{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "89871c4c", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:30.529469Z", "iopub.status.busy": "2023-09-26T17:43:30.529217Z", "iopub.status.idle": "2023-09-26T17:43:31.800877Z", "shell.execute_reply": "2023-09-26T17:43:31.800155Z" } }, "outputs": [], "source": [ "from pathlib import Path\n", "\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import xarray as xr\n", "from rich import pretty\n", "\n", "import quantify_core.data.dataset_attrs as dattrs\n", "from quantify_core.analysis.calibration import rotate_to_calibrated_axis\n", "from quantify_core.analysis.fitting_models import exp_decay_func\n", "from quantify_core.data import handling as dh\n", "from quantify_core.utilities import dataset_examples\n", "from quantify_core.utilities.examples_support import (\n", " mk_iq_shots,\n", " mk_trace_for_iq_shot,\n", " mk_trace_time,\n", " round_trip_dataset,\n", ")\n", "from quantify_core.utilities.inspect_utils import display_source_code\n", "from quantify_core.visualization.mpl_plotting import (\n", " plot_complex_points,\n", " plot_xr_complex,\n", " plot_xr_complex_on_plane,\n", ")\n", "\n", "pretty.install()\n", "\n", "dh.set_datadir(Path.home() / \"quantify-data\") # change me!" ] }, { "cell_type": "code", "execution_count": 2, "id": "adf11c78", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:31.803914Z", "iopub.status.busy": "2023-09-26T17:43:31.803445Z", "iopub.status.idle": "2023-09-26T17:43:31.863458Z", "shell.execute_reply": "2023-09-26T17:43:31.862838Z" } }, "outputs": [ { "data": { "text/html": [ "
def mk_two_qubit_chevron_dataset(**kwargs) -> xr.Dataset:\n",
" """\n",
" Generates a dataset that look similar to a two-qubit Chevron experiment.\n",
"\n",
" Parameters\n",
" ----------\n",
" **kwargs\n",
" Keyword arguments passed to :func:`~.mk_two_qubit_chevron_data`.\n",
"\n",
" Returns\n",
" -------\n",
" :\n",
" A mock Quantify dataset.\n",
" """\n",
" amp_values, time_values, pop_q0, pop_q1 = mk_two_qubit_chevron_data(**kwargs)\n",
"\n",
" dims_q0 = dims_q1 = ("repetitions", "main_dim")\n",
" pop_q0_attrs = mk_main_var_attrs(\n",
" long_name="Population Q0", unit="", has_repetitions=True\n",
" )\n",
" pop_q1_attrs = mk_main_var_attrs(\n",
" long_name="Population Q1", unit="", has_repetitions=True\n",
" )\n",
" data_vars = dict(\n",
" pop_q0=(dims_q0, pop_q0, pop_q0_attrs),\n",
" pop_q1=(dims_q1, pop_q1, pop_q1_attrs),\n",
" )\n",
"\n",
" dims_amp = dims_time = ("main_dim",)\n",
" amp_attrs = mk_main_coord_attrs(long_name="Amplitude", unit="V")\n",
" time_attrs = mk_main_coord_attrs(long_name="Time", unit="s")\n",
" coords = dict(\n",
" amp=(dims_amp, amp_values, amp_attrs),\n",
" time=(dims_time, time_values, time_attrs),\n",
" )\n",
"\n",
" dataset_attrs = mk_dataset_attrs()\n",
" dataset = xr.Dataset(data_vars=data_vars, coords=coords, attrs=dataset_attrs)\n",
"\n",
" return dataset\n",
"
<xarray.Dataset>\n", "Dimensions: (repetitions: 5, main_dim: 1200)\n", "Coordinates:\n", " amp (main_dim) float64 0.45 0.4534 0.4569 0.4603 ... 0.5431 0.5466 0.55\n", " time (main_dim) float64 0.0 0.0 0.0 0.0 0.0 ... 1e-07 1e-07 1e-07 1e-07\n", "Dimensions without coordinates: repetitions, main_dim\n", "Data variables:\n", " pop_q0 (repetitions, main_dim) float64 0.5 0.5 0.5 ... 0.4886 0.4818 0.5\n", " pop_q1 (repetitions, main_dim) float64 0.5 0.5 0.5 ... 0.5243 0.5371 0.5\n", "Attributes:\n", " tuid: 20230926-194331-870-ca305f\n", " dataset_name: \n", " dataset_state: None\n", " timestamp_start: None\n", " timestamp_end: None\n", " quantify_dataset_version: 2.0.0\n", " software_versions: {}\n", " relationships: []\n", " json_serialize_exclude: []
<xarray.Dataset>\n", "Dimensions: (repetitions: 5)\n", "Coordinates:\n", " * repetitions (repetitions) <U1 'A' 'B' 'C' 'D' 'E'\n", "Data variables:\n", " *empty*
<xarray.Dataset>\n", "Dimensions: (amp: 30, time: 40, repetitions: 5)\n", "Coordinates:\n", " * amp (amp) float64 0.45 0.4534 0.4569 0.4603 ... 0.5431 0.5466 0.55\n", " * time (time) float64 0.0 2.564e-09 5.128e-09 ... 9.744e-08 1e-07\n", " * repetitions (repetitions) <U1 'A' 'B' 'C' 'D' 'E'\n", "Data variables:\n", " pop_q0 (repetitions, amp, time) float64 0.5 0.5 0.5 ... 0.5 0.5 0.5\n", " pop_q1 (repetitions, amp, time) float64 0.5 0.5 0.5 ... 0.5 0.5 0.5\n", "Attributes:\n", " tuid: 20230926-194331-870-ca305f\n", " dataset_name: \n", " dataset_state: None\n", " timestamp_start: None\n", " timestamp_end: None\n", " quantify_dataset_version: 2.0.0\n", " software_versions: {}\n", " relationships: []\n", " json_serialize_exclude: []
def mk_iq_shots(\n",
" num_shots: int = 128,\n",
" sigmas: Union[Tuple[float], np.ndarray] = (0.1, 0.1),\n",
" centers: Union[Tuple[complex], np.ndarray] = (-0.2 + 0.65j, 0.7 + 4j),\n",
" probabilities: Union[Tuple[float], np.ndarray] = (0.4, 0.6),\n",
" seed: Union[int, None] = 112233,\n",
") -> np.ndarray:\n",
" """\n",
" Generates clusters of (I + 1j*Q) points with a Gaussian distribution with the\n",
" specified sigmas and centers according to the probabilities of each cluster\n",
"\n",
" .. admonition:: Examples\n",
" :class: dropdown\n",
"\n",
" .. include:: examples/utilities.examples_support.mk_iq_shots.rst.txt\n",
"\n",
" Parameters\n",
" ----------\n",
" num_shots\n",
" The number of shot to generate.\n",
" sigma\n",
" The sigma of the Gaussian distribution used for both real and imaginary parts.\n",
" centers\n",
" The center of each cluster on the imaginary plane.\n",
" probabilities\n",
" The probabilities of each cluster being randomly selected for each shot.\n",
" seed\n",
" Random number generator seed passed to ``numpy.random.default_rng``.\n",
" """\n",
" if not len(sigmas) == len(centers) == len(probabilities):\n",
" raise ValueError(\n",
" f"Incorrect input. sigmas={sigmas}, centers={centers} and "\n",
" f"probabilities={probabilities} must have the same length."\n",
" )\n",
"\n",
" rng = np.random.default_rng(seed=seed)\n",
"\n",
" cluster_indices = tuple(range(len(centers)))\n",
" choices = rng.choice(a=cluster_indices, size=num_shots, p=probabilities)\n",
"\n",
" shots = []\n",
" for idx in cluster_indices:\n",
" num_shots_this_cluster = np.sum(choices == idx)\n",
" i_data = rng.normal(\n",
" loc=centers[idx].real,\n",
" scale=sigmas[idx],\n",
" size=num_shots_this_cluster,\n",
" )\n",
" q_data = rng.normal(\n",
" loc=centers[idx].imag,\n",
" scale=sigmas[idx],\n",
" size=num_shots_this_cluster,\n",
" )\n",
" shots.append(i_data + 1j * q_data)\n",
" return np.concatenate(shots)\n",
"
def mk_trace_time(sampling_rate: float = 1e9, duration: float = 0.3e-6) -> np.ndarray:\n",
" """\n",
" Generates a :obj:`~numpy.arange` in which the entries correspond to time instants\n",
" up to ``duration`` seconds sampled according to ``sampling_rate`` in Hz.\n",
"\n",
" See :func:`~.mk_trace_for_iq_shot` for an usage example.\n",
"\n",
" Parameters\n",
" ----------\n",
" sampling_rate\n",
" The sampling rate in Hz.\n",
" duration\n",
" Total duration in seconds.\n",
"\n",
" Returns\n",
" -------\n",
" :\n",
" An array with the time instants.\n",
" """\n",
" trace_length = sampling_rate * duration\n",
" return np.arange(0, trace_length, 1) / sampling_rate\n",
"
def mk_trace_for_iq_shot(\n",
" iq_point: complex,\n",
" time_values: np.ndarray = mk_trace_time(),\n",
" intermediate_freq: float = 50e6,\n",
") -> np.ndarray:\n",
" """\n",
" Generates mock "traces" that a physical instrument would digitize for the readout of\n",
" a transmon qubit when using a down-converting IQ mixer.\n",
"\n",
" .. admonition:: Examples\n",
" :class: dropdown\n",
"\n",
" .. include:: /examples/utilities.examples_support.mk_trace_for_iq_shot.rst.txt\n",
"\n",
" Parameters\n",
" ----------\n",
" iq_point\n",
" A complex number representing a point on the IQ-plane.\n",
" time_values\n",
" The time instants at which the mock intermediate-frequency signal is sampled.\n",
" intermediate_freq\n",
" The intermediate frequency used in the down-conversion scheme.\n",
"\n",
" Returns\n",
" -------\n",
" :\n",
" An array of complex numbers.\n",
" """ # pylint: disable=line-too-long\n",
"\n",
" return iq_point * np.exp(2.0j * np.pi * intermediate_freq * time_values)\n",
"
def mk_t1_av_dataset(\n",
" t1_times: Optional[np.ndarray] = None,\n",
" probabilities: Optional[np.ndarray] = None,\n",
" **kwargs,\n",
") -> xr.Dataset:\n",
" """\n",
" Generates a dataset with mock data of a T1 experiment for a single qubit.\n",
"\n",
" Parameters\n",
" ----------\n",
" t1_times\n",
" Array with the T1 times corresponding to each probability in ``probabilities``.\n",
" probabilities\n",
" The probabilities of finding the qubit in the excited state.\n",
" **kwargs\n",
" Keyword arguments passed to\n",
" :func:`~quantify_core.utilities.examples_support.mk_iq_shots`.\n",
" """\n",
" if t1_times is None:\n",
" t1_times = np.linspace(0, 120e-6, 30)\n",
"\n",
" if probabilities is None:\n",
" probabilities = exp_decay_func(\n",
" t=t1_times, tau=50e-6, offset=0, n_factor=1, amplitude=1\n",
" )\n",
"\n",
" q0_iq_av = mk_shots_from_probabilities(probabilities, **kwargs).mean(axis=0)\n",
"\n",
" main_dims = ("main_dim",)\n",
" q0_attrs = mk_main_var_attrs(unit="V", long_name="Q0 IQ amplitude")\n",
" t1_time_attrs = mk_main_coord_attrs(unit="s", long_name="T1 Time")\n",
"\n",
" data_vars = dict(q0_iq_av=(main_dims, q0_iq_av, q0_attrs))\n",
" coords = dict(t1_time=(main_dims, t1_times, t1_time_attrs))\n",
"\n",
" dataset = xr.Dataset(\n",
" data_vars=data_vars,\n",
" coords=coords,\n",
" attrs=mk_dataset_attrs(),\n",
" )\n",
" return dataset\n",
"
<xarray.Dataset>\n", "Dimensions: (main_dim: 30)\n", "Coordinates:\n", " t1_time (main_dim) float64 0.0 4.138e-06 8.276e-06 ... 0.0001159 0.00012\n", "Dimensions without coordinates: main_dim\n", "Data variables:\n", " q0_iq_av (main_dim) complex128 (-0.19894114958423859+0.6515500138845804j...\n", "Attributes:\n", " tuid: 20230926-194334-633-ce41ca\n", " dataset_name: \n", " dataset_state: None\n", " timestamp_start: None\n", " timestamp_end: None\n", " quantify_dataset_version: 2.0.0\n", " software_versions: {}\n", " relationships: []\n", " json_serialize_exclude: []
((30,), dtype('complex128'))\n", "\n" ], "text/plain": [ "\u001b[1m(\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m30\u001b[0m,\u001b[1m)\u001b[0m, \u001b[1;35mdtype\u001b[0m\u001b[1m(\u001b[0m\u001b[32m'complex128'\u001b[0m\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dataset.q0_iq_av.shape, dataset.q0_iq_av.dtype" ] }, { "cell_type": "code", "execution_count": 17, "id": "01272ba3", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:34.681517Z", "iopub.status.busy": "2023-09-26T17:43:34.681304Z", "iopub.status.idle": "2023-09-26T17:43:34.693991Z", "shell.execute_reply": "2023-09-26T17:43:34.693411Z" } }, "outputs": [ { "data": { "text/html": [ "
<xarray.Dataset>\n", "Dimensions: (t1_time: 30)\n", "Coordinates:\n", " * t1_time (t1_time) float64 0.0 4.138e-06 8.276e-06 ... 0.0001159 0.00012\n", "Data variables:\n", " q0_iq_av (t1_time) complex128 (-0.19894114958423859+0.6515500138845804j)...\n", "Attributes:\n", " tuid: 20230926-194334-633-ce41ca\n", " dataset_name: \n", " dataset_state: None\n", " timestamp_start: None\n", " timestamp_end: None\n", " quantify_dataset_version: 2.0.0\n", " software_versions: {}\n", " relationships: []\n", " json_serialize_exclude: []
def plot_xr_complex(\n",
" var: xr.DataArray,\n",
" marker_scatter: str = "o",\n",
" label_real: str = "Real",\n",
" label_imag: str = "Imag",\n",
" cmap: str = "viridis",\n",
" c: np.ndarray = None,\n",
" kwargs_line: dict = None,\n",
" kwargs_scatter: dict = None,\n",
" title: str = "{} [{}]; shape = {}",\n",
" legend: bool = True,\n",
" ax: object = None,\n",
") -> Tuple[Figure, Axes]:\n",
" """Plots the real and imaginary parts of complex data. Points are colored by default\n",
" according to their order in the array.\n",
"\n",
" Parameters\n",
" ----------\n",
" var\n",
" 1D array of complex data.\n",
" marker_scatter\n",
" Marker used for the scatter plot.\n",
" label_real\n",
" Label for legend.\n",
" label_imag\n",
" Label for legend.\n",
" cmap\n",
" The colormap to use for coloring the points.\n",
" c\n",
" Color of the points. Defaults to an array of integers.\n",
" kwargs_line\n",
" Keyword arguments passed to :meth:`matplotlib.axes.Axes.plot`.\n",
" kwargs_scatter\n",
" Keyword arguments passed to :meth:`matplotlib.axes.Axes.scatter`.\n",
" title\n",
" Axes title. By default gets formatted with ``var.long_name``, ``var.name`` and\n",
" var.shape``.\n",
" legend\n",
" Calls :meth:`~matplotlib.axes.Axes.legend` if ``True``.\n",
" ax\n",
" The matplotlib axes. If ``None`` a new axes (and figure) is created.\n",
" """\n",
"\n",
" if ax is None:\n",
" _, ax = plt.subplots()\n",
"\n",
" if c is None:\n",
" c = np.arange(len(var))\n",
"\n",
" if kwargs_line is None:\n",
" kwargs_line = {}\n",
"\n",
" if kwargs_scatter is None:\n",
" kwargs_scatter = {}\n",
"\n",
" if "marker" not in kwargs_line:\n",
" kwargs_line["marker"] = ""\n",
"\n",
" var.real.plot(ax=ax, label=label_real, **kwargs_line)\n",
" var.imag.plot(ax=ax, label=label_imag, **kwargs_line)\n",
"\n",
" for vals in (var.real, var.imag):\n",
" ax.scatter(\n",
" next(iter(var.coords.values())).values,\n",
" vals,\n",
" marker=marker_scatter,\n",
" c=c,\n",
" cmap=cmap,\n",
" **kwargs_scatter,\n",
" )\n",
"\n",
" ax.set_title(title.format(var.long_name, var.name, var.shape))\n",
"\n",
" if legend:\n",
" ax.legend()\n",
"\n",
" return ax.get_figure(), ax\n",
"
def plot_xr_complex_on_plane(\n",
" var: xr.DataArray,\n",
" marker: str = "o",\n",
" label: str = "Data on imaginary plane",\n",
" cmap: str = "viridis",\n",
" c: np.ndarray = None,\n",
" xlabel: str = "Real{}{}{}",\n",
" ylabel: str = "Imag{}{}{}",\n",
" legend: bool = True,\n",
" ax: object = None,\n",
" **kwargs,\n",
") -> Tuple[Figure, Axes]:\n",
" """Plots complex data on the imaginary plane. Points are colored by default\n",
" according to their order in the array.\n",
"\n",
"\n",
" Parameters\n",
" ----------\n",
" var\n",
" 1D array of complex data.\n",
" marker\n",
" Marker used for the scatter plot.\n",
" label\n",
" Data label for the legend.\n",
" cmap\n",
" The colormap to use for coloring the points.\n",
" c\n",
" Color of the points. Defaults to an array of integers.\n",
" xlabel\n",
" Label o x axes.\n",
" ylabel\n",
" Label o y axes.\n",
" legend\n",
" Calls :meth:`~matplotlib.axes.Axes.legend` if ``True``.\n",
" ax\n",
" The matplotlib axes. If ``None`` a new axes (and figure) is created.\n",
" """\n",
"\n",
" if ax is None:\n",
" _, ax = plt.subplots()\n",
"\n",
" if c is None:\n",
" c = np.arange(0, len(var))\n",
"\n",
" ax.scatter(var.real, var.imag, marker=marker, label=label, c=c, cmap=cmap, **kwargs)\n",
"\n",
" unit_str = get_unit_from_attrs(var)\n",
" ax.set_xlabel(xlabel.format(" ", var.name, unit_str))\n",
" ax.set_ylabel(ylabel.format(" ", var.name, unit_str))\n",
"\n",
" if legend:\n",
" ax.legend()\n",
"\n",
" return ax.get_figure(), ax\n",
"
def mk_t1_av_with_cal_dataset(\n",
" t1_times: Optional[np.ndarray] = None,\n",
" probabilities: Optional[np.ndarray] = None,\n",
" **kwargs,\n",
") -> xr.Dataset:\n",
" """\n",
" Generates a dataset with mock data of a T1 experiment for a single qubit including\n",
" calibration points for the ground and excited states.\n",
"\n",
" Parameters\n",
" ----------\n",
" t1_times\n",
" Array with the T1 times corresponding to each probability in ``probabilities``.\n",
" probabilities\n",
" The probabilities of finding the qubit in the excited state.\n",
" **kwargs\n",
" Keyword arguments passed to\n",
" :func:`~quantify_core.utilities.examples_support.mk_iq_shots`.\n",
" """\n",
" # reuse previous dataset\n",
" dataset_av = mk_t1_av_dataset(t1_times, probabilities, **kwargs)\n",
"\n",
" # generate mock calibration data for the ground and excited states\n",
" q0_iq_av_cal = mk_shots_from_probabilities([0, 1], **kwargs).mean(axis=0)\n",
"\n",
" secondary_dims = ("cal_dim",)\n",
" q0_cal_attrs = mk_secondary_var_attrs(unit="V", long_name="Q0 IQ Calibration")\n",
" cal_attrs = mk_secondary_coord_attrs(unit="", long_name="Q0 state")\n",
"\n",
" relationships = [\n",
" dattrs.QDatasetIntraRelationship(\n",
" item_name=dataset_av.q0_iq_av.name, # name of a variable in the dataset\n",
" relation_type="calibration",\n",
" related_names=["q0_iq_av_cal"], # the secondary variable in the dataset\n",
" ).to_dict()\n",
" ]\n",
"\n",
" data_vars = dict(\n",
" q0_iq_av=dataset_av.q0_iq_av, # reuse from the other dataset\n",
" q0_iq_av_cal=(secondary_dims, q0_iq_av_cal, q0_cal_attrs),\n",
" )\n",
" coords = dict(\n",
" t1_time=dataset_av.t1_time, # reuse from the other dataset\n",
" cal=(secondary_dims, ["|0>", "|1>"], cal_attrs), # coords can be strings\n",
" )\n",
"\n",
" dataset = xr.Dataset(\n",
" data_vars=data_vars,\n",
" coords=coords,\n",
" attrs=mk_dataset_attrs(relationships=relationships), # relationships added here\n",
" )\n",
"\n",
" return dataset\n",
"
<xarray.Dataset>\n", "Dimensions: (main_dim: 30, cal_dim: 2)\n", "Coordinates:\n", " t1_time (main_dim) float64 0.0 4.138e-06 ... 0.0001159 0.00012\n", " cal (cal_dim) <U3 '|0>' '|1>'\n", "Dimensions without coordinates: main_dim, cal_dim\n", "Data variables:\n", " q0_iq_av (main_dim) complex128 (-0.19894114958423859+0.6515500138845...\n", " q0_iq_av_cal (cal_dim) complex128 (0.7010588504157614-0.3984499861154196...\n", "Attributes:\n", " tuid: 20230926-194335-122-ca5251\n", " dataset_name: \n", " dataset_state: None\n", " timestamp_start: None\n", " timestamp_end: None\n", " quantify_dataset_version: 2.0.0\n", " software_versions: {}\n", " relationships: [{'item_name': 'q0_iq_av', 'relation_type': 'c...\n", " json_serialize_exclude: []
(['main_dim'], ['cal_dim'])\n", "\n" ], "text/plain": [ "\u001b[1m(\u001b[0m\u001b[1m[\u001b[0m\u001b[32m'main_dim'\u001b[0m\u001b[1m]\u001b[0m, \u001b[1m[\u001b[0m\u001b[32m'cal_dim'\u001b[0m\u001b[1m]\u001b[0m\u001b[1m)\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dattrs.get_main_dims(dataset), dattrs.get_secondary_dims(dataset)" ] }, { "cell_type": "code", "execution_count": 23, "id": "3d79e14b", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:35.188838Z", "iopub.status.busy": "2023-09-26T17:43:35.188640Z", "iopub.status.idle": "2023-09-26T17:43:35.194080Z", "shell.execute_reply": "2023-09-26T17:43:35.193517Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "[\n", " {\n", " 'item_name': 'q0_iq_av',\n", " 'relation_type': 'calibration',\n", " 'related_names': ['q0_iq_av_cal'],\n", " 'relation_metadata': {}\n", " }\n", "]\n", "\n" ], "text/plain": [ "\n", "\u001b[1m[\u001b[0m\n", " \u001b[1m{\u001b[0m\n", " \u001b[32m'item_name'\u001b[0m: \u001b[32m'q0_iq_av'\u001b[0m,\n", " \u001b[32m'relation_type'\u001b[0m: \u001b[32m'calibration'\u001b[0m,\n", " \u001b[32m'related_names'\u001b[0m: \u001b[1m[\u001b[0m\u001b[32m'q0_iq_av_cal'\u001b[0m\u001b[1m]\u001b[0m,\n", " \u001b[32m'relation_metadata'\u001b[0m: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", " \u001b[1m}\u001b[0m\n", "\u001b[1m]\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dataset.relationships" ] }, { "cell_type": "code", "execution_count": 24, "id": "f0a4d6cf", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:35.196276Z", "iopub.status.busy": "2023-09-26T17:43:35.196078Z", "iopub.status.idle": "2023-09-26T17:43:35.213056Z", "shell.execute_reply": "2023-09-26T17:43:35.212522Z" } }, "outputs": [ { "data": { "text/html": [ "
<xarray.Dataset>\n", "Dimensions: (t1_time: 30, cal: 2)\n", "Coordinates:\n", " * t1_time (t1_time) float64 0.0 4.138e-06 ... 0.0001159 0.00012\n", " * cal (cal) <U3 '|0>' '|1>'\n", "Data variables:\n", " q0_iq_av (t1_time) complex128 (-0.19894114958423859+0.65155001388458...\n", " q0_iq_av_cal (cal) complex128 (0.7010588504157614-0.3984499861154196j) (...\n", "Attributes:\n", " tuid: 20230926-194335-122-ca5251\n", " dataset_name: \n", " dataset_state: None\n", " timestamp_start: None\n", " timestamp_end: None\n", " quantify_dataset_version: 2.0.0\n", " software_versions: {}\n", " relationships: [{'item_name': 'q0_iq_av', 'relation_type': 'c...\n", " json_serialize_exclude: []
def mk_t1_shots_dataset(\n",
" t1_times: Optional[np.ndarray] = None,\n",
" probabilities: Optional[np.ndarray] = None,\n",
" **kwargs,\n",
") -> xr.Dataset:\n",
" """\n",
" Generates a dataset with mock data of a T1 experiment for a single qubit including\n",
" calibration points for the ground and excited states, including all the individual\n",
" shots (repeated qubit state measurement for the same exact experiment).\n",
"\n",
" Parameters\n",
" ----------\n",
" t1_times\n",
" Array with the T1 times corresponding to each probability in ``probabilities``.\n",
" probabilities\n",
" The probabilities of finding the qubit in the excited state.\n",
" **kwargs\n",
" Keyword arguments passed to\n",
" :func:`~quantify_core.utilities.examples_support.mk_iq_shots`.\n",
" """\n",
" # reuse previous dataset\n",
" dataset_av_with_cal = mk_t1_av_with_cal_dataset(t1_times, probabilities, **kwargs)\n",
" if probabilities is None:\n",
" probabilities = dataset_av_with_cal.q0_iq_av.values\n",
" probabilities = rotate_to_calibrated_axis(\n",
" probabilities, *dataset_av_with_cal.q0_iq_av_cal.values\n",
" ).real\n",
" # generate mock data containing all the shots,\n",
" # NB not the same data that was used for the average above, but this is just a mock\n",
" q0_iq_shots = mk_shots_from_probabilities(probabilities, **kwargs)\n",
" q0_iq_shots_cal = mk_shots_from_probabilities([0, 1], **kwargs)\n",
"\n",
" # the xarray dimensions will now require an outer repetitions dimension\n",
" secondary_dims_rep = ("repetitions", "cal_dim")\n",
" main_dims_rep = ("repetitions", "main_dim")\n",
"\n",
" relationships = [\n",
" dattrs.QDatasetIntraRelationship(\n",
" item_name=dataset_av_with_cal.q0_iq_av.name,\n",
" relation_type="calibration",\n",
" related_names=[dataset_av_with_cal.q0_iq_av_cal.name],\n",
" ).to_dict(),\n",
" dattrs.QDatasetIntraRelationship(\n",
" item_name="q0_iq_shots",\n",
" relation_type="calibration",\n",
" related_names=["q0_iq_cal_shots"],\n",
" ).to_dict(),\n",
" # suggestion of a custom relationship\n",
" dattrs.QDatasetIntraRelationship(\n",
" item_name=dataset_av_with_cal.q0_iq_av.name,\n",
" relation_type="individual_shots",\n",
" related_names=["q0_iq_shots"],\n",
" ).to_dict(),\n",
" ]\n",
"\n",
" # Flag that these variables use a repetitions dimension\n",
" q0_attrs_rep = dict(dataset_av_with_cal.q0_iq_av.attrs)\n",
" q0_attrs_rep["has_repetitions"] = True\n",
" q0_cal_attrs_rep = dict(dataset_av_with_cal.q0_iq_av_cal.attrs)\n",
" q0_cal_attrs_rep["has_repetitions"] = True\n",
"\n",
" data_vars = dict(\n",
" # variables that are the same as in the previous dataset, and are now redundant,\n",
" # however, we include them to showcase the dataset flexibility\n",
" q0_iq_av=dataset_av_with_cal.q0_iq_av,\n",
" q0_iq_av_cal=dataset_av_with_cal.q0_iq_av_cal,\n",
" # variables that contain all the individual shots\n",
" q0_iq_shots=(main_dims_rep, q0_iq_shots, q0_attrs_rep),\n",
" q0_iq_shots_cal=(secondary_dims_rep, q0_iq_shots_cal, q0_cal_attrs_rep),\n",
" )\n",
"\n",
" dataset = xr.Dataset(\n",
" data_vars=data_vars,\n",
" coords=dataset_av_with_cal.coords, # same coordinates as in previous dataset\n",
" attrs=mk_dataset_attrs(relationships=relationships), # relationships added here\n",
" )\n",
"\n",
" return dataset\n",
"
<xarray.Dataset>\n", "Dimensions: (main_dim: 30, cal_dim: 2, repetitions: 256)\n", "Coordinates:\n", " t1_time (main_dim) float64 0.0 4.138e-06 ... 0.0001159 0.00012\n", " cal (cal_dim) <U3 '|0>' '|1>'\n", "Dimensions without coordinates: main_dim, cal_dim, repetitions\n", "Data variables:\n", " q0_iq_av (main_dim) complex128 (-0.19894114958423859+0.6515500138...\n", " q0_iq_av_cal (cal_dim) complex128 (0.7010588504157614-0.3984499861154...\n", " q0_iq_shots (repetitions, main_dim) complex128 (-0.289836545355741+0...\n", " q0_iq_shots_cal (repetitions, cal_dim) complex128 (0.610163454644259-0.4...\n", "Attributes:\n", " tuid: 20230926-194335-919-29ea05\n", " dataset_name: \n", " dataset_state: None\n", " timestamp_start: None\n", " timestamp_end: None\n", " quantify_dataset_version: 2.0.0\n", " software_versions: {}\n", " relationships: [{'item_name': 'q0_iq_av', 'relation_type': 'c...\n", " json_serialize_exclude: []
<xarray.Dataset>\n", "Dimensions: (t1_time: 30, cal: 2, repetitions: 256)\n", "Coordinates:\n", " * t1_time (t1_time) float64 0.0 4.138e-06 ... 0.0001159 0.00012\n", " * cal (cal) <U3 '|0>' '|1>'\n", "Dimensions without coordinates: repetitions\n", "Data variables:\n", " q0_iq_av (t1_time) complex128 (-0.19894114958423859+0.65155001388...\n", " q0_iq_av_cal (cal) complex128 (0.7010588504157614-0.3984499861154196j...\n", " q0_iq_shots (repetitions, t1_time) complex128 (-0.289836545355741+0....\n", " q0_iq_shots_cal (repetitions, cal) complex128 (0.610163454644259-0.41025...\n", "Attributes:\n", " tuid: 20230926-194335-919-29ea05\n", " dataset_name: \n", " dataset_state: None\n", " timestamp_start: None\n", " timestamp_end: None\n", " quantify_dataset_version: 2.0.0\n", " software_versions: {}\n", " relationships: [{'item_name': 'q0_iq_av', 'relation_type': 'c...\n", " json_serialize_exclude: []
def mk_t1_traces_dataset(\n",
" t1_times: Optional[np.ndarray] = None,\n",
" probabilities: Optional[np.ndarray] = None,\n",
" **kwargs,\n",
") -> xr.Dataset:\n",
" """\n",
" Generates a dataset with mock data of a T1 experiment for a single qubit including\n",
" calibration points for the ground and excited states, including all the individual\n",
" shots (repeated qubit state measurement for the same exact experiment); and\n",
" including all the signals that had to be digitized to obtain the rest of the data.\n",
"\n",
" Parameters\n",
" ----------\n",
" t1_times\n",
" Array with the T1 times corresponding to each probability in ``probabilities``.\n",
" probabilities\n",
" The probabilities of finding the qubit in the excited state.\n",
" **kwargs\n",
" Keyword arguments passed to\n",
" :func:`~quantify_core.utilities.examples_support.mk_iq_shots`.\n",
" """\n",
" dataset_shots = mk_t1_shots_dataset(t1_times, probabilities, **kwargs)\n",
" shots = dataset_shots.q0_iq_shots.values\n",
" shots_cal = dataset_shots.q0_iq_shots_cal.values\n",
"\n",
" # generate mock traces for all shots\n",
" q0_traces = np.array(tuple(map(mk_trace_for_iq_shot, shots.flatten())))\n",
" q0_traces = q0_traces.reshape(*shots.shape, q0_traces.shape[-1])\n",
" # generate mock traces for calibration points shots\n",
" q0_traces_cal = np.array(tuple(map(mk_trace_for_iq_shot, shots_cal.flatten())))\n",
" q0_traces_cal = q0_traces_cal.reshape(*shots_cal.shape, q0_traces_cal.shape[-1])\n",
"\n",
" traces_dims = ("repetitions", "main_dim", "trace_dim")\n",
" traces_cal_dims = ("repetitions", "cal_dim", "trace_dim")\n",
" trace_times = mk_trace_time()\n",
" trace_attrs = mk_main_coord_attrs(long_name="Trace time", unit="s")\n",
"\n",
" relationships_with_traces = dataset_shots.relationships + [\n",
" dattrs.QDatasetIntraRelationship(\n",
" item_name="q0_traces",\n",
" related_names=["q0_traces_cal"],\n",
" relation_type="calibration",\n",
" ).to_dict(),\n",
" ]\n",
"\n",
" data_vars = dict(\n",
" q0_iq_av=dataset_shots.q0_iq_av,\n",
" q0_iq_av_cal=dataset_shots.q0_iq_av_cal,\n",
" q0_iq_shots=dataset_shots.q0_iq_shots,\n",
" q0_iq_shots_cal=dataset_shots.q0_iq_shots_cal,\n",
" q0_traces=(traces_dims, q0_traces, dataset_shots.q0_iq_shots.attrs),\n",
" q0_traces_cal=(\n",
" traces_cal_dims,\n",
" q0_traces_cal,\n",
" dataset_shots.q0_iq_shots_cal.attrs,\n",
" ),\n",
" )\n",
" coords = dict(\n",
" t1_time=dataset_shots.t1_time,\n",
" cal=dataset_shots.cal,\n",
" trace_time=(("trace_dim",), trace_times, trace_attrs),\n",
" )\n",
"\n",
" dataset = xr.Dataset(\n",
" data_vars=data_vars,\n",
" coords=coords,\n",
" attrs=mk_dataset_attrs(relationships=relationships_with_traces),\n",
" )\n",
"\n",
" return dataset\n",
"
<xarray.Dataset>\n", "Dimensions: (main_dim: 30, cal_dim: 2, repetitions: 256, trace_dim: 300)\n", "Coordinates:\n", " t1_time (main_dim) float64 0.0 4.138e-06 ... 0.0001159 0.00012\n", " cal (cal_dim) <U3 '|0>' '|1>'\n", " trace_time (trace_dim) float64 0.0 1e-09 2e-09 ... 2.98e-07 2.99e-07\n", "Dimensions without coordinates: main_dim, cal_dim, repetitions, trace_dim\n", "Data variables:\n", " q0_iq_av (main_dim) complex128 (-0.19894114958423859+0.6515500138...\n", " q0_iq_av_cal (cal_dim) complex128 (0.7010588504157614-0.3984499861154...\n", " q0_iq_shots (repetitions, main_dim) complex128 (-0.289836545355741+0...\n", " q0_iq_shots_cal (repetitions, cal_dim) complex128 (0.610163454644259-0.4...\n", " q0_traces (repetitions, main_dim, trace_dim) complex128 (-0.289836...\n", " q0_traces_cal (repetitions, cal_dim, trace_dim) complex128 (0.61016345...\n", "Attributes:\n", " tuid: 20230926-194337-462-bb8342\n", " dataset_name: \n", " dataset_state: None\n", " timestamp_start: None\n", " timestamp_end: None\n", " quantify_dataset_version: 2.0.0\n", " software_versions: {}\n", " relationships: [{'item_name': 'q0_iq_av', 'relation_type': 'c...\n", " json_serialize_exclude: []
((256, 30, 300), (256, 2, 300))\n", "\n" ], "text/plain": [ "\u001b[1m(\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m256\u001b[0m, \u001b[1;36m30\u001b[0m, \u001b[1;36m300\u001b[0m\u001b[1m)\u001b[0m, \u001b[1m(\u001b[0m\u001b[1;36m256\u001b[0m, \u001b[1;36m2\u001b[0m, \u001b[1;36m300\u001b[0m\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dataset.q0_traces.shape, dataset.q0_traces_cal.shape" ] }, { "cell_type": "code", "execution_count": 36, "id": "37367434", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:37.643639Z", "iopub.status.busy": "2023-09-26T17:43:37.643435Z", "iopub.status.idle": "2023-09-26T17:43:37.692925Z", "shell.execute_reply": "2023-09-26T17:43:37.692251Z" } }, "outputs": [ { "data": { "text/html": [ "
<xarray.Dataset>\n", "Dimensions: (t1_time: 30, cal: 2, trace_time: 300, repetitions: 256)\n", "Coordinates:\n", " * t1_time (t1_time) float64 0.0 4.138e-06 ... 0.0001159 0.00012\n", " * cal (cal) <U3 '|0>' '|1>'\n", " * trace_time (trace_time) float64 0.0 1e-09 2e-09 ... 2.98e-07 2.99e-07\n", "Dimensions without coordinates: repetitions\n", "Data variables:\n", " q0_iq_av (t1_time) complex128 (-0.19894114958423859+0.65155001388...\n", " q0_iq_av_cal (cal) complex128 (0.7010588504157614-0.3984499861154196j...\n", " q0_iq_shots (repetitions, t1_time) complex128 (-0.289836545355741+0....\n", " q0_iq_shots_cal (repetitions, cal) complex128 (0.610163454644259-0.41025...\n", " q0_traces (repetitions, t1_time, trace_time) complex128 (-0.289836...\n", " q0_traces_cal (repetitions, cal, trace_time) complex128 (0.61016345464...\n", "Attributes:\n", " tuid: 20230926-194337-462-bb8342\n", " dataset_name: \n", " dataset_state: None\n", " timestamp_start: None\n", " timestamp_end: None\n", " quantify_dataset_version: 2.0.0\n", " software_versions: {}\n", " relationships: [{'item_name': 'q0_iq_av', 'relation_type': 'c...\n", " json_serialize_exclude: []
((256, 30, 300), ('repetitions', 't1_time', 'trace_time'))\n", "\n" ], "text/plain": [ "\u001b[1m(\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m256\u001b[0m, \u001b[1;36m30\u001b[0m, \u001b[1;36m300\u001b[0m\u001b[1m)\u001b[0m, \u001b[1m(\u001b[0m\u001b[32m'repetitions'\u001b[0m, \u001b[32m't1_time'\u001b[0m, \u001b[32m'trace_time'\u001b[0m\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dataset_gridded.q0_traces.shape, dataset_gridded.q0_traces.dims" ] }, { "cell_type": "code", "execution_count": 38, "id": "2cc96793", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:37.702844Z", "iopub.status.busy": "2023-09-26T17:43:37.702641Z", "iopub.status.idle": "2023-09-26T17:43:37.708682Z", "shell.execute_reply": "2023-09-26T17:43:37.708217Z" } }, "outputs": [ { "data": { "text/html": [ "
((300,), dtype('complex128'))\n", "\n" ], "text/plain": [ "\u001b[1m(\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m300\u001b[0m,\u001b[1m)\u001b[0m, \u001b[1;35mdtype\u001b[0m\u001b[1m(\u001b[0m\u001b[32m'complex128'\u001b[0m\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "trace_example = dataset_gridded.q0_traces.sel(\n", " repetitions=123, t1_time=dataset_gridded.t1_time[-1]\n", ")\n", "trace_example.shape, trace_example.dtype" ] }, { "cell_type": "code", "execution_count": 39, "id": "4bf20828", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:37.710786Z", "iopub.status.busy": "2023-09-26T17:43:37.710589Z", "iopub.status.idle": "2023-09-26T17:43:37.928089Z", "shell.execute_reply": "2023-09-26T17:43:37.927297Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAHWCAYAAABDrf/vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gkVbm43+rume7JeWZnZ/OyS9olw5KTCCqgiCheRRAVE6iI3iuoiF4U9IoIPwNc8WLCgFkMF/GCiAQBCZKXZTO7k3Psnu6u3x+nq6ond6hzpqr7vM+zz3T1dnf17jfnfN/5omGapolGo9FoNBqNRqPRaDQajUajcY3AYn8BjUaj0Wg0Go1Go9FoNBqNptDQTjeNRqPRaDQajUaj0Wg0Go3GZbTTTaPRaDQajUaj0Wg0Go1Go3EZ7XTTaDQajUaj0Wg0Go1Go9FoXEY73TQajUaj0Wg0Go1Go9FoNBqX0U43jUaj0Wg0Go1Go9FoNBqNxmW0002j0Wg0Go1Go9FoNBqNRqNxGe1002g0Go1Go9FoNBqNRqPRaFxGO900Go1Go9FoNBqNRqPRaDQal9FON41Go9FoNJo8+f73v49hGOzYsWOxv4pmkbB+B6w/PT09Wb2/trbWfu9ll10m6VtqNBqNRqNRiXa6aTQajUaj8T0PP/wwn//85xkYGJjxd/fccw/vfe972bBhA8FgkFWrVuV8n+uuu47f/va3Ob/fzzz88MMcf/zxlJeXs2TJEj760Y8yMjKS8fv/53/+h/33359IJMK6dev4xje+Mevr9uzZw9ve9jZqa2uprq7mTW96E9u2bcv5Mzdv3szHP/5xjj32WCKRyJzO0d7eXr761a9y4okn0tTURG1tLUcffTR33nlnxv9GgK9//ev86Ec/oqqqKqv3fec73+FHP/pRVu/RaDQajUbjbbTTTaPRaDQaje95+OGH+cIXvjCr0+0nP/kJP/nJT6ipqWHp0qV53Wcup9u73vUuxsfHWblyZV6f71WefvppXvOa1zA2NsaNN97I+973Pr7zne/w1re+NaP3//d//zfve9/7OPDAA/nGN77BMcccw0c/+lG+8pWvTHndyMgIp5xyCn/729/49Kc/zRe+8AWeeuopTjrpJHp7e3P6zEceeYT/9//+H8PDw+y///5zfsdHHnmEz3zmM9TX1/PZz36WL33pS5SXl/P2t7+da665JsP/KTjnnHO44IILCIfDGb8H4G1vexsXXHBBVu/RaDQajUbjbUKL/QU0Go1Go9FoZHLddddx2223UVJSwllnncVzzz3n+j2CwSDBYND1z/UKn/70p6mrq+P++++nuroagFWrVnHJJZdwzz33cPrpp8/53vHxcT7zmc9w5pln8stf/hKASy65hGQyybXXXsv73/9+6urqAPj2t7/Nli1beOyxxzjyyCMBeP3rX8+GDRv42te+xnXXXZf1Z77xjW9kYGCAqqoqbrjhBp5++ulZv+eBBx7Ili1bpjhOP/zhD3Paaafxla98hf/4j/+goqIij/9FjUaj0Wg0xYbOdNNoNBqNRuNrPv/5z/Pv//7vAKxevdrui2WVEC5dupSSkpK872MYBqOjo/zgBz+w7/Hud78bmL2n26pVqzjrrLO4//77OeKIIygrK2Pjxo3cf//9APz6179m48aNRCIRDj/8cJ566qkZ93zppZc477zzqK+vJxKJcMQRR3DXXXfl/W/JhqGhIf7yl79wwQUX2A43gAsvvJDKykp+/vOfz/v+v/71r/T29vLhD394yvOXXnopo6Oj/PGPf7Sf++Uvf8mRRx5pO9wA9ttvP17zmtdMuU82n1lfX59Rqefq1atnZCoahsE555xDNBqds8Q1E7Zs2cJb3vIWlixZQiQSYdmyZbz97W9ncHAw58/UaDQajUbjfXSmm0aj0Wg0Gl9z7rnn8vLLL/PTn/6Ur3/96zQ2NgLQ1NTk6n1+9KMf8b73vY+jjjqK97///QCsXbt23ve88sorvOMd7+ADH/gAF1xwATfccANnn302t956K5/+9Kdtp9H111/P2972NjZv3kwgIGKizz//PMcddxxtbW1ceeWVVFRU8POf/5xzzjmHX/3qV7z5zW+e9979/f0kEokF/13l5eWUl5fP+ffPPvss8XicI444YsrzpaWlHHLIIbM6C9Ox/n76+w8//HACgQBPPfUUF1xwAclkkmeeeYb3vOc9Mz7jqKOO4p577mF4eJiqqqqMP9MNOjo6AOzfq2yJxWKcccYZRKNRPvKRj7BkyRL27NnDH/7wBwYGBqipqXHle2o0Go1Go/Ee2umm0Wg0Go3G1xx00EEcdthh/PSnP+Wcc87Ja1DCfFxwwQV88IMfZM2aNRk7dDZv3szDDz/MMcccA8ABBxzAGWecwSWXXMJLL73EihUrAKirq+MDH/gADzzwACeffDIAH/vYx1ixYgWPP/643R/swx/+MMcffzyf+tSnFnS6HXrooezcuXPB73jNNdfw+c9/fs6/b29vB6C1tXXG37W2tvL3v/993s9vb28nGAzS3Nw85fnS0lIaGhrYu3cvAH19fUSj0TnvA7B371723XffjD8zX/r6+vjud7/LCSecMOv3yoQXXniB7du384tf/ILzzjvPfv5zn/ucK99Ro9FoNBqNd9FON41Go9FoNBpJHHDAAbbDDWDTpk0AnHrqqbbDLf35bdu2cfLJJ9PX18d9993Hf/7nfzI8PMzw8LD92jPOOINrrrmGPXv20NbWNue9f/zjHzM+Pr7gd1yzZs28f299xmyDASKRyIL3GB8fp7S0dNa/S3//QvdJf02mn5kPyWSSd77znQwMDMw5aTUTrEy2P//5z7zhDW+YN6tQo9FoNBpNYaGdbhqNRqPRaDSSSHesgeOAWb58+azP9/f3A6Is1TRNrr76aq6++upZP7urq2tep9txxx2X8/dOp6ysDIBoNDrj7yYmJuy/n+/9sVhs1r9Lf/9C90l/TaafmQ8f+chHuPvuu/nhD3/IwQcfnPPnrF69miuuuIIbb7yRH//4x5xwwgm88Y1v5IILLtClpRqNRqPRFDja6abRaDQajUYjibkmms71vGmagMiyAvjkJz/JGWecMetr99lnn3nv3d3dnVFPt8rKSiorK+f8e6us0iozTae9vZ2lS5fO+/mtra0kEgm6urqmlIPGYjF6e3vt99fX1xMOh+e8D2C/NtPPzJUvfOELfPvb3+bLX/4y73rXu/L6LICvfe1rvPvd7+Z3v/sd99xzDx/96Ee5/vrr+cc//sGyZcvy/nyNRqPRaDTeRE8v1Wg0Go1G43sMwyio+1glnyUlJZx22mmz/lloIueRRx5Ja2vrgn9uuOGGeT9nw4YNhEIh/vnPf055PhaL8fTTT3PIIYfM+37r76e//5///CfJZNL++0AgwMaNG2e8DuDRRx9lzZo19r8508/MhW9961t8/vOf5/LLL+dTn/pUzp8znY0bN/LZz36WBx54gL///e/s2bOHW2+91bXP12g0Go1G4z10pptGo9FoNBrfU1FRAcDAwID0+8i+B0BzczMnn3wy//3f/81HPvKRGU38u7u7F5zO6lZPt5qaGk477TTuuOMOrr76atvx9aMf/YiRkRHe+ta32q8dGxtj165dNDY22tM+Tz31VOrr67nlllt4wxveYL/2lltuoby8nDPPPNN+7rzzzuPKK6/kn//8pz2ZdPPmzdx333188pOftF+XzWdmw5133slHP/pR3vnOd3LjjTfm9BnTGRoaory8nFDIMbs3btxIIBCYtZRWo9FoNBpN4aCdbhqNRqPRaHzP4YcfDsBnPvMZ3v72t1NSUsLZZ59NRUUFzzzzDHfddRcgeqUNDg7yxS9+EYCDDz6Ys88+O6v7/N///R833ngjS5cuZfXq1fYQBLf51re+xfHHH8/GjRu55JJLWLNmDZ2dnTzyyCO8+uqr/Otf/5r3/W71dAP40pe+xLHHHstJJ53E+9//fl599VW+9rWvcfrpp/O6173Oft1jjz3GKaecMmUiallZGddeey2XXnopb33rWznjjDP4+9//zh133MGXvvQl6uvr7fd/+MMf5rbbbuPMM8/kk5/8JCUlJdx44420tLTwiU98wn5dNp85ODhoD0J46KGHAPjmN79JbW0ttbW1XHbZZfZ3v/DCC2loaOA1r3kNP/7xj6f8Hxx77LELOihn47777uOyyy7jrW99K+vXrycej/OjH/2IYDDIW97ylqw/T6PRaDQajY8wNRqNRqPRaAqAa6+91mxrazMDgYAJmNu3bzdN0zS/973vmcCsfy666KKs7vHSSy+ZJ554ollWVjbl/dY9rHuapmmuXLnSPPPMM2d8BmBeeumlU57bvn27CZhf/epXpzy/detW88ILLzSXLFlilpSUmG1tbeZZZ51l/vKXv8zqe7vB3//+d/PYY481I5GI2dTUZF566aXm0NDQlNf89a9/NQHzmmuumfH+73znO+a+++5rlpaWmmvXrjW//vWvm8lkcsbrdu/ebZ533nlmdXW1WVlZaZ511lnmli1bZv1OmXym9X8725+VK1far5vv9wQwv/e97837/zPb74Bpmua2bdvM97znPebatWvNSCRi1tfXm6eccor5f//3f7N+zmy/HxqNRqPRaPyJYZqpjr0ajUaj0Wg0Go0mJ77//e9z8cUX8+STT7J8+XIaGhqy6gHY19dHMpmkqamJSy+9lG9+85sSv61Go9FoNBoV6PJSjUaj0Wg0Go3GJQ477DBA9N2z+tplwpo1axgcHJT1tTQajUaj0SwC2umm0Wg0Go2m6Ono6Jj378vKyqipqVH0bTR+5IwzzuAvf/mLfZ3t78vvfvc7JicnAVi+fLmr302j0Wg0Gs3ioMtLNRqNRqPRFD0LlQFedNFFfP/731fzZTQajUaj0Wg0BYHOdNNoNBqNRlP0pGcozcbSpUsVfRONRqPRaDQaTaGgM900Go1Go9FoNBqNRqPRaDQalwks9hfQaDQajUaj0Wg0Go1Go9FoCg3flZd+61vf4qtf/SodHR0cfPDBfOMb3+Coo46a8/U33XQTt9xyC7t27aKxsZHzzjuP66+/nkgkktH9kskke/fupaqqKqux7xqNRqPRaDQajUaj0Wg0msLCNE2Gh4dZunQpgcD8uWy+crrdeeedXHHFFdx6661s2rSJm266iTPOOIPNmzfT3Nw84/U/+clPuPLKK7n99ts59thjefnll3n3u9+NYRjceOONGd1z7969eoKURqPRaDQajUaj0Wg0Go3GZvfu3Sxbtmze1/iqp9umTZs48sgj+eY3vwmILLTly5fzkY98hCuvvHLG6y+77DJefPFF7r33Xvu5T3ziEzz66KM8+OCDGd1zcHCQ2tpadu/eTXV1tTv/EI1Go9FoNBqNRqPRaDQaje8YGhpi+fLlDAwMUFNTM+9rfZPpFovFeOKJJ7jqqqvs5wKBAKeddhqPPPLIrO859thjueOOO3jsscc46qij2LZtG3/6059417veNed9otEo0WjUvh4eHgagurpaO900Go1Go9FoNBqNRqPRaDQZtSDzjdOtp6eHRCJBS0vLlOdbWlp46aWXZn3PO97xDnp6ejj++OMxTZN4PM4HP/hBPv3pT895n+uvv54vfOELrn53jUaj0Wg0Go1Go9FoNBpNcVHQ00vvv/9+rrvuOr797W/z5JNP8utf/5o//vGPXHvttXO+56qrrmJwcND+s3v3boXfWKPRaDQajUaj0Wg0Go1GUwj4JtOtsbGRYDBIZ2fnlOc7OztZsmTJrO+5+uqrede73sX73vc+ADZu3Mjo6Cjvf//7+cxnPjPrlIlwOEw4HHb/H6DRaDQajUaj0Wg0Go1GoykafJPpVlpayuGHHz5lKEIymeTee+/lmGOOmfU9Y2NjMxxrwWAQECNeNRqNRqPRaDQajUaj0Wg0Ghn4JtMN4IorruCiiy7iiCOO4KijjuKmm25idHSUiy++GIALL7yQtrY2rr/+egDOPvtsbrzxRg499FA2bdrEK6+8wtVXX83ZZ59tO980Go1Go9FoNBqNRqPRaDQat/GV0+3888+nu7ubz33uc3R0dHDIIYdw991328MVdu3aNSWz7bOf/SyGYfDZz36WPXv20NTUxNlnn82XvvSlxfonaDQajUaj0Wg0Go1Go9FoigDD1HWW8zI0NERNTQ2Dg4NUV1cv9tfRaDQajUaj0Wg0Go1Go9EsEtn4iXzT002j0Wg0Go1Go9FoNBqNRqPxC9rpptFoNBqNRqPRaDQajUaj0biMdrppNBqNRqPRaDQajUaj0Wg0LqOdbhqNRqPRaDQajUaj0Wg0Go3LaKebZk7aB8d5eGsP7YPj8m82uAe2PyB+arJGmay0nPJCy8kf6L3PH2g5+QMtJ/+gdZQ/0HLyB3rv8wdaThoVhBb7C2i8yZ2P7+KqXz9L0oSAAdefu5Hzj1wh52ZP/hB+/zEwk2AE4Oyb4bAL5dyrAFEmKy2nvNBy8gd67/MHWk7+QMvJP2gd5Q+0nPyB3vv8gZaTRhWGaZrmYn8JL5PNKFg/0z44zvaeUVY3VgBw3JfvI5n2mxE0DB688hRaa8ryv9ngHujbCvVrwUzATQcBaTczgnD5s1DTlv+9Cox0ObXWlLG5Y4jX3fT39P8992SVLidMuGmjUBQWWk5zMl1OO3tHOfmr9yuQE3DTBi2nLEiXVTJpcvx//RVTxt6XLqeaNuh8Hm45Dr33ZcZ0HXXsl+9TI6febfCNw9ByyozFsyWSQkdpOWXEdB21pXOY07/+gNZRHiRdVpOJJCf9l7YlvEi6nEzT5LivKLIlul6Cbx+N3vsyY9F0VGIS/t8haDkVFtn4iXSmm2aKl98wYHld2ZQNCCBhmuzoGct/E0r38mNAaSVTNiAQjri+bXoTmsZ0OR25qo6ndg1M/99zR1bT5VTRNNX4Ai2nOZgeNTt532b+uaNPjZxqV2o5ZcGUNQVURUJMD0O5LicjAMuPglefQO99mTFdTi3VETVyWvsa2P0oWk6ZMV1HrWooV2dLRKrRcsqM6Tpq0+p6dbZE5RKto7Jg+t5XVhKQLyfDgLo1Wk5ZMF1OteUlanTUimPh1X+i977MmK6jWmsi6nRUSRlaTsWNdroVOe2D4/YGBGCasKtvZk17wIBVjeX53WxwT9oGBGBCbHjm64wg1K/J714Fxmxyemx7/6yvDRpGfrKaTU6jXTNfp+U0g+lySppw30uz/N8hSU4DO2a+TstpVmasKWBoIj7jda7LyUzCrn/M/lotqxnMJqeOoYkZr5Mip1f+MvtrtZxmMJuO2t4zNuN10myJicGZr9NymsFsOuqRbX2zvlaKjhppn/k6LadZmW3vG5tMznid+3ufKbJzpqPlNCuzyal/bHLG66ToqJ0Pzv5aLasZzKaj9g7MZktI0lGTM/WhllNxoQcpFDnbe0ZnePkB3nbEMgKGc33Rsavy9/r3bZ0ZOQM4+kMiYmNx1te1138ac8npmrMP4MvnbrSvDeC6czfkJ6u55HTkJVPldMaXtJymMZecLj9tHde9eQNpS0qenA69UChyi6M/pOU0C3PJ6t3Hrpqy9117zoFy5PT6/4Kz/1/aEwacfZOW1TTmktM7N62YIqcrTl8vR04nfxrOuhns1avlNBtzyekth7URTJPT245YLs+W2PTBabbEjVpO05hLTp9+w/58+dyN6b/l8nTUEe+dKqfXfE7LaRbmktV7j1+FkbampMnp4HdOtSUOv0jLaRbmktNFx6ycoqM+/0ZJtsTpX0rZElpHzcdccvq3I5dPkdOHT9lH4nn3Ukg/CWg5FRXa6VbkrG6smOIIABGN+fhr1/PQladyxgEtAPSPxvK/mdUnIh0jCMd8BD70CARKxHOtB+d/rwJjdWPFFKUAQk6v27CEtx+1gmvO3h+AttoIbztieX43q18L038rjCAc/3G4/DlRdgAQLM3vPgXIXHI6/8jlvGPTSn76/qMBke3xmv1b8rvZXHI6+UrRI2L968Rz47NnRBY7Vj+PdIKGwQdOWsP9/34yVRGRCL60Nk/jq37t1AMmCDntd5Y4xJz+RfFc3Wo49F353asAmUtHXXbqPjx05alsbBM9NOKJPNvTziWnQy+AI94NF/7OeW6/s/K7VwGyurFiiiMAhJw+eca+PHjlqZx76FIAOmfJUsyauWyJYz8KH3kSSlJru251/vcqMObSUWcf3Mrbj1rBf513EAC15aW85bBl+d1sLh11wieELdGSChiaifzuU6DMpaPed8Ia7rr0OPt/9ug1DfndaC45nfoZYUtsOE88NzJ71n6xM5ecPnjyWh781Ck0Vgpbuaa8JL8bzaWjDnyzsCXOvkk8V9EMh7wzv3sVIHPZEh89bR0PXXkqR6+pB2A06sJ+NOd591J43/85z605Jf97aXyDdroVOa01ZRy1ut6+DhqGHTVrrSnjAyeLjePPz3cyGp1ZepUV4aqpCsMIOl7+5v1gvzPF88/+Ir/7FCCtNWWcm2YAp8sJ4G1HrKCsJMirAxP869VZymyyoaYNqpY41+lyqmmDI98jnn/m5/ndpwBprSnj8tPW2dcBY2oU+ug1DRy0rIakCX/41978blbTBis2OdfT5XTcx8TzL9wFkwrGoPuMpsow4ZCzH6WvqRX1Fbz5UBF9/N3TLshp49uc63Q5gZhcFQxD/zboeCa/exUgrTVlrGlyDjXTddS7jxWOld8+vYe85kLVtMGJ/+FcT5fTmpOEk8CMwwu/zf0+BUprTRknrW+yr6fL6dJTxb74wJYeekei+d2sokmsGYt0WdWvhoPeKp7XOmoGrTVlvHPTSvt6ui1xzqFt1JWX0D8W46GtvfndrKZtaunUdB216f3i+Wd+zowGWBqMaS6CdFltXFbL8esaAZd0VPrhf7qcTviEeP7lP8PY7KXIxcyS6gg1ZU63pnQ5La0t5+2pSZi/fWpPfjeqaRPONYvpOurgf4NIDYx2ws6H8rtXAdJaU8aBS51G99N11PuOF3vV75/ZSzwxS5ZaNkwPJKTLatkRsOoE8bw+7xYV2ulW5Jimyd5BcSD/5OnrefDKU6aMSj50eS0rG8oZn0zwlxc687vZ9gdEum3tSrjoDyKClj4q+aDzxc9nfwlJHfmczsSk+D9586FLZ8ipIhzi9ANF5lTein1oLwyn+q68/acz5bThLYABu/8B/Tvyu1cBUl4qjK+NbdU8dOWpM0aPn3OIMJB+m6+hbJowsFs8Pu0LM+W0/GioWSH6Jm7+3/zuVYA8vXuAaDxJdSTEj9+3acaaOifldPvz8x2MxfIMOEyOip8Hv3OmnCI1sG8qK1E7CWYwFouzO9Vn9GtvO3iGnM7YsIRISYDtPaM8k2/AoSSV1dh25Ew5ARyUcp5qOc1K97Bwpn345LUz5LS2qZKDltWQSJr84ZlZ+nplw+5HIRGFSB1c+PuZsrKc3C/qgMNsJFMOrtMPaJkhp5JggLMOElmJv8vXlpgYgoGd4vFbvjtTTvu/UThPu1+Cjmfzu1cB8sCWbgD2X1LFTy85eqaOsmyJp/IMOACMdIifJ/77TDm1HAAtGyA5CS/8Lr/7FCCvdI0wOB6nJGjwg4uPnMWWEOvpgZe78w84JFK2yP7nzJRTKAwHnCMeP3NnfvcpQOKJJDv7RF+1a9904Aw5nbi+ibryErqHozycb8DhlXvFz9ZDZj/vbkwLDOmAQ9GgnW5Fzo7eMXb3jVMSNLj4uNUz6tgNw+BNKcX+m3wNsK2pTWj9GbD6hJl17PucBmV1QvlvfyC/exUYiaTJg6/0APCOTStn7TdgGWB/yDdKs/U+8XPpYbDfG2bKqXoprD5RPNZRmhk8sEXI6Y0Ht80qp7MObiVgCKfP9p7R3G/UvRmG9kAoAps+MFNOgQBsTJWFaDnN4IGXxYHmhPVNHLdP4wxZWQGHsVieAYdEHLal9rMj3zN7/w4dcJiTf2zrJZZI0lZbxrmHzlxTleEQrz1AZOa6pqMOeuvsctp4HmDArkdgYFd+9yowuoejPL93CGBWWwKwbYnfPu2SnNa9FtacOFNWK46BmuUQHYKX787vXgWGaZq2M2eu/nqWk+DufAMO2x+AZFyUWm2cZU2V1Qp7EOBZ7ciejqWjTjughWPWNsyQlRVw2NYzyrN78gg4DO2FrhcAA47+8Bw6Sgcc5uJvKTkdvaaBk/ZtniGnfZqr2NBWTTxp8sdn8wg4mKZjnx/+rvnl9MJdMOlCKX8B8fTuAYYn4tSWl8x6jioNBTjzoFbARR217xtmP+8e8CbRoqf7Reh8Lr97aXyDdroVOZZSP3xlHRXh2YfZnnOIMMAefKWHnlyjNKbpeP7Xvmb214RKRW8C0E6CaTy3Z5CBsUmqwiEOWV4762uOX9dIQ0UpPSMx20GXE5ZS32cOOUGaAfYLHaVJY2IywaPbRITsxLRSq3SaqyIcv0783e/yUeyWUl95rJOhMx3LmbPlL7osZBqWc/SkdbPLKT3gkFf26J4nIDooAgpLD539Nfu8FiK1IuCw4++536sAeeBlIacT1zdhTG8aluLNKSdBXgGH2KgzVXYuHVW9VBjQoHXUNB5K6ZwDWqtpqgrP+pqzUwGHp3YNsLM3j4DDQjoqPeDwjJZTOumB1mPWzt4L7LAVdSyvL8s/4GDpqHltCSvg8CsdcEgjPdA6ly2RHnD47VN5ZM5v/av4ufRQKK+f/TUbrIDDwzrgMA3LljhxDlsCpmYl5kx6oHXlcbO/ZsWxUL1MBBy2/Dn3exUglpyO26eR4PTGlimstiJ/fq6D8ViO+1F6oHWuvS894KAd2UWDdroVOZbTbS6lDrCmqZKDrbKQXPtQ9W0TZQaBElh1/Nyv25gepdFlIRaWnI7dp4GS4OzLVpSFpKI0uSr2ZMIxwOY6eALsf7YoC+nZrPtQpfHY9j6i8SRLqiOsb6mc83WWI/t3T+/NvSxkISc2iF6JSzaKspDnf5PbfQqQgbEYz7w6AMAJ6xvnfJ0lpwe25BFwsA6ea06GQHD214RK4cBzxGPtJJiCtfedNI+cTljXRH0q4JBzH6odD0IiBrUroGGWJsgWG9MyPnTAwSYTW6K5KsJx+wg55uwkGOmG9n+Jx2tPnft1lpy23KMDDmlkEmg1DMN2EuTcLyyTQCuIbMVIDQzvFWtQA2QWaAVHR931rzwCDpk4R2vaHNv92V/mdp8CJJNAK8AbD15KwIAndw2wq3cst5tlEmidEnDQzpx0bFtiHueoFXAYjSX4y4s5BhwyCbSCo6Oe/SUk8+whp/EF2ulWxMTiSR6xlMU8mxA4ZSG/ydUAs4yvFUdDeG5nBMs36T5Us2CVg8yn1AHeZPehynHwRfvTMN4H4WrR7HMuIjWw7+vFY63YbeySxXWNc2blAJx+oNOHKqfBF5PjTqPc+QxlSFPs2plj8eArPSRNWN9SOe9o+DVpfaj+mGsfqkwOnuBkfLzwOx1wSLG7b4xtPaMEAwbH7jO3060kGODMjXkGHNLlNM/a5QDdh2o6yaTpZHvM4xwF0pw5Ofah2pYKCi3ZCJXNc7+u5QAx+CI5qQdfpJGJcxQcm+9vufahyjTQmt6HSpeY2mQSaAWnD1XPSI59qDINtMLUElMdcAAyD7Q2V0c4dm0q4JBrhUPGtoQOOEwn00CrYRi86eCUjsrVlsgk0Aqw7nQn4LBTBxyKAe10K2Ke2NnPWCxBY2UpB7RWz/vasw9eSjBg8K9c+1BlEkkDEaXRk8emMDQxyZO7BoCFnaN5D754JVW2s/pECC4w3vyg9CiNLguBzJ2jleEQp9tlITko9p0PQ3wCqpZC037zvza9D1X/zuzvVYDYB88F1hM4ToKc+oWN9cHeJ8Xj+bJyIDX4YrkIOOg+VICzng5dXkt1ZP79KO/BF5nqqCmDL3SzaoAXO4boGYlSXhrk8JV18742vQ9VToMvMj14QpotoQMOkF2gdZ/mSja2pQIOufShyjTQCmkBB92HyiJTWyJ98EVOtkSmgVZIDb7QfajSyTTQCo6OymnSdjaB1pYDxeCLREwPvkiRaaAVnJ6Wf3u5m77RWPY3y1RHlUREbzfQ590iQTvdihhLqZ+wronAHPXtFk1V4bSykCwVezwG21N9ihY6eIKTmfPKX2A0zwkyBcDDr/SSSJqsbqxgeX35vK+d0ocql2iadfDMRE77vFYPvkijY3CClztHMAw4fp6sHItz8ulDZfU0Wnvq/Fk5oPtQTcM0TbtP2AkLHGhg6uCLHdkGHLbdLyY2N+03e9PjdAKBqROtNPzdklMGztHDVtSyoj7HwRf9O6H3FTCCzpCY+bB01HO6DxU4ffeOXtNAODRPZJ9pfaiy1VHJ5NS9byF0H6opWIHWhoqFA60Ab0qVLuYUcMhGTiuOcfpQ6YBDVoFWcGyJnAIO2QRay2phvQ44pPP3LfP33UvnjANbCIcCbOvOYfDFrkcyD7SCY0tomw9Id44uLKcpgy+eybK6K5tAK0yrcNABh0JHO92KGKfMYGEHATjNqn/1xG4efqWH9sEMS6B2PwqTo1DRJMo9FqJ5P1hykJh69cBXYTDPKTI+x454rstMTnYfqpe7ufu59szlNDEIux8TjxeKpIHoQ2WVhTz8DS2nlJwOaquhrqJ0wden96G67e/bMpcTpDUSz0Cpg6PYn/oxbPtbUctqS9cIHUMThEMBNq2eo2l0GumDL75x35Ys5ZRFVg442aMv3wMv/rGo5RRPJHloa2Yli2D1oRJ7388e28XDW7PQUdZ6WnakyGRbiHWpwRfD7fCPbxW1nCA9czQ7W+K3T+3h71u6M5dT53Mw2gUl5SKDaiHS+1D97b+0nLY4WTkLBVrB6UP11K4BfvPUq5nLKR5zBsJkYkukVzg88QMRxCtiWWUTaIWpfai+/ddXctRRmdoSKR31r5/D1vuLWk4dgxNs7hzOONBaFSnhtQe0AHDLX7dmJ6dX0uS0UKAVnAqHnQ+JapQillN6oDUT5yg4FQ53Pr47O1sim0ArTB188dDXi1pOxYB2uhUp3cNRnt87BGTm+Qc4/YAllAQNXh2Y4B3ffZTjvnwfdz6eQfQ4XakHMvyVq18jfj56C9y0AZ78YWbvKzCEssiszMBiTVMly+rKSJrwwTuezFxO2x8AMwH1a6FuVWZf0Dqgbr23qOUEmffKsSgJBtg31QPkK3dvzlxOQ3uh6wXAgDWnZPbl9j8bjBD0b4MfvrGoZWXJ6ajV9URK5s/KsVhSLaYx/urJPZnLyTSdLIJMnaPN+0N1G5hxuPMdRS2np3cPMDwRp7a8hIOW1Wb0Hqun5SPb+njHbTnoqEwcBCD6ULUcIB7fc3VRy2k0GuefO0XfoEz3vhPWNVFRGqR/bJJ3/c9j2ctp1QlCBplQs1z8fOpHRS0nyF5HNVdHWNskdNTH7/xX5nLa/SjERjIPtIKTPbrtPvjB2UUtq2wDrYZhsK65CoBv/nVr5nLKNtAKog9VqAxGO+FHb9JyAg5aVptRoBWgIfW6/32+I3M5QfaB1ppl0LCPePyr9xa1nLINtIIIOBjAc3uHcrMlMg20BgLQvK94fP+Xi1pOxYB2uhUpD74ilMWBS6tprMzMeB2amGQy4fQhSJrw6V8/t3AEIJseLCA8/S/e5VybSfj95UUZAdjeM8qr/eOUBA2OXtOQ0XvaB8fZ0+/IJGs5ZWp8De6Bh/+fc13EckokTR58JbtIWvvgOP/Y7jS5zVhOlvHVdhiUZ2ZAEB0RjhyLIpbV3+xpmJnL6ZdPvGpfZyyn7pdEg9xQBFYel9mXG9wjnKoWRSwny0Fw3D6NBDPIygEoL53qRM1IVok4bEuVx2ejo3Y94lwXsZz+sa2XyYTJsroyVjdWZPSenpEoYzGnLFeqjnrmZ851Ecspl0Br++A4r3SN2NeZ66gcAq3TM0yLVFa5BFrbB8e5f3OXfZ2xnHIJtI72iDJH+wsXp5wgfRpmZs7R9sFxfvQPp69uxnLKJdA6uEe0TLDQcsoq0JowTdK77mUkq1wCrYN7nEEmUNRyKga0061IyTbVFph1gELCNNnRM8/465Eu6HhGPM40fb1vq9h40jETYhpWkWH1izhiZT0V4VBG79neM8r0Fq0Lysk0s4/QaDnZPLtnkIGxSarCIQ5ZXpvRe7b3jM4YALagnCB7JzYIWU2nCGU1MZngse3ZZeVs7xklmYucLOfoymOhZP7GvTZ9W2H66i1COQH8LbX3nZShgwBy1FF7/gnRQdGfcukhmd2ob+vM6X1FKqf0nkYLNRK3yElHxUZh1z/EY62jssYKtB7QWk1TVWaB1pzkBFpH5cGO3rGsA61566hMndigdVSKXAKtecspm0CrlpONNVk700Ar5GhLdG/OPtCqdVRRoZ1uRUgyafJ3O309801odWMF0xMOgobBqsZ5ek5YHvwlB0FlhveqXwvGtF9NI+iUnBYR2UY8IUc59W0TjaYDJU4PnIXQcrKx5HTsPg2UBDPbVnOSUzIB21JrKhtDWcsKgMe29xGNJ1lSHWFd8wIT9VLkJCfI7eCp5QRA/2iMZ14dAOCEDHuOgpDVdL/PgrKy5LTmFAhkFgXXcnLIZhKwRU5raseDkJyE2hXQsDazG2k52eQSaM1JTrkEWkHIimk3K0JZWespm0BrTnIyTa2j8sAOtEYyD7RqW0I9E5MJHrUmNme592VtS1iJC9kEWrWcigrtdCtCXmgfomckRnlpkMNX1mX8vtaaMr70Zqc/R8CA687dMP/45Wx75YBoPnn2zVObhZ59U2ZNKQuIWDzJI7ayyPzg2VpTxvXnOnIyMpGTpdRXHA3hzJwRjpzStpGzvl50coLcnKOWnKzfcoMM5LT3aRjvh3ANtB2R+ResaYMzv+5cG4GiXFPpw2Myzcqx5JRuLC8op8lx0cAYctv7LIpUTg++0oNpwvqWyvn/n6fRWlPGla9zJrtJ11Hpq7cI5bS7b4xtPaMEAwbH7pNZVg7M1FEZySn94Jnh2p1VRxWhnKYEWmXbErkEWkHI5DWfc66NYFHKSpkt0bcNBnZmF2gFIY+zbnKui1RH2e0P1jYSyjDQmpMtkWugdYYtUZw6KpdAKwhZff7sA+zrrHVUpmhboqjQTrcixGr+ecyaBkpD2f0K/NtRK9hviWjY+sVzNnD+kSvmfnEymTY2PotNCOCwC+GtPxCPq5aK6yLjnzv7GIslaKwMs/+S6qzee/6RK3jLYWLTfsemFfPLCXI7eIKQy6WPO9f7vj679xcAQxOTPLV7AMgu2wOEnD575v4AHLy8NnM5rTkRgplFwW2OeDc0phwSb/xGUa4pu0F1FgcaEHL6ySViWmIkFOCthy+f/w07HxZ9b6qWiilW2XDYhbDhPPH4yEuKU045ZE9ZvP/ENVSERcbaD95z1PxraqwP9jwpHmeTlQNCLq/9gni84ujilFNqPR22opbqSElW7z3/yBUctUoE/T71uv3k6qgLfi0el1bCoe/K7v0FQHqg9YiVGZanpTj/yBW8+5hVALzx4FZ5cgI47nJRmgVw0V1Ft6ZyDbSCkNNX3nIQAGubKxeWUy6BVovDL4K2I8Xj079UdHKC3JyjIOR012WOk/ONBy/gXMk10ApCLke8Rzw+6O1FLqfMA60WFx27miXVYj/61jsOm39N5RpoBSGXs1JB8ZYDilJOxYJ2uhUhf3mhExCH/FzY2CYa3nYORed/4dZ7YbQbSsph+absb7T6RPFzeC9MDGX/fp/zp2c7ADhiZR2BDBuJp3PoCnGgSR+qMCvxGGz7m3ic6aSxdBr3SZWGAJ3PZ/9+n/PHf+0lkTRZUVfG8voFygRmYVOqb8uO3lHM6X2ipvPSn8TPpYdnfR8AWoVRznBHbu/3Mf/a3c/LnSMYwPH7ZHegAbEOS0MBJuJJdvcv0IPlhdQgmBWbMs/KSWf5UeLn4O7s3+tzTNPkr6mm4BvaahZ49UwMw7CDFH2jsflf/NyvABMa1kH10qzvZfdtKdL+K/c8L/aRQ3O1JVJTaTuGJuZ/4a5HU03BA45dkA0rj4NASEzUHHx14dcXGH98VgxnOXR5bdaBVoDDU87RXX0L2BLJJGz5i3i85OCs7yMm+aWyS0Z7sn+/z/nz8+2MxRLUlZdmHWgFOGatsCV29Y4xmUjO/+KX/ih+LsvSkWPRdqj4Obx3/tcVIC93DvPkrn4ge+coCL1mTTHd0jU8/4uf/434ufzI7AOt4Jy9BjKcklpg3PuSOO9uXJa9LQFwwFKxDntGFjjvvnCXCLRWtGQfaAUxkRugd5vIbtQUJNrpVmT88OEdPLVrAICb/u/lzMdVp7FvKtPt5c55lMWTP4Qfv1U8nhybOkEsU8rqRKYIiEmARcSdj+/ijtSUoz8/35GTnKyMxJc7FlDq9/0nxFPG9E/emtu46maRrUXXi9m/18fc+fgurvrNcwDs7h/PSU77NFcSMGBgbJLu4XkU+6P/De1Picf3/WducmpJHWiKUE7nfOthQLQW/vPz2TsdQ8GAXZ6web419eQP4cnvi8fP/zbP9fRC9u/1Of/v3i30jAhn2RU/fzqnNbU+tfctKKc/fVI87n0lNzlZxvVIJ4z2Zv9+H/OTR3fyt1SfsNse3C7Xlrj9jNRFEl74Xdb3IVQqHKtQlHvfLfcLp/DDW3vzk1PH8PyBob9dD+Opidy/eo/WUVlw5+O7+OhPnwagfyzGL57IPuDSVltGRWmQWCLJzt6ZjeBtHr8dtt8vHj90s7b5suDOx3dxxtcfsAciPPRKbs7h9S0Z6qhHviEev3JvjnKy1tMLM4f/FDj//cBWtqcGH1zzu+fz2vs2L6SjfvMB8Xi0E576Udb3oX61yPKNj0P/juzfr/EF2ulWRLQPjnPN751MpIzHVU9j34UONIN74PcfY8rknFxHIFuKvYgyqNoHx7nq18/a1ya5yWldSqnvHZxgcHxy9hcN7oGHv+lc5zquuuVA8bNLyylbOUVKgqxqrADgpfnW1P9+yrnOVU7pBliRYMkp3dzMRU4A+y5kKNt7n4WZn5z6d0B0JNuv6VvaB8e56f+22Ne56qj9MtZRFjnKKVwJtSvF4yJbU5/57XP2tZmrLZHxenLBlrCdOVpHZSun1Y0VlAQNRmMJXp0rc35wD/ztq8513jqq+OSUr44KBAzb7pvXlvjTFc51znJK2XydxbXvuWZLqNJRjetFf8Tx/qKqcGgfHOfLf3KSNXI+76rSUYEgNO0rHheRLVFsaKdbEbG9Z3RGoCOjcdXTsDahHb2jTEzOkgbr5gjkIox65jxWfBo1ZSUsrRH9CLbMFaVxa6x4EUY93ZITOGtqzowP1+SUWk89L4uy4iLAVTktFPV0a++raISKZvG4e3OW39K/bO8Znf5bnpOs7CwC2XKCtIBDce19btgS61oqMQzoGYnNXr7jppy0jgJyk1NJMMDaJpHlq0xHaTnlpKMWrHDo2zoz4yknOaWyfIf3CodOEeBLW6Ik4kx7LiJnjlu2RLpzdNYsX1d1VPHtfcWGdroVETmPq55GU1WYuvISkia80jVLFoabI5CLMDNndWMF07tA5SIncMqs5ox6Wr3Y0slFVlbUs+sl0delCHBrPYGj2KXLqWYZhKshGU/1SCp83JTTgmWL9Wth+urNde8rwsyc1amMz3RykZXlxH61f5yRaHzmC1zVUZYzp7jk5IaOKi8NsSLVB3NWJ4Grciq+zBw3bQllOsqy+fq2iebkRYCrOmqhTDe3dFSkBmpSA4WKxEkgw+ZTYksUYbsKt2yJNU0VBAMGQxPx2XuPyjjvFlFlV7GhnW5FhDWuOphq7B00jIVHIM+CYRjz9yOoaYPj09LX8xn9nr4JFUk/gtaaMk5Y5zRnzVVOkIFir2wR8rHIVVb1ayAYhslRMYa+CGitKePfjnKmGeUlp4Uy3WraoG6Vc52rnAyj6Ayw1poy/uN1TmPbjEa/z4GVRbCtZ5RofJYs35o2WH2Sc+3G3lckBxoQsqoMO82ic11TdRWlNFeFgTnWVE3b1CmWruio4lhPIOS0X6vT6N2NvW9WJ0FNG5z6Wec6Lzml9r2ezZCYxRFbgLTWlHH6gS32dT5yWr+QjqpeCqG0z81VVpXNUN4gskeKpJdva00Z7zlutX2dj5z2WyiDqqbNWQvgzpoqIlvimrMPsK/zsSWs9dQ1HKV/toE/NW2w/nXOdV5yKr6AQ2tNGU2VpfZ1rmsqHAqyZr72LzVtcNQHnGtt82nmIYdRKBo/c/6RKzhxfRM7esZY1Viek7IAodgf3d43t2JvXC9+tmyAd/w8tw0IRI27ERDNeUe6oKpl4fcUACVB4Q9/z3GruOTENTnLad+FyqwGdopU6GAE3vkLkYaei6yCIWhaDx3PCgOsfvXC7ykArHHiJ65r5CvnHZS7nNIaiieSJsHp4VTTdEo43vhNWHtq7muqeX/Y/WjRGMoAB6QcBEtrI/zqQ8fmLKcl1RGqIiGGJ+Js6x5l/zTHg00g5cQ+5iNw9IfykFPxRT0HxyftzLTbLzqC/ZdW57WmuoajbO4Y5rDUJOcpVKZ0yboz4Kyv5y+nrhfFOs1lWq0PiaZaS3zmDftz1sGtecnpnhc653bmtGwQP+tWwbv/lLucaldCSYUIDPVtdfrnFDgVpcLMP//I5Vx+2rq8bD6YJ4A31usMZHrnr4SeyUVWhiHW1I6/izW19NCcvq/fsCafH76yjm++49Cc5WRlY+/qG2MsFqe8dJZjXiw1ZOGML8MBb8xv79tyT1E5cw5ZLnRJbVkJ/3v5CTnLqTIcYlldGa/2j7O5c5ijU1Psp1CS+uzD3wMnfjI/mw+KyuabTCTpHxO9rL/5b4dy+Kq6vNbUlq4RXu4Y5pR9m2e+oDaV8bnyODj3ttzlZFU39L4C8SiEwrl9jsaz6Ey3IqS1poxj1jbkvAFBBmVWPS+Ln8uOyH0DAqF0rDTdIirf2dotynZP278lLzkt2I/AklPjOlhzYn6yKsJSYEtOm9bkt55WNlQQDgWYmEyyu2+WnhOj3TAxCBiw8bw85VR8UU9LThuW1uQlJ8MwFj589qQGAez3BpfWU/FEPbel5NRcFebUfPe+hRogW3vf6hPyk1PDPhAogdgwDGY/cdCPxOJJdqb2qXwcbpBB2aIlp9ZD8pNTIOD0oSpCHXXy+qb8bL7UetraPcJkYpYWEpacalbAutPc2fuKKOBgyemIPJwDAI2VYRorSzFN2NI5S/uXyXEYSE1x3PgWraOyxJLTfq1VeckJMqhwsGyJ9afnJyer72j3S5CcJUO/ANnVN0Y8aVJWEuQNG/PTUftlakusOCY/OVW1irJtM+F8pqag0E43TU4sePDsTSkLK+MtH4qsAXI0nmB3akLY2ubKvD5rbVMlwYDB4PgkXcOzNKq2lHrjurzuAxRlmdW2HhExtppM50owYLCuRXzGrIdPS061K5zoZ64UYdRzW3dKTnmuJ1igSX9szHG85Lv3WQ6C0S4Y7cnvs3yCLac81xNkUFpv9TTMV06hUmf/LBIdtatvjETSpLw0aGf75op18NzSOUxyepdySNNRbtgSxaWjTNN0be9bVldGRWmQyYTJ9pTem4KrtkRx2Xzg7t43r47q2waY4nBf0ZTfjdL7jhZJ+xcZOmpWmy+ZdE9H1a0Spd/xCTERvQiw5LSmqYLA9MqRLFm/UMl2j0tyMoyiDIoXE9rppskJayx5x9AEg6kU3im4aigX1ya0q1ccaCrDIbsvUa5ESoKsahBlC7M7c6xMNxcPNEViKJumydbUIJF9mmc2bc2WeXvmyJDTwE6IzmFEFBhWdNoNQ3negIM1wa+sTvQlyofSCqePX5E4SG05ubCe0ku2Z5BMpB1o3Aw4FEdmTvp6MvIsp13VWEFpMMBoLMGegVka58twuhXJeuoejjIcjRMwYGVD9s3e0zEMY/4KBzd1lD0RuDjkBO7qqHkDDulyyrcUvnG96GE1MQjD7fl9lk+QIadZh8gMvSrKtQMlojQ+HwJBp5y+CHVUvlg235auEeLzZfm6GnAonr2vmPCd0+1b3/oWq1atIhKJsGnTJh577LF5Xz8wMMCll15Ka2sr4XCY9evX86c//UnRty1cqiMltNWKjJsZ3n/XDzTFtQk5yqIi7wMNLKDY3YxO2/0ItkB8lsawBUbnUJTRWIJgwGBFff5OgnmdOW4ePCsanH5W3Zvz/zwfkL6m8mXeITJuHmig6AIObhrK65qrMAzoHY3RPT3Ld3C3iPoHS/M/0EDRZea4uZ5KggHWpD5n/jXloo4qElvilZScVtSXEw4FF3j1wmSmo1yQU1Mqy3e4Hcb68v88jzMSjdM+KCYjurGm5i1bdNOWCIVFeT0Un45yIWt+37QMqhntX6x9r2Gt6JmcL0UWFLcC4m7YEsvryikrCU5pq2Az3i+qEUDrKM2C+Mrpduedd3LFFVdwzTXX8OSTT3LwwQdzxhln0NXVNevrY7EYr33ta9mxYwe//OUv2bx5M7fddhttbXnUXGts1qfK4WY43QZ2QiImpllaI8XzYUo/glmiDAXGVjstOn9lAbBvi2j2Lj3TrboNwjWQjDvlxQWMZXytrC+nNJT/VjpvSYgtp33yvg9QVJk5wxOTdA4Jp4sba8oylPcMjDM8MS3L182DJxRhwMG90p2y0iArU83JZxw+LTnVr3UGX+RDkWXmbO1yV0fNOXFxrA/GUqXVDS7sfda+17ddlIIXOG6uJ8hUR7mw90WqRW84KAonwfaUnBoqSqktL13g1Qszb9mim3KCotJRiaTJjh6xb1gTLfNhTWMloYDB8ITjdLWxdJQb+x5MLQUuAiz7fI0LTuxAwHDOu9PXlFVaWrUUwlV536vYnKPFhq+cbjfeeCOXXHIJF198MQcccAC33nor5eXl3H777bO+/vbbb6evr4/f/va3HHfccaxatYqTTjqJgw8+WPE3L0z2XSKcOZs7hqb+hbUJNezjzoGmbrVw4E2OwcCO/D/P47iZRQCw7xKhLGYcPEd7xVRYENG0fDEMxwArgqjnNheVOsB+qfW0vWeUaHxas1s3eyRCUSl2q/9QY2WYmrKSvD+vtryUlmpR9v3y9EbVtqHs0oGmiKKe8USSnb1OHxY3mPPwKcs52vMyJGZpt1BgbOtxL4sA5hnMZGXMV7dB2IV7VTZDeSNgiiBegeO2jpqzbDEeFcFWcFFHFY8zx+31ZLV/6R6O0jc6rerAdR1VPAGHV/vHiCWShEMBu9InH0pD82T5upmRCEWVjW2apryAwwwdZcnJrYB4Sk6Du1PD0zSFhG+cbrFYjCeeeILTTjvNfi4QCHDaaafxyCOPzPqeu+66i2OOOYZLL72UlpYWNmzYwHXXXUciMff0lmg0ytDQ0JQ/mtmxnTkd0w+eLkfSgqG0fgSFr9jdVhaWc/TlzmES6Y2qLWVRs1z0j3KDIjKU3ZZTS3WY6kiIRNK0M0kAmJyAfpcPNEUU9XTbiQ3pAYfphrKLmaMw1Tla4I2qd/ePM5kwiZQEWJrnVDgLu8xKtpxqVkBppcjw7t3qzmd6lPRelm703oN5yhbdtiWgqA6frtsSqfW0q2+MsVjc+Yu+bWAmIVzttC7IlyIKOLi9nirDIZbXp9q/pK8p05TozCkCOdlO7Mq8m/NbzJk96rotkXKO9m4VNmUB0zcaY3B8EsOA1S5kJMI8AQe35VRWJ7LmALoKPzBUbPjG6dbT00MikaClZapCb2lpoaOjY9b3bNu2jV/+8pckEgn+9Kc/cfXVV/O1r32NL37xi3Pe5/rrr6empsb+s3y5C+WRBYpTtjg0tR+B25sQFE1mjmmabOtyr2cEiH4ukZIA0XiSXen9CGQcaIoo6ulm/ykQjaqtbLfNnWnOfqs5vxvTxiyK6eDZ5d7kUot9W2bJHnVz2phFwz6ikXJsBAZ2ufOZHsU6eK5pdO9AYzlHX5qrvNQtOQUCTh+qAt/7ekZiDE3EMQxY1eDOgcY6eG7tHiEWT2shIcOWKCYd5bIt0VAZprFylizfdFvCjV6WUDQ2H7jvHIU5+roN7YXJUQiEoH61Ozey5NS9WfRzLmBsW8LFAN7cAQeXdVTVEojUgplw1muBYq2nttoyykpdqLZinsFMbssJiiooXmz4xumWC8lkkubmZr7zne9w+OGHc/755/OZz3yGW2+9dc73XHXVVQwODtp/du/erfAb+4u1zRUEAwZDE3G7ZxLgfukOFM0m5Oa0MYtgwGBds6XY05w5Up2jxXSgcTODypLTLAeaBhcPNE37AQaMdsNItzuf6VHs6LRLEU9Ic+akr6ehPaIEPlACdS405wcIljhZvgV++HSzQbWFtZ62dA6TTM4WGHKpJASKJjPHktOyujIiJe4caNpqy6gMh4gnTbscHJBzoCkSHTWeNg3WTWfOfrMNZkrXUW5h9x19oeCzfN3sP2Uxa2m9Jae61UK3uEHdagiVicE0fdvd+UyPkp7p5hazZs1PDMFIKpnELR1lGEUTcJAjJ7GedvSOMjGZ5lyWko1dPAGHYsM3TrfGxkaCwSCdnZ1Tnu/s7GTJkiWzvqe1tZX169cTDDqG4f77709HRwex2OzTFcPhMNXV1VP+aGYnHAraqbtTDp+9EpxuRbIJWRGa5S5NG7Nw+hGkO3PSeu+5hZVBNbALorM08S0QxmJx9qYa365pdE+xO72N0p2jLmdPgSgnrlslHhe4AbatW0ammxOdtrN8rX2v3sUDDaRlJRZ2wMGSk5vO0VUNYsjJWCzBq/3CAcH4gDNtTIaToMB11DYJWTmGYcw+mMntZuIw1ZlTwFjOy9ryEuor8m/Ob2HZElOdOS5Oq7doXAdGEKKDIkOrQEmkOZrdXFPrZ8t065Ugp0AAmq0s3+LQUa62qkjJ6ZXuEeKJVJavZUtUtogKB7coklLgbRJaijRVhqkrLyFpwiupgDuJScfRLCvgoCkofON0Ky0t5fDDD+fee++1n0smk9x7770cc8wxs77nuOOO45VXXiGZNvHy5ZdfprW1ldJS94yQYmZGyu1Yn8ieATmbUM8W0bS3QHG7ZNHCmQ4nOdOtvB6qWsXjAu5HYBlf9RWl1Ll4oLGzCOYq3XGTIoh6ph9o9nFxTa1rqcQwoH9sku6R1H4kIysHisaZIyPTLRQM2HK3nTnWwbOqVUxJdIsimQgsS0fNGMyUmIT+1IHG1Uy3lINgpEPYKwWKbFtiijNHhi0RCjs6r4B11N6BcaLxJKXBAMvq3KluAGcw08vpgSFZtoTVL6xYdJSLa2pZXRnlpUFi8SQ7elPtX2TbEgXuzJFRrm0Yxszs0f6dkJyEknIx7Mct0rPmCzzLt9jwjdMN4IorruC2227jBz/4AS+++CIf+tCHGB0d5eKLLwbgwgsv5KqrrrJf/6EPfYi+vj4+9rGP8fLLL/PHP/6R6667jksvvXSx/gkFx77To572gWapO9PGLKqXQrgm1Y9gi3uf6zFklMLBLNPh4lHo3yEeu67YCz8zR0ZzfoD1qTLgPQPjDE2kpiBKM5QLP+ppTRsrDQVY6sK0MYtISdDuZ2UPkpEmp2IxlOWsqX2nZ4/apXAuZk+BI6f+HRAbnfelfkZGKRw4fRLtbOy+7ZCMQ0mF0P9uEa6C2hXicQHvfdJ01PSD55Tm/FpHZcsrKTmtaiwn6FIvSxAN5EMBg+Gok5UvxTkKaVPrC9fm6x+N0ZuaBOvm3hcIGPa0Wds+l62jisQ56r6OmhZwSJdTwEV3SuN6MAIw3gcjnQu/XuMbfOV0O//887nhhhv43Oc+xyGHHMLTTz/N3XffbQ9X2LVrF+3t7fbrly9fzp///Gcef/xxDjroID760Y/ysY99jCuvvHKx/gkFx4xMN1kHT8Moip45WyWUwoETnd7ROyb6EfRtFw7M0irRYNVNikCxy4ikAdSUl9BaEwFEHypM0/3m/BZF4MxJd2K7eaCB9IDDNGeO23Ky9r2el0X2TwHSNxqjf0z829ws14Y0p1vndOeoy3KqbEoNOjGhu3CzfKVnunVOX08u9rK0KILMHFk6yioD7hmJ0jsSheEOiA2LQ2L9GlfvZcupkHVUl5z1VBoK2J/pBBwkZVC1FL7Nt61HyGlpTYTy0pCrn73f9Ammsp2jQ6+KNgsFSDSeYHdqYJyb1Q2Q3stXspxKyqB+rXhcwOfdYsRXTjeAyy67jJ07dxKNRnn00UfZtGmT/Xf3338/3//+96e8/phjjuEf//gHExMTbN26lU9/+tNTerxp8sM6eG7pHCGRlDCOPJ0iiHpuk3Sgaa4KU1NWQiJpikOT3XdvHwkHmsIvs9omKZIG03rmDLeLyZVGUDQsdhN76thLYvJmASKj/5TF+hkBB6tHossBh5rlwjmenHQcsAWGtZ7cnDZm4fTfk3zwhIKfCjwx6fTGc9/pJuS0u2+c0WhcTm9YiyLIzNkmoZk4QHlpiBX1ogxyc+ewI6e6VaIk1E2KweaT0M/NYn36YKboiBj2A/IyqPq2wuS4u5/tEWQFxGGWXr4y+vgClNU6ZZAFGhja2TtG0oSqcIimKnf3o32XpKbW25VdKnRU4e59xYjvnG4ab7GivpxISYBoPMnO3lHJB5rCzsyZOm3MXWdOej+CzR3D8iI0UBRRT1lZBDBtOpwlp/rVEHK5D2XDWgiWCqfe4C53P9sjyCqxgrQ+iR3DYmjIcKrZt5sTMUE4xQv88CmrHAQcZ8627lFi8aS8Ujgo+MycHb2jmCZUR0I0Vrq7H9VXlNqHpJc7h+XaEi2FnemWTJpSmr5b7DubjpJpS3RvhkTc/c/3ADKmoFvsl+7MsQI25Y2i966bVLZAWT2YSef3ocCQleEL03r5JuLCeQmSdFRhB8Wt9bSmuRLD5YQCKyDeMTTB4NikXFuiwHVUsaKdbpq8CASMqVOSbAPM5YMnFHzZ4vYecaCpKXN32pjFvukp7DKVReO+gAFjPTDS7f7nLzLJpMn2HnkG2PrZ5OR29hSICZvWQalA19TWrtRETIlyerlzhGR3Sk4VzVBW5/q9Cj2DSqYTu7UmQlUkRDxpsr1rEPq2ib+QGZ0uVOdo2npy+0AD03rmyGpVAVPXUwE2qm4fmmB8MkFJ0GB5vXvN+S0cW2JEzoRZi9pVokl5IuoM1SgwttpTm2XaEiNyndiGUfD2ubP3yatu2NE7SrRnOyRiEIqILHe3KXhbImWbu9wXG6AqUkJbqjfw5k7JAYcCtyWKFe100+SNbSjv7ZczbczC2oQGd8HE0Pyv9SHbepysHCkHmimZbhINsNJyp7dLAQ5T2Ds4zsSkNW3Mveb8FulyMmUePKHgo57bJDpHVzWUUxoKMD6ZoG9X6v9PxnoCJ+pZoBlU2yRMLrUwDMPWUbu3vSDKdENlUL3M9XsV+kRgWe0PLOzpcO1DcnVUwzoIhCA66JTcFRCWnFY2VFASdN/MnzKcRKacAgFoSk2bLUAdNTg+SU9q+rUMZ46VQbW1a4REt2RbokXbErnSVBWmoaIU04T2rc+KJ91uzm9R8DpKXhkwOHvfjl07YbwfMJz+a25iZc0XcPuXYkQ73TR5Y5fvbHnOmTZW5eK0MYvyeqhqFY//9TMYLCxj2YqkyT7QPLu7n6TMCA04DtIX/1B4ckop9VWN5YQkHGj2aa7EAPrHJhnZk4pGypbTtr8VnJwGxmL0jLg/bcwiFAzYjXq3vfiUeFKaczQlpz1PFJycID3TzX05gdMzZ9uLT4snGiUdaJr2FT9HOqHjOfc/f5GxswgklMJBWgbVtu0wMYC0A02o1MkefuYXBbemnOb8kuSUWk8vtA8R79osnpSmo1LOnM13F5ycLOdoS3WYqkiJ65/fVltGpCRALJGkf1dqP5JtS+x4qODkNJlIsqtXNOeXZZ9b2W7bXlJkS7T/CwZflXOPRURmSxGYRU61y0WigdvUr4ZgGCbHYPej7n++ZlHQTjdN3rSnxpGPphwEfWUr5BxoACK14uf//jvctAGe/KGc+ywCWyVmewA8t2cQgMBYD4HoEEkkTBuzSKb6rzx+W+HJyeoZIaEcBOB3T+/BKngaejUVjZRlKFvjyHc8UHhySjlyWmsiVITdnTZmESkR+1z3DhGdfmqsUcp9bAfOSEfBySkaT7CrT+6BZjQq9qOelJx2BiRkuQE8/xvn8X8fX1ByArllwID9exDvFI6ckbKlUBKRci9KUlnK936+4NaUXbIoSU7/3NEnHkyOExpOHdxl6ahJ8TvBMz8tWDnJWk+/eGI3E5MiS6Z7u+V0k+TMGUj1hd37RMHJaWfvGPGkSUVpkJZql4eFpLCKWzq3CR31XKxFyn149Z/iZ2wEbtpYUHIyTVP6mhoYE4Hc/l3CNm8vkVACDPD0j0VZPcD3Xl9QcipmtNNNkxftg+N87yFRUrrWEI3EH+yvo31QwgSjwT1TJ+6YSfj95QUTVbObiUvoRdA+OM61fxBKYm1AyGm32UT7qIS05cE98PKfnesClZOMbI/2wXGu+rUwusqYoM3oBaCjVIKTYHAPPPYd57pA5SQjyw2ErJ7aNQDAWqMdgG88E3B/7xvcA/d8xrkuMDnt6h0jkTSpDIdodnnaGAg53fUvsedZcvrtrnI5cvr9x5xr0ywoOZmmmVZeKmfv+/b9otm7paP+OdIkz5bY+5RzXWBrSmbT9/bBcT77W+HAWZNaT/1mJe1xCdkeg3umOrILVE4ydFS6LWGQZHVKVl3hFa7fi8E98NDNznXByklOL8v2wXEe2SpsPWvv++4LITk66k+fdK4LTE5dw1FGonECBqxocH8/ah8c585/7gac8+7d7VXybQkKy5YoZrTTTZMX23tGSabSciwD7JXkUnb0jLl/s76twLSmx2bCaYztY6ZMG5OQ6abl5B7bJEbSpsqpA4Bes4rtoxKyPfq2CqMrHS2njNneM4oJBEiyOiWrl5Ot7q+pApdTemmpjAONNaAGYE3qQPOKllPWdA5FGY0lCAYMVtS77ySYVUeZEuQERaSj1Mhpq6ltiVyQ2SMxXU5tRi8RY5KoGWJrrMH1exX63idzPYFjS4CzprZoHZU1lnN0RX054VDQ9c+fYkuknG6vyNj7ClxOxYx2umnyYnVjBYHUOcmK0GxnKasaZdS4rwWmHcqMoLwSSYV0pKaNhQIGKyRMG5sip5Sy2G5KlJMxbWspEDmB3CyC2eS0TcspJ2TKCYSsDAPajG7CxiQTZgmdNLkvKy2nvJh176NNyylLLDmtrBcDRNxmdh0lQU5Q0LIaicbpGBItP2SUl2od5R4yS+Fmk9MOs5VVzVWu36vw5aRGR9UyTKMhhsTtknGOKng5yQ20KtNRBS6nYkY73TR50VpTxvXnbgRMexM689QTaa1xf6ojNW1wyqedayMIZ98knvc59oGmoVzKtDFLTgaOsjj40CPkyemsm5xrI1AwchqamKRrWN60MUtOAcNxYtev3CBPTmenlYQUkJxAvqHcWlPG1WcekHagWcIXzz3IfVnZcrICDkZByklWGbC1puoYot4Q93r3G18jT07pxnJBykneepquo15zwrHy9r7X/qdzXUC2hJU91VgZpqbM/eb8tpzSdNT6Aw/TOipLJhNJdvbKq26YYkuk1lP50v0ky6mwdZSsfsutNWVc+6YNdpbbXrOBz54rwT4vdDl1yZfT9edupJRJVhhdAJz/+lO0LaHJGO100+TN+Ueu4F0byqk1RjExeN2Jx8u72TGXOo8/+BAcdqG8eynEbs4v6UADQk5XvWE/2wA78oijpd2Lwy9ypsOdc2vByMkqM2iukjNtDISc7njvJltOa/c7RMp9ACGXA98sHh99acHIKX3amCxnDsDFx61iv5AoLW1avZHzj5TQLweEXF5zjXi8+qSCkRPIj06DWFNvaB0GYCSyhPOO3lfOjQ67EN7xC/E4UldYcpI8EROEnN591BKWG90AnHr8CdLuxdGXQqBUPL74fwtGVrKn94GQ0/Vv3mjrqEMOOVLavTjsQlh6mHj8+v8qGDnt7htjMmESKQnQWi1nWMj5R67gt5ceZ8upbZ+DpNwHEHI57KLU44sKRk6maabZ5/LW1DuPXsmh5cKRE16yr1xb4g03iMethxSMnEBuX2yL849cwXmrYgQNk2iwgjcdf5icGx12Ibwn1Rs7UAKHXCDnPhqlaKebxhUOqxRNQPtKWpypYDIorYDyVE+K5KS8+yhmW4/8gyfAQc1h2owecSFr2piFlQo9KaHXyyIhswdLOoesqLWjnmM1klPKm1Ij5Cf65d5HIbv6xLSx8tIgSyQdaAAMw2BDWBjKI1WS5dS6Ufwc7ZJ7H4VMac4vKTptcXCZcOT0RlZJvQ/LDhc/J/ohNir3XgpRpaMOq+onYJiMBiqhoknejQIBqE1NnkvE5N1HMTJ7w6azYWmV3ctSui3RsI/4GRuRex+FWHJa01hJIOB+L0uLDUtrWBsQtsRAxSpp9wGg5QDxc7xX7n0U0jsaY2gijmHAqgZ5zhyAjSlbYqhitdT7sPQQ8dOaXl8gqNr7Dq0QZ6ieyEpn7KwMlh4msrCTkwUnq2JFO900rrAaMVVlV0DClMXp1KYiQIO75d9LESqi0wArjQ4Chkm/WYlZVi/1XgUtJwmTS9MpDwVYkzKU94YkjSS3sOQ0UEBySotMyzzQAOyTKrHaE5S899WuFD8HdmN38/U53SNRhifEtLGVEqaNpWNNLn1VtpwitRCuFo8HX5V7L4U4pTty9741li1htMk90EBh6yjJztEVoQHKjSgxM8hEpey9rwB1lKJgQyBgsC4o9r49QW1LZIu17y2vKydS4n5z/nQs56h8WyIlp+F2iBdGwGE8lmDPgJgiKnvvW2MIHbVb9nk3GILqVElpAemoYkY73TSu0DopNoSX463yb1aTMhwKSrGridA0RXeK+5lL6RmVnClYW8BykqzUGdxNhBhRM8TOeKPce1lyKiClrqJk0WJZQjhWXkkulXujmpSBFxuGiQG591KEtZ5kTRtLpzW+CxBT4aRiGAWno0ajcfYOpprzN8pdU0tStsTmeCumbOdyQesouc7RqhExSW+nuYQ9w3Gp9ypMHaUm0Mr4AA2myGLfZsrWUYUoJzXrCaAtLv7fXpEtp4omCEUAE4b2yL2XIrb1iPVUV15CfUWp1HvZ592EgvOuraN2yb+XRjra6aZxhdqhlwDYGS0nnkgu8Op8b2ZF0wpjE0qfNlZZGpJ6r9DeJwFoT9bzar/kss8CkxPASx1islRtuVylzq5/ALDHbGT3oORIpJ3t8SokJa9dRTy7ZwCApsqw3BuN91MZFwea3bIrn0rKoKJZPC6QNfXkLvF/t7RWYkuCFHUjrwCwc0zy7wSk7X075d9LAY/v6AOgtqyEOskHmpqBFwDYG69maFy2M6ewdFQiadqHz6qIXFvCePVxAPaYDbzaPy71XoUmJ4AX20WPSdnriV2PANBl1rBjWPKRz3IQjPUWTGn9M68OANAisU0FAPEYtRMigLdrRG4AampgqDDW1D93CltiWZ3cjHmAuuGXAdg5Lvl3Agpy72sfHOfhrT20D0rWGx5EO900+fPkDynd/SAAnwz+nKGHb5d7P9tJUBib0H//bav9+HU3P8Cdj0v6dz35Q/jHNwE4M/gPAk//SM59LGoKq3TnJ4/uZEeqOf8nfv60XDn95gMArDY6aNxyp5z7WFQtFX0jErGC6Btx5+O7+NOzotfQ/zy4XZ6cAB76hv3wqu0XCdnJpIAyc+58fBc3/HkzAI9s7ZUrp8dvJzIqIvqfnfgaySd+IO9eUFCZOXc+vouLvyccLAPjk3Ll9OQPCb38RwA+GPo9I/+QbEvUFJ4tMZkQ2YFvvfURuTrq/i8DcGLgGcLP/FjOfSxq0soWC6C0/s7Hd/HsnkEAPn/X83Ll9NN/A6CJQZZu+7mc+1hEasQfKBgd9bPHd6ce75ZsS9xMABH0/EzHR9TZEgWioz7/u+cBeHbPoFw5PfEDIn0vAvDp5HeIPvZ9efeCgsse/c4D2zj2y/fxjtse5bgv3ydXVh5EO900+TG4B37/MXsAdcAwqbvvP8Tzsiggz3/74DjfvO8V+zppwqd//Zz7EYCUnCwCBmx88ho1chra6/u+Ee2D43z2t8/Z1/LlJA4WhgGv3/EVuXJK7xvh8zXVPjjOVb9+1r42kSQnEDJ58Eb7MoAJv79c730ZYMnJOj5Ll9OfPmHrqKBhYvzh41pOGTBdTiBZTlN0lMnSv1+p5ZQh7YPjfPWezfa1Kh0VMOCo574gV05Waf3kKIz1ybuPAmboKIW2xLl7b5ArJyiYNaXclvjrl+zLICamtiUyQrmO+sPlU2yJ0v+9QsspQ9oHx7n+Ty/acRNpOsrDaKebJj/6toI5tSTNMBPQt03ePQuoX872nlGmx20TpsmOHpdLP2eRU4CkXDlVNEKojELoG7G9Z5TkNEGpklNQtpygYKKeyuQEQlbTV6+qvU/LKXO0jsqZxZeT5L3P3vf2QDIh7z4K2N4zOiMJrGBsiZIIVLaIxz7PSix4W6JAskcX25bQOiozFl9HSZZTAVU3KDvvehjtdNPkR/3aGRPGkgSgfo28e1qb0HgfRP09Qn5148zmrEHDYFWjy30J6teCMXW5J2TLyTCcCLXPozSrGyuYPkevYOQEBdODanVjBdOHlUqREwhZTcM0gpL3vsKIeqqX0zQdZcjWUVpOWTPL3ifdlqhqhUAIkpMw3CHvPgooHh3l/zW1aHIyAyTrVrt7n+kUSOP3xdZR8m0Jaxq6llPGzGZLyN770nvv+by0Xtl518Nop5smP2ra4OB32pdxM8Cvln5SPC+L9L4RPs/4aK0pY98WZxpc0DC47twNtNa43Fi8pg1O/rR9GTcD3Fz2YblygrT+e/6X02v2b7avpcrprJvsy4RpcNXkexkra3H3PjPuWxjRtNaaMi46dpV9LU1OIGTVuK99GTcDbN30RblrqkAOnq01ZVx91gH2dcBArpzWvda+jJsB/rb+s2rkNNIB8ai8+0imtaaM68/daF9Ll9MR77Mv42aAO5o+LldOgaBTWl8AOurg5TX2tVQd9dpr7cuEGeDLwQ/KtyUKSEeddZAz9VCqnM6+2b5MmAZXxd9LlyF7Gnpa/z0f01pTxgdPcgJr0m2J1oPty7gZ4LnDviBZR1lZvv63Jb54zgb7WrqOOuBN9mXcDHD36qvkyqlmGWBAfFwMKPExrTVlLKtz5CJ1TXkU7XTT5E+diJh0NJ/A8dGb+Y3xGvn3LJDDJzhJ5Ve9fj8evPIUzj9yhZwbtR0GwGTVco6P3sx3R0/AlB05KZCoJ2CPIX/b4cvkyilNqb/RuImfJ05hj54OlzH7NAsn9mHLa+XKCUQ5KfCjmg9yfPRmnmw8W969oKAmjh21uh6A6kiIh648Va6cyuoA+FfzORwfvZn/i5wu714A5Q1QkoreDr4q916SeevhyylJpRL84oPHyJVT4zoA+huP4Pjozfw8eYq8e1kU0N5XEhQm/Udfs4/cvW/FMQAkIvUcF72Z744dTyyup9ZnijUJ8w0blsiV08HvwDrmXRL+L2FLDEgu5SogHXXA0moA9m2plG9LBMTE0t/XX8zx0Zt5tPZMefeCtID4HkhInhItmRPWNQEQChj8/T8kyylV5v5Ky+s4Pnoz/1v62gXekCehMFQtEY99XokCMDEpbObrz90gf015EO100+RP6lARbz2cDhrYM6CgKWJN4Rhg7QMTALxm/xa5Hv+UnALN+9FBA2OxBANjk/LuBwUT9QTYm5LTpjUNcuVk9b8rqydZJyKtr8peUwXS0w2c9XRgW41cOZmmvabal5wi9j7pztGUnCYGYGJI7r0kY62nVY0V8iOdqUbHY0uPUaOjDKNgDp+9ozEmkyaGAQctq5V7s9T+Y7YeTAcNvCp7PUFBOXOsNXXyvs2SdVTKlmjch4GSJkwT+c2wC0lHDQo5HbGqXq6cRjqAJARKGKs/EED+miqQ6gaAvSk9sV9rtTId1bP0JDU6qnIJBEpE4HC4Xe69JGOtp7a6MtrqJJcqpmy+aOumlI5S0I+sQM5RE5MJekbEUL3Xb2gtqgw3C+100+RPahOqaBYZb3sHxklO72zpNgViKA9NTDIcFVGmpbURyTcTSj1Yu4ymqjCgwAArIOfo3tShYmmtbOMrlRlTs4y21L2UGcoDu33fN8IylKXLaawP4sLYq2oW/3/S5RSusrO2/H6osQ7pS1UYXqn/q/KmVYACOUHB6ChrPbVURexMKmmkdFR5k7AlBsYmGYlKzsIoEOdoImnSMZQ6fCrSUYZSHVUYPagA26Ei35ZIBfCqW1laL/opKbMlRjphckLuvSRjObGlyykeTTlIoSK190mXUyBQMD2XbZtPhS2RCjiUp8670gOtUDA6qiPlHC0vDVJTVrLI32Zx0E43Tf6kDLDq5lWEAgaTCZOuYcl9bAok6mkpi9ryEspLQ3JvNoszR3qpgR319LeyME0zzZkj2Tlq/U7XLLP7H0hX7NVpfSNGe+TeSzJ7VMupsoXW+prUvXXUM1MsObXKllMyCUN7AahfKpqI7+kfV1daXyA6SrqcwNZRkYaVtlGurLTe53LqGp4gkTQJBQwaK8Nyb2bbEm0sS2WWSJdTgfR0AxbBllhuy0m6M6esDkpTfYp9XlrvOHNkB8SFfiIUoalZ9AdT4swpEB2lzJYA+3e6vlUMT+gajtolk9IoEB1l2xI1EQxj+jiZ4kA73TT5YZpOBlXdCpaklJO6vhH+3oSsUjg12R6WobyctjpV0emUnIb2+rpvxMDYJBOTomfNEtkGmBWdTne6yS41CJU6fSN87iC1Sg2kR6eHHDm1qZITOHufzw0wa++TnpUz2iWmUxoBmttWATA+maBfdml9geiovarWE6TtfcsVBoYKRE6p9bSkJkJw+jg/t5nNllDVAiE6COMDcu8lkVg8SfeICEqr1FHLahXpqPTSem1LZIYlp+o22upTTmylbXr8vfdZWfPSbYlJZ5hB9ZJVlJUEU/eXnNFZIDpKWYavh9FON01+TAxAbEQ8rl66COVw/lbqyrJyYFp0WpGcrL4Rybiv+0ZYcmqsDBMOBeXezJJTdVvaelKZQeXfNZVMmrYB1irdOerIyVpP7QMi20Qqtpz83VTXiXoqKteuaiVcGqbZLq1XlOXr4/UECrM9EnEYTmV81LSpCwylO7F9XFqvtMRqMXRUaYUYUAK+Djh0Dk1gmlAaCtCQGs4kjXQ51am0JQqjHE65jqpx1tPg+CTDE6p6LvvdlhBOL1V99yitxIjUqltTBdKmx+69p51uGk2OWMqivAFKy9WlsFvKYrRLRB98irL+U2kZiUqjnul9I3xsKFtyalPqHF2mrnQHCiIzp2ckymTCJGA4E+KkkVa601wVIRQwiCdNOodkRz0LIzq9GOXagLqS7QIrCZGuo4bbwRRN36loVlha3wZGQPRnHO2Wey+JKFtPME1HKZITFISO2pPmxJZeYjWLnPYOqCit97+OmphM0Dsqmr7L75Ho2BIV4RB15anSej1AKyMWxZYwjMWxJQogMFSMAxQstNNNkx9ppXCAuuh0gfSNUJa+PtabavpuQNVSdc5RKIiopzI5gd2oNb10R2nfCB/LySqFa6lW0PTd3vvaCAYM+3dDWWaOj+UUTyTpTPX9lH+gma6jFAeGhvZAQnLGgkSUlZfaJVZLIRBwMqiUlNa3isc+XlPKdFQ8KoKdkOoVpmjfg4LQUe2qBjLBFKdba00ZhgETk0nbmSSNAtBR1nqqKA1SXSa73/Ic56g+XTGUCU5QXF0ZcPr9pDtHrcSF6JCoLvMpji2hIDDkUbTTTZMflue/eloWgcq+ET5WGHvSGktKJa3pO6FSpweVHnedEcoiNMmE01S3po268hLKSxX3jfBx1HOvqvUEUw40wCIMJ/GvnLqGoySSJiVBhU3fU4ayMh1V0QzBUpG9Za1pH6KsbDGtTxigODDk/8On00xc0cEzFIHyeltOHUMTxBNJufcugL1PWSkcTNFRpaEALVVCLyoLOPhaTs56UpaRaOmoWkV93ezS+lfFwCEfMhKNMzQh+kVL3/um2XzKdFRpOVQ0iccFcI7S5aUaTa4MTY3QLNM9qLJCWQPQORwEQxNxhmT3jajxf98IZb33RrpE/zsjCJVLMAxDXc+cAlhPykrhYBYDTFV0OmUoj3ZDTME+KwFLTktqIgRkN30fmurMUbaeAgHfB4ai8QTdw1bT9wItAwbfywkUtkBIz8oxDJoqw5QGAySSJh3KSuv9a0sok1NsDMb7xONpGVTKyuF8vJ6UNn0fmqtiSLKOqm4TtmYiBiOdcu8lifaUnKojISrDsjMSnTJgULie0u7p1zVlmuYUR3axop1umvyYw/O/p19F3wh/Z+YkkiYdqkpC0krhgKl9I3TUc0GUNQC1I55LISgMCGWHz/RJVj7tG7FX1UTMxCSMdIjH1dMONLKj05FaCFeLxz4trbfLDBRnewCKy+H8raM6B4XDLRwKUC+96ftUHWXJqWdEYWm9T+UECstLp62nQMCwHbLydZT/e7opCwxZjpzSKojUAOl7n6IA3nA7xCWXskrCma6tMmveyvJVZEsEQ8LWBN/ufUqdo3PoKKVJJj6V09B4nLGY0ONKKlE8ina6afIjbeoOiMwFw4BoPEnPiGRl6/NoWnrTd2uinjSmRWhAYWp0AfR0Uxahscu12+ynlPVJtOQUG4bxfrn3koSy8lKr6Xuw1E77V7aeCqC0fnEyEqeVl+qyxQVJP9CobPoOUFNWQkWqtF5ZQ3Gfymk8lqAv1adL2aTFVLABVOoof68nSCsvVdacP01OqnpQVTSJ8mMz6Tj/fIayliITg6JXF9g6qk1Vf1jw/Zqy1tOiVDek7tkxNMGk9NJ6f+soa89pqCglUhJc5G+zeGinmyY/bM+/2BBKQwGWpKYGKutH4NOop11iVR0hJL3p+1RlAWkGmKqop0/7RsQTSXsipfQSq2llBpCWPSp7PZWUOX0jfBpNU9akOr0HS0CsXWUHGkhbU/40wJRNG5tMm0hpl5eK9TQcjTM4rqq03u/rSX22h2EY6qeh+1ROe1NyqgyHqI5ILrEammlLKOtBZR08x/sgOiL3XpLYa7cUkV0GPIucFiMw5FNbYq8yWyJl85XVQWkFwCJNrfenLaFMR5nmjDXVWBmmNBQgaWJXLUmjdqX46VM5KQ20ehjtdNPkTjIxq5NAXQ8qv29CKidiTp26AwrLrKqW+rpvROdwlKQJpcEAjRWKmr4vxnoC30c996haU4OzOUedDKpkUlFpvU/lpGzvs/a9knJxqAHKSoM0pEol1fVJ9GcPKmVDFMBx5syS5auutH6XL0vr2wecoJDqjERQ2IMqUmOXSvrRmTM8Mcmw1fRdekbi1FI4UNyDyvc6SpEzZ5711DsaYywWl3t/39t8ipw54/0QT62blI4KBAx1WYnaOVoQaKebJndGOsFMQCAkpmKmUNesNbUJ+bRvhLUJKWkqOY9i130j5kdp0/f55KQ06uk/OUXjCXpGrKbv6kt3ltRECBgQSyTt7yENH8sJFDpz0oMNac4I5TrKh/seOL33pOuo6IhT0j5rOZxkZ451z8lRX5bWKyuFg9mdOSqzfH2cPWr13aspK6FCetP3eaobBhT0XPaxjhJN3xX1HR2aWa5dU1ZCVer3Y6+q7FGf6qh2VXKy/n8qmiHkBN+V7X0+l9MelVObPYx2umlyx1LqVUsh4NRoK8ugsvpGYDqKy0com4gZj8Fwqun7YpQagK+jacoinjBHSYjKvhH+lZOV3h8pCdhDQqQxODMrpyQYsA2K3bq30byoK92ZuZ5AoY6aUloveRiABJRNWrSco+FqiFTbTyuTU0nECRz6MCtRWbaHac7RH3YxelBpOc2L3R92pi0xoqK03sc6amBskvHU8JYlsvvDzqGjrMCQtiXmR70t0TblaWXDFKz9drwfosNy7yUBx5bQTjeNJjds42vqJtSmqr/HlIbi/vP+K8v2GG4HTAiGobzRflptdNq/qdHKIp4wqzOnsUJl3wj/Tkjak7aepJdYzVJWDzrqmQljsTgDY+LA16qsdGe6jlIkp6pWkQmejDuBDx+hLINqgYOnzvKdH7t0R7aDYGIQYqlearOUAbcPTKgrrffh3ufYfAoCeLPoqEhJkMZKq7ReT62fC8uR01ipoOn7As4cpROBfVZan0yadqab9OFZs7QUgfTe2LKn1leLyfXgbx2lnW4aTY7MsQmpnQ7nXwPMKjVQGqEJOEveMpT7VPaN8KGclDUAnRyHsR7xOG1NBQKGPSVJ942Ym/ZFmWK1fMrT6soWU/0shzsgLrmU1WUsJ3ZVOER1RFFG4jQ5KWtUHQj6urRe2ZqaMyNxEbKxfSgn5T0Sy+qhtNx+ekl1hGDAIJZI0q1L6+dE2Xqapem7RZvy4ST+syXUTsScOozOQtkALev3Iz4OY71y7+UyvaMxYokkhqEiI3Fmhi/AsvpFyPL1sY6SHmj1OL5zun3rW99i1apVRCIRNm3axGOPPZbR+372s59hGAbnnHOO3C9YTCwQnX61f0x+3whfK3ZFZYuzDFGAVN+I1KQzZb2NfCgnZRGaob3iZ0mF3fTdQlmjar2eMmOxSw3KGyBUBqQdrnyC0ojnXDrKcmLL7hUGvh34MzQxyXBUBGMWS0dZcuocniAWl11a718dtdjl2qGgM7Ve66i5URbAG+uDeCor3nL6p1imKsvXck4M7fFdab2TOaqwDHguHSXbNg+FRUY2+K5k21pPLVURSoKS3Rlz6ihFzlHw7d6XSJp0DIn9SJeX+og777yTK664gmuuuYYnn3ySgw8+mDPOOIOurq5537djxw4++clPcsIJJyj6pkXCLKVw4Cyq0VhCft8In0Y9JyYT9IyI4Q/KGoBOi9BA+uFTVdTTX3KCtAag0kvh0sq1p5VHLlM19MI6eE4MwMSQ3Hu5jHXwlF4KFx0W/z8w596npLTep1FPu2RRpXN0mpys6LTaskV/GcqWnGrLSygvVd/0HUR5VzgUwDSdg7A0fKqjRNN3VZMWZ3cQgMo+if6tblDWx9f6v6lsmdL0HRQGhqqWQKAkVVrfLvdeLrNHlY5KJp1g63QdZWfNKwgM+fQctSi2xByVXXsHxklIL633p9Ota3iCRNIkFDBorAwv/IYCxldOtxtvvJFLLrmEiy++mAMOOIBbb72V8vJybr/99jnfk0gkeOc738kXvvAF1qxZo/DbFgFDs5fuiL4RYmHJN8D8mUVg9eYqKwlSq6rp+7SsHFBYvpN+8PRZ3whlDUDnKNdOv7d0OYWrnCw7nx1qrPR1ZXIK10xp+g6qy+H86czZo7LEamj20h3rd6R/bJLRqKLSep/JSdlUOJjTmWMYhrqS7Rp/yql/bJKJSZEFKL/Eah4dpczplrL5RjphUnKPU5dR3lKkeqbNp2w9BYKOzemzNaXMlhjtguQkGAEn2yyFsvUEvtVRe1WtJ5jT6dZSHSEUMIgnTbqGJe9HPg/gLakRbQiKGd843WKxGE888QSnnXaa/VwgEOC0007jkUcemfN9//mf/0lzczPvfe97M7pPNBplaGhoyh/NHMyxCYFKA8yKevpzE1paG5Hf9H0eQ1lds1Z/9o0YTZvyJb9R68LrSTcUnxtlpTtDmclJemm9T+XUrsqJPTHgNH2fFnCoipRQbZXW66EXs6J20mIGAQdlcvKnLdFUFSYcUtX0fRZbQlWWb1mdaMGQ/n18QDJpKmxVsfB6UjtAy197X7uqvc/6/a1aCsGp2cSWnLqGo0TjkstzfaqjlAXEE2nZmtPWVDBg2MEOZW16fCcnhc5Rj+Mbp1tPTw+JRIKWlpYpz7e0tNDRMftUsAcffJD/+Z//4bbbbsv4Ptdffz01NTX2n+XLZ5bkaUg1fU85T2bNoFLcg2pwj9gYfYIXIjSgUE4+7RthGclVkRBVspu+W86c6tnklMqgUtKDyn9Rz/QSK3UTMWfKySobGp9M0Dcak/s9fCgnSC8DVpSVU94AJTP3WScrUfegmg3HQSBZTvM0fYdFyMaeGBR/fMKiTMScJYNKmZzSS+t9ZEv0jEaZTJgEDGipklxiNU9LEbXZ2P6sRHGmNi/OdG2A+opSylKTUy2nhTR8rqOky2m4HcykKJeuaJ7x1+pK6/0pJ6U6yuP4xumWLcPDw7zrXe/itttuo7GxMeP3XXXVVQwODtp/du/2l0dZGdaBprTSGWOchrKoZ2Wqb4SZ8FXfCGcTUuh0m8WZo6Oe87NHVZkBzJ/plrp/+8CEur4RPsr4GJqIMxoT0WD5PRLnNpTDoSDNqQOV/Awqv/Z0W9yJmBbqyhat6PSrviqtVyan0R5IRAFDZHxMQ1k2drhSTOUEX+koZRm+MH9/WJU9qHyY8WGtp5bqCCHZTd/n0VGWnAbHJxmekNxz2YfZo/FEUl3T93l01OKU1vtnPYHCVhX2GWopBGauXWXDFKx9d7RbJL74BKU6yuP4xunW2NhIMBiks7NzyvOdnZ0sWbJkxuu3bt3Kjh07OPvsswmFQoRCIX74wx9y1113EQqF2Lp166z3CYfDVFdXT/mjmQXL2Kme2fQdFHr+AwFHYfnI+68sK2diCKKpqP1i9nQDX0Zp2lVFPGFeQzm9b0TnkI56TsdaT3XlJZSVyi6xmrt0B3TUcz6mNH1XNUBmlmADKJRTdZvo2ROfgJH5hz55iT2q9j4rw7eyBUKlM/5aWTY2+HJNWX3CpA+QSSacpu/zVDfsGVBQWu9DOSnLnoJ5dVRlOGT3EVYWGPKRnLqGoyRNKAkqaPo+T+89WISKIZ/1XFZmS8zRG9ZCmZzK6qC0Sjz2kYNUaWWXx/GN0620tJTDDz+ce++9134umUxy7733cswxx8x4/X777cezzz7L008/bf954xvfyCmnnMLTTz+ty0bzZZ6eEaC4B5Ufo56qNiFLTpEa0SR/GpacuoejTEzqvhHTURahMc00Q3nm3hQMGLaDVlk0zUdKXVmvHFjQmdOWcmQry6Aa2uub0vq+0RjReBLDgJYayQeahXSUql5hoVKntN5He5+1ptRle8x+8FSaje1DHaVsIuZIl5hEaQRFhcE0WmvKMAyYmEzSK7u03oc6Sm1G4tzVDZC2ppQN0PKfnJbURAjIbvo+xzA6C2V7n6UjY2mT2T1ONJ6gezgKqJzaPIeOUhXAMwxfZo8qm67tA3zjdAO44ooruO222/jBD37Aiy++yIc+9CFGR0e5+OKLAbjwwgu56qqrAIhEImzYsGHKn9raWqqqqtiwYQOlpTMjqposWKB0R1m/HPBlNE3dRMz5lXpdeQnlpVbfCB31nI6y9PXxfpgcFY+rZ5ZYASyr1T2o5kKZnCCDvU9R1LOyBYKlorTecjB5HKvEqqlycZu+w2Jl+fqjB1UiadoTthe7DNiSU/vgBPFEUu538WEPKuW2RPXMpu8ApaEALVXiUKWzfGeibCJmYnLOpu8WyrOxB3dDUvLadYk9i9H6ZbF1VGk5VDSJxz5ZU52DwuEWDgWor5B8ns/Q5lOTZOLHvU+Xl1r4yul2/vnnc8MNN/C5z32OQw45hKeffpq7777bHq6wa9cu2tv909fL19ie//kjaUMTcbZ0Dsv9LlY/gt2POdlCHmZK0/dFnIgJqb4RKVn95YVOO7tBCpacul7yhZxAYTNxS07ljbM2fQcnmvbI1l65crIiaWM90POKvPu4iLJGrclkWonV/Hvfs3sG5copEICqVMbJ3qfk3cdF7CEKSp2j85fubO8elSsncIIe2x7wxd7XM+I0fW+W3vR9/sBQc1WYUEA4Ap/dI3nAgfUd9jzpCzlBWnmpdKdbWkuRObB01F9f6pKso1K2RO8rvpGTMptvuB0wRUDGcqRMw+pB9fiOPrlyql4KGJCIQccz8u7jIu2LMuRs/gyqF/cOqdNRm+/2xZpKn65tzNLiyFUWaimSWk+7+8bYK3vYmSWnHQ/5Qk7jsQT9Y6J3pPQWCD7AV043gMsuu4ydO3cSjUZ59NFH2bRpk/13999/P9///vfnfO/3v/99fvvb38r/ksXAApvQH57Zaz8+/aYHuPNxiV55K3X9lb/ATRvgyR/Ku5cLDI3HGbOaviuLTs9tKFsZ9Nf/70sc9+X75MnKcgwM7PCFnGAxekbMvp4ABsZEyc7P//mqXDm9cJfz+FtH+kJO7aoiaWNpTd/nyEjc2j0CwJO7BuTK6ckfOtHOX7zbF3JysnJU9jWa3Znz+I4+AIYmJuXKCZxpmE9+3xd7n11ipbLp+xw66hdP7CaeSpI595aH5cqpN9Xrd9fDvpDTZCJp9/iUHhjKQEclUtlMN9+7Re6a2v2o+DnW4ws5gcIWCAs0fQfoHha/M394pl2unP71UyDVI+y2U3whJ2WlcJMToiE+zKmjXmofEj87h+XrKDO1yd5/nS/WlLKAOCxYrv33LUKOk0mT47/yV7lysn5nnvulL+RkBVorwyGqIzMzpIsN3zndNB5hngyq9sFxrvr1s/a1acKnf/2cnEjN4B741x3OtZmE31/u6QiAFaFpqCglUrK4JVbtg+Ns7hyxr5OyZDW4RyhzCx/IyTRNdb33MpDTvS86TdilyukPlzvXPpATqJyImXLwVy2BYMmMv24fHOcHD++wr6XK6fcfS3vC9ImcFDmxk4l5nQTtg+Nc+4cXnJfL1lFb7nGufbCmlK0n8JYt8c/vOtc+kFPn0ARJE0qDARorVGUkzq2j/rXbyUSUuvfd81nn2gdygkWYtDiHI6d9cJw/PONUBCnTUT6Rk7JSOEs/lZSLBvnTaB8c59a/OQP/pOuo9n851z6QlTJbAuat7GofHOfq3z1nX0uX0wu/c679JKfaiPyMRB+gnW6a7DFNR2HMEp3e3jNKctoAnIRpsqNHQtpt39aZ03bMBPRtc/9eLtFul1gpiNAsMHVne8/ojOekyKpvqxNJs/C4nHpHY8RSTd+XLHIZ8PaeUabPlNJyctirrAx4/mwPZXufb+WkqBRupFP8fwRCovfdNJTrqOmr1+OyaldZBjyPc1S9LeGvNWWVwilp+q51VM5E4wl6Rqym74sbwNNymh874KCquqG6TTTIn4bWUfOjzJaIjjjDJbygo3wmp/YBRdO1fYJ2ummyZ7wfJlMbyixOt9WNFUy3/4KGwarGcve/S/1aMKb9GhtBqF/j/r1cYnEiNLOX7qxurGC6upciKx/LqbkqTImqEqs5DGVla8qHclqUpu9zlMJpOc2PsvJSS05VSyEwM5tY66j5UTYRMx6D4Q7xeJa9T8tpfpROhctAR2lbYnYs/RQpCVBXPjND2lW0jsqLvarLgBfb5gMhq+mr1+OyUmZLWM7RcDVEqmf8tdZR87NHD1GYgna6abLHcuRUNEPJzA2vtaaM68/daG/hBnDduRvkeLpr2uDsm51rIwBn3zSnk8kLKCszyKDpe2tNGe89frV9HTQMObLyoZy8UmIFQk7XnH2AfR0wJK0pW05pq9fjcuoejhJPmgQDBs1Vi9vXyNr7LKTLKd0A87icwIl6KisDXkBOynTUGWml9UbQ87JSNhHTbvoeFkNkpmHLKe1Qo20JB6/pqEtP3ce+lm9L+EdHKW36noGO+tKbFeooH8lpLBZnINX0XdnwrMW2JUDI5PiPO9c+0lGL7RxVbkuceaNz7QMdZWXNK+nj6wO0002TPXaJ1dwL/fwjV3DVG/YDYNPqes4/coW873PYhdCwTjx+83+Law+jrAHoaLeYGoUBVa1zvuz8I0XpaUVpkAevPEWerA67EA58s3h8zGWel5PSjES71GDuJtUXHrOKSInYsn/2/qPlyuk114jHq0/yvpwGnabvQeklVvM7c0DsfYevrAXgc2cdIFdO7/iFeFzW4Hk5TSaSdA4rKjXIUEddcPRKAM47fJlcHbXpgxBIZbi8527Py8qeiCldTgs3fT//yBVcd444fB64tFq+LbH0MPH4DTd4Xk7KdNTkuBhaAPMOZXpXaj0FDPjbf5wsd+877KLU44s8L6d2VSWLsKCTAODfjlpBU6XoAfjdi46QK6c33CAeLz3M83KynNhV4RBVEUUZiQvYEievFxNoP/7a9XL3viMuFj8DIbj8Gc/LSlnZYgbD6M4/cgUfPHktAGdsWCJfTmX14vE7f+l5Oe3V5aVT0E43TfZkoCwA9l0iUnEHxidlfyOoTfUsSyi4V54oj9BUtc7a9N2iuVo4/0ZjCerKS+V+p4ZUJDw2s5ec11BWupOIL5iRCGAYhq24pveQcJ3m/cXPiX7JN8ofL5VYWayorwBgwhq7KIvWg8XP8T7P730dgxOYJpSGAjRUSN5nMpTT2iYhp5FoXO73MQyoTgU+pvcg9SDK1lSGctqvtQqA/tGY3O8DUCccR8Sj8u+VJ+qavqf0U0nFrE3fLRoqSgkY2MMdpNKYCrTGhuXexwXU6qiFA0Pp3yWekLwftRwofo73yr2PCyhbT5Dx3reyQZQpjscScr+P1fs0GYeQtx0kQxOTDKd0tld01LrmSgCGJxTYYVYwMSn5d8IFlK4pH6CdbprssZT6PFk5AC3VIpJmjbSXipXJNdw+/+s8gDLP/1BmyqI6ErIzqKTLqmqJ+Gn18fEwyrI9RjrSmr43z/vS5ipFa8pHcrKUupJI2gKDFCyaVe195Q2pDCpTDA/wMM56Utj0fZ7oNEBLKuCgdZTDxGSCnhHh3JLfTHz+SYsW1iCbruEoSdkRB5/ICdKbics+eKb1hp2nPDIUDNBYae19kp2WftJRg4p0VHQYJlITZDPd+4YVysnjAQelQ84y1FHNto6SLKdQWNgT4Pm9z7L5astLKC8Nyb3ZAuXaFktUyQl8o6NM01Q35MwnaKebJnuy3IT6xyaJxiV75O1NyNsGWCJp0pE64Envl2NHaOZX6oZhqFMYVUvFT48rC1DYANRy5FTP3vQ9HfvwKVtO1Sk5jXSJTDwPo6yvUTwqHKSwYMDBWk/S5RQI+ObwqbZcOzNnTkvNYhjK3paT1fS9rCRIraqm7wvoqMbKMIYB8aRJ35jkbDefyAkU9t7LMNgAjo6S7siu9o8tYekoZXIK18za9D2dFltHyQ7gpdZTfMKZAulRlPVbNs20c9QCAQdLTsMqAkPWmvL23qe2XDuzzNHmRQngeVtO/WOTTEyKag9LLxQ72ummyZ4M021rykooDYlfMemHT/vg6W0DrGt4gkTSJBQwaEplLUkjQzmBQoXhEzmBygONpdTnN77AMZQ7pGdQNYpmuj7IoFI3xSpVYhUMQ8XMpu/pqM2gSq0p6/t5FKVTrDLc+1rSDjTqMqi8Laf0UjjpTd8zlFNJMEBDhdCXllNQGj7JIhiNxhlMte5olX2gycaWqFKko+x9r93zGVReafqejlWJIn09lUSckuQhb68pZTbfxADERsTjBQIOts0nW07gG/vcm7aEWE/DE3HGYpID1T6zJZqqwoRD8ycUFAva6abJngyjnoZhqCsx9YmhbEU8W5Q0fbfS1zMxwFQ53VJyGun0dD+CWDxJ94hwFEsvNbCHKCw8gUhZeamPMqiUlQEPpTXnX8AZYR9oVDrdPC8nRWUGk+MwluoftMCBxmomPpkw6ZeeQeUPOVkli2oONAsPkLGw1pT0jA+fHDyt9VQVUdD0fSgbWyIlJ2UZVONOSaUHMU3TaYEg3ZbILHMU0gKtsstLwTf2uV1eKt2Jndr3yhugZP59Vm2bHn/tfdJtCdNM01Hzr6nKcIjyUuFY0qX1Aqe6QWe5WWinmyY7EnHHu55JqYGqssVqf6TbKoukQVZRzyWqFHtlsxhzbSbFdFWP0jnkvabvoLC8FHxjKHszi8CRkyk7C8MnJdvKyoAtI7m0EiK18760NBSgsVKsb/k6yi9yUlgGnJWOUmVL+KPEao+qkkXwppxKypz17WFZDU3EGU01wZe+pnKQk3TnKPimHE6djsrClkjZfEMTcfnDFHyjoxTJabQHElHAcP5v5mBqmx5dWg96iMJsaKebJjuG24XDxAhmNC1PXdlimlJPSp4YmAcvtQ8BUCe7Vw5A/07xM7iw06hFlaEcCDpTkjysMKz09fryUvnZSj1bxM/SygVf6jQ/1lFPEE3fe1MTDUOyM0c7nxc/yxoWfKlVOh5LJBkYkzzNyidRz529YmJxpERymYFVrl1Wl1HJrVUOJ31N+UROr3SJaZBVEckNqieGIJrKUMqgjFWZLWHpp9iIaEzvUV7cK2yJetlBIYC+7eJnaOGMBbU6yvuBIevgWRUJMTAuOZu2+2XxMzx/PzfQQ2SmY5ome/rHACgJSrYlOp4VP8vnb1MBUBUOUZbSmeqyfL2to7b3CFuirFSRLRGpFQ64BVA2QMsncnq5S5RQ15QpOO/6BO1002THP/9H/DQTcPNB8OQP5315S5UixV5hZVAlPJtBdefju/j2/VsBuOeFTu58fJe8mz1+uzOi/afnLyinZlW9wmBqLxaP8punRCSyY2iC4758nzxZPflD2PZX8fi+azNeTx2DEwoyqLxvKH/3we3249fd/IBcOT38DfH4hd8uKKdwKGgfhuX3NvJ+f487H9/F1m5hKH/i50/L3fue/YX4Obgbbtqw8JqyDGVVvcI8vO/d+fgu7vqX+H7/8+B2uXL6xy3O428fnbmcZK+ncKXjtPCorO58fBdfufslAB7e2itXTk/8APpT++yv35eBLaGoVxj4IjBkyWZ4Ii7flnjxd+LxQzdnvJ5Es3PZg868L6fbH9xOLCFsqrfe+ohcOf31S+Lx1vsWlFN6mx5l/Sw93B/2zsd38fTuAQA+f9fzcve+p38sfk70Z2hLqG7T05VR8sticOfju/jJo7tSj3fLlZOP0E43TeYM7oEHb3KuzST8/nKnnGcWltQoMpSDIeF4A08q9vbBca769bNYbhIT+PSvn7N7E7jK4B740yec60zkpLTUwNup0e2D4/z88Vft66QpSVaDe+D3H0t7wlxQTtaBJhpPMjQuuVmrx0u22wfH+do9m+1r+XJKW70LyAkUGmA+kNNVv37WvpYmJxAyefonznVGOkpRlq918IwNezKDarqcpOuo+693rrPQUWonzXpPR023JUCynP5wuXOdxXrqUtErzONlVu2D4/zg4Z32tZdsiZqyEsKpQWfdsmXlAx31xT+9aF971paQLSePlwHP0FGybYnH/8e59pKOKm+EQAgx6KxL7r1yQKkt4TO0002TOX1bgWnZNWYC+rbN+RZlZYvg6ZTb7T2jTB+OlzBNdvSMuX+zvq1CQaSzoJws56iKHlTelRMIWU3/H5AiqxzkFCkJUpsqTZZfDufdgyek5KRiTeUgJ0hvKK7KUPaunJTufVnqKGXlpeEqKK0Sj4e9NxHY63JalInAHtRRnrclUuupbzRGNK4qg8p7cgJv2xIig0p1+xfv6ihv2xKKguKWnEa7RP9uj+F1HaWsBUIgAJXe3fuUyslnaKebJnPq1wLTeh0YQahfM+dbmlWVl4Kny6xWN1YwveVU0DBY1Vju/s3ykNP4ZILhaHGPu17dWDHjOSmyql8rSqLTWUBOMLXEVCoeLwNe3Vgx/bfck3JS1t9jYhBi3jNqVjdWzGjZJXfvm8YCsrIPnkrL4by393leRymd4uddHeV1OdWWl1AaFPulsoCDR8vhPG9LqJqyrW0JQb5ykq2jKhrF9/HooDPv2xKLMWnWe3ufUh3lM7TTTZM5NW2w9DDn2gjC2TfNO558cTYh73n+W2vK+NKbN9rXAQOuO3cDrTKmWdW0wYFvdq4zkFNZaZDqVONs+b2NvCsnELJaUe/IJWgYcmRV0wbHXe5cZyAnUNms1dvR6daaMo7dxxlqIFVOZ97oXBuBjOSk7EATroaSlDHjQVm11pRx/hHL7WtpcgIhkxrnXlnpKKXDSby397XWlPHJ0/e1r4OyddTK45zrDORkle70jMSYTEgeluRxOV1/rkJb4pB3OtcZyMkwDFtHFXvj99aaMvZtcQYkSdVRJ1/lXGdoSyirRLF7UHVCUnL2Yw601pRx6v7N9rVUOZ19s3OdsS2hqLx0yqAz7zlzWmvKePexq+xr6bZE43rnOgsdVeyVXa01ZXz2zAPsa6k6ymdIHk+lKThKUovmxH+Hwy/OWFmMxhKMRONUhiX+ynm8v8dp+7dwFaLO/W//fjLL62dGQV3DGkW+/5vgddcvKCcQvViGJkboHIqyrqVK3nfzeH8PAOtMd+2bDuS0A1rkKYulh4ifTfvDBb/KTE5WqYGq/h4TAzA57qx9D1FbJoYVXHTMSj548lp5clr3WvHTCMDHnoHa5fO/HmhR1SvMMISs+raKNdUwS4R2kVnTJPa649Y2cMPbDpZrfFmNhc+6Cdad7p2DJ3heRx2xqh4QjsjfXnqcXDlFasTPoz8Ex3xkQTnVlZdSEjSYTJh0D0dZWivxu3lcTm86pI1P/UrYEnd/7ETWL5GorxtSmR1rT4M3/r+MddSr/eMKnDmWnLxrSwQCIrfhU6/bl3MObZO3ppYfJX5WL4f3/jkjOSkrW5wy6KwHqlrk3i8HmlMTx887bBmfOGO9PDkdeC7c9RHx+MP/gKZ95389ikvrq1uFw82ja2q/1F53yPIabrngcMmOnFS61ulfFHLL2JYQg86MDKZy54zHdZQVEK+KhLjn4ydqh1sKnemmyY6R1Ea85uSMlHpFOERVytFW7OVwVtS3sTIs1+EGIqII0HZYRnKCRZi849GSENM0bVmdur9Ehxs4vZ0a12UtJ+nrKVIDodS/3aOK3ZLTUasb1MipqjUjhxs45aXSsz3A81mJVpnZgW01cuWUTIh+NAD7vj6rg2fPSFRdBpXHddTK+gr5RrJlS6w8PiM5BQKG3Qah2MvhrMb3paEA69IyqaRg7X2tB3lPR1lyGumApOS1myPdqTV10vpmNTqqYXUWclKUjT1l0Jk37T5LRx2+qk6unCzbvLQyI4cbqO5n6Q9bYt+WanU6ap/XZrSmmqqcQWeD45KninpcR1lyaqst0w63NLTTTZMdVvTD2pgzwC41UFYO580IjbUJWYaOVCyFmY2clB1oUt9pvA/iCrJLsqR/bJLJ1Oj4pkrJsspBTspKtg3D0yns4GQnSV9TtpyWZPwWZQdPSJOTNw0wqyzGyiaQxmi36EdjBKCiKaO3NFSUEgoYmKZwvEnF4wcaaz01K9FR2dsSLdqWABznaEt1WG42BeRmS6gq2a5sBgxIxmGsR+69cmAykaRnJAao1FHZrCc9nMSiM21NSSUnW8Kx+ZQNOvOoM0eZnGJjok8uZCyrSEmQOmvQWZEP0LL2FGu4hEaQUa3fXXfdlfUHv/a1r6WsTHs3C4roMMRGxGOr7j8DltRE2No9WvTTFq1NqEXFJmQfaDJX7EtqFB1oyuogGIZEVHzPupVy75cllpwaKkopDUmOS+QgJ2X9PUCksPdv9+SaMk1T3ZrK5UCTWk89I1HiiSShoMTfJY+XbCuXU2WL6E+TASKDKszewQk6h6Jyo7Jed+aoklMy6WR85LL3qTzQmCYzuncvMnawocqjtoRdtihZTsES4Xgb6RSyqmxe+D0KsTISS4IGdeWlcm+Why0hXU4gbIn2pz1pS0BawEH2msop2CC+08RkkqGJODVlJTK+mcDjOsoJDEmWk5XlFipzWiFkQEt1hP6xSTqHJthXZtm/x+Vktb9pkR1o9RkZOd3OOeecrD7UMAy2bNnCmjXzT2TR+Awrfb20CsKZlzQ40xYVGcpjPSKDKuStxd6lKtsD0srhPHigsTKoBnYKA8xjTjdLTk0q5DSSh9NNZQaVB6OeQxNxonFRUiRdVpaDIItgQ0NFmGDAIJE06R2NyXVkeLxku1vV3jecvZxAGPB7BydEVmJm1cO54eGpmKBQR431iuwkjKwcJXb2qOzAkPX7k5wU37WiUe79sqTLziLwto5SluU70il0VOvB8u+XBbYtURkmMH2cn9tYcqrMQU4qelB52JaIJ5L0jijK8rWcJFnoqEhJkJqyEgbHhTNHjdPNe3IChTrKPkO1ZBV0aa6O8FLHsLqKIa/aEip1lI/IOPTe0dFBMpnM6E95uR4LW5DkkBYNTkRCegp7eT0EU9FE65DsIZSl28bGIJpdWjQ4ET41U/y8q9i9npFofa/ukSiJpOxSA+/KyVLqNWUlREoyy2rKmRwy3YIBwy5Plt8n0bulO17PSIS0skWV0xZllwnlgHI5VTSKbKUMUVYOFyqF8pSjzYN7n1OuLVlOppmTjlJWXgqe1lFKS6xysiWEnMZSg86k4mE59Y7GSJpCZzdUeK+8FBS2FfGwLQEKs7FztCWWKGuBkJLTxKA483kMp/WLLi9NJyOn20UXXZRVqegFF1xAdXV1zl9K41FyUOqQtgnJNsA83oPKSV+XnZWT+reXlEM483W4xJq2qCI67eFyODtCoyQj0SqHy3xNNVaWEjBIZVCpKrPynpyUrSfIKXMUnAmm8huKe3eS1Ug0zlgsASjMIshyOt4SVc4c6/cnEYPxfrn3yoFOVXtfDqWlkN7TTUU5nJf3PkVZBOP94ncVsmsporJs0cM6Sq0tkX3ZYnlpiKqIKHhSV7LtPTlZ66mxspSg7IzEHM9RyipR7KmY3sugSiZNJ2te9t6Xs45SJKdIjTjjgXPm8xBWwEXJ3ucjMnK6fe9736OqKvPa5FtuuYXGRm+l42tcIIcyA1C4CYGno2nddgNQRT0jKrNLi3ayPaIkizmDalhRhCYedQ7eWaypUDBAY6Wiw6eHndhdqtYT5G4oV1kZHwrl5LEMKms9VYVDlJdm1NEid0ayP3hCeja2ZDmFwlDeIB57eO+TnpmTQ7AB9BQ/i267X44iW6KsPqt2Hdbvz0g0XtQZVMpsiSkZidkFHJy+bqrK4TxoS6jMyrGdOdlmYysODI33w6SCfTYL+sZixJMmhoFtA0sjRx2lrLLL40kmXap67/mMjMtLzzvvPO6++275k1M03iXHg2ez6v4e4Mm+EeonLWan1BsrwxgGxJMmfWMxCV8sDU/LyXLmKMrKCYbFcIksUNYzx8N9I9ROWsy1JETVgSb1veLjMDEg915ZoiwrB1zIIlDozPHY3jceSzA8IRwkyva+HOUkvV8O+ERHebPEqjIcojJsZVCpKofzspwkr6eJQbH3Q9ZOgiWq1pQtJw/aEnZWjooAnsfLSyO1EEr9P3gsg8oZchamROZgKsijsmsxbAlvrSnTdDISdXnpVDL+re3v7+fMM89kxYoVfO5zn2Pbtm0yv5fGi9gZVDmWhAyrGHftzahnMmnSbTVqlR6dTmsAmgUlwYDdz0KdM8dbcoL0QQqS5TSSJqcsGxi3qOqZ4+kMKkWGcmJSDGeBnPc+6euppEwYy+C5qGe3qv5TkLeOUmMoe9NJYK2nspKg7TCRRs5ONyGn4Yk4YzGdQaWuxCo7WwLS+ropy6DysJxU2RLhGijNrqe2IydVg856RZa/h+hSGsCzhv14NDCUnkHlsYCD2mF0+ekoNZVd3sx0GxibJJZIDTmTnZHoMzJ2ut17771s27aN9773vdxxxx2sW7eOU089lZ/85CdEo97aQDWSyDXTLWVwTCZM+scm3f5WU/FoCnvvaIyEnRYte3R8btFpgCU1qhqKe1NOkF5q4M2MRFBYsm19t8kxiA7JvVeWKJOTdaAJhJzSwAyx5SS7vBTSerF4y1BWlu0BLkSni7cHVXomttQphpCznCrDIcpLxdAU+aX13pTTxGSCgZQdJb+8NA9bQlVfN0/33lM1ETO37ClQ6Mzx8KAzu1WF7PUUHYbYsHicYxmwGh3lTVuiywe2hB505iQD1FeUUhqSnJHoM7L631i5ciWf//zn2bZtG3/5y19YunQpl1xyCa2trVx66aU88cQTsr6nxgvkqNhLQwEaKoSyLdZyuPS06JDstOgcG4CCY3Soa6rrLWVhmqaTQaWy916W2AaY7PVUWi4atoLnop5O03dFmaOVSyCQ3dpVVl4Kno1Od6rq7ZFMwGiXeJxjC4TB8UkmJhNuf7OpeFxHKclIzLH3nmEYCsvhvCknK3O0NBSgukxRRmIeOkqZnEa7IS65LUaWdKnWUTnYfMrK4TycQaXOOZqSU2klhDPvkw6qWyB4M4PKGZ7lXR3VWBl2Bp2NFOc5SumQM5+R8+n/1FNP5Y477qCjo4Prr7+en/3sZ2zatMnN76bxGjk2AIW05pIqy+E8hFPf7s2JmBbKmoBacoqNiOifR+gfm2QyIaJT0tOic5g2ZqGsvBQ8q9i7VK0pO9iQh3O0iBu/KysJGe0GMwlGACqasnprdSREpESYQ+p6UHlLRykrWYScy4BBZdmiV+XkZHuoy0jMxeZTJKeyegiUiMceyqCaTCTpHRVOQHU6KpdMN5Wl9V7VUYoyqHIcRgd60BkolFNsTPRJhKwDDsGAQZM1QKtIB53ZwQbdz20GeaXcbN++nRtuuIHrrruOwcFBTjvtNLe+l8ZrRIeFgwRyinousRSGbMVul1h5axNS1vgYck6LBoVRz3AlhKvFYw/JyslIVJAWnYecFmcisHfkZJqm55uJg7Oe+sdUZlB5R06wCE3fK1sgEMzqrekZVNLXlEfLgLtUySmZzC8bW1nZYkpOI12QkNw/LgvsMmCVPRLzsCWkyykQ8OTeZwVaS4IGdeWyW4rkLidlk5vBk3IChRlUeTixm1KDzhJJ03bmSqPam043ZVnzlnM0VOZUemSBsmCrV20Je7q2znSbTtanyomJCe644w5OPfVU1q1bxw9/+EPe+973sn37du6++24Z31HjBey06CrhMMkSZ9qiIs9/dAiiI3LvlQVqG4DmnpG4KE1APTR5xxmioEBOeUU9FyODyjtyGpqIE42nGrXKllUeDoLqshDhlPO2W3ZfN4826O9WtffZZcDZB4Ugbcq2qgwqj5VYKdNRY72QjAMGVDZn/XZl5aXljWAEAdNTGVROFoE/dJTSSbMe0lG2LVEZJhCQnJGYYykcpDlHhycUZlB5R07xRNIuA5RfXpp7uXYoGKCxUvVwEm85R5XpqPRy7RyyidWV1qfZEh4adKZUR/mMjJ1ujz32GB/84AdpbW3lkksuYcmSJdx9991s27aNz33ucyxfvlzm99QsNnmkr4PC8tJwleiXAJ5SGJ2q0m1jYxBNpUV7vhzOe6nRfslItL5f32iMaFx2BpX35GQp9ZqyEiIl2WU1ZU0e5dqGYahbUx4sCfFLRiIo7L9n96DyWgaVYjlVNEKwJOu3K2uBEAh4cu/rVDUR0zTz1FGLMRHYQ3JSWWKVhzPHClqJQWeSM6g8KKfe0RhJU5QFNlR4twwYFK4pjwbwlGVjuyQnZbZEfNwph/UAzlAmXV46nYydbkcffTSPPvoo1157LXv37uUnP/kJp512mvyeEhpvkIfxBemlBiozc7yjMJQ1lrQiniXlTvlmFqh1unkvNdppfOzt3nt15SWUBhVlUHkwhV1po9Y8mlSDwswcD07xG4nGGYsJp7CyLIIcgg3gtECQvvdVNIkMKjMp+tB5hE5Ve18emaOQfqBRWQ7npb1PURbBeD8kUk6YPAYpdA1FMWVnYXhQR6m1JXLPdCsJBmisFOWvxVhab62nxspSgrIzEl06RykbdOahDKpk0nSy5lVNrM9VR6kaSFdSBpFa8dhDdp+VXKMHKcwkY6fbP//5T5566ikuu+wy6urqZH4njRfJo8wAHENZbamBdxR7t90AVFHPiMqWHNOihZx6RmJMJpJufrOZeFBOTnN+yXKKR8WhBnJaU4ZhqG8o7qFyuC5V6wnyNpSbVZVsp5eEJCVnP2aItZ6qwiHKSyVPWsyjxArSS0Jk96AKOk4MD5VZOYMUFGUR5BBsAIVObPCkjrKHMqnqP1VWD6HsD09WBlUskaR/bNLNbzYTT+ooRbbElIzE3AIO6rKxPSgnlVk5eQyjg0VogTA56plBZ31jMeJJE8PALrOVRp46qqVGpY7yXsl2l6reez4kI6fbM888wyGHHJLxhz7//PPE494pm9C4QJ4Hz8Vp/O4dxe6k26pKX89NqdeVl1ISFM46+T2ovCgny5mjKCsnGIay3IIYytaUB/t7OA11FWYk5rn3Sc/yrWgWkzvNBIz2yL1XhijLygEXnKPFW1o/FoszPCFsNmV7X962xIT8DCpP6yhvl2uHQ0HqK6wMquIrrVdmS0wMivIyyN1JoLwFgjf2PUjPylERwMvTlqhSZEuUVkA4NUDAI7JyhpyFKQl6d8gZFHebHtM01QbFfUZGv7mHHnoovb29GX/oMcccw65du3L+UvPxrW99i1WrVhGJRNi0aROPPfbYnK+97bbbOOGEE6irq6Ouro7TTjtt3tdr5iFfz39q8fWMRInLzqDyWJlVImnSbTVqlR6dzi8tOhAw7O8of/KOt+QEjjOnSdkUq9wyEkHhpFnLUB7pEJMHPYBTCidZTolJGEs5sHI8fCqTUzAkHG/gmcNnl6qpcOBaBpWSFggeK7Oy5FRWEqQyLDkjMY9SOHAyqKLxJEPjkoO7HtZRXi/XhiJ35qja+6zsqUgNlJbn9BHKBmhZdmls2DMZVGoDeFYlSo46qkZhn0SPTTDtUtpSJN+s+VQLBNmJC+A5W6J/bJLJhAiGNcnOSPQhGVlXpmly9dVXU16e2YYei8lpxnnnnXdyxRVXcOutt7Jp0yZuuukmzjjjDDZv3kxz88wpWPfffz//9m//xrHHHkskEuErX/kKp59+Os8//zxtbW1SvmPBkqczp6FC9EtIJE16RmIsqZFoiHgs6tk3GiNhp0XLHh2fXyQNhMLYMzBelNFpu3RHes+I/JQ6KCxbrGwGDDFxcKwXKpvk3i8D1Mkpte8FQqLMKgeaVZfWj3R45vDpRDy933sv/eBpmqbcfrUei053pa0n6X1683TmREqC1JWX0D82SefwBDXl2Q9jyBiP6aiJyQSD46JUU3p5qQs6qqU6zIvtCvrvedDp1qWq/1SewQZIc44qGXRWJZxuw53iepGxW7/IXk/RYYiNiMc57n3NSiuGlkD3S57Z+9TaEvnpKCuAZw06C4ckDvvynC0h5FRfUUppSHJGog/JyOl24oknsnnz5ow/9JhjjqGsrCznLzUXN954I5dccgkXX3wxALfeeit//OMfuf3227nyyitnvP7HP/7xlOvvfve7/OpXv+Lee+/lwgsvdP37FTR5OnNEBlWY9sEJOoYmJDvdvNU3Ij0tOiQ7LTrPBqCgsmwxTVmYZs4ZX26RnhYtv6+RFfH0QRZBsEQ0fx/tEn0jPOB0U5bpZjlyKpeIaYY5kN5QXDpVrdD+tGf6e3Sq6u2RTIjfT8i9vDT1uzQ+mWBoIk5NmUxnjjd1lJKMRFecORH6xybpGJxgfYvEg7vH5GQFG0pDAarLFGUk5qOjUr9PynpQRQchNirK4xaZLtU6yg2bb1BRYKh3WOioxn3k328B1GWOpuRUWpmzs7FFVRUKeC7goCxzFPLWUTVlJZSGAsTiSbqGoiyvzy0DNSPsoRces/n0EIVZyUhr33///ZK/xsLEYjGeeOIJrrrqKvu5QCDAaaedxiOPPJLRZ4yNjTE5OUl9/dwZC9FolGjUORwNDQ3l/qULiTwbgII4eLUPThRdBpWyrBzIuw8LKHTmWJHZRAzG+qCiQe79FkBpWnSe6eugcHw8CEN5tEt879aD5d9vAbpUrSlXMkeLt7+Hne0h2wAb7RbTQI2AcBDnQFlpkOpIiKGJOF1DE5Kdbt7SUcqyciDvfjkgbImXOoaLzpZIz/ZQl5HoAx0VroKSCtH4fbgDGtbKvd8CTCaS9I6Kih+v9/GFNDnJznSDlNNti4d0lKIMqjyH0YHzHXtHY8TiSbmZRJ6zJRTJKTYm+iRCzrIyDIOW6jC7+8bpGp6Q7HTzmJzsPr4KnKM+xDe5fz09PSQSCVpapkbdWlpa6OjI7JftU5/6FEuXLuW0006b8zXXX389NTU19p/ly5fn9b0LgvS06DyinkusOneV/T08MO5aWeNjcDWDSnp0OlQK5Y3isQcONU5GooK0aBcOnkqdOR7qG2Ga5iI0E8/fUB6NJRiekDzFz0NygkVo+l7ZIqaD5oiVgV1sw0m6VMkpmXQCePmUw1Up6pljyWliACbH5d4rA+yBTEp6JLqgo1StJ8PwVA8qK9BaEjSoK5fdUiS/UjggrY9v8fWgUpZB5YITu74ibdDZiOy9LyUnr2VQydZRlnM0VAbh6pw/pkXVmrLk5BVbwp6urTPdZsM3Trd8+fKXv8zPfvYzfvOb3xCJzL1or7rqKgYHB+0/u3fvVvgtPYq1mEurIFyZ88coc+ZYRmIiCuP9cu+VAUrTbe1Sg/yjnsrK4cATBpjlIGhSIic3M6gU9fcAT5RZDY3HicbFQAfpsnKhXLu8NERVRCSVKyvZ9oCcIL3ESlHmaB7BBlCpo6x9zysHGkVyGusVvSExUr0ic8NyjnbILoeL1IjDF3hKR/klI3FRyuE8sPfZtkRlmEBAckaiC+Xa1nrqGYkyKXvQmYd0VDyRpMcacqas917uOsownEFn0vc+r2ZQSbcl0my+PLKJW1TpKEtOHhl0plRH+RDfON0aGxsJBoN0dnZOeb6zs5MlS+Y3Cm644Qa+/OUvc88993DQQQfN+9pwOEx1dfWUP0WPC8YXKHQShMJO03MPGMrK+oTFxkRPE/DHxDFIU+xekJNVsqiiZ4R7fVhGonFGopKn+HnIOWqtp5qyEiIlEhvUgitNqiG9r5vCLN9FRvRIVLSmXMgiANRNbrbW/Xg/TCrYZxdAnZxS66miUfSKzJFmVTrKMDx1+HTKtSXLyTRdKocrbltCSYmVCwGH+vJSQgED08R2QknDQ7ZE72gM04RgwKChQlVLkXxtiUWoGPIAynVUvnKybAnZJdtTBp31yL1XBljJGkrOUT7EN0630tJSDj/8cO699177uWQyyb333ssxxxwz5/v+67/+i2uvvZa7776bI444QsVXLTxcd7oVVzmcXRKiqmdESXl+adFK5eQdxe6UWPmj915lOERlWGRQFZMBpmw9gStNqsGZZiXdAPPQgWYkGmcslgBUZBG4o6OW1Cg60JTVQShllI54YU0pik67EGwAp3SlU3Z5KXjMllBUBjzeL3qtQn6tKlLrqWckSlx6BpV3dJRaWyL/gIM16AyKq7Q+PSMxKDsj0aXAkNMCQbKOSi/XXuQ2PcmkwgCeWzpKVcVQsMTJGveCjrKSTFS0QPAhvnG6AVxxxRXcdttt/OAHP+DFF1/kQx/6EKOjo/Y00wsvvHDKoIWvfOUrXH311dx+++2sWrWKjo4OOjo6GBkZWax/gj9xy/OvuvE7eCKFvUvVJpR+8MwnLTolp6GJOOOpQ7M0PDR5R1lvj8kJp+w5z3I465BcTOVwSictupVBZclpUNGBZqwH4gocEvNgraeqcIjyUtmTFt3SUYrKS9MzqLygo5T1Nco/2ABpB09V0xbBY3JSVApXVi8qB3KkoUI4M5Im9IzEXPpyc+ApHaUwI9GtoLiycjgPyskn5drg/E51yHbmWLZpclK0BVhEekdjJJImhgGNlbJ7JLqro6SvJ/CmjtLlpbOSk9PtRz/6EccddxxLly5l586dANx000387ne/c/XLTef888/nhhtu4HOf+xyHHHIITz/9NHfffbc9XGHXrl20tzu/dLfccguxWIzzzjuP1tZW+88NN9wg9XsWHK55/hWVl4K3SkJUZea4VApXGQ5RXirK9pSVWXlBTsqmWKXWUzAsMl7ywEphlx5N85ScVBrKlgHmTq8w6eupvB6CKaPU+j1bJJyyegVycklHKW0o7pGsxLFYnOFUebp8HZV/KRw466l7JEoiKTkLwyNygnQd5Y9y7WDAsCeBa1tCAhODEE8N+HCpHK5LejZ2mpwWOYNKWUAcXCnXBoWtKoIlziTwRd77LDk1VIQJBRUNOcs3IK6qvBQ8o6NESxFFOsqnZP3be8stt3DFFVfwhje8gYGBARIJkQlTW1vLTTfd5Pb3m8Fll13Gzp07iUajPProo2zatMn+u/vvv5/vf//79vWOHTswTXPGn89//vPSv2dB4XJfo8HxSSYmZWdQeaMkJJE07SlD8rMI3Dl4GobhlMNJN5S9ISdwDtpNyjISW/LKSASVpQYpOY12Q0LyBM4FUJbplph0emTkG/WsVnSg8VAPKmXZU+CajrLWk/QDDXimzMqSU1lJ0C5Xl4ZLzpyGilIChtCvvaPFVA6nqul7mo7KkxbVOspDtoT0vc8KNkRqoKQsr49SVoliDzqLLfqgs0XJdMtbR1ml9cWno9QMo3NHRy3OQLrFlVP/2CSTCeFIt4Itmqlk7XT7xje+wW233cZnPvMZgkGnifURRxzBs88+6+qX03gEl5w51ZEQkRLxK6cu6rm4BlifD9OiQWXZojfkBNBt94xQ1HvPT3Iqq4dAqvH5Iit2dXJK7XuBEmcwS4602OWlCg3lRS7ZVpbtAa7pKNtQHo6SVJZBtdhyctaTkWcQYEFcKrEKBQP25OJO6SXb3tBRE5MJBsdFwKNFujPHPR1l999TZUsMLX4PKmXZ2C7afE55qYJBZ+UN4vEi66huS0fJXk/RYYil2hrlmzWvanopFKkt4W5GotpBZ96QU31FKaUhX3UvU0bW/yvbt2/n0EMPnfF8OBxmdHTUlS+l8RguKXbDMNSVmHok3dYyNBsrFaRF2yVWLkSn7RR2RXIa6YKEZMU0D6JRq+rSnfyUOigsLw0EPJNBpayZuOXIqWwR//48aC7C0vpOVVOsEnEY7RKP89RRjZVhDAPiSZPeUdk9qLwiJ6sM2D8lVqCwZNsjtoQVbAiHAlSXqcpIdFNOsntQWRlU0UXPoOpaDB2VJ8rKS8EzmTnKhjJZciqtgnBVXh/VrMo2Bw/pKIUTMV3SURXhEFWpzPFiKa3vVJmR6FOyPkmsXr2ap59+esbzd999N/vvv78b30njNSQ4CYplE3J6RvhjIqaFsgNNRSMYQcB0Ds6LQP9YzE6LbpSdFu1SKRwonjTrkYyPTlVryqXm/JDmxB6ewJSdheERJ4E9GU62nEa7wUyCERD7SR6UBAM0VKjKzPHKwVOljnLPllDWM8cjPajSJ8zKz0h0U0cpWk8lEadH6iKuqVg8aTvs1ekoH9l84B1bQtXUZpd6w4KznoajcUaVZVB5RE6y11NsTPRJBHd0lLKSbY/JSfdzm5OsnW5XXHEFl156KXfeeSemafLYY4/xpS99iauuuor/+I//kPEdNYtJdBgmUxmMbkTTUinsj27rpX1wPO/PmxO7v0cHDOySd58F6FIZoXGpASg43/e5vYNy5RQIOs1a25+Rd58FsMpBGlSkRbtUCgdOf4+dfaNy5QSOYt/xIAzukXuvOTBNU92actHpZhmLkwmTF9uH8v68ebHk1P6vRZMTpJctKiqFq2wR+0meNFSKMuqXOiTLqTolp76tiyqnblVySiadbGwXnDnW3vfPHf1y9z5rPU2OQfdmefdZAHs9KemR6J6Osn6vNncOy9dR5SlbomPxWt30pHr4lgQN6spltxSxnNj523zWetrTP67Oltj1D0/oKGW991xwjlZFSihLtel5fu9g3p83L5aO6nzOG3JSZUuEyiBcnffHWT1iH9rSI/m8m5LTwC5v2BI6021Osj5dvu997+MrX/kKn/3sZxkbG+Md73gHt9xyCzfffDNvf/vbZXxHzWJiKfXSKghX5v1xA6kI4B2P7uK4L9/HnY9Lcoi9fHfqgQk3HwxP/lDOfRZAabrtsHuKfWu36D/xj219cuX05A8dRffTty+inBRl5YCrzpzHtvcB0D0ckysncCKAj/033LRhUWQ1NB4nGk8CCmTl0kRMgF8/+ar9+MxvPChXTr1bxc9tf100OYFTYiU/28O9YMOdj+9ic4fY+/79F8/IldOuR8XPob2LKidlWQRjvZCMAwZUNuf9cZbz/TdP7ZG79z33S+fxLccsvpx81NcI4KWOYQCeeXVQvi3R+7J4/JsPLLqcmirDBAKSMxJd7L334CtiaNBoLCHflhjpFj+fvmPR9r54Imk7SJVlurmko8YnhQ10/nf+IVdOXS+Kn68+XiS2RJrN50I28XhMDAz81v1b5a6p7X8XPycGvWFLqNBRPiWnlI53vvOdbNmyhZGRETo6Onj11Vd573vf6/Z303gBF42v9sFxW7EDJE349K+fcz8CMLgH/vBx59pMwu8vX5QIgF1eKjtCExuDqDtp0e2D4/z0MUc5SJXT7z+W9oS5iHJS2TPCHWdO++A4X/2zk3khTU4gZLL9Aed6kdaUtZ5qykqIlOSf1TQvLjlH2wfHuerXTuaFKVtOT//IuV4kOYnR8aoyEt05eM6QE5Ll9NcvOteLqqMUZ45WNEGwJK+Pah8c5y8vdNrXynSUB+QkPSvHNF3ra9Q+OM73HtpuXxeTLaGkxMol+7x9cJz//P0L9rV0W2LLn53rRVpTvaMxTBOCAcNuKSANF+Wk1JZ47DvOtQf2PnXVDfk7sdsHx3lq14B9LXXvu+czzvViykllZZdPyauOqry8nObm/COWGg/jotNte88o0zuiJEyTHT1jeX/2FPq2io0nHTMBfdvcvU8GKGvUahnJJeV5N2rd3jM6o3VNocvJaXzsn95723tGmT5gUYqcQMhq+updBFkpW0+Q1qQ6v71PuZymL95FkNNINM5YKsorP4vAHR2lXk7e2PuURaddHPRTnLaEoub84/2QSA0RyTMzR9ma8pCc1NoSVpavz/Y+T9gSTkZiUHZGokuBoWLUUWLImapWFVpH5YPTb1k73eYioxFIhx56aMaNW5988sm8vpDGY7hYCre6sQLDmHomDBoGqxrL8/7sKdSvFU210zciIwj1a9y9TwZ0qdqE0g+eeaZFr26sIGAwRbkXupycMmDJcpqccCar5XmgUSYnELLCYIqxvAiyckrhVGYR5GcoK5eTB9aUtZ6qwiHKS2VPWnRHRxWjnMCJTsvXUe5lERSlLaGqVYUlp7J6COV3L21LSMQ0XQs4FOPeZ8vJR+XaxSin3tEYiaSJYUBjpeweiS7rKKa6lwt97+tSuaZ8SkaZbueccw5vetObeNOb3sQZZ5zB1q1bCYfDnHzyyZx88slEIhG2bt3KGWecIfv7alTjYl+j1poyrjhtnX0dNAyuO3cDrTVleX/2FGra4OybEU4CxM+zbxLPK6ZL2Uhy95RFa00Z15+70b4OGMiVU7qTcLHkNKwoOm2tp2DYmbSWI9PlZMiSEwiZnPQp59oILoqsnNId//Tes+SUthvJldNZNznXRmCR5KSwt4dLOsqSU3rSg1Q5nX2zc71IchqLxRlOTcCTr6Pcy5pvrSnj02/Y376WrqO8YEvYOsof5dqwGLZE2pFm0eUkeT1NDEI8Varm0t5nId2WeM01zvWi2RIKA3gulWsrtyU8oKMsOTVUhAkFZQ85c1dHvf9Ex/El/7ybwlgcHSVaiijSUT4mo9/ga665xv7T3d3NRz/6UR555BFuvPFGbrzxRh5++GEuv/xyOjs7F/4wjb9wcXQ8wIXHrrYf3/uJkzj/yBWufO4MDrsQNn1QPD7obeJaMYmkSfeIqiwCqxQu/7RogPOPXMGKOqEcvvFvh8qV0xu/JR43778ocgIn6tmkLCOxxZVGrecfuYLXHSjW5odOWitPTgBHXeI8/siTiyIrZZluiUkYS/WfdMEAO//IFXz8tesBOGnfJrlyOvwiZ3rz2360KHJSlj0Fruqo849cwXcuPAIQGUVS5XTYhbD+deLxif++qHIqKwlSGZadkehOKZzFe45bbR8+f3fpcXJ11In/Lh7v+7pF11HqyrXdsyX2bxWTAK9780a5cnpbqoF4ddviy0nVRMxIDZTkf5A//8gVvPXwZQC8a9NKuXvf0R92Hn/ggUWyJRYh080lHfW5s0XA4bCVtfJ1VNN+4vGbvr3ItoS/5ATw9qOEbCKhAA9eeYrcvW/j28TjTR9cFDn1j00ymRB5fU2VOtNtLrJ2G//iF7/gwgtnCvSCCy7gV7/6lStfSuMhXPT8A1RHQoRD4tcu4ILTYV4a9xE/oyNy7zMHvaNRX6ZFW7TWCkMuMb0xgdu0HCB+jvVLvtHcKOvDIkFOKxtEuvrEZHKBV+ZJWT0EUgfzoOQD+hwoz0gMlIh/twusaxbTn4cn4q583rxUi8MTZkL+vWahczH6Grmkow5IOQj6RmMkpzfQcRurBGRSQiPsDEiXU6YtRHLGZTkFA4Y9wVj6d2/aV/ycGJZ7nzmYmEwwOD4JQIuPyoAtlqUCeJOy11PLBvFzrHdmb0tFKOuRKEFOqxorABiblKw3QqWOXpW9dufAtvlkr6foMMRSZxCXHNnrW4SOGhxXYEvUphxFyUn595oFP9sSlqNwIp6kOpLf8KAFaVgrfsYk9PfLAEtO9RWllIYkZyT6mKz/Z8rKynjooYdmPP/QQw8RieiUwoLDxVIDEMaxZYx0j0y48plzYmV9jSxOBqYVoWmsVJAW7WIDUAvrQNOdKumThhVVGu2GpHonQTItI1Fdo1Z3lDqkyWlEspwCAahIDc5Z5DUlv8QqLXM04M7aVbaewNkHRrrk32sWlDU+TsTFvgGu6ajGVJQ2njQZGJd80Ki01tPiyknJpEWXSqzSUaejFteWsP594VCA6jLJAQ8JOqpZtZziExAdknuvOehWNmnR3eoGUK2jUr9fi2VL2HKS7RxN/ftKq/IecmahbD1Bmo5abDn5T0dVhEOUlwYBlTpqkW0JFRmJPiZr7X355ZfzoQ99iCeffJKjjjoKgEcffZTbb7+dq6++2vUvqFlkXPb8g0g93d03bh+gpVG52ErdKoXzz0TMdKzyCOvfIY2KJsAQWTljvY6SV0T/WMxOi26UnRbtcrk2OIayFbmVSlULDO91DEnFdKpaUy4OkLFIX0+macrNzrEMMGv/Vow9GU62nEa7RQNhIwAVja58ZGkoQF15Cf1jk3QNT1BfITFL2dZRiysnpaU7LjtznkeBjlpkp1t69pT8jER5OqpbtpxKyyFcLRxuw52i9FIhsXiS3lEx+VWdjnLT5kvZEqqcOV0vLJ4toTwj0X3n6OD4JBOTCSIlQdc+ewbWPrDYcpK9nmJjok8iuK6jdvSO0TUctTNJpWDrqEW2JXQ/t3nJ2ul25ZVXsmbNGm6++WbuuOMOAPbff3++973v/X/2zjzMsbLK/5+btapS+17ddNPV0EBDI/sqCIoKMqCIMzIjSrO5oqyOio6AijtgA4qOOoooo60/kBFUQEFA9maTfevF3mpfUqlU9tzfH2/uTaqX6lrue3KTyvd5+kludSrvTZ287znveb/ne/jgBz/o+A1WUEQkIpCKqucOnqblN5+aHXtdQaBsmuI0djFWDujZ0FiMRN3JUa9PbZijA+pzCCfdrO9hiwQtOqKDRaC+XzKnnsVLEpimKch0cz7pZgXK8VSWSCKtt9ygyMkcsdNp6/PVdoDHuY1He12VSrqNJdjHua/A9rB8VJE2NGKsnGy2gEGl4WBIt4+y7JQYU5uzgIZugVPAnk8iGon6fJR2O4FaCxJjam1o20v/eAUYzLHN/V6DphrdkiI6kthWLCFwgOcSHyWmvefgutdQ7Sfg85BMZxmIJFjUrHE9qnOJnaRiCX8uce8Q2uuqckk3zXPKLbFEhek2JWbFU//gBz9YSbDNB1hOPVAHwVrH3tZO5uhOElilcJkkxEagxhltpumiT1QA1Co1cJaRCAJli6DuOzpQFGq0GCsH9DCopOYTFLUcbiyWJpFWunXabaWhxKo64KUu6COSSDMQSehNuhW7vFTqdDpSkHRzEO31QV7ri5R92aIYi2BiCLJpwMj7ZQcgVlofrAdfteoWOd4Hzd27/h0HIcbKAW2MRJCKJTpg6I3ixhK1QTwezYe8Gsu1h6JJ0pmsXlmUIvqodCZrJ0jFmG4O+ijDMGirDbJlNMbAuOakW7ElEMRiiYJybQcJGvIyPf3qkMshWZTpQtRHlTAqancV7BwaEgSQT+Zoz/z7q6CqUT0vwqbGLoXTfUKTnICEBlp0vVW2KJnMkT9NK3VGouXUI4k0saRmTTzrvotQtmjNp4Zqv95yCtC39knNqSKWl5qmaR84yDESnWMRQKGPEgqUY8OQTuodawcQt1OozdEmLGI+yjCKqm0k1hHTNLUmc0RiibrirX35jpilGUu0hAJ4PQamiV0mqw1F9FGD40lMUzVjaQlJdQN2OJaQmlO1xYv5oAg+yulYQqpkO9SmHrNpFU8II9/wolJeOhVmHP14PJ4pNSUymeJ0S6tAAzSUGUBBoCwl1hofVQ6jfbn+8QqQT+boZuVYtOiQY0KtIKjpBkVN5oh1xISCDY1zjr0u6KPK7yGeytIfibN7i4RuhPzGU2w+QcHa52wA1l4XZN1AtKw1qMYTaWK57nf6WQR6fJSdHNVtp5pm1SE3m1K2alykd7xtYOuOSnUDdjqWqBOyE6h7H/1nkX2U5g1NbERVBoCzkiK579fgeIJs1tTLAiti2eKAZCzhcJMzAI/HoLU2QN9Ygv6xhN7vWzFjiUiekejVzUjUYCcobKYgVLZYBJkeXU3OstksyeQ2SeXxMNQuguZ9IO7c33Rxo4+FdV7isThxB993h2jdX+13h7eC17nqtOkgk0qysM5LV8ir/3MWAYFAAI8D7MEZJ91+//vfT7pOpVI8++yz/OIXv+ArX/nKnG+oAhdh4FX1WOVcfTtIa1B1qM9RBGr05hHVutmnm+ZrOfWqehjbCg0LHXlby6mPTKRIprN69c6KGICtG1C6hTV+zV3hUnG1qQEl/u4QDMOgva6KjcMTDEQSepNuRew49lqv6kbXUK259TrA6Cb16HF2LLG1z7KT1RHYQb2zXcE6ma72ewjHUtQENM6roTfVo9/Z8hoxOxmGWvvGNisfJZx06w2r4NhA80aq/2X1aDHPHUKblD4sFNVHbRpWsUTAK9REIVAH0UHHYonCjsAjE0ladDYsKmLZ4tp+FUuEdK55oJIfYzlbmc6+dXtdlUq6ReKAxkYUxWTN53xUTcBLTzhGV0O1vsFG/qkevc5q/InJihR2BI6HobpR73gFGIomyWTVFzzlEKEnmUyyfv16stltYvDAXvDWayFQC+vXOzIWwAENaa56eztVfljv4PvuEId/TR2ajGRgXPNY2+BD+1aT2aeKFsKsXz8uOrYEPB4P3d3dBAJzm8cz9gzve9/7tvvZv/7rv7LffvuxevVqzjvvvDndUAUuwTO3wN+vVc9f/ZO6PvgsR95ajG4LRevosnrNRl7tjQDwhdufB0zOOGyxnsGeX60eIz2wagWcer0jtmqs8eP3GqQyJoPjCRY0agxMirShWb1mI7c/uwWAXzy2geUL6vTZ6fEf5p//6BjH7ARqTm0cnhAohyuOWOvqNRu5+o+vALBmwwir12zUZ6dnboHB3IHDHZ+ATMLxtU97oFzTiuoInFWbZwc7p+0Kq9dsBCCWyvLWb93PN0/fX4+tnrkFXvx/6vnjN0H7PiXqo9pzSTdZH/XLxzYQzZWjn/nTx/Xa6S9Xqucb/u5oLNFeMJ/EOgIXwUet2aAOa67+0yvUVvn0rX3PquZoJCOOxhJ+r4fmUIDhaJL+SEJv0q1IZYur12zk5sc2APD7Z7dwxNJmfXZ64r8hk2OT3Pwex2MJEEzmFCE5+qcXtgKwbjCq30dtWaOe3/05JXnjlJ1qhQ4c/NUQbFASNuP9okm3Xz6+wX5+3HcfmLOdTNOkp6cHr9fLokWL8syliREYjwG5PU5tI9Q0zXqcQkQTKXwjMQI+L906u5cCjHhU88O6Tqh25v6ng9GJJMlq6wAPmuqraNTdSEYQ2WyWrVu30tPTw+LFi+cUZzh2HHPkkUfysY99zKm3q6CYCG+BOy8if4Rmwp0Xwx4nOHLyaQXKQ+MJMllTL727CB1desIxLr/9BfvaNOGLt7/I2/Zqc/5ELbwFnv5F/trMOmYrS6x1azhOf0Rz0s0NdkKzne7/av7aQTtBQZnVmGDZolCpgWWnwgN9rXa686L8tS476Q6UvT6l8RHtV8kcoaRbTzjGT/+eP2HN6lr7trWTJh8lwsYuAuOjJxzjyj+8ZF/rt5OeWMJKECTSWcbiab0sWDf4KN2xROHBkIa1z0q6LXe20m4yipAcFY8l7rk8f12qPsqyUzICySgENCckcugJx7jj2a32tZiPMh32UaIyPR25pJtcR+CecIwb73/TvnbCTul0momJCRYsWEBNTY4dn05CvBd8BbFsvBfqW8A398SR6fFjRDKYHg9VVZrlAaqqwJxQn0X3WDkk01kGJuIYBX+rgQmT5vqA3uooYbS1tbF161bS6TR+/+zjDEf+IrFYjBtuuIGFC52holdQZAyv3b78zczA8DpH3r6lNojHUIvoUFRIBFQwAFs/GCW7DeU/Y5psGJxwfrDhtWxXX+CgrdpyOgr6kznyOizidtI4p8S6w1li4tlUvlRWM8rKTlJaYVCUJMH6weh21U5abCU1n0TZ2HKMD7E5pdlOVX4v9VXq7Fi7ttF88FE6YwmpOVUECYSy8lFSOonBurwsgOCBQ8VHzQJFqHBYPxjFdHhOWZrzk0oEMzv5++3s5zOEPycJkM5myW77gZyG1aQom9Y7TgGS6cx288nEJJl2TkLHDbC+M3PtWzBjpltTU9Mkap1pmkQiEWpqavjVr341p5upwCVo3gMMz2SHYXiheakjb+/1GDSHggyOK7FWrR25inDq2d0awjCY5DC8hsGSVg1tvZv32P5nDtrK6uInlswZ7xdjUHW3huzkrwW9djKYtKlx0k5Snax8QUVbj42oQLmmWe94FMFOGtc+qyRELlB+QX7tY/LWXYutdNspN5/GE2kmkmm9unRFkEAoFzuBstVYPE1/JMGe7c41EtoORYolys5HSTWRiY1AOqF8lmaUo51k9CzbYWSDivtadhDLasCOSvxKce0Tm09QvH0UenzUpPJA707Wh539fIbwegwMDExMMhkTj0/j3sbSIM6k9I2xDQK+7fWCDYyyYrkBjklXzPiv8r3vfW/SvxtuuIG77rqLf/7zn7z3ve915KYqKDIaFiqNCAuGB05d5ZioLgie0hShfXxXQzVnH73EvvYaBt84fYUesdaGhdC6d/7a8DpqK5uZozuZY51OpyYgEdE7Vg5dDdV8+ZR97WuPgV47LXt3/tppO4kKissyProaqvnm6fvb19rtdOj5+Wtd86kM7QTKVgcsyotva1v7GhbCu6/OXztsp9qgj2q/Cib1r33yLIKuhmpOeUu+xk+rnbTHElLNSYpjp08cl09GaI8lug7IX+vyUbrnU3VTXrReKEnQ1VDN1aetsK+1+6h9C7S1HbaTbHOS4vio3ZrydtG69h19Yf5a03waHM83G9CGuuLY6Yil+UNdbXbyBaBht8k/a1jkSGkpqGSNL8d2S23bvMFpeHNJt6xk0s1Dc4F+m4HBwqaqsku6OYUZH9++4x3vYNGiRTvM+m3cuJHFizUJh1YgixX/Cn/4jHr+ycehfe+pXz9DtNcHeblHQqzVchayYq3Lu1TH1wN2a+BHHzlEb3ckqzPhu74GKz6gJTmqPQALhFTHtGREBcoOd8zdGd66ZysAoYCXv152nF471bapx4M+DMd/0VE7tUl1sgK1+Rx4RXROnXHYYq78w0vEU1l+87EjOby7Rd9gHblE7G6Hw7/drGU+jU6kSKQzBHdwSugYipAkAKjOdQG+4O178OEjd9c3p5Ycqx6rGuGTjzpqJ8MwaK8P8s+hCQbGEyzRKYBcBAkEgN2aFWPgxP06uOq9++mz00EfgbsuVRuBc++BRYc7+vZiB0OWnaIDkEnnS3k04y27NQKwR1uIX51/hF4f5c+993Gfh4NX6jlo1c2atzoChzflOgLL7ElOWN4Bv38RjwEPfe7t7NakgeVmwUoS7HsanPgNZ+0kNZ+gaD4qnVFJqqtPW8EJy9v1zSkrid2+H5z5O0ft1FobwDAgk+sI3CrSnETWTo3VKplzzluX8LG3LdVnp6C13zCgfV/HEm4WfF6DVCb/vdMGm+kmV1569tln0zc4xLd/9Etqgz52a6qpJNymwIz/Mt3d3QwMDGz386GhIbq7ux25qQpcAOtEw1etRThTTDfCKltMhCEV0ztWAazkx7KOOr1BMuRZfHu+01GnDoKlBpAPwAQ3n1ZguaCxWsBOuc+16AjH7SSWHIWidIcbT6SJp9Qp4X4LGnbx6rkOlrNTx76O26mh2k/Aq9zu4HjS0ffeDkVK5lhr+lv3aNU7p6zP1bDIcTtBYXMSqS5+wnbKfa637Nao106xkfzJeyGTyiGISSCEWhVTDxMmBvWOVQBLq26Ptlq5WGLp8c77KOtgSCKZY8V9gj7Kmk+ttUG9CTfIrxW7Hep8zFcwn0zdGlRF8FHZrMlgbq3QmnCD/OdqXea4nXxeDy0hlRwqWx+VW/sOX9Ks106WBprX73jCDcCf65I6W6bb2WefzWmnnbbrF9qabnJMN8hLKVUHvLNOuN188800NjY6d1MuxYz/OjtbhMfHx/V35qhADhaLpa5Di75Wm1SSoKoBfLnvpWgAppyFtXHThnQSYsPquUUBdxD50h1B3QhBOw2M5+xUr1/3xQ5Yap23kzWfhqIJ0hnNFPYiBGDWfAoFvISCmhkm1vdPg50MwyjQ3xM6cBAOlK0EvfY5ZX0uTZ1ZxTRzCg8bdJefFMD6XNp9lGWn6iYt+lp5Zo5mO3m8qiMwyPooqfkE+biv1vk5ZSVzZDSo5Mvh7PkkYSeNPspa95LpLGMxzYyZIviokYkk6Vw5plZ2GBT4KOftBPn7F/VRguiXWvssDTSPntjSKi8VY7qZWcjOTfB/JrDSQj7P9imlZFLz4fIOkErJJh1ngmkn3S699FIuvfRSDMPgiiuusK8vvfRSLrroIs444wwOPPBAjbdagSg0OnUQ1GGxSg1AtBzOOnXXvqGJ5j6Tx682NQ6jKAyqIjDd2nQHX6A1SdASUh2BTROGo5qdXBG6w+U3ngIHO/bGs13L24sdOFh2EkwQxFMZxuJqo2Y1jdCGcvFRIasjcFqsIzAIzin7sEFPclRWz7IIPipi+SjNdkpEIBVVzzXYyvqeybLmBWM+az7pbAxmQaOPqvJ7aahWm3f9yRx5H2XNp+ZQAL9XcxlcRPPaJzWnauXtZJqm3JyymGGWJto00BOO8ejaQXrCu66g8uW+Z7oOxPv7+zn11FOpDtXSfeQp3Hr7n1iydCmrVq0CYMOGDRiGwXPPPWf/zujoKIZh8MADDwCqK+d5551Hd3c31dXV7L333lx//fWTxslkMlx66aU0NjbS0tLC5z73OUzTtLuy+r0Gxx9/PJ/+9Ke5+OKLaW1t5cQTTwTguuuuY//99ycUCrFo0SI+9alPMT4+DsADDzzAOeecQzgcxjAMDMPgqquuAtRB9R133DHpPhobG7n55psnfbbVq1dz3HHHUVVVxa233grAT3/6U5YvX05VVRX77LMPN910k0N/8dlj2mndZ599FlAT4YUXXpjUcjcQCHDAAQfw2c9+1vk7rKA4sANlPRtP8WTO6D9lTz2tZI5uZ1Ho1DUyEgfHE2SzJh6Pxs47RUjm9EttPLMZpQUEWgIwr8egtTZIfyRBfySh9/MUQd8jv/GUSI7m1glNp9NiJduFhw1CHYGtzxTweaiv1sxI1OyjxJKjvgBUNyvG8ngvhDTqFRZgQGpOad54ykogdELv80XyUUJ2CtRCsNbxt7divmgyQzSR1stYLgJrvtx8VDiWYiCSYFmHzo7A8prL9nzSfSAOeTtpO3AQ8lGWj42PinUEHounSaRVkqpNk61M0ySWykAsAaks+LyQ3DW787anN3PlH14ia6qmKV9573584JDddvr6dDqrDiRjaZpC6v2r/V7HOmKeffbZbN26lb/97W/4xzZx4Ze+Tn//9jJgUyGbzbLbbrvxu9/9jpaWFh599FE+9rGP0dXVxQc/+EEArr32Wm6++WZ+9rOfsXz5cq699lp+//vfc/jRbwPyycVf/OIXfPKTn+SRRx6x39/j8XDDDTfQ3d3NunXr+NSnPsXnPvc5brrpJo4++mhWrVrFFVdcwWuvvQZAbe3MfNAXvvAFrr32Wg466CA78XbFFVfw/e9/n4MOOohnn32Wj370o4RCIVauXDmj93YS0/Z6f/vb3wA455xzuP7666mvlxE6r6BIiMhsPEVKDYog1ioWKNvBlx6nbtHXUxmT0ViK5pDzegc2bB2WIthJOyNxQFG+DU++RMlhtNVZSbc4oFH3zE7mFGFDI1K6o68MGCQD5Zyd0jFIjKlSe80oLFl0KqDcKcR8lFAyJzasPlPHftqHS2WyDOUYsXI+qsTnExTJR0mVAetNEISCPmoCXiaSGfojCbolkm6iyVGh8tJUDOJh9VxjMufN/nG5ZI7ogbiyk65EziRY64RmCQTtBw7VTeANQiah5pRAcxJL0qauykeVX0/DqVgqw75X3FPwk17gxRm9R9aEL//fS3z5/16a0e+9/NUTqQnMfQ18/fXX+fOf/8yTTz7JYYcdBoPN/M+1V7D8uA/M6H38fj9f+cpX7Ovu7m4ee+wxfvvb39pJt1WrVnH55Zdz+umnA/CjH/2Ie+65hyw5pluOlLFs2TK+853vTHr/iy++2H6+ZMkSrr76aj7xiU9w0003EQgEaGhowDAMOjtnFydcfPHF9n0BXHnllVx77bX2z7q7u3n55Zf57//+76Im3WbMrf35z39eSbjNB2jU9oDJpTvlJtY6mRYtpBmhyU4Bn8dOtOlveiGvw2I5du0BmGWnUFu+26zDaJcKwOrkT6fF5pNpCrB8hXQSAzX5rlxCSQKbPSXCItDtowQZVMISCEO5Jh5ej0FzjcaDFNBerm3Np3AsRTylWcemKD5KaE5p1p+CYvioIkggaLdTbj55g9oOUsQanVl2ig6KdVy0pF9kfJTMAZ6oTI9QLCHKSCwR3HrrrdTW1tr//v73v/PKK6/g8/k45JBD1Is8fvbZs5vGxpmvDT/4wQ845JBDaGtro7a2lh//+Mds3LgRgHA4TE9PD0cccYT9ejXuoWBpuuW06+x7KcBf//pXTjjhBBYuXEhdXR0f+chHGBoaYmJiYsb3uSMceuih9vNoNMratWs577zzJv29rr76atauXevIeLPFtNKsp59+OjfffDP19fWTMok7wu233+7IjVVQZGg+9bQcXjyVJZJIU181/Vr6GUOYmTOeSCvKMgKOXXPpDqhyieFokv6xBPvoi8eLykiUs5OejScUaBtp72RldQQeg+SESu5oRr9UcrSw06LmtU+7nUB9hsSYWvs0dKHeFuVVulOEJjJCPsqaT621Ab2SAaBde6++2kfA5yGZzjIQSbCoWeN6JKxBlcmadpdj7bpGQj5qw9CEXNf6cowlCrVhNbGJxXxUTQsYXjAzSp+4foHe8ch/Ju3zKZPKdznWrmcp4aPaIbxRzEdJHDZU+728/NUTYfB1xSBt6oaqqUlFveE477zuQbIFXBGPAX+99Dg6G3b8nUqmM7zeN45hGOzbVYdhGFTPgr333ve+d1LSa+HChdx7772TX2Tp0hXeX67BQSHBZdtmA7/5zW/47Gc/y7XXXstRRx1FXV0d3/3ud3niiSemvCfrPT2GgSe3HoVCoUmv2bBhA6eccgqf/OQn+frXv05zczMPP/ww5513HslkkpqanftswzC2I+bsqFFC4ZiWVtxPfvKTSX8vAK9XD+lhuphW0s2i/VnPK5gHiOg99awOeKkL+ogk0vSPJfQm3YSTOVbwVRv0OUIfnhKaS3dAlUu81hcR1KASPJ2WCsDG9W48QbAcLlgPvmpVtjjeC81L9Y6HoEi1tZmubtbSOh4KTqfHhZJuQ2+IMajENjSmKVa6MxRNks5kbb0SLZD2UVJ2Au0MKsMwaKsNsmU0xsC45qSbXQ4nM5+Go0kyWRPDUAlSrZD0UdoPhiwGVb/qCLyDrnpOQ07HV7+d7AMH3T7K6gg83qvWCYGkmzgj0eNTyUUNEJdAALH4XMJHGYah9mieLPg9UFUFu9izLW2r5Zun788Xb3+RjGniNQy+cfoKlrbtXIOsyu+1S2SDPu+sY4m6ujrq6iZrLO6zzz6k02mefvppVV7q8fHamxsYDYft17S1KUmbnp4eDjroIIBJTRUAHnnkEY4++mg+9alP2T8rZIU1NDTQ1dXFE088wdvepjTc0uk0zzzzDMv23R+f19ippMjTTz9NNpvl2muvtROAv/3tbye9JhAIkMlsz1Rva2ujp6fHvn7jjTd2yY7r6OhgwYIFrFu3jjPPPHPK10pjWhmBn//85zt8XkEZQ3PZIih9pshAmoFIgj3bnRfutSFcXirm1EF7iRUIOnbLTrFhSCe1JT0sxJIZIglV0qBf10hvggDyn0Gk1KCuA0Y2qO+faNKtDEqs6gWZbnYyR/Z0WrudEhGV9AVta19LKIDXY5DJmgxFk3RobU4i7KOkumuDSCzRXq+SbmLJHGG2R0sooDfpC/lYQqOPapM6cKgt7Ag8DKFWrcOZpik3pwRjCTEfNd4rLoEgFvOF2rUlfYsigSBlJ6n5ZJoF3UunR5I447DFvG2vNjYMTrCktYauhuopX+8xDDuWSGdNfA6Srfbee29OOukkPv7xj/PDH/4QX3qci//zq1RX5+OV6upqjjzySL71rW/R3d1Nf38///Vf/zXpfZYtW8Ytt9zCPffcQ3d3N7/85S9Zs2YN3d3d9msuuugivvWtb7Fs2TL22WcfrrvuOsLhUQD8U3zH99xzT1KpFDfeeCOnnnoqjzzyCD/60Y8mvWbJkiWMj49z3333ccABB1BTU0NNTQ3veMc7+P73v89RRx1FJpPh85//PH7/rkk6X/nKV7jwwgtpaGjgpJNOIpFI8NRTTzEyMsKll146nT+tFug//qmg9JBJa+20aEFMN8I+nZZlurWKCLXqLbECwaYXNc3gyS2mArayApWgz0OdTlFnECkDFptPIN4dTrx0R2OJ1bYdgbVCOEkgVgZs2SlQB4HQ1K+dJTwew2YXiZVsC7MIRMXENUsggEApcCEjUbcWLYVlwOURS4glc7z+PLtIwEeNxdIkNXdatCFxIF4rGUsUyUfpnlMCsYQ1nyaSGcYTmjXxpCUQpBpeZAv+bp7pV1x1NVRz1B4tu0y4WbCSUqlMdka3Nx38/Oc/Z8GCBRx33HGc/h/n8LEzT6e9tXnSa372s5+RTqc55JBDuPjii7n66qsn/f/HP/5xTj/9dM444wyOOOIIhoaGJrHeAC677DI+8pGPsHLlSrsE9T2nvBfI67ntCAcccADXXXcd3/72t1mxYgW33nor3/zmNye95uijj+YTn/gEZ5xxBm1tbXYjhmuvvZZFixZx7LHH8qEPfYjPfvazU5ajWjj//PP56U9/ys9//nP2339/jjvuOG6++eZJScRiYFo7zYMOOmjancieeeaZOd1QBS5AdAAwc50W9Z0QFjZT0ApbrHUAshltQvYWLGchyiLQeeopZSdLrHVsszp1b1ykdbjCbmPaOy2KlO5Y+h6Swu/6kwTJdJZhq9Oidu09/XZqrQ1iGJDOmoxMJGnRGfxb64JUeakUi8DuXKpv3QO19vWNCXQEFtYKE+uImYpBIlfmUg4sX2vdyyRUB8nqRq3D5eeTYBmw1oMhSQ2qTpgYyvneFVqHsj5PvcZOizYkykul5hMU0UcJlQFrZM3XBHzUBn2MJ9L0j8WpnaLEcc4o11jCYrl5fNo0EiGXlEqruG+muPnmm6f8/87OTu666y51kYrBwKt8+buTmWTLly/n0UcfnfSzQq20YDDIz3/+8+2qGQuTYz6fj1WrVrFq1Sr7Zz3hGAORBP4cE/uBBx7Y4T1ecsklXHLJJZN+9pGPfGTS9Q9/+EN++MMfTvrZggULuOeeeyb9bHR01H6+ZMmSnTZj/NCHPsSHPvShHf5fsTCtpNtpp52m+TYqcBUm0aL1BRBi7a5DbSqBaGZVlyTNGzUx/alsVnt3JChkUEkkc9pzSTf9m08xO4FI6U5hqYFpmnoTiYL6HoO5MgOfx6BJe6dF/Ulsv9dDc02AoWiS/khCb9JNmJEoNqcE1j0Q9FE220N2Q9MmtfH0Vec76WpAu9SBg78agg0qkTjepz3pJitVob+0Xmw+gVrD+18SmVNFSY5qLQNWn2MsniaeyuhNJAr6qGgizURS6UaJabppTGKDmlPjCSXTM5Wu2JxRK30wJNXwIsd0mwHLbTawklJpDUy3SfBYaR1ThI2dzqgxfLobMpUJppV0u/LKK3Xfx7Txgx/8gO9+97v09vZywAEHcOONN3L44Yfv9PW/+93v+PKXv8yGDRtYtmwZ3/72tzn55JMF77gEIeDUQTCZ4/FCTasS1R3vlUu66T6hiY3kqdGhNm3DyAbKco7d3niKlu7o39Ak0lnG4mkaqnV2BJbrDlfYxUp7p0UBtgeoz2Il3ZZ3aRxIkJGoOi0WoYOfRoj5KGs+JSOQjGormbUgLiZe266VRSArKN6hkm6RXmjbW+tQEh38AKWhOjGkngsc4MlqUEke4JWHRmJ9lWBHYEEfZa0PNQEvId2SIgJNzkCtDesHo3I+qty0sWeo5zZbWOWXqYzmRJjHB+R8bXb7xgROw2LuadccLRPM+q/01FNP8ctf/pJf/vKXPP30007e006xevVqLr30Uq688kqeeeYZDjjgAE488UT6+3d8kvXoo4/yH//xH5x33nk8++yznHbaaZx22mm8+OKLIvdbshDQ9oACfQ+JUgPB7nBiyRzLqde0aG06UJRAWeR0Ol9eqhWmKaLvUeX3Ul+lAgft2kaCOixiem4goj8FgolsQUbiUDRB1lS5lZaQZkailI+S0kkM1oE/t7EVTBLoT47KbDzL3kfptlO0oNNidZO2YazPMRRNatE2mgTRZI6Q/hSI+CjDMOQOHAR9lKj0S0R/zAeCB0O2nXIdgTUinsoQjqlkmPY5lbHKS/Uy3Xwei+mmOelmGODxseGJP3LxZz6pdyzyGnX+KTTdKshjxkm3zZs3c+yxx3L44Ydz0UUXcdFFF3HYYYdxzDHHsHnzZh33aOO6667jox/9KOeccw777rsvP/rRj6ipqeFnP/vZDl9//fXXc9JJJ/Gf//mfLF++nK997WscfPDBfP/739d6nyUPKVp0rZBWGIh2hxNL5giwpyBfMjGeSDORLB+xVrlOi2OQzm3aBU49ocwCZamNJwgmCYS0jaz5FBuBtN7vRL7TYlCu02K5JEctPUvQnswxTVNu7RNKYstqhRXDR0mVa3do67QI0FQTsMuQhsaT2sYBhJM5UqycTD5BKpbIFvJREqz5caH5BOUngRBqAwwwM3lWrCZYnyXg8+it2IB8tZBXd3lpjummOWEJ5Fl7Wc37NQrLSytMt+lgxn+l888/n1QqxSuvvMLw8DDDw8O88sorZLNZzj//fB33CEAymeTpp5/mne98p/0zj8fDO9/5Th577LEd/s5jjz026fUAJ5544k5fD5BIJBgbG5v0b95BauNZL5QggDINlAtKdzQiFPBSndP00N51rBiMRKmNZ7BBaQJphFjTi6KUlwpq7wklc7TPp+om8OZYZ5o3n6KMRLHSnWI0J9Hro8KxFMlM+XRahMKOwEkyujsCF0MCoUySo6ojsBB7VNJHSSVzJoaUNjGGkkzRCLEDvMJ1T7MGlWjXZgGNRBA8cCjsCKzZR1nzqa1WoMlZpqCRgkZYhw3amW6QZ+1Zn00TTNMknUsiTtW9tII8Zpx0e/DBB/nhD3/I3nvntSz23ntvbrzxRh566CFHb64Qg4ODZDIZOjomBwUdHR309u54Aejt7Z3R60F16mhoaLD/LVqkt4OiKyFcujM6kSKR1lx7LpTMSaazjEwI0aKFNp6GYeS7WY1LCYpLnk7rTo5a80lvchQKEtm6kzmWnaIDeSFaTRDbeCYnFCsRxNY+7fNJkEE1IMX2ALnSHan5BGI+yppPDdV+gj7NnRZtH6V3PrXWBjAMpSs4MqGZQSXISBRjUI3LxHxQBB8lIYEglcyxYvNQm3YNKrkDvNx3LpOE+KjWocRiCSFJERAurRdij4omR21NN83lpVYjBRGmW+6zZPUm3awEooFRaaQwTcw46bZo0SJSqe0NmclkWLBggSM3VUxcfvnlhMNh+9+mTZuKfUvyEGJ7NFT7CeQWokHdpQZCyRxrE+33GjTVaKZFC51OQ4FuhPZAWU6HZUBM9F2mHATyOoLakzmhVtURGBMmBrUOJb7x9NcojS2NsJPYEskcm/EhczotKyaumelWMJ921pbeMQj5KLH5BAU+Sq+dfF6PrSMo56P0zqdoMkMspQ4j5XyU/lhCzEcValBphpgEglADGRCM+fxVUNWgnms+cBBtcpbJ7WnKRQIBxEqBByQlRYQ03azy0kzWJKubjW0z3fQeiKcKWG7aGYllghkn3b773e/ymc98hqeeesr+2VNPPcVFF13ENddc4+jNFaK1tRWv10tf3+TJ3tfXR2fnjgO6zs7OGb0eIBgMUl9fP+nfvIMggypfZiVUaqA76VbQREH7IiRUugOFpQaa7VRXkHTTeCKUyZoMSSUJhJijUMgi0GwnjzffMbdckjlCnRYhv/GU0aCSYXxY3zmRTouxYfVcSCMxmc4yFtOtZynko8aFNEdB1EeJlS1KMRJz8ykk0WlRSB8WJJluVkfgcUiMax1KLJlTjjEfyPkoq+GF9iZnOTtVN4FP71jlKNMjNp+gQNNN7xrrMQw8hpCum/VZNJeX5vXcKgm36WLGSbezzz6b5557jiOOOIJgMEgwGOSII47gmWee4dxzz6W5udn+5yQCgQCHHHII9913n/2zbDbLfffdx1FHHbXD3znqqKMmvR7gL3/5y05fXwGKFi1UugNFEH7XnCAQ23iC8KmnkLZRKPedy6bzG2sNGBpXnRY9BrRIdZkVYSQWQ4NKc5JAak6JbjwF7SRctijG9vD4tXZaBNUR2BJy1p/MkfJR+YMh7ZD0UVJzSixBYG08JUXfJWI+IQ2qYB34Q+q5Rh8VT2UYi6uNu9UcTBuKkRwtIx81IDWnJA9ac/NpOJokmdaczBGOJbTPp2wmp5GIdqabYRi27pl2XTePTHmplTz0626cVUaYcWp31apVGm5jerj00ktZuXIlhx56KIcffjirVq0iGo1yzjnnAHDWWWexcOFCvvnNbwJw0UUXcdxxx3HttdfyL//yL/zmN7/hqaee4sc//nHRPoPrEQ9DJudkBRy7GDW6UIfFNLUxWfolRd8FAzAxO/kCUN2sEm7jfaqMUQMsO7XUBvHqPqWRLN2R1vfofV7rhsY0zTzTTXegXITSnYlkhmgirZfJIpUcldrQFMofCJQ0tNUFCcdSDEQSLOvQWHZsJ3P0lsOJJXOyGaX5CDJJArFYIpeYiochFVflcRowIKU/BWKi7yDtozpgeJ36fC17aBmisNNifbVmRmIRDlpFyxalfJQYa16/nRqr/fg8BumsyVA0QVeDxmZdUhIIUkw3iwlmeFT1hmb4PB6SZElndDPdrKSbXna+zXSboonCzTffzMUXX8zo6KjWeykVzNhDrFy5Usd9TAtnnHEGAwMDXHHFFfT29nLggQdy9913280SNm7ciKegbe3RRx/N//7v//Jf//VffPGLX2TZsmXccccdrFixolgfwf2wFtOqBm3BZCHapZhulvNLx5RYuqUh4TBEadGCjl2MkQgq8I8Nq6Rix35ahigsA9YOydNpSTsJdIcbnUiRyjn21tqAtnEA0dKdUNBHTcDLRDJDfyRBdxkk3cREqoXE+S201wV5s39cwEdZ5aVCpTu67RQdVCwCw6Pt8KQQYsmc6ibwBtXh5HgfNO2uZRjRbsBC2nsg7aNySTeN7NFChm85SooMjifIZE29h5MCPiqVyTIUVTpr5dLkDFRH4La6ID3hOP1jupNusjI92n2UlZTSzHKzYOm6pWap6bZp0yauvPJK7r77bgYHB+nq6uK0007jiiuuoKWlJf9CT0F5qUaSiZU89Hn0M902bNhAd3c3zz77LAceeKD28XRh1pF+f38//f39ZLepTX7LW94y55uaCp/+9Kf59Kc/vcP/e+CBB7b72b/927/xb//2b1rvqawgSIuGwtM0zaUGgRoI1quEW6RPW9KtXyqZk4xCMqKei4rqSuh7dED/y1oduy18LKprJNC9NDefwrEU8VSGKr/G0zuBMitrPjXWCHRaFGxMAmpObRiaoH8sTndrSN9AAmWLpmnKiYmL+ygprTCrI/CgEkDWpDFj6xpJbTxDbSIsAjE7WR2Bwxs1J92E5pNgp0UQ7rYokMwZkJpPIOqjWkKqI3DWhKFoQm+XdwEfNZhjzPs8Bs01mg/wBCV6QM2pnnC8fGR6pOaUUOdSC3YH01kw3datW8dRRx3FXnvtxa9//Wu6u7t56aWX+M///E/+/Oc/8/jjj+dlvezPYyrGuaZYwjoQ90/BdNsVkskkgYDm+eiCMS3MOD359NNPs2LFCrq6unjLW97CgQceaP876KCDdNxjBZIQZE9BQRe/MgvAtCdzLKfnD2nvtAj5ZM6g7o5jINKWXOwkDURLd+qrfQR8Vkdgqe5wAslRETvJnU5DwYGDbjsVltZrwngiTTylAkmxTotiPkqozKqmBQwvYObLMjVAjEElnsQWLIerk4glLB+lueIgNpLffIo0+8nbSXtHYBEfJRlLyPko1RFYqmRbLuZrrQ3i0S4pIscchbycjahMjyZksiaD44qRqH3tszuXziIpFd4C6x9Sj9OE3zN7TbcLLriAQCDAvffey3HHHcfixYt5z3vew1//+le2bNnCl770pfyLDU8ulgCyKTKZDJdeeimNjY20tLTwuc99jpUrV3LaaafZv7JkyZLt5MMOPPBArrrqKvv6uuuuY//99ycUCrFo0SK+9J8XMxEdt5OJoMpJFy9eTE1NDe9///sZGhqa9J5XXXUVBx54ID/96U/p7u6mqkrZ+O677+aYY46x7/GUU05h7dq19u91d3cDcNBBB2EYBscffzwAxx9/PBdffPGkMU477TTOPvvsSZ/ta1/7GmeddRb19fV87GMfA+Dhhx/m2GOPpbq6mkWLFnHhhRcSjUZ3ZYo5YcZJt3PPPZe99tqLRx99lHXr1rF+/Xr737p163TcYwWSEN545rv4lUfSrV8qUBY8mYb8Bm0omtSvRyBQtii28Uwn1KYGRDY0hmHIzSkJO40JzScQTxLkOzcLBcrRfm0dga3vWm3QR01At65Rmfqowo7AGtmjA1JzSrCBDAhLIFifSSPjQ0zTzfoM1c1KU1UzLJmAZCZLOKZX6LusfJRwkzMQnFMCZYt2A5kyO2gFwU6z1rqXikIiomWI4WiSTNbEMAQkRTJJSMXUoUMyOv1/T/4EVq2AX5yqHp/8ybR+z5eZwEhNkE5E1XyeJoaHh7nnnnv41Kc+RXX15PLhzs5OzjzzTFavXj35EMNiu2VSXHvttdx888387Gc/4+GHH2Z4eJjf//73M/5zeTwebrjhBl566SV+8Ytf8NjfH+R7X7/S7l76xBNPcN555/HpT3+a5557jre//e1cffXV273Pm2++yW233cbtt9/Oc889B0A0GuXSSy/lqaee4r777sPj8fD+97/frqZ88sknAfjrX/9KT08Pt99++4zu/ZprruGAAw7g2Wef5ctf/jJr167lpJNO4gMf+ADPP/88q1ev5uGHH95pJaVTmHF0vG7dOm677Tb23HNPHfdTQbEhXboj1T4eCjrv6A+UxTr4CTn1llAAr8ewT6E6GzQGmBJli2Ibz5ydvAHtnRYttNcH2TIaE0jm6LeT3URBMlAutyRBbTtgKP2SiSGobXN8iPx8Kq8SKyiCjxrv1ZYkiCUzRBJKx0Y7G1tQ9B0KJRAUg0qrvpbEAZ7UnBJOYgd9Xhpr/IxOpOiPJGjUWeon4aOkYr5ERGkSgxiDqr0uyCs9+US9Nthli2XCSCyaBIJmOwVrIVALyXFlKw1VNtZ8agkFJjGotCARgZ+/Z27vYWbhT59V/3aB5tw/AL64FQLTkxV54403ME2T5cuX7/D/ly9fzsjICAMDA7S35xLYFnsvm2bVqlVcfvnlnH766QD86Ec/4p577pnW2IUoZJTtvvvuXPCf/8XVl1+C36uaU15//fWcdNJJfO5znwOwCVp33333pPdJJpPccssttLXlY9EPfOADk17zs5/9jLa2Nl5++WVWrFhhv7alpYXOzpmvf+94xzu47LLL7Ovzzz+fM8880/5My5Yt44YbbuC4447jhz/8oc3Acxoz/kafcMIJ/OMf/9BxLxW4AdKlOwVli9lZiktOG5oDsGzWFDydlt14ejyGfeqkncJul+7oo7CLJXOEOy1CoWaObg2qgvbxmsqExE6nM+l8SZ9UealUab3Xr0oXQVuSwJpPoiwC8eSohJ6lXh9lfdeCPg91Opt3gKg4P+TtFEtliCYzegeTkECwuzZL+SgZ9hRMTpBqRaGP0gQ5jcTcZwjWK41iAdixhJQEQiKsmEcaUK5NzkD4YEjzgYM1n1olmpxl9Hb3dBq7KsePx+PU1taqf0sO5Bs3/A/hkSF6eno44ogj7Nf5fD4OPfTQGY//17/+lRNOOIGFCxdSX1/Ply76OKMjwyTjymavvPLKpHEAjjrqqO3eZ/fdd5+UcAOVWPyP//gPli5dSn19PUuWLAFUg0wnsO3n/cc//sHNN9+c/3vV1nLiiSeSzWZZv369I2PuCDOOun7605+ycuVKXnzxRVasWIHfP1mA8L3vfa9jN1dBESB86tlSq8Ra01mTkYkkLToXWpvCrieZMzKRJJ21Oi0KnU4LOXVQQWXfWCLnFPU0ogBESnfEAmXhE08Q7OJnfaZMAuJhqG50fAgxO0UHAFNpYdS07PLlTiBftijUnGRiMLduON+922qwIlu6I8sikNEd1eujChvI6O+0KLv2hYI+QgEv0WSG/rE4tW21+gbTXLaYTGcZtjot6o4lBLtrW2irC/J63zgD40LlcBKSIlI6voLJ0bwEgmY7VTVs0xF4ieND2LGE7vmUiqnkIYj5KOszaU+OQq4j8FptB0P5+SQgKeLxwjl/hqalUDVN1t7YVvjB4YrhZsHwwgVPQP2CKX81lcnyam8EA9jPV810PfCee+6JYRi88sorvP/979/u/1955RXa2tpYsGCBXa5JpJfmQDqvW7cLeDye7ZJ6qVT+dzds2MApp5zCJz/5Sb7+9a8Tqmvg9j/fx1X/+RnS6ZnJBIRC2zP8Tj31VHbffXd+8pOfsGDBArLZLCtWrCCZTM7pvnc25vj4OB//+Me58MILt3vt4sWLp/MxZoUZJ90ee+wxHnnkEf785z9v93+GYZDJaD5hrEAvhBlUfq+H5poAQ9Ek/ZGE3qSb5s47lsNrDgVsMXttsDZlQk4dLFbimEA5nF4WgWmaguWlsklsyH8m7XbyV0OwQQWY431akm4DUgGY9V0LtYt0WgRBgX5Q60T/S9qSBGKi79ls0USqx+Jp/R2BdfsoKTtBcXxUfRXrB6P0RxIs1Zp008tILOy02KS706JwEhsKfJSUBMLEoNp8auhSKDanhNc9ECxbNAz1/RvdqHyUlqRbjo2tO5aw1m5ftWIlCsCOJXQnR0E7e1S0yZmZUXFsdYN6nA5al8Gp18OdF6vfN7xw6ir1813AZ5rgz5AF0iZMdzVqaWnhXe96FzfddBOXXHLJJF233t5ebr31Vi644AJ8Pl9e+mu8Hsa2QFUNXV1dPPHEE7ztbW8DIJ1O8/TTT3PwwQfb79PW1kZPT499PTY2Nonx9fTTT5PNZrn22mvxeDyMx1MM9N066T6XL1/OE088Melnjz/++C4/39DQEK+99ho/+clPOPbYYwHV5KAQVrfRbXNM2953JpPhxRdf5O1vf/uUYx588MG8/PLL4lJpM84MfOYzn+HDH/4wPT09ZLPZSf8qCbcygHDpDkhqG2mmRVulcBK06CKcTosxPiynnhyHxLjjbx9JpEmkpTstFqF0R7KLn+YkgfY5VZSNpySDSm8iW6x0JzaitOkg33RAM+qrfARzhyhy3eF0le6Ut48SY/lqlkAolKmQ67Qov/Zp91E1LXltIw22Uhq3QqX1xfBRkgdDUj5KMuaTlhQZF+gILGQn7fPJzOZjCc8Mk/EHnwUXvwAr71KPB581rV8zDANvTqdupg3pvv/975NIJDjxxBN56KGH2LRpE3fffTfvete72Guvvbjiiism/4Kt6Zbioosu4lvf+hZ33HEHr776Kp/61KcYHR2d9PJ3vOMd/PKXv+Tvf/87L7zwAitXrsTrzR8w7rnnnqRSKW688UbWrVvHr371K373q59Peo8LL7yQu+++m2uuuYY33niD73//+9vpue0ITU1NtLS08OMf/5g333yT+++/n0svvXTSa9rb26murubuu++mr6+PcDhs3/cf//hH/vjHP/Lqq6/yyU9+crvPtiN8/vOf59FHH7WbPrzxxhv83//9n/ZGCjNOug0NDXHJJZfQ0SG38FcghFQc4qPquaBjlwuU9ToLsTIDKHKgrPk0LVAL/pxmiQZbWcnRuqCP6oBmVlM5bzxBewt5+dId+fk0FE2SkuoIXOrJHItZVNMi0mkRch2BpZIE2n1UvrxUK0xTvMM2CCZzCte9rPOHzWLdtUG8ugEEfZTHo9jLoGVODUUTZE2VW2kJaV6PiuijZDoC6/VRYsmcIlQ3WHI2qYzJ6ITmjsD2gYNmHyWh4wuAMbvqhoaF0H2sepwB/LlDlFRmZsnRZcuWsWbNGpYuXcoHP/hBdt99d97znvew11578cgjj1Bbuw2zu6B76WWXXcZHPvIRVq5cyVFHHUVdXd12ZaqXX345xx13HKeccgr/8i//wmmnncYee+xh//8BBxzAddddx7e//W1WrFjBb3/zay78wpcnvceRRx7JT37yE66//noOOOAA7r33Xv7rv/5rl5/N4/Hwm9/8hqeffpoVK1ZwySWX8N3vfnfSa3w+HzfccAP//d//zYIFC3jf+94HwLnnnsvKlSs566yzOO6441i6dOkuWW4Ab3nLW3jwwQd5/fXXOfbYYznooIO44oorWLBg6hLhuWLG5aWnn346f/vb3yYZo4Iygd1pMQhVjWLD5svhhPQ9YiOQToDP2UVdzKlDUU498/oeAqUGtR0wsl59zhZn1xpb20MyOVqM0h0prTDQUmY1kUwzbnValGx4IYSmmgA+j0E6x5boaphmecNsoLlsUSyZU4QkNqjv3+aRmP7mJLaeZYmzPRJjkM79rQQ3n2JNL0K5jsBmJtcR2NnEotjGE4qSJJBtTtIOka1akgT5TotB/Z0Wi+CjCu2kvSOwRh9lmqbc2leEJHbA56Gpxs9IriNwk84EsGbNZTmpilxy0uMTYyQCap1IZUhnZ37QumTJEm6++Wb7+sorr+S6667j+eef58gjj5z8You9l03j8/lYtWoVq1atsv/77LPPnvTy+vp6fvOb30z62cqVKyddX3LJJVxyySUAbB2NMTie4NyVK2lszMeu5557Lueee+6k3yvsGnrVVVdx1VVXbffZ3vnOd/Lyyy9P+tm2rM3zzz+f888/f9LP/H4/N910EzfddNN272lhw4YNO/z5YYcdxr333rvT39OBGSfd9tprLy6//HIefvhh9t9//+0aKexIlK6CEkEROi2CYOed6ibwBiCTVAFYo7NiiWKi75k0RAfVc1EGVa7UQEKsta4zn3RzGKKaEcVgJObm0+B4kkzWxKuzPEljoGzZqcrvoVZ3p8UibDxVR+AgvWNxBiKak26aGYlyukby5dogqJNYmMQ2Tcf9sBiDytp4BmegleMALDvp7wjsg1CrasAy3uf49zF/gCeovSfKoBKaT6DW9B60+ChRRmIR9WHjqSzjiTR1Vc5r4tnQWLYYjqVIZqQkReRjPlC2Ukm3OHt3TrMpwGwgVN0gso8CLTqPU8FiuqVnyHTbEb7yla+wZMkSHn/8cQ4//HA8noLEvzcXM5sZxcZ2WKvYahqo/bChzDCr7qW1tbU8+OCDPPjgg5P+zzCMStKtlGE7dVlnIdZ5x2JQhTcph+F40k1o4xntR3Va9Ip1WgTptuT6usOJbmiKcOrZElIdgTO5jsBaO+lqDMAK55P2TotFKN0BNad6x+ICguL6GInJdJaRXElLOZbuQDE6AieV1EN1k6NvL95ARjw5KlxaHx1Qa3zn/o6+tdjGMzmhWIlQnuWloNVHDYwJHuDZsYTcnKoOeKkL+ogk0vRHEpqTbvrKS6351FDtJ+jTLClSrH1UXZDX+iKCMj16GIn9UnOqkOkmCCtJlco6o713zjnn7Pg/DC9gAKbSrnM66ZZLYvu8cgSdcsCMU5Tr16/f6b9169bpuMcKpFDEjSfA2r5xesIxvYNZHRb7XnL8rcUCsMLW8R65UwYrOdo3Fmfr6ITewaxTz81rILzF0bful2K6ZbO5BCmiSQKf10NjtQqOX94ypncwa60YeNV5O0luaIp0Om3NqcfWDeld+6zvX3ir43ayDkv8XoOmGs2nxkVIYkP+O/jC5rBeO/mrIJhjKfQ87/jbizPdipQc3TAY1R9LWN/B9Q+V7tpnbZz9NfnvnQCsmC8ST7NhMKp3MMtOW5/VEEsUoQxYuLTeWtNf2ao5lrDWisE3S3c+QYGPkpdAAFizYVjv2mfNp4khGN7g6FuPJ9LEUkojUz/TLZd0E2a6WUmqeDJDMq1Ry9cw8gnF1Pbfh5tvvpk77rhj1m9vadL5dTf6KTNUeIEV5FGEMgOAF7eoLiSv9kV467fuZ/WajXoGeuYW6H1BPb/zInXtIAbEulgVx04Pvj4AKFrxMd/+mz47gdJgAXjx/8GqFY7aSqy8NDac645kiHVaBFi9ZqPNPFp585N67dT7fP7RcTsJlWtDgfaebKAcSSg7/c/D6/WufWvvV4+ZuLb51FYb1M9ILFJydMOQSgw88PqAfh+ViKjnv3yfo3bKZE2Go1LJnOLY6ZmNIwBsGonptROo7toAj17v/JwaL99OiwB/er7Hfv6Oax/Qa6eRDerx9T/rW/t02ymdUFrEIOqjVq/ZyMYRtWH/zK+f1WunzU+px5F1GuaTkOYoFG3tG8qt7b9+cpPete/VP+af33iQlvkUCngJ6ZYUsZluskm3RC6pGE2mea13zPbJjiM6mP+MI+vzkkQOwdKkq5SXzgyz+mtt3ryZm266iS984Qtceumlk/5VUMIoQulOTzjGjx/KMySzJnzx9hedP6kJb1GJNhsm3Hmxoydq/WNCp57j8ozEnnCMK/7vRftam51A2eSVu/LXZtZRW4lp71mMxJoWsdO0nnCMy29/wb42ddvp8QLxUsftJLTxNM2ilO70hGOsWT9iX2td+/78ufy103YaK0ZyVHbtu/3Z/N9KzEeZzvqooXHVadFjQItUl1lhH3XDfW/Y19p91KYn89cOz6kBqTlVhMYkPeEYX/x93kdpt9MLv8tfl6qPspKjHr/jJec7w3axBJrt9Pdr8teO+yih7tpQNB/10Ov5pIpWH3XXxflrXfOpXq/8gWmaBZpucuWlyXSWoWgyfx/AlpG484y3dFLJKBUivEn93AFksyYZS9NtnjDdtm3qMFvM+Nt233338d73vpelS5fy6quvsmLFCjZs2IBpmhx88MGO3FQFRUIRSnfWD0bZtrQ9Y5psGJxwVlh8eK1yEIUwMzC8bsYtn3eEaCJNNKlOMHQ7jHzpThnaCZSt2GYwB20lrmskmMQWt5PGOSUVgBEfhUzutFFw87l+MLrtt7wk175+UY1E+STB+sEo28ZbpWynltqg3uYqUPFRc4Bpmnmmm+61rwgJgnKxEwj6qEL2lBAjsRJLzALZjNJ5hEosMQvolj/wepWuWTKZpLoITLdkOrPdz0xMkuksAZ+DjLHMTthzmQT45t7Z1mK5GYahP5ZwCZJJlbC0vkOzxYyTbpdffjmf/exn+cpXvkJdXR233XYb7e3tnHnmmZx00klzupkKiowilFh1t4bwGExy7l7DYElrjbMDNe8BhmeywzC80LzUkbe3aNE1Aa9Ap0V5zQgxO4F+W9kbmvIrAy4rO0mV7lh2qmpQmlpC6G4NYRhMSuiU8tonU7ojr5FYbj5KViOxDO0EylaWSLUFh2w1OpGy9XJaa+e+QZoS88FO5TCnipAcrdhpFogOqs9geFR3YyGUXSyhyU4+n4+amhoGBgbwBxJ4MCGVBSOuZbxtkU1nIZ2clCA1MMimk8TjaecGSpvq37ZImWDO/bNOJNOY6SQ+j4dEQqAZTpGRzWYZGBigpqYGn29u+/sZ//Yrr7zCr3/9a/XLPh+xWIza2lq++tWv8r73vY9PfvKTc7qhCooIOwCTK7Hqaqjmm6fvz+dvUzR2jwHfOH2F8ydpDQvh1OtV+Y7lME5d5cjpDEi3ji+enb5w2wuYqO2GFjuBssm7vw73XK6uDa9jtkqkM4xanRZ1lxoUoTGJbafbX7ADMK12OvV6+MNn1LXhKc05VaQGMl0N1Vxw/J58/29vAipI1rr2/eFCsGavDjvpnk/JKCRzemfCa9/X37+/XWql3Udps1MRyoDLMZYAZZNjLoaHv6euHfRR1nxqrBHotFiEsnrxWOLka+GPl6hrB32UaZryUhWVWGJWELOTVd0QanO8W+RU6Gqo5rPv3pvv3vMaAN6Kj9ohDMOgq6uL9evX888tOV3JiF+0g2kykbY1lw3UOr8lpmH8ZAYmRrAPhmqaIepMGXAsmWEomiTg82BEBeIJF8Dj8bB48eI56xbP2NKhUMim2XV1dbF27Vr2228/AAYHnRXqq0AQ2UwBM0dWTPyMwxazes0mntk4ypWn7ssZhy3WM9DBZ0FdF9z6r1Ddoq4dgmgXq4h82SIoO72wZYxfPf5P/vWQ3fTZCeDIT8K9XwYzDefeDYsOd+RtrZO0gNdDo+5Oi0U4nQZlp2wWLv/9C+y3oF6vnQ4+C9b8DHqehZOvcXRODUjNqSIJHwN8+Mjd+f7f3sRjwIOfO57dmjSwCEDZZfPT8MzNcPBKPXbSzXSz1j1/SLTTIsB/HL6Y6+59nYHxBD9deSjv2EfTd+Xgs5Ro+p8+CwsOdtZHiXbwK56P+tMLPTz4+iCXvGsvvWvfIeeopJvHBxf9Axp2c+Rti9IRswh22jA0wQ8fWMuJKzr12umwc+G+r0J8BM78f7DnCY68bSSRJp5SB7j6pSqK46POOGwxNQEvn/n1cyxurtYfS7xwG6x/AN5xhcPxuXDX5iLEEue8dYmddLv74rexrEOTjzz4LBh4HR67EfZ7v7OxhID0SyAQYNnCFpL/d5pKjH7iUUdKLmeCs372BFtGYnzx5OWs0BVLALz6J/jrFdC4O3z4Nsfe9o5nt3Dj3zbz1j1b+er79nHsfd2MQCCAxzP3EuAZJ92OPPJIHn74YZYvX87JJ5/MZZddxgsvvMDtt9/OkUceOecbqqBImBhStfnCnRYtLGqu4ZmNoyR3RIl1El0HqMfYsBLSdEhEM0+LFihPK1JyFGCPthAAE8nttQkchWFA/QIIb0SdBzmDwuBLe6fFIuhPWdi7SwVcFqtPK5p2V0m3jHNjpTN5wVmxDY3wxhNU+ZiRK+HRzmpp3VM9pqKOvm2/1NpXpCS2ha7GKgbGE2Qd1jzeDh3qEJP4yNSvmyHyHTE12ymdUDqJUJTN5+4tIWCQREqzoaz1IpsGv3PJcjHNUShIEsivfXu21QJKD1c7GnZT88khMWzIx3x1QR/VAc1rdxF91L4LGgAYiQrEEs1LYD0716SaJSSSOUDRktgANQEfdUEfkUQaj26drba91KPVwdkhSHVt9kT7qZrYCtXNUFuvdawdIRisYktknHjWS1WVxu9k1z4wvgkyUXBwnM1jabZEMgSDVXrvvwwx47TdddddxxFHHAHAV77yFU444QRWr17NkiVL+J//+R/Hb7ACIVhOPdQq2s3FQkdO4LRvTHNtfU2rKgXBhGi/Y28rdpJmmgWd4eRKQixYQYt2O0F+cx3pcewtrUC5VYRFYCVH5e1kzaeBSMKxrjs7hRVgOminoWgSM9dpsTmk+RSySOWloNqtt4TUd1H7nLI21tbndQhy2nvFYxFAwdoX0W0na93rdTRJYHfwk7KTNyDWabEQ1oZN+3zyBfOfz8E5ZW08y7UM2IJYzAdaYgmx+QRFKQO2YM2nSCLNRFJzgrTW+VgilswQySV25XyUvJ0gzzaXiyWcsxNI+qjixXyQ/3zaYwkrNo8Nq8MwhyAW85UhZpxdWbo0L5gYCoX40Y9+5OgNVVAkFPHEE/KO3UpeaYPHoxbayFYVKNcvcORtxZxFbAQyubbPRXAYHfVCdoK8w7ACGQfQLyomXrxTT0tfK5nJMjqRokln4kqHnXLzqVWi02KRkzkd9UEGxxN2IKMNdc4n3bJZU06kuoilO1Cw9o0J2Sk1AYkIVDlzEi9WtlhoJ6FOi4WwOhTK+Kgu5ZPHe6FjX0feUqwMOJPOd1osgo8qTizh3Nonq5FYPNZ8bdBHTcDLRDJD/1iCJa0aD+VtH+VcLGH5p6DPQ32VZkJBkfdRHfVVrB2ICsYSztkJCnyUdqmK4rLmrQMH7bFEdZM6/MokVZzb6Ex5uKgEQpnBwR61FZQ07ARBkVgERTn1dP50Wr/+lNVpsVG006KFQqabdgaVhtO0gTFJ7b3iJQkCPo/NENPPzNFgp3Gh4AuKWroDgswcDUm3kYkk6azVaVHodLpodrKSOZrtFAhBMJdo0+GjtHdtLjYjUWg+wWRWokMQS+ZEBwBTMf9rWvSOtQNY82l0IkU8pVmuQgPLN9+1WVBSpAjxuWEYRfBRDjISCxI52iVFiu6jhO0UHXBMViSZztoNBuQ0EotNMtFsJ8PQsvb1S3asLzNUkm4VKBSb7SHFdAN1Og0OlxoId0cq1oYmt8gm0lnGYppLDTQkCcRKdxLjee2som8+S49BZTNHdSdyoKilO1BYZiVkp2REfT8dgDWfmmr8BHyaw4kilmtDnpmj3U7g+ObTNM2COSWka1Q0RqIw0w20SCCIlcIJd1q0UF/tI5hbM0qR5Tsg1bU5my16fG4filfsNDWK7qOEYolCmZ5xZ2R6BnOxhM9j0Fgt1OSs3O0EWhLZ+TlV0XObKSpJtwoUily6Y5eEiDDdnC+HE2ukUGRadJXfS0POIWo/pbE3NM4nc8RO0gK1EKzVO9ZOIDandNhJtDFJ8Up3oLAcTrOdgnXq+wiOrX2you/FtpPQ6TQ47qPG4mkS6VynxXlSujMcTZJMCzVT0FAOV+6NSQzDkJtTOn2U7vkUG1bNOgBCxU0SiMUS0X7IOsN+FI0liuyj2iRlehwu2S7UxdbeCKJI3bUtdBQjlnDIR2Wypp0grTDdZo5K0q0CBZfQoqPJDOO6u1k5XA6XKuy0qL10p7hOHSQZVDpKd6T0p4rL9gBB9qhlp/gopGKOvKWYtkcqBvGwel6s0nqp+QQF5XDOrH2iZQZFThLkS+sl7OSsjxrIzae6Kh9Vft2dFovro5pq/Pi9atNmMTG1QUs5nNCcKnKCAKBDak7pYGOLaSTm7rmmA0dcdAAAt6hJREFUBXyamwrtBGKay6E2MDxgZvN6g3OEWCxhmkX3UaLNSRwure+XlH4pNnO0YN0rtUZnQ9EEWVNVrrbobnJWhph10m1wcJCxsTEn76WCYmJ0k3r0yHcuBQgFVbtrkNSNcCbzPzSuEm4eAxK6tUmG1qlHf43ecaZAhxQzxzr1dFD8uDes7lm7vnf/K+qxqlHzQDuHWABW1Qi+3CmyQ8ycTcMTAHIlix4/JKN6x9oJ8p1mJU49nWV8rB1QZaqhgIDfGNuaeyIvzg95Ow2OJ0hnSotBZW2Wa4M+esLOJMZ3ipGN6tFbnIBcaVBJMXOcZSROJNP2oWMmq3kzNvimegyE9I4zBcR8VKGdss7M3a2jah6JNfoJ1EJ4i96xdoJ8ExnNdvJ482w+h3zUP4eUX6/SHUskxiCd+/s4xNKbKcQYieB4LPFmLpao093sAvLzyJAvq4c8IzEpKdPjkI+ymNh1QZ/+Q60yxIxWodHRUS644AJaW1vp6OigqamJzs5OLr/8ciYmJnTdYwW68cwtsPUZ9fxPl6nrIqBNrDucszosv3rinwBkTTj2O39j9ZqNjrzvdnjmFnjm5tzzXxTNTu1S2kaWnSaGHGl3/esnN9pO4qO3PKXXTn/6rHq+9emi20n7fDIMR5kEq9ds5MHXBwG47t7X9dkJ4Omb1WM2Bav2L4qtiqMV5oydfvTAWgDuealXr52eulmVWQHc+q9FsVNLKIDXY2Ca2MxmbXDYR/3hOZWw7AnHeeu37te79q1/QD2/7ytFX/vEfJRDdrr5kQ3285NWPaTXTo/dqJ6/9PvixXxSDCqL0ZJN5deROWD1mo2sH1R7nktWP6d37XvxdvU4+k9YtaJIPqoYGlTO+Ki7nlfv85O/r9drpyd+nH/+/UOLYqdCRqIcg8oZO3337tcAePjNIb12euYWGN2gnt92blHsVOX30lijZHq0Nzpz2Ef9v6c3A0qyQmssUaaYdtJteHiYI444gl/84hd84AMf4Nprr+Xaa6/lve99LzfeeCNve9vbiMfjPPnkk9xwww0677kCJxHeAndelL82Tbjz4qKcqHVIdYdzsGyxJxzjB397077OmvDF2190nk2wrZ0onp0KO5hqhdXuGuZ8StMTjvGl379gX+u3U0HAU2w7STCoHCqH6wnHuPz2vJ1MNNkJlE0e/l7+2swWxVaWnQbGE/rZLQ6VGlh2su5Wu53+eEn+ukh28ngMW4xbPzPHWR+1es0m+3p++CghzZzCEqs5bnJ7wjG+e+9r9rWcjypizCfFdPP6lfg7OO6jtNkJlE2euzV/XaS1z0qOisQSDvsoC9p91ANfz18XK5bIHTZMSMj0aIolQLOdJu13i2MnEOw062AZcE84NulgSOvaV6aYdtLtq1/9KoFAgLVr1/Lf//3fXHzxxVx88cX8+Mc/5s033ySZTPKRj3yEd73rXTQ0NOi85wqcxPBatfAUwszA8DrxWxFj5thirQOQmZtjWj8Y3S7WzpgmGwYdZn66yE4WM0d7x7FJ7a7nlnRbPxhl23xGudtJbD6BY+VwYnYCZSu2GawItmqtDWAYqpxsWDuDyplSA3E7zbc55WBp/frB6Lbf8rJf+/JlVkJaYZkkxEbm9FbzMZawNp7aYwkoYHyU2NrnAh9lSyBIxhIl56OKb6eaQF6mR7+Wb6nayR1rn5yPcq4MWCyWKGNMO+l2xx13cM0119DRsb3wYGdnJ9/5zne47bbbuPTSS1m5cqWjN1mBRjTvoYRLC2F4oXmp+K2InXoWtruOzq3ddXdraDuFIa9hsKTVYc01F9lJjOkGBYyPuZ2mdbeGttNxK3c7FWrvlYpYa3driG0lcrTYCZSttp29RbCVz+uhJSR16ulMSch8tBMIskcdZFB1t26v2VXua58Yi8AXVIxscGROzbdYQlT4vdRiCcitfdugCLay5lMkkWYiWRqNzuatj6qXjiVKzE7bTt4i2UmMPWrF5rHhOcv0iMUSZYxpJ916enrYb7/9dvr/K1aswOPxcOWVVzpyYxUIoWEhHPmp/LXhhVNXqZ8Lww6UJdpdO0S57Wqo5tAlTfa11zD4xukr6GqontP7boeGhfCeb+evi2infLvr0jn17Gqo5vSD8n8rrXY69fr8teEpmp2sUrhUxmRkIqV3MAftdOE7ltnX2uwEyia7HZ6/dsGc0s74cEiHpauhmm+8f3/72mOg1077/1v+2gV2Euu2mJqARGROb9XVUD0pWNa69h17Wf66mLGEfeAgyKCaIyuxq6Gaty1rta+12umUVfnrIvqoouhZOmCnDx2+2L7W7qOauvPXRZpTtUEfNQElOi/GHp0jI7GroZrPn7SPfe3V7aOWHpe/LqqPEmb5OmCnb54uGEscVEAKmg92clCmp6uhmn276u1rrWtfmWLabUJaW1vZsGEDu+222w7/f/369bS3tzt2YxUIojO34HUdAP/+66IsQFAQKIucenZCZKsjlNvaHJ37o8d2c+4x3foWoKVvV4++avjM00WzU+HptGmaGDpbgTooArq4WW083753G984fX99djr4LLj7i5CMwFl/gO5j9YyzCwR8HppDAYajSfojcZp1tvd20E4HLm4EYFFTNb/9xFF6HXogd0L31kvg8I8WdU69tHVMQCvMuVKD96zo4gs5zZz7LzueJTs4BXUMTburx71PhpOvKZ6PsvT3dJ9OB0IQbIBEWNmqqn7XvzMFLKbrFacs5z37d+mbUwsPUY/Ne8DKO13ho7SjrhP6X3ZkTjXl1ugPHb6Iz5ywTJ+d9j4Z7rxQPb/wufz8EoY1n8KxFPFUhiq/xm6CDq59e7bXAnBEdxOr/v0gvT7K6oR58jXKbkWYU4Zh0FFfxfrBKH1jcb1rvYOxxOHdzQC0hPzcdeGxeu1kMV4P+ygcc0kRfZSQnuUkmZ6U0k2cJT5w8G58/jYVS/zfp9/K/gsbHbjBnaB1T/W45G3w/h8Vz0dJ2clqdDa6Ua19jYt3/TtTwO9V+73L3rUX/3robpWE2wwxbabbiSeeyJe+9CWSye01ZxKJBF/+8pc56aSTHL25CoQwpjqb0b5f0RYgKFyEJDWo5u7YrVPao/ds1bsAWffauKiodrJo0QmJdtcOioBaNO637Nao107JqEq4ASw4UN8400C+zEqoO5wDdrJO/vZor9Xv0K37XXpcUeeUmJ2sEqtkBBLjc3oraz411vj1bsIAxnJr38JDiuujRJk5zpTDmaZp3+8JyztkfFTb3q6YTyKxhENlVpD/Xh2xtEWznXIxX21H0RJuAPXVPoI+tQ3RzvJ1MpbI2WnfBQ167WSa+e/VXie5Iu7TXoniYBMZy06LW0L6YwnLRy05psg+SqjTbE0LeHyACeNzk+kZHFd5Ba/HYL8uzZrw1vdqwQHF9VGSHYE1+Kjj9m6rJNxmgWkz3b761a9y6KGHsmzZMi644AL22WcfTNPklVde4aabbiKRSHDLLcVpO17BHGEtQlYiqkholz6dhjnTbSF/v1b3VW2wnHqR7VTl99JQ7SccS9EfidNQM/sTrl3CwdPpvnDOTvWa7WTda6AWgnV6x9oF2uureLU3UlIMql6p+QT5zad1/0VCe4H+nlYE69T3Mjmu1r5g7azfqjcsaSdr7Su2nYT0ckCt84Ovz9lHjcXTxFKKLdM+T3yUtcYPR5Mk01kCvmmfL88cDpVZQf57pd1OLon5DMOgvT7IpuEYfWNxFjVr1AZyMpYYE4olJoYgm5OGsJKGRUKHVCWKzaDqVyw/z+zZj2KxObjGR7VJ6VlaMj1jW1TJ9hwSWL32uhfEs63Am9MYc0fMl5fpkewIPDcflcmaDIyrpJv2ta9MMe2k22677cZjjz3Gpz71KS6//HK7XMEwDN71rnfx/e9/n8WL50ZbrKBIcImzsE6nrXbXVtmmFjiU+U+mswzlOg5ai6g2uMROoGwVjqXoG0uwrENjYsnJU8+IFShL2am4GxrIs0f1a4Xl7BQfhVQM/LM/ActvaDTbKTkB8bB6XuwDBymmG6hAeXhcfU9bdiDUPU3YCQLddgLXJAmsZEgpMaisTXJ9lY/qgMbyPXCNj2qq8eP3GqQyapOwsFHjibyjrHlpH1X8WKKjropNwzG5bouOJt2E7FTTCj6N8hDTgBh7NNSmdAbNrCpdnMOaL2Yn03SNj+qQ1LO0km5znFP5WEIiOeoOO+Ub0iUEZHqc8VFD4wkyWROPAS065WrKGDM6/uvu7ubPf/4zg4ODPP744zz++OMMDAxw9913s+eee+q6xwp0w1qE6osbgIWC+XbX+pk5zmT+ray/32vo1cyCAmfhgkBZipnjkEg15BMa2k9oxly0oZFij1Y1gi/3d50jM8e2U4NmO1nfKX8NVGkuadgFLDtp1woDxxgfVlDfKRIo506n6xfoH2sKWHYaHE+QzmT1DuaQj7LmU6fu+QSu8VGGYeQTpFKxxBzXvfFEmmhSMRIrPkoDCu2UndvcFWO6uSQ2hwJmjnYGlRdCOX3wOSdzhGKJ2AhkckkutyTdRNjYDsUSuXvtFDnAs9a+4sYSFiMxKSHT45CPsuZTW10Qn1cje7yMMau/WlNTE4cffjiHH344zc3NTt9TBdJw0alnm+3YdZ96OiPWapVYtddV6T2pANeUwkFhmZWQnSaG5tTuOpXJMihFi3bRfGqXmk+WWCs4duopWq6te+7uAkXp4jdHO/VKlWun4mpTA0Xf0LSEAng9BqaJzXDWBqd8lFSCAFy59on5KIdiibqgj5BOlj+4yk5tUgwqqzwzm4LY8JzeSu4Azz0xn5hWGJReLGEzElvAJ5A4mgKFjESrIk0bnIolpHxUoUaiC2R6GnPSPH1S5IVSiiXKFNP27Keffvq0Xnf77bfP+mamwvDwMJ/5zGe488478Xg8fOADH+D666+ntnbHmjTDw8NceeWV3HvvvWzcuJG2tjZOO+00vva1r9HQUFxWg6uQzbqGbgvKOa4biAowqJwpW+yXoq+Dq+yUp0ZrtpPV7jqTVKc0s+y8MziewDTB5zH006LdaCcJBlVtJ4xsmLNjl2MRuGfjaXfFzNH3vTp1TRwqNRAr3bEYib4qxagsIjweg7baIL1jcfrG4nq/ow75KDGdMHDNhgYEu/gVCvSb5qwT+P3zsFwbBJluXr8q05wYVN/TUOus3mY8kWY8oZgpYkw3F9gp30hBgkHVCT1UYolZwFo/LJmeuiqdmstOxRJCSez4KKRz318XzKn2uiCjEyn6xuLspVOmx6EmMqKxRJli2ky3hoaGaf3ThTPPPJOXXnqJv/zlL9x111089NBDfOxjH9vp67du3crWrVu55pprePHFF7n55pu5++67Oe+887TdY0kiNpwTajWKLtQKgkLVk9pdz57aa92nTOlOzrEVucQK8htt7VphhlGgbTR7arTl1EWEWl1kJzGmGzhSDpcuZCQ26NbLcUcpHEBrbQDDUEK1w9oZVA6VGkSkmKMFdioyIxGKwKCaY2m9Xbqjez6lE4qRDK5Y+/JlVkJaYZlknpE5C1jJjPkWS9jJUREfZTE+Zr/2WfOpNujTqzsMrimFgwIJBMlYYs7lcEJrn4tiiZpAoUyP0NrnkJ3EYonqpjnpDjsFOR/lcBmw7vlUxpi2x/j5z3+u8z6mxCuvvMLdd9/NmjVrOPTQQwG48cYbOfnkk7nmmmtYsGB7h7RixQpuu+02+3qPPfbg61//Oh/+8IdJp9P4fJqdZanAoq+H2tRJYJEhtgjVtILhBTOjuiTNMvjstZM5ErRo95x6ip1Og/q84Y1zOk2zy4BFS6zcY6f+SFxArHXuFPbB8SRZU7WObwnNn4YXPq+H1togA5EEfWNxm1WgBQ4FYGLdgF1UYgXWWh8WYGMXlO7MgUElVhJifZ+8AbWpKTLEfJQvCNXN6gAz0gs1s5Nc6Q3nktjzjJEopg8L6vP2vTC3WEKUkeg+O0USaSaSaWoCGvdQDsQSsWSGsbg6UNce97mka7OF9vogkYE0/ZE4e7bPvkP5LuFQ2aIYa96VsYREeWnuexkbVodjsyyB7pUq1y5jlIQS3mOPPUZjY6OdcAN45zvficfj4Yknnpj2+4TDYerr66dMuCUSCcbGxib9K2u4KJEDBV38dDOorHbXMKfNZ7/UhmZiWJ2kQ575VUSIdbKCfJnVHE7T+qU6l4KrSg3aatXnTWVMRiZSegdzwE5W8NVWG9RbYgmushPk55R29qgD655o63iX+Sgx/T1rnU9NQCIy67fpkzoYKrSTCxiJYlphUMD4mP2cEuvgl0kphj+4Yu2T1bO0fNRcYr5iJEeLb6faoI+aXPdj7Yfito+aeyxR7ffazC9tcJGdQJC84ICdQLC81GWxhFglSnUTeHN7nznF50J2KmOURNKtt7eX9vb2ST/z+Xw0NzfT2zs95zk4OMjXvva1KUtSAb75zW9OKpddtGjRrO+7JOAyZ9EuzaCCOW0+8yUh86d1PExmEegXa537aZpdZiAi1OqeUoOAz2N31RUr2XbATtq7jYGrOsOBZBe/uTPdhqL51vGttbo1Et1TCgfIdcUM1EAwJ9nhwMGQ9rJFF5XCQRHY2DA3O1mxhHaNxNymy+NXwu9FhjWfwrEU8VRG72AOrH2ykiLz3Uc5EPM1SDQ5c5edbPKCqEzP7A5146kM4Zj6XTntPZf4KCndUcNwRCNWND4vUxQ16faFL3wBwzCm/Pfqq6/OeZyxsTH+5V/+hX333ZerrrpqytdefvnlhMNh+9+mTZvmPL6rYW9o3OEsOqTYHuCICGif1KmnixI5kGcRJCTaXTvAzLHZHrqdemzEVUKtIMhKdMJOlk6YzvJKC247cKgTYnxYwVcyAonxWb2FdTLbWivQOt5FJVaQZ+aIsnxn6aOyWdO+T+0sX7exCCSZbrUOxhJipXDu0Eisr/YR9Kk1pBRYvvlYQvN8yqRhvF89d4mPapOqRHEiQRDJ6/hqR8RdZYv5km3dMj0t4PEBZv67OkNYsUSV30N9lW5Gost8lGRHYAd8lFgsUcYoqrDZZZddxtlnnz3la5YuXUpnZyf9/ZMndDqdZnh4mM7OqSdPJBLhpJNOoq6ujt///vf4/VPrlgWDQYLBefSFctvGcxsGlV4NKqskZA50WymtMNupu8NZVPm9NFT7CcdS9EfiNNTo7JDk3Om0nFBrc9Fbx1tor6/i1d5ISTCoxHTCTNOFOixC2kbBOgjUQnJcrX3BmWu+9ErZCVx34CDW7AfUd3Pw9Vn7qKFoknTWxDBUglQrXLrxHI4mSaazBHwak8MONJER0x11WRLbMAza64NsGo7RNxZnUXONvsGcjCV0H7SO9wGm0h6umV2nVaeRL1uUYlD1QzYDHu+M30IslgDXJXPapJhulkzP2BZVst2wcMZvUag5qp+R6K61L3+AJ8nGnp2PSqQzdpOviqbb7FHUpFtbWxttbW27fN1RRx3F6OgoTz/9NIcccggA999/P9lsliOOOGKnvzc2NsaJJ55IMBjkD3/4A1VVlS/KdnCZs7BOpWTaXc+Nwh5NpInYrePnF4sA1GcOx1L0jSVYprPdtRNlwFJCrS5LYkMBhV17oJyzU3wUUrFZdYcSs1M8DOmYeu4SW8lqG3XC0Jvq+9qyx4x/va8oGonuWPts8WPRbouz81HWfGoJBfFrZyS6y0c11fjxew1SGaU/uLBRY7e6OdrJNE053VGX2QnUJk4l3dzfxU/8AK+uUyU3XIAOKfZoqA0MD5hZVbo4i++qWCyRzeQPRVwTS1jJUaFYYmzLrOeUWBIbXBefF8YSbm90Zn2XAj4PjTpJFmWOGSXdkskkd9xxB4899pitpdbZ2cnRRx/N+973PgIBPdouy5cv56STTuKjH/0oP/rRj0ilUnz605/m3//93+3OpVu2bOGEE07glltu4fDDD2dsbIx3v/vdTExM8Ktf/WpSU4S2tja83pmfnJQl7G4u7qhxDwVVu+tIIk1/JKE36TbHUgMr8AgFvHrvE1ynawTKYbzeNy7AoHKudEe7ppvLyrVBsNSgqgF8Vaq8NtILzd0zfgu7vFRqQ1PV6IrW8VCgFSZx6llrJd1mGygL2WkSI9Edc8r6zEPRBOlMVm957Zx9lKVrJJgcdYmPMgyD9roqtowqBpXepNvc7DQykSKVUdqo+hte5GI+l9gJBDuYFjZSyGZnlcwS1/F1yboHgixfjxdC7cpOkZ7ZJd2kYonxfpUcNLwqWegCiHYEnmPZ4nzW8bUYicl0lnAsRWONRn3cOfqowkMh7YzEMsa0Pc6bb77J8uXLWblyJc8++yzZbJZsNsuzzz7LWWedxX777cebb76p7UZvvfVW9tlnH0444QROPvlkjjnmGH784x/b/59KpXjttdeYmJgA4JlnnuGJJ57ghRdeYM8996Srq8v+V/Y6bTOBC08926Qc+xxPPUVLrFxWCgcFnXe063vk7GS1u54hCoVa51vpDggGyoYx55JtsZIQl5XCQUGpgdTpNMw+6SZlp0QEUlH13CVzqiUUwOsxME0YHE/qHWzOPkqw06KbfZQUg2qWXTGtWKIlFNBbBgvujPmk9CytJHY2reKJGcI0TcFuwO6bT+IMKph1OZxcLJGzU23HrMpgdaBQH1Z/o7M52slmugkwEl0mVVHl99qsMbF91Kx9lGAsUcaYNtPtk5/8JPvvvz/PPvss9fX1k/5vbGyMs846iwsuuIB77rnH8ZsEaG5u5n//9393+v9LliyZtLgcf/zx+hebUofLWsdb6KirYt1AVL+orkOZf+2CuuDOU0+bGq05mVPdBN4AZJIqmdO4eEa/bt2frFCr++wkJig+smH2p54RqUDZfRtPy04D46ozqNcjoGc5ZzsJlcIFGyAQ0jvWNOHxGLTVBukdi9MfievtYjhHH2WtfdoPG8Cla5+QZk4hI9E0Z9ygoC8iaSf3xRJizByvX+mjTQyqv0NoZlppoxMpkuksIBD3udBO+UYKAgyquk7ooRJLzALWdzOWkpDpmSvTTYiRGB0EM6PKlkPteseaAdrrgoxOpOgbi7OXTpmeObLmxcrqyxzTPlJ75JFHuPrqq7dLuAHU19fzta99jb///e+O3lwFmjHeD5iuaR1vQYyZM6nd9cw7cNotyefphsbacGtPjhpGAYV95qdphaWl2mnRLiuFA0G2B8zp1DOeyjA6oRiJcmXA7imxaq0NYBiQyZq2YK02zJWRKBUo26Vw7plPUOij3H06bZeXSjASkxH13EWbTzFmjvWZM0nVwXqG6LdjCYEDPDf6qDpJH2WxR2cRS+TmU3MoQNCnmdXkslI4yM+nAclYYhY+SjEShdY+F5Zr1wSUTA9I+Ki5xhJC5aVWzBdqB29R5ewnQc5HzY01L5bELnNMO+nW2NjIhg0bdvr/GzZsoLGx0YFbqkAMhfR1lwi1Qn5Sa3cWNa1KhwFTdUmaIWy6re5FKJPO35+LAuW8nYROPWFWp2m9omwP921oClkE+ksNZi/WagUdQZ+H+mrNQZELS+F8Xo/dYdLtpfVFERN3EcRYvoVlwLOYu3kJBCFGYqBOdcd1CcR8lC+oOlbDrOaUWCwBLj3AK5FYwuowq7sUDgr0lt1np0giTTQx84PqGWEOscRYLE08JcVIdKmPsg9bpWKJOWq66Z5TLizXhoJYQrueZe5zz1Kmp08qlihzTDvTcv7553PWWWfxve99j+eff56+vj76+vp4/vnn+d73vsfZZ5/Nxz72MZ33WoHTcO0iJKQVZrW7hlk5DLGSkGihUKs7WsdDgW6ESKnB7KnR/ZK0aBcGYG25RE4qYzKSY5JpwxzsVHiSJtc63j0bGihGOdzM171JrePFNBLdZacOKT1Li+GbmoDE2Ix/XY6R6M5YIl8OJ8nydXEskYxCIqyeu8hWYvMJ5hhLFCM56h471QZ91AQUw0//2jf3WKKh2k+VXzcj0Z1rn1gDrTnYqVAjcb7GEmKVKNVN4M0lzGYzpyTXvjLGtOkEX/3qVwmFQnz3u9/lsssuszdFpmnS2dnJ5z//eT73uc9pu9EKNMCFJ56QDzzFTj0jW2dVatAvRl8vZCS6Q6gVJtOixdpdz6LMqk+qdKewdbyLSg0CPg/NoQDD0SR9Y3GaQzo7JDlhp/nJ9gA1p17aOiZYajDzdc8qJw94PTTpbh3vwlI4KNBJ1O2jAjVKzy4RVraqapjRr/dL6xq5qBQOCn2UUCzR//KsyqzkYgmLkVgLVdtLxRQL1nwKx1LEUxm9iZKS8VHW2ueeWALUnFo/GKV/LE53q0adzTmwsUXtNOZOO+WbKQgx3aKDSifcO/2YIJJIE0tlgHnso6QOWg1DHTiMblQ+qmn3Gf16pbzUGcyopvDzn/88W7du5c033+Thhx/m4YcfZu3atWzdurWScCtFuJC+DgWLkEigPHtqdK/NoNKczHFhKRzkWQSJdJaxmO5Sg4IyqxmiV0yodaBAqNUdreMtyAVgc7CTVbozTxuTQH4t0a/DkjudTkYgMT6jX82L8wu0jne9ndxbDpdMZ+3uqvp9lEtjCVEGVQnEEi5l5dRX+wjmuraK6e/NKpYQslMqBvFR9dxltmqXYo+WTCzhPkYiSMr0tIDHB5g5nfDpwypZrK/yUR3QTChwrY8SshPMyUdVykudwayEvJYuXcqyZcvYb7/96O7udvqeKpCCS51FewEtWr8GVW7zOcPT6QotWrW7bqi22l3rLoebfQAm1sHPha3jLbSLlRrM3k7WvWmfT9msa9e+NrvTrOb5FKxTbBeY8donWmbgUju1F6McboZ2GhhX9+b3GjTVaGS3gnvtlJtPw9Gk3XVSG+wyq9k3+5HTSHRXLGEYRsGccnMsoewkFkv4qmfMbtWNdin2qLWWRPtVFcEMIBZLgGvj8zYpBlWhTM8M2aOVWAK5dQ9m7aPGE2miSSFGYpljRkm30dFRLrjgAlpbW+no6KCpqYnOzk4uv/xyJiYmdN1jBbrgUmdhnaRNJFW7a62YZeY/HJNsHe/OQBkkmTlzSOZIlRq4tBQOBNmjlp3io+q0fgYQKwmZyLWOx8gHIS6B2HyCWTOoilJi5aJybShspODe02n7sKGuCo9HipHoLjs11fjxe9Vnt5KQ2jBLO6UzWQbHhTafLmV7AHRIzak5lC2KdQMuLIXTzSaeITqkNJdDbapqwMyqKoIZQMxHpeJKmB7cV7Yo1RUTZh2f23bS3bkUCvZR7vJRhbGEWxudWXaqC/oIBd3T+bUUMe2/3vDwMEcddRRbtmzhzDPPZPny5QC8/PLL3HjjjfzlL3/h4Ycf5vnnn+fxxx/nwgsv1HbTFTgEe0PjLmcRCqp215FEmv5IgroqjbpBsxQBtQLDphq/XOt4l53QgHIYr/eNC5YtzsxZTGYkSpXuuGs+gaCoblUD+KogHVff2+bpM6ELyxa1wmYkuqt1PBRohYmcenbC0JuzXvu028nFjERrPg1FE6QzWXxejd2/Z+mj+qVK4cC1djIMg/a6KraMxugbi7OwsVrfYLMU6B8cT2Ka4PUYtOjU2wTX2gkmd9nWiroCVk42q5g604Rc12b3xhLtUqX1Hi+E2pWdIj0z+s72Sa19FrPLVwVVjXrHmiHE5hMUsEdnmMyxGsjUSTIS3bX2WYzEZDpLOJaiUScrfZY+Siw2nweYUSOFQCDA2rVr6ejo2O7/3v3ud/ORj3yEe++9lxtuuMHxG61AA1zs2Nvqg0QG0vSNxdmjrVbfQLM89eyVCr5ANXoAV9pJrMzK+uxWu2vf9Bb/sXheqFW7Y3fxhkYsUDYM9flHNqhyuBkl3aTYHu4MvqBAg6oETqe12yk2DNlct12XMRJbQgG8HoNM1mRwPKn3pH62Pipc8VGg1r4tozG55iQzLLHqtRmJQUFGovvsZHea1W0nay3JptUaM82O8OlM1m4iM191fKEIDKrx3hmXw/WKlQEXxHwuYyS2F8wn/Y3OrFhihlIVUjph6YSqcADXrX1Vfi+NNX5GJ1L0RxKak26z81FiMd88wLSPeO644w6uueaa7RJuAJ2dnXznO9/htttu49JLL2XlypWO3mQFGpCcgLj7Wsdb6KgTcuxz3Hhqd+rg6mROXgRUczKnugm8OWc0A20ji+0hItTq5o2ny8vhFCOxwiKwPvvAeIJMVnepwdzKS8XE+UNtM+qIJgGPx6Ct1t3NSfqkdI1M090+Soo9WminGZQJycYSpZDM0Wwnrz/f6GgGa99QNEnWYiTWzl/WvB1LSDCoZlkO1y8VS7i4XNs6aI2lMkRcKtMjdtBq7Rm8Aahp1jvWLJAvrXdpLCGpvVfmmHbSraenh/3222+n/79ixQo8Hg9XXnmlIzdWgWZYi6M/BEH3tI63ICYuaYu1DkBm+o4prxMm2GnRZbpGkD9NG9DNdDOMAgr79JNulrMQ1YxwWbk25OeTdjvBrMRaxxNpJmyh1vmrkdgSCmAYkMmaDEeTegez1r4ZN1KQSo66104gyfK17OTS0+nYCGRy31UXJnPapdij1rqXSaq/yTRRiSUU2qW0wmCWsYSyU1ttEK92RqJ71z47lhA5wJt5E5ls1rS/Q2Laey60U01AyfSABHlhds1+rMStXCzhPkYiSPool1c3zANMO+nW2trKhg0bdvr/69evp7293Yl7qkACLl+E5Npdt4LhBUzVJWmaECsvTcXyAbwLNzRiTDeYFTNHtgzYxWyPAn2PrHYG1cxPPW2h1iofNQHNOmsuZiT6vB5axRhUsytbnO9dmy20F+N0ehYMKjFGYk3LtMv+JSHmo3xBqM6xKGYwp8R8lNsZiW6PJaRK4aAkGImRRJqoCxlUg1HFEjcMaK3VrZHoch9lJ3OkYokZMt2k5pSLGYkgyB611hNLpmeaEIsl5gGmnXQ78cQT+dKXvkQyuf3peyKR4Mtf/jInnXSSozdXgUa43VnUCW08PZ5ZBWByreNzQbILhVqhoNuiSKnBzE9pCjv4aYeLHbtVCpfKmIxMCDGoZmSnSut4Cx3SLN8ZrHvjibTdUVou6eZyO+n2UdbpdGoCEmPT/jW55Kh72R5QEEtIMKhmdeAgZKfYiGpwA/nvlIvQIaU7CrPzURGhmA9cHZ/XBn2EclIdYizfGdjJYgu11gb1NriBEvBRwsmcGdipkJEoynRzIcS0fKubwJtLnLk1Pi9zzKiRwqGHHsqyZcu44IIL2GeffTBNk1deeYWbbrqJRCLBLbfcovNeK3ASLu1caqHdZuYIlcONbZlRqUG+JERwQ+NCRmJ7gfaemFjrDMqsbDs1CAi1Wq3jXRgoB3wemkMBhqNJ+iMJvZo0s7BTn9R8AleXWIE1p8YESw1mvu7VBn3U6m4dXxJ2EvBRgRoINkAirGxV1TCtX6toJCq0S2mFgSqz6n9pRmVW4uXa1c3gd9/myZpPY/E08VSGKr9GDda5xBKSjEQXx+frB6P0j8Xpbg3pG2gW5XCysYRlJ7f6KOGyxeggZFLT0mAdnkiSzjESrSYq2mD7KJfbSXdy1DCUjxrdqHxU0+7T+rVKealzmPYxwG677cZjjz3Gvvvuy+WXX85pp53G+9//fr70pS+x77778sgjj7B48WKd91qBk3B75r9OiEUAszqd7pWi27q4FA7yzjKRzjIW011qMPMATKx0x7onb1CdJrkQYuzROdhJpCW5izvDQSHjQ0iHJRmBxPi0fkXUTm73UUVh5kzPR00k00TiFiNRakPjbjuJHODNobRezk7ujCXqq30EfWpL4sYGWmLlpfGwYrWCKxmJIMgenVPMN7/LgEFSpqcFPD7AhPHpyfRY86klFMRfYSQC7mx0ZpqmvR5XykvnjhkdVXd3d/PnP/+ZkZER3njjDQD23HNPmpvd1w2kgl3A5QFYIdNNP4NqZiKgmaxZ0Dp+ftOiq/xeGqr9hGMp+iNxGmo0dhmc1alnriREd3lpoVN3ISMR1Jx6tTeif/M5Czv1S9HX00nXto630CbVbTFYB4FaSI6rtS9Yu8tfse00z8u1QbCRAigfNfjatH2Ute7VBLxyjES32in3XR2OJkmmswR8Gjd4s2giI6+R6M5YwjAM2uuDbBqO0R+Js7ilRt9gs4klpMpLrXuqalAsVxdCjD1qNzrrh2wGPLtmP4pJv5hmwQGeO9e+NikGlceTrxga74WGhbv8lX67iYJkctSddhJrHAgz9lEjEymSmSwgJNNT5phV9NHU1MThhx/O4YcfXkm4lSpKRIdlIpnhzf7psTBmDetvsPVZCG/Z5cuHxhNkTfAY2KLn2uDyEiuA5pBKtL3cM329oVnBCsCG1k7LTlBYXiq0oXGxnSz26FMbhukJx/QNZNkpPqpsNQ2IlYRYSQuPX53OuhBWEPpKT0SvnUA1kgHofWFaL++Tmk9QAj5K/Q02Dcf028n6G/zzkWmtfYXzSeuBFbi+FK6pxo+VZ3tpa1jvYJadel+Ylp3iqQzhWAoQTLq51E6QT+b//Y1BzT4q9zcY2TDzWEIsOer+WOK5TaN67RRqAwwws9P2UWJ2SkQgFVXPXZrIttaUN/vGBWKJXC6g76VpvdxKjsqWAbtz7bNiiZ7ROFtHJ/QOZq19m56YUSzREgroPbCaJ6j8BecrXM4iuOv5rfbzE1c9xOo1G/UNNrxePb5xL6xaAc9MrU1oOYu2OsnW8e506qvXbGT9oHISF//mOb122rxGPY5umJadJgu16k6OuttOAEPjqoHCb5/azFu/db8+W738f/nn3z90l3YCyRKrgkSOSxmJr/dGAHhm44heOz1zi5pLAL87e5p2slgEmu2USUF0QD13qY96fN0QAGPxlF47QZ6d+fTN0/RRkmXA7mYR/PapTaTVQT2n//BRvXYaeFU9bnx0WnaymKNVfg/1VboZie5OYoOSqQC4/r439M6pfz6iHicGp2UnKIL2notjiZ5caeBdz/fotdNztwK5js0/ebs7Y4lgAwQ06trNAdYhw6t9Ef2xhJUU/cOFM7KTTGMSd699D76uYp101uSYb/9Nr4+yJIte/H8zjCUqLDcnUEm6zUe4vHV8TzjG5bfnT7WyJnzx9hf1nNSEt8A/fp2/NrNw58VTngCI6YSBq+nr29rJRLOdHvx2/noadhqK5oVatTMSXZ7E7gnH+Ntrea0NbXMqvAXuujh/PQ07gWQ3YMtO7lv3QNnplsf/aV9rtdOdFxX8wJymnXJrn+4yg/E+dU8uZST2hGN840+v2NfafdSb9+evpzGnRIWPXayRuJ2P0m2np3+ev55hLKGdkehiO4Gy1Ytb8kxErWvfX6/MX0/DTvFUhpEJi5E4v3V8e8Ix/vRCXg9KzEdNM5borcQSgLLTjx9aZ1+7NpbQPZ8S4/mu3y60VU84xhX/96J9rT2WeOWu/PWMYomKnpsTqCTd5iPiYUjnJrQLF6H1g1Gy5uSfZUyTDYMaaLfDa7FP0iyYGRhet8OXg/CGxsUsAnE7mdnJP5umnVprJYRa3X2Stn4wuu23XI+tZmEnxUiUKt1xd5nB+sEopsScmoWdQLC8tPBQyOO+MMX9PkqodCeTVnpL4MpyuFLxUbKxhPvsBO72UZaGb9DnoaFao24tlIaP2uZnbrETSJYBu99OImvfrGMJIR9l2SlQp3RsXYZKLDG/4L5otgL9sIKv6ibwVxf3XnaA7tYQ21Zteg2DJa0aRGWb9wBjm2lgeKF56U5/pV8q8+9yRqLr7VQRarXR3RrarppSi61mYaeRiSSpjAoE5FrHu9dOInNqFnYC6JOaUy4XfXf72idWEhIdUBsuwwuhVr1jzQKlYieZpJt7YwnI+ahtfuaWta9PkpFY8VEKs7BTMp1lKKpkNOQak1TsNKtYQqxcuxJL2HBzLDFPUEm6zUe43Fl0NVTzzdP3twMwA/jG6SvoatCQIGxYCKesyl8bHjh11ZTdd3qlSqwSY64WarXsVOgwtNrp1Ovz19OxU1iw06LLNzRdDdV8+V/2ta89hiZb2XYqmL3TnE+ttQH9jESXl1hZc8qCdjsVBmC7sJNpmoLdgN0/n0R91Lu+lr82vLu0lZyuUa7EqrZjWp0FpWHbKWco7XaaoY/Kl2trtlM2k28i4+K47xPH72Ffew3DdT5K5ACvBHzU1aetsK/dFEtYB61+r0FTjRAj0cV2cmssAYK6oy5PuonHEidfk792UywxT1BJus1HuNxZAJxx2GIuf88+ABzR3cwZhy3WN9ghK9UJAMD7fwwHnzXly62Np5igrouFWs84bDG3nHsEAPVVPr12Ovgs2Pf96vlRn56GnSSFWt2dyAY4561LqMp1H/rNx47UZ6uDz4J3fFk9X3r8Lu3UL5XIgZKw0xmHLeagxY0AXHnqvnrt9KHfqufVLbu00+hEimRO6Fx7oOxyjURQdjrzyN0B+NdDdtO79h35KTByQvvn3uM+H+XyWOIbuSTBvgvq9fuoroPU85OvcY+dogOqjMjw5DpCuhMrj1oCqATBg587Xu/ad1DONoecPW07VUTfFT50xO601gYA+OnKQ/Xa6eTvqucLDp6+neokNBJLw0cdt5diIF/yrr302umcu9VzTwAO+siUL09lsgyOVxiJFs44bDGfOF6xzU5c0anXRx12HlQ1qedn/m76PkoiPp8HqCTd5iNsZ+FObQ8LyxfUA9h0ca1o7laP6fguX2pn/rXrGuWchUs1IywcsKgBgLF4mmgirXewtr3VoyWMOgXEdMISEUiOq+cu3nwahsGCJnV6ls5sq8riMDpzJ6xW18UpIKYTBiWxoQFVcgAQTWb0DrTwEPUYG4LU1GufVVraHAoQ9GlmNZWInfbqqAUgHEvpHcjjgcbd1PPs1GusYiRK6RpZPsrdscR+C5WPGhxP6B+sJXeAl9q1Jo94LFHbAV7NXVLngLa6ID6PQdZEf2f4dnWoS3x0ly8V0wnLZmG8NNa+Rc2q/M06iNGGrgPUo9XNegr0V2KJ7dDdqnzUuO7YfMFBgAHZJESnjvssjUS/16C5JqD3vlyuvWdhn0613x2dENjvNqnDQjK7Hks0Pp8HqCTd5iNK4HQaYEGjShBsHY1hbqsu7jQachua8OZdvlSMbuvyMgMLdVV+6qpUIK+l404hZmCn3rBUiZXFSKyHYK3eseaIhbk5tWXURXaSpK+XwKkn5O20VbedqpvAn9MOGdtFV7jcfGrXXQoHJWOnBbkSkK261z2AhkXqcRdzKhxLkchthLVrJJaIj7Jiif5IQn+SYDaxhHYty9KI+bwew2a+aF/73OijJgZzSXUDatv1jjVHLLBjiV0fVM8Jlp3Gtqgy6SkgG0uURtItH0totpMvkF9fwpumfKllp/a6Kjy6k+slwEiEwv2uZjvBtNe+dCZrH1Rpr26YJ6gk3eYjXF7jbsHa0ESTGcbimk9p6i3HPvUilEgXtI7XrmtUGhtPKNh8ag/ActoDu2hHDoKlO2Pubh1fiK7caVVPWMhOsRFIRqd8qZhOmMtbxxfC0vPo0T2fDAPqc7baRdKtX2o+Qcn4qK7G3HySCJRtO03to6z51Fjjp8ovxUh0t51aQgECPg+mmU90acM0NzSFGolyPqoEYolGK+nmplhCWPQ91AZezZpkc8QCK5bQnRyt7QCPT5VHW7qEO4FYLJHNlqCPEjgYmnYsIaTnBiXjo6zYvDccJ7ttO1OnMU0fNTietFnHLaFK0s0JVJJu8xElUhJSHfDaYqhuOfW0Np4Bn4dGMaHWUgqUddvJYntsUt1dp0C+e6mUrlEp2EmIQVXVoJh/sMtNjVhJiBWwB2qhql7vWHOENZ+0MxJh2mufWMkilIyPslgEQ9Ek8ZTmUmA328nlUhWGYdhJArfEEpFEmljuO1PxUXmI+Sgrloj0QGbq8nCxA4cSKYWDAjvpZvl6vPn1ZZfxuVAsERuGbO474/Jkjth8ghn4KDWfKj4qj476KjwGJDNZBqOaZRBmGEu01wX1l/vPE1SSbvMRJZL5h7zDcEvZYj6RE5z3reMLIebYrZO05DjEwzt92WShVqnuSCVkJ91MNyiYU1OXGvQVzCmtKJGTaRAsL4XpB2BSdkpO5Oe2y23VUO2nJqDYZPrZozMMlEVF391tJxBMEkz7AE/Zqb7KR3VANyOx9HyU9vlU0wreIGDmmYA7gTjTrYTspL28FNwbS5QAI9GKJfoiCdIZd5TWi80n0ywZH+X3egpK6+dhLDFPUEm6zTdksyV16mmVWenXjSgoNZiCQdUbFuzkUkJJArFkTqAGqpvV8yko7P0FQq1N2oVaS8hODYLJnGmWGlhzSntJyFjpbGi6cvNpLJ7WL4A8zQDMtpPUxtNfk2dLuhSGYdhlIXIMqqnnk5hOGECkdMoWu6QkEKx1b2IQUjv/TtixRKVcexIsRqJ2lq/Hk2fSTuGjIvGU3dCmouObxwJbAkHiYGh6pcC2jq9YLOF+O7XWquYkmaxpx8XaMN1YQqq8NDYCmdxnLgFbdUmVbNcX6CROAdFYYp6gknSbb7Bax2PsklLvBiyUKlu0AuV0DCaGd/qyN/oi6uXVAqdbluNy+UkaCJaXwrQcu+UsGqr89umnNgyvU4+WIL2LUWgnNzQnSRUIteomjjLwqnqsatA80NxRG/RRbzUncUk53OYR1Y0x4NUcNliHQlWNu2SguAELxJuTTM32WDegNBRrg5q7VKbialNTIhCLJaqbwK+6D0/1/X2tV+lLNumWqQAYzX1nvJoPoByA28rhrFK4ar9Hf5fioTfVo9/dDZkgH0v0RxIk0u4orbeSbtrF+ftfVo9VzXrHcQBej2GX27qltH7TsIolqny6Y4lccjRYv8uOqm6AeCwxthUyOz/UXduvYgmrUV4Fc0cl6TbfsOanuScm3HAgPHNLMe9ml7BLDXQvQr4ghHLdonayqVm9ZiPX3/cGAH97tZ/Vazbqu5+nf5F3GL/5kOvt1CXJoJrG5vP3zyinPxhN8tZv3a/PVs/cAm/cq54/8E3X28maTxPJDGMx3Qwq63R65wHYzx5Zbz8/9caH9drp79eq56/+0fV2AsEArH7Xdlq9ZiOv9qoDh8/f/rzete/536rHyFZYtcL1tlpo+yghBlV8VDUF2QFWr9nI7c+q0+ubH92g106P35R//qO3ut5OXVLJHMMoWPt2Hktc/cdXAHhyw4heOz1zCwy+pp7f8QnX20msvBSmFUtYtomlsvpjiRf/n3r++A9cb6fmUIBgLmnSF9bMoJqGj7rl0Q02I/FDP3lcr53+epV6vuEh19sJBCtRphlLrNmgDmu+9sdX9K59z/5SPSbGSiKWEOtgWtte0Jykd4cvWb1mIzc/tgGA25/ZotdO8wiVpNt8QngLPPTd/LWZhTsvnlb3pmKhqxhtlHdAue0Jx7j89hewuEEm8MXbX9SjNRfeAnddnL8uATstLHDqcgyqHf89esIxfvV43kFkTU22Cm+BOy8q+IHpejtV+b00hxTbQf9pmtX0YscBWE84xrf+/Kp9rd9OBbPX5XYCwc2nZaexHZfWW2ufBVOXnUDZ5Jlf5K9LYO0TO3CoqodgjqU5hY+yoN1H3f/V/HUJ2Kk4yZxdxxKg2U6FPqoU7JSbT8PRJLGkFINq57HET/+ePxiqxBJ5GIYhqJNo+aidxxJX3fmSfV2JJSZDrolMzk7jfZBObvff4rHE4z/KX5fE2pcrL5VoTmKV1k/hoyxojSXmGSpJt/mE4bXANpsqM5Mvj3Mh7JIQick+BTV6/WCUbbs4Z0yTDYMTzt/H8FrlIArhcjt11FdhGJBMZxmKbu9sHcUuKOzrB6Pbfsv12KoE7QT5spBiNydZPxjdLsdTsVMech2BC5uTjG733+JrX4n5qAVF8VHbM3PkfVRp2WmhSzoCV2KJqVFf7SNkNydxgY/a5mcVH5WHnI/atZ1E5lTJ2kmoYihU0Jwksn1pfSWWmBqypfXWoXiRY4l5hkrSbT6heQ8wtjG54YXmpcW5n2nAWoR6w3Ey264CTmMKx97dGmJbmQivYbCkVYOOV/MewDaDudxOAZ+HtloltilWZrUTEdDu1tB2P9NiqxKcTyDYTKHQTjtgUHW3hrb9llfsVAAx4Xd/NdS0qOc7OPXsbg1tp7end+3bBi63lWyn2Z0Lild81NSw5lMkniYS16zNZQtVV2KJmWISg0p7LDG1oHgllpga1pzSz8a2mpMM7bA5SSWWmBpinWYnldZXYomZQqwMGKbcR4n6qHmGStJtPqFhIZx6vVp4QD2euiq/SLoQ7XVVeD0G6azJQBE773Q1VPO1962wrz0GfOP0FXbQ4ex9LIR935e/LgE7gaQI6M5PaEDZaremvF28hqHHVg0L4ajP5K9Lzk66NzQLAAPScRUsb4OuhmqOWJoXItZqp5OvyV+XiJ1kkzlTr33/dshu9rU2O4GyiVX2ACVhq0IJhGI2J+lqqOaSd+5lX3t1+6jFR+WvS8BOoaCPhlwDJP1Jgqnt9I33729fa48lDvj3/HUJ2AkE9fd2oenW1VDNnu35pgZafdRxn89fl4idxGK+qkYI5Oywg2ROV0M1b9+73b7WaqdTVuWvDU+J2Mkdjc66Gqr5yJG729faY4nmPfPXJTCnrPk0UOTmJF0N1Xzx5OX2tVYfNc9QaUkx33DwWbDHCYpi27zU1QsQ5Drv1FexZTTG1nDM7sKjBbsQAT12WRsAfo/Bg587ngWNGrP+ITUWK/4N3vUV19sJlGN/bpNgOdzYVshmlD7BNpjIacF86/T9OW7vNn3Ooj3nmDoPgP/4dcnYCQRKd3xBJdg63qc2NaHW7V5S7Ve2++ix3Zx7TLc+O3W/LXdPVfCZp/MBh4thtY8XKVus3w16/rHTzefC3Fr39r3a+MYH9tcbfFlNAk77IXQf5/o5ZdkplsoQjqVorNHYIXIXPmr/3ZTm26Kman77iaP02smnmM289WI4/GOutxMoW4VjKbaMxtiro07fQLtoIvOeFV18IaeZc9+lx9Pdtj2jyjFY35m9ToZ/uaYk7CQmK2L9LeJhSEQguP13Ip1R5YRfPmU5J+/fpW9OdR2gHpv3gJV3loSdxLTCDEN9jwdfUz6qdc/tXlJfrbaz/3H4Ii48YZk+O+39Hrgz9/wzz0LzEj3jOIi8nqVQLAE7jSUs9ujhS5q4/j8O0uujMjmpm/d8F/b5F9fPqaYaP0Gfh0Q6S284zu4tGv3CLnzUIbs3AdAc8vPHC4+tJNwcQskw3YaHhznzzDOpr6+nsbGR8847j/HxHXfw2hamafKe97wHwzC444479N5oKaBhIXQf6/oFyIKcbkSBoPgOsHlU1bMvaq7Rm3CDvMNacnTp2KlByLHXdqpTq2waxvu3+++JZJrhnK7ce3QGyZC3U9f+pWOnojCodjynrBPyY5dpTIwCjOYaazR1l0TCDSYLv2elSut3svZtya19B+3epNdOsVHVaQwU27cE5lSV30trrXBzkp0Iilvj79VRpz9Itta+PU8oCTuBYKdZm42949J6K5ZoCQX0Jtwgb6fFh5eMncQkEIJ1UJVrTrIDH5XNmnaJ67v37dTso3J2al9eOnaSmk8wDR+lvitH79EqY6e6BSWRcIO8nUYmUkwkdXet34WdRpSd3rJbo+aEWzp/D8tPKYk5ZRhGQYWDlI+aOpZY2lpbSbg5iJJJup155pm89NJL/OUvf+Guu+7ioYce4mMf+9i0fnfVqlUY2xaSV1AyEOsOZzmLSA9kttd82ZxzFgubBBYgK0nQuFj/WA5BTIfF6yvovLO9w7Ccel1VvpxIG0b/qR4bd5/6dS6CmFYYTElhN03TnlO76Z5TJTifOhvc05xE3E41rRDQnIxwEGJzyi12ymbzm88SmlNiBw6Wf0pFITay3X+L2QlKcu2T7Vq/883nwHiCZCaL12PYjFZtKMFYojgHeMX2UZadSmc+1Vf5qQ0qJuC88VGRrapxgsevDupLBGJzyi12mmcoiaTbK6+8wt13381Pf/pTjjjiCI455hhuvPFGfvOb37B16/YdUgrx3HPPce211/Kzn/1M6G4rcBpiyZxQm1qgzaxKvG2DLVKLkGnmNzQNpePYF0h2h7PLrLansG/OjW+dGGmFbadF+sdyCNbfpXdMoDnJFKUGoxMpuwx4gW5bWeM3lo6d/F4P7XWqhE+sZHsXp57a51QJ2gkkOwIXiFTvgEG1RepgKDoAmYTSNKp3P4PAQpcUa95frRLHMOXBkMwBXunGEjKl9VPEEjk7ddZX4fNq3i6V4Npn2SmSSDOmuznJFPp7yXSWvjG1P9A+p0rQTlAMH7WLWKJJc7WQve7tBp6SSHUABbIiUo3OYsOQ3L4rqaiPmkcoiW/iY489RmNjI4ceeqj9s3e+8514PB6eeOKJnf7exMQEH/rQh/jBD35AZ+f0Mt2JRIKxsbFJ/yooLsTKSz2eKTvv5DP/mp1FbASSEfW8hBy7qG7EFBR2MTtBSbII2uqC+DwGmaxJf0To1HMKO7XVBanyb6/L5yhK0E4gOKcKy+G2gSqxys2pZt2BcmnayWK6aT9wqMs1J8kkIDq43X9vHlHBs/a1z7JT3QLwamYTOwi7dGe++KhMSjE+oKTmVGF5qVhzkh3aSc2nSnXDjlET8NFYk2tOIsag2t5OveE4WROCPg9ttUG991GCdgLJiqGdxxJQ6KMq1Q07glgH06oGCOQ0LKdY+0T2UfMIJZF06+3tpb29fdLPfD4fzc3N9Pb27vT3LrnkEo4++mje97737fQ12+Kb3/wmDQ0N9r9Fi0on6VGuyGuFFbfUwNI1EmN7hNrUiXmJwHIW/ZEEyXRW72BTUKPFGInZbN5ZlVBy1Osx6Ki3EtnFKzUQm09QkoxEEOw0W7jxzE7umtUfSZDKmOp7U6d7Q1OadhLTCvMFoC53gLgDxoccI9Ha0JSWncRY8+COtW9si2Lue4P55kwlAKthVjyVZXRCikG1IzvlYomKj9opxPT3prDT5oL5pF1KqFTtJLX2WQyqRBjik0krE8k0I7n5XGEk7hhiXesNY0r2qFgsMc9Q1KTbF77wBQzDmPLfq6++Oqv3/sMf/sD999/PqlWrZvR7l19+OeFw2P63adOOO7BUIAdR3QjLYexAqDpPi66c0OwILaEAAZ8H08Sm+mvDVAGY1EnaeJ/qjmR4cwyU0oGYY58Gc1SWRVA6ejmQ7w7Xo9tOtR3g8SkNlPG+Sf9lzaeuBokSq9Jc+4rjoybPqUQ6Q38kAVR81M5gle70SjYn2aGPktKfKs0SK9WcRCX49Tcn2fUBnvb5lIzCRI65WmJzSqwUuHDd24b9KBpLlGwyR6hiKFgLVY3q+TY+qlBvub6qore8I3RJlQHDTuNzUb3leQZfMQe/7LLLOPvss6d8zdKlS+ns7KS/f3KXwnQ6zfDw8E7LRu+//37Wrl1LY2PjpJ9/4AMf4Nhjj+WBBx7Y4e8Fg0GCQc2n+RXMCJZTH4omiacyekvRdhKAZbKmzWKQC5RLy6kbhsGChio2DE2wdTTGIp2laNM4ndZ+QmNtPOsXquYOJQQxbSPrO2w1JykoRRNz6ulkXqOxxALlBVLlcJ5c4ji8Uc2p+nwSWfTEs1STOVLzCdTat+Wp7da+ntE4pglVfg8toYDeeyhRH9VRX4XHgGQmy2A0QXudRnH86fioSnJ0p1jQWMXgeIKtozFWLGzQN5AbkqPW2MF6qG7UO5bDkGtOkksQpCaUBEtNs/1fsnrLpXmAZ5eXiiRzFkF8VH2v25fbP5aVfilNH2VXN4yo0nqtzM2drH2iesvzDEXdKba1tdHWtmvK+1FHHcXo6ChPP/00hxxyCKCSatlsliOOOGKHv/OFL3yB888/f9LP9t9/f773ve9x6qmnzv3mKxBDQ7WfmoCXiWSGnnCc7laNXe12IgLaNxYnnTXxeQy9gTqUdKDc1VCtkm5Sp55TBsqaHXuJnnhCoVaYZkZiTSt4A4oROLYVmvKBqljpzthmwARfVUmVWEGhVphEOdzCXNJtEyw63P5xJVDeNayEZF8kQTqT1csI3EmgXJgc1V9iVZo+SjUnqaJ3LM7W0bheX74THzWeSNslk5XGJDvHgoZqnt8c1u+jChlU2ewkRmB+TlW0LHcGsc7N/pz/jg6o73VB0k1Wb3lcPbfW4RLBAikJBFCxRN8L25UtyjY5K805ZZVrR5MZxuJpGqo1MgLrdxxLiOotzzOUBN98+fLlnHTSSXz0ox/lySef5JFHHuHTn/40//7v/86CBepEfsuWLeyzzz48+eSTAHR2drJixYpJ/wAWL15Md3d30T5LBTOHYRiCbZR3LAJqLUILGqvxejRvaOxAubScBQjqRlgBz8QgpPLfiXgqw4BYiVXptY63kNcKE2hOspNyOLFAuTCRozsZ4TDyWmGCwu87Wfu0z6fEuOqkBSWXJGirDeL3Ws1JEnoH20nSTVT4uJSTOY1CJdtWLLGTEquGaj912kusSnPjCZIMKqs5STJf4olVYiUs+l5ihw0g2OgMduqjxDQSLTuF2ktKbxnyf5stks1JtoslhOZTieotA1QHvDRZzUm0N9CytHy3PcAT1FueZyiJpBvArbfeyj777MMJJ5zAySefzDHHHMOPf/xj+/9TqRSvvfYaExPbt76toPQh1kZ5J8KSsqLvpRuAielGVDeBP8d4HNtq/9g6Fa/25x2XNpQoKwcKtMIku/hty8yR6gxXBgmC/kiCRDqzi1fPEbtgUGlnJFp2qmpQ/0oInoLmJGKB8nbzSSg5apoFa1/pJnPEtMLGtkImbf+4OLFEKdrJ0grTfIDn9UNdl3peEPcNR5PEU6ohlFU+rg0l7KOK0hF4ZyzfSiyxU3Q0KNmkRDprNzPQhl34qIre8tSQI5lMzXQT0UicZygZIaLm5mb+93//d6f/v2TJkl1m77Vn9yvQhoVSDCqLlRMfVcyLYC0Am4cFRSVL+HS6S7TzzkIYfF0FQi17AJNP0iolVjtHcbr45Tc0Y/EUY3G1ERU7nS5BOzWHAgR9HhLpLH3hBItbNLKYdlIOJ872KEE7gZpTm0dibBmNc4hOuZ+d2knIR00MQyqqnpdYiRUIrn217ao5STYN473230pUoLqE55Roc5KGhRDZqubUQiVhY9mpoz5I0Ke5xKqE7WTFfFZzEo/OSpD67WMJWb3l0rVT0OelrS7IQETpJDbr1P3cRdmimJ1KUG8ZVMn2S1vHBLrWF8QSpmlXglSaKOhDyTDdKpjfEAvAquohmGNZFJSFiJ2kxcdUwg9K8jRNTCsMdkhhF2N7QEmfelp2Go4miSWlGFTb26mpxk8oqDkoKmFG4qTSeu0MKqscLh8om6YpN6dKmJUDkh2Bc3Ya71NNQnIQ08uxOszWdiidpRKDGMvX4803JCmGj8pmSrbECqSTbjvwUaL6U6XrozrqgngMSGVMBseFSusLYnNZveXStRMUg+W7M93Rit7yVFgoJYFgHeCl4+owLQex6oZ5iErSrYKSgF1eKkphz5+miQVg1pjVTRCs0zuWBljOQrtThx1So8VOaCaVWJWeY6+v8hEKqNP7YpTDiSZHS7TbmAUxzZwd2GlwPEkincUw8oLZ2lDigbLlo7QHyqFW8AYBU7FzchAr3SlhtgdIJ3Msjdh8LCGmZRnpVSw7jy9fPllCsJKjfWNx0pms3sGm9FESDWRKd075vB4664Xivilivore8q6xQMpHFSaxs2ruVvSWpw8xH+ULqsMzKI6PmoeoJN0qKAmIsQhghx1MiyL6XoKwNuaReJpIXLNuxA5KDcRO0qKDkI4BRkmWWE1uTqK7ZHtHgXKuZFG3nSDPzCnZZI4Ugyq37k0MQVLZx5pPHXVVBHyaw4US3nhCIYtA83yySuvBnlPpTJbeMavEquKjpoKYnWCHpcBijMTCEitP6XWga801J8maqiuwVuwglhArq08nVPkxlOza1yUVS+woOSqqkVgmyRzdlSh1XWB4IJuCaL8aM7fu1QQqesu7gth8gh36KDG95XmIStKtgpJA4SIk3XknmzXzdNsKi2BKhII+u8W19hLTHZQaiAXKViKnrlOdFpUgxPT3dlBqIFaunUnnS4ZKdE6JBcpVjRBQGpZWcxKx+QQlHygXs4tf71icTNYk4PXQVqt5PSpxH2XNp8FxweYkhVIVYj6qtFk5Ho9Bp3QDrR1Jimivbsj5RX8N1LToHUsT8rIiQnaK9NjNSWT1lkvbR1lsbO2MRG8BuzbnowrnU0VveWrYDekkK7tya5+o3vI8RCXpVkFJwHIWsVSGcEw3g2py5n9wPEEyncVjYAeB2hAubWcBgo59B4xEcf2pEraTmGO37BQPQyICCJYBR3rAzIDHD7WdesfShAVSG0/DKFj71OaiOGXApTmnxDaesB0zJ19iVaVXyLxgzFJljjbV+AnmWJu92g+GJvuoeCrD4LjS4dN/gFfarByABdIs32JIVRR2q9edjNCEBVIxX6hd+XIzq3w7Fb3lmcBKomgvL4XtYglRcf4S91FWdUNvWB2macU2ckqiesvzEJWkWwUlgSq/l9Za1W1HfzJnsqC4VQ7SWV+F31spsdoV8o5d94bG0svZAqZJalKJle5AubRPPEFwQxOsg6pcc5IdnHpqhb2h2Q08penuFkjNJ9ju1FMsUE7F7DKUUl37LDuNTKTkmpPk7FTRSJw+DMOQ64Zu+6hcLJGzU20BI1wbysBHidtpvA/SiUkNZCrVDbuGmI/yePLNSbbzUULi/CWqtwxF6lov7aMK9ZZLdE611wXxegzSWcHmJGHh+TRPUZq7kArmJazsv/5kzmTdCNFFqAwCZTERUCv4SkUhNqJa1psQ8HloDVVKrHaFLpuZIxGA7XjzKRYol+iJJxSri5+yk1y3sRzDJFCrNjUliPoqP7W5k2H97NGd+CgJjcSKj5o+djqfKiVW00GX1cVP93yqaQFfrophbCtjsTSRhFViVfFRu4JYh23YLpYQP8Arg/nUH4mTEm5OkpeqENRbri89vWUobnMSW8+tUlqqBZWkWwUlgwXS5XA5BlWlxGpm6JLSNvJXQ02reh7ezCZbnL+6UmI1DSyQ7DRbUGowkUwzHFUlVpUy4F3DslMkkWZMd3OShm3LFoX0p8qgxAokO81OLoezxcR12yk2Comwel7Ca1+XVMm2te7FhiE5IauRWBY+Sig5Oqm0fjObc/OpJRSgOqC5CUUZ+Cix+QQFa98mpbcsxkgs/cOG1lCQgNejmpOMSZEXcmWL0snRui7wBfSOpRFyPmpnJJNK0k0HKkm3CkoG+a5jmhehugWAAZkERAftQFm7s0hOwMSgel7CgfJC0VPPPIW9KMnRhtINlAs7Aos1JymwU51IiVXp26km4KMx1+1LjuW7ZVKJlVxytHTXPZBkUBWU1pMPlPWLvuc2njUtEAjpHUsj5JqTNEAgV4om6aOy2bJIEoh2mi3wUZtFY4nSt5O17gyOJ4mnhErrw1uU3nJGSG+5DDQSPR6j4FBcLpYA5OZUiXertyBWsm3ZabwXMik5jcR5ikrSrYKSwQKp8lJfQHWlBAhvkutcam1ogvWqk2CJoii6EeHNcic0ZaAZAfkgNZ7KMjohxaDabGskVpij04ecoHjeTqMTKaI5bTKxZE6J26mrQWjts1g5iTDEw5Xu2jPEQkkGVQHjQ8xHRQfUoaHhyX9XShB2zCdatrhJjj0FJa+RCNBY46farxiB+puT5H3Uppyduhqq9estl42PEirZLrBTKpO1mXUVHzU9iJFMQm3gDdjNSSqabnpRSbpVUDIQ1TYqKDWQY3sUnHiWcIlVoVPPCnbeEaOvx0chGZk8fgki6PPSWqu07yR1I0Q3NGVQYgWCpcCT1j3F8G2tDVLl111iVfpsDyjoCKy9OUmtfTCTHd1sjyfqo0oYYhIIMKkUWE4jMWenEi+xsta90YkUE8m03sF2aCfN8ymTgshW9byEfZRhGHJzqqAcTsxOUDZrn1gyx7JTtJ/eobCg3nK52EloPhU2J5GeU/MQlaRbBSWDBbaorhyDypzEoNIdKJcHLbqjvgqPAamMyWBUrvOOeClcqA0CpX0atFBqTu2Qkaj5b5fN5gX6Sz4AE2J8WEm3dIy+vh6gwkicCRYUoTnJaO8GUhkTr8ewxZe1oUzYHguKUVov6qNKvxQOoK7KT11VrjmJYDmcmOj72FbFMPEGINSudyzNWChVsm2XAQseiEPZ+KiFUmWLNc3gU2P1b10HVPSWZ4I8y1culkgMb5TTW56nqCTdKigZWIFy71ictFDnnfjQRmI5jYou7ZoR5eHU/V4P7XVCuhE7ED/WHiiXyUkaFJbDCSVzxrawdSQKCJykjfdBJgmGt6RLrECwbNFfpZLJwFjfekCakVjaa5/YfAKbmRPJ2amzvgqf7hKrMknmWBuaaDLDWFwzgyrH+MiMbqIvIlViVT4+Sqy0vr4ITLfCBjKe0t6OiQm/W4zE2Aj9g0oDWft8KhO9ZRD0UYaR91G9G4BKcnQmEGVj11t2UrFEXZWA3vI8RWmv8hXMK7TVBvF7DTJZk/6IDIMqMaQ2Ge11lRKrmUCui5/6W5nhzfbJXaV1/PQhVrJdbzUnSRIZUuU0YhqJ9QvA69M7lmaIdprdZu3bTfd8SicV4wNKfk4tLCjdkWJQ2XaqiL5PG9UBL0255iRSOonJoX9imlDl99AS0lzyWVY+SjaWmMTGbpbSsizt+QSCsURVg9I9BuLD6nsupjla4nrLUORYQlJvuYSbZ0H+Oz0UlWtOkhgSmk/zGJWkWwUlA4/HsMXf5URAVeedygnNzCDXxS9np0gPZjaNz2PQIVZiVQ6Bcm5Do5vC7vUrfSEgOyo0p8poPi2UKi8Fe05ZdtIeKI9tAUzw5Vl2pYqOhiCGAYl0lhGh5iTZio+aFcRKtreNJRqrMXRrtpaVj5IqW8wxqJIRMhNhoHKANxOI2Ql24KMEqxtKWG8ZCmMJQTvlZD60z6fYSF5vucTXvoZqPzUBRfSQkn8xc3aqNFHQh0rSrYKSgkWN/ttrA3qD5RzdNji2nk6GZBahMgyUn94wotdOte1geDHMDPuxnq7GKry6NSPKoNuYBctOr/WOCWw+1Zw6IP6kzJwqLN0pcXQVJLGtBgfakCuHWzj2HJ0MySVHy2BDE/R5aapRLKbnN4/qHSxnp/rwqzLzKTEOsWH1vAx8lBVL/P2NQb1rX27dC4xvppNBFkrEEmWYzHluk+ZYIhBSLCrgLcZaGqr91FVpLrEqE1YO5MuA3+yPiGmP7j2+RshHlUdZPeRjiXAsxdr+cb2D5XxUR/gFGR9l7aFCbeAvbbaWYRi01apY4oUto3oHyyXdQmNv5uxU2n87N6OSdKugpJDKabl9//43eeu37mf1mo16Btr4GADV6TEeCV7Ie5J/0TOOhXQCIkq4vBySOb25oOvPL/XqtdNzt4KpqNd3BK/kw/6H9IxTiDJK5ry0dQyA1/vG9doJIKu0ky7138YjwQtpevXX+saCstp4PvhaPwCZLBz7nb/ptVOkF4DjUn/nkeCF7Nv7f/rGgrI6bFi9Ji9EfM7P1+i1U9+LACyIr+WR4IUcO/YnfWNB3k5VDXZyopQxkVBMxJ8/skHv2rf2AQC8ZopHghfxvux9esaxUEYlVgAbh5UG6EOvD+q10zO3QFwx3H4Z+BbnVP9dzziFKKNkznObRgClO6o9lkipg6dzPXfxSPBCdlv/O31jQVn5qD8+v9V+/q7vPajXTrkY7ODEkzwSvJADBv6gb6yC8cphPq1es5F/Dqt91EW/fk6vnbY8A0BTYiuPBC/kHbG79Y01z1FJulVQMugJx3hu46h9nTXhi7e/6PypWngL3Ptf9qXXMDlp/Tft8hAtsLos+qqhpkXfOALoCce48x899rVWO915kX3pMUw+Gr5er52gbAKwnnCMHz7wpn2tzU6gbLL1OfvSa5gYd12ieU6Vj53+644X7Wvtdnr5DvvSa5h0PPgFvXYqE52wnnCMy29/wb420WynR2+wL72GyaEvfkXITqW/oekJx3hs3bB9rdVH/eky+9JrmLx/83f02ik2AimVqLJLW0sUPeEYv31qs30tGUt8ZuL7lVhimugJx7juL6/b19p91D8ftS+9hon/T5dWfNQ0sK2P0m6nf+QPVr2GyZLHvlSx0zQgHks8+C370muYHPvq1frXvnmKStKtgpLB+sEo20pTZ0yTDYMOl1sNr1Vt3AvgIQvD65wdpxCFJzQlXmJV1nZKRNSmBkresa8fjJLdxlBa7ATKVtt+K8yM3JwqYRTbTkbFTtOCuJ22WfsMU7ePKh9WTln7KMtOtR2qG3EJY/1glG37kUjZyavbTtlM/rC1xOdUsX1UJZaYHoptp0osMT2UfSwxj1FJulVQMuhuDW2Xj/IaBktaHdYJaN4DjMlTwzS80LzU2XEKUSYnnqDstK2smpSdsoZHr52sk7SqRqiq1zeOAMTsBDlbbTOYzjk1qcSqtOeUvJ22CQvE1r7SDpSLbaeKj5o+iumjtNupTNY9KHIsgeZYItKrJBc8PrvJUKmi2GufnI8q7Tk1f+xUiSWmjWL4qHmMStKtgpJBV0M1V5yyr33tMeAbp6+wBZEdQ8NCOPV6TNSqlzUh+Z7r8t2tdKBMTmhA2embp+9vX+u2k+UwTBPWH/H1ip2mCctOlm830GQnUDZ599ftyyweOHWVPltFByEdA4ySL7Gy7VQQhGm106nX2+fTWQy9doKyYVBZdvKI2innozAwtNupvNa+q09bYV9LxhJj7/xuxU7TRDFjiZcO+aqMneoXgserbxwBiMcSJ19T4KM0xxJlpLdciSVKAzuKJa5+v1AsYRpwyvf02mkeo5J0q6CkcM5bu2mqUR2l/mflYZxxmKbF9eCz6D3qKgBeMJYRPPxsPeNYKKPTaYAzDlvMW/dQ2nSXvntvrXbKnnUXAHH8BA47S884FsrkJM3CGYct5qPHdgNw0opOfXYCOPJTRFEndY8f/RM4WKOtwrkNTV0n+IL6xhHCGYct5nsfPBCAJS01eu108Fn8s1aNdd/CT+m1UyYNYzlh5zJY+844bDF3X/w2+/rk/TUyWA4+iw17fASAh6uO02snKDsf9aEjdmdxrkvbqn8/UKuPGnnXKgDWsYC6o87VM46FMmHlWDjjsMWctF8nAB9721KtduLjqhGTCXje8m96xrFQhrHEJe/aC4BjlrXq9VGHncewtw2Avx/4Hc2xRPnoLYOy00/POhSA5lBAeyyxvvlYAO5r/XDFR80AZxy2mAf+83g78XbcXm36Bjv4LP654gIAnvQdjHHISn1jzXNUkm4VlByWddQBMBZPaR3nnzX7AbDYGNA6DlBWp9MW9luoOtwNRhJaxxlsOoCk6aXaSNHJoNaxyuUkrRAHLm4CoHcsrncgw2C9oVhnnUHNY5VRh1kLh3U3A7BlNGZ3cdaFdV5VWtDpjWgdh0hPrsTKrxKkZYC9Oupoq1OJ3vWDUa1jrQvuDcACY3gXr3QAto8qnzm1V6eSCBid0BxL1L4FgEXGoNJ004kyjCX2303FEv2aY4l483JGzFo8Biwyt+76F+YCK5YoIx91cC6W2DKqQfB9G6w11Pe7w695rDLSW7ZweC6WGI4mte+j1vn2BKDLO6Z1HOJjEB9Vz8vERy1uDtHdGgJg7cC41rE2VKkqsoWeIa3jzHdUkm4VlBz2aKsFYG2/3kXojaxiKTSZo3nxfF0os1NPgD3aZJzF5rEUG0y1YfePvLmLV88RZXSSZqFwPpnbqlY7iFQmy6tpZaf2hMb255C3UxnNp676Kqr9XlIZk03DGgR1C/BqWq19nSnNdrLWvYbSL7EqhNTa93pG2akrtUnrOKTiEO1Xz0u8xKoQe7Tn7KQ5lliXaiFh+giSzH/ndaGMusxayM8nvUnsLeE4a80FANRF1msdqxx9lDWfNg5NaD8YejWlYonOpJCPKpNEDkBdlZ+OenUwtE7znHotI2yn6iYI1ukdSxBi+10rlkhvUU1eKtCCStKtgpKDVAC2IeKhx1QnQgxqTOaUWYmVBctZ6HbqW0ZirMsFygy+oXWscmR77N5Sg2HAWDzN4HhS2zi94ThvZpWdQmOaOyOVYaDs8RgsFVr7/hFTpQz1Ud0bz/JjJAIstQNlvXZ6PmenUHoEJjSy3awSK39IbWrKBPaGRnsyJ2kfDFV81Mxhzad1mg+GNo/EWJvzUcaQZjuVoY/qrK+iJuAlnTX555C+g6FwLGUf4NWNV3zUbLC0VSaZ8+xEOwANExu0jlOOB+IAe7TL+KhXYg0kTD8+M5Vn4VbgOCpJtwpKDvlAWa+zWNs/zroc2w2dAdjYFtXy3ONTpVZlAitQ3jIaI5bUd3Lycs8Ya82cnXRvaEY2qEdfld5xBFHl97KoSWmt6ZxTm0dirMvZKdX/mrZxABh4XT0GS7vD7LawN58a7TSRTPPMhErmBCKblJC0LvS+pB5rWvWNUQRI+ajXhrNstQ6GhjQeDG15Wj3WdZVNiRXkD/B0zieA1/vGbAaVVh8VD0MirJ4b5cMc3b2lBo8BkUSaAY0lpi9vHbN9lPZYYih38OTX0JGwSDCM/MGQzjm1eWTCTo6auu1kxSpVjXrHEYbN8tVop2zW5MmxRgD8iRGIaixd7HlePYY0ap8VAUtz5aXrBjXvdwdjrLMPhjRXDIW3wPqH1OM8QyXpVkHJwdrQrB+MksnqOfVcvWYjD7w+YAfKL7/wlJZxAFjzU/WYTcP1b4FnbtE3liCaQwG76YUuh7F6zUZ++MBaOwDrW/+ClnEAWPM/EMuxSf73g2VjJyjcfOo7Tbv92c32fEr1vcbqJzWdpj1zC6x/QD2/76tlaSedgfL//H0dAzQyZlZjmFn+/NAjegZ65hZ47Eb1/OU7ytJOOufTb57cyLrBqL32PbnmMT0DPXML/P7j6vnwm2VlJ4vtsTUcJ5rQc+C1es1G7nq+11773nzlGS3jAPDYTfnnNx1RNrYK+rwsbrYOhvTMqdVrNvKdu1+17TSy8SUt4wDw9C9gdIN6ftt5ZWMnkGGPrn5yk20nz+hGfve4psTbM7fAq39Qzx9ZVZZ20umj/ueR9Yxlgmw21aHafQ8/rGegZ26BB76hnq+9v7zs1K6fNb96zUb+sTlsz6lnn31C21g8vAq+tx/84lRYtaKsbDUdVJJuFZQcFjZVE/B5SKSzbNUg2NoTjnH57Sp5Yy1Cm1//Bz1hDYKt4S3w6I35azMLd15cNicAOgOwHdmJwdf12elPn81fl62d9CRzesIx/t9Tm/mn2UHK9BIyEtzw+4ect1V4C9x5UcEPzDK1k54ArCcc47q/vgEYdsn2nfc9qNFO1qFJedpJ18FQTzjGF38/ee179pk1AnairOzUFArQEgoAeppeTPJRueTo4IYX9fmoB7+dv674qGnDspNJfj4Fw+voGdWwzoa3wF0X568rdpoResIxfvn4PxmknrBZg8cw+dkf7qvEEjOEhJ2+8adXAOyKob889HAllpgh9sgdDPWOxRnXcDC0o33Uay8+o89H/fUqbFuV2do3HVSSbhWUHLweg+4WxSR4U4PDWD8YxdonWYvQUmMrGwY1aFQMr2XShgZUqemwZs0rIegUAS20k5Ug6DBG2bS1z/GxGF6rHEQhyshOSzUHYOsHo5hAGh8bTaXxscTY4vycKnM76Q6U1w9GMe21TwXK3WhY+8rcTgsbqwn6PCQzWTaPOO83xHxUmdsJ9M6pyT5Kzac9KrHErLBUI8u30E6bzDaSppcaI8HWjWsdH6vc55SIjwIKD4a6qcQSM4U1nzYMRUlraHoxOZbI2akS880YDTV+WmutpheafVQuOdpd8VHaUEm6VVCS0Nl1rLs1ZMvWWIvQYqOPJU1+x8eieY/tf2Z4oXmp82MVAba+hwYWQXdrCE/OThFq6Dcb1ZierY6Ppey0jZZRGdlJd9mi1fYc8gnSPY1elrQ6rGdT5nay/o6jEymGo843vSi0k8XM2dPTo8dOxjbhRxnZyeMx7L+ljjnV3Rqyv+VWMmepUbHTbKCzOcmkWCJnpzYjTHdtyvGxyj2W0MnyLYwl1MFQBwBLqMQSM8XSgtJ6HU0vJvkos+KjZosFDdVU+T2qG/qI86ymQh9l2WmPio+aFZZqlKvYsZ22Om8nKHsfNR1Ukm4VlCRsPQINyZyuhmpO2V8FyD00M2EGCRgZurL9jo9Fw0KoKugGZ3jh1FXq52UAnUy3roZqPn5cfhG3kjmtcQ2tyRsWQtcB+etys1NON2LzSIx4yvmmF82hgL35tBz7h/eM09VQ7exADQth3/fmr8vMTtUBLwsb1d9MRzKnq6E6//45O72teUSPnY76TP66zOwE+TmlI1DuaqjmiKWqgYKVHO329tNV63N2oIaF8J7v5K8NT/nZSSMzp6uhmn89ZDcAxqmh11S+vjO12fGxaFgI9Qvy12U2p/LzSY+dLnnnXva1FUu0xDTojjYshMVH5q/LzE5WojkcSzGk4WCos76KoE9tXa217/TFE3p81FvOyF+XmZ08HsPWtNQ1p2w9stx8OqJ+SI+d3va5/HWZ2Qn0+6jj91bNJ+w9lDFGl19DeWldF3gKyCtlaKtdoZJ0q6AkoTOZA1ATUJuX9x+0G/6OXDA2+LrzA8VGIT6inv/Hb+DiF+Dgs5wfp0iwA+XBcbIatI2srptv2a2B/Q88VP1Qh50AkrnN8zu/WnZ2agkFaKj2Y5qq3MBprO1XpQa1QS/vPPYYAJZ5exwfBwBfLqg78MNlZycoFNZ1fu3LZE0Gx1V3wH878e1AbuOpgbFA4yL1uNth5WknzWVW2VxFzQeOP4ysvwaPmYbh9c4PtPBg9VjVABe/WH520siaB2isVpuME/froGnxfuqHOnxUJgXjA+r5B/6n7ObUHpq7oVsSC3u0hTj6yKPUD3XFEpkc0/Ftny87O1X5vezWlDu40TCntozGSKSz+Dxw6juOA2CJqUkTqqpBPe57WtnZCQpiCU0+anRCfc8/8G4VS9RNbNbTDb0ld/jevm952klzJYo3R/P94NH7kKnNHdzo6IY+sh6yKfAG4aw/lKWtdoVK0q2CkoTOkhCA1/oiALxjeQf+9r3VD3UEYAOvqsf6hbD3e8ou47+oqRq/1yCeyrJVgzDn6zk7HdHdTKhrufqhDjul4jk9AuAtHyw7OxmGkZ9TGrokWXZa3lXPnvvmNvGDmjqO9b+sHstwPoHeAGzj8ASJdJYqv4e3H3WkYjYlIxDpdXws205LjilvO2mYT6Zp2j7q5LcswNOq8WCoX4lh03VAmdop3/RCx8HQa31qnh63VzvBDo2xxNBataEJ1MJ+p5edrZpDARpr1MGQjqYX1nw6ZPcmahfuq36ow07ZbD7uW1F+dgK9pcBWLLFHWx37vuUQ9cOhN/UcDFk+atm7ytJOS1v1+aih8YR9gPeeIw+EQF1Ov0vDwZBlp8VHlqWddHcwtda+E/frxNu2TP1QZyzRvg8sPa4sbbUrVJJuFZQkrFPJwfEE4Qln9VGyWdN27Pt01oG1oRnSkCToy7Wlb9/X+fd2AXxeD0ta9OkRvNo7BsDenfV5Ow1qOKEZfE2JtVY3QV2n8+/vAuhk5rzaq+bT3p110LKn+uHYFkg4PFYmDQOvqecd5Tmn7NJ6DfPptdx8WtZe9//be/P4KMps///T3Ul39g7ZEwgJCZAgmyAQQRAQZJVBHQUdZBu3O1e+o6OOg/deRa7ecbledZzhp84MgjrKoggoKsqOLLIvAZJAQhYIWcjW2ZNOd/3+eLqqu9N7dTWku8779cqLqu6nluZUPec85znPOVCpQ4Be6ewLn/R9JkM5YbD05+4B+PJ9qmrsgK5ND5VSwa7jUx0V2HLq0ysMahWrhl7ug2roBYKOsrAlfDHhUM3bEoMAZWCa9r58pwpulC2hKwM6mwGV2hyhE2CYdZSPbYle/dgStc5moMkHkfNC3xegtoQPI914R07fmDCEhwQDcSZnjk91VGDKqT8/MVQrfTX05o4uXKljes/3Oiqw5eQOgamZiYAnQhOEpKgQAEBRjbQK42p9G1o7DVCrlEiLDQfiTE4Cn3RCvOd/kPTn7iH4quoYx3Eo4A2wxEizUq8rYs4XKRHkdAuE5GQBxg0Z0CRGAmExQFgc+0LqEPb6YsDQAQSHAdHp0p67h+DLKn4FleycAxMj2Qe+iqDiuIDv+/iE37UtnWholTa3ET/ZkB4bhpBglbnv86mhHJhyUikVQtJoqd+phtZOVDWyaI+BiRE+llNgv0+Ab6N8rWwJfmKo6RrQ0STthXg5xQ0EVD4oztUD8KWOumjpdAtSAzH92BdS66jm60BrDQAFEJ8t7bl7CDfifTLbEjcigiownTkp0aFQBynR2WVEucRFLy6ZnKPxkRrEhKvJ6eZjyOlG+C18LhapIz74GZrMhAgEq5TmTuh6gfQh7HwnlBiYUQSA75w515s7UN+qh0IBDEiMALSpQFAIYOgEGiROgBzgEYmA2QDzRQTVRdMSq6ykKPaBrxQ7L6f47ICN9uBnPdlSUGlzGxVUMWdOdlJ3Q1liOTWWAx06QBlkfhYCjHBNEFK0pokhid8pcyQ2/z75ckAjJx0lsS1hGnj2jg5FZEiw+Vmvu2zO6yUVAR6RCPguyret04DSulYAJmdOaDQQnsC+9JWOCmhbwnfLS/MtnaOA72wJPnI0ph+g9kElxx4AX0ih3gfV0K1WCwG+syXaG1n0KBCwEw4qpcK8FFjicRSvo2zl5ANbIsAjEt3Bb0YldXV1WLBgAaKiohAdHY1HH30Uzc2uH77Dhw/jrrvuQnh4OKKionDnnXeirc0HVTmIGw6vMKTvhPioHHZ+ocR7ewPQWivdhTgu4KMIAMuiFxIPPE1ROemx4SzaQ6k0z1BLboAFfhRBhoVzlJPQudzYrheWbWX5etYzwGc8ATYjGakJgpEDSmtbJT23MDvNG2CxPpZTbH8WrRCgZPhowiHfJorAIiJRyomhllqguYptx2dJd94ehq8mhviBZxb/PkX1ZoVejHqgXuKJIRnYEr56ny5VN4HjWN64uAhTf+QzZ07g2xL8+3SlvlXSauh6g1FwuArvlGDzkS3hKZbV0KVeCpzf3ZbwVdQ8nx8xMpmtoghQfKWj+CATm4jE+mJpJ4a6OswrWwI09Ys7+I3TbcGCBTh//jx27NiBbdu2Yf/+/XjiiSecHnP48GHMmDED06ZNw9GjR3Hs2DEsW7YMygCNgJAb5kTVUndC3aJy1GHmSntSGmBNlUBbPUtWHhfAAxqLCqZSkm+5ZJHHV3kjZBDtkRYbhiClAq2dBlQ2tkt2Xj58PSkqBNow03IaX+Wg4menA1ipKxQKZCRInzOnXW9AicmJl21jKEu8DFgG0R6A75bv2DhzhIkhHdBSI92F+H4vOg3QRDpv68eYo+Z9M/AU5KRUmtNVSNn3dbYA9SVsO4B1lGU0tpRFLyyXlir49BFkS4gmLkKNqJAgcBJPDJXUtKDTYES4hbPI51HzAa6jfLEUmOM4YRmwXVtCyokhmcgp00fFAwu666jIFCA4HDB2mXWKFNRcZIU0QrTMQSpT/ML7lJeXh+3bt+Of//wncnJyMH78ePz1r3/F+vXrce3aNYfH/eEPf8Dvf/97LF++HIMHD0ZWVhbmzZsHjUZzA++e8BW+SgJqTqgbYf7QFxEfvPEVkwkEh0h33h4Gr9SrGjvQ1C7dzAk/8BRm0gDfzKa1NbDlcEDA5vYAgGCVEn1jTbmNJIxKtJnxBHy31EAGUQQAkBknvQFWdL0ZBiMHbWgwEiJNOpJ/n3RlQKeEUXUyiCIAfFN1zGDkcEmYGDK9U8EhQHRfti2pjpKHnMxR875ZBmw9MeQDHXU9HwAHhMcD4XHSnbeHkRoThmCVAm16AyoknBiyGXgCvonG7uo0ny+AdRSrhi69fc5H5QxIjIRSyTtHKSLRG3yxFPhqfRtaOg0IVimE3KaIyWABBh06oLlasmvJRU6+ivK10VGWE0M+sSUGB2xebHfwC6fb4cOHER0djVGjRgmfTZ06FUqlEkeOHLF7THV1NY4cOYKEhASMGzcOiYmJmDhxIg4cOOD0Wh0dHWhsbLT6I3omGRa5jfQGoyTn7OyyDF+PMn/hC0NZmPEM7AFNVEgw4k2DeClzsdjkIgAsnKMSGmC8sojqw3K9BDD84FPKqESbGU/AIoqgEDBKtPxE38ZyJQEBndcIsHTmSDigsRh4CtEe4bGsYi8gbdELGUQkAr55n0prW9DRZURIsBJ9YyxyDflER8lETqaJoetNrCqsFHAcZxvpBvhmAk8muXKCVeZnXsqoxILukaOAb5w5tYUsgkQdyXLQBjDmtCLS6yi7tkTjVemqoRuNZrsvgCMSAcvoUQltPj4vdrwpLzYABGlYxDTgo3FUoMtJ+tUNNc0dqGnuNOfF5vGJjrKori1j/MLpVllZiYSEBKvPgoKCEBMTg8rKSrvHXL7MBl+vvPIKHn/8cWzfvh0jR47ElClTcOmSYyX6+uuvQ6vVCn+pqYGtGP2Z5KgQhAaroDdwuFInTRTG5ZpmdBk5RFokwQbgm8gcmUQRANIvszIaOSE5/0B7y0t9odRloCz4ZVZSGso2+acAZnyp1EBXO6C7Is2FrhcAnBEIjQEiEly392N8sWyxwF5UDiC9M8fQBVwP/GgPwPw+ldVKNzHEDzwHJERCpbSYMfaFk0AmOioyJBiJUfzEkDTvVGVjO5rau1gSbNP7CoBsCS/xpTPHri1RWyTdxJClLRHg0R6CLSGljrInp7AYICyWbUs1MaQrA/QtzEaJyZDmnD0UX0S62bX5AOltCY6TjTOH1yE1zZ3QtUozMcRPiPeNCUOYOsj8hS9tiQCfwHPFTXW6LV++HAqFwulffn6+qHMbjczAffLJJ7F06VKMGDEC7777LrKysvDxxx87PO7FF1+ETqcT/q5ckWhASEiO0sKYlUphWCYSVyjsDGikzO8hk1wEgPRVx67Ut6JNb4A6SIn0WItoDz6pbmst0FonybXkEpEISG+AcRxnW8UKAJQqiwTIEhnKljOegT6gsXifpCp6YXeJFWAdlSgFdZcBQwfLGxKdLs05eyhJUSEIU6vQZeQky21kNyoHkD4HFcfJ0pkjlY7iB54ZceHQBKnMX/hkQCOPiETAMq2INHKqb+lEdVMHgG7vlFANvQNoKJPkWnK0JS7XSLi6wZ4tAVjY5xLpKD5yNC4LUAVLc84eCv8+SVkN3SbnKI/UtkRzNdBWB0AR0KlfAFYNPZmvhi5R5LxNJWAen0wMySMa2xU31en23HPPIS8vz+lfRkYGkpKSUF1tvQa8q6sLdXV1SEpKsnvu5GSWqO+WW6wFPGjQIJSVOVagGo0GUVFRVn9Ez0Xqii4uB571JawKi7cYDSwyB5BFJyR1PgJztEcEglQW3Zgmgi0DBaRTGJa5CAIcqd+n600dqG/VQ6kA+idEWH8pddUxGUUk9o0Ng1IBNHV04XqTBP0RHCwDBqSfnRbklM3yhwQwCoXCZzrKVk4SR/nqrgIdjYAyyPyuBjBSJxS/6MiW4P8v2+pYdVgpIB0lGt6R06dXKCI0FtEeSpWpQAl8YEsEvs1nWehMiomh1s4ulJlWtDi0z6XWUTJwjiZEahChCYLByKFMqomhG6WjhLzYGUBwqDTn7MFkSFw80O6EOCB9NfT2RvOKFhnY5864qRZvfHw8srOznf6p1WqMHTsWDQ0NOHHihHDs7t27YTQakZOTY/fc6enpSElJQUFBgdXnFy9eRFpamk9/F3Hj8FUnZOP5j0gENFFs+RqfN8ob6kuArjY2kxrTz/vz9XCkXg5X4GiGBpA2CaiMwtcBs5wqdO1o6ejy+nz8gCY9NhwhwSrrL6V25sgkrxEAaIJUQm6jQgneKV2bHtd0LDH5gO7vlNT5PWTkHAWkd+bw75TDpTv1pYBegiTzvJziBgJBau/P18Px2QRedzmpw8z5vKR4p1pqgeYqth0fuFXQeSR3jjqy+QDpnQQyWt3QNyYcKqUCLZ0GVDV6PzF0qaoZHMcqo8ZGdCuGRzpKNKzohXTvlN5gFM7j8+WlMnKOAtKvRLFb5AwAYvlq6A3SVEPnJxsiU8w5gmWKX0wzDxo0CDNmzMDjjz+Oo0eP4uDBg1i2bBkeeughpKSkAADKy8uRnZ2No0ePAmAdyR//+Ee8//77+Oqrr1BYWIiXXnoJ+fn5ePTRR2/mzyEkROoQdruJjwG2XE3KkFteWcRnsRnVAIeXU0lNKwxG72dOHC6xAqRdCtxUyRSPQmU+bwATHaZGbDgbYBdL8E45jBwFpF8SIqMoAkDa5XCXTO9TijYE2tBuy2kEORWxBNPeIgxoAj8qB5BWTu16A0pM76XN7HR4PBCiBcBJMzEko4EnIP3yUuc6SsKlwLyceqWzSO8AJ9NUnKSqsQPNEkwMObT5AGltiY5moKGUbctAR6mDlEiTsOiFWzafZKkq5BM5CkjrzCmuaYHewCFcrUKfXt2iz3g5NVxhha+8RWZLFqUspmA0coLdZ2NLBIcC0aaJISl1lEyco87wC6cbAHz++efIzs7GlClTMGvWLIwfPx5///vfhe/1ej0KCgrQ2moOj33mmWfw4osv4g9/+AOGDx+OXbt2YceOHcjMzLwZP4HwAXwnVChBCHtzRxeu1jNFYH/WU8JZmip5DTx7R4dCE6REp8GIq/Xeh7AXOJqhAaTNmcPnyonNBIJDnLcNEKSM+LCb+JhHyiiCtnqg6RrblouTIEE6OTmc8QSAXmmAMhjQtwKN5V5fy9z3yUROEr5PhdXNMHJAdJi5IrSAQuEjHSUPQ5l/n0pqW9DlZdGLLoMRl0zR986dBBLISWYDT21YMOIipCt64XAZMCCtLXHdlJ86IpFVhZYBUqYVccuWqL3k/cRQV6f5vZSNjpIu0s1hXmyAFbwI7QWAY5N43iI3HSXh+1Te0IaWTgPUKiXSYsNtG/hER8njfXKG3zjdYmJi8MUXX6CpqQk6nQ4ff/wxIiLMs3rp6engOA6TJk2yOm758uW4cuUKWlpacOjQIYwfP/4G3znhS/rFhUOhYMuj6lo6vToXv8wgIVKDXuF2ltP4ItJNJp0QK3ohjcLo6DIIUVg2MzSAtM4cmUVPAdJWMHWY+Bgwy6m5Cmhr8O5CvJy0qUCIPPJwZkpYRMZh4mOAJZLmK7h5+07p28xRWInymHCwfJ+8nRiyXLJoM6ABJJ5wkFffZ1UNvd67KIzSulZ0dhkRGqxCaq8w2wY+sSXkISdAOicBx3HuRSTSwFMU5gqm0ukou7aElNXQawsBYxdLJ6Pt4925/AQpI90c5nMDpJ0YMhrNjmyZ9H38+1QqQTV0Xk6ZCREIVtlxBfnElpCHzecMv3G6EYQ9QtUqpGhZCLO3CsPpjCcgbd4IGYbbmvPveSeny9db0GXkEBkShKQoO9FnvJzqitmspTfIbCYNADLipDHAjEZz5VK7EVSaSCCSFbzxeompjHLl8AhObAmcow6rWPFI5SS4ng+AYzPe4fHenctPSI9lE0ON7V2oaZZmYsixjpIon6VBD9SY8uHKREcplQr0i5NmwsEclRMBpdKOc1RKW0JmkaOAZd/nnY6q0LWjqb0LQUqFoPes4N+nlussmtobZLa6ATAvBZY0GtuejlIFWUwMeamjLJ2jAV4FnYd/ny5LMTHkKOcoT6xEtkRDCYu+V2nMsg9wLKuh80VFxCJMNiQ6SEkglS0hs7zYriCnG+H38MtCvF1q4HrgaZGDyhvFpG83h1bLyElgzr/nnZwsZzztRntEpQDB4QBnYAUrvEGGzlHz7LR3ciqra0W73gh1kBLp9sLXAemcOcJMmnyUOv8+XdO1oa3TIPo8HMe5duZIlYPKMnpKJgOakGBzbhvJdJRDOUmUg6ruMmDoZP2otq935/IjBFvCSx3lNJclYF30wptq6BxnfqdkEjkKmCPdpJJTRnw41EF2hkOaCCCqN9v2Nl+YjCPdvM2TWNfSKVTpdujMkUxHyW+iNc2yGnqzd0UvXPd9EtsS8QOZ01UGWBa98PadMsvJwcoQqSLdmqtZpW6FUhaFflxBTjfC7+ENsJ8vXUeFTvyyEKdROYCpyqgS6GgEKs6Ivg4rw2xgSa/5SB8ZwMvpVGmDV3JyOuMJWBe9OL8Z0InMQ2U0yC58HbBYalDd7FX+PX4mbUBCBFT2oj0As2Iv3CleToAsDeWYcDW0IUHgOOBYcZ3o81Q3daChVQ+VUiHI3gZeTleOeicnGUYkAuZ36qcLVZLoKJcTQ9V5gO6q6OuY5ZQNKOVjJvI66lBhrVdycpp/CgAik8wTQ2W/iL4OdFeAziaWc5GPTJABvHM096rOOzm5isoBzLZE3rekozyEjx4sb2jzasKBf59SY0IRrnHgYOH7vsv7vNRR8pNTSLAKqaaiF9+cvib6nWrt7BIisFzqqPKTJCcR8LbE7nzvbAmz082FzVdfAtR6UZiJz4sdk8EKNMgc+VhTRMBSb8rl9l1uJe54Yzc2HCsTdR6nuQgA4OwGAKZ19P+YBJz8VNR1rNa3yyTaAzAv2cmvavJKThddyQkAlCbDbO+fgfeGiJNVfQnLERIUyirDyYRDRbUAAL2Rw51v7fH6fXI44wmYc7md+0q8nDhOlhGJG46VQdfOqvctXnPUazmlx4YhJNhBJWV++W/lWfFyAiyicuQjJwDoMrDI6NUHikX3fbpWPSp07QCcTAyVHjRdsB14b6gEOkpecqpuZFEeey9e905HCdHYDqIITn0G6E2RCp/O9V5OcQNZ7kWZkF/RCAC4Ut/mW5sPADiTzXfoL+L7vubrbIkqwBzZMuGnC5XC9pR39nn9PmUlOsnX2lxtavyDlzpKfrYEAISadP9r3+WJfqcuVjEbPy5Cg9gIjf1G/P9vXZE0cpKZjmo1rWpYd/SKaDl1dhmFlSwOI90ubjdtcMDfbiNbQiLI6Ub4NRW6Nmw9c03YN3LAf3x9zuMZgJrmDtS2dEKhAAYk2DHAdOXAt0+b9zkO+PYZcTM11fJb316ha8Pf9piXZ4iVE+BGpJuuHCg/Yd7njOJkxUd7xGcBSgfOiACjQteG/9ycK+x7I6cCV1E5unLg3Cbzvlg5NV4D2nWAQmWenQtwKnRtePFrs5w4eCEnV85RXTlw4F3zvlg5AbI0lCt0bThYWCPsi32nLlYzOaVoQxAVYsfBoisHvnvWvE9y8ogKXRvWWQxgxMqpXW9ASS1zqA20F0XQ3ZaAF7aEDHPlVOja8L8/Fgj7Xukod2yJ4p/N+2LfKf596pUOqB2kWggwbHSUBDafw6gcXTlw+nPzvlg5dTQBDaVsW2Z9H/8uAF7oKHfktOd/zPukozyiQteGnReqhH2xciquMeXF1gQhRWsnL7auHNj2jHnfGznJNCLREeR0I/ya4poWm/RqBo5DSY1ny+J4hZMWE4ZQtR0HS12RecaThzOYK/F5ggyjPYprWmCUQE5N7XqUNzAF49BJUFcE5oawQIysZJgrRyo5AW44c6SWU2x/IMjB7GqAIamcXEURSNX3tdYBTRVsO14+0R7FNS3dn3JRsnKZz01SHSW/aA+pbInC6mYYObb8O95etAfZEl4hVd/XZTCi0BTt4TAiUWodJaMiClLqKHPOUR/rqOsmZ25EEhAW4+Fd+i+S6yhf2xJdHeboe5n1fVLIqcAilZLdvNhkS/gMcroRfk2/uHB0TxelUiiQHhfm0XlcRk/FZLJEkJYoVOKq5sjQ8y+VnPjw9cQoDaLD1PYbSSUrGUYkSiWnji4DimtYtIdDJwHJSTT25KRUwGM5AW7k9pBMTqaBp7YvEOJkmVCAIdU7VVDJltQ5zjkqkZw6W1jlZ4B0lFe2RIT9AY2UtoQMoz2kklNJbQs6u4wIU5sLndhAOko09uXkuY7iOM4cQeVr+1yGkaOAhDqqiukon9sSNZcAYxeg0ZoLncgAyW0JX79PRqMs82I7g5xuhF+TrA3F6/cPhWU/9Of7hyBZ61nCRpd5wrS9gTl/YR0Pzx2/Z597QrsOaDQluJaRYuflZKkw/uc+EXJyNeMJmGUloADmvOe5rGSYi8CenF6YmeWxnIqqW2AwcogKCUJSlJ3wdcBCTvzFvJSTjCISeTmpLAb1C3LSPJaTwcjhUrWLd0ro+yzMhXveFSEnec54dtdRCojVUXxUjisdZSGnaa96LqfrBQA4ICwOiEjw7Fg/RpCTRd8nSk6u8rnZsyVGP+a5nAx6VpQJkL2OevXewR7LqcD0Pg1IjITSUaEfyXWUvOX0+6kDPJbTNV07mjq6EKxSoF+cg6W5NnIC2RIewMuKR6EQ1/fx75RntsQ7Xtjmg2SVF1sqW6LAbVvCQkdN/g/P5dRQAuhbAZVG3KRSAEJON8LvmT+6L/65eBQAIFytwv0j+3h8jrPlOgBAfJST5WkjFwHP5ALpE9i+UkTi4uL97N/wRCC0l+fH+zHzR/fF7ucmIdhkhY1M8/z3nyytBwD0jnbgyOEZuQiY+Ce2nTaW7XuCvh2oMYWvh8pnmQHA5HRw+V1CJb9eoQ4iCp1wpJjlsOoXF24/2oNn5CJg/mdsOyQKuHWBx9fCtVPsXxk5CAAmpwPLJ2P64EQAbJmBp5worUO73ghNkAJ9Y5zMlo5cBDx11FygJO0Oz2/46jH2r9bz/tnfmT+6L1bMYQPu/gkRmD+6r0fHcxyHCxVMR8U4ivAFTDrqHNDLZOCGxXl+s3wxBhkayfNH98WGJ24HAAQpgXuGpXh8jjNXGgAAiY4mGwCzLTFwpukDz99dlB4CDJ1AcBigTfX8eD9m/ui+2P/CZERo2KBwgLPqow44XsIqPqf2csOWmPYq204a4rktYTSaI6jEvI9+DG9LDOujBQCEqx1UHnXC4SJmS6T2CoM6yMmQdeQiYNFWtq3SAEMf9PhauHaS/RuZ5Pmxfs780X2x9I50AMDkrASPddSFazrUNLNCNAMSHES6AUxOvz/NqjcDQOJQx20dccVU8Tnas3sMBOaP7ov/fXAYACBRG4J5ozzv+8+bbInYcFe2RC6QxK4Fjed9rJAPM6afbPJiu4KcbkRAMCkrAb3CgtHSacBpk9HrLuuOliHPVA1rxdbzzqvBaHsDwx9i20W7PLvJk58CGxay7ZYq8dVg/Jj0uHCM7c8Mz/0Xr3t07IZjZfjyBIsSXH/0iuuqPYPvZ/+WnwT0HibvPfAOhEq1/7xLdrJK1oZitmnAue+S53L672/ZTOSZqzrXcho4ky0TaNcB1057dqMn1prD17f9QZZymj+aGV37L14H54HjbcOxMsz/iBmvHV0cvjpxxfkBcQOAtHFsW0zfd3YD2z62WnZyAoB7hrP36VJ1M643dXh07D9+LkZzB6tatnTtMdc6avBcti1GTj+9xLavHpOlnEanxyA1JhRdRuCXy7UeHbvhWBmOFDNnzls/5ruW04hH2HahCDl9apKxvhU4/S/Pjg8A+vQKw+RsNuEgxpZYc6gEAPDd2UrXOmrIr9m/ledYbkpPOPgXJiMA+Oxe2b1TydpQ/MrU9+0TIac/fnkWAHC5psW1nPrdyZYbGjrMkwfucvJT4MoRtr3jZdnJCQDuGZYMADhRWg9D94R8TthwrAyz/3pA2N929pqT1gB6pQH972LbYnTUsX+y7dwvZSmnWUOToVYpUalrF9K4uMunh0pQ0cCqoP9+/SnXOorv+8ToKL5g0PV8WcrJHuR0IwIClVKB8QPiAXhmgImq1phpUhblJ903wISKZRaKTGw1GD/nzgHM6eaJASaqWmN8FjPAuto9M8B05cC+t8z73lTu8WMmDmRyOnCpxm0DjJeTZWuXclIFARl3sm1PDDBdOXO08chUTrdnxEKtUuJqfZvbBpgoOQFA5hT2rycGmJTVGv2YuAgNhvRmy25+9sCRXaFrw+s/5An77ukok5yKdrNIG3ew0VHylJNCocCdIm0Jj6s19ruTRY/WFQH1Je5diGwJAd6W8EpOcENOUSmmJbwccHmP+zeoKwd2rTTvy1RHTRzI3qejxXVo1xvcOkaUjlIozPZ54W73b7C7jpKpnIb3iUZkSBB0bXqcvdrg1jGCnCwERbaEbwlTB2FUOlsp5Gnft+Lb88K+W7ZEf5OcSn5mBSzcgXSUQ8jpRgQMYgwwURWWxBhgUlaD8XPEGGCi5CTWAJOqYpmfI8YAE12xTIwBRu8UAHEGmGg5iTHASE4CYpw5oqpqpuYA6gig5TpQleu4nSUkJ4E7TTpq/6Uat48R9U6FRAF9xrBtd/s+kpMAL6ez5TrUtXS6dYx4HUW2hFj6J0QgWRuCji6jEAnqCq91lCcTePROAQCCVEqMF1aiuNf3eS2nq8fYKgd3IDkJiNVRHtsSiUOAiEQWrVv2i3sXIjk5hJxuRMAgxgCzl5jVrWownhpgUlYs83PEGGD94sLRPTOYW3ISY4BF2ck5JUNZiTHAvJaTJwZYTKbtZzKUE+C5ASa6CpYYAywmE+j+VMhcTj9fqoHRzejRNDu59lzKKkhtzj3qrjOH5CQwLjMWQUoFimtacKXOxeDRhGhbQlhmRbaEpyRGhSA7KRIcBxwovEE6qmgXbEaujuiVbvuZDGUlJnqU5YO1/swtOWVMYu/H9XxAd9W9GyRbQsBsS7gvJ1G2RHRfIHYAc8Zc3ufezZGOEuDfp8NFtejoci94QZSOsgxecHccRXJyCDndiIBBjAGm6NYxqBQK96rBeGqAaXszY0C4sEpcdaUAQIwBlhgZAm2ouXCF23ISY4BVnu12w/KVlacGWLI2VFhCB3ggJzEGGNfN0JCznDw0wJK1oZgx2Jws2m05iTHAIpMAjUU1MxnLaWTfXghXq1Db0okLpjyirrhab730w3Md5aYzR9ubOVV5ZCynyJBgjOzLokfdTYMQpg6yqibstpz4KN/L+1hFUldoewNZs8z7MpYTYKGj3JRTsjYUiRYFs9yWU99xQFAo0FRhrp7oitoi630Zy0qMnEZZFNtyW06hvYDet7Ftd/u+4FBrRzbJCaevNEDX5ro/StaG4r4R5v8nt+UEeD4pHpViXTBLxnIalByJ+EgN2vQGnCipd+uYhlZreXqso9wNMtH2NkdwA7KWU3c8LyVDED2YOwfGI7+yCfsvXheStzrjmzNsjfnwPlosnzkI6XFh7imL7gaYq1LwRgNQbUr4Pvk/gFsfkXUHdOfAeGw4fsVtA+x4aT0a2vQIU6vwwSMjMTAx0j058QbY1WPMAHOn8ljul+zf0Y8Bt9zLZmdkKqvuBpil49Meje16FFSxcuSv3z8Ek7IS3C9n3n8KUHuJGWC3/Mp1e15OfcYAU16WtZx4A+x6UwdOlNRjXH/XVfKKa1kEz6Pj0/HYhAz35ZQ5BTizjhlgd/+36/YlB4AOHXO8PfgJy7UoUzmpg5QYmxmHnXlV2HfxOob01ro8ZstppqPuGZaEBTnp7uso3jla9gvQ0QxonFSUA1h+Ur4oydxVQMZk2coJAO4cGIejJXXYf/E6Hrk9zWX77ecqYOA49IsLw5/vG4r0uHD35JR8KxAWC7TWMj3FFytxBMcBtabK2nc8DYx5Ut5yGhCPv++/jJ8vsUIyTqtlA8ivbERlYweClQp88MhtGNw7yj05BYcA6XcAhTuZjnJl8wFmHTV0HrM9ZKyjxvePg1LBCslca2hDSrTz//OOLgMKKpsAAP81exBmD0v2TEddPcaifN2x+c5vZsvh4rOBWW/LWk69o0ORGR+OoustOFRYg5lDk10ew08MPTw6Fb+fOsAzOR35kNkSHAeb0MbuVJwBmqtYddp5n7FqwjKVk0KhwIQBcfj6ZDn2Xbruls3H2xITB8bh3yb298CWmAxAwVJVNFUBkYnO2+vbgOoLbHvmW0D2PbKVU3co0o0IKPiID94Ac8WWU6zKzoOjUjE2M9Z9ZcEbYIB7szSlB4Gma0CIFrjjGdl3QN0NMFfwymLW0GRMHOiBIwfwLF9Yax1w6Se2PepRoN8EWcuKN8AMRg6H3Ige3Z5bic4uIwYkROCh0X1Fymm36+hRjgPObmTbIxfKXk68AQa4V222oLIJeRWNCFYp8P/u8sBIBkwGGMwGmCtyTXIacj9bSidjOQHmAiXuTDh0dBnw3dkKAMBvxqR5pqNiM9nyNqOe5eBzxYUtrG3iUFZVU+Zy4iccDhXVQm9wXYyCtyUeuC0VYzPj3JeTUskcnIB7OqoylzlHVRpgwnOyl9Oo9F4ICVaiqrEDBVVNLtvzcpqcnYCptyT6zpbQtwEXvjHd5FLZ6yhtWDCGp0YDcK+QzJ7862hs70JSVAh+e0c/z+TER1Bd3ssmvF3BO0dHPCJ7OQGerXAob2gT0sQsm+KhLZF+B6BSA7oy80SCM3g5Zc0EsqbLXk4ThehR17a50cjhm9Os73todF/PbInwOCB5ONt2J3q04Aegs4mtYBnzhOzlZAk53YiAwhMD7GJVEy6YBp6z3ZjNscETA+zsBvbvLfcCQRqnTeWAJwZYZ5dRGHhahrG7DR/x4Y4BdmErYOhkA093ZrJlwIQB7htgm08x5+i9I3q7jDiwwRMDzHLgOciNqDgZ4IkBxjuxJ2UlIDpM7dmFPDHA9O3mgeew+Z5dJ0Dh36cTpfVo7uhy2tZy4JmTEev5xTzSUSbn6LB5nl8nABmSokVMuBrNHV04VdbgtG2Frg2/FNcCAObe6jrC3gZPlmzztkTWTDaJJ3NCglXI6cfeDVeObDbwZH2fKFuCd+aUHgI6XeT64wee2r5A6u2eXysAMacVcUNHmWyJubemQNk9aZgrUkYCGi3Q3gCUn3Tetr4UKDsMQAEMecCz6wQolnJyFbzAO3Jy+sWgt4voRRvU4UDfsWzblY4yGoDcr9g22RIAWPCCQgHkVTSiuqndadsjxXWo0LUjMiQIk7MTnLa1i0c6ymRLDJ3nOnpRZpDTjQgoPDHAeKU+cWACeoV7OPAE3DfArAaeNKDhcdcA21tQDV2bHgmRGtwuZuDZ+zb3DTB+Jm3Yg55fJ0CxdOY4M8Aqde3eDTw9McD46KmB04HQaM+vFYC4a4BZznjee6vIGUjemePKALu4HehoBLSpNPA0kR4Xjr4xYegycjhcVOu07VaTg+BXt6ZA5enAE3A/Z47lwHMoDTwBQKlUWBSScW5LfHP6GjgOGJMegz69XCQQtwc/oLl2Gmhx8kwYDcC5TWybbAmBO92ccDhaUodr3gw84wayQkuGDmb3OUNYWvoAi2YkBDkdKKyBwUkhGV2bHrvzqwEAc8XoKFUQkDGRbbvq+3g59bsTiBIx+R6A5GTEQK1SoryhDUXXW5y25XXUvWKc2ID7Oqp4P9BcyVLG9J8q7loBRmyEBkNS2MTLzy76Pl5Os4YkIyRY5fnFLHPEGp1EfrfUAoU72DbpKBtIExABhzsGmNHIYSs/8BwhwkEAuG+A8QPPqD4sFxwBwH0DjI/KmSt24OmuAdZQxpYB04ynFe4aYN+cKQfHAaPTe4kbeALuGWA042kXdw2wYyV1KG9oQ6QmCFMGiRh4Au4bYMKMJw08LbnTjSWmujY9dgkDT5E6Kn0CoAwC6i4DdcWO2wkDzwksWTUBwP1lVpYRvqKISgYSBgPggMt7HLcr+ZnlkQ2JBvrfLe5aAQi/ZPtoSR3aOh1Hs/MDz5lDksQNPBUKi2qzTnSUZZoK0lECw/toERUSBF2bHmeuNjhs90NuBToNRmQlRmJQcqS4i/V3I8rXMk0FOQgEwtRBGN2PFbFwpqPyKhqRX9kEtUqJWUNEOiz5CbySA0BXh+N2vJwG38eqcxMALGwJJzqqXW/Ad7lstZBoHdVnDKCOYLlHK884bndhM2DsApKGsfy9hBVkBRMBhzsG2PHSepQ3tCFCE4Spg1wkhXSEuwYYzXjaxR0DrLFdj515Xsx48rhjgPGOnPTxlIPAAncNsM2neCe2F/937hhgJQdMA08tMIAGnpa4Y4BtMU02zBA78ATcM8Bo4OmQO91Ysr39XAU6u4wYmBiBW5KjHLZzSkgUkJrDth3pKMuB51AaeFpypylPYm65DnUtnXbb5FeygWewSoFZQ5PstnEL3pZwpqPOmmwJGnhakRkfgRRtCDq7jEK0dXcs8yNKoqOcyek8P/AcCiRki79WgBGkUmL8ANcTDsJE64gUz9NU8PByKj8OtDmo7lh5FqgpAIJCgEFzxF0nQHFHR/FympwdD22Y8yJbDkkcDEQkAfpWU7S1HTpbgbxv2TbpKCvMecxrYHQQvLC3oBpN7V1I1oYgp1+MuAsFqVk0KOCejiKbzy7kASACDncMMF5ZeDXwBFwbYK11wMUf2TZ1Qla4Y4BZJuYfnCJy4Am4NsBoxtMprgywi1XmxPyi8iPyuGOAWc14Un5ES1wZYGzgyZxuonIa8bhjgFkm5k8YJP5aAcjYzFgEKRUorW1Faa396FE+4fvcW0XkR7SEX7pY6CD/Hj/wVGncqxosIxKiQpCdFAmOc5x7VEjMLyY/oiWZFtGj9pbx69tYzlGAdFQ3FAqFxQoH+3KyzI94ez8RaSp4MiYCCiV7Z3RX7bcRbAmy+bpjTitiX07XGtrwy2WWmN+ridboVLYahTMCl/fZb8PLaeAMyo/YDf59+uVyLdr1tsELRiOHb71NUwGw4IVMFxMOFy0S8/OTSAQAYGRaL0RoglDX0onz1xrttuEjsX8lJj+iJUJeNwe2RH0JcOUXsNVCvxZ/nQCGnG5EwGFpgG08egUVOuvqmJaJ+b1SFoC1AXZuE6Art/7+wlbTwHMIJea3A2+AfZ9bYSMnwOwcFZWY3xJLA+zIh7ZyqjoHXM9jifwpMb8N/Pt0uKgG+y5W28jKMj+iVwNPSwPsxCe2ctK3AXmm/Ig042mDpQG2/liZjZz2FrCBZ2KURlxifkt4OZ3fbCsnwGLGk/IjdicyJBgj01j06NpDJTZy8joxvyWWlfyKdtvKih94ZtHA0x58TstNJ6/ayMkyMb9X0VMAy2cZFMryFp36zFZOF7ebEvNTfkR78Drqx/OVdm0Jy/yIXg08Q3sBvUexbXu2BA08ncLL6VRZA3ZcqLKR1TdnmCNnjJjE/N3hHdmnP7eVk1WaCrIlupOdFImESA3a9UZ8ethWR3mdH9ESXkflfevclhj6IK0W6kawSomxmcyW+9cvpTZy0rXqsSefObi9Hu/ycir7hemj7rKi/IguoaeXCEj43F8/nK/EHW/sxoZjZcJ3lon5+c5KNKG9gOg0tv3Vb4H3hgAnPzV/T9FTTtG16QEAF6uabeRUqWvH4cts4Pmr4RLkGYo0nWPvG3bkZKoIN3AGJea3Q3ZSJCI1Qejo4rD442NWsrLMj+hV9BSPyuS0O/+1rZwsE/PzRRcIgWCVEn1jWD69/9h8zuadMleE6y0uP6IlHaZZ1apztnJqKAPKDoHyIzqml2k5zpqDJTZy8joxvyVJw9lSYH0L8Nl91rKi/IguMZqizvZfrLGRkzDw1AThLm8HnsEhQEw/tv3N/3NsS9DA0y5Vjax4zLWGdhs56dr02GVKU+H1wBNgFZwB4NBfbeVkNfCk/IjdSYkORUKkBhyAxz897lBHSWJL8Fz6yVZOVon5KU1FdxQKhaB7/vx9vkM5iU7Mb0kzezdRX2wrJ8vE/DTRapdwNfv/33D8io2cvj/H8iNmJ0VikNg0FTwxGUBYHMAZgC/mW8vKarUQ2RKOIM1NBBwVujasO2rudIwc8OLXuajQtaFC14bVB1hC6V8NF5mY3xJdOZvZ5OGMwLfPsM+vHDUNPEEDTztU6Nrw5vZ8YZ+X07UGVgn2X7+UgONY7rfUGC8HnrpyoNhiiQFnBL59mn3eUAac+oJ9Ts5Ru1Q2tqOpo0vYt3ynfjxfifKGNoSpVeIT8/PoyoFTFgaXpZx05cAvH7DPKT+iXSp0bcirMC8xsJTTxaom7LhQBUCC6CldObD7NfO+ICfTcqtjq9m/fUZTfkQ7VOja8JNJFoCtjvr8CNNfc8UW+bGkqQLobDbvW+qo85vZwFMTRQNPO1jaC4C1nABg3dFSAMDErDjvB566cqA6z7xvKaeq8xZpKkhHdadC14ZXt10Q9nk5ldczW2L90TJ0GozoFxcmPjE/j66cTf7wWOmoq8DxT9jnJCe7VOjacL3JnK/V8p36+dJ1lh9RqRCfmJ9HVw4c/ci8bykngEXSA6zfo/yINlTo2nCqzJyKxVJOpbUtQoSv1zpKVw789J/mfV5ODVfY/ok1LD9ifDblR7RDha5NiA4FbG2JTw6VAPByqTaPrpzl8eWx1FGXdgA1F1maCsqP6JCgm30DBCE1xTUt6J7OyMgB9606iKrGDvBfham9NJIBoK4IQLeLcQZg/cNAxVnzZ0W7gJGLvL9eAOFITg98cBij+8UI0VNnr+qw4VgZ5o/uK/5iduVkBD6dC9QWmr9rdl6lTq4U19jmnTJywFOfn8DJMh0AoLXTgK2ny72XE9etGiZnBFbfDTRegyCnIC+XnQQoxTUt3Z9yGDlg6ZpjKKhsEr7LvarD4BQvlhI6ktPHM1gEYq5pxvPqMTYTSn2fFcU1LTZpu4wc8NBHv6CsrlWQU2eXk8qw7lJXZPsZZwC+XApcPcL2O5qAs+tJTt1wpKMWrj6C29J6Yetplqbiu9xKTPCJjjIAX8xjTjf+u6vHKEdiNxzafP/fIYxOjxEq95XUtGLj8Su+0VFr72GROrycOh1X+pYzjnTUv312AmeuMltCb+Sw/XyFb+T0r1+zyaALm9ln575kVZup77PCkZwWrT6Kwupm4bvS2laMy/TiQg5tvmlA2liWtgcArheQLWEHR33fgx8eRnl9myAnb+NLADjWURsWAtdOsH1DB8vnS3KyC4UKEAFHv7hwux1MpYXDDQBW7Sm0m/vDI2IyWU637lScgVXnxM8GEAKO5HRN1y443AD2v/gfX5/zTlaO5FR7CVZy+v55kpMdHMmKd7jx+ExOjeWwktO+N0lOdnAkp3wLhxsA/OdmH8lJd8XscAMAcNT32cGRnEotHG4A8Nq2PN/pKN7hBoDkZB9HciqsbsGGY+Yk+hznw76v6hzIlnCOIzlVN3UIDjfAx7ZE/WVYyWn7iyQnOziSFe9w4/GZnK7ndYump77PHo7kdMnC4QYA/+UrW6LpmtnhBoB0lH0cyemqhcMNAN7aXuA7W4J3uPGQnBxCTjci4EjWhuL1+4dCZUq8r1Io8JucVJt2Bo7NfHqFtjcw5y+AwhQ1p1AB2XYS8XMGoO6yd9cKMOzJaeWvbsHisWk2bQ0c552s7MnJXt4BkpNdustKqQCm2Mlh5BM5jVxi247kZBfbdwq4Z5jtMh2fyGnmW8Dox23bkqxssNf3PXib7fIPr+UE2JfVgOm27UhONtiT03/NHoQHbutj09Yn79Tg+2zbkZxssCenV+cOxqPj+9m09Ymchv/Gth3JyS72bIlpgxJt2vlETtNeA4Y9bNuWZGWDPVtirp3cyj6R06y3gZzf2bYlOdlgr++bP8reeNdHtkTWLNt2JCeH0PJSIiCZP7ov7hwYj5KaVqTHsXxg649esQrDVSkUwndeMXIRq5JUd5klmgSAgm3WIdMKlfk7QqC7nJK1oajQteGzX0qll5U9OeV+SXJyE3vv1J43dt8YOZ36lOTkJvbk9H1uhe/lpO3NZjePryZZuYE9OW06WX7jdNR7Q0hObuBIR3198uqN6fsubCU5uYEjOa05WHxj5HR2PcnJTez1fTvzq26cjsrdQLJyA3ty+vbstRsnp6MfkZzcwJ6cvjxxA8e7F7eTnNyEIt2IgCVZG4qxmbFI1obanQ348/1DkKyVKDeUtjfLC6HtbX82YM57lFDcAZZy4vd9JiuSk1fcsHeK5OQVN0VO/D7Jym1IR/kHpKP8A5KT/0A6yj8gOfkHZEv4BwqO657Ol7CksbERWq0WOp0OUVFeltslbjoVujarmVCfoiu3nrkhPOKGyYrk5BUkJ/+A+j7/gOTkP1Df5x+QnPwD6vv8A5KTf0ByujF44icip5sLyOlGEARBEARBEARBEARBAJ75iWh5KUEQBEEQBEEQBEEQBEFIDDndCIIgCIIgCIIgCIIgCEJiyOlGEARBEARBEARBEARBEBJDTjeCIAiCIAiCIAiCIAiCkBhyuhEEQRAEQRAEQRAEQRCExJDTjSAIgiAIgiAIgiAIgiAkxm+cbnV1dViwYAGioqIQHR2NRx99FM3NzU6PqaysxMKFC5GUlITw8HCMHDkSmzZtukF3TBAEQRAEQRAEQRAEQcgVv3G6LViwAOfPn8eOHTuwbds27N+/H0888YTTYxYtWoSCggJ88803yM3Nxf3334958+bh1KlTN+iuCYIgCIIgCIIgCIIgCDmi4DiOu9k34Yq8vDzccsstOHbsGEaNGgUA2L59O2bNmoWrV68iJSXF7nERERH44IMPsHDhQuGz2NhYvPnmm3jsscfsHtPR0YGOjg5hv7GxEampqdDpdIiKipLwVxEEQRAEQRAEQRAEQRD+RGNjI7RarVt+Ir+IdDt8+DCio6MFhxsATJ06FUqlEkeOHHF43Lhx47BhwwbU1dXBaDRi/fr1aG9vx6RJkxwe8/rrr0Or1Qp/qampUv4UgiAIgiAIgiAIgiAIQgb4hdOtsrISCQkJVp8FBQUhJiYGlZWVDo/buHEj9Ho9YmNjodFo8OSTT2Lz5s3o37+/w2NefPFF6HQ64e/KlSuS/Q6CIAiCIAiCIAiCIAhCHtxUp9vy5cuhUCic/uXn54s+/0svvYSGhgbs3LkTx48fx7PPPot58+YhNzfX4TEajQZRUVFWfwRBEARBEARBEARBEAThCUE38+LPPfcclixZ4rRNRkYGkpKSUF1dbfV5V1cX6urqkJSUZPe4oqIi/O1vf8O5c+cwePBgAMDw4cPx888/Y9WqVfjwww/dukc+5V1jY6Nb7QmCIAiCIAiCIAiCIIjAhPcPuVMi4aY63eLj4xEfH++y3dixY9HQ0IATJ07gtttuAwDs3r0bRqMROTk5do9pbW0FACiV1sF8KpUKRqPR7XtsamoCAMrtRhAEQRAEQRAEQRAEQQBg/iKtVuu0jV9ULwWAmTNnoqqqCh9++CH0ej2WLl2KUaNG4YsvvgAAlJeXY8qUKfj0008xZswY6PV63HLLLUhOTsbbb7+N2NhYbNmyBX/84x+xbds2zJo1y63rGo1GXLt2DZGRkVAoFL78iTcMviLrlStXaPksAYCeCcIaeh6I7tAzQXSHngmiO/RMEJbQ80B0h54Jojv+/ExwHIempiakpKTYBHp156ZGunnC559/jmXLlmHKlClQKpX49a9/jffff1/4Xq/Xo6CgQIhwCw4Oxvfff4/ly5djzpw5aG5uRv/+/fHJJ5+47XADWKRcnz59JP89PQHKWUd0h54JwhJ6Hoju0DNBdIeeCaI79EwQltDzQHSHngmiO/76TLiKcOPxG6dbTEyMENVmj/T0dJv1tAMGDMCmTZt8fWsEQRAEQRAEQRAEQRAEYcVNrV5KEARBEARBEARBEARBEIEIOd1kiEajwYoVK6DRaG72rRA9BHomCEvoeSC6Q88E0R16Joju0DNBWELPA9EdeiaI7sjlmfCbQgoEQRAEQRAEQRAEQRAE4S9QpBtBEARBEARBEARBEARBSAw53QiCIAiCIAiCIAiCIAhCYsjpRhAEQRAEQRAEQRAEQRASQ043giAIgiAIgiAIgiAIgpAYcroFAKtWrUJ6ejpCQkKQk5ODo0ePOm3/5ZdfIjs7GyEhIRg6dCi+//57q+85jsPLL7+M5ORkhIaGYurUqbh06ZIvfwIhMZ48E//4xz8wYcIE9OrVC7169cLUqVNt2i9ZsgQKhcLqb8aMGb7+GYSEePJMrF271kbeISEhVm2on/B/PHkmJk2aZPNMKBQKzJ49W2hD/YT/sn//fsyZMwcpKSlQKBTYsmWLy2P27t2LkSNHQqPRoH///li7dq1NG0/tE6Ln4Okz8fXXX+Puu+9GfHw8oqKiMHbsWPz4449WbV555RWbPiI7O9uHv4KQEk+fib1799rVG5WVlVbtqJ/wTzx9HuzZCAqFAoMHDxbaUB/h37z++usYPXo0IiMjkZCQgHvvvRcFBQUuj5ODb4Kcbn7Ohg0b8Oyzz2LFihU4efIkhg8fjunTp6O6utpu+0OHDuHhhx/Go48+ilOnTuHee+/Fvffei3Pnzglt3nrrLbz//vv48MMPceTIEYSHh2P69Olob2+/UT+L8AJPn4m9e/fi4Ycfxp49e3D48GGkpqZi2rRpKC8vt2o3Y8YMVFRUCH/r1q27ET+HkABPnwkAiIqKspJ3aWmp1ffUT/g3nj4TX3/9tdXzcO7cOahUKjz44INW7aif8E9aWlowfPhwrFq1yq32xcXFmD17NiZPnozTp0/jmWeewWOPPWblZBHT7xA9B0+fif379+Puu+/G999/jxMnTmDy5MmYM2cOTp06ZdVu8ODBVn3EgQMHfHH7hA/w9JngKSgosJJ5QkKC8B31E/6Lp8/DX/7yF6vn4MqVK4iJibGxI6iP8F/27duHp556Cr/88gt27NgBvV6PadOmoaWlxeExsvFNcIRfM2bMGO6pp54S9g0GA5eSksK9/vrrdtvPmzePmz17ttVnOTk53JNPPslxHMcZjUYuKSmJ+9///V/h+4aGBk6j0XDr1q3zwS8gpMbTZ6I7XV1dXGRkJPfJJ58Iny1evJibO3eu1LdK3CA8fSbWrFnDabVah+ejfsL/8bafePfdd7nIyEiuublZ+Iz6icAAALd582anbV544QVu8ODBVp/Nnz+fmz59urDv7TNG9BzceSbsccstt3ArV64U9lesWMENHz5cuhsjbhruPBN79uzhAHD19fUO21A/ERiI6SM2b97MKRQKrqSkRPiM+ojAorq6mgPA7du3z2EbufgmKNLNj+ns7MSJEycwdepU4TOlUompU6fi8OHDdo85fPiwVXsAmD59utC+uLgYlZWVVm20Wi1ycnIcnpPoOYh5JrrT2toKvV6PmJgYq8/37t2LhIQEZGVl4Xe/+x1qa2slvXfCN4h9Jpqbm5GWlobU1FTMnTsX58+fF76jfsK/kaKfWL16NR566CGEh4dbfU79hDxwZUtI8YwR/o3RaERTU5ONLXHp0iWkpKQgIyMDCxYsQFlZ2U26Q+JGceuttyI5ORl33303Dh48KHxO/YS8Wb16NaZOnYq0tDSrz6mPCBx0Oh0A2OgBS+TimyCnmx9TU1MDg8GAxMREq88TExNt8iXwVFZWOm3P/+vJOYmeg5hnojt/+tOfkJKSYtW5zZgxA59++il27dqFN998E/v27cPMmTNhMBgkvX9CesQ8E1lZWfj444+xdetW/Otf/4LRaMS4ceNw9epVANRP+Dve9hNHjx7FuXPn8Nhjj1l9Tv2EfHBkSzQ2NqKtrU0SXUT4N2+//Taam5sxb9484bOcnBysXbsW27dvxwcffIDi4mJMmDABTU1NN/FOCV+RnJyMDz/8EJs2bcKmTZuQmpqKSZMm4eTJkwCksVkJ/+TatWv44YcfbOwI6iMCB6PRiGeeeQZ33HEHhgwZ4rCdXHwTQTf7BgiC6Dm88cYbWL9+Pfbu3WuVOP+hhx4StocOHYphw4YhMzMTe/fuxZQpU27GrRI+ZOzYsRg7dqywP27cOAwaNAgfffQRXn311Zt4Z0RPYPXq1Rg6dCjGjBlj9Tn1EwRBAMAXX3yBlStXYuvWrVb5u2bOnClsDxs2DDk5OUhLS8PGjRvx6KOP3oxbJXxIVlYWsrKyhP1x48ahqKgI7777Lj777LObeGfEzeaTTz5BdHQ07r33XqvPqY8IHJ566imcO3eOcvKZoEg3PyYuLg4qlQpVVVVWn1dVVSEpKcnuMUlJSU7b8/96ck6i5yDmmeB5++238cYbb+Cnn37CsGHDnLbNyMhAXFwcCgsLvb5nwrd480zwBAcHY8SIEYK8qZ/wb7x5JlpaWrB+/Xq3jF/qJwIXR7ZEVFQUQkNDJel3CP9k/fr1eOyxx7Bx40abJUPdiY6OxsCBA6mPkBFjxowR5E39hDzhOA4ff/wxFi5cCLVa7bQt9RH+ybJly7Bt2zbs2bMHffr0cdpWLr4Jcrr5MWq1Grfddht27dolfGY0GrFr1y6rKBVLxo4da9UeAHbs2CG079evH5KSkqzaNDY24siRIw7PSfQcxDwTAKsK8+qrr2L79u0YNWqUy+tcvXoVtbW1SE5OluS+Cd8h9pmwxGAwIDc3V5A39RP+jTfPxJdffomOjg488sgjLq9D/UTg4sqWkKLfIfyPdevWYenSpVi3bh1mz57tsn1zczOKioqoj5ARp0+fFuRN/YQ82bdvHwoLC92avKM+wr/gOA7Lli3D5s2bsXv3bvTr18/lMbLxTdzsSg6Ed6xfv57TaDTc2rVruQsXLnBPPPEEFx0dzVVWVnIcx3ELFy7kli9fLrQ/ePAgFxQUxL399ttcXl4et2LFCi44OJjLzc0V2rzxxhtcdHQ0t3XrVu7s2bPc3LlzuX79+nFtbW03/PcRnuPpM/HGG29warWa++qrr7iKigrhr6mpieM4jmtqauKef/557vDhw1xxcTG3c+dObuTIkdyAAQO49vb2m/IbCc/w9JlYuXIl9+OPP3JFRUXciRMnuIceeogLCQnhzp8/L7ShfsK/8fSZ4Bk/fjw3f/58m8+pn/BvmpqauFOnTnGnTp3iAHDvvPMOd+rUKa60tJTjOI5bvnw5t3DhQqH95cuXubCwMO6Pf/wjl5eXx61atYpTqVTc9u3bhTaunjGiZ+PpM/H5559zQUFB3KpVq6xsiYaGBqHNc889x+3du5crLi7mDh48yE2dOpWLi4vjqqurb/jvIzzH02fi3Xff5bZs2cJdunSJy83N5Z5++mlOqVRyO3fuFNpQP+G/ePo88DzyyCNcTk6O3XNSH+Hf/O53v+O0Wi23d+9eKz3Q2toqtJGrb4KcbgHAX//6V65v376cWq3mxowZw/3yyy/CdxMnTuQWL15s1X7jxo3cwIEDObVazQ0ePJj77rvvrL43Go3cSy+9xCUmJnIajYabMmUKV1BQcCN+CiERnjwTaWlpHACbvxUrVnAcx3Gtra3ctGnTuPj4eC44OJhLS0vjHn/8cTKI/AxPnolnnnlGaJuYmMjNmjWLO3nypNX5qJ/wfzzVHfn5+RwA7qeffrI5F/UT/s2ePXvs6gH+GVi8eDE3ceJEm2NuvfVWTq1WcxkZGdyaNWtszuvsGSN6Np4+ExMnTnTanuM4bv78+VxycjKnVqu53r17c/Pnz+cKCwtv7A8jROPpM/Hmm29ymZmZXEhICBcTE8NNmjSJ2717t815qZ/wT8TojYaGBi40NJT7+9//bvec1Ef4N/aeBwBW9oFcfRMKjuM4n4XREQRBEARBEARBEARBEIQMoZxuBEEQBEEQBEEQBEEQBCEx5HQjCIIgCIIgCIIgCIIgCIkhpxtBEARBEARBEARBEARBSAw53QiCIAiCIAiCIAiCIAhCYsjpRhAEQRAEQRAEQRAEQRASQ043giAIgiAIgiAIgiAIgpAYcroRBEEQBEEQBEEQBEEQhMSQ040gCIIgCIIgCIIgCILosezfvx9z5sxBSkoKFAoFtmzZ4tPrpaenQ6FQ2Pw99dRTHp2HnG4EQRAEQRCE26Snp+O999674dddsmSJYPC6a2hbGswNDQ0+vT+CIAiCIHxHS0sLhg8fjlWrVt2Q6x07dgwVFRXC344dOwAADz74oEfnIacbQRAEQRDEDcTerKnl3yuvvHKzbxEAsHbtWkRHR9t8fuzYMTzxxBM3/oYAzJgxAxUVFZg5c6Zb7Y8dO4ZNmzb5+K4IgiAIgvA1M2fOxGuvvYb77rvP7vcdHR14/vnn0bt3b4SHhyMnJwd79+4Vfb34+HgkJSUJf9u2bUNmZiYmTpzo0XmCRN8BQRAEQRAE4TEVFRXC9oYNG/Dyyy+joKBA+CwiIkLY5jgOBoMBQUE9x2SLj4+/adfWaDRISkpyu318fDxiYmJ8eEcEQRAEQfQEli1bhgsXLmD9+vVISUnB5s2bMWPGDOTm5mLAgAFenbuzsxP/+te/8Oyzz0KhUHh0LEW6EQRBEARB3EAsZ021Wi0UCoWwn5+fj8jISPzwww+47bbboNFocODAARQVFWHu3LlITExEREQERo8ejZ07d1qdt6OjA3/605+QmpoKjUaD/v37Y/Xq1cL3586dw8yZMxEREYHExEQsXLgQNTU1du9x7969WLp0KXQ6nU0EXvflpQqFAh999BHuuecehIWFYdCgQTh8+DAKCwsxadIkhIeHY9y4cSgqKrK6xtatWzFy5EiEhIQgIyMDK1euRFdXl0f/l52dnVi2bBmSk5MREhKCtLQ0vP766x6dgyAIgiAI/6asrAxr1qzBl19+iQkTJiAzMxPPP/88xo8fjzVr1nh9/i1btqChoQFLlizx+FhyuhEEQRAEQfQwli9fjjfeeAN5eXkYNmwYmpubMWvWLOzatQunTp3CjBkzMGfOHJSVlQnHLFq0COvWrcP777+PvLw8fPTRR0LUXENDA+666y6MGDECx48fx/bt21FVVYV58+bZvf64cePw3nvvISoqSshl8vzzzzu831dffRWLFi3C6dOnkZ2djd/85jd48skn8eKLL+L48ePgOA7Lli0T2v/8889YtGgRnn76aVy4cAEfffQR1q5di//5n//x6P/p/fffxzfffIONGzeioKAAn3/+OdLT0z06B0EQBEEQ/k1ubi4MBgMGDhyIiIgI4W/fvn3CpF9+fr7LFB/Lly+3e/7Vq1dj5syZSElJ8fjees5aBYIgCIIgCAIA8N///d+4++67hf2YmBgMHz5c2H/11VexefNmfPPNN1i2bBkuXryIjRs3YseOHZg6dSoAICMjQ2j/t7/9DSNGjMCf//xn4bOPP/4YqampuHjxIgYOHGh1fbVabRWF54qlS5cKDrw//elPGDt2LF566SVMnz4dAPD0009j6dKlQvuVK1di+fLlWLx4sXCvr776Kl544QWsWLHC7f+nsrIyDBgwAOPHj4dCoUBaWprbxxIEQRAEERg0NzdDpVLhxIkTUKlUVt/xE5AZGRnIy8tzep7Y2Fibz0pLS7Fz5058/fXXou6NnG4EQRAEQRA9jFGjRlntNzc345VXXsF3332HiooKdHV1oa2tTYh0O336NFQqlcPkvmfOnMGePXus8sXxFBUV2TjdPGXYsGHCdmJiIgBg6NChVp+1t7ejsbERUVFROHPmDA4ePGgV2WYwGNDe3o7W1laEhYW5dd0lS5bg7rvvRlZWFmbMmIF77rkH06ZN8+q3EARBEAThX4wYMQIGgwHV1dWYMGGC3TZqtRrZ2dken3vNmjVISEjA7NmzRd0bOd0IgiAIgiB6GOHh4Vb7zz//PHbs2IG3334b/fv3R2hoKB544AF0dnYCAEJDQ52er7m5GXPmzMGbb75p811ycrLX9xscHCxs8wmG7X1mNBqF+1m5ciXuv/9+m3OFhIS4fd2RI0eiuLgYP/zwA3bu3Il58+Zh6tSp+Oqrr0T9DoIgCIIgeibNzc0oLCwU9ouLi3H69GnExMRg4MCBWLBgARYtWoT/+7//w4gRI3D9+nXs2rULw4YNE+0wMxqNWLNmDRYvXiy6qBU53QiCIAiCIHo4Bw8exJIlS3DfffcBYIZnSUmJ8P3QoUNhNBqxb98+YXmpJSNHjsSmTZuQnp7uttGoVqthMBgkuX9791NQUID+/ft7fa6oqCjMnz8f8+fPxwMPPIAZM2agrq6OqpYSBEEQRABx/PhxTJ48Wdh/9tlnAQCLFy/G2rVrsWbNGrz22mt47rnnUF5ejri4ONx+++245557RF9z586dKCsrw29/+1vR5yCnG0EQBEEQRA9nwIAB+PrrrzFnzhwoFAq89NJLQtQYwCqKLl68GL/97W/x/vvvY/jw4SgtLUV1dTXmzZuHp556Cv/4xz/w8MMP44UXXkBMTAwKCwuxfv16/POf/7TJf8Kfs7m5Gbt27cLw4cMRFhbm9rJPV7z88su455570LdvXzzwwANQKpU4c+YMzp07h9dee83t87zzzjtITk7GiBEjoFQq8eWXXyIpKQnR0dGS3CdBEARBED2DSZMmgeM4h98HBwdj5cqVWLlypWTXnDZtmtNrugNVLyUIgiAIgujhvPPOO+jVqxfGjRuHOXPmYPr06Rg5cqRVmw8++AAPPPAA/v3f/x3Z2dl4/PHH0dLSAgBISUnBwYMHYTAYMG3aNAwdOhTPPPMMoqOjoVTaNwfHjRuHf/u3f8P8+fMRHx+Pt956S7LfM336dGzbtg0//fQTRo8ejdtvvx3vvvuux4UQIiMj8dZbb2HUqFEYPXo0SkpK8P333zv8TQRBEARBEDcSBeet244gCIIgCIIgfMySJUvQ0NCALVu2eHTc3r17MXnyZNTX11MEHEEQBEEQNxSaBiQIgiAIgiD8gm3btiEiIgLbtm1zq/3gwYMxc+ZMH98VQRAEQRCEfSjSjSAIgiAIgujxVFdXo7GxEQCruNq9wqs9SktLodfrAQAZGRm07JQgCIIgiBsKOd0IgiAIgiAIgiAIgiAIQmJouo8gCIIgCIIgCIIgCIIgJIacbgRBEARBEARBEARBEAQhMeR0IwiCIAiCIAiCIAiCIAiJIacbQRAEQRAEQRAEQRAEQUgMOd0IgiAIgiAIgiAIgiAIQmLI6UYQBEEQBEEQBEEQBEEQEkNON4IgCIIgCIIgCIIgCIKQGHK6EQRBEARBEARBEARBEITE/P/aBNIQhuznMAAAAABJRU5ErkJggg==\n" }, "metadata": { "filenames": { "image/png": "/home/slavoutich/code/orangeqs/quantify-core/docs/_build/jupyter_execute/technical_notes/dataset_design/Quantify dataset - examples_38_0.png" } }, "output_type": "display_data" } ], "source": [ "trace_example_plt = trace_example[:200]\n", "trace_example_plt.real.plot(figsize=(15, 5), marker=\".\", label=\"I-quadrature\")\n", "trace_example_plt.imag.plot(marker=\".\", label=\"Q-quadrature\")\n", "plt.gca().legend()\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.18" } }, "nbformat": 4, "nbformat_minor": 5 }