6xKL/l+KptUiDNeHvIMAFSUyrv0hh2Unzy/02XizPER8k6pAPBTQYQ4U2gyiDP+Z+TnvGhYT3HmfGd1b2iKrn4u3wz/Xt62+Ydbo1Tta027T8SZniHJ4kx5kPzt1KNUHMHZ7CB5CICXr7xleFmA/GfdK09F9+pida9Xi2fDGoHgiIw67vmsiYiIqEHgiAwREZETsL8hnnuOTbCQISIicgIWRQOLPX1k3PTTr92zfCMiIqIGgSMyRERETsBi59SSuzbEYyFDRETkBOz/9Gv3LGTc81kTERFRg8ARGSIiIidghgZmO5ra2ZN1ZSxkBLQV9fMiKQ9W0ZRMJ284dywzVL4fALrz8iZZhkKzOHOhi484ExKdJ84AwOKodeLMrdufFGdaff1/4ox36xhxpmiIusaAZSV6cSY/qZc40+hAgThz9GywOAMAa5u3FWf0wfJmjOUBvuJMs+0l4ky6n/znAgA07S6LM95hxeJMabG/OKOtVPfeqi2X5xR9/TR9VINTS+q457MmIiKiBoEjMkRERE7ADPumh+Tj3g0DCxkiIiInwKkldVjIEBEROQF+aKQ67vmsiYiICACwePFiREVFwWg0IiEhAXv27Lnh4xcsWIC2bdvCy8sLERERePrpp3H5snwxeW1hIUNEROQEFGhgseOmqFhfs3r1aiQnJyMlJQX79+9Hly5d0L9/f+Tm5lb7+H/961948cUXkZKSgsOHD2P58uVYvXo1XnrpJXufvmosZIiIiJzA1akle25S8+fPx+OPP47Ro0ejffv2WLp0Kby9vbFixYpqH79r1y7ceuutePTRRxEVFYV+/fph2LBhNx3FqUsOL2RcfUiLiIjImRQWFtrcysvLq32cyWTCvn37kJiYaL1Pq9UiMTERu3fvrjbTu3dv7Nu3z/q7+tSpU/jqq69w33331f4TqSGHLva9OqS1dOlSJCQkYMGCBejfvz+OHj2KkJCQKo+/OqS1YsUK9O7dG8eOHcOoUaOg0Wgwf/582c4VzZWbgNakovmSThxBReNKcUbnIW+IZy5T998fdFx+Hi62ke+rLEzeuGpsiwPiDAB8XNBFnPE+qK7pnJQpPECcGd76O1X7Olla9efuZvbvkJ+74lbypmnGU+r+7tIlyH82nu+0RZx5M+PP4oyu3Fuc0V8SRwAAJYVe8n15m8SZykD5RcD68+reizQqets5bzs8wKJoYBH+Xro2DwARERE296ekpGDGjBlVHn/+/HmYzWaEhto2Rw0NDcWRI0eq3cejjz6K8+fP47bbboOiKKisrMSECRPcd2qpIQxpERER1Qbz/z792p4bAGRmZqKgoMB6mzZtWq0d4/bt2/Hmm29iyZIl2L9/P9auXYuNGzfi9ddfr7V9SDmskKmvIa3y8vIqw2xEREQNlb+/v83NYDBU+7jg4GDodDrk5OTY3J+Tk4OwsLBqM6+++ipGjBiBcePGoVOnTvjzn/+MN998E7Nnz4bFIh/9rA0OK2RuNKSVnZ1dbebRRx/Fa6+9httuuw2enp6IiYlB3759bzikNXv2bAQEBFhv1w65EREROYOrU0v23CT0ej3i4+Oxbdu234/BYsG2bdvQq1f1n6FWWloKrda2dNDprqyhUBTHTNw5fLGvhJohrWnTptkMsWVmZtbjERMREdWMBVq7b1LJyclYtmwZPvzwQxw+fBgTJ05ESUkJRo8eDQAYOXKkzdTUAw88gPfeew+rVq3C6dOnsXXrVrz66qt44IEHrAVNfXPYYl97h7QAoFOnTigpKcH48ePx8ssvV6kSAcBgMFx3WI2IiMidDR06FHl5eZg+fTqys7MRFxeHTZs2WWdLMjIybH63vvLKK9BoNHjllVdw9uxZNGnSBA888ADeeOMNRz0FxxUyfxzSGjhwIIDfh7QmT55cbcYZh7SIiIhqg1nRwGzHVUtqs5MnT77u793t27fbfO3h4YGUlBSkpKSo2lddcOjl18nJyUhKSkK3bt3Qo0cPLFiwoMqQVrNmzTB79mwAV4a05s+fj65duyIhIQEnTpxw+JAWERFRbaity6/djUMLmYYwpEVERFQbFDs//Vpx0w+NdPinX7vSkJbFQz59Vekjz+j95E2o/Hzk3Y2L0xuLMwCgrZQ/J52KZoLe7fLlGa383AHAmsx4ccajVNWuxLJ6yRvvnbscpGpfHhp5M7PSpvL9BB2X/z8ZLqlrQPjJbz3EmabeReKMElJ999Qb0Zn04oxnqbq/ug1n5PvSdpS/r2g8VTTn9FZ32a62TM0vbi5DaGgcXsgQERERYIYGZhUf/PjHvDtiIUNEROQELIp961wsbjrY5J4TakRERNQgcESGiIjICVjsXOxrT9aVsZAhIiJyAhZoYLFjnYs9WVfmnuUbERERNQgckSEiInICjurs6+pYyBARETkBrpFRxz2fNRERETUIHJGRUFH2KX6V8oyKXgAXzwSKM0Z5I1IAQIWvfPiypJn8SfVtmiHObMltL84AwLkjIeJM238eEmcsCZ3FmdJm8q6nPh7q/nPv8DsizmwOjhNndDsPijOBRvl+ACDjv2HiTECcvKNtUpcfxJlPMvuKM01+UtcFt9JL/gZWnOMjzviFy7siF5X5iTMAAHPDapxigZ2fteSmi31ZyBARETkBxc6rlhQWMkREROQo/PRrdbhGhoiIiFwWR2SIiIicAK9aUoeFDBERkRPg1JI67lm+ERERUYPAERkiIiInwM9aUoeFDBERkRPg1JI6LGQEzEZ5IyqNhzxTeVn+32LM0YkzPufEEQBAWRN5xqttgTjjoTGLM8HGEnEGAHxPy2dZzQXy55Tb3Vecad42S5zp4XNSnAGAfl7yRnC33CLf1/HJ3cWZ8FR5A0IA8IrrIM54d6sQZ776Tb4fTaticebiZflrCAA85buC11n5+0qRl7c4o3iqa/JnMct/cWvlbyvk5FjIEBEROQGOyKjDQoaIiMgJsJBRh1ctERERkcviiAwREZET4IiMOixkiIiInIAC+y6hblifBV5zLGSIiIicAEdk1OEaGSIiInJZHJEhIiJyAhyRUcd9CxmNcuUmoOhVzEBWyBtKaQvk/y06eR8zaCvVzaheVtEQ797m8qZpJ4uCxZmjp8LFGQBoVCbPaL28xJlKH/l+OgbJG+KdqwiS7wjAJUuuOBOkLxVn1LzyzO2jVKQAr/PyzJ5TkeJMRNhFcaaRn/xM5AaqeBEBCDwu31d5gHzQ3hTkKc6YG8sbEAIQv4f/L6RuX/WAhYw6nFoiIiIil+W+IzJEREROhCMy6rCQISIicgKKooFiRzFiT9aVcWqJiIiIXBZHZIiIiJyABRq7GuLZk3VlLGSIiIicANfIqMOpJSIiInJZHJEhIiJyAlzsqw4LGQGNRUWmTN4QT3dZ/mI0G8QRFMSoe9H7xOSLM1HGC+JMSaX8SZ37Vd6MCwD80+UNuSp6thdnSprLX0R/abRXnLnbyyzOAECFIj/n/2i+S5yJie4kzlQc1oszAKDIfwTh/atRnPFqLn8NmSrlb8EeESXiDABcKPMVZwzyHn/wLJS/r1j06n4VNbTf25xaUoeFDBERkRPgiIw6XCNDRERELosjMkRERE5AsXNqyV1HZFjIEBEROQEFgKLus3yteXfEqSUiIiJyWRyRISIicgIWaKBhZ18xFjJEREROgFctqcOpJSIiInJZHJER0JTL6z7PAnlGq6KXmUeZPFMUUSkPAegSnCvOnCgNEWd2/LeNONPihLrnVB4o75pW4SP/8dE2uizOJBjkDdAmn7tDnAGAw/mh4swTkdvFmdA258UZZUsjcQYAGr8vb9iXP6qXOHP0VLg4E9VC/rPU2E9dQ7ysYHmTP22FioZ9peIIdGXqRhLMxoa1vNWiaKBhQzwxFjJEREROQFHsvGqpYdV1NcapJSIiInJZHJEhIiJyAlzsqw4LGSIiIifAQkYdFjJEREROgIt91eEaGSIiInJZHJEhIiJyArxqSR0WMkRERE7gSiFjzxqZWjwYF8JChoiIiOpNQUEBsrOzAQBhYWEICAiwa3ssZAQ0Znml7CFv5Ao1BXlpuLwUDwgtku8IQLhXvjjz5aHO4ozPYb04451+UZwBAGjkJ/3EsCBxZlb3DeKMr1bekfWn883FGQB4Inq7OPObqbE4c3fTo+LMZ71uF2cAICqnkzgTeETenraglY84k+kl71bcIypdnAEAbZT8PSKrWN7p2UNFl179JXWjEOXylx4UT+cdtmjoVy198MEHmD9/Po4etf35b9u2LZ555hmMHTtW1XZZyBARETkB5X83e/LOat68eZgxYwamTJmC/v37IzT0SpGck5ODLVu2YOrUqbh06RKeffZZ8bZZyBAREVGdWrRoEVJTUzFkyBCb+2NjY9G3b1906dIFzz33HAsZIiIiV9WQp5Zyc3PRqdP1p3k7deqE8+flHyYLsI8MERGRc1Bq4eakunfvjjlz5qCysrLK98xmM+bOnYvu3bur2jYLGSIiImfwvxEZtTdVV4oAWLx4MaKiomA0GpGQkIA9e/bc8PH5+fmYNGkSmjZtCoPBgDZt2uCrr766YWbRokXYsmULwsLCMGjQIEycOBETJ07EoEGDEBoaiq1bt2Lx4sWqjt/hhUx9nEAiIiKqavXq1UhOTkZKSgr279+PLl26oH///sjNza328SaTCffccw/S09Px+eef4+jRo1i2bBmaNWt2w/107twZx44dw+uvvw4/Pz+cOnUKp06dgp+fH2bNmoUjR46gY8eOqp6DQ9fIXD2BS5cuRUJCAhYsWID+/fvj6NGjCAkJqfL4qycwJCQEn3/+OZo1a4YzZ84gMDCw/g+eiIioFjmis+/8+fPx+OOPY/To0QCApUuXYuPGjVixYgVefPHFKo9fsWIFLl68iF27dsHT0xMAEBUVVaN9+fn5WUdiapNDC5n6PIFERETOrLYW+xYWFtrcbzAYYDAYqjzeZDJh3759mDZtmvU+rVaLxMRE7N69u9p9fPnll+jVqxcmTZqEDRs2oEmTJnj00UfxwgsvQKfT3fQYz549iy+++ALHjh2DXq9H27ZtMWTIEAQFyftyXeWwQqa+TmB5eTnKy8utX1v/g1XMJ2rL5S8wc9XXzk1VesvLaksjkzjTtnGeOAMAe/IixRnNBfmJ8M2SnwdNYYk4AwB5d8kbyHm2Kbz5g67xS2mEOLMu9xZxJi/fV5wBgMWn7hRn/tnhQ3EmxkN+fGtju4gzAJCb5S/ONDpSfvMHXSPoiPz1mucjb3aYG6ru/9ZTaxZnzAFVF2beTHmFpzijle/mSq5CxXuyEzfEqy0REbbvMykpKZgxY0aVx50/fx5ms9na0+Wq0NBQHDlypNptnzp1Ct9++y0ee+wxfPXVVzhx4gSeeOIJVFRUICUl5YbHtWTJEiQnJ8NkMsHf/8rPZWFhIZKTk/HBBx9g2LBhUBQFBw4cQNeuXWv8fB1WyNTXCZw9ezZmzpxZ68dPRERUq+xYsGvNA8jMzLQWCgCqHY1Ry2KxICQkBP/4xz+g0+kQHx+Ps2fPYt68eTcsZDZu3IgpU6bgqaeewjPPPIOmTZsCALKysjBv3jwkJSUhIiICS5YsQbt27VyjkFFDzQmcNm0akpOTrV8XFhZWqVaJiIgcrbbWyPj7+9sUMtcTHBwMnU6HnJwcm/tzcnIQFhZWbaZp06bw9PS0mQWJjY1FdnY2TCYT9PrqP1pm3rx5ePHFFzFr1qwq25s/fz68vb1xzz33ICwsDLNnz77psf+Rw65aUnsC27Rpc90TWB2DwWD9T63pfy4REVFDp9frER8fj23btlnvs1gs2LZtG3r16lVt5tZbb8WJEydgsVis9x07dgxNmza9bhEDAPv378eIESOu+/0RI0agvLwcO3bsQGSkbPmCwwqZ+jyBRERETs8BDfGSk5OxbNkyfPjhhzh8+DAmTpyIkpIS60U4I0eOtFnLOnHiRFy8eBFTp07FsWPHsHHjRrz55puYNGnSDfdjNputF+lUx9PTE15eXmjRooX4OTi0j0x9nUAiIiJnZ08zPLVXPA0dOhRvvfUWpk+fjri4OBw4cACbNm2yrl/NyMhAVlaW9fERERHYvHkz/u///g+dO3fGlClTMHXq1GqvNP6jDh06YMOGDdf9/vr169GhQwfx8QMOXiMzdOhQ5OXlYfr06cjOzkZcXFyVE6jV/l5rXT2BTz/9NDp37oxmzZph6tSpeOGFFxz1FIiIiFza5MmTMXny5Gq/t3379ir39erVCz/88INoH5MmTcLEiRNhMBgwfvx4eHhcKT8qKyvx/vvv45VXXsGSJUvExw44wWLf+jiBRERELqGBXh2elJSEgwcPYvLkyZg2bRpiYmKgKApOnTqF4uJiTJkyBaNGjVK1bYcXMkRERNSwP/0aAN566y08/PDD+PTTT3H8+HEAwB133IFhw4ahZ8+eqrfLQkZA0clL5Upv+X4qA+SNq8LD8sWZI+erfgxETRSd8xNnAk7Jf8AMBfIuWWoa2wFAcQv58bUOln/kfE65/NyVVsobjJlzvcQZAMjOk+cWhfQRZ95puk+cuTPyuDgDAN+ExYszwb9Ybv6ga5QHyF9DQYfEEZz0r/6qzptp2/KcOBPe/KI4k2VuLM7oCm7eEbY6ahriOTV7P8HaBUZzevbsaVfRUp0aFTJffvmleMP33HMPvLzUvZkSERER1USNCpmBAweKNqrRaHD8+HG0bNlSzTERERG5Ic3/bvbk3U+NL7/Ozs6GxWKp0c3bW8V8ChERkTtzQB+ZhqBGhUxSUpJommj48OHsoEtERER1rkZTS6mpqaKNvvfee6oOhoiIyG25wWLfumB3Z9/CwkKsX78ehw8fro3jISIick9XP/3anpuTy8nJwYgRIxAeHg4PDw/odDqbmxriy6+HDBmCO+64A5MnT0ZZWRm6deuG9PR0KIqCVatW4S9/+YuqAyEiIqKGbdSoUcjIyMCrr76Kpk2bQqOxv/gSFzL/+c9/8PLLLwMA1q1bB0VRkJ+fjw8//BCzZs1iIUNERKSColy52ZN3djt37sR3332HuLi4WtumuJApKChAo0aNAACbNm3CX/7yF3h7e2PAgAF47rnnau3AnJGion2gxSBvrOXhZxJnzhf4ijMVJfJGawCgvyAf/vO6IP8JM+aUiTNljeTnAQAut6gQZ4pMBvl+zPIX0e3BJ8WZ01nR4gwAmOVPCeUW+XN6KbezOPPX4B3iDAB81aKjOJN7i7wHVvgWeYPEvN7B4oz+nLqf22OeoeJMk+Ai+Y6M8oaeZpPKVQ4O/djjOuAGa2QiIiKg1HLFJX4ZREREYPfu3SgpKcGmTZvQr18/AMClS5dgNBpr9eCIiIio4ViwYAFefPFFpKen19o2xX9KPfXUU3jsscfg6+uLyMhI9O3bF8CVKadOnTrV2oERERG5FXsX7LrAYt+hQ4eitLQUMTEx8Pb2hqen7QjjxYvyj8UQFzJPPPEEEhISkJGRgXvuuQda7ZVBnZYtW2LWrFniAyAiIiJAo1y52ZN3dgsWLKj1bar60Mj4+HjEx9t+ENuAAQNq5YCIiIjckhuskUlKSqr1bdZojUxycjJKSkpqvNFp06apGh4iIiKihs1sNuOLL77ArFmzMGvWLKxbtw5ms3yR+FU1KmQWLlyI0tLSGm908eLFyM/PV3tMRERE7scNGuKdOHECsbGxGDlyJNauXYu1a9di+PDh6NChA06elF+hCdRwaklRFLRp06bGjWskozdEREQEt5hamjJlCmJiYvDDDz9YW7lcuHABw4cPx5QpU7Bx40bxNuvks5YAIDRU3rOAiIiIGq4dO3bYFDEA0LhxY8yZMwe33nqrqm3WqJCpi8U5RERE9AduMCJjMBhQVFS10WJxcTH0er2qbaq6asldKTr5q0RR0dlXMauY59TKj80jT12HUMMleaYkVP6cipr7iTNlTdX9JMfGnBVn3ohaJ86kVzQWZ5K/e0ScabulUJwBgMJW8s7IW1rFijPH7lohzmgh77YLAE93/0acWXjhPnHmQoL8/7bxQXnn3LIm8p8LALBkyds2X/CQ/zzpPOXveZYAeTdzALBckv/ic+pLlN2gkLn//vsxfvx4LF++HD169AAA/Pjjj5gwYQIefPBBVdtsaA2eiYiIyEn9/e9/R0xMDHr16gWj0Qij0Yhbb70VrVq1wsKFC1VtkyMyREREzsANOvsGBgZiw4YNOH78OI4cOQIAiI2NRatWrVRvk4UMERGRE3CHzr5XtW7dGq1bt66VbakuZE6cOIGTJ0/ijjvugJeXFxRFqfHl2UREROQekpOT8frrr8PHxwfJyck3fOz8+fPF2xcXMhcuXMDQoUPx7bffQqPR4Pjx42jZsiXGjh2LoKAgvP322+KDICIicnsNdLHvTz/9hIqKCuu/a5u4kHn66afh4eGBjIwMxMb+frXC0KFDkZyczEKGiIiIrNLS0qr9d20RX7W0ZcsWzJ07F82bN7e5v3Xr1jhz5kytHRgREZE70eD3dTKqbo5+AjUwZsyYavvIlJSUYMyYMaq2KS5kSkpK4O3tXeX+ixcvwmCQ9ykgIiIi9/Dhhx+irKysyv1lZWX46KOPVG1TPLV0++2346OPPsLrr78OANBoNLBYLPjb3/6GO++8U9VBOISK5eGKiuZQmkp5jWwpUtHdsFTeEsgnR1397inv4aXqT4WSZvJMeIdseQjAkxHbxJk4vVGceeO3XuKMMV3+ergcpq5FlMlXntP+Jm9Ud9ehP4szz0RvFWcA4FCx/IXkFS1vKFhQGiDOGAqq/lF4M8GHKsUZADjfSX5tR7lO/hpXml4WZzQqGnoCgEXFy1yj/kOW614Dvvy6sLAQiqJAURQUFRXBaPz9tWU2m/HVV18hJCRE1bbFr+y//e1vuPvuu7F3716YTCY8//zzOHToEC5evIjvv/9e1UEQERG5vQa62Be40j9Go9FAo9GgTZs2Vb6v0Wgwc+ZMVdsWFzIdO3bEsWPHsGjRIvj5+aG4uBiDBg3CpEmT0LRpU1UHQURERA1XWloaFEXBXXfdhS+++MLmQyP1ej0iIyMRHh6uatuq+sgEBATg5ZdfVrVDIiIiqkYDHpHp06cPAOD06dOIiIiAVlt7n5CkqpC5fPkyfvnlF+Tm5sJisf2AMLUf+kREROTO3KGzb2RkJACgtLQUGRkZMJlsPzC0c+fO4m2KC5lNmzZh5MiROH/+fJXvaTQamM3OvJKKiIiIHCUvLw+jR4/G119/Xe331dQQ4rGdJ598EoMHD0ZWVhYsFovNjUUMERGRSkot3JzcU089hfz8fPz444/w8vLCpk2b8OGHH6J169b48ssvVW1TPCKTk5OD5ORkhIaGqtohERERVaMBr5G56ttvv8WGDRvQrVs3aLVaREZG4p577oG/vz9mz56NAQMGiLcpHpF5+OGHsX37dvGOiIiIyL2VlJRY+8UEBQUhLy8PANCpUyfs379f1TbFIzKLFi3C4MGD8d1336FTp07w9PS0+f6UKVNUHQj9TlsmX83tUaqi8Z7nzR9THa8L8inEvDidOFMRLW+s5eNpuvmDqvHPnN7izNf6EnHmQKa8OZt3sTgCTaW6P80aLd8lzpgnyc9dVrS8eVxms0Y3f1A1XgrbIs78TXu3OPPVpU7izKVCebNDrzx1/7fGPHmm0lv+vlKZI2+iZwlQ1+QPesvNH3MtFe+v9cUdFvu2bdsWR48eRVRUFLp06YL3338fUVFRWLp0qeoWLuJC5tNPP8WWLVtgNBqxfft2aDS/v9A1Gg0LGSIiIjUacGffq6ZOnYqsrCwAQEpKCu6991588skn0Ov1WLlypaptiguZl19+GTNnzsSLL75Yq9eBExERuTU3WCMzfPhw67/j4+Nx5swZHDlyBC1atEBwcLCqbYoLGZPJhKFDh7KIISIiIrt4e3vjlltusWsb4kImKSkJq1evxksvvWTXjomIiOh3DXWNTHJyco0fO3/+fPH2xYWM2WzG3/72N2zevBmdO3eusthXzUEQERG5vQY6tfTTTz/V6HF/XHMrIS5kDh48iK5duwIAfv3111o5CCIiImqY0tLS6nT74kKmrg+IiIjILdk5teSsIzJ1TdWHRhIREVEta6BTS39055133nD25ttvvxVvs0aFzKBBg7By5Ur4+/tj0KBBN3zs2rVrxQfhMlS8SLSl8kZw+nz5FJ3hojgCnbrecShqIX9OpsbyJnptm+eIM32bHBNnAMBTIz++9365Q5zRpHuLMz5Z8qZfusv197lnTdfIz/np4DbizKqgbuIMAHznI99XhPclcaZDy7PizKHSFuKM1iT/+QMAi0Ge8SyQZ3Rl8vcvk0Xd39Rmgwv85iYbcXFxNl9XVFTgwIED+PXXX5GUlKRqmzV69QQEBFgrqIAAeUdOIiIiugk3GJF55513qr1/xowZKC5W0cYcNSxkUlNT8dprr+HZZ59Famqqqh0RERHR9TXUy69rYvjw4ejRowfeeustcbbGXe1mzpypuloiIiIiup7du3fDaJR/ThcgWOyrKC5c6hEREZHDXbvOVlEUZGVlYe/evXj11VdVbVO0wop9YoiIiOqIG6yRuXadrVarRdu2bfHaa6+hX79+qrYpKmTatGlz02Lm4kUVl88QERG5OXdYI1MX62xFhczMmTN51RIRERHZZe/evTh8+DAAoH379oiPj1e9LVEh88gjjyAkJET1zoiIiOgGXGBUxR6//fYbhg0bhu+//x6BgYEAgPz8fPTu3RurVq1C8+bNxdus8VVLXB9DRERUh5RauDm5cePGoaKiAocPH8bFixdx8eJFHD58GBaLBePGjVO1TV61JKC7XOO6z0pbLi8AtSo67ioqGmOWqZwlvBwq7zSrDZQ/qXHNvxNnFqffKc4AQJdG8q6slcWeN3/QNfzOiyPw+/QHccY0oId8RwC8OrYVZ0oj/MWZ4J/lnYd/a6JuNLgwQn5JZ4foc+LMbcEnxJkLMT7iTI4lWJwBAP1FFe9fFSr2UyTPmL3U/aGsqInp+LvMkXbs2IFdu3ahbdvf32vatm2Ld999F7fffruqbdb415/FIv/lRURERDXjDot9IyIiUFFRtUI2m80IDw9XtU15iU5ERES1zw2mlubNm4cnn3wSe/futd63d+9eTJ06VVVXX4Cffk1ERET1ZNSoUSgtLUVCQgI8PK6UIJWVlfDw8MCYMWMwZswY62Nr2s7FKQqZxYsXY968ecjOzkaXLl3w7rvvokePm8/xr1q1CsOGDcNDDz2E9evX1/2BEhER1RF3mFpasGBBrW/T4YXM6tWrkZycjKVLlyIhIQELFixA//79cfTo0Rte6p2eno5nn31W9eIgIiIip+Kgzr71OZiQlJSk7iBvwOFrZObPn4/HH38co0ePRvv27bF06VJ4e3tjxYoV182YzWY89thjmDlzJlq2bFmPR0tERNRwXB1MSElJwf79+9GlSxf0798fubm5N8zZM5hgNpvxxRdfYNasWZg1axbWrVsHs1l+JeNVDi1kTCYT9u3bh8TEROt9Wq0WiYmJ2L1793Vzr732GkJCQjB27Nib7qO8vByFhYU2NyIiIqfjgMW+9T2YcOLECcTGxmLkyJFYu3Yt1q5di+HDh6NDhw44efKk/AnAwYXM+fPnYTabERoaanN/aGgosrOzq83s3LkTy5cvx7Jly2q0j9mzZyMgIMB6i4iIsPu4iYiIatvVNTL23ABU+eO9vLy82v3Vx2DCtaZMmYKYmBhkZmZi//792L9/PzIyMhAdHY0pU6aItwc4wRoZiaKiIowYMQLLli1DcHDNmkJNmzYNycnJ1q8LCwuvFDOKRtxNSXdZ3n3Jo1QcgUZFy57S0Js/5lqVAeqG8vzC5R2vBkb/Is68/t8B4syg6J/FGQD4568J4kzjPfKGeI2OlIkzxY/0FGcCt8mbswFAabdoccZw4bI4ozsvfw0Zu6jrMWEKk7/NlVvkmW4+p8SZI0FNxZncxn7iDACUa/XijPc5nThT1kQcUdUEFAB0Wvl7stnbiVfE1tIamWv/YE9JScGMGTOqPPxGgwlHjhypdhdXBxMOHDig6hB37NiBH374AY0aNbLe17hxY8yZMwe33nqrqm06tJAJDg6GTqdDTk6Ozf05OTkICwur8viTJ08iPT0dDzzwgPW+q436PDw8cPToUcTExNhkDAYDDAZDHRw9ERGR88nMzIS//+8dt2vrd6CawYRrGQwGFBVV/UOmuLgYer282AYcXMjo9XrEx8dj27ZtGDhwIIArhcm2bdswefLkKo9v164dDh48aHPfK6+8gqKiIixcuJDTRkRE5LpqaUTG39/fppC5nvoYTLjW/fffj/Hjx2P58uXWK6N+/PFHTJgwAQ8++OBNj7k6Dp9aSk5ORlJSErp164YePXpgwYIFKCkpwejRowEAI0eORLNmzTB79mwYjUZ07NjRJn/10zOvvZ+IiMiV1HcfGUcMJvz9739HUlISevXqBU/PK9PzlZWVePDBB7Fw4ULZE/gfhxcyQ4cORV5eHqZPn47s7GzExcVh06ZN1jm7jIwMaLUOv0qciIiowanvwYTAwEBs2LABJ06cwOHDhwEAsbGxaNWqlern4PBCBgAmT55cbfUHANu3b79hduXKlbV/QERERPXNAQ3x6mswwWKxYN68efjyyy9hMplw9913IyUlBV5eXnZv2ykKGSIiInfnqI8oqI/BhDfeeAMzZsxAYmIivLy8sHDhQuTm5t6wX01Ncc6GiIiI6tRHH32EJUuWYPPmzVi/fj3+3//7f/jkk0+si4XtwUKGiIjIGTigs299ycjIwH333Wf9OjExERqNBufOnbN725xaElDRIwuV3ir24yl/NVb6qahqvSvlGQB6T3kuz+QrzsSHZYozH/+3uzgDAB7H5fO0nqXy/yfPE1nijO931Xe5vpHLid3EGQDwKJM3SdQVyhviFcRXvbTzZgyXxBEAwOVD8gZynyNOnPnSo5M4o9XKf27jI+U/FwCwT5G3pyjRy5s+6vPkb5RmlW1ONOo/nsc5OehDI+tDZWUljEajzX2enp6oqKiwe9ssZIiIiKhOKYqCUaNG2TTnu3z5MiZMmAAfHx/rfWvXrhVvm4UMERGRE9D872ZP3lklJSVVuW/48OG1sm0WMkRERM6gAU8tpaam1tm2WcgQERE5AUddfu3qeNUSERERuSyOyBARETmDBjy1VJdYyBARETkLNy1G7MGpJSIiInJZHJGpY5Xe8vLaEiBvONcotFCcifDPF2cA4MSFYHHm5wvNxJkLRT43f9C10lVkAIR/ZxJnKr3lfwcoTYLEGWTJG+JdbK+X7weAd468QZu2XN710X/rEXHGs2drcQYAzneSN3UzHZM30SsMlv/cNo24KM7odeoaWeo8Vfzf+peLMxUV8ouAtSZ1f1Nr5T+2To2LfdVhIUNEROQMuEZGFU4tERERkcviiAwREZET4NSSOixkiIiInAGnllTh1BIRERG5LI7IEBEROQFOLanDQoaIiMgZcGpJFRYyREREzoCFjCpcI0NEREQuiyMyAmYveWdMxSjP6LwrxJkgr1JxJqdE3r0UAMpK5F1jSwqN4oznWYM4Y7gkjgAAjD+dFmcqL1wQZzTN5R2ONT06iTMWlT/ZFT7yrqy6/DJxxpyfL854lJnFGQBodFT+nPJj5CdQa5JnsrTyTs8VFnV/fyoq/lpXFPm5g4/8/8miUzeUoGjl58KZ15FwjYw6LGSIiIicAaeWVOHUEhEREbksjsgQERE5AY2iQKNmDvAPeXfEQoaIiMgZcGpJFU4tERERkcviiAwREZET4FVL6rCQISIicgacWlKFU0tERETkstx3REbFGJ6a5nZaH3lzu8oST3Emt0je3K4w11ecAQCNWd4ky/OiTpwJ2yNvrKW7LP8/AoDKi/JOerrYNuJMRWNvcSa/jZc4U9Jc3Z9mJfJ+fTBekjd189XKz53ukrzxHgBoy+UNHH295H/jlRerac4m/1m/YJKfbwDQBZWLM0aj/P2rtFJ+HrT+6podmi/J/281FSqa/NUTTi2p476FDBERkTPh1JIqLGSIiIicAEdk1OEaGSIiInJZHJEhIiJyBpxaUoWFDBERkZNw1+khe3BqiYiIiFwWR2SIiIicgaJcudmTd0MsZIiIiJwAr1pSh4WMhIpGSpZKeSM4rUHeHKrogo8445EvPzYA8M6Snwc1P2CGC/IGXpXe6l7SWr28sVZWYrA445+h4v82Un6+PZoXizMAYCqVn4e8OHmmNER+7kL/nS7OAIDHRfn5C8yQN1a81CdSnKkoVDG7b1H3c2sqkzdWLPaXN+yDIj/fqgcS3PQXN9liIUNEROQMeNWSKixkiIiInIDGcuVmT94d8aolIiIiclkckSEiInIGnFpShYUMERGRE+BVS+qwkCEiInIG7COjCtfIEBERkcviiAwREZET4NSSOixkJOR9nqAplJ9ijVm+I32BPKMziSOqc2YVfbXKG8kbrRlz5U30AODS0K7ijO85+bWO526VD4JqI0vEmR4RGeIMAPQIOC3O/N1wpzhT5OEtzuC+KHkGgE+uvAlhaRN50zmLinfTxv+tEGcudFDxwwRAq+J9xVIo35cpQP7b1GJ00+uGr8XFvqpwaomIiIhcFkdkiIiInACnltRhIUNEROQMeNWSKpxaIiIiIpfFERkiIiInwKkldVjIEBEROQNetaQKp5aIiIjIZXFEhoiIyAlwakkdFjJERETOwKJcudmTd0MsZAS05Sq6sprk3TS1KjrnauUNQuGXoe5FX+Gloouwioa7+S3lL89GFeqeU0mY/DmVhcr3o2l6WZzx8JB3pg0xFIkzANDOcE6ceSR2nzjzSWlPcaZAr+7tqqSZvEtv8EF5p1lDvvyHMK+LQZwJOlYpzgCAyV9+HkpCVLx/lcsz5cHqVjko8qfk3MMWXCOjCtfIEBERkctyikJm8eLFiIqKgtFoREJCAvbs2XPdxy5btgy33347goKCEBQUhMTExBs+noiIyBVo8Ps6GVU3Rz8BB3F4IbN69WokJycjJSUF+/fvR5cuXdC/f3/k5uZW+/jt27dj2LBhSEtLw+7duxEREYF+/frh7Nmz9XzkREREtehqZ197bm7I4YXM/Pnz8fjjj2P06NFo3749li5dCm9vb6xYsaLax3/yySd44oknEBcXh3bt2uGDDz6AxWLBtm3b6vnIiYiIyNEcWsiYTCbs27cPiYmJ1vu0Wi0SExOxe/fuGm2jtLQUFRUVaNSoUbXfLy8vR2Fhoc2NiIjI2dg1rWTHpduuvrzDoYXM+fPnYTabERpqe/lHaGgosrOza7SNF154AeHh4TbF0B/Nnj0bAQEB1ltERITdx01ERFTrlFq4CTWE5R0On1qyx5w5c7Bq1SqsW7cORqOx2sdMmzYNBQUF1ltmZmY9HyUREZFzagjLOxzaRyY4OBg6nQ45OTk29+fk5CAsLOyG2bfeegtz5szBN998g86dO1/3cQaDAQaDvFcDERFRfdIoCjR2LNi9mr12CcX1fg9eXd4xbdo06321vbyjPji0kNHr9YiPj8e2bdswcOBAALBWdpMnT75u7m9/+xveeOMNbN68Gd26dVO3c0Vz5SagUdGHyqNMnlEzPGi4JM+Uqmh2BQB+mfJmYfmt5IN/Fk9xBGf7qAgBqAyS/+fq/OWdC2+J+E2cWd1S/pdORqW6hnifFnYVZwYG7hdnfusQJM7sONpanAGAynJ517TzGvlbo+6y/A8mNT+3lV7qBtLLGqv4eVexK62K90k1TfQAQFFxfBYvJ76yx/K/mz15oMoSipSUFMyYMaPKw2+0vOPIkSM12uXNlnfUB4d39k1OTkZSUhK6deuGHj16YMGCBSgpKcHo0aMBACNHjkSzZs0we/ZsAMDcuXMxffp0/Otf/0JUVJR1LY2vry98fX0d9jyIiIicQWZmJvz9/a1f19WsxNXlHdu3b7/u8o764PBCZujQocjLy8P06dORnZ2NuLg4bNq0yVohZmRkQKv9vex+7733YDKZ8PDDD9ts53oVJxERkSuoraklf39/m0LmeupjeUd9cHghAwCTJ0++7lTS9u3bbb5OT0+v+wMiIiKqb/X8WUsOXd5Ri5yikCEiInJ79nbnVZFtCMs7WMgQERG5qYawvIOFDBERkROwpzvv1bwarr68g4UMERGRM3DA1FJD4NKdfYmIiMi9cURGQM2wnbZCnjGruOS/LESeUdOMCwDy4uT1r5pzZ2psFmcMTUrlOwIQ0/iiqpxU/+BfxZknziaIM481rllXzmu90OiEOFOhoitZI32JONM4WF2Tv65N5J8Bsys4SpwpPesnzlT4ys9deSN1f396FsszFT7yjFb+Y6uucSgAU0DDGoHQWK7c7Mm7IxYyREREzoBTS6pwaomIiIhcFkdkiIiInEE9N8RrKFjIEBEROYHa+ogCd8OpJSIiInJZHJEhIiJyBlzsqwoLGSIiImegALDnEmr3rGNYyBARETkDrpFRh4WMgKKRZ0z+8oxGRUMpxUP+Ai4KUveiV/TynF9TeTOzcB9507S7Qo+JMwAQrpd3Bzx9uYk4M8Y/R5xpqc8VZ0J06hoDbi0LFGcuK97izD0B8saAvrpycQYAGnnIX0f6FpXizA/6KHHmYq6KJnoq3ocAQFMof7vXlst3pjGrOECVz0l1jhoUFjJERETOQIGda2Rq7UhcCgsZIiIiZ8DFvqrw8msiIiJyWRyRISIicgYW2Lfuhx8aSURERI7Cq5bU4dQSERERuSyOyBARETkDLvZVhYUMERGRM2AhowqnloiIiMhlcURGQE1HW4tWnlE81WTky9UbhxWKMwCg0ajoIlxiFGfaNZN3wa1QdOIMADTxkHceHhMiP75Z59uJM718joszrT19xRkAWJh3izjzeth2cSZIK+8G/G2hXpwBgOEBe8SZMefbijMR/vniTGGx/OciNEj+WgWAkmD5+cu/4CPfUbn8Z1BTru5vak1Du0qHIzKqsJAhIiJyBrz8WhUWMkRERE6Al1+rwzUyRERE5LI4IkNEROQMuEZGFRYyREREzsCiACouprDJuyFOLREREZHL4ogMERGRM+DUkiosZIiIiJyCnYUMWMi4F418LlJRMRGn+FWKMx5eFeKMl1GeiQm8IM4AwC/ZTcWZhIgz4syZkkbiTA+/0+IMAMw+/idx5u/6cnFmaetV4kx6RYA40/fQQ+IMAPh4msSZ/5rkTd1OVQSLM080/o84AwBPpA8UZxKbHBZnPvtN3kxwYNuD4szGU+3FGQBoF5IrzmR5yN+/ci/4iTMWT3WNLJUyeU5bYU+jFnJG7lvIEBERORNOLanCQoaIiMgZWBTYNT3Eq5aIiIiIXAtHZIiIiJyBYrlysyfvhljIEBEROQOukVGFhQwREZEz4BoZVbhGhoiIiFwWR2SIiIicAaeWVGEhI6B4qniRWOTNl3y85Y3WGnmXijO/FcsbrQFA+9AcccZLJ2/YF+ZVKM746crEGQB4KOJncWb16Xhx5u+5d4ozP+ZGijN/bnFAnAGAnedbiTPTT8mb7z0RuV2cGXV0uDgDABMi5Y30DpU2E2fyCn3Fmc2l7cSZFo0uiTMA8Os5eSNLL6O8QaKPr/z9q6jAS5wBVL4nO3NDPAV2FjK1diQuhVNLRERE5LI4IkNEROQMOLWkCgsZIiIiZ2CxALCjF4zFPfvIcGqJiIiIXBZHZIiIiJwBp5ZUYSFDRETkDFjIqMKpJSIiInJZHJEhIiJyBvyIAlVYyNS1y/JBr8ICb3Gm4KKPOAOzugG5iwHy4zOVNRdnFLO8cdUu32hxBgCMennDPjW2ZbQWZ3wM8qZkW7JjxRkAOHsxUJzx9DSLM/NP3iPOGHSV4gwAfJrVQ5w5mhsiznip+H9SFPlr/GKp/OcPAMwV8p/3y1pPccZ00SjOqP3drVHxHuHMFMUCxY5PsLYn68pYyBARETkDRbFvVIVrZIiIiIhcC0dkiIiInIFi5xoZNx2RYSFDRETkDCwWQGPHOhc3XSPDqSUiIiJyWRyRISIicgacWlKFhQwREZETUCwWKHZMLbnr5decWiIiIiKXxREZAW15PTVfuqAXR+qzLVRFkbz5nprjU5OpyJc38AKA+mmHp85lFZkLtX4U16emTV0Z/Gr9OBytCOoa1UkV18terlDzf8u/ju3AqSVVnOI1t3jxYkRFRcFoNCIhIQF79uy54eM/++wztGvXDkajEZ06dcJXX31VT0dKRERURyyK/Tc35PBCZvXq1UhOTkZKSgr279+PLl26oH///sjNza328bt27cKwYcMwduxY/PTTTxg4cCAGDhyIX3/9tZ6PnIiIiBzN4YXM/Pnz8fjjj2P06NFo3749li5dCm9vb6xYsaLaxy9cuBD33nsvnnvuOcTGxuL111/HLbfcgkWLFtXzkRMREdUiRbnSC0b1jSMy9c5kMmHfvn1ITEy03qfVapGYmIjdu3dXm9m9e7fN4wGgf//+1318eXk5CgsLbW5ERETORrEodt/ckUMLmfPnz8NsNiM0NNTm/tDQUGRnZ1ebyc7OFj1+9uzZCAgIsN4iIiJq5+CJiIhqk12jMRbVnX1dfZ2qw6eW6tq0adNQUFBgvWVmZjr6kIiIiJxCQ1in6tBCJjg4GDqdDjk5OTb35+TkICwsrNpMWFiY6PEGgwH+/v42NyIiImfjiKmlhrBO1aGFjF6vR3x8PLZt22a9z2KxYNu2bejVq1e1mV69etk8HgC2bt163ccTERG5hHqeWqqPdar1weEN8ZKTk5GUlIRu3bqhR48eWLBgAUpKSjB69GgAwMiRI9GsWTPMnj0bADB16lT06dMHb7/9NgYMGIBVq1Zh7969+Mc//lGj/Sn/W9VtuaymzRgREbmTq78rlHq4IqgSFXb1w6v8X2vPay9qMRgMMBgMVR5/o3WqR44cqXYf0nWq9cHhhczQoUORl5eH6dOnIzs7G3Fxcdi0aZP1RGVkZECr/X3gqHfv3vjXv/6FV155BS+99BJat26N9evXo2PHjjXaX1FREQAgM2VW7T8ZIiJqkIqKihAQEFAn29br9QgLC8PObPsXzfr6+la5qCUlJQUzZsywe9vOyuGFDABMnjwZkydPrvZ727dvr3Lf4MGDMXjwYFX7Cg8PR2ZmJvz8/KDR1Gdjf/UKCwsRERGBzMxMrvGpIZ4zOZ4zGZ4vOVc8Z4qioKioCOHh4XW2D6PRiNOnT8NkMtm9LUVRqvxuq240Bqifdar1wSkKmfqk1WrRvHlzRx+GKlysLMdzJsdzJsPzJedq56yuRmL+yGg0wmg01vl+/uiP61QHDhwI4Pd1qtcbXLi6TvWpp56y3ufodapuV8gQERHRFfW9TrUusJAhIiJyU/W9TrUusJBxAQaDASkpKded56SqeM7keM5keL7keM6cU32uU60LGqU+rikjIiIiqgMN/iMKiIiIqOFiIUNEREQui4UMERERuSwWMkREROSyWMg4yOLFixEVFQWj0YiEhATs2bOnRrlVq1ZBo9FYmxf90eHDh/Hggw8iICAAPj4+6N69OzIyMmr5yB2jts9XcXExJk+ejObNm8PLy8v6qa8NieScrVy5EhqNxuZ2bXMuRVEwffp0NG3aFF5eXkhMTMTx48fr+mnUq9o8ZxUVFXjhhRfQqVMn+Pj4IDw8HCNHjsS5c+fq46nUm9p+nf3RhAkToNFosGDBgjo4cmowFKp3q1atUvR6vbJixQrl0KFDyuOPP64EBgYqOTk5N8ydPn1aadasmXL77bcrDz30kM33Tpw4oTRq1Eh57rnnlP379ysnTpxQNmzYcNNtuoK6OF+PP/64EhMTo6SlpSmnT59W3n//fUWn0ykbNmyow2dSf6TnLDU1VfH391eysrKst+zsbJvHzJkzRwkICFDWr1+v/Pzzz8qDDz6oREdHK2VlZfXxlOpcbZ+z/Px8JTExUVm9erVy5MgRZffu3UqPHj2U+Pj4+npKda4uXmdXrV27VunSpYsSHh6uvPPOO3X4LMjVsZBxgB49eiiTJk2yfm02m5Xw8HBl9uzZ181UVlYqvXv3Vj744AMlKSmpyi/moUOHKsOHD6+rQ3aoujhfHTp0UF577TWb+2655Rbl5ZdfrtVjdxTpOUtNTVUCAgKuuz2LxaKEhYUp8+bNs96Xn5+vGAwG5dNPP62143ak2j5n1dmzZ48CQDlz5ow9h+o06uqc/fbbb0qzZs2UX3/9VYmMjGQhQzfEqaV6ZjKZsG/fPiQmJlrv02q1SExMxO7du6+be+211xASEoKxY8dW+Z7FYsHGjRvRpk0b9O/fHyEhIUhISMD69evr4inUq7o4X8CV7pRffvklzp49C0VRkJaWhmPHjqFfv361/hzqm9pzVlxcjMjISEREROChhx7CoUOHrN87ffo0srOzbbYZEBCAhISEG27TVdTFOatOQUEBNBoNAgMDa+vQHaauzpnFYsGIESPw3HPPoUOHDnV2/NRwsJCpZ+fPn4fZbLa2f74qNDQU2dnZ1WZ27tyJ5cuXY9myZdV+Pzc3F8XFxZgzZw7uvfdebNmyBX/+858xaNAg7Nixo9afQ32qi/MFAO+++y7at2+P5s2bQ6/X495778XixYtxxx131OrxO4Kac9a2bVusWLECGzZswMcffwyLxYLevXvjt99+AwBrTrJNV1IX5+xaly9fxgsvvIBhw4a51AcmXk9dnbO5c+fCw8MDU6ZMqdPjp4aDH1Hg5IqKijBixAgsW7YMwcHB1T7GYrEAAB566CE8/fTTAIC4uDjs2rULS5cuRZ8+ferteB2tJucLuFLI/PDDD/jyyy8RGRmJ//znP5g0aRLCw8Nt/sJ0F7169bL59NrevXsjNjYW77//Pl5//XUHHpnzkpyziooKDBkyBIqi4L333qvvQ3UaNztn+/btw8KFC7F//35oNBoHHim5EhYy9Sw4OBg6nQ45OTk29+fk5CAsLKzK40+ePIn09HQ88MAD1vuuFi4eHh44evQoIiIi4OHhgfbt29tkY2NjsXPnzjp4FvWnLs5XeHg4XnrpJaxbtw4DBgwAAHTu3BkHDhzAW2+95fKFjPScVcfT0xNdu3bFiRMnAMCay8nJQdOmTW22GRcXVzsH7kB1cc6uulrEnDlzBt9++22DGI0B6uacfffdd8jNzUWLFi2sjzGbzXjmmWewYMECpKen19rxU8PBqaV6ptfrER8fj23btlnvs1gs2LZtm81fKle1a9cOBw8exIEDB6y3Bx98EHfeeScOHDiAiIgI6PV6dO/eHUePHrXJHjt2DJGRkXX+nOpSXZyviooKVFRU2HyiKwDodDpr0ePKpOesOmazGQcPHrQWLdHR0QgLC7PZZmFhIX788ccab9OZ1cU5A34vYo4fP45vvvkGjRs3rvVjd5S6OGcjRozAL7/8YvPzGx4ejueeew6bN2+uk+dBDYCjVxu7o1WrVikGg0FZuXKl8t///lcZP368EhgYaL0MccSIEcqLL7543Xx1V+GsXbtW8fT0VP7xj38ox48fV959911Fp9Mp3333XV0+lXpRF+erT58+SocOHZS0tDTl1KlTSmpqqmI0GpUlS5bU5VOpN9JzNnPmTGXz5s3KyZMnlX379imPPPKIYjQalUOHDlkfM2fOHCUwMFDZsGGD8ssvvygPPfRQg7v8ujbPmclkUh588EGlefPmyoEDB2wuOS4vL3fIc6xtdfE6uxavWqKb4dSSAwwdOhR5eXmYPn06srOzERcXh02bNlkXzWVkZFQZLbiZP//5z1i6dClmz56NKVOmoG3btvjiiy9w22231cVTqFd1cb5WrVqFadOm4bHHHsPFixcRGRmJN954AxMmTKiLp1DvpOfs0qVLePzxx5GdnY2goCDEx8dj165dNtOVzz//PEpKSjB+/Hjk5+fjtttuw6ZNm27Y0MyV1PY5O3v2LL788ksAqDL9lpaWhr59+9bL86pLdfE6I5LSKIqiOPogiIiIiNTgGhkiIiJyWSxkiIiIyGWxkCEiIiKXxUKGiIiIXBYLGSIiInJZLGSIiIjIZbGQISIiIpfFQoaogYmKisKCBQusX2s0Gqxfv75e9iWVnp4OjUYDjUaj6jObrmYDAwNVHwMRuTYWMkR1ZPfu3dDpdNYPpnSUrKws/OlPfwLwe+Fw4MABhx7Ttb755hvrZ/Y8+eSTiI2NrfZxGRkZ0Ol01o65WVlZdhVSROT6WMgQ1ZHly5fjySefxH/+8x+cO3fOYccRFhYGg8HgsP3XROPGja0fqDh27FgcOXIEu3btqvK4lStXIiQkBPfddx+AK88tICCgXo+ViJwLCxmiOlBcXIzVq1dj4sSJGDBgAFauXGnz/e3bt0Oj0WDz5s3o2rUrvLy8cNdddyE3Nxdff/01YmNj4e/vj0cffRSlpaXWXN++fTF58mRMnjwZAQEBCA4OxquvvoobfdLIH6eWoqOjAQBdu3aFRqOxft5P37598dRTT9nkBg4ciFGjRlm/zs3NxQMPPAAvLy9ER0fjk08+qbKv/Px8jBs3Dk2aNIG/vz/uuusu/PzzzzU/cbjyuUS33HILVqxYYXO/oihYuXIlkpKS4OHBj4kjoitYyBDVgTVr1qBdu3Zo27Ythg8fjhUrVlRbbMyYMQOLFi3Crl27kJmZiSFDhmDBggX417/+hY0bN2LLli149913bTIffvghPDw8sGfPHixcuBDz58/HBx98UKPj2rNnD4ArUzlZWVlYu3ZtjZ/TqFGjkJmZibS0NHz++edYsmQJcnNzbR4zePBgazG2b98+3HLLLbj77rtx8eLFGu8HuDIqs2bNGpSUlFjv2759O06fPo0xY8aItkVEDRsLGaI6sHz5cgwfPhwAcO+996KgoAA7duyo8rhZs2bh1ltvRdeuXTF27Fjs2LED7733Hrp27Yrbb78dDz/8MNLS0mwyEREReOedd9C2bVs89thjePLJJ/HOO+/U6LiaNGkC4MpUTlhYGBo1alSj3LFjx/D1119j2bJl6NmzJ+Lj47F8+XKUlZVZH7Nz507s2bMHn332Gbp164bWrVvjrbfeQmBgID7//PMa7eeqRx99FBUVFfjss8+s96WmpuK2225DmzZtRNsiooaNhQxRLTt69Cj27NmDYcOGAQA8PDwwdOhQLF++vMpjO3fubP13aGgovL290bJlS5v7rh316NmzJzQajfXrXr164fjx4zCbzbX9VKwOHz4MDw8PxMfHW+9r166dzdVCP//8M4qLi9G4cWP4+vpab6dPn8bJkydF+wsMDMSgQYOs00uFhYX44osvMHbs2Fp5PkTUcHCimaiWLV++HJWVlQgPD7fepygKDAYDFi1aZLM41dPT0/pvjUZj8/XV+ywWS50fs1arrTL1VVFRIdpGcXExmjZtiu3bt1f5nprLo8eOHYu7774bJ06cQFpaGnQ6HQYPHizeDhE1bCxkiGpRZWUlPvroI7z99tvo16+fzfcGDhyITz/9FBMmTLBrHz/++KPN1z/88ANat24NnU5306xerweAKqM3TZo0QVZWlvVrs9mMX3/9FXfeeSeAK6MvlZWV2LdvH7p37w7gyshTfn6+NXPLLbcgOzsbHh4eiIqKUvPUbNx5552Ijo5Gamoq0tLS8Mgjj8DHx8fu7RJRw8KpJaJa9O9//xuXLl3C2LFj0bFjR5vbX/7yl2qnl6QyMjKQnJyMo0eP4tNPP8W7776LqVOn1igbEhICLy8vbNq0CTk5OSgoKAAA3HXXXdi4cSM2btyII0eOYOLEiTZFStu2bXHvvffir3/9K3788Ufs27cP48aNg5eXl/UxiYmJ6NWrFwYOHIgtW7YgPT0du3btwssvv4y9e/eKn6dGo8GYMWPw3nvvYffu3ZxWIqJqsZAhqkXLly9HYmJitb1N/vKXv2Dv3r345Zdf7NrHyJEjUVZWhh49emDSpEmYOnUqxo8fX6Osh4cH/v73v+P9999HeHg4HnroIQDAmDFjkJSUhJEjR6JPnz5o2bKldTTmqtTUVISHh6NPnz4YNGgQxo8fj5CQEOv3NRoNvvrqK9xxxx0YPXo02rRpg0ceeQRnzpxBaGioquc6atQoFBQUoEOHDkhISFC1DSJq2DTKjRpQEJFT6du3L+Li4hpMN9v09HRER0fjp59+UvURBcCVJnlPPfWUzQgSEbkPrpEhIofr3bs34uLiqu3meyO+vr6orKyE0WisoyMjImfHQoaIHKZ58+Y4fvw4AKj6GIWrnxlVk4XORNQwcWqJiIiIXBYX+xIREZHLYiFDRERELouFDBEREbksFjJERETksljIEBERkctiIUNEREQui4UMERERuSwWMkREROSyWMgQERGRy/r/qOXX1cbXteMAAAAASUVORK5CYII=\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - examples_7_0.png" } }, "output_type": "display_data" } ], "source": [ "_ = dataset_rep.pop_q0.sel(repetitions=\"E\").plot(x=\"amp\")" ] }, { "cell_type": "code", "execution_count": 9, "id": "1ad6fdb4", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:33.870325Z", "iopub.status.busy": "2023-09-26T17:43:33.870114Z", "iopub.status.idle": "2023-09-26T17:43:33.903621Z", "shell.execute_reply": "2023-09-26T17:43:33.902962Z" } }, "outputs": [ { "data": { "text/html": [ "
def mk_iq_shots(\n",
       "    num_shots: int = 128,\n",
       "    sigmas: Union[Tuple[float], np.ndarray] = (0.1, 0.1),\n",
       "    centers: Union[Tuple[complex], np.ndarray] = (-0.2 + 0.65j, 0.7 + 4j),\n",
       "    probabilities: Union[Tuple[float], np.ndarray] = (0.4, 0.6),\n",
       "    seed: Union[int, None] = 112233,\n",
       ") -> np.ndarray:\n",
       "    """\n",
       "    Generates clusters of (I + 1j*Q) points with a Gaussian distribution with the\n",
       "    specified sigmas and centers according to the probabilities of each cluster\n",
       "\n",
       "    .. admonition:: Examples\n",
       "        :class: dropdown\n",
       "\n",
       "        .. include:: examples/utilities.examples_support.mk_iq_shots.rst.txt\n",
       "\n",
       "    Parameters\n",
       "    ----------\n",
       "    num_shots\n",
       "        The number of shot to generate.\n",
       "    sigma\n",
       "        The sigma of the Gaussian distribution used for both real and imaginary parts.\n",
       "    centers\n",
       "        The center of each cluster on the imaginary plane.\n",
       "    probabilities\n",
       "        The probabilities of each cluster being randomly selected for each shot.\n",
       "    seed\n",
       "        Random number generator seed passed to ``numpy.random.default_rng``.\n",
       "    """\n",
       "    if not len(sigmas) == len(centers) == len(probabilities):\n",
       "        raise ValueError(\n",
       "            f"Incorrect input. sigmas={sigmas}, centers={centers} and "\n",
       "            f"probabilities={probabilities} must have the same length."\n",
       "        )\n",
       "\n",
       "    rng = np.random.default_rng(seed=seed)\n",
       "\n",
       "    cluster_indices = tuple(range(len(centers)))\n",
       "    choices = rng.choice(a=cluster_indices, size=num_shots, p=probabilities)\n",
       "\n",
       "    shots = []\n",
       "    for idx in cluster_indices:\n",
       "        num_shots_this_cluster = np.sum(choices == idx)\n",
       "        i_data = rng.normal(\n",
       "            loc=centers[idx].real,\n",
       "            scale=sigmas[idx],\n",
       "            size=num_shots_this_cluster,\n",
       "        )\n",
       "        q_data = rng.normal(\n",
       "            loc=centers[idx].imag,\n",
       "            scale=sigmas[idx],\n",
       "            size=num_shots_this_cluster,\n",
       "        )\n",
       "        shots.append(i_data + 1j * q_data)\n",
       "    return np.concatenate(shots)\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k}{def} \\PY{n+nf}{mk\\PYZus{}iq\\PYZus{}shots}\\PY{p}{(}\n", " \\PY{n}{num\\PYZus{}shots}\\PY{p}{:} \\PY{n+nb}{int} \\PY{o}{=} \\PY{l+m+mi}{128}\\PY{p}{,}\n", " \\PY{n}{sigmas}\\PY{p}{:} \\PY{n}{Union}\\PY{p}{[}\\PY{n}{Tuple}\\PY{p}{[}\\PY{n+nb}{float}\\PY{p}{]}\\PY{p}{,} \\PY{n}{np}\\PY{o}{.}\\PY{n}{ndarray}\\PY{p}{]} \\PY{o}{=} \\PY{p}{(}\\PY{l+m+mf}{0.1}\\PY{p}{,} \\PY{l+m+mf}{0.1}\\PY{p}{)}\\PY{p}{,}\n", " \\PY{n}{centers}\\PY{p}{:} \\PY{n}{Union}\\PY{p}{[}\\PY{n}{Tuple}\\PY{p}{[}\\PY{n+nb}{complex}\\PY{p}{]}\\PY{p}{,} \\PY{n}{np}\\PY{o}{.}\\PY{n}{ndarray}\\PY{p}{]} \\PY{o}{=} \\PY{p}{(}\\PY{o}{\\PYZhy{}}\\PY{l+m+mf}{0.2} \\PY{o}{+} \\PY{l+m+mf}{0.65}\\PY{n}{j}\\PY{p}{,} \\PY{l+m+mf}{0.7} \\PY{o}{+} \\PY{l+m+mi}{4}\\PY{n}{j}\\PY{p}{)}\\PY{p}{,}\n", " \\PY{n}{probabilities}\\PY{p}{:} \\PY{n}{Union}\\PY{p}{[}\\PY{n}{Tuple}\\PY{p}{[}\\PY{n+nb}{float}\\PY{p}{]}\\PY{p}{,} \\PY{n}{np}\\PY{o}{.}\\PY{n}{ndarray}\\PY{p}{]} \\PY{o}{=} \\PY{p}{(}\\PY{l+m+mf}{0.4}\\PY{p}{,} \\PY{l+m+mf}{0.6}\\PY{p}{)}\\PY{p}{,}\n", " \\PY{n}{seed}\\PY{p}{:} \\PY{n}{Union}\\PY{p}{[}\\PY{n+nb}{int}\\PY{p}{,} \\PY{k+kc}{None}\\PY{p}{]} \\PY{o}{=} \\PY{l+m+mi}{112233}\\PY{p}{,}\n", "\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{np}\\PY{o}{.}\\PY{n}{ndarray}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Generates clusters of (I + 1j*Q) points with a Gaussian distribution with the}\n", "\\PY{l+s+sd}{ specified sigmas and centers according to the probabilities of each cluster}\n", "\n", "\\PY{l+s+sd}{ .. admonition:: Examples}\n", "\\PY{l+s+sd}{ :class: dropdown}\n", "\n", "\\PY{l+s+sd}{ .. include:: examples/utilities.examples\\PYZus{}support.mk\\PYZus{}iq\\PYZus{}shots.rst.txt}\n", "\n", "\\PY{l+s+sd}{ Parameters}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ num\\PYZus{}shots}\n", "\\PY{l+s+sd}{ The number of shot to generate.}\n", "\\PY{l+s+sd}{ sigma}\n", "\\PY{l+s+sd}{ The sigma of the Gaussian distribution used for both real and imaginary parts.}\n", "\\PY{l+s+sd}{ centers}\n", "\\PY{l+s+sd}{ The center of each cluster on the imaginary plane.}\n", "\\PY{l+s+sd}{ probabilities}\n", "\\PY{l+s+sd}{ The probabilities of each cluster being randomly selected for each shot.}\n", "\\PY{l+s+sd}{ seed}\n", "\\PY{l+s+sd}{ Random number generator seed passed to ``numpy.random.default\\PYZus{}rng``.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", " \\PY{k}{if} \\PY{o+ow}{not} \\PY{n+nb}{len}\\PY{p}{(}\\PY{n}{sigmas}\\PY{p}{)} \\PY{o}{==} \\PY{n+nb}{len}\\PY{p}{(}\\PY{n}{centers}\\PY{p}{)} \\PY{o}{==} \\PY{n+nb}{len}\\PY{p}{(}\\PY{n}{probabilities}\\PY{p}{)}\\PY{p}{:}\n", " \\PY{k}{raise} \\PY{n+ne}{ValueError}\\PY{p}{(}\n", " \\PY{l+s+sa}{f}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Incorrect input. sigmas=}\\PY{l+s+si}{\\PYZob{}}\\PY{n}{sigmas}\\PY{l+s+si}{\\PYZcb{}}\\PY{l+s+s2}{, centers=}\\PY{l+s+si}{\\PYZob{}}\\PY{n}{centers}\\PY{l+s+si}{\\PYZcb{}}\\PY{l+s+s2}{ and }\\PY{l+s+s2}{\\PYZdq{}}\n", " \\PY{l+s+sa}{f}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{probabilities=}\\PY{l+s+si}{\\PYZob{}}\\PY{n}{probabilities}\\PY{l+s+si}{\\PYZcb{}}\\PY{l+s+s2}{ must have the same length.}\\PY{l+s+s2}{\\PYZdq{}}\n", " \\PY{p}{)}\n", "\n", " \\PY{n}{rng} \\PY{o}{=} \\PY{n}{np}\\PY{o}{.}\\PY{n}{random}\\PY{o}{.}\\PY{n}{default\\PYZus{}rng}\\PY{p}{(}\\PY{n}{seed}\\PY{o}{=}\\PY{n}{seed}\\PY{p}{)}\n", "\n", " \\PY{n}{cluster\\PYZus{}indices} \\PY{o}{=} \\PY{n+nb}{tuple}\\PY{p}{(}\\PY{n+nb}{range}\\PY{p}{(}\\PY{n+nb}{len}\\PY{p}{(}\\PY{n}{centers}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n", " \\PY{n}{choices} \\PY{o}{=} \\PY{n}{rng}\\PY{o}{.}\\PY{n}{choice}\\PY{p}{(}\\PY{n}{a}\\PY{o}{=}\\PY{n}{cluster\\PYZus{}indices}\\PY{p}{,} \\PY{n}{size}\\PY{o}{=}\\PY{n}{num\\PYZus{}shots}\\PY{p}{,} \\PY{n}{p}\\PY{o}{=}\\PY{n}{probabilities}\\PY{p}{)}\n", "\n", " \\PY{n}{shots} \\PY{o}{=} \\PY{p}{[}\\PY{p}{]}\n", " \\PY{k}{for} \\PY{n}{idx} \\PY{o+ow}{in} \\PY{n}{cluster\\PYZus{}indices}\\PY{p}{:}\n", " \\PY{n}{num\\PYZus{}shots\\PYZus{}this\\PYZus{}cluster} \\PY{o}{=} \\PY{n}{np}\\PY{o}{.}\\PY{n}{sum}\\PY{p}{(}\\PY{n}{choices} \\PY{o}{==} \\PY{n}{idx}\\PY{p}{)}\n", " \\PY{n}{i\\PYZus{}data} \\PY{o}{=} \\PY{n}{rng}\\PY{o}{.}\\PY{n}{normal}\\PY{p}{(}\n", " \\PY{n}{loc}\\PY{o}{=}\\PY{n}{centers}\\PY{p}{[}\\PY{n}{idx}\\PY{p}{]}\\PY{o}{.}\\PY{n}{real}\\PY{p}{,}\n", " \\PY{n}{scale}\\PY{o}{=}\\PY{n}{sigmas}\\PY{p}{[}\\PY{n}{idx}\\PY{p}{]}\\PY{p}{,}\n", " \\PY{n}{size}\\PY{o}{=}\\PY{n}{num\\PYZus{}shots\\PYZus{}this\\PYZus{}cluster}\\PY{p}{,}\n", " \\PY{p}{)}\n", " \\PY{n}{q\\PYZus{}data} \\PY{o}{=} \\PY{n}{rng}\\PY{o}{.}\\PY{n}{normal}\\PY{p}{(}\n", " \\PY{n}{loc}\\PY{o}{=}\\PY{n}{centers}\\PY{p}{[}\\PY{n}{idx}\\PY{p}{]}\\PY{o}{.}\\PY{n}{imag}\\PY{p}{,}\n", " \\PY{n}{scale}\\PY{o}{=}\\PY{n}{sigmas}\\PY{p}{[}\\PY{n}{idx}\\PY{p}{]}\\PY{p}{,}\n", " \\PY{n}{size}\\PY{o}{=}\\PY{n}{num\\PYZus{}shots\\PYZus{}this\\PYZus{}cluster}\\PY{p}{,}\n", " \\PY{p}{)}\n", " \\PY{n}{shots}\\PY{o}{.}\\PY{n}{append}\\PY{p}{(}\\PY{n}{i\\PYZus{}data} \\PY{o}{+} \\PY{l+m+mi}{1}\\PY{n}{j} \\PY{o}{*} \\PY{n}{q\\PYZus{}data}\\PY{p}{)}\n", " \\PY{k}{return} \\PY{n}{np}\\PY{o}{.}\\PY{n}{concatenate}\\PY{p}{(}\\PY{n}{shots}\\PY{p}{)}\n", "\\end{Verbatim}\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
def mk_trace_time(sampling_rate: float = 1e9, duration: float = 0.3e-6) -> np.ndarray:\n",
       "    """\n",
       "    Generates a :obj:`~numpy.arange` in which the entries correspond to time instants\n",
       "    up to ``duration`` seconds sampled according to ``sampling_rate`` in Hz.\n",
       "\n",
       "    See :func:`~.mk_trace_for_iq_shot` for an usage example.\n",
       "\n",
       "    Parameters\n",
       "    ----------\n",
       "    sampling_rate\n",
       "        The sampling rate in Hz.\n",
       "    duration\n",
       "        Total duration in seconds.\n",
       "\n",
       "    Returns\n",
       "    -------\n",
       "    :\n",
       "        An array with the time instants.\n",
       "    """\n",
       "    trace_length = sampling_rate * duration\n",
       "    return np.arange(0, trace_length, 1) / sampling_rate\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k}{def} \\PY{n+nf}{mk\\PYZus{}trace\\PYZus{}time}\\PY{p}{(}\\PY{n}{sampling\\PYZus{}rate}\\PY{p}{:} \\PY{n+nb}{float} \\PY{o}{=} \\PY{l+m+mf}{1e9}\\PY{p}{,} \\PY{n}{duration}\\PY{p}{:} \\PY{n+nb}{float} \\PY{o}{=} \\PY{l+m+mf}{0.3e\\PYZhy{}6}\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{np}\\PY{o}{.}\\PY{n}{ndarray}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Generates a :obj:`\\PYZti{}numpy.arange` in which the entries correspond to time instants}\n", "\\PY{l+s+sd}{ up to ``duration`` seconds sampled according to ``sampling\\PYZus{}rate`` in Hz.}\n", "\n", "\\PY{l+s+sd}{ See :func:`\\PYZti{}.mk\\PYZus{}trace\\PYZus{}for\\PYZus{}iq\\PYZus{}shot` for an usage example.}\n", "\n", "\\PY{l+s+sd}{ Parameters}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ sampling\\PYZus{}rate}\n", "\\PY{l+s+sd}{ The sampling rate in Hz.}\n", "\\PY{l+s+sd}{ duration}\n", "\\PY{l+s+sd}{ Total duration in seconds.}\n", "\n", "\\PY{l+s+sd}{ Returns}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ :}\n", "\\PY{l+s+sd}{ An array with the time instants.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", " \\PY{n}{trace\\PYZus{}length} \\PY{o}{=} \\PY{n}{sampling\\PYZus{}rate} \\PY{o}{*} \\PY{n}{duration}\n", " \\PY{k}{return} \\PY{n}{np}\\PY{o}{.}\\PY{n}{arange}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{,} \\PY{n}{trace\\PYZus{}length}\\PY{p}{,} \\PY{l+m+mi}{1}\\PY{p}{)} \\PY{o}{/} \\PY{n}{sampling\\PYZus{}rate}\n", "\\end{Verbatim}\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
def mk_trace_for_iq_shot(\n",
       "    iq_point: complex,\n",
       "    time_values: np.ndarray = mk_trace_time(),\n",
       "    intermediate_freq: float = 50e6,\n",
       ") -> np.ndarray:\n",
       "    """\n",
       "    Generates mock "traces" that a physical instrument would digitize for the readout of\n",
       "    a transmon qubit when using a down-converting IQ mixer.\n",
       "\n",
       "    .. admonition:: Examples\n",
       "        :class: dropdown\n",
       "\n",
       "        .. include:: /examples/utilities.examples_support.mk_trace_for_iq_shot.rst.txt\n",
       "\n",
       "    Parameters\n",
       "    ----------\n",
       "    iq_point\n",
       "        A complex number representing a point on the IQ-plane.\n",
       "    time_values\n",
       "        The time instants at which the mock intermediate-frequency signal is sampled.\n",
       "    intermediate_freq\n",
       "        The intermediate frequency used in the down-conversion scheme.\n",
       "\n",
       "    Returns\n",
       "    -------\n",
       "    :\n",
       "        An array of complex numbers.\n",
       "    """  # pylint: disable=line-too-long\n",
       "\n",
       "    return iq_point * np.exp(2.0j * np.pi * intermediate_freq * time_values)\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k}{def} \\PY{n+nf}{mk\\PYZus{}trace\\PYZus{}for\\PYZus{}iq\\PYZus{}shot}\\PY{p}{(}\n", " \\PY{n}{iq\\PYZus{}point}\\PY{p}{:} \\PY{n+nb}{complex}\\PY{p}{,}\n", " \\PY{n}{time\\PYZus{}values}\\PY{p}{:} \\PY{n}{np}\\PY{o}{.}\\PY{n}{ndarray} \\PY{o}{=} \\PY{n}{mk\\PYZus{}trace\\PYZus{}time}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,}\n", " \\PY{n}{intermediate\\PYZus{}freq}\\PY{p}{:} \\PY{n+nb}{float} \\PY{o}{=} \\PY{l+m+mf}{50e6}\\PY{p}{,}\n", "\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{np}\\PY{o}{.}\\PY{n}{ndarray}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Generates mock \\PYZdq{}traces\\PYZdq{} that a physical instrument would digitize for the readout of}\n", "\\PY{l+s+sd}{ a transmon qubit when using a down\\PYZhy{}converting IQ mixer.}\n", "\n", "\\PY{l+s+sd}{ .. admonition:: Examples}\n", "\\PY{l+s+sd}{ :class: dropdown}\n", "\n", "\\PY{l+s+sd}{ .. include:: /examples/utilities.examples\\PYZus{}support.mk\\PYZus{}trace\\PYZus{}for\\PYZus{}iq\\PYZus{}shot.rst.txt}\n", "\n", "\\PY{l+s+sd}{ Parameters}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ iq\\PYZus{}point}\n", "\\PY{l+s+sd}{ A complex number representing a point on the IQ\\PYZhy{}plane.}\n", "\\PY{l+s+sd}{ time\\PYZus{}values}\n", "\\PY{l+s+sd}{ The time instants at which the mock intermediate\\PYZhy{}frequency signal is sampled.}\n", "\\PY{l+s+sd}{ intermediate\\PYZus{}freq}\n", "\\PY{l+s+sd}{ The intermediate frequency used in the down\\PYZhy{}conversion scheme.}\n", "\n", "\\PY{l+s+sd}{ Returns}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ :}\n", "\\PY{l+s+sd}{ An array of complex numbers.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}} \\PY{c+c1}{\\PYZsh{} pylint: disable=line\\PYZhy{}too\\PYZhy{}long}\n", "\n", " \\PY{k}{return} \\PY{n}{iq\\PYZus{}point} \\PY{o}{*} \\PY{n}{np}\\PY{o}{.}\\PY{n}{exp}\\PY{p}{(}\\PY{l+m+mf}{2.0}\\PY{n}{j} \\PY{o}{*} \\PY{n}{np}\\PY{o}{.}\\PY{n}{pi} \\PY{o}{*} \\PY{n}{intermediate\\PYZus{}freq} \\PY{o}{*} \\PY{n}{time\\PYZus{}values}\\PY{p}{)}\n", "\\end{Verbatim}\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for func in (mk_iq_shots, mk_trace_time, mk_trace_for_iq_shot):\n", " display_source_code(func)" ] }, { "cell_type": "code", "execution_count": 10, "id": "1ab58d73", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:33.905939Z", "iopub.status.busy": "2023-09-26T17:43:33.905730Z", "iopub.status.idle": "2023-09-26T17:43:34.263966Z", "shell.execute_reply": "2023-09-26T17:43:34.263349Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACZcElEQVR4nOzdZ3gc1fn4/e/MbJe0q14sy71jY4ONHdMJBoMDhPxDfoQSSggk1DyUJJAQCCVxChBCD4QSEggEEmpMNZhqbLAxuHe5qVtlVbbOzPNipZXWVrWl2ZV9f65LYK3OnHPPSvLcPlUxTdNECCGEEOIgpCY7ACGEEEKIZJFESAghhBAHLUmEhBBCCHHQkkRICCGEEActSYSEEEIIcdCSREgIIYQQBy1JhIQQQghx0LIlO4BUZxgGZWVlZGRkoChKssMRQgghRC+YpkljYyNDhgxBVbvu95FEqAdlZWWUlJQkOwwhhBBC7IMdO3YwdOjQLr8uiVAPMjIygNgb6fV6kxyNEEIIIXrD7/dTUlISf453RRKhHrQNh3m9XkmEhBBCiEGmp2ktMllaCCGEEActSYSEEEIIcdCSREgIIYQQBy2ZIySEEEKkKF3XiUQiyQ4jJdntdjRN2+96JBESQgghUoxpmlRUVFBfX5/sUFJaZmYmhYWF+7XPnyRCQgghRIppS4Ly8/PxeDyyoe8eTNOkpaWFqqoqAIqKiva5LkmEhBBCiBSi63o8CcrJyUl2OCnL7XYDUFVVRX5+/j4Pk8lkaSGEECKFtM0J8ng8SY4k9bW9R/szj0p6hIQQQogUtL/DYaZpUtcSoTkUJc1pI8tjP+CG2PrjfiQREkIIIQ4gDYEI/1m2k79/Wsq22pb468OzPVx45Ai+O30oPrc9iRGmFkmEhBBCiAPEBxuqufyfywiE9b2+tr22hTteX8Ndb6/n4fOnc9y4vCREmHokEUqCUCDEwmc+Zvk7X3HUd2ZxzHdnsWN9Ga89/DYOp43Tr5hL3tAc3nv2Y754awVHfvsIjjnrG5RtquC1h99G1VTOuPIU8ktyeP+5T/j8jS/5xukzOO7/ZlO2uZLXH34bFDjjirkUjCrg7WUb+GjlFo6ZMoqTp4+jckslrz70Fphw2uUnM2R0AR/8ezGfvfYFR5x6GCd8/yiqduzmtYfeIhqJcsYVcxkyppCPXvyMT1/5nBlzp/HNc4+memesTDgU5fTLT6Zk/BA++s8SPnlpCYefNJUTzzua2vJ6Xn3oLYLNQU6/fC7DJw3l4/8u4aP/LuGwb07mxPOPpb6qgdceeotmfwun/eRkRk4exicvL+XDFz9j6vGHMOcHx+KvaeTVh96iqb6Z0358EqOmDufTV77gg39/yqHHTuKkC46lsa6Z1x56i4bdjZz245MYPW0En722jEXPf8IhR01g7kXH01TfwmsPv0VdZQPfumwO42aMZsn/lvPesx8xafZ45l58Ai2NAV5/+G1qymr51mUnMf6I0Sxd8CXvPfsRE2aOZe4PTyDYHOK1h9+iZudu5l06h/Ezx/DFW1+x8JmPGDd9FKde8k1CgTCvP/IOlduqOfWSbzLpyPEse+dr3v3HB4yZNpJTLvkm0YjO64+8TfmWSk695EQOOWo8y99dyTtPL2LklOHMu/REDN3gf399l50byzjlh99kyjETWfH+at5+6n1GHFLCvEvnYJom/3v0XXas28XJFx3P1OMP4esP1vDWk+8zdPwQTvvxSSiKwoLH3qV09Q5OvugEpp1wCCs/WsubT7xH8ZgivvXjk9BsKm/87T22fF3KSRccz+FzprD6k/W88fhCikYVcNpPTsZm13jz8ffY+OVWTvrBsRx+0qGs/Wwjb/xtIfnDcjn98pNxuh288fh7bFi2hRPPO4YZc6eyfukmFjz2LrlDczj98rm40py89cT7rFu6kW+eewwz5x3G+s83879H3yGnKIvTLz8Zj9fDW0++z5rF6znhnKOZ9a3D2bR8K/979B18eT7OuGIu6Zke3npqEas/WcfxZx/FN06fzuYVpbz+13fw5WRw+uUnk5GdzjtPf8jXH67huP87kiO/PYMtX23j9b++Q3pmGmdcMRdvbgbv/uNDvlq0mmPP+gZHnTmTrau28/ojb+PJcHP6FXPJKshk4T8/5MuFKznmu9/g6P83i21rdvLaI2/j8jg544q5ZBdlWvf7PSKfD57/lCX/W8asb03nuLOPpLK0Sn6/B/nv9+rFG4jYAtSnNZA3xI5pQkONn3AwjC8nA3eGm0BjkIbdfhwuB75cL4oCb3yxjWteWYtpgtnJs6fttUBY5+Inl/LERUcwc0gG/ppG7E4bvjwviqLQUNNIqCWENycDj9dNsDlIQ3UjNoeNzPzEMhk56aR5PQSbQzTU+Fny+Wf89GfXsHnzZvw1jQSbQ2Rkp5Pmay9js2v48nyomtpaJhgvk4yhO8U0zc7eL9HK7/fj8/loaGjol0NXly9cye3fu4vm+hZUVcEwTOxOG5FQFM2mYgJG1MDusBEJR/tWpu1zW2wOfCjHQ/CMQwmroCoKhmmS9eFm1LWV8TJG1IjX3VaPzaERDeuomoqigN5pGRvRcLTzMpqKoRvY7BrRSBf1tJVxaOgRHUXtooxhYLNpRKM6ajdlNJuGETVQVKWPZexEQhFUTcU0zHjZtl9GQ++sTOw9UAAUZd/KmCaKqoABYHZdpjWOtj93WY/ZQxklds+G0V2Z2Hh7V2UwTUxAVdvfo73KtMaqamr8ve6ynu7KtNajaSp6Qpn27ymw189HxzKaTcU0W8vYbUQj0a7L6EbsZ7o3ZcLtP7/dlhng3+/Of3db25bf70H9+51ZmMFlD59HQW4hmtK6EsoElLbqFEzTjH+OAk1hnXNf30RINztNgvakAE5N4dlvjSHdqbVnSR3q3KutPeLorMySLz7jptt+wXuvfQAm1PvrueOPt/P+x++hKgonf3Muv7rh16S50/aqx+a0MXTcEBzO3g/bBYNBtm7dysiRI3G5XAlf6+3zW3qELLbqo7UEGoNA7KEEEAlFgdgvbptIONr3Mm2ft5aJ5mcQVmI/ZUZrvqtsrE4o07HutnqirV2qht5dmWjXZVpfi0a6qaetTGtb5n7Wo0fa6jH7WCaSWCbaWobuypitZdr/uy9lTKPjX1ddlOkQh9mLeros05t6Ev7beRkA3dB7X0bfvzLRvcrs/XO3589HZ78re/68WlJmgH+/E96PPX8v5fe7tczg/f3e49KEP8f7L8z2198pbeh1EtR2aUg3eWdbA98Zm713e1211ccyN9x8HdU11Tz5wFNEolF+efsvuOW3N3P3nX8GE0KhEM0tTWRn5RANRQkHwn1KhPqDLJ9PAqs64WwVfjLeWoe9tBaiRvz/QgghDhymafLyprpeJ0EdvbypbsCeSZu3buKjxR9y582/Y+rkacyYNoObb7iF/739OpXVlQDU1NZw7LyjueKGn/DO+28n5TgRSYQsduSZRzBqyjBL2rJXN+PYXof3rXVkP/EZ3rfWxXs3hRBCHBj8YZ3y5r4nECZQ3hyhMTww/0D+cuWXeDO8TJk0Jf7akTOPQlVVvl71FQDFRcU898QLDCks5tbf/5qxE8dwzTXXsGzZsgGJqTOSCFlszLSRPLz8T1x53w+tabA10VdkJpgQQhyQAvvZ098S3XuFWX+o2V1Ndlbiztg2mw2f10f17ur4a5MnTubRxx+horKCJ598kvLyco466iimTJnCXXfdRWVl5YDE10YSoSSor2pg47ItyQ5DCCHEAcBt279Huce2/ye4769AUxBVUTn99NN54YUX2Lp1K4WFhfzsZz9j/vz5A9q2TJa22McvLeHO7/8ZY4AycCGEEAcXr0OjKM1ORXOkT/OEFKAwzU6GY2D6RHJz8qit253wWjQapcHfQF5O4h5G1Tt2U7Orlm27t/L8v5/jhRdeICsri1tuuYVLLrlkQOJrI4mQxbZ8tQ3TNJFNC4QQQvQHRVE4c0wWj3xV1edrzxyTNWB79xw25TD8jX5WrV3F5ImTAfjsi8UYhsGhk6fGy23dtpVXFrzMq2++QoO/nrPOOouXX36Z4447zpJ9hWRozGKKouyxrFIIIYTYPycN9+HUlF4viGnbR+ik4b4Bi2n0yDEcM/tYfv3bX/L16q9Y9tUy7vjTbXzr5NMoyCsAoKyijHn/N5cvv17ONZf9lE3rNvPkk09y/PHHW7a5ovQIWezE849hw7LNfPa6dTPihRBCHNjSHRq3zC7m5k92xjZY7aasAigK3DJ7KOmOgZ0fdNcd93DHn27jwisuaN1Q8RRuvuHX8a9nZWax8JVFDCkagjcng9zCnG5qGxiSCFlsyOhC7nj1Rt579iPmn39fssMRQghxgJhRmM6dRw3l9sW7COkdt3uMaetfcWoKt8weyozCtAGPKdOXGds8sQtulxt3oZuRk4dht3gjxTaSCCVB6eodvP/cx8kOQwghxAFmRmE6z35rDO9sa+DlTXUJ+wsVptk5c0wWJ4/wkWZP/kqxjuqr/WTm+7A7rE9LJBGy2DtPf8AfL3oAVZOtDYUQQvS/dIfGd8Zmc+aYLBrDBi1RHY9NI8OhJuVQ096oq6ynrrKeYROG4kpzWtq2JEIWK99SiWbT4mfeCCGEEANBURS8Tg2v07ren+KioVzw/Yv6fmHrGF40EgWsTYRk1ZjF2k4/FkIIIQ40Q4cM5aJzL052GH0iiZDF5l16IqdddhK2JIyDCiGEEKlItalkD8nC43Vb37blLR7ksguzuOahS7n1xeuTHYoQQgiREkYcMozcIdmoqvVpiXRLWMw0TZa/+zXP/O6/yQ4l5ZjQ683AhBBCtLMFKtDCdX2+TndkE3UXDEBEfVO9o4aswkxcHmvnB8EgTIQefPBB/vSnP1FRUcHUqVO5//77mTlzZpfl7733Xh5++GG2b99Obm4uZ511FvPnz8flclkYdbtXH3qLB65+XFaNdWAqEB6WCTYNx9ZaFIt23jYVUEwwPHbCxT5s9UFs1U2WtC2EEP1F0cMM++h8bOHaPl8bdeaw9Zv/w9QcAxBZ7zXWNdFY20TJhGLc6dY+nwdVIvT8889z3XXX8cgjjzBr1izuvfde5s6dy/r168nPz9+r/LPPPsuNN97IE088wZFHHsmGDRu46KKLUBSFe+65Jwl3AA3VfjS7hh6RVWMA/pPHo+emYWTEfvAdq8vJ+Hhrt9eYACooHeacm0rsC92ll3uWiQzNJHDoEKJFXtBi3bG+fy3D5g8lXrdHW/uqv+pJtbaEEMllqnai7kK0cB1KH45dNVGIugow1eRsZLhHMABJWVE9qBKhe+65h0svvZSLL47NSH/kkUf43//+xxNPPMGNN964V/lPP/2Uo446inPPPReAESNGcM4557BkyRJL4+7I5rBhROUJ1Sbj3Q0YbjvByUWYdhX3il1dljVVhfDoXAJTh6Bne3BsrcW+pYZooZfQhHzUkI7r6104V1eg6u1/GeheF8HJRQQn5qOEddxfl+FcXYG9shH7/9YQGZ5FcFQu9upGtNYkyFQgPCqH4KFDiOalY99eh/vLXdgqG/s0fGcqEB6RHaun0It9Rz2u5TuxV/j7fRjQBCLDs2LJ3RAftrIG3Mt3Yt/VIEOOQhzIFIWa8VcwdOlVfbsMk5rxV8TO2+gnS5Z9xk23/YL3Xv1gn65Pxj5HgyYRCofDLFu2jJtuuin+mqqqzJkzh8WLF3d6zZFHHsk///lPli5dysyZM9myZQsLFizgBz/4QZfthEIhQqH2HgG/399/NwGcefWpmKbJi/e8TlOdDMMohonWHMazZFvsYd3N70DLjBKChw0F0wRFITwim/CoHDBMUBUMTcPU1IQkyNRU6v9vWuwXXVUwNQ3TpqJ2SEYd2+twbKuLDZW1vhaYVkxg5vB4W5HiTDLe3dDnhCI4uYiWI0fG6gEiQ32kv7u+j7X0Tmh8Ps3Hj4m3FS3yotUHBqQtIURqacmbTdA3CWfDOhR6/se2iUrIN4GWvNkDGtfDTzzEBx+/z9oNa7Hb7Xzx/pedlrO77GQXZMqqse7U1NSg6zoFBYmTugoKCqioqOj0mnPPPZfbb7+do48+GrvdzujRozn++OP55S9/2WU78+fPx+fzxT9KSkr69T48GW7O+9V3ufn5a/u13sEunmB006trOmyxpKftXwzqHv9XQAnr7Z8DpqbEhr26KdPWptKh7VhbRntbCij70JO3V8yKghLWB6SHxnRoe7WlhqLSGyTEwaC1V6g3SRCAgtHvvUGdiUTCnDLnVM757rldlimrKGPYxGJ8ed6k9AgNmkRoXyxatIjf/e53PPTQQyxfvpz//ve//O9//+OOO+7o8pqbbrqJhoaG+MeOHTv6NaZoJMpbT73PvT/+a7/W229S+Kmp6EYsvraEpbXnI/5/AE3B7DDZWjHM2NeNxF4is4cJ2bG2lA6JmYm5D7+g7TF3iHWAJsoreqxnrGNbpu2A/hUXQnTQ1itk9vBoN1EJ+iYNeG8QwDU//v+46NwfMm7M+C7LnPjt4znumON57K9/o7m5ecBj2tOg+VsyNzcXTdOorKxMeL2yspLCwsJOr/n1r3/ND37wA370ox8xZcoUvvOd7/C73/2O+fPnd7m7s9PpxOv1Jnz0p5f+soC7fvgQFaVV/VrvvjJbe0YiQ7w0zyghUuxLckRdc3+xA8+S7SiBMAC2mmbcn2/HXlobe/hHdAy3PdYz0kqJGnhfWdleJqpjOm2YPWw5716xC8/iUtTm2DCpVh8kMrTv741rZTmeT7aiNrXVEyA8NLMP0xl7z7mukrQPN6P6gwCo/iCRIb4BaUsIkYJ62StkVW9Qb/3v+TeZPGEyv/nNrRQWFvLDH/6QDz74ANO05m+vQTNHyOFwMH36dBYuXMiZZ54JgGEYLFy4kKuu6nyCWEtLy16bM2la7AFo1Ru8p0BTEJtdI5oiq8aC4/IIjctHL4olfEEg6/HFqNHUe3yqER33V7twrSzDSHOgNbbP5TLcdpSojhLZ+y8Ae2UT9nfWE81yo4R0tJZwl20YThvoBmrUwL2yHNeqcox0J2pjKN5ZZjhjQ1BqJ23tSdEN3KsrcK2uwPA6Uf37Vk9vKIaJa20lzrWVe7UlhDg49DRXyKq5QX0xasQorrviBq69/Ho2V2zghf++wOmnn05ubi4XXHABF154ISNHjhyw9gdNIgRw3XXXceGFFzJjxgxmzpzJvffeS3Nzc3wV2QUXXEBxcTHz588H4PTTT+eee+7hsMMOY9asWWzatIlf//rXnH766fGEyGrudFcsCeo4xJNErg3VuNdVESnyEh7ixVHRmJJJUEeKYSYkQQBqINJl+UhBOoGpxURGZINu4FpdgfvLnaih9mQ0kp9OYOoQIiNywDBwrqnAszxWpq2taG4agWnFhEfGJmi3l4n2HDPEV6RFc9IITB1CeHQumCbOdZV4lu3s9h76omNbQoiDTA8ryFKtNyhOAQWF4487nnmnz+Mvf/kLl19+ObfddhsrVqzg5ZdfHrCmB1UidPbZZ1NdXc0tt9xCRUUF06ZN480334xPoN6+fXtCD9DNN9+MoijcfPPN7Nq1i7y8PE4//XR++9vfJusWOPOaU/HmZvDMnS9SviX5w2Ntmxfay/3Yy/0pPUdoX5g2Ff+3p7RuW62ATUMJRlE6JEGmpsTKQGyOjaqhhvTEMqpCw3emAEprGQU1rKP0IgnaU8OZk0Ftm8CtoEQMlH5KgoQQoqteoVTsDWrjTneTVehj7ca1/OMf/+Bf//oXiqJw3XXX8aMf/WhA2x5UiRDAVVdd1eVQ2KJFixI+t9ls3Hrrrdx6660WRNY7doeduRedQO7QbG48+c5kh7O31O4M6jNTVWIJUIcET9ENFFVpn0DdurS+o73KQCx56cgwYtf1dSdsTU3415iyr/UIIURnuugVStXeoIrKcj5++0OeeeYZNm/ezOmnn87jjz/OKaecgs028GnKoEuEBruWxgAv3beAF+95LdmhDDrxs8iUDp+Y7UdldEbRTWhbAabGVoHFl5m3MUyIGvGenk7LtE7G7rgU37Rr+3QciBLWMe3aftcjhBBd2bNXKFm9QWUVZTQ01FNWUYZuGKxdvwaAYSXDSfOkAXDCGccx5ZBD+eEFP+TiSy8mOzvb0hglEbLYy/e/wd9veT5pk7UHI9MGpk8jdEYmZpqK82U/6s4QkeHZhEblYKtsxLW6otNRPUU3yPz3CoKTCwlOLIjt4RMxMDpsqqgYJpn//rJ19+kClIiOEtYTy5i01lNEcFIBStRACUcx7GqfJzv7XuhQj2GiBCMYDg01nBoT6IUQB4A9eoWS1Rt03yP38tL/2g8ZP/P8MwB4+pF/Mmv6NwB4/fk3GD1iNABOzfpzQCURslg0HEW1qXLWWB+03FiIPsaJmR87FDA4KR9zWTrYYhPew2NycZTuRmvufJ6N5g+S9mkpns+2gWl22nukNYZIW1yKZ0k3ZZpCpH1WimNjNUokuteZZL2lNYdJW7INz+fbu2xLCCH2V1uvkKthjWX7Bu3p97/5I7//zR+7LdOWBEFyVnRLImQxX54XPaKjqEqPm/qJmLQ7K2Jndh2bSctRwzDr0sAW+1eNY0sN7i93dZkEddSb4afuyoSHZRE4fCjRggwwTRybqvF8tg2tZd8mOstwmBBiQCkKNROuJm/1H6mZcHXKzQ1K0DrVQbNZv6JbEiGLnXHFXIaOK+KpW59n3Wcbkx3OoKGYENWzMGrS4r/MSihKxjsbLFnpZqoKjadM6BCQglYfRN3HJEgIIazQkjeLbcf/J9lh9CgjK52swkxcHqflbQ+anaUPFIqiMP2kqZz3y/+X7FAGHRMlcVVbW4+KVR0ripL4LyrT3Gu1mRBCHMyKi4Zywfcv6vN1eSW5SUmCQHqELFdbUcc/b3+RN554L9mhDDpqc7h9mbmqYGoKhl2N7cPTxTUdc6SEFWfQepZY77IoE1ACEUyXLX6dkeZIGN7qsJDtQNuOSQghemXokKFcdO7Ffb6udPV2MvN9ZBdm7nUixECTRMhiCx5byOuPviPzg/aB+8ud2Cv9BKYMIVrkxbmhCtNpR43sPWnZcNtBNwiNzSM0Ng97uR/XqnJMl43AlCEY6Q48S7djr2rqtk3DFTs9PjwmFyUUwXTbUZrDqMEItspGTLX9hPnw6FyC4/OxVzbiWbottnRfCCH6yDTNg25lsRE1qC2rw+Vxkp6Z1uvr+uN9kkTIYoZuoKoqupGaq8ZMVSEyLAu1IYitrmXg2yrJRG0KY9sdO3FYz3ASzUvHsb0OJZq4LF0B7GV+1MZQrMyOuk7PFgOI5HgITyggUpKJ6bCh56WjZ3swXTai+RkABCeEekyEolkeQpMKY/U4YwmP77VVaA3B9rYy3YQOKYqX0fPTca2tRKsP9On9MNx2IkO82Hc29OrYDiHEgalxdzPRsI6BjkZyjoMaLFpaYs8pu92+z3VIImSxolEF6FEdVVMwUqjHwFQgMG0owUOLMF2xHyjn2go8n23r9/1tTCA4dQiBQ4dgemJL4rWaZpSoHluRpSgQjpL+3kac2+ri1+mZbppnDoudGRYvswnnttq92nDsbMC5swHTphLJS8fWEIhPbI5muTGdNmwVjT3Gai/34yj3Y2oq0fx0tMYgalPioa32ikYcFY2YmkI0PwO1MYjW1PXBrnvSPQ5aZg0jPCYvNvSnG6R9tBnXhuoDbqdvIUTPQs1hPn/tK475vpPszGzUgyEZap1PoBs6wWCw+7LEeoJaWlqoqqoiMzNzv84PlUTIYiddcBxjp4/i8Zue4bPXlyU7nDjd5yYwc1jCa/adDSgDsMmfkeag5RsjEubn6Dme2B/aVoRFjYQkCCAwuZDI8Oz2MobZaRIE7XN0lKiBo9yf8DVbXe97auL16EbsLLZuy5hdlulOaHwe4bF57ROxNRXnxhpJgoQ4iC168lMAjjh9KjaHhpLKS9/7gcfrxuP1UFa5q0/XZWZmUlhYuF9tSyKUBCMOKeGE7x+VUolQV/tLDMivXjxz6HgA2B4tdZoE9KbMYKTIDGshRALThPef+JRPnvsCb27aAZ8I/eHdX5NXnNuna+x2+371BLWRRMhiZZsrePjap1IrCSK2IkoJRWNnbBFbFaVne2DL7n5vSw1FUVrCmO7WMV2T9mXohhlr3q5iuO2oHU5l1+pa2leNKbGT5Q2Pvdu9fOILxPr9Lnqh7Sy01j93tYO0Vh+IlW1dDYdhome6sdUO7BwtIUTqC7eEqdne+6H2werSSTdw8gXH8eO7LyTN67G0bUmELLbwnx+xZMHyZIcRF/W5QFMJTSzAbN0nR6tpRqtrwb7H0FR/USIGWc8uIzQmj+CkAtSmEO6vy1FCUYJTiogWZuBcXw3RxGE59+oKHLsaCEwuiq8aI9r5ZGk9w4lpU2OrxsblYS/zk/7BZhS9b+eC7atotgfD4yB4aBG6z4VnyXacXSSVzq27sT27nOAhhUSGZ+HYshs1cOD/xSeEEG30iM4bj7/H7DOOYPbpMyxtWxIhi5mmmTLHa5hAcHIhoUOK2ufdBCN4X/4adYAnciu6iWt9Fa71VQmvp3+0pdvrtPoA6R93XwZiiVBkeDbhkTmYaU7Cw7MxnaUoLe2JUDQ3jUiRF8fWWrSmfTs3rCvh4VnoOWlEhvhAUwmXZHaZCEHrOWZLtsGSbf0ahxBCDCZy1thBYNTU4SiK0pe9/AZEuNhHy1Ej0bM8sUB0g7RPtuJcX9W+Y/Mg5ijzYy/z41lciu5zoTWH471H0Zw0mo8ZFT8zrOUbw0l/dwPOrZ1PvN4X7i93xUa7nDZMpw3N3/MqCCGEOJh5vG6Kx+zfxOd9IUdsWOzo78ziX9sf4aQLj09qHMFDCtEz3bFPFAWtIYBrbSWKYR4wc3aV1g9bQxAl2r77dGhcHtG89NZCCuhmvyZBbW1DbD6UJEFCCNG9n9xzIc/tepThk0osb1sSoSTIzPcx9vBRyQ5DCCGESAlTjp2IO82VlLYlEbLY5q9Kufzwn/HgNU8kNQ57uT82ScgwwTAx0pzo6d0ceNfaxWGqiZ/3WVs9SvvnZuvq8bb/90XHenrLVtkYGw5s+9BUojndb+neFl93bfWmTG/0Vz1CCDFYXDnjRm469bfUVzdY3rbMEbLYJy8tZcvK7ckOA/fKchybdxOaXEg0y4NrfRVqFxOGo2OcmFka4ZO8RGelYVsRwHNHGUofT4GI5HgwPQ5C4/IJj8jCXt6Ic20FRpqT4OQiTIdK2kdbehymima5MdKdhMbmER6Zja2yiYw316J2WEFmAobbiWG3o0YiqIFQPKdwbtmNfVcDoQkFRIZ4cWyuQatt7rwtnwsjw0V4dA6h0bnYaprJeGstaqh9RVvU68LwtpXJwba7hYy31qEG+/YG6RlOdJ+L8MgcQmPzsNW1kP7mOrRA19sDCCHEgeKLt1awZvEGjjzjCEvblUQoCRRFwUyB3QC1ljCepT0nZWaaijHMgVHiALuKMcTeY1+i7nUSGp+P2hTGubEaJWpgOjT0bA96lhtsGrrPhZ7lwUhzYHjsoKkYaY6e47Fr6Fme2Bwnm4bhdYGmQBR0pwP/5NE0HD6RSJY3fo29zo9v+Vq8qzajhcIo4ShafQuG245WH+hyjx/TrqFnu9EzPWBTiRZ5aZk5HK0+gHN9FWpYx7Sr6FnueDx6hgtT63tnq6mpHe5LjW0BYFehb0eW9QsTiBZ5CY/Ixr6jHvvOeumcEkIckBTzYDvito/8fj8+n4+Ghga8Xm/PF/Rg+cKV3H7WXTQ3DK7N8kwVFAMMr4rij/W8dPZgNFWFxhPHERmZHd8t2bFlN+nvb0LRDczWjQUNlw0lGI1vOoimYmpKr881i9fjtKG0HlDaMmII5WeegGm3JW7SCPFNGJVIlPwPl6BP8GFkOOOvZ7y5Dvv2us7vqTXGxpPHx845a2UrayDj7fWxZKhjPOEomPs2qtVej4YSNsC0fvK6nummcc449Jy0+CaPnk+24FpVIcmQEGLAFAzP40/v3UrRyIJ+qa+3z2+ZI2Sxw0+cwvNlj/K9689Idih9orSOOql+I74aqzNGuoPIqJzYaiw1tkGjfXtdfCPDtp4XNRiN1dOaMCi60afDXeP1hGL1tIwYQtlZczBttva2O2qNxbTZqDzxKIK+zPbXo0bstPvu2lIVIiNb76v1w76rASWi7x3PPiZBifXoKElIggAiQ7yxXcUh/j46N9ZIEiSEGDC//NdP+fum+/stCeoLSYSSwGa34UrrZmKy6BPd6aD8zBOAThKgPbV+vSm9GEN+/IUQIiV4MjyoanL+TpYngcVWfbyWc4b9hH/c/kKyQxkQanME26762Ceto66R4VkYDm3AZkX5J4+ODYf1lAS1UWJ9WmGHNzb0Y1MJF/tav2SiqCaqauJ0dziOwzBxbK6J3VPrSrvIEC/sw1ygVGeraGyfON+6uWZoVE4KzGoTQhyobj5tPpceej1VO2osb1smS1ts+bsraaj2JzuMAaPoBr7X1xDN9tBw5hSwa4RH5RIuySLt4y24NlT3a3sm0HD4xH0IFELuDLxfrce5uQb7rtiSzW9+t46ho0LMO7+WNK/OU38s5MWH8lGAjHc3oHtdBCcWoET02AaUXZx1NpjZalvIfHY5kWFZscnSO+txbN0tQ2NCiAG1bfUONn25lfySvp1Cv78kEUqGg2B+uq22hfRFm9Az3QQPKQRNHZADTw23M2F1WO8p6LjxLN2JFmzfNiDYotLSpBEKKji9Gv6RRTSeOBrHlt04Snej+YOxM8H6wNRUQmNziQzNxLF1N46ttSgpfoyJAji21+HYPjAH7wohRKqQRMhiM+cdxsJnPqRsc2WyQxlwzi27MRVwL98ZG7YagIe/Ybfv3/UOe0Ii9OkbPhQVnn19HIFTxhJRbDAawqNz8L62OrYRZR9Ein00njQe06GBCeHRuWT8bw2OnfX7FbcQQhxoJs4ex/gjxlje7oE3wSHFTZg5lifX38ePfn9eskOxRHxV2ACdYaZG9m+zQTWceL1pKhi6QrjIR8S0EVtzH0vi+poEAUQKvZh2LWElm12SICGESHD3otu475PfklOUZXnbkgglQaAxQNV26yeEHYjUQAh7nb/vvU2Gib3OjxrsfDdtIYQQ1tm5oZxIODm76EsiZLElC5Zz9pDLePWht5IdyqDWlvYYHge+L9f1feMeBTKXrY1/qnscmKoSr9e5ZTdafeuWzq3nkbWtnIp/uBSMbK3bZhylu9FqW9rrAUJjc2UFlhBCdPDnyx7h3JKfsHNjueVtyxwhi61fuolIuI+HdIkE4cIMosWZhMbkYmS6MYM6iqFjqq1DUD0xY6mMOdROQBlKeFQuerYHJRjB98IKtJYItuomfC+sIFrkJTLEh2PrbmytCU3oO5nowx1EjssAh4L9pXo8f+u8h8+2uwXff74iWpBBpCQ2Wdq2e3DtKi6EEFaor/azfe1Oho4tsrRdSYSSoO1UE1NTCI3JIzQuD1tNM65V5WiNg3+oxlQgPDKH4KQCNH8I16ryeBLR53pGZBOaVIjSHMa9sgzb7hbUQAT7znoMt52Q246jvIG8NUuoOm527MLukqHW995buw3njt3Yy/yYLjt6mgNbZWN8p2gA02MnUuwjUuxDCUVR/UHUqIG2LoiyO4oxzEF0hIdwVj6Rbxfi2LIb57pK1Eji6jgFsFc2Yq9sjNULRIb6CB5ShKIbsfenotGy5emG00ZoQkHs4NvtdbjWVCQcIiuEEAcTSYQsdtzZR7Ji0SpWLN9Cw3cPxXTGvgXRQi9qSxj3V2VJjnD/GHaNhu9Ni53jZZpEi2J7C2mfbO3Tg97UVOr/b1rsQFXTjJ3dZZikfbgZW0MQGoLYKhtJ+3hLrF4FtJoWKr59fI9njRW9/D6e0rLY5ybYKhvxtMXXeklodC5N3xwb+0SBaH469l31qHUBbOuCsAHMnU5Cc0pi1xS0lWlA7SHpa/jOFPT8jPi8JlNTyahchxXjZZEhXvynToodUgtECzKwVTfh2Nkw8I0LIURXFDjurNlMPnqC5U1LImSx4ROHcs+i23n1jS/4zasftX9BAVtVU/IC6yem2xZLgqD1TC7QqptinTR9eNCbztZT5TvUY6tJrCchsTIhfesuRj78Ao2HjKZ++h6nzzc0krlsLRmrNqG1Tcjroh6AaG5a7A9tyZRhYqsLtJfRiR1KarbHh0mver70vPSEum21zT1e01+i2Z5YEtSh1+xA+LkTQgxuf1v1Z4ZPHJqUtgfdZOkHH3yQESNG4HK5mDVrFkuXLu22fH19PVdeeSVFRUU4nU7GjRvHggULLIq2cxWlVSx7+6u9Xj8gJtB2cRP9tYdkT9VooTCZy9cy/LH/Muq+fzHikRcZdd+/GP7Yf8lcvrY9CeqNHruw9uOmOr4hpmLdN7+zdmTLaCFEkn304mf4axuT0vagSoSef/55rrvuOm699VaWL1/O1KlTmTt3LlVVVZ2WD4fDnHTSSZSWlvLiiy+yfv16HnvsMYqLiy2OvN2i5z/hgjFXsfjhd3GtKodo+9yM8KhsTFtyviWmphDJTdvv9pVAGPuOuoQHfWRoJqaz+9VVe9XTEsH9xQ6UUPvE8uCkQqJFvdtFWgG0YAhbYxNGui0+BNlb9l31KIEOSZOm0jx7BIarvR7nhuq97jU4JjchsdDTHERz0hLyD88nWxPqjgzJwEhz9Cm+feXYWotjy+727QZMk9CYPEmGhBBJ9fRt/+acoT9my9d927m/PyimOXjOe5g1axZHHHEEDzzwAACGYVBSUsLVV1/NjTfeuFf5Rx55hD/96U+sW7cOey93IA6FQoRC7ROW/X4/JSUlNDQ04PXuy1EOiZ7+zb959nf/QW89o8pwaIRH5mCraca227ohkjbBUTlESzIJj8rBdNggopP196Woet9+LEIjsogMzyY8MieedHg+2oyttmW/JgKbmkrdeYdjutsTBddXu0j7rPtflnCxj/DoXMIjsjHddtANsv61DLW5+x6h5lnD0XPSiAz1dT7pWjfI/PcKNH+w/SWvi8gQL47tdagtsfqbjyhBz00nUpIJioJjYzUZ721svy9VITw8C0U3se+oQ7H4t1BPcxAZloV9Rz1a0+CfoC+EODDc9vLPOfKMI/qlLr/fj8/n6/H5PWjmCIXDYZYtW8ZNN90Uf01VVebMmcPixYs7vebVV19l9uzZXHnllbzyyivk5eVx7rnn8otf/AJN67yHYv78+dx2220Dcg8AiqpgdNj8Tw3ruNZ33qNlBXt1E/bqJtSWCKFROThKa1H6mARBbJm4raYFtTlMaEwOjm31sUNJ9/MBr+gGvpdWomc4CR46BMNlx1Fa2+N1Wn0A97IdqP4goQl52Hf6UQLtvUv6KCehb2cSnebG8X4jjtfqUXfruNZWYHgcKFEdPd2Ja1U59l0NhMfkEjikCDPDiX/eRNRABNfXZTi21qL5gwmJEYBrfTXG9nqUiI7uc+Pc3L68vm21YHByIegmbruKVhcgeEghkWFZOLbuxrWyDK0xvH9vXnfvT3MYbe2Bf8yLEGJwUVXrR0UGTY9QWVkZxcXFfPrpp8yePTv++s9//nM++OADlixZstc1EyZMoLS0lPPOO48rrriCTZs2ccUVV3DNNddw6623dtrOQPcIVW2v5olf/Yv3nvsYcx8SjoHSMZL9GSXpr3r2oijtQ1Ad/7wP8YRO8xG8Ih90MzZxOGSQcXEpSr3evnKsbeRIUVBME0OF+nOnY3oc8fad66tI/2BzNzHvXQ9A3TmHt6+Ga7sfiA1XtZ7JlvnvL9EagnvXKYQQByCnx8FpPz6ZC28/G3eaq1/qPOB6hPaFYRjk5+fz6KOPomka06dPZ9euXfzpT3/qMhFyOp04nc4Biyl/WB43/uMajvrOTG4/6+4Ba6ev+itpGbCpJgmTi3ufQHYWj1Fkh6gJtrYEBNT6DvvodKi+LXlRUDDTOvxcKAqqP5iQ4Owd8971AImr6jpqW6GmKqgHwH5SQgjRW09tuJ/cIdlJaXvQTJbOzc1F0zQqKxO78ysrKyksLOz0mqKiIsaNG5cwDDZx4kQqKioIhwdu2KEnaz7bIEdsJJNO4k9+n7K3jtkN+7YczuzFdTJ5WQhxEHnmzhfZtcn64zVgECVCDoeD6dOns3DhwvhrhmGwcOHChKGyjo466ig2bdqEYbTv9LthwwaKiopwOKxZpbOnBY+9y0+P/BVff7A6Ke33JxMID/ESHuobVEv/na/WY3/HD5HW3p6oSfjo9E6Tj/h9uRScTbtQ0tp7jvTcdAxP7ybht9Vj2jUcm6q7KNRaKqITGp0ryZAQ4qCx4G8LuXj8NaxburHnwv1sUA2NXXfddVx44YXMmDGDmTNncu+999Lc3MzFF18MwAUXXEBxcTHz588H4PLLL+eBBx7gpz/9KVdffTUbN27kd7/7Hddcc03S7qFmVy2aTUOPDu4jDfwnj0fPTsPwxcZyXSt2kbbE+mWP+0KtieL5SxXGkzXo41zYvg6ghDtP5aJT3YT/XxbRKW5wqahmHe5bdqNtDfbp2JBoQQaBw4qJDPGBvfOJ+lpVI57lu7CXNaBEjU7LCCHEgcho/TuvtqLe8rYHVSJ09tlnU11dzS233EJFRQXTpk3jzTffpKCgAIDt27cnzDgvKSnhrbfe4tprr+XQQw+luLiYn/70p/ziF79I1i2g2bSEHqrBKuO9jbGVXFOGYNpUXGsquizbdmZY8NAhRPPScW6oxvXVrthRGUmk+g3UL7pPZrTNITy3lxE5Op3Q6TlE1Eyap2ahjI/i+moXrnVVvVplp9W1kPHWesIjswmNy8e2uwnXynJMTSU4pQjd68L91S7slbLLsxDi4GWzW5+WDJpVY8nS21nnva6vtpF///EVXnnwTYLNg3xCbMdjM7pZydX8jeEEpxbHvq4oKC1hsp5ZhmIMnh890wZ1P5iJ6dCA2L26VpaTtri0bxW1rgozaR/5iv+59WtCCHGwySnO5qxrT+PbV52C3dG7KQc9kVVjKcqbncGPfn8+U084hF+e+rtkh7N/Oj6zu8mnTZc9ngQBKLo5qJIgAAwltuFkG0VBCUYwVaVv92K0rULrUNUeXxNCiIPNYyvvJiMzPSltD5rJ0gcKXdf56D+f8ejP/5nsUAZWxye9YSYkTabWtky8w2v0fNxWb8oMKMNMTFYU6cERQoj+8MeLHmTVx2uT0rYkQhZ75f43uf17d7Nt9Y5kh9KvzNbcRs/2EJhcSCQ/I/41z+fbcX1dBnrrBPEClaYrhhGdEJtobaoKoTG5BCcWdHnWmakqhEZ3X2YgKYaJ9/XV2HfVx14wTPR0B4a7f7pwhRDiYPb5guVce+wtfP3hGsvblqExizXVN6PZNfRIaqwaM4kt6Vb3M57QmFxCEwuIFnrjQ2C+Z75Aaw6jBiKkLdmGLaOW4PeLMItMdMVJ82klmE87MGyu+GaF0bw0Mj7cklB3wykT0HPT2ssUpJOxqJsdnQeIvdyPvdyPnu5E0Q3U1oNTTcBMU1GbB/8keCGESIa28zeb6q0/c1MSIYs5XPbY0vmOE42TwHBohCYUxM7v8tixb6vD88V2bLt7vyS8I+fWWlwbawiXZNIyvQS9IIOGc6ejBFtXV62uwPFRE853NxA53EN0lgfbmiC2D5swnbZYT49dw71y7w21vG+tw3TYCE7Mx3TYOi1jpbZDSk0bRE7wEvpuFsYwB9qaAM5/7sa2IiBbAAkhRB+oredwOlzW7/EniZDFvvPTebjSXPxr/n+Tsl9Cm+ajRhIemwcooICe6d7nJAiI73tjq21Bz0+PT4423XbUiI4SNVBazzy1f9mCfXlLbGDWBCUYxf3lrlg9ndVtghKK4l5R1mWZZAj9vyxCF+VCa0eQPs6FbU0w1iEmU4eEEKLXRk0bwdk/+zbTTzrU8rYlEbKY0+3kzKtPZdghxfxizh1Ji8Ns29SvNatQ+mlvI1NT9j5DK2qgdFxe35YkdGiyN8lNqiRAcS418cwyhS43ZhRCCNG1u9+/DU+GOylty2Rpi4UCIV66bwF/+MH9SY1DaZsT1JabqP3zo6BEjVjC03E1lU1lQLerSlaGFDRiSVD8/AwwHUr38bR+zUy5rE4IIZLn+hNuZdHznwzss6ILkghZ7KX73uCha59M6rAYQNonW/F8tg21JQSmiVYfIJrj2e961ZYI3pdW4thSA4aJEohg2LV+XenVVlek2EfTUSMJjsm1dCTKVBQMu4axyY2x2AV1saxG2xAkOsnV6ZZKbTFH89Jpmj2C0MQCGT0TQohWW1aU8ttz7mX5u19b3rYMjVksHAjHzhpL8qoxNazj/roM18oyTIcNNRTtt7rt1U3YF27E+GhLbG5QH/baMTUFPcOFVt/1hONwsS92XEdRbIVaiCLsZQ1ozZH+uYEeNH5zDNH8DEyvC6pA/SJCxicbUf0dDmRNc8RWlgVj72s0x0PLEcNjMasKIUCrasJeY/0KCSGESDVG63MiFAhb3rYkQhZLz0xDj+goqoKZApvxtU1EHghquPfJnuGyETh0CKFDCjEdNrT6AJ6Pt+DY1bBXWcf2epzb6tAz3YSHZmLb3WxZEgTgXbgxfn6a4Xbg3FQdv9dIkZfAtGIiw7LAMHFsqMKzdDu2qmZ8r6/GSHcQGpGN1hDEJkmQEEIAoNlU9KhBemaa5W1LImSxb199CnnDcnn6tn9TunJ7ssNJGS0zhhGaWBA7bwswnFqnSRCA0jr2pNUHcNcHkjJHSDFjWwbseWaY/7RD2gupSnwfpbYyalMY96qKFJz5LYQQyXPEvMM5+4YzmHz0RMvblkTIYpqmccz/m4UrzckvT/1tssNJHeoemUFfFrElsWNN2fOTPe/DNDs/TDX5nYFCCJEyfv7UlXLW2MHCX9vIY7/4J7efdVeyQxkQbeeB9XVVlBKMxBKGtpnGmoK5Z1KRArrNX9qGGduSHtPEcNl7nCMV/+qe2w4IIcRB4tIp1/PiPa8RjQzMVI3uSCJksdceepsX7n6VYHMo2aH0K8Nlw9QUQhMLaJw3keCUIX3q9PB8vp30t9Zhq2gE3cBeWoue4RyweHvLcNri55z5T51AYHpJl0meAmQ+/yXuZTtQAhHUpjBaQwCjixVzhkNDT3PQ8o3h+E8eTyQ/Of8aEkKIZNu9q5a/3vA0y99daXnbMjRmMT2qo6oqupEaZ43tC1OBaJEXtSmE5o8ldOFiH+Hx+USG+EBTiQzNxLmuEqXDhGnDYyeanYa9rGGvXhLFBGdpLc7SWkvvpSfRHA/BqcVEirxg14iUZOHYXIOtPtBpeTUQwbN8J57lO3usu2XmMKIFXvTc2ORA06biW5Cc05eFECIVJKNHSBIhi+UWZ8eSIU3F0AfXIZ0mEDykkOC0Yox0J5gmzjUVeJZux7l5N67NuzFcNiIFGdh2t8RXUuleFy0zSgiPzgVVQWkJk75oE44d9Um9n96wl/lxlPkxHBqRIi+2hiBaF0lQX6V/vBWASF4apseBfWd9v9QrhBCDjWpTMXWD7MJM69u2vMWD3LxL5/CXT3/LocdNSnYofWZ4XbQcPQojrfVQPEXBXtmIEtbbV0UFozi31cUPJgUIHFYcT4IgtuprMCRB0D4ZWg3rsfvqpySoI3t1M/ZtdSi6zKAWQhyc5v3oRJ5cfx8TZo61vG1JhJJg0jfGccYVc5MdRt+1TV7uOKnX7MUc3z0LDK6OMEvINGkhxMHsvJvPonhMUVLalkTIYlU7aph//l+44+x7kh1KnynBCIT12Mqu1vPEdK+rx6XgamMwYQm5aVdjx250c43Z4WOgWdmWEEKIvV007moeuf7vBJqDlrctc4Qs9taT7/P+c5+kxK7SfaUGo2Q98wWhCQUEJxXEdkeu8CdsKtgZz7Kd2HfUx47FyE/Hub4KNAWlk82g9XQHoBAal0dwbB7OnfV4Fpf26ZiO3tI9DlAgPDaP4Pg87GV+0j7dKkNUQghhsVBLmP/8+XWmnTCZb5w23dK2JRGymGmYqKqCPggTIWg/o8z9dVmfrrNXNWF/d0OP5fQsD+FROYRHZGO67ATTHbHl6MH+X0mgZ7oIj8kjPDwL0+MglOHC/eVOtKa+nXWje11Ein04ttWitlh31IcQQhxoDMP6uROSCFmsZEIxhmGmzFljqcaxox7HjnrMDzcTzUlD8wf7dGZZn9pqXRFmKgrRHA9aY6hPh8/qXhfNR46InSumKDQbo0h7fyOuzTUyziaEEH2gqAp2h43CEfmWty1zhCx2wveP4ulND3DsWbOTHUpKU0yw1zQPWBKU2JYZa6uPh8+GxucRKclKmAzu2iRJkBBC9NUFt/4f/9r5V0YdOtzytiURSoLCEfnMOHlqssMQ+03WegkhRH845qxv4M3OSErbkghZbNvanVx33C3c/aOHkx1KShsMq7i03c2xPxitq+gwiWZ7khqTEEIMRj+afC13nn0P/tpGy9uWRMhiHzz/Kas+WZfsMFJWNNNNpDCD5mNGUXvRTBpPGo+ppWbPi3PLbrL++QXu5TuxVTbi+WxbbKsAIYQQfWPCBy8sZtXH1j8fZbJ0EiiKgpny/R3JYbjtRIt9RIp94LQRKcrAtKkoemqezaYGIniW7YBlO7osYwLRggwiQzNxlO7GtrvFugCFEEJ0SxIhi42fOQa7w0Yo0Lcl2gcLR7kfe7kf9xc7MNLsqC3R1mGnwSma7aHphLGxg1VNk8CMEtLe24hzY7XMMBJCiA4y87wMm1BsebsyNGaxWfMO5/myRwfnERsWUVo/tOYIimkO6oQhPDIHvW3eUOvqMkmChBAi0bWP/oRndzzC0HFDLG9bEqEkcGe4yR+Wm+wwhBBCiJQwdFwRdoc9KW1LImSxdUs3cvH4a/jbjc8kOxRhAXuFHyWix89mA4gMzUxuUEIIkWKuP/5WrjnqV+wur7O8bUmELLZ0wZdUbK1KdhjCIvZdDWT94wvSPtyMY+tu0t9dj72sIdlhCSFEylm7eAPrP99kebsyWToZFIXU3yVH9BdFN3Ctq8K1ThJgIYRINYOuR+jBBx9kxIgRuFwuZs2axdKlS3t13XPPPYeiKJx55pkDG2APDjtxCr48b1JjEEIIIVLN8ElDGXPYSMvbHVSJ0PPPP891113HrbfeyvLly5k6dSpz586lqqr7f2mXlpZyww03cMwxx1gUademHDORZ7c9zA9u+V6yQxFCCCFSwp2v38RjK+8hv8T6hUSDKhG65557uPTSS7n44ouZNGkSjzzyCB6PhyeeeKLLa3Rd57zzzuO2225j1KhRFkbbNT2qE2wOJTsMIYQQIiW0NLZgGEZS2h40iVA4HGbZsmXMmTMn/pqqqsyZM4fFixd3ed3tt99Ofn4+l1xySa/aCYVC+P3+hI/+tHzhSs4uvowX7n61X+sVQgghBqvfnfMXLhx7NeVbKy1ve9AkQjU1Nei6TkFBQcLrBQUFVFRUdHrNxx9/zOOPP85jjz3W63bmz5+Pz+eLf5SUlOxX3Hta9dFaAnIelRBCCJGgsrSarSu3W97uoEmE+qqxsZEf/OAHPPbYY+Tm9n7M8aabbqKhoSH+sWNH12dI7StzEB8ZIYQQQhxIBs3y+dzcXDRNo7IysdussrKSwsLCvcpv3ryZ0tJSTj/99PhrbeOPNpuN9evXM3r06L2uczqdOJ3Ofo6+3ZFnHsGnryxl81fbBqwNIYQQYrCZcfJUJs0eZ3m7g6ZHyOFwMH36dBYuXBh/zTAMFi5cyOzZs/cqP2HCBFauXMmKFSviH2eccQYnnHACK1as6Pchr94aM20kDy//E1fe98OktC+EEEKkmge/+D3z37yZzDyf5W0Pmh4hgOuuu44LL7yQGTNmMHPmTO69916am5u5+OKLAbjgggsoLi5m/vz5uFwuJk+enHB9ZmYmwF6vW62+qoGNy7YkNQYhhBAiVaz8YA0l44txp7ksb3tQJUJnn3021dXV3HLLLVRUVDBt2jTefPPN+ATq7du3o6qp3cn18UtLuPP7f8aI6skORQghhEgJj1z/NE/f9gL3ffpbhk+ydsRmUCVCAFdddRVXXXVVp19btGhRt9c+9dRT/R9QH235ahumaSLzpYUQQoh2Lf4AuzZVWJ4IpXb3yQFIURRMQ7IgIYQQYk+KoljepiRCFjvx/GOYNe/wZIchhBBCpAzNrnHqJd/k0OMmWd62YsqmNt3y+/34fD4aGhrwevvvsNT3nv2I+eff12/1CSGEEIPVP7Y8QOGIgp4L9kFvn9/SI5QEpat38P5zHyc7DCGEECIlvPbQ29SU1SalbUmELPbO0x9w6ZTrWPrGl8kORQghhEgJL/75dc4fcTkbl1u/tYwkQhYr31KJZtMwdBmRFEIIIQAM3UCPGlTv3G1525IIWUzV1PhRH0IIIYRop2nWpyWSCFls3qUnctplJ2FzDLotnIQQQogBkZ6Vxg9u+R6HnTjF8rZl1VgPBmrV2Gevf8Gvz/hDv9UnhBBCDFYvVD1OZm7/PWNBVo2lLNM0WfbOVzzzu/8mOxQhhBAiJTxy7VNsWrE1KW1LImSxVx96ixvn3smGzzclOxQhhBAiJSx6/hMuP/znrP50veVtSyJksYZqP5pdVo0JIYQQbfRobBFRQ43f8rYlEbKYzWHDiMqqMSGEEKJN2xlj9iQsJJKlSxY78+pTMU2TF+95naa6pmSHI4QQQiTdkDGF/N8NZ3D4SYda3rasGuvBQK0aW/bu19x48h39Vp8QQggxWL1c/3fSvJ5+rVNWjaWoaCTKW0+9z70//muyQxFCCCFSwq3f/gNLFiwnGX0zkghZ7KW/LOCuHz5ERWlVskMRQgghUsLKj9dx82nzWfH+KsvblkTIYoGmIDa7BjIgKYQQQgCxs8Yg9oy0miRCFnOnu4hGdFCSHYkQQgiRGtTWM8bc6S7L25ZVYxY785pT8eZm8MydL1K+RYbHhBBCiCnHTOR7N5zBtBMmW962JEIWszvszL3oBHKHZnPjyXcmOxwhhBAi6W57+ef9vmqst2RozGItjQGe+e1/uPPsPyc7FCGEECIlXHnEjSx47F10Xbe8bUmELPby/W/w91uep6muOdmhCCGEECmhbFMFf/7xX1n+zteWty2JkMWi4SiqTd52IYQQok3b/kGRcNTytuWJbDFfnhc9oqOosmxMCCGEANBaOwh8uf13gkNvSSJksTOumMvv37qZ8TPHJDsUIYQQIiUcf/ZRPLz8jxxy5HjL25ZVYxZTFIXpJ00lEorw6zP+kOxwhBBCiKT7yZ8vIjMJvUEgPUKWq62o474rHuO2s+5OdihCCCFESrh4/DU8/Zt/Ew6GLW9bEiGLLXhsIa8/+g7RJEwIE0IIIVJRU10z/7j9Bb5cuNLytiURspihG6iqvO1CCCHEnvTWM8esJHOELFY0qgA9qqNqCoYuJ68KIYQQqqaiKJA3NMf6ti1v8SB30gXH8djKe5h56uHJDkUIIYRICWddexr/LH2YsYePsrxtSYSSYMQhJZzw/aOSHYYQQgiREk6/4mRyh2QnpW1JhCxWtrmCX5/xe+aff1+yQxFCCCFSwkXjf8o9lz5Ms7/F8rYlEbLYwn9+xJIFy5MdhhBCCJEy9IjOG4+/x9cfrLG87UGXCD344IOMGDECl8vFrFmzWLp0aZdlH3vsMY455hiysrLIyspizpw53Za3gmmacryGEEII0Ym2M8esNKgSoeeff57rrruOW2+9leXLlzN16lTmzp1LVVVVp+UXLVrEOeecw/vvv8/ixYspKSnh5JNPZteuXRZH3m7U1OEoioIiuZAQQggR5/G6KR5TaHm7ipmM9GsfzZo1iyOOOIIHHngAAMMwKCkp4eqrr+bGG2/s8Xpd18nKyuKBBx7gggsu6LRMKBQiFArFP/f7/ZSUlNDQ0IDX2z/bf9dV1vO3m57h7acW9Ut9QgghxGD2k3suZN6lc3CnufqtTr/fj8/n6/H5PWh6hMLhMMuWLWPOnDnx11RVZc6cOSxevLhXdbS0tBCJRMjO7npm+vz58/H5fPGPkpKS/Y59T5n5vqQsERRCCCFS0ZRjJ/ZrEtQXgyYRqqmpQdd1CgoKEl4vKCigoqKiV3X84he/YMiQIQnJ1J5uuukmGhoa4h87duzYr7j3tPmrUi4//Gc8eM0T/VqvEEIIMVhdOeNGbjr1t9RXN1je9kGzs/Tvf/97nnvuORYtWoTL1XXW6XQ6cTqdAxbHJy8tZcvK7QNWvxBCCDEYffHWCtYs3sCRZxxhabuDJhHKzc1F0zQqKysTXq+srKSwsPvJVXfddRe///3veffddzn00EMHMsxeURQFk0EzNUsIIYQ4YA2aoTGHw8H06dNZuHBh/DXDMFi4cCGzZ8/u8ro//vGP3HHHHbz55pvMmDHDilC7NfmYibjTkzMOKoQQQqSqguF5jJwyzPJ2B00iBHDdddfx2GOP8fe//521a9dy+eWX09zczMUXXwzABRdcwE033RQv/4c//IFf//rXPPHEE4wYMYKKigoqKipoampK1i1w+IlTeL7sUb53/RlJi0EIIYRIJb/810/5+6b7KRpZ0HPhfjZohsYAzj77bKqrq7nllluoqKhg2rRpvPnmm/EJ1Nu3b0dV23O7hx9+mHA4zFlnnZVQz6233spvfvMbK0NPYLPbcKUN3DwkIYQQYjDxZHgSnt9WGlT7CCVDb/ch6K1VH6/l9v+7h7qK+v0PTgghhDhADD+khN8t+CX5Jbn9Up8l+wjV1NTg9/v3p4qDzvJ3V9JQLe+ZEEII0dG21TvY9OVWy9vtcyJUX1/PlVdeSW5uLgUFBWRlZVFYWMhNN91ES4v1p8YOStIJJ4QQQqSEPs0Rqq2tZfbs2ezatYvzzjuPiRMnArBmzRruv/9+3nnnHT7++GO+/vprPvvsM6655poBCXowmznvMBY+8yFlmyt7LiyEEEIcJCbOHsf4I8ZY3m6fEqHbb78dh8PB5s2b99rh+fbbb+fkk0/mBz/4AW+//Tb33XdfvwZ6oJgwcyxPrr+PF+56lb/d+EyywxFCCCGS7u5Ft3HosZOS0nafhsZefvll7rrrrr2SIIDCwkL++Mc/8p///IfrrruOCy+8sN+CPNAEGgNUba9JdhhCCCFESti5oZxIOJKUtvu0aszpdLJ582aGDh3a6dd37tzJiBEjiEaj/RZgsvX3qrElC5Zzx/fuJhQI90N0QgghxIEhM8/Lnz++k6Fji/qlvgFZNZabm0tpaWmXX9+6dSv5+fl9qfKgs37pJiLhAydRFEIIIfpDfbWf7Wt3Wt5unxKhuXPn8qtf/YpweO/ejFAoxK9//WtOOeWUfgvuQCVbNwkhhBCpoc+TpWfMmMHYsWO58sormTBhAqZpsnbtWh566CFCoRBPP/30QMV6QDju7CNZsWgVKz9cm+xQhBBCiNSgwHFnzWby0ROsb7qvO0tv3bqVK664grfffjves6EoCieddBIPPPAAY8ZYv/RtIPX3HKE2bzy+kHsufaTf6hNCCCEGq7+t/jPDJ3Y+/3hf9fb53eezxkaOHMkbb7xBXV0dGzduBGDMmDFkZ2fve7QHmYrSKpa983WywxBCCCFSwkcvfkbWlXPxZmdY3racNdaD/u4RWvT8J/zuvL8AYBry1gshhBCKqmB32Lj/s/mMOnR4v9RpyVljou+2r92FqiqSBAkhhBCtTMMkHIxQUVpleduSCFlMURUMSYKEEEKIvaiq9WmJJEIWm3vR8XzznKNRNCXZoQghhBApwelx8N1rT2PqCYdY3rbMEerBQK0a++i/n3H7WXf3W31CCCHEYPWvnX8ld0j/LrqSOUIpbM1nG3j1obeSHYYQQgiREp6580V2bSpPStuSCFlswWPv8tMjf8XXH6xOdihCCCFESljwt4VcPP4a1i3daHnbkghZrGZXLZpNw9BlRFIIIYQAMKIGpgm1FfWWty2JkMU0m4ZhGMkOQwghhEg5Nnuf93ne/zYtb/Egd/oVJxNoCvDKg28SbA4lOxwhhBAi6XKKsznr2tM47MTJlrctq8Z6MFCrxj5/60t+eerv+q0+IYQQYrD6b+2TZGSm92udsmosRem6zkf/+YxHf/7PZIcihBBCpIQ/XvQgqz5em5S2JRGy2Cv3v8nt37ubbat3JDsUIYQQIiV8vmA51x57C19/uMbytiURslhTfTOaXZOzxoQQQohWejS2iKipvtnytiURspjDZUeP6iAnbAghhBAAqGrsoehwOSxvW1aNWew7P52HK83Fv+b/Nyn7JQghhBCpZtS0EZz9s28z/aRDLW9bEiGLOd1Ozrz6VIYdUswv5tyR7HCEEEKIpLv7/dvwZLiT0rYMjVksFAjx0n0L+MMP7k92KEIIIURKuP6EW1n0/CckY0cf6RGy2Ev3vcHjv3wm2WEIIYQQKWPLilJ+e869ZGSnM/2kqZa2LT1CFgsHwmg2DWTRmBBCCAGA0bqSOhQIW962JEIWS89MQ4/oKKosGxNCCCEANFssHUnPTLO8bUmELPbtq0/hlhdvYPghJckORQghhEgJR8w7nD9/eDuHHjvJ8rZljpDFNE3jmP83C1eak1+e+ttkhyOEEEIk3c+furLfzxrrrUHXI/Tggw8yYsQIXC4Xs2bNYunSpd2Wf+GFF5gwYQIul4spU6awYMECiyLtnL+2kcd+8U9uP+uupMYhhBBCpIpLp1zPi/e8RjQStbztQZUIPf/881x33XXceuutLF++nKlTpzJ37lyqqqo6Lf/pp59yzjnncMkll/Dll19y5plncuaZZ7Jq1SqLI2/32kNv88LdrxJsDiUtBiGEECKV7N5Vy19veJrl7660vO1BlQjdc889XHrppVx88cVMmjSJRx55BI/HwxNPPNFp+b/85S+ccsop/OxnP2PixInccccdHH744TzwwAMWR95Oj+qo6qB624UQQghLSI9QN8LhMMuWLWPOnDnx11RVZc6cOSxevLjTaxYvXpxQHmDu3LldlgcIhUL4/f6Ej/6UW5wdS4a0QfPWCyGEEANKtakoCmQXZlrftuUt7qOamhp0XaegoCDh9YKCAioqKjq9pqKiok/lAebPn4/P54t/lJT07+queZfO4S+f/pZDj7N+ZrwQQgiRiub96ESeXH8fE2aOtbztQZMIWeWmm26ioaEh/rFjx45+b2PSN8ZxxhVz+71eIYQQYjA67+azKB5TlJS2B83y+dzcXDRNo7KyMuH1yspKCgsLO72msLCwT+UBnE4nTqdz/wPuQtWOGh6/6Rnef/6TAWtDCCGEGEwuGnc1p/34ZC68/WzcaS5L2x40PUIOh4Pp06ezcOHC+GuGYbBw4UJmz57d6TWzZ89OKA/wzjvvdFneCm89+T7vP/cJpi5nbAghhBAAoZYw//nz63z1/mrL2x40PUIA1113HRdeeCEzZsxg5syZ3HvvvTQ3N3PxxRcDcMEFF1BcXMz8+fMB+OlPf8pxxx3H3Xffzbe+9S2ee+45vvjiCx599NGk3YNpmKiqgm5IIiSEEEJ0ZBiG5W0OqkTo7LPPprq6mltuuYWKigqmTZvGm2++GZ8QvX379oSl6UceeSTPPvssN998M7/85S8ZO3YsL7/8MpMnT07WLVAyoRjDMFFUBVOSISGEEAJFVbA7bBSOyLe+bdM05WncDb/fj8/no6GhAa/X2y91VpRW8bcbn+GDf3/aL/UJIYQQg9mFt53NGVfOxZud0W919vb5PWjmCB1ICkfkM+PkqckOQwghhEgJx5z1jX5NgvpCEiGLbVu7k+uOu4W7f/RwskMRQgghUsKPJl/LnWffg7+20fK2JRGy2AfPf8qqT9YlOwwhhBAidZjwwQuLWfWx9c9HSYSSQFGUZIcghBBCCCQRstz4mWOwOwbVYj0hhBBiwGXmeRk2odjydiURstiseYfzfNmjcsSGEEII0eraR3/CszseYei4IZa3LYlQErgz3OQPy012GEIIIURKGDquCLvDnpS2JRGy2LqlG7l4/DX87cZnkh2KEEIIkRKuP/5WrjnqV+wur7O8bUmELLZ0wZdUbK1KdhhCCCFESlm7eAPrP99kebuSCCWDrBoTQgghUoIkQhY77MQp+PL656gOIYQQ4kAxfNJQxhw20vJ2JRGy2JRjJvLstof5wS3fS3YoQgghREq48/WbeGzlPeSXWL+QSBKhJNCjOsHmULLDEEIIIVJCS2MLhmEkpW1JhCy2fOFKzi6+jBfufjXZoQghhBAp4Xfn/IULx15N+dZKy9uWRMhiqz5aS6AxmOwwhBBCiJRSWVrN1pXbLW9XEqEkME0z2SEIIYQQAkmELHfkmUcwasqwZIchhBBCpJQZJ09l0uxxlrermNI90S2/34/P56OhoQGvt3+WvZumySsPvsmD1zzRL/UJIYQQg9mDX/yecYeP7tc6e/v8lh6hJKivamDjsi3JDkMIIYRICSs/WEOgOTnzZyURstjHLy3hnGE/4Z2nFyU7FCGEECIlPHL903y/+DK2rdlheduSCFlsy1fbME0TGZAUQggh2rX4A+zaVGF5u5IIWUxRFExDsiAhhBBiT0oSzuKURMhiJ55/DLPmHZ7sMIQQQoiUodk1Tr3kmxx63CTL25ZVYz0YiFVjAO89+xHzz7+v3+oTQgghBqt/bHmAwhEF/VqnrBpLYaWrd/D+cx8nOwwhhBAiJbz20NvUlNUmpW1JhCz2ztMfcOmU61j6xpfJDkUIIYRICS/++XXOH3E5G5dbv7WMJEIWK99SiWbTMHQZkRRCCCEADN1AjxpU79xteds2y1s8yKmaimEYyQ5DCCFEHxkOjdD4fIKTi1AiOq6V5Tg3VqP0w0rgaG4agSlFRIZnYy+txf11Gbbaln6IenDRNOv7ZyQRsti8S0+ktryON554j2g4muxwhBBC9IIJ1H//cExX+2Mzmp+Oa33VftcdGptL0zfHgWGCqhAem4dn2Q5MwPrF5MmRnpXGd66ex2EnTrG8bUmELJZdmMU1D13KzHmH8esz/pDscIQQQvSGAqbbnvCS2hLGVJX97hEyPM54EhSrWEFtCR80SRDAk+vvIzO3/1Zm94XMEbKYaZose+crnvndf5MdihBCiN4yiSUrHXecUZTYa/tdt7l31496MKVB8Mi1T7FpxdaktC2JkMVefegtbpx7Jxs+35TsUIQQQvSSAmS8uRZbZWP8tajPjeFx7HfdznWVuL/ciRKKTZdQghFCI3IOnnExYNHzn3D54T9n9afrLW9bhsYs1lDtR7Nr6BE92aEIIYToA8eOehw76onkeFAiOjZ/qF/qVcM6ns934F6+i2h+OraqRpSDbGWxHo0tImqo8VvetiRCFrM5bBhRWTUmhBCDjZ7uJDi5kODEQhTdwLWyDNeqCtR++oetohvYy61PBFKBoiiYpondYX1aIomQxc68+lRM0+TFe16nqa4p2eEIIYToBROo/940sKmgKphomE57vyVBB7shYwr5vxvO4PCTDrW87UEzR6i2tpbzzjsPr9dLZmYml1xyCU1NXScStbW1XH311YwfPx63282wYcO45ppraGhosDDqvXky3Jz3q+9y8/PXJjUOIYQQfaAADi1hErMSiWIeZJOaB8qDn/+eeZfOQdM0y9seNInQeeedx+rVq3nnnXd4/fXX+fDDD7nsssu6LF9WVkZZWRl33XUXq1at4qmnnuLNN9/kkksusTDqvUUjUd566n3u/fFfkxqHEEKIPjAB3UhYJWaqav+sGtuTssf/DwK3fvsPLFmwnGScAz8oTp9fu3YtkyZN4vPPP2fGjBkAvPnmm8ybN4+dO3cyZMiQXtXzwgsvcP7559Pc3IzN1vmoYCgUIhRqnwDn9/spKSnpt9PnX7jrVR79+T9iP+Ap/84LIYRoE81NIzB1COFRuWCaONdU4Fm+EzXYP5vjtu1JpPtchMbkovqDODfWHBT5kKqpGLrBH9+9hcO+2T+bKvb29PlBMUdo8eLFZGZmxpMggDlz5qCqKkuWLOE73/lOr+ppezO6SoIA5s+fz2233bbfMXcl0BTEZteIyriyEEIMKraaZjIWbsT4ZCsYJmq4f/8ej2a5aZk9kmhRBqixARu1MYSjorGHKwc/Q48tIgo0BS1ve1AMjVVUVJCfn5/wms1mIzs7m4qKil7VUVNTwx133NHtcBrATTfdRENDQ/xjx44d+xx3Z9zprlgSdDCk+EIIcQBSg9F+T4IAbHUBfK+vJvPfX+H+fDtpCzdgPwiSIIj1CEHsGWl525a32MGNN96Ioijdfqxbt26/2/H7/XzrW99i0qRJ/OY3v+m2rNPpxOv1Jnz0pzOvOZUbnriCopH5PRcWQghx0Gg7qkNrCOBZvhPX5oNjWAxgyjETufP1m5h2wmTL207q0Nj111/PRRdd1G2ZUaNGUVhYSFVV4sF20WiU2tpaCgsLu72+sbGRU045hYyMDF566SXsdnu35Qea3WFn7kUnkDs0mxtPvjOpsQghhEhhB9E80tte/jlpXk9S2k5qIpSXl0deXl6P5WbPnk19fT3Lli1j+vTpALz33nsYhsGsWbO6vM7v9zN37lycTievvvoqLpf1XW57amkM8NJ9C3jxnteSHYoQQqSM+EnrKb6QxFRA2Z/41Nj5ZAfTyfK9ceURN/J/N5zB3B+eYPkS+kExR2jixImccsopXHrppSxdupRPPvmEq666iu9///vxFWO7du1iwoQJLF26FIglQSeffDLNzc08/vjj+P1+KioqqKioQNeTN1H55fvf4O+3PE9TXXPSYhBCiFRhqgpGmoOWmcNoOmYUeroz2SElMO2xh3K4JJPGE8YQnFKEuQ8ZjGmLPW7DQ7w0Hj+G4LQh+1TPgapsUwV//vFfWf7O15a3PShWjQE888wzXHXVVZx44omoqsp3v/td7rvvvvjXI5EI69evp6WlBYDly5ezZMkSAMaMGZNQ19atWxkxYoRlsXcUDUdRbaqcNSaEEEDjnLHoOekY3liPvalCxgdbkhxVu0huGoHDhxIt8oKmEgbsO+ux1Qb6VE8020PLEcMS6tHKGnBUtf+j2NRUorkebDXNB91ZY207+UTC/bMVQV8MmkQoOzubZ599tsuvjxgxImEjpuOPPz4pGzP1xJfnRY/oKKqCORAbcQkhxCDifXsDpgLhoVngUHFsrU12SAnsFX4c/1uD4bYTHpqJ1hDocxIEYKtuwve/NRguG+GSLLTGIPbWJMhwaASnFhM8pBDTaUMJRvAsLsW1sTqlhwn7k2ZT0aMGvtz+XaDUG4MmETpQnHHFXIaOK+KpW59n3Wcbkx2OEEIknWKCc0ddSs6baZsPpAYiscRkf+sJRveqJzShgMBhxaDE7t502XFu3X3QJEEAx599FGddfzpjpo20vG1JhCymKArTT5pKJBTh12f8IdnhCCFEyki1JMgyisJeWeBBNmLwkz9fRGYSeoNgkEyWPpDUVtRx3xWPcdtZdyc7FCGEEL1k7vH/fdbW69PhJbUlFF9NBoBhYngcB1OHEBePv4anf/NvwsGw5W1Lj5DFFjy2kNcffUfmBwkhxCBguGxgmIRH5xIcn4+9shHP0m19nsxsODUwITwym+CEAuw1zXg+24aiGzg31qDVBQhMKSIyPBt7aS2mXT2oesia6pr5x+0vMP6I0cz61nRL25ZEyGKGbqCqKrohq8aEEGKg6GkOooUZ2HfUd3kchpFjI3qIC/uyFpRmo9My0Uw3oUOKiJRkYjpt6PnpuNZWotX3bcK0nuEiOLWYyFAfpsuOXpCBY30V9prYhGlbTTMZ72/q200S61mKFnlBAVuZf9AnT7re+fdhIEkiZLGiUQXoUR1VUzAOsuWRQggx0HSvk5aZwwmPzIkNN0V10t/fhHPL7ngZo8BG4OJcokeng6oQCBm4763E8WHTXmNf9opGHBWNmJpCND8DtTGI1tT34ZvYga0bMFWFSEEGWlMIrTG0X/caGp1DYMYw9Ew3AFqln4yFG/e73mRQNRVFgbyhOda3bXmLB7mTLjiOx1bew8xTD092KEIIccAJTipsT4IATBKSIIDwqb54EgSAquD4YO8kCNrnLyu6ib3cv09JUEI9homj3N8vyUrzsaPRfe0nJtirmlAHYRIEcNa1p/HP0ocZe/goy9uWRCgJRhxSwgnfPyrZYQghxIFH6XlwyFSBhBGYwdk7byrKHvc7eAfGTr/iZHKHZCelbUmELFa2uYJfn/F75p9/X8+FhRBC9IlW1xLLBwwTTBNUBT3dkVhmexg0oG16ggJ6YfczRUw6pEu9zTc6rBAbiOM0tNrYSQpt96r7XIM2F7po/E+559KHafa3WN62zBGy2MJ/fsSSBcuTHYYQQhyQXOuqsJf5CU4uIlLsw7GpGmWPI40c7zairQoSPsNH9DAP9g8au5wsrac5MB1awqqxtA82o/ZwTFI024PhthM8dAh6phvP59txbqrpt/sE8L2yksiwLAKTi0AB15qKwdq5hR7ReePx95h9xhHMPn2GpW1LImQx0zTleA0hhCB2tER4dC5qSxj79rr9O9W9A80fJO3Trd2XqYjgfjQxMTGdCpFjM1ACBrbFTSg6GB4H4dE5hEfkYKY7CTtteNx26CERCg/LQs9JI1Lsi50tVpLZ74mQYoJjWx2ObXX9Wm8yJeNoLEmELDZq6nAURYltJCq5kBDiIGQCLd8YQfCQAtBUUBTspbWkL9qIGkrO1iLBc7MJ/b8scMfm3WhfteD5QwX26iZs1U14PtuG7nOhtYQh0vMSb/eKXbEROoeG6bajNQQH/iYGOY/XTfGYQsvblTlCFjv6O7P41/ZHOOnC45MdihBCJIXpsROcOgRsWnwejWN7HUoX+/0MeDw2hdD5OeBR4/HYvmxBaYjFo7R+2BqCKBGjV9Nw2sqoYV2SoF74yT0X8tyuRxk+qcTytiURSoLMfF9SlggKIUTKUlJsnm9b9iMsMeXYibjTXD0XHACSCFls81elXH74z3jwmieSHYoQQiSFEoqi7Y7tqIxhgmESyc/Yp3m+8dVYvUxa2sqbSofzw3QTdV1rr40B6Cb6+O5XYHVWz74w21aWpUg9yXLljBu56dTfUl/dYHnbMkfIYp+8tJQtK7cnOwwhhEgaRTfxvfgVkWIfoUkFqM0RXKvKez1ZOprlxkh3EhqTS3hUDraqJjLeXIvaw9yd8FAfhtdFcHIRhseBc20l9l0NscnQq3Oh2sBpK0etC+N8rR6li5G6cLEPI8MZqyfdiXvpNtxrKvv4LrTWk+YgOKUI3evGs2w77q/L+17PEG+snslF6Fke3Ct24lm+q8/1JNsXb61gzeINHHnGEZa2K4lQEiiKgjkoc3YhxMHGVBXCI3OI5qbh3FiNrbZ/9nlRAMeuBhy7+t4DYNo19CxP7GgJm4bhdWFqao+TmHWvCyPTg5HmiNWR6UYNhNEzPaCpKDt03P+tik2I7oLhsdN83GiMjNZhHNPESHd2Hy8QPdxDdLoH++JmtFWB2ETqdCd6Ziypw65iZHRfT5cxpTnRs9yxmGxqe2xtX3faCI3PB1XBua4KNRjZp3YOVJIIWWzyMRNxp7tobrB+0yghhOiL8PAsmo4djelxgGESnFKE9/XV2Coakzp9xl4VW8nl/roMw2lDCUV7dZ2rtdfGs6QU06aihnRMBdxfl2M4tdhk7W7+jdp09ChCEwviQ2a2qkbSF25A83d9rIU+xknLLwoxih2gm4S/k4X7rnLs7zXhXF8Vi2fpNkyHDbWX97En58bqWD2fb9+rnpYZJQSmFceOEzEhODYX7//WoLWkXjJUMDyPkVOGWd6uzBGy2OEnTuH5skf53vVnJDsUIYToVmh0LqbbHvtEVVCbwtiTnAS1aRtGU0PRXs9rbiun6GZ8mX57PTqK2XU9pgKhQwpjCUXrfBz79roez/aKzPBgFLW+h1rrdR80tcfSGsO+JkEJ99VJPcHJRfEtClAV7OWNqCmYBP3yXz/l75vup2hkgeVtSyKUBDa7DVfavnWBCiGEEAcaT4YHVU1OSiKJkMVWfbyWc4b9hH/c/kKyQxFCiIRzsAxb4iPBsa02djyFGVvZZaTZieSlDXxMbSuyWuPZ1xmVZuvtmK72FVX7HhQ4NlXH3wsMk0iRD9OmJdRt2NSEc8lsXwVQ6vR4HQCRb3pjq7v2MZ6O70/b969ttZi55/dwQ1U8XgyTaEE6pjP1ZsXcfNp8Lj30eqp29O/u272Reu/GAW75uytpqPYnOwwhhAAgWpiBnuUhND6faEEGWk0TvpdWohgmzs27cWyrIzQ2LzZZekM1turmAY0nkpeGnpNOaGwu0SIvWn0A78sr+7zZYnSUE2Osk8gx6UQP86DuipB2w04U/75t2qgAGQs3on++neDEQpSojmttJWpEJ5rpJlqYQXhENpFhWaiNIbyvrkJrDmNbGyTjwq2EvpdF6MJcAALXFhA8N5u0G3eiVfZtSEzPcBIp9hEZlkV4eDZqSxjn2kowTUITCzHSHDhXl5P+aSkA6Z+W4l5RRmhSAaaq4FpTuV/DcANp2+odbPpyK/kluZa2K4lQMsjZGkKIVGGYKBE9lmgYBsoeK6+UqIFrbd+Xhu8rxTBRItH2icttPVJ9rUc3IWBAwIztDRQ0Yr0ifWDaVEJj82KHt27ZjWPrbjR/iLQl29rLaCqh8fkEpxW3tx3dI2ZFwaj0oH+egVIURhkSQg0ZsC85mWnG3pu29yVqtCaJZrxdJZr4PdRawni+2LEPjR0cFDMZJ5wNIn6/H5/PR0NDA16vd7/rW7d0I/PP+wtlm637i0UIIbpiQmxXZzO2VF5J8oHQCfFoSiyh2cd6FCX2B9MOSiRWb2/H2cJDM2maMw7TobVWBhn/W5Ow3D9S7KPxpPGxMsQaTH9rLc7SOszWe4gUeWk8eXxsOEqJ3Vz6wnU4N9X2KZ4EbffV+v0yW+tVTDMlvof7auLscdz64g3kFGX1S329fX7LHCGLTZg5lifX38ePfn9eskMRQoj4aiMgJR6gCfHsYxLUVk9bkqG0LZLqQ3XRIi+mXYuvtsJkrz2PIoUdyrSdmVYaOwm+7R4ihV5Mh631661lttT1OZ4Ee3y/FBOU1j6NVPge7ou7F93GfZ/8tt+SoL6QRCgJAo0BqrZbPyFMCCFEEqTCfgMpbueGciLh5Czrl0TIYksWLOfsIZfx6kNvJTsUIYRIurb+C8OhYbTuWdT2mu5xYKpKpx0n8TJp9p7LdFNPVxxbd6PVtW58a5qgKoRG5yTU4SjdjVbboQwQGpubWGZbLdruPcqMye11LG0r0ExNQU9z7H1fmnpAnFPw58se4dySn7BzY9+PGNlfMlnaYuuXbiISTs0Z+0IIYbXAYcXomR7Co3NiG/7tbMBW2UhoTC5GphslECHz31+iBNv/3gwXZhAtziQ8Ogc9yxMr88KXKIH2MpGCdCJDMwmPykXP9qAEI/heWNHrHZVtNc34XvyKaJGXyBAfjq279zpexLa7Bd9/viJakEGkJDNWZvceZWr3KFNai62m9yvvgpMK0LPTCI3NA4eGVtWIY1sdkeFZRPMzIKzje2Vlvx19kkz11X62r93J0LFFlrYriVASyPx0IcSBzFQgPCKH4KQC1KYQ7pXlXT6o7WV+1OYwerYH02nDvqseW0UjhttOyG3HVuHfaxWUGohg31mP4bKhpzsx3XYaTxqP2tjaVk0zaiCKfWcDpsseK+Oy0zRnPGpTCNfKcrTmEMFJhbEVYZt341xXibpHOwpgL/djL+96yxMFsFc2Yq9sjN07EBnqI3hIEYpu4FpVjq2iMaFMX9hqmlFbwuhZbqJFXvT8DAL5Ga1vtImtpknODttPkghZ7Lizj2TFolWs/HBtskMRQoh+Z9pU6v9vWuzgT9MEMzbpOe3jLZ1OlbFXNmKrasK1oTphxZitsrH9mj0utDUEoSGIVt1EZGgmRqabaKEXCmKF09/fiOYPxj6qGmOnvDs8RAszwMwgPDYvHhsKRPPTse+qR60L7Pf9N3xnCnp+RnypvqmpZFSu2+eJ0faqJlAUlIhB46kT48d0AGS8vgZHWcOBMQdJgePOms3koydY3rQkQhYbPnEo9yy6nTceX8g9lz6S7HCEEKJfGS5b++nnigIK2Gqa4kvZOxNf8UR7mYRne1dJhE3FyHTv1VbHZemKpmJkeRLKdPxzgdpAFk34nJVQ2Pv7rG92UNPo2ut1PS899gc11pCtth82oDRN9GxPvM429qrWHqYDYJDhb6v+zPCJQ5PStiRCSVBRWsWyd75OdhhCCNH/ungot3a+pBQ7Uf6Z/Sg5WjNc1rdraxsdnH/fsUT0TtYcJdysMmCJiqkoKfee7quPXvyMrCvn4s3OsLxtWTVmsUXPf8IFY67iwxcXJzsUIYTod2pzGPeyHSgdFoVEhmbG9tJpZSoQzU3DaNuIkNjREdFsT7d171lGCet4lmxD6TBHJlLsw3TZ28tEDTyflSaUiZdFo9zw9XXDaQwDqvwuInrrGWYd7suxvpqOmU9oTC6R4VkJZSK5afEVch11V8Ze4d/rpPuWI0dgtK4kG+yevu3fnDP0x2z5elvPhfuZ9AhZbPvaXaiqgr7HpDwhhDgQKIDnix24V+wiPCIbtTmMrdyPAoRLMgmPyiE8IjuWrER1HKW1GG4H0SFeUBRcX+0i7bPEh2Hz7BFEc9Lay3xdRtriUhTAvWIXrq/LCI/MRglGse9q2KuXxP1VGa6V5dR9/zDMjI7DWQoPN32TB7P+2ad7VFX4+6IxtHX7RPPSCU3IJzw8G3OPxMTwumg8ZSKqP4h9Zz2RYVkY6U4wTLz//Qp7h1Vm0WwPoUMKE8rYt8c2X4wMy9praCw0oYDQuHy8r6yMzSUaxEzDJByMUFFaxahDh1va9qDpEaqtreW8887D6/WSmZnJJZdcQlNT777xpmly6qmnoigKL7/88sAG2gNFVTAG6c6fQgjRW0rUwLmpBntrEgSg1bbgXrYT18pylPoArnVVeJbtwL18B/btdWiVjThKa+N1mDaV4CGFBA8pJFrsi83r8UWIfteO/6kRBC/MwchW2w+IbU2CojlpNB4/hrrzptM8cxi6x45imPheX433lZWxPYKqm0h7fyNrn6hjbV0Oei+PgtdNhTW2XBb9ZCqRo9MxFdCaQriX78T91S4Uf3Cva7S6FtwrduFevhPXV2WotS04N1aj7VFWawm3ltmF0hAAVSEyIpvIiGxQFdT6AGkfbyHzn1+Q9vEW1N3NODbXoNXv/yTvVKGq1qclg6ZH6LzzzqO8vJx33nmHSCTCxRdfzGWXXcazzz7b47X33nsvipIaI6lzLzqeXRvLee+5jzH3Y/t4IYQYbLTmMEAsaVi+E4j1qWgNIRxl62KFWv+uNjWVuvOmx87oaqWMakGb0gwGmKqd0LczcbxcnzAlJ3hIIc1Hj4qt2lIVglOKcK8sxwQ0fwitMYT97fWxNpTY+Vx/XzCc35+3u3f3oJg8Mmo2eqabSEUU+8dNKIHYsJtrVTnByUWJGypurCbjvY3xtlyry3GtKu90bo/auleSa3UFwYmFifVs3U3G2+vjZ5ipaypwra4g/iYOck6Pg9N+fDJTTzjE8rYHRSK0du1a3nzzTT7//HNmzJgBwP3338+8efO46667GDJkSJfXrlixgrvvvpsvvviCoiJrN2nqTP6wPG78xzUc9Z2Z3H7W3ckORwghLLfXc7vj3mqtfzbtasJcHwAlTY+dJN/WaRA1URsSj3DXva54EhSrKLbvUHv9HeprbWvZ5hzW7fIytsiP1k2HhI7CurQ8PssqAUVBLY9gaqDobfWBkeFMuEZrDMaToLYyPVHM2JBaR2pjKJ4E7VXPAfBv6qc23E/ukOyktD0ohsYWL15MZmZmPAkCmDNnDqqqsmTJki6va2lp4dxzz+XBBx+ksLB36yJDoRB+vz/ho7+t+WyDHLEhhBDdic8cNvd+rY3aSVeIae5DD4nC3xeN6TYJAtAw+evQWfFeKxRiiVlC+yTEbKIk3kNvmebe13X/6aD22LtfsL2qPiltD4pEqKKigvz8/ITXbDYb2dnZVFRUdHndtddey5FHHsm3v/3tXrc1f/58fD5f/KOkpGSf4+7Mgsfe5adH/oqvP1jdr/UKIUQyxc8Mc2qEh2eh79Ez0ldqKEraok2oHebRqJ9E0T5pgWhr74puEp6dlpD42KN1qN7m9i4Tu0bjCWPR2/Yb6sIXrb1CehfrWHQU1pg5LPW3P4v00U6MnMSBlfR317efPwbouWkYaY72vM6mEhqeFdsXqBsZCzegdTiKQ8/2YGQ4E+oJD8simpvWbT2pTs9003jCWP67ZA3fufVJVpV2/UwfKEkdGrvxxhv5wx/+0G2ZtWv3bQfmV199lffee48vv/yyT9fddNNNXHfddfHP/X5/vyZDNbtq0WwaelTvubAQQgwSoVHZhCcUEBniA00F0yTr6c/j8172hWt9Fc71VUQLM1CCUWytk4INn4Y+1ontqwBKJJYatFxfgD7WiTHMiUoAc4eBudwLQHhcHuGxufieW47NH+qitViv0Pzzlnf6VQ2Tfzw7nPTNO9DHu1BCBlppeK9yzq21OLbWEs1PR9GN+Nljkbx0AtOHxt4fuwamifflr7FXdb7homNbHY5tdfFEp+18smiWh5ZZw4gWeeNbEnhfXdXtMSCpqOWwoUSG+ogWxVYCtu1hsLuhHzag7KOkJkLXX389F110UbdlRo0aRWFhIVVVVQmvR6NRamtruxzyeu+999i8eTOZmZkJr3/3u9/lmGOOYdGiRZ1e53Q6cTr3718y3dFsGoYhS+eFEAcWR5kfZ2kdoXF5hEbn4NjZkHBQak9MJbZEPDB1CNH8DBybanCv2ImtPoi9osM5XsOzCBw6hGhBBo70Gtxf7cJWF8D9UBVGpo3wmT6MLBue/5Zh29BCeFQOwbF52Csb0Rq7SoJivticw7oyH2MLGxKGyUwFGjUndW4XCmBbv/fKsI4UiC9nN4FosY+WGSWxY0AAJRDBtbYSW03PB6XueUCr1hQk4631RIZlEphQgK2uBVtV388wSzbXmgpca8oJHlJEcFJhfNsBW0/jkwNAMQfBCaBr165l0qRJfPHFF0yfPh2At99+m1NOOYWdO3d2Olm6oqKCmpqahNemTJnCX/7yF04//XRGjhzZq7b9fj8+n4+Ghga8Xu9+34u/tpF///EVXnnwTYLN3f9SCiHEYNO2gqvjxN7eaJlRQmB6SescHwVCUbL/8QVKh7GqlsOHEjhiWHuZsE72Pz5POJQ1voJMJTZ/p/W4jd7ubD1jdE2nvULhk7M4+1uH0dSg9bKmmODEApqPHZ0wgTvr6c9RgpE+vT97UWO9KKm4Y3dfmAqgqWj/3zf5wckzOPv4adhtWo/X9UZvn9+DYtXYxIkTOeWUU7j00kt55JFHiEQiXHXVVXz/+9+PJ0G7du3ixBNP5Omnn2bmzJkUFhZ22ls0bNiwXidBA8GbncGPfn8+U084hF+e+rukxSGEEAMhfpRXX3drdtkTkgXFMBOSIADTvUcZ09zrZPp4UtD2cmdnl3Wjba7QuCF+VKX1QZ1rQxlmp6mh74/MPe8LQAlF9y8JgvhQ0mBOgqD15yRq8OKvzifDl5z5ToNisjTAM888w4QJEzjxxBOZN28eRx99NI8++mj865FIhPXr19PS0nNXYzLpus5H//mMR3/et51MhRAiZQzA01fZc8pAZ23ssfdaV3sg9ibH6LpMbK5QW96imGDOTAcUVM0kYUu6XhwjpphG4r2YdL7a7SD3xwsfYNXH+zYneH8Nih4hgOzs7G43TxwxYgQ9jfKlwijgK/e/ycPXPYUivwhCiEGibZhLz/YQHuLFVt2MvbJ/56W4l+9EiRgEDynEdNpQg1HCQ304dja0l/lyJ0pUj21a6LShBiKESzJx7KhvjVMhNCobnDacG2tQInsvSjEVCI/MxnDZcW6qQQ3vXebzrTlsaMpkXHo90Rw76lAH1TsdzJ7bwKdv+AAFU4XoN9Iwsm04PmhEadyj9wpAAaU5jNIcxvQ4YrtDN4cID8vCuaV3GzgeLD5fsJzPXv2CuxfdxqHHTrK07UGTCB0omuqb0ewaeie/oEIIkYpCY3IJTSyITfZt7RLJemoJaqj//h5Tg1E8n2/HvXwnus+FVtuyV6eQGorGzjH7cie6z51Qxn/yeKK56Zity/bDRV68CzcmXO+fM45ofnr8vLHIUB/etzcklGn+eQH6BBd/cbu5futH3OefTuCkEFvXujBbu6Cab8hHn+jGLIpN8A1/I4202ysTkqqm40cTKfRi+mLL9rXyBtI/2RqL2YJ/kxsODSWsD5qhs7bzN5vqD7JVYwcjh8seWzrfOoFPCCFSnXNrLa6NNbFDU4dlYa/wo/RjEtSRohvYaruf4qDo5l5lMt5Zj2nXCE4swHTZca8q3+u6jIUbMO0aoQkFGO7Oy3jurgSHwspTfVyQdQrO1xpQqxJnkXj+XAV2hdC3fAS/UUSkspi6i0dgq2zE/cUO7DvrSf9wS+yIj4n5GGlOXGsq9zpbrL+ZCoRH5RCYWoyel462uxn3FztwlNamfEKktp7D6XA5ei7czyQRsth3fjoPV5qLf83/L7UV9ckORwghetQ2Idmxsz42DJWCT1XFBCWs4/6qLPZ5N2VcX7eW6aSQogMBE8dL9bGem67K6CbGJg96blb89Wh+eixJhNhkZsPEtbIi9rkF71loXD7Nx4+J70itZ3uwVQ+OU+lHTRvB2T/7NtNPOtTytiURspjT7eTMq09l2CHF/GLOHckORwghes/c4/8pqDf5RrxMN/eh9OZebRoYBrSdmK4o0NUqNgveM9OuJq5QUxSUyOAYHrv7/dvwZHS/+/dAGTSrxg4UoUCIl+5bwB9+cH+yQxFCiOQagCe0SftE5f0p0+W1Ha5RInosCWpbiGOaYOvhsaruXU9/USJGLAnqEI9p11I5b427/oRbWfT8J0lZ1CQ9QhZ76b43ePyXzyQ7DCGEsJxpU1GiBuGhPsLDs7BXNuHYVNMv+ZCpAm6V0KleTK+G89UG1JrEna1NhYQ5Qq7V5WhNex+T0VnMkcIMwiNz0OpacK6rQgFcq8pRghGCU4egZ6dhq2oiUujFvrN+r3syHQpK2EQf6yJ8XDrqrgiOBQ39OnHauaEKJaoTOLQYPT8drbaFaF46juba/mtkgGxZUcpvz7mXjOx0pp801dK2JRGyWDgQjp01JqvGhBAHOD3DiRKKxldThUsyCU4uip8vFZoMWWUNKC2R/W6r8d4SzGEOcMS6XIxCG2m/q0wsM2cs0byM+Kox3evE+86GverqKFyQQfOJ42KbObZSAxFslY2owSiuDdU4NtUQLUjHXtHYZWKjj7QTvDAPfYobtFiapG0JYlvbfsKAqcQOIdXqA/uUICkmODfvxrl5N4bLhhKM9inJNNw2TFVBa97/70dfGa0bRIYC3SemA0ESIYulZ6ahR3QUVcE0BkOHpRBC9E14WBaBacWxhEc3cK4qx7N8J47SOpxba9Ez3YSH+rDVtKDuZxIUOcxD+HtZmGNcsfGuRh3nK/U4X6rbq6z3nY0d9hFy4NpY3WW9hkMjOLmI4KFDMJ2Jj8rGUyaCYWLfuhu1JUJ4TC6m247aFMLzaSnOrXvvEaRtDJP+y10YuTYiR6ahlkfQWpMg06YSPKSIwKFFmB4HanMI92fbcG2q2aue3urLYbfRnDQChxUTHpkDCthLd5O2eFuPZ7P1J82mokcN0jOt311aEiGLffvqU8gblsvTt/2b0pXbkx2OEEL0K8Ntp/HUie3zVDQVW0MwYU8brT6Auz6w33OETJdCy2+L23ecVsD5Yh3OF+u67FFRTHBuqe3xjK7glKLY2WedLS0DUBUirYlDW01GmhPHts6HoZTWOdRqTRTnqw0JjQcnFtAya1h7PR4njm17J3IDxX/qBEy3o/3okrBhaRIEcMS8wzn7hjOYfPRES9sFSYQsp2kax/y/WbjSnPzy1N8mOxwhhOhXpta+Yqn9RTO2m/6eveD72yne1pbW3pYSaW1L777yHnMwVe35pNY9TwhQ2Pseu9KxWFtbbfOslU6OHBlImpp4FloSRit+/tSVZGSmW94uyKoxy/lrG3nsF//k9rPuSnYoQgjR75SIAbrRnhCYJqbL1vsEoRvxGtqSLN2EoNFhlRSYPrXHJKg3lGAkcQVWh/uJ/3/PrxkmptPW5/wu3laH98hw2S1b7aW2RBLux3Ba30dy6ZTrefGe14hGej+k118kEbLYaw+9zQt3v0qw2dpuRyGEsIIaipL53Je4vi5DCUdjE38DEcz9OF/RsKvoPhfNR4/EP2cckeFpmDaIHJWOUhGOJUYtOmp5GKU6imnvuc6euFaWk/G/Ndh31oNu4NhSQ/qCNbi/2IESiKA2hXEvLiX9rbWxMoaBY+tudK+zzyN+zvVVeF9bha3CH3+t4ayptMwc1t7DNoC8r6zEs7gUtTmMEohgq2nGcGgD3m5Hu3fV8tcbnmb5uystbRdkaMxyelRHVVV0Q1aNCSEOTFpTiLQl20hbsi3hdcNjJ5qThn1XQ5+GX5qPGY2em4ae5QFAn+bCkVFDdKo7vkrM/WA12qYQ2o7+WXWk0LqT9s76xC/sqMezfGfCS87SxPk8JrFdphXdwLY7dhSI4dCIFnqxlzXEd+ru2Ja9zI/btp2mw8Zh7rZjuuwEpxXj2FaXcMCtYdeIFnmxlftR+2n1sRrWca8sx71y7yNHrJaMHiFJhCyWW5wdS4Y0FUO3cAxYCCGSRPc6aZleQnhMHqgKSiBM2qLNOLf3bkJwxnuxw1MjBRmYDi2eSJnpKi0/zSc6O4PAzwoBsH/gx/XXatT65Pz9GhqZTWB6CXpObPWTVtWE2hImMtQX24k6opP28ZbYirW2ETWvSuicHMKneNGcfswo2F4L43q5Blt17BBSw2kjMH0owQkFYG+t59OtuNZXtw/RDWKqTcXUDbILMy1vWxIhi827dA4jpgzjyZv/xYr3ViU7HCGEGHCBqcXxJAgAk14nQR117BkBQDeJHpWRMPFY2xhCaUjePzKb5oxPmGCt56Whk9Y+r8mu4dxckxBzZI6X8Bm+eBnFBmlPb0cJtxcKjc0jOLkooR7Hlt0HRBIEMO9HJ3LWdadTPKbI8rZljlASTPrGOM64Ym6ywxBCCGvsuQS9v57d8TO1OrxmgJLMJ5tC4v0qSs/3ryqwZ+5m7FFO2fu6ZKzuGijn3XxWUpIgkETIclU7aph//l+44+x7kh2KEEJYQvMHE1ZFmTYVw9EPZ2CFTJSGaOuKp9hLRpEddPr0dDM7fAAJiZXZ1T5CXVDb9t/puKoMElaWGenOhGuUykhsC4C21W66iVGYOGCjNoYSV5YZJrrX1afYaO+QG5CzzvbHReOu5pHr/06gOWh52zI0ZrG3nnyf95/7RHaVFkIcNNwrdmHb1UBwShHRwgycG6pBU/b7jDElapJxUSnhE70EL8sFu0r49Eyik1y4/laD/atAt9frHjsoCuExuQTH52OvaMS1qhzToRGcMgTd68SzdDuOHfW9jinz318SGpNHcHIh6CbulWVodQGCkwqJDM/CsXU3mIndP46PmtC2lhI+I5PIrDTsnzZDNPEZ4SytxfbccoKTiwiPyMZeWosS7f1kad3rwrSrBKcMIZKfjnvFLlwbut5Z22qhljD/+fPrTDthMt84bbqlbUsiZDHTMFFVBV0SISHEQcRe3YS9ddJzX5iaQnhEdux8rzL/XsmTEjJxvOUncHQR5hAVJS+CMdpF5Oj0HhOhyLAsmo8bE/885HVhOjVMm0akJDOWJI3O6VMipOgmrvVVuNZXJbye/vEW+Ljr67SdEdwPVeN+qOvkRGsIkvbJVtI+2drreNqERmaj56cTHpEDqkLLYUNBU7HvrLd8F+nuGFZuJNlKEiGLlUwoxjBMOWtMCCG6YQKBw4YSPLQI0xXbGMheWkv6B5vi52iZQHBaMYGpQzC32WEbaKFGPEu3YF/T3GXdus9F81EjiZRkxV9zfV2G+8ud8br1tNgSdq11+ftg5/mqDIBojofGk8Zj+Fw0HzsaTBPP4lLcq8r7b+7WPlBUBbvDRuGIfMvbljlCFjvh+0fx9KYHOPas2ckORQghUpbpshGYOSyeBAHYd9ajhNr3mTEdGi2zhieUcS6vwba26yQIIDihgEhxZvsLukHa4tKEg0q15gi23S37PXyXaqL5GRg+d/sEbkXB2WEpf7JccOv/8a+df2XUocMtb1sSoSQoHJHPjJOnJjsMIYQYdHqcWSQd7d1T2HvJfQq8Z8ec9Q282RlJaVsSIYttW7uT6467hbt/9HCyQxFCiJSlhHXUhtY5Pq0Pbj03DRMzvuJJiRqo9a1lDBMMk2huWsKDvbPVYLaa5vZrTBMUiGa5B+AmlPYYUqRrSasLxFanta1qM0yi+ck57LSjH02+ljvPvgd/bWPPhfuZYpoHyG5MA8Tv9+Pz+WhoaMDr9e53fU//5t/8884XZX6QEEL0wFQgMjybxm+Oje2mDKhNITyfbMVZWtteZlgWwUMKUQIR3CvLsdU0o3tdGG57bEXY2DzsFX7SF25AjcQm4xoee2wlV7EPx+YanOuqUKP9N1E3UpCO4XESnFKE7nPh+Xw7rnVVPV9oAcOhEZpQQHhkNvYd9bhWV6CGrD/aojO3vfxzjjzjiH6pq7fPb5ksnQSKomCmQl+kEEKkMMUER2ktnuU7iWa5CY/OxUhzoGd7oDURUkxwbKvDsS1xp2rDbSMyNJNIsQ+cNiLDswkcXoJW14Jzcw1qSwTPFzvgix3t1zhthMbmoUR0nJtqUDo5BslwaLEyUQPn5pq9zg1rK9N0/FiMzNZeJtMkmpcOKZIIqWEd99dluL8uS3YoKUESIYuNnzkGu8NGKNA/BwMKIcSBzrViFwpgfLIVNBU1EOnxGntlE7bKJtzLdtB00njCI7MJTh0CQGhcHhnvbEjoBWn+xnCChxTFNjaMl1mfMIG6edbw2DEXbWUm5JPx1rqEMi1HDCNwaBFosZkn2u5m0hdtah+OE13KzPMybEKx5e3KHCGLzZp3OM+XPSpHbAghRC+1Ta9Rw3qvkqCE62wq4VE57UddKAqOHfUo4Q6rz1SF4NRisKnxMnutUFNiS/W7KwMQOKw4drhq6/wgx7ZaNEmCenTtoz/h2R2PMHTcEMvblkQoCdwZbvKH5SY7DCGEEFZIkYnSqWzouCLsDnvPBQeAJEIWW7d0IxePv4a/3fhMskMRQogDX9TAtrM+9ufWlWWRIm/7ga2tr9t31CWUiRbuUcYE+7baxHoKvaAmPkbtpXuUKciID5OJrl1//K1cc9Sv2F1e13PhfiZzhCy2dMGXVGxNjQlzQghxoFMA3//WEM1NIzipACWk41pdgaKbCWW8C9YSzfEQnFSIEumizJvriGa3lokauFaX7zWh2vv2eqJZntgqNt2I1dOPq9EOZGsXb2D955v6bdVYb0kilAyKQkrsYCWEEAcA3eciOLEANRjFua4yYfJyG1tNM+kfbum2HtvuFtI/6qFMbUvs3LDuytT1XEakDumvs9hhJ07Bl7f/+xEJIcTBzgT8cydQ//3DCU4ZQsvMYTQdPwbTJo+2wWj4pKGMOWyk5e3KT4vFphwzkWe3PcwPbvleskMRQohBzXRoREZkxz5RW1dy7WqATvb/Eantztdv4rGV95BfYv1CIkmEkkCP6gSbQ8kOQwghhEgJLY0tGEZyEthBkwjV1tZy3nnn4fV6yczM5JJLLqGpqanH6xYvXsw3v/lN0tLS8Hq9HHvssQQCAQsi7tzyhSs5u/gyXrj71aTFIIQQBwIlrOPYUBVfoYVpEh6aGdvrZwC1nV9mqrHdqMX++905f+HCsVdTvrXS8rYHzXfwvPPOo7y8nHfeeYdIJMLFF1/MZZddxrPPPtvlNYsXL+aUU07hpptu4v7778dms/HVV1+hqsnL/1Z9tJZAYzBp7QshxIFCATLe34S+dDuhCQUowQjODdUokYHtWQhNyEfP8hAan4/p0HCt2EXa0u0D2ubBoLK0mq0rt1M0ssDSdgdFIrR27VrefPNNPv/8c2bMmAHA/fffz7x587jrrrsYMqTznSivvfZarrnmGm688cb4a+PHj7ck5u7IObdCCNF/tOYwnmU7ei7YT0Lj84kWeOMbJUYLMixrW/S/QTE0tnjxYjIzM+NJEMCcOXNQVZUlS5Z0ek1VVRVLliwhPz+fI488koKCAo477jg+/vjjbtsKhUL4/f6Ej/505JlHMGrKMCB2+CpA7tBs7E577HMFnB4HOUOyEssUZ+NwdSjjdpBTnL1XPR3LONx2cvcs8/+3d+9RUdd5H8Dfc2GG2wwDwnBz1MALqCiKSYDoqpSox3TzeTQ10j2ubqW7J+u0y2YdbG3VdT1tp47VqXbzkhtrPtrDJlkKEgIihpAmiCHkbQEvCDOJcv0+f/g4OgLKDMwM+Hu/zpk/+PL5/fi8GX8zH3/zmyHYB2o3FSC7tebi2r6mX5AP1O53alRqF/j2v7fGG2p39Z39qJTtawK94erpal5TqtvX+ATq4Ha7Ri6DUqWAb/9+5q/NNZo7NQoXxZ39/H+Nd4AO7ho3874VSnn7Gn8vuGvd7uxHKYffPTU6fy94eLmb1+QKebt+dHrtPTWyWzUyyxpPbw9zjUwug5/BssbLT9Ouxre/D2QymblG66uBxsfzzs+XAX79+1nUaPppoOnXQY38rhofT2j7aSxy+Bksazy9PeHlq7Ws6d8PcoX8rhoP87seb6/53lPjofOATn///Xh4uUOn97pnPz5QKO+ucYO3/z01wT5QuCjMX7tp3ODtr2u/HxeF+d+Yu8YVPgG6dvtR3r0fT1f4BFoec379+0GpUpprXDuouXXsKs1fu3qo2x+7PL7Nv/uH5fgOuHwDWleVuZ82P094jxnA47ubx/e4J0ZjeMxQOFqfOCNUXV0NvV5vsaZUKuHj44Pq6uoOt6mouPUZDmvWrMGmTZsQGRmJbdu2YerUqfjhhx8wZMiQDrdbv3493njjjZ4NcJfBkY/g/WN/xcm8MhR+8z3ifjkegyMfwc9113FgezZc1EpMWRQPV3c1Sg6fxndfFyN29qMYMjYE1+uv48Cnh6BQKjB10QS4ebqhJP80jn5VhMdmjcOwcaG4bmxAxqeHIJMBU5+ZCHeNG8qOliP/y0JEzxyLsPFD0GC6gYwdhyDaBKY+Ew8PrTvKvjuD/H9/h0enj8Hwx4bixs83kLEjBy3NLXg8aSI8vDzw47EK5P3vUYybFonhMUNxs6ERB/+Zg6abzUhImghPnQfKiyuR98VRjE2IwIi4MDTeaELmP3PQ2NCIhKSJ0Hh7ouL4WeTsPoLIKSMRER+OpptNOPhZLhqMN5Dw7ERofTSo/OEcDu3Kx+hfjMCoScNv1aTm4XrddTz+7CRo+2lwtuQ8sj/Px8j4MEROHonmxmZk/SsPxqsmJCRNhM7PC2dLLyB752GMiBuGMVMj0NzUgm935qGuph4Jz06Ct94L58suIutfeQh/bCiiHh+FluYWZH+ej9qqa0hImghvfx0u/FiFg5/lIGz8YEQ9MRqtLa04tCsfly/U4vFnJ8InwBsXy6tw8LNcDIkKwaOJkWhrbcOh/zmCmrOXkZA0Eb5BPqiqqEHmP3MQGjkI42eMQVtrG3L3FKCqouZWTXA/VP90CRk7DuGRiAGInjkWEEDuFwW4+GM1pj4TD73BFzVnL+PAp9kYNMKAx2ZFAQLIS/sO509dRMIz8dAP8MOlc5dx4NNDMIQFI/bJcYAMyP93IX46eR4Jz0yE/0A/XL5wFRmfZiNocADi5owHZMCRvcdQefwcpiyagMBH/HHl4lUc2J6NwBB/xP1yPOQKOQrSi1BeVIkpCycgKDQAV6uu4cD2bOgH+CJ+bjTkCjmO7ivGj4UVmLwgDsGDA1FbfavGN9gH8f/1GBRKBQq/+R6nCsox+ek49B8ahGs1dTiwPRveATpMmhcDpYsShfuPo/Twafzi6VgYhgWj7nI99m/Lhk6vxaR5sXBRKVGUcQInc8swcV4MBob3R/0VI/Zv+xbafhr8Yn4sXNQu+D7rJI5/W4KJ/x2DQSMMMF41Yf+2b+Gh88Dkp2OhclXh+Lcl+D7rJOLnRuORiIEw1ppwYHs23DVumLwgDipXFU4cKkVx5g+Y8FQ0QkYNhOnazziwPRtqdzWmLJwAtZuKx7cEju9WIZB5rBxVtUbMjA6Hn86Tx3cPHN/OIBNOfJ0mOTkZf/nLX+5bU1pait27d2Pr1q0oKyuz+J5er8cbb7yB559/vt12eXl5iIuLwx//+EesW7fOvD5q1CjMnDkT69ev7/DnNTY2orHxzju6jEYjDAYD6uvrodXy83+IiIj6AqPRCC8vrwc+fzv1jNDLL7+MJUuW3LcmJCQEAQEBuHTJ8s9StLS0oLa2FgEBAR1uFxgYCAAYPny4xXp4eDjOnev8oja1Wg21Wt2F7omIiKivc+og5OfnBz8/vwfWxcTEoK6uDoWFhYiKigIAZGZmoq2tDdHR0R1uM2jQIAQFBbU7i3T69GlMnz69+80TERFRn9cnLpYODw9HYmIili1bhoKCAuTm5mLlypV4+umnze8Yu3jxIsLCwlBQUADg1gVsr7zyCt555x3s2rUL5eXleP3113Hq1CksXbrUmXGIiIiol+gTF0sDwI4dO7By5UpMnToVcrkcc+fOxTvvvGP+fnNzM8rKytDQ0GBee/HFF3Hz5k2sWrUKtbW1GD16NPbv34/Q0FBnRCAiIqJexqkXS/cFXb3YioiIiHqPrj5/94mXxoiIiIjsgYMQERERSRYHISIiIpIsDkJEREQkWRyEiIiISLI4CBEREZFkcRAiIiIiyeozH6joLLc/ZsloNDq5EyIiIuqq28/bD/q4RA5CD2AymQAABoPByZ0QERGRtUwmE7y8vDr9Pj9Z+gHa2trwn//8BxqNBjKZzNntdIvRaITBYMD58+cl8SnZUssLSC+z1PIC0svMvA8/e2UWQsBkMiEoKAhyeedXAvGM0API5XL079/f2W30KK1WK5kDDJBeXkB6maWWF5BeZuZ9+Nkj8/3OBN3Gi6WJiIhIsjgIERERkWRxEJIQtVqNlJQUqNVqZ7fiEFLLC0gvs9TyAtLLzLwPP2dn5sXSREREJFk8I0RERESSxUGIiIiIJIuDEBEREUkWByEiIiKSLA5CD7na2losWrQIWq0WOp0OS5cuxc8//9ylbYUQmD59OmQyGb744gv7NtpDrM1bW1uL3/72txg2bBjc3NwwYMAA/O53v0N9fb0Du7bO5s2bMWjQILi6uiI6OhoFBQX3rf/8888RFhYGV1dXREREID093UGd9gxr8n700UeIj4+Ht7c3vL29kZCQ8MDfT29k7X18W2pqKmQyGebMmWPfBnuYtXnr6uqwYsUKBAYGQq1WY+jQoX3q37W1ed9++23zY5TBYMCqVatw8+ZNB3XbPdnZ2Zg1axaCgoK6/FySlZWFsWPHQq1WY/DgwdiyZYt9mxT0UEtMTBSjR48W+fn54tChQ2Lw4MFiwYIFXdr2rbfeEtOnTxcAxJ49e+zbaA+xNu+JEyfEU089JdLS0kR5ebnIyMgQQ4YMEXPnznVg112XmpoqVCqV+Mc//iFOnjwpli1bJnQ6naipqemwPjc3VygUCrFx40ZRUlIiXnvtNeHi4iJOnDjh4M5tY23ehQsXis2bN4uioiJRWloqlixZIry8vMSFCxcc3LntrM18W2VlpQgODhbx8fFi9uzZjmm2B1ibt7GxUYwbN07MmDFD5OTkiMrKSpGVlSWKi4sd3LltrM27Y8cOoVarxY4dO0RlZaX4+uuvRWBgoFi1apWDO7dNenq6WL16tdi9e3eXnksqKiqEu7u7eOmll0RJSYl49913hUKhEPv27bNbjxyEHmIlJSUCgDh69Kh57auvvhIymUxcvHjxvtsWFRWJ4OBgUVVV1WcGoe7kvdvOnTuFSqUSzc3N9mizW8aPHy9WrFhh/rq1tVUEBQWJ9evXd1g/b948MXPmTIu16Oho8Zvf/MauffYUa/Peq6WlRWg0GrF161Z7tdjjbMnc0tIiYmNjxccffywWL17cpwYha/O+//77IiQkRDQ1NTmqxR5lbd4VK1aIKVOmWKy99NJLIi4uzq592kNXnkt+//vfixEjRliszZ8/X0ybNs1uffGlsYfY4cOHodPpMG7cOPNaQkIC5HI5jhw50ul2DQ0NWLhwITZv3oyAgABHtNojbM17r/r6emi1WiiVvetP8TU1NaGwsBAJCQnmNblcjoSEBBw+fLjDbQ4fPmxRDwDTpk3rtL43sSXvvRoaGtDc3AwfHx97tdmjbM38pz/9CXq9HkuXLnVEmz3GlrxpaWmIiYnBihUr4O/vj5EjR2LdunVobW11VNs2syVvbGwsCgsLzS+fVVRUID09HTNmzHBIz47mjMes3vVITz2quroaer3eYk2pVMLHxwfV1dWdbrdq1SrExsZi9uzZ9m6xR9ma925XrlzB2rVrsXz5cnu02C1XrlxBa2sr/P39Ldb9/f1x6tSpDreprq7usL6rvw9nsiXvvf7whz8gKCio3QNrb2VL5pycHPz9739HcXGxAzrsWbbkraioQGZmJhYtWoT09HSUl5fjhRdeQHNzM1JSUhzRts1sybtw4UJcuXIFEyZMgBACLS0teO655/Dqq686omWH6+wxy2g04saNG3Bzc+vxn8kzQn1QcnIyZDLZfW9dfaK4V1paGjIzM/H222/3bNPdYM+8dzMajZg5cyaGDx+ONWvWdL9xcqoNGzYgNTUVe/bsgaurq7PbsQuTyYSkpCR89NFH8PX1dXY7DtHW1ga9Xo8PP/wQUVFRmD9/PlavXo0PPvjA2a3ZRVZWFtatW4f33nsPx44dw+7du7F3716sXbvW2a09NHhGqA96+eWXsWTJkvvWhISEICAgAJcuXbJYb2lpQW1tbacveWVmZuLMmTPQ6XQW63PnzkV8fDyysrK60blt7Jn3NpPJhMTERGg0GuzZswcuLi7dbbvH+fr6QqFQoKamxmK9pqam03wBAQFW1fcmtuS9bdOmTdiwYQMOHDiAUaNG2bPNHmVt5jNnzuCnn37CrFmzzGttbW0Abp0NLSsrQ2hoqH2b7gZb7uPAwEC4uLhAoVCY18LDw1FdXY2mpiaoVCq79twdtuR9/fXXkZSUhF//+tcAgIiICFy/fh3Lly/H6tWrIZc/XOczOnvM0mq1djkbBPCMUJ/k5+eHsLCw+95UKhViYmJQV1eHwsJC87aZmZloa2tDdHR0h/tOTk7G8ePHUVxcbL4BwN/+9jd88sknjojXjj3zArfOBD3xxBNQqVRIS0vrtWcPVCoVoqKikJGRYV5ra2tDRkYGYmJiOtwmJibGoh4A9u/f32l9b2JLXgDYuHEj1q5di3379llcL9YXWJs5LCwMJ06csDhen3zySUyePBnFxcUwGAyObN9qttzHcXFxKC8vNw98AHD69GkEBgb26iEIsC1vQ0NDu2Hn9hAoHsI/FeqUxyy7XYZNvUJiYqIYM2aMOHLkiMjJyRFDhgyxeDv5hQsXxLBhw8SRI0c63Qf6yLvGhLA+b319vYiOjhYRERGivLxcVFVVmW8tLS3OitGp1NRUoVarxZYtW0RJSYlYvny50Ol0orq6WgghRFJSkkhOTjbX5+bmCqVSKTZt2iRKS0tFSkpKn3v7vDV5N2zYIFQqldi1a5fFfWkymZwVwWrWZr5XX3vXmLV5z507JzQajVi5cqUoKysTX375pdDr9eLNN990VgSrWJs3JSVFaDQa8dlnn4mKigrxzTffiNDQUDFv3jxnRbCKyWQSRUVFoqioSAAQb731ligqKhJnz54VQgiRnJwskpKSzPW33z7/yiuviNLSUrF582a+fZ665+rVq2LBggXC09NTaLVa8atf/criSaGyslIAEAcPHux0H31pELI278GDBwWADm+VlZXOCfEA7777rhgwYIBQqVRi/PjxIj8/3/y9SZMmicWLF1vU79y5UwwdOlSoVCoxYsQIsXfvXgd33D3W5B04cGCH92VKSorjG+8Ga+/ju/W1QUgI6/Pm5eWJ6OhooVarRUhIiPjzn//cK//j0hlr8jY3N4s1a9aI0NBQ4erqKgwGg3jhhRfEtWvXHN+4DTp7jL2dcfHixWLSpEnttomMjBQqlUqEhISITz75xK49yoR4CM+tEREREXUBrxEiIiIiyeIgRERERJLFQYiIiIgki4MQERERSRYHISIiIpIsDkJEREQkWRyEiIiISLI4CBEREZFkcRAiIiIiyeIgRESStWTJEsyZM8fZbRCRE3EQIiIiIsniIERERESSxUGIiIiIJIuDEBEREUkWByEiIiKSLA5CREREJFkchIiIiEiyOAgRERGRZHEQIiIiIsmSCSGEs5sgIiIicgaeESIiIiLJ4iBEREREksVBiIiIiCSLgxARERFJFgchIiIikiwOQkRERCRZHISIiIhIsjgIERERkWRxECIiIiLJ4iBEREREksVBiIiIiCTr/wBv1hIC9965wAAAAABJRU5ErkJggg==\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - examples_9_0.png" } }, "output_type": "display_data" } ], "source": [ "ground = -0.2 + 0.65j\n", "excited = 0.7 - 0.4j\n", "centers = ground, excited\n", "sigmas = [0.1] * 2\n", "\n", "shots = mk_iq_shots(\n", " num_shots=256,\n", " sigmas=sigmas,\n", " centers=centers,\n", " probabilities=[0.4, 1 - 0.4],\n", ")\n", "\n", "plt.hexbin(shots.real, shots.imag)\n", "plt.xlabel(\"I\")\n", "plt.ylabel(\"Q\")\n", "_ = plot_complex_points(centers, ax=plt.gca())" ] }, { "cell_type": "code", "execution_count": 11, "id": "b4030153", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:34.266282Z", "iopub.status.busy": "2023-09-26T17:43:34.266069Z", "iopub.status.idle": "2023-09-26T17:43:34.462387Z", "shell.execute_reply": "2023-09-26T17:43:34.461771Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/QAAAFeCAYAAAArPVTDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9d5wdVdn/d27bu3fLvdlsdrPZVFJIIJCQhBKKISEKIiCgr1gpIiJFSiyQVwWsAaUEFEVBDPhDwVcRC4oIiAqhJoTQEkhISN0kW+6Wu3v7/P44c2bm7t5yzpl6l/l+Pvu5Ze/MmWeeM+c5T5dkWZbhwYMHDx48ePDgwYMHDx48eKgq+Jy+AA8ePHjw4MGDBw8ePHjw4MEDPzyF3oMHDx48ePDgwYMHDx48eKhCeAq9Bw8ePHjw4MGDBw8ePHjwUIXwFHoPHjx48ODBgwcPHjx48OChCuEp9B48ePDgwYMHDx48ePDgwUMVwlPoPXjw4MGDBw8ePHjw4MGDhyqEp9B78ODBgwcPHjx48ODBgwcPVQhPoffgwYMHDx48ePDgwYMHDx6qEAGnL8DtyOfz2LNnDxoaGiBJktOX48GDBw8ePHjw4MGDBw8eRjlkWUZ/fz8mTJgAn6+0H95T6Ctgz549mDRpktOX4cGDBw8ePHjw4MGDBw8e3mfYuXMnJk6cWPL/nkJfAQ0NDQDIjWxsbHT4ajx48ODBgwcPHjx48ODBw2hHX18fJk2apOqjpeAp9BVAw+wbGxs9hd6DBw8ePHjw4MGDBw8ePNiGSmnfXlE8Dx48ePDgwYMHDx48ePDgoQrhKfQePHjw4MGDBw8ePHjw4MFDFcJT6D148ODBgwcPHjx48ODBg4cqhKfQe/DgwYMHDx48ePDgwYMHD1UIT6H34MGDBw8ePHjw4MGDBw8eqhCeQu/BgwcPHjx48ODBgwcPHjxUITyF3oMHDx48ePDgwYMHDx48eKhCeH3oPViH3t1A91agaTr5TN9H28setrd3CNs6E5jWXAcA6vu2aK3VV8wHQfoAjca6kB+JdM6d9AGjn4eARmOwDsgkuHnoehrfTzwcrTSOdvqA0U/jaKcPGP00ejK/JKqGh4An80ugaugDRj8PBeAp9B6swfr7gb9cCch5AJLypQxIPuD024EF5xY97KGXdmDlw68hL5PPEjkKPglYdfZhOOfIyTZcPAME6QNG0gi4kD5g9PMQANbdB/z1KoVGBQI8dC2N7wcejnYaRzt9wOincbTTB4x+Gg3I/Adf3IH//aMn810BT+YXPaxq6AOG0ahgNPFQEJIsy3Lln71/0dfXh2g0it7eXjQ2Njp9OdWB3t3A6rmFD5sekh+46rUR1rS9vUM47sanCoSeHn5JwjPXLnXekiZIH0BoPPbGp1DsqXMNfcDo5yFAaLztUJAlfRgEeQi4iMb3Cw9XH4qSzKh2Gt83PBzFNI52+oDRT6NRmb/qqWJSxj30AaOfh4An80cLD0vJ/Ao8rBoah4FVD/Vy6D2Yj+6tpRcUAJBzQPe7I77e1pko+bABQE6Wsb1z0IQLNAhB+gBCYymh4Br6gNHPQ4DQWHSbBWEeAi6i8f3Cw3LMqHYa3zc8HMU0jnb6gNFPo1GZX+Iw19AHjH4eAp7MHy08LMWMCjysGhoF4Sn0HsxH03RooT5FIPmBpoNGfD2tua7cUfBLEqY2RwxfnmE0TSfhPaVQgj4Aat5OMfgluIM+wBgPyxzmGh4CWn5ZMQjyEHARjQZ46BsNPATK0lgOrqFRcK15v/BwNMuL6uOhJ/OLobzMdwl9gCfz3+cy3+Ohi2gURNUp9HfeeSemTp2KcDiMo48+Gi+++GLZ38fjcVx22WVoa2tDTU0NZs2ahb/97W82Xe37FNF2oHmW7gup8P3pq4uGxLRFa3HUtKZSR+EHZ891RzhMtB1Yco3uCwkFV/uRW0oW52gIB0sut187ZbY76API9U86SvcFOw8/OKe16FGAi3gIAMEy1/Gh75bkYWtDGLVBv/pZT6NPchGN0XZg5gd1X7Dz8OwFEwuO0h/pGvoAoL4V8Id0X+iuVPKVpbG1sabYUe7j4dyP6b4Yxo0y9J1/3LRSR7mHPoBcf2Ss7gt2Hs5oqS92FCS38XDRhbov2Hl45UkzSx2F7555qDvoA8j1F2yk9Twsv9YsmDKm2FHuk/nHr9B9MYwbp91WUl6EA/6i3wPAylNdJvMnHKH7gl1eLJ3VUuoo9/AQQFmt9eQflOThuPoahPzasa6WFwct1X3BzsOPzptQcJRr5UVdM1Hci+HElSV52BatRVOdtleQoE0HvyS5i0ZBVJVC/9BDD2HFihW4/vrrsX79esybNw8nn3wy9u/fX/T36XQaH/zgB7F9+3b8/ve/x+bNm3H33Xejvb1yJUQPBpDPA/17yfvT7wCufgM45nLyefapZYtW9CWzAICrl8/E2pXL8O0zDiGHtTW6q2BFvaK0jj+c0HfVa6TaJgBMmF/ysI0745ABjG8M47cXHYM/XXasahWcOMZli8lgN3k96QZC4we/Qz63LyrLw0yOhHydt3gK1q5chp98imwSWhpq3MXDXS+R19hU4Ly/Al94CmicRL4rYeUFgHc7ExjK5BDyS/h/Fx6FtSuX4fgZRCG5fOkMd9GYGSKviy8nPDzrF+RzbFJZHgaVzcvp8yZg7cpleOjiY9TvzzzCRevn/jeBXBoI1QPn/oXQOJlcK5Z+sySNfckM9venAAB3fXYB1q5chjPnkw3NJ4+a7C4eUs/gvE8R+j77MPkcjADzP1PysIYaUvP2+BnNWLtyGf65Yom6STvx4JaSx9mOgQPAYBd5/6mHCI1zziSfj/piSR7m8zI6+pIAgFVnz8Xalctw0QnEiLF8dqu7eBhSZMPMkwl9X3pG+9/s00oe1tIYBgAc0taItSuX4ZlrliISJPNhbnvUssvlRi4D9O0h78+8i9B45EXk85wzy641PYNpAMDXT56FtSuX4X8/PBsAMG9SzF08rBtHXtsXEfqufBXwE/4UGr8LsWFnHAAwualWlfntMXLclLHlvYa2I9FJXj/0fULj0m+Sz1OOLcvDZDYHAPjC8dOwduUy3PqJeQCACbGwu3hIZX7zbE3m1yl7ueaZJQ/bvK8f6ZyMupAfv/nC0Vi7chmOmkoMUSs+dLC7aEwPkNfjVxAenn4H+Tx2Rlke+hTt9mML2rF25TLcfyGZ0+GgDx9fOMnSS+bC3o0ktD48BjjvL4SHLURPQOOEkod1DqTQnSBrzT3nLcLalcuw9tpl+O1Fx+CZa5e6i4eCqCqF/tZbb8VFF12ECy64AIcccgjuuusuRCIR3HvvvUV/f++996K7uxuPPPIIjjvuOEydOhVLlizBvHnzbL7y9xkObAJSfUTBnf8ZxVN4Evlfx+slDxtIZbG5ow8AcM6Rk9EWrcWy2WSx3bK/H8lMzvJLZwYVDDM/SOiLTQKmLCbf7Xyp5GHrd/QAABZNHYPF08di3qQx+MBMslFY/17cyivmw2A30PUOeb/wPIWHJ5PP+98Actmih8myjFeUDcxZCyYSHs5pgd8nYX9/Cnt7h2y4eEbsVKJ7phwLTDsBmLgQmL6k8H9FQHk4b1IMx88ch7ZoLRZPbwYAbD2QsPSSuZDLArvXk/fzP014OOtD5HN8h7Z5KwI6F087vA1t0VocObUJTXUhZHIy3tzTZ/GFc2CXwqeJRwIHfYDQOPUD5Ds6f4tgw444ZBmY1FSLU+YSGo9XnsO3O/qtvmo+0Lk49+OKB2YJEGoAMoPEoFECdJ5+6NBW1Zt98PgGAMAryv9cAcrDcbOBg08hNNLncP9bJQ/bcmAA/cksIiE//mfhJLRFa7FE8RS+1eGiOQpo8mLO6YS+8XO10NHd60oetv49wqcTDybrTPuYCI6cNrbgf65Ax2tAdggIR4HDzyE0zlBk/v43Sh4WH0zjXWXN/ORRU1R5AQCbOvpU47ArQOfprJMJfWOmAJOOJN8xyIsjp45VZf7xM8YV/M8V6O8AencQA6Iq85UIr47XiaOmCHJ5Ga8qMv9jC4nMP0nZt+2OJ9E5kLLj6tmgyvzFmsw/SJEXu8rt2+IAgCMmj8GxM5rRFq3FMYrMf3f/gJVXzIdsCtj7Knl/xGcJDw/+MPnctQVI9pY8lM7F0+dNQFu0FsdOb0Z9TQDJTB6b3SQT6XM4+Rhg2gcID2csL/xfEbyi8HBGSz2WzyEykezdxla9Z56iahT6dDqNdevWYfny5ep3Pp8Py5cvx3PPPVf0mD//+c9YvHgxLrvsMrS2tmLu3Ln4wQ9+gFyutGKYSqXQ19dX8OeBE3RhbF8A+JXOiO2LAEhA/D1goHhExcZdceRlYEI0jPFRYsGeOKYWzfU1yORkvL679GJkOyiNE3WWefqeYVFZMFkLM6TvXSXc6SZz7AwgoqRBNM8CaqJEkdhX3DCzrTOB+GAGNQEfDmkj1TgjoQBmK4qEq4wWlId0UwboeFhauFcNDw+8RfqzhhqIsgQAtWOA5oPJ+xI09iczeHs/EeCULkmScMSkGABtc+MK7HqZvOo9ZPR9mU12cR7GAAAbd/cinXWJIpHoBHq2kfcTF5JXn5+srUBJHubzsuoZLKBxCp2ncSuuVgzqWlrkOdy9DsgXl9fUKHH4xCgCfrKVmTcpCkkCdvUMYX9/0rJL5oLesMY7T4vxUHlP/+cK0Odw4pGAz6e9B4DOt4Gh4usipWFac50aDntQcz0aw0SR2LTXTYpEsXmqvGeR+VNi6nf0vauMMpS+lkOAGiKv0ToXCNQCqV7CxyJ4e18/Eukc6msCmNVKjotGgmo6zAZXrTVF5AWTzCd8ojJC/95VMr/jNSCXIilMNMqwvgWITQEglzQedifS2N5FCsIdMYmsL36fhPmqzHcRjcX2bepaysfD0YaqUeg7OzuRy+XQ2tpa8H1rays6OjqKHvPuu+/i97//PXK5HP72t7/hW9/6Fm655RZ873vfKznOqlWrEI1G1b9Jk1wUalIt0HvNKMKNQMsc8r7EBoYKviP0OXWShCPctnAOdmvCrUC4LyKvJejTe6/1eYOUvjf29LonCoHSoDdY+HyaUlFC+FFF4bD2KEIBbXlxncKbz2nCbWKRTfbudSWjEKhgOEK3yT58YhQ+Cdjbm3RPFILKw4VECaSYWN6r9OrOXtV7Pa5ByzN33XMIFJ+n7coc7d4KJLqKHrZeFe4aD6c112FMJIh0No8397rEkKuGiB5MjDEUFTYwWxXvdTjoU41pADSjjJsUCUqDfpPdMoekUaQHSnrpqXFQz8OGcBCzWlxmPNz3uua9HqsL66XyooQy2DuYwRbF+3eEXpGgyqCbnsNdRZ7DumZNqdhVXJF45T26lsbU73w+CfPdJi/695GoJkja+gLo1tLiz2GuhGGNyo6Nu3qRdUsUws4i+zZ/QGc8LD5PtYi1KPy6Ko6uU3izaWDPK+R9gcynRpmXSkYhFNubUsV3e9cgutwShaA3OunrBVSYp3RPM31cHaKRoPq963gIaDQUMwDvfxNIFpfdxWT+aEPVKPQiyOfzaGlpwS9+8QssXLgQ55xzDr7xjW/grrvuKnnMypUr0dvbq/7t3LnTxiseJdBb6/WYqFs4i0BVlJRNJ4XqkXCLpZd6W5oOAup0xZwmlo9CeK9rEN2JNEI67zUATG6KYKwSzvyGW8KZVcGwqPD7CtZsTdmNFXxPN6GuCfU9sIkoC6F6zdAEEMWpprFkOPNAKovN+6j3OqZ+X1cTwOzxhKeumaelnsNJrM9hoeCjz6FrPC6D3UobImiGJoBElFDFaffLIw7Te6/185QYD+la45J5WswrCFSMBqJz8PCJMdV7DWiGxNfcEoWQywJ7lPVUTyNDFMIrO0ca1gDdWrPTZTxsX6R5rwEdD4tHIWzYFQcATBkbwdh6zbA2b1IMkgTs7B7CgX63KRKl5EWJeao+h8PXmhj5v9uew5Y5xDlBoUYhbAaG4iMO27J/AAOpLOpCftV7DQAzxtWjIRzAUCaHTW4JZxbet8UBlJYXrlEG9yne69oxwFhdpXQahZDsLZqm1ZNIY1snSQvR702jkSCmjyM1EDa4JVpGNcoMew4nVdq3xQGMVHapAcM1Mr9vD9C3i6SFTFigfd/QCsQmA5A1eaJDNpfHxl0kwnf4WjOaUDUKfXNzM/x+P/bt21fw/b59+zB+/Piix7S1tWHWrFnw+zXv1Jw5c9DR0YF0Ol30mJqaGjQ2Nhb8eeDAUJwoSwCXYJBlWfXu6r3XQKGVUC7XDNQuFPNGAMQDQ0Obi9BIBdtw77XrFIl8XvNeDy/2UyFncH0pwaAI+9d39yGVdUEUAr3+9gWF3mufT/PAFNmEvrqT5F63x2rVglUUrgujLDVP1XDm9UWjENaXCE2bNykGnwTsjg9hX58LwplV7/WsQu81UDac+d3OBHqHMggHfZjTVri+uy6tgF7/pOFrqbJh69qiFa/UoZQ34qDmOsQiQaSyebzlhiiE/W8Q41lNVEsFoShjPOxLZvBOEe81+ayspW7x0O8qEoEAkNDmYB2Q7gcObB5xGF1HhvOwMRzETCWc2RXyYuAA0LMdgFREoadRCCN5mM/LqqIwfK3RlMG4qZcqjGJRhwBQPw4Yo3STKGI81Ndb0XuvfbpwZlfwMJfRvNcjZH75aCB1rdGlFAAujELYWcJ77Q9q1f2LzFNqGDxoXB1ikVDB/1xntFCNMsNlfvkohPVFog4BTR6+25lAT6K4zmQrVMPaoUBNfeH/ykQhbN7Xj8F0Dg01AXXtHI2oGoU+FAph4cKFePLJJ9Xv8vk8nnzySSxevLjoMccddxy2bNmCvG4Cv/3222hra0MoFCp6jAeDoEJtzDQi7PSYpFckMgX/Ur3Xfh8OnVC4yT58IhGG+/pS2NPrAkWi1CZb/10RRaKUogS4LIxSX9SQVg+laFc2aD3byEZOB31Rw+FGmSljI2iqCyGdy7sjCqFYDQSKMhsYdZM9ZaSV11XCfbCbKHvAyE32uNlKFEJiRBRCqbQQgEQhHKxEIbjCaFEs3J6iTG4r5c/h7TEE/YUiUM0xdwN9+tzr4TRGmkh9C0DbxOlQaq0prIXgAhoL0kKGbUfKGGVoUcMpYyNo1nmvAe053Lg77o6iasVCmYGK4cxl5YWbFF59UcPwsMr7k/RRCIW8eGf/APpTpKjhwTrvNQDMn0yiEHZ0D7qjqFqxtBAKFnlRxCvoKh6qRQ1j2rpCQeftgU0jiqrpixoO99DPbKlHQ00Ag+mcGtXmKEoZuIHy+7YiqT0UmryIm3GFxqAvati+oPB/4w8DAmEgGdf2BQr0RQ2HG2VikRAOUqIQXBHxVG7vXSYaiD5j8yfH4NMZ1kYbqkahB4AVK1bg7rvvxn333Ye33noLl1xyCRKJBC644AIAwLnnnouVK1eqv7/kkkvQ3d2NK6+8Em+//TYeffRR/OAHP8Bll13mFAmWYW/vENZu7XQ+f3fLU+S19dCR/xs7kwj87BDwyq+B3t3qv/61mURezGytR82wvq21IT/mtBGB/+CLO5ylMZ/XtTubMvL/VPht+WcBfQDw4jbiSZvaPLJVDRWGz23tcp6H7zxOXlsPLfReA0BtTPOkrVtTyMNN+5CXgdaGGrQO815LkqRuTB9et8t5Gt9bS16LtaejgmHbv0fw8Ll3SU729GI81Hkk3utyuNr92/8gr7GpWlFDCp9O4G/4TQGNL27rRnwwg5BfUlMI9KDe0L9u3OM8D7crrb+Gb0CBwjoB8R0F/3p2C6nuP7N1pKV+3qQYJJAohNeUkGfHsO3fxOgSrAPGHTzy/3Sevv77Ah72JTN4ex/xXk+IjazeS+fp42/uc56H7/6HvBajjxoPu94B9hVWSv/P28SYOHuYIgiQKARaVO2hlxyWF/qihg1FWirRefrmXwp4mM/LqkI/qSky4jCqXDy9eb/zPNyqyHx96hJFy6Fk/qZ6gVcL15qnN5G0tIPHNxSkhQAkCmHGOPJ8/uYFh3mYy2iGtViR1laUh+/8Y4S8eGk7kflTxo7kIV1LXbFve+cJ8jr+sJG92vVF1V7+VQGNTyo8nDSmFmPqCp1kpBZCDADwezfI/B1K8ewxU0f+j66l7z49gofPbyPygiq2eujryuzsdlrmP0Zex87UihpS6KMQXvl/BTQ+u6UTiXQOkZAfM1tGrqd0rfnzBjfI/GfJazGZT5X899YCvbsK/kVlPl1TRiuqSqE/55xzcPPNN+O6667D/PnzsWHDBjz22GNqobwdO3Zg79696u8nTZqEf/zjH3jppZdw+OGH44orrsCVV16Ja6+91ikSLMFDL+3AsauewqfvfgHH3fgUHnppR+WDrMD6+4Hn7yTvNz1KPuvh82l9Iv96NbB6LrD+fjz00g58+y+k8NGbe/qKXj/tqfzjp7Y4S+N/fqT1+fzNJ0bS2KcUaNz3hkofAPz6ue3qJvtbj7w+4vq3KFXFewYzzvPwievJ+10vjaQPACKKpfpf3yvg4RW/3QAA2NefKnr9NOTw/72ww1kan/+Ztsn+8+UjaaQW7P69BTx88MUdWLuVKPS3P/XOiOt/QVH2s3kZJ978tLM8fOQS8j6+vTgPaf/kF35WwMNP/uJ5AEA6J+OPr+wacRj1eD76WoezPFy3BthJrhVPfWckjTRSKJsEbp+n/v+hl3bgTxtIv+zfvLBjxPU/unEPaFLPGT951lke/r+PkfeZBLDhgZG/kZXUlY0PFczT25/Q8kDP+MkzI2joGyLRUc9t7XJ+rdn0Z/L++btG8nDzo9r7nx1XwMN7niHP7+Nv7htx/T6fpHZJ+eYjbzhL479v0t7fdexIGqks2fpEAQ9/8q93kEgR/n5+zUsjrn9fH9lYb+rod56HL91D3r/xx5H0+QOazP/TZQVrzarHSGrehh3xotcfqyXFuW7959vO8zCnRAbe/9GRNNJ6OXteKeDhr57dplYOv+YPG0dcP83L3teXcp6HT3+fvN/+THF5UadEWz5xfQEPv/o70iJtZ89Q0eunqYW/ena7szSu/QnJvwaAP35xJI3x97RXHQ9/++IOvLw9DgD40T82j7h+mnueyubxgR85LPP/chV53/l2cR4GFaPS2tsLeHjevcSjPZjO4ffrRtYMy+eJRHxkwx5nefjSvcBeJS3k8W+OpHGP0q4vPQCsPqxAXjz2OtmXr3luu3PXbwMk2RVJye5FX18fotEoent7XZlPv7d3CMfd+BTyOi76JQnPXLvU3t6KvbvJIiHrwuokP3DVa6QXJv3NbYcC0C5Wlvw4Lrkae2StuNzw69/bO4RjVz0F/UR1jMZh119AY4l7sO/Cl3DMnZsgl+DR+4aHNz5V8h7YBgM8XHznppI8er/wsCpofL/wsNRa85NNJdfKqqFRkIfAKJEXo4GH9DeezAfwPuWhJ/Otx/uFhxbJi2oAqx5aVR56DyOxrTNRMFkBICfL2N45aO+FdG8tfJgA4kHqfrfwNyi8WEnOYbJUWOhw+PVv60wMO8pBGodfiZ7GEvfgwHtvYbjZTH/97xseuoVGQR6W49H7hYdVQeP7hYel1pphp6tKGgV5CIwSeTHsVFXJQ/obT+YDeJ/y0C00ejIfVc9Di+TFaIKn0Fc5pjXXYXiNB78kYWrzyJwtS9E0nRTj0EPyF+YoN00fkZ8lS37skFsLvht+/a6icTj0NJa4B+OmzMHwMhz663cVfUw8LPxN9fFw2IV4PHz/8LDM9buKPgEeUhqHw7U0CvKw0vVPa64ry2fbYEBeDIdrecgyT+HJfKDKefh+lRfDTuXxsAp56IbrtwmeQl/laIvWYtXZh6lTXQLwg7Pn2h9OEm0HjrpY+yz5gdNXayE/9Dcn3VDwG+n01fj0h45Vv/JLI6+/LVqL7591mPrZV+Q3tiDaXthaaTiN0Xbg9NsBPTdOX43WidNx1DStMJlfkgquX+WhbuFxjL4l12ifS/Hw1Ft0v/FBOn01LjnjA+pXxfhDaSz3G1sQbS+scsvBw+WHaMKvFA99buDhyT/QPpfi4em3635DeHjl2SeqX7mehzM/qH0uxUO9gFd4+LEjJqpfuZqHp63WPks+Jh5SGlsbtarvpWhUD3OSh4d9XPvMwcPzj5umfjWcPoDQeM0ps9XPjs7TiBbOWnqtof/X1hp9a6WS8oIeBgfpW3Sh9rnUWrPsmwW/kU5fjXNOOkb9qhQPv/vRuepnR3moV+o55IW+S4ireXj8Cu1zKR5++KaC30inr8ZFp52gfuV6eUELwgFcPFx6cIt6mKv3bcu/o33mkPlXnHWi+pXreXjQUu1zSXmhY4bCw4/O04qRFltrRhMCTl+AB+M458jJ2N+fwi2Pv40PzGrGOUcWqcRqB2il4vYjgU/cV7igUCy+HHjiBgAycNFTwIT5WKBUoJwQDeMPlx5b9GH71FGT8eOn3sGeeBI//cwCnDK3zTo6yoGG9Zz8A+CQM0fSuOBcUlX7Pz8CDv4w+QwgEiLV4i86YRo+f/y0ETSec+RkyDJw7cOvYc74Bud4SAXfmIOA8/9anIdHfh741w+AwQPAJx8EDj4Zi5We0OGgD//66olFeXjOkZPx2xd2YsOuOG4441DnaAwqCs/xXwGOvLA4DzNJ4O9fIz3pFR4215Mqvh9b0I6vnnxwUR4219fgwvtexrj6Gufom3IceQ1HgUueK87DBecCL9xFijeefgew4HM4NZnBNX94DQDw+NVLMKNIv9ZzjpyMx9/Yhyc37cflS2c4RyPtO7/gfGDJ14vzsCYK/N+5QHSSysOJTYRny2aPw/fPOqwoD+e0NeKMnzwLnwR8fOEkqykpjtkfAf5yBXn/5VeApqkjf7PgXOD1PwLvPgUs/Qaw4FzIsoyBZBYAcMsn5uHY6WOL0rhhRxy/fWknPnnkJOd42KjwbM7pwCk3Fefh2JnAr04hRRyP+BwAqMruEZNi+OlnFxRda75w/DTc9HeSh/7IZcfh8IkxCwkpgXweSPaR9x+7F5h8THEatz8LbHwQOPKL6jzNK3Gu3zx1Dj4yr60oD3f3DOGOp7bgpDmtzvGweSZ5nXws8LF7Ssj8y4Cnvkvef+kZoPUQHK5UR5/SFMGDFx9TlIefOWYKbnvibXQOpHHPeYuwbHbriN/YAtpi99SbgYNPLc7DzneAtXeQPYHCwxqlINxlS6fjs8dMKcrDZDaP6//0BuZNjDnHw7bDyWvzbOBzDxfn4VFfBJ78Lmln+9mHgekn4mil/WxjOIB/XP2BkjJ/zbPb8VZHP1addZhzNPpJgUUsuZbwpxgPk33A498ApixWeRiLkOM+deQkXLF8ZlEeNoaDuOSB9WiPhZ2jb7JiIKsbB3zx36Vl/rN3kK4hZ94FzDsHHxxI4dqHicz/11dPxJSxIyv5n3PkZDy6cS/+804nVnxwlnM0hpUK/EdeBBx/dXEeBsLAwxcBTTNUHrYpnV5OPrQVN5xx6KhV5gHPQz9qMEdpMdWdyFT4pYWgrSLaDi++oACFVW/zpIrv7jip2Du9pb7swzZZad+TyjrUW1iWNRoP/nBpGmnLvsFu9as9cVIl94SZ40rSOLed9PDtTKTNuV4R9CpVTlvmlKYPAMYoLfvy5Fr3KDyc3BQpy8MpSqhTMpMzfq2ioDyccVJpGukmJ3FA/Wq3wsOjDxqpJFFQxaEzkXKuBzalr+mg8jyk4WoZwru9vYS+aG2wqDJPQf83kHIBD6edUJrGCfPJ68B+tQc2nadHTBpT+jmcEEXQLyEvA/v7k2ZeNTvoc1g/vrgyT0EVqjSpmN2XzCKRJnw5de5IRZBiptLurW8oa8rlCoHycNLRpXlI2yvmkup6Snl4aHtjSfoCfh/alEr3ueFJlHYhsR/IZ0iUwSEfLU0jNYSniIIky7IqL5Yf0lqSxtltRObHB10gLyYcUZq+YC0QaSbvFYM4lfkzWxvKygvasi/tlMzP54A+pcXX7I9UlvlDeplPaPxAOZk/gfCwM5Ey53pFQJ/D1kPKywvapjdP9piUvilj68rykLbpTTrFQ0CjceaHStM4XvFEJ7rUr+g8PaaIYZTisIlk33agP61WhLcd9DkcO6OCzFeim7JkfaHrzLiGmqLKPMVBSrs3KlscAeXhQUvK7Nvmk9fEfvUrOk8XTikt80cLPIV+lID2G6aT1xHQBy46sfzv6P+VRYguKu1FeibrMSFKaXRokz3YDWSV+9tYZtFsVOijGwFofCnWF5qCbkAP9KeQyjq0cDLzkFZPJb9noU//f8d4mM9rPVjL0Uj/17dHNTxRGsvN07F1IYT8PsgysK/PKWWQkYfqPCW/383IQzpPnV1rlA1MtIwHvXECAAnIpYBBEgVE5105Gn0+Ca2NDtNo8DlsqguhVokKKoYJMYU+J/sKs9AYqAHqlLBX3nnq9FpD6WuYQAzZpaDKQ/L7+GAGQ4rBk7bfKwZ3PIfG5ml7rDR9gAtkfn8HKb7lCwD1ZSIE6H5Akfn5vIw9vZXXGqpgdPQmnTM8cfNQ2bf10uewPA/bog7vTXMZ0oIWYJP5vbtAK8FRGsvJ/NbGMCQJSOfy6HLKGcMs8wvnKetaqsoLt681dI6m+oBkLwD2velogKfQjxLQBacrkXbO+6k+cBXCVIdtYPiVQac22dRr1ko2mqWgVwZzWfQlM+hPEU9YOeHXVBdSw/Q6ep1WBssYLACNx4I83O0UDwc7iYIHSYsUKYb68SRPK58BBvYrXrPKNPp8EtpU4eewd1f0OSyjRAC659ApZTCf03oKl5un/iDQMJ68V42HvPPU6eeQ1Tg6/Dlk5KErNmii87RK5EXFtbTQwE3Xxub6GoSDpY0yVOZ39CWRdToaqOI8pfKC9zl0iWGtcQLgK82L4cpgVyKNdDYPSSpvlGlpqIHfJyGbl3Gg3yEvvTpP+dYaXmXQMZnfv5dEhvhDJCS9FOh+IJMAhnqQz8vqPqwcjUG/D60NLpmngvKiomHN6bU0mwIGlIr85eRFqA6oVepVqTRW5uFogafQjxI01gbUPG3HHro+wUWlt1oUekb66lsBX5BY9gc6sFdZUGKRICKh0p4aSZLUTZpjwo/Fe63/v2qtZ4uyaHd8g6ZsXhratLy6YtCnhvTuQu9QBoNKuFlbJYXXaY9EHy8Pybzeyyj4HH8OB/YD+SwxuNSPL/9bHY2yLKvPVeV5WiVrzXDDGt2AMiq7+/tTzoQz57JsXjP9/+k8Zdhkk/87rEhwr6W7gXyeeZPdXF+jpobsc0wZFJX5nGuNU8bDPkajE40GyiaBwS7sVa63paEGQX/pbXbA78P4xmqbp4WKUtWspY3tgK+MyhOs1RT+3l3oHEghk5Ph90loaSjjwIELDE/MMr/QsEbnKbtx1CEDNzXgB8KFhUaLQTdPc3kZHX1s83Q0wFPoRwkkSXL2oSsIZWb17g6z1lf0DDos+OiiWS7cHiBCQ6cMsnqUABcsnAa9ZhWVXceFO+McBQqMFpQfY+tCZb1mgAuiEPQbmHIQjLKggrFzwKFoIL3XrFwoM1AwT3sGM2r9jdaoyzdovIpS324gn2Pm4di6EEIBB1NDBmgoc1ALqS8FnbzI52Wd4an8WuMaRaISDxvaSJ59PgMk9qsGi0r5nj6f5Gw4cy5DQtIByyNJHI+UqbSWBmq0kPzenVxhvtWz1hTKi72qzHe5MshqsND/pneXKr9bG2oQKGOUAdwg8xVHRaOYUaaNUeZ39DmUGqJ/Dof3oRsOnbzY30+uN+CT0FxfXuaPBngK/SiCo9ZsfQGghgoV6HV5PPoCQKyKhOPe3UrKrv43OsHAI9z3OkGjvgAQj1cJ7MogFf49gxkMOVFghXXzAhTMU54NmvNRCJxGmf69QC6jm6flN9mxSBC1ilHDkdQQ1hBR/W96NR6Oa6hBTYDNKOO8YY0lGiigRAPtY1aUHI8GKghlrrAN0W1COxMppHN5+CSodQ5KgRpQ9zqWvsQoL/xBTWb28q01jiqDfXsAyIC/Rit6Vwo6w1OOMZQZcIPM55AXBcoge5gv/c1eJ/ZtmaRWQEw4VZLNKLO/P+lMoVgRedG3mytUu71a5MWwaCAtYq1yNFDAJyGXl50pFMv1HNJaD9paOj4aht9XwRAwCuAp9KMIjioSagGgCqHMQIFgYC0ABGhWxL5kFv1JB6r5Cwn3ncyCj/zGQaMMawEgQBP+Ax2QM0nmkPvGcAD1NcSr6giNghs01gJA5DdOes04QpnrxpG8QjkP9O9lTn0h0UAuWGsqec2AAms9n2GtShQJn794NJDblUFWoxNQ+BwqG+aWhnDZUGbARTxkmqeavGA1rJHfOKhI6OutVDTKaAbuA/0pZPM0lJlNGXSsUKyovGCMOgQc5iE14AdqtVagpaCrDZTNZJhDmWk0UN6paCAuHmrygm8tdXCtSQ8Cg0pl/opF8QoLxbLS6PdJ6v68muQFj2FtNMBT6EcRHM3dFRF8iQPY09kDoHIBIACorwmgMUyUQUe8LkJWwl3MOZ+AxkNHQgypcG+oUAAIIHlMAbLA9+x7Ty0AVMlr5rwyyBNlMTL8joWHjlbXZi0ABBSkhuR7djJ7zfS/ccS7yxpFAmjKlG6TXckbAejWUieMTtkUCUkH2OZpo954yM5DR8O1RddSLmWX/MaxQrGG5ym7vHA9D9Vopz3Y09MPABjfWNlrNiYSdLZQrKAisZfROApoSr/ja2mlUOb68WpqyIF9u5CXgaC/cigzSQ1xsFCsyDwtMOKzrKUOdg2h+eWhBiAcLf9bXaHYTPcOHBggtTf4ZL4Te1NjhrX3Q/484Cn0owqOKhI8i2btGCBIel727N0GgG2TDThsCRWy1u+uHs8gT2iaJKnCr2fPuwBIAaBQoPKSUj081Fvr2QurqJEyTkYgVCoARKHQ2L9/OzI5mYQyVygABDjcTsqw14zdex0fzCCRsrlXO08BIEClMR/fxVUASIsGcjsPleewvwN7ukmvdpa1NFobdK5QbGYISBxQLoR3nvIb1lxvHNUViu3u2AGAbY7qU0Oqaa0RCbl3vTz0B4ixH5rMb4vWwscQylw1hqeiyqDLoyz0+7ZKRhn6OwC9Hdsgy0Ao4MPYulDFwxxNfxHat+kj1tj0i2qHp9CPIrgihJIlvFCSVK9LYv92AJULq1A4JtyzafYCQEDRRYVNMGg8lGWbi4/wLJq63yUObAfAzsM2J6MQuMJgR3rNWGikv+lPkpaFtkKUh8pzOL4xXLEAEOD0JlSglkViP/YrymClAkAA0BAOokGNBrKZRp4CQIDKw6HO7VwFgFyRosVSnDLSTPK0IWPgADmOVRl0bKNNjTLBusqhzIA6T/PxndjXTwtVscsLZ+sgMPBQFw2kyny3G/HTCWCom7znKqLKGWVRLYqS7neJA8QRU6kILoWjEV3qPOXdt7EVpwT0hWJT9kcD8aylgMrDAeU5nBANQ2KQM22uCLlnoFFX+2hvzwAA9r1ptcNT6EcRVGW31wllkGOTDaiLSqaHHMea4+KY8OvfC+YCQIBKn9wrFso8mM6hb8hmzyC3cCe8TncTHrKGNbU7Vfgvm2IvAARo92GwC109cQBslt66mgBiEVJHYq/digRPlIXud5lu3ufQBVEILDRGmkh+KIB0D1UG2TahjhkPeUK1db+jPGQtAOQORYLhOfT51I1cpvs9AALywnajjJjXLNuzk3jN/D4017EYZRws/Mc9Twmvhdcau+cprY5e01g5lBnQyfxdak95HpnvSKFY0X1bN7thjfxOkfl2P4fJPiDVS97zGGX692Kfogyy8NDRQrGCRplMN4mU4d9720yfLPPJi4bxpKWtnEOyh9QT8kLuPVQdaNGKZCaPnsHq8AzS3BjWkBjHNqE8BYAA1UooJeOoyQ8yFQACgHDQr4Y/2W7NFrT0Sr2CPLRbuOsLAEWaKv8+HANC9QAA/wDxuLEKBsdCDAWfQ0l5Dlm814CD4XcFBYBYo4EojVViPOTeZBe2k+Klb3ePkwZgvnnqo/OU0TPoWBSC6FqqPodhplBm+rz2DmUwYHdqiGGZX0VGGRYoz6E00IEQMqgJ+DAmUqFAMBwuFGtY5rtcGaQyPxwDahoq/15XKDYwuA8ATzSQ02sN5zzlfA4dk/nJOJAmxhW2aCC/tv/mpLHa4Sn0owg1AT/GKfmvtj90gtb6cIJTUXIqxJB30QxrVv02qYupABCF80YLPmt9eJBYQV0v3PU8ZPGa6ZTB8ehkKgBE4ViIoaB3t2aQPIf8hrWkvcqgWgConmzSWKDQWDtEUmbc7xkUU5RqBvm8EdTolEjn0Je0URlMDZBNGsC2QQPUNamGd61xzLAm9hwGk12oQZqpzgNACsVGa2k0UJXIC1Xm84ZruzxSRlcotlXqRnuslimU2Vll0Ki8cLtxlHOO+nzqmjRB6kRdyI/G2gDToc7JfLHnsCYhuG+z3eikzNHIWCAUYTtGobExRYwyXg69h6qEIxVTeQsA6X7XoD5wbl9UOL1mgJqz1S51cS0ojlVM5VYkiOBrSPEpSvr+17Yqg7z06X47QepiLgAEVJEy2EifQ8JDVmWQRgMNZXKI2xkNxBvKDKjzdAI6mQsAAQ7WehB8DmszcdQiybzW1Ib8qgfR1nmqes2ixPDJAmWTHUuze80ABwvF8sqL2jFAkGxW26QuLo9SmxMyP9kLpEhNCnbvLpUXnDK/WqKddIVi27l56ACNvKHMgG7fRmU+q1HGKUcMZ5SF7rcTFB6yGGUABwvFcst8MkcbVZnPx0PbC8Ua2rd1oiEcQEO4cqTMaICn0I8yOGIJVQsARdgKAAHqotKcIznNvAVyOnqTyOcdUAZZPUqAuqjwbtAcsfQWFADii7IYm9sPQGb2KrU2hiFJQDqbR1ciLXCxguANLwR0G7RO5jBfQOOh7bmtdAPDUgAIUO9FJJ9APQaZeRgO+tFc70BqiJBwJ/N0gtTFXAAIcDDEkHeehqMkzxea4YkV2jy1k4eccxQoWEtrg361RkUlVI1hTRcNNIHTAOxIrQdKX+0YIFTHdozyHI7LE+M/6zydoKu54ogBWETmg4+HjkQhDPUAmQR5rxQsrAiFvrHKvo11X6MvFNtvZ6FYEZkf1RwxrClogENrqd4owxntFM33IIQM83PYEA6iocaBQrFC8oJGWXQx72lGAzyFfpTBEUVCyGtGN2jdCPklpgJAAGmp5ZOATE5Gp9JD0xbwht/pfjtB6uTaZKuFjmzdoCn0sfQypVAESB2SaMQg8wYmFPBhnBK6bi+NnN4I3W/b0M1VWMURo0yqn3jOAPYNTE2DGrreJnUzG9YAp9Ya8U32BEHDmmMbNK55qq2nYvPUiedQMFImJmCUsbtQ7Gifp7yh2rrftkldqK8JoDHMF8qcsLtQrEhUns54yCfzHSgUS+dopBkIMl6rwsMm9KMGaWYjd0GhWFvlhbF5yuq9BhyKQhjsArJJABK7UUZXKHa81C201jhiPBSOsnh/hNsDnkI/6uCIIiGyaCobnYiUwsHRDHMoc8Dvw/hGBxZOA4tKO7dgcCLKQoC+UAS5MCkuNzXQjSbGUGbAqXlqLHSLR/A5Uoyrl7MAkIK8mhrSyacMOhEmypsvCBhQlGjqi43RQMlevgJAFMLz1AEeCm2yqaLEN0cdKRQry8YMwKiCiC6hFDQyn8dIAzgoKjMbZRwrFGtAGeReS51IJRSZo+EY8kESkTErHOcKZZ4QdVLmi8iLTi7vrjNrqUJffSsQYHOKQZKQ00Ue8kWSOLCvEVpLdVF575OCeICn0I86UEVic0effRb7fW+SV9ZwewAIhjEUjAEAjgxu5xqOPqBPbz5gH41x0uIDfnallS4qs7EDY7IHmA+ji+a2zgH76Ot4jbzWMbTk02EoQqzCHw69iv2732U+jgq/Z7d02kdjN+mdSwsXMUERIgdJe9AidzEfpjfK7OoZZB/PCPa+Sl7rx3MdNhRpAwAs8b+OZNcO5uMojS9t77aPh11byCtrmC+gPocTpf2YILHzsLUxDAkkNeTNvX0cF2kAdINW00hCYhmRqSfP4dG+TQgpRcdYQNeaV3fG7ePhgbfJaw1j/jygRpw0SkM42Leb+bCagF81NG7cFWcfzwiGeoAMfeYZI9YAdZ7O972D+mQH82GUh2/ttVHm73+LvNbG2I8JNyLlJ8/twsB2ruHoWvPUpn320CjLQFwxWvjYIgkAqPLiEOk9RLP7mQ+j9G3dn7BR5r9OXiNj2Y+RJCRCZI9wdJhdVgAajc+8Y+O+rYfKfEZlF1B5OFPajeZ8J/NhlL6d3UPYE7db5rdwHZZUZP5JwdfRv/895uMojS9s67JR5m8lr0HGgniAysPJUgcmSN0WXJQ74Sn0owyv7yEbzy37Ezjuxqfw0Et8iy431t8PPP8TZfCHyWcGvPiH1Qin4wCAb8avx4t/WM08ZCaXBwDc/uQ79tD4ws81r9n9ZzDT+OaGtQCAQ/3v4cNPfJCZxpe3k418VyJjHw//eT15v/0ZZvoAoDdB0h4uyf8GzXcvZKaxT8mj+/Xz79lD47r7gB7F4PDwRcw0vvr8PwEA7b5ufOa5U5npe3ozMeDkZeADP/yXPTz848XkfecmLh4e6CJK7gX+v2HcPYuYadzXR8Lu/rpxr33zdMfz5P3j/8tM48v/ehgAUCtlcOVrZzPT9/D6XaB++dN/8oz19AEaTak+YPVcZhrf20E2ZR/z/xeT7z+amcbtXWTjuXZrl308fOsR8v7Z1ezy4i93g0bMr9z+eWb6HnppB7qVOh0X/Oole3j4ws+09z9ZyEzj25uJgrXM/yrm/+EEZho3Kcamt/b228fDl+4m7zf8lkvmh7IkZ/tbXddyyfy8wvybH3/bHhqf/ymQV+q7/OoUZho3vfYiAGC+fyuWP3YSM42v7CAyv6MvaR8P//V98n7rU1w8rB8ga83/Dt3GxcPBFJH5v3xmu00yf43m3f3ducw0bnzhXwCAKb79+MQzH2am8ZktRPlP5/I4/iabZP5friTvOzZyyfzOHpKa9wXpT1z7Nprm+sdX9tg3T/esJ+///jVmGtf9+y8AgEYpiS+98lGueVrNkGTbG9BWF/r6+hCNRtHb24vGRg6PggPY2zuE4258CvroUL8k4Zlrl3LlczGjdzfZdMp57TvJD1z1Wtkc3n27tqL57oXwS9qFZmUfui56Ga0Tp5cdcm/vEI5d9RT0k3Y00VgtPAQIjePuXgB9tgQrjR4PTYTHw5KHVQ0PAULjbYcC+rvKSOO4uxfCJ0DjsTc+Bdnl89TjoYto9GR+ycOqZp56PCx52GjnIeDJ/GoEqx7qeehHEbZ1JjA81TMny9jeaVH4T/fWwocNAOQc0F0+9PrAe28WPGwAEJDy6HxvU8Uht3UmMNwCNZporBYeAoTG4aUPWGn0eGgiPB6WRNXwECA0Dr+rjDT6BGkcbs73eGgQDvCwGtYaT+aXhsdDC+DxsCQ8mT964Sn0owjTmutGPKh+ScLUZo7cEx40TQekYVNI8gNNB5U9bNyUQ5CTCy80K/vQPGV2xSGnNdeNyEq0nMbhI1pIY7XwECA05gVpHF4PyXoaPR4WgxEeVgONVcNDwFtrSqBq6AM8HpaAJ/NL433DQ7tp9HhYFNW1b7N3nlY7PIV+FKEtWotVZx+mfvZJwA/OnmtdeGG0HThttfZZ8gGnr64Y8tM6cTrWHX6DuqjIMrD+8OuZwmHaorW48Php6me/JFlP46FnaZ8lPzONf51yjeoBy8kSE43DeSjZwcPTb9c+M/IQIDQ+EjxV/ZyVfcw0Xr18pvrZFh4uPF/7zMHDJ2f8r8rDPCcPqUiR4G4e/l/kHPUzDw+vO/0Q9bMta81xV2qfOXj47CHfUr0nruUhQGhpO1z7zEHjg2O+qH7OcfDQdnlx0vXaZw76XtbJizyjvFB5qNvb2cLDaR/QPnPQ+FDrCp28cDEPT71F+8xB3zoBHgKExvOOnaJ+tkVezDld+8xB458mjV6ZT3mYE9y3fXnpDPWzLTw84rPaZw4ePj79f4V5WC0y//fhj6ufeWT+N06do362Za055lLtMwcP/zv7m9z7ttEAT6EfZTjnyMlYNDUGALjutENwzpGTrR1QL/i+/Aqw4Fymw4762FW4AV8AAAyMPQxHfewq5iHPXkAqWDaGA3jm2qXW0zhmKnmdfTrJ32GkMXXYZ7FRJsaH/uU3MdN4zpGTccpcUqn8kiXTrafviM8BPqV6/wWPMdMHAP8KnQgAGAw2oeuil5lp/OwxU7VzfG2J9TS2HEpeJy/m4mHoqPPxZH4+AGBg8Ve5ePjZY8gm9OMLJ1pP34JztbYun/g1Fw/Xxk4DAOTgQ9cXXmKm8bzFUxFU3BJ/uORY62lsX0Rem2dx8bBlyUV4KHciAGBo3nlcPLz6g7MAACfOHmc9fYBWyXfJNVw0vjpBM8p0f/ZxLhppa7e7PrvQehqnnUBeI81c9B384UtxZ/YMAMDQ9A9z0feDM4myNHdCoz08pFXDj7yIi8bd0z+BLpD8yPjZD3DReHh7FADwvTPnWk/jwacob3zAla8y03fk2Vfiu7nzAACJ1oVcMv+j88kmvrkuZI/MjynnP/RsLh4mDv0UNslkHe47eTUXD5fNJpXKrzpppvX0zf+M9v6ip7n2bd8KfQUAMFg/iYuHnzqa0OSTgP9ec6L1NI47mLxOW8LFQ//Cc/Hf/FwAwMAJ3+Di4ScWkU4Vnz5msj0yv06pbv+ph7hk/jMN5BnOSDVc+7bzj52qvv/Ll4+3nsYJR5DX1rlcPBxz/Bfwx9xxAIDBBRdxzdNqhqfQj0K0RcmmMGtH7+SE0tYjHAWapjIfls7m8VaatM6I5Ae4hmyuJ8rnQCqLlgaOFmSiGFRobJvHZAGl6Eyk0CGTzV0s7OcactIYYvWkFf0tRapfq+g7fi7Xoe8lyVwLy4Noba8c7kURqw2qIWrhAN+9EQKdpy1zuHjYnUhjjzwOANDI0bEQAKaMJfcmmbWBhwAwFCevLXPK/mw4tg2R6/Qjj9Zm9hZGkiRhbD1pB+QfHm9oBRJK68em6Xw8HEhjp0w2PnW+LNeQB40jbbYSqRzXccKg83TaB7hoPJDIoVuuBwCMi9ZzDdnaaMMaSkHpi07koq8rkcZ2mciLOinFNeSMVnI/+lN8vBcGlReTjuZeaw7IRDEfW8fRZgtAm9K6LmdHiWPKw/pxQIy9v3cincPbeYWHMl/ebbOyzvSnshhvx3yla82EI7jn6T5F5o+p5Wh3B2CiKvNtYKK+JWbroVyHvp4mLTLD2X6u42j7yLwM1IXY+9cLg87T1kO5ebhHJq35opwyf7Ii81MZG2S+LGt85OTh9iSZa0E5hdaWNubjAn4fxkQI7wI+G9THQaXN7NgZ3GvpThCZX++3SXa7AJ5CPwoxVlk4u5R2PZaCCr4IX//y7kRa9Ub4hth7QwPAGJ1giA/aQaMiGOo4+rWCKBJdcmPhORhBFaWuARvooxvQYISrv3cuL2PrEBEMvmwSSCeYj/X5JFXAd9pBo+A87Srg4QGuY5tVHvIpIELIDGmtFev4aNw3KKNPVsLmuOepstbYOU85n8PORBpdIIoSLw+pYmULDwFj66ksRmOzrfKC8lDgOYTYc6jKQzvmKCAsLzpNkRc2zFPROTqgzVHfoNg6k8rmkUjbsEF3ZJ4qPEzYyMPaMYCf3fCQzOSwM6UYgFNxIJdhPrYm4EdDmIzVaQuNCg8jnPu2hJ6HfPO0WZWHNtCX7AXyyv3nnKc7EgGkZIXv3M+iA2sNJ32dAynhfVs1o+oU+jvvvBNTp05FOBzG0UcfjRdffJHpuAcffBCSJOHMM8+09gJdALqodNupKNWN4zqscyCFTuWBk1J9QJZ9cQj6fYjWEitht51GC04auwwIBnuNMmKbl57BNBJyDYZkxYzNKxiUDYybediZSAnzkBos7KFPuTZ/CKhhb68pyzK6BtLoNqpI2DpPOZ9DvXAXVCRs4WEuAyTj5D33eppGNxrIB1fPU8G1tGCDxmcApnN0IJVFMmOHMmiARmp44l5LHVhreDfZiRS6ZGWODnYBeXYvZiQUQDhItqtu3td0JVIGjDI2Gp4M7GniqNeKjg1yPotVsNZ0DqSE5WGTrXsa5dpqGoEAe0RPJpdHfCiL7qrYmxrYe1MDN+ccrWZUlUL/0EMPYcWKFbj++uuxfv16zJs3DyeffDL2799f9rjt27fjq1/9Kk444QSbrtRZNNlp6R0UE+7diTT6UIcslHBrQeFnj3dXTJEwYiVUhbud1npO+ojQkhCXjCm89sxTZVHnnaeGvGYORCDUjRtZ0b8M+oayyOZlE7yf7p6n3VSREKSvZzCDrNXpL3SOSj7iOeNAV0IzkIoaZTpd7HEhGzTdHB3eb68MGsMBBP3kmbB8o53P69Ya++epvZEyvAaLNHqo0UnOF4Z9M4AagG317op46EWfQ0eM+JxzdCANGT70SqL7Ghu9uwbmaafBfZu9Mp/fEQPABMOTe5/D7oTewO156F2JW2+9FRdddBEuuOACHHLIIbjrrrsQiURw7733ljwml8vhM5/5DL797W/joIPYc3yrGc4ou7wbtBQACf0+0TBRO8PTaOiWSBisqHC3MeRekD6qAPT6Ysp5Rp/wG6FIcICG3PcMppG3up4FVSI4wwvp8xOXREPSHdiEcs/TNDrVkHu+5zAWCam1HrqtTu9RQ5nHAhz5iYPpLJKZvHjIva1pE3SeGghlzmdIuCkjJElL77GcxqEerXcy77M4kEanIA+rwSjTnUghiwAGfGIbbdvmqSxryiDvPE0YCLm3NZRZLBydGlP6RGW+E2l2Aspgl6C8sHVfKjpHlXsvzkMHovIE9qaia2k1o2oU+nQ6jXXr1mH58uXqdz6fD8uXL8dzzz1X8rjvfOc7aGlpwYUXXmjHZboCzXaGiQqHF5JrSwQVTxRniKFtYaKZJJBWir8YyacTDPXtSqQhc3ijhGCQh4OUh9z5ZjQ8zb3eXRIGK8bDMRHCw1xeRu8Qe66hEAyEpgHAkPocioUz22p44n4OdZEymUGuWg9+n6Ty0fK1xuBz2OcTm6dVEXKfSCGFENI+pQsAd6ivTRttSl84BvjZC3+lsjn0p7I6ZbAaQpn5DWsAMBgwKvMt5mGqD8gp99HIWmNA5lsOs/Zt3OkvVZAaMpDSImV456hCXzKTx2Da4iKchvdtMfLFKJ2n6nM41APkbCqI6jCqRqHv7OxELpdDa2trwfetra3o6OgoeswzzzyDX/7yl7j77ruZx0mlUujr6yv4qzY02VnISTSvVVkMUqGmwvMwwjbvLl3sfEFSyZ8RsiwPy6cTs4Kms3kMWF2d2UBYE6DnIR+NtnnNclktvFPE40J5mOwFsuzXGgr40KgUAbJNkRDYgAJAUpCHY+1MmzAQcp9AGDnamtGtua0JsSiLTpWHynGj0LtL5UWyRnCe2sVDwTBfupbGjXp3bdlki0dZAEZ4SOep1c+hwsNQPRBk77GdzeURH8oYDrnvT2aRylpc60F4npI1IhWiCr1Li4ymE8R4CwjJfM2728lV66Eu5EdNgKhV1ssLseKbXSoPDcp8F6dNdCu1HmSI1XqoVlSNQs+L/v5+fO5zn8Pdd9+N5mb2B3rVqlWIRqPq36RJ7G1Z3AK6eUmkc9YXARIM3aKLQTZsbBNqubVevwHlyE3uT2WRycm6whzdQJ6dF7UhPyIhUl/Acmu2YB0ElYe1Cg+5vbt2GWXodUlApInr0K6BNHpRB1lSaj1wWrOb7fJgGzSsZdTn0KVF4wpyk0WUQUlbawSLN1qu8BqqZaF7DgUVCXu8ZoI8HCEvXEqjsGFt2HMo6DXrGUwjZ3V6j/A8NchDu9Ya4SKxGcgyCouNcdV6CCKg5Pf0JOyK6BKbp9la5TjBedppFw/9NUBNA/Nh+byMnoS+1kNOK1TKAEmSNJlv2zwV89BnKA8Fi4xa/hxm01pqlYC8yMOHbFjZ73HO02pF1Sj0zc3N8Pv92LdvX8H3+/btw/jx40f8fuvWrdi+fTtOP/10BAIBBAIB3H///fjzn/+MQCCArVu3Fh1n5cqV6O3tVf927txpCT1WoqEmgJBfsRK6PExUpg+qaAEZ2xQlMcGXDlGvvkyUeg7YpvAKV4BXeEgt4ILWetuMMpGxgI+95/1gOouhTA4yfDoaRQv/uXueqscJ531aTF8yTjZXgHCtB5nOb14e2qZIGFtLVaOqAUXJ0loPsmwCjcbmqeUF1QyE+QLic3RMJARJIre4x65aD4LGQwiupbZ5Bg2khQBAnipKuRSQYu/VXtjK1a3z1JjMV9Mm7DRw8xSJTWaQzcvIIAA5LJZH31Ql81STFy4twEmVcMlPUpgYIcuyZjASnKfViqpR6EOhEBYuXIgnn3xS/S6fz+PJJ5/E4sWLR/x+9uzZeO2117Bhwwb174wzzsDSpUuxYcOGkp73mpoaNDY2FvxVGwqLAFm8qIhWElUeOF+92AbGvjBY0cIj5L7H6iNArWhIuk3haaIh98q996s8FK3k79YIBHJdoYAPUp1oJInNwl1wnvpFn0PdBtTSWg9qbnIUCISYD0tn8+hPkpQVf72YcG+2ewMj0A4MAKT6FvKF4CY7m5fRl7TQM5jqJ0oOIFRgFAB8DYJGGdsNwGJRFupzmB4AMkPMx+trPVg/T8WiLKgyqPHQpcW4BNdSKg/r6huAYF3huRhhvwFYLMpCW0sFI9asNqypaylv+hK57w3hAKQ6g/sauxwxomupoLzQHE027ks5isQm0jmksyRNQlS/qFYEnL4AHqxYsQLnnXceFi1ahKOOOgqrV69GIpHABRdcAAA499xz0d7ejlWrViEcDmPu3LkFx8diMQAY8f1oxNj6EDr6ktYuKvmc5nUWqnIPhKKCi4rdRY4EDRZNdSFAHgcMdfOHa9sWJipa0Zfc+2Bja+F5GGF/lIUYD5vrQjrh7tI+7QYNawHKQ8EQylQ2j8F0DnU1FokUA50mAKLwBBroWiPKQ3cb1mooD5NxEq7IaPioCfjREA6gP5lFVyKNWITdYMIFOreCdUAownxYLi+rHQaCjS2F52KEbYVihQ1r5LoiDTHAHyJF2RKdQIw95W9sXYhU6B5IAWAPM+ZCZogYGwChKvcAEFLlhUsVJWHDmk7m+5qBeIIYP8ZOZz4HUXj7bYxaE6tlISzz7VZ2BQ1rzfU15NiuLe41PBk0rGlrqViB0b5kFulsHqGARX5hg06K2qAffkEDcLWiqhT6c845BwcOHMB1112Hjo4OzJ8/H4899phaKG/Hjh3wcVhyRjNsKXQ02A1ABiBpXmhG0E1obUxJl3C9d1csRLS5PgTkm4HOze6kMZ83rAzWjhEV7mSODqSySGZyCAfZw+G5IFz0jzw7Y6lwB9wbnmYwny5CeTjYRQx1jKkJkVAAtUE/hjI5dA2kLVTojYUXNtWFIAlGkjTZ1WrJoOEpEhtLwhPlHOFjYxvzOcbWhYhCP5DGdL7h2SH4HMYH02oqcjgqqAzaFe1kcC0dWx8mx/btJjRyKPTqPLVSXqi5ySGghj16UZZlda2pjQka1mwz4ov2aCfX1Vxfoyj077nTaJHLaHnhgvKidozYvk0NuVdqPfh97OHwXBCWh4rMrwuJh6TbHZUnaLRQZX7iAMnVYUxNiNYG4fdJyOVl9Aym0doY5hqfGYZq5ih8ENy3VSuqSqEHgMsvvxyXX3550f89/fTTZY9ds2aN+RfkUthSBEi1oDUBfvapNJTOIZEm+bD1TYpg4C5UReiLD2aQyeUR9FtlJRSsJKoKhhqi0OvPxYgmO4pxJeNAXqmiLxiS3tCkE+4cgqExHEDQLyGTk9GdSGNCjL2iMBcELb1UgWuqC2n3RnCeWroJLchNFqt420CFu5wnHQE45kJTXQi740PoTKQweSy755ULBos4kQ2aaJiou727dH1oqq8lm9DEfjJPeRT6+hps7xq0dhNqsML9mEgQfjXKglORsK0eibECo2PrFUWib7dwOHO3HTyM8BWJ7RvKIqvUZ6hrUualYDRQt9LKVeIYnwsG5+nY+hAgudh4SBUlyQfUjmE+jHbuAYB6VaHn3NMo0T+yTAx11KhvOvR1czhQEGVBlUFuD7ZdjhhjBUbr6XOYTZKoG8bigT4lvadzIIXOgZR1Cr3BeiuFMv/9odB77uxRClsWFeGwLSX0zu9DJCYmGGKREKhx19IiQEZD7gushC5UJKhQqGkEAuzCNZPLq73VG8cqgiGfIT18GVFY68GFPBzQW3pdXDQunSBCGRC21o9pqNM2d6Lz1I5NqGBqT4G1nluRsLuWhRgPjXgk7JEXYvSpBgu9YY2zMnOzWoDTpVXuE7pNqPA8tZOHYs9hQ01AOOSeyopMTkZf0sJWrsLztIgBWNQoY6UBuKBILLsKMJjOIZkhucnRcRPIl+l+IJNkPkfA78OYSBCAO9eablXmG4jKsyPNbqiHGN8BgQ5T5LpisRgQVAzwbtybGmzFS3hIHTFe2zoPVQx7Qu6Nb0DVMNjMIFFMGGFbESCDYbBGrIS2hN8JLpo9tLCKBMQaG4GQYt0VDKO0tPq0oDJIN1XNBcJd1ENvAw+DESBUx3xYLi/rcgaNzFMbQmENW+vFN2i2GJ0ySbI5BoSjEJrrarQIDTfmtgquNZq8qDG8lg5lchhMu08Z7EoYVyTs8e4apU+n7A71kPBvRoSDftQrKT3WRpKYkKJluJK/+/Y09DkMB32INIwBfEQx5zU82VLJX3ieUplvwIhvR0Fqek21YwB/kPmwVDaH/hRZ/5rrDMxTW+SFqPGwiHHU89B7qGbYE3JvrHp4U10ICNWTXqH68zHC1kVFsDBHs95KKFjl3lLBJ9qyTuVhDXw+SadIiG20LfXuGgzXbjIQrm2Ld1dwjsYH06BdysYYEH62KBJmFKcUVHapd7c/lUUqm+M6lhl0A+oLkkr+jNCHwRqJBrIlP1l4LdUZnfRhsPk88zkiIT9qlOJNlsmLXJYUPwWEc3cLvbtihjVbvLuCXrOmuhBRQiRl6ynYytWVkYeqYc2EtdSF+7ZOXRqh5POZME9dLvMFo4FsNY4KFokN+CQ01gZcvjc1VheoyYBRplrhKfSjFG72uHTqQ2IkyeWbUGNeJTNysWwxygimTdBrNO7BdqHRwgRLL30O40MZZHPsCggXBKsy03kVrQ2SGhSC4WljbQm/U66JO7xQ73HRzVGOFnuNtQEElPwey2jUrzMcucH9qSwyOUKLGfPUUkVJuMCoThmk/JdzWmEvBkiSpGuZZRGN6nMjceUmA8ONFqJpBS5OX9JHIPj87u2BXZCbbMR4aCy9x56Qe8F6JPVU5gvOU1d7d00ohKszWFjWytVgseamuhCpQSE6T22t0SXGw+aCqDwv5N5DFcNWz6BoyH3dcMEgVujIMsGQTgBZpRewYGsQI/nXzTrBkM9bJBiEwwuHC3eD+WaWCneqDIqGUIrnRI6JhCBJRH/sGbSox7ewYa3UBo23T7sda42xir5N+vDCXIr0RGeELbUeBOcovZ66kJ90iRAMSW+yM0xUOISyhrTioxEMbqs+TTfFkbHMXSIAYDCdxVCGRH40meDdtdZ7LWpYGybzheepxUb8ZJwYiwBh4yFRBgWjgexQdg2mSjaNMOK7bK2RZcPRQIZSJRX60rm8Gt5uOkSLNesNa4CBvWmVzFNKX6oXyFpcA8cF8BT6UQp97q5lVkIzCgDpjxfs026ZcKf0BcIkNYAReaWdBzA8/5pv0RxTR3KjsnkZfUmrlUGxkHtVMETENjCWb0KzKbKYAwYqpOvSJjIJID3IfI6CWg9Wz1PRfME6KtzdrEgYnach0vs8WFd4PkZYXujIjAJA+uM5oyyabTGsGUvRajZoPLTeKGOszkMo4CM54kZrWbjQsFZQxR8wME9t4mE4SoxHjEhn82qhvsJoILE5OpjOYShtUXqPcMSarnMPYEDhtXgtTfUToy1grFMBvT9DPSSdhhHhoB91IWLQc99ao4tYA4QdFZYb1gADqSE6HoZjgC9QeL5RDE+hH6WggjOVzast4kyHoBW0c8QmVFT4WZyLpY9A4AiD7R3KIKd41MdEdJbeZC+QZb/WmoAfDWGlCJBlYaIG2ywNt9bzGmWs9ppRHvoCZHFnhL5v8tj6EOkC4FdoFSwCZFmdgIRo0b9hHhe3FsjJZcmmChAOoRyxgRFtRWTZPDUaymww2snWmitihqemEYqEaIqW1fJCTIloHhEGKzZH+5JZpLMWpfcYnad1xjyDls9Tg1GHfp+ExnBQm6OctR7qawII0VoPlhmARVvxljCsiXZjsFrZDdZxF4mljpixdTWkHTMkALJWG4MRTWoamtU8FA+5B2Bc5lv1HGaGSCs9QHhv2kxTeiNiDsNqhKfQj1JEQgHUBqmV0OIQQ9NC7sUWFcuKcakGC7He3o1hRTgXFAFymefMtLQJ0XZZVue16sNg2Ze7gVQWaSXnfWzd8FoPYiF4lhU6Eu5fXkoZFGu1ZNkGdKgbgAySm9zEdWi3uoExZjy0fBMqbFgz6TmkG9DBtGqMNBX5vO5ZNOA1A0wIE7V6ky2W2tNUjD6O6LpobRB+q2s9CPe+NjdFy7JiXAbzdpvqQkqRWOX4fJa/1oPlkSRmhdwbNaxZtS+lc5Rv39YzmFYftzGRoFLrQZE3gvsa6/amovN0uGFN7Dm0PlJGmVN+xZnCCFmWTUsNqUZ4Cv0ohuVWNDP6e+uPF843c5fXrFO1ZCuLps9nOB/LehpFlUGXK0oG52gk5EetEj4nXgTI4lBYw2Gw5vDQsiJA6ualCfAHmA8bSufU6CTDioRbvbsDw8JgBYsANSlpIaTWgwU0JuNEuQFMDLl3mVfJaFrIcO91Nql5qRjg8+lqPVihLMmygTS7UvPUZTnmBqujq4a1QA1QQ2s9CHZGcVmKllmRlW59DikPx0SCCPh9hedw3Tw1KC+MrqVW183R85AjOrZvKIusYpA2aniqRngK/SiGpRVhs2kSQg4Yz/s0WCDH+srTgt5rumgCwnUCLM9PNhgGqwkGmkPPGyaqbV6sUQaNVrvV8dBgwTHrvGbGPC4jw9HF5mgmJ6t5pKbC4BwN+X1oUPpXG+/T7q5N9gjvNY0mSveTsEVGBPw+xCKkZocl85R6zWqiRNlhRCaXR+8QqR8yQuHlnqd21UEwaOAO1QHBiHJOF/UxTw8QIwNgXCYarLlifQSCaP9y3dyma42ozHeZh750lXsXzVHAcE2ZsXoeGpb57oqO7Roh8wXnqHJ8Ip1DMmNBSq9o/rxyvxtqAqRIrP4cnkLvoZphaZEcKvgkP39uslnh2paHwYqFbhW0WaIQTiuwMOQ+n9NoFOxnahYPk5k8Bq2o9WCw2q0aqg0YptHy1BDBnMgRoWlDPUCOvQhjTcCvKsyWrDUGe+6qLXoAAx4JmwxrgiGUKg/DUdLLXn9ORqipIVbykDcMVpebHK1V6DIsLywO9eVM0eoe3gIUMJyGZol3l15LoJY7N9n8FC13RayNWEsBd3qwM0li7AME5mkpHortaXqHMshY0crVsMw3b99meci9YL2OoiloHA6VhpoAQn5a68EKA7AYD1WZX2/8OaxGeAr9KIalm1D9gsKRm5xI55BSCvYYrnirLEr9qSxSWSuUQZMqwOvPIZqrZMUGZpDmJkO8DdHw8DvOIkCRkB/hIJk/lnhdDHo+m4sJd8HewpYoEvoWPUarFhuo9WDpJtRgdfSxJgh366vcG+vRrnoGjfQWttJ4aHAtHRNRcpMB8VoPdRbSB5jgoTfBeGgljYJzND6YBi3LMMakIqqWtXI1K1JGfw7BdrXWOGJokdig1v6RAcQRU6KjBid9sdog6KPc4yp5MayAKiC+llq5985ldEViDXaboAqzQK0HSw2kRtMITTDKVCM8hX4Uw9I+7aJhvsq11Ab9iIRoGKxYEaDG2gACVhYBMlg8pkAZFKwmamnIPeVhLV9ucjKTw4DSX3VECKWc4xcMagEZCzcwghXgi6ZNCHo+LZmjyV4gr3jTBa3Z6gbG59eKzonOUxetNSN67gLCFW8t751s6jwVTCuwcp4aXUuLpr6IhYlaV+vB4DwtJi/clKJlcI7GIkEE1dxkMR5Sg0BeBuJDFrRyFe0YMrxuDqBLK+CsZ2GpI0asc09/KotMjjwz6jylczQ7BKQTzOfS13qwxINtuFiz3rAm2kLSwpD7QaXivqQUXOaAtjdVaAyGgVADee/KeSpaQNW4zK9GeAr9KAZ9aDd19GFvL3s+JRMOvE1eOfqzA5pXsC7k166JPnC5NHBgM/O5JEkLw9zc0c91HUzo201H4jpsV3wQANSKwwA04dLxGtC7u8hRxUEXpncPDJjPQ7W9S4TrmrQWPcBAUtlU+YNaNdJ9r3NdBm3N984+9gJQzIjvIq8+doMFALzXRTYooYBf+5Ly8MBmPh4qgm9Xz5AFPNSFwXJ41TO5POKDGfW9Cpo+s/8trsug8/Sl7V3m09iznbz6Q2V/NhzbDpD5FAnqedisnZODh1Sh3N+XMp++dALIkDUDOb7N0b4+sp4WeCvpPN3+DOdaQ2jcsLPHfBq73iWvgTDXYVsPkHW9rqbIc9i3R+g5TOfyeGe/BWvNwH7yKvNFi3X0kXtdoF9RGne+KDRP39rTaz4POwVlvs6Ir14TfQ5TfUD3NuZzBf0+VV5s2tvHdR1M6NtDXjntPbupzJeKyPy9rwrN0y37rZD5VF7UcF0TNdSGAz6taGaoDvArz3MHn8xvDJN92zv7Ldi39e4krz5/+d8Nw45uwsOgX89DZZ7u38TJQyIPd3QNWrdvC9UD/R3Mhw2ms2paY1ov82tj5HX/m1yXQWX+C+92WyDzd5BXf5DrsO2dZN9WG9SptvQ57H6Xi4fVCE+hH8Wgi+XarV047san8NBLO8w58fr7gceuJe93Pk8+M+KRV8gD1ZlIa9f0+u+1H/xsMfP5Hnpph2qRu2DNS+bRB5BrOLCJvP/TpVzX9K9NZMFd/cQ72jV1bSGvW/4JrJ7LfL7XdsUBAG/t7TeXhwDw+h/Ia98urmv67YvkGnJ54Pib/kWuaf39ZHMGAPefwXW/NinGmGv+sNF8Hm57mrx/4gaua/rdy8QQ8MDz72nX1PEaed2znut+vbiNWNQ7+pLm8/CVX5PX7BDXNa15drv6/rQfP6PxsFuZpw9fxPVc9w6R5/CXz2w3f6157f/I++d/ysXDnz69FQDwjzc6tOvZ+QJ57dnOdb+e3kye6XQubz4PX/i59v6nx3A9h3RzXbD+pZRN8rOruWjc20sKnv3xlT3m8/D5O8n71//AxcMb/kw2mevei2vX8+6/yGu6n4u+P23QNnOnrP6PuTx86V4tN/m+07lo3NxBjAtf+71u/RtQNuqv/JqLxneVDe3Tb3eaz8N/Xk/eb/8P19rwl41ESd7bq1v/3vyz9oMfL+C6X/1K4c3P/PIF8+VFj2J4evgLXNf0zBZiTL3psU3aNfUohorNj3Lx8M09RI5u3NVr/lrzxiPatXFc0++Ua0hmdevfK78GckqRxF+dwnW/6Dy96sEN5vNwx/Pk/WMrua7pkQ1knv7q2e3aNe1TlNydz3Pdr5ffIzJ/Z8+Q+Tzc8Bvymurjuqb71m5X33/otn9rMp8aQH53LtdzTZ05d/17q/lrzVuPkPfPrObi4T3/Jc/cX17dq13PrpfJa+fbXPerGiHJlsSejR709fUhGo2it7cXjY3s/RCdxt7eIRx741MFEex+ScIz1y5FW7RW/MS9u8lDIessfJIfuOo1INpe+ZpWPVVg/G6XuvFM+ApInOfb20sWyrzZ9AHCNJa6prWXHYzWexaiwOzPeD5LeAgQGm871JRret/w8JeLTDvfaOGher5hz7WTa03V8dAta43HQzF4POS6pveNvBhNMv/9ysNfLixMA3UDjZ7ML3o9ZsoLt4FVD/U89KMU2zoTI9LRc7KM7Z2Dxk7cvbXw4QBIiGH3u2zXNOy7ydLewgWF8XzbOhMYXhPHFPoAYRpLXVPne29hRAwf4/ks4SFAaDTpmt43PHQjjQ7zUD3fsO+cXGuqjoduWWuGfefxkBEeD7mu6X0jL0aTzB/23fuGh8OZ4QYaPZlf9HrMlBfVCk+hH6WY1lwH37DUb78kYWpzxNiJm6ZrlbApJD/QdBDTNQ3PRt8ht0EWOJ9l9AHCNJa6puYpc0w9n2k0DucG4zV5PDR+vtHCw1Lnc3Kted/wsBSNJp7P4yEDmqaPLDBmlEZBHnoyXxDvl3nqyXzma/J4yHe+0SQvqhWeQj9K0RatxfWnH6J+9knAD86eazzkJ9oOnH679lnyAaevZgpfaYvWYuEUrSqnX5JwxdlLIJ1+O7RFSmI6X1u0FqvOPkx/lDn0AWTsE76ifZb8zNf0rdNG3vPWidOBD31P6Hyrzj5sxPlMo3HCAqFrWja7Rf1sCg91C7Gp9H3wu9png/e8deJ04LTVuvOxzXvLeTh9qe6a2Gn86PwJ6mcjPKTnO+/YKQXnM22tMfGet06cLrR2DT+fZDYPDz1Ld03sPDz3mJH3vHXidGDRBULn+/LSGSPO55S8KHXPjfLQMnmx8HzdNbHf88uL3PPWidOB468WOt//njpH/ewWmT9vktYezdUy/7grtc+C99yvn6cnXS90vh+cZaG8aDtc6Jo+MFOrNm6mzDedh8uu0z5z0Pf9Ive8deJ04CO3Cp3PUpk/7QShazrt8Db1sxky/zNHTy44n2lrzam3aJ/N2LcJrl3VCE+hH8U4d/FU0IKdf7z0WJxz5OTyB7BiwbnA2Jnk/Vm/IJ8ZQdvOfP64qXjm2qXkmhacC8z/DPnBkV9gPt85R07GVcvJdSyd3WIefQAweTF5jU0l+TaM10SV3ZDfh2evXaZd01Ff1H70pf9y0Ti+kVSS/cW5i8ylsVbZaB13NReNE2Jk0T77iAmFPKSb0Dkf5aLv+2fOBQAc3h41l74ZJ5HXUD0XfR+dry32j131Ae2aFp6ntXX7zB+4aJw7geQ9ff/Mw8ylsUFRzI/4HBeNM1pIpeoTZzUX8vCUG8kPJh/N9VyfodyzcQ0h7Xxm4JAztPdfXs91zxuVati/vvBo7XoWnAuMm03en3kX1/mWzibVcq9ePstcHo6dTl4PPpWLh3PbyfN7+MRo4T2nBoLGSVznO+cocnzAJ+G/15xorryg1bDP/zvXPZ8+rg4AsPqc+YU8nLqEvF9+A9f5/mfRRADA546ZYi4PW5XN5KRjuO75kdPIejJpTG0hD6k8DNZxne/8Y6eq7x+94gRzeRhTzvU/a7jWhsZaIvO/9IGDCteawz5OfnDMZVw8vORE8rycPHe8uTyceBR5HTuT654vmUXWhboaP57Ry/wjv6D96LIXmM/3yaMmY0yE3LM1FxxlLo20RdkHvs5FY2uUPL+fWDSxkIfHXEZ+cNj/cPHwesXxsXBqzFz6pp9IXmubuOg79TBN2X3qK7q1b9EFWleH8/7CReOsVnLcj/5nnrk01ikOlUUXctE4rZmspR+c01rIw+U3KD9YwvVcf+RwsveYEAubK/Nnf0R7f+WrXPc8HCAq7UMXH1MoL8YoHvmP3ctFY7XBU+hHMSRJUhXogvZbZiCttP1pnsl1WK/SKmvhlKZCa15sEnnNZ7nON3ksCfFJZ/MVfsmJoR7yGpvEZc2jrcCa60OF9PmDmjDlbN1E20kFhscUGQWlcfIxfDQq/X8PbY8V0jhmKnnN8fVenaoImsEMX7uniqD01bdy0der0Of3SZjZMqxFE21jw9lOpUUxyvjMXnEpje0LhObpweMbC3lIQ9EyfG1oYkr7yGQmb44ngoLSF6wDmqYxH5bPy+hPkbVkZuswHta3ktfhoXgVML6R0GV6GVlKY+tcoXk6rbmu8J7T3sS5FNf5KA+zeRmxCF+LwLLIDGnVsFvnlP/tMCRSZE04qHkYDxvbivy6MtpjRF5kzWYi5WHzDKHncEKstjgPMwltvjIg4PehoYYYsmoCJi82tHtC88Fch/UqnRgWTR0m86PEuMLb5m9yE+FhxiqZP2aKkDwcV19TSF+oDvApciLItyZSmR/0m8xDSuOUxULz9PCJw2W+EiXE2W5ziiLzh9IW8bChjW8tVeirDfrV/YiKiGLE52ybOq6BtHXzD0/HMQpK48RFQvN0dltDcZmf5ZT5ETK301nZGplfO0bTCxiQzOSQVNaEWa2Nhf+sV4wgnK0Mqw2eQj/KQTdmau9Qs0AfOrrYMSKutLeii4EK6vkc6uY6n+X00R6djKCLZrTYhjiibNIGeWkk94oKVdOgXzg5EFfu9ZgRPFTOw8lD6o2IW8ZDXvoUHtYGIQ0XxsLzlNyrHrfwUJ2nw3hIn+fBHq7z0eewP5lFNmfiJk2Qvv5kVlW8o7VmzVPKQ3fN09gI+nRzlENxjYT8CCkKhKnzdChOXiU/UNNY9qfDUVJeqPNUdC21ioe88lDh4XD6wlqYOpJxrnPG6ixYa/J5jY+Ca031yHzB53C4zJck8XlaWyXz1LDMd4s8LLHOAKN/npqwlpraLE1wjvYpc9QnQTVqqhCcp9UGT6Ef5aCCodfMhTM9CGQVjwvnotKjU5YKoD5wnIpErTuV3RGbbP25eGm0SuEdNCoYSmyyuenTeGiqYKACinuOWsDDWqs2MGI0avN0mHAXpE//PFPPsSkQnKOUh5GQHzXDo5MMzlNT6QMMz9MRxkN6nnxWi6RigCRJqoHH1LVGnaOxkcXjyiCZySGZIcah0oqE+FpjKkTlRaLEc+gPaEq94FrTO2QiD5NxqNW1eedpopQR3yAPzX4OBddSVV4UVQYNynyX0FhSXkSM7tvM3tPo1hoOlNyXAi7cm5q8rxGkjxplsnkZibSJ0ZXC9Gk89A2PZhWU+dUGT6Ef5bDEM0gfCl9Qyy9igCzLqmGBpgKooA+voGfQNZZslb5ygkHMWm8qD3NZINVL3gtHWZTiIS99mmAYSPGlXJSFaBRJKYMFIE6j2zyDdJ6W2mSn+4Es+7X6fZKas27JWhPh3IAOUfqKRMoYnKfuiXYqwcNgLeAn4Z7inkELeCg4RwM+CfUmeVw0r5lFCr0gD2Pl5IXgWtOTsICHoXogwB56nMvL6EtmlesySV5YbpTh46G6pym31ghHdJm41mSGNEeMWTJReN9GzpNI58xNl6RRJNz00ahDE+WFy2Q+NUSP2JvqFXoOh0o46FfTeqjRzhQI79vM52G1wVPoRzk0S68VHpcxXB6XwXQOaSUcd4SVUNDSO8YqwWDUazbckg3oQrfELKGmegb1YZzhGNeh8USlUF8+wVAb0gSDuYqEQW9E0bQJUR5asAmVZRO8u8VCfZVnmjPUlxrpTPUMGvRGFPe4GI8kMRWG5+kwGvWhvoJrjak0Go2UiRRLfaHyIs51Tvoc9lrmGRT1mpknLyzx7gpGIOhl1ohn0fAcTSM/vPm0ERiW+eatNdo8teA59AW4HTGlFXox+hrDQXXraNnelANljfhG56mZz2EuCyQVR4xZe1N6HjkHpPq4zmnJ3lT4OSyRRqg/l+eh91DNsNbjIuY1C/l9iISGhcEKWrIbLBMMxry7I7xmgHGPi6lhsAp9NVES3smITC6vFhsb6XGJkVcBwWCJsmR2viCg0cg5T6NW5NOlE0BeuV+c87S3lAfb59dCfQW9u5Z4BkW9ZmZGylgWDRQnr4Ie7KKGJ0Eao1auNYJradkwWOEoC3eE3PeyyAvBiC5z0yaMpaA11ARGFngTnaMKfXkZqiwyBUajLEyV+RbICz0PORwxQxnNETNCXuiLN2bZi+H6fJLKR1fIfCvWUisiK6kyD5hntAjWAgGlqJ2b9qbcxkMGD72n0HuoZlCvmSXCXTAkJlrU46KcKzMIZJLM5/TrBIOp1myDHgkzLb3WCr4Y12F95TwuesEgbM12XjBoxcbKec3iXOdUPS5WeM38ISAYYT6srMcFEJ+nLvIMlsz51J9LNMrCVI9LRjN+mVUUDzDuGXQBD8tu0ITnKKFvKJND0syuGpYYDw3OUxfIw5LFN4HCtTTPHl0XDvpRGyQOAVfI/HIh94KRh25UdoN+aaQjpqZR6xbihmggS4viCUZWWuKIaeRyxGRzefQrqS+mrqcunKdm1j6qNngK/SiHJQ+cYEhMWe+1XjDwVvWttWCjrYZu8S0qPeXCtQ0WHzGVPspDTqMMtTY3hgPwF2uj5ybBIEhjySr+gLuK4unnKIfHZSCVRVYJVTXTmq0pEiZuYAzOU3MNFpqya1qor94wxNtRo2zOoHIuNxTgFF5LzVd29etWn1nrqSybUFDNTKOFe+QFU14rZK2eCyO0wnhWGIBFZX65eRrnOqclMt+EOTrCEePzGS6k6gZ5wRRZ6YbijYI81Btoaa2bArhpb2qwKJ6Za2m1wVPoRzmstYKKWtCKPHB6wSAanmZFYQ5LvGYuKK5i1Gs2vKghhSAPLWldp4Yyx7gOY/JeV3FoGqWvJuBDOFikL6voPHVRek/ZSBmD4dqyDPQlTaKR0heOcvXITWfzamXh8vNUbBNqSWFDs9osAdoczQ6RYl+MkCTJ/FDY9ADpKADwp75YUIDTEsOaYR4WoS8Q0nK5hUPSnY9aY5qnbpL5onO02J4GMGGeumGtKRPRJSzzXbQvHdIcMYHhqS/684kaLVxQFK+3bJSFVxTPwyiANZZs0dYgJQpxUbjFEprPGxcMJno+Y5YYZQStoKUK4lG4qZ2U0YJqpvKQ0JfK5s0L9TUYKVNU8OnPJ1yMy/kiR0zFxpK9QJ6dF6GAD3VKyKlp81S0iJNyjyWJ1BEZATdFkgi2kirbArSmgfS1BwysNSbNU0pfIEzSjhghy7IWcm9qUTw3raVl6iDoz8fpwTa9TkA2rbV4dEWrWvdEVpaNlAFMKN7oBnlhfkE1er/6klnkzIroEpb5Zfal+vO5oQDnoJhhTd2bVkqbMLM1ssvgKfSjHJYU5jDoNSsa1qQ/n9NFgFJ9gJwvvCZGlGwlpT+XoHe3L5kxTzAYzPksquwC4uF3lnoGRQvGVShUxSEY6msCCCihvqZ56YWLOJUJgwVMKN7oPA/Ltx6MKW/kwiJDDDC9WJXBon/R2mDx1BeD7bIsiZQxs32kJBmItDB5ngrKw/6UttEvH67NW4zLyoJqvPO00loTU87vcOs6VV5J/F1fLCyKFx/MQDZLATGcX15J5jtcNK7AEWNSkVjAcEqB/vyGYUUrXsAEme+GKAQGZ1ouRep0jVIwKfRNTU1cf2PHjsV7771nyQXfeeedmDp1KsLhMI4++mi8+OKLJX97991344QTTsCYMWMwZswYLF++vOzvRyPUVlJmCoZBsUWFhh6VFgwGLb1me82CESAYZj4sl5fVhbuopVfN44lzXQ4VDLJsYt6nQUtvZaOMw0XxMklt4bbCu5tLcwkGSZIs2ISKRspU8JoJ5ptR+ixptWSmR8IfBEIN5L3T0UBGvWYlPZ8GvbuuyImsIC+E56nJ7RUFawTQ9p/hYKnUF2O1LNzwHFru3bViLfWx+7lS2RwG1dQX83J36XOdzuUxZFZEl9GWbiZH5ZmeDmrAEVO+DkKTdv4c+7UG/T401JB8ddMMpFbklwOG56m5xSkF19Ny8zRUB/iU70dxHj1TmcR4PI7Vq1cjGo1W/K0sy7j00kuRy5lYQVbBQw89hBUrVuCuu+7C0UcfjdWrV+Pkk0/G5s2b0dLSMuL3Tz/9ND71qU/h2GOPRTgcxk033YQPfehDeOONN9De3m769bkResEwmM6hroa9MmZJGMzjsc5KaLbHhW9B6U9mVKdt2eraqV7ST5SxSikVDP2pLHoG06Xz13lg1NJbSRkU9JqZ7nGRdG3YGFHWmk0FQz5DaAzVMZ83WhtE50DaRO9unLya7jUz1tbNNPryOc2DLthKqqThKTIGSPcTHo6dznxe0z3YBjuGVPSaCdYJsCb/2sQK8IDhKASnPfQVI2WE6yCQ8/Wnssjk8iPbxYnAcEs3q6KB3BEp45OgKm8FGB7RxVi8NBLyI+T3IZ3Lo2cwg0jIjH1bvPCaGKEa8UvtOwzWlTF9LeV0xOR1jpiia41+/zAUB+rHMZ87Ggkq+zZn96Zl00IA98h8A44YrbBhkXkqSWSeDuwj8zQ60eiVuhLMq8QnP/nJokpzMXz5y18WvqByuPXWW3HRRRfhggsuAADcddddePTRR3Hvvffi2muvHfH7Bx54oODzPffcgz/84Q948sknce6551pyjW6DXjDEhzImK/QmFsUDhK2EY0z3uBgrAFQX8iMUKLKJ0ofyJeNAXTPzualgMM1zZnn4ncPVtfUFjjgqwCczOaSyeeWaSoT6UsEw1APEJjGfm8zThHnWbCsKVQHiXjOzjTLJXgCKhYw3DJYlxDC+wwWeQYuMo6JraZ3GQ1mWR1a1FoEV7cAAA/PUIh5GxJ7DyvnlxkJ9m+truI4vCsPFxkyep2a3VzT8HIbgK5r6otCXz5Ic/ZoGpvNKkoRoJIgD/SnEB9Noj7HXZigJg0Z8s+epZWkTvKkvyWx5R4w/QJT6ZC8Zg0OhHxMJYVfPkON708rpri6J6KIdrkQcMeWK4gHkntF92ygFk+k2n88zK/MA0N/fj4MOOkj4ooohnU5j3bp1WL58ufqdz+fD8uXL8dxzzzGdY3BwEJlMBk1NpRe0VCqFvr6+gr9qBhUMgPNhP1aFa5suGAbFNmgVQ0T9AaBGWaSEe5qaHWJoYisp/fmcFgwG2w4GfBLqSxm/3FK80XBLN3ONMpphzeQNWqiBVMRmRC4vq1XoTU/vMT2SRDS8kDXKQkzZzeZltYq+IaQHgWySvOeep0pxStNDfakyaFZRPLFNdg8rD9P9XKG+fp+ktqZyfp4qikSdyTLf7EgS0bU0UcFgEawF/IpBxenUCYNpE6avNWYXVDMo80s6YgAX7U1FZX6ZQr+AcZlv+hyNcTtikpkyjhhAWOZXE5hjsf76178in89beS1l0dnZiVwuh9bW1oLvW1tb0dHRwXSOa665BhMmTCgwCgzHqlWrEI1G1b9Jk9g9cG6Fqe1BZNmwNbtylXuHW9hY5TUDNCOBa0IMxbxmZofBmp5PZ4L3uqR3UrgVkVUF1USjLMqEowPCLc8GUlmksybICkH6+oa01JfKyqDD7RUNztPS9IlV9a0N+VGjbGpNabdE6fMFtBZlDCioAF8pCkF0LU04u9aUDfMFFA+VVDgGI2h4tCnzVJ/6IrjWREtF5Rls6+YWmV9yT0MjugDh9BenaSzbDkx/PkGDhXlraVy5nhjXYRXTQgATZL5L9jVmp0rqnBSm1OgySJ+fyREzelvXMSv0Z555JiZNmoRvfOMb2LJli5XXZAluvPFGPPjgg/jjH/+IcLh0fs3KlSvR29ur/u3cudPGq7QGpoYYphOkIBggnvdZUrgba2HT65IIhLIKvVta1xn0KplfqEoT7nkzKvkLeyMqeAX153S6gIzLihw1hoOqUd0UL71guzPKw/qaQOn8YaPz1C1F8UpusmPkVc6RYk4cUIsbmkGjfo5yeFyGMjnVKFS5QrqoZ9DZonhl2ywBgM8vTqOZkSR6ecyrLFWi0aA8NC8ayGjUYTll0GhElwnzVJaNR+WZXUTV7NQXV8t8p/em1kTK0HuWy8voT2W5ji0Kg1EWsdoyjpiIGI3VBGaFftu2bbj44ovx4IMP4uCDD8aSJUvw61//GkNDQ1Zen4rm5mb4/X7s27ev4Pt9+/Zh/PjxZY+9+eabceONN+Lxxx/H4YcfXva3NTU1aGxsLPirdkTN9O7Sh8EfIsVHGCHLMvuiUqVF8eKVQpkB8SgEM1vz5TIkjBMwvyieIA+pYMjLMEkwiOULVszbBaq+kBNzQbVMAsimmM/r80kqH02Zp4YLcTFs0ATnqelrDe88rVRQLVgLBJS8W2HPoIk8FFxLg34JkVCRCvCAe8JgrapHoj8n7zw1MxqI0lfTSDpEMCKTy6truXUtMp1eSyvIQ8Bw8UZT5mlmUHPECEetmctDui8dyuSQNKOSv1GZX2pfCrhobxpXrkesVW1FZ1oyTtr/MSIc9KNW6dARNyPiyaq6QPpzcvKwmsCs0E+aNAnXXXcdtm7diieeeAJTp07FJZdcgra2NnzpS1/CSy+9ZOV1IhQKYeHChXjyySfV7/L5PJ588kksXry45HE//OEP8d3vfhePPfYYFi1aZOk1uhWmFpDRCz4Oj0sinUOW9tw1uSgeFTSmCwazPZ+AO3LMVY+LxF14pGy/VsAUwWCKB9uOtAknoyxMSH0pSWNNFJAU0SDqGTR1rTE5LUR/TuGcQbPDRC3YwBiOlnHDBi3EkPrilqJ4YooEmzLoYNE4fYFRDuhbrNKc/hEw2iJzKGNORJcJRfFKwg2FYvWOGI7OLLIsWxZy3xgOwK8UEjR3nooWbizDQ4N7U1PkYS6jRVuZXghXOZ+cJ12YOGBqJIlBAzfbcxgXuLDqgFA/k6VLl+K+++7D3r178aMf/QivvfYajjnmGMybN8/s6yvAihUrcPfdd+O+++7DW2+9hUsuuQSJREKten/uuedi5cqV6u9vuukmfOtb38K9996LqVOnoqOjAx0dHRgYGLD0Ot0GNY/HlJxIwbAmZeyagA+1FT0ufBa0hpoAaIFZU0N9BVMKrPHumpiLRe9vOErCOhmRzuYxoHhcrBQM5niVDIZuWRlCaQYPU/2kcjIgHGVRcp76fFpVedF5aupaI8bD8s+hW3J3LeorrD+nsGfQBB4aXEuZlF2nvbsGQ30tmae1blhLyRxtDAcQKJX6IhyxRu6ZLEMtgGkIRucpk2dQTF6Ystbo5yinIyaTIwaTit0mskNAhj1iV5IkXcST8/OUzQDsYGSlkdSXSvIiUAMEFUOPk3tTw4UbWZxpnoe+KBoaGnDSSSdh6dKliMViePPNN826rqI455xzcPPNN+O6667D/PnzsWHDBjz22GNqobwdO3Zg79696u9/9rOfIZ1O4+Mf/zja2trUv5tvvtnS63QbzPXuWlQACNAJhiSXYPD5JHO9n5Z6d41W1zYzDFaMh5IENIRL0KgXDE5aswW9SmxeM2PtFU21ZAfCJLyaEfm8zLYJdUOOuVUF4/TndNJrlk2TVlb662FEL4/Cy+mRMLVApRvXUuWcqWze2YiuSgXV9Od0MhrIcDE1BoNFspcU32NEKOBDneIYMLVOgLCiZIXMd56HdJ0LBXwIB0uoCzUNpOilfhxGuCEaiGtvaqANqGHQsTkdMZmczhFTTl6o8zTOdVlu2JtqMt98R0w1Qagp+dDQEP7v//4P9957L/773/9i2rRpWLFiBc4//3yTL28kLr/8clx++eVF//f0008XfN6+fbvl11MNMFUwGGybUdYbQQVDPkseOg5FJVYbRHcibdKiYtTSa/6iQgWDGyIQorVBNVSuKCJNQG/CWaOF2npQcJ7Wmc/DqKmFqsTmaH8qCxqhaoXCa2obGysjZQwqg33JLHJ5ufxzUAnq2JIWEcGIiq2kAPF5aqpRxpj3mnktlWVmz2N9TQABn4RsntR1GR9l3xyPQEHqi8mRMoA7DGvCLd1YvGYx7X2yl2uMWCSERHrI5HnqnoguU9srGm07WK7riyQRGhMHCI2NE5jPb2rxRiv3psIy30wjvjEeShLQWFbmx4Denc7uTa1qiQ0Ir6XVBC4P/fPPP48vfvGLat78xIkT8cQTT2DLli34xje+gfb2dquu04MBmNoeRNDzyeQ1o4IBcLb4iHDuLovXTCzsJ2pJoSpBr1k5+gBtbnCGGFpizbbCuyvY4kVrJWVCixeD+eW1QT/CwTKKjPA8taAApxXeXdEwWN28MLyB0a+lPnZRnMzkMKR4lst6d0XnqRUF1aysR5JLkaJfjJAkybyw+1Qf6SQAiOfuWlDIydT2ioYjEMooSv4gKbYHOJs6YUvdHLGicU7uaTT6yvBQf95qnKdWyny693awYBw1CDWGKzhijO5NTaExrlyLVxRPBMwe+kMOOQSbN2/GEUccgVWrVuHTn/40olG+gloenIG5HhejlbUrKYM6Sy8HtDY2BgVDPie8qPDlYjkZmmasDkJZb4T+vKLWbAdp5BIMghEI6VweQ5kcIiGhACkCg3m7TM8h4HDIvbF8OqYIhFQvkMsCfjZeBPw+NNQE0J/KIj6YRlO5SI5KEKSPGhJ8EqkfUhJuaK8o2B4zzhIpE6oDfEEgnyE0chT7itYG0TmQNr7W0OcwGAGCpdvhDkc+L2uhvhZEykRdIC+Y6iAAxKCV6hMvjGeUxkxSMwiJtgOzouaKJZGVYvKirOEQqOpooIpdX/Tn5A1HV87Zn8oik8uXbqPKAivzy/XndbK9osEoi7LGQ8GIrmoC8+xavnw51q9fj5dffhmXXHKJp8xXETTB4LwVtKzg059XuAiQQcGQ7AUgF14LI7gEA6/3mgqGZBbZHHv1+KIQNcqweD715xUuOOZgu6xK7cCAwjnK4WmPhPwI+okQMTxP1WqwFlRlBlzmcbEg5F4f4p6Mc53fNM+ZCe0xfWU9LsaK4pn6HAoWbrQqosu0eSooD/uTutQXCwo5mduH3mhKAasi4VB7RUqf5Ofu+hKvVAEeEJ+jasRa2rGILiovKvNQdJ6axMN8HuIt3VhSQ8TmqL67g2kRXaJrqWUy3wWRlUw8VO5bPqPVrhllYFbo77jjDsur2HuwBvpQZqcFQ2VLr8H2IGZtskP1QIDd+5bLy+hLVqgADwjn8VgiGETbgVX0uBjNGTTqcRkihRX118IItoJqVDBkuQQDCfU1S5GIK9dikdesilueMRU58gdIez79OIwYY1Y0kOE2SxavpU4WNmQ1HjqdY26wB30k5EdNoFzqi7FaFs6G3DN4zQAD89SktUaf+sLhtUtmckhmiHGdKfVF0EOfzctIpA0WbxSUF1oaoTVReWPMirJIGXHEcETlpQdIMVNGBPw+de9m3jx1mcx3gcNQ25uWmafBWsBfUzjOKAOTQr9gwQL09LDfgOOPPx67d+8WvigP5sJUwWBl4RHAcNiPeZts3j6Y2mLNFEKZ7id9RRlRIBiMbkIN8rCid9dpwUDp8wVIoUVGyLKseZXKhfoaEAymhTMbLXJUZ1X4nUmGtVxWiZaBhfPU4fQX4eeQNVLG4FrqYPFGpigLwPl5KrgBZSpqCOjmaJzr/JSHiXQO6azBiC6D89TqUF/jBm5ja6nfJ7GnvnA4VGpDftQEfMpYRvc1Bgv9VpIXThuA6RwVcsQwRK2FowAUYw9nRJdp6aAmFDYsC6fT7DJDpPUhYKA4ZYWIrlFeGI8pcXDDhg149dVX0dTEdpM3bNiAVCpl6MI8mAcqGFLZPHoSadSXEz6VYLV312DxEcOFOYSL/pEFpaGmTM9dQCcYlOrI9S3MY8QiIfQls46FibKH3Dtc2FBPH4fHZSiTQ1pJZyg7T6lg6N9LaIxNZh5DKzjmlLWeob2L/rxOdSqgyjzAXQGeyeMCEBp7tjvXd9fKdmCA4aJ48SES0VWyunUlFFSAt6DYGGBCSLqzURZlI4H05+XkYWM4CEkiLIgPpdHSwJ7fPwJGZT5rlIVTxRsNRiDEastUgNefV86RWgEcYf2xSBD7+lKID2Ywke/yCmF5UbwYeRVeS52JWOsbyqg2lrLPos9PaBzqITRy7NvGRILY0W3m3lRwnjJHyojx0DTjqIgjhmdvSvdtoxDMmt1JJ53EHK4tvAHwYBmoYOgdymCSkRMZbu/CWCGdu7iKSe1BDBYeqZhS4FPy9JJxAYWeCAbjC6fR1iDWes3M87iI8TDolxAJVWhlRQWDcBEgp+ZplRTFozysaWQuWAcA2Vwe/UmGnruACUXjzPK4CBbftIg+urHN5WX0p7JoDFcYpxTSCSCXLrwWRjC1ANWf12nPoGBeK/NzmEkA2RQQqGE6v88nIVobRHwwg97BjCMKfY/F4dqmtQEVXUsTjDwM1gKBWuJ9HOrhU+hrQ6pCbwgGW4BaHg1kmsyPcR1G52h9TaBywbraMYQ+4b2pQ/PUpogu0yIrRRwxShSSVfKiWsC0U9q2bRv3iSdOnMh9jAfrMCZCBIMhS6gRjwtzMS6xkBjTCnMIFh7pZSmmRhFpIgq9Y57BOHkVLsZljddMjbIwzeMiunkJVTZKGqTRuXnKGH4n6DWjc3QwnUMqmyufH1wOBvPnARbvp9F56nxRvLKg503GSdEoxtZ44aAftUE/hjI5xBMZcYWe0ucPcVWgl2VZF4VQaZ6KRgM57N1lNY7WRAHJB8h5MlbDeOYxxkRCiA9mjM3TXIZ4lQEXyguTCxsKyvyKzyE9d99uMk/HTGUew7QClbYVxROr9eCYzGf17KrnfteAzHdonlocHas3yuTzcvlCreVgMIok6JdQx+KIAbh5WC1gUuinTJli9XV4sBimWLNT/aQQGGBN4RH9eZ1q8SLc0o1HMDgczjwoas1mKBgHiHtczBIMgpZs5jBfQDiSxLyieAY99BZ5zRpqAvBJQF4mG4mWRkGF3qA3oiFcIfVFf+4q87iwe81i5FXOk6JRHOPEIkEM9eYQH0pjMiJc16diSMzjkkjnkMnJ6nWUhXA7KZMjSSyL6PKRlJOhbm6FPmqGvNDfV94K8Ky1LNwSDWRVpAw9d99uZ2iUZcPywqoULaejLJjXUv25hfdtTtXrsPg5VOZGXibdOyquaaVgwhyt7IgZ3R56A00RPVQTTAmLoQ9BIAyE2Dd5+bzMH64tnH/ttKWXwVovaCU0xbubTZHwTUDA0svIQ1FLryIYZBlqoRohGGzvwhRlIdh+kG5gnPfuMipK2SFSrIYRPp9kTiSJXZEygMA8NcvjEleuQ8zwVNFrFqgBgopnnJNGU+apwUiZUMCH2qA1Hhfz29ZZFCkDGPacGZIXlL5wlCv1JZ3NqwV4mYtxicr8hFMRXSIyX7BbgREa0wM6R4yYd7diEVWDczSVzWPISMFmW2U+51rqeDQQp8xP9gJ5dl6EAj7VM26IRtG1lFUeArp5OjoVegPV0TzokcvlkMmYUBXYIkyOBtHe4EcqmUQymRQ7SX83UD8JqBsHcJxjIJVBWz154MNSrvz4wTFkDKmWa4yIP4f2BjJGb38CNZU2gqWQlcn4kTau8dPJJNob/JjY4K98fxumIeivhd+JOgFUiZB8WtsuRnAXxaOCwcfGCyoYEukc4oMZto1SMRhus8QhGITbSRlYK/J5wyHpFe9tTSPpyyznyFjBWuYxYrVBdCfS5hgPrdq86M/Ny8M6Zz0uzO3AADJPexPcHmxTFF4TCuKxp7445Bk03ErKBmXQkLwwts5IEtBQKWVDuEI6oa8vmUUuL8NvONQ3xnUYUw96CoNRa4Y89GrqSw3XOl5QbIzHQy/LzBE59TUBBHwSsnkZ8aE0akPs11cAw0VirZT5JvAwm9Za5Fol89XzymTvxmEciUVCSKSHzJmnVhVr1p97lHroPYXeIGRZRkdHB+LxuNOXUhYnTZRwVHMLaoMpbNn6rpjwywA47hZShXLrO+SVAdlcHjcsbYEkATt3vFd+7LyfjAGJawwA+PbSFsgAtm/fjlBAMPik7XRg3AfJg89RO+LwWBo3LG1BfQ1DzYlJZwFjlyA2uAvj47sgxdjqTVDP4Jb9A9jbO4S2qIDwo56sYB0p6hZtZzoslc1hULGgpyq1QVKrksvAgU1A66HMl9cQDiKRzmHLgQFMbWbPuy1A707yKvEZdXZ2DwIAagIMzwYVDAc2Ab27me8jFTo7uxPiPEz1kTBqgMt7DgBdA6T7SDZXgYeSRJT6ZA9wYDPQOIF5jFrFWr+tM4GjDxrLdX0q4u+RVz+fUUfvUa54fykPu9/l4iENP+3oGxLnIQAMdpLXLN8m6EA/4SFTkVqau961BZi4kHkMOk9f2RHHUdOaxGjsepe8cigRgLbJrgn42HnYu0voOexOpLEnPogJMcG0goH95FXm8y529FKjLwMPAwr93e9yjUGVlDd29xmXF74g1/2lBotIyI/9/Uk2HiY6OZ9DbQP/zr5+zG5rZDpuBPo6hA7b00PWXqatBqVxzyt881RZa97e1y/OQ7WlWx3Qt4d57P4UMZQAQDJTYX5T+nIpoGsr0DyDaQxJktAQDqBnMIN39g2Ir6V9u5QTisn8UKX0LECjcf+bQmvNe50GZL5eAU0nuJTtrgSRF5lcBR76g2RfmEmQfc2UY5nHoEWE3z0wgPmTYszHFaBHTOZv7yIRp2EWJx7lYdcWLh5WCzyF3iCoMt/S0oJIJOLaCv+7ewZRmyJhV3kAzY1hfg9o3x4gSTcgGaC+mSlc9EB/Cvn6FNvYg91AA93gso8RH0wjXat5xseI0DfYA9QNAVBaZtTH2MfuS6KecWy5J4DBRC32d9cBj96ItjlHAQvOrTjO5n2kONHz73bjuBufwqqzD8M5R7K3TAMAvPogeU33A6vnAqffzjT2/WvfU9+fsvo/5cfe+KD2/q7jmcd46KUd6OgjPLzo/pdxowh96+8H3vgjeb/2DrKxYBz75/8mG+ZHN3bghJk7yo99YDN53fok1318ZQcRzJv3DYjz8OV7tfc/Wcg89m9f3IE+pQL8Z3/5Qvmx199PlHkA+H9nAaffwXwf39hD5unKh1+DJEGMhy/8nLx/9UGysWAYGwD+tYkoWBt39Va+v3teIa97N3Dx8LmtRBE/0J8W5+FLvwSyynq15sNcz8jWA2QDc9VDG5DM5Mrz8MAm8v6PF5PNNuN97FJCfNes3Y77n9vOT+P6+4Gnvkveb32SfGYc+2+v7wUA7OwZqnx/31tLXnt3cvHwqbfIPMnmZRx/07/EeLj+fs3w9H/nc/Hw+W1EyfrB3zehsTZYnofb/0Pe//M64kVmvI+7FYXzT6/uwV827hGj8a2/kteud7ju7x/WEwUrkcpV5uE7/ySvmQTXGA8rYwDAqXf8V5yHu18i7//2NZKmwsjDv2wk8/QX/9mGg8bVlx+7bw953fAA8OpvmWncsr8fAPDfdzrF15qNvyOvQ91c9/eB5zWZv+yWp8uP/frD2vs7j+R6FqgR9rxfvSgu8zc9St7/50dAbBLz2GvWbgcA/PGV3Tj6oKbyY3duIa9vPwa88zgzjRt39QIAXt/TJ87Ddfdp728/nHns//f8e0hmiPH+nJ8/X1nm03TMNR/h4uE7+0n0wFd+9yoyubwYD9f9Snl/HzE+M479o8fIXuy/73TioZcq7Nv2biSvu17kehaqBZLM2otOh3g8jt///vfYunUrvva1r6GpqQnr169Ha2sr2ttHl8Wjr68P0WgUvb29aGwstADncjm8/fbbaGlpwdixgp4oG5DO5rGpo6/gOwkSDh7fwO7JzqaB/W+M/L7lUCBQWnnlGtvAGJs7+gp8HXbSxzW2bpyuQRn7O3Zj1tNfgv/LL5a1Fu7tHcKxNz4F/dPqlyQ8c+1Sdotv727gtkNR4BWS/MBVr1Uc+7gbn0KeZeze3WShpB5kK8YoR58dYxu4j6bw0Goaq5CHdPxjVz1V8CyOJhrt4CEdh/k+mkgf99geD8uOY4iHdHyr17nRzkM6juh99HhYmT6389AUmX8oCk7ikrWm6ngocB/dgHJ6qB7ccckbN27ErFmzcNNNN+Hmm29WQ80ffvhhrFy5UviCqxE0Zz4SEQzXswnp7MhQGxmy2ruRCbkU3/ciYxsYY7hVyk76uMbWnS8SBOAPIVMTqxhOua0zgeGmt5wsY3vnYNnjCtC9FSNCPOUc09h51rG7txYuzFaMUQp2jW3gPprCQ6tprEIe0vGHP4ujiUY7eEjHYb6PxeDx0JyxneQhHd/qdW6085COI3ofh33n8dChsR2X+d6+zfDYgvexmsCt0K9YsQLnn38+3nnnHYTDYfX7U089Ff/5z39MvbhqgVvD7ClCRXpBS5D48sz9NXzfi4xtYIzhHLCTPq6xdedTp40UAJoOKjvOtOY6DC894JckTG3mMCY1TQeGX63kZxp7OI0lx26aTgruCYxhCn12jO00jaI8ZB3bafoExqbjD4d7aRTjIfPYBu8j8/NeDHaN7TgPLR7b6H305EV52CkvrF6zS8HjoTljO02jJ/ONj21gPa0WcCv0L730Ei6++OIR37e3t6OjQ6y4iAdrEQr40NqoGV8kSGgfE+ZTeAMhrQUSRXRS2XB0OnZUV+W27NiBEDmnwBjtYwpDbIToaxwWdiMwtlRp7EAIqG/VfSEBS1dWDPlpi9biG6fOUT/7JOAHZ8/lK7ASbQdmfkg3tB84fTXT2B9fqBXu80tS6bGj7SQvSRVAEvMYq84+TH+UGH2n3659lnxcY1NUvLfRdmD5Dbpx2O/jD87iGKfU2If9j9DYnz9umvrZUh5K6lG28ZCOP7O1Xv1ckcaP3KYbh/0+cs2VYoi2A4suEhr7yuUz1c9W8JCO89ljtDzEsuMUg0EeLpyi1S1ho5FvHNN4eMJXdGOz8/Bbpx3CNjalT78J5biPly6Zrn7m5iEdf8IC7TMHjUtnt7CNbZCH6uwW5eEHv6Mb26I1INoOHPtloXGuPWW2+tkvSuP0pUJjf3S+VgiVj4c2y/zTVuvGtlDmL/2mbhz2+/i9M+eyj1Nq7EPPEhr73GOmqJ9H+76t4hoQbQc+/EPdOGz3sZrArdDX1NSgr69vxPdvv/02xo0bZ8pFeTAftIUNye+uR1Ndec9zUdCK83XjSG55XTPTYUFFuY3VBnHw+IbyY9c14/wV38WZn19BKmszjtFUV6PSOLauRoy+MG3jJnHRp+9hOqOF4d6qfTZ9QGMbcOiZTOOce+xU9f3frjiBv/AIAEQVxXzep0juEGNBkIPHk0KBx00fi2euXVp+7AXnAnM/Rt4vvpx5jHOOnIxLTiSb0JPnjhej77BPaO8veY5r7OZ6wsd7zz+y8tiLLtTeX/YC8zifPGqy2sZmzQVHidE4bhZ5nfFBLh7OU6rPzmlrYOPhMZeS94f9D9d9vO40YnhaNHWMGH0LziUV9gHg3D9xFa2JKJVuv/qhWZVpXHS+ZqQ8/69cNM5SDAc/+p95YjROmK+8LuDi4eKDyJo0vjHMxkNqeJq2hOs+fviwNnJ5MYZxSo09VjE+nPULrrGb6shz+PnjprLROEYxVH3sXi4eHjt9LADgmlNmi/GQVoGOTeXi4UmziUE35Pfh2WuXVabvoz8l71vmcN3HjylG2NqgT4yHgNbK7biruWhsj5FN9dlHTGDj4aRjyPuTV3Hx8AxF6bzwuGli9M1YTl5DDVz0nXmEpgQ8dtUHKo99uCKXwjGucT6rU8j+uWKJGI20Q8kRn+Mae2Yrkfknzmpm4+HsM8j741dw8fDC48nze8b8CWL0HfJR7f3l67jGbgyTPe3/u/DoymMvPF97f8UrzON8+ugpap/23150jBiNYxXj3MEf4eLhYRNjAIDDJ0bZeHiksq+Z/1mu+0gNT8dOHysu8wOK0/H8v3ONPX0ckeGrz5lfeewjv0AiYgHgwsdHVUE8QEChP+OMM/Cd73xHzR+XJAk7duzANddcg4997GOmX6AHc0BbxcmQ4ff5cP755+PMM8/kOwltzROqq+i51oO2PgkH/Wxec59Yyzl6blnJdVqzZg1isRj7CfJZZfyAEH0AUMPSOkPty54HT5uVoN+H+poA+zjFkIyT1/GHc1kmaS/T6S31bNZXajjgbOc0uYmES2V46h/oQemTfEDzLK5DB5QuENPH1Vf4Jcgz4FMiTzjbclGFJcjSKqcYaE/xltlCPJzcFGHj4RhlM5nj62M9dSy5f0OVWh2VQj4PpPrJ++aDuQ6lNB590Fg2GiNEqeNtlTOugRjt/KLpVnSeNh0kxMPWaJiNPhpOmOVrb0jbZaWzsngrqbRSMZmxhRUFpfGIyWPYxq5XvME+vjVxvC5qTQj0OYy2C/GwqS7ERt9Y5f7R+8kI2mllKJPHuHoBAzegzdNJRwnReMiEKBuNDePJK+fzNEExHOT4azsTUB7WjxOiT5KAGSzygrbLSie4WoBGQn4E/eSeMLXlKgZK44T5QjTObG1glPnKuYfnQ1fAJCrzK7VSLQU6RwO1wFj28Ol8XlZl/owWBh6qDh9o7UAZMYbKfNF2ypSHrYcI8XDK2Do2HsYUhTif4bq8KUqYe1J035ZNaV1fWvhkPm2nXCzlbgQkSWv5FxBcE10M7tl1yy23YGBgAC0tLRgaGsKSJUswY8YMNDQ04Pvf/74V1+jBBPgk4p0HChVQLlCFl7PXJx2vbP/5Aii/yxdXCNLp4goGPb84fcp4vpHdHKkBqxjoZsInSfCxbEj0G0/OjQjtvUsXam7QfqZ0g8EI2hs6puv9WxbUs0MFESNMoy8c4zIMJTM5tb1LNMJAoyQ5SKMyHicPe5Xe0FRZq4hwjLzSDRMjGo3Sl+qFWoCI3mNGxId456mySXNqnnI/h5SHFj+HyjPQN5Rh63dfDII00nsaY3kOAefmqSgPhxQestKn8rCXaxzqfQSgtqvkhjCNlIeMa43T8oJ7Lc2o4/tY9jV0juYzQIa9YJgkSY7JC3WtGaU87E9l1aJqjSzrqT+gRY5VCY29vPLCsbWUjicBNdFyvxwBbW/KO097uMapBnAr9NFoFP/85z/xl7/8BXfccQcuv/xy/O1vf8O///1v1NXxWa08aNjbO4S1Wzuxt5fPk8IKSZK4FN79+/fj9NNPR21tLaZNm4YHHngAUxcux+q7HwB8AWzfvh2SJGHDhg3qMfF4HJIk4emnnybj5HK48MILccLCQ3HUjDYcs+Aw3H777QXj5HI5rFixArFYDGPHjsXXv/51yKpCTzYhJ554Ii6//HJcddVVaG5uxsknnwwAuPXWW3HYYYehrq4OkyZNwjUrrsBgYgC5vIynn34aF1xwAXp7eyFJEiRJwg033KDei0ceeaTgOmKxGNbc/2sAwPZdeyFJEh566CEsWbIE4XAYDzzwAADgnnvuwZw5cxAOhzF79mz89Kc/5TdYSD4tL5LTg00FAxW23FCFe4zrMLpQMwk+QBM8nIsmVSTihjcvMa7D+pTxfBJQHxpp0CkKQRrpBql3SJCHVNhS4csIykMmgwVggD46Rw3yMBjhsqLn87LKx6jV81TZPBimUfA5tJo+ugFM5/JikRaZpBYVIDpPrabR6Fpj8DnkXktTvSWN3MUQ8PvQoER0OSUv7JqnvaLPodG1lJU+fUQX91pjcD21e56Kynyb11IqK8JBH3v0g6AySNca189T4efQoDxU6YtyOWJS2Zwqn/hpjLNfX5WAcec6EscffzyOP/54M6+l6iHLstDm5w/rduH6P7+BvEwUim+fcaia/8aK2qC/YrV9v09CNs8Wnnb++edjz549+Ne//oVgMIgrrrgC+zu7yT8ZQxvz+TwmTpyI1b+4D7UNMezZvAFXXn4p2tra8IlPkJyyW265BWvWrMG9996LOXPm4JZbbsEf//p3LDt2UcHm5b777sMll1yCZ599Vv3O5/PhjjvuwLRp0/Duu+/iS5dcgoFkFt/70Woce+yxWL16Na677jps3rwZAFBfXyGsioaKKfRde+21uOWWW3DEEUeoSv11112Hn/zkJzjiiCPwyiuv4KKLLoIvVINjT/kYRwQClCiAXPV46Hk9LoKWXqfpY/a4ANVH4yCvcI8p48W5xqHn709mkcvLfM8FYJ/HBag6HhryXssyc0hzJORHwCchm5fRO5RBhNXIRaFPfaFeLUaIe1ziXOOYx8MY12Hc0U76UN9krxYyyoDG2iD6U1kxGvN5jY+inkGLoyycXkuZeUgjuhIHyDyNsu/vqobGquUhR7pVOAZgR/XQyCsvTIro4u78ZVAeShLQEGaUUXSejkIPPdMduOOOO5hPeMUVVwhfTLVjKJPDIdf9w9A58jLwrT+9gW/96Q2u4978zskVN12sHvq3334bf//73/Hiiy/iyCOPBAD88u67MefQQ8kPGBX6YDCIb3/723hrbx8yuTxOXHQoNqx7Cb/73e9UhX716tVYuXIlzj77bADAXXfdhX889ndyAp1CP3PmTPzwhz8sOP9VV12lvp86dSquu+E7+PJll+LbP7wNoVAI0WgUkiRh/PjxTNerKfQ+9fz0ugDg+uuvxy233KJ+N23aNLz55pu49557+BV6mrbAmW+mWnod8ipZ7zVTvNeDgoLBLvoAA95dZzwS4jyMc42jP3/fUEbNH2SGIA/FPC5GvbsORVnw8jCXJqG+jLmfkiQhFgmicyCN+GCGP4+ezhlbPS42e83seg79QVK0Ld1PaORQ6GORIHbHh8SiENL9mnxyqbxwKqKL23sNEBoTB+yP6PKiLIrCXpnvbESX1VEWwyO6uA3ABqMsGsMcjhhKI6dRphrAdNdvu+22gs8HDhzA4OCgWnAsHo8jEomgpaXlfa3Qux3FFPoHHnigoA3h3//+d3R3dyMQCGDhwoXq97MPnolYlFQ95cmhv/POO3Hnz+9Gx+5dSKeSSKfTmD9/PgCgt7cXe/fuxdFHH63+PhAIYNGCIyCnE4Cs5f3pr4XiiSeewKpVq7Bp0yb09fUhm80imUxiIJEAwOcVAkA8EuQqAACLFi1S/5VIJLB161ZceOGFuOgireVUNptFYyPxoAS4PPRUoeeL6DAUzpzPG8+/tjhcO6oTDMlMHrUhzkJARr3XrBEIgLA123Cor23W+mGhvqyGPKV440Aqi7iIQm+nx8XgPBVXBm2KsgjVkWigfJaMyVHMKVqrKfTcsNPjYjRMVFhRsinKgo5BFXoOGDJa0LECtUCQvYBgXonqAHhqPTgU6mtXxJp+DEFlSYjGbBrIJArHZwT3PDVoxO9PZZHN5RHgLRZrsJYFcwqafgy7DcC21T7S0ccZ0RX0S8jkZMQHBSK6jNLHxcNY4ZijCEx3fdu2ber73/zmN/jpT3+KX/7ylzj4YFKNcPPmzbjooouK9qd/P6E26Meb3zmZ65iO3iSW3/pv6J3mPgl4YsUSjI+yC9FaBo9UQFXoNa/wGWecUaBQt7e34/HHHx95sFoQzwdIEnyK10VfMGl44bgHH3wQX/3qV7Him9/F4QuPwryDxuO2W27BCy+8UP5C6SKi89APr8+wfft2nHbaabjkkkvw/e9/H01NTfj3f/6DL150EZLJdNlCTpIkjfg/uXZaFM8/YsyBgQEAwN13311wvwCgZ5DcG66K1z4xD72h4iOpPogWG+O31ivnH4pzCYY6XahvfCiN2pCgZ9Bq+gDjyqDNURbc+eUGQn2jtUEMiIb62srDWOGYjIgZDqGMF47PCG4aJUnnGYzbF+prcI5yeVycKuSU7C0cnxG9vEYZgBRv7IW9aQWCc3QgLZD64lSor2HvLofi4sQ8VcfiLzYmLvONFW9s4jYAxwvHZ4Sd8sLQc6hPfbFc5ivnp8UbOSK6qAG4dyijdp9ghiNRFnGusaoB3EXxvvWtb+HHP/6xqswDwMEHH4zbbrsN3/zmN029uGqDJEmIhAJcfweNq8eqsw9TlUG/JGHV2YfhoHH1XOdhEWTFPPQNDQ2YMWOG+ldbW4vZs2cjm81i3bp16u82b3oL8d5+tZjbuHHjAAB79+5Vf6MvkAcAzz77LBYvPhbnnPcFHDL3cBw8cya2bt2q/j8ajaKtra1Awc9ms1j3inKeMgWA1q1bh3w+j1tuuQXHHHMMZs2ahQ7dteTyMkKhEHK5kecYN25cwXW/8847GBwc1Dz0RUJEW1tbMWHCBLz77rsF92vGjBmYOJm09/L7eXPowR9yb8QjQRVPgWJjwh6XXArIsBd6NFzV167q4YDwBs2Q1yyT1KokW+3BpqG+gIG0AgGPhGhuso0eF5U+t9eyAIRzBg2F+trqcXGqeKNRz6AdkSQmyAvBCvC2pL4YLd5ouHq4DR56IxFdatcX/tQX2g6MvZaFQ8Ub7aplATiTVqBPfRHt+sK61jhVvNGuiDX9GO9XD70ee/fuRTY7sgVKLpfDvn37TLmo9xvOOXIyPjBrHLZ3DmJqM2OPaAGw5tAffPDBOOWUU3DxxRfjZz/7GQKBAK664suoDYdVhb62thbHHHMMbrzxRkybNg379+8fYdCZOXMm7r//fjz79JOYPGUqfvfzR/DSSy9h2rRp6m+uvPJK3HjjjZg5cyZmz56NW2+9FfG4YuGVSxeNmzFjBjKZDH784x/j9NNPx7PPPouf//zn6v9zeRlTp07FwMAAnnzyScybNw+RSASRSATLli3DT37yEyxevBi5XA7XXHMNgsGgNlaRtnUA8O1vfxtXXHEFotEoTjnlFKRSKbz88svYtnsfPn7+l2zx0DvhNRMqNhaqJ6kZco6MG4owjxeNBNGVMBjq6+p8OrM8LnxpJcIeiXS/vR4JwXkqJNxFCzkZqWVhwONCFQmheWpnISeDm2w7vWbGizfGuA6zdZ6awUO7n0M7izcKGw+rxLsrSJ9YsTGHijfaKfOdfA4DYSDIrhvIsiwY0RWzP6LLzudQkIfVAG4P/UknnYSLL74Y69evV79bt24dLrnkEixfvtzUi3s/oS1ai8XTx1qmzANaSDhL27pf/epXmDBhApYsWYKzzz4bX7zgc2hpHlMgaO+9915ks1ksXLgQV111Fb73ve8VnOPiiy/GGR89E9dc9nl8+vST0NXVhUsvvbTgN1/5ylfwuc99Dueddx4WL16MhoYGnHXWmdoPSlh6582bh1tvvRU33XQT5s6diwceeACrVq1S/5+TZRx77LH40pe+hHPOOQfjxo1Ti+rdcsstmDRpEk444QR8+tOfxle/+lVEIhEtn10q/lh84QtfwD333INf/epXOOyww7BkyRKsWbMG7ZMUDz1XUTxBD72qSNjnNRMqNkZDffXjMsIUZdCWvNYYeeXeoBnI3dWHF4oWG7Mh38xQ8Uajucl2GmUGBfq0G/C4GJundnpc4srYYjy0I4RyePFGbhik0RbPoJHcXaNrqYj3mhZvZAQt3gg4NE9tjCQRq4MQLxybEUKpLwYiugxFIdDUF8FIEjuigQwVbxTk4UAqq+717Yl4MhLRFS8cmxHC9UgAz0MPECXuvPPOw6JFi4hXEyRM+uSTT8Y999xj+gV6MA9U4czmZaxZs6bsb8ePH4+//vWv2hcD+/Gtb3+3oCDenDlzsHbt2oLj9Jvbmpoa3Pnze/C1H9yOSCiAGS2kbZxe8Q4EAli9ejVWr15deAF7XyWbXjmr9rUfjquvvhpXX311wXdHf+hMJDM5dSH72c9+hp/97GcFv5kwYQL+8Y/CbgTxeBzoeB3IZzB12vSSm/RPf/rT+PSnP13w3dYDA0ikspxt6xzw0AvmmgkVG6PjDHaK5yeP0tAtQwXVzCg2VmN93qcxGpWxbFV241xj0c2LUPHGgmJj7AZcodQXwLDCa2vqi5GUAoHijXUhPxLpHHp5izfaWWwMMOzdFTNY2FhsrKB4Y5yreGOjLneXG3YVGwOc9e7akfoCGI7ocmaeWl8I10ke1gQ4HDFAVc1TsdSXmDJmnGusagC3Qj9u3Dj87W9/w9tvv41NmzYBAGbPno1Zs2aZfnEezIUacs/rUQI0Tzln0ZmsolhzhzNKfqLscuRiAfrCfwI0yoVF8ViRE6HRoELvROVpLmVXP46dHno7C+QYzKHvEwn1FQ7V1uhj9rgAVeWRECs2JkZfXcgPv09CTqR4o53FxgADOfRGvGbxwrEZIVRsTH8fOUN9Y5EQEmmBtm52FhsDnKmQbudaWlC8sQeItjMfKkyjncXGAON1EIxEWdgRjg6QudK70956FlVQCNdQO17beWiwrowID72ieKaAO+SeYtasWTjjjDNwxhln2KrM33nnnZg6dSrC4TCOPvpovPjii2V//3//93+YPXs2wuEwDjvsMPztb3+z6UrdB9Yc+qLQV7nngKrs8lafpXnsnAq9MI1yXteH3g6FXizk3pHcZBGPi34cboXXSEi6+9sQ6YVPf5KTj7YbZWLKuHGuw5ydpwLeXYHijcKV7u0sNqYfR9DjYqfXTMjj4g+Smh36cRkhXEFcsNhYOpvnLzYGOOw1i3EdJuS9BgzTyD1P7Sw2ph9DdC11e8QaUFXeXSeiLGhEFxfsbI8JVFcUgkjqy/CIrlEEbg/95z//+bL/v/fee4UvphIeeughrFixAnfddReOPvporF69GieffDI2b96MlpaWEb9fu3YtPvWpT2HVqlU47bTT8Jvf/AZnnnkm1q9fj7lz51p2nW6FIYVezmH7C48CjeyWc/1Y3B56qlTnRxZgLAd9WgEX9A+2ZINCL4l56OninMrmkczk+Db2Bgvk2GXpFd5k2+5xUcZI9gmH+sYHM3ybQsNpE/bw0JRuDHYYLWoatOKNQz1cIfDRWsHijU54zYDR6zUDyFxJDwin93BX1zZIH1exMcCZSBk711LAsPeT2wBMeWhHsTHAcA69UESXE88hYF83Bn3qi91RFna1460SHhrrxhBXxo5xHWao9SDAHdHldnB76Ht6egr+9u/fj6eeegoPP/wwyUO2ELfeeisuuugiXHDBBTjkkENw1113IRKJlDQi3H777TjllFPwta99DXPmzMF3v/tdLFiwAD/5yU8svU63Qq/Qcxdyooo1r/daNqjQyzZ56NUIBD9XWkFelpGnNNpQ5b6+JqDSyO9VipNX25TBWOG4jBAOoTTicaGeQRFLL2StMA8jhK3ZBpVdrlBtwH6vGWDvPKVVffXjMkK40r1hjxJvLYvqy6EXjwYSi5bhnqfCzyFZZ7iKjQGmeM24Zb5g6ouh/Gv9uIywey0VLjZmcC0F7IvoileLd1ef+qKvss8AIRopfbm0fe14DUdZcMoLu2W+LBuOWuOS+QYiutwObg/9H//4xxHf5fN5XHLJJZg+fbopF1UM6XQa69atw8qVK9XvfD4fli9fjueee67oMc899xxWrFhR8N3JJ5+MRx55pOQ4qVQKqVRK/dzX12fswl0EvVKdy8sI8PRNV3PobfBeA/aH3OeN5c/rx2aCGnIvk97i4TDTYVQwdCuewdZGtuMAGK5y7/ocekGPi77YGBeNgRAQrCMegmScy9IbjYSwpzcpnrvLHY4uECIK2F9d20CxMUPzdLDLvuKGdntcBHPoNa9ZleTuAgLFDQWNh1WS16oWb8yKFG+MK2PHuMasmtxdgzwM8RYbU1NfxIs3ckd0VU2UBZX5glEW4UauvZs+9YWLxlC9rnhjjz3teKtmrRF1xAxojjtRGrkNT2IRXW6HcA59wUl8PqxYsQK33XabGacris7OTuRyObS2thZ839raio6OjqLHdHR0cP0eIBXYo9Go+jdp0iTjF+8S+CQJPtq6jttDTxVePhuQsEJPDQe8Cj1Ha74CyMbp4yp0oq9FkOIzGolbsxUvsmBfYW5rvcGicbZ5XHTFxuzbhJJ5ZreHnqvYGOCsx4Wz2JiwV0l0ntrtcRGtZWEwh75f55FkgiwbLmwoHg1kl/HQ5urhgnOUFm8EnJin9noG7Y+UEZyjgOsjuuIitSyAquFhYeoLZ0SXYzTGuA6jz6Hroywoff4a7tQXVeaLztNR5qE3RaEHgK1btyKb5ct3diNWrlyJ3t5e9W/nzp1OX5KpEC8aZ2MFeP04gjn0wiH3dtEnSVov+qSYQs+f9znKq9wbrADP3d4FMJBWQKve2pS7K7pBs9trZkKxMds9g7xepSrJoafjyDJnqG+qX5MXot5dUaOFYNoEd6SMU97rbFK4eKN985TIUvu9u/bwUNh7bSDUN6rWCaiSeWpXNwaDa2mDLoWRGQZpFI/ocntkpWBEl36OcjjFEmmtPbWwTOQ0yrgd3CH3w0PYZVnG3r178eijj+K8884z7cKGo7m5GX6/H/v27Sv4ft++fRg/fnzRY8aPH8/1e4D0Tq+pqTF+wS6F3ychk+NUeGXZsMIbsDvkXjQCQbIpAgHQvPSpfq7DDIekC1p6uT0udofB2l0NVj+Wyz2DhsO1eb0RosUbTSk2ZpNHgrYissnjIu69ph56vuKNoYAPkZAfg0qfduZQX0qfQLExwx4Xl3sGhauHFxRvjAsVb+RSJHIZEpIKGOhUUCWeQbvyywEyT9MDAvPU3ogu4VoWgjw03G1CsJYFdwoa4MA8jReOywi7o4GGR3Qx74kNRpGQ1BdO37Sgkdvt4PbQv/LKKwV/GzduBADccsstWL16tdnXpyIUCmHhwoV48skn1e/y+TyefPJJLF68uOgxixcvLvg9APzzn/8s+fv3A4Q82PrCbXYpvIJF8YT70BvMoeduy6cfK8UXfmd3SLrdHhcq3PuSGeR5+Gi3NwLQCvEIphXY5ZEQ36CJ8bBBtHijQYOFnR4X8SiEeOG4jDBslBEo3ijkOROco8Y8Lsa6MXB7zeyOsigo3mhDpXu9ssJZbKxqcnft5iFgwjzl8H7KcvXlX7s9AgGwvxuDysPqiKzkjugyYY5ypbsCwhFdbge3h/5f//qXFdfBhBUrVuC8887DokWLcNRRR2H16tVIJBK44IILAADnnnsu2tvbsWrVKgDAlVdeiSVLluCWW27BRz7yETz44IN4+eWX8Ytf/MIxGpyGkMKrhr1LXGGwsiybkENfGHK/Zs0aXHXVVSU7KoinFNgcgQBoHvqkDR56A+1dhD0uBi29RDBk2ZVQu6uH68eyu/+13X3oaagvo2dQkiQ0hgPoGcygd4ijeKOwcDfgcbE9h14Zxy6Pi4HijY21QezpTdpilDHH4xLnOsypSBlh7+5glz1RCAWpL+wyMZPLI6GkvtjtGXR99XDA3nmaHtD2T6K1LGzmYZo7osvmWhaAMI3GZX6M6zDhaCDBdryGI7rsqrcCeDn0FMuWLSuqTPX19WHZsmVmXFNJnHPOObj55ptx3XXXYf78+diwYQMee+wxtfDdjh07sHfvXvX3xx57LH7zm9/gF7/4BebNm4ff//73eOSRR96XPegp9EXjdu7cic9//vOYMGECQqEQpkyZgiuvvBJdXV2FBwkWxMvLMmQIerANhtznZbmsd3f79u2QJAkbNmwoHIdToc+KtuUDNBp5PfRGvGYC7V2MW3rjpEc8I2oCftQqAp1L+Bm09HK3dAOMpxXw0FdQbCzGNZ6w8Ktp1Ixr3DQK9Ba222ChH8v2Wg9iNBqbpzZ4zkzwmol7XGzqxlBNnkGR3F2DaykgkvpiLHe3KiK6jD6HXGtpnLz6Q9ypL3Z7d/XteO2IBjK2ltpYJ8BI6ku1RHQ5uZaOshx6boX+6aefRjo9Uvglk0n897//NeWiyuHyyy/He++9h1QqhRdeeAFHH310wbWtWbOm4Pf/8z//g82bNyOVSuH111/Hqaeeavk1uhl+pVXdu+++i0WLFuGdd97Bb3/7W2zZsgV33XWXmsLQ3d2tHWSwIJ5Pkvh67urH4lTos5kM6EhcefSiRou8jEw6bWsOvZClV7C9iyGPi7pAy9yV/IU22garMhvLoY9zHSakDBYUGxMU7rw0SpJwWoGheWqX91o/lqBRxr6qxZRGI5Ekca7DDHl3nfC4uN67K1icErDXu2vQ89kYFkl9iSljx7kOGx7RxQzD+dcu9+7q6eMsNpZV9m78RVRj5FWgeKMT81RorbH1OdSNIeiI4ZYXNKILsH+ecsBQLYv3ew79xo0b1Xz5N998U/28ceNGvPLKK/jlL3+J9vZ2yy501KN3N7DtP+TVQlBP+cqvXoVQKITHH38cS5YsweTJk/HhD38YTzzxBHbv3o1vfOMb2kHDCuLlcjmsWLECsVgMY8eOxde//nWcd955OPPMM9VDpk6dituVmgpUsM+fPx833HCD+ptbb70Vhx12GOrq6jBp0iRceumlGBgYKBhrzUOPYPLkyYhEIjjrrLNGRA/ccMMNmD9/Pu655x5MmzYNtbW18PskPPuvJ7DkAyeo13jaaadh69at6nHTpk0DABxxxBGQJAknnvEpAMCJp3wUV111VcEYZ555Js4///wC2r773e/i3HPPxcGTWvGda66C3+fDM888gxNOOAG1tbWYNGkSrrjiCiQSidLMoIo1Z5X7mEjFW4OeT0DA4xKoAYKRwvEZYUj42ZpDr4zFHa4tkLtLx7CzvQtggkfCeqOMEx4XoRx6Ax4X4arFgHCIoVDubhXlJlMDVzJDQn2ZUUWewahI7q7RtdSIcZT2aWcEDfUFOGl0dJ7GuQ4TipQxSF/IL5D6YiSiS0heKGNUQ6SMiAGY8rCGP/VlICVY+wiwtxaCo2tpnP9YF4P5aZ0/f76q/Cxbtgzz589X/xYuXIjvfe97uO6666y8VvdDloF0gv/vxbuB1XOB+04nry/ezX8ORm+03yeht6cH/37qCVx66aWorS1UDMaPH4/PfOYzeOihhyDTcw6rAH/LLbdgzZo1uPfee/HMM8+gu7sbf/zjH0eMRaPfSlnqfT4f7rjjDrzxxhu477778NRTT+HrX/+6MpYfL6x/DRd+9Tu4/NJLsGHDBixduhTf+973Rpxny5Yt+MMf/oCHH34YGzZsgN8nYWhoEJdfcRVefvllPPnkk/D5fDjrrLOQV0K/X3zxRQDAE088gb179+LhX65WzsZmyb755psxb948/OWpZ/HFK7+GHdvfxSmnnIKPfexj2LhxIx566CE888wzuPzyy0ufRBIriqcquzZssg15XPTj2aEsOeEZtLPlmSB9hoqNAYbbntmRNmHI4yI6R5XNC1eorwGPS1y0lgVgvKCaDc+hEx6X+lAAdFljnqey7FyFdMDda+mQgQgEA6G+YjTGyaud+ddG11I7nsNB2tVGIPVFH9ElWFfGTkdF9TyHMa6x+nT3sDHMXSrNhHlqQ2SlkdpHozSHnpnT27ZtgyzLOOigg/Diiy9i3Lhx6v9CoRBaWlrg93P2cB5tyAwCP5hg7BxyHvjbV8kfD/53DxCqq/gzv0/Ce9u3QpZlzJkzp+hv5syZg56eHhw4cAAtLS0j8stXr16NlStX4uyzzwYA3HXXXfjHP/4x4jx5ml9eQijoPeFTp07F9773PXzpS1/CT3/6U0CScPsvH8QpJx6Lr3/lKiBYi1mzZmHt2rV47LHHCs6TTqdx//33q3Nyy/4BLD/1DEwdW6cKiXvvvRfjxo3Dm2++iblz56q/HTt2rNLG8ACJRGAUYMuWLcNXvvIVbNk/gMF0Fjd/cwU+85nPqDTNnDkTd9xxB5YsWYKf/exnCIeLFAXziRXFE7L0Gs1NFhF8dLz+PfaEwhr1uLg9XFs4HN1AsTHAsFfJ1nlqYz6dUPFGAx4XmvpiyChjS0G1eOGYjDDF48JZvNHnI6G+XMUb0wldsbEY12UairIQnKdCxRud8F4bKN4YrQ1iL3fxxjh5dWKecnuvBVpkOuG9BgiNQ93CnV9cP09Fn0MbZb6+60vAb6PMr5Z5KuiIcTuYFfopU6YAgOrh9FCd0HtZ5Qpe/WQyifr6egAyIMv43698GZd95X+xd+/egtoFgUAAixYtGnG+Sh76J554AqtWrcKmTZvQ19eHbDaLZDKJwcFBRCIRvLVlG8465cSC8LvFixePUOinTJlSYGDy+yS8t20rvn31D/HKupfQ2dmpztsdO3aMLIooy4WV/BmwaNEiAFqdgDde34jXX3sNDzzwgO60MvL5PLZt21bceEJbAIp6I2xZNA14XPTj2RGeZtDjYqdgoJtBGurLVNXXBGWX2+MC2OyRiJNXQeFuOIc+n2fu5EGLNw5lcogPpdkUetEe9HqPi42KhNha44DHJdRAapLIeYj0ae8ZzLDPU0qfP6SlFDFAlmVnvbs28lDcABwjCr1wxBMjjbkMkFYM6XbmXxtdS22I6DIUsQZUVxSCoVoWYjKfRnQx1ZUyGAkk/BwKRlnYGdFlqJaFoIHb7WBS6P/85z/jwx/+MILBIP785z+X/e0ZZ5xhyoVVJYIR4innQd8e4M6jhvV69wOXvQA0cnj7GTcWfp+EyVMPgiRJeOutt3DWWWeN+M1bb72FcePGYcKECaQKfN8eYKgHTRNnMV+Oz+dDTlGiqUKfyWgP+fbt23Haaafhkksuwfe//300NTXhmWeewYUXXoh0Oo1IJAJVua7Qi76urjAywS9JuOKCT2HqlCm4++67MWHCBOTzecydO7doQUf9vff5fSMME/rrHj4mVegTAwlcfPHFuOKKK0b8dvLkycUvnCoOaU4PPRUMQ9YLBlOs9YC9BWSqIIe+oYaE+uZlwkcmhV7UG2F4g2bMg+16D70+1DfVxzV/orVBDGVy7DQa9bgYTn2Jcx1WNV4zn4+MRz2DjW3Mh0YjIaBrkJ1GPX0cBrJBXbExJ/KvXb+WAoTGvt3W06g3onOmvjgSZVEtzyFgwLvLSaORri8O1EEwFNHlFA+rIbLSxogut4NJoT/zzDPR0dGBlpaWgsJnwyFJEnI5vqrkowqSxBT2XoDmmcDptwN/uYoorpIfOH01+d4C+H0SYmOasPgDS/HTn/4UV199dUEefUdHBx544AFcdtllCAQCmDFjBtDtA5INQLQZqIuira0NL7zwAj7wgQ8AALLZLNatW4cFCxao5xk3bhw6OjrUMfv6+rBt2zb1/+vWrUM+n8ctt9wCn6LY/u53vyu41jmzpuOF9a8X9KJ//vnnK9LY19uN7VvfwW0//ilOOukkAMAzzzxT8JtQiFhmc7lcgXd+3LiWgtaHuVwOr7/+OpYuXTpiHFmWVYX+iCOOwJtvvknuFysksaJ41NKbl4H+VJZtQTOYm2zI4wIIeOhpyzNGj4QBj4twNVj9WJlBIJsihQAZoA/1jQ9l0MIS6uu4UUaQh7bk0BvwuATDxCCaGSQ0cmwOY5EgOvqS/N5dO/N29eMJF8VzuceFjjfUbX3xRoNes5Dfp7bl5ILRQlW2eD5NMh5aXbyRnl8g9aVfKTZmrNuEseKNVkZ0Gfbu2lW8MZ0A8pnCMRlhLKJLX7yRL6KL9mnnj+gSjLIwzMM412HG2pzaGA1kIKLLzWCaifl8nuRSK+9L/b2vlXkjWHAucNVrwHl/Ja8LzrVsKJrPfu13f4hUKoWTTz4Z//nPf7Bz50489thj+OAHP4hZs2YVFjhUi+IRIXLllVfixhtvxCOPPIJNmzbh0ksvRTweLxhn2bJl+MNDv8H6F9bi7bfewHnnnVdQY2HGjBnIZDL48Y9/jHfffRe//vWvcddddxWc44ovfh6PPb0WN9/2Y7zzzjv4yU9+MiLcvhiaxjQhNqYJv15zL7Zs2YKnnnoKK1asKPhNS0sLamtr8dhjj2Hf3j3o7esHfH4sW7YMjz76KB599FFs2rQJl1xyyQja1NsiAzKIQn/NNddg7dq1uPzyy7Fhwwa88847+NOf/lS+KB7dSKT6ufq0h4N+NRe6j9kzaDCEUnSDZlebHhOKjQnRWNMINZLE6igEw+3OjBpl4lyHcdNnQrEx98/TnsLxGEGVXXGjjDKei3PoDa81ds1T0edQWWcajaa+CM5RvuKNovPU6HOorN2885TXg63yUMw7DxgtNhbnOkxfvJFf5se4xnJK5mvPIWPrQUqfLyic+mI8okuwoLFNa43r19JcVmtpbOc8pRFdwKjKoxeoluDBEkTbgWknkFcLQcM1p0ybjrXPv4CDDjoIn/jEJzBlyhR8+MMfxqxZs/Dss88qufMKhvVo/8pXvoLPfe5zOO+887B48WI0NDSMCN1fuXIljlp8PL58wSfx2U+chTPPPBPTp09X/z9v3jzceuutuOmmmzB37lw88MADWLVqVcE5jjl6Ee7+0Tdx+89+gXnz5uHxxx/HN7/5zYo0BgN+3HTnL7FxwyuYO3curr76avzoRz8q+E0gEMAdd9yBn//855gwdQY++vkVgC+Az3/+8zjvvPNw7rnnYsmSJTjooIOKeucBLdxekiTMm3c4/v3vf+Ptt9/GCSecgCOOOALXXXcdJkwokzZBPfTI8/dpr6UebHtCfe33uHB6lUwoNiZEo89noIK4KA9tbOmmH0+0DgKr18yEYmP2e7A5PRJ0nop6lIRrWRhtQyTSSsqBApyA9fU6DNJn9xwV6tNudJ46RKNda6nhYmPZISCTZD6MRnQBHGuN0Xlq91rDGymjn6OCqS9C81Tfp92185S2rLObh5wRXQWpLzGusfoM702V8UZRHj2TifGOO+5gPmGxHGIP7oEkSfD7JOTyMiZNnoI1a9ao/7v++utx6623YuPGjTjmmGO0g+TCKveBQACrV6/GaqXPPICCPu0A0NjYiNt/sQYDqSwmN0UQi4Rw3nnnFfzm6quvxtVXX13w3ec+9zntg8+Pz3/yTHz+wi8A0Unq11/5ylfU9zfccENBb3uAGC2OOeFEPP7sy5jWrKVADM+N/8IXvoAvfOELZNHq2Q74/AgGg/jpT39KKu2XwPbt2wEAQ+msOp4kSTjyyCPx+OOPlzxuBHw+TRAl49y5ux19HFV9nWjvArjea2a42Big5O72WO/9dKLYGGCCx8XlxcYAw/PUtkgZ4SJHMWX8ONdh3MUbnSo2Btg/T50qNiYQ6kuLN/YOZSwN9TWU+gI4IC9sDkfXh/om40BwPPOh+m4MTHAs9SWmjB/nOsy2tdRo6gugK94Y5zrMvnlqkId2r6U1jYCfPeIlazT1BRiVle6Z7uBtt93GdDJJkjyFvgpAFfrcsPC7b3/725g6dSqef/55HHXUUWpuu+o14/B8ApoHW6iIE6BGBOir3LMgoIw3nL6SGJZSwAqVPpHwSQo65lAPMGYq82FRXs+Z08VVrC5y5FSxMYDQ2LPNPo+EYzwUo6+XtXijU8XGABPyk1lzd+PKeDGucZziIXfxRqeKjQH2eXedeg7peHKeu3hjLBLEUC/J3Z2MCsYyp4qNAfbl7jrFQ33xxqEeoIFDoVeKN7p+nhqOBrJY5g9qEWtCqS+ArnijxTRWLQ+t3dP06SKNhFJfAOG1xs1guhP6YmYeqh/+MgrvBRdcUPiFnNeqwEt8D45xhV7ZPHIq9OXoK4phKQWsoOcPiNIHEGs94F5Lr1GPi8u9ZoY9u4DrPRJOeVz0xRsH0lk0hiuM76THpVrmqVHvLg31DTIUYQQJ9W2sDSKueAYrFm8ULDZmjsclplxDnOuwqvHuBsNAoJbwUCCii7lPu1PFxgDDz6Hla6lZ8mKo24Z5qpzfqWggt66lRuUhUD3z1OYceu6ILoM1AoRTXwAvh344ZFmu2Mvcg/vgU4p4pbIMhdj0ynSZ9nFr1qzBI488UvAd9ZoJTxHqvc6lgCx7DidV6LO5PNIsNOaUc3Naa9O5vMhhw6Ac3LWV6yi6UG/c2Yu9vUPlfyzLwKCyaGXZ8/YAoGsgRQ7LsRftKwAVRP0dQO9u5sNoePhgOocdXYnKB/RsJ69+tirzFFSw+n1S5ftYCpTGXS/z0ahsKDZ19LONnegir3nGzYCC/f2E58Jrtd5aH9/JfFg46EdNgMzvd/YxtGakmwdJ4rqPdPMSDvrR0cc3v1XQDUXHa1xj0zoI7x5IsPFwYB955SiCCQAdvYQu4aWmRuctP7CJ69D6EFmHtx4YqPxjysNADdd91HtcEim++a2CztMDmzmfQ8LDXT2DbDzs21v5N0Wwu4ec25ABuKaRvB7YzHUY3Vhv62RYS6mSIvm5Nrsk9YXI0lRGsEAy5WHPNiF5sa8vycbD+C7yyhl1uKN7EAAQChjYOtNOSF1buA6jMn/Djp7KNOqLjWX55FpXgvAwY1Tm9+3hXEu1SJndPYOVD4i/R159fAZAKvN9EgzI/Bh53fmS0Frz5h6GfRv+f3tfHiZHVa7/Vu+z90xmkpnJvkASSAiEQAhEdiGAkU0BRVkuF9QrKIpXcbnivV5J9KJEkR8K6EW8bKKCqKwCkS2EQBK2LISQdTKTZDKZnqWn9/r9cWrrnl7OOVXVVd057/PM08t0ddXX31fnO98OXeenGXqYANg/SPZtGbM6f7iXib6GoE/TUUw6H2DT+QoPgz6P+X1bzztM53YzuFal3/zmN5gzZw5CoRBCoRDmzJmDe++91+prE7ABfcNxDCu1392REfQNx4sfED2gP9+3gdzgFDgwFNcWk4/2D5U+Tz4klM1HKg7se5/63Grjn7QsY3PPQPFzD/cCUeV7oweoz9E3HEe3sskeiqf46IseJM4KAHjyG8Da+6kPVTf4j7y5CyctfwGPrNlZ+MNr7gVkZcP8m49Tn+eRNTuxo48sljc8vK74OQrhoxfJY7QXWDGH+txPvqdvmk+9bWXxc6+9H1ipNFTc8izT7/j0++Q823ujpX/HQhhUjLQ372Wi8aP9RL6f3bC39LnX3g8M7iHPH/4sEw/f3N4PAPjPv23go2/T35UnMvDzo5jOHU+RNeBTv1pV+tybnySP+zcx/Y6PrSOb84FYkp+HB5UstPcfYzr3hj1k0/zmjoN0POxeT57//Uam3/Hp98kI0P+3cisffev/T39+z2lM597dT9aaLz2wtvS53/sjeRzex/Q7Prh6h/b8lP8pcb8Xwt73yeP2l5jO/daOPgDA1v3DdDzc8gx5vnIZ0+/4+9cJjY++uZuPvrX3A8PKWvPgpUznXr+rHwBwy1/eL33utb8nj3IaWDGX+jy/X7UDqv/8orte46Nx95vkce/7TDx8ect+AMDBKMUasPZ+YL1C45rfMP2Otz/3AQDgxU37+XnY8y55/sQNTLpKdcz+3+qdpWl84279+a9PZqJR3Vt88fdv8dG47SXyONjNxMNn39+rPf/YT14szcOXf0aeb/or0+/43AZyng/2DvHrC3XPuPouJhp3KMGJv7/bU/rcb/0OGFH23w98iomH73SR0qfvPv4eH32blWlSmQQTfY++tQuqC+H8O18tfe4PlLW05x2m8zzxNtkL9Q4n+HnYrxzzziNM53YzmA3673//+/jqV7+KpUuX4tFHH8Wjjz6KpUuX4mtf+1r2qLNDCJWSpZBIZbQogYqug7HCUexUgizKRkR2lYyWJ1IZ7OnXzyOXOk+hcw/v4zp3T4Ty3KkE+U6OczD9jvmQSkBWf1tZJlf61xupPIXdkRG88qHueMjIwHf+/F5+T2WkC3jqm/prOUN1nu7ICL7953f1w4qdoxAiXcAL/8117u8+pp+7JH1//SqgqRG23/EPa3bTnacQIl3Ajlf11ww0Pvmufm/R0ch+Dkt4+OQ37D93pAt4+2Gu89z7sl4Sxs3DTU9ynfthw0aCjYd0cjrqdwQnfeWQn0gXsPrXXOf5qWIoASZ4uP5BrnPf/dJHdOfO/R0p1xpbeGjXuSNdwEs/NpyG/nf8wV/f115z83D1XVznvu1ZPWPBTh4ad3rl4qF6/tUf9WmvS9L47HcNp+G737l5+M/lXOf+/l/eozu3SZ3/57X657hp3Llaf81Ao9FpUZLGv93IdQ5LdP4z3zZ97pK/baRLdwAznue+V7fTn6fQubcYGlhTntvtYDbo77rrLtxzzz1YtmwZPvnJT+KTn/wkli1bhrvvvrtoZ/BqhN9PUoSiUYr0IBcgkUpnKSSAzFEvaIimC0SdC73Pex6nzu0wfdEkgHQC/pjihZXTQN9HRQ8DSNpk7vnTsoztvXnksG+r3gNBu9jS59nWO4zcFgQFz1EI5Tg35znU81D/joXQtxXI/RZKGgUPc85j9+9YCGbObbOcHjI8tIJGznPbvdZUHA9zmVFNNFYgD9XzC31h7hzqeYTOL4FK0Bc575WLh24Hc3vAZDKJBQsWjHr/2GOPRSpFOeO0SuD1ehEOh7FvH4kk19bW8nfNLAMyqQyJDBvekyAhk0oglm8+bUomf7lIyoBcuFY1k8pAzolyFz1PPpg4NzWN5ThHHsiyjOhgFPv6+hHe8RS8acWzKHmBlmklj5/aWgcJ2cuRV5IwpTVP9+KW6aQm2bhJozjP1NY6rbt1yXMUQst0fUSPXefmPId6HurfsRBapgO530JJYy5brKaxYnionof3d4RzPLRbTgUPKeHiteaQ4SHtelYIgodFz8+k8+1ezwrBxTxUz5MLofMdOnfL9NHvuVxfuB3MBv3nP/953HXXXfjZz36W9f7dd9+Nyy+/3LILqxS0t5OxI6pR73Yk4in0R5PazdBc60fXSBExiEb1WnZIQG0zMFw6LSUaTWAonlaPQrjUefJebBqIqmlm9OdOxFM4qDTKKnnucpyjAMLeGNo/fEg/99IVQNP4ksd1NNXgmsVTce8rJNXYK0m49aI56GiqGf3hpvHAsVcDb/5WOY2X6jwdTTW4/rQZ+MULH5Y+RyE0jQeW/pzUCgJkAaU897KL5uJbfyLpW5KE4vRxnEM9z7yJTVi/i9SbcdN4/LV6zSLD7/v1Mw/DT5/bUvrcTeOBk74KvHI78zm+c+5s/PffNwIgTYDKzcOb/0TSVCWUOHfTeKDjKKD7beU89DSefHgr/vkBKUHh5uHJ/w689BPmc39/6RH4wRMbAJT4fZvGA2fcAvzjFuZz3HrhXNyspDKa4+FXAJUbdvFw6snAtn8y0/iJeR3469ukBIWbh2f9N/DMd5jPbVxrSvLwvJ/pqbB2nKMYfWZ4+Od3NUOiJA9nLwU2PkFeM9D42eMn4YHVpASFm4efWAH8VRl9zKkvSvLQAp1UTh6q57/yxMm47zXSh6Gkvjjm88A6pSaYgYdfOGU67lq5tfQ5StLoXp0/p7MR7ym9T7hpXMC3p7qBdk/VNB444d+AVb9kPsc3l8zC8qc2Kedwuc4feyTpjwUw0bho+hi8tpVktpqS07/eSCLzlOd2O7gG+P3mN7/Bs88+ixNOOAEAsHr1auzcuRNXXHEFvv71r2ufyzX6qxGSJKGjowNjx45FMsnZnbfMeOrdbtz27GZMa63DPVceV/zDrz9Dmn1NOQU45ZtAwziqczzzfg9+8uImHD6uHv95/hyMbaAbkzQKvz0HiO4HzlsBTJ1Lfdj1D67Fxu4BXH/6YVg8q8RNetdJJM3+wnuA8fTnuOp/38CuvihuPmc2Fs+i+11U+P1+eL2zgcxtwN+/DnTOB+ZfQX38BceMx72vbENzrR9PfvVjxRezdoWmiQuBT/0v9aJ1/NQxAD7EhOYQHv3iiWwLpor5VwBv3EOaniz9OTWNlx43Cc9v3IdnN+zFDafNwKXHTSp+jpduI11vP3UfcOT51Jendp39wsnTcNVJU/honHMxMejr24FrX6D+fS87frJm0P/zm6diQnMRD/NEstZizAzgiieoz3HqzDb89983otbvwfPfOJWfhxv+Anz4D+DU7zDx8J3dETyweicuO25icR4Cegfvk/+dOKEoaWxvJDRdcuwEfO2sw/loPOZzxKD3+IGvvk197isXTcF//XUDMjLw+L+dhKMmhgt/eNqp5DHUDHzpVepznHdUh2bQv3DTqZiSJ8pUEvOvAHauInXmx1/LxMPu/hhWPL8Fp88aW5qH9co6uOBfgI99g5rGqa31AIAzZ4/FDy9g3JypOO5a3aD/4svAuCOpDrv0uEn42bMfYO9gHPdcsQBnzC6yls86Tzfov7oeCJf4PQznuOWJ9xFLZvDwdScoaysj5l8BHPgIePV24IgLmHiYysj47mPvYd6EptI8bJ5CHmdfACy5lZqHR3Y2kcuc1Iw7Lz+Gj4fHXgk8dwsQOwh87s/A9NOoDrv0uEm4f9UOvL9nALdeOLc4jcd8HnjiqwAywL8+D4yfT32OO1/4EDsPjuCOzxyD847qpDouC/OvIAGSp28GJp3ApPOXzuvEfa/twNiGIP5y/UnFf99xR5DHKYuBC++m5uGCyaTz99TWOjx47UJ+ffHanUDvJuCCXwHzLqU67NLjJuGp93qwcvN+fP3jh5fW+S/8CBjqAS57CJi5hPryGpTxqdefNh2XnzCZj8YjLiAGfdNE4F+eof59LzluIn7xwofweSS89M1T0RkuovMnKHvzsUcAl/+R+hyLZ7QCICPynr6xxN6wEOZfAbzzKGkweuZ/Mq01b24/iEff2o0rFk0uvdYEFPpP+w5w9OeoaRzbQKYZXb5wIq4//TB+GqefQdLsW6ZVvDEPcBj07733HubPJwvg1q3Ek9fa2orW1la8957e1MLNqed2wOv1wuvlnIFcZkxsa0LXYBpefwqhUAlDe3g3MLQLaOkA2iZTn2N/NIOuwTSOnVaHSW1h/ouVEuT8fgClrtUAnz+IrsE0kvAWpzEZAyLK+JjO2Uzn2NGfRPdgGpPHNpX+HQthjJJ2lKQYJ2SAOs90OJFGO+1s6DGHMS1a6rzWznAt34KpQt3kMw7d6mgidKVpmk7GlREpbYcznUPNslgwpYWfRnX8SWqE6fdtMsyIrQuUWIpHlCyS8GQ2Hir0tTWGzPGwUd28UvDCgPHN5JyJNMVxqpxOWsQlp3Mnhs3zMJNkmvkrSRLCtQH0DSfgLzXKSqWvsYOLhyG/h8+YV9GkbK7SbI7nSWPIpotqzKkqp+MXMNEYUcadzWpv5OehLwAE6oHEEOBjW49b6oPYOxjXRp4WhMrDUJjamAeAeCqNWJL8fjPHNTJdWxaaFR3MOH506hgiN8MJinFyKo0dc5h4eFDh4fS2OnNrTV0rMeg9bNvTsQ1BvA+KMbLxAQCKLI+dzXSOIeX3mzG2gem4LKhpvUm23ktNymi+kWS69O+r8rB1JtdaM6G5xqTObyMGvcTWpkvV+VRTPbl1PpHT46eOsUDnx5l+XzWAkMrI2vOCUNfS5qlsa6ky0m1cY9Ckzu9QnrDp/M4wOWcyt6A+H1Q5nbyYUecTGudNbDZHY9P4qjDkVTAb9C+++KId1yFQRqgLiToztijUG45hkwvoi4o6a5sb2gzsfqbDmuv0maZFoc3c9egRQkqo363OwOVCTQt5ZJj3CwDNdeSciVQGsWQGNYEiziSNh2Gmc+j0meRhLR+NupyW4GEmo/ORVU6Ve8CUnKo8jEWATJp6tnHA50F90IeheAr9I0mNp3nBeR9axkNeOVV4GBmxb62xhMZgAzEgMilyHQH6erxwrR99w4nScmqaPhPrjPG8nDzst5OHlumLFmLQM9NIzqvqrYIwqQ89EtAQ4kqMJLB7LTV+t1M6v7YFOAB+OaW9D301gJ/eGMhkZG3PZIm+4JTRwVgKqXQGPm8RY9n0fWhyrTErp6XWmlRcD4I4IadG+mSZwotEUBfwwu+VkEzL6I8mUVvMke+4vjAnpxEb1xrL9jVVBuYu9wKVD3UhG1AUQ1GoXkL15qbEQU3xWbQJ1erc6aB6s0sqd/V7a5oBD/3tEEumMZIk3vpwnRnlbthkM4w/rAt44VOiSQdLOWaiyqJZy8ZDdfPSbBUPR9h4qMppSR7GI3pzE0bFoEbom01t0ML6c0bHkxqlL81D5bdj5KHT92FYo49CuXPS2K/x0ASNksQvpzWqMViChyOGtYYBB60wIoznZdygNSnnPThsHw9V+TAvp+Hs66BEWKPRnvtQldGmGj88pbIAisHkWhoZSZQes6ttshl5OGzxWsMrp7Q6n5GHg/GU1vCryYwhoa2ljPQZzlnS8cQtp6rOt2qt4VxLaZ0ykgcINjGd46AV+xpjRpfWY6o0JEnS9qb0Ot9hfcG8llLSl8nofOSV02JBkEMQzK7iWCyGO+64Ay+++CL27duHTE5uzNq1ay27OAF7YPRqDcRSaHFzZJDT09usGYOlNtnmohFej4SGoAURl3SCKIZgPdVhaqpv71Ac/dGkluaUF2Z5aEXUzHgdlKCODKrf668DfEHq709nZAzE1I22CcXg9ZPsjvgAuZY6+vrY5jo/uvpH6DcwTkbNjNdBCepsoOQIKVkAOKJKVm1gWoDh/dxyWtKQcDp6rfGQbYOmZ1nYGN1VN6FOZwPZFKHvt8xhYW4tTaZlDCfSqC+ms5yW0xqzcmqTzld4WOP3IuQ3UV6pymhikJS/eOl+L5/Xg4aQD4MxktE1pr6IrnN632ZSTksag8bSF8ZAjFr60mRGTv21gDdIei+N9FHv2wCyN+0dilPo/H7yWHE6nzYQM8AdiNHWGhGhzwKzJXLNNdfg2Wefxac+9Skcf/zxh1ytfDXA5/WgIejDYDyF/miiuEFvNmpmJnoNcHvrtUWl5AbNZAZCjd/cPeCvBbwBYtCPHGRSDGFFMZQ2eHlptGoTai7iUjrLgs/LOxhLakkR5jehYd2gZ4CaFkfttOCUU+uyLPjuQ+pUZsnLVPoiy7JBTp2NYNslpxHLedjPdJi6aRqKp5BMZ+AvlOqbSZOyE4B7rXFMX9RQ8tB0xpqF9DGk+ob8HgR8HiRSGfRHE8UNek6dH7EiUwYwr/NtcqwdtCp6HWqCNvZspJ/Um1MiXOsnBr3tcuqwzrcpA8GyQIya0TXUQ2hk6KdBvzc1lynj3H1I6QBWZZQjEBOxqjSkysAs0X/729/w5JNP4qSTTrLjegTKhHCdH4OG0WsFwekl1KJmltXx2JT2Y9KTbcrLCyiKoUVRDH1AeCL1oc02b2AiVkU+VaXLmLrFXBPJ2CNAlf36oK+wkUKLmhagfyd3KmzJdGbOdG1jqq8pmIya9UeTkGW5sPPLKKMMDrJYMoOE0qzNsrpPbjm1Z62x3GHBSF9jjV+bn9wfTaKtocDmKxaB1kCJuV8H+e1MZcoAFsipvdFdyzIQMinSFCxE5/ySJAnNtX7sHSAZXRMKXb4smzZ4zdNoc6qvyQyEJrPrjMdLjPpYP5FTBoO+uTaAXX0jtmceVo7O55dR08HIWmXfZpuccur8EYv2ptw9VyjLCDl5aAzEmN7XVBmYd7Hjx49HQ4OJDp8CroBqaBdNT0unSH0ywL5wDju7qFDXYkV5DSWLNi/Gc7N6s3n6BDDgoGXpd2HyyBkZLL15McdDS5SC7ZkkTpdNmKMvlZExFE8V/iC3jBIe+jwS6oo1hqRB2aK7vE4ZiyIuyWHSVIoSXo+ExhBFnwD1dws0UKcRA0AqncFAjMiG41kWtJFB7j4IJnnor9E7+PNmAxWT02SUpBEDFWdI0N+HvGupG3Q+YzZQhfXr0LMs7NL5Fsmo8dyulVOHIvTKeaOJNOKpIlM1uGWU/G51AS8CpSbLHGJg/jV++tOf4lvf+hZ27Nhhx/UIlAlUkUG1czhAapUYoHp6LUv74fSCUhtKTjTiUmFS+RX1hBojLpyNR6xLv+OLXg8n0loUNi84U9MsKwsBTDSNo4wM8jY2HLEh/Y5qphBByO9FUFG6RTcwJu/DcG3AfMTFbPNGm8omLGtUFQpDGx3J6lyjaTjG2cRJNeYBK5yHNjdv5JVTqyKfALecNtHIqUqfx09GAFJClmVY30S1n+kw6pR7p8sIAXsbjhkDMSbWU1Mw3WA0iUyxsWem11Ln922ldb7ZJrHOrKUNIR/Uvp9FA2raWsrpsBDp9qPAbNAvWLAAsVgM06ZNQ0NDA1paWrL+BCoDVAavesMFmwAvfXVGMp3RonFuaIpHpxgcikYAJtLTKOqTE8OkEyvgXPodZ4OcxpBfy76m2oQ6VRYC2N9AxunSEPW8ckaZ40wPqjRKszx0MuJSKU3xPB5Dtgyng9QOHiobtIagr/goLhrw6gulj0zE5hItS9Yak+OkisopZ+lLNJFGMk30rNNN8egdaw5lygCm9zVFdb7axwJgD8Q43BRP1VMZmYznKwinm/4Zz23HWmqi9MWyvakqo6kR0rSWEh6PpGeS0NgXTunDKgRzDf1nPvMZdHV14dZbb8W4ceNEU7wKBVU6M2fERV2oJInUX5qCyWhERibjZgqmVZscJWWNpzesXAunIVFs1JJKnzdIGvBRgkRcLM6ySEaBZAzwh6gOUxVDfzSJ/mgSYxsKHGfSk+1k1Iwu4pIkHZGN56GEZTz0h4j8JKOERoYa6XCtHz0DseI0cjZxsiwaARgiEpyN/2yLDFoYkahpIesMZ5pocR7yNm5U7kMrI5+ckcHSThleOVXHLDmfDVTUacEro8omO+DzoMZMB3jAdNlELJlBLJku3InedINRN8gpxVrKEYgZVAIxlmZZZNKkbwAFgj4vagNeRBNp9I8kChulJuXUmrXUXCZJ0bUmKxDjUBZCsJE0qZXT5J7xF5mklINwbQAHo0m6vamTWRZVBmaD/rXXXsOqVaswb948O65HoEygaqhmsplaY8gPr5mZu4DB09tPUn0pR5RkKYZooohB36+cx6EmRwC3N5uq/poz4jIUTyGVsSjiEmrKUQwd1Ic21wY0g74gnG42BpiOmhWNuGjfKSkdkulhbd1ni2LQ2yynDHBH1IzCKWMm4mJHVIk3G6jofcjnHI1YmSnDvZaScw/Ekkhn5MJ6i7dJrFXNKQHdwc5KYx1jhJ4B2gx6q5qNAURGGTr5NwR98HokpDPEGd3eVMig55VT5/UFW6ZMmOm7jTrIskAMZJIxwGB4N9cGEE2M4GA0icmFJsCabYrnaGYlRf+qrEAMvSFtDMSYplHt5B/tJb93Yyf1oWXR+SJCPwrM+W2zZs3CyAh9+oWAO9FElXJvspmalZ5syHpdGCWomo+YbnLkZHMVNeJiPX3qbxb0eczN3AUUxRAmz7mbANF4elmdMlYaEmbr6SgUX6iJOtIBAIlUBsOJdNZ5TMG0nFJEBivwPjSmF8pq+91cxAeIQ8t4HkrYE1XiNCRsKH1R+7i4gYeyTLooF4Qmp2Gm77esKR7AHxmkaYrnCmNXOXc6zpTqK0mSrvPtkFMX6YuiDmCTjX4bQz7zgRhfQO/BYIvOd3jahPHcdjTFsyIQ46Sc0jSldrpZcxWC2aBfvnw5brrpJqxcuRIHDhzAwMBA1p9d6Ovrw+WXX47GxkaEw2Fcc801GBoaKvr5G264ATNnzkRNTQ0mTZqEr3zlK4hE2IzCaoWxxrwgTDYbs2TzYlQMdjTGs6AZl2mYrKejSoN1sukfYKIukkX5cab6Ouitp0q5504vJN8pSdC6lJuCNk6KtT6ZITLIWN6jN9+0MmrGKKNK/XUilUEsWaBhoEqfr4Yp4pLJGJuNWSin3A04aZriOZgGq547FiHNwSgR8Hm02ewFaUzFyYQA43ko4Qo51YxBO8omLHRYBOpJUz7j9VCCqtmvG0q0TEZ3bdX5dVbrfD59QZW1xuuUsYJGk1kWtqylhkBMjdmpL8bzu0hOIyLlviCYU+6XLFkCADjjjDOy3ldnDKfTRcYUmMDll1+O7u5uPPfcc0gmk7j66qtx3XXX4cEHH8z7+T179mDPnj247bbbcMQRR2DHjh344he/iD179uCPf/yjLddYSaCKDJqNmlnlQatpBhJDJrreWh/dtaX+mnHRpBq1ZLJHgGWNR+yMDPJGJNwQ+VTukcFYCql0Jn9TMNPp6H54zEZcjOe3Y7yi2VRfq3nIkOpbF/DC55GQysg4GE2gJpDHYOeU0cF4CmpPT2tHLXF2n7axKZ4l+sLYBCwWAeoK5eyORlONH0PxlHI9daM/oNIneUh9MgPcFN2lMiQYMxAsLQtRU32H9xE5bRpPfShZB4YLOy0yGX16D6+cOqgvmqgc3C6JfNaEgchO7oyuovXXJjMPnW2KpzvWVLtpFJweU6vCzjGgbsgArjIwG/QvvviiHddRFBs3bsTTTz+NNWvWYMGCBQCAO+64A+eeey5uu+02dHaOru2YM2cO/vSnP2mvp0+fjh/96Ef43Oc+h1QqBZ+PmfSqgrrJtseDZmE0AlAUwy7uhbOg8kuOAKmYcg6HxoEB5o3dqA2KwepOorxOC5pmVSbH8lnb5IgvvRAgEYkx9cHRHzLdMM6qiIu5DYwt2UC2pPomSFOiIN3YLkmSEK71o3cogf5oEp3hPAa9SRmtDXgR9FkQcTEdVXJ5Y0OvjzRzig+Q62Ew6MO1fnT1jxTWF1rpS5i6lwsAxJJpLXPD0sZ/zGspxYhM1WnOvZZauNYM7zPRvLEAD+MRMqlDPQcD+i3NsjDnWLMjY83ycWC2BipckHlo0rGWTMsYTqS1zKAs8AaarNyXGs/PLKc0a41ZnS8i9LlgtmpPOeWUgv977733TF1MIaxatQrhcFgz5gHgzDPPhMfjwerVq3HhhRdSfU8kEkFjY+Mhb8wDtE2OzI6ScjZ1q+QmVJu56wOCDUzfbWmTI5MplMm0jGgijbq8iqFfOYeD9eWA6YZjBTcwmbQ+psfRLAuFvvgA6UrvpftOn9eDhpAPg7EU+gsa9OYin5bIKGC68Z8dDXL0mkgrUn3rAG+AGPQjB6kNeoCsNcSgL7HWOBlRMp6fuTTEviaq+pglCzeh8QH+taZQdJe7SSyhz+uR0JBvjWYF92g+G3loddTMZAlTSaeMvw7w5VlrCyCTkTU+WpMpY2j2ywBVRofiKSTTGfgtzOiytA8CYMHI4WKBGKW3gpNjTo30MWR01fi9CPg8SKQy6I8mChj05rPyLIHJsglbmm5bnQFcRTA59BUYHBzE3XffjeOPP962zvc9PT0YO3Zs1ns+nw8tLS3o6emh+o7e3l788Ic/xHXXXVf0c/F4vGx9AZyEqvgGFcWQF5wRF8tTYrjH9JRYVIxpWwyNR0YSacRT5DezpN4sN9WX9jC/FwFFoRd0WnDWYqk8tGTMEmBfdDcWASBnn4MSlkYkjN3nrS4NMR2NcDrLooRjTZZNyKmFWRZqqi/AHzkr5LQwnSnjrGPNmA1UEG7IlAFMRwYL1l+blFFLOsAD5qNmxZo38mZZWC2nppuMWruWDsSSmmq2pmwiTB4ZZbSxxq9tVUrua7jXUpdHd7XSFy/JxmGALaWSmRQQH6Q+LKt5Y0HHUz95dEOmDGAis7JQ6Uuam0bL96ZVBG6D/qWXXsKVV16Jjo4O3HbbbTj99NPx+uuvM33HzTffDEmSiv5t2rSJ9xI1DAwM4LzzzsMRRxyBH/zgB0U/u2zZMjQ1NWl/EydONH1+NyI31Tcv3NBJFDAd3bWaPtXL6/NIqLOy8UgmRXoFUEJN9QUoIhJOjgMDTGRZUNIXaKCOigNAKp3BQIw0zbJETr0+3ai3OguBu0eAxZkyJiMuBbOBkiOkozVgIrrrbESCOjLI7XSysHwJ4IgMUmRZRM2tNa6JDFqtL6wes2RyLU1nZAzFCzQMdI2c2hTd1WQ0zPS96vfVBUh01TRUGU0Ok2aLlPB6JK3BacE+ARUe3S058oyzA7wxEGOJTvTXkCanxmuihG063/K1lM+xVpI+YyDG2PeEAnrmoUi5zwVT/ldPTw/uu+8+/OY3v8HAwAAuueQSxONxPP744zjiiCOYT37TTTfhqquuKvqZadOmob29Hfv27ct6P5VKoa+vD+3t7UWPHxwcxJIlS9DQ0IDHHnsMfn9xQf/2t7+Nr3/969rrgYGBqjTqiWLwYSCWQn80idZ8qb6cGzRLO94az8/ZmKNwyj1nUw7DmCVLIi7+GsAXIvX80T6m9P9wrR/7BuNFnBbmRthYb0jwNsWzVvGpxjxg5QammSgq7jE91hoSBy3foJltbFhCRj0+faIFBcjMXXesNeFSa41bNmic5T1q1CyaSCOeSo+u50+n9LGinPrCOuchb4PKEuMVza6ldtyHmQx1PX/I70XI70EsmUF/NImGfJMv3NBsDDDoC9YsC3vKJizf0wSbAEgAZOJcaxhHfWi41o/ISLKIvnDLWmNOXxTsg2DSwW1ZIEa9hsER8ps3T6Y+TO8TYLWcWu08VHnYz3RYyfGKWiCmnkyyokRWIEY0xRsFaoN+6dKleOmll3DeeedhxYoVWLJkCbxeL371q19xn7ytrQ1tbW0lP7do0SL09/fjrbfewrHHHgsAeOGFF5DJZLBw4cKCxw0MDODss89GMBjEE088gVAoVPJcwWAQwSB9bVUlI1wbUAx6e1J9rVcMFqfcczflsFi5A4pi6CbXxKAYwqXSmU02HrE+DZavyVFpGeXboDWEfPk7y/Ogphk4uJ2jrKAUD6unKV4mI4/uuG+UUQYHWTSRRjJNvPxOp2trXeBLbWB407Uddlg0hHzwSEBGJpkWYxtzNsRq53CAOeJifRNVc3Ja0JAwOcbV8vtQzpBeAQzR5nBNAD3JGPqjSUzMJUOWK15OSzbFM11SYJGMejyEbyMHyTWxGPQ1fuyADXJqV0M1zn4dhR1rnDKqBWIC1gRiAGXftsdFcuqusgmr96XGQIyooR8N6p3sU089hWuuuQb/+Z//ifPOOw9er0UeLgrMnj0bS5YswbXXXos33ngDr776Kq6//npcdtllWof7rq4uzJo1C2+88QYAYsyfddZZGB4e1jIKenp60NPTY9tovUpD0fS0VAJIKHVBTtYmAyYac5SoxXJLNALgj5yVTDE0N7bOsqiZXU3x3BKNAEyniVpeGuKSNFg1QyAjk54do2BSRgNeD2r8Fukj3hTDuhKjlszKqdXR3WQUSMaoD/N4JD2TJJ+cqr9XsImUn1Aimc5oMuG0vrArG8jyqJk/BPhryXMrM0kSQ0BGod0tDdUYHcBamZ3bS18AC8p7Cu1rOKO7wxbLqcnSl9LGroMN8VSYnNNe0mnhuL7glFGlvj2WzCCWzGNvcY7H1AIxQQsDMVUE6l/klVdeweDgII499lgsXLgQv/zlL9Hb22vntWXhgQcewKxZs3DGGWfg3HPPxeLFi3H33Xdr/08mk9i8eTOi0SgAYO3atVi9ejXeffddzJgxAx0dHdrfrl27ynbdbkZTscigFnGRsht+UcC+6K5Njaq4MxAsjtAbr4kSRZsAmYi4uCVqpm4uRpLp/IqB09MbsdqTDZiW08Le7H7yyJiFYF+mTD9pakOJkN+rGdx55dSCTCBLIy7Ga6JEUWPX+H3McmpxdDfURJpJGa+JElomST6nBWemjNGJZXlpCHcTVYsz1uxca3gdwMWcMt6g7jCgACl9sSsbyOLSFzfqfCsnTqSTeiCGVedbvdbw6nwliDAQSyKdydO8kXcttXpPA5goJaTMBuJsimfL6EGGhs0NQR+8SiZeXjk1ex+Khnh5QW3Qn3DCCbjnnnvQ3d2NL3zhC3j44YfR2dmJTCaD5557DoOD9F0eedDS0oIHH3wQg4ODiEQi+O1vf4v6er3ecsqUKZBlGaeeeioA4NRTT4Usy3n/pkyZYuu1VgqKRga1mbtNgIc++hVPpRFNkM2+0yPP1EUtMpJEpqhiCDN9rz2eXhuaj8QHAVkxvJzurs3p6W0M6YqhqJzyRiOszLIw3UHc6ppBmzpPQ9ZHBVKiaDaQW8YsASayLOyJDGqZMlbRKEmmN6F5jUGT2U7G+9w07Brr5pYmsYAFclrEKcPYbGwonkJK0a9OZwMZZTRvJ383ZeWZzVrLV3+t1TpzBGIs7/VgjoeyDAzGLNT5Vjf6BQw09jMdVlTnGwMx3Drf4iyLdJw0r6VEVif/vHLKq/MtHqdcZWDOWairq8O//Mu/4JVXXsG7776Lm266CcuXL8fYsWPxyU9+0o5rFLAJRSODnKNP1M2LRyJ1l5aA29OrK4aBoorB4XFgAHeNeVMxT6/6e/lqSOM9SmQyerMxyyP0qRiQiFIfJklS8REonHLab3U0ArCgxjxf6UucdEIGOOTUYh76AnrTOuYGlUWygbjHY9rUywLgjppZPT7S8sgnYKIxXpEINvdaqsioFeM/VZiMDJau++RsqGYpjWHyyNqTpJi+MCmjIb8HIatKX7jXUvIbJ1IZjFiY0WX5ODDA9L6mqM5nDMQkUhkMK4EYyyP0sQhpmkkJv9ejzWYvLqd8Kfe27NusHMcbHyQTj4zfTwnL9UWgnjSrBbizK/OOAeXV+cM2OPGrCKaKEGbOnImf/OQn2L17Nx566CGrrkmgTCjqJTTpIWyq8Y9ufsUL9aaPRZhSfQM+XTFYSqMthoTZ0XzWeUEH4ymoCQ2NVnnrgw0GxcBbVmAHD90TNSvqyZY8/DN3bYlIWNgngDdTxkVRs6LR60xGL2FyhZzakA3klh4BgGkZHYylkEpnRn/ALXWtgD3ZQKbps3CdMdLHkOpbF/DC7y2W6ms228k9cpo3G8jkKF7JjkAMwJzRVdTgNSundtTQWzki04JAjGU0SpKr9qaWZx1WGSzpKuD1enHBBRfgiSeesOLrBMqE4vV0vCPd7DB2w/pzRsVAFd11ehyY8Rqs7OTPnV5Ifqsav9e6iIskme5c7H5DgrP+msZhEQpTj6cCgFgyrUWoLEvXBsyna+eVUzc5ZcyNWuqPJkan+sYjpCO58fspoW1g7DAGGbMQmorqC7MlBXZEPvuZDjOu58ZuyhrcMnrQeA3ca2mxTBkXNBtTryGdABLD1IeRjC7rnRb26nze5o3W7WmMM+gtC8R4fboT2lVOfOczunQZtScQ4wo5tXFvKjrc54doE3gIg84L6vB4FwDw+oGAMpudt4FMsU0od8M455viNRVL9TXZeMTS1DTAdBqlPXLqvHIv7rDglFGFPq9HQqNVERfA9AbGHjl1Pg1W5WEyLWs9RDSo9PnrAB/9SNRMRjb0CXB+rQnTbEK5G3HZsAGND5AmYZTweT1o0FJ9c2hMjgAppYa02pviucFh4a8FvIHs66IE1b6GWee7p4lq8VRmF62lgMEBzDf2rHj9tcPjlAELmhlbvy+1NBADmJdTG5riWb43rRIIg/4QRtH0O7d50Ew2jRuVnibL/FkIdkQGTTbIsTKV2ZaoGWBJo6NRMCuntvCwn+kwlYdD8RSSuam+pscOWtgBHjCfYmhhloXl48CAbBllSPWtDXgRUMbojJJTzgyEgVhSuwRrIy42NI0zKafWZsqE9eeszaoK0aiVvniZSl9kWbYpumvDyDOzmTJWptybSvUtoC8yaV0eONca9+t88/rCUpjV+ZbuTd1UgqaPyByV0WV2LbXa2LWleaNJORUp93khDPpDGHZEBu3z9JobezY64hIl6XyAO7IQLBhhM0oxmB6VZVOEnjmCXSy6208e3SCnnDLaWOPXmkoXNCTcEI0A7GkC5MbRg5kUaU5ECUmSDJGzHBo5R7qpPKwP+hDwWaiqTTfjsiNqZiEPPV69wzdvZDCXRs4O8LFkBokUcdLZ0vjPBdlA2lpq9Sgpq5sbxiIA5OzvpoQ96dph8siZymzlfWjLSDfAgiaj+QIxnHLqwqZ46YyMwXhOeY/b6svNloMWyyRxy960SiAM+kMYzVSpzJxN8SxXDBZHBtXv8fiBQB3198myrI8hclFTvFRGxpBVisEuY9BkdHdUlkU6ReqTAROeXhuUe2IISBXolJ0HJC1ebRqXa0i4qEcAYD4yaEeqr5U0BmoBXyj7uihRsPGf2fpyl2U7ub7ZGGB9ZNBkszGfR0JdwMI0WO7RfNbfh7aMAwOszwZSvyfQQMr4KJHOyFpPBXc0xSO/czSRRjxVoLyHuw+CW3hYYLxicoSMUAPckdFlpC+Tp5FmAYT8XoT8xPwata8x2yPAcp3PWVZQVyxC77K9aZVAGPSHMNSbYjiR1qIIGjjHStgy3gWwvu7TOKKHIeISTaSRUNKi7fH0sqX6hvxeBJXo3agNDOcYIlvGgQHW15upncMB0jSOAbb0QQg1AVBkyXhtFChpSDBHzdx2HxagT5arR04LRQZ519IRmyOfnCPPipb3VLqcFnI88crosO78tbT0xYKmeJlMjp7hllMbIp+A6ehuQccaY6aM8Xvc0ES1IeSD2rduFI3ca6ndGV2MvYEKjeZTZdTj10eoUsAYiLElo0vOkJ4dDAgXat7o2kwZi3R+OqU3t3aLzq8SCIP+EEZjyJDqOyoy6DIPGmdn5oL11yYzEAJeD2rsaDwip5kVQ8HImZsin8br4GyKN9pQUugLNpGOupRIpjNampulNHq8ehols5yqNForp5ZnynDeh1pkMJeHiWEgo9DMSGPE9uguf/lLFjh5qGUCWR35NDm2rmjpC293bbfIaaHSENORT3fIqPo7Z2RYluobcZkxqK2lhUpfOCOfDUEffF4Lt8yqjCajQDJGfZjHI2kGr/U6366+Oaz3YQHHGmfpy0hSD8RYKqe+IGl2arw2SuhlBdbuvW3LlGF0ABfclxonVXEGYkSX+/wQBn21INIFbHuJPFLC45G0rr4f7h3K/ufQfvKYyTO+pwh6BohiGlXPbRbq4rb3fSYaVeW+rXcY3ZER/R+qgpE8TN+nbhJqAl6NVkvgD+mpvvs2MR1aFySOhY96c3g42EMeZfpUMADo7ie/k1XTazSoPOz9kJGHZPHe0z+SzUN1s+4LMX2fMaoxnGCT75IIKtMYej9gOkxVUG9u78umUaOLjRm7DkYBAH6GUXdUUHnYv5ONhwp9+4fi+e9Dj49pQyTLsnYvJnLTTs3CX0seD2xlOkyV03d3R7Jp7N9JHj1s0wZ2HCDjuiytnwf0TfZgDxMPVWMwlsxge69hlFg6qTshU2xr4oEhwsO8c9/NQJXTrre45HRT92A2Dw9uI49e+ikFgL6Z9UjI/j6zMBq7/buoDwv69FTfLXtzekSoOp9hMgAA7FX0IEPGMR1UGnve5dIXH+XqfPV+ZpjtDehO1qDfYy0Pg43QtuD7NjIdWq/s27buy9237SWPrDpfocvKJBIAOg/3b+biYVdfNL/O9wbZ9m0KD30eKX+JqRmoOn8/m86vUUpwth0Yzv5HZA/XZexWdL7P6o2bysOD27l4uG8wll/n+2t1eaWAMRATz80oFgAgDPrqwNr7gRVzgN8tJY9r76c67JE1O7XasMt/sxqPrNmpf9+QYgw+/Bmm71u3sx8A8IO/btC/zwqoynjz35lofHc3uZ53dkdw0vIX9Gva/BR53LeB6fv+sp4saJGRZPb3mcXa+/XN8P8uYfrNt+4nCuHGh9dn87DnbfL8bzcyfd8zG8gie+eLW63lYc+75HHX60y/+RvbiALYdXAk+zd/70/kcXgv0/c9tFqn6eSfvGgtD1Xj7Q9XUF8PoNfO//qlj3Qa194PfPgc+cCLP2Li4QOvk+v4w5u7rOXhrtXk8cAWpt985QfEWBiOp7N5uO735DGTAlbMpf6++1dtR1rxGV74/16zlodda8jzJ/+diYc9EXL/PvLmrmwern+AfGDNvUw8XPGPLQCAFzbts5aHW18kjyMHmHj45Dvd2vPTf7pSv6Y37tY/9KvFTDSqTtEv/P4ta2lUN4pv/oaJxo8UR8VzG/dm8/CVFeQDG59gkol/KGvpB3uHrNUXm/6uP//5UUy/eSxJNsOf/vUq/Xre+h0QUxxqD1zM9H3v7SHOnO88/q61PFSdKBseZ+LhBuV63tpxMJuHT99MPrDzdSYe/vVtovN7hxLW8nDd7wEohsm9pzP95rsOEgPp3x5Ym63z9yvBgMe/xPR9KzeT9fn25z6wlod7N5DH7S8z8fDNHUTnb+0dzv7NNzxOHgd2Me91AdJraPGPLdb56l75oUv59sp/eT+bh9v/SZ4/dwvT9z361m4AwP+9vsNaHu5+kzzue5/pN395C5Gpg9GcvfL6B8ljMsr0fb97bbv2/LxfvGwtjVUCSbY8lFpdGBgYQFNTEyKRCBob6cfVlA2RLnJTGD2ykhe48V2gaXzBw7ojxDgyltF5JQmvfXkmxv1mgWXf98rNp6Gjic0jPgqRLuD2I6F1qGW4phOXv5BVkq7ReO+xfN+37AXjUdbQeKjwcMWR2f0BzNLIy8M8MuEUD7VrypGr8VIfXgl9BZLreGixnHLy0BYaBQ+Zr8m1aw2vvrCIh4W+T+gLSlio8wUPK4+H1azzK46H1azzKwS0dqiI0Fc6+raOTq+S00DfR0UP29Y7jNyeOGlZRu+OjZZ+3/beaNHjqNC3FVkLAMM15bqrNBp5vy/nPUtoPFR4mMsMszRaKBNO8VC7ppz3Jknd2RtQyu+zn4cWyyknD22hUfCQ+Zpcu9ZYtL7z8rDQ9wl9QQkLdb7gIfv3Oc3Datb5FcfDatb5VQZh0Fc6WqaTOnAjJC/QMq3oYVNb60bVSHslCa2TZ1v6fVNaa4seRwU7aMwF5fflVidZQqPgIfM1ER7m/KMCeVjomnbKHZAFDwt+X26tp+AhJaqdhwCh0aJr4uWh+n25EPqCEi3TRxd0c16TWR66SV9UHg9dstbkvCd4SIlq52GVQRj0lY6m8cDSn0O/SSRg6YqSqWQdTTVYdtFc41G49aI5GDdhOrDwS/oHJS/1933jrJnaa68k4daL5liTDtM0Hjj9+1zXdOuFc7XXHslAY5vBqGf4vhOmtWivLaPRLA8l7SidvlO+rX+Qgb7/On+O9lr9vSzj4bk/5bqmZRcV4OGkhVzfd9aR47TXTvNQvabPLpyUdU1fuegUSEuW6x8y+XtZxsOlPzdck8c8Dw872/B99DR+6tgJ2mvLeWjcwDDw8Iun6psSjYcW/l5u4qFk5OFRlxi+j56H15w0VXttub5Y9GWua/rW2UYdBm4eqt93+Dh9tJb1a416TRbo/OP+1fB99L/X1848THttOQ9P+y7XNf33Bdk6zCwPF0zWu407rS+K8vBj39A/yPB7fX/pEdpry9eac37MdU0F9cX4Y7m+7/TZY7XXruGhwULV6Dvrv/U3q1XnTz/d8H30NF5wTKf22tK1poogDPpqwPwr9E3VCV8krylw6XGT8OXTpgMAzjpiHC49TjEqOo8mj+1HkdoWyu87YfoYAEBrXQCv3Hya/n1WYOF1+vMvraK+psuOn4Qxysis3151nH5NXmXsxRk/YKKxpY50Ob5y0WRraZx/BbDoBvJ8zkVMPPyBopCPnhTWr2fyIvLYOJ6JvtNnEcXn9QCvfMtiHh73L3pH2CseZ6JxVjs57scXH6VfkzryZNH1TDSODxOv7tJ5ndbz8OP/RZ5PWUx9PQDwyXlEWbU3hvRrmnEm+aevhom+i+frxu5fb1hsLQ/nXwG0zCDPL7ybiYeLZ7QCAL5x9kz9mho7yOO8zzDROKONGEqLZ7Raz8MLfkWet85k4uGlC8g1BH0e/ZrmXKx/4N9eZ/q9WpR163+N65YVmH8FMPlE8vysHzFd04XKpuqqRVP0axqjyMNhZzPxcO6EJgDAER2N1uuLoy8nj4EGpmu68kTdyfDUjSeTa5p/BfkeALjiCSaZUCcUfPPsw62X0yMuJM9P/CoTD687mdD4iaM69OtpVzbf4xcw/V7HTSU6v6MpZD0PjU6GG96ivqbPLpyMhhDpAv9/1yzUedhC9jq46F4mHqrTHf518VTreXi8sq+ZdxkTD7997iwAwMKpLfr1TFQc3M1TmXh4yuFE54d8Hrx68+kW8/BafTLE1U8x0ThNyXC5/dKj9WsKKg6yxV9norG9kUwQunj+eOt5ePr3yPPppzPRd/slR5PD2ur065l2KnkMNjLRt3Sebuw+o65bVmH+FUDTRPL8079jovH4KcQZ9p1zZ+vXVK8EVOZfyUTj1FbC+9Nmtlm/1lQJhEFfLWieQh5TbCM51JskmjSMfhpWxte0HkblxVahjiAa31xjvecsUKfP+2SYOQ4AY5XFXDK6RId7yeO0U5ho7B2KAwCOndJiPY1jlAhfkm00zoyxZLM5FDOMYFN5GJ7MxcPW+iA6wzakM6mLeW4aVwm0NxEeZtXCqTROPpGNxmHCw3kTmqznYevh5DE+yHTYmHqy6RlOpPRrUulraGeir08ZyyNJwKz2wg1UuKEa4YyY0EzoSqUNTFRpHH8sIw8JjbPaG6zn4ViyWUasn+mwMfXEAI+nMvo8Z5U+X0iXDQpkMrI2XnFWhw08VDdojGNJJ7WQNThuHDOn0tg+l3EtJTyc1lZnPQ/r2shjYlBfcyhQE/CiThkn5Vdnjqfi5HsAYNyRTJehrqcnzWiznsZmZUObZtP5UxSdP5JP57fN5NIXE5trracvFNZHPXrZZmu3NZD1NEvnq/fz2Dwld0WgyulxU23Q+S28Op/wcCiRR+c3T2HkIdGHYxtD1tMnSUC9Eh33eJkOVXV+FtR925STuOT06IlhG3S+kqWSGC7+uRwcpmTvREby8LBxPBd9AZ9Hkw1L0cCn88c3kz1kOpNH5084jktOj+hsFJH5AhAGfbVA3cCoNwslWpRNqLogkO/ozf5OSvQphpJqnFiOOhINQPQA02FqhF69PsgyEOWjUTUkWuvYNhhUqCMRTO33p0SLRl8+HrYyfZdq7I6ps4mHteZoPJCXRkYeKrKuGmCWQv29OWV0MJZCQp2xqt7LzPchoa+lNgCv1TNpAQONFsip+jtx89AGOa018JBhuHZ90IeAYgSq9xGGDfQxDHmOjCS1TVBzrQ1yWsvHQ/We6cvSF7xySn6jVlt42AItFVade0wJVSdq+kKVUY9PzwqigCzL2nply1pj6VqqyimnvrCDPknil9PctSaT1meYc66nrS7SF2qmYNZ9aHJPYwsPAaBW2bfxyqkFe9MDdu5NuWWUXMvBaAIZ1eDl3Lf1GfalEoOeoYalOt+knNq1N60CCIO+WlDLZ+y2KjeHtgEF9A1aLduionqyW+wwdgFup8WYXKdFfECPanAunC22KHdz9PVFE7onNMpp0Ntp7AIGpwUbjeqmX/XSku9QaFRlnxKqYmixQzEY6WOYCNpU49eMb0358TplXHsfkt+7dyjPWsPteLJxk51JMUXpJUkavdZoaymfjDaGfFratqXgdB6OyasvXCinHq9i1INdTutUOc3DQw89L4biunPOlk0o533YmteJz6fzXbvW5MpptA+ku7akywUlVJ1ju75ggLru9Q4noE2e5l1LVZ3vMh5qOl/lYSaj72tY5XTYRjnlDaYp15I2ZGOZDcTYsi8F+PWFcj29eZ0yLtubVgGEQV8tMGsMZikGl95wJpW7vkFT6AvUA3761J1UOoODURu9hBp9jF5QJYIny0B/NGcTyuvJtlu5c0awtahSIgokh7O/kxLqBs0eY1C5llQMSAxRH+bxSIbImRrd5bsPVYPZ/vuQTU5b6/N463nl1M61xhcEgqS+m1lO63N5yEufjdFrwLxz1IJsoN6y6QuTcmpSRmsDXtQE2NKNqaCtpZxOmbyONRdFPgHThsRox1oLU+p3LJnGcCKd9Z2WglNG1WtJpDLa9fHv22zOyuOW0xwexvr1EiHOvamtWRaxCFPJa8DnQaPS6+GAybVGW0vt5iHrWqpmkhizY0078UWEvhCEQV8t4PT0qkZEMi1jQK3B5kyJ6bPbGORMMRyTm0LJGdk9GE1ClkkmYLPSKMdSqNeTGASSMerDfF4Pwsr1mFUMtkavAdNyqtGnyqg3oDfao4Asy9pG3ZYNWqCONLEDOKKfhTahfFkktm2yrUqhTCXIJgjgLyuwzfGk0sgqp6qxlCOnzJsXu+njjdBbF93tK1t5D+daM5RbNuE2HnLeh8q6N5xII6bW0ZvN6HKrnOY61jgjuwGvBw1Btt49VMgq70kX/6zxsIAPNX7imNDl1Fwqs33RXXNyqut85T4MNhKnKyWS6YwWAbdlXxMKk27tAIcDOMe5Zlrn2733NrlvSwyTYAfgPp1fBRAGfbVAvTlGDgJp+kZHIb8X9YqiGrWocG5g7PMSWrQJNVmbHK7xw+e14dYJNQEexVHA6c3uzd2Esqb6ujTLYlTKvZGHDDVjAyMppJSyBPvTRDmjSlqaqMkeAS5LoRydBqvIqORlrk3udWkEuzV3A8OdQunO6LW6AY2MJJFMZ4gRMsJXm2w/jbwO4EIp95yRT9tltJepvKchq9dDpcgpX3nPaMcaX6ZMi121yZp+lvUaf0qMSmc26bRwrb4wuS89qNDnkcjezXJ4PKZLJ0Y5LbizLFzGw0KZMr4aEvygRDoj29vLokogDPpqQU2z3jmcM010dO0uZ9qPy5R7i6HeLOt43lRtuzZokmRCMaipTdbQaNuiVwrpqgAAXrdJREFUqUV3OVOZc8smWNN8FWOyIeRD0GdDGixgIgshZxNqumzCZscao9PJmMqcyRhS7xhrk4cTacTV2mTXGby50V2XrjW1fBkI4Ro/1D6LB4cTxIEsZ7K/kxJli+6abahmMtvJlgaqgG64ZZJ6pgsFJEnKzkKQZRMNRu3OsjCZDWRRPxLb1hmvj+zdAI4Glbk63xwP7XeO8jq4rUlHb6kLwmNHk1jAugi26RI0dzWkNvZBkE2sM/3RBNT2UM0iQl8QwqCvFni8QA1fEyDN4B1KkPEpau0vc8M4dxoSuuLLjXyybUB77fZkAwZj0KzBa7JDuu21WHwyqvV60MomXJYiCpg2JEZvQt2aZcFGn6qIMzLQP5LkL+1R6Av5PagN2JAGC5gwJNQNTA4P3SanWq+HEaZxS8ZeD71DCf0+rmlmGicaS6YxFCeZZPZHsHn7BOTqC84Gqnbx0B8CAkq5kRljKRYhTgGAP7pr91rDOY3BsqxDu2QUMBHBzqHRrXLKaexqjrVcJz6zjNocvQYMOt+ilHvu7Fh3BtNiyQyiibRpGW2q8evjRAVGQfwy1QSzTXKG4/qi6fGTWiVKyLJcxg7pfJHB0dFdVkPC5mZjgAWpTXEgndS7c7u2URVfBkIincFgPGXCYWFz5BOwoPu0NTWRtkc+4wNkRjcl/F4PmpSUxwNDcW6HRW85muNYnWLI6VizjYdZvR5MlE5wjzgl9Pm9ktYYynKY7eRvNhvI7iwLgD+jy5iSrjWJbSBOAkqk0hn0R4kjwG2GhB4ZtCZ6ba8xaNKgH04Qp1wyqnyf23S+udKXwXiK9HowOdLNjfu20XtTzjGudo6PBLKbGTOMcq0NeBHyK+U9Rgew22S0SiAM+mqCSYO3L+uGc3NtMp+XMJpIYySRNp1CaashwZ26ZdjAaLXJHj2djxKqYmi1O8uCsddDTcCLuoDaBMgCxVCWLAu+6G7fcCJ7RI/b0rVDYTKTGzAXGTSZXmhrLR2nc7Q1N7rrVmMwq7zHxGxhkzy0rTYZMN1E1ao0WDfKaVZ0l3Mt7YsaapNr7TYG+XR+fzSJVDrj3sgnYKIMzeiUUWuTQ2R6DyUyGVmb3GN7yn2UrddDY8gHv9cwytVsB3gXOtay1tJUHIirTWJ5M7psLn2RM2TvRglJknIcwObKCG3bl1YJhEFfTbCigzhvUw7lhqsP+hDy21SbnNURlt5LWB/UZzlnRZUYU7fK4iU0a0gYlXvtGKYRPdFECrEk+V1t63hb0wJAAiDrzbQo0aLVYMdNNI8pAw9NGhK9QyZrk+2OSEiS6TTKrMggZ5aFrd1uzTplhhJk82qyy70bHU9Zcso5MaQsI4hMZgPpvR7MZSGUR04505mHE6Y73DfXBuC1qzaZswStuTagxSP6oglunW97bTJgQYQ+nh3ZZXCQRUaSSCuBmGa7nTLpBMnqooSx14M5OS1jyj13A05jdqyPuUms7Trf69evyUzWGufEENHhng7CoK8mmOxc3DtkxoNWDmNXbQKU0lPKKSBJkt59OsuQ4OwRUBZPrwVlE5wRpaDPo0XDLYfXR2YBA9wb7d7cTBIG2N7nATCffjcc1zcvoTBRppSIp9IYVMZP2urN5l1r8nrreR1r7ou4aNMmhhOQYxGyiQXcN3oQMJ/OPBQ3kUVSzjRYvgyEdEYm467cmmUBWGBImFlLy8jD5DBTrwevR0JLrUHn88qp3anMgDXlPSZnezeG9KCH5fDX6FkDnPoiy+B1W/kSwL3WZE1FiRqcTgxOmaF4Cgm1SawL9zXZjiezWRbCoC8GYdBXEzijZsbu09yKoRxeUF8QCDaR59wzTU04Lcqarm0iy4IzamYcBWZbGizAHcHOm4XAqhjKWk9nIrprcpPt80horLGpNhkwdL3lbVZlRdTMfTxUrymRymD4YA95M1APBGqpvyOVzmhpsOXJJDGRJmp6EkMZ1tJ4BEglqA8L+DxaXX9ff4QYk4D7xoEBJhxrRn1o0mFhpxERqAe8yvc7WBriyiaqxj4BnCPrerWyEJtTmU1mA1lTf+3CUsm8e28+Ga0NeFFjVyAGcFRObS8jrBIIg76aYLIm0kwa7AEtJcZuxcBpSKiRwcGYibIC927QrDB2y5bWZLrTvSHFkFMx2JsGa87YHU6kkRjYq3wXn7Fra20yYI23nrfLfTmMwazynjT9YQEfapSSo6E+xaBndKwdjCYhyyRIY1saLGCiM3OeLvdu7B4eCgOSssHl3IQOHOgmb3iDQLCB+vhMRtbmX7vRKZM1qtakY8228ixA6fVgstP9wKA+1o+7oZoLsyyMfRC419Iy6Xyzne7NyGlZSrTMNaQ+GE0gM6SupS4rsVNhWk75M2XKkmVRBRAGfTXBdJd7/nT0sjQAAkynpw1FegFZ2aC70UtosmwiMpJEeshkNKJcioFzxEvvoIlGTsNliEgYZZShCVBD0IeAMpIlepDToC/HBhQwLafmorvlaE6pbqpkpiZAgGGtUQ16zs2LrbXJgAU15sbaXRdmWXg8pjehIwcNPGRpEhtL2t8kFjBh7OZpqMYpp622O4DNlRVED+4jb0he5trk3rJ2uedzWPQNJyAPmcysLNe+jVtOo4ZADKeclqMclHWUa60fkqS0W+lXdT7vJAa36vw8Thk36osqQMUY9H19fbj88svR2NiIcDiMa665BkNDQ1THyrKMc845B5Ik4fHHH7f3Qp0EZ7q2nnIfh2w6JcalBr2ikOPqohlqAnz015pIZTCg1CaXp+MtG33hGj/UvX8iwmcMlmUcGGC6Pnl4sB9Ix7O/ixJlbYrH0euhJVdO3ThmCeCe0563oZobR9h4fUoDR3A4D8n9E4+4nIfcI8+smFRQLjk1R2NM4yFr+RKR0YaQD0FfGdJgOR0WvUMGnc9dX+5ufRGP7NO/x0O/5R1OpBFXa5NdmGWh6opURkZywEAjA8qSjg6YLiWMRXoBKM5x1gac5ey5khgCkiPUh/m8HoSVUa7cOr9c0WvuLAs1EBPj1/nl2ptWOCrGoL/88svx/vvv47nnnsPf/vY3vPTSS7juuuuojl2xYoW96aduAacHrVlZCDIy+KO75Uq5NzniJTXI57BQvbxej6TN0rYF6u+eGmFqAuTx6MZgapBPufeVLUJvLssiNaTQ568l87Qpkc7I2qglW6Nm/hCZ6QxwyGkOD7mbqbmTh+rvPjg4QDY/AH9zSpc7ntKDfCmUvWUvfTGRQsnpAO4rR5YFYKIMTdUX6lrq0hRRk06ZeCoDWdtk8zkt3CunhIfpQcVQYpVRhb4avxe1ATv7kSj0xfqBdJL6sKDPi4Ygua4U576t/HLKV0qo7dtqmomzlRKxZBpDcRKIsVVOg42AV/l+zkwSXeez3Yeu1/mqc3TwIJBR5Nut+5oKR0UY9Bs3bsTTTz+Ne++9FwsXLsTixYtxxx134OGHH8aePXuKHrt+/Xr89Kc/xW9/+9syXa2D0JoADZCZlpTwez2akSqbTNd2bcq9spibjUa01AXgsTMNNlAH+GrIc05PqGyyD4Jblbu2+R/i8/L2RxNaBnyLnbXJgImNtjkeahGXcqXfMY9XzGlw5Q2QzRAlZFl2YAPDZ/DyrjV9huaUtsJkKnMsHtMzUNzatdjkGFD+iSHlil6r9LGNcjX2euDV+WVJZQZMOy0ynPqitxwd7gFipErKVpyznwX3vq0c/UgA004ZDJlzrPm9ktbo0hYYez1w7015dX6ZM2UYZVSbtqOuwcFGEvSgRDKdQX+UOAJEDX1xVIRBv2rVKoTDYSxYsEB778wzz4TH48Hq1asLHheNRvHZz34Wd955J9rb26nOFY/HMTAwkPVXMQiFyQxLgDMVVoZnRK1T4vQSlq2Oh0+56/RxpmrbvaBIkunmhp4R3uYxZUq/MzmnXeKspTug1Sb74fPavPSZVO4ezpm7feXahJqMXntjfeQNxhE9A7EUkuky1CYDpg1ej0k5tZ2HxhRKhl4PjSEf/F4JzRgkb0geYpQwoPwRet77UG2+ydmoqlylL3KGuddDS10AEjLwqPeiW50WvPpCXWtGOGuvy6XzPR7uUjttrRnhlNOypdybi+5KI7wyqq8ztmfpmixD87q9YZxJx5q+L2VtEkvo80hA2O5ATIWjIgz6np4ejB07Nus9n8+HlpYW9PT0FDzua1/7Gk488UScf/751OdatmwZmpqatL+JEydyX3fZIUmmuonWIg5vOkbeMBHBthW8DdWUjWMwxtvhvkyGEmDCkCDXFjC7QXNpl3uNhwm+Dve95ehwr4J3xItybYG4yx1PnDIarg1AkoBWaSD7eyihymh90IeQ38baZMB0Z2aNh5yjpMq2lmaSJKuLEmqvB42HtWOYapOjiRRGkqQxqVsdTy2KgeOPczplypWB4PXrjd44eueEMQRJViL7nMZg2VLuORuqca+l5eoRAJgsYZIRiJl0Hrq054oa3dXXUtbypXLqfHNNqU3rfJdmx6q/fTijTprgW0ttbxJbBXDUoL/55pshSVLRv02bNnF99xNPPIEXXngBK1asYDru29/+NiKRiPa3a9curvM7BhOLyhhJueEYa5MzGdn16XfqolKTVKIYJjy9tsOEIRFEAoG0UnvvWsXAZ+yqPGyW+RRDWUYQqeDNsqhX5bRf+R7G9LtyZ1kko0y9HrweCS21AYyBatC7NHoNmDAkctca3iwLm3noryFzvgGuGvMWiZOHyjoT8ntQa+fcZMCwlrKmiSo8THA6R8vZxIlTTlvqAhij8jAUJs4BSsRTaQwqtcmtLs2yUPVFiPM+7C2XcxTg7g3UWh9AA0bglZXaZO4u9+4s0VL1YWOmP/t7KFG2vkCABXLan/09lOgtV5d7dS0dOQikU9SHhfxe1Ad9+lrjVudoFcDGopLSuOmmm3DVVVcV/cy0adPQ3t6Offv2Zb2fSqXQ19dXMJX+hRdewNatWxEOh7Pev/jii/Gxj30MK1euzHtcMBhEMFjBnRTr+NN+xqgplIwRpf6RJJQJPVqDPdtgMuW+idMYPFCuRlWACRqDaFF56PGTTv6UyK5NLpNyj0WAVIJ62kDA50FjyIcxKYVGt45WBLh52FoXhBdp1KV5nRZlikgEG8hs7nScrDUMDsAx9QG0xHgj9GXcZJvsg1Cf6le+h7MfSbloTAwRGsdMpz6stT6A5r2cPBwuYxqsibUUAOrT/cr38JYvlWmtObCFi8aoqi84naM+j4TGGpu3kSYbqjWm+wEvuGlscbG+GGN0rAXqiZOOEql0Bv0jSm1yOfuRZDLUGT11AS+CPo8JB3CZ+pEA/Dq/PoAaxBDMjGR/DyX6yrU3rW0BIAGQSYZswzjqQ8fUB9DSr/KQtXxJdLinhaMGfVtbG9raSgvvokWL0N/fj7feegvHHnssAGKwZzIZLFy4MO8xN998M/71X/816725c+fi9ttvx9KlS81fvFthYj60FqHn9PI21fjhL1dtcrQPyKQBD12EpzbgQ23Ai1YY0kQZcEBrVFXOdG32BjlZPGTYLA/GU0iklRE9diuGUJjMBJbTxGPf2El9aGt9EGMi5uS0vE4Zdsea5pSBxFybXDanhdoEaGA3obF5MvWhY+qCGHPA3AbN9mkagKmmeBIyaJQ55bTczsOD27lo1AwJt444BaxxAEtw+VrDX6IV5db5uoyWzynTS3o9UJ6vMeSHzyMZSkP4eGh7BgJgSk51Y5eNvoPRpPZzNttdm6z1ekiTRpq1LVSHSZJEdP6wOQdwee9D9glMYyRF53uDetYUBbKzY22WU4+X8DHaS+SUxaCvC2BMxFyEviyOtQpHRdTQz549G0uWLMG1116LN954A6+++iquv/56XHbZZejsJMZAV1cXZs2ahTfeeAMA0N7ejjlz5mT9AcCkSZMwdepUx2ixHSbStXlTYsrWsRjQZ0NDJkY9A1rqTKT6lqt5DGCqkRN/bTKhry7gtb82OasJEEeaKCcPe8vViAswNVt4TFZtMj0vRhJpRBNqbXI55FThIUcapVk5LatjjcNQasIwfFBrkzlTKMvBQ245NTqAecuX3Oscba4NQJJk3QHMPfXFveU92Tq/AmQ0HQfig8U/a4DHI6G5LoAxMJeVV9Z0bY6yiVbe+1BxjpalNtkX0DMGeXQ+t5yWkYdmdL5RRpmaxCaRypSpSSxgQk6DpuW0LBlrFY6KMOgB4IEHHsCsWbNwxhln4Nxzz8XixYtx9913a/9PJpPYvHkzotGog1fpApjYhGop98w1n2XcoHl9ulHPk5LOa0hUTMo9XzRCS9UulxfUTERC4isNcaaejn2smyqjMmcTp4DPgzq7a5MBE2UFARNy6v770LgBlYON1CUlAJBIZTAYI/WJ5S0rMJFJwr2WltHYTQwByRHqw7weCeNrMghK5uYmu1lOSd8cc/dhWWQ0UAv4lZIeDid3i2SuRMvNWRZEX5jTh2WhD7AmC4FzX1OetZQ/5V6XUb5pGg0hHwK+MphznFlrrUZ9wb2WipT7UnA05Z4FLS0tePDBBwv+f8qUKZBLjN4p9f+qgBVN8Xi7wZbrhqtrA0b6mGkcW+tFM4b072CAXovl4nRtK7IsysZD3rKCCpFTEw3V1KhgpqYVLGa5sfba9jRYwGR5D6+cOtB5OtYPpJPUTcOCPi8mBkmjwGRoDFhWDHXz4vVIaKqhb1LGDRNz2rmdo+UsXwo2At4AkE4QOQ3TT62ZVhsFhoC0rxbeQC31cemMjL5oZTRvjJrOWCuXMdgK9A8TfcHQ66GzVkZ9vzq5h09flLf+micQwxm9LqdTBlB6PXzIuTc12US1rDqffQKTGr3O1LYyRVnLmgkEmAsYVkKWRYWjYiL0ApQwMSuyIlLuAW4aJ4RG4JFkyJAMqft0KG+Xe87GhgbFl6rhG0FUlk02wC+ntX5DZNDFm1CjwyKTpj6sNuDDOB/hYSzAKKPlHLMEcM9ObjHheCqrnKq9HgDmTdrkIMkUiwcZxywZaq895RjRw92Z2UTKfTlTmU2Mcp2kOGVY78OD0QTU2EFLOeYmW6Av2MuXyu3E5+PhxBC5D9OSnzh3KJHdJNbd6dq6Mcg3prZsxiCnvmir9SAsqZN73KzzDfQxBA+bavxoVSL0rPqibKOGVThSolVGB3CFQxj01Qb1ZunfBUS6qA8bUxdAB8im9eAIvQECALv6yGIbsLshngpVue98nYnG8QGi3GNSDfZ276A+zlibrDaOsxUqD4f2ApHd1Ic11vgwUSILbe8IWzbKjgMkcyHkLxcPFRq71jLxsCMYh18ivNirdk2lxH5FMWQyZcjU0ZoAZYB9G5gOneElG/P+FFva/NZ9hIdlSbcHdB7ufZ+Jh611fq1msHdwiOmUewdiTJ83BY9Hn/G9932mQ6d5egAAgxm2TYhqRIR8HnRH6FPEuaHysHcLm76oD6AN/QD0tFZa7OkndHnKkUUCACHFkNu/memwCYq+iKa92Lt7K/VxKg/rgl5tzbEVKg8P7mDmYYek6nz6MVQAsLuP/DYBX5l4qNK44zVGnU/2JlGpBnu7PqI+biCWQjJN9EQiVUadP9jDRF9LbQCdEtEXvVG269x5gPAwWI5UbUCncfdbXDzMQMLePvq+SbIso3eI6It0OXS+Sl8qBvR+QH2YxyNhuo/s2w7G2XjxUS/5bWwf/6lCpbHnHUad79PK7PZH6MfcAsA+RecfCgnWZiEM+mrD9pfJ4/A+YMUcYO39VId9+MxdWOjZBABoeukHeONPK6iOe2TNTjy2bg8A4L7XtuORNTtZr5gdajO8N+5monHKrscBADVyFK33HEtN4+9e26Y9X7LiJftp3PIseZTTwIq51PSt+fPPca5nNQBg7Du/ZuLh3S8RGv/+Tk95eBjZRR7f+yMTD1s3/l5//ttF1DQ+8PoOrTb5c79ZbT+Nbz+kP//1ydT0vfGnFbgk8yQAoGPbY0w8vPVJcv++vq2vPDxUNy0fvcjEQ+nN36BGqU1ufvh8JhrVDcyNj6y3n8a19wMjSmT+/y5m4uHno+SzHftfo6YPAP7+LllLdx0cwUnLX7Cfxj3ryWPPO0w8jLzyG0xQDImmv/4rEw9XbyPr94+e3FgeHu4n9wUe/xI1fQAwu/9FAEBbfAeTvnj0TbK2DcfT5eHhjlXkcWA3Ew93/ONXOFoijoqmF7/DxMO/v0scVr/+50flWWti/eRx1S+ZaJy+5+8AgIbMABMPf79qu/b8tNtW2k/jh/8gj6kRJvrWPv4LnOV5CwDQuvbnTDz839e2AwAeW9dVHh4OdJPHtx9konHcFqJLPZDReu9xDDzcgXiKWIGX/HqV/TS+9yf9+f87gUlfXCwT/rd/+DATD297hjgpX9rSWx4eHviQPG55lomHobfuhVfx/bU8eDYTjbuVkpkvP7i2PDRWMCT5kCgs58fAwACampoQiUTQ2EifsuUIIl3kJpMNnlrJC9z4LtA0vuBhe3dvRes9x8Ir6aKQkj04cO2bGDehcL1ad4RsOo3OT68k4ZWbT0NHE/08VCZEuoDbjwRgOCkljW33HAsPB40nLn8hyztoK42ChwUPM8PDstIoeFjwsIqhscw8BJS1ZtkLxl+0qmisFB4C6lozH8aqB2p9IXhoLYTOzwvBQxfRKHhY8LCKotGloLVDRYS+mtC3NXtBAUiUt694qtn+HRuybjYA8EkZ9O7YVPS4bb3DyM1kSssytvfaOGmgbyuyFhSAmkYPJ425Li9baRQ8LAgzPCwrjYKHBVExNJaZh4Cy1uS8V000VgoPAXWtyX6PWl/kvOdGGiuGh4DQ+QUgeFgYlbLWHCo8rBgaKxzCoK8mtEwHpByWSl6gZVrRw9omH4G0nL17ScketE6eVfS4qa11ozY9XknClFb6jsDMaJkOIOeklDTmLg60NOZWCdpK46HCQ04aBQ9Ho/J4yEdjbsl1NfEQIDTmwq008vKwrHLKSR9AaMw16sRaU3k6X/BwNCpPX2S/J3hYiTysAJ1fBRAGfTWhaTyw9Of6a0kClq4omV44bsJ0fDD9Ku11SvZg7VG3lEwR7Wiqwc3nzNZeeyTg1ovm2JsO0zQeOO27+mvJS01jf+NM7TULjSfN0MdseCXJXho1HqorGT0P3591g/aahb7/vmCO9rpsPFzyY/01Aw/3jzlOe81C47lzO7TXbubhurnf0V6nGehbdtFc7XXZePiJFfpryUNNY1f7adprFh5edtwk7XXZeGjcUVDS99ZRP9AMibQsUdEHEBonNOv0lE9OFTDwcPvET2qvWXh43cn65q98PDRscyjoAwiNQ0G9GzMLjbM79JRIN/Nwy7TPaa9Z6PvGWboe9ZZrrTnlm/prFp1fr8sbC40Lp+mTDdysLzYc/m/aaxb6/ut8B3T+WT/SXzPw8EDL0dprFhrPOmKc9trNPFx/5Le019Wq87vHfUx7zcLDT82foL22nYdVAGHQVxvmXwHMvYQ8X/hF8poCs48+EQDwbnoKvjv5QRx/8Y1Uxy2Y0gyAzL5+9ebTcalh020bFulKDF96jZrGFmXEzvLkpVhzwUpqGhtrfACAKxdNxis3n2Y/jfOvABZdT54feSE1fUed8HEAQFemBV9svY+avlNnjgUAeD3Ay98sA30AsPA6INBAnl/xODWN41pJ9/i7U+fiqTOepaZxbCPh/dJ5HeXj4cf/izyfchI1fQtOvQgAMCL78enQr6jpu8ig+P56w+Ly8PDYK5XoGYAL76amceKEyQCAP6Y/hgcW/Y2axiljiGf+pOljysfDC35NnrfOpKbv+E/8q+YH+ET6f3DcRV+lPmUsSdI2b71wTvlonLSIPD/rv6lpnDbjSADA8+mj8Yu5f6bmoWrsHtHRWD76Pvdn8jwUpqYPAOol0qH+64kvYucVr1PT6FF2Vf9+9uHlo/GIC8nzE79CTeOsuccDANalp+MH0x6ipu+YSUTndzSG8Eq5dP7CL+rPr19DTWNzjR8A8MPk5Vh/0UvUNNYHic7/18VTy8fD468lz+ddRk3f3ONPBwBsz4zDV8b9jpo+NUgR9HnwyrfKpPNP+BLgVUbkXf0UNY1tzWEAwJ3JpXh+yT+oaRzTQM510fzx5eOhGmyafjo1fceevBQAEJFr8Nn6e6jpWzqvU3v+zI0nl0/nNyl7jU//jprG8R3kmAdTp+EPi5+kpnFiC9H5px3eVh4eVjiEQV+NaFM86DGGsV5K1/FN8iRsS4SpD1NHEE1tqyuf5yxQp8+RlxlG7Ckj4F7MHIOBwLgSH9bRpXTZPHFGa/loHHcEeRw5SH+MQt9WeTw+GKFv4KjysDNcg/HNZUxnCiuLczpBf4xC46uZuTjop59nqtJ43JSW8vGwXfGgs8yHVu7DXfJYvDfcCNqepT0RIqMBnwdHdNDz3jRappLHFMM4OYWHqzOzsU+in7ur8nDexHD5eNh5NHkc6qE/ZoCM8xmQa7Ex1Yn+aJLqsFgyrc2hP2dOR/loHDODPCYYxgkpcro+MwNdGfo57V0KD2d3NJaPvvHzyWOsn57GWARSnOjPpzLHI1HXUeIAHXsUfXH6rHHlo7HtcPIYZ9H55D7cIE/B9mQz9WHqfTh9bH356KtpBvyjS1KKQpY1Gp/PzMdQiF3nLz6sjDp/rJLtONJPf4xyH26Rx2NLrIn6MJWHE1tq0Rkuk86XJCA8kTzP0K2JADQevizPQ7+PXecvnOqAzo+y6HxC3055HDYMN1Afpq4zDSEfDhtHf5xpNKs6n2EkpyKnr2eOQK+ntcSHdag8PHpSs4jMU0AY9NWIJmXRVEeD0UBZVPagVdt00cBoDJYVapoP7Zz2xDAwQsYl7ZFbteumgfrZ8eWksZGRPsNn98hj0B0ZoZ63rvK7s9wLpurpZaKRyHSXPIZRTonyKyuNRvpoh4kY7sNEKoMDw3TODqOMSuWa7w1w8lCXU5UvNFA32WVda9T7MBahd5AqMrpXIhsXWjlVnTI1fi/CtX626zQDjYcc+oJ7LQ3Rn8ssQk1AUHFy0c5OVj4XkRoxghA1jSOJtDaH3hE55bgPu+QxXDzsLCcPJcmg8ynldOQgkCQOnG7GtcYRna/t23jX0hFqB3CXU/s2Vjk1OGWIzmfnYVlpZN2XApo875FbMRhLYSBG5+xwREYBk/qCba3pcmKtqWAIg74awbWo6Ddcz0AMaUpjcI8Tm2yAXfkpG7SYtw6DqKVeVOKpNPYPEk9kR1MZFxUuY5AssD0Yg2Ra1qJ9paDysPyKgVFOYwPEsALZoHVzKPeOcioGdfOSGNKuuySU3+Kgl0QiaOV0T0Shr5wyCgCNjAa9LGty2s3slHFgAxOsJ6nagBZ5Lwnlt+j3k4hgd4ROTo0y6oxThpI+wOB4GqPJHg3UtabDMUOCchOq0Bfxk3IkWkNC/S3qgz40hnxs12gGJpyje+RW7InQG4P6WuOUIcF2Hw75wogjQL2WDsVTiIwQo6qscsoqo4BGY7c8BsOJNAZGUlSHOeJYA9iDTdEDQCoGGRL2yi3opuShLMvoOuiAnKoyGj0AJCi7sSs8PKDofNp9jaYvyq7zGfdtmYymOytC51cwhEFfjTAqPsbI4F60Ip2RNSO2FBzz9LJuYBQFEg2R1Mk9lJvsvRHyOwR9HrTUBdiu0QzURTM1Qp92r2x0hkLtAOhpdC7LgnGDpiiFhL8Jw6ih3qDFkmkt0l1WxRCoBWqVlHJqOSWfi9Yockqt3J1yrCk8HKB1ykSIgwN6JgktVEPCOechmyGh85COxi7HIy7sUTPCwxh1NpDjaw21U0bRFzVkLaU1JIzR6/I6ZRhlFMjiYSyZwUHK0pAuxxzArDpfuQ81nU/HQ5XXjSGfVktfFqj0xfqB+BDdMQqNAwFV5zPKqeudMuQ+jAVbkYCfmr6BWArDCVKOWdbobigMBOqVi9hDd4yyJmn6gpWHbl9Lh/cD6QRkyYO9aKZ2cMuy7Ny+pkIhDPpqREMnAAlIx+nrdxXFkKgnjTZovWi6Yii3p5dPuacbCH08m+yybtD8IaCORIdYo0qpeuIMoI7uOhG9Bti99SoP69kMJfVztQEvmmrKmMoMcDueUg1sPKwcx5rCw5oWxBBET4QuGyiaSGm16OWXU8YUQ+0+ZFtrHCkLAbKznWgcwNE+4mgE0IMWptKQLscig3xyynof6lEzh7Kd4hG6bCBZ1oyqeB3feuqcY43xPqyUtTTUCASVOnhGxxO7nDqUKWN638YWpGiu9aM2UEanjCSVTV84UoIGcGTHKjysG4cUfNSlIf3RJEaSxCnTXm77okIhDPpqhC8ANBCPLdWiEotozXS8ys1Ku6io3jbX12IpClIKs9Hn2OYFYEtJN0TNPM2k2Rx9urbD0V1GxeBpJjzsGYghlc6UPMwoo2V1ygCGlHRK5a7IqYdRTrvdYCjRGIMG+rweibo0RGsAFPShMVRupwzjWpMjp7TO0W6nMhAalW7JyWG6bCA1G6NuLJobSG06jZwOxpIYjJGUYOfStdn0hUfThy7PlAnUkcZxAF30c7iXOPwhwddE78SXZVlba8pe18qs85X7MMzGQ1VfOJLmy2IMZjJaFFgKk+NYS7TKzkPmtXS0PqQxBh1bSwF2Oc3RF/R7b6czumj3NNn3YTSR1kpaikGV0db6AEJ+L/t1HoIQBn21gmUDo24AalowpiUMgG5RcawBEKB7CWlTfZXfoaaVjMzaNxhHIlXaGHSkAZAKFh4aGgDVtJLjWLMsHFMMA11kc1IKyu8QaJkMv1dCRiZ8LAXHIi4AW3qawSkTUuSUPv3OKceakg2UipG6wVJQNgFS00S0N5J7ikZOnXWs8TmeVB7Sphg61gDIXwPUKp2HaeRU/R2aJmjXSqMv1N8hXOtHXTlTmQHu6K7KQ/a11OX6Qv0dGtoxtpk4ZWjKCgZGjKnMLk/1VXV+m3of0jWKrZi1Zngf6RYveVE3hhiRNL0eSCqzUzrfcB/SOIAVOQ2MmQRJAuKpjLbnLAbHotcAGw/TKc0pE2qdAoA9C8GxhtS0jWIjukHfWk/KVul0vki3Z4Uw6KsVTMpd3aCN124emg2aYw2AAINy3wNkKEbXKYqhpnUyAj4PZBnYO1B64XSsARDAtglVeVjbinEtJFJDw8OsBkDlTmtq6AAkDxlbN7y/9OcVGqXwBC0Fi0pOnSoLAdjuQ6UBEAA0jVMNCdYGOWWWU18QqFfGQbHIaeN4JmPQWccaQ4qhoQFQ4zgy3qcysoHM6QuaDVqXUzIKcJe+NLUTHtI2inWszwPApy+aJug6n8LxpPKwpc6BqBlrNpBCY33bZHgkUGcDaXLqeqeM8pmGDnQ0k7FlNGvNwWgSsSRxoJc9lZm1UaxCo695EtrqgwDoDF5ndT6DvhjqIaOXPT6Ex6pOmdI8zGRk7X4t+74t2MDWKDZL56v2BQsPhUFPC2HQVyvUhZPqhlM2AE0TmZS7Yw2AAFJSIHmBTAoY2lv68wYvYSeTMeiG9DsKHqp8bpqgbZhpIoPGBkAN5U5l9vqBeqU0hCbTQtuETtQW+aqK7qr3Yf04dLSQWkqqqFksicE4SWV2xuBVUwxZo7uKnLIod0ezLGiiZqQBECQP2jqJU2bvQAzJEqUhjjcA4pFTg76gWWucjV4bZLSUMZhJa1GzcMdU+DwSdaNYV/CQOcuCZy11gIfqniYZpSsNUWj0Nk/COCUbiGVf44zOZ1lL1fvQsJZSZHSp9LU1BBH0ldkpY2wUWxY5dbm+UPnc2InOcB0AOh4eGE4gkcpAkhyqL2fZmxr1RRO7nIoIPT2EQV+t4PTWj2eJ0Dt5w3m89LVKmYy+8GRFJFxOI1fUjC0N1tF0dIDTkDDKKc0GzclNNoO3Pg8P9w3GEU8Vz0BxrAGQCm45ZYnuusBQilCUhhiiZq2N9Qh4PchQZAMZGwCVPeIC8Ed3eTJlnOAhS6PYob3EUSx54W3s0DbMpeRUlmXnJhUA3PfheJZMmYiDUTOWRrHpJDDYTZ4bdb7bU325syxUHtJnWVSGzq/AvalJ5yhNo1iVvnENIfi9DphxLHX03DrfQedhhUIY9NUKzkWzg8kYVFN+nFIMlAZ9VG8AhMZO7XpLKT9jrZkzEQk+xaAqvt6hBGLJUsagw3VKtHJqaACExvGanLJ5eh2MDNKUhhjuw5a6AII+sjyroxMLwXFPNtcmlDVTxkEe1reT0pBMktStFoP6GzSOh8cjacZgqQi2unlxrAGQySwL1xtKLI1iDSmi8Hg147UUjcaomRoRLitYmnFpcmrI6KoIY5BSTge7ATkDePxA3VhqOc1kZGcbqpl0jtI0inU0HR2gbxSbSujZl40TNEcnnc530iljuA9LZQMZeDi2IUjdKNZRfQhYEGxyeVZehUIY9NUKlhtuYHT0+mA0iWgiVfQwxzprq6ClUYuatQNev3a9pbyEjjYAAnT6BrtJxKEYDItmU40ftQFiFJQyJLqd6nargpaHWgMgD9DQQb1Bk2VZiyo5EjWrHwd4fKRObrCn+GcNxq4kSdr1lpLTynHK6KnMrJky3U5GBr0+JcKL0jQa1lIAoM2WcWxaiAqeJqpZEZcK2KCx6gtWHiq/QVt9EAGfE1EzBsdaHp2/d7B0aUi3kyVoAAMPVfrGAx6PxsNSa2nvcBzJtAyPBIxrCJq9WnawNIo1yGlbfRB+LykNKdUotmLWmsE9AGTAGwTqWqnrr9MZGT0DDsqp6lijaRRr4KHP66FuFOvYZCIVtDxMxvT+SIwOYMfltAIhDPpqharch/YCqRK1fwZvfWPIjwalA3GphdPRBkCAiQ0a3aLiaAMgAKhrA7wBALJuCBWCoVGVJEnMNLo+uqs5ZToBr4/akHC0ARCglIZQGoPGyCDo5dTxiAv1Bk1vAIT6sdQbNGMDIOfXGko5zVlrSjtl1IZxTvGQsjTEmMrcOMGQDRQvnQ0UqRA5NaylALu+cFxGGbOBxtQFtEaxPSUcwJqcOuYAZtQXSjSYNl1bXYvGNYbgcyKVmaVRrIGHxmygipFTln2bYU9Tai3dN0hS1n0eCW1OOGVYGsWO0vl0PHTeOUqpL1THob8WqGmmXkuT6YxWpiZS7ukhDPpqRW0L4FNuhGLNR3KiZgCLIeGWTbY9Br3j0WuPhz6NUotIkIW2g7Lu09EGQAB92YShfh5g2aCpqcwONABSwboJVWjsoNygOa7cqWVU3bx0klRm5Xr7hhMYSRQ2QBxvAAQwrDV66QvALqeOr6WDe8gopUIYUKNmAaCuDeFaP0J+so0oZgymM7L2/4qR01FOGTpj17G1lLZRbCqu/79pIjweibr8xTVyyqgvaMvsHKfP2CiWVU4pG8U62pwS4N63sa6l4xpD8HrK3KxZBS2NauM8bd9WIU58bS1l2NNIkraX3luiNGTvQAwZGQh4PWitc8ApU6EQBn21QpLoOlEaGgCpNYY09cmONwAC6GuxCqRQlqoZdMXYDJrOxemUkp6GUcqvNI1uccqUqIksYOxGRpIYjhc2QLqc3rwApg2JUp2ZneehMRuoyIzgHGO3MeRDnVYaUnitcbwBEEBfuztKTukMCcfX0rqxpN5YzugR+HzIqi/3ZGcDFeFh7xBJZfZ6JIx1ImoG6HJaqvt0IX1RojTE8brWrGygInKq6hJfDXH8wyCnRWhMpTPOpjIDJtZSVh66QecXoTE5QnoDGT5PO3HCcRqpdX62vlD3pfuH4kikChuDXU6XhQAGOWXTF7RZa67h4cCe4qUhOfS11pHSkIwM7C1SGqLS3xEOweOUU6YCIQz6agaNlzCnARBAF5FwvAEQQGfsAqMVg7J5GYynMBArXJvuaGdtFTSpvjkNgAC6LATHGwAB+iZ7eB+ptyqEHMXQEPKjIURKQ2iMQVfwsJicpuJkJi3AHN11PIWyrpXUOULWHUv5kMPD7NKQwrx33FACuLMsKiaF0uPRjcFicppDHwCqiROqjLY7lcoMcGdZUGesOb2WAnT6IidqBtAZEnsH48jIgN8raTPByw7NKcNmKNE2inVFZ22qfZtCf6BemwlOs9YkUhmtxt55Y7CreGlIDg+NpSHFpoZUjL6ID+njFzU5pS2bcHhvqpaGlGoUm8NDj0eiykJwRTCtAiEM+moGlWLITk0D6AwJ9X9jGxxqAATo1xw9ACSihT+Xs6jUBX0I15KZ6zQ0OurpZXHKKA2AADBFzRxrAAQANc2kvgrgNiSKOZ4cN5QAOh6qZS9KAyCAzpBwvAEQkJMNRCOnOg9paHTcYQHQ0ZfTAAhgr911lkaKusgcYxcAVRd4d2yyzZVolWoU6/gmG+C+D2kMCfV/7U0ORs1oG8UaGowCoG4UWzk637BvG+WUKczDvQMxyDIQ8Hkwpi5gyeUyg7ZRbB4HME2j2MrR+cp+J9gEhBoB0O3b4qm01gXfMTmlbRSbT19QrDWu0PkVCGHQVzPUm2j3G4VTf/ZuII+1zdpb6g23sXugYPTz/a4BAMAYJ+tbQk2Av44837O28Of6d5JHj197S92EPr9xb0EadxwYJqcJOHibqIqh+53CPOx5lzzWtmlvqTz8cN9QQfrUVO5wrR/7S4xJsQ2SpDeQ2bO+8Of6PiKPfn2BVxf7l7fsL0jj1v2Eh2pqtyNQ78N9GwvzUFXutS2aca/ycFdfFHv68zus9g/Gkc4Qp0yqVFdkO6HK6YfPF6bxwIfkUb1nofPw9Y8OFOThh/uGAACNNf68/y8LVPr6PirNQ28QSBJ+dSj0DcRS2LJ3MO9hxgZAXiezC1Uat71UmMbeD8ijsgEFdB6u23mwIA83dxPawzUOGRFAdmlI37b8n0lEgZE+5QVZ9xtDfm39eHtXpODX7+4jPA84lYEA6DzctbqIzt9IHmvC2lsqD9/fEynIww17CO2O6vy6Nr00ZM+6wp+LKDrfS9YMSdJLPd7t6i942I4DhIeO9VsBdDnds64ID98jj7VjtLdUHn6wt4jOVwyl5lq/5gguOzxeoH6sckFFeNi3nTz6dHlTdeI/Pyis8z9SdH6t0tzZEaj34b4NhXmo7nfU3wI6D3cciBakT+1F4vdKGEkWn0RlK1QatzxbmMa+reRRDdpAp/G1rcV0PtEXjSEHeViBEAZ9NUM1ZLc8C6yYA6y9P/v/a+8HXv4peb7pSe3/m5TN1/t7BnDS8hfwyJqdWYc9smYnvvMYMSI3dA+M+n/ZsO73QJIs3rjvE6PpA4A1v9VrzR66VPuMOh30f575oCCNb+8mG5jv/+V952jcv4k8dr1ZmIdPfVP5zBrt/+t39gMg0Yh89AHAo28S72nfcLLgZ2zH2vuBg8rm+k/X5Ofh2vuJYgSAJ27QPqNGy+59eVtBHr6wiaSD3fHCh87xUHU2HdyWn4cA8PbD5HGwW/vMa1vJyJtYKoPFP34x7/X/btV2AEBGBk7+Sf7PlAXqJI1XflZYTj96kTx/4Yfa//sUR9Kf13UV5OHDa4icPrR6p3P0bX+VPMYHCvPwzd+Sx3QcWDEXWHs//v6OXoJw9oqX8l7/b17+SFuPzr/zVedoVNM/1/6uMA/feYQ8X/1r7f+7DxIj6MXN+wvy8JcvEmfOPzbudY6+TX/Tn98xPz8PX79Tf/6rE4G19+ORNTu18aWfvff1vNf/f6/vwIFh0j/imt+tcY5GdWO96W+FebjqDvL8/ce1/29RnGbrd0UK8vAHT2xQPtPvHH3r/4+k+QLAb8/Kz8PVdwNxxXn2+ws0Hm5XjPWvPrQ+7/U/smYnNvWQ427+8zvO0di7hTzuXFWYh8/+B3m+4zXt/+/s7ieH9UUL6vM/ryPR1L0DcWd1vpqR9sjn8vPwrd8BfYoD+LEvaJ+JKxNr7lq5taCcvvIh2e/99NnNzvGw+23y2PtBYR4+9gXy/MAW7f+vf0R0/mAsVZA///f6DgBAMi0X3BeUBWqGzD9/XJjGHa+R5899T/t/f5Qc98iaXQV5+Ng6Ih/3vbbdOfoqEJIsy3Lpjx26GBgYQFNTEyKRCBobG0sf4BZEuoDbj4RuuoI0vrvxXZKaHekiN6Gcyfr/3mvWYNGdm5AxHOaVJLxy82noaKpBd2QEJy1/oeD/y4YC16/RV+Qze69ZgxN+ucn4y1QmjZw8BEjd+YnLXij4G5QFgof6Z3LuVVny4qTYCuyR9QiMK3kImFprBA9HcOLyFyC7gUZeHt65qeD1Hyo8dA2NQueP+kzF8VDo/OrWF5XOQ6D6db7LQGuHigh9taJvK7JuNoDULKmpy31bs2825f/7d2zMupkAIC3L2N5LvNvbeoeL/r9sKHD9Gn1FPrN/x8bcX6YyaeTkIUBoLPYblAWCh/pncqiR5DQmSdmjp1zJQ8DUWiN4OIxcl3rF8bCa9AUnD11Do9D5oz5TcTwUOr+69UWl8xCofp1foRAGfbWiZTrpQmmE5AVaphX9f9vk2cjtd+OVJExpJTUwU1vriv6/bChFn/oZSKM+0zZ5ttpHRkMujbmlrK6kkZOHAKExF2Wn0SQPS8lpRfAQyH6uQJa82CmPy3rPlTwE6OSUl4cVtdZko+p4mMuMqtQX2aDlYUWsNYeozs/PQxxSPASAKWNG0yJ0vg2o9n0bUP06v0JRMQZ9X18fLr/8cjQ2NiIcDuOaa67B0NBQyeNWrVqF008/HXV1dWhsbMTJJ5+MkZHiHYerAk3jgaU/h35TScDSFXpaU9N44Nir9M9LXmDpCoybMB3LLpprPAq3XjRHS3fpaKrB9afN0A7zStn/LxtU+oyLyjk/1ulTP9M8WX9toPFHF8zR3vZIo2k8elJY+79XkpylsRgPT7pR/3wuDw0LY+71587zdoRGjYeGBkSnf280DzuO0l/n0KgiHw9PPrxV+79reQiM9mRLXkhLV+CrF52apfxyr7+1PgifoYuaozR+YoX+WvKMltOpJxv+n5+HUh4efuKoDu3/jvPQuNbk8rC2Jfv/BXj4owuzr7+jqQZhQ7M/x2lUkY+Hs5Ya/k+vLz57/CTtMMfpM/LoE7dn87Cxk4wBU1GAh7csPWIUDye26K8dp1FDHn1x9OcM/6bn4RdO0Z0drtL55942Wl+o4xeBgjy86ayZo3g4Z7yeyuo8D4vo/EVf1j9fgIfAaB7JOQaWa3T+mf85modjj9BfG2i89cLiOn/R9OyyCtfy8LTv6p9n2Lc11way5NjVOn/yIsP/6XX+kiPbtf87Rl+FomJaCF5++eXo7u7Gc889h2QyiauvvhrXXXcdHnzwwYLHrFq1CkuWLMG3v/1t3HHHHfD5fHj77bfh8VSMH8Mc5l9BRkr888fA1FPIayPUzpOHnwOc91PtZrz0uEmQIOGbf3oHk8fU4tLjJmUd1qbMnZ87vhF3X7HAuZtt/hXA9DOAX59MGt+1zcr+fyquN1+58G5gymKNxs8unIw/vLkb63f141tnzxpFY5/S4Ojmc2bh/KM7naUxlQCevAlomzmah2qX24kLgU/9bxYPxzaEcPV9a1AX9OLTx07MOmyd0jRvyphaLLvoKExprXWGRpWHv7+ANJAxjFLSMKSMAjt7GXDE+Vk0Pr9xH57dsBf/ctLUUTwcURrofOHkabjqpCnO8rCmmTQAqmkBjvl89v93ryGPY48AzvkJ8XI3jcelAI7obMTSO0hDtnPmdmQdtrF7AKm0jIaQD7/+3LGY2lbnHI3HXgls+Auw9XniZMqVU7VJ1cn/Dhx7dRYP394dwYOrd+KT8zpH8VBSNkWfPnYCvn7W4c7ysHUmacQleYG5n87+/571xDFT2wp8+n9JhELh4aJpY3DGT/+JZEbG8VNbsg7bOxBD/0gSEoDfXHUcZnc0OEvjzlXA+geBeZeP5qHqeDr2X4CTv5HFwz39Mfz8+S1YNH3MKB7WKB3iz5w9Fj+8wMHN2fwrgEmLgF8eDyADTD89+/8HtwOJIUDyAZf/gegThYcnH96G837xMvqGk5gxrj7rsHgqjZ4B0tzx9kvm4YTpY5yl8cBW4NUVwGEfH81DtWP47POBJcuyeJhMy/je4+/hsHH1o3iojjibPymMOy+f77DOPx34f4tIg8r2udn/TwyTxqIA8Kn7gInHZ/Hwc/euxtb9w+jIMz5x/yDR+f/xidk4d26HszTGh4Bnvg20zxvNQ2XuPKYsJvsaAw/DNX584f/WornWj0sW5Op80vRyZns9frB0jvM6/75zyT3XnC1rkGWdh+f+FJh5jkbjZcdPwtPv9WDlB/vxxVOmj5JTtXnl9adNx+UnTHaWh/5a0ui3oWM0D1WnU9ts4HN/yuLhjLH1uPiuVfBKwPlHj8867N2uCDIy0FIXwJ2fPQZTWh3W+e8+Cmx/GTjlW6NpjA2Qx9O+QxyJBhrf3H4Qj761G5+aP2EUDzNKDddnj5+IG844TBjzDKgIy3bjxo14+umnce+992LhwoVYvHgx7rjjDjz88MPYs2dPweO+9rWv4Stf+QpuvvlmHHnkkZg5cyYuueQSBIMOjl0pN2Z8nDzufRejih1VQ8JgJKk4YzYZpbH9QBSRkex5r+t2EMVw2qxxzt9sTeOJYgN0elR0vwOkE8ToPeqSUTSq3tyPeoez3u8dimvjaz5z/CTnaZy5hDz2biEbFiN2v0EeD18yir7Fh7Ui5PdgOJ7GR73Z2SxrFeW+cOoYLHJyAwqQ655+Bnmey8PIbmBwDzGijr1yFI0nzSBR+A/3Z9OXTGe0rr+fXjDBeR7O+DgZtzRyQJ8+oWKXQvOUxcDUj2XROHd8GBOaybW/kzMya61yHx47uRknzmh1nsZpp5BHdbSZiuQI0PMOeX7M50fx8OTDCA83Kx2mjVDl9PyjxztP38TjgbqxpFZQ7WKsQr0PJ51AshEMNE4aU4d5E8MAdEeaCn2T3YDTZ411nsZpipG7f2P2+7IM7FJonHfpKB6eOpOMzNzYPYDcPrtrFZrPmeOgkaSi9TCgQzECc9ca9XXn0cCMM7Jo7GiqwaJpRE5zebhhzwASqQxa6gK44BgXyOmMM8nj3vdH/0+V0yMvKKjzt+4f1iaIqFBpPmO2G3T+BGDySeR5Lg+71hLHU+N4YM6Fo3h4yuGExlwe7ukfQc9ADF6P5A6df/jZ5HH/Rn2CiAqV5pnnjeLhKTPHwu+VcDCaxO6D2Zmoa3f0A3CRzp92Gnmey8O+j8joSG+QGIk5NJ44g+zbtubo/FgyrY1WvPQ4l/BQ8pD9y2BP9v/UtfSwM0fRN39SM9oagkjLxIA3QtX5x01pxqLpLtD5auadOplBRXxQn0w0f/S+bbGi8z/Yl81DWZY1fXHhfBfs2yoMFWHQr1q1CuFwGAsWLNDeO/PMM+HxeLB69eq8x+zbtw+rV6/G2LFjceKJJ2LcuHE45ZRT8MorrxQ9Vzwex8DAQNZfRaPjKMAbAKIHshuPpBL6HMyJx486bEx9EJOVmqv1u/qz/qdusucb0tIdhXr9ozZoyqI54fjR9Z8gCyeg06NCHfl22Nh6NDk5+1pF0wSgoZMYErlzW3e/SR7z8NDv9eCoCWEAujJXoSqG+ZPDFl8sJyYeRx5VRadCfd0+BwiMrh9TebhuZz8yhm4qm7oHEUtm0BjyYVpr/ajjyg5/SC8dKCaneVBITtcp96X6f8cxwXAfGo267reBTAqoHweEJ4067Bjl+j/YO4ihuG5I7BuMYffBEUgSMG9ik62XTgVJ0u+zQnKa5z4EgPmT8/NQ3byo/3cc6n3Y/TaQNMyp7t8BDO8jTqmOo0cddmRnEwI+Dw5Gk9p4MABIpDLapvQYt+iLCYX0hfJ6wnF5D1Ovf10BHh4zMQwpj54pO8bPJ4bEQFf2fOjEMNCjzC/PI6cdTTXoaAohnZHxzu4cQ0LT+S6T090596G2lubnoarvRq2lCg9ntTegNuCCxNWWaSSbKx0Het7V35flonIa8ntxRCdZK0evNW7jobqW5tyH6lraeTTgC4w6TNeH/VnOw/e6IkimZbTWBzUnuKMINuilA6PWGmXflkfnS5Kk7a3VfZoKVU6PcQsPJxS4D7veIo61pklAQ/uow1QebtgTQSyZ1t7ffXAE+wfj8HkkzB3vAp1fYagIg76npwdjx47Nes/n86GlpQU9PT15j/noI2K8/uAHP8C1116Lp59+GvPnz8cZZ5yBLVu25D0GAJYtW4ampibtb+LEiQU/WxHwBYGOeeS5uogAJGKWjhOlkacpF2A0lvRF5cBQXNuwHTPRbYtKjiGhbbKLb9C27BvKykJwneIDgAmKM8uoGCJdZNMmeYHOY/Iepm1Cd+k8TKUz2obNNTSqPNz7HpAwdDTVNi/5DaVZHQ0I+T2IjCSx7YCevaDy8JhJzfDkdmFxCkY5VZGMkUwSoKScjjYkXCannUcDHh8wtBeI7NLf32XYZOcxeMY1hjA+XIOMDLxjcB6qTqiZ4xrQEHKBYw3Ifx9mbbLzy+kxBSL0mmPNLTwMTwbq2sisbzWrAtA33R1HEedUDgI+D+Z0khpko5xu6CbR6+Zaf96GTo4g330IUOgL3XloNCS0+9AtTplAHTDuSPLcSOOedcQp3NCZv7QJxrWmX3uvOzKC7kgMHrc41gADD9/Mfl+V0wKONZWHG7sHMZLQDQnXraWSlF9O+z4iwRlvILu3jAH51ppYMo3397hU53evJwEmFSWcMnPGN8HnkbB/MI6ufj0LwRhocoVjDdD1hdEBHB8E9inZMwWdh/pao4JEr10mp+OPBSCRrMNBwyQJ7T7MT9+E5hq01geRTMuaXAI6D4/sbETI7817rEBhOGrQ33zzzZAkqejfpk2buL47k1HqZ7/wBVx99dU45phjcPvtt2PmzJn47W9/W/C4b3/724hEItrfrl27Cn62YqBFJAyLitHLW2DxU5X7WsOiokbrp7fVoanWJZvsjnlEwQ3vJzVZKjQvaP5FpbU+iEktJAvhbaMhoRmDYRsulhP5vNkqP8cdmTd6DRi82YYI/aaeQYwk02gI+TC9zQXRawBomgjUt5NIbvd6/f0SUTO/14OjxocBZHuz17mRhyoNRuXe/TYxnuraiDGVB5pjbZduSOwfjGNXn4ui1wDgr9FrWo00ltigAca1xsDDXW7kYZ4shMgu4sTw+IhTIw9UY29TzwCGlSwEV0avJUmncVcBfVEA+TJJ1HvymEnN7tlkG7MQ1HTmRJQ4E4GCTpk54xsR8HpwYDiBnX2603G9IULvGuTLQtB4uGD05xXk46EevW50R/QaADqVLITILmBAqbcuEb0GgM6mEMY1BpUshH7tfd0pE7bxohmRL2tNpa/jaL0fQg7yZQO9v2cAybSMMXWBrAaOjmLMDNIPIBUjJaEqSvAw5PfiSMV5aNybui56DRjuQ4PjSS0LaZoINHbkPcx4H6o6v6t/BPuU6PVRE1yi80ONwNjZ5HnetSb/WipJkq7zDXtTV/KwguCoQX/TTTdh48aNRf+mTZuG9vZ27Nu3L+vYVCqFvr4+tLePTucAgI4OcqMcccQRWe/Pnj0bO3fuzHcIACAYDKKxsTHrr+KRz0tYIhoBZEfo1XRm13kIAaLY2nPSmQf2AAO7idLvnF/w0FxDIpXO4G2lVtk1ERcgO7VJNSRKRCMAnb4P9g1iIEayEFRj9+iJYfdEryVptJym4nqtchE5zed40lKZ3SSnKg973iF15UDJshAAmN3RiKDPg/5oUuv3oMrr4WNdFL0GRkeVZJlSTvU0ShXrFEXvKuXeeTTJiBnsJv0dAENZyFzi1MiDcY0hdDaFkJGBtxVDYmP3AOKpDMK1fkxzS/QaMGQhsDplRjsPXVeeBQDNU0lflXRCX1/2rCPOxIaOgtHroM+LIzRDgtC1dyCGrv4RJXodLsfV0yGf85BBX6wzGBKuK88CgGA9MFbNQlBoPLiNNMf1BvSsxBxIkqRlFqprTTyVxvtdpLTSlfrCaCiVKO0BdMfShj0DWjrzup0udKwZsxBU2YwP6b0faPSFIpvZ0euwLZfLBZW+PeuAtJIFSrGWzlWyEPYZshBUeT3CbdHrXH1hdKxR2BfZzkMXOvErCI4a9G1tbZg1a1bRv0AggEWLFqG/vx9vvfWWduwLL7yATCaDhQsX5v3uKVOmoLOzE5s3b856/4MPPsDkyfkjYVULdWHc+77eVK2EBw0gjZpCfg8GYymtqZq6WXOVsQuMrqPfZYheBwtHoefnpDYZo9cz3BK9BohH3uMnWQj9O8h7JWqvAWBsQwgTmmsgy3pTNVcau8BoHna/rTQ1bCWb8AI4Jqc0pHcojp19UUgSssYPOo7wJFJHnknphgSFYy3g82j1ZKqcujKiBIyODEZ2AUM9SvQ6f1kIoG/CVEMimc7gna5+5X8uktNAHennAOg0UqylAHDM5Oy1RssEckvttYqJOVGl5Ihex1tkk63K4qaeAa2pmisjLsYsBI2H6lq6oKBjDRitL1SDYmZ7I+qCLoleAzqf1CwEWabSF0d2NsHvldA7lNCaqrnSiQ8Y6uhVna9Gr+cVjF4Dupyq+uK9rgEk0qSpoZqx5wqMP3Z0FoJRTgtgQnMN2hqCSGVkLQPItfoiV+fvUZsaTsgeP5gDvZSwnxwWiWHvgBq9Dtt3vazQshAMayiFY60m4MXsDrWEqR+AIdvJTY5DYHQWwoGtpKmhLwSMm1vwsNzyHlIW4kLHWgWhImroZ8+ejSVLluDaa6/FG2+8gVdffRXXX389LrvsMnR2kpu+q6sLs2bNwhtvkAVPkiT8+7//O37xi1/gj3/8Iz788EP8x3/8BzZt2oRrrrnGSXLKD2NTtbfuAzY/o9S4SqSBTgEYm6r9Yc1u7Oob1tJgJza7SPEBurfzw+dJbfnWF8lr1YtfAOrCsWbbAXQdjGLlZpIJMru9wT3RayC7qdra3wN92/SmhnkajRmh0vj4+i50R0bwxrYDAIApbooKArpi2P4qiX5ueY68bp9bYpMdBkC6pH+4bwjPbyC1XFPG1KLRTdFrY0Ti7YcJjTtfJ6+b8/exUKE60J56txvdkRGs3toHAO6pS1ahbrL3rAcOfARsfpq8bptZMHoNZDdVe2xdF/6yvguxZAYNIZ+7oteALqfvP07Wmu1Ko9UxM4oept6Hz2/ci+7ICF79kNyHh411keMQII4XyUv6c7z3ZyKrmRRQ20bSRAtAbaqWkYEHV+/EC5v2oqt/BBJcFr0GdDnd9HfCw49eIq9bZxY9TDWIXtqyH92REby0hYzUnDXOZTw0NlVbez+w8W/EGSz5CkavATWdmTgPH1mzEzsODONdpd+KKxqNGaHeh1v+ofBQ0fltRxQ+Bvp9+PpHfdjTH8U/FZ1/REeDuxxrxqZqa38H7P9Ab2rYVFjnG5uqPbZ2N7ojI1izjezbJrvJYQHo+nDbS4SHW/5BXqtO0wJQefheVz+29w7j+Y1E588YW6+NyXQFPJ7ROn+X0si7SJAC0Pc1f39nD9H5HxF9Ma3NZfrQWA56cAew5Rnyum123qaGKo6a0ASvR0LPQAx/fXsPHlu7G6mMjJa6gPvWmgqBi1zKxfHAAw/g+uuvxxlnnAGPx4OLL74Yv/jFL7T/J5NJbN68GdGoXtt24403IhaL4Wtf+xr6+vowb948PPfcc5g+fboTJDiL+jYyPuOZ7xjelIH3Hxs9P9KAGiW15+6XP8LdL+td8q/47Wosu2juqBmSjkEdBda3FbjdoNDfeQSYclJBGt9VooDRZAYn/fhF7f012w/ikTU73UMfAASUTePLt5E/FfedCyz9eUEaZZDUyT++tRt/fGu39v5Nf1iPRCrtHhrVMSexg8DtBkfMRyvJprQAfS8qGzIZwJk/+6f2/rbeqPt4KCk+1Lf+l/yp+ONVQLwwD6NK3fXzm/bh+WUvaO8vf2oTmmr87qHxI+X3l9PAHYaI/N4NRXkY8HnQ3hjEzr4RfP0Pb2vvD8ZSePStXe6hD9Drrjf+hfypePpbxPFWgMYDQ+S4tTv7scjAw3te2YbpY0fP/nYMgTqSej6wG/jj1fr70f3Aut8X1Ret9QF0R2L477/rY+9kkE2pa+gDgBElzXPHq9n64pWfAc2TC9KoRq2390azePj4+j04YfoY99AoSYSHI33Ak9/Q35dTwLt/KMrDuiDR+b98cSt++eJW7f3L7n7dXTp/QOngv39jNg/X3Q9MXFCQxk3KeMyBWBInLtd1/qsfHnCfvggpJZ8rl5E/Fb85s6jO9yiOiQff2IUH39D7QN3w0DoMxVPuoVEddza8L5uHHzxTVF+8+mEvACCdAU69baX2/uaeQffx0KsEFd74NflT8fBnivIwniJ9wJ5+fy+efl9vOPeff92AkN/rHhrVoEQmAfzc0Kixe31RHtYGfBjXGMSe/hhueEif3tQ3nMAf3nSZzq8QSHLu0FiBLAwMDKCpqQmRSKRy6+kjXYqBlIfVkhe48d1RcyIB0t32xGUv5DsKAOCVJLxy82nOz4qMdAEr5pBUrXwoQGN3ZAQnLX8BmQIEuoY+oDgPgaI0nrj8BRS6y11D46HCwxVHoiAzKp1GTh4Cxdca19AHHDpyarG+cB19godC5+eBa+gDhM4/xHlYETQeCjrfBaC1Qysi5V7AJPq2ouCCIqez59MbsK13uKBiB4C0LGN7b7TIJ8qEvq2FFxSgII3beocLLpiAi+gDivMQKEpjMZeda2g8VHhYjBmVTiMnD4Hia41r6AMOHTm1WF+4jj7Bw7z/EjrfJfQBQucf4jysCBoPBZ1fQRAG/aGAlul6qm8uJG/BOfRTW+tQrIzcK0mY0uqCmqxi9AEFaawY+oDqp7Ha6QOqn0ZO+oDiNLqGPqD6eQjYoi8qhj5A8LASaDzUeQhUPo3VTh9Q/TQeCjq/giAM+kMBTeNJrY6U0yxE8gJLV+RNhwFIk6NlF82FV6nHkqD3JvNKEm69aI47UmJG0SfpF1qExoqhD6h+GqudPqD6aeSkDxhNowpX0QdUPw8By/SFCvfTJ3ioomJoPCR5WGU0Vjt9QPXTeCjo/AqCqKEvgaqooVcR6SLpL/5aIBklnrMCN5sR3ZERbO+Nah4z9bnrbjiVPtUjqD4vQWPF0AdUP43VTh9Q/TRy0gfoNNYGPIgmMu6kD6h+HgKm9YXgoQsgdH5eVAx9QPXTWO30AdVP46Gg8x0ErR0qDPoSqCqDXkBAQEBAQEBAQEBAQMD1EE3xBAQEBAQEBAQEBAQEBASqGMKgFxAQEBAQEBAQEBAQEBCoQAiDXkBAQEBAQEBAQEBAQECgAiEMegEBAQEBAQEBAQEBAQGBCoQw6AUEBAQEBAQEBAQEBAQEKhDCoBcQEBAQEBAQEBAQEBAQqEAIg15AQEBAQEBAQEBAQEBAoALhc/oC3A5ZlgGQOYACAgICAgICAgICAgICAnZDtT9Ve7QQhEFfAoODgwCAiRMnOnwlAgICAgICAgICAgICAocSBgcH0dTUVPD/klzK5D/EkclksGfPHjQ0NECSJKcvpyAGBgYwceJE7Nq1C42NjU5fjkCFQMiNACuEzAiwQsiMAA+E3AiwQsiMACvcLjOyLGNwcBCdnZ3weApXyosIfQl4PB5MmDDB6cugRmNjoysFUsDdEHIjwAohMwKsEDIjwAMhNwKsEDIjwAo3y0yxyLwK0RRPQEBAQEBAQEBAQEBAQKACIQx6AQEBAQEBAQEBAQEBAYEKhDDoqwTBYBC33HILgsGg05ciUEEQciPACiEzAqwQMiPAAyE3AqwQMiPAimqRGdEUT0BAQEBAQEBAQEBAQECgAiEi9AICAgICAgICAgICAgICFQhh0AsICAgICAgICAgICAgIVCCEQS8gICAgICAgICAgICAgUIEQBr2AgICAgICAgICAgICAQAVCGPQuxp133okpU6YgFAph4cKFeOONN4p+/tFHH8WsWbMQCoUwd+5cPPnkk1n/l2UZ3//+99HR0YGamhqceeaZ2LJli50kCJQZVsvMVVddBUmSsv6WLFliJwkCZQaLzLz//vu4+OKLMWXKFEiShBUrVpj+ToHKhNVy84Mf/GDUWjNr1iwbKRAoN1hk5p577sHHPvYxNDc3o7m5GWeeeeaoz4s9zaEBq+VG7GuqHywy8+c//xkLFixAOBxGXV0djj76aPz+97/P+kwlrDXCoHcpHnnkEXz961/HLbfcgrVr12LevHk4++yzsW/fvryff+211/CZz3wG11xzDdatW4cLLrgAF1xwAd577z3tMz/5yU/wi1/8Ar/61a+wevVq1NXV4eyzz0YsFisXWQI2wg6ZAYAlS5agu7tb+3vooYfKQY5AGcAqM9FoFNOmTcPy5cvR3t5uyXcKVB7skBsAOPLII7PWmldeecUuEgTKDFaZWblyJT7zmc/gxRdfxKpVqzBx4kScddZZ6Orq0j4j9jTVDzvkBhD7mmoGq8y0tLTgu9/9LlatWoV33nkHV199Na6++mo888wz2mcqYq2RBVyJ448/Xv7yl7+svU6n03JnZ6e8bNmyvJ+/5JJL5PPOOy/rvYULF8pf+MIXZFmW5UwmI7e3t8v/8z//o/2/v79fDgaD8kMPPWQDBQLlhtUyI8uyfOWVV8rnn3++Ldcr4DxYZcaIyZMny7fffrul3ylQGbBDbm655RZ53rx5Fl6lgJtgdl1IpVJyQ0OD/Lvf/U6WZbGnOVRgtdzIstjXVDus2IMcc8wx8ve+9z1ZlitnrRERehcikUjgrbfewplnnqm95/F4cOaZZ2LVqlV5j1m1alXW5wHg7LPP1j6/bds29PT0ZH2mqakJCxcuLPidApUDO2RGxcqVKzF27FjMnDkTX/rSl3DgwAHrCRAoO3hkxonvFHAX7OTxli1b0NnZiWnTpuHyyy/Hzp07zV6ugAtghcxEo1Ekk0m0tLQAEHuaQwF2yI0Ksa+pTpiVGVmW8fzzz2Pz5s04+eSTAVTOWiMMeheit7cX6XQa48aNy3p/3Lhx6OnpyXtMT09P0c+rjyzfKVA5sENmAJKWdv/99+P555/Hj3/8Y/zzn//EOeecg3Q6bT0RAmUFj8w48Z0C7oJdPF64cCHuu+8+PP3007jrrruwbds2fOxjH8Pg4KDZSxZwGFbIzLe+9S10dnZqm2qxp6l+2CE3gNjXVDN4ZSYSiaC+vh6BQADnnXce7rjjDnz84x8HUDlrjc/pCxAQEHAvLrvsMu353LlzcdRRR2H69OlYuXIlzjjjDAevTEBAoJpwzjnnaM+POuooLFy4EJMnT8Yf/vAHXHPNNQ5emYDTWL58OR5++GGsXLkSoVDI6csRqBAUkhuxrxHIRUNDA9avX4+hoSE8//zz+PrXv45p06bh1FNPdfrSqCEi9C5Ea2srvF4v9u7dm/X+3r17CzYUam9vL/p59ZHlOwUqB3bITD5MmzYNra2t+PDDD81ftICj4JEZJ75TwF0oF4/D4TAOP/xwsdZUAczIzG233Ybly5fj2WefxVFHHaW9L/Y01Q875CYfxL6mesArMx6PBzNmzMDRRx+Nm266CZ/61KewbNkyAJWz1giD3oUIBAI49thj8fzzz2vvZTIZPP/881i0aFHeYxYtWpT1eQB47rnntM9PnToV7e3tWZ8ZGBjA6tWrC36nQOXADpnJh927d+PAgQPo6Oiw5sIFHAOPzDjxnQLuQrl4PDQ0hK1bt4q1pgrAKzM/+clP8MMf/hBPP/00FixYkPU/saepftghN/kg9jXVA6v0UyaTQTweB1BBa43TXfkE8uPhhx+Wg8GgfN9998kbNmyQr7vuOjkcDss9PT2yLMvy5z//efnmm2/WPv/qq6/KPp9Pvu222+SNGzfKt9xyi+z3++V3331X+8zy5cvlcDgs/+Uvf5Hfeecd+fzzz5enTp0qj4yMlJ0+AethtcwMDg7K3/jGN+RVq1bJ27Ztk//xj3/I8+fPlw877DA5Fos5QqOAtWCVmXg8Lq9bt05et26d3NHRIX/jG9+Q161bJ2/ZsoX6OwUqH3bIzU033SSvXLlS3rZtm/zqq6/KZ555ptza2irv27ev7PQJWA9WmVm+fLkcCATkP/7xj3J3d7f2Nzg4mPUZsaepblgtN2JfU/1glZlbb71VfvbZZ+WtW7fKGzZskG+77TbZ5/PJ99xzj/aZSlhrhEHvYtxxxx3ypEmT5EAgIB9//PHy66+/rv3vlFNOka+88sqsz//hD3+QDz/8cDkQCMhHHnmk/Pe//z3r/5lMRv6P//gPedy4cXIwGJTPOOMMefPmzeUgRaBMsFJmotGofNZZZ8ltbW2y3++XJ0+eLF977bXCMKsysMjMtm3bZACj/k455RTq7xSoDlgtN5deeqnc0dEhBwIBefz48fKll14qf/jhh2WkSMBusMjM5MmT88rMLbfcon1G7GkODVgpN2Jfc2iARWa++93vyjNmzJBDoZDc3NwsL1q0SH744Yezvq8S1hpJlmW5vDkBAgICAgICAgICAgICAgICZiFq6AUEBAQEBAQEBAQEBAQEKhDCoBcQEBAQEBAQEBAQEBAQqEAIg15AQEBAQEBAQEBAQEBAoAIhDHoBAQEBAQEBAQEBAQEBgQqEMOgFBAQEBAQEBAQEBAQEBCoQwqAXEBAQEBAQEBAQEBAQEKhACINeQEBAQEBAQEBAQEBAQKACIQx6AQEBAQGBQxhXXXUVLrjggrKf97777oMkSZAkCTfeeKNl3ztlyhTte/v7+y37XgEBAQEBATfC5/QFCAgICAgICNgDSZKK/v+WW27Bz3/+c8iyXKYrykZjYyM2b96Muro6y75zzZo1ePnll3HxxRdb9p0CAgICAgJuhTDoBQQEBAQEqhTd3d3a80ceeQTf//73sXnzZu29+vp61NfXO3FpAIjDob293dLvbGtrQ0tLi6XfKSAgICAg4FaIlHsBAQEBAYEqRXt7u/bX1NSkGdDqX319/aiU+1NPPRU33HADbrzxRjQ3N2PcuHG45557MDw8jKuvvhoNDQ2YMWMGnnrqqaxzvffeezjnnHNQX1+PcePG4fOf/zx6e3uZr1mSJDz++ONZ74XDYdx3330AgEQigeuvvx4dHR0IhUKYPHkyli1bxnweAQEBAQGBaoAw6AUEBAQEBASy8Lvf/Q6tra144403cMMNN+BLX/oSPv3pT+PEE0/E2rVrcdZZZ+Hzn/88otEoAKC/vx+nn346jjnmGLz55pt4+umnsXfvXlxyySWWX9svfvELPPHEE/jDH/6AzZs344EHHsCUKVMsP4+AgICAgEAlQKTcCwgICAgICGRh3rx5+N73vgcA+Pa3v43ly5ejtbUV1157LQDg+9//Pu666y688847OOGEE/DLX/4SxxxzDG699VbtO377299i4sSJ+OCDD3D44Ydbdm07d+7EYYcdhsWLF0OSJEyePNmy7xYQEBAQEKg0iAi9gICAgICAQBaOOuoo7bnX68WYMWMwd+5c7b1x48YBAPbt2wcAePvtt/Hiiy9qNfn19fWYNWsWAGDr1q2WXttVV12F9evXY+bMmfjKV76CZ5991tLvFxAQEBAQqCSICL2AgICAgIBAFvx+f9ZrSZKy3lO752cyGQDA0NAQli5dih//+Mejvqujo8P09aTTae35/PnzsW3bNjz11FP4xz/+gUsuuQRnnnkm/vjHP5o+j4CAgICAQKVBGPQCAgICAgICpjB//nz86U9/wpQpU+Dzmd9a7N27V3u+f/9+DA0NZf2/sbERl156KS699FJ86lOfwpIlS9DX1ye62wsICAgIHHIQKfcCAgICAgICpvDlL38ZfX19+MxnPoM1a9Zg69ateOaZZ3D11VdnRddpcfvtt+P111/Hxo0b8aUvfQkAsHnzZhw4cAA/+9nP8NBDD2HTpk344IMP8Oijj6K9vR3hcNhiqgQEBAQEBNwPYdALCAgICAgImEJnZydeffVVpNNpnHXWWZg7dy5uvPFGhMNheDzsW40lS5bgsssuw4IFCzBhwgR8+ctfxp133on33nsPDQ0N+MlPfoIFCxbguOOOw/bt2/Hkk09ynUdAQEBAQKDSIcmyLDt9EQICAgICAgKHFu677z7ceOON6O/vz3pfkiQ89thjuOCCC7i/e+XKlTjttNNw8OBBEbkXEBAQEKhqCHe2gICAgICAgCOIRCKor6/Ht771Lcu+88gjj8Q555xj2fcJCAgICAi4GaIpnoCAgICAgEDZcfHFF2Px4sUAYGkU/cknn0QymQRAmucJCAgICAhUM0TKvYCAgICAgICAgICAgIBABUKk3AsICAgICAgICAgICAgIVCCEQS8gICAgICAgICAgICAgUIEQBr2AgICAgICAgICAgICAQAVCGPQCAgICAgICAgICAgICAhUIYdALCAgICAgICAgICAgICFQghEEvICAgICAgICAgICAgIFCBEAa9gICAgICAgICAgICAgEAFQhj0AgICAgICAgICAgICAgIVCGHQCwgICAgICAgICAgICAhUIP4/jTYkxT2E//0AAAAASUVORK5CYII=\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - examples_10_0.png" } }, "output_type": "display_data" } ], "source": [ "time = mk_trace_time()\n", "trace = mk_trace_for_iq_shot(shots[0])\n", "\n", "fig, ax = plt.subplots(1, 1, figsize=(12, 12 / 1.61 / 2))\n", "ax.plot(time * 1e6, trace.imag, \".-\", label=\"I-quadrature\")\n", "ax.plot(time * 1e6, trace.real, \".-\", label=\"Q-quadrature\")\n", "ax.set_xlabel(\"Time [µs]\")\n", "ax.set_ylabel(\"Amplitude [V]\")\n", "_ = ax.legend()" ] }, { "cell_type": "code", "execution_count": 12, "id": "20947c3b", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:34.465562Z", "iopub.status.busy": "2023-09-26T17:43:34.465342Z", "iopub.status.idle": "2023-09-26T17:43:34.600088Z", "shell.execute_reply": "2023-09-26T17:43:34.599428Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHgCAYAAABZ+0ykAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjrUlEQVR4nO3deXhM1x8G8PfOZJnJnsge2S0pQggi1rbUUqWqi6KE0lVr64ZfS2k11VapUlsXulKKainV2ErtxFJrSQiRTWTfZ87vjzRTI4tJTHKTmffzPPNIztzlO9ck8+bec86VhBACRERERCZCIXcBRERERMbEcENEREQmheGGiIiITArDDREREZkUhhsiIiIyKQw3REREZFIYboiIiMikMNwQERGRSWG4ISIiIpPCcEN1YsWKFZAkCfHx8bWy/bfffhuSJNXKtuk/d3uc7733Xtx7773GK6gO5eTkYOzYsfD09IQkSZg4caLcJZm1gIAAjBo1Su4yqJ5iuDFDkiQZ9Ni5c6fcpRIBAPLy8vD222/L+p587733sGLFCrzwwgv45ptvMGLECKNuPz4+3uCfzbI/EmbPno2BAwfCw8MDkiTh7bffNmpNdHdOnz6Nt99+u9b+qKPKWchdANW9b775Ru/7r7/+Gtu2bSvXfs899xhtnyNGjMCTTz4Ja2tro22TzEdeXh5mzpwJALKd+dm+fTs6deqEGTNm1Mr23dzcyv0Mzp07F1evXsW8efPKLQsAb775Jjw9PdG2bVts3bq1Vuqqr86dOweFon7/fX769GnMnDkT9957LwICAuQux6ww3Jihp556Su/7/fv3Y9u2beXajUmpVEKpVNba9utCQUEBrKys6v0vVKodKSkpaNGiRa1t39bWttzP4KpVq3Dz5s1Kfzbj4uIQEBCAtLQ0XeAxZUIIFBQUQK1W8w8lqhJ/S1M5UVFRcHV1RXFxcbnnevfujebNm+u+lyQJL730Er777js0b94cKpUK4eHh2L17t956lfW5+e2339CjRw/Y29vDwcEBHTp0wPfff697/s8//8Tjjz8OPz8/WFtbw9fXF5MmTUJ+fn6NXtu9996LVq1a4ciRI+jcuTPUajUCAwOxZMkSveV27twJSZKwatUqvPnmm/Dx8YGNjQ2ysrIAAGvWrEF4eDjUajVcXV3x1FNP4dq1a+X2d/bsWTzxxBNwc3ODWq1G8+bN8b///U9vmWvXruHpp5+Gh4cHrK2t0bJlS3z55ZfltvXpp5+iZcuWsLGxgbOzM9q3b693rLKzszFx4kQEBATA2toa7u7ueOCBB3D06FG97Rw4cAB9+/aFo6MjbGxs0KNHD+zdu7fc/vbs2YMOHTpApVIhODgYS5cuNfxAA1i2bBmCg4OhVqvRsWNH/Pnnn+WWKSoqwvTp0xEeHg5HR0fY2tqiW7du2LFjh26Z+Ph43Qf3zJkzdZdmyi7BnDhxAqNGjUJQUBBUKhU8PT3x9NNP48aNGwbVmZKSgjFjxsDDwwMqlQpt2rTBypUrdc+XvRfi4uKwadOmcpeGKvLVV1/h/vvvh7u7O6ytrdGiRQssXrzYoHqq427PBtzpvZefn4+QkBCEhITo/cylp6fDy8sLnTt3hkajAQCMGjUKdnZ2uHTpEvr06QNbW1t4e3tj1qxZEELo7Ver1WL+/Plo2bIlVCoVPDw88Nxzz+HmzZvlXt9DDz2ErVu3on379lCr1br34e19bsp+x+zZswfjx4+Hm5sbnJyc8Nxzz6GoqAgZGRkYOXIknJ2d4ezsjNdff/2u69qzZw86duwIlUqFoKAgfP3113r1PP744wCA++67j5f765ogszdu3Dhx61th27ZtAoD45Zdf9Ja7fv26UCqVYtasWbo2AKJVq1bC1dVVzJo1S8yZM0f4+/sLtVotTp48qVvuq6++EgBEXFycXpskSaJVq1Zi9uzZYtGiRWLs2LFixIgRumVefvll8eCDD4r33ntPLF26VIwZM0YolUrx2GOP6dU2Y8YMYcjbuUePHsLb21u4u7uLl156SSxYsEB07dpVABBffPGFbrkdO3YIAKJFixYiLCxMfPzxxyI6Olrk5ubqXkuHDh3EvHnzxJQpU4RarRYBAQHi5s2bum0cP35cODg4iEaNGompU6eKpUuXitdff12EhobqlklKShKNGzcWvr6+YtasWWLx4sVi4MCBAoCYN2+ebrlly5YJAOKxxx4TS5cuFZ988okYM2aMGD9+vG6ZYcOGCSsrKzF58mTx+eefizlz5ogBAwaIb7/9VrdMTEyMsLKyEpGRkWLu3Lli3rx5onXr1sLKykocOHBAt9yJEyeEWq0Wfn5+Ijo6WrzzzjvCw8NDtG7d2qDj/PnnnwsAonPnzmLBggVi4sSJwsnJSQQFBYkePXrolktNTRVeXl5i8uTJYvHixeKDDz4QzZs3F5aWluLYsWNCCCFycnLE4sWLBQDxyCOPiG+++UZ888034vjx40IIIT766CPRrVs3MWvWLLFs2TIxYcIEoVarRceOHYVWq62yzry8PHHPPfcIS0tLMWnSJLFgwQLRrVs3AUDMnz9f93/0zTffCFdXVxEWFqbbf05OTqXb7dChgxg1apSYN2+e+PTTT0Xv3r0FALFw4cI7Hrtb9e/fX/j7+99xudTUVAFAzJgxw+BtG/re279/v1AqlWLSpEm6tieffFKo1Wpx7tw5XVtUVJRQqVSiadOmYsSIEWLhwoXioYceEgDEW2+9pbfvsWPHCgsLC/HMM8+IJUuWiDfeeEPY2tqKDh06iKKiIt1y/v7+okmTJsLZ2VlMmTJFLFmyROzYsUP3XFRUlG7Zsp/LsLAw0bdvX7Fo0SIxYsQIAUC8/vrromvXrmLYsGHis88+09W1cuXKGtfVvHlz4eHhIaZNmyYWLlwo2rVrJyRJEqdOnRJCCHHx4kUxfvx4AUBMmzZN975JSkoy+P+Iao7hhsqFG41GIxo3biyGDBmit9zHH38sJEkSly5d0rUBEADE4cOHdW2XL18WKpVKPPLII7q228NNRkaGsLe3FxERESI/P19vP7d+IOXl5ZWrNzo6WkiSJC5fvqxrq064ASDmzp2rayssLBRhYWHC3d1d9wusLNwEBQXp1VBUVCTc3d1Fq1at9Or+9ddfBQAxffp0XVv37t2Fvb29Xp23v74xY8YILy8vkZaWprfMk08+KRwdHXX7fvjhh0XLli2rfG2Ojo5i3LhxlT6v1WpF06ZNRZ8+fcod48DAQPHAAw/o2gYNGiRUKpVe7adPnxZKpfKOx7nsGIWFhYnCwkJde1lAuzXclJSU6C0jhBA3b94UHh4e4umnn9a1VfXhXdF75IcffhAAxO7du6usdf78+QKAXgAsKioSkZGRws7OTmRlZena/f39Rf/+/avcXlU19enTRwQFBRm0fpnaDDeGvveEEGLq1KlCoVCI3bt3izVr1uiFvzJRUVECgHj55Zd1bVqtVvTv319YWVmJ1NRUIYQQf/75pwAgvvvuO731t2zZUq7d399fABBbtmwpV39l4eb293dkZKSQJEk8//zzuraSkhLRuHFjvfdiTeq69f2VkpIirK2txSuvvKJrKztWZYGM6g4vS1E5CoUCw4cPx8aNG5Gdna1r/+6779C5c2cEBgbqLR8ZGYnw8HDd935+fnj44YexdetW3Snr223btg3Z2dmYMmUKVCqV3nO3DjVWq9W6r3Nzc5GWlobOnTtDCIFjx47V6PVZWFjgueee031vZWWF5557DikpKThy5IjeslFRUXo1HD58GCkpKXjxxRf16u7fvz9CQkKwadMmAEBqaip2796Np59+Gn5+fhW+PiEEfvrpJwwYMABCCKSlpekeffr0QWZmpu6SkpOTE65evYpDhw5V+rqcnJxw4MABJCYmVvh8bGwsLly4gGHDhuHGjRu6feXm5qJnz57YvXs3tFotNBoNtm7dikGDBunVfs8996BPnz5VHttbj9Hzzz8PKysrXfuoUaPg6Oiot6xSqdQto9VqkZ6ejpKSErRv377c5bTK3Pr/U1BQgLS0NHTq1AkA7riNzZs3w9PTE0OHDtW1WVpaYvz48cjJycGuXbsMqqGqmjIzM5GWloYePXrg0qVLyMzMrNE2jak67z2gdAqAli1bIioqCi+++CJ69OiB8ePHV7jtl156Sfd12WXroqIi/PHHHwBKL+k6OjrigQce0NtveHg47Ozs9C5JAkBgYKBB77syY8aM0fsdEhERASEExowZo2tTKpVo3749Ll26pGurbl0tWrRAt27ddN+7ubmhefPmetsk+TDcUIVGjhyJ/Px8rF+/HkDpyIQjR45UOPy1adOm5dqaNWuGvLw8pKamVrj9ixcvAgBatWpVZR1XrlzBqFGj4OLiAjs7O7i5uaFHjx4AUOMPCW9vb9ja2parF0C5fhS3B7nLly8DgF6/ozIhISG658t+wVX1+lJTU5GRkYFly5bBzc1N7zF69GgApf1BAOCNN96AnZ0dOnbsiKZNm2LcuHHl+sl88MEHOHXqFHx9fdGxY0e8/fbber9oL1y4AKA0sN2+v88//xyFhYXIzMxEamoq8vPzK/x/reh1367sGNy+vqWlJYKCgsotv3LlSrRu3RoqlQqNGjWCm5sbNm3aZPD/b3p6OiZMmAAPDw+o1Wq4ubnp/t/utI3Lly+jadOm5TqJl40ULHst1bV371706tULtra2cHJygpubG6ZNm2ZQTXWhOu89oPQPgC+//BJxcXHIzs7GV199VeF8RwqFotz/8e0/WxcuXEBmZibc3d3L7TsnJ0dvv0D5n8E7uf2PibJA7evrW6791r401a3r9v0AgLOzc7n+OSQPjpaiCrVo0QLh4eH49ttvMXLkSHz77bewsrLCE088UWc1aDQaPPDAA0hPT8cbb7yBkJAQ2Nra4tq1axg1ahS0Wm2t13DrX+DGVlb/U089haioqAqXad26NYDSD9tz587h119/xZYtW/DTTz/hs88+w/Tp03VDpJ944gl069YN69evx++//44PP/wQc+bMwbp169CvXz/d/j788EOEhYVVuD87OzsUFhYa+ZVW7ttvv8WoUaMwaNAgvPbaa3B3d4dSqUR0dLQuAN/JE088gb/++guvvfYawsLCYGdnB61Wi759+9bJe+R2Fy9eRM+ePRESEoKPP/4Yvr6+sLKywubNmzFv3jxZarpddd57ZcqGmhcUFODChQvVDh237tvd3R3fffddhc/fPuqruj+DlY3KrKhd3NKhuLp1VbYfcVsnZZIHww1VauTIkZg8eTKuX7+O77//Hv3794ezs3O55crOCNzq/PnzsLGxqXR4anBwMADg1KlTaNKkSYXLnDx5EufPn8fKlSsxcuRIXfu2bdtq8nJ0EhMTkZubq3f25vz58wDuPPrE398fQOmZrPvvv1/vuXPnzumeL/vr9dSpU5Vuy83NDfb29tBoNOjVq9cd67a1tcWQIUMwZMgQFBUVYfDgwZg9ezamTp2qu0Tm5eWFF198ES+++CJSUlLQrl07zJ49G/369dMdcwcHhyr3Vzayq6L/13Pnzt2xzrJjcOHCBb1jVFxcjLi4OLRp00bXtnbtWgQFBWHdunV6ZwJun0umslmRb968iZiYGMycORPTp0/XtVdUe2W1njhxAlqtVu/szdmzZ/VeS3X88ssvKCwsxMaNG/X+ur/9soacqvveO3HiBGbNmoXRo0cjNjYWY8eOxcmTJ8tdZtRqtbh06ZLubA1Q/mcrODgYf/zxB7p06VKrfzxUV23UxVnT5cPLUlSpoUOHQpIkTJgwAZcuXap0ro19+/bpXZ9PSEjAzz//jN69e1f6103v3r1hb2+P6OhoFBQU6D1X9pdP2bq3/iUkhMAnn3xyV6+rpKREb1hzUVERli5dCjc3N72+QxVp37493N3dsWTJEr0zHL/99hvOnDmD/v37Ayj98OjevTu+/PJLXLlypdLX9+ijj+Knn36qMATdeknv9mHNVlZWaNGiBYQQKC4uhkajKXe5w93dHd7e3ro6w8PDERwcjI8++gg5OTmV7k+pVKJPnz7YsGGDXu1nzpwxaKK49u3bw83NDUuWLEFRUZGufcWKFcjIyNBbtqL/4wMHDmDfvn16y9nY2ACAQesDwPz58+9YJwA8+OCDSEpKwurVq3VtJSUl+PTTT2FnZ6e7BFodFdWUmZmJr776qtrbqi3Vee8VFxdj1KhR8Pb2xieffIIVK1YgOTkZkyZNqnDbCxcu1H0thMDChQthaWmJnj17Aig906bRaPDOO++UW7ekpKTc/3FdqY26yv6Akus1mTOeuaFKubm5oW/fvlizZg2cnJx0H9y3a9WqFfr06YPx48fD2toan332GQDoLpdUxMHBAfPmzcPYsWPRoUMHDBs2DM7Ozjh+/Djy8vKwcuVKhISEIDg4GK+++iquXbsGBwcH/PTTT3d9Tdvb2xtz5sxBfHw8mjVrhtWrVyM2NhbLli2DpaVlletaWlpizpw5GD16NHr06IGhQ4ciOTkZn3zyCQICAvR+4S9YsABdu3ZFu3bt8OyzzyIwMBDx8fHYtGkTYmNjAQDvv/8+duzYgYiICDzzzDNo0aIF0tPTcfToUfzxxx9IT08HUBoGPT090aVLF3h4eODMmTNYuHAh+vfvD3t7e2RkZKBx48Z47LHH0KZNG9jZ2eGPP/7AoUOHMHfuXACl/SE+//xz9OvXDy1btsTo0aPh4+ODa9euYceOHXBwcMAvv/wCoPT/bsuWLejWrRtefPFF3Qd+y5YtceLEiTseo3fffRfPPfcc7r//fgwZMgRxcXH46quvyvXHeOihh7Bu3To88sgj6N+/P+Li4rBkyRK0aNFCL4Cp1Wq0aNECq1evRrNmzeDi4oJWrVqhVatW6N69Oz744AMUFxfDx8cHv//+O+Li4gx6Lzz77LNYunQpRo0ahSNHjiAgIABr167F3r17MX/+fNjb2xu0nVv17t0bVlZWGDBgAJ577jnk5ORg+fLlcHd3x/Xr16u9vap88803uHz5MvLy8gAAu3fvxrvvvgugdFbwqs48Gfree/fddxEbG4uYmBjY29ujdevWmD59Ot5880089thjePDBB3XbVKlU2LJlC6KiohAREYHffvsNmzZtwrRp03RncXv06IHnnnsO0dHRiI2NRe/evWFpaYkLFy5gzZo1+OSTT/DYY48Z9TgZojbqCgsLg1KpxJw5c5CZmQlra2vd/EdUy+p8fBbVO7cPBb/Vjz/+KACIZ599tsLnAYhx48aJb7/9VjRt2lRYW1uLtm3blhv6WNE8N0IIsXHjRtG5c2ehVquFg4OD6Nixo/jhhx90z58+fVr06tVL2NnZCVdXV/HMM8+I48ePCwDiq6++0i1XnaHgLVu2FIcPHxaRkZFCpVIJf3//cvOPlA0FX7NmTYXbWb16tWjbtq2wtrYWLi4uYvjw4eLq1avlljt16pR45JFHhJOTk1CpVKJ58+bl5vxITk4W48aNE76+vsLS0lJ4enqKnj17imXLlumWWbp0qejevbto1KiRsLa2FsHBweK1114TmZmZQojS4eyvvfaaaNOmjbC3txe2traiTZs24rPPPitX07Fjx8TgwYN12/L39xdPPPGEiImJ0Vtu165dIjw8XFhZWYmgoCCxZMkSg4+zEEJ89tlnIjAwUFhbW4v27duL3bt3ix49eugNv9VqteK9994T/v7+uvfOr7/+KqKiosoNgf7rr7909eCWYc9Xr17VHWNHR0fx+OOPi8TERIOHRicnJ4vRo0cLV1dXYWVlJUJDQ/XeW2WqMxR848aNonXr1kKlUomAgAAxZ84c8eWXX1b4M1CVOw0FL5vaoKKHIcOP7/TeO3LkiLCwsNAb3i1E6VDqDh06CG9vb93cTlFRUcLW1lZcvHhR9O7dW9jY2AgPDw8xY8YModFoyu172bJlIjw8XKjVamFvby9CQ0PF66+/LhITE3XLVHXMKxsKfujQIb3lyt6zZUPRy5TVa8y6bn9/CyHE8uXLRVBQkG4aBQ4LrxuSEOz9RJX7+eefMWjQIOzevVtv2GMZSZIwbtw4vVPR9dm9996LtLS0KvvCEFH1jRo1CmvXrq3wkidRXWOfG6rS8uXLERQUhK5du8pdChERkUHY54YqtGrVKpw4cQKbNm3CJ598wl7/RETUYDDcUIWGDh0KOzs7jBkzBi+++KLc5RARERmMfW6IiIjIpLDPDREREZkUhhsiIiIyKQw3REREZFIYboiIiMikMNwQERGRSWG4ISIiIpPCcENEREQmheGGiIiITArDDREREZkUhhsiIiIyKQw3REREZFIYboiIiMikMNwQERGRSWG4ISIiIpPCcENEREQmheGGiIiITArDDREREZkUhhsiIiIyKQw3REREZFIYboiIiMikMNwQERGRSWG4ISIiIpPCcENEREQmheGGiIiITArDDREREZkUhhsiIiIyKQw3REREZFIs5C5ADlqtFomJibC3t4ckSXKXQ0RERAYQQiA7Oxve3t5QKCo/P2OW4SYxMRG+vr5yl0FEREQ1kJCQgMaNG1f6vFmGG3t7ewClB8fBwUHmaoiIiMgQWVlZ8PX11X2OV8Ysw03ZpSgHBweGGyIiogbmTl1K2KGYiIiITArDDREREZkUhhsiIiIyKQw3REREZFIYboiIiMikMNwQERGRSWG4ISIiIpPCcENEREQmheGGiIiITArDDREREZkU2cPN7t27MWDAAHh7e0OSJGzYsOGO6+zcuRPt2rWDtbU1mjRpghUrVtR6nURERNQwyB5ucnNz0aZNGyxatMig5ePi4tC/f3/cd999iI2NxcSJEzF27Fhs3bq1liu9s+uZ+fjrYhquZ+bLXQoREZHZkv3Gmf369UO/fv0MXn7JkiUIDAzE3LlzAQD33HMP9uzZg3nz5qFPnz61VeYdrT50BVPXnYRWAAoJiB4ciiEd/GSrh4iIyFzJfuamuvbt24devXrptfXp0wf79u2rdJ3CwkJkZWXpPYzpema+LtgAgFYA09ad4hkcIiIiGTS4cJOUlAQPDw+9Ng8PD2RlZSE/v+IwER0dDUdHR93D19fXqDXFpeXqgk0ZjRCIT8sz6n6IiIjozhpcuKmJqVOnIjMzU/dISEgw6vYDXW2hkPTbFBIQ4Gpj1P0QERHRnTW4cOPp6Ynk5GS9tuTkZDg4OECtVle4jrW1NRwcHPQexuTlqEb04FAobwk4T3b0g5djxfUQERFR7Wlw4SYyMhIxMTF6bdu2bUNkZKRMFZUa0sEPe6bcj0Fh3gCA1OxCWeshIiIyV7KHm5ycHMTGxiI2NhZA6VDv2NhYXLlyBUDpJaWRI0fqln/++edx6dIlvP766zh79iw+++wz/Pjjj5g0aZIc5evxclTjxfuaAAB2nktBRl6RzBURERGZH9nDzeHDh9G2bVu0bdsWADB58mS0bdsW06dPBwBcv35dF3QAIDAwEJs2bcK2bdvQpk0bzJ07F59//rmsw8Bv1czDHiGe9ijWCPx2KknucoiIiMyOJIQQd17MtGRlZcHR0RGZmZlG738DAEt2XcT7v51FpyAXrHpW3stlREREpsLQz2/Zz9yYogFtSvvdHIhL51w3REREdYzhphb4OKnRMcAFQgC/HE+UuxwiIiKzwnBTSwb+O2rq51iGGyIiorrEcFNL+od6wUIh4e/ELPyTki13OURERGaD4aaWONtaoUczNwA8e0NERFSXGG5q0a2XpsxwUBoREZEsGG5q0QMtPGBjpcSV9DzEJmTIXQ4REZFZYLipRTZWFujdovQO5rw0RUREVDcYbmrZw2E+AIBfTySiRKOVuRoiIiLTx3BTy7o2dYWzjSXScorw18UbcpdDRERk8hhuapmlUoH+rb0A8NIUERFRXWC4qQOD/r00tfXvJBQUa2SuhoiIyLQx3NSBdn7O8HFSI6ewBDFnUuQuh4iIyKQx3NQBhUK6Zc6bazJXQ0REZNoYburIw/+Gm53nUpGZVyxzNURERKaL4aaOhHg6IMTTHkUaLbb8fV3ucoiIiEwWw00dKrs0teEYR00RERHVFoabOjSgdWm42R93A0mZBTJXQ0REZJoYbuqQr4sN2vs7Q4jSGYuJiIjI+Bhu6tjDbUvnvOGEfkRERLWD4aaO9Q/1goVCwslrmbiYmiN3OURERCaH4aaOudhaoVtTVwA8e0NERFQbGG5kUHan8I2x1yCEkLkaIiIi08JwI4MHWnhAbalE/I08nLiaKXc5REREJoXhRga21hZ4oIUHAGADb8dARERkVAw3Mim7HcMvx69Do+WlKSIiImNhuJFJt6ZucLKxRFpOIfZdvCF3OURERCaD4UYmVhYK9A/1AsBLU0RERMbEcCOjslFTW04loaBYI3M1REREpoHhRkbt/Z3h7ahCTmEJdpxNkbscIiIik8BwIyOFQsKAfzsWc0I/IiIi42C4kdmgfy9NbT+bgsz8YpmrISIiavgYbmQW4mmPZh52KNJosfVUktzlEBERNXgMNzKTJEnXsfjn4xw1RUREdLcYbuqBgW1K+93s/ecGNp9IxPXMfJkrIiIiargYbuoBXxcb+LvYAABe/P4Yury/HasPXZG5KiIiooaJ4aYeuJ6ZjyvpebrvtQKYtu4Uz+AQERHVAMNNPRCXlovb7y6lEQLxaXkVLk9ERESVY7ipBwJdbaGQ9NuUkoQAVxt5CiIiImrAGG7qAS9HNaIHh+oFnOkDWsDLUS1fUURERA0Uw009MaSDH/a8cR+8HFUAAAuldIc1iIiIqCIMN/WIt5MNxnQNBAB8t/8KhLi9Jw4RERHdCcNNPfNYeGNYWShw+noWjl/NlLscIiKiBofhpp5xsrHCQ6FeAIDv9l+WuRoiIqKGh+GmHhreyQ8A8MuJRN5Mk4iIqJoYbuqhdn7OCPG0R0GxFuuPXpW7HCIiogaF4aYekiQJwyJKz958d4Adi4mIiKqD4aaeGtTWB2pLJS6k5ODw5Ztyl0NERNRgMNzUUw4qS93dwtmxmIiIyHAMN/VYWcfizSeTkJ5bJHM1REREDQPDTT3WurETQn0cUaTR4qcj7FhMRERkCIabeq6sY/H3B9mxmIiIyBAMN/XcwDbesLO2QFxaLvZdvCF3OURERPUew009Z2ttgUFt/+1YfOCKzNUQERHVfww3DcCwjv4AgK1/JyElu0DmaoiIiOo3hpsGoIW3A9r5OaFEK7DmMDsWExERVYXhpoEYFlF69uaHg1eg1bJjMRERUWUYbhqIh1p7wUFlgas387H7Qqrc5RAREdVb9SLcLFq0CAEBAVCpVIiIiMDBgwerXH7+/Plo3rw51Go1fH19MWnSJBQUmHZfFJWlEo+GNwbAjsVERERVkT3crF69GpMnT8aMGTNw9OhRtGnTBn369EFKSkqFy3///feYMmUKZsyYgTNnzuCLL77A6tWrMW3atDquvO4N/3fOm5gzybiemS9zNURERPWT7OHm448/xjPPPIPRo0ejRYsWWLJkCWxsbPDll19WuPxff/2FLl26YNiwYQgICEDv3r0xdOjQKs/2FBYWIisrS+/REDVxt0dEoAu0Alh9KEHucoiIiOolWcNNUVERjhw5gl69eunaFAoFevXqhX379lW4TufOnXHkyBFdmLl06RI2b96MBx98sNL9REdHw9HRUffw9fU17gupQ2UzFq86mIASjVbmaoiIiOofWcNNWloaNBoNPDw89No9PDyQlJRU4TrDhg3DrFmz0LVrV1haWiI4OBj33ntvlZelpk6diszMTN0jIaHhnvXo28oTLrZWSMoqwI5z7FhMRER0O9kvS1XXzp078d577+Gzzz7D0aNHsW7dOmzatAnvvPNOpetYW1vDwcFB79FQWVso8Xj7so7Fl2WuhoiIqP6xkHPnrq6uUCqVSE5O1mtPTk6Gp6dnheu89dZbGDFiBMaOHQsACA0NRW5uLp599ln873//g0LR4PJatQ3t4Ieluy5h1/lUJKTnwdfFRu6SiIiI6g1Zk4CVlRXCw8MRExOja9NqtYiJiUFkZGSF6+Tl5ZULMEqlEgDM5q7ZAa626NbUFUIAqw5xWDgREdGtZD/NMXnyZCxfvhwrV67EmTNn8MILLyA3NxejR48GAIwcORJTp07VLT9gwAAsXrwYq1atQlxcHLZt24a33noLAwYM0IUcczCsY2nH4tWHrqKYHYuJiIh0ZL0sBQBDhgxBamoqpk+fjqSkJISFhWHLli26TsZXrlzRO1Pz5ptvQpIkvPnmm7h27Rrc3NwwYMAAzJ49W66XIIteLTzgZm+N1OxCbDudjAdDveQuiYiIqF6QhLlcy7lFVlYWHB0dkZmZ2aA7F8/9/Rw+3f4PujRphO/GdpK7HCIiolpl6Oe37JelqOaGdPCFJAF7/7mBuLRcucshIiKqFxhuGrDGzja4r7k7gNK7hRMRERHDTYNX1rF4zeEEFBRrZK6GiIhIfgw3Ddx9Ie7wdlThZl4xFm6/wBtqEhGR2WO4aeCUCgktfRwBAAt3XESX97djNee+ISIiM8Zw08Bdz8xHzJn/ZnjWCmDaulM8g0NERGaL4aaBi0vLhfa2wfwaIRCflidPQURERDJjuGngAl1toZD02xQSEODK+00REZF5Yrhp4Lwc1YgeHArlLQGnezM3eDmq5SuKiIhIRgw3JmBIBz/smXI/XnmgGQDgyOWbyC4olrkqIiIieTDcmAgvRzXG3dcETdztkF1Qgu8PcMQUERGZJ4YbE6JQSHi2exAA4Mu9cSgs4aR+RERkfhhuTMygMB94OqiQnFWIn48lyl0OERFRnWO4MTFWFgqM6RoIAFiy+yK0t48TJyIiMnEMNyZoaIQfHFQWuJSai223TPBHRERkDhhuTJCdtQVGRPoDAJbsugghePaGiIjMB8ONiRrVORBWFgocu5KBg3HpcpdDRERUZxhuTJSbvTUeC28MoPTsDRERkblguDFhz3YLgkICdpxLxdmkLLnLISIiqhMMNyYswNUW/Vp5AQCW7rokczVERER1g+HGxD3fIxgAsPF4Iq7e5J3CiYjI9DHcmLjQxo7o0qQRNFqBz/+Mk7scIiKiWsdwYwbKzt6sPpSAm7lFMldDRERUuxhuzEDXJq5o6e2A/GINVu6Ll7scIiKiWsVwYwYkSdKdvVn5VzzyikpkroiIiKj2MNyYiX6tPOHnYoObecX48VCC3OUQERHVGoYbM2GhVOCZ7kEAgOV/xqFYo5W5IiIiotrBcGNGHg9vDFc7K1zLyMemE9flLoeIiKhWMNyYEZWlEqM6BwDgDTWJiMh0MdyYmRGdAmBrpcTZpGzsPJ8qdzlERERGx3BjZhxtLDG0ox8AYMlO3lCTiIhMD8ONGXq6ayAsFBIOxKXj2JWbcpdDRERkVAw3ZsjbSY2Hw3wAlPa9ISIiMiUMN2bq+R6lw8J/P52Mi6k5MldDRERkPAw3Zqqphz163eMOIYBluy7JXQ4REZHRMNyYsbJbMqw/dg3JWQUyV0NERGQcDDdmrH2AC9r7O6NIo8WXe+LkLoeIiMgoGG7MXNnZm2/2X8YfZ5JxPTNf5oqIiIjuDsONmbs/xB3u9tbIK9Jg7MrD6PL+dqw+dEXusoiIiGqM4cbMJWcXIDW7UPe9VgDT1p3iGRwiImqwGG7MXFxaLm6/w5RGCMSn5clSDxER0d1iuDFzga62UEj6bQoJCHC1kacgIiKiu1SjcDNjxgxcvnzZ2LWQDLwc1YgeHKoXcLo1dYWXo1q+ooiIiO5CjcLNzz//jODgYPTs2RPff/89CgsL77wS1VtDOvhh75T78VqfZgCA/ZfSkZTJeW+IiKhhqlG4iY2NxaFDh9CyZUtMmDABnp6eeOGFF3Do0CFj10d1xMtRjRfvbYL2/s4oLNHik5jzcpdERERUIzXuc9O2bVssWLAAiYmJ+OKLL3D16lV06dIFrVu3xieffILMzExj1kl1QJIkTOkXAgD48fBV3nOKiIgapLvuUCyEQHFxMYqKiiCEgLOzMxYuXAhfX1+sXr3aGDVSHWof4IJe97hDoxWY+/s5ucshIiKqthqHmyNHjuCll16Cl5cXJk2ahLZt2+LMmTPYtWsXLly4gNmzZ2P8+PHGrJXqyKt9mkOSgM0nk3A8IUPucoiIiKqlRuEmNDQUnTp1QlxcHL744gskJCTg/fffR5MmTXTLDB06FKmpqUYrlOpOiKcDHmnrAwD4YOtZmashIiKqnhqFmyeeeALx8fHYtGkTBg0aBKVSWW4ZV1dXaLXauy6Q5DGpVzNYKRXY+88N7LmQJnc5REREBqtRuCnrW3O7/Px8zJo1666LIvn5uthgeCc/AMCcLWeh1d4+jzEREVH9VKNwM3PmTOTklB9Jk5eXh5kzZ951UVQ/jLuvCWytlDh5LRO/nUqSuxwiIiKD1PjMjSRJ5dqPHz8OFxeXuy6K6gdXO2s80z0IAPDR7+dQrOFlRiIiqv8sqrOws7MzJEmCJElo1qyZXsDRaDTIycnB888/b/QiST5juwXhm32XEZeWizWHr2JYhJ/cJREREVWpWuFm/vz5EELg6aefxsyZM+Ho6Kh7zsrKCgEBAYiMjDR6kSQfO2sLvHR/E8z85TTm/3Eej7T1gdqqfAdyIiKi+qJa4SYqKgoAEBgYiM6dO8PS0rJWiqL6ZViEH77YE4erN/Ox4q94vHBvsNwlERERVcrgPjdZWVm6r9u2bYv8/HxkZWVV+CDTYm2hxOQHSm+quXjnP8jMK5a5IiIiosoZHG6cnZ2RkpICAHBycoKzs3O5R1l7dS1atAgBAQFQqVSIiIjAwYMHq1w+IyMD48aNg5eXF6ytrdGsWTNs3ry52vslwz0c5oPmHvbIKijB4l0X5S6HiIioUgZfltq+fbtuJNSOHTuMVsDq1asxefJkLFmyBBEREZg/fz769OmDc+fOwd3dvdzyRUVFeOCBB+Du7o61a9fCx8cHly9fhpOTk9FqovKUCgmv922OMSsP46u9cRjVOQCejiq5yyIiIipHEkLIOjtbREQEOnTogIULFwIAtFotfH198fLLL2PKlCnlll+yZAk+/PBDnD17tsZ9frKysuDo6IjMzEw4ODjcVf3mRAiBx5fsw+HLNzG0ox+iB4fKXRIREZkRQz+/DQ43J06cMHjnrVu3Nmi5oqIi2NjYYO3atRg0aJCuPSoqChkZGfj555/LrfPggw/CxcUFNjY2+Pnnn+Hm5oZhw4bhjTfeqPA2EABQWFiIwsJC3fdZWVnw9fVluKmBQ/HpeHzJPigVEn6f1B3BbnZyl0RERGbC0HBj8GWpsLAwSJKEO2UhSZKg0WgM2mZaWho0Gg08PDz02j08PHD2bMU3bLx06RK2b9+O4cOHY/Pmzfjnn3/w4osvori4GDNmzKhwnejoaM6cbCQdAlzQM8QdMWdT8PHv57FoeDu5SyIiItJjcLiJi4urzToMptVq4e7ujmXLlkGpVCI8PBzXrl3Dhx9+WGm4mTp1KiZPnqz7vuzMDdXMa32bY/u5FGw6eR3PXc1A68ZOcpdERESkY3C48ff3N/rOXV1doVQqkZycrNeenJwMT0/PCtfx8vKCpaWl3iWoe+65B0lJSSgqKoKVlVW5daytrWFtbW3c4s1YiKcDHgnzwbpj1/DBlnP4dmyE3CURERHpGBxuNm7ciH79+sHS0hIbN26sctmBAwcatE0rKyuEh4cjJiZG1+dGq9UiJiYGL730UoXrdOnSBd9//z20Wi0UitKR7OfPn4eXl1eFwYZqx6QHmuGXE4nY808a9lxIQ9emrnKXREREBKAaHYoVCgWSkpLg7u6uCxUVbrAafW6A0qHgUVFRWLp0KTp27Ij58+fjxx9/xNmzZ+Hh4YGRI0fCx8cH0dHRAICEhAS0bNkSUVFRePnll3HhwgU8/fTTGD9+PP73v/8ZtE+OljKOtzf+jRV/xSPUxxEbX+pS4c1UiYiIjMXoHYq1Wm2FX9+tIUOGIDU1FdOnT0dSUhLCwsKwZcsWXSfjK1eu6IUpX19fbN26FZMmTULr1q3h4+ODCRMm4I033jBaTWSYl+5vgjWHE3DyWia+O3AFQW62CHS1hZejWu7SiIjIjMk+z40ceObGeOb/cR7z/7ig+14hAdGDQzGkA+8eTkRExmXo57fBt1+4XUxMDB566CEEBwcjODgYDz30EP7444+abo4aqIdae+t9rxXAtHWncD0zX6aKiIjI3NUo3Hz22Wfo27cv7O3tMWHCBEyYMAEODg548MEHsWjRImPXSPVYSnZBuTaNEIhPy5OhGiIiomr0ubnVe++9h3nz5umNaBo/fjy6dOmC9957D+PGjTNagVS/BbraQiGVnrEpo5QkBLjayFcUERGZtRqducnIyEDfvn3Ltffu3RuZmZl3XRQ1HF6OakQPDoXiloFSz3QPZKdiIiKSTY3CzcCBA7F+/fpy7T///DMeeuihuy6KGpYhHfywd8r9uD/EDQCw42wqijXGG1FHRERUHQZfllqwYIHu6xYtWmD27NnYuXMnIiMjAQD79+/H3r178corrxi/Sqr3vBzVmPt4GHp+vAvnkrPx5Z44PNcjWO6yiIjIDBk8FDwwMNCwDUoSLl26dFdF1TYOBa89Px5OwOtrT0BtqUTMKz3g7cTLU0REZBxGn8Svvtw4k+q3x9o1xprDCTgUfxMzf/kbS0e0l7skIiIyMzWe54aoIgqFhHcHhcJCIWHr38nYfjb5zisREREZUY2GggPA1atXsXHjRly5cgVFRUV6z3388cd3XRg1XM097TGmayCW7r6E6T//jcggV6itlHdekYiIyAhqFG5iYmIwcOBABAUF4ezZs2jVqhXi4+MhhEC7du2MXSM1QON7NsUvxxNx9WY+Fu34B6/2aS53SUREZCZqdFlq6tSpePXVV3Hy5EmoVCr89NNPSEhIQI8ePfD4448bu0ZqgGytLTB9QEsAwNLdF/FPSo7MFRERkbmoUbg5c+YMRo4cCQCwsLBAfn4+7OzsMGvWLMyZM8eoBVLD1aelB+4PcUexRuCtDadghvdoJSIiGdQo3Nja2ur62Xh5eeHixYu659LS0oxTGTV4kiRh5sCWsLZQYN+lG/g5NlHukoiIyAzUKNx06tQJe/bsAQA8+OCDeOWVVzB79mw8/fTT6NSpk1ELpIbN18UGL9/fBADw7qYzyMwvlrkiIiIydTUKNx9//DEiIiIAADNnzkTPnj2xevVqBAQE4IsvvjBqgdTwPdM9CEFutkjLKcTc38/JXQ4REZk4g2coNiWcobju/fVPGoZ9fgCSBPw8rgtaN3aSuyQiImpgDP38vqtJ/A4fPoxvvvkG33zzDY4cOXI3myIT17mJKx4O84YQwJsbTkGjNbtMTUREdaRG89xcvXoVQ4cOxd69e+Hk5AQAyMjIQOfOnbFq1So0btzYmDWSifhf/3uw/WwKTlzNxPcHLmNEZIDcJRERkQmq0ZmbsWPHori4GGfOnEF6ejrS09Nx5swZaLVajB071tg1kolwt1fhtX8n8/tg6zmkZBfIXBEREZmiGoWbXbt2YfHixWje/L9ZZ5s3b45PP/0Uu3fvNlpxZHqGR/gj1McR2QUleG/TGbnLISIiE1SjcOPr64vi4vJDejUaDby9ve+6KDJdSoWE2Y+0giQBG2IT8ddFzotERETGVaNw8+GHH+Lll1/G4cOHdW2HDx/GhAkT8NFHHxmtODJNrRs74akIfwDAWxtOoahEK3NFRERkSgweCu7s7AxJknTf5+bmoqSkBBYWpX2Sy762tbVFenp67VRrJBwKLr/M/GL0nLsTaTlFeL5HELo3c0Ogqy28HNVyl0ZERPWUoZ/fBo+Wmj9/vjHqIgIAOKot8b/+92DS6uNYsusSluy6BIUERA8OxZAOfnKXR0REDZjB4SYqKqo26yAzFBHoove9VgDT1p1C92ZuPINDREQ1VqN5boDSzsMbNmzAmTOlI15atmyJgQMHQqlUGq04Mm3xN/LKtWmEQHxaHsMNERHVWI3CzT///IMHH3wQ165d0w0Hj46Ohq+vLzZt2oTg4GCjFkmmKdDVFgqp9IxNGYUEBLjayFcUERE1eDUaLTV+/HgEBwcjISEBR48exdGjR3HlyhUEBgZi/Pjxxq6RTJSXoxrRg0Oh+K+fOnydbeBur5KvKCIiavBqdONMW1tb7N+/H6GhoXrtx48fR5cuXZCTk2O0AmsDR0vVL9cz83EoLh1T1p1EXpEGr/VpjnH3NZG7LCIiqmdq9caZ1tbWyM7OLteek5MDKyurmmySzJiXoxoDw3ww6+FWAIB5287j5NVMmasiIqKGqkbh5qGHHsKzzz6LAwcOQAgBIQT279+P559/HgMHDjR2jWQmHm3ngwdDPVGiFZiw+hjyizRyl0RERA1QjcLNggULEBwcjMjISKhUKqhUKnTp0gVNmjTBJ598YuwayUxIkoTZg0Lh4WCNS6m5eG8z7z1FRETVV+0+N0IIJCQkwM3NDdeuXdMNBb/nnnvQpEnD6CfBPjf1258XUjHii4MAgK9GdcB9Ie4yV0RERPWBoZ/f1Q43Wq0WKpUKf//9N5o2bXrXhcqB4ab+m/XLaXy5Nw6udlbYMrE7XO2s5S6JiIhkVmsdihUKBZo2bYobN27cVYFEVXm9b3M087BDWk4Rpvx0EjUY1EdERGaqRn1u3n//fbz22ms4deqUseshAgCoLJWYP6QtrJQK/HEmGasOJchdEhERNRA1mufG2dkZeXl5KCkpgZWVFdRq/anyeVdwMpbluy9h9uYzUFsqsXlCNwS62spdEhERycTodwW/Fe8QTnVlTNdAbD+bgn2XbmDi6lisfT4SlsoanXAkIiIzUaMzNw0dz9w0LIkZ+eg7fzeyCkowoWdTTHqgmdwlERGRDGr1zA1Qelfw9evX64aCt2jRAg8//DAsLGq8SaIKeTup8e4joRj/wzEs3PEPujdzQ7i/s9xlERFRPVWj8/t///03mjVrhqioKKxfvx7r169HVFQUmjZtyk7GVCsGtvHGoDBvaLQCk3+MRU5hidwlERFRPVWjcDN27Fi0bNkSV69e1d0VPCEhAa1bt8azzz5r7BqJAAAzH24FHyc1Lt/Iwzu/nJa7HCIiqqdqFG5iY2MRHR0NZ+f/Lg04Oztj9uzZOHbsmNGKI7qVo9oSc59oA0kCVh9OwJZTSXKXRERE9VCNwk2zZs2QnJxcrj0lJaXB3IKBGqZOQY3wXPdgAMDUdSeQklUgc0VERFTf1CjcREdHY/z48Vi7di2uXr2Kq1evYu3atZg4cSLmzJmDrKws3YPI2CY/0AwtvBxwM68Yr609wdmLiYhIT42GgisU/2UiSZIAQPcBc+v3kiRBo9EYo06j4lDwhu9CcjYe+nQPCku0eKV3M4T7OyPQ1RZejuo7r0xERA1SrQ4F37FjR40LIzKGph72mPbgPZix8W/M/f08AEAhAdGDQzGkg5/M1RERkZw4iR/P3DRYiRl56Py+ftBWShL2TLmPZ3CIiExQrd0VnKi+iL+RV65NIwTi08q3ExGR+WC4oQYr0NUWCkm/TQIQ4GojSz1ERFQ/MNxQg+XlqEb04FAopf8SjgBw8mqmfEUREZHs2OeGfW4avOuZ+YhPy8O6o1ex5shV2FopsWFcFzT1sJe7NCIiMiL2uSGz4eWoRmRwI7w3OBSdglyQW6TBM18fRmZesdylERGRDO4q3MTHx2Pw4ME4d+6cseohqjFLpQKLhrWDj5Ma8TfyMH7VMWi0ZndikojI7N1VuFm5ciU2bNiAL774wlj1EN2VRnbWWDoiHCpLBXadT8WHWxm8iYjMzV2Fm6+//hrDhg3Dt99+C61Wa6yaiO5KKx9HzHm0NQBgya6L+OV4oswVERFRXapxuNm9ezdu3LiBxYsXQ6vVYuvWrcasi+iuPBzmg+d6BAEAXlt7HH8ncgQVEZG5qHG4WblyJR599FHY29vjySefxIoVK2pcxKJFixAQEACVSoWIiAgcPHjQoPVWrVoFSZIwaNCgGu+bTNfrfULQvZkbCoq1ePbrI0jPLZK7JCIiqgM1Cjf5+flYu3YtRo4cCQAYOXIkfvnlF2RmVv+v49WrV2Py5MmYMWMGjh49ijZt2qBPnz5ISUmpcr34+Hi8+uqr6NatW01eApkBpULCp0+2hX8jG1zLyMe4746iWMPLp0REpq5G4eann36Ci4sLevToAQBo164dgoKCsGrVqmpv6+OPP8YzzzyD0aNHo0WLFliyZAlsbGzw5ZdfVrqORqPB8OHDMXPmTAQFBd1xH4WFhcjKytJ7kHlwtLHE8pHtYWulxL5LN/De5jNyl0RERLWsRuHm66+/xvDhw/XannrqqWpfmioqKsKRI0fQq1ev/wpSKNCrVy/s27ev0vVmzZoFd3d3jBkzxqD9REdHw9HRUffw9fWtVp3UsDXzsMfcJ8IAAF/tjcfaI1flLYiIiGpVtcNNQkICtm/fjqioKL32p556CocOHcL58+cN3lZaWho0Gg08PDz02j08PJCUlFThOnv27MEXX3yB5cuXG7yfqVOnIjMzU/dISEgweF0yDX1beWJ8z6YAgGnrTyI2IUPegoiIqNZYVHcFX19flJSUlGtv3Lhxhe3GlJ2djREjRmD58uVwdXU1eD1ra2tYW1vXYmXUEEzs2RSnE7Pwx5lkPP/NEWx8uQvc7VVyl0VEREYm6+0XXF1doVQqkZycrNeenJwMT0/PcstfvHgR8fHxGDBgACwsLGBhYYGvv/4aGzduhIWFBS5evFhXpVMDpFBImDekDZq42yEpqwAvfHsURSXsYExEZGqMGm5yc3Oxe/dug5e3srJCeHg4YmJidG1arRYxMTGIjIwst3xISAhOnjyJ2NhY3WPgwIG47777EBsby740dEf2KkssGxEOe5UFjly+idfWHsdfF9NwPTNf7tKIiMhIqn1Zqir//PMP7rvvPmg0GoPXmTx5MqKiotC+fXt07NgR8+fPR25uLkaPHg2gdJi5j48PoqOjoVKp0KpVK731nZycAKBcO1FlgtzssODJthi94hB+jk3Ez7GJUEhA9OBQDOngJ3d5RER0l4wabmpiyJAhSE1NxfTp05GUlISwsDBs2bJF18n4ypUrUCh483IyrhAve0gAym6rqRXAtHWn0L2ZG7wc1XKWRkREd0kSQhh822QXF5cqn9doNMjJyanWmRs5ZGVlwdHREZmZmXBwcJC7HJLBXxfTMGz5gXLtPzzTCZHBjWSoiIiI7sTQz+9qnbkpLCzECy+8gNDQ0Aqfv3z5MmbOnFm9SolkEOhqC4VUesbmVprbG4iIqMGpVrgJCwuDr69vuTluyhw/fpzhhhoEL0c1ogeHYtq6U9DccvJy8o+xWPt8Z/g1spGxOiIiuhvVCjf9+/dHRkZGpc+7uLjo7jdFVN8N6eCH7s3cEJ+WBxdbS4z/IRbnkrMx4ssDWPN8JOfAISJqoKrV58ZUsM8NVSQlqwCPLvkLCen5CPG0x+rnIuGotpS7LCIi+pehn98chkT0L3cHFb4dEwE3e2ucTcrGmBWHkF9UvzvHExFReQw3RLfwb2SLr5/uCAeVBQ5fvokXvjvCWYyJiBoYgy9LBQYGQpKkau9g4sSJGD9+fLXXq028LEV3cjg+HU99cQAFxVoMbOON+UPCoFBU//1PRETGY/Sh4CtWrKhRIQEBATVaj0hO7QNcsOSpcIxdeRgbjyfCUW2JWQ+3rFHAJyKiusUOxTxzQ1XYeDwRE1YdgxDAy/c3wSu9m8tdEhGR2WKHYiIjGNjGG7MeLr1v2afb/8EXe+JkroiIiO6E4YboDkZ08servZsBAN759TR+OnJV5oqIiKgqDDdEBhh3XxOM6RoIAHj9pxPYdjpZ5oqIiKgyDDdEBpAkCf978B482q4xNFqBcd8fxb6LN+Qui4iIKsBwQ2QghULCnEdD8UALDxSVaPHM14ex42wK/rqYhuuZ+XKXR0RE/+JoKY6WomoqKNZg1FcHsf9Suq5NIQHRg0MxpIOfjJUREZk2jpYiqiUqSyXe+XcEVRmtAKatO8UzOERE9QDDDVENpOYUlmvTCIH4tDwZqiEiolsx3BDVQKCrLSq6G8ONCkIPERHVLYYbohrwclQjenAolLfdjmHymuOIOcNh4kREcmKHYnYoprtwPTMf8Wl58HJU4d1NZ/DHmWRYKCR8PCQMA9t4y10eEZFJYYdiojrg5ahGZHAjBLjaYvFT7TAozBslWoEJq47h+wNX5C6PiMgsMdwQGYmlUoGPnwjD8Ag/CAFMW38SS3ddlLssIiKzw3BDZEQKhYR3B7XC8z2CAQDRv53FR1vPwQyv/hIRyYbhhsjIJEnClH4heL1vcwDAwh3/YOYvp6HVMuAQEdUFhhuiWvLivU3wzsMtAQAr/orHa2tPoESjlbkqIiLTx3BDVItGRAZg3pA2UCok/HT0Kl76/hgKSzRyl0VEZNIYbohq2SNtG2Px8HawUiqw5e8kjF15GHlFJXKXRURkshhuiOpA75ae+Gp0B9hYKfHnhTSM/OIgzidn847iRES1gJP4cRI/qkNHLt/E6K8OIqvgvzM3vKM4EZFhOIkfUT0U7u+MhUPb6bXxjuJERMbFcENUxywsyt9xk3cUJyIyHoYbojpW2R3Fj1xOr/tiiIhMEMMNUR27/Y7iZTnno9/PY9r6kygq4Vw4RER3gx2K2aGYZFJ2R3H/RmpsPH4dc7achRBAx0AXLB7eDo3srOUukYioXmGHYqJ6ruyO4t5ONni+RzC+iGoPO2sLHIxLx8CFe3HmepbcJRIRNUgMN0T1xP0hHtgwrjMCGtngWkY+Hl38F7acui53WUREDQ7DDVE90sTdHhvGdUHXJq7IK9Lg+W+PYv4f53nTTSKiamC4IapnnGyssGJ0BzzdJRAAMP+PCxj3/VHesoGIyEAMN0T1kIVSgekDWuCDR1vDUinht1NJeHTxPly9yblwiIjuhOGGqB57ooMvfnimE1ztrHDmehYGLtyLg3GcD4eIqCoMN0T1XPsAF2x8qSta+TggPbcIw5bvxw8Hr+B6Zj5vvElEVAHOc8N5bqiByC/S4NW1x7HpROkIKgmAAG+8SUTmg/PcEJkYtZUSC4e2xfM9ggCUBhuAN94kIrodww1RAyJJEro3cyvXzhtvEhH9h+GGqIGp7MabX++LR04hh4sTETHcEDUwFd14UwLw26kk9F/wJ45duSlrfUREcmOHYnYopgaq7MabAa42SEjPx6TVsbiWkQ+lQsKkXk3xwr1NoKzoFA8RUQNl6Oc3ww3DDZmIzPxivLnhFH45nggA6BjggnlPhsHHSS1zZURExsHRUkRmxlFtiQVPhmHu421ga6XEwfh09J2/Wxd2iIjMBcMNkQmRJAmPhjfG5gndEObrhOyCErz8wzG88uNxdjYmIrPBcENkgvwb2WLN85EYf38TKCTgp6NX8eAn7GxMROaB4YbIRFkqFZjcuzlWPRsJHyc1rqTn4bEl+/BpzAVcvZnHWzcQkclih2J2KCYzcHtn4zK8dQMRNSTsUExEOmWdjac/dI9ee+mtG07yDA4RmRSGGyIzIUkSQrzK/6WjEcCf59NkqIiIqHYw3BCZkcpu3TB13QnM2XIW+UWaui+KiMjIGG6IzMjtt25QSEALLwdoBLB450X0nr8LO86lyFwlEdHdqRfhZtGiRQgICIBKpUJERAQOHjxY6bLLly9Ht27d4OzsDGdnZ/Tq1avK5YlI35AOftgz5T788Ewn7J1yPzZP6IZlI8Lh7ahCQno+Rn91COO+P4qUrAK5SyUiqhHZw83q1asxefJkzJgxA0ePHkWbNm3Qp08fpKRU/Nfjzp07MXToUOzYsQP79u2Dr68vevfujWvXrtVx5UQNl5ejGpHBjeDlWHprht4tPbFtcg+M7RoIpULCphPX0XPuLny9Lx4ardkNqCSiBk72oeARERHo0KEDFi5cCADQarXw9fXFyy+/jClTptxxfY1GA2dnZyxcuBAjR440aJ8cCk5Uub8TMzFt/SkcT8gAALTxdcJ7j7RCS29HeQsjIrPXIIaCFxUV4ciRI+jVq5euTaFQoFevXti3b59B28jLy0NxcTFcXFwqXaawsBBZWVl6DyKqWEtvR6x7oTNmPdwS9tYWOJ6QgYEL9+LdX08jl7dwIKIGQNZwk5aWBo1GAw8PD712Dw8PJCUlGbSNN954A97e3noB6XbR0dFwdHTUPXx9fe+qbiJTp1RIGBkZgD9e6YH+oV7QaAU+3xOHBz7ehW2nk3E9M58zHBNRvWUhdwF34/3338eqVauwc+dOqFSqSpebOnUqJk+erPs+KyuLAYfIAB4OKiwa3g6PnUvBWxtO4erNfDzz9WHd85zhmIjqI1nP3Li6ukKpVCI5OVmvPTk5GZ6enlWu+9FHH+H999/H77//jtatW1e5rLW1NRwcHPQeRGS4+5q7Y9ukHhjRyV+vXSuAqZzhmIjqGVnDjZWVFcLDwxETE6Nr02q1iImJQWRkZKXrffDBB3jnnXewZcsWtG/fvi5KJTJ7aisl+oWW/6NDK4BFO/5BYQknACSi+kH2oeCTJ0/G8uXLsXLlSpw5cwYvvPACcnNzMXr0aADAyJEjMXXqVN3yc+bMwVtvvYUvv/wSAQEBSEpKQlJSEnJycuR6CURmo7IZjr/dfwU95+7ChmPXoOXQcSKSmezhZsiQIfjoo48wffp0hIWFITY2Flu2bNF1Mr5y5QquX7+uW37x4sUoKirCY489Bi8vL93jo48+kuslEJmNimY4frSdDzwcrHH1Zj4mro7FQ5/uwe7zqTJXSkTmTPZ5buTAeW6I7s71zHzEp+UhwNUGXo5q5Bdp8OXeOCzZeRHZ/w4X79rEFVP6haCVD+fHISLjMPTzm+GG4YbIaNJzi7Boxz/4Zt9lFGm0AICBbbzxau/m8GtkI3N1RNTQMdxUgeGGqHYlpOdh7u/nsCE2EQBgqZQwPMIfL9/fBEUaLeLSchHoaqu7/QMRkSEYbqrAcENUN05dy8ScLWfx54U0AIC1hQJFJVoIcI4cIqq+BnH7BSIyba18HPHNmAh8OyYCzTzsUPhvsAE4Rw4R1R6GGyKqdV2bumLGQy3LtWsF8NHWc8jIK5KhKiIyVQw3RFQngtwrniPnp6PX0Pn97Xj319NIyiyo+8KIyOQw3BBRnahojpxhHf1wj5cD8oo0+HxPHLp9sB1TfjqBuLRcmaslooaMHYrZoZioTt0+R44QAjvPp2Lxjos4GJ8OAJAk4MFWXnjh3mDOk0NEOhwtVQWGG6L66XB8OhbvvIiYsym6tu7N3PDivcGICHSBJFVwXYuIzAbDTRUYbojqtzPXs7Bk10X8cjwRZbeqaufnhBfvbYJ7vOxxOT2P8+QQmSGGmyow3BA1DFdu5GHp7otYc+Qqikq0es9xnhwi88N5boiowfNrZIPZj4Rizxv34alO/nrPaQUw5aeTOBR/Q6bqiKi+YrghonrP3V6FB0M9y7ULAI8v2Y+RXx7E738noUSjLb8yEZkdC7kLICIyRKBr6Tw52goupO8+n4rd51Ph7ajC0I5+GNLRF+72qrovkojqBZ65IaIG4fZ5cpSShDmPhmLXa/fiue5BcLaxRGJmAeZuO4/O0dsx7vuj2HfxBsywWyGR2WOHYnYoJmpQbp8np0xBsQa/nbqOb/ZdxtErGbr2Ju52eCrCD4PDG8NBZYnrmfm8KzlRA8XRUlVguCEybacTs/DtgcvYcOwa8oo0AAC1pRKtfBxw+PJNCMHRVkQNEcNNFRhuiMxDdkEx1h+7hm/3X8b55JxyzyskYO+U+3kGh6iB4FBwIjJ79ipLjIwMwNaJ3TH9oRblntcKYOzKw/jxcAKyCoplqJCIagPP3PDMDZFZuJ6Zjy7vb69wtBUAWFso0KuFBwaF+aBHMzdYWfBvP6L6hpelqsBwQ2SeVh+6gmnrTkEjBJSShFf7NINWAOuPXcM/Kf9dtnKyscRDrb0wKMwH4f7OvKcVUT3BcFMFhhsi81XRaCshBP5OzMKGY9fw8/FEpGYX6pb3dVFjUJgPHg7zga21kiOtiGTEcFMFhhsiqoxGK/DXxTRsOJaILaeuI/ff0Va34kgrInkw3FSB4YaIDJFfpMG2M8lYdfAK/rpY/h5Wo7sE4NF2jdHS24GXrojqgKGf37z9AhFRJdRWSgxs4w1XO6sKw81Xe+Px1d54+Dip8UALD/Ru4YEOgS6wVLIzMpGcGG6IiO6govtaSRLQvakrDsSl41pGPlb8FY8Vf8XDUW2JniHu6N3SA92bucHG6r9fs5wdmahu8LIUL0sRkQFuH2n13uBWGNLBD/lFGuz5Jw3bTifhjzMpSM8t0q1jbaFAt6au6N3CE1kFxXhv8xloOTsyUY2xz00VGG6IqCYqu69VGY1W4Mjlm/j97yT8fjoZV9LzKt2WUgL2cHZkomphuKkCww0R1TYhBM4lZ+P3v5Ox/tg1xKXlllumU5ALBrdtjK5NXeHtxJBDdCcMN1VguCGiunSn2ZEBINjNFt2auqFbU1d0CmoEW2t2iSS6HcNNFRhuiKiu3dpnRyEBz3YPgpWFEn9eSMXxhAy94GOplNDOzxndmrqiW1M3tPJxREp2ATsjk9ljuKkCww0RyaGyPjuZecXYdykNuy+k4c8LqUhIz9dbT22lRP6/kwkqJOC9R0LxZEd2Ribzw3BTBYYbIqrPLt/Ixe4LadhzIRV7LqRVOEty96au6N7MDe0DXNDS24Fz65BZYLipAsMNETUUf15IxYgvDla5jNpSiXb+Tmjv74KOgS5o6+ekN78OwDl2yDRwhmIiIhPQxN2u3ASCCgl4vkcwziVl4/Dlm8jML8bef25g7z+lsygrFRJaeTugQ4AL2ge44NrNPMzmHDtkRnjmhmduiKieq2wCQQDQagUupOTgUHx66SMuHYmZBVVuTyEBO169F/6NbOuifCKj4WWpKjDcEFFDc6cJBG91LSMfh+LScTA+HbvPp+DqzfJhR6kAWng5onVjR7Rp7ITWvo5o4mYHiwr67vCSFtUXDDdVYLghInNhyBw7ZdSWSrTycUCojxPa+DqidWMnHLh0A9PWn+QlLaoXGG6qwHBDRObk9stasx9phS5NXHH8agZOXM3EiasZOHUtCzmFJXfclkICdr12L3xdeEmL6h7DTRUYbojI3NzpspZWK3ApLQfHEzJx8lomjl/NwMmrmSip4JSPhUJCc097hHg64B6v0n9DvOzhamdd6b55WYuMgeGmCgw3RER3diU9Fz0+3AlDPyVc7az/DTv/BZ5jVzIw/edTvKxFRsFwUwWGGyIiw9x+SevdR1qhaxNXnLmehbNJ2TiblIWz17MRdyPXoBAkScBXozqgY6BLubl4iO6E4aYKDDdERIYzZKRWXlEJLiTn4GxSFs5cz8aZ61k4dS2zwtmVy/g4qRHsbodgN1sEu9mVPtxt4WZnDUmSdPvmJS0qw3BTBYYbIqLal5iRh65zdpQbqeWktkRGfnGl69mrLBDsZgelQsLRyzchUHrGZ9bAlhgRGVCrNVP9xnBTBYYbIqK6UdkEhOm5RbiUmoOLqTm4mJqLiyk5+Cc1BwnpeVUOW3extUKQqy38GtnA38UW/o1s/v3aBi62VrozPmV45se0MNxUgeGGiKjuVGcCwoJiDS7fyMPmk9fxScyFau3HztoCfi428HOxgX8jG6RkF2BDbCIEOzObDIabKjDcEBHVbxVNPqiQgM+j2iO3UIMr6Xm4fCMXl2/k4Up6HpKyCgzq0NzS2wEBrrbwcVLDx0kNbyc1vJ1UaOxkAwe1hd6ZH571qX9440wiImqwvBzViB4cWu6S1v0hHhUuX1CswdWbef+Gnjzsv3QDW/9OLrfc34lZ+Dsxq8Jt2Fop4eNcGnjyizQ4GJeu6+/zSu/meLpLQLVGeDEcyYdnbnjmhoio3qrOJa3b16vozM/sQa2QV6zFtZv5SMzIR2JmPq7dzMeN3CKDtmuvsoCHgwqeDiq4O1jD00EFD93DGp6OKrjaWWPd0auYuo63rTA2XpaqAsMNEZHpq+pu6rcrKNbgWkZp4PnzfCqW/Rln1FokABN7NUWQmx1c7azhZm8FVztrOKoty3WCLsMzP+Ux3FSB4YaIyDzU5MxPRWd9lJKELRO7QZIkJGcVIDmrAElZBUjJKkRSZgGSswuQnFmAlOzCCm9ZURlLpYRGttZwtbeCm501XO2s4WpvjYT0PGw6cV13WWxKvxBERQZAZak0+DWYYjBiuKkCww0REVWlOmd9bqXVCpy+noUBC/fodXCWANwX4o6cwhKk5RQiLbsQWQV3vlHp7WyslHC2sUIjOys421jBxbbsX0s421rBxcYKxxIy8Pmfl+7qklh9DUcMN1VguCEiojupaX8fwLBwVFCswY3cIqRlF5YGnpxCpOUU4cTVjAo7Q98Nd3truNhawVFtCScby3//Lf1er01thT8vpOKj38/VOBzVZjBiuKkCww0REdU2Y3aGVkrAbxO7w9pCgfTcItzMK8KNnNJ/03OLcTO3COl5Rbh8Ixfnk3OM/lqCXG3RyM4K9ipL2KssYK+ygIPKUv97tSUOxt3A0l13d9aoKgw3VWC4ISKi+qyml8Wqmh/IQqFAZn4xMvKLkZVfjIy8otLv8/5rS84qwM28ym+NUV1KScKeKfcZ7QwO57khIiJqoIZ08EP3Zm7VPvNT3fmBbldZOJo3JAxWSgWyCoqRXVCCrIISZBcUIyu/9N/sghJczyo9U3UrjRCIT8ur8347DDdERET1kJejukahoKbBqGyfFYWjh8N87rhuZaPMAlxtqv0a7hbDDRERkYmpaTACjH/WSI7RVoo632MFFi1ahICAAKhUKkRERODgwYNVLr9mzRqEhIRApVIhNDQUmzdvrqNKiYiITJ+XoxqRwY2qHUyGdPDDnin34YdnOmHPlPtkm5VZ9nCzevVqTJ48GTNmzMDRo0fRpk0b9OnTBykpKRUu/9dff2Ho0KEYM2YMjh07hkGDBmHQoEE4depUHVdOREREt6tpMDIm2UdLRUREoEOHDli4cCEAQKvVwtfXFy+//DKmTJlSbvkhQ4YgNzcXv/76q66tU6dOCAsLw5IlSyrcR2FhIQoLC3XfZ2VlwdfXl6OliIiIGhBDR0vJeuamqKgIR44cQa9evXRtCoUCvXr1wr59+ypcZ9++fXrLA0CfPn0qXR4AoqOj4ejoqHv4+voa5wUQERFRvSNruElLS4NGo4GHh/4QNQ8PDyQlJVW4TlJSUrWWB4CpU6ciMzNT90hISLj74omIiKheMovRUtbW1rC2tpa7DCIiIqoDsp65cXV1hVKpRHKy/j00kpOT4enpWeE6np6e1VqeiIiIzIus4cbKygrh4eGIiYnRtWm1WsTExCAyMrLCdSIjI/WWB4Bt27ZVujwRERGZF9kvS02ePBlRUVFo3749OnbsiPnz5yM3NxejR48GAIwcORI+Pj6Ijo4GAEyYMAE9evTA3Llz0b9/f6xatQqHDx/GsmXL5HwZREREVE/IHm6GDBmC1NRUTJ8+HUlJSQgLC8OWLVt0nYavXLkCheK/E0ydO3fG999/jzfffBPTpk1D06ZNsWHDBrRq1Uqul0BERET1iOzz3MiBdwUnIiJqeBrEPDdERERExsZwQ0RERCZF9j43cii7EpeVlSVzJURERGSoss/tO/WoMctwk52dDQC8DQMREVEDlJ2dDUdHx0qfN8sOxVqtFomJibC3t4ckSUbbbtkNORMSEthR+Q54rKqHx8twPFaG47EyHI+V4WrzWAkhkJ2dDW9vb72R1LczyzM3CoUCjRs3rrXtOzg48M1vIB6r6uHxMhyPleF4rAzHY2W42jpWVZ2xKcMOxURERGRSGG6IiIjIpDDcGJG1tTVmzJjBO5AbgMeqeni8DMdjZTgeK8PxWBmuPhwrs+xQTERERKaLZ26IiIjIpDDcEBERkUlhuCEiIiKTwnBDREREJoXhxogWLVqEgIAAqFQqRERE4ODBg3KXJLvo6Gh06NAB9vb2cHd3x6BBg3Du3Dm9ZQoKCjBu3Dg0atQIdnZ2ePTRR5GcnCxTxfXH+++/D0mSMHHiRF0bj9V/rl27hqeeegqNGjWCWq1GaGgoDh8+rHteCIHp06fDy8sLarUavXr1woULF2SsWB4ajQZvvfUWAgMDoVarERwcjHfeeUfv3jzmeqx2796NAQMGwNvbG5IkYcOGDXrPG3Jc0tPTMXz4cDg4OMDJyQljxoxBTk5OHb6KulPV8SouLsYbb7yB0NBQ2NrawtvbGyNHjkRiYqLeNurqeDHcGMnq1asxefJkzJgxA0ePHkWbNm3Qp08fpKSkyF2arHbt2oVx48Zh//792LZtG4qLi9G7d2/k5ubqlpk0aRJ++eUXrFmzBrt27UJiYiIGDx4sY9XyO3ToEJYuXYrWrVvrtfNYlbp58ya6dOkCS0tL/Pbbbzh9+jTmzp0LZ2dn3TIffPABFixYgCVLluDAgQOwtbVFnz59UFBQIGPldW/OnDlYvHgxFi5ciDNnzmDOnDn44IMP8Omnn+qWMddjlZubizZt2mDRokUVPm/IcRk+fDj+/vtvbNu2Db/++it2796NZ599tq5eQp2q6njl5eXh6NGjeOutt3D06FGsW7cO586dw8CBA/WWq7PjJcgoOnbsKMaNG6f7XqPRCG9vbxEdHS1jVfVPSkqKACB27dolhBAiIyNDWFpaijVr1uiWOXPmjAAg9u3bJ1eZssrOzhZNmzYV27ZtEz169BATJkwQQvBY3eqNN94QXbt2rfR5rVYrPD09xYcffqhry8jIENbW1uKHH36oixLrjf79+4unn35ar23w4MFi+PDhQggeqzIAxPr163XfG3JcTp8+LQCIQ4cO6Zb57bffhCRJ4tq1a3VWuxxuP14VOXjwoAAgLl++LISo2+PFMzdGUFRUhCNHjqBXr166NoVCgV69emHfvn0yVlb/ZGZmAgBcXFwAAEeOHEFxcbHesQsJCYGfn5/ZHrtx48ahf//+escE4LG61caNG9G+fXs8/vjjcHd3R9u2bbF8+XLd83FxcUhKStI7Vo6OjoiIiDC7Y9W5c2fExMTg/PnzAIDjx49jz5496NevHwAeq8oYclz27dsHJycntG/fXrdMr169oFAocODAgTqvub7JzMyEJElwcnICULfHyyxvnGlsaWlp0Gg08PDw0Gv38PDA2bNnZaqq/tFqtZg4cSK6dOmCVq1aAQCSkpJgZWWle/OX8fDwQFJSkgxVymvVqlU4evQoDh06VO45Hqv/XLp0CYsXL8bkyZMxbdo0HDp0COPHj4eVlRWioqJ0x6Oin0lzO1ZTpkxBVlYWQkJCoFQqodFoMHv2bAwfPhwAeKwqYchxSUpKgru7u97zFhYWcHFxMetjB5T2D3zjjTcwdOhQ3c0z6/J4MdxQnRk3bhxOnTqFPXv2yF1KvZSQkIAJEyZg27ZtUKlUcpdTr2m1WrRv3x7vvfceAKBt27Y4deoUlixZgqioKJmrq19+/PFHfPfdd/j+++/RsmVLxMbGYuLEifD29uaxolpRXFyMJ554AkIILF68WJYaeFnKCFxdXaFUKsuNWklOToanp6dMVdUvL730En799Vfs2LEDjRs31rV7enqiqKgIGRkZesub47E7cuQIUlJS0K5dO1hYWMDCwgK7du3CggULYGFhAQ8PDx6rf3l5eaFFixZ6bffccw+uXLkCALrjwZ9J4LXXXsOUKVPw5JNPIjQ0FCNGjMCkSZMQHR0NgMeqMoYcF09Pz3KDRkpKSpCenm62x64s2Fy+fBnbtm3TnbUB6vZ4MdwYgZWVFcLDwxETE6Nr02q1iImJQWRkpIyVyU8IgZdeegnr16/H9u3bERgYqPd8eHg4LC0t9Y7duXPncOXKFbM7dj179sTJkycRGxure7Rv3x7Dhw/Xfc1jVapLly7lphQ4f/48/P39AQCBgYHw9PTUO1ZZWVk4cOCA2R2rvLw8KBT6v+qVSiW0Wi0AHqvKGHJcIiMjkZGRgSNHjuiW2b59O7RaLSIiIuq8ZrmVBZsLFy7gjz/+QKNGjfSer9PjZdTuyWZs1apVwtraWqxYsUKcPn1aPPvss8LJyUkkJSXJXZqsXnjhBeHo6Ch27twprl+/rnvk5eXplnn++eeFn5+f2L59uzh8+LCIjIwUkZGRMlZdf9w6WkoIHqsyBw8eFBYWFmL27NniwoUL4rvvvhM2Njbi22+/1S3z/vvvCycnJ/Hzzz+LEydOiIcfflgEBgaK/Px8GSuve1FRUcLHx0f8+uuvIi4uTqxbt064urqK119/XbeMuR6r7OxscezYMXHs2DEBQHz88cfi2LFjutE9hhyXvn37irZt24oDBw6IPXv2iKZNm4qhQ4fK9ZJqVVXHq6ioSAwcOFA0btxYxMbG6v2+Lyws1G2jro4Xw40Rffrpp8LPz09YWVmJjh07iv3798tdkuwAVPj46quvdMvk5+eLF198UTg7OwsbGxvxyCOPiOvXr8tXdD1ye7jhsfrPL7/8Ilq1aiWsra1FSEiIWLZsmd7zWq1WvPXWW8LDw0NYW1uLnj17inPnzslUrXyysrLEhAkThJ+fn1CpVCIoKEj873//0/vAMddjtWPHjgp/P0VFRQkhDDsuN27cEEOHDhV2dnbCwcFBjB49WmRnZ8vwampfVccrLi6u0t/3O3bs0G2jro6XJMQt01QSERERNXDsc0NEREQmheGGiIiITArDDREREZkUhhsiIiIyKQw3REREZFIYboiIiMikMNwQERGRSWG4ISIiIpPCcENEdW7UqFEYNGhQne93xYoVkCQJkiRh4sSJRttuQECAbru339iUiOqehdwFEJFpkSSpyudnzJiBTz75BHJNju7g4IBz587B1tbWaNs8dOgQ/vzzTzz66KNG2yYR1RzDDREZ1fXr13Vfr169GtOnT9e7g7ednR3s7OzkKA1Aafjy9PQ06jbd3Nzg4uJi1G0SUc3xshQRGZWnp6fu4ejoqAsTZQ87O7tyl6XuvfdevPzyy5g4cSKcnZ3h4eGB5cuXIzc3F6NHj4a9vT2aNGmC3377TW9fp06dQr9+/WBnZwcPDw+MGDECaWlp1a5ZkiRs2LBBr83JyQkrVqwAABQVFeGll16Cl5cXVCoV/P39ER0dXe39EFHdYLghonph5cqVcHV1xcGDB/Hyyy/jhRdewOOPP47OnTvj6NGj6N27N0aMGIG8vDwAQEZGBu6//360bdsWhw8fxpYtW5CcnIwnnnjC6LUtWLAAGzduxI8//ohz587hu+++Q0BAgNH3Q0TGwctSRFQvtGnTBm+++SYAYOrUqXj//ffh6uqKZ555BgAwffp0LF68GCdOnECnTp2wcOFCtG3bFu+9955uG19++SV8fX1x/vx5NGvWzGi1XblyBU2bNkXXrl0hSRL8/f2Ntm0iMj6euSGieqF169a6r5VKJRo1aoTQ0FBdm4eHBwAgJSUFAHD8+HHs2LFD14fHzs4OISEhAICLFy8atbZRo0YhNjYWzZs3x/jx4/H7778bdftEZFw8c0NE9YKlpaXe95Ik6bWVjcLSarUAgJycHAwYMABz5swpty0vL6+7rkej0ei+bteuHeLi4vDbb7/hjz/+wBNPPIFevXph7dq1d70fIjI+hhsiapDatWuHn376CQEBAbCwuPtfZcnJybqvU1NTkZOTo/e8g4MDhgwZgiFDhuCxxx5D3759kZ6ezlFSRPUQL0sRUYM0btw4pKenY+jQoTh06BAuXryIrVu3YvTo0XpnXQw1b9487N+/H2fOnMELL7wAADh37hxu3LiBjz/+GD/88APOnj2L8+fPY82aNfD09ISTk5ORXxURGQPDDRE1SN7e3ti7dy80Gg169+6N0NBQTJw4EU5OTlAoqv+rrW/fvnjyySfRvn17NG7cGOPGjcOiRYtw6tQp2Nvb44MPPkD79u3RoUMHxMfHY/PmzTXaDxHVPknINU0oEVEdW7FiBSZOnFjuFgmSJGH9+vV3dUuInTt34r777sPNmzd5RodIZvyzg4jMSmZmJuzs7PDGG28YbZstW7ZEv379jLY9Iro77FBMRGbj0UcfRdeuXQHAqGdXNm/ejOLiYgClHY+JSF68LEVEREQmhZeliIiIyKQw3BAREZFJYbghIiIik8JwQ0RERCaF4YaIiIhMCsMNERERmRSGGyIiIjIpDDdERERkUv4PJuxRB+BUlhsAAAAASUVORK5CYII=\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - examples_11_0.png" } }, "output_type": "display_data" } ], "source": [ "# parameters of our qubit model\n", "tau = 30e-6\n", "ground = -0.2 + 0.65j # ground state on the IQ-plane\n", "excited = 0.7 - 0.4j # excited state on the IQ-plane\n", "centers = ground, excited\n", "sigmas = [0.1] * 2 # sigma, NB in general not the same for both state\n", "\n", "# mock of data acquisition configuration\n", "# NB usually at least 1000+ shots are taken, here we use less for faster code execution\n", "num_shots = 256\n", "# time delays between exciting the qubit and measuring its state\n", "t1_times = np.linspace(0, 120e-6, 30)\n", "\n", "# NB this are the ideal probabilities from repeating the measurement many times for a\n", "# qubit with a lifetime given by tau\n", "probabilities = exp_decay_func(t=t1_times, tau=tau, offset=0, n_factor=1, amplitude=1)\n", "\n", "# Ideal experiment result\n", "plt.ylabel(\"|1> probability\")\n", "plt.suptitle(\"Typical processed data of a T1 experiment\")\n", "plt.plot(t1_times * 1e6, probabilities, \".-\")\n", "_ = plt.xlabel(\"Time [µs]\")" ] }, { "cell_type": "code", "execution_count": 13, "id": "ad5453e6", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:34.602426Z", "iopub.status.busy": "2023-09-26T17:43:34.602217Z", "iopub.status.idle": "2023-09-26T17:43:34.605398Z", "shell.execute_reply": "2023-09-26T17:43:34.604947Z" } }, "outputs": [], "source": [ "# convenience dict with the mock parameters\n", "mock_conf = dict(\n", " num_shots=num_shots,\n", " centers=centers,\n", " sigmas=sigmas,\n", " t1_times=t1_times,\n", " probabilities=probabilities,\n", ")" ] }, { "cell_type": "code", "execution_count": 14, "id": "cf7d9ab5", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:34.607559Z", "iopub.status.busy": "2023-09-26T17:43:34.607356Z", "iopub.status.idle": "2023-09-26T17:43:34.624611Z", "shell.execute_reply": "2023-09-26T17:43:34.624050Z" } }, "outputs": [ { "data": { "text/html": [ "
def mk_t1_av_dataset(\n",
       "    t1_times: Optional[np.ndarray] = None,\n",
       "    probabilities: Optional[np.ndarray] = None,\n",
       "    **kwargs,\n",
       ") -> xr.Dataset:\n",
       "    """\n",
       "    Generates a dataset with mock data of a T1 experiment for a single qubit.\n",
       "\n",
       "    Parameters\n",
       "    ----------\n",
       "    t1_times\n",
       "        Array with the T1 times corresponding to each probability in ``probabilities``.\n",
       "    probabilities\n",
       "        The probabilities of finding the qubit in the excited state.\n",
       "    **kwargs\n",
       "        Keyword arguments passed to\n",
       "        :func:`~quantify_core.utilities.examples_support.mk_iq_shots`.\n",
       "    """\n",
       "    if t1_times is None:\n",
       "        t1_times = np.linspace(0, 120e-6, 30)\n",
       "\n",
       "    if probabilities is None:\n",
       "        probabilities = exp_decay_func(\n",
       "            t=t1_times, tau=50e-6, offset=0, n_factor=1, amplitude=1\n",
       "        )\n",
       "\n",
       "    q0_iq_av = mk_shots_from_probabilities(probabilities, **kwargs).mean(axis=0)\n",
       "\n",
       "    main_dims = ("main_dim",)\n",
       "    q0_attrs = mk_main_var_attrs(unit="V", long_name="Q0 IQ amplitude")\n",
       "    t1_time_attrs = mk_main_coord_attrs(unit="s", long_name="T1 Time")\n",
       "\n",
       "    data_vars = dict(q0_iq_av=(main_dims, q0_iq_av, q0_attrs))\n",
       "    coords = dict(t1_time=(main_dims, t1_times, t1_time_attrs))\n",
       "\n",
       "    dataset = xr.Dataset(\n",
       "        data_vars=data_vars,\n",
       "        coords=coords,\n",
       "        attrs=mk_dataset_attrs(),\n",
       "    )\n",
       "    return dataset\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k}{def} \\PY{n+nf}{mk\\PYZus{}t1\\PYZus{}av\\PYZus{}dataset}\\PY{p}{(}\n", " \\PY{n}{t1\\PYZus{}times}\\PY{p}{:} \\PY{n}{Optional}\\PY{p}{[}\\PY{n}{np}\\PY{o}{.}\\PY{n}{ndarray}\\PY{p}{]} \\PY{o}{=} \\PY{k+kc}{None}\\PY{p}{,}\n", " \\PY{n}{probabilities}\\PY{p}{:} \\PY{n}{Optional}\\PY{p}{[}\\PY{n}{np}\\PY{o}{.}\\PY{n}{ndarray}\\PY{p}{]} \\PY{o}{=} \\PY{k+kc}{None}\\PY{p}{,}\n", " \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{,}\n", "\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{xr}\\PY{o}{.}\\PY{n}{Dataset}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Generates a dataset with mock data of a T1 experiment for a single qubit.}\n", "\n", "\\PY{l+s+sd}{ Parameters}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ t1\\PYZus{}times}\n", "\\PY{l+s+sd}{ Array with the T1 times corresponding to each probability in ``probabilities``.}\n", "\\PY{l+s+sd}{ probabilities}\n", "\\PY{l+s+sd}{ The probabilities of finding the qubit in the excited state.}\n", "\\PY{l+s+sd}{ **kwargs}\n", "\\PY{l+s+sd}{ Keyword arguments passed to}\n", "\\PY{l+s+sd}{ :func:`\\PYZti{}quantify\\PYZus{}core.utilities.examples\\PYZus{}support.mk\\PYZus{}iq\\PYZus{}shots`.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", " \\PY{k}{if} \\PY{n}{t1\\PYZus{}times} \\PY{o+ow}{is} \\PY{k+kc}{None}\\PY{p}{:}\n", " \\PY{n}{t1\\PYZus{}times} \\PY{o}{=} \\PY{n}{np}\\PY{o}{.}\\PY{n}{linspace}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{,} \\PY{l+m+mf}{120e\\PYZhy{}6}\\PY{p}{,} \\PY{l+m+mi}{30}\\PY{p}{)}\n", "\n", " \\PY{k}{if} \\PY{n}{probabilities} \\PY{o+ow}{is} \\PY{k+kc}{None}\\PY{p}{:}\n", " \\PY{n}{probabilities} \\PY{o}{=} \\PY{n}{exp\\PYZus{}decay\\PYZus{}func}\\PY{p}{(}\n", " \\PY{n}{t}\\PY{o}{=}\\PY{n}{t1\\PYZus{}times}\\PY{p}{,} \\PY{n}{tau}\\PY{o}{=}\\PY{l+m+mf}{50e\\PYZhy{}6}\\PY{p}{,} \\PY{n}{offset}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{,} \\PY{n}{n\\PYZus{}factor}\\PY{o}{=}\\PY{l+m+mi}{1}\\PY{p}{,} \\PY{n}{amplitude}\\PY{o}{=}\\PY{l+m+mi}{1}\n", " \\PY{p}{)}\n", "\n", " \\PY{n}{q0\\PYZus{}iq\\PYZus{}av} \\PY{o}{=} \\PY{n}{mk\\PYZus{}shots\\PYZus{}from\\PYZus{}probabilities}\\PY{p}{(}\\PY{n}{probabilities}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)}\\PY{o}{.}\\PY{n}{mean}\\PY{p}{(}\\PY{n}{axis}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{)}\n", "\n", " \\PY{n}{main\\PYZus{}dims} \\PY{o}{=} \\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{main\\PYZus{}dim}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\\PY{p}{)}\n", " \\PY{n}{q0\\PYZus{}attrs} \\PY{o}{=} \\PY{n}{mk\\PYZus{}main\\PYZus{}var\\PYZus{}attrs}\\PY{p}{(}\\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{V}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{long\\PYZus{}name}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Q0 IQ amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", " \\PY{n}{t1\\PYZus{}time\\PYZus{}attrs} \\PY{o}{=} \\PY{n}{mk\\PYZus{}main\\PYZus{}coord\\PYZus{}attrs}\\PY{p}{(}\\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{s}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{long\\PYZus{}name}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{T1 Time}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", "\n", " \\PY{n}{data\\PYZus{}vars} \\PY{o}{=} \\PY{n+nb}{dict}\\PY{p}{(}\\PY{n}{q0\\PYZus{}iq\\PYZus{}av}\\PY{o}{=}\\PY{p}{(}\\PY{n}{main\\PYZus{}dims}\\PY{p}{,} \\PY{n}{q0\\PYZus{}iq\\PYZus{}av}\\PY{p}{,} \\PY{n}{q0\\PYZus{}attrs}\\PY{p}{)}\\PY{p}{)}\n", " \\PY{n}{coords} \\PY{o}{=} \\PY{n+nb}{dict}\\PY{p}{(}\\PY{n}{t1\\PYZus{}time}\\PY{o}{=}\\PY{p}{(}\\PY{n}{main\\PYZus{}dims}\\PY{p}{,} \\PY{n}{t1\\PYZus{}times}\\PY{p}{,} \\PY{n}{t1\\PYZus{}time\\PYZus{}attrs}\\PY{p}{)}\\PY{p}{)}\n", "\n", " \\PY{n}{dataset} \\PY{o}{=} \\PY{n}{xr}\\PY{o}{.}\\PY{n}{Dataset}\\PY{p}{(}\n", " \\PY{n}{data\\PYZus{}vars}\\PY{o}{=}\\PY{n}{data\\PYZus{}vars}\\PY{p}{,}\n", " \\PY{n}{coords}\\PY{o}{=}\\PY{n}{coords}\\PY{p}{,}\n", " \\PY{n}{attrs}\\PY{o}{=}\\PY{n}{mk\\PYZus{}dataset\\PYZus{}attrs}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,}\n", " \\PY{p}{)}\n", " \\PY{k}{return} \\PY{n}{dataset}\n", "\\end{Verbatim}\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display_source_code(dataset_examples.mk_t1_av_dataset)" ] }, { "cell_type": "code", "execution_count": 15, "id": "416a70ef", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:34.626919Z", "iopub.status.busy": "2023-09-26T17:43:34.626718Z", "iopub.status.idle": "2023-09-26T17:43:34.668491Z", "shell.execute_reply": "2023-09-26T17:43:34.667905Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:   (main_dim: 30)\n",
       "Coordinates:\n",
       "    t1_time   (main_dim) float64 0.0 4.138e-06 8.276e-06 ... 0.0001159 0.00012\n",
       "Dimensions without coordinates: main_dim\n",
       "Data variables:\n",
       "    q0_iq_av  (main_dim) complex128 (-0.19894114958423859+0.6515500138845804j...\n",
       "Attributes:\n",
       "    tuid:                      20230926-194334-633-ce41ca\n",
       "    dataset_name:              \n",
       "    dataset_state:             None\n",
       "    timestamp_start:           None\n",
       "    timestamp_end:             None\n",
       "    quantify_dataset_version:  2.0.0\n",
       "    software_versions:         {}\n",
       "    relationships:             []\n",
       "    json_serialize_exclude:    []
" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset = dataset_examples.mk_t1_av_dataset(**mock_conf)\n", "assert dataset == round_trip_dataset(dataset) # confirm read/write\n", "\n", "dataset" ] }, { "cell_type": "code", "execution_count": 16, "id": "8c28c82a", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:34.670857Z", "iopub.status.busy": "2023-09-26T17:43:34.670649Z", "iopub.status.idle": "2023-09-26T17:43:34.679285Z", "shell.execute_reply": "2023-09-26T17:43:34.678664Z" } }, "outputs": [ { "data": { "text/html": [ "
((30,), dtype('complex128'))\n",
       "
\n" ], "text/plain": [ "\u001b[1m(\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m30\u001b[0m,\u001b[1m)\u001b[0m, \u001b[1;35mdtype\u001b[0m\u001b[1m(\u001b[0m\u001b[32m'complex128'\u001b[0m\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dataset.q0_iq_av.shape, dataset.q0_iq_av.dtype" ] }, { "cell_type": "code", "execution_count": 17, "id": "01272ba3", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:34.681517Z", "iopub.status.busy": "2023-09-26T17:43:34.681304Z", "iopub.status.idle": "2023-09-26T17:43:34.693991Z", "shell.execute_reply": "2023-09-26T17:43:34.693411Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:   (t1_time: 30)\n",
       "Coordinates:\n",
       "  * t1_time   (t1_time) float64 0.0 4.138e-06 8.276e-06 ... 0.0001159 0.00012\n",
       "Data variables:\n",
       "    q0_iq_av  (t1_time) complex128 (-0.19894114958423859+0.6515500138845804j)...\n",
       "Attributes:\n",
       "    tuid:                      20230926-194334-633-ce41ca\n",
       "    dataset_name:              \n",
       "    dataset_state:             None\n",
       "    timestamp_start:           None\n",
       "    timestamp_end:             None\n",
       "    quantify_dataset_version:  2.0.0\n",
       "    software_versions:         {}\n",
       "    relationships:             []\n",
       "    json_serialize_exclude:    []
" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset_gridded = dh.to_gridded_dataset(\n", " dataset,\n", " dimension=\"main_dim\",\n", " coords_names=dattrs.get_main_coords(dataset),\n", ")\n", "dataset_gridded" ] }, { "cell_type": "code", "execution_count": 18, "id": "b20c1523", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:34.696212Z", "iopub.status.busy": "2023-09-26T17:43:34.696011Z", "iopub.status.idle": "2023-09-26T17:43:34.734116Z", "shell.execute_reply": "2023-09-26T17:43:34.733475Z" } }, "outputs": [ { "data": { "text/html": [ "
def plot_xr_complex(\n",
       "    var: xr.DataArray,\n",
       "    marker_scatter: str = "o",\n",
       "    label_real: str = "Real",\n",
       "    label_imag: str = "Imag",\n",
       "    cmap: str = "viridis",\n",
       "    c: np.ndarray = None,\n",
       "    kwargs_line: dict = None,\n",
       "    kwargs_scatter: dict = None,\n",
       "    title: str = "{} [{}]; shape = {}",\n",
       "    legend: bool = True,\n",
       "    ax: object = None,\n",
       ") -> Tuple[Figure, Axes]:\n",
       "    """Plots the real and imaginary parts of complex data. Points are colored by default\n",
       "    according to their order in the array.\n",
       "\n",
       "    Parameters\n",
       "    ----------\n",
       "    var\n",
       "        1D array of complex data.\n",
       "    marker_scatter\n",
       "        Marker used for the scatter plot.\n",
       "    label_real\n",
       "        Label for legend.\n",
       "    label_imag\n",
       "        Label for legend.\n",
       "    cmap\n",
       "        The colormap to use for coloring the points.\n",
       "    c\n",
       "        Color of the points. Defaults to an array of integers.\n",
       "    kwargs_line\n",
       "        Keyword arguments passed to :meth:`matplotlib.axes.Axes.plot`.\n",
       "    kwargs_scatter\n",
       "        Keyword arguments passed to :meth:`matplotlib.axes.Axes.scatter`.\n",
       "    title\n",
       "        Axes title. By default gets formatted with ``var.long_name``, ``var.name`` and\n",
       "        var.shape``.\n",
       "    legend\n",
       "        Calls :meth:`~matplotlib.axes.Axes.legend` if ``True``.\n",
       "    ax\n",
       "        The matplotlib axes. If ``None`` a new axes (and figure) is created.\n",
       "    """\n",
       "\n",
       "    if ax is None:\n",
       "        _, ax = plt.subplots()\n",
       "\n",
       "    if c is None:\n",
       "        c = np.arange(len(var))\n",
       "\n",
       "    if kwargs_line is None:\n",
       "        kwargs_line = {}\n",
       "\n",
       "    if kwargs_scatter is None:\n",
       "        kwargs_scatter = {}\n",
       "\n",
       "    if "marker" not in kwargs_line:\n",
       "        kwargs_line["marker"] = ""\n",
       "\n",
       "    var.real.plot(ax=ax, label=label_real, **kwargs_line)\n",
       "    var.imag.plot(ax=ax, label=label_imag, **kwargs_line)\n",
       "\n",
       "    for vals in (var.real, var.imag):\n",
       "        ax.scatter(\n",
       "            next(iter(var.coords.values())).values,\n",
       "            vals,\n",
       "            marker=marker_scatter,\n",
       "            c=c,\n",
       "            cmap=cmap,\n",
       "            **kwargs_scatter,\n",
       "        )\n",
       "\n",
       "    ax.set_title(title.format(var.long_name, var.name, var.shape))\n",
       "\n",
       "    if legend:\n",
       "        ax.legend()\n",
       "\n",
       "    return ax.get_figure(), ax\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k}{def} \\PY{n+nf}{plot\\PYZus{}xr\\PYZus{}complex}\\PY{p}{(}\n", " \\PY{n}{var}\\PY{p}{:} \\PY{n}{xr}\\PY{o}{.}\\PY{n}{DataArray}\\PY{p}{,}\n", " \\PY{n}{marker\\PYZus{}scatter}\\PY{p}{:} \\PY{n+nb}{str} \\PY{o}{=} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{o}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{label\\PYZus{}real}\\PY{p}{:} \\PY{n+nb}{str} \\PY{o}{=} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Real}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{label\\PYZus{}imag}\\PY{p}{:} \\PY{n+nb}{str} \\PY{o}{=} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Imag}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{cmap}\\PY{p}{:} \\PY{n+nb}{str} \\PY{o}{=} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{viridis}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{c}\\PY{p}{:} \\PY{n}{np}\\PY{o}{.}\\PY{n}{ndarray} \\PY{o}{=} \\PY{k+kc}{None}\\PY{p}{,}\n", " \\PY{n}{kwargs\\PYZus{}line}\\PY{p}{:} \\PY{n+nb}{dict} \\PY{o}{=} \\PY{k+kc}{None}\\PY{p}{,}\n", " \\PY{n}{kwargs\\PYZus{}scatter}\\PY{p}{:} \\PY{n+nb}{dict} \\PY{o}{=} \\PY{k+kc}{None}\\PY{p}{,}\n", " \\PY{n}{title}\\PY{p}{:} \\PY{n+nb}{str} \\PY{o}{=} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+si}{\\PYZob{}\\PYZcb{}}\\PY{l+s+s2}{ [}\\PY{l+s+si}{\\PYZob{}\\PYZcb{}}\\PY{l+s+s2}{]; shape = }\\PY{l+s+si}{\\PYZob{}\\PYZcb{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{legend}\\PY{p}{:} \\PY{n+nb}{bool} \\PY{o}{=} \\PY{k+kc}{True}\\PY{p}{,}\n", " \\PY{n}{ax}\\PY{p}{:} \\PY{n+nb}{object} \\PY{o}{=} \\PY{k+kc}{None}\\PY{p}{,}\n", "\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{Tuple}\\PY{p}{[}\\PY{n}{Figure}\\PY{p}{,} \\PY{n}{Axes}\\PY{p}{]}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}Plots the real and imaginary parts of complex data. Points are colored by default}\n", "\\PY{l+s+sd}{ according to their order in the array.}\n", "\n", "\\PY{l+s+sd}{ Parameters}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ var}\n", "\\PY{l+s+sd}{ 1D array of complex data.}\n", "\\PY{l+s+sd}{ marker\\PYZus{}scatter}\n", "\\PY{l+s+sd}{ Marker used for the scatter plot.}\n", "\\PY{l+s+sd}{ label\\PYZus{}real}\n", "\\PY{l+s+sd}{ Label for legend.}\n", "\\PY{l+s+sd}{ label\\PYZus{}imag}\n", "\\PY{l+s+sd}{ Label for legend.}\n", "\\PY{l+s+sd}{ cmap}\n", "\\PY{l+s+sd}{ The colormap to use for coloring the points.}\n", "\\PY{l+s+sd}{ c}\n", "\\PY{l+s+sd}{ Color of the points. Defaults to an array of integers.}\n", "\\PY{l+s+sd}{ kwargs\\PYZus{}line}\n", "\\PY{l+s+sd}{ Keyword arguments passed to :meth:`matplotlib.axes.Axes.plot`.}\n", "\\PY{l+s+sd}{ kwargs\\PYZus{}scatter}\n", "\\PY{l+s+sd}{ Keyword arguments passed to :meth:`matplotlib.axes.Axes.scatter`.}\n", "\\PY{l+s+sd}{ title}\n", "\\PY{l+s+sd}{ Axes title. By default gets formatted with ``var.long\\PYZus{}name``, ``var.name`` and}\n", "\\PY{l+s+sd}{ var.shape``.}\n", "\\PY{l+s+sd}{ legend}\n", "\\PY{l+s+sd}{ Calls :meth:`\\PYZti{}matplotlib.axes.Axes.legend` if ``True``.}\n", "\\PY{l+s+sd}{ ax}\n", "\\PY{l+s+sd}{ The matplotlib axes. If ``None`` a new axes (and figure) is created.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\n", " \\PY{k}{if} \\PY{n}{ax} \\PY{o+ow}{is} \\PY{k+kc}{None}\\PY{p}{:}\n", " \\PY{n}{\\PYZus{}}\\PY{p}{,} \\PY{n}{ax} \\PY{o}{=} \\PY{n}{plt}\\PY{o}{.}\\PY{n}{subplots}\\PY{p}{(}\\PY{p}{)}\n", "\n", " \\PY{k}{if} \\PY{n}{c} \\PY{o+ow}{is} \\PY{k+kc}{None}\\PY{p}{:}\n", " \\PY{n}{c} \\PY{o}{=} \\PY{n}{np}\\PY{o}{.}\\PY{n}{arange}\\PY{p}{(}\\PY{n+nb}{len}\\PY{p}{(}\\PY{n}{var}\\PY{p}{)}\\PY{p}{)}\n", "\n", " \\PY{k}{if} \\PY{n}{kwargs\\PYZus{}line} \\PY{o+ow}{is} \\PY{k+kc}{None}\\PY{p}{:}\n", " \\PY{n}{kwargs\\PYZus{}line} \\PY{o}{=} \\PY{p}{\\PYZob{}}\\PY{p}{\\PYZcb{}}\n", "\n", " \\PY{k}{if} \\PY{n}{kwargs\\PYZus{}scatter} \\PY{o+ow}{is} \\PY{k+kc}{None}\\PY{p}{:}\n", " \\PY{n}{kwargs\\PYZus{}scatter} \\PY{o}{=} \\PY{p}{\\PYZob{}}\\PY{p}{\\PYZcb{}}\n", "\n", " \\PY{k}{if} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{marker}\\PY{l+s+s2}{\\PYZdq{}} \\PY{o+ow}{not} \\PY{o+ow}{in} \\PY{n}{kwargs\\PYZus{}line}\\PY{p}{:}\n", " \\PY{n}{kwargs\\PYZus{}line}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{marker}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]} \\PY{o}{=} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{\\PYZdq{}}\n", "\n", " \\PY{n}{var}\\PY{o}{.}\\PY{n}{real}\\PY{o}{.}\\PY{n}{plot}\\PY{p}{(}\\PY{n}{ax}\\PY{o}{=}\\PY{n}{ax}\\PY{p}{,} \\PY{n}{label}\\PY{o}{=}\\PY{n}{label\\PYZus{}real}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs\\PYZus{}line}\\PY{p}{)}\n", " \\PY{n}{var}\\PY{o}{.}\\PY{n}{imag}\\PY{o}{.}\\PY{n}{plot}\\PY{p}{(}\\PY{n}{ax}\\PY{o}{=}\\PY{n}{ax}\\PY{p}{,} \\PY{n}{label}\\PY{o}{=}\\PY{n}{label\\PYZus{}imag}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs\\PYZus{}line}\\PY{p}{)}\n", "\n", " \\PY{k}{for} \\PY{n}{vals} \\PY{o+ow}{in} \\PY{p}{(}\\PY{n}{var}\\PY{o}{.}\\PY{n}{real}\\PY{p}{,} \\PY{n}{var}\\PY{o}{.}\\PY{n}{imag}\\PY{p}{)}\\PY{p}{:}\n", " \\PY{n}{ax}\\PY{o}{.}\\PY{n}{scatter}\\PY{p}{(}\n", " \\PY{n+nb}{next}\\PY{p}{(}\\PY{n+nb}{iter}\\PY{p}{(}\\PY{n}{var}\\PY{o}{.}\\PY{n}{coords}\\PY{o}{.}\\PY{n}{values}\\PY{p}{(}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{o}{.}\\PY{n}{values}\\PY{p}{,}\n", " \\PY{n}{vals}\\PY{p}{,}\n", " \\PY{n}{marker}\\PY{o}{=}\\PY{n}{marker\\PYZus{}scatter}\\PY{p}{,}\n", " \\PY{n}{c}\\PY{o}{=}\\PY{n}{c}\\PY{p}{,}\n", " \\PY{n}{cmap}\\PY{o}{=}\\PY{n}{cmap}\\PY{p}{,}\n", " \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs\\PYZus{}scatter}\\PY{p}{,}\n", " \\PY{p}{)}\n", "\n", " \\PY{n}{ax}\\PY{o}{.}\\PY{n}{set\\PYZus{}title}\\PY{p}{(}\\PY{n}{title}\\PY{o}{.}\\PY{n}{format}\\PY{p}{(}\\PY{n}{var}\\PY{o}{.}\\PY{n}{long\\PYZus{}name}\\PY{p}{,} \\PY{n}{var}\\PY{o}{.}\\PY{n}{name}\\PY{p}{,} \\PY{n}{var}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{)}\\PY{p}{)}\n", "\n", " \\PY{k}{if} \\PY{n}{legend}\\PY{p}{:}\n", " \\PY{n}{ax}\\PY{o}{.}\\PY{n}{legend}\\PY{p}{(}\\PY{p}{)}\n", "\n", " \\PY{k}{return} \\PY{n}{ax}\\PY{o}{.}\\PY{n}{get\\PYZus{}figure}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{ax}\n", "\\end{Verbatim}\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
def plot_xr_complex_on_plane(\n",
       "    var: xr.DataArray,\n",
       "    marker: str = "o",\n",
       "    label: str = "Data on imaginary plane",\n",
       "    cmap: str = "viridis",\n",
       "    c: np.ndarray = None,\n",
       "    xlabel: str = "Real{}{}{}",\n",
       "    ylabel: str = "Imag{}{}{}",\n",
       "    legend: bool = True,\n",
       "    ax: object = None,\n",
       "    **kwargs,\n",
       ") -> Tuple[Figure, Axes]:\n",
       "    """Plots complex data on the imaginary plane. Points are colored by default\n",
       "    according to their order in the array.\n",
       "\n",
       "\n",
       "    Parameters\n",
       "    ----------\n",
       "    var\n",
       "        1D array of complex data.\n",
       "    marker\n",
       "        Marker used for the scatter plot.\n",
       "    label\n",
       "        Data label for the legend.\n",
       "    cmap\n",
       "        The colormap to use for coloring the points.\n",
       "    c\n",
       "        Color of the points. Defaults to an array of integers.\n",
       "    xlabel\n",
       "        Label o x axes.\n",
       "    ylabel\n",
       "        Label o y axes.\n",
       "    legend\n",
       "        Calls :meth:`~matplotlib.axes.Axes.legend` if ``True``.\n",
       "    ax\n",
       "        The matplotlib axes. If ``None`` a new axes (and figure) is created.\n",
       "    """\n",
       "\n",
       "    if ax is None:\n",
       "        _, ax = plt.subplots()\n",
       "\n",
       "    if c is None:\n",
       "        c = np.arange(0, len(var))\n",
       "\n",
       "    ax.scatter(var.real, var.imag, marker=marker, label=label, c=c, cmap=cmap, **kwargs)\n",
       "\n",
       "    unit_str = get_unit_from_attrs(var)\n",
       "    ax.set_xlabel(xlabel.format(" ", var.name, unit_str))\n",
       "    ax.set_ylabel(ylabel.format(" ", var.name, unit_str))\n",
       "\n",
       "    if legend:\n",
       "        ax.legend()\n",
       "\n",
       "    return ax.get_figure(), ax\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k}{def} \\PY{n+nf}{plot\\PYZus{}xr\\PYZus{}complex\\PYZus{}on\\PYZus{}plane}\\PY{p}{(}\n", " \\PY{n}{var}\\PY{p}{:} \\PY{n}{xr}\\PY{o}{.}\\PY{n}{DataArray}\\PY{p}{,}\n", " \\PY{n}{marker}\\PY{p}{:} \\PY{n+nb}{str} \\PY{o}{=} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{o}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{label}\\PY{p}{:} \\PY{n+nb}{str} \\PY{o}{=} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Data on imaginary plane}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{cmap}\\PY{p}{:} \\PY{n+nb}{str} \\PY{o}{=} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{viridis}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{c}\\PY{p}{:} \\PY{n}{np}\\PY{o}{.}\\PY{n}{ndarray} \\PY{o}{=} \\PY{k+kc}{None}\\PY{p}{,}\n", " \\PY{n}{xlabel}\\PY{p}{:} \\PY{n+nb}{str} \\PY{o}{=} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Real}\\PY{l+s+si}{\\PYZob{}\\PYZcb{}}\\PY{l+s+si}{\\PYZob{}\\PYZcb{}}\\PY{l+s+si}{\\PYZob{}\\PYZcb{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{ylabel}\\PY{p}{:} \\PY{n+nb}{str} \\PY{o}{=} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Imag}\\PY{l+s+si}{\\PYZob{}\\PYZcb{}}\\PY{l+s+si}{\\PYZob{}\\PYZcb{}}\\PY{l+s+si}{\\PYZob{}\\PYZcb{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{legend}\\PY{p}{:} \\PY{n+nb}{bool} \\PY{o}{=} \\PY{k+kc}{True}\\PY{p}{,}\n", " \\PY{n}{ax}\\PY{p}{:} \\PY{n+nb}{object} \\PY{o}{=} \\PY{k+kc}{None}\\PY{p}{,}\n", " \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{,}\n", "\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{Tuple}\\PY{p}{[}\\PY{n}{Figure}\\PY{p}{,} \\PY{n}{Axes}\\PY{p}{]}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}Plots complex data on the imaginary plane. Points are colored by default}\n", "\\PY{l+s+sd}{ according to their order in the array.}\n", "\n", "\n", "\\PY{l+s+sd}{ Parameters}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ var}\n", "\\PY{l+s+sd}{ 1D array of complex data.}\n", "\\PY{l+s+sd}{ marker}\n", "\\PY{l+s+sd}{ Marker used for the scatter plot.}\n", "\\PY{l+s+sd}{ label}\n", "\\PY{l+s+sd}{ Data label for the legend.}\n", "\\PY{l+s+sd}{ cmap}\n", "\\PY{l+s+sd}{ The colormap to use for coloring the points.}\n", "\\PY{l+s+sd}{ c}\n", "\\PY{l+s+sd}{ Color of the points. Defaults to an array of integers.}\n", "\\PY{l+s+sd}{ xlabel}\n", "\\PY{l+s+sd}{ Label o x axes.}\n", "\\PY{l+s+sd}{ ylabel}\n", "\\PY{l+s+sd}{ Label o y axes.}\n", "\\PY{l+s+sd}{ legend}\n", "\\PY{l+s+sd}{ Calls :meth:`\\PYZti{}matplotlib.axes.Axes.legend` if ``True``.}\n", "\\PY{l+s+sd}{ ax}\n", "\\PY{l+s+sd}{ The matplotlib axes. If ``None`` a new axes (and figure) is created.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\n", " \\PY{k}{if} \\PY{n}{ax} \\PY{o+ow}{is} \\PY{k+kc}{None}\\PY{p}{:}\n", " \\PY{n}{\\PYZus{}}\\PY{p}{,} \\PY{n}{ax} \\PY{o}{=} \\PY{n}{plt}\\PY{o}{.}\\PY{n}{subplots}\\PY{p}{(}\\PY{p}{)}\n", "\n", " \\PY{k}{if} \\PY{n}{c} \\PY{o+ow}{is} \\PY{k+kc}{None}\\PY{p}{:}\n", " \\PY{n}{c} \\PY{o}{=} \\PY{n}{np}\\PY{o}{.}\\PY{n}{arange}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{,} \\PY{n+nb}{len}\\PY{p}{(}\\PY{n}{var}\\PY{p}{)}\\PY{p}{)}\n", "\n", " \\PY{n}{ax}\\PY{o}{.}\\PY{n}{scatter}\\PY{p}{(}\\PY{n}{var}\\PY{o}{.}\\PY{n}{real}\\PY{p}{,} \\PY{n}{var}\\PY{o}{.}\\PY{n}{imag}\\PY{p}{,} \\PY{n}{marker}\\PY{o}{=}\\PY{n}{marker}\\PY{p}{,} \\PY{n}{label}\\PY{o}{=}\\PY{n}{label}\\PY{p}{,} \\PY{n}{c}\\PY{o}{=}\\PY{n}{c}\\PY{p}{,} \\PY{n}{cmap}\\PY{o}{=}\\PY{n}{cmap}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)}\n", "\n", " \\PY{n}{unit\\PYZus{}str} \\PY{o}{=} \\PY{n}{get\\PYZus{}unit\\PYZus{}from\\PYZus{}attrs}\\PY{p}{(}\\PY{n}{var}\\PY{p}{)}\n", " \\PY{n}{ax}\\PY{o}{.}\\PY{n}{set\\PYZus{}xlabel}\\PY{p}{(}\\PY{n}{xlabel}\\PY{o}{.}\\PY{n}{format}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{ }\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{var}\\PY{o}{.}\\PY{n}{name}\\PY{p}{,} \\PY{n}{unit\\PYZus{}str}\\PY{p}{)}\\PY{p}{)}\n", " \\PY{n}{ax}\\PY{o}{.}\\PY{n}{set\\PYZus{}ylabel}\\PY{p}{(}\\PY{n}{ylabel}\\PY{o}{.}\\PY{n}{format}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{ }\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{var}\\PY{o}{.}\\PY{n}{name}\\PY{p}{,} \\PY{n}{unit\\PYZus{}str}\\PY{p}{)}\\PY{p}{)}\n", "\n", " \\PY{k}{if} \\PY{n}{legend}\\PY{p}{:}\n", " \\PY{n}{ax}\\PY{o}{.}\\PY{n}{legend}\\PY{p}{(}\\PY{p}{)}\n", "\n", " \\PY{k}{return} \\PY{n}{ax}\\PY{o}{.}\\PY{n}{get\\PYZus{}figure}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{ax}\n", "\\end{Verbatim}\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display_source_code(plot_xr_complex)\n", "display_source_code(plot_xr_complex_on_plane)" ] }, { "cell_type": "code", "execution_count": 19, "id": "734a8da8", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:34.736369Z", "iopub.status.busy": "2023-09-26T17:43:34.736160Z", "iopub.status.idle": "2023-09-26T17:43:35.091133Z", "shell.execute_reply": "2023-09-26T17:43:35.090442Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACwtklEQVR4nOzdd3RU1drH8e+Zmt5IL/TeIaFXBQTBgqiggCDCVa8IKnpVbNjRFwuKvQuIIFKsoIiggvTeWxJaSEhIb9POef8YCIQkkECSSXk+a2UxOfU3yZB5Zp999lY0TdMQQgghhBAFdK4OIIQQQghR1UiBJIQQQghxESmQhBBCCCEuIgWSEEIIIcRFpEASQgghhLiIFEhCCCGEEBeRAkkIIYQQ4iJSIAkhhBBCXEQKJCGEEEKIi0iBJEQ1cffdd1O/fv1CyxRF4fnnn6+U8z///PMoilJux7v77rtRFAVFUWjdunW5HfdKlffzq0jp6ekFPztFUXjjjTcq7Fz169fnhhtuqLDjVyfHjx/Hzc2NtWvXVvq59+7di8FgYPfu3ZV+7tpKCiRRrvbs2cPo0aOJiIjAbDYTHh7O6NGj2bt3b7HbWywWnnjiCcLDw3F3d6dLly6sWLGiVOe6++678fLyKrJc0zTmzJlD79698fPzw8PDgzZt2vDyyy+Tm5t7Vc+vqvv33395/vnnSU9Pd3WUUgkMDGTOnDm89tprV3yMq3kNVVeenp7MmTOHt99+29VRapUXX3yRLl260KNHj4JlS5YsYeDAgYSHh2M2m4mMjOS2224rsZD58ccf6dixI25ubtStW5dp06Zht9sve+6WLVsyZMgQnnvuuXJ7PuLSpEAS5Wbx4sV07NiRlStXMm7cOD744APGjx/Pn3/+SceOHfnhhx+K7HP33Xfz1ltvMWrUKN555x30ej2DBw9mzZo1V5TB4XBwxx13MGbMGMDZKjBz5kzat2/PtGnT6Nq1K6dPn76q51mV5OXl8cwzzxR8/++///LCCy9UmwLJ09OT0aNHX1ULRXm9hp555hny8vKuOEdlMhqNjB49mqFDh7o6Sq2RnJzM119/zf33319o+a5du/D39+ehhx7igw8+4L///S/btm2jc+fO7Nixo9C2y5YtY+jQofj5+TFr1iyGDh3Kyy+/zKRJk0qV4f7772fJkiUcOXKk3J6XuARNiHJw+PBhzcPDQ2vevLl2+vTpQuuSk5O15s2ba15eXlpsbGzB8g0bNmiANmPGjIJleXl5WqNGjbRu3bpd9pxjx47VPD09Cy179dVXNUB77LHHimz/448/ajqdThs8eHBZn16VMHbsWK1evXqX3GbGjBkaoMXFxZX7+adNm6aV55+M0jyfy7na11B1FxcXV+T5l7d69eppQ4YMqbDjVxdvvfWW5u7urmVlZV1228TERM1gMGj33XdfoeUtW7bU2rVrp9lstoJlTz/9tKYoirZv377LHtdqtWr+/v7as88+W/YnIMpMWpBEuZgxYwa5ubl88sknBAUFFVoXGBjIxx9/THZ2NjNmzChY/v3336PX67n33nsLlrm5uTF+/HjWrVvH8ePHy5QhLy+PGTNm0LRpU6ZPn15k/Y033sjYsWP59ddf2bhx4yWPtXPnTu6++24aNmyIm5sboaGh3HPPPZw5c6bQduf6rRw8eJDRo0fj6+tLUFAQzz77LJqmcfz4cW6++WZ8fHwIDQ3lzTffLLT/6tWrURSFBQsW8NRTTxEaGoqnpyc33XRTqZ7/hX2Qnn/+ef73v/8B0KBBg4L+KfHx8cTHx6MoCl999dUlj3HOmjVr6NSpE25ubjRq1IiPP/64xAxz584lOjoad3d3AgICuOOOO8r8u7uYxWLhkUceISgoCG9vb2666SZOnDhRJGt5voaK64NU2hyl8cYbb9C9e3fq1KmDu7s70dHRfP/994W2ad26Nddcc02RfVVVJSIigttuu+2y57HZbOzfv59Tp05ddtvExETGjRtHZGQkZrOZsLAwbr75ZuLj44tsu2bNGjp37oybmxsNGzZk9uzZhdanpqby2GOP0aZNG7y8vPDx8eH6668v0opS1tf8hg0bGDRoEL6+vnh4eNCnTx+X9AFaunQpXbp0Kfay/sWCg4Px8PAo1JK7d+9e9u7dy7333ovBYChY/sADD6BpWpHXQnGMRiN9+/YttjVelD8pkES5+Omnn6hfvz69evUqdn3v3r2pX78+P/30U8Gybdu20bRpU3x8fApt27lzZwC2b99epgxr1qwhLS2NkSNHFvoDdKFzl94uzFGcFStWEBsby7hx45g1axZ33HEH8+fPZ/DgwWiaVmT7ESNGoKoqr732Gl26dOHll19m5syZDBgwgIiICF5//XUaN27MY489xt9//11k/1deeYVffvmFJ554gsmTJ7NixQr69+9fpks+w4YN48477wTg7bffZs6cOcyZM6dIwXo5u3bt4rrrruP06dM8//zzjBs3jmnTprFkyZJic48ZM4YmTZrw1ltv8fDDD7Ny5Up69+59VZf5JkyYwMyZM7nuuut47bXXMBqNDBkypMh25f0autIcpfHOO+/QoUMHXnzxRV599VUMBgO33347v/zyS8E2I0aM4O+//yYxMbHQvmvWrCEhIYE77rjjsuc5efIkLVq0YOrUqZfd9tZbb2XJkiUFl8QnT55MVlYWx44dK7Td4cOHue222xgwYABvvvkm/v7+3H333ezZs6dgm9jYWJYuXcoNN9zAW2+9xf/+9z927dpFnz59SEhIKHLu0rzm//zzT3r37k1mZibTpk3j1VdfJT09nWuvvfayH3IAUlJSSvVlsVgueRybzcamTZvo2LFjidukp6eTnJzMrl27mDBhApmZmfTr169g/bZt2wCIiYkptF94eDiRkZEF6y8nOjqa3bt3k5mZWartxVVwcQuWqAHS09M1QLv55psvud1NN92kAVpmZqamaZrWqlUr7dprry2y3Z49ezRA++ijjy55vIsvsc2cOVMDtCVLlpS4T2pqqgZow4YNu+Sxc3Nziyz79ttvNUD7+++/C5adu+x07733Fiyz2+1aZGSkpiiK9tprrxUsT0tL09zd3bWxY8cWLFu1apUGaBEREQU/F03TtO+++04DtHfeeafQ8734khSgTZs2reD7ki6xnbsU8+WXXxZ5XhcfY+jQoZqbm5t29OjRgmV79+7V9Hp9oUts8fHxml6v11555ZVCx9u1a5dmMBiKLL9YSZfYtm/frgHaAw88UGj5yJEji2S92tfQhS6+hFiWHKVx8WvKarVqrVu3LpT/wIEDGqDNmjWr0LYPPPCA5uXlVeQYxV1iO7fswtdZcdLS0kp1ea5evXpFXvenT5/WzGaz9uijjxYsy8/P1xwOR5F8ZrNZe/HFFwuWlfY1r6qq1qRJE23gwIGaqqoF2+Xm5moNGjTQBgwYcMncmuZ8bZfmq7j/Fxc6fPhwsb+XCzVr1qzgeF5eXtozzzxT6Odx7v/msWPHiuzbqVMnrWvXrpd9PpqmafPmzdMAbcOGDaXaXlw5aUESVy0rKwsAb2/vS253bv257fPy8jCbzUW2c3NzK1hf3jkuzlASd3f3gsf5+fmkpKTQtWtXALZu3Vpk+wkTJhQ81uv1xMTEoGka48ePL1ju5+dHs2bNiI2NLbL/mDFjCuW+7bbbCAsL49dff71kzvLmcDj47bffGDp0KHXr1i1Y3qJFCwYOHFho28WLF6OqKsOHDy/0aTw0NJQmTZqwatWqK8pw7jlPnjy50PKHH364yLbl/Rq60hylceFrKi0tjYyMDHr16lXo9dS0aVPat2/PggULCpY5HA6+//57brzxxkLHKEn9+vXRNK3Yy6kX5zGZTKxevZq0tLRLbtuyZctCrcNBQUFFXstmsxmdTleQ+cyZM3h5edGsWbNi/89c7jW/fft2Dh06xMiRIzlz5kzB6ysnJ4d+/frx999/o6rqJXOvWLGiVF8Xv7Yvdu7Sur+/f4nbfPnllyxfvpwPPviAFi1akJeXh8PhKFh/7rVY0uu1tK/VcxlSUlJKtb24csVfhxCiDEpbdGRlZaEoCoGBgYDzD3RxTdv5+fkF68s7x7l1wcHBlzxWamoqL7zwAvPnzy9y11tGRkaR7S8sJgB8fX1xc3MreK4XLr+4HxNAkyZNCn2vKAqNGzcuti9IRUpOTiYvL69IHoBmzZoVKtgOHTqEpmnFbgvO/hJX4ujRo+h0Oho1alTk/Bcr79fQleYojZ9//pmXX36Z7du3F8p8cb+nESNG8NRTT3Hy5EkiIiJYvXo1p0+fZsSIEVd03pKYzWZef/11Hn30UUJCQujatSs33HADY8aMITQ0tNC2F7++wflGfWFhpaoq77zzDh988AFxcXGFioM6deoU2f9yr/lDhw4BMHbs2BKfQ0ZGxiWLlv79+5e47kpoxVxeP6dbt24Fj++44w5atGgBUDBG1bnXYkmv19K+Vs9lqC5jdlVnUiCJq+br60t4eDg7d+685HY7d+4kMjISk8kEQFhYGCdPniyy3bnOpeHh4WXK0bJly4LzlHT787mMDRs2vOSxhg8fzr///sv//vc/2rdvj5eXF6qqMmjQoGI/ter1+lItg0v/ka0oJf0xvfBNrKxUVUVRFJYtW1bscy1NZ9arVd6voYryzz//cNNNN9G7d28++OADwsLCMBqNfPnll8ybN6/QtiNGjGDq1KksXLiQhx9+mO+++w5fX18GDRpU7rkefvhhbrzxRpYuXcpvv/3Gs88+y/Tp0/nzzz/p0KFDwXaleS2/+uqrPPvss9xzzz289NJLBAQEoNPpePjhhy/b0lOcc/vMmDGD9u3bF7vN5V5jF/flKomvr+8lC5RzBd7lWtrO8ff359prr+Wbb74pKJDCwsIA52szKiqq0PanTp0q6Dd3OecyXPzhS5Q/KZBEubjxxhv5+OOPWbNmDT179iyy/p9//iE+Pp4pU6YULGvfvj2rVq0iMzOzUCfbDRs2FKwvix49euDn58e8efN4+umni/2jfu7Om9tvv73E46SlpbFy5UpeeOGFQoOynftEWxEuPramaRw+fJi2bduW6TglFULnPmVf3HH66NGjhb4PCgrC3d292Od64MCBQt83atQITdNo0KABTZs2LVPOS6lXrx6qqnLkyJFCrTUXnx/K/zV0pTkuZ9GiRbi5ufHbb78VusTy5ZdfFtm2QYMGdO7cmQULFvDggw+yePFihg4dWuylmfLQqFEjHn30UR599FEOHTpE+/btefPNN5k7d26ZjvP9999zzTXX8Pnnnxdanp6eXuyb+eVe8+da7nx8fK64JehcUXI5X375JXfffXeJ6+vWrYu7uztxcXGlPndeXl6h1uZzr8XNmzcXKoYSEhI4ceJEoTsxLyUuLg6dTleu/+dE8aQPkigXjz32GB4eHtx3331FLiGlpqZy//334+Pjw4MPPliw/LbbbsPhcPDJJ58ULLNYLHz55Zd06dKlyKesy/Hw8ODxxx/nwIEDPP3000XW//LLL3z11VfceOONtGnTpsTjnCusLm7pmTlzZpnylMXs2bMLXRr8/vvvOXXqFNdff32ZjuPp6QkULYR8fHwIDAwscgfdBx98UOh7vV7PwIEDWbp0aaE7mfbt28dvv/1WaNthw4ah1+t54YUXivysNE0r9lJiaZx7zu+++26h5cX9/Mv7NXSlOS5Hr9ejKEqhFrv4+HiWLl1a7PYjRoxg/fr1fPHFF6SkpJT75TWA3NzcgkuR5zRq1Ahvb+/L3tVVHL1eX+R1sHDhwmJb+ODyr/no6GgaNWrEG2+8QXZ2dpH9k5OTL5upvPogGY1GYmJi2Lx5c5F1xQ08Gx8fz8qVKwvdsdaqVSuaN2/OJ598Uuh18OGHH6IoSqmGcADYsmULrVq1wtfXt1TbiysnLUiiXDRu3JjZs2dz55130qZNG8aPH0+DBg2Ij4/n888/Jy0tjfnz59OgQYOCfbp06cLtt9/O1KlTOX36NI0bN+brr78u2OdKPP7442zfvp3XX3+ddevWceutt+Lu7s6aNWuYO3curVq1umznVR8fH3r37s3//d//YbPZiIiI4Pfffy/Tp8eyCggIoGfPnowbN46kpCRmzpxJ48aN+c9//lOm40RHRwPw9NNPc8cdd2A0Grnxxhvx9PRkwoQJvPbaa0yYMIGYmBj+/vtvDh48WOQYL7zwAsuXL6dXr1488MAD2O12Zs2aRatWrQpdRm3UqBEvv/wyU6dOJT4+nqFDh+Lt7U1cXBxLlizh3nvv5bHHHivzz6J9+/bceeedfPDBB2RkZNC9e3dWrlzJ4cOHi2xbEa+hK8lxOUOGDOGtt95i0KBBjBw5ktOnT/P+++/TuHHjYi9NDx8+nMcee4zHHnuMgICAMrWgxMfH06BBA8aOHXvJ1/rBgwfp168fw4cPp2XLlhgMBpYsWUJSUlKphhO42A033MCLL77IuHHj6N69O7t27eKbb74p8XL25V7zOp2Ozz77jOuvv55WrVoxbtw4IiIiOHnyJKtWrcLHx+eyw3WUZx+km2++maeffrpIa2WbNm3o168f7du3x9/fn0OHDvH5559js9mKTKEzY8YMbrrpJq677jruuOMOdu/ezXvvvceECRMK+ixByb9Dm83GX3/9xQMPPFBuz0tcgitunRM1165du7SRI0dqoaGhmk6n0wDNzc1N27NnT7Hb5+XlaY899pgWGhqqmc1mrVOnTtry5ctLda7iRtLWNOftwV999ZXWo0cPzdvbu+DW2/79+2sWi6VUxz5x4oR2yy23aH5+fpqvr692++23awkJCUVu7z53a3hycnKpsvXp00dr1apVwffnbnn+9ttvtalTp2rBwcGau7u7NmTIkEK32Z875uVu89c0TXvppZe0iIiIgp//uVv+c3NztfHjx2u+vr6at7e3Nnz4cO306dPFHuOvv/7SoqOjNZPJpDVs2FD76KOPShxJe9GiRVrPnj01T09PzdPTU2vevLk2ceJE7cCBAyX8dEt+Pufk5eVpkydP1urUqaN5enpqN954o3b8+PFis17Na+hCxT2/suS4nM8//1xr0qSJZjabtebNm2tffvnlJUcn79GjhwZoEyZMKPGYxd3mv2vXLg3QnnzyyUvmSUlJ0SZOnKg1b95c8/T01Hx9fbUuXbpo3333XaHtShpJu0+fPlqfPn0Kvs/Pz9ceffRRLSwsTHN3d9d69OihrVu3rsh2ZXnNa5qmbdu2TRs2bJhWp04dzWw2a/Xq1dOGDx+urVy58pLPr7wlJSVpBoNBmzNnTqHl06ZN02JiYjR/f3/NYDBo4eHh2h133KHt3Lmz2OMsWbJEa9++vWY2m7XIyEjtmWee0axWa6FtSvodLlu2TAO0Q4cOle+TE8WSAklUqK+//lpTFEW76667XJbBarVqAwcO1AwGg7Zs2TKX5SjOuTeLhQsXujpKpRs7dqwWFRWlJScna2lpaaXa50oKk4rg6hyqqmrJycna1q1bixRI77//vubp6aklJia6LN+lVOfX/D333KP17Nmzws9T0u/w5ptv1oYOHVrh5xdOcolNVKgxY8Zw6tQpnnzySSIjI3n11VcrPYPRaGTRokX07duX22+/nb/++uuSI+KKynP8+HGCgoJo1apVibOfi6IyMjJKHCF91apVTJ48mZCQkEpOVfNNmzaNpk2bsnbtWnr06FFh5ynud7hv3z5+/vnnqx4dXpSeFEiiwj3xxBM88cQTLs3g6enJpk2bXJpBFPb4448zevRooGKHBMjIyLjsIHwXj/tTWg6H47Kdhb28vMr9+Xl5ebFixYqC7y+8o2nhwoXlei5xXt26dYt0bK8Ixf0OW7Rogd1ur/Bzi/OkQBJCuETLli0Lxq6qSA899BBff/31JbfRrnBsquPHjxe68aA406ZNK/PEtpdjMBjKfRBEIURhinalfxmEEKIa2Lt3b7GTpV7oSouN/Px81qxZc8ltGjZseNmBSYUQVY8USEIIIYQQF5GBIoUQQgghLiJ9kC5DVVUSEhLw9vaWyQGFEEKIakLTNLKysggPD0enK3t7kBRIl5GQkHBV0xUIIYQQwnWOHz9OZGRkmfeTAukyvL29AecP+MLh5YUQQghRdWVmZhIVFVXwPl5WUiBdxrnLaj4+PlIgCSGEENXMlXaPkU7aQgghhBAXkQJJCCGEEOIiUiAJIYQQQlxECiQhhBBCiItIgSSEEEIIcREpkIQQQgghLiIFkhBCCCHERaRAEkIIIYS4iBRIQgghhBAXkZG0hRBCCFEmmmbDkreYvJyvcdhjURQvzB7DcPe8G70+/PL724+h5c6G/GWg5YOhKYrHaHC7HkWpGm03UiAJIYQQtZTFFkd2/l9o2HA3tcXD1PmyU3NomoWM1LuxWf7GeSFKRdOyyMv+iPycOfgFLsRgbF3y/taNaKkTABvgcC60bUPL2AKWP8D3DRRFX15P8YpJgSSEEELUMg41ixOpj5CZtxxQzn6pmA1NqFvnQ9xMzUvcNzfrXWyWNWe/Uy88KpqWQ8aZewgIWVdskaNpeWhpDwDWi/Y9+zj/VzB2BM+7rubplQspkIQQQohaRNNU4pPHkmvdcm7J2S+w2GOJPX0rjUNXYDIUvVSmaVbycr7iXEFjd+hJy/PCrl5YDOWRwUpM5p5F989bBtl6wLfQ8joe2bgZbM5tcr8Gj9FXPMlseZECSQghhLhKufYMch1peOj98TD4Xn6HC6iag2zbSTQ0vI0R6JTSvTWrmp3TOb9zImshefbjmHR1CPceSpjXTRh0niXul52/mlzrxhLWOrCr2cQlf4leP5nTWRaSL/hKykwh4czdnMn15UyOD+n53iUcxwasKma5G/BckaVf3/IRveodADRwHAMtE5Sy/RzLmxRILqBpGvF7jpOTkUt4oxACQv1dHUkIIcQVOJ1/hH9Of0lczqazSxQaenWmV9DdBLk1vOS+mqayL30+e9PmkedIAcCs96O573BaB4y5ZKHkUPPZlvRf0vLXc64fUD4JZJ7ZxbGMr4kJm43ZEFzsvum5S8mxeHI8LYSjqWEcTw0nMTOQ9Fwf0nJ9SMv1xeYwAn+XcPaWhb7TKw4MOkfhTRQDxZcYdtAcnGuxKthc0S7azvV9kBRN0y5OJS6QmZmJr68vGRkZ+Pj4XPXx/lq4jq+e/ZYTB08BoCgKXW+M5v43xxLeKPSqjy+EEKJynMrbz4Kj/8Oh2dEu6E+joEOvGLmj3puEujcpdl9N0/g36WVis34pZq1CpGdP+oS9hq6EzsoHzkznWOZcCvfjObe3Hj+3aGLCviYr38bh09kcSsrmYFIWB09nsy8hnuTskluYzvFxMxDkbSbY240gb/PZLxMe6msEuMdTxyOTQM8MfNxy0F1U4PjWWYzJ3KXo887/DS190iXOqgNDC3SBSy6b73Ku9v1bWpAq0a+freTtez9y9oU7S9M0Nvyyld1r9vP+ptcIaxDiuoBCCFEL5diz2JL2J0dzDqBTdDTyakMHv96Y9e4l7qNpGssT3ipSHAFoqDg0G7+fepsxDT8odv/EvE0lFEfOI5zI+Ydj2X9S33tAkbV2NYcTWd9xrjjSNMi3mUlMDyYhNZSEtBAS0kJJyfyNxAx7Mcd3FkcBnmnUDThF3YAEIvyS8PfIwN8jkwCPDIK8vWlbd22x6fJyepCdsayE7HoMxpYYTZ2LX23uB/oIcCRScAdbISqK539KOHblkgKpkuRk5vL+Q184v7mozU51qORm5vL5U/N45ttHKj+cEEJUc8dzj7MxdT059mzqmAPpXqcn/qbLd184kLmVOUffwKHZ0HB+ft2VsZ7fE79lXINniPJoXOx+ifkHOGM9CoDFaiItI4DMLB807fwn4P2AlrwVH1PRS1370teSmt8W7YI3BIeqw2ozYbWbsNlMrGY/weYQcq0OciwO8mx2cq0OsvOzSM9/mHyb+ez2RrRix312FkfB3maahnjTJMSLpiHe1AtIQmEkXua8En4qOkJ87y3xZ+bmcTd222Hyc7/CeSnMwbnLfDp9XXwCviixg7WiGMD/c7TUMaCexvkT1wqOo3hNQnEfXOK5K5NcYruM8rrE9uunf/D2/R8XFEdRdXK4udMxPvmjKVa7swlVb9CxMOlzvP29yiO6EELUeDbVxhdxn7IpbSM6dCiKgqo5W1aGRgxjSNiNJe6bnH+SmYcexVFcnxh0mHVu/K/5+3gavNE0jaRMC4dPZ3MkOZuNJ/azPSGetIwAcvMuf7mqMvh6ZBLun0i4fxLh/kl0rT+Ing2G4ethLLLtidQnScuZW8xR9JgNjWkU8gN63aXfi2zWzeTlfIPDfghF54ub+82Y3W9EUUpueTtHU7Mh/ye0/N9AywVDcxSPO1CMLS+7b2nJJbZq4lTcaQwGPXabAwWNl+/cSnhAHkdTPPlpc10AHHaVlJOpUiAJIUQpfXNsDpvTnB2kVdRCdc6Sk4vwNvjQO6hPsfv+e2YZmqZy4U6qqpCd7U1mph9ZGX7cu3U12VkBxJ7OJsty8eWqqIJHnh7Z+Hqno9cXvmwU4tYEd33RN+cz+XuxqlmFlul0DkwGm/PLaMXL7E67wFtxN+nxMBnwMOnxMOkxG23sT52IyZCNyWDFbLTiZrRgNloLHa9bxFS8TEWLI4AI/1cxG6JIzvoIh5oGgIIRX49hhPs/e9niCMBoisFoirnsdsVRdF7gcSeKx51XtH9lkAKpkvgEeKE6zl4vRmHR+npMGryf27vF88uWSFTN2TzqHSDFkRBClEaqNZW1Kf8Uukx1IVVVWHhkGWFqBzLz7aTn2pxfeTYycq38cTKP7PyeWK1mrBYzVquZ3FxPVPXijtHpAOh1CvUCPGgY5EXDIDeOqrPx8UnE3zcNk8la5PxuOi/ubzIBg85UZN2B9ONsTP6EIn0uzlLQ0TZgAm3rFN/JO/RMV45lfsOlOml7mZoWuy+AougI8plIHe//kG/djYYNN2Mz9Dq/EvepbaRAqiS9b+/Gp0+cb878bXsEd/U5Qph/Pn1aJvHXvnBa9WhOYHiAC1MKIUT1sSN9OxoamgYZZ+qQdCKS9JQgbFYTNqsJh93ZevIT/5RwhOJvw9fr7fj4ZODjk05EHR2jW9xK42Av6tXxwGw4XzxtPBPD36c/LzFft6BRxRZHAA19rmdP2hxy7SloF3VWVtBj0nvTxHdoicdu7D+FLOtB0vI3cK7/z7k7gNwNkbQJmlHivhfSKSY8zB1LtW1tIwVSJQmpF8QN9w/g549WoGkaFrueJRvrMe6aw4zoGcdf+8MZ++IIV8cUQgiXUDWVXRkHic0+jkFnINq/FeHuxY/jA+BQNXYfy+fg9g4knYjAkl9SvxcNbzc9AZ5u+Lkb8fUw4etuxM/dSLxlAznKcYymfEwmCyaTBXePXDw9s1EU0KGjc50BDI4IK/bInQJux6bmsz5lPqCioEfDgYKOboGj6Oh/S4n5jTpPBkR+yOqEx0i3xqKcHfdHw4GnMZRrwt7A3VDyB2a9zo2OoZ+dHSjyuwsGirzlsgNFitKRTtqXUZ7jIDnsDj569Gt+/OA3NFXDx9PO7Imr8TA72Nf4VVqMnlhOqYUQovqIzT7OjAOfkZifgg6ds1UIjS4B7Zjc5C48DM7ix6FqbIxLZdnuUyzbnUhylqXgGHqDjaDwkwSFJ+DmkYvRZMVosmIyOniz/Ux8jEX/fu/P3MpX8a9eMtvDTd4k1L3eJbfJsaexP3M1OfZUvAx1aO7TFw+DX6meu6ZpJOVtJTFvC5qmEuLenjCPzlVmRvvq7Grfv6VAuozyHigSIDUxjbVLN5GTkUsvrx+JSF4E9XrCuJLGxBBCiOohz2HB4rDhZXDHoLv8aMiJ+SlM2T4di8Pq7GR9AR06mno1ZIjnaJbtSuS3PYmkZJ/v6+PjZsA/7Bj+4bEEBCeh0xfdv4N/NP9tVPyHT03T+DnhK9ae+QUFXcF4Rjp0qKgMCRtLr6CS74ITVZvcxVYNBYT6c+P91zm/yegE7/wIR9fA8Y0QVcLgWkIIUYXtTo9nTvwfbDyzHw3wMrhzY0RXRtW/Fi9Dybd9/3DyjyLFkaYqZJ0JID0hjB2JIXx7wbxhvu5GrmsZwuC2YfRoFEh83iHeOrgRVSvcXVmHDh+jL3dEjSzx3IqicEP43dTzbMaalJ85nnsI51QhrekddBNNvdtf+Q9EVHvSgnQZFdGCVMTSibB9LjQbAnfOq5hzCCHEJdhUBz8c38L8o+s5mpOCWWdgQFhr7mrQk4beJfcFAliTvJvndn4NKIUKHR0KdT2DmRX9IN7G4oukO9Y+SnqWAUu2J/nZXuRneZF5OgiH7XznZjezys1t6jG4bRjdG9XBqC98+el47jF+PvUj29K2oqJi0pnoUacXN4TfiK/Rr9Q/g3Nvh66eRV6UD7nEVsEqpUBKPgDvdwE0mLgRgppVzHmEEKIYNtXOw5vnsi7lcMG4xgB6RYdOUXg3ZgxdAhsVu2++w8qwf14g12Epdr0OhVsiezIifCCxyTlnv5yDLcYm53A0NYdC8y+dZTBZ8A1Nwi88kWuahPFMq/sv+zwsDgv5ah6eei8MOrlAUtvJJbaaIKgZNB8C+3+Gte/A0OLn7hFCiIowN24t61OOAIVH5XFoKqqm8L+t8/it3xO464vesr4qaTs5Niuq3YjDZkS1GXBYzNhyPLDlemDL8eDtVfCmfWUJZ1fQGWy4eeZg9srBzSsHT/80vOqkoug0dOgIc29Tqudh1psx681lfPZCFE8KpKqi5yPOAmnnd3DNU+Ab6epEQohaQNVUvo1fX3hOsHwzqsWEZjeg2Qzk2g1MXvwvwYY6ZwdZtJGeZyU918bp7Fystr6XPY9OgUh/DxoGedIw0IuGQZ40CvJij20Dv6T8AUoJgz2i0j+ke3k9XSFKTQqkqiIyBur3gvh/YN0HMOjSt54KIWomTdPYknKCY1np+Jrc6BFaHzdD8dNFFCfDmse65DjyHXaa+4bQ3DfkktunWnNIzsvGnuGDNdUf2xl/1GLGFFpBDpBTzBHOXR7T0Bns6Iw29CYbBo9cjJ55GD1yMXrm8n2/Rwj38iuydzv7NezM3cLJvNNF7mIDuDH8Wup5hl/+iQtRzqRAqkp6PuwskLZ8Bb0fAw8ZVVuI2mTj6WM8ueEX4rPSCpZ5GUxMbtOL8c07X7LzsE118MbulcyL3YRVPT8yc1v/CF6PuZmG3oGFtk/JtrD6QDK/7U0gbX8MOC54O1BUdGYLitF+tuhx0DQgkGsjmuDnYXR+uZvw8zCSrqby3L5P0RntFBdPh0IT78hiiyMAD4M7r7Z9lK/iFvNX8kbsmjO7n9GHYZHXcUNY38v/4ISoANWuk/b777/PjBkzSExMpF27dsyaNYvOnUu+NT49PZ2nn36axYsXk5qaSr169Zg5cyaDBw8u1fkqpZP2OZoGH/eCxF1wzdPQ5/GKPZ8QotxlWPJZeGgXf52Mw66qdAgKZ2TzdkR6+V5yv+0pJxnxx1wcqopazPxcj7brw8RWPUrc//FNS/jx+K4ie+oVBW+jG4uv+Q8ZGTr+3J/Eyv2n2X48nQv/+itGK8aAdEx10jD6paMYCrfmvN9pLN2Cip8X7H/bPmVL6sFicwO82nYc3YNalZj9nGx7LidyEzHqDNT3jECvXH4cJSFKUqvuYluwYAFjxozho48+okuXLsycOZOFCxdy4MABgoOL3oZqtVrp0aMHwcHBPPXUU0RERHD06FH8/Pxo165dqc5ZqQUSwK7vYdF4cA+AR3aDSYaLF6K62HY6gTG/LyTLaikoFXSKggK80WswwxqXXCTc+cdcNp0+XmKRYdTp2XDLZPzMRS9/7U0/xS1/flpkuaYqqJnekO6HKSuI3LzC61uF+9CveTDeQTl8kLC42BYgvaKjgWcQ83tNRFfC6M7Z9jye3fk129IOoz+7japp6BSFh5rewk2R3Up83kJUlFpVIHXp0oVOnTrx3nvvAaCqKlFRUUyaNIknn3yyyPYfffQRM2bMYP/+/RiNpb+Gf6FKL5AcdpjVEdKPwvX/B13uq/hzCiGuWoYln54LPybbZkUt5s+qDoUfbhpN28Ci83rFZaRx7eLPwWYEuxFsRjSbgQtvf1eAbiH1aOZX9MPgppSj7M9I4sI/55rFjJrpA+r5osbNqKNn40CubR7CNc2DCPM9X2x9deQfZh34DZ2iw6Gp6FBQ0ajrUYePuowj1N3vks9f0zT2Zh5lddJOch0WojyCGBQWg5/J65L7CVFRak2BZLVa8fDw4Pvvv2fo0KEFy8eOHUt6ejo//PBDkX0GDx5MQEAAHh4e/PDDDwQFBTFy5EieeOIJ9Prim24tFgsWy/nxPDIzM4mKiqq8Aglg02fwy6PgWxcmbwX9lRV3QojK89nuTby8cVXh9h8NZ98euwGdw0gb30j6hDYlMSOfpCwLSRn5JGbmk5Fnq7hgJis6v3R0fhlsuPM+6riXPKr10ewUFh/fxJGs03gYTPQLbcW1oS0xyphCohqqNeMgpaSk4HA4CAkpfEdGSEgI+/fvL3af2NhY/vzzT0aNGsWvv/7K4cOHeeCBB7DZbEybNq3YfaZPn84LL7xQ7vnLpP0oWP0aZByD3Yuh3QjX5hFCXNbqE3HO4siuhyxf51e+O8rZViAN2HkSdu49XPwBFBWMtvNfBluhW98VoG94I1r4F70rbV1yHLvSEgq1IGFwoPPNRHHPQ1HAQ2/C383tks+hnlcgj7S4vmxPXIgaqtoUSFdCVVWCg4P55JNP0Ov1REdHc/LkSWbMmFFigTR16lSmTJlS8P25FqRKZXSHLvfDny/B2pnQdjjFdg4QQlSYbKuVM3m5+Jnd8L1MYZFndZCYqMDJupDjVVAUAc7xhfR2MNjRGx3c2aoloT5uhPi6Of/1cf478d+FbEg+iqOERn2zTs87w0biYyqa5UCGPzet3FRiPr2i49b67dHJ3xEhSq3aFEiBgYHo9XqSkpIKLU9KSiI0NLTYfcLCwjAajYUup7Vo0YLExESsVismU9FRYc1mM2ZzFRiJtdMEWDMTTu+FQ79D04GuTiRErRCfnsZbG//ll8MHcGgaCnBt/YZM6dyDVkHn+/84VI11R86wZNtJlu8+RY7V4/yIQOZc8MkAr6yzLUHOu8m6hdblleuLHxV6asdrue33r9FQi+3D9Gi7vsUWRwDNfEMYXr8j38VvLbJOryj4m9z5T9OS74ATQhRV/C0JVZDJZCI6OpqVK88PV6+qKitXrqRbt+LvkOjRoweHDx9GVc/frnrw4EHCwsKKLY6qFHc/iBnnfLzmbZdGEaK2OJx2hpsWflNQHIHz0tjqo3EMWzSPLYkJ7E3I5NVf99H9tZWM/nwDi7aeIMfqIMzXDHWS0eofgnpx4J/qvFR2tmpyaBrjWkWXeO5WAaHM738XzS/qhB1g9uClToOY0KLLJbM/32EwDzTvhftFfRY7BdZjft97CHH3LvsPRIharNp00gbnbf5jx47l448/pnPnzsycOZPvvvuO/fv3ExISwpgxY4iIiGD69OkAHD9+nFatWjF27FgmTZrEoUOHuOeee5g8eTJPP/10qc5Z6XexFTr5KXinLTiscM9vULdr5Z5fiFpmxJIFbD51suhlLrsBJc8XQ54fNsv5AsTX3cgNbcO4pUME0fX8WXJkL1P+/qXgTjBwtuA4NI0JrWJ4pvM1pZopfm9aEkez0vAxmekcXBejrvTjAeXarWxKOYrFYaepbzD1veqUel8hapJa00kbYMSIESQnJ/Pcc8+RmJhI+/btWb58eUHH7WPHjqHTnW8Ui4qK4rfffuORRx6hbdu2RERE8NBDD/HEE0+46imUjU8YtLsDts52Xm4bOd/ViYSoseLS09iQcOL8AlUHud6Q6wMWDzQUbIBBpzCgZQhDO0TQt1kQZsP54mVY41Y08g3gsz2bWXX8CHZNo0NQGPe0iqZ/VONSFUcALf1DaFlMZ+zS8DCY6BNa/ICOQojSq1YtSK7g0hYkgJTD8F4MoMF/10FIy8rPIEQt8Gd8LPf8tBTyvZxFUZ4nhXohmHPBI4PnBsRwT8f2LkophCitWtWCVCsFNoYWN8K+H+Hfd+GWj1ydSIgq73hGBvN27GDdseNomkb3enUZ2a4dUb5Fp/vItzn462AyX60/BQlNQLugKDJYwDMTPDKdna2BQO9L39EmhKgZpECqDno+7CyQdi2Ea54Cv7quTiRElfXboUNM/vkXVE0ruBtsX3IyX2zZyjtDBjOoaVNsDpU1h1P4eccpft+TSJbFfnZvHRiszoLIPRNM1kLHNuv19K3boJKfkRDCFaRAqg4ioqFBb4j7G9a9D9e/7upEQlRJcalpTP75Fxxq4RnNHJoGqsaDi/9kUL1M1h5KJS33/OjVYb5u3NA2DJ1nFh/vXnPhDB8FFGBC+xh8qsIwIEKICicFUnXR8xFngbR1NvR+HDzlzhQhLjZ3x3Y0TSsojjQNsLuhWXzQLN6gGvg53TmWWqCXiSFtwrihXTjRdf3R6RQ0TcPbS+Ptjf+i4ZxoVtU0NE1jbJsOTOnc3VVPTQhRyaRAqi4aXgNh7eDUDtj4CVwz1dWJhKhy/o6PPz9+kdUDNTsYHBe0+CgOfLwtfDj8Gro0CMCgLzwUnKIoPBjTleEt2vDjoX0kZGdRx92Dm5u0INIVN2kIIVxGCqTqQlHQejyM8v04cla+wz13HcGumOkyqB23TLyOJu3ruzqhEC6nahqaw4CWE4RmOVvQKCqKKQvFnAWmHAL9/ejROPCSxwn29GRC+5hKSCyEqKqqzUjatZ2maXz4VTYJ6Z54GvLo2+gAORm5/LVoAw9d8xJ/L97o6ohCuJTVruLtCENNa3C2ONJQ3NPQBRxB55OIYs7BoFPoHBnp6qhCiGpACqRqYs0Pm/nxk1V8v8k5ANyt0YfQ61QcdhXVofL6hE84cyrNxSmFcI1/j6Qw+N1/2H5Edd6mb8hD538UnddpFN35qYZUTWNMh/auCyqEqDakQKomlnzwOzqdwoq99UjNMRPsk0ffZscL1muqyrKv/nJhQiEqX1JmPpO/3cbITzdw+HQ2dTxN3NolAL3fMQzG87fo6xUFBXixfz9aBgeXfEAhhDhL+iBVEwe3xqOqGip6lmxtzPhee7i90yFW7qsLKKiqxv7Nsa6OKUS5ybXaWHUoljM5uYT6eNO3cX1MBuefLJtD5et/43l7xUFyrA50CozuWo9HBzTD18PI2MQGfL11G2uPHQOge90o7u7Ykbahoa58SkKIakQKpGpCr9dxbii7X3Y0ZGSX/dQPzKRNZAq7TgShKGAwln5CSyGqstkbt/HWqrXk2mwoivN2fV83M09f15cwrxCe+2EPB5KyAGgf5cfLQ1vTOuL8KNltQ0N5c/D1roovhKgBpECqJmL6t2H9sm047Cq5ViOr9kcxuG08Q9rGsetEEJoG0f3auDqmEFdtzqbtvPz76oLvz80WmZ5rZ8p3O1DtzrvT/D2MPHl9c26PjkKnK90ksEIIUVrSB6maGDZpIA7H+c6mv+xoCECPJicJ8LbgHeDJtSO6uSqeEOUi32bn7dVrCy3TNHBY/bDl1j9bHGmM7FKXVY/1ZUSnulIcCSEqhBRI1USrrk145L1xKDoFnV7HkWQ/9p3yx6jXGNLhJK8ueQxPH3dXxxTiqvwTG0+25XznatVhxp5XF4c1GNCj6PIxuB/j9k518PMwuS6oEKLGk0ts1cjAu3rTtmdzln31F/s2HWGPzUELfuDOa1LQtYtydTwhrlpqTl7BY4fNG4clBOfnOAd6cwo6QwaKAqm5eSUeQwghyoMUSNVMWINg7nnhduc3tjx48y90WSfg8B/QdKBrwwlxlSJ8fc5eUgtEtQUAoOhzMLidQlHUQtsJIURFkkts1ZnRHdqPcj7e9LlrswhRDlqGhqKz1S0ojnTGVAxuJwuKI52i0DwkiOYhQa6MKYSoBaRAqu5i7nH+e+h3SDvq2ixCXIWDSVnc8sG/WKxugIrBnIDBnIJytg+2TlHQKQrPDbzGpTmFELWDFEjVXWBjaNAH0GDLV65OI8QV+W1PIre8v5ajZ3KJ8HPn5WFNaBpWuBN267Bg5tx1GzF1I1yUUghRm0gfpJqg03iI+wu2zYG+U8Egd/eI6kFVNd5ZeYh3Vh4CoFvDOrw/qiMBniZGdWrGgdMpBSNpNwoMcHFaIURtIgVSTdBsMHiFQnYi7P8JWt/q6kRCXFZWvo0p3+1gxd4kAMb1qM9Tg1tg1DsbtpWz/Y2EEMIV5BJbTaA3QvRY5+NNX7g2ixClEJeSwy0f/MuKvUmYDDpm3NaWaTe2KiiOhBDC1aQFqaboOBb+ngFH18Dp/RDc3NWJRC239ehJvlm/nW1HE9DrdfRp1pBRXdoRn2pn8rfbyMq3E+Jj5uO7Ymgf5efquEIIUYgUSDWFbwQ0vR4O/AKbv4DB/+fqRKIW+/Svjby9Yi16nYJDdU6mNn/DDuasO4bVEYgGRNfz58PRHQn2dnNtWCGEKIa0Z9cknc7e8r/jW7DmuDaLqLXWHznG2yuc86mdK440TSHPHoLlbHF0c/sw5v2nixRHQogqSwqkmqThteDfACyZsHuRq9OIWmr2v1vRXzCBrKoZyHdE4dCcE82adadpEmTBbNC7LqQQQlyGFEg1iU4HMeOcj2VkbeEim+NP4lA1NA1sqh/5jnpouAF2zPoT6HXpbIo74eqYQghxSVIg1TTtR4PeDKe2w8ktrk4jaiENsKue5DvqY1ODAT068nHTH0OvOCeZVZRLHkIIIVxOCqSaxrMOtBrqfCy3/ItKtutEBir1sKoRaJgAOyZdImb9MXSKHXBOGdK1UV3XBhVCiMuQAqkmihnv/Hf3IshLc20WUSucyshjynfbufG9NZzJUQAVg3IGd30cBl1mQYuRooDJoOe2mNYuzSuEEJcjBVJNFNUZgluBPQ+2f+vqNKKaS83O5WhyGrkWa5F1ORY7b/1+gGveWM3irScBGNo+nMevC8OsP8OF/bB1ioJJb+C9UTcR6OVZWfGFEOKKyDhINZGiOG/5/+VR55hIXf8rnT5EmW2JPcH7v61j0xFnh2qjXseQjs15cFAPAr09WbTlBDN+P0BylgWATvX9eWZIS9qdHfSxf8v6fLtxB1viT2LQ6ejTrAEjOrcl1NfbVU9JCCFKTdE0TXN1iKosMzMTX19fMjIy8PHxcXWc0rNkwZvNwZoNY3+CBr1dnUhUI6v3HOGhr34CQL3gT4Rep+Du7o+nTz0OJzvH2qob4MHU65szqHUoihTiQogq4mrfv6UFqaYye0Pb4c4WpE2fS4EkSs1qt/PMgt/RNI0LPz05MJJLEOkWL0jOwdvNwEP9mnBXt3oyppEQosaRPkg12bnO2vt/hqxE12YR1caqPbFk5OYXFEcaOvJ1QeTq6+PQeYGmYdLS+XFiVyb0aijFkRCiRpICqSYLbQ1RXUC1w9Y5rk4jqon45DQMOuefBhUdufoobDp/UBT0ajYejnjMjtPk5ue5OKkQQlQcKZBqunOtSFu+AtXh0iiievA0G1E1DQ0defpIVMWMotlxdxzHQ01Aj825nZvZxUmFEKLiSIFU07W8GdwDIPMEHPzN1WlENXBtq8aoKOTqI1EVt4LiyKCdHQUbaBQSQL1AP5fmFEKIiiQFUk1ndIMOo5yPN8vI2uLyfDw9MPs0uaA4OlHQagTOqUQmDuwud6wJIWo0KZBqg+izE9ge/gPS4l0aRVRtuVY7477cSEqOhkkP7o4TGBUbBr0OBeco2M/d1o8BbZu4OqoQQlQouc2/NqjTCBpdC0f+hM1fwoAXXJ1IVEF5Vgfjv9rMpvg0vN0MzJvQFR9zd5bvOEhWnoXIAF8Gd2yGj7ubq6MKIUSFkwKptogZ7yyQts2Ba54Cg3SwFefl2xzcO2cz62LP4GU2MPuezrSJ9AXgvv5dXJxOCCEqn1xiqy2aDgKfCMg9A3t/dHUaUYVY7A7+O3cL/xxKwcOk58txnehQ19/VsYQQwqWkQKot9AZymgwHYN/HzzA4cjJ3xTzLvLeXk5Mp49nUVjaHyoPztrHqQDJuRh2fj+1Ep/oBro4lhBAuJwVSLXHsUCJTXkjGoSq0CEqkrl8qKafSmfvWrzx8wxtkpGa7OqKoZHaHysPzt7NibxImg45Px8TQrVEdV8cSQogqQQqkWkDTNF7775ecOG1g3dEoAAa3OOhcp2okxKfw0XPfuzKiqGQOVePRhTv4ZdcpjHqFj0dH06tJkKtjCSFElSEFUi2wf2s8cfsSUB0qv+xtCkD/JrG4GZxj26gOlb9/3Eb6mSxXxhQVJCffyv7jp4lNPIOqaqiqxhOLdvLD9gQMOoX3R3bkmubBro4phBBVitzFVgsc3nUcRQFNgx0JYZzI8CbSN4vrWxxiya6WgLNIitubQIdezVycVpSXzNx83v1hDT9u2IvV7pxmJjzAB9+wxqw7mo1ep/DunR24rlWoi5MKIUTVIy1ItYDBqEc7OzW7hsKiHa0AuCt6O0Ge5/seGc1SL9cUWXkW7n5rAUvW7S4ojjTgSLYb645mowBvDW/H4DZhLs0phBBVlRRItUDHPi0KTQvx24Em7E4Mxt1o58GeGwANL193mrar67qQolzNWbmF+KQ0HKqzMtaAfFMQFpMfaBru+YlER3q6NKMQQlRlUiDVAiGRAfS+qSM6nbNI0lB495+u2Bw6Otc9SZ9G8Qy791pMZqOLk4ryoGkaC9fsRNXOFUcK+aZALCbn2EbuliTc1SyWrtvjyphCCFGlSYFUSzw0407adGsMgF6v43i6Hwt2tAVgct9tjJgQ48p4ohzl2+ykZudj1XuR4xZGhmcjLCbn2Ebu+UmY7ZloGpxIyXBxUiGEqLqk00kt4e5p5tX5D7JjzUH+XLyJ9DPZZEZ2xeLzFh6Zh+GP52DoB66OKS5yMjmD+Su3sWLjAfKtNhqE1WF4v/Zc17kZel3hzzf5NgerDyTz844EMjwbgXJ+vU61YramYrZnAqAo4O0u080IIURJFE07131XFCczMxNfX18yMjLw8fFxdZzyd3wjfH4doMGYH6BhX1cnEmftPJzAxLcWYbXZC/oS6RQFVdO4pmNjpt9/Aw5N45+DKfyy6xQr9iaRbbEX7K9TbRjtWRjtWehVC8pFx//soduJaRJZic9ICCEqz9W+f1e7S2zvv/8+9evXx83NjS5durBx48ZS7Td//nwURWHo0KEVG7C6ieoMnf/jfPzTw2DNdWkc4WS12Zky6wcs1vPFEYCqaWjA77sSuH3WKmJe/oMJszezZNtJsi12wnzdmNCzAe+PaE2g7RietjMYLiqOdIpCTJNIohtHVPrzEkKI6qJaXWJbsGABU6ZM4aOPPqJLly7MnDmTgQMHcuDAAYKDSx7oLj4+nscee4xevXpVYtpqpN9zsP8XSIuDv16DAS+6OlGtt3LLIdKzz8+RpwE2owcWszdWszeaTs+2xHwAgr3NDG4Txo3twugQ5V/QGT/c51b+9/kvpGTmYNDpUDUNVdPo1boBr4wZVOjORiGEEIVVq0tsXbp0oVOnTrz33nsAqKpKVFQUkyZN4sknnyx2H4fDQe/evbnnnnv4559/SE9PZ+nSpaU+Z42/xHbOgeXw7QhQ9HDvKghr5+pEtdr/ffMni//aid2hYtebyfIOxWF0K1ivqHbMlizeHd+Xfq0j0OuKL3bsDpU1e+I4cDIZs9FAn9YNaRAqk9EKIWq+WnOJzWq1smXLFvr371+wTKfT0b9/f9atW1fifi+++CLBwcGMHz++MmJWX80GQatbQHPAj5PAYb/8PqLC6HUKGpDrUYd0/3o4jG4oqgNzXjo+6ccJOHMEr+zTdGoQUGJxBGDQ6+jbthH3Xd+Vu/vHSHEkhBClVG0usaWkpOBwOAgJCSm0PCQkhP379xe7z5o1a/j888/Zvn17qc9jsViwWCwF32dmZl5R3mpp0Otw5E84tQM2fAjdJ7k6Ua0VHh5CindUQauRyZKFV1YSOs05KraiQIOwOvh5ubsyphBC1FjVpgWprLKysrjrrrv49NNPCQwMLPV+06dPx9fXt+ArKiqqAlNWMd4hcN0rzsd/vgKpca7NUwvZHCqzVh7iud/jC1qNvDIT8M5MKCiOwDmv3tjrO0k/IiGEqCDVpkAKDAxEr9eTlJRUaHlSUhKhoUUn2zxy5Ajx8fHceOONGAwGDAYDs2fP5scff8RgMHDkyJFizzN16lQyMjIKvo4fP14hz6fK6jAa6vcCex78/AhUny5q1d6BxCxu+WAtb644iM2h0atRAE20ZNwsWZy7inbuctq4wZ0Z3K2FC9MKIUTNVm0usZlMJqKjo1m5cmXBrfqqqrJy5UoefPDBIts3b96cXbt2FVr2zDPPkJWVxTvvvFNiy5DZbMZsrsUD6CkK3PgOfNgdYlfBjvnQ/k5Xp6rR7A6Vj/+OZeYfzsLI193I8ze1ZGj7CPIs0SzfsJ+Vmw+Sk2+lcWQgt/ZpR4v6IZc/sBBCiCtWbQokgClTpjB27FhiYmLo3LkzM2fOJCcnh3HjxgEwZswYIiIimD59Om5ubrRu3brQ/n5+fgBFlouL1GkEfZ6AlS/Ab1OhcX/wCnJ1qmor32Ljzw0HOXYqDQ93I307NaFumLOz9MGkLB5buIOdJ5zTfvRvEcyrt7Qh2MfZ98jDzcSwPm0Z1qety/ILIURtVK0KpBEjRpCcnMxzzz1HYmIi7du3Z/ny5QUdt48dO4ZOV22uGlZt3SfB7sWQtMtZJN36masTVUurNx7i5Y+Xk5NnxaB3jkX04fw19OvajOCWTXlv1RGsDhUfNwPTbmzFsI4R0q9ICCGqgGo1DpIr1JpxkIpzcit81g80FUZ9D00GuDpRtbJ173EmvbIQ9aL/YjaDiYw6YdjMzjvQrm0ezPRhbQjxcSvuMEIIIa5ArRkHSbhAREfo+oDz8c+PgCXbtXmqmc8W/cuFc3xoQLZ3AClh9bGZ3VFUB0/0a8jnY2OkOBJCiCpGCiRxadc8BX51IeM4rHrF1WmqjbTMXLbtO4F6dh41h97AmZB6ZPkHg6LDnJdNaGI8xow0uaQmhBBVULXqgyRcwOQJN7wNc29FW/8h65Na8O9eNxQF2nZpRO/BbTGZja5OWeXk5FkLHltNbqQFRaLqDSiqA5+007jnZGDQ6wptJ4QQouqQFiRxeY37kx4xBAWN0K3T+Ounzaz8YRtvPvEdY/u+xuG9J12dsMoJ9PPEZDSQ6+HDmZC6qHoDBms+gafi8MjJQAEcqkpUqJ+rowohhCiGFEjispJPpTP5k3Ay8t1o4J/KsKbbUB0qAJlpOUwd+ykZqTkuTlm1mIwG6rRsSkZguPOSWm4WdZKOYrhgjjujQc91PWSwRyGEqIqkQBKX9dPcdZzJMvDx1u4AjGyzhQjvdABUVSMnM5/fvt/kwoRVS67VzgPfbGVrmrOI9M48g3/KSXRn72Y71+fof+P64+VRiwclFUKIKqxUfZB+/PHHMh94wIABuLvLRJo1wZrfdqKqGqvim3Bt/UPEhB9nUue/eXLljYCCpmms/W0Xw+/t6+qoLpeQnsd/Zm9mT0ImJr2Opwc15cTeQ/y29gw2u7NgalIviAm3dqdXdCMXpxVCCFGSUhVI56b2KC1FUTh06BANGza8kkyiirHk284+Upi1qRef3rCAdiEJNA1I5mBqMAD5ebaSD1BLbD+ezn9mbyY5y0IdTxMf3xVNTP0A6NWIh++6hqTULDzcTIQG1rLxtIQQohoq9SW2xMREVFUt1ZeHh0dFZhaVrFHLCHR650vldI4P/xxzFr6DGu8FQK/X0bhVuMvyVQU/7khgxMfrSM6y0CzEm6UTeziLo7M8Pcw0jAyU4kgIIaqJUhVIY8eOLdPlstGjR9e+UadrsJtGdy/olA2w7HBLAPrWO4yHwYrDoXLDyG6uiudSqqrx1oqDTP52Gxa7Sr/mwSx6oDtRAfIhQQghqrNSXWL78ssvy3TQDz/88IrCiKopuldThozsyi/z1qMoCnuSQzmW4Udd33T61D+M74AHadGhnqtjVqj9hxNZt/kIVpuDpg1D6NWlMTYVHlu4g192nQLgvt4NeXxQc/Q6GfhRCCGqu1IPFHnbbbcxYcIEBg4cKCP/1jKKojBx2lCata3L4i/+Jv5gIssOt+C+6HWM65uI9yMDXR2xwmRk5vHM//3A9t3H0esUFEXB7lDx8vfG2qIpR1LzMOoVXhnahuGdolwdVwghRDkpdYGUlpbGkCFDCA8PZ9y4cdx9993SCbsWURSFAcOiGTAsmvw8K0p+GrzXGu/cg5CwDcI7uDpiuXM4VB578XsOxiY5v1c1QMNqduNgnVAcqXn4uBn4dEwMXRrWcW1YIYQQ5arUnbRXrlxJbGws48ePZ+7cuTRp0oRrr72WefPmYbFYKjKjqGLc3E2Y/UOg5c3OBZvLdgm2uti4LZ79hxML5lMDyPX25nS9+jgMRowWC0N8HVIcCSFEDVSmgSLr1avH888/T2xsLCtWrCA8PJz//Oc/hIWFMXHiRLZs2VJROUVVFH23899d34Mly6VRKsKfa/cX6k+UGVCHMxFRaDodbtlZBB+NY9O6A2iadomjCCGEqI6ueCTta6+9lrlz55KYmMj06dOZP38+Xbp0Kc9soqqr1wPqNAFbjrNIqmFyci1nL6tBZkAAGcEhAHilniHwxHF0qorFai/UwiSEEKJmuKqpRuLi4njjjTd49dVXycjIoH///uWVS1QHinK+FWnLV65MUiGiwgPQ6RSyff3ICA4FwDf5NP6nkzjXrhQS6I1eLzP2CCFETVPmv+z5+fnMnTuXa6+9liZNmjB79mzGjx9PXFwcy5cvr4iMoiprdyfoTXBqu7Ozdg0ypH8bsry8SQsNA8D7TAreZ1IK1iuKwi2Da17ndCGEEGW4i23jxo188cUXLFiwgPz8fG655RaWL19Ov3795Lb/2syzDrS4CXZ/D1u+rlF3s+1Pt5IWHgmAV1oqvsmnC1qOdDqFJg2CuXVIR9cFFEIIUWFKXSB17dqVdu3a8dJLLzFq1Cj8/f0rMpeoTqLvdhZIuxbCdS+D2cvVia7aP4eSeXDeNjSga7gnSuYpTpxd5+Fu4qbr2jLujh64mY2ujCmEEKKClLpA2rx5Mx07yqdlUYz6PSGgEaQegd2LIHqsqxNdlc3xqdw7ewtWh8qgVqG8N7IDel0fTp3OwGZzEBrsi9lU6v86QgghqqFS9UHauXMn7du3L/VB9+zZg91uv9JMorqpQZ21d5/MYNyXm8izOejTNIh37myPQa9DURTCQ/yoF1lHiiMhhKgFSlUgdejQgTNnzpT6oN26dePYsWNXHEpUQ+1Hgs4ICVvh1A5Xp7kih5KyuOvzDWRZ7HSuH8BHo6MxG/SujiWEEMIFSvVRWNM0nn32WTw8SjdDudVqvapQohryDIQWN8Kexc5WpBvednWiMjl2JpfRn28gLddG20hfPr87BneTFEdCCFFblapA6t27NwcOHCj1Qbt164a7u/sVhxLVVMw4Z4G0cyEMeKnadNZOzMhn5GfrScq00CzEm6/HdcbbTTpfCyFEbVaqAmn16tUVHEPUCPV7QUBDSI11Fkodx7g60WWlZFsY9dl6TqTlUb+OB3PGd8bf0+TqWEIIIVxMhgAW5aeKd9a2WGwkJmWQneOcXDkjz8aYzzdyJDmHcF835k7oQrCPm4tTCiGEqArkdhxRvtqNhJUvwcktcGonhLV1dSKSU7L4es4aVvyxB6vNgaJAx5iG7AkIYl9yDoFeJuZO6EKkf+n62AkhhKj5pAVJlC+vIGhxg/Px1q9dmwVIOp3J/RO/Zvlvu7DaHAA4UPglXWVfcg5eJj1zxnehYVD16C8lhBCickiBJMrfuctsO78Da45Lo3zw0UoyMnNxqBoAGpDcIIo8by8Uh4PI+OM0DZbiSAghRGFSIInyV783+DcASybsWeKyGKlpOfyz9hAOxwXFUf1Icv18UFSVkCPHsCSmsnFTrMsyCiGEqJquqECaM2cOPXr0IDw8nKNHjwIwc+ZMfvjhh3INJ6opne78dCMu7Kx9MiENTdMKvs8ICSQnwA80jeDYY7hn56DTKRw9VvpBUIUQQtQOZS6QPvzwQ6ZMmcLgwYNJT0/H4XD26/Dz82PmzJnlnU9UV+1Hgc4AJzZB4m6XRHB3O3+7vs1kJD0sGIDAYwl4ZGYDzkFQ3d3ltn4hhBCFlblAmjVrFp9++ilPP/00ev35kYZjYmLYtWtXuYYT1ZhXMDQf4nzsolakhg2CCA31RQPORIWj6XS4ZWbjdSbtgq0UenRv7JJ8Qgghqq4yF0hxcXF06NChyHKz2UxOjms75IoqJnqc89+dC8CaW+mn1+kU7r6rJzl+PuT5eoOqEng8AeXsekVRGHJ9WwLreFd6NiGEEFVbmQukBg0asH379iLLly9fTosWLcojk6gpGvQB//ou7azdrVcz8pvVB8A/KQV3hx293lki9b+2JZMnDnBJLiGEEFVbmQeKnDJlChMnTiQ/Px9N09i4cSPffvst06dP57PPPquIjKK60umg41hY+YLzMluHUZUeYcbyA2TZVOoFuHNfx5akJGfi4+3OtX1bULdunUrPI4QQonooc4E0YcIE3N3deeaZZ8jNzWXkyJGEh4fzzjvvcMcdd1RERlGdtR8Fq16BExshaQ+EtKq0U28/ns7cDc67LKff2pbujQIr7dxCCCGqtyu6zX/UqFEcOnSI7OxsEhMTOXHiBOPHjy/vbKIm8A6BZoOdj7dU3sjadofKU4t3oWkwrEOEFEdCCCHK5KoGivTw8CA4OLi8soiaqmBk7fmV1ln7q3/j2XsqE193I08Nkb5xQgghyqZUl9g6dOiAoiiX3xDYunXrVQUSNVDDa8CvLqQfg70/QPs7K/R0J9PzeGvFQQCmXt+cQC9zhZ5PCCFEzVOqAmno0KEFj/Pz8/nggw9o2bIl3bp1A2D9+vXs2bOHBx54oEJCimruXGftP1/i1I9v8+W3BvwDveh/QzuatAgv99M9/+Mecq0OOtX3Z3hMVLkfXwghRM1XqgJp2rRpBY8nTJjA5MmTeemll4psc/z48fJNJ2oEh93BZ38GMl7VEcYBjq7/izU5QSydt55rrm/LYy8MxWDUX/5ApfD7nkRW7E3CoFN45ZY26HSla/kUQgghLlTmPkgLFy5kzJgxRZaPHj2aRYsWlUsoUbPM/mgVS36MY31iQwAG1d2Fw6ECsHr5Tj5/d0W5nCfbYmfaj3sAuLd3Q5qGyACQQgghrkyZCyR3d3fWrl1bZPnatWtxc3Mrl1Ci5sjLtbDkm/VoGvwa3xqA/lH7MOnsAGga/LRgI9lZeVd9rrdXHORURj5RAe5MurbJVR9PCCFE7VXmcZAefvhh/vvf/7J161Y6d+4MwIYNG/jiiy949tlnyz2gqN52bjmKJd8GwNbkeiTmehPqkcU1kfv57ZizYLLZHGxbH0uvAVc+RtLukxl8uTYOgJdubo27qXwu2QkhhKidylwgPfnkkzRs2JB33nmHuXPnAtCiRQu+/PJLhg8fXu4BRfVmtdgLHmso/BLXlvGt1nJf67/ZkxrOiewA53ZWe0mHuCyHqvH0kl2oGgxpG0bfZjL0hBBCiKtT5gIJYPjw4VIMiVJp2DSk0PeLjnSkc0g8bQJP8lynn3nonzvIs5to1Cz0is/xzYaj7DiRgbfZwLQbWl5tZCGEEOLqBooU4nIi6tahfacG6PTOl5pD0/PK5sGcyfeknk8qj3ZYQYu2EdRvHHKZIxUvKTOfGcsPAPD4oGYE+0g/OCGEEFevzAWSTqdDr9eX+CXExR6ZdjO+fu4FRVKaxZOXNg7BpuroFX6I529PueJjv/jzXrIsdtpF+TGyS73yiiyEEKKWK/MltiVLlhT63mazsW3bNr7++mteeOGFcgsmao7QCH/en3c/C2evZfmSreTlWonLr8da01j62r/Eb8sMaNkdGvYt03FXHzjNLztPodcpvHpLa/Qy5pEQQohyomiappXHgebNm8eCBQv44YcfyuNwVUZmZia+vr5kZGTg4+Pj6jjVnqZpWPJtmN2MKAA/PAjb54J7ANz3l3NKkkvsm5Gei6pqmD3dGPTu3xxPzWNCzwY8I32PhBBCXOBq37/LrUCKjY2lbdu2ZGdnl8fhqgwpkCqYLQ++GASntkNYO7jnNzC6F9pE0zT+WL6LBd+s42i883Jcbst6nAzwJ8zXjT+m9MHTfEX3GwghhKihrvb9u1w6aefl5fHuu+8SERFRHocTtYnRHUbMcbYgndoBvzzqHD3yAp9/tIr/e+Unjh11FkcWDzdO+vkB0Co7C/dymqZECCGEOKfMH7v9/f1RlPN9PTRNIysrCw8Pj4JxkYQoE7+6cNsXMHcYbP8GIqKh03gA9u89yYJv1gHOukkDTjeKBJ2C55l0ju6L5+9VTenbTy6xCSGEKD9lLpDefvvtQgWSTqcjKCiILl264O/vX67hivP+++8zY8YMEhMTadeuHbNmzSoY0ftin376KbNnz2b37t0AREdH8+qrr5a4vXChRtdAv2nwxzRY9gSEtoGozvz8wzb0el3B3G2ZIQHk+3qh2B0EHTmJTqfww+LNUiAJIYQoV2UukK699lqioqIKFUnnHDt2jLp1S+5ke7UWLFjAlClT+Oijj+jSpQszZ85k4MCBHDhwgODgoqMnr169mjvvvJPu3bvj5ubG66+/znXXXceePXvkcmBV1OMhSNgKe3+A78bAvX8RezipoDjK93QnpYHz91bnWCJGqw0VOBqb7MLQQgghaqIyd9LW6/WcOnWqSEFy5swZgoODcTgc5RrwQl26dKFTp0689957AKiqSlRUFJMmTeLJJ5+87P4OhwN/f3/ee+89xowZU6pzSiftSmbJgs/6Q/J+qNudx7fdwfbtJ7CYTZxo2wSHyYh7RjYRuw5zrkQPCvZh3uJJLo0thBCiaqn0Ttol1VPZ2dm4uVXcKMZWq5UtW7bQv3//gmU6nY7+/fuzbt26Uh0jNzcXm81GQEBAidtYLBYyMzMLfYlKZPaGEXPB7APH/uX+pquwGo2cbN0Yh8mIOTuXsL2xBcWRTqfI5TUhhBDlrtSX2KZMmQKAoig899xzeHh4FKxzOBxs2LCB9u3bl3vAc1JSUnA4HISEFJ6SIiQkhP3795fqGE888QTh4eGFiqyLTZ8+XQa8dLXAJnDLRzB/JA3PLKFzTBDxulYY8/IJ3xOL/uwlN51OwWw2cPOtMS4OLIQQoqYpdYG0bds2wNmCtGvXLkwmU8E6k8lEu3bteOyxx8o/YTl57bXXmD9/PqtXr75kS9fUqVMLikFwNtFFRUVVRkRxoeZDsHZ/FNO/b/KC+1ccyIsiY3c+ZlUFgw6HXcXHx50XXhtOSKivq9MKIYSoYUpdIK1atQqAcePG8c4771R6f5zAwED0ej1JSUmFliclJREaeumZ4N944w1ee+01/vjjD9q2bXvJbc1mM2az+arziqtjsTuYcLQ/9zj+4Br9DuYFfMiLjSay40AWmqpRt14dxk7oQ4tW4a6OKoQQogYqcx+kL7/80iWdlU0mE9HR0axcubJgmaqqrFy5km7dupW43//93//x0ksvsXz5cmJi5FJMdeBQNR5ZsJ1/jqTxlDKZDEMYnvkJ3G7+DM1hR1U1ThxP5aVnF/PZh6tcHVcIIUQNVKoWpGHDhvHVV1/h4+PDsGHDLrnt4sWLyyVYcaZMmcLYsWOJiYmhc+fOzJw5k5ycHMaNGwfAmDFjiIiIYPr06QC8/vrrPPfcc8ybN4/69euTmJgIgJeXF15eXhWWU1w5TdN4Zukuft2ViEmv47HrOvD4KwN5J2YuMXXiGNNoLV8d6YWqOm8W+G7eOtpH16NTl0YuTi6EEKImKVWB5OvrWzDuka+v6/p7jBgxguTkZJ577jkSExNp3749y5cvL+i4fezYMXS6841iH374IVarldtuu63QcaZNm8bzzz9fmdFFKc347QDfbjyOToF37mhP7MpdHM0N4e19A5na+hdGNVjHwcxQ/k1uAoBOr7B04SYpkIQQQpSrcpustqaScZAqz6d/x/LKr/sAmD6sDXd2rsuDE77gwP5TAPy36UqG1d1Cjt3EuH8nkGZ1tgJ6+7iz+NcpJR5XCCFE7VMlJqsV4mp9t/l4QXH0xKDm3NnZOSK70XR+ItpPDvXlQEYongYroxucH/vKYJCXsRBCiPJVqktsHTp0KHZqkeJs3br1qgKJ2ue3PYk8uWgnAPf1bsh/+56/XNalWxP27DqJpmk4ND2fHO7Lm9HzGRyxg0XHYkiyBtC9Z1NXRRdCCFFDlapAGjp0aAXHELWBpmnEHkzizOlMAoK8adQslHWxZ5g0bxuqBsNjInny+uaF9hl0Qzu+nbuW/DwbqqqxM60uG1Ma0Dkwjrsb/cPr+4Yy9LZOLnpGQgghairpg3QZ0gepfGzbEMtHbywj/vDpgmW+zcLZ2SiKfIfGwFYhvD+yIwZ90ctle3ef4KlH55Oba0HToJFXEh91/RqA7Z1m037IzZX2PIQQQlQPV/v+XeqBIi+2efNm9u1z9hlp2bIl0dHRV3ooUcNtWX+EZybOKTSPn8XTjS3hITgcGq3quPPOHR2KLY4AWraOZO73D/L7sp1s3RyH6mhInOdRGuSspv2ZLwEpkIQQQpSvMhdIJ06c4M4772Tt2rX4+fkBkJ6eTvfu3Zk/fz6RkZHlnVFUY5qm8f70n9E0OFcf2dxMnIhuhsNkxC0jG+9dBzE92veSx/HydmPY8M4MG97ZuSCtG8yKgdhVELsaGl56fyGEEKIsynz7z4QJE7DZbOzbt4/U1FRSU1PZt28fqqoyYcKEisgoqrEDu09y8lhqQeuR3WjgRHQz7O5mTNl5RGw5SFpCOru2Hi3bgf3rQ8w9zsd/PH+++hJCCCHKQZkLpL/++osPP/yQZs2aFSxr1qwZs2bN4u+//y7XcKL6O52YUej7lKaRWL3cMeRZiNxyAIPN7tzuVEZxu19a7/+ByQsStsHepeWQVgghhHAqc4EUFRWFzWYrstzhcBAeLhOHisL8/D0LHttNRjLDAwEI23kEY771/HYBnkX2vSyvIOj2oPPxypfAUfR1KYQQQlyJMhdIM2bMYNKkSWzevLlg2ebNm3nooYd44403yjWcqP5adahLnWBvANLqhaDpdLilZeGRnl2wja+/Bx06N7yyE3R/EDwCIfUIbJtTHpGFEEKIst/m7+/vT25uLna7HYPB2cf73GNPz8KtAKmpqeWX1EXkNv+rt2rZLl55djGxfdqjGg1EbD2IV3J6wfopzw9l4M0drvwE6z+C5U+AVyhM3gYmj6sPLYQQolqr9Nv8Z86cWeaTiNrtmuvb8OvRDA7HZ2DKzsPzbHHk5e3GhIevu7riCCBmHKx/H9KPwYYPodejVx9aCCFErSYDRV6GtCBdPYvdQe//W0VSpoV7WwfRxgR1gryJ6dEEk+mKh+IqbMcCWHIvmH3hoe3gEVA+xxVCCFEtuWygyNOnT3P69GlUVS20vG3btld6SFFD/bA9gaRMCyE+Zh69IxqzQX/5ncqqze3w7yxI2gVr3oLrXi7/cwghhKg1ylwgbdmyhbFjx7Jv3z4ubnxSFAWHw1Fu4UT1p6oan/wdC8A9PRpUTHEEoNNB/2nwzW2w4RPofB/4RVXMuYQQQtR4ZS6Q7rnnHpo2bcrnn39OSEgIiqJURC5RQ6zcf5rDp7PxNhsY2aVuxZ6scX+o1xOOroHVr8HQ9yv2fEIIIWqsMhdIsbGxLFq0iMaNG1dEHlHDfPzXEQBGda2Ht5uxYk+mKND/efi8P+yYB90nQXDzij2nEEKIGqnM4yD169ePHTt2VEQWUcNsjk9l89E0THod9/SoXzknjeoEzW8ATYWVL1bOOYUQQtQ4ZW5B+uyzzxg7diy7d++mdevWGI2FWwVuuummcgsnqreP/nL2PRrWMYJgH7fKO3G/5+DAr3DgFzi2Aep2qbxzCyGEqBHKXCCtW7eOtWvXsmzZsiLrpJO2OOfw6Sz+2JeEosB/el/hKNlXKqgZtB/lHFn7j+dh3K/Oy29CCCFEKZX5EtukSZMYPXo0p06dQlXVQl9SHIlzzt25NqBFCI2CvCo/QN+pYHCDY//Cod8r//xCCCGqtTIXSGfOnOGRRx4hJCSkIvKIGiAxI58l204CcH/fRq4J4RsBXe5zPv7jBVCleBdCCFF6ZS6Qhg0bxqpVqyoii6ghvlwbh82h0bl+AB3r+rsuSM9HwM0XTu+BXQtdl0MIIUS1U+Y+SE2bNmXq1KmsWbOGNm3aFOmkPXny5HILJ6qfzHwb32w4BsB9fSq579HF3P2dRdIfz8Ofr0CrW8Bgdm0mIYQQ1UKZ52Jr0KBByQdTFGJjY686VFUic7GVzYerj/D68v00DfFi+UO90elc3Dnamov2bgeU7ETmpd/M7CPt8PZy47oBrRl2czR16rigf5QQQogKV+lzscXFxZX5JKJ2sNgdfLHW+fq4t3cj1xdHQK5dz+JTfRntPZ/Bnr/zjb0xKWfszP9uA78s28G7b46ibt06ro4phBCiiilzHyQhSrJ020mSsyyE+bpxU7twV8cB4JPP/+LrPQ04lhuAnzGPEeHrAecccVlZ+Ux7aWmROQWFEEKIMrcgAZw4cYIff/yRY8eOYbVaC6176623yiWYqF5UVePjs7f2j+/ZAJPB9bV3To6FZb/twq4qfH6sLy80X8zt4RtZmhhNms0LVdWIP5rC7j0nadM60tVxhRBCVCFlLpBWrlzJTTfdRMOGDdm/fz+tW7cmPj4eTdPo2LFjRWQU1cCKfUnEJufg42bgjs4VPCltKcUfTcFqtQPwd2oz9mWF08I7gf/WX8mrh24CFHQ6hX37E6RAEkIIUUiZP+ZPnTqVxx57jF27duHm5saiRYs4fvw4ffr04fbbb6+IjKKK0zSNj85OSntXt3p4ma+oYbLc6fUXvrwV3o/vj0NTGBC0h9vCNgGgaaDTu761SwghRNVS5neGffv2MWbMGAAMBgN5eXl4eXnx4osv8vrrr5d7QFH1bYpPY9uxdEwGHWO713d1nAKNGgbj7X1+Drg9WZG8H9cfgPvrryTGNxZN0+gUXd9FCYUQQlRVZS6QPD09C/odhYWFceTIkYJ1KSkp5ZdMVBsfn209urVjJMHelTgp7WUYjXqG39a50LIliTH8mtQOvaLxXLOlXB/jSb26gS5KKIQQoqoqc4HUtWtX1qxZA8DgwYN59NFHeeWVV7jnnnvo2rVruQcUVdvBpCxW7j+NosC9lT0pbSncObwLg65rA5y75KbwbvwgdmdG4G3I59HQryA/06UZhRBCVD1l7izy1ltvkZ2dDcALL7xAdnY2CxYsoEmTJnIHWy308V/OO9cGtQqlQaCni9MUpdfrePzR6xk8qC2/LNtBQkIavn4eZPX4FG3HePSph2DxvXDHPNBJXyQhhBBOZR5Ju7aRkbRLdiojj16vr8Kuaiyd2IP2UX6ujlQ2J7fAF9eDwwK9HoN+z7o6kRBCiHJyte/f8pFZXLEv1sRhVzW6NgyofsURQEQ03DTL+fifN2D3YtfmEUIIUWVUjfuxRbWQm21h1U/b2LMlHgsw1+SsyO/r08i1wa5GuxGQtAv+nQVLH4A6jSGsratTCSGEcDEpkESp7NoUywv3f01OVj46nUJy00gsLb3xyM4l3GJxdbyr0/8FOL0PDv8B80fCf1aBV5CrUwkhhHAhucQmLivpZBrPTviC3BxnIWQHzjSMAMB//zGeHvcZ6anZLkx4lXR6uPUzCGgEGcfhuzFgt15+PyGEEDXWFRdIKSkpZGbK7dG1wc/frMNmtaOpzv78GXVDcLiZMOTm4308mdwcC799t8nFKa+Suz/cOR/MPnDsX1j+hKsTCSGEcKEyFUjp6elMnDiRwMBAQkJC8Pf3JzQ0lKlTp5Kbm1tRGYWLrf19F6rDWRxpisKZplEA1Dl0AkXT0FSNtb/vdmXE8hHU1NmShAKbv4BNn7s6kRBCCBcpdR+k1NRUunXrxsmTJxk1ahQtWrQAYO/evcyaNYsVK1awZs0adu7cyfr165k8eXKFhRaVy5JvK3h8unUDbF7u6C1W/OITz29jsRW3a/XTdCD0ew5WvgDLHoeg5lC/h6tTCSGEqGSlLpBefPFFTCYTR44cISQkpMi66667jrvuuovff/+dd999t9yDCtdp0jqSTX8dICPYn9Qmzlnvw7YcROdQAedgjE1aRbgyYvnq+Qgk7Ybdi+C7u+De1eBX19WphBBCVKJSF0hLly7l448/LlIcAYSGhvJ///d/DB48mGnTpjF27NhyDSlc68ZR3VizLpaE6KYABBw8jndiasF6h0NlyMgaNM2MosBN70HKIUjciW3uHXztNY1Vm05gtdlp3jiUW4d0pH2rKFcnFUIIUUFKPZK22WzmyJEjREZGFrv+xIkT1K9fH7vdXq4BXU1G0gar3UHf55aRoCq4pWZS/68dKJqGTqegqhojJ/bjroeuc3XM8pd+HNuHvTFaUlmV3oLn4ocBCnq9gsOhcddtXbl3dC9XpxRCCFGMShtJOzAwkPj4+BLXx8XFERwcXOYAoup7c8VBElQFd71C97RUlLM1ddO2UTwz666aWRwB2cZgnjh0CzZVxzV++7greC0AjrMd1ud8v56/1x90ZUQhhBAVpNSX2AYOHMjTTz/NihUrMJlMhdZZLBaeffZZBg0aVO4BhWutOnC6YELat+/swKDWg7FZna2ERlPNHmd0+ao9bE4L421lEI9H/cqEsNUcyQ/m30znpUadTmH+0s307trUxUmFEEKUtzJ10o6JiaFJkyZMnDiR5s2bo2ka+/bt44MPPsBisTB79uyKzCoqWWJGPo9+twOAsd3qMah1GFDzC6Nzduw9Dij8dKYjjd2SGBa0hWn1lvLIkZHszY1EVTV2HziJqjovNwohhKg5Sv1OFxkZybp163jggQeYOnUq57ouKYrCgAEDeO+996hbV+70qSnsDpXJ87eRmmOlVbgPUwe3cHWkSqegAM7X+bsnr6Oe2xmiveN5q9E8HjtyJ7tzpZO2EELUVGUaKLJBgwYsW7aMlJQU1q9fz/r160lOTmb58uU0bty4ojIKF3h35SE2xqXiZTbw/siOuBn1ro5U6dq3jjxXH+FAz5Nxw9mSVQ9PvZU3G31Le6/jtG0ZKa1HQghRA13RVCP+/v507tyZzp07ExAQUN6ZhIutPZzCrFWHAXh1WBvqB3q6OJFrDOzbCg8PMzrFWQDlqyaeiL2DTVkN8NBb+b8G87ivpxRHQghRE5X6Nv9hw4aV6oCLFy++qkBVTW27zf90Vj6D31lDSraFOzvXZfqwNq6O5FI7953gsRe+x2K1o56di85db+elet/RxScWDO4wcj407OvaoEIIIQq52vfvUvdB8vX1LfPBRfXiUDUeWbCdlGwLzUK8mXZjS1dHcrm2LSKZ98EEfvhtO/+sP4zFZqdFkzC8rhsB25+AQ7/DvBFwxzfQuL+r4wohhCgnpW5Bqq1qUwvSrJWHeHPFQdyNen6a1IPGwd6ujlS12S3w3Vg4uAz0ZhgxF5rWzDGhhBCiuqm0gSKrivfff5/69evj5uZGly5d2Lhx4yW3X7hwIc2bN8fNzY02bdrw66+/VlLS6mVD7Bne/sM56OHLQ1tLcVQaBjMMnw3NbwCHBRaMggPLXJ1KCCFEOahWBdKCBQuYMmUK06ZNY+vWrbRr146BAwdy+vTpYrf/999/ufPOOxk/fjzbtm1j6NChDB06lN27d1dy8qrtTLaFyfO3oWpwa8dIbo0ufjoZUQyDCW7/ClreDA4rLLgL9v3k6lRCCCGuUrW6xNalSxc6derEe++9B4CqqkRFRTFp0iSefPLJItuPGDGCnJwcfv7554JlXbt2pX379nz00UelOmdNv8Smqhr3fL2J1QeSaRTkyY8P9sTTXDsGgixXDjssuRd2LwKdAW79HFoNdXUqIYSotSqtk7arWa1WtmzZwtSpUwuW6XQ6+vfvz7p164rdZ926dUyZMqXQsoEDB7J06dISz2OxWLBYLAXfZ2ZmXl3wKsRhd7Dhj938uXgzGSlZhETVITu6KasPpGA26Hh/VEcpjq6U3gC3fAKKHnZ9B9/fA5oDWt/q6mRCCCGuQLV5N0xJScHhcBASElJoeUhICPv37y92n8TExGK3T0xMLPE806dP54UXXrj6wFVMTmYez47+kH1b4tDpFVSHxpb4VGLNfqDT8dyQFjQPrXktZJVKb4BbPnK2IO2YB4smgOogq9FN/P7vfo4mpOLhZuKaLk1oVj/k8scTQgjhMmUqkKxWK0uXLmXdunUFRUZoaCjdu3fn5ptvLjKJbXU0derUQq1OmZmZREVV/ykl3pryDQe2HwVAdWg4TEaOdW8LOh0+8aew/wN0q+/SjDWCTg83v+/8d9sctMX38l7yr/yU3ga9ToemaXz9wwa6t2/AS5NvwMOt+v+fEUKImqjUnbQPHz5MixYtGDt2LNu2bUNVVVRVZdu2bYwZM4ZWrVpx+PDhCgsaGBiIXq8nKSmp0PKkpCRCQ0OL3Sc0NLRM2wOYzWZ8fHwKfVV3p46m8O/yHagOFXDOnpHQvTV2L3eMmTmErt/Nj1+sxpJndW3QmkKngxvfJan+rShoPBG4hBu8t2F3qDjODja5fmc8z836xcVBhRBClKTUBdJ///tf2rRpQ1JSEqtXr2bBggUsWLCA1atXk5SURKtWrZg4cWKFBTWZTERHR7Ny5cqCZaqqsnLlSrp161bsPt26dSu0PcCKFStK3L6m2vbPgYI5xQDSm0SRHRWC4lCJ/Hs7epuD3Kx8Du445rqQNY1Ox7Nx17IoPQadAk+F/sTNvlsKVquqxtptsRw6WvwdmEIIIVyr1JfY1q5dy8aNG4ttUfHx8eGll16iS5cu5RruYlOmTGHs2LHExMTQuXNnZs6cSU5ODuPGjQNgzJgxREREMH36dAAeeugh+vTpw5tvvsmQIUOYP38+mzdv5pNPPqnQnFWNanegKKBpoOp0JLdtBEDw1gO4pWUVbOewO1wVscZJzchl16EkdnE9dk3PCP8NPBnyCx46K9+mdQUU9DqFVRsP0aResKvjCiGEuEipCyQ/Pz/i4+Np3bp1sevj4+Px8/Mrr1zFGjFiBMnJyTz33HMkJibSvn17li9fXtAR+9ixY+h05xvFunfvzrx583jmmWd46qmnaNKkCUuXLi3xOdRUTTvU59xgDhmNI3B4uGHIycP/4PkWI4NRT8OWMv5RecnLP3e5UmFm8nU4NIWRAeuZHLSCpuZEXku6AYdiJi/f5tKcQgghilfqAmnChAmMGTOGZ599ln79+hUUJUlJSaxcuZKXX36ZSZMmVVjQcx588EEefPDBYtetXr26yLLbb7+d22+/vYJTVW1N29WlSdsoDu9N4EyrhgDU2ROHcrY/jE6vo+/QaHwCPF0Zs0ap4++Jm8lAvtUOKMxKGcBpuw8PBq1gkM8uGpqSeTLhdupHBLg6qhBCiGKUaaDI119/nXfeeYfExEQURQFA0zRCQ0N5+OGHefzxxyssqKvUlIEiE+KTGfPAXA63bYo+z0LjJX+hU1UUFOo1D2PGoofw8vVwdcwa5a2v/2Txiu0FHbMBOrjH83LY9wQYcsl0uGO682vcWg50YUohhKiZrvb9+4pG0o6NjS24Oyw0NJQGDRqU+cTVRU0pkFRVo98bq4hLzaP+oWP4bj9EULg/Q+7qwfWje+DmYXZ1xBonIyuP/0ybx8nTGagXFEkhxixeCVtAK7cEQIF+z0LPKXD2Q4cQQoir55KRtBs2bIiPjw8mk6laFw21yfI9icSl5uHjZuCnbybg7WZ0daQaz9fbnU9fHMkXi9fz0+pdBf2Nwhu3IP/mHyH+Xdg6G1a+CAnbYOiHYJZJgoUQoiooUwtSeno6Tz/9NAsWLCAtLQ2AoKAgxo0bx7PPPouHR827RFMTWpA0TeOGWWvYk5DJ5H5NmDKgqasj1TpWm50z6bl4uBvx9XI/v2Lzl/Dr/0C1QWBTuGMeBDZxXVAhhKghKq0FKTU1lW7dunHy5ElGjRpFixYtANi7dy+zZs1ixYoVrFmzhp07d7J+/XomT55c5jCiYqw+mMyehEw8THrGda/v6ji1ksloICyomP+gMeMgpDV8dxekHIRProFhH0PzIZUfUgghRIFSF0gvvvgiJpOJI0eOFJnf7MUXX+S6667jrrvu4vfff+fdd98t96Diymiaxvt/Okc4H9WlLv6eMrVFlRPVCe77G74bC8f+hfkjoff/oO9U0OlxqCr74pPIt9qoG+JPsL9chhNCiIpW6gJp6dKlfPzxx0WKI3B21P6///s/Bg8ezLRp0xg7dmy5hhRXbkNcKpuPpmEy6PhPr4aujiNK4hUMY3+E35+BDR/B3zPQErbzc+gjfLBsN8npOYCzH3evtg3538hrCQusnpd8hRCiOij1VCOnTp2iVatWJa5v3bo1Op2OadOmlUswUT7eX+VsPRoeE0mwj5uL04hL0hvh+tfhlk/A4IZyeAUdVo/CNye2YBNNg7W74hj7yjySUrMucTAhhBBXo9QFUmBgIPHx8SWuj4uLIzhYpkyoSnYcT+efQynodQr39W7k6jiitNqNIO32H0iw+xFpSOPL4M+5zn13wWqHqpGRncdnP693YUghhKjZSl0gDRw4kKeffhqrteiM7xaLhWeffZZBgwaVazhxdc61Ht3cPpyogJp3h2FN9sMRHWNP38u6vEa462y8GriIKX7L8dHlAc4i6Zd/92Kx2V2cVAghaqYyddKOiYmhSZMmTJw4kebNm6NpGvv27eODDz7AYrEwe/bsiswqyuBAYha/701CUeCBvo1dHUeUUeKZLLLw5KGUkfzX90/G+axlpPcGbvXazMrcVizO7sh2a13Ss/IICZBO20IIUd5KXSBFRkaybt06HnjgAaZOncq54ZMURWHAgAG899571K1bt8KCirL5YLWz9ej61qE0DvZycRpRVn7ebmiahoqO9zP6s8sSxb2+q2luSmSw504Ge+4k1haI/x4jRI8Gj0vP6Wa12dHrdeh1pW40FkKIWu2KphpJS0vj0KFDADRu3JiAgJo74WZ1HCgyPiWHa99cjarBz5N60jrC19WRRBnFJZzh9me/vmipRktTArd4bmGgx248dM6RudGbodVQiB4HdbsWTFliczhY+M9Ovl29jeMpGegUhZ6t6jNuQCc6NIqo1OcjhBCVzSVzsdUm1bFAmrp4J99uPE7fZkF8Na6zq+OIKzTt8+X8um4vF/8P1SkKPkYr39ziRkjsQkjcdX5lUHOIvhtb69t5ePY//Ls3HoBzh9DrFFRN45Ux1zO4U/NKeR5CCOEKLpmLTVRdpzLy+H7LCQAevEb6HlVnz44dgIfZyOK/duJQNRRFQdM0QgK8eek/1xPSJAK0yZCw1Tllye5FkLwflj+J8vtzXJ/bnBxDNNvtdQFnq5Lj7KS5z839ja7N6xLgLZ33hRCiONKCdBnVrQXphZ/28OXaeLo0CGDBfd1cHUeUgzMZOfyzM5a8fBsNwuvQuUVddDql6Ib5GbBrIWz+CpLOtyodsQexKD+aHyztydGcY2EpCky+qSfjBnSqpGchhBCV62rfv6XHZg2Skm3h243HAHjwWmk9qinq+HoytFcb7hzQka6t6hVfHAG4+UKnCVjGr2J0+gSW5HcgTzPSyJDM417Lme37Gd6Kc5gABYUDJ5Ir8VkIIUT1IgVSDfLFmjjybSptI33p2TjQ1XGEi+j1evY4Inkh+2YGpD7Kq9mDOe3wopEhhRneCzHgQFHAbJQr7EIIURIpkGqIjDwbc9YdBWDiNY1RlBJaGUSNZ9Dr6NGiPnqdQrbmxnf5nZmUOYpczUhXUyxPeP6KQ1Xp00bm5hNCiJJIgVRDzFkXT5bFTtMQLwa0KDqhsKhdxl3XCfWC7oUHHGFMzboVVYPb3bcwMWgnvVtLgSSEECWRAqkGyLXa+XxNHOBsPSqxj4qoNaIbR/LSXQMx6HToFAWdorDG3oK3c68DYAI/YDiywsUphRCi6pJOCDXAvA3HSMu1UTfAgyFtwlwdR1QRN3RuSbfm9Vi6bg8HTyZjMhpo33ow6rFQdNtmw/f3wPjfIaSVq6MKIUSVIwVSNWexO/j0n1gA/tu3EQa9NAqK8+r4eDJ+4EWDhbZ5E9LiIP4fmDcC/vMneAW7JqAQQlRR8m5azS3acpKkTAuhPm4M6yjTR4hSMJhg+GwIaAQZx2H+SLDluTqVEEJUKVIgVUOJR1NY88Nm1v66jQ9XOefEu7d3Q8wGvYuTiWrDIwBGfgdufnBiE/wwkSJzmgghRC0ml9iqkTOn0pg56Ss2rdgJGmQ0rcup/p1xR+W29uGujieqm8DGMGIOzLnFOU1JYFPo+6SrUwkhRJUgLUjVRFZqNo/0f4UtK3eD5px89EzHZgB4bdjLO/d/iswaI8qsQW8Y8pbz8erpsOt71+YRQogqQgqkamLpR3+QcjIV1aECkN0gHGuALzqLFb9dh1n74xb2rDvk4pSiWooeC90nOR8vfQCOb3JtHiGEqAKkQKomln/9F+rZmdg14Ex0cwD8dx1Bb7Wj0+v4/Zs1LkwoqrX+L0CzweCwwPw7If2YqxMJIYRLSYFUTaQnZxY8zq4fRn5wAIrNjv9OZ6uR6lBJOZnqqniiutPpYdinENIGcpKdt//nZ15+PyGEqKGkk3Y14VvHm9SkDDRFIblbGwACdh7GkG8FQK/XERDq58KEotoze8HI+fDptXB6Lywaz77e77J852Ey8yxE1fHlpuiWBPp4ujqpEEJUOGlBqiauu6sXOr2OjBb1sfr7oM+zELBtf8F6h0NlwMgeLkwoagTfSLjzWzSDGxz6nc0f3s3Xf21h6cY9vPPrWvq99Clf/7XF1SmFEKLCSYFUTQx9YAA+4f6kdHJOC1Fn8z70VjsAik6h88C2tO3V3JURRU0REc3cwPsAuMu0nmG6jdhVFVXTUDWNN376m5+37nNxSCGEqFhSIFUTfoE+tHvpLuyebhgzsvHfcwQAvUHP9Xf34Zk5D6IoMkmtuHrHU9KZcdifWZZrAHjK/Ctd9UcK1ivAh7+vl2ElhBA1mvRBqiZSsi3M3X4KgKeHtqZu37oYTAba9W6Obx1vF6cTNcmqvbEoisIntt400KVwg3EXb7p9x8P5d7DJ0QANOJaSTlxyGg2DA1wdVwghKoQUSNXEuysPkWN10C7SlzEDWqLTSWuRqBh5VpuzNVJTmGa5iQhdOh30x/nC/WsW2GJ4yzKAXMzkWW2ujiqEEBVGLrFVA7HJ2czb4ByX5snrW0hxJCpU45A6OFTngKRWjNyfN5oFthgARhg3s8TjA3oaY4kM8HVlTCGEqFBSIFUDM347gF3VuLZ5MN0a1XF1HFHD9W7ZgAAvd851acvFzMuWGxifN4YTqh/hugw+NM/Gd8WjkJfu0qxCCFFRpECq4rYeS2PZ7kR0CjwxSO5SExXPqNfz2sjr0et06C9ordzoaMjt+Q+wVNfTuWDbXPigGxz8zUVJhRCi4kiBVIVpmsb0X523U98WHUmzUOmMLSpHt6b1mPvgCHq3aFjQkuRhMnJz9870nrIQxi2DgIaQlQDzhsPi+yBXRnIXQtQciib36l5SZmYmvr6+ZGRk4OPjU6nn/n1PIvfO2YKbUceqx/oS5uteqecXAiDXYiPXYsXXww2jQX9+hTUXVr0C694HNPAKgSFvQYsbCjY5mZbB7pNJ6HU6YupH4Ochr2EhROW42vdvuYutirI7VF5f7hwpe3zPBlIcCZfxMBvxMBuLrjB5wMBXoOVQ+OEBSDkIC0ZB61tJ6fU8z/2+lb8OxHHuE5hBp+PWmNY8eX0fzEb50yOEqNrkElsV9d3mExxJzsHfw8h9fRq5Oo4QJYvqBPf9Az0fAUUHuxdh+Kgb7od+4cLmabuqsnDTLibN+xFVlYZrIUTVJgVSFZRrtfP2HwcBmNyvCT5uxXx6F6IqMbpB/+dhwh+ketbHT8vmTd13vK1bQB2yCzZTNY01h47y75GjrssqhBClIAVSFfTZP3EkZ1moG+DBqC71XB1HiNKLiGaMMpEP1d7YNYWBun38qH+f65Q9BZvodQpLtu65xEGEEML1pECqYpKzLHz8l3Peq/8NbIbJIL8iUb2cyrEwS72WEY572a+F4K/kMVO/kJHKBgAcqkZiRvZljiKEEK4l775VzIVTigxpE+bqOEKUWR0vTwD2EcZwx73MUbsA8Ix+Gfcpf6NXIMTHy5URhRDisqRAqkJik7P5dqNMKSKqt1ujW6M7O3iSHT3T1UG8r/YB4CH9nzys/M7QDi1cGVEIIS5LCqQqRKYUETXBnV3aEuHnc8Eo3Arvq9fwuuM6AMbr/qXXwXdBdbgupBBCXIYUSFXElqMypYioGXzc3Zh773C6NapbaPk3Sk+WRt6PhoKy5UtYch84bC5KKYQQlyajtVUBmqbx2jLnlCK3R0fJlCKi2gvy9uKTscM4dib97EjaCp0aRBLg6QG7O8Pie2HXQrDmwG1fOocJEEKIKkQKpCpgxd4kNsWn4WbU8ciApq6OI0S5qVvHj7p1/AovbH0rmLzguzFw4FeYdzvc8S2YpeO2EKLqkEtsLnbxlCKhvvJJWtQCTQfCqO+dhVLc3zBnKOSluTqVEEIUkBakSpaTmctvX65i1bdryErPIb9La46ERRDgaZIpRUTt0qAXjPkR5g6DE5vgqxvgriXgFezqZEIIUX1akFJTUxk1ahQ+Pj74+fkxfvx4srNLHmwuNTWVSZMm0axZM9zd3albty6TJ08mIyOjElMXdio2iQmtp/DRlK/Zv+kwx+OS2eTtD0DzkyfxNFabX4cQ5SMyGsYtA68QSNoNXwyC9OOuTiWEENWnQBo1ahR79uxhxYoV/Pzzz/z999/ce++9JW6fkJBAQkICb7zxBrt37+arr75i+fLljB8/vhJTn6dpGs/e/DppiWlomgYapMW0xOHlgTEtk9OfL2PRWz+7JJsQLhXS0lkk+daF1CPwxSC0lENsPnaSZ3/5g/9+9yMvLl/FnlNJrk4qhKhFFE3Tqvy02vv27aNly5Zs2rSJmJgYAJYvX87gwYM5ceIE4eHhpTrOwoULGT16NDk5ORgMpbu6mJmZia+vLxkZGfj4+Fzxc9i+ajf/6/dCwfd2Dzfi770VzWQk9IfVeB+Ixz/Uj2+PfYTeoL/i8whRbWWchNk3w5lDZOp9GMVIDuvDcKgaep2CQ9W4tV0rXh7SH72u2ny2E0K4yNW+f1eLvzLr1q3Dz8+voDgC6N+/Pzqdjg0bNpT6OOd+SJcqjiwWC5mZmYW+ysOO1XvQXzCvWmr3dmgmI+ZTyXgdiAcgLTGdhCOJ5XI+Iaod3wgYt4wE9/r4ODKZ6/iK1g7nyPIO1fk5bvGOPbz393pXphRC1BLVokBKTEwkOLhwx02DwUBAQACJiaUrKFJSUnjppZcueVkOYPr06fj6+hZ8RUVFXXHuCzkb6pwjC2uKgrWOLwCBq7egFNquXE4nRLWUggdDbXewhSh8yecrx2y6qrEF6zXgq41bybPJAJNCiIrl0gLpySefRFGUS37t37//qs+TmZnJkCFDaNmyJc8///wlt506dSoZGRkFX8ePl0+H0Ta9WuCwO6dWUDSNiAW/Ezn3FzyOny/wfIN8CG8UUi7nE6I6Wht3jHTcuEd/F2uUhnhi41P1G25VtxZ8esix2th6PMHFSYUQNZ1Lb/N/9NFHufvuuy+5TcOGDQkNDeX06dOFltvtdlJTUwkNDb3k/llZWQwaNAhvb2+WLFmC0Wi85PZmsxmz2Vyq/GXRoV8bIpuGcSo2CYddRQHcE5IL1iuKwi2TB2MwysgLovaynv0QkaeYuE83krfV77lO28//t3ff8VFV6ePHP3f6pPdkQk2kQ+jCBkFAUFCwoiC4KKyICqz+dFkLu4rYUNS18EVFVgQUQcSGCKJSXJo0CV1qILQkQHqbTDm/P0IG0sgEEkLkeb9e8yK5c8655z6azJNz7zlnsnsRvbT9PK8bSLrmS6FL9nETQtSsWv00Dg8PJzw8vNJy8fHxZGRksGXLFjp16gTAihUrcLvddO3atcJ6WVlZ9OvXD7PZzKJFi7BYam8RRp1Ox4vfPc0/ek0k41QW6uwzFTq9DrfLTbc7ruXep++otf4JcSVobTt3K92hGXhMN5gH1Toed6+gn9pDB9dRJuhup0VE5b83hBDiUtSJWWwAN998MykpKXz44Yc4HA5GjhxJ586d+fzzzwE4fvw4ffr0Yc6cOXTp0oWsrCxuuukm8vLy+Oabb/D19fW0FR4ejl7v3Uyx6prF5mnvTDZLZvzC8rmryc3Mo0GLaAY+fBPX3dkFnczMEYJBH3/O7uRUXOf9amqlTvCm62uacLroQJfR0HcSmHxqqZdCiCvdpX5+15kEKS0tjXHjxvH999+j0+kYNGgQ7733Hn5+Rfs3HT58mJiYGFauXEmvXr1YtWoVvXv3LretxMREGjdu7NV5qztBEkJc2KEzaQyd9QVZBfYSSZIVJ8/rVzHIvqboQFgzuGsGRLevlX4KIa5sV02CVFskQRLi8kvOymbmht/5KmEX2XY7IT5WhnSI44GuHQk5sRa+HQs5yaAzQO8JcN3/A52sHyaEOEcSpBomCZIQtcvldpddGDIvDb5/DPZ8X/R9w3i4czoEN7r8HRRCXJEkQaphkiAJcYVSChI+h6VPQWEOmPzhlinQbijHs7OZt207648moRR0a9iQoe3aUk9+hoW4akiCVMMkQRLiCpeWCN88AkeLVthOadiH29M7c0az4j77602vaeg0jXcHDqBf06a12VshxGVyVWw1IoQQFQqJgZFL4IbnUDoDkUnL+S5nGt0cBzxFXErhdLt5bPEPJKan12JnhRB1hSRIQoi6T6eH68fzcfvXOaQLJVLlMDv/M54rWIpZFW1Loija8uezhIRa7aoQom6QBEkI8afxxRkDt/o8zBzjtQCMcGzkx9z3eahwLSHuXFxK8Wvi4drtpBCiTpAESQjxp+F2uynQjEyy3MLfrMNI1fxoqDJ4xv4La3Lf5u38r2idv192hRZCVEoe0q6EPKQtRN3x7LKf+GrXLs8Ck1ZVyEDHToY6ttDOfd4Gt2HNofNIaHcvWIPLtJNdaGfpgX2czM0h1OrDLdc0JcQqq3YLUZfILLYaJgmSEHXH7tRUbvv0M8r7pdbGdYKhji3co/5A78wrOmiwQOu7oPPfoH5n0DQ+3ZHAK+t+pcDpxKDTedZhGtupK//v2ng0Tbus1ySEuDiSINUwbwPscrlwOByXsWd/Pkaj0es98oSoyNyEbUxcvhydpnlGkvRnv37hhhsY3jIWdiyAzZ9Ays5zFSPj+L1+P+4/rCdHZy637X/+pTtjO1W8QbYQ4sohCVINqyzASimSk5PJyMi4/J37EwoKCiIqKkr+SheXJOHkSWb/vpW1SUkAdGvYgBEdO9LeZjtXSCk4thk2z4RdX4OzAIBcjHxniWOupRO7jLYS7VoNRjaPfARfk+myXYsQ4uJIglTDKgvwyZMnycjIICIiAh8fH/lgv0hKKfLy8khNTSUoKAibzVZ5JSGqS346SaunY98wg6au057DCYZoPrN25ntza+yaEYBp/QYyoEnz2uqpEMJLl5ogGWqgT1cNl8vlSY5CQ0Nruzt1ntVqBSA1NZWIiAi53SYuH2sw+5vdw4P7DHRxJHFfwRb62/fQ3nmC9tmLmJDzM19YOvCZtTNZdntt91YIcRlIgnQJip858vGR2S3VpTiWDodDEiRxWTUKCAJNY6OpERtNjQhx5zK4IIG/5m+mvjuTR/PXMTp/PRkbdoDlcYjtBTJiLMSfliRI1UBuq1UfiaWoLU1CQukQaWNbajJupUjT+fKhz3V8ZI2nT+F+HsjfRHfHIUKTVsKnKyGsGXQZXbRUgNnf087OMyl8vHMzK48dwqXcdAiPZmSrTvRuEFuLVyeEqCpZKFLUmBEjRnDHHXfUdjeE8NpLPftg1uvRn5eouzUdyy0teCB4OFsGfVuUFJn84PQ+WDIe3moJS/4Jp/bx3cHd3LpoDt8d2kO6PZ+sQjtrThxmxM8LeX3zr173w+5yciI3i6zCgou6jnR7Hsl5WTjd7ouqL4SQEaSr1ogRI5g9ezYABoOB+vXrc8899/Diiy9isVhquXdC1I424ZF8PWgYk9f9yuqjRzzrKXWMtPF0fA86RdeHuN5ww3Ow/QvY+FFRorTxI9j4EaGWGPr4dWK5tSloRX9/Fi818P72DVwbWZ8bGlxT4flP5efw3s41fHVoOwUuJxrQwxbL43E96BBWr9L+rzi5lw/+WMP29OMABBqtDI3txCPNe2A1GC8pNkJcbSRBuor179+fTz75BIfDwZYtW3jggQfQNI3XX3+9trsmRK1pGRbOnNvuJiU3h5SzK2nX8y81A8YSAF0egmtHQeKvsHEG7j+W0L0gke4FiRzVB/KZf0e+8WlDit4fNA29pvHxrs0VJkip+TnctWwWKfnZnqRKAWuTE1mbnMiMnoPpFV1xcjX34CZe3LYUHedGvzId+Xy0dy3rUhOZ0+N+SZKEqAK5xXYVM5vNREVF0aBBA+644w769u3Lzz//DBTtaTV58mRiYmKwWq20a9eOhQsXeuq6XC4efPBBz/vNmzfn3Xffra1LEaLaRfr60TYiqmxydD5NK3pY+965PNbuJaYFdCNNZ6WBK5NnM1ay8cRU9h6bwsoTHzAn+TPu2vk+rJwMv38KB1fA6f1QWLSq9+tbV5RIjoq5lMKtFP9Yv4hCl6vcbqTkZ/Py9h8BcJdaR9yNYmf6CWYf+O3igyHEVUhGkKqRUop8R/m/wGqa1ai/pAecd+7cybp162jUqBEAkydP5rPPPuPDDz+kadOm/O9//+Ovf/0r4eHh9OzZE7fbTf369fnyyy8JDQ1l3bp1jB49GpvNxuDBg6vrsoSoM9Kt4UwJ6s27gT0YmLub+3M207bwJBblJNaZRqwzDezArwll6rqtIYx0m7jJ4M9JYwAnzv5r1877FZ0D29f9l87h9cvU33JsFzdkHECdlxxlGCwk+ETj0nS4Ucw9tJmHm3eXiRBCeEkSpGqU73DR6vlltXLu3S/2w8dUtf+cixcvxs/PD6fTid1uR6fT8X//93/Y7XZeffVVfvnlF+Lj4wGIjY1lzZo1TJ8+nZ49e2I0Gpk0aZKnrZiYGNavX8+CBQskQRJXpZ71Ylh74gh2zcBXfm35yq8tRuUiypVNtDOT+q5sevkbuS3UDzKPnXsV5qDLT6MN0MaefOGTnPi63MO3nH2Vdtrgw9LAZiwJasFWFU2+y4GPQVYBF8IbkiBdxXr37s0HH3xAbm4ub7/9NgaDgUGDBrFr1y7y8vK48cYbS5QvLCykQ4cOnu+nTZvGzJkzSUpKIj8/n8LCQtq3b3+Zr0KIK8PgZnG8m7COPIfDc5vLoek5agjiqCGIjcD9A4ZDeKntTgoyOXZiJy8sn0m0M4toRxbRziyinNno1blZaBoa9XwDibT6lTl3Um46Z+y5JUaQYuzphDnzGH4mgeFnEjhh9Mfi54C290BU23LXcDqYncJXSZs4kJ2Cj8FMn6hW3GSLw6yXZ5fE1UcSpGpkNerZ/WK/Wjt3Vfn6+tKkSRMAZs6cSbt27fj4449p06YNAD/88AP16pWcOWM2F23iOX/+fMaPH89bb71FfHw8/v7+vPHGG2zYsOESr0SIuinIbGX2Tfdw/09fkn9ekqTXNBQwpXt/2oeX2kJH08AaRL3Y6ziyZxcrs85Q0d5PGrDytkfBL7jMe0dSDjBq7ecljhmUi27ZSdyS+Qc3Zh4g2pEN66cWvUKbQptBRa/wZgD898BK3t+3HL2mw6XcaGj8L/UPPtq/kuld/0a0T9nzlpZemM2607vJc9pp6BNO59Dm6DV51FXUTZIgVSNN06p8m+tKodPpmDBhAk8++ST79u3DbDaTlJREz549yy2/du1aunXrxpgxYzzHDh48eLm6K8QVqXNkPdbcM5oF+3aw8tghnG43HSOi+WuL9jQKqDjB0DSN/xfXg7+v/bbc93Vo3Nq4FQ3LSY4Arou4hjZBNvZkJnse8nZqev4XEMPqgBherO/imwYxND68AvYtgzP74dfXil5RcexrdB3fFOSDOQDX2VGr4tGo5IJMxm2aw8Lr/46ugmTH6Xbx4YHFfHNsLS7lRoeGG0WYOZBnW91Lp5Cm3oZQiCtG3fw0FzXinnvu4Z///CfTp09n/PjxPPHEE7jdbrp3705mZiZr164lICCABx54gKZNmzJnzhyWLVtGTEwMn376KZs2bSImJqa2L0OIWhVi8eGRtl15pG3XKtUb0KgVZwryeGXrL7jcCt3ZkSeXctOvQXNe6zqgwro6TWPGdcN4dP0XJKQdw3A2kXEqN1aDibeuvZPGtubQZQTYs+GPJbDzKzi4HJJ30Cx5Bz8A2/yi+DGkGb+ENOGMyRfOnv9w7inWnz7AdWdHm0p7d983LD7+m2f0q3j07Iw9i6cT/svUTmNpGdiwSvEQorZJgiQ8DAYD48aNY8qUKSQmJhIeHs7kyZM5dOgQQUFBdOzYkQkTJgDw8MMPs3XrVoYMGYKmaQwdOpQxY8awdOnSWr4KIequ+5t3ZmCjVnxzeCdJ2ekEmMwMaNSKFkERldYNMfsyv+dItpw5yvKTeyl0OWkRGMmABm1KPpht9od2Q4peeWnk7VjIrjXv0in7GO1ykmmXk8z4pNWkmPxIN1pJN1jJMPpgzDwEDbuCTxj4hoNvKPiEcVKv5/vj5S8hoFC4lZtPDi1jSoeHLtj/jMIsfklZx6Hcoxg1A51D4vhLaDuMOnn+SdQOTSlV0S1vAWRlZREYGEhmZiYBASXXQykoKCAxMZGYmBhZfbqaSEyFuLzO2HO4cflrhBXmcGPaAfqf2UdcbkqV2sjXGcgwWsgwWskwWjhj9uGwTzCHfEI46BtCpsnKd9dPItDoW2791ac2897+OZ7bexqcvUUXzKTWjxFtrTxBFKK0C31+e0NGkIQQ4ioWbPIhwhxAKjAvqj3zotoTVpiDrTCHYEc+wc58gh15DAiqzzU6HeSehrzTRf/mngaXHavbidWeg82eU+450oxWzEf3gK09RLaGiFYQ3gKMFv7IOsTb+2aVmIFX/FWaPZOJu97j/Y4TZSRJXHaSIAkhxFVMp+m4t3E8U/cu8yQmp01+nDYVLSegQ8PXYGZ0n6eh9HR/pfju0E8s2PM1gY48Ah0FBDvyibDnEpubRmxuGtEFWYQ48uHwmqJXMU0HoU1QVgt3m3Qc8QvksH8wpyy+qLNLELhxc9qezrrTW+kZ0eUyREOIcyRBEkKIq9x9Md3YmnaY1af2oqF5RnP0mg6DpuOtTsOwlLcWkqbRs0F3ph5ZwXHlX27bvm4Xd1vCGelTD1J3Q8quold+GpzeR0ug5Xnl8/UGdoRE8XO9JvweGo3S6dmcvlMSJHHZSYIkhBBXOaNOz1udhrH4eAJfHPmNwzmnMOuN9LPFMaxxNxr5hVVYN8jky8NNBjBt/6Iy7+nQoTf70L/zI2ANOfeGUpCdjDtlJ3M2vkqjnHQa5WTQICcTq8tJl1PH6HLqGGkmKyvqXcMpU70ybQtR0yRBEkIIgUGn544GnbijQacq172n4fX4G63MPLiMVHuG5/i1oc14rNkd2M5PjqBogcwAG7oAG1tzNrAoLxmFQu920yA3g54nE+l94hAhhfncnbgTEnfC7vXQ8X5oeSsYzGX6cCL/OBvTfiPHmUuoKYxuYd0INAZV+VqEKCaz2Cohs9guL4mpEHWXW7nZn32CPFcB9axhRFiCKq3zU/JaPjj4eZnjBreLa08d48bjB2l/5iRa8RNS1mBoN7QoWYpoidPtZNbhj/ktbT06dGhouClaCfzOendzs628XerKynakcyz/IDp0NPRtjlVf/ow7UXfILDYhhBBXBJ2mo3lA/SrV6RMZT0LGHtaf2Vri+Se3zshvkY25tvtzaMYoSJgLWz+DrOPw2/tFr/pd2NjoGhL8c8Ggx825vesUiq+OL8Df6E/3sB4Vnj/PmcOiE/9lW8Y61Nn6es1Al5C+3GK7H6NONve9WskIUiVkBOnykpgKcfVxKTfLU9ax+MQqjuafRIeOTsGtuaN+X1oFNDlX0O2CgytgyyzY9yO4nQDkGwxsjK7P6oaNORwYVGIj3lBTKJPj3ih3m5RCt50PDkwgueCoJzkqpqHRxK8tI2MmoNOqvtelqH0ygiSEEKJO02s6borqzk1R3T17uWnnJTkeOj00vbHolZ3CwXUv47v9K6Jyc+mZdJieSYc54edPqq8v2SYzOSYT2SYzafb3CQtq4Vn9G98wMFrZnLaCkwVHyu2TQrE/Zxt7s7fSMqDzBftf6M7nQPZ6cp1p+BlCuMa/Gyad93/gpdsPkJy/BRREWNsRamnhdV1RcyRBEkIIccXQV7Ahbhn+kRxodwtfheTQJO0UPZIO0+nkcaJzsonOyS5Zds+/ytY3+tLapNHApCPXZCLXbCTHbCLdx8rJQD+SA/1xGE1sSlt+wQTp97TvWJ06E4cqQEOHwo1Rs9IzchTtgwde8BLynWdYnfw8KflbKFo/HEARam7F9bZX8DPaKg2D3ZnKyZzvKXCewKgPJsp3AL4m2ROzOkiCdJUaMWIEGRkZfPvtt7XdFSGEuCg2SzRuTbEvNIx9oWHMa92WZmmnCbDb8S8sxK/QToC9kI7mxhjzMyD3TNEq4K5CcOQS6IDA3IrbP+NjJT3kD7jGDVFtILINBDUCXVESty39B1akvO8pX3ybzqHy+SV5KnrNSFxQv3LbdroL+Pn4OLIKkzy1i6XZ9/LTsUcY2PAzTPry15cCSMyYwYH0dwDQ0AGKQxnTiPYbRMuwieg0WX38UkiCJIQQok5qExhHkDGYTEcGCkWeyURCVLTnfR062gd1oGuTv5+rpBTYsyHvNPP2/JvCnOP42gvxtRfiZy8kLCcPW2Y2Qfl2QvPyCc07AsdeO1ff5A+RrXFHtiRN+42oQB1nAn1wGMo+p7Q6dSatAvug18p+1B7O/pnMwsRyr0vhIteZyv6s72gd/NdyyxzLWsCB9P+cV+fcM1Qncr5Gr1lpEVbOyJnwmiRIgl69ehEXF4der2f27NmYTCZefvllhg0bxrhx41i4cCGRkZFMnTqVm2++GQCXy8Xo0aNZsWIFycnJNGzYkDFjxvD444972nU6nTz55JPMmTMHvV7PqFGjSE5OJjMzU0auhBCXTKfpGBUzmrf3v4VS7hKz2HTo8DcGcG/DYSUraRpYAsASQHTTIfyY/FmJfeCK+dgLicrKYaDWieisXEjeAaf+gMJsOPobuqO/0ftsWQWk+1s4HWDFqS95i7Bg6xB8DcFl2vfN20R3V1qJYy6dhsOoO/vS47R+ADYLWALB7A/mADD7o8y+HEr7vwtERnEsez6xwY9g0odWXEq5ybGvJjt/JQoHVmNbgnxuQ6ezXqDtq4ckSNVJKXDk1c65jT4lZm5U1ezZs3nqqafYuHEjX3zxBY8++ijffPMNd955JxMmTODtt99m+PDhJCUl4ePjg9vtpn79+nz55ZeEhoaybt06Ro8ejc1mY/DgwQC8/vrrzJ07l08++YSWLVvy7rvv8u2339K7d+9KeiOEEN5pEdCSCS3+zaIT37E9MwGFwqgZ6RZ2HbfabifIVDY5KdY1tC8b0n4io/BUieQKIN9swdGwNZFNXoLiESCXA07vh5SdnD7yA9nHVxKRkYdvgYOQ7AJCsgvKOcsv5Z678qeLAFKBB8sc1YDrAadBw2nUcJp0OE0auQEGskONZIcYyQ5xcypvFfX8B5XbcqHzBIdPDcfu3Mu5VGA2JzNeoFHYR/hZKl4a4Woh0/wrUaVp/oW58Gp0BS3VsAknwOT9wmbnP4PUq1cvXC4Xq1evBopGhwIDA7nrrruYM2cOAMnJydhsNtavX89f/vKXctscN24cycnJLFy4EICoqCjGjx/P+PHjPe3GxsbSoUOHCkeQZJq/EOJiFbjyyXPl42/w83r9oixHOguOTuVAznbPMQ2NuMB47qr/CBa9T7n1juXtZP6RfwDgU1BIeEYeIVkF6Ep9pHYKuZMAY0SZ+vszF529xXauvM6tMDrcGB1uTIVufN2+ROqugYLMotuCxS+XvdLrUoAzKBxjvR5gawtRbcHWDnzDcKtC9if3odCZBLhK1dTQMNIkaikWY/OK21cO7Plfk587G5fzEJrmh9nnLqy+I9DrK/8cVM4kVN4cKFgKqgAMzdB8/gqWm9G8fVC/EjLNX1SLtm3ber7W6/WEhoYSFxfnORYZGQlAamqq59i0adOYOXMmSUlJ5OfnU1hYSPv27QHIzMwkJSWFLl26lGi3U6dOuN0l/1ITQojqYNFbseirdnsowBjMqNjnOVVwnCN5+9BpOmJ9WxNkqnj/OYB61tYEGW1kOpLJs5g4EmXiSNT5JTRCTPXpFftCuaP71px2/HZy/AXP0S3yOSIDBpQ5XlCQxG+JN2IodGNwuDE4FMYCN34ZDgLOOPBPc2DJc2PMOAUZX8Our89V9o/GFRFJUMAfFIToyA/V4/DTzuujQuHidNYM6oe+WW6/lLKTmTYCh/1/gA5wo1Q2+TkfUpD7KUFhX2IwtqnwulThRlTaKMCBJ0FzbEVlbgH7LxD4JtoVsPaUJEjVyehTNJJTW+e+lOrGkrMdNE0rcax4TZLi5Gb+/PmMHz+et956i/j4ePz9/XnjjTfYsGHDJfVDCCFqQ7ilHuEW7zfF1TSNG22PszDpX2i4SzzHpJ3d8uTGqMfKX88JqOfbjfq+PTiWuwZKPQOloSPc0o7G/jeVW9diaUhg8A2cyV+NOm8EKJXi5FCHvyOUrrrn0ZJ3wMltcHI7pB2E7BMYs08QeV57TjPYg/Q4fLWil48Op9+X0HgIBNjALwr059KFvOz3cNjXnP3u/D94XSiVS+aZvxESub7cJEepfFT6GKCwVN2zXxcsAWNH8B1e7rVfTpIgVSdNq9Jtrrps7dq1dOvWjTFjxniOHTx40PN1YGAgkZGRbNq0ieuvvx4ousX2+++/e0aZhBCiLmvk24HBDV9jVeoMUgr2eY5HWZrSM3I09X0qHkXRNB3X215l25kZ7M1YiFMVPb+q18w0DbydDqFj0F9gmn6L0H+x4cQQnO7MEkkS6NHQ07zhf9AsnaFJ33Nv2bMheSdnDoxHS/4D6xk3lnQ3BjsYUkrfarMDZ+tqOvCNgAAbKsCGTv8rVl8Hbh8Nt6+G21eH8uRCbuAohdoXmM3dy3Y8fwnkpJc9btWBoSiZVHmzweevFSaXl4skSOKiNG3alDlz5rBs2TJiYmL49NNP2bRpEzEx5xYo+/vf/87kyZNp0qQJLVq0YOrUqaSnp9f6//RCCFFdGvi2ZXjMVNLsR8l1puNnDCXY5N1IlF4z0jFsDG1D/kaafR+gCDY3wair/A9tq7E+f6m3kIPp0ziZ8z2KQkAj3KcXsUFjCDC3KlvJ7A+N4ikM7M/p7GOAC82lMKe7MWe6MeYpjLluDHkKc54Za0EIZJ8s2tIlJxlyktFObMW7m5iPlntU49ySmOdzDwiCBmZAgSsJVBZogV6dqaZIgiQuysMPP8zWrVsZMmQImqYxdOhQxowZw9KlSz1lnn76aZKTk7n//vvR6/WMHj2afv36odfX/r1lIYSoTiHmBoSYG1xUXYPOQoS1beUFS7EYbLQOf5kWof+m0J2GUReAQedXab0Q3/s4nT0dAKXXKAjTUxB2/u9ljejgV7H6DQe3G3JPQfYJyDqBO2MH+clvos9V6PIUulw3ulyFVubRUgNaOes/KXXec0fnK5M11f7nhMxiq4RsVlt93G43LVu2ZPDgwbz00kvllpGYCiFEzTuVNY3kzMkUP2R9jg4/c3cah89GK+cWn1Ju0lL+gtt9/ILtB4Z+jcnctWz9gmWojL+XU+Pc+TG0RBf2jVfXcSGXOouteubSCVGOI0eOMGPGDPbt28eOHTt49NFHSUxMZNiwYZVXFkIIUWPCA8bSMHQ6FmNrzzGDLoLIwKdoFD6r3OQIip6d8vEv//ZZET0GYxxGU5fy3zb3AX09Kh4hcqP5PuTVNdQ0ucUmaoxOp2PWrFmMHz8epRRt2rThl19+oWXLlrXdNSGEuOoF+gwg0GcATlc6ikIMujCvptdbfEbgdBygIG8WRYmOi+KRKJ2+IQEhMyt81lTTDBD8MSrtfnCnUnRvTXna0fz+jma9pZqu8NJIgiRqTIMGDVi7dm1td0MIIcQFGPQVrzZeHk3T8A96BYvPneTnzsXl3I+mC8RivR2z9VY07cKPcWuGWAj7EQq+RxUsA5UHhhZoPveiGct5uLyWSIIkhBBCiCozmjpjNHW+qLqazg98hqL5DK3mXlUfeQZJCCGEEKIUSZCqgUwErD4SSyGEEFeCOpMgpaWlcd999xEQEEBQUBAPPvggOTk5XtVVSnHzzTejaVqFm6RejOKtOPLy8qqtzatdcSxLb30ihBBCXE515hmk++67j5MnT/Lzzz/jcDgYOXIko0eP5vPPP6+07jvvvFMjqzfr9XqCgoI8G7j6+PjIKtEXSSlFXl4eqampBAUFyWKSQgghalWdSJD27NnDjz/+yKZNm+jcueiBsKlTp3LLLbfw5ptvEh0dXWHdhIQE3nrrLTZv3ozNZqv2vkVFFW3ffP4u9+LiBQUFeWIqhBBC1JY6kSCtX7+eoKAgT3IE0LdvX3Q6HRs2bODOO+8st15eXh7Dhg1j2rRpNfahq2kaNpuNiIgIHA5HjZzjamE0GmXkSAghxBWhTiRIycnJRERElDhmMBgICQkhOTm5wnpPPPEE3bp14/bbb/f6XHa7Hbvd7vk+KyvLq3p6vV4+3IUQQog/iVp9SPuZZ55B07QLvv7444+LanvRokWsWLGCd955p0r1Jk+eTGBgoOfVoMHFbT4ohBBCiLqrVkeQ/vGPfzBixIgLlomNjSUqKqrMMz5Op5O0tLQKb52tWLGCgwcPEhQUVOL4oEGD6NGjB6tWrSq33rPPPsuTTz7p+T4rK0uSJCGEEOIqU6sJUnh4OOHh4ZWWi4+PJyMjgy1bttCpUyegKAFyu9107Vp2t2AoGp0aNWpUiWNxcXG8/fbb3HrrrRWey2w2Yzabq3AVQgghhPizqRPPILVs2ZL+/fvz0EMP8eGHH+JwOBg3bhz33nuvZwbb8ePH6dOnD3PmzKFLly5ERUWVO7rUsGFDYmJivD538cKF3j6LJIQQQojaV/y5fbELENeJBAlg7ty5jBs3jj59+qDT6Rg0aBDvvfee532Hw8HevXurfdHG7OxsALnNJoQQQtRB2dnZBAYGVrmepmRvhwtyu92cOHECf3//al0EsvjZpqNHjxIQEFBt7f4ZSayqRuLlPYmV9yRW3pNYea8mY6WUIjs7m+joaHS6qs9JqzMjSLVFp9NRv379Gms/ICBAfoC8JLGqGomX9yRW3pNYeU9i5b2aitXFjBwVqzN7sQkhhBBCXC6SIAkhhBBClCIJUi0xm81MnDhRlhTwgsSqaiRe3pNYeU9i5T2Jlfeu5FjJQ9pCCCGEEKXICJIQQgghRCmSIAkhhBBClCIJkhBCCCFEKZIgCSGEEEKUIglSBaZNm0bjxo2xWCx07dqVjRs3XrD8l19+SYsWLbBYLMTFxbFkyZIS7yuleP7557HZbFitVvr27cv+/ftLlElLS+O+++4jICCAoKAgHnzwQXJyckqU2b59Oz169MBisdCgQQOmTJlS5b5Ut7oaqxkzZtCjRw+Cg4MJDg6mb9++lfb9UtXVWJ1v/vz5aJrGHXfcUbWLr6K6HKuMjAzGjh2LzWbDbDbTrFmzGv05rMuxeuedd2jevDlWq5UGDRrwxBNPUFBQcJGRqNyVGKuCggJGjBhBXFwcBoOhwp+tVatW0bFjR8xmM02aNGHWrFkXFYOqqKvx+vrrr7nxxhsJDw8nICCA+Ph4li1bVrWLV6KM+fPnK5PJpGbOnKl27dqlHnroIRUUFKRSUlLKLb927Vql1+vVlClT1O7du9W///1vZTQa1Y4dOzxlXnvtNRUYGKi+/fZbtW3bNnXbbbepmJgYlZ+f7ynTv39/1a5dO/Xbb7+p1atXqyZNmqihQ4d63s/MzFSRkZHqvvvuUzt37lTz5s1TVqtVTZ8+vUp9qU51OVbDhg1T06ZNU1u3blV79uxRI0aMUIGBgerYsWM1EKm6HatiiYmJql69eqpHjx7q9ttvr77glFKXY2W321Xnzp3VLbfcotasWaMSExPVqlWrVEJCQg1Eqm7Hau7cucpsNqu5c+eqxMREtWzZMmWz2dQTTzxRA5G6cmOVk5OjHnnkEfXRRx+pfv36lfuzdejQIeXj46OefPJJtXv3bjV16lSl1+vVjz/+WH0BKqUux+vxxx9Xr7/+utq4caPat2+fevbZZ5XRaFS///6719cvCVI5unTposaOHev53uVyqejoaDV58uRyyw8ePFgNGDCgxLGuXbuqhx9+WCmllNvtVlFRUeqNN97wvJ+RkaHMZrOaN2+eUkqp3bt3K0Bt2rTJU2bp0qVK0zR1/PhxpZRS77//vgoODlZ2u91T5umnn1bNmzf3ui/VrS7HqjSn06n8/f3V7Nmzvb38KqnrsXI6napbt27qv//9r3rggQdqNEGqy7H64IMPVGxsrCosLLzYy6+SuhyrsWPHqhtuuKFEX5588kl13XXXVSkG3rpSY3W+in62nnrqKdW6desSx4YMGaL69etXyVVfvLocr/K0atVKTZo0yauySiklt9hKKSwsZMuWLfTt29dzTKfT0bdvX9avX19unfXr15coD9CvXz9P+cTERJKTk0uUCQwMpGvXrp4y69evJygoiM6dO3vK9O3bF51Ox4YNGzxlrr/+ekwmU4nz7N27l/T0dK/6Up3qeqxKy8vLw+FwEBISUpUweOXPEKsXX3yRiIgIHnzwwYsNg1fqeqwWLVpEfHw8Y8eOJTIykjZt2vDqq6/icrkuJSzlquux6tatG1u2bPHctjl06BBLlizhlltuueiYVORKjpU3Lufvdqj78SrN7XaTnZ1dpd/vkiCVcvr0aVwuF5GRkSWOR0ZGkpycXG6d5OTkC5Yv/reyMhERESXeNxgMhISElChTXhvnn6OyvlSnuh6r0p5++mmio6PL/IBXh7oeqzVr1vDxxx8zY8YM7y74EtT1WB06dIiFCxficrlYsmQJzz33HG+99RYvv/yydwGogroeq2HDhvHiiy/SvXt3jEYj11xzDb169WLChAneBaAKruRYeaOivmRlZZGfn+91O96q6/Eq7c033yQnJ4fBgwd7XUcSJCGA1157jfnz5/PNN99gsVhquztXlOzsbIYPH86MGTMICwur7e5c8dxuNxEREXz00Ud06tSJIUOG8K9//YsPP/ywtrt2xVm1ahWvvvoq77//Pr///jtff/01P/zwAy+99FJtd038iXz++edMmjSJBQsWlEm+LkQSpFLCwsLQ6/WkpKSUOJ6SkkJUVFS5daKioi5YvvjfysqkpqaWeN/pdJKWllaiTHltnH+OyvpSnep6rIq9+eabvPbaa/z000+0bdv2whd9kepyrA4ePMjhw4e59dZbMRgMGAwG5syZw6JFizAYDBw8eNDrOHijLscKwGaz0axZM/R6vadMy5YtSU5OprCwsJKrr5q6HqvnnnuO4cOHM2rUKOLi4rjzzjt59dVXmTx5Mm6327sgeOlKjpU3KupLQEAAVqvV63a8VdfjVWz+/PmMGjWKBQsWVPnugCRIpZhMJjp16sTy5cs9x9xuN8uXLyc+Pr7cOvHx8SXKA/z888+e8jExMURFRZUok5WVxYYNGzxl4uPjycjIYMuWLZ4yK1aswO1207VrV0+Z//3vfzgcjhLnad68OcHBwV71pTrV9VgBTJkyhZdeeokff/yxxD3v6laXY9WiRQt27NhBQkKC53XbbbfRu3dvEhISaNCgwSVGp6S6HCuA6667jgMHDpT4gN+3bx82m63E8zjVoa7HKi8vD52u5MdQcWKpqnmb0Cs5Vt64nL/boe7HC2DevHmMHDmSefPmMWDAgCrVBWSaf3nmz5+vzGazmjVrltq9e7caPXq0CgoKUsnJyUoppYYPH66eeeYZT/m1a9cqg8Gg3nzzTbVnzx41ceLEcqc2BgUFqe+++05t375d3X777eVObezQoYPasGGDWrNmjWratGmJqY0ZGRkqMjJSDR8+XO3cuVPNnz9f+fj4lJnmX1lfJFbnzmMymdTChQvVyZMnPa/s7GyJValYlVbTs9jqcqySkpKUv7+/GjdunNq7d69avHixioiIUC+//LLEqlSsJk6cqPz9/dW8efPUoUOH1E8//aSuueYaNXjw4KsqVkoptWvXLrV161Z16623ql69eqmtW7eqrVu3et4vnub/z3/+U+3Zs0dNmzbtskzzr6vxmjt3rjIYDGratGklfr9nZGR4ff2SIFVg6tSpqmHDhspkMqkuXbqo3377zfNez5491QMPPFCi/IIFC1SzZs2UyWRSrVu3Vj/88EOJ991ut3ruuedUZGSkMpvNqk+fPmrv3r0lypw5c0YNHTpU+fn5qYCAADVy5MgyH9bbtm1T3bt3V2azWdWrV0+99tprZfpeWV+qW12NVaNGjRRQ5jVx4sRLD0oF6mqsSqvpBEmpuh2rdevWqa5duyqz2axiY2PVK6+8opxO5yVGpGJ1NVYOh0O98MIL6pprrlEWi0U1aNBAjRkzRqWnp196UCpwpcaqot9H51u5cqVq3769MplMKjY2Vn3yySeXHpBK1NV49ezZs9z3S/f3QjSlqnkcUwghhBCijpNnkIQQQgghSpEESQghhBCiFEmQhBBCCCFKkQRJCCGEEKIUSZCEEEIIIUqRBEkIIYQQohRJkIQQQgghSpEESQjxp9a4cWPeeeedy37eESNGoGkamqbx7bffelWncePGnjoZGRk12j8hxIVJgiSEqHHFH/oVvV544QUAHnvsMTp16oTZbKZ9+/YXbHPVqlWVtrtq1So2bdrE6NGja/4iy9G/f39OnjzJzTff7FX5TZs28dVXX9Vwr4QQ3jDUdgeEEH9+J0+e9Hz9xRdf8Pzzz7N3717PMT8/P8/Xf/vb39iwYQPbt2+/YJvdunUr0e7jjz9OVlYWn3zyiedYSEhItW8QWxVms7lKO5CHh4cTEhJSgz0SQnhLRpCEEDUuKirK8woMDETTtBLHihOk9957j7FjxxIbG1tpmyaTqUQbVqvVk5AUv0wmU5lbbJqmMX36dAYOHIiPjw8tW7Zk/fr1HDhwgF69euHr60u3bt04ePBgifN99913dOzYEYvFQmxsLJMmTcLpdFYpDoWFhYwbNw6bzYbFYqFRo0ZMnjy5Sm0IIS4PSZCEEFedl156ifvvv5+EhARatGjBsGHDePjhh3n22WfZvHkzSinGjRvnKb969Wruv/9+Hn/8cXbv3s306dOZNWsWr7zySpXO+95777Fo0SIWLFjA3r17mTt3Lo0bN67mqxNCVAe5xSaEuOqMHDmSwYMHA/D0008THx/Pc889R79+/YCi23UjR470lJ80aRLPPPMMDzzwAACxsbG89NJLPPXUU0ycONHr8yYlJdG0aVO6d++Opmk0atSoGq9KCFGdJEESQlx12rZt6/k6MjISgLi4uBLHCgoKyMrKIiAggG3btrF27doSI0Yul4uCggLy8vLw8fHx6rwjRozgxhtvpHnz5vTv35+BAwdy0003VdNVCSGqkyRIQoirjtFo9HytaVqFx9xuNwA5OTlMmjSJu+66q0xbFovF6/N27NiRxMREli5dyi+//MLgwYPp27cvCxcuvKjrEELUHEmQhBCiEh07dmTv3r00adLkktsKCAhgyJAhDBkyhLvvvpv+/fuTlpYms9eEuMJIgiSEuGIcOHCAnJwckpOTyc/PJyEhAYBWrVrV6nT9559/noEDB9KwYUPuvvtudDod27ZtY+fOnbz88stet/Of//wHm81Ghw4d0Ol0fPnll0RFRREUFFRznRdCXBRJkIQQV4xRo0bx66+/er7v0KEDAImJibU626tfv34sXryYF198kddffx2j0UiLFi0YNWpUldrx9/dnypQp7N+/H71ez7XXXsuSJUvQ6WRCsRBXGk0ppWq7E0II8WczYsQIMjIyvN5mpNiqVavo3bs36enpMrIkRC2SP1uEEKKGLF68GD8/PxYvXuxV+datW3u9LYkQombJCJIQQtSA1NRUsrKyALDZbPj6+lZa58iRIzgcDqBorSW59SZE7ZEESQghhBCiFPnzRAghhBCiFEmQhBBCCCFKkQRJCCGEEKIUSZCEEEIIIUqRBEkIIYQQohRJkIQQQgghSpEESQghhBCiFEmQhBBCCCFKkQRJCCGEEKKU/w+I4I8+aAwMBQAAAABJRU5ErkJggg==\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - examples_18_0.png" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGxCAYAAACOSdkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZRklEQVR4nO3deVxUVf8H8M+dGRj2RWVVEBdU3A0T0UxNUnJJU3vUXInMStKkTVvUMsXHJ5c0y9zN9HHX/Klh5vqk5IJaLrgC4gYuKCgoy8z5/UFMjmwzwGzM5/16zau4c+6933GA+XDuuedIQggBIiIiIiskM3UBRERERKbCIERERERWi0GIiIiIrBaDEBEREVktBiEiIiKyWgxCREREZLUYhIiIiMhqMQgRERGR1VKYugBzp1arcePGDTg7O0OSJFOXQ0RERDoQQuDBgwfw9fWFTFZyvw+DUBlu3LgBPz8/U5dBRERE5XD16lXUqlWrxOcZhMrg7OwMoOAf0sXFxcTVEBERkS4yMzPh5+en+RwvCYNQGQovh7m4uDAIERERWZiyhrVwsDQRERFZLQYhIiIisloMQkRERGS1OEaIiKgSqVQq5OXlmboMoirPxsYGcrm8wsdhECIiqgRCCKSmpuL+/fumLoXIari5ucHb27tC8/wxCBERVYLCEOTp6QkHBwdOwEpkQEIIZGdn49atWwAAHx+fch+LQcgEhBC4l52HrJx8OCoVcHew4S9NIgumUqk0Iah69eqmLofIKtjb2wMAbt26BU9Pz3JfJmMQMqKMR3nYGH8NKw4l40p6tmZ77WoOGN4uAP2Ca8HV3saEFRJReRSOCXJwcDBxJUTWpfBnLi8vj0HI3O2/cBtv/xSPR7mqIs+lpGdjyraz+PrX8/h+SDA6NvAwQYVEVFHs2SUyrsr4mePt80aw/8JtRCw7gkd5KggA4qnnC7c9ylMhYtkR7L9w2/hFEhFVcfv27YMkSWYxoH358uVwc3MzdRkVEhAQgDlz5pi6jApjEDKwjEd5ePun+IKw83QCeooQBYHo7Z/ikfGIt98SkeGNGDECkiRBkiTY2NjAy8sLL774IpYuXQq1Wq3Xscz9w71du3a4efMmXF1dTV0KBgwYgAsXLpi6DAKDkMFtjL+GR7mqMkNQISGAR7kqbDp+zbCFEZHZUqlUELr+0qgE4eHhuHnzJpKTk/HLL7+gc+fOGDt2LHr27In8/Hyj1WFotra2Fb7VurLY29vD09PT4OfhnFZlYxAyICEEVhxKLte+yw8mG/UXIRGZVn5ePn6eH4uIoLEItxmI7naD8OWrM3HuyEWDn1upVMLb2xs1a9bEM888g08++QQ///wzfvnlFyxfvlzTbtasWWjWrBkcHR3h5+eHd955Bw8fPgRQcNkpIiICGRkZmh6myZMnAwBWrlyJ1q1bw9nZGd7e3njttdc0tz2X5N69exg2bBjc3d3h4OCAl156CRcv/vNvUdj7tHPnTgQFBcHJyUkT6Ery9KWxwmNs27YNDRs2hIODA/r374/s7GysWLECAQEBcHd3x5gxY6BS/TO+U5fXs3XrVgQGBsLOzg6dO3fGihUrij13ocmTJ6Nly5ZYuXIlAgIC4OrqioEDB+LBgweaNrGxsXjuuefg5uaG6tWro2fPnrh8+bLm+eTkZEiShLVr16Jjx46ws7PDwoUL4eLigg0bNmjVt2XLFjg6Omod/0mdOnVCVFQUoqKi4Orqiho1auDzzz8v9XOptO+PJ19zWe/Z4sWLERQUBDs7OzRq1AjfffddieesDAxCBnQvOw9X0rOLjAkqiwBwJT0b97OZ5ImsQX5ePib1mYH5Y5bi2oUbf29T4dDPRzC2/Wf436bDRq/phRdeQIsWLbBp0ybNNplMhrlz5+LMmTNYsWIF9uzZg48++ghAwWWnOXPmwMXFBTdv3sTNmzfxwQcfACjolZgyZQr+/PNPbNmyBcnJyRgxYkSp5x8xYgSOHTuGrVu3Ii4uDkIIdO/eXauHIzs7G19//TVWrlyJAwcOICUlRXNOXWVnZ2Pu3LlYs2YNYmNjsW/fPrzyyivYsWMHduzYgZUrV+KHH37QChJlvZ6kpCT0798fffr0wZ9//olRo0bh008/LbOWy5cvY8uWLdi2bRu2bduG/fv3Y/r06Zrns7KyEB0djWPHjmH37t2QyWR45ZVXilzCHD9+PMaOHYuEhAT07dsXAwcOxLJly7TaLFu2DP3794ezs3OJ9axYsQIKhQJHjhzBN998g1mzZmHx4sUlti/t+6NQWe/ZqlWrMHHiREydOhUJCQmYNm0aPv/8c6xYsaLMf79yE1SqjIwMAUBkZGTovW/K3SxR++Nt5X6k3M0ywCsiosr26NEjcfbsWfHo0aNy7b9x9jbxouxVESb1L/J4Ufaq6G4/SGTczazkqgsMHz5c9O7du9jnBgwYIIKCgkrcd/369aJ69eqar5ctWyZcXV3LPOfRo0cFAPHgwYNin79w4YIAIA4ePKjZdufOHWFvby/WrVunORcAcenSJU2b+fPnCy8vrxLPu3fvXgFA3Lt3r8RjjBo1Sjg4OGjV1q1bNzFq1CidX8/HH38smjZtqtXm008/LXLuJ/+tJk2aJBwcHERm5j/v84cffihCQkJKPO/t27cFAHHq1CkhhBBJSUkCgJgzZ45Wu8OHDwu5XC5u3LghhBAiLS1NKBQKsW/fvhKP3bFjRxEUFCTUarVm28cff6z1/VC7dm0xe/bsEo9R3PdHWe9ZvXr1xOrVq7WOM2XKFBEaGlrsOUr72dP185s9QgbkqKzY7AROFdyfiMyfEAKb5m4v8ZKDEAJ5OfnYtWK/kSsrOPeT42l+++03dOnSBTVr1oSzszOGDh2Ku3fvIjs7u5SjAPHx8ejVqxf8/f3h7OyMjh07AgBSUlKKbZ+QkACFQoGQkBDNturVq6Nhw4ZISEjQbHNwcEC9evU0X/v4+JR5ye1pTx/Dy8sLAQEBcHJy0tr25HHLej3nz5/Hs88+q3WeNm3alFlLQECAVg/N06/n4sWLGDRoEOrWrQsXFxcEBARonbdQ69ati5y7SZMmml6Vn376CbVr18bzzz9faj1t27bVev9DQ0Nx8eJFrcuET9Ll+6O09ywrKwuXL19GZGQknJycNI+vvvpK6xJgZWMQMiB3BxvUruYAfYflSSiYZNHNgZMrElV1j7MeIy259CkzJJmESyeTjFTRPxISElCnTh0ABeNPevbsiebNm2Pjxo2Ij4/H/PnzAQC5ubklHiMrKwvdunWDi4sLVq1ahaNHj2Lz5s1l7qcLGxvt35GSJOk9trK4YxS3rfDyk7Ffz5OXvXr16oX09HQsWrQIhw8fxuHDh4s9r6OjY5Fjv/HGG5rxXsuWLUNERESlDhrX9fujtPescDzRokWLcPLkSc3j9OnT+OOPPyqt1qcxCBmQJEkY3i6gXPuOaB9gFnc2EJFhyW3K7vmVJMDG1rh/GO3ZswenTp1Cv379ABT0gqjVasycORNt27ZFgwYNcOPGDa19bG1ti/QWnDt3Dnfv3sX06dPRoUMHNGrUqMxem6CgIOTn52s+6AHg7t27OH/+PBo3blxJr7B8dHk9DRs2xLFjx7S2HT16tELnLXz9n332Gbp06YKgoCDcu3dP5/2HDBmCK1euYO7cuTh79iyGDx9e5j5P/vsDwB9//IHAwMBiZ3DW5fujLF5eXvD19UViYiLq16+v9SgM5IbAIGRg/YJrwd5WDl0zjUwC7G3l6PtMLcMWRkRmwVZpg1YvNIVMXvKvY1W+Gm17BhushpycHKSmpuL69es4fvw4pk2bht69e6Nnz54YNmwYAKB+/frIy8vDvHnzkJiYiJUrV2LBggVaxwkICMDDhw+xe/du3LlzB9nZ2fD394etra1mv61bt2LKlCml1hMYGIjevXtj5MiR+P333/Hnn39iyJAhqFmzJnr37m2wfwdd6PJ6Ro0ahXPnzuHjjz/GhQsXsG7dOk1vTHn/wHV3d0f16tWxcOFCXLp0CXv27EF0dLRe+/ft2xcffvghunbtilq1yv6MSUlJQXR0NM6fP4///ve/mDdvHsaOHVtsW12+P3TxxRdfICYmBnPnzsWFCxdw6tQpLFu2DLNmzdL7WLpiEDIwV3sbfD8kGBJQZhgqfH7BkGCuOUZkRQZO6Au1qvjJC+UKGWo18EFIj2cMdv7Y2Fj4+PggICAA4eHh2Lt3L+bOnYuff/5Z89d/ixYtMGvWLPz73/9G06ZNsWrVKsTExGgdp127dnjrrbcwYMAAeHh4YMaMGfDw8MDy5cuxfv16NG7cGNOnT8fXX39dZk3Lli1DcHAwevbsidDQUAghsGPHjiKXVoxNl9dTp04dbNiwAZs2bULz5s3x/fffa+4aUyqV5TqvTCbDmjVrEB8fj6ZNm2LcuHH4z3/+o9cxIiMjkZubi9dff12n9sOGDcOjR4/Qpk0bjB49GmPHjsWbb75ZbFtdvj908cYbb2Dx4sVYtmwZmjVrho4dO2L58uUG7RGShL4XVK1MZmYmXF1dkZGRARcXl3If5+m1xp78Ry/MR/a2ciwYEoznudYYkUV5/PgxkpKSUKdOHdjZ2ZXrGDsW/YZv3lkEAFCr1ZDJZFCr1PCt740ZuybCqzZ/L1iyqVOnYsGCBbh69arJali5ciXGjRuHGzduwNbWttS2nTp1QsuWLc1+CY3SfvZ0/fzmbUlG0rGBB+ImdMGm49ew/KD26vP+1Rwwon3B6vMuduwJIrJG3UeG4dmXWuGXxbuRdDoFSntbhL78LNr3eRYKHcYRkXn57rvv8Oyzz6J69eo4ePAg/vOf/yAqKsoktWRnZ+PmzZuYPn06Ro0aVWYIsjb86TIiV3sbRLSvgxHtAnA/Ow8Pc/LhpFTAzcGGA6OJCB61qmPY5H+ZugyqBBcvXsRXX32F9PR0+Pv74/3338eECRNMUsuMGTMwdepUPP/88yarwZzx0lgZKuvSGBFVXZVxaYyI9FcZl8Y4WJqIiIisFoMQERERWS2LC0Lz589HQEAA7OzsEBISgiNHjpTa/v79+xg9ejR8fHygVCrRoEED7Nixw0jVEhERkTmzqMHSa9euRXR0NBYsWICQkBDMmTMH3bp1w/nz5+Hp6VmkfW5uLl588UV4enpiw4YNqFmzJq5cuQI3NzfjF09ERERmx6KC0KxZszBy5EhEREQAABYsWIDt27dj6dKlGD9+fJH2S5cuRXp6Og4dOqSZhKtwkToiIiIii7k0lpubi/j4eISFhWm2yWQyhIWFIS4urth9tm7ditDQUIwePRpeXl5o2rQppk2bVuLKuUDBVPOZmZlaDyIiYxFCID0rF1fTs5Gelav3IqJEpB+L6RG6c+cOVCoVvLy8tLZ7eXnh3Llzxe6TmJiIPXv2YPDgwdixYwcuXbqEd955B3l5eZg0aVKx+8TExOCLL76o9PqJiEqT8SgPG+OvYcUh7QlXa1dzwPB2BROucukdospnMT1C5aFWq+Hp6YmFCxciODgYAwYMwKefflrqQnATJkxARkaG5mHK6dCJyDrsv3AboTG7MWXbWaQ8EYIAICU9G1O2nUVozG7sv3DbIOfft28fhw2Q1bKYIFSjRg3I5XKkpaVpbU9LS4O3t3ex+/j4+KBBgwaaRQMBICgoCKmpqcjNzS12H6VSCRcXF60HEZGh7L9wGxHLjuBRngoC2usQ4u+vBYBHeSpELDtisDD0pPT0dAwePBguLi5wc3NDZGQkHj58aPDzEpmCxQQhW1tbBAcHY/fu3ZptarUau3fvRmhoaLH7tG/fHpcuXYJa/c+qzhcuXICPjw/XWiEik8t4lIe3f4ovCDtlDAUSoiAQvf1TPDIe5Rm0rsGDB+PMmTPYtWsXtm3bhgMHDmitOv748WPcvm34QEZkDBYThAAgOjoaixYtwooVK5CQkIC3334bWVlZmrvIhg0bprWOyttvv4309HSMHTsWFy5cwPbt2zFt2jSMHj3aVC+BiEhjY/w1PMpVlRmCCgkBPMpVYdPxawarKSEhAbGxsVi8eDFCQkLw3HPPYd68eVizZg1u3LgBoKAnvmbNmujTpw82b96MvDzDBjMiQ7KoIDRgwAB8/fXXmDhxIlq2bImTJ08iNjZWM4A6JSUFN2/e1LT38/PDzp07cfToUTRv3hxjxozB2LFji73VnojImIQQWHEouVz7Lj+YbLC7yeLi4uDm5obWrVtrtoWFhUEmk+Hw4cMAgNq1ayMuLg61a9fGqFGj4OPjgzFjxiA+Pt4gNREZksXcNVYoKioKUVFRxT63b9++IttCQ0Pxxx9/GLgqIiL93MvO07o7TFcCwJX0bNzPzoO7Y+Vf4k9NTS0yQa1CoUC1atWQmpqq2RYcHIzg4GDMnDkTv/zyC3788Ue0b98egYGBGD58OIYOHVrkLl8ic2RRPUJERFVFVk5+hfZ/WMH9K4tCoUCvXr2wfv16JCUlwdvbGx9++CFiYmJMXRqRThiEiIhMwFFZsQ55pwruXxJvb2/cunVLa1t+fj7S09OLvUNXCIEDBw5g5MiRCAoKwqVLlzBx4kRER0cbpD6iymZxl8aIiKoCdwcb1K7mgJT07CK3zJdGAuBfzQFuDoaZXDE0NBT3799HfHw8goODAQB79uyBWq1GSEiIpt2FCxewcuVK/PTTT7hz5w769++PLVu2oGPHjpAkySC1ERkCgxARkQlIkoTh7QIwZdtZvfcd0T7AYGEjKCgI4eHhGDlyJBYsWIC8vDxERUVh4MCB8PX1BVBwY0pQUBA6deqEL774Av369YOjo6NB6iEyNAYhKpNKpcaJPWeQdPYalPa2CAlvAS//GqYui8ji9Quuha9/PV8wmaIO3UIyCbCzkaPvM7UMWteqVasQFRWFLl26QCaToV+/fpg7d67m+Ro1aiApKQn+/v4GrYPIGBiEqFRnD19EzIgFuH09HTK5DEIt8P2Hq/DCwFCMmTMcSntOTElUXq72Nvh+SDAilh0BpNInVSzsAFowJNjga45Vq1YNq1evLvF5BwcHhiCqMjhYmkqUfPYaxvf6D+7evAcAUKvUEEJACIE9a+MwPfIHE1dIZPk6NvDAsog2sLeRQ0LBGKAnFW6zt5FjeUQbPN/Aw/hFElVh7BGiEv33P9uQn6eCWl30z1ShFojbdhwXjiehwTN1TFAdUdXRsYEH4iZ0wabj17D8oPbq8/7VHDCifcHq8y52XH2eqLIxCFGx8nLz8fvPR6FWqUtsI1fIsG/DYQYhokrgam+DiPZ1MKJdAO5n5+FhTj6clAq4OdgY/C6sgIAAvPfeewY9B5G5YhCiYj1++Biq/JJDEFAwniEznStSE1UmSZLg7mhrkFmjS8IgRNaMY4SoWA6uDrB3siuznXdt3j1GRESWi0GIiiWXyxA+/HnI5CV/iwi1wIuDnzNiVURERJWLQYhKNOD9Hqjh615iGBoyoTfnEyIiIovGMUJUIrcaLpiz53MsnPBfHNj8z8DpGr7uGDy+N8KHP2/iCoksXMY1IOuO/vs5egCuNSu/HiIrxCBEparm5YrxS9/CWzNew43LabC1s0Wdpn6Ql3LJjIh0kJ8DLOwMZN0qu+3TnDyB904DCmXl10VkZfhpRjpxq+GCxiGBqN+iNkMQUWWQ2/7dq6Pvz5MMcKlZsH8l2bdvHwICAirteESWhJ9oRESmIEnAC58BKH2aiqLUBfsZcG6hqVOnol27dnBwcICbm5vBzkNkDhiEiIhMpV4XwLcVIMl1ay/JC9rX62LQsnJzc/Hqq6/i7bffLrFNSkqKQWsgMhYGISIiUynsFRIq3doLlcF7gwDgiy++wLhx49CsWbMS29SpUwdhYWFYuXIlsrOzS2xHZO4YhIiITEnXXiEj9Qbp6uzZs2jTpg0+++wzeHl54fXXX8f+/fshRNG1CYnMGYMQEZEp6dorZKTeIF01bNgQ06ZNQ3JyMrZu3QohBHr16oV69eph8uTJSEpKMnWJRDphECIiMrWyeoXMrDfoSZIkoXPnzli2bBmuXbuG0NBQzaU1IkvAIEREZGpl9QqZWW/Q044fP4733nsPgYGB2L17N6KjoxETE2Pqsoh0wgkViYjMQWGv0M2/tAORJAd8mptdb9C1a9fw008/YeXKlbh8+TJ69eqFJUuWIDw8HAoFP1rIcvC7lYjIHBT2Cv3UT3u7CXqDUlJSkJ6ejpSUFKhUKpw8eRIAUL9+fTg5OQEAateujdatW2P06NEYNGgQ3N3djVYfUWViECIiMhdP9wqZqDdo4sSJWLFihebrVq1aAQD27t2LTp06AQDOnDmDRo0aGbUuIkPgGCEiInPx9FghE40NWr58OYQQRR6FIQgAQxBVGQxCRETmpLBXCDDbO8WIqhIGISIicyJJQJdJQI2GBf810zvFiKoKjhEiIjI39ToDUUeMdrqAgAC89957RjsfkTlhjxARkZVjECJrxiBEREREVotBiIioknDBUSLjqoyfOQYhIqIKsrGxAQBkZ2ebuBIi61L4M1f4M1geHCxNRFRBcrkcbm5uuHXrFgDAwcEBEu/2IjIYIQSys7Nx69YtuLm5QS4vYcFiHTAIERFVAm9vbwDQhCEiMjw3NzfNz155MQgREVUCSZLg4+MDT09P5OXlmbocoirPxsamQj1BhRiEiIgqkVwur5RfzkRkHBwsTURERFaLQYiIiIisFoMQERERWS2OESKrcuXCTdy5cR+u1Z1Qr2kt3uJMRGTlGITIKiQcS8L3Ezfg4p8pmm2+dTwwcuIraNu1mQkrIyIiU+KlMaryEo4l4aP+3+DSqata228m38YXry/E//7vhIkqIyIiU2MQoirv+8/XQ6VSQ6i116QRAoAA5n+6Dvl5KtMUR0REJsUgRFXalQs3cfGvq0VC0JMy7j7Esb1njVgVERGZCwYhqtLu3LhfdiMJuH3jnsFrISIi88MgRFWaa3WnshsJwLWaDu2IiKjKYRCiKq1e01rwDfBAaXfJ2zkq0ebFpsYrioiIzAaDEFVpkiThjYl9UPIIIWDYhz1gZ29rtJqIiMh8MAhRlRfarTk++f51uFRzBABN75CdoxJvTu6LPm90Ml1xRERkUpxQkaxCh16tEBreHMf2nsXtG/fgWs0JbcKawM5BaerSiIjIhBiEyGoobOScRZqIiLRY3KWx+fPnIyAgAHZ2dggJCcGRI0d02m/NmjWQJAl9+vQxbIFERERkMSwqCK1duxbR0dGYNGkSjh8/jhYtWqBbt264detWqfslJyfjgw8+QIcOHYxUKREREVkCiwpCs2bNwsiRIxEREYHGjRtjwYIFcHBwwNKlS0vcR6VSYfDgwfjiiy9Qt25dI1ZLRERE5s5iglBubi7i4+MRFham2SaTyRAWFoa4uLgS9/vyyy/h6emJyMhInc6Tk5ODzMxMrQcRERFVTRYThO7cuQOVSgUvLy+t7V5eXkhNTS12n99//x1LlizBokWLdD5PTEwMXF1dNQ8/P78K1U1ERETmy2KCkL4ePHiAoUOHYtGiRahRo4bO+02YMAEZGRmax9WrVw1YJREREZmSxdw+X6NGDcjlcqSlpWltT0tLg7e3d5H2ly9fRnJyMnr16qXZplarAQAKhQLnz59HvXr1iuynVCqhVHJuGSIiImtgMT1Ctra2CA4Oxu7duzXb1Go1du/ejdDQ0CLtGzVqhFOnTuHkyZOax8svv4zOnTvj5MmTvORFREREltMjBADR0dEYPnw4WrdujTZt2mDOnDnIyspCREQEAGDYsGGoWbMmYmJiYGdnh6ZNtRfSdHNzA4Ai24mIiMg6WVQQGjBgAG7fvo2JEyciNTUVLVu2RGxsrGYAdUpKCmQyi+nkIiIiIhOThBClLcxt9TIzM+Hq6oqMjAy4uLiYuhwiIiLSga6f3+w+ISIiIqtlUZfGiCyZSqXGybhLuJ50B47OdmjTqRGc3RxMXRYRkVVjECIygpNxlzBr/DrcvpkBSQKEABQ2cvSN6IBh47pBLmfnLBGRKTAIERnYuT9T8HnkUqj+nseqcFRefp4K6xbuQ25OHkZ9+rIJKyQisl78M5TIwFbM3gm1Wg2hLv6+hJ9XHsLt1PvGLYqIiAAwCBEZ1P27D3Hy0CWoSwhBACAB2L/9T+MVRUREGgxCRAaUeS+rzDaSTEJGetntiIio8jEIERmQu4czZDKp1DZqlYCnj5txCiIiIi0MQkQG5OzqgPZdm0JWyl1hcoUMnXq2NF5RRESkwSBEZGAj3g+HvYMtZPLie4Ze//AlzidERGQiDEJEBuZbuwZmrxuN5iH1tLbX8HZF9PRX8cqIDiaqjIiIuNZYGbjWGFWm1KvpuJFyBw5OdghsWosTKRIRGYiun9+cUJHIiLz9qsHbr5qpyyAior/xz1EiIiKyWgxCREREZLUYhIiIiMhqMQgRERGR1WIQIiIiIqvFIERERERWi0GIiIiIrJZO8wht3bpV7wO/+OKLsLe313s/IiIiImPRKQj16dNHr4NKkoSLFy+ibt265amJiIiIyCh0vjSWmpoKtVqt08PBgQtIEhERkfnTKQgNHz5cr8tcQ4YM4bpcREREZPa46GoZuOgqERGR5dH181vnS2P9+/dHbGwsmJuIiIioqtA5CN27dw89evSAv78/Jk6ciMTEREPWRURERGRwOgeh3bt3IzExEZGRkfjpp58QGBiIF154AatXr0ZOTo4hayQiIiIyCL0mVKxduzYmT56MxMRE7Nq1C76+vhg5ciR8fHwwevRoxMfHG6pOIiIiokpX4cHSDx48wOrVq/HJJ58gIyMD+fn5lVWbWeBgaSIiIsuj6+e3ThMqliQpKQnLly/H8uXLkZGRgbCwsIocjoiIiMio9F5r7PHjx/jpp5/wwgsvIDAwED/++CMiIyORlJSE2NhYQ9RIREREZBA69wgdOXIES5cuxdq1a/H48WO88soriI2NRZcuXSBJkiFrJCIiIjIInYNQ27Zt0aJFC0yZMgWDBw+Gu7u7IesiIiIiMjidg9CxY8fwzDPPGLIWIiIiIqPSaYzQX3/9hZYtW+p80DNnzlS5u8eIiIio6tEpCLVq1Qp3797V+aChoaFISUkpd1FERERExqDTpTEhBD7//HM4ODjodNDc3NwKFUVERERkDDoFoeeffx7nz5/X+aChoaGwt7cvd1FERERExqBTENq3b5+ByyAiSyOEwJXLt/DwwWN413RHDU/OvE5ElqdCM0sTkXU6uCcBS+ftwrXkv8cOSsCz7QPx1gfhqFW7hmmLIyLSg94zSxORdft16wl8+f4aXL/yxA0UAoiPu4wxQxdpbyciMnMMQkSks0fZOZg/fTsA4OnlmtUqNR5l52LxN7+aoDIiovJhECIinf3+WwIeP8or8Xm1So24/edxPz3LiFUREZVfuRZdJSLrlHrjHuSK0n9tCLXA7bQMI1VERFQxegchT09PjBgxArt27YJarTZETURkppxd7KFWibLbuXL6DCKyDHoHoRUrViArKwu9e/dGzZo18d577+HYsWOGqI2IzEyHsMaQpJKfl2QSGjatCW9fLspMRJZB7yD0yiuvYP369UhLS8O0adNw9uxZtG3bFg0aNMCXX35piBqJyExU93RB70EhxT5XGJAiosKMWBERUcVIQjx974f+zp49i8GDB+Ovv/6CSqWqjLrMRmZmJlxdXZGRkQEXF04YR6RSqbFs3m/Y9FMcVGo1ZDIJapWAi5s9xk3sg3adG5m6RCIinT+/yz2h4uPHj7F161asXr0asbGx8PLywocffljewxGRhZDLZXjjva7oP6w9Du1LQNaDx/CpVQ0hzzeAjQ3naCUiy6L3b62dO3di9erV2LJlCxQKBfr3749ff/0Vzz//vCHqIyIz5VbNEd37tjZ1GUREFaJ3EHrllVfQs2dP/Pjjj+jevTtsbGwMURcRERGRwekdhNLS0uDs7GyIWoiIiIiMSu+7xp4MQY8fP0ZmZqbWw9Dmz5+PgIAA2NnZISQkBEeOHCmx7aJFi9ChQwe4u7vD3d0dYWFhpbYnIiIi66J3EMrKykJUVBQ8PT3h6OioCRmFD0Nau3YtoqOjMWnSJBw/fhwtWrRAt27dcOvWrWLb79u3D4MGDcLevXsRFxcHPz8/dO3aFdevXzdonURERGQZ9L59fvTo0di7dy+mTJmCoUOHYv78+bh+/Tp++OEHTJ8+HYMHDzZUrQgJCcGzzz6Lb7/9FgCgVqvh5+eHd999F+PHjy9zf5VKBXd3d3z77bcYNmyYTufk7fNERESWx2C3z//f//0ffvzxR3Tq1AkRERHo0KED6tevj9q1a2PVqlUGC0K5ubmIj4/HhAkTNNtkMhnCwsIQFxen0zGys7ORl5eHatWqldgmJycHOTk5mq+NcbmPiIiITEPvS2Pp6emoW7cuAMDFxQXp6ekAgOeeew4HDhyo3OqecOfOHahUKnh5eWlt9/LyQmpqqk7H+Pjjj+Hr64uwsJJnvo2JiYGrq6vm4efnV6G6iYiIyHzpHYTq1q2LpKQkAECjRo2wbt06AAU9RW5ubpVaXGWaPn061qxZg82bN8POzq7EdhMmTEBGRobmcfXqVSNWSURERMak96WxiIgI/Pnnn+jYsSPGjx+PXr164dtvv0VeXh5mzZpliBoBADVq1IBcLkdaWprW9rS0NHh7e5e679dff43p06fjt99+Q/PmzUttq1QqoVQqK1wvEVVcUuItbFx7BAcPnEd+ngr1Ar3Qu19rdHyhMWSyUlZ/JSLSUYXXGrty5Qri4+NRv379MkNGRYWEhKBNmzaYN28egILB0v7+/oiKiipxsPSMGTMwdepU7Ny5E23bttX7nBwsTWQafxy8iMmfbABQsL4ZgIJ1zdQCYeHN8OEnvRiGiKhEBl9rrFDt2rVRu3btItubNWuGHTt2VOoYm+joaAwfPhytW7dGmzZtMGfOHGRlZSEiIgIAMGzYMNSsWRMxMTEAgH//+9+YOHEiVq9ejYCAAM1YIicnJzg5OVVaXURUuTIzH2HKxE1Qq9V48k81tbrgi99iT6FFS3+E92xpmgKJqMow2AqJycnJyMvLq9RjDhgwALdv38bEiRORmpqKli1bahZ8BYCUlBTIZP8Me/r++++Rm5uL/v37ax1n0qRJmDx5cqXWRkSVZ9cvfyEvV4WS+qslCdi07giDEBFVmMUtFR0VFYWoqKhin9u3b5/W18nJyYYviIgq3bmzNwAJQAlBSAggKfE28vNVUCjkRq2NiKoWve8aIyIyNLlchrJG/0gSIEkcI0REFcMgRERmp3VIXc14oOLIZBJata4DuZy/woioYvhbhIjMzvOdglC9hlOJd4Wp1QKvDtL/LlAioqcxCBGR2bFVKjB91mtwdXMAUHAZDCjoCYIEvDO2K1q3qWvCComoqjDYYOkffvihyHIYRES6CqjrgeVr3sbuX08j7veLyMnJQ2ADH/Ts3Qq1/KubujwiqiL0DkJz587Vua2jo6O+hyci0nBwUKJXn2D06hNs6lKIqIrSe2bpOnXq4Pbt28jOztasLXb//n04ODjAw8PjnwNLEhITEyu1WFPgzNJERESWR9fPb73HCE2dOhUtW7ZEQkIC0tPTkZ6ejoSEBDzzzDP46quvkJSUhKSkpCoRgoiIiKhq07tHqF69etiwYQNatWqltT0+Ph79+/fXrExfVbBHiIiIyPIYrEfo5s2byM/PL7JdpVIVWRmeiIiIyJzpHYS6dOmCUaNG4fjx45pt8fHxePvttxEWFlapxREREREZkt5BaOnSpfD29kbr1q2hVCqhVCrRpk0beHl5YfHixYaokYiIiMgg9L593sPDAzt27MCFCxdw7tw5AECjRo3QoEGDSi+OiIiIyJDKPaFigwYNGH6IiIjIoukUhKKjozFlyhQ4OjoiOjq61LazZs2qlMKIiIiIDE2nIHTixAnk5eVp/r8kklT8AolERERE5kjveYR0de3aNfj6+kIms+x1XTmPEBERkeUx2DxCumrcuDGSk5MNdXgiIiKiCjNYEDJQRxMRERFRpbHs61ZEREREFcAgRERERFaLQYiIiIislsGCEG+lJyIiInNX7pmly8LB0kRUlWVl5WDfgXNIS8uAi4s9Oj7fCB41nE1dFhHpqdxBKCcnBwCgVCqLff7s2bPw9fUt7+GJiMzWth0n8e33u5GTkw+FXAaVWuC7H/aib59n8PabL0Au56gDIkuh10/rrl270L17d7i7u8PBwQEODg5wd3dH9+7d8dtvv2m19fPzg1wur9RiiYhMbe/+BMycsxM5OfkAgHyVGkIICCGwcXM8Fi3db+IKiUgfOgehFStWoHv37nB1dcXs2bOxbds2bNu2DbNnz4abmxu6d++OlStXGrJWIiKTEkJgybIDpbbZsOkYMjKyjVQREVWUzpfGpk6dijlz5mD06NFFnhsxYgSee+45fPnllxg6dGilFkhEZC4Sk27j+o37pbZRqdT4/dBF9HiphXGKIqIK0blHKCUlBWFhYSU+36VLF1y7dq1SiiIiMkcPH+aU2UYmk5CVVXY7IjIPOgehJk2aYMmSJSU+v3TpUjRu3LhSiiIiMke+Pq5ltlGrBXx93Y1QDRFVBp0vjc2cORM9e/ZEbGwswsLC4OXlBQBIS0vD7t27kZiYiO3btxusUCIiU/PwcEGb1nVw7Hgy1OqiU4RIEuDq6oC2beqaoDoiKg+dg1CnTp1w+vRpfP/99/jjjz+QmpoKAPD29sZLL72Et956CwEBAYaqk4jILES9E4Z3xvyIR9m5UD0RhmSygklkP4p+CQoF75glshSS4MyHpcrMzISrqysyMjLg4uJi6nKIyAxcu56ORUv24/eDF6H++1do0yY1ERnxPFo29zdxdUQE6P75zSBUBgYhIipJRkY2bt95CFcXO3h48PcDkTnR9fNb75ml3d3ddV5HLD09Xd/DExFZDFdXB7i6Opi6DCKqAL2D0Oeff46vvvoK3bp1Q2hoKAAgLi4OO3fuxOeff45q1apVepFEREREhqD3pbF+/fqhc+fOiIqK0tr+7bff4rfffsOWLVsqsz6T46UxIiIiy6Pr57feKwPu3LkT4eHhRbaHh4cXWW+MiIiIyJzpHYSqV6+On3/+ucj2n3/+GdWrV6+UooiIiIiMQe8xQl988QXeeOMN7Nu3DyEhIQCAw4cPIzY2FosWLar0AomIiIgMRe8gNGLECAQFBWHu3LnYtGkTACAoKAi///67JhgRERERWQLOI1QGDpYmIiKyPAabR4iIiIzj7IWb2PzLCZy/lAqlUoHn2zZAzxebw51zFxFVGgYhIiIztPS/B7Fs7SHI5RJUqoKO+/OXb2H15iOY/cW/0Ki+t4krJKoa9L5rjIiIDGt/3AUsW3sIADQhCACEEMh+lIsPvtyAxzl5piqPqEphECIiMjP/3XIUshKWMlKrBTIyH2H3/84ZuSqiqolBiIjIjOTnq3Dm/A3NqvbFkckkxJ+6YsSqiKouvccIvfLKK8UuuipJEuzs7FC/fn289tpraNiwYaUUSERkTXS+j5f3+xJVCr17hFxdXbFnzx4cP34ckiRBkiScOHECe/bsQX5+PtauXYsWLVrg4MGDhqiXiKhKs7GRo0Fdz2L/4CykVgs0C6ppxKqIqi69g5C3tzdee+01JCYmYuPGjdi4cSMuX76MIUOGoF69ekhISMDw4cPx8ccfG6JeIqIqb0DvZ1HSFG+SJMHRwRbdOjUxclVEVZPeEyp6eHjg4MGDaNCggdb2CxcuoF27drhz5w5OnTqFDh064P79+5VZq0lwQkUiMjYhBL5ZvAcbtx+HXCZBpS74NS2TSbC1keM/E/ujZRM/E1dJZN4MNqFifn4+zp07VyQInTt3DiqVCgBgZ2dXarcuERGVTJIkjH3jBYS2rovNO07g/OU02Noq0Cm0AV55qSW8PV1NXSJRlaF3EBo6dCgiIyPxySef4NlnnwUAHD16FNOmTcOwYcMAAPv370eTJobptp0/fz7+85//IDU1FS1atMC8efPQpk2bEtuvX78en3/+OZKTkxEYGIh///vf6N69u0FqIyKqLJIkIaRVHYS0qmPqUoiqNL2D0OzZs+Hl5YUZM2YgLS0NAODl5YVx48ZpxgV17doV4eHhlVspgLVr1yI6OhoLFixASEgI5syZg27duuH8+fPw9PQs0v7QoUMYNGgQYmJi0LNnT6xevRp9+vTB8ePH0bRp00qvj4iIiCxLhRZdzczMBACjjZ0JCQnBs88+i2+//RYAoFar4efnh3fffRfjx48v0n7AgAHIysrCtm3bNNvatm2Lli1bYsGCBTqdk2OEiIiILI+un98VmlDRxcXFaOEgNzcX8fHxCAsL02yTyWQICwtDXFxcsfvExcVptQeAbt26ldieiIiIrEu5Fl3dsGED1q1bh5SUFOTm5mo9d/z48Uop7Gl37tyBSqWCl5eX1nYvLy+cO1f8VPOpqanFtk9NTS3xPDk5OcjJydF8XdjrRURERFWP3j1Cc+fORUREBLy8vHDixAm0adMG1atXR2JiIl566SVD1GhUMTExcHV11Tz8/HiLKhFZPiEE4s+k4JM5W9F/3BIMHf8jlm/5A+kZ2aYujcik9A5C3333HRYuXIh58+bB1tYWH330EXbt2oUxY8YgIyPDEDUCAGrUqAG5XK4ZoF0oLS0N3t7exe7j7e2tV3sAmDBhAjIyMjSPq1evVrx4IiITEkJg9o97ETV1PQ4cu4TrafdxKeU2Fq0/hIEfLMX55LSyD0JURekdhFJSUtCuXTsAgL29PR48eACg4Lb6//73v5Vb3RNsbW0RHByM3bt3a7ap1Wrs3r0boaGhxe4TGhqq1R4Adu3aVWJ7AFAqlZqxT8YcA0VEZCg7DpzB+p0nAEAzOSMAqIVA1qNcvD9jM3Lz8k1VHpFJlWuJjfT0dACAv78//vjjDwBAUlJSiVPCV5bo6GgsWrQIK1asQEJCAt5++21kZWUhIiICADBs2DBMmDBB037s2LGIjY3FzJkzce7cOUyePBnHjh1DVFSUQeskIjIXQgis3n4MJc1xq1YL3L2fhb1HLhq3MCIzofdg6RdeeAFbt25Fq1atEBERgXHjxmHDhg04duwY+vbta4gaNQYMGIDbt29j4sSJSE1NRcuWLREbG6sZEJ2SkgKZ7J9s165dO6xevRqfffYZPvnkEwQGBmLLli2cQ4iIrEbWo1wkXrtbahu5XIYTCdfQrX2QkaoiMh96zyOkVquhVquhUBRkqDVr1uDQoUMIDAzEqFGjYGtra5BCTYXzCBGRJXuQ9RhdR84vtY1cJkPPjk0wfmRXI1VFZHgGW2tMJpNp9boMHDgQAwcOLF+VRERkUE4OStSpWR3JN+6ipD97VWo1WgXxDlmyTuWaR+jx48f466+/cOvWLajVaq3nXn755UopjIiIKk6SJLzWozWmLtxZ7PMymQRXJ3t0Dgk0cmVE5kHvIBQbG4thw4bhzp07RZ6TJEmzAj0REZmHHh2b4FxSKjbu+hNymaS5c0wmSXCws8Wsj/rC1qZcfxcTWTy9xwgFBgaia9eumDhxYpFZm6sijhEioqpACIGjp69g464/cfHKLdgrbfBCSAP06dIC1d0cTV0eUaXT9fNb7yDk4uKCEydOoF69ehUu0hIwCBEREVkegy262r9/f+zbt68itRERERGZBb17hLKzs/Hqq6/Cw8MDzZo1g42NjdbzY8aMqdQCTY09QkREBc4mp2Lj3r9w8dptONjZIqx1A7zUNgiO9lVr2hSqGgx2aWzJkiV46623YGdnh+rVq0N6YrpSSZKQmJhY/qrNEIMQEVk7IQS+23QQy3Yc0Qy2lgAIAJ5uTljw0avw93I3dZlEWgwWhLy9vTFmzBiMHz9eaz6hqopBiIis3Y64s5i4OLbY5+QyCT7VXbBxWgTkVvCZQJbDYGOEcnNzMWDAAKsIQURE1k4IgR9jS16rTKUWuHY7A7//lWTcwogqid5pZvjw4Vi7dq0haiEiIjOTkfUYl67dKXFWaqBgrbIjZ68YryiiSqT3DFoqlQozZszAzp070bx58yKDpWfNmlVpxRERkWmp1WWPnpAAqFR6jbIgMht6B6FTp06hVatWAIDTp09rPSeV1HdKREQWyd3ZHj7VXXDzbmaJbfJVajSv74O7mVnYEncGCdduwUYuR4cmdRDWsj5nrSazpvd35969ew1RBxERmSFJkjDoxWcwa82+Yp+XSRJcHJVQyYBuny/+e/kOAQkSfjl2DnO3OuOHd/uhtifvKiPzxBHPRERUqgFdWiKsdQMABcGnkFwmQWmrwDv9O2DST78iX6WGEAJCAOq/BxXdzniIUfM2Ijcv3yS1E5VF5x6hvn376tRu06ZN5S6GiIjMj1wmw7RRPdD5mfpYv+ckLt+4C3ulDV58tiEGdGmJmVsOFNxVVswwIZVaIPXeA+w6cRE92gQZvXaisugchFxdXQ1ZBxERmTGZTEK3kEboFtJIa7sQAgdOJWpWtC92X0nCgdOJDEJklnQOQsuWLTNkHUREZKHy1epSn1cLgZx8lZGqIdIPxwgREVG5SZKEej41SpxwESjoEWpUy8N4RRHpgUGIiIgq5LVOLUudcFGSgFfaNTNeQUR6YBAiIqIK6d22CcJaBQKAVs+QXCZBkoBJr70ILzcnE1VHVDrOckVERBUil8nw74ju2NzwNFbvO4HE1HTIZBLaNw7A8LDWCK5fy9QlEpVI79XnrQ1Xnyci0k++Sg2ZJEEm42oDZDq6fn6zR4iIiCqVQs5RF2Q5+N1KREREVotBiIiIiKwWgxARERFZLQYhIiIisloMQkRERGS1GISIiIjIavH2eSIisghCCJxKSUXsnxfw4FEO/Gu4oXfrxvB05azVVH4MQkREZPayc3Lxwcrt+N+5ZMhlMgACQgDfxh5CdI8OGN4p2NQlkoXipTEiIjJ7n6zZiYPnrwAAVGo1VGoBtSh4fL3tALYfP2fiCslSMQgREZFZS7yVjt2nLkFdwopQEoDvd8WBK0ZReTAIERGRWdt35jJkUsnrlgkAV27fR8qd+0ariaoOBiEiIjJrj3PzSw1CmnZ5+UaohqoaBiEiIjJr9b2rI1+tLrWNjVyOmtVKXmGcqCQMQkREZNY6N6kHd0d7lNQpJJdJ6BUcBCc7pXELoyqBQYiIiMyajUKOGUO6QyGTQS7TTkMySULNaq54r8dzJqqOLB2DEBERmb22gf746d2B6Nyknma8kLOdEsM7PoPVYwbB3dHexBWSpZIE7zcsVWZmJlxdXZGRkQEXF15/JiIytZy8fDzKzYOzvfLvyRVLl5WTix1/ncfFW3fgYGuLsMb10LSmtxEqJVPS9fObM0sTEZFFUdoooLTR7ePr1zMXMWHjTjzKzYNCJoMAsHD/EYTW88ecQT3hzHFFVo+XxoiIqEo6lnQN0Wu243FuHgAgX62G6u+7z44kXsWY1f/HSRiJQYiIiKqm7/cdBlAw4eLTVELgcOJV/HUt1bhFkdlhECIioionKycXcZdTSlyWAyi47T729AUjVkXmiEGIiIiqnEd5eWW2kSAhO6fsdlS1MQgREVGV42ZvX+ZAaJVQo55nNSNVROaKQYiIiKochVyGfz3brNQ1yhQyGV5uGWTEqsgcMQgREVGV9GbHNqjnWQ1yqehs1AAw6eUwuDlwIkZrxyBERERVkrOdEj+NHICh7Z6Bo9JWs715LW/8MOwV9A1uYsLqyFxwZukycGZpIiLLl5ufj9sPsmBva4Nqjg6mLoeMgDNLExER/c1WoUBNd1dTl0FmiJfGiIiIyGpZTBBKT0/H4MGD4eLiAjc3N0RGRuLhw4eltn/33XfRsGFD2Nvbw9/fH2PGjEFGRoYRqyYiIiJzZjFBaPDgwThz5gx27dqFbdu24cCBA3jzzTdLbH/jxg3cuHEDX3/9NU6fPo3ly5cjNjYWkZGRRqyaiIiqmtz8fJxNvYUzN9PwOC/f1OVQBVnEYOmEhAQ0btwYR48eRevWrQEAsbGx6N69O65duwZfX1+djrN+/XoMGTIEWVlZUCh0Gx7FwdJERAQULNr6/e+H8eORE8h4nAMAcLS1xWutm2Ps86Gw1fFzhYxD189vi+gRiouLg5ubmyYEAUBYWBhkMhkOHz6s83EK/zF0DUFEREQAoBYC0Zt34NsDf2hCEABk5eZiSVw83lz7M/L/XtmeLItFBKHU1FR4enpqbVMoFKhWrRpSU3VbOfjOnTuYMmVKqZfTACAnJweZmZlaDyIism4HLicjNuFisSvZq4XAoaQU7Dhz3uh1UcWZNAiNHz8ekiSV+jh37lyFz5OZmYkePXqgcePGmDx5cqltY2Ji4Orqqnn4+flV+PxERGTZ1h4/VWSG6ifJJAlrjp8yYkVUWUx6jej999/HiBEjSm1Tt25deHt749atW1rb8/PzkZ6eDm9v71L3f/DgAcLDw+Hs7IzNmzfDxsam1PYTJkxAdHS05uvMzEyGISIiK3cl/R5UpQypVQuBK/fuG68gqjQmDUIeHh7w8PAos11oaCju37+P+Ph4BAcHAwD27NkDtVqNkJCQEvfLzMxEt27doFQqsXXrVtjZ2ZV5LqVSCaWy9BWLiYjIurjZ20MCir00Vsi1jNXuyTxZxBihoKAghIeHY+TIkThy5AgOHjyIqKgoDBw4UHPH2PXr19GoUSMcOXIEQEEI6tq1K7KysrBkyRJkZmYiNTUVqampUKlUpnw5RERkYV5u1qjUECRJQJ/mjY1WD1UeiwhCALBq1So0atQIXbp0Qffu3fHcc89h4cKFmufz8vJw/vx5ZGdnAwCOHz+Ow4cP49SpU6hfvz58fHw0j6tXr5rqZRARkQV6uWkQaru7FTtOSC5J8HB0xL9aNTNBZVRRFjGPkClxHiEiIgKA1MyHGLNxG05evwmZJEECoBICDT1rYH7/XvCv5mbqEukJXHSViIioEnm7OGFdxED8dSMVfyRfhRACwX41EeznC6mUO8rIvDEIERER6aG5rzea+5Z+x3JxbmQ+wPbz55H+KBu+zi7o2agh3O3tDVAh6YNBiIiIyIBUajWm7d+PFcdPQJIkyCQJKrUaU/ftw0fPd8Drf98NTaZhMYOliYiILNGsgwex/PgJCBTMN5SvVkMAyFOrMXXffmw4fdrUJVo1BiEiIiIDyXj8GEuOxZfaZvbBQ1BxnTKTYRAiIiIykD2JicgrI+SkPnyIU2lpRqqInsYgREREZCAPcnKgy/1kD3NyDV4LFY+DpYmIiAykrnu1UmekLlTb3Q1CCBy9eR1XMzPgZmeH9rVqw07Bj2lD478wERGRgbSr7Q9fZ2ekPnwIdTHzF8slCSG1auHqgwwM2boeVzIzNM852yoR3aYdRjRvxXmKDIiXxoiIiAxEJkmYEd4Nsr9vm3+SXJLgaGuL/s2bYtj/bcTVB5lazz/IzcEXv+/FwhPHjFmy1WEQIiIiMqBQf3+sHTgAoX5+mm0ySULXwPrYNPg1rDhzEmohiu0xAoBZRw4iMyfHWOVaHV4aIyIiMrCWPj748dX+uJOdjfuPHsHD0RGudna4mpmB46k3St03R6VC7OUL+FdjLupqCAxCRERERlLDwQE1HBw0X9/OzipzH7kk4XZ2tiHLsmq8NEZERGQiXo5OZbZRCQEvp7LbUfmwR4iIiMhEajq7oI1PLRxLvV7iGCF7hQLhdQORlJGOpWfjsT3pPB7l56Ghew0MC3oGvesGQS5jv0Z58V+OiIjIhD5t3xEKmazIXWWFPg7tgNN3U9Fty3KsOncSdx9nIzs/D3/euYHog1sx+Nc1yOcSHeXGIERERGRCLby88d/er6JBtepa22vYO2B65xcxoHEzvLl7M/JUKqiEACQ1bBxzYeOSA6VzHk5kX0LzLTGYdWqviV6BZeOlMSIiIhML9qmJXwYMw5k7t5CSUTCzdBvfWlDIZFh34RQycv++fV5SQ+mcC0jAkx1I+UKFHy7+D6nZmZgR0ts0L8JCsUeIiIjIDEiShKYeXuhevwHa1fKH4u9xPydv34BCKvh/hX1+kRBUsC8gBPDztT9x5UG6sUu3aAxCREREZuyfgdBqyG3URUJQIUkCBIAZp3Ybq7QqgUGIiIjIjD1fMwD5Ql1sT1Bxrjxkj5A+OEaIiIjIjL1Qqx5qO7vh2sN7OrQWEFIe3j36IxIybsBWJscL3k0wMKAtajlUM3itlkgSooSJCwgAkJmZCVdXV2RkZMDFxcXU5RARkRVKzryHgTvW4K7sNiR5ST1DArYKFWwUasglCQIq2MhUkEmABBk+btwXvWo9a+zSTUbXz29eGiMiIjJzAS7u2NMvEj1qNgdQMDD6aXKZGjYKNQABhSwXTra5sJWroJCpIJflYeb5tZh25r/IV6uMW7yZYxAiIiKyAA42tpjTvg9GBraHhL/DkPgnFNnbABIk2MpVsJUXhB1J+ucBAL+mxmNJYqxJ6jdXvDRWBl4aIyIic5P+OBuzTu/FuYw0OCpsMLhea4z/axUAAWfbnCKXzmSSGkp5PmzlKkgAmroGopdvZ7Sp1hySLiOwLZCun98cLE1ERGRhqtk54KvWPTRfq4Qa0l8Fl8eezjUKmQpONrkA/ukZOpt5CWcyL6Kr13N4q97AKhuGdMFLY0RERBZOLsnQ0r02JGgHGgmiSAgCAIGCi0G/pv2O/bePGq1Oc8QgREREVAUMq9sBqqcGuzw5Vqg4EiT83409Bq7MvDEIERERVQEdvRrh7cCuyFdLmgHUClnpq9ILCCRmXYVKWO+dZAxCREREVURk/U6Y2nwEbGX6DQF++pKaNeFgaSIioiqko1cTNHL9GKuS9+C3tEMASu7tkUFCE9dAJGUlYlfaTpzJOA011KjvFIgXvbqiqWtz4xVuIrx9vgy8fZ6IiCxVVt4jvH18ErLyH0GN4i+T9a31HPbf3gkZZADyYSfPg0ISUAugmWtbjKgTBblkef0mnFmaiIjIyjna2OOLJu/CUWGvdflL9vfHf79aL+DA7V8BAErZY7jbZMNelgcbKR9KWT4uPvwdM869i8y8qruQK4MQERFRFVbHyQ/fBU9GRJ2+aOISiECn2ujq/RzmtPwECimnYDZqKR+OilytmagL7zTLyLuN5UkxqKoXkCyvr4uIiIj04qRwQC/fF9DL9wWt7T+lXIIaajjIcyGE9m32ElTwUDyAq/wR5LiGlZeeh5d9e7T3ioaTjaeRX4HhsEeIiIjISsklOSQIKJ6akVoOFeorb8FTkYlq8ofwUWTAR3EHUu7P+C2lK64/PGC6oisZgxAREZGVaurSrNggUMv2LpRSHqorHsJRlgvZ3yFJkgAHKQenb72FBzkJRq3VUBiEiIiIrFQHj45QyJRQi3+6gxTIg6MsFy7yR5BDFJmVWpIACWqcSBuJfFWmkSuufAxCREREVsrVxhVjA99HntpeMxu1kzwHckkNOym/6Cr2UMNF9gjeiodwl5KRcKMJrtyOxKPcM8YvvpIwCBEREVmxBs4NManJHLjbegMABCQopKKr2MuhRnV5Nuw1AUnATZLglLsHWbd74mHmfKPXXhkYhIiIiKycm201fNBwNnr5RsBW5gd1MXfKO8seQ/b3pTJHSUJDhT1qKuzgJlPAXaaAQ/Y3yElrA3X+NeO/gApgECIiIiIoZDZoX6MH3g9aCBtFQ6jEkxMwqqGUVJAkwA6Av9wO8r8naJQkCdLf3UcK9T3k3+kBtTrfFC+hXBiEiIiISEsPv++RLdw0Xz95qcxLbgMJ0ISfJ0mSBAUeQZX1vXEKrQQMQkRERKTFXuGCXgF7YWsTDABad5U5SIpiQ1AhIQTUjzYZvMbKwpmliYiIqAgbuRIda/2ErNwkXH+wAY+zf4CER5CVEoIKSSLbCBVWDvYIERERUYkcbeugQfUPUct9MgAJKqEuc90xIfMwSm2VgUGIiIiIylTNaQi8XMcjU60qtZ0kSZA7vWukqiqOQYiIiIh04ukSBWeP7VBJsiK9QoVf5ymCoLDvZoryyoVBiIiIiHRma9sYihp7ka+opxWGhCRDnvJF2FTbbMLq9MfB0kRERKQXmcIXSo9YqPNvQpUbB0myh0zZBQqZbfE7ZFwDsu7ofyJHD8C1ZsWKLQODEBEREZWLTOEDmaJv6Y3yc4CFnYGsW/qfwMkTeO80oFCWr0Ad8NIYERERGY7c9u9eHX0jhwxwqVmwvwFZTBBKT0/H4MGD4eLiAjc3N0RGRuLhw4c67SuEwEsvvQRJkrBlyxbDFkpERET/kCTghc8AqPXcUV2wnw7zFlWExQShwYMH48yZM9i1axe2bduGAwcO4M0339Rp3zlz5pQ6CyYREREZUL0ugG8rQJLr1l6SF7Sv18WwdcFCglBCQgJiY2OxePFihISE4LnnnsO8efOwZs0a3Lhxo9R9T548iZkzZ2Lp0qVGqpaIiIi0FPYKidLnINIQKqP0BgEWEoTi4uLg5uaG1q1ba7aFhYVBJpPh8OHDJe6XnZ2N1157DfPnz4e3t7cxSiUiIqLi6NorZMTeIMBCglBqaio8PT21tikUClSrVg2pqakl7jdu3Di0a9cOvXv31vlcOTk5yMzM1HoQERFRBenaK2TE3iDAxEFo/PjxkCSp1Me5c+fKdeytW7diz549mDNnjl77xcTEwNXVVfPw8/Mr1/mJiIjoKWX1Chm5Nwgw8TxC77//PkaMGFFqm7p168Lb2xu3bmnPP5Cfn4/09PQSL3nt2bMHly9fhpubm9b2fv36oUOHDti3b1+x+02YMAHR0dGarzMzMxmGiIiIKkNhr9BP/Yp/3si9QYCJg5CHhwc8PMpeoTY0NBT3799HfHw8goODARQEHbVajZCQkGL3GT9+PN544w2tbc2aNcPs2bPRq1evEs+lVCqhVBpu4iYiIiKrVtgrdPMv7ctkkhzwaW7U3iDAQsYIBQUFITw8HCNHjsSRI0dw8OBBREVFYeDAgfD19QUAXL9+HY0aNcKRI0cAAN7e3mjatKnWAwD8/f1Rp04dk70WIiIiq1bSWCET9AYBFhKEAGDVqlVo1KgRunTpgu7du+O5557DwoULNc/n5eXh/PnzyM7ONmGVREREVKanxwqZYGxQIUk8uXQsFZGZmQlXV1dkZGTAxcXF1OUQERFVDZd+0x4rNGQjUD+s0g6v6+e3xfQIERERURVS2CsEmKw3CGAQIiIiIlOQJKDLJKBGw4L/mmgpLJPeNUZERERWrF5nIOqISUtgjxARERFZLQYhIiIisloMQkRERGS1GISIiIjIajEIERERkdViECIiIiKrxSBEREREVovzCJWhcAWSzMxME1dCREREuir83C5rJTEGoTI8ePAAAODn52fiSoiIiEhfDx48gKura4nPc9HVMqjVaty4cQPOzs6QKnH678zMTPj5+eHq1atczNVM8D0xL3w/zAvfD/PC96NsQgg8ePAAvr6+kMlKHgnEHqEyyGQy1KpVy2DHd3Fx4TexmeF7Yl74fpgXvh/mhe9H6UrrCSrEwdJERERktRiEiIiIyGoxCJmIUqnEpEmToFQqTV0K/Y3viXnh+2Fe+H6YF74flYeDpYmIiMhqsUeIiIiIrBaDEBEREVktBiEiIiKyWgxCRpSeno7BgwfDxcUFbm5uiIyMxMOHD0tt/+6776Jhw4awt7eHv78/xowZg4yMDCNWXbXMnz8fAQEBsLOzQ0hICI4cOVJq+/Xr16NRo0aws7NDs2bNsGPHDiNVah30eT8WLVqEDh06wN3dHe7u7ggLCyvz/SP96PvzUWjNmjWQJAl9+vQxbIFWRt/34/79+xg9ejR8fHygVCrRoEED/s7ShSCjCQ8PFy1atBB//PGH+N///ifq168vBg0aVGL7U6dOib59+4qtW7eKS5cuid27d4vAwEDRr18/I1ZddaxZs0bY2tqKpUuXijNnzoiRI0cKNzc3kZaWVmz7gwcPCrlcLmbMmCHOnj0rPvvsM2FjYyNOnTpl5MqrJn3fj9dee03Mnz9fnDhxQiQkJIgRI0YIV1dXce3aNSNXXjXp+34USkpKEjVr1hQdOnQQvXv3Nk6xVkDf9yMnJ0e0bt1adO/eXfz+++8iKSlJ7Nu3T5w8edLIlVseBiEjOXv2rAAgjh49qtn2yy+/CEmSxPXr13U+zrp164Stra3Iy8szRJlVWps2bcTo0aM1X6tUKuHr6ytiYmKKbf+vf/1L9OjRQ2tbSEiIGDVqlEHrtBb6vh9Py8/PF87OzmLFihWGKtGqlOf9yM/PF+3atROLFy8Ww4cPZxCqRPq+H99//72oW7euyM3NNVaJVQYvjRlJXFwc3Nzc0Lp1a822sLAwyGQyHD58WOfjZGRkwMXFBQoFV0fRR25uLuLj4xEWFqbZJpPJEBYWhri4uGL3iYuL02oPAN26dSuxPemuPO/H07Kzs5GXl4dq1aoZqkyrUd7348svv4SnpyciIyONUabVKM/7sXXrVoSGhmL06NHw8vJC06ZNMW3aNKhUKmOVbbH4aWokqamp8PT01NqmUChQrVo1pKam6nSMO3fuYMqUKXjzzTcNUWKVdufOHahUKnh5eWlt9/Lywrlz54rdJzU1tdj2ur5fVLLyvB9P+/jjj+Hr61skrJL+yvN+/P7771iyZAlOnjxphAqtS3nej8TEROzZsweDBw/Gjh07cOnSJbzzzjvIy8vDpEmTjFG2xWKPUAWNHz8ekiSV+tD1F3tpMjMz0aNHDzRu3BiTJ0+ueOFEFmz69OlYs2YNNm/eDDs7O1OXY3UePHiAoUOHYtGiRahRo4apyyEAarUanp6eWLhwIYKDgzFgwAB8+umnWLBggalLM3vsEaqg999/HyNGjCi1Td26deHt7Y1bt25pbc/Pz0d6ejq8vb1L3f/BgwcIDw+Hs7MzNm/eDBsbm4qWbXVq1KgBuVyOtLQ0re1paWkl/vt7e3vr1Z50V573o9DXX3+N6dOn47fffkPz5s0NWabV0Pf9uHz5MpKTk9GrVy/NNrVaDaCgp/v8+fOoV6+eYYuuwsrz8+Hj4wMbGxvI5XLNtqCgIKSmpiI3Nxe2trYGrdmSsUeogjw8PNCoUaNSH7a2tggNDcX9+/cRHx+v2XfPnj1Qq9UICQkp8fiZmZno2rUrbG1tsXXrVv71W062trYIDg7G7t27NdvUajV2796N0NDQYvcJDQ3Vag8Au3btKrE96a487wcAzJgxA1OmTEFsbKzWeDuqGH3fj0aNGuHUqVM4efKk5vHyyy+jc+fOOHnyJPz8/IxZfpVTnp+P9u3b49KlS5pACgAXLlyAj48PQ1BZTD1a25qEh4eLVq1aicOHD4vff/9dBAYGat0+f+3aNdGwYUNx+PBhIYQQGRkZIiQkRDRr1kxcunRJ3Lx5U/PIz8831cuwWGvWrBFKpVIsX75cnD17Vrz55pvCzc1NpKamCiGEGDp0qBg/frym/cGDB4VCoRBff/21SEhIEJMmTeLt85VI3/dj+vTpwtbWVmzYsEHrZ+HBgwemeglVir7vx9N411jl0vf9SElJEc7OziIqKkqcP39ebNu2TXh6eoqvvvrKVC/BYjAIGdHdu3fFoEGDhJOTk3BxcRERERFav8STkpIEALF3714hhBB79+4VAIp9JCUlmeZFWLh58+YJf39/YWtrK9q0aSP++OMPzXMdO3YUw4cP12q/bt060aBBA2FrayuaNGkitm/fbuSKqzZ93o/atWsX+7MwadIk4xdeRen78/EkBqHKp+/7cejQIRESEiKUSqWoW7eumDp1Kv9o1gFXnyciIiKrxTFCREREZLUYhIiIiMhqMQgRERGR1WIQIiIiIqvFIERERERWi0GIiIiIrBaDEBEREVktBiEiIiKyWgxCRGQyI0aMQJ8+fUxaQ6dOnfDee++ZtIaydOrUCZIkQZIknDx5Uq99R4wYodl3y5YtBqmPyJIxCBFREU9+eNrY2KBOnTr46KOP8PjxY1OXVqx9+/bhmWeegVKpRP369bF8+XKd9920aROmTJliuOIqyciRI3Hz5k00bdoU8fHxkCQJf/zxR7Ftu3Tpgr59+wIAvvnmG9y8edOYpRJZFAYhIipWeHg4bt68icTERMyePRs//PADJk2aZOqyikhKSkKPHj00K5+/9957eOONN7Bz506d9q9WrRqcnZ0NXGXFOTg4wNvbGwqFAsHBwWjRogWWLl1apF1ycjL27t2LyMhIAICrqyu8vb2NXS6RxWAQIqJiKZVKeHt7w8/PD3369EFYWBh27dqleV6tViMmJgZ16tSBvb09WrRogQ0bNmieV6lUiIyM1DzfsGFDfPPNN3rXsXz5cvj7+8PBwQGvvPIKZs6cCTc3N83zCxYsQJ06dTBz5kwEBQUhKioK/fv3x+zZs3U6/tOXxm7duoVevXrB3t4ederUwapVqxAQEIA5c+bodLxZs2ahWbNmcHR0hJ+fH9555x08fPgQAJCZmQl7e3v88ssvWvts3rwZzs7OyM7O1ukcABAZGYm1a9cW2Wf58uXw8fFBeHi4zscismYMQkRUptOnT+PQoUOwtbXVbIuJicGPP/6IBQsW4MyZMxg3bhyGDBmC/fv3AygISrVq1cL69etx9uxZTJw4EZ988gnWrVun83kPHz6MyMhIREVF4eTJk+jcuTO++uorrTZxcXEICwvT2tatWzfExcWV67WOGDECV69exd69e7FhwwZ89913uHXrls77y2QyzJ07F2fOnMGKFSuwZ88efPTRRwAAFxcX9OzZE6tXr9baZ9WqVejTpw8cHBx0Ps/gwYORk5OjFT6FEFixYgVGjBgBuVyu87GIrJrpFr4nInM1fPhwIZfLhaOjo1AqlQKAkMlkYsOGDUIIIR4/fiwcHBzEoUOHtPaLjIwUgwYNKvG4o0ePFv369dM6T+/evUtsP2jQING9e3etbQMGDBCurq6arwMDA8W0adO02mzfvl0AENnZ2WW9VNGxY0cxduxYIYQQ58+fFwDEkSNHNM8nJCQIAGL27NllHqs469evF9WrV9d8vXnzZuHk5CSysrKEEEJkZGQIOzs78csvv+hU45MGDhwoOnbsqPl69+7dAoC4ePFikbYAxObNm8v1GoiqMvYIEVGxCsfcHD58GMOHD0dERAT69esHALh06RKys7Px4osvwsnJSfP48ccfcfnyZc0x5s+fj+DgYHh4eMDJyQkLFy5ESkqKzjUkJCQgJCREa1toaGjlvMASzlc4BqdQo0aNtC7FleW3335Dly5dULNmTTg7O2Po0KG4e/eu5hJW9+7dYWNjg61btwIANm7cCBcXlyK9Wrp4/fXXceDAAc2/+dKlS9GxY0fUr19f72MRWSsGISIqlqOjI+rXr68ZlHv48GEsWbIEADRjXrZv346TJ09qHmfPntVcqlmzZg0++OADREZG4tdff8XJkycRERGB3NzcSq3T29sbaWlpWtvS0tLg4uICe3v7Sj1XWZKTk9GzZ080b94cGzduRHx8PObPnw8Amtdta2uL/v37ay6PrV69GgMGDIBCodD7fF26dIG/vz+WL1+OzMxMbNq0STNImoh0o/9PHhFZHZlMhk8++QTR0dF47bXX0LhxYyiVSqSkpKBjx47F7nPw4EG0a9cO77zzjmbbk71FuggKCsLhw4e1tj19y3hoaCh27NihtW3Xrl3l6jlq1KgR8vPzER8fj2effRYAcP78edy/f1+n/ePj46FWqzFz5kzIZAV/ZxY3Jmrw4MF48cUXcebMGezZs6fIuCddyWQyREREYMmSJahZs6YmZBGR7tgjREQ6efXVVyGXyzF//nw4Ozvjgw8+wLhx47BixQpcvnwZx48fx7x587BixQoAQGBgII4dO4adO3fiwoUL+Pzzz3H06FG9zjlmzBjExsbi66+/xsWLF/Htt98iNjZWq81bb72FxMREfPTRRzh37hy+++47rFu3DuPGjdP7NTZs2BDh4eEYNWoUDh8+jPj4eLzxxhs69yzVr18feXl5mDdvHhITE7Fy5UosWLCgSLvnn38e3t7eGDx4MOrUqVPk8p8+IiIicP36dXzyyScYNGiQ0XvBiCwdgxAR6UShUCAqKgozZsxAVlYWpkyZgs8//xwxMTEICgpCeHg4tm/fjjp16gAARo0ahb59+2LAgAEICQnB3bt3tXqHdNG2bVssWrQI33zzDVq0aIFff/0Vn332mVabOnXqYPv27di1axdatGiBmTNnYvHixejWrVu5XueyZcvg6+uLjh07om/fvnjzzTfh6emp074tWrTArFmz8O9//xtNmzbFqlWrEBMTU6SdJEkYNGgQ/vzzTwwePLhcdRby9/dHWFgY7t27h9dff71CxyKyRpIQQpi6CCIiXS1fvhzvvfeezperKkNAQADee+89ky3F0alTJ7Rs2VLnuYyKI0kSNm/ebPIlTYjMDXuEiIgswHfffQcnJyecOnVKr/3eeustODk5GagqIsvHwdJEVGWlpKSgcePGJT5/9uxZ+Pv763y8VatWYdSoUcU+V7t2bZw5c0bvGnU976NHjwBAr3oB4Msvv8QHH3wAAPDx8an02ogsHS+NEVGVlZ+fj+Tk5BKfDwgI0Ou29QcPHhS5Vb+QjY0NateurW+JRGRiDEJERERktThGiIiIiKwWgxARERFZLQYhIiIisloMQkRERGS1GISIiIjIajEIERERkdViECIiIiKrxSBEREREVuv/AVF5H6EDK3nMAAAAAElFTkSuQmCC\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - examples_18_1.png" } }, "output_type": "display_data" } ], "source": [ "plot_xr_complex(dataset_gridded.q0_iq_av)\n", "fig, ax = plot_xr_complex_on_plane(dataset_gridded.q0_iq_av)\n", "_ = plot_complex_points(centers, ax=ax)" ] }, { "cell_type": "code", "execution_count": 20, "id": "abc92552", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:35.093537Z", "iopub.status.busy": "2023-09-26T17:43:35.093315Z", "iopub.status.idle": "2023-09-26T17:43:35.112516Z", "shell.execute_reply": "2023-09-26T17:43:35.111924Z" } }, "outputs": [ { "data": { "text/html": [ "
def mk_t1_av_with_cal_dataset(\n",
       "    t1_times: Optional[np.ndarray] = None,\n",
       "    probabilities: Optional[np.ndarray] = None,\n",
       "    **kwargs,\n",
       ") -> xr.Dataset:\n",
       "    """\n",
       "    Generates a dataset with mock data of a T1 experiment for a single qubit including\n",
       "    calibration points for the ground and excited states.\n",
       "\n",
       "    Parameters\n",
       "    ----------\n",
       "    t1_times\n",
       "        Array with the T1 times corresponding to each probability in ``probabilities``.\n",
       "    probabilities\n",
       "        The probabilities of finding the qubit in the excited state.\n",
       "    **kwargs\n",
       "        Keyword arguments passed to\n",
       "        :func:`~quantify_core.utilities.examples_support.mk_iq_shots`.\n",
       "    """\n",
       "    # reuse previous dataset\n",
       "    dataset_av = mk_t1_av_dataset(t1_times, probabilities, **kwargs)\n",
       "\n",
       "    # generate mock calibration data for the ground and excited states\n",
       "    q0_iq_av_cal = mk_shots_from_probabilities([0, 1], **kwargs).mean(axis=0)\n",
       "\n",
       "    secondary_dims = ("cal_dim",)\n",
       "    q0_cal_attrs = mk_secondary_var_attrs(unit="V", long_name="Q0 IQ Calibration")\n",
       "    cal_attrs = mk_secondary_coord_attrs(unit="", long_name="Q0 state")\n",
       "\n",
       "    relationships = [\n",
       "        dattrs.QDatasetIntraRelationship(\n",
       "            item_name=dataset_av.q0_iq_av.name,  # name of a variable in the dataset\n",
       "            relation_type="calibration",\n",
       "            related_names=["q0_iq_av_cal"],  # the secondary variable in the dataset\n",
       "        ).to_dict()\n",
       "    ]\n",
       "\n",
       "    data_vars = dict(\n",
       "        q0_iq_av=dataset_av.q0_iq_av,  # reuse from the other dataset\n",
       "        q0_iq_av_cal=(secondary_dims, q0_iq_av_cal, q0_cal_attrs),\n",
       "    )\n",
       "    coords = dict(\n",
       "        t1_time=dataset_av.t1_time,  # reuse from the other dataset\n",
       "        cal=(secondary_dims, ["|0>", "|1>"], cal_attrs),  # coords can be strings\n",
       "    )\n",
       "\n",
       "    dataset = xr.Dataset(\n",
       "        data_vars=data_vars,\n",
       "        coords=coords,\n",
       "        attrs=mk_dataset_attrs(relationships=relationships),  # relationships added here\n",
       "    )\n",
       "\n",
       "    return dataset\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k}{def} \\PY{n+nf}{mk\\PYZus{}t1\\PYZus{}av\\PYZus{}with\\PYZus{}cal\\PYZus{}dataset}\\PY{p}{(}\n", " \\PY{n}{t1\\PYZus{}times}\\PY{p}{:} \\PY{n}{Optional}\\PY{p}{[}\\PY{n}{np}\\PY{o}{.}\\PY{n}{ndarray}\\PY{p}{]} \\PY{o}{=} \\PY{k+kc}{None}\\PY{p}{,}\n", " \\PY{n}{probabilities}\\PY{p}{:} \\PY{n}{Optional}\\PY{p}{[}\\PY{n}{np}\\PY{o}{.}\\PY{n}{ndarray}\\PY{p}{]} \\PY{o}{=} \\PY{k+kc}{None}\\PY{p}{,}\n", " \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{,}\n", "\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{xr}\\PY{o}{.}\\PY{n}{Dataset}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Generates a dataset with mock data of a T1 experiment for a single qubit including}\n", "\\PY{l+s+sd}{ calibration points for the ground and excited states.}\n", "\n", "\\PY{l+s+sd}{ Parameters}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ t1\\PYZus{}times}\n", "\\PY{l+s+sd}{ Array with the T1 times corresponding to each probability in ``probabilities``.}\n", "\\PY{l+s+sd}{ probabilities}\n", "\\PY{l+s+sd}{ The probabilities of finding the qubit in the excited state.}\n", "\\PY{l+s+sd}{ **kwargs}\n", "\\PY{l+s+sd}{ Keyword arguments passed to}\n", "\\PY{l+s+sd}{ :func:`\\PYZti{}quantify\\PYZus{}core.utilities.examples\\PYZus{}support.mk\\PYZus{}iq\\PYZus{}shots`.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", " \\PY{c+c1}{\\PYZsh{} reuse previous dataset}\n", " \\PY{n}{dataset\\PYZus{}av} \\PY{o}{=} \\PY{n}{mk\\PYZus{}t1\\PYZus{}av\\PYZus{}dataset}\\PY{p}{(}\\PY{n}{t1\\PYZus{}times}\\PY{p}{,} \\PY{n}{probabilities}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} generate mock calibration data for the ground and excited states}\n", " \\PY{n}{q0\\PYZus{}iq\\PYZus{}av\\PYZus{}cal} \\PY{o}{=} \\PY{n}{mk\\PYZus{}shots\\PYZus{}from\\PYZus{}probabilities}\\PY{p}{(}\\PY{p}{[}\\PY{l+m+mi}{0}\\PY{p}{,} \\PY{l+m+mi}{1}\\PY{p}{]}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)}\\PY{o}{.}\\PY{n}{mean}\\PY{p}{(}\\PY{n}{axis}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{)}\n", "\n", " \\PY{n}{secondary\\PYZus{}dims} \\PY{o}{=} \\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cal\\PYZus{}dim}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\\PY{p}{)}\n", " \\PY{n}{q0\\PYZus{}cal\\PYZus{}attrs} \\PY{o}{=} \\PY{n}{mk\\PYZus{}secondary\\PYZus{}var\\PYZus{}attrs}\\PY{p}{(}\\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{V}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{long\\PYZus{}name}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Q0 IQ Calibration}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", " \\PY{n}{cal\\PYZus{}attrs} \\PY{o}{=} \\PY{n}{mk\\PYZus{}secondary\\PYZus{}coord\\PYZus{}attrs}\\PY{p}{(}\\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{long\\PYZus{}name}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Q0 state}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", "\n", " \\PY{n}{relationships} \\PY{o}{=} \\PY{p}{[}\n", " \\PY{n}{dattrs}\\PY{o}{.}\\PY{n}{QDatasetIntraRelationship}\\PY{p}{(}\n", " \\PY{n}{item\\PYZus{}name}\\PY{o}{=}\\PY{n}{dataset\\PYZus{}av}\\PY{o}{.}\\PY{n}{q0\\PYZus{}iq\\PYZus{}av}\\PY{o}{.}\\PY{n}{name}\\PY{p}{,} \\PY{c+c1}{\\PYZsh{} name of a variable in the dataset}\n", " \\PY{n}{relation\\PYZus{}type}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{calibration}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{related\\PYZus{}names}\\PY{o}{=}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{q0\\PYZus{}iq\\PYZus{}av\\PYZus{}cal}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{,} \\PY{c+c1}{\\PYZsh{} the secondary variable in the dataset}\n", " \\PY{p}{)}\\PY{o}{.}\\PY{n}{to\\PYZus{}dict}\\PY{p}{(}\\PY{p}{)}\n", " \\PY{p}{]}\n", "\n", " \\PY{n}{data\\PYZus{}vars} \\PY{o}{=} \\PY{n+nb}{dict}\\PY{p}{(}\n", " \\PY{n}{q0\\PYZus{}iq\\PYZus{}av}\\PY{o}{=}\\PY{n}{dataset\\PYZus{}av}\\PY{o}{.}\\PY{n}{q0\\PYZus{}iq\\PYZus{}av}\\PY{p}{,} \\PY{c+c1}{\\PYZsh{} reuse from the other dataset}\n", " \\PY{n}{q0\\PYZus{}iq\\PYZus{}av\\PYZus{}cal}\\PY{o}{=}\\PY{p}{(}\\PY{n}{secondary\\PYZus{}dims}\\PY{p}{,} \\PY{n}{q0\\PYZus{}iq\\PYZus{}av\\PYZus{}cal}\\PY{p}{,} \\PY{n}{q0\\PYZus{}cal\\PYZus{}attrs}\\PY{p}{)}\\PY{p}{,}\n", " \\PY{p}{)}\n", " \\PY{n}{coords} \\PY{o}{=} \\PY{n+nb}{dict}\\PY{p}{(}\n", " \\PY{n}{t1\\PYZus{}time}\\PY{o}{=}\\PY{n}{dataset\\PYZus{}av}\\PY{o}{.}\\PY{n}{t1\\PYZus{}time}\\PY{p}{,} \\PY{c+c1}{\\PYZsh{} reuse from the other dataset}\n", " \\PY{n}{cal}\\PY{o}{=}\\PY{p}{(}\\PY{n}{secondary\\PYZus{}dims}\\PY{p}{,} \\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{|0\\PYZgt{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{|1\\PYZgt{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{,} \\PY{n}{cal\\PYZus{}attrs}\\PY{p}{)}\\PY{p}{,} \\PY{c+c1}{\\PYZsh{} coords can be strings}\n", " \\PY{p}{)}\n", "\n", " \\PY{n}{dataset} \\PY{o}{=} \\PY{n}{xr}\\PY{o}{.}\\PY{n}{Dataset}\\PY{p}{(}\n", " \\PY{n}{data\\PYZus{}vars}\\PY{o}{=}\\PY{n}{data\\PYZus{}vars}\\PY{p}{,}\n", " \\PY{n}{coords}\\PY{o}{=}\\PY{n}{coords}\\PY{p}{,}\n", " \\PY{n}{attrs}\\PY{o}{=}\\PY{n}{mk\\PYZus{}dataset\\PYZus{}attrs}\\PY{p}{(}\\PY{n}{relationships}\\PY{o}{=}\\PY{n}{relationships}\\PY{p}{)}\\PY{p}{,} \\PY{c+c1}{\\PYZsh{} relationships added here}\n", " \\PY{p}{)}\n", "\n", " \\PY{k}{return} \\PY{n}{dataset}\n", "\\end{Verbatim}\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display_source_code(dataset_examples.mk_t1_av_with_cal_dataset)" ] }, { "cell_type": "code", "execution_count": 21, "id": "41d36e0a", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:35.114752Z", "iopub.status.busy": "2023-09-26T17:43:35.114551Z", "iopub.status.idle": "2023-09-26T17:43:35.179307Z", "shell.execute_reply": "2023-09-26T17:43:35.178653Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:       (main_dim: 30, cal_dim: 2)\n",
       "Coordinates:\n",
       "    t1_time       (main_dim) float64 0.0 4.138e-06 ... 0.0001159 0.00012\n",
       "    cal           (cal_dim) <U3 '|0>' '|1>'\n",
       "Dimensions without coordinates: main_dim, cal_dim\n",
       "Data variables:\n",
       "    q0_iq_av      (main_dim) complex128 (-0.19894114958423859+0.6515500138845...\n",
       "    q0_iq_av_cal  (cal_dim) complex128 (0.7010588504157614-0.3984499861154196...\n",
       "Attributes:\n",
       "    tuid:                      20230926-194335-122-ca5251\n",
       "    dataset_name:              \n",
       "    dataset_state:             None\n",
       "    timestamp_start:           None\n",
       "    timestamp_end:             None\n",
       "    quantify_dataset_version:  2.0.0\n",
       "    software_versions:         {}\n",
       "    relationships:             [{'item_name': 'q0_iq_av', 'relation_type': 'c...\n",
       "    json_serialize_exclude:    []
" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset = dataset_examples.mk_t1_av_with_cal_dataset(**mock_conf)\n", "assert dataset == round_trip_dataset(dataset) # confirm read/write\n", "\n", "dataset" ] }, { "cell_type": "code", "execution_count": 22, "id": "0de57bac", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:35.181650Z", "iopub.status.busy": "2023-09-26T17:43:35.181427Z", "iopub.status.idle": "2023-09-26T17:43:35.186659Z", "shell.execute_reply": "2023-09-26T17:43:35.186195Z" } }, "outputs": [ { "data": { "text/html": [ "
(['main_dim'], ['cal_dim'])\n",
       "
\n" ], "text/plain": [ "\u001b[1m(\u001b[0m\u001b[1m[\u001b[0m\u001b[32m'main_dim'\u001b[0m\u001b[1m]\u001b[0m, \u001b[1m[\u001b[0m\u001b[32m'cal_dim'\u001b[0m\u001b[1m]\u001b[0m\u001b[1m)\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dattrs.get_main_dims(dataset), dattrs.get_secondary_dims(dataset)" ] }, { "cell_type": "code", "execution_count": 23, "id": "3d79e14b", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:35.188838Z", "iopub.status.busy": "2023-09-26T17:43:35.188640Z", "iopub.status.idle": "2023-09-26T17:43:35.194080Z", "shell.execute_reply": "2023-09-26T17:43:35.193517Z" } }, "outputs": [ { "data": { "text/html": [ "
\n",
       "[\n",
       "    {\n",
       "        'item_name': 'q0_iq_av',\n",
       "        'relation_type': 'calibration',\n",
       "        'related_names': ['q0_iq_av_cal'],\n",
       "        'relation_metadata': {}\n",
       "    }\n",
       "]\n",
       "
\n" ], "text/plain": [ "\n", "\u001b[1m[\u001b[0m\n", " \u001b[1m{\u001b[0m\n", " \u001b[32m'item_name'\u001b[0m: \u001b[32m'q0_iq_av'\u001b[0m,\n", " \u001b[32m'relation_type'\u001b[0m: \u001b[32m'calibration'\u001b[0m,\n", " \u001b[32m'related_names'\u001b[0m: \u001b[1m[\u001b[0m\u001b[32m'q0_iq_av_cal'\u001b[0m\u001b[1m]\u001b[0m,\n", " \u001b[32m'relation_metadata'\u001b[0m: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", " \u001b[1m}\u001b[0m\n", "\u001b[1m]\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dataset.relationships" ] }, { "cell_type": "code", "execution_count": 24, "id": "f0a4d6cf", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:35.196276Z", "iopub.status.busy": "2023-09-26T17:43:35.196078Z", "iopub.status.idle": "2023-09-26T17:43:35.213056Z", "shell.execute_reply": "2023-09-26T17:43:35.212522Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:       (t1_time: 30, cal: 2)\n",
       "Coordinates:\n",
       "  * t1_time       (t1_time) float64 0.0 4.138e-06 ... 0.0001159 0.00012\n",
       "  * cal           (cal) <U3 '|0>' '|1>'\n",
       "Data variables:\n",
       "    q0_iq_av      (t1_time) complex128 (-0.19894114958423859+0.65155001388458...\n",
       "    q0_iq_av_cal  (cal) complex128 (0.7010588504157614-0.3984499861154196j) (...\n",
       "Attributes:\n",
       "    tuid:                      20230926-194335-122-ca5251\n",
       "    dataset_name:              \n",
       "    dataset_state:             None\n",
       "    timestamp_start:           None\n",
       "    timestamp_end:             None\n",
       "    quantify_dataset_version:  2.0.0\n",
       "    software_versions:         {}\n",
       "    relationships:             [{'item_name': 'q0_iq_av', 'relation_type': 'c...\n",
       "    json_serialize_exclude:    []
" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset_gridded = dh.to_gridded_dataset(\n", " dataset,\n", " dimension=\"main_dim\",\n", " coords_names=dattrs.get_main_coords(dataset),\n", ")\n", "dataset_gridded = dh.to_gridded_dataset(\n", " dataset_gridded,\n", " dimension=\"cal_dim\",\n", " coords_names=dattrs.get_secondary_coords(dataset_gridded),\n", ")\n", "dataset_gridded" ] }, { "cell_type": "code", "execution_count": 25, "id": "b7bf1495", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:35.215305Z", "iopub.status.busy": "2023-09-26T17:43:35.215104Z", "iopub.status.idle": "2023-09-26T17:43:35.680224Z", "shell.execute_reply": "2023-09-26T17:43:35.679515Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAv0AAAHXCAYAAAAvGeXZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAADR4UlEQVR4nOzdd3QUddfA8e/sbnbTeyMkhNA7AQKhI01sIKIUESmCPjZEEQs2EPVFxYKCDaUoFlBE7BTpvTfpJYFQ0nvP7s77R8hKSEI2IWFT7uecHHan/OZOMiF3Z+7cUVRVVRFCCCGEEELUWBpbByCEEEIIIYSoXJL0CyGEEEIIUcNJ0i+EEEIIIUQNJ0m/EEIIIYQQNZwk/UIIIYQQQtRwkvQLIYQQQghRw0nSL4QQQgghRA0nSb8QQgghhBA1nCT9QgghhBBC1HCS9Ashrmvs2LHUr1+/0DRFUZg+ffpN2f706dNRFKXCxhs7diyKoqAoCq1ataqwccurovevMiUnJ1u+d4qi8N5771XaturXr89dd91VaeNXJ1FRUdjb27N169abvu2jR4+i0+n4999/b/q2RcWKjIxEURQWLVp007a5aNGiQv9nxMfHX3f56dOnF/l7YwsHDhwoFPeyZctsHVKFkKRf1AhHjhxh1KhR1K1bF4PBQEBAAKNGjeLo0aPFLp+Tk8MLL7xAQEAADg4OhIeHs2bNGqu2NXbsWJydnYtMV1WVxYsX07NnT9zd3XF0dKR169a8+eabZGZm3tD+VXXbtm1j+vTpJCcn2zoUq3h7e7N48WLefvvtco9xI8dQdeXk5MTixYv58MMPbR1KrTJjxgzCw8Pp1q2bZdovv/zCgAEDCAgIwGAwEBgYyH333Vdicv7bb7/Rvn177O3tqVevHtOmTcNoNJa67RYtWnDnnXfy2muvVdj+iNrnww8/ZPHixbi4uFimjR07lltuuaXUddPT05k2bRq33XYbnp6elfLB5ZZbbmHs2LGW98HBwSxevJiXXnqpQrdja5L0i2pv+fLltG/fnrVr1zJu3Dg+/fRTxo8fz7p162jfvj2//vprkXXGjh3LBx98wAMPPMBHH32EVqvljjvuYMuWLeWKwWQyMWLECEaPHg3kn62YPXs2oaGhTJs2jc6dOxMbG3tD+1mVZGVl8corr1jeb9u2jddff73aJP1OTk6MGjXqhs4kV9Qx9Morr5CVlVXuOG4mOzs7Ro0axeDBg20dSq0RFxfH119/zaOPPlpo+uHDh/Hw8GDSpEl8+umnPPbYY+zfv59OnTpx8ODBQsv+/fffDB48GHd3d+bMmcPgwYN58803mThxolUxPProo/zyyy+cOXOmwvZL1C6DBw9m1KhRGAyGMq8bHx/PjBkzOHbsGG3btq2E6Iry8PBg1KhR9O/f/6Zs72bR2ToAIW7EmTNnePDBB2nQoAGbNm3Cx8fHMm/SpEn06NGDUaNGcejQIUJCQgDYtWsXS5YsYdasWUyZMgWA0aNH06pVK55//nm2bdtW5jjeffddfvzxR6ZMmcKsWbMs0x955BGGDRvG4MGDGTduHH/++ecN7nHVYG9vb+sQbKoijyGdTodOJ/8Vi+J9++236HQ6Bg4cWGh6cWfeJ0yYQGBgIJ999hmff/65ZfqUKVNo06YNq1evthxrrq6u/N///R+TJk2iWbNm142hX79+eHh48PXXXzNjxowK2CshrFenTh0uX76Mv78/e/bsoWPHjiUue/z4cRo2bIidnd1NjLD6kDP9olqbNWsWmZmZzJs3r1DCD/klHF988QXp6emFEvFly5ah1Wp55JFHLNPs7e0ZP34827dvJyoqqkwxZGVlMWvWLJo0acLMmTOLzB84cCBjxozhr7/+YteuXdcd69ChQ4wdO5YGDRpgb2+Pv78/Dz30EAkJCYWWK6gDP3nyJKNGjcLNzQ0fHx9effVVVFUlKiqKu+++G1dXV/z9/Xn//fcLrb9hwwYURWHp0qW89NJL+Pv74+TkxKBBg6za/6tr+qdPn85zzz0HQEhIiKUGMjIy8ro1pMXdF7BlyxY6duyIvb09DRs25Isvvigxhm+//ZYOHTrg4OCAp6cnI0aMKPPP7lo5OTk888wz+Pj44OLiwqBBg7hw4UKRWCvyGCqupt/aOKzx3nvv0bVrV7y8vHBwcKBDhw5F6lNbtWpF7969i6xrNpupW7cu9913X6nbycvL4/jx41y+fLnUZaOjoxk3bhyBgYEYDAbq1KnD3XffTWRkZJFlt2zZQqdOnbC3t6dBgwZ88803heYnJiYyZcoUWrdujbOzM66urtx+++1FznaX9ZjfuXMnt912G25ubjg6OtKrVy+b1NSvWLGC8PDwYksKr+Xr64ujo2OhK25Hjx7l6NGjPPLII4U+XD7++OOoqmpVrbKdnR233HJLsVdNReW7ePEi48ePt5RyhYSE8Nhjj5GbmwtY/ztQXRkMBvz9/a1a9u2336Zu3bpMmTKFY8eOVXJk1Y+cXhLV2u+//079+vXp0aNHsfN79uxJ/fr1+f333/n0008B2L9/P02aNMHV1bXQsp06dQLyb+AJCgqyOoYtW7aQlJTEpEmTSjxjO3r0aBYuXMjvv/9u2U5x1qxZw9mzZxk3bhz+/v4cOXKEefPmceTIEXbs2FEkORw+fDjNmzfn7bff5s8//+TNN9/E09OTL774gj59+vDOO+/w3XffMWXKFDp27EjPnj0Lrf/WW2+hKAovvPACsbGxzJ49m379+nHgwAEcHBys2v8hQ4Zw8uRJfvjhBz788EO8vb0B8PHxIS4uzqoxIL9c4dZbb8XHx4fp06djNBqZNm0afn5+RZZ96623ePXVVxk2bBgTJkwgLi6OOXPm0LNnT/bv34+7u7vV273ahAkT+Pbbbxk5ciRdu3Zl3bp13HnnnUWWq+hjqLxxWOOjjz5i0KBBPPDAA+Tm5rJkyRKGDh3KH3/8YRlz+PDhTJ8+nejo6EJ/XLds2cKlS5cYMWJEqdu5ePEizZs3Z8yYMaXW2957770cOXKEiRMnUr9+fWJjY1mzZg3nz58vdBPf6dOnue+++xg/fjxjxoxhwYIFjB07lg4dOtCyZUsAzp49y4oVKxg6dCghISHExMTwxRdf0KtXL44ePUpAQEChbVtzzK9bt47bb7+dDh06MG3aNDQaDQsXLqRPnz5s3rz5ur/DQKk3KxZwcXG5brlDXl4eu3fv5rHHHitxmeTkZPLy8oiOjmb27NmkpqbSt29fy/z9+/cDEBYWVmi9gIAAAgMDLfNL06FDB3799VdSU1OLHPei8ly6dIlOnTqRnJzMI488QrNmzbh48SLLli0jMzMTvV5f5t+B0pjNZhITE61a1s3NrUqdVZ84cSJms5nPPvuM999/n65duzJ+/HiGDRtm1QfnGk8VoppKTk5WAfXuu+++7nKDBg1SATU1NVVVVVVt2bKl2qdPnyLLHTlyRAXUzz///LrjjRkzRnVycrK8nz17tgqov/zyS4nrJCYmqoA6ZMiQ646dmZlZZNoPP/ygAuqmTZss06ZNm6YC6iOPPGKZZjQa1cDAQFVRFPXtt9+2TE9KSlIdHBzUMWPGWKatX79eBdS6detavi+qqqo//vijCqgfffRRof0NDg4uFBOgTps2zfJ+1qxZKqBGREQUWi4iIkIF1IULFxbZr2vHGDx4sGpvb6+eO3fOMu3o0aOqVqtVr/6vKjIyUtVqtepbb71VaLzDhw+rOp2uyPRrFbc/qqqqBw4cUAH18ccfLzR95MiRRWK90WPoagU/y/LEYY1rj6nc3Fy1VatWheI/ceKECqhz5swptOzjjz+uOjs7Fxmj4Oc6a9asItOuPs6Kk5SUVGTd4gQHBxc57mNjY1WDwaA+++yzlmnZ2dmqyWQqEp/BYFBnzJhhmWbtMW82m9XGjRurAwYMUM1ms2W5zMxMNSQkRO3fv/9141bV/GPbmq/ifi+udvr06WJ/Lldr2rSpZTxnZ2f1lVdeKfT9KPjdPH/+fJF1O3bsqHbu3LnU/VFVVf3+++9VQN25c6dVy4uKMXr0aFWj0ai7d+8uMq/g+LT2d+B6/x9fu661x/D69euvO9bChQuL/dtQkmnTphX7/3OB3bt3W7UPKSkp6hdffKGGh4dbfjfGjx+vbtu2zao4ChT8v/HTTz+Vab2qSs70i2orLS0NoFA3gOIUzE9LS8PFxYWsrKxiz64V1KmX9aZKa+K4OobrufrsenZ2Nunp6XTu3BmAffv2FbmiMWHCBMtrrVZLWFgYFy5cYPz48Zbp7u7uNG3alLNnzxbZ3ujRowvFfd9991GnTh3++usvnnrqqevGWpFMJhOrVq1i8ODB1KtXzzK9efPmDBgwgL/++ssybfny5ZjNZoYNG1bojKq/vz+NGzdm/fr15eq4ULCNa/f76aef5vvvvy80raKPofLGYY2rj6mkpCRMJhM9evTghx9+sExv0qQJoaGhLF26lCeffBLI/5ksW7aMgQMHWnXVp379+qiqalU8er2eDRs2MH78eDw8PEpctkWLFoWOeR8fnyLH8tU/B5PJRHJyMs7OzjRt2pR9+/YVGbO0Y/7AgQOcOnWKV155pUhZXd++fVm8eDFmsxmNpuTqWGu7OBVcrShJwfav9z1auHAhqampnD17loULF5KVlYXJZLLEV3AslnS8pqamWhVrQQzWXsUQN85sNrNixQoGDhxY5EoNYLnyW9bfgdL4+/tbfQzfrBtry8rV1ZVHHnmERx55hGPHjrFgwQIWL17M/PnzadGiBc8880yhv5+1hST9otqyNpFOS0tDURRL2YmDgwM5OTlFlsvOzrbMr+g4Cub5+vped6zExERef/11lixZUqTbT0pKSpHlr06QIf9Sq729vWVfr55+bQID0Lhx40LvFUWhUaNGxdZWV6a4uDiysrKKxAPQtGnTQkn/qVOnUFW12GWBcl9qPnfuHBqNhoYNGxbZ/rUq+hgqbxzW+OOPP3jzzTc5cOBAoZiLKxV76aWXuHjxInXr1mXDhg3ExsYyfPjwcm23JAaDgXfeeYdnn30WPz8/OnfuzF133cXo0aOL1O1ee3xDfvKZlJRkeW82m/noo4/49NNPiYiIwGQyWeZ5eXkVWb+0Y/7UqVMAjBkzpsR9SElJuW4i3q9fvxLnlcf1Pkx16dLF8nrEiBE0b94cwPIMhYJjsaTj1dpjtSCG6vJMiZogLi6O1NTUUp8nUtbfgdLY29tX+DFsS82bN2fWrFk8+uijPPjgg2zfvp25c+dK0i9EdeLm5kZAQACHDh267nKHDh0iMDAQvV4P5HcCuHjxYpHlCm5ALGv9Y4sWLSzbKamVYUGMDRo0uO5Yw4YNY9u2bTz33HOEhobi7OyM2Wzmtttuw2w2F1leq9VaNQ2unzhUlpIShKv/KJWV2WxGURT+/vvvYvf1ZtRtVvQxVFk2b97MoEGD6NmzJ59++il16tTBzs6OhQsXFrlqMHz4cKZOncpPP/3E008/zY8//oibmxu33XZbhcf19NNPM3DgQFasWMGqVat49dVXmTlzJuvWraNdu3aW5aw5lv/v//6PV199lYceeog33ngDT09PNBoNTz/9dLG/M6UpWGfWrFmEhoYWu0xpx1h0dLRV23Jzc7tu0l2QsF39Ied6PDw86NOnD999950l6a9Tpw6Qf2xee5/J5cuXS70/oUBBDNeeUBC2V9G/AyaTyer7sTw9PS1/W6ui7Oxsli9fzsKFC1m7di329vaMGjXquvfJ1GSS9ItqbeDAgXzxxRds2bKF7t27F5m/efNmIiMjmTx5smVaaGgo69evL3JD2s6dOy3zy6Jbt264u7vz/fff8/LLLxebqBR0HBk6dGiJ4yQlJbF27Vpef/31Qu34Cs48VoZrx1ZVldOnT9OmTZsyjVNScl9wNvTa/v3nzp0r9N7HxwcHB4di9/XEiROF3jds2BBVVQkJCaFJkyZlivN6goODMZvNnDlzptBZ9Wu3DxV/DJU3jtL8/PPP2Nvbs2rVqkIlAAsXLiyybEhICJ06dbKU+CxfvpzBgweXq6+2NRo2bMizzz7Ls88+y6lTpwgNDeX999/n22+/LdM4y5Yto3fv3syfP7/Q9OTk5GIT1NKO+YIrLK6uruU+21mQaJdm4cKFhR4IdK169erh4OBARESE1dvOysoqdFWw4Fjcs2dPoQT/0qVLXLhwoVAHquuJiIhAo9FU6O+cuD4fHx9cXV1LfRpyWX8HShMVFWVpcV2a9evXW/WArZtt165dLFy4kB9++IGUlBTatWvH3LlzGTlyZLkbPdQE0rJTVGtTpkzB0dGR//3vf0XKVxITE3n00UdxdXW11ClDfg2vyWRi3rx5lmk5OTksXLiQ8PDwMnddcXR05Pnnn+fEiRO8/PLLReb/+eefLFq0iIEDB9K6desSxyn4sHDtGfnZs2eXKZ6y+OabbwqVJS1btozLly9z++23l2kcJycnoGhy7+rqire3N5s2bSo0vaCTUgGtVsuAAQNYsWIF58+ft0w/duwYq1atKrTskCFD0Gq1vP7660W+V6qqFlvGZI2Cff74448LTS/u+1/Rx1B54yiNVqtFUZRCV1YiIyNZsWJFscsPHz6cHTt2sGDBAuLj4yu8tAcgMzPTUgZVoGHDhri4uBRbglIarVZb5Dj46aefir0SA6Uf8x06dKBhw4a89957pKenF1nfmjOga9asseprwIAB1x3Hzs6OsLAw9uzZU2RecQ/7i4yMZO3atYXqv1u2bEmzZs2YN29eoePgs88+Q1EUq9qxAuzdu5eWLVvi5uZm1fLixmk0GgYPHszvv/9e7DFQcNyX9XegNAU1/dZ8VbWa/p9//plWrVoRHh7OkiVLeOCBB9i3bx/79u3j8ccfr9UJP8iZflHNNWrUiG+++Yb777+f1q1bM378eEJCQoiMjGT+/PkkJSWxZMmSQmctwsPDGTp0KFOnTiU2NpZGjRrx9ddfW9Ypj+eff54DBw7wzjvvsH37du69914cHBzYsmUL3377LS1btiy1jaGrqys9e/bk3XffJS8vj7p167J69eoyneUrK09PT7p37864ceOIiYlh9uzZNGrUiIcffrhM43To0AGAl19+mREjRmBnZ8fAgQNxcnJiwoQJvP3220yYMIGwsDA2bdrEyZMni4zx+uuvs3LlSnr06MHjjz+O0Whkzpw5tGzZslAJV8OGDXnzzTeZOnUqkZGRDB48GBcXFyIiIvjll1945JFHLA/MKovQ0FDuv/9+Pv30U1JSUujatStr167l9OnTRZatjGOoPHGU5s477+SDDz7gtttuY+TIkcTGxvLJJ5/QqFGjYsvihg0bxpQpU5gyZQqenp5lOtMdGRlJSEhIqS07T548Sd++fRk2bBgtWrRAp9Pxyy+/EBMTY1Vr0GvdddddzJgxg3HjxtG1a1cOHz7Md999V2IpXWnHvEaj4auvvuL222+nZcuWjBs3jrp163Lx4kXWr1+Pq6srv//++3Vjqsh66LvvvpuXX365yFWl1q1b07dvX0JDQ/Hw8ODUqVPMnz+fvLw83n777UJjzJo1i0GDBnHrrbcyYsQI/v33X0tNc8E9AFDyzzAvL4+NGzfy+OOPV9h+Cev83//9H6tXr6ZXr1488sgjNG/enMuXL/PTTz+xZcsW3N3dy/w7UJqqWNM/d+5ckpOTuXTpEpDfrvvChQtAfpvOgg+jf/75J97e3nzzzTfcd999N3R/VY1kg45BQlS4w4cPqyNHjlT9/f1VjUajAqq9vb165MiRYpfPyspSp0yZovr7+6sGg0Ht2LGjunLlSqu2dW3LzgJms1ldtGiR2q1bN9XFxcXS0qxfv35qTk6OVWNfuHBBveeee1R3d3fVzc1NHTp0qHrp0qUirRoL2jzGxcVZFVuvXr3Uli1bWt4XtCH74Ycf1KlTp6q+vr6qg4ODeueddxZqmVkwZmktO1VVVd944w21bt26lu9/QYu2zMxMdfz48aqbm5vq4uKiDhs2TI2NjS12jI0bN6odOnRQ9Xq92qBBA/Xzzz8v0tKywM8//6x2795ddXJyUp2cnNRmzZqpTzzxhHrixIkSvrsl70+BrKws9amnnlK9vLxUJycndeDAgWpUVFSxsd7IMXS14vavLHGUZv78+Wrjxo1Vg8GgNmvWTF24cGGJ31NVVdVu3bqpgDphwoQSxyyuZefhw4dVQH3xxRevG098fLz6xBNPqM2aNVOdnJxUNzc3NTw8XP3xxx8LLRccHKzeeeedRdbv1auX2qtXL8v77Oxs9dlnn1Xr1KmjOjg4qN26dVO3b99eZLmyHPOqqqr79+9XhwwZonp5eakGg0ENDg5Whw0bpq5du/a6+1fRYmJiVJ1Opy5evLjQ9GnTpqlhYWGqh4eHqtPp1ICAAHXEiBHqoUOHih3nl19+UUNDQ1WDwaAGBgaqr7zyipqbm1tomZJ+hn///bcKqKdOnarYnRNWOXfunDp69GjVx8dHNRgMaoMGDdQnnnjC8nfF2t8Ba1t2VqSKatlZ0MK3uK+rx05PT6+YwK+oaS07JekXNdLXX3+tKoqiPvjggzaLITc3Vx0wYICq0+nUv//+22ZxFKem/UdWFmPGjFGDgoLUuLg4NSkpyap1ypNsVwZbx2E2m9W4uDh13759RZL+Tz75RHVyclKjo6NtFt/1VOdj/qGHHlK7d+9e6dsp6Wd49913q4MHD6707YuapyDp37dvnxoXF1fo2RfFKa1P/81iNBrVuLg4dcWKFdX2/43iSHmPqJFGjx7N5cuXefHFFwkMDOT//u//bnoMdnZ2/Pzzz9xyyy0MHTqUjRs30r59+5sehygqKioKHx8fWrZsWepNcuI/KSkp+Pj4FDtv/fr1PPXUU8U+QVncmGnTptGkSRO2bt1Kt27dKm07xf0Mjx07xh9//MGBAwcqbbui5iv42xcXF1ctOkAdPny4UCexmkKSflFjvfDCC7zwwgs2jcHJyYndu3fbNAZR2PPPP8+oUaOAym3vmZKSUupDuq7tS28ta1rqOTs7V/j+OTs7F3poz9WdXH766acK3Zb4T7169Yrc/FwZivsZNm/eHKPRWOnbFjXTgAEDCv2fUV1uBG/UqFGhuMva0a6qkqRfCFGrtGjRwvJshco0adIkvv766+suo5bz2QnWtNSbNm0a06dPL9f4JdHpdFXuBj8hRNVVp04dq1vYViXOzs418v86RS3vXx0hhBAlOnr0qKXTREnK+0clOzubLVu2XHeZBg0alLt7hxBCiJpHkn4hhBBCCCFqOHk4lxBCCCGEEDWc1PSXwmw2c+nSJVxcXFAUxdbhCCGEEEIUS1VV0tLSCAgIQKMp+bxuTcxtrN332kyS/lJcunSJoKAgW4chhBBCCGGVqKgoAgMDS5xfk3Ob0va9NpOkvxQuLi5A/kF09SPQhRBCCCGqktTUVIKCgiy5S0lqYm5j7b7XZpL0l6Lgsperq2uN+cUQQgghRM1VWslOTc5takq5UmWQoichhBBCCCFqOEn6hRBCCCGEqOEk6RdCCCGEEKKGk6RfCCGEEEKIGk6SfiGEEEIIIWo4SfqFEEIIIYSo4STpF0IIIYQQooaTpF8IIYQQQogaTpJ+IYQQQgghajhJ+oUQQgghhKjhdLYOQAghhBBC3Hwms8r2MwnEpmXj62JPpxBPtBrF1mGJSiJJvxBCCCFELXTrhxuJy9Fa3tdxs2fawBbc1qqODaMSlUXKe4QQQgghaqGY1JxC76NTsnns232s/PeyjSISlUmSfiGEEEIIgXrl39d/P4rJrF53WVH9SNIvhBBCCCGA/MT/cko2uyISbR2KqGCS9AshhBBCiEJi07JtHYKoYJL0CyGEEEKIQnxd7G0dgqhg0r1HCCGEEEIAoAD+bvntO0XNImf6hRBCCCFqoWs78he8nzawhfTrr4Ek6RdCCCGEqIV8XQ2F3vu72fPZqPbSp7+GkvIeIYQQQohr5OZsJSv9K/JydwEKekMvHJwfxk4favUYqjkRMr9HzVoO5mTQBqA4jADH+1AU29fMr36mF8cTjPJE3lpCkn4hhBBC1CgmcwopmX+SZ4rFTuuHm+OdaDWuVq+fmTaHjLS3AS1gAiAn+3dysn/F2W0WDk73lzqGajyPmng/mBMAc/5E4ynUtDcgazl4foOicS77zlUgrUahS0Mvm8Ygbh5J+oUQQghRI6iqSnza58SkzEIlj4Kk/VLSK/i5v4CPyyOljpGbs/NKwg8FCf/Vr9NTnsNO3xGdXaPrx5L8DJgTsST8+VPz/zEeRU17B8XtDSv3TIgbJ0m/EEIIIWqEhPSFRKe8ddUUIwAqOUQnz0Cj2OPlPPq6Y2RlzKfgw4LRrCEl24lco91VS2hJMi7B0WVyiWOoxuOQdAEofHXBxZCFqyEbMEPWL6guU1A0bmXZRSHKTZJ+IYQQopbLM2dzOes4ZtWEj31DnHTu5RonOSeCDGM09lp3PA3NUJSy1YcnZe/lfMrXJGRtB1Q87MOo5zYaL4eupa5rVnOISXn/ustcSPyAXNNgkjIgMSOXhIwcEtJzr7zOJTEjh5iktiRlhZOc5UxK9vXKb9aXEtFrRaZM7fErD3fYcOVdLhhPgL5TKeMIUTEk6bexpJhkDm44gslopmmnRgQ2ljvmhRBC3Bxm1cS2uMXsTVpBnjkLAAUNTV170dfvcRx01tXBx2UdZlfc+yTmHLdMc7ELpIP3UwQ597RqjKjU7zie8CYKWtQrpTTxWVuIz9pII4+nCXH/33XXT83aTHSqhsvJzbiU4sulZF+iU71JznIlJcuZ1CwXMnIdgc2lRFK/yBSDNrfwBEUD6K8zhglUI5Zyniu0ivma5bSlxCJKZDbBuW2QHgPOfuDRytYRVXmS9NtIdmYOc578in++3YTZ+N9/Au37t+G5hU/gHSAPxRBCCFF5VFXlr0uzOJ66gauTUxUzJ1I3Ept9hgfqz8agdbruOHFZh1l94XFLol4gLe8iGy4/Tw//N6jv0v+6Y6TlnuR4wltXtl+0jv500mzc7cNwN7QnLi2HiPgMIhMyiIjPJCI+ncj4TCITsskxvl3M6IVpFBUPRwNezno8nfR4ORnwdLry2lmPg/ojztrVuDum4OmQhqt9BjrN1cm6BkfnSTi5TilxG6oxAjV+wPUDUZzArmWp8YpiHP0NVr4AqZf+m6b3s1081YQk/TZgMpl4bdDbHNx4FLOp8Kf+A+v/5enur/DZ3ndx8bDtXf1CCCGqLrNq4kjKLnYkriY+5xIOWifaufeko2dfHHUupa5/MesIx1OLL1FRMZOUG8XB5D/p5DXsuuPsjvsAFRMq157Fzv8gsSv2fYKcb0Gr2BVd+YoLqT+gmrXkmDTkGvXkGe1IznAlJtWb2BRvYpJ9mZl+kpjkODJyTSWMoqDVmPBziSfAPYYA91gC3OJwd0zBzSEdN/s0XB3SCK23FGf70BJjMeYNIiluLlDcdhRAj73TqOt8R0DRhaAaboGczSWP4zimSrTtrHaO/gY/jubaqyikxdgknOpEkn4b2LPyAPvX/VvsPLPRTNz5eH7/bDUjXxpykyMTQghxM6Qb09kSv4l9SXvJMedQ3zGEW3x7E+LUwKr1TaqRbyPf41jaHhQ0qJhJyUtgZfR3bI3/k0cazsDbcP1y0X+TV6GadaRlOpCS6k5KmhvZuYWT0MOas+z2Ol3iGDmmJI4mewJdLNNUVcFo0pFn1GE02pFnsuPvLetQVE+yck1kG035/+aZyMozkZ1nJjM3lDxTmDV7jkaBuh4O1PdyIsTbKf9fHyfqezqSlTMIk3oainwAAdBg0DXGydD2ulvQ2TXDxWMuaUlPWrZZsD6KHjfPhWi1/qVGqri9i5o4DoxH8tfFjKUFqOE2FOcnrz+AKMpsyj/Df23CDyVME1eTpN8GVn+zEY1Wg9lkRqOYubXtJUJDEnn7l9aAgtms8vf8tZL0CyFEDXQ+8xzvn3iXTFMm6pVE5XLWJbYmbGZQwGAGBQwudYx1MT9zPG0vQKEz7Coq6cYUFp97l6cbf4CiKOQYTUQlZnEuIYNzCZn5/yZm8m90PRLT/ofZfP268g2cKCWaPqXGm99FJ/Y68wunI3baPJztM/B1i8fPLQ4/t3gCPU3c2ewDgjwdMeiKjzkjZyYRsSOufFcLl+Qo6Kjr+Y5VNxfbOwzCzq4dWZnfkpezA0XRYmfogYPjA2i0vqWuD6Bo3MHrR8heg5r9a36/fm0QisNQ0Hcp803Ogvwa/qtLekSZSNJvAwkXEy1lPZ7OuUy84zh6nZm1h+uw+7QPAMmxKbYMUQghRCXINefy4cn3yTJlWRJ+APOVBPW3SysIdAiivUeHEscwmvPYlvCXZX1Vhbw8PRkZzqSnuZCe7kpamgsb164jNhkup2ajFnsS1BEAjcaEm0sKri4pONpncnUuqlMMNHftXWIsOaYUojI2Fpmu0+VhpzVip8vDTpdHM48BBLq0xF6vxV6nwUGvxcFOi/2Vr5isr4nJWIRel4udLg+NUjhgBS2BriNo5HX9siUnQzgNfH8mOuX/yMjZcdX0zvi7vYSjIfS6619NqwvC2XWq1csXR1HswOEOFIc7bmgccUW6lPDcCEn6bcAnyMtypj8+zZ4Vu4IY1vUcE/qeYu8Zb8yqgmcdD1uHKYQQooLtTtxFmjG10DSzWcGYZ4cxV48xT89XKZsZ6BtAanYeadlGUrPySM02kpqdR2qWkYTMNCJS+pKXpyc3V4/RaIeqaorZWrbllZNeS7CXE8FejpZ/7RzOczj7Q5wcM9Boin4qUNAQ7jWc7r5tStwfVVX59dwc0vKiKKm8Qqc4cF+D/8NO41DiOIHGe9l64UvMal4x4yiAQpDLyBLXv5qjoT0NfJeRa7yE0RSLTuuLXhdg1bqiinOWm3VvhCT9NnDr2N5sWLrN8n7Jlgbc0f4iDfzS6dPqMmuP1OWOCf1sGKEQQojKcDztGJh0JMR7khBdh/hofzLTirbF/It9pYzkVWSKwZCFs3Mazi5puDinEV63BXc0uIVgL0e8nPRFyknMal2M51dwMfNIoasOkH9m3UHrSjvPu68bhaIodPCeyIbLz5W4TFuvR66b8APY6/wJ9fuMAzGPY1Zz+a80R4OClja+H+Ckt+5+hwJ6XYAk+zVNcFdwDYDUy0gNf9lJ0m8DHfq3odMd7di98gCqWSUt244lW0OY0PcUY3uf5lRuKHf9T5J+IYSoio6nnmVV9GbOZ17CXmtPN+/23OLTCUddyYnthaRMNpyIY8k+D85eHIjJVPTPr1aXh84u/6uZRzBuDnpc7HW42tvh6qDDxd4OV3s7nOwV/oz9BFWbjJ1dHnb6XOzsctHpCneJebDhEOo7lXzVWKNoGRI4g1XRszmRuomrkyg/+4bcVXcqTrrSrzoHOfegp///sTPuXXJMyeSfmVfRKQ6Eej1KM/frd/8p4OXQhR5B/3Ax7WcSsraR/3CujtR1GYq9Ts7wCkCjhdveudK9J/84+4/cI1EaRVWLr/QT+VJTU3FzcyMlJQVXV+seUmKN3Oxc5j23mL+++oe8HCMGnYlFT27B2zWHzG6v4dj/2QrblhBCiBunqipfR/7Cr5fWokFjqcMH8NS78UarpwlwyL/JM9doZk9kIutPxLLhRBynYtMLjaW3z8LbPxov/8t4eMej0+ei0agoKAQ6BDKt5RvXjWVtzDLWxCwpdp4GDX729Xiq8SyrbxZNzYvlXMZ+zKoRf/sm+Dk0tmq9q5lVI5cydlx5Iq8HAU5dSz3DLyqWtTlLZeU2N00xffpT9f64vXyy+u7TTSBJfykq+xcjLSmdf7ccx2Q00cZ5N65bXwYHT5h0AOzdKnx7QghRm8VmJ7M17ghZphyCnfwI92qGTmPdU1HXxmxn7ulvi52nQYOL2Z9++gfYdCKerafjC/WT1yjQIdiDbo092MsiDK6xoBT/5/eh+g/T1bvbdWMxqSaWnJ/N4ZTtRT6AuNv58L+GM/DQ+1i1X6LmqDVJPxR5Im+qRyvcPDyr9z5VMinvsTEXD2e6DLzSm9jUAY4vgoRTsG0O9HnFprEJIURVcjzlEidSL6PX6Ojs3QgPw/WfFHu1PLOR2Sd+4a9LuwAV5Uqi7KF35uUWIwnzanLd9VVV5ZeLawoVFKhmhfRED1JjfUiN9SU7zYUNHLGs4+1soFcTH3o386FHIx/cHPMfTnUibRwfnfwAo2q0JOsFifstPr3p4tW11P3RKlrur/cMHdJuYUfClYdz6Zxp596TDh63YNDKGXZRw2m0ENLjv/epqSUvKwA501+qm/5p+Ohv8OODYOcIT+0Hl9IfACKEEDVZRHocrxz8iWMp/13K1yoahgSF8WzzO9BrSz9/9X9HfmBN9L5iblhV0CgKczs8SXO3ekXWy8o1cSEpk2OxCbxz4CdyMx3IyXQkN8ORnExH1EI97lUC/cwMb9OcW5r60jLAFY2m+PKauJw4NsSuZU/SHvLMedRzrEcf3760dmsr/dtFudWqM/3XqIn7VNHkTH9V03wg1A2Di3tg47tw1we2jkgIIWzmclYyD22fR7oxp9B0k2pm2fndJOZm8G67EddNlM9lxLI6em+x88yqiilbz6xd67nTsy/nEzOJSszk/JWv2LSrt9uiyPo6fQ4uvnG4+sbh4ZvEnfXCebhB6fXwPgYfhgaNYGjQiFKXFUKIiiBJf1WjKND/dVh0J+xdBF2eAK+Gto5KCCFs4uuzm0k35mBSzUXmqaisjT7CkZSLtHIPxGxWSc+90tc+q6CvfR5/Ru0n7XIQpjwtZqMOs1GHKdcOY5YDxix7VLOW88A6DhYbg4tBRz0vR+KUCLBPxuCYid4pK/9fx8IPs2rmUra2kkIIcbNI0l8V1e8OjW+FU6th3RswdJGtIxJCiJtOVVX+uLAfk2pGNWnIS3HBmOKKOVePatShGrWoRh0j9h5AMR0hPcdYwpNnARqVvCHFjM4+h1B/fxr7uBLk6Ui9q77cHOxQFIXfLuaxMHJnsUNoUHCxc6azV+iN7rYQQlQKSfqrqr7T4NQaOPILdJ0IdUt+JLsQQlSGXbHn+frEHvbGX0CnaOhTtxFjmoTR0M3b6jGScjJZGrGXX6MOk5KbRX1nT4aHdODOwFboNMU9RTZfjtHE7sgE4s/4Ykx2w5jmDMU+dRbym2EaLe8NOg2uDna42uf3ts8kjYu5l1F0eWjsjGh0RrR2eegcstE5ZKGzz8Gg0/JtzxnYa/UlxnRnwC2cSItgW8I+NCiYr9wfoEGDQavnpeaPYqeRP6tCiKpJ/neqqvxbQZvhcGgJ/DMdRv8GcnOXEMJKZlXlQNxlErMzqePkQgtP3zLdIDr33y18cGgTWkXBdOX0+Q+n97Pk9AHmdr+HW4OaljrGufREHti0iITsDEuCnJSTyd6EKH49f4jPu4yw3IRrNJk5fDGFbWcS2H4mgd2RieQYzUCQZTyNIRudeypaxywUnRFFZ0KnM3NrUDMea94LF3s7XOx12NsVbsGZnJvOvVtmFFsiBPk3Bff3a3/dhL9guWebjqNrQih/X97E+czL2GsNdPfuwB11euFtKP1BVkIIYSvVLun/5JNPmDVrFtHR0bRt25Y5c+bQqVOnEpdPTk7m5ZdfZvny5SQmJhIcHMzs2bO54447bmLU5dT7JTiyHCI2wZl10KivrSMSQlQDf0ee5K1d64lKT7FMa+rhzYzO/ehcp2iHmmttvhzBB4c2AVgS/oLXCioTt65g46DH8Xd0KXEMVVV5YsdSEnMyLQk/YHm9LSaC17atpxEN2X4mgZ0RiaTnGAuN4eNiwNM7l4t2p9G6paB1KHwzb4GHQzvQwNW5xFjc9c481mggc0/9WmSeVtHgZufE2AYDSlz/ahpFQzfvDnTzlquvQlR3tSqnpJol/UuXLmXy5Ml8/vnnhIeHM3v2bAYMGMCJEyfw9fUtsnxubi79+/fH19eXZcuWUbduXc6dO4e7u/vND748PIKh4wTY8Sn8Mw0a9IbrXA4XQojfzx7jyQ2/F3kg/amkBB5Y+SPf3z6ccP+gYtctsPDELssZflUFzBpQ80dUAaOisODfvfyvRZcSx9ifeIGTCUmA5soX+XX4qS6YU10wp7mwxJgLHLOs4+ZgR5cGXnRt5EXXhl409HEmKTeDkVv+JSE3D1Mx9fpDgsJo4lp6a+P76vXATe/EgjMruZydCOTX4XfzbskTTQbhIw9DFKJWqXU5JdWsT394eDgdO3Zk7ty5AJjNZoKCgpg4cSIvvvhikeU///xzZs2axfHjx7GzsyvXNm3e9zUjAT5qC7lpcO98aH3fzY9BCFEt5JlNdPrhUxJzsoqdr0GhqYc3f909hoxcE/HpucSn5xCflkN8eg5xaTnEpefy04kjGPM0YNRBnl2JtfQ3TGOiY4gHtzatS5eGXjSv44q2mL720VnJvPXvb2yLO2m5ZuCo1TMqpBsPN+6NVrE+PlVViciIJsuUQ4CDFx76kq9WCFHdSJ9+6/fJFjmlrVWbpD83NxdHR0eWLVvG4MGDLdPHjBlDcnIyv/5a9LLtHXfcgaenJ46Ojvz666/4+PgwcuRIXnjhBbTa4h+7npOTQ07Of5eQU1NTCQoKsu0vxsZZsP5NcA+GJ/eA7vp1p0KI2mnt+dM89M/y/DcqkOUImU5g0uUn8Ff+tcf+Sr38TaaYUVzS0bimoXFJQ3HK4Nd+j9Dc3bqHEF7KTOJUWgwGjY62nvVwKKUGX4jaRpJ+N6Kiogrtk8FgwGAwFFr2ZuWUVU21Ke+Jj4/HZDLh5+dXaLqfnx/Hjx8vdp2zZ8+ybt06HnjgAf766y9Onz7N448/Tl5eHtOmTSt2nZkzZ/L6669XePw3pMvjsGseJJ+DvQsh/H+2jkgIUQWdS02BdBfLl2Iu/r/4HPITfke9Fh8XA97OBryd9Xg7G/BxMbAm+ijH0y9i1uaBzpj/pfnvQ4IGhWfb9uSxll1LjOVQ4kWGblhQZPrV9xK76x1o6Opj9f4FOHoQ4Cg3ywohShYUVLh8cdq0aUyfPr3QtJuVU1Y11SbpLw+z2Yyvry/z5s1Dq9XSoUMHLl68yKxZs0r8AU2dOpXJkydb3hec6bcpvRPc8iL8OTn/Kb2hI8Egl6SFqIlOJyaw+N8DbLsQhaJA96BgHmwVSoh78cluUkYua4/HsvpINOtPxqIY/7tRV9UYwSkd9LmgNeZ/6Yx8OWAg3esF4qgv/k9At1gHhv9ztMh9AQAKCvZaHcMbhV63G1Abz7qEetbl3+TLxXbNUYAxjcLRa6rHGTIhRPVQ3Jn+ilCenLKqqTZJv7e3N1qtlpiYmELTY2Ji8Pcv/tJwnTp1sLOzK3TZpXnz5kRHR5Obm4teX/TScHGXgaqE9qNh+yeQeAa2zYXeU20dkRCigi0/cZQpa1ei8F/XnDNJiXx9aD8f33ondzbKb5N5ISmTNUdjWH0khl2RiZjM/1VpKnZ5mJ1SwTkVHDK5OnNXgPquHvRvGHzdhL2jbxCvhw1g+p5VaK5q2alRFPQaLV/2GoqXvdN190VRFOZ0HsqDm77hXEYiCvkVR1pFg0k1c3tgSx5p0r083yYhhCiRq6trqSVLNyunrGqqTdKv1+vp0KEDa9eutdRfmc1m1q5dy5NPPlnsOt26deP777/HbDajudL15uTJk9SpU6da/HAK0dpB31fhp7GwbQ50HA/ORe8uF0JUTycS4pmydiXma26zMqkqqDDxjzXsbpTD7rMpHLmUWmiZ5nVcGdDSj1tb+LM35TSvbP+nyPgFKf4rnXpb1a//wSYd6OQbxLen9rE37gI6jYbeAY24v1G767bqvJqfgysr+j7CH1H/8mvUoSsP5/JiWP329PBrWKbnBgghREWprTlltUn6ASZPnsyYMWMICwujU6dOzJ49m4yMDMaNGwfA6NGjqVu3LjNnzgTgscceY+7cuUyaNImJEydy6tQp/u///o+nnnrKlrtRfi0GQ0A7uLQfNs2CO2bZOiIhRAX5+vD+wuU0KpDrAJkukOWM2aRnUXQUABoFwup7MqClP7e28CPI09GyWouA9mgUDW/v2Uhq7n9NCbwdnHijS3/61WtkdUxN3X15o+NtN7Rfjjo9w0LaMyyk/Q2NI4QQFak25pTVKukfPnw4cXFxvPbaa0RHRxMaGsrKlSstN2KcP3/e8ukL8m/mWLVqFc888wxt2rShbt26TJo0iRdeeMFWu3BjFAX6vQ7fDII9C6DzY+DZwNZRCSEqwObzkZhMCmQ7Q5YzZDvB1TfiKmacXPKYdmtH+jbzxcu55DLEB5qFcm+jVmy6GEHClSfydg+oj06e8yGEEEDtzCmrTctOW6mSba0WD4Eza6HVfXDffFtHI4S4IiIxieVHjxKbno6PkxODWzSnkZfXddc5l5DB2mOxvLN+PzkZegoV4WtMYJ8ODmlgn0FjL0/WjBxbqfsghKi+pGVnzdqnilatzvSLK/pNy0/6/10GXSdCQKitIxKiVjOrKm+t38Ci/fvRXlWn/tmuXQxv3YoZ/fpZzrIbTWb2nkti3fFY/jkWw5m4jCtLXzlzr8sBh3SwzwDDfzfiahWFroE27iQmhBCi2pKkvzqq0xZaD4XDP8E/02H0CltHJESt9smOnSzavx/4r+tOgR8P/4u91p62Xg1ZdzyWDSfiSMnKs8zXaRQ6hXjSIsiRr45vALs8iqMCD7YOraQ9EEIIUdNJ0l9d9X4ZjqyAs+vhzHpo2NvWEQlRK2Xl5fHl7t2FpqkqYLJDzXVGzXVmwZpU4IBlvrujHb2b+tK3uS89Gvvg5pD/SPeGQfDShjWF2mRqFQUVeK/vbTTyuH6pkBBCCFESSfqrK88QCHsIdn2Rf7Y/pBfITXpC3HS7LlwgIy//7LyqgprtjprlAabCLdwC3PUMahtE3+a+tK/ngVZTtF3l/S3b0MbXn68P72fbhfMoQPeg+oxt046mXt43Y3eEEELUUJL0V2c9n0M98C3K5QMsHP4gq/Z74+nrRv8HunPrgz1wcnWwdYRC1HjZRmN+sp/jiprhBeaCZF8Fu0wUQzqKPoPn7urLPS2alTpeSx9f3u0zoHKDFkIIUevIqeFqLMPszN8n2gAwoO560uKTOXskinkvLWFiz+kkRCfbNkAhajhVVYlOAHNSfdS0OvkJv8aI4hyDxusUWvcLaBySUbR5NJEz9UIIIWxIkv5q7PMXvmP+374kZRgIcM/g9tYRoF5JRM7F894jX9o6RCFqJFVV2Xwqjrs/2cq0FSfBZADFhOIUh8bzbH6ir/mvJr+Vry8t/eQJ2kIIIWxHkv5qKiUhjXVLd5CRreX7nfklAyM7H8fezgiA2WRm/4ajRJ26bMswhahx9p5L4v4vd/Dg/F0cupCCo17Lg10D8Qy4iJ1TEoryX/ceraLgaGfHu7ff2FNthRBCiBslNf3V1Kl9kZiMJgD+PhTCPe1PE+CeweB2p1my67+64SPbTxHUuI6twhSi2jgWE8e2iPOYzWZCA+sQFlQX5aqe+8cup/LeqhOsPR4LgF6rYVTnYB7v3RBvZwOPpobw2c5dLD96lByjETuNhrubN+fxzuEEu7vbaK+EEEKIfJL0V1PKVZ0/jGYNi7c154U79nBPh9P8sq8ROcb8H62mmA4hQoj/xKdnMGn5n+w+fxHNlSTfrKo08fFi7tCBqGY9H645yW8HLwGg1SgM7RDIxL6Nqev+383ydV1debN/P6b16U1aTi7OBj16rdYm+ySEEEJcS5L+aqpZWAPsDDrycvLLeTaeCOTBrscIcM/gttaR/Lq/ESjQpnvp3UKEqK1yjEZGf7uMiIQkID/ZL3AqNpU75qwmJ9vF0jN/YNsAnunXmAY+ziWOaafV4ukonbOEEEJULVLTX005uTly25heljP+ZlXDsj2NAbi3wyn0dtD5jnb41/exZZhCVGl/HT3J6fjEQk/RVVUtxhwfcjKCycxyxqSq9G3my59PdWfO/e2um/ALIYQQVZUk/dXYhDeG0bZncwA0WoU1R4JJzDDg65rFfX3SefaTh2wcoRBV2+//HrOU9KgqmHI9ycsIwZznAWhQNJnU9U1k/tiOtAxws22wQgghxA2Q8p5qzOCg561fnmXHX/tZ+fUmYs7HszOpK7c7refBnpEo7o62DlGIKi0xMxuzqqKa7TBm10E12wOgaLLR6uNRtJnkmg02jlIIIYS4cZL0V3NarYZuAzvQbWCH/AnZqfBhK5SEk3DiT2g+0LYBClGFBXu4c+RCDnnZPuRf+DShNcSi0aWhKKAAQR7utg1SCCGEqABS3lPT2LtCx/H5r7d8mF+zIIQoIi4th/MxLuRl+wEaFG0mdo7n0NrlJ/wAKjCifWtbhimEEEJUCEn6a6LOj4POHi7uhYhNto5GiCrnn6Mx3DZ7E/vPp6FRQKuPRWd/AUVjtCyjURTCguoyuE0LG0YqhBBCVAxJ+msiZx9o92D+6y0f2jYWIaqQzFwjU5cfZsI3e0jIyKWZvwt/TOzOs/1b4OFob1nOwc6O0Z3aMX/kPdJrXwghRI0gNf01VdeJsGcBnF0Pl/ZDQDtbRySETR2ISuaZpQeIiM8A4OEeITx7a1Ps7bS0CAhnQtcwTsbGYzKrNPbxwlFvZ+OIhRBCiIojSX9N5REMre+DQ0th8wcwfLGtIxLCJowmM5+sP8PH605hMqvUcbPn/aFt6drIu9Byeq2WVnX8bBSlEEIIUbkk6a/Juj2dn/Qf+x3iT4F3Y1tHJESliElN53JyKu6ODtT39rBMP5eQwdNLD7D/fDIAd7Wpw1uDW+PmKGfxhRBC1C6S9Ndkfi2gye1w8m/YOhvu/sTWEQlRoU7FxPPu35vYdvocBX2qmvn78HT/blxO1fL670fJzDXhYtDxxuBW3B0agFLQmkcIIYSoRSTpr+l6TM5P+g8uhVteAre6to5IiApxKiaekV8sITvPyNWNaY9fTmTcol2YVGcAwkM8eX9YWwI95GF1Qgghai/p3lPTBXWC4O5gzoPtcqZf1Bwz/9pIdp4R01XPojCZHck0BV9J+FWeG9CE7x/uLAm/EEKIWk+S/tqg+zP5/+5dBJmJNg1FiIpwKTmVHWfOWxJ+VdWQa/IlxxwI6FDIwV57nia+oNVIOY8QQgghSX9t0Kgv+LeBvAzYNc/W0Qhxwy4lpQIFyb4XWaYQjKo7ADolCXvteXSaXKKSUmwYpRBCCFF1SNJfGyjKf2f7d34OOem2jUeIG2RWteSavMkyNcCoegFaFHIwaC6g18ahKCpmVcXNwb7UsYQQQojaQJL+2qLF3eDZALKSYN/Xto5GiHKJTsnm9d+PMHrhAYyqJ6BBIRu95hL22nNoNZmWZe20Gvo2b2S7YIUQQogqRJL+2kKjhW6T8l9vmwvGXNvGI0QZXEjK5JUVh+n57noWbo0kO89MiJc9es3FK6U86VzbiXN8j464O8qZfiGEEAKkZWft0vZ+WD8T0i7lP7Sr/YO2jkjUYlm5eaw8cILNxyLINZlpGejLkPDW+Lk5W5Y5l5DBp+vP8PO+CxjN+TfthgV7MLFvY3o29uaPgwG88fs60nNy0WoUzGYVrUbD+B5hPNmni612TQghhKhyFFVV1dIXq71SU1Nxc3MjJSUFV1dXW4dz47Z+DGteBa9G8MSu/CsAQtxkZ6ITeHjez8SlZqBRwKyCRlFQFHhj+ACaBwXx6frT/HrwEqYryX7Xhl5M7NOYzg08Cz1gKzvPyNqjp7mYnIq7oz39WzTGw8nBVrsmhBA2Y23OUuNyG2rmPlU0OdNf24SNg83vQcJpOP5Hfq2/EDdRVm4eD8/7mcS0/Pr7Kzk9ZlXFpOp5ZulBTJqzlgdu9Wriw1N9G9Eh2LPY8eztdNzZttlNiFwIIYSoviTpr20MLtDpEdg0CzZ/AM0HUaQYWohKtPLACeJSMwpNM2EgV+OFUfNfaU+/5n5M7NOItkHuNzlCIYQQouaRG3lro/BHQecAlw/A2fW2jkbUMpuPRVDwvCwVhSyNP5m64PyEX1XRmdNwI4qvxoRJwi+EEEJUEEn6ayMnb+gwJv/1lg9tG4uodXJNZswqqGjI0tbFqHG9kuyn4mg6h4P5MpiykduNhBBCiIojSX9t1eVJ0OggYhNc2GvraEQt0jLQFxQ7MrVBmBRHUE04mC/gYI5GSy4aRaFpgE+hm3WFEEIIcWMk6a+t3IOg9bD811s+sG0solZpExJCuiYQs2JAUY04mqLQqVmW+WZVZVSPdjaMUAghhKh5JOmvzbo/nf/v8T8g7oRNQxG1w/YzCTz67UFUxQ6NmoOLGoWW/AfFaa6c2b+rQ3Puat/clmEKIYQQNY4k/bWZT1Nodlf+6y2zbRqKqPl+P3iJMQt2kZZjpFN9T74eF0bflsHodVpLSc9bIwbw1vABaDRS2iOEEEJUJGnZWdt1n5x/pv/wj9D7pfyyHyEq2PwtEbzxx1EAbm/lz4fDQ7G309KjWT0AVFWVGn4hhBCiEsmZ/tousAOE9ASzEbbPtXU0ooYxm1Xe+vOoJeEf0yWYuSPbY29X+EnQkvALIYQQlUvO9Avo/gxEbCJvxwJeeF9LWq4Dod2bctfYHgQ3qWPr6EQ1lWM08dxPh/jt4CUAXry9Gf/r2UASfCGEEMIG5Ey/YMMhF07Fe2Gn5BLmuJkLZ2L569utPNZ3JmuX7bJ1eKIaSs3OY9zC3fx28BI6jcIHw9ryaK+GkvALIYQQNiJJfy134XQMsyYtZun+VgAMbHkcB7s8zCYzqlnl/We+JfL4JRtHKaqTmNRshn2+nW1nEnDSa1k4riND2gfaOiwhhBCiVpOkv5b7/evNgML2c0FcSHbFxZDL7c1OWuZrFIXfF26yXYCiysrKzSMqLpnEtEzLtNOxaQz5dBvHo9Pwdjaw9H9d6NHYx4ZRCiGEEAKkpr/W27/pOGaTGdDw08GWPNNrO/e2OcqqE43JyNVjMpnZv1l6+Iv/JKZl8tmf2/lt5xFy8kwAtG9Yl1s6tOb99VGkZOXRwNuJrx/qRJCno42jFUIIIQTImf5aT73q9brTDbiU4oKnYxZP9dhumauqarHritonITWDB2Z9z/Jthy0JP8Cucym89udpUrLyaFfPnWWPdZWEXwghhKhCJOmv5dr1aIpGm38YGM1a3lnfA6NZoWeDc9ze7BRarYZ2PZrZOEpRVcz9fRuxyemYzP99EMzRuZFuqAOKBntzBvMf7ICnk96GUQohhBDiWpL013J3jelR6Ez+yThvFu1qD8D/uuwmyC2RgWN72Co8UYVk5uTyx+5jloRfRUOW3pssez9QFPR5yRgyL7L5yBkbRyqEEEKIa0nSX8vVa+zPlNkPomgUyxn/5YdbsOdCXQw6E7PuP0BIIw8bRykqQ1nLtmKS0sk2aci2cyfdvi4pTg3J0XsCYJ8Tj0NOLHZaDZExiZURrhBCCCFugNzIK+hzb0catgrk90Wb2LfpOKiw3/NpQu3fwTn7PKx8EQZ9bOswRQU4cT6Wb1ftYd2+0+TmGanv78nwfu0Y3KM1Om3RcwC5RjO7IxNZdzyW1UeiSXMKKTRfY87FPjcBvTENALOq4mRvuCn7IoQQQgjrSdIvAAhuWocnZw4vPPFsE/hmMOz7Ghr0glb32iQ2UTE2HzzLlLm/AaqlRCfyciJvL17L5gNneP/Ju9HptMSl5bD+RCzrj8ey+VQ86TlGyxgKKlpTJjpjBnbGDLRqXqFtmM0q/UIb3czdEkIIIYQVql15zyeffEL9+vWxt7cnPDycXbuse2LskiVLUBSFwYMHV26ANUmDW6DnlPzXvz8NiRG2jEbcgPTMHKZ+/gdms7nQTbjqla+Nxy7zyFebuXvuFjq+9Q/PLzvE3/9Gk55jxNvZwLCwQD4f1Z4vRjTDOesi9nnJRRJ+jaJwa7sm1PfzvLk7J4QQQpRDbcspq9WZ/qVLlzJ58mQ+//xzwsPDmT17NgMGDODEiRP4+vqWuF5kZCRTpkyhRw+5IbXMer0IEZshagcsewgeWgU66cxS3fy14xg5uUZLi1YVhVy9E7l6J/L0zpi1OtZFZliWbxPoRu+mvvRt7kurADc0GsUyL3vUrby1dB25eUa0Wg2qmn/loE/bRsx4cMBN3jMhhBCi7GpjTqmo1agJe3h4OB07dmTu3LkAmM1mgoKCmDhxIi+++GKx65hMJnr27MlDDz3E5s2bSU5OZsWKFVZvMzU1FTc3N1JSUnB1da2I3ah+kqPg8+6QnQxdJ8Ktb9o6IlFGMxau4s9tRzGaVXIMLmQ6+WDW2lnmK2YzdnkZvHxfJ25vHYCvq/11x0vLymHlnuOci03G2UFP/3ZNaFjHq7J3QwghxHVYm7PUxNymrPtki5zS1qpNeU9ubi579+6lX79+lmkajYZ+/fqxffv2EtebMWMGvr6+jB8//maEWTO5B8Hdn+S/3jYHTq2xbTyizOx0WvK09qS4B5HuGoBZa4fGlId9ZiKuyVF4JpzGNfUSw8KCSk34AVwcDAzt0ZYp9/bi0Tu6SMIvhBCi2qitOWW1Ke+Jj4/HZDLh5+dXaLqfnx/Hjx8vdp0tW7Ywf/58Dhw4YPV2cnJyyMnJsbxPTU0tV7w1TvO7oNMjsGse/PI/eHQruNaxdVTCCvHpORzPsifRLQgUBVQzjpkJOGQmoVwp+NEoCm0aBeBgsCtlNCGEEKLqujZvMxgMGAyFu8rdrJyyqqk2Z/rLKi0tjQcffJAvv/wSb29vq9ebOXMmbm5ulq+goKBKjLKa6f8G+LWGzAT45REwm2wdkbiOXKOZrzafpfesDWw8mwKKgn1OKh6JEThmJloSfshvtTn29k42jFYIIYS4cUFBQYXyuJkzZ97wmOXNKauaanOm39vbG61WS0xMTKHpMTEx+Pv7F1n+zJkzREZGMnDgQMs0s9kMgE6n48SJEzRs2LDIelOnTmXy5MmW96mpqZL4F7Czh6EL4YteELEJtnwAPZ+zdVSiGBtOxDLjj6Ocjcu/Obd1XTee7Fmfz5esJirViEZRMKsqGo2Cqqo8e39vurdtYOOohRBCiBsTFRVVqKb/2rP8cPNyyqqm2iT9er2eDh06sHbtWkuLJLPZzNq1a3nyySeLLN+sWTMOHz5caNorr7xCWloaH330UYmJfHGXgcRVvBvDne/Bisdg/UwI7g7BXWwdlbgiIj6DN/44yrrjsQB4O+t5bkBThnYIQqNR6NNyDOv2nmLD/jNk5+bRqK43g3u2pq6Pm40jF0IIIW6cq6trqTfy3qycsqqpNkk/wOTJkxkzZgxhYWF06tSJ2bNnk5GRwbhx4wAYPXo0devWZebMmdjb29OqVatC67u7uwMUmS7KqO39cHYDHFoKP0+ARzeDo/Rmr0yqqrL3aBTL1xzg5Lk4HAx29O3chEG92+Dp5khadh5z151mwdYI8kwqOo3CuG71mdi3Ma72/9Xp2+m0DAhvxoDwZjbcGyGEEMK2amNOWa2S/uHDhxMXF8drr71GdHQ0oaGhrFy50nIjxvnz59FoauxtClWHosCd78OF3ZB4Fn6bCMO/zZ8uKpyqqnzw9TqWrT6AVqNYHq51Niqe7/7cy6B7b+GbvZeJS8u/Af2Wpj68elcLGvo42zJsIYQQosqqjTllterTbws1sZdthbl0AOb3B1Mu3PEedHrY1hHVSH9s+Je35q0qMj1Xb0+qpx95egcAQrydePWu5vRp5ldkWSGEEDWf9OmvWftU0WrWRxhxcwWE5nf0AVj1Elw+ZNNwaiJVVfn+rz2FLqKYtDqSveqQ4F+fPL0DitnEvS08WfV0T0n4hRBCCFEsSfrFjQn/HzS5Pf9s/7JxkJNOXq6R1KQMjHnS0vNGpWfmEHEhgYLrcZmOrsTVCSHLKf/GW4f0ZPxjIvHJTUevk19nIYQQQhSvWtX0iypIUWDwp/BZN0g4zZE37+PF5e0x5pnQG3T0u6cDIx7rg08dd1tHWi0VJPtmRUOqp58l2bfLycI1KQZ9bjZarST7QgghhLg+SfrFjXP05HKnd/D9ZzQttdvpWdeBdZFNyM0xsuqn3WxZ9S8f/vg4AcHV94EWtuLiZMC7ri9Hzc6Y7PSgqjinxOOcmkBBxY/JZKZd80CbximEEEKIG+PpWbZOiIqisG/fPoKDg61aXpJ+USHefC+CLrowRrXezZMdN3EiwZeLae6YTGbSU7P46JWfeWfx/2wdZrViNqt8ufksR3SemFXQGvNwj7+EPjfLsoxGo+Dm7EDvTo1tGKkQQgghblRycjKzZ8/Gza30Z+eoqsrjjz+OyWR9KbVVSf9vv/1m9YAF+vfvj4ODQ5nXE9XPqX8vcPbYJSKVdrTxvUAbv8u82O0fJq++hzyzFrPJzKGdZ7kYGU/d+nK23xqxadk8++NBNp+KB6Chs4b0YxHYKSoFv94aRcHRXs8Hzw9Bbyef34UQQojqbsSIEfj6+lq17MSJE8s0tlWZQsHTyqylKAqnTp2iQYMGZVpPVE+RJ/MfY21WNby7rS+f3L6MRp7x3Nv8AEuOdLAsd+5UjCT9Vlh/IpYpPx4kISMXezsN0we2ZFhYIHuONGf5moOcPBeLg8GOPp2bMrhPG7zcnWwdshBCCCFukNlsLtPyaWlpZVre6tOD0dHRVn/ycHFxKVMQonqzd/jvia8JWc58sa8rz3ddx+Cmh/nleBtyTPnzDVctJ4rKMZp4d+UJ5m+JAKCZvwtzR7ajkW/+71On1vXp1Lq+DSMUQgghRGX6448/uOOOOyrlwWBWjThmzJgyleqMGjVKHoxQi7Tr1hg7vdbyfuO5RkSnu+Bmn02/kJMAODobaBUWYqsQq7yzcekM+XSbJeEf27U+K57oZkn4hRBCCFHzDR48mKCgIF5++WVOnz5doWNblfQvXLiwTGfvP/vsM7y9pYyjtnB2dWDQg90oaCdjVjX8crwNAEOaH0SjmLnv4Vsw2NfuM/1xCWmcu5BAZlauZZqqqvy0J4q75mzhyKVUPBzt+Gp0GNMHtcTeTnud0YQQQghR00RERPC///2PJUuW0LRpU3r16sXixYvJysoqfeVSKKpa0An8+u677z4mTJjAgAEDUK5+PGgNJ491to7JaOLj15azetketFoNBm0eCwd+g6shh9XaifR7eUalXKqqDnbuj2D+91s4dioaADudlv69mnP/0C58sD6C3w5eAqBLAy8+HB6Kv5u9LcMVQghRTVmbs9TE3KYm7tP69etZtGgRP//8MzqdjhEjRjB+/Hg6duxYrvGsTvr79u3Lhg0bCAgIYNy4cYwdO7ZW3KhbEw+iynTudAzrVuwjKT6Nvm4raZvzMwS0h4fX5T/Iq5ZZs/EoMz78E42iYL7qVy3P0YHEukHkanVoNQqT+zfh0V4N0Wpq3/dICCFExZCkv2btU4G0tDSWLFnCokWL2LFjB61ateLgwYNlHsfqU69r167l7NmzjB8/nm+//ZbGjRvTp08fvv/+e3Jycsq8YVEzBTfyY9yU25n89jDaTnwHdPZwaR+c22rr0G66zKxc3v10FYAl4VeBVE8vooPqk6vV4aKFnx7twhO9G0nCL4QQQogiXFxc6Nu3L71798bd3Z2jR4+Wa5wy1VsEBwczffp0zp49y5o1awgICODhhx+mTp06PPHEE+zdu7dcQYgaytkHQkfmv976sW1jsYG1W46TnWO0vDdpdcQF1SPF1w8UBYfUFLxOn6KZj7TcFEIIIURhWVlZfPPNN9xyyy00btyYJUuWMHnyZCIjI8s1Xrmf6NOnTx/69OlDWloa33//PS+99BJffPEFRqOx9JVF7dHlSdizEE6tgthj4Nvc1hHdNFEXE9FpNRhNZvL0euKC6mGy06OYzbjHROOUkowJiE9Mp17dsj16WwghhBA1044dO1iwYAE//vgjubm5DBkyhH/++YfevXvf0Lg39BjPiIgIFi1axKJFi0hJSaFfv343FIyogbwaQvOBcOw32DYHBn9q64huGmcnA2ZVJdfenrjAeph1OnQ5OXhfjMIu978OPo4OehtGKYQQQoiqokWLFpw4cYJ27doxc+ZMRo4ciZubW4WMXeZ2KtnZ2Xz77bf06dOHxo0b88033zB+/HgiIiJYuXJlhQQlaphuk/L/PfQjpF6ybSw30S1dm5Jp70hsUDBmnQ67rCx8z0daEn6NotCyaQDens42jlQIIYQQVUG/fv3Yt28fe/bs4bHHHquwhB/KcKZ/165dLFiwgKVLl5Kdnc0999zDypUr6du3b61q4SnKITAMgrvl38y74zO49Q1bR3RTHE7IIaFePVQUDBnpeF+8gObKI7YVQEVl/P3dbBukEEIIIaqMjz+uvHsgrT7T37lzZ3bu3Mkbb7zBpUuX+P777+nXr58k/MI6XZ/K/3fPQshOsW0sN8G3O87x5A/7MKNQX6/icyEKHSo6bf6vnMHejtcm30XH0Pq2DVQIIYQQVUL79u1JSkqyevnu3btz8eJFq5e3+kz/nj17aN++vdUDC1FI41vBpxnEHYe9i/4r+alhVFVlzrrTfLDmJAAjw+vxxt2tuHi5Kxu2nSQzK4egAE96d2sqtfxCCCGEsDhw4AAHDx7E09O65h4HDhwoU9t8q5L+Q4cOERoaavWgR44coWnTpuh0N3SfsKhJNBroOhF+fSK/xCf8MdDVrKTXbFaZ8cdRFm2LBOCpPo14pn8TFEWhXl1PRg/tbNsAhRBCCFGl9e3bFyufm1vmahursvJ27doRHR2Nj4+PVYN26dKFAwcO1Ion9ooyaD0U1r0JaZfh8E/Q7gFbR1Rhco1mnlt2kF8P5N+oPG1gC8Z1C7FxVEIIIYSoLiIiIsq8TmBgoNXLWpX0q6rKq6++iqOjo1WD5l7VjlAIC50Bwh+Ff6blt+9se3/+FYBqLjPXyGPf7mPjyTh0GoX3h7Xl7tC6tg5LCCGEENVIcHBwpY5vVdLfs2dPTpw4YfWgXbp0wcHBodxBiRosbBxseg/ijsHpNdBkgK0juiHJmbk8tGg3+84nY2+n4bNRHejd1NfWYQkhhBBCFGJV0r9hw4ZKDkPUGvZuEDY2/0z/1o+rddIfnZLN6AU7ORmTjpuDHQvGdqRDsIetwxJCCCGEKKL611aI6if8MdDYwbktcGGvraMpVV6eiYuXkoiNTbXcXHM2Lp17P9vGyZh0/FwN/PRoF0n4hRBCCFFlSXsdcfO51c2/qffg97DtIxj2ja0jKlZ2dh6Lv9/Gb3/sJz09vyVWcD0vut/Znk//TSAxI5cQbye+eagTQZ7W3e8ihBBCCGELkvQL2+g6MT/pP/obJJwBr4a2jqiQ3FwjU15cyrHjlzCb/2uddSIpm43bLqBqtbSq68qicZ3wdjbYMFIhhBBC1FS5ubnExsZiNpsLTa9Xr16Zx5LyHmEbfi3yH9iFCts/sXU0Raz4bR9Hj10slPBnuLtyuWEwqlaLfWo679/VVBJ+IYQQQlS4U6dO0aNHDxwcHAgODiYkJISQkBDq169PSEj5WoLLmX5hO90mwanVcOA7uGUqOFv3HIib4dff93P1szFSvTxIqBcAioJjUgp+5y+y/p8jNH1YOvUIIYQQomKNHTsWnU7HH3/8QZ06dcr8IK7ilCvpX7x4MZ9//jkRERFs376d4OBgZs+eTUhICHffffcNByVqieBuENAeLu2D3V9C75dsHRGQ/1yKS5eTLe8zXZ1JCM7vu+8Sn4jX+fwHcEVdSLRFeEIIIYSo4Q4cOMDevXtp1qxZhY1Z5vKezz77jMmTJ3PHHXeQnJyMyWQCwN3dndmzZ1dYYKIWUJT8s/0Au+ZBboZt47lCURTsDXYAGHU64oLzn3bnEpeA1/lLKIBGo+DooLdhlEIIIYSoqVq0aEF8fHyFjlnmpH/OnDl8+eWXvPzyy2i1Wsv0sLAwDh8+XKHBiVqg+UDwCIGsJNj/na2jseh9SzM0WoX44LqY7XToM7PwvBBNwcU1s1mlV8+K+/QthBBCCFHgnXfe4fnnn2fDhg0kJCSQmppa6Ks8ypz0R0RE0K5duyLTDQYDGRlV40ytqEY0WujyRP7r7XPBZLRtPFcMH9qJVB8vstxcUMxmfCIvoLlS5K/VKjRs4EuX8KrVcUgIIYQQNUO/fv3YsWMHffv2xdfXFw8PDzw8PHB3d8fDo3zPBSpzTX9ISAgHDhwgODi40PSVK1fSvHnzcgUharnQB2DDTEg+B8d+hVb32joiMnR6kgLrgFnF80I0jnl5qFoNJpOZpk3q8Ob0IWi10vxKCCGEEBVv/fr1FT5mmZP+yZMn88QTT5CdnY2qquzatYsffviBmTNn8tVXX1V4gKIW0DtCp0fyE/+tH0PLIfn1/jaSnWdi0pL9GM0qfZr68MCt9Tl1OhY7Oy2dwxvSonlAhdxFL4QQQghRnF69elX4mGVO+idMmICDgwOvvPIKmZmZjBw5koCAAD766CNGjBhR4QGKWqLjw7BlNlw+ABGboEHFH+zWeuvPY5yKTcfHxcCsoW3xcjbQt09Lm8UjhBBCiNonOTmZ+fPnc+zYMQBatmzJQw89hJubW7nGK1d9wgMPPMCpU6dIT08nOjqaCxcuMH78+HIFIAQATl7QblT+620f2yyMf47GsHjHOQDev5LwCyGEEELcTHv27KFhw4Z8+OGHJCYmkpiYyAcffEDDhg3Zt29fuca8oaJkR0dHfH3l4USignR5AhQNnP4Hov+96ZuPTc3m+Z8PATC+ewg9m1Sdh4UJIYQQovZ45plnGDRoEJGRkSxfvpzly5cTERHBXXfdxdNPP12uMa0q72nXrp3VNczl/fQhBJ4h0OJuOPILbJuDceCnKApoddrS171BZrPKsz8dJDEjl+Z1XHn+tqaVvk0hhBBCiOLs2bOHL7/8Ep3uv1Rdp9Px/PPPExYWVq4xrUr6Bw8ebHmdnZ3Np59+SosWLejSpQsAO3bs4MiRIzz++OPlCkKIAmrXp1CO/ILp4I+MneVEXLYLrdsHM3Rsd8J7NKm07S7YGsHmU/EYdBo+HhGK4SZ80BBCCCGEKI6rqyvnz58v8kTeqKgoXFxcyjWmVUn/tGnTLK8nTJjAU089xRtvvFFkmaioqHIFIQSAqqp8tCCKW+ICCfW5wD0N9zPvSE+OHDjP4ae+Y/yk/gwb273Ct3vkUgrvrjwBwCt3taCxX/l+mYQQQgghKsLw4cMZP3487733Hl27dgVg69atPPfcc9x///3lGrPM3Xt++ukn9uzZU2T6qFGjCAsLY8GCBeUKRIjtG47z9/J9xPmGEepzgdvrH+a7E53IMNoDMP+jNXTs1piQxn4Vts2sXBNP/bCfXJOZfs39GBVer8LGFkIIIYQoj/feew9FURg9ejRGY/6DS+3s7Hjsscd4++23yzVmmW/kdXBwYOvWrUWmb926FXt7+3IFIQTAr0t2odEo7IkN5myKN466PO4MOWyZr9Fq+HPZ7grd5pt/HuVMXAY+Lgbeube19N8XQgghhM3p9Xo++ugjkpKSOHDgAAcOHCAxMZEPP/wQg6F8nQXLfKb/6aef5rHHHmPfvn106tQJgJ07d7JgwQJeffXVcgUhBMDp45cxm1VAYdnpDjzfYRX3NdzLlkuNuZThjtlk5uTRSxW2vdVHovlu53kAPhgm7TmFEEIIUbU4OjrSunXrChmrzEn/iy++SIMGDfjoo4/49ttvAWjevDkLFy5k2LBhFRKUqJ3s9P/dPLvhYhPuabifxu6xvNXlFyZvHkZSjhMGg12FbCsmNZsXrrTnfLhHCD0aS3tOIYQQQtjOkCFDWLRoEa6urgwZMuS6yy5fvrzM45c56QcYNmyYJPiiwnXv05w/f96L2WTGpGp5dcfdfNDjRwKcUniz8wqe33YfXXo3K32gUpjNKs/+eJCkzDxa1HFlygBpzymEEEII23Jzc7OUGbu6ulZ4ybGiqqpaoSPWMKmpqbi5uZGSkoKrq6utw6nRLpyL59Ghn2I0mik4LOs4JvNBjx/xtM/k3+R6BL+2CRdPjxvazpebzvLWX8ewt9Pwx8QeNPJ1rojwhRBCCJuyNmepiblNTdynilbmG3k1Gg1arbbELyHKKzDYm9c/GonBXoeigKJRiMn24JUdg8k06mnlfh6XNRPBbCr3Nv69mMK7q44D8OpdLSThF0IIIUSV06dPH5KTk4tMT01NpU+fPuUas8zlPb/88kuh93l5eezfv5+vv/6a119/vVxBCFGgQ5dGfLfqWf75/SDHDkWh0WpoF343uqZD4cfhcOx3+PNZuOtDKONlr6xcE5OW7CfPpNK/hR8jO0l7TiGEEEJUPRs2bCA3N7fI9OzsbDZv3lyuMcuc9N99991Fpt133320bNmSpUuXMn78+HIFIkQBZxcHBo/szOCRnQvPGPIl/DQW9i4EZz/oPbXEMUxGMzu3n2LdmiOkJGdSp64Hp729OBOXga+LgXfubSPtOYUQQghRpRw6dMjy+ujRo0RHR1vem0wmVq5cSd26dcs1drlu5C1O586deeSRRypqOCGKajkYMt+HPyfDxrfB2Qc6TiiyWHpaNlOf/YHjRy+h0SiYzSrbzqdw8co9wO8NbYunk/7mxi6EEEIIUYrQ0FAURUFRlGLLeBwcHJgzZ065xq6QpD8rK4uPP/643J88hLBax/GQHpuf9P85BRy98z8MXOXtN37l5PHLQH6nHqNex+WGgQC4X4jl0s5T0ERadAohhBCiaomIiEBVVRo0aMCuXbvw8fkvX9Hr9fj6+pb7Htoy38jr4eGBp6en5cvDwwMXFxcWLFjArFmzyhVEWXzyySfUr18fe3t7wsPD2bVrV4nLfvnll/To0QMPDw88PDzo16/fdZcX1cQtL0LYQ4AKyx+Gsxsts86fi2fnttNXHvIFKhDdJBiznQ5Deibe5y7z05Id5OWV/2ZgIYQQQlR/VTGnDA4Opn79+pjNZsLCwggODrZ81alT54aa5pT5TP+HH35YqBZao9Hg4+NDeHg4Hh431kqxNEuXLmXy5Ml8/vnnhIeHM3v2bAYMGMCJEyfw9fUtsvyGDRu4//776dq1K/b29rzzzjvceuutHDlyRK5KVGeKAne8BxnxcOw3WPIAjPsT6rRl764IFEVBVVVUILGeP1nuLigmM/4nzqGoKqkpWZw9HUPT5gG23hMhhBBC2EB1ySmPHj3K+fPni9zUO2jQoDKPVeY+/efPnycoKKjYmyDPnz9PvXqV1xElPDycjh07MnfuXADMZjNBQUFMnDiRF198sdT1TSYTHh4ezJ07l9GjR1u1Ten7WoXlZcN390HkZnDygfGrWbY6ji8/XYvJrBJfP4DkwPxfXN9T53GLSbSsOvuzMbRsHWiryIUQQogKJ336rd8nW+SUZXH27FnuueceDh8+bDmZCVjyb5Op7BULZS7vCQkJIS4ursj0hIQEQkJCyhyAtXJzc9m7dy/9+vWzTNNoNPTr14/t27dbNUZmZiZ5eXl4enqWuExOTg6pqamFvkQVZWcPI74D/9aQEQeL76FliB0ms0psw0BLwu999mKhhN/OTktwfW9bRS2EEEKISnJtDpeTk1NkmZuVU96ISZMmERISQmxsLI6Ojhw5coRNmzYRFhbGhg0byjVmmZP+ki4MpKenY29vX64grBEfH4/JZMLPz6/QdD8/v0LtjK7nhRdeICAgoNAP+VozZ87Ezc3N8hUUFHRDcYtKZu8GD/wMHvUhKZKm+57C3CGQ1DreoKr4njqPx6X/PqRqNAr9b2+Ns0vlHatCCCGEsI2goKBCedzMmTOLLHOzcsobsX37dmbMmIG3tzcajQaNRkP37t2ZOXMmTz31VLnGtLqmf/LkyUD+ZYXXXnsNR0dHyzyTycTOnTsJDQ0tVxA3w9tvv82SJUvYsGHDdT+cTJ061bKvkP+JURL/Ks7FDx78BXX+rWhiDvOW6+eMzXkOr1OXcYpLzl9GAQUIaejLI4/3tWW0QgghhKgkUVFRhcp7DAZDhW/D2pzyRphMJlxcXADw9vbm0qVLNG3alODgYE6cOFGuMa1O+vfv3w/kn+k/fPgwev1/fc71ej1t27ZlypQp5QrCGt7e3mi1WmJiYgpNj4mJwd/f/7rrvvfee7z99tv8888/tGnT5rrLGgyGSjlAROVKcwziTYdpvJL+HF20R1lb/1s+MQ7hQFIqRqMZe4OOXn1b8thT/XFykp+vEEIIURO5urqWWtN/s3LKG9GqVSsOHjxISEgI4eHhvPvuu+j1eubNm0eDBg3KNabVSf/69esBGDduHB999NFNv/FDr9fToUMH1q5dy+DBg4H8my7Wrl3Lk08+WeJ67777Lm+99RarVq0iLCzsJkUrbqakjFzGLtzFwQuexBme4yvNTAJj19I1NYG9pv6AQm6uiVV/HiQ1JZNX37gXO7vyt7wSQgghRPVVHXLKV155hYyMDABmzJjBXXfdRY8ePfDy8mLp0qXlGrPMLTsXLlxYrg1VhMmTJzNmzBjCwsLo1KkTs2fPJiMjg3HjxgEwevRo6tata6nfeuedd3jttdf4/vvvqV+/vqVOy9nZGWdnZ5vth6g4ManZPDh/Jydj0vFwtOOZhybwzfsXGO26gIGBB0jMceLbiG6Wvv07tp5i8YJNPPS/3jaOXAghhBC2UtVzygEDBlheN2rUiOPHj5OYmIiHh0exHTStYVXSP2TIEBYtWoSrqytDhgy57rLLly8vVyDWGD58OHFxcbz22mtER0cTGhrKypUrLTdinD9/Ho3mv3uTP/vsM3Jzc7nvvvsKjTNt2jSmT59eaXGKmyMqMZMHvtrJ+cRM/FwNfDs+HE1qJt/t9ialbn8mNV/DmIZbSc515I+L7QBQVfh1+V4eGNsdg8HOxnsghBBCCFuoyjllXl4eDg4OHDhwgFatWlmm32inIKuSfjc3N8unCjc3txva4I168sknS7z0cm0Lo8jIyMoPSNjEqZg0Rs3fSUxqDvU8HfluQjhBno4s33gMRVH442I7PA0ZPNhgGxObreFyljt7E/NbymZm5HDmVCwtWskD2oQQQojaqqrmlHZ2dtSrV69cvfivx6qk/+qSHluW9wgBcPhCCqMX7CQpM48mfs4sHh+On2v+3fNXt5T95mw3vA1p3F73MJOarebhHQ+RYy44u1+mZ9IJIYQQQtw0L7/8Mi+99BKLFy+usGcBlLmmXwhb2nk2gfFf7yE9x0ibQDe+HtcJD6f/Okm1ahN0VeKv8OnJvnTwiqSOYwojQ7az8ExP7O3tCGlQ9BHbQgghhBBVwdy5czl9+jQBAQEEBwfj5ORUaP6+ffvKPKZVSX+7du2svmmgPEEIca2E2FROHr2ERquhRdsgXFwdWH8ilkcX7yXHaCY8xJOvxoThYl+4Lr9p8wCaNq/D6ZPRmEwq2SY9n5zox+ttf2Fo8C7WxbQk7M7bcXDUl7BlIYQQQgjbKugqVJGsSvorY8NCFCc1OZM5//cHm9ceRb3SccfOTkvIXe1ZmaMhz6TSp5kvnz7QHvsS2m6++sa9PPP4N8THpaGqKtviGrEjviGdvc8wtcMmAh9++2bukhBCCCFEmUybNq3Cx7Qq6a+MDQtxrazMHJ4dv4AL5+ItCT9AvK8H/2YAispdberw4fBQ7LSaEsfx83dj3tcP8/cfB1jz9yFSUrJYzSg6at6mod0pOP4zhN5/E/ZICCGEEKL89uzZw7FjxwBo0aIFHTp0KPdY5a7pr8gghAD4+5d9REXEcdW9uCQG+xHXLBgAt6hYHrij0XUT/gLOLvYMvb8zQ+/v/N/ELQr8Mx1WvwxNBoBjxdwYI4QQQghRkS5cuMD999/P1q1bcXd3ByA5OZmuXbuyZMkSAgMDyzxm6dlTMUH06NGDTp06MWnSJCZNmkTHjh3p3r07Fy5cKHMAQhRYuXxvoZ468Q0DLAm/R8Rl6pw4x5pf95d/A12eBJ/mkJkAa1+/sWCFEEIIISrJhAkTyMvL49ixYyQmJpKYmMixY8cwm81MmDChXGOWOemvjCCEAIiPS7N00sx0dyahUf6nWO9TUficjEI1qcRGp5R/A1o7uOuD/Nd7F8H5nTcWsBBCCCFEJdi4cSOfffYZTZs2tUxr2rQpc+bMYdOmTeUas8xJf2UEIQSAh2d+OyoViGsSBIDbhVi8zl5GATQaBW8flxvbSHBXCB2V//qPZ8CUd2PjCSGEEEJUsKCgIPLyiuYoJpOJgICAco1Z5qS/MoIQAmDA4PYoikKGjzvZHi4oJjPepy9a5pvNKv0HtbvxDfWfAQ4eEHsEdn5+4+MJIYQQQlSgWbNmMXHiRPbs2WOZtmfPHiZNmsR7771XrjHLnPRXRhBCANx5bxh+dd2Jb5Jf1uNxLhpdTv4HTI1GoWVoEJ17NrnxDTl5Qf838l+vnwkpci+KEEIIIWzLw8MDT09PPD09GTduHAcOHCA8PByDwYDBYCA8PJx9+/bx0EMPlWt8RVWv7pViXUCZmZkYjUZ0uvzmPwWvr31aWGJiYrmCqkpSU1Nxc3MjJSUFV1dXW4dT432z8TSv/X0CTZ6RBpsOojWaUDQKtwxoxVMvD8TRyVAxGzKbYeHtELUDmt0FI76rmHGFEEIIG7E2Z6mJuU1N2Kevv/7a6mXHjBlT5vHL3LJz9uzZZd6IENbIMZqYt+M8AI/0CKHDLcFotRrahNXH27eCf4E1mvyber/oCcf/gBN/Q9PbK3YbQgghhBBWKk8iXxZlTvorOyBRe/2w8zwXkrLwdTEw6Y6WOOiLf+JuhfFrCV2egK0fwV/PQ0hP0DuVvp4QQgghRAVLTU21XKVITU297rLluZpR7odzxcbGEhsbi9lsLjS9TZs25R1S1GLpOUbmrDsNwKR+jSs/4S/Q6wX4dzmknIeN70J/6d8vhBBCiJvPw8ODy5cv4+vri7u7O4qiFFlGVVUURcFkMpV5/DIn/Xv37mXMmDEcO3aMa28HKG8QQszfHEFCRi71vRwZFhZ08zasd4Lb34Ul98P2udB2BPg2v3nbF0IIIYQA1q1bh6enJwDr16+v8PHLnPQ/9NBDNGnShPnz5+Pn51fspxAhyiIhPYcvN58F4Nlbm2KnLXNTqRvT7A5oeiec+DO/d//Yv/Jr/oUQQgghbpJevXoV+7qilDnpP3v2LD///DONGjWq8GBE7fTphjOk5xhpVdeVO1vXsU0Qt78DZ9fD+e1w8HtoN8o2cQghhBCiVjp06JDVy5annL7MSX/fvn05ePCgJP2iQlxMzmLx9nMAPD+gGRqNja4cuQfBLVNhzauw+lVoegc4etomFiGEEELUOqGhoSiKUqR8/lo3rab/q6++YsyYMfz777+0atUKOzu7QvMHDRpU5iBE7TV7zUlyTWa6NPCiR2Nv2wbT+TE4+APEHoU1r8Hdc20bjxBCCCFqjYiIiEodv8xJ//bt29m6dSt///13kXlyI68oi1Mxafy8L/9puM/f1tT294do7eCuD2HBANi/GEIfgOAuto1JCCGEELVCcHBwpY5f5qR/4sSJjBo1ildffRU/P7/KiEnUErNWncCswoCWfrSr52HrcPLV6wztR8O+b/Jv6n10c/6HASGEEEKIm+zo0aOcP3+e3NzcQtPLU1lT5qQ/ISGBZ555RhJ+cUP2nU9i9dEYNAo8N6CprcMprN/rcPxPiDsG2z+B7k/bOiIhhBBC1CJnz57lnnvu4fDhw4Xq/AuqIspTWVPmvoRDhgyplN6hovZQVZV3/j4OwH0dAmnk62LjiK7h6Am3vgmAuvEd9m/czLffb2PJjzuJiIyzcXBCCCGEqOkmTZpESEgIsbGxODo6cuTIETZt2kRYWBgbNmwo15hlPtPfpEkTpk6dypYtW2jdunWRG3mfeuqpcgUiao9Np+LZGZGIXqdhUr8mtg6neG3vJ3PbfBxj95D58zMsOjUMVYUvvtpAeMcGvDJ1IM7O9raOUgghhBA10Pbt21m3bh3e3t5oNBo0Gg3du3dn5syZPPXUU+zfv7/MY5are4+zszMbN25k48aNheYpiiJJv7gus/m/s/yjOwdT193BxhEV7+LlZGZs7MQnTffRzfMUnV1PsDUp/wPK7r0RvPjKMj7+4AHbtRgVQgghRI1lMplwccmvhPD29ubSpUs0bdqU4OBgTpw4Ua4xy5z0V3Y7IVGz/XH4Mkcvp+Js0PF476r7rIcfl+3iTKoHSy915oHAbUxssJq9++uTbdZjNqscOXqRPXsj6NSxga1DFUIIIUQN06pVKw4ePEhISAjh4eG8++676PV65s2bR4MG5cs9ylzTL0R55ZnMvL86/9PpIz0b4Omkt3FEJVuz9igmk8riC924nO2GnyGVh+ptsszXahXWrj9mwwiFEEIIUVO98sormM1mAGbMmEFERAQ9evTgr7/+4uOPPy7XmGU+0w9w4cIFfvvtt2JbCH3wwQflCkTUfEt3R3EuIRNvZz3ju4fYOpwSqapKVlb+cZ1jtuPjiAHMbP4jQwN2cSHLg99iOmAyqaRnZNs4UiGEEELURAMGDLC8btSoEcePHycxMREPD49yP9eozEn/2rVrGTRoEA0aNOD48eO0atWKyMhIVFWlffv25QpC1HxZuSY+WnsKgIl9GuNkKNfnzZtCURR8fVyJjUsFYEdSI76J6sbooK1MarCKTJOB9UltCPB3t22gQgghhKhRTCYTR44coXHjxjg4FL7v0cHBgcOHD9OqVSs0mrIX65R5jalTpzJlyhQOHz6Mvb09P//8M1FRUfTq1YuhQ4eWOQBROyzcFkFcWg6BHg7c36mercMp1aC7QtFc9Ul6YVRPll8OQ6PAi41/p5PrCe64vY0NIxRCCCFETbN48WIeeugh9PqiJdB2dnY89NBDfP/99+Uau8xJ/7Fjxxg9ejQAOp2OrKwsnJ2dmTFjBu+88065ghA1W3JmLp9tOAPAs7c2Qa+r+reSDBncgfoh3ld151GYG9Gf1bGt0CoqM5qvIESVmn4hhBBCVJz58+czZcoUtFptkXk6nY7nn3+eefPmlWvsMmdfTk5Oljr+OnXqcObMGcu8+Pj4cgUharbPNp4hLdtIM38XBrWta+twrOLgoOej9x9g4J2h6PX5pUgqCguSR3DJrTs68uCH++HCXhtHKoQQQoia4sSJE3Tu3LnE+R07duTYsfKddCxzYXXnzp3ZsmULzZs354477uDZZ5/l8OHDLF++/LpBitopOiWbRVsjAXhuQFO01aivvbOTgacn3soj43sRdSEJvZ2WevW80Jofhu+HQcRG+O5eGPsX+LWwdbhCCCGEqOYyMjJITU0tcX5aWhqZmZnlGrvMZ/o/+OADwsPDAXj99dfp27cvS5cupX79+syfP79cQYia66O1p8gxmulY34M+zXxtHU65ODoaaNrEn5AQH7RaDdjZw4jvoW4YZCXB4nsg8aytwxRCCCFENde4cWO2bdtW4vwtW7bQuHHjco1d5jP9Vz8QwMnJic8//7xcGxY1U2pSBltWHSYpLg2jmxM/HksG4PnbmpW7xVSVZHCGB36CRXdB7BH4ZjA8tBJcA2wdmRBCCCGqqZEjR/LKK6/QtWtX2rQp3DDk4MGDvPbaazz//PPlGrvq9k0U1Yqqqiz5bB3ff7IWk9GERqvhXPsmmAJ9aeGko2N9T1uHWPEcPeHBX2DBAEiKyD/jP/YvcPKydWRCCCGEqIaeeeYZ/v77bzp06EC/fv1o1qwZAMePH+eff/6hW7duPPPMM+Uau+q3URHVws8LNvHN7NUY80yoKqQ7O5IW6AuqStavO/l76U5bh1g5XPxg9K/gEgBxx/Nr/LNLrsUTQgghhCiJnZ0dq1ev5q233uLy5cvMmzePL774gsuXL/PWW2+xevVq7OzsyjW2oqqqWsHx1iipqam4ubmRkpKCq6urrcOpkrKzchnZ9U2yMnIs0853a02Gnweu52Oou+cE7l7OLN70Ejq7oi2oaoS4E7DwdshMgODuMGoZ2DmUvp4QQghRQazNWWpiblMT96miyZl+ccP2bz1VKOFP93Unw88DzGZ8jp4DIDkhnSN7I20U4U3g0xRG/Qx6Fzi3BX4cA6Y8W0clhBBCCAHcQNIfHx9/3ZZCovZIT82yvM51NHApLL/+zOPsZfSZ2cUuVyMFtIORS0FnD6dWwS+Pgtlk66iEEEIIIcqW9CcnJ/PEE0/g7e2Nn58fHh4e+Pv7M3Xq1HL3DBXVX52g/BtXTTotUV1bYbLXY0hOx+doZKHlAurVghtc63eDYYtBo4N/l8FfU0Aq6IQQQghhY1Z370lMTKRLly5cvHiRBx54gObNmwNw9OhR5syZw5o1a9iyZQuHDh1ix44dPPXUU5UWtKhaWobVxy/Yk92Bdcl1dUKXlUPQ9n/RGvPPcms0CiHN6hDSrI6NI71JmtwKQ+bBsvGwZwHZihPLsgeyZtNR0jNyqB/oxd23hdK9UyM01ehhZUIIIYSovqxO+mfMmIFer+fMmTP4+fkVmXfrrbfy4IMPsnr1aj7++OMKD1RUbYZ7u5MRmYxiNBG4/Qh2WblAfsKvs9MyccYQG0d4k7W6F3LS4PdJ2O+eQ8blI5yN6QpAfGI6uw5E0rtbU6ZNviv/gV9CCCGEENeIj49Hr9dXyM3JVmcbK1as4L333iuS8AP4+/vz7rvv8vPPPzN58mTGjBlzw4GJ6uPLzWdZFZmMAnRNTsQhOd0yL7RLIz5Y+gRN2wTZLkAbMbcbw7epdwHwvzrruNtrb/50c365z4ZtJ1jy626bxSeEEEKIqqeyyumtPtN/+fJlWrZsWeL8Vq1aodFomDZtWrmDEdXPyn+jmfn3cQBeuasF47uHEBedTHJ8Op4+rnj51d62Wbv2R/DF2VBM/kmM8d/K5MC/yTAZ+Ce5FZBf6v/jb3sZfndHdHK2XwghhKj1KrOc3uqk39vbm8jISAIDA4udHxERga+vr9UbFtXfwahknl66H1WFBzsH81C3+gD4+Lvj4+9u09iqgoNHL6DVavgq+hactTnc67OHl4N/RauYWZWU/2jtxOQMomNTCKzjYeNohRBCCGFrlVlOb/XpxQEDBvDyyy+Tm5tbZF5OTg6vvvoqt912W5k2Lqqvi8lZTPhmD9l5Zm5p6sO0gS1QFLkp9Wr/fT8UPro4gL8T26BTVF4J/o3x/htQUK/MFUIIIYSo3HL6Mt3IGxYWRuPGjXniiSdo1qwZqqpy7NgxPv30U3Jycvjmm2/KtHFRPaVl5/HQwt3EpeXQzN+FOfe3k/KUYoS2DGTxsh0AqCjMPD+QuFwXRvtvZaz/FoIMiXyRdj/+vm42jlQIIYQQVUFlltNbnfQHBgayfft2Hn/8caZOnYp6pfe4oij079+fuXPnUq9evTIHIKoXo8nMk9/v50RMGj4uBuaP7YiLvZ2tw6qSwtrWp15dDy5eTsZkVlFR+DK6NxdzPXgu6C/6ehylbeAPaLNHgpO3rcMVQgghhI1VZjl9mU7PhoSE8PfffxMfH8+OHTvYsWMHcXFxrFy5kkaNGpUrAFF9qKrK9N+PsPFkHPZ2GuaPCaOuu4Otw6qyNBqFt1++Fw93J66ufFqV3I7JZ0aSpTjinXEUvuwDcSdsF6gQQgghqoTKLKdXVFUeF3o9qampuLm5kZKSUiE9Uquzrzaf5c0/j6Eo8PmoDgxo6W/rkKqFtPRs/l73L/9sPkZaejb1g7wZfFsonYLyUL4fCkmRYHCD4d9Ag1tsHa4QQohqytqcpSbmNjVlny5cuEBYWBgGg6HEcvrdu3eXq7rG6qR/yBDrHq60fPnyMgdRFp988gmzZs0iOjqatm3bMmfOHDp16lTi8j/99BOvvvoqkZGRNG7cmHfeeYc77rjD6u3VlIPoRq0+Es3/vt2LqsLLdzTn4Z4NbB1SzZCRAEtGQtQO0Ojgrg+h/WhbRyWEEKIakqS/bPt0s3NKa0VERPD444+zevXqYsvpy1tdY3V5j5ubm1VflWnp0qVMnjyZadOmsW/fPtq2bcuAAQOIjY0tdvlt27Zx//33M378ePbv38/gwYMZPHgw//77b6XGWdMcvpDCpCUHUFUYGV6PCT1CbB1SzeHkBaN/hdZDwWyE3ybCmmlgNts6MiGEEKLGqso5ZWWV01er8p7w8HA6duzI3LlzATCbzQQFBTFx4kRefPHFIssPHz6cjIwM/vjjD8u0zp07Exoayueff27VNmvip+GyuJScxeBPthKblkOPxt4sGNsRO+nUU/FUFTa8DRvfzn/ffBDc8wXoHW0blxBCiGpDzvRbv0+2yCltzeruPbaWm5vL3r17mTp1qmWaRqOhX79+bN++vdh1tm/fzuTJkwtNGzBgACtWrKjMUKstVVVJT85EVcHFw5GMXBMPLdpNbFoOTfyc+eSB9pLwVxZFgd5TwbMB/PYkHPsNUi/CiB/ApWivXiGEEEKUT1XOKSuznL7aJP3x8fGYTKYiDyvw8/Pj+PHjxa4THR1d7PLR0dElbicnJ4ecnBzL+9TU1BuIunpQVZXVS3fw8+driToVA0CdBr7E3taJ42lGvJ0NLBjbEVdpzVn52g4H96D8Ov+Le+GrfjByKfi1sHVkQgghRJV3bd5mMBgwGAyFpt2snLI8KrNUvtok/TfLzJkzef31120dxk2jqiqfv7qM3xZuKtRWcr+XF0lpRnSqypejOxDoIWUmN01wV5iwFr4bColnYMEATPctZE1MAMtWH+BsVDwGvY4+nZsw/Lb21KvjaeuIhRBCiCohKCio0Ptp06Yxffp02wRTDgsXLqy0satNrYa3tzdarZaYmJhC02NiYvD3L751pL+/f5mWB5g6dSopKSmWr6ioqBsPvgo7tO0Uvy3cBOSXlQMkNgsmqVkwqCp+mw5gPluxn2KFFbwawoR/ILgb5KTCd0M5+N2bHDsTTVZOHslpWfy69hAPvriYvUfO2zpaIYQQokqIiooqlMddXcJT4GbllFVNtUn69Xo9HTp0YO3atZZpZrOZtWvX0qVLl2LX6dKlS6HlAdasWVPi8pB/GcjV1bXQV032x9eb0V5Vp58W6ENMh2YA+O47gfvFOP74erOtwqvdHD3hwV+I9L4VLWZe8PuTJ7xWoSG/s4/JrJJnNPHih7+SlZ1n42CFEEII27s2h7u2tAduXk5Z1ZSpvCc3N5cVK1awfft2Sw2Tv78/Xbt25e6770av11dKkAUmT57MmDFjCAsLo1OnTsyePZuMjAzGjRsHwOjRo6lbty4zZ84EYNKkSfTq1Yv333+fO++8kyVLlrBnzx7mzZtXqXFWJ2ePXsRkyk8ijfZ6LnVrCxoF91NReB6NxHxlGWEbqlbP5FP9GWDK43/e6xnpuYO6+iSmX76HbFWff/N1Zi5rth9nUO/Wtg5XCCGEqBZqY05p9Zn+06dP07x5c8aMGcP+/fsxm82YzWb279/P6NGjadmyJadPn67MWBk+fDjvvfcer732GqGhoRw4cICVK1dabqw4f/48ly9ftizftWtXvv/+e+bNm0fbtm1ZtmwZK1asoFWrVpUaZ3Xi4PTfJ+C4No0w63XYx6fgv/MoBSX+9o6V+2FOlCw1I5vLcWksSuzBq5eHkGPW0sv5BF/Vm08TQ/6xrtVqOHL6cikjCSGEEKJAbcwpre7T379/f5ycnPjmm2+KlLykpqYyevRosrKyWLVqVaUEais1sZft1ZbOWc3X7/5BtrMjZwd2A42G4FU7cYxNAkCjURj5zG08MLninzgnSpeRmUO/CXMt71vbRzEz4Ee8dBnkqRrmJ/Tih5Tu3NU7lOce6mfDSIUQQtia9OmvWftU0awu79m6dSu7du0q9hvp6urKG2+8QXh4eIUGJyrfgJFd8lt1tmsKGg3OUTH/JfxaBUdne24f1d3GUdZeTo4Gmjfw40RELGZV5XB2EKPOPcrzvn/S2+U4j3qvp5vTSbIazC19MCGEEEJUeZVVTm91eY+7uzuRkZElzo+MjMTd3b1cQQjbcfdy4f4540gL9AWzmToHT6HV5R8Wbl4uzFw6EU9f+cRsS6MGdsJ81QW5ZJMTL10eyvTLg0kzGWjtcJGOWx+AXV/+14JJCCGEENVOZZbTW32mf8KECYwePZpXX32Vvn37WmqeYmJiWLt2LW+++SYTJ04sVxDCdsxmlYVH4wHoG+BMu4GhqCq07tyQbneEYqeXRznYWp/wJjwytBvzftqKVqNgMqsoisKqtDZEGVrwSeuN2F/cCn9NgRN/wd2fgGuArcMWQgghRBk99thjtG7dmv3795dYTv/EE0+Uq5ze6pp+gHfeeYePPvqI6OholCtPclJVFX9/f55++mmef/75MgdQ1dX0GrFfD1xk0pIDOBt0bHjuFrydi7a2ElXDmah4Vqw9yKnzcTgY7OjdqTH9uzTHQa+F3V/CmtfAmA32bnDnB9DqXgo9cU0IIUSNJjX91X+fHB0d2bVrV4k3CB8+fJjw8HAyMzPLPHaZTuO+8MILvPDCC5w9e9bygAJ/f39CQkLKvGFhe9l5Jt5deQKAR3s1kIS/imsY5M2zY/sWPzP8f9CgN/zyP7i0D34eD8f/yE/+HeWJvUIIIUR1UFBOX1LSfyPl9OWq3WjQoAGurq7o9fpq/WmqtvtmeyQXk7Pwd7VnfPcGtg7n/9u77/AoqraBw7/Znl4gFUIKvVfBgAJKKGJBUUHlVbArICoviqiIWMCCDURFXwX5VBBREFGaAkrv0g0t1BACpPfs7vn+WFgJEBJCks2G576uuZLMnDnznEPIPjNz5oy4UkEN4OElsOI9+PNt2DkHDq2G2z6GBj1cHZ0QQgghSlCRw+kvK+lPS0vjpZde4vvvvyc11THDS1BQEA8++CCjR4/G09OzTEGIypeWU8DHSx0Pgvy3RwPHEBHh/vQG6DoS6nd3XPU/tQe+uxvaDoIeb3I03cqM3zfz+8a95BcUUq9WTfp1a01cuwbodDIUSAghhHCl1157DS8vL959913++9//XjCcfuTIkWUeTl/qMf0pKSnExsZy7NgxBgwYQOPGjQHYtWsX3333HY0aNWLlypVs27aNtWvXMmzYsDIFVNVUlzFi53t9/i6+XJlAo1Affh12PXpJ+Kqfwlz44zVY+wkA+d61efpQL7bk1cZmd/y312kadqXo2aERrz9ykyT+QgjhxmRMf/VqU3kPpy/1lf7XXnsNk8nE/v37nbcazt3Wo0cP7r//fhYvXszEiROvKChRsQ6dzmb6moMAvNi7sST81ZXRA3qNh4Y3YZ/zJOaMo3wS+D+mZ3ZiSnpXCjE4pwJdtO4fWtUL5+4bW7k0ZCGEEEI4lPdw+lLP0z937lwmTJhwQcIPjrOPd955hx9//JHhw4czcODAKw5MVJx3FsVTaFN0bhBE5wZBrg5HVLTozvzW6n/My26FToNBvquYHvIF9Y1JziKaBt8t2cxlTOYlhBBCiAqQlpbGkCFDqFmzJiEhIQQEBBAaGsqoUaPKNGvPWaW+0n/8+HGaNm1a7PZmzZqh0+kYM2ZMmYMRFW/L4VR+3XYcTYNRNzVydTiikmw5nMn8tNv5M7chLwX8Qn1TMt+GTGFTfhSLcpqxNLcJR5IhKzcfH0+Lq8MVQgghrkqXGk4/adIklixZUubh9KVO+mvWrMnBgwepXbv2RbcnJCQQHBxc6gOLyqeUYtxvuwG4q01tGodVjzFvomSOsfoaf+Y2Ylt+BKMCfuVGz91cYznINZaDjFS/sSavHqZ/wqHZrWDycnXIQgghxFWnIofTlzrp79mzJy+99BJLlizBZDIV2Zafn8/o0aPp1avXZR1cVK5FO0+w4WAqFqOO//Zo6OpwRCXq0CSSOX9uByDV7sXzp/sRlpZGD88d9PTcQQPTCTp77IF5j8OCZ6HhTdDsLqgXB4ai/9/tdsWKnQf4YcU2DiSl4Otp5qZ2jbijYzN85S6BEEIIUWZz585lypQplxxO37t3b8aMGXPZw+lLPXvP0aNHadeuHWazmSFDhtCoUSOUUuzevZtPPvmE/Px8NmzYQJ06dS4rgKquujwNXmiz0+ODv0g4lc1TN9aTpP8qY7XauH3UV5xMy3LO3HOuGEMyb1+fT/TppZB68N8NFj9ofBs0vxuirsOGxovTFrBo8x70Os1Zl6ZBDR9Pvny6H5EhAZXUKiGEEOeS2Xvcv01ms5n9+/cXO7Lm6NGjREVFYbVaL7vuUl/pr127NmvWrGHw4MGMGjXK+cCfpml0796djz/+uNol/NXJjPWHSTiVTU1vE493qevqcEQlMxj0fDz8Tp549wdOp2cDoMCZuHe/uQ/Rt8WCUnBsM+yYDTt+gqwk2PJ/jsU7lH98OpK4OxCohc3+b/1KQWpWLk9P+ZmfXh4oU38KIYQQZVCRw+lLfaX/XKmpqezduxeAevXqERgYWKaDu4PqcOaYkVdI13eXk5JdwOu3N+P+ayNdHZJwkezcAhas3c3SzXvJzSukQZ0g+nZpQcM6F/kDYrfBoVWwfTbs+hny0pybjtgCWJTfjAX5zdhvK3oL8tMhfYltLL9jQghR2eRKv/u36aGHHmL//v3FDqfv2bMnMTExfPXVV5ddd5mS/qtJdfglemfhP3yyfD8xQV4seqYzRn2pZ2oVwsFawMnN89j40wd0NcfjoRU6N83La8mrWX2wo0Ov0/Fg93YMvbWTC4MVQoirkyT97t+mihxOX+rhPcI9Jabl8uXKBABG3dRYEn5RNgYTudFxjMo6giWrgC6meHqZd3C9aQ+3WbZiR2Ns1m1cxqs/hBBCCHGeihxOL0l/Nffe4j3kW+20jw4krrFMqSrKLjzQlxq+npzOgEUFzVlU0Jw4007e9pnN7Za/KVAGxmXfTNt6Fx+HKIQQQoiSRUdHs2DBgnIfTi+X5aqxnYnp/LTlKAAv9W6MpsnDlaLsDHod/7mhDef+Fv1e0JSXs+7ArqCfx0Zer7mcDg0iXBajEEIIUV0EBATQvn172rdvXy7Pz0rSX00ppRj/2z8oBbe1DKdlhL+rQxLVwAPd2tKjTQPAMfMPwIL8FozN7gPArfyJbumrjul8hBBCCFFlyPCeaurPPSdZue8UJr2O53rKnPyifOh1OsYP6k3vaxoxe+V2DiSdxsfDTEy7YeR6dMJjyfOw6iMwWOCGF10drhBCCCHOkKS/GrLZHVf5AQZ2jCQi0NPFEYnqRKfT6NK8Ll2an/++h3agt8PCF+DPt0Fvgs4jXBKjEEIIIYqS4T3V0OxNR4g/kYmfh5GhN9R3dTjianLtkxA31vH90tdh9ceujUcIIYQQgFzprxbycwtY8+sWTiWm4BHow4SDuQA8dWM9/DyNLo5OXHWuewZsBbDsTVj8EhjM0P5RV0clhBBCXNUk6Xdzi79ZwWcjvyMnMw+dXkdyq4ac6tCUQD3859qyzeMqxBXr/BxY82DFe/DbCNAboe0gV0clhBBCXLVkeI8bWz57He8P/oqczDwACkxGTrdxPLRrWbCWX6f84crwxNVM0+DG0RA71PHzL8/A3zNcGpIQQghxNZOk303Z7Xa+fGVWkXWn2jdBGQ1YTqTgs+8o34ybS15OvosiFFc9TYMeb0D7xwAFPw+GHT+6OiohhBDiqiRJv5uK35jAyaMpzp/zA3xIaxwNQPDqbWhAblYeG5dsd1GEQuBI/Hu9DW0GgrLDj4/C7l9cHZUQQghx1ZGk301lnM50fq+AE9e3Bp0O7wPH8Dx+yrkt/ZxyQriETge3fAgt7gFlgx8ehD2LXB2VEEIIcVWRB3ndVEhUkPP7jIaR5NQORiu0Erxqa5FyoZFB5+8qROXT6aDPZMesPjt/gu/v5/QtX/L1MT+W7TxAgdVGizqh3HtdK9pE13J1tEIIIUS1I0m/m4pqXIv6raOIjz9OcscWANTcsAtTZg7gGFURGBpAq65NXBmmEP/SG6Dv547E/5/5eM19kJ15AzhoiwLgRHomC7fu4cnu1zK4Z6xrYxVCCCGqGRne48aGTPgPyZ1aYvMwYz6VRuC2vQBoOg00jWEfPoBeL//EogrRG0m/+VNW2hti0QqZZPmWlrrDgONN0gCfLlnLn7sOuDJKIYQQotqRjNCNpQT4kVa/DihF6PLNaGeSpphmEbw55790uKmVawMU4iLmbt7LM7l3sdoag6dWyKce39JUd8y5XafT+PrPTS6MUAghhKh+ZHiPm8ortPHS3B0APNAxiiefGMmpxFT8g3yJaBDm4uiEKN6mA0cpUEaezruHyZbvaG84yBce05lccAPfF16D1a5nS0IiSik0TXN1uEIIIUS1IFf63dTkZftIOJVNiK+ZET0bEhYdTPNODSXhF1Xe2UQ+DxND8+5loy0SHy2fF8wL+cnzE67X73FxhEIIIUT1I0m/G9p7IpPP/twPwKu3NsXXYnRxREKUXruY2s7vczHzcO5Axubdwmm7J9G603zi8R3TA2ahnZLkXwghhCgvkvS7Gbtd8eKc7RTaFHGNg+nVLNTVIQlxWfpc0wRPsxHdmSv+dnTMtrbjlpxhTC3oSKHS0Tx/B3wSCwtGQk5KCTUKIYQQoiSS9LuZ7zceYcPBVDxNesb2aSZjnoXb8fWwMOmh2zEZ9M7EHyBX58H7BT34sd2X0LC340Ve6z6DSW1g3edgs7owaiGEEMK9yYO8buRkZj7jf9sNwPDuDajl7+HiiIQom2vq1uaXkYP4Ye12lu3Y53g5V2QY93RsSYvIMKAv7F8Gi16E5F2w4DnY+CX0HAf1urk6fCGEEMLtaEop5eogqrKMjAz8/PxIT0/H19fXpbEMm7GFeVsTaVbLl7mDO2GQOfhFdWezwuZpsPRNyD0zzKdBL+jxJtSsh9Vm5/fd+/hhw3YOp6QR4OnB7a2b0Kd1E7zMJpeGLoQQla20OUtVym3KS3VsU3mTK/1uYnl8MvO2JqLT4K2+LSThF1cHvQGueQSa3Ql/vgvrp8CehbDvd2zXPMqziU35I+EUOk3DrhSJqRnsPHaCr1dvZvoj/Qjx9XZ1C4QQQogqQTJHN5BbYGP0z445+R/sFE2zWn4ujkiISuYRAL3GweC1UL8n2K3o133K2MPP01/bgKYc4/3VmSUxLYP/zvzVpSELIYQQVYkk/W7goz/2ciQll3A/C8O7N3B1OEK4Ts36MGAWeffM4gBBBGo5jNH/ymz9FK7VDjiL2eyKzYcT2X082YXBCiGEEFWHJP1V3O7jGXyxwpHMvNanGV5mGZElxD+ezbnd+gRv2G4iXVloqCXzlX46r+l+xojjqr+maWxMOOriSIUQQoiqQZL+KsxmV4z6aTs2u+KmZqHENQlxdUhCVBlW9HynOtDLNoxv7O2xKY27dFuYqv+aGmS5OjwhhBCiSpGkvwr7bt0h/j6ShrfZwJhbm7o6HCGqjAahQXgYHW+iTseTcfbePGEfQIYy00Y7wiz95zRSx2gbVbuEmoQQQoirgyT9VdSJjDzeWRgPwPO9GhLqZ3FxREJUHZ4mI/d0aFHk5V6rVD362x7lgKpBmJbBd8apNElZ4cIohRBCiKpDkv4q6tV5O8nMt9Iqwp8BHSJdHY4QVc7TcR25tm4EgDP5P0xN7rM9wgZ9I8yqEGY/BH+8Dna7K0MVQgghXE6S/iro910nWLAjCb1OY3zf5uh1Wsk7CXGVMRkMfHb/HbzXvzfto2tTK8CXprVCGHZLb5qMWA4dhzkKrpgA3w+A/EyXxiuEEEK4kkwFU8Vk51sZM28nAI9cH03jMHmrnBDFMeh13NS8ITc1b3jhxh6vQ0hTmDcM4n+D/3WHe7+DwJjKD1QIIYRwMbnSX8W8v2QPx9JyqR3gwTPdZE5+Ia5Iy3vgwQXgHQond8MXN8KBP10dlRBCCFHp5Eq/C1kLrayau4FNi7dis9nwalmPqUmOOcbfuL0ZHia9iyMUohqo3RYeWw4z74PEzfB/d0Cvt6D9o6DJ0DkhhHBLdhscWg1ZJ8A7BAKauTqiKs9trvSnpKQwYMAAfH198ff35+GHHyYrq/i5uFNSUnjqqado2LAhHh4e1KlTh2HDhpGenl6JURfvSPwxBjUYxhv932fx18v5/dsVfLQlCbuC60I86dow2NUhClF9+IbBg79Bi/6gbLDgOfjlabAWuDoyIYQQl2vXPPiwGXx9C/z4sOPrJx0q7HDVJQd1m6R/wIAB7Ny5kyVLljB//nz++usvHnvssWLLJyYmkpiYyIQJE9ixYwfTpk1j4cKFPPzww5UY9cXlZuXyXLexnDx6GgCb1cbpFg3JD62JLi+f5Demc/ifYy6OUohqxugBd0yB7q8BGmz+GqbfBlknUUqx9uAR3l+2ineXruD3+P1YZcYfIYSoenbNg1kPQEZi0fWZJyrskNUlB9WUUsqlEZTC7t27adKkCRs2bKBdu3YALFy4kN69e3P06FHCw8NLVc8PP/zAf/7zH7KzszEYSjeyKSMjAz8/P9LT0/H1LZ+Han/5bDETh3wBZ3q+0MeLQw/fjjIZCV60msCd+7jp4W48/Wnxv1BCiCuwZ7Hj6lB+BlafWjxruZ9FqRYMOsd1EKvdTpivN5/260OTULnrJoRwD6XNWSoit6kUdpvjCv/5CT+Qka/weyuz3Nvkyhy0vLnFlf41a9bg7+/v7GyAuLg4dDod69atK3U9Z38RXNXZZ62aux4Nx1hiBZzs3gFlMmI5egLfrXuwWe2s+LH07RJCXKYGPeCRP7AHxmDIPMbbJ9+jp30nVrvdeYU/OTObB76ZTVJG8bdwhRBCVKJDqy+a8Fek6pSDukXSn5SURHBw0attBoOBwMBAkpKSSlXHqVOneP311y95OwYgPz+fjIyMIkt5y8/J5+wNFqufNzl1wsBmI3jRas4+VliQJ2ONhahQQQ2Y0/5jVmh18aSQSfYfGGZbhqYcSb9NKbLyC/hu01YXByqEEAJwPLRbgvNzuPz8/Cs6ZGXmoBXNpUn/Cy+8gKZpl1z++eefKz5ORkYGN998M02aNOHVV1+9ZNnx48fj5+fnXCIiIq74+Oer2zIKncHR9cb0LCK/mkvIbysxn3Y84KHTaUQ3r1PuxxVCFPXz3uM8rruPr7RYAIaqP5ls/55g5TjZtyvFLzuu/G+QEEKIcuAdUmKRiIiIInnc+PHjL1quKuagFc2l41z++9//MmjQoEuWiYmJITQ0lOTk5CLrrVYrKSkphIaGXnL/zMxMevXqhY+PD3PmzMFoNF6y/KhRoxg+fLjz54yMjHJP/G95ogc/T17o/NmYkY0xI8H5s92u6DOkV7keUwhxocz8fKyanrf0PYm3B/O6fT5xKp5rbQl8oLuR77RryC6Qu25CCFElRHYE33DIOI7zwcjzHDlypMiYfrPZfNFyVTEHrWguTfqDgoIICgoqsVxsbCxpaWls2rSJtm3bArB06VLsdjsdOhQ/RVNGRgY9e/bEbDYzb948LBZLiccym83F/oKUl6imETw8fgBfjvoWnU7Dbj/zi6sBCm64pxNd7+lUoTEIIaBeUA3+ST6Jza6Yo2vNP1oor9nm05JjjLYv5E7+5juvga4OUwghBIBOD73edszeczZpcnIMkPb19S3Vg7xVMQetaG4xpr9x48b06tWLRx99lPXr17Nq1SqGDh3KPffc43xq+tixYzRq1Ij169cDjs7u0aMH2dnZfPnll2RkZJCUlERSUhI2m82VzQHgnpG3M3bO8zS69t+37tauH8awyY/wwjfD0Onc4p9GCLfWv3VzbPZ/PzR2a2H00z/MaN0tpGGhCUm8kfQ2zHsKclJcGKkQQggAmtwG/aY73r9yLp9LX3Uvq+qUg7rFlJ3geNHB0KFD+eWXX9DpdNx5551MnDgRb29vAA4ePEh0dDTLli2ja9euLF++nBtuuOGidSUkJBAVFVWq41bGtFZ5OfnYbXY8vC1o8oZQISqNUorXFi7j201bL7hmFKiyec97LZ3SVzhWeARC97HQ6j8gJ+VCiCqo2k/Zea7z3sibEdAMv4DACmmTq3LQ8uY2Sb+rVIv/GEKIYiml+G7TNv63ZiPH0h0P8AZ6evDANa15tGM7jEfXw6/DIXmXY4fa7eGW9yG0uQujFkKIC11VSf95qmObypsk/SWQXyIhrg52pTiWloFdKcL9fDDq9f9utBXCuimwfDwUZIGmhw6PQ9dRYJG/C0KIqkGS/urVpvLm2rdUCSFEFaHTNCIC/C6+UW+EjkOh6R2w6EXYNRfWfgI7foJe46BpX3KsVmZt386s7Ts4kZVFTU9P7m7ejP7Nm+NTwZMDCCGEECWRK/0lkDNHIcQF9v0Ovz0HKQcAKIzszBPWzvyZ4bg7oMD5or1If3++v6c/Nb28XBOrEOKqIVf6q1ebyps8jSaEEJerXhw8uQa6vgh6M8ZDf/HpsfE8k78UkyoEHIm/Ao6kp/P8wkUuDVcIIYSQpF8IIcrCaIGuIzn14FL+1NfDhI2hBStYmP0JXa17nMVsSvHnwYMcSktzXaxCCCGuepL0CyHEFdica+Ehj/t40tKP45ovdVQaX+bO4NfsT3k8fyXh9jQAtiQmujZQIYQQVzV5kFcIIa6AXqeBprHY2JiVhroMy1/OA4XraWRPplHBHzxf8Acb9RGY9uVAZDB41XR1yEIIIa5CkvQLIcQVaBMejkGnw2q3k6OZeMvSg0/M19OzcDe3WXdwrS2BdrYjsPld2PI+1L0Rmt8NjXqD2eeC+o5nZTJj5zbWHDuCBnSKiOTeJs0J9vKu/MYJIYSoNmT2nhLI0+BCiJKMXvI7M7dvx36RP6ehKpPnAk9yu3UHJG75d4PBAxre5DgBqBcHBhOLDuxl6KL52JRy1qXTNIw6HZ/d1IcbIqMrq0lCCDcks/dUrzaVN7nSL4QQV+ilrl04mJrK6iNH0GsaNqXQaRp2pahVqyFxd44CkwlO7YMds2HbLEjZDzt/ciwWfzLq9WL6MTM2fR3smuas264UBTYbjy/4maX3PURt+TATQghRBnKlvwRy5iiEKA2b3c6yAwn8sGMHiZkZhHh7c1fTpsTVq4dBd96cCUo5rvpvnw07foSsJOem4zoffjE35Wdzc3YaQuHMCYBe03i0dTteiO1cmc0SQrgRudJfvdpU3iTpL4H8EgkhKpTdBgdXMn/OG3TO2oqvyndu2qevyU+WFswxN+e43o9GNWqy8J6BLgxWCFGVSdJfvdpU3mR4jxBCuJJODzFdGF8znuHmOLoW7OO2/B3E5e+hnu0Uz2cvZUT2UtYYo1ip6wj5fS/6ALAQQghxKZL0CyFEFdA+vDbz9max2NyIxeZGeNvzualgN33zthJbeIhOhQfpdOIgTJgLjW+FlvdAdBfHScNFFNptrE48zOm8HMK9fGgfGoHunGcFhBBCXF0k6RdCiCrggeatmbNnt/PnLJ2ZHyyt+MHSitq2NG7P285TpoOY0xJg2/eOxScMWvSDFvdASBPnvrP37mDchuWczstxrqvl7csbsd25MaJupbZLCCFE1SBj+ksgY8SEEJXl8y0bGLf6L+cMQIDz+9c638gDzVrBsU2wdYbjIeC8tH93Dm0BLe9lrmcTnt60/oK6NUDTNKZ1v4sutUs39We+zcpvh3ez9XQiek3H9WExdA6Luew7Bv+kn2DB0Z2kF+RRxzuAPhEtqGHxuqw6hBAlkzH91atN5U2S/hLIL5EQojKtPXaEqds2s/bYEUCjU+06PNyyDW3DahUtaM2HvYth60zYswjshY7V6PjTEsOPXs353bMB+dq/N3Q1oK5fDX7v+xBaCYn7+uTDPPHXj6QV5GLQHLMPWZWdur41mNq1P7W9/UtsS77NyvMb57Lw2C70mg4NxxSkOk3j+ebdGVivw2X0jBCiJJL0V682lTdJ+ksgv0RCiCov+zTs/Im09VPxP7XTuTpdM7PIsyF7jUGc0HtzQu/DCb03n9z2OE3CYoqt7mBmCr1/+x8FNht2in5E6DWNME9fFt/8GBaD8ZJhPbdhDvOP7LigjrMmXHMHt0Y0v4yGCiEuRZL+6tWm8iZj+oUQwt151YD2jzLftx1f/jmTvtnbuSN7O7VtGfTL3nZh+SmfgckHfELPLGFFvv5x7Aiheac5rvckX1c0sbcpxdHsdOYf3s1dMS2KDelIdiq/HNleTLrvuOswadef3FK7WYl3HYQQQlw5SfqFEKKaCPbw5oCxBhP8u/KeXxc65B+ma+5+Qm2ZhNgyCbZlEWLLxEcVQEEmnM6E03svqOfhMwtAms7CCYM3OUWSfw3f47PAt0axsVjysvg+N71I0p+vGVjrHcFS37r8YwniUHYKB7JOU9enZnk0XwghxCVI0l9ObDYbhYWFrg7DrRmNRvT6i08/KIQoWZfa0fibLaTl56E0jbWWSNZaIp3bNaC+f00W974LLSsZMo9DZtIFXw8f302QNRMPZcXfnod/Qd6FB8sDMhOKjSXozHK+DtlHePrEahKNPiz3jUG3rwE0ux2MlhLbdyjrFHsykzDp9LQNjMa7FPsIIYRwkKT/CimlSEpKIi0tzdWhVAv+/v6EhobK7X4hysCsNzCmQzee/evXC7adnb1nzLXd0Cy+YPGFmvUuWs/QhV+x63QSXvY8QqxZhFizMCurc7te0+gcFsOA+m2KjWXL6SNM2bOqyLqgwmy6Zh6gY+Yhwgszue/0Vvj5cfhtONS9ARr0ggY9wTu4yH5Hc1J4bdscNqb8e5Jh1hm5N+paBjeIw1DMuwqKk28rJN9eiLfBgu7MQ8pCCFHdSdJ/hc4m/MHBwXh6ekqyWkZKKXJyckhOTgYgLCzMxREJ4Z761muKXtN4c8NyTuRkOddH+vrzRmwPrguPvMTeDvfXb8vIlF/J1FvI1FvYZ75w+M0znR6BgOCL7O3QzG5ja0oGqQU5RYb4zKrRArO9kI7Zx3jAlkLH1HjITIR/5jsWNKjV1nEC0LAXJ/0ieXD156QV5hSpP99eyNcHVnAyP5PXW95VYpsAdqYf5P8S/mDd6X9QKHyNnvSp1ZF7I7viaZC7BkKI6k1m7ynBpZ4Gt9ls7Nmzh+DgYGrUKH5sqyi906dPk5ycTIMGDWSojxBXwGa3s/7EUU7n5hDm7UOboPBSX5Sw2u088ddsliXuK5Kwa4ACnmp2Hc+26FxiPStP7Ofx1TNQKOd7B8BxpyDY4sOsrg8TbPGGpG0QvxD2LIDELUXqyPCsySLvMP70j2aDb20KL3JV/7tOg2nkF37JWFac3MGYbV8DFJlNSIdGjHcYE9sOlsRfuD2Zvad6tam8SdJfgkv9EuXl5ZGQkEBUVBQeHh4uirB6yc3N5eDBg0RHR2OxyAewEK5SaLfx1T/rmRa/kRO5mQA09AviiaYd6RPVtNT1bEs5xuR//uLPpL0owENvpG9kKwY3up6aFu8Ld8g4DnsXQfxC1IHlaNZc56YcnZG1fhHEewaRbrCQZrCQZfCgfUQ7Hmh6K3gEgtkHzju5ybHmc+fKseTaCi4aow6NfnW68ET9W0rVJqUUe7MOcjQnCbPeTGv/xnga5DNAuJ4k/dWrTeVNkv4SlCbplwS1/EifClG12JXiVF42ek0j0Fz2IYxZhflkW/MJMHli0pduZGlBXgbP/fgkndMSuD7tIMGF2SXvpDOAR4DjBMAjADwDOaIKWZ2dRIbBTIbRQobBTKrJg6MefqQYPUDT8NJbmNv5VYy6S8e2P+swE/dO53DOcec6k87IbeHduKfOzejlGQHhQpL0V682lTcZ0y+EEKJYOk0j2OMiV+Qvk7fRjLfRfFn7GM0+bA5qxIqAaFCKxjkn6Zh2iLCCTHytefhZ8/Cz5ROmbPgU5oI1D+xWyD7pWM6IAPoXc4wsvYnDnn4c9vAnz27BGNoCataHwBgwFI33SE4SL23/gEJ70ZnaCuyFzD66kGxrDo/VLe5IQgjhWpL0iwozaNAg0tLSmDt3rqtDEUK4IU3TuK12G2YdWocNO7u9gtntdeHDw992Gkxjv3AozIWcFMhNhdwzX3NSWHd0LQdP7cK7MA8/az6+hXnUKMghNC8Lb1sBTTJP0iTzJCS/e87BdeAfCTUbOE4CatZnZc5ePKyZ5BtNFwwhAliQ9Be31epGqEXeOyCEqHok6b9KDRo0iK+/djzUZjAYqF27NnfffTevvfaaDKsRQlQZA2OuZ1HiNtILc7Epe5FtGtArvKUj4QcweoBfLcdyDp/6N/LpxkkX1G2026iVm05kbjpt7NDHXNPxsrJTeyE/A1ITHMveRQDce2bJNJhI9PLlqJcvOwNCWBcUQY7RhA4dfyavp3+d3hXQE0IIcWUk6b+K9erVi6lTp1JYWMimTZsYOHAgmqbx9ttvuzo0IYQAINjiy1exj/Hqtp/4O/WQc71JZ6B/ZAeGNuxRYh2NfevQyr8u29ISsPPviUOhTs9Br0AOegXSq+VDULOJY4NSkJUMp/Y4ltP7KEjeScrxTQTnZuFjLaBh+ikapp+iW+IBCrV1bKkZzurQaLJrJJd7HwghRHmQpP8qZjabCQ0NBSAiIoK4uDiWLFnC22+/jd1u5+233+bzzz8nKSmJBg0aMHr0aO66yzEfts1m47HHHmPp0qUkJSVRp04dBg8ezNNPP+3KJgkhqqE6XjX4KvZRDmQmsyfzOCadkWtqRONjLN2MOZqm8XqLgby0dSrb0hOcD9valUKnaTzTsC+xZxN+xw7gE+JYoq8HQNkKGLpuBHprPqE5mdTOySAyM5Vrk49QJzud9ieP0v7kUWy71kKDP6BZX6jfE0yexcaVWpDK9vStFNgLqeNZh/reDeRdL0KICiNJfzlSSpFbaHPJsT2M+iv6sNixYwerV68mMtLx4p7x48fzzTff8Nlnn1G/fn3++usv/vOf/xAUFESXLl2w2+3Url2bH374gRo1arB69Woee+wxwsLC6NevX3k1SwghnGJ8gonxKf6FYJfiY/Tko7aD2ZZ2gD+Tt5NryyfSK5ieYe0IMPmUuL9Zb+L6mm356+RGDvsEcNgngNUhkcyo14o6WWl0SjrIdScOEZ6TCbvnORajFzS8yXECUC/O+WBwgb2Abw9NZ/XpVSgUGhoKRYg5lMdiniDSK+qy2pZjzSSt8DQeei8CTEFl6R4hxFVAkv5ylFtoo8kri1xy7F2v9cTTdHn/nPPnz8fb2xur1Up+fj46nY6PP/6Y/Px8xo0bx++//05sbCwAMTExrFy5kilTptClSxeMRiNjx4511hUdHc2aNWuYNWuWJP1CiCpJ0zRaBtSlZUDdMu3fv87NbEhxnDCcO0zosLc/h+u1Ir/zc9xviYYdP8HOnyDtMOyY7VjMvtDoZlTTvvxP7WBL5nbUmZeEnf16Mj+Zd+PfYnSTsYRYQkqMJ7XgJAuO/x870tc646nlUZeeoffSwKdVmdoohKi+JOm/it1www18+umnZGdn88EHH2AwGLjzzjvZuXMnOTk5dO/evUj5goICWrdu7fx58uTJfPXVVxw+fJjc3FwKCgpo1apVJbdCCCEqR6ilJm+1GMGn+79jV8Z+53ovvQd3RfSiT3g3x9CgsJYQ9yoc23TmBGAOZCbC1hloW2fwgNFIs9BwNoTXJr5GTey6M8ONsFNgL2Bh0q8MjHrokrGkFpzk470jybVlFTkBScw9wNSEN7mnzjO09O9UIf0ghHBPkvSXIw+jnl2v9XTZsS+Xl5cX9erVA+Crr76iZcuWfPnllzRr1gyAX3/9lVq1is6CYTY7bk/PnDmTESNG8N577xEbG4uPjw/vvvsu69atu8KWCCFE1VXbM5Q3mw/nWM4JjuYmYdGbaeJbF6POWLSgpkHtdo6lxxtwZC3s+IncHTPxzs2k85FDdD5yiAyTmR1BwWSYLWSZTGQbjeQfP45d1UN3zgvGOO/5hd+OT78g4Yd/7xr8dPQzmvi2w6gr3bsRMgtPcTh7C3bshFoaEGSJvuy+sSsrSTkbybYmYdb7E+55LQadzAYnRFUhSX850jTtsofYVBU6nY4XX3yR4cOHs2fPHsxmM4cPH6ZLly4XLb9q1So6duzI4MGDnev2799/0bJCCFHd1PIMoZZnyUNwANDpILIjRHbkm4bRZOxbQLvEI7Q9fgzfgnw6Hjty4T6bbi36s8Fy5k3DAdgsvrS0HqCB0UC22USu0UCOyUiKlyfJPl5kWkzk23PZkb6O1gGdLxlagT2P349PZHfGUucJA0C4RxN6h4/E3xRaqiYeyfqLdclvk2s77Vxn1HnRusaTNPS/q1R1AChlJyVvDSm56wCFv6UtNT2uR9Mu/8KWEKIo98xQRYW4++67ee6555gyZQojRozg2WefxW63c91115Gens6qVavw9fVl4MCB1K9fn+nTp7No0SKio6P5v//7PzZs2EB09OVfHRJCiKtFgCWIDTWD2V2zJt81a0mjUyeJSk/Dq7AAr4ICvAoL8Cm0EaMLRDv7gjG71fG24czjkHkcPdDsEsfINRo46e2FPng8RGyGoIaOl4wFRIHu3+RZKTtzjrzC0ZztRRJ+gOO58cw49CwPRH+Kl8H/km06lr2a5cdHwnl1FNqzWX9yAgo7jfxLftYrp/AwW048SU7hAbQz6cnB9P9hMdSidcgneJsalFiHEKJ4kvQLJ4PBwNChQ3nnnXdISEggKCiI8ePHc+DAAfz9/WnTpg0vvvgiAI8//jhbtmyhf//+aJrGvffey+DBg1mwYIGLWyGEEFXXdTWvZ2HSbwDYdDp2BoewM/jfOwY6dPQI7UXd2meSZKWgIMv5dmFyU8nKPMiSg5/hWVDoXLzyC6mRnUONrBw8Cq3USU2H1NUQv/rfg+vNUKOe4w3DQQ056WMgr2A1eh8PrAZdkTgVNnKsaWxJ/ZnrggYW2x6lFBtPfnTJNm859Rn1fG+75FAfqz2LjccHUmA7eeb4Vue2PGsSG48PpGPt+Zj0NS55LCFE8TSllCq52NUrIyMDPz8/0tPT8fX1LbItLy+PhIQEoqOj5S225UT6VAhR3c06MpPFJxZesF6HjgBTAC83fhUf46WnEZ245zmO5x284Aq93manZlYOwZnZ9DXfiEfqETi5x/GmYWveRetSQLqXmdO+HmR6mopsM+osNPWLKzaOPFs6h7L+uGC91aBzLoVGHXVr9ifI91oweYHZG0xnFy8weXM4aybxKeM4/27Bv3TU9R9CTMDgYrafF1dhPKnZs7HaTmLUB+PvdTcWY/1S7evOLpWzlKWcO6mObSpvcqVfCCGEqER31+6Pv9GfBUm/kmnNBBwJf+uANtwb8Z8SE36AHqH3Mu3guAvW2/Q6kv18iIy+A4/aj/+7wW5zTCF69i3DJ+M5dWwxXmmn8Ciw4Z+dj392fjFH+6rYOCxAwxKjBfjozHJxtfU6Qo1gNWjYjBo2g0a+h55sfwPZfgay/I0k6eaVmPQrZeNY6ihSs78D/h3KdDLzEwK97ic84I3Lfj7g7LXRK31xmlJ2NE1XckEhKogk/UIIIUQl0jSNHqG9uDE4jkM5Bym0FxLmEYaf0b/UdTTybcM9EU8z59gU8u156NCjzszkc01gN/rUerjoDjo9BEY7lgaOWeY2JE5gV9ofeOTnUSMjl8CMXDzzrEV2M+u9aBfYt9g4cq2p7EmffcF6g9WOwWrHWGjHaLUTpKuLxWaAgmzIz3IMWSrIcjyvAOhsdkw2KHqfoRAO//uT0k5CYDvHMwrBjSGokeNrjXrOF5+dSH+X1OwZZ/Yo+rLMlOxvMOgDCfF7rtj2OI+lFAV588nJ+gJr4WZAh9EUi6f3E5gsN5S4v7Me2zFU9peQOxdUFkoXBB790bwGoenkarSoXJL0CyGEEC5g0Bmo612vzPu3CrieJn7XsD1tLacLkvDQe9Hc71r8S/lW3mb+PdmZvoQci4kci4kjwX5FtmtoXBf0INTsX2wdHsDRw0mk5O+F86YPPcuk8+WumF9BM1640ZoPBdnsOvYc6Zkr0Bfa0FvtGAoVlmwbXmlWvNMK8UqzYixUjmFKp/fCP/PPCVQPgTGooHroPP7Ez99Onr+OAj8dSn/u1XnFycwvqOkzGL3Oq9g2KaXIyniNvOzPAR2OIUc2CgvWkJ6yEi/fl/H0frLY/Z31FMajUgaAysZ5AmI/CdmfoPLmQ42ZaLrAEusRorxI0i+EEEK4KZPOQtvArmXat7ZHMxr6dCY+cwXnj6XX0OFvCqNVwC0l1nNN0HCWHB1yJuW/MPFvH/Rf9BdL+MFxhd5gJqT2IxxLWs25Q3KKUIpWnmMIyg6B5H/g5G44Ge/4Pj8dTu9FO72X4HN30SDfV4fVU8PqqVHooWH1KKDg+Hg8Am4A7xDH4lnDMa3qGYX5f55J+M9vjyNxz854A5O5MwZj02L7RCmFSnu2aMLvZAfbEVTGm2j+7xVbhxDlTZJ+IYQQ4iqkaRq9a43E72QoW1LmUagcD/pqaNT36URc6FDM+uKviJ8V7NGS7rU/Zn3ye6QW7HWu9zKE0bbmU0T63FhiHYGWawn3vpPErB8vFinBXt2pGdwfNB3UPac+pRxTmSbvJvfYD+Qem405zYYl1Y6+ECzpdkg/v75JZ5az1evBKwi8gx2LMR4vcyF2D4XdU8PuoUMVOWfRk585AYPPsOIbVLgbMnZfuN5LB556wAZ5v6HsL8nVflFpJOkXQgghrlJ6zUDn4Ie5tuZ9JObswo6NYHNdvI2XNzVmsEcrbq4zndSCfWQXJmHRB1DT0qTUD65qmkaTmq/hY2rIwfSvyLclAWDSB1HH934i/R68eF2aBr7h4BuOViecYyfODPtRCkOOwpxux5ijMOQqDLl2DLkKX1tb9NlZkHUCck6DskFWkmPB8VyB6cIjneenM0sx7TmznM9+rTe0OnsiZYPCvWDuUOLRhCgPkvQLIYQQVzmTzoMo77ZXVIemaQSa6xNoLtvUmJqmo47f/UT4DiDPmohCYTGEodNKl6pYTI3xMLUht2AraDasXhpWr3NPFPR4mtoSEHJOsm6zQs4pxwlAVjJknSD7+Bi0nHR0OQpdrh1djkIr+nwzmmZEpyv+2QmlcsB+wS0GMJ13KqCVfHohRHmRpF8IIYQQVYam6fAw1i7TvrUD3+fAiduxqUyKjqXXo9f5UjtwQtEd9AbwCXUsZ6iYPeRkT+PCsfhn6fDyGYmnz9DiA7EdQ528keLfOwBo/nCJ5wKEKG8yYawQQgghqgWLsR71QhcQ6HUPGo5pPDXNQqDXfdQLWYjZGFNyHV6DcDxQfLEBOjo0zQuL572XrEPT1wJLby6VZmlej6DJlX5RieRKvxBCCCGqDZMhglqBbxMe8CZ2lYVO80Yr5RAhAIMhBr/AqaSnPgLq3LcYKzTNF78a36DTl/zMg+b7BsqeCgVnZyWy/fvV4z7weuQyWybElZGk/yo1aNAg0tLSmDt3rqtDEUIIIcqdphnQa/5l2tdk6UqNkA3k5cyisGAjoGEyd8LscSc6nXfpjq/zgoCpULAWlfcL2FNBH47mcSeasUmZ4hLiSkjSL4QQQghxHp0uAE/vx4HHy1yHpmlgjkUzx5ZfYEKUkYzpF3Tt2pWnnnqKZ555hoCAAEJCQvjiiy/Izs7mwQcfxMfHh3r16rFgwQLnPjabjYcffpjo6Gg8PDxo2LAhH330UZF6rVYrw4YNw9/fnxo1ajBy5EgGDhzI7bffXsktFEIIIYS4uknSX56UgoJs1yzqEjMElMLXX39NzZo1Wb9+PU899RRPPvkkd999Nx07dmTz5s306NGD+++/n5ycHADsdju1a9fmhx9+YNeuXbzyyiu8+OKLzJo1y1nn22+/zbfffsvUqVNZtWoVGRkZMpxICCGEqCJsdsWa/af5+e9jrNl/Gpv9ynIJUbVpSl1htlhJUlJSeOqpp/jll1/Q6XTceeedfPTRR3h7lzy2TilF7969WbhwIXPmzLmsK80ZGRn4+fmRnp6Or69vkW15eXkkJCQQHR2NxWJxJN/jwi+3aeXjxUQwlfzmxLPOHdPftWtXbDYbK1asABxX8f38/Ojbty/Tp08HICkpibCwMNasWcO111570TqHDh1KUlISs2fPBiA0NJQRI0YwYsQIZ70xMTG0bt262OT/gj4VQgghRKlcKme5WLl2r/zMyXy9c32Yn4UxtzahV7Owygi3XJW27WXhqhy0vLnNlf4BAwawc+dOlixZwvz58/nrr7947LHHSrXvhx9+6BhXJ4rVokUL5/d6vZ4aNWrQvHlz57qQkBAAkpOTnesmT55M27ZtCQoKwtvbm88//5zDhw8DkJ6ezokTJ2jfvn2Retu2vbKXvwghhBCifJzIyC/yc1J6Hk9+s5mFO467KKKqqbrkoG7xIO/u3btZuHAhGzZsoF27dgBMmjSJ3r17M2HCBMLDi7+6/vfff/Pee++xceNGwsIq+MzV6Om44u4KRs8r291oLPKzpmlF1p39hbXb7QDMnDmTESNG8N577xEbG4uPjw/vvvsu69atu6I4hBBCCOEaCsfbCcb+sovuTULR66pGsupKbpODloJbJP1r1qzB39/f2dkAcXFx6HQ61q1bxx133HHR/XJycrjvvvuYPHkyoaGhFy1zvvz8fPLz/z3zzcjIKH2gmnZZQ2zc2apVq+jYsSODBw92rtu/f7/zez8/P0JCQtiwYQOdO3cGHMN7Nm/eTKtWrSo7XCGEEEKUggKOp+exPiGF2Lolv4+gqjk/bzObzZjN5jLXV5k5aEVzi+E9SUlJBAcHF1lnMBgIDAwkKSmp2P2effZZOnbsSJ8+fUp9rPHjx+Pn5+dcIiIiyhx3dVa/fn02btzIokWL2LNnD6NHj2bDhg1Fyjz11FOMHz+en3/+mfj4eJ5++mlSU1OrzG0uIYQQQlxccmZeyYWqoIiIiCJ53Pjx46+ovsrMQSuaS5P+F154AU3TLrn8888/Zap73rx5LF26lA8//PCy9hs1ahTp6enO5ciRI2U6fnX3+OOP07dvX/r370+HDh04ffp0kav+ACNHjuTee+/lgQceIDY2Fm9vb3r27CkP6AohhBBVXLCPe35WHzlypEgeN2rUqIuWq4o5aEVz6fCe//73vwwaNOiSZWJiYggNDS3yACk45oBPSUkp9pbJ0qVL2b9/P/7+/kXW33nnnVx//fUsX778ovtd6W0gdzFt2jTn9xfri4MHD16w7tyJnsxmM1OnTmXq1KlFypx7Rm0wGJg0aRKTJk0CHM8DNG7cmH79+l1Z8EIIIYSoEBoQ6mehfXSgq0MpE19f31LN3lMVc9CK5tKkPygoiKCgoBLLxcbGkpaWxqZNm5yzvyxduhS73U6HDh0uus8LL7zAI488UmRd8+bN+eCDD7j11luvPHhRokOHDrF48WK6dOlCfn4+H3/8MQkJCdx3332uDk0IIYS46p0/2Pbsz2NubVLtH+K9GnNQt3iQt3HjxvTq1YtHH32Uzz77jMLCQoYOHco999zjfGr62LFjdOvWjenTp9O+fXtCQ0MvegZWp04doqOjK7sJVyWdTse0adMYMWIESimaNWvG77//TuPGjV0dmhBCCHHVC/Y1c/KcWTtD3Xie/opSnXJQt0j6Ab799luGDh1Kt27dnC9GmDhxonN7YWEh8fHxzjfGCteLiIhg1apVrg5DCCGEEBex+Nku/HPaSnJmHsE+jiE91f0Kf1lUlxzUbZL+wMBAvvvuu2K3R0VFUdLLhd3k5cNCCCGEEBVOr9PcclrOylZdclC3mLJTCCGEEEIIUXaS9JeDs2+pFVdO+lIIIYQQovy5zfCeqshkMqHT6UhMTCQoKAiTySQvniojpRQFBQWcPHkSnU6HyWRydUhCCCGEENWGJP1XQKfTER0dzfHjx0lMTHR1ONWCp6cnderUQaeTm1BCCCGEEOVFkv4rZDKZqFOnDlarFZvN5upw3Jper8dgMMjdEiGEEEKIciZJfznQNA2j0YjRaHR1KEIIIYQQQlxAxlAIIYQQQghRzUnSL4QQQgghRDUnSb8QQgghhBDVnIzpL8HZN6hlZGS4OBIhhBBCiOKdzVVK+3bY6pTblLbtVzNJ+kuQmZkJQEREhIsjEUIIIYQoWWZmJn5+fpfcDtUztymp7VczTckp0SXZ7XYSExPx8fGpsKkkMzIyiIiI4MiRI/j6+lbIMa4m0p/lT/q0fEl/lj/p0/Il/Vm+Kqs/lVJkZmYSHh5+yffdnJvbZGZmuu2/9bn9erYtJbX9aiZX+kug0+moXbt2pRzL19fX7f7DVWXSn+VP+rR8SX+WP+nT8iX9Wb4qoz9Lc5X73Nzm7AVNd/63Phu7XOG/NDkVEkIIIYQQopqTpF8IIYQQQohqTpL+KsBsNjNmzBjMZrOrQ6kWpD/Ln/Rp+ZL+LH/Sp+VL+rN8VeX+rMqxlcSdY3cFeZBXCCGEEEKIak6u9AshhBBCCFHNSdIvhBBCCCFENSdJvxBCCCGEENWcJP1CCCGEEEJUc5L0l8LkyZOJiorCYrHQoUMH1q9ff8nyP/zwA40aNcJisdC8eXN+++23ItuVUrzyyiuEhYXh4eFBXFwce/fuLVImJSWFAQMG4Ovri7+/Pw8//DBZWVlFymzbto3rr78ei8VCREQE77zzzmXH4gru2p9ffPEF119/PQEBAQQEBBAXF1di7JXBXfvzXDNnzkTTNG6//fbLa3wFcec+TUtLY8iQIYSFhWE2m2nQoIHL/9+7c39++OGHNGzYEA8PDyIiInj22WfJy8srY0+Uj6rYn3l5eQwaNIjmzZtjMBiK/b+8fPly2rRpg9lspl69ekybNq1MfVDe3LVPf/rpJ7p3705QUBC+vr7ExsayaNEiwNHXUVFRZeuQKsDd46+SlLikmTNnKpPJpL766iu1c+dO9eijjyp/f3914sSJi5ZftWqV0uv16p133lG7du1SL7/8sjIajWr79u3OMm+99Zby8/NTc+fOVVu3blW33Xabio6OVrm5uc4yvXr1Ui1btlRr165VK1asUPXq1VP33nuvc3t6eroKCQlRAwYMUDt27FAzZsxQHh4easqUKZcVS2Vz5/6877771OTJk9WWLVvU7t271aBBg5Sfn586evRoBfRU6bhzf56VkJCgatWqpa6//nrVp0+f8uucMnLnPs3Pz1ft2rVTvXv3VitXrlQJCQlq+fLl6u+//66Aniodd+7Pb7/9VpnNZvXtt9+qhIQEtWjRIhUWFqaeffbZCuip0qmq/ZmVlaWeeOIJ9fnnn6uePXte9P/ygQMHlKenpxo+fLjatWuXmjRpktLr9WrhwoXl10Fl4M59+vTTT6u3335brV+/Xu3Zs0eNGjVKGY1GtXnzZrVs2TIVGRnpLHv69Gl13333KR8fH+Xn56ceeughlZmZeeUdWEHOj/+NN95QsbGxysPDQ/n5+bksLncmSX8J2rdvr4YMGeL82WazqfDwcDV+/PiLlu/Xr5+6+eabi6zr0KGDevzxx5VSStntdhUaGqreffdd5/a0tDRlNpvVjBkzlFJK7dq1SwFqw4YNzjILFixQmqapY8eOKaWU+uSTT1RAQIDKz893lhk5cqRq2LBhqWNxBXfuz/NZrVbl4+Ojvv7669I2v9y5e39arVbVsWNH9b///U8NHDiwSiT97tynn376qYqJiVEFBQVlbX65c+f+HDJkiLrxxhuLxDJ8+HDVqVOny+qD8lRV+/Ncxf1ffv7551XTpk2LrOvfv7/q2bNnCa2uWO7cpxfTpEkTNXbs2AuS5pJOMnJzc1VycnKpjlEZzo//lVdeUe+//74aPnx4sUn/oUOHKic4NyXDey6hoKCATZs2ERcX51yn0+mIi4tjzZo1F91nzZo1RcoD9OzZ01k+ISGBpKSkImX8/Pzo0KGDs8yaNWvw9/enXbt2zjJxcXHodDrWrVvnLNO5c2dMJlOR48THx5OamlqqWCqbu/fn+XJycigsLCQwMPByuqHcVIf+fO211wgODubhhx8uazeUK3fv03nz5hEbG8uQIUMICQmhWbNmjBs3DpvNdiXdUmbu3p8dO3Zk06ZNzqEeBw4c4LfffqN3795l7pMrUZX7szSq2mcSuH+fns9ut5OZmXnB59Lu3btZuHAh//vf/+jQoQPXXXcdkyZNYubMmSQmJgJw4sQJatWqxe23386cOXMoLCwscxwVYezYsTz77LM0b9682DLR0dHExcXxf//3f+Tk5FRidO5Bkv5LOHXqFDabjZCQkCLrQ0JCSEpKuug+SUlJlyx/9mtJZYKDg4tsNxgMBAYGFilzsTrOPUZJsVQ2d+/P840cOZLw8PAL/vhXFnfvz5UrV/Lll1/yxRdflK7BlcDd+/TAgQPMnj0bm83Gb7/9xujRo3nvvfd44403StcB5czd+/O+++7jtdde47rrrsNoNFK3bl26du3Kiy++WLoOKGdVuT9Lo7hYMjIyyM3NLXU95cnd+/R8EyZMICsri379+hVZX5qTjMjISNasWUNkZCSPP/44YWFhDBs2jE2bNpU5nsq2a9cu2rdvz8svv0xISAgPPfQQf/75J0reQwtI0i9Embz11lvMnDmTOXPmYLFYXB2O28nMzOT+++/niy++oGbNmq4Op9qw2+0EBwfz+eef07ZtW/r3789LL73EZ5995urQ3NLy5csZN24cn3zyCZs3b+ann37i119/5fXXX3d1aEJc4LvvvmPs2LHMmjXrghOK0p5ktG3blo8++ojExESmTp3K8ePH6dSpE82bN2fChAmcOHGiUtpSVg0bNmTcuHEcPHiQefPmoZTi1ltvpW7durz66qskJCS4OkSXkqT/EmrWrIler7/gl/zEiROEhoZedJ/Q0NBLlj/7taQyycnJRbZbrVZSUlKKlLlYHeceo6RYKpu79+dZEyZM4K233mLx4sW0aNHi0o2uQO7cn/v37+fgwYPceuutGAwGDAYD06dPZ968eRgMBvbv31/qfihP7tynAGFhYTRo0AC9Xu8s07hxY5KSkigoKCih9eXP3ftz9OjR3H///TzyyCM0b96cO+64g3HjxjF+/HjsdnvpOqEcVeX+LI3iYvH19cXDw6PU9ZQnd+/Ts2bOnMkjjzzCrFmzyuXus8Fg4NZbb+WHH34gISGB0NBQnnvuOcaPH3/FdVcGTdO44YYbmDp1KkePHiU2NtY5POhqJkn/JZhMJtq2bcsff/zhXGe32/njjz+IjY296D6xsbFFygMsWbLEWT46OprQ0NAiZTIyMli3bp2zTGxsLGlpaUVuqS1duhS73U6HDh2cZf76668iY+6WLFlCw4YNCQgIKFUslc3d+xPgnXfe4fXXX2fhwoVFbpO6gjv3Z6NGjdi+fTt///23c7ntttu44YYb+Pvvv4mIiLjC3ikbd+5TgE6dOrFv374iCemePXsICwsrMna9srh7f+bk5KDTFf2YPHtC5YrhAlW5P0ujqn0mgfv3KcCMGTN48MEHmTFjBjfffPNFy1zuSYZSir/++otHH32Uxo0bs2/fPl555RWGDx9+WbG50ubNm3nmmWeoX78+f/zxB8OHD3ebk5YK49rniKu+mTNnKrPZrKZNm6Z27dqlHnvsMeXv76+SkpKUUkrdf//96oUXXnCWX7VqlTIYDGrChAlq9+7dasyYMRedysvf31/9/PPPatu2bapPnz4XncqrdevWat26dWrlypWqfv36RZ6yT0tLUyEhIer+++9XO3bsUDNnzlSenp4XTNlZUiyVzZ3786233lImk0nNnj1bHT9+3Lm4csozd+7P81WV2XvcuU8PHz6sfHx81NChQ1V8fLyaP3++Cg4OVm+88UZFdtkluXN/jhkzRvn4+KgZM2aoAwcOqMWLF6u6deuqfv36VWSXXVJV7U+llNq5c6fasmWLuvXWW1XXrl3Vli1b1JYtW5zbz07Z+dxzz6ndu3eryZMnV5kpO921T7/99ltlMBjU5MmTi3wupaWlFZn95uxsQRs3bnTuu2jRogtmC4qPj1cvv/yyioqKUt7e3mrQoEFq2bJlym63l0tfX47zZ+85a+rUqcXO3nPkyBE1fvx41aRJE2U2m9Vdd92lfvnlF1VYWFixwboJSfpLYdKkSapOnTrKZDKp9u3bq7Vr1zq3denSRQ0cOLBI+VmzZqkGDRook8mkmjZtqn799dci2+12uxo9erQKCQlRZrNZdevWTcXHxxcpc/r0aXXvvfcqb29v5evrqx588MELksutW7eq6667TpnNZlWrVi311ltvXRB7SbG4grv2Z2RkpAIuWMaMGXPlnXIF3LU/z1dVkn6l3LtPV69erTp06KDMZrOKiYlRb775prJarVfYI1fGXfuzsLBQvfrqq6pu3brKYrGoiIgINXjwYJWamnrlnXIFqmp/Fvc38lzLli1TrVq1UiaTScXExKipU6deeYeUA3ft0y5dulx0+8CBAy86ZeelTjIOHTqkdDqduvHGG9XXX3+tsrKyytqd5eL8+A8dOqS2bNmixo4dq7y9vZ0nQOf2mU6nU+3bt1eTJ09WKSkpLoi6atOUkkeahRBCCCGqk+XLlzNo0CAOHjwION4APHToUH755Rd0Oh133nknEydOxNvbG3AMZzt16hR16tRxYdT/Oj/+QYMG8fXXX19QbtmyZXTt2hWAf/75h0aNGlVilO7F4OoAhBBCCCFExQoMDOS7774rdrunp2eVSfgvZtq0aUybNu2SZSThvzR5kFcIIYQQQohqTpJ+IYQQQgghqjlJ+oUQQgghqpmoqCieeeYZV4dRZu4ef1UkD/IKIYQQQghRzcmVfiGEEEIIIao5SfqFEEIIIYSo5iTpF0IIIYQQopqTpF8IISpAVFQUH374YaUfd9CgQWiahqZpzJ07t1T7REVFOfdJS0ur0PiEEEK4hiT9Qohq62wiW9zy6quvAjBs2DDatm2L2WymVatWl6xz+fLlJda7fPlyNmzYwGOPPVbxjbyIXr16cfz4cW666aZSld+wYQM//vhjBUclhBDClSTpF0JUW8ePH3cuH374Ib6+vkXWjRgxwln2oYceon///iXW2bFjxyJ19OvXz5lkn106duxIUFAQnp6eFdm8YpnNZkJDQzGbzaUqHxQURGBgYAVHJYSoKo4cOcJDDz1EeHg4JpOJyMhInn76aU6fPl2knFKKV155hbCwMDw8PIiLi2Pv3r1lPu6gQYO4/fbbL3u/V199tcQLMqJkkvQLIaqt0NBQ5+Ln54emaUXWeXt7AzBx4kSGDBlCTExMiXWaTKYidXh4eDiT7LOLyWS6YHiPpmlMmTKFW265BU9PTxo3bsyaNWvYt28fXbt2xcvLi44dO7J///4ix/v5559p06YNFouFmJgYxo4di9Vqvax+KCgoYOjQoYSFhWGxWIiMjGT8+PGXVYcQono4cOAA7dq1Y+/evcyYMYN9+/bx2Wef8ccffxAbG0tKSoqz7DvvvMPEiRP57LPPWLduHV5eXvTs2ZO8vDwXtkCUlST9QghRSV5//XUeeOAB/v77bxo1asR9993H448/zqhRo9i4cSNKKYYOHeosv2LFCh544AGefvppdu3axZQpU5g2bRpvvvnmZR134sSJzJs3j1mzZhEfH8+3335LVFRUObdOCOEOhgwZgslkYvHixXTp0oU6depw00038fvvv3Ps2DFeeuklwHGV/8MPP+Tll1+mT58+tGjRgunTp5OYmHjJ54Vmz55N8+bN8fDwoEaNGsTFxZGdnc2rr77K119/zc8//1xkKCTAyJEjadCgAZ6ensTExDB69GgKCwsBmDZtGmPHjmXr1q3O/aZNmwZAWloajzzyCEFBQfj6+nLjjTeydevWiuw+t2ZwdQBCCHG1ePDBB+nXrx/g+JCLjY1l9OjR9OzZE4Cnn36aBx980Fl+7NixvPDCCwwcOBCAmJgYXn/9dZ5//nnGjBlT6uMePnyY+vXrc91116FpGpGRkeXYKiGEu0hJSWHRokW8+eabeHh4FNkWGhrKgAED+P777/nkk09ISEggKSmJuLg4Zxk/Pz86dOjAmjVruOeeey6o//jx49x7772888473HHHHWRmZrJixQqUUowYMYLdu3eTkZHB1KlTAZzDCn18fJg2bRrh4eFs376dRx99FB8fH55//nn69+/Pjh07WLhwIb///rszDoC7774bDw8PFixYgJ+fH1OmTKFbt27s2bNHhixehCT9QghRSVq0aOH8PiQkBIDmzZsXWZeXl0dGRga+vr5s3bqVVatWFbmyb7PZyMvLIycnp9TPDAwaNIju3bvTsGFDevXqxS233EKPHj3KqVVCCHexd+9elFI0btz4otsbN25MamoqJ0+eJCkpCfj3b9VZISEhzm3nO378OFarlb59+zovLpz7N87Dw4P8/HxCQ0OL7Pfyyy87v4+KimLEiBHMnDmT559/Hg8PD7y9vTEYDEX2W7lyJevXryc5Odn5/NKECROYO3cus2fPdtlEClWZJP1CCFFJjEaj83tN04pdZ7fbAcjKymLs2LH07dv3grosFkupj9umTRsSEhJYsGABv//+O/369SMuLo7Zs2eXqR1CCPemlLrkdpPJVKZ6W7ZsSbdu3WjevDk9e/akR48e3HXXXQQEBFxyv++//56JEyeyf/9+srKysFqt+Pr6XnKfrVu3kpWVRY0aNYqsz83NveDZKOEgSb8QQlRRbdq0IT4+nnr16l1xXb6+vvTv35/+/ftz11130atXL1JSUuQWuBBXkXr16qFpGrt37+aOO+64YPvu3bsJCgrC39/feVX9xIkThIWFOcucOHGi2Jl09Ho9S5YsYfXq1SxevJhJkybx0ksvsW7dOqKjoy+6z5o1axgwYABjx46lZ8+e+Pn5MXPmTN57771LtiUrK4uwsDDncwHn8vf3v+S+VytJ+oUQV719+/aRlZVFUlISubm5/P333wA0adKkzFe8ysMrr7zCLbfcQp06dbjrrrvQ6XRs3bqVHTt28MYbb5S6nvfff5+wsDBat26NTqfjhx9+IDQ0VD4YhbjK1KhRg+7du/PJJ5/w7LPPFhnXn5SUxLfffsuQIUMAiI6OJjQ0lD/++MOZ5GdkZLBu3TqefPLJYo+haRqdOnWiU6dOvPLKK0RGRjJnzhyGDx+OyWTCZrMVKb969WoiIyOdDxADHDp0qEiZi+3Xpk0bkpKSMBgMMjFBKcnsPUKIq94jjzxC69atmTJlCnv27KF169a0bt2axMREl8bVs2dP5s+fz+LFi7nmmmu49tpr+eCDDy77QVwfHx/eeecd2rVrxzXXXMPBgwf57bff0OnkI0CIq83HH39Mfn4+PXv25K+//uLIkSMsXLiQ7t2706BBA1555RXAkbw/88wzvPHGG8ybN4/t27fzwAMPEB4eXuxc++vWrWPcuHFs3LiRw4cP89NPP3Hy5EnnMwRRUVFs27aN+Ph4Tp06RWFhIfXr1+fw4cPMnDmT/fv3M3HiRObMmVOk3qioKBISEvj77785deoU+fn5xMXFERsby+23387ixYs5ePAgq1ev5qWXXmLjxo0V2oduSwkhhKg2Bg4cqPr06XPZ+y1btkwBKjU1tdxjEkJULQkJCWrgwIEqJCREaZqmANW3b1+VnZ1dpJzdblejR49WISEhymw2q27duqn4+Phi6921a5fq2bOnCgoKUmazWTVo0EBNmjTJuT05OVl1795deXt7K0AtW7ZMKaXUc889p2rUqKG8vb1V//791QcffKD8/Pyc++Xl5ak777xT+fv7K0BNnTpVKaVURkaGeuqpp1R4eLgyGo0qIiJCDRgwQB0+fLjc+qo60ZQq4WkOIYQQbmPQoEF88803WCwWZs6cyS233FLiPk2bNuXAgQPk5eWRmpoqw36EuMqMGTOG999/nyVLlnDttde6OhxRQSTpF0KIaiQ5OZmMjAwAwsLC8PLyKnGfQ4cOOV+EExMTI8N+hLgKTZ06lfT0dIYNGyZ/A6opSfqFEEIIIYSo5uRUTgghhBBCiGpOkn4hhBBCCCGqOUn6hRBCCCGEqOYk6RdCCCGEEKKak6RfCCGEEEKIak6SfiGEEEIIIao5SfqFEEIIIYSo5iTpF0IIIYQQopqTpF8IIYQQQohq7v8B0fu5pSFpixEAAAAASUVORK5CYII=\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - examples_24_0.png" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGxCAYAAACOSdkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZyElEQVR4nO3deViUVf8G8PuZAYZFdtlUEFzB3BIT0dwS00xz7TVzJTIrya1Ne3MpS82fmmmWqalkmqapmRpmLvWqiIpSpriC4QYuKCgIzHJ+f/AyrxPbDDAbc3+ua67imWf5jgPMzTnnOUcSQggQERER2SCZuQsgIiIiMhcGISIiIrJZDEJERERksxiEiIiIyGYxCBEREZHNYhAiIiIim8UgRERERDaLQYiIiIhslp25C7B0Go0G169fh6urKyRJMnc5REREpAchBO7fv486depAJiu73YdBqALXr19HYGCgucsgIiKiSrhy5Qrq1atX5vMMQhVwdXUFUPQP6ebmZuZqiIiISB85OTkIDAzUfo6XhUGoAsXdYW5ubgxCREREVqaiYS0cLE1EREQ2i0GIiIiIbBaDEBEREdksjhEiIqpGarUaSqXS3GUQ1Xj29vaQy+VVPg+DEBFRNRBCICMjA/fu3TN3KUQ2w8PDA/7+/lWa549BiIioGhSHIF9fXzg7O3MCViIjEkIgLy8PN2/eBAAEBARU+lwMQsaWfRXIvW34cS4+gHvd6q+HiKqdWq3WhiBvb29zl0NkE5ycnAAAN2/ehK+vb6W7yRiEjElVACzvBuTeNPzYWr7AxL8AO0X110VE1ap4TJCzs7OZKyGyLcU/c0qlstJBiHeNGZPc4b+tOob+M8sAt7pFxxOR1WB3GJFpVcfPHIOQMUkS8NT7ADQGHqgpOo6/VImIqs2BAwcgSZJFDGhfs2YNPDw8zF1GlQQHB2PRokXmLqPKGISMrWF3oM7jgKRnk50kL9q/YXfj1kVEBGD06NGQJAmSJMHe3h5+fn7o0aMHVq1aBY3GsD/iLP3DvUOHDrhx4wbc3d3NXQqGDBmC8+fPm7sMAoOQ8RW3Cgm1fvsLNVuDiGycWq2GEMJk1+vVqxdu3LiBy5cv4+eff0a3bt0wYcIE9OnTByqVymR1GJuDg0OVb7WuLk5OTvD19TX6dTinVcUYhEyhYXc8dG8GdQV/XKk1QKF3C7YGEdkglVKFH5fGIzpsAnrZv4DejkPx4fMLcPboBaNfW6FQwN/fH3Xr1kWbNm3w3nvv4ccff8TPP/+MNWvWaPdbuHAhWrRoARcXFwQGBuL111/HgwcPABR1O0VHRyM7O1vbwjRz5kwAwNq1a9G2bVu4urrC398fL774ova257LcvXsXI0eOhKenJ5ydnfHMM8/gwoX//VsUtz7t3r0bYWFhqFWrljbQleWfXWPF59ixYweaNm0KZ2dnDB48GHl5eYiLi0NwcDA8PT0xfvx4qNX/+2NWn9ezfft2NG7cGI6OjujWrRvi4uJKvXaxmTNnonXr1li7di2Cg4Ph7u6OF154Affv39fuEx8fjyeffBIeHh7w9vZGnz59cOnSJe3zly9fhiRJ2LhxI7p06QJHR0csX74cbm5u2Lx5s05927Ztg4uLi875H9W1a1fExsYiNjYW7u7uqF27NqZNm1ZuQC/v++PR11zRe7Zy5UqEhYXB0dERoaGh+OKLL8q8ZnVgEDIFScJpxfOQV/CvLZcBFz1fZGsQkY1RKVWY0X8elo5fhavnr/93mxqHfzyKCR3fx3+2JJq8pqeeegqtWrXCli1btNtkMhkWL16M06dPIy4uDvv27cM777wDoKjbadGiRXBzc8ONGzdw48YNvPXWWwCKWiVmzZqFP/74A9u2bcPly5cxevTocq8/evRoHD9+HNu3b0dCQgKEEOjdu7dOC0deXh7mz5+PtWvX4vfff0d6err2mvrKy8vD4sWLsWHDBsTHx+PAgQMYMGAAdu3ahV27dmHt2rX46quvdIJERa8nLS0NgwcPRv/+/fHHH39g7Nix+Pe//11hLZcuXcK2bduwY8cO7NixA7/99hvmzp2rfT43NxeTJ0/G8ePHsXfvXshkMgwYMKBEF+aUKVMwYcIEpKSkYODAgXjhhRewevVqnX1Wr16NwYMHw9XVtcx64uLiYGdnh6NHj+Kzzz7DwoULsXLlyjL3L+/7o1hF79m6deswffp0fPzxx0hJScHs2bMxbdo0xMXFVfjvV2mCypWdnS0AiOzs7CqdZ/93/xEpL9cTqmluQswo+VBNcxMpL9cTx3efrJ7CichkHj58KM6cOSMePnxYqeN/+HSH6CF7XkRJg0s8esieF72dhorsOznVXHWRUaNGiX79+pX63JAhQ0RYWFiZx27atEl4e3trv169erVwd3ev8JrHjh0TAMT9+/dLff78+fMCgDh06JB22+3bt4WTk5P4/vvvtdcCIC5evKjdZ+nSpcLPz6/M6+7fv18AEHfv3i3zHGPHjhXOzs46tfXs2VOMHTtW79fz7rvviubNm+vs8+9//7vEtR/9t5oxY4ZwdnYWOTn/e5/ffvttERERUeZ1b926JQCIU6dOCSGESEtLEwDEokWLdPZLTEwUcrlcXL9+XQghRGZmprCzsxMHDhwo89xdunQRYWFhQqPRaLe9++67Ot8P9evXF59++mmZ5yjt+6Oi96xhw4Zi/fr1OueZNWuWiIyMLPUa5f3s6fv5zRYhE2nzdCusPdi0zFYhuQzYcPQxNO8UZtrCiMishBDYsnhnmV0OQggoC1TYE/ebiSsruvaj42l+/fVXdO/eHXXr1oWrqytGjBiBO3fuIC8vr9zzJCUloW/fvggKCoKrqyu6dOkCAEhPTy91/5SUFNjZ2SEiIkK7zdvbG02bNkVKSop2m7OzMxo2bKj9OiAgoMIut3/65zn8/PwQHByMWrVq6Wx79LwVvZ5z587hiSee0LlOu3btKqwlODhYp4Xmn6/nwoULGDp0KBo0aAA3NzcEBwfrXLdY27ZtS1z7scce07aqfPvtt6hfvz46d+5cbj3t27fXef8jIyNx4cIFnW7CR+nz/VHee5abm4tLly4hJiYGtWrV0j4++ugjnS7A6sYgZCJuXq4I7D0c5665lRgrpNYAZ6+5ocm/xkDhxAkUiWxJfm4+Mi/fKncfSSbhYnKaiSr6n5SUFISEhAAoGn/Sp08ftGzZEj/88AOSkpKwdOlSAEBhYWGZ58jNzUXPnj3h5uaGdevW4dixY9i6dWuFx+nD3t5e52tJkgweZF7aOUrbVtz9ZOrX82i3V9++fZGVlYUVK1YgMTERiYmJpV7XxcWlxLlffvll7Xiv1atXIzo6uloHjev7/VHee1Y8nmjFihVITk7WPv766y8cOXKk2mr9JwYhE3p57nD8IR9QolVILgMuuA/FC1MHmKcwIjIbuX3FE/xLEmDvYF/hftVp3759OHXqFAYNGgSgqBVEo9FgwYIFaN++PZo0aYLr16/rHOPg4FCiteDs2bO4c+cO5s6di06dOiE0NLTCVpuwsDCoVCrtBz0A3LlzB+fOnUOzZs2q6RVWjj6vp2nTpjh+/LjOtmPHjlXpusWv//3330f37t0RFhaGu3fv6n388OHD8ffff2Px4sU4c+YMRo0aVeExj/77A8CRI0fQuHHjUmdw1uf7oyJ+fn6oU6cOUlNT0ahRI51HcSA3BgYhE7Kzt8O/vvwMBZ6PQSOKkrhGSCj0ao6+//cJZDK+HUS2xkFhj8efag5ZOXdTqFUatO8TbrQaCgoKkJGRgWvXruHEiROYPXs2+vXrhz59+mDkyJEAgEaNGkGpVGLJkiVITU3F2rVrsWzZMp3zBAcH48GDB9i7dy9u376NvLw8BAUFwcHBQXvc9u3bMWvWrHLrady4Mfr164cxY8bg4MGD+OOPPzB8+HDUrVsX/fr1M9q/gz70eT1jx47F2bNn8e677+L8+fP4/vvvta0xlW2F8fT0hLe3N5YvX46LFy9i3759mDx5skHHDxw4EG+//Taefvpp1KtXr8Jj0tPTMXnyZJw7dw7fffcdlixZggkTJpS6rz7fH/r44IMPMGfOHCxevBjnz5/HqVOnsHr1aixcuNDgc+mLn7ymJklQPPshZFJRU6BMEnDo/QHvFCOyYS9MHQhNGfNryO1kqNckABHPtjHa9ePj4xEQEIDg4GD06tUL+/fvx+LFi/Hjjz9q//pv1aoVFi5ciE8++QTNmzfHunXrMGfOHJ3zdOjQAa+++iqGDBkCHx8fzJs3Dz4+PlizZg02bdqEZs2aYe7cuZg/f36FNa1evRrh4eHo06cPIiMjIYTArl27SnStmJo+ryckJASbN2/Gli1b0LJlS3z55Zfau8YUisoNf5DJZNiwYQOSkpLQvHlzTJo0Cf/3f/9n0DliYmJQWFiIl156Sa/9R44ciYcPH6Jdu3YYN24cJkyYgFdeeaXUffX5/tDHyy+/jJUrV2L16tVo0aIFunTpgjVr1hi1RUgShnao2picnBy4u7sjOzsbbm5u1XNSIYAV3YDrJ4tmkR6zn0GIyIrl5+cjLS0NISEhcHR0rNQ5dq34FZ+9vgIAoNFoIJPJoFFrUKeRP+btmQ6/+j7VWTKZ2Mcff4xly5bhypUrZqth7dq1mDRpEq5fvw4Hh/LXsuzatStat25t8UtolPezp+/nN1efNwdJArrPAH5+t+i/DEFENq/3mCg88czj+HnlXqT9lQ6FkwMin3sCHfs/ATs9xhGRZfniiy/wxBNPwNvbG4cOHcL//d//ITY21iy15OXl4caNG5g7dy7Gjh1bYQiyNfzpMpeG3YDYo+augogsiE89b4yc+S9zl0HV4MKFC/joo4+QlZWFoKAgvPnmm5g6dapZapk3bx4+/vhjdO7c2Ww1WDJ2jVXAKF1jRFSjVEfXGBEZrjq6xjhYmoiIiGwWgxARERHZLKsLQkuXLkVwcDAcHR0RERGBo0fLH2dz7949jBs3DgEBAVAoFGjSpAl27dplomqJiIjIklnVYOmNGzdi8uTJWLZsGSIiIrBo0SL07NkT586dg6+vb4n9CwsL0aNHD/j6+mLz5s2oW7cu/v77b3h4eJi+eCIiIrI4VhWEFi5ciDFjxiA6OhoAsGzZMuzcuROrVq3ClClTSuy/atUqZGVl4fDhw9pJuIoXqSMiIiKymq6xwsJCJCUlISoqSrtNJpMhKioKCQkJpR6zfft2REZGYty4cfDz80Pz5s0xe/bsMlfOBYqmms/JydF5EBGZihACWbmFuJKVh6zcQoMXESUiw1hNi9Dt27ehVqvh5+ens93Pzw9nz54t9ZjU1FTs27cPw4YNw65du3Dx4kW8/vrrUCqVmDFjRqnHzJkzBx988EG1109EVJ7sh0r8kHQVcYcv4++sPO32+l7OGNUhGIPC68HdybzLSxDVRFbTIlQZGo0Gvr6+WL58OcLDwzFkyBD8+9//LnchuKlTpyI7O1v7MOd06ERkG347fwuRc/Zi1o4zSH8kBAFAelYeZu04g8g5e/Hb+VtGuf6BAwc4bIBsltUEodq1a0MulyMzM1Nne2ZmJvz9/Us9JiAgAE2aNNEuGggAYWFhyMjIQGFhYanHKBQKuLm56TyIiIzlt/O3EL36KB4q1RAA/tkRVrztoVKN6NVHjRaGHpWVlYVhw4bBzc0NHh4eiImJwYMHD4x+XSJzsJog5ODggPDwcOzdu1e7TaPRYO/evYiMjCz1mI4dO+LixYvQaP63qvP58+cREBDAtVaIyOyyHyrx2rdJRWGngqFAQhQFote+TUL2Q6VR6xo2bBhOnz6NPXv2YMeOHfj99991Vh3Pz8/HrVvGD2REpmA1QQgAJk+ejBUrViAuLg4pKSl47bXXkJubq72LbOTIkTrrqLz22mvIysrChAkTcP78eezcuROzZ8/GuHHjzPUSiIi0fki6ioeF6gpDUDEhgIeFamw5cdVoNaWkpCA+Ph4rV65EREQEnnzySSxZsgQbNmzA9evXARS1xNetWxf9+/fH1q1boVQaN5gRGZNVBaEhQ4Zg/vz5mD59Olq3bo3k5GTEx8drB1Cnp6fjxo0b2v0DAwOxe/duHDt2DC1btsT48eMxYcKEUm+1JyIyJSEE4g5frtSxaw5dNtrdZAkJCfDw8EDbtm2126KioiCTyZCYmAgAqF+/PhISElC/fn2MHTsWAQEBGD9+PJKSkoxSE5ExWc1dY8ViY2MRGxtb6nMHDhwosS0yMhJHjhwxclVERIa5m6fUuTtMXwLA31l5uJenhKdL9XfxZ2RklJig1s7ODl5eXsjIyNBuCw8PR3h4OBYsWICff/4Z33zzDTp27IjGjRtj1KhRGDFiRIm7fIkskVW1CBER1RS5BaoqHf+gisdXFzs7O/Tt2xebNm1CWloa/P398fbbb2POnDnmLo1ILwxCRERm4KKoWoN8rSoeXxZ/f3/cvHlTZ5tKpUJWVlapd+gKIfD7779jzJgxCAsLw8WLFzF9+nRMnjzZKPURVTer6xojIqoJPJ3tUd/LGelZeSVumS+PBCDIyxkezsaZXDEyMhL37t1DUlISwsPDAQD79u2DRqNBRESEdr/z589j7dq1+Pbbb3H79m0MHjwY27ZtQ5cuXSBJklFqIzIGBiEiIjOQJAmjOgRj1o4zBh87umOw0cJGWFgYevXqhTFjxmDZsmVQKpWIjY3FCy+8gDp16gAoujElLCwMXbt2xQcffIBBgwbBxcXFKPUQGRuDEFXo3u0cHP/lFPLzClA/rC6ad2jCv/iIqsGg8HqY/8u5oskU9WgWkkmAo70cA9vUM2pd69atQ2xsLLp37w6ZTIZBgwZh8eLF2udr166NtLQ0BAUFGbUOIlNgEKIyqZQqrHh/I3as2A+1Sl3UJi+AOg398O6KV9C0bQNzl0hk1dyd7PHl8HBErz4KSOVPqlj8t8ey4eFGX3PMy8sL69evL/N5Z2dnhiCqMThYmsr02fg12L5sb1EIArRz/2dcvol3+nyCv89eM19xRDVElyY+WB3dDk72ckgo+nvjUcXbnOzlWBPdDp2b+Ji+SKIajEGISvX32WvYs+5QqZO2adQCygIV1n/ykxkqI6p5ujTxQcLU7pjetxmCvJx1ngvycsb0vs1w5L3uDEFERsCuMSrV/u+PQG4ng1qlKfV5jVqDgz8eQ8HDl6Bw4rptRFXl7mSP6I4hGN0hGPfylHhQoEIthR08nO2NPiYvODgYEydONOo1iCwVgxCVKvv2fZRspNelVmmQm/OQQYioGkmSBE8XB6PMGl0WBiGyZewao1LVrutV4VpGDo72qOXhXO4+REREloxBiErV48WOEJqyg5DMToaoFzvCQWHcu1eIiIiMiUGISuUb6I0X3upT6nMyuQxunrUw9O2+Jq6KiIioenGMEJVp5PsD4F7bFd/930//HTMEQALaPPUYYheMgE9dL/MWSGTtsq8CubcNP87FB3CvW/31ENkgBiEqkyRJ6P9aD/R5uRvOHk9Ffm4BgprWgW+gt7lLI7J+qgJgeTcg92bF+/5TLV9g4l+AnaL66yKyMewaowrZ2duheWQTtI1qwRBEVF3kDv9t1TH017AMcKtbdHw1OXDgAIKDg6vtfETWhEGIiMgcJAl46n0Apc/VVTZN0XFGnFvo448/RocOHeDs7AwPDw+jXYfIEjAIERGZS8PuQJ3HAUmu3/6SvGj/ht2NWlZhYSGef/55vPbaa2Xuk56ebtQaiEyFQYiIyFyKW4WEWr/9hdrorUEA8MEHH2DSpElo0aJFmfuEhIQgKioKa9euRV5enlHrITImBiEiInPSt1XIRK1B+jpz5gzatWuH999/H35+fnjppZfw22+/VTgRK5GlYRAiIjInfVuFTNQapK+mTZti9uzZuHz5MrZv3w4hBPr27YuGDRti5syZSEtLM3eJRHphECIiMreKWoUsrDXoUZIkoVu3bli9ejWuXr2KyMhIbdcakTVgECIiMreKWoUsrDXon06cOIGJEyeicePG2Lt3LyZPnow5c+aYuywivXBCRSIiS1DcKnTjT91AJMmBgJYW1xp09epVfPvtt1i7di0uXbqEvn374uuvv0avXr1gZ8ePFrIe/G4lIrIExa1C3w7S3W6G1qD09HRkZWUhPT0darUaycnJAIBGjRqhVq1aAID69eujbdu2GDduHIYOHQpPT0+T1UdUnRiEiIgsxT9bhczUGjR9+nTExcVpv3788ccBAPv370fXrl0BAKdPn0ZoaKhJ6yIyBo4RIiKyFP8cK2SmsUFr1qyBEKLEozgEAWAIohqDQYiIyJIUtwoBFnunGFFNwiBERGRJJAnoPgOo3bTovxZ6pxhRTcExQkRElqZhNyD2qMkuFxwcjIkTJ5rsekSWhC1CREQ2jkGIbBmDEBEREdksBiEiomrCBUeJTKs6fuYYhIiIqsje3h4AkJeXZ+ZKiGxL8c9c8c9gZXCwNBFRFcnlcnh4eODmzZsAAGdnZ0i824vIaIQQyMvLw82bN+Hh4QG5vIwFi/XAIEREVA38/f0BQBuGiMj4PDw8tD97lcUgRERUDSRJQkBAAHx9faFUKs1dDlGNZ29vX6WWoGIMQkRE1Ugul1fLL2ciMg0OliYiIiKbxSBERERENotBiIiIiGwWxwiRzVCr1Ljx9x0IoUFAfR/Y2XMcBxGRrWMQohpPo9Fg6/L92PLVPmTdzAEAuHm64LmYLhgS+zQDERGRDWMQohpNCIFPJ6/Dr5uPAo/MxJ5zNxfrFvyM88l/Y/qqVyCXs5eYiMgW8bc/1WjJ/zmHXzfphqBiQggc/fU0/rPjpOkLIyIii8AgRDXarm8PQVZOa49MJmFn3H9MWBEREVkSBiGq0dIvZECj1pT5vEYjcC2VSyIQEdkqBiGq0Vw9nFHR2pcubk6mKYaIiCwOgxDVaF37t4UoZXxQMUkmoduAJ0xXEBERWRQGIarRug9uB996XqWOE5LJZXDzdEHvER3NUBkREVkCBiGq0ZxcFJj3wwQENw0AAMjtZJDbFX3b+wd5Y94PE+BR29WcJRIRkRlJQpTXcUA5OTlwd3dHdnY23NzczF0OVZIQAn8lXsIfh85DoxF4rF0DPN6pKWQy/i1ARFQT6fv5zQkVySZIkoQW7RuhRftG5i6FiIgsiNX9Obx06VIEBwfD0dEREREROHr0qF7HbdiwAZIkoX///sYtkIiIiKyGVQWhjRs3YvLkyZgxYwZOnDiBVq1aoWfPnrh5s/x5YC5fvoy33noLnTp1MlGlREREZA2sKggtXLgQY8aMQXR0NJo1a4Zly5bB2dkZq1atKvMYtVqNYcOG4YMPPkCDBg1MWC0RERFZOqsJQoWFhUhKSkJUVJR2m0wmQ1RUFBISEso87sMPP4Svry9iYmL0uk5BQQFycnJ0HkRERFQzWU0Qun37NtRqNfz8/HS2+/n5ISMjo9RjDh48iK+//horVqzQ+zpz5syBu7u79hEYGFiluomIiMhyWU0QMtT9+/cxYsQIrFixArVr19b7uKlTpyI7O1v7uHLlihGrJCIiInOymtvna9euDblcjszMTJ3tmZmZ8Pf3L7H/pUuXcPnyZfTt21e7TaMpWnzTzs4O586dQ8OGDUscp1AooFAoqrl6IiIiskRW0yLk4OCA8PBw7N27V7tNo9Fg7969iIyMLLF/aGgoTp06heTkZO3jueeeQ7du3ZCcnMwuLyIiIrKeFiEAmDx5MkaNGoW2bduiXbt2WLRoEXJzcxEdHQ0AGDlyJOrWrYs5c+bA0dERzZs31znew8MDAEpsJyIiIttkVUFoyJAhuHXrFqZPn46MjAy0bt0a8fHx2gHU6enpXDKBiIiI9Ma1xirAtcaIiIisj76f32w+ISIiIptlVV1jRNasIF+Js8npUClVCG4SAG8/tjASEZkbgxCRkanVGmz4ch+2rPoP8h7kAwAkmYSOPR7D6zP6w7O2q5krJCKyXewaIzKyJdO34NvFe7QhCACERuDwr2cwecgXuH8vz4zVERHZNgYhIiO6ePoadm86VupzGrUGN6/dxba4gyauioiIijEIERnRL5uPQS4v+8dMoxHYtSHRhBUREdGjGISIjOhWRjbUak25+9y780C7/AsREZkWgxCREbl7upTbIgQALq6OnAiUiMhM+NuXyIie6t+m3BYhmVyGHoPamrAiIiJ6FIMQkRG1eCIEbTs3hUwmlXhOJpehlqsjBr7UyQyVERERwCBEZFSSJOH9z0fgqf5tIP0jDIU08cf8716Dj7+HeYojIiKuNVYRrjVG1eVOZg5OHDoPZaEKDZvVRdOWgeYuiYioxtL385szSxOZiLefG3oM5HggIiJLwq4xIiIislkMQkRERGSzGISIiIjIZjEIERERkc1iECIiIiKbxSBERERENotBiIiIiGyWXvMIbd++3eAT9+jRA05OTgYfR0RERGQqegWh/v37G3RSSZJw4cIFNGjQoDI1EREREZmE3l1jGRkZ0Gg0ej2cnZ2NWTMRERFRtdArCI0aNcqgbq7hw4dzXS4iIiKyeFx0tQJcdJWIiMj66Pv5rXfX2ODBgxEfHw/mJiIiIqop9A5Cd+/exbPPPougoCBMnz4dqampxqyLiIiIyOj0DkJ79+5FamoqYmJi8O2336Jx48Z46qmnsH79ehQUFBizRiIiIiKjMGhCxfr162PmzJlITU3Fnj17UKdOHYwZMwYBAQEYN24ckpKSjFUnERERUbWr8mDp+/fvY/369XjvvfeQnZ0NlUpVXbVZBA6WJiIisj76fn7rNaFiWdLS0rBmzRqsWbMG2dnZiIqKqsrpiIiIiEzK4LXG8vPz8e233+Kpp55C48aN8c033yAmJgZpaWmIj483Ro1ERERERqF3i9DRo0exatUqbNy4Efn5+RgwYADi4+PRvXt3SJJkzBqJiIiIjELvINS+fXu0atUKs2bNwrBhw+Dp6WnMuoiIiIiMTu8gdPz4cbRp08aYtRARERGZlF5jhP7880+0bt1a75OePn26xt09RkRERDWPXkHo8ccfx507d/Q+aWRkJNLT0ytdFBEREZEp6NU1JoTAtGnT4OzsrNdJCwsLq1QUERERkSnoFYQ6d+6Mc+fO6X3SyMhIODk5VbooIiIiIlPQKwgdOHDAyGUQkTUqLFBCLpdBbic3dylERJVSpZmlicj2qJRq/LTpKLatT0TGtbuQJAnhHRrhhegn0SI82NzlEREZhEGIiPSmUqoxY9J6JB2+iOJFCoUQOHHkEpIOX8BbHw5EVJ9WZq2RiMgQBi+xQUS2a8emY0UhSAB4ZLlmjVoDIYCFH2zD3TsPzFYfEZGhGISISG8/bkh8NP+UoNEI7N52wmT1EBFVVaUWXSUi21NYqML1K1koNwkBSD2faZqCiIiqgcFByNfXF6NHj8aePXug0WiMURMRWSC5XAaZrPwFliVJgoOCQw+JyHoYHITi4uKQm5uLfv36oW7dupg4cSKOHz9ujNqIyILI5TI88WRjyORlhyGNWoP2XZqasCoioqoxOAgNGDAAmzZtQmZmJmbPno0zZ86gffv2aNKkCT788ENj1EhEFmJIdCcITel9YzK5DHXreyOSQYiIrIgkhKigx79iZ86cwbBhw/Dnn39CrVZXR10WIycnB+7u7sjOzoabm5u5yyEyu30//4kF07dCrRaQpKLuMLVag7r1vTH3y5HwDfAwd4lERHp/fle6Mz8/Px/bt2/H+vXrER8fDz8/P7z99tuVPR0RWYmnnmmJNhENsPvHk0g9nwkHhR3ad26K9p2bcIZpIrI6Bgeh3bt3Y/369di2bRvs7OwwePBg/PLLL+jcubMx6iMiC+ThVQtDojuZuwwioiozOAgNGDAAffr0wTfffIPevXvD3t7eGHURERERGZ3BQSgzMxOurq7GqIWIiIjIpAy+a+zREJSfn4+cnBydh7EtXboUwcHBcHR0REREBI4ePVrmvitWrECnTp3g6ekJT09PREVFlbs/ERER2RaDg1Bubi5iY2Ph6+sLFxcXbcgofhjTxo0bMXnyZMyYMQMnTpxAq1at0LNnT9y8ebPU/Q8cOIChQ4di//79SEhIQGBgIJ5++mlcu3bNqHUSERGRdTD49vlx48Zh//79mDVrFkaMGIGlS5fi2rVr+OqrrzB37lwMGzbMWLUiIiICTzzxBD7//HMAgEajQWBgIN544w1MmTKlwuPVajU8PT3x+eefY+TIkXpdk7fPExERWR+j3T7/008/4ZtvvkHXrl0RHR2NTp06oVGjRqhfvz7WrVtntCBUWFiIpKQkTJ06VbtNJpMhKioKCQkJep0jLy8PSqUSXl5eZe5TUFCAgoIC7dem6O4jIiIi8zC4aywrKwsNGjQAALi5uSErKwsA8OSTT+L333+v3uoecfv2bajVavj5+els9/PzQ0ZGhl7nePfdd1GnTh1ERUWVuc+cOXPg7u6ufQQGBlapbiIiIrJcBgehBg0aIC0tDQAQGhqK77//HkBRS5GHh0e1Fled5s6diw0bNmDr1q1wdHQsc7+pU6ciOztb+7hy5YoJqyQiIiJTMrhrLDo6Gn/88Qe6dOmCKVOmoG/fvvj888+hVCqxcOFCY9QIAKhduzbkcjkyMzN1tmdmZsLf37/cY+fPn4+5c+fi119/RcuWLcvdV6FQQKFQVLleIqq6C+duYNdPybh2NQtubk7o0r0ZOnRsArmdwX/DERGVqsprjf39999ISkpCo0aNKgwZVRUREYF27dphyZIlAIoGSwcFBSE2NrbMwdLz5s3Dxx9/jN27d6N9+/YGX5ODpYlMTwiBLxfvwdZNxyCXy6BWayCTSdBoBBo18cPchS/C3cPZ3GUSkQXT9/O7yn9W1a9fHwMHDiwRglq0aFHt3UqTJ0/GihUrEBcXh5SUFLz22mvIzc1FdHQ0AGDkyJE6g6k/+eQTTJs2DatWrUJwcDAyMjKQkZGBBw8eVGtdRFS9fvzhOLZuOgYAUKs1AADNf1e9T714Ex9N32K22oioZqn0oqsVuXz5MpRKZbWec8iQIbh16xamT5+OjIwMtG7dWrvgKwCkp6dDJvtftvvyyy9RWFiIwYMH65xnxowZmDlzZrXWRkTVQ63WYOO6su8E1WgEkk/8jYsXMtCocfnd4kREFTFaEDKW2NhYxMbGlvrcgQMHdL6+fPmy8Qsiomp1Nf0Obt+6X+4+MpmE40dSGYSIqMo44pCILIpSpa5wH0mS9NqPiKgiDEJEZFHq1vOCo6N9ufuo1Ro0DQ0wUUVEVJMxCBGRRXFycsAzfVtDJpNKfV4mk+Dn7462EQ1NXBkR1UQMQkRkcaLHdEWT0ABIEoBH8pBMLsHJyQEzZw8uMygRERnCaIOlv/rqqxLLYRAR6cPJ2QHzlwzHzh9P4qetScjIyIazswOierbAwH+1g5+/u7lLJKIawuAgtHjxYr33dXFxMfT0REQAAIXCHgP/1Q4D/9XO3KUQUQ1m8MzSISEhuHXrFvLy8rRri927dw/Ozs7w8fH534klCampqdVarDlwZmkiIiLrY7SZpT/++GO0bt0aKSkpyMrKQlZWFlJSUtCmTRt89NFHSEtLQ1paWo0IQURERFSzGdwi1LBhQ2zevBmPP/64zvakpCQMHjxYuzJ9TcEWISIiIutjtBahGzduQKVSldiuVqtLrAxPREREZMkMDkLdu3fH2LFjceLECe22pKQkvPbaa4iKiqrW4oiIiIiMyeAgtGrVKvj7+6Nt27ZQKBRQKBRo164d/Pz8sHLlSmPUSERERGQUBt8+7+Pjg127duH8+fM4e/YsACA0NBRNmjSp9uKIiIiIjKnSEyo2adKE4YeIiIisml5BaPLkyZg1axZcXFwwefLkcvdduHBhtRRGREREZGx6BaGTJ09CqVRq/78sksS1f4iIiMh6GDyPkL6uXr2KOnXqQCaz7nVdOY8QERGR9THaPEL6atasGS5fvmys0xMRERFVmdGCkJEamoiIiIiqjXX3WxERERFVAYMQERER2SwGISIiIrJZRgtCvJWeiIiILF2lZ5auCAdLE1FNVliowoWLmdBoBEJCfFDLRWHukoioEiodhAoKCgAACkXpP/xnzpxBnTp1Knt6IiKLpFZr8M26Q/hhSxJy84p+D9rby/FMz5Z4dUxXODk5mLlCIjKEQV1je/bsQe/eveHp6QlnZ2c4OzvD09MTvXv3xq+//qqzb2BgIORyebUWS0RkTkIIfDz3J6xdd1gbggBAqVRjx65kTH5nAwoLVWaskIgMpXcQiouLQ+/eveHu7o5PP/0UO3bswI4dO/Dpp5/Cw8MDvXv3xtq1a41ZKxGRWZ04+Tf2/3YWpfX8azQCZ8/dwM+7T5m+MCKqNL27xj7++GMsWrQI48aNK/Hc6NGj8eSTT+LDDz/EiBEjqrVAIiJLsTP+T8jlEtTq0sdAShLw085k9Ov7uIkrI6LK0rtFKD09HVFRUWU+3717d1y9erVaiiIiskTXr98tMwQBgBBAZma2CSsioqrSOwg99thj+Prrr8t8ftWqVWjWrFm1FEVEZIk8PJwhk5U/NYibm5OJqiGi6qB319iCBQvQp08fxMfHIyoqCn5+fgCAzMxM7N27F6mpqdi5c6fRCiUiMrce3R9D4tHUMp+XyST07NHchBURUVXpHYS6du2Kv/76C19++SWOHDmCjIwMAIC/vz+eeeYZvPrqqwgODjZWnUREZtf5yaZo1DARqWm3oNHodpHJZBI8PZzxXB+ODyKyJpLgzIflysnJgbu7O7Kzs+Hm5mbucojIzLJzHmL23J9w9HgaiibQlyCEQONGfpjxfj/UreNp7hKJCPp/fjMIVYBBiIhKk55+B0knL0Ot1uCxZnUR2jSASwsRWRB9P78Nnlna09NT7x/2rKwsQ09PRGQVgoK8ERTkbe4yiKiKDA5C06ZNw0cffYSePXsiMjISAJCQkIDdu3dj2rRp8PLyqvYiiYiIiIzB4K6xQYMGoVu3boiNjdXZ/vnnn+PXX3/Ftm3bqrM+s2PXGBERkfXR9/PboLXGAGD37t3o1atXie29evUqsd4YERERkSUzOAh5e3vjxx9/LLH9xx9/hLc3+8uJiIjIehg8RuiDDz7Ayy+/jAMHDiAiIgIAkJiYiPj4eKxYsaLaCyQiIiIyFoOD0OjRoxEWFobFixdjy5YtAICwsDAcPHhQG4yIiIiIrAHnEaoAB0sTERFZH6PNI0RERKaRfi0LvyWcx8N8JYLqeqFbhyZQKOzNXRZRjcIgRERkYQoKlJi95GfsO3gOMpkEmSRBpdZg0Ypf8d74Z9C5fRNzl0hUYxh81xgRERnXrEW7cODQeQCARiOgUmsAALl5hZj2yXYkn75izvKIahQGISIiC3Lp8i38lnAemrKGb0rA6g2HTVsUUQ3GIEREZEH2Hz4Huazs9Rw1GoETp9KRnfPQhFUR1VwGjxEaMGBAqYuuSpIER0dHNGrUCC+++CKaNm1aLQUSEdmS3LyC//6OLf+G3ryHhXB3czJNUUQ1mMEtQu7u7ti3bx9OnDgBSZIgSRJOnjyJffv2QaVSYePGjWjVqhUOHTpkjHqJiGq0egGeUGs05e6jcLCDl4eziSoiqtkMDkL+/v548cUXkZqaih9++AE//PADLl26hOHDh6Nhw4ZISUnBqFGj8O677xqjXiKiGu3pLs1gZycv83mZTMIzTzXnbfRE1cTgCRV9fHxw6NAhNGmie/vm+fPn0aFDB9y+fRunTp1Cp06dcO/eveqs1Sw4oSIRmdqOPX/ik6W7IUkSHv0VLZNJ8PV2xfL/Gw5PDxczVkhk+Yy2+rxKpcLZs2dLbD979izUajUAwNHRsdRxREREVLE+PVpiznsD0CjYR7vN3k6OZ55qjq8YgoiqlcGDpUeMGIGYmBi89957eOKJJwAAx44dw+zZszFy5EgAwG+//YbHHnuseislIrIhT7ZrhCfbNULGzWw8zFfCz8cNzk4O5i6LqMYxuEXo008/xcSJEzFv3jx07twZnTt3xrx58zBp0iQsXLgQAPD0009jw4YN1V4sACxduhTBwcFwdHREREQEjh49Wu7+mzZtQmhoKBwdHdGiRQvs2rXLKHURERmDv687QoJqMwQRGUmVFl3NyckBAJONndm4cSNGjhyJZcuWISIiAosWLcKmTZtw7tw5+Pr6ltj/8OHD6Ny5M+bMmYM+ffpg/fr1+OSTT3DixAk0b95cr2tyjBAREZH10ffz26pWn4+IiMATTzyBzz//HACg0WgQGBiIN954A1OmTCmx/5AhQ5Cbm4sdO3Zot7Vv3x6tW7fGsmXL9LomgxAREZH1Merq85s3b8b333+P9PR0FBYW6jx34sSJypyyQoWFhUhKSsLUqVO122QyGaKiopCQkFDqMQkJCZg8ebLOtp49e2Lbtm1lXqegoAAFBQXar4tbvYiIiKjmMXiM0OLFixEdHQ0/Pz+cPHkS7dq1g7e3N1JTU/HMM88Yo0YAwO3bt6FWq+Hn56ez3c/PDxkZGaUek5GRYdD+ADBnzhy4u7trH4GBgVUvnojIAqRdvYM12xKxbONB7D6UgoJClblLIjI7g1uEvvjiCyxfvhxDhw7FmjVr8M4776BBgwaYPn06srKyjFGjSU2dOlWnFSknJ4dhiIisWl5+IWYu3YX/JF2CTCZBJklQqTVwdVHgg3HPIrJ1iLlLJDIbg1uE0tPT0aFDBwCAk5MT7t+/D6Dotvrvvvuueqt7RO3atSGXy5GZmamzPTMzE/7+/qUe4+/vb9D+AKBQKODm5qbzICKyVkIIvLfoJxw6mQqgaNFWlbpoCY8HeQV4e8E2nL54w5wlEplVpZbYKG75CQoKwpEjRwAAaWlpMOa4awcHB4SHh2Pv3r3abRqNBnv37kVkZGSpx0RGRursDwB79uwpc38ioprmzKUMJP55GRpNyd/PQhQFpTXbjpihMiLLYHAQeuqpp7B9+3YAQHR0NCZNmoQePXpgyJAhGDBgQLUX+KjJkydjxYoViIuLQ0pKCl577TXk5uYiOjoaADBy5EidwdQTJkxAfHw8FixYgLNnz2LmzJk4fvw4YmNjjVonEZGl2HvkHOTysn/VazQCh06mIr9AacKqiCyHwWOEli9fDs1/V0YeN24cvL29cfjwYTz33HMYO3ZstRf4qCFDhuDWrVuYPn06MjIy0Lp1a8THx2sHRKenp0Mm+98PfIcOHbB+/Xq8//77eO+999C4cWNs27ZN7zmEiIis3YO8ggr3EQJ4WKCEIxdyJRtkVfMImQPnESIia7Z2+1Es23gQmnJ+1bs4OSB++TjYldNyRGRtjDqPUH5+Pv7880/cvHlT2zpU7LnnnqvMKYmIyAie7fIYvvr+IFBGDpLJJPR7qiVDENksg4NQfHw8Ro4cidu3b5d4TpIk7Qr0RERkfl7uLpgwohsWxu2DJBV1gxWTyyTU9fPAqH4R5iuQyMwM/hPgjTfewPPPP48bN25Ao9HoPBiCiIgsz/M9H8fHE/oipF5t7TYHezs8160lls8cCrdajmasjsi8DB4j5ObmhpMnT6Jhw4bGqsmicIwQEdUUQghk3M5BfoEKfrVd4ezIFe2p5tL389vgFqHBgwfjwIEDVamNiIjMQJIkBPi4I6SeN0MQ0X8Z3CKUl5eH559/Hj4+PmjRogXs7XVvtxw/fny1FmhubBEiIiqSmXUfB/9MQ36hEo3r+aBtaCBkMsncZRGVymh3jX333Xf45Zdf4OjoiAMHDkCS/vdDIElSjQtCRES2rkCpwty1e7Hz8BlohIBMkqARAnV93PHxK73RvEGAuUskqjSDW4T8/f0xfvx4TJkyRWfywpqKLUJEZOveXrodv528VGIuIpkkwcFejrXThiGkjreZqiMqndHGCBUWFmLIkCE2EYKIiGzdmcsZ2H/iYqkTMmqEgFKlxqqdR81QGVH1MDjNjBo1Chs3bjRGLUREZGHij5yFvJxxQGqNwJ5j56BScfoUsk4GjxFSq9WYN28edu/ejZYtW5YYLL1w4cJqK46IiMwrOze/wn1Uag0eFirhaic3QUVE1cvgIHTq1Ck8/vjjAIC//vpL57lHB04TEZH1C/B2LWt1Di1nR3s4OzqgUKnC8QtXcT+/AMG+Xmhaz8ckNRJVBRddrQAHSxORLbt66x4GTFlVZhiSyyQ8/1Rr+Pu7Y/nPR5DzyGr3YYG+mP5iFMIC/UxTLNEjjDZYmoiIbEc9Hw9EP1v6WmRymYTaHrVg72SP+T/8phOCAODc1VuI/vR7XLhWcm1KIkuhd9fYwIED9dpvy5YtlS6GiIgsz2sDOqC2hwtW7UjE7excAEWr1ndt0wgxfdpj6P+tK/W44rvKPv/pED57tZ8pSybSm95ByN3d3Zh1EBGRhZIkCf96qjUGdmmJc+k3UVCoQn1/T3i7u2D9gZPQlDPAQq0R+P10Ku49eAiPWk6mK5pIT3oHodWrVxuzDiIisnB2chkeC/HX2XYr+wHkMgkqddlpSAjgzv08BiGySBwjRERElebt5gJ1eU1CACQAXq7OpimIyEAMQkREVGm9wpuivIlTZDIJHZsFw5OtQWShGISIiKjSaru54OWe7Up9TiZJsJfLEPtcRxNXRaQ/gydUJCIietRrz0bCSWGPlbuPIje/ULs9xN8LM4f1QGg9XzNWR1Q+TqhYAU6oSESkn4eFShw9l44HDwsR5OuJ5vX9uOIAmY2+n99sESIiomrh5GCPLi0amrsMIoNwjBARERHZLAYhIiIislkMQkRERGSzGISIiIjIZjEIERERkc1iECIiIiKbxdvniYjIamQ9yENqZhYU9nYIresDe7nc3CWRlWMQIiIii3f7fi4++fEA9vx5QbvIq1ctJ7z8VDsM7/Q4J26kSmMQIiIii3Yv9yFGLNmIG/dydFa6z3rwEPO2/4ab2Q/wZt/OZqyQrBnHCBERkUWL+y0J1+/qhqBHrfktCak3s0xcFdUUDEJERGSxhBDYdOQUNOUsiymXSdh29LQJq6KahEGIiIgsVoFKjey8/HL3EQK4fjfHRBVRTcMgREREFstBLoeDXfl3hkkS4OHiZKKKqKZhECIiIoslk0no0yYMclnZd4WpNQJ92oSasCqqSRiEiIjIosU89QQc7e0gK+UWeZkkoVNoMFrVDzBDZVQTMAgREZFFC6rtgVWvPY963u4AoA1EkgT0frwpFozsw3mEqNIkIcoZik/IycmBu7s7srOz4ebmZu5yiIhslhACxy9dxdnrt6Cwk6NTWAgCPCv+vSyEQHpWNvKVStTzdIeLwsEE1ZK56fv5zQkViYjIKkiShCcaBeKJRoF6H7Pzj7P4Yv8RpN2+CwBwsJOjX+tmmPR0R3g4c4A1sWuMiIhqqNUHk/D2pp9x+b8hCAAKVWpsSfoLL361EdkPy78tn2wDgxAREdU4mTkPsGD3fwAA/xz/oRYC6Vn3sPL3Y6YvjCwOgxAREdU4W5PKn2laIwQ2HTsFtUZjoorIUjEIERFRjZOedQ8V3UiWk1+ABwWFpimILBaDEBER1TiujgoA5SchmSTByZ73DNk6BiEiIqpxnmnRpNxuL7kkIapZIzjYMQjZOgYhIiKqcVoFBqBjo/qlzkYtSUVLd7zSpZ0ZKiNLwyBEREQ1jiRJWDS0D7qFNgBQ1A1mJyv6yPNwcsKXI/qjWR1fc5ZIFoJtgkREVCO5KBywZNhzSL2Vhb1nLiJfpUITv9roFtqwwhXtyXYwCBERUY3WwMcLDdgNRmVg1xgRERHZLAYhIiIisllWE4SysrIwbNgwuLm5wcPDAzExMXjw4EG5+7/xxhto2rQpnJycEBQUhPHjxyM7O9uEVRMREZEls5oxQsOGDcONGzewZ88eKJVKREdH45VXXsH69etL3f/69eu4fv065s+fj2bNmuHvv//Gq6++iuvXr2Pz5s0mrp6IiKydUq3GnnMXsTn5NDJzHsDPrRYGtXoMT4c2gr2cg6+tlSSE+Od6dBYnJSUFzZo1w7Fjx9C2bVsAQHx8PHr37o2rV6+iTp06ep1n06ZNGD58OHJzc2Gn5yRaOTk5cHd3R3Z2Ntzc3Cr9GoiIyHrlFhYiZv1WnLh6HTJJgkYI7X8frxeAr4cORC2Fg7nLpEfo+/ltFV1jCQkJ8PDw0IYgAIiKioJMJkNiYqLe5yn+xygvBBUUFCAnJ0fnQUREtu3D+H1IvnYDQNGCrY/+949rGfggfp/ZaqOqsYoglJGRAV9f3Ymv7Ozs4OXlhYyMDL3Ocfv2bcyaNQuvvPJKufvNmTMH7u7u2kdgYGCl6yYiIut3+0Eutp86qw0+/6QRAj/9dRa3HuSauDKqDmYNQlOmTIEkSeU+zp49W+Xr5OTk4Nlnn0WzZs0wc+bMcvedOnUqsrOztY8rV65U+fpERGS9kq5eh7qCUSQaIZB05ZqJKqLqZNbB0m+++SZGjx5d7j4NGjSAv78/bt68qbNdpVIhKysL/v7+5R5///599OrVC66urti6dSvs7e3L3V+hUEChUOhVPxER1Xz6DqUtq8WILJtZg5CPjw98fHwq3C8yMhL37t1DUlISwsPDAQD79u2DRqNBREREmcfl5OSgZ8+eUCgU2L59OxwdHautdiIisg2t6gRAAlBezJEAtK4bYKKKqDpZxRihsLAw9OrVC2PGjMHRo0dx6NAhxMbG4oUXXtDeMXbt2jWEhobi6NGjAIpC0NNPP43c3Fx8/fXXyMnJQUZGBjIyMqBWq835coiIyIoEuLuiR2gjyEtZyR4A5JKEqKYNUceddxZbI6uZR2jdunWIjY1F9+7dIZPJMGjQICxevFj7vFKpxLlz55CXlwcAOHHihPaOskaNGumcKy0tDcHBwSarnYiIrNus3lG4fOcuLty6A6Codag4FjWo7YWPnu1httqoaqxiHiFz4jxCREQEAHmFSmz98ww2nTyFzAe58Kvlgucfb4EBLZvB2aH88adkevp+fjMIVYBBiIiIqoNao8HtvDzIZTJ4OzlBKqOrjaqHvp/fVtM1RkREZI2UajVWHk9C3MmTuJVbNNdQk9reeLVdO/QLCzNzdcQgREREZCQqjQav/vgjfku7rHPX2YXbdzB5189IzcrCpI4dzVYfWcldY0RERNZo6+kzOPCPEAT871b8z48k4tytW6Yuix7BIERERGQka5OTUd5IILkk4bs//zRZPVQSgxAREZGRXMrKKnciRrUQOHf7jsnqoZIYhIiIiIzEuYJlnSQAtRwcTFMMlYqDpYmIiIzk2aZNsP6PP8tctFUAeKZJE5y6mYmv/0jC/r9TodYIPO4fgJdatkG34AamLdgGsUWIiIjISEa3aQN7uRyyUuYMkksSAt3doZI06Ld5HX66cBbZBQV4oCzE4avpiN65FXMO/26Gqm0LgxAREZGRBHt6Im7QILgrFAAAO5kMdrKij94QLy/M790LUw/8Ao0QOq1Gxf//1clj2Hc51fSF2xB2jRERERlR23p1cWjsK4i/cAHJN27ATiZDl+AQdKgfhPlHDpY7mFouSVj95wk8xS4yo2EQIiIiMjKFnR36hYWVmEn6RMZ1aMpZ6UotBE5kXDd2eTaNXWNERERmUtxNVh65xI9qY2KLEBERkZl0CQrBoavpZXaPySUJ3eqHAADyVSr8kn4BqdlZcLF3QM/6jRHk6mGyWmsqrj5fAa4+T0RExnIv/yGeXLsSeUplqV1kEoBtg4fhZsF9vPn7LmQXFsBOkkEDASEEBjZ6DHM69oRCznaNf9L385vtbURERGbi4eiEuL6D4Gxvr7MUh1ySIJckLIh6BgVCiVf2bkNOYQEAQCVUkBwKYV8rHz9lnEDH7Z8hIfOyWeqvCdgiVAG2CBERkbHdzX+IzSmnsT89DSq1GuEBdfHiYy0R6OaOF3Z9h8TMq9AIAUmugYNLISQZIAQgSUX/BYCnA8LweYfnzftCLIi+n98MQhVgECIiInPJys/D4+s//+9XGijcCgGpKACVZnxoN4xr1slk9Vkydo0RERFZufv/7Q4DAJmDBpKs7BAkBLDqQoKJKqs5GISIiIgslI+TCxRyOQBAbq9GeX04kgQ8UOfjfmG+iaqrGRiEiIiILJSzvQMGNHwM8rKagUpx42E2tl45jm/TDuHgzXNQC40RK7R+vN+OiIjIgk1u8yQOXE3FHXUhYKcucz8hBBztNRh2eCnUQlPU0iFp4OVQCzNbPo8OPo1NVrM1YYsQERGRBfNzroUf+47AU35Fy3OU1T2msFfDzk4NtVDDQa6Cs0M+ajkUohBZmPrHV1h4ditbh0rBIERERGTh/F1csbz7QMQ06gBANwwV/b+AvVwDQMDJTgmFXAXZI71pkgRsv3YIH59eD94srotBiIiIyEq82yoKi9oNRqCTJyAACMBRZo9WXr6QSRLsZBrYyzWl3FkmYC9T49DtY/jq0mZkK++boXrLxHmEKsB5hIiIyNLNP7ML3/+dCAe7PMgloROE7GVqONsXQib9bxJGuSTDc3W6Y1j952rsoq6cR4iIiMhG1HHyKBog/Y8QZCdTw8W+ULt8R/FzaqHB1mt7sPbyNlOXanEYhIiIiKzcM3VbQS5JEELSGT/kZKcEUPYkjD9d34+7hdkmqNByMQgRERFZOU8HF4wP7QmlRq7dJpM0sJOJMkMQAAgIJNxJNn6BFozzCBEREdUAw0M6wkEmw5cXt0IjShswXZJMknBfmWv84iwYgxAREVEN8a/6kWhfuwHeTv4aN/PvaAdHl0UtNPBz9MZD9UMk3T2Oe4V34WbvhjaebVHLrpbpCjcj3jVWAd41RkRE1kYIgRN3L2JF6ne4WXATAqV/1DvKFBgd8jS2XdsCpSiEDDJIkhJySY6n/Z5FvzqDIRmwvIcl4V1jRERENkqSJIR7Nca0x8bCWe4I2T8+7oujTXe/Vth0dQOUogCOMiXc7e/D0/4h3OweIOH2Riw6PwUPVDV7MDWDEBERUQ1V18kPn7R8G609Qv+x3R/vNH0ZZ3JOAACc5YWoZVcA2SMtR5IEZORfwtILU5GrqrkTMHKMEBERUQ1W19kP0x4bhzsF93Cz4A5c7JwQ6BSA8w/OIUeVDRk0cJKVfpu9sywf9uICtv79Bjr6xiDEtZMZXoFxMQgRERHZAG+FB7wVHtqv81RFd4s5ypUl9rWDEvUVd+AoU8IBKjiIm/jjZiyOZ7qha53l8HEOM1XZRseuMSIiIhtUW+ELADrdYQAgQY0GjrfgLBWgtvwBvOzy4CIrhLNUCA/5bSRlDEZm3mFzlGwUDEJEREQ2KNA5EPWd60NAtz/Mx+4B7KGGt10u5NAAKOoyK+42k0GDPzNfRb4q09QlGwWDEBERkY0aXn8U1MJRZ2yQmzwPTrJCyFDarNQCTjIl3GQ5SL01AncefAu1xronZGQQIiIislEhLg3wdtMZsJfctWuUySUBJ6m0cUNq+Mhz4SHPh5Okgkp1Btfvvouz19vgQX6CiSuvPgxCRERENqy+SzCmPfYFmrk9AQBQCRmkf7QGSRDwkudpxxM5S0Cw3B7N7JwRZieguDsC+beHQqPOMsdLqBIGISIiIhvnIFNgVMi7eCf0C3gqIqCCXHcVe0kJCUXjhFwlCSF2TnCR7LSzTssgwV55HKpbXaBR3TLPi6gkBiEiIiICAHg5+KJ/0Gw8FF46LUKOsuKuMoF6cgUA6Cy9IUkSJEmCXORDee9lE1ZcdQxCREREpGUnU+C54O0ohB8AFC3ciqLWIC9JDpkkK3P9MUmSYKdMgUZz14QVVw2DEBEREelwsnND7+D9aODxFuzkXlAKGYQAnGUyVLRWuyQBmoITJqq06hiEiIiIqARJktDQMwbdgg6iqc+aooBTfgb637EyF+MWV40YhIiIiKhMkiTBw7krfN0mI1ujLrNbDACEEFBDDsm+nQkrrBoGISIiIqqQn/tkeHt/hUKBMrvHJEmCcOwHmcx64oX1VEpERERm5e7cGw4+u6GWiu4cE0JoHwCgtG8LB4+55izRYFx9noiIiPQmswuBne8JqHKXQjzcDoh8QO4PuetEKBRd9D6PEAJ385TILVDBRWEHT2f7crvdjIVBiIiIiAwikznAwXUS4DrJ4GOzHyrxQ9JVxB2+jL+z8rTb63s5Y1SHYAwKrwd3J/vqLLdckqjoPjgbl5OTA3d3d2RnZ8PNzc3c5RAREVmt387fwmvfJuFhoRoA8GgAKW4LcnKQ48vh4ejSxKdK19L385tjhIiIiMjofjt/C9Grj+KhUg0B3RCE/34tADxUqhG9+ih+O2+apTqsJghlZWVh2LBhcHNzg4eHB2JiYvDgwQO9jhVC4JlnnoEkSdi2bZtxCyUiIiId2Q+VeO3bpKKwU0E/lBBFgei1b5OQ/VBZ/s7VwGqC0LBhw3D69Gns2bMHO3bswO+//45XXnlFr2MXLVpklgFYREREBPyQdBUPC9UVhqBiQgAPC9XYcuKqcQuDlQShlJQUxMfHY+XKlYiIiMCTTz6JJUuWYMOGDbh+/Xq5xyYnJ2PBggVYtWqViaolIiKiYkIIxB2+XKlj1xy6XOGSHlVlFUEoISEBHh4eaNu2rXZbVFQUZDIZEhMTyzwuLy8PL774IpYuXQp/f3+9rlVQUICcnBydBxEREVXO3Twl/s7KKzEmqCICwN9ZebiXZ9zuMasIQhkZGfD19dXZZmdnBy8vL2RkZJR53KRJk9ChQwf069dP72vNmTMH7u7u2kdgYGCl6yYiIrJ1uQWqKh3/oIrHV8SsQWjKlCmQJKncx9mzZyt17u3bt2Pfvn1YtGiRQcdNnToV2dnZ2seVK1cqdX0iIiICXBRVm7KwVhWPr4hZJ1R88803MXr06HL3adCgAfz9/XHz5k2d7SqVCllZWWV2ee3btw+XLl2Ch4eHzvZBgwahU6dOOHDgQKnHKRQKKBQKfV8CERERlcPT2R71vZyRbmD3mAQgyMsZHs7GnVzRrEHIx8cHPj4VT5gUGRmJe/fuISkpCeHh4QCKgo5Go0FERESpx0yZMgUvv/yyzrYWLVrg008/Rd++fatePBEREVVIkiSM6hCMWTvOGHzs6I7BRr/r2yrGCIWFhaFXr14YM2YMjh49ikOHDiE2NhYvvPAC6tSpAwC4du0aQkNDcfToUQCAv78/mjdvrvMAgKCgIISEhJjttRAREdmaQeH14OQgh76ZRiYVzTA9sE094xYGKwlCALBu3TqEhoaie/fu6N27N5588kksX75c+7xSqcS5c+eQl5dXzlmIiIjI1Nyd7PHl8HBIQIVhqPj5ZcPDTbLmGNcaqwDXGiMiIqoe+q41tmx4ODqbaK0xrj5PREREJtGliQ8SpnbHlhNXseaQ7urzQV7OGN2xaPV5N0euPm8x2CJERERU/YQQuJenxIMCFWop7ODhbF+tA6PZIkREREQWS5IkeLo4wNPFwax1WM1gaSIiIqLqxiBERERENotBiIiIiGwWgxARERHZLAYhIiIislkMQkRERGSzePt8BYqnWcrJyTFzJURERKSv4s/tiqZLZBCqwP379wEAgYGBZq6EiIiIDHX//n24u7uX+Txnlq6ARqPB9evX4erqWu0zXgYGBuLKlSucsdoC8P2wLHw/LA/fE8vC96NiQgjcv38fderUgUxW9kggtghVQCaToV69ekY7v5ubG7+JLQjfD8vC98Py8D2xLHw/yldeS1AxDpYmIiIim8UgRERERDaLQchMFAoFZsyYAYVCYe5SCHw/LA3fD8vD98Sy8P2oPhwsTURERDaLLUJERERksxiEiIiIyGYxCBEREZHNYhAyoaysLAwbNgxubm7w8PBATEwMHjx4UO7+b7zxBpo2bQonJycEBQVh/PjxyM7ONmHVNcfSpUsRHBwMR0dHRERE4OjRo+Xuv2nTJoSGhsLR0REtWrTArl27TFSpbTDk/VixYgU6deoET09PeHp6IioqqsL3jwxj6M9HsQ0bNkCSJPTv39+4BdogQ9+Te/fuYdy4cQgICIBCoUCTJk34e0sfgkymV69eolWrVuLIkSPiP//5j2jUqJEYOnRomfufOnVKDBw4UGzfvl1cvHhR7N27VzRu3FgMGjTIhFXXDBs2bBAODg5i1apV4vTp02LMmDHCw8NDZGZmlrr/oUOHhFwuF/PmzRNnzpwR77//vrC3txenTp0yceU1k6Hvx4svviiWLl0qTp48KVJSUsTo0aOFu7u7uHr1qokrr5kMfT+KpaWlibp164pOnTqJfv36maZYG2Hoe1JQUCDatm0revfuLQ4ePCjS0tLEgQMHRHJysokrtz4MQiZy5swZAUAcO3ZMu+3nn38WkiSJa9eu6X2e77//Xjg4OAilUmmMMmusdu3aiXHjxmm/VqvVok6dOmLOnDml7v+vf/1LPPvsszrbIiIixNixY41ap60w9P34J5VKJVxdXUVcXJyxSrQplXk/VCqV6NChg1i5cqUYNWoUg1A1M/Q9+fLLL0WDBg1EYWGhqUqsMdg1ZiIJCQnw8PBA27ZttduioqIgk8mQmJio93mys7Ph5uYGOzuujqKvwsJCJCUlISoqSrtNJpMhKioKCQkJpR6TkJCgsz8A9OzZs8z9SX+VeT/+KS8vD0qlEl5eXsYq02ZU9v348MMP4evri5iYGFOUaVMq855s374dkZGRGDduHPz8/NC8eXPMnj0barXaVGVbLX6amkhGRgZ8fX11ttnZ2cHLywsZGRl6neP27duYNWsWXnnlFWOUWGPdvn0barUafn5+Otv9/Pxw9uzZUo/JyMgodX993ysqW2Xej3969913UadOnRJhlQxXmffj4MGD+Prrr5GcnGyCCm1PZd6T1NRU7Nu3D8OGDcOuXbtw8eJFvP7661AqlZgxY4YpyrZabBGqoilTpkCSpHIf+v5yL09OTg6effZZNGvWDDNnzqx64URWau7cudiwYQO2bt0KR0dHc5djc+7fv48RI0ZgxYoVqF27trnLof/SaDTw9fXF8uXLER4ejiFDhuDf//43li1bZu7SLB5bhKrozTffxOjRo8vdp0GDBvD398fNmzd1tqtUKmRlZcHf37/c4+/fv49evXrB1dUVW7duhb29fVXLtim1a9eGXC5HZmamzvbMzMwy/+39/f0N2p/0V5n3o9j8+fMxd+5c/Prrr2jZsqUxy7QZhr4fly5dwuXLl9G3b1/tNo1GA6ColfvcuXNo2LChcYuu4SrzMxIQEAB7e3vI5XLttrCwMGRkZKCwsBAODg5GrdmasUWoinx8fBAaGlruw8HBAZGRkbh37x6SkpK0x+7btw8ajQYRERFlnj8nJwdPP/00HBwcsH37dv4FXAkODg4IDw/H3r17tds0Gg327t2LyMjIUo+JjIzU2R8A9uzZU+b+pL/KvB8AMG/ePMyaNQvx8fE6Y+2oagx9P0JDQ3Hq1CkkJydrH8899xy6deuG5ORkBAYGmrL8GqkyPyMdO3bExYsXtaEUAM6fP4+AgACGoIqYe7S2LenVq5d4/PHHRWJiojh48KBo3Lixzu3zV69eFU2bNhWJiYlCCCGys7NFRESEaNGihbh48aK4ceOG9qFSqcz1MqzShg0bhEKhEGvWrBFnzpwRr7zyivDw8BAZGRlCCCFGjBghpkyZot3/0KFDws7OTsyfP1+kpKSIGTNm8Pb5amTo+zF37lzh4OAgNm/erPNzcP/+fXO9hBrF0Pfjn3jXWPUz9D1JT08Xrq6uIjY2Vpw7d07s2LFD+Pr6io8++shcL8FqMAiZ0J07d8TQoUNFrVq1hJubm4iOjtb5RZ6WliYAiP379wshhNi/f78AUOojLS3NPC/Cii1ZskQEBQUJBwcH0a5dO3HkyBHtc126dBGjRo3S2f/7778XTZo0EQ4ODuKxxx4TO3fuNHHFNZsh70f9+vVL/TmYMWOG6QuvoQz9+XgUg5BxGPqeHD58WERERAiFQiEaNGggPv74Y/7RrAeuPk9EREQ2i2OEiIiIyGYxCBEREZHNYhAiIiIim8UgRERERDaLQYiIiIhsFoMQERER2SwGISIiIrJZDEJERERksxiEiMhsRo8ejf79+5u1hq5du2LixIlmraEiXbt2hSRJkCQJycnJBh07evRo7bHbtm0zSn1E1oxBiIhKePTD097eHiEhIXjnnXeQn59v7tJKdeDAAbRp0wYKhQKNGjXCmjVr9D52y5YtmDVrlvGKqyZjxozBjRs30Lx5cyQlJUGSJBw5cqTUfbt3746BAwcCAD777DPcuHHDlKUSWRUGISIqVa9evXDjxg2kpqbi008/xVdffYUZM2aYu6wS0tLS8Oyzz2pXP584cSJefvll7N69W6/jvby84OrqauQqq87Z2Rn+/v6ws7NDeHg4WrVqhVWrVpXY7/Lly9i/fz9iYmIAAO7u7vD39zd1uURWg0GIiEqlUCjg7++PwMBA9O/fH1FRUdizZ4/2eY1Ggzlz5iAkJAROTk5o1aoVNm/erH1erVYjJiZG+3zTpk3x2WefGVzHmjVrEBQUBGdnZwwYMAALFiyAh4eH9vlly5YhJCQECxYsQFhYGGJjYzF48GB8+umnep3/n11jN2/eRN++feHk5ISQkBCsW7cOwcHBWLRokV7nW7hwIVq0aAEXFxcEBgbi9ddfx4MHDwAAOTk5cHJyws8//6xzzNatW+Hq6oq8vDy9rgEAMTEx2LhxY4lj1qxZg4CAAPTq1UvvcxHZMgYhIqrQX3/9hcOHD8PBwUG7bc6cOfjmm2+wbNkynD59GpMmTcLw4cPx22+/ASgKSvXq1cOmTZtw5swZTJ8+He+99x6+//57va+bmJiImJgYxMbGIjk5Gd26dcNHH32ks09CQgKioqJ0tvXs2RMJCQmVeq2jR4/GlStXsH//fmzevBlffPEFbt68qffxMpkMixcvxunTpxEXF4d9+/bhnXfeAQC4ubmhT58+WL9+vc4x69atQ//+/eHs7Kz3dYYNG4aCggKd8CmEQFxcHEaPHg25XK73uYhsmvkWviciSzVq1Cghl8uFi4uLUCgUAoCQyWRi8+bNQggh8vPzhbOzszh8+LDOcTExMWLo0KFlnnfcuHFi0KBBOtfp169fmfsPHTpU9O7dW2fbkCFDhLu7u/brxo0bi9mzZ+vss3PnTgFA5OXlVfRSRZcuXcSECROEEEKcO3dOABBHjx7VPp+SkiIAiE8//bTCc5Vm06ZNwtvbW/v11q1bRa1atURubq4QQojs7Gzh6Ogofv75Z71qfNQLL7wgunTpov167969AoC4cOFCiX0BiK1bt1bqNRDVZGwRIqJSFY+5SUxMxKhRoxAdHY1BgwYBAC5evIi8vDz06NEDtWrV0j6++eYbXLp0SXuOpUuXIjw8HD4+PqhVqxaWL1+O9PR0vWtISUlBRESEzrbIyMjqeYFlXK94DE6x0NBQna64ivz666/o3r076tatC1dXV4wYMQJ37tzRdmH17t0b9vb22L59OwDghx9+gJubW4lWLX289NJL+P3337X/5qtWrUKXLl3QqFEjg89FZKsYhIioVC4uLmjUqJF2UG5iYiK+/vprANCOedm5cyeSk5O1jzNnzmi7ajZs2IC33noLMTEx+OWXX5CcnIzo6GgUFhZWa53+/v7IzMzU2ZaZmQk3Nzc4OTlV67UqcvnyZfTp0wctW7bEDz/8gKSkJCxduhQAtK/bwcEBgwcP1naPrV+/HkOGDIGdnZ3B1+vevTuCgoKwZs0a5OTkYMuWLdpB0kSkH8N/8ojI5shkMrz33nuYPHkyXnzxRTRr1gwKhQLp6eno0qVLqcccOnQIHTp0wOuvv67d9mhrkT7CwsKQmJios+2ft4xHRkZi165dOtv27NlTqZaj0NBQqFQqJCUl4YknngAAnDt3Dvfu3dPr+KSkJGg0GixYsAAyWdHfmaWNiRo2bBh69OiB06dPY9++fSXGPelLJpMhOjoaX3/9NerWrasNWUSkP7YIEZFenn/+ecjlcixduhSurq546623MGnSJMTFxeHSpUs4ceIElixZgri4OABA48aNcfz4cezevRvnz5/HtGnTcOzYMYOuOX78eMTHx2P+/Pm4cOECPv/8c8THx+vs8+qrryI1NRXvvPMOzp49iy+++ALff/89Jk2aZPBrbNq0KXr16oWxY8ciMTERSUlJePnll/VuWWrUqBGUSiWWLFmC1NRUrF27FsuWLSuxX+fOneHv749hw4YhJCSkRPefIaKjo3Ht2jW89957GDp0qMlbwYisHYMQEenFzs4OsbGxmDdvHnJzczFr1ixMmzYNc+bMQVhYGHr16oWdO3ciJCQEADB27FgMHDgQQ4YMQUREBO7cuaPTOqSP9u3bY8WKFfjss8/QqlUr/PLLL3j//fd19gkJCcHOnTuxZ88etGrVCgsWLMDKlSvRs2fPSr3O1atXo06dOujSpQsGDhyIV155Bb6+vnod26pVKyxcuBCffPIJmjdvjnXr1mHOnDkl9pMkCUOHDsUff/yBYcOGVarOYkFBQYiKisLdu3fx0ksvVelcRLZIEkIIcxdBRKSvNWvWYOLEiXp3V1WH4OBgTJw40WxLcXTt2hWtW7fWey6j0kiShK1bt5p9SRMiS8MWISIiK/DFF1+gVq1aOHXqlEHHvfrqq6hVq5aRqiKyfhwsTUQ1Vnp6Opo1a1bm82fOnEFQUJDe51u3bh3Gjh1b6nP169fH6dOnDa5R3+s+fPgQAAyqFwA+/PBDvPXWWwCAgICAaq+NyNqxa4yIaiyVSoXLly+X+XxwcLBBt63fv3+/xK36xezt7VG/fn1DSyQiM2MQIiIiIpvFMUJERERksxiEiIiIyGYxCBEREZHNYhAiIiIim8UgRERERDaLQYiIiIhsFoMQERER2SwGISIiIrJZ/w9cONFdSAkQuAAAAABJRU5ErkJggg==\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - examples_24_1.png" } }, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize=(8, 5))\n", "\n", "ax = plt.subplot2grid((1, 10), (0, 0), colspan=9, fig=fig)\n", "plot_xr_complex(dataset_gridded.q0_iq_av, ax=ax)\n", "\n", "ax_calib = plt.subplot2grid((1, 10), (0, 9), colspan=1, fig=fig, sharey=ax)\n", "for i, color in zip(\n", " range(2), [\"C0\", \"C1\"]\n", "): # plot each calibration point with same color\n", " dataset_gridded.q0_iq_av_cal.real[i : i + 1].plot.line(\n", " marker=\"o\", ax=ax_calib, linestyle=\"\", color=color\n", " )\n", " dataset_gridded.q0_iq_av_cal.imag[i : i + 1].plot.line(\n", " marker=\"o\", ax=ax_calib, linestyle=\"\", color=color\n", " )\n", "ax_calib.yaxis.set_label_position(\"right\")\n", "ax_calib.yaxis.tick_right()\n", "\n", "fig, ax = plot_xr_complex_on_plane(dataset_gridded.q0_iq_av)\n", "_ = plot_complex_points(dataset_gridded.q0_iq_av_cal.values, ax=ax)" ] }, { "cell_type": "code", "execution_count": 26, "id": "7d040d98", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:35.682726Z", "iopub.status.busy": "2023-09-26T17:43:35.682397Z", "iopub.status.idle": "2023-09-26T17:43:35.877118Z", "shell.execute_reply": "2023-09-26T17:43:35.876455Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj0AAAHHCAYAAABUcOnjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACY5UlEQVR4nOzdd3hUZdrA4d+Zmcyk90oIEHqvCtIEFQRBFAsCihQ7ig0rq1hWVyyrrp+iKDZEWYqrYEEQEQSp0kE6BBLSe8+0c74/QgaGTAohYRLy3Nc1F+TMec/7nMkk8+StiqZpGkIIIYQQlziduwMQQgghhLgYJOkRQgghRKMgSY8QQgghGgVJeoQQQgjRKEjSI4QQQohGQZIeIYQQQjQKkvQIIYQQolGQpEcIIYQQjYIkPUIIIYRoFCTpETXSokULXnrpJXeH0SCsXbsWRVFYu3ZtrV5XURS3fA8GDx6MoigoisL1119/0es/1+TJk2nRooW7w6iWXbt2OV47RVH49ttv66wuRVGYNm1anV2/Idm6dStGo5GTJ09e9LpXrFiBr68v6enpF71uUZ4kPaLWbN26lQcffJBevXrh4eGBoigXpd4WLVo4fZCEh4czcOBAvv/++4tSf11avnx5vUwu27dvz/z583nyySdrfI2cnBzuu+8+wsLC8PHx4aqrrmLHjh21GGX907x5c+bPn88//vEPd4fSqDz33HOMHz+e5s2bO47NnTuXQYMGERERgclkIjY2lilTpnDixAmX1/jss8/o0KEDnp6etGnThvfff79adQ8fPpzWrVsza9as2rgVcYEk6RG1Zvny5Xz66acoikLLli0vat3du3dn/vz5jg/ipKQkbr75ZubMmXNR46hty5cv5+WXX3b5XHFxMc8///xFjqhUREQEEyZMYPDgwTUqr6oqI0eOZMGCBUybNo0333yTtLQ0Bg8ezJEjR87rWnPnzuXQoUM1iuNiCwoKYsKECQwdOtTdoTQau3bt4rfffuOBBx5wOr5z505iY2N5+umn+eijj5gwYQK//PILl19+OUlJSU7nfvzxx9xzzz106tSJ999/n759+/LII4/wxhtvVCuG+++/n48//pj8/Pxauy9RQ5oQNdC8eXPtxRdfdDqWkpKiFRUVaZqmaQ899JBW2dtr9+7dtRrLyJEjnY4lJydrPj4+Wtu2bWutnppas2aNBmhr1qw577JVvY7uMGjQIG3QoEEXdI1FixZpgLZkyRLHsbS0NC0wMFAbP378BUZY/5W9J86+/9oGaA899FCdXb+heOSRR7RmzZppqqpWee62bds0QJs1a5bjWFFRkRYSElLud8wdd9yh+fj4aFlZWVVeNzU1VdPr9dpnn312/jcgapW09IhaExERgZeXV7XO7datG7179+bjjz8mLy+v1mOJjIykQ4cOxMXFOY7t3LmT6667Dn9/f3x9fbnmmmvYvHmzU7kvv/wSRVFYt24d999/PyEhIfj7+zNx4kSys7Odzq1oTE2LFi2YPHlypfGtX7+eMWPG0KxZM0wmEzExMTz++OMUFxc7zpk8eTKzZ8921FX2qKz+87nHDRs2MH36dEf30k033XTB4w5ycnKYPHkyAQEBBAYGMmnSJMc4li+//NJx3rfffktERAQ333yz41hYWBi33XYby5Ytw2w2V7tOV2N6qhtHVSwWCy+88AK9evUiICAAHx8fBg4cyJo1axznWK1WgoODmTJlSrnyeXl5eHp6VqsbsKioiIMHD5KRkVHluUeOHOGWW24hMjIST09PmjZtyrhx48jNzS137tKlS+ncuTMmk4lOnTqxYsUKp+dPnjzJgw8+SLt27fDy8iIkJIQxY8aU6+Y5n58NgF9++YWBAwfi4+ODn58fI0eO5O+//67y3mrb0qVLufrqq6vV3V72PsrJyXEcW7NmDZmZmTz44INO5z700EMUFhby888/V3nd8PBwunbtyrJly84rdlH7JOkRbvHJJ5+g1+t54IEHiIqKYvLkyaxfv77Wrm+1WklISCAkJASAv//+m4EDB7J7926efvppZs6cSVxcHIMHD2bLli3lyk+bNo0DBw7w0ksvMXHiRL755htGjx6Npmm1Et+SJUsoKipi6tSpvP/++wwbNoz333+fiRMnOs65//77Hd0gZV138+fPr/Ca53uPDz/8MLt37+bFF19k6tSp/Pjjjxc08FXTNG688Ubmz5/PhAkTePXVVzl16hSTJk0qd+7OnTvp2bMnOp3zr6DevXtTVFTE4cOHL0ocVcnLy+PTTz9l8ODBvPHGG7z00kukp6czbNgwdu3aBYCHhwc33XQTS5cuxWKxOJVfunQpZrOZcePGVVnX1q1b6dChAx988EGl51ksFoYNG8bmzZt5+OGHmT17Nvfddx/Hjx93+rAG+PPPP3nwwQcZN24cb775JiUlJdxyyy1kZmY6zvnrr7/YuHEj48aN4//+7/944IEHWL16NYMHD6aoqKhc/dX52Zg/fz4jR47E19eXN954g5kzZ7J//34GDBhQ4ZiZMqqqkpGRUa2H1Wqt9FqJiYnEx8fTs2fPCs/JzMwkLS2Nbdu2ORLXa665xvH8zp07AbjsssucyvXq1QudTud4viq9evVi48aN1TpX1CH3NjSJhspV99bZqtsts3//fu3JJ5/UIiIiNEBr27at9vrrr2vJycnnFcu1116rpaena+np6dru3bu1cePGaYD28MMPa5qmaaNHj9aMRqN27NgxR7mkpCTNz89Pu/LKKx3HvvjiCw3QevXqpVksFsfxN998UwO0ZcuWOY4BLl+D5s2ba5MmTXJ87ap7q6wb8GyzZs3SFEXRTp486ThW2et4bv3ne49DhgxxavJ//PHHNb1er+Xk5Lisr0xF3VtLly7VAO3NN990HLPZbNrAgQM1QPviiy8cx318fLS77rqr3DV+/vlnDdBWrFhRaQxnmzRpkta8efMaxVEVm82mmc1mp2PZ2dlaRESEU/wrV67UAO3HH390OnfEiBFay5Yty13XVfdW2bHKfq40TdN27txZra4xQDMajdrRo0cdx3bv3q0B2vvvv+845uq9uGnTJg3QvvrqK8ex6v5s5Ofna4GBgdq9997rdM2UlBQtICCg3PFzxcXFaUC1HlV1Gf/2228uvy9nM5lMjuuFhIRo//d//+f0/EMPPaTp9XqXZcPCwrRx48ZVGkOZ1157TQO01NTUap0v6oa09Ai36tChA2+99RanTp1i2bJldOjQgZkzZxITE8Po0aPZs2dPta7z66+/EhYWRlhYGN26dWPJkiXceeedvPHGG9jtdn799VdGjx7tNMA6KiqK22+/nT///LNcF9t9992Hh4eH4+upU6diMBhYvnx5rdz32d2AhYWFZGRk0K9fPzRNq/Zfjmer6T2e3eQ/cOBA7HZ7jaf1Ll++HIPBwNSpUx3H9Ho9Dz/8cLlzi4uLMZlM5Y57eno6nq+p84mjKnq9HqPRCJS2QGRlZWGz2bjsssucZppdffXVhIaGsmjRIsex7OxsVq1axdixY6tV1+DBg9E0rcrZegEBAQCsXLnSZUvM2YYMGUKrVq0cX3ft2hV/f3+OHz/uOHb2e9FqtZKZmUnr1q0JDAx0OZuuqp+NVatWkZOTw/jx451aZfR6PX369HHqGnQlMjKSVatWVevRrVu3Sq9V1qIVFBRU4Tm//PILy5cv5+2336ZZs2YUFhY6PV9cXOx4D5zL09Oz2u/Vshiq030p6o7B3QEIAWAwGLjhhhsYNWoUixcv5r777mPZsmUMHjyYrl27Vlm+T58+vPrqqyiKgre3Nx06dCAwMBCAlJQUioqKaNeuXblyHTp0QFVVEhIS6NSpk+N4mzZtnM7z9fUlKiqqyqb56oqPj+eFF17ghx9+KDcewtW4jKqkp6ef9z02a9bM6byyX8quxmdUx8mTJ4mKisLX19fpuKuYvLy8XI7bKSkpcTxfU+cTR3XMmzePt99+m4MHDzp1p8TGxjr+bzAYuOWWW1iwYAFmsxmTycR3332H1WqtdtJTXbGxsUyfPp133nmHb775hoEDB3LDDTcwYcIER0JU5tzvMZR+n8/+HhcXFzNr1iy++OILEhMTnbqpXL0Xq/rZKJt9d/XVV7uM39/fv9L78/T0ZMiQIZWec760Srqlr7rqKgCuu+46brzxRjp37oyvr6+jq9fLy6tct2WZkpKSar9Xy2K4WEt5CNck6RH1wsmTJ5k3bx5ffvklcXFxtGjRgieeeILx48dXq3xoaGit/6KsKbvdXuXzQ4cOJSsri2eeeYb27dvj4+NDYmIikydPRlXVixKnXq93ebyyD4jaEhUVRXJycrnjZceaNGlS5zFUx9dff83kyZMZPXo0Tz31FOHh4ej1embNmsWxY8eczh03bhwff/wxv/zyC6NHj2bx4sW0b9++ytaImnj77beZPHkyy5Yt49dff+WRRx5h1qxZbN68maZNmzrOq873+OGHH+aLL77gscceo2/fvgQEBKAoCuPGjavRe7GszPz584mMjCz3vMFQ+ceO3W6v9oD64ODgClthAMeYvuom8q1ataJHjx588803jqQnKioKu91OWloa4eHhjnMtFguZmZnVfq+WxRAaGlqt80XdkKRHuE1xcTHff/89n3/+Ob///jtGo5HRo0fz8ccfM2TIkFr7iygsLAxvb2+Xa7kcPHgQnU5HTEyM0/EjR444/gIEKCgoIDk5mREjRjiOBQUFlRs4arFYXH6Yn23v3r0cPnyYefPmOQ1cXrVqVblzq/sa1OQea1vz5s1ZvXo1BQUFTq0srmLq3r0769evR1VVp8HMW7Zswdvbm7Zt216UOKry7bff0rJlS7777jun78WLL75Y7twrr7ySqKgoFi1axIABA/j999957rnnanYT1dClSxe6dOnC888/z8aNG+nfvz9z5szh1VdfPa/rfPvtt0yaNIm3337bcaykpKTce7tMVT8bZd1p4eHhNfpDJCEhwakVrTJr1qypdK2o9u3bAzjN4qxKcXGxUytk9+7dAdi2bZvTz/+2bdtQVdXxfFXi4uIIDQ0lLCys2rGI2idjeoRblM3auuOOO0hNTeWdd94hMTGRhQsXMnTo0FptAtbr9Vx77bUsW7bMqXsqNTWVBQsWMGDAgHJN7p988olTV8ZHH32EzWbjuuuucxxr1aoV69atK1euqpaesr++z/5rW9M03nvvvXLn+vj4AFT4AXQh91jbRowYgc1m46OPPnIcs9vtLleuvfXWW0lNTeW7775zHMvIyGDJkiWMGjXK5XifuoijKq6+V1u2bGHTpk3lztXpdNx66638+OOPzJ8/H5vNVutdW1A6o8xmszkd69KlCzqd7rym+pfR6/XlWvfef//9Ct/HVf1sDBs2DH9/f1577TWXs6uqasWpzTE90dHRxMTEsG3bNqfjNpvNZevP1q1b2bt3r9NMrauvvprg4GCn91PZfXt7ezNy5MhKYyizfft2+vbtW61zRd2Rlh5Ra06ePOmYUl32S6bsr87mzZtz5513Os5dsGABY8eO5Z577qFPnz51Hturr77KqlWrGDBgAA8++CAGg4GPP/4Ys9nMm2++We58i8XCNddcw2233cahQ4f48MMPGTBgADfccIPjnHvuuYcHHniAW265haFDh7J7925WrlxZZfN1+/btadWqFU8++SSJiYn4+/vzv//9z+Uv4V69egHwyCOPMGzYMPR6fYXTn8/3HmvbqFGj6N+/P88++ywnTpygY8eOfPfddy7Hhdx6661cccUVTJkyhf379xMaGsqHH36I3W6vcAXquoijKtdffz3fffcdN910EyNHjiQuLo45c+bQsWNHCgoKyp0/duxY3n//fV588UW6dOlChw4dql3X2rVrueqqq3jxxRcrHcz8+++/M23aNMaMGUPbtm2x2WzMnz8fvV7PLbfcUqN7nD9/PgEBAXTs2JFNmzbx22+/ObqGzlXVz4a/vz8fffQRd955Jz179mTcuHGEhYURHx/Pzz//TP/+/Sudll/bY3puvPFGvv/+ezRNc/wxVVBQQExMDGPHjqVTp074+Piwd+9evvjiCwICApg5c6ajvJeXF6+88goPPfQQY8aMYdiwYaxfv56vv/6af/3rXwQHBzvOreh7mJaWxp49e3jooYdq7b5EDbln0pho6FxNWS+bcuvqce4U54KCglqN5dzVUl3ZsWOHNmzYMM3X11fz9vbWrrrqKm3jxo1O55RNy/3jjz+0++67TwsKCtJ8fX21O+64Q8vMzHQ61263a88884wWGhqqeXt7a8OGDdOOHj1arSnr+/fv14YMGaL5+vpqoaGh2r333uuYTnz2lGqbzaY9/PDDWlhYmKYoitP0dVxMbz6fe/zrr7+cjld35ejKVmTOzMzU7rzzTs3f318LCAjQ7rzzTscU63OnimdlZWl33323FhISonl7e2uDBg0qF1N1nDtl/XzjqIyqqtprr72mNW/eXDOZTFqPHj20n376yWWdZefHxMRogPbqq69WeF1XU9Z//PFHDdDmzJlTaUzHjx/X7rrrLq1Vq1aap6enFhwcrF111VXab7/95nQeFazIfO77Mzs7W5syZYoWGhqq+fr6asOGDdMOHjxY7rzz+dkou8dhw4ZpAQEBmqenp9aqVStt8uTJ2rZt2yq9v9q2Y8cODdDWr1/vOGY2m7VHH31U69q1q+bv7695eHhozZs31+6++24tLi7O5XU++eQTrV27dprRaNRatWqlvfvuu+VWea7oe/jRRx9p3t7eWl5eXq3fnzg/kvSIGqlqnZ6GqqKEQJwxaNAgrV+/flp6erqWm5tb5fll666cT7JRF+pDHDabTUtPT3esJXR20vPUU09pTZs21UpKStwWX2Ua8s/G1VdfrU2YMKHO66noe9i9e3ftscceq/P6RdVkTI8Q4rxt3LiRsLAwbr/9dneH0qDs3buXsLAwRo8eXe65NWvWMHPmzAsazyRce+2111i0aFGN16CqLlffwxUrVnDkyBFmzJhRp3WL6pExPUKI8/L22287xh/V5UyUrKysCtdHgdIBuDWt32KxkJWVVek5AQEBF7RekCutW7d2mqV39hpUf/31V63WJc7o06dPpe+l2uLqezh8+HCX47+Ee0jSI4Q4L2WDq+vazTffzB9//FHh882bN6/xYpEbN250mnbtyhdffFHlxrHny9fXt96sJyVEY6Ro2kVYiUwIIc7T9u3bK11UzsvLi/79+9fo2tnZ2Wzfvr3Sczp16kRUVFSNri+EqJ8k6RFCCCFEoyADmYUQQgjRKDTKMT2qqpKUlISfn59s/iaEEEI0EJqmkZ+fT5MmTZy2sKmuRpn0JCUl1fk+REIIIYSoGwkJCU6b61ZXo0x6/Pz8gNIXra73IxJCCCFE7cjLyyMmJsbxOX6+GmXSU9al5e/vL0mPEEII0cDUdGiKDGQWQgghRKMgSY8QQgghGgVJeoQQQgjRKDTKMT1CCCFEbbPb7VitVneH0aB5eHig1+vr7PqS9AghhBAXQNM0UlJSyMnJcXcol4TAwEAiIyPrZB09SXqEEEKIC1CW8ISHh+Pt7S2L3taQpmkUFRWRlpYGUCd730nSI4QQQtSQ3W53JDwhISHuDqfB8/LyAiAtLY3w8PBa7+qSgcxCCCFEDZWN4fH29nZzJJeOsteyLsZHSdIjhBBCXCDp0qo9dflaSvdWLchIzGTp+7/w+4I/KcwrIrpNFDdMHcaQO6/E4CEvsRBCCFEfuL2lZ926dYwaNYomTZqgKApLly6tsszatWvp2bMnJpOJ1q1b8+WXX9Z5nBU5tvsE93Z5giVv/0j6qUyK8oo5ujOOt+/5iOdGvobFLNMXhRBCNE6TJ09m9OjR7g7Dwe1JT2FhId26dWP27NnVOj8uLo6RI0dy1VVXsWvXLh577DHuueceVq5cWceRlme323nxpjcpyi9GtauO45qqAbDz930sePV/Fz0uIYQQoiqTJ09GURQURcHDw4PY2FiefvppSkpK3B1anXF738t1113HddddV+3z58yZQ2xsLG+//TYAHTp04M8//+Tdd99l2LBhdRWmS9tW7CL1RLrjaw0oatEE7xNJKJQmPz98uII7Zt6Ch9HjosYmhBBCVGX48OF88cUXWK1Wtm/fzqRJk1AUhTfeeMPdodUJt7f0nK9NmzYxZMgQp2PDhg1j06ZNFZYxm83k5eU5PWrDgc1H0BtKp9NpQMKd15N027UUtWjiOCc/u5CkY6m1Up8QQghRm0wmE5GRkcTExDB69GiGDBnCqlWrAFBVlVmzZhEbG4uXlxfdunXj22+/dZS12+3cfffdjufbtWvHe++9565bqRa3t/Scr5SUFCIiIpyORUREkJeXR3FxsWOO/9lmzZrFyy+/XOux6PQ6StMdUACvxFTMUaFkX9EVnxNJjvPKEiMhhBCXNk3TKLba3VK3l4f+gmY+7du3j40bN9K8eXOg9LPz66+/Zs6cObRp04Z169YxYcIEwsLCGDRoEKqq0rRpU5YsWUJISAgbN27kvvvuIyoqittuu622bqtWNbikpyZmzJjB9OnTHV/n5eURExNzwdftObQr8/+5xPF14Na/yenRnuJmkRRHh+OVmEZYTAhRLcMvuC4hhBD1X7HVTscXLv4YU4D9/xyGt/H8PtZ/+uknfH19sdlsmM1mdDodH3zwAWazmddee43ffvuNvn37AtCyZUv+/PNPPv74YwYNGoSHh4dTg0JsbCybNm1i8eLFkvTUlsjISFJTnbuLUlNT8ff3d9nKA6XNdyaTqdZj6dSvHW0va8WxXXHYbSoeBUX47ztGXre2ZF3Rhej/rea2J2+s083ThBBCiJq66qqr+OijjygsLOTdd9/FYDBwyy238Pfff1NUVMTQoUOdzrdYLPTo0cPx9ezZs/n888+Jj4+nuLgYi8VC9+7dL/JdVF+DS3r69u3L8uXLnY6tWrXKkYleTIqi8PL3T/Hk1S+TeCQZRacQtHUveV1aU9Qqhj4PjeDGacMvelxCCCHcw8tDz/5/XtxJNWfXfb58fHxo3bo1AJ9//jndunXjs88+o3PnzgD8/PPPREdHO5Upa0RYuHAhTz75JG+//TZ9+/bFz8+Pt956iy1btlzgndQdtyc9BQUFHD161PF1XFwcu3btIjg4mGbNmjFjxgwSExP56quvAHjggQf44IMPePrpp7nrrrv4/fffWbx4MT///LNb4g+NDuHjXW/xx+JNrFn4JwU5RRgtRRzx9CWnbzdZpVMIIRoRRVHOu4upvtDpdPzjH/9g+vTpHD58GJPJRHx8PIMGDXJ5/oYNG+jXrx8PPvig49ixY8cuVrg14vbvzLZt27jqqqscX5eNvZk0aRJffvklycnJxMfHO56PjY3l559/5vHHH+e9996jadOmfPrppxd9uvrZTF4mrp00mGsnDQbgQHIe1723np/3JjM9vYCWYb5ui00IIYSorjFjxvDUU0/x8ccf8+STT/L444+jqioDBgwgNzeXDRs24O/vz6RJk2jTpg1fffUVK1euJDY2lvnz5/PXX38RGxvr7tuokNuTnsGDB6NpWoXPu1ptefDgwezcubMOo7owHaL8uaZ9OKsPpvHxH8d549au7g5JCCGEqJLBYGDatGm8+eabxMXFERYWxqxZszh+/DiBgYH07NmTf/zjHwDcf//97Ny5k7Fjx6IoCuPHj+fBBx/kl19+cfNdVEzRKss4LlF5eXkEBASQm5uLv79/ndSx/WQ2t3y0EQ+9wh9PXUWTQNeDrIUQQjRcJSUlxMXFERsbi6enp7vDuSRU9ppe6Od3g1ucsKHo1TyIK1oGY7VrzF1/3N3hCCGEEI2eJD116KGrSkfE/3drPJkFZjdHI4QQQjRukvTUoQGtQ+naNIASq8oXG064OxwhhBCiUZOkpw4pisKDg0tbe+ZtOkFeidXNEQkhhBCNlyQ9dezajhG0Dvclv8TG15tPujscIYQQotGSpKeO6XQKDw5uBcBn6+MotrhnIzohhBCisZOk5yIY1a0JTYO8yCy0sHhbgrvDEUIIIRolSXouAg+9jvsHlbb2fPzHMSw21c0RCSGEEI2PJD0XyZheTQn1NZGUW8KyXYnuDkcIIYRodCTpuUg8PfTcO7B0P5KP/jiGXW10C2ELIYQQbiVJz0V0xxXN8fc0cDy9kJV/p7g7HCGEEI3Y5MmTGT16tLvDuKgk6bmIfE0GJvcvbe2ZveZopRutCiGEEKJ2SdJzkU3p1wJvo56/k/L443C6u8MRQgghGDx4MA8//DCPPfYYQUFBREREMHfuXAoLC5kyZQp+fn60bt3aaQd1u93O3XffTWxsLF5eXrRr14733nvP6bo2m41HHnmEwMBAQkJCeOaZZ5g0aZLbWpgk6bnIgnyM3N67GQAfrjnm5miEEELUKk0DS6F7HhfYezBv3jxCQ0PZunUrDz/8MFOnTmXMmDH069ePHTt2cO2113LnnXdSVFQEgKqqNG3alCVLlrB//35eeOEF/vGPf7B48WLHNd944w2++eYbvvjiCzZs2EBeXh5Lly69oDgvhKI1wj6WC92a/kKl5JZw5ZtrsNhVFt/fl96xwRc9BiGEEBeupKSEuLg4YmNj8fT0LE0+XmvinmD+kQRGn2qfPnnyZHJycli6dCmDBw/Gbrezfv16oLQVJyAggJtvvpmvvvoKgJSUFKKioti0aRNXXHGFy2tOmzaNlJQUvv32WwAiIyN58sknefLJJx3XbdmyJT169Kgw+Sn3mp7lQj+/paXHDSIDPLmlV1MAPlx71M3RCCGEENC1a1fH//V6PSEhIXTp0sVxLCIiAoC0tDTHsdmzZ9OrVy/CwsLw9fXlk08+IT4+HoDc3FxSU1Pp3bu303V79epV17dSIYPbam7kHhjUkkV/xbP2UDr7EnPpHB3g7pCEEEJcKA/v0hYXd9V9IcU9PJy+VhTF6ZiiKEBptxbAwoULefLJJ3n77bfp27cvfn5+vPXWW2zZsuWC4qhLkvS4SfMQH0Z1a8KyXUl8tPYYs+/o6e6QhBBCXChFOa8upoZsw4YN9OvXjwcffNBx7NixM2NVAwICiIiI4K+//uLKK68ESru3duzYQffu3S92uIB0b7nV1NMbkS7fl8yx9AI3RyOEEEJUX5s2bdi2bRsrV67k8OHDzJw5k7/++svpnIcffphZs2axbNkyDh06xKOPPkp2draj1ehik6THjdpH+jOkQwSaBu/9coCtK3ezY83flBSa3R2aEEIIUan777+fm2++mbFjx9KnTx8yMzOdWn0AnnnmGcaPH8/EiRPp27cvvr6+DBs2rNwA5YtFZm+5YfbW2dbtPsXE/+4Gu0qrb37Bo6AYT28TN04dwsTnbkJv0Ls1PiGEEBWrbKaRKE9VVTp06MBtt93GK6+84vIcmb11iSrIKeLLSe/jnZgGeh1Z3dsCUFJkZvE7y3nrvrmyarMQQogG6+TJk8ydO5fDhw+zd+9epk6dSlxcHLfffrtb4pGkx41++OQ3Uk6kE7LtIAA5HVti8zIBoGkaa7/dwoGtMqVdCCFEw6TT6fjyyy+5/PLL6d+/P3v37uW3336jQ4cObolHZm+50fIv/kBVNbwT0/BMzaIkIpjsrm0I27IPAL1Bx8r56+nYp42bIxVCCCHOX0xMDBs2bHB3GA7S0uNG2ak5AChAyPYDpcc6t0Q9PY7HblNJP5XlpuiEEEKIS4skPW7kF+zr+L/viWQ8cvJRTUby2pbuzaXT6wgKl0ULhRCivpPxl7WnLl9LSXrc6NoJA9DpS78FChD093EAsju3QgNUu8o14/u5L0AhhBCVKluxuGwTTnHhyl7Lc1eIrg0ypseNbnrwWlZ9/Se5mQWodpWAgydI790Jc2gg5iah9G0XTvdB7hnsJYQQomp6vZ7AwEDHflTe3t5uW3ivodM0jaKiItLS0ggMDESvr/0lW2SdHjev05N0PI237v2EA3+VLt2dPLgXuR1jaWMp4sdXbsDTx+TW+IQQQlRO0zRSUlLIyclxdyiXhMDAQCIjI10mjxf6+S0tPW7WpGU4765+nmN74jm8M45kG/zzSAFxnj7k2TVkqSshhKjfFEUhKiqK8PBwrFaru8Np0Dw8POqkhaeMJD31RKuuzWjVtXQA888fbWT7yWz+uzWBR4fIdHUhhGgI9Hp9nX5giwsnA5nroYl9mwOwYOtJrHbVzdEIIYQQlwZJeuqh4Z0jCfU1kppnZtX+VHeHI4QQQlwSJOmph0wGPeMuL+3q+mrTCfcGI4QQQlwiJOmpp27v0wydApuPZ3E4Nd/d4QghhBANniQ99VSTQC+GdowAYP6mk26ORgghhGj4JOmpxyb2bQHAdztOkV8i0yCFEEKICyFJTz3Wr1UIrcJ8KLTY+X5norvDEUIIIRo0SXrqMUVRHK09X206KRvaCSGEEBdAkp567uae0fgY9RxNK2DT8Ux3hyOEEEI0WJL01HN+nh7c1DMakAHNQgghxIWQpKcBKOvi+nV/Ksm5xe4NRgghhGigJOlpANpG+NEnNhi7qrFgS7y7wxFCCCEaJEl6Goiy1p7/bk3AYpP9uIQQQojzJUlPA3Ftpwgi/E1kFJj5ZV+yu8MRQgghGhxJehoID72O8b1L9+OSAc1CCCHE+ZOkpwG5vXczDDqFbSez2Z+U5+5whBBCiAZFkp4GJNzfk2GdIwGYv/mEe4MRQgghGhhJehqYSacHNC/dmURusezHJYQQQlSXJD0NzOUtgmgf6Uex1c6320+5OxwhhBCiwZCkp4FRFIU7+zYH4OvNJ1FV2Y9LCCGEqA5Jehqg0d2j8TMZiMso5M+jGe4ORwghhGgQJOlpgHxMBm7p1RQo3X1dCCGEEFWTpKeBKuviWn0wlYSsIjdHI4QQQtR/kvQ0UK3CfBnQOhRNg29kPy4hhBCiSvUi6Zk9ezYtWrTA09OTPn36sHXr1krP/89//kO7du3w8vIiJiaGxx9/nJKSkosUbf1R1tqz6K94Sqx2N0cjhBBC1G9uT3oWLVrE9OnTefHFF9mxYwfdunVj2LBhpKWluTx/wYIFPPvss7z44oscOHCAzz77jEWLFvGPf/zjIkfufte0D6dJgCfZRVb+t+UkKfEZlBSZ3R2WEEIIUS8pmqa5dc5znz59uPzyy/nggw8AUFWVmJgYHn74YZ599tly50+bNo0DBw6wevVqx7EnnniCLVu28Oeff1arzry8PAICAsjNzcXf3792bsRN/vnfbXy+OxXPjBxif9mMwUPPoBt7cueTI4mICXF3eEIIIUStudDPb7e29FgsFrZv386QIUMcx3Q6HUOGDGHTpk0uy/Tr14/t27c7usCOHz/O8uXLGTFiRIX1mM1m8vLynB6Xgr2bj7L55cUodpWS0ECKg/2xWe2s+X47j1z3Fklx6e4OUQghhKg33Jr0ZGRkYLfbiYiIcDoeERFBSkqKyzK33347//znPxkwYAAeHh60atWKwYMHV9q9NWvWLAICAhyPmJiYWr0Pd1BVlX8/Oh8KS/A7mQxAdrvSXdhVu0pBXjEfzfzWnSEKIYQQ9Yrbx/Scr7Vr1/Laa6/x4YcfsmPHDr777jt+/vlnXnnllQrLzJgxg9zcXMcjISHhIkZcN3b/eZi0U1loqkbwodLZW3ktorAZPYDSxGfb2v2kJWa5M0whhBCi3jC4s/LQ0FD0ej2pqalOx1NTU4mMjHRZZubMmdx5553cc889AHTp0oXCwkLuu+8+nnvuOXS68nmcyWTCZDLV/g24UcKxVBRFQdM0PDNy8czMpSQkgKxOsYTvPFx6kgaJx9IIjw52b7BCCCFEPeDWlh6j0UivXr2cBiWrqsrq1avp27evyzJFRUXlEhu9Xg+Am8dkX1Re3ibH/SpA6J5jAGR2bEFJkN+Z83w93RGeEEIIUe+4vXtr+vTpzJ07l3nz5nHgwAGmTp1KYWEhU6ZMAWDixInMmDHDcf6oUaP46KOPWLhwIXFxcaxatYqZM2cyatQoR/LTGPQe2hm94cz9+p1Kw+9EMuh0JPXrgqYohEQG0KZbMzdGKYQQQtQfbu3eAhg7dizp6em88MILpKSk0L17d1asWOEY3BwfH+/UsvP888+jKArPP/88iYmJhIWFMWrUKP71r3+56xbcIiDYlxvuupKlc9dQ1sAV+dcBiqJCMAf7k9kplscm9UGvd3teK4QQQtQLbl+nxx0ulXV67DY7s59bzC/fbESn06HTKWQ2iyCpX1cMwIrpg2gd7uvuMIUQQohacaGf35L0NOCkp0zyyQzWfr+N3KwCwpoE8R1ebDiRTa/mQSy5vy86neLuEIUQQogLJklPDVxqSc+5EnOKufadPyi02HlpVEcm9491d0hCCCHEBWvQKzKLuhEd6MWzIzoA8ObKQyRkFbk5IiGEEML9JOm5RN3Ruxm9Y4Mpstj5x/d7G9V0fiGEEMIVSXouUTqdwus3d8Fk0LH+SAZLtp9yd0hCCCGEW0nScwlrGebL40PbAvDqT/tJyytxc0RCCCGE+0jSc4m7Z0AsXaIDyCuxMXPZPunmEkII0WhJ0nOJM+h1vHlrVww6hZV/p/LLPte71wshhBCXOkl6GoEOUf48OLgVAC8s20d2ocXNEQkhhBAXnyQ9jcRDV7emTbgvGQUWXvl5v7vDEUIIIS46SXoaCZNBzxu3dkVR4Lsdiaw5lObukIQQQoiLSpKeRqRnsyDuOr0683Pf7SW/xOrmiIQQQoiLR5KeRuaJa9vSLNibpNwS3lxxyN3hCCGEEBeNJD2NjLfRwOs3dwFg/uaTbDme6eaIhBBCiItDkp5GqF/rUMb3jgHg2e/2kpNbzIFdJzm4Ox6zdHkJIYS4RBncHYBwjxkjOrD6QBpxGYVce+/XhOw6CoC3ryc33NmPO6YNweChd3OUQgghRO2Rlp5Gyluvo92JJADSYqMoDvQFoKighEVz1vCvR75GVVV3hiiEEELUKkl6Gql1y3eT8cff+CekgaKQ3KstmqIAoGkam1fvZ+vag26OUgghhKg9kvQ0Uj8v3IKiU4jYfQy92YI5wJeMdjGO53V6HSsWb3VjhEIIIUTtkqSnkUqJz0RTNQwWKxG7jwGQ2a4ZNmPpMC/VrpJ0MsOdIQohhBC1SpKeRsov0Nvxf/9T6Xhm56PpdeQ2iwBAURQCgn3dFZ4QQghR6yTpaaSG3NQL5fQYHgUIjEsGICc2Co3ScT3X3NjTfQEKIYQQtUySnkZq2JjLCY30R6cvfQsEJKShs9qw+HlTHBFEdGwog0d1d2+QQgghRC2SpKeR8gvw5q1vHqBVxyYA6DWNgITSTUjtPVrx5vz78fQyujNEIYQQolbJ4oSNWETTYN77dhqH95zi7+1xJFtU3jpRSIqvDzZJeIQQQlxipKWnkVMUhXbdYrj5rit56IHB9GoehE3VWLLtlLtDE0IIIWqVJD3CyR19mgGwYEs8dlVzczRCCCFE7ZGkRzgZ0SWKQG8PEnOKWXc43d3hCCGEELVGkh7hxNNDz609mwLwzZaTbo5GCCGEqD2S9Ihyxp/u4vr9YBqJOcVujkYIIYSoHZL0iHJahfnSt2UIqgaLtsa7OxwhhBCiVkjSI1y644rS1p6FfyVgtatujkYIIYS4cNVep+eHH34474sPHToULy+v8y4n3O/ajpGE+hpJyzez+kAawztHujskIYQQ4oJUO+kZPXr0eV1YURSOHDlCy5YtzzcmUQ8YDTpuuyyGD9ce45stJyXpEUII0eCdV/dWSkoKqqpW6+Ht7V31BUW9Nr53MxQF1h/J4GRmobvDEUIIIS5ItZOeSZMmnVdX1YQJE/D3969RUKJ+iAn25so2YQAskAHNQgghGjhF07RGt+xuXl4eAQEB5ObmSmJWhV//TuG++dsJ9jGyacbVmAx6d4ckhBCikbrQz+/z6t669dZbWbFiBY0wT2q0rm4fTqS/J1mFFlbsS3F3OEIIIUSNnVfSk52dzciRI2nWrBkvvPACx48fr6u4RD1h0OsY1zsGKN2PSwghhGiozivpWb16NcePH+fuu+/m66+/pk2bNlx99dUsWLAAs9lcVzEKNxt3eTP0OoUtcVkcTct3dzhCCCFEjZz34oTNmzfnpZde4vjx46xatYomTZpw7733EhUVxUMPPcT27dvrIk7hRpEBnlzdPhyAb6S1RwghRAN1QSsyX3311Xz99dekpKQwa9YsFi5cSJ8+fWorNlGP3HF6P67/bT9FscXu5miEEEKI83fB21DExcXx73//m9dee43c3FyGDBlSG3GJeubKNmE0DfIir8TGT3uS3B2OEEIIcd5qlPSUlJTw9ddfc/XVV9OmTRu++uor7r77buLi4lixYkVtxyjqAZ1O4fbTrT3SxSWEEKIhqvY2FABbt27l888/Z9GiRZSUlHDTTTexYsUKrrnmGhRFqasYRT0xplcM7646zK6EHP5OyqVTkwB3hySEEEJU23m19FxxxRVs2bKFV155haSkJBYsWMCQIUMk4WkkwvxMXNupdA8umb4uhBCioTmvpGfbtm3s3LmTadOmERQUVFcxiXqsbEDz0p2JFJhtbo5GCCGEqL5qJz179uyhe/fu1b7w33//jc0mH4qXmr4tQ2gZ6kOhxc6yXYnuDkcIIYSotmonPT169CAzM7PaF+7bty/x8dIFcqlRlDMDmr/eHC9bkgghhGgwqj2QWdM0Zs6cibe3d7XOt1gsNQ5K1G+39mrKmysPcSA5j10JOfRoJl2dQggh6r9qJz1XXnklhw4dqvaF+/bti5eXV42CEvVboLeR67tG8d2ORL7ZEi9JjxBCiAah2knP2rVr6zAM0dDc0acZ3+1I5Kc9Scwc2ZEAbw93hySEEEJU6oJXZBaNU89mQbSP9KPEqvLdzlPuDkcIIYSokiQ9okYUReG2ntEA/Pt/u7j1qje4f8xsvvtmE0WFZjdHJ4QQQpQnSY+okbycIjZ8sBLFZqfQaCRV0XPiWBqfvL2Chyd8Qk5WgbtDFEIIIZxI0iNq5P3XfiLpeBr+yaXLGOTEhIMGmgZJCVm889IyN0cohBBCOKsXSc/s2bNp0aIFnp6e9OnTh61bt1Z6fk5ODg899BBRUVGYTCbatm3L8uXLL1K0IiMtj/Wr96PaNQJPpQGQHxGEzVg6Ll61q2z58zApidnuDFMIIYRwcl4bjp7tyJEjrFmzhrS0NFRVdXruhRdeqPZ1Fi1axPTp05kzZw59+vThP//5D8OGDePQoUOEh4eXO99isTB06FDCw8P59ttviY6O5uTJkwQGBtb0VsR5OrQvEU0tXZTQM68Iz9wCSgJ8yW4eSdiR04OaNdi/J4HIaJnOLoQQon6oUdIzd+5cpk6dSmhoKJGRkU4bjiqKcl5JzzvvvMO9997LlClTAJgzZw4///wzn3/+Oc8++2y58z///HOysrLYuHEjHh6l06RbtGhRk9sQNXTuBrPBcckkdW9DVssmeOYU4JeeA4BONqIVQghRj9Soe+vVV1/lX//6FykpKezatYudO3c6Hjt27Kj2dSwWC9u3b2fIkCFnAtLpGDJkCJs2bXJZ5ocffqBv37489NBDRERE0LlzZ1577TXsdnuF9ZjNZvLy8pweouY6dY/BYDjz1vFLzSbwZCoAyV1bYfbxRKdT6NKzubtCFEIIIcqpUdKTnZ3NmDFjLrjyjIwM7HY7ERERTscjIiJISUlxWeb48eN8++232O12li9fzsyZM3n77bd59dVXK6xn1qxZBAQEOB4xMTEXHHtjFhDkw5Dru6HTnWnJCT8Uj1dWHppBT1KPtlxxbWdCwv3dGKUQQgjhrEZJz5gxY/j1119rO5ZqUVWV8PBwPvnkE3r16sXYsWN57rnnmDNnToVlZsyYQW5uruORkJBwESO+NE19egSdT7fk6HQKiqbRdM8xDMVmLD6eHG3VFLsqm5EKIYSoP2o0pqd169bMnDmTzZs306VLF8fYmjKPPPJIta4TGhqKXq8nNTXV6XhqaiqRkZEuy0RFReHh4YFer3cc69ChAykpKVgsFoxGY7kyJpMJk8lUrZhE9Xh6GXn9o4lsXneYlct2kJacS0i4P3de2YLXdqWy/mgm//71EM8Mb+/uUIUQQgighknPJ598gq+vL3/88Qd//PGH03OKolQ76TEajfTq1YvVq1czevRooLQlZ/Xq1UybNs1lmf79+7NgwQJUVUWnK22oOnz4MFFRUS4THlF39AY9/a/uQP+rOzgdD2iVyKMLd/HR2mN0auLP9V2buClCIYQQ4owaJT1xcXG1FsD06dOZNGkSl112Gb179+Y///kPhYWFjtlcEydOJDo6mlmzZgEwdepUPvjgAx599FEefvhhjhw5wmuvvVbtREvUvRu7R/N3Uh6frDvOU0v20DLUl45NZHyPEEII96rxOj1lNK103Ma505ira+zYsaSnp/PCCy+QkpJC9+7dWbFihWNwc3x8vKNFByAmJoaVK1fy+OOP07VrV6Kjo3n00Ud55plnLvRWRC16Znh7DiTnsf5IBvfN38YP0wYQ7CMtcUIIIdxH0cqylvP01Vdf8dZbb3HkyBEA2rZty1NPPcWdd95ZqwHWhby8PAICAsjNzcXfX1og6kpOkYUbPthAfFYR/VqF8NVdvTHo68Ui4EIIIRqgC/38rtEn0DvvvMPUqVMZMWIEixcvZvHixQwfPpwHHniAd999tyaXFJegQG8jcydehrdRz8Zjmby2/KC7QxJCCNGI1ailJzY2lpdffpmJEyc6HZ83bx4vvfRSrY75qQvS0nNxrdiXzANfly5a+faYbtzSq6mbIxJCCNEQuaWlJzk5mX79+pU73q9fP5KTk2tySXEJG945ikeubg3AjO/3sjshx70BCSGEaJRqlPS0bt2axYsXlzu+aNEi2rRpc8FBiUvPY0PaMqRDOBabyv3zt5OWX+LukIQQQjQyNZq99fLLLzN27FjWrVtH//79AdiwYQOrV692mQwJodMpvDu2O6Nnb+BYeiEPfr2DBfdegdEgA5uFEEJcHDWevbV9+3beffddDhw4AJSuivzEE0/Qo0ePWg2wLsiYHvc5ll7A6A82kG+2Mf7yGK4L9mDHtjhUVaNjp2gGD+mEp6dH1RcSQgjR6Fzo53eNk56GTJIe9/r9YCp3f7kNDQg/mkBwejYAdruKr58n/3x9DF26NXNvkEIIIeqdizaQOS8vz+n/lT2EqEyfpgFEp2UAkNYymgJvL+x2FYCiQjMznlhIcmK2O0MUQghxCap20hMUFERaWhoAgYGBBAUFlXuUHReiMqtW7MXz8Cl8M3JApyO5QwusxtIuLVXVsFpsLPtum3uDFEIIccmp9kDm33//neDgYADWrFlTZwGJS9/6tQdRgIjD8Vi8TFh8vEju0IKY3UdQKE18/vj9AA88PNTdoQohhLiEVDvpGTRokOP/sbGxxMTElNtvS9M0EhISai86cUkqKbYCoFNVmuyPI757W8x+PuRFhBCQmgmA2Wx1Z4hCCCEuQTWaLxwbG0t6enq541lZWcTGxl5wUOLS1qpNBHp9acLsYbYQEp8CQGbzSFSdDp1OoWWrcHeGKIQQ4hJUo6RH0zSXu6oXFBTg6el5wUGJS9v1o3tit5+ZNBiQkolHsRm70YPs6DBUVeOGmy9zY4RCCCEuRee1OOH06dMBUBSFmTNn4u3t7XjObrezZcsWunfvXqsBiktP2/ZRTJgygK+/+LM0edY0Qk4mk9K+BdnR4YxqH8aAQe3dHaYQQohLzHklPTt37gRKW3r27t2L0Wh0PGc0GunWrRtPPvlk7UYoLkmT7h5EixZhLPpmE0cOp+CbkYOf2Uy+yYTarTk6XfmWRCGEEOJC1GhxwilTpvDee+812IX9ZHHC+qWw0IxqV9mbVsjtn27BoFNYNX0QsaE+7g5NCCFEPeKWXda/+OILSRZErfHxMeHn70W/1qFc1S4Mm6rx1sqD7g5LCCHEJaZGG44CbNu2jcWLFxMfH4/FYnF67rvvvrvgwETj9Ox1HfjjcDrL96awIz6bns1ksUshhBC1o0YtPQsXLqRfv34cOHCA77//HqvVyt9//83vv/9OQEBAbccoGpF2kX7c0rMpAK8vP0gj3BpOCCFEHalR0vPaa6/x7rvv8uOPP2I0Gnnvvfc4ePAgt912G82ayUaR4sJMv7YtJoOOrSey+O1AmrvDEUIIcYmoUdJz7NgxRo4cCZTO2iosLERRFB5//HE++eSTWg1QND5RAV7cNaB0kcs3VhzEdnozUiGEEOJC1CjpCQoKIj8/H4Do6Gj27dsHQE5ODkVFRbUXnWi0pg5uRZC3B0fTCliy/ZS7wxFCCHEJqFHSc+WVV7Jq1SoAxowZw6OPPsq9997L+PHjueaaa2o1QNE4+Xt6MO3qNgC8u+owRRabmyMSQgjR0NVonZ6srCxKSkpo0qQJqqry5ptvsnHjRtq0acPzzz9PUFD9nnEj6/Q0DGabnSHv/EFCVjFPDG3Lw9e0cXdIQggh3OhCP79rlPQ0dJL0NBzLdiXy6MJd+JoMrH1qMKG+JneHJIQQwk0u2uKEeXl51X4IUVtGdW1Cl+gACsw23l99xN3hCCGEaMCqvThhYGCgy53Vz1a2+7rdbr/gwIQA0OkUZlzXnts/3cI3W+KZ0j+WFrI9hRBCiBqodtKzZs2auoxDiAr1ax3K4HZhrD2UzlsrDzH7jp7uDkkIIUQDVO2kZ9CgQXUZhxCVemZ4e/44nM7Pe5O5Jz6bHrI9hRBCiPNUo7231q1bV+nzV155ZY2CEaIiHaL8uaVnU77dfopZvxxk0X1XVNndKoQQQpytRknP4MGDyx07+wNIxvSIujB9aFt+3J3E1rgsfj+YxjUdItwdkhBCiAakRosTZmdnOz3S0tJYsWIFl19+Ob/++mttxygEAE0CvZjSv3R7itd/ke0phBBCnJ8atfS42kl96NChGI1Gpk+fzvbt2y84MCFcmTq4FQv/iudIWgH/23GKsZfLBrdCCCGqp0YtPRWJiIjg0KFDtXlJIZwEeHkw7arWALyz6jD5RRayswsxm61ujkwIIUR9V6OWnj179jh9rWkaycnJvP7663Tv3r024hKiQnf2bc7nf8aRlFvC1dMW4HsqFZ1OYUD/ttx5ez9atwp3d4hCCCHqoRolPd27d0dRFM7dweKKK67g888/r5XAhKhIfm4RXscTICSMjJBgvFIywGZnw8bDbN58lLdeH0vXLjHuDlMIIUQ9U6OkJy4uzulrnU5HWFgYnp6etRKUEJX5cM7vkJCG0csXi7cXOZFhhJxKwW7XUFWVV2f9yH/nP4BeX6u9t0IIIRq4GiU9zZs3r+04hKiWnJwi1q0/hKpqBCemkNImlrywEPzTs/AwW9A0jfSMfLZtj6NP71buDlcIIUQ9UuM/hVevXs31119Pq1ataNWqFddffz2//fZbbcYmRDkJiVnY1dJuVa/8Qrxy80FRyGjWhLLOVp1O4cTJDPcFKYQQol6qUdLz4YcfMnz4cPz8/Hj00Ud59NFH8ff3Z8SIEcyePbu2YxTCwcvTw+nr4MQUFLudEj9fMmOigNKB9SaTh6viQgghGjFFO3c0cjU0bdqUZ599lmnTpjkdnz17Nq+99hqJiYm1FmBdyMvLIyAggNzcXPz9/d0djjgPqqoxfuIc0tLyHMcKA/xIa9kMFIWQ+CQCMrNYOH8q4eHyvRVCiEvJhX5+16ilJycnh+HDh5c7fu2115Kbm1uTSwpRLTqdwsQ7+jkd88nNJygpFYDMmCg6DeosCY8QQohyapT03HDDDXz//fflji9btozrr7/+goMSojIjr+vG3VOuRKco6HQKer2O4IwsfDJzQFFYZzUQl1Ho7jCFEELUMzXq3nr11Vf597//Tf/+/enbty8AmzdvZsOGDTzxxBNOTU6PPPJI7UVbS6R769KQnpHPylX7SE7Owd/fi4ED2/OP346xKyGHlmE+fP9gfwK8ZGyPEEJcKi7087tGSU9sbGz1Lq4oHD9+/LyDqmuS9Fy60vJLuPGDDSTnlnBl2zA+n3QZBlmvRwghLgluSXoaOkl6Lm37EnMZM2cTxVY7d/WP5YVRHd0dkhBCiFrgloHMZ9M0rdx2FEK4U+foAN6+rRsAn2+IY+HWeDdHJIQQoj6ocdLz1Vdf0aVLF7y8vPDy8qJr167Mnz+/NmMTosZGdIni8SFtAZi5bB9bjme6OSIhhBDuVqOk55133mHq1KmMGDGCxYsXs3jxYoYPH84DDzzAu+++W9sxClEjj1zTmuu7RmG1a0z9ZgcJWUXuDkkIIYQb1Xgg88svv8zEiROdjs+bN4+XXnqp3Iak9Y2M6Wk8ii12xn6yiT2ncmkb4cv/pvbDz1NmdAkhREPkljE9ycnJ9OvXr9zxfv36kZycXJNLClEnvIx6PrnzMsL9TBxOLeCxhbsce3cJIYRoXGqU9LRu3ZrFixeXO75o0SLatGlzwUEJUZsiAzz5ZOJlmAw6Vh9M482VB90dkhBCCDcw1KTQyy+/zNixY1m3bh39+/cHYMOGDaxevdplMiSEu3WPCeTNW7vy6MJdfPzHcdqG+3Ftu1B2/Z2A1WqndWw4zaKD3R2mEEKIOlTjdXp27NjBO++8w4EDBwDo0KEDTzzxBD169KjVAOuCjOlpvN7+9RDv/34UvQKRCSfRFZzZrqJHlxj+8fB1RIYHuDFCIYQQFbnoixPm5eWxZcsWLBYLvXv3Jiws7LwrdTdJehovu13lqpeXE29R0NlsRJw4jsFmA0CvUwgM8OazdyYSEuTr5kiFEEKc66IOZN61axft27dn+PDhjBo1itatW7Ny5crzrlQIdzl4LAX73oN4lJSgGgxkNG2GqigA2FWN7NwiFv+w3c1RCiGEqAvnlfQ888wzxMbG8ueff7J9+3auueYapk2bdsFBzJ49mxYtWuDp6UmfPn3YunVrtcotXLgQRVEYPXr0BccgGocVv/+Nhw5CT8Wjs9mwenqS1SSasuZOVdX4adUet8YohBCibpxX0rN9+3bef/99+vbtS48ePfj88885duwYeXl5NQ5g0aJFTJ8+nRdffJEdO3bQrVs3hg0bRlpaWqXlTpw4wZNPPsnAgQNrXLdofDKzC7DbNQw2G6GnEkBVKfbzJyvqTOKTV1CC3a66NU4hhBC177ySnqysLJo2ber4OjAwEB8fHzIza77E/zvvvMO9997LlClT6NixI3PmzMHb25vPP/+8wjJ2u5077riDl19+mZYtW9a4btH4hAT5oteXdmeZSooJSUoETaMoIIDM6KZoioKfryd62ZldCCEuOec9ZX3//v2kpKQ4vtY0jQMHDpCfn+841rVr12pdy2KxsH37dmbMmOE4ptPpGDJkCJs2baqw3D//+U/Cw8O5++67Wb9+fZX1mM1mzGaz4+sLaZkSDdvwqzuxdMUux9feBfkopxLIiG5KsZ8/GU11jOkR7r4AhRBC1JnzTnquueaacruqX3/99SiKgqZpKIqC3W6v1rUyMjKw2+1EREQ4HY+IiODgQdcLyP3555989tln7Nq1q9oxz5o1i5dffrna54tLV8c2UVw9oD1rNhyk7G3sVVhA2KkEMprGUOLjy/oSI/eYbfiYarSMlRBCiHrqvH6ru3tPrfz8fO68807mzp1LaGhotcvNmDGD6dOnO77Oy8sjJiamLkIU9ZyiKMx8bAShQT4sXbELi7U0QfcsKqSfRwk79X5si89h4udb+WLK5fjLPl1CCHHJOK+kp3nz5rVaeWhoKHq9ntTUVKfjqampREZGljv/2LFjnDhxglGjRjmOqWrpgFODwcChQ4do1apVuXImkwmTyVSrsYuGy2DQ8/DdVzN5bD927ovHYrXTtmUEzaKD2ZWQw8TPtrD9ZDZ3zN3CV3f1JsjH6O6QhRBC1AK3jtY0Go306tWL1atXO46pqsrq1avp27dvufPbt2/P3r172bVrl+Nxww03cNVVV7Fr1y5pvRHnxc/XkyuvaMuQgR0cW1B0jwnkv/ddQbCPkb2JuYyfu5n0fHMVVxJCCNEQuH3QwvTp05k0aRKXXXYZvXv35j//+Q+FhYVMmTIFgIkTJxIdHc2sWbPw9PSkc+fOTuUDAwMByh0XoqY6NQlg0X1XcMenWziYks/YTzbxzT19iArwcndoQgghLoDb5+WOHTuWf//737zwwgt0796dXbt2sWLFCsfg5vj4eJKTk90cpWhs2kT4sfj+vkQHenE8vZDbPt5EQlaRu8MSQghxAWq84WhDJntvieo6lV3EHZ9u4WRmEVEBnnxzTx9ahsm+XEII4Q4Xde8tIRqbpkHeLL6/L63DfUnOLeG2jzdzKCUfTdPYsT+B71fvZuWGA+QVlLg7VCGEEFW4oJaeEydOMH36dGbNmkW7du1qM646JS094nxlFJi587OtHEjOw8+kp2l+CjkpZ1Yi9zDoGXddT+4fOwC9Tv6WEEKIuuDWlp558+axdOlSPvvsswu5jBD1Xqivif/e24e2Yd7km+0cNARjMXo6nrfa7Mz/8S/em7/WbTEKIYSo3AUlPV999RW33347X3/9tWO9HCEuVYHeRjrYcjCai9B0erLCYzCbnGd0LVm5k+T0XDdFKIQQojI1TnrWrVtHZmYmH330EaqqsnLlytqMS4h6J6+ghL/2HCcoLQFjcWFp4hMWQ4mnj+McnU7h142ut1ARQgjhXjVOeubNm8ctt9yCn58f48aN48svv6zFsISof/IKS9A00GkawemnMBUXgE5HdlhT8v1D0ACdopCdJ1PbhRCiPqpR0lNcXMy3337LxIkTgdIFBH/88Udyc6VZX1y6gvy90etLf2QUNILST+Gdnw2KQkFgGNlhTbGiEBHs5+ZIhRBCuFKjpOd///sfwcHBDBo0CICePXvSsmVLFi5cWKvBCVGf+HgZuaZPW/Q6BQAFCMhOJSAzCVQVs5cv6REtaNoy2r2BCiGEcKlGSc9XX33FHXfc4XRswoQJ0sUlLnn3jumPt5fRkfgAeBfmEZp6Er3Vgt3gwd1f7+LrzSdphOt+CiFEvXbeSU9CQgK///47kyZNcjo+YcIE/vrrLw4fPlxrwQlR3zSNCGTuy7fTo0NTp+MR3nr+OaQ513aMwGJXeX7pPqYv3k2RxeamSIUQQpxLtqGQxQlFDZ1KzSEhORtvTw86tWmCQa9D0zTmrj/OGysOYVc12kX48dGEnrJ1hRBC1IIL/fyWpEeSHlEHNh/PZNqCnWQUmPE1GXjr1q5c1yXK3WEJIUSDVq/23iosLGTdunW1eUkhGqQrWoaw/JEB9G4RTIHZxtRvdvCvn/djtZcu4plbUMwvmw/wv7V72HUkUcb/CCHERVCrLT27d++mZ8+e2O322rpknZCWHnGxWO0qb608xCfrjgNweYsguvma+XndbkcCBNAsIoh/3jOczi2lNUgIISpSr1p6hBDOPPQ6/jGiA3Mm9MTXZOCvE9l8tiePIp3J6bxTaTnc/9YSjp7KcFOkQghx6TOcz8nBwcGVPl/fW3iEcJfhnaPw1WtM+mwzdoOJ3IAYvAsz8CrOQgFUTcNmszP3x028MXWUu8MVQohL0nklPWazmalTp9KlSxeXz588eZKXX365VgIT4lLz96EThOTGk+sTjtkzgCLfMGweXngXZWCwmbGrGmt2HKWoxIK3p9Hd4QohxCXnvJKe7t27ExMTU26NnjK7d++WpEeICmTnF6NTwDc/BYO1mELfcCwmXywmX/TWEjxLcjGZ88gvMkvSI4QQdeC8xvSMHDmSnJycCp8PDg527MclhHAWEeyHqmoogFdJLoHZ8RhL8kBTsXt4UugXQVZIK1779Qhb47IqndF1Mi2b1buOsP7vOIrMlot3E0II0YDJOj0ye0tcJKlZ+Yx6+lPUc37kVEWP2dOfEs8A7IYzA5xbhvow9vIYbu7ZlDC/0uOJGbm8vGAVWw8nOM7zMhq446qeTB3ZF71O5iYIIS5dsjhhDUjSI9zl46Ubmfvj5nLH9ToFH28TM+6+gd8OZ/HjniSKLKUTAww6hSEdIhjeMZT/W7KC3KJi7Krzj60CjO7bmRfvGHoxbkMIIdxCkp4akKRHuIumaSz8bSef/bSFnIJix/HeHZsxY8I1xEQEAVBgtvHT7iQW/pXAroQcx3k61YqHLQ+jNRe9Vn5fr8UzJtA2OqzO70MIIdzhoiU9sbGxKIpS9YnneOyxx3jkkUfOu1xdkqRHuJvNZmfPsWSKzBZio0KIDguo8NyDKXks2prAlxuOoSn60oOahsFehKclE4NaApS2Ft0+uAdP3DzoYtyCEEJcdBf6+V3t2VtffvnleV8coEWLFjUqJ8SlzGDQ07Nd06pPBNpH+vP08LZ89+sqrAZfLAZ/bAYfbAYfCvRe+BYnYFDNaBqk5RTUceRCCNFwVTvpGTRI/noUwl08PQx4Gw0UW/Ix2vKxKx4Um8KxGXwo9IzGrzgevWInxN/H3aEKIUS9JVM9hGgAFEXhhis6oteVdjHrNSs+Jcno7GY0nYECz2hsqsKoPh3cHKkQQtRfkvQI0UBMGXo5fl4mR+KjoOJbkoii2lD1JrwiWtO6iQxiFkKIikjSI0QDERnkx7zp4+jUPNJxTKfZCLAmY9BBSiG8+MPflS5qKIQQjZlMWZfZW6IBOpKYweHEdIweevq0a8bmuBzu/3o7mgbPjejAvVe2dHeIQghR62SdnhqQpEdcij5df5xXfz6AosBHd/RieOfIqgsJIUQDcqGf39K9JcQl4u4BsUy4ohmaBo8t2snusxY1FEIIIUmPEJcMRVF4aVQnBrUNo8Sqcs9X20jMKa66oBBCNBKS9AhxCTHodXxwew/aR/qRnm/mri/+Ir/E6u6whBCiXpCkR4hLjJ+nB59NvpwwPxOHUvN5aMFObHbV3WEJIYTbSdIjxCUoOtCLzyddjpeHnnWH02UquxBCIEmPEJesLk0DeG9cdxQFvtkSz2d/xrk7JCGEcCtJeoS4hF3bKZLnRpRuTfGv5QdY+XcKACk5+RxKSie3qMSd4QkhxEVV7Q1HhRAN090DYjmRWcjXm+N5eMEO2gflE5eSBIBepzC0SxseGzmA6OAAN0cqhBB1S1p6hLjElU1l7xTljcWusTfdE/X03zt2VWPV3iOMf++/nMrMdXOkQghRtyTpEaIRsKsqmWkH0WlmNMVAsT4a7fSPv13VyCsu4Z2f1rs5SiGEqFuS9AjRCPy+7xiF5hK87Ikomg1VMVGsi6JsPpdd1Vi97yhZBUVujVMIIeqSJD1CNAInM7Ix6HTosOFlTwRNxa7zoUjfHDsmAFRNIzk7z82RCiFE3ZGkR4hGwM/LhP30Oj16zHipSSiaHVUxUaRvRokuFA0FX0+TmyMVQoi6I0mPEI3AkC5tUM762qAV4W0/gUHNA0XBqgvGYmxJQo7NbTEKIURdk6RHiEYgIsCXMVd0cUp8dNjxUlNOj/OxYlH1TPhsK09/u5vcItmvSwhx6ZGkR4hG4pnRgxnTtyuKAjpFwaAv/fH387DwxujWTOzbHIDF204x5N0/+GVvsjvDFUKIWqdojXBDnry8PAICAsjNzcXf39/d4QhxUSVn5/Hr7iPklZhpGhzAsG5t8TZ5APDXiSye+d8ejqcXAjCsUwSv3NiZcH9PR3mr3U5STj4GnUKTQH8URXFZjxBC1LYL/fyWpEeSHiGclFjtfPD7Ueb8cQybquHnaeC5ER24qUcUc9dtY8GWXeSc3r4iJjiAewZezq2XdZbkRwhR5yTpqQFJeoSo2v6kPJ79bg97TpWu1BzkbcdsSQAsjnMUQAMm9+/F09dd6ZY4hRCNx4V+fsuYHiGESx2b+PPd1H48N6IDHnqF7CI9RbZmWNUgyv5UKvuL6csN29mXmOK2WIUQojok6RFCVMig13HvlS1pF56DTikCdFjVMMz2Zqia0XGeXqew5K+97gtUCCGqQZIeIUSVUnKzMOlOYdSlAHZUPCmxN8OuegOl21gcS89yb5BCCFEFSXqEEFXyMnqgKGDQ5eGlP4FOKQR0mNVobKovOgX8ZDVnIUQ9J0mPEKJK13dtj15XOjtLUeyYdInolTxAwaJGYbYHcF3ntu4NUgghqiBJjxCiShP69sDTYECnlCU+YNSlYFByAAWrGkFcpoFGOBlUCNGASNIjhKhSdJA/n991K6G+pWN4DDodBr0OD10akf6la/a8+9sR/vXzAVRVEh8hRP1UL5Ke2bNn06JFCzw9PenTpw9bt26t8Ny5c+cycOBAgoKCCAoKYsiQIZWeL4SoHV2aRvLbk/fwf7ePYlL/ntw98DLm3zuGTTNuZub1HQH49M84nvp2Dza76uZohRCiPLcnPYsWLWL69Om8+OKL7Nixg27dujFs2DDS0tJcnr927VrGjx/PmjVr2LRpEzExMVx77bUkJiZe5MiFaHwMeh1DOrbmiWEDeWxofy5r0RRFUbh7QCxvj+mGXqfwvx2nmPrNDkqsdneHK4QQTty+InOfPn24/PLL+eCDDwBQVZWYmBgefvhhnn322SrL2+12goKC+OCDD5g4cWK16pQVmYWoG6v2p/LQgh1YbCp9YoP5dNJl+Hl6uDssIcQlokGvyGyxWNi+fTtDhgxxHNPpdAwZMoRNmzZV6xpFRUVYrVaCg4PrKkwhRDUN7RjBV3f1xs9kYEtcFuPnbiajwOzusIQQAnBz0pORkYHdbiciIsLpeEREBCkp1VvS/plnnqFJkyZOidO5zGYzeXl5Tg8hRN24omUI/73vCkJ8jOxLzOO2OZs4lV3k7rCEEML9Y3ouxOuvv87ChQv5/vvv8fT0rPC8WbNmERAQ4HjExMRcxCiFaHw6Rwew5IG+RAd6cTyjkDFzNnEgOZdf9h/mvoVLGf3pN0xb8iNrjhxHlWnuQoiLxK1jeiwWC97e3nz77beMHj3acXzSpEnk5OSwbNmyCsv++9//5tVXX+W3337jsssuq7Qes9mM2XymiT0vL4+YmBgZ0yNEHUvOLWbiZ1s5klaAQaeC6RQGgxlV09ArCnZNY2Cr5nw45gZMBoO7wxVC1HMNekyP0WikV69erF692nFMVVVWr15N3759Kyz35ptv8sorr7BixYoqEx4Ak8mEv7+/00MIUfeiArxYfH9fAn00bKoOW3FTbNbSVln76b+3NhyP563V690ZphCikXB799b06dOZO3cu8+bN48CBA0ydOpXCwkKmTJkCwMSJE5kxY4bj/DfeeIOZM2fy+eef06JFC1JSUkhJSaGgoMBdtyCEqESxrYQijqLoS/frspVEo9p8Hc+rmsainXvJL5EBz0KIuuX29uSxY8eSnp7OCy+8QEpKCt27d2fFihWOwc3x8fHodGdys48++giLxcKtt97qdJ0XX3yRl1566WKGLoSohs0nEkDRMHgmYSuJRLP7YSuJQm/MROeRhaKA2WZnV2IyA1u1cHe4QohLmNuTHoBp06Yxbdo0l8+tXbvW6esTJ07UfUBCiFpTNlBZUTQMnsnYzXZUWyB2SyiqzQeDZwqKzuro7hJCiLri9u4tIcSlrUfTJo7/KwroTWnoTcmAHU31wlrUHM0aSOfIcPcFKYRoFCTpEULUqVahwVzRIgb9WTu06z3y8fA+6RjnYzWH8/iifSTnFrs3WCHEJU2SHiFEnXvzhuFE+vuhnE58AHQ6Gx6eiUSFFGIy6Fh/JINh765j2a5E3Lw7jhDiEuX2vbfcQfbeEuLiyyspYfHOfSzZtY/MwiKi/P0Y27MLt3TrRGK2mScW72L3qVwARnaJ4tXRnQnyMbo5aiFEfXKhn9+S9EjSI0S9YLOrzF5zjPd/P4JN1QjzM/HGLV24uv2ZbWo0TSPfbEYD/E0mp5YjIcSlT5KeGpCkR4j6a8+pHKYv3s3RtNK1t8b3bsZzI9qz4ugh5m7bztHMTABaBwdzz2WXcWvnTpL8CNFISNJTA5L0CFG/lVjtvLXyEJ/9GQeAn5dCoekkOo9iyn5hKYAGTOjWjZeuuVoSHyEagQa9DYUQQrji6aFn5vUdWXBvH0J8Pcgv1lBzYrAXhKJppclNWfLz9e7dbIyPd1+wQogGQ5IeIUS91a9VKD07lqDzzAUUtOIQ1OzmaFaT4xy9ovD1rt3uC1II0WDUixWZhRCiIkez0lH8ctEZC1DzI8BuQs1pAYYiFK9cNFM+B9LT3R2mEKIBkJYeIUS95uXhAYBiKkAXfALFlAdoYPNGy49CzWxFbmYg+5Py3BuoEKLek5YeIUS9NqJdW45kZqJqGorOjuKfjGZPQysJQCsJANVIdraeEf+3nm5NAxjXuxmjujXB13Tm11uhxcJ/9+/hv3/vJbkwn2BPL27r0Jk7u3QnyNPLjXcnhLiYZPaWzN4Sol7LKCxk6BdfUmCxODYvLaOg4Kn5c0VYF/44nIHVXvq8j1HPqG5NGN+7GTGhRsYtXcyRrNKp7mVX0CkKEd4+fHvLeKL95PeAEA2BTFmvAUl6hGhY/k5N4+7vvyO9sAiDrrRX3qaqhHp789nNN9E5IoKMAjPf7TjFwq0JHM8odJT194V8j1Q071zQqU7X1SsKPSObsOTmcRf1foQQNSNJTw1I0iNEw2O22Vh55ChbT50CoHfTaIa1aYPJ4NxLr2kaW+KyWLg1nuV7k7Gcbv1BUcErH3xzwFhcutDPaSvHTaJdSOhFuhMhRE1d6Oe3jOkRQjQIJoOBGzq054YO7Ss9T1EUrmgZwhUtQ7imhx8Pf78OCgLBZoKigNKHRwn45IBPHuhUdqUmS9IjRCMgSY8Q4pIV4GUAv2zwzQaLJxQGQpE/WD0hJxJyw8A7j7Rcm7tDFUJcBJL0CCEuWT0jm+BpMFBis4GpBEwpEJgGhQFnWn8Kg3h7WRLrd5cwoW9zhneKxGgov5rH7vRk1iWewK6pdAuN4sroFuh1suqHEA2JJD1CiEuWr9HInZ278emu7Y5ZW+hUR+uPYvEhQmtKeqaOrSey2Hoii1BfI2Mvj+H2Ps2JDvQivbiQB1YvZVtaInpFQUHBpqk09fXnk2tuolNIRGUhCCHqERnILAOZhbikWex2Hlr5I6vijqFXFOya5vj3ssgmfDnqFgqKVRb+Fc9/t8aTmmcGQKfAVe3COagdIklLRsX5V6VeUfDxMLJy9BSa+Fb+e+RwTjqLju0iviCHAKMnI5t1YFCTVuiqsUmqxW5jZdIBfk8+TIndSvuACG5r0ZMo74CavyhCNFAye6sGJOkRonHRNI0Np+JZfGAfp/LzCPf25uZ2nbi6RUvHFHgAq13lt/2pzN98ko3HMs+U9zBDQDYE5IDe7jiuVxTu7nQZz/W+qsJ639y9lo/3byqXcHUPacIXV40lwFjx4ogJhdlMXj+fU0U56FBQ0UoTJQ1e6jGCsbG9LvzFEaIBkaSnBiTpEUJU5WhaAXctWU18ogKqHgBNUcG7AIwWMFjBYCXI18DqsRMJ9jGinNNy882RHcz8a4XL6+sVhf6RsXx5les1gqyqnRGrPiSxKBe7pro858sBE+gb3vIC7lKIhkWmrAshRB1oHe5LRItCTpoSIT8AcoJRzF5Q6A9n1j4kB+j16m+YDDqaBHrRJNCTJgFeRAV48tWJPWiab2mS5GFF0Z35G9OuaaxLPs6hnDTaBYaXq//35MPEF2ZXGJ9eUfjk8AZJeoQ4D5L0CCFEBVoGBLM9LRF7QA7456CVeEGJF9g8wOqBYvNAbzdht+ox21TiMgqJO2s1aAg7/Sil6W3lVoW+9eg2fAymcnXnWoux2Lo4jSRSDDZ0QTnogrPBu4RNaXFYVDtGnb5W71uIS5UkPUIIUYHx7bqx8PCe0i8UwKu49HGaBrzUdyi3telKaq6ZxJxikk4/9qVmsTLuOFiMYPUo7SKzG8DuXEe+VSOfEhe1K4DR6YhmNWIv9sae1ATFqxhdcBZHU/PpGBVY4T1omsb2rDiO5afhZTAyMKwdQSafmrwcQjR4kvQIIUQFuodFMalDD+Yd2FnuOZ2i0Cu8Cbe17YJJr6dZiDfNQrwdzxdaLVz+3R+U2G1oGmDXlyY/mvO4nxd6DeXy8Jhy1/8hfg9fHt2CdlZbj1bshZoVhJrrj1bshT0xmhHvbaBDlD/Xd41iVNcmTjHsyU7g+d1LOFWUhUJpkqZXdIxp1pvHO1yHRzVbiDLNeRTZzYSa/PHSl2+VEqKhkIHMMpBZCFEJTdP4cv8O5uzdQkpRAQC+HkbuaN+d6T3642nwqLDsi3+tZMHRHdhd/JrVKQoRXn6su+FBl4scZpuLGPTLf7CoNs4trdn0qNmBxFrbEJdkw6aeOaNr0wBGdomicysPntz3OVbVXm66vQKMatqTl7reXOm9b808xJfHV7I/Lx4Ao87AsKjLuKvlMIKMfpWWFaIuyOytGpCkRwhxvuyqyvG8bOyqSgv/wEqTnTL5VjPjf/uag9lpTomHXlEw6Q18c80ddAtpUmH5XxMP8OjWb1FQHDO4ytqJro5qx//1GUN+sY2Vf6fw055kNh7L4Kz8B4NfPsawDIxhWehMlnLX//bKR2jpW34QNcCvydt5bf9/UVCcWpv0io4wUwAfXf6IJD7iopOkpwYk6RFCXCxFNgvzDm1jwZEdJBbl4WMwcmOLTtzToQ8t/IKrLL83O4nPj2zkt6RDWFU7rf3CmNCqN7e26OG0xhBARoGZX/al8MOuRP46kcXZW8kb/PPQ+xWi87CieFgxGO1c37wTd3foR4iPEX9PD3S60vMLbSXcvP5lzKrVZUx6RcfIJn2Y3v6WSmPXNI0D+cc4XpCAh85Aj8COhHuGVHnPQlREkp4akKRHCOEOmqaVW8unLsqnl+Qx9Jd3sWSEYEkPwZZX9e85vU4hyNtIiI8R1aOYJGsiOqMVvYcVndGC3mTB6FOIwbsYRQGTzoNlV76Mp97o8nonCxN5+9DnJBSnOFqLFBT6h/bkwda346X3PO/7F0LW6RFCiAbiQhKe8ynv7+GFp5eGLjoFz+gU7CVGrFlBqCUmVKsHmtWAZvXAT/HHZtaTb7ZhVzUyCsxkFJhPX8X1nmKKzo6HTxEevgX8n/0QfZpF0i7Cjwh/kyO+tJJMntv7LsX20muVdY9paGzM2EGetYCXOj18wa+HEOdLkh4hhLjEmPQejIzuzg+ndmDXVPSeFvRNUp3O0aHw81VPEuEVgNlmJ7vQSmahmaxCC0vjtrM28RA2iwG7xQPV6oGtxBNrgQ+aqseS74cl348Pk+P5kNJBzgFeHrSL9KNdhB8ZhsOka16Y/KzoPZzXJVLR2JN7iH25R+gS2PaivSZCgCQ9QghxSbq39WD+SD1ArrXI5eyxe1oPJsKrdNNSk0FPZICeyIDSLqemUd3ZvuW3cmU0DWzFXtgKfAm0RtNa35FDqfnEZRSSW2xla1wWW+OyABNwBQAensV4+efjG5pJcHQiHp4WdOj4I32rJD3iopOkRwghLkGRXoHM63c/r//9ExvTDzvmXwUbfbm39WBua96nwrKxvpFcGdaFP9P3Oc06UxTw8C7G6F3Cv3rcxGXBpUlLidXOsfQCDqXkczAlj4UHt1Cc54e1xMvxyEsLJ+lAOwLC0wlulkBOYGFF1QtRZ2QgswxkFkJc4pKLczhZkIGXwUingGgM1ViUsMRuYdb+hfyRtgcdOnSKgk2z46k38lT7MVwT2aPCsndtnUG2NQ+bxUBJvh9Fuf5kJzWhKDvIcY6Pl8btl7VkzGUxtI1wPfU9x5LDtuy/KLQVEGoKpVfQ5XjKAOhGTWZv1YAkPUIIUT0nClJYl76XQlsJzXzCuSq8O94u9go728L4n1mS8Eu5RRGL833JSmhK1qlobOYz1+gWE8htlzVlVLcm+Ht6oGoqSxIWsTptFRoaOkWHXbNj0pkY3+wOBoReWa3YS+yFJBWfRKfoaOIVi1Enq0k3dJL01IAkPUIIUXcKbUU8tftNUksyUVHLPT80fCBtrFexeFsCaw6mOVaUNhl0jOgSRXizoxw1/ERFk7umtnqIXkGXV1i/2V7MLylfsy3rd2xa6VpDJp0X/UKvY0jEbegVGdnRUEnSUwOS9AghRN3Ksxbw6fElbMjY4Uh8/Aw+jI4ewujoIeiU0oUV0/PNLN2ZyOJtCRxJK3CU9/QupEmLOKKan8TLp8jp2hGmSF7tPMvllHerauGT4y9yqugY2jkJl4JCR//LmdD8KZku30BJ0lMDkvQIIcTFkWvNJ6EoGYNioJVvMzx0rltZNE1jV0IO//fnVtbtL8ZuK9vmQyMwNANv3wI8TGaMRjMeJjNT2oylTXATgr2NBPsa8THqURSFLZmr+D7x40pjuiv2edr6da/0HKtawrH8zRTas/AxBNPK9wo8dNUfT5RjjiO1eDsaGuGeXQn2bFftsqJikvTUgCQ9QghRP61IWc6SE9+TkhhF0okWZKe7XiTxXEaDjmBvI3ZDBjpjHiZTiePh41tAYGAW/v65eOihY0BvJjR/ssJr7cr+kT9SP8OqFaOgQ0PFqPNmcPi9dA0aUWkcxbYs/kx5kZTivzizDYhGmGcXBka+io9H1fdTbE0kqWApJbYkPPSBRPmMws/Uvlqvw6VOVmQWQghxyQg3RaAYrEQ1jyeqeTzFhd5kpUZgMZuwmE1YLSasZhNhulbkF6tkFpopsapYbCopeSWA7+lHeYqi4h+Qw44QCwVtj9Ehyp8OkX6E+Z1ZTXpP9nJ+S/nAUaasi8yiFvFrynvoFA86Bw51eX27amZV4jTyLCcdpctklOxn5an7ub7ZfIx617PVNE3jWM77xOXMobQzrjSmk7mfE+FzHZ3DXkenuN72Q1SPJD1CCCHqja4B3fA1+FJgKx3f4+VTRHTLOMfzOnR09O/EY20HO44VW+yO1aTnHnyPtMIiLGYTJSWemM1e5Of7k5MdhNVqIjcnmNwceP3YQUf5YB8jHaL8aBfhS5JuPQEBYQQFZmHQ28vFty7tMzoGXI1OKT/tPy5/FbmW4y7vS8NOoS2Vo3k/0DHoDpfnJOQvIC7nI0eJs7thUgtXYFB86Rj2T9cvnKgW6d6S7i0hhKhXdmbv4MNj7wPOH/06dJj0njzXYSaRnlEuy65J+x+/piw8J2UoXU26qMiHnJwgmmkjyckJ4WByHnEZhaguPgUVRSXIP5vgwCz0epvTcy18euJjCC5XJqloC8X2LKdjep0dk4cZk4cFk9FMoKc//Zrcj6/JUPrwLP3X26iwK+06NCWtwllroOPKmLWYDGEVnYCqmckr+oX8kjVomhUvY1eCfG7DoC8fb0MkY3pqQJIeIYSo3w7k7ef7xP9xvPAYUNrZ0z2wB7c2vY0Iz8gKyxXa8nnv8BMU2HLKTZfXoSPCM4aHWr+OQVc6ULrEaudwaj4Hk/PZcPJvtp06SUZ2CGazV93dXCX0OhueHmY8jWa8jMVEBqTTLDSRmJAkmoUmckWzZ4j2u9VlWbP1OHHp47HaEwE9pd1rGgoexIR8QIB35eORzqZpdkBXo1lupWmFhnJ6hl5tkqSnBiTpEUKIhiHTnEmhvYAgjyD8PKr3+zrLksaCk+9wqvgoCopjj/c2vt0Z1+wRfAyur3OqaC8LTz6JpkFhkQ+Z2aFk5wWhqs4f/D2DR+PvUb615WjeT+RZTji1MtnsBixWI2arEbPFE9QQvJUuFJhtFJpt5J/+t8hSvivNlRBflS7REXRq4k+nJgF0jPKnWbA3UMLhlCux2tOAc6+lADpaR/yEl7FLhdfW1GKKCz+nuGgeqj0R8MTkdSPevlMxeLSpMjbN+jda4adQsgqwgL4FivcE8B6HUktjkSTpqQFJeoQQ4tJ3qugoJ4sOoUNHK9+uhHtGV3q+pql8emwKudZUwNVHo0KQMZq7Wn7qsgUkoWA9a5OfqrSOfhHP08r/+nLHCy2p/HZ8BCVWD0qsnhRbTBSW+JCYHUlCRhPiM6JJyw1Fo3zria/JQJtwM9GBf9AqLIHY0ASaBSfh4TQmSU+A9w00C3nf9b2rheRkjsFm3QtOLWR6wIPAkP/iYepd4X1pJb+j5Uyj9HUrq/f0a2TshxL0ca0kPpL01IAkPUIIIVw5UbCd/yU8f7q15qzNVk+3loxpNotmPt1cltU0lTVJT5FYtJFzkyYFHaGeXRja9AP0iofL8rtSp5FRtBatXEsNgA5FbUGg/isOJOfzd1Ie+5PzOJiSj8VWftVrg85GVEAaob7ZhPjkEOKbTahvET2bv0mEvydRAZ4E+xgdyVtB7j8pLvyU8q1Ep+vWBRMSsQ3FReyaWoCW1h8oKXffZXev+D6J4nuvy/s+H5L01IAkPUIIISoSX7iLtamfkGY+5jgW4dmGwRH3E+NdcfcQgF2zsitzDodzvsOmFQOgV4y09r+BHqEP4aGreKxQiS2ZrUnjsNgznRIfBT2K4sFlkV8S4OmccFntKsfSC1h36C3+TiogLqMpxzJiKDT7VHmfRr2OcH8Tkf5GgkxrCPPJINwnhzDfHMJ9czDqrU7n+/j/A6NpQLnraCUr0ArnljveIjAdf1NJ6Re6SJSwPy54JWxJempAkh4hhBBVyTTHU2grXZE5xNTsvMpa1WKyzIcAjSBjW4z6qpMQALMtjbjcuSTl/w+7VoyCgQif4cQG3o+vsXWF5VJy3iA9/0PAjqZBWn4ISbnhZBYEklkYSGZBMNnFMRSYu5GSW0JGgeW87qcm5t00h4HNDzm+VsK3ougCL+iasjihEEIIUQdCTM3OO9kp46HzIsKr+3mXMxnCaR/yHG2Dn8Gm5mPQ+VRrQcJg3ztIz58NgKJAhH8mEf6ZTuc0DX6HIJ+BAFhsKmn5JaTmlZCYdYq4pLdJKwgkvTCQtIIg0gsCsanOaxEpOj90SvmFFTUtF7SicsdN57QUgetuvYtJkh4hhBCintEpBoz6oGqfbzQ0JTroNRKzn6V08PHZg4k1AryuJ9D71rPO19E0yJumQd70bBZEVpNjqPYTuB6TUyow9Bc8jF3LHdfMf6BlP1vZ3YBHTxRd9Vq76lLtT6IXQgghxEUX7DuB2LBF+HoOoGzmlMnQmuig14kJmV3hujmKouDj9wgVJzx6PIx9XSY8ABgHgqENpcmWKyqK733ncSd1R1p6hBBCiEuEr2d/fD37o2l2NOzV3qvL0/s27PZEivL/zZmWotJ/DR6d8Q/+pMKyiqKDoE/RsiaDPe50OZWyxEvxex7FNPhCbqvWSNIjhBBCXGIURY9SYcuLaz5+j2PyupGSwgXY7XEoii8mrxswmq6qcnVlRR8FoT+B+Xe0klWgFYOhLYr3GBR9kwu5lVols7dk9pYQQgjRIFzo57eM6alFVouVgpxCVLX8QlFV0TSN/OxCigtKalR3XlYhicfTKMwvPu+yqqqSkZJLZmoeNc2BLyR3tttUbLbqLcF+KSmxWMktKEZ1tdthFWx2lbScAnILa/Z+0TQNi81W9YkVlC00Wyi2nDszo3qsdju5xSXYavBzAlBitVJirXndmcVFmO01u/dccwmZxUWoNXi/q5pGvtVc4/u22G0UWM01+lnTNI1CmxmrWrP7tql2imwlNa67xG7Gqtbse2a2m8mx5GCrQeyappFvzaHQVrPfbTbVQqEtB5t6/tO7NU3DbM/DbM+tUd12tYhiayJWNf+8ywLY7NlY7WloWk0+j+yoahaaVtPfL8Voak6N6q5r9aJ7a/bs2bz11lukpKTQrVs33n//fXr3rni56yVLljBz5kxOnDhBmzZteOONNxgxovobqdW2IzuOs+C179i47C9Uu4pfsC/X3z+UsU/fiE9A5aPV7TY7S+f8xrKPVpGWUDq9sEPvVtw2fSR9R/Sosu5Du04y/62f2f7HAdBAb9AxcFQPJj51PVHNQyuv267yw/wNfP/FetKTcwGIahbMLXcPYsS4PlUuIpWTVch332xixffbyc0uwj/Ai2Gje3LzhL4Eh5af1niuLRuPsHjBZvbujkfToFWbCG4Z24chwzpXWXdJiZWflu/ih593kZqah6+viWFDO3Pz6F6EhlRdd1xCBt/+uJ31W45itdlp2yqCW0f2ZEDv1lXWbbHaWLp6D9/+uovE1Bw8TQauuaIdt4+8jBbRIVXWvetIIp//vIVNe0+gAYG+Xoy5qhsTr7scL1PlUzqLLVa++PUvFq3f7Uh4OjeP5N7hvRnUpVWVdR9Py+KLNX+xfOchLDY7Ib7ejO3XlTuv7Imvp6nSsnZVZfFfe/lq4w5OZuYA0C0minuuvJxrOlRd98msHD76cws//n0Qq13Fy8PAzd06cX+/3kT6+1ZaVtM0fjx4kE+3befvtDQAOoWHc89lvRjVvn2V37Pkgnze37aZ/x3cj9luw6DTcX3rdjx82RW0Cqp69+mfjh/kw72b+TuztO4oHz/u7nQZUzr2wqCr/G/HXEsxn+zfwoKjO8i1lGBQdAyPac+DnfvRPjC8yrq3pJ/gk0Mb2JB2DA2I9PLnzla9mdi6D0Zd5d0XxXYL38RtZPHJLWSY89GhMDC8HVNaDaJrUEyVdR/MS+CbE6vZkP43KhqBHr7c2LQvY5sNxttQxftFs/NL8jp+SlpLqjkDgG4B7bm56VC6Bravsu74opP8mPQDu3J2oKFhVIz0Dx3AyKgbCDQGVlpW1exszPiFPzN+JseaDkC4qSmDwkfTM3BQ1b/bLElsyljAgbw1qJoNveJBB/+ruCL0DgKNFW92CqXv1eP5v7A/+2tyLMcB8POIoWPgeNoEjK6ym6jYlsSx7PdJKfgZDSugEOo1iFZB0/A3daq0LEBu0c+k582m2LoHAIMughC/KYT63Vfl+B5VzaWo4ENKCueXTkNHh9E0FG+/R/Ewul6F2uneLVvRCj4Cy+kVqXWh4H0H+NyForhnA9dzub17a9GiRUycOJE5c+bQp08f/vOf/7BkyRIOHTpEeHj5XwgbN27kyiuvZNasWVx//fUsWLCAN954gx07dtC5c+dq1Vmb3VvbV+3m+etnoWoa6llLgev0OmLaNeHd9a/gF+T6F7rdZuefd7zP1hV7nP4S0OkUVFXj3tfGccu0YRXWvWfjEZ67fTaqqqHanev29vPkPz8+QXRL179UVVXlrScXsfanXc5PlM5uZOTtV/DQi6Mr/OWQlpLL45M/JSs936mlQqdTCAjy4T/z7iEyuuLplgu/3shnc9Y47hVKZxBomsbIG3vw6JPXVVh3YaGZ6U//lyNHUzn73avTKfj6evJ/79xO82YVJ3wbtx3juVlL0TQN++m6y+IYPbw70+8fUmHdJRYrj7/+HbsPnQJw1K/XKej1ev7z7C306NC0wrpXbzvMjDk/g4Lz66YotG0WxidP34a3p+tfTCUWG/e9/y37TqQ4tTToFAVV03h2zFWMG9S9wrp3nUji3o//h9Vud9x3WfnY8CDmPTSWAG9Pl2VVVePpJb/wy97Shca0s8qqmsb0awdwz5WXV1j3gdR07pi3mGKb1aluvaIQ5O3FosnjiAkKqLD8rD/+4NNt2x31nV333b16MWPQlRV+z+Jzc7jpfwvIKSnBrjnXbTIYWHzTWDqHRVRY93u7NvLOjj9Pb1x59rYEMKRZaz6+ejT6ChKfbHMRt/76FfEF2eXqNig65l09nt7hFa8DszR+D89uW4pOUZzKKyj0CWvO3P53VJj4FNstPLDlc/blJDrFrVd0aJrGmz3Hc3Vkxwrr3pxxgOf2fAEa2M/ai0mHQqxvFP/X60F8DK7fL3bNzusHPmF79j6n+UA6dKioTG11O9dG9q+w7sP5h3jn8Fuomuq0U7oOHf4eAfyjw0yCja6TVVVTWRj/HntyN5zzTOkvt0FhN3Jd1J0V1p1ecoL/npyOVS0ptyqyUefF7S3erXTtnu3p77M/5xtHfWfX3dJvJP0inq/wvVpkTWBr0lhsat45W1GUjs/pFfkpQV4V/5yl531ISu5rlHbinN3KouBrupIWYV+63EYCQFVzyMkYjd12HM6pGxQCgr/E6HlVhXVrxT+i5T55uu6zy+vAoytK8LxaSXwafPfWO++8w7333suUKVPo2LEjc+bMwdvbm88//9zl+e+99x7Dhw/nqaeeokOHDrzyyiv07NmTDz744CJHDhazlX+N/w92m+qU8ACodpWEQ0l8OXNhheV//eZPtvyyu1zTZ9mH4dznFpJ4NMVlWVVV+fdj87HbVaeEp6zuovwSPnp+SYV1b159oHzCA46f0Z8XbGbv1uMVln/vlR/Izigo1zWjqhq5OUX8+4XvKyx7/Ggqn81Z4zjfUfXp1+HnZTvZ9OfhCst/8tlajh5L49x0XVU1CgpKePGfSytsTs7NK+aFN3/ArqpOH75lcSxdsYvf1h2osO6vlm1lz6FENA2n+u2qhs1mZ8a7y7BYXTfDFxSbefGzFWiaVv510zQOJ6TzxfKtFda9YO2OcglPWVmAN79dS2pOgcuydlXlyfk/Y7E5Jzxl5U+kZ/Pe8j8rrHv53kMs33vonN2IztT9zq9/ciQ1w2VZTdN4atkKiqzWcnXbNY3somJe/GV1hXVvTkjg023bneo7+/+fbd/O5oSECss/98dv5RKesrpLbDYeX/VLhe+Xg1npvLOj9HXRzpnOqwGr4o/y/bH9Fdb95q615RKesrqtqsrDf35fYXdXZkkhz23/oXT7Ru3cujW2pJ/k62MVv1++PLaev89JeErrVtHQeH73EgqsrrsvzHYrr+z7BlVTnRIeABWNuIJk5sWtqrDuVSkb2XZOwlNatvRac479lwxztsuyqqYy9/gc7JrdKeEpK59nzWVRwoIK696Xu9lFwgNl79w/0pcRX1Tx75cVyW9jVYvL7X+lYceiFrEy+d0Ky6YV7z6d8Jyp7+z/H8//mVOF6yssfyjzXy4SHgA7Gjb2pT9TYZeR2XqclNxZp7869xyNAvM6sgor/jwqzHvLRcLD6a9V8rIfqrC7S1Nz0HJn4LzZaBkVrHug8LMK676Y3Nq9ZbFY2L59OzNmzHAc0+l0DBkyhE2bNrkss2nTJqZPn+50bNiwYSxdurQuQ3Vpw/dbyc868yHTKiIPf2/nfuuU3xdj/jsGU7m/3jUOL5lHzxYZaI6WjtMT/BStdGs7vcK+eR8QPWEAUPYpW/rvib8TaOuxi3bNS6/l6g8HLeE4Oev8CQzxxbHb7emK4r7/jQHNU1HtZyUdKKiagqYpKDodB5Z8RteQa0DROT0yMgooOrCONv6l56qU/lt2FYCS48mkbG1BZHTA2YcBjb/+t5FOQUmo9tJ7PROAgkZpi8+2pd/Rr9Xw0rgV5fS/OopKrBxYt5pmJrW03rPKld2DLS2TQ5s20L5dlON+T/+HP1btIURJR/MoPdfxkpy+gl6BNT+tYGhnk9PrDRo2m41ta1bSwsPsOF85/doraKUPK+z4bSlXdGlRWk5TT19DZduOI3RSjoLp9Pf3dJkz3xaN+D9PYO9UeKbl4HTdmqYRt24lAzyKneIFULWy10dh+y9fMOLyDqXfq9OvGYrCvpMpNM3fR7SioCpnoues/53YnkBRNw+8jR5OdQPs+GM1fZQstLL7xJlOUdi6+mvaXNGdcx3PyCYkZSuVdfzZjx4jbY8n4b5ndQef/r5t2bSJfvZE7JpzmbO/Z1vXL6Bv3yvOihtAI62oEI79Tr+zzi/3o5IKR//ypE3QORFqGn8d3Mk1JcddjuHRKG1x2bv5a25VhjiiKou7yG4jed8P9NFUxytW+oqeFUER7Ny2kMvDync1bUzYR6/8k5UsFQd7dixCM1hPb4Z5hl1TObxnCT1sFY/JUIDt2+czKKJ8V9PurEO0yaz4jx6Ak3nfYtX74aGc1dJ0+t4PHZ5PJ3OWi1Jl733Ys/Njrg7r4zhe9n47WRhHdOIBmp5148o5r4ItNZlCcxQ+LrZ2SEz5mg4lGeWSvTPXUjiZ/380CxvldBQgx5qMd8oWWpzzJnF+x28kt+gbAjzKtw6mZc+nSXERTknH2a3RKGSm/4eYkKKz7rn0JIs9CyVjJaGa6/fp6bSJguy38TN2OB32md9thYWL8CuxUz7hOXOLJUn/geDIMwfKrq2ZsWd/hYdS2dilTKzZ/8ZoctFCV/IrFBc43yxAqAd4lrY6aUXfgM+DVXbv1TW3dm8lJSURHR3Nxo0b6du3r+P4008/zR9//MGWLVvKlTEajcybN4/x48c7jn344Ye8/PLLpKamuqzHbDZjNpsdX+fl5RETE3PB3VufP7eAxf/+Abu1NLN97fbtXN46s4pSQgghxKVPHRkIMWfGfinhW1B01V9l2hXZe6saZs2axcsvv1zr1zV5mRytNACpuV7EpTqP39GAmPbReHicfqnPapKJ23/KqaWl7Hw0HG0AvgE+NGkZcVZrR+lf79kZBSTGpZ/+Q0EpbVQ46zpltbTuEoO371kDDk/nuIf3JWApsTqfr2joTrda6BQNL28PYmJDzrRYnH4UF5WQlZaHomilrRVK6flnqiit3T/IG09P45loTv+TmVmIxWxz+uu39O600ltEQ69XCAv1Ld/aYrWRX1DsaG0oa2kB578GTUYDHoayvyg0x72brTZHd6CiOLd3aNqZtgAvb8/Sv54VHK+7qkFugfmsNp4z36fSsqUPby8T/r6e5VpbsvKLyS20oJ5V15m2njOvRZuYcPQ65azXrfS6f8enOn2ftdOjTBytRgoE+njSJMjn9A2daWXKKSwiq6DI0SKlO13u7GtpQJMgf4yGsl8LZ1ot4jJyUCtrsQC8jR40dRqXU/p8ntlMUm4eFSm7SkygP94eZ483KI3uZE4OlnNmWzm+Z6dLG/UGWgQGnvk5Of26FVotnMwtHaSvKYrT/Z4txs+fQM+zx6ecvu+8bPKtFs68Uqef1crO0jDodLQPCj3zwwul7zW7lRP5WWddsXwLmQKEePoQZCw/1iGtJJ98q7nCFosyrfxCy7f0oHKyoHx3o3bW7x8F8PfwJtRUfsxhtqWAXGthlXXHeIdhKGvpOf27RQMSi1PO+X2kOb13ALwM3oSZgnBuzYV8WwFZlqzT73vOKuN8j028ojHpyo9/Syo5gV2rfKaXSedFuKn82jEl9gJyLEmVlgUIMjbBpPMudzzXchJbRV1Ap//V6YwEG1uXe6/a1CIKrGe63bRzmu+V06+vl6EZJn1Zq+RZ7zdbHHY1B6f3arnWUR1eHp3POUdDw4rNeuj0Oa7LAij6MPS6sPL3Zk8FzUV3pce57/jKB79fDG5NekJDQ9Hr9eVaaFJTU4mMdD1CPjIy8rzOB5gxY4ZTl1hZS8+F6nfjZXz5wpk+0vd+dh4UqCgKzTpEM/fDd5ySnTLfTf2U3xduwm6voDkSeOqTe2kyrl+547qsAmb0fB6bteKp3qFRgXz50cugL9+cuOW9X1n40e8VTpdWFIV7Z4wkZvLAcs+pBSU8MOQtLOaKf7EYPPT899cn8Qws/4thzcItfDL7t3Jjcsro9QrXj+7FtMfLD+LWrHYmj59NXl7lU/PnfXoPzZqV71D5ddUe3py9ssJyOp1Cr67NeWfGmHLPKZrGQ0/P40RSZoWxA8x5YSzd2pcfzBx/JJF7Xl9Ucd2KQtfWUXw6dVz5uoEvPv2RtXuOlRsXc7bZt99Ek44tyh3PSsvixjfnVRw0EBXkx4pH7wZd+ffqVz+s5ttteyut+6Vrr+G2y8svU28vKubm/3xS6VRtf08TG6bdB4byv5KWbdzE+5s3VzhNXKcoTLuiD4/2K/9zYrDbGP/FHHLPauk9l4dOx9YpD4Bn+cRj6+E9PP3nigrL6hWF29t159V+Q8tfV9O478ePSCjIqbA8wG/X30+Qf/n36r7kQ0zdVPH7Ra8oDIxozcf9xpd/Dnhl0yfszU5ArSRxmXvF3YQGx5Y7npqXwAN/vVdhOQWF1n5NmNv7cRfPwX8PfsrmzN3lxuScbXrbKYSFXVbuuNWSxat7nqg04Qr2COb1rv8+/YeFs13J81mf/iNaJXXf2ORuwkOvK3dcZy9i4ZFx2LTK3i9ePNhmIejKD+JOzP6G7Rkf4DJjoDTp6BR0J8GhU8s9p9fs7Em4BrPddY9FaXkDVzZbBfry75fiomUkZD5UYVnQE+Q9hqYh/y7/lKaRnz4Eu+1QhbEDBIUtA48O5Z8wb0LLnlRp3Rj7oLhIFC82t3auGY1GevXqxerVZwYxqqrK6tWrnbq7zta3b1+n8wFWrVpV4fkAJpMJf39/p0dtiO3SnN4jeqBzkVRA6QDOCTNvrXCk/i0PD0fRKS6f1+l1RDYPZeBo1yP1A4J9ufGuQS7H8pSZ8OQI9BXENvL2vnj7eaLTu647MNSXoTeX/4UE4OPryQ1je1dYt6IoXHdTT/xdJDwAw0Z0xdfPC52LD1dFKR3XNfoW13V7eOi57ZaKZy/odAq9L2/pMuEBGDKwPYEB3i7rhtIBzeMreM0VRWHSjX0qTtZ0Ch1aRtC1XbTL57u1bkK31k1Ot+K4qFvTuPv6K1xfHLhraGlcrkrrdQrtY8Lp2765y7Itw4MZ1DEWXSVvmHuv6V3h6zKxbw/0Op3L77leUQj382FkV9fTkIO8vbi9V1eXcTvq7nsZJhcJD8C4rl3w8fBwGbtOUfD28GB8V9d7Apn0Bh7q1cflc1D6Wk7s0p0gFwkPwA0tOxDt64++groNOj13d+rlsqxOUXik84AK69YpCtc2bUtLFwkPwKDINrTxC3NZN5S+X+5tW/EMqHtaDa4w4dErOjoHNKVnUAuXz7f3j6FHUGt0FXzXNDTubDHE5XMAo6OHUr49rZQOHRGmUK4I6e6ybLAxmAGhA8u1Xp1tVJMb0VUwNqRfyHCMOiOKi483HTr8DUH0DBrssqxR781lwbdUWC9A7+AxeLhIeABa+Y/CpA90WbeCDoPOi7YBrq+vKHpaBU2rpGaFpn7jMbpIeAD8va7DaIjF9f5XCgp6Qv3vraBuBR+/x6g44dFjNF2NwVXCA//f3p2HRXWebQC/z5mVbVjCKiKIKAjiggsFNWKCQlyj4cKqRSFuabDxi21dEhVRo0i0TU21VZuq+S4DUZtG6xYbExI1ihvgguKGcUU/FwRE1nm+P2AmDjJyRkEY5/l5cYEz73ve99zMzHk4M+ccQPkrQB5sZGwA0EKwecfIfS9Wsx+9NX36dKxduxYbNmzAmTNn8Nvf/hYPHz5EQkICAGDcuHEGH3SeNm0adu/ejeXLl+Ps2bOYP38+jh49iqlTn/ZgaToffPE/CH615oEgk8sgk4kQZSJEUcCUZeMQMcr4i5JPYGvMT58GtY2ytr8ImbzmQePh44KU/8yAUm38vC0JHw7H4HF9AaFmYy9XyCAIAmRyERPnvomoXxsvBJ1c7JCyYTIca8+nUzN2zcPBzdMBqf87BbYa44cXJkyNRL+BNacI0BVWuu9hEf6Y/Ptoo33tNFZI/csYaOxriiJRFCCKAgQBUKkVWJgai9ZGihYAGD3qV3gjKthgTN3Gur2fG+bMGmq0r5VaieVJMbC1URlswHWFyHsTXkPPrj5G+0f16YhJMeEGfXRje7dywsd/GGG0yBUEAct/NxyBPu61/UXIatdbLhMxN34gwjoZHzvI2x1/njRMfy4fuUzUf+C5o5cbVr07wmjRAgApY95ASFtP/dwF4Zd1mBwZipjQYKN927o4YdVvhsNaqdT31/V1s7fDurdjYKMyfg6QmZGvYlhwR4O+uo15fGgIJocbL2RdbW2xIeYt2Ktqdo3LhF/62qtU2BDzFlxtjZ/nZ1LXHpjSrScE/HKouK7/WwFBmB3ez2hfK7kC6dG/Rhs7BwCAXBAhr93Y2imU+HxgDNraGz/Pz1u+nfH7Lv30Y4uCAFlt/3A3bywPG2a0r0wQ8VmfsfC1c9b/XyYIECBAIcqwrOdI9HA2fuh0b9cO+LDTcMgEESIEiPhl7A4ad/ylR9xTz1ezIHgcAu299WPX/KtZzu86DMerrsYfL+3tvPGHgImQC3IIECBChKx2c+OmfgXJnX4HhWj8jYYxbeLQ06nmXG1ibW+h9t9Izxj0dTH+O3NQumCC7zxYy2xr+8sg1m6MHZQumNQuGSqZ8de2cJffoIvDEADQz1xXxHRzHI5fOT+5Z01HJdNgoOdKWMmda/vLobsUhFJmj0jPFbBRGD83k6ddDNo7/r62jwgBcugKCU/bt9DhlRlG+4qCEm1dvoRK7ld7ixy6N3NEwRY+LhugVvgbn7vVUNhoFtSOJ9Z+r+mvUIbBznGV0b6CIEBwXAPIde926OYtAFBAsF8KQWX8D7oXqdnP0wMAf/3rX/UnJ+zatStWrFiB0NCav84iIiLg4+OD9evX69tv3rwZc+bM0Z+cMDU11aSTEzb2ZSiICKcPnEXGlz+htPgRPP08EJUQAWcJJ6oDgNLiR/h+8yHkHcuHQilHr4Gd0WNgZ6N7aeq6dfUufth6DA/ulsC1tRMiRvSAvdPTT/amU1VZjUPf5eL0scsQAHQJ80OPV/0ljU1EyDt1HXu2ZeHu7WI4OttiwNCuCOzi1eDJvwCgvLwSGXtzkXX0MqqrtQgKbo0B0cGwsa3/r6i6Y+eeuYEdu3Jw40Yh7B2sEdk/EOFhfpLmXlxShl3fncL+wxdQUVGFgPYeeDO6K3y8pP3OLl+/i20ZJ/Hz9XuwsVKif2gH9A1pB7m84WvdEBGO5V3D98fPo7SsEr6tXsGQ3oFwtJO267e0vAK7jubh3PX/g0ouR7/Ovghp5ykpcyLCkYvXsDPrLIoflaP1K/YY2asTvF2kfbjwYXkF/pNzBieuFkAuiujd3huvdWwHhUzaNX7ybt/B1pO5uFNSCneNHUZ2CYSPk7SxyyorsT0vD5nXas6R1MuzNYYE+MNK8fQTOupcLXqALWdP42ZJMV6xssZI/0C0d5L2+67WapFx7RJ+uH4Z1aRFF2cPDPUNgJVc2tjXHz7A5os5uFJSCI1ShSHegeju3FrS76yatNhXcAF7b55DubYK/hpXjPDuCieVtMfLnfJibLt6HBdLbsNapsTr7kHo5exrdE/J44gI2YUXkXErB6XV5fCydsWgVj3hrLJvsC8AFFc+xPe3M3Hp4RUoBAV6OHVCD6dOkAnSHi/XSq/i8L1MlFSVwFnljPBXesNBKe3xUqWtxKkHh3C59CxEiPCz7YwATQhEiWPfr7iO04Xf4mHVPdgonBBkHwlHZf17cevSUhWulvyIgkdHQURwteoCb9vXIKvnM0j1Ka++g5sl/0FZ1Q0oRAe42w6GjcJHUl8iLUrK96H40XcgqoSVsjMcrIdDFKWdI6e6+hbKSzehuiofglhz7S25orvk1xdUHASVfwtQGQR5e8Dqzef+8PLjnnf73SKKnheNr73FGGOMmR+zPzkhY4wxxtiLwEUPY4wxxiwCFz2MMcYYswhc9DDGGGPMInDRwxhjjDGLwEUPY4wxxiwCFz2MMcYYswhc9DDGGGPMInDRwxhjjDGLwEUPY4wxxiyC8Su+vcR0V94oKipq5pkwxhhjTCrddvtZr6BlkUVPcXExAMDLy6uZZ8IYY4wxUxUXF8PeXtqFbx9nkRcc1Wq1uHHjBuzs7CRdOVaqoqIieHl54erVq3wh0wZwVqbhvKTjrKTjrKTjrKRryqyICMXFxWjVqhVE0fRP6Fjknh5RFNG6desmW75Go+EnhUSclWk4L+k4K+k4K+k4K+maKqtn2cOjwx9kZowxxphF4KKHMcYYYxaBi55GpFKpkJSUBJVK1dxTafE4K9NwXtJxVtJxVtJxVtK15Kws8oPMjDHGGLM8vKeHMcYYYxaBix7GGGOMWQQuehhjjDFmEbjoYYwxxphFsKiiZ+XKlfDx8YFarUZoaCgOHz781PabN29GQEAA1Go1goODsXPnToP7iQjz5s2Dh4cHrKysEBkZifPnzxu0uXfvHsaOHQuNRgMHBwdMmDABJSUlBm1OnDiBvn37Qq1Ww8vLC6mpqSbPpbGZa1Zr165F37594ejoCEdHR0RGRjY49+dlrlk9Lj09HYIg4M033zRt5U1kzlkVFhYiMTERHh4eUKlU6NChQ5M+D805q08++QT+/v6wsrKCl5cX3n//fZSVlT1jEg1riVmVlZUhPj4ewcHBkMvlRp9bGRkZCAkJgUqlgp+fH9avX/9MGZjCXPP66quvMGDAALi4uECj0SAsLAzffPONaStPFiI9PZ2USiX985//pNOnT9OkSZPIwcGBbt26VW/7AwcOkEwmo9TUVMrNzaU5c+aQQqGgkydP6tukpKSQvb09ff3115STk0PDhg2jtm3b0qNHj/RtoqOjqUuXLnTo0CHat28f+fn50ejRo/X3P3jwgNzc3Gjs2LF06tQpSktLIysrK1q9erVJc2lM5pzVmDFjaOXKlZSVlUVnzpyh+Ph4sre3p2vXrjVBUuadlU5+fj55enpS3759afjw4Y0XTh3mnFV5eTn16NGDBg0aRPv376f8/HzKyMig7OzsJkjKvLPauHEjqVQq2rhxI+Xn59M333xDHh4e9P777zdBUi03q5KSEnrnnXdozZo1FBUVVe9z69KlS2RtbU3Tp0+n3Nxc+vTTT0kmk9Hu3bsbL6A6zDmvadOm0dKlS+nw4cN07tw5mj17NikUCjp+/Ljk9beYoqdXr16UmJio/391dTW1atWKlixZUm/72NhYGjx4sMFtoaGhNGXKFCIi0mq15O7uTh9//LH+/sLCQlKpVJSWlkZERLm5uQSAjhw5om+za9cuEgSBrl+/TkREq1atIkdHRyovL9e3mTlzJvn7+0ueS2Mz56zqqqqqIjs7O9qwYYPU1TeJuWdVVVVF4eHh9I9//IPGjx/fpEWPOWf1t7/9jXx9famiouJZV98k5pxVYmIivfbaawZzmT59OvXu3dukDKRqqVk9zthza8aMGRQUFGRw26hRoygqKqqBtX525pxXfQIDAyk5OVlSWyIii3h7q6KiAseOHUNkZKT+NlEUERkZiYMHD9bb5+DBgwbtASAqKkrfPj8/HwUFBQZt7O3tERoaqm9z8OBBODg4oEePHvo2kZGREEURmZmZ+javvvoqlEqlwTh5eXm4f/++pLk0JnPPqq7S0lJUVlbCycnJlBgkeRmyWrBgAVxdXTFhwoRnjUESc89q27ZtCAsLQ2JiItzc3NCpUycsXrwY1dXVzxNLvcw9q/DwcBw7dkz/lsmlS5ewc+dODBo06JkzMaYlZyXFi3xtB8w/r7q0Wi2Ki4tNen23iKLnzp07qK6uhpubm8Htbm5uKCgoqLdPQUHBU9vrvjfUxtXV1eB+uVwOJycngzb1LePxMRqaS2My96zqmjlzJlq1avXEk7YxmHtW+/fvx2effYa1a9dKW+HnYO5ZXbp0CVu2bEF1dTV27tyJuXPnYvny5Vi0aJG0AExg7lmNGTMGCxYsQJ8+faBQKNCuXTtERETggw8+kBaACVpyVlIYm0tRUREePXokeTlSmXtedS1btgwlJSWIjY2V3Mciih5mmVJSUpCeno5///vfUKvVzT2dFqW4uBhxcXFYu3YtnJ2dm3s6LZ5Wq4WrqyvWrFmD7t27Y9SoUfjwww/x97//vbmn1uJkZGRg8eLFWLVqFY4fP46vvvoKO3bswMKFC5t7auwl8sUXXyA5ORmbNm16oqB6GosoepydnSGTyXDr1i2D22/dugV3d/d6+7i7uz+1ve57Q21u375tcH9VVRXu3btn0Ka+ZTw+RkNzaUzmnpXOsmXLkJKSgj179qBz585PX+lnZM5ZXbx4EZcvX8bQoUMhl8shl8vx+eefY9u2bZDL5bh48aLkHKQw56wAwMPDAx06dIBMJtO36dixIwoKClBRUdHA2pvG3LOaO3cu4uLiMHHiRAQHB2PEiBFYvHgxlixZAq1WKy0EiVpyVlIYm4tGo4GVlZXk5Uhl7nnppKenY+LEidi0aZPJe/EtouhRKpXo3r079u7dq79Nq9Vi7969CAsLq7dPWFiYQXsA+O9//6tv37ZtW7i7uxu0KSoqQmZmpr5NWFgYCgsLcezYMX2b7777DlqtFqGhofo2P/74IyorKw3G8ff3h6Ojo6S5NCZzzwoAUlNTsXDhQuzevdvgPeTGZs5ZBQQE4OTJk8jOztZ/DRs2DP3790d2dja8vLyeMx1D5pwVAPTu3RsXLlww2GifO3cOHh4eBp9vaQzmnlVpaSlE0XDToisWqZEv9diSs5LiRb62A+afFwCkpaUhISEBaWlpGDx4sEl9AVjWIesqlYrWr19Pubm5NHnyZHJwcKCCggIiIoqLi6NZs2bp2x84cIDkcjktW7aMzpw5Q0lJSfUepufg4EBbt26lEydO0PDhw+s9TK9bt26UmZlJ+/fvp/bt2xscpldYWEhubm4UFxdHp06dovT0dLK2tn7ikPWG5sJZ/TKOUqmkLVu20M2bN/VfxcXFnFWdrOpq6qO3zDmrK1eukJ2dHU2dOpXy8vJo+/bt5OrqSosWLeKs6mSVlJREdnZ2lJaWRpcuXaI9e/ZQu3btKDY21qKyIiI6ffo0ZWVl0dChQykiIoKysrIoKytLf7/ukPU//vGPdObMGVq5cuULOWTdXPPauHEjyeVyWrlypcHre2FhoeT1t5iih4jo008/pTZt2pBSqaRevXrRoUOH9Pf169ePxo8fb9B+06ZN1KFDB1IqlRQUFEQ7duwwuF+r1dLcuXPJzc2NVCoVvf7665SXl2fQ5u7duzR69GiytbUljUZDCQkJT2yAc3JyqE+fPqRSqcjT05NSUlKemHtDc2ls5pqVt7c3AXjiKykp6flDMcJcs6qrqYseIvPO6qeffqLQ0FBSqVTk6+tLH330EVVVVT1nIsaZa1aVlZU0f/58ateuHanVavLy8qJ3332X7t+///yhGNFSszL2evS477//nrp27UpKpZJ8fX1p3bp1zx9IA8w1r379+tV7f935Po1A1Mj7GxljjDHGWiCL+EwPY4wxxhgXPYwxxhizCFz0MMYYY8wicNHDGGOMMYvARQ9jjDHGLAIXPYwxxhizCFz0MMYYY8wicNHDGDM7Pj4++OSTT174uPHx8RAEAYIg4Ouvv5bUx8fHR9+nsLCwSefHGHs6LnoYY89EtyE39jV//nwAwHvvvYfu3btDpVKha9euT11mRkZGg8vNyMjAkSNHMHny5KZfyXpER0fj5s2beOONNyS1P3LkCP71r3818awYY1LIm3sCjDHzdPPmTf3PX375JebNm4e8vDz9bba2tvqf3377bWRmZuLEiRNPXWZ4eLjBcqdNm4aioiKsW7dOf5uTk1OjX+TTFCqVyqQrQ7u4uMDJyakJZ8QYk4r39DDGnom7u7v+y97eHoIgGNymK3pWrFiBxMRE+Pr6NrhMpVJpsAwrKyt9kaH7UiqVT7y9JQgCVq9ejSFDhsDa2hodO3bEwYMHceHCBURERMDGxgbh4eG4ePGiwXhbt25FSEgI1Go1fH19kZycjKqqKpNyqKiowNSpU+Hh4QG1Wg1vb28sWbLEpGUwxl4MLnoYYy+FhQsXYty4ccjOzkZAQADGjBmDKVOmYPbs2Th69CiICFOnTtW337dvH8aNG4dp06YhNzcXq1evxvr16/HRRx+ZNO6KFSuwbds2bNq0CXl5edi4cSN8fHwaee0YY42B395ijL0UEhISEBsbCwCYOXMmwsLCMHfuXERFRQGoeassISFB3z45ORmzZs3C+PHjAQC+vr5YuHAhZsyYgaSkJMnjXrlyBe3bt0efPn0gCAK8vb0bca0YY42Jix7G2Euhc+fO+p/d3NwAAMHBwQa3lZWVoaioCBqNBjk5OThw4IDBnp3q6mqUlZWhtLQU1tbWksaNj4/HgAED4O/vj+joaAwZMgQDBw5spLVijDUmLnoYYy8FhUKh/1kQBKO3abVaAEBJSQmSk5MxcuTIJ5alVqsljxsSEoL8/Hzs2rUL3377LWJjYxEZGYktW7Y803owxpoOFz2MMYsUEhKCvLw8+Pn5PfeyNBoNRo0ahVGjRiEmJgbR0dG4d+8eH7XFWAvDRQ9jrElduHABJSUlKCgowKNHj5CdnQ0ACAwMbNZDz+fNm4chQ4agTZs2iImJgSiKyMnJwalTp7Bo0SLJy/nTn/4EDw8PdOvWDaIoYvPmzXB3d4eDg0PTTZ4x9ky46GGMNamJEyfihx9+0P+/W7duAID8/PxmPcopKioK27dvx4IFC7B06VIoFAoEBARg4sSJJi3Hzs4OqampOH/+PGQyGXr27ImdO3dCFPngWMZaGoGIqLknwRhj5iA+Ph6FhYWSL0Ghk5GRgf79++P+/fu8B4ixZsR/ijDGmAm2b98OW1tbbN++XVL7oKAgyZesYIw1Ld7TwxhjEt2+fRtFRUUAAA8PD9jY2DTY5+eff0ZlZSWAmnMB8dtejDUfLnoYY4wxZhH4Tw7GGGOMWQQuehhjjDFmEbjoYYwxxphF4KKHMcYYYxaBix7GGGOMWQQuehhjjDFmEbjoYYwxxphF4KKHMcYYYxaBix7GGGOMWYT/B/97bU/EmieMAAAAAElFTkSuQmCC\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - examples_25_0.png" } }, "output_type": "display_data" } ], "source": [ "rotated_and_normalized = rotate_to_calibrated_axis(\n", " dataset_gridded.q0_iq_av.values, *dataset_gridded.q0_iq_av_cal.values\n", ")\n", "rotated_and_normalized_da = xr.DataArray(dataset_gridded.q0_iq_av)\n", "rotated_and_normalized_da.values = rotated_and_normalized\n", "rotated_and_normalized_da.attrs[\"long_name\"] = \"|1> Population\"\n", "rotated_and_normalized_da.attrs[\"units\"] = \"\"\n", "_ = plot_xr_complex(rotated_and_normalized_da)" ] }, { "cell_type": "code", "execution_count": 27, "id": "9b4741ef", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:35.879469Z", "iopub.status.busy": "2023-09-26T17:43:35.879254Z", "iopub.status.idle": "2023-09-26T17:43:35.904487Z", "shell.execute_reply": "2023-09-26T17:43:35.903867Z" } }, "outputs": [ { "data": { "text/html": [ "
def mk_t1_shots_dataset(\n",
       "    t1_times: Optional[np.ndarray] = None,\n",
       "    probabilities: Optional[np.ndarray] = None,\n",
       "    **kwargs,\n",
       ") -> xr.Dataset:\n",
       "    """\n",
       "    Generates a dataset with mock data of a T1 experiment for a single qubit including\n",
       "    calibration points for the ground and excited states, including all the individual\n",
       "    shots (repeated qubit state measurement for the same exact experiment).\n",
       "\n",
       "    Parameters\n",
       "    ----------\n",
       "    t1_times\n",
       "        Array with the T1 times corresponding to each probability in ``probabilities``.\n",
       "    probabilities\n",
       "        The probabilities of finding the qubit in the excited state.\n",
       "    **kwargs\n",
       "        Keyword arguments passed to\n",
       "        :func:`~quantify_core.utilities.examples_support.mk_iq_shots`.\n",
       "    """\n",
       "    # reuse previous dataset\n",
       "    dataset_av_with_cal = mk_t1_av_with_cal_dataset(t1_times, probabilities, **kwargs)\n",
       "    if probabilities is None:\n",
       "        probabilities = dataset_av_with_cal.q0_iq_av.values\n",
       "        probabilities = rotate_to_calibrated_axis(\n",
       "            probabilities, *dataset_av_with_cal.q0_iq_av_cal.values\n",
       "        ).real\n",
       "    # generate mock data containing all the shots,\n",
       "    # NB not the same data that was used for the average above, but this is just a mock\n",
       "    q0_iq_shots = mk_shots_from_probabilities(probabilities, **kwargs)\n",
       "    q0_iq_shots_cal = mk_shots_from_probabilities([0, 1], **kwargs)\n",
       "\n",
       "    # the xarray dimensions will now require an outer repetitions dimension\n",
       "    secondary_dims_rep = ("repetitions", "cal_dim")\n",
       "    main_dims_rep = ("repetitions", "main_dim")\n",
       "\n",
       "    relationships = [\n",
       "        dattrs.QDatasetIntraRelationship(\n",
       "            item_name=dataset_av_with_cal.q0_iq_av.name,\n",
       "            relation_type="calibration",\n",
       "            related_names=[dataset_av_with_cal.q0_iq_av_cal.name],\n",
       "        ).to_dict(),\n",
       "        dattrs.QDatasetIntraRelationship(\n",
       "            item_name="q0_iq_shots",\n",
       "            relation_type="calibration",\n",
       "            related_names=["q0_iq_cal_shots"],\n",
       "        ).to_dict(),\n",
       "        # suggestion of a custom relationship\n",
       "        dattrs.QDatasetIntraRelationship(\n",
       "            item_name=dataset_av_with_cal.q0_iq_av.name,\n",
       "            relation_type="individual_shots",\n",
       "            related_names=["q0_iq_shots"],\n",
       "        ).to_dict(),\n",
       "    ]\n",
       "\n",
       "    # Flag that these variables use a repetitions dimension\n",
       "    q0_attrs_rep = dict(dataset_av_with_cal.q0_iq_av.attrs)\n",
       "    q0_attrs_rep["has_repetitions"] = True\n",
       "    q0_cal_attrs_rep = dict(dataset_av_with_cal.q0_iq_av_cal.attrs)\n",
       "    q0_cal_attrs_rep["has_repetitions"] = True\n",
       "\n",
       "    data_vars = dict(\n",
       "        # variables that are the same as in the previous dataset, and are now redundant,\n",
       "        # however, we include them to showcase the dataset flexibility\n",
       "        q0_iq_av=dataset_av_with_cal.q0_iq_av,\n",
       "        q0_iq_av_cal=dataset_av_with_cal.q0_iq_av_cal,\n",
       "        # variables that contain all the individual shots\n",
       "        q0_iq_shots=(main_dims_rep, q0_iq_shots, q0_attrs_rep),\n",
       "        q0_iq_shots_cal=(secondary_dims_rep, q0_iq_shots_cal, q0_cal_attrs_rep),\n",
       "    )\n",
       "\n",
       "    dataset = xr.Dataset(\n",
       "        data_vars=data_vars,\n",
       "        coords=dataset_av_with_cal.coords,  # same coordinates as in previous dataset\n",
       "        attrs=mk_dataset_attrs(relationships=relationships),  # relationships added here\n",
       "    )\n",
       "\n",
       "    return dataset\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k}{def} \\PY{n+nf}{mk\\PYZus{}t1\\PYZus{}shots\\PYZus{}dataset}\\PY{p}{(}\n", " \\PY{n}{t1\\PYZus{}times}\\PY{p}{:} \\PY{n}{Optional}\\PY{p}{[}\\PY{n}{np}\\PY{o}{.}\\PY{n}{ndarray}\\PY{p}{]} \\PY{o}{=} \\PY{k+kc}{None}\\PY{p}{,}\n", " \\PY{n}{probabilities}\\PY{p}{:} \\PY{n}{Optional}\\PY{p}{[}\\PY{n}{np}\\PY{o}{.}\\PY{n}{ndarray}\\PY{p}{]} \\PY{o}{=} \\PY{k+kc}{None}\\PY{p}{,}\n", " \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{,}\n", "\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{xr}\\PY{o}{.}\\PY{n}{Dataset}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Generates a dataset with mock data of a T1 experiment for a single qubit including}\n", "\\PY{l+s+sd}{ calibration points for the ground and excited states, including all the individual}\n", "\\PY{l+s+sd}{ shots (repeated qubit state measurement for the same exact experiment).}\n", "\n", "\\PY{l+s+sd}{ Parameters}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ t1\\PYZus{}times}\n", "\\PY{l+s+sd}{ Array with the T1 times corresponding to each probability in ``probabilities``.}\n", "\\PY{l+s+sd}{ probabilities}\n", "\\PY{l+s+sd}{ The probabilities of finding the qubit in the excited state.}\n", "\\PY{l+s+sd}{ **kwargs}\n", "\\PY{l+s+sd}{ Keyword arguments passed to}\n", "\\PY{l+s+sd}{ :func:`\\PYZti{}quantify\\PYZus{}core.utilities.examples\\PYZus{}support.mk\\PYZus{}iq\\PYZus{}shots`.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", " \\PY{c+c1}{\\PYZsh{} reuse previous dataset}\n", " \\PY{n}{dataset\\PYZus{}av\\PYZus{}with\\PYZus{}cal} \\PY{o}{=} \\PY{n}{mk\\PYZus{}t1\\PYZus{}av\\PYZus{}with\\PYZus{}cal\\PYZus{}dataset}\\PY{p}{(}\\PY{n}{t1\\PYZus{}times}\\PY{p}{,} \\PY{n}{probabilities}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)}\n", " \\PY{k}{if} \\PY{n}{probabilities} \\PY{o+ow}{is} \\PY{k+kc}{None}\\PY{p}{:}\n", " \\PY{n}{probabilities} \\PY{o}{=} \\PY{n}{dataset\\PYZus{}av\\PYZus{}with\\PYZus{}cal}\\PY{o}{.}\\PY{n}{q0\\PYZus{}iq\\PYZus{}av}\\PY{o}{.}\\PY{n}{values}\n", " \\PY{n}{probabilities} \\PY{o}{=} \\PY{n}{rotate\\PYZus{}to\\PYZus{}calibrated\\PYZus{}axis}\\PY{p}{(}\n", " \\PY{n}{probabilities}\\PY{p}{,} \\PY{o}{*}\\PY{n}{dataset\\PYZus{}av\\PYZus{}with\\PYZus{}cal}\\PY{o}{.}\\PY{n}{q0\\PYZus{}iq\\PYZus{}av\\PYZus{}cal}\\PY{o}{.}\\PY{n}{values}\n", " \\PY{p}{)}\\PY{o}{.}\\PY{n}{real}\n", " \\PY{c+c1}{\\PYZsh{} generate mock data containing all the shots,}\n", " \\PY{c+c1}{\\PYZsh{} NB not the same data that was used for the average above, but this is just a mock}\n", " \\PY{n}{q0\\PYZus{}iq\\PYZus{}shots} \\PY{o}{=} \\PY{n}{mk\\PYZus{}shots\\PYZus{}from\\PYZus{}probabilities}\\PY{p}{(}\\PY{n}{probabilities}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)}\n", " \\PY{n}{q0\\PYZus{}iq\\PYZus{}shots\\PYZus{}cal} \\PY{o}{=} \\PY{n}{mk\\PYZus{}shots\\PYZus{}from\\PYZus{}probabilities}\\PY{p}{(}\\PY{p}{[}\\PY{l+m+mi}{0}\\PY{p}{,} \\PY{l+m+mi}{1}\\PY{p}{]}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} the xarray dimensions will now require an outer repetitions dimension}\n", " \\PY{n}{secondary\\PYZus{}dims\\PYZus{}rep} \\PY{o}{=} \\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{repetitions}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cal\\PYZus{}dim}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", " \\PY{n}{main\\PYZus{}dims\\PYZus{}rep} \\PY{o}{=} \\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{repetitions}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{main\\PYZus{}dim}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", "\n", " \\PY{n}{relationships} \\PY{o}{=} \\PY{p}{[}\n", " \\PY{n}{dattrs}\\PY{o}{.}\\PY{n}{QDatasetIntraRelationship}\\PY{p}{(}\n", " \\PY{n}{item\\PYZus{}name}\\PY{o}{=}\\PY{n}{dataset\\PYZus{}av\\PYZus{}with\\PYZus{}cal}\\PY{o}{.}\\PY{n}{q0\\PYZus{}iq\\PYZus{}av}\\PY{o}{.}\\PY{n}{name}\\PY{p}{,}\n", " \\PY{n}{relation\\PYZus{}type}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{calibration}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{related\\PYZus{}names}\\PY{o}{=}\\PY{p}{[}\\PY{n}{dataset\\PYZus{}av\\PYZus{}with\\PYZus{}cal}\\PY{o}{.}\\PY{n}{q0\\PYZus{}iq\\PYZus{}av\\PYZus{}cal}\\PY{o}{.}\\PY{n}{name}\\PY{p}{]}\\PY{p}{,}\n", " \\PY{p}{)}\\PY{o}{.}\\PY{n}{to\\PYZus{}dict}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,}\n", " \\PY{n}{dattrs}\\PY{o}{.}\\PY{n}{QDatasetIntraRelationship}\\PY{p}{(}\n", " \\PY{n}{item\\PYZus{}name}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{q0\\PYZus{}iq\\PYZus{}shots}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{relation\\PYZus{}type}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{calibration}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{related\\PYZus{}names}\\PY{o}{=}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{q0\\PYZus{}iq\\PYZus{}cal\\PYZus{}shots}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{,}\n", " \\PY{p}{)}\\PY{o}{.}\\PY{n}{to\\PYZus{}dict}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,}\n", " \\PY{c+c1}{\\PYZsh{} suggestion of a custom relationship}\n", " \\PY{n}{dattrs}\\PY{o}{.}\\PY{n}{QDatasetIntraRelationship}\\PY{p}{(}\n", " \\PY{n}{item\\PYZus{}name}\\PY{o}{=}\\PY{n}{dataset\\PYZus{}av\\PYZus{}with\\PYZus{}cal}\\PY{o}{.}\\PY{n}{q0\\PYZus{}iq\\PYZus{}av}\\PY{o}{.}\\PY{n}{name}\\PY{p}{,}\n", " \\PY{n}{relation\\PYZus{}type}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{individual\\PYZus{}shots}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{related\\PYZus{}names}\\PY{o}{=}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{q0\\PYZus{}iq\\PYZus{}shots}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{,}\n", " \\PY{p}{)}\\PY{o}{.}\\PY{n}{to\\PYZus{}dict}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,}\n", " \\PY{p}{]}\n", "\n", " \\PY{c+c1}{\\PYZsh{} Flag that these variables use a repetitions dimension}\n", " \\PY{n}{q0\\PYZus{}attrs\\PYZus{}rep} \\PY{o}{=} \\PY{n+nb}{dict}\\PY{p}{(}\\PY{n}{dataset\\PYZus{}av\\PYZus{}with\\PYZus{}cal}\\PY{o}{.}\\PY{n}{q0\\PYZus{}iq\\PYZus{}av}\\PY{o}{.}\\PY{n}{attrs}\\PY{p}{)}\n", " \\PY{n}{q0\\PYZus{}attrs\\PYZus{}rep}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{has\\PYZus{}repetitions}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]} \\PY{o}{=} \\PY{k+kc}{True}\n", " \\PY{n}{q0\\PYZus{}cal\\PYZus{}attrs\\PYZus{}rep} \\PY{o}{=} \\PY{n+nb}{dict}\\PY{p}{(}\\PY{n}{dataset\\PYZus{}av\\PYZus{}with\\PYZus{}cal}\\PY{o}{.}\\PY{n}{q0\\PYZus{}iq\\PYZus{}av\\PYZus{}cal}\\PY{o}{.}\\PY{n}{attrs}\\PY{p}{)}\n", " \\PY{n}{q0\\PYZus{}cal\\PYZus{}attrs\\PYZus{}rep}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{has\\PYZus{}repetitions}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]} \\PY{o}{=} \\PY{k+kc}{True}\n", "\n", " \\PY{n}{data\\PYZus{}vars} \\PY{o}{=} \\PY{n+nb}{dict}\\PY{p}{(}\n", " \\PY{c+c1}{\\PYZsh{} variables that are the same as in the previous dataset, and are now redundant,}\n", " \\PY{c+c1}{\\PYZsh{} however, we include them to showcase the dataset flexibility}\n", " \\PY{n}{q0\\PYZus{}iq\\PYZus{}av}\\PY{o}{=}\\PY{n}{dataset\\PYZus{}av\\PYZus{}with\\PYZus{}cal}\\PY{o}{.}\\PY{n}{q0\\PYZus{}iq\\PYZus{}av}\\PY{p}{,}\n", " \\PY{n}{q0\\PYZus{}iq\\PYZus{}av\\PYZus{}cal}\\PY{o}{=}\\PY{n}{dataset\\PYZus{}av\\PYZus{}with\\PYZus{}cal}\\PY{o}{.}\\PY{n}{q0\\PYZus{}iq\\PYZus{}av\\PYZus{}cal}\\PY{p}{,}\n", " \\PY{c+c1}{\\PYZsh{} variables that contain all the individual shots}\n", " \\PY{n}{q0\\PYZus{}iq\\PYZus{}shots}\\PY{o}{=}\\PY{p}{(}\\PY{n}{main\\PYZus{}dims\\PYZus{}rep}\\PY{p}{,} \\PY{n}{q0\\PYZus{}iq\\PYZus{}shots}\\PY{p}{,} \\PY{n}{q0\\PYZus{}attrs\\PYZus{}rep}\\PY{p}{)}\\PY{p}{,}\n", " \\PY{n}{q0\\PYZus{}iq\\PYZus{}shots\\PYZus{}cal}\\PY{o}{=}\\PY{p}{(}\\PY{n}{secondary\\PYZus{}dims\\PYZus{}rep}\\PY{p}{,} \\PY{n}{q0\\PYZus{}iq\\PYZus{}shots\\PYZus{}cal}\\PY{p}{,} \\PY{n}{q0\\PYZus{}cal\\PYZus{}attrs\\PYZus{}rep}\\PY{p}{)}\\PY{p}{,}\n", " \\PY{p}{)}\n", "\n", " \\PY{n}{dataset} \\PY{o}{=} \\PY{n}{xr}\\PY{o}{.}\\PY{n}{Dataset}\\PY{p}{(}\n", " \\PY{n}{data\\PYZus{}vars}\\PY{o}{=}\\PY{n}{data\\PYZus{}vars}\\PY{p}{,}\n", " \\PY{n}{coords}\\PY{o}{=}\\PY{n}{dataset\\PYZus{}av\\PYZus{}with\\PYZus{}cal}\\PY{o}{.}\\PY{n}{coords}\\PY{p}{,} \\PY{c+c1}{\\PYZsh{} same coordinates as in previous dataset}\n", " \\PY{n}{attrs}\\PY{o}{=}\\PY{n}{mk\\PYZus{}dataset\\PYZus{}attrs}\\PY{p}{(}\\PY{n}{relationships}\\PY{o}{=}\\PY{n}{relationships}\\PY{p}{)}\\PY{p}{,} \\PY{c+c1}{\\PYZsh{} relationships added here}\n", " \\PY{p}{)}\n", "\n", " \\PY{k}{return} \\PY{n}{dataset}\n", "\\end{Verbatim}\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display_source_code(dataset_examples.mk_t1_shots_dataset)" ] }, { "cell_type": "code", "execution_count": 28, "id": "b805f845", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:35.906828Z", "iopub.status.busy": "2023-09-26T17:43:35.906624Z", "iopub.status.idle": "2023-09-26T17:43:35.946552Z", "shell.execute_reply": "2023-09-26T17:43:35.945895Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:          (main_dim: 30, cal_dim: 2, repetitions: 256)\n",
       "Coordinates:\n",
       "    t1_time          (main_dim) float64 0.0 4.138e-06 ... 0.0001159 0.00012\n",
       "    cal              (cal_dim) <U3 '|0>' '|1>'\n",
       "Dimensions without coordinates: main_dim, cal_dim, repetitions\n",
       "Data variables:\n",
       "    q0_iq_av         (main_dim) complex128 (-0.19894114958423859+0.6515500138...\n",
       "    q0_iq_av_cal     (cal_dim) complex128 (0.7010588504157614-0.3984499861154...\n",
       "    q0_iq_shots      (repetitions, main_dim) complex128 (-0.289836545355741+0...\n",
       "    q0_iq_shots_cal  (repetitions, cal_dim) complex128 (0.610163454644259-0.4...\n",
       "Attributes:\n",
       "    tuid:                      20230926-194335-919-29ea05\n",
       "    dataset_name:              \n",
       "    dataset_state:             None\n",
       "    timestamp_start:           None\n",
       "    timestamp_end:             None\n",
       "    quantify_dataset_version:  2.0.0\n",
       "    software_versions:         {}\n",
       "    relationships:             [{'item_name': 'q0_iq_av', 'relation_type': 'c...\n",
       "    json_serialize_exclude:    []
" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset = dataset_examples.mk_t1_shots_dataset(**mock_conf)\n", "dataset" ] }, { "cell_type": "code", "execution_count": 29, "id": "d38bc899", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:35.948893Z", "iopub.status.busy": "2023-09-26T17:43:35.948681Z", "iopub.status.idle": "2023-09-26T17:43:35.982453Z", "shell.execute_reply": "2023-09-26T17:43:35.981921Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:          (t1_time: 30, cal: 2, repetitions: 256)\n",
       "Coordinates:\n",
       "  * t1_time          (t1_time) float64 0.0 4.138e-06 ... 0.0001159 0.00012\n",
       "  * cal              (cal) <U3 '|0>' '|1>'\n",
       "Dimensions without coordinates: repetitions\n",
       "Data variables:\n",
       "    q0_iq_av         (t1_time) complex128 (-0.19894114958423859+0.65155001388...\n",
       "    q0_iq_av_cal     (cal) complex128 (0.7010588504157614-0.3984499861154196j...\n",
       "    q0_iq_shots      (repetitions, t1_time) complex128 (-0.289836545355741+0....\n",
       "    q0_iq_shots_cal  (repetitions, cal) complex128 (0.610163454644259-0.41025...\n",
       "Attributes:\n",
       "    tuid:                      20230926-194335-919-29ea05\n",
       "    dataset_name:              \n",
       "    dataset_state:             None\n",
       "    timestamp_start:           None\n",
       "    timestamp_end:             None\n",
       "    quantify_dataset_version:  2.0.0\n",
       "    software_versions:         {}\n",
       "    relationships:             [{'item_name': 'q0_iq_av', 'relation_type': 'c...\n",
       "    json_serialize_exclude:    []
" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset_gridded = dh.to_gridded_dataset(\n", " dataset,\n", " dimension=\"main_dim\",\n", " coords_names=dattrs.get_main_coords(dataset),\n", ")\n", "dataset_gridded = dh.to_gridded_dataset(\n", " dataset_gridded,\n", " dimension=\"cal_dim\",\n", " coords_names=dattrs.get_secondary_coords(dataset_gridded),\n", ")\n", "dataset_gridded" ] }, { "cell_type": "code", "execution_count": 30, "id": "a2d60708", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:35.984792Z", "iopub.status.busy": "2023-09-26T17:43:35.984581Z", "iopub.status.idle": "2023-09-26T17:43:36.330457Z", "shell.execute_reply": "2023-09-26T17:43:36.329809Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACwtklEQVR4nOzdd3RU1drH8e+Zmt5IL/TeIaFXBQTBgqiggCDCVa8IKnpVbNjRFwuKvQuIIFKsoIiggvTeWxJaSEhIb9POef8YCIQkkECSSXk+a2UxOfU3yZB5Zp999lY0TdMQQgghhBAFdK4OIIQQQghR1UiBJIQQQghxESmQhBBCCCEuIgWSEEIIIcRFpEASQgghhLiIFEhCCCGEEBeRAkkIIYQQ4iJSIAkhhBBCXEQKJCGEEEKIi0iBJEQ1cffdd1O/fv1CyxRF4fnnn6+U8z///PMoilJux7v77rtRFAVFUWjdunW5HfdKlffzq0jp6ekFPztFUXjjjTcq7Fz169fnhhtuqLDjVyfHjx/Hzc2NtWvXVvq59+7di8FgYPfu3ZV+7tpKCiRRrvbs2cPo0aOJiIjAbDYTHh7O6NGj2bt3b7HbWywWnnjiCcLDw3F3d6dLly6sWLGiVOe6++678fLyKrJc0zTmzJlD79698fPzw8PDgzZt2vDyyy+Tm5t7Vc+vqvv33395/vnnSU9Pd3WUUgkMDGTOnDm89tprV3yMq3kNVVeenp7MmTOHt99+29VRapUXX3yRLl260KNHj4JlS5YsYeDAgYSHh2M2m4mMjOS2224rsZD58ccf6dixI25ubtStW5dp06Zht9sve+6WLVsyZMgQnnvuuXJ7PuLSpEAS5Wbx4sV07NiRlStXMm7cOD744APGjx/Pn3/+SceOHfnhhx+K7HP33Xfz1ltvMWrUKN555x30ej2DBw9mzZo1V5TB4XBwxx13MGbMGMDZKjBz5kzat2/PtGnT6Nq1K6dPn76q51mV5OXl8cwzzxR8/++///LCCy9UmwLJ09OT0aNHX1ULRXm9hp555hny8vKuOEdlMhqNjB49mqFDh7o6Sq2RnJzM119/zf33319o+a5du/D39+ehhx7igw8+4L///S/btm2jc+fO7Nixo9C2y5YtY+jQofj5+TFr1iyGDh3Kyy+/zKRJk0qV4f7772fJkiUcOXKk3J6XuARNiHJw+PBhzcPDQ2vevLl2+vTpQuuSk5O15s2ba15eXlpsbGzB8g0bNmiANmPGjIJleXl5WqNGjbRu3bpd9pxjx47VPD09Cy179dVXNUB77LHHimz/448/ajqdThs8eHBZn16VMHbsWK1evXqX3GbGjBkaoMXFxZX7+adNm6aV55+M0jyfy7na11B1FxcXV+T5l7d69eppQ4YMqbDjVxdvvfWW5u7urmVlZV1228TERM1gMGj33XdfoeUtW7bU2rVrp9lstoJlTz/9tKYoirZv377LHtdqtWr+/v7as88+W/YnIMpMWpBEuZgxYwa5ubl88sknBAUFFVoXGBjIxx9/THZ2NjNmzChY/v3336PX67n33nsLlrm5uTF+/HjWrVvH8ePHy5QhLy+PGTNm0LRpU6ZPn15k/Y033sjYsWP59ddf2bhx4yWPtXPnTu6++24aNmyIm5sboaGh3HPPPZw5c6bQduf6rRw8eJDRo0fj6+tLUFAQzz77LJqmcfz4cW6++WZ8fHwIDQ3lzTffLLT/6tWrURSFBQsW8NRTTxEaGoqnpyc33XRTqZ7/hX2Qnn/+ef73v/8B0KBBg4L+KfHx8cTHx6MoCl999dUlj3HOmjVr6NSpE25ubjRq1IiPP/64xAxz584lOjoad3d3AgICuOOOO8r8u7uYxWLhkUceISgoCG9vb2666SZOnDhRJGt5voaK64NU2hyl8cYbb9C9e3fq1KmDu7s70dHRfP/994W2ad26Nddcc02RfVVVJSIigttuu+2y57HZbOzfv59Tp05ddtvExETGjRtHZGQkZrOZsLAwbr75ZuLj44tsu2bNGjp37oybmxsNGzZk9uzZhdanpqby2GOP0aZNG7y8vPDx8eH6668v0opS1tf8hg0bGDRoEL6+vnh4eNCnTx+X9AFaunQpXbp0Kfay/sWCg4Px8PAo1JK7d+9e9u7dy7333ovBYChY/sADD6BpWpHXQnGMRiN9+/YttjVelD8pkES5+Omnn6hfvz69evUqdn3v3r2pX78+P/30U8Gybdu20bRpU3x8fApt27lzZwC2b99epgxr1qwhLS2NkSNHFvoDdKFzl94uzFGcFStWEBsby7hx45g1axZ33HEH8+fPZ/DgwWiaVmT7ESNGoKoqr732Gl26dOHll19m5syZDBgwgIiICF5//XUaN27MY489xt9//11k/1deeYVffvmFJ554gsmTJ7NixQr69+9fpks+w4YN48477wTg7bffZs6cOcyZM6dIwXo5u3bt4rrrruP06dM8//zzjBs3jmnTprFkyZJic48ZM4YmTZrw1ltv8fDDD7Ny5Up69+59VZf5JkyYwMyZM7nuuut47bXXMBqNDBkypMh25f0autIcpfHOO+/QoUMHXnzxRV599VUMBgO33347v/zyS8E2I0aM4O+//yYxMbHQvmvWrCEhIYE77rjjsuc5efIkLVq0YOrUqZfd9tZbb2XJkiUFl8QnT55MVlYWx44dK7Td4cOHue222xgwYABvvvkm/v7+3H333ezZs6dgm9jYWJYuXcoNN9zAW2+9xf/+9z927dpFnz59SEhIKHLu0rzm//zzT3r37k1mZibTpk3j1VdfJT09nWuvvfayH3IAUlJSSvVlsVgueRybzcamTZvo2LFjidukp6eTnJzMrl27mDBhApmZmfTr169g/bZt2wCIiYkptF94eDiRkZEF6y8nOjqa3bt3k5mZWartxVVwcQuWqAHS09M1QLv55psvud1NN92kAVpmZqamaZrWqlUr7dprry2y3Z49ezRA++ijjy55vIsvsc2cOVMDtCVLlpS4T2pqqgZow4YNu+Sxc3Nziyz79ttvNUD7+++/C5adu+x07733Fiyz2+1aZGSkpiiK9tprrxUsT0tL09zd3bWxY8cWLFu1apUGaBEREQU/F03TtO+++04DtHfeeafQ8734khSgTZs2reD7ki6xnbsU8+WXXxZ5XhcfY+jQoZqbm5t29OjRgmV79+7V9Hp9oUts8fHxml6v11555ZVCx9u1a5dmMBiKLL9YSZfYtm/frgHaAw88UGj5yJEji2S92tfQhS6+hFiWHKVx8WvKarVqrVu3LpT/wIEDGqDNmjWr0LYPPPCA5uXlVeQYxV1iO7fswtdZcdLS0kp1ea5evXpFXvenT5/WzGaz9uijjxYsy8/P1xwOR5F8ZrNZe/HFFwuWlfY1r6qq1qRJE23gwIGaqqoF2+Xm5moNGjTQBgwYcMncmuZ8bZfmq7j/Fxc6fPhwsb+XCzVr1qzgeF5eXtozzzxT6Odx7v/msWPHiuzbqVMnrWvXrpd9PpqmafPmzdMAbcOGDaXaXlw5aUESVy0rKwsAb2/vS253bv257fPy8jCbzUW2c3NzK1hf3jkuzlASd3f3gsf5+fmkpKTQtWtXALZu3Vpk+wkTJhQ81uv1xMTEoGka48ePL1ju5+dHs2bNiI2NLbL/mDFjCuW+7bbbCAsL49dff71kzvLmcDj47bffGDp0KHXr1i1Y3qJFCwYOHFho28WLF6OqKsOHDy/0aTw0NJQmTZqwatWqK8pw7jlPnjy50PKHH364yLbl/Rq60hylceFrKi0tjYyMDHr16lXo9dS0aVPat2/PggULCpY5HA6+//57brzxxkLHKEn9+vXRNK3Yy6kX5zGZTKxevZq0tLRLbtuyZctCrcNBQUFFXstmsxmdTleQ+cyZM3h5edGsWbNi/89c7jW/fft2Dh06xMiRIzlz5kzB6ysnJ4d+/frx999/o6rqJXOvWLGiVF8Xv7Yvdu7Sur+/f4nbfPnllyxfvpwPPviAFi1akJeXh8PhKFh/7rVY0uu1tK/VcxlSUlJKtb24csVfhxCiDEpbdGRlZaEoCoGBgYDzD3RxTdv5+fkF68s7x7l1wcHBlzxWamoqL7zwAvPnzy9y11tGRkaR7S8sJgB8fX1xc3MreK4XLr+4HxNAkyZNCn2vKAqNGzcuti9IRUpOTiYvL69IHoBmzZoVKtgOHTqEpmnFbgvO/hJX4ujRo+h0Oho1alTk/Bcr79fQleYojZ9//pmXX36Z7du3F8p8cb+nESNG8NRTT3Hy5EkiIiJYvXo1p0+fZsSIEVd03pKYzWZef/11Hn30UUJCQujatSs33HADY8aMITQ0tNC2F7++wflGfWFhpaoq77zzDh988AFxcXGFioM6deoU2f9yr/lDhw4BMHbs2BKfQ0ZGxiWLlv79+5e47kpoxVxeP6dbt24Fj++44w5atGgBUDBG1bnXYkmv19K+Vs9lqC5jdlVnUiCJq+br60t4eDg7d+685HY7d+4kMjISk8kEQFhYGCdPniyy3bnOpeHh4WXK0bJly4LzlHT787mMDRs2vOSxhg8fzr///sv//vc/2rdvj5eXF6qqMmjQoGI/ter1+lItg0v/ka0oJf0xvfBNrKxUVUVRFJYtW1bscy1NZ9arVd6voYryzz//cNNNN9G7d28++OADwsLCMBqNfPnll8ybN6/QtiNGjGDq1KksXLiQhx9+mO+++w5fX18GDRpU7rkefvhhbrzxRpYuXcpvv/3Gs88+y/Tp0/nzzz/p0KFDwXaleS2/+uqrPPvss9xzzz289NJLBAQEoNPpePjhhy/b0lOcc/vMmDGD9u3bF7vN5V5jF/flKomvr+8lC5RzBd7lWtrO8ff359prr+Wbb74pKJDCwsIA52szKiqq0PanTp0q6Dd3OecyXPzhS5Q/KZBEubjxxhv5+OOPWbNmDT179iyy/p9//iE+Pp4pU6YULGvfvj2rVq0iMzOzUCfbDRs2FKwvix49euDn58e8efN4+umni/2jfu7Om9tvv73E46SlpbFy5UpeeOGFQoOynftEWxEuPramaRw+fJi2bduW6TglFULnPmVf3HH66NGjhb4PCgrC3d292Od64MCBQt83atQITdNo0KABTZs2LVPOS6lXrx6qqnLkyJFCrTUXnx/K/zV0pTkuZ9GiRbi5ufHbb78VusTy5ZdfFtm2QYMGdO7cmQULFvDggw+yePFihg4dWuylmfLQqFEjHn30UR599FEOHTpE+/btefPNN5k7d26ZjvP9999zzTXX8Pnnnxdanp6eXuyb+eVe8+da7nx8fK64JehcUXI5X375JXfffXeJ6+vWrYu7uztxcXGlPndeXl6h1uZzr8XNmzcXKoYSEhI4ceJEoTsxLyUuLg6dTleu/+dE8aQPkigXjz32GB4eHtx3331FLiGlpqZy//334+Pjw4MPPliw/LbbbsPhcPDJJ58ULLNYLHz55Zd06dKlyKesy/Hw8ODxxx/nwIEDPP3000XW//LLL3z11VfceOONtGnTpsTjnCusLm7pmTlzZpnylMXs2bMLXRr8/vvvOXXqFNdff32ZjuPp6QkULYR8fHwIDAwscgfdBx98UOh7vV7PwIEDWbp0aaE7mfbt28dvv/1WaNthw4ah1+t54YUXivysNE0r9lJiaZx7zu+++26h5cX9/Mv7NXSlOS5Hr9ejKEqhFrv4+HiWLl1a7PYjRoxg/fr1fPHFF6SkpJT75TWA3NzcgkuR5zRq1Ahvb+/L3tVVHL1eX+R1sHDhwmJb+ODyr/no6GgaNWrEG2+8QXZ2dpH9k5OTL5upvPogGY1GYmJi2Lx5c5F1xQ08Gx8fz8qVKwvdsdaqVSuaN2/OJ598Uuh18OGHH6IoSqmGcADYsmULrVq1wtfXt1TbiysnLUiiXDRu3JjZs2dz55130qZNG8aPH0+DBg2Ij4/n888/Jy0tjfnz59OgQYOCfbp06cLtt9/O1KlTOX36NI0bN+brr78u2OdKPP7442zfvp3XX3+ddevWceutt+Lu7s6aNWuYO3curVq1umznVR8fH3r37s3//d//YbPZiIiI4Pfffy/Tp8eyCggIoGfPnowbN46kpCRmzpxJ48aN+c9//lOm40RHRwPw9NNPc8cdd2A0Grnxxhvx9PRkwoQJvPbaa0yYMIGYmBj+/vtvDh48WOQYL7zwAsuXL6dXr1488MAD2O12Zs2aRatWrQpdRm3UqBEvv/wyU6dOJT4+nqFDh+Lt7U1cXBxLlizh3nvv5bHHHivzz6J9+/bceeedfPDBB2RkZNC9e3dWrlzJ4cOHi2xbEa+hK8lxOUOGDOGtt95i0KBBjBw5ktOnT/P+++/TuHHjYi9NDx8+nMcee4zHHnuMgICAMrWgxMfH06BBA8aOHXvJ1/rBgwfp168fw4cPp2XLlhgMBpYsWUJSUlKphhO42A033MCLL77IuHHj6N69O7t27eKbb74p8XL25V7zOp2Ozz77jOuvv55WrVoxbtw4IiIiOHnyJKtWrcLHx+eyw3WUZx+km2++maeffrpIa2WbNm3o168f7du3x9/fn0OHDvH5559js9mKTKEzY8YMbrrpJq677jruuOMOdu/ezXvvvceECRMK+ixByb9Dm83GX3/9xQMPPFBuz0tcgitunRM1165du7SRI0dqoaGhmk6n0wDNzc1N27NnT7Hb5+XlaY899pgWGhqqmc1mrVOnTtry5ctLda7iRtLWNOftwV999ZXWo0cPzdvbu+DW2/79+2sWi6VUxz5x4oR2yy23aH5+fpqvr692++23awkJCUVu7z53a3hycnKpsvXp00dr1apVwffnbnn+9ttvtalTp2rBwcGau7u7NmTIkEK32Z875uVu89c0TXvppZe0iIiIgp//uVv+c3NztfHjx2u+vr6at7e3Nnz4cO306dPFHuOvv/7SoqOjNZPJpDVs2FD76KOPShxJe9GiRVrPnj01T09PzdPTU2vevLk2ceJE7cCBAyX8dEt+Pufk5eVpkydP1urUqaN5enpqN954o3b8+PFis17Na+hCxT2/suS4nM8//1xr0qSJZjabtebNm2tffvnlJUcn79GjhwZoEyZMKPGYxd3mv2vXLg3QnnzyyUvmSUlJ0SZOnKg1b95c8/T01Hx9fbUuXbpo3333XaHtShpJu0+fPlqfPn0Kvs/Pz9ceffRRLSwsTHN3d9d69OihrVu3rsh2ZXnNa5qmbdu2TRs2bJhWp04dzWw2a/Xq1dOGDx+urVy58pLPr7wlJSVpBoNBmzNnTqHl06ZN02JiYjR/f3/NYDBo4eHh2h133KHt3Lmz2OMsWbJEa9++vWY2m7XIyEjtmWee0axWa6FtSvodLlu2TAO0Q4cOle+TE8WSAklUqK+//lpTFEW76667XJbBarVqAwcO1AwGg7Zs2TKX5SjOuTeLhQsXujpKpRs7dqwWFRWlJScna2lpaaXa50oKk4rg6hyqqmrJycna1q1bixRI77//vubp6aklJia6LN+lVOfX/D333KP17Nmzws9T0u/w5ptv1oYOHVrh5xdOcolNVKgxY8Zw6tQpnnzySSIjI3n11VcrPYPRaGTRokX07duX22+/nb/++uuSI+KKynP8+HGCgoJo1apVibOfi6IyMjJKHCF91apVTJ48mZCQkEpOVfNNmzaNpk2bsnbtWnr06FFh5ynud7hv3z5+/vnnqx4dXpSeFEiiwj3xxBM88cQTLs3g6enJpk2bXJpBFPb4448zevRooGKHBMjIyLjsIHwXj/tTWg6H47Kdhb28vMr9+Xl5ebFixYqC7y+8o2nhwoXlei5xXt26dYt0bK8Ixf0OW7Rogd1ur/Bzi/OkQBJCuETLli0Lxq6qSA899BBff/31JbfRrnBsquPHjxe68aA406ZNK/PEtpdjMBjKfRBEIURhinalfxmEEKIa2Lt3b7GTpV7oSouN/Px81qxZc8ltGjZseNmBSYUQVY8USEIIIYQQF5GBIoUQQgghLiJ9kC5DVVUSEhLw9vaWyQGFEEKIakLTNLKysggPD0enK3t7kBRIl5GQkHBV0xUIIYQQwnWOHz9OZGRkmfeTAukyvL29AecP+MLh5YUQQghRdWVmZhIVFVXwPl5WUiBdxrnLaj4+PlIgCSGEENXMlXaPkU7aQgghhBAXkQJJCCGEEOIiUiAJIYQQQlxECiQhhBBCiItIgSSEEEIIcREpkIQQQgghLiIFkhBCCCHERaRAEkIIIYS4iBRIQgghhBAXkZG0hRBCCFEmmmbDkreYvJyvcdhjURQvzB7DcPe8G70+/PL724+h5c6G/GWg5YOhKYrHaHC7HkWpGm03UiAJIYQQtZTFFkd2/l9o2HA3tcXD1PmyU3NomoWM1LuxWf7GeSFKRdOyyMv+iPycOfgFLsRgbF3y/taNaKkTABvgcC60bUPL2AKWP8D3DRRFX15P8YpJgSSEEELUMg41ixOpj5CZtxxQzn6pmA1NqFvnQ9xMzUvcNzfrXWyWNWe/Uy88KpqWQ8aZewgIWVdskaNpeWhpDwDWi/Y9+zj/VzB2BM+7rubplQspkIQQQohaRNNU4pPHkmvdcm7J2S+w2GOJPX0rjUNXYDIUvVSmaVbycr7iXEFjd+hJy/PCrl5YDOWRwUpM5p5F989bBtl6wLfQ8joe2bgZbM5tcr8Gj9FXPMlseZECSQghhLhKufYMch1peOj98TD4Xn6HC6iag2zbSTQ0vI0R6JTSvTWrmp3TOb9zImshefbjmHR1CPceSpjXTRh0niXul52/mlzrxhLWOrCr2cQlf4leP5nTWRaSL/hKykwh4czdnMn15UyOD+n53iUcxwasKma5G/BckaVf3/IRveodADRwHAMtE5Sy/RzLmxRILqBpGvF7jpOTkUt4oxACQv1dHUkIIcQVOJ1/hH9Of0lczqazSxQaenWmV9DdBLk1vOS+mqayL30+e9PmkedIAcCs96O573BaB4y5ZKHkUPPZlvRf0vLXc64fUD4JZJ7ZxbGMr4kJm43ZEFzsvum5S8mxeHI8LYSjqWEcTw0nMTOQ9Fwf0nJ9SMv1xeYwAn+XcPaWhb7TKw4MOkfhTRQDxZcYdtAcnGuxKthc0S7azvV9kBRN0y5OJS6QmZmJr68vGRkZ+Pj4XPXx/lq4jq+e/ZYTB08BoCgKXW+M5v43xxLeKPSqjy+EEKJynMrbz4Kj/8Oh2dEu6E+joEOvGLmj3puEujcpdl9N0/g36WVis34pZq1CpGdP+oS9hq6EzsoHzkznWOZcCvfjObe3Hj+3aGLCviYr38bh09kcSsrmYFIWB09nsy8hnuTskluYzvFxMxDkbSbY240gb/PZLxMe6msEuMdTxyOTQM8MfNxy0F1U4PjWWYzJ3KXo887/DS190iXOqgNDC3SBSy6b73Ku9v1bWpAq0a+freTtez9y9oU7S9M0Nvyyld1r9vP+ptcIaxDiuoBCCFEL5diz2JL2J0dzDqBTdDTyakMHv96Y9e4l7qNpGssT3ipSHAFoqDg0G7+fepsxDT8odv/EvE0lFEfOI5zI+Ydj2X9S33tAkbV2NYcTWd9xrjjSNMi3mUlMDyYhNZSEtBAS0kJJyfyNxAx7Mcd3FkcBnmnUDThF3YAEIvyS8PfIwN8jkwCPDIK8vWlbd22x6fJyepCdsayE7HoMxpYYTZ2LX23uB/oIcCRScAdbISqK539KOHblkgKpkuRk5vL+Q184v7mozU51qORm5vL5U/N45ttHKj+cEEJUc8dzj7MxdT059mzqmAPpXqcn/qbLd184kLmVOUffwKHZ0HB+ft2VsZ7fE79lXINniPJoXOx+ifkHOGM9CoDFaiItI4DMLB807fwn4P2AlrwVH1PRS1370teSmt8W7YI3BIeqw2ozYbWbsNlMrGY/weYQcq0OciwO8mx2cq0OsvOzSM9/mHyb+ez2RrRix312FkfB3maahnjTJMSLpiHe1AtIQmEkXua8En4qOkJ87y3xZ+bmcTd222Hyc7/CeSnMwbnLfDp9XXwCviixg7WiGMD/c7TUMaCexvkT1wqOo3hNQnEfXOK5K5NcYruM8rrE9uunf/D2/R8XFEdRdXK4udMxPvmjKVa7swlVb9CxMOlzvP29yiO6EELUeDbVxhdxn7IpbSM6dCiKgqo5W1aGRgxjSNiNJe6bnH+SmYcexVFcnxh0mHVu/K/5+3gavNE0jaRMC4dPZ3MkOZuNJ/azPSGetIwAcvMuf7mqMvh6ZBLun0i4fxLh/kl0rT+Ing2G4ethLLLtidQnScuZW8xR9JgNjWkU8gN63aXfi2zWzeTlfIPDfghF54ub+82Y3W9EUUpueTtHU7Mh/ye0/N9AywVDcxSPO1CMLS+7b2nJJbZq4lTcaQwGPXabAwWNl+/cSnhAHkdTPPlpc10AHHaVlJOpUiAJIUQpfXNsDpvTnB2kVdRCdc6Sk4vwNvjQO6hPsfv+e2YZmqZy4U6qqpCd7U1mph9ZGX7cu3U12VkBxJ7OJsty8eWqqIJHnh7Z+Hqno9cXvmwU4tYEd33RN+cz+XuxqlmFlul0DkwGm/PLaMXL7E67wFtxN+nxMBnwMOnxMOkxG23sT52IyZCNyWDFbLTiZrRgNloLHa9bxFS8TEWLI4AI/1cxG6JIzvoIh5oGgIIRX49hhPs/e9niCMBoisFoirnsdsVRdF7gcSeKx51XtH9lkAKpkvgEeKE6zl4vRmHR+npMGryf27vF88uWSFTN2TzqHSDFkRBClEaqNZW1Kf8Uukx1IVVVWHhkGWFqBzLz7aTn2pxfeTYycq38cTKP7PyeWK1mrBYzVquZ3FxPVPXijtHpAOh1CvUCPGgY5EXDIDeOqrPx8UnE3zcNk8la5PxuOi/ubzIBg85UZN2B9ONsTP6EIn0uzlLQ0TZgAm3rFN/JO/RMV45lfsOlOml7mZoWuy+AougI8plIHe//kG/djYYNN2Mz9Dq/EvepbaRAqiS9b+/Gp0+cb878bXsEd/U5Qph/Pn1aJvHXvnBa9WhOYHiAC1MKIUT1sSN9OxoamgYZZ+qQdCKS9JQgbFYTNqsJh93ZevIT/5RwhOJvw9fr7fj4ZODjk05EHR2jW9xK42Av6tXxwGw4XzxtPBPD36c/LzFft6BRxRZHAA19rmdP2hxy7SloF3VWVtBj0nvTxHdoicdu7D+FLOtB0vI3cK7/z7k7gNwNkbQJmlHivhfSKSY8zB1LtW1tIwVSJQmpF8QN9w/g549WoGkaFrueJRvrMe6aw4zoGcdf+8MZ++IIV8cUQgiXUDWVXRkHic0+jkFnINq/FeHuxY/jA+BQNXYfy+fg9g4knYjAkl9SvxcNbzc9AZ5u+Lkb8fUw4etuxM/dSLxlAznKcYymfEwmCyaTBXePXDw9s1EU0KGjc50BDI4IK/bInQJux6bmsz5lPqCioEfDgYKOboGj6Oh/S4n5jTpPBkR+yOqEx0i3xqKcHfdHw4GnMZRrwt7A3VDyB2a9zo2OoZ+dHSjyuwsGirzlsgNFitKRTtqXUZ7jIDnsDj569Gt+/OA3NFXDx9PO7Imr8TA72Nf4VVqMnlhOqYUQovqIzT7OjAOfkZifgg6ds1UIjS4B7Zjc5C48DM7ix6FqbIxLZdnuUyzbnUhylqXgGHqDjaDwkwSFJ+DmkYvRZMVosmIyOniz/Ux8jEX/fu/P3MpX8a9eMtvDTd4k1L3eJbfJsaexP3M1OfZUvAx1aO7TFw+DX6meu6ZpJOVtJTFvC5qmEuLenjCPzlVmRvvq7Grfv6VAuozyHigSIDUxjbVLN5GTkUsvrx+JSF4E9XrCuJLGxBBCiOohz2HB4rDhZXDHoLv8aMiJ+SlM2T4di8Pq7GR9AR06mno1ZIjnaJbtSuS3PYmkZJ/v6+PjZsA/7Bj+4bEEBCeh0xfdv4N/NP9tVPyHT03T+DnhK9ae+QUFXcF4Rjp0qKgMCRtLr6CS74ITVZvcxVYNBYT6c+P91zm/yegE7/wIR9fA8Y0QVcLgWkIIUYXtTo9nTvwfbDyzHw3wMrhzY0RXRtW/Fi9Dybd9/3DyjyLFkaYqZJ0JID0hjB2JIXx7wbxhvu5GrmsZwuC2YfRoFEh83iHeOrgRVSvcXVmHDh+jL3dEjSzx3IqicEP43dTzbMaalJ85nnsI51QhrekddBNNvdtf+Q9EVHvSgnQZFdGCVMTSibB9LjQbAnfOq5hzCCHEJdhUBz8c38L8o+s5mpOCWWdgQFhr7mrQk4beJfcFAliTvJvndn4NKIUKHR0KdT2DmRX9IN7G4oukO9Y+SnqWAUu2J/nZXuRneZF5OgiH7XznZjezys1t6jG4bRjdG9XBqC98+el47jF+PvUj29K2oqJi0pnoUacXN4TfiK/Rr9Q/g3Nvh66eRV6UD7nEVsEqpUBKPgDvdwE0mLgRgppVzHmEEKIYNtXOw5vnsi7lcMG4xgB6RYdOUXg3ZgxdAhsVu2++w8qwf14g12Epdr0OhVsiezIifCCxyTlnv5yDLcYm53A0NYdC8y+dZTBZ8A1Nwi88kWuahPFMq/sv+zwsDgv5ah6eei8MOrlAUtvJJbaaIKgZNB8C+3+Gte/A0OLn7hFCiIowN24t61OOAIVH5XFoKqqm8L+t8/it3xO464vesr4qaTs5Niuq3YjDZkS1GXBYzNhyPLDlemDL8eDtVfCmfWUJZ1fQGWy4eeZg9srBzSsHT/80vOqkoug0dOgIc29Tqudh1psx681lfPZCFE8KpKqi5yPOAmnnd3DNU+Ab6epEQohaQNVUvo1fX3hOsHwzqsWEZjeg2Qzk2g1MXvwvwYY6ZwdZtJGeZyU918bp7Fystr6XPY9OgUh/DxoGedIw0IuGQZ40CvJij20Dv6T8AUoJgz2i0j+ke3k9XSFKTQqkqiIyBur3gvh/YN0HMOjSt54KIWomTdPYknKCY1np+Jrc6BFaHzdD8dNFFCfDmse65DjyHXaa+4bQ3DfkktunWnNIzsvGnuGDNdUf2xl/1GLGFFpBDpBTzBHOXR7T0Bns6Iw29CYbBo9cjJ55GD1yMXrm8n2/Rwj38iuydzv7NezM3cLJvNNF7mIDuDH8Wup5hl/+iQtRzqRAqkp6PuwskLZ8Bb0fAw8ZVVuI2mTj6WM8ueEX4rPSCpZ5GUxMbtOL8c07X7LzsE118MbulcyL3YRVPT8yc1v/CF6PuZmG3oGFtk/JtrD6QDK/7U0gbX8MOC54O1BUdGYLitF+tuhx0DQgkGsjmuDnYXR+uZvw8zCSrqby3L5P0RntFBdPh0IT78hiiyMAD4M7r7Z9lK/iFvNX8kbsmjO7n9GHYZHXcUNY38v/4ISoANWuk/b777/PjBkzSExMpF27dsyaNYvOnUu+NT49PZ2nn36axYsXk5qaSr169Zg5cyaDBw8u1fkqpZP2OZoGH/eCxF1wzdPQ5/GKPZ8QotxlWPJZeGgXf52Mw66qdAgKZ2TzdkR6+V5yv+0pJxnxx1wcqopazPxcj7brw8RWPUrc//FNS/jx+K4ie+oVBW+jG4uv+Q8ZGTr+3J/Eyv2n2X48nQv/+itGK8aAdEx10jD6paMYCrfmvN9pLN2Cip8X7H/bPmVL6sFicwO82nYc3YNalZj9nGx7LidyEzHqDNT3jECvXH4cJSFKUqvuYluwYAFjxozho48+okuXLsycOZOFCxdy4MABgoOL3oZqtVrp0aMHwcHBPPXUU0RERHD06FH8/Pxo165dqc5ZqQUSwK7vYdF4cA+AR3aDSYaLF6K62HY6gTG/LyTLaikoFXSKggK80WswwxqXXCTc+cdcNp0+XmKRYdTp2XDLZPzMRS9/7U0/xS1/flpkuaYqqJnekO6HKSuI3LzC61uF+9CveTDeQTl8kLC42BYgvaKjgWcQ83tNRFfC6M7Z9jye3fk129IOoz+7japp6BSFh5rewk2R3Up83kJUlFpVIHXp0oVOnTrx3nvvAaCqKlFRUUyaNIknn3yyyPYfffQRM2bMYP/+/RiNpb+Gf6FKL5AcdpjVEdKPwvX/B13uq/hzCiGuWoYln54LPybbZkUt5s+qDoUfbhpN28Ci83rFZaRx7eLPwWYEuxFsRjSbgQtvf1eAbiH1aOZX9MPgppSj7M9I4sI/55rFjJrpA+r5osbNqKNn40CubR7CNc2DCPM9X2x9deQfZh34DZ2iw6Gp6FBQ0ajrUYePuowj1N3vks9f0zT2Zh5lddJOch0WojyCGBQWg5/J65L7CVFRak2BZLVa8fDw4Pvvv2fo0KEFy8eOHUt6ejo//PBDkX0GDx5MQEAAHh4e/PDDDwQFBTFy5EieeOIJ9Prim24tFgsWy/nxPDIzM4mKiqq8Aglg02fwy6PgWxcmbwX9lRV3QojK89nuTby8cVXh9h8NZ98euwGdw0gb30j6hDYlMSOfpCwLSRn5JGbmk5Fnq7hgJis6v3R0fhlsuPM+6riXPKr10ewUFh/fxJGs03gYTPQLbcW1oS0xyphCohqqNeMgpaSk4HA4CAkpfEdGSEgI+/fvL3af2NhY/vzzT0aNGsWvv/7K4cOHeeCBB7DZbEybNq3YfaZPn84LL7xQ7vnLpP0oWP0aZByD3Yuh3QjX5hFCXNbqE3HO4siuhyxf51e+O8rZViAN2HkSdu49XPwBFBWMtvNfBluhW98VoG94I1r4F70rbV1yHLvSEgq1IGFwoPPNRHHPQ1HAQ2/C383tks+hnlcgj7S4vmxPXIgaqtoUSFdCVVWCg4P55JNP0Ov1REdHc/LkSWbMmFFigTR16lSmTJlS8P25FqRKZXSHLvfDny/B2pnQdjjFdg4QQlSYbKuVM3m5+Jnd8L1MYZFndZCYqMDJupDjVVAUAc7xhfR2MNjRGx3c2aoloT5uhPi6Of/1cf478d+FbEg+iqOERn2zTs87w0biYyqa5UCGPzet3FRiPr2i49b67dHJ3xEhSq3aFEiBgYHo9XqSkpIKLU9KSiI0NLTYfcLCwjAajYUup7Vo0YLExESsVismU9FRYc1mM2ZzFRiJtdMEWDMTTu+FQ79D04GuTiRErRCfnsZbG//ll8MHcGgaCnBt/YZM6dyDVkHn+/84VI11R86wZNtJlu8+RY7V4/yIQOZc8MkAr6yzLUHOu8m6hdblleuLHxV6asdrue33r9FQi+3D9Gi7vsUWRwDNfEMYXr8j38VvLbJOryj4m9z5T9OS74ATQhRV/C0JVZDJZCI6OpqVK88PV6+qKitXrqRbt+LvkOjRoweHDx9GVc/frnrw4EHCwsKKLY6qFHc/iBnnfLzmbZdGEaK2OJx2hpsWflNQHIHz0tjqo3EMWzSPLYkJ7E3I5NVf99H9tZWM/nwDi7aeIMfqIMzXDHWS0eofgnpx4J/qvFR2tmpyaBrjWkWXeO5WAaHM738XzS/qhB1g9uClToOY0KLLJbM/32EwDzTvhftFfRY7BdZjft97CHH3LvsPRIharNp00gbnbf5jx47l448/pnPnzsycOZPvvvuO/fv3ExISwpgxY4iIiGD69OkAHD9+nFatWjF27FgmTZrEoUOHuOeee5g8eTJPP/10qc5Z6XexFTr5KXinLTiscM9vULdr5Z5fiFpmxJIFbD51suhlLrsBJc8XQ54fNsv5AsTX3cgNbcO4pUME0fX8WXJkL1P+/qXgTjBwtuA4NI0JrWJ4pvM1pZopfm9aEkez0vAxmekcXBejrvTjAeXarWxKOYrFYaepbzD1veqUel8hapJa00kbYMSIESQnJ/Pcc8+RmJhI+/btWb58eUHH7WPHjqHTnW8Ui4qK4rfffuORRx6hbdu2RERE8NBDD/HEE0+46imUjU8YtLsDts52Xm4bOd/ViYSoseLS09iQcOL8AlUHud6Q6wMWDzQUbIBBpzCgZQhDO0TQt1kQZsP54mVY41Y08g3gsz2bWXX8CHZNo0NQGPe0iqZ/VONSFUcALf1DaFlMZ+zS8DCY6BNa/ICOQojSq1YtSK7g0hYkgJTD8F4MoMF/10FIy8rPIEQt8Gd8LPf8tBTyvZxFUZ4nhXohmHPBI4PnBsRwT8f2LkophCitWtWCVCsFNoYWN8K+H+Hfd+GWj1ydSIgq73hGBvN27GDdseNomkb3enUZ2a4dUb5Fp/vItzn462AyX60/BQlNQLugKDJYwDMTPDKdna2BQO9L39EmhKgZpECqDno+7CyQdi2Ea54Cv7quTiRElfXboUNM/vkXVE0ruBtsX3IyX2zZyjtDBjOoaVNsDpU1h1P4eccpft+TSJbFfnZvHRiszoLIPRNM1kLHNuv19K3boJKfkRDCFaRAqg4ioqFBb4j7G9a9D9e/7upEQlRJcalpTP75Fxxq4RnNHJoGqsaDi/9kUL1M1h5KJS33/OjVYb5u3NA2DJ1nFh/vXnPhDB8FFGBC+xh8qsIwIEKICicFUnXR8xFngbR1NvR+HDzlzhQhLjZ3x3Y0TSsojjQNsLuhWXzQLN6gGvg53TmWWqCXiSFtwrihXTjRdf3R6RQ0TcPbS+Ptjf+i4ZxoVtU0NE1jbJsOTOnc3VVPTQhRyaRAqi4aXgNh7eDUDtj4CVwz1dWJhKhy/o6PPz9+kdUDNTsYHBe0+CgOfLwtfDj8Gro0CMCgLzwUnKIoPBjTleEt2vDjoX0kZGdRx92Dm5u0INIVN2kIIVxGCqTqQlHQejyM8v04cla+wz13HcGumOkyqB23TLyOJu3ruzqhEC6nahqaw4CWE4RmOVvQKCqKKQvFnAWmHAL9/ejROPCSxwn29GRC+5hKSCyEqKqqzUjatZ2maXz4VTYJ6Z54GvLo2+gAORm5/LVoAw9d8xJ/L97o6ohCuJTVruLtCENNa3C2ONJQ3NPQBRxB55OIYs7BoFPoHBnp6qhCiGpACqRqYs0Pm/nxk1V8v8k5ANyt0YfQ61QcdhXVofL6hE84cyrNxSmFcI1/j6Qw+N1/2H5Edd6mb8hD538UnddpFN35qYZUTWNMh/auCyqEqDakQKomlnzwOzqdwoq99UjNMRPsk0ffZscL1muqyrKv/nJhQiEqX1JmPpO/3cbITzdw+HQ2dTxN3NolAL3fMQzG87fo6xUFBXixfz9aBgeXfEAhhDhL+iBVEwe3xqOqGip6lmxtzPhee7i90yFW7qsLKKiqxv7Nsa6OKUS5ybXaWHUoljM5uYT6eNO3cX1MBuefLJtD5et/43l7xUFyrA50CozuWo9HBzTD18PI2MQGfL11G2uPHQOge90o7u7Ykbahoa58SkKIakQKpGpCr9dxbii7X3Y0ZGSX/dQPzKRNZAq7TgShKGAwln5CSyGqstkbt/HWqrXk2mwoivN2fV83M09f15cwrxCe+2EPB5KyAGgf5cfLQ1vTOuL8KNltQ0N5c/D1roovhKgBpECqJmL6t2H9sm047Cq5ViOr9kcxuG08Q9rGsetEEJoG0f3auDqmEFdtzqbtvPz76oLvz80WmZ5rZ8p3O1DtzrvT/D2MPHl9c26PjkKnK90ksEIIUVrSB6maGDZpIA7H+c6mv+xoCECPJicJ8LbgHeDJtSO6uSqeEOUi32bn7dVrCy3TNHBY/bDl1j9bHGmM7FKXVY/1ZUSnulIcCSEqhBRI1USrrk145L1xKDoFnV7HkWQ/9p3yx6jXGNLhJK8ueQxPH3dXxxTiqvwTG0+25XznatVhxp5XF4c1GNCj6PIxuB/j9k518PMwuS6oEKLGk0ts1cjAu3rTtmdzln31F/s2HWGPzUELfuDOa1LQtYtydTwhrlpqTl7BY4fNG4clBOfnOAd6cwo6QwaKAqm5eSUeQwghyoMUSNVMWINg7nnhduc3tjx48y90WSfg8B/QdKBrwwlxlSJ8fc5eUgtEtQUAoOhzMLidQlHUQtsJIURFkkts1ZnRHdqPcj7e9LlrswhRDlqGhqKz1S0ojnTGVAxuJwuKI52i0DwkiOYhQa6MKYSoBaRAqu5i7nH+e+h3SDvq2ixCXIWDSVnc8sG/WKxugIrBnIDBnIJytg+2TlHQKQrPDbzGpTmFELWDFEjVXWBjaNAH0GDLV65OI8QV+W1PIre8v5ajZ3KJ8HPn5WFNaBpWuBN267Bg5tx1GzF1I1yUUghRm0gfpJqg03iI+wu2zYG+U8Egd/eI6kFVNd5ZeYh3Vh4CoFvDOrw/qiMBniZGdWrGgdMpBSNpNwoMcHFaIURtIgVSTdBsMHiFQnYi7P8JWt/q6kRCXFZWvo0p3+1gxd4kAMb1qM9Tg1tg1DsbtpWz/Y2EEMIV5BJbTaA3QvRY5+NNX7g2ixClEJeSwy0f/MuKvUmYDDpm3NaWaTe2KiiOhBDC1aQFqaboOBb+ngFH18Dp/RDc3NWJRC239ehJvlm/nW1HE9DrdfRp1pBRXdoRn2pn8rfbyMq3E+Jj5uO7Ymgf5efquEIIUYgUSDWFbwQ0vR4O/AKbv4DB/+fqRKIW+/Svjby9Yi16nYJDdU6mNn/DDuasO4bVEYgGRNfz58PRHQn2dnNtWCGEKIa0Z9cknc7e8r/jW7DmuDaLqLXWHznG2yuc86mdK440TSHPHoLlbHF0c/sw5v2nixRHQogqSwqkmqThteDfACyZsHuRq9OIWmr2v1vRXzCBrKoZyHdE4dCcE82adadpEmTBbNC7LqQQQlyGFEg1iU4HMeOcj2VkbeEim+NP4lA1NA1sqh/5jnpouAF2zPoT6HXpbIo74eqYQghxSVIg1TTtR4PeDKe2w8ktrk4jaiENsKue5DvqY1ODAT068nHTH0OvOCeZVZRLHkIIIVxOCqSaxrMOtBrqfCy3/ItKtutEBir1sKoRaJgAOyZdImb9MXSKHXBOGdK1UV3XBhVCiMuQAqkmihnv/Hf3IshLc20WUSucyshjynfbufG9NZzJUQAVg3IGd30cBl1mQYuRooDJoOe2mNYuzSuEEJcjBVJNFNUZgluBPQ+2f+vqNKKaS83O5WhyGrkWa5F1ORY7b/1+gGveWM3irScBGNo+nMevC8OsP8OF/bB1ioJJb+C9UTcR6OVZWfGFEOKKyDhINZGiOG/5/+VR55hIXf8rnT5EmW2JPcH7v61j0xFnh2qjXseQjs15cFAPAr09WbTlBDN+P0BylgWATvX9eWZIS9qdHfSxf8v6fLtxB1viT2LQ6ejTrAEjOrcl1NfbVU9JCCFKTdE0TXN1iKosMzMTX19fMjIy8PHxcXWc0rNkwZvNwZoNY3+CBr1dnUhUI6v3HOGhr34CQL3gT4Rep+Du7o+nTz0OJzvH2qob4MHU65szqHUoihTiQogq4mrfv6UFqaYye0Pb4c4WpE2fS4EkSs1qt/PMgt/RNI0LPz05MJJLEOkWL0jOwdvNwEP9mnBXt3oyppEQosaRPkg12bnO2vt/hqxE12YR1caqPbFk5OYXFEcaOvJ1QeTq6+PQeYGmYdLS+XFiVyb0aijFkRCiRpICqSYLbQ1RXUC1w9Y5rk4jqon45DQMOuefBhUdufoobDp/UBT0ajYejnjMjtPk5ue5OKkQQlQcKZBqunOtSFu+AtXh0iiievA0G1E1DQ0defpIVMWMotlxdxzHQ01Aj825nZvZxUmFEKLiSIFU07W8GdwDIPMEHPzN1WlENXBtq8aoKOTqI1EVt4LiyKCdHQUbaBQSQL1AP5fmFEKIiiQFUk1ndIMOo5yPN8vI2uLyfDw9MPs0uaA4OlHQagTOqUQmDuwud6wJIWo0KZBqg+izE9ge/gPS4l0aRVRtuVY7477cSEqOhkkP7o4TGBUbBr0OBeco2M/d1o8BbZu4OqoQQlQouc2/NqjTCBpdC0f+hM1fwoAXXJ1IVEF5Vgfjv9rMpvg0vN0MzJvQFR9zd5bvOEhWnoXIAF8Gd2yGj7ubq6MKIUSFkwKptogZ7yyQts2Ba54Cg3SwFefl2xzcO2cz62LP4GU2MPuezrSJ9AXgvv5dXJxOCCEqn1xiqy2aDgKfCMg9A3t/dHUaUYVY7A7+O3cL/xxKwcOk58txnehQ19/VsYQQwqWkQKot9AZymgwHYN/HzzA4cjJ3xTzLvLeXk5Mp49nUVjaHyoPztrHqQDJuRh2fj+1Ep/oBro4lhBAuJwVSLXHsUCJTXkjGoSq0CEqkrl8qKafSmfvWrzx8wxtkpGa7OqKoZHaHysPzt7NibxImg45Px8TQrVEdV8cSQogqQQqkWkDTNF7775ecOG1g3dEoAAa3OOhcp2okxKfw0XPfuzKiqGQOVePRhTv4ZdcpjHqFj0dH06tJkKtjCSFElSEFUi2wf2s8cfsSUB0qv+xtCkD/JrG4GZxj26gOlb9/3Eb6mSxXxhQVJCffyv7jp4lNPIOqaqiqxhOLdvLD9gQMOoX3R3bkmubBro4phBBVitzFVgsc3nUcRQFNgx0JYZzI8CbSN4vrWxxiya6WgLNIitubQIdezVycVpSXzNx83v1hDT9u2IvV7pxmJjzAB9+wxqw7mo1ep/DunR24rlWoi5MKIUTVIy1ItYDBqEc7OzW7hsKiHa0AuCt6O0Ge5/seGc1SL9cUWXkW7n5rAUvW7S4ojjTgSLYb645mowBvDW/H4DZhLs0phBBVlRRItUDHPi0KTQvx24Em7E4Mxt1o58GeGwANL193mrar67qQolzNWbmF+KQ0HKqzMtaAfFMQFpMfaBru+YlER3q6NKMQQlRlUiDVAiGRAfS+qSM6nbNI0lB495+u2Bw6Otc9SZ9G8Qy791pMZqOLk4ryoGkaC9fsRNXOFUcK+aZALCbn2EbuliTc1SyWrtvjyphCCFGlSYFUSzw0407adGsMgF6v43i6Hwt2tAVgct9tjJgQ48p4ohzl2+ykZudj1XuR4xZGhmcjLCbn2Ebu+UmY7ZloGpxIyXBxUiGEqLqk00kt4e5p5tX5D7JjzUH+XLyJ9DPZZEZ2xeLzFh6Zh+GP52DoB66OKS5yMjmD+Su3sWLjAfKtNhqE1WF4v/Zc17kZel3hzzf5NgerDyTz844EMjwbgXJ+vU61YramYrZnAqAo4O0u080IIURJFE07131XFCczMxNfX18yMjLw8fFxdZzyd3wjfH4doMGYH6BhX1cnEmftPJzAxLcWYbXZC/oS6RQFVdO4pmNjpt9/Aw5N45+DKfyy6xQr9iaRbbEX7K9TbRjtWRjtWehVC8pFx//soduJaRJZic9ICCEqz9W+f1e7S2zvv/8+9evXx83NjS5durBx48ZS7Td//nwURWHo0KEVG7C6ieoMnf/jfPzTw2DNdWkc4WS12Zky6wcs1vPFEYCqaWjA77sSuH3WKmJe/oMJszezZNtJsi12wnzdmNCzAe+PaE2g7RietjMYLiqOdIpCTJNIohtHVPrzEkKI6qJaXWJbsGABU6ZM4aOPPqJLly7MnDmTgQMHcuDAAYKDSx7oLj4+nscee4xevXpVYtpqpN9zsP8XSIuDv16DAS+6OlGtt3LLIdKzz8+RpwE2owcWszdWszeaTs+2xHwAgr3NDG4Txo3twugQ5V/QGT/c51b+9/kvpGTmYNDpUDUNVdPo1boBr4wZVOjORiGEEIVVq0tsXbp0oVOnTrz33nsAqKpKVFQUkyZN4sknnyx2H4fDQe/evbnnnnv4559/SE9PZ+nSpaU+Z42/xHbOgeXw7QhQ9HDvKghr5+pEtdr/ffMni//aid2hYtebyfIOxWF0K1ivqHbMlizeHd+Xfq0j0OuKL3bsDpU1e+I4cDIZs9FAn9YNaRAqk9EKIWq+WnOJzWq1smXLFvr371+wTKfT0b9/f9atW1fifi+++CLBwcGMHz++MmJWX80GQatbQHPAj5PAYb/8PqLC6HUKGpDrUYd0/3o4jG4oqgNzXjo+6ccJOHMEr+zTdGoQUGJxBGDQ6+jbthH3Xd+Vu/vHSHEkhBClVG0usaWkpOBwOAgJCSm0PCQkhP379xe7z5o1a/j888/Zvn17qc9jsViwWCwF32dmZl5R3mpp0Otw5E84tQM2fAjdJ7k6Ua0VHh5CindUQauRyZKFV1YSOs05KraiQIOwOvh5ubsyphBC1FjVpgWprLKysrjrrrv49NNPCQwMLPV+06dPx9fXt+ArKiqqAlNWMd4hcN0rzsd/vgKpca7NUwvZHCqzVh7iud/jC1qNvDIT8M5MKCiOwDmv3tjrO0k/IiGEqCDVpkAKDAxEr9eTlJRUaHlSUhKhoUUn2zxy5Ajx8fHceOONGAwGDAYDs2fP5scff8RgMHDkyJFizzN16lQyMjIKvo4fP14hz6fK6jAa6vcCex78/AhUny5q1d6BxCxu+WAtb644iM2h0atRAE20ZNwsWZy7inbuctq4wZ0Z3K2FC9MKIUTNVm0usZlMJqKjo1m5cmXBrfqqqrJy5UoefPDBIts3b96cXbt2FVr2zDPPkJWVxTvvvFNiy5DZbMZsrsUD6CkK3PgOfNgdYlfBjvnQ/k5Xp6rR7A6Vj/+OZeYfzsLI193I8ze1ZGj7CPIs0SzfsJ+Vmw+Sk2+lcWQgt/ZpR4v6IZc/sBBCiCtWbQokgClTpjB27FhiYmLo3LkzM2fOJCcnh3HjxgEwZswYIiIimD59Om5ubrRu3brQ/n5+fgBFlouL1GkEfZ6AlS/Ab1OhcX/wCnJ1qmor32Ljzw0HOXYqDQ93I307NaFumLOz9MGkLB5buIOdJ5zTfvRvEcyrt7Qh2MfZ98jDzcSwPm0Z1qety/ILIURtVK0KpBEjRpCcnMxzzz1HYmIi7du3Z/ny5QUdt48dO4ZOV22uGlZt3SfB7sWQtMtZJN36masTVUurNx7i5Y+Xk5NnxaB3jkX04fw19OvajOCWTXlv1RGsDhUfNwPTbmzFsI4R0q9ICCGqgGo1DpIr1JpxkIpzcit81g80FUZ9D00GuDpRtbJ173EmvbIQ9aL/YjaDiYw6YdjMzjvQrm0ezPRhbQjxcSvuMEIIIa5ArRkHSbhAREfo+oDz8c+PgCXbtXmqmc8W/cuFc3xoQLZ3AClh9bGZ3VFUB0/0a8jnY2OkOBJCiCpGCiRxadc8BX51IeM4rHrF1WmqjbTMXLbtO4F6dh41h97AmZB6ZPkHg6LDnJdNaGI8xow0uaQmhBBVULXqgyRcwOQJN7wNc29FW/8h65Na8O9eNxQF2nZpRO/BbTGZja5OWeXk5FkLHltNbqQFRaLqDSiqA5+007jnZGDQ6wptJ4QQouqQFiRxeY37kx4xBAWN0K3T+Ounzaz8YRtvPvEdY/u+xuG9J12dsMoJ9PPEZDSQ6+HDmZC6qHoDBms+gafi8MjJQAEcqkpUqJ+rowohhCiGFEjispJPpTP5k3Ay8t1o4J/KsKbbUB0qAJlpOUwd+ykZqTkuTlm1mIwG6rRsSkZguPOSWm4WdZKOYrhgjjujQc91PWSwRyGEqIqkQBKX9dPcdZzJMvDx1u4AjGyzhQjvdABUVSMnM5/fvt/kwoRVS67VzgPfbGVrmrOI9M48g3/KSXRn72Y71+fof+P64+VRiwclFUKIKqxUfZB+/PHHMh94wIABuLvLRJo1wZrfdqKqGqvim3Bt/UPEhB9nUue/eXLljYCCpmms/W0Xw+/t6+qoLpeQnsd/Zm9mT0ImJr2Opwc15cTeQ/y29gw2u7NgalIviAm3dqdXdCMXpxVCCFGSUhVI56b2KC1FUTh06BANGza8kkyiirHk284+Upi1qRef3rCAdiEJNA1I5mBqMAD5ebaSD1BLbD+ezn9mbyY5y0IdTxMf3xVNTP0A6NWIh++6hqTULDzcTIQG1rLxtIQQohoq9SW2xMREVFUt1ZeHh0dFZhaVrFHLCHR650vldI4P/xxzFr6DGu8FQK/X0bhVuMvyVQU/7khgxMfrSM6y0CzEm6UTeziLo7M8Pcw0jAyU4kgIIaqJUhVIY8eOLdPlstGjR9e+UadrsJtGdy/olA2w7HBLAPrWO4yHwYrDoXLDyG6uiudSqqrx1oqDTP52Gxa7Sr/mwSx6oDtRAfIhQQghqrNSXWL78ssvy3TQDz/88IrCiKopuldThozsyi/z1qMoCnuSQzmW4Udd33T61D+M74AHadGhnqtjVqj9hxNZt/kIVpuDpg1D6NWlMTYVHlu4g192nQLgvt4NeXxQc/Q6GfhRCCGqu1IPFHnbbbcxYcIEBg4cKCP/1jKKojBx2lCata3L4i/+Jv5gIssOt+C+6HWM65uI9yMDXR2xwmRk5vHM//3A9t3H0esUFEXB7lDx8vfG2qIpR1LzMOoVXhnahuGdolwdVwghRDkpdYGUlpbGkCFDCA8PZ9y4cdx9993SCbsWURSFAcOiGTAsmvw8K0p+GrzXGu/cg5CwDcI7uDpiuXM4VB578XsOxiY5v1c1QMNqduNgnVAcqXn4uBn4dEwMXRrWcW1YIYQQ5arUnbRXrlxJbGws48ePZ+7cuTRp0oRrr72WefPmYbFYKjKjqGLc3E2Y/UOg5c3OBZvLdgm2uti4LZ79hxML5lMDyPX25nS9+jgMRowWC0N8HVIcCSFEDVSmgSLr1avH888/T2xsLCtWrCA8PJz//Oc/hIWFMXHiRLZs2VJROUVVFH23899d34Mly6VRKsKfa/cX6k+UGVCHMxFRaDodbtlZBB+NY9O6A2iadomjCCGEqI6ueCTta6+9lrlz55KYmMj06dOZP38+Xbp0Kc9soqqr1wPqNAFbjrNIqmFyci1nL6tBZkAAGcEhAHilniHwxHF0qorFai/UwiSEEKJmuKqpRuLi4njjjTd49dVXycjIoH///uWVS1QHinK+FWnLV65MUiGiwgPQ6RSyff3ICA4FwDf5NP6nkzjXrhQS6I1eLzP2CCFETVPmv+z5+fnMnTuXa6+9liZNmjB79mzGjx9PXFwcy5cvr4iMoiprdyfoTXBqu7Ozdg0ypH8bsry8SQsNA8D7TAreZ1IK1iuKwi2Da17ndCGEEGW4i23jxo188cUXLFiwgPz8fG655RaWL19Ov3795Lb/2syzDrS4CXZ/D1u+rlF3s+1Pt5IWHgmAV1oqvsmnC1qOdDqFJg2CuXVIR9cFFEIIUWFKXSB17dqVdu3a8dJLLzFq1Cj8/f0rMpeoTqLvdhZIuxbCdS+D2cvVia7aP4eSeXDeNjSga7gnSuYpTpxd5+Fu4qbr2jLujh64mY2ujCmEEKKClLpA2rx5Mx07yqdlUYz6PSGgEaQegd2LIHqsqxNdlc3xqdw7ewtWh8qgVqG8N7IDel0fTp3OwGZzEBrsi9lU6v86QgghqqFS9UHauXMn7du3L/VB9+zZg91uv9JMorqpQZ21d5/MYNyXm8izOejTNIh37myPQa9DURTCQ/yoF1lHiiMhhKgFSlUgdejQgTNnzpT6oN26dePYsWNXHEpUQ+1Hgs4ICVvh1A5Xp7kih5KyuOvzDWRZ7HSuH8BHo6MxG/SujiWEEMIFSvVRWNM0nn32WTw8SjdDudVqvapQohryDIQWN8Kexc5WpBvednWiMjl2JpfRn28gLddG20hfPr87BneTFEdCCFFblapA6t27NwcOHCj1Qbt164a7u/sVhxLVVMw4Z4G0cyEMeKnadNZOzMhn5GfrScq00CzEm6/HdcbbTTpfCyFEbVaqAmn16tUVHEPUCPV7QUBDSI11Fkodx7g60WWlZFsY9dl6TqTlUb+OB3PGd8bf0+TqWEIIIVxMhgAW5aeKd9a2WGwkJmWQneOcXDkjz8aYzzdyJDmHcF835k7oQrCPm4tTCiGEqArkdhxRvtqNhJUvwcktcGonhLV1dSKSU7L4es4aVvyxB6vNgaJAx5iG7AkIYl9yDoFeJuZO6EKkf+n62AkhhKj5pAVJlC+vIGhxg/Px1q9dmwVIOp3J/RO/Zvlvu7DaHAA4UPglXWVfcg5eJj1zxnehYVD16C8lhBCickiBJMrfuctsO78Da45Lo3zw0UoyMnNxqBoAGpDcIIo8by8Uh4PI+OM0DZbiSAghRGFSIInyV783+DcASybsWeKyGKlpOfyz9hAOxwXFUf1Icv18UFSVkCPHsCSmsnFTrMsyCiGEqJquqECaM2cOPXr0IDw8nKNHjwIwc+ZMfvjhh3INJ6opne78dCMu7Kx9MiENTdMKvs8ICSQnwA80jeDYY7hn56DTKRw9VvpBUIUQQtQOZS6QPvzwQ6ZMmcLgwYNJT0/H4XD26/Dz82PmzJnlnU9UV+1Hgc4AJzZB4m6XRHB3O3+7vs1kJD0sGIDAYwl4ZGYDzkFQ3d3ltn4hhBCFlblAmjVrFp9++ilPP/00ev35kYZjYmLYtWtXuYYT1ZhXMDQf4nzsolakhg2CCA31RQPORIWj6XS4ZWbjdSbtgq0UenRv7JJ8Qgghqq4yF0hxcXF06NChyHKz2UxOjms75IoqJnqc89+dC8CaW+mn1+kU7r6rJzl+PuT5eoOqEng8AeXsekVRGHJ9WwLreFd6NiGEEFVbmQukBg0asH379iLLly9fTosWLcojk6gpGvQB//ou7azdrVcz8pvVB8A/KQV3hx293lki9b+2JZMnDnBJLiGEEFVbmQeKnDJlChMnTiQ/Px9N09i4cSPffvst06dP57PPPquIjKK60umg41hY+YLzMluHUZUeYcbyA2TZVOoFuHNfx5akJGfi4+3OtX1bULdunUrPI4QQonooc4E0YcIE3N3deeaZZ8jNzWXkyJGEh4fzzjvvcMcdd1RERlGdtR8Fq16BExshaQ+EtKq0U28/ns7cDc67LKff2pbujQIr7dxCCCGqtyu6zX/UqFEcOnSI7OxsEhMTOXHiBOPHjy/vbKIm8A6BZoOdj7dU3sjadofKU4t3oWkwrEOEFEdCCCHK5KoGivTw8CA4OLi8soiaqmBk7fmV1ln7q3/j2XsqE193I08Nkb5xQgghyqZUl9g6dOiAoiiX3xDYunXrVQUSNVDDa8CvLqQfg70/QPs7K/R0J9PzeGvFQQCmXt+cQC9zhZ5PCCFEzVOqAmno0KEFj/Pz8/nggw9o2bIl3bp1A2D9+vXs2bOHBx54oEJCimruXGftP1/i1I9v8+W3BvwDveh/QzuatAgv99M9/+Mecq0OOtX3Z3hMVLkfXwghRM1XqgJp2rRpBY8nTJjA5MmTeemll4psc/z48fJNJ2oEh93BZ38GMl7VEcYBjq7/izU5QSydt55rrm/LYy8MxWDUX/5ApfD7nkRW7E3CoFN45ZY26HSla/kUQgghLlTmPkgLFy5kzJgxRZaPHj2aRYsWlUsoUbPM/mgVS36MY31iQwAG1d2Fw6ECsHr5Tj5/d0W5nCfbYmfaj3sAuLd3Q5qGyACQQgghrkyZCyR3d3fWrl1bZPnatWtxc3Mrl1Ci5sjLtbDkm/VoGvwa3xqA/lH7MOnsAGga/LRgI9lZeVd9rrdXHORURj5RAe5MurbJVR9PCCFE7VXmcZAefvhh/vvf/7J161Y6d+4MwIYNG/jiiy949tlnyz2gqN52bjmKJd8GwNbkeiTmehPqkcU1kfv57ZizYLLZHGxbH0uvAVc+RtLukxl8uTYOgJdubo27qXwu2QkhhKidylwgPfnkkzRs2JB33nmHuXPnAtCiRQu+/PJLhg8fXu4BRfVmtdgLHmso/BLXlvGt1nJf67/ZkxrOiewA53ZWe0mHuCyHqvH0kl2oGgxpG0bfZjL0hBBCiKtT5gIJYPjw4VIMiVJp2DSk0PeLjnSkc0g8bQJP8lynn3nonzvIs5to1Cz0is/xzYaj7DiRgbfZwLQbWl5tZCGEEOLqBooU4nIi6tahfacG6PTOl5pD0/PK5sGcyfeknk8qj3ZYQYu2EdRvHHKZIxUvKTOfGcsPAPD4oGYE+0g/OCGEEFevzAWSTqdDr9eX+CXExR6ZdjO+fu4FRVKaxZOXNg7BpuroFX6I529PueJjv/jzXrIsdtpF+TGyS73yiiyEEKKWK/MltiVLlhT63mazsW3bNr7++mteeOGFcgsmao7QCH/en3c/C2evZfmSreTlWonLr8da01j62r/Eb8sMaNkdGvYt03FXHzjNLztPodcpvHpLa/Qy5pEQQohyomiappXHgebNm8eCBQv44YcfyuNwVUZmZia+vr5kZGTg4+Pj6jjVnqZpWPJtmN2MKAA/PAjb54J7ANz3l3NKkkvsm5Gei6pqmD3dGPTu3xxPzWNCzwY8I32PhBBCXOBq37/LrUCKjY2lbdu2ZGdnl8fhqgwpkCqYLQ++GASntkNYO7jnNzC6F9pE0zT+WL6LBd+s42i883Jcbst6nAzwJ8zXjT+m9MHTfEX3GwghhKihrvb9u1w6aefl5fHuu+8SERFRHocTtYnRHUbMcbYgndoBvzzqHD3yAp9/tIr/e+Unjh11FkcWDzdO+vkB0Co7C/dymqZECCGEOKfMH7v9/f1RlPN9PTRNIysrCw8Pj4JxkYQoE7+6cNsXMHcYbP8GIqKh03gA9u89yYJv1gHOukkDTjeKBJ2C55l0ju6L5+9VTenbTy6xCSGEKD9lLpDefvvtQgWSTqcjKCiILl264O/vX67hivP+++8zY8YMEhMTadeuHbNmzSoY0ftin376KbNnz2b37t0AREdH8+qrr5a4vXChRtdAv2nwxzRY9gSEtoGozvz8wzb0el3B3G2ZIQHk+3qh2B0EHTmJTqfww+LNUiAJIYQoV2UukK699lqioqIKFUnnHDt2jLp1S+5ke7UWLFjAlClT+Oijj+jSpQszZ85k4MCBHDhwgODgoqMnr169mjvvvJPu3bvj5ubG66+/znXXXceePXvkcmBV1OMhSNgKe3+A78bAvX8RezipoDjK93QnpYHz91bnWCJGqw0VOBqb7MLQQgghaqIyd9LW6/WcOnWqSEFy5swZgoODcTgc5RrwQl26dKFTp0689957AKiqSlRUFJMmTeLJJ5+87P4OhwN/f3/ee+89xowZU6pzSiftSmbJgs/6Q/J+qNudx7fdwfbtJ7CYTZxo2wSHyYh7RjYRuw5zrkQPCvZh3uJJLo0thBCiaqn0Ttol1VPZ2dm4uVXcKMZWq5UtW7bQv3//gmU6nY7+/fuzbt26Uh0jNzcXm81GQEBAidtYLBYyMzMLfYlKZPaGEXPB7APH/uX+pquwGo2cbN0Yh8mIOTuXsL2xBcWRTqfI5TUhhBDlrtSX2KZMmQKAoig899xzeHh4FKxzOBxs2LCB9u3bl3vAc1JSUnA4HISEFJ6SIiQkhP3795fqGE888QTh4eGFiqyLTZ8+XQa8dLXAJnDLRzB/JA3PLKFzTBDxulYY8/IJ3xOL/uwlN51OwWw2cPOtMS4OLIQQoqYpdYG0bds2wNmCtGvXLkwmU8E6k8lEu3bteOyxx8o/YTl57bXXmD9/PqtXr75kS9fUqVMLikFwNtFFRUVVRkRxoeZDsHZ/FNO/b/KC+1ccyIsiY3c+ZlUFgw6HXcXHx50XXhtOSKivq9MKIYSoYUpdIK1atQqAcePG8c4771R6f5zAwED0ej1JSUmFliclJREaeumZ4N944w1ee+01/vjjD9q2bXvJbc1mM2az+arziqtjsTuYcLQ/9zj+4Br9DuYFfMiLjSay40AWmqpRt14dxk7oQ4tW4a6OKoQQogYqcx+kL7/80iWdlU0mE9HR0axcubJgmaqqrFy5km7dupW43//93//x0ksvsXz5cmJi5FJMdeBQNR5ZsJ1/jqTxlDKZDEMYnvkJ3G7+DM1hR1U1ThxP5aVnF/PZh6tcHVcIIUQNVKoWpGHDhvHVV1/h4+PDsGHDLrnt4sWLyyVYcaZMmcLYsWOJiYmhc+fOzJw5k5ycHMaNGwfAmDFjiIiIYPr06QC8/vrrPPfcc8ybN4/69euTmJgIgJeXF15eXhWWU1w5TdN4Zukuft2ViEmv47HrOvD4KwN5J2YuMXXiGNNoLV8d6YWqOm8W+G7eOtpH16NTl0YuTi6EEKImKVWB5OvrWzDuka+v6/p7jBgxguTkZJ577jkSExNp3749y5cvL+i4fezYMXS6841iH374IVarldtuu63QcaZNm8bzzz9fmdFFKc347QDfbjyOToF37mhP7MpdHM0N4e19A5na+hdGNVjHwcxQ/k1uAoBOr7B04SYpkIQQQpSrcpustqaScZAqz6d/x/LKr/sAmD6sDXd2rsuDE77gwP5TAPy36UqG1d1Cjt3EuH8nkGZ1tgJ6+7iz+NcpJR5XCCFE7VMlJqsV4mp9t/l4QXH0xKDm3NnZOSK70XR+ItpPDvXlQEYongYroxucH/vKYJCXsRBCiPJVqktsHTp0KHZqkeJs3br1qgKJ2ue3PYk8uWgnAPf1bsh/+56/XNalWxP27DqJpmk4ND2fHO7Lm9HzGRyxg0XHYkiyBtC9Z1NXRRdCCFFDlapAGjp0aAXHELWBpmnEHkzizOlMAoK8adQslHWxZ5g0bxuqBsNjInny+uaF9hl0Qzu+nbuW/DwbqqqxM60uG1Ma0Dkwjrsb/cPr+4Yy9LZOLnpGQgghairpg3QZ0gepfGzbEMtHbywj/vDpgmW+zcLZ2SiKfIfGwFYhvD+yIwZ90ctle3ef4KlH55Oba0HToJFXEh91/RqA7Z1m037IzZX2PIQQQlQPV/v+XeqBIi+2efNm9u1z9hlp2bIl0dHRV3ooUcNtWX+EZybOKTSPn8XTjS3hITgcGq3quPPOHR2KLY4AWraOZO73D/L7sp1s3RyH6mhInOdRGuSspv2ZLwEpkIQQQpSvMhdIJ06c4M4772Tt2rX4+fkBkJ6eTvfu3Zk/fz6RkZHlnVFUY5qm8f70n9E0OFcf2dxMnIhuhsNkxC0jG+9dBzE92veSx/HydmPY8M4MG97ZuSCtG8yKgdhVELsaGl56fyGEEKIsynz7z4QJE7DZbOzbt4/U1FRSU1PZt28fqqoyYcKEisgoqrEDu09y8lhqQeuR3WjgRHQz7O5mTNl5RGw5SFpCOru2Hi3bgf3rQ8w9zsd/PH+++hJCCCHKQZkLpL/++osPP/yQZs2aFSxr1qwZs2bN4u+//y7XcKL6O52YUej7lKaRWL3cMeRZiNxyAIPN7tzuVEZxu19a7/+ByQsStsHepeWQVgghhHAqc4EUFRWFzWYrstzhcBAeLhOHisL8/D0LHttNRjLDAwEI23kEY771/HYBnkX2vSyvIOj2oPPxypfAUfR1KYQQQlyJMhdIM2bMYNKkSWzevLlg2ebNm3nooYd44403yjWcqP5adahLnWBvANLqhaDpdLilZeGRnl2wja+/Bx06N7yyE3R/EDwCIfUIbJtTHpGFEEKIst/m7+/vT25uLna7HYPB2cf73GNPz8KtAKmpqeWX1EXkNv+rt2rZLl55djGxfdqjGg1EbD2IV3J6wfopzw9l4M0drvwE6z+C5U+AVyhM3gYmj6sPLYQQolqr9Nv8Z86cWeaTiNrtmuvb8OvRDA7HZ2DKzsPzbHHk5e3GhIevu7riCCBmHKx/H9KPwYYPodejVx9aCCFErSYDRV6GtCBdPYvdQe//W0VSpoV7WwfRxgR1gryJ6dEEk+mKh+IqbMcCWHIvmH3hoe3gEVA+xxVCCFEtuWygyNOnT3P69GlUVS20vG3btld6SFFD/bA9gaRMCyE+Zh69IxqzQX/5ncqqze3w7yxI2gVr3oLrXi7/cwghhKg1ylwgbdmyhbFjx7Jv3z4ubnxSFAWHw1Fu4UT1p6oan/wdC8A9PRpUTHEEoNNB/2nwzW2w4RPofB/4RVXMuYQQQtR4ZS6Q7rnnHpo2bcrnn39OSEgIiqJURC5RQ6zcf5rDp7PxNhsY2aVuxZ6scX+o1xOOroHVr8HQ9yv2fEIIIWqsMhdIsbGxLFq0iMaNG1dEHlHDfPzXEQBGda2Ht5uxYk+mKND/efi8P+yYB90nQXDzij2nEEKIGqnM4yD169ePHTt2VEQWUcNsjk9l89E0THod9/SoXzknjeoEzW8ATYWVL1bOOYUQQtQ4ZW5B+uyzzxg7diy7d++mdevWGI2FWwVuuummcgsnqreP/nL2PRrWMYJgH7fKO3G/5+DAr3DgFzi2Aep2qbxzCyGEqBHKXCCtW7eOtWvXsmzZsiLrpJO2OOfw6Sz+2JeEosB/el/hKNlXKqgZtB/lHFn7j+dh3K/Oy29CCCFEKZX5EtukSZMYPXo0p06dQlXVQl9SHIlzzt25NqBFCI2CvCo/QN+pYHCDY//Cod8r//xCCCGqtTIXSGfOnOGRRx4hJCSkIvKIGiAxI58l204CcH/fRq4J4RsBXe5zPv7jBVCleBdCCFF6ZS6Qhg0bxqpVqyoii6ghvlwbh82h0bl+AB3r+rsuSM9HwM0XTu+BXQtdl0MIIUS1U+Y+SE2bNmXq1KmsWbOGNm3aFOmkPXny5HILJ6qfzHwb32w4BsB9fSq579HF3P2dRdIfz8Ofr0CrW8Bgdm0mIYQQ1UKZ52Jr0KBByQdTFGJjY686VFUic7GVzYerj/D68v00DfFi+UO90elc3Dnamov2bgeU7ETmpd/M7CPt8PZy47oBrRl2czR16rigf5QQQogKV+lzscXFxZX5JKJ2sNgdfLHW+fq4t3cj1xdHQK5dz+JTfRntPZ/Bnr/zjb0xKWfszP9uA78s28G7b46ibt06ro4phBCiiilzHyQhSrJ020mSsyyE+bpxU7twV8cB4JPP/+LrPQ04lhuAnzGPEeHrAecccVlZ+Ux7aWmROQWFEEKIMrcgAZw4cYIff/yRY8eOYbVaC6176623yiWYqF5UVePjs7f2j+/ZAJPB9bV3To6FZb/twq4qfH6sLy80X8zt4RtZmhhNms0LVdWIP5rC7j0nadM60tVxhRBCVCFlLpBWrlzJTTfdRMOGDdm/fz+tW7cmPj4eTdPo2LFjRWQU1cCKfUnEJufg42bgjs4VPCltKcUfTcFqtQPwd2oz9mWF08I7gf/WX8mrh24CFHQ6hX37E6RAEkIIUUiZP+ZPnTqVxx57jF27duHm5saiRYs4fvw4ffr04fbbb6+IjKKK0zSNj85OSntXt3p4ma+oYbLc6fUXvrwV3o/vj0NTGBC0h9vCNgGgaaDTu761SwghRNVS5neGffv2MWbMGAAMBgN5eXl4eXnx4osv8vrrr5d7QFH1bYpPY9uxdEwGHWO713d1nAKNGgbj7X1+Drg9WZG8H9cfgPvrryTGNxZN0+gUXd9FCYUQQlRVZS6QPD09C/odhYWFceTIkYJ1KSkp5ZdMVBsfn209urVjJMHelTgp7WUYjXqG39a50LIliTH8mtQOvaLxXLOlXB/jSb26gS5KKIQQoqoqc4HUtWtX1qxZA8DgwYN59NFHeeWVV7jnnnvo2rVruQcUVdvBpCxW7j+NosC9lT0pbSncObwLg65rA5y75KbwbvwgdmdG4G3I59HQryA/06UZhRBCVD1l7izy1ltvkZ2dDcALL7xAdnY2CxYsoEmTJnIHWy308V/OO9cGtQqlQaCni9MUpdfrePzR6xk8qC2/LNtBQkIavn4eZPX4FG3HePSph2DxvXDHPNBJXyQhhBBOZR5Ju7aRkbRLdiojj16vr8Kuaiyd2IP2UX6ujlQ2J7fAF9eDwwK9HoN+z7o6kRBCiHJyte/f8pFZXLEv1sRhVzW6NgyofsURQEQ03DTL+fifN2D3YtfmEUIIUWVUjfuxRbWQm21h1U/b2LMlHgsw1+SsyO/r08i1wa5GuxGQtAv+nQVLH4A6jSGsratTCSGEcDEpkESp7NoUywv3f01OVj46nUJy00gsLb3xyM4l3GJxdbyr0/8FOL0PDv8B80fCf1aBV5CrUwkhhHAhucQmLivpZBrPTviC3BxnIWQHzjSMAMB//zGeHvcZ6anZLkx4lXR6uPUzCGgEGcfhuzFgt15+PyGEEDXWFRdIKSkpZGbK7dG1wc/frMNmtaOpzv78GXVDcLiZMOTm4308mdwcC799t8nFKa+Suz/cOR/MPnDsX1j+hKsTCSGEcKEyFUjp6elMnDiRwMBAQkJC8Pf3JzQ0lKlTp5Kbm1tRGYWLrf19F6rDWRxpisKZplEA1Dl0AkXT0FSNtb/vdmXE8hHU1NmShAKbv4BNn7s6kRBCCBcpdR+k1NRUunXrxsmTJxk1ahQtWrQAYO/evcyaNYsVK1awZs0adu7cyfr165k8eXKFhRaVy5JvK3h8unUDbF7u6C1W/OITz29jsRW3a/XTdCD0ew5WvgDLHoeg5lC/h6tTCSGEqGSlLpBefPFFTCYTR44cISQkpMi66667jrvuuovff/+dd999t9yDCtdp0jqSTX8dICPYn9Qmzlnvw7YcROdQAedgjE1aRbgyYvnq+Qgk7Ybdi+C7u+De1eBX19WphBBCVKJSF0hLly7l448/LlIcAYSGhvJ///d/DB48mGnTpjF27NhyDSlc68ZR3VizLpaE6KYABBw8jndiasF6h0NlyMgaNM2MosBN70HKIUjciW3uHXztNY1Vm05gtdlp3jiUW4d0pH2rKFcnFUIIUUFKPZK22WzmyJEjREZGFrv+xIkT1K9fH7vdXq4BXU1G0gar3UHf55aRoCq4pWZS/68dKJqGTqegqhojJ/bjroeuc3XM8pd+HNuHvTFaUlmV3oLn4ocBCnq9gsOhcddtXbl3dC9XpxRCCFGMShtJOzAwkPj4+BLXx8XFERwcXOYAoup7c8VBElQFd71C97RUlLM1ddO2UTwz666aWRwB2cZgnjh0CzZVxzV++7greC0AjrMd1ud8v56/1x90ZUQhhBAVpNSX2AYOHMjTTz/NihUrMJlMhdZZLBaeffZZBg0aVO4BhWutOnC6YELat+/swKDWg7FZna2ERlPNHmd0+ao9bE4L421lEI9H/cqEsNUcyQ/m30znpUadTmH+0s307trUxUmFEEKUtzJ10o6JiaFJkyZMnDiR5s2bo2ka+/bt44MPPsBisTB79uyKzCoqWWJGPo9+twOAsd3qMah1GFDzC6Nzduw9Dij8dKYjjd2SGBa0hWn1lvLIkZHszY1EVTV2HziJqjovNwohhKg5Sv1OFxkZybp163jggQeYOnUq57ouKYrCgAEDeO+996hbV+70qSnsDpXJ87eRmmOlVbgPUwe3cHWkSqegAM7X+bsnr6Oe2xmiveN5q9E8HjtyJ7tzpZO2EELUVGUaKLJBgwYsW7aMlJQU1q9fz/r160lOTmb58uU0bty4ojIKF3h35SE2xqXiZTbw/siOuBn1ro5U6dq3jjxXH+FAz5Nxw9mSVQ9PvZU3G31Le6/jtG0ZKa1HQghRA13RVCP+/v507tyZzp07ExAQUN6ZhIutPZzCrFWHAXh1WBvqB3q6OJFrDOzbCg8PMzrFWQDlqyaeiL2DTVkN8NBb+b8G87ivpxRHQghRE5X6Nv9hw4aV6oCLFy++qkBVTW27zf90Vj6D31lDSraFOzvXZfqwNq6O5FI7953gsRe+x2K1o56di85db+elet/RxScWDO4wcj407OvaoEIIIQq52vfvUvdB8vX1LfPBRfXiUDUeWbCdlGwLzUK8mXZjS1dHcrm2LSKZ98EEfvhtO/+sP4zFZqdFkzC8rhsB25+AQ7/DvBFwxzfQuL+r4wohhCgnpW5Bqq1qUwvSrJWHeHPFQdyNen6a1IPGwd6ujlS12S3w3Vg4uAz0ZhgxF5rWzDGhhBCiuqm0gSKrivfff5/69evj5uZGly5d2Lhx4yW3X7hwIc2bN8fNzY02bdrw66+/VlLS6mVD7Bne/sM56OHLQ1tLcVQaBjMMnw3NbwCHBRaMggPLXJ1KCCFEOahWBdKCBQuYMmUK06ZNY+vWrbRr146BAwdy+vTpYrf/999/ufPOOxk/fjzbtm1j6NChDB06lN27d1dy8qrtTLaFyfO3oWpwa8dIbo0ufjoZUQyDCW7/ClreDA4rLLgL9v3k6lRCCCGuUrW6xNalSxc6derEe++9B4CqqkRFRTFp0iSefPLJItuPGDGCnJwcfv7554JlXbt2pX379nz00UelOmdNv8Smqhr3fL2J1QeSaRTkyY8P9sTTXDsGgixXDjssuRd2LwKdAW79HFoNdXUqIYSotSqtk7arWa1WtmzZwtSpUwuW6XQ6+vfvz7p164rdZ926dUyZMqXQsoEDB7J06dISz2OxWLBYLAXfZ2ZmXl3wKsRhd7Dhj938uXgzGSlZhETVITu6KasPpGA26Hh/VEcpjq6U3gC3fAKKHnZ9B9/fA5oDWt/q6mRCCCGuQLV5N0xJScHhcBASElJoeUhICPv37y92n8TExGK3T0xMLPE806dP54UXXrj6wFVMTmYez47+kH1b4tDpFVSHxpb4VGLNfqDT8dyQFjQPrXktZJVKb4BbPnK2IO2YB4smgOogq9FN/P7vfo4mpOLhZuKaLk1oVj/k8scTQgjhMmUqkKxWK0uXLmXdunUFRUZoaCjdu3fn5ptvLjKJbXU0derUQq1OmZmZREVV/ykl3pryDQe2HwVAdWg4TEaOdW8LOh0+8aew/wN0q+/SjDWCTg83v+/8d9sctMX38l7yr/yU3ga9ToemaXz9wwa6t2/AS5NvwMOt+v+fEUKImqjUnbQPHz5MixYtGDt2LNu2bUNVVVRVZdu2bYwZM4ZWrVpx+PDhCgsaGBiIXq8nKSmp0PKkpCRCQ0OL3Sc0NLRM2wOYzWZ8fHwKfVV3p46m8O/yHagOFXDOnpHQvTV2L3eMmTmErt/Nj1+sxpJndW3QmkKngxvfJan+rShoPBG4hBu8t2F3qDjODja5fmc8z836xcVBhRBClKTUBdJ///tf2rRpQ1JSEqtXr2bBggUsWLCA1atXk5SURKtWrZg4cWKFBTWZTERHR7Ny5cqCZaqqsnLlSrp161bsPt26dSu0PcCKFStK3L6m2vbPgYI5xQDSm0SRHRWC4lCJ/Hs7epuD3Kx8Du445rqQNY1Ox7Nx17IoPQadAk+F/sTNvlsKVquqxtptsRw6WvwdmEIIIVyr1JfY1q5dy8aNG4ttUfHx8eGll16iS5cu5RruYlOmTGHs2LHExMTQuXNnZs6cSU5ODuPGjQNgzJgxREREMH36dAAeeugh+vTpw5tvvsmQIUOYP38+mzdv5pNPPqnQnFWNanegKKBpoOp0JLdtBEDw1gO4pWUVbOewO1wVscZJzchl16EkdnE9dk3PCP8NPBnyCx46K9+mdQUU9DqFVRsP0aResKvjCiGEuEipCyQ/Pz/i4+Np3bp1sevj4+Px8/Mrr1zFGjFiBMnJyTz33HMkJibSvn17li9fXtAR+9ixY+h05xvFunfvzrx583jmmWd46qmnaNKkCUuXLi3xOdRUTTvU59xgDhmNI3B4uGHIycP/4PkWI4NRT8OWMv5RecnLP3e5UmFm8nU4NIWRAeuZHLSCpuZEXku6AYdiJi/f5tKcQgghilfqAmnChAmMGTOGZ599ln79+hUUJUlJSaxcuZKXX36ZSZMmVVjQcx588EEefPDBYtetXr26yLLbb7+d22+/vYJTVW1N29WlSdsoDu9N4EyrhgDU2ROHcrY/jE6vo+/QaHwCPF0Zs0ap4++Jm8lAvtUOKMxKGcBpuw8PBq1gkM8uGpqSeTLhdupHBLg6qhBCiGKUaaDI119/nXfeeYfExEQURQFA0zRCQ0N5+OGHefzxxyssqKvUlIEiE+KTGfPAXA63bYo+z0LjJX+hU1UUFOo1D2PGoofw8vVwdcwa5a2v/2Txiu0FHbMBOrjH83LY9wQYcsl0uGO682vcWg50YUohhKiZrvb9+4pG0o6NjS24Oyw0NJQGDRqU+cTVRU0pkFRVo98bq4hLzaP+oWP4bj9EULg/Q+7qwfWje+DmYXZ1xBonIyuP/0ybx8nTGagXFEkhxixeCVtAK7cEQIF+z0LPKXD2Q4cQQoir55KRtBs2bIiPjw8mk6laFw21yfI9icSl5uHjZuCnbybg7WZ0daQaz9fbnU9fHMkXi9fz0+pdBf2Nwhu3IP/mHyH+Xdg6G1a+CAnbYOiHYJZJgoUQoiooUwtSeno6Tz/9NAsWLCAtLQ2AoKAgxo0bx7PPPouHR827RFMTWpA0TeOGWWvYk5DJ5H5NmDKgqasj1TpWm50z6bl4uBvx9XI/v2Lzl/Dr/0C1QWBTuGMeBDZxXVAhhKghKq0FKTU1lW7dunHy5ElGjRpFixYtANi7dy+zZs1ixYoVrFmzhp07d7J+/XomT55c5jCiYqw+mMyehEw8THrGda/v6ji1ksloICyomP+gMeMgpDV8dxekHIRProFhH0PzIZUfUgghRIFSF0gvvvgiJpOJI0eOFJnf7MUXX+S6667jrrvu4vfff+fdd98t96Diymiaxvt/Okc4H9WlLv6eMrVFlRPVCe77G74bC8f+hfkjoff/oO9U0OlxqCr74pPIt9qoG+JPsL9chhNCiIpW6gJp6dKlfPzxx0WKI3B21P6///s/Bg8ezLRp0xg7dmy5hhRXbkNcKpuPpmEy6PhPr4aujiNK4hUMY3+E35+BDR/B3zPQErbzc+gjfLBsN8npOYCzH3evtg3538hrCQusnpd8hRCiOij1VCOnTp2iVatWJa5v3bo1Op2OadOmlUswUT7eX+VsPRoeE0mwj5uL04hL0hvh+tfhlk/A4IZyeAUdVo/CNye2YBNNg7W74hj7yjySUrMucTAhhBBXo9QFUmBgIPHx8SWuj4uLIzhYpkyoSnYcT+efQynodQr39W7k6jiitNqNIO32H0iw+xFpSOPL4M+5zn13wWqHqpGRncdnP693YUghhKjZSl0gDRw4kKeffhqrteiM7xaLhWeffZZBgwaVazhxdc61Ht3cPpyogJp3h2FN9sMRHWNP38u6vEa462y8GriIKX7L8dHlAc4i6Zd/92Kx2V2cVAghaqYyddKOiYmhSZMmTJw4kebNm6NpGvv27eODDz7AYrEwe/bsiswqyuBAYha/701CUeCBvo1dHUeUUeKZLLLw5KGUkfzX90/G+axlpPcGbvXazMrcVizO7sh2a13Ss/IICZBO20IIUd5KXSBFRkaybt06HnjgAaZOncq54ZMURWHAgAG899571K1bt8KCirL5YLWz9ej61qE0DvZycRpRVn7ebmiahoqO9zP6s8sSxb2+q2luSmSw504Ge+4k1haI/x4jRI8Gj0vP6Wa12dHrdeh1pW40FkKIWu2KphpJS0vj0KFDADRu3JiAgJo74WZ1HCgyPiWHa99cjarBz5N60jrC19WRRBnFJZzh9me/vmipRktTArd4bmGgx248dM6RudGbodVQiB4HdbsWTFliczhY+M9Ovl29jeMpGegUhZ6t6jNuQCc6NIqo1OcjhBCVzSVzsdUm1bFAmrp4J99uPE7fZkF8Na6zq+OIKzTt8+X8um4vF/8P1SkKPkYr39ziRkjsQkjcdX5lUHOIvhtb69t5ePY//Ls3HoBzh9DrFFRN45Ux1zO4U/NKeR5CCOEKLpmLTVRdpzLy+H7LCQAevEb6HlVnz44dgIfZyOK/duJQNRRFQdM0QgK8eek/1xPSJAK0yZCw1Tllye5FkLwflj+J8vtzXJ/bnBxDNNvtdQFnq5Lj7KS5z839ja7N6xLgLZ33hRCiONKCdBnVrQXphZ/28OXaeLo0CGDBfd1cHUeUgzMZOfyzM5a8fBsNwuvQuUVddDql6Ib5GbBrIWz+CpLOtyodsQexKD+aHyztydGcY2EpCky+qSfjBnSqpGchhBCV62rfv6XHZg2Skm3h243HAHjwWmk9qinq+HoytFcb7hzQka6t6hVfHAG4+UKnCVjGr2J0+gSW5HcgTzPSyJDM417Lme37Gd6Kc5gABYUDJ5Ir8VkIIUT1IgVSDfLFmjjybSptI33p2TjQ1XGEi+j1evY4Inkh+2YGpD7Kq9mDOe3wopEhhRneCzHgQFHAbJQr7EIIURIpkGqIjDwbc9YdBWDiNY1RlBJaGUSNZ9Dr6NGiPnqdQrbmxnf5nZmUOYpczUhXUyxPeP6KQ1Xp00bm5hNCiJJIgVRDzFkXT5bFTtMQLwa0KDqhsKhdxl3XCfWC7oUHHGFMzboVVYPb3bcwMWgnvVtLgSSEECWRAqkGyLXa+XxNHOBsPSqxj4qoNaIbR/LSXQMx6HToFAWdorDG3oK3c68DYAI/YDiywsUphRCi6pJOCDXAvA3HSMu1UTfAgyFtwlwdR1QRN3RuSbfm9Vi6bg8HTyZjMhpo33ow6rFQdNtmw/f3wPjfIaSVq6MKIUSVIwVSNWexO/j0n1gA/tu3EQa9NAqK8+r4eDJ+4EWDhbZ5E9LiIP4fmDcC/vMneAW7JqAQQlRR8m5azS3acpKkTAuhPm4M6yjTR4hSMJhg+GwIaAQZx2H+SLDluTqVEEJUKVIgVUOJR1NY88Nm1v66jQ9XOefEu7d3Q8wGvYuTiWrDIwBGfgdufnBiE/wwkSJzmgghRC0ml9iqkTOn0pg56Ss2rdgJGmQ0rcup/p1xR+W29uGujieqm8DGMGIOzLnFOU1JYFPo+6SrUwkhRJUgLUjVRFZqNo/0f4UtK3eD5px89EzHZgB4bdjLO/d/iswaI8qsQW8Y8pbz8erpsOt71+YRQogqQgqkamLpR3+QcjIV1aECkN0gHGuALzqLFb9dh1n74xb2rDvk4pSiWooeC90nOR8vfQCOb3JtHiGEqAKkQKomln/9F+rZmdg14Ex0cwD8dx1Bb7Wj0+v4/Zs1LkwoqrX+L0CzweCwwPw7If2YqxMJIYRLSYFUTaQnZxY8zq4fRn5wAIrNjv9OZ6uR6lBJOZnqqniiutPpYdinENIGcpKdt//nZ15+PyGEqKGkk3Y14VvHm9SkDDRFIblbGwACdh7GkG8FQK/XERDq58KEotoze8HI+fDptXB6Lywaz77e77J852Ey8yxE1fHlpuiWBPp4ujqpEEJUOGlBqiauu6sXOr2OjBb1sfr7oM+zELBtf8F6h0NlwMgeLkwoagTfSLjzWzSDGxz6nc0f3s3Xf21h6cY9vPPrWvq99Clf/7XF1SmFEKLCSYFUTQx9YAA+4f6kdHJOC1Fn8z70VjsAik6h88C2tO3V3JURRU0REc3cwPsAuMu0nmG6jdhVFVXTUDWNN376m5+37nNxSCGEqFhSIFUTfoE+tHvpLuyebhgzsvHfcwQAvUHP9Xf34Zk5D6IoMkmtuHrHU9KZcdifWZZrAHjK/Ctd9UcK1ivAh7+vl2ElhBA1mvRBqiZSsi3M3X4KgKeHtqZu37oYTAba9W6Obx1vF6cTNcmqvbEoisIntt400KVwg3EXb7p9x8P5d7DJ0QANOJaSTlxyGg2DA1wdVwghKoQUSNXEuysPkWN10C7SlzEDWqLTSWuRqBh5VpuzNVJTmGa5iQhdOh30x/nC/WsW2GJ4yzKAXMzkWW2ujiqEEBVGLrFVA7HJ2czb4ByX5snrW0hxJCpU45A6OFTngKRWjNyfN5oFthgARhg3s8TjA3oaY4kM8HVlTCGEqFBSIFUDM347gF3VuLZ5MN0a1XF1HFHD9W7ZgAAvd851acvFzMuWGxifN4YTqh/hugw+NM/Gd8WjkJfu0qxCCFFRpECq4rYeS2PZ7kR0CjwxSO5SExXPqNfz2sjr0et06C9ordzoaMjt+Q+wVNfTuWDbXPigGxz8zUVJhRCi4kiBVIVpmsb0X523U98WHUmzUOmMLSpHt6b1mPvgCHq3aFjQkuRhMnJz9870nrIQxi2DgIaQlQDzhsPi+yBXRnIXQtQciib36l5SZmYmvr6+ZGRk4OPjU6nn/n1PIvfO2YKbUceqx/oS5uteqecXAiDXYiPXYsXXww2jQX9+hTUXVr0C694HNPAKgSFvQYsbCjY5mZbB7pNJ6HU6YupH4Ochr2EhROW42vdvuYutirI7VF5f7hwpe3zPBlIcCZfxMBvxMBuLrjB5wMBXoOVQ+OEBSDkIC0ZB61tJ6fU8z/2+lb8OxHHuE5hBp+PWmNY8eX0fzEb50yOEqNrkElsV9d3mExxJzsHfw8h9fRq5Oo4QJYvqBPf9Az0fAUUHuxdh+Kgb7od+4cLmabuqsnDTLibN+xFVlYZrIUTVJgVSFZRrtfP2HwcBmNyvCT5uxXx6F6IqMbpB/+dhwh+ketbHT8vmTd13vK1bQB2yCzZTNY01h47y75GjrssqhBClIAVSFfTZP3EkZ1moG+DBqC71XB1HiNKLiGaMMpEP1d7YNYWBun38qH+f65Q9BZvodQpLtu65xEGEEML1pECqYpKzLHz8l3Peq/8NbIbJIL8iUb2cyrEwS72WEY572a+F4K/kMVO/kJHKBgAcqkZiRvZljiKEEK4l775VzIVTigxpE+bqOEKUWR0vTwD2EcZwx73MUbsA8Ix+Gfcpf6NXIMTHy5URhRDisqRAqkJik7P5dqNMKSKqt1ujW6M7O3iSHT3T1UG8r/YB4CH9nzys/M7QDi1cGVEIIS5LCqQqRKYUETXBnV3aEuHnc8Eo3Arvq9fwuuM6AMbr/qXXwXdBdbgupBBCXIYUSFXElqMypYioGXzc3Zh773C6NapbaPk3Sk+WRt6PhoKy5UtYch84bC5KKYQQlyajtVUBmqbx2jLnlCK3R0fJlCKi2gvy9uKTscM4dib97EjaCp0aRBLg6QG7O8Pie2HXQrDmwG1fOocJEEKIKkQKpCpgxd4kNsWn4WbU8ciApq6OI0S5qVvHj7p1/AovbH0rmLzguzFw4FeYdzvc8S2YpeO2EKLqkEtsLnbxlCKhvvJJWtQCTQfCqO+dhVLc3zBnKOSluTqVEEIUkBakSpaTmctvX65i1bdryErPIb9La46ERRDgaZIpRUTt0qAXjPkR5g6DE5vgqxvgriXgFezqZEIIUX1akFJTUxk1ahQ+Pj74+fkxfvx4srNLHmwuNTWVSZMm0axZM9zd3albty6TJ08mIyOjElMXdio2iQmtp/DRlK/Zv+kwx+OS2eTtD0DzkyfxNFabX4cQ5SMyGsYtA68QSNoNXwyC9OOuTiWEENWnQBo1ahR79uxhxYoV/Pzzz/z999/ce++9JW6fkJBAQkICb7zxBrt37+arr75i+fLljB8/vhJTn6dpGs/e/DppiWlomgYapMW0xOHlgTEtk9OfL2PRWz+7JJsQLhXS0lkk+daF1CPwxSC0lENsPnaSZ3/5g/9+9yMvLl/FnlNJrk4qhKhFFE3Tqvy02vv27aNly5Zs2rSJmJgYAJYvX87gwYM5ceIE4eHhpTrOwoULGT16NDk5ORgMpbu6mJmZia+vLxkZGfj4+Fzxc9i+ajf/6/dCwfd2Dzfi770VzWQk9IfVeB+Ixz/Uj2+PfYTeoL/i8whRbWWchNk3w5lDZOp9GMVIDuvDcKgaep2CQ9W4tV0rXh7SH72u2ny2E0K4yNW+f1eLvzLr1q3Dz8+voDgC6N+/Pzqdjg0bNpT6OOd+SJcqjiwWC5mZmYW+ysOO1XvQXzCvWmr3dmgmI+ZTyXgdiAcgLTGdhCOJ5XI+Iaod3wgYt4wE9/r4ODKZ6/iK1g7nyPIO1fk5bvGOPbz393pXphRC1BLVokBKTEwkOLhwx02DwUBAQACJiaUrKFJSUnjppZcueVkOYPr06fj6+hZ8RUVFXXHuCzkb6pwjC2uKgrWOLwCBq7egFNquXE4nRLWUggdDbXewhSh8yecrx2y6qrEF6zXgq41bybPJAJNCiIrl0gLpySefRFGUS37t37//qs+TmZnJkCFDaNmyJc8///wlt506dSoZGRkFX8ePl0+H0Ta9WuCwO6dWUDSNiAW/Ezn3FzyOny/wfIN8CG8UUi7nE6I6Wht3jHTcuEd/F2uUhnhi41P1G25VtxZ8esix2th6PMHFSYUQNZ1Lb/N/9NFHufvuuy+5TcOGDQkNDeX06dOFltvtdlJTUwkNDb3k/llZWQwaNAhvb2+WLFmC0Wi85PZmsxmz2Vyq/GXRoV8bIpuGcSo2CYddRQHcE5IL1iuKwi2TB2MwysgLovaynv0QkaeYuE83krfV77lO28//t3ff8VFV6ePHP3f6pPdkQk2kQ+jCBkFAUFCwoiC4KKyICqz+dFkLu4rYUNS18EVFVgQUQcSGCKJSXJo0CV1qILQkQHqbTDm/P0IG0sgEEkLkeb9e8yK5c8655z6azJNz7zlnsnsRvbT9PK8bSLrmS6FL9nETQtSsWv00Dg8PJzw8vNJy8fHxZGRksGXLFjp16gTAihUrcLvddO3atcJ6WVlZ9OvXD7PZzKJFi7BYam8RRp1Ox4vfPc0/ek0k41QW6uwzFTq9DrfLTbc7ruXep++otf4JcSVobTt3K92hGXhMN5gH1Toed6+gn9pDB9dRJuhup0VE5b83hBDiUtSJWWwAN998MykpKXz44Yc4HA5GjhxJ586d+fzzzwE4fvw4ffr0Yc6cOXTp0oWsrCxuuukm8vLy+Oabb/D19fW0FR4ejl7v3Uyx6prF5mnvTDZLZvzC8rmryc3Mo0GLaAY+fBPX3dkFnczMEYJBH3/O7uRUXOf9amqlTvCm62uacLroQJfR0HcSmHxqqZdCiCvdpX5+15kEKS0tjXHjxvH999+j0+kYNGgQ7733Hn5+Rfs3HT58mJiYGFauXEmvXr1YtWoVvXv3LretxMREGjdu7NV5qztBEkJc2KEzaQyd9QVZBfYSSZIVJ8/rVzHIvqboQFgzuGsGRLevlX4KIa5sV02CVFskQRLi8kvOymbmht/5KmEX2XY7IT5WhnSI44GuHQk5sRa+HQs5yaAzQO8JcN3/A52sHyaEOEcSpBomCZIQtcvldpddGDIvDb5/DPZ8X/R9w3i4czoEN7r8HRRCXJEkQaphkiAJcYVSChI+h6VPQWEOmPzhlinQbijHs7OZt207648moRR0a9iQoe3aUk9+hoW4akiCVMMkQRLiCpeWCN88AkeLVthOadiH29M7c0az4j77602vaeg0jXcHDqBf06a12VshxGVyVWw1IoQQFQqJgZFL4IbnUDoDkUnL+S5nGt0cBzxFXErhdLt5bPEPJKan12JnhRB1hSRIQoi6T6eH68fzcfvXOaQLJVLlMDv/M54rWIpZFW1Loija8uezhIRa7aoQom6QBEkI8afxxRkDt/o8zBzjtQCMcGzkx9z3eahwLSHuXFxK8Wvi4drtpBCiTpAESQjxp+F2uynQjEyy3MLfrMNI1fxoqDJ4xv4La3Lf5u38r2idv192hRZCVEoe0q6EPKQtRN3x7LKf+GrXLs8Ck1ZVyEDHToY6ttDOfd4Gt2HNofNIaHcvWIPLtJNdaGfpgX2czM0h1OrDLdc0JcQqq3YLUZfILLYaJgmSEHXH7tRUbvv0M8r7pdbGdYKhji3co/5A78wrOmiwQOu7oPPfoH5n0DQ+3ZHAK+t+pcDpxKDTedZhGtupK//v2ng0Tbus1ySEuDiSINUwbwPscrlwOByXsWd/Pkaj0es98oSoyNyEbUxcvhydpnlGkvRnv37hhhsY3jIWdiyAzZ9Ays5zFSPj+L1+P+4/rCdHZy637X/+pTtjO1W8QbYQ4sohCVINqyzASimSk5PJyMi4/J37EwoKCiIqKkr+SheXJOHkSWb/vpW1SUkAdGvYgBEdO9LeZjtXSCk4thk2z4RdX4OzAIBcjHxniWOupRO7jLYS7VoNRjaPfARfk+myXYsQ4uJIglTDKgvwyZMnycjIICIiAh8fH/lgv0hKKfLy8khNTSUoKAibzVZ5JSGqS346SaunY98wg6au057DCYZoPrN25ntza+yaEYBp/QYyoEnz2uqpEMJLl5ogGWqgT1cNl8vlSY5CQ0Nruzt1ntVqBSA1NZWIiAi53SYuH2sw+5vdw4P7DHRxJHFfwRb62/fQ3nmC9tmLmJDzM19YOvCZtTNZdntt91YIcRlIgnQJip858vGR2S3VpTiWDodDEiRxWTUKCAJNY6OpERtNjQhx5zK4IIG/5m+mvjuTR/PXMTp/PRkbdoDlcYjtBTJiLMSfliRI1UBuq1UfiaWoLU1CQukQaWNbajJupUjT+fKhz3V8ZI2nT+F+HsjfRHfHIUKTVsKnKyGsGXQZXbRUgNnf087OMyl8vHMzK48dwqXcdAiPZmSrTvRuEFuLVyeEqCpZKFLUmBEjRnDHHXfUdjeE8NpLPftg1uvRn5eouzUdyy0teCB4OFsGfVuUFJn84PQ+WDIe3moJS/4Jp/bx3cHd3LpoDt8d2kO6PZ+sQjtrThxmxM8LeX3zr173w+5yciI3i6zCgou6jnR7Hsl5WTjd7ouqL4SQEaSr1ogRI5g9ezYABoOB+vXrc8899/Diiy9isVhquXdC1I424ZF8PWgYk9f9yuqjRzzrKXWMtPF0fA86RdeHuN5ww3Ow/QvY+FFRorTxI9j4EaGWGPr4dWK5tSloRX9/Fi818P72DVwbWZ8bGlxT4flP5efw3s41fHVoOwUuJxrQwxbL43E96BBWr9L+rzi5lw/+WMP29OMABBqtDI3txCPNe2A1GC8pNkJcbSRBuor179+fTz75BIfDwZYtW3jggQfQNI3XX3+9trsmRK1pGRbOnNvuJiU3h5SzK2nX8y81A8YSAF0egmtHQeKvsHEG7j+W0L0gke4FiRzVB/KZf0e+8WlDit4fNA29pvHxrs0VJkip+TnctWwWKfnZnqRKAWuTE1mbnMiMnoPpFV1xcjX34CZe3LYUHedGvzId+Xy0dy3rUhOZ0+N+SZKEqAK5xXYVM5vNREVF0aBBA+644w769u3Lzz//DBTtaTV58mRiYmKwWq20a9eOhQsXeuq6XC4efPBBz/vNmzfn3Xffra1LEaLaRfr60TYiqmxydD5NK3pY+965PNbuJaYFdCNNZ6WBK5NnM1ay8cRU9h6bwsoTHzAn+TPu2vk+rJwMv38KB1fA6f1QWLSq9+tbV5RIjoq5lMKtFP9Yv4hCl6vcbqTkZ/Py9h8BcJdaR9yNYmf6CWYf+O3igyHEVUhGkKqRUop8R/m/wGqa1ai/pAecd+7cybp162jUqBEAkydP5rPPPuPDDz+kadOm/O9//+Ovf/0r4eHh9OzZE7fbTf369fnyyy8JDQ1l3bp1jB49GpvNxuDBg6vrsoSoM9Kt4UwJ6s27gT0YmLub+3M207bwJBblJNaZRqwzDezArwll6rqtIYx0m7jJ4M9JYwAnzv5r1877FZ0D29f9l87h9cvU33JsFzdkHECdlxxlGCwk+ETj0nS4Ucw9tJmHm3eXiRBCeEkSpGqU73DR6vlltXLu3S/2w8dUtf+cixcvxs/PD6fTid1uR6fT8X//93/Y7XZeffVVfvnlF+Lj4wGIjY1lzZo1TJ8+nZ49e2I0Gpk0aZKnrZiYGNavX8+CBQskQRJXpZ71Ylh74gh2zcBXfm35yq8tRuUiypVNtDOT+q5sevkbuS3UDzKPnXsV5qDLT6MN0MaefOGTnPi63MO3nH2Vdtrgw9LAZiwJasFWFU2+y4GPQVYBF8IbkiBdxXr37s0HH3xAbm4ub7/9NgaDgUGDBrFr1y7y8vK48cYbS5QvLCykQ4cOnu+nTZvGzJkzSUpKIj8/n8LCQtq3b3+Zr0KIK8PgZnG8m7COPIfDc5vLoek5agjiqCGIjcD9A4ZDeKntTgoyOXZiJy8sn0m0M4toRxbRziyinNno1blZaBoa9XwDibT6lTl3Um46Z+y5JUaQYuzphDnzGH4mgeFnEjhh9Mfi54C290BU23LXcDqYncJXSZs4kJ2Cj8FMn6hW3GSLw6yXZ5fE1UcSpGpkNerZ/WK/Wjt3Vfn6+tKkSRMAZs6cSbt27fj4449p06YNAD/88AP16pWcOWM2F23iOX/+fMaPH89bb71FfHw8/v7+vPHGG2zYsOESr0SIuinIbGX2Tfdw/09fkn9ekqTXNBQwpXt/2oeX2kJH08AaRL3Y6ziyZxcrs85Q0d5PGrDytkfBL7jMe0dSDjBq7ecljhmUi27ZSdyS+Qc3Zh4g2pEN66cWvUKbQptBRa/wZgD898BK3t+3HL2mw6XcaGj8L/UPPtq/kuld/0a0T9nzlpZemM2607vJc9pp6BNO59Dm6DV51FXUTZIgVSNN06p8m+tKodPpmDBhAk8++ST79u3DbDaTlJREz549yy2/du1aunXrxpgxYzzHDh48eLm6K8QVqXNkPdbcM5oF+3aw8tghnG43HSOi+WuL9jQKqDjB0DSN/xfXg7+v/bbc93Vo3Nq4FQ3LSY4Arou4hjZBNvZkJnse8nZqev4XEMPqgBherO/imwYxND68AvYtgzP74dfXil5RcexrdB3fFOSDOQDX2VGr4tGo5IJMxm2aw8Lr/46ugmTH6Xbx4YHFfHNsLS7lRoeGG0WYOZBnW91Lp5Cm3oZQiCtG3fw0FzXinnvu4Z///CfTp09n/PjxPPHEE7jdbrp3705mZiZr164lICCABx54gKZNmzJnzhyWLVtGTEwMn376KZs2bSImJqa2L0OIWhVi8eGRtl15pG3XKtUb0KgVZwryeGXrL7jcCt3ZkSeXctOvQXNe6zqgwro6TWPGdcN4dP0XJKQdw3A2kXEqN1aDibeuvZPGtubQZQTYs+GPJbDzKzi4HJJ30Cx5Bz8A2/yi+DGkGb+ENOGMyRfOnv9w7inWnz7AdWdHm0p7d983LD7+m2f0q3j07Iw9i6cT/svUTmNpGdiwSvEQorZJgiQ8DAYD48aNY8qUKSQmJhIeHs7kyZM5dOgQQUFBdOzYkQkTJgDw8MMPs3XrVoYMGYKmaQwdOpQxY8awdOnSWr4KIequ+5t3ZmCjVnxzeCdJ2ekEmMwMaNSKFkERldYNMfsyv+dItpw5yvKTeyl0OWkRGMmABm1KPpht9od2Q4peeWnk7VjIrjXv0in7GO1ykmmXk8z4pNWkmPxIN1pJN1jJMPpgzDwEDbuCTxj4hoNvKPiEcVKv5/vj5S8hoFC4lZtPDi1jSoeHLtj/jMIsfklZx6Hcoxg1A51D4vhLaDuMOnn+SdQOTSlV0S1vAWRlZREYGEhmZiYBASXXQykoKCAxMZGYmBhZfbqaSEyFuLzO2HO4cflrhBXmcGPaAfqf2UdcbkqV2sjXGcgwWsgwWskwWjhj9uGwTzCHfEI46BtCpsnKd9dPItDoW2791ac2897+OZ7bexqcvUUXzKTWjxFtrTxBFKK0C31+e0NGkIQQ4ioWbPIhwhxAKjAvqj3zotoTVpiDrTCHYEc+wc58gh15DAiqzzU6HeSehrzTRf/mngaXHavbidWeg82eU+450oxWzEf3gK09RLaGiFYQ3gKMFv7IOsTb+2aVmIFX/FWaPZOJu97j/Y4TZSRJXHaSIAkhxFVMp+m4t3E8U/cu8yQmp01+nDYVLSegQ8PXYGZ0n6eh9HR/pfju0E8s2PM1gY48Ah0FBDvyibDnEpubRmxuGtEFWYQ48uHwmqJXMU0HoU1QVgt3m3Qc8QvksH8wpyy+qLNLELhxc9qezrrTW+kZ0eUyREOIcyRBEkKIq9x9Md3YmnaY1af2oqF5RnP0mg6DpuOtTsOwlLcWkqbRs0F3ph5ZwXHlX27bvm4Xd1vCGelTD1J3Q8quold+GpzeR0ug5Xnl8/UGdoRE8XO9JvweGo3S6dmcvlMSJHHZSYIkhBBXOaNOz1udhrH4eAJfHPmNwzmnMOuN9LPFMaxxNxr5hVVYN8jky8NNBjBt/6Iy7+nQoTf70L/zI2ANOfeGUpCdjDtlJ3M2vkqjnHQa5WTQICcTq8tJl1PH6HLqGGkmKyvqXcMpU70ybQtR0yRBEkIIgUGn544GnbijQacq172n4fX4G63MPLiMVHuG5/i1oc14rNkd2M5PjqBogcwAG7oAG1tzNrAoLxmFQu920yA3g54nE+l94hAhhfncnbgTEnfC7vXQ8X5oeSsYzGX6cCL/OBvTfiPHmUuoKYxuYd0INAZV+VqEKCaz2Cohs9guL4mpEHWXW7nZn32CPFcB9axhRFiCKq3zU/JaPjj4eZnjBreLa08d48bjB2l/5iRa8RNS1mBoN7QoWYpoidPtZNbhj/ktbT06dGhouClaCfzOendzs628XerKynakcyz/IDp0NPRtjlVf/ow7UXfILDYhhBBXBJ2mo3lA/SrV6RMZT0LGHtaf2Vri+Se3zshvkY25tvtzaMYoSJgLWz+DrOPw2/tFr/pd2NjoGhL8c8Ggx825vesUiq+OL8Df6E/3sB4Vnj/PmcOiE/9lW8Y61Nn6es1Al5C+3GK7H6NONve9WskIUiVkBOnykpgKcfVxKTfLU9ax+MQqjuafRIeOTsGtuaN+X1oFNDlX0O2CgytgyyzY9yO4nQDkGwxsjK7P6oaNORwYVGIj3lBTKJPj3ih3m5RCt50PDkwgueCoJzkqpqHRxK8tI2MmoNOqvtelqH0ygiSEEKJO02s6borqzk1R3T17uWnnJTkeOj00vbHolZ3CwXUv47v9K6Jyc+mZdJieSYc54edPqq8v2SYzOSYT2SYzafb3CQtq4Vn9G98wMFrZnLaCkwVHyu2TQrE/Zxt7s7fSMqDzBftf6M7nQPZ6cp1p+BlCuMa/Gyad93/gpdsPkJy/BRREWNsRamnhdV1RcyRBEkIIccXQV7Ahbhn+kRxodwtfheTQJO0UPZIO0+nkcaJzsonOyS5Zds+/ytY3+tLapNHApCPXZCLXbCTHbCLdx8rJQD+SA/1xGE1sSlt+wQTp97TvWJ06E4cqQEOHwo1Rs9IzchTtgwde8BLynWdYnfw8KflbKFo/HEARam7F9bZX8DPaKg2D3ZnKyZzvKXCewKgPJsp3AL4m2ROzOkiCdJUaMWIEGRkZfPvtt7XdFSGEuCg2SzRuTbEvNIx9oWHMa92WZmmnCbDb8S8sxK/QToC9kI7mxhjzMyD3TNEq4K5CcOQS6IDA3IrbP+NjJT3kD7jGDVFtILINBDUCXVESty39B1akvO8pX3ybzqHy+SV5KnrNSFxQv3LbdroL+Pn4OLIKkzy1i6XZ9/LTsUcY2PAzTPry15cCSMyYwYH0dwDQ0AGKQxnTiPYbRMuwieg0WX38UkiCJIQQok5qExhHkDGYTEcGCkWeyURCVLTnfR062gd1oGuTv5+rpBTYsyHvNPP2/JvCnOP42gvxtRfiZy8kLCcPW2Y2Qfl2QvPyCc07AsdeO1ff5A+RrXFHtiRN+42oQB1nAn1wGMo+p7Q6dSatAvug18p+1B7O/pnMwsRyr0vhIteZyv6s72gd/NdyyxzLWsCB9P+cV+fcM1Qncr5Gr1lpEVbOyJnwmiRIgl69ehEXF4der2f27NmYTCZefvllhg0bxrhx41i4cCGRkZFMnTqVm2++GQCXy8Xo0aNZsWIFycnJNGzYkDFjxvD444972nU6nTz55JPMmTMHvV7PqFGjSE5OJjMzU0auhBCXTKfpGBUzmrf3v4VS7hKz2HTo8DcGcG/DYSUraRpYAsASQHTTIfyY/FmJfeCK+dgLicrKYaDWieisXEjeAaf+gMJsOPobuqO/0ftsWQWk+1s4HWDFqS95i7Bg6xB8DcFl2vfN20R3V1qJYy6dhsOoO/vS47R+ADYLWALB7A/mADD7o8y+HEr7vwtERnEsez6xwY9g0odWXEq5ybGvJjt/JQoHVmNbgnxuQ6ezXqDtq4ckSNVJKXDk1c65jT4lZm5U1ezZs3nqqafYuHEjX3zxBY8++ijffPMNd955JxMmTODtt99m+PDhJCUl4ePjg9vtpn79+nz55ZeEhoaybt06Ro8ejc1mY/DgwQC8/vrrzJ07l08++YSWLVvy7rvv8u2339K7d+9KeiOEEN5pEdCSCS3+zaIT37E9MwGFwqgZ6RZ2HbfabifIVDY5KdY1tC8b0n4io/BUieQKIN9swdGwNZFNXoLiESCXA07vh5SdnD7yA9nHVxKRkYdvgYOQ7AJCsgvKOcsv5Z678qeLAFKBB8sc1YDrAadBw2nUcJp0OE0auQEGskONZIcYyQ5xcypvFfX8B5XbcqHzBIdPDcfu3Mu5VGA2JzNeoFHYR/hZKl4a4Woh0/wrUaVp/oW58Gp0BS3VsAknwOT9wmbnP4PUq1cvXC4Xq1evBopGhwIDA7nrrruYM2cOAMnJydhsNtavX89f/vKXctscN24cycnJLFy4EICoqCjGjx/P+PHjPe3GxsbSoUOHCkeQZJq/EOJiFbjyyXPl42/w83r9oixHOguOTuVAznbPMQ2NuMB47qr/CBa9T7n1juXtZP6RfwDgU1BIeEYeIVkF6Ep9pHYKuZMAY0SZ+vszF529xXauvM6tMDrcGB1uTIVufN2+ROqugYLMotuCxS+XvdLrUoAzKBxjvR5gawtRbcHWDnzDcKtC9if3odCZBLhK1dTQMNIkaikWY/OK21cO7Plfk587G5fzEJrmh9nnLqy+I9DrK/8cVM4kVN4cKFgKqgAMzdB8/gqWm9G8fVC/EjLNX1SLtm3ber7W6/WEhoYSFxfnORYZGQlAamqq59i0adOYOXMmSUlJ5OfnU1hYSPv27QHIzMwkJSWFLl26lGi3U6dOuN0l/1ITQojqYNFbseirdnsowBjMqNjnOVVwnCN5+9BpOmJ9WxNkqnj/OYB61tYEGW1kOpLJs5g4EmXiSNT5JTRCTPXpFftCuaP71px2/HZy/AXP0S3yOSIDBpQ5XlCQxG+JN2IodGNwuDE4FMYCN34ZDgLOOPBPc2DJc2PMOAUZX8Our89V9o/GFRFJUMAfFIToyA/V4/DTzuujQuHidNYM6oe+WW6/lLKTmTYCh/1/gA5wo1Q2+TkfUpD7KUFhX2IwtqnwulThRlTaKMCBJ0FzbEVlbgH7LxD4JtoVsPaUJEjVyehTNJJTW+e+lOrGkrMdNE0rcax4TZLi5Gb+/PmMHz+et956i/j4ePz9/XnjjTfYsGHDJfVDCCFqQ7ilHuEW7zfF1TSNG22PszDpX2i4SzzHpJ3d8uTGqMfKX88JqOfbjfq+PTiWuwZKPQOloSPc0o7G/jeVW9diaUhg8A2cyV+NOm8EKJXi5FCHvyOUrrrn0ZJ3wMltcHI7pB2E7BMYs08QeV57TjPYg/Q4fLWil48Op9+X0HgIBNjALwr059KFvOz3cNjXnP3u/D94XSiVS+aZvxESub7cJEepfFT6GKCwVN2zXxcsAWNH8B1e7rVfTpIgVSdNq9Jtrrps7dq1dOvWjTFjxniOHTx40PN1YGAgkZGRbNq0ieuvvx4ousX2+++/e0aZhBCiLmvk24HBDV9jVeoMUgr2eY5HWZrSM3I09X0qHkXRNB3X215l25kZ7M1YiFMVPb+q18w0DbydDqFj0F9gmn6L0H+x4cQQnO7MEkkS6NHQ07zhf9AsnaFJ33Nv2bMheSdnDoxHS/4D6xk3lnQ3BjsYUkrfarMDZ+tqOvCNgAAbKsCGTv8rVl8Hbh8Nt6+G21eH8uRCbuAohdoXmM3dy3Y8fwnkpJc9btWBoSiZVHmzweevFSaXl4skSOKiNG3alDlz5rBs2TJiYmL49NNP2bRpEzEx5xYo+/vf/87kyZNp0qQJLVq0YOrUqaSnp9f6//RCCFFdGvi2ZXjMVNLsR8l1puNnDCXY5N1IlF4z0jFsDG1D/kaafR+gCDY3wair/A9tq7E+f6m3kIPp0ziZ8z2KQkAj3KcXsUFjCDC3KlvJ7A+N4ikM7M/p7GOAC82lMKe7MWe6MeYpjLluDHkKc54Za0EIZJ8s2tIlJxlyktFObMW7m5iPlntU49ySmOdzDwiCBmZAgSsJVBZogV6dqaZIgiQuysMPP8zWrVsZMmQImqYxdOhQxowZw9KlSz1lnn76aZKTk7n//vvR6/WMHj2afv36odfX/r1lIYSoTiHmBoSYG1xUXYPOQoS1beUFS7EYbLQOf5kWof+m0J2GUReAQedXab0Q3/s4nT0dAKXXKAjTUxB2/u9ljejgV7H6DQe3G3JPQfYJyDqBO2MH+clvos9V6PIUulw3ulyFVubRUgNaOes/KXXec0fnK5M11f7nhMxiq4RsVlt93G43LVu2ZPDgwbz00kvllpGYCiFEzTuVNY3kzMkUP2R9jg4/c3cah89GK+cWn1Ju0lL+gtt9/ILtB4Z+jcnctWz9gmWojL+XU+Pc+TG0RBf2jVfXcSGXOouteubSCVGOI0eOMGPGDPbt28eOHTt49NFHSUxMZNiwYZVXFkIIUWPCA8bSMHQ6FmNrzzGDLoLIwKdoFD6r3OQIip6d8vEv//ZZET0GYxxGU5fy3zb3AX09Kh4hcqP5PuTVNdQ0ucUmaoxOp2PWrFmMHz8epRRt2rThl19+oWXLlrXdNSGEuOoF+gwg0GcATlc6ikIMujCvptdbfEbgdBygIG8WRYmOi+KRKJ2+IQEhMyt81lTTDBD8MSrtfnCnUnRvTXna0fz+jma9pZqu8NJIgiRqTIMGDVi7dm1td0MIIcQFGPQVrzZeHk3T8A96BYvPneTnzsXl3I+mC8RivR2z9VY07cKPcWuGWAj7EQq+RxUsA5UHhhZoPveiGct5uLyWSIIkhBBCiCozmjpjNHW+qLqazg98hqL5DK3mXlUfeQZJCCGEEKIUSZCqgUwErD4SSyGEEFeCOpMgpaWlcd999xEQEEBQUBAPPvggOTk5XtVVSnHzzTejaVqFm6RejOKtOPLy8qqtzatdcSxLb30ihBBCXE515hmk++67j5MnT/Lzzz/jcDgYOXIko0eP5vPPP6+07jvvvFMjqzfr9XqCgoI8G7j6+PjIKtEXSSlFXl4eqampBAUFyWKSQgghalWdSJD27NnDjz/+yKZNm+jcueiBsKlTp3LLLbfw5ptvEh0dXWHdhIQE3nrrLTZv3ozNZqv2vkVFFW3ffP4u9+LiBQUFeWIqhBBC1JY6kSCtX7+eoKAgT3IE0LdvX3Q6HRs2bODOO+8st15eXh7Dhg1j2rRpNfahq2kaNpuNiIgIHA5HjZzjamE0GmXkSAghxBWhTiRIycnJRERElDhmMBgICQkhOTm5wnpPPPEE3bp14/bbb/f6XHa7Hbvd7vk+KyvLq3p6vV4+3IUQQog/iVp9SPuZZ55B07QLvv7444+LanvRokWsWLGCd955p0r1Jk+eTGBgoOfVoMHFbT4ohBBCiLqrVkeQ/vGPfzBixIgLlomNjSUqKqrMMz5Op5O0tLQKb52tWLGCgwcPEhQUVOL4oEGD6NGjB6tWrSq33rPPPsuTTz7p+T4rK0uSJCGEEOIqU6sJUnh4OOHh4ZWWi4+PJyMjgy1bttCpUyegKAFyu9107Vp2t2AoGp0aNWpUiWNxcXG8/fbb3HrrrRWey2w2Yzabq3AVQgghhPizqRPPILVs2ZL+/fvz0EMP8eGHH+JwOBg3bhz33nuvZwbb8ePH6dOnD3PmzKFLly5ERUWVO7rUsGFDYmJivD538cKF3j6LJIQQQojaV/y5fbELENeJBAlg7ty5jBs3jj59+qDT6Rg0aBDvvfee532Hw8HevXurfdHG7OxsALnNJoQQQtRB2dnZBAYGVrmepmRvhwtyu92cOHECf3//al0EsvjZpqNHjxIQEFBt7f4ZSayqRuLlPYmV9yRW3pNYea8mY6WUIjs7m+joaHS6qs9JqzMjSLVFp9NRv379Gms/ICBAfoC8JLGqGomX9yRW3pNYeU9i5b2aitXFjBwVqzN7sQkhhBBCXC6SIAkhhBBClCIJUi0xm81MnDhRlhTwgsSqaiRe3pNYeU9i5T2Jlfeu5FjJQ9pCCCGEEKXICJIQQgghRCmSIAkhhBBClCIJkhBCCCFEKZIgCSGEEEKUIglSBaZNm0bjxo2xWCx07dqVjRs3XrD8l19+SYsWLbBYLMTFxbFkyZIS7yuleP7557HZbFitVvr27cv+/ftLlElLS+O+++4jICCAoKAgHnzwQXJyckqU2b59Oz169MBisdCgQQOmTJlS5b5Ut7oaqxkzZtCjRw+Cg4MJDg6mb9++lfb9UtXVWJ1v/vz5aJrGHXfcUbWLr6K6HKuMjAzGjh2LzWbDbDbTrFmzGv05rMuxeuedd2jevDlWq5UGDRrwxBNPUFBQcJGRqNyVGKuCggJGjBhBXFwcBoOhwp+tVatW0bFjR8xmM02aNGHWrFkXFYOqqKvx+vrrr7nxxhsJDw8nICCA+Ph4li1bVrWLV6KM+fPnK5PJpGbOnKl27dqlHnroIRUUFKRSUlLKLb927Vql1+vVlClT1O7du9W///1vZTQa1Y4dOzxlXnvtNRUYGKi+/fZbtW3bNnXbbbepmJgYlZ+f7ynTv39/1a5dO/Xbb7+p1atXqyZNmqihQ4d63s/MzFSRkZHqvvvuUzt37lTz5s1TVqtVTZ8+vUp9qU51OVbDhg1T06ZNU1u3blV79uxRI0aMUIGBgerYsWM1EKm6HatiiYmJql69eqpHjx7q9ttvr77glFKXY2W321Xnzp3VLbfcotasWaMSExPVqlWrVEJCQg1Eqm7Hau7cucpsNqu5c+eqxMREtWzZMmWz2dQTTzxRA5G6cmOVk5OjHnnkEfXRRx+pfv36lfuzdejQIeXj46OefPJJtXv3bjV16lSl1+vVjz/+WH0BKqUux+vxxx9Xr7/+utq4caPat2+fevbZZ5XRaFS///6719cvCVI5unTposaOHev53uVyqejoaDV58uRyyw8ePFgNGDCgxLGuXbuqhx9+WCmllNvtVlFRUeqNN97wvJ+RkaHMZrOaN2+eUkqp3bt3K0Bt2rTJU2bp0qVK0zR1/PhxpZRS77//vgoODlZ2u91T5umnn1bNmzf3ui/VrS7HqjSn06n8/f3V7Nmzvb38KqnrsXI6napbt27qv//9r3rggQdqNEGqy7H64IMPVGxsrCosLLzYy6+SuhyrsWPHqhtuuKFEX5588kl13XXXVSkG3rpSY3W+in62nnrqKdW6desSx4YMGaL69etXyVVfvLocr/K0atVKTZo0yauySiklt9hKKSwsZMuWLfTt29dzTKfT0bdvX9avX19unfXr15coD9CvXz9P+cTERJKTk0uUCQwMpGvXrp4y69evJygoiM6dO3vK9O3bF51Ox4YNGzxlrr/+ekwmU4nz7N27l/T0dK/6Up3qeqxKy8vLw+FwEBISUpUweOXPEKsXX3yRiIgIHnzwwYsNg1fqeqwWLVpEfHw8Y8eOJTIykjZt2vDqq6/icrkuJSzlquux6tatG1u2bPHctjl06BBLlizhlltuueiYVORKjpU3Lufvdqj78SrN7XaTnZ1dpd/vkiCVcvr0aVwuF5GRkSWOR0ZGkpycXG6d5OTkC5Yv/reyMhERESXeNxgMhISElChTXhvnn6OyvlSnuh6r0p5++mmio6PL/IBXh7oeqzVr1vDxxx8zY8YM7y74EtT1WB06dIiFCxficrlYsmQJzz33HG+99RYvv/yydwGogroeq2HDhvHiiy/SvXt3jEYj11xzDb169WLChAneBaAKruRYeaOivmRlZZGfn+91O96q6/Eq7c033yQnJ4fBgwd7XUcSJCGA1157jfnz5/PNN99gsVhquztXlOzsbIYPH86MGTMICwur7e5c8dxuNxEREXz00Ud06tSJIUOG8K9//YsPP/ywtrt2xVm1ahWvvvoq77//Pr///jtff/01P/zwAy+99FJtd038iXz++edMmjSJBQsWlEm+LkQSpFLCwsLQ6/WkpKSUOJ6SkkJUVFS5daKioi5YvvjfysqkpqaWeN/pdJKWllaiTHltnH+OyvpSnep6rIq9+eabvPbaa/z000+0bdv2whd9kepyrA4ePMjhw4e59dZbMRgMGAwG5syZw6JFizAYDBw8eNDrOHijLscKwGaz0axZM/R6vadMy5YtSU5OprCwsJKrr5q6HqvnnnuO4cOHM2rUKOLi4rjzzjt59dVXmTx5Mm6327sgeOlKjpU3KupLQEAAVqvV63a8VdfjVWz+/PmMGjWKBQsWVPnugCRIpZhMJjp16sTy5cs9x9xuN8uXLyc+Pr7cOvHx8SXKA/z888+e8jExMURFRZUok5WVxYYNGzxl4uPjycjIYMuWLZ4yK1aswO1207VrV0+Z//3vfzgcjhLnad68OcHBwV71pTrV9VgBTJkyhZdeeokff/yxxD3v6laXY9WiRQt27NhBQkKC53XbbbfRu3dvEhISaNCgwSVGp6S6HCuA6667jgMHDpT4gN+3bx82m63E8zjVoa7HKi8vD52u5MdQcWKpqnmb0Cs5Vt64nL/boe7HC2DevHmMHDmSefPmMWDAgCrVBWSaf3nmz5+vzGazmjVrltq9e7caPXq0CgoKUsnJyUoppYYPH66eeeYZT/m1a9cqg8Gg3nzzTbVnzx41ceLEcqc2BgUFqe+++05t375d3X777eVObezQoYPasGGDWrNmjWratGmJqY0ZGRkqMjJSDR8+XO3cuVPNnz9f+fj4lJnmX1lfJFbnzmMymdTChQvVyZMnPa/s7GyJValYlVbTs9jqcqySkpKUv7+/GjdunNq7d69avHixioiIUC+//LLEqlSsJk6cqPz9/dW8efPUoUOH1E8//aSuueYaNXjw4KsqVkoptWvXLrV161Z16623ql69eqmtW7eqrVu3et4vnub/z3/+U+3Zs0dNmzbtskzzr6vxmjt3rjIYDGratGklfr9nZGR4ff2SIFVg6tSpqmHDhspkMqkuXbqo3377zfNez5491QMPPFCi/IIFC1SzZs2UyWRSrVu3Vj/88EOJ991ut3ruuedUZGSkMpvNqk+fPmrv3r0lypw5c0YNHTpU+fn5qYCAADVy5MgyH9bbtm1T3bt3V2azWdWrV0+99tprZfpeWV+qW12NVaNGjRRQ5jVx4sRLD0oF6mqsSqvpBEmpuh2rdevWqa5duyqz2axiY2PVK6+8opxO5yVGpGJ1NVYOh0O98MIL6pprrlEWi0U1aNBAjRkzRqWnp196UCpwpcaqot9H51u5cqVq3769MplMKjY2Vn3yySeXHpBK1NV49ezZs9z3S/f3QjSlqnkcUwghhBCijpNnkIQQQgghSpEESQghhBCiFEmQhBBCCCFKkQRJCCGEEKIUSZCEEEIIIUqRBEkIIYQQohRJkIQQQgghSpEESQjxp9a4cWPeeeedy37eESNGoGkamqbx7bffelWncePGnjoZGRk12j8hxIVJgiSEqHHFH/oVvV544QUAHnvsMTp16oTZbKZ9+/YXbHPVqlWVtrtq1So2bdrE6NGja/4iy9G/f39OnjzJzTff7FX5TZs28dVXX9Vwr4QQ3jDUdgeEEH9+J0+e9Hz9xRdf8Pzzz7N3717PMT8/P8/Xf/vb39iwYQPbt2+/YJvdunUr0e7jjz9OVlYWn3zyiedYSEhItW8QWxVms7lKO5CHh4cTEhJSgz0SQnhLRpCEEDUuKirK8woMDETTtBLHihOk9957j7FjxxIbG1tpmyaTqUQbVqvVk5AUv0wmU5lbbJqmMX36dAYOHIiPjw8tW7Zk/fr1HDhwgF69euHr60u3bt04ePBgifN99913dOzYEYvFQmxsLJMmTcLpdFYpDoWFhYwbNw6bzYbFYqFRo0ZMnjy5Sm0IIS4PSZCEEFedl156ifvvv5+EhARatGjBsGHDePjhh3n22WfZvHkzSinGjRvnKb969Wruv/9+Hn/8cXbv3s306dOZNWsWr7zySpXO+95777Fo0SIWLFjA3r17mTt3Lo0bN67mqxNCVAe5xSaEuOqMHDmSwYMHA/D0008THx/Pc889R79+/YCi23UjR470lJ80aRLPPPMMDzzwAACxsbG89NJLPPXUU0ycONHr8yYlJdG0aVO6d++Opmk0atSoGq9KCFGdJEESQlx12rZt6/k6MjISgLi4uBLHCgoKyMrKIiAggG3btrF27doSI0Yul4uCggLy8vLw8fHx6rwjRozgxhtvpHnz5vTv35+BAwdy0003VdNVCSGqkyRIQoirjtFo9HytaVqFx9xuNwA5OTlMmjSJu+66q0xbFovF6/N27NiRxMREli5dyi+//MLgwYPp27cvCxcuvKjrEELUHEmQhBCiEh07dmTv3r00adLkktsKCAhgyJAhDBkyhLvvvpv+/fuTlpYms9eEuMJIgiSEuGIcOHCAnJwckpOTyc/PJyEhAYBWrVrV6nT9559/noEDB9KwYUPuvvtudDod27ZtY+fOnbz88stet/Of//wHm81Ghw4d0Ol0fPnll0RFRREUFFRznRdCXBRJkIQQV4xRo0bx66+/er7v0KEDAImJibU626tfv34sXryYF198kddffx2j0UiLFi0YNWpUldrx9/dnypQp7N+/H71ez7XXXsuSJUvQ6WRCsRBXGk0ppWq7E0II8WczYsQIMjIyvN5mpNiqVavo3bs36enpMrIkRC2SP1uEEKKGLF68GD8/PxYvXuxV+datW3u9LYkQombJCJIQQtSA1NRUsrKyALDZbPj6+lZa58iRIzgcDqBorSW59SZE7ZEESQghhBCiFPnzRAghhBCiFEmQhBBCCCFKkQRJCCGEEKIUSZCEEEIIIUqRBEkIIYQQohRJkIQQQgghSpEESQghhBCiFEmQhBBCCCFKkQRJCCGEEKKU/w+I4I8+aAwMBQAAAABJRU5ErkJggg==\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - examples_29_0.png" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGxCAYAAACOSdkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZyElEQVR4nO3deViUVf8G8PuZAYZFdtlUEFzB3BIT0dwS00xz7TVzJTIrya1Ne3MpS82fmmmWqalkmqapmRpmLvWqiIpSpriC4QYuKCgIzHJ+f/AyrxPbDDAbc3+ua67imWf5jgPMzTnnOUcSQggQERER2SCZuQsgIiIiMhcGISIiIrJZDEJERERksxiEiIiIyGYxCBEREZHNYhAiIiIim8UgRERERDaLQYiIiIhslp25C7B0Go0G169fh6urKyRJMnc5REREpAchBO7fv486depAJiu73YdBqALXr19HYGCgucsgIiKiSrhy5Qrq1atX5vMMQhVwdXUFUPQP6ebmZuZqiIiISB85OTkIDAzUfo6XhUGoAsXdYW5ubgxCREREVqaiYS0cLE1EREQ2i0GIiIiIbBaDEBEREdksjhEiIqpGarUaSqXS3GUQ1Xj29vaQy+VVPg+DEBFRNRBCICMjA/fu3TN3KUQ2w8PDA/7+/lWa549BiIioGhSHIF9fXzg7O3MCViIjEkIgLy8PN2/eBAAEBARU+lwMQsaWfRXIvW34cS4+gHvd6q+HiKqdWq3WhiBvb29zl0NkE5ycnAAAN2/ehK+vb6W7yRiEjElVACzvBuTeNPzYWr7AxL8AO0X110VE1ap4TJCzs7OZKyGyLcU/c0qlstJBiHeNGZPc4b+tOob+M8sAt7pFxxOR1WB3GJFpVcfPHIOQMUkS8NT7ADQGHqgpOo6/VImIqs2BAwcgSZJFDGhfs2YNPDw8zF1GlQQHB2PRokXmLqPKGISMrWF3oM7jgKRnk50kL9q/YXfj1kVEBGD06NGQJAmSJMHe3h5+fn7o0aMHVq1aBY3GsD/iLP3DvUOHDrhx4wbc3d3NXQqGDBmC8+fPm7sMAoOQ8RW3Cgm1fvsLNVuDiGycWq2GEMJk1+vVqxdu3LiBy5cv4+eff0a3bt0wYcIE9OnTByqVymR1GJuDg0OVb7WuLk5OTvD19TX6dTinVcUYhEyhYXc8dG8GdQV/XKk1QKF3C7YGEdkglVKFH5fGIzpsAnrZv4DejkPx4fMLcPboBaNfW6FQwN/fH3Xr1kWbNm3w3nvv4ccff8TPP/+MNWvWaPdbuHAhWrRoARcXFwQGBuL111/HgwcPABR1O0VHRyM7O1vbwjRz5kwAwNq1a9G2bVu4urrC398fL774ova257LcvXsXI0eOhKenJ5ydnfHMM8/gwoX//VsUtz7t3r0bYWFhqFWrljbQleWfXWPF59ixYweaNm0KZ2dnDB48GHl5eYiLi0NwcDA8PT0xfvx4qNX/+2NWn9ezfft2NG7cGI6OjujWrRvi4uJKvXaxmTNnonXr1li7di2Cg4Ph7u6OF154Affv39fuEx8fjyeffBIeHh7w9vZGnz59cOnSJe3zly9fhiRJ2LhxI7p06QJHR0csX74cbm5u2Lx5s05927Ztg4uLi875H9W1a1fExsYiNjYW7u7uqF27NqZNm1ZuQC/v++PR11zRe7Zy5UqEhYXB0dERoaGh+OKLL8q8ZnVgEDIFScJpxfOQV/CvLZcBFz1fZGsQkY1RKVWY0X8elo5fhavnr/93mxqHfzyKCR3fx3+2JJq8pqeeegqtWrXCli1btNtkMhkWL16M06dPIy4uDvv27cM777wDoKjbadGiRXBzc8ONGzdw48YNvPXWWwCKWiVmzZqFP/74A9u2bcPly5cxevTocq8/evRoHD9+HNu3b0dCQgKEEOjdu7dOC0deXh7mz5+PtWvX4vfff0d6err2mvrKy8vD4sWLsWHDBsTHx+PAgQMYMGAAdu3ahV27dmHt2rX46quvdIJERa8nLS0NgwcPRv/+/fHHH39g7Nix+Pe//11hLZcuXcK2bduwY8cO7NixA7/99hvmzp2rfT43NxeTJ0/G8ePHsXfvXshkMgwYMKBEF+aUKVMwYcIEpKSkYODAgXjhhRewevVqnX1Wr16NwYMHw9XVtcx64uLiYGdnh6NHj+Kzzz7DwoULsXLlyjL3L+/7o1hF79m6deswffp0fPzxx0hJScHs2bMxbdo0xMXFVfjvV2mCypWdnS0AiOzs7CqdZ/93/xEpL9cTqmluQswo+VBNcxMpL9cTx3efrJ7CichkHj58KM6cOSMePnxYqeN/+HSH6CF7XkRJg0s8esieF72dhorsOznVXHWRUaNGiX79+pX63JAhQ0RYWFiZx27atEl4e3trv169erVwd3ev8JrHjh0TAMT9+/dLff78+fMCgDh06JB22+3bt4WTk5P4/vvvtdcCIC5evKjdZ+nSpcLPz6/M6+7fv18AEHfv3i3zHGPHjhXOzs46tfXs2VOMHTtW79fz7rvviubNm+vs8+9//7vEtR/9t5oxY4ZwdnYWOTn/e5/ffvttERERUeZ1b926JQCIU6dOCSGESEtLEwDEokWLdPZLTEwUcrlcXL9+XQghRGZmprCzsxMHDhwo89xdunQRYWFhQqPRaLe9++67Ot8P9evXF59++mmZ5yjt+6Oi96xhw4Zi/fr1OueZNWuWiIyMLPUa5f3s6fv5zRYhE2nzdCusPdi0zFYhuQzYcPQxNO8UZtrCiMishBDYsnhnmV0OQggoC1TYE/ebiSsruvaj42l+/fVXdO/eHXXr1oWrqytGjBiBO3fuIC8vr9zzJCUloW/fvggKCoKrqyu6dOkCAEhPTy91/5SUFNjZ2SEiIkK7zdvbG02bNkVKSop2m7OzMxo2bKj9OiAgoMIut3/65zn8/PwQHByMWrVq6Wx79LwVvZ5z587hiSee0LlOu3btKqwlODhYp4Xmn6/nwoULGDp0KBo0aAA3NzcEBwfrXLdY27ZtS1z7scce07aqfPvtt6hfvz46d+5cbj3t27fXef8jIyNx4cIFnW7CR+nz/VHee5abm4tLly4hJiYGtWrV0j4++ugjnS7A6sYgZCJuXq4I7D0c5665lRgrpNYAZ6+5ocm/xkDhxAkUiWxJfm4+Mi/fKncfSSbhYnKaiSr6n5SUFISEhAAoGn/Sp08ftGzZEj/88AOSkpKwdOlSAEBhYWGZ58jNzUXPnj3h5uaGdevW4dixY9i6dWuFx+nD3t5e52tJkgweZF7aOUrbVtz9ZOrX82i3V9++fZGVlYUVK1YgMTERiYmJpV7XxcWlxLlffvll7Xiv1atXIzo6uloHjev7/VHee1Y8nmjFihVITk7WPv766y8cOXKk2mr9JwYhE3p57nD8IR9QolVILgMuuA/FC1MHmKcwIjIbuX3FE/xLEmDvYF/hftVp3759OHXqFAYNGgSgqBVEo9FgwYIFaN++PZo0aYLr16/rHOPg4FCiteDs2bO4c+cO5s6di06dOiE0NLTCVpuwsDCoVCrtBz0A3LlzB+fOnUOzZs2q6RVWjj6vp2nTpjh+/LjOtmPHjlXpusWv//3330f37t0RFhaGu3fv6n388OHD8ffff2Px4sU4c+YMRo0aVeExj/77A8CRI0fQuHHjUmdw1uf7oyJ+fn6oU6cOUlNT0ahRI51HcSA3BgYhE7Kzt8O/vvwMBZ6PQSOKkrhGSCj0ao6+//cJZDK+HUS2xkFhj8efag5ZOXdTqFUatO8TbrQaCgoKkJGRgWvXruHEiROYPXs2+vXrhz59+mDkyJEAgEaNGkGpVGLJkiVITU3F2rVrsWzZMp3zBAcH48GDB9i7dy9u376NvLw8BAUFwcHBQXvc9u3bMWvWrHLrady4Mfr164cxY8bg4MGD+OOPPzB8+HDUrVsX/fr1M9q/gz70eT1jx47F2bNn8e677+L8+fP4/vvvta0xlW2F8fT0hLe3N5YvX46LFy9i3759mDx5skHHDxw4EG+//Taefvpp1KtXr8Jj0tPTMXnyZJw7dw7fffcdlixZggkTJpS6rz7fH/r44IMPMGfOHCxevBjnz5/HqVOnsHr1aixcuNDgc+mLn7ymJklQPPshZFJRU6BMEnDo/QHvFCOyYS9MHQhNGfNryO1kqNckABHPtjHa9ePj4xEQEIDg4GD06tUL+/fvx+LFi/Hjjz9q//pv1aoVFi5ciE8++QTNmzfHunXrMGfOHJ3zdOjQAa+++iqGDBkCHx8fzJs3Dz4+PlizZg02bdqEZs2aYe7cuZg/f36FNa1evRrh4eHo06cPIiMjIYTArl27SnStmJo+ryckJASbN2/Gli1b0LJlS3z55Zfau8YUisoNf5DJZNiwYQOSkpLQvHlzTJo0Cf/3f/9n0DliYmJQWFiIl156Sa/9R44ciYcPH6Jdu3YYN24cJkyYgFdeeaXUffX5/tDHyy+/jJUrV2L16tVo0aIFunTpgjVr1hi1RUgShnao2picnBy4u7sjOzsbbm5u1XNSIYAV3YDrJ4tmkR6zn0GIyIrl5+cjLS0NISEhcHR0rNQ5dq34FZ+9vgIAoNFoIJPJoFFrUKeRP+btmQ6/+j7VWTKZ2Mcff4xly5bhypUrZqth7dq1mDRpEq5fvw4Hh/LXsuzatStat25t8UtolPezp+/nN1efNwdJArrPAH5+t+i/DEFENq/3mCg88czj+HnlXqT9lQ6FkwMin3sCHfs/ATs9xhGRZfniiy/wxBNPwNvbG4cOHcL//d//ITY21iy15OXl4caNG5g7dy7Gjh1bYQiyNfzpMpeG3YDYo+augogsiE89b4yc+S9zl0HV4MKFC/joo4+QlZWFoKAgvPnmm5g6dapZapk3bx4+/vhjdO7c2Ww1WDJ2jVXAKF1jRFSjVEfXGBEZrjq6xjhYmoiIiGwWgxARERHZLKsLQkuXLkVwcDAcHR0RERGBo0fLH2dz7949jBs3DgEBAVAoFGjSpAl27dplomqJiIjIklnVYOmNGzdi8uTJWLZsGSIiIrBo0SL07NkT586dg6+vb4n9CwsL0aNHD/j6+mLz5s2oW7cu/v77b3h4eJi+eCIiIrI4VhWEFi5ciDFjxiA6OhoAsGzZMuzcuROrVq3ClClTSuy/atUqZGVl4fDhw9pJuIoXqSMiIiKymq6xwsJCJCUlISoqSrtNJpMhKioKCQkJpR6zfft2REZGYty4cfDz80Pz5s0xe/bsMlfOBYqmms/JydF5EBGZihACWbmFuJKVh6zcQoMXESUiw1hNi9Dt27ehVqvh5+ens93Pzw9nz54t9ZjU1FTs27cPw4YNw65du3Dx4kW8/vrrUCqVmDFjRqnHzJkzBx988EG1109EVJ7sh0r8kHQVcYcv4++sPO32+l7OGNUhGIPC68HdybzLSxDVRFbTIlQZGo0Gvr6+WL58OcLDwzFkyBD8+9//LnchuKlTpyI7O1v7MOd06ERkG347fwuRc/Zi1o4zSH8kBAFAelYeZu04g8g5e/Hb+VtGuf6BAwc4bIBsltUEodq1a0MulyMzM1Nne2ZmJvz9/Us9JiAgAE2aNNEuGggAYWFhyMjIQGFhYanHKBQKuLm56TyIiIzlt/O3EL36KB4q1RAA/tkRVrztoVKN6NVHjRaGHpWVlYVhw4bBzc0NHh4eiImJwYMHD4x+XSJzsJog5ODggPDwcOzdu1e7TaPRYO/evYiMjCz1mI4dO+LixYvQaP63qvP58+cREBDAtVaIyOyyHyrx2rdJRWGngqFAQhQFote+TUL2Q6VR6xo2bBhOnz6NPXv2YMeOHfj99991Vh3Pz8/HrVvGD2REpmA1QQgAJk+ejBUrViAuLg4pKSl47bXXkJubq72LbOTIkTrrqLz22mvIysrChAkTcP78eezcuROzZ8/GuHHjzPUSiIi0fki6ioeF6gpDUDEhgIeFamw5cdVoNaWkpCA+Ph4rV65EREQEnnzySSxZsgQbNmzA9evXARS1xNetWxf9+/fH1q1boVQaN5gRGZNVBaEhQ4Zg/vz5mD59Olq3bo3k5GTEx8drB1Cnp6fjxo0b2v0DAwOxe/duHDt2DC1btsT48eMxYcKEUm+1JyIyJSEE4g5frtSxaw5dNtrdZAkJCfDw8EDbtm2126KioiCTyZCYmAgAqF+/PhISElC/fn2MHTsWAQEBGD9+PJKSkoxSE5ExWc1dY8ViY2MRGxtb6nMHDhwosS0yMhJHjhwxclVERIa5m6fUuTtMXwLA31l5uJenhKdL9XfxZ2RklJig1s7ODl5eXsjIyNBuCw8PR3h4OBYsWICff/4Z33zzDTp27IjGjRtj1KhRGDFiRIm7fIkskVW1CBER1RS5BaoqHf+gisdXFzs7O/Tt2xebNm1CWloa/P398fbbb2POnDnmLo1ILwxCRERm4KKoWoN8rSoeXxZ/f3/cvHlTZ5tKpUJWVlapd+gKIfD7779jzJgxCAsLw8WLFzF9+nRMnjzZKPURVTer6xojIqoJPJ3tUd/LGelZeSVumS+PBCDIyxkezsaZXDEyMhL37t1DUlISwsPDAQD79u2DRqNBRESEdr/z589j7dq1+Pbbb3H79m0MHjwY27ZtQ5cuXSBJklFqIzIGBiEiIjOQJAmjOgRj1o4zBh87umOw0cJGWFgYevXqhTFjxmDZsmVQKpWIjY3FCy+8gDp16gAoujElLCwMXbt2xQcffIBBgwbBxcXFKPUQGRuDEFXo3u0cHP/lFPLzClA/rC6ad2jCv/iIqsGg8HqY/8u5oskU9WgWkkmAo70cA9vUM2pd69atQ2xsLLp37w6ZTIZBgwZh8eLF2udr166NtLQ0BAUFGbUOIlNgEKIyqZQqrHh/I3as2A+1Sl3UJi+AOg398O6KV9C0bQNzl0hk1dyd7PHl8HBErz4KSOVPqlj8t8ey4eFGX3PMy8sL69evL/N5Z2dnhiCqMThYmsr02fg12L5sb1EIArRz/2dcvol3+nyCv89eM19xRDVElyY+WB3dDk72ckgo+nvjUcXbnOzlWBPdDp2b+Ji+SKIajEGISvX32WvYs+5QqZO2adQCygIV1n/ykxkqI6p5ujTxQcLU7pjetxmCvJx1ngvycsb0vs1w5L3uDEFERsCuMSrV/u+PQG4ng1qlKfV5jVqDgz8eQ8HDl6Bw4rptRFXl7mSP6I4hGN0hGPfylHhQoEIthR08nO2NPiYvODgYEydONOo1iCwVgxCVKvv2fZRspNelVmmQm/OQQYioGkmSBE8XB6PMGl0WBiGyZewao1LVrutV4VpGDo72qOXhXO4+REREloxBiErV48WOEJqyg5DMToaoFzvCQWHcu1eIiIiMiUGISuUb6I0X3upT6nMyuQxunrUw9O2+Jq6KiIioenGMEJVp5PsD4F7bFd/930//HTMEQALaPPUYYheMgE9dL/MWSGTtsq8CubcNP87FB3CvW/31ENkgBiEqkyRJ6P9aD/R5uRvOHk9Ffm4BgprWgW+gt7lLI7J+qgJgeTcg92bF+/5TLV9g4l+AnaL66yKyMewaowrZ2duheWQTtI1qwRBEVF3kDv9t1TH017AMcKtbdHw1OXDgAIKDg6vtfETWhEGIiMgcJAl46n0Apc/VVTZN0XFGnFvo448/RocOHeDs7AwPDw+jXYfIEjAIERGZS8PuQJ3HAUmu3/6SvGj/ht2NWlZhYSGef/55vPbaa2Xuk56ebtQaiEyFQYiIyFyKW4WEWr/9hdrorUEA8MEHH2DSpElo0aJFmfuEhIQgKioKa9euRV5enlHrITImBiEiInPSt1XIRK1B+jpz5gzatWuH999/H35+fnjppZfw22+/VTgRK5GlYRAiIjInfVuFTNQapK+mTZti9uzZuHz5MrZv3w4hBPr27YuGDRti5syZSEtLM3eJRHphECIiMreKWoUsrDXoUZIkoVu3bli9ejWuXr2KyMhIbdcakTVgECIiMreKWoUsrDXon06cOIGJEyeicePG2Lt3LyZPnow5c+aYuywivXBCRSIiS1DcKnTjT91AJMmBgJYW1xp09epVfPvtt1i7di0uXbqEvn374uuvv0avXr1gZ8ePFrIe/G4lIrIExa1C3w7S3W6G1qD09HRkZWUhPT0darUaycnJAIBGjRqhVq1aAID69eujbdu2GDduHIYOHQpPT0+T1UdUnRiEiIgsxT9bhczUGjR9+nTExcVpv3788ccBAPv370fXrl0BAKdPn0ZoaKhJ6yIyBo4RIiKyFP8cK2SmsUFr1qyBEKLEozgEAWAIohqDQYiIyJIUtwoBFnunGFFNwiBERGRJJAnoPgOo3bTovxZ6pxhRTcExQkRElqZhNyD2qMkuFxwcjIkTJ5rsekSWhC1CREQ2jkGIbBmDEBEREdksBiEiomrCBUeJTKs6fuYYhIiIqsje3h4AkJeXZ+ZKiGxL8c9c8c9gZXCwNBFRFcnlcnh4eODmzZsAAGdnZ0i824vIaIQQyMvLw82bN+Hh4QG5vIwFi/XAIEREVA38/f0BQBuGiMj4PDw8tD97lcUgRERUDSRJQkBAAHx9faFUKs1dDlGNZ29vX6WWoGIMQkRE1Ugul1fLL2ciMg0OliYiIiKbxSBERERENotBiIiIiGwWxwiRzVCr1Ljx9x0IoUFAfR/Y2XMcBxGRrWMQohpPo9Fg6/L92PLVPmTdzAEAuHm64LmYLhgS+zQDERGRDWMQohpNCIFPJ6/Dr5uPAo/MxJ5zNxfrFvyM88l/Y/qqVyCXs5eYiMgW8bc/1WjJ/zmHXzfphqBiQggc/fU0/rPjpOkLIyIii8AgRDXarm8PQVZOa49MJmFn3H9MWBEREVkSBiGq0dIvZECj1pT5vEYjcC2VSyIQEdkqBiGq0Vw9nFHR2pcubk6mKYaIiCwOgxDVaF37t4UoZXxQMUkmoduAJ0xXEBERWRQGIarRug9uB996XqWOE5LJZXDzdEHvER3NUBkREVkCBiGq0ZxcFJj3wwQENw0AAMjtZJDbFX3b+wd5Y94PE+BR29WcJRIRkRlJQpTXcUA5OTlwd3dHdnY23NzczF0OVZIQAn8lXsIfh85DoxF4rF0DPN6pKWQy/i1ARFQT6fv5zQkVySZIkoQW7RuhRftG5i6FiIgsiNX9Obx06VIEBwfD0dEREREROHr0qF7HbdiwAZIkoX///sYtkIiIiKyGVQWhjRs3YvLkyZgxYwZOnDiBVq1aoWfPnrh5s/x5YC5fvoy33noLnTp1MlGlREREZA2sKggtXLgQY8aMQXR0NJo1a4Zly5bB2dkZq1atKvMYtVqNYcOG4YMPPkCDBg1MWC0RERFZOqsJQoWFhUhKSkJUVJR2m0wmQ1RUFBISEso87sMPP4Svry9iYmL0uk5BQQFycnJ0HkRERFQzWU0Qun37NtRqNfz8/HS2+/n5ISMjo9RjDh48iK+//horVqzQ+zpz5syBu7u79hEYGFiluomIiMhyWU0QMtT9+/cxYsQIrFixArVr19b7uKlTpyI7O1v7uHLlihGrJCIiInOymtvna9euDblcjszMTJ3tmZmZ8Pf3L7H/pUuXcPnyZfTt21e7TaMpWnzTzs4O586dQ8OGDUscp1AooFAoqrl6IiIiskRW0yLk4OCA8PBw7N27V7tNo9Fg7969iIyMLLF/aGgoTp06heTkZO3jueeeQ7du3ZCcnMwuLyIiIrKeFiEAmDx5MkaNGoW2bduiXbt2WLRoEXJzcxEdHQ0AGDlyJOrWrYs5c+bA0dERzZs31znew8MDAEpsJyIiIttkVUFoyJAhuHXrFqZPn46MjAy0bt0a8fHx2gHU6enpXDKBiIiI9Ma1xirAtcaIiIisj76f32w+ISIiIptlVV1jRNasIF+Js8npUClVCG4SAG8/tjASEZkbgxCRkanVGmz4ch+2rPoP8h7kAwAkmYSOPR7D6zP6w7O2q5krJCKyXewaIzKyJdO34NvFe7QhCACERuDwr2cwecgXuH8vz4zVERHZNgYhIiO6ePoadm86VupzGrUGN6/dxba4gyauioiIijEIERnRL5uPQS4v+8dMoxHYtSHRhBUREdGjGISIjOhWRjbUak25+9y780C7/AsREZkWgxCREbl7upTbIgQALq6OnAiUiMhM+NuXyIie6t+m3BYhmVyGHoPamrAiIiJ6FIMQkRG1eCIEbTs3hUwmlXhOJpehlqsjBr7UyQyVERERwCBEZFSSJOH9z0fgqf5tIP0jDIU08cf8716Dj7+HeYojIiKuNVYRrjVG1eVOZg5OHDoPZaEKDZvVRdOWgeYuiYioxtL385szSxOZiLefG3oM5HggIiJLwq4xIiIislkMQkRERGSzGISIiIjIZjEIERERkc1iECIiIiKbxSBERERENotBiIiIiGyWXvMIbd++3eAT9+jRA05OTgYfR0RERGQqegWh/v37G3RSSZJw4cIFNGjQoDI1EREREZmE3l1jGRkZ0Gg0ej2cnZ2NWTMRERFRtdArCI0aNcqgbq7hw4dzXS4iIiKyeFx0tQJcdJWIiMj66Pv5rXfX2ODBgxEfHw/mJiIiIqop9A5Cd+/exbPPPougoCBMnz4dqampxqyLiIiIyOj0DkJ79+5FamoqYmJi8O2336Jx48Z46qmnsH79ehQUFBizRiIiIiKjMGhCxfr162PmzJlITU3Fnj17UKdOHYwZMwYBAQEYN24ckpKSjFUnERERUbWr8mDp+/fvY/369XjvvfeQnZ0NlUpVXbVZBA6WJiIisj76fn7rNaFiWdLS0rBmzRqsWbMG2dnZiIqKqsrpiIiIiEzK4LXG8vPz8e233+Kpp55C48aN8c033yAmJgZpaWmIj483Ro1ERERERqF3i9DRo0exatUqbNy4Efn5+RgwYADi4+PRvXt3SJJkzBqJiIiIjELvINS+fXu0atUKs2bNwrBhw+Dp6WnMuoiIiIiMTu8gdPz4cbRp08aYtRARERGZlF5jhP7880+0bt1a75OePn26xt09RkRERDWPXkHo8ccfx507d/Q+aWRkJNLT0ytdFBEREZEp6NU1JoTAtGnT4OzsrNdJCwsLq1QUERERkSnoFYQ6d+6Mc+fO6X3SyMhIODk5VbooIiIiIlPQKwgdOHDAyGUQkTUqLFBCLpdBbic3dylERJVSpZmlicj2qJRq/LTpKLatT0TGtbuQJAnhHRrhhegn0SI82NzlEREZhEGIiPSmUqoxY9J6JB2+iOJFCoUQOHHkEpIOX8BbHw5EVJ9WZq2RiMgQBi+xQUS2a8emY0UhSAB4ZLlmjVoDIYCFH2zD3TsPzFYfEZGhGISISG8/bkh8NP+UoNEI7N52wmT1EBFVVaUWXSUi21NYqML1K1koNwkBSD2faZqCiIiqgcFByNfXF6NHj8aePXug0WiMURMRWSC5XAaZrPwFliVJgoOCQw+JyHoYHITi4uKQm5uLfv36oW7dupg4cSKOHz9ujNqIyILI5TI88WRjyORlhyGNWoP2XZqasCoioqoxOAgNGDAAmzZtQmZmJmbPno0zZ86gffv2aNKkCT788ENj1EhEFmJIdCcITel9YzK5DHXreyOSQYiIrIgkhKigx79iZ86cwbBhw/Dnn39CrVZXR10WIycnB+7u7sjOzoabm5u5yyEyu30//4kF07dCrRaQpKLuMLVag7r1vTH3y5HwDfAwd4lERHp/fle6Mz8/Px/bt2/H+vXrER8fDz8/P7z99tuVPR0RWYmnnmmJNhENsPvHk0g9nwkHhR3ad26K9p2bcIZpIrI6Bgeh3bt3Y/369di2bRvs7OwwePBg/PLLL+jcubMx6iMiC+ThVQtDojuZuwwioiozOAgNGDAAffr0wTfffIPevXvD3t7eGHURERERGZ3BQSgzMxOurq7GqIWIiIjIpAy+a+zREJSfn4+cnBydh7EtXboUwcHBcHR0REREBI4ePVrmvitWrECnTp3g6ekJT09PREVFlbs/ERER2RaDg1Bubi5iY2Ph6+sLFxcXbcgofhjTxo0bMXnyZMyYMQMnTpxAq1at0LNnT9y8ebPU/Q8cOIChQ4di//79SEhIQGBgIJ5++mlcu3bNqHUSERGRdTD49vlx48Zh//79mDVrFkaMGIGlS5fi2rVr+OqrrzB37lwMGzbMWLUiIiICTzzxBD7//HMAgEajQWBgIN544w1MmTKlwuPVajU8PT3x+eefY+TIkXpdk7fPExERWR+j3T7/008/4ZtvvkHXrl0RHR2NTp06oVGjRqhfvz7WrVtntCBUWFiIpKQkTJ06VbtNJpMhKioKCQkJep0jLy8PSqUSXl5eZe5TUFCAgoIC7dem6O4jIiIi8zC4aywrKwsNGjQAALi5uSErKwsA8OSTT+L333+v3uoecfv2bajVavj5+els9/PzQ0ZGhl7nePfdd1GnTh1ERUWVuc+cOXPg7u6ufQQGBlapbiIiIrJcBgehBg0aIC0tDQAQGhqK77//HkBRS5GHh0e1Fled5s6diw0bNmDr1q1wdHQsc7+pU6ciOztb+7hy5YoJqyQiIiJTMrhrLDo6Gn/88Qe6dOmCKVOmoG/fvvj888+hVCqxcOFCY9QIAKhduzbkcjkyMzN1tmdmZsLf37/cY+fPn4+5c+fi119/RcuWLcvdV6FQQKFQVLleIqq6C+duYNdPybh2NQtubk7o0r0ZOnRsArmdwX/DERGVqsprjf39999ISkpCo0aNKgwZVRUREYF27dphyZIlAIoGSwcFBSE2NrbMwdLz5s3Dxx9/jN27d6N9+/YGX5ODpYlMTwiBLxfvwdZNxyCXy6BWayCTSdBoBBo18cPchS/C3cPZ3GUSkQXT9/O7yn9W1a9fHwMHDiwRglq0aFHt3UqTJ0/GihUrEBcXh5SUFLz22mvIzc1FdHQ0AGDkyJE6g6k/+eQTTJs2DatWrUJwcDAyMjKQkZGBBw8eVGtdRFS9fvzhOLZuOgYAUKs1AADNf1e9T714Ex9N32K22oioZqn0oqsVuXz5MpRKZbWec8iQIbh16xamT5+OjIwMtG7dWrvgKwCkp6dDJvtftvvyyy9RWFiIwYMH65xnxowZmDlzZrXWRkTVQ63WYOO6su8E1WgEkk/8jYsXMtCocfnd4kREFTFaEDKW2NhYxMbGlvrcgQMHdL6+fPmy8Qsiomp1Nf0Obt+6X+4+MpmE40dSGYSIqMo44pCILIpSpa5wH0mS9NqPiKgiDEJEZFHq1vOCo6N9ufuo1Ro0DQ0wUUVEVJMxCBGRRXFycsAzfVtDJpNKfV4mk+Dn7462EQ1NXBkR1UQMQkRkcaLHdEWT0ABIEoBH8pBMLsHJyQEzZw8uMygRERnCaIOlv/rqqxLLYRAR6cPJ2QHzlwzHzh9P4qetScjIyIazswOierbAwH+1g5+/u7lLJKIawuAgtHjxYr33dXFxMfT0REQAAIXCHgP/1Q4D/9XO3KUQUQ1m8MzSISEhuHXrFvLy8rRri927dw/Ozs7w8fH534klCampqdVarDlwZmkiIiLrY7SZpT/++GO0bt0aKSkpyMrKQlZWFlJSUtCmTRt89NFHSEtLQ1paWo0IQURERFSzGdwi1LBhQ2zevBmPP/64zvakpCQMHjxYuzJ9TcEWISIiIutjtBahGzduQKVSldiuVqtLrAxPREREZMkMDkLdu3fH2LFjceLECe22pKQkvPbaa4iKiqrW4oiIiIiMyeAgtGrVKvj7+6Nt27ZQKBRQKBRo164d/Pz8sHLlSmPUSERERGQUBt8+7+Pjg127duH8+fM4e/YsACA0NBRNmjSp9uKIiIiIjKnSEyo2adKE4YeIiIisml5BaPLkyZg1axZcXFwwefLkcvdduHBhtRRGREREZGx6BaGTJ09CqVRq/78sksS1f4iIiMh6GDyPkL6uXr2KOnXqQCaz7nVdOY8QERGR9THaPEL6atasGS5fvmys0xMRERFVmdGCkJEamoiIiIiqjXX3WxERERFVAYMQERER2SwGISIiIrJZRgtCvJWeiIiILF2lZ5auCAdLE1FNVliowoWLmdBoBEJCfFDLRWHukoioEiodhAoKCgAACkXpP/xnzpxBnTp1Knt6IiKLpFZr8M26Q/hhSxJy84p+D9rby/FMz5Z4dUxXODk5mLlCIjKEQV1je/bsQe/eveHp6QlnZ2c4OzvD09MTvXv3xq+//qqzb2BgIORyebUWS0RkTkIIfDz3J6xdd1gbggBAqVRjx65kTH5nAwoLVWaskIgMpXcQiouLQ+/eveHu7o5PP/0UO3bswI4dO/Dpp5/Cw8MDvXv3xtq1a41ZKxGRWZ04+Tf2/3YWpfX8azQCZ8/dwM+7T5m+MCKqNL27xj7++GMsWrQI48aNK/Hc6NGj8eSTT+LDDz/EiBEjqrVAIiJLsTP+T8jlEtTq0sdAShLw085k9Ov7uIkrI6LK0rtFKD09HVFRUWU+3717d1y9erVaiiIiskTXr98tMwQBgBBAZma2CSsioqrSOwg99thj+Prrr8t8ftWqVWjWrFm1FEVEZIk8PJwhk5U/NYibm5OJqiGi6qB319iCBQvQp08fxMfHIyoqCn5+fgCAzMxM7N27F6mpqdi5c6fRCiUiMrce3R9D4tHUMp+XyST07NHchBURUVXpHYS6du2Kv/76C19++SWOHDmCjIwMAIC/vz+eeeYZvPrqqwgODjZWnUREZtf5yaZo1DARqWm3oNHodpHJZBI8PZzxXB+ODyKyJpLgzIflysnJgbu7O7Kzs+Hm5mbucojIzLJzHmL23J9w9HgaiibQlyCEQONGfpjxfj/UreNp7hKJCPp/fjMIVYBBiIhKk55+B0knL0Ot1uCxZnUR2jSASwsRWRB9P78Nnlna09NT7x/2rKwsQ09PRGQVgoK8ERTkbe4yiKiKDA5C06ZNw0cffYSePXsiMjISAJCQkIDdu3dj2rRp8PLyqvYiiYiIiIzB4K6xQYMGoVu3boiNjdXZ/vnnn+PXX3/Ftm3bqrM+s2PXGBERkfXR9/PboLXGAGD37t3o1atXie29evUqsd4YERERkSUzOAh5e3vjxx9/LLH9xx9/hLc3+8uJiIjIehg8RuiDDz7Ayy+/jAMHDiAiIgIAkJiYiPj4eKxYsaLaCyQiIiIyFoOD0OjRoxEWFobFixdjy5YtAICwsDAcPHhQG4yIiIiIrAHnEaoAB0sTERFZH6PNI0RERKaRfi0LvyWcx8N8JYLqeqFbhyZQKOzNXRZRjcIgRERkYQoKlJi95GfsO3gOMpkEmSRBpdZg0Ypf8d74Z9C5fRNzl0hUYxh81xgRERnXrEW7cODQeQCARiOgUmsAALl5hZj2yXYkn75izvKIahQGISIiC3Lp8i38lnAemrKGb0rA6g2HTVsUUQ3GIEREZEH2Hz4Huazs9Rw1GoETp9KRnfPQhFUR1VwGjxEaMGBAqYuuSpIER0dHNGrUCC+++CKaNm1aLQUSEdmS3LyC//6OLf+G3ryHhXB3czJNUUQ1mMEtQu7u7ti3bx9OnDgBSZIgSRJOnjyJffv2QaVSYePGjWjVqhUOHTpkjHqJiGq0egGeUGs05e6jcLCDl4eziSoiqtkMDkL+/v548cUXkZqaih9++AE//PADLl26hOHDh6Nhw4ZISUnBqFGj8O677xqjXiKiGu3pLs1gZycv83mZTMIzTzXnbfRE1cTgCRV9fHxw6NAhNGmie/vm+fPn0aFDB9y+fRunTp1Cp06dcO/eveqs1Sw4oSIRmdqOPX/ik6W7IUkSHv0VLZNJ8PV2xfL/Gw5PDxczVkhk+Yy2+rxKpcLZs2dLbD979izUajUAwNHRsdRxREREVLE+PVpiznsD0CjYR7vN3k6OZ55qjq8YgoiqlcGDpUeMGIGYmBi89957eOKJJwAAx44dw+zZszFy5EgAwG+//YbHHnuseislIrIhT7ZrhCfbNULGzWw8zFfCz8cNzk4O5i6LqMYxuEXo008/xcSJEzFv3jx07twZnTt3xrx58zBp0iQsXLgQAPD0009jw4YN1V4sACxduhTBwcFwdHREREQEjh49Wu7+mzZtQmhoKBwdHdGiRQvs2rXLKHURERmDv687QoJqMwQRGUmVFl3NyckBAJONndm4cSNGjhyJZcuWISIiAosWLcKmTZtw7tw5+Pr6ltj/8OHD6Ny5M+bMmYM+ffpg/fr1+OSTT3DixAk0b95cr2tyjBAREZH10ffz26pWn4+IiMATTzyBzz//HACg0WgQGBiIN954A1OmTCmx/5AhQ5Cbm4sdO3Zot7Vv3x6tW7fGsmXL9LomgxAREZH1Merq85s3b8b333+P9PR0FBYW6jx34sSJypyyQoWFhUhKSsLUqVO122QyGaKiopCQkFDqMQkJCZg8ebLOtp49e2Lbtm1lXqegoAAFBQXar4tbvYiIiKjmMXiM0OLFixEdHQ0/Pz+cPHkS7dq1g7e3N1JTU/HMM88Yo0YAwO3bt6FWq+Hn56ez3c/PDxkZGaUek5GRYdD+ADBnzhy4u7trH4GBgVUvnojIAqRdvYM12xKxbONB7D6UgoJClblLIjI7g1uEvvjiCyxfvhxDhw7FmjVr8M4776BBgwaYPn06srKyjFGjSU2dOlWnFSknJ4dhiIisWl5+IWYu3YX/JF2CTCZBJklQqTVwdVHgg3HPIrJ1iLlLJDIbg1uE0tPT0aFDBwCAk5MT7t+/D6Dotvrvvvuueqt7RO3atSGXy5GZmamzPTMzE/7+/qUe4+/vb9D+AKBQKODm5qbzICKyVkIIvLfoJxw6mQqgaNFWlbpoCY8HeQV4e8E2nL54w5wlEplVpZbYKG75CQoKwpEjRwAAaWlpMOa4awcHB4SHh2Pv3r3abRqNBnv37kVkZGSpx0RGRursDwB79uwpc38ioprmzKUMJP55GRpNyd/PQhQFpTXbjpihMiLLYHAQeuqpp7B9+3YAQHR0NCZNmoQePXpgyJAhGDBgQLUX+KjJkydjxYoViIuLQ0pKCl577TXk5uYiOjoaADBy5EidwdQTJkxAfHw8FixYgLNnz2LmzJk4fvw4YmNjjVonEZGl2HvkHOTysn/VazQCh06mIr9AacKqiCyHwWOEli9fDs1/V0YeN24cvL29cfjwYTz33HMYO3ZstRf4qCFDhuDWrVuYPn06MjIy0Lp1a8THx2sHRKenp0Mm+98PfIcOHbB+/Xq8//77eO+999C4cWNs27ZN7zmEiIis3YO8ggr3EQJ4WKCEIxdyJRtkVfMImQPnESIia7Z2+1Es23gQmnJ+1bs4OSB++TjYldNyRGRtjDqPUH5+Pv7880/cvHlT2zpU7LnnnqvMKYmIyAie7fIYvvr+IFBGDpLJJPR7qiVDENksg4NQfHw8Ro4cidu3b5d4TpIk7Qr0RERkfl7uLpgwohsWxu2DJBV1gxWTyyTU9fPAqH4R5iuQyMwM/hPgjTfewPPPP48bN25Ao9HoPBiCiIgsz/M9H8fHE/oipF5t7TYHezs8160lls8cCrdajmasjsi8DB4j5ObmhpMnT6Jhw4bGqsmicIwQEdUUQghk3M5BfoEKfrVd4ezIFe2p5tL389vgFqHBgwfjwIEDVamNiIjMQJIkBPi4I6SeN0MQ0X8Z3CKUl5eH559/Hj4+PmjRogXs7XVvtxw/fny1FmhubBEiIiqSmXUfB/9MQ36hEo3r+aBtaCBkMsncZRGVymh3jX333Xf45Zdf4OjoiAMHDkCS/vdDIElSjQtCRES2rkCpwty1e7Hz8BlohIBMkqARAnV93PHxK73RvEGAuUskqjSDW4T8/f0xfvx4TJkyRWfywpqKLUJEZOveXrodv528VGIuIpkkwcFejrXThiGkjreZqiMqndHGCBUWFmLIkCE2EYKIiGzdmcsZ2H/iYqkTMmqEgFKlxqqdR81QGVH1MDjNjBo1Chs3bjRGLUREZGHij5yFvJxxQGqNwJ5j56BScfoUsk4GjxFSq9WYN28edu/ejZYtW5YYLL1w4cJqK46IiMwrOze/wn1Uag0eFirhaic3QUVE1cvgIHTq1Ck8/vjjAIC//vpL57lHB04TEZH1C/B2LWt1Di1nR3s4OzqgUKnC8QtXcT+/AMG+Xmhaz8ckNRJVBRddrQAHSxORLbt66x4GTFlVZhiSyyQ8/1Rr+Pu7Y/nPR5DzyGr3YYG+mP5iFMIC/UxTLNEjjDZYmoiIbEc9Hw9EP1v6WmRymYTaHrVg72SP+T/8phOCAODc1VuI/vR7XLhWcm1KIkuhd9fYwIED9dpvy5YtlS6GiIgsz2sDOqC2hwtW7UjE7excAEWr1ndt0wgxfdpj6P+tK/W44rvKPv/pED57tZ8pSybSm95ByN3d3Zh1EBGRhZIkCf96qjUGdmmJc+k3UVCoQn1/T3i7u2D9gZPQlDPAQq0R+P10Ku49eAiPWk6mK5pIT3oHodWrVxuzDiIisnB2chkeC/HX2XYr+wHkMgkqddlpSAjgzv08BiGySBwjRERElebt5gJ1eU1CACQAXq7OpimIyEAMQkREVGm9wpuivIlTZDIJHZsFw5OtQWShGISIiKjSaru54OWe7Up9TiZJsJfLEPtcRxNXRaQ/gydUJCIietRrz0bCSWGPlbuPIje/ULs9xN8LM4f1QGg9XzNWR1Q+TqhYAU6oSESkn4eFShw9l44HDwsR5OuJ5vX9uOIAmY2+n99sESIiomrh5GCPLi0amrsMIoNwjBARERHZLAYhIiIislkMQkRERGSzGISIiIjIZjEIERERkc1iECIiIiKbxdvniYjIamQ9yENqZhYU9nYIresDe7nc3CWRlWMQIiIii3f7fi4++fEA9vx5QbvIq1ctJ7z8VDsM7/Q4J26kSmMQIiIii3Yv9yFGLNmIG/dydFa6z3rwEPO2/4ab2Q/wZt/OZqyQrBnHCBERkUWL+y0J1+/qhqBHrfktCak3s0xcFdUUDEJERGSxhBDYdOQUNOUsiymXSdh29LQJq6KahEGIiIgsVoFKjey8/HL3EQK4fjfHRBVRTcMgREREFstBLoeDXfl3hkkS4OHiZKKKqKZhECIiIoslk0no0yYMclnZd4WpNQJ92oSasCqqSRiEiIjIosU89QQc7e0gK+UWeZkkoVNoMFrVDzBDZVQTMAgREZFFC6rtgVWvPY963u4AoA1EkgT0frwpFozsw3mEqNIkIcoZik/IycmBu7s7srOz4ebmZu5yiIhslhACxy9dxdnrt6Cwk6NTWAgCPCv+vSyEQHpWNvKVStTzdIeLwsEE1ZK56fv5zQkViYjIKkiShCcaBeKJRoF6H7Pzj7P4Yv8RpN2+CwBwsJOjX+tmmPR0R3g4c4A1sWuMiIhqqNUHk/D2pp9x+b8hCAAKVWpsSfoLL361EdkPy78tn2wDgxAREdU4mTkPsGD3fwAA/xz/oRYC6Vn3sPL3Y6YvjCwOgxAREdU4W5PKn2laIwQ2HTsFtUZjoorIUjEIERFRjZOedQ8V3UiWk1+ABwWFpimILBaDEBER1TiujgoA5SchmSTByZ73DNk6BiEiIqpxnmnRpNxuL7kkIapZIzjYMQjZOgYhIiKqcVoFBqBjo/qlzkYtSUVLd7zSpZ0ZKiNLwyBEREQ1jiRJWDS0D7qFNgBQ1A1mJyv6yPNwcsKXI/qjWR1fc5ZIFoJtgkREVCO5KBywZNhzSL2Vhb1nLiJfpUITv9roFtqwwhXtyXYwCBERUY3WwMcLDdgNRmVg1xgRERHZLAYhIiIisllWE4SysrIwbNgwuLm5wcPDAzExMXjw4EG5+7/xxhto2rQpnJycEBQUhPHjxyM7O9uEVRMREZEls5oxQsOGDcONGzewZ88eKJVKREdH45VXXsH69etL3f/69eu4fv065s+fj2bNmuHvv//Gq6++iuvXr2Pz5s0mrp6IiKydUq3GnnMXsTn5NDJzHsDPrRYGtXoMT4c2gr2cg6+tlSSE+Od6dBYnJSUFzZo1w7Fjx9C2bVsAQHx8PHr37o2rV6+iTp06ep1n06ZNGD58OHJzc2Gn5yRaOTk5cHd3R3Z2Ntzc3Cr9GoiIyHrlFhYiZv1WnLh6HTJJgkYI7X8frxeAr4cORC2Fg7nLpEfo+/ltFV1jCQkJ8PDw0IYgAIiKioJMJkNiYqLe5yn+xygvBBUUFCAnJ0fnQUREtu3D+H1IvnYDQNGCrY/+949rGfggfp/ZaqOqsYoglJGRAV9f3Ymv7Ozs4OXlhYyMDL3Ocfv2bcyaNQuvvPJKufvNmTMH7u7u2kdgYGCl6yYiIut3+0Eutp86qw0+/6QRAj/9dRa3HuSauDKqDmYNQlOmTIEkSeU+zp49W+Xr5OTk4Nlnn0WzZs0wc+bMcvedOnUqsrOztY8rV65U+fpERGS9kq5eh7qCUSQaIZB05ZqJKqLqZNbB0m+++SZGjx5d7j4NGjSAv78/bt68qbNdpVIhKysL/v7+5R5///599OrVC66urti6dSvs7e3L3V+hUEChUOhVPxER1Xz6DqUtq8WILJtZg5CPjw98fHwq3C8yMhL37t1DUlISwsPDAQD79u2DRqNBREREmcfl5OSgZ8+eUCgU2L59OxwdHautdiIisg2t6gRAAlBezJEAtK4bYKKKqDpZxRihsLAw9OrVC2PGjMHRo0dx6NAhxMbG4oUXXtDeMXbt2jWEhobi6NGjAIpC0NNPP43c3Fx8/fXXyMnJQUZGBjIyMqBWq835coiIyIoEuLuiR2gjyEtZyR4A5JKEqKYNUceddxZbI6uZR2jdunWIjY1F9+7dIZPJMGjQICxevFj7vFKpxLlz55CXlwcAOHHihPaOskaNGumcKy0tDcHBwSarnYiIrNus3lG4fOcuLty6A6Codag4FjWo7YWPnu1httqoaqxiHiFz4jxCREQEAHmFSmz98ww2nTyFzAe58Kvlgucfb4EBLZvB2aH88adkevp+fjMIVYBBiIiIqoNao8HtvDzIZTJ4OzlBKqOrjaqHvp/fVtM1RkREZI2UajVWHk9C3MmTuJVbNNdQk9reeLVdO/QLCzNzdcQgREREZCQqjQav/vgjfku7rHPX2YXbdzB5189IzcrCpI4dzVYfWcldY0RERNZo6+kzOPCPEAT871b8z48k4tytW6Yuix7BIERERGQka5OTUd5IILkk4bs//zRZPVQSgxAREZGRXMrKKnciRrUQOHf7jsnqoZIYhIiIiIzEuYJlnSQAtRwcTFMMlYqDpYmIiIzk2aZNsP6PP8tctFUAeKZJE5y6mYmv/0jC/r9TodYIPO4fgJdatkG34AamLdgGsUWIiIjISEa3aQN7uRyyUuYMkksSAt3doZI06Ld5HX66cBbZBQV4oCzE4avpiN65FXMO/26Gqm0LgxAREZGRBHt6Im7QILgrFAAAO5kMdrKij94QLy/M790LUw/8Ao0QOq1Gxf//1clj2Hc51fSF2xB2jRERERlR23p1cWjsK4i/cAHJN27ATiZDl+AQdKgfhPlHDpY7mFouSVj95wk8xS4yo2EQIiIiMjKFnR36hYWVmEn6RMZ1aMpZ6UotBE5kXDd2eTaNXWNERERmUtxNVh65xI9qY2KLEBERkZl0CQrBoavpZXaPySUJ3eqHAADyVSr8kn4BqdlZcLF3QM/6jRHk6mGyWmsqrj5fAa4+T0RExnIv/yGeXLsSeUplqV1kEoBtg4fhZsF9vPn7LmQXFsBOkkEDASEEBjZ6DHM69oRCznaNf9L385vtbURERGbi4eiEuL6D4Gxvr7MUh1ySIJckLIh6BgVCiVf2bkNOYQEAQCVUkBwKYV8rHz9lnEDH7Z8hIfOyWeqvCdgiVAG2CBERkbHdzX+IzSmnsT89DSq1GuEBdfHiYy0R6OaOF3Z9h8TMq9AIAUmugYNLISQZIAQgSUX/BYCnA8LweYfnzftCLIi+n98MQhVgECIiInPJys/D4+s//+9XGijcCgGpKACVZnxoN4xr1slk9Vkydo0RERFZufv/7Q4DAJmDBpKs7BAkBLDqQoKJKqs5GISIiIgslI+TCxRyOQBAbq9GeX04kgQ8UOfjfmG+iaqrGRiEiIiILJSzvQMGNHwM8rKagUpx42E2tl45jm/TDuHgzXNQC40RK7R+vN+OiIjIgk1u8yQOXE3FHXUhYKcucz8hBBztNRh2eCnUQlPU0iFp4OVQCzNbPo8OPo1NVrM1YYsQERGRBfNzroUf+47AU35Fy3OU1T2msFfDzk4NtVDDQa6Cs0M+ajkUohBZmPrHV1h4ditbh0rBIERERGTh/F1csbz7QMQ06gBANwwV/b+AvVwDQMDJTgmFXAXZI71pkgRsv3YIH59eD94srotBiIiIyEq82yoKi9oNRqCTJyAACMBRZo9WXr6QSRLsZBrYyzWl3FkmYC9T49DtY/jq0mZkK++boXrLxHmEKsB5hIiIyNLNP7ML3/+dCAe7PMgloROE7GVqONsXQib9bxJGuSTDc3W6Y1j952rsoq6cR4iIiMhG1HHyKBog/Y8QZCdTw8W+ULt8R/FzaqHB1mt7sPbyNlOXanEYhIiIiKzcM3VbQS5JEELSGT/kZKcEUPYkjD9d34+7hdkmqNByMQgRERFZOU8HF4wP7QmlRq7dJpM0sJOJMkMQAAgIJNxJNn6BFozzCBEREdUAw0M6wkEmw5cXt0IjShswXZJMknBfmWv84iwYgxAREVEN8a/6kWhfuwHeTv4aN/PvaAdHl0UtNPBz9MZD9UMk3T2Oe4V34WbvhjaebVHLrpbpCjcj3jVWAd41RkRE1kYIgRN3L2JF6ne4WXATAqV/1DvKFBgd8jS2XdsCpSiEDDJIkhJySY6n/Z5FvzqDIRmwvIcl4V1jRERENkqSJIR7Nca0x8bCWe4I2T8+7oujTXe/Vth0dQOUogCOMiXc7e/D0/4h3OweIOH2Riw6PwUPVDV7MDWDEBERUQ1V18kPn7R8G609Qv+x3R/vNH0ZZ3JOAACc5YWoZVcA2SMtR5IEZORfwtILU5GrqrkTMHKMEBERUQ1W19kP0x4bhzsF93Cz4A5c7JwQ6BSA8w/OIUeVDRk0cJKVfpu9sywf9uICtv79Bjr6xiDEtZMZXoFxMQgRERHZAG+FB7wVHtqv81RFd4s5ypUl9rWDEvUVd+AoU8IBKjiIm/jjZiyOZ7qha53l8HEOM1XZRseuMSIiIhtUW+ELADrdYQAgQY0GjrfgLBWgtvwBvOzy4CIrhLNUCA/5bSRlDEZm3mFzlGwUDEJEREQ2KNA5EPWd60NAtz/Mx+4B7KGGt10u5NAAKOoyK+42k0GDPzNfRb4q09QlGwWDEBERkY0aXn8U1MJRZ2yQmzwPTrJCyFDarNQCTjIl3GQ5SL01AncefAu1xronZGQQIiIislEhLg3wdtMZsJfctWuUySUBJ6m0cUNq+Mhz4SHPh5Okgkp1Btfvvouz19vgQX6CiSuvPgxCRERENqy+SzCmPfYFmrk9AQBQCRmkf7QGSRDwkudpxxM5S0Cw3B7N7JwRZieguDsC+beHQqPOMsdLqBIGISIiIhvnIFNgVMi7eCf0C3gqIqCCXHcVe0kJCUXjhFwlCSF2TnCR7LSzTssgwV55HKpbXaBR3TLPi6gkBiEiIiICAHg5+KJ/0Gw8FF46LUKOsuKuMoF6cgUA6Cy9IUkSJEmCXORDee9lE1ZcdQxCREREpGUnU+C54O0ohB8AFC3ciqLWIC9JDpkkK3P9MUmSYKdMgUZz14QVVw2DEBEREelwsnND7+D9aODxFuzkXlAKGYQAnGUyVLRWuyQBmoITJqq06hiEiIiIqARJktDQMwbdgg6iqc+aooBTfgb637EyF+MWV40YhIiIiKhMkiTBw7krfN0mI1ujLrNbDACEEFBDDsm+nQkrrBoGISIiIqqQn/tkeHt/hUKBMrvHJEmCcOwHmcx64oX1VEpERERm5e7cGw4+u6GWiu4cE0JoHwCgtG8LB4+55izRYFx9noiIiPQmswuBne8JqHKXQjzcDoh8QO4PuetEKBRd9D6PEAJ385TILVDBRWEHT2f7crvdjIVBiIiIiAwikznAwXUS4DrJ4GOzHyrxQ9JVxB2+jL+z8rTb63s5Y1SHYAwKrwd3J/vqLLdckqjoPjgbl5OTA3d3d2RnZ8PNzc3c5RAREVmt387fwmvfJuFhoRoA8GgAKW4LcnKQ48vh4ejSxKdK19L385tjhIiIiMjofjt/C9Grj+KhUg0B3RCE/34tADxUqhG9+ih+O2+apTqsJghlZWVh2LBhcHNzg4eHB2JiYvDgwQO9jhVC4JlnnoEkSdi2bZtxCyUiIiId2Q+VeO3bpKKwU0E/lBBFgei1b5OQ/VBZ/s7VwGqC0LBhw3D69Gns2bMHO3bswO+//45XXnlFr2MXLVpklgFYREREBPyQdBUPC9UVhqBiQgAPC9XYcuKqcQuDlQShlJQUxMfHY+XKlYiIiMCTTz6JJUuWYMOGDbh+/Xq5xyYnJ2PBggVYtWqViaolIiKiYkIIxB2+XKlj1xy6XOGSHlVlFUEoISEBHh4eaNu2rXZbVFQUZDIZEhMTyzwuLy8PL774IpYuXQp/f3+9rlVQUICcnBydBxEREVXO3Twl/s7KKzEmqCICwN9ZebiXZ9zuMasIQhkZGfD19dXZZmdnBy8vL2RkZJR53KRJk9ChQwf069dP72vNmTMH7u7u2kdgYGCl6yYiIrJ1uQWqKh3/oIrHV8SsQWjKlCmQJKncx9mzZyt17u3bt2Pfvn1YtGiRQcdNnToV2dnZ2seVK1cqdX0iIiICXBRVm7KwVhWPr4hZJ1R88803MXr06HL3adCgAfz9/XHz5k2d7SqVCllZWWV2ee3btw+XLl2Ch4eHzvZBgwahU6dOOHDgQKnHKRQKKBQKfV8CERERlcPT2R71vZyRbmD3mAQgyMsZHs7GnVzRrEHIx8cHPj4VT5gUGRmJe/fuISkpCeHh4QCKgo5Go0FERESpx0yZMgUvv/yyzrYWLVrg008/Rd++fatePBEREVVIkiSM6hCMWTvOGHzs6I7BRr/r2yrGCIWFhaFXr14YM2YMjh49ikOHDiE2NhYvvPAC6tSpAwC4du0aQkNDcfToUQCAv78/mjdvrvMAgKCgIISEhJjttRAREdmaQeH14OQgh76ZRiYVzTA9sE094xYGKwlCALBu3TqEhoaie/fu6N27N5588kksX75c+7xSqcS5c+eQl5dXzlmIiIjI1Nyd7PHl8HBIQIVhqPj5ZcPDTbLmGNcaqwDXGiMiIqoe+q41tmx4ODqbaK0xrj5PREREJtGliQ8SpnbHlhNXseaQ7urzQV7OGN2xaPV5N0euPm8x2CJERERU/YQQuJenxIMCFWop7ODhbF+tA6PZIkREREQWS5IkeLo4wNPFwax1WM1gaSIiIqLqxiBERERENotBiIiIiGwWgxARERHZLAYhIiIislkMQkRERGSzePt8BYqnWcrJyTFzJURERKSv4s/tiqZLZBCqwP379wEAgYGBZq6EiIiIDHX//n24u7uX+Txnlq6ARqPB9evX4erqWu0zXgYGBuLKlSucsdoC8P2wLHw/LA/fE8vC96NiQgjcv38fderUgUxW9kggtghVQCaToV69ekY7v5ubG7+JLQjfD8vC98Py8D2xLHw/yldeS1AxDpYmIiIim8UgRERERDaLQchMFAoFZsyYAYVCYe5SCHw/LA3fD8vD98Sy8P2oPhwsTURERDaLLUJERERksxiEiIiIyGYxCBEREZHNYhAyoaysLAwbNgxubm7w8PBATEwMHjx4UO7+b7zxBpo2bQonJycEBQVh/PjxyM7ONmHVNcfSpUsRHBwMR0dHRERE4OjRo+Xuv2nTJoSGhsLR0REtWrTArl27TFSpbTDk/VixYgU6deoET09PeHp6IioqqsL3jwxj6M9HsQ0bNkCSJPTv39+4BdogQ9+Te/fuYdy4cQgICIBCoUCTJk34e0sfgkymV69eolWrVuLIkSPiP//5j2jUqJEYOnRomfufOnVKDBw4UGzfvl1cvHhR7N27VzRu3FgMGjTIhFXXDBs2bBAODg5i1apV4vTp02LMmDHCw8NDZGZmlrr/oUOHhFwuF/PmzRNnzpwR77//vrC3txenTp0yceU1k6Hvx4svviiWLl0qTp48KVJSUsTo0aOFu7u7uHr1qokrr5kMfT+KpaWlibp164pOnTqJfv36maZYG2Hoe1JQUCDatm0revfuLQ4ePCjS0tLEgQMHRHJysokrtz4MQiZy5swZAUAcO3ZMu+3nn38WkiSJa9eu6X2e77//Xjg4OAilUmmMMmusdu3aiXHjxmm/VqvVok6dOmLOnDml7v+vf/1LPPvsszrbIiIixNixY41ap60w9P34J5VKJVxdXUVcXJyxSrQplXk/VCqV6NChg1i5cqUYNWoUg1A1M/Q9+fLLL0WDBg1EYWGhqUqsMdg1ZiIJCQnw8PBA27ZttduioqIgk8mQmJio93mys7Ph5uYGOzuujqKvwsJCJCUlISoqSrtNJpMhKioKCQkJpR6TkJCgsz8A9OzZs8z9SX+VeT/+KS8vD0qlEl5eXsYq02ZU9v348MMP4evri5iYGFOUaVMq855s374dkZGRGDduHPz8/NC8eXPMnj0barXaVGVbLX6amkhGRgZ8fX11ttnZ2cHLywsZGRl6neP27duYNWsWXnnlFWOUWGPdvn0barUafn5+Otv9/Pxw9uzZUo/JyMgodX993ysqW2Xej3969913UadOnRJhlQxXmffj4MGD+Prrr5GcnGyCCm1PZd6T1NRU7Nu3D8OGDcOuXbtw8eJFvP7661AqlZgxY4YpyrZabBGqoilTpkCSpHIf+v5yL09OTg6effZZNGvWDDNnzqx64URWau7cudiwYQO2bt0KR0dHc5djc+7fv48RI0ZgxYoVqF27trnLof/SaDTw9fXF8uXLER4ejiFDhuDf//43li1bZu7SLB5bhKrozTffxOjRo8vdp0GDBvD398fNmzd1tqtUKmRlZcHf37/c4+/fv49evXrB1dUVW7duhb29fVXLtim1a9eGXC5HZmamzvbMzMwy/+39/f0N2p/0V5n3o9j8+fMxd+5c/Prrr2jZsqUxy7QZhr4fly5dwuXLl9G3b1/tNo1GA6ColfvcuXNo2LChcYuu4SrzMxIQEAB7e3vI5XLttrCwMGRkZKCwsBAODg5GrdmasUWoinx8fBAaGlruw8HBAZGRkbh37x6SkpK0x+7btw8ajQYRERFlnj8nJwdPP/00HBwcsH37dv4FXAkODg4IDw/H3r17tds0Gg327t2LyMjIUo+JjIzU2R8A9uzZU+b+pL/KvB8AMG/ePMyaNQvx8fE6Y+2oagx9P0JDQ3Hq1CkkJydrH8899xy6deuG5ORkBAYGmrL8GqkyPyMdO3bExYsXtaEUAM6fP4+AgACGoIqYe7S2LenVq5d4/PHHRWJiojh48KBo3Lixzu3zV69eFU2bNhWJiYlCCCGys7NFRESEaNGihbh48aK4ceOG9qFSqcz1MqzShg0bhEKhEGvWrBFnzpwRr7zyivDw8BAZGRlCCCFGjBghpkyZot3/0KFDws7OTsyfP1+kpKSIGTNm8Pb5amTo+zF37lzh4OAgNm/erPNzcP/+fXO9hBrF0Pfjn3jXWPUz9D1JT08Xrq6uIjY2Vpw7d07s2LFD+Pr6io8++shcL8FqMAiZ0J07d8TQoUNFrVq1hJubm4iOjtb5RZ6WliYAiP379wshhNi/f78AUOojLS3NPC/Cii1ZskQEBQUJBwcH0a5dO3HkyBHtc126dBGjRo3S2f/7778XTZo0EQ4ODuKxxx4TO3fuNHHFNZsh70f9+vVL/TmYMWOG6QuvoQz9+XgUg5BxGPqeHD58WERERAiFQiEaNGggPv74Y/7RrAeuPk9EREQ2i2OEiIiIyGYxCBEREZHNYhAiIiIim8UgRERERDaLQYiIiIhsFoMQERER2SwGISIiIrJZDEJERERksxiEiMhsRo8ejf79+5u1hq5du2LixIlmraEiXbt2hSRJkCQJycnJBh07evRo7bHbtm0zSn1E1oxBiIhKePTD097eHiEhIXjnnXeQn59v7tJKdeDAAbRp0wYKhQKNGjXCmjVr9D52y5YtmDVrlvGKqyZjxozBjRs30Lx5cyQlJUGSJBw5cqTUfbt3746BAwcCAD777DPcuHHDlKUSWRUGISIqVa9evXDjxg2kpqbi008/xVdffYUZM2aYu6wS0tLS8Oyzz2pXP584cSJefvll7N69W6/jvby84OrqauQqq87Z2Rn+/v6ws7NDeHg4WrVqhVWrVpXY7/Lly9i/fz9iYmIAAO7u7vD39zd1uURWg0GIiEqlUCjg7++PwMBA9O/fH1FRUdizZ4/2eY1Ggzlz5iAkJAROTk5o1aoVNm/erH1erVYjJiZG+3zTpk3x2WefGVzHmjVrEBQUBGdnZwwYMAALFiyAh4eH9vlly5YhJCQECxYsQFhYGGJjYzF48GB8+umnep3/n11jN2/eRN++feHk5ISQkBCsW7cOwcHBWLRokV7nW7hwIVq0aAEXFxcEBgbi9ddfx4MHDwAAOTk5cHJyws8//6xzzNatW+Hq6oq8vDy9rgEAMTEx2LhxY4lj1qxZg4CAAPTq1UvvcxHZMgYhIqrQX3/9hcOHD8PBwUG7bc6cOfjmm2+wbNkynD59GpMmTcLw4cPx22+/ASgKSvXq1cOmTZtw5swZTJ8+He+99x6+//57va+bmJiImJgYxMbGIjk5Gd26dcNHH32ks09CQgKioqJ0tvXs2RMJCQmVeq2jR4/GlStXsH//fmzevBlffPEFbt68qffxMpkMixcvxunTpxEXF4d9+/bhnXfeAQC4ubmhT58+WL9+vc4x69atQ//+/eHs7Kz3dYYNG4aCggKd8CmEQFxcHEaPHg25XK73uYhsmvkWviciSzVq1Cghl8uFi4uLUCgUAoCQyWRi8+bNQggh8vPzhbOzszh8+LDOcTExMWLo0KFlnnfcuHFi0KBBOtfp169fmfsPHTpU9O7dW2fbkCFDhLu7u/brxo0bi9mzZ+vss3PnTgFA5OXlVfRSRZcuXcSECROEEEKcO3dOABBHjx7VPp+SkiIAiE8//bTCc5Vm06ZNwtvbW/v11q1bRa1atURubq4QQojs7Gzh6Ogofv75Z71qfNQLL7wgunTpov167969AoC4cOFCiX0BiK1bt1bqNRDVZGwRIqJSFY+5SUxMxKhRoxAdHY1BgwYBAC5evIi8vDz06NEDtWrV0j6++eYbXLp0SXuOpUuXIjw8HD4+PqhVqxaWL1+O9PR0vWtISUlBRESEzrbIyMjqeYFlXK94DE6x0NBQna64ivz666/o3r076tatC1dXV4wYMQJ37tzRdmH17t0b9vb22L59OwDghx9+gJubW4lWLX289NJL+P3337X/5qtWrUKXLl3QqFEjg89FZKsYhIioVC4uLmjUqJF2UG5iYiK+/vprANCOedm5cyeSk5O1jzNnzmi7ajZs2IC33noLMTEx+OWXX5CcnIzo6GgUFhZWa53+/v7IzMzU2ZaZmQk3Nzc4OTlV67UqcvnyZfTp0wctW7bEDz/8gKSkJCxduhQAtK/bwcEBgwcP1naPrV+/HkOGDIGdnZ3B1+vevTuCgoKwZs0a5OTkYMuWLdpB0kSkH8N/8ojI5shkMrz33nuYPHkyXnzxRTRr1gwKhQLp6eno0qVLqcccOnQIHTp0wOuvv67d9mhrkT7CwsKQmJios+2ft4xHRkZi165dOtv27NlTqZaj0NBQqFQqJCUl4YknngAAnDt3Dvfu3dPr+KSkJGg0GixYsAAyWdHfmaWNiRo2bBh69OiB06dPY9++fSXGPelLJpMhOjoaX3/9NerWrasNWUSkP7YIEZFenn/+ecjlcixduhSurq546623MGnSJMTFxeHSpUs4ceIElixZgri4OABA48aNcfz4cezevRvnz5/HtGnTcOzYMYOuOX78eMTHx2P+/Pm4cOECPv/8c8THx+vs8+qrryI1NRXvvPMOzp49iy+++ALff/89Jk2aZPBrbNq0KXr16oWxY8ciMTERSUlJePnll/VuWWrUqBGUSiWWLFmC1NRUrF27FsuWLSuxX+fOneHv749hw4YhJCSkRPefIaKjo3Ht2jW89957GDp0qMlbwYisHYMQEenFzs4OsbGxmDdvHnJzczFr1ixMmzYNc+bMQVhYGHr16oWdO3ciJCQEADB27FgMHDgQQ4YMQUREBO7cuaPTOqSP9u3bY8WKFfjss8/QqlUr/PLLL3j//fd19gkJCcHOnTuxZ88etGrVCgsWLMDKlSvRs2fPSr3O1atXo06dOujSpQsGDhyIV155Bb6+vnod26pVKyxcuBCffPIJmjdvjnXr1mHOnDkl9pMkCUOHDsUff/yBYcOGVarOYkFBQYiKisLdu3fx0ksvVelcRLZIEkIIcxdBRKSvNWvWYOLEiXp3V1WH4OBgTJw40WxLcXTt2hWtW7fWey6j0kiShK1bt5p9SRMiS8MWISIiK/DFF1+gVq1aOHXqlEHHvfrqq6hVq5aRqiKyfhwsTUQ1Vnp6Opo1a1bm82fOnEFQUJDe51u3bh3Gjh1b6nP169fH6dOnDa5R3+s+fPgQAAyqFwA+/PBDvPXWWwCAgICAaq+NyNqxa4yIaiyVSoXLly+X+XxwcLBBt63fv3+/xK36xezt7VG/fn1DSyQiM2MQIiIiIpvFMUJERERksxiEiIiIyGYxCBEREZHNYhAiIiIim8UgRERERDaLQYiIiIhsFoMQERER2SwGISIiIrJZ/w9cONFdSAkQuAAAAABJRU5ErkJggg==\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - examples_29_1.png" } }, "output_type": "display_data" } ], "source": [ "_ = plot_xr_complex(dataset_gridded.q0_iq_av)\n", "_, ax = plot_xr_complex_on_plane(dataset_gridded.q0_iq_av)\n", "_ = plot_complex_points(dataset_gridded.q0_iq_av_cal.values, ax=ax)" ] }, { "cell_type": "code", "execution_count": 31, "id": "4af99ca2", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:36.332813Z", "iopub.status.busy": "2023-09-26T17:43:36.332606Z", "iopub.status.idle": "2023-09-26T17:43:36.850330Z", "shell.execute_reply": "2023-09-26T17:43:36.849662Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAHgCAYAAABaTEKMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACd60lEQVR4nOzdd5xU1fn48c+9d8r2xlaW3kEQFATBiiLYY77BGDWxJGrs/kRjNBprlBRbjBViiUaj0dhFERGsKEqRIr3Dso3tbcq95/fH7M7uMFthd+7s8rxfr1H2zrnnPjPsMs+ee855NKWUQgghhBBChNHtDkAIIYQQIlpJoiSEEEII0QJJlIQQQgghWiCJkhBCCCFECyRREkIIIYRogSRKQgghhBAtkERJCCGEEKIFkigJIYQQQrRAEiUhhBBCiBZIoiSEDTRN49prr7U7jDb97W9/Y9CgQRiGwbhx4+wOR9jo7rvvRtM0NE0jISGhQ+eWlZUFz9U0jQcffLCLohSi80miJEQnWr16NTNnzqR///7ExMSQm5vLKaecwj/+8Y8uve6PP/7I3Xffzfbt2zutz48//phbbrmFY445hueff54HHnig0/puziuvvMKjjz7apddozbp16zj11FNJSEggLS2NX/3qVxQVFbX7/HfffZcjjzySmJgY+vXrx1133YXf7w9rV1ZWxhVXXEFGRgbx8fFMnTqV5cuXR12fLXnppZd49tln290eID4+npdeeolHHnmkQ+cJERWUEKJTfPXVV8rlcqkhQ4ao++67T82dO1fdeeedavr06Wrw4MEhbQF1zTXXdNq1X3/9dQWoRYsWdVqfv//975Wu68rj8XRan60544wzVP/+/SNyrf3t2rVLpaenq8GDB6u///3v6v7771epqalq7Nix7Xr98+bNU5qmqalTp6o5c+ao6667Tum6rq688sqQdqZpqilTpqj4+Hh19913q8cff1yNGjVKJSYmqo0bN0ZNn82566671MF+ZGzbtk0B6m9/+9tB9SNEJEmiJEQnOf3001VGRoYqLS0Ne66goCDk6+6QKF166aUqPj6+0/qzLEvV1NS0+LydidJVV12lYmNj1Y4dO4LHFixYoAD1zDPPtHn+qFGj1NixY5XP5wseu/3225WmaWrdunXBY6+99poC1Ouvvx48VlhYqFJSUtT5558fNX02RxIlcaiSREmITjJ8+HB14okntqttQ6L01ltvqcMOO0y5XC41atQo9eGHH4a1Xb58uTr11FNVYmKiio+PVyeddJJasmRJ8Pnnn39eAWGPhqTpu+++U9OnT1e9evVSMTExasCAAerSSy9tM779H88//7xSSimfz6fuvfdeNWjQIOVyuVT//v3Vbbfdpurq6kL66N+/vzrjjDPURx99pMaPH6/cbrd65JFHmr3eCSecEHa9SCZNmZmZ6txzzw07PmzYMHXyySe3eu7atWsVoJ544omQ43v27FGAuu+++4LHzj33XJWVlaVM0wxpe8UVV6i4uLjge2h3n81pLVFq7/eYJEqiO3J09a09IQ4V/fv3Z8mSJaxZs4bRo0e32f7LL7/kzTff5OqrryYxMZHHHnuMn/3sZ+zcuZNevXoBsHbtWo477jiSkpK45ZZbcDqdPPPMM5x44ol89tlnTJo0ieOPP57rr7+exx57jD/84Q+MHDkSgJEjR1JYWMj06dPJyMjg1ltvJSUlhe3bt/Pmm2+2GttLL73EnDlzWLp0Kf/85z8BmDJlCgCXXXYZ//rXv5g5cyY33XQT3377LbNnz2bdunW89dZbIf1s2LCB888/n9/+9rdcfvnlDB8+vNnr3X777ZSXl7N79+7gPJa2JgyXl5fj8/naeJchJiam1b727NlDYWEhEyZMCHtu4sSJzJs3r9X+V6xYARB2fu/evenTp0/w+Ya2Rx55JLoeOj104sSJzJkzh40bNzJmzBjb++yIA/0eE6LbsDtTE6Kn+Pjjj5VhGMowDDV58mR1yy23qPnz5yuv1xvWFlAul0tt3rw5eOyHH35QgPrHP/4RPHbOOecol8ultmzZEjyWl5enEhMT1fHHHx881tKtt7feeksB6rvvvuvw67n44ovDbr2tXLlSAeqyyy4LOX7zzTcrQH366afBY/3791eA+uijj9p1vY7eemtuFKq5x8UXX9xqP999950C1Isvvhj23O9+9zsFhI2WNfW3v/1NAWrnzp1hzx111FHq6KOPDn4dHx+vfv3rX4e1++CDD0LeK7v7bE5LI0od+R6TESXRHcmIkhCd5JRTTmHJkiXMnj2b+fPns2TJEv7617+SkZHBP//5T84+++yQ9tOmTWPw4MHBrw8//HCSkpLYunUrAKZp8vHHH3POOecwaNCgYLucnBwuuOAC5s6dS0VFBUlJSS3GlJKSAsD777/P2LFjcTqdB/UaG0ZXZs2aFXL8pptu4sEHH+SDDz5g6tSpweMDBw5kxowZB3XNljz00EOUlpa22a53796tPl9bWwuA2+0Oey4mJibYprnn23N+RUVFSNu2rhMNfXZEZ3+PCRFtJFESohMdddRRvPnmm3i9Xn744QfeeustHnnkEWbOnMnKlSsZNWpUsG2/fv3Czk9NTQ1++BcVFVFTU9Ps7aqRI0diWRa7du3isMMOazGeE044gZ/97Gfcc889PPLII5x44omcc845XHDBBS1+8Ldmx44d6LrOkCFDQo5nZ2eTkpLCjh07Qo4PHDiww9dor/Hjx3dKP7GxsQB4PJ6w5+rq6kLaHMj5Tc+NjY1t13Xs7rMjOvt7TIhoI/soCdEFXC4XRx11FA888ABPPfUUPp+P119/PaSNYRjNnquU6rQ4NE3jjTfeYMmSJVx77bXs2bOHX//614wfP56qqqqD6rc9DvTDtz1KSkrIz89v81FeXt5qPzk5OQDs3bs37Lm9e/eSlpbW6gd+W+c3HdHKyclpsR00jn7Z3WdHdNX3mBDRQhIlIbpYw+TZ5j6gWpORkUFcXBwbNmwIe279+vXouk7fvn2BthOXo48+mvvvv5/vv/+el19+mbVr1/Lqq692KB4ITFi3LItNmzaFHC8oKKCsrIz+/ft3uM8G7U2+Gvzf//0fOTk5bT5uuOGGVvvJzc0lIyOD77//Puy5pUuXtrkjecPz+5+fl5fH7t27Q84fN24cy5cvx7KskLbffvstcXFxDBs2LCr6PBCd9T0mRLSRREmITrJo0aJmR4Ma5vW0tOKrJYZhMH36dN55552QHbcLCgp45ZVXOPbYY4Pzk+Lj44HADs1NlZaWhsXU8IHY3C2Ytpx++ukAYTtoP/zwwwCcccYZHe6zQXx8fJujP0099NBDLFiwoM3HLbfc0mZfP/vZz3j//ffZtWtX8NjChQvZuHEj5557bvCYz+dj/fr1IUnvYYcdxogRI5gzZw6maQaPP/XUU2iaxsyZM4PHZs6cSUFBQciKsOLiYl5//XXOOuus4MiV3X12RGd/jwkRdeydSy5Ez3HYYYepgQMHqlmzZqk5c+aoxx9/XF1wwQXKMAw1YMCAkI0oaWHDyf79+4es0lqzZo2Kj49Xubm56v7771d/+ctf1KBBg5Tb7VbffPNNsN3evXuVYRjq6KOPVi+88IL6z3/+owoKCtQjjzyihg4dqm655Rb1zDPPqAcffFANHz5cJSUlqa1bt7b6eppb9dZwHFA///nP1RNPPBH8+pxzzgl7LWeccUY73z2l/vrXvypA3XjjjeqVV15R7777brvPPVg7d+5UvXr1UoMHD1aPPfaYeuCBB1RqaqoaM2ZMyIq3hlVb+6+ke++995Smaeqkk05Sc+bMUddff73SdV1dfvnlIe38fr86+uijVUJCgrrnnnvUE088oQ477DCVmJio1q9fHzV9NqelVW8d+R6TVW+iO5JESYhO8uGHH6pf//rXasSIESohISFYzuS6665r987c+ydKSgU2nJwxY4ZKSEhQcXFxaurUqerrr78OO3fu3Llq0KBByjCM4FYBy5cvV+eff77q16+fcrvdKjMzU5155pnq+++/b/P1tJQo+Xw+dc8996iBAwcqp9Op+vbt2+qGk+1VVVWlLrjgApWSkhLxDSeVCiSl06dPV3FxcSolJUVdeOGFKj8/P6RNS4mSUoFl8uPGjVNut1v16dNH3XHHHc1uDVFSUqJ+85vfqF69eqm4uDh1wgkntLi03s4+99dSotSR7zFJlER3pCnViTNHhRBC9Eh3330399xzD0VFRWiaFtwUtT2UUuzbt49du3Zx5JFH8re//Y2bb765C6MVovPI9gBCCCHaLSMjg/j4+A6taCsvLycjI6MLoxKi68iIkhBCiDZt3bo1uBmqw+HgxBNPbPe5fr+fxYsXB78eNmxYs/uICRGNJFESQgghhGiBbA8ghBBCCNECSZSEEEIIIVogiZIQQgghRAskURJCCCGEaIEkSkIIIYQQLZBESQghhBCiBZIoCSGEEEK0QBIlIYQQQogWSKIkhBBCCNECSZSEEEIIIVogiZIQQgghRAskURJCCCGEaIEkSkIIIYQQLZBESQghhBCiBZIoCSGEEEK0QBIlIYQQQogWSKIkhBBCCNECSZSEEEIIIVogiZIQQgghRAskURJCCCGEaIEkSkIIIYQQLZBESQghhBCiBZIoCSGEEEK0QBIlIYQQQogWSKIkhBBCCNECSZSEEEIIIVogiZIQQgghRAskURJCCCGEaIHD7gCinWVZ5OXlkZiYiKZpdocjhBBCiHZQSlFZWUnv3r3R9QMfF5JEqQ15eXn07dvX7jCEEEIIcQB27dpFnz59Dvh8SZTakJiYCATe6KSkJJujEUIIIUR7VFRU0Ldv3+Dn+IHqVonS559/zt/+9jeWLVvG3r17eeuttzjnnHNaPWfx4sXMmjWLtWvX0rdvX+644w4uueSSdl+z4XZbUlKSJEpCCCFEN3Ow02a61WTu6upqxo4dyxNPPNGu9tu2beOMM85g6tSprFy5kv/3//4fl112GfPnz+/iSIUQQgjRE3SrEaXTTjuN0047rd3tn376aQYOHMhDDz0EwMiRI/nyyy955JFHmDFjRrPneDwePB5P8OuKioqDC1oIIYQQ3Va3GlHqqCVLljBt2rSQYzNmzGDJkiUtnjN79mySk5ODD5nILYQQQhy6utWIUkfl5+eTlZUVciwrK4uKigpqa2uJjY0NO+e2225j1qxZwa8bJoMJIYQQkWaaJj6fz+4wopLT6cQwjC6/To9OlA6E2+3G7XbbHYYQQohDmFKK/Px8ysrK7A4lqqWkpJCdnd2l+xz26EQpOzubgoKCkGMFBQUkJSU1O5okhBBCRIOGJCkzM5O4uDjZ8Hg/SilqamooLCwEICcnp8uu1aMTpcmTJzNv3ryQYwsWLGDy5Mk2RSSEEEK0zjTNYJLUq1cvu8OJWg0DHoWFhWRmZnbZbbhuNZm7qqqKlStXsnLlSiCw/H/lypXs3LkTCMwvuuiii4Ltr7zySrZu3cott9zC+vXrefLJJ/nvf//LjTfeaEf4QgghRJsa5iTFxcXZHEn0a3iPunIeV7caUfr++++ZOnVq8OuGSdcXX3wxL7zwAnv37g0mTQADBw7kgw8+4MYbb+Tvf/87ffr04Z///GeLWwMIIYQQ0eJgb7cppSit8VHt8RPvdpAa5+xxt/Ai8Xq6VaJ04oknopRq8fkXXnih2XNWrFjRhVEJIYQQ0aO81sf/lu3mX19vZ0dJTfB4/7Q4Lp4ygJ+N70NyrNPGCLuXbpUoCSGEEKJln20s4qp/L6PWa4Y9t7Okhvve/5EHP97AU78czwnDMmyIsPuRRMkGnloPC1/+kuULfuCYn07iuJ9NYteGPN576mNcbgdnXT2DjD69+PSVL/l+/kqm/OQojpt5NHmb83nvqY/RDZ2zrzmVzL69WPTqV3z34QqOPmsCJ/x8MnlbCnj/qY9Bg7OvnkHWgEw+e+1rvv1gGZPOGM8J502hYHsh7z45HxScedV0eg/O4rP/LuGb977nqNOOYOovjqFw1z7ee3I+fp+fs6+eQe8h2Xzxxjd8/c53TJgxjpMuOJai3YE2Xo+fs66aTt/hvfnif9/y1VvfcuQpYzn5wmMp2VvGu0/Op666jrOumkH/UX348s1v+eLNbznipNGc/MvjKSss570n51NdUcOZV05n4Oh+fPX2Uj5/4xvGnngY0351PBXFlbz75Hyqyqo587enMGhsf75+53s+++/XHH78KE656HgqS6t578n5lO+r5MzfnsLgcQP45r1lLH7tKw47ZgQzLjmRqrIa3ntqPqUF5ZxxxTSGTRjMtx8s59NXvmDU5OHMuHQqNZW1vP/UxxTnlXDGFacw/KjBLJ23gk9f+YIRE4cy49dTqav28N5T8ynevY/TL5/G8IlDWbpyOx9//iPDB2dz5slj8FbW8P7TCyjYUcRpvzmJUVOGs2zBKj556TOGjBvIqb85Cb/P5P2nP2bv1gJO+83JHHbMcJZ/spoFLy5m4Jj+nH75yVimxQfPfMLuTXmc+uuTGHPcSFYuWsvHLyxiwGF9Of3yaSil+GDOJ+xav4fpl5zI2BMPY9VnPzL/+UX0Gd6bM397CpqmMW/uJ2xfu4vpl0xl3NTDWP3FOj567lNyh+Rwxm9PwXDofPjPT9m6ajunXHQiR04bw9qvNvDhswvJGZTFmVdOx+E0+OjZT9m0Yhun/Op4jjzlcNZ9s4kP/7mQzH7pnHXVdNyxLj589lM2LtvKyRcex4QZY9mwdDPz5n5Cep9enHXVDGLi3cx/bhHrl27ipAuOY+LpR7Dhuy18MGcBvXJSOeuq6cQlxTH/+UX8uGQDU88/lklnHMnm5dv4YM4CkjOSOfvqGSSkxDH/hcWs/Wo9J553DEefNZ4tK7fz/jMLSO6VyFlXTScxLYEFL37Oqs9/5ISfT2HKTyaw9YcdvP/MAhJS4jn76hkkpSfyyUuf88PitRw/82iOOWci29bs5P2nPyYuMZazrp5BalYKC//9OSsWrua4nx3Nsf83iR0/7ua9pz8mJs7N2VfPIC0nRX6+e9zP9xC+n/8DC1/+gmHjB3Hab07CU+vtsp/vtUs24nPUUhZfTkZvJ0pBeXEF3jovyb0SiU2MpbayjvJ9FbhiXCSnJ6Fp8OH3O7j+nXUoBc3de2k4Vus1ufT5pTx3yVFM7J1IRXElTreD5IwkNE2jvLgST42HpF6JxCXFUlddR3lRJQ6Xg5TM0DaJvRKIT4qjrtpDeXEF3373DTf87nq2bNlCRXElddUeEtMSiE9ubONwGiRnJKMben2bumCbaLw1qKnW7mUJKioqSE5Opry8vFOK4i5fuJp7z32Q6rIadF3DshROtwOfx4/h0FGA5bdwuhz4vP6OtWn42hGYo2/5reB5DW0cLgf+NtsY+L0muqGjaWC21k9zbQwdy7RwOA38vhb6aWjjMjB9JpreQhvLwuEw8PtN9FbaGA4Dy2+h6VoH2zjxeXzoho6yVLBtww+rZTbXJvAeaACahuk0UKeMxeMw0HUNpRSuTXsxftyNphRoWng/SqHpGlgArbSpj6Phzy32o9poowVes2W11iZwv7+lNiiFAnS98T0Ka1Mfq27owfe6xX5aa1Pfj2HomCFtGv9OgbDvj6ZtDIeOUvVtnA78Pn/LbUwr8D3dnjbexu/fVtvIz3eP+Pk+oDYH+fOdkp3IFU9dSFZ6NoZWv5JLAVpDd4F/Zxq+RoMqr8kF72/GY6pmk6T9aYDb0HjljCEkuI3GLKpJn2HX2i+O5tp8+/033HbP7/n0vc9AQVlFGff99V4WffkpuqYx/aQZ3H7zH4mPjQ/rx+F20GdYb1zu9t8WrKurY9u2bQwcOJCYmJiQ5zrr81tGlCJszRfrqK2sAwIfWgA+jx8I/GA38Hn9HW/T8HXTNp7QNv52tQkM2VpmO/pprk39Mb+vlX4a2tRfSx1kP6avoR/VwTa+0Db++ja01kbVtwn810pLwOswQt4f9pSgTIumLffvR1lN/zlroU2TOFQ7+mmxTXv6Cflv820ATMtsfxvz4Nr4w9qEf9/t//3R3M/K/t+vEWkjP9894uf7QNsc7M/3fqeG/Dk4vqEajy/YXt7uJKnhVI+pWLCjnJ8OTQu/XkvX6mCbm++YRVFxEc8//gI+v58/3Pt77rz/Dh760yOgAvVVq2uqSEvthd/jx1vr7VCiFAndanuAnkIG8XoWrcaD66v1GNsLwW+i76tEq6q1OywhxCFCKcXbm0vbnSQ19fbm0i77TNqybTNfLPmcP93xAGNHj2PCuAnccfOdfPDx+xQUBTaDLi4p5vjTj+Xqm69kwaKPo7JciyRKETblnKMYNKaf3WGITqRXezAKy3Gu2EbM+9/j/vxHNF/4REohhOgKFV6TvdUdTzAUsLfaR6XXarPtgVixegVJiUmMGTUmeGzKxGPQdZ1Va34AIDcnl1efe53e2bnc9ec/MnTkEK6//nqWLVvWJTEdCEmUImzIuIE8tfxvXPPYr+0ORXQyDdD2G5IWQoiuVus/uESnxt81v9gV7ysiLTV0Z3GHw0FyUjJF+4qCx0aPHM2cZ58mvyCf559/nr1793LMMccwZswYHnzwwbBSZJEmiZINygrL2bRsq91hCCGE6AFiHQf3UR7n6JrSHx1RW1WHrumcddZZvP7662zbto3s7Gx+97vfMXv2bFtjk8ncEfblW9/yp188gtVFGbwQQohDS5LLICfeSX61r0OD2RqQHe8k0dU1YybpvTIoKd0Xcszv91NeUU5Gr9A9nIp27aN4Twk79m3jtf++yuuvv05qaip33nknv/nNb7okvvaSRCnCtv6wA6UUMp9bCCFEZ9A0jXOGpPL0D4UdPvecIaldtnfREWOOoKKygjXr1jB65GgAvvl+CZZlcfjoscF223Zs4515b/PuR+9QXlHGzJkzefvttznhhBOiYl8lufUWYZqm7bdsVAghhDg4p/RPxm1otDetaNhH6ZT+yV0W0+CBQzhu8vH88f4/sGrtDyz7YRn3/e0ezph+JlkZWQDk5edx+s9nsGLVcq6/4gY2r9/C888/z4knnhgVSRLIiFLEnfzL49i4bAvfvB89M/qFEEJ0bwkugzsn53LHV7sDG9C20lYDNA3unNyHBFfXzk968L6Hue9v93Dx1RfVbzh5Knfc/Mfg86kpqSx8ZzG9c3qT1CuR9OxerfRmD0mUIqz34Gzue/dWPn3lC2b/8jG7wxFCCNFDTMhO4E/H9OHeJXvwmE23wwxoGJ9xGxp3Tu7DhOz4Lo8pJTklsLlkC2JjYonNjmXg6H44o2yjyQaSKNlg+9pdLHr1S7vDEEII0cNMyE7glTOGsGBHOW9vLg3ZXyk73sk5Q1KZPiCZeKf9K92aKiuqICUzGacr+tKS6Iuoh1vw4mf89ZLH0Y3ouPcqhBCiZ0lwGfx0aBrnDEml0mtR4zeJcxgkuvSomfezv9KCMkoLyug3og8x8W67wwkhiVKE7d1agOEwgjWHhBBCiK6gaRpJboMkd+RGj3Jz+nDRLy7p+In19wj9Pj8gidIhraF6dU+m3A78A7PwD8hEq/Xg3LgXfW9pu1djCCGE6J769O7DJRdcancYnUoSpQg7/fKTKdlbyofPfRqs0N2TKJeDuhlHgK6BpqFinFiJsRh7S+0OTQghRJTSHTopmcnEJcXaHUoY2UcpwtKyU7n+ycu5642b7A6lSyinAYYeWHsKoGlotV5kOEkIIURLBhzWj/Teaeh69KUlMqIUYUopln+yipcfeNPuULpGw2aaSjVJluq/tC8qIYTo0Ry1+Rjejo/cm640/LFZXRBRxxTtKiY1O4WYuOianwSSKEXcu0/O5/Hrnu2xq960Wi/O7zfjH9YblRQHlsJMjsNwGuCTCexCCNHZNNNLvy9+icNb0uFz/e5ebDvpA5Th6oLI2q+ytIrKkir6jsglNiHG1lj2J4lShJUXVWA4DcwemjRogGPXPoxd+1ApcWh1PrQ6X5vndYSqv5DWytaz7WkjhBA9gdKd+GOzMbylaB0oi6vQ8MdkofQo2OixPuxoXBEefTcDeziHy4Hl79mr3iCQMOllNZ2aJClNw983Hc9JY6j7yUQ8k4ZipsSFt+nTC8/U0U3adP3us0IIYRtNo3j41R1KkgA0FMXDr26cJtEJvl32DSedfcIBnx+N+zzJiFKEnXPdaSileOPh96kqrbI7nG7FP7IP/uG9g/OfrIwk9KWbQ9uMyMU/IrexTWYy+nebW+hRCCF6hpqMydQlj8Jdvh6Ntn8ZV+h4kkdQkzG5S+N66rkn+ezLRazbuA6n08n3i1Y0284Z4yQtK0VWvQmIS4zlwtt/xh2v3Wh3KN2Ochqhk8QthaZUeBtrvzaW3H8TQvRwwVGl9t2x0LA6fTSpOT6fl1Onncb5P7ugxTZ5+Xn0G5lLckZSVI4oSaIUYX6fn/kvLOLR3z5jdyjdz/4bdWrhFbI1ywpdXtdMGyGE6IkaRpVUGx/tCp265FFdPpoEcP1v/x+XXPBrhg0Z3mKbk39yIiccdyJzn/kn1dXVXR5TR0miFGFv/X0eD/76SfK3F9odSrfjXLcHx9pdaHVeAPRqD2Z6Ykgbx/pm2mQkRTxWIYSIuHaOKkVqNKm9PnjtI0aPGM3dd99FdnY2v/71r/nss89QKjp+zZU5ShFWW1WHw2ngb7LqzXI70by+br1CS2mgXE50T+eucIPAbt/4TTS/iXPTXhyb81GxLvQaT1hbzW/Vt9mLinU320YIIXqqtuYqRWpuUkcMGjCIWVffzI1X3cSW/I28/ubrnHXWWaSnp3PRRRdx8cUXM3DgQNvik0QpwmITYgJJkq5hZqXgH5qD1SsRPD4cG/NwbC3oVnNqlNPAPygb/+AscDvR91XiWLMTo+TgJ6qbvRID7092CpgWxpZ8HBv3ovtNtDYSIE3RZhshhOhx6keV+iy9tvmno2w0KUgDDY0TTziR0886nb///e9cddVV3HPPPaxcuZK3337bttAkUYqwc64/jaT0RF564iO298sITE6GQJJRWdu4s3U34RvdD7N/RvCHzop1dUqSpFwOvMePapy87TDQPT60KNxjQwghoklLo0rROJrUIDYhltTsZNZtWsdLL73Ef/7zHzRNY9asWVx22WW2xiZzlCLM6XIy45Kp3DD3t4EDTbN60+p+ZT6M0G+hThsN0xtrxQVZKipXRAghRFRpYa5StI4m5Rfs5aX/vcCkKRM55phj2LNnD88++yy7d+/moYceYuTIkbbGJyNKEVZTWctbj83jv88uhCMGNY6YKAVOB4puVhOtYa5V/etQht45r8G0GkfX6pOmxu0B6NlL2eq/H7rd94IQImrsP6pk12hSXn4e5eVl5OXnYVoW6zb8CEC/vv2JjwtsBjz17BMYc9jh/PqiX3Pp5ZeSlpYW0RjbIolShL39jw/5152voZTCXVaDb0g2Vm4vtOo6lMPodkmAc/UO9LJq/ENyUAkx6MUVqKRYtIrag+pX85m4F67CPzgbc2AmaBr+kX1QiXE41+1Cq/F20iuIHsqho/ktzIxE/H3S0StrcWze260n+QshbLLfXCW7RpMee/pR3vqgsQj8Ob88G4AXn/43k8YfDcD7r33I4AGDAXAb0VXnDbrhrbcnnniCAQMGEBMTw6RJk1i6dGmr7R999FGGDx9ObGwsffv25cYbb6Suri5C0Ybze/3ojsDbrpdV4/5+CzHvfYf7k1U4dhV3uw9FzVI4dhThXrgq8Dq+34J+kElSA72qDtcP29EKyqDWA7qO2S8d37DendL/gbISYrBiD76ApJXgxopr7MdKjMUzZTjeo4dj9c/AP7of1n4lWoQQor0aRpWAiO2btL8/3/1XNny3OezRkCQBwSQJiJotAZrqViNKr732GrNmzeLpp59m0qRJPProo8yYMYMNGzaQmZkZ1v6VV17h1ltv5bnnnmPKlCls3LiRSy65BE3TePjhh214BZCckYTpM9F0DVV/a6k7rXJriQZdNhE9ZslGFGBlpaCcOkZeaZdcpy1mdgr+4b2x0hJBKfRd+3Ct2YnWwS0RzMzkQD/pgf2d9D37cK7agVFajfH1BpTLgZmVjF7jRS+t6YqXIoQ4FGgaxSOuI2PtXykecV3UzU0KUX83xXAYdkcSpluNKD388MNcfvnlXHrppYwaNYqnn36auLg4nnvuuWbbf/311xxzzDFccMEFDBgwgOnTp3P++ee3OQrVlc6+egZ/nn8HwycOsS2G7kgDjIIyHLtLbEkslabhPXoYVmpCfUAaelUtHMC+Ud7JwwJbQtTTq+pCigdrXj+OXfvQ91UedNxCiENbTcYkdpz4P2oyJtkdSqsSUxPoN6oPsQly6+2Aeb1eli1bxrRp04LHdF1n2rRpLFmypNlzpkyZwrJly4KJ0datW5k3bx6nn356i9fxeDxUVFSEPDqTpmmMP2UsF/7h/zq1X9HFNAK/jTX9jUwdYKXrZvs56AiFEMJ2uTl9uOgXl3T4vIy+6cTEuTs/oE7QbW69FRcXY5omWVlZIcezsrJYv359s+dccMEFFBcXc+yxx6KUwu/3c+WVV/KHP/yhxevMnj2be+65p1Njb6okv5R/3/sGHz73aZddo6doGDdqLYdoT5sOazqhvmFFoqUCo0euxh8ZFetq3AerI+p8EONs7CfG2eYE/uAKuIZ4hBAiCvXp3YdLLri0w+dtX7uTlMxk0rJT0PXoGsOJrmg62eLFi3nggQd48sknWb58OW+++SYffPAB9913X4vn3HbbbZSXlwcfu3bt6tSY5s1dyPtzFuD3+ju1355CxTgDu30PzsZz4mH4R/VBaS21ycJzwmH4R/UNa3PA13c7sRJj8R45EM8xIzDTAstXNSBmwQ841uxEq/GiVdSil1Qe0HVjPlmFc9UOtBoPWmUdeklVi/1YMU6shBh84wZSd9xIqVsnxCFAKRWVk5q7kuW3KMkrpaaDi4Ei8T51mxGl9PR0DMOgoKAg5HhBQQHZ2dnNnvPHP/6RX/3qV8FdPceMGUN1dTVXXHEFt99+e7NZq9vtxu3uuuE/y7TQdR3Tkh2mm2OmxGP2S8fKSgGHgT81Aa3ag15ejV4WmNjsz0nFP66x7o8/JR5ja37IPJ/2sGJdWGkJGAXlaH4TBXhOGIWKb7xH7q/zYuwL7DSu+UwcW/LxOWrR60yMXVWBwacYJ2avRIzCcjRf23+vmt/EsbUAx9aCNtv6B2WheiUG5jRpGl7DwOk0MIoq0CTZFqJHqtxXjd9rYmFiEH2Tm6NJTU3gc8HpdLbR8sB1m0TJ5XIxfvx4Fi5cyDnnnAOAZVksXLiQa69tvqZNTU1NWDJkGIFvOruy9ZxBWZh+E93QsMxD6zeG9jDyy3Dkl2EZOr6jhmBlp+A7chAAWlk1mCYqrX4itFIYWwpwbsrrUJJkxbvxHdYXq3caaBo+v4lWWgUJsYHbaYBWXYdj7S6MPSXB8yqOzqR0ei7+tEAiHbO9ltQ1XrT4RNA1fKaFc/lWHHv2ddpeWK4fdwNg9krAO34wpMThmzgUn2XhXLkdx86ibrXvlhCibZ5qL9+99wPH/cJNWkoa+qGQLNWPqpuW2a4tfJRS1NTUUFhYSEpKSvCzvSt0m0QJYNasWVx88cVMmDCBiRMn8uijj1JdXc2llwbuh1500UXk5uYye/ZsAM466ywefvhhjjjiCCZNmsTmzZv54x//yFlnndWlb2prTrnoBIaOH8Szt73MN+8vsyWGaNZwB0pzGFg5qSHPqeT6PYUaZj57/bhW7+jwNcyBWcEkCQCHgcpIDmljbCvE2FMSjEcZGkW/GBQyP8ipYiDR3Ri1ruHYva/D8bSHlZYIce7GmHUdY3fnJWRCiOiy+PmvATjqrLE4XEaPL98UlxRLXFIceQV7OnReSkpKi3eVOku3SpTOO+88ioqKuPPOO8nPz2fcuHF89NFHwQneO3fuDBlBuuOOO9A0jTvuuIM9e/aQkZHBWWedxf3332/XSwBgwGF9mfqLYyRRak1z/yZ00j8UqmGydhvdac1NnN4/Bk2zL1k5xOYwCHEoUQoWPfc1X736PUnp8T0+UfrLJ38kIze9Q+c4nc6IDHpo6lCbMdZBFRUVJCcnU15eTlLSwU+kzduSz1M3viBJUhuUoVM3fSzENFlZ1vAPhVVf7820iFnwQ8fmJmka/n7p+I4YGL6CrMnXxs5inMu3No4oabDz9nH402OCG2vGFkHKehXYTV3TUEoR88kq9Kq69peiaVrXrZVzzJxUvJOGhpzjXrQGvVw2pBRCdH+G02D6RSfw24cuJj6pcyoSdNbnd7caUeoJFv77C76dt9zuMKKeZlrEzF+J2acX/oFZaHVeHJvzwePDHJyNlZ6IsbMY/O2fFG8lxaLi3Jh9ewUOVNehmRbGrn0YOwqxMpLxD8pC8/oxdhWHxqOg3wM/UD02jbLjstDrTFIW5+PeXYdnfF/8/XpRm6FRcPvhxG4oJePVrRh1rcdmJcWiYlz4B2ejEmNw/Li7xVt3xt5S3PNXYg7KwsxOxcgrQavrefXuhBCHJtNn8uGznzL57KOYfNYEu8MJIYlShCmlQsqX9FTKaWD26YVW40UvKAPA6pWASknA2LMPrc4XaJPbC63Oi55f3yYtAZXa2MbIKwVdD7TZVxnYofuH7QcUk5mbhpUUh9UrCTQNI68U15qdwef13ftanWOkWYqEFftIWBHaRtuxF2+al7qBaVixMVSP64WzsA53XjXxq0rRLIWVFIuZmYyxtxS92hOIJysFlRKPlZkEuo5/aA4qxomRX4ZeVYfSNczcXoFJ63kl6LVe9LW7cK7t3C0rhBAiWkTjTS5JlCJs0Nj+aJrWY/cNVBr4xvTHHJAJev0O1LVeNKVQcW5QCt/oflBVB/HuxjZ1XjTTCizNb2hTXReYwFzfRs8rwbV8a7uW4DfHsW5P4I6Yy4FyGsGE5WDF7qwmZmc1vd7ZSeEvB1M1Pp2yU3qDpuEq9JH2gw/dFQtK4R/dL7Aybmcxjk17A3cQU+PxThqKSonHnxyHf0x/tMrawEaUDiNwu7CkEte3m9A7uAWCEEJ0F3FJseQO6dqJ2QeiR284GY2O/ekk/rPzaU65+ES7Q+kSKs6NOTgbDL1xTlGsK7jsHk0LJD5JsaFtYlyBRKppm8TQNu3dp6glwRV1Xn+nJUkhfWtQNSEjpESJu9qB5qrfl6n+uLGzOCQeKzM5MBeroQ2gEmLA6Wh87cWVHd4nSgghuosrH76YV/fMof+ovnaHEkYSJRukZCYztH5voENGe1ZstKvNwYcSUVrwPx08r7u9UCGEOHBjjh9JbHz0FcQFSZQibssP27nqyN/xxPXP2R3KQVP1K+MbHgBanQ+tsn4L+oYaaWq/B4BlNbYJ6bSFNpbCSk0Ibx4cJtKC+UjTeA5IW/1ooHQteP1gGwUxW+qLKJsKTIU3sf6JJq/f6pUQ0p1eWg2mFfoeNbx2q/61p8QHRtmEEKIHumbCrdx22v2UFZXbHUoYmaMUYV+9tZStq3e23TDKmVnJWImxmIOyUYaGa8U2jPwyNNPC/ckqrMxk/AMy0Wo9OLYUoJkm/oFZWKnxGDuL0fNKURlJgSXvjsZ9MLSKGrRaH8auYvQ9Jaj0RPwDM9HqfDi25Afm9CTFQqwLs286Zu9U9JIqjK0FEOMKlPxwOXCu2nFAmz+amUmo+JhAPzEunGt24thRFNKmZlgyvjQ3Fcdn4092kfbeTpKXFKIBvf/xI54BCZQfl4XmsUj+Ih9XkRezfwZmVnJgUnZZ6JJ+o7CcmA9XYPZPx8xKwcgrxdhVjEqKxTcoC81SOLYWoPXwBQBCiEPb9/NX8uOSjUw5+yi7QwkhiZINNE1DdeMtlY2+OrHXp+CriqHqRyd4A8VkG2gEPvyNwtDfDJzr99txtbAc54+7AglX3/TAbtPbi3A2qYFmVdehV9YGRqrqfCgNzH4ZmENzgm1UfAwqKQ7ldgTmQhk6qmHOTwf4k52U/N8QNIeTuHzQTfAPzEQlxqLnlaCXVEGMk9opg/D1cuHLAOXQqDgmC19WLPE/7CNmWxUx2wOPphxb8nFsyW/x2prfxLGlAMeWxtdu+jzUpNSBpUjyyVYAQghhB0mUImz0cSOJTYihujtuFOiG1PtiiTnOAaoUNIh37ab8gTqoPrBJ1saWAgzAuWon6Bpa/b5ISgPvhCFYuWnBXbR9o/sFbks5HcHbc87vtwRKedRv1uhcvRMMvUOTvhVQeP4gqo7KCBzQoC4N0n4EPTUBf0o8DM0Bjw9cDmJLIbYMYoqhZDR4+8Tj7R1H+Yk5ZD2/kfgfSg56KlXxOf0pPzYreLutemwaOXM3YFRLIVwhRM+U1T+DgWP62R1GGJmjFGFHnjyG1/LmcO5NZ9sdSoc5snVij3cGtjeoX4zm/cwDNQe3Ek0DNMsKJkkAuJ1YfXo1roDTtMAtOmd9bq9p4PXj2L0vcL5q6Ed1eGWcculUTarfzqD+WjGloDV00zCx2u0ETQu8fsCTCqrhrqGugaVI6IQkCaD8uCxw6MGYYjdXoNdIkiSE6Jn+8J8b+Nfmf5AzMMvuUMJIomQDh9NBTLzb7jCEEEKIqBCXGBdSqzWaRGdUPdiaL9dxfr8reene1+0OpVUKUJqG0rXgbCqzwMKzPDCqofwKZSncRzvAqF/51bBazNH8t1VIGyPQJrhyTgOl640ztzz+4I7ewZVzpgWm2XjM6cDslRj4umFoygBayUGDq/Tqr48Gms8ibm1ZSIO6FFANL6NhqZ3PDK5KU4CrjMYJ1vX156pHpXRo9lnw9Ruh71nid8XBFW9YitrBSVjuri/+KIQQdrjjzNlcfvhNFO5XPioayBylCFv+yWrKiyrsDqNV/v4ZWElxmP3TQdNwLt+KsacE6mDf1TU4hunEneXC3GNR854X/PWlR5LiMPulY6UloFXU4P7sRzTTCvYbbNM3HatXAlpFLY4dRagYJ/4BmWDoOFdtx7G9CE0p3F9vwEqMxT8gI7DqbXshmBZmn15YaYkYu4vR91UCEHu6E0d/nbiznehxGuWP1VHzRugGjf5+6aiEmMC1nAbG7hL04grMPr1IKUoiYamiOgd0P8TtBd0CrbwavbQaY08JemE5Kt5N2bmj8KW6qMkBZWg482qI2VFJwg8lxG4ob/etN3+fXo3xuJ04NubhXLcbgMxXt5L68R4qJmeiWYqkrwvarB0nhBDd2Y61u9i8YhuZfdPtDiWEJEp2iPbaJX4zMF+ofpSE/Zal+zdaVDxUF/xaOQ38g7MDc4oajiXH4z1yEHplLY5thWgeX6AfvxksZKuS4/Ad3r+xY58/MGrUhF5Zi2u/7RQcO4thZ+hvHapWoapVYAWeC9R+G29bKXH4xvQHV+O3vNkvHbNf4w+koxaSt4a+D/uvwvOmGJQP1rESA+mQ5jVJ+raQlM9aXtHWEs20wGcGSrco1ThaVs9Z4qHXB1LXTQgh7CSJUoRNPP0IFr78OXlNloFHG8eeEtSeEhzrdgdXk7U0SuLvl45v3MBmN0O0ctOwCJQ1ca7YilFWDeXVGHkleE44DJUSH2xr7N6Hc/nWsESpveoW+QMlRF70Bm6/1c97VoD32BFYGckdSlD1/DJc321uTOqAvb8dQe3IlGDiGLuujKx/bUI/wJEeY28pSgNjS35wMrgQQhyqRk4exvCjhtgdRhiZoxRhIyYO5fkNj3HZny+0O5RWBVejtZIkQX2dsoZVaWGd1BezLapAa8gBVGDPpaZJEoBeWB5Y+XagASsIZGUEkyQAnEYgSWqIp5304go002yMx9ACSRIEk8LYrRXoXvOgVrmFrNY7iH6EEKI7e2jxPTz21f30ykm1O5QwkijZoLaylsKd0TdhzXZRNqDSrgGoKItZCCG6o90b9+LzRmfhb0mUIuzbecs5r/cVvPvkfLtD6RTGzmK0mvpdoxvqlNV4GleqAVZOSshKOK3Oi7G9MLRNdmObhvptvmQnSm9fLhIcsHIYwV3CFYDPRN9b0v7bbvWvwcxMBmeT0iqmInlRHvisYNw1w5Ox4pq/e910dZ2Kqd+1vP516RkatHPj8GA/utbYjxBC9DCPXPE0F/S9kt2b9todShiZoxRhG5ZuxuftORsHGoXl6B+vxMpOwUqOw9i9D73ag3I78fdLR6vxYOSVojVJVDQFrhXbUD/uDrSp9WLsKUFTipohidQNSabqyF74MmMxKr30feAHjNrW5wH5h+agkmIxc3uR6a4grbIIrawaKzMFFe8B2p5sXeqPp2RdFXpFLcbufWG11dLf2Unqgj1UTshA95gkLC9G9zWfgJmDswIrB/v0AkMnxlFEYvIeYk9w4hxmYFUqii6twtzdegLnH5iJSg6sFMRhoG8vxL1iW5uvRQghupuyogp2rttNnyYlqqKBJEo2UFGy6s2Kd+MfnI1KisPYWYS+t4TqMalUTM7EVVhH8ud7cRXUtdmPBhj5ZRj5ZY3HPD6cTX4z8KW5KT8uC0+/BBK/Kybh+0L0/doAOCp9xG4ox0x04k9yErO1Cs3XOMHbyNKIm+nCdbhB7XwfNR/4wAP6vkpUnRcj2cXcw56ll7PjJWL2eeL45bvH4ve03MaoMUn5vDHpUm4n/oGZmJnJOPaUYGwvRDMttNJq9DofKjEWK84NpdV41pvocRp6toZvnYVV0fh94E9wUDEli5qRKcSvKiFpSQFGnRUooOup76dXIlZmMnXHj8LYW4pjWwGav/XJ7wqw0hPxD8oGDRxbCgLzrzr87gghxKFJEqUIO+G8KaxcvIbVn6+zNQ7fsN74D+sb3ALAn5NE4fjBWDGB1Vd1g5LQPSZp7+486A/V8uOyKP7pgMAXGnhy44hdX4ZeFl7oNZCY1RGzrZL0N7YFJoHXBxB3tpPk38cEutE0nCN0PN/6MfcojJIqKK2CXcUUDXSQmgMd2eTVUlBU7MDvbXLBNpi90/AeNSTY3Jcaj15UjlZRG4hH0wIrCOvb+wDfWpOKxz2BDKY+vurDUsi/dFj9pHjw9E8gdmslxo4qjNIqKANMC+/RwyDOhYp14U9LQC+pwqjfR6ol3mNGBCbcN/w9Ow1cX1VG/xYVQohDiwYnzJzM6GNH2B1JGJmjFGH9R/bh4cX3MmvulbbGYaXGBz4s61esmS4CSRIEjhka7p1VnTLyUNc3obFfTcOoNXE2kyQ11bDiDghOQHKOMAANzdBAB1UD5p4mH/j1W3//a/GQDiVJDaH9a/GQxglS7WClxNUHqzWu8KuobRKPanwtTWNsCLl+MMjbOz6kzhy6hntXdcjrspLi6lftNblWaVXbMaaFvvdaRa0kSUKIqPPPNY9wx2uzSEpLtDuUMJIo2SB/eyHLFqyyO4x26YyP1P1TjwPuU+13dgs5zfdberF+T1K7t2Qy0Vi/J4nvt/Rqu/H+8XTKPaxm3pHOujemkMRICBH1vnjjGypKWh8ht4skShG2+LWvuGjItXz+xhJb4zDyy6DJ/BZHpUniqio0T+Ok6ZpRKaiYjtUXUxpYKfEhq9zi1pWFbMpoxTmoHpncdj/JcShH4/Wr3/LiXdHYj56skXiFGy1x/6wiMKpktPO720DxL8dYzPjGVWW+FBee3nGtnqcXV0Bdk+WsmoZ3TD+UO/yOdnBwTAMzJS6kTcKyfcStLW1MaJSifFr/kFVuRnEF1HhD2vj7pbeZUDlX70Craxy9s9ISUHFSkFkIEV1evOe/nN/nt2xdtcPuUMLIHKUI27luD7quYbYxCbereMcNwEqOR9XfktF3F6MXlOPIKyXOb5Lu0qk+PA1ncR3u7e2/9ebPScHKTsXsnRYoE+I3qYwvw5fhom5QImgacatLiF9TSvzqEoya5lex+bOSsXqnYeakgtsJpkXMRyvQvH78my32XVtD/PlOkm+IRdM0En/tJuFCFwX/V4W1r3HkpGFUaWhORasJk4nGWkc2r404Ee5RxK8uxYo1qB0W2EgzYUkBWa+FrjLzjeqDlRIfmPuz3yaW5pAczEFZuBeuRq9qnAhvpcRjDsjEzE6BWBdYFq5PV2NU1uEs8ZDz7EbqBqVSdeowYvaBEZdF3YxM9PxS0DSs7JTAtcqqcW4rQC8oR69t/fYlgGNHEcaOouD5en5p4y1NIYSIEspSeOt85G8vZFDT0lZRQBKlCNN0DcvGUhWOjXmopDj8g7MCBW835KFV1AYTIt1rkfh9xzfD1Mtr0Mtr0Oq8+PukY+SXkrK3EH8vN2Un5uDvnUx8WRzOlDisfi70rflo3tBkyUqNxz88F9Wr/h61z8TYWQS+JqNRKfGUV+RQ9mQSCaPLSRxdRu32BGqPGghVXhyb86HOi39wNnMqU3g49/VW4zZQPFU2FQOT+NX7SPoiHyvOge618AxIxa2nUDtjHI7d+zC25KPX+TB2FKHnl+H3WzgOjyX5qFLiBlZTtT6J8m+TUT9WoO2XxGi1Xhzr96BX1uIfkIFeWo1eE9rGvbsS13MrsHLTgm0cW/JRmobpN7GSYnFs2IMjr7RDfzcNqxKFECLa6R2dYBoBmoqWtepRqqKiguTkZMrLy0lKSjro/gp3FvHc7f/h01e/RJk2vfWa1ngLp76WW2dp2pUGoGv4hvbGP6pP47W8PmLm/xAovFsvuApPqUB8fpOYj1YEisY2tBmSjX9M/8Y2+weuaBzhUYFVXnMHPcuw2L3NjiqZSmNjbTaXbbqU2I9+AI+vPmbw98vEd8RAlFY/qdyyiJm/Eurq22gQd6aTlNtjURZoOlimovCnVViFrbyhWjC09rVpaKgan5PdwIUQPY07zsWZv53OxfeeR2x8TKf02Vmf39GXuvVwmf0yuPWl6/nja7PsC6JpbtzJH7pakwcAlkIluOt3vK5v47dCkiQAFe9ukgARSJB8oXXUVHxMaJuQq+1Xb65+hdjcvONbvPVmaIq5BVPRrMC+T40x18djqZCVd1pdkzYKjFwd5Q8kSQ3RtJokNfTTeovQNk1XyYEkSUKIHumFjf/gyocu7rQkqTNJomSDH7/Z2GNKmLTLfoOWqrnitPsPbLanTXPHG8qo1FtaOajZFXCm0lhXk8PSqkEtx6218OcGFqDvH3fL3QkhhGjey396gz2bo698CUiiFHHz5n7CDVNuZ9Vna+0OJSIU4PNX4UkwUfXDIZpGoJZaE3pJFXj9TZIchT8rJaSNY3M++s5isBo2IPKj55WgVTdupa3tq0TLL2tso+C5VePCRpUMTTE3/0RAw4oxKJ8xGG9m428yemlV6Io2Xcc7YTBWYmzwUOViF5XfxqPqK9KoOog5xRHyU2WlxmNmp6D0zs2glKFj1peNEUKI7m7ePxdy6fDrWb90k92hhJHJ3BFWvKcEw2Fg+luvXdYT5F86FE/vePwZgQQk6Zti0j4tQi+qCNZ+80wcgkqKQ9UnIPqefTi2FwXKbOw36V2v8eBevhW1didWSnygHyuQflm9EtG8PvTKwEoz5XJgpQbarLDcrD+8cQWcacGmvUl884Oi9BzwpABGBpyaTvaHlRimgUoKT0DMvumYfXqhl1QFiu8mx1H7OZR+UEpC9Va8y/2o+pzNO24AVloiqj6R0feW4v5m40G/p1ZKHL6RfbB6JQWL9ro+WxvYCVwIIbopq34leEkULjyRRCnCDIeBZdmzNUBTSteoGpdG+dQcvFmxJH5bRPKiPFwljSuxlKZh9k6tLzgbh7GjCCOvBDM7BXNAJlqNB8fGvEAB2WbuimW+vAV/qpuyE7JRboOUT3ZjFIfWjnMt2xooyTEkG+V04Fy3O2RZfXM0jx+joLzxawiW8lCAlZ2Cf0gOVq8E9N37cG7M41+LhzD7wuUAGHpgF+6YvRXk3r+UqiPSKD+2Ny7i0OIT6/e1VIFtEzbvRS+uxMxNw98vHaOkCsfWApSh4xuag9U/A787kbL4I9HH7EPfW0Tl6ETKT8oEpZGwS5GwqgLHxj0H8tcU/tqrPLi+2YiVnYq/fzp6RS16WXXbJ7ZCOQ38/TPwD8kJlF3ZvBfHtsKweWRCCNHVHM7oS0uiL6Ie7qyrp1NbVcs7T3xEXXUr1Ve7WNHMAVROyQrUANM1qkemkP7W9pA2vsP7Yw7KCk6gNgdkYg7MDDypaYFRIJezxX15dK+Fq7CWjP9uC13B1YRmWmhVdThXbm+xTUf4h+cGVtjVx2z1TkNbuT24r9KI3IrgLtwGgXtm8StLcfQeiHIotPoAHJv24ly7K7hC0LF7H47d+4KbcWuAXu3BarIhptmnF3vOS0cZBEqGKCC/gNgvtjc/5+oANCQvRn4Zxt7STtkc3HPCYaiE+tuOmoaVEi9JkhAionrlpjHzxjM54uTRdocSRuYoRVhSWiKX/fmX3PnGTbbGYSU4G2u9AYbPQtt/oMvlCF1l1lCLrOFrTQOPr/VP6v1XcLWgPW3aQ7kd9QVg63u0FJppARrPfTqUHUXxPPfp0KZXDPzJYQSTJCAwX0rXwiaQh7zUhmsFn9RQTi34nqKBUeVDGeH9HLQmdeQOuqsYZ8jfq+b1y+I6IUREzV39EDNnnYXT5Wy7cYR1u0TpiSeeYMCAAcTExDBp0iSWLl3aavuysjKuueYacnJycLvdDBs2jHnz5kUo2nCmafLF/75hzi3/ti2GQCAqJClpthbs/htjNimfEaRrUVVKTNt/k6Imf16xrReXPXUMK7b1Ck0EGlbKqf2SnrY2BrWaWeuvVMj7pgw98F5HM9MKS/hk8Z4QIpL+eskTrPlynd1hNKtbJUqvvfYas2bN4q677mL58uWMHTuWGTNmUFhY2Gx7r9fLKaecwvbt23njjTfYsGEDc+fOJTc3N8KRN3rnHx9x77kPsWPtLttiAEh/ewfJnzfujq37LGoHJoS0ca7dGdjpuv42jFZRg7FpL3pp/ZwY08JKiAFHx+rBHayGpM5KiME3KAsrPbH+uAZVdYHRoPoPfs3jx2yyek5pGv7cNMyBmcE6cpqlcH21Hr2oft6TpbBinSiXo/FacW58g7JCVus5NufjWLc7MKpGYLJ51v/yidtQ349SeEdk4RnbB+WM7HvUEe4lG9DzSoLJonIZWHEuu8MSQhxCvpu3nBuPv5NVn/9odyhhutXO3JMmTeKoo47i8ccfB8CyLPr27ct1113HrbfeGtb+6aef5m9/+xvr16/H6Tyw4bzO3pn7xbv/yyuz38T0RcccEDPWwJsVQ8z26hZHEZRDR8W60SobS51YCTGBTRpbeR3KoYPfanV0wnTp6P7G234KArfBmsyR2b+Nr3cq5og+qKTY4O2iWF8lft2JzwjMtdF278O1YU9IeZa6KcNRKfGBGnIE6ty5v9sSEo8V50YzTTRPYP6SmZ6Ib0QuKj0peC33Jz8EV9dBIPlSibFoFTXBa1WfMhKVnIBhBn4X0QvKcH+9IfT9qb9Ft//qvtY09/50FhXjRGlaSA055TDA37jx54HELIQQ7XXP27cw5eyjOqWvzvr87jaTub1eL8uWLeO2224LHtN1nWnTprFkyZJmz3n33XeZPHky11xzDe+88w4ZGRlccMEF/P73v8cwmv8N3+Px4PE0TrKuqKjo1NfhinEGtgawuRSFGWNQOTmTshNzMJOcxK0tI23eLtx5NWFtNb+FVlkbcqy1lWlWSjy+odlYub3A68exKQ/H1sL6uUIBnj7xlE3NoeqIXug1fpK/KCBhh4nVLxMVH4NeWI5ZUULF2ESqj0hHrzNJ/qKA+O1+1MBsVExgxGNw7j7OO3kV0yZsptbj5L8LRvHWv3Lwri5Cq98HyUqKxT8kB9VQxNa0MHYW49wQvhJNrwmdYK+XVhPz5XqsXon4e6eiV9SgVYa+dk0ptIrQ9y3uk/Wga/gHZEKsE2Nb46inlRCDf3A2Zv+MwETxrQUYG/PQW0s6tcBkcf/QHFRyPHppFca63RgF5Z12m6xh53EFmLlpmENzsFIT0MprMHYUoeJcmAMyQdMwthfi2JiH3nSvKSGEOEB6fR1UV0z0jWZ3m0SpuLgY0zTJysoKOZ6VlcX69eubPWfr1q18+umnXHjhhcybN4/Nmzdz9dVX4/P5uOuuu5o9Z/bs2dxzzz2dHn+Dn95wOjHxMfxn9pu27hdR/LMBVI1Pr5/EC76smGaTpI5SbieeEw8LfKFp4Hai+S2abo1txjvYfdPo+p2tNawEJ+aQXPxxjavO/DlJ5M9MDnxq6xpWvANzSG/M2MY2cTFe/nnrmygFDkORGOdFrSnA940VbKMMHc/UMY3xAI4NeTg27GlXgtGQ3On7KnHtq2z37GlNKTAVzi359Qcan/NMHQ26Hpz0rTSt1SQJwByQhW/cgOA8KislHldpy6OAB8Psm45vwuDgtVRSLP7Dm9bYA5wOSZKEEJ1m0LgBnPe7nzD+lMPtDiVMt5qj1FGWZZGZmcmcOXMYP3485513HrfffjtPP/10i+fcdtttlJeXBx+7dnXuXCJ3rJtzrjuN3//7uk7tt6OU2wgpyqb5O2d4Szn00JVxELj91uRLy1nfxmiy8swCrUkjZdT3obfcxukwMXSFw2iM3VOjYzRN/3Wt8dHQj99EO9Cdsg/0bWp6nqGHxmNabW4foBx66Gq++sLBXcKhhyZF+/8fGnc+F0KITvDQons48bxjQv6NjxbdJlFKT0/HMAwKCgpCjhcUFJCdnd3sOTk5OQwbNizkNtvIkSPJz8/H6/U2e47b7SYpKSnk0Zk8tR7eemwef/nVPzq1347SPGZIwVXl6MA3ZytNNb8VvoLMoYculPPVt2myGkwZ+y06swgppNtcG59Px7Q0/P7GgNxxJqa/SUCWanw09OPQm1/R1q4hpna0aeu8/VaZKUMPW0kIoSsRNb8Vul1BYBjtAINpg98K7h8VvFbT/0NgREwIITrJTVPvYvFrXxGN06a7zb92LpeL8ePHs3DhwuAxy7JYuHAhkydPbvacY445hs2bN4fshL1x40ZycnJwuey5D/rWYx/y5I3P275Ne/r/ttPrvZ0YFV5QCld+LZ7ezdcNU4YemLeSnYL38P6YvdNaHFjRPD7cn61F37MvkAx4fIHRkCbF1oxqP7kPryFhZaCN7lMoHVST70bdD+nLIbYwkORoPoWl1bepH0mp21XH1ecfwadvpuD3QWWZgdNpEZfQ+PetmRbuRasxdtXXiPP6A0mAwwgkKAQmbHsP74+/b3r466pvY/VKxDumH/5+GWFtGvqx0hLxjumPf0AGStdQDh3f4Gx8o/tixbmD7d2L1mBsLwwkTH4TTSkspxEYaQPq+sZT9NP+VEzJCiZLxvYCnN9vRisP3B7Vy6oxU+O7ZJqbsasY59JNwdWNWkUtjlU7MBpWQJoW+PxYMdG334kQonvaunI795//KMs/WWV3KGG6zRwlgFmzZnHxxRczYcIEJk6cyKOPPkp1dTWXXnopABdddBG5ubnMnj0bgKuuuorHH3+cG264geuuu45NmzbxwAMPcP3119v2Gry13kCtN5tWvVkJbrRaH0adScqivSR/thcrxsCoaYzHm+7GqPJh1AUSDjM3FX//DFSvwMovc3A2Me99Fxh5aIZeWo37uy0o5/bAbbdmfkOI2VVNzEubSShLRHO6Gnf39ptQ44HEWFxVGq71kLKyDnQDrX4jMj2vBNfqnWheP9uBh77oxxOzB+GvtvBXhcekV9TiWr4VtWoHWFZwxZaZmYRvWO/gijYT0Esq0aoaJ3SbqfEhq95MQKvzopdWo3kDQ1dWShy+EX1QGY1t/IOzAwlUfGAVnpUUF1z1plfV4fphO2rNTqBxHlRdvzj2ndmfuiFJwVEl155qYrdXoSlw7NqHvrsE1SsBfV9lizuiHywNcOwpwbGnBOVygNffuOpt3e6QmIUQojNY9f8ue2qbv9tjp26VKJ133nkUFRVx5513kp+fz7hx4/joo4+CE7x37tyJ3uSWQN++fZk/fz433ngjhx9+OLm5udxwww38/ve/t+slkJASj+kLzJFpc0PDTtKwisk/NAeVmgB+E2PzXpwb96KZFkaNiQKqx6ZRdlJvPP0T0HwWyYvySFmYh7FrH46d+7CSYjEzkjBKqgK3gtrQ2tYBZnYK/qE56A5XIECPL1BjbGugxpiVGIOZkYxRUYNeXBmoO5ebBg4DY1dx8IPazEzGPyyH2oxksCyMbQU41+1p9tr7L6k3iiowCitQ8W78WSnolbXoVaGr3ox9lRhfrkfFu/GO7oeVk4p3yojASNiOQpzrdmOUVGF8tR4V58afnYJeVYdRWI7SwMpJxYpx4ti1Lzye/ZIN9+4acp9chz/FRdXhaTiL64jZHih2qwwd/6AszCGBFX9arRfHmh04dpe0+fdwMBqSwZZiFkKIzmA4dEy/RUJKvN2hhOlW+yjZobP3UTJNk6/f+Z4X7/kv21fv7IQI22YlxuKZdnjIBF3n0k0Ye0qCIwXejBh23T4uWPsNIPPFTSSsaKbg7UFubaDcTupOPzI0npXbMLYVhk8B2u9aTWubKadB3ZkTQvpxrNqBY0t+p68GU5pG3U/q9/ZouNa63TjWt7167kDrsSmN4HvvH5yNb0y/kAnVMe99166EVQghot3RZ0/gvJvPZvSxIzutz0NuH6WewjAMjvu/ScTEu/nDafdH5qLB2mNNV5CpkA9v1bACTW+5TWPjgwtHNRMPlgqsdtg/b9/vy5B4mlmNpSkVWNHW2aN1Wuh1gJZjbubUA7pk0wSxochu085k00chRA9xywvXkJiS0HZDG3Sbydw9RUVJJXN//2/unflg5C7qN0NXoikVKB7bhFFnBlahmY1tzATnASVFCtpYGVc/IbhpPA0FeDvCtEL7oZmiuE1j2v/PrSxDDWtjKfD5W425YeJ1s3XzDpK2f5FepcDlkOK1Qoge4fIxN/HGw+/h9/nbbhxhkihF2HtPfszrD71LXbWn7cYHSbkcKEPHykqBak9w7x2tvAb8ZsiHrKPMS78HVpL8ZT6ax8SVV4Ne62/3h75yOVD1O1F7pwzHNzi75ZVxPhP3gh9wbNoLPj9aVR2ax9fhBEMzLWI+XoljY14wgfAPz8Vz9DDMXgmBum5906mbMhz/8N4op4EV78Z3eH88E4dgJcaGvw6HHqjrNqYfnolDsZICbTQgZsEPONbvAY8PrcaDXl2H0nXMWAOla1SN60Xe5cMpndGncdSskxg7inB9sQ49vywwP2pvKVasu83zhBCiO9i3p4Rnbn6R5Z+stjuUMHLrLcJMv4mu65hW16968+ekYuWmYWUkB0YjLEXMB8tarNPl3Och/a0dpL+1o8PXMjOSMPtnYGUkga5jZSbj2FEELUzo1mu96Gt34WyjOLAisDRf8/iCZVOU24mVEodeVIFW58Px4278fdMhzg2aFphwnZMa+l5kJmNlpqBcBiopsA2C12Hg3JIf6Kf+PfEdPgArNT7YxqesYD04zePHuX4PzvWhpU88vRMoPymX2iFJKLdB7agU4n8owb23cadz5TSw0hLRiyvQTCuwhVVqfCDpKW9+R/T92xjFFRjFnVtSRwghokk0jihJohRh6blpgWTJ0LG6eAWRY0cR2o4ilNuBlZqAXlbdZcVMjeBy8vqEoKKm1VVvbVGA2T8jMBJUv8ReK64IrIjLTA5seOj1oxdXBJKauJZHV4ydRTg25AUTLbN3Gt6x/VGZyXizUsDnx7l8K469pbiWbwUIJEsuB3ph24lJ7JYq4rZswHIb1AxNwlVUh6sgUBtPuZ34RuQG6roZOvhM9KJyVEJMMBnT80txrtweUozWzEkNbEtQvwJELyjDuWJbSBshhOgpdIeOMi3SslPsDiWMJEoRdvrl0xgwph/P3/EfVn66pkuv1XDzR/P4Mbp4g8vgtbxm51zL7cB35KDQOUC9EuvnP9VfzeXA6p3W+twmn4lr2daQQ1ZaPLidIZPBHXmlIW0aNltsj4bXrntMEtaE9uMfkIE5MLNJjTQjLGa9vAZtvwTIe9SQkIn1zbURQoie4vTLTmbmrLPIHZJjdyhhZI6SDUYdPYyzr55hdxjRrbn6YvvXkNu/bXOaSaKUph30yr12a+laTWMOn3ve/Cq76CuBJIQQneLCO2ZGZZIEkihFXOGuYmb/8u/cd97DdofSYarJo92afrh3pNihzwyUG2lYrdc04bGarPza/xEMtv7PuhaYaN4kHr3aEzJagxZYLdcVuZPWcK2WbnkqhYp3h2+DUOMJPg+g4tyB7QIkWRJC9ECXDLuOp2/6F7XVdXaHEkZuvUXY/OcXsejVryK2K3dnsOJcgIY5IAN/bhqOvWU41uxs8zPbinOjEmLwD8lGOQycq3dgtPOWlmZaxMxfgdkvA//ALLQ6L47N+eDx4R+cjZWeiGNnMcbOIqzMFPyDMtE8vkCbOm99myQcu4pBC+QXVrwbFevCzEgKJCD1t7Icu/ehNK1Lfmtw7CpGL6vGd1hfrP0mmGtVdeD1oe8tDdsiyb1wNWafXvgO7w9OB2afXtQlx+H4cVfYbUIhhOjuPDVe/vfI+4ybOpqjzxxvdzghJFGKMGUpdF3D7E6JUko8VlZKoISI04F/aCxadR1aeQ16SVWLCZN/SDYqOQ6rV2JgNVpWSrsTJQDNb+HYWoBja0HIcWPZlpCv9W0FOLbt3yZ0XhKAf2BWIJ76mmxGfhmuH7YHn1e6hpmTiuYz0QvL2z14Y8W7sTKSMPaWoXl8Yc/rlbUYu4pDEiWlga+mCKO0BndeWdi1NEvh2FmMinVhpSZgZaegEmMx+6ZLoiSE6LGaFrGPFpIoRVjfEblYloporbeD5cgrhbxSrFXb8R09DCsjGd+4gQAYu4pw/rCj2RVurlWBbQaseDcYOnpFbUTjDounvgitFecCpyNkWb5vaA7+oTmBSd4EVpm5lm1B87S8VLVhTyYrKwU0Dd9YhXPZFhy794W2GdMfq8lKjureUNkfLFc/AGK2VJD50iacZeFJlnNDHhBYPadinWhlzW8lIIQQ3ZmmazhdDrIHZNodShiZoxRhU39xDC9ufpzjZ062O5SOi3VjZaaEzDXS88vb3AZAr/bYniQ1pdd4Q5IkZej4R/cLJkkAelEFtJIkAZj9MoJJEgAaIUkSgNk3PZAkNXnPyoeA5WxSs21LJY7y8CSpKc3jQy+rkSlKQoge6aK7fs5/dj/DoMP72x1KGEmUbJA9IJMJ08faHYZoQ5tzz9tbHLjZVW9tNRBCiEPHcTOPJikt0e4wmiWJUoTtWLebWSfcyUOXPWV3KB2meXzBCdAoBZYKbMxob1gHz7TQKupHmOpfl0qOa7P0nF7W5Jz6R0PJk2Cb8hogdGWes7L+SStQW8/bO7711Wz1GVuHVxwKIUQ3cdnoG/nTeQ9TUVLZduMIkzlKEfbZa1+z5qv1dodxQDSfScz8lZi9UzEHZqJV1eHYXtTtbwdpBFaZWdkp+AdmgdePY2t+m6/LyCsh5qMV+AdmYmYm49hTEtgOoGmbvaWBNgOyMLOSMfJK6PNBEXWDEig/LgvNp0j+PB9amL9opsYHVuoNzsZKiMGxbg/O7YWd8rqFECJqKPjs9SWcdOFxTDn7KLujCSGJkg00TUN107EBTSkc9eVKOkIBVlYyVko8xu59gb2MmmuTmYyV2nKbrqIBVFRR64pBN02clS3UX3MamP3SwW9h7CpG8/iarf8W0rfHj3PDHpwbGtvEbSgnbkN5m3FZKfGBlXop8eAwsFLjYXsHX5wQQogDJolShA2fOASny4HnECpHYWYk4TtiYKBmm1L4h+fiWrIBo6ixjpqZnojviEGohPo2I3JxLdmIUdh2MnGwFLDvp/0pn5IFRmDTpcoJ6WS/sAmjpnFCt290P/yDsoKbVfr7peP+dhOat+uKODq2BUaPnKt2gMuBVtf6pG8hhOiuUjKS6Dci1+4wwsgcpQibdPqRvJY355AqYWL2S0c1FK3VNDSPLyRJgsDqMBXf2AaPPyJJEoBy6ZSfkANOPZAEaRpx68vQaxsTIKVrge0DDD1YSsUoKA/sHt6FtIaHpSRJEkL0WDfOuZJXdj1Nn2G97Q4ljCRKNohNjCWzX7rdYYhO0JGqLEIIIZrXZ1gOTpez7YY2kEQpwtYv3cSlw6/nn7e+bHcoEaMXlgdWeNWv+lJuJ1ZSXGibogowrcbVYW4HVnJcCz12Ls1nEdswX8gMrHqrG5SEMppkQZZCLygL/hlLYfVKCBTYFUIIcVBuOvEurj/mdvbtjb7KAzJHKcKWzltB/rZDa9WSY9c+jPwy/P0zsFLicewqblyO39Bmd6CN2T8DMzUex+59aOWR2YVaU9D7qXV4+sRRPiULo9Yk6ct8dH/jhHsNcH+9ASs5Dv/ATDS/ibG1EK2b7K4uhBDRbt2SjWz4brOsehPU3685tD5gNZ+Jc3N+6238Jo4t+SHflFZiLP4BGWh1PhzbC9vcBbwlVkIM5oDMwNL/7YXNTsB2764h87/bWu1HL6/BtXL7AcUghBCi+5FEKcKOOHkM789ZQGl+md2hRDWlaXgnDwuUCLEUaGClJuD6fnOHRnEU4D16KFZOWmM/vRJwLd2MZkZf8UUhhDhU9R/VhyFHDLQ7jDAyRynCxhw3kld2PMWv7jzX7lCim9sRSJIguBLNKCrv+K0upxFIkpr2U1iBFoUVqoUQ4lD1p/dvY+7qh8nsG30LnSRRsoHpN6mL4GaKohmH1p1PIYSIajWVNVhR+gusJEoRtnzhas7LvYLXH3rX7lCim8eHvntfSI00MzMZZTT/LdtQB03pGsppND7hM9F3FoX345BvfSGEiBYPnP93Lh56HXu3FdgdShiZoxRha75YR21lnd1hRD1Ngfu7zVhrXZj9A5O5jZ3FLc4rMgdlYSXGYPbNAIeOY80unJv3BlarLduK9ePuQD9ef6Aff3T+5iKEEIeqgu1FbFu9k5yBWXaHEkISJRuotsrSiyC9xou+ruU6ag20qjp0wKrzolwOtLrQEjF6rRe9lXpsQgghRHMkUYqwKeccxdfvLGXLDzvsDqVHMQrLoagcx9YCmX4khBDd0ITpYxk1eZjdYYTRlAxvtKqiooLk5GTKy8tJSkrqlD6VUrzzxEc8cf1zndKfEEII0Z098f2fGXbk4E7ts7M+v2VGqw3KCsvZtGyr3WEIIYQQUWH1Zz9SWx2d83clUYqwL9/6lvP7XcmCFxfbHUpUaBjOVG4HVpzb1liEEELY4+mbXuQXuVew48dddocSRuYoRdjWH3aglEJueAb4R/XFSorFyk4BwLF+D06ZdC2EEIecmopa9mzOp/+ovnaHEkISpQjTNA0lhVSDjN3FaAmx4HSgnAb6vkq7QxJCCGETTdPsDiFMt7v19sQTTzBgwABiYmKYNGkSS5cubdd5r776Kpqmcc4553RtgG04+ZfHMen0I22NIZroFbU49pbi/uJHYj5djVFcYXdIQgghIsxwGpz2m5M4/IRRdocSplslSq+99hqzZs3irrvuYvny5YwdO5YZM2ZQWFjY6nnbt2/n5ptv5rjjjotQpC3rPTib+969ldv+fb3doUSPpvchZbBNCCEOOS9s+Duz5l5FfFKc3aGE6VaJ0sMPP8zll1/OpZdeyqhRo3j66aeJi4vjuedaXmZvmiYXXngh99xzD4MGDYpgtC3bvnYXi1790u4whBBCiKjw3pMfU5xXYncYzeo2iZLX62XZsmVMmzYteEzXdaZNm8aSJUtaPO/ee+8lMzOT3/zmN+26jsfjoaKiIuTRmRa8+BmXj5nF0g9XdGq/QgghRHf1xiPv88sBV7FpefRtndNtEqXi4mJM0yQrK7QGTFZWFvn5+c2e8+WXX/Lss88yd+7cdl9n9uzZJCcnBx99+3bu7Pu9WwswHAaWKfeYhBBCCADLtDD9FkW799kdSphukyh1VGVlJb/61a+YO3cu6enp7T7vtttuo7y8PPjYtatz93TQDR3LkoKsQgghxP4MI/rSkm6zPUB6ejqGYVBQUBByvKCggOzs7LD2W7ZsYfv27Zx11lnBYw0JisPhYMOGDQweHL5dutvtxu3uuo0PT7/8ZEr2lvLhc5/i9/q77DpCCCFEd5GQGs9PrzudI04eY3coYaIvdWuBy+Vi/PjxLFy4MHjMsiwWLlzI5MmTw9qPGDGC1atXs3LlyuDj7LPPZurUqaxcubLTb6m1V1p2Ktc/eTl3vXGTLdcXQgghos3zGx7jort/jivGZXcoYbrNiBLArFmzuPjii5kwYQITJ07k0Ucfpbq6mksvvRSAiy66iNzcXGbPnk1MTAyjR48OOT8lJQUg7HgkKaVY/skqXn7gTdtiEEIIIaLJ0ze+wMybzmLIuIF2hxKmWyVK5513HkVFRdx5553k5+czbtw4Pvroo+AE7507d6Lr0T1I9u6T83n8umfRjejbfVQIIYSww+LXvmLhy1/w6Jd/4rApw+0OJ0S3SpQArr32Wq699tpmn1u8eHGr577wwgudH1AHlRdVYDgNTJ9pdyhCCCFEVDD9gTnE5VFYnSG6h196IIfLgeWXVW9CCCFEg4Yab05X9I3fRF9EPdw5152GUoo3Hn6fqtIqu8MRQgghbNd7SDY/v/lsjjzlcLtDCaMppWTnw1ZUVFSQnJxMeXk5SUlJndbvsk9Wcev0+zqtPyGEEKK7ervsX51e562zPr/l1luE+X1+5r+wiEd/+4zdoQghhBBR4a6f/IVv5y0nGsduJFGKsLf+Po8Hf/0k+dsL7Q5FCCGEiAqrv1zPHWfOZuWiNXaHEkYSpQirrarD4TQg+pJmIYQQwhaWGVjkVFtVZ3Mk4SRRirDYhBj8PhNkGyUhhBACCNRBhcBnZLSRVW8Rds71p5GUnsjLf3qDvVvl9psQQggx5riRnHvz2Yybal/ljJZIohRhTpeTGZdMJb1PGrdO/5Pd4QghhBC2u+ftWzp91VtnkVtvEVZTWcvL9/+PP533iN2hCCGEEFHhmqNuZd7cTzDN6KtaIYlShL39jw/5152vUVVabXcoQgghRFTI25zPI799huULVtkdShhJlCLM7/WjO+RtF0IIIRo07J/k8/ptjiScfGJHWHJGEqbPRNNl2ZsQQggBYNQPICSnd14FjM4iiVKEnX31DP48/w6GTxxidyhCCCFEVDjxvGN4avlfOWzKcLtDCSOr3iJM0zTGnzIWn8fHH8/+i93hCCGEELa78pFLSInC0SSQEaWIK8kv5bGr53LPzIfsDkUIIYSICpcOv54X7/4v3jqv3aGEkUQpwubNXcj7cxbgj8IJa0IIIYQdqkqreene11mxcLXdoYSRRCnCLNNC1+VtF0IIIfZn1td8iyYyRynCcgZlYfpNdEPDMqUyrhBCCKEbOpoGGX162R1KGBnaiLBTLjqBuasfZuJpR9odihBCCBEVZt54Jv/e/hRDjxxkdyhhJFGywYDD+jL1F8fYHYYQQggRFc66ejrpvdPsDqNZkihFWN6WfP549p+Z/cvH7A5FCCGEiAqXDL+Bhy9/iuqKGrtDCSOJUoQt/PcXfDtvud1hCCGEEFHD9Jl8+OynrPrsR7tDCSOJUoQppaR8iRBCCNGMhppv0UQSpQgbNLY/mqahSa4khBBCBMUlxZI7JNvuMMJIohRhx/50Ev/Z+TSnXHyi3aEIIYQQUeHKhy/m1T1z6D+qr92hhJFEyQYpmclRuQRSCCGEsMOY40cSGx9jdxjNkkQpwrb8sJ2rjvwdT1z/nN2hCCGEEFHhmgm3cttp91NWVG53KGEkUYqwr95aytbVO+0OQwghhIgq389fyY9LNtodRhhJlGygyUxuIYQQoluQRCnCRh83ktiE6LwPK4QQQtglq38GA8f0szuMMJIoRdiRJ4/htbw5nHvT2XaHIoQQQkSFP/znBv61+R/kDMyyO5QwkijZwOF0EBPvtjsMIYQQIirEJcah69GZkkRnVD3Ymi/XcX6/K3np3tftDkUIIYSICnecOZvLD7+Jwl3FdocS5qASpeLiYioqKjorlnZ54oknGDBgADExMUyaNImlS5e22Hbu3Lkcd9xxpKamkpqayrRp01ptHwnLP1lNeVFk3zMhhBAi2u1Yu4vNK7bZHUaYDidKZWVlXHPNNaSnp5OVlUVqairZ2dncdttt1NR0bdXf1157jVmzZnHXXXexfPlyxo4dy4wZMygsLGy2/eLFizn//PNZtGgRS5YsoW/fvkyfPp09e/Z0aZxtisJaNkIIIYQIp6kOVKArKSlh8uTJ7NmzhwsvvJCRI0cC8OOPP/LKK68wYsQIvvzyS1atWsU333zD9ddf36nBTpo0iaOOOorHH38cAMuy6Nu3L9dddx233nprm+ebpklqaiqPP/44F110UbNtPB4PHo8n+HVFRQV9+/alvLycpKSkg34N65duYvaFfydvS8FB9yWEEEL0FCMnD+OuN26mV05qp/RXUVFBcnLyQX9+OzrS+N5778XlcrFlyxaysrLCnps+fTq/+tWv+Pjjj3nssccOOKjmeL1eli1bxm233RY8pus606ZNY8mSJe3qo6amBp/PR1paWottZs+ezT333HPQ8bZkxMShPL/hMV5/8F3+eevLXXYdIYQQort4aPE9HH78KLvDaFaHbr29/fbbPPjgg2FJEkB2djZ//etf+d///sesWbO4+OKLOy1ICMyHMk0z7NpZWVnk5+e3q4/f//739O7dm2nTprXY5rbbbqO8vDz42LVr10HF3ZzayloKd0bfhDUhhBDCDrs37sXn9dkdRrM6lCjt3buXww47rMXnR48eja7r3HXXXQcdWGf785//zKuvvspbb71FTEzLGz663W6SkpJCHp3p23nLOa/3Fbz75PxO7VcIIYTorh654mku6HsluzfttTuUMB1KlNLT09m+fXuLz2/bto3MzMyDjanFaxuGQUFB6NyegoICsrOzWz33wQcf5M9//jMff/wxhx9+eJfE114blm7G5/XbGoMQQggRbcqKKti5brfdYYTpUKI0Y8YMbr/9drxeb9hzHo+HP/7xj5x66qmdFlxTLpeL8ePHs3DhwuAxy7JYuHAhkydPbvG8v/71r9x333189NFHTJgwoUti66gOzJ8XQgghhI06PJl7woQJDB06lGuuuYYRI0aglGLdunU8+eSTeDweXnzxxa6KNTj3acKECUycOJFHH32U6upqLr30UgAuuugicnNzmT17NgB/+ctfuPPOO3nllVcYMGBAcC5TQkICCQkJXRZna044bworF69h9efrbLm+EEIIEXU0OGHmZEYfO8LuSMJ0aHsACNxeu/rqq/n444+DIyOapnHKKafw+OOPM2TIkC4JtMHjjz/O3/72N/Lz8xk3bhyPPfYYkyZNAuDEE09kwIABvPDCCwAMGDCAHTt2hPVx1113cffdd7frep21vHB/Hz67kIcvf7rT+hNCCCG6q3+ufYT+I/t0ap+d9fnd4USpQWlpKZs2bQJgyJAhrS657866IlHK317IP299mc/++3Wn9CeEEEJ0Zxffcx5nXzODpLTETuvT9kTpUNHZidLi177igQv/DoCy5K0XQgghNF3D6XLwj29mM+jw/p3SZ2d9fktR3AjbuW4Puq5JkiSEEELUU5bCW+cjf3vzJcnsJIlShGm6hiVJkhBCCBFG16MvLYm+iHq4GZecyEnnH4tmaHaHIoQQQkQFd5yLn914JmOntryptV1kjlIbumrV2xdvfsO9Mx/qtP6EEEKI7uo/u58hvXfnLgqTOUrd2I/fbJQSJkIIIUS9l//0Bns2R1/5EpBEKeLmzf2EG6bczqrP1todihBCCBEV5v1zIZcOv571SzfZHUoYSZQirHhPCYbDwDLljqcQQggBYPktlIKS/DK7QwkjiVKEGQ4Dy7LsDkMIIYSIOg5nhyqrRUT0RdTDnXX1dGqrannniY+oq/bYHY4QQghhu165acy88UyOOHm03aGEkVVvbeiqVW/fzV/BH057oNP6E0IIIbqrN0ueJzGlc4vVy6q3bso0Tb743zfMueXfdocihBBCRIW/XvIEa75cZ3cYzZJEKcLe+cdH3HvuQ+xYu8vuUIQQQoio8N285dx4/J2s+vxHu0MJI4lShFWVVWM4Dan1JoQQQtQz/YFFTlVl1TZHEk4SpQhzxTgx/SZIBRMhhBACAF0PfCi6Ylw2RxJOVr1F2E9vOJ2Y+Bj+M/vNqNwvQgghhIi0QeMGcN7vfsL4Uw63O5QwkihFmDvWzTnXnUa/w3L5/bT77A5HCCGEsN1Di+4hLjHW7jCaJbfeIsxT6+Gtx+bxl1/9w+5QhBBCiKhw09S7WPzaV0TjjkUyohRhbz32Ic/+4WW7wxBCCCGixtaV27n//EdJTEtg/Clj7Q4nhIwoRZi31ovhMCD6kmYhhBDCFlb9SnBPrdfmSMJJohRhCSnxmD4TTZdlb0IIIQSA4QikIwkp8TZHEk4SpQj7yXWncucbN9P/sL52hyKEEEJEhaNOP5JHPr+Xw48fZXcoYWSOUoQZhsFx/zeJmHg3fzjtfrvDEUIIIWx3ywvXdHqtt84iI0oRVlFSydzf/5t7Zz5odyhCCCFEVLh8zE288fB7+H1+u0MJI4lShL335Me8/tC71FV77A5FCCGEiAr79pTwzM0vsvyT1XaHEkYSpQgz/Sa6Lm+7EEIIsT8ZURKk56YFkiVD3nohhBACQHfoaBqkZafYHUoY+bSOsNMvn8bfv76fw0+Ivpn9QgghhB1Ov+xknt/wGCMmDrU7lDCSKNlg1NHDOPvqGXaHIYQQQkSFC++YSe6QHLvDaJYkShFWuKuY2b/8O/ed97DdoQghhBBR4ZJh1/H0Tf+itrrO7lDCSKIUYfOfX8SiV79CmVLDRAghhADw1Hj53yPv88OitXaHEkYSpQhTlkKX8iVCCCFEGMuy7A4hjCRKEdZ3RC6WpaTWmxBCCFFP0zVcMU6yB2TaHUqYbpcoPfHEEwwYMICYmBgmTZrE0qVLW23/+uuvM2LECGJiYhgzZgzz5s2LUKTNm/qLY3hx8+McP3OyrXEIIYQQ0eKiu37Of3Y/w6DD+9sdSphulSi99tprzJo1i7vuuovly5czduxYZsyYQWFhYbPtv/76a84//3x+85vfsGLFCs455xzOOecc1qxZE+HIQ2UPyGTC9LG2xiCEEEJEi+NmHk1SWqLdYTRLU0p1m1nFkyZN4qijjuLxxx8HAvcy+/bty3XXXcett94a1v68886jurqa999/P3js6KOPZty4cTz99NPtumZFRQXJycmUl5eTlJR00K9hx7rd/P3KOaz+Yt1B9yWEEEL0CBqcMHMy1z91eaclTJ31+d1tRpS8Xi/Lli1j2rRpwWO6rjNt2jSWLFnS7DlLliwJaQ8wY8aMFtsDeDweKioqQh6d6bPXvmbNV+s7tU8hhBCiW1Pw2etLWPNl9H0+dptEqbi4GNM0ycrKCjmelZVFfn5+s+fk5+d3qD3A7NmzSU5ODj769u178MHvR9NkIrcQQgjRHXSbRClSbrvtNsrLy4OPXbt2dWr/wycOwelydGqfQgghRHeXkpFEvxG5docRptskSunp6RiGQUFBQcjxgoICsrOzmz0nOzu7Q+0B3G43SUlJIY/ONOn0I3ktb46UMBFCCCHq3TjnSl7Z9TR9hvW2O5Qw3SZRcrlcjB8/noULFwaPWZbFwoULmTy5+aX2kydPDmkPsGDBghbbR0psYiyZ/dJtjUEIIYSIFn2G5eB0Oe0Oo1nd6h7QrFmzuPjii5kwYQITJ07k0Ucfpbq6mksvvRSAiy66iNzcXGbPng3ADTfcwAknnMBDDz3EGWecwauvvsr333/PnDlzbHsN65duYvaFfydvS0HbjYUQQohDwE0n3sXIycO4642b6ZWTanc4IbpVonTeeedRVFTEnXfeSX5+PuPGjeOjjz4KTtjeuXMnut44SDZlyhReeeUV7rjjDv7whz8wdOhQ3n77bUaPHm3XS2DpvBXkb2t+3ychhBDiULVuyUY2fLeZKWcfZXcoIbpVogRw7bXXcu211zb73OLFi8OOnXvuuZx77rldHFUHaRrQbbavEkIIIQ5Z3WaOUk9xxMljSM7o3AniQgghRHfXf1Qfhhwx0O4wwkiiFGFjjhvJKzue4ld3RtkolxBCCGGTP71/G3NXP0xm3+hb6CSJkg1Mv0ldtcfuMIQQQoioUFNZg2VZdofRLEmUImz5wtWcl3sFrz/0rt2hCCGEEFHhgfP/zsVDr2PvtuhbES6JUoSt+WIdtZV1dochhBBCRJWC7UVsW73T7jDCSKJkA6VkxZsQQgjRHUiiFGFTzjmKQWP62R2GEEIIEVUmTB/LqMnD7A4jjKZkeKNVFRUVJCcnU15e3ml135RSvPPERzxx/XOd0p8QQgjRnT3x/Z8ZduTgTu2zsz6/ZUTJBmWF5WxattXuMIQQQoiosPqzH6mtjs75u5IoRdiXb33L+f2uZMGLi+0ORQghhIgKT9/0Ir/IvYIdP+6yO5QwkihF2NYfdqCUQm54CiGEEI1qKmrZsznf7jDCSKIUYZqmoSzJkoQQQoj9aZpmdwhhJFGKsJN/eRyTTj/S7jCEEEKIqGE4DU77zUkcfsIou0MJI6ve2tAVq94APn3lC2b/8rFO608IIYTorl7a+jjZA7I6tU9Z9daNbV+7i0Wvfml3GEIIIURUeO/JjynOK7E7jGZJohRhC178jMvHzGLphyvsDkUIIYSICm888j6/HHAVm5ZH39Y5kihF2N6tBRgOA8uUO55CCCEEgGVamH6Lot377A4ljCRKEaYbOpZl2R2GEEIIEXUMI/rSkuiLqIc7/fKTOfOKU3C4HHaHIoQQQkSFhNR4fnXnuRxx8hi7Qwkjq97a0FWr3r55/3v+ePZfOq0/IYQQort6vfBZUtI77zMWZNVbt6WUYtmCH3j5gTftDkUIIYSICk/f+AKbV26zO4xmSaIUYe8+OZ9bZ/yJjd9ttjsUIYQQIiosfu0rrjryFtZ+vcHuUMJIohRh5UUVGE5Z9SaEEEI0MP2BRU7lxRU2RxJOEqUIc7gcWH5Z9SaEEEI0aKjx5ozChU7RF1EPd851p6GU4o2H36eqtMrucIQQQgjb9R6Szc9vPpsjTznc7lDCyKq3NnTVqrdln6zi1un3dVp/QgghRHf1dtm/iE+K69Q+ZdVbN+X3+Zn/wiIe/e0zdocihBBCRIW7fvIXvp23nGgcu5FEKcLe+vs8Hvz1k+RvL7Q7FCGEECIqrP5yPXecOZuVi9bYHUoYSZQirLaqDofTgOhLmoUQQghbWGZgkVNtVZ3NkYSTRCnCYhNi8PtM0OyORAghhIgOen2Nt9iEGJsjCSer3iLsnOtPIyk9kZf/9AZ7t8rtNyGEEGLMcSM59+azGTd1tN2hhJFEKcKcLiczLplKep80bp3+J7vDEUIIIWx3z9u3dPqqt84it94irKaylpfv/x9/Ou8Ru0MRQgghosI1R93KvLmfYJqm3aGEkUQpwt7+x4f8687XqCqttjsUIYQQIirkbc7nkd8+w/IFq+wOJUy3SZRKSkq48MILSUpKIiUlhd/85jdUVbW8s3VJSQnXXXcdw4cPJzY2ln79+nH99ddTXl4ewajD+b1+dEe3eduFEEL0QErXMNMSUEZ0fB417J/k8/ptjiRct5mjdOGFF7J3714WLFiAz+fj0ksv5YorruCVV15ptn1eXh55eXk8+OCDjBo1ih07dnDllVeSl5fHG2+8EeHoGyVnJGH6TDRdQ1myR4AQQojIUYaOf2gO/kFZ4HaCz49zzS4cOwpt3bbGcOiYfovk9M6rgNFZukUJk3Xr1jFq1Ci+++47JkyYAMBHH33E6aefzu7du+ndu3e7+nn99df55S9/SXV1NQ5H+3LEzi5hopRi+SereOGu11j/zaaD7k8IIYRoL/+ADHxHDAo5FjNvOZrHZ1NEASdfeBwzbzqLIeMGdlqfh1QJkyVLlpCSkhJMkgCmTZuGrut8++237e6n4c1qLUnyeDxUVFSEPDqTpmmMP2UsF/7h/zq1XyGEEKJNmgb7j49EwXjJlY9c0qlJUmfqFolSfn4+mZmZIcccDgdpaWnk5+e3q4/i4mLuu+8+rrjiilbbzZ49m+Tk5OCjb9++Bxx3c0ryS3ns6rncM/OhTu1XCCGEaItW5wskSw1TP5RCxbhsLxZx6fDrefHu/+Kt89ocSThbE6Vbb70VTdNafaxfv/6gr1NRUcEZZ5zBqFGjuPvuu1tte9ttt1FeXh587Nq166Cv39S8uQt5f84C/FE4YU0IIUTPZuwtxb1wFcbOIvD50XfvA93+YhFVpdW8dO/rrFi42uZIwtk6mfumm27ikksuabXNoEGDyM7OprAwdBdrv99PSUkJ2dnZrZ5fWVnJqaeeSmJiIm+99RZOp7PV9m63G7fb3a74D4RlWui6jmlF314RQgjRUynAykxG85lopVW2JwZ20itqca3YBiu22R1KGLO+5ls0sTVRysjIICMjo812kydPpqysjGXLljF+/HgAPv30UyzLYtKkSS2eV1FRwYwZM3C73bz77rvExNhfQyZnUBam30Q3NCzT7sFOIYTo+fwDM/EP642KC/wSrO8txbliK7pHRvajhW7oaBpk9OlldyhhusUcpZEjR3Lqqady+eWXs3TpUr766iuuvfZafvGLXwRXvO3Zs4cRI0awdOlSIJAkTZ8+nerqap599lkqKirIz88nPz/f1p0/T7noBOaufpiJpx1pWwxCCHGoUIaOb9xAVKwreEzfV4kmSVJUmXnjmfx7+1MMPXJQ240jrFskSgAvv/wyI0aM4OSTT+b000/n2GOPZc6cOcHnfT4fGzZsoKamBoDly5fz7bffsnr1aoYMGUJOTk7w0dnzjjpqwGF9mfqLY2yNQQghDimatt+Xh/LNt+hz1tXTSe+dZncYzeoW+yjZqbP3Ucrbks9TN77AN+8v64TohBBCtEZp4Jk+LnDbrf7jzthZjHP51kN6nlK0MZwG0y86gd8+dHGnFcc9pPZR6kkW/vsLvp233O4whBDikKApcH/8A87vNqOVVKHnl2HsKrY7LLEf02fy4bOfsuqzH+0OJUy3KWHSUyilpHyJEEJEkKYUjt37cOzeZ3coog3ReJNLRpQibNDY/vV7RNkdiRBCCBE94pJiyR3S+pY/dpBEKcKO/ekk/rPzaU65+ES7QxFCCCGiwpUPX8yre+bQf1TnVsPoDJIo2SAlMzkql0AKIYQQdhhz/Ehi4+3f67A5kihF2JYftnPVkb/jieufszsUIYQQXal+joXSsL2WWrS7ZsKt3Hba/ZQVldsdShhJlCLsq7eWsnX1TrvDEEII0YXMjCT8/dKpO2k0dWeMxxycZXdIUe/7+Sv5cclGu8MII4mSDWSjMyGE6NlUnBuVGIuKdYPDwIrtuhqiomvJ9gARNvq4kcQmxFBdXmN3KEIIIbqIsaMIAMfaneAw0HxSCL0tWf0zGDimn91hhJERpQg78uQxvJY3h3NvOtvuUIQQQnQRreGhkCSpHf7wnxv41+Z/kDMw+m5RSqJkA4fTQUy8DMMKIYQQAHGJceh6dKYk0RlVD7bmy3Wc3+9KXrr3dbtDEUIIIaLCHWfO5vLDb6IwCsvLSKIUYcs/WU15UYXdYQghhBBRZcfaXWxesc3uMMJIomSHKKxlI4QQQohwkihF2MTTjyB7YKbdYQghhBBRZeTkYQw/aojdYYSRRCnCRkwcyvMbHuOyP19odyhCCCFEVHho8T089tX99MpJtTuUMJIo2aC2spbCndE3YU0IIYSww+6Ne/F5fXaH0SxJlCLs23nLOa/3Fbz75Hy7QxFCCBFBDbNTVYwTpWtS/62JR654mgv6XsnuTXvtDiWM7MwdYRuWbsbn9dsdhhBCiAgyE2OxctMwc1JRKfHg8+NevBatqs7u0KJGWVEFO9ftps/QHLtDCSGJkg2UrHoTQoguo2Kc+AdlYaYn4di9D2NHIZpp37+7yuXAHJyN2bCQRyn00mo0+aW5W5BEKcJOOG8KKxevYfXn6+wORQghehx/3174jhwcqB8C+FLj0QvLbRu5MbNT8E4aCk2Kobs+/xGjpCoYowA0OGHmZEYfO8LuSMJIohRh/Uf24eHF9/Lhswt5+PKn7Q5HCCF6FCslPvCHhsTEtNBtvL1lJccFYmmSKOml1YE/yM2FoH+ueYT+I/vYHUazZDK3DfK3F7JswSq7wxBCiB5HU0TXSI0kQ+3yxRvfUFFSaXcYzZJEKcIWv/YVFw25ls/fWGJ3KEII0eMYO4rQC8sbD+ga/t5p9sWzex/63tLGigxK4e+XHl3JXBR48Z7/cn6f37J11Q67Qwkjt94ibOe6Pei6hum37A5FCCF6HL2yFvfXG7ASYrDSEzH2lqJ57Js0rdd4cH+7CSvOjZWZhJFfjlbntS2eaKUshbfOR/72QgYd3t/ucEJIohRhmq5hWTIWK4QQXUmvqrNlbpLSNcw+vfAPzgbLwrE5H2NPCXqNB317UcTj6W50PfpudEmiFGEzLjmRPZv28umrX6JsXK4qhBCi83mmHY6KjwnearNyUnHsKbE5qujnjnNx5m+nM3bqYXaHEkYSpQjL7JfBrS9dzzE/nci9Mx+yOxwhhBCdSMW5A3+oX+WmVXsC85Hk9+JWvbDxH6TbOJesNdE3xnUI+PGbjVLCRAgheiJF48RtAC30S9G8l//0Bns2R1/5EpBEKeLmzf2EG6bczqrP1todihBCiE7m/G4TVo0Xv8OJqRuYyXGoWJfdYUW9ef9cyKXDr2f90k12hxJGbr1FWPGeEgyHgek37Q5FCCFEJzHdLipGD6b8yJH4UpOCx51p2SR7DZLWbMHwyGq3llj1K8FL8svsDaQZkihFmOEwsCzZGkAIISJFuZ34B2XiH5SN5vPj2LQXY0cRWgdXICuXA//ALPyDs8AMrGjTqj1UHTGU4sNGoLTwzZF8yYkUnzSRfccdSc7bi4jfntdZL6tHcjijLy2Jvoh6uLOunk5tVS3vPPERddUeu8MRQogeTWkaddPHgqGDpqGcBirO3fEkCag7ZSw4jcBEbaXwj+lHXXwCxb37Bho1kyihB44ph4O8mdPo/cYnkiw1o1duGjNvPJMjTh5tdyhhZI5ShCWlJXLZn3/JnW/cZHcoQgjR8+kaOIzGJEbTwOtvPqlpi8sR0o9lGOzL6dPYb1txoLH3nKmYbpmztL+5qx9i5qyzcLqcdocSptskSiUlJVx44YUkJSWRkpLCb37zG6qqqtp1rlKK0047DU3TePvtt7s20DaYpskX//uGObf829Y4hBDikKBU46OBrqEOZCmaFdpPdWJy4HZbe5MuXUM5HVQeNrjj1+7h/nrJE6z5cp3dYTSr2yRKF154IWvXrmXBggW8//77fP7551xxxRXtOvfRRx9FO5DfHrrAO//4iHvPfYgda3fZHYoQQvR4mqVwfbUevaix/pt/SA7+EbkoV2D2iRXnxjcoCzMzueV+ANeX69ALAv0oS1GV0HL7FikoGz9StlXaz3fzlnPj8Xey6vMf7Q4lTLeYo7Ru3To++ugjvvvuOyZMmADAP/7xD04//XQefPBBevfu3eK5K1eu5KGHHuL7778nJyenzWt5PB48nsa5QxUVFQf/ApqoKqvGcBqYPln1JoQQXUUBOAw0v4lRVIFRVEHdiYehkuLA5cA/sg/+oTlopVWo9KTgqJD7kx/QK5svfWLsq8RYsgEr1oXlcmH+dlTHA9M1fKlJWDFujLrOmaeq6udBdXTeVTRpqH9aVVZtcyThukWitGTJElJSUoJJEsC0adPQdZ1vv/2Wn/70p82eV1NTwwUXXMATTzxBdnZ2u641e/Zs7rnnnk6JuzmuGGdgawDZqVUIITqd0jXMfun4h+SgEmPRiytw/LgbfV8l7s/WgmHgH5CBcjtx7ChCr6rD6pWIv3cqekUNWgtJUlN6rRfTeXDzjCyX86ATJSvOjX9wNuaADNA0jG0FODbmodtYBPhA6fV1UF0x0Td/q1skSvn5+WRmZoYcczgcpKWlkZ+f3+J5N954I1OmTOEnP/lJu6912223MWvWrODXFRUV9O3bt+NBt+CnN5xOTHwM/5n9ZlTuFyGEEN2Zf3hv/MNzg19bKfHoJVVoEPjl1G/i2Bz43GiYkKHvq8S1r7LxQDvoPt9Bxal7D+58AM8Jo8DlDK6swzC6ZZIEMGjcAM773U8Yf8rhdocSxtZE6dZbb+Uvf/lLq23WrTuwyV3vvvsun376KStWrOjQeW63G7fbfUDXbFf/sW7Oue40+h2Wy++n3ddl1xFCiEORchiBCddNqtBr+03cbjEf6sAov17rwVlagS85sTFRaQ9L4SyvRO+M224OI/TaloWiQ/le1Hho0T3EJcbaHUazbE2UbrrpJi655JJW2wwaNIjs7GwKCwtDjvv9fkpKSlq8pfbpp5+yZcsWUlJSQo7/7Gc/47jjjmPx4sUHEfmB89R6mDd3Ia/+5S1bri+EED2Z5jeD+xw1zDtSmhaWLB30dYDk5esoPmlih09MWbauc5IZvxlICIMjSnq3TJIAbpp6F+f97iec8PMpUbP4qoGtiVJGRgYZGRlttps8eTJlZWUsW7aM8ePHA4FEyLIsJk2a1Ow5t956K5dddlnIsTFjxvDII49w1llnHXzwB+itxz7k2T+8bNv1hRCiJ3NsyEOr9TbOUSqrxkpLQN9XeUBJhDJ0NNPCSkvEn5uGXlmDsb0IDUhas4V9xx2JcjjaN6pkWWh+k8S1Ww4gknDuz37EPzgLc0BmICn0m1huR7e8/bZ15XbuP/9REtMSGH/KWLvDCdEt5iiNHDmSU089lcsvv5ynn34an8/Htddeyy9+8Yvgirc9e/Zw8skn8+KLLzJx4kSys7ObHW3q168fAwcOjPRLCPLWegO13mTVmxBCdDrNUji2F2FsLwKXA817cEmDlRKHb0QfVEZgZZwJgTlPFbUYHi85by8ib+Y0sGg9WapfkZbz9qJOq/mm13hwrd6J+nE3AJrZcnks5XagNA297uDnRnUFq/798dRGXz28bpEoAbz88stce+21nHzyyei6zs9+9jMee+yx4PM+n48NGzZQU1NjY5RtS0iJx/SZaLqG6sZLOYUQIpppENiB+yAZJVUYX61HxbnxZ6egV9WhV9QCoBw6Lhek79zOvn4DGveibHrryFKggeb3d1mtt9YSJCslDt/Q3li5aQDoeSU41+xEr4muhMRw6Jh+i4SUeLtDCaOpA9qe9NBRUVFBcnIy5eXlJCUltX1CG0zT5Ot3vufFe/7L9tU7OyFCIYQQdvAN641/VJ9AORNdpzoxmWpnHP7Uxs8KZ2kFKcvWkbhmM0YnrHTrqNrTjghZGWdsK8S1clvE42jL0WdP4Lybz2b0sSM7rc/O+vzuNiNKPYVhGBz3f5OIiXfzh9PutzscIYQQB0rXaFhmplsWieWlpL/1ESrGjeVyont96HUeeydYG3roLUGlonJl3C0vXENiSoLdYTSr25Qw6SkqSiqZ+/t/c+/MB+0ORQghxEHQPP76ZKn+xoxSaC4HRp0HZ0UVht1JEqDV+UJq3SmXw/aYmnP5mJt44+H38PuibyK6JEoR9t6TH/P6Q+9SV905W9cLIYSwh7GtoLH+m6XQ80qw4rpuH74D4f5sLY41O6HOB3U+9LLqwF5TUWbfnhKeuflFln+y2u5Qwsittwgz/Sa6rmNasupNCCGinXI5sFIT0IsrwiZNaxCsIxetNJ+Jc3M+zs0tV7GIJtE4oiSJUoSl56YFkiVDx2plpYIQQgj7qBgnvhG5mP0yAvN8fCbOldtw7NkndTq7gO7QUaZFWnaK3aGEkVtvEXb65dP4+9f3c/gJB1B1WgghRET4B2YGNnI06j8mHTrGbkmSusrpl53M8xseY8TEoXaHEkYSJRuMOnoYZ189w+4whBBCtETTwpKiaJwE3VNceMdMcofk2B1GsyRRirDCXcXM/uXfue+8h+0ORQghRAu0ak9gRZvVuKLNinXJgFIXuWTYdTx907+ora6zO5QwkihF2PznF7Ho1a9Qpvy4CSFEtHLsKMK9cBXGziKo8eDYkg8oGVXqIp4aL/975H1+WLTW7lDCyGTuCFOWQtc1TClfIoQQUU2vqMW1Ivp2se7JLCv6FjnJiFKE9R2Ri2UptPZUmhZCCCEOAZqu4Ypxkj0g0+5QwkiiFGFTf3EML25+nONnTrY7FCGEECIqXHTXz/nP7mcYdHh/u0MJI4mSDbIHZDJh+li7wxBCCCGiwnEzjyYpLdHuMJoliVKE7Vi3m1kn3MlDlz1ldyhCCCFEmxRNdkroolkjl42+kT+d9zAVJZVdc4GDIIlShH322tes+Wq93WEIIYQQrbJcBmZaAv4RudSdegSe40dhxbi65mIKPnt9CWu+jL7PR0mUbKBpMpFbCCG6igLM9CR8I3KxEmO7/lppCYFrJcd16bUiTtexMpOxMpIhxomVHIfqqkQpisn2ABE2fOIQnC4Hnlqv3aEIIUSPY6Um4D1yICopDpTCPyIX57ebMPaWdvpdIyspDu/4QaiU+MC1RvbB+f0WHLuKO/lK9tDrfGjr96Ct3/P/27v7qCjrtA/g33nnbYZheH9VQQU1UtREQDCVCvVYbj6rKZF2XK2Tbmet0y6t24NnbcvT6alOHbdOtdVuWa75ZI9rZClIiCIQQZogSpBvAb4gMAoIzPyeP5DREUadgZlh4Ps55/5jbq77vq9rhnvmmt/cLzC6KSDpNAB2vEep1l+DiJhQu63fVhxRcrD4eZPx71/f5S1MiIjsoCtMB9EziiSRAAYj5HZokgDAEOID0TOKdO2XAtkQaZJ69Dxv0vZOSAxGu11wc927T+LT0+8gbGyInbZgOzZKTuCudkdAhJ+z0yAiIhoUwsYGQ6FUODuNPrFRcrBjxSfwePTTeD9zi7NTISIacmTnW4AuIyBE9ySTwqDzssu2pBf1QKfh+rYAGAO87bKtoe7Ze7PwdNJ6XKy75OxUemGj5GDF2WWorz3n7DSIiIYkWX0T3L7+AYoff4H0bCOUxScgvXTZPts639K9rbJaSM82QlF8AtLzLXbZ1nBQWXgcVSXVzk6jFx7M7QwSCcB7UBMR2YXEYIS89hzkjvhSKgTQZYDk2tQzsmT1agAYQ3xgCNRCVncJ0vom3oB3kOCIkoPFzYmFt7/G2WkQEVE/GXy90J4Wh85pY2CI8EdHYgyMwT5Wfw02+niiPS0OHfFju9eTEA1DqO+w+zo9YnwYRseNcnYavbBRcrDY5HH49OTbyPjv3zo7FSIi6gejvzegunYA8rUbnUttOMPO4KcB3MzXI6trHFYjSi/ueh7vHXkNAeGD70QnNkpOYOgyoP3KVWenQURENChc9lDBaBycY2hslBzsh5wjWBK6Gp//z05np0JERHeg5+NbKGQQkuuPZQ1NkPR86b12bJIhVGf1T2ayc82QXG43X0/Y0P7pTQDdz6UEMET4IevNbCxZ8z5+bWhydmq98GBuB/tpfyXa9O3OToOIiO6AQeMO4e8NQ6gORp0XcLUTqryjkLR1QHrpClR7foQx0BuGAG/Ifr0E6UW91T+ZSZtbodp7GEZ/DQxBWsjqmiC90DKkf3ozhOggNO7oGukPuKsAAPXnW1Bz6gJCArXOTe4mbJScQNh4VgQRETmYSoHOu0dcf+ymBNyVwLXbUEkAyBqaIWto7tdmJOi+3IBsmFxewOivgWFUgOmK5oMZf3pzsMSF9yAyNgLA9Zvj+oXpoFApuh9LAJWHEr4hPuYxoToo3W6IcVfCN1TXaz03xijdFfC7OSZUB5W7EpB0z1O49Y7xDdFB5XE9RqlSwC/s5hgfqDxU19ejlPeOCfaBm5ebaZ5c1TtGF6yFe0+MVAK5Uga/MF/TY1OM+nqMTCG7vp5rMT5BWnhcu22BRCKBTC7tHRPoDQ+N+/X1yKXwvylGG+gNz2u3JJBIJZDKpL3y0QZoboqRdMdIzGO8fDxNMRKpBP7h5jHe/upeMX5hOkgkElOMxk8N9bWL5Umk3a+rf5ivWYzaVw21bx8x0htidF7Q+KrN6vAPN4/x8vGCt5/GPCbMF1KZ9IYYT9NZmz3z/G6K8dR6Qhtw6/V4entAe+3CfNfXo4NMfmOMO3wCb4oJ1UGmkJkeu6vd4XPt26fZehQy0/+Yh9oNuiBtr/XIb1yPlxt0web7nH+YL+RKuSnGrY+Y7n1Xbnrs5qnqve9y/zY99664fysutyFQLr22bQAA1HGj4HXDPsf92/r921vfBp3p/6f7eZ02aSQmDMJbmEgEhzduqaWlBd7e3mhuboZGMzCn9QshcPRgFUq//RFJv5mG0ZNG4XLTFez9OB8KlRyz05Ph5qFCReFxfP9NORIfugdjJkfiSvMV7P1kP2RyGeakz4C7lzsqDh1HyddlmL5gKqKnRuFKSytyPtkPiQSY82gKPNTuqCqpxqFdpYifPxkx08agVd+GnC37IYwCcx5NhqfGA1Xf/4xD//ke98yNw/jpY9F2uQ05WwrQ1dmF+zJS4OntiRM/1ODg/5Vg6gOTMD5hLNpbr2LfpwXoaO9EakYKvLSeqC6vxcEvSzA5NRYTkmJwta0DuZ8W4GrrVaRmpEDt44WawydR8EURJs2+C7HJ49DR3oF9nx1Aa0sbUh9LgUanRu1Pp7B/+yFMvHcC7p45vjtm60FcabqC+x6bCY2vGicrTiP/80O4KzkGk2bdhc6rncj790G0XNQjNSMFWn9vnKw8g/xthZiQFI24ObHo7OjCd9sOoqmhGamPzYRPgDdOV51F3r8PYtz0sZhy393o6uxC/ueH0Fh3CakZKfAJ1OLMiTrs+6wAMdNGY8r9E2HoMmD/9kM4f6YR9z2WAl2QD85W12HfZwcwZkok7kmbBKPBiP3/W4SGk+eRmpECvxAd6moakPtpAaImjcS0eXEwGow4sKMYdTUN3TGhvqj/5RxytuzHqNgIxM+fDAjgwJfFOHuiHnMeTUZAuB8aTp7H3k/yMXJCOKYvmAII4ODO73H62FmkPpqMgAh/nDt1Hns/2Y/wmFAkPjgVkACH/lOKX46eRuqjKQgc4Y/zZy4i55N8hIwOQtLCaYAEKPrqB9QePoXZ6TMQPCoQF85exN6P8xEcGYik30yDVCZFcXYZqstqMXvZDIREBeFi3SXs/TgfARF+SF4UD6lMipLd5ThRWoNZS5MQOjoYjfXdMX6hOiT/13TI5DKUfvsjjhVXY9YjSQgbG4JLDU3Y+3E+fIK0mLk4AXKFHKV7DqOy8DjufSQR4dGhaDrfjD3/yoc2QIOZixOhUMpRlnMERw9UIWVxAkaMC0PzhRbs+dd30Piqce+SRChUCvyYdxSHv6tAym8TMHJCOFou6rHnX9/BU+uJWY8kQummxOHvKvBj3lEkL4rHqNgRaGnUY+/H+fBQu2PW0iQo3ZQ4sr8S5bk/YcbD8Yi8ewT0ly5j78f5UHmoMHvZDKjcldy/h+D+fabuEvYWHEN0ZCDi40bBaDBw/x6A/bvkx5P46fivSE2KQcS1pn6gDNTnNxul27BHo0RERET2NVCf3/zpjYiIiMgCNkpEREREFrhMo9TY2Ij09HRoNBpotVqsXLkSly/f/kaHhYWFmD17Njw9PaHRaJCSkoK2tjYHZExERESuzmUapfT0dBw9ehR79uzBrl27kJ+fj9WrV99ymcLCQqSlpeH+++9HcXExSkpKsHbtWkilLlM2EREROZFLHMxdWVmJ8ePHo6SkBFOnTgUA7N69G/PmzcOZM2cQEtL36YTTp0/Hfffdh40bN9q8bR7MTURE5HqG1cHchYWF0Gq1piYJAFJTUyGVSlFUVNTnMufOnUNRURECAgKQmJiIwMBAzJw5EwUFBbfc1tWrV9HS0mI2ERER0fDkEo1SfX09AgICzObJ5XLodDrU19f3uUxNTQ0AYMOGDVi1ahV2796NyZMnY86cOThx4oTFbb388svw9vY2TeHh4QNXCBEREbkUpzZKmZmZ3VcgvcV07Ngxm9ZtNBoBAE888QQef/xxxMXF4fXXX0d0dDQ++OADi8s9//zzaG5uNk2nT5+2aftERETk+px6r7dnn30WK1asuGVMZGQkgoKCcO7cObP5XV1daGxsRFBQUJ/LBQcHAwDGjx9vNn/cuHE4deqUxe2pVCqoVKo7yJ6IiIiGOqc2Sv7+/vD3979tXEJCApqamlBaWoopU6YAAHJzc2E0GhEfH9/nMiNHjkRISAiqqqrM5h8/fhxz587tf/JEREQ05LnEMUrjxo1DWloaVq1aheLiYhw4cABr167FI488Yjrj7ezZs4iJiUFxcTGA7hsnPvfcc3jzzTexfft2VFdX44UXXsCxY8ewcuVKZ5ZDRERELsKpI0rW2LJlC9auXYs5c+ZAKpVi0aJFePPNN01/7+zsRFVVFVpbW03z/vCHP6C9vR3r1q1DY2MjJk6ciD179iAqKsoZJRAREZGLcYnrKDlTc3MztFotTp8+zesoERERuYiWlhaEh4ejqakJ3t7eNq/HZUaUnEWv1wMALxNARETkgvR6fb8aJY4o3YbRaMSvv/4KtVoNiUTi7HT6rafDHo4jZKydtbP24WO41j5c6wZ61y6EgF6vR0hISL9uXcYRpduQSqUICwtzdhoDTqPRDLudqAdrZ+3DDWsffrUP17oB89r7M5LUwyXOeiMiIiJyBjZKRERERBawURpmVCoVsrKyhuXVx1k7ax9uWPvwq3241g3Yr3YezE1ERERkAUeUiIiIiCxgo0RERERkARslIiIiIgvYKBERERFZwEZpGGhsbER6ejo0Gg20Wi1WrlyJy5cv39GyQgjMnTsXEokEX375pX0TtQNra29sbMTvf/97REdHw93dHREREXj66afR3NzswKxts3nzZowcORJubm6Ij49HcXHxLeM///xzxMTEwM3NDbGxscjOznZQpgPPmtrfe+89JCcnw8fHBz4+PkhNTb3tczWYWfu699i6dSskEgkWLlxo3wTtxNq6m5qasGbNGgQHB0OlUmHs2LEu+z9vbe1vvPGG6T0tPDwc69atQ3t7u4OyHTj5+flYsGABQkJC7vgzKS8vD5MnT4ZKpcLo0aPx0UcfWb9hQUNeWlqamDhxojh06JDYv3+/GD16tFi6dOkdLfvaa6+JuXPnCgBix44d9k3UDqyt/ciRI+Lhhx8WO3fuFNXV1SInJ0eMGTNGLFq0yIFZW2/r1q1CqVSKDz74QBw9elSsWrVKaLVa0dDQ0Gf8gQMHhEwmE6+88oqoqKgQf/nLX4RCoRBHjhxxcOb9Z23ty5YtE5s3bxZlZWWisrJSrFixQnh7e4szZ844OPP+s7b2HrW1tSI0NFQkJyeLhx56yDHJDiBr67569aqYOnWqmDdvnigoKBC1tbUiLy9PlJeXOzjz/rO29i1btgiVSiW2bNkiamtrxTfffCOCg4PFunXrHJx5/2VnZ4v169eLL7744o4+k2pqaoSHh4d45plnREVFhXjrrbeETCYTu3fvtmq7bJSGuIqKCgFAlJSUmOZ9/fXXQiKRiLNnz95y2bKyMhEaGirq6upcslHqT+032rZtm1AqlaKzs9MeaQ6IadOmiTVr1pgeGwwGERISIl5++eU+4xcvXizmz59vNi8+Pl488cQTds3THqyt/WZdXV1CrVaLf/7zn/ZK0W5sqb2rq0skJiaK999/XyxfvtwlGyVr63777bdFZGSk6OjocFSKdmNt7WvWrBGzZ882m/fMM8+IpKQku+Zpb3fymfTHP/5RTJgwwWzekiVLxAMPPGDVtvjT2xBXWFgIrVaLqVOnmualpqZCKpWiqKjI4nKtra1YtmwZNm/ejKCgIEekOuBsrf1mzc3N0Gg0kMsH560ROzo6UFpaitTUVNM8qVSK1NRUFBYW9rlMYWGhWTwAPPDAAxbjBytbar9Za2srOjs7odPp7JWmXdha+1//+lcEBARg5cqVjkhzwNlS986dO5GQkIA1a9YgMDAQd911F1566SUYDAZHpT0gbKk9MTERpaWlpp/nampqkJ2djXnz5jkkZ2caqPe5wfnOTwOmvr4eAQEBZvPkcjl0Oh3q6+stLrdu3TokJibioYcesneKdmNr7Te6cOECNm7ciNWrV9sjxQFx4cIFGAwGBAYGms0PDAzEsWPH+lymvr6+z/g7fV4GC1tqv9mf/vQnhISE9HpDHexsqb2goAD/+Mc/UF5e7oAM7cOWumtqapCbm4v09HRkZ2ejuroaTz31FDo7O5GVleWItAeELbUvW7YMFy5cwIwZMyCEQFdXF5588kn8+c9/dkTKTmXpfa6lpQVtbW1wd3e/o/VwRMlFZWZmQiKR3HK60w+Km+3cuRO5ubl44403BjbpAWLP2m/U0tKC+fPnY/z48diwYUP/E6dBZ9OmTdi6dSt27NgBNzc3Z6djV3q9HhkZGXjvvffg5+fn7HQcymg0IiAgAO+++y6mTJmCJUuWYP369XjnnXecnZrd5eXl4aWXXsLf//53/PDDD/jiiy/w1VdfYePGjc5OzWVwRMlFPfvss1ixYsUtYyIjIxEUFIRz586Zze/q6kJjY6PFn9Ryc3Px888/Q6vVms1ftGgRkpOTkZeX14/M+8+etffQ6/VIS0uDWq3Gjh07oFAo+pu23fj5+UEmk6GhocFsfkNDg8U6g4KCrIofrGypvcerr76KTZs2Ye/evbj77rvtmaZdWFv7zz//jF9++QULFiwwzTMajQC6R1qrqqoQFRVl36QHgC2veXBwMBQKBWQymWneuHHjUF9fj46ODiiVSrvmPFBsqf2FF15ARkYGfve73wEAYmNjceXKFaxevRrr16+HVDp0x0ssvc9pNJo7Hk0COKLksvz9/RETE3PLSalUIiEhAU1NTSgtLTUtm5ubC6PRiPj4+D7XnZmZicOHD6O8vNw0AcDrr7+ODz/80BHl3ZI9awe6R5Luv/9+KJVK7Ny5c9CPNCiVSkyZMgU5OTmmeUajETk5OUhISOhzmYSEBLN4ANizZ4/F+MHKltoB4JVXXsHGjRuxe/dus2PYXIm1tcfExODIkSNm+/WDDz6IWbNmoby8HOHh4Y5M32a2vOZJSUmorq42NYYAcPz4cQQHB7tMkwTYVntra2uvZqinYRRD/FavA/Y+Z91x5uSK0tLSRFxcnCgqKhIFBQVizJgxZqfInzlzRkRHR4uioiKL64ALnvUmhPW1Nzc3i/j4eBEbGyuqq6tFXV2daerq6nJWGbe1detWoVKpxEcffSQqKirE6tWrhVarFfX19UIIITIyMkRmZqYp/sCBA0Iul4tXX31VVFZWiqysLJe+PIA1tW/atEkolUqxfft2s9dXr9c7qwSbWVv7zVz1rDdr6z516pRQq9Vi7dq1oqqqSuzatUsEBASIF1980Vkl2Mza2rOysoRarRafffaZqKmpEd9++62IiooSixcvdlYJNtPr9aKsrEyUlZUJAOK1114TZWVl4uTJk0IIITIzM0VGRoYpvufyAM8995yorKwUmzdv5uUBqG8XL14US5cuFV5eXkKj0YjHH3/c7EOhtrZWABD79u2zuA5XbZSsrX3fvn0CQJ9TbW2tc4q4Q2+99ZaIiIgQSqVSTJs2TRw6dMj0t5kzZ4rly5ebxW/btk2MHTtWKJVKMWHCBPHVV185OOOBY03tI0aM6PP1zcrKcnziA8Da1/1GrtooCWF93QcPHhTx8fFCpVKJyMhI8be//W1Qf/m5FWtq7+zsFBs2bBBRUVHCzc1NhIeHi6eeekpcunTJ8Yn3k6X35556ly9fLmbOnNlrmUmTJgmlUikiIyPFhx9+aPV2JUIM8bE3IiIiIhvxGCUiIiIiC9goEREREVnARomIiIjIAjZKRERERBawUSIiIiKygI0SERERkQVslIiIiIgsYKNEREREZAEbJSIiIiIL2CgR0bC1YsUKLFy40NlpENEgxkaJiIiIyAI2SkREREQWsFEiIiIisoCNEhEREZEFbJSIiIiILGCjRERERGQBGyUiIiIiC9goEREREVnARomIiIjIAokQQjg7CSIiIqLBiCNKRERERBawUSIiIiKygI0SERERkQVslIiIiIgsYKNEREREZAEbJSIiIiIL2CgRERERWcBGiYiIiMgCNkpEREREFrBRIiIiIrKAjRIRERGRBf8PIiIKU0ujXN8AAAAASUVORK5CYII=\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - examples_30_0.png" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHgCAYAAABJmwJ4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACrn0lEQVR4nOzdd3hUZfrw8e85UzNJJr0Tei+CVEERUARFYXHFn2sX2679XXRddW3YcO1dF+yuriyuWBFEFCuCgEiVXhPSSDLp0855/5hkkkAqJGcScn+ua5Scec7z3DMkzJ2nKrqu6wghhBBCdEBqqAMQQgghhAgVSYSEEEII0WFJIiSEEEKIDksSISGEEEJ0WJIICSGEEKLDkkRICCGEEB2WJEJCCCGE6LAkERJCCCFEhyWJkBBCCCE6LEmEhAgBRVG48cYbQx1Gox5//HG6d++OyWRiyJAhoQ5HhNCbb76JoijBR15eXrPuj46ODt7bHr73RcchiZAQLWjDhg3MmDGDLl26YLfbSUtL44wzzuD5559v1XY3b97M/fffz549e1qszi+//JLbb7+dk08+mTfeeINHHnmkxequy3vvvcczzzzTqm00ZMuWLZx55plEREQQGxvLpZdeSm5ubpPv/+STTxg6dCh2u53OnTtz33334fP5jihXWFjItddeS0JCAuHh4UyYMIG1a9e2ep2HDh3i8ccf59RTTyUhIYHo6GhOOukk5s+f3+TXCPD000/zzjvvEBkZ2az75s6dyzvvvNOse4QwhC6EaBE//vijbrVa9Z49e+oPPvigPm/ePP3ee+/VJ02apPfo0aNWWUC/4YYbWqztBQsW6ID+zTfftFidf//733VVVXW3291idTbk7LPP1rt06WJIW4fbv3+/Hh8fr/fo0UN/9tln9YcffliPiYnRBw8e3KTXv2jRIl1RFH3ChAn63Llz9ZtuuklXVVX/y1/+Uquc3+/Xx4wZo4eHh+v333+//sILL+j9+/fXIyMj9W3btrVqnZ9++qlusVj0P/zhD/ozzzyjv/DCC/qECRN0QL/33nsbfY1vvPGGDui7d+9utGxDWvp7X4hjJYmQEC1kypQpekJCgl5QUHDEc9nZ2bW+bg+J0MyZM/Xw8PAWq0/TNL2srKze50OZCF133XV6WFiYvnfv3uC1pUuX6oD+r3/9q9H7+/fvrw8ePFj3er3Ba//4xz90RVH0LVu2BK/Nnz9fB/QFCxYEr+Xk5OjR0dH6hRde2Kp17tq1S9+zZ0+tNjRN00877TTdZrPpJSUlDb5GSYTE8UoSISFaSJ8+ffTx48c3qWzVh8HChQv1AQMG6FarVe/fv7/+xRdfHFF27dq1+plnnqlHRkbq4eHh+mmnnaavWLEi+HzVB9Thj6qk6JdfftEnTZqkx8XF6Xa7Xe/atas+c+bMRuM7/PHGG2/ouq7rXq9Xf+CBB/Tu3bvrVqtV79Kli37nnXfqFRUVtero0qWLfvbZZ+uLFy/Whw0bpttsNv3pp5+us71x48Yd0Z6RSVFiYqJ+/vnnH3G9d+/e+umnn97gvZs2bdIB/cUXX6x1PSMjQwf0Bx98MHjt/PPP15OSknS/31+r7LXXXqs7HI7ge9gaddbnueee0wF9/fr1DZZrKBHatm2b/sc//lFPSkrSbTabnpaWpl9wwQV6YWHhEWUlERJtjbm1h96E6Ci6dOnCihUr2LhxIwMHDmy0/A8//MCHH37I9ddfT2RkJM899xznnXce+/btIy4uDoBNmzYxduxYnE4nt99+OxaLhX/961+MHz+eb7/9llGjRnHqqady880389xzz3HXXXfRr18/APr160dOTg6TJk0iISGBO+64g+joaPbs2cOHH37YYGzvvPMOc+fOZdWqVbz66qsAjBkzBoCrr76at956ixkzZnDrrbeycuVK5syZw5YtW1i4cGGterZu3cqFF17In//8Z6655hr69OlTZ3v/+Mc/cLlcHDhwgKeffhqAiIiIBmN0uVx4vd5G3mWw2+0N1pWRkUFOTg7Dhw8/4rmRI0eyaNGiBuv/9ddfAY64PzU1lU6dOgWfryo7dOhQVLX29MyRI0cyd+5ctm3bxqBBg1qlzvpkZWUBEB8f3+DrrI/H42Hy5Mm43W5uuukmkpOTycjI4LPPPqOwsJCoqKijqlcIw4Q6ExPiePHll1/qJpNJN5lM+ujRo/Xbb79dX7Jkie7xeI4oC+hWq1XfsWNH8Npvv/2mA/rzzz8fvDZ9+nTdarXqO3fuDF7LzMzUIyMj9VNPPTV4rb6hsYULF+qA/ssvvzT79Vx++eVHDI2tW7dOB/Srr7661vXbbrtNB/Svv/46eK1Lly46oC9evLhJ7TV3aKyuXqS6HpdffnmD9fzyyy86oL/99ttHPPe3v/1NBxrsVXn88cd1QN+3b98Rz40YMUI/6aSTgl+Hh4frV1555RHlPv/881rvVWvUWZdDhw7piYmJ+tixY+stU6W+HqFff/31iKG5hiA9QqKNkR4hIVrIGWecwYoVK5gzZw5LlixhxYoVPPbYYyQkJPDqq68ybdq0WuUnTpxIjx49gl+fcMIJOJ1Odu3aBYDf7+fLL79k+vTpdO/ePVguJSWFiy66iHnz5lFUVITT6aw3pujoaAA+++wzBg8ejMViOabXWNU7MmvWrFrXb731Vp544gk+//xzJkyYELzerVs3Jk+efExt1ufJJ5+koKCg0XKpqakNPl9eXg6AzWY74jm73R4sU9fzTbm/qKioVtnG2mmtOg+naRoXX3wxhYWFx7SqsarHZ8mSJUyZMgWHw3HUdQkRCpIICdGCRowYwYcffojH4+G3335j4cKFPP3008yYMYN169bRv3//YNnOnTsfcX9MTEzwwz03N5eysrI6h5P69euHpmns37+fAQMG1BvPuHHjOO+885g9ezZPP/0048ePZ/r06Vx00UX1frA3ZO/evaiqSs+ePWtdT05OJjo6mr1799a63q1bt2a30VTDhg1rkXrCwsIAcLvdRzxXUVFRq8zR3F/z3rCwsCa10xp1Hu6mm25i8eLFvP322wwePLjuF9cE3bp1Y9asWTz11FO8++67jB07lmnTpnHJJZfIsJhoF2QfISFagdVqZcSIETzyyCO8/PLLeL1eFixYUKuMyWSq815d11ssDkVR+OCDD1ixYgU33ngjGRkZXHnllQwbNoySkpJjqrcpGkogjlV+fj5ZWVmNPlwuV4P1pKSkAHDw4MEjnjt48CCxsbENJo2N3V+zRyolJaXeclDde9UaddY0e/ZsXnrpJR599FEuvfTSel9bUz355JOsX7+eu+66i/Lycm6++WYGDBjAgQMHjrluIVqbJEJCtLKqCa91fVg1JCEhAYfDwdatW4947vfff0dVVdLT04HGE5OTTjqJhx9+mNWrV/Puu++yadMm3n///WbFA4EJ4ZqmsX379lrXs7OzKSwspEuXLs2us0pTk6sqf/zjH0lJSWn0ccsttzRYT1paGgkJCaxevfqI51atWtXojtpVzx9+f2ZmJgcOHKh1/5AhQ1i7di2aptUqu3LlShwOB7179261Oqu8+OKL3H///fy///f/+Pvf/97ga2uOQYMGcffdd/Pdd9/x/fffk5GRwSuvvNJi9QvRWiQREqKFfPPNN3X25lTNq6lvxVR9TCYTkyZN4uOPP661Y3R2djbvvfcep5xySnB+UHh4OBDYYbimgoKCI2Kq+hCtazilMVOmTAE4Ygfop556CoCzzz672XVWCQ8Pb7T3pqYnn3ySpUuXNvq4/fbbG63rvPPO47PPPmP//v3Ba8uWLWPbtm2cf/75wWter5fff/+9VlI7YMAA+vbty9y5c/H7/cHrL7/8MoqiMGPGjOC1GTNmkJ2dXWvVXl5eHgsWLGDq1KnBnqfWqBNg/vz53HzzzVx88cXBv7NjVVRUdMRu14MGDUJV1aP6HhPCaDJHSIgWctNNN1FWVsa5555L37598Xg8/PTTT8yfP5+uXbsyc+bMZtf50EMPsXTpUk455RSuv/56zGYz//rXv3C73Tz22GPBckOGDMFkMvHPf/4Tl8uFzWbjtNNO47333uOll17i3HPPpUePHhQXFzNv3jycTmcwqWmOwYMHc/nllzN37lwKCwsZN24cq1at4q233mL69Om1Jko317Bhw5g/fz6zZs1ixIgRREREMHXq1AbLt5S77rqLBQsWMGHCBG655RZKSkp4/PHHGTRoUK2/t4yMDPr168fll1/Om2++Gbz++OOPM23aNCZNmsSf/vQnNm7cyAsvvMDVV18d3M4AAknLSSedxMyZM9m8eTPx8fG89NJL+P1+Zs+eXSumlq5z1apVXHbZZcTFxXH66afz7rvv1mpvzJgxtSblN9XXX3/NjTfeyPnnn0/v3r3x+Xy88847mEwmzjvvvGbXJ4ThQrxqTYjjxhdffKFfeeWVet++ffWIiIjgcRs33XRTk3eW7tKlyxHLvdeuXatPnjxZj4iI0B0Ohz5hwgT9p59+OuLeefPm6d27d9dNJlNwKf3atWv1Cy+8UO/cubNus9n0xMRE/ZxzztFXr17d6Oupa/m8rgc2VJw9e7berVs33WKx6Onp6Q1uqNhUJSUl+kUXXaRHR0cbvqGiruv6xo0b9UmTJukOh0OPjo7WL774Yj0rK6tWmd27d9e7JH/hwoX6kCFDdJvNpnfq1Em/++6769w6IT8/X7/qqqv0uLg43eFw6OPGjat3e4OWrLO+jTerHlUbZtanvuXzu3bt0q+88kq9R48eut1u12NjY/UJEyboX331VZ311Pe9L0SoKLregjMzhRBCHJfefPNNZs6cydq1a0lPTycuLq5Z87ry8/PRNI2EhARuuOEGXnjhhVaMVoimk6ExIYQQTTZ06FAgsL1Dc3aj7t69e7PmgAlhFEmEhBBCNGry5MksXbo0+HVz9wj6+OOPg0eiVK12FKItkKExIYQQQnRYsnxeCCGEEB2WJEJCCCGE6LAkERJCCCFEhyWJkBBCCCE6LEmEhBBCCNFhSSIkhBBCiA5LEiEhhBBCdFiSCAkhhBCiw5JESAghhBAdliRCQgghhOiwJBESQgghRIcliZAQQgghOixJhIQQQgjRYUkiJIQQQogOSxIhIYQQQnRYkggJIYQQosOSREgIIYQQHZYkQkIIIYTosCQREkIIIUSHJYmQEEIIITosSYSEEEII0WFJIiSEEEKIDksSISGEEEJ0WJIICSGEEKLDkkRICCGEEB2WJEJCCCGE6LAkERJCCCFEhyWJkBBCCCE6LHOoA2jrNE0jMzOTyMhIFEUJdThCCCGEaAJd1ykuLiY1NRVVrb/fRxKhRmRmZpKenh7qMIQQQghxFPbv30+nTp3qfV4SoUZERkYCgTfS6XSGOBohhBBCNEVRURHp6enBz/H6SCLUiKrhMKfTKYmQEEII0c40Nq1FJksLIYQQosOSREgIIYQQHZYkQkIIIYTosGSOkBBCCNFG+f1+vF5vqMNokywWCyaT6ZjrkURICCGEaGN0XScrK4vCwsJQh9KmRUdHk5ycfEz7/EkiJIQQQrQxVUlQYmIiDodDNvQ9jK7rlJWVkZOTA0BKSspR1yWJkBBCCNGG+P3+YBIUFxcX6nDarLCwMABycnJITEw86mEymSwthBBCtCFVc4IcDkeII2n7qt6jY5lHJT1CQgghRBt0rMNhuq5TUOal1O0j3GYmxmE57obYWuL1SCIkhBBCHEdc5V7+t+YAb/20h735ZcHrXWIdXD6mK+cN60RUmCWEEbYtkggJIYQQx4lvt+Vy3b/XUO7xH/HcvvwyHvxsM098uZWXLxnGuN4JIYiw7ZFEKATc5W6WvfsDa5f+xsnnjmLseaPYvzWTT1/+EqvNzNTrJ5PQKY6v3/uB1UvWMeYPIxg74yQyd2Tx6ctfoppUpt1wJonpcXzz/o/88sWvnDR1OOP+bzSZO7P57OUvQYFp108mqWsi387/iZWfr2HU2cMYd8EYsvfk8MlLS0CHc66bRGqPJL797wp+/nQ1I846kQl/Opmc/Yf49KUl+Lw+pl0/mdSeyXz/wc/89PEvDJ88hNMuOoXcA4EyHrePqddNIr1PKt//byU/LlzJ0DMGc/rFp5B/sJBPXlpCRWkFU6+bTJf+nfjhw5V8/+FKTjxtIKdfciqFOS4+fWkJpUVlnPOXSXQb2JkfP1rFdx/8zODxA5h46akU5RXzyUtLKCks5Zw/n0H3wV346ePVfPvfnzjh1P6ccdmpFBeU8ulLS3AdKuacP59BjyFd+fnTNSyf/yMDTu7L5CvGU1JYxqcvL6Eg28XZ106k9/AerPx8LV+/9z39R/dh8swJlBWX89nLX5KXmc/Z155BnxE9WLXoV75+73v6juzF5CsnUGrSeHfDbxwsLuZPA09gcGISq5f8xrJ3v6f3sO6cddVpuMs9fPbKUrL35nLWVafRf0wf1ixdz1fvfEvPId0486rT8Hn9fPbKlxzclc1ZV53OgJP7sParDSx9ezndBnVhyjWno/k1Pv/XVxzYnsmZV57GoLH9WPfNJr588xu6DkhnyjUT0XWdz+d+xf7fM5h0xXgGjx/A+m83s+SNb+jUJ5Vz/nwGiqKwaN5X7Nm0n0lXTGDIhAFs+H4Li1//mrSeKZz95zMwmVW+ePVrdq3fwxmXjWfoxEFs+nErX7y2jJTuSZzzl0mYLSYWv/Y123/dzRmXnsrQM05gy8/b+eLVZSR2jmfqdZOwhVn54rWv2bZmF6dfPJbhkwezddUOFs37ivhOcUy9bjL2cBtLXv+G31dt57SLxjJyyols/WUnn89dSlxKDFOvm4TD6WDJG9+wecVWJlx4CqPOHsqOtbv5fO5SohKimHb9ZCKiHSx5czmbfvyd8ReczElTh7Fz3R4++9dSouIimXrdJCJjI1j69nes/24z4/5vDGP+MJxdv+3ls38tJSI6nGnXT8YZH8lX73zHb8s3ceqMkzh5+kh2b9zHZ698iSMyjKnXTyYmKZpl//6OX5dtYOx5J3HKH0exd/MBPn3lS+wOG9Oun0xsSrT8fLfzn++KUjefvryEvAOHmHLNRPqM7Gnoz/emFdvwmsspDHeRkGpB18GVV4SnwkNUXCRhkWGUF1fgOlSE1W4lKt6JosAXq/dy88db0HXQ6/jsqbpW7vEz841VvH7FCEamRlKUV4zFZiYqwYmiKLjyinGXuXHGReJwhlFRWoErtxiz1Ux0Yu0ykXERhDsdVJS6ceUVsfKXn7nlbzezc+dOivKKqSh1ExkbQXhUdRmzxURUQhSqSa0sUxEsE4qhO0XX9breL1GpqKiIqKgoXC5Xixy6unbZBh44/wlKC8tQVQVN07HYzHjdPkxmFR3QfBoWqxmvx9e8MlVfmwNz4DWfFryvqozZasbXaBkTPo8f1aSiKOBvqJ66yphUNL+G2WLC562nnqoyVhN+rx9FraeMpmE2m/D5/KgNlDGZTWg+DUVVmlnGgtftRTWp6JoeLFv1w6j5jyzjOrMThyangaKgABS46fbyVvTs0hr1BN4nBUBRjqxH11FUBTQAvf4ylXFU/bneevRGyiiB16xpDZUJjLfXVwZdRwdUtfo9OqJMZayqSQ2+1/XW01CZynpMJhV/rTLVf6fAEd8fNcuYzCq6XlnGYsbn9dVfxq8FvqebUsZT/f3bYBn5+W6XP9+N/uwa8PMdnRzJtS9fTFJ8MialciWUDihV1Snouh78GgVKPH4u+mwHbr9eZxJ0OAWwmRTeO7snETZTdZZUo84j2josjrrKrFz9M3fO/jtff/ot6FBYVMiDjz3ANz98jaooTDptMv+47R7Cw8KPqMdsM9OpdypWW9OH7SoqKti9ezfdunXDbrfXeq6pn9/SI2Swjd9voby4Agh8KAF43T4g8INbxevxNb9M1dc1y7hrl/E1qUygS1XzN6GeuspUXvN5G6inqkxlW/ox1uP3VtWjN7OMt3YZX2UZ6i9T1C+q8t+3QJmw7HL07NLD6tEr66n+7+H16FrNf67qKVMjDr0J9dRbpin11Ppv3WUA/Jq/6WX8x1bGd0SZI7/vDv/+qOtn5fDvV0PKyM93u/z5bsrPrhE/34fdWuvPwf4Lvfr60j2uJidBVbe6/TpL97o4t1fske3V11Yzy9x29yxy83J544U38fp83PXA37n34bt58qGnQQe3201pWQmxMXH43D485Z5mJUItQZbPh4B0wrVvsZ/vJ37+LiwHy1DLfISvOxTqkIQQHZiu63y0o6DJSVBNH+0oaLXPpJ27d/D9iu946O5HGDxwCMOHDOfu2+7l8y8/Izs3G4C8/DxOnXIK19/2F5Z+82VIjhORRMhgY6aPoPugzqEOQxwDxzYXzpU5dP7nerr+YzXOFTmhDkkI0YEVefwcLG1+AqEDB0u9FHu0RssejV83/Ioz0smg/oOC18aMPBlVVVm/8TcA0lLSeP/1BaQmp3Hfo/fQq19Pbr75ZtasWdMqMdVFEiGD9RzSjZfXPs4Nz10Z6lDE0dJBqfx3Q6kxdC6EEKFQ7ju2RKbMd+QKs5aQdyiX2JjaO2ObzWainFHkHsoNXhvYbyBzX3uFrOws3njjDQ4ePMjJJ5/MoEGDeOKJJ8jOzm6V+KpIIhQChTkutq/ZFeowhBBCHAfCzMf2Ue4wH/sJ7seqvKQCVVGZOnUqCxYsYPfu3SQnJ/O3v/2NOXPmtGrbMlnaYD8sXMlDf3oarZUycCGEEB2L02oiJdxCVqm3WfOEFCA53EKktXX6ROLjEsgvqD2H0ufz4SpykRBXew+j3P2HyMvIZ++h3cz/7/ssWLCAmJgY7r33Xq666qpWia+KJEIG2/XbXnRdR+ZLCyGEaAmKojC9Zwyv/Nb8+YrTe8a02t49Jw46kaLiIjZu2cjAfgMB+Hn1CjRN44SBg4Pldu/dzceLPuKTxR/jKipkxowZfPTRR4wbN86QfYVkaMxgiqIctqxSCCGEODZndInCZlKaPGexah+hM7pEtVpMPbr1ZOzoU7nn4btYv+k31vy2hgcfn83Zk84hKSEJgMysTKb832R+Xb+Wm6+9hR2/7+SNN95g/Pjxhm2uKD1CBjv9krFsW7OTnz8zbka8EEKI41uE1cS9o9O4+8cDgQ1WGyirAIoC947uRIS1decHPfHgUzz4+Gwuv/6yyg0Vz+Tu2+4JPh8THcOyj5eTmpKKMy6S+OS4BmprHZIIGSy1RzIPfnIHX7/3PXMueS7U4QghhDhODE+O4KGTO/HAigzc/prbPQZU9a/YTAr3ju7E8OTwVo8pOio6sHliPcLsYYQlh9FtYGcsBm+kWEUSoRDYs2k/37z/Q6jDEEIIcZwZnhzBe2f3ZOleFx/tKKi1v1ByuIXpPWOY1DWKcEvoV4rVVJhbRHRiFBar8WmJJEIGW/r2tzx2xQuoJtl95mhVHU2jWRQqukRizSnHXGT8bqRCCNEWRVhNnNsrluk9Yyj2aJT5/DjMJiKtakgONW2KguxCCrIL6dy3E/Zwm6FtSyJksIO7sjGZTcEzb0TzlfWLonhkImX9otHtJvDrdJm9VpIhIYSoQVEUnDYTTptxvT9pKZ247E9XNP/GyjE8n9cHSCJ0XKs6/VgcPduBMux7dlE8IoHiYfE4trkwlUgSJIQQodYptRNXXDQz1GE0iyRCBptyzenkHyzgi9e/Dp7wLJrHXBxIeqK+zyLquyxQAkddCCGEaJ9Us0p0YhQOZ5jxbRveYgcXmxzDzS9dw30f3BrqUNq9qnO+JAkSQoj2reuAzsSnxqKqxqcl0iNkMF3XWfvVet595MNQh9K6FBreyMJorRRP1cRtIYQIJXN5FiZPQbPv81tj8YUltUJEzZO7P4+Y5GjsDmPnB0E7TIRefPFFHn/8cbKyshg8eDDPP/88I0eOrLf8M888w8svv8y+ffuIj49nxowZzJkzB7vdbmDU1T55aQkv3PTacbdqTK8cnvLGWCnv6cS+vxRrVvlR1+OLtlLW04ktswxbZtnR1+O0UNYnCltWObb9pc2up976gbI+TrQIC+EbClA9Mu9LCBEait9D5+8vwezJb/a9Plscu0/7HN1kbYXImq64oITi/BLS+6YRFmHs53O7SoTmz5/PrFmzeOWVVxg1ahTPPPMMkydPZuvWrSQmJh5R/r333uOOO+7g9ddfZ8yYMWzbto0rrrgCRVF46qmnQvAKwJVbhMliwu89vlaNlZwYS9HoJCp6OEFVQNfpctdqzOUNv05dBbTqXpXiE2IoHpdKRdeIYD2dZ/+KudDTrJ6X0n5RuManBuKpTDo7P7AWS76n2a9NM4Fa42VkXdwDd5cIfImBsWzHxgJSXt3a7Hr1yhfU0NBeU8oIITo2XbXgC0vG5ClAaUbXt46Cz56EroZmI8PDggEIyYrqdpUIPfXUU1xzzTXMnBmYkf7KK6/w+eef8/rrr3PHHXccUf6nn37i5JNP5qKLLgKga9euXHjhhaxcudLQuGsyW81ovuOv9yB8s4uIX/MpHRJHycAYHDuKMDWQBHmS7LhOTaF4ZAKmEi/O7w+iVmgUTkzDF1uja1RR2Hf3EEwlPqK/ycT5Uzaqt/Ef9LBdJYRv2ULZwBiKh8Rh31OCuaDpSZCuQungOArHp+DuHI5jcyHRSzOw7ykhcf4udLuJwlOS8EXbiFl+sMn1QqC3yzU2GdfJSSg+LTDp+9ssTBXV75cvyoprbFKgjAZR3x8kanntMkIIAYCikNfnejqturF5t6GT1+f6wHkbLWTlmp+5c/bf+fqTb4/q/lDsc9RuEiGPx8OaNWu48847g9dUVWXixImsWLGiznvGjBnDv//9b1atWsXIkSPZtWsXixYt4tJLL623HbfbjdvtDn5dVFTUci8CmH7TWei6zgdPfUZJQUmL1h1KauUHdPi6Q0T8eghdrX/ujN9hZv/tlScPmxR80Tbyp3YJ/DDqdSQ5ZhV/lBXdpDQpCQKCCYNjYwHhGwqCQ2VNVXhaKvnndAZNB0WhvHcUSW9uD7xWnw4lPmIXZwReYzPn9u3/+wloNhOoCjom/A7zEQnO/r8NQnOYK8uAP8IiSZAQol5lCaOpiOqPzfU7Co3/sq2j4o7qS1nC6FaN6+XXX+LbH75hy7YtWCwWVn/za53lLHYLsUnRsmqsIXl5efj9fpKSak/qSkpKIisrq857LrroIh544AFOOeUULBYLPXr0YPz48dx11131tjNnzhyioqKCj/T09BZ9HY7IMC7+x3ncPf+vLVpvW1GVbCgN/BxqVjUwXFU1T6rqBECo/zcTJZBs6WrzflsIxtPMoSUtzIzi1wLDcwSGqFSvViu5C/65mR18mt0UrBdAdR/5urSww8pU+APDiEIIUZfKXqGmJEEAClqL9wbVxev1cObEs7jwvIvqLZOZlUnnfmlEJThD0iN0XP/Tunz5ch555BFeeukl1q5dy4cffsjnn3/Ogw8+WO89d955Jy6XK/jYv39/i8bk8/pY8uY3PPPnf7VovYZQDvv/0VZTNTSo1chOdL3yQe3napTRzWrte1qTTzssOdGbnYTVR/Hp4G/4dSneI8s0lFwKIURVr5DeyEe7jkpFVP9W7w0CuPnP/48rLrqS3j371Fvm9D+MZ9zY8cz716uUlrbcopamajeJUHx8PCaTiezs7FrXs7OzSU5OrvOee+65h0svvZSrr76aQYMGce655/LII48wZ86cend3ttlsOJ3OWo+WtPDZRTxx5Utk7clp0Xpbk17Zc1PeLZJDZ6VR1jvqmOozl/hIfX4Tji2FoOsobj/O77KIXpYZ3CHatr+UmEX7cWyuLuOPtAR6U1qRDmhmBVOZD7XUF0zarDluyvq0zPdC2jMbifg1L5D8+DQ0i4I/ovYoddpzm4hYmxdIhnwamlnFF9kGJjQKIdquJvYKGdUb1FSfz1/MwL4Duf/++0hOTubKK6/k22+/Ra9rqkQraDdzhKxWK8OGDWPZsmVMnz4dAE3TWLZsGTfeWPcEsbKysiM2ZzKZAh+kRr3BhysvqcBsMeFrR6vGiobHU3RSAp5ugUSgEOh6xypMFUffRRG2s5iwnVvxOS2oFf7g8vPYRQfwRVux5FfP06pICcNc4sVc3Po7cWdf0Zvyrg606MDyTduWQuKWZmDbVdxivzXYMspI+vdO4hfuBU2vc1K5LbOMpHd3Ev/RXtB1TGXt5/tFCBE6jc0VMmpuUHN079qdWdffxl+vu5WdWdtY8OECpk6dSnx8PJdddhmXX3453bp1a7X2200iBDBr1iwuv/xyhg8fzsiRI3nmmWcoLS0NriK77LLLSEtLY86cOQBMnTqVp556ihNPPJFRo0axY8cO7rnnHqZOnRpMiIwWFmEPJEFtbcPBBjhX5xG1Mpfy7pGU9XEStqvkmJKgmg4/KFXR9GASVN49ksLTUikbEI3i0Yiq6jVqxUnDSW9tQzcpFJ2cRMEZaXh6OcnsF401o4zYz/fi2OxqsQ0UTaWNJ3ZNKSOEEEGNrCBra71BQQooKIwfN54pU6fw7LPPct111zF79mzWrVvHRx991GpNt6tE6IILLiA3N5d7772XrKwshgwZwuLFi4MTqPft21erB+juu+9GURTuvvtuMjIySEhIYOrUqTz88MOheglMv/ksnPGRvPvQBxzc1T6Gx5TKuSphu4sJ21VsyFbKfoeZzJsHBFdt6TYTphJvcHVaa1H0wBwev8OMFm4O/mPhSbLh+L1IdpEWQrR59fUKtcXeoCphEWHEJEexZfsW3nnnHf7zn/+gKAqzZs3i6quvbtW221UiBHDjjTfWOxS2fPnyWl+bzWbuu+8+7rvvPgMiaxqL1cLkKyYQ3ymWOyY9FOpwmkc/7P+t2ZS5MuWoMUFZ8Vau4jJiwrRZRdH04PwoUFCMmqgthBDHop5eobbaG5SVfZAfvvyOd999l507dzJ16lRee+01zjzzTMzm1k9T2l0i1N6VFZez8LlFfPDUp6ELosZ2PW3rx6GGqpVVKpX7CwWWnTc3GanaP6i5+wip5T50U+VqLlVB0UGzqCiHLaEXQoi26PBeoVD1BmVmZeJyFZKZlYlf09iydTMAndO7EO4IB2DCtHEMGnACV152JTOvmUlsbKyhMUoiZLCPnv+Ct+6dH7LJ2rqq4IuxUjg2CVSF2C8zMJW0nXkofrsJ1e2nopcTy8FSvJ0iwKdhKvGh+HQ0S9M2VayqJ7iz9N4Sor7PanIyFP11Jpa8CgonpOLuHE7YNhfuNAf2PcfPJphCiOPYYb1CoeoNeu6VZ1j4efUh49MvmQbA26/8m1HDTgLgs/lf0KNrDwBsJuPPAZVEyGA+jw/VrIbsrLHMa3vjTQnHHxU4YE8t9xH7RUab6eUo6x2Ja2wK7hpnlqU/vA5LoaeBJEanW98KiotM5GUGXld594haZ42VDosnfGN+rbPGNJuKO9mBfX/JEXv0KBpErMsnYl1+k5OvhmgWNZBI7S8NzrkSQojWVNUrZHdtNmzfoMM9ev9jPHr/Yw2WqUqCIDQruiURMlhUghO/14+iKughmHOS9spWdFWhZEA0igrhGwraTBIEELGhkMj1hbVOn7c2cEbYKWcX8qebcuh1QjmaBkvej+WNOcnoW1xEbHYFTp/vHTh9vioJ8kVYKJyYStHoxMAkbJeH+P/tJmJDQZ3zn44lCfI7TBSenobr5ER0uxm1xEv8h3uI/PVQu1k1KIRopxSFvL43kbDpMfL63tTm5gbVUrmS2mQ2fkW3JEIGm3b9ZDr1TuHN++bz+8/bQxKDoumBD33a3hyhql4fc6EH5+q8BstGRPm4Z95eqvbGVFXYs8VOUb65up4ib6CeGi/UNSEF16nJwYnYmt1MxPqCln4pABSdnEzhhJTqtiIsRKzLlyRICGGIsoRR7B3/v1CH0ajImAhikqOxO2yNF25h7WZn6eOFoigMO2MwF9/1x9DGQdtLgpqraiuomntmapqCWtcvFDVP8zAphw2ztV5WopuUI6uX1WdCiONUWkonLvvTFc2+LyE9PiRJEEgiZLj8rAKeu34es2c8GepQQkavzA305mRiNcpWnflVXqFSVqyiaYFVcJof4pO9+H0NV2wu9AQSlMqERFfAH2ZqMB2qirVZKYwCpkJP9eGyAH4dv9MiHUJCiONSp9ROXHHRzGbft2fTPvIy8+s9/qo1ydCYwRbNW8Znc5eGZH5QqPmcFhSfTvHIBIqHxuH4vZDYLw40upLLF2HGH2OjcHwy/nALUd9nYd9VTM7wZE6b35/zRu7m8qR1uLJN7Npix2TS8Pvrz/Gjlh/Etq+EwvEpVPR0ErEmD3+4uc6jLnwRZhSfTsnQOIpGJhK2u5jYz/ahNjLh2ee0oDnMuLtGgFdDdfvBpBC+7hD+MNMRO2oLIUQVXddDtrI4VDSfRn5mAXaHjYjo8Cbf1xLvkyRCBtP8Gqqq4teO77OjdJNCWd9ozIVubBllAJR3jaR0aBxl/aLRbSY8aQ6iv81q9BiJ/LM74+7kwJMeAYA3wY5tX2mgHruJf20awuL/05qcXChA2K7KXbIbUd4nipxLewW/9nQOx/lTFtZcdwN3QeFpqbg7R1DRLQIUBfvmAlLeqJ4TpitQ3suJ4tOx7ypu98OUQoiWU3yoFJ/Hj4YfE6E5Dqq9KCsLfL5YLEd/KLUkQgZL6Z6E3+dHNSlox+Eyal0JJAGu8Sn4K09Lj/glh/iFe4lYn0/k+nw0q0JFegS27PImnaWVOH8XAO5UB5pVxb63pHKDQ4WKLpFYc8pbvIfFG2vj0DnplA6JC16LXJFNzJcZWBpYxVYl/qO9AHgSbfgjrdhrJF1FIxMomJSGLz6wX0bYNhcJ7+3AUii9REIIcJd6+OXT3xj7Jxux0bGoHSEZqvxt0K/5qaioaLS4ruuUlZWRk5NDdHT0MZ0fKomQwc64bBy9hnXntTvf5efP1oQ6nBbni7GRP7Vz9dbVQNj2ItRyf7DXQ/XoOHY23htzOFtmWa2vVa+OY0fRsYRbr6IxiYEkqOqID59G4vzdza7HmuNGz3HX6vHJ/VP3WnOebHuKMbskCRJCVFv+xk8AjJg6GLPVhNKWl763AIczDIfTQWZ2RrPui46OJjk5+ZjalkQoBLoOSGfCn04+LhOh4Ad8jR9aRW+HK9SUOlZ7HW1VdV04/B+1yj00hBACAr9LfvP6T/z4/mqc8eHHfSL0z6/uISEtvln3WCyWY+oJqiKJkMEyd2bx8l/fbHNJUM3P4GP5cVPKfKgl3sDJ7QRWZnmSHQ1+yOtq9YGmNf8cSpbs8sCaSr8eXPXljbNhORSYG6Srgd2ndYDKPzenbm+yI7hqzZsYBse6UEIFquJp5rlqQoi2y1PmIW9f48Px7d01/W9j0mXj+POTlxPudBjatiRCBlv27+9ZuWhtqMMI8iTa0c0qRaMTKRkcS8SGAuI/2N3sD1JPgg3drFI8KjGwNF1RsGaUYsmpIHxDPjp1J1juVAfeeHtgTlGYSvyHe3Fsb53hruZwrsolbGcRrlOTKesdReTaQ6jlgflM7lQHvigrrvHJeGNtxH22n4jf8ptcd/pj6ykdGIvr1GQUn0bkytxjitWdEoY/woJrXAru1DBil2TgPMY6hRDCSH6vny9e+5rR00YweupwQ9uWRMhguq6H7HiNuniSwijv6aR0SBxapIWSIbHEfbQHpZnHSngT7JT3iaZkSBx6mBm1zEfqc5swuRvu6ig5MQ5PqoOKrhGgQEX3yFZJhDSbSsmJcailPsI3FTSpB8dyyE38wr1HXC8dGIMn1UF5TyeYVMp6RTUrEVI0cGwpQLOpKD4dxzbXMfXClfeJwt0pgrK+UWBWKe0fLYmQEKJdkrPGOoDug7ugKEpgCkobyIUiNhQQvqGA+I/34o23B4Z+jmI1W/hmF47NLuI+2os3wY45343ia7ye2M/3owC+SAu6RcWS3/Cy9ObSgfxz0nGNTUa3qqAohP1eSNI7O5q0Yq0uMV8GDqn1OczoDhOWPHe9PV51KZiYSuHpqWh2EygKrt3FJL+x7ahXvkUvzwIg/gMT/kgL1tyKZsUjhBBtgcMZRlrPY5v4fDRkZ2mDnXLuKP6z7xXOuHx8qEMJUgj0UlhzKlD8+lF/gCoE5qZYcypQfU2rp6qMudjb4kkQgBZmonBiGrrNFJyg7NhSiFp2dEkQ1Ii5zIclz13rWlPkn52OFmYOxhO23YWp+NhXjZkq/FhzK5odjxBChNpfnrqc9zPm0qV/uuFtSyIUAtGJUfQa2j3UYXRskikIIUSbMejUfoSF20PStiRCBtv52x6uG/o3Xrz59VCH0izBs7aqvmOOKpHQUdTAcJlqCvxfOcrlTU2NR3X7se4vCRTRNUyKRkW3SFTT0bd9NPQaj+DmiroOfh13ekT1fkVCCNEB3TD8Du4862EKc12Gty1zhAz248JV7NqwL9RhNEtFp3D8TgvFoxIo7R+DY7uL5Ne2ojTzlJDuA8qJT/Zy+oxCTj6rkPU/RXD/ld3wVDQvCXAnh+GLsVIyLIGSwTGE7S5h0Px1xFjqHlrr+e5PeNLD6XyVjcToCs65dicxV5Xyv7kJLPkogbzi1v8txBtnw5dgp2RwLO70wDk6YdtcmPM9RH2fhXIc7jIuhBDNsXrJOjav2MaYaSMMbVcSoRBQFAW9je6e50mwUzwyAUteBRFr8lB9OlqYCU9yGJ7EMLCoeBPsgf1+Gvjw9sbZKBqVgKXAQ8TqPBS/jn5qDBHTFJK6FGGxQlp3DyZz894HXYXiUQm4JqRWX4w389IVK4gNb2SvjczKx+bAl1d0y2Pa1Tu55LlT8TZwSGtL0C0qnqQwvIlh6BYVU7GHhPm7sOQf//uDCCFEWyaJkMEGju1HWISdUldZ44UNpFlUsi/vRdnAmMBGfwqU93CS8N9dOLYXEbajiJivD+IPN6M2sNpKNylkX9aL0hNiqFq6lDe9C4qmsyvMjLpVY97mE+j7/kZ8q0ublQ6W9Y4i56Ie+KOtgWElHRL/vYOIX/PIudJOdJgHtRn5jKZBTpEdr7/1h6VsWeVYs8uJ/jYLv8OEWuE/9k0UhRDiOJLUJYFugzob3q7METLY0NMHMT9zLuffOi3UodTijbMFkiAIzFdRFMI3FwSXwFdNpzGV+gKrw+qpxxdtpXRwbGBFVGU9us2EZg/k3Boq5iIv3l/K0HWlerJPE5QOjsXvrDxhWFFQy3xErj2Eoiu8tbxns5IgAFWFt5b3bODVtKzge1jmR9FkvrYQQlS56z+38NaO50nplmR425IIhYDZYsYebgt1GMeV1Tvj+D3Dib+JvSx+DX7PcLJ6Z1zjhYUQQrQqR6QDtbm/zbYQSYQMtvGHLVzY+S+888CCUIcCVK5kUsFS4MaaURq4qOmg65T1jQ6es9VUpiIP9m2Vs/79eqAun4bi04LDWb5IC2W9nYH21UCnkKYGhufqGiqr6jgK21pYPS9J09HCzJR3j6wsFegVMjXxO9pU2RukV+7lo1nVYFt1tV9Vpur9qopJs9TdoF4j7qq6hRBC1O3uc+ZwzQm3krM/z/C2ZY6QwdZ+tQFXbujP0qpS3jMSb1IYxSMS8KQFVjNF/pyDNasc58rcZq9mUr06aS9twZ3qoHhUAuYCD5Erc1B8OrkzulIyKhHMKgev7481s4zIn3PwR1spOikR3awS9+Eeon7OqVVn8cgEvAl2ikYnoVtUrHtLsGWUErn2UPVSdKp7hXqlFDWYEPk12H7QyQ8V6XhGRVJyYizlvaOw5FaQ+uwmzDXmQLlTwnB3iaRkSCzlfaIw57lxrshGt5koGpOI32Em5osDxH6VWauNkmFxeBPCKBqdiD/CTMyXGcQuyWjWeymEEB3J3k372fHrbhLTm3cK/bGSRCgU2sLZGpUUn45a4Uf1aKBp2HeVEP/BbtRjnMhryyzDdtg5XVE/ZOPY6qJkeDxlfaJQ3H7UCj9ahR/Fq6GroHprN1zRJYK8c7ui202BeCv8RP2YjXNVXWdpBXqF5lzc8KG2Vb1BigaK24daETi2XXFrKIf93SiaXlkmMLlZdftRy/3oOigeDSJVSobH40kLJ+K3Q4Svzw/U69FQ3YHXpfgryzZAMyuUDIunrG804RvyifgtX5bUCyGEARQ9FCectSNFRUVERUXhcrlwOp3HXN/vq7Yz5+JnydyZ3QLRHTsdQAlM5NXMCqpPR1do9unzR92WWvUEgcnVlUd86CaFjBv74+4WGRheUxXC1x0i8b2dKB6tgYnGOs9ftbLeXqGq3qCbXhuFjtLoa687ZgXQKesdRfZVfdDNSnCFXMpLW3BsLwoMpykEVoaZql9XXcp7Osma2RvNYQrUoyokz/ud8E2FzXl7hRCiXes3ujf3fXAbcSkxLVJfUz+/ZfKCwfqO7MUbW5/j6kcvDnUoQPX5YADqYSvEDGlLC1xTdGqdc+YPNweSIAjuuhy2zRXoYWmklYbmCplqrBRrymuvO2YdRYOK7k50k1K9Qk4Hx/aiYD1VK8MaO7+tolskWpipuh7AscX43VWFECJUnlw+m+d+fLjFkqDmkEQoBMqLy8nZZ/yEsI6ivhVkslJMCCHapgPbDuL1HPvh00dDEiGDrVy0lgtSr+WTl5aEOpRm0StHf7zRluCfW5Op2EvkiuxA9lI5elsyLB5vfFOOw6i7V8h0lPsGVa0a80Zb0U1K8PWHba1xin3l8F3x0Lha54ppVhVf5d5H9b1njo35WDPLqusBiofHG773eDBms4I3yhq8JoQQre3pa1/hovS/cGD7QcPblsnSBtu6agdeT/07M7dFpX2jqOgWScnweHxxdkyFHjo/vA7F23pbIys6JM7fTeznB9h/52C0cDMVPZzsv2swMZ/vP2KV1uHKY23k+cOIM5UH5hwpsDM7stm9QRXp4ZT1j6Z0cByeVAdqqY/I1bloNhMlQ+PRrSrWfSWEby4k/Ld8bAcDCU3huGQ8yQ5KhsWhW1ScP2ST8L89dbZhO1hOpyc24O4aEZgsvTEf2wHjdx4vOikRT2oYJSMS0MLMOH47RMob2w2PQwjRMRXmFrFvywE69UoxtF1JhEIgFPPTdZNCyZA4ik5KwJpdTtR3WVhzKpp0r9nlwbHVhT/aSkm4mbBdRSgN7Fyoq1B6QiyuMUlYDrmJ+u4gtoPlRxW3ucRL8qu/44234xqXgqdTOCUjEijrH03kmkNErspB9R75fhYesrBgTTeuGxk4WEzR4e3velDVGxSX7GXq5XmcMKaE5R9H8+V/YznUOQ7XKUmYynxEfZeFfV8ppjIfYVtdaA4z3mgL9r0lhP3uQrMHzl/zxdqI/jaLyDWBoU5dgfI+URRMSkNzWEABU7EH2/7SBl+nAtj3lGDfU3JU71NLsB4sw1TswZvkwN3JEdJYhBDCKJIIGWzcBWNYt3wjG77bYlibvggzB24/Ab/TCppORXcnarmfuM/3N+l+28FyUCBsVzEJ7+9qcDK1ZjOx/44T8MXYAm31AMWrEf/hnqM+UiJsTwn2vaVgUsi9oDveRDtgx50ejuP3QtRDR546n7HLzoe7UpmQdoC+aUX8nuHk598De1Oc9scCbntmHyiBYzb6DC3n4zGnkFVSec6aDigKtn/vwHLIjeWQG/ueEuIW7g30LlVOaI789VBwVRkEbjtw6yA8ncKD57WFr88n6c3tbWrLhPqE7S1BVyFiU2Gt1yWEEK1OgXEzRjPwlL6GNy1zhAzWpV8nnlr+ALPm/cWwNv1R1kASBIFVSSYF275m/rZf+Tne2Ioyf4Q5kATVaMu+v+TYPlT1wEotd3pEMElBUVDdGpY6kqBqKq9/3Yu9ueG8/nUvdC3w7d5zUGDYyVS5UMutmdhVUuOcNZMS2GW7Rsw1z1cLrBrTq6/r1YU8ncKr64HK3br1VluJ19KUyo6+Wq9LCCFa2asbn+bu+bNwxkY2XriFtbtE6MUXX6Rr167Y7XZGjRrFqlWrGixfWFjIDTfcQEpKCjabjd69e7No0SKDoq3bgSIX35SHfh8hoz7nWqydo+hV+XV3HFe/fDK/7q4xN0hXaic59SVpRxt4rTgNmFkuhBDt3Pcf/ExRfnHjBVtBu0qE5s+fz6xZs7jvvvtYu3YtgwcPZvLkyeTk5NRZ3uPxcMYZZ7Bnzx4++OADtm7dyrx580hLSzM48mqfbfudcW++ykfuDFxjk9AsrT/+YM0qJ+rrTBS3P3itrH80us3UrHo0M1R0Ckez1f9tY853E/1lBkpF9YTwsr7RaPbmtVWXsK2u6lVagGZTKRkY3ew847MlyazcVX3CsUX1c1annSg1airvFYU/whL8WlcVKjqF4w+vfzRZ0SFu4R5MJdUxlvd04ndagjXrClR0cuCPkFFpIYSo8vbs/3Jhpz+za/3exgu3sHa1s/SoUaMYMWIEL7zwAgCappGens5NN93EHXfccUT5V155hccff5zff/8di8VyxPN1cbvduN3Vwy1FRUWkp6e32M7Sz/z8Ey/+8jP+yrddLfPR9a7VhkzH0GwqJSfEYs2pwL636UNjxYNjKe8XTekJsWgOM4rbT9d71gSO5aivLatK6aAYzAUe7LuKj+n15Z7bBU+qg4qeTlAUwrYUBo6z2FCAqbTpK/Dy/tAZT2o45b0D9XSPLGBEQhZfZXThkNsBQNzHe7FmlgU2b9ShvFsExSMTKBsQExhe9Gl0fvQ3LHn1D8npqkLpwBgUr4bj90IUHSo6h1N0UmKgnigr+DU6PbYeW3bTJqwLIURHMPuj2xkzbUSL1NXUnaXbza+lHo+HNWvWcOeddwavqarKxIkTWbFiRZ33fPLJJ4wePZobbriBjz/+mISEBC666CL+/ve/YzLV3UMxZ84cZs+e3SqvAUBVqvsdTMVenD8ZN0SmujWcvzR/I0f7/hLs+0sxFXkoOTGO8I0FjS6dVz0akWsOHW2otUR/l4U31obLo+EPNxOz9ABhu+pP5Nydwikcl0xFDycRa/KIXJlDeZ9oXKckg1kFBawHSin+9hArtpejD8vDPCoBx/YinN9nBXeQ7t6/nHNuzeLEcev4bF9P5u/qw0mJWVz54UYq8uHDuQn8uDgKXaud5imaTsT6/FrXzAUeYpdkYM0uxzUmkbA9JVgKPMHnPUlhuE5NpnRANBG/5RP17UEs+R6EEKIjUVXjB6raTY9QZmYmaWlp/PTTT4wePTp4/fbbb+fbb79l5cqVR9zTt29f9uzZw8UXX8z111/Pjh07uP7667n55pu577776myntXuEMoqLeOKnH1j8w6+kPfobaO1nIu1hM1+MpSrBzQZ1VQlOVj5c4bhkDp3bFfx64IyvytVbQYqC8/ssEv63J1hPXa9ryiWHuOWxA/h9Ciazjl8Lzn8ObDyowdL5sTx9W3qzXoauApVHbwSWoEHx0DhyLutVHbNfJ/3R37DmSm+REKJjsDmsnPPnSVz+wAWEhTdl49zGHXc9QkdD0zQSExOZO3cuJpOJYcOGkZGRweOPP15vImSz2bDZbK0WU1qkk6cnT2E6iTzkX9dq7bSGkK6mrpH41JcEAXjj7NUJBVRnLzVY8ipqJVN1va6Urm58XgWzJVCm5i7VCoAJDu6zBpIkX9PfGaVmR1rly/AdHrNJaWQ1nBBCHF/e3PY88amxIWm73UyWjo+Px2QykZ1deygpOzub5OTkOu9JSUmhd+/etYbB+vXrR1ZWFh5P6IYdNv+8jc8e/zxk7UP1cQrHG0XX685sanZ8KkqjK9A0v4KqHlmmVjUqaP4jihx5T6MF9CN+EvV285MphBDH7t2HPiBjh/HHa0A7SoSsVivDhg1j2bJlwWuaprFs2bJaQ2U1nXzyyezYsQNNq/41fNu2baSkpGC1Wls95rosmvcVt4z5B+u/3RSS9qFy9+NeTsp7O4+7ZChq+UEifskFX+DvXC3z4diQjyWvepiponPDq78APnkjnsX/icXrCWRVpUUqPy12sn97dW9h+tkmbKdFBE6gr0dFejhlA6LRzIEyVSvdPMlhwTLWjFJMBZ5glqW4/ZScGCfJkBCiw1j06jJm9rmZ31cZf6xPuxoamzVrFpdffjnDhw9n5MiRPPPMM5SWljJz5kwALrvsMtLS0pgzZw4A1113HS+88AK33HILN910E9u3b+eRRx7h5ptvDtlryMvIx2Q24fc1oSuhFRy8ujeeFEdgOAaI+WI/MUsyjptNhC0FHpL+s4u4T/fhTo8gbLsL1ReYB1TRLRJTmQ9rduPHfRzKsvDs7em88WgKfYaUsX5FBO5yFdCJezyZwngn21xxMBUcnfNJeWNbrftz/q8b7q4ReFIDGyyqZT7su4sp7+kMbFug69j2lqCb1eAmjNa9xcQuySBsR1GDK/KEEOJ4o1X+8pqfVWh42+0qEbrgggvIzc3l3nvvJSsriyFDhrB48WKSkgJ7wuzbt6/WjPP09HSWLFnCX//6V0444QTS0tK45ZZb+Pvf/x6ql4DJbKrVQ2W0pLd24E2wUzg+GRSFyJW5bSIJ0hUoHRiDa0IKFZ0jiFydR9TXmdiaeB7a4cwlPsxbCoNfK0DY7uJgW2X9oikcn0JFj0gifj1E9LLMOs9DK8o388vXNSfZKeTck4cWVkDUODfeWDsxX2UccV/cJ/vQwky4Tk3GG2/D+VMOjq0uSgfFUjQyAVtGKVHfZYFJpXBcMt4EO9HLMgmT872EEB2Y2WJ8WtJuVo2FSlNnnTe5vvxi/vvYx3z84mIqSkM0IbZytdIRfw6hQ+ekUzgxLTApWlVQS7x0uX8tik9v8UStYGIq+ed0DraF20+3e9ageLRmtaVTOR2pxoq2xsoEV6op1UdYNKUeIYQ4nsWlxTLjr+fwhxvPxGJt2r5/jZFVY22UMzaSqx+9hMETBnDXWY+EJgi9nj+HkD/cEkgQKld5KX49uJ9Pi7cVYUHx68G5PQoc1VBUMGlqIHk5vExwpZpefxkhhOho5m14ksjoiJC0LdMxDeb3+/n+fz8z9/Z/hzqUNkXxa7Xzs6rvzNYYt/Nr6IfVezQpiN6EY8SaUsZIh79uIYRoCx674kU2/rAlJG1LImSwj59fzAPnP8neTftDHUqbEvvFAaK/zkQtDxyZYSrzU9bH2eJZhK4qmPPdgTPL/IHKzUVeSgdEN7MeKDkhhqJTEvGH1b1Lua5A6aBYXKck4Xcc+1lrx0KvjKesfzSFY5PwRbZM17MQQrSEXxat5a+n3sv67zYb3rYMjRmspLAUk8WE3xuaVWNN4bepqB7tmHe89ttUVK9WexPBw8tYVVSfhqnUR9xngRVs3ngb1oPlLd4ZdHBmb9ydw/HHBJbAh23MJ27RAawHy4KvVbMGdnZWG/jryby6N57OEYGzx4DSfjGkzttaq0z2JT2o6BqJLz6wOq90YAxpr/zewq+o6XJndKW8lxNfUuBMteKTEkl/fEPI4hFCiJr8lavGSgpLDW9bEiGDWe2WwNL5NjJJuaaKrhEUTkihdFAsphIvUV9nEvVDdrPn6lSkhwfqGRKHWuYj6utMon/IrjUPx90pUKbkxMoyyzOJ/i5Qpq7VWy0h+a1taFYTRWMS8YdbiP4uC7MrsLGmOzkM1/gUiofHo3o1nN9lEf3NQUwV1RmRJymMwvHJlA+IARTwaUSuziNmyYEj2kp8bxe6WaFodCK+aCtRPxh3plxdEhbuRVeg+KQEPAlhOH/OCWk8QghRk6oqaJqO1W78Hn+SCBns3FumYA+38585H4Zkv4T6eGNtZPy/gYHhIlXBH2nFVOZHaWYS5HNayJg1EDRAVdAiLJjcfpQaSZA/3MyBW2uXUd16rTKtQdHAVOEn+uvA7qVK1dlhJoUDtw0KXDApaGYVRdNRayRBugr7bxsUWNlVeWP0NweJ+3x/nfOYFE1H8ehEfZcV6G0K8dwcxR9Yfef8MadNxCOEEDV1H9KVC/72B4adcYLhbUsiZDBbmI3pN51F5wFp/H3ig6EOJ0izVk4Xq9olWQHV4w985jcjF9ItamVCUX1N9WgolYeNAmh1lfH6UQxaPh7MAaqWr5uUwKn0Nct4teABqIELClhql1E9fnSTguJvYNVY1VNtpPevrcUjhBAAT34zG0dkWOMFW4FMljaYu9zNwucW8c9Lnw91KLUEh62qEhEdNKupsSO5jqB4tcBRETWSA82qotfo7FHrKmMxoTeSBLXW+WiKXw8cyVEzobGpgV6UqqxJP7KMZlEbTIKaKriSS3pphBAd1K0T7mP5/B8JxdaGkggZbOFzX/DSX99oU8NiAJZ8N2nPbCR8Qz5oOqZiD36HCd3cvE9nc5GXtKc3Ev7bIdB01BIvfpsJ3Vr9rWYq9ZH21EYi1lWX0axKrTI16Qr4HWYKJqaQf056i694Uvw6nZ7YQOQvuZjwE2F2c951ucx8OJv41MAcIkWD9Mc3ELkyB3waSoUPFKXeFWNNoZsUNKuKa2wyeX/ojLfy2BMhhOhodq3bw8MXPsPar9Yb3rYMjRnMU+4JnDXWBleN2feUkPzGdvxhJlS3Ftz8r9n17Csl+e0dVHx9ELPLjbnYd2SZ/aXY39lB/ILdgZVlDfSsZF3dh4o0B1p0YLWX12kh+b1dRxVbfWxZ5SS+v4s7z1pO30FlJCe7YTikdy7nH7f1w5pTjjW7nMT/7ib+472BBM57bL+55F7QnfJukfgSAglQRadwOr0Ymn00hBAilLTKzxt3ucfwtiURMlhEdDj+yvkwjQ0FhYqp/NiStNIBMRROTKWiWyRK5QqsmKUZtVZgBduq49rhUuZtRTcplAyORbObiFydd0zxNWTO5Z1RTTpjzitGPzeBhQX9Kb7ThuVQBbEL9xKxsQDV3TKTuhPe2wmVZ6z5oq1Erj3UIvUKIUR7YzKr+H0aEdHhhrctiZDB/nDTmSR0juft2f9lz4Z9oQ6nxfmirWRd0yc410i3qFhzylHdx5ZcKX6diMpEobWn0mh+hU9K+1OQlRZcIeaNshK+qaBFtz1QCNQVvrEAdJkiJITouEZMGcoFt01j4Cn9DG9bEiGDmUwmxv5xFPZwG3ed9XCow2lxVed3oVZ/rCua3uzVZ3UxMlHQVRVFA73GFKBj3WCyPq1VrxBCtBe3v3mDnDXWURTlFzPv7//mgRlPhDqUVqG4/bVXV+k6/nBzcOl8S6pabdUa52epJd7A0vgaw5ea3VT3ebWq9OUIIcSxuGbQrXzw1Kf4vEfOKW1tkggZ7NOXvmTBk59QUeoOdSitwlzio/MjvxH17UGUCj+W7HLUMh9aC36n+cPN6CaF4hHxZP65L4UTU1s8GYpefpDkf/2OfbsL/BoRv+XjibOhAH67CW+sjUPTO3Pwyl5UpDlatnEhhOhgDmXk86/b3mbtV8Yf/SNDYwbz+/yoqopfa3urxlqKJd9N/Cf7iP+kdeZAVXSNoOjkJMp6R4FZpbxvFJGr8oLHZbQERYfwLYWEbymsdV0HMv7fALzJjloXU97Y3mJtCyFERxWKHiFJhAwWnxYbSIZMKpq/dY+UOF45NhUSvqkQv8NMefcIbFkVLZoE1ad4aBwFk9KCSZDJ5SFmyQGcK3NbvW0hhDieqWYV3a8RmxxtfNuGt9jBTblmIs/+9DAnjOsf6lDarapRMFOZj4iNhVjyKlq9Td2kkHNZL7xJ1VvAO3/Mxrkip0V2lxZCiI5sytWn88bW5+g7spfhbUsiFAL9T+rNtOsnhzoMcTSUGqvhdL3W10IIIY7OxXfPIK1nSkjalkTIYDn785hzybM8eMFToQ7lmOk1Vkvpx/vKKU3H5PIEzhzTddB0vHH2o959WwghRLUret/EK7e+RXlp6/fwH04SIYMteeMbvnn/R/R2PpzijbVR1sdJ5l/6kHFTf9ypx/fKKUWHzg+tI2H+bqyZZdh3F+PYXNgqS/eFEKKjcZd5+N/Tn/HbN5sMb1smSxtM13RUVcHfjnoS3J3Ccac6CF+fHzwSo/C0FDyp4VR0iwBFoaxfNPYDpQ3Xk+bA3Smc8A35mMra36o51avh/DkH5885ta574u1U9HLi2FSAucgbouiEEKL90zTjFxFJImSw9L5paJreps8aq1LRJYJD07tQ0S0SgLw/diX59a04thWR8MEeADwJNjCpWLPK663H3SmcvHO7UNHDGawn6c1thG9xtfpraE2eeDuHzu1CWf/owFwhv07Cf3YQueaQ7BYthBDNoKgKFquZ5K6JhrctQ2MGm/Cnk3l7xwucOmN0qENpVOH4FCq6VG95bnZ5cGwrqlXGmutuMAkCcJ2aHEymANQyX7tPggCKR8ZT1i+6esK0As7VkgQJIURzXXbf//GfA/+i+wldDG9bEqEQSO6ayPBJg0MdRtO0wByYw/OC42dajdJiB7AKIURHNnbGSThjIxsv2AokETLY3i0HmDXuXp68+uVQh9Io2/6SwB/8gVVS/kgLvkhLs+ux16xH1/GHmfBGW1sw0hakVK+A02n4HDNbRuWcKE0PFFaonjR+/GR7QgjR6q4e+FceuuApivKLDW9b0XVdfqdtQFFREVFRUbhcLpxO5zHX9/b9/+XfD33Q5ucHVfHG23CNTcbdKZzIlblErMlFPYp5zt5YG66xSbg7RxD5Sy4Rq3NRjd9JvVHlXSPwxdpwjUvBF20l7uO9RK49VG95X6SFQ9M6UzIiIXBB0wnb6iLp7e2YytvfhHAhhAil2R/dzphpI1qkrqZ+fstk6RBQFAW9nYypWPLcxC/ce+z15LuJ/7h1zh5rSRXdIvEmh+FJdaCbFdxp4Q0mQuZiL1HfHsSSV0Hp4Fg8qeG4u0SghZklERJCiHZAEiGD9RnZE4vVjLu89c/GEs0X/c1BAOI+3INuMzVpObz9QBm2jDJil2TgjbZiLvYGhgGFEEI0WXSCk8590wxvV+YIGWzUlKHMz5wrR2y0UUrlw+TWmrUnUNVKMUuhB8WvyxQhIYRohr/O/Qvv7X+FTr1TDW9bEqEQCIsMI7FzfKjDEEIIIdqETr1TsFibvxinJUgiZLDfV21nZp+befWOd0MdihBCCNEm3Dr+Pm4++R8cOlhgeNuSCBls1aJfydqd03hBIYQQogPZsmIbW3/ZYXi7kgiFgiIzSIQQQoi2oN0lQi+++CJdu3bFbrczatQoVq1a1aT73n//fRRFYfr06a0bYCNOPH0QUQnHvh+REEIIcTzp0r8TPU/sZni77SoRmj9/PrNmzeK+++5j7dq1DB48mMmTJ5OT0/BQ0549e7jtttsYO3asQZHWb9DYfry392Uuvff8UIcihBBCtAkPfXYn8zY8RWK68QuJ2lUi9NRTT3HNNdcwc+ZM+vfvzyuvvILD4eD111+v9x6/38/FF1/M7Nmz6d69u4HR1s/v81NR6g51GEIIIUSbUFZchqZpIWm73SRCHo+HNWvWMHHixOA1VVWZOHEiK1asqPe+Bx54gMTERK666qomteN2uykqKqr1aElrl23ggrRrWfDkJy1arxBCCNFePXLhs1ze6yYO7s42vO12kwjl5eXh9/tJSkqqdT0pKYmsrKw67/nhhx947bXXmDdvXpPbmTNnDlFRUcFHenr6McV9uI3fb6G8uKJF6xRCCCHau+w9uezeYPxRTO0mEWqu4uJiLr30UubNm0d8fNPHHO+8805cLlfwsX///haPTc65FUIIIdqGdnPWWHx8PCaTiezs2t1m2dnZJCcnH1F+586d7Nmzh6lTpwavVY0/ms1mtm7dSo8ePY64z2azYbPZWjj6amOmj+Cnj1ex87djP8hUCCGEOF4MnzSY/qN7G95uu+kRslqtDBs2jGXLlgWvaZrGsmXLGD169BHl+/bty4YNG1i3bl3wMW3aNCZMmMC6detafMirqXoO6cbLax/nhueuDEn7QgghRFvz4upHmbP4bqITogxvu930CAHMmjWLyy+/nOHDhzNy5EieeeYZSktLmTlzJgCXXXYZaWlpzJkzB7vdzsCBA2vdHx0dDXDEdaMV5rjYvmZXSGMQQggh2ooN324mvU8aYeF2w9tuV4nQBRdcQG5uLvfeey9ZWVkMGTKExYsXBydQ79u3D1Vt251cPyxcyUN/ehrN5w91KEIIIUSb8Mqtb/P27AU899PDdOlv7IhNu0qEAG688UZuvPHGOp9bvnx5g/e++eabLR9QM+36bS+6riPzpYUQQohqZUXlZOzIMjwRatvdJ8chRVHQNcmChBBCiMMpITiLUxIhg51+yVhGTRka6jCEEEKINsNkMXHWVadxwrj+hret6LKpTYOKioqIiorC5XLhdLbcYalfv/c9cy55rsXqE0IIIdqrd3a9QHLXpMYLNkNTP7+lRygE9mzazzfv/xDqMIQQQog24dOXviQvMz8kbUsiZLClb3/LNYNmseqLX0MdihBCCNEmfPD0Z1zS9Tq2rzV+axlJhAx2cFc2JrMJzS8jkkIIIQSA5tfw+zRyDxwyvG1JhAymmtTgUR9CCCGEqGYyGZ+WSCJksCnXnM45156B2drutnASQgghWkVETDiX3ns+J54+yPC2ZdVYI1pr1djPn63mnmn/bLH6hBBCiPZqQc5rRMe33GcsyKqxNkvXddYs/Y13H/kw1KEIIYQQbcIrf32THet2h6RtSYQM9slLS7hj8kNs+2VHqEMRQggh2oTl83/kuqG3s+mnrYa3LYmQwVy5RZgssmpMCCGEqOL3BRYRufKKDG9bEiGDma1mNJ+sGhNCCCGqVJ0xZgnBQiJZumSw6Tedha7rfPDUZ5QUlIQ6HCGEECLkUnsm83+3TWPoGScY3rasGmtEa60aW/PVeu6Y9GCL1SeEEEK0Vx8VvkW409GidcqqsTbK5/Wx5M1veObP/wp1KEIIIUSbcN8f/snKRWsJRd+MJEIGW/jsIp648iWy9uSEOhQhhBCiTdjww+/cfc4c1n2z0fC2JREyWHlJBWaLCWRAUgghhAACZ41B4DPSaJIIGSwswo7P6wcl1JEIIYQQbYNaecZYWITd8LZl1ZjBpt98Fs74SN596AMO7pLhMSGEEGLQ2H6cf9s0hkwYaHjbkggZzGK1MPmKCcR3iuWOSQ+FOhwhhBAi5GZ/dHuLrxprKhkaM1hZcTnvPvw/Hrrg6VCHIoQQQrQJN4y4g0XzvsLv9xvetiRCBvvo+S946975lBSUhjoUIYQQok3I3JHF03/+F2uXrje8bUmEDObz+FDN8rYLIYQQVar2D/J6fIa3LZ/IBotKcOL3+lFUWTYmhBBCAJgqOwii4lvuBIemkkTIYNOun8yjS+6mz8ieoQ5FCCGEaBPGX3AyL699jAFj+hjetqwaM5iiKAw7YzBet5d7pv0z1OEIIYQQIfeXp68gOgS9QSA9QobLzyrguevnMXvGk6EORQghhGgTZva5mbfv/y+eCo/hbUsiZLBF85bx2dyl+EIwIUwIIYRoi0oKSnnngQX8umyD4W1LImQwza+hqvK2CyGEEIfzV545ZiSZI2SwlO5J+H1+VJOC5peTV4UQQgjVpKIokNApzvi2DW+xgzvjsnHM2/AUI88aGupQhBBCiDZhxl/P4d97XqbX0O6Gty2JUAh0HZDOhD+dHOowhBBCiDZh6vWTiE+NDUnbkggZLHNnFvdMe5Q5lzwX6lCEEEKINuGKPrfw1DUvU1pUZnjbkggZbNm/v2florWhDkMIIYRoM/xeP1+89jXrv91seNvtLhF68cUX6dq1K3a7nVGjRrFq1ap6y86bN4+xY8cSExNDTEwMEydObLC8EXRdl+M1hBBCiDpUnTlmpHaVCM2fP59Zs2Zx3333sXbtWgYPHszkyZPJycmps/zy5cu58MIL+eabb1ixYgXp6elMmjSJjIwMgyOv1n1wFxRFQZFcSAghhAhyOMNI65lseLuKHor06yiNGjWKESNG8MILLwCgaRrp6encdNNN3HHHHY3e7/f7iYmJ4YUXXuCyyy6rs4zb7cbtdge/LioqIj09HZfLhdPZMtt/F2QX8uqd7/Llm8tbpD4hhBCiPfvLU5cz5ZqJhIXbW6zOoqIioqKiGv38bjc9Qh6PhzVr1jBx4sTgNVVVmThxIitWrGhSHWVlZXi9XmJj65+ZPmfOHKKiooKP9PT0Y479cNGJUSFZIiiEEEK0RYNO7deiSVBztJtEKC8vD7/fT1JSUq3rSUlJZGVlNamOv//976SmptZKpg5355134nK5go/9+/cfU9yH2/nbHq4b+jdevPn1Fq1XCCGEaK9uGH4Hd571MIW5LsPb7jA7Sz/66KO8//77LF++HLu9/qzTZrNhs9laLY4fF65i14Z9rVa/EEII0R6tXrKOzSu2MWbaCEPbbTeJUHx8PCaTiezs7FrXs7OzSU5ueHLVE088waOPPspXX33FCSec0JphNomiKOi0m6lZQgghxHGr3QyNWa1Whg0bxrJly4LXNE1j2bJljB49ut77HnvsMR588EEWL17M8OHDjQi1QQPH9iMsIjTjoEIIIURbldQlgW6DOhvebrtJhABmzZrFvHnzeOutt9iyZQvXXXcdpaWlzJw5E4DLLruMO++8M1j+n//8J/fccw+vv/46Xbt2JSsri6ysLEpKSkL1Ehh6+iDmZ87l/FunhSwGIYQQoi256z+38NaO50npltR44RbWbobGAC644AJyc3O59957ycrKYsiQISxevDg4gXrfvn2oanVu9/LLL+PxeJgxY0ateu677z7uv/9+I0OvxWwxYw9vvXlIQgghRHviiHTU+vw2UrvaRygUmroPQVNt/GELD/zfUxRkFR57cEIIIcRxosuAdB5ZdBeJ6fEtUp8h+wjl5eVRVFR0LFV0OGu/2oArV94zIYQQoqa9m/az49fdhrfb7ESosLCQG264gfj4eJKSkoiJiSE5OZk777yTsjLjT41tl6QTTgghhGgTmjVHKD8/n9GjR5ORkcHFF19Mv379ANi8eTPPP/88S5cu5YcffmD9+vX8/PPP3Hzzza0SdHs2csqJLHv3OzJ3ZjdeWAghhOgg+o3uTZ8RPQ1vt1mJ0AMPPIDVamXnzp1H7PD8wAMPMGnSJC699FK+/PJLnnvuuRYN9HjRd2Qv3tj6HAue+IRX73g31OEIIYQQIffk8tmccGr/kLTdrKGxjz76iCeeeOKIJAggOTmZxx57jP/973/MmjWLyy+/vMWCPN6UF5eTsy8v1GEIIYQQbcKBbQfxerwhabtZq8ZsNhs7d+6kU6dOdT5/4MABunbtis/na7EAQ62lV42tXLSWB89/Ene5pwWiE0IIIY4P0QlOnv7hITr1SmmR+lpl1Vh8fDx79uyp9/ndu3eTmJjYnCo7nK2rduD1HD+JohBCCNESCnOL2LflgOHtNisRmjx5Mv/4xz/weI7szXC73dxzzz2ceeaZLRbc8Uq2bhJCCCHahmZPlh4+fDi9evXihhtuoG/fvui6zpYtW3jppZdwu928/fbbrRXrcWHcBWNYt3wjG77bEupQhBBCiLZBgXEzRjPwlL7GN93cnaV3797N9ddfz5dffhns2VAUhTPOOIMXXniBnj2NX/rWmlp6jlCVL15bxlPXvNJi9QkhhBDt1aubnqZLv7rnHx+tpn5+N/ussW7duvHFF19QUFDA9u3bAejZsyexsbFHH20Hk7UnhzVL14c6DCGEEKJN+P6Dn4m5YTLO2EjD25azxhrR0j1Cy+f/yCMXPwuArslbL4QQQiiqgsVq5vmf59D9hC4tUqchZ42J5tu3JQNVVSQJEkIIISrpmo6nwkvWnhzD25ZEyGCKqqBJEiSEEEIcQVWNT0skETLY5CvGc9qFp6CYlFCHIoQQQrQJNoeV8/56DoMnDDC8bZkj1IjWWjX2/Yc/88CMJ1usPiGEEKK9+s+BfxGf2rKLrmSOUBu2+edtfPLSklCHIYQQQrQJ7z70ARk7DoakbUmEDLZo3lfcMuYfrP92U6hDEUIIIdqERa8uY2afm/l91XbD25ZEyGB5GfmYzCY0v4xICiGEEACaT0PXIT+r0PC2JREymMlsQtO0UIchhBBCtDlmS7P3eT72Ng1vsYObev0kykvK+fjFxVSUukMdjhBCCBFycWmxzPjrOZx4+kDD25ZVY41orVVjvyz5lbvOeqTF6hNCCCHaqw/z3yAyOqJF65RVY22U3+/n+//9zNzb/x3qUIQQQog24bErXmTjD1tC0rYkQgb7+PnFPHD+k+zdtD/UoQghhBBtwi+L1vLXU+9l/XebDW9bEiGDlRSWYrKY5KwxIYQQopLfF1hEVFJYanjbkggZzGq34Pf5QU7YEEIIIQBQ1cCHotVuNbxtWTVmsHNvmYI93M5/5nwYkv0ShBBCiLam+5CuXPC3PzDsjBMMb1sSIYPZwmxMv+ksOg9I4+8THwx1OEIIIUTIPfnNbByRYSFpW4bGDOYud7PwuUX889LnQx2KEEII0SbcOuE+ls//kVDs6CM9QgZb+NwXvHbXu6EOQwghhGgzdq3bw8MXPkNkbATDzhhsaNvSI2QwT7kHk9kEsmhMCCGEAECrXEntLvcY3rYkQgaLiA7H7/WjqLJsTAghhAAwmQPpSER0uOFtSyJksD/cdCb3fnAbXQakhzoUIYQQok0YMWUoT3/3ACec2t/wtmWOkMFMJhNj/zgKe7iNu856ONThCCGEECF3+5s3tPhZY03V7nqEXnzxRbp27YrdbmfUqFGsWrWqwfILFiygb9++2O12Bg0axKJFiwyKtG5F+cXM+/u/eWDGEyGNQwghhGgrrhl0Kx889Sk+r8/wtttVIjR//nxmzZrFfffdx9q1axk8eDCTJ08mJyenzvI//fQTF154IVdddRW//vor06dPZ/r06WzcuNHgyKt9+tKXLHjyEypK3SGLQQghhGhLDmXk86/b3mbtVxsMb7tdJUJPPfUU11xzDTNnzqR///688sorOBwOXn/99TrLP/vss5x55pn87W9/o1+/fjz44IMMHTqUF154weDIq/l9flS1Xb3tQgghhCGkR6gBHo+HNWvWMHHixOA1VVWZOHEiK1asqPOeFStW1CoPMHny5HrLA7jdboqKimo9WlJ8WmwgGTK1m7deCCGEaFWqWUVRIDY52vi2DW/xKOXl5eH3+0lKSqp1PSkpiaysrDrvycrKalZ5gDlz5hAVFRV8pKe37OquKddM5NmfHuaEccbPjBdCCCHaoilXn84bW5+j78hehrfdbhIho9x55524XK7gY//+/S3eRv+TejPt+sktXq8QQgjRHl189wzSeqaEpO12s3w+Pj4ek8lEdnZ2revZ2dkkJyfXeU9ycnKzygPYbDZsNtuxB1yPnP15vHbnu3wz/8dWa0MIIYRoT67ofRPn/HkSlz9wAWHhdkPbbjc9QlarlWHDhrFs2bLgNU3TWLZsGaNHj67zntGjR9cqD7B06dJ6yxthyRvf8M37P6L75YwNIYQQAsBd5uF/T3/Gb99sMrztdtMjBDBr1iwuv/xyhg8fzsiRI3nmmWcoLS1l5syZAFx22WWkpaUxZ84cAG655RbGjRvHk08+ydlnn83777/P6tWrmTt3bsheg67pqKqCX5NESAghhKhJ0zTD22xXidAFF1xAbm4u9957L1lZWQwZMoTFixcHJ0Tv27ev1tL0MWPG8N5773H33Xdz11130atXLz766CMGDhwYqpdAet80NE1HURV0SYaEEEIIFFXBYjWT3DXR+LZ1XZdP4wYUFRURFRWFy+XC6XS2SJ1Ze3J49Y53+fa/P7VIfUIIIUR7dvnsC5h2w2ScsZEtVmdTP7/bzRyh40ly10SGTxoc6jCEEEKINmHsjJNaNAlqDkmEDLZ3ywFmjbuXJ69+OdShCCGEEG3C1QP/ykMXPEVRfrHhbUsiZLBv5//Exh9/D3UYQgghRNuhw7cLVrDxB+M/HyURCgFFUUIdghBCCCGQRMhwfUb2xGJtV4v1hBBCiFYXneCkc980w9uVRMhgo6YMZX7mXDliQwghhKj017l/4b39r9Cpd6rhbUsiFAJhkWEkdo4PdRhCCCFEm9CpdwoWqyUkbUsiZLDfV21nZp+befWOd0MdihBCCNEm3Dr+Pm4++R8cOlhgeNuSCBls1aJfydqdE+owhBBCiDZly4ptbP1lh+HtSiIUCrJqTAghhGgTJBEy2ImnDyIqoWWO6hBCCCGOF136d6Lnid0Mb1cSIYMNGtuP9/a+zKX3nh/qUIQQQog24aHP7mTehqdITDd+IZEkQiHg9/mpKHWHOgwhhBCiTSgrLkPTtJC0LYmQwdYu28AFadey4MlPQh2KEEII0SY8cuGzXN7rJg7uzja8bUmEDLbx+y2UF1eEOgwhhBCiTcnek8vuDfsMb1cSoRDQdT3UIQghhBACSYQMN2b6CLoP6hzqMIQQQog2ZfikwfQf3dvwdhVduicaVFRURFRUFC6XC6ezZZa967rOxy8u5sWbX2+R+oQQQoj27MXVj9J7aI8WrbOpn9/SIxQChTkutq/ZFeowhBBCiDZhw7ebKS8NzfxZSYQM9sPClVzY+S8sfXt5qEMRQggh2oRXbn2bP6Vdy97N+w1vWxIhg+36bS+6riMDkkIIIUS1sqJyMnZkGd6uJEIGUxQFXZMsSAghhDicEoKzOCURMtjpl4xl1JShoQ5DCCGEaDNMFhNnXXUaJ4zrb3jbsmqsEa2xagzg6/e+Z84lz7VYfUIIIUR79c6uF0jumtSidcqqsTZsz6b9fPP+D6EOQwghhGgTPn3pS/Iy80PStiRCBlv69rdcM2gWq774NdShCCGEEG3CB09/xiVdr2P7WuO3lpFEyGAHd2VjMpvQ/DIiKYQQQgBofg2/TyP3wCHD2zYb3mIHp5pUNE0LdRhCCNFh6UBFt0hc45Mp7xVFxK+HiFqeiTXX3SrtVXQOxzUuhbJ+0YSvzyfqm4PYsstbpa32zmQyvn9GEiGDTbnmdPIPFvDF61/j8/hCHY4QQnQ4rlOTOfTHrqDpoCoUjUwgdtF+dKClF28XjUwg96Ie4NfBpFA8IoGYxQdapa32LCImnHNvmsKJpw8yvG1JhAwWmxzDzS9dw8gpJ3LPtH+GOhwhhOhw/FFWFL+ObqpMRRQwlbbOL6b+KGswCQLApGAu8koSdJg3tj5HdHzLrcxuDpkjZDBd11mz9DfefeTDUIcihBAdk19HPywTabVZm5p+xCetLp+8R3jlr2+yY93ukLQtfx0G++SlJdwx+SG2/bIj1KEIIUSHFP3tQaKWH0Rx+wEwlfsoHRzbKmNVzp+yif4qE7U80OOklnopaaW22rPl83/kuqG3s+mnrYa3LUNjBnPlFmGymPB7/aEORQghOiRTqY/4T/YRu+QA7rRw7HtKUFr46KOqHidTuZ+4z/cT82UG7vRw7HtLUGTV8BH8vsAiIldekeFtSyJkMLPVjOaTVWNCCBFqqlsjbFdxi9bpi7biGpuM6+QkFJ9G1PdZRH2bhanC3+JtHU8URUHXdSxW49MSSYQMNv2ms9B1nQ+e+oySgpJQhyOEEKIF7f/7CWg2E6gKOib8DjOmChkBaExqz2T+77ZpDD3jBMPbbjdzhPLz87n44otxOp1ER0dz1VVXUVJSfyKRn5/PTTfdRJ8+fQgLC6Nz587cfPPNuFwuA6M+kiMyjIv/cR53z/9rSOMQQgjR8jR7IAmqorr96KpMCGrMi788ypRrJmIymQxvu90kQhdffDGbNm1i6dKlfPbZZ3z33Xdce+219ZbPzMwkMzOTJ554go0bN/Lmm2+yePFirrrqKgOjPpLP62PJm9/wzJ//FdI4hBBCtDzFpweWy1fSzWpg5ViwQOV1yY1que8P/2TlorWE4hz4dnH6/JYtW+jfvz+//PILw4cPB2Dx4sVMmTKFAwcOkJqa2qR6FixYwCWXXEJpaSlmc92jgm63G7e7enfRoqIi0tPTW+z0+QVPfMLc298J/DC0+XdeCCFEc7jTHBROSKFkaDxoOpErsoldkoGp3I/i1/Ek2ikZEoclr4KItYdk8Vgl1aSi+TUe++peTjytZTZVbOrp8+1ijtCKFSuIjo4OJkEAEydORFVVVq5cybnnntukeqrejPqSIIA5c+Ywe/bsY465PuUlFZgtJnyyakwIIY47towykv69k/iFe0HTMZUH/q2v6Ozg0DldqOgZCWpgMMZUUIFjd2kow20zNH9gEVF5SYXhbbeLRCgrK4vExMRa18xmM7GxsWRlZTWpjry8PB588MEGh9MA7rzzTmbNmhX8uqpHqKWERdgDSZD0CAkhxHHr8J2qbRnlpL20pVaPUJgkQUFVPUJhEXbj2za8xRruuOMOFEVp8PH7778fcztFRUWcffbZ9O/fn/vvv7/BsjabDafTWevRkqbffBa3vX49Kd0SGy8shBDiuFC1d5A1t4LYLzOI+FWGxWoaNLYfD312J0MmDDS87ZD2CN16661cccUVDZbp3r07ycnJ5OTk1Lru8/nIz88nOTm5wfuLi4s588wziYyMZOHChVgslmMN+5hYrBYmXzGB+E6x3DHpoZDGIoQQwmCVIwGKjAjUMvuj2wl3OkLSdkgToYSEBBISEhotN3r0aAoLC1mzZg3Dhg0D4Ouvv0bTNEaNGlXvfUVFRUyePBmbzcYnn3yC3W58l9vhyorLWfjcIj546tNQhyKEECGhK4FEoOr/LVo3lQuz2vP0A1UBTW+V96etumHEHfzfbdOYfOUEw5fQt4vl8/369ePMM8/kmmuuYdWqVfz444/ceOON/OlPfwquGMvIyKBv376sWrUKCCRBkyZNorS0lNdee42ioiKysrLIysrC7w/dROWPnv+Ct+6dT0mBjA0LIToWv92ErkDpCbFkXdaTopOTWixX0cwKvkgL+VM6kXNBdzzxof/Ft7k0a+AjubxHJNkXd6fw9NQOswdR5o4snv7zv1i7dL3hbbeLydIA7777LjfeeCOnn346qqpy3nnn8dxzzwWf93q9bN26lbKyMgDWrl3LypUrAejZs2etunbv3k3Xrl0Ni70mn8eHalblrDEhRIdT1jsS19gU3D2coCqUnhiH47dDWIp9jd/ciJyLe+JOD8dXmQBpNhPJb28/5nrr4kmyo3g1LPmelq030c6hqZ1xd3eiWwJJkW1XEY5dx/8pBFU7+Xg9x/690FztJhGKjY3lvffeq/f5rl271tqIafz48SHZmKkxUQlO/F4/iqqgt/Ahf0II0ZZFbCgkcn0hvmgrZT2d2DLLWiQJAkh+azu6AmV9otAcZsLX57dIvTWV9oumcFIaFd0iQdcJ/zWf+I/2YC7ytkj9towy0l7+Hb/DTGn/KCz5HsI6QBIEYDKr+H0aUfEtu0CpKdpNInS8mHb9ZDr1TuHN++bz+8+t89uKEEK0RVXzXcyFHpyr81qlfsfvgWOUWnpASVcg65o+NRpTsOSWYypumSQIqt8fU5mPyNWHUDrGqBgA4y84mRm3TqXnkG6Gty2JkMEURWHYGYPxur3cM+2foQ5HCCGOK62aOxw2X0fRdFAUaIXRBwXa72Tvo/CXp68gOgS9QdBOJksfT/KzCnju+nnMnvFkqEMRQgjRDGqxN5D0VCYovmgriqZ3mAnNrWlmn5t5+/7/4qlo2XlXTSGJkMEWzVvGZ3OX4gvBhDAhhBBHR9Gh88PriPtoL/g00KF4dBIH/t8AyntEhjq8dq+koJR3HljAr8s2GN62JEIG0/waqipvuxCibfAk2ik5IRbN0n57NXQlMJG5onN4g2XK+kZR0SXiqEecTBV+or/NIurHbOy7i0HXcXeNxHVK0lHW2DAdKO/ppLyns8OMkvkrzxwzkswRMlhK9yT8Pj+qSUHzd5RvbSFEW+NOc3DonM6U94sGQC31kvTWdhzbikIbWDO5TkmiYGIa/mgrAI4N+ST8dxfmGqvRXCcnUTgxFV+MLVBmYwEJ83dhPsqJzvEf7QXAk2jDH2nFvqv4GF/FkYqHxlFwVie8CWFAYBl90r93tPiS/bZCNakoCiR0ijO+bcNb7ODOuGwc8zY8xcizhoY6FCFEB1Z4eirlfaKCX5tKfe0uCdJsJvJmdMMfVX10UtjOIkwl1UmQZlHJO78bvspECcC+qwhTybGv9rLmuLHvLG6V3Z9z/9Qdb41NIe37SjAfp0kQwIy/nsO/97xMr6HdDW9bEqEQ6DognQl/OjnUYQghOjBdUWovsWqHHdR61SdYzXXm+mFfK3WUqevro9RqA4qKctjrUlp5SVxoTb1+EvGpsSFpWxIhg2XuzOKeaY8y55LnGi8shBCtxJpVFvig9eug6/jDTfgd5naVD6keDVOBO/CFpoOm40l2BP5cSfFpmPNrl/EmhdUq01qqVpPp1EjamsiSFTglIRhzYgscGVKZSOkE8qq25Io+t/DUNS9TWlRmeNsyR8hgy/79PSsXrQ11GEKIDi52SQbhGwooHJeMp1M4kStzUXxau+p0UPw6XR5aR8mQWFynJGMq9RK5pvZGjYoGnavKjE3GVOYjohU2czycOyUMf6QV1/hkPIlhxH6xn8g1h5p8f6enNlI2IIbCU5MBcP6UfUy9du6UMDSHGde4FCo6hxOzNJOoH7OPvsIW5vf6+eK1rxk9bQSjpw43tG1JhAym67ocryGEaBNsmWUk/WdXqMM4JopfJ3LNoQaTDEXTiVx7iMi1TU9E6qNZVEpOjEP1+AlfXxDYVLEOZf1j8KQ5KOsdBWaVxOl2pgzP4eelUWTssjXajqJD+MYCwjcWHHPMAOU9o3CnOyjrG41uVSkdENOmEqEqoTgaSxIhg3Uf3AVFUVprM1IhhBCtpOCMNApOT0G3mUBRsO8sIunN7XWuPotelokCDBnk48YXshje6xC6Dtfed5Cnbu3El+/Hohs4PhX9fRY6oP1vD36nFWtuRWA6lWERNM7hDCOtZ7Lh7cocIYOdcu4o/rPvFc64fHyoQxFCCNFEugL5Z6ej283BScxh21z1rj6rSjDGn3aIoT0CPVFVc5+/WmBsElQzJpNbw5pbUSvGtuAvT13O+xlz6dI/3fC2JREKgejEqJAsERRCCNHCmpBNSO9/4wad2o+w8BaYEH4UJBEy2M7f9nDd0L/x4s2vhzoUIYRoXUpgtVTVKqWmdoJUlateHt+y8VS10axOGR3sOyv3WaqcF+TuEoFuUqtfHzVir/z/tnVheN0KmgaaFkiKBo4qaYlXc1y5Yfgd3HnWwxTmugxvW+YIGezHhavYtWFfqMMQQohWV9o3Cm9CGK5Tk9FtJuIX7CZifX6D97iTw/DFWCkZlkDJ4BjCdpeQ/OpWVM+xH71Q2jsKX5wN16nJ+J1WYj/eS9TK3CbdqwCpz2/G3TWCg1f1QYuwUNY/hr0PDCVyZS6O3wspGRxLybB4rJllJL+6FXOJjzXfOrlwyAAmXZDPiNOK+fGLKH5f6zjm13I8Wr1kHZtXbGPMtBGGtiuJUAgoioLernbrEEKI5vMm2PEmheGPtKCbVXxR1kbv0ewmvMkOPEl2sJjwJtjRzQpUbqqsK1A6MIaKbpFE/HoI+/5SfNFWikYlYCr1EflLLqq77qTJF2/DmxiGL9qKbjXV2m26LroCZf2iKe8dRfhvh7DvLsGc70b1amiVPT6azYQ30Y6nIAxvYhi6RcUXZ0O3Vg+4lJWY+Oi1BD56LaFpb5wwlCRCBhs4th9hEXZKXcZvGiWEEEaK+j6w903cR3vRTQqmCn+j94TtKcG+t4Tobw7iDzehlvmD++eU9XKSc3EP/NE20HRcp6WilnjRHJUfZQqUDogm+c3tdSZDzh9zAIj9ZB+6VcVUXn88FV0jyL60J744e6Ct8SmBtsLMwUkltr0lJL29HcshN7oC0d9m4XeYUCv8YPzZoe1eUpcEug3qbHi7MkfIYENPH8T8zLmcf+u0UIcihBCtStEDQ0qqV2tSElTzPgBTqT9YB0DpoFj8zspenMpdm7UIS+DPauBICsfvLpR6htGUyofq1xtMggBK+8cED2mt1Zap+ugLx+aC4K7VwZjL/Cha21qR1R7c9Z9beGvH86R0SzK8bUmEQsBsMWMPb3xDLSGEEEdBspB2xxHpQFVDk5JIImSwjT9s4cLOf+GdBxaEOhQhhGhXHFsKUcsrT5avXLmlVPU0VX5d1jc6MHxF9QoxrXK+TnNWiTm2uTCVBvYIUivHuRwmD6CjVI7VlfeOwh9haXKdVe1rVrVNnvdVdSaaTvV7ZpS7z5nDNSfcSs7+1j/+5HCKHor9rNuRoqIioqKicLlcOJ3OY67v7fv/y7sP/w/NLwPIQgjRXLpJoXhoXHCydNj2IryJdjJuGYAWXpmU+DQi1h0ibEcxJSfGUt47CktuBanPbsJc6mt6W6pCwgVhdPmThcmddjM2eT/7S51c9PVUsisiAoX8GjFfZhC7JKPBujwJdip6RFI6KJayftGYC9ykvrgFS9WBsG1AyaAYvAl2ik5OwhdjI2JVLknvG3sEy+yPbm+xVWNN/fyWydKhILmnEEIcFcWv4/wlD+cv1T0H1pwKEv67C298GEWnBD7ES4YnUDK8epWW4tZQmvlvr25S8FrMlHitlPgsaLqCf5+HmP/uwadH4jo5Cb/TWu+cpCqaWaF4RDyFkzpVx+PVgr1YzYmnZGgcpf1jCN9cQMTaQyj+lvs8Ubwaqtsf2KpA11HdTZ/X1Z5JImSwkVNOZNm735G5s+0ddieEEO1V+PoCoABLdjnZl/cCS9W4mE7Ky1twbC9q1lBUWd8osi/vxW67CfWAzqL93en82mYsG4tRTCVE6SVEfXMwMHm6gWSkvKeTrJm90RymwC/BikLSG9uI+C2/WfFUdI3g4NWB/YvQdEpPjAOPRuRvDe/L1ByO312gQtSPOWhmBdVn7C/t/Ub3ps+Inoa2CTJHyHB9R/bija3PcfWjF4c6FCGEOG4oeuBR0dMZSE6qrns1HNuLgmWaqry7E63ycFWNwMQZy8ZiAHQ/wZVhil9vcG52RbdItLBAPVWrzcI3FDQ7noquEdXbBFSuYgvfUtj0CppAIfC6AMOToCeXz+a5Hx8mLiXG0HZBEqGQKC8uJ2ef8RPChBBCtGNtbHJ1Szqw7SBeT90H2LY2SYQMtnLRWi5IvZZPXloS6lCEEOK4UdV/EbalILChIYCmo1tVSgbF1LuXf9XwlDfaim5SgmeGhW0tRC2rsUJNDUzSbmo/iV75CNtWGFx9VjUnqHh4fJPi0SxKsJxjcyG2faVH1nOcJEdPX/sKF6X/hQPbDxretswRMtjWVTvwepq+akEIIUTjCk9LwZvsoOTEOHSLim13MY6tLiLWHcKaVV7nPRXp4ZT1j6Z0cByeVAdqqY/I1bloNhMlQ+PRrSrWfSWEby4k/Ld8bAebfiKAa2wynpQwSobFo9tMWDJLiVhfQPjGfGwH6q7HnWSndEgcZQNicHeOQKnwkfbMJmxZ5VhzKuj09MZAzANicGwuwF6VGB0nCnOL2LflAJ16pRjariRCISA7FgghRMuy7y7G7PLiSQ7D57QSvfwgEY1MJDaV+Qjb6kJzmPFGW7DvLSHsdxea3YQnOQx310g0h5myPlGo5T5MhW48XSJwnZKM4vET/V0Wtj0ltUasdKC8TxQFk9MCy/kVMBV7ifoui6ifc6vL9HYG6tF0or7Lwr6rGLXCj2OrC92i4o21Ycssq+5Nqnqd+0ux768/AfI7TBSNTqJ0YGBlmfPHbExlHWP119GSRMhg4y4Yw7rlG9nw3ZZQhyKEEMeNsD0l6HtLiVyTFxhOasKQkeWQG8shN/Y9JcQt3ItCYO8gADSd7Euj8EZF4I3RqOgSwaE/dAlMVNb0QDZjVkl6Yxs1x7kyZg3E3TkiUEYBx8YCkt/YVmupfMYtA3B3iwysNlNAt6okv7oNi8uLxeXFtreE2M/2B15Cc1a69XKSdW1fdJMCCri7RGDdV0r4VlfTKwkVBcbNGM3AU/oa3rQkQgbr0q8TTy1/gC9eW8ZT17wS6nCEEOL4oBPcJ0ip/LqpauYamsVC0cAe5J8yCD3HUf2EyQPhBeBwoaiBpVXWjNLAzTXacqeHB/5QmVBZM0tB12utEHN3rixjqipTVmt/uVqryZrxOjwpjkASVJXMKWDfV9L0CkLo1Y1P06Vfp8YLtgKZLB0CWXtyWLN0fajDEEKIDuzIDKO0ayq7rzufvNNGolnDaj/pt6AXJaJn90SvqExkUI6sRuewTXOPssxRUHS93a4s+/6DnynKLw5J25IIGWz5/B+5rOeNfPfBilCHIoQQbYY31oY71dFIGWutMroKFZ3C8YeZ6r3HZNbpdUIZkdHVi1QSUj10H1B7AnVp11QyZ0xEN5tr7flTrfLsel1Bz++EXhFOeU8nfmfts8biP9yDqbh6Xk/JsDhKB9RetRa/cC+mouoy5T0i8cVYG3ztPqcFdydHg/lS+Pp8wtflVw/DaTolw+ODZ64B+CLMVHRytLnVZm/P/i8Xdvozu9bvNbxtGRoz2L4tGaiqgt8nZ40JIUTuuV3wpDoCGyEqClFfZxL/yb5aZfKmd8aTGk55r0AZS1YZ9t0llA6KCey07NPo8uCvmF3VycUJY4qZcG4hoycVEZPgw+NWWLHESYTTz4mnlqCqsOjdWJ79Wzp+m5WD0ycANYaV6qUEenNyUkh67XvMFbUnM0f9kI3zpxz2/20Q3hQHvjg72Vf3wbHuEClvbg+U+TEb54psygbEgF/HsaWw3s0V889Ixd0lgrL+MaAqhG0uIHXu1jrLml1ekt/aji/aSlm/aMK2uoJnmRWcloK7SwSlA2PBpGDfUUTaC5sbea3G0TUdT4WXrD05dD+hi6Ftt5tEKD8/n5tuuolPP/0UVVU577zzePbZZ4mIiGj0Xl3XmTJlCosXL2bhwoVMnz699QOuh6IqaM08X0YIIdoTzWaiaFQCRScnYS50E7U8K/BhX0fZ6O+y8MbacHk0/OFmwjceudIr6vtsvDE2FI+GL9JC9PdZ2HcUYTlUQdHIBBzbXKiHHaaascvGe08ncXCPjTMuLeBHbzfetg4kSnNzZeZ6uhVm8/1nUQAUDeyBbjHX0QtUD0VBN5ko6d+D6LVHLnxRNJ2U17biD7dQOC6Z0sGxVPSIZM/9JxLxWz7OH7Op6BKB69RkFA00u4mIXw/VmQxF/HoIx+8u1AqNkiGxuDtHsOf+EwnfUEDUtwex5h15aKu50INzRU6ta+Hr83FsdaG6Nco7hxO5MueI+9oCVTV+oKrdJEIXX3wxBw8eZOnSpXi9XmbOnMm1117Le++91+i9zzzzDEpTv8Fb2eQrxpOx/SBfv/8DegselieEEG2B325i370nBo6VAHwJdmz7Sus9DsJyyI2lwBM8BkOvo0cmUMaNY0d1GUXTif4qk+ivMoEjp8YcygoMNS2Ym8hjSWfid1oCg1sKbHtcJWHBblSTjg64hvZDUXQaPizjMDoUDutH1Notdd5lyQusSAvfWEDp0Hi0yEA8rlOScZ2aHAik8pfi0kGxRK49VGcz1jw3KG58vx2iZHg8WkQgUSgak3REstOQQD2Q+N7OwPBaG5sYY3NYOefPkxg8YYDhbbeLRGjLli0sXryYX375heHDhwPw/PPPM2XKFJ544glSU1PrvXfdunU8+eSTrF69mpQUYzdpqkti5wTueOdmTj53JA/MeDLU4QghRIvS7KbqM7EI7JRsOVSBrlafY3XkTTVWTNXXY17j3qoyTUlb/IqK3xlIQqrmKJsPVaCrCpoftDAb3hhnE2o6jKrgjXGi2W2YKo7slalq0BdnDyyTrzr/rMY5aFXDcJZDFehKA2eP6eCLswV3uK6qx5JX0byYK+tXoNb72Ra8ue154lNjQ9J2G8sJ67ZixQqio6ODSRDAxIkTUVWVlStX1ntfWVkZF110ES+++CLJyclNasvtdlNUVFTr0dI2/7xNjtgQQhyXqpaw15zVq7fQqqijUtXu4RvZVn6tWWpPdm4uzdrI/U1YyaWrTXh/NI6oR1eVNjfp+Wg9v/4X9hQWhKTtdpEIZWVlkZiYWOua2WwmNjaWrKyseu/761//ypgxY/jDH/7Q5LbmzJlDVFRU8JGenn7Ucddl0byvuGXMP1j/7aYWrVcIIUIp+Dnu1wnbXFDzSuDk9DBT8IrfYaJ0QDTeONsxteV3mCgZEI033l5vWdWrkfjODiw51b0n7s4R+CMslc8f20GfqscbjEezqZQMjMaTXL30PvLnHJw/ZqN46++C8aQ4Gl01Frk6j6jvslA81btE51zas3rfonbKk2gn+5IevLd9E6e//Tq/ZXWws8buuOMO/vnPfzZYZsuWo9uB+ZNPPuHrr7/m119/bdZ9d955J7NmzQp+XVRU1KLJUF5GPiazCb9PtjwXQhw/SobEUjwqMbCyyxz4HTvpjW1YM8uw5gaSkJITYiganVRdRtPpct9azMXNS0bK+kdRdEoy5b2i0C0q6DqdH/wVS76nzvKRa/KIWJNHRbcITOX+WmePqeVuLAVFeKMim7BirAZNx+IqRq1wU9E1gsIz0ijv6US3mUDXSXtiA/aMMswlPhL+t4fwjfkcvK5/rSriPthN2O5ibBmNn2FmKvMRv3Av4esOkXnLwMD7MCCGsgExpLywCceO0OzBc7TyJ6VR3ieKiu6RgflSlT10uWXGn58W0kTo1ltv5YorrmiwTPfu3UlOTiYnp/akMJ/PR35+fr1DXl9//TU7d+4kOjq61vXzzjuPsWPHsnz58jrvs9ls2GxH91tKU5jMJjStjQ3OCiHEMXJsLyJiQwHFI+IpOTGOsK0uwn/LrzWaE7azmPBNhRQPj6fkxFjCthdjKml+j4x9bymOrdsoOTGOgtNS8aY62H/7CZhKfER/nUnkqlxUX+2xJgUI2x3YZVlXoKxvNK7xyZT3dGLZlgdKZPOCUCB6TWCitDW7nOTXtlI6KJaC01LxdIng4A39A+eRfZNJ5E+52PaW0n3Wz5QOjKXwtFTcXcIpmJJOoVcjavlBLDnlFI9OoqxfNI5NBUQvy8S+t+SIUTVbZhndZ/1MWf8YXCclYssqw76nfeweXVPUD9lE/ZCF65Rkik5Owh8V6BEzq/XvCdVaFL0dnAC6ZcsW+vfvz+rVqxk2bBgAX375JWeeeSYHDhyoc7J0VlYWeXl5ta4NGjSIZ599lqlTp9KtW7cmtV1UVERUVBQulwun8ygm1B1eX34x/33sYz5+cTEVpfVMsBNCiHaqatJvQ5N/m1KmKfxWlb0PDkO3qsFeheivMoj7/ECD9xVMSCH/D11QND0wz8YNHOwR2EyxKb1Cmobi89Pt5QWY3NW9ULqqsOeBoWjhlUvxdXD+mEXCB3tqldl7/4n4Iy3BMuiBSdBV8aDpdJn9KyaXp97pRVUr53Ta7WbSQOB7QLeolD83niuHj+CywSdiNbVMMtTUz+92MUeoX79+nHnmmVxzzTWsWrWKH3/8kRtvvJE//elPwSQoIyODvn37smrVKgCSk5MZOHBgrQdA586dm5wEtQZnbCRXP3oJ935wa8hiEEKI1lKV2DSU4DSlTJOYlMBQVNX2KIqCqcQXOG+rAVqEBcWvB5fqKyaNlI++AfRaK9jqvjnwfMpH39RKgiCwmi2YBEFgf8YyX60tARRNx39YmarkK1hOVVBLvQ0mOM1ZOdeWKTqoHo0lF1zG1UOHt1gS1BztIhECePfdd+nbty+nn346U6ZM4ZRTTmHu3LnB571eL1u3bqWsrPGx1lDy+/18/7+fmXv7v0MdihBCtB4DPqGVqr3YaiQveuXcowb5tSNWWzn2ZpL6v69QfL5AD83hdWh64PBUn4/UD74ifE9mHQEBfh215hKwqtPqaxbzHVZ/Zd21Vo6Z1FpHY9RFh+Nm1dhjl7/Axh+Obk7wsWoXQ2Oh1NJDYx8+8zkvz3oTRVXQZYdpIcRxomqfIE9yGGW9ndj3l2Hf3foTeMt6R1E4MZXy3lGgg1ruI+rbg0R/m4VaUfeiFH+YCdepgY0NtXAL5kMVxC3cS8TGAvw2K0UDe1AwegB+R/XJBZaCIqLXbCFy4w5MntrzmkwmHb9fIbGThxOv09jcvRvLszqDDhGrc4n7bD/mGmeLVXSNoOD0VMoGxoAOjo35mAs9lA6ND65ms+0pJnpZJuEbCmrllFXvs89poWRwbGAzyo0F7b5nyGRW8fs0nlw+mxNO7d/4DU3Q1M/vdrGh4vGkpLAUk8WE3yurxoQQx4/iIXEUnZKEu1tkcNiny92rMZf4Grnz2Di2uXBsc7H/b4PwJIahOcwUnJWOOzmMlLd21HmPqdxP7JIMYr7KxJMUhvVgWXCYLveCdNxdbGixB1B0FfvWElLe2opa4Q4mGza7H01X8LoDXTZ9hpVyyb15DBnsIjCys5W/XNSf7WsdtRKgKvY9JaS8tg1ftBU0PVgmYnUuB//SD91hwd01kuyr+pDy/CYcO6sTSk+Snbw/dqOiW2RwdV7yS5sJ39bye94Zqer8zZLCDrZqrCOy2i2BpfMKodtgTAghWljExgKcaw9R1jeK0oEx2HcVY2rlJKimTk9uQLOaKBqTiD/cQvR39e8xV0Xx69gya0+nSPr3LnSLgmt0In6nlajvszBVBOYCpfes4Nxrcjnj/wrweRU+eSee11f255vRA/l0RwRD8rP5Y9gGcj+pYM+3Zsx6wyvizIW15xjZDlbQ/a41uNPDKR4ejyW3grBdtXvVrLlu0l7cgruTg+LhCZj/f3t3Ht5UmfYP/HtO9qRZmu4rUAotOwJS2loQqMoyCiO+oCCKL8rMiHoNMo44joOK4vKi4ys/1NGZcUUZ9QeKCipQEAplEQoUKIXSspXuW9ImzXae94+0oYG2NF2Strk/1xW5evqcc+67NTl3z3mWygbX8iS9Gd+4DqdU3vZ8St2BHo3dQFc/GrOYLdj6zwx88cpGVJXUdD5AQgjpSRr/yGtzSY1u1HRB4zr5x6ZrRFvjcTiO4dv8HIgkDOLGWwjvnxqJ108kN84ezYEHQ78/H4LI4QBzdOJhVdPPsK1Rde1p04vEjxmAeU/NwqS5KV22Nig9GuuhZAoZZj8+HbHDovB0+ipfh0MIIV2raUSYj6ZLc11CO1kcuIqLpnw4QKZwP6hZkEDMCbA3jjsSwIGzCp4t3tqS9oyq66qRdz3EGztfgFKtuHHDbtBrRo31FRazBZve3oLXFq71dSiEENK7NdYbzUdOscZXV/ceZhxgMXOwN7vTIxfZYW8+tEtgYFLe4xqMa6xmuDauyK4ce3uv6FYsn7wSu/6zF754SEWFkJdtensr3ln2IT0WI4SQDhKkzkuXOV6D8rv7wTguGIzn4JCLUDMlApV3xsKu6Zq+JoKk8VyxGsz7x+34qjABFgePOpsEjAFaqdm1/pfsYh3MA9o/Q7VYIkCmEHDXf1dgycoiRA24fjV5JuIgSHjU3hKG8tn9YA3zzV2T7lZw9Dxevu8tHNl+3OvnpkdjXmY1W51rjdGoMUIIgU0vBd/ggMjU/s9E0yA1aidHomGgxjVCrWJOf+fcO42FizVMjqDvLkFaZnY9PrIFSsFZBYjr29+Ju6GfEtW3x6AhXoMinsOJI/3xP7vGwi7iYVIpAQCqy9UYt/ckrmSLIAjtv2Xz2KuXMGpCPSIHODtVJ9xUj+WzB7u1KX5oEBoGaZ0TRwJoiFMj5s0T7T5HbyE0TidjMbe8Xlx3okLIywJ0KjhsDppHiBDi1+qH6FAzNRIN8RrALkCTWQr9z5fbVRCpcmsRcLIWthA5Kmb1g2lYIJjc/XJmHhKIy8P1kFQ0QHGiGrYIJcwJWsDBoN5fCv3Wy+0a2q8oqIPynVzY9DLUDw+EpMwM1ela59IQyVr8Zlkt7v/NaQStsKCsSIL3n49A5lYdWDsKoreWx4LjgQm31SI0yoad3wS6vtfQzznXkHlYIAAOnNXhXJ8rw/urs3tD0zxCATqV189NhZCXzXp8GkJig/HJC1/ifM5FX4dDCCFe51CJUfK7xKuzK4t5SCobwJvbd1eoqSO2yGBtnJSwhRW3GpfZsAXJYLs14uq5RBwk1dZ2D+1vOpekyuIckt+0MgYD7h13BouSS1yrZYRE2JD1s9aDjtocmADs/1nbuPj61Ryu/CERTHp1+RD1gXLoN1/sq12EcPOMMZj3p7sw/JYhXj83FUJeJhKJkHZ3EuQqGf4y/WVfh0MIIV7nWgus+RpcDuZaOLXdx2nav63h1tz154LAnIWSowN35ZvtIpEwCA4OYsnVzs4OOwfm4boXLbYX8e4/Hzvr0/PP/fmjpVDrAm7csBtQZ2kvM1QZ8cHTn+HFe9b4OhRCCPEJzioANuHqXRrG4AiQuBYSbY3ru02LpdoEZ0flZsdpKqRcx7p2PTLmXBiVu0ERdO25WlJbKYZYwuCwO9s47BzUOgfaqlaaircb1TN8va1xDbLGNALE4BjcFnDtSx4ZsRxfv/kd7DbvTcLZhAohL/vunZ/x1Rub0VBv8XUohBDiE6IGB/q9fBS6jCvgzXZIyhsgNlghtLJqvCDjYQ2Wo+Ke/ih5cBAsYXIAAG9niH3pKHTbi8Cb7BBXWhD09XmE/TsPsnwD4BAQkF2B8PdyEbitCHy9HeIqC8RVFgjils/lkItg08tQOTsWxf89CA1Rylbz+O6jIDxzbxwO/xIAuw3I3KpBeKwFLY1xdyhEYDxQPzwQxY8MRtXM6Kt3xloQ83oO9D9cAmcXAAbUjQtG0WNDYY5r/6i03qSyqAr/+NMnOLI9x+vnpkdjXuawO8DzPBwCjRojhPQOdq0U1ggFFGcNN7yT0l7iGiv0P1yCMrcGIqMN0rLrh447MYS9EYZyhQYGo7MzMZPy0GSWQnG2FmKDDUFbLmFixWkYq8W4eNZZJAUcr3Y7iup0LfRbL7cZEwNQ9MdhsIUr3TZGfHi2lT04HNmtxpHdNy5ObMFyVE+LhjleAyYTwTQ0EKqcasgvtry2lshkR+COK3CoJTAPVMMaE4CGeA2qpkdDufbUDc/XW/nijhAVQl4WHKV3FkMiHoLDR1OvEkJIO1hD5ai6Ixr1NwUBPAeRwYqQz89Bdbq2U8dlAIwTQlCTHgVbcGPhcrAMwd9ehKjZ0Pbb51Xh3sfLEBXnnFvm2wvxeDk7GVVDdTANCwRvsuM++694ZEoeouOcd9l3faPFu3+LQk2FxKOYjGOCUH17lKsIEtVaEfjTZWgOlHcq1yayS/WI+CAPgpSHebAWkkoLpMWmG+4X/M0FAIAlUgm7XgZFXud+9j0VL+bBHAL04Tqvn5sKIS+b8Ug6+o+IxYd//QJHM/reXBCEkL6j+rYoVxEEOPvkdLYIAgBHgATl9w506xgtv1AP3nS1CFLr7Fj+90sQmv29eLwqFDVWuasDtEIj4IW7j7m1OXNMidoqzy5tTMSh7IFBbvFo9pZCk1XWZUtYND0E460CVCeq22zbEtkVE6RXTH121NiMh6finifvRFR8hNfPTX2EfGDohMG469E7fB0GIYS07drRWF01YqnpytP8+I0Ll7qa8O7/AoDAOLdd+MYqpXkbxji3rz3S7ODcNfH0BD0rmq614K/3+KQIAqgQ8rqySxV45f7/xap5b/o6FEIIaZOkssF5N6hxxJUgE0GQeb6W1rX4Bofz7g+7OirKHiwHJzDXqCiziYehSgQmAExwjsiKURngYLxrJJjFJkJVgxyMAYIAOAQO4bEW5xB2D0ZX8ZwAUa0VAAMHBggMtiB526PYmtdwfXQklzctGvw43lv+Mcz1rfUV6z4c88UKZ72IwWCAVqtFbW0tNBpNp4/36Ytf4dMXv6JZpQkhPR4D0DAgALWTImCJUUF9sByazFKPlqhojSDjYRwfgopZ/Zxz5nDOtbqCvjkPRUEdAECudOC2udW4c1EFqsvE2PhBCPbkRaA6LQINAzUI+LUCYUeKMO32Mkz7Ux0qBSU+OjMSmYeCEPjNJSjPGtqMQR9mAy9imDyrBrc9UI0se3+8tm0MbDUM2l0lUOVUtfhozBosgxAgQc2tEbCGyBG05RJUJ2s6/TMhwKrNKzDhN2O75FjtvX5THyEvYwIDz3NwUCFECOnhOACKwjooClsbNdVxvEWAdk8prEFyWKOUaIjXwBIbgPrhelch1GAS4dvPQvD5sQSI6mxQnDVAChPC1p9zHccO4PtPgvFR7RhYI1UwD9YAURzqRulvWAgF38wh9WkBUyNrEKJoQKQ1Dz9+DBRfkLW6DxNxKHkkEbZmi58axwRTIdRFBMH7g4ioEPKymMQoCAKjtcYIIQRASOOoKFuQDIJMBNkV50gqBqDmtijUTI6AoHReqpQnqhDyRUGLd6SCv3UuWWQLlEJQiF3HaYk1VI6K3/bDuSGB2HoYWHlEwITsHJg2G2Foo6N1zcRw1NwWBYfaOSJNXNGA4E3noaQiqNM4noNEKkZ4/1Cvn5v6CHnZ5HtT8Un+/8PEe5J9HQohhPQYkkqLW/EiqMSomhnjKoIAQJFXC5Gp7cdykmprm0UQABiTQmFO0Lm+dtiAko/MbRZBjAMq7+4PR8DVNupfK6A8VdOnOzF7ywMr5+KLy/9A3Mh+Xj83FUI+EN4/FONuH+XrMAghpFfhXP/pAh29IX/dSLcuicbvpd0zARq9b2bNpkLIyy7kXsaTk/6GNx5+19ehEEJIj8U3OCAubxxBJDDAwWCJVgFd0IVEWlTvLGAE5ipmLOGKtndigPRyvVs81ihV56YU4NzXHmOc+79NbVoMp1kbD9d47ZEeHr4ML817E4Yqo9fPTX2EvOyX/+zDib2nfR0GIYT0aJyDIXb1UZiGB6I2JQwiow3aPSVdcgNGfaQSinwDDKlhMA3WIiC7EpKqttd/5ABEv5EDc4IWtbeEg7M6oNtd0qlCyNwvAA6NBLWTImANlUOzvxyqk9WoHx4Iw4RQyK6YEPrpWYiNVx8H2jUS2PUy1A8LhGFCCKQlZoR9mg+xwdbxQHoCBvzyVRamLEhDyl03e/XUVAj5AMdxYF02MxkhhPRNHAPkBUbYgmQQ1dkhLTZ32bHFBhv0Wy+3uf4YA9AQp4Z5sBaqY1WQFZugPF0LZbPZtRkA84AAmBN0UOVUQVZ042UzmliiVbBFKGGJVoHJRDAP0oCzCzAlaCEESNAQGwCHSuJWCAkyHqYELcyDtRDUUlikItgDJL2/EPIhKoS8LGF8PCRSMSxmq69DIYSQHotxQPk9A2BMCnFO6shzMI4JQvin+eDN3b9otSVaibL58bBGKgGBoXpaNEI/OYuAI5Wuu1KWSCXKFgx0PiJravNZPgJ+rWjXnSttZikAIOib8xCUEohrrWAcoP+pCDadFKJ6Gzib+x/N0nILAn8qcrbRSiAyOcDZ+sa6lboQDWITo7x+Xuoj5GVJM8bgP1fepyU2CCGkDYJSDGNqGCDmXWudqXJrwDV0fxEEAHUjg2Bt6jfUOLu2ulkRBAD1I/WwRiivtgHaXQQBzsdtHADexiCudf5x3DSBo6TGCt7GWjxW0zZJrQ28TegT/bWXvf97fH7pPUQPjvT6uakQ8gGFWoHQ2GBfh0EIIYT0CNGDIyCRSnxybiqEvOz0wbN4KOEJ/HPFel+HQgghPse4ZqOleM7Ve5I3OyA/1zgztMO5/pd5oMZ156W7KQoM4C0O56gywTmyzDTIfZkG+TkD+IZmbQCYErVeia+vWX7rSjyR+iwqi6u9fm7qI+RlB7dko6SwzNdhEEJIj1A/Ug9bqBy1qeEQ5DyCN16A5mA5OIEhau0pNMSqYEgOg6jOBm1mKTiHdwaaKE/Xot/fjqBuXLBzZNmxSijOuQ/tVp41oN/Kw6gbGwxTgg6q41VQnml7WQ/SutysM8g7lE+jxvwCx6Fzk08QQkjfIMhFEORiMAkPiHjnv83IL9ZDfrHAJ7HxNgGarDJoslr/45W3MWj2l0Ozv9yLkV1l10phSAkF4wDNvjJIamggjqeoEPKym6aOwPfvb0N1SY2vQyGEEJ9TH3QWEPofLoKJePB9ZASUN5TP6Q9Dapjra9MQHSLfzYXI5J0O5V2t39BoxN80wOvnpT5CXjYibQg+v/AuFv7tv3wdCiGE+BzHGl8CqAjykHH81akFwHNQFBjB99Ii6KXvn8EHOW8iNMb7A4moEPIBh92Bhvq2ZzElhBBC/IXJaIIg+KYQ7jWFUFVVFRYsWACNRgOdTofFixejrq7uhvtlZWVhypQpUKlU0Gg0mDhxIszmrpud1FNHduRgXtQSfPXGZp/FQAgh/og1vgQRB4dC5OtwOk27pwSwC84RawKDaaAaDrVvhqB31ur7/hcPDnocxYWlXj93r+kjtGDBAhQXF2Pbtm2w2Wx46KGHsGTJEnz++eet7pOVlYVp06bhmWeewdq1ayEWi3Hs2DHwvO/qvxN7cmE2Nvjs/IQQ4q8MKaGwhSlgSAoBk4qg++kygn4q8nVYHRb0/SXodhbDkBQCcBw0+8sgqrffeMceqvR8OQpzLiJiQNiNG3ehXlEI5ebm4scff8ShQ4cwbtw4AMDatWsxY8YMrFmzBpGRLc9EuWzZMjzxxBNYsWKFa1tCQoJXYm4LYzRijBBCvM2QGuZcDqORpb/ah9F0DVG9HYEZxb4Oo1frFY/GsrKyoNPpXEUQAKSnp4PneRw4cKDFfcrKynDgwAGEhoYiJSUFYWFhmDRpEjIzM9s8l8VigcFgcHt1pZTZNyNuRCwA5+KrABAcrYdEJnF+zQEypRRBkYHubaL0kMqbtVFIERSlv+44zdtIFRIEX9smSg+ZQgpwzm0S+fVtgiL1kCmvtpHKJAiOvrZNIGRK2dXjSMXXt4kIhDxA7tomll3fRh+hg6KpDc9BLBUhODrI9bWrjfpqG5FEdPU4jW0Cw3VQqhWuY4vE/PVtwrRQahRXjyPmEXJNG12YFiqt0rWNF/HXxaML1VzThnO24dzbBASqXG04nkNIjHsbbYj6ujbB0XpwHOdqowlWQ60PuHp+DgiJDnJrow5SQx3UQhu+WRt9ADRBarc8QmLc2wQEBkAbrHFvEx0EXsQ3a6OCNsS9TfA1bVQ6FXShbR9HpVVCF6q95jh6iMTN2ygQGHZNmyg9RBKR62uFWoHAMN31x5GIXP+PKdVy6MN11x1H3Pw4AXLoI9zfcyHRQRBLxa428hbaON+7YtfXcpXs+vcuvb9dP3tfv7/7nzZDI3I+OuIAOPqrobk5xq0Nvb999/4ed/soDE0eDG/rFXeESkpKEBoa6rZNLBZDr9ejpKSkxX0KCpzzTjz//PNYs2YNRo8ejU8++QRTp07FiRMnMGjQoBb3e+WVV/DCCy90bQLNxI8egHeP/A9O7svD4Z+PIfW34xE/egDqauqx/dPdkMjEmLIgDXKlDKeyzuDXn44iZdbNGDQmDvW19dj+2R6IxCJMXXALFAEKnNp/Boe2ZmPCneOQMG4g6g0m7PhsDzgOmHr/RCjVCuQdysf+7w8jaeYYJI4fBJPRjB3r94AJDFPvT4NKo0Ter+ew/7tfcfP0mzB0wmCY68zYsT4Tdpsdty2cCJVWhbNHCrDv20MYd8doDE0ejAaTBTs/z4S1wYb0hRMRoFMh/2gh9n1zCGPSR2BYaiIsZisyPs+ExWRB+sKJUAcGoOD4BWRuPIDRU4ZjRNoQWBus2PnFXpgMZqQ/MBEavRqFJy5iz9f7MerWYRg5aaizzYZ9qK+px20PTIImSI0Lpy5h91f7MTwtEaMnD4fNYsOu/+yDodKI9IUToQvR4kLuZez+MgvDUhNw09QRsFnt+OXLfagprUX6A5MQGKrFpbwi7PrPPgyZMBhjbxsJu82O3V/tR1VxNdIXTkRgmA6XzxZj5xeZSBwfj7G3j4LD7sCer/ej/HIVbntgIvThgSjKL8bOL/Zi0Ng43DxtNASHgD3//wBKL5QjfeFEBEfqUVxQiozPMzFwdH+Mn3ETBIeAvZsOorig1NkmKggl58uwY/0eDBgRi6SZYwAG7P3mIIrOlmDq/WkIjQlG6YVybP9sN/oPi8GEO8cCDNi3+VdcOl2E9PvTEBobgrKL5dj+2R7EJEYh5a5xAAfs/+4wzp+8hPT7JyKsXwjKL1dix2e7ERkfjtTZ4wEOOPDDERQev4gpC25BxIAwVBRVYvunuxERF4bU344HL+JxcEs28rMLMWX+LYgcGI7K4mps/3Q3QmODkTYnCbyIx6Efj+Ls4QJMvi8VUfERqCpxtgmO0iPtngkQiUU4/PMxnD6Yj8n3piJ6cCSqS2uw/dPdCAzXYdLcZIglYhzedhy5WWdw670piEmIQk15LbZ9shu6UA0mzU2BRCpG9o4cnNybh4lzk9FvSDRqKwzY9skv0ASpceu8FEhkEhzbdRLHfzmFif+VjP7DYmCoNGLbJ79ApVNh8r0pkMqlOP7LKRzbdRJpc5IwYEQ/GKqM2P7pbijVCky+LxVSuRQ5e3JxNOMEbrk7CXEj+8FYXYftn+6GTCnDlPm3QKaQ0vu7B7+/bYKALWfPoNxUh9mJQxHytIre3z3o/e0LHPPhc5oVK1bgtddea7NNbm4uNm7ciI8//hh5eXlu3wsNDcULL7yAP/zhD9ftt2/fPqSmpuKZZ57B6tWrXdtHjhyJmTNn4pVXXmnxfBaLBRbL1RFdBoMBMTExqK2thUajaXEfQgghhPQsBoMBWq32htdvn94RWr58ORYtWtRmm7i4OISHh6OszH1mT7vdjqqqKoSHh7e4X0REBABg6NChbtuHDBmCixcvtno+mUwGmUzWjugJIYQQ0tv5tBAKCQlBSEjIDdslJyejpqYGhw8fxtixYwEAGRkZEAQBSUlJLe7Tv39/REZGXncX6cyZM5g+fXrngyeEEEJIr9crOksPGTIE06ZNwyOPPIKDBw9i7969eOyxx3Dvvfe6RowVFRUhMTERBw8eBODsUPfUU0/h7bffxtdff438/Hw899xzOH36NBYvXuzLdAghhBDSQ/SKztIAsH79ejz22GOYOnUqeJ7HnDlz8Pbbb7u+b7PZkJeXB5PJ5Nr2xz/+EQ0NDVi2bBmqqqowatQobNu2DQMHDvRFCoQQQgjpYXzaWbo3aG9nK0IIIYT0HO29fveKR2OEEEIIId2BCiFCCCGE+C0qhAghhBDit6gQIoQQQojfokKIEEIIIX6LCiFCCCGE+C0qhAghhBDit3rNhIq+0jTNksFg8HEkhBBCCGmvpuv2jaZLpELoBoxGIwAgJibGx5EQQgghxFNGoxFarbbV79PM0jcgCAKuXLkCtVoNjuN8HU6nGAwGxMTE4NKlS34xS7a/5Qv4X87+li/gfzlTvn1fd+XMGIPRaERkZCR4vvWeQHRH6AZ4nkd0dLSvw+hSGo3Gb95ggP/lC/hfzv6WL+B/OVO+fV935NzWnaAm1FmaEEIIIX6LCiFCCCGE+C0qhPyITCbDypUrIZPJfB2KV/hbvoD/5exv+QL+lzPl2/f5OmfqLE0IIYQQv0V3hAghhBDit6gQIoQQQojfokKIEEIIIX6LCiFCCCGE+C0qhPq4qqoqLFiwABqNBjqdDosXL0ZdXV279mWMYfr06eA4Dt988033BtpFPM23qqoKjz/+OBISEqBQKBAbG4snnngCtbW1XozaM+vWrUP//v0hl8uRlJSEgwcPttn+q6++QmJiIuRyOUaMGIEtW7Z4KdKu4Um+H3zwAdLS0hAYGIjAwECkp6ff8OfTE3n6O26yYcMGcByH2bNnd2+AXczTfGtqarB06VJERERAJpNh8ODBver/a0/zfeutt1yfUTExMVi2bBkaGhq8FG3n7N69G3feeSciIyPbfS3ZtWsXxowZA5lMhvj4eHz00UfdGyQjfdq0adPYqFGj2P79+9mePXtYfHw8u++++9q175tvvsmmT5/OALBNmzZ1b6BdxNN8c3Jy2N133802b97M8vPz2Y4dO9igQYPYnDlzvBh1+23YsIFJpVL273//m508eZI98sgjTKfTsdLS0hbb7927l4lEIvb666+zU6dOsb/+9a9MIpGwnJwcL0feMZ7mO3/+fLZu3TqWnZ3NcnNz2aJFi5hWq2WXL1/2cuQd52nOTQoLC1lUVBRLS0tjs2bN8k6wXcDTfC0WCxs3bhybMWMGy8zMZIWFhWzXrl3s6NGjXo68YzzNd/369Uwmk7H169ezwsJC9tNPP7GIiAi2bNkyL0feMVu2bGHPPvss27hxY7uuJQUFBUypVLInn3ySnTp1iq1du5aJRCL2448/dluMVAj1YadOnWIA2KFDh1zbtm7dyjiOY0VFRW3um52dzaKiolhxcXGvKYQ6k29zX375JZNKpcxms3VHmJ0yfvx4tnTpUtfXDoeDRUZGsldeeaXF9nPnzmUzZ85025aUlMR+97vfdWucXcXTfK9lt9uZWq1mH3/8cXeF2OU6krPdbmcpKSnsn//8J3vwwQd7VSHkab7vvvsui4uLY1ar1VshdilP8126dCmbMmWK27Ynn3ySpaamdmuc3aE915I///nPbNiwYW7b5s2bx+64445ui4sejfVhWVlZ0Ol0GDdunGtbeno6eJ7HgQMHWt3PZDJh/vz5WLduHcLDw70RapfoaL7Xqq2thUajgVjcs5bis1qtOHz4MNLT013beJ5Heno6srKyWtwnKyvLrT0A3HHHHa2270k6ku+1TCYTbDYb9Hp9d4XZpTqa84svvojQ0FAsXrzYG2F2mY7ku3nzZiQnJ2Pp0qUICwvD8OHDsXr1ajgcDm+F3WEdyTclJQWHDx92PT4rKCjAli1bMGPGDK/E7G2++MzqWZ/0pEuVlJQgNDTUbZtYLIZer0dJSUmr+y1btgwpKSmYNWtWd4fYpTqab3MVFRVYtWoVlixZ0h0hdkpFRQUcDgfCwsLctoeFheH06dMt7lNSUtJi+/b+PHypI/le6+mnn0ZkZOR1H6w9VUdyzszMxL/+9S8cPXrUCxF2rY7kW1BQgIyMDCxYsABbtmxBfn4+Hn30UdhsNqxcudIbYXdYR/KdP38+KioqcMstt4AxBrvdjt///vf4y1/+4o2Qva61zyyDwQCz2QyFQtHl56Q7Qr3QihUrwHFcm6/2XiiutXnzZmRkZOCtt97q2qA7oTvzbc5gMGDmzJkYOnQonn/++c4HTnzq1VdfxYYNG7Bp0ybI5XJfh9MtjEYjFi5ciA8++ADBwcG+DscrBEFAaGgo3n//fYwdOxbz5s3Ds88+i/fee8/XoXWLXbt2YfXq1XjnnXdw5MgRbNy4ET/88ANWrVrl69D6DLoj1AstX74cixYtarNNXFwcwsPDUVZW5rbdbrejqqqq1UdeGRkZOHfuHHQ6ndv2OXPmIC0tDbt27epE5B3Tnfk2MRqNmDZtGtRqNTZt2gSJRNLZsLtccHAwRCIRSktL3baXlpa2ml94eLhH7XuSjuTbZM2aNXj11Vexfft2jBw5sjvD7FKe5nzu3DmcP38ed955p2ubIAgAnHdD8/LyMHDgwO4NuhM68juOiIiARCKBSCRybRsyZAhKSkpgtVohlUq7NebO6Ei+zz33HBYuXIiHH34YADBixAjU19djyZIlePbZZ8Hzfet+RmufWRqNplvuBgF0R6hXCgkJQWJiYpsvqVSK5ORk1NTU4PDhw659MzIyIAgCkpKSWjz2ihUrcPz4cRw9etT1AoC///3v+PDDD72R3nW6M1/AeSfo9ttvh1QqxebNm3vs3QOpVIqxY8dix44drm2CIGDHjh1ITk5ucZ/k5GS39gCwbdu2Vtv3JB3JFwBef/11rFq1Cj/++KNbf7HewNOcExMTkZOT4/Z+veuuuzB58mQcPXoUMTEx3gzfYx35HaempiI/P99V8AHAmTNnEBER0aOLIKBj+ZpMpuuKnaYikPXBpUJ98pnVbd2wSY8wbdo0dtNNN7EDBw6wzMxMNmjQILfh5JcvX2YJCQnswIEDrR4DvWTUGGOe51tbW8uSkpLYiBEjWH5+PisuLna97Ha7r9Jo1YYNG5hMJmMfffQRO3XqFFuyZAnT6XSspKSEMcbYwoUL2YoVK1zt9+7dy8RiMVuzZg3Lzc1lK1eu7HXD5z3J99VXX2VSqZR9/fXXbr9Lo9HoqxQ85mnO1+pto8Y8zffixYtMrVazxx57jOXl5bHvv/+ehYaGspdeeslXKXjE03xXrlzJ1Go1++KLL1hBQQH7+eef2cCBA9ncuXN9lYJHjEYjy87OZtnZ2QwAe/PNN1l2dja7cOECY4yxFStWsIULF7raNw2ff+qpp1hubi5bt24dDZ8nnVNZWcnuu+8+FhAQwDQaDXvooYfcLgqFhYUMANu5c2erx+hNhZCn+e7cuZMBaPFVWFjomyRuYO3atSw2NpZJpVI2fvx4tn//ftf3Jk2axB588EG39l9++SUbPHgwk0qlbNiwYeyHH37wcsSd40m+/fr1a/F3uXLlSu8H3gme/o6b622FEGOe57tv3z6WlJTEZDIZi4uLYy+//HKP/MOlNZ7ka7PZ2PPPP88GDhzI5HI5i4mJYY8++iirrq72fuAd0NpnbFOODz74IJs0adJ1+4wePZpJpVIWFxfHPvzww26NkWOsD95bI4QQQghpB+ojRAghhBC/RYUQIYQQQvwWFUKEEEII8VtUCBFCCCHEb1EhRAghhBC/RYUQIYQQQvwWFUKEEEII8VtUCBFCCCHEb1EhRAghhBC/RYUQIcRvLVq0CLNnz/Z1GIQQH6JCiBBCCCF+iwohQgghhPgtKoQIIYQQ4reoECKEEEKI36JCiBBCCCF+iwohQgghhPgtKoQIIYQQ4reoECKEEEKI36JCiBBCCCF+i2OMMV8HQQghhBDiC3RHiBBCCCF+iwohQgghhPgtKoQIIYQQ4reoECKEEEKI36JCiBBCCCF+iwohQgghhPgtKoQIIYQQ4reoECKEEEKI36JCiBBCCCF+iwohQgghhPgtKoQIIYQQ4rf+Dxehg5Trv0JgAAAAAElFTkSuQmCC\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - examples_30_1.png" } }, "output_type": "display_data" } ], "source": [ "chosen_time_values = [\n", " t1_times[1], # second value selected otherwise we won't see both centers\n", " t1_times[len(t1_times) // 5], # a value close to the end of the experiment\n", "]\n", "for t_example in chosen_time_values:\n", " shots_example = (\n", " dataset_gridded.q0_iq_shots.real.sel(t1_time=t_example),\n", " dataset_gridded.q0_iq_shots.imag.sel(t1_time=t_example),\n", " )\n", " plt.hexbin(*shots_example)\n", " plt.xlabel(\"I\")\n", " plt.ylabel(\"Q\")\n", " calib_0 = dataset_gridded.q0_iq_av_cal.sel(cal=\"|0>\")\n", " calib_1 = dataset_gridded.q0_iq_av_cal.sel(cal=\"|1>\")\n", " plot_complex_points([calib_0, calib_1], ax=plt.gca())\n", " plt.suptitle(f\"Shots for t = {t_example:.5f} [s]\")\n", " plt.show()" ] }, { "cell_type": "code", "execution_count": 32, "id": "13483869", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:36.852689Z", "iopub.status.busy": "2023-09-26T17:43:36.852473Z", "iopub.status.idle": "2023-09-26T17:43:37.290225Z", "shell.execute_reply": "2023-09-26T17:43:37.289565Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyTklEQVR4nOzdd3hT5fvH8fdJ0qR70T3Ye0PLHiJbUEEcyBBEUH+KoKJfFQeICxUHCCpuRUQQQRwICggqyN57tWW3tHSvpMk5vz9CC6UttNA2HffrunqRnpzxOSVp7j7nOc+jaJqmIYQQQggh8ugcHUAIIYQQoqKRAkkIIYQQ4gpSIAkhhBBCXEEKJCGEEEKIK0iBJIQQQghxBSmQhBBCCCGuIAWSEEIIIcQVpEASQgghhLiCFEhCCCGEEFeQAkkIB7n//vupXbt2vmWKovDyyy+Xy/FffvllFEUptf3df//9KIqCoig0b9681PZ7vUr7/Erq66+/RlEUtm3b5rAMl5s5c2be/4+iKCQkJJTJcdatW4eiKPz4449lsv/K5u2336Zx48aoqlrux37uuefo0KFDuR+3qpACSVzV/v37GTlyJKGhoZhMJkJCQhg5ciQHDhwodH2z2cyzzz5LSEgILi4udOjQgVWrVhXrWPfffz/u7u4Flmuaxrfffkv37t3x9vbG1dWVFi1a8Nprr5GZmXlD51fR/ffff7z88sskJyc7Okqx+Pn58e233/Lmm29e9z5u5DVU1S1YsICZM2de17b9+/fn22+/5Y477ijdUKJIqampvPXWWzz77LPodJc+bp988knatm2Lr68vrq6uNGnShJdffpn09PQC+7iR98MTTzzB7t27+eWXX0rtnKoTKZBEkZYuXUrbtm1Zs2YNY8aM4aOPPmLs2LH89ddftG3blp9//rnANvfffz/vvfceI0aMYNasWej1egYMGMD69euvK4PNZuPee+9l1KhRgL1VYObMmbRu3ZqpU6fSsWNHzp8/f0PnWZFkZWXx4osv5n3/33//MW3atEpTILm5uTFy5EhuvfXW695Hab2GXnzxRbKysq47R0V0IwVS48aNGTlyJC1btizdUKJIX375JVarlWHDhuVbvnXrVrp168a0adOYNWsWN998M2+++Sb9+/cv0NJ0I++HoKAgBg0axDvvvFOq51VtaEIU4tixY5qrq6vWuHFj7fz58/mei4+P1xo3bqy5u7trUVFRecs3b96sAdqMGTPylmVlZWn16tXTOnXqdM1jjh49WnNzc8u37I033tAA7emnny6w/i+//KLpdDptwIABJT29CmH06NFarVq1rrrOjBkzNECLjo4u9eNPnTpVK81fAcU5n2u50ddQRfLVV19pgLZ169ZS2+fAgQNv+Gec+/8eHx9fOqGusHbtWg3QFi9eXCb7r0xatmypjRw5sljrvvPOOxqgbdy4MW9ZabwffvzxR01RFO348eMlCy80aUEShZoxYwaZmZl8+umn+Pv753vOz8+PTz75hPT0dGbMmJG3/Mcff0Sv1/PQQw/lLXN2dmbs2LFs3LiRU6dOlShDVlYWM2bMoGHDhkyfPr3A87fddhujR4/m999/Z8uWLVfd1549e7j//vupW7cuzs7OBAUF8cADD3DhwoV86+X2Wzly5AgjR47Ey8sLf39/XnrpJTRN49SpUwwaNAhPT0+CgoJ49913822f2/9i0aJFPP/88wQFBeHm5sbtt99erPO/vA/Syy+/zP/+9z8A6tSpk9d3JCYmhpiYGBRF4euvv77qPnKtX7+edu3a4ezsTL169fjkk0+KzDB//nwiIiJwcXHB19eXe++9t8T/d1cym808+eST+Pv74+Hhwe23387p06cLZC3N11BhfZCKm6M4Fi5cSEREBB4eHnh6etKiRQtmzZpV6LlPmjQJf39/3NzcuOOOO4iPjy+w3kcffUSzZs3yLmWPHz8+X8thjx49WL58OSdOnMh7LVzeh2327Nk0a9YMV1dXfHx8iIyMZMGCBcU6l4SEBA4dOlSsS9arVq2ia9eueHt74+7uTqNGjXj++ecLrKeqKq+//jphYWE4OzvTq1cvjh07lm+df//9l7vvvpuaNWtiMpkIDw/nySefLNDyl3v5PSoqin79+uHm5kZISAivvPIKmqYVOO7MmTNp1qwZzs7OBAYG8vDDD5OUlFSsn0VpiY6OZs+ePfTu3btY6+f+X17+f14a74fc4xfW4i+uzuDoAKJi+vXXX6lduzbdunUr9Pnu3btTu3Ztfv31Vz766CMAdu7cScOGDfH09My3bvv27QHYtWsX4eHhxc6wfv16kpKSePzxxzEYCn+pjho1iq+++opff/017ziFWbVqFVFRUYwZM4agoCD279/Pp59+yv79+9m0aVOBD9KhQ4fSpEkT3nzzTZYvX85rr72Gr68vn3zyCT179uStt97iu+++4+mnn6Zdu3Z079493/avv/46iqLw7LPPcv78eWbOnEnv3r3ZtWsXLi4uxTr/IUOGcOTIEb7//nvef/99/Pz8APD39y/0A7Yoe/fupW/fvvj7+/Pyyy9jtVqZOnUqgYGBBdZ9/fXXeemll7jnnnsYN24c8fHxzJ49m+7du7Nz5068vb2LfdzLjRs3jvnz5zN8+HA6d+7MX3/9xcCBAwusV9qvoevNcS2rVq1i2LBh9OrVi7feeguAgwcPsmHDBh5//PF8606YMAEfHx+mTp1KTEwMM2fO5LHHHmPRokV567z88stMmzaN3r1788gjj3D48GE+/vhjtm7dyoYNG3BycuKFF14gJSWF06dP8/777wPk9dn77LPPmDhxInfddRePP/442dnZ7Nmzh82bNzN8+PBrns+cOXOYNm0aa9eupUePHkWut3//fm699VZatmzJK6+8gslk4tixY2zYsKHAum+++SY6nY6nn36alJQU3n77bUaMGMHmzZvz1lm8eDGZmZk88sgj1KhRgy1btjB79mxOnz7N4sWL8+3PZrPRv39/OnbsyNtvv83KlSuZOnUqVquVV155JW+9hx9+mK+//poxY8YwceJEoqOjmTNnDjt37sz7WRbFbDaTlpZ2zZ8XkPd+LMp///0HQNu2bQt93mq1kpycjMViYd++fbz44ot4eHjk+z1WGu8HLy8v6tWrx4YNG3jyySeveV7iMo5uwhIVT3JysgZogwYNuup6t99+uwZoqampmqZpWrNmzbSePXsWWG///v0aoM2dO/eq+7vyEtvMmTM1QPvpp5+K3CYxMVEDtCFDhlx135mZmQWWff/99xqg/fPPP3nLci8/PPTQQ3nLrFarFhYWpimKor355pt5y5OSkjQXFxdt9OjRectyLy+Ehobm/Vw0TdN++OEHDdBmzZqV73yvvFwCaFOnTs37vqhLbNHR0RqgffXVVwXO68p9DB48WHN2dtZOnDiRt+zAgQOaXq/Pd4ktJiZG0+v12uuvv55vf3v37tUMBkOB5Vcq6hLbrl27NEB79NFH8y0fPnx4gaw3+hq63JWXEEuS41oef/xxzdPTU7NarUWuk3uJrXfv3pqqqnnLn3zySU2v12vJycmapmna+fPnNaPRqPXt21ez2Wx5682ZM0cDtC+//DJvWVGX2AYNGqQ1a9asWNkLu8SWu2zt2rVX3fb999+/5uW53PdAkyZNNLPZnLd81qxZGqDt3bs3b1lh78vp06driqLke72OHj1aA7QJEybkLVNVVRs4cKBmNBrz8vz7778aoH333Xf59rly5cpCl18p9/+sOF/X8uKLL2qAlpaWVujzGzduzLe/Ro0aFfj5l9b7oW/fvlqTJk2Kta64RC6xiQJy/4Ly8PC46nq5z+eun5WVhclkKrCes7Nz3vOlnePKDEW5vNUmOzubhIQEOnbsCMCOHTsKrD9u3Li8x3q9nsjISDRNY+zYsXnLvb29adSoEVFRUQW2HzVqVL7cd911F8HBwfz+++9XzVnabDYbf/zxB4MHD6ZmzZp5y5s0aUK/fv3yrbt06VJUVeWee+4hISEh7ysoKIgGDRqwdu3a68qQe84TJ07Mt/yJJ54osG5pv4auN8e1eHt7k5GRUay7iR566KF8LZTdunXDZrNx4sQJAFavXo3FYuGJJ57Id6fTgw8+iKenJ8uXLy9WntOnT7N169YSnwvYW7A0Tbtq61HuccB+ueZat62PGTMGo9GY931ua/Tl75fL35cZGRkkJCTQuXNnNE1j586dBfb52GOP5T1WFIXHHnsMi8XC6tWrAXuLlJeXF3369Mn3Go6IiMDd3f2ar+F+/fqxatWqYn1dy4ULFzAYDIXemQvQtGlTVq1axbJly3jmmWdwc3MrcBdbab0ffHx8ymxYh6pMLrGJAopbdKSlpaEoSl5Ts4uLC2azucB62dnZec+Xdo7c5wICAq66r8TERKZNm8bChQsL3PWWkpJSYP3LiwmwN1M7OzsXaFb38vIq0I8JoEGDBvm+VxSF+vXrExMTc9WcpS0+Pp6srKwCeQAaNWqUr2A7evQomqYVui5w1UsTV3PixAl0Oh316tUrcPwrlfZr6HpzXMujjz7KDz/8wC233EJoaCh9+/blnnvuoX///gXWvfK15OPjA5DXJya3ULoyh9FopG7dunnPX82zzz7L6tWrad++PfXr16dv374MHz6cLl26lPjcrmbo0KF8/vnnjBs3jueee45evXoxZMgQ7rrrrnzFHVz7vAFOnjzJlClT+OWXXwr0EbryfanT6ahbt26+ZQ0bNgTIe18dPXqUlJSUIn8fXOuO1+DgYIKDg6+6Tmnx9PTM6x80aNAgFixYwKBBg9ixYwetWrUCSu/9oGmaQ8cEq6ykQBIFeHl5ERISwp49e6663p49ewgLC8v7KzE4OJgzZ84UWO/cuXMAhISElChH06ZN844zePDgIjMABX5xXumee+7hv//+43//+x+tW7fG3d0dVVULva0W7K1GxVkGFOgkWh6K+mVns9mue5+qqqIoCitWrCj0XIv6S7g0lfZrqKwEBASwa9cu/vjjD1asWMGKFSv46quvGDVqFN98802+dcvjddOkSRMOHz7Mb7/9xsqVK1myZAkfffQRU6ZMYdq0aaV2HBcXF/755x/Wrl3L8uXLWblyJYsWLaJnz578+eef+c71Wudts9no06cPiYmJPPvsszRu3Bg3NzfOnDnD/ffff10DK6qqSkBAAN99912hz195w8mVsrKyCv2DqTBBQUFXfb5GjRpYrVbS0tKu2RoP9j6H9913HwsXLswrkErr/ZCUlHTNPlOiICmQRKFuu+02PvnkE9avX0/Xrl0LPP/vv/8SExPDpEmT8pa1bt2atWvXkpqamq9TYW6nzNatW5coQ5cuXfD29mbBggW88MILhf7CnTdvHgB33313kftJSkpizZo1TJs2jSlTpuQtP3r0aInylMSV+9Y0jWPHjpV4DJqiCqHcv8avHB/pytYGf39/XFxcCj3Xw4cP5/u+Xr16aJpGnTp18v4yLw21atVCVVWOHz+er5XkyuND6b+GrjdHcRiNRm677TZuu+02VFXl0Ucf5ZNPPuGll16ifv36JcqVm+PyQt9isRAdHZ3vLqirtQK4ubkxdOhQhg4disViYciQIbz++utMnjw575JMadDpdPTq1YtevXrx3nvv8cYbb/DCCy+wdu3aYt+xBfabB44cOcI333yTN84ZUOTlK1VViYqKyvfaPHLkCHDpDrB69eqxevVqunTpcl2tjYsWLWLMmDHFWvdaBW7jxo0B+91sxXnfm81mVFXNV6CV1vshOjo6r+gSxSd9kEShnn76aVxdXXn44YcLXEJKTEzk//7v//D09MzXJ+Cuu+7CZrPx6aef5i0zm8189dVXdOjQocR3H7m6uvLMM89w+PBhXnjhhQLPL1++nK+//prbbruNFi1aFLmf3MLqyl9o1zvgXnHMmzcv36XBH3/8kXPnznHLLbeUaD9ubm5AwULI09MTPz8//vnnn3zLc+8ozKXX6+nXrx/Lli3j5MmTecsPHjzIH3/8kW/dIUOGoNfrmTZtWoGflaZphV5KLI7cc/7ggw/yLS/s51/ar6HrzXEtV/4sdDpd3odgYZdErqZ3794YjUY++OCDfD/3L774gpSUlHx32bm5uRXawnFlHqPRSNOmTdE0jZycnBLluZrExMQCy3I/pEt63oW9LzVNK3SohFxz5szJt+6cOXNwcnKiV69egL2l2Gaz8eqrrxbYNveusaspzT5InTp1Aigw1UxycnKh/yeff/45AJGRkXnLSuP9kJKSwvHjx+ncufM11xX5SQuSKFT9+vWZN28ew4YNo0WLFowdO5Y6deoQExPDF198QVJSEgsXLqROnTp523To0IG7776byZMnc/78eerXr88333yTt831eOaZZ9i1axdvvfUWGzdu5M4778TFxYX169czf/58mjVrVuhYQJfz9PSke/fuvP322+Tk5BAaGsqff/5JdHT0dWUqDl9fX7p27cqYMWOIi4tj5syZ1K9fnwcffLBE+4mIiADghRde4N5778XJyYnbbrsNNzc3xo0bx5tvvsm4ceOIjIzkn3/+yfuL+nLTpk1j5cqVdOvWjUcffRSr1Zo3Zs7ll1Hr1avHa6+9xuTJk4mJiWHw4MF4eHgQHR3NTz/9xEMPPcTTTz9d4p9F69atGTZsGB999BEpKSl07tyZNWvWFBgTB8rmNXQ9Oa5l3LhxJCYm0rNnT8LCwjhx4gSzZ8+mdevWNGnSpET78vf3Z/LkyUybNo3+/ftz++23c/jwYT766CPatWvHyJEj89aNiIhg0aJFTJo0iXbt2uHu7s5tt91G3759CQoKokuXLgQGBnLw4EHmzJnDwIEDi3V5J3eYgWvd5v/KK6/wzz//MHDgQGrVqsX58+f56KOPCAsLK7Sl+WoaN25MvXr1ePrppzlz5gyenp4sWbKkyPGKnJ2dWblyJaNHj6ZDhw6sWLGC5cuX8/zzz+ddOrvpppt4+OGHmT59Ort27aJv3744OTlx9OhRFi9ezKxZs7jrrruKzFSafZDq1q1L8+bNWb16NQ888EDe8nXr1uUNydCgQQMsFgv//vsvS5cuJTIyMt//d0neD0X9H65evRpN0xg0aFCpnFe1Ur43zYnKZu/evdrw4cO1oKAgTafTaYDm7Oys7d+/v9D1s7KytKeffloLCgrSTCaT1q5dO23lypXFOlZhI2lrmv123q+//lrr0qWL5uHhkXdbbO/evfPdRnw1p0+f1u644w7N29tb8/Ly0u6++27t7NmzBW7vLmqU4aKy3XTTTflur869xfn777/XJk+erAUEBGguLi7awIED8922nLvPa93mr2ma9uqrr2qhoaF5P//cW/4zMzO1sWPHal5eXpqHh4d2zz33aOfPny90H3///bcWERGhGY1GrW7dutrcuXOLHEl7yZIlWteuXTU3NzfNzc1Na9y4sTZ+/Hjt8OHDRfx0iz6fXFlZWdrEiRO1GjVqaG5ubtptt92mnTp1qtCsN/Iaulxh51eSHFfz448/an379tUCAgI0o9Go1axZU3v44Ye1c+fO5a1T1Ejaua+RK2/pnjNnjta4cWPNyclJCwwM1B555BEtKSkp3zrp6ena8OHDNW9vbw3I+3l/8sknWvfu3bUaNWpoJpNJq1evnva///1PS0lJKfLncvlr/KmnntIURdEOHjx41fNes2aNNmjQIC0kJEQzGo1aSEiINmzYMO3IkSMFzu/KkbQLG5riwIEDWu/evTV3d3fNz89Pe/DBB7Xdu3cXWC/3/Xf8+HGtb9++mqurqxYYGKhNnTo139AIuT799FMtIiJCc3Fx0Tw8PLQWLVpozzzzjHb27Nmrnl9pe++99zR3d/d8wxkcO3ZMGzVqlFa3bl3NxcVFc3Z21po1a6ZNnTpVS09PL7CP4r4fivo/HDp0qNa1a9fSP7lqQAokUSLffPONpiiKdt999zksg8Vi0fr166cZDAZtxYoVDstRmOo8zcLo0aO18PBwLT4+vsAHe1FKWpiUlYqSoyxlZWVp8fHx2v/+978CBVK7du20u+66y4Hprq6oP1AquuTkZM3X11f7/PPPy/xYhf0fnjt3TnN2dtaWLVtW5seviqQPkiiRUaNGMX36dL799ttCpxcoD05OTixZsoTWrVtz9913FzqOkXCMU6dO4e/vX+LLLaLszZ07F39//3zTA4F9xvndu3fnG41alA4vLy+eeeYZZsyYcV135RVXUf+HM2fOpEWLFnJ57TpJHyRRYs8++yzPPvusQzO4ubld96B4omw888wzef0nynJIgJSUlGsOkHetW7CLYrPZrjmNi7u7e7kMeVDa7rzzTpo3b573vZeXF2Dvo1fSDtai+Mrj92VR/4dvvvlmmR63qpMCSQhRKpo2bZo3dlVZevzxxwuMNXQl7TrHGDp16lS+Gw8KM3Xq1BJPbFsRhIeH39BdgEJUN4p2vb9JhBDCAQ4cOMDZs2evuk5JxuO5XHZ2NuvXr7/qOnXr1r3mwKRCiMpPCiQhhBBCiCtIJ20hhBBCiCtIH6RrUFWVs2fP4uHhIZP9CSGEEJWEpmmkpaUREhJSYDLl4pAC6RrOnj0rHRuFEEKISurUqVOEhYWVeDspkK4hd5j+U6dO5ZssUAghhBAVV2pqKuHh4cWabqcwUiBdQ+5lNU9PTymQhBBCiErmervHSCdtIYQQQogrSIEkhBBCCHEFKZCEEEIIIa4gBZIQQgghxBWkQBJCCCGEuIIUSEIIIYQQV5ACSQghhBDiClIgCSGEEEJcQQokIYQQQogryEjaQgghhCgRTcvBnLWUrIxvsFmjUBR3TK5DcHG7H70+5NrbW0+iZc6D7BWgZYOhIYrrSHC+BUWpGG03UiAJIYQQ1ZQ5J5r07L/RyMHF2BJXY/trTs2haWZSEu8nx/wP9gtRKpqWRlb6XLIzvsXbbzEGp+ZFb2/ZgpY4DsgBbPaFOTvRUraDeTV4vYOi6EvrFK+bFEhCCCFENWNT0zid+CSpWSsB5eKXisnQgJo1PsbZ2LjIbTPTPiDHvP7id+rle0XTMki58AC+gRsLLXI0LQst6VHAcsW2Fx9n/w5ObcHtvhs5vVIhBZIQQghRjWiaSkz8aDIt23OXXPwCszWKqPN3Uj9oFUZDwUtlmmYhK+Nrcgsaq01PUpY7VvXyYiiLFNZgNHUtuH3WCkjXA175ltdwTcfZkGNfJ/MbcB153ZPMlhYpkIQQQogblGlNIdOWhKveB1eD17U3uIyq2UjPOYOGhodTKDqleB/NqmblfMafnE5bTJb1FEZdDUI8BhPsfjsGnVuR26VnryPTsqWIZ21Y1XSi479Cr5/I+TQz8Zd9xaUmcPbC/VzI9OJChifJ2R5F7CcHWFvIcmdgSoGl39wxl261DgMa2E6ClgpKyX6OpU0KJAfQNI2Y/afISMkkpF4gvkE+jo4khBDiOpzPPs6/578iOmPrxSUKdd3b083/fvyd6151W01TOZi8kANJC8iyJQBg0nvT2OsemvuOumqhZFOz2Rn3CEnZm8jtB5TNWVIv7OVkyjdEBs/DZAgodNvkzGVkmN04lRTIicRgTiWGEJvqR3KmJ0mZniRlepFjcwL+KeLoTfN9p1dsGHS2/KsoBgovMayg2chtscpbXdGuWM/xfZAUTdOuTCUuk5qaipeXFykpKXh6et7w/v5evJGvX/qe00fOAaAoCh1vi+D/3h1NSL2gG96/EEKI8nEu6xCLTvwPm2ZFu6w/jYIOveLEvbXeJcilQaHbaprGf3GvEZW2vJBnFcLcunJT8JvoiuisfPjCdE6mzid/P57crfV4O0cQGfwNadk5HDufztG4dI7EpXHkfDoHz8YQn150C1MuT2cD/h4mAjyc8fcwXfwy4qq+ia9LDDVcU/FzS8HTOQPdFQWOV42lGE0dCp539h9oyROuclQdGJqg8/vpmvmu5UY/v6UFqRz9/vka3n9orr0v3EWaprF5+Q72rT/Eh1vfJLhOoOMCCiFENZRhTWN70l+cyDiMTtFRz70Fbby7Y9K7FLmNpmmsPPtegeIIQEPFpuXw57n3GVX3o0K3j83aWkRxZN/D6Yx/OZn+F7U9+hR41qpmcDrtB3KLI02D7BwTsckBnE0M4mxSIGeTgkhI/YPYFGsh+7cXR75uSdT0PUdN37OEesfh45qCj2sqvq4p+Ht40LLmhkLTZWV0IT1lRRHZ9RicmuJkbF/406ZeoA8FWyx5d7Dlo6K4PVjEvsuXFEjlJCM1kw8f/9L+zRVtdqpNJTM1ky+eX8CL3z9Z/uGEEKKSO5V5ii2Jm8iwplPD5EfnGl3xMV67+8Lh1B18e+IdbFoOGva/X/embOLP2O8ZU+dFwl3rF7pdbPZhLlhOAGC2GElK8SU1zRNNu/QX8CFAi9+Bp7Hgpa6DyRtIzG6JdtkHgk3VYckxYrEayckxso5DBJgCybTYyDDbyMqxkmmxkZ6dRnL2E2TnmC6u74RW6LjP9uIowMNEw0APGgS60zDQg1q+cSgMx92UVcRPRUeg10NF/sycXe/HmnOM7MyvsV8Ks5F7mU+nr4mn75dFdrBWFAP4fIGWOArU89h/4lrefhT3CSguA4o8dnmSS2zXUFqX2H7/bDXv/98necVReI0MBrU7yaerG2Kx2ptQ9QYdi+O+wMPHvTSiCyFElZej5vBl9GdsTdqCDh2KoqBq9paVwaFDGBh8W5HbxmefYebRp7AV1icGHSadM/9r/CFuBg80TSMu1cyx8+kcj09ny+lD7DobQ1KKL5lZ175cVR68XFMJ8YklxCeOEJ84OtbuT9c6Q/BydSqw7unE50jKmF/IXvSYDPWpF/gzet3VP4tyLNvIyvgOm/Uois4LZ5dBmFxuQ1GKbnnLpanpkP0rWvYfoGWCoTGK670oTk2vuW1xySW2SuJc9HkMBj3WHBsKGq8N20GIbxYnEtz4dVtNAGxWlYQziVIgCSFEMX138lu2Jdk7SKuo+eqcn84swcPgSXf/mwrd9r8LK9A0lcs3UlWF9HQPUlO9SUvx5qEd60hP8yXqfDpp5isvV4XnPXJzTcfLIxm9Pv9lo0DnBrjoC344X8g+gEVNy7dMp7NhNOTYv5wsuJtcaOV3Jy5GPa5GA65GPa5GPSanHA4ljsdoSMdosGBysuDsZMbkZMm3v06hk3E3FiyOAEJ93sBkCCc+bS42NQkABSe8XIcQ4vPSNYsjACdjJE7GyGuuVxhF5w6uw1Bch13X9uVBCqRy4unrjmq7eL0YhSWbajFhwCHu7hTD8u1hqJq9edTDV4ojIYQojkRLIhsS/s13mepyqqqw+PgKgtU2pGZbSc7MsX9l5ZCSaWH1mSzSs7tisZiwmE1YLCYyM91Q1Ss7RicDoNcp1PJ1pa6/O3X9nTmhzsPTMxYfrySMRkuB4zvr3Pm/BuMw6IwFnjucfIot8Z9SoM/FRQo6WvqOo2WNwjt5B13oyMnU77haJ213Y8NCtwVQFB3+nuOp4fEg2ZZ9aOTg7NQIvc67yG2qGymQykn3uzvx2bOXmjP/2BXKfTcdJ9gnm5uaxvH3wRCadWmMX4ivA1MKIUTlsTt5FxoamgYpF2oQdzqM5AR/cixGcixGbFZ768mv/FvEHgq/DV+vt+LpmYKnZzKhNXSMbHIn9QPcqVXDFZPhUvG05UIk/5z/osh8nfxHFFocAdT1vIX9Sd+SaU1Au6KzsoIeo96DBl6Di9x3fZ9JpFmOkJS9mdz+P7l3ALkYwmjhP6PIbS+nU4y4mtoWa93qRgqkchJYy59b/68Pv81dhaZpmK16ftpSizE3H2No12j+PhTC6FeGOjqmEEI4hKqp7E05QlT6KQw6AxE+zQhxKXwcHwCbqrHvZDZHdrUh7nQo5uyi+r1oeDjr8XVzxtvFCS9XI14uTni7OBFj3kyGcgonYzZGoxmj0YyLayZubukoCujQ0b5GHwaEBhe653a+d5OjZrMpYSGgoqBHw4aCjk5+I2jrc0eR+Z10bvQJ+5h1Z58m2RKFcnHcHw0bbk5B3Bz8Di6Gov9g1uucaRv0+cWBIn+4bKDIO645UKQoHumkfQ2lOQ6SzWpj7lPf8MtHf6CpGp5uVuaNX4erycbB+m/QZOT4UkothBCVR1T6KWYc/pzY7AR06OytQmh08G3FxAb34WqwFz82VWNLdCIr9p1jxb5Y4tPMefvQG3LwDzmDf8hZnF0zcTJacDJaMDrZeLf1TDydCv7+PpS6g69j3rhqticavEuQS62rrpNhTeJQ6joyrIm4G2rQ2LMHrgbvYp27pmnEZe0gNms7mqYS6NKaYNf2FWZG+8rsRj+/pUC6htIeKBIgMTaJDcu2kpGSSTf3XwiNXwK1usKYosbEEEKIyiHLZsZsy8Hd4IJBd+3RkGOzE5i0azpmm8XeyfoyOnQ0dK/LQLeRrNgbyx/7Y0lIv9TXx9PZgE/wSXxCovANiEOnL7h9G58IHqlX+B+fmqbx29mv2XBhOQq6vPGMdOhQURkYPJpu/kXfBScqNrmLrRLyDfLhtv/ra/8mpR3M+gVOrIdTWyC8iMG1hBCiAtuXHMO3MavZcuEQGuBucOG20I6MqN0Td0PRt33/fGZ1geJIUxXSLviSfDaY3bGBfH/ZvGFeLk70bRrIgJbBdKnnR0zWUd47sgVVy99dWYcOTycv7g0fXuSxFUXh1pD7qeXWiPUJv3Eq8yj2qUKa093/dhp6tL7+H4io9KQF6RrKogWpgGXjYdd8aDQQhi0om2MIIcRV5Kg2fj61nYUnNnEiIwGTzkCf4ObcV6crdT2K7gsEsD5+H1P2fAMo+QodHQo13QKYHfEYHk6FF0n3bniK5DQD5nQ3stPdyU5zJ/W8P7acS52bnU0qg1rUYkDLYDrXq4GTPv/lp1OZJ/nt3C/sTNqBiopRZ6RLjW7cGnIbXk7exf4Z5H4cOnoWeVE65BJbGSuXAin+MHzYAdBg/Bbwb1Q2xxFCiELkqFae2DafjQnH8sY1BtArOnSKwgeRo+jgV6/QbbNtFob8O41Mm7nQ53Uo3BHWlaEh/YiKz7j4ZR9sMSo+gxOJGeSbf+kig9GMV1Ac3iGx3NwgmBeb/d81z8NsM5OtZuGmd8egkwsk1Z1cYqsK/BtB44Fw6DfYMAsGFz53jxBClIX50RvYlHAcyD8qj01TUTWF/+1YwB+9nsVFX/CW9bVxu8jIsaBanbDlOKHmGLCZTeRkuJKT6UpOhivvr4V3rWuKOLqCzpCDs1sGJvcMnN0zcPNJwr1GIopOQ4eOYJcWxToPk96ESW8q4dkLUTgpkCqKrk/aC6Q9P8DNz4NXmKMTCSGqAVVT+T5mU/45wbJNqGYjmtWAlmMg02pg4tL/CDDUuDjIYg7JWRaSM3M4n56JJafHNY+jUyDMx5W6/m7U9XOnrr8b9fzd2Z+zmeUJq0EpYrBHVHoHdi6t0xWi2KRAqijCIqF2N4j5FzZ+BP2vfuupEKJq0jSN7QmnOZmWjJfRmS5BtXE2FD5dRGFSLFlsjI8m22alsVcgjb0Cr7p+oiWD+Kx0rCmeWBJ9yLngg1rImEKryAAyCtlD7uUxDZ3Bis4pB70xB4NrJk5uWTi5ZuLklsmPvZ4kxN27wNatrDezJ3M7Z7LOF7iLDeC2kJ7Ucgu59okLUcqkQKpIuj5hL5C2fw3dnwZXGVVbiOpky/mTPLd5OTFpSXnL3A1GJrboxtjG7a/aeThHtfHOvjUsiNqKRb00MnNLn1DeihxEXQ+/fOsnpJtZdziePw6cJelQJNgu+zhQVHQmM4qT9WLRY6Ohrx89Qxvg7epk/3Ix4u3qRLKayJSDn6FzslJYPB0KDTzCCi2OAFwNLrzR8im+jl7K3/FbsGr27N5OngwJ68utwT2u/YMTogxUuk7aH374ITNmzCA2NpZWrVoxe/Zs2rcv+tb45ORkXnjhBZYuXUpiYiK1atVi5syZDBgwoFjHK5dO2rk0DT7pBrF74eYX4KZnyvZ4QohSl2LOZvHRvfx9JhqrqtLGP4ThjVsR5u511e12JZxh6Or52FQVtZD5uZ5qdRPjm3Upcvtntv7EL6f2FthSryh4ODmz9OYHSUnR8dehONYcOs+uU8lc/ttfcbLg5JuMsUYSTt7JKIb8rTkfthtNJ//C5wX7387P2J54pNDcAG+0HENn/2ZFZs+Vbs3kdGYsTjoDtd1C0SvXHkdJiKJUq7vYFi1axKhRo5g7dy4dOnRg5syZLF68mMOHDxMQUPA2VIvFQpcuXQgICOD5558nNDSUEydO4O3tTatWrYp1zHItkAD2/ghLxoKLLzy5D4wyXLwQlcXO82cZ9edi0izmvFJBpygowDvdBjCkftFFwrDV89l6/lSRRYaTTs/mOybibSp4+etA8jnu+OuzAss1VUFN9YBkb4xp/mRm5X++WYgnvRoH4OGfwUdnlxbaAqRXdNRx82dht/HoihjdOd2axUt7vmFn0jH0F9dRNQ2dovB4wzu4PaxTkectRFmpVgVShw4daNeuHXPmzAFAVVXCw8OZMGECzz33XIH1586dy4wZMzh06BBOTsW/hn+5ci+QbFaY3RaST8Atb0OHh8v+mEKIG5Zizqbr4k9Iz7GgFvJrVYfCz7ePpKVfwXm9olOS6Ln0C8hxAqsT5Dih5Ri4/PZ3BegUWItG3gX/GNyacIJDKXFc/utcM5tQUz1BvVTUODvp6Frfj56NA7m5sT/BXpeKra+P/8vsw3+gU3TYNBUdCioaNV1rMLfDGIJcvK96/pqmcSD1BOvi9pBpMxPu6k//4Ei8je5X3U6IslJtCiSLxYKrqys//vgjgwcPzls+evRokpOT+fnnnwtsM2DAAHx9fXF1deXnn3/G39+f4cOH8+yzz6LXF950azabMZsvjeeRmppKeHh4+RVIAFs/h+VPgVdNmLgD9NdX3Akhys/n+7by2pa1+dt/NOx9e6wGdDYnWniFcVNQQ2JTsolLMxOXkk1sajYpWTllF8xoQeedjM47hc3DHqaGS9GjWp9IT2Dpqa0cTzuPq8FIr6Bm9AxqipOMKSQqoWozDlJCQgI2m43AwPx3ZAQGBnLo0KFCt4mKiuKvv/5ixIgR/P777xw7doxHH32UnJwcpk6dWug206dPZ9q0aaWev0Raj4B1b0LKSdi3FFoNdWweIcQ1rTsdbS+OrHpI87J/ZbugXGwF0oA9Z2DPgWOF70BRwSnn0pchJ9+t7wrQI6QeTXwK3pW2MT6avUln87UgYbCh80pFcclCUcBVb8TH2fmq51DL3Y8nm9xSshMXooqqNAXS9VBVlYCAAD799FP0ej0RERGcOXOGGTNmFFkgTZ48mUmTJuV9n9uCVK6cXKDD/8Ffr8KGmdDyHgrtHCCEKDPpFgsXsjLxNjnjdY3CIstiIzZWgTM1IcM9rygC7OML6a1gsKJ3sjGsWVOCPJ0J9HK2/+tp/3f8f4vZHH8CWxGN+iadnllDhuNpLJjlcIoPt6/ZWmQ+vaLjztqt0cnvESGKrdIUSH5+fuj1euLi4vItj4uLIygoqNBtgoODcXJyync5rUmTJsTGxmKxWDAaC44KazKZMJkqwEis7cbB+plw/gAc/RMa9nN0IiGqhZjkJN7b8h/Ljx3GpmkoQM/adZnUvgvN/C/1/7GpGhuPX+CnnWdYue8cGRbXSyMCmTLBMwXc0y62BNnvJusUVJPXbyl8VOjJbXty15/foKEW2ofpqVY9Ci2OABp5BXJP7bb8ELOjwHN6RcHH6MKDDYu+A04IUVDhtyRUQEajkYiICNasuTRcvaqqrFmzhk6dCr9DokuXLhw7dgxVvXS76pEjRwgODi60OKpQXLwhcoz98fr3HRpFiOriWNIFbl/8XV5xBPZLY+tORDNkyQK2x57lwNlU3vj9IJ3fXMPILzazZMdpMiw2gr1MUCMerfZRqBUNPon2S2UXqyabpjGmWUSRx27mG8TC3vfR+IpO2L4mV15t159xTTpcNfvLbQbwaONuuFzRZ7GdXy0W9niAQBePkv9AhKjGKk0nbbDf5j969Gg++eQT2rdvz8yZM/nhhx84dOgQgYGBjBo1itDQUKZPnw7AqVOnaNasGaNHj2bChAkcPXqUBx54gIkTJ/LCCy8U65jlfhdbvoOfg1ktwWaBB/6Amh3L9/hCVDNDf1rEtnNnCl7mshpQsrwwZHmTY75UgHi5OHFry2DuaBNKRC0ffjp+gEn/LM+7EwzsLTg2TWNcs0hebH9zsWaKP5AUx4m0JDyNJtoH1MRJV/zxgDKtFrYmnMBss9LQK4Da7jWKva0QVUm16aQNMHToUOLj45kyZQqxsbG0bt2alStX5nXcPnnyJDrdpUax8PBw/vjjD5588klatmxJaGgojz/+OM8++6yjTqFkPIOh1b2wY579ctvwhY5OJESVFZ2cxOazpy8tUHWQ6QGZnmB2RUMhBzDoFPo0DWRwm1B6NPLHZLhUvAyp34x6Xr58vn8ba08dx6pptPEP5oFmEfQOr1+s4gigqU8gTQvpjF0crgYjNwUVPqCjEKL4KlULkiM4tAUJIOEYzIkENHhkIwQ2Lf8MQlQDf8VE8cCvyyDb3V4UZbmRrxeCKRNcU5jSJ5IH2rZ2UEohRHFVqxakasmvPjS5DQ7+Av99AHfMdXQiISq8UykpLNi9m40nT6FpGp1r1WR4q1aEexWc7iM7x8bfR+L5etM5ONsAtMuKIoMZ3FLBNdXe2Rrw87j6HW1CiKpBCqTKoOsT9gJp72K4+XnwrunoREJUWH8cPcrE35ajalre3WAH4+P5cvsOZg0cQP+GDcmxqaw/lsBvu8/x5/5Y0szWi1vrwGCxF0QuqWC05Nu3Sa+nR8065XxGQghHkAKpMgiNgDrdIfof2Pgh3PKWoxMJUSFFJyYx8bfl2NT8M5rZNA1UjceW/kX/WqlsOJpIUual0auDvZy5tWUwOrc0Ptm3/vIZPvIowLjWkXhWhGFAhBBlTgqkyqLrk/YCacc86P4MuMmdKUJcaf7uXWiallccaRpgdUYze6KZPUA18FuyfSw1P3cjA1sEc2urECJq+qDTKWiahoe7xvtb/kPDPtGsqmlomsboFm2Y1L6zo05NCFHOpECqLOreDMGt4Nxu2PIp3DzZ0YmEqHD+iYm5NH6RxRU1PQBsl7X4KDY8Pcx8fM/NdKjji0Gffyg4RVF4LLIj9zRpwS9HD3I2PY0aLq4MatCEMEfcpCGEcBgpkCoLRUHr8gTKj2PIWDOLB+47jlUx0aF/K+4Y35cGrWs7OqEQDqdqGprNgJbhj2a+WNAoKooxDcWUBsYM/Hy86VLf76r7CXBzY1zryHJILISoqCrNSNrVnaZpfPx1OmeT3XAzZNGj3mEyUjL5e8lmHr/5Vf5ZusXREYVwKItVxcMWjJpU52JxpKG4JKHzPY7OMxbFlIFBp9A+LMzRUYUQlYAUSJXE+p+38cuna/lxq30AuDsjjqLXqdisKqpN5a1xn3LhXJKDUwrhGP8dT2DAB/+y67hqv03fkIXO5wQ69/MouktTDamaxqg2rR0XVAhRaUiBVEn89NGf6HQKqw7UIjHDRIBnFj0ancp7XlNVVnz9twMTClH+4lKzmfj9ToZ/tplj59Op4Wbkzg6+6L1PYnC6dIu+XlFQgFd696JpQEDROxRCiIukD1IlcWRHDKqqoaLnpx31GdttP3e3O8qagzUBBVXVOLQtytExhSg1mZYc1h6N4kJGJkGeHvSoXxujwf4rK8em8s1/Mby/6ggZFhs6BUZ2rMVTfRrh5erE6Ng6fLNjJxtOngSgc81w7m/blpZBQY48JSFEJSIFUiWh1+vIHcpu+e66DO9wiNp+qbQIS2DvaX8UBQxOxZ/QUoiKbN6Wnby3dgOZOTkoiv12fS9nEy/07UGweyBTft7P4bg0AFqHe/Pa4OY0D700SnbLoCDeHXCLo+ILIaoAKZAqicjeLdi0Yic2q0qmxYm1h8IZ0DKGgS2j2XvaH02DiF4tHB1TiBv27dZdvPbnurzvc2eLTM60MumH3ahW+91pPq5OPHdLY+6OCEenK94ksEIIUVzSB6mSGDKhHzbbpc6my3fXBaBLgzP4epjx8HWj59BOjoonRKnIzrHy/roN+ZZpGtgs3uRk1r5YHGkM71CTtU/3YGi7mlIcCSHKhBRIlUSzjg14cs4YFJ2CTq/jeLw3B8/54KTXGNjmDG/89DRuni6OjinEDfk3KoZ086XO1arNhDWrJjZLAKBH0WVjcDnJ3e1q4O1qdFxQIUSVJ5fYKpF+93WnZdfGrPj6bw5uPc7+HBtN+JlhNyegaxXu6HhC3LDEjKy8x7YcD2zmQOx/x9nQmxLQGVJQFEjMzCpyH0IIURqkQKpkgusE8MC0u+3f5GTBu3+jSzsNx1ZDw36ODSfEDQr18rx4Sc0PNccXAEWfgcH5HIqi5ltPCCHKklxiq8ycXKD1CPvjrV84NosQpaBpUBC6nJp5xZHOKRGD85m84kinKDQO9KdxoL8jYwohqgEpkCq7yAfs/x79E5JOODaLEDfgSFwad3z0H2aLM6BiMJ3FYEpAudgHW6co6BSFKf1udmhOIUT1IAVSZedXH+rcBGiw/WtHpxHiuvyxP5Y7PtzAiQuZhHq78NqQBjQMzt8Ju3lwAN/edxeRNUMdlFIIUZ1IH6SqoN1YiP4bdn4LPSaDQe7uEZWDqmrMWnOUWWuOAtCpbg0+HNEWXzcjI9o14vD5hLyRtOv5+To4rRCiOpECqSpoNADcgyA9Fg79Cs3vdHQiIa4pLTuHST/sZtWBOADGdKnN8wOa4KS3N2wrF/sbCSGEI8gltqpA7wQRo+2Pt37p2CxCFEN0QgZ3fPQfqw7EYTTomHFXS6be1iyvOBJCCEeTFqSqou1o+GcGnFgP5w9BQGNHJxLV3I4TZ/hu0y52njiLXq/jpkZ1GdGhFTGJViZ+v5O0bCuBniY+uS+S1uHejo4rhBD5SIFUVXiFQsNb4PBy2PYlDHjb0YlENfbZ31t4f9UG9DoFm2qfTG3h5t18u/EkFpsfGhBRy4ePR7YlwMPZsWGFEKIQ0p5dlbS7eMv/7u/BkuHYLKLa2nT8JO+vss+nllscaZpCljUQ88XiaFDrYBY82EGKIyFEhSUFUlVStyf41AFzKuxb4ug0opqa998O9JdNIKtqBrJt4dg0+0SzJt15GvibMRn0jgsphBDXIAVSVaLTQeQY+2MZWVs4yLaYM9hUDU2DHNWbbFstNJwBKyb9afS6ZLZGn3Z0TCGEuCopkKqa1iNBb4Jzu+DMdkenEdWQBlhVN7JttclRAwA9OrJx1p9Er9gnmVWUq+5CCCEcTgqkqsatBjQbbH8st/yLcrb3dAoqtbCooWgYAStGXSwm/Ul0ihWwTxnSsV5NxwYVQohrkAKpKooca/933xLISnJsFlEtnEvJYtIPu7htznouZCiAikG5gIs+GoMuNa/FSFHAaNBzV2Rzh+YVQohrkQKpKgpvDwHNwJoFu753dBpRySWmZ3IiPolMs6XAcxlmK+/9eZib31nH0h1nABjcOoRn+gZj0l/g8n7YOkXBqDcwZ8Tt+Lm7lVd8IYS4LjIOUlWkKPZb/pc/ZR8TqeMj0ulDlNj2qNN8+MdGth63d6h20usY2LYxj/Xvgp+HG0u2n2bGn4eJTzMD0K62Dy8ObEqri4M+9m5am++37GZ7zBkMOh03NarD0PYtCfLycNQpCSFEsSmapmmODlGRpaam4uXlRUpKCp6eno6OU3zmNHi3MVjSYfSvUKe7oxOJSmTd/uM8/vWvAKiX/YrQ6xRcXHxw86zFsXj7WFs1fV2ZfEtj+jcPQpFCXAhRQdzo57e0IFVVJg9oeY+9BWnrF1IgiWKzWK28uOhPNE3j8r+ebDiRiT/JZneIz8DD2cDjvRpwX6daMqaREKLKkT5IVVluZ+1Dv0FarGOziEpj7f4oUjKz84ojDR3ZOn8y9bWx6dxB0zBqyfwyviPjutWV4kgIUSVJgVSVBTWH8A6gWmHHt45OIyqJmPgkDDr7rwYVHZn6cHJ0PqAo6NV0XG0xmGznyczOcnBSIYQoO1IgVXW5rUjbvwbV5tAoonJwMzmhahoaOrL0YaiKCUWz4mI7hat6Fj059vWcTQ5OKoQQZUcKpKqu6SBw8YXU03DkD0enEZVAz2b1UVHI1IehKs55xZFBuzgKNlAv0Jdaft4OzSmEEGVJCqSqzskZ2oywP94mI2uLa/N0c8Xk2eCy4uh0XqsR2KcSGd+vs9yxJoSo0qRAqg4iLk5ge2w1JMU4NIqo2DItVsZ8tYWEDA2jHlxsp3FScjDodSjYR8Geclcv+rRs4OioQghRpuQ2/+qgRj2o1xOO/wXbvoI+0xydSFRAWRYbY7/extaYJDycDSwY1xFPU2dW7j5CWpaZMF8vBrRthKeLs6OjCiFEmZMCqbqIHGsvkHZ+Czc/DwbpYCsuyc6x8dC329gYdQF3k4F5D7SnRZgXAA/37uDgdEIIUf7kElt10bA/eIZC5gU48Iuj04gKxGy18cj87fx7NAFXo56vxrSjTU0fR8cSQgiHkgKputAbyGhwDwAHP3mRAWETuS/yJRa8v5KMVBnPprrKsak8tmAnaw/H4+yk44vR7WhX29fRsYQQwuGkQKomTh6NZdK0eGyqQhP/WGp6J5JwLpn57/3OE7e+Q0piuqMjinJmtak8sXAXqw7EYTTo+GxUJJ3q1XB0LCGEqBCkQKoGNE3jzUe+4vR5AxtPhAMwoMkR+3OqxtmYBOZO+dGREUU5s6kaTy3ezfK953DSK3wyMoJuDfwdHUsIISoMKZCqgUM7Yog+eBbVprL8QEMAejeIwtlgH9tGtan888tOki+kOTKmKCMZ2RYOnTpPVOwFVFVDVTWeXbKHn3edxaBT+HB4W25uHODomEIIUaHIXWzVwLG9p1AU0DTYfTaY0ykehHmlcUuTo/y0tylgL5KiD5ylTbdGDk4rSktqZjYf/LyeXzYfwGK1TzMT4uuJV3B9Np5IR69T+GBYG/o2C3JwUiGEqHikBakaMDjp0S5Oza6hsGR3MwDui9iFv9ulvkdOJqmXq4q0LDP3v7eInzbuyyuONOB4ujMbT6SjAO/d04oBLYIdmlMIISoqKZCqgbY3Nck3LcQfhxuwLzYAFycrj3XdDGi4e7nQsFVNx4UUperbNduJiUvCptorYw3INvpjNnqDpuGSHUtEmJtDMwohREUmBVI1EBjmS/fb26LT2YskDYUP/u1Ijk1H+5pnuKleDEMe6onR5OTgpKI0aJrG4vV7ULXc4kgh2+iH2Wgf28jFHIeLmsayjfsdGVMIISo0KZCqicdnDKNFp/oA6PU6TiV7s2h3SwAm9tjJ0HGRjownSlF2jpXE9GwsencynINJcauH2Wgf28glOw6TNRVNg9MJKQ5OKoQQFZd0OqkmXNxMvLHwMXavP8JfS7eSfCGd1LCOmD3fwzX1GKyeAoM/cnRMcYUz8SksXLOTVVsOk23JoU5wDe7p1Zq+7Ruh1+X/+yY7x8a6w/H8tvssKW71QLn0vE61YLIkYrKmAqAo4OEi080IIURRFE3L7b4rCpOamoqXlxcpKSl4eno6Ok7pO7UFvugLaDDqZ6jbw9GJxEV7jp1l/HtLsORY8/oS6RQFVdO4uW19pv/frdg0jX+PJLB87zlWHYgj3WzN216n5uBkTcPJmoZeNaNcsf/PH7+byAZh5XhGQghRfm7087vSXWL78MMPqV27Ns7OznTo0IEtW7YUa7uFCxeiKAqDBw8u24CVTXh7aP+g/fGvT4Al06FxhJ0lx8qk2T9jtlwqjgBUTUMD/tx7lrtnryXytdWMm7eNn3aeId1sJdjLmXFd6/Dh0Ob45ZzELecChiuKI52iENkgjIj6oeV+XkIIUVlUqktsixYtYtKkScydO5cOHTowc+ZM+vXrx+HDhwkIKHqgu5iYGJ5++mm6detWjmkrkV5T4NBySIqGv9+EPq84OlG1t2b7UZLTL82RpwE5Tq6YTR5YTB5oOj07Y7MBCPAwMaBFMLe1CqZNuE9eZ/wQzzv53xfLSUjNwKDToWoaqqbRrXkdXh/VP9+djUIIIfKrVJfYOnToQLt27ZgzZw4AqqoSHh7OhAkTeO655wrdxmaz0b17dx544AH+/fdfkpOTWbZsWbGPWeUvseU6vBK+HwqKHh5aC8GtHJ2oWnv7u79Y+vcerDYVq95EmkcQNifnvOcV1YrJnMYHY3vQq3koel3hxY7VprJ+fzSHz8RjcjJwU/O61AmSyWiFEFVftbnEZrFY2L59O717985bptPp6N27Nxs3bixyu1deeYWAgADGjh1bHjErr0b9odkdoNnglwlgs157G1Fm9DoFDch0rUGyTy1sTs4oqg1TVjKeyafwvXAc9/TztKvjW2RxBGDQ6+jRsh4P39KR+3tHSnEkhBDFVGkusSUkJGCz2QgMDMy3PDAwkEOHDhW6zfr16/niiy/YtWtXsY9jNpsxm81536empl5X3kqp/1tw/C84txs2fwydJzg6UbUVEhJIgkd4XquR0ZyGe1ocOs0+KraiQJ3gGni7uzgyphBCVFmVpgWppNLS0rjvvvv47LPP8PPzK/Z206dPx8vLK+8rPDy8DFNWMB6B0Pd1++O/XofEaMfmqYZybCqz1xxlyp8xea1G7qln8Ug9m1ccgX1evdG3tJN+REIIUUYqTYHk5+eHXq8nLi4u3/K4uDiCggpOtnn8+HFiYmK47bbbMBgMGAwG5s2bxy+//ILBYOD48eOFHmfy5MmkpKTkfZ06dapMzqfCajMSancDaxb89iRUni5qld7h2DTu+GgD7646Qo5No1s9Xxpo8Tib08i9ipZ7OW3MgPYM6NTEgWmFEKJqqzSX2IxGIxEREaxZsybvVn1VVVmzZg2PPfZYgfUbN27M3r178y178cUXSUtLY9asWUW2DJlMJkymajyAnqLAbbPg484QtRZ2L4TWwxydqkqz2lQ++SeKmavthZGXixMv396Uwa1DyTJHsHLzIdZsO0JGtoX6YX7ceVMrmtQOvPaOhRBCXLdKUyABTJo0idGjRxMZGUn79u2ZOXMmGRkZjBkzBoBRo0YRGhrK9OnTcXZ2pnnz5vm29/b2BiiwXFyhRj246VlYMw3+mAz1e4O7v6NTVVrZ5hz+2nyEk+eScHVxoke7BtQMtneWPhKXxtOLd7PntH3aj95NAnjjjhYEeNr7Hrk6GxlyU0uG3NTSYfmFEKI6qlQF0tChQ4mPj2fKlCnExsbSunVrVq5cmddx++TJk+h0leaqYcXWeQLsWwpxe+1F0p2fOzpRpbRuy1Fe+2QlGVkWDHr7WEQfL1xPr46NCGjakDlrj2OxqXg6G5h6WzOGtA2VfkVCCFEBVKpxkByh2oyDVJgzO+DzXqCpMOJHaNDH0YkqlR0HTjHh9cWoV7zFcgxGUmoEk2Oy34HWs3EA04e0INDTubDdCCGEuA7VZhwk4QChbaHjo/bHvz0J5nTH5qlkPl/yH5fP8aEB6R6+JATXJsfkgqLaeLZXXb4YHSnFkRBCVDBSIImru/l58K4JKadg7euOTlNpJKVmsvPgadSL86jZ9AYuBNYizScAFB2mrHSCYmNwSkmSS2pCCFEBVao+SMIBjG5w6/sw/060TR+zKa4J/x1wRlGgZYd6dB/QEqPJydEpK5yMLEveY4vRmST/MFS9AUW14Zl0HpeMFAx6Xb71hBBCVBzSgiSurX5vkkMHoqARtGMqf/+6jTU/7+TdZ39gdI83OXbgjKMTVjh+3m4YnQxkunpyIbAmqt6AwZKN37loXDNSUACbqhIe5O3oqEIIIQohBZK4pvhzyUz8NISUbGfq+CQypOFOVJsKQGpSBpNHf0ZKYoaDU1YsRicDNZo2JMUvxH5JLTONGnEnMFw2x52TQU/fLjLYoxBCVERSIIlr+nX+Ri6kGfhkR2cAhrfYTqhHMgCqqpGRms0fP251YMKKJdNi5dHvdrAjyV5EeqRewCfhDLqLd7Pl9jn635jeuLtW40FJhRCiAitWH6RffvmlxDvu06cPLi4ykWZVsP6PPaiqxtqYBvSsfZTIkFNMaP8Pz625DVDQNI0Nf+zlnod6ODqqw51NzuLBedvYfzYVo17HC/0bcvrAUf7YcIEcq71galDLn3F3dqZbRD0HpxVCCFGUYhVIuVN7FJeiKBw9epS6deteTyZRwZizcy4+Upi9tRuf3bqIVoFnaegbz5HEAACys3KK3kE1setUMg/O20Z8mpkabkY+uS+CyNq+0K0eT9x3M3GJabg6Gwnyq2bjaQkhRCVU7EtssbGxqKparC9XV9eyzCzKWb2moej09pfK+QxP/j1pL3z71z8AgF6vo36zEIflqwh+2X2WoZ9sJD7NTKNAD5aN72Ivji5yczVRN8xPiiMhhKgkilUgjR49ukSXy0aOHFn9Rp2uwm4f2TmvUzbAimNNAehR6xiuBgs2m8qtwzs5Kp5DqarGe6uOMPH7nZitKr0aB7Dk0c6E+8ofCUIIUZkV6xLbV199VaKdfvzxx9cVRlRMEd0aMnB4R5Yv2ISiKOyPD+Jkijc1vZK5qfYxvPo8RpM2tRwds0wdOhbLxm3HseTYaFg3kG4d6pOjwtOLd7N87zkAHu5el2f6N0avk4EfhRCisiv2QJF33XUX48aNo1+/fjLybzWjKArjpw6mUcuaLP3yH2KOxLLiWBMejtjImB6xeDzZz9ERy0xKahYvvv0zu/adQq9TUBQFq03F3ccDS5OGHE/Mwkmv8PrgFtzTLtzRcYUQQpSSYhdISUlJDBw4kJCQEMaMGcP9998vnbCrEUVR6DMkgj5DIsjOsqBkJ8Gc5nhkHoGzOyGkjaMjljqbTeXpV37kSFSc/XtVAzQsJmeO1AjClpiFp7OBz0ZF0qFuDceGFUIIUaqK3Ul7zZo1REVFMXbsWObPn0+DBg3o2bMnCxYswGw2l2VGUcE4uxgx+QRC00H2BdtKdgm2stiyM4ZDx2Lz5lMDyPTw4Hyt2tgMTjiZzQz0sklxJIQQVVCJBoqsVasWL7/8MlFRUaxatYqQkBAefPBBgoODGT9+PNu3by+rnKIiirjf/u/eH8Gc5tAoZeGvDYfy9SdK9a3BhdBwNJ0O5/Q0Ak5Es3XjYTRNu8pehBBCVEbXPZJ2z549mT9/PrGxsUyfPp2FCxfSoUOH0swmKrpaXaBGA8jJsBdJVUxGpvniZTVI9fUlJSAQAPfEC/idPoVOVTFbrPlamIQQQlQNNzTVSHR0NO+88w5vvPEGKSkp9O7du7RyicpAUS61Im3/2pFJykR4iC86nUK6lzcpAUEAeMWfx+d8HLntSoF+Huj1MmOPEEJUNSX+zZ6dnc38+fPp2bMnDRo0YN68eYwdO5bo6GhWrlxZFhlFRdZqGOiNcG6XvbN2FTKwdwvS3D1ICgoGwONCAh4XEvKeVxSFOwZUvc7pQgghSnAX25YtW/jyyy9ZtGgR2dnZ3HHHHaxcuZJevXrJbf/VmVsNaHI77PsRtn9Tpe5mO5RsISkkDAD3pES84s/ntRzpdAoN6gRw58C2jgsohBCizBS7QOrYsSOtWrXi1VdfZcSIEfj4+JRlLlGZRNxvL5D2Loa+r4HJ3dGJbti/R+N5bMFONKBjiBtK6jlOX3zO1cXI7X1bMubeLjibnBwZUwghRBkpdoG0bds22raVv5ZFIWp3Bd96kHgc9i2BiNGOTnRDtsUk8tC87VhsKv2bBTFneBv0ups4dz6FnBwbQQFemIzFfusIIYSohIrVB2nPnj20bt262Dvdv38/Vqv1ejOJyqYKddbedyaFMV9tJSvHxk0N/Zk1rDUGvQ5FUQgJ9KZWWA0pjoQQohooVoHUpk0bLly4UOyddurUiZMnT153KFEJtR4OOic4uwPO7XZ0mutyNC6N+77YTJrZSvvavswdGYHJoHd0LCGEEA5QrD+FNU3jpZdewtW1eDOUWyyWGwolKiE3P2hyG+xfam9FuvV9RycqkZMXMhn5xWaSMnNoGebFF/dH4mKU4kgIIaqrYhVI3bt35/Dhw8XeaadOnXBxcbnuUKKSihxjL5D2LIY+r1aaztqxKdkM/3wTcalmGgV68M2Y9ng4S+drIYSozopVIK1bt66MY4gqoXY38K0LiVH2QqntKEcnuqaEdDMjPt/E6aQsatdw5dux7fFxMzo6lhBCCAeTIYBF6angnbXN5hxi41JIz7BPrpySlcOoL7ZwPD6DEC9n5o/rQICns4NTCiGEqAjkdhxRuloNhzWvwpntcG4PBLd0dCLiE9L45tv1rFq9H0uODUWBtpF12e/rz8H4DPzcjcwf14Ewn+L1sRNCCFH1SQuSKF3u/tDkVvvjHd84NgsQdz6V/xv/DSv/2IslxwaADYXlySoH4zNwN+r5dmwH6vpXjv5SQgghyocUSKL05V5m2/MDWDIcGuWjuWtISc3EpmoAaEB8nXCyPNxRbDbCYk7RMECKIyGEEPlJgSRKX+3u4FMHzKmw/yeHxUhMyuDfDUex2S4rjmqHkentiaKqBB4/iTk2kS1boxyWUQghRMV0XQXSt99+S5cuXQgJCeHEiRMAzJw5k59//rlUw4lKSqe7NN2IAztrnzmbhKZped+nBPqR4esNmkZA1Elc0jPQ6RROnCz+IKhCCCGqhxIXSB9//DGTJk1iwIABJCcnY7PZ+3V4e3szc+bM0s4nKqvWI0BngNNbIXafQyK4OF+6XT/H6ERycAAAfifP4pqaDtgHQXVxkdv6hRBC5FfiAmn27Nl89tlnvPDCC+j1l0YajoyMZO/evaUaTlRi7gHQeKD9sYNakerW8ScoyAsNuBAegqbT4ZyajvuFpMvWUujSub5D8gkhhKi4SlwgRUdH06ZNmwLLTSYTGRmO7ZArKpiIMfZ/9ywCS2a5H16nU7j/vq5keHuS5eUBqorfqbMoF59XFIWBt7TEr4ZHuWcTQghRsZW4QKpTpw67du0qsHzlypU0adKkNDKJqqLOTeBT26GdtTt1a0R2o9oA+MQl4GKzotfbS6TePZsycXwfh+QSQghRsZV4oMhJkyYxfvx4srOz0TSNLVu28P333zN9+nQ+//zzssgoKiudDtqOhjXT7JfZ2owo9wgzVh4mLUellq8LD7dtSkJ8Kp4eLvTs0YSaNWuUex4hhBCVQ4kLpHHjxuHi4sKLL75IZmYmw4cPJyQkhFmzZnHvvfeWRUZRmbUeAWtfh9NbIG4/BDYrt0PvOpXM/M32uyyn39mSzvX8yu3YQgghKrfrus1/xIgRHD16lPT0dGJjYzl9+jRjx44t7WyiKvAIhEYD7I+3l9/I2labyvNL96JpMKRNqBRHQgghSuSGBop0dXUlICCgtLKIqipvZO2F5dZZ++v/YjhwLhUvFyeeHyh944QQQpRMsS6xtWnTBkVRrr0isGPHjhsKJKqgujeDd01IPgkHfobWw8r0cGeSs3hv1REAJt/SGD93U5keTwghRNVTrAJp8ODBeY+zs7P56KOPaNq0KZ06dQJg06ZN7N+/n0cffbRMQopKLrez9l+vcu6X9/nqewM+fu70vrUVDZqElPrhXv5lP5kWG+1q+3BPZHip718IIUTVV6wCaerUqXmPx40bx8SJE3n11VcLrHPq1KnSTSeqBJvVxud/+TFW1RHMYU5s+pv1Gf4sW7CJm29pydPTBmNw0l97R8Xw5/5YVh2Iw6BTeP2OFuh0xWv5FEIIIS5X4j5IixcvZtSoUQWWjxw5kiVLlpRKKFG1zJu7lp9+iWZTbF0A+tfci82mArBu5R6++GBVqRwn3Wxl6i/7AXioe10aBsoAkEIIIa5PiQskFxcXNmzYUGD5hg0bcHZ2LpVQourIyjTz03eb0DT4PaY5AL3DD2LUWQHQNPh10RbS07Ju+FjvrzrCuZRswn1dmNCzwQ3vTwghRPVV4nGQnnjiCR555BF27NhB+/btAdi8eTNffvklL730UqkHFJXbnu0nMGfnALAjvhaxmR4EuaZxc9gh/jhpL5hycmzs3BRFtz7XP0bSvjMpfLUhGoBXBzXHxVg6l+yEEEJUTyUukJ577jnq1q3LrFmzmD9/PgBNmjThq6++4p577in1gKJys5iteY81FJZHt2Rssw083Pwf9ieGcDrd176exVrULq7Jpmq88NNeVA0GtgymRyMZekIIIcSNKXGBBHDPPfdIMSSKpW7DwHzfLznelvaBMbTwO8OUdr/x+L/3kmU1Uq9R0HUf47vNJ9h9OgUPk4Gptza90chCCCHEjQ0UKcS1hNasQet2ddDp7S81m6bn9W0DuJDtRi3PRJ5qs4omLUOpXT/wGnsqXFxqNjNWHgbgmf6NCPCUfnBCCCFuXIkLJJ1Oh16vL/JLiCs9OXUQXt4ueUVSktmNV7cMJEfV0S3kKC/fnXDd+37ltwOkma20CvdmeIdapRVZCCFENVfiS2w//fRTvu9zcnLYuXMn33zzDdOmTSu1YKLqCAr14cMF/8fieRtY+dMOsjItRGfXYoNxND2sX+G9fQY07Qx1e5Rov+sOn2f5nnPodQpv3NEcvYx5JIQQopQomqZppbGjBQsWsGjRIn7++efS2F2FkZqaipeXFykpKXh6ejo6TqWnaRrm7BxMzk4oAD8/Brvmg4svPPy3fUqSq2ybkpyJqmqY3Jzp/8E/nErMYlzXOrwofY+EEEJc5kY/v0utQIqKiqJly5akp6eXxu4qDCmQylhOFnzZH87tguBW8MAf4OSSbxVN01i9ci+LvtvIiRj75bjMprU44+tDsJczqyfdhJvpuu43EEIIUUXd6Od3qXTSzsrK4oMPPiA0NLQ0dieqEycXGPqtvQXp3G5Y/pR99MjLfDF3LW+//isnT9iLI7OrM2e8vQFolp6GSylNUyKEEELkKvGf3T4+PijKpb4emqaRlpaGq6tr3rhIQpSId02460uYPwR2fQehEdBuLACHDpxh0XcbAXvdpAHn64WBTsHtQjInDsbwz9qG9Ogll9iEEEKUnhIXSO+//36+Akmn0+Hv70+HDh3w8fEp1XCF+fDDD5kxYwaxsbG0atWK2bNn543ofaXPPvuMefPmsW/fPgAiIiJ44403ilxfOFC9m6HXVFg9FVY8C0EtILw9v/28E71elzd3W2qgL9le7ihWG/7Hz6DTKfy8dJsUSEIIIUpViQuknj17Eh4enq9IynXy5Elq1iy6k+2NWrRoEZMmTWLu3Ll06NCBmTNn0q9fPw4fPkxAQMHRk9etW8ewYcPo3Lkzzs7OvPXWW/Tt25f9+/fL5cCKqMvjcHYHHPgZfhgFD/1N1LG4vOIo282FhDr2/7caJ2NxsuSgAiei4h0YWgghRFVU4k7aer2ec+fOFShILly4QEBAADabrVQDXq5Dhw60a9eOOXPmAKCqKuHh4UyYMIHnnnvumtvbbDZ8fHyYM2cOo0aNKtYxpZN2OTOnwee9If4Q1OzMMzvvZdeu05hNRk63bIDN6IRLSjqhe4+RW6L7B3iyYOkEh8YWQghRsZR7J+2i6qn09HScnctuFGOLxcL27dvp3bt33jKdTkfv3r3ZuHFjsfaRmZlJTk4Ovr6+Ra5jNptJTU3N9yXKkckDhs4Hkyec/I//a7gWi5MTZ5rXx2Z0wpSeSfCBqLziSKdT5PKaEEKIUlfsS2yTJk0CQFEUpkyZgqura95zNpuNzZs307p161IPmCshIQGbzUZgYP4pKQIDAzl06FCx9vHss88SEhKSr8i60vTp02XAS0fzawB3zIWFw6l74SfaR/oTo2uGU1Y2Ifuj0F+85KbTKZhMBgbdGengwEIIIaqaYhdIO3fuBOwtSHv37sVoNOY9ZzQaadWqFU8//XTpJywlb775JgsXLmTdunVXbemaPHlyXjEI9ia68PDw8ogoLtd4IJbOT2H8712muXzN4axwUvZlY1JVMOiwWVU8PV2Y9uY9BAZ5OTqtEEKIKqbYBdLatWsBGDNmDLNmzSr3/jh+fn7o9Xri4uLyLY+LiyMo6Oozwb/zzju8+eabrF69mpYtW151XZPJhMlkuuG84saYrTbGnejNA7bV3KzfzQLfj3ml3nh2H05DUzVq1qrB6HE30aRZiKOjCiGEqIJK3Afpq6++ckhnZaPRSEREBGvWrMlbpqoqa9asoVOnTkVu9/bbb/Pqq6+ycuVKIiPlUkxlYFM1nly0i3+PJ/G8MpEUQzBu2We52/Q5ms2KqmqcPpXIqy8t5fOP1zo6rhBCiCqoWC1IQ4YM4euvv8bT05MhQ4Zcdd2lS5eWSrDCTJo0idGjRxMZGUn79u2ZOXMmGRkZjBkzBoBRo0YRGhrK9OnTAXjrrbeYMmUKCxYsoHbt2sTGxgLg7u6Ou7t7meUU10/TNF5ctpff98Zi1Ot4um8bnnm9H7Mi5xNZI5pR9Tbw9fFuqKr9ZoEfFmykdUQt2nWo5+DkQgghqpJiFUheXl554x55eTmuv8fQoUOJj49nypQpxMbG0rp1a1auXJnXcfvkyZPodJcaxT7++GMsFgt33XVXvv1MnTqVl19+uTyji2Ka8cdhvt9yCp0Cs+5tTdSavZzIDOT9g/2Y3Hw5I+ps5EhqEP/FNwBAp1dYtnirFEhCCCFKValNVltVyThI5eezf6J4/feDAEwf0oJh7Wvy2LgvOXzoHACPNFzDkJrbybAaGfPfOJIs9lZAD08Xlv4+qcj9CiGEqH4qxGS1QtyoH7adyiuOnu3fmGHt7SOyOxkvTUT76dEeHE4Jws1gYWSdS2NfGQzyMhZCCFG6inWJrU2bNoVOLVKYHTt23FAgUf38sT+W55bsAeDh7nV5pMely2UdOjVg/94zaJqGTdPz6bEevBuxkAGhu1lyMpI4iy+duzZ0VHQhhBBVVLEKpMGDB5dxDFEdaJpG1JE4LpxPxdffg3qNgtgYdYEJC3aianBPZBjP3dI43zb9b23F9/M3kJ2Vg6pq7EmqyZaEOrT3i+b+ev/y1sHBDL6rnYPOSAghRFUlfZCuQfoglY6dm6OY+84KYo6dz1vm1SiEPfXCybZp9GsWyIfD22LQF7xcdmDfaZ5/aiGZmWY0Deq5xzG34zcA7Go3j9YDB5XbeQghhKgcbvTzu9gDRV5p27ZtHDxo7zPStGlTIiIirndXoorbvuk4L47/Nt88fmY3Z7aHBGKzaTSr4cKse9sUWhwBNG0exvwfH+PPFXvYsS0a1VaXaLcT1MlYR+sLXwFSIAkhhChdJS6QTp8+zbBhw9iwYQPe3t4AJCcn07lzZxYuXEhYWFhpZxSVmKZpfDj9NzQNcuujHGcjpyMaYTM64ZySjsfeIxif6nHV/bh7ODPknvYMuae9fUFSJ5gdCVFrIWod1L369kIIIURJlPj2n3HjxpGTk8PBgwdJTEwkMTGRgwcPoqoq48aNK4uMohI7vO8MZ04m5rUeWZ0MnI5ohNXFhDE9i9DtR0g6m8zeHSdKtmOf2hD5gP3x6pcvVV9CCCFEKShxgfT333/z8ccf06hRo7xljRo1Yvbs2fzzzz+lGk5UfudjU/J9n9AwDIu7C4YsM2HbD2PIsdrXO5dS2OZX1/1/YHSHszvhwLJSSCuEEELYlbhACg8PJycnp8Bym81GSIhMHCry8/Zxy3tsNTqRGuIHQPCe4zhlWy6t5+tWYNtrcveHTo/ZH695FWwFX5dCCCHE9ShxgTRjxgwmTJjAtm3b8pZt27aNxx9/nHfeeadUw4nKr1mbmtQI8AAgqVYgmk6Hc1Iarsnpeet4+bjSpn3d6ztA58fA1Q8Sj8POb0sjshBCCFHy2/x9fHzIzMzEarViMNj7eOc+dnPL3wqQmJhYekkdRG7zv3FrV+zl9ZeWEnVTa1QnA6E7juAen5z3/KSXB9NvUJvrP8CmubDyWXAPgok7weh646GFEEJUauV+m//MmTNLfBBRvd18Swt+P5HCsZgUjOlZuF0sjtw9nBn3RN8bK44AIsfApg8h+SRs/hi6PXXjoYUQQlRrMlDkNUgL0o0zW210f3stcalmHmruTwsj1PD3ILJLA4zG6x6KK7/di+Cnh8DkBY/vAlff0tmvEEKISslhA0WeP3+e8+fPo6pqvuUtW7a83l2KKurnXWeJSzUT6GniqXsjMBn0196opFrcDf/Nhri9sP496Pta6R9DCCFEtVHiAmn79u2MHj2agwcPcmXjk6Io2Gy2UgsnKj9V1fj0nygAHuhSp2yKIwCdDnpPhe/ugs2fQvuHwTu8bI4lhBCiyitxgfTAAw/QsGFDvvjiCwIDA1EUpSxyiSpizaHzHDufjofJwPAONcv2YPV7Q62ucGI9rHsTBn9YtscTQghRZZW4QIqKimLJkiXUr1+/LPKIKuaTv48DMKJjLTycncr2YIoCvV+GL3rD7gXQeQIENC7bYwohhKiSSjwOUq9evdi9e3dZZBFVzLaYRLadSMKo1/FAl9rlc9DwdtD4VtBUWPNK+RxTCCFElVPiFqTPP/+c0aNHs2/fPpo3b46TU/5Wgdtvv73UwonKbe7f9r5HQ9qGEuDpXH4H7jUFDv8Oh5fDyc1Qs0P5HVsIIUSVUOICaePGjWzYsIEVK1YUeE46aYtcx86nsfpgHIoCD3a/zlGyr5d/I2g9wj6y9uqXYczv9stvQgghRDGV+BLbhAkTGDlyJOfOnUNV1XxfUhyJXLl3rvVpEkg9f/fyD9BjMhic4eR/cPTP8j++EEKISq3EBdKFCxd48sknCQwMLIs8ogqITcnmp51nAPi/HvUcE8IrFDo8bH+8ehqoUrwLIYQovhIXSEOGDGHt2rVlkUVUEV9tiCbHptG+ti9ta/o4LkjXJ8HZC87vh72LHZdDCCFEpVPiPkgNGzZk8uTJrF+/nhYtWhTopD1x4sRSCycqn9TsHL7bfBKAh28q575HV3LxsRdJq1+Gv16HZneAweTYTEIIISqFEs/FVqdOnaJ3pihERUXdcKiKROZiK5mP1x3nrZWHaBjozsrHu6PTObhztCUT7YM2KOmxLEgexLzjrfBwd6Zvn+YMGRRBjRoO6B8lhBCizJX7XGzR0dElPoioHsxWG19usL8+Hupez/HFEZBp1bP0XA9GeixkgNuffGetT8IFKwt/2MzyFbv54N0R1KxZw9ExhRBCVDAl7oMkRFGW7TxDfJqZYC9nbm8V4ug4AHz6xd98s78OJzN98XbKYmjIJsA+R1xaWjZTX11WYE5BIYQQosQtSACnT5/ml19+4eTJk1gslnzPvffee6USTFQuqqrxycVb+8d2rYPR4PjaOyPDzIo/9mJVFb442YNpjZdyd8gWlsVGkJTjjqpqxJxIYN/+M7RoHubouEIIISqQEhdIa9as4fbbb6du3bocOnSI5s2bExMTg6ZptG3btiwyikpg1cE4ouIz8HQ2cG/7Mp6UtphiTiRgsVgB+CexEQfTQmjicZZHaq/hjaO3Awo6ncLBQ2elQBJCCJFPif/Mnzx5Mk8//TR79+7F2dmZJUuWcOrUKW666SbuvvvussgoKjhN05h7cVLa+zrVwt10XQ2TpU6vv/zlrfBhTG9smkIf//3cFbwVAE0Dnd7xrV1CCCEqlhJ/Mhw8eJBRo0YBYDAYyMrKwt3dnVdeeYW33nqr1AOKim9rTBI7TyZjNOgY3bm2o+PkqVc3AA+PS3PA7U8L48Po3gD8X+01RHpFoWka7SJqOyihEEKIiqrEBZKbm1tev6Pg4GCOHz+e91xCQkLpJROVxicXW4/ubBtGgEc5Tkp7DU5Oeu65q32+ZT/FRvJ7XCv0isaURsu4JdKNWjX9HJRQCCFERVXiAqljx46sX78egAEDBvDUU0/x+uuv88ADD9CxY8dSDygqtiNxaaw5dB5FgYfKe1LaYhh2Twf6920B5F5yU/ggpj/7UkPxMGTzVNDXkJ3q0IxCCCEqnhJ3FnnvvfdIT08HYNq0aaSnp7No0SIaNGggd7BVQ5/8bb9zrX+zIOr4uTk4TUF6vY5nnrqFAf1bsnzFbs6eTcLL25W0Lp+h7R6LPvEoLH0I7l0AOumLJIQQwq7EI2lXNzKSdtHOpWTR7a21WFWNZeO70Drc29GRSubMdvjyFrCZodvT0OslRycSQghRSm7081v+ZBbX7cv10VhVjY51fStfcQQQGgG3z7Y//vcd2LfUsXmEEEJUGBXjfmxRKWSmm1n76072b4/BDMw32ivyh2+q59hgN6LVUIjbC//NhmWPQo36ENzS0amEEEI4mBRIolj2bo1i2v99Q0ZaNjqdQnzDMMxNPXBNzyTEbHZ0vBvTexqcPwjHVsPC4fDgWnD3d3QqIYQQDiSX2MQ1xZ1J4qVxX5KZYS+ErMCFuqEA+Bw6yQtjPic5Md2BCW+QTg93fg6+9SDlFPwwCqyWa28nhBCiyrruAikhIYHUVLk9ujr47buN5FisaKq9P39KzUBszkYMmdl4nIonM8PMHz9sdXDKG+TiA8MWgskTTv4HK591dCIhhBAOVKICKTk5mfHjx+Pn50dgYCA+Pj4EBQUxefJkMjMzyyqjcLANf+5FtdmLI01RuNAwHIAaR0+jaBqaqrHhz32OjFg6/BvaW5JQYNuXsPULRycSQgjhIMXug5SYmEinTp04c+YMI0aMoEmTJgAcOHCA2bNns2rVKtavX8+ePXvYtGkTEydOLLPQonyZs3PyHp9vXoccdxf0ZgveMbGX1jHnFLZp5dOwH/SaAmumwYpnwL8x1O7i6FRCCCHKWbELpFdeeQWj0cjx48cJDAws8Fzfvn257777+PPPP/nggw9KPahwnAbNw9j692FSAnxIbGCf9T54+xF0NhWwD8bYoFmoIyOWrq5PQtw+2LcEfrgPHloH3jUdnUoIIUQ5KnaBtGzZMj755JMCxRFAUFAQb7/9NgMGDGDq1KmMHj26VEMKx7ptRCfWb4zibERDAHyPnMIjNjHveZtNZeDwKjTNjKLA7XMg4SjE7iFn/r184z6VtVtPY8mx0rh+EHcObEvrZuGOTiqEEKKMFHskbZPJxPHjxwkLCyv0+dOnT1O7dm2sVmupBnQ0GUkbLFYbPaas4Kyq4JyYSu2/d6NoGjqdgqpqDB/fi/se7+vomKUv+RQ5H3fHyZzI2uQmTIkZAijo9Qo2m8Z9d3XkoZHdHJ1SCCFEIcptJG0/Pz9iYmKKfD46OpqAgIASBxAV37urjnBWVXDRK3ROSkS5WFM3bBnOi7Pvq5rFEZDuFMCzR+8gR9Vxs/dB7gvYAIDtYof1b3/cxD+bjjgyohBCiDJS7Ets/fr144UXXmDVqlUYjcZ8z5nNZl566SX69+9f6gGFY609fD5vQtr3h7Whf/MB5FjsrYROxqo9zujKtfvZlhTM+0p/ngn/nXHB6zieHcB/qfZLjTqdwsJl2+jesaGDkwohhChtJeqkHRkZSYMGDRg/fjyNGzdG0zQOHjzIRx99hNlsZt68eWWZVZSz2JRsnvphNwCjO9Wif/NgoOoXRrl2HzgFKPx6oS31neMY4r+dqbWW8eTx4RzIDENVNfYdPoOq2i83CiGEqDqK/UkXFhbGxo0befTRR5k8eTK5XZcURaFPnz7MmTOHmjXlTp+qwmpTmbhwJ4kZFpqFeDJ5QBNHRyp3Cgpgf51/cKYvtZwvEOERw3v1FvD08WHsy5RO2kIIUVWVaKDIOnXqsGLFChISEti0aRObNm0iPj6elStXUr9+/bLKKBzggzVH2RKdiLvJwIfD2+LspHd0pHLXunlYbn2EDT3PRd/D9rRauOktvFvve1q7n6Jl0zBpPRJCiCrouqYa8fHxoX379rRv3x5fX9/SziQcbMOxBGavPQbAG0NaUNvPzcGJHKNfj2a4uprQKfYCKFs18mzUvWxNq4Or3sLbdRbwcFcpjoQQoioq9m3+Q4YMKdYOly5dekOBKprqdpv/+bRsBsxaT0K6mWHtazJ9SAtHR3KoPQdP8/S0HzFbrKgX56Jz0Vt5tdYPdPCMAoMLDF8IdXs4NqgQQoh8bvTzu9h9kLy8vEq8c1G52FSNJxftIiHdTKNAD6be1tTRkRyuZZMwFnw0jp//2MW/m45hzrHSpEEw7n2Hwq5n4eifsGAo3Psd1O/t6LhCCCFKSbFbkKqr6tSCNHvNUd5ddQQXJz2/TuhC/QAPR0eq2Kxm+GE0HFkBehMMnQ8Nq+aYUEIIUdmU20CRFcWHH35I7dq1cXZ2pkOHDmzZsuWq6y9evJjGjRvj7OxMixYt+P3338spaeWyOeoC76+2D3r42uDmUhwVh8EE98yDxreCzQyLRsDhFY5OJYQQohRUqgJp0aJFTJo0ialTp7Jjxw5atWpFv379OH/+fKHr//fffwwbNoyxY8eyc+dOBg8ezODBg9m3b185J6/YLqSbmbhwJ6oGd7YN486IwqeTEYUwGOHur6HpILBZYNF9cPBXR6cSQghxgyrVJbYOHTrQrl075syZA4CqqoSHhzNhwgSee+65AusPHTqUjIwMfvvtt7xlHTt2pHXr1sydO7dYx6zql9hUVeOBb7ay7nA89fzd+OWxrriZqsdAkKXKZoWfHoJ9S0BngDu/gGaDHZ1KCCGqrXLrpO1oFouF7du3M3ny5LxlOp2O3r17s3HjxkK32bhxI5MmTcq3rF+/fixbtqzI45jNZsxmc973qampNxa8ArFZbWxevY+/lm4jJSGNwPAapEc0ZN3hBEwGHR+OaCvF0fXSG+COT0HRw94f4McHQLNB8zsdnUwIIcR1qDSfhgkJCdhsNgIDA/MtDwwM5NChQ4VuExsbW+j6sbGxRR5n+vTpTJs27cYDVzAZqVm8NPJjDm6PRqdXUG0a22MSiTJ5g07HlIFNaBxU9VrIypXeAHfMtbcg7V4AS8aBaiOt3u38+d8hTpxNxNXZyM0dGtCoduC19yeEEMJhSlQgWSwWli1bxsaNG/OKjKCgIDp37sygQYMKTGJbGU2ePDlfq1Nqairh4ZV/Son3Jn3H4V0nAFBtGjajEyc7twSdDs+Yc1j/BTrVdmjGKkGnh0Ef2v/d+S3a0oeYE/87vya3QK/ToWka3/y8mc6t6/DqxFtxda787xkhhKiKit1J+9ixYzRp0oTRo0ezc+dOVFVFVVV27tzJqFGjaNasGceOHSuzoH5+fuj1euLi4vItj4uLIygoqNBtgoKCSrQ+gMlkwtPTM99XZXfuRAL/rdyNalMB++wZZzs3x+ruglNqBkGb9vHLl+swZ1kcG7Sq0Ongtg+Iq30nChrP+v3ErR47sdpUbBcHm9y0J4Yps5c7OKgQQoiiFLtAeuSRR2jRogVxcXGsW7eORYsWsWjRItatW0dcXBzNmjVj/PjxZRbUaDQSERHBmjVr8papqsqaNWvo1KlTodt06tQp3/oAq1atKnL9qmrnv4fz5hQDSG4QTnp4IIpNJeyfXehzbGSmZXNk90nHhaxqdDpeiu7JkuRIdAo8H/Qrg7y25z2tqhobdkZx9EThd2AKIYRwrGJfYtuwYQNbtmwptEXF09OTV199lQ4dOpRquCtNmjSJ0aNHExkZSfv27Zk5cyYZGRmMGTMGgFGjRhEaGsr06dMBePzxx7npppt49913GThwIAsXLmTbtm18+umnZZqzolGtNhQFNA1UnY74lvUACNhxGOektLz1bFaboyJWOYkpmew9GsdebsGq6Rnqs5nnApfjqrPwfVJHQEGvU1i75SgNagU4Oq4QQogrFLtA8vb2JiYmhubNmxf6fExMDN7e3qWVq1BDhw4lPj6eKVOmEBsbS+vWrVm5cmVeR+yTJ0+i011qFOvcuTMLFizgxRdf5Pnnn6dBgwYsW7asyHOoqhq2qU3uYA4p9UOxuTpjyMjC58ilFiODk566TWX8o9KSlZ17uVJhZnxfbJrCcN9NTPRfRUNTLG/G3YpNMZGVnePQnEIIIQpX7AJp3LhxjBo1ipdeeolevXrlFSVxcXGsWbOG1157jQkTJpRZ0FyPPfYYjz32WKHPrVu3rsCyu+++m7vvvruMU1VsDVvVpEHLcI4dOMuFZnUBqLE/GuVifxidXkePwRF4+ro5MmaVUsPHDWejgWyLFVCYndCH81ZPHvNfRX/PvdQ1xvPc2bupHerr6KhCCCEKUaKBIt966y1mzZpFbGwsiqIAoGkaQUFBPPHEEzzzzDNlFtRRqspAkWdj4hn16HyOtWyIPstM/Z/+RqeqKCjUahzMjCWP4+7l6uiYVcp73/zF0lW78jpmA7RxieG14B/xNWSSanPBOOwbnJv2c2BKIYSomm708/u6RtKOiorKuzssKCiIOnXqlPjAlUVVKZBUVaPXO2uJTsyi9tGTeO06in+IDwPv68ItI7vg7GpydMQqJyUtiwenLuDM+RTUy4qkQKc0Xg9eRDPns4ACvV6CrpPg4h8dQgghbpxDRtKuW7cunp6eGI3GSl00VCcr98cSnZiFp7OBX78bh4ezk6MjVXleHi589spwvly6iV/X7c3rbxRSvwnZg36BmA9gxzxY8wqc3QmDPwaTTBIshBAVQYlakJKTk3nhhRdYtGgRSUlJAPj7+zNmzBheeuklXF2r3iWaqtCCpGkat85ez/6zqUzs1YBJfRo6OlK1Y8mxciE5E1cXJ7zcXS49se0r+P1/oOaAX0O4dwH4NXBcUCGEqCLKrQUpMTGRTp06cebMGUaMGEGTJk0AOHDgALNnz2bVqlWsX7+ePXv2sGnTJiZOnFjiMKJsrDsSz/6zqbga9YzpXNvRcaolo5OBYP9C3qCRYyCwOfxwHyQcgU9vhiGfQOOB5R9SCCFEnmIXSK+88gpGo5Hjx48XmN/slVdeoW/fvtx33338+eeffPDBB6UeVFwfTdP48C/7COcjOtTEx02mtqhwwtvBw//AD6Ph5H+wcDh0/x/0mAw6PTZV5WBMHNmWHGoG+hDgI5fhhBCirBW7QFq2bBmffPJJgeII7B213377bQYMGMDUqVMZPXp0qYYU129zdCLbTiRhNOh4sFtdR8cRRXEPgNG/wJ8vwua58M8MtLO7+C3oST5asY/45AzA3o+7W8u6/G94T4L9KuclXyGEqAyKPdXIuXPnaNasWZHPN2/eHJ1Ox9SpU0slmCgdH661tx7dExlGgKezg9OIq9I7wS1vwR2fgsEZ5dgq2qwbgVdGVN4qmgYb9kYz+vUFxCWmXWVnQgghbkSxCyQ/Pz9iYmKKfD46OpqAAJkyoSLZfSqZf48moNcpPNy9nqPjiOJqNZSku3/mrNWbMEMSXwV8QV+XfXlP21SNlPQsPv9tkwNDCiFE1VbsAqlfv3688MILWCwFZ3w3m8289NJL9O/fv1TDiRuT23o0qHUI4b5V7w7Dquzn4zpGn3+IjVn1cNHl8IbfEiZ5r8RTlwXYi6Tl/x3AnGN1cFIhhKiaStRJOzIykgYNGjB+/HgaN26MpmkcPHiQjz76CLPZzLx588oyqyiBw7Fp/HkgDkWBR3vUd3QcUUKxF9JIw43HE4bziNdfjPHcwHCPzdzpvo01mc1Ymt6WXZaaJKdlEegrnbaFEKK0FbtACgsLY+PGjTz66KNMnjyZ3OGTFEWhT58+zJkzh5o1a5ZZUFEyH62ztx7d0jyI+gHuDk4jSsrbwxlN01DR8WFKb/aaw3nIax2NjbEMcNvDALc9ROX44bPfCSJGguvV53Sz5FjR63XodcVuNBZCiGrtuqYaSUpK4ujRowDUr18fX9+qO+FmZRwoMiYhg57vrkPV4LcJXWke6uXoSKKEos9e4O6XvrliqUZT41nucNtOP9d9uOrsI3OjN0GzwRAxBmp2zJuyJMdmY/G/e/h+3U5OJaSgUxS6NqvNmD7taFMvtFzPRwghyptD5mKrTipjgTR56R6+33KKHo38+XpMe0fHEddp6hcr+X3jAa58h+oUBU8nC9/d4Uxg1GKI3XvpSf/GEHE/Oc3v5ol5//LfgRgAcneh1ymomsbro25hQLvG5XIeQgjhCA6Zi01UXOdSsvhx+2kAHrtZ+h5VZi+N7oOryYmlf+/BpmooioKmaQT6evDqg7cQ2CAUtIlwdod9ypJ9SyD+EKx8DuXPKdyS2ZgMQwS7rDUBe6uS7eKkuVPm/0HHxjXx9ZDO+0IIURhpQbqGytaCNO3X/Xy1IYYOdXxZ9HAnR8cRpeBCSgb/7okiKzuHOiE1aN+kJjqdUnDF7BTYuxi2fQ1xl1qVjlv9WZIdwc/m1mRo9rGwFAUm3t6VMX3aldNZCCFE+brRz2/psVmFJKSb+X7LSQAe6ymtR1VFDS83BndrwbA+benYrFbhxRGAsxe0G4d57FpGJo/jp+w2ZGlO1DPE84z7SuZ5fY6HYh8mQEHh8On4cjwLIYSoXKRAqkK+XB9Ndo5KyzAvutb3c3Qc4SB6vZ79tjCmpQ+iT+JTvJE+gPM2d+oZEpjhsRgDNhQFTE5yhV0IIYoiBVIVkZKVw7cbTwAw/ub6KEoRrQyiyjPodXRpUhu9TiFdc+aH7PZMSB1BpuZER2MUz7r9jk1VuamFzM0nhBBFkQKpivh2YwxpZisNA93p06TghMKiehnTtx3qZd0LD9uCmZx2J6oGd7tsZ7z/Hro3lwJJCCGKIgVSFZBpsfLF+mjA3npUZB8VUW1E1A/j1fv6YdDp0CkKOkVhvbUJ72f2BWAcP2M4vsrBKYUQouKSTghVwILNJ0nKzKGmrysDWwQ7Oo6oIG5t35ROjWuxbON+jpyJx+hkoHXzAagng9DtnAc/PgBj/4TAZo6OKoQQFY4USJWc2Wrjs3+jAHikRz0MemkUFJfU8HRjbL8rBgtt8S4kRUPMv7BgKDz4F7gHOCagEEJUUPJpWskt2X6GuFQzQZ7ODGkr00eIYjAY4Z554FsPUk7BwuGQk+XoVEIIUaFIgVQJxZ5IYP3P29jw+04+XmufE++h7nUxGfQOTiYqDVdfGP4DOHvD6a3w83gKzGkihBDVmFxiq0QunEti5oSv2bpqD2iQ0rAm53q3xwWVu1qHODqeqGz86sPQb+HbO+zTlPg1hB7POTqVEEJUCNKCVEmkJabzZO/X2b5mH2j2yUcvtG0EgPvmA8z6v8+QWWNEidXpDgPfsz9eNx32/ujYPEIIUUFIgVRJLJu7moQziag2FYD0OiFYfL3QmS147z3Ghl+2s3/jUQenFJVSxGjoPMH+eNmjcGqrY/MIIUQFIAVSJbHym79RL87ErgEXIhoD4LP3OHqLFZ1ex5/frXdgQlGp9Z4GjQaAzQwLh0HySUcnEkIIh5ICqZJIjk/Ne5xeO5jsAF+UHCs+e+ytRqpNJeFMoqPiicpOp4chn0FgC8iIt9/+n5167e2EEKKKkk7alYRXDQ8S41LQFIX4Ti0A8N1zDEO2BQC9XodvkLcDE4pKz+QOwxfCZz3h/AFYMpaD3T9g5Z5jpGaZCa/hxe0RTfHzdHN0UiGEKHPSglRJ9L2vGzq9jpQmtbH4eKLPMuO781De8zabSp/hXRyYUFQJXmEw7Hs0gzMc/ZNtH9/PN39vZ9mW/cz6fQO9Xv2Mb/7e7uiUQghR5qRAqiQGP9oHzxAfEtrZp4Wose0geosVAEWn0L5fS1p2a+zIiKKqCI1gvt/DANxn3MQQ3Rasqoqqaaiaxju//sNvOw46OKQQQpQtKZAqCW8/T1q9eh9WN2ecUtLx2X8cAL1Bzy3338SL3z6GosgkteLGnUpIZsYxH2abbwbgedPvdNQfz3teAT7+c5MMKyGEqNKkD1IlkZBuZv6ucwC8MLg5NXvUxGA00Kp7Y7xqeDg4nahK1h6IQlEUPs3pTh1dArc67eVd5x94IvtettrqoAEnE5KJjk+iboCvo+MKIUSZkAKpkvhgzVEyLDZahXkxqk9TdDppLRJlI8uSY2+N1BSmmm8nVJdMG/0pvnT5hkU5kbxn7kMmJrIsOY6OKoQQZUYusVUCUfHpLNhsH5fmuVuaSHEkylT9wBrYVPuApBac+L+skSzKiQRgqNM2fnL9iK5OUYT5ejkyphBClCkpkCqBGX8cxqpq9GwcQKd6NRwdR1Rx3ZvWwdfdhdwubZmYeM18K2OzRnFa9SZEl8LHpnl4rXoKspIdmlUIIcqKFEgV3I6TSazYF4tOgWf7y11qouw56fW8OfwW9Dod+staK7fY6nJ39qMs03W1L9g5Hz7qBEf+cFBSIYQoO1IgVWCapjH9d/vt1HdFhNEoSDpji/LRqWEt5j82lO5N6ua1JLkanRjUuT3dJy2GMSvAty6knYUF98DShyFTRnIXQlQdiib36l5VamoqXl5epKSk4OnpWa7H/nN/LA99ux1nJx1rn+5BsJdLuR5fCIBMcw6ZZgters44GfSXnrBkwtrXYeOHgAbugTDwPWhya94qZ5JS2HcmDr1OR2TtULxd5TUshCgfN/r5LXexVVBWm8pbK+0jZY/tWkeKI+EwriYnXE1OBZ8wukK/16HpYPj5UUg4AotGQPM7Sej2MlP+3MHfh6PJ/QvMoNNxZ2RznrvlJkxO8qtHCFGxySW2CuqHbac5Hp+Bj6sTD99Uz9FxhChaeDt4+F/o+iQoOti3BMPcTrgcXc7lzdNWVWXx1r1MWPALqioN10KIik0KpAoo02Ll/dVHAJjYqwGezoX89S5EReLkDL1fhnGrSXSrjbeWzru6H3hft4gapOetpmoa64+e4L/jJxyXVQghikEKpAro83+jiU8zU9PXlREdajk6jhDFFxrBKGU8H6vdsWoK/XQH+UX/IX2V/Xmr6HUKP+3Yf5WdCCGE40mBVMHEp5n55G/7vFf/69cIo0H+i0Tlci7DzGy1J0NtD3FIC8RHyWKmfjHDlc0A2FSN2JT0a+xFCCEcSz59K5jLpxQZ2CLY0XGEKLEa7m4AHCSYe2wP8a3aAYAX9St4WPkHvQKBnu6OjCiEENckBVIFEhWfzvdbZEoRUbndGdEc3cXBk6zoma7250P1JgAe1//FE8qfDG7TxJERhRDimqRAqkBkShFRFQzr0JJQb8/LRuFW+FC9mbdsfQEYq/uPbkc+ANXmuJBCCHENUiBVENtPyJQiomrwdHFm/kP30KlezXzLv1O6sizs/9BQULZ/BT89DLYcB6UUQoirk9HaKgBN03hzhX1KkbsjwmVKEVHp+Xu48+noIZy8kHxxJG2FdnXC8HVzhX3tYelDsHcxWDLgrq/swwQIIUQFIgVSBbDqQBxbY5JwdtLxZJ+Gjo4jRKmpWcObmjW88y9sficY3eGHUXD4d1hwN9z7PZik47YQouKQS2wOduWUIkFe8pe0qAYa9oMRP9oLpeh/4NvBkJXk6FRCCJFHWpDKWUZqJn98tZa1368nLTmD7A7NOR4ciq+bUaYUEdVLnW4w6heYPwROb4Wvb4X7fgL3AEcnE0KIytOClJiYyIgRI/D09MTb25uxY8eSnl70YHOJiYlMmDCBRo0a4eLiQs2aNZk4cSIpKSnlmDq/c1FxjGs+ibmTvuHQ1mOcio5nq4cPAI3PnMHNqdL8dwhROsIiYMwKcA+EuH3wZX9IPuXoVEIIUXkKpBEjRrB//35WrVrFb7/9xj///MNDDz1U5Ppnz57l7NmzvPPOO+zbt4+vv/6alStXMnbs2HJMfYmmabw06C2SYpPQNA00SIpsis3dFaekVM5/sYIl7/3mkGxCOFRgU3uR5FUTEo/Dl/3REo6y7eQZXlq+mkd++IVXVq5l/7k4RycVQlQjiqZpFX5a7YMHD9K0aVO2bt1KZGQkACtXrmTAgAGcPn2akJCQYu1n8eLFjBw5koyMDAyG4l1dTE1NxcvLi5SUFDw9Pa/7HHat3cf/ek3L+97q6kzMQ3eiGZ0I+nkdHodj8Any5vuTc9Eb9Nd9HCEqrZQzMG8QXDhKqt6TEQznmD4Ym6qh1ynYVI07WzXjtYG90esqzd92QggHudHP70rxW2bjxo14e3vnFUcAvXv3RqfTsXnz5mLvJ/eHdLXiyGw2k5qamu+rNOxetx/9ZfOqJXZuhWZ0wnQuHvfDMQAkxSbz/+3dd3xUVfr48c+dPum9QYBEOoQubBAEBAXFjoLgorAiusDqT5e17SoiKoq6Fr6oyKqAIogoighiQZQmIBK61EBokwDpbTLl/P4IDKSRCSSEkef9et0XyZ1z7j330cw8c+495xzdZ6uV8wnhc4IbwMilHLU2IciVy8eumbR1lc4s73KXfo/7YvN2/u+XX+uzlUKIy4RPJEg2m42oqLIPbhoMBsLCwrDZvEsoTpw4waRJk855Ww5g8uTJBAcHe7b4+PjzbvfZSjvqSmcWVppGSXgwABErNqKVKVcrpxPCJ53Aj1sdd7GReIIpZqZrNn9x7/e8roCZ63+nyCETTAoh6la9JkhPPPEEmqadc/vjjz8u+Dy5ubkMHDiQ1q1b8+yzz56z7JNPPklOTo5nO3Sodh4YTerZCpezdGkFTSkafPodDT/+Br9DZxK84Mgg4q6IrpXzCeGLVqemkY2Fv+mHs0pLxB8HM9xzGOT+3fPtoaDEwe+HjtZzS4UQf3b1Osz/n//8JyNGjDhnmcTERGJiYsjIyCiz3+l0kpmZSUxMzDnr5+XlMWDAAAIDA1m4cCFGo/Gc5c1mM2az2av210THvkk0bB7Lsf3puJxuNMB69LjndU3TuO2hGzAYZeYFcfkqOfUlokgz8YBuGK+7F3Cd+oPJ7kX01vbwjO5GsjR/SlyyjpsQom7V66dxZGQkkZGR1ZZLTk4mOzubjRs30rlzZwCWL1+O2+2mW7duVdbLzc2lf//+mM1mFi1ahMVSf5Mw6nQ6nvvqcf7ZewLZx3NRp56p0Ol1uF1uut96JXc9fmu9tU+IS0Gb2DO30h2agYd0g7lPreFh93L6q510dB3iKd0ttIyq/n1DCCEuhE+MYgO4/vrrSU9P591338XhcDBy5Ei6dOnCJ598AsCRI0fo27cvs2fPpmvXruTm5nLddddRWFjIwoUL8ff39xwrMjISvd67kWK1NYrNc7yTeSyZ8QM/zllJQU4h8S3juPGB67jqtq7oZGSOEAx6/xN22DJwnfXW1Fod5VXXFzTlROmOrqOh30Qw+dVTK4UQl7oL/fz2mQQpMzOTcePG8fXXX6PT6Rg0aBBvvfUWAQGl6zcdOHCAhIQEfvrpJ3r37s2KFSvo06dPpcdKTU2lSZMmXp23thMkIcS57T+ZydCZn5JbbC+TJFlx8ox+BYPsq0p3RDSH22dAXId6aacQ4tJ22SRI9UUSJCEuPltuHh+s+53PU7aTZ7cT5mdlSMck7u3WibCjq+HLsZBvA50B+jwFV/0/0Mn8YUKIMyRBqmOSIAlRv1xud8WJIQsz4euHYOfXpb83SobbpkNo44vfQCHEJUkSpDomCZIQlyilIOUTWPoYlOSDKRBumALth3IkL4+5m7ew9lAaSkH3Ro0Y2r4dDeRvWIjLhiRIdUwSJCEucZmpsPBBOFQ6w3Z6o77cktWFk5oV96m3N72modM03rxxIP2bNavP1gohLpLLYqkRIYSoUlgCjFwC1zyN0hmITvuRr/Kn0d2x11PEpRROt5uHFn9DalZWPTZWCOErJEESQvg+nR6uHs/7HV5mvy6caJXPrKKPebp4KWZVuiyJonTJn49TUuq1qUII3yAJkhDiT+PTkwZu8nuA2cYrARjhWM+3BW9zf8lqwtwFuJTi59QD9dtIIYRPkARJCPGn4Xa7KdaMTLTcwN+sw8jQAmiksnnC/gOrCl7n9aLPaVO0R1aFFkJUSx7SroY8pC2E73hy2Xd8vn27Z4JJqyrhRsc2hjo20t591gK3ES2gy0hofxdYQyscJ6/EztK9uzlWkE+41Y8brmhGmFVm7RbCl8gotjomCZIQvmNHRgY3f/Qxlb2ptXUdZahjI3eqP9A7C0t3GizQ5nbo8jdo2AU0jY+2pvDCmp8pdjox6HSeeZjGdu7G/7syGU3TLuo1CSHOjyRIdczbALtcLhwOx0Vs2Z+P0Wj0eo08IaoyJ2UzE378EZ2meXqS9Kd+fvaaaxjeKhG2zoffPoT0bWcqRifxe8P+3HNAT77OXOmx//WXHoztXPUC2UKIS4ckSHWsugArpbDZbGRnZ1/8xv0JhYSEEBMTI9/SxQVJOXaMWb9vYnVaGgDdG8UzolMnOsTGnimkFBz+DX77ALZ/Ac5iAAow8pUliTmWzmw3xpY5rtVg5LeRD+JvMl20axFCnB9JkOpYdQE+duwY2dnZREVF4efnJx/s50kpRWFhIRkZGYSEhBAbG1t9JSFqS1EWaSunY183g2auE57dKYY4PrZ24WtzG+yaEYBp/W9kYNMW9dVSIYSXLjRBMtRBmy4bLpfLkxyFh4fXd3N8ntVqBSAjI4OoqCi53SYuHmsoe5rfyX27DXR1pHF38UYG2HfSwXmUDnmLeCr/ez61dORjaxdy7fb6bq0Q4iKQBOkCnH7myM9PRrfUltOxdDgckiCJi6pxUAhoGutNjVlvakyYu4DBxSn8teg3Grpz+HvRGkYXrSV73VawPAyJvUF6jIX405IEqRbIbbXaI7EU9aVpWDgdo2PZnGHDrRSZOn/e9buK96zJ9C3Zw71FG+jh2E942k/w0U8Q0Ry6ji6dKsAc6DnOtpPpvL/tN346vB+XctMxMo6RrTvTJz6xHq9OCFFTMlGkqDMjRozg1ltvre9mCOG1Sb36Ytbr0Z+VqLs1HT9aWnJv6HA2DvqyNCkyBcCJ3bBkPLzWCpb8C47v5qt9O7hp0Wy+2r+TLHsRuSV2Vh09wIjvF/Dybz973Q67y8nRglxyS4rP6zqy7IXYCnNxut3nVV8IIT1Il60RI0Ywa9YsAAwGAw0bNuTOO+/kueeew2Kx1HPrhKgfbSOj+WLQMCav+ZmVhw565lPqFB3L48k96RzXEJL6wDVPw5ZPYf17pYnS+vdg/XuEWxLoG9CZH63NQCv9/nl6qoG3t6zjyuiGXBN/RZXnP16Uz1vbVvH5/i0Uu5xoQM/YRB5O6knHiAbVtn/5sV2888cqtmQdASDYaGVoYmcebNETq8F4QbER4nIjCdJlbMCAAXz44Yc4HA42btzIvffei6ZpvPzyy/XdNCHqTauISGbffAfpBfmkn5pJu0FguREwliDoej9cOQpSf4b1M3D/sYQexan0KE7lkD6YjwM7sdCvLen6QNA09JrG+9t/qzJByijK5/ZlM0kvyvMkVQpYbUtltS2VGb0G0zuu6uRqzr4NPLd5KTrO9H7lOIp4b9dq1mSkMrvnPZIkCVEDcovtMmY2m4mJiSE+Pp5bb72Vfv368f333wOla1pNnjyZhIQErFYr7du3Z8GCBZ66LpeL++67z/N6ixYtePPNN+vrUoSoddH+AbSLiqmYHJ1N00of1r5rDg+1n8S0oO5k6qzEu3J4Mvsn1h+dyq7DU/jp6DvMtn3M7dvehp8mw+8fwb7lcGIPlJTO6v3ypuVlkqPTXErhVop/rl1EictVaTPSi/J4fsu3ALjLzSPuRrEt6yiz9v56/sEQ4jIkPUi1SClFkaPyN7C6ZjXqL+gB523btrFmzRoaN24MwOTJk/n444959913adasGb/88gt//etfiYyMpFevXrjdbho2bMhnn31GeHg4a9asYfTo0cTGxjJ48ODauiwhfEaWNZIpIX14M7gnNxbs4J7832hXcgyLcpLozCTRmQl24OeUCnXd1jBGuk1cZwjkmDGIo6f+tWtnvUXnw5Y1/6NLZMMK9Tce3s412XtRZyVH2QYLKX5xuDQdbhRz9v/GAy16yEAIIbwkCVItKnK4aP3Msno5947n+uNnqtl/zsWLFxMQEIDT6cRut6PT6fi///s/7HY7L774Ij/88APJyckAJCYmsmrVKqZPn06vXr0wGo1MnDjRc6yEhATWrl3L/PnzJUESl6VeDRJYffQgds3A5wHt+DygHUblIsaVR5wzh4auPHoHGrk5PAByDp/ZSvLRFWXSFmhrt537JEe/qHT3Dae28k4Y/Fga3JwlIS3ZpOIocjnwM8gs4EJ4QxKky1ifPn145513KCgo4PXXX8dgMDBo0CC2b99OYWEh1157bZnyJSUldOzY0fP7tGnT+OCDD0hLS6OoqIiSkhI6dOhwka9CiEvD4OZJvJmyhkKHw3Oby6HpOWQI4ZAhhPXAPQOHQ2S55U6Kczh8dBvP/vgBcc5c4hy5xDlziXHmoVdnRqFpaDTwDybaGlDh3GkFWZy0F5TpQUqwZxHhLGT4yRSGn0zhqDEQS4AD2t0JMe0qncNpX146n6dtYG9eOn4GM31jWnNdbBJmvTy7JC4/kiDVIqtRz47n+tfbuWvK39+fpk2bAvDBBx/Qvn173n//fdq2bQvAN998Q4MGZUfOmM2li3jOmzeP8ePH89prr5GcnExgYCCvvPIK69atu8ArEcI3hZitzLruTu757jOKzkqS9JqGAqb0GECHyHJL6GgaWENokHgVB3du56fck1S19pMG/HTz3yEgtMJrB9P3Mmr1J2X2GZSL7nlp3JDzB9fm7CXOkQdrp5Zu4c2g7aDSLbI5AP/b+xNv7/4RvabDpdxoaPyS8Qfv7fmJ6d3+RpxfxfOWl1WSx5oTOyh02mnkF0mX8BboNXnUVfgmSZBqkaZpNb7NdanQ6XQ89dRTPProo+zevRuz2UxaWhq9evWqtPzq1avp3r07Y8aM8ezbt2/fxWquEJekLtENWHXnaObv3spPh/fjdLvpFBXHX1t2oHFQ1QmGpmn8v6Se/GP1l5W+rkPjpiataVRJcgRwVdQVtA2JZWeOzfOQt1PT80tQAiuDEniuoYuF8Qk0ObAcdi+Dk3vg55dKt5gkdje+ioXFRWAOwnWq1+p0b5StOIdxG2az4Op/oKsi2XG6Xby7dzELD6/Gpdzo0HCjiDAH82Tru+gc1szbEApxyfDNT3NRJ+68807+9a9/MX36dMaPH88jjzyC2+2mR48e5OTksHr1aoKCgrj33ntp1qwZs2fPZtmyZSQkJPDRRx+xYcMGEhIS6vsyhKhXYRY/HmzXjQfbdatRvYGNW3OyuJAXNv2Ay63Qnep5cik3/eNb8FK3gVXW1WkaM64axt/XfkpK5mEMpxIZp3JjNZh47crbaBLbArqOAHse/LEEtn0O+34E21aa27byDbA5IIZvw5rzQ1hTTpr84dT5DxQcZ+2JvVx1qrepvDd3L2TxkV89vV+ne89O2nN5POV/TO08llbBjWoUDyHqmyRIwsNgMDBu3DimTJlCamoqkZGRTJ48mf379xMSEkKnTp146qmnAHjggQfYtGkTQ4YMQdM0hg4dypgxY1i6dGk9X4UQvuueFl24sXFrFh7YRlpeFkEmMwMbt6ZlSFS1dcPM/szrNZKNJw/x47FdlLictAyOZmB827IPZpsDof2Q0q0wk8KtC9i+6k065x2mfb6N9vk2xqetJN0UQJbRSpbBSrbRD2POfmjUDfwiwD8S/MPBL4Jjej1fH6l8CgGFwq3cfLh/GVM63n/O9meX5PJD+hr2FxzCqBnoEpbEX8LbY9TJ80+ifmhKqapueQsgNzeX4OBgcnJyCAoqOx9KcXExqampJCQkyOzTtURiKsTFddKez7U/vkREST7XZu5lwMndJBWk1+gYRToD2UYL2UYr2UYLJ81+HPALZb9fGPv8w8gxWfnq6okEG/0rrb/y+G+8tWe25/aeBqdu0YUysc1DxFmrTxCFKO9cn9/ekB4kIYS4jIWa/IgyB5EBzI3pwNyYDkSU5BNbkk+oo4hQZxGhjkIGhjTkCp0OCk5A4YnSfwtOgMuO1e3Eas8n1p5f6TkyjVbMh3ZCbAeIbgNRrSGyJRgt/JG7n9d3zywzAu/0T5n2HCZsf4u3O02QniRx0UmCJIQQlzGdpuOuJslM3bXMk5icMAVwwlQ6nYAODX+DmdF9H4fyw/2V4qv93zF/5xcEOwoJdhQT6igiyl5AYkEmiQWZxBXnEuYoggOrSrfTNB2EN0VZLdxh0nEwIJgDgaEct/ijTk1B4MbNCXsWa05soldU14sQDSHOkARJCCEuc3cndGdT5gFWHt+FhubpzdFrOgyajtc6D8NS2VxImkav+B5MPbicIyqw0mP7u13cYYlkpF8DyNgB6dtLt6JMOLGbVkCrs8oX6Q1sDYvh+wZN+T08DqXT81vWNkmQxEUnCZIQQlzmjDo9r3UexuIjKXx68FcO5B/HrDfSPzaJYU260zggosq6ISZ/Hmg6kGl7FlV4TYcOvdmPAV0eBGvYmReUgjwb7vRtzF7/Io3zs2icn018fg5Wl5Ouxw/T9fhhMk1Wlje4guOmBhWOLURdkwRJCCEEBp2eW+M7c2t85xrXvbPR1QQarXywbxkZ9mzP/ivDm/NQ81uJPTs5gtIJMoNi0QXFsil/HYsKbSgUereb+IJseh1Lpc/R/YSVFHFH6jZI3QY71kKne6DVTWAwV2jD0aIjrM/8lXxnAeGmCLpHdCfYGFLjaxHiNBnFVg0ZxXZxSUyF8F1u5WZP3lEKXcU0sEYQZQmpts53ttW8s++TCvsNbhdXHj/MtUf20eHkMbTTT0hZQ6H90NJkKaoVTreTmQfe59fMtejQoaHhpnQm8Nsa3MH1sZWtUldRniOLw0X70KGjkX8LrPrKR9wJ3yGj2IQQQlwSdJqOFkENa1Snb3QyKdk7WXtyU5nnn9w6I79GN+HKHk+jGWMgZQ5s+hhyj8Cvb5duDbuyvvEVpAQWgEGPmzNr1ykUnx+ZT6AxkB4RPas8f6Ezn0VH/8fm7DWoU/X1moGuYf24IfYejDpZ3PdyJT1I1ZAepItLYirE5cel3PyYvobFR1dwqOgYOnR0Dm3DrQ370Tqo6ZmCbhfsWw4bZ8Lub8HtBKDIYGB9XENWNmrCgeCQMgvxhpvCmZz0SqXLpJS47byz9ylsxYc8ydFpGhpNA9oxMuEpdFrN17oU9U96kIQQQvg0vabjupgeXBfTw7OWm3ZWkuOh00Oza0u3vHT2rXke/y2fE1NQQK+0A/RKO8DRgEAy/P3JM5nJN5nIM5nJtL9NREhLz+zf+EeA0cpvmcs5Vnyw0jYpFHvyN7MrbxOtgrqcs/0l7iL25q2lwJlJgCGMKwK7Y9J5/wUvy74XW9FGUBBlbU+4paXXdUXdkQRJCCHEJUNfxYK4FQRGs7f9DXwelk/TzOP0TDtA52NHiMvPIy4/r2zZnf+uWN/oTxuTRrxJR4HJRIHZSL7ZRJaflWPBAdiCA3EYTWzI/PGcCdLvmV+xMuMDHKoYDR0KN0bNSq/oUXQIvfGcl1DkPMlK2zOkF22kdP5wAEW4uTVXx75AgDG22jDYnRkcy/+aYudRjPpQYvwH4m+SNTFrgyRIl6kRI0aQnZ3Nl19+Wd9NEUKI8xJricOtKXaHR7A7PIK5bdrRPPMEQXY7gSUlBJTYCbKX0MncBGNRNhScLJ0F3FUCjgKCHRBcUPXxT/pZyQr7A65wQ0xbiG4LIY1BV5rEbc76huXpb3vKn75N51BF/GCbil4zkhTSv9JjO93FfH9kHLklaZ7ap2Xad/Hd4Qe5sdHHmPSVzy8FkJo9g71ZbwCgoQMU+7OnERcwiFYRE9BpMvv4hZAESQghhE9qG5xEiDGUHEc2CkWhyURKTJzndR06OoR0pFvTf5yppBTY86DwBHN3/oeS/CP420vwt5cQYC8hIr+Q2Jw8QorshBcWEV54EA6/dKa+KRCi2+CObkWm9isxwTpOBvvhMFR8Tmllxge0Du6LXqv4UXsg73tySlIrvS6FiwJnBntyv6JN6F8rLXM4dz57s/57Vp0zz1Adzf8CvWalZUQlPWfCa5IgCXr37k1SUhJ6vZ5Zs2ZhMpl4/vnnGTZsGOPGjWPBggVER0czdepUrr/+egBcLhejR49m+fLl2Gw2GjVqxJgxY3j44Yc9x3U6nTz66KPMnj0bvV7PqFGjsNls5OTkSM+VEOKC6TQdoxJG8/qe11DKXWYUmw4dgcYg7mo0rGwlTQNLEFiCiGs2hG9tH5dZB+40P3sJMbn53Kh1Ji63AGxb4fgfUJIHh35Fd+hX+pwqq4CsQAsngqw49WVvERZvGoK/IbTC8f0LN9DDlVlmn0un4TDqTm16nNZ3INYClmAwB4I5CMyBKLM/+zP/7xyRURzOm0di6IOY9OFVl1Ju8u0rySv6CYUDq7EdIX43o9NZz3Hsy4ckSLVJKXAU1s+5jX5lRm7U1KxZs3jsscdYv349n376KX//+99ZuHAht912G0899RSvv/46w4cPJy0tDT8/P9xuNw0bNuSzzz4jPDycNWvWMHr0aGJjYxk8eDAAL7/8MnPmzOHDDz+kVatWvPnmm3z55Zf06dOnmtYIIYR3Wga14qmW/2HR0a/YkpOCQmHUjHSPuIqbYm8hxFQxOTmtW3g/1mV+R3bJ8TLJFUCR2YKjURuim06C0z1ALgec2APp2zhx8BvyjvxEVHYh/sUOwvKKCcsrruQsP1R67uqfLgLIAO6rsFcDrgacBg2nUcNp0uE0aRQEGcgLN5IXZiQvzM3xwhU0CBxU6ZFLnEc5cHw4ducuzqQCsziW/SyNI94jwFL11AiXCxnmX40aDfMvKYAX46o4Uh176iiYvJ/Y7OxnkHr37o3L5WLlypVAae9QcHAwt99+O7NnzwbAZrMRGxvL2rVr+ctf/lLpMceNG4fNZmPBggUAxMTEMH78eMaPH+85bmJiIh07dqyyB0mG+Qshzlexq4hCVxGBhgCv5y/KdWQx/9BU9uZv8ezT0EgKTub2hg9i0ftVWu9w4TbmHfwnAH7FJURmFxKWW4yu3Edq57DbCDJGVai/J2fRqVtsZ8rr3Aqjw43R4cZU4sbf7U+07goozim9LXh6c9mrvS4FOEMiMTboCbHtIKYdxLYH/wjcqoQ9tr6UONMAV7maGhpGmsYsxWJsUfXxlQN70RcUFczC5dyPpgVg9rsdq/8I9PrqPweVMw1VOBuKl4IqBkNzNL+/guV6NG8f1K+GDPMXtaJdu3aen/V6PeHh4SQlJXn2RUdHA5CRkeHZN23aND744APS0tIoKiqipKSEDh06AJCTk0N6ejpdu3Ytc9zOnTvjdpf9piaEELXBordi0dfs9lCQMZRRic9wvPgIBwt3o9N0JPq3IcRU9fpzAA2sbQgxxpLjsFFoMXEwxsTBmLNLaISZGtI78dlKe/et+e359dj4c56je/TTRAcNrLC/uDiNX1OvxVDixuBwY3AojMVuArIdBJ10EJjpwFLoxph9HLK/gO1fnKkcGIcrKpqQoD8oDtNRFK7HEaCd1UaFwsWJ3Bk0DH+10nYpZScncwQO+y+ADnCjVB5F+e9SXPARIRGfYTC2rfK6VMl6VOYowIEnQXNsQuVsBPsPEPwq2iUw95QkSLXJ6Ffak1Nf576Q6sayox00TSuz7/ScJKeTm3nz5jF+/Hhee+01kpOTCQwM5JVXXmHdunUX1A4hhKgPkZYGRFq8XxRX0zSujX2YBWn/RsNd5jkm7dSSJ9fGPFT5fE5AA//uNPTvyeGCVVDuGSgNHZGW9jQJvK7SuhZLI4JDr+Fk0UrUWT1AGZxODnUEOsLppnsGzbYVjm2GY1sgcx/kHcWYd5Tos47nNIM9RI/DXyvd/HQ4Az6DJkMgKBYCYkB/Jl0ozHsLh33Vqd/O/sLrQqkCck7+jbDotZUmOUoVobLGACXl6p76uXgJGDuB//BKr/1ikgSpNmlajW5z+bLVq1fTvXt3xowZ49m3b98+z8/BwcFER0ezYcMGrr76aqD0Ftvvv//u6WUSQghf1ti/I4MbvcSKjBmkF+/27I+xNKNX9Gga+lXdi6JpOq6OfZHNJ2ewK3sBTlX6/KpeM9Ms+BY6ho9Bf45h+i3D/826o0NwunPKJEmgR0NPi0b/RbN0gab9zrxkzwPbNk7uHY9m+wPrSTeWLDcGOxjSy99qswOn6mo68I+CoFhUUCw6/c9Y/R24/TTc/hpufx3Kkwu5gUOUaJ9iNveo2PCiJZCfVXG/VQeG0mRSFc4Cv79WmVxeLJIgifPSrFkzZs+ezbJly0hISOCjjz5iw4YNJCScmaDsH//4B5MnT6Zp06a0bNmSqVOnkpWVVe//0wshRG2J92/H8ISpZNoPUeDMIsAYTqjJu54ovWakU8QY2oX9jUz7bkARam6KUVf9F22rsSF/abCAfVnTOJb/NYoSQCPSrzeJIWMIMreuWMkcCI2TKQkewIm8w4ALzaUwZ7kx57gxFiqMBW4MhQpzoRlrcRjkHStd0iXfBvk2tKOb8O4m5t8r3atxZkrMs7kHhkC8GVDgSgOVC1qwV2eqK5IgifPywAMPsGnTJoYMGYKmaQwdOpQxY8awdOlST5nHH38cm83GPffcg16vZ/To0fTv3x+9vv7vLQshRG0KM8cTZo4/r7oGnYUoa7vqC5ZjMcTSJvJ5Wob/hxJ3JkZdEAZdQLX1wvzv5kTedACUXqM4Qk9xxNnvyxpxoS9iDRgObjcUHIe8o5B7FHf2Vopsr6IvUOgKFboCN7oChVbh0VIDWiXzPyl11nNHZ6uQNdX/54SMYquGLFZbe9xuN61atWLw4MFMmjSp0jISUyGEqHvHc6dhy5nM6Yesz9ARYO5Bk8hZaJXc4lPKTWb6X3C7j5zz+MHhX2Ayd6tYv3gZKvsfldQ4c34MrdBFLPTqOs7lQkex1c5YOiEqcfDgQWbMmMHu3bvZunUrf//730lNTWXYsGHVVxZCCFFnIoPG0ih8OhZjG88+gy6K6ODHaBw5s9LkCEqfnfILrPz2WSk9BmMSRlPXyl829wV9A6ruIXKj+d/v1TXUNbnFJuqMTqdj5syZjB8/HqUUbdu25YcffqBVq1b13TQhhLjsBfsNJNhvIE5XFooSDLoIr4bXW/xG4HTspbhwJqWJjovTPVE6fSOCwj6o8llTTTNA6PuozHvAnUHpvTXlOY4W8A806w21dIUXRhIkUWfi4+NZvXp1fTdDCCHEORj0Vc82XhlN0wgMeQGL320UFczB5dyDpgvGYr0Fs/UmNO3cj3FrhkSI+BaKv0YVLwNVCIaWaH53oRkrebi8nkiCJIQQQogaM5q6YDR1Oa+6mi4A/Iai+Q2t5VbVHnkGSQghhBCiHEmQaoEMBKw9EkshhBCXAp9JkDIzM7n77rsJCgoiJCSE++67j/z8fK/qKqW4/vrr0TStykVSz8fppTgKCwtr7ZiXu9OxLL/0iRBCCHEx+cwzSHfffTfHjh3j+++/x+FwMHLkSEaPHs0nn3xSbd033nijTmZv1uv1hISEeBZw9fPzk1miz5NSisLCQjIyMggJCZHJJIUQQtQrn0iQdu7cybfffsuGDRvo0qX0gbCpU6dyww038OqrrxIXF1dl3ZSUFF577TV+++03YmNja71tMTGlyzefvcq9OH8hISGemAohhBD1xScSpLVr1xISEuJJjgD69euHTqdj3bp13HbbbZXWKywsZNiwYUybNq3OPnQ1TSM2NpaoqCgcDkednONyYTQapedICCHEJcEnEiSbzUZUVFSZfQaDgbCwMGw2W5X1HnnkEbp3784tt9zi9bnsdjt2u93ze25urlf19Hq9fLgLIYQQfxL1+pD2E088gaZp59z++OOP8zr2okWLWL58OW+88UaN6k2ePJng4GDPFh9/fosPCiGEEMJ31WsP0j//+U9GjBhxzjKJiYnExMRUeMbH6XSSmZlZ5a2z5cuXs2/fPkJCQsrsHzRoED179mTFihWV1nvyySd59NFHPb/n5uZKkiSEEEJcZuo1QYqMjCQyMrLacsnJyWRnZ7Nx40Y6d+4MlCZAbrebbt0qrhYMpb1To0aNKrMvKSmJ119/nZtuuqnKc5nNZsxmcw2uQgghhBB/Nj7xDFKrVq0YMGAA999/P++++y4Oh4Nx48Zx1113eUawHTlyhL59+zJ79my6du1KTExMpb1LjRo1IiEhwetzn5640NtnkYQQQghR/05/bp/vBMQ+kSABzJkzh3HjxtG3b190Oh2DBg3irbfe8rzucDjYtWtXrU/amJeXByC32YQQQggflJeXR3BwcI3raUrWdjgnt9vN0aNHCQwMrNVJIE8/23To0CGCgoJq7bh/RhKrmpF4eU9i5T2JlfckVt6ry1gppcjLyyMuLg6druZj0nymB6m+6HQ6GjZsWGfHDwoKkj8gL0msakbi5T2JlfckVt6TWHmvrmJ1Pj1Hp/nMWmxCCCGEEBeLJEhCCCGEEOVIglRPzGYzEyZMkCkFvCCxqhmJl/ckVt6TWHlPYuW9SzlW8pC2EEIIIUQ50oMkhBBCCFGOJEhCCCGEEOVIgiSEEEIIUY4kSEIIIYQQ5UiCVIVp06bRpEkTLBYL3bp1Y/369ecs/9lnn9GyZUssFgtJSUksWbKkzOtKKZ555hliY2OxWq3069ePPXv2lCmTmZnJ3XffTVBQECEhIdx3333k5+eXKbNlyxZ69uyJxWIhPj6eKVOm1Lgttc1XYzVjxgx69uxJaGgooaGh9OvXr9q2XyhfjdXZ5s2bh6Zp3HrrrTW7+Bry5VhlZ2czduxYYmNjMZvNNG/evE7/Dn05Vm+88QYtWrTAarUSHx/PI488QnFx8XlGonqXYqyKi4sZMWIESUlJGAyGKv+2VqxYQadOnTCbzTRt2pSZM2eeVwxqwlfj9cUXX3DttdcSGRlJUFAQycnJLFu2rGYXr0QF8+bNUyaTSX3wwQdq+/bt6v7771chISEqPT290vKrV69Wer1eTZkyRe3YsUP95z//UUajUW3dutVT5qWXXlLBwcHqyy+/VJs3b1Y333yzSkhIUEVFRZ4yAwYMUO3bt1e//vqrWrlypWratKkaOnSo5/WcnBwVHR2t7r77brVt2zY1d+5cZbVa1fTp02vUltrky7EaNmyYmjZtmtq0aZPauXOnGjFihAoODlaHDx+ug0j5dqxOS01NVQ0aNFA9e/ZUt9xyS+0FpxxfjpXdblddunRRN9xwg1q1apVKTU1VK1asUCkpKXUQKd+O1Zw5c5TZbFZz5sxRqampatmyZSo2NlY98sgjdRCpSzdW+fn56sEHH1Tvvfee6t+/f6V/W/v371d+fn7q0UcfVTt27FBTp05Ver1effvtt7UXoHJ8OV4PP/ywevnll9X69evV7t271ZNPPqmMRqP6/fffvb5+SZAq0bVrVzV27FjP7y6XS8XFxanJkydXWn7w4MFq4MCBZfZ169ZNPfDAA0oppdxut4qJiVGvvPKK5/Xs7GxlNpvV3LlzlVJK7dixQwFqw4YNnjJLly5VmqapI0eOKKWUevvtt1VoaKiy2+2eMo8//rhq0aKF122pbb4cq/KcTqcKDAxUs2bN8vbya8TXY+V0OlX37t3V//73P3XvvffWaYLky7F65513VGJioiopKTnfy68RX47V2LFj1TXXXFOmLY8++qi66qqrahQDb12qsTpbVX9bjz32mGrTpk2ZfUOGDFH9+/ev5qrPny/HqzKtW7dWEydO9KqsUkrJLbZySkpK2LhxI/369fPs0+l09OvXj7Vr11ZaZ+3atWXKA/Tv399TPjU1FZvNVqZMcHAw3bp185RZu3YtISEhdOnSxVOmX79+6HQ61q1b5ylz9dVXYzKZypxn165dZGVledWW2uTrsSqvsLAQh8NBWFhYTcLglT9DrJ577jmioqK47777zjcMXvH1WC1atIjk5GTGjh1LdHQ0bdu25cUXX8Tlcl1IWCrl67Hq3r07Gzdu9Ny22b9/P0uWLOGGG24475hU5VKOlTcu5ns7+H68ynO73eTl5dXo/V0SpHJOnDiBy+UiOjq6zP7o6GhsNluldWw22znLn/63ujJRUVFlXjcYDISFhZUpU9kxzj5HdW2pTb4eq/Ief/xx4uLiKvyB1wZfj9WqVat4//33mTFjhncXfAF8PVb79+9nwYIFuFwulixZwtNPP81rr73G888/710AasDXYzVs2DCee+45evTogdFo5IorrqB379489dRT3gWgBi7lWHmjqrbk5uZSVFTk9XG85evxKu/VV18lPz+fwYMHe11HEiQhgJdeeol58+axcOFCLBZLfTfnkpKXl8fw4cOZMWMGERER9d2cS57b7SYqKor33nuPzp07M2TIEP7973/z7rvv1nfTLjkrVqzgxRdf5O233+b333/niy++4JtvvmHSpEn13TTxJ/LJJ58wceJE5s+fXyH5OhdJkMqJiIhAr9eTnp5eZn96ejoxMTGV1omJiTln+dP/VlcmIyOjzOtOp5PMzMwyZSo7xtnnqK4ttcnXY3Xaq6++yksvvcR3331Hu3btzn3R58mXY7Vv3z4OHDjATTfdhMFgwGAwMHv2bBYtWoTBYGDfvn1ex8EbvhwrgNjYWJo3b45er/eUadWqFTabjZKSkmquvmZ8PVZPP/00w4cPZ9SoUSQlJXHbbbfx4osvMnnyZNxut3dB8NKlHCtvVNWWoKAgrFar18fxlq/H67R58+YxatQo5s+fX+O7A5IglWMymejcuTM//vijZ5/b7ebHH38kOTm50jrJycllygN8//33nvIJCQnExMSUKZObm8u6des8ZZKTk8nOzmbjxo2eMsuXL8ftdtOtWzdPmV9++QWHw1HmPC1atCA0NNSrttQmX48VwJQpU5g0aRLffvttmXvetc2XY9WyZUu2bt1KSkqKZ7v55pvp06cPKSkpxMfHX2B0yvLlWAFcddVV7N27t8wH/O7du4mNjS3zPE5t8PVYFRYWotOV/Rg6nViqWl4m9FKOlTcu5ns7+H68AObOncvIkSOZO3cuAwcOrFFdQIb5V2bevHnKbDarmTNnqh07dqjRo0erkJAQZbPZlFJKDR8+XD3xxBOe8qtXr1YGg0G9+uqraufOnWrChAmVDm0MCQlRX331ldqyZYu65ZZbKh3a2LFjR7Vu3Tq1atUq1axZszJDG7Ozs1V0dLQaPny42rZtm5o3b57y8/OrMMy/urZIrM6cx2QyqQULFqhjx455try8PIlVuViVV9ej2Hw5VmlpaSowMFCNGzdO7dq1Sy1evFhFRUWp559/XmJVLlYTJkxQgYGBau7cuWr//v3qu+++U1dccYUaPHjwZRUrpZTavn272rRpk7rppptU79691aZNm9SmTZs8r58e5v+vf/1L7dy5U02bNu2iDPP31XjNmTNHGQwGNW3atDLv79nZ2V5fvyRIVZg6dapq1KiRMplMqmvXrurXX3/1vNarVy917733lik/f/581bx5c2UymVSbNm3UN998U+Z1t9utnn76aRUdHa3MZrPq27ev2rVrV5kyJ0+eVEOHDlUBAQEqKChIjRw5ssKH9ebNm1WPHj2U2WxWDRo0UC+99FKFtlfXltrmq7Fq3LixAipsEyZMuPCgVMFXY1VeXSdISvl2rNasWaO6deumzGazSkxMVC+88IJyOp0XGJGq+WqsHA6HevbZZ9UVV1yhLBaLio+PV2PGjFFZWVkXHpQqXKqxqur96Gw//fST6tChgzKZTCoxMVF9+OGHFx6QavhqvHr16lXp6+Xbey6aUrXcjymEEEII4ePkGSQhhBBCiHIkQRJCCCGEKEcSJCGEEEKIciRBEkIIIYQoRxIkIYQQQohyJEESQgghhChHEiQhhBBCiHIkQRJC/Kk1adKEN95446Kfd8SIEWiahqZpfPnll17VadKkiadOdnZ2nbZPCHFukiAJIerc6Q/9qrZnn30WgIceeojOnTtjNpvp0KHDOY+5YsWKao+7YsUKNmzYwOjRo+v+IisxYMAAjh07xvXXX+9V+Q0bNvD555/XcauEEN4w1HcDhBB/fseOHfP8/Omnn/LMM8+wa9cuz76AgADPz3/7299Yt24dW7ZsOecxu3fvXua4Dz/8MLm5uXz44YeefWFhYbW+QGxNmM3mGq1AHhkZSVhYWB22SAjhLelBEkLUuZiYGM8WHByMpmll9p1OkN566y3Gjh1LYmJitcc0mUxljmG1Wj0JyenNZDJVuMWmaRrTp0/nxhtvxM/Pj1atWrF27Vr27t1L79698ff3p3v37uzbt6/M+b766is6deqExWIhMTGRiRMn4nQ6axSHkpISxo0bR2xsLBaLhcaNGzN58uQaHUMIcXFIgiSEuOxMmjSJe+65h5SUFFq2bMmwYcN44IEHePLJJ/ntt99QSjFu3DhP+ZUrV3LPPffw8MMPs2PHDqZPn87MmTN54YUXanTet956i0WLFjF//nx27drFnDlzaNKkSS1fnRCiNsgtNiHEZWfkyJEMHjwYgMcff5zk5GSefvpp+vfvD5Terhs5cqSn/MSJE3niiSe49957AUhMTGTSpEk89thjTJgwwevzpqWl0axZM3r06IGmaTRu3LgWr0oIUZskQRJCXHbatWvn+Tk6OhqApKSkMvuKi4vJzc0lKCiIzZs3s3r16jI9Ri6Xi+LiYgoLC/Hz8/PqvCNGjODaa6+lRYsWDBgwgBtvvJHrrruulq5KCFGbJEESQlx2jEaj52dN06rc53a7AcjPz2fixIncfvvtFY5lsVi8Pm+nTp1ITU1l6dKl/PDDDwwePJh+/fqxYMGC87oOIUTdkQRJCCGq0alTJ3bt2kXTpk0v+FhBQUEMGTKEIUOGcMcddzBgwAAyMzNl9JoQlxhJkIQQl4y9e/eSn5+PzWajqKiIlJQUAFq3bl2vw/WfeeYZbrzxRho1asQdd9yBTqdj8+bNbNu2jeeff97r4/z3v/8lNjaWjh07otPp+Oyzz4iJiSEkJKTuGi+EOC+SIAkhLhmjRo3i559/9vzesWNHAFJTU+t1tFf//v1ZvHgxzz33HC+//DJGo5GWLVsyatSoGh0nMDCQKVOmsGfPHvR6PVdeeSVLlixBp5MBxUJcajSllKrvRgghxJ/NiBEjyM7O9nqZkdNWrFhBnz59yMrKkp4lIeqRfG0RQog6snjxYgICAli8eLFX5du0aeP1siRCiLolPUhCCFEHMjIyyM3NBSA2NhZ/f/9q6xw8eBCHwwGUzrUkt96EqD+SIAkhhBBClCNfT4QQQgghypEESQghhBCiHEmQhBBCCCHKkQRJCCGEEKIcSZCEEEIIIcqRBEkIIYQQohxJkIQQQgghypEESQghhBCiHEmQhBBCCCHK+f+LY+1JqR7hcwAAAABJRU5ErkJggg==\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - examples_31_0.png" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGxCAYAAACOSdkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcs0lEQVR4nO3deVhUZf8G8PvMDDPsm7IqiruYW4EimluSkmaZaVqWQmRmkilt2uLyWmL+3DJN09yyxV3zVcMUxV4Vl1DKBcEFw4VFRUEBWWbO7w9icpRlBmZl7s91zVWcec4533GAuXnOc55HEEVRBBEREZEVkpi6ACIiIiJTYRAiIiIiq8UgRERERFaLQYiIiIisFoMQERERWS0GISIiIrJaDEJERERktRiEiIiIyGrJTF2AuVOpVLh+/TqcnJwgCIKpyyEiIiItiKKIu3fvwtfXFxJJ5f0+DELVuH79Ovz8/ExdBhEREdXAlStX0LBhw0qfZxCqhpOTE4Cyf0hnZ2cTV0NERETayMvLg5+fn/pzvDIMQtUovxzm7OzMIERERGRhqhvWwsHSREREZLUYhIiIiMhqMQgRERGR1eIYISIiPVIqlSgpKTF1GUR1no2NDaRSaa2PwyBERKQHoigiMzMTd+7cMXUpRFbD1dUV3t7etZrnj0GIiEgPykOQp6cn7O3tOQErkQGJooiCggJkZ2cDAHx8fGp8LAYhExBFEbcLSpBfVAoHhQxu9jb8pUlkwZRKpToE1atXz9TlEFkFOzs7AEB2djY8PT1rfJmMQciIcgtLsDnxKtYcvoy/cwrU2xu722NUV3+8GNgQLnY2JqyQiGqifEyQvb29iSshsi7lP3MlJSUMQubuQOoNjP0hEYXFykeeS88pwIwdZzHntxQseTUQPVt6mKBCIqot9uwSGZc+fuZ4+7wRHEi9gYhVx1BYooQIQHzo+fJthSVKRKw6hgOpN4xfJBFRHRcfHw9BEMxiQPvq1avh6upq6jJqxd/fHwsWLDB1GbXGIGRguYUlGPtDYlnYeTgBPUQUywLR2B8SkVvI22+JyPDCw8MhCAIEQYCNjQ28vLzw9NNPY+XKlVCpVDody9w/3Lt27YqMjAy4uLiYuhQMGzYMqamppi6DwCBkcJsTr6KwWFltCConikBhsRJbTlw1bGFEZLaUSiVEbX9p6EFYWBgyMjJw+fJl/Prrr+jduzfeffddPPvssygtLTVaHYYml8trfau1vtjZ2cHT09Pg5+GcVtVjEDIgURSx5vDlGu27+tBlo/4iJCLTKi0pxS+LYxER8C7CbIajv+3L+M/QuTh37LzBz61QKODt7Y0GDRrgiSeewMcff4xffvkFv/76K1avXq1uN2/ePLRr1w4ODg7w8/PD22+/jXv37gEou+wUERGB3NxcdQ/TtGnTAABr165FUFAQnJyc4O3tjVdeeUV923Nlbt++jZEjR8LNzQ329vZ45plncP78v/8W5b1Pu3fvRkBAABwdHdWBrjIPXxorP8aOHTvQqlUr2NvbY8iQISgoKMCaNWvg7+8PNzc3jB8/Hkrlv+M7tXk927dvR4sWLWBra4vevXtjzZo1FZ673LRp09CxY0esXbsW/v7+cHFxwfDhw3H37l11m9jYWDz55JNwdXVFvXr18Oyzz+LixYvq5y9fvgxBELB+/Xr07NkTtra2WLZsGZydnbFp0yaN+rZt2wYHBweN4z+oV69eiIqKQlRUFFxcXFC/fn189tlnVX4uVfX98eBrru49++677xAQEABbW1u0bt0a33zzTaXn1AcGIQO6XVCCv3MKHhkTVB0RwN85BbhTwCRPZA1KS0oxddBsLB6/EldTr/+zTYnDvxzDu90+xf+2HDV6TU899RQ6dOiALVu2qLdJJBIsXLgQZ86cwZo1a7Bv3z58+OGHAMouOy1YsADOzs7IyMhARkYG3n//fQBlvRIzZszAn3/+iW3btuHy5csIDw+v8vzh4eH4448/sH37diQkJEAURfTv31+jh6OgoABz5szB2rVr8fvvvyM9PV19Tm0VFBRg4cKFWLduHWJjYxEfH48XXngBu3btwq5du7B27Vp8++23GkGiuteTlpaGIUOGYNCgQfjzzz8xZswYfPLJJ9XWcvHiRWzbtg07duzAjh07cODAAcyaNUv9fH5+PqKjo/HHH38gLi4OEokEL7zwwiOXMCdNmoR3330XycnJGDx4MIYPH45Vq1ZptFm1ahWGDBkCJyenSutZs2YNZDIZjh07hq+++grz5s3Dd999V2n7qr4/ylX3nv3444+YMmUKvvjiCyQnJ2PmzJn47LPPsGbNmmr//WpMpCrl5uaKAMTc3Fyd902/lS82/mhHjR/pt/IN8IqISN8KCwvFs2fPioWFhTXaf/P8HeLTkqFiqDDkkcfTkqFif7uXxdxbeXquusyoUaPE559/vsLnhg0bJgYEBFS678aNG8V69eqpv161apXo4uJS7TmPHz8uAhDv3r1b4fOpqakiAPHQoUPqbTdv3hTt7OzEDRs2qM8FQLxw4YK6zeLFi0UvL69Kz7t//34RgHj79u1KjzFmzBjR3t5eo7Z+/fqJY8aM0fr1fPTRR2Lbtm012nzyySePnPvBf6upU6eK9vb2Yl7ev+/zBx98IAYHB1d63hs3bogAxFOnTomiKIppaWkiAHHBggUa7Y4ePSpKpVLx+vXroiiKYlZWliiTycT4+PhKj92zZ08xICBAVKlU6m0fffSRxvdD48aNxfnz51d6jIq+P6p7z5o1ayb+9NNPGseZMWOGGBISUuE5qvrZ0/bzmz1CBuSgqN3sBI613J+IzJ8oitiycGellxxEUURJUSn2rDlg5MrKzv3geJq9e/eiT58+aNCgAZycnPDaa6/h1q1bKCgoqOIoQGJiIgYOHIhGjRrByckJPXv2BACkp6dX2D45ORkymQzBwcHqbfXq1UOrVq2QnJys3mZvb49mzZqpv/bx8an2ktvDHj6Gl5cX/P394ejoqLHtweNW93pSUlLQqVMnjfN07ty52lr8/f01emgefj3nz5/Hyy+/jKZNm8LZ2Rn+/v4a5y0XFBT0yLkfe+wxda/KDz/8gMaNG6NHjx5V1tOlSxeN9z8kJATnz5/XuEz4IG2+P6p6z/Lz83Hx4kVERkbC0dFR/fj88881LgHqG4OQAbnZ26Cxuz10HZYnoGySRVd7Tq5IVNfdz7+PrMtVT5khSARcSEozUkX/Sk5ORpMmTQCUjT959tln0b59e2zevBmJiYlYvHgxAKC4uLjSY+Tn56Nfv35wdnbGjz/+iOPHj2Pr1q3V7qcNGxvN35GCIOg8trKiY1S0rfzyk7Ffz4OXvQYOHIicnBwsX74cR48exdGjRys8r4ODwyPHfuONN9TjvVatWoWIiAi9DhrX9vujqvesfDzR8uXLkZSUpH6cPn0aR44c0VutD2MQMiBBEDCqq3+N9g3v5m8WdzYQkWFJbarv+RUEwEZu3D+M9u3bh1OnTuHFF18EUNYLolKpMHfuXHTp0gUtW7bE9evXNfaRy+WP9BacO3cOt27dwqxZs9C9e3e0bt262l6bgIAAlJaWqj/oAeDWrVtISUlBmzZt9PQKa0ab19OqVSv88ccfGtuOHz9eq/OWv/5PP/0Uffr0QUBAAG7fvq31/q+++ir+/vtvLFy4EGfPnsWoUaOq3efBf38AOHLkCFq0aFHhDM7afH9Ux8vLC76+vrh06RKaN2+u8SgP5IbAIGRgLwY2hJ1cCm0zjUQA7ORSDH6ioWELIyKzIFfY4PGn2kIirfzXsbJUhS7PBhqshqKiImRmZuLatWs4ceIEZs6cieeffx7PPvssRo4cCQBo3rw5SkpK8PXXX+PSpUtYu3Ytli5dqnEcf39/3Lt3D3Fxcbh58yYKCgrQqFEjyOVy9X7bt2/HjBkzqqynRYsWeP755zF69GgcPHgQf/75J1599VU0aNAAzz//vMH+HbShzesZM2YMzp07h48++gipqanYsGGDujempn/gurm5oV69eli2bBkuXLiAffv2ITo6Wqf9Bw8ejA8++AB9+/ZFw4bVf8akp6cjOjoaKSkp+Pnnn/H111/j3XffrbCtNt8f2pg+fTpiYmKwcOFCpKam4tSpU1i1ahXmzZun87G0xSBkYC52NljyaiAEoNowVP780lcDueYYkRUZPnkwVMqKJy+UyiRo2NIHwQOeMNj5Y2Nj4ePjA39/f4SFhWH//v1YuHAhfvnlF/Vf/x06dMC8efPw5Zdfom3btvjxxx8RExOjcZyuXbvirbfewrBhw+Dh4YHZs2fDw8MDq1evxsaNG9GmTRvMmjULc+bMqbamVatWITAwEM8++yxCQkIgiiJ27dr1yKUVY9Pm9TRp0gSbNm3Cli1b0L59eyxZskR915hCoajReSUSCdatW4fExES0bdsWEydOxP/93//pdIzIyEgUFxfj9ddf16r9yJEjUVhYiM6dO2PcuHF499138eabb1bYVpvvD2288cYb+O6777Bq1Sq0a9cOPXv2xOrVqw3aIySIul5QtTJ5eXlwcXFBbm4unJ2da3ych9cae/AfvTwf2cmlWPpqIHpwrTEii3L//n2kpaWhSZMmsLW1rdExdi3fi6/eXg4AUKlUkEgkUClV8G3ujdl7psCrMX8vWLIvvvgCS5cuxZUrV0xWw9q1azFx4kRcv34dcrm8yra9evVCx44dzX4Jjap+9rT9/OZtSUbSs6UHEib3wZYTV7H6kObq843c7RHerWz1eWdb9gQRWaP+o0PR6ZnH8et3cUg7nQ6FnRwhz3VCt0GdINNiHBGZl2+++QadOnVCvXr1cOjQIfzf//0foqKiTFJLQUEBMjIyMGvWLIwZM6baEGRt+NNlRC52Nojo1gThXf1xp6AE94pK4aiQwdXehgOjiQgeDeth5LSXTF0G6cH58+fx+eefIycnB40aNcJ7772HyZMnm6SW2bNn44svvkCPHj1MVoM546Wxaujr0hgR1V36uDRGRLrTx6UxDpYmIiIiq8UgRERERFbL4oLQ4sWL4e/vD1tbWwQHB+PYsWNVtr9z5w7GjRsHHx8fKBQKtGzZErt27TJStURERGTOLGqw9Pr16xEdHY2lS5ciODgYCxYsQL9+/ZCSkgJPT89H2hcXF+Ppp5+Gp6cnNm3ahAYNGuDvv/+Gq6ur8YsnIiIis2NRQWjevHkYPXo0IiIiAABLly7Fzp07sXLlSkyaNOmR9itXrkROTg4OHz6snoSrfJE6IiIiIou5NFZcXIzExESEhoaqt0kkEoSGhiIhIaHCfbZv346QkBCMGzcOXl5eaNu2LWbOnFnpyrlA2VTzeXl5Gg8iImMRRRE5+cW4klOAnPxinRcRJSLdWEyP0M2bN6FUKuHl5aWx3cvLC+fOnatwn0uXLmHfvn0YMWIEdu3ahQsXLuDtt99GSUkJpk6dWuE+MTExmD59ut7rJyKqSm5hCTYnXsWaw5oTrjZ2t8eormUTrnLpHSL9s5geoZpQqVTw9PTEsmXLEBgYiGHDhuGTTz6pciG4yZMnIzc3V/0w5XToRGQdDqTeQEhMHGbsOIv0B0IQAKTnFGDGjrMIiYnDgdQbBjl/fHw8hw2Q1bKYIFS/fn1IpVJkZWVpbM/KyoK3t3eF+/j4+KBly5bqRQMBICAgAJmZmSguLq5wH4VCAWdnZ40HEZGhHEi9gYhVx1BYooQIzXUI8c/XIoDCEiUiVh0zWBh6UE5ODkaMGAFnZ2e4uroiMjIS9+7dM/h5iUzBYoKQXC5HYGAg4uLi1NtUKhXi4uIQEhJS4T7dunXDhQsXoFL9u6pzamoqfHx8uNYKEZlcbmEJxv6QWBZ2qhkKJIplgWjsD4nILSwxaF0jRozAmTNnsGfPHuzYsQO///67xqrj9+/fx40bhg9kRMZgMUEIAKKjo7F8+XKsWbMGycnJGDt2LPLz89V3kY0cOVJjHZWxY8ciJycH7777LlJTU7Fz507MnDkT48aNM9VLICJS25x4FYXFympDUDlRBAqLldhy4qrBakpOTkZsbCy+++47BAcH48knn8TXX3+NdevW4fr16wDKeuIbNGiAQYMGYevWrSgpMWwwIzIkiwpCw4YNw5w5czBlyhR07NgRSUlJiI2NVQ+gTk9PR0ZGhrq9n58fdu/ejePHj6N9+/YYP3483n333QpvtSciMiZRFLHm8OUa7bv60GWD3U2WkJAAV1dXBAUFqbeFhoZCIpHg6NGjAIDGjRsjISEBjRs3xpgxY+Dj44Px48cjMTHRIDURGZLF3DVWLioqClFRURU+Fx8f/8i2kJAQHDlyxMBVERHp5nZBicbdYdoSAfydU4A7BSVwc9D/Jf7MzMxHJqiVyWRwd3dHZmameltgYCACAwMxd+5c/Prrr/j+++/RrVs3tGjRAqNGjcJrr732yF2+RObIonqEiIjqivyi0lrtf6+W++uLTCbDwIEDsXHjRqSlpcHb2xsffPABYmJiTF0akVYYhIiITMBBUbsOecda7l8Zb29vZGdna2wrLS1FTk5OhXfoiqKI33//HaNHj0ZAQAAuXLiAKVOmIDo62iD1EembxV0aIyKqC9zsbdDY3R7pOQWP3DJfFQFAI3d7uNobZnLFkJAQ3LlzB4mJiQgMDAQA7Nu3DyqVCsHBwep2qampWLt2LX744QfcvHkTQ4YMwbZt29CzZ08IgmCQ2ogMgUGIiMgEBEHAqK7+mLHjrM77hnfzN1jYCAgIQFhYGEaPHo2lS5eipKQEUVFRGD58OHx9fQGU3ZgSEBCAXr16Yfr06XjxxRfh4OBgkHqIDI1BiKqlVKpwct8ZpJ29CoWdHMFhHeDVqL6pyyKyeC8GNsSc31LKJlPUoltIIgC2NlIMfqKhQev68ccfERUVhT59+kAikeDFF1/EwoUL1c/Xr18faWlpaNSokUHrIDIGBiGq0tmj5xETvhQ3ruVAIpVAVIlY8sGPeGp4CMYvGAWFHSemJKopFzsbLHk1EBGrjgFC1ZMqlncALX010OBrjrm7u+Onn36q9Hl7e3uGIKozOFiaKnX57FVMGvh/uJVxGwCgUqogiiJEUcS+9QmYFfmtiSsksnw9W3pgVURn2NlIIaBsDNCDyrfZ2UixOqIzerT0MH6RRHUYe4SoUj//3w6UliihUj36Z6qoEpGw4wRST6Sh5RNNTFAdUd3Rs6UHEib3wZYTV7H6kObq843c7RHerWz1eWdbrj5PpG8MQlShkuJSHPzlOFRKVaVtpDIJ4jcdZRAi0gMXOxtEdGuC8K7+uFNQgntFpXBUyOBqb2Pwu7D8/f0xYcIEg56DyFwxCFGF7t+7D2Vp5SEIKBvPkJfDFamJ9EkQBLg5yA0ya3RlGITImnGMEFXI3sUedo621bbzbsy7x4iIyHIxCFGFpFIJwkb1gERa+beIqBLx9IgnjVgVERGRfjEIUaWGvTcA9X3dKg1Dr05+nvMJERGRReMYIaqUa31nLNj3GZZN/hm/b/134HR9XzeMmPQ8wkb1MHGFRBYu9yqQf1P3/Rw8AJcG+q+HyAoxCFGV3L1cMGnlW3hr9iu4fjELcls5mrT1g7SKS2ZEpIXSImBZbyA/u/q2D3P0BCacBmQK/ddFZGX4aUZaca3vjDbBLdC8Q2OGICJ9kMr/6dXR9edJAjg3KNtfT+Lj4+Hv76+34xFZEn6iERGZgiAAT30KoOppKh6lKtvPgHMLffHFF+jatSvs7e3h6upqsPMQmQMGISIiU2nWB/B9HBCk2rUXpGXtm/UxaFnFxcUYOnQoxo4dW2mb9PR0g9ZAZCwMQkREplLeKyQqtWsvKg3eGwQA06dPx8SJE9GuXbtK2zRp0gShoaFYu3YtCgoKKm1HZO4YhIiITEnbXiEj9QZp6+zZs+jcuTM+/fRTeHl54fXXX8eBAwcgio+uTUhkzhiEiIhMSdteISP1BmmrVatWmDlzJi5fvozt27dDFEUMHDgQzZo1w7Rp05CWlmbqEom0wiBERGRq1fUKmVlv0IMEQUDv3r2xatUqXL16FSEhIepLa0SWgEGIiMjUqusVMrPeoIedOHECEyZMQIsWLRAXF4fo6GjExMSYuiwirXBCRSIic1DeK5Txl2YgEqSAT3uz6w26evUqfvjhB6xduxYXL17EwIEDsWLFCoSFhUEm40cLWQ5+txIRmYPyXqEfXtTcboLeoPT0dOTk5CA9PR1KpRJJSUkAgObNm8PR0REA0LhxYwQFBWHcuHF4+eWX4ebmZrT6iPSJQYiIyFw83Ctkot6gKVOmYM2aNeqvH3/8cQDA/v370atXLwDAmTNn0Lp1a6PWRWQIHCNERGQuHh4rZKKxQatXr4Yoio88ykMQAIYgqjMYhIiIzEl5rxBgtneKEdUlDEJEROZEEIA+U4H6rcr+a6Z3ihHVFRwjRERkbpr1BqKOGe10/v7+mDBhgtHOR2RO2CNERGTlGITImjEIERERkdViECIi0hMuOEpkXPr4mWMQIiKqJRsbGwBAQUGBiSshsi7lP3PlP4M1wcHSRES1JJVK4erqiuzsbACAvb09BN7tRWQwoiiioKAA2dnZcHV1hVRayYLFWmAQIiLSA29vbwBQhyEiMjxXV1f1z15NMQgREemBIAjw8fGBp6cnSkpKTF0OUZ1nY2NTq56gcgxCRER6JJVK9fLLmYiMg4OliYiIyGoxCBEREZHVYhAiIiIiq8UxQmRV/k7NwM3rd+BSzxHN2jbkLc5ERFaOQYisQvIfaVgyZRPO/5mu3ubbxAOjp7yALn3bmbAyIiIyJV4aozov+Y80fDjkK1w4dUVje8blG5j++jL8778nTVQZERGZGoMQ1XlLPtsIpVIFUaW5Jo0oAhCBxZ9sQGmJ0jTFERGRSTEIUZ32d2oGzv915ZEQ9KDcW/fwx/6zRqyKiIjMBYMQ1Wk3r9+pvpEA3Lh+2+C1EBGR+WEQojrNpZ5j9Y1EwMVdi3ZERFTnMAhRndasbUP4+nugqrvkbR0U6Px0W+MVRUREZoNBiOo0QRDwxpRBqHyEEDDygwGwtZMbrSYiIjIfDEJU54X0a4+Pl7wOZ3cHAFD3Dtk6KPDmtMEY9EYv0xVHREQmxQkVySp0H/g4QsLa44/9Z3Hj+m24uDuic+hjsLVXmLo0IiIyIQYhshoyGylnkSYiIg0Wd2ls8eLF8Pf3h62tLYKDg3Hs2DGt9lu3bh0EQcCgQYMMWyARERFZDIsKQuvXr0d0dDSmTp2KEydOoEOHDujXrx+ys7Or3O/y5ct4//330b17dyNVSkRERJbAooLQvHnzMHr0aERERKBNmzZYunQp7O3tsXLlykr3USqVGDFiBKZPn46mTZsasVoiIiIydxYThIqLi5GYmIjQ0FD1NolEgtDQUCQkJFS633/+8x94enoiMjJSq/MUFRUhLy9P40FERER1k8UEoZs3b0KpVMLLy0tju5eXFzIzMyvc5+DBg1ixYgWWL1+u9XliYmLg4uKifvj5+dWqbiIiIjJfFhOEdHX37l289tprWL58OerXr6/1fpMnT0Zubq76ceXKFQNWSURERKZkMbfP169fH1KpFFlZWRrbs7Ky4O3t/Uj7ixcv4vLlyxg4cKB6m0qlAgDIZDKkpKSgWbNmj+ynUCigUHBuGSIiImtgMT1CcrkcgYGBiIuLU29TqVSIi4tDSEjII+1bt26NU6dOISkpSf147rnn0Lt3byQlJfGSFxEREVlOjxAAREdHY9SoUQgKCkLnzp2xYMEC5OfnIyIiAgAwcuRINGjQADExMbC1tUXbtpoLabq6ugLAI9uJiIjIOllUEBo2bBhu3LiBKVOmIDMzEx07dkRsbKx6AHV6ejokEovp5CIiIiITE0RRrGphbquXl5cHFxcX5ObmwtnZ2dTlEBERkRa0/fxm9wkRERFZLYu6NEZkyZRKFZISLuBa2k04ONmic6/WcHK1N3VZRERWjUGIyAiSEi5g3qQNuJGRC0EARBGQ2UgxOKI7Rk7sB6mUnbNERKbAIERkYOf+TMdnkSuh/Gceq/JReaUlSmxYFo/iohKM+eQ5E1ZIRGS9+GcokYGtmb8bKpUKoqri+xJ+WXsYNzLvGLcoIiICwCBEZFB3bt1D0uELUFUSggBAAHBg55/GK4qIiNQYhIgMKO92frVtBImA3Jzq2xERkf4xCBEZkJuHEyQSoco2KqUITx9X4xREREQaGISIDMjJxR7d+raFpIq7wqQyCXo929F4RRERkRqDEJGBhb8XBjt7OSTSinuGXv/gGc4nRERkIlrdPr9w4UKdDxwREQEnJyed9yOqa3wb18f8DePwzYxfkHT4gnp7fW8XjJzQF08PDjJhdURE1k2rtcYkEgkaNmwIqVSq1UGvXLmC1NRUNG3atNYFmhrXGiN9yrySg+vpN2HvaIsWbRtyIkUiIgPR9vNb6wkV//jjD3h6emrVlj1BRBXz9nOHt5+7qcsgIqJ/aPXn6NSpU+Ho6Kj1QT/++GO4u/OXPREREZk3rS6NWTNeGiMiIrI82n5+az1AISgoCEuXLkVeXp5eCiQiIiIyNa2DUIcOHfDhhx/Cx8cHr732GuLj4w1YFhEREZHhaR2EVqxYgczMTCxevBhXrlxBnz590Lx5c8ycORPXrl0zZI1EREREBqHTvbv29vYIDw9HfHw8UlNTMXz4cHz77bfw9/fHgAEDsGXLFkPVSURERKR3tR4sLYoiNm/ejDFjxuDOnTtQKpX6qs0scLA0ERGR5dH7PEIViY+Px6pVq7B582bIZDKMHj26NocjIiIiMiqdg9DVq1exevVqrF69GpcuXUL37t3xzTffYOjQobCzszNEjUREREQGoXUQ2rBhA1auXIm4uDh4enpi1KhReP3119G8eXND1kdERERkMFoHoVdffRUDBgzA1q1b0b9/f0gkXCOJiIiILJvWQejq1atarzVGREREZAm06tbZvn073NzctD7orl27UFhYWOOiiIiIiIxBqyD0wgsv4M6dO1ofdPjw4cjIyKhpTURERERGodWlMVEUER4eDoVCodVB79+/X6uiiIiIiIxBqyA0atQonQ46YsQITj5IREREZk+rILRq1SpD10FERERkdLwHnoiIiKwWgxARERFZLQYhIiIisloMQkRERGS19BKEdJljiIiIiMhc6ByEvvzyS6xfv1799UsvvYR69eqhQYMG+PPPP/VaHBEREZEh6RyEli5dCj8/PwDAnj17sGfPHvz666945pln8MEHH+i9QCIiIiJD0XrR1XKZmZnqILRjxw689NJL6Nu3L/z9/REcHKz3AomIiIgMReceITc3N1y5cgUAEBsbi9DQUABly3AolUr9VkdERERkQDr3CA0ePBivvPIKWrRogVu3buGZZ54BAJw8eRLNmzfXe4FEZJ5EUcTfF7Nx7+59eDdwQ31PLqtDRJZH5yA0f/58+Pv748qVK5g9ezYcHR0BABkZGXj77bf1XiARmZ9D+5Kx8us9uHr5VtkGAejUrQXeej8MDRvXN21xREQ6EERRFHXZ4ffff0fXrl0hk2lmqNLSUhw+fBg9evTQa4GmlpeXBxcXF+Tm5nIhWSIAv20/iblTt0EQgAd/e0ikEtjZy/H12jfRoHE90xVIRATtP791HiPUu3dv5OTkPLI9NzcXvXv31vVwRGRBCguKsHjWTgCaIQgAVEoVCguK8d1Xv5mgMiKimtE5CImiCEEQHtl+69YtODg46KUoIjJPB/cm435hSaXPq5QqJBxIwZ2cfCNWRURUc1qPERo8eDAAQBAEhIeHQ6FQqJ9TKpX466+/0LVrV/1XSERmI/P6bUhlEihLVZW2EVUibmTlwtWdfxgRkfnTOgi5uLgAKOsRcnJygp2dnfo5uVyOLl26YPTo0fqvkIjMhpOzHVTK6ocVOrnYVduGiMgcaB2EVq1aBQDw9/fH+++/z8tgRFaoe2gbfDs39pHxQeUEiYCWbXzh7etm3MKIiGpI5zFCU6dOhYODA27cuIGDBw/i4MGDuHHjhiFqIyIzU8/TGc+/XPEM8uVDByOiQo1YERFR7egchAoKCvD666/Dx8cHPXr0QI8ePeDr64vIyEgUFBQYokYiMiOjJ/bD0FHdIJVKAAGQSMsSkJOLHabMGY7Hg5uauEIiIu3pPI/QmDFjsHfvXixatAjdunUDABw8eBDjx4/H008/jSVLlhikUFPhPEJEFbuTk4/D8cnIv3sfPg3dEdyjJWxsdJ6jlYjIILT9/NY5CNWvXx+bNm1Cr169NLbv378fL730Up27TMYgREREZHkMNqFiQUEBvLy8Htnu6enJS2NERERkUXQOQiEhIZg6dSru37+v3lZYWIjp06cjJCREr8URERERGZLOQeirr77CoUOH0LBhQ/Tp0wd9+vSBn58fDh8+jK+++soQNWpYvHgx/P39YWtri+DgYBw7dqzStsuXL0f37t3h5uYGNzc3hIaGVtmeiIiIrIvOQaht27Y4f/48YmJi0LFjR3Ts2BGzZs3C+fPn8dhjjxmiRrX169cjOjoaU6dOxYkTJ9ChQwf069cP2dnZFbaPj4/Hyy+/jP379yMhIQF+fn7o27cvrl27ZtA6iYiIyDLoPFjalIKDg9GpUycsWrQIAKBSqeDn54d33nkHkyZNqnZ/pVIJNzc3LFq0CCNHjtTqnBwsTUREZHm0/fyu0b2u58+fx/79+5GdnQ2VSnPNoSlTptTkkNUqLi5GYmIiJk+erN4mkUgQGhqKhIQErY5RUFCAkpISuLu7V9qmqKgIRUVF6q/z8vJqXjQRERGZNZ2D0PLlyzF27FjUr18f3t7eGivRC4JgsCB08+ZNKJXKR+5Y8/Lywrlz57Q6xkcffQRfX1+EhlY+821MTAymT59eq1qJiIjIMugchD7//HN88cUX+OijjwxRj8HMmjUL69atQ3x8PGxtbSttN3nyZERHR6u/zsvLg5+fnzFKJCIiIiPTOQjdvn0bQ4cONUQtVapfvz6kUimysrI0tmdlZcHb27vKfefMmYNZs2Zh7969aN++fZVtFQoFFApFreslotpLu5SNzeuP4dDvKSgtUaJZCy88/2IQej7VBhKJUP0BiIiqofNdY0OHDsVvv/1miFqqJJfLERgYiLi4OPU2lUqFuLi4Kucvmj17NmbMmIHY2FgEBQUZo1Qi0oMjh85jbMQK7I09hXt37+P+/RIkn7mGmdO24f9m/hcqlcXc50FEZkyrHqGFCxeq/7958+b47LPPcOTIEbRr1w42NjYabcePH6/fCh8QHR2NUaNGISgoCJ07d8aCBQuQn5+PiIgIAMDIkSPRoEEDxMTEAAC+/PJLTJkyBT/99BP8/f2RmZkJAHB0dISjo6PB6iSi2snLK8SMKVugUqnw4H2t5eFnb+wpdOjYCGHPdjRNgURUZ2gVhObPn6/xtaOjIw4cOIADBw5obBcEwaBBaNiwYbhx4wamTJmCzMxMdOzYEbGxseoB1Onp6ZBI/u3kWrJkCYqLizFkyBCN40ydOhXTpk0zWJ1EVDt7fv0LJcVKVDa5hyAAWzYcYxAiolqzqHmETIHzCBEZ3xdTt+LA/mSI1Vz++jV+EmQyqZGqIiJLYrBFVx+mVCqRlJSE27dv1/ZQREQAAKlUguqGQgsCNKbvICKqCZ2D0IQJE7BixQoAZSGoR48eeOKJJ+Dn54f4+Hh910dEVigouGmVg6ElEgGPBzWBVFrrv+WIyMrp/Ftk06ZN6NChAwDgv//9Ly5fvoxz585h4sSJ+OSTT/ReIBFZnx69AlCvvmOlt8irVCKGvtzFyFURUV2kcxC6efOmet6eXbt2YejQoWjZsiVef/11nDp1Su8FEpH1kStkmDXvFbi42gMouwwGlPUEQQDefrcvgjo3NWGFRFRX6DyhopeXF86ePQsfHx/ExsZiyZIlAMrW8ZJKOWiRiPTDv6kHVq8bi7jfTiPh4HkUFZWgRUsfPPv842jYqJ6pyyOiOkLnIBQREYGXXnoJPj4+EARBvW7X0aNH0bp1a70XSETWy95egYGDAjFwUKCpSyGiOkrnIDRt2jS0bdsWV65cwdChQ9XLUUilUkyaNEnvBRIREREZisHmEWrXrh127dpl8QuWch4hIiIiy2O0eYQqc/nyZZSUlBjq8ERERES1xkk4iIiIyGoxCBEREZHVYhAiIiIiq8UgRERERFaLQYiIiIislsGC0LfffgsvLy9DHZ6IiIio1nSeUHHhwoVat3VwcND18ERERERGo/OEik2aNMGNGzdQUFAAV1dXAMCdO3dgb28PDw+Pfw8sCLh06ZJeizUFTqhIRERkeQw2oeIXX3yBjh07Ijk5GTk5OcjJyUFycjKeeOIJfP7550hLS0NaWlqdCEFERERUt+ncI9SsWTNs2rQJjz/+uMb2xMREDBkyBGlpaXot0NTYI0RERGR5DNYjlJGRgdLS0ke2K5VKZGVl6Xo4IiIiIpPROQj16dMHY8aMwYkTJ9TbEhMTMXbsWISGhuq1OCIiIiJD0jkIrVy5Et7e3ggKCoJCoYBCoUDnzp3h5eWF7777zhA1EhERERmEzrfPe3h4YNeuXUhNTcW5c+cAAK1bt0bLli31XhwRERGRIekchMq1bNmS4YeIrFZ+fhHifz+HrKxcODvboWeP1vCo72TqsohIR1oFoejoaMyYMQMODg6Ijo6usu28efP0UhgRkbnasSsJi5bEoaioFDKpBEqViG++3Y/Bg57A2DefglTK1YuILIVWQejkyZMoKSlR/39lBEHQT1VERGZq/4FkzF2wW/11qVKl/v/NWxMhk0nx1ujepiiNiGpA53mEtHX16lX4+vpCIrHsv4w4jxARlRNFEa9FLMO163cqbSOVSrB53Ti4uNgbrzAieoTB5hHSVps2bXD58mVDHZ6IyOgupd2oMgQBgFKpwsHD541TEBHVmsGCkIE6moiITObevaJq20gkAvLzq29HRObBsq9bEREZka+PS7VtVCoRvr5uRqiGiPSBQYiISEseHs7oHNQEEknFN4YIAuDqao8unZsauTIiqikGISIiHUS9HQp7ezmkD4UhiUSAIAj4MPoZyGRSE1VHRLoyWBDirfREVBf5NXTHkq9HolvXFpA88HuuTYAv5s4ejpAuzU1YHRHpqsYzS1eHg6WJqK5q2MAd06e8gNzcAty4eQ8uzrbw8OD0GkSWqMZBqKio7K4IhUJR4fNnz56Fr69vTQ9PRGT2XFzsOV8QkYXT6dLYnj170L9/f7i5ucHe3h729vZwc3ND//79sXfvXo22fn5+kEp5nZyIiIjMl9ZBaM2aNejfvz9cXFwwf/587NixAzt27MD8+fPh6uqK/v37Y+3atYaslYiIiEivtF5io2XLlnj33Xcxbty4Cp//5ptvMH/+fJw/X7dmVOUSG0RERJZH70tspKenIzQ0tNLn+/Tpg6tXr+pWJREREZEJaR2EHnvsMaxYsaLS51euXIk2bdropSgiIiIiY9D6rrG5c+fi2WefRWxsLEJDQ+Hl5QUAyMrKQlxcHC5duoSdO3carFAiIiIifdM6CPXq1QunT5/GkiVLcOTIEWRmZgIAvL298cwzz+Ctt96Cv7+/oeokIiIi0jutB0tbKw6WJiJTOZuaga2/nkTKhUwoFDL06NISzz7dHm6cu4ioWtp+fhtsZmkiIqq5lT8fwqr1hyGVClAqy/5eTbmYjZ+2HsP86S+hdXNvE1dIVDfoHITc3Ny0XkcsJydH54KIiKzdgYRUrFp/GADUIQgoW7qooLAY7/9nEzYtHwNbhY2pSiSqM3QOQp999hk+//xz9OvXDyEhIQCAhIQE7N69G5999hnc3d31XiQRkTX5edtxSAQBqgpGLqhUInLzChH3v3MYENrOBNUR1S06B6FDhw7hP//5D6KiotTbxo8fj0WLFmHv3r3Ytm2bPusjIrIqpaVKnEm5XmUbiURA4qm/GYSI9ECntcYAYPfu3QgLC3tke1hY2CPrjRERkW60vn2Ft7kQ6YXOQahevXr45ZdfHtn+yy+/oF69enopiojIWtnYSNGyqWeVYzFVKhHtAhoYsSqiukvnS2PTp0/HG2+8gfj4eAQHBwMAjh49itjYWCxfvlzvBRIRWZthz3fCjPkVT1ArCALs7WzQr9djRq6KqG7SuUcoPDwchw4dgrOzM7Zs2YItW7bA2dkZBw8eRHh4uAFKJCKyLk/3CMCLA54AAEgl//YMSSQCFHIpZn0yGPZ2clOVR1SncELFanBCRSIyBVEUcSzpMrbuOomUi1mQy2XoFdISLzzTEd6eLqYuj8js6X31eXOxePFi+Pv7w9bWFsHBwTh27FiV7Tdu3IjWrVvD1tYW7dq1w65du4xUKRFRzQmCgODHm2DWJ4OxdeVYrF86GmNH9WQIItIziwpC69evR3R0NKZOnYoTJ06gQ4cO6NevH7Kzsytsf/jwYbz88suIjIzEyZMnMWjQIAwaNAinT582cuVERERkjizq0lhwcDA6deqERYsWAQBUKhX8/PzwzjvvYNKkSY+0HzZsGPLz87Fjxw71ti5duqBjx45YunSpVufkpTEiIiLLU+cujRUXFyMxMRGhoaHqbRKJBKGhoUhISKhwn4SEBI32ANCvX79K2xMREZF1sZhFV2/evAmlUgkvLy+N7V5eXjh37lyF+2RmZlbYPjMzs9LzFBUVoaioSP11Xl5eLaomIiIic6ZzEHrhhRcqnOhLEATY2tqiefPmeOWVV9CqVSu9FGhsMTExmD59uqnLICLSK1EUceLsFWzek4TUv2/ATmGDPl1a4rne7eHuYm/q8ohMRudLYy4uLti3bx9OnDgBQRAgCAJOnjyJffv2obS0FOvXr0eHDh1w6NAhvRZav359SKVSZGVlaWzPysqCt7d3hft4e3vr1B4AJk+ejNzcXPXjypUrtS+eiMiERFHE/O/3I+qLjfj9jwu4lnUHF9JvYPnGwxj+/kqkXM6q/iBEdZTOQcjb2xuvvPIKLl26hM2bN2Pz5s24ePEiXn31VTRr1gzJyckYNWoUPvroI70WKpfLERgYiLi4OPU2lUqFuLg4hISEVLhPSEiIRnsA2LNnT6XtAUChUMDZ2VnjQURkyXb9fgYbd58EAChV/94foxJF5BcW473ZW1FcUmqq8ohMSucgtGLFCkyYMAESyb+7SiQSvPPOO1i2bBkEQUBUVJRBblGPjo7G8uXLsWbNGiQnJ2Ps2LHIz89HREQEAGDkyJGYPHmyuv27776L2NhYzJ07F+fOncO0adPwxx9/ICoqSu+1ERGZI1EU8dPOP1DZ0mUqlYhbd/Kx/9h54xZGZCZ0DkKlpaUVDk4+d+4clEolAMDW1rbKBQNratiwYZgzZw6mTJmCjh07IikpCbGxseoB0enp6cjIyFC379q1K3766ScsW7YMHTp0wKZNm7Bt2za0bdtW77UREZmj/MJiXLp6q8pV7aVSCU4mXzVeUURmROfB0q+99hoiIyPx8ccfo1OnTgCA48ePY+bMmRg5ciQA4MCBA3jsMcMsCBgVFVVpj058fPwj24YOHYqhQ4capBYiInOn1VRxIlBlUiKqw3QOQvPnz4eXlxdmz56tHojs5eWFiRMnqscF9e3bF2FhYfqtlIiIdOZor0CTBvVw+XrlvUJKlQqPB/gZtzAiM1GrmaXL59ipywOKObM0EVm6HfGn8cWy3RU+J5EIcHG0w7avR0NuYzFTyxFVyygzS/OuKiIi8zeg52N48ekOAACp5N/xmxJBgL2tHPM+HMwQRFarRt/5mzZtwoYNG5Ceno7i4mKN506cOKGXwoiISD8EQcB74X3QI6g5Nu/5E+f/zoadwgZPBbfEoD4dUM/VwdQlEpmMzkFo4cKF+OSTTxAeHo5ffvkFERERuHjxIo4fP45x48YZokYiIqolQRDQuZ0/OrfzN3UpRGZF50tj33zzDZYtW4avv/4acrkcH374Ifbs2YPx48cjNzfXEDUSERERGYTOPULp6eno2rUrAMDOzg53794FUHZbfZcuXbBo0SL9VkhERGbh7OVMbN7/F85fvQF7WzlCg1rimS4BcLCTm7o0ohrTOQh5e3sjJycHjRs3RqNGjXDkyBF06NABaWlp2s1XQUREFkUURXyz5RBW7ToGqUSAUiVCAPDHuStYueMoln44FI283ExdJlGN6Hxp7KmnnsL27dsBABEREZg4cSKefvppDBs2DC+88ILeCyQiItP69UgyVu06BuDftcrK/+y9lZeP8fO3QKlSmag6otrRuUdo2bJlUP3zDT9u3DjUq1cPhw8fxnPPPYcxY8bovUAiIjIdURTxfWzZWmUVdforVSKu3sjFwb/S0LNjM+MXSFRLOgchiUSiseDq8OHDMXz4cL0WRURE5iE3/z4uXL1ZZRupVIJjZ/9mECKLVKN5hO7fv4+//voL2dnZ6t6hcs8995xeCiMiItNTqaof+ykAUCo5RpQsk85BKDY2FiNHjsTNm4/+hSAIgnoFeiIisnxuTnbwqeeMjFt5lbYpVarQvrkPbuXlY1vCGSRfzYaNVIrujzVBaMfmnLWazJrOg6XfeecdDB06FBkZGVCpVBoPhiAiorpFEAS8/PQTlT4vEQS4OtpCKQH6ffYdFu04jLik89idmIKP1/yK5/6zGn9n3zZixUS60TkIZWVlITo6Gl5eXoaoh4iIzMywPh0RGtQSQFnwKSeVCFDIZXh7SHdM/eE3lCpVEEURogio/hlZfSP3HsZ8vRnFJaUmqZ2oOjoHoSFDhiA+Pt4ApRARkTmSSiSYOWYAvnizP9o384GTvQKebo4YHvoE1v9nJA6lXMYD+UiDUiUi8/Zd7Dl53rhFE2lJEHWcBbGgoABDhw6Fh4cH2rVrBxsbG43nx48fr9cCTS0vLw8uLi7Izc2Fs7OzqcshIjIroiii84SFKFFWPo+QRBDw9OMt8OXrA4xYGVk7bT+/dR7B9vPPP+O3336Dra0t4uPjITzwZ4AgCHUuCBERUdVKq5lMUSWKKCrlGFIyTzoHoU8++QTTp0/HpEmTNOYTIiIi6yMIApr51MfFjJsVTrgIlPUItW7oYdzCiLSkc5IpLi7GsGHDGIKIiAgA8EqvjpWGIAAQBOCFru2MVxCRDnROM6NGjcL69esNUQsREVmg57s8htDHWwCAxqBpqUSAIABTX3kaXq6OJqqOqGo6XxpTKpWYPXs2du/ejfbt2z8yWHrevHl6K46IiMyfVCLBlxH9sbXVafwUfxKXMnMgkQjo1sYfo0KDENi8oalLJKqUzneN9e7du/KDCQL27dtX66LMCe8aIyLSTalSBYkgQCKp5J56IiMw2F1j+/fvr1VhRERUt8mkHENKloPfrURERGS1tO4RGjx4sFbttmzZUuNiiIiIiIxJ6yDk4uJiyDqIiIiIjE7rILRq1SpD1kFERERkdBwjRERERFaLQYiIiIisls63zxMREZmCKIo4lZ6J2D9TcbewCI3qu+L5oDbwdOGs1VRzDEJERGT2CoqK8f7anfjfucuQSiQARIgisCj2MKIHdMeoXoGmLpEsFC+NERGR2ft43W4cSvkbAKBUqaBUiVCJZY85O37HzhPnTFwhWSoGISIiMmuXsnMQd+oCVJWsCCUAWLInATquGEUEgEGIiIjMXPyZi5AIla9bJgL4+8YdpN+8Y7SaqO5gECIiIrN2v7i0yiCkbldSaoRqqK5hECIiIrPW3LseSlWqKtvYSKVo4F75CuNElWEQIiIis9b7sWZwc7BDZZ1CUomAgYEBcLRVGLcwqhMYhIiIyKzZyKSY/Wp/yCQSSCWaaUgiCGjg7oIJA540UXVk6RiEiIjI7HVp0Qg/vDMcvR9rph4v5GSrwKieT+Cn8S/DzcHOxBWSpRJE3m9Ypby8PLi4uCA3NxfOzrz+TERkakUlpSgsLoGTneKfyRWrll9UjF1/peB89k3Yy+UIbdMMbRt4G6FSMiVtP785szQREVkUhY0MChvtPr5+O3MekzfvRmFxCWQSCUQAyw4cQ0izRljw8rNw4rgiq8dLY0REVCf9kXYV0et24n5xCQCgVKWC8p+7z45duoLxP/2XkzASgxAREdVNS+KPAiibcPFhSlHE0UtX8NfVTOMWRWaHQYiIiOqc/KJiJFxMr3RZDqDstvvY06lGrIrMEYMQERHVOYUlJdW2ESCgoKj6dlS3MQgREVGd42pnV+1AaKWoQjNPdyNVROaKQYiIiOocmVSClzq1q3KNMplEguc6BhixKjJHDEJERFQnvdmzM5p5ukMqPDobNQBMfS4UrvaciNHaMQgREVGd5GSrwA+jh+G1rk/AQSFXb2/f0BvfjnwBgwMfM2F1ZC44s3Q1OLM0EZHlKy4txY27+bCT28Ddwd7U5ZARcGZpIiKif8hlMjRwczF1GWSGeGmMiIiIrJbFBKGcnByMGDECzs7OcHV1RWRkJO7du1dl+3feeQetWrWCnZ0dGjVqhPHjxyM3N9eIVRMREZE5s5ggNGLECJw5cwZ79uzBjh078Pvvv+PNN9+stP3169dx/fp1zJkzB6dPn8bq1asRGxuLyMhII1ZNRER1TXFpKc5mZuNMRhbul5SauhyqJYsYLJ2cnIw2bdrg+PHjCAoKAgDExsaif//+uHr1Knx9fbU6zsaNG/Hqq68iPz8fMpl2w6M4WJqIiICyRVuXHDyK74+dRO79IgCAg1yOV4La490eIZBr+blCxqHt57dF9AglJCTA1dVVHYIAIDQ0FBKJBEePHtX6OOX/GNqGICIiIgBQiSKit+7Cot+PqEMQAOQXF2NFQiLeXP8LSv9Z2Z4si0UEoczMTHh6empsk8lkcHd3R2amdisH37x5EzNmzKjychoAFBUVIS8vT+NBRETW7feLlxGbfL7ClexVoojDaenYdSbF6HVR7Zk0CE2aNAmCIFT5OHfuXK3Pk5eXhwEDBqBNmzaYNm1alW1jYmLg4uKifvj5+dX6/EREZNnWnzj1yAzVD5IIAtadOGXEikhfTHqN6L333kN4eHiVbZo2bQpvb29kZ2drbC8tLUVOTg68vb2r3P/u3bsICwuDk5MTtm7dChsbmyrbT548GdHR0eqv8/LyGIaIiKzc3zm3oaxiSK1KFPH37TvGK4j0xqRByMPDAx4eHtW2CwkJwZ07d5CYmIjAwEAAwL59+6BSqRAcHFzpfnl5eejXrx8UCgW2b98OW1vbas+lUCigUFS9YjEREVkXVzs7CECFl8bKuVSz2j2ZJ4sYIxQQEICwsDCMHj0ax44dw6FDhxAVFYXhw4er7xi7du0aWrdujWPHjgEoC0F9+/ZFfn4+VqxYgby8PGRmZiIzMxNKpdKUL4eIiCzMc+1aVxmCBAEY1L6N0eoh/bGIIAQAP/74I1q3bo0+ffqgf//+ePLJJ7Fs2TL18yUlJUhJSUFBQQEA4MSJEzh69ChOnTqF5s2bw8fHR/24cuWKqV4GERFZoOfaBqCxm2uF44SkggAPBwe89Hg7E1RGtWUR8wiZEucRIiIiAMjMu4fxm3cg6VoGJIIAAYBSFNHKsz4WDxmIRu6upi6RHsBFV4mIiPTI29kRGyKG46/rmThy+QpEUUSgXwME+vlCqOKOMjJvDEJEREQ6aO/rjfa+Vd+xXJHreXexMyUFOYUF8HVyxrOtW8HNzs4AFZIuGISIiIgMSKlSYeaBA1hz4iQEQYBEEKBUqfBFfDw+7NEdr/9zNzSZhsUMliYiIrJE8w4dwuoTJyGibL6hUpUKIoASlQpfxB/AptOnTV2iVWMQIiIiMpDc+/ex4o/EKtvMP3QYSq5TZjIMQkRERAay79IllFQTcjLv3cOprCwjVUQPYxAiIiIykLtFRdDmfrJ7RcUGr4UqxsHSREREBtLUzb3KGanLNXZzhSiKOJ5xDVfycuFqa4tuDRvDVsaPaUPjvzAREZGBdG3cCL5OTsi8dw+qCuYvlgoCghs2xJW7uXh1+0b8nZerfs5JrkB0564Ib/845ykyIF4aIyIiMhCJIGB2WD9I/rlt/kFSQYCDXI4h7dti5H8348rdPI3n7xYXYfrB/Vh28g9jlmx1GISIiIgMKKRRI6wfPgwhfn7qbRJBQN8WzbFlxCtYcyYJKlGssMcIAOYdO4S8oiJjlWt1eGmMiIjIwDr6+OD7oUNws6AAdwoL4eHgABdbW1zJy8WJzOtV7lukVCL2YipeasNFXQ2BQYiIiMhI6tvbo769vfrrGwX51e4jFQTcKCgwZFlWjZfGiIiITMTLwbHaNkpRhJdj9e2oZtgjREREZCINnJzR2ach/si8VukYITuZDGFNWyAtNwcrzyZiZ1oKCktL0MqtPkYGPIHnmwZAKmG/Rk3xX46IiMiEPunWEzKJ5JG7ysp9FNIdp29lot+21fjxXBJu3S9AQWkJ/rx5HdGHtmPEb+tQyiU6aoxBiIiIyIQ6eHnj5+eHoqV7PY3t9e3sMav30xjWph3ejNuKEqUSSlEEBBVsHIph41wEhVMJThZcQPttMZh3ar+JXoFl46UxIiIiEwv0aYBfh43EmZvZSM8tm1m6s29DyCQSbEg9hdzif26fF1RQOBUDAvBgB1KpqMS35/+HzII8zA5+3jQvwkKxR4iIiMgMCIKAth5e6N+8Jbo2bATZP+N+km5ch0wo+3+ZXekjIahsX0AUgV+u/om/7+YYu3SLxiBERERkxv4dCK2C1Eb1SAgqJwiACGD2qThjlVYnMAgRERGZsR4N/FEqqirsCarI3/fYI6QLjhEiIiIyY081bIbGTq64eu+2Fq1FiEIJ3jn+PZJzr0MukeIp78cw3L8LGtq7G7xWSySIYiUTFxAAIC8vDy4uLsjNzYWzs7OpyyEiIit0Oe82hu9ah1uSGxCklfUMiZDLlLCRqSAVBIhQwkaihEQABEjwUZvBGNiwk7FLNxltP795aYyIiMjM+Tu7Yd+LkRjQoD2AsoHRD5NKVLCRqQCIkEmK4SgvhlyqhEyihFRSgrkp6zHzzM8oVSmNW7yZYxAiIiKyAPY2cizoNgijW3SDgH/CkPhvKLKzAQQIkEuVkEvLwo4g/PsAgN8yE7HiUqxJ6jdXvDRWDV4aIyIic5NzvwDzTu/HudwsOMhsMKJZECb99SMAEU7yokcunUkEFRTSUsilSggA2rq0wEDf3ujs3h6CNiOwLZC2n98cLE1ERGRh3G3t8XnQAPXXSlEF4a+yy2MP5xqZRAlHm2IA//YMnc27gDN559HX60m81Wx4nQ1D2uClMSIiIgsnFSTo6NYYAjQDjQDxkRAEACLKLgb9lnUQB24cN1qd5ohBiIiIqA4Y2bQ7lA8NdnlwrFBFBAj47/V9Bq7MvDEIERER1QE9vVpjbIu+KFUJ6gHUMknVq9KLEHEp/wqUovXeScYgREREVEdENu+FL9qHQy7RbQjww5fUrAkHSxMREdUhPb0eQ2uXj/Dj5X3Ym3UYQOW9PRIIeMylBdLyL2FP1m6cyT0NFVRo7tgCT3v1RVuX9sYr3ER4+3w1ePs8ERFZqvySQow9MRX5pYVQoeLLZIMbPokDN3ZDAgmAUthKSyATRKhEoJ1LF4Q3iYJUsLx+E84sTUREZOUcbOww/bF34CCz07j8Jfnn4//Fhk/h9xu/AQAUkvtwsymAnaQENkIpFJJSnL93ELPPvYO8krq7kCuDEBERUR3WxNEP3wROQ0STwXjMuQVaODZGX+8nsaDjx5AJRWWzUQulcJAVa8xEXX6nWW7JDaxOi0FdvYBkeX1dREREpBNHmT0G+j6Fgb5PaWz/If0CVFDBXloMUdS8zV6AEh6yu3CRFkKKq1h7oQe87Lqhm1c0HG08jfwKDIc9QkRERFZKKkghQITsoRmppVCiuSIbnrI8uEvvwUeWCx/ZTQjFv2Bvel9cu/e76YrWMwYhIiIiK9XWuV2FQaCh/BYUQgnqye7BQVIMyT8hSRAAe6EIp7Pfwt2iZKPWaigMQkRERFaqu0dPyCQKqMR/u4NkKIGDpBjO0kJIIT4yK7UgAAJUOJk1GqXKPCNXrH8MQkRERFbKxcYF77Z4DyUqO/Vs1I7SIkgFFWyF0kdXsYcKzpJCeMvuwU24jOTrj+HvG5EoLD5j/OL1hEGIiIjIirV0aoWpjy2Am9wbACBCgEx4dBV7KVSoJy2AnTogiXAVBDgW70P+jWdxL2+x0WvXBwYhIiIiK+cqd8f7reZjoG8E5BI/qCq4U95Jch+Sfy6VOQgCWsns0EBmC1eJDG4SGewLvkJRVmeoSq8a/wXUAoMQERERQSaxQbf6A/BewDLYyFpBKT44AaMKCkEJQQBsATSS2kL6zwSNgiBA+Kf7SKa6jdKbA6BSlZriJdQIgxARERFpGOC3BAWiq/rrBy+VeUltIADq8PMgQRAgQyGU+UuMU6geMAgRERGRBjuZMwb674fcJhAANO4qsxdkFYagcqIoQlW4xeA16gtnliYiIqJH2EgV6NnwB+QXp+Ha3U24X/AtBBRCUkUIKieIBUaoUD/YI0RERESVcpA3Qct6H6Ch2zQAApSiqtp1x0SJh1Fq0wcGISIiIqqWu+Or8HKZhDyVssp2giBA6viOkaqqPQYhIiIi0oqncxScPHZCKUge6RUq/7pEFgCZXT9TlFcjDEJERESkNbm8DWT196NU1kwjDImCBCWKp2HjvtWE1emOg6WJiIhIJxKZLxQesVCVZkBZnABBsINE0QcyibziHXKvAvk3dT+Rgwfg0qB2xVaDQYiIiIhqRCLzgUQ2uOpGpUXAst5AfrbuJ3D0BCacBmSKmhWoBV4aIyIiIsORyv/p1dE1ckgA5wZl+xuQxQShnJwcjBgxAs7OznB1dUVkZCTu3bun1b6iKOKZZ56BIAjYtm2bYQslIiKifwkC8NSnAFQ67qgq20+LeYtqw2KC0IgRI3DmzBns2bMHO3bswO+//44333xTq30XLFhQ5SyYREREZEDN+gC+jwOCVLv2grSsfbM+hq0LFhKEkpOTERsbi++++w7BwcF48skn8fXXX2PdunW4fv16lfsmJSVh7ty5WLlypZGqJSIiIg3lvUJi1XMQqYlKo/QGARYShBISEuDq6oqgoCD1ttDQUEgkEhw9erTS/QoKCvDKK69g8eLF8Pb2NkapREREVBFte4WM2BsEWEgQyszMhKenp8Y2mUwGd3d3ZGZmVrrfxIkT0bVrVzz//PNan6uoqAh5eXkaDyIiIqolbXuFjNgbBJg4CE2aNAmCIFT5OHfuXI2OvX37duzbtw8LFizQab+YmBi4uLioH35+fjU6PxERET2kul4hI/cGASaeR+i9995DeHh4lW2aNm0Kb29vZGdrzj9QWlqKnJycSi957du3DxcvXoSrq6vG9hdffBHdu3dHfHx8hftNnjwZ0dHR6q/z8vIYhoiIiPShvFfohxcrft7IvUGAiYOQh4cHPDyqX6E2JCQEd+7cQWJiIgIDAwGUBR2VSoXg4OAK95k0aRLeeOMNjW3t2rXD/PnzMXDgwErPpVAooFAYbuImIiIiq1beK5Txl+ZlMkEK+LQ3am8QYCFjhAICAhAWFobRo0fj2LFjOHToEKKiojB8+HD4+voCAK5du4bWrVvj2LFjAABvb2+0bdtW4wEAjRo1QpMmTUz2WoiIiKxaZWOFTNAbBFhIEAKAH3/8Ea1bt0afPn3Qv39/PPnkk1i2bJn6+ZKSEqSkpKCgoMCEVRIREVG1Hh4rZIKxQeUE8cGlY+kReXl5cHFxQW5uLpydnU1dDhERUd1wYa/mWKFXNwPNQ/V2eG0/vy2mR4iIiIjqkPJeIcBkvUEAgxARERGZgiAAfaYC9VuV/ddES2GZ9K4xIiIismLNegNRx0xaAnuEiIiIyGoxCBEREZHVYhAiIiIiq8UgRERERFaLQYiIiIisFoMQERERWS0GISIiIrJanEeoGuUrkOTl5Zm4EiIiItJW+ed2dSuJMQhV4+7duwAAPz8/E1dCREREurp79y5cXFwqfZ6LrlZDpVLh+vXrcHJygqDH6b/z8vLg5+eHK1eucDFXM8H3xLzw/TAvfD/MC9+P6omiiLt378LX1xcSSeUjgdgjVA2JRIKGDRsa7PjOzs78JjYzfE/MC98P88L3w7zw/ahaVT1B5ThYmoiIiKwWgxARERFZLQYhE1EoFJg6dSoUCoWpS6F/8D0xL3w/zAvfD/PC90N/OFiaiIiIrBZ7hIiIiMhqMQgRERGR1WIQIiIiIqvFIGREOTk5GDFiBJydneHq6orIyEjcu3evyvbvvPMOWrVqBTs7OzRq1Ajjx49Hbm6uEauuWxYvXgx/f3/Y2toiODgYx44dq7L9xo0b0bp1a9ja2qJdu3bYtWuXkSq1Drq8H8uXL0f37t3h5uYGNzc3hIaGVvv+kW50/fkot27dOgiCgEGDBhm2QCuj6/tx584djBs3Dj4+PlAoFGjZsiV/Z2lDJKMJCwsTO3ToIB45ckT83//+JzZv3lx8+eWXK21/6tQpcfDgweL27dvFCxcuiHFxcWKLFi3EF1980YhV1x3r1q0T5XK5uHLlSvHMmTPi6NGjRVdXVzErK6vC9ocOHRKlUqk4e/Zs8ezZs+Knn34q2tjYiKdOnTJy5XWTru/HK6+8Ii5evFg8efKkmJycLIaHh4suLi7i1atXjVx53aTr+1EuLS1NbNCggdi9e3fx+eefN06xVkDX96OoqEgMCgoS+/fvLx48eFBMS0sT4+PjxaSkJCNXbnkYhIzk7NmzIgDx+PHj6m2//vqrKAiCeO3aNa2Ps2HDBlEul4slJSWGKLNO69y5szhu3Dj110qlUvT19RVjYmIqbP/SSy+JAwYM0NgWHBwsjhkzxqB1Wgtd34+HlZaWik5OTuKaNWsMVaJVqcn7UVpaKnbt2lX87rvvxFGjRjEI6ZGu78eSJUvEpk2bisXFxcYqsc7gpTEjSUhIgKurK4KCgtTbQkNDIZFIcPToUa2Pk5ubC2dnZ8hkXB1FF8XFxUhMTERoaKh6m0QiQWhoKBISEircJyEhQaM9APTr16/S9qS9mrwfDysoKEBJSQnc3d0NVabVqOn78Z///Aeenp6IjIw0RplWoybvx/bt2xESEoJx48bBy8sLbdu2xcyZM6FUKo1VtsXip6mRZGZmwtPTU2ObTCaDu7s7MjMztTrGzZs3MWPGDLz55puGKLFOu3nzJpRKJby8vDS2e3l54dy5cxXuk5mZWWF7bd8vqlxN3o+HffTRR/D19X0krJLuavJ+HDx4ECtWrEBSUpIRKrQuNXk/Ll26hH379mHEiBHYtWsXLly4gLfffhslJSWYOnWqMcq2WOwRqqVJkyZBEIQqH9r+Yq9KXl4eBgwYgDZt2mDatGm1L5zIgs2aNQvr1q3D1q1bYWtra+pyrM7du3fx2muvYfny5ahfv76pyyEAKpUKnp6eWLZsGQIDAzFs2DB88sknWLp0qalLM3vsEaql9957D+Hh4VW2adq0Kby9vZGdna2xvbS0FDk5OfD29q5y/7t37yIsLAxOTk7YunUrbGxsalu21alfvz6kUimysrI0tmdlZVX67+/t7a1Te9JeTd6PcnPmzMGsWbOwd+9etG/f3pBlWg1d34+LFy/i8uXLGDhwoHqbSqUCUNbTnZKSgmbNmhm26DqsJj8fPj4+sLGxgVQqVW8LCAhAZmYmiouLIZfLDVqzJWOPUC15eHigdevWVT7kcjlCQkJw584dJCYmqvfdt28fVCoVgoODKz1+Xl4e+vbtC7lcju3bt/Ov3xqSy+UIDAxEXFyceptKpUJcXBxCQkIq3CckJESjPQDs2bOn0vakvZq8HwAwe/ZszJgxA7GxsRrj7ah2dH0/WrdujVOnTiEpKUn9eO6559C7d28kJSXBz8/PmOXXOTX5+ejWrRsuXLigDqQAkJqaCh8fH4ag6ph6tLY1CQsLEx9//HHx6NGj4sGDB8UWLVpo3D5/9epVsVWrVuLRo0dFURTF3NxcMTg4WGzXrp144cIFMSMjQ/0oLS011cuwWOvWrRMVCoW4evVq8ezZs+Kbb74purq6ipmZmaIoiuJrr70mTpo0Sd3+0KFDokwmE+fMmSMmJyeLU6dO5e3zeqTr+zFr1ixRLpeLmzZt0vhZuHv3rqleQp2i6/vxMN41pl+6vh/p6emik5OTGBUVJaakpIg7duwQPT09xc8//9xUL8FiMAgZ0a1bt8SXX35ZdHR0FJ2dncWIiAiNX+JpaWkiAHH//v2iKIri/v37RQAVPtLS0kzzIizc119/LTZq1EiUy+Vi586dxSNHjqif69mzpzhq1CiN9hs2bBBbtmwpyuVy8bHHHhN37txp5IrrNl3ej8aNG1f4szB16lTjF15H6frz8SAGIf3T9f04fPiwGBwcLCoUCrFp06biF198wT+atcDV54mIiMhqcYwQERERWS0GISIiIrJaDEJERERktRiEiIiIyGoxCBEREZHVYhAiIiIiq8UgRERERFaLQYiIiIisFoMQEeldeHg4Bg0aZNIaevXqhQkTJhjlXP7+/liwYIFRzlWV8PBwCIIAQRCwbds2nfadNm2ael9zeC1ExsIgRGRFHvygtLGxQZMmTfDhhx/i/v37pi6tQvHx8XjiiSegUCjQvHlzrF69Wut9t2zZghkzZhiuOD3TV3gMCwtDRkYGnnnmGWRlZcHGxgbr1q2rsG1kZCSeeOIJAMD777+PjIwMNGzYsNY1EFkSBiEiK1P+QXnp0iXMnz8f3377LaZOnWrqsh6RlpaGAQMGqFc0nzBhAt544w3s3r1bq/3d3d3h5ORk4CrNj0KhgLe3NxQKBby8vDBgwACsXLnykXb5+fnYsGEDIiMjAQCOjo7w9vaGVCo1dslEJsUgRGRlyj8o/fz8MGjQIISGhmLPnj3q51UqFWJiYtCkSRPY2dmhQ4cO2LRpk/p5pVKJyMhI9fOtWrXCV199pXMdq1evRqNGjWBvb48XXngBc+fOhaurq/r5pUuXokmTJpg7dy4CAgIQFRWFIUOGYP78+Vod/+FLY9nZ2Rg4cCDs7OzQpEkT/Pjjj1pf0hJFEdOmTUOjRo2gUCjg6+uL8ePHa7QpKCjA66+/DicnJzRq1AjLli3TeP7UqVN46qmnYGdnh3r16uHNN9/EvXv3AJRdllqzZg1++eUXdY9dfHw8iouLERUVBR8fH9ja2qJx48aIiYnR6vWXi4yMRFxcHNLT0zW2b9y4EaWlpRgxYoROxyOqaxiEiKzY6dOncfjwYcjlcvW2mJgYfP/991i6dCnOnDmDiRMn4tVXX8WBAwcAlAWlhg0bYuPGjTh79iymTJmCjz/+GBs2bND6vEePHkVkZCSioqKQlJSE3r174/PPP9dok5CQgNDQUI1t/fr1Q0JCQo1ea3h4OK5cuYL9+/dj06ZN+Oabb5Cdna3Vvps3b1b3np0/fx7btm1Du3btNNrMnTsXQUFBOHnyJN5++22MHTsWKSkpAMp6X/r16wc3NzccP34cGzduxN69exEVFQWg7LLUSy+9pO6ty8jIQNeuXbFw4UJs374dGzZsQEpKijq86aJ///7w8vJ65LLiqlWrMHjwYI3wSWSNZKYugIiMa8eOHXB0dERpaSmKioogkUiwaNEiAEBRURFmzpyJvXv3IiQkBADQtGlTHDx4EN9++y169uwJGxsbTJ8+XX28Jk2aICEhARs2bMBLL72kVQ1fffUVwsLC8OGHHwIAWrZsicOHDyM2NlbdJjMzE15eXhr7eXl5IS8vD4WFhbCzs9P6NaempuLXX3/FsWPH0KlTJwDAihUrEBAQoNX+6enp8Pb2RmhoKGxsbNCoUSN07txZo03//v3x9ttvAwA++ugjzJ8/H/v370erVq3w008/4f79+/j+++/h4OAAAFi0aBEGDhyIL7/8El5eXrCzs0NRURG8vb01ztuiRQs8+eSTEAQBjRs31vo1l5NKpRg1ahRWr16Nzz77DIIg4OLFi/jf//6n0RNIZK3YI0RkZcrH3Bw9ehSjRo1CREQEXnzxRQDAhQsXUFBQgKeffhqOjo7qx/fff4+LFy+qj7F48WIEBgbCw8MDjo6OWLZs2SOXXqqSnJyM4OBgjW3lwcsQkpOTIZPJEBgYqN7WunVrrXtDhg4disLCQjRt2hSjR4/G1q1bUVpaqtGmffv26v8XBAHe3t7qHqfk5GR06NBBHYIAoFu3blCpVOpeo4qEh4cjKSkJrVq1wvjx4/Hbb79pVe/DXn/9daSlpWH//v0AynqD/P398dRTT9XoeER1CYMQkZVxcHBA8+bN0aFDB6xcuRJHjx7FihUrAEA9ZmXnzp1ISkpSP86ePaseJ7Ru3Tq8//77iIyMxG+//YakpCRERESguLhYr3V6e3sjKytLY1tWVhacnZ116g3SBz8/P6SkpOCbb76BnZ0d3n77bfTo0QMlJSXqNjY2Nhr7CIIAlUpVq/M+8cQTSEtLw4wZM1BYWIiXXnoJQ4YM0fk4LVq0QPfu3bFq1SqoVCp8//33iIiIgCAItaqPqC5gECKyYhKJBB9//DE+/fRTFBYWok2bNlAoFEhPT0fz5s01Hn5+fgCAQ4cOoWvXrnj77bfx+OOPo3nz5hq9RdoICAjA0aNHNbYdOXJE4+uQkBDExcVpbNuzZ0+Neo5at26N0tJSJCYmqrelpKTgzp07Wh/Dzs4OAwcOxMKFCxEfH4+EhAScOnVKq30DAgLw559/Ij8/X73t0KFDkEgkaNWqFQBALpdDqVQ+sq+zszOGDRuG5cuXY/369di8eTNycnK0rrtcZGQkNm/ejM2bN+PatWsIDw/X+RhEdRGDEJGVGzp0KKRSKRYvXgwnJye8//77mDhxItasWYOLFy/ixIkT+Prrr7FmzRoAZb0Lf/zxB3bv3o3U1FR89tlnOH78uE7nHD9+PGJjYzFnzhycP38eixYt0hgfBABvvfUWLl26hA8//BDnzp3DN998gw0bNmDixIk6v8ZWrVohLCwMY8aMwdGjR5GYmIg33nhD656l1atXY8WKFTh9+jQuXbqEH374AXZ2dlqP2RkxYgRsbW0xatQonD59Gvv378c777yD1157TT0Oyt/fH3/99RdSUlJw8+ZNlJSUYN68efj5559x7tw5pKamYuPGjfD29q7RAOehQ4fCxsYGY8aMQd++fdXBlsjaMQgRWTmZTIaoqCjMnj0b+fn5mDFjBj777DPExMQgICAAYWFh2LlzJ5o0aQIAGDNmDAYPHoxhw4YhODgYt27dUg8S1laXLl2wfPlyfPXVV+jQoQN+++03fPrppxptmjRpgp07d2LPnj3o0KED5s6di++++w79+vWr0etctWoVfH190bNnTwwePBhvvvkmPD09tdrX1dUVy5cvR7du3dC+fXvs3bsX//3vf1GvXj2t9re3t8fu3buRk5ODTp06YciQIejTp496kDoAjB49Gq1atUJQUBA8PDxw6NAhODk5Yfbs2QgKCkKnTp1w+fJl7Nq1CxKJ7r+67e3tMXz4cNy+fRuvv/66zvsT1VWCKIqiqYsgIlq9ejUmTJig0+Wq2vL398eECROMthSHoYWHh+POnTs6L6/xoLr2b0JUHfYIERHVIeXTI+zYsUOn/WbOnAlHR0ed7v4jqgvYI0REZkGXHqH09HS0adOm0ufPnj2LRo0aVXuc8t4PDw8PjBkzpsI2jRs3xpkzZ6o9ljnIzs5GXl4eAMDHx0fjdv3q5OTkqAdhe3h4wMXFxSA1EpkbBiEisjilpaW4fPlypc/7+/tDJtN+vti7d+8+cqt+ORsbmxpNZEhEloFBiIiIiKwWxwgRERGR1WIQIiIiIqvFIERERERWi0GIiIiIrBaDEBEREVktBiEiIiKyWgxCREREZLUYhIiIiMhq/T/KxJyZ7eVplQAAAABJRU5ErkJggg==\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - examples_31_1.png" } }, "output_type": "display_data" } ], "source": [ "q0_iq_shots_mean = dataset_gridded.q0_iq_shots.mean(dim=\"repetitions\", keep_attrs=True)\n", "plot_xr_complex(q0_iq_shots_mean)\n", "_, ax = plot_xr_complex_on_plane(q0_iq_shots_mean)\n", "_ = plot_complex_points(centers, ax=ax)" ] }, { "cell_type": "code", "execution_count": 33, "id": "0dce8ee4", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:37.292549Z", "iopub.status.busy": "2023-09-26T17:43:37.292339Z", "iopub.status.idle": "2023-09-26T17:43:37.316836Z", "shell.execute_reply": "2023-09-26T17:43:37.316127Z" } }, "outputs": [ { "data": { "text/html": [ "
def mk_t1_traces_dataset(\n",
       "    t1_times: Optional[np.ndarray] = None,\n",
       "    probabilities: Optional[np.ndarray] = None,\n",
       "    **kwargs,\n",
       ") -> xr.Dataset:\n",
       "    """\n",
       "    Generates a dataset with mock data of a T1 experiment for a single qubit including\n",
       "    calibration points for the ground and excited states, including all the individual\n",
       "    shots (repeated qubit state measurement for the same exact experiment); and\n",
       "    including all the signals that had to be digitized to obtain the rest of the data.\n",
       "\n",
       "    Parameters\n",
       "    ----------\n",
       "    t1_times\n",
       "        Array with the T1 times corresponding to each probability in ``probabilities``.\n",
       "    probabilities\n",
       "        The probabilities of finding the qubit in the excited state.\n",
       "    **kwargs\n",
       "        Keyword arguments passed to\n",
       "        :func:`~quantify_core.utilities.examples_support.mk_iq_shots`.\n",
       "    """\n",
       "    dataset_shots = mk_t1_shots_dataset(t1_times, probabilities, **kwargs)\n",
       "    shots = dataset_shots.q0_iq_shots.values\n",
       "    shots_cal = dataset_shots.q0_iq_shots_cal.values\n",
       "\n",
       "    # generate mock traces for all shots\n",
       "    q0_traces = np.array(tuple(map(mk_trace_for_iq_shot, shots.flatten())))\n",
       "    q0_traces = q0_traces.reshape(*shots.shape, q0_traces.shape[-1])\n",
       "    # generate mock traces for calibration points shots\n",
       "    q0_traces_cal = np.array(tuple(map(mk_trace_for_iq_shot, shots_cal.flatten())))\n",
       "    q0_traces_cal = q0_traces_cal.reshape(*shots_cal.shape, q0_traces_cal.shape[-1])\n",
       "\n",
       "    traces_dims = ("repetitions", "main_dim", "trace_dim")\n",
       "    traces_cal_dims = ("repetitions", "cal_dim", "trace_dim")\n",
       "    trace_times = mk_trace_time()\n",
       "    trace_attrs = mk_main_coord_attrs(long_name="Trace time", unit="s")\n",
       "\n",
       "    relationships_with_traces = dataset_shots.relationships + [\n",
       "        dattrs.QDatasetIntraRelationship(\n",
       "            item_name="q0_traces",\n",
       "            related_names=["q0_traces_cal"],\n",
       "            relation_type="calibration",\n",
       "        ).to_dict(),\n",
       "    ]\n",
       "\n",
       "    data_vars = dict(\n",
       "        q0_iq_av=dataset_shots.q0_iq_av,\n",
       "        q0_iq_av_cal=dataset_shots.q0_iq_av_cal,\n",
       "        q0_iq_shots=dataset_shots.q0_iq_shots,\n",
       "        q0_iq_shots_cal=dataset_shots.q0_iq_shots_cal,\n",
       "        q0_traces=(traces_dims, q0_traces, dataset_shots.q0_iq_shots.attrs),\n",
       "        q0_traces_cal=(\n",
       "            traces_cal_dims,\n",
       "            q0_traces_cal,\n",
       "            dataset_shots.q0_iq_shots_cal.attrs,\n",
       "        ),\n",
       "    )\n",
       "    coords = dict(\n",
       "        t1_time=dataset_shots.t1_time,\n",
       "        cal=dataset_shots.cal,\n",
       "        trace_time=(("trace_dim",), trace_times, trace_attrs),\n",
       "    )\n",
       "\n",
       "    dataset = xr.Dataset(\n",
       "        data_vars=data_vars,\n",
       "        coords=coords,\n",
       "        attrs=mk_dataset_attrs(relationships=relationships_with_traces),\n",
       "    )\n",
       "\n",
       "    return dataset\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k}{def} \\PY{n+nf}{mk\\PYZus{}t1\\PYZus{}traces\\PYZus{}dataset}\\PY{p}{(}\n", " \\PY{n}{t1\\PYZus{}times}\\PY{p}{:} \\PY{n}{Optional}\\PY{p}{[}\\PY{n}{np}\\PY{o}{.}\\PY{n}{ndarray}\\PY{p}{]} \\PY{o}{=} \\PY{k+kc}{None}\\PY{p}{,}\n", " \\PY{n}{probabilities}\\PY{p}{:} \\PY{n}{Optional}\\PY{p}{[}\\PY{n}{np}\\PY{o}{.}\\PY{n}{ndarray}\\PY{p}{]} \\PY{o}{=} \\PY{k+kc}{None}\\PY{p}{,}\n", " \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{,}\n", "\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{xr}\\PY{o}{.}\\PY{n}{Dataset}\\PY{p}{:}\n", " \\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Generates a dataset with mock data of a T1 experiment for a single qubit including}\n", "\\PY{l+s+sd}{ calibration points for the ground and excited states, including all the individual}\n", "\\PY{l+s+sd}{ shots (repeated qubit state measurement for the same exact experiment); and}\n", "\\PY{l+s+sd}{ including all the signals that had to be digitized to obtain the rest of the data.}\n", "\n", "\\PY{l+s+sd}{ Parameters}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ t1\\PYZus{}times}\n", "\\PY{l+s+sd}{ Array with the T1 times corresponding to each probability in ``probabilities``.}\n", "\\PY{l+s+sd}{ probabilities}\n", "\\PY{l+s+sd}{ The probabilities of finding the qubit in the excited state.}\n", "\\PY{l+s+sd}{ **kwargs}\n", "\\PY{l+s+sd}{ Keyword arguments passed to}\n", "\\PY{l+s+sd}{ :func:`\\PYZti{}quantify\\PYZus{}core.utilities.examples\\PYZus{}support.mk\\PYZus{}iq\\PYZus{}shots`.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", " \\PY{n}{dataset\\PYZus{}shots} \\PY{o}{=} \\PY{n}{mk\\PYZus{}t1\\PYZus{}shots\\PYZus{}dataset}\\PY{p}{(}\\PY{n}{t1\\PYZus{}times}\\PY{p}{,} \\PY{n}{probabilities}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)}\n", " \\PY{n}{shots} \\PY{o}{=} \\PY{n}{dataset\\PYZus{}shots}\\PY{o}{.}\\PY{n}{q0\\PYZus{}iq\\PYZus{}shots}\\PY{o}{.}\\PY{n}{values}\n", " \\PY{n}{shots\\PYZus{}cal} \\PY{o}{=} \\PY{n}{dataset\\PYZus{}shots}\\PY{o}{.}\\PY{n}{q0\\PYZus{}iq\\PYZus{}shots\\PYZus{}cal}\\PY{o}{.}\\PY{n}{values}\n", "\n", " \\PY{c+c1}{\\PYZsh{} generate mock traces for all shots}\n", " \\PY{n}{q0\\PYZus{}traces} \\PY{o}{=} \\PY{n}{np}\\PY{o}{.}\\PY{n}{array}\\PY{p}{(}\\PY{n+nb}{tuple}\\PY{p}{(}\\PY{n+nb}{map}\\PY{p}{(}\\PY{n}{mk\\PYZus{}trace\\PYZus{}for\\PYZus{}iq\\PYZus{}shot}\\PY{p}{,} \\PY{n}{shots}\\PY{o}{.}\\PY{n}{flatten}\\PY{p}{(}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n", " \\PY{n}{q0\\PYZus{}traces} \\PY{o}{=} \\PY{n}{q0\\PYZus{}traces}\\PY{o}{.}\\PY{n}{reshape}\\PY{p}{(}\\PY{o}{*}\\PY{n}{shots}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{,} \\PY{n}{q0\\PYZus{}traces}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{o}{\\PYZhy{}}\\PY{l+m+mi}{1}\\PY{p}{]}\\PY{p}{)}\n", " \\PY{c+c1}{\\PYZsh{} generate mock traces for calibration points shots}\n", " \\PY{n}{q0\\PYZus{}traces\\PYZus{}cal} \\PY{o}{=} \\PY{n}{np}\\PY{o}{.}\\PY{n}{array}\\PY{p}{(}\\PY{n+nb}{tuple}\\PY{p}{(}\\PY{n+nb}{map}\\PY{p}{(}\\PY{n}{mk\\PYZus{}trace\\PYZus{}for\\PYZus{}iq\\PYZus{}shot}\\PY{p}{,} \\PY{n}{shots\\PYZus{}cal}\\PY{o}{.}\\PY{n}{flatten}\\PY{p}{(}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n", " \\PY{n}{q0\\PYZus{}traces\\PYZus{}cal} \\PY{o}{=} \\PY{n}{q0\\PYZus{}traces\\PYZus{}cal}\\PY{o}{.}\\PY{n}{reshape}\\PY{p}{(}\\PY{o}{*}\\PY{n}{shots\\PYZus{}cal}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{,} \\PY{n}{q0\\PYZus{}traces\\PYZus{}cal}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{o}{\\PYZhy{}}\\PY{l+m+mi}{1}\\PY{p}{]}\\PY{p}{)}\n", "\n", " \\PY{n}{traces\\PYZus{}dims} \\PY{o}{=} \\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{repetitions}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{main\\PYZus{}dim}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{trace\\PYZus{}dim}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", " \\PY{n}{traces\\PYZus{}cal\\PYZus{}dims} \\PY{o}{=} \\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{repetitions}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cal\\PYZus{}dim}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{trace\\PYZus{}dim}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", " \\PY{n}{trace\\PYZus{}times} \\PY{o}{=} \\PY{n}{mk\\PYZus{}trace\\PYZus{}time}\\PY{p}{(}\\PY{p}{)}\n", " \\PY{n}{trace\\PYZus{}attrs} \\PY{o}{=} \\PY{n}{mk\\PYZus{}main\\PYZus{}coord\\PYZus{}attrs}\\PY{p}{(}\\PY{n}{long\\PYZus{}name}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Trace time}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{s}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", "\n", " \\PY{n}{relationships\\PYZus{}with\\PYZus{}traces} \\PY{o}{=} \\PY{n}{dataset\\PYZus{}shots}\\PY{o}{.}\\PY{n}{relationships} \\PY{o}{+} \\PY{p}{[}\n", " \\PY{n}{dattrs}\\PY{o}{.}\\PY{n}{QDatasetIntraRelationship}\\PY{p}{(}\n", " \\PY{n}{item\\PYZus{}name}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{q0\\PYZus{}traces}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{related\\PYZus{}names}\\PY{o}{=}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{q0\\PYZus{}traces\\PYZus{}cal}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{,}\n", " \\PY{n}{relation\\PYZus{}type}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{calibration}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{p}{)}\\PY{o}{.}\\PY{n}{to\\PYZus{}dict}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,}\n", " \\PY{p}{]}\n", "\n", " \\PY{n}{data\\PYZus{}vars} \\PY{o}{=} \\PY{n+nb}{dict}\\PY{p}{(}\n", " \\PY{n}{q0\\PYZus{}iq\\PYZus{}av}\\PY{o}{=}\\PY{n}{dataset\\PYZus{}shots}\\PY{o}{.}\\PY{n}{q0\\PYZus{}iq\\PYZus{}av}\\PY{p}{,}\n", " \\PY{n}{q0\\PYZus{}iq\\PYZus{}av\\PYZus{}cal}\\PY{o}{=}\\PY{n}{dataset\\PYZus{}shots}\\PY{o}{.}\\PY{n}{q0\\PYZus{}iq\\PYZus{}av\\PYZus{}cal}\\PY{p}{,}\n", " \\PY{n}{q0\\PYZus{}iq\\PYZus{}shots}\\PY{o}{=}\\PY{n}{dataset\\PYZus{}shots}\\PY{o}{.}\\PY{n}{q0\\PYZus{}iq\\PYZus{}shots}\\PY{p}{,}\n", " \\PY{n}{q0\\PYZus{}iq\\PYZus{}shots\\PYZus{}cal}\\PY{o}{=}\\PY{n}{dataset\\PYZus{}shots}\\PY{o}{.}\\PY{n}{q0\\PYZus{}iq\\PYZus{}shots\\PYZus{}cal}\\PY{p}{,}\n", " \\PY{n}{q0\\PYZus{}traces}\\PY{o}{=}\\PY{p}{(}\\PY{n}{traces\\PYZus{}dims}\\PY{p}{,} \\PY{n}{q0\\PYZus{}traces}\\PY{p}{,} \\PY{n}{dataset\\PYZus{}shots}\\PY{o}{.}\\PY{n}{q0\\PYZus{}iq\\PYZus{}shots}\\PY{o}{.}\\PY{n}{attrs}\\PY{p}{)}\\PY{p}{,}\n", " \\PY{n}{q0\\PYZus{}traces\\PYZus{}cal}\\PY{o}{=}\\PY{p}{(}\n", " \\PY{n}{traces\\PYZus{}cal\\PYZus{}dims}\\PY{p}{,}\n", " \\PY{n}{q0\\PYZus{}traces\\PYZus{}cal}\\PY{p}{,}\n", " \\PY{n}{dataset\\PYZus{}shots}\\PY{o}{.}\\PY{n}{q0\\PYZus{}iq\\PYZus{}shots\\PYZus{}cal}\\PY{o}{.}\\PY{n}{attrs}\\PY{p}{,}\n", " \\PY{p}{)}\\PY{p}{,}\n", " \\PY{p}{)}\n", " \\PY{n}{coords} \\PY{o}{=} \\PY{n+nb}{dict}\\PY{p}{(}\n", " \\PY{n}{t1\\PYZus{}time}\\PY{o}{=}\\PY{n}{dataset\\PYZus{}shots}\\PY{o}{.}\\PY{n}{t1\\PYZus{}time}\\PY{p}{,}\n", " \\PY{n}{cal}\\PY{o}{=}\\PY{n}{dataset\\PYZus{}shots}\\PY{o}{.}\\PY{n}{cal}\\PY{p}{,}\n", " \\PY{n}{trace\\PYZus{}time}\\PY{o}{=}\\PY{p}{(}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{trace\\PYZus{}dim}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\\PY{p}{)}\\PY{p}{,} \\PY{n}{trace\\PYZus{}times}\\PY{p}{,} \\PY{n}{trace\\PYZus{}attrs}\\PY{p}{)}\\PY{p}{,}\n", " \\PY{p}{)}\n", "\n", " \\PY{n}{dataset} \\PY{o}{=} \\PY{n}{xr}\\PY{o}{.}\\PY{n}{Dataset}\\PY{p}{(}\n", " \\PY{n}{data\\PYZus{}vars}\\PY{o}{=}\\PY{n}{data\\PYZus{}vars}\\PY{p}{,}\n", " \\PY{n}{coords}\\PY{o}{=}\\PY{n}{coords}\\PY{p}{,}\n", " \\PY{n}{attrs}\\PY{o}{=}\\PY{n}{mk\\PYZus{}dataset\\PYZus{}attrs}\\PY{p}{(}\\PY{n}{relationships}\\PY{o}{=}\\PY{n}{relationships\\PYZus{}with\\PYZus{}traces}\\PY{p}{)}\\PY{p}{,}\n", " \\PY{p}{)}\n", "\n", " \\PY{k}{return} \\PY{n}{dataset}\n", "\\end{Verbatim}\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display_source_code(dataset_examples.mk_t1_traces_dataset)" ] }, { "cell_type": "code", "execution_count": 34, "id": "0e7be475", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:37.319139Z", "iopub.status.busy": "2023-09-26T17:43:37.318933Z", "iopub.status.idle": "2023-09-26T17:43:37.633303Z", "shell.execute_reply": "2023-09-26T17:43:37.632643Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:          (main_dim: 30, cal_dim: 2, repetitions: 256, trace_dim: 300)\n",
       "Coordinates:\n",
       "    t1_time          (main_dim) float64 0.0 4.138e-06 ... 0.0001159 0.00012\n",
       "    cal              (cal_dim) <U3 '|0>' '|1>'\n",
       "    trace_time       (trace_dim) float64 0.0 1e-09 2e-09 ... 2.98e-07 2.99e-07\n",
       "Dimensions without coordinates: main_dim, cal_dim, repetitions, trace_dim\n",
       "Data variables:\n",
       "    q0_iq_av         (main_dim) complex128 (-0.19894114958423859+0.6515500138...\n",
       "    q0_iq_av_cal     (cal_dim) complex128 (0.7010588504157614-0.3984499861154...\n",
       "    q0_iq_shots      (repetitions, main_dim) complex128 (-0.289836545355741+0...\n",
       "    q0_iq_shots_cal  (repetitions, cal_dim) complex128 (0.610163454644259-0.4...\n",
       "    q0_traces        (repetitions, main_dim, trace_dim) complex128 (-0.289836...\n",
       "    q0_traces_cal    (repetitions, cal_dim, trace_dim) complex128 (0.61016345...\n",
       "Attributes:\n",
       "    tuid:                      20230926-194337-462-bb8342\n",
       "    dataset_name:              \n",
       "    dataset_state:             None\n",
       "    timestamp_start:           None\n",
       "    timestamp_end:             None\n",
       "    quantify_dataset_version:  2.0.0\n",
       "    software_versions:         {}\n",
       "    relationships:             [{'item_name': 'q0_iq_av', 'relation_type': 'c...\n",
       "    json_serialize_exclude:    []
" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset = dataset_examples.mk_t1_traces_dataset(**mock_conf)\n", "assert dataset == round_trip_dataset(dataset) # confirm read/write\n", "\n", "dataset" ] }, { "cell_type": "code", "execution_count": 35, "id": "40bccb36", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:37.635744Z", "iopub.status.busy": "2023-09-26T17:43:37.635525Z", "iopub.status.idle": "2023-09-26T17:43:37.641368Z", "shell.execute_reply": "2023-09-26T17:43:37.640695Z" } }, "outputs": [ { "data": { "text/html": [ "
((256, 30, 300), (256, 2, 300))\n",
       "
\n" ], "text/plain": [ "\u001b[1m(\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m256\u001b[0m, \u001b[1;36m30\u001b[0m, \u001b[1;36m300\u001b[0m\u001b[1m)\u001b[0m, \u001b[1m(\u001b[0m\u001b[1;36m256\u001b[0m, \u001b[1;36m2\u001b[0m, \u001b[1;36m300\u001b[0m\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dataset.q0_traces.shape, dataset.q0_traces_cal.shape" ] }, { "cell_type": "code", "execution_count": 36, "id": "37367434", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:37.643639Z", "iopub.status.busy": "2023-09-26T17:43:37.643435Z", "iopub.status.idle": "2023-09-26T17:43:37.692925Z", "shell.execute_reply": "2023-09-26T17:43:37.692251Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:          (t1_time: 30, cal: 2, trace_time: 300, repetitions: 256)\n",
       "Coordinates:\n",
       "  * t1_time          (t1_time) float64 0.0 4.138e-06 ... 0.0001159 0.00012\n",
       "  * cal              (cal) <U3 '|0>' '|1>'\n",
       "  * trace_time       (trace_time) float64 0.0 1e-09 2e-09 ... 2.98e-07 2.99e-07\n",
       "Dimensions without coordinates: repetitions\n",
       "Data variables:\n",
       "    q0_iq_av         (t1_time) complex128 (-0.19894114958423859+0.65155001388...\n",
       "    q0_iq_av_cal     (cal) complex128 (0.7010588504157614-0.3984499861154196j...\n",
       "    q0_iq_shots      (repetitions, t1_time) complex128 (-0.289836545355741+0....\n",
       "    q0_iq_shots_cal  (repetitions, cal) complex128 (0.610163454644259-0.41025...\n",
       "    q0_traces        (repetitions, t1_time, trace_time) complex128 (-0.289836...\n",
       "    q0_traces_cal    (repetitions, cal, trace_time) complex128 (0.61016345464...\n",
       "Attributes:\n",
       "    tuid:                      20230926-194337-462-bb8342\n",
       "    dataset_name:              \n",
       "    dataset_state:             None\n",
       "    timestamp_start:           None\n",
       "    timestamp_end:             None\n",
       "    quantify_dataset_version:  2.0.0\n",
       "    software_versions:         {}\n",
       "    relationships:             [{'item_name': 'q0_iq_av', 'relation_type': 'c...\n",
       "    json_serialize_exclude:    []
" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset_gridded = dh.to_gridded_dataset(\n", " dataset,\n", " dimension=\"main_dim\",\n", " coords_names=[\"t1_time\"],\n", ")\n", "dataset_gridded = dh.to_gridded_dataset(\n", " dataset_gridded,\n", " dimension=\"cal_dim\",\n", " coords_names=[\"cal\"],\n", ")\n", "dataset_gridded = dh.to_gridded_dataset(\n", " dataset_gridded, dimension=\"trace_dim\", coords_names=[\"trace_time\"]\n", ")\n", "dataset_gridded" ] }, { "cell_type": "code", "execution_count": 37, "id": "c96d8461", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:37.695194Z", "iopub.status.busy": "2023-09-26T17:43:37.694981Z", "iopub.status.idle": "2023-09-26T17:43:37.700610Z", "shell.execute_reply": "2023-09-26T17:43:37.700040Z" } }, "outputs": [ { "data": { "text/html": [ "
((256, 30, 300), ('repetitions', 't1_time', 'trace_time'))\n",
       "
\n" ], "text/plain": [ "\u001b[1m(\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m256\u001b[0m, \u001b[1;36m30\u001b[0m, \u001b[1;36m300\u001b[0m\u001b[1m)\u001b[0m, \u001b[1m(\u001b[0m\u001b[32m'repetitions'\u001b[0m, \u001b[32m't1_time'\u001b[0m, \u001b[32m'trace_time'\u001b[0m\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dataset_gridded.q0_traces.shape, dataset_gridded.q0_traces.dims" ] }, { "cell_type": "code", "execution_count": 38, "id": "2cc96793", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:37.702844Z", "iopub.status.busy": "2023-09-26T17:43:37.702641Z", "iopub.status.idle": "2023-09-26T17:43:37.708682Z", "shell.execute_reply": "2023-09-26T17:43:37.708217Z" } }, "outputs": [ { "data": { "text/html": [ "
((300,), dtype('complex128'))\n",
       "
\n" ], "text/plain": [ "\u001b[1m(\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m300\u001b[0m,\u001b[1m)\u001b[0m, \u001b[1;35mdtype\u001b[0m\u001b[1m(\u001b[0m\u001b[32m'complex128'\u001b[0m\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "trace_example = dataset_gridded.q0_traces.sel(\n", " repetitions=123, t1_time=dataset_gridded.t1_time[-1]\n", ")\n", "trace_example.shape, trace_example.dtype" ] }, { "cell_type": "code", "execution_count": 39, "id": "4bf20828", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:37.710786Z", "iopub.status.busy": "2023-09-26T17:43:37.710589Z", "iopub.status.idle": "2023-09-26T17:43:37.928089Z", "shell.execute_reply": "2023-09-26T17:43:37.927297Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAHWCAYAAABDrf/vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gkVbm43+rume7JeWZnZ/OyS9olw5KTCCqgiCheRRAVE6iI3iuoiF4U9IoIPwNc8WLCgFkMF/GCiAQBCZKXZTO7k3Psnu6u3x+nq6ond6hzpqr7vM+zz3T1dnf17jfnfN/5omGapolGo9FoNBqNRqPRaDQajUajcY3AYn8BjUaj0Wg0Go1Go9FoNBqNptDQTjeNRqPRaDQajUaj0Wg0Go3GZbTTTaPRaDQajUaj0Wg0Go1Go3EZ7XTTaDQajUaj0Wg0Go1Go9FoXEY73TQajUaj0Wg0Go1Go9FoNBqX0U43jUaj0Wg0Go1Go9FoNBqNxmW0002j0Wg0Go1Go9FoNBqNRqNxGe1002g0Go1Go9FoNBqNRqPRaFxGO900Go1Go9FoNBqNRqPRaDQal9FON41Go9FoNJo8+f73v49hGOzYsWOxv4pmkbB+B6w/PT09Wb2/trbWfu9ll10m6VtqNBqNRqNRiXa6aTQajUaj8T0PP/wwn//85xkYGJjxd/fccw/vfe972bBhA8FgkFWrVuV8n+uuu47f/va3Ob/fzzz88MMcf/zxlJeXs2TJEj760Y8yMjKS8fv/53/+h/33359IJMK6dev4xje+Mevr9uzZw9ve9jZqa2uprq7mTW96E9u2bcv5Mzdv3szHP/5xjj32WCKRyJzO0d7eXr761a9y4okn0tTURG1tLUcffTR33nlnxv9GgK9//ev86Ec/oqqqKqv3fec73+FHP/pRVu/RaDQajUbjbbTTTaPRaDQaje95+OGH+cIXvjCr0+0nP/kJP/nJT6ipqWHp0qV53Wcup9u73vUuxsfHWblyZV6f71WefvppXvOa1zA2NsaNN97I+973Pr7zne/w1re+NaP3//d//zfve9/7OPDAA/nGN77BMcccw0c/+lG+8pWvTHndyMgIp5xyCn/729/49Kc/zRe+8AWeeuopTjrpJHp7e3P6zEceeYT/9//+H8PDw+y///5zfsdHHnmEz3zmM9TX1/PZz36WL33pS5SXl/P2t7+da665JsP/KTjnnHO44IILCIfDGb8H4G1vexsXXHBBVu/RaDQajUbjbUKL/QU0Go1Go9FoZHLddddx2223UVJSwllnncVzzz3n+j2CwSDBYND1z/UKn/70p6mrq+P++++nuroagFWrVnHJJZdwzz33cPrpp8/53vHxcT7zmc9w5pln8stf/hKASy65hGQyybXXXsv73/9+6urqAPj2t7/Nli1beOyxxzjyyCMBeP3rX8+GDRv42te+xnXXXZf1Z77xjW9kYGCAqqoqbrjhBp5++ulZv+eBBx7Ili1bpjhOP/zhD3Paaafxla98hf/4j/+goqIij/9FjUaj0Wg0xYbOdNNoNBqNRuNrPv/5z/Pv//7vAKxevdrui2WVEC5dupSSkpK872MYBqOjo/zgBz+w7/Hud78bmL2n26pVqzjrrLO4//77OeKIIygrK2Pjxo3cf//9APz6179m48aNRCIRDj/8cJ566qkZ93zppZc477zzqK+vJxKJcMQRR3DXXXfl/W/JhqGhIf7yl79wwQUX2A43gAsvvJDKykp+/vOfz/v+v/71r/T29vLhD394yvOXXnopo6Oj/PGPf7Sf++Uvf8mRRx5pO9wA9ttvP17zmtdMuU82n1lfX59Rqefq1atnZCoahsE555xDNBqds8Q1E7Zs2cJb3vIWlixZQiQSYdmyZbz97W9ncHAw58/UaDQajUbjfXSmm0aj0Wg0Gl9z7rnn8vLLL/PTn/6Ur3/96zQ2NgLQ1NTk6n1+9KMf8b73vY+jjjqK97///QCsXbt23ve88sorvOMd7+ADH/gAF1xwATfccANnn302t956K5/+9Kdtp9H111/P2972NjZv3kwgIGKizz//PMcddxxtbW1ceeWVVFRU8POf/5xzzjmHX/3qV7z5zW+e9979/f0kEokF/13l5eWUl5fP+ffPPvss8XicI444YsrzpaWlHHLIIbM6C9Ox/n76+w8//HACgQBPPfUUF1xwAclkkmeeeYb3vOc9Mz7jqKOO4p577mF4eJiqqqqMP9MNOjo6AOzfq2yJxWKcccYZRKNRPvKRj7BkyRL27NnDH/7wBwYGBqipqXHle2o0Go1Go/Ee2umm0Wg0Go3G1xx00EEcdthh/PSnP+Wcc87Ja1DCfFxwwQV88IMfZM2aNRk7dDZv3szDDz/MMcccA8ABBxzAGWecwSWXXMJLL73EihUrAKirq+MDH/gADzzwACeffDIAH/vYx1ixYgWPP/643R/swx/+MMcffzyf+tSnFnS6HXrooezcuXPB73jNNdfw+c9/fs6/b29vB6C1tXXG37W2tvL3v/993s9vb28nGAzS3Nw85fnS0lIaGhrYu3cvAH19fUSj0TnvA7B371723XffjD8zX/r6+vjud7/LCSecMOv3yoQXXniB7du384tf/ILzzjvPfv5zn/ucK99Ro9FoNBqNd9FON41Go9FoNBpJHHDAAbbDDWDTpk0AnHrqqbbDLf35bdu2cfLJJ9PX18d9993Hf/7nfzI8PMzw8LD92jPOOINrrrmGPXv20NbWNue9f/zjHzM+Pr7gd1yzZs28f299xmyDASKRyIL3GB8fp7S0dNa/S3//QvdJf02mn5kPyWSSd77znQwMDMw5aTUTrEy2P//5z7zhDW+YN6tQo9FoNBpNYaGdbhqNRqPRaDSSSHesgeOAWb58+azP9/f3A6Is1TRNrr76aq6++upZP7urq2tep9txxx2X8/dOp6ysDIBoNDrj7yYmJuy/n+/9sVhs1r9Lf/9C90l/TaafmQ8f+chHuPvuu/nhD3/IwQcfnPPnrF69miuuuIIbb7yRH//4x5xwwgm88Y1v5IILLtClpRqNRqPRFDja6abRaDQajUYjibkmms71vGmagMiyAvjkJz/JGWecMetr99lnn3nv3d3dnVFPt8rKSiorK+f8e6us0iozTae9vZ2lS5fO+/mtra0kEgm6urqmlIPGYjF6e3vt99fX1xMOh+e8D2C/NtPPzJUvfOELfPvb3+bLX/4y73rXu/L6LICvfe1rvPvd7+Z3v/sd99xzDx/96Ee5/vrr+cc//sGyZcvy/nyNRqPRaDTeRE8v1Wg0Go1G43sMwyio+1glnyUlJZx22mmz/lloIueRRx5Ja2vrgn9uuOGGeT9nw4YNhEIh/vnPf055PhaL8fTTT3PIIYfM+37r76e//5///CfJZNL++0AgwMaNG2e8DuDRRx9lzZo19r8508/MhW9961t8/vOf5/LLL+dTn/pUzp8znY0bN/LZz36WBx54gL///e/s2bOHW2+91bXP12g0Go1G4z10pptGo9FoNBrfU1FRAcDAwID0+8i+B0BzczMnn3wy//3f/81HPvKRGU38u7u7F5zO6lZPt5qaGk477TTuuOMOrr76atvx9aMf/YiRkRHe+ta32q8dGxtj165dNDY22tM+Tz31VOrr67nlllt4wxveYL/2lltuoby8nDPPPNN+7rzzzuPKK6/kn//8pz2ZdPPmzdx333188pOftF+XzWdmw5133slHP/pR3vnOd3LjjTfm9BnTGRoaory8nFDIMbs3btxIIBCYtZRWo9FoNBpN4aCdbhqNRqPRaHzP4YcfDsBnPvMZ3v72t1NSUsLZZ59NRUUFzzzzDHfddRcgeqUNDg7yxS9+EYCDDz6Ys88+O6v7/N///R833ngjS5cuZfXq1fYQBLf51re+xfHHH8/GjRu55JJLWLNmDZ2dnTzyyCO8+uqr/Otf/5r3/W71dAP40pe+xLHHHstJJ53E+9//fl599VW+9rWvcfrpp/O6173Oft1jjz3GKaecMmUiallZGddeey2XXnopb33rWznjjDP4+9//zh133MGXvvQl6uvr7fd/+MMf5rbbbuPMM8/kk5/8JCUlJdx44420tLTwiU98wn5dNp85ODhoD0J46KGHAPjmN79JbW0ttbW1XHbZZfZ3v/DCC2loaOA1r3kNP/7xj6f8Hxx77LELOihn47777uOyyy7jrW99K+vXrycej/OjH/2IYDDIW97ylqw/T6PRaDQajY8wNRqNRqPRaAqAa6+91mxrazMDgYAJmNu3bzdN0zS/973vmcCsfy666KKs7vHSSy+ZJ554ollWVjbl/dY9rHuapmmuXLnSPPPMM2d8BmBeeumlU57bvn27CZhf/epXpzy/detW88ILLzSXLFlilpSUmG1tbeZZZ51l/vKXv8zqe7vB3//+d/PYY481I5GI2dTUZF566aXm0NDQlNf89a9/NQHzmmuumfH+73znO+a+++5rlpaWmmvXrjW//vWvm8lkcsbrdu/ebZ533nlmdXW1WVlZaZ511lnmli1bZv1OmXym9X8725+VK1far5vv9wQwv/e97837/zPb74Bpmua2bdvM97znPebatWvNSCRi1tfXm6eccor5f//3f7N+zmy/HxqNRqPRaPyJYZqpjr0ajUaj0Wg0Go0mJ77//e9z8cUX8+STT7J8+XIaGhqy6gHY19dHMpmkqamJSy+9lG9+85sSv61Go9FoNBoV6PJSjUaj0Wg0Go3GJQ477DBA9N2z+tplwpo1axgcHJT1tTQajUaj0SwC2umm0Wg0Go2m6Ono6Jj378vKyqipqVH0bTR+5IwzzuAvf/mLfZ3t78vvfvc7JicnAVi+fLmr302j0Wg0Gs3ioMtLNRqNRqPRFD0LlQFedNFFfP/731fzZTQajUaj0Wg0BYHOdNNoNBqNRlP0pGcozcbSpUsVfRONRqPRaDQaTaGgM900Go1Go9FoNBqNRqPRaDQalwks9hfQaDQajUaj0Wg0Go1Go9FoCg3flZd+61vf4qtf/SodHR0cfPDBfOMb3+Coo46a8/U33XQTt9xyC7t27aKxsZHzzjuP66+/nkgkktH9kskke/fupaqqKqux7xqNRqPRaDQajUaj0Wg0msLCNE2Gh4dZunQpgcD8uWy+crrdeeedXHHFFdx6661s2rSJm266iTPOOIPNmzfT3Nw84/U/+clPuPLKK7n99ts59thjefnll3n3u9+NYRjceOONGd1z7969eoKURqPRaDQajUaj0Wg0Go3GZvfu3Sxbtmze1/iqp9umTZs48sgj+eY3vwmILLTly5fzkY98hCuvvHLG6y+77DJefPFF7r33Xvu5T3ziEzz66KM8+OCDGd1zcHCQ2tpadu/eTXV1tTv/EI1Go9FoNBqNRqPRaDQaje8YGhpi+fLlDAwMUFNTM+9rfZPpFovFeOKJJ7jqqqvs5wKBAKeddhqPPPLIrO859thjueOOO3jsscc46qij2LZtG3/6059417veNed9otEo0WjUvh4eHgagurpaO900Go1Go9FoNBqNRqPRaDQZtSDzjdOtp6eHRCJBS0vLlOdbWlp46aWXZn3PO97xDnp6ejj++OMxTZN4PM4HP/hBPv3pT895n+uvv54vfOELrn53jUaj0Wg0Go1Go9FoNBpNcVHQ00vvv/9+rrvuOr797W/z5JNP8utf/5o//vGPXHvttXO+56qrrmJwcND+s3v3boXfWKPRaDQajUaj0Wg0Go1GUwj4JtOtsbGRYDBIZ2fnlOc7OztZsmTJrO+5+uqrede73sX73vc+ADZu3Mjo6Cjvf//7+cxnPjPrlIlwOEw4HHb/H6DRaDQajUaj0Wg0Go1GoykafJPpVlpayuGHHz5lKEIymeTee+/lmGOOmfU9Y2NjMxxrwWAQECNeNRqNRqPRaDQajUaj0Wg0Ghn4JtMN4IorruCiiy7iiCOO4KijjuKmm25idHSUiy++GIALL7yQtrY2rr/+egDOPvtsbrzxRg499FA2bdrEK6+8wtVXX83ZZ59tO980Go1Go9FoNBqNRqPRaDQat/GV0+3888+nu7ubz33uc3R0dHDIIYdw991328MVdu3aNSWz7bOf/SyGYfDZz36WPXv20NTUxNlnn82XvvSlxfonaDQajUaj0Wg0Go1Go9FoigDD1HWW8zI0NERNTQ2Dg4NUV1cv9tfRaDQajUaj0Wg0Go1Go9EsEtn4iXzT002j0Wg0Go1Go9FoNBqNRqPxC9rpptFoNBqNRqPRaDQajUaj0biMdrppNBqNRqPRaDQajUaj0Wg0LqOdbhqNRqPRaDQajUaj0Wg0Go3LaKebZk7aB8d5eGsP7YPj8m82uAe2PyB+arJGmay0nPJCy8kf6L3PH2g5+QMtJ/+gdZQ/0HLyB3rv8wdaThoVhBb7C2i8yZ2P7+KqXz9L0oSAAdefu5Hzj1wh52ZP/hB+/zEwk2AE4Oyb4bAL5dyrAFEmKy2nvNBy8gd67/MHWk7+QMvJP2gd5Q+0nPyB3vv8gZaTRhWGaZrmYn8JL5PNKFg/0z44zvaeUVY3VgBw3JfvI5n2mxE0DB688hRaa8ryv9ngHujbCvVrwUzATQcBaTczgnD5s1DTlv+9Cox0ObXWlLG5Y4jX3fT39P8992SVLidMuGmjUBQWWk5zMl1OO3tHOfmr9yuQE3DTBi2nLEiXVTJpcvx//RVTxt6XLqeaNuh8Hm45Dr33ZcZ0HXXsl+9TI6febfCNw9ByyozFsyWSQkdpOWXEdB21pXOY07/+gNZRHiRdVpOJJCf9l7YlvEi6nEzT5LivKLIlul6Cbx+N3vsyY9F0VGIS/t8haDkVFtn4iXSmm2aKl98wYHld2ZQNCCBhmuzoGct/E0r38mNAaSVTNiAQjri+bXoTmsZ0OR25qo6ndg1M/99zR1bT5VTRNNX4Ai2nOZgeNTt532b+uaNPjZxqV2o5ZcGUNQVURUJMD0O5LicjAMuPglefQO99mTFdTi3VETVyWvsa2P0oWk6ZMV1HrWooV2dLRKrRcsqM6Tpq0+p6dbZE5RKto7Jg+t5XVhKQLyfDgLo1Wk5ZMF1OteUlanTUimPh1X+i977MmK6jWmsi6nRUSRlaTsWNdroVOe2D4/YGBGCasKtvZk17wIBVjeX53WxwT9oGBGBCbHjm64wg1K/J714Fxmxyemx7/6yvDRpGfrKaTU6jXTNfp+U0g+lySppw30uz/N8hSU4DO2a+TstpVmasKWBoIj7jda7LyUzCrn/M/lotqxnMJqeOoYkZr5Mip1f+MvtrtZxmMJuO2t4zNuN10myJicGZr9NymsFsOuqRbX2zvlaKjhppn/k6LadZmW3vG5tMznid+3ufKbJzpqPlNCuzyal/bHLG66ToqJ0Pzv5aLasZzKaj9g7MZktI0lGTM/WhllNxoQcpFDnbe0ZnePkB3nbEMgKGc33Rsavy9/r3bZ0ZOQM4+kMiYmNx1te1138ac8npmrMP4MvnbrSvDeC6czfkJ6u55HTkJVPldMaXtJymMZecLj9tHde9eQNpS0qenA69UChyi6M/pOU0C3PJ6t3Hrpqy9117zoFy5PT6/4Kz/1/aEwacfZOW1TTmktM7N62YIqcrTl8vR04nfxrOuhns1avlNBtzyekth7URTJPT245YLs+W2PTBabbEjVpO05hLTp9+w/58+dyN6b/l8nTUEe+dKqfXfE7LaRbmktV7j1+FkbampMnp4HdOtSUOv0jLaRbmktNFx6ycoqM+/0ZJtsTpX0rZElpHzcdccvq3I5dPkdOHT9lH4nn3Ukg/CWg5FRXa6VbkrG6smOIIABGN+fhr1/PQladyxgEtAPSPxvK/mdUnIh0jCMd8BD70CARKxHOtB+d/rwJjdWPFFKUAQk6v27CEtx+1gmvO3h+AttoIbztieX43q18L038rjCAc/3G4/DlRdgAQLM3vPgXIXHI6/8jlvGPTSn76/qMBke3xmv1b8rvZXHI6+UrRI2L968Rz47NnRBY7Vj+PdIKGwQdOWsP9/34yVRGRCL60Nk/jq37t1AMmCDntd5Y4xJz+RfFc3Wo49F353asAmUtHXXbqPjx05alsbBM9NOKJPNvTziWnQy+AI94NF/7OeW6/s/K7VwGyurFiiiMAhJw+eca+PHjlqZx76FIAOmfJUsyauWyJYz8KH3kSSlJru251/vcqMObSUWcf3Mrbj1rBf513EAC15aW85bBl+d1sLh11wieELdGSChiaifzuU6DMpaPed8Ia7rr0OPt/9ug1DfndaC45nfoZYUtsOE88NzJ71n6xM5ecPnjyWh781Ck0Vgpbuaa8JL8bzaWjDnyzsCXOvkk8V9EMh7wzv3sVIHPZEh89bR0PXXkqR6+pB2A06sJ+NOd591J43/85z605Jf97aXyDdroVOa01ZRy1ut6+DhqGHTVrrSnjAyeLjePPz3cyGp1ZepUV4aqpCsMIOl7+5v1gvzPF88/+Ir/7FCCtNWWcm2YAp8sJ4G1HrKCsJMirAxP869VZymyyoaYNqpY41+lyqmmDI98jnn/m5/ndpwBprSnj8tPW2dcBY2oU+ug1DRy0rIakCX/41978blbTBis2OdfT5XTcx8TzL9wFkwrGoPuMpsow4ZCzH6WvqRX1Fbz5UBF9/N3TLshp49uc63Q5gZhcFQxD/zboeCa/exUgrTVlrGlyDjXTddS7jxWOld8+vYe85kLVtMGJ/+FcT5fTmpOEk8CMwwu/zf0+BUprTRknrW+yr6fL6dJTxb74wJYeekei+d2sokmsGYt0WdWvhoPeKp7XOmoGrTVlvHPTSvt6ui1xzqFt1JWX0D8W46GtvfndrKZtaunUdB216f3i+Wd+zowGWBqMaS6CdFltXFbL8esaAZd0VPrhf7qcTviEeP7lP8PY7KXIxcyS6gg1ZU63pnQ5La0t5+2pSZi/fWpPfjeqaRPONYvpOurgf4NIDYx2ws6H8rtXAdJaU8aBS51G99N11PuOF3vV75/ZSzwxS5ZaNkwPJKTLatkRsOoE8bw+7xYV2ulW5Jimyd5BcSD/5OnrefDKU6aMSj50eS0rG8oZn0zwlxc687vZ9gdEum3tSrjoDyKClj4q+aDzxc9nfwlJHfmczsSk+D9586FLZ8ipIhzi9ANF5lTein1oLwyn+q68/acz5bThLYABu/8B/Tvyu1cBUl4qjK+NbdU8dOWpM0aPn3OIMJB+m6+hbJowsFs8Pu0LM+W0/GioWSH6Jm7+3/zuVYA8vXuAaDxJdSTEj9+3acaaOifldPvz8x2MxfIMOEyOip8Hv3OmnCI1sG8qK1E7CWYwFouzO9Vn9GtvO3iGnM7YsIRISYDtPaM8k2/AoSSV1dh25Ew5ARyUcp5qOc1K97Bwpn345LUz5LS2qZKDltWQSJr84ZlZ+nplw+5HIRGFSB1c+PuZsrKc3C/qgMNsJFMOrtMPaJkhp5JggLMOElmJv8vXlpgYgoGd4vFbvjtTTvu/UThPu1+Cjmfzu1cB8sCWbgD2X1LFTy85eqaOsmyJp/IMOACMdIifJ/77TDm1HAAtGyA5CS/8Lr/7FCCvdI0wOB6nJGjwg4uPnMWWEOvpgZe78w84JFK2yP7nzJRTKAwHnCMeP3NnfvcpQOKJJDv7RF+1a9904Aw5nbi+ibryErqHozycb8DhlXvFz9ZDZj/vbkwLDOmAQ9GgnW5Fzo7eMXb3jVMSNLj4uNUz6tgNw+BNKcX+m3wNsK2pTWj9GbD6hJl17PucBmV1QvlvfyC/exUYiaTJg6/0APCOTStn7TdgGWB/yDdKs/U+8XPpYbDfG2bKqXoprD5RPNZRmhk8sEXI6Y0Ht80qp7MObiVgCKfP9p7R3G/UvRmG9kAoAps+MFNOgQBsTJWFaDnN4IGXxYHmhPVNHLdP4wxZWQGHsVieAYdEHLal9rMj3zN7/w4dcJiTf2zrJZZI0lZbxrmHzlxTleEQrz1AZOa6pqMOeuvsctp4HmDArkdgYFd+9yowuoejPL93CGBWWwKwbYnfPu2SnNa9FtacOFNWK46BmuUQHYKX787vXgWGaZq2M2eu/nqWk+DufAMO2x+AZFyUWm2cZU2V1Qp7EOBZ7ciejqWjTjughWPWNsyQlRVw2NYzyrN78gg4DO2FrhcAA47+8Bw6Sgcc5uJvKTkdvaaBk/ZtniGnfZqr2NBWTTxp8sdn8wg4mKZjnx/+rvnl9MJdMOlCKX8B8fTuAYYn4tSWl8x6jioNBTjzoFbARR217xtmP+8e8CbRoqf7Reh8Lr97aXyDdroVOZZSP3xlHRXh2YfZnnOIMMAefKWHnlyjNKbpeP7Xvmb214RKRW8C0E6CaTy3Z5CBsUmqwiEOWV4762uOX9dIQ0UpPSMx20GXE5ZS32cOOUGaAfYLHaVJY2IywaPbRITsxLRSq3SaqyIcv0783e/yUeyWUl95rJOhMx3LmbPlL7osZBqWc/SkdbPLKT3gkFf26J4nIDooAgpLD539Nfu8FiK1IuCw4++536sAeeBlIacT1zdhTG8aluLNKSdBXgGH2KgzVXYuHVW9VBjQoHXUNB5K6ZwDWqtpqgrP+pqzUwGHp3YNsLM3j4DDQjoqPeDwjJZTOumB1mPWzt4L7LAVdSyvL8s/4GDpqHltCSvg8CsdcEgjPdA6ly2RHnD47VN5ZM5v/av4ufRQKK+f/TUbrIDDwzrgMA3LljhxDlsCpmYl5kx6oHXlcbO/ZsWxUL1MBBy2/Dn3exUglpyO26eR4PTGlimstiJ/fq6D8ViO+1F6oHWuvS894KAd2UWDdroVOZbTbS6lDrCmqZKDrbKQXPtQ9W0TZQaBElh1/Nyv25gepdFlIRaWnI7dp4GS4OzLVpSFpKI0uSr2ZMIxwOY6eALsf7YoC+nZrPtQpfHY9j6i8SRLqiOsb6mc83WWI/t3T+/NvSxkISc2iF6JSzaKspDnf5PbfQqQgbEYz7w6AMAJ6xvnfJ0lpwe25BFwsA6ea06GQHD214RK4cBzxGPtJJiCtfedNI+cTljXRH0q4JBzH6odD0IiBrUroGGWJsgWG9MyPnTAwSYTW6K5KsJx+wg55uwkGOmG9n+Jx2tPnft1lpy23KMDDmlkEmg1DMN2EuTcLyyTQCuIbMVIDQzvFWtQA2QWaAVHR931rzwCDpk4R2vaHNv92V/mdp8CJJNAK8AbD15KwIAndw2wq3cst5tlEmidEnDQzpx0bFtiHueoFXAYjSX4y4s5BhwyCbSCo6Oe/SUk8+whp/EF2ulWxMTiSR6xlMU8mxA4ZSG/ydUAs4yvFUdDeG5nBMs36T5Us2CVg8yn1AHeZPehynHwRfvTMN4H4WrR7HMuIjWw7+vFY63YbeySxXWNc2blAJx+oNOHKqfBF5PjTqPc+QxlSFPs2plj8eArPSRNWN9SOe9o+DVpfaj+mGsfqkwOnuBkfLzwOx1wSLG7b4xtPaMEAwbH7jO3060kGODMjXkGHNLlNM/a5QDdh2o6yaTpZHvM4xwF0pw5Ofah2pYKCi3ZCJXNc7+u5QAx+CI5qQdfpJGJcxQcm+9vufahyjTQmt6HSpeY2mQSaAWnD1XPSI59qDINtMLUElMdcAAyD7Q2V0c4dm0q4JBrhUPGtoQOOEwn00CrYRi86eCUjsrVlsgk0Aqw7nQn4LBTBxyKAe10K2Ke2NnPWCxBY2UpB7RWz/vasw9eSjBg8K9c+1BlEkkDEaXRk8emMDQxyZO7BoCFnaN5D754JVW2s/pECC4w3vyg9CiNLguBzJ2jleEQp9tlITko9p0PQ3wCqpZC037zvza9D1X/zuzvVYDYB88F1hM4ToKc+oWN9cHeJ8Xj+bJyIDX4YrkIOOg+VICzng5dXkt1ZP79KO/BF5nqqCmDL3SzaoAXO4boGYlSXhrk8JV18742vQ9VToMvMj14QpotoQMOkF2gdZ/mSja2pQIOufShyjTQCmkBB92HyiJTWyJ98EVOtkSmgVZIDb7QfajSyTTQCo6OymnSdjaB1pYDxeCLREwPvkiRaaAVnJ6Wf3u5m77RWPY3y1RHlUREbzfQ590iQTvdihhLqZ+wronAHPXtFk1V4bSykCwVezwG21N9ihY6eIKTmfPKX2A0zwkyBcDDr/SSSJqsbqxgeX35vK+d0ocql2iadfDMRE77vFYPvkijY3CClztHMAw4fp6sHItz8ulDZfU0Wnvq/Fk5oPtQTcM0TbtP2AkLHGhg6uCLHdkGHLbdLyY2N+03e9PjdAKBqROtNPzdklMGztHDVtSyoj7HwRf9O6H3FTCCzpCY+bB01HO6DxU4ffeOXtNAODRPZJ9pfaiy1VHJ5NS9byF0H6opWIHWhoqFA60Ab0qVLuYUcMhGTiuOcfpQ6YBDVoFWcGyJnAIO2QRay2phvQ44pPP3LfP33UvnjANbCIcCbOvOYfDFrkcyD7SCY0tomw9Id44uLKcpgy+eybK6K5tAK0yrcNABh0JHO92KGKfMYGEHATjNqn/1xG4efqWH9sEMS6B2PwqTo1DRJMo9FqJ5P1hykJh69cBXYTDPKTI+x454rstMTnYfqpe7ufu59szlNDEIux8TjxeKpIHoQ2WVhTz8DS2nlJwOaquhrqJ0wden96G67e/bMpcTpDUSz0Cpg6PYn/oxbPtbUctqS9cIHUMThEMBNq2eo2l0GumDL75x35Ys5ZRFVg442aMv3wMv/rGo5RRPJHloa2Yli2D1oRJ7388e28XDW7PQUdZ6WnakyGRbiHWpwRfD7fCPbxW1nCA9czQ7W+K3T+3h71u6M5dT53Mw2gUl5SKDaiHS+1D97b+0nLY4WTkLBVrB6UP11K4BfvPUq5nLKR5zBsJkYkukVzg88QMRxCtiWWUTaIWpfai+/ddXctRRmdoSKR31r5/D1vuLWk4dgxNs7hzOONBaFSnhtQe0AHDLX7dmJ6dX0uS0UKAVnAqHnQ+JapQillN6oDUT5yg4FQ53Pr47O1sim0ArTB188dDXi1pOxYB2uhUp3cNRnt87BGTm+Qc4/YAllAQNXh2Y4B3ffZTjvnwfdz6eQfQ4XakHMvyVq18jfj56C9y0AZ78YWbvKzCEssiszMBiTVMly+rKSJrwwTuezFxO2x8AMwH1a6FuVWZf0Dqgbr23qOUEmffKsSgJBtg31QPkK3dvzlxOQ3uh6wXAgDWnZPbl9j8bjBD0b4MfvrGoZWXJ6ajV9URK5s/KsVhSLaYx/urJPZnLyTSdLIJMnaPN+0N1G5hxuPMdRS2np3cPMDwRp7a8hIOW1Wb0Hqun5SPb+njHbTnoqEwcBCD6ULUcIB7fc3VRy2k0GuefO0XfoEz3vhPWNVFRGqR/bJJ3/c9j2ctp1QlCBplQs1z8fOpHRS0nyF5HNVdHWNskdNTH7/xX5nLa/SjERjIPtIKTPbrtPvjB2UUtq2wDrYZhsK65CoBv/nVr5nLKNtAKog9VqAxGO+FHb9JyAg5aVptRoBWgIfW6/32+I3M5QfaB1ppl0LCPePyr9xa1nLINtIIIOBjAc3uHcrMlMg20BgLQvK94fP+Xi1pOxYB2uhUpD74ilMWBS6tprMzMeB2amGQy4fQhSJrw6V8/t3AEIJseLCA8/S/e5VybSfj95UUZAdjeM8qr/eOUBA2OXtOQ0XvaB8fZ0+/IJGs5ZWp8De6Bh/+fc13EckokTR58JbtIWvvgOP/Y7jS5zVhOlvHVdhiUZ2ZAEB0RjhyLIpbV3+xpmJnL6ZdPvGpfZyyn7pdEg9xQBFYel9mXG9wjnKoWRSwny0Fw3D6NBDPIygEoL53qRM1IVok4bEuVx2ejo3Y94lwXsZz+sa2XyYTJsroyVjdWZPSenpEoYzGnLFeqjnrmZ851Ecspl0Br++A4r3SN2NeZ66gcAq3TM0yLVFa5BFrbB8e5f3OXfZ2xnHIJtI72iDJH+wsXp5wgfRpmZs7R9sFxfvQPp69uxnLKJdA6uEe0TLDQcsoq0JowTdK77mUkq1wCrYN7nEEmUNRyKga0061IyTbVFph1gELCNNnRM8/465Eu6HhGPM40fb1vq9h40jETYhpWkWH1izhiZT0V4VBG79neM8r0Fq0Lysk0s4/QaDnZPLtnkIGxSarCIQ5ZXpvRe7b3jM4YALagnCB7JzYIWU2nCGU1MZngse3ZZeVs7xklmYucLOfoymOhZP7GvTZ9W2H66i1COQH8LbX3nZShgwBy1FF7/gnRQdGfcukhmd2ob+vM6X1FKqf0nkYLNRK3yElHxUZh1z/EY62jssYKtB7QWk1TVWaB1pzkBFpH5cGO3rGsA61566hMndigdVSKXAKtecspm0CrlpONNVk700Ar5GhLdG/OPtCqdVRRoZ1uRUgyafJ3O309801odWMF0xMOgobBqsZ5ek5YHvwlB0FlhveqXwvGtF9NI+iUnBYR2UY8IUc59W0TjaYDJU4PnIXQcrKx5HTsPg2UBDPbVnOSUzIB21JrKhtDWcsKgMe29xGNJ1lSHWFd8wIT9VLkJCfI7eCp5QRA/2iMZ14dAOCEDHuOgpDVdL/PgrKy5LTmFAhkFgXXcnLIZhKwRU5raseDkJyE2hXQsDazG2k52eQSaM1JTrkEWkHIimk3K0JZWespm0BrTnIyTa2j8sAOtEYyD7RqW0I9E5MJHrUmNme592VtS1iJC9kEWrWcigrtdCtCXmgfomckRnlpkMNX1mX8vtaaMr70Zqc/R8CA687dMP/45Wx75YBoPnn2zVObhZ59U2ZNKQuIWDzJI7ayyPzg2VpTxvXnOnIyMpGTpdRXHA3hzJwRjpzStpGzvl50coLcnKOWnKzfcoMM5LT3aRjvh3ANtB2R+ResaYMzv+5cG4GiXFPpw2Myzcqx5JRuLC8op8lx0cAYctv7LIpUTg++0oNpwvqWyvn/n6fRWlPGla9zJrtJ11Hpq7cI5bS7b4xtPaMEAwbH7pNZVg7M1FEZySn94Jnh2p1VRxWhnKYEWmXbErkEWkHI5DWfc66NYFHKSpkt0bcNBnZmF2gFIY+zbnKui1RH2e0P1jYSyjDQmpMtkWugdYYtUZw6KpdAKwhZff7sA+zrrHVUpmhboqjQTrcixGr+ecyaBkpD2f0K/NtRK9hviWjY+sVzNnD+kSvmfnEymTY2PotNCOCwC+GtPxCPq5aK6yLjnzv7GIslaKwMs/+S6qzee/6RK3jLYWLTfsemFfPLCXI7eIKQy6WPO9f7vj679xcAQxOTPLV7AMgu2wOEnD575v4AHLy8NnM5rTkRgplFwW2OeDc0phwSb/xGUa4pu0F1FgcaEHL6ySViWmIkFOCthy+f/w07HxZ9b6qWiilW2XDYhbDhPPH4yEuKU045ZE9ZvP/ENVSERcbaD95z1PxraqwP9jwpHmeTlQNCLq/9gni84ujilFNqPR22opbqSElW7z3/yBUctUoE/T71uv3k6qgLfi0el1bCoe/K7v0FQHqg9YiVGZanpTj/yBW8+5hVALzx4FZ5cgI47nJRmgVw0V1Ft6ZyDbSCkNNX3nIQAGubKxeWUy6BVovDL4K2I8Xj079UdHKC3JyjIOR012WOk/ONBy/gXMk10ApCLke8Rzw+6O1FLqfMA60WFx27miXVYj/61jsOm39N5RpoBSGXs1JB8ZYDilJOxYJ2uhUhf3mhExCH/FzY2CYa3nYORed/4dZ7YbQbSsph+absb7T6RPFzeC9MDGX/fp/zp2c7ADhiZR2BDBuJp3PoCnGgSR+qMCvxGGz7m3ic6aSxdBr3SZWGAJ3PZ/9+n/PHf+0lkTRZUVfG8voFygRmYVOqb8uO3lHM6X2ipvPSn8TPpYdnfR8AWoVRznBHbu/3Mf/a3c/LnSMYwPH7ZHegAbEOS0MBJuJJdvcv0IPlhdQgmBWbMs/KSWf5UeLn4O7s3+tzTNPkr6mm4BvaahZ49UwMw7CDFH2jsflf/NyvABMa1kH10qzvZfdtKdL+K/c8L/aRQ3O1JVJTaTuGJuZ/4a5HU03BA45dkA0rj4NASEzUHHx14dcXGH98VgxnOXR5bdaBVoDDU87RXX0L2BLJJGz5i3i85OCs7yMm+aWyS0Z7sn+/z/nz8+2MxRLUlZdmHWgFOGatsCV29Y4xmUjO/+KX/ih+LsvSkWPRdqj4Obx3/tcVIC93DvPkrn4ge+coCL1mTTHd0jU8/4uf/434ufzI7AOt4Jy9BjKcklpg3PuSOO9uXJa9LQFwwFKxDntGFjjvvnCXCLRWtGQfaAUxkRugd5vIbtQUJNrpVmT88OEdPLVrAICb/u/lzMdVp7FvKtPt5c55lMWTP4Qfv1U8nhybOkEsU8rqRKYIiEmARcSdj+/ijtSUoz8/35GTnKyMxJc7FlDq9/0nxFPG9E/emtu46maRrUXXi9m/18fc+fgurvrNcwDs7h/PSU77NFcSMGBgbJLu4XkU+6P/De1Picf3/WducmpJHWiKUE7nfOthQLQW/vPz2TsdQ8GAXZ6web419eQP4cnvi8fP/zbP9fRC9u/1Of/v3i30jAhn2RU/fzqnNbU+tfctKKc/fVI87n0lNzlZxvVIJ4z2Zv9+H/OTR3fyt1SfsNse3C7Xlrj9jNRFEl74Xdb3IVQqHKtQlHvfLfcLp/DDW3vzk1PH8PyBob9dD+Opidy/eo/WUVlw5+O7+OhPnwagfyzGL57IPuDSVltGRWmQWCLJzt6ZjeBtHr8dtt8vHj90s7b5suDOx3dxxtcfsAciPPRKbs7h9S0Z6qhHviEev3JvjnKy1tMLM4f/FDj//cBWtqcGH1zzu+fz2vs2L6SjfvMB8Xi0E576Udb3oX61yPKNj0P/juzfr/EF2ulWRLQPjnPN751MpIzHVU9j34UONIN74PcfY8rknFxHIFuKvYgyqNoHx7nq18/a1ya5yWldSqnvHZxgcHxy9hcN7oGHv+lc5zquuuVA8bNLyylbOUVKgqxqrADgpfnW1P9+yrnOVU7pBliRYMkp3dzMRU4A+y5kKNt7n4WZn5z6d0B0JNuv6VvaB8e56f+22Ne56qj9MtZRFjnKKVwJtSvF4yJbU5/57XP2tZmrLZHxenLBlrCdOVpHZSun1Y0VlAQNRmMJXp0rc35wD/ztq8513jqq+OSUr44KBAzb7pvXlvjTFc51znJK2XydxbXvuWZLqNJRjetFf8Tx/qKqcGgfHOfLf3KSNXI+76rSUYEgNO0rHheRLVFsaKdbEbG9Z3RGoCOjcdXTsDahHb2jTEzOkgbr5gjkIox65jxWfBo1ZSUsrRH9CLbMFaVxa6x4EUY93ZITOGtqzowP1+SUWk89L4uy4iLAVTktFPV0a++raISKZvG4e3OW39K/bO8Znf5bnpOs7CwC2XKCtIBDce19btgS61oqMQzoGYnNXr7jppy0jgJyk1NJMMDaJpHlq0xHaTnlpKMWrHDo2zoz4yknOaWyfIf3CodOEeBLW6Ik4kx7LiJnjlu2RLpzdNYsX1d1VPHtfcWGdroVETmPq55GU1WYuvISkia80jVLFoabI5CLMDNndWMF07tA5SIncMqs5ox6Wr3Y0slFVlbUs+sl0delCHBrPYGj2KXLqWYZhKshGU/1SCp83JTTgmWL9Wth+urNde8rwsyc1amMz3RykZXlxH61f5yRaHzmC1zVUZYzp7jk5IaOKi8NsSLVB3NWJ4Grciq+zBw3bQllOsqy+fq2iebkRYCrOmqhTDe3dFSkBmpSA4WKxEkgw+ZTYksUYbsKt2yJNU0VBAMGQxPx2XuPyjjvFlFlV7GhnW5FhDWuOphq7B00jIVHIM+CYRjz9yOoaYPj09LX8xn9nr4JFUk/gtaaMk5Y5zRnzVVOkIFir2wR8rHIVVb1ayAYhslRMYa+CGitKePfjnKmGeUlp4Uy3WraoG6Vc52rnAyj6Ayw1poy/uN1TmPbjEa/z4GVRbCtZ5RofJYs35o2WH2Sc+3G3lckBxoQsqoMO82ic11TdRWlNFeFgTnWVE3b1CmWruio4lhPIOS0X6vT6N2NvW9WJ0FNG5z6Wec6Lzml9r2ezZCYxRFbgLTWlHH6gS32dT5yWr+QjqpeCqG0z81VVpXNUN4gskeKpJdva00Z7zlutX2dj5z2WyiDqqbNWQvgzpoqIlvimrMPsK/zsSWs9dQ1HKV/toE/NW2w/nXOdV5yKr6AQ2tNGU2VpfZ1rmsqHAqyZr72LzVtcNQHnGtt82nmIYdRKBo/c/6RKzhxfRM7esZY1Viek7IAodgf3d43t2JvXC9+tmyAd/w8tw0IRI27ERDNeUe6oKpl4fcUACVB4Q9/z3GruOTENTnLad+FyqwGdopU6GAE3vkLkYaei6yCIWhaDx3PCgOsfvXC7ykArHHiJ65r5CvnHZS7nNIaiieSJsHp4VTTdEo43vhNWHtq7muqeX/Y/WjRGMoAB6QcBEtrI/zqQ8fmLKcl1RGqIiGGJ+Js6x5l/zTHg00g5cQ+5iNw9IfykFPxRT0HxyftzLTbLzqC/ZdW57WmuoajbO4Y5rDUJOcpVKZ0yboz4Kyv5y+nrhfFOs1lWq0PiaZaS3zmDftz1sGtecnpnhc653bmtGwQP+tWwbv/lLucaldCSYUIDPVtdfrnFDgVpcLMP//I5Vx+2rq8bD6YJ4A31usMZHrnr4SeyUVWhiHW1I6/izW19NCcvq/fsCafH76yjm++49Cc5WRlY+/qG2MsFqe8dJZjXiw1ZOGML8MBb8xv79tyT1E5cw5ZLnRJbVkJ/3v5CTnLqTIcYlldGa/2j7O5c5ijU1Psp1CS+uzD3wMnfjI/mw+KyuabTCTpHxO9rL/5b4dy+Kq6vNbUlq4RXu4Y5pR9m2e+oDaV8bnyODj3ttzlZFU39L4C8SiEwrl9jsaz6Ey3IqS1poxj1jbkvAFBBmVWPS+Ln8uOyH0DAqF0rDTdIirf2dotynZP278lLzkt2I/AklPjOlhzYn6yKsJSYEtOm9bkt55WNlQQDgWYmEyyu2+WnhOj3TAxCBiw8bw85VR8UU9LThuW1uQlJ8MwFj589qQGAez3BpfWU/FEPbel5NRcFebUfPe+hRogW3vf6hPyk1PDPhAogdgwDGY/cdCPxOJJdqb2qXwcbpBB2aIlp9ZD8pNTIOD0oSpCHXXy+qb8bL7UetraPcJkYpYWEpacalbAutPc2fuKKOBgyemIPJwDAI2VYRorSzFN2NI5S/uXyXEYSE1x3PgWraOyxJLTfq1VeckJMqhwsGyJ9afnJyer72j3S5CcJUO/ANnVN0Y8aVJWEuQNG/PTUftlakusOCY/OVW1irJtM+F8pqag0E43TU4sePDsTSkLK+MtH4qsAXI0nmB3akLY2ubKvD5rbVMlwYDB4PgkXcOzNKq2lHrjurzuAxRlmdW2HhExtppM50owYLCuRXzGrIdPS061K5zoZ64UYdRzW3dKTnmuJ1igSX9szHG85Lv3WQ6C0S4Y7cnvs3yCLac81xNkUFpv9TTMV06hUmf/LBIdtatvjETSpLw0aGf75op18NzSOUxyepdySNNRbtgSxaWjTNN0be9bVldGRWmQyYTJ9pTem4KrtkRx2Xzg7t43r47q2waY4nBf0ZTfjdL7jhZJ+xcZOmpWmy+ZdE9H1a0Spd/xCTERvQiw5LSmqYLA9MqRLFm/UMl2j0tyMoyiDIoXE9rppskJayx5x9AEg6kU3im4aigX1ya0q1ccaCrDIbsvUa5ESoKsahBlC7M7c6xMNxcPNEViKJumydbUIJF9mmc2bc2WeXvmyJDTwE6IzmFEFBhWdNoNQ3negIM1wa+sTvQlyofSCqePX5E4SG05ubCe0ku2Z5BMpB1o3Aw4FEdmTvp6MvIsp13VWEFpMMBoLMGegVka58twuhXJeuoejjIcjRMwYGVD9s3e0zEMY/4KBzd1lD0RuDjkBO7qqHkDDulyyrcUvnG96GE1MQjD7fl9lk+QIadZh8gMvSrKtQMlojQ+HwJBp5y+CHVUvlg235auEeLzZfm6GnAonr2vmPCd0+1b3/oWq1atIhKJsGnTJh577LF5Xz8wMMCll15Ka2sr4XCY9evX86c//UnRty1cqiMltNWKjJsZ3n/XDzTFtQk5yqIi7wMNLKDY3YxO2/0ItkB8lsawBUbnUJTRWIJgwGBFff5OgnmdOW4ePCsanH5W3Zvz/zwfkL6m8mXeITJuHmig6AIObhrK65qrMAzoHY3RPT3Ld3C3iPoHS/M/0EDRZea4uZ5KggHWpD5n/jXloo4qElvilZScVtSXEw4FF3j1wmSmo1yQU1Mqy3e4Hcb68v88jzMSjdM+KCYjurGm5i1bdNOWCIVFeT0Un45yIWt+37QMqhntX6x9r2Gt6JmcL0UWFLcC4m7YEsvryikrCU5pq2Az3i+qEUDrKM2C+Mrpduedd3LFFVdwzTXX8OSTT3LwwQdzxhln0NXVNevrY7EYr33ta9mxYwe//OUv2bx5M7fddhttbXnUXGts1qfK4WY43QZ2QiImpllaI8XzYUo/glmiDAXGVjstOn9lAbBvi2j2Lj3TrboNwjWQjDvlxQWMZXytrC+nNJT/VjpvSYgtp33yvg9QVJk5wxOTdA4Jp4sba8oylPcMjDM8MS3L182DJxRhwMG90p2y0iArU83JZxw+LTnVr3UGX+RDkWXmbO1yV0fNOXFxrA/GUqXVDS7sfda+17ddlIIXOG6uJ8hUR7mw90WqRW84KAonwfaUnBoqSqktL13g1Qszb9mim3KCotJRiaTJjh6xb1gTLfNhTWMloYDB8ITjdLWxdJQb+x5MLQUuAiz7fI0LTuxAwHDOu9PXlFVaWrUUwlV536vYnKPFhq+cbjfeeCOXXHIJF198MQcccAC33nor5eXl3H777bO+/vbbb6evr4/f/va3HHfccaxatYqTTjqJgw8+WPE3L0z2XSKcOZs7hqb+hbUJNezjzoGmbrVw4E2OwcCO/D/P47iZRQCw7xKhLGYcPEd7xVRYENG0fDEMxwArgqjnNheVOsB+qfW0vWeUaHxas1s3eyRCUSl2q/9QY2WYmrKSvD+vtryUlmpR9v3y9EbVtqHs0oGmiKKe8USSnb1OHxY3mPPwKcs52vMyJGZpt1BgbOtxL4sA5hnMZGXMV7dB2IV7VTZDeSNgiiBegeO2jpqzbDEeFcFWcFFHFY8zx+31ZLV/6R6O0jc6rerAdR1VPAGHV/vHiCWShEMBu9InH0pD82T5upmRCEWVjW2apryAwwwdZcnJrYB4Sk6Du1PD0zSFhG+cbrFYjCeeeILTTjvNfi4QCHDaaafxyCOPzPqeu+66i2OOOYZLL72UlpYWNmzYwHXXXUciMff0lmg0ytDQ0JQ/mtmxnTkd0w+eLkfSgqG0fgSFr9jdVhaWc/TlzmES6Y2qLWVRs1z0j3KDIjKU3ZZTS3WY6kiIRNK0M0kAmJyAfpcPNEUU9XTbiQ3pAYfphrKLmaMw1Tla4I2qd/ePM5kwiZQEWJrnVDgLu8xKtpxqVkBppcjw7t3qzmd6lPRelm703oN5yhbdtiWgqA6frtsSqfW0q2+MsVjc+Yu+bWAmIVzttC7IlyIKOLi9nirDIZbXp9q/pK8p05TozCkCOdlO7Mq8m/NbzJk96rotkXKO9m4VNmUB0zcaY3B8EsOA1S5kJMI8AQe35VRWJ7LmALoKPzBUbPjG6dbT00MikaClZapCb2lpoaOjY9b3bNu2jV/+8pckEgn+9Kc/cfXVV/O1r32NL37xi3Pe5/rrr6empsb+s3y5C+WRBYpTtjg0tR+B25sQFE1mjmmabOtyr2cEiH4ukZIA0XiSXen9CGQcaIoo6ulm/ykQjaqtbLfNnWnOfqs5vxvTxiyK6eDZ5d7kUot9W2bJHnVz2phFwz6ikXJsBAZ2ufOZHsU6eK5pdO9AYzlHX5qrvNQtOQUCTh+qAt/7ekZiDE3EMQxY1eDOgcY6eG7tHiEWT2shIcOWKCYd5bIt0VAZprFylizfdFvCjV6WUDQ2H7jvHIU5+roN7YXJUQiEoH61Ozey5NS9WfRzLmBsW8LFAN7cAQeXdVTVEojUgplw1muBYq2nttoyykpdqLZinsFMbssJiiooXmz4xumWC8lkkubmZr7zne9w+OGHc/755/OZz3yGW2+9dc73XHXVVQwODtp/du/erfAb+4u1zRUEAwZDE3G7ZxLgfukOFM0m5Oa0MYtgwGBds6XY05w5Up2jxXSgcTODypLTLAeaBhcPNE37AQaMdsNItzuf6VHs6LRLEU9Ic+akr6ehPaIEPlACdS405wcIljhZvgV++HSzQbWFtZ62dA6TTM4WGHKpJASKJjPHktOyujIiJe4caNpqy6gMh4gnTbscHJBzoCkSHTWeNg3WTWfOfrMNZkrXUW5h9x19oeCzfN3sP2Uxa2m9Jae61UK3uEHdagiVicE0fdvd+UyPkp7p5hazZs1PDMFIKpnELR1lGEUTcJAjJ7GedvSOMjGZ5lyWko1dPAGHYsM3TrfGxkaCwSCdnZ1Tnu/s7GTJkiWzvqe1tZX169cTDDqG4f77709HRwex2OzTFcPhMNXV1VP+aGYnHAraqbtTDp+9EpxuRbIJWRGa5S5NG7Nw+hGkO3PSeu+5hZVBNbALorM08S0QxmJx9qYa365pdE+xO72N0p2jLmdPgSgnrlslHhe4AbatW0ammxOdtrN8rX2v3sUDDaRlJRZ2wMGSk5vO0VUNYsjJWCzBq/3CAcH4gDNtTIaToMB11DYJWTmGYcw+mMntZuIw1ZlTwFjOy9ryEuor8m/Ob2HZElOdOS5Oq7doXAdGEKKDIkOrQEmkOZrdXFPrZ8t065Ugp0AAmq0s3+LQUa62qkjJ6ZXuEeKJVJavZUtUtogKB7coklLgbRJaijRVhqkrLyFpwiupgDuJScfRLCvgoCkofON0Ky0t5fDDD+fee++1n0smk9x7770cc8wxs77nuOOO45VXXiGZNvHy5ZdfprW1ldJS94yQYmZGyu1Yn8ieATmbUM8W0bS3QHG7ZNHCmQ4nOdOtvB6qWsXjAu5HYBlf9RWl1Ll4oLGzCOYq3XGTIoh6ph9o9nFxTa1rqcQwoH9sku6R1H4kIysHisaZIyPTLRQM2HK3nTnWwbOqVUxJdIsimQgsS0fNGMyUmIT+1IHG1Uy3lINgpEPYKwWKbFtiijNHhi0RCjs6r4B11N6BcaLxJKXBAMvq3KluAGcw08vpgSFZtoTVL6xYdJSLa2pZXRnlpUFi8SQ7elPtX2TbEgXuzJFRrm0Yxszs0f6dkJyEknIx7Mct0rPmCzzLt9jwjdMN4IorruC2227jBz/4AS+++CIf+tCHGB0d5eKLLwbgwgsv5KqrrrJf/6EPfYi+vj4+9rGP8fLLL/PHP/6R6667jksvvXSx/gkFx77To572gWapO9PGLKqXQrgm1Y9gi3uf6zFklMLBLNPh4lHo3yEeu67YCz8zR0ZzfoD1qTLgPQPjDE2kpiBKM5QLP+ppTRsrDQVY6sK0MYtISdDuZ2UPkpEmp2IxlOWsqX2nZ4/apXAuZk+BI6f+HRAbnfelfkZGKRw4fRLtbOy+7ZCMQ0mF0P9uEa6C2hXicQHvfdJ01PSD55Tm/FpHZcsrKTmtaiwn6FIvSxAN5EMBg+Gok5UvxTkKaVPrC9fm6x+N0ZuaBOvm3hcIGPa0Wds+l62jisQ56r6OmhZwSJdTwEV3SuN6MAIw3gcjnQu/XuMbfOV0O//887nhhhv43Oc+xyGHHMLTTz/N3XffbQ9X2LVrF+3t7fbrly9fzp///Gcef/xxDjroID760Y/ysY99jCuvvHKx/gkFx4xMN1kHT8Moip45WyWUwoETnd7ROyb6EfRtFw7M0irRYNVNikCxy4ikAdSUl9BaEwFEHypM0/3m/BZF4MxJd2K7eaCB9IDDNGeO23Ky9r2el0X2TwHSNxqjf0z829ws14Y0p1vndOeoy3KqbEoNOjGhu3CzfKVnunVOX08u9rK0KILMHFk6yioD7hmJ0jsSheEOiA2LQ2L9GlfvZcupkHVUl5z1VBoK2J/pBBwkZVC1FL7Nt61HyGlpTYTy0pCrn73f9Ammsp2jQ6+KNgsFSDSeYHdqYJyb1Q2Q3stXspxKyqB+rXhcwOfdYsRXTjeAyy67jJ07dxKNRnn00UfZtGmT/Xf3338/3//+96e8/phjjuEf//gHExMTbN26lU9/+tNTerxp8sM6eG7pHCGRlDCOPJ0iiHpuk3Sgaa4KU1NWQiJpikOT3XdvHwkHmsIvs9omKZIG03rmDLeLyZVGUDQsdhN76thLYvJmASKj/5TF+hkBB6tHossBh5rlwjmenHQcsAWGtZ7cnDZm4fTfk3zwhIKfCjwx6fTGc9/pJuS0u2+c0WhcTm9YiyLIzNkmoZk4QHlpiBX1ogxyc+ewI6e6VaIk1E2KweaT0M/NYn36YKboiBj2A/IyqPq2wuS4u5/tEWQFxGGWXr4y+vgClNU6ZZAFGhja2TtG0oSqcIimKnf3o32XpKbW25VdKnRU4e59xYjvnG4ab7GivpxISYBoPMnO3lHJB5rCzsyZOm3MXWdOej+CzR3D8iI0UBRRT1lZBDBtOpwlp/rVEHK5D2XDWgiWCqfe4C53P9sjyCqxgrQ+iR3DYmjIcKrZt5sTMUE4xQv88CmrHAQcZ8627lFi8aS8Ujgo+MycHb2jmCZUR0I0Vrq7H9VXlNqHpJc7h+XaEi2FnemWTJpSmr5b7DubjpJpS3RvhkTc/c/3ADKmoFvsl+7MsQI25Y2i966bVLZAWT2YSef3ocCQleEL03r5JuLCeQmSdFRhB8Wt9bSmuRLD5YQCKyDeMTTB4NikXFuiwHVUsaKdbpq8CASMqVOSbAPM5YMnFHzZ4vYecaCpKXN32pjFvukp7DKVReO+gAFjPTDS7f7nLzLJpMn2HnkG2PrZ5OR29hSICZvWQalA19TWrtRETIlyerlzhGR3Sk4VzVBW5/q9Cj2DSqYTu7UmQlUkRDxpsr1rEPq2ib+QGZ0uVOdo2npy+0AD03rmyGpVAVPXUwE2qm4fmmB8MkFJ0GB5vXvN+S0cW2JEzoRZi9pVokl5IuoM1SgwttpTm2XaEiNyndiGUfD2ubP3yatu2NE7SrRnOyRiEIqILHe3KXhbImWbu9wXG6AqUkJbqjfw5k7JAYcCtyWKFe100+SNbSjv7ZczbczC2oQGd8HE0Pyv9SHbepysHCkHmimZbhINsNJyp7dLAQ5T2Ds4zsSkNW3Mveb8FulyMmUePKHgo57bJDpHVzWUUxoKMD6ZoG9X6v9PxnoCJ+pZoBlU2yRMLrUwDMPWUbu3vSDKdENlUL3M9XsV+kRgWe0PLOzpcO1DcnVUwzoIhCA66JTcFRCWnFY2VFASdN/MnzKcRKacAgFoSk2bLUAdNTg+SU9q+rUMZ46VQbW1a4REt2RbokXbErnSVBWmoaIU04T2rc+KJ91uzm9R8DpKXhkwOHvfjl07YbwfMJz+a25iZc0XcPuXYkQ73TR5Y5fvbHnOmTZW5eK0MYvyeqhqFY//9TMYLCxj2YqkyT7QPLu7n6TMCA04DtIX/1B4ckop9VWN5YQkHGj2aa7EAPrHJhnZk4pGypbTtr8VnJwGxmL0jLg/bcwiFAzYjXq3vfiUeFKaczQlpz1PFJycID3TzX05gdMzZ9uLT4snGiUdaJr2FT9HOqHjOfc/f5GxswgklMJBWgbVtu0wMYC0A02o1MkefuYXBbemnOb8kuSUWk8vtA8R79osnpSmo1LOnM13F5ycLOdoS3WYqkiJ65/fVltGpCRALJGkf1dqP5JtS+x4qODkNJlIsqtXNOeXZZ9b2W7bXlJkS7T/CwZflXOPRURmSxGYRU61y0WigdvUr4ZgGCbHYPej7n++ZlHQTjdN3rSnxpGPphwEfWUr5BxoACK14uf//jvctAGe/KGc+ywCWyVmewA8t2cQgMBYD4HoEEkkTBuzSKb6rzx+W+HJyeoZIaEcBOB3T+/BKngaejUVjZRlKFvjyHc8UHhySjlyWmsiVITdnTZmESkR+1z3DhGdfmqsUcp9bAfOSEfBySkaT7CrT+6BZjQq9qOelJx2BiRkuQE8/xvn8X8fX1ByArllwID9exDvFI6ckbKlUBKRci9KUlnK936+4NaUXbIoSU7/3NEnHkyOExpOHdxl6ahJ8TvBMz8tWDnJWk+/eGI3E5MiS6Z7u+V0k+TMGUj1hd37RMHJaWfvGPGkSUVpkJZql4eFpLCKWzq3CR31XKxFyn149Z/iZ2wEbtpYUHIyTVP6mhoYE4Hc/l3CNm8vkVACDPD0j0VZPcD3Xl9QcipmtNNNkxftg+N87yFRUrrWEI3EH+yvo31QwgSjwT1TJ+6YSfj95QUTVbObiUvoRdA+OM61fxBKYm1AyGm32UT7qIS05cE98PKfnesClZOMbI/2wXGu+rUwusqYoM3oBaCjVIKTYHAPPPYd57pA5SQjyw2ErJ7aNQDAWqMdgG88E3B/7xvcA/d8xrkuMDnt6h0jkTSpDIdodnnaGAg53fUvsedZcvrtrnI5cvr9x5xr0ywoOZmmmVZeKmfv+/b9otm7paP+OdIkz5bY+5RzXWBrSmbT9/bBcT77W+HAWZNaT/1mJe1xCdkeg3umOrILVE4ydFS6LWGQZHVKVl3hFa7fi8E98NDNznXByklOL8v2wXEe2SpsPWvv++4LITk66k+fdK4LTE5dw1FGonECBqxocH8/ah8c585/7gac8+7d7VXybQkKy5YoZrTTTZMX23tGSabSciwD7JXkUnb0jLl/s76twLSmx2bCaYztY6ZMG5OQ6abl5B7bJEbSpsqpA4Bes4rtoxKyPfq2CqMrHS2njNneM4oJBEiyOiWrl5Ot7q+pApdTemmpjAONNaAGYE3qQPOKllPWdA5FGY0lCAYMVtS77ySYVUeZEuQERaSj1Mhpq6ltiVyQ2SMxXU5tRi8RY5KoGWJrrMH1exX63idzPYFjS4CzprZoHZU1lnN0RX054VDQ9c+fYkuknG6vyNj7ClxOxYx2umnyYnVjBYHUOcmK0GxnKasaZdS4rwWmHcqMoLwSSYV0pKaNhQIGKyRMG5sip5Sy2G5KlJMxbWspEDmB3CyC2eS0TcspJ2TKCYSsDAPajG7CxiQTZgmdNLkvKy2nvJh176NNyylLLDmtrBcDRNxmdh0lQU5Q0LIaicbpGBItP2SUl2od5R4yS+Fmk9MOs5VVzVWu36vw5aRGR9UyTKMhhsTtknGOKng5yQ20KtNRBS6nYkY73TR50VpTxvXnbgRMexM689QTaa1xf6ojNW1wyqedayMIZ98knvc59oGmoVzKtDFLTgaOsjj40CPkyemsm5xrI1AwchqamKRrWN60MUtOAcNxYtev3CBPTmenlYQUkJxAvqHcWlPG1WcekHagWcIXzz3IfVnZcrICDkZByklWGbC1puoYot4Q93r3G18jT07pxnJBykneepquo15zwrHy9r7X/qdzXUC2hJU91VgZpqbM/eb8tpzSdNT6Aw/TOipLJhNJdvbKq26YYkuk1lP50v0ky6mwdZSsfsutNWVc+6YNdpbbXrOBz54rwT4vdDl1yZfT9edupJRJVhhdAJz/+lO0LaHJGO100+TN+Ueu4F0byqk1RjExeN2Jx8u72TGXOo8/+BAcdqG8eynEbs4v6UADQk5XvWE/2wA78oijpd2Lwy9ypsOdc2vByMkqM2iukjNtDISc7njvJltOa/c7RMp9ACGXA98sHh99acHIKX3amCxnDsDFx61iv5AoLW1avZHzj5TQLweEXF5zjXi8+qSCkRPIj06DWFNvaB0GYCSyhPOO3lfOjQ67EN7xC/E4UldYcpI8EROEnN591BKWG90AnHr8CdLuxdGXQqBUPL74fwtGVrKn94GQ0/Vv3mjrqEMOOVLavTjsQlh6mHj8+v8qGDnt7htjMmESKQnQWi1nWMj5R67gt5ceZ8upbZ+DpNwHEHI57KLU44sKRk6maabZ5/LW1DuPXsmh5cKRE16yr1xb4g03iMethxSMnEBuX2yL849cwXmrYgQNk2iwgjcdf5icGx12Ibwn1Rs7UAKHXCDnPhqlaKebxhUOqxRNQPtKWpypYDIorYDyVE+K5KS8+yhmW4/8gyfAQc1h2owecSFr2piFlQo9KaHXyyIhswdLOoesqLWjnmM1klPKm1Ij5Cf65d5HIbv6xLSx8tIgSyQdaAAMw2BDWBjKI1WS5dS6Ufwc7ZJ7H4VMac4vKTptcXCZcOT0RlZJvQ/LDhc/J/ohNir3XgpRpaMOq+onYJiMBiqhoknejQIBqE1NnkvE5N1HMTJ7w6azYWmV3ctSui3RsI/4GRuRex+FWHJa01hJIOB+L0uLDUtrWBsQtsRAxSpp9wGg5QDxc7xX7n0U0jsaY2gijmHAqgZ5zhyAjSlbYqhitdT7sPQQ8dOaXl8gqNr7Dq0QZ6ieyEpn7KwMlh4msrCTkwUnq2JFO900rrAaMVVlV0DClMXp1KYiQIO75d9LESqi0wArjQ4Chkm/WYlZVi/1XgUtJwmTS9MpDwVYkzKU94YkjSS3sOQ0UEBySotMyzzQAOyTKrHaE5S899WuFD8HdmN38/U53SNRhifEtLGVEqaNpWNNLn1VtpwitRCuFo8HX5V7L4U4pTty9741li1htMk90EBh6yjJztEVoQHKjSgxM8hEpey9rwB1lKJgQyBgsC4o9r49QW1LZIu17y2vKydS4n5z/nQs56h8WyIlp+F2iBdGwGE8lmDPgJgiKnvvW2MIHbVb9nk3GILqVElpAemoYkY73TSu0DopNoSX463yb1aTMhwKSrGridA0RXeK+5lL6RmVnClYW8BykqzUGdxNhBhRM8TOeKPce1lyKiClrqJk0WJZQjhWXkkulXujmpSBFxuGiQG591KEtZ5kTRtLpzW+CxBT4aRiGAWno0ajcfYOpprzN8pdU0tStsTmeCumbOdyQesouc7RqhExSW+nuYQ9w3Gp9ypMHaUm0Mr4AA2myGLfZsrWUYUoJzXrCaAtLv7fXpEtp4omCEUAE4b2yL2XIrb1iPVUV15CfUWp1HvZ592EgvOuraN2yb+XRjra6aZxhdqhlwDYGS0nnkgu8Op8b2ZF0wpjE0qfNlZZGpJ6r9DeJwFoT9bzar/kss8CkxPASx1islRtuVylzq5/ALDHbGT3oORIpJ3t8SokJa9dRTy7ZwCApsqw3BuN91MZFwea3bIrn0rKoKJZPC6QNfXkLvF/t7RWYkuCFHUjrwCwc0zy7wSk7X075d9LAY/v6AOgtqyEOskHmpqBFwDYG69maFy2M6ewdFQiadqHz6qIXFvCePVxAPaYDbzaPy71XoUmJ4AX20WPSdnriV2PANBl1rBjWPKRz3IQjPUWTGn9M68OANAisU0FAPEYtRMigLdrRG4AampgqDDW1D93CltiWZ3cjHmAuuGXAdg5Lvl3Agpy72sfHOfhrT20D0rWGx5EO900+fPkDynd/SAAnwz+nKGHb5d7P9tJUBib0H//bav9+HU3P8Cdj0v6dz35Q/jHNwE4M/gPAk//SM59LGoKq3TnJ4/uZEeqOf8nfv60XDn95gMArDY6aNxyp5z7WFQtFX0jErGC6Btx5+O7+NOzotfQ/zy4XZ6cAB76hv3wqu0XCdnJpIAyc+58fBc3/HkzAI9s7ZUrp8dvJzIqIvqfnfgaySd+IO9eUFCZOXc+vouLvyccLAPjk3Ll9OQPCb38RwA+GPo9I/+QbEvUFJ4tMZkQ2YFvvfURuTrq/i8DcGLgGcLP/FjOfSxq0soWC6C0/s7Hd/HsnkEAPn/X83Ll9NN/A6CJQZZu+7mc+1hEasQfKBgd9bPHd6ce75ZsS9xMABH0/EzHR9TZEgWioz7/u+cBeHbPoFw5PfEDIn0vAvDp5HeIPvZ9efeCgsse/c4D2zj2y/fxjtse5bgv3ydXVh5EO900+TG4B37/MXsAdcAwqbvvP8Tzsiggz3/74DjfvO8V+zppwqd//Zz7EYCUnCwCBmx88ho1chra6/u+Ee2D43z2t8/Z1/LlJA4WhgGv3/EVuXJK7xvh8zXVPjjOVb9+1r42kSQnEDJ58Eb7MoAJv79c730ZYMnJOj5Ll9OfPmHrqKBhYvzh41pOGTBdTiBZTlN0lMnSv1+p5ZQh7YPjfPWezfa1Kh0VMOCo574gV05Waf3kKIz1ybuPAmboKIW2xLl7b5ArJyiYNaXclvjrl+zLICamtiUyQrmO+sPlU2yJ0v+9QsspQ9oHx7n+Ty/acRNpOsrDaKebJj/6toI5tSTNMBPQt03ePQuoX872nlGmx20TpsmOHpdLP2eRU4CkXDlVNEKojELoG7G9Z5TkNEGpklNQtpygYKKeyuQEQlbTV6+qvU/LKXO0jsqZxZeT5L3P3vf2QDIh7z4K2N4zOiMJrGBsiZIIVLaIxz7PSix4W6JAskcX25bQOiozFl9HSZZTAVU3KDvvehjtdNPkR/3aGRPGkgSgfo28e1qb0HgfRP09Qn5148zmrEHDYFWjy30J6teCMXW5J2TLyTCcCLXPozSrGyuYPkevYOQEBdODanVjBdOHlUqREwhZTcM0gpL3vsKIeqqX0zQdZcjWUVpOWTPL3ifdlqhqhUAIkpMw3CHvPgooHh3l/zW1aHIyAyTrVrt7n+kUSOP3xdZR8m0Jaxq6llPGzGZLyN770nvv+by0Xtl518Nop5smP2ra4OB32pdxM8Cvln5SPC+L9L4RPs/4aK0pY98WZxpc0DC47twNtNa43Fi8pg1O/rR9GTcD3Fz2YblygrT+e/6X02v2b7avpcrprJvsy4RpcNXkexkra3H3PjPuWxjRtNaaMi46dpV9LU1OIGTVuK99GTcDbN30RblrqkAOnq01ZVx91gH2dcBArpzWvda+jJsB/rb+s2rkNNIB8ai8+0imtaaM68/daF9Ll9MR77Mv42aAO5o+LldOgaBTWl8AOurg5TX2tVQd9dpr7cuEGeDLwQ/KtyUKSEeddZAz9VCqnM6+2b5MmAZXxd9LlyF7Gnpa/z0f01pTxgdPcgJr0m2J1oPty7gZ4LnDviBZR1lZvv63Jb54zgb7WrqOOuBN9mXcDHD36qvkyqlmGWBAfFwMKPExrTVlLKtz5CJ1TXkU7XTT5E+diJh0NJ/A8dGb+Y3xGvn3LJDDJzhJ5Ve9fj8evPIUzj9yhZwbtR0GwGTVco6P3sx3R0/AlB05KZCoJ2CPIX/b4cvkyilNqb/RuImfJ05hj54OlzH7NAsn9mHLa+XKCUQ5KfCjmg9yfPRmnmw8W969oKAmjh21uh6A6kiIh648Va6cyuoA+FfzORwfvZn/i5wu714A5Q1QkoreDr4q916SeevhyylJpRL84oPHyJVT4zoA+huP4Pjozfw8eYq8e1kU0N5XEhQm/Udfs4/cvW/FMQAkIvUcF72Z744dTyyup9ZnijUJ8w0blsiV08HvwDrmXRL+L2FLDEgu5SogHXXA0moA9m2plG9LBMTE0t/XX8zx0Zt5tPZMefeCtID4HkhInhItmRPWNQEQChj8/T8kyylV5v5Ky+s4Pnoz/1v62gXekCehMFQtEY99XokCMDEpbObrz90gf015EO100+RP6lARbz2cDhrYM6CgKWJN4Rhg7QMTALxm/xa5Hv+UnALN+9FBA2OxBANjk/LuBwUT9QTYm5LTpjUNcuVk9b8rqydZJyKtr8peUwXS0w2c9XRgW41cOZmmvabal5wi9j7pztGUnCYGYGJI7r0kY62nVY0V8iOdqUbHY0uPUaOjDKNgDp+9ozEmkyaGAQctq5V7s9T+Y7YeTAcNvCp7PUFBOXOsNXXyvs2SdVTKlmjch4GSJkwT+c2wC0lHDQo5HbGqXq6cRjqAJARKGKs/EED+miqQ6gaAvSk9sV9rtTId1bP0JDU6qnIJBEpE4HC4Xe69JGOtp7a6MtrqJJcqpmy+aOumlI5S0I+sQM5RE5MJekbEUL3Xb2gtqgw3C+100+RPahOqaBYZb3sHxklO72zpNgViKA9NTDIcFVGmpbURyTcTSj1Yu4ymqjCgwAArIOfo3tShYmmtbOMrlRlTs4y21L2UGcoDu33fN8IylKXLaawP4sLYq2oW/3/S5RSusrO2/H6osQ7pS1UYXqn/q/KmVYACOUHB6ChrPbVURexMKmmkdFR5k7AlBsYmGYlKzsIoEOdoImnSMZQ6fCrSUYZSHVUYPagA26Ei35ZIBfCqW1laL/opKbMlRjphckLuvSRjObGlyykeTTlIoSK190mXUyBQMD2XbZtPhS2RCjiUp8670gOtUDA6qiPlHC0vDVJTVrLI32Zx0E43Tf6kDLDq5lWEAgaTCZOuYcl9bAok6mkpi9ryEspLQ3JvNoszR3qpgR319LeyME0zzZkj2Tlq/U7XLLP7H0hX7NVpfSNGe+TeSzJ7VMupsoXW+prUvXXUM1MsObXKllMyCUN7AahfKpqI7+kfV1daXyA6SrqcwNZRkYaVtlGurLTe53LqGp4gkTQJBQwaK8Nyb2bbEm0sS2WWSJdTgfR0AxbBllhuy0m6M6esDkpTfYp9XlrvOHNkB8SFfiIUoalZ9AdT4swpEB2lzJYA+3e6vlUMT+gajtolk9IoEB1l2xI1EQxj+jiZ4kA73TT5YZpOBlXdCpaklJO6vhH+3oSsUjg12R6WobyctjpV0emUnIb2+rpvxMDYJBOTomfNEtkGmBWdTne6yS41CJU6fSN87iC1Sg2kR6eHHDm1qZITOHufzw0wa++TnpUz2iWmUxoBmttWATA+maBfdml9geiovarWE6TtfcsVBoYKRE6p9bSkJkJw+jg/t5nNllDVAiE6COMDcu8lkVg8SfeICEqr1FHLahXpqPTSem1LZIYlp+o22upTTmylbXr8vfdZWfPSbYlJZ5hB9ZJVlJUEU/eXnNFZIDpKWYavh9FON01+TAxAbEQ8rl66COVw/lbqyrJyYFp0WpGcrL4Rybiv+0ZYcmqsDBMOBeXezJJTdVvaelKZQeXfNZVMmrYB1irdOerIyVpP7QMi20Qqtpz83VTXiXoqKteuaiVcGqbZLq1XlOXr4/UECrM9EnEYTmV81LSpCwylO7F9XFqvtMRqMXRUaYUYUAK+Djh0Dk1gmlAaCtCQGs4kjXQ51am0JQqjHE65jqpx1tPg+CTDE6p6LvvdlhBOL1V99yitxIjUqltTBdKmx+69p51uGk2OWMqivAFKy9WlsFvKYrRLRB98irL+U2kZiUqjnul9I3xsKFtyalPqHF2mrnQHCiIzp2ckymTCJGA4E+KkkVa601wVIRQwiCdNOodkRz0LIzq9GOXagLqS7QIrCZGuo4bbwRRN36loVlha3wZGQPRnHO2Wey+JKFtPME1HKZITFISO2pPmxJZeYjWLnPYOqCit97+OmphM0Dsqmr7L75Ho2BIV4RB15anSej1AKyMWxZYwjMWxJQogMFSMAxQstNNNkx9ppXCAuuh0gfSNUJa+PtabavpuQNVSdc5RKIiopzI5gd2oNb10R2nfCB/LySqFa6lW0PTd3vvaCAYM+3dDWWaOj+UUTyTpTPX9lH+gma6jFAeGhvZAQnLGgkSUlZfaJVZLIRBwMqiUlNa3isc+XlPKdFQ8KoKdkOoVpmjfg4LQUe2qBjLBFKdba00ZhgETk0nbmSSNAtBR1nqqKA1SXSa73/Ic56g+XTGUCU5QXF0ZcPr9pDtHrcSF6JCoLvMpji2hIDDkUbTTTZMflue/eloWgcq+ET5WGHvSGktKJa3pO6FSpweVHnedEcoiNMmE01S3po268hLKSxX3jfBx1HOvqvUEUw40wCIMJ/GvnLqGoySSJiVBhU3fU4ayMh1V0QzBUpG9Za1pH6KsbDGtTxigODDk/8On00xc0cEzFIHyeltOHUMTxBNJufcugL1PWSkcTNFRpaEALVVCLyoLOPhaTs56UpaRaOmoWkV93ezS+lfFwCEfMhKNMzQh+kVL3/um2XzKdFRpOVQ0iccFcI7S5aUaTa4MTY3QLNM9qLJCWQPQORwEQxNxhmT3jajxf98IZb33RrpE/zsjCJVLMAxDXc+cAlhPykrhYBYDTFV0OmUoj3ZDTME+KwFLTktqIgRkN30fmurMUbaeAgHfB4ai8QTdw1bT9wItAwbfywkUtkBIz8oxDJoqw5QGAySSJh3KSuv9a0sok1NsDMb7xONpGVTKyuF8vJ6UNn0fmqtiSLKOqm4TtmYiBiOdcu8lifaUnKojISrDsjMSnTJgULie0u7p1zVlmuYUR3axop1umvyYw/O/p19F3wh/Z+YkkiYdqkpC0krhgKl9I3TUc0GUNQC1I55LISgMCGWHz/RJVj7tG7FX1UTMxCSMdIjH1dMONLKj05FaCFeLxz4trbfLDBRnewCKy+H8raM6B4XDLRwKUC+96ftUHWXJqWdEYWm9T+UECstLp62nQMCwHbLydZT/e7opCwxZjpzSKojUAOl7n6IA3nA7xCWXskrCma6tMmveyvJVZEsEQ8LWBN/ufUqdo3PoKKVJJj6V09B4nLGY0ONKKlE8ina6afIjbeoOiMwFw4BoPEnPiGRl6/NoWnrTd2uinjSmRWhAYWp0AfR0Uxahscu12+ynlPVJtOQUG4bxfrn3koSy8lKr6Xuw1E77V7aeCqC0fnEyEqeVl+qyxQVJP9CobPoOUFNWQkWqtF5ZQ3Gfymk8lqAv1adL2aTFVLABVOoof68nSCsvVdacP01OqnpQVTSJ8mMz6Tj/fIayliITg6JXF9g6qk1Vf1jw/Zqy1tOiVDek7tkxNMGk9NJ6f+soa89pqCglUhJc5G+zeGinmyY/bM+/2BBKQwGWpKYGKutH4NOop11iVR0hJL3p+1RlAWkGmKqop0/7RsQTSXsipfQSq2llBpCWPSp7PZWUOX0jfBpNU9akOr0HS0CsXWUHGkhbU/40wJRNG5tMm0hpl5eK9TQcjTM4rqq03u/rSX22h2EY6qeh+1ROe1NyqgyHqI5ILrEammlLKOtBZR08x/sgOiL3XpLYa7cUkV0GPIucFiMw5FNbYq8yWyJl85XVQWkFwCJNrfenLaFMR5nmjDXVWBmmNBQgaWJXLUmjdqX46VM5KQ20ehjtdNPkTjIxq5NAXQ8qv29CKidiTp26AwrLrKqW+rpvROdwlKQJpcEAjRWKmr4vxnoC30c996haU4OzOUedDKpkUlFpvU/lpGzvs/a9knJxqAHKSoM0pEol1fVJ9GcPKmVDFMBx5syS5auutH6XL0vr2wecoJDqjERQ2IMqUmOXSvrRmTM8Mcmw1fRdekbi1FI4UNyDyvc6SpEzZ5711DsaYywWl3t/39t8ipw54/0QT62blI4KBAx1WYnaOVoQaKebJndGOsFMQCAkpmKmUNesNbUJ+bRvhLUJKWkqOY9i130j5kdp0/f55KQ06uk/OUXjCXpGrKbv6kt3ltRECBgQSyTt7yENH8sJFDpz0oMNac4I5TrKh/seOL33pOuo6IhT0j5rOZxkZ451z8lRX5bWKyuFg9mdOSqzfH2cPWr13aspK6FCetP3eaobBhT0XPaxjhJN3xX1HR2aWa5dU1ZCVer3Y6+q7FGf6qh2VXKy/n8qmiHkBN+V7X0+l9MelVObPYx2umlyx1LqVUsh4NRoK8ugsvpGYDqKy0com4gZj8Fwqun7YpQagK+jacoinjBHSYjKvhH+lZOV3h8pCdhDQqQxODMrpyQYsA2K3bq30byoK92ZuZ5AoY6aUloveRiABJRNWrSco+FqiFTbTyuTU0nECRz6MCtRWbaHac7RH3YxelBpOc2L3R92pi0xoqK03sc6amBskvHU8JYlsvvDzqGjrMCQtiXmR70t0TblaWXDFKz9drwfosNy7yUBx5bQTjeNJjds42vqJtSmqr/HlIbi/vP+K8v2GG4HTAiGobzRflptdNq/qdHKIp4wqzOnsUJl3wj/Tkjak7aepJdYzVJWDzrqmQljsTgDY+LA16qsdGe6jlIkp6pWkQmejDuBDx+hLINqgYOnzvKdH7t0R7aDYGIQYqlearOUAbcPTKgrrffh3ufYfAoCeLPoqEhJkMZKq7ReT62fC8uR01ipoOn7As4cpROBfVZan0yadqab9OFZs7QUgfTe2LKn1leLyfXgbx2lnW4aTY7MsQmpnQ7nXwPMKjVQGqEJOEveMpT7VPaN8KGclDUAnRyHsR7xOG1NBQKGPSVJ942Ym/ZFmWK1fMrT6soWU/0shzsgLrmU1WUsJ3ZVOER1RFFG4jQ5KWtUHQj6urRe2ZqaMyNxEbKxfSgn5T0Sy+qhtNx+ekl1hGDAIJZI0q1L6+dE2Xqapem7RZvy4ST+syXUTsScOozOQtkALev3Iz4OY71y7+UyvaMxYokkhqEiI3Fmhi/AsvpFyPL1sY6SHmj1OL5zun3rW99i1apVRCIRNm3axGOPPZbR+372s59hGAbnnHOO3C9YTCwQnX61f0x+3whfK3ZFZYuzDFGAVN+I1KQzZb2NfCgnZRGaob3iZ0mF3fTdQlmjar2eMmOxSw3KGyBUBqQdrnyC0ojnXDrKcmLL7hUGvh34MzQxyXBUBGMWS0dZcuocniAWl11a718dtdjl2qGgM7Ve66i5URbAG+uDeCor3nL6p1imKsvXck4M7fFdab2TOaqwDHguHSXbNg+FRUY2+K5k21pPLVURSoKS3Rlz6ihFzlHw7d6XSJp0DIn9SJeX+og777yTK664gmuuuYYnn3ySgw8+mDPOOIOurq5537djxw4++clPcsIJJyj6pkXCLKVw4Cyq0VhCft8In0Y9JyYT9IyI4Q/KGoBOi9BA+uFTVdTTX3KCtAag0kvh0sq1p5VHLlM19MI6eE4MwMSQ3Hu5jHXwlF4KFx0W/z8w596npLTep1FPu2RRpXN0mpys6LTaskV/GcqWnGrLSygvVd/0HUR5VzgUwDSdg7A0fKqjRNN3VZMWZ3cQgMo+if6tblDWx9f6v6lsmdL0HRQGhqqWQKAkVVrfLvdeLrNHlY5KJp1g63QdZWfNKwgM+fQctSi2xByVXXsHxklIL633p9Ota3iCRNIkFDBorAwv/IYCxldOtxtvvJFLLrmEiy++mAMOOIBbb72V8vJybr/99jnfk0gkeOc738kXvvAF1qxZo/DbFgFDs5fuiL4RYmHJN8D8mUVg9eYqKwlSq6rp+7SsHFBYvpN+8PRZ3whlDUDnKNdOv7d0OYWrnCw7nx1qrPR1ZXIK10xp+g6qy+H86czZo7LEamj20h3rd6R/bJLRqKLSep/JSdlUOJjTmWMYhrqS7Rp/yql/bJKJSZEFKL/Eah4dpczplrL5RjphUnKPU5dR3lKkeqbNp2w9BYKOzemzNaXMlhjtguQkGAEn2yyFsvUEvtVRe1WtJ5jT6dZSHSEUMIgnTbqGJe9HPg/gLakRbQiKGd843WKxGE888QSnnXaa/VwgEOC0007jkUcemfN9//mf/0lzczPvfe97M7pPNBplaGhoyh/NHMyxCYFKA8yKevpzE1paG5Hf9H0eQ1lds1Z/9o0YTZvyJb9R68LrSTcUnxtlpTtDmclJemm9T+XUrsqJPTHgNH2fFnCoipRQbZXW66EXs6J20mIGAQdlcvKnLdFUFSYcUtX0fRZbQlWWb1mdaMGQ/n18QDJpKmxVsfB6UjtAy197X7uqvc/6/a1aCsGp2cSWnLqGo0TjkstzfaqjlAXEE2nZmtPWVDBg2MEOZW16fCcnhc5Rj+Mbp1tPTw+JRIKWlpYpz7e0tNDRMftUsAcffJD/+Z//4bbbbsv4Ptdffz01NTX2n+XLZ5bkaUg1fU85T2bNoFLcg2pwj9gYfYIXIjSgUE4+7RthGclVkRBVspu+W86c6tnklMqgUtKDyn9Rz/QSK3UTMWfKySobGp9M0Dcak/s9fCgnSC8DVpSVU94AJTP3WScrUfegmg3HQSBZTvM0fYdFyMaeGBR/fMKiTMScJYNKmZzSS+t9ZEv0jEaZTJgEDGipklxiNU9LEbXZ2P6sRHGmNi/OdG2A+opSylKTUy2nhTR8rqOky2m4HcykKJeuaJ7x1+pK6/0pJ6U6yuP4xumWLcPDw7zrXe/itttuo7GxMeP3XXXVVQwODtp/du/2l0dZGdaBprTSGWOchrKoZ2Wqb4SZ8FXfCGcTUuh0m8WZo6Oe87NHVZkBzJ/plrp/+8CEur4RPsr4GJqIMxoT0WD5PRLnNpTDoSDNqQOV/Awqv/Z0W9yJmBbqyhat6PSrviqtVyan0R5IRAFDZHxMQ1k2drhSTOUEX+koZRm+MH9/WJU9qHyY8WGtp5bqCCHZTd/n0VGWnAbHJxmekNxz2YfZo/FEUl3T93l01OKU1vtnPYHCVhX2GWopBGauXWXDFKx9d7RbJL74BKU6yuP4xunW2NhIMBiks7NzyvOdnZ0sWbJkxuu3bt3Kjh07OPvsswmFQoRCIX74wx9y1113EQqF2Lp166z3CYfDVFdXT/mjmQXL2Kme2fQdFHr+AwFHYfnI+68sK2diCKKpqP1i9nQDX0Zp2lVFPGFeQzm9b0TnkI56TsdaT3XlJZSVyi6xmrt0B3TUcz6mNH1XNUBmlmADKJRTdZvo2ROfgJH5hz55iT2q9j4rw7eyBUKlM/5aWTY2+HJNWX3CpA+QSSacpu/zVDfsGVBQWu9DOSnLnoJ5dVRlOGT3EVYWGPKRnLqGoyRNKAkqaPo+T+89WISKIZ/1XFZmS8zRG9ZCmZzK6qC0Sjz2kYNUaWWXx/GN0620tJTDDz+ce++9134umUxy7733cswxx8x4/X777cezzz7L008/bf954xvfyCmnnMLTTz+ty0bzZZ6eEaC4B5Ufo56qNiFLTpEa0SR/GpacuoejTEzqvhHTURahMc00Q3nm3hQMGLaDVlk0zUdKXVmvHFjQmdOWcmQry6Aa2uub0vq+0RjReBLDgJYayQeahXSUql5hoVKntN5He5+1ptRle8x+8FSaje1DHaVsIuZIl5hEaQRFhcE0WmvKMAyYmEzSK7u03oc6Sm1G4tzVDZC2ppQN0PKfnJbURAjIbvo+xzA6C2V7n6UjY2mT2T1ONJ6gezgKqJzaPIeOUhXAMwxfZo8qm67tA3zjdAO44ooruO222/jBD37Aiy++yIc+9CFGR0e5+OKLAbjwwgu56qqrAIhEImzYsGHKn9raWqqqqtiwYQOlpTMjqposWKB0R1m/HPBlNE3dRMz5lXpdeQnlpVbfCB31nI6y9PXxfpgcFY+rZ5ZYASyr1T2o5kKZnCCDvU9R1LOyBYKlorTecjB5HKvEqqlycZu+w2Jl+fqjB1UiadoTthe7DNiSU/vgBPFEUu538WEPKuW2RPXMpu8ApaEALVXiUKWzfGeibCJmYnLOpu8WyrOxB3dDUvLadYk9i9H6ZbF1VGk5VDSJxz5ZU52DwuEWDgWor5B8ns/Q5lOTZOLHvU+Xl1r4yul2/vnnc8MNN/C5z32OQw45hKeffpq7777bHq6wa9cu2tv909fL19ie//kjaUMTcbZ0Dsv9LlY/gt2POdlCHmZK0/dFnIgJqb4RKVn95YVOO7tBCpacul7yhZxAYTNxS07ljbM2fQcnmvbI1l65crIiaWM90POKvPu4iLJGrclkWonV/Hvfs3sG5copEICqVMbJ3qfk3cdF7CEKSp2j85fubO8elSsncIIe2x7wxd7XM+I0fW+W3vR9/sBQc1WYUEA4Ap/dI3nAgfUd9jzpCzlBWnmpdKdbWkuRObB01F9f6pKso1K2RO8rvpGTMptvuB0wRUDGcqRMw+pB9fiOPrlyql4KGJCIQccz8u7jIu2LMuRs/gyqF/cOqdNRm+/2xZpKn65tzNLiyFUWaimSWk+7+8bYK3vYmSWnHQ/5Qk7jsQT9Y6J3pPQWCD7AV043gMsuu4ydO3cSjUZ59NFH2bRpk/13999/P9///vfnfO/3v/99fvvb38r/ksXAApvQH57Zaz8+/aYHuPNxiV55K3X9lb/ATRvgyR/Ku5cLDI3HGbOaviuLTs9tKFsZ9Nf/70sc9+X75MnKcgwM7PCFnGAxekbMvp4ABsZEyc7P//mqXDm9cJfz+FtH+kJO7aoiaWNpTd/nyEjc2j0CwJO7BuTK6ckfOtHOX7zbF3JysnJU9jWa3Znz+I4+AIYmJuXKCZxpmE9+3xd7n11ipbLp+xw66hdP7CaeSpI595aH5cqpN9Xrd9fDvpDTZCJp9/iUHhjKQEclUtlMN9+7Re6a2v2o+DnW4ws5gcIWCAs0fQfoHha/M394pl2unP71UyDVI+y2U3whJ2WlcJMToiE+zKmjXmofEj87h+XrKDO1yd5/nS/WlLKAOCxYrv33LUKOk0mT47/yV7lysn5nnvulL+RkBVorwyGqIzMzpIsN3zndNB5hngyq9sFxrvr1s/a1acKnf/2cnEjN4B741x3OtZmE31/u6QiAFaFpqCglUrK4JVbtg+Ns7hyxr5OyZDW4RyhzCx/IyTRNdb33MpDTvS86TdilyukPlzvXPpATqJyImXLwVy2BYMmMv24fHOcHD++wr6XK6fcfS3vC9ImcFDmxk4l5nQTtg+Nc+4cXnJfL1lFb7nGufbCmlK0n8JYt8c/vOtc+kFPn0ARJE0qDARorVGUkzq2j/rXbyUSUuvfd81nn2gdygkWYtDiHI6d9cJw/PONUBCnTUT6Rk7JSOEs/lZSLBvnTaB8c59a/OQP/pOuo9n851z6QlTJbAuat7GofHOfq3z1nX0uX0wu/c679JKfaiPyMRB+gnW6a7DFNR2HMEp3e3jNKctoAnIRpsqNHQtpt39aZ03bMBPRtc/9eLtFul1gpiNAsMHVne8/ojOekyKpvqxNJs/C4nHpHY8RSTd+XLHIZ8PaeUabPlNJyctirrAx4/mwPZXufb+WkqBRupFP8fwRCovfdNJTrqOmr1+OyaldZBjyPc1S9LeGvNWWVwilp+q51VM5E4wl6Rqym74sbwNNymh874KCquqG6TTTIn4bWUfOjzJaIjjjDJbygo3wmp/YBRdO1fYJ2ummyZ7wfJlMbyixOt9WNFUy3/4KGwarGcve/S/1aMKb9GhtBqF/j/r1cYnEiNLOX7qxurGC6upciKx/LqbkqTImqEqs5DGVla8qHclqUpu9zlMJpOc2PsvJSS05VSyEwM5tY66j5UTYRMx6D4Q7xeJa9T8tpfpROhctAR2lbYnYs/RQpCVBXPjND2lW0jsqLvarLgBfb5gMhq+mr1+OyUmZLWM7RcDVEqmf8tdZR87NHD1GYgna6abLHcuRUNEPJzA2vtaaM68/daG/hBnDduRvkeLpr2uDsm51rIwBn3zSnk8kLKCszyKDpe2tNGe89frV9HTQMObLyoZy8UmIFQk7XnH2AfR0wJK0pW05pq9fjcuoejhJPmgQDBs1Vi9vXyNr7LKTLKd0A87icwIl6KisDXkBOynTUGWml9UbQ87JSNhHTbvoeFkNkpmHLKe1Qo20JB6/pqEtP3ce+lm9L+EdHKW36noGO+tKbFeooH8lpLBZnINX0XdnwrMW2JUDI5PiPO9c+0lGL7RxVbkuceaNz7QMdZWXNK+nj6wO0002TPXaJ1dwL/fwjV3DVG/YDYNPqes4/coW873PYhdCwTjx+83+Law+jrAHoaLeYGoUBVa1zvuz8I0XpaUVpkAevPEWerA67EA58s3h8zGWel5PSjES71GDuJtUXHrOKSInYsn/2/qPlyuk114jHq0/yvpwGnabvQeklVvM7c0DsfYevrAXgc2cdIFdO7/iFeFzW4Hk5TSaSdA4rKjXIUEddcPRKAM47fJlcHbXpgxBIZbi8527Py8qeiCldTgs3fT//yBVcd444fB64tFq+LbH0MPH4DTd4Xk7KdNTkuBhaAPMOZXpXaj0FDPjbf5wsd+877KLU44s8L6d2VSWLsKCTAODfjlpBU6XoAfjdi46QK6c33CAeLz3M83KynNhV4RBVEUUZiQvYEievFxNoP/7a9XL3viMuFj8DIbj8Gc/LSlnZYgbD6M4/cgUfPHktAGdsWCJfTmX14vE7f+l5Oe3V5aVT0E43TfZkoCwA9l0iUnEHxidlfyOoTfUsSyi4V54oj9BUtc7a9N2iuVo4/0ZjCerKS+V+p4ZUJDw2s5ec11BWupOIL5iRCGAYhq24pveQcJ3m/cXPiX7JN8ofL5VYWayorwBgwhq7KIvWg8XP8T7P730dgxOYJpSGAjRUSN5nMpTT2iYhp5FoXO73MQyoTgU+pvcg9SDK1lSGctqvtQqA/tGY3O8DUCccR8Sj8u+VJ+qavqf0U0nFrE3fLRoqSgkY2MMdpNKYCrTGhuXexwXU6qiFA0Pp3yWekLwftRwofo73yr2PCyhbT5Dx3reyQZQpjscScr+P1fs0GYeQtx0kQxOTDKd0tld01LrmSgCGJxTYYVYwMSn5d8IFlK4pH6CdbprssZT6PFk5AC3VIpJmjbSXipXJNdw+/+s8gDLP/1BmyqI6ErIzqKTLqmqJ+Gn18fEwyrI9RjrSmr43z/vS5ipFa8pHcrKUupJI2gKDFCyaVe195Q2pDCpTDA/wMM56Utj0fZ7oNEBLKuCgdZTDxGSCnhHh3JLfTHz+SYsW1iCbruEoSdkRB5/ICdKbics+eKb1hp2nPDIUDNBYae19kp2WftJRg4p0VHQYJlITZDPd+4YVysnjAQelQ84y1FHNto6SLKdQWNgT4Pm9z7L5astLKC8Nyb3ZAuXaFktUyQl8o6NM01Q35MwnaKebJnuy3IT6xyaJxiV75O1NyNsGWCJp0pE64Envl2NHaOZX6oZhqFMYVUvFT48rC1DYANRy5FTP3vQ9HfvwKVtO1Sk5jXSJTDwPo6yvUTwqHKSwYMDBWk/S5RQI+ObwqbZcOzNnTkvNYhjK3paT1fS9rCRIraqm7wvoqMbKMIYB8aRJ35jkbDefyAkU9t7LMNgAjo6S7siu9o8tYekoZXIK18za9D2dFltHyQ7gpdZTfMKZAulRlPVbNs20c9QCAQdLTsMqAkPWmvL23qe2XDuzzNHmRQngeVtO/WOTTEyKag9LLxQ72ummyZ4M021rykooDYlfMemHT/vg6W0DrGt4gkTSJBQwaEplLUkjQzmBQoXhEzmBygONpdTnN77AMZQ7pGdQNYpmuj7IoFI3xSpVYhUMQ8XMpu/pqM2gSq0p6/t5FKVTrDLc+1rSDjTqMqi8Laf0UjjpTd8zlFNJMEBDhdCXllNQGj7JIhiNxhlMte5olX2gycaWqFKko+x9r93zGVReafqejlWJIn09lUSckuQhb68pZTbfxADERsTjBQIOts0nW07gG/vcm7aEWE/DE3HGYpID1T6zJZqqwoRD8ycUFAva6abJngyjnoZhqCsx9YmhbEU8W5Q0fbfS1zMxwFQ53VJyGun0dD+CWDxJ94hwFEsvNbCHKCw8gUhZeamPMqiUlQEPpTXnX8AZYR9oVDrdPC8nRWUGk+MwluoftMCBxmomPpkw6ZeeQeUPOVkli2oONAsPkLGw1pT0jA+fHDyt9VQVUdD0fSgbWyIlJ2UZVONOSaUHMU3TaYEg3ZbILHMU0gKtsstLwTf2uV1eKt2Jndr3yhugZP59Vm2bHn/tfdJtCdNM01Hzr6nKcIjyUuFY0qX1Aqe6QWe5WWinmyY7EnHHu55JqYGqssVqf6TbKoukQVZRzyWqFHtlsxhzbSbFdFWP0jnkvabvoLC8FHxjKHszi8CRkyk7C8MnJdvKyoAtI7m0EiK18760NBSgsVKsb/k6yi9yUlgGnJWOUmVL+KPEao+qkkXwppxKypz17WFZDU3EGU01wZe+pnKQk3TnKPimHE6djsrClkjZfEMTcfnDFHyjoxTJabQHElHAcP5v5mBqmx5dWg96iMJsaKebJjuG24XDxAhmNC1PXdlimlJPSp4YmAcvtQ8BUCe7Vw5A/07xM7iw06hFlaEcCDpTkjysMKz09fryUvnZSj1bxM/SygVf6jQ/1lFPEE3fe1MTDUOyM0c7nxc/yxoWfKlVOh5LJBkYkzzNyidRz529YmJxpERymYFVrl1Wl1HJrVUOJ31N+UROr3SJaZBVEckNqieGIJrKUMqgjFWZLWHpp9iIaEzvUV7cK2yJetlBIYC+7eJnaOGMBbU6yvuBIevgWRUJMTAuOZu2+2XxMzx/PzfQQ2SmY5ome/rHACgJSrYlOp4VP8vnb1MBUBUOUZbSmeqyfL2to7b3CFuirFSRLRGpFQ64BVA2QMsncnq5S5RQ15QpOO/6BO1002THP/9H/DQTcPNB8OQP5315S5UixV5hZVAlPJtBdefju/j2/VsBuOeFTu58fJe8mz1+uzOi/afnLyinZlW9wmBqLxaP8punRCSyY2iC4758nzxZPflD2PZX8fi+azNeTx2DEwoyqLxvKH/3we3249fd/IBcOT38DfH4hd8uKKdwKGgfhuX3NvJ+f487H9/F1m5hKH/i50/L3fue/YX4Obgbbtqw8JqyDGVVvcI8vO/d+fgu7vqX+H7/8+B2uXL6xy3O428fnbmcZK+ncKXjtPCorO58fBdfufslAB7e2itXTk/8APpT++yv35eBLaGoVxj4IjBkyWZ4Ii7flnjxd+LxQzdnvJ5Es3PZg868L6fbH9xOLCFsqrfe+ohcOf31S+Lx1vsWlFN6mx5l/Sw93B/2zsd38fTuAQA+f9fzcve+p38sfk70Z2hLqG7T05VR8sticOfju/jJo7tSj3fLlZOP0E43TeYM7oEHb3KuzST8/nKnnGcWltQoMpSDIeF4A08q9vbBca769bNYbhIT+PSvn7N7E7jK4B740yec60zkpLTUwNup0e2D4/z88Vft66QpSVaDe+D3H0t7wlxQTtaBJhpPMjQuuVmrx0u22wfH+do9m+1r+XJKW70LyAkUGmA+kNNVv37WvpYmJxAyefonznVGOkpRlq918IwNezKDarqcpOuo+693rrPQUWonzXpPR023JUCynP5wuXOdxXrqUtErzONlVu2D4/zg4Z32tZdsiZqyEsKpQWfdsmXlAx31xT+9aF971paQLSePlwHP0FGybYnH/8e59pKOKm+EQAgx6KxL7r1yQKkt4TO0002TOX1bgWnZNWYC+rbN+RZlZYvg6ZTb7T2jTB+OlzBNdvSMuX+zvq1CQaSzoJws56iKHlTelRMIWU3/H5AiqxzkFCkJUpsqTZZfDufdgyek5KRiTeUgJ0hvKK7KUPaunJTufVnqKGXlpeEqKK0Sj4e9NxHY63JalInAHtRRnrclUuupbzRGNK4qg8p7cgJv2xIig0p1+xfv6ihv2xKKguKWnEa7RP9uj+F1HaWsBUIgAJXe3fuUyslnaKebJnPq1wLTeh0YQahfM+dbmlWVl4Kny6xWN1YwveVU0DBY1Vju/s3ykNP4ZILhaHGPu17dWDHjOSmyql8rSqLTWUBOMLXEVCoeLwNe3Vgx/bfck3JS1t9jYhBi3jNqVjdWzGjZJXfvm8YCsrIPnkrL4by393leRymd4uddHeV1OdWWl1AaFPulsoCDR8vhPG9LqJqyrW0JQb5ykq2jKhrF9/HooDPv2xKLMWnWe3ufUh3lM7TTTZM5NW2w9DDn2gjC2TfNO558cTYh73n+W2vK+NKbN9rXAQOuO3cDrTKmWdW0wYFvdq4zkFNZaZDqVONs+b2NvCsnELJaUe/IJWgYcmRV0wbHXe5cZyAnUNms1dvR6daaMo7dxxlqIFVOZ97oXBuBjOSk7EATroaSlDHjQVm11pRx/hHL7WtpcgIhkxrnXlnpKKXDSby397XWlPHJ0/e1r4OyddTK45zrDORkle70jMSYTEgeluRxOV1/rkJb4pB3OtcZyMkwDFtHFXvj99aaMvZtcQYkSdVRJ1/lXGdoSyirRLF7UHVCUnL2Yw601pRx6v7N9rVUOZ19s3OdsS2hqLx0yqAz7zlzWmvKePexq+xr6bZE43rnOgsdVeyVXa01ZXz2zAPsa6k6ymdIHk+lKThKUovmxH+Hwy/OWFmMxhKMRONUhiX+ynm8v8dp+7dwFaLO/W//fjLL62dGQV3DGkW+/5vgddcvKCcQvViGJkboHIqyrqVK3nfzeH8PAOtMd+2bDuS0A1rkKYulh4ifTfvDBb/KTE5WqYGq/h4TAzA57qx9D1FbJoYVXHTMSj548lp5clr3WvHTCMDHnoHa5fO/HmhR1SvMMISs+raKNdUwS4R2kVnTJPa649Y2cMPbDpZrfFmNhc+6Cdad7p2DJ3heRx2xqh4QjsjfXnqcXDlFasTPoz8Ex3xkQTnVlZdSEjSYTJh0D0dZWivxu3lcTm86pI1P/UrYEnd/7ETWL5GorxtSmR1rT4M3/r+MddSr/eMKnDmWnLxrSwQCIrfhU6/bl3MObZO3ppYfJX5WL4f3/jkjOSkrW5wy6KwHqlrk3i8HmlMTx887bBmfOGO9PDkdeC7c9RHx+MP/gKZ95389ikvrq1uFw82ja2q/1F53yPIabrngcMmOnFS61ulfFHLL2JYQg86MDKZy54zHdZQVEK+KhLjn4ydqh1sKnemmyY6R1Ea85uSMlHpFOERVytFW7OVwVtS3sTIs1+EGIqII0HZYRnKCRZi849GSENM0bVmdur9Ehxs4vZ0a12UtJ+nrKVIDodS/3aOK3ZLTUasb1MipqjUjhxs45aXSsz3A81mJVpnZgW01cuWUTIh+NAD7vj6rg2fPSFRdBpXHddTK+gr5RrJlS6w8PiM5BQKG3Qah2MvhrMb3paEA69IyqaRg7X2tB3lPR1lyGumApOS1myPdqTV10vpmNTqqYXUWclKUjT1l0Jk37T5LRx2+qk6unCzbvLQyI4cbqO5n6Q9bYt+WanU6ap/XZrSmmqqcQWeD45KninpcR1lyaqst0w63NLTTTZMdVvTD2pgzwC41UFYO580IjbUJWYaOVCyFmY2clB1oUt9pvA/iCrJLsqR/bJLJ1Oj4pkrJsspBTspKtg3D0yns4GQnSV9TtpyWZPwWZQdPSJOTNw0wqyzGyiaQxmi36EdjBKCiKaO3NFSUEgoYmKZwvEnF4wcaaz01K9FR2dsSLdqWABznaEt1WG42BeRmS6gq2a5sBgxIxmGsR+69cmAykaRnJAao1FHZrCc9nMSiM21NSSUnW8Kx+ZQNOvOoM0eZnGJjok8uZCyrSEmQOmvQWZEP0LL2FGu4hEaQUa3fXXfdlfUHv/a1r6WsTHs3C4roMMRGxGOr7j8DltRE2No9WvTTFq1NqEXFJmQfaDJX7EtqFB1oyuogGIZEVHzPupVy75cllpwaKkopDUmOS+QgJ2X9PUCksPdv9+SaMk1T3ZrK5UCTWk89I1HiiSShoMTfJY+XbCuXU2WL6E+TASKDKszewQk6h6Jyo7Jed+aoklMy6WR85LL3qTzQmCYzuncvMnawocqjtoRdtihZTsES4Xgb6RSyqmxe+D0KsTISS4IGdeWlcm+Why0hXU4gbIn2pz1pS0BawEH2msop2CC+08RkkqGJODVlJTK+mcDjOsoJDEmWk5XlFipzWiFkQEt1hP6xSTqHJthXZtm/x+Vktb9pkR1o9RkZOd3OOeecrD7UMAy2bNnCmjXzT2TR+Awrfb20CsKZlzQ40xYVGcpjPSKDKuStxd6lKtsD0srhPHigsTKoBnYKA8xjTjdLTk0q5DSSh9NNZQaVB6OeQxNxonFRUiRdVpaDIItgQ0NFmGDAIJE06R2NyXVkeLxku1vV3jecvZxAGPB7BydEVmJm1cO54eGpmKBQR431iuwkjKwcJXb2qOzAkPX7k5wU37WiUe79sqTLziLwto5SluU70il0VOvB8u+XBbYtURkmMH2cn9tYcqrMQU4qelB52JaIJ5L0jijK8rWcJFnoqEhJkJqyEgbHhTNHjdPNe3IChTrKPkO1ZBV0aa6O8FLHsLqKIa/aEip1lI/IOPTe0dFBMpnM6E95uR4LW5DkkBYNTkRCegp7eT0EU9FE65DsIZSl28bGIJpdWjQ4ET41U/y8q9i9npFofa/ukSiJpOxSA+/KyVLqNWUlREoyy2rKmRwy3YIBwy5Plt8n0bulO17PSIS0skWV0xZllwnlgHI5VTSKbKUMUVYOFyqF8pSjzYN7n1OuLVlOppmTjlJWXgqe1lFKS6xysiWEnMZSg86k4mE59Y7GSJpCZzdUeK+8FBS2FfGwLQEKs7FztCWWKGuBkJLTxKA483kMp/WLLi9NJyOn20UXXZRVqegFF1xAdXV1zl9K41FyUOqQtgnJNsA83oPKSV+XnZWT+reXlEM483W4xJq2qCI67eFyODtCoyQj0SqHy3xNNVaWEjBIZVCpKrPynpyUrSfIKXMUnAmm8huKe3eS1Ug0zlgsASjMIshyOt4SVc4c6/cnEYPxfrn3yoFOVXtfDqWlkN7TTUU5nJf3PkVZBOP94ncVsmsporJs0cM6Sq0tkX3ZYnlpiKqIKHhSV7LtPTlZ66mxspSg7IzEHM9RyipR7KmY3sugSiZNJ2te9t6Xs45SJKdIjTjjgXPm8xBWwEXJ3ucjMnK6fe9736OqKvPa5FtuuYXGRm+l42tcIIcyA1C4CYGno2nddgNQRT0jKrNLi3ayPaIkizmDalhRhCYedQ7eWaypUDBAY6Wiw6eHndhdqtYT5G4oV1kZHwrl5LEMKms9VYVDlJdm1NEid0ayP3hCeja2ZDmFwlDeIB57eO+TnpmTQ7AB9BQ/i267X44iW6KsPqt2Hdbvz0g0XtQZVMpsiSkZidkFHJy+bqrK4TxoS6jMyrGdOdlmYysODI33w6SCfTYL+sZixJMmhoFtA0sjRx2lrLLL40kmXap67/mMjMtLzzvvPO6++275k1M03iXHg2ez6v4e4Mm+EeonLWan1BsrwxgGxJMmfWMxCV8sDU/LyXLmKMrKCYbFcIksUNYzx8N9I9ROWsy1JETVgSb1veLjMDEg915ZoiwrB1zIIlDozPHY3jceSzA8IRwkyva+HOUkvV8O+ERHebPEqjIcojJsZVCpKofzspwkr6eJQbH3Q9ZOgiWq1pQtJw/aEnZWjooAnsfLSyO1EEr9P3gsg8oZchamROZgKsijsmsxbAlvrSnTdDISdXnpVDL+re3v7+fMM89kxYoVfO5zn2Pbtm0yv5fGi9gZVDmWhAyrGHftzahnMmnSbTVqlR6dTmsAmgUlwYDdz0KdM8dbcoL0QQqS5TSSJqcsGxi3qOqZ4+kMKkWGcmJSDGeBnPc+6euppEwYy+C5qGe3qv5TkLeOUmMoe9NJYK2nspKg7TCRRs5ONyGn4Yk4YzGdQaWuxCo7WwLS+ropy6DysJxU2RLhGijNrqe2IydVg856RZa/h+hSGsCzhv14NDCUnkHlsYCD2mF0+ekoNZVd3sx0GxibJJZIDTmTnZHoMzJ2ut17771s27aN9773vdxxxx2sW7eOU089lZ/85CdEo97aQDWSyDXTLWVwTCZM+scm3f5WU/FoCnvvaIyEnRYte3R8btFpgCU1qhqKe1NOkF5q4M2MRFBYsm19t8kxiA7JvVeWKJOTdaAJhJzSwAyx5SS7vBTSerF4y1BWlu0BLkSni7cHVXomttQphpCznCrDIcpLxdAU+aX13pTTxGSCgZQdJb+8NA9bQlVfN0/33lM1ETO37ClQ6Mzx8KAzu1WF7PUUHYbYsHicYxmwGh3lTVuiywe2hB505iQD1FeUUhqSnJHoM7L631i5ciWf//zn2bZtG3/5y19YunQpl1xyCa2trVx66aU88cQTsr6nxgvkqNhLQwEaKoSyLdZyuPS06JDstOgcG4CCY3Soa6rrLWVhmqaTQaWy916W2AaY7PVUWi4atoLnop5O03dFmaOVSyCQ3dpVVl4Kno1Od6rq7ZFMwGiXeJxjC4TB8UkmJhNuf7OpeFxHKclIzLH3nmEYCsvhvCknK3O0NBSgukxRRmIeOkqZnEa7IS65LUaWdKnWUTnYfMrK4TycQaXOOZqSU2klhDPvkw6qWyB4M4PKGZ7lXR3VWBl2Bp2NFOc5SumQM5+R8+n/1FNP5Y477qCjo4Prr7+en/3sZ2zatMnN76bxGjk2AIW05pIqy+E8hFPf7s2JmBbKmoBacoqNiOifR+gfm2QyIaJT0tOic5g2ZqGsvBQ8q9i7VK0pO9iQh3O0iBu/KysJGe0GMwlGACqasnprdSREpESYQ+p6UHlLRykrWYScy4BBZdmiV+XkZHuoy0jMxeZTJKeyegiUiMceyqCaTCTpHRVOQHU6KpdMN5Wl9V7VUYoyqHIcRgd60BkolFNsTPRJhKwDDsGAQZM1QKtIB53ZwQbdz20GeaXcbN++nRtuuIHrrruOwcFBTjvtNLe+l8ZrRIeFgwRyinousRSGbMVul1h5axNS1vgYck6LBoVRz3AlhKvFYw/JyslIVJAWnYecFmcisHfkZJqm55uJg7Oe+sdUZlB5R06wCE3fK1sgEMzqrekZVNLXlEfLgLtUySmZzC8bW1nZYkpOI12QkNw/LgvsMmCVPRLzsCWkyykQ8OTeZwVaS4IGdeWyW4rkLidlk5vBk3IChRlUeTixm1KDzhJJ03bmSqPam043ZVnzlnM0VOZUemSBsmCrV20Je7q2znSbTtanyomJCe644w5OPfVU1q1bxw9/+EPe+973sn37du6++24Z31HjBey06CrhMMkSZ9qiIs9/dAiiI3LvlQVqG4DmnpG4KE1APTR5xxmioEBOeUU9FyODyjtyGpqIE42nGrXKllUeDoLqshDhlPO2W3ZfN4826O9WtffZZcDZB4Ugbcq2qgwqj5VYKdNRY72QjAMGVDZn/XZl5aXljWAEAdNTGVROFoE/dJTSSbMe0lG2LVEZJhCQnJGYYykcpDlHhycUZlB5R07xRNIuA5RfXpp7uXYoGKCxUvVwEm85R5XpqPRy7RyyidWV1qfZEh4adKZUR/mMjJ1ujz32GB/84AdpbW3lkksuYcmSJdx9991s27aNz33ucyxfvlzm99QsNnmkr4PC8tJwleiXAJ5SGJ2q0m1jYxBNpUV7vhzOe6nRfslItL5f32iMaFx2BpX35GQp9ZqyEiIl2WU1ZU0e5dqGYahbUx4sCfFLRiIo7L9n96DyWgaVYjlVNEKwJOu3K2uBEAh4cu/rVDUR0zTz1FGLMRHYQ3JSWWKVhzPHClqJQWeSM6g8KKfe0RhJU5QFNlR4twwYFK4pjwbwlGVjuyQnZbZEfNwph/UAzlAmXV46nYydbkcffTSPPvoo1157LXv37uUnP/kJp512mvyeEhpvkIfxBemlBiozc7yjMJQ1lrQiniXlTvlmFqh1unkvNdppfOzt3nt15SWUBhVlUHkwhV1po9Y8mlSDwswcD07xG4nGGYsJp7CyLIIcgg3gtECQvvdVNIkMKjMp+tB5hE5Ve18emaOQfqBRWQ7npb1PURbBeD8kUk6YPAYpdA1FMWVnYXhQR6m1JXLPdCsJBmisFOWvxVhab62nxspSgrIzEl06RykbdOahDKpk0nSy5lVNrM9VR6kaSFdSBpFa8dhDdp+VXKMHKcwkY6fbP//5T5566ikuu+wy6urqZH4njRfJo8wAHENZbamBdxR7t90AVFHPiMqWHNOihZx6RmJMJpJufrOZeFBOTnN+yXKKR8WhBnJaU4ZhqG8o7qFyuC5V6wnyNpSbVZVsp5eEJCVnP2aItZ6qwiHKSyVPWsyjxArSS0Jk96AKOk4MD5VZOYMUFGUR5BBsAIVObPCkjrKHMqnqP1VWD6HsD09WBlUskaR/bNLNbzYTT+ooRbbElIzE3AIO6rKxPSgnlVk5eQyjg0VogTA56plBZ31jMeJJE8PALrOVRp46qqVGpY7yXsl2l6reez4kI6fbM888wyGHHJLxhz7//PPE494pm9C4QJ4Hz8Vp/O4dxe6k26pKX89NqdeVl1ISFM46+T2ovCgny5mjKCsnGIay3IIYytaUB/t7OA11FWYk5rn3Sc/yrWgWkzvNBIz2yL1XhijLygEXnKPFW1o/FoszPCFsNmV7X962xIT8DCpP6yhvl2uHQ0HqK6wMquIrrVdmS0wMivIyyN1JoLwFgjf2PUjPylERwMvTlqhSZEuUVkA4NUDAI7JyhpyFKQl6d8gZFHebHtM01QbFfUZGv7mHHnoovb29GX/oMcccw65du3L+UvPxrW99i1WrVhGJRNi0aROPPfbYnK+97bbbOOGEE6irq6Ouro7TTjtt3tdr5iFfz39q8fWMRInLzqDyWJlVImnSbTVqlR6dzi8tOhAw7O8of/KOt+QEjjOnSdkUq9wyEkHhpFnLUB7pEJMHPYBTCidZTolJGEs5sHI8fCqTUzAkHG/gmcNnl6qpcOBaBpWSFggeK7Oy5FRWEqQyLDkjMY9SOHAyqKLxJEPjkoO7HtZRXi/XhiJ35qja+6zsqUgNlJbn9BHKBmhZdmls2DMZVGoDeFYlSo46qkZhn0SPTTDtUtpSJN+s+VQLBNmJC+A5W6J/bJLJhAiGNcnOSPQhGVlXpmly9dVXU16e2YYei8lpxnnnnXdyxRVXcOutt7Jp0yZuuukmzjjjDDZv3kxz88wpWPfffz//9m//xrHHHkskEuErX/kKp59+Os8//zxtbW1SvmPBkqczp6FC9EtIJE16RmIsqZFoiHgs6tk3GiNhp0XLHh2fXyQNhMLYMzBelNFpu3RHes+I/JQ6KCxbrGwGDDFxcKwXKpvk3i8D1Mkpte8FQqLMKgeaVZfWj3R45vDpRDy933sv/eBpmqbcfrUei053pa0n6X1683TmREqC1JWX0D82SefwBDXl2Q9jyBiP6aiJyQSD46JUU3p5qQs6qqU6zIvtCvrvedDp1qWq/1SewQZIc44qGXRWJZxuw53iepGxW7/IXk/RYYiNiMc57n3NSiuGlkD3S57Z+9TaEvnpKCuAZw06C4ckDvvynC0h5FRfUUppSHJGog/JyOl24oknsnnz5ow/9JhjjqGsrCznLzUXN954I5dccgkXX3wxALfeeit//OMfuf3227nyyitnvP7HP/7xlOvvfve7/OpXv+Lee+/lwgsvdP37FTR5OnNEBlWY9sEJOoYmJDvdvNU3Ij0tOiQ7LTrPBqCgsmwxTVmYZs4ZX26RnhYtv6+RFfH0QRZBsEQ0fx/tEn0jPOB0U5bpZjlyKpeIaYY5kN5QXDpVrdD+tGf6e3Sq6u2RTIjfT8i9vDT1uzQ+mWBoIk5NmUxnjjd1lJKMRFecORH6xybpGJxgfYvEg7vH5GQFG0pDAarLFGUk5qOjUr9PynpQRQchNirK4xaZLtU6yg2bb1BRYKh3WOioxn3k328B1GWOpuRUWpmzs7FFVRUKeC7goCxzFPLWUTVlJZSGAsTiSbqGoiyvzy0DNSPsoRces/n0EIVZyUhr33///ZK/xsLEYjGeeOIJrrrqKvu5QCDAaaedxiOPPJLRZ4yNjTE5OUl9/dwZC9FolGjUORwNDQ3l/qULiTwbgII4eLUPThRdBpWyrBzIuw8LKHTmWJHZRAzG+qCiQe79FkBpWnSe6eugcHw8CEN5tEt879aD5d9vAbpUrSlXMkeLt7+Hne0h2wAb7RbTQI2AcBDnQFlpkOpIiKGJOF1DE5Kdbt7SUcqyciDvfjkgbImXOoaLzpZIz/ZQl5HoAx0VroKSCtH4fbgDGtbKvd8CTCaS9I6Kih+v9/GFNDnJznSDlNNti4d0lKIMqjyH0YHzHXtHY8TiSbmZRJ6zJRTJKTYm+iRCzrIyDIOW6jC7+8bpGp6Q7HTzmJzsPr4KnKM+xDe5fz09PSQSCVpapkbdWlpa6OjI7JftU5/6FEuXLuW0006b8zXXX389NTU19p/ly5fn9b0LgvS06DyinkusOneV/T08MO5aWeNjcDWDSnp0OlQK5Y3isQcONU5GooK0aBcOnkqdOR7qG2Ga5iI0E8/fUB6NJRiekDzFz0NygkVo+l7ZIqaD5oiVgV1sw0m6VMkpmXQCePmUw1Up6pljyWliACbH5d4rA+yBTEp6JLqgo1StJ8PwVA8qK9BaEjSoK5fdUiS/UjggrY9v8fWgUpZB5YITu74ibdDZiOy9LyUnr2VQydZRlnM0VAbh6pw/pkXVmrLk5BVbwp6urTPdZsM3Trd8+fKXv8zPfvYzfvOb3xCJzL1or7rqKgYHB+0/u3fvVvgtPYq1mEurIFyZ88coc+ZYRmIiCuP9cu+VAUrTbe1Sg/yjnsrK4cATBpjlIGhSIic3M6gU9fcAT5RZDY3HicbFQAfpsnKhXLu8NERVRCSVKyvZ9oCcIL3ESlHmaB7BBlCpo6x9zysHGkVyGusVvSExUr0ic8NyjnbILoeL1IjDF3hKR/klI3FRyuE8sPfZtkRlmEBAckaiC+Xa1nrqGYkyKXvQmYd0VDyRpMcacqas917uOsownEFn0vc+r2ZQSbcl0my+PLKJW1TpKEtOHhl0plRH+RDfON0aGxsJBoN0dnZOeb6zs5MlS+Y3Cm644Qa+/OUvc88993DQQQfN+9pwOEx1dfWUP0WPC8YXKHQShMJO03MPGMrK+oTFxkRPE/DHxDFIU+xekJNVsqiiZ4R7fVhGonFGopKn+HnIOWqtp5qyEiIlEhvUgitNqiG9r5vCLN9FRvRIVLSmXMgiANRNbrbW/Xg/TCrYZxdAnZxS66miUfSKzJFmVTrKMDx1+HTKtSXLyTRdKocrbltCSYmVCwGH+vJSQgED08R2QknDQ7ZE72gM04RgwKChQlVLkXxtiUWoGPIAynVUvnKybAnZJdtTBp31yL1XBljJGkrOUT7EN0630tJSDj/8cO699177uWQyyb333ssxxxwz5/v+67/+i2uvvZa7776bI444QsVXLTxcd7oVVzmcXRKiqmdESXl+adFK5eQdxe6UWPmj915lOERlWGRQFZMBpmw9gStNqsGZZiXdAPPQgWYkGmcslgBUZBG4o6OW1Cg60JTVQShllI54YU0pik67EGwAp3SlU3Z5KXjMllBUBjzeL3qtQn6tKlLrqWckSlx6BpV3dJRaWyL/gIM16AyKq7Q+PSMxKDsj0aXAkNMCQbKOSi/XXuQ2PcmkwgCeWzpKVcVQsMTJGveCjrKSTFS0QPAhvnG6AVxxxRXcdttt/OAHP+DFF1/kQx/6EKOjo/Y00wsvvHDKoIWvfOUrXH311dx+++2sWrWKjo4OOjo6GBkZWax/gj9xy/OvuvE7eCKFvUvVJpR+8MwnLTolp6GJOOOpQ7M0PDR5R1lvj8kJp+w5z3I465BcTOVwSictupVBZclpUNGBZqwH4gocEvNgraeqcIjyUtmTFt3SUYrKS9MzqLygo5T1Nco/2ABpB09V0xbBY3JSVApXVi8qB3KkoUI4M5Im9IzEXPpyc+ApHaUwI9GtoLiycjgPyskn5drg/E51yHbmWLZpclK0BVhEekdjJJImhgGNlbJ7JLqro6SvJ/CmjtLlpbOSk9PtRz/6EccddxxLly5l586dANx000387ne/c/XLTef888/nhhtu4HOf+xyHHHIITz/9NHfffbc9XGHXrl20tzu/dLfccguxWIzzzjuP1tZW+88NN9wg9XsWHK55/hWVl4K3SkJUZea4VApXGQ5RXirK9pSVWXlBTsqmWKXWUzAsMl7ywEphlx5N85ScVBrKlgHmTq8w6eupvB6CKaPU+j1bJJyyegVycklHKW0o7pGsxLFYnOFUebp8HZV/KRw466l7JEoiKTkLwyNygnQd5Y9y7WDAsCeBa1tCAhODEE8N+HCpHK5LejZ2mpwWOYNKWUAcXCnXBoWtKoIlziTwRd77LDk1VIQJBRUNOcs3IK6qvBQ8o6NESxFFOsqnZP3be8stt3DFFVfwhje8gYGBARIJkQlTW1vLTTfd5Pb3m8Fll13Gzp07iUajPProo2zatMn+u/vvv5/vf//79vWOHTswTXPGn89//vPSv2dB4XJfo8HxSSYmZWdQeaMkJJE07SlD8rMI3Dl4GobhlMNJN5S9ISdwDtpNyjISW/LKSASVpQYpOY12Q0LyBM4FUJbplph0emTkG/WsVnSg8VAPKmXZU+CajrLWk/QDDXimzMqSU1lJ0C5Xl4ZLzpyGilIChtCvvaPFVA6nqul7mo7KkxbVOspDtoT0vc8KNkRqoKQsr49SVoliDzqLLfqgs0XJdMtbR1ml9cWno9QMo3NHRy3OQLrFlVP/2CSTCeFIt4Itmqlk7XT7xje+wW233cZnPvMZgkGnifURRxzBs88+6+qX03gEl5w51ZEQkRLxK6cu6rm4BlifD9OiQWXZojfkBNBt94xQ1HvPT3Iqq4dAqvH5Iit2dXJK7XuBEmcwS4602OWlCg3lRS7ZVpbtAa7pKNtQHo6SVJZBtdhyctaTkWcQYEFcKrEKBQP25OJO6SXb3tBRE5MJBsdFwKNFujPHPR1l999TZUsMLX4PKmXZ2C7afE55qYJBZ+UN4vEi66huS0fJXk/RYYil2hrlmzWvanopFKkt4W5GotpBZ96QU31FKaUhX3UvU0bW/yvbt2/n0EMPnfF8OBxmdHTUlS+l8RguKXbDMNSVmHok3dYyNBsrFaRF2yVWLkSn7RR2RXIa6YKEZMU0D6JRq+rSnfyUOigsLw0EPJNBpayZuOXIqWwR//48aC7C0vpOVVOsEnEY7RKP89RRjZVhDAPiSZPeUdk9qLwiJ6sM2D8lVqCwZNsjtoQVbAiHAlSXqcpIdFNOsntQWRlU0UXPoOpaDB2VJ8rKS8EzmTnKhjJZciqtgnBVXh/VrMo2Bw/pKIUTMV3SURXhEFWpzPFiKa3vVJmR6FOyPkmsXr2ap59+esbzd999N/vvv78b30njNSQ4CYplE3J6RvhjIqaFsgNNRSMYQcB0Ds6LQP9YzE6LbpSdFu1SKRwonjTrkYyPTlVryqXm/JDmxB6ewJSdheERJ4E9GU62nEa7wUyCERD7SR6UBAM0VKjKzPHKwVOljnLPllDWM8cjPajSJ8zKz0h0U0cpWk8lEadH6iKuqVg8aTvs1ekoH9l84B1bQtXUZpd6w4KznoajcUaVZVB5RE6y11NsTPRJBHd0lLKSbY/JSfdzm5OsnW5XXHEFl156KXfeeSemafLYY4/xpS99iauuuor/+I//kPEdNYtJdBgmUxmMbkTTUinsj27rpX1wPO/PmxO7v0cHDOySd58F6FIZoXGpASg43/e5vYNy5RQIOs1a25+Rd58FsMpBGlSkRbtUCgdOf4+dfaNy5QSOYt/xIAzukXuvOTBNU92actHpZhmLkwmTF9uH8v68ebHk1P6vRZMTpJctKiqFq2wR+0meNFSKMuqXOiTLqTolp76tiyqnblVySiadbGwXnDnW3vfPHf1y9z5rPU2OQfdmefdZAHs9KemR6J6Osn6vNncOy9dR5SlbomPxWt30pHr4lgQN6spltxSxnNj523zWetrTP67Oltj1D0/oKGW991xwjlZFSihLtel5fu9g3p83L5aO6nzOG3JSZUuEyiBcnffHWT1iH9rSI/m8m5LTwC5v2BI6021Osj5dvu997+MrX/kKn/3sZxkbG+Md73gHt9xyCzfffDNvf/vbZXxHzWJiKfXSKghX5v1xA6kI4B2P7uK4L9/HnY9Lcoi9fHfqgQk3HwxP/lDOfRZAabrtsHuKfWu36D/xj219cuX05A8dRffTty+inBRl5YCrzpzHtvcB0D0ckysncCKAj/033LRhUWQ1NB4nGk8CCmTl0kRMgF8/+ar9+MxvPChXTr1bxc9tf100OYFTYiU/28O9YMOdj+9ic4fY+/79F8/IldOuR8XPob2LKidlWQRjvZCMAwZUNuf9cZbz/TdP7ZG79z33S+fxLccsvpx81NcI4KWOYQCeeXVQvi3R+7J4/JsPLLqcmirDBAKSMxJd7L334CtiaNBoLCHflhjpFj+fvmPR9r54Imk7SJVlurmko8YnhQ10/nf+IVdOXS+Kn68+XiS2RJrN50I28XhMDAz81v1b5a6p7X8XPycGvWFLqNBRPiWnlI53vvOdbNmyhZGRETo6Onj11Vd573vf6/Z303gBF42v9sFxW7EDJE349K+fcz8CMLgH/vBx59pMwu8vX5QIgF1eKjtCExuDqDtp0e2D4/z0MUc5SJXT7z+W9oS5iHJS2TPCHWdO++A4X/2zk3khTU4gZLL9Aed6kdaUtZ5qykqIlOSf1TQvLjlH2wfHuerXTuaFKVtOT//IuV4kOYnR8aoyEt05eM6QE5Ll9NcvOteLqqMUZ45WNEGwJK+Pah8c5y8vdNrXynSUB+QkPSvHNF3ra9Q+OM73HtpuXxeTLaGkxMol+7x9cJz//P0L9rV0W2LLn53rRVpTvaMxTBOCAcNuKSANF+Wk1JZ47DvOtQf2PnXVDfk7sdsHx3lq14B9LXXvu+czzvViykllZZdPyauOqry8nObm/COWGg/jotNte88o0zuiJEyTHT1jeX/2FPq2io0nHTMBfdvcvU8GKGvUahnJJeV5N2rd3jM6o3VNocvJaXzsn95723tGmT5gUYqcQMhq+updBFkpW0+Q1qQ6v71PuZymL95FkNNINM5YKsorP4vAHR2lXk7e2PuURaddHPRTnLaEoub84/2QSA0RyTMzR9ma8pCc1NoSVpavz/Y+T9gSTkZiUHZGokuBoWLUUWLImapWFVpH5YPTb1k73eYioxFIhx56aMaNW5988sm8vpDGY7hYCre6sQLDmHomDBoGqxrL8/7sKdSvFU210zciIwj1a9y9TwZ0qdqE0g+eeaZFr26sIGAwRbkXupycMmDJcpqccCar5XmgUSYnELLCYIqxvAiyckrhVGYR5GcoK5eTB9aUtZ6qwiHKS2VPWnRHRxWjnMCJTsvXUe5lERSlLaGqVYUlp7J6COV3L21LSMQ0XQs4FOPeZ8vJR+XaxSin3tEYiaSJYUBjpeweiS7rKKa6lwt97+tSuaZ8SkaZbueccw5vetObeNOb3sQZZ5zB1q1bCYfDnHzyyZx88slEIhG2bt3KGWecIfv7alTjYl+j1poyrjhtnX0dNAyuO3cDrTVleX/2FGra4OybEU4CxM+zbxLPK6ZL2Uhy95RFa00Z15+70b4OGMiVU7qTcLHkNKwoOm2tp2DYmbSWI9PlZMiSEwiZnPQp59oILoqsnNId//Tes+SUthvJldNZNznXRmCR5KSwt4dLOsqSU3rSg1Q5nX2zc71IchqLxRlOTcCTr6Pcy5pvrSnj02/Y376WrqO8YEvYOsof5dqwGLZE2pFm0eUkeT1NDEI8Varm0t5nId2WeM01zvWi2RIKA3gulWsrtyU8oKMsOTVUhAkFZQ85c1dHvf9Ex/El/7ybwlgcHSVaiijSUT4mo9/ga665xv7T3d3NRz/6UR555BFuvPFGbrzxRh5++GEuv/xyOjs7F/4wjb9wcXQ8wIXHrrYf3/uJkzj/yBWufO4MDrsQNn1QPD7obeJaMYmkSfeIqiwCqxQu/7RogPOPXMGKOqEcvvFvh8qV0xu/JR43778ocgIn6tmkLCOxxZVGrecfuYLXHSjW5odOWitPTgBHXeI8/siTiyIrZZluiUkYS/WfdMEAO//IFXz8tesBOGnfJrlyOvwiZ3rz2360KHJSlj0Fruqo849cwXcuPAIQGUVS5XTYhbD+deLxif++qHIqKwlSGZadkehOKZzFe45bbR8+f3fpcXJ11In/Lh7v+7pF11HqyrXdsyX2bxWTAK9780a5cnpbqoF4ddviy0nVRMxIDZTkf5A//8gVvPXwZQC8a9NKuXvf0R92Hn/ggUWyJRYh080lHfW5s0XA4bCVtfJ1VNN+4vGbvr3ItoS/5ATw9qOEbCKhAA9eeYrcvW/j28TjTR9cFDn1j00ymRB5fU2VOtNtLrJ2G//iF7/gwgtnCvSCCy7gV7/6lStfSuMhXPT8A1RHQoRD4tcu4ILTYV4a9xE/oyNy7zMHvaNRX6ZFW7TWCkMuMb0xgdu0HCB+jvVLvtHcKOvDIkFOKxtEuvrEZHKBV+ZJWT0EUgfzoOQD+hwoz0gMlIh/twusaxbTn4cn4q583rxUi8MTZkL+vWahczH6Grmkow5IOQj6RmMkpzfQcRurBGRSQiPsDEiXU6YtRHLGZTkFA4Y9wVj6d2/aV/ycGJZ7nzmYmEwwOD4JQIuPyoAtlqUCeJOy11PLBvFzrHdmb0tFKOuRKEFOqxorABiblKw3QqWOXpW9dufAtvlkr6foMMRSZxCXHNnrW4SOGhxXYEvUphxFyUn595oFP9sSlqNwIp6kOpLf8KAFaVgrfsYk9PfLAEtO9RWllIYkZyT6mKz/Z8rKynjooYdmPP/QQw8RieiUwoLDxVIDEMaxZYx0j0y48plzYmV9jSxOBqYVoWmsVJAW7WIDUAvrQNOdKumThhVVGu2GpHonQTItI1Fdo1Z3lDqkyWlEspwCAahIDc5Z5DUlv8QqLXM04M7aVbaewNkHRrrk32sWlDU+TsTFvgGu6ajGVJQ2njQZGJd80Ki01tPiyknJpEWXSqzSUaejFteWsP594VCA6jLJAQ8JOqpZtZziExAdknuvOehWNmnR3eoGUK2jUr9fi2VL2HKS7RxN/ftKq/IecmahbD1Bmo5abDn5T0dVhEOUlwYBlTpqkW0JFRmJPiZr7X355ZfzoQ99iCeffJKjjjoKgEcffZTbb7+dq6++2vUvqFlkXPb8g0g93d03bh+gpVG52ErdKoXzz0TMdKzyCOvfIY2KJsAQWTljvY6SV0T/WMxOi26UnRbtcrk2OIayFbmVSlULDO91DEnFdKpaUy4OkLFIX0+macrNzrEMMGv/Vow9GU62nEa7RQNhIwAVja58ZGkoQF15Cf1jk3QNT1BfITFL2dZRiysnpaU7LjtznkeBjlpkp1t69pT8jER5OqpbtpxKyyFcLRxuw52i9FIhsXiS3lEx+VWdjnLT5kvZEqqcOV0vLJ4toTwj0X3n6OD4JBOTCSIlQdc+ewbWPrDYcpK9nmJjok8iuK6jdvSO0TUctTNJpWDrqEW2JXQ/t3nJ2ul25ZVXsmbNGm6++WbuuOMOAPbff3++973v/X/2zjzMsbLK/5+btapS+17ddNPV0EBDI/sqCIoKMqCIMzIjSrO5oqyOio6AijtgA4qOOoooo60/kBFUQEFA9maTfevF3mpfUqlU9tzfH2/uTaqX6lrue3KTyvd5+kludSrvTZ287znveb/ne/jgBz/o+A1WUEQkIpCKqucOnqblN5+aHXtdQaBsmuI0djFWDujZ0FiMRN3JUa9PbZijA+pzCCfdrO9hiwQtOqKDRaC+XzKnnsVLEpimKch0cz7pZgXK8VSWSCKtt9ygyMkcsdNp6/PVdoDHuY1He12VSrqNJdjHua/A9rB8VJE2NGKsnGy2gEGl4WBIt4+y7JQYU5uzgIZugVPAnk8iGon6fJR2O4FaCxJjam1o20v/eAUYzLHN/V6DphrdkiI6kthWLCFwgOcSHyWmvefgutdQ7Sfg85BMZxmIJFjUrHE9qnOJnaRiCX8uce8Q2uuqckk3zXPKLbFEhek2JWbFU//gBz9YSbDNB1hOPVAHwVrH3tZO5uhOElilcJkkxEagxhltpumiT1QA1Co1cJaRCAJli6DuOzpQFGq0GCsH9DCopOYTFLUcbiyWJpFWunXabaWhxKo64KUu6COSSDMQSehNuhW7vFTqdDpSkHRzEO31QV7ri5R92aIYi2BiCLJpwMj7ZQcgVlofrAdfteoWOd4Hzd27/h0HIcbKAW2MRJCKJTpg6I3ixhK1QTwezYe8Gsu1h6JJ0pmsXlmUIvqodCZrJ0jFmG4O+ijDMGirDbJlNMbAuOakW7ElEMRiiYJybQcJGvIyPf3qkMshWZTpQtRHlTAqancV7BwaEgSQT+Zoz/z7q6CqUT0vwqbGLoXTfUKTnICEBlp0vVW2KJnMkT9NK3VGouXUI4k0saRmTTzrvotQtmjNp4Zqv95yCtC39knNqSKWl5qmaR84yDESnWMRQKGPEgqUY8OQTuodawcQt1OozdEmLGI+yjCKqm0k1hHTNLUmc0RiibrirX35jpilGUu0hAJ4PQamiV0mqw1F9FGD40lMUzVjaQlJdQN2OJaQmlO1xYv5oAg+yulYQqpkO9SmHrNpFU8II9/wolJeOhVmHP14PJ4pNSUymeJ0S6tAAzSUGUBBoCwl1hofVQ6jfbn+8QqQT+boZuVYtOiQY0KtIKjpBkVN5oh1xISCDY1zjr0u6KPK7yGeytIfibN7i4RuhPzGU2w+QcHa52wA1l4XZN1AtKw1qMYTaWK57nf6WQR6fJSdHNVtp5pm1SE3m1K2alykd7xtYOuOSnUDdjqWqBOyE6h7H/1nkX2U5g1NbERVBoCzkiK579fgeIJs1tTLAiti2eKAZCzhcJMzAI/HoLU2QN9Ygv6xhN7vWzFjiUiekejVzUjUYCcobKYgVLZYBJkeXU3OstksyeQ2SeXxMNQuguZ9IO7c33Rxo4+FdV7isThxB993h2jdX+13h7eC17nqtOkgk0qysM5LV8ir/3MWAYFAAI8D7MEZJ91+//vfT7pOpVI8++yz/OIXv+ArX/nKnG+oAhdh4FX1WOVcfTtIa1B1qM9RBGr05hHVutmnm+ZrOfWqehjbCg0LHXlby6mPTKRIprN69c6KGICtG1C6hTV+zV3hUnG1qQEl/u4QDMOgva6KjcMTDEQSepNuRew49lqv6kbXUK259TrA6Cb16HF2LLG1z7KT1RHYQb2zXcE6ma72ewjHUtQENM6roTfVo9/Z8hoxOxmGWvvGNisfJZx06w2r4NhA80aq/2X1aDHPHUKblD4sFNVHbRpWsUTAK9REIVAH0UHHYonCjsAjE0ladDYsKmLZ4tp+FUuEdK55oJIfYzlbmc6+dXtdlUq6ReKAxkYUxWTN53xUTcBLTzhGV0O1vsFG/qkevc5q/InJihR2BI6HobpR73gFGIomyWTVFzzlEKEnmUyyfv16stltYvDAXvDWayFQC+vXOzIWwAENaa56eztVfljv4PvuEId/TR2ajGRgXPNY2+BD+1aT2aeKFsKsXz8uOrYEPB4P3d3dBAJzm8cz9gzve9/7tvvZv/7rv7LffvuxevVqzjvvvDndUAUuwTO3wN+vVc9f/ZO6PvgsR95ajG4LRevosnrNRl7tjQDwhdufB0zOOGyxnsGeX60eIz2wagWcer0jtmqs8eP3GqQyJoPjCRY0agxMirShWb1mI7c/uwWAXzy2geUL6vTZ6fEf5p//6BjH7ARqTm0cnhAohyuOWOvqNRu5+o+vALBmwwir12zUZ6dnboHB3IHDHZ+ATMLxtU97oFzTiuoInFWbZwc7p+0Kq9dsBCCWyvLWb93PN0/fX4+tnrkFXvx/6vnjN0H7PiXqo9pzSTdZH/XLxzYQzZWjn/nTx/Xa6S9Xqucb/u5oLNFeMJ/EOgIXwUet2aAOa67+0yvUVvn0rX3PquZoJCOOxhJ+r4fmUIDhaJL+SEJv0q1IZYur12zk5sc2APD7Z7dwxNJmfXZ64r8hk2OT3Pwex2MJEEzmFCE5+qcXtgKwbjCq30dtWaOe3/05JXnjlJ1qhQ4c/NUQbFASNuP9okm3Xz6+wX5+3HcfmLOdTNOkp6cHr9fLokWL8syliREYjwG5PU5tI9Q0zXqcQkQTKXwjMQI+L906u5cCjHhU88O6Tqh25v6ng9GJJMlq6wAPmuqraNTdSEYQ2WyWrVu30tPTw+LFi+cUZzh2HHPkkUfysY99zKm3q6CYCG+BOy8if4Rmwp0Xwx4nOHLyaQXKQ+MJMllTL727CB1desIxLr/9BfvaNOGLt7/I2/Zqc/5ELbwFnv5F/trMOmYrS6x1azhOf0Rz0s0NdkKzne7/av7aQTtBQZnVmGDZolCpgWWnwgN9rXa686L8tS476Q6UvT6l8RHtV8kcoaRbTzjGT/+eP2HN6lr7trWTJh8lwsYuAuOjJxzjyj+8ZF/rt5OeWMJKECTSWcbiab0sWDf4KN2xROHBkIa1z0q6LXe20m4yipAcFY8l7rk8f12qPsqyUzICySgENCckcugJx7jj2a32tZiPMh32UaIyPR25pJtcR+CecIwb73/TvnbCTul0momJCRYsWEBNTY4dn05CvBd8BbFsvBfqW8A398SR6fFjRDKYHg9VVZrlAaqqwJxQn0X3WDkk01kGJuIYBX+rgQmT5vqA3uooYbS1tbF161bS6TR+/+zjDEf+IrFYjBtuuIGFC52holdQZAyv3b78zczA8DpH3r6lNojHUIvoUFRIBFQwAFs/GCW7DeU/Y5psGJxwfrDhtWxXX+CgrdpyOgr6kznyOizidtI4p8S6w1li4tlUvlRWM8rKTlJaYVCUJMH6weh21U5abCU1n0TZ2HKMD7E5pdlOVX4v9VXq7Fi7ttF88FE6YwmpOVUECYSy8lFSOonBurwsgOCBQ8VHzQJFqHBYPxjFdHhOWZrzk0oEMzv5++3s5zOEPycJkM5myW77gZyG1aQom9Y7TgGS6cx288nEJJl2TkLHDbC+M3PtWzBjpltTU9Mkap1pmkQiEWpqavjVr341p5upwCVo3gMMz2SHYXiheakjb+/1GDSHggyOK7FWrR25inDq2d0awjCY5DC8hsGSVg1tvZv32P5nDtrK6uInlswZ7xdjUHW3huzkrwW9djKYtKlx0k5Snax8QUVbj42oQLmmWe94FMFOGtc+qyRELlB+QX7tY/LWXYutdNspN5/GE2kmkmm9unRFkEAoFzuBstVYPE1/JMGe7c41EtoORYolys5HSTWRiY1AOqF8lmaUo51k9CzbYWSDivtadhDLasCOSvxKce0Tm09QvH0UenzUpPJA707Wh539fIbwegwMDExMMhkTj0/j3sbSIM6k9I2xDQK+7fWCDYyyYrkBjklXzPiv8r3vfW/SvxtuuIG77rqLf/7zn7z3ve915KYqKDIaFiqNCAuGB05d5ZioLgie0hShfXxXQzVnH73EvvYaBt84fYUesdaGhdC6d/7a8DpqK5uZozuZY51OpyYgEdE7Vg5dDdV8+ZR97WuPgV47LXt3/tppO4kKissyProaqvnm6fvb19rtdOj5+Wtd86kM7QTKVgcsyotva1v7GhbCu6/OXztsp9qgj2q/Cib1r33yLIKuhmpOeUu+xk+rnbTHElLNSYpjp08cl09GaI8lug7IX+vyUbrnU3VTXrReKEnQ1VDN1aetsK+1+6h9C7S1HbaTbHOS4vio3ZrydtG69h19Yf5a03waHM83G9CGuuLY6Yil+UNdbXbyBaBht8k/a1jkSGkpqGSNL8d2S23bvMFpeHNJt6xk0s1Dc4F+m4HBwqaqsku6OYUZH9++4x3vYNGiRTvM+m3cuJHFizUJh1YgixX/Cn/4jHr+ycehfe+pXz9DtNcHeblHQqzVchayYq3Lu1TH1wN2a+BHHzlEb3ckqzPhu74GKz6gJTmqPQALhFTHtGREBcoOd8zdGd66ZysAoYCXv152nF471bapx4M+DMd/0VE7tUl1sgK1+Rx4RXROnXHYYq78w0vEU1l+87EjOby7Rd9gHblE7G6Hw7/drGU+jU6kSKQzBHdwSugYipAkAKjOdQG+4O178OEjd9c3p5Ycqx6rGuGTjzpqJ8MwaK8P8s+hCQbGEyzRKYBcBAkEgN2aFWPgxP06uOq9++mz00EfgbsuVRuBc++BRYc7+vZiB0OWnaIDkEnnS3k04y27NQKwR1uIX51/hF4f5c+993Gfh4NX6jlo1c2atzoChzflOgLL7ElOWN4Bv38RjwEPfe7t7NakgeVmwUoS7HsanPgNZ+0kNZ+gaD4qnVFJqqtPW8EJy9v1zSkrid2+H5z5O0ft1FobwDAgk+sI3CrSnETWTo3VKplzzluX8LG3LdVnp6C13zCgfV/HEm4WfF6DVCb/vdMGm+kmV1569tln0zc4xLd/9Etqgz52a6qpJNymwIz/Mt3d3QwMDGz386GhIbq7ux25qQpcAOtEw1etRThTTDfCKltMhCEV0ztWAazkx7KOOr1BMuRZfHu+01GnDoKlBpAPwAQ3n1ZguaCxWsBOuc+16AjH7SSWHIWidIcbT6SJp9Qp4X4LGnbx6rkOlrNTx76O26mh2k/Aq9zu4HjS0ffeDkVK5lhr+lv3aNU7p6zP1bDIcTtBYXMSqS5+wnbKfa637Nao106xkfzJeyGTyiGISSCEWhVTDxMmBvWOVQBLq26Ptlq5WGLp8c77KOtgSCKZY8V9gj7Kmk+ttUG9CTfIrxW7Hep8zFcwn0zdGlRF8FHZrMlgbq3QmnCD/OdqXea4nXxeDy0hlRwqWx+VW/sOX9Ks106WBprX73jCDcCf65I6W6bb2WefzWmnnbbrF9qabnJMN8hLKVUHvLNOuN188800NjY6d1MuxYz/OjtbhMfHx/V35qhADhaLpa5Di75Wm1SSoKoBfLnvpWgAppyFtXHThnQSYsPquUUBdxD50h1B3QhBOw2M5+xUr1/3xQ5Yap23kzWfhqIJ0hnNFPYiBGDWfAoFvISCmhkm1vdPg50MwyjQ3xM6cBAOlK0EvfY5ZX0uTZ1ZxTRzCg8bdJefFMD6XNp9lGWn6iYt+lp5Zo5mO3m8qiMwyPooqfkE+biv1vk5ZSVzZDSo5Mvh7PkkYSeNPspa95LpLGMxzYyZIviokYkk6Vw5plZ2GBT4KOftBPn7F/VRguiXWvssDTSPntjSKi8VY7qZWcjOTfB/JrDSQj7P9imlZFLz4fIOkErJJh1ngmkn3S699FIuvfRSDMPgiiuusK8vvfRSLrroIs444wwOPPBAjbdagSg0OnUQ1GGxSg1AtBzOOnXXvqGJ5j6Tx682NQ6jKAyqIjDd2nQHX6A1SdASUh2BTROGo5qdXBG6w+U3ngIHO/bGs13L24sdOFh2EkwQxFMZxuJqo2Y1jdCGcvFRIasjcFqsIzAIzin7sEFPclRWz7IIPipi+SjNdkpEIBVVzzXYyvqeybLmBWM+az7pbAxmQaOPqvJ7aahWm3f9yRx5H2XNp+ZQAL9XcxlcRPPaJzWnauXtZJqm3JyymGGWJto00BOO8ejaQXrCu66g8uW+Z7oOxPv7+zn11FOpDtXSfeQp3Hr7n1iydCmrVq0CYMOGDRiGwXPPPWf/zujoKIZh8MADDwCqK+d5551Hd3c31dXV7L333lx//fWTxslkMlx66aU0NjbS0tLC5z73OUzTtLuy+r0Gxx9/PJ/+9Ke5+OKLaW1t5cQTTwTguuuuY//99ycUCrFo0SI+9alPMT4+DsADDzzAOeecQzgcxjAMDMPgqquuAtRB9R133DHpPhobG7n55psnfbbVq1dz3HHHUVVVxa233grAT3/6U5YvX05VVRX77LMPN910k0N/8dlj2mndZ599FlAT4YUXXpjUcjcQCHDAAQfw2c9+1vk7rKA4sANlPRtP8WTO6D9lTz2tZI5uZ1Ho1DUyEgfHE2SzJh6Pxs47RUjm9EttPLMZpQUEWgIwr8egtTZIfyRBfySh9/MUQd8jv/GUSI7m1glNp9NiJduFhw1CHYGtzxTweaiv1sxI1OyjxJKjvgBUNyvG8ngvhDTqFRZgQGpOad54ykogdELv80XyUUJ2CtRCsNbxt7divmgyQzSR1stYLgJrvtx8VDiWYiCSYFmHzo7A8prL9nzSfSAOeTtpO3AQ8lGWj42PinUEHounSaRVkqpNk61M0ySWykAsAaks+LyQ3DW787anN3PlH14ia6qmKV9573584JDddvr6dDqrDiRjaZpC6v2r/V7HOmKeffbZbN26lb/97W/4xzZx4Ze+Tn//9jJgUyGbzbLbbrvxu9/9jpaWFh599FE+9rGP0dXVxQc/+EEArr32Wm6++WZ+9rOfsXz5cq699lp+//vfc/jRbwPyycVf/OIXfPKTn+SRRx6x39/j8XDDDTfQ3d3NunXr+NSnPsXnPvc5brrpJo4++mhWrVrFFVdcwWuvvQZAbe3MfNAXvvAFrr32Wg466CA78XbFFVfw/e9/n4MOOohnn32Wj370o4RCIVauXDmj93YS0/Z6f/vb3wA455xzuP7666mvlxE6r6BIiMhsPEVKDYog1ioWKNvBlx6nbtHXUxmT0ViK5pDzegc2bB2WIthJOyNxQFG+DU++RMlhtNVZSbc4oFH3zE7mFGFDI1K6o68MGCQD5Zyd0jFIjKlSe80oLFl0KqDcKcR8lFAyJzasPlPHftqHS2WyDOUYsXI+qsTnExTJR0mVAetNEISCPmoCXiaSGfojCbolkm6iyVGh8tJUDOJh9VxjMufN/nG5ZI7ogbiyk65EziRY64RmCQTtBw7VTeANQiah5pRAcxJL0qauykeVX0/DqVgqw75X3FPwk17gxRm9R9aEL//fS3z5/16a0e+9/NUTqQnMfQ18/fXX+fOf/8yTTz7JYYcdBoPN/M+1V7D8uA/M6H38fj9f+cpX7Ovu7m4ee+wxfvvb39pJt1WrVnH55Zdz+umnA/CjH/2Ie+65hyw5pluOlLFs2TK+853vTHr/iy++2H6+ZMkSrr76aj7xiU9w0003EQgEaGhowDAMOjtnFydcfPHF9n0BXHnllVx77bX2z7q7u3n55Zf57//+76Im3WbMrf35z39eSbjNB2jU9oDJpTvlJtY6mRYtpBmhyU4Bn8dOtOlveiGvw2I5du0BmGWnUFu+26zDaJcKwOrkT6fF5pNpCrB8hXQSAzX5rlxCSQKbPSXCItDtowQZVMISCEO5Jh5ej0FzjcaDFNBerm3Np3AsRTylWcemKD5KaE5p1p+CYvioIkggaLdTbj55g9oOUsQanVl2ig6KdVy0pF9kfJTMAZ6oTI9QLCHKSCwR3HrrrdTW1tr//v73v/PKK6/g8/k45JBD1Is8fvbZs5vGxpmvDT/4wQ845JBDaGtro7a2lh//+Mds3LgRgHA4TE9PD0cccYT9ejXuoWBpuuW06+x7KcBf//pXTjjhBBYuXEhdXR0f+chHGBoaYmJiYsb3uSMceuih9vNoNMratWs577zzJv29rr76atauXevIeLPFtNKsp59+OjfffDP19fWTMok7wu233+7IjVVQZGg+9bQcXjyVJZJIU181/Vr6GUOYmTOeSCvKMgKOXXPpDqhyieFokv6xBPvoi8eLykiUs5OejScUaBtp72RldQQeg+SESu5oRr9UcrSw06LmtU+7nUB9hsSYWvs0dKHeFuVVulOEJjJCPsqaT621Ab2SAaBde6++2kfA5yGZzjIQSbCoWeN6JKxBlcmadpdj7bpGQj5qw9CEXNf6cowlCrVhNbGJxXxUTQsYXjAzSp+4foHe8ch/Ju3zKZPKdznWrmcp4aPaIbxRzEdJHDZU+728/NUTYfB1xSBt6oaqqUlFveE477zuQbIFXBGPAX+99Dg6G3b8nUqmM7zeN45hGOzbVYdhGFTPgr333ve+d1LSa+HChdx7772TX2Tp0hXeX67BQSHBZdtmA7/5zW/47Gc/y7XXXstRRx1FXV0d3/3ud3niiSemvCfrPT2GgSe3HoVCoUmv2bBhA6eccgqf/OQn+frXv05zczMPP/ww5513HslkkpqanftswzC2I+bsqFFC4ZiWVtxPfvKTSX8vAK9XD+lhuphW0s2i/VnPK5gHiOg99awOeKkL+ogk0vSPJfQm3YSTOVbwVRv0OUIfnhKaS3dAlUu81hcR1KASPJ2WCsDG9W48QbAcLlgPvmpVtjjeC81L9Y6HoEi1tZmubtbSOh4KTqfHhZJuQ2+IMajENjSmKVa6MxRNks5kbb0SLZD2UVJ2Au0MKsMwaKsNsmU0xsC45qSbXQ4nM5+Go0kyWRPDUAlSrZD0UdoPhiwGVb/qCLyDrnpOQ07HV7+d7AMH3T7K6gg83qvWCYGkmzgj0eNTyUUNEJdAALH4XMJHGYah9mieLPg9UFUFu9izLW2r5Zun788Xb3+RjGniNQy+cfoKlrbtXIOsyu+1S2SDPu+sY4m6ujrq6iZrLO6zzz6k02mefvppVV7q8fHamxsYDYft17S1KUmbnp4eDjroIIBJTRUAHnnkEY4++mg+9alP2T8rZIU1NDTQ1dXFE088wdvepjTc0uk0zzzzDMv23R+f19ippMjTTz9NNpvl2muvtROAv/3tbye9JhAIkMlsz1Rva2ujp6fHvn7jjTd2yY7r6OhgwYIFrFu3jjPPPHPK10pjWhmBn//85zt8XkEZQ3PZIih9pshAmoFIgj3bnRfutSFcXirm1EF7iRUIOnbLTrFhSCe1JT0sxJIZIglV0qBf10hvggDyn0Gk1KCuA0Y2qO+faNKtDEqs6gWZbnYyR/Z0WrudEhGV9AVta19LKIDXY5DJmgxFk3RobU4i7KOkumuDSCzRXq+SbmLJHGG2R0sooDfpC/lYQqOPapM6cKgt7Ag8DKFWrcOZpik3pwRjCTEfNd4rLoEgFvOF2rUlfYsigSBlJ6n5ZJoF3UunR5I447DFvG2vNjYMTrCktYauhuopX+8xDDuWSGdNfA6Srfbee29OOukkPv7xj/PDH/4QX3qci//zq1RX5+OV6upqjjzySL71rW/R3d1Nf38///Vf/zXpfZYtW8Ytt9zCPffcQ3d3N7/85S9Zs2YN3d3d9msuuugivvWtb7Fs2TL22WcfrrvuOsLhUQD8U3zH99xzT1KpFDfeeCOnnnoqjzzyCD/60Y8mvWbJkiWMj49z3333ccABB1BTU0NNTQ3veMc7+P73v89RRx1FJpPh85//PH7/rkk6X/nKV7jwwgtpaGjgpJNOIpFI8NRTTzEyMsKll146nT+tFug//qmg9JBJa+20aEFMN8I+nZZlurWKCLXqLbECwaYXNc3gyS2mArayApWgz0OdTlFnECkDFptPIN4dTrx0R2OJ1bYdgbVCOEkgVgZs2SlQB4HQ1K+dJTwew2YXiZVsC7MIRMXENUsggEApcCEjUbcWLYVlwOURS4glc7z+PLtIwEeNxdIkNXdatCFxIF4rGUsUyUfpnlMCsYQ1nyaSGcYTmjXxpCUQpBpeZAv+bp7pV1x1NVRz1B4tu0y4WbCSUqlMdka3Nx38/Oc/Z8GCBRx33HGc/h/n8LEzT6e9tXnSa372s5+RTqc55JBDuPjii7n66qsn/f/HP/5xTj/9dM444wyOOOIIhoaGJrHeAC677DI+8pGPsHLlSrsE9T2nvBfI67ntCAcccADXXXcd3/72t1mxYgW33nor3/zmNye95uijj+YTn/gEZ5xxBm1tbXYjhmuvvZZFixZx7LHH8qEPfYjPfvazU5ajWjj//PP56U9/ys9//nP2339/jjvuOG6++eZJScRiYFo7zYMOOmjancieeeaZOd1QBS5AdAAwc50W9Z0QFjZT0ApbrHUAshltQvYWLGchyiLQeeopZSdLrHVsszp1b1ykdbjCbmPaOy2KlO5Y+h6Swu/6kwTJdJZhq9Oidu09/XZqrQ1iGJDOmoxMJGnRGfxb64JUeakUi8DuXKpv3QO19vWNCXQEFtYKE+uImYpBIlfmUg4sX2vdyyRUB8nqRq3D5eeTYBmw1oMhSQ2qTpgYyvneFVqHsj5PvcZOizYkykul5hMU0UcJlQFrZM3XBHzUBn2MJ9L0j8WpnaLEcc4o11jCYrl5fNo0EiGXlEqruG+muPnmm6f8/87OTu666y51kYrBwKt8+buTmWTLly/n0UcfnfSzQq20YDDIz3/+8+2qGQuTYz6fj1WrVrFq1Sr7Zz3hGAORBP4cE/uBBx7Y4T1ecsklXHLJJZN+9pGPfGTS9Q9/+EN++MMfTvrZggULuOeeeyb9bHR01H6+ZMmSnTZj/NCHPsSHPvShHf5fsTCtpNtpp52m+TYqcBUm0aL1BRBi7a5DbSqBaGZVlyTNGzUx/alsVnt3JChkUEkkc9pzSTf9m08xO4FI6U5hqYFpmnoTiYL6HoO5MgOfx6BJe6dF/Ulsv9dDc02AoWiS/khCb9JNmJEoNqcE1j0Q9FE220N2Q9MmtfH0Vec76WpAu9SBg78agg0qkTjepz3pJitVob+0Xmw+gVrD+18SmVNFSY5qLQNWn2MsniaeyuhNJAr6qGgizURS6UaJabppTGKDmlPjCSXTM5Wu2JxRK30wJNXwIsd0mwHLbTawklJpDUy3SfBYaR1ThI2dzqgxfLobMpUJppV0u/LKK3Xfx7Txgx/8gO9+97v09vZywAEHcOONN3L44Yfv9PW/+93v+PKXv8yGDRtYtmwZ3/72tzn55JMF77gEIeDUQTCZ4/FCTasS1R3vlUu66T6hiY3kqdGhNm3DyAbKco7d3niKlu7o39Ak0lnG4mkaqnV2BJbrDlfYxUp7p0UBtgeoz2Il3ZZ3aRxIkJGoOi0WoYOfRoj5KGs+JSOQjGormbUgLiZe266VRSArKN6hkm6RXmjbW+tQEh38AKWhOjGkngsc4MlqUEke4JWHRmJ9lWBHYEEfZa0PNQEvId2SIgJNzkCtDesHo3I+qty0sWeo5zZbWOWXqYzmRJjHB+R8bXb7xgROw2LuadccLRPM+q/01FNP8ctf/pJf/vKXPP30007e006xevVqLr30Uq688kqeeeYZDjjgAE488UT6+3d8kvXoo4/yH//xH5x33nk8++yznHbaaZx22mm8+OKLIvdbshDQ9oACfQ+JUgPB7nBiyRzLqde0aG06UJRAWeR0Ol9eqhWmKaLvUeX3Ul+lAgft2kaCOixiem4goj8FgolsQUbiUDRB1lS5lZaQZkailI+S0kkM1oE/t7EVTBLoT47KbDzL3kfptlO0oNNidZO2YazPMRRNatE2mgTRZI6Q/hSI+CjDMOQOHAR9lKj0S0R/zAeCB0O2nXIdgTUinsoQjqlkmPY5lbHKS/Uy3Xwei+mmOelmGODxseGJP3LxZz6pdyzyGnX+KTTdKshjxkm3zZs3c+yxx3L44Ydz0UUXcdFFF3HYYYdxzDHHsHnzZh33aOO6667jox/9KOeccw777rsvP/rRj6ipqeFnP/vZDl9//fXXc9JJJ/Gf//mfLF++nK997WscfPDBfP/739d6nyUPKVp0rZBWGIh2hxNL5giwpyBfMjGeSDORLB+xVrlOi2OQzm3aBU49ocwCZamNJwgmCYS0jaz5FBuBtN7vRL7TYlCu02K5JEctPUvQnswxTVNu7RNKYstqhRXDR0mVa3do67QI0FQTsMuQhsaT2sYBhJM5UqycTD5BKpbIFvJREqz5caH5BOUngRBqAwwwM3lWrCZYnyXg8+it2IB8tZBXd3lpjummOWEJ5Fl7Wc37NQrLSytMt+lgxn+l888/n1QqxSuvvMLw8DDDw8O88sorZLNZzj//fB33CEAymeTpp5/mne98p/0zj8fDO9/5Th577LEd/s5jjz026fUAJ5544k5fD5BIJBgbG5v0b95BauNZL5QggDINlAtKdzQiFPBSndP00N51rBiMRKmNZ7BBaQJphFjTi6KUlwpq7wklc7TPp+om8OZYZ5o3n6KMRLHSnWI0J9Hro8KxFMlM+XRahMKOwEkyujsCF0MCoUySo6ojsBB7VNJHSSVzJoaUNjGGkkzRCLEDvMJ1T7MGlWjXZgGNRBA8cCjsCKzZR1nzqa1WoMlZpqCRgkZYhw3amW6QZ+1Zn00TTNMknUsiTtW9tII8Zpx0e/DBB/nhD3/I3nvntSz23ntvbrzxRh566CFHb64Qg4ODZDIZOjomBwUdHR309u54Aejt7Z3R60F16mhoaLD/LVqkt4OiKyFcujM6kSKR1lx7LpTMSaazjEwI0aKFNp6GYeS7WY1LCYpLnk7rTo5a80lvchQKEtm6kzmWnaIDeSFaTRDbeCYnFCsRxNY+7fNJkEE1IMX2ALnSHan5BGI+yppPDdV+gj7NnRZtH6V3PrXWBjAMpSs4MqGZQSXISBRjUI3LxHxQBB8lIYEglcyxYvNQm3YNKrkDvNx3LpOE+KjWocRiCSFJERAurRdij4omR21NN83lpVYjBRGmW+6zZPUm3awEooFRaaQwTcw46bZo0SJSqe0NmclkWLBggSM3VUxcfvnlhMNh+9+mTZuKfUvyEGJ7NFT7CeQWokHdpQZCyRxrE+33GjTVaKZFC51OQ4FuhPZAWU6HZUBM9F2mHATyOoLakzmhVtURGBMmBrUOJb7x9NcojS2NsJPYEskcm/EhczotKyaumelWMJ921pbeMQj5KLH5BAU+Sq+dfF6PrSMo56P0zqdoMkMspQ4j5XyU/lhCzEcValBphpgEglADGRCM+fxVUNWgnms+cBBtcpbJ7WnKRQIBxEqBByQlRYQ03azy0kzWJKubjW0z3fQeiKcKWG7aGYllghkn3b773e/ymc98hqeeesr+2VNPPcVFF13ENddc4+jNFaK1tRWv10tf3+TJ3tfXR2fnjgO6zs7OGb0eIBgMUl9fP+nfvIMggypfZiVUaqA76VbQREH7IiRUugOFpQaa7VRXkHTTeCKUyZoMSSUJhJijUMgi0GwnjzffMbdckjlCnRYhv/GU0aCSYXxY3zmRTouxYfVcSCMxmc4yFtOtZynko8aFNEdB1EeJlS1KMRJz8ykk0WlRSB8WJJluVkfgcUiMax1KLJlTjjEfyPkoq+GF9iZnOTtVN4FP71jlKNMjNp+gQNNN7xrrMQw8hpCum/VZNJeX5vXcKgm36WLGSbezzz6b5557jiOOOIJgMEgwGOSII47gmWee4dxzz6W5udn+5yQCgQCHHHII9913n/2zbDbLfffdx1FHHbXD3znqqKMmvR7gL3/5y05fXwGKFi1UugNFEH7XnCAQ23iC8KmnkLZRKPedy6bzG2sNGBpXnRY9BrRIdZkVYSQWQ4NKc5JAak6JbjwF7SRctijG9vD4tXZaBNUR2BJy1p/MkfJR+YMh7ZD0UVJzSixBYG08JUXfJWI+IQ2qYB34Q+q5Rh8VT2UYi6uNu9UcTBuKkRwtIx81IDWnJA9ac/NpOJokmdaczBGOJbTPp2wmp5GIdqabYRi27pl2XTePTHmplTz0626cVUaYcWp31apVGm5jerj00ktZuXIlhx56KIcffjirVq0iGo1yzjnnAHDWWWexcOFCvvnNbwJw0UUXcdxxx3HttdfyL//yL/zmN7/hqaee4sc//nHRPoPrEQ9DJudkBRy7GDW6UIfFNLUxWfolRd8FAzAxO/kCUN2sEm7jfaqMUQMsO7XUBvHqPqWRLN2R1vfofV7rhsY0zTzTTXegXITSnYlkhmgirZfJIpUcldrQFMofCJQ0tNUFCcdSDEQSLOvQWHZsJ3P0lsOJJXOyGaX5CDJJArFYIpeYiochFVflcRowIKU/BWKi7yDtozpgeJ36fC17aBmisNNifbVmRmIRDlpFyxalfJQYa16/nRqr/fg8BumsyVA0QVeDxmZdUhIIUkw3iwlmeFT1hmb4PB6SZElndDPdrKSbXna+zXSboonCzTffzMUXX8zo6KjWeykVzNhDrFy5Usd9TAtnnHEGAwMDXHHFFfT29nLggQdy9913280SNm7ciKegbe3RRx/N//7v//Jf//VffPGLX2TZsmXccccdrFixolgfwf2wFtOqBm3BZCHapZhulvNLx5RYuqUh4TBEadGCjl2MkQgq8I8Nq6Rix35ahigsA9YOydNpSTsJdIcbnUiRyjn21tqAtnEA0dKdUNBHTcDLRDJDfyRBdxkk3cREqoXE+S201wV5s39cwEdZ5aVCpTu67RQdVCwCw6Pt8KQQYsmc6ibwBtXh5HgfNO2uZRjRbsBC2nsg7aNySTeN7NFChm85SooMjifIZE29h5MCPiqVyTIUVTpr5dLkDFRH4La6ID3hOP1jupNusjI92n2UlZTSzHKzYOm6pWap6bZp0yauvPJK7r77bgYHB+nq6uK0007jiiuuoKWlJf9CT0F5qUaSiZU89Hn0M902bNhAd3c3zz77LAceeKD28XRh1pF+f38//f39ZLepTX7LW94y55uaCp/+9Kf59Kc/vcP/e+CBB7b72b/927/xb//2b1rvqawgSIuGwtM0zaUGgRoI1quEW6RPW9KtXyqZk4xCMqKei4rqSuh7dED/y1oduy18LKprJNC9NDefwrEU8VSGKr/G0zuBMitrPjXWCHRaFGxMAmpObRiaoH8sTndrSN9AAmWLpmnKiYmL+ygprTCrI/CgEkDWpDFj6xpJbTxDbSIsAjE7WR2Bwxs1J92E5pNgp0UQ7rYokMwZkJpPIOqjWkKqI3DWhKFoQm+XdwEfNZhjzPs8Bs01mg/wBCV6QM2pnnC8fGR6pOaUUOdSC3YH01kw3datW8dRRx3FXnvtxa9//Wu6u7t56aWX+M///E/+/Oc/8/jjj+dlvezPYyrGuaZYwjoQ90/BdNsVkskkgYDm+eiCMS3MOD359NNPs2LFCrq6unjLW97CgQceaP876KCDdNxjBZIQZE9BQRe/MgvAtCdzLKfnD2nvtAj5ZM6g7o5jINKWXOwkDURLd+qrfQR8Vkdgqe5wAslRETvJnU5DwYGDbjsVltZrwngiTTylAkmxTotiPkqozKqmBQwvYObLMjVAjEElnsQWLIerk4glLB+lueIgNpLffIo0+8nbSXtHYBEfJRlLyPko1RFYqmRbLuZrrQ3i0S4pIscchbycjahMjyZksiaD44qRqH3tszuXziIpFd4C6x9Sj9OE3zN7TbcLLriAQCDAvffey3HHHcfixYt5z3vew1//+le2bNnCl770pfyLDU8ulgCyKTKZDJdeeimNjY20tLTwuc99jpUrV3LaaafZv7JkyZLt5MMOPPBArrrqKvv6uuuuY//99ycUCrFo0SK+9J8XMxEdt5OJoMpJFy9eTE1NDe9///sZGhqa9J5XXXUVBx54ID/96U/p7u6mqkrZ+O677+aYY46x7/GUU05h7dq19u91d3cDcNBBB2EYBscffzwAxx9/PBdffPGkMU477TTOPvvsSZ/ta1/7GmeddRb19fV87GMfA+Dhhx/m2GOPpbq6mkWLFnHhhRcSjUZ3ZYo5YcZJt3PPPZe99tqLRx99lHXr1rF+/Xr737p163TcYwWSEN545rv4lUfSrV8qUBY8mYb8Bm0omtSvRyBQtii28Uwn1KYGRDY0hmHIzSkJO40JzScQTxLkOzcLBcrRfm0dga3vWm3QR01At65Rmfqowo7AGtmjA1JzSrCBDAhLIFifSSPjQ0zTzfoM1c1KU1UzLJmAZCZLOKZX6LusfJRwkzMQnFMCZYt2A5kyO2gFwU6z1rqXikIiomWI4WiSTNbEMAQkRTJJSMXUoUMyOv1/T/4EVq2AX5yqHp/8ybR+z5eZwEhNkE5E1XyeJoaHh7nnnnv41Kc+RXX15PLhzs5OzjzzTFavXj35EMNiu2VSXHvttdx888387Gc/4+GHH2Z4eJjf//73M/5zeTwebrjhBl566SV+8Ytf8NjfH+R7X7/S7l76xBNPcN555/HpT3+a5557jre//e1cffXV273Pm2++yW233cbtt9/Oc889B0A0GuXSSy/lqaee4r777sPj8fD+97/frqZ88sknAfjrX/9KT08Pt99++4zu/ZprruGAAw7g2Wef5ctf/jJr167lpJNO4gMf+ADPP/88q1ev5uGHH95pJaVTmHF0vG7dOm677Tb23HNPHfdTQbEhXboj1T4eCjrv6A+UxTr4CTn1llAAr8ewT6E6GzQGmBJli2Ibz5ydvAHtnRYttNcH2TIaE0jm6LeT3URBMlAutyRBbTtgKP2SiSGobXN8iPx8Kq8SKyiCjxrv1ZYkiCUzRBJKx0Y7G1tQ9B0KJRAUg0qrvpbEAZ7UnBJOYgd9Xhpr/IxOpOiPJGjUWeon4aOkYr5ERGkSgxiDqr0uyCs9+US9Nthli2XCSCyaBIJmOwVrIVALyXFlKw1VNtZ8agkFJjGotCARgZ+/Z27vYWbhT59V/3aB5tw/AL64FQLTkxV54403ME2T5cuX7/D/ly9fzsjICAMDA7S35xLYFnsvm2bVqlVcfvnlnH766QD86Ec/4p577pnW2IUoZJTtvvvuXPCf/8XVl1+C36uaU15//fWcdNJJfO5znwOwCVp33333pPdJJpPccssttLXlY9EPfOADk17zs5/9jLa2Nl5++WVWrFhhv7alpYXOzpmvf+94xzu47LLL7Ovzzz+fM8880/5My5Yt44YbbuC4447jhz/8oc3Acxoz/kafcMIJ/OMf/9BxLxW4AdKlOwVli9lZiktOG5oDsGzWFDydlt14ejyGfeqkncJul+7oo7CLJXOEOy1CoWaObg2qgvbxmsqExE6nM+l8SZ9UealUab3Xr0oXQVuSwJpPoiwC8eSohJ6lXh9lfdeCPg91Opt3gKg4P+TtFEtliCYzegeTkECwuzZL+SgZ9hRMTpBqRaGP0gQ5jcTcZwjWK41iAdixhJQEQiKsmEcaUK5NzkD4YEjzgYM1n1olmpxl9Hb3dBq7KsePx+PU1taqf0sO5Bs3/A/hkSF6eno44ogj7Nf5fD4OPfTQGY//17/+lRNOOIGFCxdSX1/Ply76OKMjwyTjymavvPLKpHEAjjrqqO3eZ/fdd5+UcAOVWPyP//gPli5dSn19PUuWLAFUg0wnsO3n/cc//sHNN9+c/3vV1nLiiSeSzWZZv369I2PuCDOOun7605+ycuVKXnzxRVasWIHfP1mA8L3vfa9jN1dBESB86tlSq8Ra01mTkYkkLToXWpvCrieZMzKRJJ21Oi0KnU4LOXVQQWXfWCLnFPU0ogBESnfEAmXhE08Q7OJnfaZMAuJhqG50fAgxO0UHAFNpYdS07PLlTiBftijUnGRiMLduON+922qwIlu6I8sikNEd1eujChvI6O+0KLv2hYI+QgEv0WSG/rE4tW21+gbTXLaYTGcZtjot6o4lBLtrW2irC/J63zgD40LlcBKSIlI6voLJ0bwEgmY7VTVs0xF4ieND2LGE7vmUiqnkIYj5KOszaU+OQq4j8FptB0P5+SQgKeLxwjl/hqalUDVN1t7YVvjB4YrhZsHwwgVPQP2CKX81lcnyam8EA9jPV810PfCee+6JYRi88sorvP/979/u/1955RXa2tpYsGCBXa5JpJfmQDqvW7cLeDye7ZJ6qVT+dzds2MApp5zCJz/5Sb7+9a8Tqmvg9j/fx1X/+RnS6ZnJBIRC2zP8Tj31VHbffXd+8pOfsGDBArLZLCtWrCCZTM7pvnc25vj4OB//+Me58MILt3vt4sWLp/MxZoUZJ90ee+wxHnnkEf785z9v93+GYZDJaD5hrEAvhBlUfq+H5poAQ9Ek/ZGE3qSb5s47lsNrDgVsMXttsDZlQk4dLFbimEA5nF4WgWmaguWlsklsyH8m7XbyV0OwQQWY431akm4DUgGY9V0LtYt0WgRBgX5Q60T/S9qSBGKi79ls0USqx+Jp/R2BdfsoKTtBcXxUfRXrB6P0RxIs1Zp008tILOy02KS706JwEhsKfJSUBMLEoNp8auhSKDanhNc9ECxbNAz1/RvdqHyUlqRbjo2tO5aw1m5ftWIlCsCOJXQnR0E7e1S0yZmZUXFsdYN6nA5al8Gp18OdF6vfN7xw6ir1813AZ5rgz5AF0iZMdzVqaWnhXe96FzfddBOXXHLJJF233t5ebr31Vi644AJ8Pl9e+mu8Hsa2QFUNXV1dPPHEE7ztbW8DIJ1O8/TTT3PwwQfb79PW1kZPT499PTY2Nonx9fTTT5PNZrn22mvxeDyMx1MM9N066T6XL1/OE088Melnjz/++C4/39DQEK+99ho/+clPOPbYYwHV5KAQVrfRbXNM2953JpPhxRdf5O1vf/uUYx588MG8/PLL4lJpM84MfOYzn+HDH/4wPT09ZLPZSf8qCbcygHDpDkhqG2mmRVulcBK06CKcTosxPiynnhyHxLjjbx9JpEmkpTstFqF0R7KLn+YkgfY5VZSNpySDSm8iW6x0JzaitOkg33RAM+qrfARzhyhy3eF0le6Ut48SY/lqlkAolKmQ67Qov/Zp91E1LXltIw22Uhq3QqX1xfBRkgdDUj5KMuaTlhQZF+gILGQn7fPJzOZjCc8Mk/EHnwUXvwAr71KPB581rV8zDANvTqdupg3pvv/975NIJDjxxBN56KGH2LRpE3fffTfvete72Guvvbjiiism/4Kt6Zbioosu4lvf+hZ33HEHr776Kp/61KcYHR2d9PJ3vOMd/PKXv+Tvf/87L7zwAitXrsTrzR8w7rnnnqRSKW688UbWrVvHr371K373q59Peo8LL7yQu+++m2uuuYY33niD73//+9vpue0ITU1NtLS08OMf/5g333yT+++/n0svvXTSa9rb26murubuu++mr6+PcDhs3/cf//hH/vjHP/Lqq6/yyU9+crvPtiN8/vOf59FHH7WbPrzxxhv83//9n/ZGCjNOug0NDXHJJZfQ0SG38FcghFQc4qPquaBjlwuU9ToLsTIDKHKgrPk0LVAL/pxmiQZbWcnRuqCP6oBmVlM5bzxBewt5+dId+fk0FE2SkuoIXOrJHItZVNMi0mkRch2BpZIE2n1UvrxUK0xTvMM2CCZzCte9rPOHzWLdtUG8ugEEfZTHo9jLoGVODUUTZE2VW2kJaV6PiuijZDoC6/VRYsmcIlQ3WHI2qYzJ6ITmjsD2gYNmHyWh4wuAMbvqhoaF0H2sepwB/LlDlFRmZsnRZcuWsWbNGpYuXcoHP/hBdt99d97znvew11578cgjj1Bbuw2zu6B76WWXXcZHPvIRVq5cyVFHHUVdXd12ZaqXX345xx13HKeccgr/8i//wmmnncYee+xh//8BBxzAddddx7e//W1WrFjBb3/zay78wpcnvceRRx7JT37yE66//noOOOAA7r33Xv7rv/5rl5/N4/Hwm9/8hqeffpoVK1ZwySWX8N3vfnfSa3w+HzfccAP//d//zYIFC3jf+94HwLnnnsvKlSs566yzOO6441i6dOkuWW4Ab3nLW3jwwQd5/fXXOfbYYznooIO44oorWLBg6hLhuWLG5aWnn346f/vb3yYZo4Iygd1pMQhVjWLD5svhhPQ9YiOQToDP2UVdzKlDUU498/oeAqUGtR0wsl59zhZn1xpb20MyOVqM0h0prTDQUmY1kUwzbnValGx4IYSmmgA+j0E6x5boaphmecNsoLlsUSyZU4QkNqjv3+aRmP7mJLaeZYmzPRJjkM79rQQ3n2JNL0K5jsBmJtcR2NnEotjGE4qSJJBtTtIOka1akgT5TotB/Z0Wi+CjCu2kvSOwRh9lmqbc2leEJHbA56Gpxs9IriNwk84EsGbNZTmpilxy0uMTYyQCap1IZUhnZ37QumTJEm6++Wb7+sorr+S6667j+eef58gjj5z8You9l03j8/lYtWoVq1atsv/77LPPnvTy+vp6fvOb30z62cqVKyddX3LJJVxyySUAbB2NMTie4NyVK2lszMeu5557Lueee+6k3yvsGnrVVVdx1VVXbffZ3vnOd/Lyyy9P+tm2rM3zzz+f888/f9LP/H4/N910EzfddNN272lhw4YNO/z5YYcdxr333rvT39OBGSfd9tprLy6//HIefvhh9t9//+0aKexIlK6CEkEROi2CYOed6ibwBiCTVAFYo7NiiWKi75k0RAfVc1EGVa7UQEKsta4zn3RzGKKaEcVgJObm0+B4kkzWxKuzPEljoGzZqcrvoVZ3p8UibDxVR+AgvWNxBiKak26aGYlyukby5dogqJNYmMQ2Tcf9sBiDytp4BmegleMALDvp7wjsg1CrasAy3uf49zF/gCeovSfKoBKaT6DW9B60+ChRRmIR9WHjqSzjiTR1Vc5r4tnQWLYYjqVIZqQkReRjPlC2Ukm3OHt3TrMpwGwgVN0gso8CLTqPU8FiuqVnyHTbEb7yla+wZMkSHn/8cQ4//HA8noLEvzcXM5sZxcZ2WKvYahqo/bChzDCr7qW1tbU8+OCDPPjgg5P+zzCMStKtlGE7dVlnIdZ5x2JQhTcph+F40k1o4xntR3Va9Ip1WgTptuT6usOJbmiKcOrZElIdgTO5jsBaO+lqDMAK55P2TotFKN0BNad6x+ICguL6GInJdJaRXElLOZbuQDE6AieV1EN1k6NvL95ARjw5KlxaHx1Qa3zn/o6+tdjGMzmhWIlQnuWloNVHDYwJHuDZsYTcnKoOeKkL+ogk0vRHEpqTbvrKS6351FDtJ+jTLClSrH1UXZDX+iKCMj16GIn9UnOqkOkmCCtJlco6o713zjnn7Pg/DC9gAKbSrnM66ZZLYvu8cgSdcsCMU5Tr16/f6b9169bpuMcKpFDEjSfA2r5xesIxvYNZHRb7XnL8rcUCsMLW8R65UwYrOdo3Fmfr6ITewaxTz81rILzF0bful2K6ZbO5BCmiSQKf10NjtQqOX94ypncwa60YeNV5O0luaIp0Om3NqcfWDeld+6zvX3ir43ayDkv8XoOmGs2nxkVIYkP+O/jC5rBeO/mrIJhjKfQ87/jbizPdipQc3TAY1R9LWN/B9Q+V7tpnbZz9NfnvnQCsmC8ST7NhMKp3MMtOW5/VEEsUoQxYuLTeWtNf2ao5lrDWisE3S3c+QYGPkpdAAFizYVjv2mfNp4khGN7g6FuPJ9LEUkojUz/TLZd0E2a6WUmqeDJDMq1Ry9cw8gnF1Pbfh5tvvpk77rhj1m9vadL5dTf6KTNUeIEV5FGEMgOAF7eoLiSv9kV467fuZ/WajXoGeuYW6H1BPb/zInXtIAbEulgVx04Pvj4AKFrxMd/+mz47gdJgAXjx/8GqFY7aSqy8NDac645kiHVaBFi9ZqPNPFp585N67dT7fP7RcTsJlWtDgfaebKAcSSg7/c/D6/WufWvvV4+ZuLb51FYb1M9ILFJydMOQSgw88PqAfh+ViKjnv3yfo3bKZE2Go1LJnOLY6ZmNIwBsGonptROo7toAj17v/JwaL99OiwB/er7Hfv6Oax/Qa6eRDerx9T/rW/t02ymdUFrEIOqjVq/ZyMYRtWH/zK+f1WunzU+px5F1GuaTkOYoFG3tG8qt7b9+cpPete/VP+af33iQlvkUCngJ6ZYUsZluskm3RC6pGE2mea13zPbJjiM6mP+MI+vzkkQOwdKkq5SXzgyz+mtt3ryZm266iS984Qtceumlk/5VUMIoQulOTzjGjx/KMySzJnzx9hedP6kJb1GJNhsm3Hmxoydq/WNCp57j8ozEnnCMK/7vRftam51A2eSVu/LXZtZRW4lp71mMxJoWsdO0nnCMy29/wb42ddvp8QLxUsftJLTxNM2ilO70hGOsWT9iX2td+/78ufy103YaK0ZyVHbtu/3Z/N9KzEeZzvqooXHVadFjQItUl1lhH3XDfW/Y19p91KYn89cOz6kBqTlVhMYkPeEYX/x93kdpt9MLv8tfl6qPspKjHr/jJec7w3axBJrt9Pdr8teO+yih7tpQNB/10Ov5pIpWH3XXxflrXfOpXq/8gWmaBZpucuWlyXSWoWgyfx/AlpG484y3dFLJKBUivEn93AFksyYZS9NtnjDdtm3qMFvM+Nt233338d73vpelS5fy6quvsmLFCjZs2IBpmhx88MGO3FQFRUIRSnfWD0bZtrQ9Y5psGJxwVlh8eK1yEIUwMzC8bsYtn3eEaCJNNKlOMHQ7jHzpThnaCZSt2GYwB20lrmskmMQWt5PGOSUVgBEfhUzutFFw87l+MLrtt7wk175+UY1E+STB+sEo28ZbpWynltqg3uYqUPFRc4Bpmnmmm+61rwgJgnKxEwj6qEL2lBAjsRJLzALZjNJ5hEosMQvolj/wepWuWTKZpLoITLdkOrPdz0xMkuksAZ+DjLHMTthzmQT45t7Z1mK5GYahP5ZwCZJJlbC0vkOzxYyTbpdffjmf/exn+cpXvkJdXR233XYb7e3tnHnmmZx00klzupkKiowilFh1t4bwGExy7l7DYElrjbMDNe8BhmeywzC80LzUkbe3aNE1Aa9Ap0V5zQgxO4F+W9kbmvIrAy4rO0mV7lh2qmpQmlpC6G4NYRhMSuiU8tonU7ojr5FYbj5KViOxDO0EylaWSLUFh2w1OpGy9XJaa+e+QZoS88FO5TCnipAcrdhpFogOqs9geFR3YyGUXSyhyU4+n4+amhoGBgbwBxJ4MCGVBSOuZbxtkU1nIZ2clCA1MMimk8TjaecGSpvq37ZImWDO/bNOJNOY6SQ+j4dEQqAZTpGRzWYZGBigpqYGn29u+/sZ//Yrr7zCr3/9a/XLPh+xWIza2lq++tWv8r73vY9PfvKTc7qhCooIOwCTK7Hqaqjmm6fvz+dvUzR2jwHfOH2F8ydpDQvh1OtV+Y7lME5d5cjpDEi3ji+enb5w2wuYqO2GFjuBssm7vw73XK6uDa9jtkqkM4xanRZ1lxoUoTGJbafbX7ADMK12OvV6+MNn1LXhKc05VaQGMl0N1Vxw/J58/29vAipI1rr2/eFCsGavDjvpnk/JKCRzemfCa9/X37+/XWql3Udps1MRyoDLMZYAZZNjLoaHv6euHfRR1nxqrBHotFiEsnrxWOLka+GPl6hrB32UaZryUhWVWGJWELOTVd0QanO8W+RU6Gqo5rPv3pvv3vMaAN6Kj9ohDMOgq6uL9evX888tOV3JiF+0g2kykbY1lw3UOr8lpmH8ZAYmRrAPhmqaIepMGXAsmWEomiTg82BEBeIJF8Dj8bB48eI56xbP2NKhUMim2XV1dbF27Vr2228/AAYHnRXqq0AQ2UwBM0dWTPyMwxazes0mntk4ypWn7ssZhy3WM9DBZ0FdF9z6r1Ddoq4dgmgXq4h82SIoO72wZYxfPf5P/vWQ3fTZCeDIT8K9XwYzDefeDYsOd+RtrZO0gNdDo+5Oi0U4nQZlp2wWLv/9C+y3oF6vnQ4+C9b8DHqehZOvcXRODUjNqSIJHwN8+Mjd+f7f3sRjwIOfO57dmjSwCEDZZfPT8MzNcPBKPXbSzXSz1j1/SLTTIsB/HL6Y6+59nYHxBD9deSjv2EfTd+Xgs5Ro+p8+CwsOdtZHiXbwK56P+tMLPTz4+iCXvGsvvWvfIeeopJvHBxf9Axp2c+Rti9IRswh22jA0wQ8fWMuJKzr12umwc+G+r0J8BM78f7DnCY68bSSRJp5SB7j6pSqK46POOGwxNQEvn/n1cyxurtYfS7xwG6x/AN5xhcPxuXDX5iLEEue8dYmddLv74rexrEOTjzz4LBh4HR67EfZ7v7OxhID0SyAQYNnCFpL/d5pKjH7iUUdKLmeCs372BFtGYnzx5OWs0BVLALz6J/jrFdC4O3z4Nsfe9o5nt3Dj3zbz1j1b+er79nHsfd2MQCCAxzP3EuAZJ92OPPJIHn74YZYvX87JJ5/MZZddxgsvvMDtt9/OkUceOecbqqBImBhStfnCnRYtLGqu4ZmNoyR3RIl1El0HqMfYsBLSdEhEM0+LFihPK1JyFGCPthAAE8nttQkchWFA/QIIb0SdBzmDwuBLe6fFIuhPWdi7SwVcFqtPK5p2V0m3jHNjpTN5wVmxDY3wxhNU+ZiRK+HRzmpp3VM9pqKOvm2/1NpXpCS2ha7GKgbGE2Qd1jzeDh3qEJP4yNSvmyHyHTE12ymdUDqJUJTN5+4tIWCQREqzoaz1IpsGv3PJcjHNUShIEsivfXu21QJKD1c7GnZT88khMWzIx3x1QR/VAc1rdxF91L4LGgAYiQrEEs1LYD0716SaJSSSOUDRktgANQEfdUEfkUQaj26drba91KPVwdkhSHVt9kT7qZrYCtXNUFuvdawdIRisYktknHjWS1WVxu9k1z4wvgkyUXBwnM1jabZEMgSDVXrvvwwx47TdddddxxFHHAHAV77yFU444QRWr17NkiVL+J//+R/Hb7ACIVhOPdQq2s3FQkdO4LRvTHNtfU2rKgXBhGi/Y28rdpJmmgWd4eRKQixYQYt2O0F+cx3pcewtrUC5VYRFYCVH5e1kzaeBSMKxrjs7hRVgOminoWgSM9dpsTmk+RSySOWloNqtt4TUd1H7nLI21tbndQhy2nvFYxFAwdoX0W0na93rdTRJYHfwk7KTNyDWabEQ1oZN+3zyBfOfz8E5ZW08y7UM2IJYzAdaYgmx+QRFKQO2YM2nSCLNRFJzgrTW+VgilswQySV25XyUvJ0gzzaXiyWcsxNI+qjixXyQ/3zaYwkrNo8Nq8MwhyAW85UhZpxdWbo0L5gYCoX40Y9+5OgNVVAkFPHEE/KO3UpeaYPHoxbayFYVKNcvcORtxZxFbAQyubbPRXAYHfVCdoK8w7ACGQfQLyomXrxTT0tfK5nJMjqRokln4kqHnXLzqVWi02KRkzkd9UEGxxN2IKMNdc4n3bJZU06kuoilO1Cw9o0J2Sk1AYkIVDlzEi9WtlhoJ6FOi4WwOhTK+Kgu5ZPHe6FjX0feUqwMOJPOd1osgo8qTizh3Nonq5FYPNZ8bdBHTcDLRDJD/1iCJa0aD+VtH+VcLGH5p6DPQ32VZkJBkfdRHfVVrB2ICsYSztkJCnyUdqmK4rLmrQMH7bFEdZM6/MokVZzb6Ex5uKgEQpnBwR61FZQ07ARBkVgERTn1dP50Wr/+lNVpsVG006KFQqabdgaVhtO0gTFJ7b3iJQkCPo/NENPPzNFgp3Gh4AuKWroDgswcDUm3kYkk6azVaVHodLpodrKSOZrtFAhBMJdo0+GjtHdtLjYjUWg+wWRWokMQS+ZEBwBTMf9rWvSOtQNY82l0IkU8pVmuQgPLN9+1WVBSpAjxuWEYRfBRDjISCxI52iVFiu6jhO0UHXBMViSZztoNBuQ0EotNMtFsJ8PQsvb1S3asLzNUkm4VKBSb7SHFdAN1Og0OlxoId0cq1oYmt8gm0lnGYppLDTQkCcRKdxLjee2som8+S49BZTNHdSdyoKilO1BYZiVkp2REfT8dgDWfmmr8BHyaw4kilmtDnpmj3U7g+ObTNM2COSWka1Q0RqIw0w20SCCIlcIJd1q0UF/tI5hbM0qR5Tsg1bU5my16fG4filfsNDWK7qOEYolCmZ5xZ2R6BnOxhM9j0Fgt1OSs3O0EWhLZ+TlV0XObKSpJtwoUily6Y5eEiDDdnC+HE2ukUGRadJXfS0POIWo/pbE3NM4nc8RO0gK1EKzVO9ZOIDandNhJtDFJ8Up3oLAcTrOdgnXq+wiOrX2you/FtpPQ6TQ47qPG4mkS6VynxXlSujMcTZJMCzVT0FAOV+6NSQzDkJtTOn2U7vkUG1bNOgBCxU0SiMUS0X7IOsN+FI0liuyj2iRlehwu2S7UxdbeCKJI3bUtdBQjlnDIR2Wypp0grTDdZo5K0q0CBZfQoqPJDOO6u1k5XA6XKuy0qL10p7hOHSQZVDpKd6T0p4rL9gBB9qhlp/gopGKOvKWYtkcqBvGwel6s0nqp+QQF5XDOrH2iZQZFThLkS+sl7OSsjxrIzae6Kh9Vft2dFovro5pq/Pi9atNmMTG1QUs5nNCcKnKCAKBDak7pYGOLaSTm7rmmA0dcdAAAt6hJREFUBXyamwrtBGKay6E2MDxgZvN6g3OEWCxhmkX3UaLNSRwure+XlH4pNnO0YN0rtUZnQ9EEWVNVrrbobnJWhph10m1wcJCxsTEn76WCYmJ0k3r0yHcuBQgFVbtrkNSNcCbzPzSuEm4eAxK6tUmG1qlHf43ecaZAhxQzxzr1dFD8uDes7lm7vnf/K+qxqlHzQDuHWABW1Qi+3CmyQ8ycTcMTAHIlix4/JKN6x9oJ8p1mJU49nWV8rB1QZaqhgIDfGNuaeyIvzg95Ow2OJ0hnSotBZW2Wa4M+esLOJMZ3ipGN6tFbnIBcaVBJMXOcZSROJNP2oWMmq3kzNvimegyE9I4zBcR8VKGdss7M3a2jah6JNfoJ1EJ4i96xdoJ8ExnNdvJ482w+h3zUP4eUX6/SHUskxiCd+/s4xNKbKcQYieB4LPFmLpao093sAvLzyJAvq4c8IzEpKdPjkI+ymNh1QZ/+Q60yxIxWodHRUS644AJaW1vp6OigqamJzs5OLr/8ciYmJnTdYwW68cwtsPUZ9fxPl6nrIqBNrDucszosv3rinwBkTTj2O39j9ZqNjrzvdnjmFnjm5tzzXxTNTu1S2kaWnSaGHGl3/esnN9pO4qO3PKXXTn/6rHq+9emi20n7fDIMR5kEq9ds5MHXBwG47t7X9dkJ4Omb1WM2Bav2L4qtiqMV5oydfvTAWgDuealXr52eulmVWQHc+q9FsVNLKIDXY2Ca2MxmbXDYR/3hOZWw7AnHeeu37te79q1/QD2/7ytFX/vEfJRDdrr5kQ3285NWPaTXTo/dqJ6/9PvixXxSDCqL0ZJN5deROWD1mo2sH1R7nktWP6d37XvxdvU4+k9YtaJIPqoYGlTO+Ki7nlfv85O/r9drpyd+nH/+/UOLYqdCRqIcg8oZO3337tcAePjNIb12euYWGN2gnt92blHsVOX30lijZHq0Nzpz2Ef9v6c3A0qyQmssUaaYdtJteHiYI444gl/84hd84AMf4Nprr+Xaa6/lve99LzfeeCNve9vbiMfjPPnkk9xwww0677kCJxHeAndelL82Tbjz4qKcqHVIdYdzsGyxJxzjB397077OmvDF2190nk2wrZ0onp0KO5hqhdXuGuZ8StMTjvGl379gX+u3U0HAU2w7STCoHCqH6wnHuPz2vJ1MNNkJlE0e/l7+2swWxVaWnQbGE/rZLQ6VGlh2su5Wu53+eEn+ukh28ngMW4xbPzPHWR+1es0m+3p++CghzZzCEqs5bnJ7wjG+e+9r9rWcjypizCfFdPP6lfg7OO6jtNkJlE2euzV/XaS1z0qOisQSDvsoC9p91ANfz18XK5bIHTZMSMj0aIolQLOdJu13i2MnEOw062AZcE84NulgSOvaV6aYdtLtq1/9KoFAgLVr1/Lf//3fXHzxxVx88cX8+Mc/5s033ySZTPKRj3yEd73rXTQ0NOi85wqcxPBatfAUwszA8DrxWxFj5thirQOQmZtjWj8Y3S7WzpgmGwYdZn66yE4WM0d7x7FJ7a7nlnRbPxhl23xGudtJbD6BY+VwYnYCZSu2GawItmqtDWAYqpxsWDuDyplSA3E7zbc55WBp/frB6Lbf8rJf+/JlVkJaYZkkxEbm9FbzMZawNp7aYwkoYHyU2NrnAh9lSyBIxhIl56OKb6eaQF6mR7+Wb6nayR1rn5yPcq4MWCyWKGNMO+l2xx13cM0119DRsb3wYGdnJ9/5zne47bbbuPTSS1m5cqWjN1mBRjTvoYRLC2F4oXmp+K2InXoWtruOzq3ddXdraDuFIa9hsKTVYc01F9lJjOkGBYyPuZ2mdbeGttNxK3c7FWrvlYpYa3driG0lcrTYCZSttp29RbCVz+uhJSR16ulMSch8tBMIskcdZFB1t26v2VXua58Yi8AXVIxscGROzbdYQlT4vdRiCcitfdugCLay5lMkkWYiWRqNzuatj6qXjiVKzE7bTt4i2UmMPWrF5rHhOcv0iMUSZYxpJ916enrYb7/9dvr/K1aswOPxcOWVVzpyYxUIoWEhHPmp/LXhhVNXqZ8Lww6UJdpdO0S57Wqo5tAlTfa11zD4xukr6GqontP7boeGhfCeb+evi2infLvr0jn17Gqo5vSD8n8rrXY69fr8teEpmp2sUrhUxmRkIqV3MAftdOE7ltnX2uwEyia7HZ6/dsGc0s74cEiHpauhmm+8f3/72mOg1077/1v+2gV2Euu2mJqARGROb9XVUD0pWNa69h17Wf66mLGEfeAgyKCaIyuxq6Gaty1rta+12umUVfnrIvqoouhZOmCnDx2+2L7W7qOauvPXRZpTtUEfNQElOi/GHp0jI7GroZrPn7SPfe3V7aOWHpe/LqqPEmb5OmCnb54uGEscVEAKmg92clCmp6uhmn276u1rrWtfmWLabUJaW1vZsGEDu+222w7/f/369bS3tzt2YxUIojO34HUdAP/+66IsQFAQKIucenZCZKsjlNvaHJ37o8d2c+4x3foWoKVvV4++avjM00WzU+HptGmaGDpbgTooArq4WW083753G984fX99djr4LLj7i5CMwFl/gO5j9YyzCwR8HppDAYajSfojcZp1tvd20E4HLm4EYFFTNb/9xFF6HXogd0L31kvg8I8WdU69tHVMQCvMuVKD96zo4gs5zZz7LzueJTs4BXUMTburx71PhpOvKZ6PsvT3dJ9OB0IQbIBEWNmqqn7XvzMFLKbrFacs5z37d+mbUwsPUY/Ne8DKO13ho7SjrhP6X3ZkTjXl1ugPHb6Iz5ywTJ+d9j4Z7rxQPb/wufz8EoY1n8KxFPFUhiq/xm6CDq59e7bXAnBEdxOr/v0gvT7K6oR58jXKbkWYU4Zh0FFfxfrBKH1jcb1rvYOxxOHdzQC0hPzcdeGxeu1kMV4P+ygcc0kRfZSQnuUkmZ6U0k2cJT5w8G58/jYVS/zfp9/K/gsbHbjBnaB1T/W45G3w/h8Vz0dJ2clqdDa6Ua19jYt3/TtTwO9V+73L3rUX/3robpWE2wwxbabbiSeeyJe+9CWSye01ZxKJBF/+8pc56aSTHL25CoQwpjqb0b5f0RYgKFyEJDWo5u7YrVPao/ds1bsAWffauKiodrJo0QmJdtcOioBaNO637Nao107JqEq4ASw4UN8400C+zEqoO5wDdrJO/vZor9Xv0K37XXpcUeeUmJ2sEqtkBBLjc3oraz411vj1bsIAxnJr38JDiuujRJk5zpTDmaZp3+8JyztkfFTb3q6YTyKxhENlVpD/Xh2xtEWznXIxX21H0RJuAPXVPoI+tQ3RzvJ1MpbI2WnfBQ167WSa+e/VXie5Iu7TXoniYBMZy06LW0L6YwnLRy05psg+SqjTbE0LeHyACeNzk+kZHFd5Ba/HYL8uzZrw1vdqwQHF9VGSHYE1+Kjj9m6rJNxmgWkz3b761a9y6KGHsmzZMi644AL22WcfTNPklVde4aabbiKRSHDLLcVpO17BHGEtQlYiqkholz6dhjnTbSF/v1b3VW2wnHqR7VTl99JQ7SccS9EfidNQM/sTrl3CwdPpvnDOTvWa7WTda6AWgnV6x9oF2uureLU3UlIMql6p+QT5zad1/0VCe4H+nlYE69T3Mjmu1r5g7azfqjcsaSdr7Su2nYT0ckCt84Ovz9lHjcXTxFKKLdM+T3yUtcYPR5Mk01kCvmmfL88cDpVZQf57pd1OLon5DMOgvT7IpuEYfWNxFjVr1AZyMpYYE4olJoYgm5OGsJKGRUKHVCWKzaDqVyw/z+zZj2KxObjGR7VJ6VlaMj1jW1TJ9hwSWL32uhfEs63Am9MYc0fMl5fpkewIPDcflcmaDIyrpJv2ta9MMe2k22677cZjjz3Gpz71KS6//HK7XMEwDN71rnfx/e9/n8WL50ZbrKBIcImzsE6nrXbXVtmmFjiU+U+mswzlOg5ai6g2uMROoGwVjqXoG0uwrENjYsnJU8+IFShL2am4GxrIs0f1a4Xl7BQfhVQM/LM/ActvaDTbKTkB8bB6XuwDBymmG6hAeXhcfU9bdiDUPU3YCQLddgLXJAmsZEgpMaisTXJ9lY/qgMbyPXCNj2qq8eP3GqQyapOwsFHjibyjrHlpH1X8WKKjropNwzG5bouOJt2E7FTTCj6N8hDTgBh7NNSmdAbNrCpdnMOaL2Yn03SNj+qQ1LO0km5znFP5WEIiOeoOO+Ub0iUEZHqc8VFD4wkyWROPAS065WrKGDM6/uvu7ubPf/4zg4ODPP744zz++OMMDAxw9913s+eee+q6xwp0w1qE6osbgIWC+XbX+pk5zmT+ray/32vo1cyCAmfhgkBZipnjkEg15BMa2k9oxly0oZFij1Y1gi/3d50jM8e2U4NmO1nfKX8NVGkuadgFLDtp1woDxxgfVlDfKRIo506n6xfoH2sKWHYaHE+QzmT1DuaQj7LmU6fu+QSu8VGGYeQTpFKxxBzXvfFEmmhSMRIrPkoDCu2UndvcFWO6uSQ2hwJmjnYGlRdCOX3wOSdzhGKJ2AhkckkutyTdRNjYDsUSuXvtFDnAs9a+4sYSFiMxKSHT45CPsuZTW10Qn1cje7yMMau/WlNTE4cffjiHH344zc3NTt9TBdJw0alnm+3YdZ96OiPWapVYtddV6T2pANeUwkFhmZWQnSaG5tTuOpXJMihFi3bRfGqXmk+WWCs4duopWq6te+7uAkXp4jdHO/VKlWun4mpTA0Xf0LSEAng9BqaJzXDWBqd8lFSCAFy59on5KIdiibqgj5BOlj+4yk5tUgwqqzwzm4LY8JzeSu4Azz0xn5hWGJReLGEzElvAJ5A4mgKFjESrIk0bnIolpHxUoUaiC2R6GnPSPH1S5IVSiiXKFNP27Keffvq0Xnf77bfP+mamwvDwMJ/5zGe488478Xg8fOADH+D666+ntnbHmjTDw8NceeWV3HvvvWzcuJG2tjZOO+00vva1r9HQUFxWg6uQzbqGbgvKOa4biAowqJwpW+yXoq+Dq+yUp0ZrtpPV7jqTVKc0s+y8MziewDTB5zH006LdaCcJBlVtJ4xsmLNjl2MRuGfjaXfFzNH3vTp1TRwqNRAr3bEYib4qxagsIjweg7baIL1jcfrG4nq/ow75KDGdMHDNhgYEu/gVCvSb5qwT+P3zsFwbBJluXr8q05wYVN/TUOus3mY8kWY8oZgpYkw3F9gp30hBgkHVCT1UYolZwFo/LJmeuiqdmstOxRJCSez4KKRz318XzKn2uiCjEyn6xuLspVOmx6EmMqKxRJli2ky3hoaGaf3ThTPPPJOXXnqJv/zlL9x111089NBDfOxjH9vp67du3crWrVu55pprePHFF7n55pu5++67Oe+887TdY0kiNpwTajWKLtQKgkLVk9pdz57aa92nTOlOzrEVucQK8htt7VphhlGgbTR7arTl1EWEWl1kJzGmGzhSDpcuZCQ26NbLcUcpHEBrbQDDUEK1w9oZVA6VGkSkmKMFdioyIxGKwKCaY2m9Xbqjez6lE4qRDK5Y+/JlVkJaYZlknpE5C1jJjPkWS9jJUREfZTE+Zr/2WfOpNujTqzsMrimFgwIJBMlYYs7lcEJrn4tiiZpAoUyP0NrnkJ3EYonqpjnpDjsFOR/lcBmw7vlUxpi2x/j5z3+u8z6mxCuvvMLdd9/NmjVrOPTQQwG48cYbOfnkk7nmmmtYsGB7h7RixQpuu+02+3qPPfbg61//Oh/+8IdJp9P4fJqdZanAoq+H2tRJYJEhtgjVtILhBTOjuiTNMvjstZM5ErRo95x6ip1Og/q84Y1zOk2zy4BFS6zcY6f+SFxArHXuFPbB8SRZU7WObwnNn4YXPq+H1togA5EEfWNxm1WgBQ4FYGLdgF1UYgXWWh8WYGMXlO7MgUElVhJifZ+8AbWpKTLEfJQvCNXN6gAz0gs1s5Nc6Q3nktjzjJEopg8L6vP2vTC3WEKUkeg+O0USaSaSaWoCGvdQDsQSsWSGsbg6UNce97mka7OF9vogkYE0/ZE4e7bPvkP5LuFQ2aIYa96VsYREeWnuexkbVodjsyyB7pUq1y5jlIQS3mOPPUZjY6OdcAN45zvficfj4Yknnpj2+4TDYerr66dMuCUSCcbGxib9K2u4KJEDBV38dDOorHbXMKfNZ7/UhmZiWJ2kQ575VUSIdbKCfJnVHE7T+qU6l4KrSg3aatXnTWVMRiZSegdzwE5W8NVWG9RbYgmushPk55R29qgD655o63iX+Sgx/T1rnU9NQCIy67fpkzoYKrSTCxiJYlphUMD4mP2cEuvgl0kphj+4Yu2T1bO0fNRcYr5iJEeLb6faoI+aXPdj7Yfito+aeyxR7ffazC9tcJGdQJC84ICdQLC81GWxhFglSnUTeHN7nznF50J2KmOURNKtt7eX9vb2ST/z+Xw0NzfT2zs95zk4OMjXvva1KUtSAb75zW9OKpddtGjRrO+7JOAyZ9EuzaCCOW0+8yUh86d1PExmEegXa537aZpdZiAi1OqeUoOAz2N31RUr2XbATtq7jYGrOsOBZBe/uTPdhqL51vGttbo1Et1TCgfIdcUM1EAwJ9nhwMGQ9rJFF5XCQRHY2DA3O1mxhHaNxNymy+NXwu9FhjWfwrEU8VRG72AOrH2ykiLz3Uc5EPM1SDQ5c5edbPKCqEzP7A5146kM4Zj6XTntPZf4KCndUcNwRCNWND4vUxQ16faFL3wBwzCm/Pfqq6/OeZyxsTH+5V/+hX333ZerrrpqytdefvnlhMNh+9+mTZvmPL6rYW9o3OEsOqTYHuCICGif1KmnixI5kGcRJCTaXTvAzLHZHrqdemzEVUKtIMhKdMJOlk6YzvJKC247cKgTYnxYwVcyAonxWb2FdTLbWivQOt5FJVaQZ+aIsnxn6aOyWdO+T+0sX7exCCSZbrUOxhJipXDu0Eisr/YR9Kk1pBRYvvlYQvN8yqRhvF89d4mPapOqRHEiQRDJ6/hqR8RdZYv5km3dMj0t4PEBZv67OkNYsUSV30N9lW5Gost8lGRHYAd8lFgsUcYoqrDZZZddxtlnnz3la5YuXUpnZyf9/ZMndDqdZnh4mM7OqSdPJBLhpJNOoq6ujt///vf4/VPrlgWDQYLBefSFctvGcxsGlV4NKqskZA50WymtMNupu8NZVPm9NFT7CcdS9EfiNNTo7JDk3Om0nFBrc9Fbx1tor6/i1d5ISTCoxHTCTNOFOixC2kbBOgjUQnJcrX3BmWu+9ErZCVx34CDW7AfUd3Pw9Vn7qKFoknTWxDBUglQrXLrxHI4mSaazBHwak8MONJER0x11WRLbMAza64NsGo7RNxZnUXONvsGcjCV0H7SO9wGm0h6umV2nVaeRL1uUYlD1QzYDHu+M30IslgDXJXPapJhulkzP2BZVst2wcMZvUag5qp+R6K61L3+AJ8nGnp2PSqQzdpOviqbb7FHUpFtbWxttbW27fN1RRx3F6OgoTz/9NIcccggA999/P9lsliOOOGKnvzc2NsaJJ55IMBjkD3/4A1VVlS/KdnCZs7BOpWTaXc+Nwh5NpInYrePnF4sA1GcOx1L0jSVYprPdtRNlwFJCrS5LYkMBhV17oJyzU3wUUrFZdYcSs1M8DOmYeu4SW8lqG3XC0Jvq+9qyx4x/va8oGonuWPts8WPRbouz81HWfGoJBfFrZyS6y0c11fjxew1SGaU/uLBRY7e6OdrJNE053VGX2QnUJk4l3dzfxU/8AK+uUyU3XIAOKfZoqA0MD5hZVbo4i++qWCyRzeQPRVwTS1jJUaFYYmzLrOeUWBIbXBefF8YSbm90Zn2XAj4PjTpJFmWOGSXdkskkd9xxB4899pitpdbZ2cnRRx/N+973PgIBPdouy5cv56STTuKjH/0oP/rRj0ilUnz605/m3//93+3OpVu2bOGEE07glltu4fDDD2dsbIx3v/vdTExM8Ktf/WpSU4S2tja83pmfnJQl7G4u7qhxDwVVu+tIIk1/JKE36TbHUgMr8AgFvHrvE1ynawTKYbzeNy7AoHKudEe7ppvLyrVBsNSgqgF8Vaq8NtILzd0zfgu7vFRqQ1PV6IrW8VCgFSZx6llrJd1mGygL2WkSI9Edc8r6zEPRBOlMVm957Zx9lKVrJJgcdYmPMgyD9roqtowqBpXepNvc7DQykSKVUdqo+hte5GI+l9gJBDuYFjZSyGZnlcwS1/F1yboHgixfjxdC7cpOkZ7ZJd2kYonxfpUcNLwqWegCiHYEnmPZ4nzW8bUYicl0lnAsRWONRn3cOfqowkMh7YzEMsa0Pc6bb77J8uXLWblyJc8++yzZbJZsNsuzzz7LWWedxX777cebb76p7UZvvfVW9tlnH0444QROPvlkjjnmGH784x/b/59KpXjttdeYmJgA4JlnnuGJJ57ghRdeYM8996Srq8v+V/Y6bTOBC08926Qc+xxPPUVLrFxWCgcFnXe063vk7GS1u54hCoVa51vpDggGyoYx55JtsZIQl5XCQUGpgdTpNMw+6SZlp0QEUlH13CVzqiUUwOsxME0YHE/qHWzOPkqw06KbfZQUg2qWXTGtWKIlFNBbBgvujPmk9CytJHY2reKJGcI0TcFuwO6bT+IMKph1OZxcLJGzU23HrMpgdaBQH1Z/o7M52slmugkwEl0mVVHl99qsMbF91Kx9lGAsUcaYNtPtk5/8JPvvvz/PPvss9fX1k/5vbGyMs846iwsuuIB77rnH8ZsEaG5u5n//9393+v9LliyZtLgcf/zx+hebUofLWsdb6KirYt1AVL+orkOZf+2CuuDOU0+bGq05mVPdBN4AZJIqmdO4eEa/bt2frFCr++wkJig+smH2p54RqUDZfRtPy04D46ozqNcjoGc5ZzsJlcIFGyAQ0jvWNOHxGLTVBukdi9MfievtYjhHH2WtfdoPG8Cla5+QZk4hI9E0Z9ygoC8iaSf3xRJizByvX+mjTQyqv0NoZlppoxMpkuksIBD3udBO+UYKAgyquk7ooRJLzALWdzOWkpDpmSvTTYiRGB0EM6PKlkPteseaAdrrgoxOpOgbi7OXTpmeObLmxcrqyxzTPlJ75JFHuPrqq7dLuAHU19fzta99jb///e+O3lwFmjHeD5iuaR1vQYyZM6nd9cw7cNotyefphsbacGtPjhpGAYV95qdphaWl2mnRLiuFA0G2B8zp1DOeyjA6oRiJcmXA7imxaq0NYBiQyZq2YK02zJWRKBUo26Vw7plPUOij3H06bZeXSjASkxH13EWbTzFmjvWZM0nVwXqG6LdjCYEDPDf6qDpJH2WxR2cRS+TmU3MoQNCnmdXkslI4yM+nAclYYhY+SjEShdY+F5Zr1wSUTA9I+Ki5xhJC5aVWzBdqB29R5ewnQc5HzY01L5bELnNMO+nW2NjIhg0bdvr/GzZsoLGx0YFbqkAMhfR1lwi1Qn5Sa3cWNa1KhwFTdUmaIWy6re5FKJPO35+LAuW8nYROPWFWp2m9omwP921oClkE+ksNZi/WagUdQZ+H+mrNQZELS+F8Xo/dYdLtpfVFERN3EcRYvoVlwLOYu3kJBCFGYqBOdcd1CcR8lC+oOlbDrOaUWCwBLj3AK5FYwuowq7sUDgr0lt1np0giTTQx84PqGWEOscRYLE08JcVIdKmPsg9bpWKJOWq66Z5TLizXhoJYQrueZe5zz1Kmp08qlihzTDvTcv7553PWWWfxve99j+eff56+vj76+vp4/vnn+d73vsfZZ5/Nxz72MZ33WoHTcO0iJKQVZrW7hlk5DLGSkGihUKs7WsdDgW6ESKnB7KnR/ZK0aBcGYG25RE4qYzKSY5JpwxzsVHiSJtc63j0bGihGOdzM171JrePFNBLdZacOKT1Li+GbmoDE2Ix/XY6R6M5YIl8OJ8nydXEskYxCIqyeu8hWYvMJ5hhLFCM56h471QZ91AQUw0//2jf3WKKh2k+VXzcj0Z1rn1gDrTnYqVAjcb7GEmKVKNVN4M0lzGYzpyTXvjLGtOkEX/3qVwmFQnz3u9/lsssuszdFpmnS2dnJ5z//eT73uc9pu9EKNMCFJ56QDzzFTj0jW2dVatAvRl8vZCS6Q6gVJtOixdpdz6LMqk+qdKewdbyLSg0CPg/NoQDD0SR9Y3GaQzo7JDlhp/nJ9gA1p17aOiZYajDzdc8qJw94PTTpbh3vwlI4KNBJ1O2jAjVKzy4RVraqapjRr/dL6xq5qBQOCn2UUCzR//KsyqzkYgmLkVgLVdtLxRQL1nwKx1LEUxm9iZKS8VHW2ueeWALUnFo/GKV/LE53q0adzTmwsUXtNOZOO+WbKQgx3aKDSifcO/2YIJJIE0tlgHnso6QOWg1DHTiMblQ+qmn3Gf16pbzUGcyopvDzn/88W7du5c033+Thhx/m4YcfZu3atWzdurWScCtFuJC+DgWLkEigPHtqdK/NoNKczHFhKRzkWQSJdJaxmO5Sg4IyqxmiV0yodaBAqNUdreMtyAVgc7CTVbozTxuTQH4t0a/DkjudTkYgMT6jX82L8wu0jne9ndxbDpdMZ+3uqvp9lEtjCVEGVQnEEi5l5dRX+wjmuraK6e/NKpYQslMqBvFR9dxltmqXYo+WTCzhPkYiSMr0tIDHB5g5nfDpwypZrK/yUR3QTChwrY8SshPMyUdVykudwayEvJYuXcqyZcvYb7/96O7udvqeKpCCS51FewEtWr8GVW7zOcPT6QotWrW7bqi22l3rLoebfQAm1sHPha3jLbSLlRrM3k7WvWmfT9msa9e+NrvTrOb5FKxTbBeY8donWmbgUju1F6McboZ2GhhX9+b3GjTVaGS3gnvtlJtPw9Gk3XVSG+wyq9k3+5HTSHRXLGEYRsGccnMsoewkFkv4qmfMbtWNdin2qLWWRPtVFcEMIBZLgGvj8zYpBlWhTM8M2aOVWAK5dQ9m7aPGE2miSSFGYpljRkm30dFRLrjgAlpbW+no6KCpqYnOzk4uv/xyJiYmdN1jBbrgUmdhnaRNJFW7a62YZeY/HJNsHe/OQBkkmTlzSOZIlRq4tBQOBNmjlp3io+q0fgYQKwmZyLWOx8gHIS6B2HyCWTOoilJi5aJybShspODe02n7sKGuCo9HipHoLjs11fjxe9Vnt5KQ2jBLO6UzWQbHhTafLmV7AHRIzak5lC2KdQMuLIXTzSaeITqkNJdDbapqwMyqKoIZQMxHpeJKmB7cV7Yo1RUTZh2f23bS3bkUCvZR7vJRhbGEWxudWXaqC/oIBd3T+bUUMe2/3vDwMEcddRRbtmzhzDPPZPny5QC8/PLL3HjjjfzlL3/h4Ycf5vnnn+fxxx/nwgsv1HbTFTgEe0PjLmcRCqp215FEmv5IgroqjbpBsxQBtQLDphq/XOt4l53QgHIYr/eNC5YtzsxZTGYkSpXuuGs+gaCoblUD+KogHVff2+bpM6ELyxa1wmYkuqt1PBRohYmcenbC0JuzXvu028nFjERrPg1FE6QzWXxejd2/Z+mj+qVK4cC1djIMg/a6KraMxugbi7OwsVrfYLMU6B8cT2Ka4PUYtOjU2wTX2gkmd9nWiroCVk42q5g604Rc12b3xhLtUqX1Hi+E2pWdIj0z+s72Sa19FrPLVwVVjXrHmiHE5hMUsEdnmMyxGsjUSTIS3bX2WYzEZDpLOJaiUScrfZY+Siw2nweYUSOFQCDA2rVr6ejo2O7/3v3ud/ORj3yEe++9lxtuuMHxG61AA1zs2Nvqg0QG0vSNxdmjrVbfQLM89eyVCr5ANXoAV9pJrMzK+uxWu2vf9Bb/sXheqFW7Y3fxhkYsUDYM9flHNqhyuBkl3aTYHu4MvqBAg6oETqe12yk2DNlct12XMRJbQgG8HoNM1mRwPKn3pH62Pipc8VGg1r4tozG55iQzLLHqtRmJQUFGovvsZHea1W0nay3JptUaM82O8OlM1m4iM191fKEIDKrx3hmXw/WKlQEXxHwuYyS2F8wn/Y3OrFhihlIVUjph6YSqcADXrX1Vfi+NNX5GJ1L0RxKak26z81FiMd88wLSPeO644w6uueaa7RJuAJ2dnXznO9/htttu49JLL2XlypWO3mQFGpCcgLj7Wsdb6KgTcuxz3Hhqd+rg6mROXgRUczKnugm8OWc0A20ji+0hItTq5o2ny8vhFCOxwiKwPvvAeIJMVnepwdzKS8XE+UNtM+qIJgGPx6Ct1t3NSfqkdI1M090+Soo9WminGZQJycYSpZDM0Wwnrz/f6GgGa99QNEnWYiTWzl/WvB1LSDCoZlkO1y8VS7i4XNs6aI2lMkRcKtMjdtBq7Rm8Aahp1jvWLJAvrXdpLCGpvVfmmHbSraenh/3222+n/79ixQo8Hg9XXnmlIzdWgWZYi6M/BEH3tI63ICYuaYu1DkBm+o4prxMm2GnRZbpGkD9NG9DNdDOMAgr79JNulrMQ1YxwWbk25OeTdjvBrMRaxxNpJmyh1vmrkdgSCmAYkMmaDEeTegez1r4ZN1KQSo66104gyfK17OTS0+nYCGRy31UXJnPapdij1rqXSaq/yTRRiSUU2qW0wmCWsYSyU1ttEK92RqJ71z47lhA5wJt5E5ls1rS/Q2Laey60U01AyfSABHlhds1+rMStXCzhPkYiSPool1c3zANMO+nW2trKhg0bdvr/69evp7293Yl7qkACLl+E5Npdt4LhBUzVJWmaECsvTcXyAbwLNzRiTDeYFTNHtgzYxWyPAn2PrHYG1cxPPW2h1iofNQHNOmsuZiT6vB5axRhUsytbnO9dmy20F+N0ehYMKjFGYk3LtMv+JSHmo3xBqM6xKGYwp8R8lNsZiW6PJaRK4aAkGImRRJqoCxlUg1HFEjcMaK3VrZHoch9lJ3OkYokZMt2k5pSLGYkgyB611hNLpmeaEIsl5gGmnXQ78cQT+dKXvkQyuf3peyKR4Mtf/jInnXSSozdXgUa43VnUCW08PZ5ZBWByreNzQbILhVqhoNuiSKnBzE9pCjv4aYeLHbtVCpfKmIxMCDGoZmSnSut4Cx3SLN8ZrHvjibTdUVou6eZyO+n2UdbpdGoCEmPT/jW55Kh72R5QEEtIMKhmdeAgZKfYiGpwA/nvlIvQIaU7CrPzURGhmA9cHZ/XBn2EclIdYizfGdjJYgu11gb1NriBEvBRwsmcGdipkJEoynRzIcS0fKubwJtLnLk1Pi9zzKiRwqGHHsqyZcu44IIL2GeffTBNk1deeYWbbrqJRCLBLbfcovNeK3ASLu1caqHdZuYIlcONbZlRqUG+JERwQ+NCRmJ7gfaemFjrDMqsbDs1CAi1Wq3jXRgoB3wemkMBhqNJ+iMJvZo0s7BTn9R8AleXWIE1p8YESw1mvu7VBn3U6m4dXxJ2EvBRgRoINkAirGxV1TCtX6toJCq0S2mFgSqz6n9pRmVW4uXa1c3gd9/myZpPY/E08VSGKr9GDda5xBKSjEQXx+frB6P0j8Xpbg3pG2gW5XCysYRlJ7f6KOGyxeggZFLT0mAdnkiSzjESrSYq2mD7KJfbSXdy1DCUjxrdqHxU0+7T+rVKealzmPYxwG677cZjjz3Gvvvuy+WXX85pp53G+9//fr70pS+x77778sgjj7B48WKd91qBk3B75r9OiEUAszqd7pWi27q4FA7yzjKRzjIW011qMPMATKx0x7onb1CdJrkQYuzROdhJpCW5izvDQSHjQ0iHJRmBxPi0fkXUTm73UUVh5kzPR00k00TiFiNRakPjbjuJHODNobRezk7ujCXqq30EfWpL4sYGWmLlpfGwYrWCKxmJIMgenVPMN7/LgEFSpqcFPD7AhPHpyfRY86klFMRfYSQC7mx0ZpqmvR5XykvnjhkdVXd3d/PnP/+ZkZER3njjDQD23HNPmpvd1w2kgl3A5QFYIdNNP4NqZiKgmaxZ0Dp+ftOiq/xeGqr9hGMp+iNxGmo0dhmc1alnriREd3lpoVN3ISMR1Jx6tTeif/M5Czv1S9HX00nXto630CbVbTFYB4FaSI6rtS9Yu8tfse00z8u1QbCRAigfNfjatH2Ute7VBLxyjES32in3XR2OJkmmswR8Gjd4s2giI6+R6M5YwjAM2uuDbBqO0R+Js7ilRt9gs4klpMpLrXuqalAsVxdCjD1qNzrrh2wGPLtmP4pJv5hmwQGeO9e+NikGlceTrxga74WGhbv8lX67iYJkctSddhJrHAgz9lEjEymSmSwgJNNT5phV9NHU1MThhx/O4YcfXkm4lSpKRIdlIpnhzf7psTBmDetvsPVZCG/Z5cuHxhNkTfAY2KLn2uDyEiuA5pBKtL3cM329oVnBCsCG1k7LTlBYXiq0oXGxnSz26FMbhukJx/QNZNkpPqpsNQ2IlYRYSQuPX53OuhBWEPpKT0SvnUA1kgHofWFaL++Tmk9QAj5K/Q02Dcf028n6G/zzkWmtfYXzSeuBFbi+FK6pxo+VZ3tpa1jvYJadel+Ylp3iqQzhWAoQTLq51E6QT+b//Y1BzT4q9zcY2TDzWEIsOer+WOK5TaN67RRqAwwws9P2UWJ2SkQgFVXPXZrIttaUN/vGBWKJXC6g76VpvdxKjsqWAbtz7bNiiZ7ROFtHJ/QOZq19m56YUSzREgroPbCaJ6j8BecrXM4iuOv5rfbzE1c9xOo1G/UNNrxePb5xL6xaAc9MrU1oOYu2OsnW8e506qvXbGT9oHISF//mOb122rxGPY5umJadJgu16k6OuttOAEPjqoHCb5/azFu/db8+W738f/nn3z90l3YCyRKrgkSOSxmJr/dGAHhm44heOz1zi5pLAL87e5p2slgEmu2USUF0QD13qY96fN0QAGPxlF47QZ6d+fTN0/RRkmXA7mYR/PapTaTVQT2n//BRvXYaeFU9bnx0WnaymKNVfg/1VboZie5OYoOSqQC4/r439M6pfz6iHicGp2UnKIL2notjiZ5caeBdz/fotdNztwK5js0/ebs7Y4lgAwQ06trNAdYhw6t9Ef2xhJUU/cOFM7KTTGMSd699D76uYp101uSYb/9Nr4+yJIte/H8zjCUqLDcnUEm6zUe4vHV8TzjG5bfnT7WyJnzx9hf1nNSEt8A/fp2/NrNw58VTngCI6YSBq+nr29rJRLOdHvx2/noadhqK5oVatTMSXZ7E7gnH+Ntrea0NbXMqvAXuujh/PQ07gWQ3YMtO7lv3QNnplsf/aV9rtdOdFxX8wJymnXJrn+4yg/E+dU8uZST2hGN840+v2NfafdSb9+evpzGnRIWPXayRuJ2P0m2np3+ev55hLKGdkehiO4Gy1Ytb8kxErWvfX6/MX0/DTvFUhpEJi5E4v3V8e8Ix/vRCXg9KzEdNM5borcQSgLLTjx9aZ1+7NpbQPZ8S4/mu3y60VU84xhX/96J9rT2WeOWu/PWMYomKnpsTqCTd5iPiYUjnJrQLF6H1g1Gy5uSfZUyTDYMaaLfDa7FP0iyYGRhet8OXg/CGxsUsAnE7mdnJP5umnVprJYRa3X2Stn4wuu23XI+tZmEnxUiUKt1xd5nB+sEopsScmoWdQLC8tPBQyOO+MMX9PkqodCeTVnpL4MpyuFLxUbKxhPvsBO72UZaGb9DnoaFao24tlIaP2uZnbrETSJYBu99OImvfrGMJIR9l2SlQp3RsXYZKLDG/4L5otgL9sIKv6ibwVxf3XnaA7tYQ21Zteg2DJa0aRGWb9wBjm2lgeKF56U5/pV8q8+9yRqLr7VQRarXR3RrarppSi61mYaeRiSSpjAoE5FrHu9dOInNqFnYC6JOaUy4XfXf72idWEhIdUBsuwwuhVr1jzQKlYieZpJt7YwnI+ahtfuaWta9PkpFY8VEKs7BTMp1lKKpkNOQak1TsNKtYQqxcuxJL2HBzLDFPUEm6zUe43Fl0NVTzzdP3twMwA/jG6SvoatCQIGxYCKesyl8bHjh11ZTdd3qlSqwSY64WarXsVOgwtNrp1Ovz19OxU1iw06LLNzRdDdV8+V/2ta89hiZb2XYqmL3TnE+ttQH9jESXl1hZc8qCdjsVBmC7sJNpmoLdgN0/n0R91Lu+lr82vLu0lZyuUa7EqrZjWp0FpWHbKWco7XaaoY/Kl2trtlM2k28i4+K47xPH72Ffew3DdT5K5ACvBHzU1aetsK/dFEtYB61+r0FTjRAj0cV2cmssAYK6oy5PuonHEidfk792UywxT1BJus1HuNxZAJxx2GIuf88+ABzR3cwZhy3WN9ghK9UJAMD7fwwHnzXly62Np5igrouFWs84bDG3nHsEAPVVPr12Ovgs2Pf96vlRn56GnSSFWt2dyAY4561LqMp1H/rNx47UZ6uDz4J3fFk9X3r8Lu3UL5XIgZKw0xmHLeagxY0AXHnqvnrt9KHfqufVLbu00+hEimRO6Fx7oOxyjURQdjrzyN0B+NdDdtO79h35KTByQvvn3uM+H+XyWOIbuSTBvgvq9fuoroPU85OvcY+dogOqjMjw5DpCuhMrj1oCqATBg587Xu/ad1DONoecPW07VUTfFT50xO601gYA+OnKQ/Xa6eTvqucLDp6+neokNBJLw0cdt5diIF/yrr302umcu9VzTwAO+siUL09lsgyOVxiJFs44bDGfOF6xzU5c0anXRx12HlQ1qedn/m76PkoiPp8HqCTd5iNsZ+FObQ8LyxfUA9h0ca1o7laP6fguX2pn/rXrGuWchUs1IywcsKgBgLF4mmgirXewtr3VoyWMOgXEdMISEUiOq+cu3nwahsGCJnV6ls5sq8riMDpzJ6xW18UpIKYTBiWxoQFVcgAQTWb0DrTwEPUYG4LU1GufVVraHAoQ9GlmNZWInfbqqAUgHEvpHcjjgcbd1PPs1GusYiRK6RpZPsrdscR+C5WPGhxP6B+sJXeAl9q1Jo94LFHbAV7NXVLngLa6ID6PQdZEf2f4dnWoS3x0ly8V0wnLZmG8NNa+Rc2q/M06iNGGrgPUo9XNegr0V2KJ7dDdqnzUuO7YfMFBgAHZJESnjvssjUS/16C5JqD3vlyuvWdhn0613x2dENjvNqnDQjK7Hks0Pp8HqCTd5iNK4HQaYEGjShBsHY1hbqsu7jQachua8OZdvlSMbuvyMgMLdVV+6qpUIK+l404hZmCn3rBUiZXFSKyHYK3eseaIhbk5tWXURXaSpK+XwKkn5O20VbedqpvAn9MOGdtFV7jcfGrXXQoHJWOnBbkSkK261z2AhkXqcRdzKhxLkchthLVrJJaIj7Jiif5IQn+SYDaxhHYty9KI+bwew2a+aF/73OijJgZzSXUDatv1jjVHLLBjiV0fVM8Jlp3Gtqgy6SkgG0uURtItH0totpMvkF9fwpumfKllp/a6Kjy6k+slwEiEwv2uZjvBtNe+dCZrH1Rpr26YJ6gk3eYjXF7jbsHa0ESTGcbimk9p6i3HPvUilEgXtI7XrmtUGhtPKNh8ag/ActoDu2hHDoKlO2Pubh1fiK7caVVPWMhOsRFIRqd8qZhOmMtbxxfC0vPo0T2fDAPqc7baRdKtX2o+Qcn4qK7G3HySCJRtO03to6z51Fjjp8ovxUh0t51aQgECPg+mmU90acM0NzSFGolyPqoEYolGK+nmplhCWPQ91AZezZpkc8QCK5bQnRyt7QCPT5VHW7qEO4FYLJHNlqCPEjgYmnYsIaTnBiXjo6zYvDccJ7ttO1OnMU0fNTietFnHLaFK0s0JVJJu8xElUhJSHfDaYqhuOfW0Np4Bn4dGMaHWUgqUddvJYntsUt1dp0C+e6mUrlEp2EmIQVXVoJh/sMtNjVhJiBWwB2qhql7vWHOENZ+0MxJh2mufWMkilIyPslgEQ9Ek8ZTmUmA328nlUhWGYdhJArfEEpFEmljuO1PxUXmI+Sgrloj0QGbq8nCxA4cSKYWDAjvpZvl6vPn1ZZfxuVAsERuGbO474/Jkjth8ghn4KDWfKj4qj476KjwGJDNZBqOaZRBmGEu01wX1l/vPE1SSbvMRJZL5h7zDcEvZYj6RE5z3reMLIebYrZO05DjEwzt92WShVqnuSCVkJ91MNyiYU1OXGvQVzCmtKJGTaRAsL4XpB2BSdkpO5Oe2y23VUO2nJqDYZPrZozMMlEVF391tJxBMEkz7AE/Zqb7KR3VANyOx9HyU9vlU0wreIGDmmYA7gTjTrYTspL28FNwbS5QAI9GKJfoiCdIZd5TWi80n0ywZH+X3egpK6+dhLDFPUEm6zTdksyV16mmVWenXjSgoNZiCQdUbFuzkUkJJArFkTqAGqpvV8yko7P0FQq1N2oVaS8hODYLJnGmWGlhzSntJyFjpbGi6cvNpLJ7WL4A8zQDMtpPUxtNfk2dLuhSGYdhlIXIMqqnnk5hOGECkdMoWu6QkEKx1b2IQUjv/TtixRKVcexIsRqJ2lq/Hk2fSTuGjIvGU3dCmouObxwJbAkHiYGh6pcC2jq9YLOF+O7XWquYkmaxpx8XaMN1YQqq8NDYCmdxnLgFbdUmVbNcX6CROAdFYYp6gknSbb7Bax2PsklLvBiyUKlu0AuV0DCaGd/qyN/oi6uXVAqdbluNy+UkaCJaXwrQcu+UsGqr89umnNgyvU4+WIL2LUWgnNzQnSRUIteomjjLwqnqsatA80NxRG/RRbzUncUk53OYR1Y0x4NUcNliHQlWNu2SguAELxJuTTM32WDegNBRrg5q7VKbialNTIhCLJaqbwK+6D0/1/X2tV+lLNumWqQAYzX1nvJoPoByA28rhrFK4ar9Hf5fioTfVo9/dDZkgH0v0RxIk0u4orbeSbtrF+ftfVo9VzXrHcQBej2GX27qltH7TsIolqny6Y4lccjRYv8uOqm6AeCwxthUyOz/UXduvYgmrUV4Fc0cl6TbfsOanuScm3HAgPHNLMe9ml7BLDXQvQr4ghHLdonayqVm9ZiPX3/cGAH97tZ/Vazbqu5+nf5F3GL/5kOvt1CXJoJrG5vP3zyinPxhN8tZv3a/PVs/cAm/cq54/8E3X28maTxPJDGMx3Qwq63R65wHYzx5Zbz8/9caH9drp79eq56/+0fV2AsEArH7Xdlq9ZiOv9qoDh8/f/rzete/536rHyFZYtcL1tlpo+yghBlV8VDUF2QFWr9nI7c+q0+ubH92g106P35R//qO3ut5OXVLJHMMoWPt2Hktc/cdXAHhyw4heOz1zCwy+pp7f8QnX20msvBSmFUtYtomlsvpjiRf/n3r++A9cb6fmUIBgLmnSF9bMoJqGj7rl0Q02I/FDP3lcr53+epV6vuEh19sJBCtRphlLrNmgDmu+9sdX9K59z/5SPSbGSiKWEOtgWtte0Jykd4cvWb1mIzc/tgGA25/ZotdO8wiVpNt8QngLPPTd/LWZhTsvnlb3pmKhqxhtlHdAue0Jx7j89hewuEEm8MXbX9SjNRfeAnddnL8uATstLHDqcgyqHf89esIxfvV43kFkTU22Cm+BOy8q+IHpejtV+b00hxTbQf9pmtX0YscBWE84xrf+/Kp9rd9OBbPX5XYCwc2nZaexHZfWW2ufBVOXnUDZ5Jlf5K9LYO0TO3CoqodgjqU5hY+yoN1H3f/V/HUJ2Kk4yZxdxxKg2U6FPqoU7JSbT8PRJLGkFINq57HET/+ePxiqxBJ5GIYhqJNo+aidxxJX3fmSfV2JJSZDrolMzk7jfZBObvff4rHE4z/KX5fE2pcrL5VoTmKV1k/hoyxojSXmGSpJt/mE4bXANpsqM5Mvj3Mh7JIQick+BTV6/WCUbbs4Z0yTDYMTzt/H8FrlIArhcjt11FdhGJBMZxmKbu9sHcUuKOzrB6Pbfsv12KoE7QT5spBiNydZPxjdLsdTsVMech2BC5uTjG733+JrX4n5qAVF8VHbM3PkfVRp2WmhSzoCV2KJqVFf7SNkNydxgY/a5mcVH5WHnI/atZ1E5lTJ2kmoYihU0Jwksn1pfSWWmBqypfXWoXiRY4l5hkrSbT6heQ8wtjG54YXmpcW5n2nAWoR6w3Ey264CTmMKx97dGmJbmQivYbCkVYOOV/MewDaDudxOAZ+HtloltilWZrUTEdDu1tB2P9NiqxKcTyDYTKHQTjtgUHW3hrb9llfsVAAx4Xd/NdS0qOc7OPXsbg1tp7end+3bBi63lWyn2Z0Lild81NSw5lMkniYS16zNZQtVV2KJmWISg0p7LDG1oHgllpga1pzSz8a2mpMM7bA5SSWWmBpinWYnldZXYomZQqwMGKbcR4n6qHmGStJtPqFhIZx6vVp4QD2euiq/SLoQ7XVVeD0G6azJQBE773Q1VPO1962wrz0GfOP0FXbQ4ex9LIR935e/LgE7gaQI6M5PaEDZaremvF28hqHHVg0L4ajP5K9Lzk66NzQLAAPScRUsb4OuhmqOWJoXItZqp5OvyV+XiJ1kkzlTr33/dshu9rU2O4GyiVX2ACVhq0IJhGI2J+lqqOaSd+5lX3t1+6jFR+WvS8BOoaCPhlwDJP1Jgqnt9I33729fa48lDvj3/HUJ2AkE9fd2oenW1VDNnu35pgZafdRxn89fl4idxGK+qkYI5Oywg2ROV0M1b9+73b7WaqdTVuWvDU+J2Mkdjc66Gqr5yJG729faY4nmPfPXJTCnrPk0UOTmJF0N1Xzx5OX2tVYfNc9QaUkx33DwWbDHCYpi27zU1QsQ5Drv1FexZTTG1nDM7sKjBbsQAT12WRsAfo/Bg587ngWNGrP+ITUWK/4N3vUV19sJlGN/bpNgOdzYVshmlD7BNpjIacF86/T9OW7vNn3Ooj3nmDoPgP/4dcnYCQRKd3xBJdg63qc2NaHW7V5S7Ve2++ix3Zx7TLc+O3W/LXdPVfCZp/MBh4thtY8XKVus3w16/rHTzefC3Fr39r3a+MYH9tcbfFlNAk77IXQf5/o5ZdkplsoQjqVorNHYIXIXPmr/3ZTm26Kman77iaP02smnmM289WI4/GOutxMoW4VjKbaMxtiro07fQLtoIvOeFV18IaeZc9+lx9Pdtj2jyjFY35m9ToZ/uaYk7CQmK2L9LeJhSEQguP13Ip1R5YRfPmU5J+/fpW9OdR2gHpv3gJV3loSdxLTCDEN9jwdfUz6qdc/tXlJfrbaz/3H4Ii48YZk+O+39Hrgz9/wzz0LzEj3jOIi8nqVQLAE7jSUs9ujhS5q4/j8O0uujMjmpm/d8F/b5F9fPqaYaP0Gfh0Q6S284zu4tGv3CLnzUIbs3AdAc8vPHC4+tJNwcQskw3YaHhznzzDOpr6+nsbGR8847j/HxHXfw2hamafKe97wHwzC444479N5oKaBhIXQf6/oFyIKcbkSBoPgOsHlU1bMvaq7Rm3CDvMNacnTp2KlByLHXdqpTq2waxvu3+++JZJrhnK7ce3QGyZC3U9f+pWOnojCodjynrBPyY5dpTIwCjOYaazR1l0TCDSYLv2elSut3svZtya19B+3epNdOsVHVaQwU27cE5lSV30trrXBzkp0Iilvj79VRpz9Itta+PU8oCTuBYKdZm42949J6K5ZoCQX0Jtwgb6fFh5eMncQkEIJ1UJVrTrIDH5XNmnaJ67v37dTso3J2al9eOnaSmk8wDR+lvitH79EqY6e6BSWRcIO8nUYmUkwkdXet34WdRpSd3rJbo+aEWzp/D8tPKYk5ZRhGQYWDlI+aOpZY2lpbSbg5iJJJup155pm89NJL/OUvf+Guu+7ioYce4mMf+9i0fnfVqlUY2xaSV1AyEOsOZzmLSA9kttd82ZxzFgubBBYgK0nQuFj/WA5BTIfF6yvovLO9w7Ccel1VvpxIG0b/qR4bd5/6dS6CmFYYTElhN03TnlO76Z5TJTifOhvc05xE3E41rRDQnIxwEGJzyi12ymbzm88SmlNiBw6Wf0pFITay3X+L2QlKcu2T7Vq/883nwHiCZCaL12PYjFZtKMFYojgHeMX2UZadSmc+1Vf5qQ0qJuC88VGRrapxgsevDupLBGJzyi12mmcoiaTbK6+8wt13381Pf/pTjjjiCI455hhuvPFGfvOb37B16/YdUgrx3HPPce211/Kzn/1M6G4rcBpiyZxQm1qgzaxKvG2DLVKLkGnmNzQNpePYF0h2h7PLrLansG/OjW+dGGmFbadF+sdyCNbfpXdMoDnJFKUGoxMpuwx4gW5bWeM3lo6d/F4P7XWqhE+sZHsXp57a51QJ2gkkOwIXiFTvgEG1RepgKDoAmYTSNKp3P4PAQpcUa95frRLHMOXBkMwBXunGEjKl9VPEEjk7ddZX4fNq3i6V4Npn2SmSSDOmuznJFPp7yXSWvjG1P9A+p0rQTlAMH7WLWKJJc7WQve7tBp6SSHUABbIiUo3OYsOQ3L4rqaiPmkcoiW/iY489RmNjI4ceeqj9s3e+8514PB6eeOKJnf7exMQEH/rQh/jBD35AZ+f0Mt2JRIKxsbFJ/yooLsTKSz2eKTvv5DP/mp1FbASSEfW8hBy7qG7EFBR2MTtBSbII2uqC+DwGmaxJf0To1HMKO7XVBanyb6/L5yhK0E4gOKcKy+G2gSqxys2pZt2BcmnayWK6aT9wqMs1J8kkIDq43X9vHlHBs/a1z7JT3QLwamYTOwi7dGe++KhMSjE+oKTmVGF5qVhzkh3aSc2nSnXDjlET8NFYk2tOIsag2t5OveE4WROCPg9ttUG991GCdgLJiqGdxxJQ6KMq1Q07glgH06oGCOQ0LKdY+0T2UfMIJZF06+3tpb29fdLPfD4fzc3N9Pb27vT3LrnkEo4++mje97737fQ12+Kb3/wmDQ0N9r9Fi0on6VGuyGuFFbfUwNI1EmN7hNrUiXmJwHIW/ZEEyXRW72BTUKPFGInZbN5ZlVBy1Osx6Ki3EtnFKzUQm09QkoxEEOw0W7jxzE7umtUfSZDKmOp7U6d7Q1OadhLTCvMFoC53gLgDxoccI9Ha0JSWncRY8+COtW9si2Lue4P55kwlAKthVjyVZXRCikG1IzvlYomKj9opxPT3prDT5oL5pF1KqFTtJLX2WQyqRBjik0krE8k0I7n5XGEk7hhiXesNY0r2qFgsMc9Q1KTbF77wBQzDmPLfq6++Oqv3/sMf/sD999/PqlWrZvR7l19+OeFw2P63adOOO7BUIAdR3QjLYexAqDpPi66c0OwILaEAAZ8H08Sm+mvDVAGY1EnaeJ/qjmR4cwyU0oGYY58Gc1SWRVA6ejmQ7w7Xo9tOtR3g8SkNlPG+Sf9lzaeuBokSq9Jc+4rjoybPqUQ6Q38kAVR81M5gle70SjYn2aGPktKfKs0SK9WcRCX49Tcn2fUBnvb5lIzCRI65WmJzSqwUuHDd24b9KBpLlGwyR6hiKFgLVY3q+TY+qlBvub6qore8I3RJlQHDTuNzUb3leQZfMQe/7LLLOPvss6d8zdKlS+ns7KS/f3KXwnQ6zfDw8E7LRu+//37Wrl1LY2PjpJ9/4AMf4Nhjj+WBBx7Y4e8Fg0GCQc2n+RXMCJZTH4omiacyekvRdhKAZbKmzWKQC5RLy6kbhsGChio2DE2wdTTGIp2laNM4ndZ+QmNtPOsXquYOJQQxbSPrO2w1JykoRRNz6ulkXqOxxALlBVLlcJ5c4ji8Uc2p+nwSWfTEs1STOVLzCdTat+Wp7da+ntE4pglVfg8toYDeeyhRH9VRX4XHgGQmy2A0QXudRnH86fioSnJ0p1jQWMXgeIKtozFWLGzQN5AbkqPW2MF6qG7UO5bDkGtOkksQpCaUBEtNs/1fsnrLpXmAZ5eXiiRzFkF8VH2v25fbP5aVfilNH2VXN4yo0nqtzM2drH2iesvzDEXdKba1tdHWtmvK+1FHHcXo6ChPP/00hxxyCKCSatlsliOOOGKHv/OFL3yB888/f9LP9t9/f773ve9x6qmnzv3mKxBDQ7WfmoCXiWSGnnCc7laNXe12IgLaNxYnnTXxeQy9gTqUdKDc1VCtkm5Sp55TBsqaHXuJnnhCoVaYZkZiTSt4A4oROLYVmvKBqljpzthmwARfVUmVWEGhVphEOdzCXNJtEyw63P5xJVDeNayEZF8kQTqT1csI3EmgXJgc1V9iVZo+SjUnqaJ3LM7W0bheX74THzWeSNslk5XGJDvHgoZqnt8c1u+jChlU2ewkRmB+TlW0LHcGsc7N/pz/jg6o73VB0k1Wb3lcPbfW4RLBAikJBFCxRN8L25UtyjY5K805ZZVrR5MZxuJpGqo1MgLrdxxLiOotzzOUBN98+fLlnHTSSXz0ox/lySef5JFHHuHTn/40//7v/86CBepEfsuWLeyzzz48+eSTAHR2drJixYpJ/wAWL15Md3d30T5LBTOHYRiCbZR3LAJqLUILGqvxejRvaOxAubScBQjqRlgBz8QgpPLfiXgqw4BYiVXptY63kNcKE2hOspNyOLFAuTCRozsZ4TDyWmGCwu87Wfu0z6fEuOqkBSWXJGirDeL3Ws1JEnoH20nSTVT4uJSTOY1CJdtWLLGTEquGaj912kusSnPjCZIMKqs5STJf4olVYiUs+l5ihw0g2OgMduqjxDQSLTuF2ktKbxnyf5stks1JtoslhOZTieotA1QHvDRZzUm0N9CytHy3PcAT1FueZyiJpBvArbfeyj777MMJJ5zAySefzDHHHMOPf/xj+/9TqRSvvfYaExPbt76toPQh1kZ5J8KSsqLvpRuAielGVDeBP8d4HNtq/9g6Fa/25x2XNpQoKwcKtMIku/hty8yR6gxXBgmC/kiCRDqzi1fPEbtgUGlnJFp2qmpQ/0oInoLmJGKB8nbzSSg5apoFa1/pJnPEtMLGtkImbf+4OLFEKdrJ0grTfIDn9UNdl3peEPcNR5PEU6ohlFU+rg0l7KOK0hF4ZyzfSiyxU3Q0KNmkRDprNzPQhl34qIre8tSQI5lMzXQT0UicZygZIaLm5mb+93//d6f/v2TJkl1m77Vn9yvQhoVSDCqLlRMfVcyLYC0Am4cFRSVL+HS6S7TzzkIYfF0FQi17AJNP0iolVjtHcbr45Tc0Y/EUY3G1ERU7nS5BOzWHAgR9HhLpLH3hBItbNLKYdlIOJ872KEE7gZpTm0dibBmNc4hOuZ+d2knIR00MQyqqnpdYiRUIrn217ao5STYN473230pUoLqE55Roc5KGhRDZqubUQiVhY9mpoz5I0Ke5xKqE7WTFfFZzEo/OSpD67WMJWb3l0rVT0OelrS7IQETpJDbr1P3cRdmimJ1KUG8ZVMn2S1vHBLrWF8QSpmlXglSaKOhDyTDdKpjfEAvAquohmGNZFJSFiJ2kxcdUwg9K8jRNTCsMdkhhF2N7QEmfelp2Go4miSWlGFTb26mpxk8oqDkoKmFG4qTSeu0MKqscLh8om6YpN6dKmJUDkh2Bc3Ya71NNQnIQ08uxOszWdiidpRKDGMvX4803JCmGj8pmSrbECqSTbjvwUaL6U6XrozrqgngMSGVMBseFSusLYnNZveXStRMUg+W7M93Rit7yVFgoJYFgHeCl4+owLQex6oZ5iErSrYKSgF1eKkphz5+miQVg1pjVTRCs0zuWBljOQrtThx1So8VOaCaVWJWeY6+v8hEKqNP7YpTDiSZHS7TbmAUxzZwd2GlwPEkincUw8oLZ2lDigbLlo7QHyqFW8AYBU7FzchAr3SlhtgdIJ3Msjdh8LCGmZRnpVSw7jy9fPllCsJKjfWNx0pms3sGm9FESDWRKd075vB4664Xivilivore8q6xQMpHFSaxs2ruVvSWpw8xH+ULqsMzKI6PmoeoJN0qKAmIsQhghx1MiyL6XoKwNuaReJpIXLNuxA5KDcRO0qKDkI4BRkmWWE1uTqK7ZHtHgXKuZFG3nSDPzCnZZI4Ugyq37k0MQVLZx5pPHXVVBHyaw4US3nhCIYtA83yySuvBnlPpTJbeMavEquKjpoKYnWCHpcBijMTCEitP6XWga801J8maqiuwVuwglhArq08nVPkxlOza1yUVS+woOSqqkVgmyRzdlSh1XWB4IJuCaL8aM7fu1QQqesu7gth8gh36KDG95XmIStKtgpJA4SIk3XknmzXzdNsKi2BKhII+u8W19hLTHZQaiAXKViKnrlOdFpUgxPT3dlBqIFaunUnnS4ZKdE6JBcpVjRBQGpZWcxKx+QQlHygXs4tf71icTNYk4PXQVqt5PSpxH2XNp8FxweYkhVIVYj6qtFk5Ho9Bp3QDrR1Jimivbsj5RX8N1LToHUsT8rIiQnaK9NjNSWT1lkvbR1lsbO2MRG8BuzbnowrnU0VveWrYDekkK7tya5+o3vI8RCXpVkFJwHIWsVSGcEw3g2py5n9wPEEyncVjYAeB2hAubWcBgo59B4xEcf2pEraTmGO37BQPQyICCJYBR3rAzIDHD7WdesfShAVSG0/DKFj71OaiOGXApTmnxDaesB0zJ19iVaVXyLxgzFJljjbV+AnmWJu92g+GJvuoeCrD4LjS4dN/gFfarByABdIs32JIVRR2q9edjNCEBVIxX6hd+XIzq3w7Fb3lmcBKomgvL4XtYglRcf4S91FWdUNvWB2macU2ckqiesvzEJWkWwUlgSq/l9Za1W1HfzJnsqC4VQ7SWV+F31spsdoV8o5d94bG0svZAqZJalKJle5AubRPPEFwQxOsg6pcc5IdnHpqhb2h2Q08penuFkjNJ9ju1FMsUE7F7DKUUl37LDuNTKTkmpPk7FTRSJw+DMOQ64Zu+6hcLJGzU20BI1wbysBHidtpvA/SiUkNZCrVDbuGmI/yePLNSbbzUULi/CWqtwxF6lov7aMK9ZZLdE611wXxegzSWcHmJGHh+TRPUZq7kArmJazsv/5kzmTdCNFFqAwCZTERUCv4SkUhNqJa1psQ8HloDVVKrHaFLpuZIxGA7XjzKRYol+iJJxSri5+yk1y3sRzDJFCrNjUliPoqP7W5k2H97NGd+CgJjcSKj5o+djqfKiVW00GX1cVP93yqaQFfrophbCtjsTSRhFViVfFRu4JYh23YLpYQP8Arg/nUH4mTEm5OkpeqENRbri89vWUobnMSW8+tUlqqBZWkWwUlgwXS5XA5BlWlxGpm6JLSNvJXQ02reh7ezCZbnL+6UmI1DSyQ7DRbUGowkUwzHFUlVpUy4F3DslMkkWZMd3OShm3LFoX0p8qgxAokO81OLoezxcR12yk2Comwel7Ca1+XVMm2te7FhiE5IauRWBY+Sig5Oqm0fjObc/OpJRSgOqC5CUUZ+Cix+QQFa98mpbcsxkgs/cOG1lCQgNejmpOMSZEXcmWL0snRui7wBfSOpRFyPmpnJJNK0k0HKkm3CkoG+a5jmhehugWAAZkERAftQFm7s0hOwMSgel7CgfJC0VPPPIW9KMnRhtINlAs7Aos1JymwU51IiVXp26km4KMx1+1LjuW7ZVKJlVxytHTXPZBkUBWU1pMPlPWLvuc2njUtEAjpHUsj5JqTNEAgV4om6aOy2bJIEoh2mi3wUZtFY4nSt5O17gyOJ4mnhErrw1uU3nJGSG+5DDQSPR6j4FBcLpYA5OZUiXertyBWsm3ZabwXMik5jcR5ikrSrYKSwQKp8lJfQHWlBAhvkutcam1ogvWqk2CJoii6EeHNcic0ZaAZAfkgNZ7KMjohxaDabGskVpij04ecoHjeTqMTKaI5bTKxZE6J26mrQWjts1g5iTDEw5Xu2jPEQkkGVQHjQ8xHRQfUoaHhyX9XShB2zCdatrhJjj0FJa+RCNBY46farxiB+puT5H3Uppyduhqq9estl42PEirZLrBTKpO1mXUVHzU9iJFMQm3gDdjNSSqabnpRSbpVUDIQ1TYqKDWQY3sUnHiWcIlVoVPPCnbeEaOvx0chGZk8fgki6PPSWqu07yR1I0Q3NGVQYgWCpcCT1j3F8G2tDVLl111iVfpsDyjoCKy9OUmtfTCTHd1sjyfqo0oYYhIIMKkUWE4jMWenEi+xsta90YkUE8m03sF2aCfN8ymTgshW9byEfZRhGHJzqqAcTsxOUDZrn1gyx7JTtJ/eobCg3nK52EloPhU2J5GeU/MQlaRbBSWDBbaorhyDypzEoNIdKJcHLbqjvgqPAamMyWBUrvOOeClcqA0CpX0atFBqTu2Qkaj5b5fN5gX6Sz4AE2J8WEm3dIy+vh6gwkicCRYUoTnJaO8GUhkTr8ewxZe1oUzYHguKUVov6qNKvxQOoK7KT11VrjmJYDmcmOj72FbFMPEGINSudyzNWChVsm2XAQseiEPZ+KiFUmWLNc3gU2P1b10HVPSWZ4I8y1culkgMb5TTW56nqCTdKigZWIFy71ictFDnnfjQRmI5jYou7ZoR5eHU/V4P7XVCuhE7ED/WHiiXyUkaFJbDCSVzxrawdSQKCJykjfdBJgmGt6RLrECwbNFfpZLJwFjfekCakVjaa5/YfAKbmRPJ2amzvgqf7hKrMknmWBuaaDLDWFwzgyrH+MiMbqIvIlViVT4+Sqy0vr4ITLfCBjKe0t6OiQm/W4zE2Aj9g0oDWft8KhO9ZRD0UYaR91G9G4BKcnQmEGVj11t2UrFEXZWA3vI8RWmv8hXMK7TVBvF7DTJZk/6IDIMqMaQ2Ge11lRKrmUCui5/6W5nhzfbJXaV1/PQhVrJdbzUnSRIZUuU0YhqJ9QvA69M7lmaIdprdZu3bTfd8SicV4wNKfk4tLCjdkWJQ2XaqiL5PG9UBL0255iRSOonJoX9imlDl99AS0lzyWVY+SjaWmMTGbpbSsizt+QSCsURVg9I9BuLD6nsupjla4nrLUORYQlJvuYSbZ0H+Oz0UlWtOkhgSmk/zGJWkWwUlA4/HsMXf5URAVeedygnNzCDXxS9np0gPZjaNz2PQIVZiVQ6Bcm5Do5vC7vUrfSEgOyo0p8poPi2UKi8Fe05ZdtIeKI9tAUzw5Vl2pYqOhiCGAYl0lhGh5iTZio+aFcRKtreNJRqrMXRrtpaVj5IqW8wxqJIRMhNhoHKANxOI2Ql24KMEqxtKWG8ZCmMJQTvlZD60z6fYSF5vucTXvoZqPzUBRfSQkn8xc3aqNFHQh0rSrYKSgkWN/ttrA3qD5RzdNji2nk6GZBahMgyUn94wotdOte1geDHMDPuxnq7GKry6NSPKoNuYBctOr/WOCWw+1Zw6IP6kzJwqLN0pcXQVJLGtBgfakCuHWzj2HJ0MySVHy2BDE/R5aapRLKbnN4/qHSxnp/rwqzLzKTEOsWH1vAx8lBVL/P2NQb1rX27dC4xvppNBFkrEEmWYzHluk+ZYIhBSLCrgLcZaGqr91FVpLrEqE1YO5MuA3+yPiGmP7j2+RshHlUdZPeRjiXAsxdr+cb2D5XxUR/gFGR9l7aFCbeAvbbaWYRi01apY4oUto3oHyyXdQmNv5uxU2n87N6OSdKugpJDKabl9//43eeu37mf1mo16Btr4GADV6TEeCV7Ie5J/0TOOhXQCIkq4vBySOb25oOvPL/XqtdNzt4KpqNd3BK/kw/6H9IxTiDJK5ry0dQyA1/vG9doJIKu0ky7138YjwQtpevXX+saCstp4PvhaPwCZLBz7nb/ptVOkF4DjUn/nkeCF7Nv7f/rGgrI6bFi9Ji9EfM7P1+i1U9+LACyIr+WR4IUcO/YnfWNB3k5VDXZyopQxkVBMxJ8/skHv2rf2AQC8ZopHghfxvux9esaxUEYlVgAbh5UG6EOvD+q10zO3QFwx3H4Z+BbnVP9dzziFKKNkznObRgClO6o9lkipg6dzPXfxSPBCdlv/O31jQVn5qD8+v9V+/q7vPajXTrkY7ODEkzwSvJADBv6gb6yC8cphPq1es5F/Dqt91EW/fk6vnbY8A0BTYiuPBC/kHbG79Y01z1FJulVQMugJx3hu46h9nTXhi7e/6PypWngL3Ptf9qXXMDlp/Tft8hAtsLos+qqhpkXfOALoCce48x899rVWO915kX3pMUw+Gr5er52gbAKwnnCMHz7wpn2tzU6gbLL1OfvSa5gYd12ieU6Vj53+644X7Wvtdnr5DvvSa5h0PPgFvXYqE52wnnCMy29/wb420WynR2+wL72GyaEvfkXITqW/oekJx3hs3bB9rdVH/eky+9JrmLx/83f02ik2AimVqLJLW0sUPeEYv31qs30tGUt8ZuL7lVhimugJx7juL6/b19p91D8ftS+9hon/T5dWfNQ0sK2P0m6nf+QPVr2GyZLHvlSx0zQgHks8+C370muYHPvq1frXvnmKStKtgpLB+sEo20pTZ0yTDYMOl1sNr1Vt3AvgIQvD65wdpxCFJzQlXmJV1nZKRNSmBkresa8fjJLdxlBa7ATKVtt+K8yM3JwqYRTbTkbFTtOCuJ22WfsMU7ePKh9WTln7KMtOtR2qG3EJY/1glG37kUjZyavbTtlM/rC1xOdUsX1UJZaYHoptp0osMT2UfSwxj1FJulVQMuhuDW2Xj/IaBktaHdYJaN4DjMlTwzS80LzU2XEKUSYnnqDstK2smpSdsoZHr52sk7SqRqiq1zeOAMTsBDlbbTOYzjk1qcSqtOeUvJ22CQvE1r7SDpSLbaeKj5o+iumjtNupTNY9KHIsgeZYItKrJBc8PrvJUKmi2GufnI8q7Tk1f+xUiSWmjWL4qHmMStKtgpJBV0M1V5yyr33tMeAbp6+wBZEdQ8NCOPV6TNSqlzUh+Z7r8t2tdKBMTmhA2embp+9vX+u2k+UwTBPWH/H1ip2mCctOlm830GQnUDZ599ftyyweOHWVPltFByEdA4ySL7Gy7VQQhGm106nX2+fTWQy9doKyYVBZdvKI2innozAwtNupvNa+q09bYV9LxhJj7/xuxU7TRDFjiZcO+aqMneoXgserbxwBiMcSJ19T4KM0xxJlpLdciSVKAzuKJa5+v1AsYRpwyvf02mkeo5J0q6CkcM5bu2mqUR2l/mflYZxxmKbF9eCz6D3qKgBeMJYRPPxsPeNYKKPTaYAzDlvMW/dQ2nSXvntvrXbKnnUXAHH8BA47S884FsrkJM3CGYct5qPHdgNw0opOfXYCOPJTRFEndY8f/RM4WKOtwrkNTV0n+IL6xhHCGYct5nsfPBCAJS01eu108Fn8s1aNdd/CT+m1UyYNYzlh5zJY+844bDF3X/w2+/rk/TUyWA4+iw17fASAh6uO02snKDsf9aEjdmdxrkvbqn8/UKuPGnnXKgDWsYC6o87VM46FMmHlWDjjsMWctF8nAB9721KtduLjqhGTCXje8m96xrFQhrHEJe/aC4BjlrXq9VGHncewtw2Avx/4Hc2xRPnoLYOy00/POhSA5lBAeyyxvvlYAO5r/XDFR80AZxy2mAf+83g78XbcXm36Bjv4LP654gIAnvQdjHHISn1jzXNUkm4VlByWddQBMBZPaR3nnzX7AbDYGNA6DlBWp9MW9luoOtwNRhJaxxlsOoCk6aXaSNHJoNaxyuUkrRAHLm4CoHcsrncgw2C9oVhnnUHNY5VRh1kLh3U3A7BlNGZ3cdaFdV5VWtDpjWgdh0hPrsTKrxKkZYC9Oupoq1OJ3vWDUa1jrQvuDcACY3gXr3QAto8qnzm1V6eSCBid0BxL1L4FgEXGoNJ004kyjCX2303FEv2aY4l483JGzFo8Biwyt+76F+YCK5YoIx91cC6W2DKqQfB9G6w11Pe7w695rDLSW7ZweC6WGI4mte+j1vn2BKDLO6Z1HOJjEB9Vz8vERy1uDtHdGgJg7cC41rE2VKkqsoWeIa3jzHdUkm4VlBz2aKsFYG2/3kXojaxiKTSZo3nxfF0os1NPgD3aZJzF5rEUG0y1YfePvLmLV88RZXSSZqFwPpnbqlY7iFQmy6tpZaf2hMb255C3UxnNp676Kqr9XlIZk03DGgR1C/BqWq19nSnNdrLWvYbSL7EqhNTa93pG2akrtUnrOKTiEO1Xz0u8xKoQe7Tn7KQ5lliXaiFh+giSzH/ndaGMusxayM8nvUnsLeE4a80FANRF1msdqxx9lDWfNg5NaD8YejWlYonOpJCPKpNEDkBdlZ+OenUwtE7znHotI2yn6iYI1ukdSxBi+10rlkhvUU1eKtCCStKtgpKDVAC2IeKhx1QnQgxqTOaUWYmVBctZ6HbqW0ZirMsFygy+oXWscmR77N5Sg2HAWDzN4HhS2zi94ThvZpWdQmOaOyOVYaDs8RgsFVr7/hFTpQz1Ud0bz/JjJAIstQNlvXZ6PmenUHoEJjSy3awSK39IbWrKBPaGRnsyJ2kfDFV81Mxhzad1mg+GNo/EWJvzUcaQZjuVoY/qrK+iJuAlnTX555C+g6FwLGUf4NWNV3zUbLC0VSaZ8+xEOwANExu0jlOOB+IAe7TL+KhXYg0kTD8+M5Vn4VbgOCpJtwpKDvlAWa+zWNs/zroc2w2dAdjYFtXy3ONTpVZlAitQ3jIaI5bUd3Lycs8Ya82cnXRvaEY2qEdfld5xBFHl97KoSWmt6ZxTm0dirMvZKdX/mrZxABh4XT0GS7vD7LawN58a7TSRTPPMhErmBCKblJC0LvS+pB5rWvWNUQRI+ajXhrNstQ6GhjQeDG15Wj3WdZVNiRXkD/B0zieA1/vGbAaVVh8VD0MirJ4b5cMc3b2lBo8BkUSaAY0lpi9vHbN9lPZYYih38OTX0JGwSDCM/MGQzjm1eWTCTo6auu1kxSpVjXrHEYbN8tVop2zW5MmxRgD8iRGIaixd7HlePYY0ap8VAUtz5aXrBjXvdwdjrLMPhjRXDIW3wPqH1OM8QyXpVkHJwdrQrB+MksnqOfVcvWYjD7w+YAfKL7/wlJZxAFjzU/WYTcP1b4FnbtE3liCaQwG76YUuh7F6zUZ++MBaOwDrW/+ClnEAWPM/EMuxSf73g2VjJyjcfOo7Tbv92c32fEr1vcbqJzWdpj1zC6x/QD2/76tlaSedgfL//H0dAzQyZlZjmFn+/NAjegZ65hZ47Eb1/OU7ytJOOufTb57cyLrBqL32PbnmMT0DPXML/P7j6vnwm2VlJ4vtsTUcJ5rQc+C1es1G7nq+11773nzlGS3jAPDYTfnnNx1RNrYK+rwsbrYOhvTMqdVrNvKdu1+17TSy8SUt4wDw9C9gdIN6ftt5ZWMnkGGPrn5yk20nz+hGfve4psTbM7fAq39Qzx9ZVZZ20umj/ueR9Yxlgmw21aHafQ8/rGegZ26BB76hnq+9v7zs1K6fNb96zUb+sTlsz6lnn31C21g8vAq+tx/84lRYtaKsbDUdVJJuFZQcFjZVE/B5SKSzbNUg2NoTjnH57Sp5Yy1Cm1//Bz1hDYKt4S3w6I35azMLd15cNicAOgOwHdmJwdf12elPn81fl62d9CRzesIx/t9Tm/mn2UHK9BIyEtzw+4ect1V4C9x5UcEPzDK1k54ArCcc47q/vgEYdsn2nfc9qNFO1qFJedpJ18FQTzjGF38/ee179pk1AnairOzUFArQEgoAeppeTPJRueTo4IYX9fmoB7+dv674qGnDspNJfj4Fw+voGdWwzoa3wF0X568rdpoResIxfvn4PxmknrBZg8cw+dkf7qvEEjOEhJ2+8adXAOyKob889HAllpgh9sgdDPWOxRnXcDC0o33Uay8+o89H/fUqbFuV2do3HVSSbhWUHLweg+4WxSR4U4PDWD8YxdonWYvQUmMrGwY1aFQMr2XShgZUqemwZs0rIegUAS20k5Ug6DBG2bS1z/GxGF6rHEQhyshOSzUHYOsHo5hAGh8bTaXxscTY4vycKnM76Q6U1w9GMe21TwXK3WhY+8rcTgsbqwn6PCQzWTaPOO83xHxUmdsJ9M6pyT5Kzac9KrHErLBUI8u30E6bzDaSppcaI8HWjWsdH6vc55SIjwIKD4a6qcQSM4U1nzYMRUlraHoxOZbI2akS880YDTV+WmutpheafVQuOdpd8VHaUEm6VVCS0Nl1rLs1ZMvWWIvQYqOPJU1+x8eieY/tf2Z4oXmp82MVAba+hwYWQXdrCE/OThFq6Dcb1ZierY6Ppey0jZZRGdlJd9mi1fYc8gnSPY1elrQ6rGdT5nay/o6jEymGo843vSi0k8XM2dPTo8dOxjbhRxnZyeMx7L+ljjnV3Rqyv+VWMmepUbHTbKCzOcmkWCJnpzYjTHdtyvGxyj2W0MnyLYwl1MFQBwBLqMQSM8XSgtJ6HU0vJvkos+KjZosFDdVU+T2qG/qI86ymQh9l2WmPio+aFZZqlKvYsZ22Om8nKHsfNR1Ukm4VlCRsPQINyZyuhmpO2V8FyD00M2EGCRgZurL9jo9Fw0KoKugGZ3jh1FXq52UAnUy3roZqPn5cfhG3kjmtcQ2tyRsWQtcB+etys1NON2LzSIx4yvmmF82hgL35tBz7h/eM09VQ7exADQth3/fmr8vMTtUBLwsb1d9MRzKnq6E6//45O72teUSPnY76TP66zOwE+TmlI1DuaqjmiKWqgYKVHO329tNV63N2oIaF8J7v5K8NT/nZSSMzp6uhmn89ZDcAxqmh11S+vjO12fGxaFgI9Qvy12U2p/LzSY+dLnnnXva1FUu0xDTojjYshMVH5q/LzE5WojkcSzGk4WCos76KoE9tXa217/TFE3p81FvOyF+XmZ08HsPWtNQ1p2w9stx8OqJ+SI+d3va5/HWZ2Qn0+6jj91bNJ+w9lDFGl19DeWldF3gKyCtlaKtdoZJ0q6AkoTOZA1ATUJuX9x+0G/6OXDA2+LrzA8VGIT6inv/Hb+DiF+Dgs5wfp0iwA+XBcbIatI2srptv2a2B/Q88VP1Qh50AkrnN8zu/WnZ2agkFaKj2Y5qq3MBprO1XpQa1QS/vPPYYAJZ5exwfBwBfLqg78MNlZycoFNZ1fu3LZE0Gx1V3wH878e1AbuOpgbFA4yL1uNth5WknzWVW2VxFzQeOP4ysvwaPmYbh9c4PtPBg9VjVABe/WH520siaB2isVpuME/froGnxfuqHOnxUJgXjA+r5B/6n7ObUHpq7oVsSC3u0hTj6yKPUD3XFEpkc0/Ftny87O1X5vezWlDu40TCntozGSKSz+Dxw6juOA2CJqUkTqqpBPe57WtnZCQpiCU0+anRCfc8/8G4VS9RNbNbTDb0ld/jevm952klzJYo3R/P94NH7kKnNHdzo6IY+sh6yKfAG4aw/lKWtdoVK0q2CkoTOkhCA1/oiALxjeQf+9r3VD3UEYAOvqsf6hbD3e8ou47+oqRq/1yCeyrJVgzDn6zk7HdHdTKhrufqhDjul4jk9AuAtHyw7OxmGkZ9TGrokWXZa3lXPnvvmNvGDmjqO9b+sHstwPoHeAGzj8ASJdJYqv4e3H3WkYjYlIxDpdXws205LjilvO2mYT6Zp2j7q5LcswNOq8WCoX4lh03VAmdop3/RCx8HQa31qnh63VzvBDo2xxNBataEJ1MJ+p5edrZpDARpr1MGQjqYX1nw6ZPcmahfuq36ow07ZbD7uW1F+dgK9pcBWLLFHWx37vuUQ9cOhN/UcDFk+atm7ytJOS1v1+aih8YR9gPeeIw+EQF1Ov0vDwZBlp8VHlqWddHcwtda+E/frxNu2TP1QZyzRvg8sPa4sbbUrVJJuFZQkrFPJwfEE4Qln9VGyWdN27Pt01oG1oRnSkCToy7Wlb9/X+fd2AXxeD0ta9OkRvNo7BsDenfV5Ow1qOKEZfE2JtVY3QV2n8+/vAuhk5rzaq+bT3p110LKn+uHYFkg4PFYmDQOvqecd5Tmn7NJ6DfPptdx8WtZe9//be/P4KMps///T3Ul39g7ZEwgJCZAgmyAQQRAQZJVBHQUdZBu3O1e+o6OOg/deRa7ecbledZzhp84MgjrKoggoKsqOLLIvAZJAQhYIWcjW2ZNOd/3+eLqqu9N7dTWku8779cqLqu6nluZUPec85znPOVCpQ4Be6ewLn/R9JkM5YbD05+4B+PJ9qmrsgK5ND5VSwa7jUx0V2HLq0ysMahWrhl7ug2roBYKOsrAlfDHhUM3bEoMAZWCa9r58pwpulC2hKwM6mwGV2hyhE2CYdZSPbYle/dgStc5moMkHkfNC3xegtoQPI914R07fmDCEhwQDcSZnjk91VGDKqT8/MVQrfTX05o4uXKljes/3Oiqw5eQOgamZiYAnQhOEpKgQAEBRjbQK42p9G1o7DVCrlEiLDQfiTE4Cn3RCvOd/kPTn7iH4quoYx3Eo4A2wxEizUq8rYs4XKRHkdAuE5GQBxg0Z0CRGAmExQFgc+0LqEPb6YsDQAQSHAdHp0p67h+DLKn4FleycAxMj2Qe+iqDiuIDv+/iE37UtnWholTa3ET/ZkB4bhpBglbnv86mhHJhyUikVQtJoqd+phtZOVDWyaI+BiRE+llNgv0+Ab6N8rWwJfmKo6RrQ0STthXg5xQ0EVD4oztUD8KWOumjpdAtSAzH92BdS66jm60BrDQAFEJ8t7bl7CDfifTLbEjcigiownTkp0aFQBynR2WVEucRFLy6ZnKPxkRrEhKvJ6eZjyOlG+C18LhapIz74GZrMhAgEq5TmTuh6gfQh7HwnlBiYUQSA75w515s7UN+qh0IBDEiMALSpQFAIYOgEGiROgBzgEYmA2QDzRQTVRdMSq6ykKPaBrxQ7L6f47ICN9uBnPdlSUGlzGxVUMWdOdlJ3Q1liOTWWAx06QBlkfhYCjHBNEFK0pokhid8pcyQ2/z75ckAjJx0lsS1hGnj2jg5FZEiw+Vmvu2zO6yUVAR6RCPguyret04DSulYAJmdOaDQQnsC+9JWOCmhbwnfLS/MtnaOA72wJPnI0ph+g9kElxx4AX0ih3gfV0K1WCwG+syXaG1n0KBCwEw4qpcK8FFjicRSvo2zl5ANbIsAjEt3Bb0YldXV1WLBgAaKiohAdHY1HH30Uzc2uH77Dhw/jrrvuQnh4OKKionDnnXeirc0HVTmIGw6vMKTvhPioHHZ+ocR7ewPQWivdhTgu4KMIAMuiFxIPPE1ROemx4SzaQ6k0z1BLboAFfhRBhoVzlJPQudzYrheWbWX5etYzwGc8ATYjGakJgpEDSmtbJT23MDvNG2CxPpZTbH8WrRCgZPhowiHfJorAIiJRyomhllqguYptx2dJd94ehq8mhviBZxb/PkX1ZoVejHqgXuKJIRnYEr56ny5VN4HjWN64uAhTf+QzZ07g2xL8+3SlvlXSauh6g1FwuArvlGDzkS3hKZbV0KVeCpzf3ZbwVdQ8nx8xMpmtoghQfKWj+CATm4jE+mJpJ4a6OswrWwI09Ys7+I3TbcGCBTh//jx27NiBbdu2Yf/+/XjiiSecHnP48GHMmDED06ZNw9GjR3Hs2DEsW7YMygCNgJAb5kTVUndC3aJy1GHmSntSGmBNlUBbPUtWHhfAAxqLCqZSkm+5ZJHHV3kjZBDtkRYbhiClAq2dBlQ2tkt2Xj58PSkqBNow03IaX+Wg4menA1ipKxQKZCRInzOnXW9AicmJl21jKEu8DFgG0R6A75bv2DhzhIkhHdBSI92F+H4vOg3QRDpv68eYo+Z9M/AU5KRUmtNVSNn3dbYA9SVsO4B1lGU0tpRFLyyXlir49BFkS4gmLkKNqJAgcBJPDJXUtKDTYES4hbPI51HzAa6jfLEUmOM4YRmwXVtCyokhmcgp00fFAwu666jIFCA4HDB2mXWKFNRcZIU0QrTMQSpT/ML7lJeXh+3bt+Of//wncnJyMH78ePz1r3/F+vXrce3aNYfH/eEPf8Dvf/97LF++HIMHD0ZWVhbmzZsHjUZzA++e8BW+SgJqTqgbYf7QFxEfvPEVkwkEh0h33h4Gr9SrGjvQ1C7dzAk/8BRm0gDfzKa1NbDlcEDA5vYAgGCVEn1jTbmNJIxKtJnxBHy31EAGUQQAkBknvQFWdL0ZBiMHbWgwEiJNOpJ/n3RlQKeEUXUyiCIAfFN1zGDkcEmYGDK9U8EhQHRfti2pjpKHnMxR875ZBmw9MeQDHXU9HwAHhMcD4XHSnbeHkRoThmCVAm16AyoknBiyGXgCvonG7uo0ny+AdRSrhi69fc5H5QxIjIRSyTtHKSLRG3yxFPhqfRtaOg0IVimE3KaIyWABBh06oLlasmvJRU6+ivK10VGWE0M+sSUGB2xebHfwC6fb4cOHER0djVGjRgmfTZ06FUqlEkeOHLF7THV1NY4cOYKEhASMGzcOiYmJmDhxIg4cOOD0Wh0dHWhsbLT6I3omGRa5jfQGoyTn7OyyDF+PMn/hC0NZmPEM7AFNVEgw4k2DeClzsdjkIgAsnKMSGmC8sojqw3K9BDD84FPKqESbGU/AIoqgEDBKtPxE38ZyJQEBndcIsHTmSDigsRh4CtEe4bGsYi8gbdELGUQkAr55n0prW9DRZURIsBJ9YyxyDflER8lETqaJoetNrCqsFHAcZxvpBvhmAk8muXKCVeZnXsqoxILukaOAb5w5tYUsgkQdyXLQBjDmtCLS6yi7tkTjVemqoRuNZrsvgCMSAcvoUQltPj4vdrwpLzYABGlYxDTgo3FUoMtJ+tUNNc0dqGnuNOfF5vGJjrKori1j/MLpVllZiYSEBKvPgoKCEBMTg8rKSrvHXL7MBl+vvPIKHn/8cWzfvh0jR47ElClTcOmSYyX6+uuvQ6vVCn+pqYGtGP2Z5KgQhAaroDdwuFInTRTG5ZpmdBk5RFokwQbgm8gcmUQRANIvszIaOSE5/0B7y0t9odRloCz4ZVZSGso2+acAZnyp1EBXO6C7Is2FrhcAnBEIjQEiEly392N8sWyxwF5UDiC9M8fQBVwP/GgPwPw+ldVKNzHEDzwHJERCpbSYMfaFk0AmOioyJBiJUfzEkDTvVGVjO5rau1gSbNP7CoBsCS/xpTPHri1RWyTdxJClLRHg0R6CLSGljrInp7AYICyWbUs1MaQrA/QtzEaJyZDmnD0UX0S62bX5AOltCY6TjTOH1yE1zZ3QtUozMcRPiPeNCUOYOsj8hS9tiQCfwHPFTXW6LV++HAqFwulffn6+qHMbjczAffLJJ7F06VKMGDEC7777LrKysvDxxx87PO7FF1+ETqcT/q5ckWhASEiO0sKYlUphWCYSVyjsDGikzO8hk1wEgPRVx67Ut6JNb4A6SIn0WItoDz6pbmst0FonybXkEpEISG+AcRxnW8UKAJQqiwTIEhnKljOegT6gsXifpCp6YXeJFWAdlSgFdZcBQwfLGxKdLs05eyhJUSEIU6vQZeQky21kNyoHkD4HFcfJ0pkjlY7iB54ZceHQBKnMX/hkQCOPiETAMq2INHKqb+lEdVMHgG7vlFANvQNoKJPkWnK0JS7XSLi6wZ4tAVjY5xLpKD5yNC4LUAVLc84eCv8+SVkN3SbnKI/UtkRzNdBWB0AR0KlfAFYNPZmvhi5R5LxNJWAen0wMySMa2xU31en23HPPIS8vz+lfRkYGkpKSUF1tvQa8q6sLdXV1SEpKsnvu5GSWqO+WW6wFPGjQIJSVOVagGo0GUVFRVn9Ez0Xqii4uB571JawKi7cYDSwyB5BFJyR1PgJztEcEglQW3Zgmgi0DBaRTGJa5CAIcqd+n600dqG/VQ6kA+idEWH8pddUxGUUk9o0Ng1IBNHV04XqTBP0RHCwDBqSfnRbklM3yhwQwCoXCZzrKVk4SR/nqrgIdjYAyyPyuBjBSJxS/6MiW4P8v2+pYdVgpIB0lGt6R06dXKCI0FtEeSpWpQAl8YEsEvs1nWehMiomh1s4ulJlWtDi0z6XWUTJwjiZEahChCYLByKFMqomhG6WjhLzYGUBwqDTn7MFkSFw80O6EOCB9NfT2RvOKFhnY5864qRZvfHw8srOznf6p1WqMHTsWDQ0NOHHihHDs7t27YTQakZOTY/fc6enpSElJQUFBgdXnFy9eRFpamk9/F3Hj8FUnZOP5j0gENFFs+RqfN8ob6kuArjY2kxrTz/vz9XCkXg5X4GiGBpA2CaiMwtcBs5wqdO1o6ejy+nz8gCY9NhwhwSrrL6V25sgkrxEAaIJUQm6jQgneKV2bHtd0LDH5gO7vlNT5PWTkHAWkd+bw75TDpTv1pYBegiTzvJziBgJBau/P18Px2QRedzmpw8z5vKR4p1pqgeYqth0fuFXQeSR3jjqy+QDpnQQyWt3QNyYcKqUCLZ0GVDV6PzF0qaoZHMcqo8ZGdCuGRzpKNKzohXTvlN5gFM7j8+WlMnKOAtKvRLFb5AwAYvlq6A3SVEPnJxsiU8w5gmWKX0wzDxo0CDNmzMDjjz+Oo0eP4uDBg1i2bBkeeughpKSkAADKy8uRnZ2No0ePAmAdyR//+Ee8//77+Oqrr1BYWIiXXnoJ+fn5ePTRR2/mzyEkROoQdruJjwG2XE3KkFteWcRnsRnVAIeXU0lNKwxG72dOHC6xAqRdCtxUyRSPQmU+bwATHaZGbDgbYBdL8E45jBwFpF8SIqMoAkDa5XCXTO9TijYE2tBuy2kEORWxBNPeIgxoAj8qB5BWTu16A0pM76XN7HR4PBCiBcBJMzEko4EnIP3yUuc6SsKlwLyceqWzSO8AJ9NUnKSqsQPNEkwMObT5AGltiY5moKGUbctAR6mDlEiTsOiFWzafZKkq5BM5CkjrzCmuaYHewCFcrUKfXt2iz3g5NVxhha+8RWZLFqUspmA0coLdZ2NLBIcC0aaJISl1lEyco87wC6cbAHz++efIzs7GlClTMGvWLIwfPx5///vfhe/1ej0KCgrQ2moOj33mmWfw4osv4g9/+AOGDx+OXbt2YceOHcjMzLwZP4HwAXwnVChBCHtzRxeu1jNFYH/WU8JZmip5DTx7R4dCE6REp8GIq/Xeh7AXOJqhAaTNmcPnyonNBIJDnLcNEKSM+LCb+JhHyiiCtnqg6RrblouTIEE6OTmc8QSAXmmAMhjQtwKN5V5fy9z3yUROEr5PhdXNMHJAdJi5IrSAQuEjHSUPQ5l/n0pqW9DlZdGLLoMRl0zR986dBBLISWYDT21YMOIipCt64XAZMCCtLXHdlJ86IpFVhZYBUqYVccuWqL3k/cRQV6f5vZSNjpIu0s1hXmyAFbwI7QWAY5N43iI3HSXh+1Te0IaWTgPUKiXSYsNtG/hER8njfXKG3zjdYmJi8MUXX6CpqQk6nQ4ff/wxIiLMs3rp6engOA6TJk2yOm758uW4cuUKWlpacOjQIYwfP/4G3znhS/rFhUOhYMuj6lo6vToXv8wgIVKDXuF2ltP4ItJNJp0QK3ohjcLo6DIIUVg2MzSAtM4cmUVPAdJWMHWY+Bgwy6m5Cmhr8O5CvJy0qUCIPPJwZkpYRMZh4mOAJZLmK7h5+07p28xRWInymHCwfJ+8nRiyXLJoM6ABJJ5wkFffZ1UNvd67KIzSulZ0dhkRGqxCaq8w2wY+sSXkISdAOicBx3HuRSTSwFMU5gqm0ukou7aElNXQawsBYxdLJ6Pt4925/AQpI90c5nMDpJ0YMhrNjmyZ9H38+1QqQTV0Xk6ZCREIVtlxBfnElpCHzecMv3G6EYQ9QtUqpGhZCLO3CsPpjCcgbd4IGYbbmvPveSeny9db0GXkEBkShKQoO9FnvJzqitmspTfIbCYNADLipDHAjEZz5VK7EVSaSCCSFbzxeompjHLl8AhObAmcow6rWPFI5SS4ng+AYzPe4fHenctPSI9lE0ON7V2oaZZmYsixjpIon6VBD9SY8uHKREcplQr0i5NmwsEclRMBpdKOc1RKW0JmkaOAZd/nnY6q0LWjqb0LQUqFoPes4N+nlussmtobZLa6ATAvBZY0GtuejlIFWUwMeamjLJ2jAV4FnYd/ny5LMTHkKOcoT6xEtkRDCYu+V2nMsg9wLKuh80VFxCJMNiQ6SEkglS0hs7zYriCnG+H38MtCvF1q4HrgaZGDyhvFpG83h1bLyElgzr/nnZwsZzztRntEpQDB4QBnYAUrvEGGzlHz7LR3ciqra0W73gh1kBLp9sLXAemcOcJMmnyUOv8+XdO1oa3TIPo8HMe5duZIlYPKMnpKJgOakGBzbhvJdJRDOUmUg6ruMmDoZP2otq935/IjBFvCSx3lNJclYF30wptq6BxnfqdkEjkKmCPdpJJTRnw41EF2hkOaCCCqN9v2Nl+YjCPdvM2TWNfSKVTpdujMkUxHyW+iNc2yGnqzd0UvXPd9EtsS8QOZ01UGWBa98PadMsvJwcoQqSLdmqtZpW6FUhaFflxBTjfC7+ENsJ8vXUeFTvyyEKdROYCpyqgS6GgEKs6Ivg4rw2xgSa/5SB8ZwMvpVGmDV3JyOuMJWBe9OL8Z0InMQ2U0yC58HbBYalDd7FX+PX4mbUBCBFT2oj0As2Iv3CleToAsDeWYcDW0IUHgOOBYcZ3o81Q3daChVQ+VUiHI3gZeTleOeicnGUYkAuZ36qcLVZLoKJcTQ9V5gO6q6OuY5ZQNKOVjJvI66lBhrVdycpp/CgAik8wTQ2W/iL4OdFeAziaWc5GPTJABvHM096rOOzm5isoBzLZE3rekozyEjx4sb2jzasKBf59SY0IRrnHgYOH7vsv7vNRR8pNTSLAKqaaiF9+cvib6nWrt7BIisFzqqPKTJCcR8LbE7nzvbAmz082FzVdfAtR6UZiJz4sdk8EKNMgc+VhTRMBSb8rl9l1uJe54Yzc2HCsTdR6nuQgA4OwGAKZ19P+YBJz8VNR1rNa3yyTaAzAv2cmvavJKThddyQkAlCbDbO+fgfeGiJNVfQnLERIUyirDyYRDRbUAAL2Rw51v7fH6fXI44wmYc7md+0q8nDhOlhGJG46VQdfOqvctXnPUazmlx4YhJNhBJWV++W/lWfFyAiyicuQjJwDoMrDI6NUHikX3fbpWPSp07QCcTAyVHjRdsB14b6gEOkpecqpuZFEeey9e905HCdHYDqIITn0G6E2RCp/O9V5OcQNZ7kWZkF/RCAC4Ut/mW5sPADiTzXfoL+L7vubrbIkqwBzZMuGnC5XC9pR39nn9PmUlOsnX2lxtavyDlzpKfrYEAISadP9r3+WJfqcuVjEbPy5Cg9gIjf1G/P9vXZE0cpKZjmo1rWpYd/SKaDl1dhmFlSwOI90ubjdtcMDfbiNbQiLI6Ub4NRW6Nmw9c03YN3LAf3x9zuMZgJrmDtS2dEKhAAYk2DHAdOXAt0+b9zkO+PYZcTM11fJb316ha8Pf9piXZ4iVE+BGpJuuHCg/Yd7njOJkxUd7xGcBSgfOiACjQteG/9ycK+x7I6cCV1E5unLg3Cbzvlg5NV4D2nWAQmWenQtwKnRtePFrs5w4eCEnV85RXTlw4F3zvlg5AbI0lCt0bThYWCPsi32nLlYzOaVoQxAVYsfBoisHvnvWvE9y8ogKXRvWWQxgxMqpXW9ASS1zqA20F0XQ3ZaAF7aEDHPlVOja8L8/Fgj7Xukod2yJ4p/N+2LfKf596pUOqB2kWggwbHSUBDafw6gcXTlw+nPzvlg5dTQBDaVsW2Z9H/8uAF7oKHfktOd/zPukozyiQteGnReqhH2xciquMeXF1gQhRWsnL7auHNj2jHnfGznJNCLREeR0I/ya4poWm/RqBo5DSY1ny+J4hZMWE4ZQtR0HS12RecaThzOYK/F5ggyjPYprWmCUQE5N7XqUNzAF49BJUFcE5oawQIysZJgrRyo5AW44c6SWU2x/IMjB7GqAIamcXEURSNX3tdYBTRVsO14+0R7FNS3dn3JRsnKZz01SHSW/aA+pbInC6mYYObb8O95etAfZEl4hVd/XZTCi0BTt4TAiUWodJaMiClLqKHPOUR/rqOsmZ25EEhAW4+Fd+i+S6yhf2xJdHeboe5n1fVLIqcAilZLdvNhkS/gMcroRfk2/uHB0TxelUiiQHhfm0XlcRk/FZLJEkJYoVOKq5sjQ8y+VnPjw9cQoDaLD1PYbSSUrGUYkSiWnji4DimtYtIdDJwHJSTT25KRUwGM5AW7k9pBMTqaBp7YvEOJkmVCAIdU7VVDJltQ5zjkqkZw6W1jlZ4B0lFe2RIT9AY2UtoQMoz2kklNJbQs6u4wIU5sLndhAOko09uXkuY7iOM4cQeVr+1yGkaOAhDqqiukon9sSNZcAYxeg0ZoLncgAyW0JX79PRqMs82I7g5xuhF+TrA3F6/cPhWU/9Of7hyBZ61nCRpd5wrS9gTl/YR0Pzx2/Z597QrsOaDQluJaRYuflZKkw/uc+EXJyNeMJmGUloADmvOe5rGSYi8CenF6YmeWxnIqqW2AwcogKCUJSlJ3wdcBCTvzFvJSTjCISeTmpLAb1C3LSPJaTwcjhUrWLd0ro+yzMhXveFSEnec54dtdRCojVUXxUjisdZSGnaa96LqfrBQA4ICwOiEjw7Fg/RpCTRd8nSk6u8rnZsyVGP+a5nAx6VpQJkL2OevXewR7LqcD0Pg1IjITSUaEfyXWUvOX0+6kDPJbTNV07mjq6EKxSoF+cg6W5NnIC2RIewMuKR6EQ1/fx75RntsQ7Xtjmg2SVF1sqW6LAbVvCQkdN/g/P5dRQAuhbAZVG3KRSAEJON8LvmT+6L/65eBQAIFytwv0j+3h8jrPlOgBAfJST5WkjFwHP5ALpE9i+UkTi4uL97N/wRCC0l+fH+zHzR/fF7ucmIdhkhY1M8/z3nyytBwD0jnbgyOEZuQiY+Ce2nTaW7XuCvh2oMYWvh8pnmQHA5HRw+V1CJb9eoQ4iCp1wpJjlsOoXF24/2oNn5CJg/mdsOyQKuHWBx9fCtVPsXxk5CAAmpwPLJ2P64EQAbJmBp5worUO73ghNkAJ9Y5zMlo5cBDx11FygJO0Oz2/46jH2r9bz/tnfmT+6L1bMYQPu/gkRmD+6r0fHcxyHCxVMR8U4ivAFTDrqHNDLZOCGxXl+s3wxBhkayfNH98WGJ24HAAQpgXuGpXh8jjNXGgAAiY4mGwCzLTFwpukDz99dlB4CDJ1AcBigTfX8eD9m/ui+2P/CZERo2KBwgLPqow44XsIqPqf2csOWmPYq204a4rktYTSaI6jEvI9+DG9LDOujBQCEqx1UHnXC4SJmS6T2CoM6yMmQdeQiYNFWtq3SAEMf9PhauHaS/RuZ5Pmxfs780X2x9I50AMDkrASPddSFazrUNLNCNAMSHES6AUxOvz/NqjcDQOJQx20dccVU8Tnas3sMBOaP7ov/fXAYACBRG4J5ozzv+8+bbInYcFe2RC6QxK4Fjed9rJAPM6afbPJiu4KcbkRAMCkrAb3CgtHSacBpk9HrLuuOliHPVA1rxdbzzqvBaHsDwx9i20W7PLvJk58CGxay7ZYq8dVg/Jj0uHCM7c8Mz/0Xr3t07IZjZfjyBIsSXH/0iuuqPYPvZ/+WnwT0HibvPfAOhEq1/7xLdrJK1oZitmnAue+S53L672/ZTOSZqzrXcho4ky0TaNcB1057dqMn1prD17f9QZZymj+aGV37L14H54HjbcOxMsz/iBmvHV0cvjpxxfkBcQOAtHFsW0zfd3YD2z62WnZyAoB7hrP36VJ1M643dXh07D9+LkZzB6tatnTtMdc6avBcti1GTj+9xLavHpOlnEanxyA1JhRdRuCXy7UeHbvhWBmOFDNnzls/5ruW04hH2HahCDl9apKxvhU4/S/Pjg8A+vQKw+RsNuEgxpZYc6gEAPDd2UrXOmrIr9m/ledYbkpPOPgXJiMA+Oxe2b1TydpQ/MrU9+0TIac/fnkWAHC5psW1nPrdyZYbGjrMkwfucvJT4MoRtr3jZdnJCQDuGZYMADhRWg9D94R8TthwrAyz/3pA2N929pqT1gB6pQH972LbYnTUsX+y7dwvZSmnWUOToVYpUalrF9K4uMunh0pQ0cCqoP9+/SnXOorv+8ToKL5g0PV8WcrJHuR0IwIClVKB8QPiAXhmgImq1phpUhblJ903wISKZRaKTGw1GD/nzgHM6eaJASaqWmN8FjPAuto9M8B05cC+t8z73lTu8WMmDmRyOnCpxm0DjJeTZWuXclIFARl3sm1PDDBdOXO08chUTrdnxEKtUuJqfZvbBpgoOQFA5hT2rycGmJTVGv2YuAgNhvRmy25+9sCRXaFrw+s/5An77ukok5yKdrNIG3ew0VHylJNCocCdIm0Jj6s19ruTRY/WFQH1Je5diGwJAd6W8EpOcENOUSmmJbwccHmP+zeoKwd2rTTvy1RHTRzI3qejxXVo1xvcOkaUjlIozPZ54W73b7C7jpKpnIb3iUZkSBB0bXqcvdrg1jGCnCwERbaEbwlTB2FUOlsp5Gnft+Lb88K+W7ZEf5OcSn5mBSzcgXSUQ8jpRgQMYgwwURWWxBhgUlaD8XPEGGCi5CTWAJOqYpmfI8YAE12xTIwBRu8UAHEGmGg5iTHASE4CYpw5oqpqpuYA6gig5TpQleu4nSUkJ4E7TTpq/6Uat48R9U6FRAF9xrBtd/s+kpMAL6ez5TrUtXS6dYx4HUW2hFj6J0QgWRuCji6jEAnqCq91lCcTePROAQCCVEqMF1aiuNf3eS2nq8fYKgd3IDkJiNVRHtsSiUOAiEQWrVv2i3sXIjk5hJxuRMAgxgCzl5jVrWownhpgUlYs83PEGGD94sLRPTOYW3ISY4BF2ck5JUNZiTHAvJaTJwZYTKbtZzKUE+C5ASa6CpYYAywmE+j+VMhcTj9fqoHRzejRNDu59lzKKkhtzj3qrjOH5CQwLjMWQUoFimtacKXOxeDRhGhbQlhmRbaEpyRGhSA7KRIcBxwovEE6qmgXbEaujuiVbvuZDGUlJnqU5YO1/swtOWVMYu/H9XxAd9W9GyRbQsBsS7gvJ1G2RHRfIHYAc8Zc3ufezZGOEuDfp8NFtejoci94QZSOsgxecHccRXJyCDndiIBBjAGm6NYxqBQK96rBeGqAaXszY0C4sEpcdaUAQIwBlhgZAm2ouXCF23ISY4BVnu12w/KVlacGWLI2VFhCB3ggJzEGGNfN0JCznDw0wJK1oZgx2Jws2m05iTHAIpMAjUU1MxnLaWTfXghXq1Db0okLpjyirrhab730w3Md5aYzR9ubOVV5ZCynyJBgjOzLokfdTYMQpg6yqibstpz4KN/L+1hFUldoewNZs8z7MpYTYKGj3JRTsjYUiRYFs9yWU99xQFAo0FRhrp7oitoi630Zy0qMnEZZFNtyW06hvYDet7Ftd/u+4FBrRzbJCaevNEDX5ro/StaG4r4R5v8nt+UEeD4pHpViXTBLxnIalByJ+EgN2vQGnCipd+uYhlZreXqso9wNMtH2NkdwA7KWU3c8LyVDED2YOwfGI7+yCfsvXheStzrjmzNsjfnwPlosnzkI6XFh7imL7gaYq1LwRgNQbUr4Pvk/gFsfkXUHdOfAeGw4fsVtA+x4aT0a2vQIU6vwwSMjMTAx0j058QbY1WPMAHOn8ljul+zf0Y8Bt9zLZmdkKqvuBpil49Meje16FFSxcuSv3z8Ek7IS3C9n3n8KUHuJGWC3/Mp1e15OfcYAU16WtZx4A+x6UwdOlNRjXH/XVfKKa1kEz6Pj0/HYhAz35ZQ5BTizjhlgd/+36/YlB4AOHXO8PfgJy7UoUzmpg5QYmxmHnXlV2HfxOob01ro8ZstppqPuGZaEBTnp7uso3jla9gvQ0QxonFSUA1h+Ur4oydxVQMZk2coJAO4cGIejJXXYf/E6Hrk9zWX77ecqYOA49IsLw5/vG4r0uHD35JR8KxAWC7TWMj3FFytxBMcBtabK2nc8DYx5Ut5yGhCPv++/jJ8vsUIyTqtlA8ivbERlYweClQp88MhtGNw7yj05BYcA6XcAhTuZjnJl8wFmHTV0HrM9ZKyjxvePg1LBCslca2hDSrTz//OOLgMKKpsAAP81exBmD0v2TEddPcaifN2x+c5vZsvh4rOBWW/LWk69o0ORGR+OoustOFRYg5lDk10ew08MPTw6Fb+fOsAzOR35kNkSHAeb0MbuVJwBmqtYddp5n7FqwjKVk0KhwIQBcfj6ZDn2Xbruls3H2xITB8bh3yb298CWmAxAwVJVNFUBkYnO2+vbgOoLbHvmW0D2PbKVU3co0o0IKPiID94Ac8WWU6zKzoOjUjE2M9Z9ZcEbYIB7szSlB4Gma0CIFrjjGdl3QN0NMFfwymLW0GRMHOiBIwfwLF9Yax1w6Se2PepRoN8EWcuKN8AMRg6H3Ige3Z5bic4uIwYkROCh0X1Fymm36+hRjgPObmTbIxfKXk68AQa4V222oLIJeRWNCFYp8P/u8sBIBkwGGMwGmCtyTXIacj9bSidjOQHmAiXuTDh0dBnw3dkKAMBvxqR5pqNiM9nyNqOe5eBzxYUtrG3iUFZVU+Zy4iccDhXVQm9wXYyCtyUeuC0VYzPj3JeTUskcnIB7OqoylzlHVRpgwnOyl9Oo9F4ICVaiqrEDBVVNLtvzcpqcnYCptyT6zpbQtwEXvjHd5FLZ6yhtWDCGp0YDcK+QzJ7862hs70JSVAh+e0c/z+TER1Bd3ssmvF3BO0dHPCJ7OQGerXAob2gT0sQsm+KhLZF+B6BSA7oy80SCM3g5Zc0EsqbLXk4ThehR17a50cjhm9Os73todF/PbInwOCB5ONt2J3q04Aegs4mtYBnzhOzlZAk53YiAwhMD7GJVEy6YBp6z3ZjNscETA+zsBvbvLfcCQRqnTeWAJwZYZ5dRGHhahrG7DR/x4Y4BdmErYOhkA093ZrJlwIQB7htgm08x5+i9I3q7jDiwwRMDzHLgOciNqDgZ4IkBxjuxJ2UlIDpM7dmFPDHA9O3mgeew+Z5dJ0Dh36cTpfVo7uhy2tZy4JmTEev5xTzSUSbn6LB5nl8nABmSokVMuBrNHV04VdbgtG2Frg2/FNcCAObe6jrC3gZPlmzztkTWTDaJJ3NCglXI6cfeDVeObDbwZH2fKFuCd+aUHgI6XeT64wee2r5A6u2eXysAMacVcUNHmWyJubemQNk9aZgrUkYCGi3Q3gCUn3Tetr4UKDsMQAEMecCz6wQolnJyFbzAO3Jy+sWgt4voRRvU4UDfsWzblY4yGoDcr9g22RIAWPCCQgHkVTSiuqndadsjxXWo0LUjMiQIk7MTnLa1i0c6ymRLDJ3nOnpRZpDTjQgoPDHAeKU+cWACeoV7OPAE3DfArAaeNKDhcdcA21tQDV2bHgmRGtwuZuDZ+zb3DTB+Jm3Yg55fJ0CxdOY4M8Aqde3eDTw9McD46KmB04HQaM+vFYC4a4BZznjee6vIGUjemePKALu4HehoBLSpNPA0kR4Xjr4xYegycjhcVOu07VaTg+BXt6ZA5enAE3A/Z47lwHMoDTwBQKlUWBSScW5LfHP6GjgOGJMegz69XCQQtwc/oLl2Gmhx8kwYDcC5TWybbAmBO92ccDhaUodr3gw84wayQkuGDmb3OUNYWvoAi2YkBDkdKKyBwUkhGV2bHrvzqwEAc8XoKFUQkDGRbbvq+3g59bsTiBIx+R6A5GTEQK1SoryhDUXXW5y25XXUvWKc2ID7Oqp4P9BcyVLG9J8q7loBRmyEBkNS2MTLzy76Pl5Os4YkIyRY5fnFLHPEGp1EfrfUAoU72DbpKBtIExABhzsGmNHIYSs/8BwhwkEAuG+A8QPPqD4sFxwBwH0DjI/KmSt24OmuAdZQxpYB04ynFe4aYN+cKQfHAaPTe4kbeALuGWA042kXdw2wYyV1KG9oQ6QmCFMGiRh4Au4bYMKMJw08LbnTjSWmujY9dgkDT5E6Kn0CoAwC6i4DdcWO2wkDzwksWTUBwP1lVpYRvqKISgYSBgPggMt7HLcr+ZnlkQ2JBvrfLe5aAQi/ZPtoSR3aOh1Hs/MDz5lDksQNPBUKi2qzTnSUZZoK0lECw/toERUSBF2bHmeuNjhs90NuBToNRmQlRmJQcqS4i/V3I8rXMk0FOQgEwtRBGN2PFbFwpqPyKhqRX9kEtUqJWUNEOiz5CbySA0BXh+N2vJwG38eqcxMALGwJJzqqXW/Ad7lstZBoHdVnDKCOYLlHK884bndhM2DsApKGsfy9hBVkBRMBhzsG2PHSepQ3tCFCE4Spg1wkhXSEuwYYzXjaxR0DrLFdj515Xsx48rhjgPGOnPTxlIPAAncNsM2neCe2F/937hhgJQdMA08tMIAGnpa4Y4BtMU02zBA78ATcM8Bo4OmQO91Ysr39XAU6u4wYmBiBW5KjHLZzSkgUkJrDth3pKMuB51AaeFpypylPYm65DnUtnXbb5FeygWewSoFZQ5PstnEL3pZwpqPOmmwJGnhakRkfgRRtCDq7jEK0dXcs8yNKoqOcyek8P/AcCiRki79WgBGkUmL8ANcTDsJE64gUz9NU8PByKj8OtDmo7lh5FqgpAIJCgEFzxF0nQHFHR/FympwdD22Y8yJbDkkcDEQkAfpWU7S1HTpbgbxv2TbpKCvMecxrYHQQvLC3oBpN7V1I1oYgp1+MuAsFqVk0KOCejiKbzy7kASACDncMMF5ZeDXwBFwbYK11wMUf2TZ1Qla4Y4BZJuYfnCJy4Am4NsBoxtMprgywi1XmxPyi8iPyuGOAWc14Un5ES1wZYGzgyZxuonIa8bhjgFkm5k8YJP5aAcjYzFgEKRUorW1Faa396FE+4fvcW0XkR7SEX7pY6CD/Hj/wVGncqxosIxKiQpCdFAmOc5x7VEjMLyY/oiWZFtGj9pbx69tYzlGAdFQ3FAqFxQoH+3KyzI94ez8RaSp4MiYCCiV7Z3RX7bcRbAmy+bpjTitiX07XGtrwy2WWmN+ridboVLYahTMCl/fZb8PLaeAMyo/YDf59+uVyLdr1tsELRiOHb71NUwGw4IVMFxMOFy0S8/OTSAQAYGRaL0RoglDX0onz1xrttuEjsX8lJj+iJUJeNwe2RH0JcOUXsNVCvxZ/nQCGnG5EwGFpgG08egUVOuvqmJaJ+b1SFoC1AXZuE6Art/7+wlbTwHMIJea3A2+AfZ9bYSMnwOwcFZWY3xJLA+zIh7ZyqjoHXM9jifwpMb8N/Pt0uKgG+y5W28jKMj+iVwNPSwPsxCe2ctK3AXmm/Ig042mDpQG2/liZjZz2FrCBZ2KURlxifkt4OZ3fbCsnwGLGk/IjdicyJBgj01j06NpDJTZy8joxvyWWlfyKdtvKih94ZtHA0x58TstNJ6/ayMkyMb9X0VMAy2cZFMryFp36zFZOF7ebEvNTfkR78Drqx/OVdm0Jy/yIXg08Q3sBvUexbXu2BA08ncLL6VRZA3ZcqLKR1TdnmCNnjJjE/N3hHdmnP7eVk1WaCrIlupOdFImESA3a9UZ8ethWR3mdH9ESXkflfevclhj6IK0W6kawSomxmcyW+9cvpTZy0rXqsSefObi9Hu/ycir7hemj7rKi/IguoaeXCEj43F8/nK/EHW/sxoZjZcJ3lon5+c5KNKG9gOg0tv3Vb4H3hgAnPzV/T9FTTtG16QEAF6uabeRUqWvH4cts4Pmr4RLkGYo0nWPvG3bkZKoIN3AGJea3Q3ZSJCI1Qejo4rD442NWsrLMj+hV9BSPyuS0O/+1rZwsE/PzRRcIgWCVEn1jWD69/9h8zuadMleE6y0uP6IlHaZZ1apztnJqKAPKDoHyIzqml2k5zpqDJTZy8joxvyVJw9lSYH0L8Nl91rKi/IguMZqizvZfrLGRkzDw1AThLm8HnsEhQEw/tv3N/3NsS9DA0y5Vjax4zLWGdhs56dr02GVKU+H1wBNgFZwB4NBfbeVkNfCk/IjdSYkORUKkBhyAxz897lBHSWJL8Fz6yVZOVon5KU1FdxQKhaB7/vx9vkM5iU7Mb0kzezdRX2wrJ8vE/DTRapdwNfv/33D8io2cvj/H8iNmJ0VikNg0FTwxGUBYHMAZgC/mW8vKarUQ2RKOIM1NBBwVujasO2rudIwc8OLXuajQtaFC14bVB1hC6V8NF5mY3xJdOZvZ5OGMwLfPsM+vHDUNPEEDTztU6Nrw5vZ8YZ+X07UGVgn2X7+UgONY7rfUGC8HnrpyoNhiiQFnBL59mn3eUAac+oJ9Ts5Ru1Q2tqOpo0vYt3ynfjxfifKGNoSpVeIT8/PoyoFTFgaXpZx05cAvH7DPKT+iXSp0bcirMC8xsJTTxaom7LhQBUCC6CldObD7NfO+ICfTcqtjq9m/fUZTfkQ7VOja8JNJFoCtjvr8CNNfc8UW+bGkqQLobDbvW+qo85vZwFMTRQNPO1jaC4C1nABg3dFSAMDErDjvB566cqA6z7xvKaeq8xZpKkhHdadC14ZXt10Q9nk5ldczW2L90TJ0GozoFxcmPjE/j66cTf7wWOmoq8DxT9jnJCe7VOjacL3JnK/V8p36+dJ1lh9RqRCfmJ9HVw4c/ci8bykngEXSA6zfo/yINlTo2nCqzJyKxVJOpbUtQoSv1zpKVw789J/mfV5ODVfY/ok1LD9ifDblR7RDha5NiA4FbG2JTw6VAPByqTaPrpzl8eWx1FGXdgA1F1maCsqP6JCgm30DBCE1xTUt6J7OyMgB9606iKrGDvBfham9NJIBoK4IQLeLcQZg/cNAxVnzZ0W7gJGLvL9eAOFITg98cBij+8UI0VNnr+qw4VgZ5o/uK/5iduVkBD6dC9QWmr9rdl6lTq4U19jmnTJywFOfn8DJMh0AoLXTgK2ny72XE9etGiZnBFbfDTRegyCnIC+XnQQoxTUt3Z9yGDlg6ZpjKKhsEr7LvarD4BQvlhI6ktPHM1gEYq5pxvPqMTYTSn2fFcU1LTZpu4wc8NBHv6CsrlWQU2eXk8qw7lJXZPsZZwC+XApcPcL2O5qAs+tJTt1wpKMWrj6C29J6Yetplqbiu9xKTPCJjjIAX8xjTjf+u6vHKEdiNxzafP/fIYxOjxEq95XUtGLj8Su+0VFr72GROrycOh1X+pYzjnTUv312AmeuMltCb+Sw/XyFb+T0r1+zyaALm9ln575kVZup77PCkZwWrT6Kwupm4bvS2laMy/TiQg5tvmlA2liWtgcArheQLWEHR33fgx8eRnl9myAnb+NLADjWURsWAtdOsH1DB8vnS3KyC4UKEAFHv7hwux1MpYXDDQBW7Sm0m/vDI2IyWU637lScgVXnxM8GEAKO5HRN1y443AD2v/gfX5/zTlaO5FR7CVZy+v55kpMdHMmKd7jx+ExOjeWwktO+N0lOdnAkp3wLhxsA/OdmH8lJd8XscAMAcNT32cGRnEotHG4A8Nq2PN/pKN7hBoDkZB9HciqsbsGGY+Yk+hznw76v6hzIlnCOIzlVN3UIDjfAx7ZE/WVYyWn7iyQnOziSFe9w4/GZnK7ndYump77PHo7kdMnC4QYA/+UrW6LpmtnhBoB0lH0cyemqhcMNAN7aXuA7W4J3uPGQnBxCTjci4EjWhuL1+4dCZUq8r1Io8JucVJt2Bo7NfHqFtjcw5y+AwhQ1p1AB2XYS8XMGoO6yd9cKMOzJaeWvbsHisWk2bQ0c552s7MnJXt4BkpNdustKqQCm2Mlh5BM5jVxi247kZBfbdwq4Z5jtMh2fyGnmW8Dox23bkqxssNf3PXib7fIPr+UE2JfVgOm27UhONtiT03/NHoQHbutj09Yn79Tg+2zbkZxssCenV+cOxqPj+9m09Ymchv/Gth3JyS72bIlpgxJt2vlETtNeA4Y9bNuWZGWDPVtirp3cyj6R06y3gZzf2bYlOdlgr++bP8reeNdHtkTWLNt2JCeH0PJSIiCZP7ov7hwYj5KaVqTHsXxg649esQrDVSkUwndeMXIRq5JUd5klmgSAgm3WIdMKlfk7QqC7nJK1oajQteGzX0qll5U9OeV+SXJyE3vv1J43dt8YOZ36lOTkJvbk9H1uhe/lpO3NZjePryZZuYE9OW06WX7jdNR7Q0hObuBIR3198uqN6fsubCU5uYEjOa05WHxj5HR2PcnJTez1fTvzq26cjsrdQLJyA3ty+vbstRsnp6MfkZzcwJ6cvjxxA8e7F7eTnNyEIt2IgCVZG4qxmbFI1obanQ348/1DkKyVKDeUtjfLC6HtbX82YM57lFDcAZZy4vd9JiuSk1fcsHeK5OQVN0VO/D7Jym1IR/kHpKP8A5KT/0A6yj8gOfkHZEv4BwqO657Ol7CksbERWq0WOp0OUVFeltslbjoVujarmVCfoiu3nrkhPOKGyYrk5BUkJ/+A+j7/gOTkP1Df5x+QnPwD6vv8A5KTf0ByujF44icip5sLyOlGEARBEARBEARBEARBAJ75iWh5KUEQBEEQBEEQBEEQBEFIDDndCIIgCIIgCIIgCIIgCEJiyOlGEARBEARBEARBEARBEBJDTjeCIAiCIAiCIAiCIAiCkBhyuhEEQRAEQRAEQRAEQRCExJDTjSAIgiAIgiAIgiAIgiAkxm+cbnV1dViwYAGioqIQHR2NRx99FM3NzU6PqaysxMKFC5GUlITw8HCMHDkSmzZtukF3TBAEQRAEQRAEQRAEQcgVv3G6LViwAOfPn8eOHTuwbds27N+/H0888YTTYxYtWoSCggJ88803yM3Nxf3334958+bh1KlTN+iuCYIgCIIgCIIgCIIgCDmi4DiOu9k34Yq8vDzccsstOHbsGEaNGgUA2L59O2bNmoWrV68iJSXF7nERERH44IMPsHDhQuGz2NhYvPnmm3jsscfsHtPR0YGOjg5hv7GxEampqdDpdIiKipLwVxEEQRAEQRAEQRAEQRD+RGNjI7RarVt+Ir+IdDt8+DCio6MFhxsATJ06FUqlEkeOHHF43Lhx47BhwwbU1dXBaDRi/fr1aG9vx6RJkxwe8/rrr0Or1Qp/qampUv4UgiAIgiAIgiAIgiAIQgb4hdOtsrISCQkJVp8FBQUhJiYGlZWVDo/buHEj9Ho9YmNjodFo8OSTT2Lz5s3o37+/w2NefPFF6HQ64e/KlSuS/Q6CIAiCIAiCIAiCIAhCHtxUp9vy5cuhUCic/uXn54s+/0svvYSGhgbs3LkTx48fx7PPPot58+YhNzfX4TEajQZRUVFWfwRBEARBEARBEARBEAThCUE38+LPPfcclixZ4rRNRkYGkpKSUF1dbfV5V1cX6urqkJSUZPe4oqIi/O1vf8O5c+cwePBgAMDw4cPx888/Y9WqVfjwww/dukc+5V1jY6Nb7QmCIAiCIAiCIAiCIIjAhPcPuVMi4aY63eLj4xEfH++y3dixY9HQ0IATJ07gtttuAwDs3r0bRqMROTk5do9pbW0FACiV1sF8KpUKRqPR7XtsamoCAMrtRhAEQRAEQRAEQRAEQQBg/iKtVuu0jV9ULwWAmTNnoqqqCh9++CH0ej2WLl2KUaNG4YsvvgAAlJeXY8qUKfj0008xZswY6PV63HLLLUhOTsbbb7+N2NhYbNmyBX/84x+xbds2zJo1y63rGo1GXLt2DZGRkVAoFL78iTcMviLrlStXaPksAYCeCcIaeh6I7tAzQXSHngmiO/RMEJbQ80B0h54Jojv+/ExwHIempiakpKTYBHp156ZGunnC559/jmXLlmHKlClQKpX49a9/jffff1/4Xq/Xo6CgQIhwCw4Oxvfff4/ly5djzpw5aG5uRv/+/fHJJ5+47XADWKRcnz59JP89PQHKWUd0h54JwhJ6Hoju0DNBdIeeCaI79EwQltDzQHSHngmiO/76TLiKcOPxG6dbTEyMENVmj/T0dJv1tAMGDMCmTZt8fWsEQRAEQRAEQRAEQRAEYcVNrV5KEARBEARBEARBEARBEIEIOd1kiEajwYoVK6DRaG72rRA9BHomCEvoeSC6Q88E0R16Joju0DNBWELPA9EdeiaI7sjlmfCbQgoEQRAEQRAEQRAEQRAE4S9QpBtBEARBEARBEARBEARBSAw53QiCIAiCIAiCIAiCIAhCYsjpRhAEQRAEQRAEQRAEQRASQ043giAIgiAIgiAIgiAIgpAYcroFAKtWrUJ6ejpCQkKQk5ODo0ePOm3/5ZdfIjs7GyEhIRg6dCi+//57q+85jsPLL7+M5ORkhIaGYurUqbh06ZIvfwIhMZ48E//4xz8wYcIE9OrVC7169cLUqVNt2i9ZsgQKhcLqb8aMGb7+GYSEePJMrF271kbeISEhVm2on/B/PHkmJk2aZPNMKBQKzJ49W2hD/YT/sn//fsyZMwcpKSlQKBTYsmWLy2P27t2LkSNHQqPRoH///li7dq1NG0/tE6Ln4Okz8fXXX+Puu+9GfHw8oqKiMHbsWPz4449WbV555RWbPiI7O9uHv4KQEk+fib1799rVG5WVlVbtqJ/wTzx9HuzZCAqFAoMHDxbaUB/h37z++usYPXo0IiMjkZCQgHvvvRcFBQUuj5ODb4Kcbn7Ohg0b8Oyzz2LFihU4efIkhg8fjunTp6O6utpu+0OHDuHhhx/Go48+ilOnTuHee+/Fvffei3Pnzglt3nrrLbz//vv48MMPceTIEYSHh2P69Olob2+/UT+L8AJPn4m9e/fi4Ycfxp49e3D48GGkpqZi2rRpKC8vt2o3Y8YMVFRUCH/r1q27ET+HkABPnwkAiIqKspJ3aWmp1ffUT/g3nj4TX3/9tdXzcO7cOahUKjz44INW7aif8E9aWlowfPhwrFq1yq32xcXFmD17NiZPnozTp0/jmWeewWOPPWblZBHT7xA9B0+fif379+Puu+/G999/jxMnTmDy5MmYM2cOTp06ZdVu8ODBVn3EgQMHfHH7hA/w9JngKSgosJJ5QkKC8B31E/6Lp8/DX/7yF6vn4MqVK4iJibGxI6iP8F/27duHp556Cr/88gt27NgBvV6PadOmoaWlxeExsvFNcIRfM2bMGO6pp54S9g0GA5eSksK9/vrrdtvPmzePmz17ttVnOTk53JNPPslxHMcZjUYuKSmJ+9///V/h+4aGBk6j0XDr1q3zwS8gpMbTZ6I7XV1dXGRkJPfJJ58Iny1evJibO3eu1LdK3CA8fSbWrFnDabVah+ejfsL/8bafePfdd7nIyEiuublZ+Iz6icAAALd582anbV544QVu8ODBVp/Nnz+fmz59urDv7TNG9BzceSbsccstt3ArV64U9lesWMENHz5cuhsjbhruPBN79uzhAHD19fUO21A/ERiI6SM2b97MKRQKrqSkRPiM+ojAorq6mgPA7du3z2EbufgmKNLNj+ns7MSJEycwdepU4TOlUompU6fi8OHDdo85fPiwVXsAmD59utC+uLgYlZWVVm20Wi1ycnIcnpPoOYh5JrrT2toKvV6PmJgYq8/37t2LhIQEZGVl4Xe/+x1qa2slvXfCN4h9Jpqbm5GWlobU1FTMnTsX58+fF76jfsK/kaKfWL16NR566CGEh4dbfU79hDxwZUtI8YwR/o3RaERTU5ONLXHp0iWkpKQgIyMDCxYsQFlZ2U26Q+JGceuttyI5ORl33303Dh48KHxO/YS8Wb16NaZOnYq0tDSrz6mPCBx0Oh0A2OgBS+TimyCnmx9TU1MDg8GAxMREq88TExNt8iXwVFZWOm3P/+vJOYmeg5hnojt/+tOfkJKSYtW5zZgxA59++il27dqFN998E/v27cPMmTNhMBgkvX9CesQ8E1lZWfj444+xdetW/Otf/4LRaMS4ceNw9epVANRP+Dve9hNHjx7FuXPn8Nhjj1l9Tv2EfHBkSzQ2NqKtrU0SXUT4N2+//Taam5sxb9484bOcnBysXbsW27dvxwcffIDi4mJMmDABTU1NN/FOCV+RnJyMDz/8EJs2bcKmTZuQmpqKSZMm4eTJkwCksVkJ/+TatWv44YcfbOwI6iMCB6PRiGeeeQZ33HEHhgwZ4rCdXHwTQTf7BgiC6Dm88cYbWL9+Pfbu3WuVOP+hhx4StocOHYphw4YhMzMTe/fuxZQpU27GrRI+ZOzYsRg7dqywP27cOAwaNAgfffQRXn311Zt4Z0RPYPXq1Rg6dCjGjBlj9Tn1EwRBAMAXX3yBlStXYuvWrVb5u2bOnClsDxs2DDk5OUhLS8PGjRvx6KOP3oxbJXxIVlYWsrKyhP1x48ahqKgI7777Lj777LObeGfEzeaTTz5BdHQ07r33XqvPqY8IHJ566imcO3eOcvKZoEg3PyYuLg4qlQpVVVVWn1dVVSEpKcnuMUlJSU7b8/96ck6i5yDmmeB5++238cYbb+Cnn37CsGHDnLbNyMhAXFwcCgsLvb5nwrd480zwBAcHY8SIEYK8qZ/wb7x5JlpaWrB+/Xq3jF/qJwIXR7ZEVFQUQkNDJel3CP9k/fr1eOyxx7Bx40abJUPdiY6OxsCBA6mPkBFjxowR5E39hDzhOA4ff/wxFi5cCLVa7bQt9RH+ybJly7Bt2zbs2bMHffr0cdpWLr4Jcrr5MWq1Grfddht27dolfGY0GrFr1y6rKBVLxo4da9UeAHbs2CG079evH5KSkqzaNDY24siRIw7PSfQcxDwTAKsK8+qrr2L79u0YNWqUy+tcvXoVtbW1SE5OluS+Cd8h9pmwxGAwIDc3V5A39RP+jTfPxJdffomOjg488sgjLq9D/UTg4sqWkKLfIfyPdevWYenSpVi3bh1mz57tsn1zczOKioqoj5ARp0+fFuRN/YQ82bdvHwoLC92avKM+wr/gOA7Lli3D5s2bsXv3bvTr18/lMbLxTdzsSg6Ed6xfv57TaDTc2rVruQsXLnBPPPEEFx0dzVVWVnIcx3ELFy7kli9fLrQ/ePAgFxQUxL399ttcXl4et2LFCi44OJjLzc0V2rzxxhtcdHQ0t3XrVu7s2bPc3LlzuX79+nFtbW03/PcRnuPpM/HGG29warWa++qrr7iKigrhr6mpieM4jmtqauKef/557vDhw1xxcTG3c+dObuTIkdyAAQO49vb2m/IbCc/w9JlYuXIl9+OPP3JFRUXciRMnuIceeogLCQnhzp8/L7ShfsK/8fSZ4Bk/fjw3f/58m8+pn/BvmpqauFOnTnGnTp3iAHDvvPMOd+rUKa60tJTjOI5bvnw5t3DhQqH95cuXubCwMO6Pf/wjl5eXx61atYpTqVTc9u3bhTaunjGiZ+PpM/H5559zQUFB3KpVq6xsiYaGBqHNc889x+3du5crLi7mDh48yE2dOpWLi4vjqqurb/jvIzzH02fi3Xff5bZs2cJdunSJy83N5Z5++mlOqVRyO3fuFNpQP+G/ePo88DzyyCNcTk6O3XNSH+Hf/O53v+O0Wi23d+9eKz3Q2toqtJGrb4KcbgHAX//6V65v376cWq3mxowZw/3yyy/CdxMnTuQWL15s1X7jxo3cwIEDObVazQ0ePJj77rvvrL43Go3cSy+9xCUmJnIajYabMmUKV1BQcCN+CiERnjwTaWlpHACbvxUrVnAcx3Gtra3ctGnTuPj4eC44OJhLS0vjHn/8cTKI/AxPnolnnnlGaJuYmMjNmjWLO3nypNX5qJ/wfzzVHfn5+RwA7qeffrI5F/UT/s2ePXvs6gH+GVi8eDE3ceJEm2NuvfVWTq1WcxkZGdyaNWtszuvsGSN6Np4+ExMnTnTanuM4bv78+VxycjKnVqu53r17c/Pnz+cKCwtv7A8jROPpM/Hmm29ymZmZXEhICBcTE8NNmjSJ2717t815qZ/wT8TojYaGBi40NJT7+9//bvec1Ef4N/aeBwBW9oFcfRMKjuM4n4XREQRBEARBEARBEARBEIQMoZxuBEEQBEEQBEEQBEEQBCEx5HQjCIIgCIIgCIIgCIIgCIkhpxtBEARBEARBEARBEARBSAw53QiCIAiCIAiCIAiCIAhCYsjpRhAEQRAEQRAEQRAEQRASQ043giAIgiAIgiAIgiAIgpAYcroRBEEQBEEQBEEQBEEQhMSQ040gCIIgCIIgCIIgCILosezfvx9z5sxBSkoKFAoFtmzZ4tPrpaenQ6FQ2Pw99dRTHp2HnG4EQRAEQRCE26Snp+O999674dddsmSJYPC6a2hbGswNDQ0+vT+CIAiCIHxHS0sLhg8fjlWrVt2Q6x07dgwVFRXC344dOwAADz74oEfnIacbQRAEQRDEDcTerKnl3yuvvHKzbxEAsHbtWkRHR9t8fuzYMTzxxBM3/oYAzJgxAxUVFZg5c6Zb7Y8dO4ZNmzb5+K4IgiAIgvA1M2fOxGuvvYb77rvP7vcdHR14/vnn0bt3b4SHhyMnJwd79+4Vfb34+HgkJSUJf9u2bUNmZiYmTpzo0XmCRN8BQRAEQRAE4TEVFRXC9oYNG/Dyyy+joKBA+CwiIkLY5jgOBoMBQUE9x2SLj4+/adfWaDRISkpyu318fDxiYmJ8eEcEQRAEQfQEli1bhgsXLmD9+vVISUnB5s2bMWPGDOTm5mLAgAFenbuzsxP/+te/8Oyzz0KhUHh0LEW6EQRBEARB3EAsZ021Wi0UCoWwn5+fj8jISPzwww+47bbboNFocODAARQVFWHu3LlITExEREQERo8ejZ07d1qdt6OjA3/605+QmpoKjUaD/v37Y/Xq1cL3586dw8yZMxEREYHExEQsXLgQNTU1du9x7969WLp0KXQ6nU0EXvflpQqFAh999BHuuecehIWFYdCgQTh8+DAKCwsxadIkhIeHY9y4cSgqKrK6xtatWzFy5EiEhIQgIyMDK1euRFdXl0f/l52dnVi2bBmSk5MREhKCtLQ0vP766x6dgyAIgiAI/6asrAxr1qzBl19+iQkTJiAzMxPPP/88xo8fjzVr1nh9/i1btqChoQFLlizx+FhyuhEEQRAEQfQwli9fjjfeeAN5eXkYNmwYmpubMWvWLOzatQunTp3CjBkzMGfOHJSVlQnHLFq0COvWrcP777+PvLw8fPTRR0LUXENDA+666y6MGDECx48fx/bt21FVVYV58+bZvf64cePw3nvvISoqSshl8vzzzzu831dffRWLFi3C6dOnkZ2djd/85jd48skn8eKLL+L48ePgOA7Lli0T2v/8889YtGgRnn76aVy4cAEfffQR1q5di//5n//x6P/p/fffxzfffIONGzeioKAAn3/+OdLT0z06B0EQBEEQ/k1ubi4MBgMGDhyIiIgI4W/fvn3CpF9+fr7LFB/Lly+3e/7Vq1dj5syZSElJ8fjees5aBYIgCIIgCAIA8N///d+4++67hf2YmBgMHz5c2H/11VexefNmfPPNN1i2bBkuXryIjRs3YseOHZg6dSoAICMjQ2j/t7/9DSNGjMCf//xn4bOPP/4YqampuHjxIgYOHGh1fbVabRWF54qlS5cKDrw//elPGDt2LF566SVMnz4dAPD0009j6dKlQvuVK1di+fLlWLx4sXCvr776Kl544QWsWLHC7f+nsrIyDBgwAOPHj4dCoUBaWprbxxIEQRAEERg0NzdDpVLhxIkTUKlUVt/xE5AZGRnIy8tzep7Y2Fibz0pLS7Fz5058/fXXou6NnG4EQRAEQRA9jFGjRlntNzc345VXXsF3332HiooKdHV1oa2tTYh0O336NFQqlcPkvmfOnMGePXus8sXxFBUV2TjdPGXYsGHCdmJiIgBg6NChVp+1t7ejsbERUVFROHPmDA4ePGgV2WYwGNDe3o7W1laEhYW5dd0lS5bg7rvvRlZWFmbMmIF77rkH06ZN8+q3EARBEAThX4wYMQIGgwHV1dWYMGGC3TZqtRrZ2dken3vNmjVISEjA7NmzRd0bOd0IgiAIgiB6GOHh4Vb7zz//PHbs2IG3334b/fv3R2hoKB544AF0dnYCAEJDQ52er7m5GXPmzMGbb75p811ycrLX9xscHCxs8wmG7X1mNBqF+1m5ciXuv/9+m3OFhIS4fd2RI0eiuLgYP/zwA3bu3Il58+Zh6tSp+Oqrr0T9DoIgCIIgeibNzc0oLCwU9ouLi3H69GnExMRg4MCBWLBgARYtWoT/+7//w4gRI3D9+nXs2rULw4YNE+0wMxqNWLNmDRYvXiy6qBU53QiCIAiCIHo4Bw8exJIlS3DfffcBYIZnSUmJ8P3QoUNhNBqxb98+YXmpJSNHjsSmTZuQnp7uttGoVqthMBgkuX9791NQUID+/ft7fa6oqCjMnz8f8+fPxwMPPIAZM2agrq6OqpYSBEEQRABx/PhxTJ48Wdh/9tlnAQCLFy/G2rVrsWbNGrz22mt47rnnUF5ejri4ONx+++245557RF9z586dKCsrw29/+1vR5yCnG0EQBEEQRA9nwIAB+PrrrzFnzhwoFAq89NJLQtQYwCqKLl68GL/97W/x/vvvY/jw4SgtLUV1dTXmzZuHp556Cv/4xz/w8MMP44UXXkBMTAwKCwuxfv16/POf/7TJf8Kfs7m5Gbt27cLw4cMRFhbm9rJPV7z88su455570LdvXzzwwANQKpU4c+YMzp07h9dee83t87zzzjtITk7GiBEjoFQq8eWXXyIpKQnR0dGS3CdBEARBED2DSZMmgeM4h98HBwdj5cqVWLlypWTXnDZtmtNrugNVLyUIgiAIgujhvPPOO+jVqxfGjRuHOXPmYPr06Rg5cqRVmw8++AAPPPAA/v3f/x3Z2dl4/PHH0dLSAgBISUnBwYMHYTAYMG3aNAwdOhTPPPMMoqOjoVTaNwfHjRuHf/u3f8P8+fMRHx+Pt956S7LfM336dGzbtg0//fQTRo8ejdtvvx3vvvuux4UQIiMj8dZbb2HUqFEYPXo0SkpK8P333zv8TQRBEARBEDcSBeet244gCIIgCIIgfMySJUvQ0NCALVu2eHTc3r17MXnyZNTX11MEHEEQBEEQNxSaBiQIgiAIgiD8gm3btiEiIgLbtm1zq/3gwYMxc+ZMH98VQRAEQRCEfSjSjSAIgiAIgujxVFdXo7GxEQCruNq9wqs9SktLodfrAQAZGRm07JQgCIIgiBsKOd0IgiAIgiAIgiAIgiAIQmJouo8gCIIgCIIgCIIgCIIgJIacbgRBEARBEARBEARBEAQhMeR0IwiCIAiCIAiCIAiCIAiJIacbQRAEQRAEQRAEQRAEQUgMOd0IgiAIgiAIgiAIgiAIQmLI6UYQBEEQBEEQBEEQBEEQEkNON4IgCIIgCIIgCIIgCIKQGHK6EQRBEARBEARBEARBEITE/P/aBNIQhuznMAAAAABJRU5ErkJggg==\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - examples_38_0.png" } }, "output_type": "display_data" } ], "source": [ "trace_example_plt = trace_example[:200]\n", "trace_example_plt.real.plot(figsize=(15, 5), marker=\".\", label=\"I-quadrature\")\n", "trace_example_plt.imag.plot(marker=\".\", label=\"Q-quadrature\")\n", "plt.gca().legend()\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.18" } }, "nbformat": 4, "nbformat_minor": 5 }