#!/usr/bin/env python # coding: utf-8 # In[1]: import time import adaptive import numpy as np from qcodes import Instrument, ManualParameter from scipy import optimize import quantify_core.analysis.optimization_analysis as oa import quantify_core.visualization.pyqt_plotmon as pqm from quantify_core.analysis.interpolation_analysis import InterpolationAnalysis2D from quantify_core.data.handling import set_datadir from quantify_core.measurement.control import MeasurementControl from quantify_core.utilities.examples_support import default_datadir from quantify_core.visualization.instrument_monitor import InstrumentMonitor # In[2]: # We recommend to always set the directory at the start of the python kernel # and stick to a single common data directory for all # notebooks/experiments within your measurement setup/PC # This sets a default data directory for tutorial purposes. Change it to your # desired data directory. # In[3]: set_datadir(default_datadir()) # In[4]: meas_ctrl = MeasurementControl("meas_ctrl") insmon = InstrumentMonitor("Instruments Monitor") plotmon = pqm.PlotMonitor_pyqt("plotmon_meas_ctrl") meas_ctrl.instr_plotmon(plotmon.name) # In[5]: para = Instrument("parabola") para.add_parameter("x", unit="m", label="X", parameter_class=ManualParameter) para.add_parameter("y", unit="m", label="Y", parameter_class=ManualParameter) para.add_parameter( "noise", unit="V", label="white noise amplitude", parameter_class=ManualParameter ) para.add_parameter( "acq_delay", initial_value=0.1, unit="s", parameter_class=ManualParameter ) def _amp_model(): time.sleep( para.acq_delay() ) # for display purposes, just so we can watch the live plot update return para.x() ** 2 + para.y() ** 2 + para.noise() * np.random.rand(1) para.add_parameter("amp", unit="V", label="Amplitude", get_cmd=_amp_model) # In[6]: meas_ctrl.settables([para.x, para.y]) af_pars = { "adaptive_function": optimize.minimize, # used by meas_ctrl "x0": [-50, -50], # used by `optimize.minimize` (in this case) "method": "Nelder-Mead", # used by `optimize.minimize` (in this case) "options": {"maxfev": 100}, # limit the maximum evaluations of the gettable(s) } para.noise(0.5) meas_ctrl.gettables(para.amp) dset = meas_ctrl.run_adaptive("nelder_mead_optimization", af_pars) # In[7]: dset # In[8]: plotmon.main_QtPlot # In[9]: plotmon.secondary_QtPlot # In[10]: a_obj = oa.OptimizationAnalysis(dset) a_obj.run() a_obj.display_figs_mpl() # In[11]: a_obj = InterpolationAnalysis2D(dset) a_obj.run() a_obj.display_figs_mpl() # In[12]: res = Instrument("Resonator") res.add_parameter("freq", unit="Hz", label="Frequency", parameter_class=ManualParameter) res.add_parameter("amp", unit="V", label="Amplitude", parameter_class=ManualParameter) _fwhm = 15e6 # pretend you don't know what this value is _res_freq = 6.78e9 # pretend you don't know what this value is _noise_level = 0.1 def lorenz(): """A Lorenz model function.""" time.sleep(0.02) # for display purposes, just so we can watch the graph update return ( 1 - ( res.amp() * ((_fwhm / 2.0) ** 2) / ((res.freq() - _res_freq) ** 2 + (_fwhm / 2.0) ** 2) ) + _noise_level * np.random.rand(1) ) res.add_parameter("S21", unit="V", label="Transmission amp. S21", get_cmd=lorenz) # In[13]: _noise_level = 0.0 res.amp(1) meas_ctrl.settables([res.freq]) af_pars = { "adaptive_function": adaptive.learner.Learner1D, "goal": lambda l: l.npoints > 99, "bounds": (6.0e9, 7.0e9), } meas_ctrl.gettables(res.S21) dset = meas_ctrl.run_adaptive("adaptive sample", af_pars) # In[14]: dset # In[15]: plotmon.main_QtPlot