Source code for quantify_core.analysis.optimization_analysis
# Repository: https://gitlab.com/quantify-os/quantify-core
# Licensed according to the LICENCE file on the main branch
import matplotlib.pyplot as plt
import numpy as np
from quantify_core.analysis import base_analysis as ba
from quantify_core.visualization import mpl_plotting as qpl
from quantify_core.visualization.SI_utilities import (
adjust_axeslabels_SI,
format_value_string,
)
[docs]
class OptimizationAnalysis(ba.BaseAnalysis):
"""
An analysis class which extracts the optimal quantities from an N-dimensional
interpolating experiment.
"""
# Override the run method so that we can add the new optional arguments
# pylint: disable=attribute-defined-outside-init, arguments-differ
[docs]
def run(self, minimize: bool = True):
"""
Parameters
----------
minimize
Boolean which determines whether to report the minimum or the maximum.
True for minimize.
False for maximize.
Returns
-------
:class:`~quantify_core.analysis.optimization_analysis.OptimizationAnalysis`:
The instance of this analysis.
""" # NB the return type need to be specified manually to avoid circular import
self.minimize = minimize
return super().run()
[docs]
def process_data(self):
"""
Finds the optimal (minimum or maximum) for y0 and saves the xi and y0
values in the :code:`quantities_of_interest`.
"""
text_msg = "Summary\n"
arg_optimum_function = np.argmin if self.minimize else np.argmax
optimum_function = np.min if self.minimize else np.max
optimum_text = "minimum" if self.minimize else "maximum"
# Go through every y variable and find the optimal point
y_variable = "y0"
text_msg += "\n"
variable_name = self.dataset[y_variable].attrs["long_name"]
text_msg += f"{variable_name} {optimum_text}:\n"
# Find the optimum for each x coordinate
for x_variable in self.dataset.coords:
optimum = float(
self.dataset[x_variable][
arg_optimum_function(self.dataset[y_variable].values)
].values
)
self.quantities_of_interest[
self.dataset[x_variable].attrs["name"]
] = optimum
text_msg += format_value_string(
self.dataset[x_variable].attrs["long_name"],
optimum,
end_char="\n",
unit=self.dataset[x_variable].units,
)
# Find the corresponding optimal y value
optimum = float(optimum_function(self.dataset[y_variable].values))
self.quantities_of_interest[self.dataset[y_variable].attrs["name"]] = optimum
text_msg += format_value_string(
self.dataset[y_variable].attrs["long_name"],
optimum,
end_char="\n",
unit=self.dataset[y_variable].units,
)
self.quantities_of_interest["plot_msg"] = text_msg
[docs]
def iteration_plots(dataset, quantities_of_interest):
"""
For every x and y variable, plot a graph of that variable vs the iteration index.
"""
figs = {}
axs = {}
all_variables = list(dataset.coords.items()) + list(dataset.data_vars.items())
for variable, values in all_variables:
variable_name = dataset[variable].attrs["long_name"]
fig, ax = plt.subplots()
fig_id = f"Line plot {variable_name} vs iteration"
ax.plot(values, marker=".", linewidth="0.5", markersize="4.5")
adjust_axeslabels_SI(ax)
qpl.set_ylabel(variable_name, dataset[variable].units, axis=ax)
qpl.set_xlabel("iteration index", axis=ax)
qpl.set_suptitle_from_dataset(
fig, dataset, f"{variable_name} vs iteration number:"
)
qpl.plot_textbox(ax, quantities_of_interest["plot_msg"])
# add the figure and axis to the dicts for saving
figs[fig_id] = fig
axs[fig_id] = ax
return figs, axs