{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "e0184b79", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:47.271556Z", "iopub.status.busy": "2023-09-26T17:43:47.271383Z", "iopub.status.idle": "2023-09-26T17:43:47.273998Z", "shell.execute_reply": "2023-09-26T17:43:47.273627Z" } }, "outputs": [], "source": [ "# pylint: disable=line-too-long\n", "# pylint: disable=wrong-import-order\n", "# pylint: disable=wrong-import-position\n", "# pylint: disable=pointless-string-statement\n", "# pylint: disable=pointless-statement\n", "# pylint: disable=invalid-name\n", "# pylint: disable=duplicate-code\n", "# pylint: disable=missing-function-docstring" ] }, { "cell_type": "code", "execution_count": 2, "id": "16292e63", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:47.275604Z", "iopub.status.busy": "2023-09-26T17:43:47.275462Z", "iopub.status.idle": "2023-09-26T17:43:47.567349Z", "shell.execute_reply": "2023-09-26T17:43:47.566751Z" } }, "outputs": [], "source": [ "%matplotlib inline\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 3, "id": "f051307f", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:47.569731Z", "iopub.status.busy": "2023-09-26T17:43:47.569512Z", "iopub.status.idle": "2023-09-26T17:43:48.495476Z", "shell.execute_reply": "2023-09-26T17:43:48.494780Z" } }, "outputs": [], "source": [ "import quantify_core.visualization.pyqt_plotmon as pqm\n", "from quantify_core.analysis import base_analysis as ba\n", "from quantify_core.analysis import cosine_analysis as ca\n", "from quantify_core.data.handling import set_datadir\n", "from quantify_core.measurement import MeasurementControl\n", "from quantify_core.utilities.examples_support import (\n", " default_datadir,\n", " mk_cosine_instrument,\n", ")\n", "from quantify_core.utilities.experiment_helpers import create_plotmon_from_historical" ] }, { "cell_type": "code", "execution_count": 4, "id": "0531db2b", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:48.498188Z", "iopub.status.busy": "2023-09-26T17:43:48.497859Z", "iopub.status.idle": "2023-09-26T17:43:48.501337Z", "shell.execute_reply": "2023-09-26T17:43:48.500888Z" } }, "outputs": [], "source": [ "from quantify_core.utilities.inspect_utils import display_source_code\n", "from quantify_core.visualization.instrument_monitor import InstrumentMonitor\n", "\n" ] }, { "cell_type": "code", "execution_count": 5, "id": "b0f909ea", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:48.503362Z", "iopub.status.busy": "2023-09-26T17:43:48.503182Z", "iopub.status.idle": "2023-09-26T17:43:48.505923Z", "shell.execute_reply": "2023-09-26T17:43:48.505347Z" } }, "outputs": [], "source": [ "# We recommend to always set the directory at the start of the python kernel\n", "# and stick to a single common data directory for all\n", "# notebooks/experiments within your measurement setup/PC\n", "# This sets a default data directory for tutorial purposes. Change it to your\n", "# desired data directory." ] }, { "cell_type": "code", "execution_count": 6, "id": "4cfce5d6", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:48.507984Z", "iopub.status.busy": "2023-09-26T17:43:48.507806Z", "iopub.status.idle": "2023-09-26T17:43:48.511219Z", "shell.execute_reply": "2023-09-26T17:43:48.510775Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Data will be saved in:\n", "/home/slavoutich/quantify-data\n" ] } ], "source": [ "set_datadir(default_datadir()) # change me!" ] }, { "cell_type": "code", "execution_count": 7, "id": "d7679dcc", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:48.513246Z", "iopub.status.busy": "2023-09-26T17:43:48.513066Z", "iopub.status.idle": "2023-09-26T17:43:52.207402Z", "shell.execute_reply": "2023-09-26T17:43:52.206615Z" } }, "outputs": [], "source": [ "meas_ctrl = MeasurementControl(\"meas_ctrl\")\n", "\n", "# Create the live plotting intrument which handles the graphical interface\n", "# Two windows will be created, the main will feature 1D plots and any 2D plots will go to the secondary\n", "plotmon = pqm.PlotMonitor_pyqt(\"plotmon\")\n", "# Connect the live plotting monitor to the measurement control\n", "meas_ctrl.instr_plotmon(plotmon.name)\n", "\n", "# The instrument monitor will give an overview of all parameters of all instruments\n", "insmon = InstrumentMonitor(\"Instruments Monitor\")" ] }, { "cell_type": "code", "execution_count": 8, "id": "f80e1741", "metadata": { "execution": { "iopub.execute_input": "2023-09-26T17:43:52.210712Z", "iopub.status.busy": "2023-09-26T17:43:52.210458Z", "iopub.status.idle": "2023-09-26T17:43:52.268418Z", "shell.execute_reply": "2023-09-26T17:43:52.267727Z" } }, "outputs": [ { "data": { "text/html": [ "
def mk_cosine_instrument() -> Instrument:\n",
" """A container of parameters (mock instrument) providing a cosine model."""\n",
"\n",
" instr = Instrument("ParameterHolder")\n",
"\n",
" # ManualParameter's is a handy class that preserves the QCoDeS' Parameter\n",
" # structure without necessarily having a connection to the physical world\n",
" instr.add_parameter(\n",
" "amp",\n",
" initial_value=0.5,\n",
" unit="V",\n",
" label="Amplitude",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" "freq",\n",
" initial_value=1,\n",
" unit="Hz",\n",
" label="Frequency",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" "t", initial_value=1, unit="s", label="Time", parameter_class=ManualParameter\n",
" )\n",
" instr.add_parameter(\n",
" "phi",\n",
" initial_value=0,\n",
" unit="Rad",\n",
" label="Phase",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" "noise_level",\n",
" initial_value=0.05,\n",
" unit="V",\n",
" label="Noise level",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" "acq_delay", initial_value=0.02, unit="s", parameter_class=ManualParameter\n",
" )\n",
"\n",
" def cosine_model():\n",
" sleep(instr.acq_delay()) # simulates the acquisition delay of an instrument\n",
" return (\n",
" cos_func(instr.t(), instr.freq(), instr.amp(), phase=instr.phi(), offset=0)\n",
" + np.random.randn() * instr.noise_level()\n",
" )\n",
"\n",
" # Wrap our function in a Parameter to be able to associate metadata to it, e.g. unit\n",
" instr.add_parameter(\n",
" name="sig", label="Signal level", unit="V", get_cmd=cosine_model\n",
" )\n",
"\n",
" return instr\n",
"
<xarray.Dataset>\n", "Dimensions: (dim_0: 50)\n", "Coordinates:\n", " x0 (dim_0) float64 0.0 0.04082 0.08163 0.1224 ... 1.918 1.959 2.0\n", "Dimensions without coordinates: dim_0\n", "Data variables:\n", " y0 (dim_0) float64 0.5576 0.459 0.4823 0.3882 ... 0.5139 0.3937 0.4862\n", "Attributes:\n", " tuid: 20230926-194352-284-32d737\n", " name: Cosine test\n", " grid_2d: False\n", " grid_2d_uniformly_spaced: False\n", " 1d_2_settables_uniformly_spaced: False