{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "7690009a", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:36.335792Z", "iopub.status.busy": "2023-09-26T17:44:36.335596Z", "iopub.status.idle": "2023-09-26T17:44:37.631068Z", "shell.execute_reply": "2023-09-26T17:44:37.630343Z" } }, "outputs": [], "source": [ "import time\n", "\n", "import adaptive\n", "import numpy as np\n", "from qcodes import Instrument, ManualParameter\n", "from scipy import optimize\n", "\n", "import quantify_core.analysis.optimization_analysis as oa\n", "import quantify_core.visualization.pyqt_plotmon as pqm\n", "from quantify_core.analysis.interpolation_analysis import InterpolationAnalysis2D\n", "from quantify_core.data.handling import set_datadir\n", "from quantify_core.measurement.control import MeasurementControl\n", "from quantify_core.utilities.examples_support import default_datadir\n", "from quantify_core.visualization.instrument_monitor import InstrumentMonitor" ] }, { "cell_type": "code", "execution_count": 2, "id": "ab2b2bc8", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:37.633924Z", "iopub.status.busy": "2023-09-26T17:44:37.633575Z", "iopub.status.idle": "2023-09-26T17:44:37.636543Z", "shell.execute_reply": "2023-09-26T17:44:37.636087Z" } }, "outputs": [], "source": [ "# We recommend to always set the directory at the start of the python kernel\n", "# and stick to a single common data directory for all\n", "# notebooks/experiments within your measurement setup/PC\n", "# This sets a default data directory for tutorial purposes. Change it to your\n", "# desired data directory." ] }, { "cell_type": "code", "execution_count": 3, "id": "efc9952c", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:37.638635Z", "iopub.status.busy": "2023-09-26T17:44:37.638436Z", "iopub.status.idle": "2023-09-26T17:44:37.642071Z", "shell.execute_reply": "2023-09-26T17:44:37.641391Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Data will be saved in:\n", "/home/slavoutich/quantify-data\n" ] } ], "source": [ "set_datadir(default_datadir())" ] }, { "cell_type": "code", "execution_count": 4, "id": "e0fecc16", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:37.644314Z", "iopub.status.busy": "2023-09-26T17:44:37.644124Z", "iopub.status.idle": "2023-09-26T17:44:41.269937Z", "shell.execute_reply": "2023-09-26T17:44:41.269123Z" } }, "outputs": [], "source": [ "meas_ctrl = MeasurementControl(\"meas_ctrl\")\n", "insmon = InstrumentMonitor(\"Instruments Monitor\")\n", "plotmon = pqm.PlotMonitor_pyqt(\"plotmon_meas_ctrl\")\n", "meas_ctrl.instr_plotmon(plotmon.name)" ] }, { "cell_type": "code", "execution_count": 5, "id": "9bc432de", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:41.273042Z", "iopub.status.busy": "2023-09-26T17:44:41.272801Z", "iopub.status.idle": "2023-09-26T17:44:41.284588Z", "shell.execute_reply": "2023-09-26T17:44:41.282905Z" } }, "outputs": [], "source": [ "para = Instrument(\"parabola\")\n", "\n", "para.add_parameter(\"x\", unit=\"m\", label=\"X\", parameter_class=ManualParameter)\n", "para.add_parameter(\"y\", unit=\"m\", label=\"Y\", parameter_class=ManualParameter)\n", "\n", "para.add_parameter(\n", " \"noise\", unit=\"V\", label=\"white noise amplitude\", parameter_class=ManualParameter\n", ")\n", "para.add_parameter(\n", " \"acq_delay\", initial_value=0.1, unit=\"s\", parameter_class=ManualParameter\n", ")\n", "\n", "\n", "def _amp_model():\n", " time.sleep(\n", " para.acq_delay()\n", " ) # for display purposes, just so we can watch the live plot update\n", " return para.x() ** 2 + para.y() ** 2 + para.noise() * np.random.rand(1)\n", "\n", "\n", "para.add_parameter(\"amp\", unit=\"V\", label=\"Amplitude\", get_cmd=_amp_model)" ] }, { "cell_type": "code", "execution_count": 6, "id": "a26ae718", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:41.287863Z", "iopub.status.busy": "2023-09-26T17:44:41.287578Z", "iopub.status.idle": "2023-09-26T17:44:51.823338Z", "shell.execute_reply": "2023-09-26T17:44:51.822852Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running adaptively...\n", "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] } ], "source": [ "meas_ctrl.settables([para.x, para.y])\n", "af_pars = {\n", " \"adaptive_function\": optimize.minimize, # used by meas_ctrl\n", " \"x0\": [-50, -50], # used by `optimize.minimize` (in this case)\n", " \"method\": \"Nelder-Mead\", # used by `optimize.minimize` (in this case)\n", " \"options\": {\"maxfev\": 100}, # limit the maximum evaluations of the gettable(s)\n", "}\n", "para.noise(0.5)\n", "meas_ctrl.gettables(para.amp)\n", "dset = meas_ctrl.run_adaptive(\"nelder_mead_optimization\", af_pars)" ] }, { "cell_type": "code", "execution_count": 7, "id": "ad3c81d0", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:44:51.824963Z", "iopub.status.busy": "2023-09-26T17:44:51.824788Z", "iopub.status.idle": "2023-09-26T17:44:51.838302Z", "shell.execute_reply": "2023-09-26T17:44:51.837822Z" } }, "outputs": [ { "data": { "text/html": [ "
<xarray.Dataset>\n", "Dimensions: (dim_0: 100)\n", "Coordinates:\n", " x0 (dim_0) float64 -50.0 -52.5 -50.0 -47.5 ... 0.02964 0.02929 0.02945\n", " x1 (dim_0) float64 -50.0 -50.0 -52.5 ... -0.0746 -0.07405 -0.07425\n", "Dimensions without coordinates: dim_0\n", "Data variables:\n", " y0 (dim_0) float64 5e+03 5.256e+03 5.256e+03 ... 0.1594 0.4487 0.3904\n", "Attributes:\n", " tuid: 20230926-194441-293-d52f7a\n", " name: nelder_mead_optimization\n", " grid_2d: False\n", " grid_2d_uniformly_spaced: False\n", " 1d_2_settables_uniformly_spaced: False
<xarray.Dataset>\n", "Dimensions: (dim_0: 100)\n", "Coordinates:\n", " x0 (dim_0) float64 6e+09 7e+09 6.5e+09 ... 6.79e+09 6.77e+09 6.754e+09\n", "Dimensions without coordinates: dim_0\n", "Data variables:\n", " y0 (dim_0) float64 0.9999 0.9988 0.9993 ... 0.6186 0.6391 0.9237\n", "Attributes:\n", " tuid: 20230926-194454-854-7880d6\n", " name: adaptive sample\n", " grid_2d: False\n", " grid_2d_uniformly_spaced: False\n", " 1d_2_settables_uniformly_spaced: False