Source code for quantify_core.analysis.single_qubit_timedomain

# Repository: https://gitlab.com/quantify-os/quantify-core
# Licensed according to the LICENCE file on the main branch
"""Module containing analyses for common single qubit timedomain experiments."""
from __future__ import annotations

from typing import Literal, Union

import matplotlib.pyplot as plt
import numpy as np
import xarray as xr

from quantify_core.analysis import base_analysis as ba
from quantify_core.analysis import fitting_models as fm
from quantify_core.analysis.calibration import (
    has_calibration_points,
    rotate_to_calibrated_axis,
)
from quantify_core.data.types import TUID
from quantify_core.visualization.mpl_plotting import (
    plot_fit,
    plot_textbox,
    set_suptitle_from_dataset,
    set_xlabel,
    set_ylabel,
)
from quantify_core.visualization.SI_utilities import format_value_string


[docs] class SingleQubitTimedomainAnalysis(ba.BaseAnalysis): """ Base Analysis class for single-qubit timedomain experiments. """ # pylint: disable=attribute-defined-outside-init, arguments-differ, line-too-long
[docs] def run(self, calibration_points: Union[bool, Literal["auto"]] = "auto"): r""" Parameters ---------- calibration_points Indicates if the data analyzed includes calibration points. If set to :code:`True`, will interpret the last two data points in the dataset as :math:`|0\rangle` and :math:`|1\rangle` respectively. If ``"auto"``, will use :func:`~.has_calibration_points` to determine if the data contains calibration points. Returns ------- :class:`~.SingleQubitTimedomainAnalysis`: The instance of this analysis. """ # NB the return type need to be specified manually to avoid circular import if not (calibration_points == "auto" or isinstance(calibration_points, bool)): raise ValueError( f"Incorrect input. calibration_points={calibration_points} " "must be on of False, True or 'auto'." ) self.calibration_points = calibration_points return super().run()
[docs] def process_data(self): """ Processes the data so that the analysis can make assumptions on the format. Populates self.dataset_processed.S21 with the complex (I,Q) valued transmission, and if calibration points are present for the 0 and 1 state, populates self.dataset_processed.pop_exc with the excited state population. """ if not hasattr(self.dataset, "y1"): self.dataset_processed["S21"] = self.dataset.y0 elif self.dataset.y1.units == "deg": self.dataset_processed["S21"] = self.dataset.y0 * np.exp( 1j * np.deg2rad(self.dataset.y1) ) else: self.dataset_processed["S21"] = self.dataset.y0 + 1j * self.dataset.y1 self.dataset_processed.S21.attrs["name"] = "S21" self.dataset_processed.S21.attrs["units"] = self.dataset.y0.units self.dataset_processed.S21.attrs["long_name"] = "Transmission $S_{21}$" if self.calibration_points == "auto": self.calibration_points = has_calibration_points( self.dataset_processed.S21.values ) if self.calibration_points: self._rotate_to_calibrated_axis()
def _rotate_to_calibrated_axis(self, ref_idx_0: int = -2, ref_idx_1: int = -1): ref_val_0 = self.dataset_processed.S21[ref_idx_0] ref_val_1 = self.dataset_processed.S21[ref_idx_1] pop_exc = np.real( rotate_to_calibrated_axis( data=self.dataset_processed.S21, ref_val_0=ref_val_0, ref_val_1=ref_val_1, ) ) self.dataset_processed["pop_exc"] = pop_exc self.dataset_processed.pop_exc.attrs["name"] = "pop_exc" self.dataset_processed.pop_exc.attrs["units"] = "" self.dataset_processed.pop_exc.attrs["long_name"] = r"$|1\rangle$ population" self.dataset_processed = self.dataset_processed.swap_dims({"dim_0": "x0"}) def _choose_data_for_fit(self): if self.calibration_points: # the last two data points are omitted from the fit as these are cal points y_data = self.dataset_processed.pop_exc.values[:-2] x_data = self.dataset_processed.x0.values[:-2] else: # if no calibration points are present, fit the magnitude of the signal y_data = np.abs(self.dataset_processed.S21.values) x_data = self.dataset_processed.x0.values return x_data, y_data
# pylint: disable=too-few-public-methods
[docs] class _DecayFigMixin: """A mixin for common analysis logic."""
[docs] def _create_decay_figure(self, fig_id: str): """ Creates a figure ready for plotting a fit. """ fig, ax = plt.subplots() self.figs_mpl[fig_id] = fig self.axs_mpl[fig_id] = ax # Add a textbox with the fit_message plot_textbox(ax, self.quantities_of_interest["fit_msg"]) if self.calibration_points: ax.plot( self.dataset_processed.x0, self.dataset_processed.pop_exc, marker=".", ls="", ) set_ylabel( self.dataset_processed.pop_exc.long_name, self.dataset_processed.pop_exc.units, ax, ) else: ax.plot( self.dataset_processed.x0, abs(self.dataset_processed.S21), marker=".", ls="", ) set_ylabel( r"Magnitude |$S_{21}|$", self.dataset_processed.S21.units, ax, ) set_xlabel( self.dataset_processed.x0.long_name, self.dataset_processed.x0.units, ax ) set_suptitle_from_dataset(fig, self.dataset) return ax
[docs] class T1Analysis(SingleQubitTimedomainAnalysis, _DecayFigMixin): """ Analysis class for a qubit T1 experiment, which fits an exponential decay and extracts the T1 time. """
[docs] def run_fitting(self): """ Fit the data to :class:`~quantify_core.analysis.fitting_models.ExpDecayModel`. """ model = fm.ExpDecayModel() delay, data = self._choose_data_for_fit() guess_pars = model.guess(data, delay=delay) if self.calibration_points: # if the data is on corrected axes certain parameters can be fixed model.set_param_hint("offset", value=0, vary=False) model.set_param_hint("amplitude", value=1, vary=False) # this call provides updated guess_pars, model.guess is still needed. guess_pars = model.make_params() fit_result = model.fit(data, params=guess_pars, t=delay) self.fit_results.update({"exp_decay_func": fit_result})
[docs] def analyze_fit_results(self): """ Checks fit success and populates :code:`.quantities_of_interest`. """ fit_result = self.fit_results["exp_decay_func"] fit_warning = ba.wrap_text(ba.check_lmfit(fit_result)) # If there is a problem with the fit, display an error message in the text box. # Otherwise, display the parameters as normal. if fit_warning is None: self.quantities_of_interest["fit_success"] = True text_msg = "Summary\n" text_msg += format_value_string(r"$T1$", fit_result.params["tau"], unit="s") if not self.calibration_points: unit = self.dataset_processed.S21.units text_msg += format_value_string( "\namplitude", fit_result.params["amplitude"], end_char="\n", unit=unit, ) text_msg += format_value_string( "offset", fit_result.params["offset"], unit=unit ) else: text_msg = ba.wrap_text(fit_warning) self.quantities_of_interest["fit_success"] = False self.quantities_of_interest["T1"] = ba.lmfit_par_to_ufloat( fit_result.params["tau"] ) self.quantities_of_interest["fit_msg"] = text_msg
[docs] def create_figures(self): """ Create a figure showing the exponential decay and fit. """ ax = self._create_decay_figure(fig_id="T1_decay") plot_fit( ax=ax, fit_res=self.fit_results["exp_decay_func"], plot_init=False, )
[docs] class EchoAnalysis(SingleQubitTimedomainAnalysis, _DecayFigMixin): """ Analysis class for a qubit spin-echo experiment, which fits an exponential decay and extracts the T2_echo time. """
[docs] def run_fitting(self): """ Fit the data to :class:`~quantify_core.analysis.fitting_models.ExpDecayModel`. """ model = fm.ExpDecayModel() delay, data = self._choose_data_for_fit() guess_pars = model.guess(data, delay=delay) if self.calibration_points: # if the data is on corrected axes certain parameters can be fixed model.set_param_hint("offset", value=0.5, vary=False) model.set_param_hint("amplitude", value=-0.5, vary=False) # this call provides updated guess_pars, model.guess is still needed. guess_pars = model.make_params() fit_result = model.fit(data, params=guess_pars, t=delay) self.fit_results.update({"exp_decay_func": fit_result})
[docs] def analyze_fit_results(self): """ Checks fit success and populates :code:`.quantities_of_interest`. """ fit_result = self.fit_results["exp_decay_func"] fit_warning = ba.wrap_text(ba.check_lmfit(fit_result)) # If there is a problem with the fit, display an error message in the text box. # Otherwise, display the parameters as normal. if fit_warning is None: self.quantities_of_interest["fit_success"] = True text_msg = "Summary\n" text_msg += format_value_string( r"$T_{2,\mathrm{Echo}}$", fit_result.params["tau"], unit="s" ) if not self.calibration_points: unit = self.dataset_processed.S21.units text_msg += format_value_string( "\namplitude", fit_result.params["amplitude"], end_char="\n", unit=unit, ) text_msg += format_value_string( "offset", fit_result.params["offset"], unit=unit ) else: text_msg = ba.wrap_text(fit_warning) self.quantities_of_interest["fit_success"] = False self.quantities_of_interest["t2_echo"] = ba.lmfit_par_to_ufloat( fit_result.params["tau"] ) self.quantities_of_interest["fit_msg"] = text_msg
[docs] def create_figures(self): """ Create a figure showing the exponential decay and fit. """ ax = self._create_decay_figure(fig_id="Echo_decay") plot_fit( ax=ax, fit_res=self.fit_results["exp_decay_func"], plot_init=False, )
[docs] class RamseyAnalysis(SingleQubitTimedomainAnalysis, _DecayFigMixin): """ Fits a decaying cosine curve to Ramsey data (possibly with artificial detuning) and finds the true detuning, qubit frequency and T2* time. """ # Override the run method so that we can add the new optional arguments # pylint: disable=attribute-defined-outside-init, arguments-differ
[docs] def run( self, artificial_detuning: float = 0, qubit_frequency: float = None, calibration_points: Union[bool, Literal["auto"]] = "auto", ): r""" Parameters ---------- artificial_detuning The detuning in Hz that will be emulated by adding an extra phase in software. qubit_frequency The initial recorded value of the qubit frequency (before accurate fitting is done) in Hz. calibration_points Indicates if the data analyzed includes calibration points. If set to :code:`True`, will interpret the last two data points in the dataset as :math:`|0\rangle` and :math:`|1\rangle` respectively. If ``"auto"``, will use :func:`~.has_calibration_points` to determine if the data contains calibration points. Returns ------- :class:`~.RamseyAnalysis`: The instance of this analysis. """ # NB the return type need to be specified manually to avoid circular import self.artificial_detuning = artificial_detuning self.qubit_frequency = qubit_frequency return super().run(calibration_points=calibration_points)
[docs] def run_fitting(self): """ Fits a :class:`~quantify_core.analysis.fitting_models.DecayOscillationModel` to the data. """ model = fm.DecayOscillationModel() time, data = self._choose_data_for_fit() guess_pars = model.guess(data, t=time) if self.calibration_points: # if the data is on corrected axes certain parameters can be fixed model.set_param_hint("offset", value=0.5, vary=False) model.set_param_hint("amplitude", value=0.5, vary=False) model.set_param_hint("phase", value=0, vary=False) # this call provides updated guess_pars, model.guess is still needed. guess_pars = model.make_params() fit_result = model.fit(data, params=guess_pars, t=time) self.fit_results.update({"Ramsey_decay": fit_result})
[docs] def analyze_fit_results(self): """ Extract the real detuning and qubit frequency based on the artificial detuning and fitted detuning. """ fit_warning = ba.check_lmfit(self.fit_results["Ramsey_decay"]) fit_parameters = self.fit_results["Ramsey_decay"].params self.quantities_of_interest["T2*"] = ba.lmfit_par_to_ufloat( fit_parameters["tau"] ) self.quantities_of_interest["fitted_detuning"] = ba.lmfit_par_to_ufloat( fit_parameters["frequency"] ) self.quantities_of_interest["detuning"] = ( self.quantities_of_interest["fitted_detuning"] - self.artificial_detuning ) if self.qubit_frequency is not None: self.quantities_of_interest["qubit_frequency"] = ( self.qubit_frequency - self.quantities_of_interest["detuning"] ) # If there is a problem with the fit, display an error message in the text box. # Otherwise, display the parameters as normal. if fit_warning is None: self.quantities_of_interest["fit_success"] = True text_msg = "Summary\n" text_msg += format_value_string( r"$T_2^*$", self.quantities_of_interest["T2*"], unit="s", end_char="\n\n", ) text_msg += format_value_string( "artificial detuning", self.artificial_detuning, unit="Hz", end_char="\n", ) text_msg += format_value_string( "fitted detuning", self.quantities_of_interest["fitted_detuning"], unit="Hz", end_char="\n", ) text_msg += format_value_string( "actual detuning", self.quantities_of_interest["detuning"], unit="Hz", end_char="\n", ) if self.qubit_frequency is not None: text_msg += "\n" text_msg += format_value_string( "initial qubit frequency", self.qubit_frequency, unit="Hz", end_char="\n", ) text_msg += format_value_string( "fitted qubit frequency", self.quantities_of_interest["qubit_frequency"], unit="Hz", ) else: text_msg = ba.wrap_text(fit_warning) self.quantities_of_interest["fit_success"] = False self.quantities_of_interest["fit_msg"] = text_msg
[docs] def create_figures(self): """Plot Ramsey decay figure.""" ax = self._create_decay_figure(fig_id="Ramsey_decay") plot_fit( ax=ax, fit_res=self.fit_results["Ramsey_decay"], plot_init=not self.quantities_of_interest["fit_success"], range_casting="real", )
[docs] class AllXYAnalysis(SingleQubitTimedomainAnalysis): """ Normalizes the data from an AllXY experiment and plots against an ideal curve. See section 2.3.2 of :cite:t:`reed_entanglement_2013` for an explanation of the AllXY experiment and it's applications in diagnosing errors in single-qubit control pulses. """ # pylint: disable=arguments-differ
[docs] def run(self): """ Executes the analysis using specific datapoints as calibration points. Returns ------- :class:`~.AllXYAnalysis`: The instance of this analysis. """ # NB the return type need to be specified manually to avoid circular import # The standard analysis of the AllXY analysis always uses datapoints measured # within this experiment as calibration points. return super().run(calibration_points=True)
# pylint: disable=arguments-differ def _rotate_to_calibrated_axis(self): if len(self.dataset.x0) == 21: ref_idx_1 = 17 elif len(self.dataset.x0) == 21 * 2: ref_idx_1 = 17 + 21 # use the values measured for II and XI as reference values. super()._rotate_to_calibrated_axis(ref_idx_0=0, ref_idx_1=ref_idx_1)
[docs] def process_data(self): # Raise an exception if we do not have the correct number of points for a # complete ALLXY experiment number_points = len(self.dataset.x0) if number_points % 21 != 0: raise ValueError( "Invalid dataset. The number of calibration points in an " "AllXY experiment must be a multiple of 21." ) super().process_data() # add the ideal data as a reference curve repeats = int(round(number_points / 21)) ### Creating the ideal data ### ideal_data = xr.DataArray( data=np.concatenate( ( 0 * np.ones(5 * repeats), 0.5 * np.ones(12 * repeats), np.ones(4 * repeats), ) ), name="ideal_data", coords={"x0": self.dataset_processed.coords["x0"]}, ) self.dataset_processed["ideal_data"] = ideal_data ### Analyzing Data ### deviation = np.mean(np.abs(self.dataset_processed.pop_exc - ideal_data)).item() self.quantities_of_interest["deviation"] = deviation
[docs] def create_figures(self): fig, ax = plt.subplots() fig_id = "AllXY" self.figs_mpl[fig_id] = fig self.axs_mpl[fig_id] = ax labels = [ "II", "XX", "YY", "XY", "YX", "xI", "yI", "xy", "yx", "xY", "yX", "Xy", "Yx", "xX", "Xx", "yY", "Yy", "XI", "YI", "xx", "yy", ] ax.plot( self.dataset_processed.x0, self.dataset_processed.pop_exc, marker="o", ls="-", label="Measured", ) deviation = self.quantities_of_interest["deviation"] ax.plot( self.dataset_processed.x0, self.dataset_processed.ideal_data, label=f"Target, \nMean deviation {deviation:#.3g}", ) ax.xaxis.set_ticks(np.arange(21)) ax.set_xticklabels(labels, rotation=60) set_ylabel( self.dataset_processed.pop_exc.long_name, self.dataset_processed.pop_exc.units, ax, ) ax.legend(loc=4) set_suptitle_from_dataset(fig, self.dataset)
[docs] class RabiAnalysis(SingleQubitTimedomainAnalysis): """ Fits a cosine curve to Rabi oscillation data and finds the qubit drive amplitude required to implement a pi-pulse. The analysis will automatically rotate the data so that the data lies along the axis with the best SNR. """
[docs] def run(self, calibration_points: bool = True): """ Parameters ---------- calibration_points Specifies if the data should be rotated so that it lies along the axis with the best SNR. Returns ------- :class:`~.RabiAnalysis`: The instance of this analysis. """ # NB the return type need to be specified manually to avoid circular import # Override the `calibration_points="auto"` if not isinstance(calibration_points, bool): raise TypeError( "Incorrect input. " f"calibration_points={calibration_points} must be a bool." ) return super().run(calibration_points=calibration_points)
# pylint: disable=arguments-differ
[docs] def _rotate_to_calibrated_axis(self): """ If calibration points are True, automatically determine the point farthest from the 0 point to use as a reference to rotate the data. This will ensure the data lies along the axis with the best SNR. """ # index closest to rabi-pulse amplitude = 0 min_idx = np.argmin(abs(self.dataset_processed.x0.values)) # transmission measured for Rabi-pulse amplitude closest to 0 min_val = self.dataset_processed.S21.values[min_idx] # find index with max absolute difference (distance in IQ space) to the S21_0 max_idx = np.argmax(abs(self.dataset_processed.S21.values - min_val)) max_val = self.dataset_processed.S21.values[max_idx] rotation_angle = np.angle(max_val - min_val) rot_data = self.dataset_processed.S21 * np.exp(-1j * rotation_angle) self.dataset_processed["S21_rot"] = rot_data self.dataset_processed.S21_rot.attrs["name"] = "S21_rot" self.dataset_processed.S21_rot.attrs["units"] = self.dataset.y0.units self.dataset_processed.S21_rot.attrs["long_name"] = ( "Rotated transmission $S_{21}^R$" )
def _choose_data_for_fit(self): if self.calibration_points: y_data = self.dataset_processed.S21_rot.real.values x_data = self.dataset_processed.x0.values else: # if the data is not rotated,fit the magnitude of the signal y_data = np.abs(self.dataset_processed.S21.values) x_data = self.dataset_processed.x0.values return x_data, y_data
[docs] def run_fitting(self): """ Fits a :class:`~quantify_core.analysis.fitting_models.RabiModel` to the data. """ model = fm.RabiModel() drive_amplitude, data = self._choose_data_for_fit() guess = model.guess(data, drive_amp=drive_amplitude) fit_result = model.fit(data, params=guess, x=drive_amplitude) self.fit_results.update({"Rabi_oscillation": fit_result})
[docs] def analyze_fit_results(self): """ Checks fit success and populates :code:`.quantities_of_interest`. """ fit_result = self.fit_results["Rabi_oscillation"] fit_warning = ba.wrap_text(ba.check_lmfit(fit_result)) # If there is a problem with the fit, display an error message in the text box. # Otherwise, display the parameters as normal. if fit_warning is None: self.quantities_of_interest["fit_success"] = True text_msg = "Summary\n" text_msg += format_value_string( "Pi-pulse amplitude", fit_result.params["amp180"], unit="a.u.", end_char="\n", ) text_msg += format_value_string( "Oscillation amplitude", fit_result.params["amplitude"], unit="V", end_char="\n", ) text_msg += format_value_string( "Offset", fit_result.params["offset"], unit="V", end_char="\n" ) else: text_msg = ba.wrap_text(fit_warning) self.quantities_of_interest["fit_success"] = False self.quantities_of_interest["Pi-pulse amplitude"] = ba.lmfit_par_to_ufloat( fit_result.params["amp180"] ) self.quantities_of_interest["fit_msg"] = text_msg
[docs] def create_figures(self): """Creates Rabi oscillation figure""" fig_id = "Rabi_oscillation" fig, ax = plt.subplots() self.figs_mpl[fig_id] = fig self.axs_mpl[fig_id] = ax # Add a textbox with the fit_message plot_textbox(ax, self.quantities_of_interest["fit_msg"]) if self.calibration_points: ax.plot( self.dataset_processed.x0, self.dataset_processed.S21_rot.real, marker=".", linestyle="", ) set_ylabel( self.dataset_processed.S21_rot.long_name, self.dataset_processed.S21_rot.units, ax, ) else: ax.plot( self.dataset_processed.x0, self.dataset_processed.S21.real, marker=".", linestyle="", ) set_ylabel( self.dataset_processed.S21.long_name, self.dataset_processed.S21.units, ax, ) plot_fit( ax=ax, fit_res=self.fit_results["Rabi_oscillation"], plot_init=not self.quantities_of_interest["fit_success"], range_casting="real", ) set_xlabel( self.dataset_processed.x0.long_name, self.dataset_processed.x0.units, ax ) set_suptitle_from_dataset(fig, self.dataset)