#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np import xarray as xr from rich import pretty pretty.install() # In[2]: n = 5 values_pos = np.linspace(-5, 5, n) dimensions_pos = ("position_x",) # the "unit" and "long_name" are a convention for automatic plotting attrs_pos = dict(unit="m", long_name="Position") # attributes of this data variable values_vel = np.linspace(0, 10, n) dimensions_vel = ("velocity_x",) attrs_vel = dict(unit="m/s", long_name="Velocity") data_vars = dict( position=(dimensions_pos, values_pos, attrs_pos), velocity=(dimensions_vel, values_vel, attrs_vel), ) dataset_attrs = dict(my_attribute_name="some meta information") dataset = xr.Dataset( data_vars=data_vars, attrs=dataset_attrs, ) # dataset attributes dataset # In[3]: dataset.dims # In[4]: dataset.variables # In[5]: values_vel = 1 + values_pos**2 data_vars = dict( position=(dimensions_pos, values_pos, attrs_pos), # now the velocity array "lies" along the same dimension as the position array velocity=(dimensions_pos, values_vel, attrs_vel), ) dataset = xr.Dataset( data_vars=data_vars, # NB We could set "position" as a coordinate directly when creating the dataset: # coords=dict(position=(dimensions_pos, values_pos, attrs_pos)), attrs=dataset_attrs, ) # Promote the "position" variable to a coordinate: # In general, most of the functions that modify the structure of the xarray dataset will # return a new object, hence the assignment dataset = dataset.set_coords(["position"]) dataset # In[6]: dataset.coords["position"] # In[7]: dataset.variables["position"] # In[8]: dataset = dataset.set_index({"position_x": "position"}) dataset.position_x.attrs["unit"] = "m" dataset.position_x.attrs["long_name"] = "Position x" dataset # In[9]: ( "position_x" in dataset.dims, "position_x" in dataset.coords, "position_x" in dataset.variables, ) # In[10]: dataset.dims["position_x"] # In[11]: dataset.coords["position_x"] # In[12]: dataset.variables["position_x"] # In[13]: dataset.velocity # In[14]: retrieved_value = dataset.velocity.sel(position_x=2.5) retrieved_value # In[15]: dataset.velocity.values[3], retrieved_value.values == dataset.velocity.values[3] # In[16]: _ = dataset.velocity.plot(marker="o")