#!/usr/bin/env python # coding: utf-8 # In[1]: import tempfile from pathlib import Path import matplotlib.pyplot as plt import numpy as np import xarray as xr from directory_tree import display_tree from qcodes import Instrument, ManualParameter, Parameter, validators from scipy.optimize import minimize_scalar import quantify_core.data.handling as dh from quantify_core.analysis import base_analysis as ba from quantify_core.analysis import cosine_analysis as ca from quantify_core.measurement import Gettable, MeasurementControl from quantify_core.utilities.dataset_examples import mk_2d_dataset_v1 from quantify_core.utilities.examples_support import ( default_datadir, mk_cosine_instrument, ) from quantify_core.utilities.inspect_utils import display_source_code dh.set_datadir(default_datadir()) meas_ctrl = MeasurementControl("meas_ctrl") # In[2]: mw_source1 = Instrument("mw_source1") # NB: for brevity only, this not the proper way of adding parameters to QCoDeS instruments mw_source1.freq = ManualParameter( name="freq", label="Frequency", unit="Hz", vals=validators.Numbers(), initial_value=1.0, ) pulsar_QRM = Instrument("pulsar_QRM") # NB: for brevity only, this not the proper way of adding parameters to QCoDeS instruments pulsar_QRM.signal = Parameter( name="sig_a", label="Signal", unit="V", get_cmd=lambda: mw_source1.freq() * 1e-8 ) # In[3]: meas_ctrl.settables( mw_source1.freq ) # We want to set the frequency of a microwave source meas_ctrl.setpoints(np.arange(5e9, 5.2e9, 100e3)) # Scan around 5.1 GHz meas_ctrl.gettables(pulsar_QRM.signal) # acquire the signal from the pulsar QRM dset = meas_ctrl.run(name="Frequency sweep") # run the experiment # In[4]: t = ManualParameter("time", label="Time", unit="s") class WaveGettable: """An examples of a gettable.""" def __init__(self): self.unit = "V" self.label = "Amplitude" self.name = "sine" def get(self): """Return the gettable value.""" return np.sin(t() / np.pi) def prepare(self) -> None: """Optional methods to prepare can be left undefined.""" print("Preparing the WaveGettable for acquisition.") def finish(self) -> None: """Optional methods to finish can be left undefined.""" print("Finishing WaveGettable to wrap up the experiment.") # verify compliance with the Gettable format wave_gettable = WaveGettable() Gettable(wave_gettable) # In[5]: t = ManualParameter( "time", label="Time", unit="s", vals=validators.Numbers(), # accepts a single number, e.g. a float or integer ) class DualWave1D: """Example of a "dual" gettable.""" def __init__(self): self.unit = ["V", "V"] self.label = ["Sine Amplitude", "Cosine Amplitude"] self.name = ["sin", "cos"] def get(self): """Return the value of the gettable.""" return np.array([np.sin(t() / np.pi), np.cos(t() / np.pi)]) # N.B. the optional prepare and finish methods are omitted in this Gettable. # verify compliance with the Gettable format wave_gettable = DualWave1D() Gettable(wave_gettable) # In[6]: time = ManualParameter( name="time", label="Time", unit="s", vals=validators.Arrays(), # accepts an array of values ) signal = Parameter( name="sig_a", label="Signal", unit="V", get_cmd=lambda: np.cos(time()) ) time.batched = True time.batch_size = 5 signal.batched = True signal.batch_size = 10 meas_ctrl.settables(time) meas_ctrl.gettables(signal) meas_ctrl.setpoints(np.linspace(0, 7, 23)) dset = meas_ctrl.run("my experiment") dset_grid = dh.to_gridded_dataset(dset) dset_grid.y0.plot() # In[7]: with tempfile.TemporaryDirectory() as tmpdir: old_dir = dh.get_datadir() dh.set_datadir(Path(tmpdir) / "quantify-data") # we generate a dummy dataset and a few empty dirs for pretty printing (Path(dh.get_datadir()) / "20210301").mkdir() (Path(dh.get_datadir()) / "20210428").mkdir() quantify_dataset = mk_2d_dataset_v1() ba.BasicAnalysis(dataset=quantify_dataset).run() # to make sure the full path is displayed print(display_tree(dh.get_datadir(), string_rep=True), end="") dh.set_datadir(old_dir) # In[8]: # plot the columns of the dataset _, axs = plt.subplots(3, 1, sharex=True) xr.plot.line(quantify_dataset.x0[:54], label="x0", ax=axs[0], marker=".") xr.plot.line(quantify_dataset.x1[:54], label="x1", ax=axs[1], color="C1", marker=".") xr.plot.line(quantify_dataset.y0[:54], label="y0", ax=axs[2], color="C2", marker=".") tuple(ax.legend() for ax in axs) # return the dataset quantify_dataset # In[9]: gridded_dset = dh.to_gridded_dataset(quantify_dataset) gridded_dset.y0.plot() gridded_dset # In[10]: display_source_code(mk_cosine_instrument) # In[11]: pars = mk_cosine_instrument() meas_ctrl.settables(pars.t) meas_ctrl.setpoints(np.linspace(0, 2, 50)) meas_ctrl.gettables(pars.sig) dataset = meas_ctrl.run("Cosine experiment") dataset # In[12]: a_obj = ca.CosineAnalysis(label="Cosine experiment") a_obj.run() # execute the analysis. a_obj.display_figs_mpl() # displays the figures created in previous step. # In[13]: experiment_container_path = dh.locate_experiment_container(tuid=dataset.tuid) print(display_tree(experiment_container_path, string_rep=True), end="") # In[14]: # for example, the fitted frequency and amplitude are stored freq = a_obj.quantities_of_interest["frequency"] amp = a_obj.quantities_of_interest["amplitude"] print(f"frequency {freq}") print(f"amplitude {amp}") # In[15]: display_source_code(ba.BasicAnalysis) # In[16]: time = ManualParameter( name="time", label="Time", unit="s", vals=validators.Numbers(), initial_value=1 ) signal = Parameter( name="sig_a", label="Signal", unit="V", get_cmd=lambda: np.cos(time()) ) meas_ctrl.settables(time) meas_ctrl.gettables(signal) meas_ctrl.setpoints(np.linspace(0, 7, 20)) dset = meas_ctrl.run("my experiment") dset_grid = dh.to_gridded_dataset(dset) dset_grid.y0.plot(marker="o") dset_grid # In[17]: time_a = ManualParameter( name="time_a", label="Time A", unit="s", vals=validators.Numbers(), initial_value=1 ) time_b = ManualParameter( name="time_b", label="Time B", unit="s", vals=validators.Numbers(), initial_value=1 ) signal = Parameter( name="sig_a", label="Signal A", unit="V", get_cmd=lambda: np.exp(time_a()) + 0.5 * np.exp(time_b()), ) meas_ctrl.settables([time_a, time_b]) meas_ctrl.gettables(signal) meas_ctrl.setpoints_grid([np.linspace(0, 5, 10), np.linspace(5, 0, 12)]) dset = meas_ctrl.run("my experiment") dset_grid = dh.to_gridded_dataset(dset) dset_grid.y0.plot(cmap="viridis") dset_grid # In[18]: time = ManualParameter( name="time", label="Time", unit="s", vals=validators.Numbers(), initial_value=1 ) signal = Parameter( name="sig_a", label="Signal", unit="V", get_cmd=lambda: np.cos(time()) ) meas_ctrl.settables(time) meas_ctrl.gettables(signal) dset = meas_ctrl.run_adaptive("1D minimizer", {"adaptive_function": minimize_scalar}) dset_ad = dh.to_gridded_dataset(dset) # add a grey cosine for reference x = np.linspace(np.min(dset_ad["x0"]), np.max(dset_ad["x0"]), 101) y = np.cos(x) plt.plot(x, y, c="grey", ls="--") _ = dset_ad.y0.plot(marker="o") # In[19]: time_a = ManualParameter( name="time_a", label="Time A", unit="s", vals=validators.Numbers(), initial_value=1 ) time_b = ManualParameter( name="time_b", label="Time B", unit="s", vals=validators.Numbers(), initial_value=1 ) signal = Parameter( name="sig_a", label="Signal A", unit="V", get_cmd=lambda: np.exp(time_a()) + 0.5 * np.exp(time_b()), ) class DualWave2D: """A "dual" gettable example that depends on two settables.""" def __init__(self): self.unit = ["V", "V"] self.label = ["Sine Amplitude", "Cosine Amplitude"] self.name = ["sin", "cos"] def get(self): """Returns the value of the gettable.""" return np.array([np.sin(time_a() * np.pi), np.cos(time_b() * np.pi)]) dual_wave = DualWave2D() meas_ctrl.settables([time_a, time_b]) meas_ctrl.gettables([signal, dual_wave]) meas_ctrl.setpoints_grid([np.linspace(0, 3, 21), np.linspace(4, 0, 20)]) dset = meas_ctrl.run("my experiment") dset_grid = dh.to_gridded_dataset(dset) for yi, cmap in zip(("y0", "y1", "y2"), ("viridis", "inferno", "plasma")): dset_grid[yi].plot(cmap=cmap) plt.show() dset_grid # In[20]: time = ManualParameter( name="time", label="Time", unit="s", vals=validators.Arrays(), initial_value=np.array([1, 2, 3]), ) signal = Parameter( name="sig_a", label="Signal", unit="V", get_cmd=lambda: np.cos(time()) ) time.batched = True signal.batched = True meas_ctrl.settables(time) meas_ctrl.gettables(signal) meas_ctrl.setpoints(np.linspace(0, 7, 20)) dset = meas_ctrl.run("my experiment") dset_grid = dh.to_gridded_dataset(dset) dset_grid.y0.plot(marker="o") print(f"\nNOTE: The gettable returns an array:\n\n{signal.get()}") dset_grid # In[21]: time_a = ManualParameter( name="time_a", label="Time A", unit="s", vals=validators.Numbers(), initial_value=1 ) time_b = ManualParameter( name="time_b", label="Time B", unit="s", vals=validators.Arrays(), initial_value=np.array([1, 2, 3]), ) signal = Parameter( name="sig_a", label="Signal A", unit="V", get_cmd=lambda: np.exp(time_a()) + 0.5 * np.exp(time_b()), ) time_b.batched = True time_b.batch_size = 12 signal.batched = True meas_ctrl.settables([time_a, time_b]) meas_ctrl.gettables(signal) # `setpoints_grid` will take into account the `.batched` attribute meas_ctrl.setpoints_grid([np.linspace(0, 5, 10), np.linspace(4, 0, time_b.batch_size)]) dset = meas_ctrl.run("my experiment") dset_grid = dh.to_gridded_dataset(dset) dset_grid.y0.plot(cmap="viridis") dset_grid # In[22]: time = ManualParameter( name="time", label="Time", unit="s", vals=validators.Arrays(), initial_value=np.array([1, 2, 3]), ) class DualWaveBatched: """A "dual" batched gettable example.""" def __init__(self): self.unit = ["V", "V"] self.label = ["Amplitude W1", "Amplitude W2"] self.name = ["sine", "cosine"] self.batched = True self.batch_size = 100 def get(self): """Returns the value of the gettable.""" return np.array([np.sin(time() * np.pi), np.cos(time() * np.pi)]) time.batched = True dual_wave = DualWaveBatched() meas_ctrl.settables(time) meas_ctrl.gettables(dual_wave) meas_ctrl.setpoints(np.linspace(0, 7, 100)) dset = meas_ctrl.run("my experiment") dset_grid = dh.to_gridded_dataset(dset) _, ax = plt.subplots() dset_grid.y0.plot(marker="o", label="y0", ax=ax) dset_grid.y1.plot(marker="s", label="y1", ax=ax) _ = ax.legend()