{
"cells": [
{
"cell_type": "markdown",
"id": "c80cd461",
"metadata": {},
"source": [
"(analysis-framework-tutorial)=\n",
"# Tutorial 3. Building custom analyses - the data analysis framework\n",
"\n",
"```{seealso}\n",
"\n",
"The complete source code of this tutorial can be found in\n",
"\n",
"{nb-download}`Tutorial 3. Building custom analyses - the data analysis framework.ipynb`\n",
"\n",
"```\n",
"\n",
"Quantify provides an analysis framework in the form of a {class}`~quantify_core.analysis.base_analysis.BaseAnalysis` class and several subclasses for simple cases (e.g., {class}`~quantify_core.analysis.base_analysis.BasicAnalysis`, {class}`~quantify_core.analysis.base_analysis.Basic2DAnalysis`, {class}`~quantify_core.analysis.spectroscopy_analysis.ResonatorSpectroscopyAnalysis`). The framework provides a structured, yet flexible, flow of the analysis steps. We encourage all users to adopt the framework by sub-classing the {class}`~quantify_core.analysis.base_analysis.BaseAnalysis`.\n",
"\n",
"To give insight into the concepts and ideas behind the analysis framework, we first write analysis scripts to *\"manually\"* analyze the data as if we had a new type of experiment in our hands.\n",
"Next, we encapsulate these steps into reusable functions packing everything together into a simple python class.\n",
"\n",
"We conclude by showing how the same class is implemented much more easily by extending the {class}`~quantify_core.analysis.base_analysis.BaseAnalysis` and making use of the quantify framework."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "114e888a",
"metadata": {
"mystnb": {
"code_prompt_show": "Imports and auxiliary utilities"
},
"tags": [
"hide-cell"
]
},
"outputs": [],
"source": [
"import json\n",
"import logging\n",
"from pathlib import Path\n",
"from typing import Tuple\n",
"\n",
"import lmfit\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import xarray as xr\n",
"\n",
"import quantify_core.visualization.pyqt_plotmon as pqm\n",
"from quantify_core.analysis.cosine_analysis import CosineAnalysis\n",
"from quantify_core.analysis.fitting_models import CosineModel, cos_func\n",
"from quantify_core.data.handling import (\n",
" default_datadir,\n",
" get_latest_tuid,\n",
" load_dataset,\n",
" locate_experiment_container,\n",
" set_datadir,\n",
")\n",
"from quantify_core.measurement import MeasurementControl\n",
"from quantify_core.utilities.examples_support import mk_cosine_instrument\n",
"from quantify_core.utilities.inspect_utils import display_source_code\n",
"from quantify_core.visualization.SI_utilities import set_xlabel, set_ylabel"
]
},
{
"cell_type": "markdown",
"id": "97036a87",
"metadata": {},
"source": [
"Before instantiating any instruments or starting a measurement we change the\n",
"directory in which the experiments are saved using the\n",
"{meth}`~quantify_core.data.handling.set_datadir`\n",
"\\[{meth}`~quantify_core.data.handling.get_datadir`\\] functions.\n",
"\n",
"----------------------------------------------------------------------------------------\n",
"\n",
"⚠️ **Warning!**\n",
"\n",
"We recommend always setting the directory at the start of the python kernel and stick\n",
"to a single common data directory for all notebooks/experiments within your\n",
"measurement setup/PC.\n",
"\n",
"The cell below sets a default data directory (`~/quantify-data` on Linux/macOS or\n",
"`$env:USERPROFILE\\\\quantify-data` on Windows) for tutorial purposes. Change it to your\n",
"desired data directory. The utilities to find/search/extract data only work if\n",
"all the experiment containers are located within the same directory.\n",
"\n",
"----------------------------------------------------------------------------------------"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "efe3fa65",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data will be saved in:\n",
"/root/quantify-data\n"
]
}
],
"source": [
"set_datadir(default_datadir()) # change me!"
]
},
{
"cell_type": "markdown",
"id": "6795b2b8",
"metadata": {},
"source": [
"## Run an experiment\n",
"\n",
"We mock an experiment in order to generate a toy dataset to use in this tutorial."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "881bb888",
"metadata": {
"mystnb": {
"code_prompt_show": "Source code of a mock instrument"
},
"tags": [
"hide-cell"
]
},
"outputs": [
{
"data": {
"text/html": [
"
defmk_cosine_instrument()->Instrument:\n",
""""A container of parameters (mock instrument) providing a cosine model."""\n",
"\n",
" instr=Instrument("ParameterHolder")\n",
"\n",
" # ManualParameter's is a handy class that preserves the QCoDeS' Parameter\n",
" # structure without necessarily having a connection to the physical world\n",
" instr.add_parameter(\n",
" "amp",\n",
" initial_value=0.5,\n",
" unit="V",\n",
" label="Amplitude",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" "freq",\n",
" initial_value=1,\n",
" unit="Hz",\n",
" label="Frequency",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" "t",initial_value=1,unit="s",label="Time",parameter_class=ManualParameter\n",
" )\n",
" instr.add_parameter(\n",
" "phi",\n",
" initial_value=0,\n",
" unit="Rad",\n",
" label="Phase",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" "noise_level",\n",
" initial_value=0.05,\n",
" unit="V",\n",
" label="Noise level",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" "acq_delay",initial_value=0.02,unit="s",parameter_class=ManualParameter\n",
" )\n",
"\n",
" defcosine_model():\n",
" sleep(instr.acq_delay())# simulates the acquisition delay of an instrument\n",
" return(\n",
" cos_func(instr.t(),instr.freq(),instr.amp(),phase=instr.phi(),offset=0)\n",
" +np.random.randn()*instr.noise_level()\n",
" )\n",
"\n",
" # Wrap our function in a Parameter to be able to associate metadata to it, e.g. unit\n",
" instr.add_parameter(\n",
" name="sig",label="Signal level",unit="V",get_cmd=cosine_model\n",
" )\n",
"\n",
" returninstr\n",
"
\n"
],
"text/latex": [
"\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n",
"\\PY{k}{def} \\PY{n+nf}{mk\\PYZus{}cosine\\PYZus{}instrument}\\PY{p}{(}\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{Instrument}\\PY{p}{:}\n",
"\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}A container of parameters (mock instrument) providing a cosine model.\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\n",
" \\PY{n}{instr} \\PY{o}{=} \\PY{n}{Instrument}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{ParameterHolder}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n",
"\n",
" \\PY{c+c1}{\\PYZsh{} ManualParameter\\PYZsq{}s is a handy class that preserves the QCoDeS\\PYZsq{} Parameter}\n",
" \\PY{c+c1}{\\PYZsh{} structure without necessarily having a connection to the physical world}\n",
" \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n",
" \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amp}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mf}{0.5}\\PY{p}{,}\n",
" \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{V}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n",
" \\PY{p}{)}\n",
" \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n",
" \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{freq}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mi}{1}\\PY{p}{,}\n",
" \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Hz}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n",
" \\PY{p}{)}\n",
" \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n",
" \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{t}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mi}{1}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{s}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Time}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\n",
" \\PY{p}{)}\n",
" \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n",
" \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{phi}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{,}\n",
" \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Rad}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Phase}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n",
" \\PY{p}{)}\n",
" \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n",
" \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{noise\\PYZus{}level}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mf}{0.05}\\PY{p}{,}\n",
" \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{V}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Noise level}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n",
" \\PY{p}{)}\n",
" \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n",
" \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{acq\\PYZus{}delay}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mf}{0.02}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{s}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\n",
" \\PY{p}{)}\n",
"\n",
" \\PY{k}{def} \\PY{n+nf}{cosine\\PYZus{}model}\\PY{p}{(}\\PY{p}{)}\\PY{p}{:}\n",
" \\PY{n}{sleep}\\PY{p}{(}\\PY{n}{instr}\\PY{o}{.}\\PY{n}{acq\\PYZus{}delay}\\PY{p}{(}\\PY{p}{)}\\PY{p}{)} \\PY{c+c1}{\\PYZsh{} simulates the acquisition delay of an instrument}\n",
" \\PY{k}{return} \\PY{p}{(}\n",
" \\PY{n}{cos\\PYZus{}func}\\PY{p}{(}\\PY{n}{instr}\\PY{o}{.}\\PY{n}{t}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{instr}\\PY{o}{.}\\PY{n}{freq}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{instr}\\PY{o}{.}\\PY{n}{amp}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{phase}\\PY{o}{=}\\PY{n}{instr}\\PY{o}{.}\\PY{n}{phi}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{offset}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{)}\n",
" \\PY{o}{+} \\PY{n}{np}\\PY{o}{.}\\PY{n}{random}\\PY{o}{.}\\PY{n}{randn}\\PY{p}{(}\\PY{p}{)} \\PY{o}{*} \\PY{n}{instr}\\PY{o}{.}\\PY{n}{noise\\PYZus{}level}\\PY{p}{(}\\PY{p}{)}\n",
" \\PY{p}{)}\n",
"\n",
" \\PY{c+c1}{\\PYZsh{} Wrap our function in a Parameter to be able to associate metadata to it, e.g. unit}\n",
" \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n",
" \\PY{n}{name}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{sig}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Signal level}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{V}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{get\\PYZus{}cmd}\\PY{o}{=}\\PY{n}{cosine\\PYZus{}model}\n",
" \\PY{p}{)}\n",
"\n",
" \\PY{k}{return} \\PY{n}{instr}\n",
"\\end{Verbatim}\n"
],
"text/plain": [
"def mk_cosine_instrument() -> Instrument:\n",
" \"\"\"A container of parameters (mock instrument) providing a cosine model.\"\"\"\n",
"\n",
" instr = Instrument(\"ParameterHolder\")\n",
"\n",
" # ManualParameter's is a handy class that preserves the QCoDeS' Parameter\n",
" # structure without necessarily having a connection to the physical world\n",
" instr.add_parameter(\n",
" \"amp\",\n",
" initial_value=0.5,\n",
" unit=\"V\",\n",
" label=\"Amplitude\",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" \"freq\",\n",
" initial_value=1,\n",
" unit=\"Hz\",\n",
" label=\"Frequency\",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" \"t\", initial_value=1, unit=\"s\", label=\"Time\", parameter_class=ManualParameter\n",
" )\n",
" instr.add_parameter(\n",
" \"phi\",\n",
" initial_value=0,\n",
" unit=\"Rad\",\n",
" label=\"Phase\",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" \"noise_level\",\n",
" initial_value=0.05,\n",
" unit=\"V\",\n",
" label=\"Noise level\",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" \"acq_delay\", initial_value=0.02, unit=\"s\", parameter_class=ManualParameter\n",
" )\n",
"\n",
" def cosine_model():\n",
" sleep(instr.acq_delay()) # simulates the acquisition delay of an instrument\n",
" return (\n",
" cos_func(instr.t(), instr.freq(), instr.amp(), phase=instr.phi(), offset=0)\n",
" + np.random.randn() * instr.noise_level()\n",
" )\n",
"\n",
" # Wrap our function in a Parameter to be able to associate metadata to it, e.g. unit\n",
" instr.add_parameter(\n",
" name=\"sig\", label=\"Signal level\", unit=\"V\", get_cmd=cosine_model\n",
" )\n",
"\n",
" return instr"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display_source_code(mk_cosine_instrument)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f58b3e02",
"metadata": {
"mystnb": {
"remove-output": true
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Starting iterative measurement...\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ec19a9922fe64fcabfc16b873fdcfbd9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"meas_ctrl = MeasurementControl(\"meas_ctrl\")\n",
"plotmon = pqm.PlotMonitor_pyqt(\"plotmon\")\n",
"meas_ctrl.instr_plotmon(plotmon.name)\n",
"pars = mk_cosine_instrument()\n",
"\n",
"meas_ctrl.settables(pars.t)\n",
"meas_ctrl.setpoints(np.linspace(0, 2, 30))\n",
"meas_ctrl.gettables(pars.sig)\n",
"dataset = meas_ctrl.run(\"Cosine experiment\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "0e3dbd26",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAGhCAIAAACBOXXdAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4nOzdeVxb15kw/oNWhJYrsYPYBMgGDBjhBRuMjR2wE4xjh3Hc2nWTOHGcZZqO+7bzmbxtppN0MkvbtL/Op00yk3cSp05rp2kWL9jYhMXGJjYOhH1fzCIQIEA7aNfvj+sqssBYAqGr5fn+BfdeiceOw6NzznOeE2CxWBAAAAAAVoxEdAAAAACAj4CcCgAAALgG5FQAAADANSCnAgAAAK4BORUAAABwDcipAAAAgGtATgUAAABcA3IqAAAA4Bo+nlPz8/OJDgEAAIC/8PGcCgAAALgN5FQAAADANShEB7DqampqrF/v3LmTwEgAAAD4Nt/PqZBHAQAAuAfM/QIAAACuATkVAAAAcA3IqQAAAIBrQE4FAAAAXANyKgAAAOAakFMBAAAA1yB+L41CoZiZmUEI8Xg8Ho+38O709DSFQomOjqZSqXZ3TSaTRCLRarU8Hi8kJMRNEQMAAACLITKn6nS66urqoaEh65WNGzdu2rTJ+m1tbW1HRweJRDKbzXQ6vbCwMC4uznpXKpWWl5drNBoymWwymQQCQVFREZlMducfAQAAALAiLKdaLJbLly/Pzs7u3LlTIBBYLJaZmRmz2Wx9oK2traOjIycnJysrS6fTXb16taKi4vDhw0wmEyFkNBrLy8upVOqRI0cwDOvr66uqqqqvr8/NzSXqTwQAAMDPEbae2tPTMzExsXPnzpSUFDqdHhgYyOfzY2NjrQ80NzeHh4dnZ2eTSCQGg1FQUGAwGDo6OvC7/f39Go0mLy8PwzCEkFAoTE5Obm9vNxgMxPx5AAAA+D0icyqLxUpMTEQI2Q5PcXK5XK1WJyQkWK9wuVwulysWi/FvxWIxhUKJiYmxPhAfH48vr6566AB4p5ZRxRsXO9+42Nk2piA6FgB8E2Fzv1KpNC4urrm5ubm5eX5+nslkrlu3Ljs7OyAgACGkUCgQQlwu1/YlGIZNTEzgX8vlcjabTSJ9+5kAfxh/IQDATm3v5MlPWmfVeoTQuebx3x/O2pYcSnRQAPgaYnKq0Wg0GAxisVgsFm/cuJHFYg0MDNy5c0en0+ELonq9HiFEo9FsX0Wj0fDr+AOBgYF2dxFCOp3O7medOnXK9ttjx465+k8DgKdrGVWc/EvrrObe/z4yje6VM02nn9uUwecu/UIAgFMIrvvdt28fPn+bmJio1Wrb2tqys7OtydJisTj+bvjD+DDXFiRRAM41j1kTKk42pz/fNA45FQDXImY9lUKhkMlkKpVquyAqEAjMZvP09DRCiE6nowWDTp1OZ023gYGBWq3W7q71hQAAAID7EVajFBwcbLsaihDCt5biw028+YNMJrN9QCaTWZtC8Hg8lUplNBpt71pfCACwVZrN5wbdt5KCMWhPiPhExQOAryIsp8bHx+t0utnZWeuV8fFxhFBwcDBCiM1m83i8wcFB6/SvVCpVqVTWng9xcXFms9m2X8Tg4CCNRouMjHTbHwEAb5HBx/5wRBREv7fWw6RT3j0qWsfHiI0KAN9DWE7NyMgIDAysrKyUSCRKpbKpqamvr08oFOItHRBCGzZskMlktbW1SqVycnKyqqqKwWCkpaXhdwUCAY/Hq6urGx0dVavVjY2Nw8PDIpEI+igBsKhtyaFpkew96yKKUiMyojm5SVD0C4DrBThVB+RaUqm0srJSLpfj3wqFwh07dtg29W1qampoaMAneDEMKyoqCgsLs95VKpUVFRVSqRQhRCKR0tPTc3Nz7WqU8vPzb9y44Y4/DAAeL+HVS0P/uRchVPTb6+8c3SAMZxEdEQC+hsicipPJZHq9nsPhMBiMhXcNBoNMJqNQKPic8EJyuVyn02EYZre1Bgc5FQBcVdfUmTvD7z+9CSH0+TdjN/ulvz2URXRQAPga4s+lWbqqiEqlhoeHL/GAXV8IAMCiqronH0mJwL8uzeb/8kr3pFIbwVnkkygAYNng/FQA/EJN99TOlG8/nr5UkPTutQEC4wHAJ0FOBcD3dUmU3CBaFPbtqPSZ3IRPGkbn9CYCowLA90BOBcD3VXdP7UqxX0N5qSD53Wv9hMQDgK+CnAqA76vqmnokdWFOhelfAFwMcioAPk4+ZxicVmfH2RcDUkgBx/IE/+/GICFRAeCTIKc+BBw5CbzdohO/uJd3Jr1TA0NVAFyG+L00q62mpsb69c6dO516LRw5CXxAdffko+lRi97iBdH2rIv4+OvR726KdXNUAPgk4ns+rKqV9HxoGVUc+/CO7QlZvCCaI0dOtowqzjWPIYRKs/kZ0FIVEC3t51caXisKoi3etnN4Zu6pD+qv/6NzHzcBAIuCud8HetCRk0u/qrZ38tgf75yqu3uq7u5TH3x9s396NWME4CFuD85kxnAflFARQvEhQenR2KU2iTujAsBX+f7cr2t9cPPuxVZJMJMWwqQFM2khLFowkx5y7wuaVKn/2bk22dy9TCzT6F450+TI0BaAVbJoxa+dlwqSXv28bW/G4vPDAADHQU59oNJs/hdNY/K5b4eqGIP20bObIrDAWY1+RqOf1ehn1PpZja59XDGj1s9q9D2TKuW8wfZN8KEt5FRAlOruqfee2rD0M+l8jBdEvdE3nS+EcgEAVgRy6gPhR06+crZJptEjhDAG9d2josxYLkLoQV1S37jYearurlujBODBhmfmjGZzUtjDz595qSD5D9V9kFMBWCFYT13KtuTQ089uOr5NcHyb4MzxnIceOVmazecG0WyvYAzaEyL+asYIwAMtsYvGTm5SiEZvahmVr3ZIAPg2wsapOp1ufn7e7uLCQ2YUCsX09DSFQomOjrY9WhVnMpkkEolWq+XxeCEhIasRZwaf6/jMrd3QlkwKePeoaB2U/gKCVHdPntie5ODDLxckvXNt4H++/5CJYgDAEgjLqX19fQt3ubzwwgsk0rdD59ra2o6ODhKJZDab6XR6YWFhXFyc9a5UKi0vL9doNGQy2WQyCQSCoqIiMvmB9Y3ugQ9t8fLgP98eWR8LK6mAGAaT+fbg7EfP5Tj4/J51kf9Z3n13WiMIZa5qYAD4MILXU/ft22c7+rRNqG1tbR0dHTk5OVlZWTqd7urVqxUVFYcPH2YymQgho9FYXl5OpVKPHDmCYVhfX19VVVV9fX1ubi4Bf4z7WYe2kypdddfUvvXRREcE/JHjE79W+FD11wczVykkAHweweupYWFhETZsbzU3N4eHh2dnZ5NIJAaDUVBQYDAYOjo68Lv9/f0ajSYvLw/DMISQUChMTk5ub283GAyL/BiCFKZGVHZNEh0F8FOO7KKx8+TG2JruqWm1bpVCAsDnEV+jZDabF16Uy+VqtTohIcF6hcvlcrlcsViMfysWiykUSkxMjPWB+Ph4fHl1leN1wiOp4VVdU0RHAfzUMsap6G9D1dWIBwB/QPDc79mzZ+fn56lUalxcXE5ODj7oRAgpFAq0oGQJw7CJiQn8a7lczmazbeeK8YfxF3oIFp2SFs25c3d2syCY6FiAf2kVK6K5gaEsurMvfHabYM1r5a8+mkKjEP+BGwCvQ1hOpVKpQqEwIiKCQqFMTU11d3eLxeKDBw9yOByEkF6vRwjRaPftS6HRaPh1/IHAwEC7uwghnc6zpq0eSY2o6pqEnArcbHmDVNzLBcnvXOs/WbjGtSEBQCC3tWEnLKeuXbt27dq1+NepqakCgeDSpUuNjY22R8c41d8ffzggIMDuen5+/sKHl91Y31mFqeEnTjf+3+JU9/w4AHDV3ZNvHshY3mtfLkhKf/0q5FTgM9x5wpin9FGKi4vjcrnW1VA6nY4WDDp1Op11bBoYGKjVau3uWl9oy23pc1FJYSyj2Tw8MxcfEkRgGMCvTKt143JtZswyP4zTKKSjW+I/uHn32W0C1wYGgPu1jCpO/qXVeiDKardh96AlEwqFYh2Y8ng8hJBMJrN9QCaT4dfxB1QqldFotL1rfaFHeSQloqobqn+B+6xk4hfnkkqlCYV23mBa4ZsAsELLO2Fs2Twlp8pkstnZ2eDge+uObDabx+MNDg5as6xUKlWpVNaeD3FxcWazeWhoyPoOg4ODNBotMjLSvYE/HFT/Ajdbxi4aO6Es+s6U8L82jC7v5cp54/636x77r9qMf7l6/HTDSiIxm80ajcZk+jY3WywWtQ27+SorvV4/NTUlkUgW9mvTaDTj4+Nzc3NL/NCZmZnx8XGlUml7fW5uzvpzNRrNEmErlcrx8XGZTLbovoalyeVy66ZBr9DR0SGXu7WrZcuo4o2LnW9c7GwbW6oo1WiytI8p+qfUbgsMETj3e+nSpcTERC6XS6FQpFJpQ0MDQkgkElkf2LBhQ2VlZW1trUgkmp+fr6mpYTAYaWlp+F2BQMDj8erq6uh0Oo/H6+npGR4ezsnJIbyP0kJ5yaHPfvi1zmimQyElcIvq7qk/HBE9/LklvVyQ9OyHXz+5MdbZFxpM5oK3aqwjg+rOyWdPff3BsU3Ovs/8/PylS5dmZmbMZnNxcXF8fDx+XalUnjlzxroMFBsbW1hYaPfa8fHxsrIyDMNIJJJMJsvOzt64cSN+q6Wl5euvvw4ODp6dnd2yZUt6errday0Wy//+7/+yWCwajSaXy/l8/p49e/AtBp9++qnBYMC/plKpR48eXRi2XC6vqqrCJ9WMRqNOp9u2bVtiYqLjf3ClUtnf379u3TrHX0Ks/v5+Npu9sLOsS7S0tJBIpIyMb4sDllgcHZmd65lQdUmUPROq7gnV8KwmJZITwQlkUMm2Uyar2oadyH6/165ds37L5XILCgpsR5lCoVCtVjc0NHR2diKEMAzbu3evdbmURCIVFxdXVFSUlZXh32ZmZtqmZI+CN3+A8ymBG9zom96SGEwlr/QDnCCUuSaCfbVjYs865+Z+/vVSp+1UmxmhxhHZtR5pwdowp96HTCaLRKKwsLDPPvvM7lZAQMCxY8eWeG1YWNizzz5LoVAQQhKJ5Ny5c2vXrmWz2XK5/NatW0888URERMTExMT58+fj4+PZbLbdmz/11FN4ztZqtR9//HFfX5+1oLK4uDgq6oH/I+t0ugsXLsTExOzfvx//6TKZbHLSuaWfuLg42yasnm///v2r9+ZKpdJ2z+TCxdHn/9iwfU3olErXLVGFselrI9mpUZzizKj/s3uN9USmm/3TdieMrV4bdsJyamlpqU6nU6vVBoMhKCgI30JjRyQSpaeny2QyCoVinRa24nA4Bw8elMvlOp0OwzC7rTUeZVdqeHXXFORU4AbV3ZO7UiIe/pwDXi5I+smnrbcHZ9EDdiCYzItU5o/M2M+pqrWmuzPqfLN9pWVAACItKNS3otFoSUmOHgCAa2pqSk5OZrPZth1PQ0NDEUJ4h7WhoaHQ0FC8ZVtkZCSPx7t7925mZqbtaxFCtrWQLBbL8e5sXV1dAQEBO3bssE6Y8Xg8vMjDZDLV19cPDAyYTKaYmJj8/Hx8hNDa2trS0qLT6eh0+saNG1NTU8fGxtrb2/fs2YMQKi8vT0hI6OrqmpmZCQ8Pf+SRR1gsFkJILpffvHlzamqKTqenp6evX79+YTAjIyN37txRKBRsNjs3NzcmJkatVl+5cqWgoAD/O6muruZyudnZ2Y2NjWazeXp6emxsjMPh5Ofn458bLBZLS0tLZ2enVqsNCwvbsWMH/ou6vLw8Pj6+q6trenr68OHDt27dSk9P5/P5IyMjvb29GIa1tbWRyeS8vDw2m33t2jWVSpWQkLBr1y48Oy4afGNjI0JodnZ2aGiIxWLt2LEjOjp6cHCwr68vICBALBYzmcySkpKFi6PzBpNGZ/p5ybqUKDaDuvg8pW0b9idE/FU914TIul86nb6wTNcOlUoND19qZWiVJhxcqzA14hcXO4mOAviF6u6p08862jd/aYp53d0Zdd+kCi22A0GlNWb9omLhq8wLtsCZLOY3L3a+WdZld31jQvBfTmxZRmAWi+X999+3WCyRkZF5eXl40jKbzbdv3w4LC7OOO3t7e/V6/cDAQFpaGv6hXC6X2/7G4HK5+ELgwteKxWKlUjk5OUkikYRCofUlly9fNplMPB5v8+bN1uloK4lEEh0dvegKVENDw/j4eGlpKZVKra6urq6ufuyxxxQKxddff33w4EEMw+bm5vClX71eb+1dI5fL29raioqKWCxWdXV1fX39I488YjAYLly4sGHDhuLiYrVafenSJRaLZff5QyqVVlZWPvbYY5GRkePj41evXn3yySfZbHZKSkpFRcXBgwe7u7snJyfxrYZqtbqnp2fPnj179uzp6em5fPny0aNH6XR6a2trf39/SUkJi8VqbW29cuXKk08+GRAQIJfL5XL57t27ORwOiURSKBR45wD8b3vLli1PPfXU3bt3r127xufz9+7dSyaTz58/39vbm5KS8qDg1Wp1f3//7t27d+3a1dbWVlVV9f3vfz8hISEpKYlEIm3ZsmXhPkmrlEi2KO4hicCpE8ZWwlP20vg2jEFNDmc1Dss2xHtcWTLwJQNSNYVEcsnGLXySzWi8lyAX7kBgB1IG/r140dfm/7JmVHZvtEomkQ5vjHmzdJmbZRdiMBj79+8PDQ3V6XT19fVlZWXf/e53qVQqiUQ6duyYbaOYsbExrVarVCqtTUyNRqPtEJZKpeJ7Bxa+dnp6empqSiqVRkZGWuced+7cGRoaGhAQ0NPTc+XKldLS0rCw+ya08TmzRcPu6enJz8/HjwDJzc3985//rNVqLRaLxWJRqVQcDicoKCgoaJH/cJmZmfiHhtTU1Lq6OoTQ4OAgk8lMTU1FCLFYrPT09P7+fruc2t7enpqaGhERYbFYoqKi+Hz+0NBQRkZGenr6+Ph4eXn59PT0gQMHrH8bsbGx+EeE1NTU9vb2u3fvpqSktLW15efn4yPjjIyM5ubm2dlZ/FTNjIyMRY/XDAoKwsedQqHw2rVrqamp+MsTEhKkUmlKSsoSwSckJMTGxiKE0tPTb926NT8/z2AwSCQSiUSyxlmazf+iaUw+9+1Q1dPOqIac6ib4kirkVLCqVr6LxupBOxAc+bBf85OC505//c2wTGswH9oY8+YTLkuoCCEajRYdHY1/sWvXrvfff18ikeALkHYLQHgDGY1G8/HHH4eHh8fGxlKpVGsvNoSQXq+3pjG712ZlZSGEzGbzuXPnGhsbt2zZghDCf+MjhNavXz8yMjIwMGCXUwMDAxctJ8arl63pFh/eqVSqsLCwnJyc69eva7Xa2NhY2/6sVtYIqVQqPgutVCrlcvlf/vIX6zML05tSqRwZGbHdGWE9pGTTpk0ff/zxunXrbF9lu/qGYZharcbrq2/evGn9SEGn0609AxZdrUMI4R8acBQKxfotlUrF/2aWCN76MIVCCQgI0Ov1DAbD7v3xM6pf/FOjWmtEq784ugyQU91kV2r4D880/dOjKUQHAnxZVdfUyULhw59bZRRywB+PbTaaLBTyA+frXIJEIuHHJy/xDJPJ5HA4CoUiNjaWx+N1dX07BT07O2t7Dsei7x8ZGWm3owZHpVIX/tyYmJiGhgaDwWA7GsbfB0+3+BT0/Py82WzGk2VGRkZGRoZKpbpz505VVVVpaenD/tAoKCgoJCTkwIEDSzzDYDCioqI2b95sd91isdTW1iYmJvb19dmmVdsdRxqNhs/nBwQEBAYG7tixY+m/Imc5EvzStiWH7lgTKtMY0qI4q704ugywu8NN1kawNXqjWGa/VQ4AV5nTm1rF8i2Ji8zILUNpNp8bdF/DbWcn2VaeUA0GAz4yMxqNBoMB360+MzODj5YsFktDQ4PZbMb3C1gslq+++gpfiZyenrbuWx0eHpbJZPgziYmJcrl8ZGQEv65SqQQCgd1r1Wq1dbelXC4fGBjAC3bUarV1mXN0dHR4eNg6bLVau3YtnU6vqqqy/nSxWNzS0oIQEggELS0t+HbVpqam8PBwJpOp0Wjwfa5sNjsmJsZ2DL2E+Pj4mZmZwcFB69+SXXschJBQKOzs7LT+Qawbar/++muj0VhUVLRp06aKigpr+dXQ0BD+p5ucnJRKpfi4XygUNjY2WqOSSqVO9YtddvC2goKCFn6maR5V/Prg+tdK0jwtoSIYp7oT3k//6dwEogMBvsmFE7/ob5Ns1h0ITBrF/ZNsp0+fxn+hV1RUIIQeffRRgUAgFotv374dGBhoMBgYDMaePXvwGUK8SDUuLg4/wOrWrVtUKtVsNpNIpO3bt+OVriwWq6CgoKKigsFgaLXaXbt24YNF29fOzc1dunTJYrGQyWS9Xp+WlobvYVWr1WVlZfjynslk2rJly8IdL1Qqdf/+/bW1tX/84x+ZTKbBYMBrbhFCW7ZsqaysPH36NIVCodFou3fvRggplcry8nIGg0GhULRabUFBgSN/LSwWa8+ePdevX7916xaZTNZqtTk5OXYt5AQCgUql+uKLLxgMhslkMpvNjz76qEwma29vP3jwIL75cGxs7MaNG7t27UIIxcXFXb16FSGkUqm2b9+O12rl5OTU1dX96U9/YrFY8/PzgYGBeI3SSv6bOhK8rTVr1gwNDX3wwQcsFuvQoUMIod5JFZNG4fPsp4U9RMDKP3d4svz8fGL7/dq60Sd9r/buR8/Zz8YA4BL/55PmbclhpdmurNdoG5Ofbxrvm1JRSKT3n3G6b8MqMRqNGo2GRqMtXG+zMplMGo2GTCbbrvDZvpzJZOJbSBeyWCwajcZisTCZTNvNkfiyaEBAAJPJXDq1GAyGubm5oKAgu0lgnU5nMplsa5Hw90QIsVgsZ9PV3NycyWSyC9LuD6JWq8lk8qLVT1bXr1+n0+k5OTkqlYrJZNrVLZvNZpVKFRgY+NBtGq4N/kH++/qAfM7w6mMeuo7m++PUmpoa69e2h964X74w7NiHX7thkQn4p+ruqZ+XuLj5Dr4DwWS2rHmt3LXvvBIUCuVB5bVWZDL5QXU0D315QEAAXq1qh0Qi2TWIeBAqlbroj1iYlhx/z4WWzpQIoYCAAMffPCAgYNG/MRKJ9NC/7WV4aPAPUt099ZPda10bjAv5fk4lNo/awfvpO9uYBoCH+mZElhjK4gZRH/6o88ikgMfSo8pax0syo1fj/QGxoqKiHjRk9zQanbFjXOnJJ1JDjZJbFaaGV0I/fbAKXLuYutABUfS5VTvKAxBrzZo1TnUkJtBq/ztfOcipboWXKREdBfBBKz+LZmmFqRG3Bmc0OuPDHwVg1UBOBfcJZtLigoOaR916LhLweRKFVj6nT41afPnQVQ5k8c81j63qjwBgaZBTgT0YqgKXq+me2rn6v2hg+hcQq3FYlhzOwhirUjTgKpBT3Q2WVIHLVXVPPuKis2iWsCkheEw+Py6HviWAGJ4/SEUeklN1Op1cLlerFzmNXaFQDAwMDA8PL3rckslkEovF/f39MzMzqx+ma6RGceRzeolCS3QgwHe47XfNARH/XBNM/wJieEVOJb5+2mKxXLp0aXJyMj4+vrj4vmMuamtrOzo6SCSS2Wym0+mFhYW2jUukUml5eTm+rdtkMgkEgqKiokVPWfI0+PTv0S32B0UBsAw1PVMFa8JX1tzGUQeyon9wpunlncnu+GEA2JhQamWaVS8aWDnix6mtra1zc3MLd0e1tbV1dHTk5OQ8//zzzzzzTHBwcEVFBd5wBCFkNBrLy8upVOqRI0dOnDhRWFg4NDRUX1/v9vCX45HU8CqY/gUustoVv7bWRLBJpIBuySI95QFYVdVdU7vc9e98JQjOqQqF4s6dO9u3b1/Ynqq5uTk8PDw7O5tEIjEYjIKCAoPB0NHRgd/t7+/XaDR5eXl4gw+hUJicnNze3r7oFLGn2bk2/HqvdOHRzQAsg5snxA5kRZ9rhkol4G5eMfGLCM+p165dS0xMXNiKGl9eTUhIsF7hcrlcLlcsFuPfisViCoViewhRfHy8yWSSSCSrH7ULwFAVuET3hIoTSInmuq+fOCypAkJATn249vb22dnZvLy8hbfwU4e43PtOP8YwzPYMJjabbTu6xR+2Hsbk4WBHDXAJ9+yisRXJCYwPZdYPek1VIPAB13ul+cJQknuqBlaGsJyqUqlu3769bdu2wMDAhXfxA55otPuOb6TRaNaT/PR6/cK7CCHrMfQe7pGU8KpuGKeC5WsZVbxxsfNU3ZAg1P7cldUG07/Azaq6Jh9JXfXdYi5BWN3vtWvXoqKihELhEs84dQ4d/vDCw5JOnTpl++2xY8ccf8/VE8amR3IC28YUGZ53pi7wfLW9kyc/aZ1V6xFC/1HeE81lbEsOddtPPyDi/+Ji53+UZrjtJwI/V909dWJ7EtFROISYnDo4OCgWiwsLC63LnxaLRafTSSQSDofDZDLxE5HsBp06nc46qA0MDNRqtXZ30WJHKXlIEl0In/6FnAqc1TKqOPmX1lnNvTkbmUb3ypmm089tyuBzl36hqzCo5Pw1YRUdE7vhhCWw+vqm1AwqOcZTDyG3Q8zc79zcHEKosrLy3N8YDIaJiYlz584NDAwghPBj32Uyme2rZDKZ9Th4Ho+nUqmMRqPtXesLvQKUKYHlOdc8Zk2oONmc/rx7uwbC9C9wG2+pTsIRM05ds2ZNbGys7ZW//vWv4eHhO3bsYDAYCCE2m83j8QYHBzdt2oRP50qlUpVKtW7dvSOX4+Liuru7h4aGkpPvbT8fHByk0WiRkV7zwTmDj00qtVMqXTjbfmwNgIcrzoj6h4+bDSYzlUz8Hnfg26q6Jj35EHI7xPz/QKPRsPsFBARQKBQMw6yVRxs2bJDJZLW1tUqlcnJysqqqisFgpKWl4XcFAgGPx6urqxsdHVWr1Y2NjcPDwyKRyCv6KFlB9S9YhtJsPjfovgI9jEF7QsR3cxiwqQa4gUZv7Bjz6EPI7RDfm/BBhEKhWq1uaGjo7OxECGEYtnfvXutyKYlEKi4urqioKCsrw7/NzMwUiURERuy8R1LDP74zeniz/fZcAJaQwcf+cET07Idf641mhCMs5cAAACAASURBVBDGoL57VLTO7QvzB7Ki37k28OTG2Ic/CsByuX+32Ap5Sk597rnnFl4UiUTp6ekymYxCoQQH239O4XA4Bw8elMvlOp0Ow7BF9+R4uEdSIp4/3UB0FMD7bEsONZnNz+YJSAHoCRHf/QkVIZSXHPoPHzdPq3WhLFi8AKvFuxZTkefk1AehUqnh4Uv9hdr1hfAuAQFo59pwr/tHAwh3tWOiMDXy5/vSiA0Dn/49np9IbBjAh1V1Tf3LvnVER+EEqC8gGFT/gmUoa5WUZEYRHQXanxV9Hqp/war5ZkSWFObph5DbgZxKMChTAstwqVWy1wNyagYf0+iNg1IN0YEA3+SNc3iQUwkWyQkMZtE6x+HwLOCoy22SR9MjPaT36YEs/rlmqP4FqwJyKliOwtSIShiqAod5yCAVBztqwCqZUGpn1fq0aE8/hNwO5FTiQT994JRLbZK9GZ6SU+OCg0JYtKYROdGBAF/jjYNUBDnVE6yP5Y7Oztl1mwNgUR5SnWQLpn/BavC6nak438+pNTaIjuWBYPoXOOhS6/jezGiio7gPTP+C1eCl41RP35+6cjt37iQ6hId7JDX882/GDkFLGrAkk9lS0Tn57tENRAdyH4xBFcVxr/VIC9aGER0L8BHXe6XbkkPJJI8oxHOK749TvUIYK7Cic/KNi51tYwqiYwGey6NWUm3B9C9wLS8dpCLIqZ6gtnfy+EdfWyyWU3V3n/rg65v900RHBDyUBy6m4mD6F7gW5FSwTPfOl1bfd7502xhUUQJ7RpOlunvSY48Bh55KwFX6p9R0Cik2OIjoQJYDcirBPOF8aeAVLraO7/Ow6iRbMFQFrlLVPfWIdw5SEeRUALyFR7V6WGjn2vDGEZly3kB0IMDree/EL4KcSjgPOV8aeDid0XyjT1qYGkF0IEuB6V+wcnN6U5tYnpMYQnQgy0RkTp2fnxeLxf39/WKxeH5+ftFnFArFwMDA8PCwwbDI51+TyYS/w8zMzCoHu1rw86V5zHtplU4hEXK+NPBwZa3jJR488YuD6l+wcl49SEUE7k+9detWc3Oz9VsSiZSenr5161YS6ds0X1tb29HRQSKRzGYznU4vLCyMi4uz3pVKpeXl5RqNhkwmm0wmgUBQVFREJpPd+sdwhW3Joaef3XS+aXx4RqPWmXKTQomOCHicS62So1viiY7iITbE8yaVWrFsPobHIDoW4K2quyd3pXj0fMzSCMupkZGRu3fvDgsLYzAYc3NzDQ0Nra2tLBZr/fr1+ANtbW0dHR05OTlZWVk6ne7q1asVFRWHDx9mMpkIIaPRWF5eTqVSjxw5gmFYX19fVVVVfX19bm4uUX+ilcjgczP4XIlivvSdW0THAjzOnN50e3Dmg2c2ER3Iw+GVSj/YlUx0IMBbVXdP/bzEmw4ht0PY3K9AIEhKSuJwOFQqFcOwXbt2UalUsVhsfaC5uTk8PDw7O5tEIjEYjIKCAoPB0NHRgd/t7+/XaDR5eXkYhiGEhEJhcnJye3v7olPE3iIKY+iMJmj8C+x4YD/CB4HpX7ASTSNyQSiTG+RNh5Db8ZQaJZPJZDabg4LubUiSy+VqtTohIcH6AJfL5XK51qQrFospFEpMTIz1gfj4eJPJJJFI3Bi166XzsXZopQTu57GtHhZKDmeZzeiHHzdDUzCwDN4+8YsIz6kKhWJmZmZkZASfyM3KyrJeRwhxuVzbhzEMk8vvNUOQy+VsNtt28RV/GH+h98rgY/CbCNjS6IwNw7Ida7yjlW5t7+SEav5C8xg0BQPL4NU7U3EE99AvKytTKpUIIQaDsXv3bh6Ph1/X6/UIIRrtvk0mNBoNv44/EBgYaHcXIaTT6dwQ9urJ4GMwdQZsXWyV7POSQSreFGxOZ8K/xZuCnX5uUwafu/QLAUAITSq1M154CLkdgnNqSUmJ0WhUqVRtbW1lZWW7d+8WCATWuxaLxfG3wh8OCLA/x+DUqVO23x47dmwF8a66DD72r5c6iY4CeJBLreMnticRHYVDHtQUDHIqcIS376LBEZxT8QqjkJCQuLi4Tz755KuvvsJzKp1ORwsGnTqdzjo2DQwM1Gq1dnetL7Tl4UnUDp/HmNOZZHN63v2NIIB/Us4bWsSKfKEXb6+SKLQPfwgAhKq7p3zgvEtPqVEikUihoaFKpdJsNiOE8ElgmUxm+4xMJrNODvN4PJVKZTQabe9aX+jVoEwJWJW1SUo88nC3RS1sChZEowzPzj3+h5tlrdBfCTyEb4xTPSWnmkymqampoKAgvOyIzWbzeLzBwUHr9K9UKlWpVNaeD3FxcWazeWhoyPoOg4ODNBotMtJDT+1wXEYM1iaGnAoQQqisZbxkvXfsokELmoJhDOr/Pr2h7JVtbx7IuNI+ufU/qk/VDREaIPBELaOKNy52njjduD6W642HkNtZ5tyvxWKZm5tjMBi2lbdOuXjxYlJSEpfLpdFoSqWyra1NoVBs3brV+sCGDRsqKytra2tFItH8/HxNTQ2DwUhLS8PvCgQCHo9XV1dHp9N5PF5PT8/w8HBOTo439lGyk8HHLkCZEkBINqfvkqhyk7yp8am1KRhC6AkRH++ymRmD/eGISKKYf692MPlnl09sT3pheyLG+HYPYsuoAi/NK83mZ0BjTn9S2zt58pN7h10yaJSb/dPbkr14pQMhFOB4HZDZbP7qq69qa2tbWlomJibMZjOJRAoLC1u/fn1ubu727dupVCc26l68eHF8fByf6UUIMRgMkUhkbaKEa2pqamhowCd4MQwrKioKC/t2R4FSqayoqJBKpehvrQ1zc3PtapTy8/Nv3LjheFSeQCyb/+57t27+0y6iAwEE+9Pt4e4J1ZsH0okOxJWMJst7tQP/Uzu4Z13kie2JyeEs29+qPCb994ezvP23KnBQy6ji2Id3bOvaeEE0by8Udyinms3mCxcunD59WiqVhoSEpKamhoaGMplMjUYzOzvb1dUllUp5PN53vvOdQ4cOOZ5ZDQaDSqXCd8VgGLawZBd/RiaTUSiU4ODgRd9ELpfrdDoMw+y21uC8MacihLJ+UXHtJzu9upkIWLnvvnf7ZKFwi9ce0LG0TxpG36sd5DJoPZNKlfbbwggf+K0KHPTGxc5TdXftLh7fJnitJI2QeFzCobnfH/7wh8PDwyUlJXv27LHtbWQlFosrKio+++yzsrKys2fPOvizqVTqgzKl7TPh4UutWtv1hfANeOcHr672BCs0q9H3Tqp8NaEihA5tjD20Mfb50w22CRXB9hvg5RzKqY8++ugjjzzCYDzwrImYmJhnn332+9///qVLl1wXm//CS38hp/qziy3j+7ynOmnZYnhBRIcACFOazf+iaUw+9+3crw+cHu1QhdH27dvtWhotikqlHjhwYMUhAehQCNClNsle79lFs2wLt9/4wG9V4CC8UJzzt2o1jEH1gdOjHcqptbW1paWl77zzju3eFbB6IKf6OalKd3das1nwkJURH2C3/YZJp/jAb1XguG3JocUZkRviuMe3Cc4cz/GB06MdmvtNTk6OiIg4e/bs2bNn09LSiouLCwsL8XNMwWqIDQ5SzhsU8wbb/QbAf3jRQTQrZ91+MzyjUetMPvBbFTjl9sDsh89uSgjxkYTi0Dg1JSXlvffe++ijjw4fPjw5OfnWW2/t37//X//1XxsbG51qyQscB0NVf1bWOl7iJQemukQGn/taSdr/e3rT0MycRDFPdDjAfVrEcoxB9ZmEipzqo5SQkPDyyy9//vnnv/rVr7Zu3VpTU3Py5MlDhw598MEHExMTqxeif4Kc6rcmlNox2fyGeK/vsrkMx/ISoNeSX7nQPP54lk99fHS6jxKJRNq6devWrVtVKtWXX35ZXl5+6tSpDz/8cN++ff/4j/+4GiGuUE1NjfXrnTt3EhiJU9JjsMut3n2+OlieS62SvX4z8WvnmdyE9Nev/rQ4lehAgJucbx6/cjKf6Chcafnn0rDZ7NLS0vT09HfffbehoeHuXfutux7Ci/KorQw+9svybqKjAAQoax3/eck6oqMgBo1COpgdc+bOyJHNcUTHAlbdrYEZYQQrlGV/mJhXW2ZOlclkFRUVly9fHhwcJJFImzdvPnjwoGsj83NxwUHyeYNy3sCBMiV/IlHMTyh0ojj/7XjwTF7CD840QU71B+ebx/Zn+dq+KedyqtFo/Oqrry5fvnz79m2TycTn848fP15cXGzbhhe4Cr6kmge9T/3JxRbJvvV+OvGLWxPBDmXRvhqY8a7DA8AyXGgZ//k+X5uScTSn9vX1Xb58+csvv1QoFIGBgUVFRXv37s3KylrV4Pwc5FQ/dKlV8osDvvZbxlnP5CZ8+NUQ5FTf9mXnZF5yaBDN608Ss+NQTr169eqbb76JEEpPT3/xxRd37doVFAQdxVZdOh+70g5lSn5ELJuf0ejWx/jvxC9u97rIf7nQKVHMR2EP7IcKvN2FlvHHfbH7pkM5NSgo6MiRI3v37rUeCQ7cIIOP/foqlCn5EX/blroEfFMNFAD7KosFlbWO//6wiOhAXM+hnJqfn5+f7/pyZ71ePz09PTc3x2QyQ0NDFz0kTqFQTE9PUyiU6OjohQ+YTCaJRKLVank8XkiIr80UxYcEzWr0Kq2RHbj88mzgFfBDuS+0jP9zCWQRhBA6lpeQ9nPYVOOzfHWQipZR9yuVSv/617/29vbKZDLbJkpr1qx57bXXHH+fK1euDA8P255JvnXr1rVr19o+U1tb29HRQSKRzGYznU4vLCy0HShLpdLy8nKNRkMmk00mk0AgKCoqIpN9anYeX1KFhSXfZnso9xsXu0JZdDiUm0omPbkBNtX4rPPNY0e3xBMdxapwLqdOT08fP35coVCkpqZGR9/3KWPpU04XUqvVW7dujY+PDwoKmp2dra2tra6u5nA4UVH3ih7b2to6OjpycnKysrJ0Ot3Vq1crKioOHz6M9xk2Go3l5eVUKvXIkSMYhvX19VVVVdXX1+fm5joVhoeDnOrzWkYVJ//SOqu5d9yVTKN75UwTHMqNYFON79LojPV3Zz94ZhPRgawK53JqZWXl/Pz8H//4x/j4lX7E+Lu/+7uAgAD864iIiF27dn3yyScDAwPWnNrc3BweHp6dnY0QYjAYBQUFZ8+e7ejo2Lx5M0Kov79fo9Hs3bsXwzCEkFAoHB4ebm9v37Rp06JzyF4qIwa70j5JdBRgFZ1rHrMmVBwcyo2DTTW+6nzz+H7f6kdoy4l+vwghuVwuFApXnlARQtaEimOxWAghk8lk/UFqtTohIcH6AJfL5XK5YrEY/1YsFlMolJiYGOsD8fHx+PLqymPzHOuisY5x6PoL/NSxPMGpOg9t0AaW7XzL+H4fXUxFzubUzMxMsVhsMBhcHkd/fz9CyJojFQoFQojLve+jOoZhcrkc/1oul7PZbBLp2/jxh/EX+gxBKHNKpdPojEQHAlYLHMq9hKK0iPYxJZxU40smldqhaU1Oos/OPTiXU7du3bp58+Z/+7d/k0qlLgxCLpffvn07Ojo6MTERv6LX6xFCNNp9v2toNBp+HX9g4V2EkE6nc2FgngAOqPFtGXzsZKGQTL43bYMxqHAoty04qcbH+HDFL8659dSAgIBDhw795Cc/KS0tDQoKsl25TEtL+9WvfrWMCDQazaVLl/DeTHYTwk4dzoo/bPcOCKFTp07Zfnvs2LFlBEkgPKdu8d2PdaCuf/r/PpoyodAihJ4Q8SGh2oJNNT7mfPP4f5ZmEB3FKnIup46MjLz88stkMnnnzp1cLtc2gfH5y5mtmpubu3DhgtlsPnDggG1vJjqdjhYMOnU6XWBgIP51YGCgVqu1u2t9oS2vS6J2MmKwyk4oU/JZ/VPqu9Oa//fURqID8VBUMunJjTFn6keO5EABsNe7O63R6IzpPv2p0em6XwqF8qc//cklDRbm5+cvXLhgMBgOHDjAZrNtb/F4PISQTCazvSiTyfDr+AO9vb1Go5FCoVjvWl/oSzL42P/3ZS/RUYDV8u61gZcKkoiOwqM9k5vwgzNNkFN9gG9X/OKcW081GAwCgcBVCfX8+fM6ne7xxx/ncDh2d9lsNo/HGxwctE7/SqVSlUpl7fkQFxdnNpuHhoasLxkcHKTRaJGRkSuPzaMIQplTSp1GD2VKPmhSqb3ZP/132TEPf9SPWTfVEB0IWCmfPNzNjnM5dcOGDcPDw3Nzcyv/wRcuXJDJZEKhUCKRdP3N6Oio7c+SyWS1tbVKpXJycrKqqorBYKSlpeF3BQIBj8erq6sbHR1Vq9WNjY3Dw8MikcjH+ijh0mOwdjGUKfmgd64NvAyDVAfAphof0D6mYNIpglAm0YGsLufmfrOzs4uLi1999dUXXnghISHBtkYpICDA8WYLZrN5dnYWIdTS0mJ7PT4+PjY2Fv9aKBSq1eqGhobOzk6EEIZhe/futS6Xkkik4uLiioqKsrIy/NvMzEyRyAc7MqO/lSn5cPW5f5rTm/7aMNr5i0eJDsQLFKVF/MuFjnH5fDQXTqrxVv4w8YsQCnCqtraqqur1119f9FZGRsY777zjmqBsGAwGmUxGoVCCg4MXfUAul+t0OgzDrOVLtvLz82/cuOHyqNzsfPN4dffkf33XNz8x+K23KnoCKeQf7EomOhDv8F7t4LRaBwXA3ivn36su/CAvgrPIL2pf4tw4NSkp6fjx44veioiIcEU89qhU6tKdhO36QvikDD72X1VQpuRr3r020PvmY0RH4TVgU41Xqx+cSQhl+nxCRc7m1ISEBNt+gcA9EsOYEwrtnN4URPPB1WL/9D+1g8e3Ccgk++3U4EFgU41X8+1+hLacq1ECREnnY+3QTcmHvHut/6UCmPV1DlQqeS8/WUxFDuZUxxv8rkYrYICgQ6FvOXNnpDg9ihvkOwcouYcwnBXGpsOmGq9T3T2VIwhm0p0+rtsbOZRTX3rppTNnzmg0miWe0Wq1n3/++dGjR10UGLgP5FRf8k5N/8s7YZC6HDBU9Ub+sC3VyqEPDkePHn377bfff//9bdu2bdiwYe3atSEhIUwmc35+fmZmpqenp6mpqba2Nigo6MSJE6sdsX/KiMF+X91PdBTABcpax7NieTE82BOyHLCpxhtdaBn/3Xf8ZduCQzm1oKAgNzf3ypUrX3zxRXV19cIHBALBiy++WFxczGDAP/RVkRTGGpfPzxtMDCqUKXm3t2sGfntoPdFReDH8pJqf7YUCYO9wsWW8JDN6weEmPsvRCW4ajfb4448//vjjExMTra2tExMTarWaxWJFRERkZmZGRUWtapQrUVNTY/16586dBEayQhkxWJtYsVmw+D5d4BWu90rD2fTUKPtmnMBxz+QmpP38KuRUb3GhZfzQxliio3AfpxeNIyMjvaunrlfnUVt46S/kVK/2dk3/T3avJToK7wabarzInN5U1z/tV8cu+UUhlm/I4GO1va48Ch64WeOwzGS2wKeilTuWJ3ju1Nd9U2qEUGk2P8Onzw7zaj5/AvlCsD/Va0Dpr7eDY91cRSLXjKvmT9XdPVV396kPvr7ZP010RGBxflXxi4Oc6jWSw1li2bzWYCI6ELAcvZOqkdm5wtRVaeHpV1pGFSf/0mo03mtULtPoXjnT1DYmJzYqsNC0Wtc3qd6a5F+Hf0BO9SYwVPVeMEh1lXPNY7Mave0V2Zz+fNM4UfGAB/Gf3km2IKd6E8ipXkqi0N4enHlC5F+TYMDPXWgefxxyqvsplUq5XG42mxe9q1AoBgYGhoeHF+16aDKZxGJxf3//zIxftCuDrr9eCrr7ulBpNp8bRLO9gjFo8HnF0wzNaBTzhvUxvn9umB2H6n5VKtWDct63b0ShMJlOHOAukUju3LkjlUrxZHnkyBEMsy/eq62t7ejoIJFIZrOZTqcXFhbGxX1bPS+VSsvLyzUaDZlMNplMAoGgqKiITPbllggZMdi716CbkpfR6IyffTPW8cYeogPxERl87A9HRK+cbZJp9AghjEF996hoHZT+ehj/HKQiB3Pq008/LZU+ZBeHs2eS492D09LSlErl3buLNPBsa2vr6OjIycnJysrS6XRXr16tqKg4fPgwnrmNRmN5eTmVSsWTcV9fX1VVVX19fW5uruMxeB1hOGtkdk5nNNMpxE8wAAe9fW3g72El1aW2JYeefnbTZ41jH90aPnM8BxKqBzrfPP7eUxuIjoIADuXU559/fm5ubulnQkNDnfrBycnJycnJCKHGxsZFc2pzc3N4eHh2djZCiMFgFBQUnD17tqOjY/PmzQih/v5+jUazd+9efHQrFAqHh4fb29s3bdpEpfrycR/4kurGeB7RgQBHvXutf/Df9xIdha/J4HMz+NzrvdIg/zjtxFu0jCrwIjILsiSFsYgOhwAO/XN87LHHVjsOO3K5XK1Wp6WlWa9wuVwulysWi/GcKhaLKRRKTEyM9YH4+Pi+vj6JRGI7P+x78A6FkFO9xbvXB17cnuQ/zU7dLCWS3T2hEoQ6seoEVk9t7+TJT1pn1XqEEINGudk/vS3ZubGWD1jOFKLZbO7s7KysrOzq6sKvmEwmi8XiwrAUCgVCiMu9b30bwzC5/N4uNLlczmazSaRv48cfxl/ow9KjsfZxH/8z+hLYQrOqUqI43RIl0VEAhP62bxhPqAiheb3RP/cNO51Tu7q6vve9773wwgtvvPHGl19+iRAymUylpaVnz551YVh6vR4hRKPdV91Ho9Hw6/gDC+8ihHQ6nQvD8EDpMVi7GHKqd/hz/fC+zGgOw5cXI4iVFsXphJzqGWDfMM65pQiFQvHjH/84Li7uH/7hHy5duoRfJJPJhYWFN27cOHLkiGuDc2rsiz8csGCW7dSpU7bfHjt2bOWBEWhtBHtwWmMwmalkKFPydG/XDHz64laio/Bl+Nwv0VEA8C3ncmplZSWJRPrNb37DZDKvX79uvZ6YmHj16lUXhkWn09GCQadOpwsMDMS/DgwM1Gq1dnetL7Tl7Ul0IbxMKTsOllQ9FF6mMTitEYaz4OjsVRUbHDSr1mv0RiYNKpUIVprN/6JpTD737VDVP/cNOzfWGR8fFwqFC/ehMplMlcqVnxZ5PB5CSCaT2V6UyWT4dfwBlUplNBpt71pf6NvwMiWiowCLq+2dPPbHO6fq7l7vmWoaVUB799WWEsXulsBQlXj4vmE69V6HAL/dN+xcTuVwOFNTUwuv9/f3h4S4slEym83m8XiDg4PW6V+pVKpSqaw1vXFxcWazeWhoyPqSwcFBGo3mXWe7Lg90KPRYdmUaynm9f5ZpuFNqFKcLllQ9w+aEYLPZfHyb4Pg2wZnjOblJflf0i5zNqVu2bBkZGTl//rztxYGBgU8//TQvL8+pt9LpdF1dXV1dXXg3iYGBga6ursHBQesDGzZskMlktbW1SqVycnKyqqqKwWBYd9cIBAIej1dXVzc6OqpWqxsbG4eHh0UikW/3UcJBh0KPBWUa7pcaxe6CcapnePf6wMsFya+VpL1WkuaHI1Scc4sQa9euLS0tfeuttyoqKpRKZWBg4E9/+tNbt24FBwc7u2yp0WiuXbtm/ba+vh4hFBwcnJiYiF8RCoVqtbqhoaGzsxMhhGHY3r17rculJBKpuLi4oqKirKwM/zYzM1MkEjkVg5dKiWT3S9VGk4VChm2PwN+lRHI+/2aM6CgAQgj997WBb35eRHQUBHN6Yf9HP/qRUCj89NNPh4eHLRbL6OhoUVHRCy+8EBwc7NT7BAcHv/TSS0s/IxKJ0tPTZTIZhUJZ+P4cDufgwYNyuVyn02EYZi1f8gf49K8ozu/6U3s4KNNwP5j79RB//Gro0KZYBtX3ZwqXtpxiuZKSkpKSEoPBoNfrg4KCFm5fcSEqlRoeHr7EA3Z9IfwE5FTPhJdpvPBRo0ZnRH5cpuFOQTRyKIs+MjsXFxxEdCx+7b+vD3z+snMrgD7JuZwqlUppNBreYpdKpfp2Z11PlsHH7gzJHv4ccLttyaGPpkeMzsxlxnCfEPEhoboB3k0JciqBzjePbxYER2F+NFn4IM7VKLW2th44cOBnP/vZzZs3TSbTKsUEHgpKfz3ZtEr/97uE/lym4WZpUexOKFMi1LvXB17aAT04EXJ2nCoSiQ4dOlRRUVFbW8vj8YqKivbu3WutKgJukxLF6Z9UGc0WCgnKlDxOz4RqbSSb6Cj8SEok51wzlCkR5nqvNIJNT4niEB2IR3BunIoXFn322We/+c1vNmzYcP78+aeffvq555777LPPfL55vaeBHTWeST5n0BpNkRyYBHMfaPtALDgowtZyapRIJNLmzZs3b96s0Wiqq6vLy8t/97vfVVdXv/322y6PDzwI3k0pKxbKlDxL94QyJRI+sLtVQghzQqnVGkyBfl906n7No3KtwbQl0ZU9f7zaivqwMxiM6OjoqKgoKpXq2rPewEPBkqpn6p5QpcDEr9tB5weiwCDVzjIbT4vF4vLy8itXrkxNTfF4vCeeeKKkpMS1kblKTU2N9eudO3cSGIlrZfCxU3VDREcB7HVLlFlwvIHbpUZyuiaUsLvMze5Oa3onVXvW+X5HWMc5l1Pn5+erqqouX77c1tZGoVC2bt36ox/9aOvWrZ7cEdCX8qit1ChO76TKZLaQoUzJk3RNqA5vjiM6Cr8Dh5MT4r+vD7wI5b73cy6nfvXVV7/85S+FQuEPf/jD3bt34xtVASFaRhW8INrJj5tP7EjMgD0bHgOKfgmRGsW+2AJ9ld1KNqev6Jj85d9lEh2IZ3Eup65Zs+bDDz9MSoIPJgSr7Z08+UnrrFp/sXX85sDM7w9nbUv2xyMgPM3QjCaSEwiVMu4HHQrd77+vDbwIK6kLOFejFBsbm5SUZDabOzs7Kysru7q68OsmkwlqlNzG7kAxmUYHB4p5iG6JKiUKBqkEYNEpWBB1TDZPdCD+wmJB790YfGE7NCew53Tdb1dX1/e+970XXnjhjTfe+PLLLxFCJpOp3iPaDAAAIABJREFUtLT07NmzqxAeWAQcKOaxoOiXQGlRnE4YqroLrKQ+iHM5VaFQ/PjHP8Yw7Ne//nVBQQF+kUwmFxYW3rhxw/XRAeBVYHMqgVIi2d0TsJ3GTaAZ4YM4l1MrKytJJNJvfvObLVu2sFgs6/XExMTR0VFXxwYWV5rN5wbRbK/AgWIeAuZ+CQSlv25z5s5ISUYUhwFnqCzCuZw6Pj4uFAqZTKbddSaTqVIR8AnRZDKJxeL+/v6ZmRn3/3Si4AeK8Zj30iqZFAAHinkCndEsUcwnhNj/3wHcA+Z+3Qaqk5bgXN0vh8OZmppaeL2/vz8kxN29qaRSaXl5uUajIZPJJpNJIBAUFRV58k5ZF9qWHHr62U34GupfG0ZhvtETdEuU0EacQIJQ5ph8Xm800ygrag8Hlna5TZLOx+BkvQdx7h/fli1bRkZGzp8/b3txYGDg008/zctz62m0RqOxvLycSqUeOXLkxIkThYWFQ0ND9fX17oyBWBl87mslaa+VpO0X8ctaJUSHA1DXhCoVCpQIhXdTIjoKHwfVSUtzLqeuXbu2tLT0rbfe+vu///v29va2traf/vSnx48fZzKZx44dW6UQF9Xf36/RaPLy8vC+E0KhMDk5ub293WAwuDMMT1CSGV3WCkW/xOuZUK6FCQNCwQE1q+2rgRkWnZIZAytND+T0JMmPfvSjf/qnf9JoNMPDw93d3d98801RUdF7770XHBy8GvE9iFgsplAoMTEx1ivx8fEmk0ki8bsR22ZB8NC0ZkqlIzoQf9clUaVCgRKhoPPDaoOO+Q+1nB76JSUlJSUlBoNBr9cHBQUFBBDQb1Yul7PZbBLp288EXC4XIeSfx7iWrI8uaxl/dpuA6ED8GmykIVxqJLu8fYLoKHxW57hyRqPLF4YRHYhHW/5iPpVKZTKZhCRUhJBer6fR7ttPgn+r0/njcG1fZvRFmP4l1IRSG0ghc4NgdwGRYDvNqoI9qY5waJyqUqnMZvND3ohCWbjHxp3w5ogLc3x+fv7Ch32sQ4Uojjup1I3L56O5DKJj8VPQOt8TYAxqEI0iUcxHYfA/gouNy+cbh2W/PywiOhBP51BOffrpp6VS6dLPZGRkvPPOO64IySGBgYFardb2Cj5CpdPpdk/6WPp8kH2ZURdbJdB+kyhdEmUqbKTxAPjh5JBTXQ4GqQ5yKKc+//zzc3NzSz8TGurWc1F4PF5vb6/RaKRQ7v0RZDIZft2dYXiOkvXRP/28DXIqUbonVAVrYJ2JePj0766UcKID8SkavfHzxrGOX+whOhAv4FBOfeyxx1Y7DmfFxcV1d3cPDQ0lJyfjVwYHB2k0WmSkn544n8HHVFrj0IwG+vgQontC9SJ8oPEAaVHsK+2TREfha6BxkuOWU/frCQQCAY/Hq6uro9PpPB6vp6dneHg4JyfHT/ooLapkfVRZi+QHu5KJDsQfQRMlD5ESyfldZR/RUfiIllHFueYxhNBHt4e6f+FxIyvP5K05lUQiFRcXV1RUlJWV4d9mZmaKRH69fl6SGX3y4ybIqe4HR7x5juRw1tC0xmi2UEjEbEnwGbW9kyc/uXdOM51KuX13ZluyWxf4vJS35lSEEIfDOXjwoFwu1+l0GIYFBgYSHRHBUiLZRrOlf0qdHM56+NPAdaDo16PgS6rpcKrECrSMKk7+pdV6TrPOYHzlTNPp5zZl8LnEBub5vL7ZNJfLjYiIgISKgz6FhICJX48C3ZRW7lzzmDWh4mRzevzQDrA0r8+pwNa+9VEXW/yuOyPhuiaUqdBByWOkRrK74HByQBDIqT4lKYxFpZCglYybwdyvR4FuSitXms3nBt3XqA5j0J4Q8YmKx4v4Th8lgMObP8BUpNso5g1zelMUBqsPngJv+0B0FN4tg4/94YjopT9/o5o3IIQwBvXdo6J1sETtAG/towQepCQz+qkP6v9xz1qiA/EXsJjqaXhBNBqFNKnURnDgg87ybUsOLcmM7JGosuN4T4j4kFAd5K19lMCDxIcEcQKpbWOKDPh/wC1gI40HSolkd0+oIKeuUO+E+md70zbE+2lzuuXx1j5KYAn40W+QU92je0IFRzR7mrQoTqdEuQO6Ra7AnN7UJVFCQnWW79co1dggOhY3wZdUiY7CX0D3fA8EZUord7NPug2OSnWe0z0fzGZzdXV1Y2OjXC43mUzW6wKB4KWXXnJpbK6xc+dOokNwt2guI4JDbxqRi+Jgg/aqg6JfD5QSxX6npp/oKLzbjf7pfGic5DzncqrZbH711Vdv3boVFRUlkUhiY2NnZ2c1Gk1ISEhISMgqhQiWAT+lHHLqahuemQvn0BlU/+0y7ZnWRrD7ptRmi4W04EBl4KCbfdPP5gmIjsL7ODf3W19ff+vWrTfeeOOTTz5BCL355pvl5eX//M//bDQaH3/88dWJECwHvqRKdBS+r3tCmQLdHjxSShS7G3bULJdYNm8wmQWhsD3Sac7l1La2tqSkpF27dlmvBAQE7N69+/HHH3/77bddHRtYvnA2PSGUeefuLNGB+Dgo+vVYqZGcrglYUl2mG33SfFhMXRbncqrRaLTO8VKpVJXq3sfAtLS0rq4uF4cGVgaf/iU6Ch8Hm1M9FoxTV+Jm3/Q2ISymLodzOTU0NHR6ehr/OiYmprW1Ff+6v78futh7Gvw4VaKj8HEwTvVY0El/JaBAadmcq1ESiURvv/325ORkREREUVHR+++/Pz4+jhC6cuVKUVHR8iJQKpVms5nD4ZBIiyR4hUIxPT1NoVCio6OpVKrdXZPJJJFItFotj8eDIik7vCBaWjSnrn86D/7fWB16o3lMPg9rTp4J5n6XrUUsF4QwOQz737fAEc7lVKFQ+Itf/MJisSCEjhw5IpfLKyoqEEJFRUU//OEPnXoriURy584dqVRqMBjwd8Mw+43ztbW1HR0dJBLJbDbT6fTCwsK4uDjrXalUWl5ertFoyGSyyWQSCARFRUVkMlRgfqskM6qsVQI5dZXAcTSeLIRFC0AB02pdKItOdCxeBiZ+V8Lp/ak7duzAvyCTya+88sorr7yyvB+s0WgQQmlpaUql8u7duwsfaGtr6+joyMnJycrK0ul0V69eraioOHz4MN6p32g0lpeXU6lUPBn39fVVVVXV19fn5uYuLx6ftG999L9d6vqP0gyiA/FN3RJVShRM/HoufPoXam2cdaNv+mShkOgovBVhfZSSk5P379+fm5sbFrb4v/jm5ubw8PDs7GwSicRgMAoKCgwGQ0dHB363v79fo9Hk5eXho1uhUJicnNze3o6PegGORadsiOdd733I+QdgeWAjjYeDA2qWwWi2NAzNbkmEpbRlWmZO1Wq14+PjYhsPPbjGKXK5XK1WJyQkWK9wuVwulysWi/FvxWIxhUKJiYmxPhAfH48vr7owDB+wb330RdioujqgQMnDpURyumFJ1Umwi2aFnJ77rampee+996y5zcq1Z70pFAqEEJd7XxsgDMMmJibwr+VyOZvNti1rwh/GXwisSjKjXjvX/taT64kOxAfB3K+HS4tiv3djkOgovMyNvul8WExdAedyak9Pz+uvv56UlPTKK68EBwcH2PT9sst/K6TX6xFCNNp9B83TaDT8Ov6A3e4d/GGdTufCMHxAIJW8LTm0smuyMDWC6Fh8yqRSS6OQeEG0hz8KCAKd9JfhZt/0H46IiI7CizmXU2/fvs3lct955x2ndqPOzc1Zh48BAQGRkZEOvhAvMHbq4YAF7T1PnTpl++2xY8ccf0/fgFf/Qk51LWid7xXwg1Rhit5BUyqdfE6/JgL+upbPuZyq0+liYmKcbe8wODh448YN/GsymXzixImHvoROp6MFg06dTmf90YGBgVqt1u6u9YW2/DCJ2ilZH/2Tv7b87jtZRAfiU7omVKnwm9rj4UNVyKkOutErzYdDZ1fGuZyak5PzxRdfaDQafEOLg1JSUhITE/GvF44jF8Xj8RBCMpnM9qJMJsOv4w/09vYajUYKhWK9a30hsEUhBRSmRVxpn3g03dEZAvBQ3RLldvjt4/Hw7TQHRHyiA/EON/qnC+Bf9co4V/ebkZHxxBNPvPrqq+3t7RqNRm9jiU0sFAol6G8YDIYjP4jNZvN4vMHBQev0r1QqValU1p4PcXFxZrN5aGjI+pLBwUEajeb4xLJfKcmMLoPevy4FM4peITWS3TUB22kcBUW/K+fcOLWmpuajjz5CCC08ftzZul+dTjc4OIgQwjfhDAwMMBgMOp1uHdFu2LChsrKytrZWJBLNz8/X1NQwGIy0tDT8rkAg4PF4dXV1dDqdx+P19PQMDw/n5ORAH6VFlWRG/eDMN384QnQcPgQ2p3oFKFNyXLdEGcYODGFB2d2KOJdTk5KSjh8/vuitiAjnSmA0Gs21a9es39bX1yOEgoODrTlVKBSq1eqGhobOzk6EEIZhe/futS6Xkkik4uLiioqKsrIy/NvMzEyRCMrVHggfqpZkRhMdiC/omVStCWfDcdeeL5xNN5otsxp9MBNSxUNA33yXcC6nJiQk2PZhWIng4OCFg107IpEoPT1dJpNRKJTg4GC7uxwO5+DBg3K5XKfTYRgGB+Msbd/6qM+/GYOc6hJQ9OtF8CVV6Hr9ULW90ye2C4iOwus5l1ONRqNdtS0uICCAwWAserDMClGp1PDw8CUecO2+WB+2Z13kD840GUxmKpmwhpQ+o0uiTIVjU70Evp0GcupD3eyXnn52M9FReD3ncur169dff/31RW+RSKSEhIQDBw4cOHDAweJe4Gb71kddbJGUZkMN5Ep1S1RP5cYTHQVwSFoU56vBGaKj8HR1/dO5SaHwm3vlnMupa9as2bNnz5dffrl161ahUEihUEZGRq5du5aenr5u3brm5ubf/va3s7Ozzz333CqFC1ZiXRT3t1/2to0pSrP5GXz7k/WA46Do14ukRHE+qFvk5CtgC853cxXnciqNRrt169Zvf/vbDRs2WC8eO3bspZdeOnbs2IkTJ373u9+dPXv2+9//vl1bQUC42t7Jt6/3zar1p+runmse//3hrG0wG7YsynmDRm+MwhzaFQYIh8/9Eh2Fp6vtk/7qIHQFdwHnltYqKyvj4uJsEypCKCYmpqCg4Pz58wih73znOzqdbmRkxJUxghVrGVWc/EvrrPpet2SZRvfKmaa2MTmxUXkpGKR6FzIpICmM1fv/t3fngU3W9+PAP7mTtumT9EjvI6WhJ6UHx2hBCms5yiEqboM5FQXU/XTT6b4iCgrz2ryPDY8pTodTUC7LKpVSSEUEC/SmZ2hoSluSNklzNHd+fzzsMaQHbUnypMn79VfyPJ8nfSc85J3P3QdpdVRKvemKypARDUMEXGBiOVWpVI64Bq/dbseXMcJH51qtVpcEB1zlYE33gM7keESpNx26AKtATAbk1CkHqqpjg4ZfF5pYTp02bdrFixdPnz7teLCzs7OiomLatGkIIXz70uHzXgDwGc09g6kw6HdKwafTkB2F94L93VxoYv2pxcXFBw8efPLJJ2fNmkWMUfr+++/5fP769esRQpWVlZGRkeHhXrS6VWVlJfF40aJFJEZCottzYw5c6Fbpf66qYhzmbbAI6qRc7B28c1Yc2VGACUiN4n76g5TsKLxXVZv8seLpZEfhIyaWU+l0+ltvvfXpp58ePXr0p59+QghhGLZs2bKNGzeGhoYihDZs2OBt+8D4bR51NCMGe3d9ziP/uaDUmRBCNCrl0aLkDBj6Oymw4MOUA/XUMXTItQFMehQGa+a4xsRyKkKIzWZv3rx58+bNBoPBZrMFBAS4IyzgcvOTwz69bzbeh5oZjX38w6UNBbBmyoRdHtCHBbECmLCs9FQSGcw2WKwqvZkXwCA7Fq8DDb+uNeGcSoC1AKecGTG8GTHXlp063nL1cO2V1TNhqcKJgc7UKSo1Mri5d/AXSaFkB+J1vm9T/GYO9GW4zLjGKGk0GrVajRAym83qUeh0OjeHClxp+6r0nd80kR3F1AODfqeo9KjgJmj+HYm4TX4L7O/mOuOqp95zzz39/f0nT54Ui8WjrU040b3eALnCglhr82LfO9nx4MJpZMcylTT3alZmRZEdBZiw1ChudaeS7Ci8ztlLA9lxPCYd1gB3mXHl1E2bNuFL56ekpDz66KMjlgkLgxb5KWbL8tTkp/+7cX4SnQarfI7XxZ7BPy9NITsKMGGpkcH//hGG/jr7vl0B66m51rhy6vLly/EHsbGxsbGxrvrbJpNJoVDo9frAwMCwsDAGY4ThA2q1WqFQ0On06Ojo4QWsVmtPT4/BYODz+fjAYzAh21ak/+VI047VGWQHMjWYLLZu1ZAwLJDsQMCEQdvviKra5NtXwn9/V5r8GKWrV6+Wlpb29vZGR0evXr16ous8fPvtt1Kp1Gaz4U85HM68efNSUq6rAYjF4sbGRiqVarPZWCxWUVFRfHw8cVYul5eVlel0OhqNZrVahUJhcXExjQYDMifgnvzEW/5Wef98YXwIjN++MehMnbroNEpCSGCHXDstPIjsWLyFzmhp7dPmxMN2ma40rpw6MDBw9913b9q06dZbb8WPSCSSBx98cGhoCH964MCBDz/8cOyNTp1otdp58+YlJCQEBAQMDAyIxeLjx48HBwdHRV3rrKqvr29sbJw7d252drbRaDx69Gh5efm6desCAwMRQhaLpaysjMFgrF+/HsOwtra2ioqKM2fO5OfnT+DdA4S2rUz/S2nTh3fPIjuQKaC5dzA1Egb9TlVpUdyLPRrIqQSYReMO4+qaPn/+vEajWbBgAXHk7bffNhqNTz755P79+7du3arRaD755JMJ/eE77rgjKysLwzAGgxEREbF48WKEUEdHB1GgpqZGIBDk5uZSqVQOh1NYWGg2mxsbG/Gz7e3tOp2uoKAAwzCEkEgkSk5ObmhoMJvNEwoDFKdHDBosZ2CDyXFo7tGkRkE9darCp9OQHYUXgZzqDuPKqVKpNCoqimjdHRwcvHDhQmFh4cqVK8PDw5cvX7506VJ8WaXxc9q3PCgoCDksvq9SqbRabWJiIlGAx+PxeDyZTIY/lclkdDrdsXM3ISEB716dUBgAIbRtRdpfjlwkO4opAOqpUxqbQT9Uc2XHN0313WqyY/EK37fL5yfDLBoXG1dOVavVjiOA6urqbDbbvHnziCNpaWlXr169mTja29sRQkSOxKfD8njXNfRjGKZSXdueTKVScblcKvXn+PHC+IVgQjJjsGRB0MEL3WQH4u2gP3XqErf2vXuitWtAv/vUpbs//un7dgXZEZGsa0Bvs6OEUBhI4WLjyql8Pl8ulxNP6+rqEEJpaWnEERqNdjObkKtUqh9//DE6OjopKQk/YjKZEEJOr8lkMvHjeIHhZxFCRqNx0mH4s+0r03eWwhIQY7mqMdKplJDAyd/ngCz4/sEq3bWOIdg/GEHDr9uMa4zS9OnTP/7445MnTy5cuFCn0x07diwiIiIhIYEocPny5TEGKOn1eqL6SKFQIiMjHc/qdLojR46w2ezi4mKnBuER92odDV7Y6RUQQrt373Z86m1L/HuJkEDmr2fH7TrR8VAhLAExspbewRRo+J2aRts/mFiq0w9VtclXZ8POVK43rpyan58/ffr07du3JyUlKRQKlUrltPLDqVOnMjMzR7tcIpFUVVXhj2k02ubNm4lTer3+8OHDNpttzZo1jsvxs1gsNKzSaTQaiUWG2Ww2vgyF41niQkeQRMfpyWWp058pu3++EBZVGdHFHk0aDFACvqKqTfHKnTPJjsIHjSunUiiUV1555cMPP6ypqYmKirr33ntvv/124mxTU5Pdbl+4cOFol6emphKNuo71yKGhocOHD5vN5jVr1nC5131b8fl8hJBSed1aYkqlEj+OF2htbbVYLHQ6nThLXAgmB18C4i+3jvrzyJ819w7CgI4pCvYPdlLbpZomCApiTX59AjCa8X6mISEhTz755Iin0tPT9+zZM9bfoNOJzEcYGho6dOiQ0Wi89dZbg4Odm9S4XC6fz5dIJLNnz8bTsFwu12g0GRnXlvyIj49vbm7u7OxMTk7Gj0gkEiaT6dSwDCbkd/MSCl850dmvSwyFpYKcNfdqNs5PIjsKMBlO+wdz2fRdd+X48/7B4jbFLdCZ6h6ktfIdPnxYqVSKRKKenp6L/9PV1UUUyMvLUyqVYrF4cHCwr6+voqKCw+Gkp6fjZ4VCIZ/PP3XqVFdXl1arPXfunFQqzcnJgXWUbtIzK9OeL4V5NSOAyalTGr5/8Mb5wvSo4N/Oic+f5tcZpapNvgD2onEPcur+NpttYGAAIVRbW+t4PCEhIS7u2k5+IpFIq9VWV1c3NTUhhDAMW7FiBdFdSqVSS0pKysvLS0tL8adZWVk5OTkefRu+qCgt4qPvL53u6J83DdZP/llrnyZZEEQdNgIOTCH4/sGn2hX/ONFx49K+y2y1XbismiOc2GqyYJzIyalUKvWhhx66YbGcnJzMzEylUkmn04evJxwcHLx27VqVSmU0GjEMgz3SXWXbivQnvqr97x8W3Lio32jp1aTAzFSfUJActvmzczqjJdBfexNhFo1befsITwaDIRAIxlign8fjRUREQEJ1ofTo4LTI4K/Py8gOxItc7NWkQU71FcsyIr9t7CU7CtJAw69beXtOBaSAXlUnzT2DqVEwOdVHLM2IONrYR3YUpIF6qltBTgUj4Acw18+N/3tlO9mBeAtYldCXLMmILPfXemrvoEFrsCQLYHMed4GcCkb256Up7xxvN5itZAdCPo3BojGYo3kcsgMBLrM0I/KoX6bV79sU86GS6k6QU8Gotq1M+4vftwDXdqn/7+u6ACYdNjPxJX6YU2u71Du+afp7ZYcwHGafuxHkVDCq385NqGyRP7631m+3xxK39m3419my+p6+QQNsZuJLlmZGHG3woy5V/E7eferSJYX2Q3En3MnuAzkVjErc2qcxmr4+L/PP7bHwzUwGtNcWtIPNTHxJIJOeE8/zk1va6U5W6eFOdiPfz6mVDsiOZSrB/x9qhiz4Uz/MKKNtZkJWPMC1/Kf5F+5kT/L9Wc+LFi0iO4QpCbbHAr5taWbkO2+3wY4RwLV8v54KwOTcnhvDC7huB3I/38zExwi4rGgep6bL95te4E72JMipYGTw/xDfzCTgfyvYYRyGn29m4nuWZkYebfD95l/8Tg7mMPCncCe7FeRUMDL8/yE/8FpaZdKpq7Oj/O3/4fzksLlC/sLp4RvnCz/fONfPNzPxPf6zSOH85LB78xOmC4LgTnY33+9PBZOGb4+Fj2VYPTP69l0/+GHn0yW5/pP7ZsOGsj5JGBZIp1LarmpFfrCuUN+g8f4FSb+eHUd2ID4OcioYC749Fv74seLprxxt+fPSFHJD8qQBnWnQYIaE6sPw5l/R4mSyA3G76k7l5luSyI7C90HbLxiv/7co+dPTnRqDhexAPOf8ZWVuPJ/sKIAb+cmMGvWQWaE1Tgv3/eo46cjMqUNDQzKZrL29XSaTDQ0NjVhGrVZ3dHRIpVKz2Tz8rNVqxV+hv7/fzcEChBB6qiTtpf/60WqFFy6rcuJh7pAvmxGDKbSmHvXI3z8+o7pTOSsRfh16Amltv6dPn66pqSGeUqnUzMzMefPmUak/p3mxWNzY2EilUm02G4vFKioqio+PJ87K5fKysjKdTkej0axWq1AoLC4uptFoHn0bfmb9nPiFJyul/fqE0ACyY/GE85eVf1gsIjsK4F7LMiO+bejbUJBIdiBudO6yMg9aXDyCtJwaGRm5ZMmS8PBwDoej1+urq6vr6uqCgoJmzpyJF6ivr29sbJw7d252drbRaDx69Gh5efm6desCAwMRQhaLpaysjMFgrF+/HsOwtra2ioqKM2fO5Ofnk/WO/MRTy9NeKrv43l15ZAfiCeelytwE+CbycUszIt881ubbObW6c+CJJX40EoJEpLX9CoXCadOmBQcHMxgMDMMWL17MYDBkMhlRoKamRiAQ5ObmUqlUDodTWFhoNpsbGxvxs+3t7TqdrqCgAMMwhJBIJEpOTm5oaBixiRi40LLMyF61wR9myl/sGUwKD2LRYcyBj/tFUmhTz+DgkC9/dcCvQ4/xlu8Lq9Vqs9kCAq61KKpUKq1Wm5iYSBTg8Xg8Ho9IujKZjE6nx8bGEgUSEhKsVmtPT48Ho/ZTW0vSXvSDXlUYoOQ/fHukUm2XKiMGo1MpZAfiF0jOqWq1ur+///Lly3hDbnZ2NnEcIcTjXTc8BMMwlepa9UilUnG5XMfOV7wwfiFwqznCkCAW/XjzVbIDca/zUlVuAgxQ8gtLMyKONvrs1m/npMo8qKR6CsnzU0tLSwcHBxFCHA5nyZIlfP61f3iTyYQQYjKvWxuPyWTix/ECbDbb6SxCyGg0eiBs8FRJ2u//fW5xqoDsQNzo/GXlw34wbREghIrSIh747JzVZqf5YmWuWqpcmRVFdhT+whM5Va/XE9VHCoUSGRlJnFq5cqXFYtFoNPX19aWlpUuWLBEKhcRZu90+/r+CF6ZQnP9L7N692/Hphg0bJho/GE4kCMqK4319TnZHXuyNS09BKr1ZqTcJw2C1B3+BN/+WzPDB3FPdOfDc6gyyo/AXnsipEomkqqoKf0yj0TZv3kycwkcYhYaGxsfH792794cffsBzKovFQsMqnUajkaibstlsg8HgdJa40BEkUTfZujxtyZsnfTWnQmeqv/HVnCpTDjHpVAHX+YsRuIkncmpqampS0rU1sYbXI3FUKjUsLKytrc1ms1GpVLwRWKlUOpZRKpVE4zCfz29tbbVYLHQ6nTiLH3fTuwBOQoOYt+fEflgl2bTABxc8g5zqb5ZmRDz5dR3ZUbhedefArMQQsqPwI54Yo0Sn0wP+h8PhjFjGarVevXo1ICAAH3bE5XL5fL5EIiGaf+VyuUajIdZ8iI+Pt9lsnZ2dxCtIJBImk+nYsAzc7amS1Jf+20x2FG48hit9AAAgAElEQVQBKyj5GzaDNkcYIm6Vkx2Ii8FqDx5G2rjfb775pqmp6cqVKwqFQiKRlJaWqtVqYsEHhFBeXp5SqRSLxYODg319fRUVFRwOJz09HT8rFAr5fP6pU6e6urq0Wu25c+ekUmlOTg6so+RJVArlz0tT/vqtD6ZVmM/nh3xy6zdYldDDyBz3W1VVZbPZ8MccDic/P98xp4pEIq1WW11d3dTUhBDCMGzFihVEdymVSi0pKSkvLy8tLcWfZmVl5eTkePxN+LuHCqfN3FH+4MJp2P92PPYBzT2DCWGBHAb8PvMvSzMiX/uu5cXbZpAdiMsMma2dCl1aVDDZgfgR0nLqqlWrzGazRqPBZ8VgGDa8qzUnJyczM1OpVNLp9JAQ5y6B4ODgtWvXqlQqo9GIYZjT1BrgMfjC+i/fkUV2IC5zvkuVGwcNv34nNIiZGBroS7M5oZLqeWTWUxkMxvBMObyMQDDWJEindSGA5/1mdtz7JzsuKXQ+M/PkvFT5i6RQsqMAJMBH//pMTvWl3wdThbesTQimtKeWp75U5ju9qjDo12/52CKF56QDeQkw6NejIKcCF1iSEanQGM9fVt64qNcbHDIrtKakcB+pc4MJSQgN4DBozb0asgNxDaineh7kVOAaPjOv5vxlVS7MovFjPlNVvdgzmBAaGMCEoXYeBTkVuMbsxBCMwzh2ccovRA4Nv37OZ3IqVFJJATkVuIxvVFVhZqqfS48OHhwyy5RDZAdys6qlyllwJ3sc5FTgMtPCg3IT+Puqu8gO5KbACkpgSUZk+dSvqkI9lRQk7/XmAZWVlcTjRYsWkRiJP3hqeWrR6yenRwQfrOlGCN2eGzMjBiM7qAlo6dPE8jmBTN//fwHGsCwj8tXylvvmC29c1Ftd1RiNZmtcSADZgfgd3//ugDzqSSGBzHlJ/HX/PK03WhFCB2uuvLMue35yGNlxjRc0/AKE0BxhSGufRqU38wKm6upgUEklC7T9Aleq7VKflijxhIoQUuqMj3x+ob5bRW5U4wcNvwA31UcqwXY0ZIGcClzpYE33gM7keESpNx26cIWseCYKBv0C3FTPqVBPJQvkVACu0RgsfYOGZEEQ2YEA8i1OFYjb5BarnexAJsNqs9d3q7NhzWoyQE4FrnR7bgwvgOl4BOMwb8uJISueCYFKKnA0dbd+g0oqiSCnAleaEYO9uz6HH3gtrTLp1Ky44IwpMvT3wmVlDuRU8D9Tt/kXciqJvCKnGo1GlUql1WqHn1Kr1R0dHVKp1Gw2Dz9rtVplMll7e3t/f7/7wwTjMj857NP7Zm+cL9w4X3jgofw1M2NWvfM92UGNyzmpKi8BmsvANVM3p1ZLB2bB0vkkIX8ujd1uP3LkSF9fX0JCQklJieMpsVjc2NhIpVJtNhuLxSoqKoqPjyfOyuXysrIynU5Ho9GsVqtQKCwuLqbRYHFL8s2I4c2IuZacMmKw6ZHclGfKvvvTwnjvni13/rIyNz6X7CiAt2DSqTNisE2fnovlc6bWTOtzUuVrd2aTHYWfIr+eWldXp9fr6XTn7F5fX9/Y2Dh37txNmzbde++9ISEh5eXlOp0OP2uxWMrKyhgMxvr16zdv3lxUVNTZ2XnmzBmPhw9ubEYMVvfc0rv+ecabVwNuu6qNxtiBLPJ/ZQIvIW7ta+7TfNfUu/vUpbs//un7dgXZEY1Lh1wbGsiaujNrpzqSc6parT579uwtt9xCpTpHUlNTIxAIcnNzqVQqh8MpLCw0m82NjY342fb2dp1OV1BQgGEYQkgkEiUnJzc0NIzYRAxIx6JTxf+36IuzXf+obCc7lpHBag/AUW2X+tEv63QGC/50Cs20hs5UcpGcU0+cOJGUlOTYoovDu1cTExOJIzwej8fjyWQy/KlMJqPT6bGxsUSBhIQEq9Xa09Pj/qjBJP3znllak/XRL2vIDmQEMOgXOJq6M62rO5WzEuFOJg2ZObWhoWFgYKCgoGD4KbVajRDi8a4bMIJhmEp17XeiSqXicrmOtVu8MH4h8Fr/tzSlcHp4ydtVZAfiDFZQAr4B6qnkIi2najSaH3/8cf78+Ww2e/hZk8mEEGIyr5vpyGQy8eN4geFnEUJGo9FdEQMXWZMT8+ramclP//eSQkd2LNfojJZu1dD0CC7ZgQBvMXymNYtO8/6Z1iq9uV9nnBYO65aQxhMjMvR6PVF9pFAokZGRCKETJ05ERUWJRKIxLrTbJ7CICV6YQqE4Hd+9e7fj0w0bNoz/NYGbpEcHN+9cXvzGyS3LU5dmRJIdDjT8Amf4TOtH/nNBqTMhhDAOY1lmxI7Spr0PzCM7tLFAJZV0nsipEomkqupaWx+NRtu8ebNEIpHJZEVFRUT3p91uNxqNPT09wcHBgYGBLBYLDat0Go1GolLLZrMNBoPTWYQQfqEjSKLeiU6jVD5R+MBn51r7tI8sTq7tUpO4PRzMTAXD4TOt8T7U23JiMmKws5cGErcc2ffgvNneujw9zEwlnSdyampqalJSEv4Yr0fq9XqE0LFjxxyL9fb2Hjx4sKCgICsri8/nI4SUSqVjAaVSiR9HCPH5/NbWVovFQkzCwQsTBcCU8P7v8l4rb1n3wQ8tV3UDWhMiaXu4C5eVU3qzTOAmjjOtEUJzhCGdL6+4873Ti1MFDxVOIzGw0ZyTKp9YkkJ2FH7NEzmVTqc7TT+dPn16XFyc45F9+/YJBIKFCxdyOByEEJfL5fP5Eolk9uzZeBqWy+UajSYjIwMvHx8f39zc3NnZmZycjB+RSCRMJhNvWAZTSFFa5O5TnVrjdZMWPr1/tuN3mbudv6x8F1Z7AOOz78F5f/22ecPun3ZvmE12LM6g7Zd05IxRYjKZ2PUoFAqdTscwjBh5lJeXp1QqxWLx4OBgX19fRUUFh8NJT0/HzwqFQj6ff+rUqa6uLq1We+7cOalUmpOTA+soTTkHa7qJhIpT6k17frx8wwtru9Q7vmna8U1TffdNDfZuv6qNCGZz2bDaAxivJ5el3p2fkPHs0eaeQbJj+VltlyozBqNRnceUAE/y3u8RkUik1Wqrq6ubmpoQQhiGrVixgugupVKpJSUl5eXlpaWl+NOsrKycnBwyIwau803tlWMXr2bH8WbG8bLjeNlxPKecJ27te3RvnUuai2HpfDAJi1IEZ7f+8o73Tq+fE3/3vASyw0EIoWqpchZUUslGmdDYWs8zm81KpZJOp4eEjNzxrlKpjEYjhmEjzslZsGABMTwKeKf6bvXvPjqr0v88vx7jMD/fOCcCY9d0qWq7VDVdqpouVVgQi0ixyE65719nHafk8wOYk24ufmp/fVYstm6O88IjAIzH9kMNAzrzu+vJ/0H/+z3nV2ZFlcyIIjsQv+a99VQcg8EQCARjFHBaFwJMOcMnLey6KwffHq4oLaIoLQIvdkmhw1PswQvdNV3OS8Tha9xMLqeelyrvLUi8qfcA/NjOWzNL66784sWKfQ/OiwsJIHEEe3XnwHOrMzz5F8Fw3p5TgT8YPmlheBlhWKAwLBCfdL/jm6bdpy655E/rTdYupT4FVnsAN2FlVvSsxJA73zu9PFPw1fkrpIxg7xrQsxg0Add5MiHwMMipwCs4TVoY2+25MQcudDs1F09ujRtY7QG4RGQw+911uXe+/4PJYsOPeHgEO4z49RLk7/UGwEThzcX8wGtDxJl0KtFcPFGwHQ1wlYM13URCxXly2X0YoOQlIKeCKQlvLt44X7hxvjCeHxDMnuRukVBPBW4l7dd75g9BPdVLQE4FU9WMGN4zK9OfWZn+j7ty/7S3dnIvAtvRAFcZvuw+h0nXGMzTnyl7fG/t8ear7vvTepNV2q9Liwp2358A4wQ5FUx50yO4v0wV7DrZMdELJXJdaBAT40yyjguAI6cuCYzD+OievC8emNfw3NL85NB//yhN3/7t/31VV9Umd7rw5lcvgUqq9/D2+ak3acGCBTt37iSeLlq0iMRggFvNfbHi8MMFEcEjTFMezVfnZD9K+l+9c6b7ogL+pr5bNdoIdr3JWlp35ZvanlqZamVW1Kqs6HnTQh1XL+EHsiY3VPjNY60IUR4tGmubL+AZvp9TYc0HP3GqXfGPEx17Ns4d/yVbD9RnRmPr58JqD8CjBofMpXU939RdaerWGKwWo/nnkU2TW73kdx+d2XzLtAUij+48AUYEbb/ARxQkh0Vi7K/PycZ/yfnLqlzoTAUeF8xhrJ8b/59NvyjJinRMqGiyQ4WrO5WzEqHt1ytATgW+47U7Zz7xVe04W16GzFapQpcKwzoAedgMF+z5cbFnMDEskOOKlwI3D3Iq8Clv/Cr7sb014ykJI34B6YYPFWYz6BNdvQQqqV4FcirwKWtyYgZ0JnGr89DK4WC1B0C64UOFF6WEldb1TOhFzl1W5sEca68BORX4mnFWVWG1B+ANHFcv+Xzj3F135QUHMB6fyHzr6s6BWYkjb9sFPI+09X6NRuPQ0JDTweGbzKjVaoVCQafTo6OjGQzneYRWq7Wnp8dgMPD5/NDQUDeGC6aO0CDmgwunvXDk4tMr0sYodv6y8vVfZXssKgBG47TY9UMLp319Xva7j858dv+NB7Ff1RhNFlssn+POAMEEkJZT29rahs9yeeCBB6jUn6vOYrG4sbGRSqXabDYWi1VUVBQf//O0B7lcXlZWptPpaDSa1WoVCoXFxcU0GnTUA7RpQdKyt6qaewZHG4J0SaHjBzB5AbDaA/BGd+TGCrjspW+Ijz52y9gloZLqbUjel2bVqlWOtU/HhFpfX9/Y2Dh37tzs7Gyj0Xj06NHy8vJ169YFBgYihCwWS1lZGYPBWL9+PYZhbW1tFRUVZ86cyc/PJ+FtAO/z5q9mPrq39ts/LhjxLDT8Ai+3QBT29vqcnJ3f/fR0EZ1GGa0YrKDkbUjuTw0PD49w4HiqpqZGIBDk5uZSqVQOh1NYWGg2mxsbG/Gz7e3tOp2uoKAAwzCEkEgkSk5ObmhoMJvNJLwN4H1So4JvEYV9IJaMePa8VJWbAIN+gVdLieAef2Jh6vayKyrnbjICbEfjbcgfo2Sz2YYfVKlUWq02MTGROMLj8Xg8nkx2bUa/TCaj0+mxsbFEgYSEBLx71c3xgilja0na++KOfq1p+KkLXcqcOPgmAt6OH8Bsf6Fk7Xuna7tUw89abfaGbvXMOPh16EVIbvv9z3/+MzQ0xGAw4uPj586di1c6EUJqtRoNG7KEYVhvby/+WKVScblcx7ZivDB+IQC4N3+d/eiXNZ/dP8fxoNFi67iqTY+G1R7A1PDDlsW3/v3Uw4uSi9Ova8yDhl8vRFo9lcFgiESivLy8wsJCkUh06dKlr7/+enBwED9rMpkQQkzmdbOhmUwmfhwvMPwsQshoNHoiejBFLBCFhwUxD1zodjwIM1PBlHPo/xXsre7ac0bqeBAGKHkhT9RT9Xo9UX2kUCiRkZEIoZSUlJSUFPxgWlqaUCg8cuTIuXPnHLeOmdD6/nhhCsW5M3/BghFGqcDC+v7j9V9lJ2094rg2DQxQAlPRh3fPevpAwxvftT5WPL22S32wpvvYxb4N+YlkxwWu44mcKpFIiBxGo9E2b948vEx8fDyPxyN6Q1ksFhpW6TQajWz2tZ282Gy2wWBwOktc6AjSp5+jUNCrd858fG/ta7+6tqfbhcuq38yJIzcqACbhhdsy36po27D7TG33IL493NvHO6ZHciexPRxwE0/k1NTU1KSkJPzx8Hrkz6HQ6UTTLp/PRwgplUrHAkqlEj+OF2htbbVYLHQ6nThLXAiAoztyY/ef7z7VrihIDkMInb+s/NvaLLKDAmAyCqcLPhBLdEYL/lSlNz7y+YVJbA8H3MQT/al0Oj3gfzickdf7UCqVAwMDISHX+ga4XC6fz5dIJETzr1wu12g0xJoP8fHxNputs7OTeAWJRMJkMvGGZQCcvPHr7Me+rKntUj++r9ZstXePPjkBAG92sKabSKi4yW0PB9yEtHG/R44cSUpK4vF4dDpdLpdXV1cjhHJycogCeXl5x44dE4vFOTk5Q0NDlZWVHA4nPT0dPysUCvl8/qlTp1gsFp/Pb2lpkUqlc+fOhXWUwIgEXNai1LBff3jaYLIihO7++Kd31mVDixkAwLXIXO/3xIkTxFMej1dYWOhYyxSJRFqttrq6uqmpCSGEYdiKFSuI7lIqlVpSUlJeXl5aWoo/zcrKckzJADiq7VJ/1yTHEypCSKmDFjMwJd2eG3PgQrdK//Osa4zDnOj2cMB9KBMaW+taRqNRq9WazeaAgIDg4JEnC5rNZqVSSafTiWZhJyqVymg0YhhGDF9ytGDBAhijBBBCO75p2n3qktPBjfOFz6xMJyUeACbt+3bFI/+5oNSZEEIYh7Hrrtz8adDi4i3IXPOBxWINH6brhMFgCASCMQoM38oGAAB8GL49HN6HeltOTEYMRnZE4Gckr6MEgGdAixnwJU7bwwHvQf56vwB4wIwY7N31OfzAa2tvYRzGrrty4Ac+AMC1oJ4K/AW0mAEA3A1yKvAj0GIGAHAraPsFAAAAXANyKgAAAOAavt/2W1lZSTx23PQGAAAAcC3fz6mQRwEAAHgGtP0CAAAArgE5FQAAAHANyKkAAACAa0BOHZcFCxaQHYJ/gQ/c8+Az9zD4wD3PA5855FQAAADANSCnetru3bu96nW89qVcxQvfnReG5ELe+e6886VcxQvfnReG5BmQU6+bwOoNr+OdL+WFIbnwpbwwJBe+lBeG5MKX8sKQvPOlvDAkF76U94QEORUAAABwDcipAAAAgGtQ7HY72TG4EYysAwAA4FpVVVWjnfLxnAoAAAB4DLT9AgAAAK4BORUAAABwDcipAAAAgGv4/l5vN8lqtfb09BgMBj6fHxoaSnY4PkWtVisUCjqdHh0dzWAwxi7p1PHPZrPZbLabA/RBer3eZDIFBAQwmcwbFjYYDD09PXa7XSAQBAUFeSA832MymfR6PZPJDAgIGLsk3OQ3z2QyKRQKvV4fGBgYFhY29rcKzuU3OeTUscjl8rKyMp1OR6PRrFarUCgsLi6m0Whkx+ULxGJxY2MjlUq12WwsFquoqCg+Pn60wvv37zcYDI5H8vLy5syZ4/4wfcTQ0FBlZaVcLtfr9QihwsLCtLS0sS9pbm4Wi8U2m41Codjt9tmzZ+fl5XkkWB8hFotlMplarUYIiUSioqKiscvDTX6Tvv32W6lUarPZ8KccDmfevHkpKSljXOKOmxxy6qgsFktZWRmDwVi/fj2GYW1tbRUVFWfOnMnPzyc7tCmvvr6+sbFx7ty52dnZRqPx6NGj5eXl69atCwwMHO2S5OTkrKws4ukYJcFwFotFr9cnJiYyGIza2toblpfL5SdOnEhMTFy8eDGNRjt9+vTZs2dDQ0MTExPdH6yPUKlUAoEgIyPj9OnT47wEbvKbodVq582bl5CQEBAQMDAwIBaLjx8/HhwcHBUVNWJ5N93k0J86qvb2dp1OV1BQgGEYQkgkEiUnJzc0NJjNZrJDm/JqamoEAkFubi6VSuVwOIWFhWazubGxcYxLAgICIhxAU+SEcLnctWvXLly4UCgUjqd8XV0dlUpdtGgRk8mk0WgFBQVBQUE1NTXujtOXrF69uqioaObMmeO/BG7ym3HHHXdkZWVhGMZgMCIiIhYvXowQ6ujoGK28m25yyKmjkslkdDo9NjaWOJKQkIB3r5IYlQ9QqVRardbxxyCPx+PxeDKZbOwL7XY7TKf2DJlMFhUVxWKx8KcUCiU+Pr63txd+ULob3OSTRqFQHJ/iv0isVuto5d10k0Pb76hUKhWXy6VSf/7ZwePxEEJ4BwmYNPwDxD9MAoZhvb29Y1zV0tLS0NBgs9n4fH5mZmZmZqZ7o/RjZrNZr9c71Wh5PJ7dbh8cHISReu4DN7kLtbe3I4QcK0WO3HeTQ04dlclkchp0hw+VNBqNJEXkI0wmE/rfh0lgMpn48RGFhYVFRkZyuVyDwdDS0lJVVaVWqwsKCtweq18a7R8Iwc3vTnCTu5BKpfrxxx+jo6OTkpJGLOC+mxxy6gTgbTJOLQxgcibUwLVq1SricVZW1uHDh+vr62fMmBEcHOyG0MAI4OZ3N7jJXUWn0x05coTNZhcXF0/ojnXJTQ79qaNis9lOQ9vx3y9E+zuYHPwDdPoxaDQaxzkVj0qlZmZm2u32vr4+t8Tn90b7B0IIwXRJz4CbfNL0ev3hw4dtNtvq1avHmBPsvpsccuqo+Hy+RqOxWCzEEaVSiR8nLyhfgH+A+IdJUCqV4/9g8SnCxEQ04Fp0Op3L5Q7/B6JSqVBn8hi4ySdhaGjo8OHDZrP51ltv5XK5Y5R0300OOXVU8fHxNputs7OTOCKRSJhMZmRkJHlB+QIul8vn8yUSCdH8K5fLNRoNseaD3W43Go1jDNjDx8fDYBkXMpvNjr/Z4+Pj+/r6tFot/tRisVy+fDk2NhYWPHEVuMldbmho6NChQ0ajcfXq1SPmRZPJ5Dim1003Oe255567met9GI/Hk0gkly5dCg0NpdFo9fX1TU1Ns2bNiomJITu0KY/FYjU1Nen1+pCQEJVKdfz4cQqFsnjxYjqdjhDq7+/fs2cPQgj/qJubm1taWux2u8ViGRgYOHv2bFtbW3x8fHZ2NslvY0ppbW29evVqX19fb28vi8UyGAwKhSIkJAQf2f7dd99VVlbm5eXhnUk8Hq+pqam3t1cgEJhMpqqqKoVCsWjRorF/+wNHMpmsu7tboVBIpVL8xlYoFGw2G291hJvc5fbv369UKtPT0y0Wi+J/DAYDvsAAQuiTTz7p6uoiVhBz000OY5RGRaVSS0pKysvLS0tL8adZWVk5OTlkx+ULRCKRVqutrq5uampCCGEYtmLFitE6qul0ektLS11dHf6USqWmpaXBeMiJOnXqFDE+oKWlpaWlBSEkFApH/FWOYdiyZcuOHz++d+9ehBCTyVy8ePFo69GAETU2NkokEvxxX18f3jO6ZMmSEb+y4Sa/STabbWBgACHktExYQkJCXFzciJe46SaHPclvTKVSGY1GDMNggIZrmc1mpVJJp9NDQkLGLmm32zUazdDQEJVK5fF441kaG9w8/HvKbreHhIRAq6+7wU1OCpff5JBTAQAAANeAMUoAAACAa0BOBQAAAFwDcioAAADgGpBTAQAAANeAnAoAAAC4BuRUAAAAwDVgHSXgI2w22+XLl9VqtVqt1mq1TCYTX7zGr+j1+itXrrDZbKf3LpfLlUrlOBcy/eqrr44fPz5nzpwRz8rl8ldeeUUgEISHh998wL29vf39/epRUCiUhoaGDz74YPbs2U7bcrmPwWD429/+FhMTM/YC1Gaz+dVXXw0NDXXJ5wB8ht996QBfpVKp7rrrLscjCQkJDz744Pz588kKafx6enreeOON3/3udzNmzLiZ1zl9+vRzzz3317/+NT8/3/H4yy+/3NLSgq8IdkMNDQ1tbW0PP/zwiGc1Gk1FRUVhYWF6evrNhIp79tln8bW0RrRhw4aQkJCKioo//OEPgYGBN//nxmPPnj1NTU2JiYljF2MwGCwW64033nj//fdhCzxAgJwKfMqyZct+9atf2e32rq6uf/7zn1u3bn3zzTdzc3PJjusGtFrt6dOnS0pKyA7E07Zs2aLX6/HHR48ePXDgwDPPPBMbG4sfEQgEdDpdJBJ5bD+cwcHBL7744rHHHsOXQR7bb3/727Vr137//fcLFizwQGxgSoCcCnwKj8cTiUQIoenTp8fExGzatKmsrAzPqQMDA1KpVKPRREREiEQixy9NtVpts9n4fP7Vq1fb2toiIiKSk5PHeUlvb297e3toaCixNndXV5dUKo2Li0tISHAKz2QyXbx4Ua1WR0ZGikQivH6Dr9GIEBocHJTL5QghLpdLLIQ5ODh48eJFs9k8bdo0x8VI9Xq9TqcLCwvT6/WNjY0UCmX27Nnj/6Dsdnt7e3tPTw+GYenp6WOvhKfVauvr62k0WlZW1ogFJh2kUCgkHl+4cAEhlJSUhP8L4gwGg0AgID55uVweEBAQGBjY1tbW19cnFArxNejtdntzc7NKpRKJRGFhYeMMb7iysjK73V5YWOh4UK1Wd3R06HQ6DMOSk5OJXTnDw8NzcnIOHDgAORUQIKcCnzVt2jSEUH9/P0Jo27ZtJ0+epFAodDrdZDIlJSW9/PLLxNfrzp071Wr13LlzP/vsM7vdvnz58q1bt47nknnz5v3rX/+iUCg2m23+/Pk7d+58/fXXS0tLqVSqzWa74447Hn30USKeEydOvPrqq2q1mslkmkymjIyMF154ITQ09Pz580888QRC6JVXXsFLPv7442vWrLHb7R999NHnn39usVjodLrFYikpKXniiSfwvtL9+/e///7727dvf+WVV4aGhiIjI/ft2zfOT6a3t/fpp59ubW1lMBhmszk0NHT79u2j1ebFYvELL7yg1+tZLBabzd64caPjWfcFifv2229fe+21Q4cO4YtC//rXv161apVMJvvpp58QQhQK5YEHHigpKXnyySebm5ttNhuDwdi6dWtRUdF4whvu2LFjM2fOdNzL+uuvv961a5fFYuFwOFqtlkaj7dmzh9icKj8//91331WpVDweb0LvC/gqyKnAZ+Fbr+C1ltzc3A0bNiQkJFCp1MbGxu3bt7/wwgvvvvsuUfjSpUsUCuWjjz6Kj48fHBwc5yVBQUF79+4NCwv78ssv33vvvUcffTQ8PPzQoUNcLnfXrl379u1bsmQJ3u9YV1f37LPPFhUVPfzww3w+/+LFi9u2bXvuuefeeeed2bNn79q166GHHtq2bRte48HH4/z73//+9NNPf//73992220MBqOysvL5558XCAT33XcfEcP777//3HPP5eTk4DHj+vr6iB1RcENDQ8Rjm822ZcsWuVz+xhtv5Obmdnd3b9u27amnnvrss88EAoHTZ3jlypUdO3akpaXt2LGDzwzPHlIAAAdNSURBVOdXVVW99NJLjgUmHeSklZaW3n777Tt37qRQKM8///wHH3wgFosLCwvfeusto9GIt/bPnz8fr+iPJzyCXq9vbW29++67iSMDAwNvv/322rVrH3jgASaTaTAYzpw549izm5GRYbfba2pqnKq2wG/BXBrgU+RyeV1dXW1tbWlp6Y4dOygUCt5JedtttyUlJdFoNAqFkpmZec8999TW1qpUKuJCi8Xy7LPPikQiFouFj+S84SU2m2379u2RkZF0On3dunVBQUFSqXTLli0hISEMBuP+++9HCJ07dw4v/Mknn0RHRz/11FP4aNK0tLQHH3ywpqZGIpFQqVR8nzsmk8nhcDgcDo1GM5lMe/bsWbZs2W9+8xsWi0WlUn/5y1+WlJTs37/fcd+LDRs25OfncziciIgI4uDrr79+z/Xq6+uJs9XV1R0dHffff/+sWbOoVGpcXNzTTz+t1+sPHjw4/PM8fPiwxWJ55plnQkNDqVTqwoULHTt9bybISYuLi/v9738fGBgYEBBw7733Wq1WLpe7bt06NpuNYdi6devUanV7e/v4wyPIZDKbzRYZGUkc6enpsdlsv/jFL/BfOWw2e+HChY5VUrzdQiqV3vz7Ar4B6qnAp1RUVFRUVCCEqFRqUlLSn/70J3xXZ71ef/jw4YaGBpVKZbPZNBoNQujq1avE92N4eDgxNAZ3w0uio6OJXeqoVGp4eHhISAjRDxoYGBgYGKhQKBBCdru9trY2NTX1u+++I14fP3Xp0qWkpKThb6S1tVWn09FotLKyMuKgyWRSq9VKpZL4uyM22D7yyCNOHZ9vvfVWV1cX/hgfZ+s4MBjvgxxx/O3Fixfj4uIc08ycOXOI9tubCXLSMjMziXG2eJLOzMwkzuJH8M92nOER1Go1Qshxf9OkpKSQkJDnn39+xYoVeXl5WVlZTh3P+OAp/EIAEORU4GNWrVp19913U6nUkJAQos/MYDBs3rxZpVIVFxfPnDmTwWBcunSps7PTbDYTFzr1h43nEg6H43gJjUZzOkKn061WK0LIaDSaTCaZTPb11187FkhJSRltJ3Y8hdfU1LS1tTldgr/miGHjYmNjU1NTHY84dhDqdLrhF/J4PPy4E3xgjuMRx1mbNxPkpDl+yPiGl8OP4H99nOER8H8Lp3/iv//97x9//PGBAwc+++yzgICANWvWPPDAA8SYKaPRSFwIAIKcCnxMYGCgY6UKV1VVJZVKd+3aRVRobjhTcxKXjIHFYjGZzNzc3GeffXacl+AVoHXr1q1evXrSf3eMV+7v7ycG2uBPHUfbOhbu6elxPDIwMOCBIF1iouGFhoYihByb9xFCsbGx27dvt9vtra2tBw4c+Pzzz6OiotasWYOfxWuow6u8wG9BfyrwffjQmPj4eOKIWCx2+SVjoFAoeXl5Z8+edfq+JuDddQaDgTgyffr04ODg8vLyEXv+bgbeLOz4dmpra5VK5YjzZGbMmNHd3e3YX+h4ofuCdImJhhcdHc3j8To6OoafolAoKSkpW7ZsYbPZra2txHG84zYjI8NVMYOpDnIq8H14Q+h7773X399/5cqVd955p66uzuWXjG3Tpk0Gg+FPf/rT2bNnBwYGrly5curUqWeeeQZvaYyOjuZwOKWlpadPn75w4YJCoWAwGJs2baqtrX322Webm5vVanVnZ+eRI0fefPPNmwkDITRz5swZM2Z8/PHHZWVlCoWiurr6+eefxzBsxMrc6tWrAwICtm/ffvHixYGBgX379p04cYI4674gXWKi4eHTZxsaGogjP/300zvvvNPY2KhSqQYGBr788kuDwZCSkkIUqKurCw4OdjwC/By0/QLfl5GRce+993766afffPMNQigzM/ORRx55+eWXXXvJ2EQi0Ztvvvnaa689/vjj+BEGg4GPvMUfb9my5aOPPnrqqaesVis+P3XNmjV0Ov3DDz+srKzELwkODr7tttsmHQPhxRdffP7551988UX8aWJi4gsvvDDi8rahoaEvvfTSjh07Nm/ejBCKjIx87LHH/vKXvxAF3BekS0w0vJUrV/7xj3+USCT4wDEOh3Py5Mm9e/fiZ9ls9l133bVq1Sr8qc1mO378+PLly/FOXAAQQhTvbLQBwOXUanV3dzeGYY79iC6/5IZ6e3sVCgWXy42MjBzP2BabzSaVSnU6XUhISEREhAu/vuVyeV9fX3BwsGMT94gsFkt7ezudTk9KShpx0T73BekSEwrvvvvumzlz5h//+EfiyNWrVxUKBZvNjo6OJsZ1I4ROnz799NNP79mzZ+y1mYBfgZwKAAA/O3/+/J///OcvvvjihhvObN68OSsra7TNBoB/gpwKAADXaW9vDw8Pd5pE5ASvuycmJjrWXAGAnAoAAAC4Boz7BQAAAFwDcioAAADgGpBTAQAAANeAnAoAAAC4BuRUAAAAwDUgpwIAAACuATkVAAAAcA3IqQAAAIBrQE4FAAAAXANyKgAAAOAakFMBAAAA1/j/T4VRl9ZkPysAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"plotmon.main_QtPlot"
]
},
{
"cell_type": "markdown",
"id": "b2e180c6",
"metadata": {},
"source": [
"## Manual analysis steps\n",
"\n",
"### Loading the data\n",
"\n",
"The {class}`~xarray.Dataset` contains all the information required to perform a basic analysis of the experiment.\n",
"We can alternatively load the dataset from disk based on its {class}`~quantify_core.data.types.TUID`, a timestamp-based unique identifier. If you do not know the tuid of the experiment you can find the latest tuid containing a certain string in the experiment name using {meth}`~quantify_core.data.handling.get_latest_tuid`.\n",
"See the {ref}`data-storage` documentation for more details on the folder structure and files contained in the data directory."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "6210845e",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
],
"text/plain": [
" Size: 480B\n",
"Dimensions: (dim_0: 30)\n",
"Coordinates:\n",
" x0 (dim_0) float64 240B 0.0 0.06897 0.1379 0.2069 ... 1.862 1.931 2.0\n",
"Dimensions without coordinates: dim_0\n",
"Data variables:\n",
" y0 (dim_0) float64 240B 0.5392 0.5342 0.3332 ... 0.2738 0.4782 0.4889\n",
"Attributes:\n",
" tuid: 20241106-153035-204-63ac0b\n",
" name: Cosine experiment\n",
" grid_2d: False\n",
" grid_2d_uniformly_spaced: False\n",
" 1d_2_settables_uniformly_spaced: False"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tuid = get_latest_tuid(contains=\"Cosine experiment\")\n",
"dataset = load_dataset(tuid)\n",
"dataset"
]
},
{
"cell_type": "markdown",
"id": "868ba095",
"metadata": {},
"source": [
"### Performing a fit\n",
"\n",
"We have a sinusoidal signal in the experiment dataset, the goal is to find the underlying parameters.\n",
"We extract these parameters by performing a fit to a model, a cosine function in this case.\n",
"For fitting we recommend using the lmfit library. See [the lmfit documentation](https://lmfit.github.io/lmfit-py/model.html) on how to fit data to a custom model."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e8f19380",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACxzklEQVR4nOzdd3hb5fXA8a+W994jju1Mx9nTSUggkwwgzLIbGihtobQFWgp0AIX+ILSsUmgpexTKCCtACGSHTGcvZydOHG/H8V4a9/eHLMWOl7x0Nc7nefwYX11Jx8SSzn3f855XoyiKghBCCCGEF9KqHYAQQgghhFokERJCCCGE15JESAghhBBeSxIhIYQQQngtSYSEEEII4bUkERJCCCGE15JESAghhBBeSxIhIYQQQngtSYSEEEII4bUkERJCOJVGo+Gxxx7r9P2ys7PRaDS8/fbbLW67++67mT17dveD62V///vf6devHzqdjlGjRqkay8SJE/n973+vagxCuAJJhITwUm+//TYajQaNRsOGDRta3K4oCklJSWg0Gi6//HIVInTMyZMnef311/nDH/6gdijt+v777/n973/PRRddxFtvvcWTTz6pajwPPvggL7/8MgUFBarGIYTaJBESwsv5+fnxwQcftDi+bt06zpw5g6+vrwpROe4f//gHqampTJ8+Xe1Q2rV69Wq0Wi1vvPEGCxcuZP78+arGc+WVVxISEsK//vUvVeMQQm2SCAnh5ebPn88nn3yCyWRqdvyDDz5g7NixxMXFqRRZx4xGI++//z7XX3+92qF0qKioCH9/f3x8fNQOBQCtVst1113Hu+++i+y9LbyZJEJCeLmbbrqJs2fPsmLFCvuxhoYGlixZws0339zi/Orqan7729+SlJSEr68vgwcP5plnnmnxYVpfX899991HdHQ0wcHBLFiwgDNnzrQaQ25uLrfffjuxsbH4+voydOhQ3nzzzQ5j37BhAyUlJcyaNavFbXV1dTz22GMMGjQIPz8/4uPjueaaazh+/Hinf5cVK1YwZcoUwsLCCAoKYvDgwZ2aitNoNLz11ltUV1fbpyPffvvtduueLqyleuyxx9BoNBw7doyf/OQnhIWFERoayqJFi6ipqWlx///+979MmDCBgIAAwsPDufjii/n++++bnTN79mxOnTrF7t27Hf5dhPA0erUDEEKoKyUlhUmTJvG///2PefPmAfDtt99SXl7OjTfeyIsvvmg/V1EUFixYwJo1a7jjjjsYNWoU3333HQ888AC5ubk8//zz9nN/+tOf8t///pebb76ZyZMns3r1ai677LIWz19YWMjEiRPRaDTcc889REdH8+2333LHHXdQUVHBvffe22bsmzZtQqPRMHr06GbHzWYzl19+OatWreLGG2/kN7/5DZWVlaxYsYL9+/fTv39/h3+XAwcOcPnllzNixAgef/xxfH19OXbsGBs3bnT4//F7773Hq6++SmZmJq+//joAkydPdvj+TV1//fWkpqby1FNPsXPnTl5//XViYmJ4+umn7ef85S9/4bHHHmPy5Mk8/vjj+Pj4sHXrVlavXs2ll15qP2/s2LEAbNy4scX/QyG8hiKE8EpvvfWWAijbtm1TXnrpJSU4OFipqalRFEVRfvSjHynTp09XFEVRkpOTlcsuu0xRFEX54osvFED561//2uyxrrvuOkWj0SjHjh1TFEVRdu/erQDK3Xff3ey8m2++WQGURx991H7sjjvuUOLj45WSkpJm5954441KaGioPaaTJ08qgPLWW2/Zz7n11luVyMjIFr/bm2++qQDKc8891+I2i8XSqd/l+eefVwCluLi4lf+LjrvtttuUwMDAZsda+51sLvz/9OijjyqAcvvttzc77+qrr272/+Do0aOKVqtVrr76asVsNjc71/a7N+Xj46PcddddXfiNhPAMMjUmhOD666+ntraWr7/+msrKSr7++utWp8WWLVuGTqfj17/+dbPjv/3tb1EUhW+//dZ+HtDivAtHdxRF4dNPP+WKK65AURRKSkrsX3PmzKG8vJydO3e2GffZs2cJDw9vcfzTTz8lKiqKX/3qVy1u02g0nfpdwsLCAPjyyy+xWCxtxuIsv/jFL5r9PHXqVM6ePUtFRQUAX3zxBRaLhUceeQSttvlbvO13byo8PJySkpLeC1gIFyeJkBCC6OhoZs2axQcffMBnn32G2Wzmuuuua3HeqVOnSEhIIDg4uNnxIUOG2G+3fddqtfTv37/ZeYMHD272c3FxMWVlZbz66qtER0c3+1q0aBFgLTJuj9JKoe/x48cZPHgwen3bs/+O/i433HADF110ET/96U+JjY3lxhtv5OOPP1YtKerbt2+zn22J4Llz5wDr767VaklPT3fo8RRFaTVBEsJbSI2QEAKAm2++mTvvvJOCggLmzZtnHwnpTbZk4tZbb+W2225r9ZwRI0a0ef/IyEh7AtBb/P39Wb9+PWvWrOGbb75h+fLlfPTRR8yYMYPvv/8enU7X5cduKwExm81t3qet52stIXREWVkZUVFRXbqvEJ5ARoSEEABcffXVaLVatmzZ0uq0GEBycjJ5eXlUVlY2O37o0CH77bbvFoul2QotgMOHDzf72baizGw2M2vWrFa/YmJi2ow5LS2Nc+fOUV5e3ux4//79OXz4MEajsc37Ovq7gHWp+cyZM3nuuefIysri//7v/1i9ejVr1qxp8/EdYRvNKSsra3bcNhrVFf3798disZCVldXhubm5uTQ0NNhHwYTwRpIICSEACAoK4t///jePPfYYV1xxRavnzJ8/H7PZzEsvvdTs+PPPP49Go7GvOrN9b7riDOCFF15o9rNOp+Paa6/l008/Zf/+/S2er7i4uN2YJ02ahKIo7Nixo9nxa6+9lpKSkhZxwvmRE0d/l9LS0haPYdseo76+vt34OhISEkJUVBTr169vdrw7TQ6vuuoqtFotjz/+eIvpuwtHjWz/37q6gk0ITyBTY0IIu7amp2yuuOIKpk+fzh//+Eeys7MZOXIk33//PV9++SX33nuvvSZo1KhR3HTTTfzrX/+ivLycyZMns2rVKo4dO9biMRcvXsyaNWvIyMjgzjvvJD09ndLSUnbu3MnKlStbTURspkyZQmRkJCtXrmTGjBn24wsXLuTdd9/l/vvvJzMzk6lTp1JdXc3KlSu5++67ufLKKx3+XR5//HHWr1/PZZddRnJyMkVFRfzrX/+iT58+TJkypSv/m5v56U9/yuLFi/npT3/KuHHjWL9+PUeOHOny4w0YMIA//vGPPPHEE0ydOpVrrrkGX19ftm3bRkJCAk899ZT93BUrVtC3b19ZOi+8m1rL1YQQ6mq6fL49TZfPK4qiVFZWKvfdd5+SkJCgGAwGZeDAgcrf//73Fkuza2trlV//+tdKZGSkEhgYqFxxxRVKTk5Oi2XhiqIohYWFyi9/+UslKSlJMRgMSlxcnDJz5kzl1VdftZ/T1lLzX//618qAAQNaxF1TU6P88Y9/VFJTU+2Ped111ynHjx/v1O+yatUq5corr1QSEhIUHx8fJSEhQbnpppuUI0eOtPv/7UKtLZ+3xXnHHXcooaGhSnBwsHL99dcrRUVFbS6fv3AZv+3f8eTJk82Ov/nmm8ro0aMVX19fJTw8XLnkkkuUFStW2G83m81KfHy88qc//alTv4cQnkajKNJbXQjhvk6cOEFaWhrffvstM2fOVDsct/HFF19w8803c/z4ceLj49UORwjVSCIkhHB7d911F8eOHWu2TYho36RJk5g6dSp/+9vf1A5FCFVJIiSEEN1QXFzc7nJ3Hx8fIiIinBiREKIzJBESQohuSElJaXe5+yWXXMLatWudF5AQolNk1ZgQQnTD+++/T21tbZu3t7YFiBDCdciIkBBCCCG8ljRUFEIIIYTXkqmxDlgsFvLy8ggODpaNCYUQQgg3oSgKlZWVJCQkoNW2Pe4jiVAH8vLySEpKUjsMIYQQQnRBTk4Offr0afN2SYQ6EBwcDFj/R4aEhKgcjRBCCCEcUVFRQVJSkv1zvC2SCHXANh0WEhIiiZAQQgjhZjoqa5FiaSGEEEJ4LUmEhBBCCOG1JBESQgghhNeSREgIIYQQXksSISGEEEJ4LUmEhBBCCOG1JBESQgghhNeSREgIIYQQXsvtEqGXX36ZlJQU/Pz8yMjIIDMzs93zy8rK+OUvf0l8fDy+vr4MGjSIZcuWOSlaIYQQQrgyt+os/dFHH3H//ffzyiuvkJGRwQsvvMCcOXM4fPgwMTExLc5vaGhg9uzZxMTEsGTJEhITEzl16hRhYWHOD14I4VwWM5zaBFWFEBQLyZNBq1M7KiGEi9EoiqKoHYSjMjIyGD9+PC+99BJg3Rk+KSmJX/3qVzz00EMtzn/llVf4+9//zqFDhzAYDF16zoqKCkJDQykvL5ctNoRwF1lLYfmDUJF3/lhIAsx9GtIXqBeXEMJpHP38dpupsYaGBnbs2MGsWbPsx7RaLbNmzWLz5s2t3mfp0qVMmjSJX/7yl8TGxjJs2DCefPJJzGZzm89TX19PRUVFsy8hhBvJWgofL2yeBAFU5FuPZy1VJy4hhEtym0SopKQEs9lMbGxss+OxsbEUFBS0ep8TJ06wZMkSzGYzy5Yt489//jPPPvssf/3rX9t8nqeeeorQ0FD7V1JSUo/+HkKIXmQxW0eCaG2gu/HY8oes5wkhBG6UCHWFxWIhJiaGV199lbFjx3LDDTfwxz/+kVdeeaXN+zz88MOUl5fbv3JycpwYsRCiW05tajkS1IwCFbnW84QQAjcqlo6KikKn01FYWNjseGFhIXFxca3eJz4+HoPBgE53vkByyJAhFBQU0NDQgI+PT4v7+Pr64uvr27PBCyGco6qw43M6c54QwuO5zYiQj48PY8eOZdWqVfZjFouFVatWMWnSpFbvc9FFF3Hs2DEsFov92JEjR4iPj281CRJCuLmg2I7P6cx5QgiP5zaJEMD999/Pa6+9xjvvvMPBgwe56667qK6uZtGiRQAsXLiQhx9+2H7+XXfdRWlpKb/5zW84cuQI33zzDU8++SS//OUv1foVhBC9KXmydXUYmjZO0EBIovU8IYTAjabGAG644QaKi4t55JFHKCgoYNSoUSxfvtxeQH369Gm02vO5XVJSEt999x333XcfI0aMIDExkd/85jc8+OCDav0KQojepNVZl8h/vBBrMtS0aLoxOZq7WPoJCSHs3KqPkBqkj5AQbqjVPkKJ1iRI+ggJ4RUc/fx2qxEhIYRwSPoCSLtMOksLITokiZAQwjNpdZA6Ve0ohBAuzq2KpYUQQgghepIkQkIIIYTwWpIICSGEEMJrSSIkhBBCCK8liZAQQgghvJasGlODxSzLeoUQQggXIImQs7Xa6C3B2g3X0UZvkkgJIYQQPUISIWfKWtrY+v+CZt4V+dbj17/bcTLUE4mUEEIIIQCpEXIei9mawFyYBMH5Y8sfsp7XFlsi1TQJgvOJVNbSnopWCCGE8AqSCDnLqU0tE5hmFKjItZ7Xmp5IpIQQQgjRjCRCzlJV2L3zuptICSGEEKIFSYScJSi2e+d1N5ESQgghRAuSCDlL8mRrUTOaNk7QQEii9bzWdDeREkIIIUQLkgg5i1ZnXdkFtEyGGn+eu7jtZfDdTaSEEEII0YIkQs6UvsC6RD4kvvnxkISOl853N5ESQgghRAsaRVFaW4YkGlVUVBAaGkp5eTkhISE986DdaYjYah+hRGsSJH2EhBBCCMDxz29pqKgGrQ5Sp3btvukLIO0y6SwthBBC9ABJhFRktpjRdSWB6U4iJYQQQgg7qRFSydqctdy87GZKakvUDkUIIYRQxQ9nfuD363+P0WxULQZJhFRgNBtZnLmYrLNZ3PbtbeRVtdcoUQghhPA82wq2cd/a+/j25Le8f/B91eKQREgFBp2BV2e/SmxAPKcrT3Pb8ts4WX5S7bCEEB7izLkafjhajMlsUTsUIVq1v2Q/v1r9K+rN9UwLHcQt/imqbRElq8Y60Curxhrd+cEqttQ8CYYiwn3DefXSV0mLSOvR5xBCtGSymKhqqKKyoZJKY6X1e9MvYyVVDVU0mBu4Nf1WUkNT1Q7ZIYqi8PH2HB5bmkWt0UximD8v3zKGUUlhaocmhN3Rc0dZ9M0tlJtryait4+XCInwVrK1k5j7dYyugZdWYi6uuN3GqUE9Vyc/wT3qLc+SycNlP+M+l/2Z0zGi1wxPCI7y1/y22FWxrluBUNlRSa6p1+DH2lezjf5f9r2sLG5yovMbIw5/vZdm+AgB8dFrOVteTEhlgP6fOaMbP4Nq/h/BspytO87NvF1JurmVEXT0vFhZbkyCAinz4eGHHffV6mIwIdaA3R4RMZgvvbz3Nsyv3YIx+HX1ANlp8eHTC37lmyIwefS4hvM2mvE38fMXP2z0nQB9AkE8QIT4hBBmCCPYJtn8FGYL4+PDHVBor+fPEP3P94OudFHnnbTlxlvs+2k1+eR16rYYH5gxm4aQUsvLLGZscYT/vmn9tJMBHz6KLUpg+OAattq1O9UI4qBN98QqqC1j47ULyq/MZVN/AmwWFhFouTEE01pGhe/d1uy2Mo5/fkgh1oDcTIZtz1Q08s2Ifn+c+iS7oCIpFx51pf+Y3k67tlecTwtOZLWau//p6jpw7wpyUOcxLmUeQT5NExxBMkE8Qem37g+LvH3yfxZmLCfUN5eurvibML8w5v0AnKIrCtf/exM7TZaRGBfKPG0cxok9Yi/OyS6qZ8exabJ87yZEB3DYphR+N60Own8G5QQvP0GqD39ant0pqS1i0fBHZFdmkNBh5K7+QKEs7NWy3fd3tNjGSCPUQZyRCNgfyS/nF8t9Spt2OVqPlL5P/wlUDrurV5xTCE31+9HMe2fQIwT7BLLt6WZcTGJPFxPVfX8/Rc0e5ftD1/HnSn3s20B6SXVLN6xtO8PC8IQT6tp3c5ZTW8N6WU3yYeZqKOhMAQb56rhvbhzumpJIUEdDmfYVoJmupdRqLVkZ0oNn0Vnl9Obd/dztHzh0h3ieUd49lEWfuoDD62jdg+HXdCtHRz29ZNeZChsZHsGbha8xNXoBFsfDnjX/mvQP/5fdL9rAtu1Tt8IRwCzXGGv65658A/HzEz7s+imMxoz+1mT9EXQTAJ0c+IetsVg9F2XWKovDpjjO8uOqo/VhKVCB/vWp4u0kQQFJEAH+YP4Qtf5jJE1cNo390IFX1Jt7elM2+3PLeDl14CovZOhLUIgni/LHlD4HFTLWxmrtX3s2Rc0eI8o/i9ZH3dZwEgXWazUmkWNrF6HV6/nbJX4neHsp7We/xt+1PU188m4+3z+DyEQk8PH8IiWH+aocphMt6J+sdimuLSQxK5Ka0m7r2IE2G/McB86Ij+TYokCfXPMC7136FVqPONWRFnZE/fb6fpXvy0Ghg6sAoRvcN7/TjBPjo+fHEZG7N6MsPR0v4cncel6af/+D5eHsO8aF+TB0Y3ZPhC09xalPz6bAWFKjIpf7kOn597H32luwl1DeUV2e/St/QfhDyJ2thdKuJVGONUPLkXgq+JRkRckEajYYHxj3A3aPuBsA3egW+sd/w9d48Zjyzlue+P0xNg0nlKIVwPcU1xby1/y0A7h17Lz46n84/iG3Iv8kb/W9Ly/C3WNhTfZqvfni8p8LtlO3Zpcx74QeW7slDp9Vw/6xBrdYCdYZGo+HiQdE8e/1I9Drrx4HRbOG5749w1393kl/u+Oo64UWqCjs8xQj8du/LZBZkEqAP4JVZrzAwfKC1AHru041nXVis3/jz3MVO3T9TEiEXpdFouGvkXTw4/kEAfCI2kDTwG+pNJl5cfYwZz6xj1cGO/xiF8CYv736ZWlMtI6JHMCd5TucfoI0h/1izmV+UWaeOnju+hMq6su4H6yCT2cLzK45w/X82k1tWS1KEP5/8YhK/mjkQXS+s+jJbFKKCfaiqN/HHz/cjZaSihQ6mrczAH6MjWVdxBF+dLy/NfIlhUcPOn5C+wFpDFBLf/I4hCU5fOg+SCLm8W9Nv5fHJj6PVaCnTb+CiSctJDDdQUFHHA0v2UtugTidOIVzNkXNH+PzY5wA8MO4BNJouJAntDPn/uLySlAYjpVoN/97waHdCdZiiKNz+znb+seooFgWuGZ3Isl9PZUwXpsMc5WfQ8cINo/DRaVl9qIgvd8sWQOICyZOtSUuLER3rJcQTURF8GxSIXqvn+WnPMz5ufMvHSF8A9+63rg679g3r93v3OT0JAkmE3MLVA6/mmUueQa/Vs7dsPcNGf8bd0/uy7NdT8feR5mhCADy3/TksioXZybMZFTOqaw/SzpC/AXi49BwAH+Su4di5Y117jk7QaDRcMSKeIF89L9wwiuduGOWUpe4DYoL59cwBADz21QGKK+t7/TmFG2ljeksB/h4RzqfBQWjRsHjqYqb2aWcJvFZnXSI//Drrd5Walkoi5CZmJ8/mpRkv4afzY1P+Rg5YniHQX73deoVwJRtzN7IxbyN6rZ77xtzX9QfqYMh/cm0dM6trMKPwVOZTTpk2um5sH9b8bhpXjU7s9edq6ueX9Cc9PoSyGiOPLT3g1OcWbqCV6a1XwkJ4LzQYgMcm/4U5KV2YnlaBJEJu5KLEi/jP7P8QZAhiZ9FO7ltjfcPfdLxEpsiE1zJbzDyz/RkAbkq7iaSQpK4/WDtD/lYaHmjwxVfnS2ZBJt+d+q7rz9WG2gYz9364i4P5FdZn1GiIDvbt8efpiEGn5W/XjUCn1fDNvnzWHC5yegzCxTWZ3npnyk/5V3gYAA9NeIirB16tbmydIImQmxkTO4Y357yJQWtga8FW7vv8G25+bSv/Wtv7w/RCuKIvjn3BsbJjhPiE8PMR7W+p0SEHVrQkXrqYO4bfAcAz256hxljTvee8wOs/nOCL3Xn8/L0dmFtsP+BcwxJD+dWMAdw/exAX9Y9SNRbhorQ6PjEW8Ezu9wD8avSvuGXILSoH1TmSCLmhIZFDmNl3JgDVPhsB+M+6E5wsqVYzLCGcrsZYw0u7XwKszRNDfUO7/6AOrGhZNHQRiUGJFNYU8tq+17r/nI2KKur497rjAPxuzuBeWRXWWffOGsSvZw7ERy8fF6Kl3UW7eWLzEwAsGraIO4ffqXJEnSd/2W7qmoHXALC/fC1TBoXQYLbw6NIDstRVeJW3DrxFSW0JScFJXW+e2JoOVrT46f34/fjfA/D2gbc5VXGqR572uRVHqGkwM7pvGFeMiO/4Dk7WYLJworhK7TCEC/nfof+hoDA3ZS73jbmva6s1VSaJkJvKiM8gMSiRSmMl08cU4KPTsv5IMd8dKFA7NCGcorC6kLf3vw3AvWPuxaDr4dVUHaxomZ40nYsSL8JkMbE4c3G3L0Ky8ir4aHsOAH+6bIjLfaDklNaw4KUN3Pr6VirrZKGGgMqGSladXgXAbUNvc7m/WUdJIuSmtBqtfVRoff7X/PySfgA8/lWWdJ0WXuGl3S9RZ65jVPQoZifPdvrzazQaHhr/EHqtng25G1h3Zl2XH0tRFP5vWRaKApeNiGdsckQPRtozIoN8qGkwk1dex9PLD6kdjnABy7OXU2+up39of4ZGDlU7nC6TRMiNXTXgKrQaLTuLdjJ/jI4+4f7kldfx0mopnBae7VDpIb489iUAvxv/O9WuRFNCU7gt/TYAFmcupt7ctX47PxwtYeOxs/jotDw0N60nQ+wxAT56Fl87HID/bjnNlhNnVY5IqO2LY18A1s8idx0NAkmE3FpMQAwXJ14MwLLsL3n0iqHEh/oxok8PFIwK4aIUReGZ7c/Y6xJGRo9UNZ6fjfgZMQEx5Fbl2vc566xJ/SN57Ip0fjNrIEkRAT0cYc+Z3D+Kmyb0BeChT6WzvTc7UXaCvcV70Wl0XN7/crXD6RZJhNzctYOuBWDp8aVMGxzBmt9NY+4w1yuyFKKn/JD7A1vzt2LQGvjNmN+oHQ4BhgAeGPcAAK/ve53cqtxOP4ZBp+UnF6Xyy+kDejq8Hvfw/DTiQvzIPlvDcysOqx2OUMkXx78AYGriVKL83bu1giRCbm5K4hSi/aMprStlTc4a/AznCzplBZnwNCaLiee2PwfALUNuoU9wH5UjspqTMofxceOpN9fzzLZnHL5fTYOJBpOlFyPreSF+Bp68xrqB5hsbTrI7p0zdgITTmSwmvj7+NWCdFnN3kgi5Ob1Wb/9D/OzoZwBYLAofb8vhshc3UFUvhdPCc3x29DOOlx8n1DeUO0e4Tr8SjUbDQxMeQqfRsfL0SjblbXLofv9YeZQ5L6xn47GSXo6wZ81Ii+Xq0YmMS4kgzL/39z4TrmVT3iaKa4sJ9w3n4j4Xqx1Ot0ki5AFsrcw35W0ityqXBrOFl9YcIyu/ghdXHVU5OiF6RrWxmpd3vwzAXSPvIsQnROWImhsUPsjey2hx5mKM5vaXmOeU1vDWxmxOllRTb3K/Wpsnrx7Oh3dOJCUqUO1QhJPZiqQv63dZz7etUIEkQh4gKTiJjPgMFBS+OPYFfgYdjy1IB+DNDSc5UlipcoRCdN8b+96gtK6U5JBkrh90vdrhtOquUXcR4RfByfKTvH/w/XbPXbz8EA1mC1MGRDF9cIyTIuw5/j46tE06X7tjMic6r6yujLU5awHPmBYDSYQ8xnUDrwPg86OfY7aYmZEWy+z0WEwWhT9/sV/qhYRbK6gu4N2sdwG4b8x9LnsVGuITwn1jrZsh/3vPvymqaX2j0h2nSvlmbz4aDfzRBZsndkZ1vYnHlh7gR69sxmR2r3on0XnfnPwGo8XIkIghDI4YrHY4PcLtEqGXX36ZlJQU/Pz8yMjIIDMz06H7ffjhh2g0Gq666qreDVAlM/rOINQ3lMKaQjbmWfcfe+TydPwMWraeLOXL3XkqRyhE1/1z1z+pN9czJmYMM/rOUDucdi3ov4AR0SOoMdXw3I7nWtxusSg8/vVBAG4Yl8SQeNea4uus6gYTn+/KZe+Zcl794YTa4YheZuvfdeWAK1WOpOe4VSL00Ucfcf/99/Poo4+yc+dORo4cyZw5cygqav2qyyY7O5vf/e53TJ061UmROp+Pzocr+l0BwKdHPgUgKSKAexqX4/7fsoNUSFt84Yayzmbx1fGvAHhg/AMuP3qi1Wj5Q8Yf0KDhmxPfcLL8ZLPbv9qbx56cMgJ8dNx/6SCVouw5McF+/Ply61T8CyuPclz2IvNYh0sPc7D0IHqtnvmp89UOp8e4VSL03HPPceedd7Jo0SLS09N55ZVXCAgI4M0332zzPmazmVtuuYW//OUv9OvXz4nROt+1A609hdadWUdJrXUVyp0X9yM1KpDiynrWHi5WMzwhOsdiRjmxnmfXPoiCwvyUeQyLGqZ2VA4ZGjmUyQmTAex7MdlsOmbtyHzXJf2JCfZzemy94doxiVwyKJoGk4UHl+zFYpGpeE9kK5KenjSdcL9wdYPpQW6TCDU0NLBjxw5mzZplP6bVapk1axabN29u836PP/44MTEx3HHHHc4IU1UDwgcwMnokZsVsH7701ev4+3Uj+OzuySwYmaByhEI4KGspvDCM9Z/8iMyqbHwsCr/Z9ZX1uJuYlWx9r1p5amWz44uvHc47t0/gp1M958JMo9Hw5DXDCfTRsf3UOd7dnK12SKKHGc1GvjnxDeA5RdI2bpMIlZSUYDabiY2NbXY8NjaWgoLWd1zfsGEDb7zxBq+99prDz1NfX09FRUWzL3diGxX67Ohn9gLpcSkRjOnrOdm78HBZS+HjhVCRx8chwQDcXFFJQlm+9bibJEPTk6ajQcOBswfIr8q3H9doNFwyKBp/H10793Y/iWH+PDR/CABPLz9MblmtyhGJnrT+zHrO1Z8j2j/aPtrpKdwmEeqsyspKfvzjH/Paa68RFeV4+++nnnqK0NBQ+1dSUlIvRtnz5qTMIdAQyOnK02wv3N7i9uySajYcda/mbcKLWMyw/EFAoVqjYYufderoyqpqoHG6ZflD1vNcXKR/JGNixwDW6bGle/I4W9W1TVndxS0T+jIuORydVsO+M+VqhyN6kG1a7PL+l6PX6tUNpoe5zW8TFRWFTqejsLCw2fHCwkLi4uJanH/8+HGys7O54oor7McsFuvSTr1ez+HDh+nfv3+L+z388MPcf//99p8rKircKhkKMAQwP3U+nxz5hCVHljA+brz9tu3Zpdz8+lZC/PSs+u00QqUjrHA1pzZBhXWF40Z/Pxq0GvoajfQ32gr9FajItZ6X6vqLH2b1ncWOwh18dew7tm0OJ9BXz6r7LyEmxDNqgy6k1Wp44cZRhAf4EOjrNh8vogMltSX8kPsDAFf1v0rdYHqB24wI+fj4MHbsWFatOl94aLFYWLVqFZMmTWpxflpaGvv27WP37t32rwULFjB9+nR2797dZnLj6+tLSEhIsy93Y5seW3lqJeX156/KRvQJo29EACVVDTz3vWyWKFxQ1fkLndWB1l3YZ1TX0mKdWFXhhUdc0sy+MwHIKt2Doq3kov5RHpsE2fQJD5AkyMN8c+IbzIqZEVEj6BfmObVtNm6TCAHcf//9vPbaa7zzzjscPHiQu+66i+rqahYtWgTAwoULefjhhwHw8/Nj2LBhzb7CwsIIDg5m2LBh+Pj4qPmr9Kr0yHQGhw+mwdLA1ye+th/30Wt5/MqhALy35RQH8mToWriYIGsNoBFY7+8PwIyamjbPc3XxQfH0DRwMGgXf0IM8NC9N7ZCcRlEUeY/xAIqi2KfFPKl3UFNulQjdcMMNPPPMMzzyyCOMGjWK3bt3s3z5cnsB9enTp8nPz+/gUTyfRqPh2kHWUaElR5Y06yo9uX8Ul4+Ix6LA6z+cbOshhFBH8mQISWC7nx+VOi0RZjMj6huanKCBkETreW7AZLZwrtjaKyipzwmv2ZfLZLZwxUsbuOzFDRwqcK8FJ6K5A2cPcKzsGL46X+alzlM7nF7hVokQwD333MOpU6eor69n69atZGRk2G9bu3Ytb7/9dpv3ffvtt/niiy96P0gXMD91Pr46X46VHWN/yf5mt9mW7S7bl095jTRZFC5Eq4O5T7MmwDoaNL2mlvNrqxonyOYutp7nBj7efob8fGsiVGLaT0WDdyQFep2W5Ahr0vffLadUjkZ0h200aGbfmQT7BKsbTC9xu0RIOCbUN5RLky8F4NOjnza7bWSfUNLigqk3Wfhid64a4QnRJmXIFayO6gPAjOom02IhCXD9u5C+QKXIOqeyzshzKw6jNEQTYUjCpJhYf2a92mE5zS0ZfQH4fGcuVfUmlaMRXVFvrmfZyWWA506LgSRCHu2agdcAsOzkMqqN1fbjGo2GG8cnEepvwCibJAoXk1WaRaGxHH+9PxnX/Q+ufQNu+xru3ec2SRCARYH5w+MZGBPE1YPnArDq1KoO7uU5JvWPpF9UINUNZr6UCy63tOb0GiobKokLjCMjLqPjO7gpSYQ82NjYsaSEpFBrqmX5yeXNbrthfF+2/mGmR3W3FZ5h9enVAExJnIJv/xkw/DrrUnk3mQ6zCfU38PiVw/j611O4NMXaZXpD7gZqTd7RaFCj0XBz46jQf7ecblarKNyDbVpsQf8F6Nzs9dcZkgh5MI1GYx8V+uzoZ81u8/fR4Wfw3D9s4b5sidD0pOkqR9IzfPU6hkQMISEwgTpzHZtyN6kdktNcN7YPvnotB/Mr2Hm6TO1wRCcUVBewKc/6t+qJvYOakkTIw13R/wr0Gj17S/Zy5NyRFrcrisLm42epljl84QJOV5zmWNkxdBodF/e5WO1wuuzlNcfYll1qHwXRaDTMTLb2FFp5emV7d/UoYQE+XD7CusfhN3tlRa87+er4VygojI0dS1KI+zQV7gpJhDxclH8U0/tar6wvHBUCuP3tbdz02ha+3pvn7NCEaGFNzhoAxsWNI9Q3VOVouuZEcRV//+4wN/xnM8WV57fUmNXXOj22LmcdRrP3rNb8xSX9eHvReP502RC1QxEOato7yNM2WG2NJEJewDY99tXxr6g3N9/raGK/SAD+l5nj9LiEuJBtWmxG0gyVI+m6JTvOAHDJoOhmXaRHRo8k0i+SSmMlmQWZaoXndANjg5k2OAattkV/cOGidhXt4nTlafz1/vbVx55MEiEvMCl+EvGB8VQ0VLDyVPNh+WvG9EGv1bA7p0wanwlVna09y66iXQDM6OueiZDZovDpTmsidP245tMJOq3O/nt50/RYU/UmMxaLFE27ui+PfwnApcmXEmAIUDma3ieJkBfQaXVcPeBqoOX0WHSwL7PTrZ25P5RRIaGidWfWoaCQHplOXGDLjZTdwfqjxRRW1BMeYGDmkJbbgNimx1afXo3ZYnZ2eKp6afVRJj+1mk3Hz6odimhHjbHGvsrYG6bFQBIhr3HVgKvQoCGzIJPTWZ/CviVw8gewmLlxQmPjs1251Bm9681ZuA6PmBbbbh0NunJUIj76lm+v4+PGE+wTTGldKbuLdzs5OnUVVtRztrpBOk27uJWnV1JjqiEpOImxsWPVDscpJBHyEvFB8VwUOhCAz1bcB5/eAe9cDi8MY4pxE4lh/pTXGlm+v0DlSIU3qjHWsDlvM+C+02LnqhtYkVUIwI/G9Wn1HIPOwLQ+0wBaTFN7ulsnJgOw4mAhhRV1Kkcj2mLfYLX/lWg03lHXJYmQt8hayrVHrD0hvggKwr5mpSIf3Se38XDKUQDWHSlWJz7h1TbmbaTB0kBScBIDwgaoHU6XnCqtISbEl/T4EIYmtL3izbaMfvXp1V7VZHBwXDDjU8IxWxSZhndROZU5bCvYhgYNC/q7Txf37pJEyBtYzLD8QS6pqSHCbOasXsf6xk0twfpGPC/3BT786Xieu36kenEKr9V0Wsxdr0JHJYWx/oHpvL1ofLvnTU6YjL/en7zqPA6WHnRSdK7BNir0v8zTmGR7H5fz1fGvAMiIzyA+KF7laJxHEiFvcGoTVORhAK6stO459llwUJMTFHSVeUzUHXbbDyHhvowWI+vOrAPcd1rMRqvVNFsy3xp/vT9TEqcA3jc9NndYHBGBPhRU1LH6UJHa4YgmLIqFL49ZV4t5S5G0jSRC3qCq0P6f11RWAbDB348Cna7V8+qMZrlaE06zo3AHlQ2VRPhFMDLaPUckDxVU0GBy/DUzs691emzVae/ZhBWs243Y6qf+u/W0ytGIprYVbCOvOo9gQ7D979NbSCLkDYLOL+NNMZkYV1uHRaNhWVBAi/NeXHWUjCdX2Ys+hehttmmxaUnT3HJjxwaThZte3cLEp1ZxrKjSoftc3Odi9Fo9J8pPcKLsRC9H6FpumZDMbZOSpdO0i7EVSc9NnYufvv1RTU8jiZA3SJ4MIQmAddprVk0NAJv8bXVCGghJhOTJ1BrNlNca+XCbFDOK3qcoitsvm191sJBzNUb0Wg0pkYEO3SfYJ5iJ8ROt9/eyUaG+kQH85cphDIoNVjsU0aiyodI+TXvlgCtVjsb5JBHyBlodzH268QcNk2qtS1d3+vlSq2n8E5i7GLQ6bmjshrv+aDFnztWoEKzwJlmlWRTWFOKv9ycjPkPtcLrkk8YtNa4Z0we9zvG3VFtzRW/tMi1cx3fZ31FnriM1NJURUSPUDsfpJBHyFukL4Pp3ISSeVKOJOJMJo0bDzoh46/F061LJlKhAJvWLRFHg48bmcEL0Ftto0JTEKW45HF9YUcfaw9ai37Z6B7VlWtI0tBotWWezyKvyvk2Pd+eU8ZsPd8mu9C5g6fGlQGPjXS9cMCOJkDdJXwD37kdz29dMih0HwOaJi+xJkM2NE6yjQp9sz8Es+wKJXmRLhKYnTVc5kq75bGcuFgXGJofTP7rJSkyL2dq5vUkH9wtF+kcyJmYM4H3TYwDrDhfz5e483tmUrXYoXq2srozdRbsBmJ86X91gVCKJkLfR6iB1KpOG3gzApvzNLU6ZMzSOsAAD+eV1rJcGi6KX5FTkcKzsGDqNjov7XKx2OJ2mKAqf7LDW0v1obJPRoKyl8MIwa+f2Jh3cyVra4jFmJTdOj3nZMnqwXnDptBoys0s5XOBYkbnoeZkFmSgoDAgb4LZ7/HWXJEJeamL8RDRoOHruKCW1Jc1u8zPouGa09Y39f5myxFX0jtU51tGgcXHjCPVtuxOzq8rKr+BEcTX+Bh2XjWhsPpe1FD5eCBUXTHVV5FuPX5AM2ZYp7yra1eJ16OliQ/yY3bgx7ftbZf8xtWxuvBi2Fe97I0mEvFS4XzhpEWkA9j2emro5I4mfXdyPB+elOTs04SXcfVpsaEIo3993MYuvHU6wn8Hewd3Wrb25xmPLH2o2TRYXGMewyGEoKKzJWeOUuF2JrdP0Zztzqa43qRyNd9qStwWASQmTVI5EPZIIebHJCZOB1hOhATHB/GH+kOZ1D0L0kLO1Z+27r7vrsnmAQbHBXDkq0fpDYwf3tilQkWs9rwnb3mOrTnlfndDk/pGkRgVSVW9i6R7vKxhXW05lDmeqzqDX6L1mp/nWSCLkxWxXAFvyt3jV5o9CfevPrMeiWBgSMcQt9zRq9fVS5WAT0gvOsy2j35q/lYqGiu6G5la0Wg03T+gLwH+3nJL3ISfbkm8dDRoRPYJAg2M9sDyRJEJebHTMaPx0fhTXFnOs7Fir52w6XsLd7+9gy4mzTo5OeDJ7E0U33Vvs9re38ev/7SK7pPr8wSYd3Nt1wXkpoSkMCBuASTGxLmddD0bpHq4b24dBsUEsGJkgq1SdzDYtNjHBe+uDQBIhr+aj82FsnHU4dFPeplbP+XpvPsv2FfCB7AskekiNscb+9+aOiVBOaQ1rDhfz1d489LomPVcu6ODe0vkO7hfy1r3HAMIDffju3ov5+SX9O9WQUnSPRbGwtWArAJPivbc+CCQR8nq2F8DmVpbRA9w03jpsvXx/AeeqG5wWl/Bcm/I20WBpoE9QHwaGDVQ7nE5b0thJ+qL+UfQJb7Jf3wUd3Jtr/Lmxg/uFbMvoN+ZupMZY41AfIk/ijU381Haw9CDl9eUEGgIZWlnmNX9rrdGrHYBQl61OaEfBDhrMDfjofJrdPrxPKEMTQjiQV8Fnu3K5Y0qqGmEKD9J0WszdPgAtFsWeCLXaSdrWwX35g80Lp0MSrEnQBc1LbQaHDyYxKJHcqlw2bf0HszLfbeX+T7d5f09QbzKzfH8BBp2W+cPdr27M3dimxcZXV2J4r8n+Yl7wt3YhGRHycgPDBhLlH0WduY5dRbtaPefG8dZO0x9tOy3FjKJbjBYj685Y62DccVpsy4mz5JbVEuynZ87QNprPNXZw57av4do3rN/v3dfuB4tGozm/99ie1xzuQ+RJPtuZy28+3M0z3x2W9xkn2HLsKwAmVpY1v8EL/tYuJImQl9NoNOenx1pZRg9w5ehE/AxajhRWsfN0mROjE55mZ+FOKhoqCPcNZ1T0KLXD6bSPt1s7SV8xMgE/Q8spLrvGDu4Mv876vZXpsAvNauyntC7AH2OLW1vvQ+RJrhiZQKCPjhMl1Ww+LoszelNdQzU7y60LZGybcJ/n+X9rF5JESNinx9qqEwrxM3DZ8AQAPpRO06IbbNNi05KmoXMgOXAlFXVGvt1fAFywpUYPGVFTRZTJTJVWy1b/1jagbb0PkacI8tVz1WhrT6b/SqfpXrVr/wc0aDTEmEykGltrZOnZf2sXkkRI2FurHzx7kHN151o958YJSQyMCWJkUpgTIxOeRFEU+7Ya7jgtpgHumz2IS9NjGdULrwNtdTEza2oAWBkQ0PaJjvYrckM3Z1gXZ6zMKqKyruW4mOgZW4p2ADCxtq7NNY6AR/+tNSWJkCA6IJqB4QNRUNiav7XVc8Ylh/P9fRfbW+IL0VkHSw9SUF2Av97fLfc1CvYz8ItL+vPqwnG9U+QdFMvMamsitCbQnzYnJRztV+SG0uND6BcdSIPZwupDRWqH47E2V1tH9ie2mBa7gAf/rTUliZAAOl5Gr9Fo3G6Fj3AttmmxixIuwk/f2tSPl0uezDifSELMZkp1Onb5+V5wQtt9iDyFRqNh3jBrEfq3+wpUjsYznas7x6Eq68rHiXX1bZzl+X9rTUkiJIDz+45tytvU7oqNmgYTn2zP4VhRpbNCEx7CnafFPtp2ms93naG2oReLR7U6DHOfZlqN9Sp9VYB/kxvb70PkSeYNsy6dr6gzyuqxXpBZkImCwgD/WKLNFjrb88oTSSIkABgTOwaD1kBBdQHZFdltnvenL/bzwJK9vLNJihmF43Iqcjh67ig6jY6L+1ysdjidYjJbeOb7I9z30R7WHSnu3SdLX8Cs0T8HYGVgwPl97EMSrP2JvKC3y9CEELY8PJMP7pwoo9C9wLa/2MSU2da/qZALejZ50d+ajTRUFAD46/0ZEzOGrQVb2Zy3mdTQ1hsnXjO6D5/tzOWL3bn86fIh+Oq944pBdI9tNGhc7DhCfUNVjqZz1h0ppriynshAH2akxfT6803K+A3+2Z9SQC1Zc59gaOxo6xSFl1ydazQa4kJl6rS32NqkTEqYBH0uhrTLrKvDqgqtNUFe9LdmIyNCws6+jL6NfkIAk/tHEhfiR2WdiU3HpNeHcIytPmh63+kqR9J5n2y31lNcNToRH33vv2X66f2YmjgVgJU+isN9iDxReY2RBpNF7TA8Rk5lDrlVueg1esbFjrMe7ELPK08jiZCwsyVC2wq3YbS0vnRVq9UwZ6h1JcHy/VLMKDp2tvYsu4t3AzAjyb3qg0qrG1h1yLqEuNUtNXqJLWHcmLvRac/pan6/ZA9j/7qC9b09HelFbNNiI6JHEGBop0WDl5FESNilRaQR7htOtbGafcX72jzPtrXAioOFmMxytSbat/7MeiyKhSERQ4gPcq89pL7YlYvRrDCiTyhpcSFOe96MuAwADpUeoqKhwmnP60oCfPSYLArL9uerHYrHsI32T0xwv/YVvUkSIWGn1Wjt/V025bXdUXRCagRhAQZKqxvYlt16A0YhbJpusupOFEWxb6nRG52k2xMdEE1KSAoKCjsLdzr1uV2FbRn9yqxCmR7rAWaLmcyCTOB8uxRhJYmQaKaj7TYA9Dots4dYp8f2nilzRljCTdUYa+x/S9OT3Ks+qKreRIi/AV+9lgUjE53+/OPjxgPYP7y8zbiUCKKCfKmoM7H5hNQjdtehc4cory8n0BDIsKhhaofjUiQREs3YEqH9JfvbHZL/9cyBbHl4Jj+/pL+zQhNuaHfRburN9cQHxjMofJDa4XRKsJ+Bj38+iU0PzSA0wOD057clQtsLtjv9uV2Brkk94rf7ZHqsu2zTYuPjxqPXyoLxpiQREs3EBcaRGpqKRbGQmd/2lWhSRIAscRUd2la4DbC++bprT5jIoAs7PDuHbVXPoVLrlbw3mj/cWlP2fZbUI3aXrVBapsVakkRItGDfbqOdZfRNyRuUaMv2AmsiNM4EnPwBLL3YmbkHlVY3UFbToGoMUicEGakRhDfWI2Zml6odjtuqM9Wxq3AXIIXSrZFESLTgSJ0QwOmzNfz4ja3M+8cP0gpftFCzbwn7i3YDMH7Dv+Gdy+GFYZC1VN3AHPDu5mzG/nUlz31/WNU4bNNjtpE1b6PXafnl9AE8ceVQBscGqx2O29pZtJMGSwMxATGkhrTeLNebSSIkWhgfNx69Rk9OZQ45lTltnhcR5MPWk6UcLariSGGVEyMULi9rKbu/+SUmjYZ4k4lEU+NIUEU+fLzQ5ZOh7w4UYrYo9I0MVDWOCXETANhW4J2JEMBPp/bjx5NSVJui9ARNp8XcdYq6N0kiJFoINAQyInoE0P70WJCvnosHRgHSXFE0YTHD8gfZ7m/94BpXW99kW8fGkcPlD7nsNFlOaQ0H8yvQaTXMdMKWGu0ZF2etEzpcethr64RE923Ja9xfTKbFWuV2idDLL79MSkoKfn5+ZGRkkJnZdkHva6+9xtSpUwkPDyc8PJxZs2a1e744z7Ybve1Koi2XNjZXXH5AEiHR6NQmqMhju581ERpfV3fBCQpU5FrPc0HfNf4tT0iJIDzQR9VYovyjSA1NRUFhR+EOVWNR09mqet7bcor3t8pmz511ru4ch0oPAdj7xInm3CoR+uijj7j//vt59NFH2blzJyNHjmTOnDkUFRW1ev7atWu56aabWLNmDZs3byYpKYlLL72U3NxcJ0fufmx1Qlvyt2Bu58p91pBYdFoNB/MrOH22xlnhCVdWVUitRsM+38YRoRaJ0PnzXNH3B6xx2ZZuq218bGOdkBdPj+04dY4/f7Gff605LvWInbS1YCsKCgPDBxLlH6V2OC7JrRKh5557jjvvvJNFixaRnp7OK6+8QkBAAG+++War57///vvcfffdjBo1irS0NF5//XUsFgurVq1ycuTuZ2jkUIJ9gqlsqOTA2QNtnhcR6ENGagRw/kpaeLmgWPb4+mDSaIg1mehjaiORDnKNRKOpkqp6tp+yrk6a3TjaqTZ7P6FC7+wnBHDxoGgCfHTkltWy94xMEXaGfVpMRoPa5DaJUENDAzt27GDWrFn2Y1qtllmzZrF5s2PLvGtqajAajURERPRWmB5Dp9XZXzgdLaOfO0ymx0QTyZPZFhoNwPi6pvVBNhoISYTkyc6OrEOrDhZiUWB4YiiJYf5qhwNInRCAn0HH9MZ6Ldl7zHGKotjLGyQRapvbJEIlJSWYzWZiY5tfRcbGxlJQ4NgH8IMPPkhCQkKzZOpC9fX1VFRUNPvyVo7sOwZwaXocFw2I5OrRiTJsLUCrY3uMdYnu+Nr6C25sTIvmLgatzrlxOWBGWixPXj2cn13cT+1Q7KL8o+gX2g8FxatHheYPszZXXL6/QN5nHHSm8gy5VbnotXp7g07RktskQt21ePFiPvzwQz7//HP8/NruiPzUU08RGhpq/0pKSnJilK7FVie0t3gv1cbqNs+LC/Xj/Z9O5NaJybI0U1BrqmVfTR4A4/QX7NgekgDXvwvpC1SIrGPRwb7cnNGXK0YmqB1KM96+3QbAtMHR+Oq1nDpbw8H8SrXDcQu2XnAjo0cSYAhQORrX5TaJUFRUFDqdjsLC5gWWhYWFxMW1P5f/zDPPsHjxYr7//ntGjBjR7rkPP/ww5eXl9q+cnLb76Hi6pOAkkoKTMCkmr34DFp2zt3gvRouRmIAYkn61D277Gq59w/r93n0umwS5Mtv0mDcXTAf66rlkkHXK9VuZHnOITIs5xm0SIR8fH8aOHdus0NlW+DxpUtt7p/ztb3/jiSeeYPny5Ywb1/HQoK+vLyEhIc2+vJltu42OpscAiirqeG/LKdW3JhDqsn1Yj48bj0anh9SpMPw663cXnA6z+dfaY7yzKZuzVRdO56nPNq1x5NwRr60TAuveYzqthtJqeY/piNliZmv+VuD86L5onVttQXv//fdz2223MW7cOCZMmMALL7xAdXU1ixYtAmDhwoUkJiby1FNPAfD000/zyCOP8MEHH5CSkmKvJQoKCiIoKEi138OdTEqYxMdHPu5wuw2A297axsH8CvwNOq4b28cJ0QlXZKtjcaeahAaThX+vOU5lvYlhiaEu18U4yj+K/qH9OV5+nO0F25mZPFPtkFQxZ2gc0wZHExagbn8nd3Co9BAVDRUEGYIYGjlU7XBcmtuMCAHccMMNPPPMMzzyyCOMGjWK3bt3s3z5cnsB9enTp8nPPz9k+u9//5uGhgauu+464uPj7V/PPPOMWr+C25kQPwGtRsvJ8pMUVLdflG7ruyJdpr1XnamOvcV7gfN1Le5g0/ESKutNxAT7MjopTO1wWmWfHvPSfccA/H10kgQ5yHbxOj5uPHqtW415OJ3b/d+55557uOeee1q9be3atc1+zs7O7v2APFyITwjDooaxt3gvm/M2c/XAq9s8d+6wOF5YeZT1R4uprjcR6Ot2f16im+z1Qf4x9A3uq3Y4Dvs+y1p7ODs9Fq3WNQv+x8eN56PDH3l1nVBTxZX1RAe71sidK5H+QY5zqxEhoQ5bnVBH/YQGxwaTEhlAg8nC2sPFzghNuBjbtNjYuLFus4LQYlFY0ZgIXeoiTRRb07ROqKyuTN1gVGS2KFz/n82M/7+VnCxpezWrN6s11bKzaCcg9UGOkERIdKjpvmMWxdLmeRqNhjnSXNGrNS2Udhe7cs5RXFlPsJ+eSf0i1Q6nTZH+kfQP7Q/g1fuO6bQafPXWjy5ZPda6XYW7MFqMxAbEkhKSonY4Lk8SIdGh4dHDCTQEcq7+/OZ9bZnbeEW9+mAhdUbX3F1c9I56c729PsidCqVte4vNSIvBR+/ab4m2BDOzwLs3j7Z3s5d6xFY1XTbvLiOzanLtV71wCQatwb7xY0fTYyP7hBEX4ke9ycKBPO/tyu2N9hbvpcHSQJR/lFtdhVbUmTDoNMxx4WkxG1si5M0F02DtZq/VwN4z5eSUymbPF7IlQjIt5hhJhIRDbC+ojpbRa7UaXvnxWLb/aRZjk8OdEZpwEbamm+Njx7vVVehT1wxnx59nM6NxLytXNjZ2LABHzx3lXN05laNRT3SwL+NTZLPn1pTWlXKw9CAAGfEZKkfjHiQREg6xJUI7C3dSa6pt99xRSWGyxNUL2UYpbMu83UmInwE/g+s2e7SJ9I9kQNgAwLvrhADmNU6PfSvTY81k5lunTQeGDyTKP0rlaNyDJELCISkhKcQFxmG0GNlZuNPh+1kssjmiN2hWH+RGiVBxpet1ke6Irf7K25fRz23chHXHqXMUlNepHI3rsE+Lxcu0mKMkERIO0Wg09tVjHdUJAaw9XMTV/9rI419n9XZowgXsK95HvbmeSL9IUkNS1Q7HIWfO1TD+/1Zy9b82YjS3vRrS1UidkFVcqB+/uKQ/z98wkhB/6VkGoCiK/f1Z+gc5ThIh4TD7vmP5He87ZrYo7DpdxvL9BTIq5AXs22rEjXOb+iDbajGDTotB5z5vhbYRt6PnjlJaV6pyNOp6aF4aV4/uQ4CPJEIAOZU55FXnodfq7fVkomPu8+oXqsuIz0CDhqPnjlJSW9LuuRcNiCLQR0dBRR17c713k0hv0bRQ2l18n2WtLbk0PVblSDonwi9C6oREq2zTYqOiRxFgCFA5GvchiZBwWLhfOEMihwAdT4/5GXRMb1yFI70+PFuDuYHdxbsB92mkWFrdQOZJ62iKOyybv5B9eqy1OiGLGU7+APuWWL9bPLufV05pDa+sO27vDu7NZFqsayQREp3i6HYb0LTpWT6KItNjnmp/yX7qzfVE+EWQGuoe9UErDxZiUSA9PoSkCPe7cm4zEcpaCi8Mg3cuh0/vsH5/YZj1uIf6am8ei789xLubs9UORVVmi5mtBVsBmJggiVBnSCIkOqVpP6GOkptpg62derPP1nCksMoZ4QkV2D6Mx8W6X33QpUPda1rMxrZy7FjZsfN1QllL4eOFUJHX/OSKfOtxD02G5jWuHtt8/CxlNQ0qR6Oeg6UHqWyoJNgQzNDIoWqH41YkERKdMjpmNL46X0pqSzhVcardc4N89UwdYO1jIdNjnsu2esldpsVqGkz8cNS6KbA7TouBdZp6YPhAoLE+y2KG5Q8CrV2cNB5b/pBHTpOlRgWSFheMqcnmud7INko/Pm48eq0Uj3eGJEKiU3x0PgyPGg44Vqi5YFQCc4bGMiIptLdDEyowmo3sKdoDuM/+YlqNhr9dN4IfT0wmLS5Y7XC6zFaYvq1gG5za1HIkqBkFKnKt53kg26iQN19w2fcXk2mxTpNESHTamNgxgGOJ0JWjEvnPj8cxfbDrb18gOm//2f3UmesI9w2nf1h/tcNxiJ9Bx5WjEnniqmFuM5XXGtsI3PbC7VDl4EiIo+e5mXnDrSN7PxwtobLOqHI0zldrqmVX0S5AGil2hSRCotNs/Sl2FjneYVp4Jnt9kBv1D/IUttfhsbJjnPVxsOA7yD1rojoyMCaI/tGBNJgtrD5UpHY4TrercBdGi5G4wDiSQ5LVDsftSCIkOm1U9Ch0Gh25VbkUVDs2FJ1dUs2nO870cmTC2Wz9g9xlWmzn6XO8vOYYx4vdv3i/aZ3QDh8thCQAbSWjGghJhOTJTovPmTQaDfOGxeNv0FFY4X3bbdhWi2XEZcgFSRdIIiQ6LcAQwJAIaz8hR6bHSqrqmfbMWn77yR6KvPBNylMZzUa36x/02c4z/P27w7z+wwm1Q+kRE+ImAJBZuB3mPt149MIPwsaf5y4GretvLNtVd07tx84/z+ZnF7vHFG1P2tn4PjzOhFf0juppkgiJLrENyzuSCEUF+TKmbxgA33nxqg5Pc+DsAWpNtW5TH2SxKE2WzbvnarEL2Qqmtxdsh/QFcP27EBLf/KSQBOvx9AUqROg8oQEG/H08N9FrS93+T9lftBuAsRv+5RW9o3qaJEKiS2wF047uRG9bpvydF6/q8DS2/cXGxo5Fq3H9t5LdZ8ooqqwnyFfP5P6RaofTI2wXJMfLj3O29qw12bl3P9z2NVz7hvX7vfs8Pgm60LlqL+knlLWUfV/fjUmjIcZkoo+pcSTIw3tH9TTXf/cSLmlMjDUROl5+3KGNH22J0OYT3t30zJM0LZR2B7bRoGmDo/HVe8bIQZhfGIPCBwHnE1O0OkidCsOvs3734OmwC+WU1jDruXXMeHYtZk/f7Lmxd9R2Px8AxtbVN5kU9ezeUT1NEiHRJWF+YfaNH3cV7urw/JTGpmdmi8LKg963qsPTGC1G+3Jdd6gPUhSF7w9YRyPdtYliW9rdd8zLxIX6UVRRx7kaIztPn1M7nN7V2Dtqp58vAGPq6i84wbN7R/UkSYREl9nrhIoc2wH7/N5jMj3mNtrYwDPrbBa1plpCfUPtCbErO1ZUxYmSanx0WqYNjlY7nB4lidB5Bp2WaY09y1Ye9PB6xKpCjMAeX2siNLZFInT+PNE+SYREl3WmYBrOJ0I7TpXSYLL0Wlyih7SzgWfT/cXcoT7oeHEVAT46Jg+IJNjPoHY4PWpc7Dg0aDhRfoKS2hK1w1HdzCHWRGiVp488B8VyyMeHWq2WELOZ/sY2Gkl6aO+oniQbkogus9UJHSo9RLWxmkBDYLvnD44N5q1F45nULxIfvet/eHo12waeF+5d1ViEuX3kDMA9psUA5g6LZ9rgGEo9sIg21DeUQeGDOHzuMNsLtzM3Za7aIalq2qAYdFoNx4qqOHW2muTI9t+X3FbyZHaEWUc3x9TVtzKqobGuGPTQ3lE9ST6NRJfFBsbSJ6gPFsXC7sblm+3RaDRMHxyDn8F7ijfdUgcbeBqBXeVHAPdppAjWrTUSwvzVDqNX2LfbaGxw6c1CAwyMTwkHPHxUSKtjR6J1l/mxdRcm+N7RO6qnSCIkuqUz+44JN9HBBp4HfQ3UaDSE6APsnY1dWXW9Se0Qep1t5Z7UCVnNGmKdDlp1yHPrYyyKhZ011tfpWH1Q8xu9pHdUT5GpMdEt42LHsfT40k4lQv9Zd5zPd+XylwVDyejnGf1cPEoHxZXbGlepjAvs6xb1QT97bzv55XUsvmYEE1Ij1A6nV1xYJxTlH6V2SKqanR7L4YJKj1sh2NSxsmNUNFTgr/cn7e71kLPN+toNirVOh8lIkMMkERLdYhsR2leyj3pzPb463w7vc7igkkMFlaw6VCSJkCvqoLhyu58fAOMihzkjmm4pq2lgy4lSzBaF2JCO/zbdVahvKIMjBnOo9BDbC7YzN9W764SSIwP5+49Gqh1Gr7I1sx0ZPRKD3s/aM0p0ietfzgmX1je4L1H+URgtRvaX7HfoPjMbh609fnmru0qe3OYGniaw9y0ZP+Q658bVBasOFmG2KKTFBXtu0WwjW72WTI95B9sovO1iVHSdJEKiWzQajX31mKPTY1MHRaHXajhRXM3JkureDE90hVbX5gaeh3x8qdFqCdH5MyhyiPNj66TvGpsoesreYu2x9xMqlEQIrE009+SU8eKqox7XZVpRFPuIkDstWHBVkgiJbrP1E3J037EQPwMZ/ay1GqtkVMg1tbGB5zbbct2EDJevD6ozmll/tBiAOUM9v5fK2NixaNBwsvyk9BMCzBaFhW9m8tyKIx7XZfpM5RmKaovQa/UMjxqudjhuz7XfyYRbsCVCu4p2YbI4tkJnZlrjqg5PXt7q7lrZwHPboIuB87ueu7KNx0qoM1pICPUjPT5E7XB6na1OCGR6DEDfpIu4p03D27r5D4schp/eT+Vo3J8kQqLbBoYPJNgnmBpTDYfPHXboPrbur9uySymvbaMjqlBfkw08TcmT2NXYL8odNlq17Wk3c0gsGk3LeidPJNttNGerR/S0Cy5bGYLtIlR0jyRCotu0Gu35OqECx+qEkiMDmZAawYJRCV7R58UTHC49TJWximBDMIPDB6sdTocuGx7PjeOTuGxEfMcnewjbSJ0kQlaXDIpG36TLtKewlSFIoXTPkERI9IiuNFb8+OeTeO76UR7b7dfT2D5cx8aORecGPUqmDIxi8bUjmOhFLRrGxI5Bg4bsimyKa4rVDkd1of4GxqdY6xFXesioUHFNMacrT6NBw+iY0WqH4xEkERI9wl4wXbQTRfGsFRrCanuhdfsGd5gW81ahvqGkRaQB5/+9vN35TVg9o07IVh80OGIwwT7BKkfjGSQREj0iPSIdP50fZfVlnCg/4fD9FEVhf245OaU1vRid6C6zxWwf7XOHROidTdnsPH0Oi4ctm3aE7d8nsyBT5Uhcg227jSOFldSbzCpH03228gOpD+o5kgiJHmHQGRgZbe3k2pnpsUeXHuDyf27gvS2neis00QMOnTtElbGKIEMQaeFpaofTrsKKOh5deoBr/72Jsx6423xHJsRNAGQDVpuUqEA+vWsyWx6eia/e9ad0O7KzqLE+KEbqg3pKpxOh2267jfXr1/dGLMIdWMxw8gfYt8T63XL+Cst2hdKZRMi295OnDFt7KtuH6pjYMS5fH2RbITSyTxjRwZ67rUZbmtYJFdV4Rl1Md41NDkevc//r/vL6co6eOwpIoXRP6vRfRnl5ObNmzWLgwIE8+eST5Obm9kZcwhVlLYUXhsE7l8Ond1i/vzDMepzmBdOO1gld3Liq43hxNdnSZdpl2RIhd+gftLpxx/FZjbUh3ibEJ8ReJ9SZixJvoCiKW9cw7i7ajYJCSkiK12+s25M6nQh98cUX5Obmctddd/HRRx+RkpLCvHnzWLJkCUaj9IPxWFlL4eOFUJHX/HhFvvV41lJGRI9Ar9FTWFNIXnVe649zgRA/g31UyNOannmKpvVBtj41rqrOaGbDMWtX5Rlpnt9Nui1dGZ31dM98d5gpT69hW7b7dpmW/kG9o0tjhdHR0dx///3s2bOHrVu3MmDAAH784x+TkJDAfffdx9GjR3s6TqEmixmWPwi0diXVeGz5Q/hrfUiPSgc69wbsqU3PPMWRc0eoNFYSaAi0dy52VU27SQ+J994VNbb9pyQROu/MuRpyy2rdehretmJMpsV6VrcmTfPz81mxYgUrVqxAp9Mxf/589u3bR3p6Os8//3xPxSjUdmpTy5GgZhSoyIVTmzq97xicn8KQLtOuydY/aEzMGPRavcrRtM8bu0m3ZnSstb/MsbJjnKtz3xGQnmS74HLXkecaYw1ZJVmAjAj1tE4nQkajkU8//ZTLL7+c5ORkPvnkE+69917y8vJ45513WLlyJR9//DGPP/54b8Qr1FDl4BtHVSFjYzo/JJ8cGciAmCBMFoX1R6QJnKtxp/5Buxo315zppfVBNhF+EfQP7Q+cX2Xk7S4Z7N71iPtK9mFSTMQGxJIQmKB2OB6l05d38fHxWCwWbrrpJjIzMxk1alSLc6ZPn05YWFgPhCdcQpCDtRZBsYyKGWFfsVJSW+JwQd9Dc9MI8NExvrFeSLgGi2Kxf5C6Q6H0N7+eys7T5xieGKp2KKobGzuW4+XH2V6wnZl9Z6odjups9Yibjp9l1aEi7piSqnZIndK0PsibRzt7Q6dHhJ5//nny8vJ4+eWXW02CAMLCwjh58mR3YxOuInkyhCQAbb34NBCSCMmTCfUNZVD4IKCT02PpsUweEIXBA5a4epJjZccory/HX+9PWqRr9w8C0Gk1jE+JwM/g2kv8nUEKpls6X4/oftNjtvdTmRbreZ3+1Pnxj3+Mn59fb8QiXJVWB3OfbvzhwmSo8ee5i63ncb6QT4bk3Z9t2fyo6FEYtAaVo2mfOy+L7g22D8zD5w5T2VCpcjSuwVaPmHmylIo696lHNJqN7CneA0gi1Bvk8ls4Jn0BXP8uhFywk3dIgvV4+gL7oa5eiR4qqOCxpQd4bb3jW3SI3uUu22oUVtQx5ek1PPLlfq/cVqM1sYGxJAUnYVEs7C7arXY4LiE5MpBLBkVzS0Zf6ozus91GVmkWdeY6wnzD6BfaT+1wPI7bJUIvv/wyKSkp+Pn5kZGRQWZm+/vpfPLJJ6SlpeHn58fw4cNZtmyZkyL1QOkL4N79cNvXcO0b1u/37muWBEGTK9HSw1Q0VDj88EcLq3h7UzYfbjvdo2GLrlEUxV4o7epXoasPFZFbVsu+3HK0WqmfsJHpsZbeuX0Cf7lyGDHB7jOzYfv3GxMzRuqDeoFbJUIfffQR999/P48++ig7d+5k5MiRzJkzh6Ki1vvPbNq0iZtuuok77riDXbt2cdVVV3HVVVexf/9+J0fuQbQ6SJ0Kw6+zfm9lu4Uo/yiSQ5JRUDp1Jeruqzo8TXZFNqV1pfhofRgeNVztcNplq/mYmebdq8UuJImQZ7DVB0n/oN7hVonQc889x5133smiRYtIT0/nlVdeISAggDfffLPV8//xj38wd+5cHnjgAYYMGcITTzzBmDFjeOmll5wcufexbQjYmTdg6TLtWmz/diOiR+Cj81E5mrY17SZtK4YVVrZEaP/Z/dSaalWOxnUYzRY2Hz/LSTe44Gq6ctPWKFP0LLdJhBoaGtixYwezZs2yH9NqtcyaNYvNmze3ep/Nmzc3Ox9gzpw5bZ4PUF9fT0VFRbMv0XldaawI0mXalbjLtJitm3RimD9pcd7bTbo1fYL6EBMQg8liYl/xPrXDcRl/+nw/N722hf9luv40/NFzR6lsqCRAH+Dynd3dldskQiUlJZjNZmJjm1/xxcbGUlBQ0Op9CgoKOnU+wFNPPUVoaKj9KykpqfvBe6GmV6J1pjqH7yddpl2Doij2FWOuXii96pCtm3SM1E9cQKPRyPRYK6YMtPY3c4dl9LZ/t1Exo1y+s7u7cptEyFkefvhhysvL7V85OTlqh+SWEoMSz1+Jljh+JZocGUj/6EDpMq2y3KpcCmsK0Wv0jIgaoXY4bVIUhdVNttUQLcm+Yy25Uz2ibVrMVm4gep7bJEJRUVHodDoKC5tn8IWFhcTFxbV6n7i4uE6dD+Dr60tISEizL9F5Ta9EbVMsjpo1JJaEUD/qTZbeCE04wPahmR6VToAhQOVo2lZrNDNveBxpccFkSFfyVtleh3uK92A0yygruE89oqIosuO8E7hNIuTj48PYsWNZtWqV/ZjFYmHVqlVMmjSp1ftMmjSp2fkAK1asaPN80bO6su8YwH2zB7HxoRlcN7ZPb4QlHGDvH+TixZkBPnoevWIoy++9WLpJt6FfaD/CfcOpM9dx4OwBtcNxGS5Vj2gxw8kfYN8S63eLtcdRTmUOJbUlGLQGhke79spNd+ZWE473338/t912G+PGjWPChAm88MILVFdXs2jRIgAWLlxIYmIiTz31FAC/+c1vuOSSS3j22We57LLL+PDDD9m+fTuvvvqqmr+G17Bdwewt3ovRYnS4M7F8oKnPXQqlRcdso7MrT69ke+F2RsWMUjsklzBrSAxPfJ1lr0cM9Vepc3rWUlj+IFTknT8WkgBzn2aHwZoQDY8ajq/OV534vIDbjAgB3HDDDTzzzDM88sgjjBo1it27d7N8+XJ7QfTp06fJz8+3nz958mQ++OADXn31VUaOHMmSJUv44osvGDZsmFq/glfpF9aPUN9Qak21HDx7sNP3N5ktnDlX0wuRifYUVheSU5mDVqNldMxotcNpU2l1AxuPldAgU6gdkoLplprWI25sbL/gdFlL4eOFzZMggIp8+HghO458AcgFSW9zqxEhgHvuuYd77rmn1dvWrl3b4tiPfvQjfvSjH/VyVKI1Wo2WMTFjWJOzhp2FOxkR7XjR7a7T51j09jYiA31Y9dtpvRekaMH2YTk4fDDBPq67HH35/gL+8Pk+JveP5IM7J6odjkuzfZDuKtqF2WJG10ojVG/02IKhhPn7MCxRhVpQi9k6EkRrW8IogMb6WtRppJFiL3OrESHhfrp6Jdo/JoiqOpNbrOrwNO5SnGlb+jy5f6TKkbi+QeGDCDIEUW2s5vC5w2qH4zKmDoxmeJ9QddounNrUciSoiUKdljM6DVo0jIoe5by4vJAkQqJX2RsrFu3Eojg+hdF0VYetT4xwDnfYaLW2QbpJd4ZOq7NPc8r0mIuoan+12k4/a03QYP84gnyCnBGR15JESPSqtIg0/PX+VDRUcKzsWKfuO6Nx3yh3aHrmKUrrSjlefhxw7b4lG4+VUG+SbtKdIXVCrduTU8bvPtnDy2s69/7UbUHtJ/A7GhOhsRFDnBGNV5NESPQqvVZvH9bt7BvwrMYr/cyTpVTUSf8TZ7BtiTIgbADhfuEqR9M26SbdeU0TIUVprS7FO+Wcq2HJjjN8uvOMc584ebJ1dRit//3aE6EBlzkxKO8kiZDodV3ddywlSrpMO5s7LJtXFIXVh6yjhDNkt3mHDY0cip/Oj7L6Mk6Un1A7HJdx8SBrl+kTxdXO3YRVq4O5Tzf+0DwZKtfqOOZj3eh4jAtPUXsKSYREr7OteOjKlegsV2p65gXcoZHigbwKCivqCfDRMbGfFEo7yqAzMDJ6JIB9HzlhrUfM6NdYj+jsafj0BXD9uxAS3+zwznDr7gepoalE+EnH9N7mdsvnhfsZHjUcg9ZAcW0xZyrPkBTi+Ea2V4xMwEevZc7QtrdFET2joqGCw6XWFUWuPCI0NCGEr381hZMl1dJ8s5PGxo1la8FWdhTu4Ia0G9QOx2XMTItl47GzrDpYxE+n9nPuk6cvgLTLrKvIqgohKJYdJVsg612Xfh16EhkREr3OT+/HsChrE8vO7js2LDGU3146mGGJob0RmmhiV+EuFBSSQ5KJDohWO5w2aTQahiWGcsXIBLVDcTtNN2CVOqHzZg6xTrHaukw7nVYHqVNh+HWQOpWdRbsA116w4EkkERJO0XQZvXBN7jAtJrpneNRw9Fo9RbVFnKl0cnGwC0uODGRATBAmi8I6lesRa4w1ZJ3NAuS16CySCAmn6M7S3XqTme8OFPC35Yd6OizRhDsUSn+5O5f7P9rNJrW2RHBzfno/hkdZN+/s7Oisp5s5JIZBsUFtrOFynj3FezArZuID44kPiu/4DqLbJBESTjEqehRajZacyhyKajpX+FxntPDL93fyr7XHpct0L2l6FerKidDS3Xl8tiuXnafPqR2K25J+Qq174NLBfH/fJapPubpLZ3dPIomQcIognyAGhw8GOr+MPtTfwPgU6TLdm3YX78asmEkITCAhyDVrb6SbdM+QRKh1ep1rfBzaygdkfzHncY1/eeEVbG/AXRmStxUzSpfp3mFbTu3KV6Gbjlu7SSeE+kk36W6wjc6eqTpDQXWB2uG4nDqjmcMFlao8d4O5gb3FewHXfi16GkmEhNN0p2Baukz3LnfYX2zlQVs36VjpJt0NQT5BpEWkAZ0fnfV0e3LKGP34Cha9lanKqrqss1nUm+uJ8IsgNSTV6c/vrSQREk5j2/Tx6LmjlNeXd+q+KVGB9JMu072izlTHvpJ9gOtehTbtJm0bHRRd153RWU82uHGkMa+8jgN5FU5/ftu/x5iYMZLsO5EkQsJpIv0jSQ21XuXsauyT0Rm2UaHV0mW6R+0r2YfRYiTKP4q+wX3VDqdV+3Olm3RPatpPSJznZ9BxySBrD63vDzh/2tA2Qif1Qc4liZBwKvuVaBda/M9s3Fcq51xNj8bk7Zr2D3LVq9DKOiNpccFMHRgl3aR7gK1R34nyE5ytPatyNK5lzjDrBdd3B5xbj2i2mO0XiK46MuupJBESTjU+djwAmQWZnb7v2ORw1v5uGp/8YnJPh+XV3KF/0OQBUSy/92JevGm02qF4hDC/MAaEDQC6NjrryWYMjkWn1XC4sNKp7TqOlh2lylhFoCHQvsJWOIckQsKpJsRPAOBQ6SHK6so6dV+9TktKVGAvROW9jGYje4r2AO7RxdZXL6NBPUWW0bcuNMDAxMZNWFdkOW9UyPbvMCpmFDqt/J07kyRCwqmi/KPoH9ofBaVbhZp1RrPsldQDDpw9QJ25jjDfMPqFOXmzSQflltVS22BWOwyPI3VCbbs03brJ8/dZzqsTsjdSjHHdkVlPJYmQcLqM+AwAtuZv7dL97/94N6MfX6HKqg5PY3vzHRMzBq3GNd8OHv1yP6Me/54vd+eqHYpHsRXkHio9RGWDOn1zXNWcoXE8NC+Np68d4ZTnUxTFXijtylPUnso13/mER7NNj20t6FoiVNtgptZo3X9MdI+r9w+qM1q7SdebLAyKlSaKPSkmIIa+wX1RUKRO6AJxoX784pL+9IsOcsrznSg/wdm6s/jqfBkWNcwpzynOk0RION242HFoNVpOlp/s9L5jYL1aA1i+XxKh7nCHVSobj5VQZ5Ru0r1F6oRcw5b8LYB1ZNZH56NyNN5HEiHhdKG+oQyJGAJ0bfXY9LQY9FoNR4uqOFFc1dPheY3D5w5TZawiyBDksqtUVh60NVGUbtK9QRKhtlksCp/vOsMv399JVb2pV5/LlgjZygaEc0kiJFRhnx7rQp1QqL+BSf2tTfWc3evDk9h6OY2OGe2Sq1TMFsW+aufSobLJam+wJUIHSg5QY5T+XE1pNPCPlUf5Zl9+r3azN1lM9tfixPiJvfY8om2SCAlVZMSdL5juyuqvucOs02NSJ9R19lUqLjotti27lJKqBkL9DdJNupckBiUSFxiHSTGxt2Sv2uG4FI1Gw6WN0/C92WU662wWVcYqgn2C7XvACeeSREioYnTMaPRaPfnV+ZypOtPp+89Oj0Wjgd05ZRSU1/VChJ7Noljsm9+6aqG0rQZsdnosBp28VfUGjUYj02PtuDTdOhK56lARRrOlV57DNio+IW6CS47MegN5dxGqCDAEMCLKujS1K9NjMcF+3DShLw/OTcNHL3/GnXW87Dhl9WX46/1Jj0xXO5xW3TEllT/MT+OG8Ulqh+LRJBFq2+i+4UQF+VBZZ2LridJeeQ7b+5/UB6lHPkGEamwv/Mz8zhdMAzx59XDumtafiEBZZdFZtg+9kdEjMWgNKkfTuqSIAH52cX/Gp0SoHYpHsyVCe4v30mBuUDka16LTauybPfdGc8U6U5195aYkQuqRREioZkLc+X5C0iXaudxhfzHhHKkhqUT4RVBvrufA2QNqh+NybIX63x8o7PH3qd3Fu2mwNBDjH0NqSGqPPrZwnCRCQjUjo0fip/OjtK6U42XHu/QY5TVGPt91hk3HS3o4Os+lKIpLF0orisLDn+1lyY4z1Blla43eJnVC7ZvcP4ogXz3xYX6cre7ZEbMteeeXzUt7CPVIIiRUY9AZ7G3+u9pl+s2NJ7nvoz28uSG7ByPzbKcrT1NSW4JBa2BEtHO2EOiMQwWV/C8zhz9+vg+zRUYKncGWCHVn/z9P5WfQsfnhGXx+90VEBfn26GPb6oMmJsiyeTVJIiScy2KGkz/AviVw8gcmxI4Hur7vmG0Z/Q9Hi6lp6N2mZ57C1rNkeNRwfHU9+8beE75tXC128aBoAn31KkfjHWyJ0O6i3Zgs8jq6ULBfz9fRVTRUkFWaBZxvJyLUIe8ywnmylsLyB6Eiz35oYngChOnZXrAds8Xc6eWjaXHB9I0I4HRpDesOFzNveHxPR+1xXH1/seX78wGY15jkit43MGwgwYZgKo2VHD53mKGRQ9UOySWV1xhBY23q2l3bCrZhUSykhKQQGygNQ9UkI0LCObKWwscLmyVBAGnn8gk2W6g0VnKw9GCnH1aj0TCnsZhxuTRXdIgrF0ofL67iSGEVeq2GmUPkw8FZdFodo2NHA+dHDEVzTy8/xNi/ruDDzNM98niybN51SCIkep/FbB0JomW9hw6FcXXWhohbGwsHO8s2Pbb6UBENpt5peuYp8qryyK/OR6fRMSp6lNrhtGBrojh5QFSPXHULx42LtY4QSsF06xJC/TBZFL7P6pltfez1QbKthuokERK979SmFiNBTWU0JkKZ2d936eFHJ4UTHexLZZ2JzSfOdukxvIVtNGho5FACDAEqR9OSbcsUmRZzPtsI4c6inVgUuaC40Ox069/kztPnKKrsXjf7opoiTpSfQIOG8XHjeyI80Q2SCIneV9X+FVRGbT0AO8uOYjQbO/3wWq3G3gp/f2555+PzIq68bL7OaMZXr0Wv1TA7XabFnG1I5BD89f6U15d3uZ2FJ4sL9WNkUhiKAiuzirr1WLbRoCGRQwj1De2J8EQ3SCIkel9Q+x9q/Y1GIsxm6hQTe4r3dOkp7p4+gC0Pz+SX0wd06f7ewpULpf0MOj75xWS2/2lWjy9TFh0zaA2MjB4JyPRYW2wXXN3tMi31Qa5FEiHR+5InQ0gC0HrDMA0aMkzW2zILurbdRmKYP3Ghfl2N0CsU1xRzquIUGjSMihmldjhtCguQLVPUIo0V22dbmLHp2Fkq6zo/eg3WhqFb8q31kBPjpD7IFUgiJHqfVgdzn2784cJkyPpzxuBrgK73E2qqt3aJdne2D7fBEYMJ8QlROZrmqupNlPZw117ReU0TIdn2pqX+0UH0iwqkwWxh3ZHiLj3GqYpTFNYUYtAa7Cv1hLokERLOkb4Arn8XQi7o8xOSANe/y4QxPwNgb8leaow1XXqKnNIabn19K3NeWC9v4q2wFUrbVge5ki925TL+/1by2FLZ60pNw6OGY9AaKK4tJqcyR+1wXI5Go+EX0/rz16uGkZEa2aXHsF3sjYoZhb/evyfDE10kDRWF86QvgLTLrKvIqgqttUPJk0Gro4+ikBCYQF51HruKdnFR4kWdfvjIIB+2ZZdSb7JwML+S9ATXGvVQmysXSi/fX4DZosj0psr89H4MjxrOzqKd7CjcQd+QvmqH5HKuH5fUrfvbthOSbtKuQ0aEhHNpdZA6FYZfZ/3e2Elao9HYCwe7uu9YgI+eiwdFA+eXYQurc3XnOFZ2DMC+v5urOFfdYG97IMvm1Sf7jvUei2Kx10FKobTrkERIuIwJ8RMAyMzvWsE0wJyh1g9SSYSa21m4E4D+of2J8ItQOZrmVh4sxGxRGBIfQnJkoNrheD3bisIt+VtkirkNJVX1vLc5m3c2ZXfqfodKD1FeX06gIZBhUcN6JzjRaZIICZcxIc6aCGWdzaK8vmv9gGYNiUGn1XCooJJTZ6t7Mjy35srbati6Sc8dKqNBrmBs7Fj8dH4U1RRx5NwRtcNxSftzy/nzlwd4ec0xLBbHk0VbfdC42HHotVKZ4iokERIuIyYghtTQVBSULg/LhwX4MLGfdcRDRoXOc9X+QVX1Jn44WgLAvOGSCLkCX52vvdvxhtwNKkfjmib1jyTIV09RZT17zpQ5fD/pH+SaJBESLsVWQNgz02M9syeQu6tsqORQ6SHA9UaEVh8qosFsoV9UIANjgtQORzSakjgFkESoLb56HdMG2+oRHXufaTA32C9IJBFyLZIICZdiL5juRj+hS9PjmDowimvGJEqNA7CtYBsKCn2D+xITEKN2OM1MGRDFk1cP5+7pA9BoWm+4KZxvauJUAHYX7aaqoUrlaFyT7YLL0S7Te4r3UGeuI8IvgoFhA3szNNFJbpMIlZaWcssttxASEkJYWBh33HEHVVVtv0BLS0v51a9+xeDBg/H396dv3778+te/prxc9qJyZePjxqNBw/Hy45TUlnTpMeJC/XjvjgxuyUiWD1fgh9wfALrUkqC3RQT6cHNGX64b20ftUISNxUzS2WySfSMwKSa25G1SOyKXNG1wNAadhhPF1Rwr6jhZbDotJu9LrsVtEqFbbrmFAwcOsGLFCr7++mvWr1/Pz372szbPz8vLIy8vj2eeeYb9+/fz9ttvs3z5cu644w4nRi06K9Q3lLSINKB702PCSlEUfjhjTYQu7nOxytEIl5e1FF4YBu9czpSiUwBs+O4+63HRTLCfgcn9owDHRoVsidDEeNlWw9W4RSJ08OBBli9fzuuvv05GRgZTpkzhn//8Jx9++CF5eXmt3mfYsGF8+umnXHHFFfTv358ZM2bwf//3f3z11VeYTCYn/waiM7rbT8imsKKO97acoryma3sCeYIj545QWFOIn87P5TpK/3vtcd7eeJKzVfVqhyLAmux8vBAqrO+pU2trAfhBb0H5eKEkQ624dGgseq2G4sr2/4arjdXsL9kPSH2QK3KL9XubN28mLCyMcePOv5HPmjULrVbL1q1bufrqqx16nPLyckJCQtDr2/616+vrqa8//0ddUVHR9cBFl0yIm8DbB97u9r5jC9/I5HBhJUG+Oq4e7Z1TL7ZpsYz4DPz0rtO1ucFk4V9rj1FZZ2JYYiiRstu8uixmWP4gcL6mblxdHX4WC0V6PUcMBgYvf8jaGb6xCaqAq0YlcvmIBEL9De2et6NwBybFRJ+gPiQGJTopOuEotxgRKigoICameZGnXq8nIiKCggLHCtVKSkp44okn2p1OA3jqqacIDQ21fyUlda+duui8sbFj0Wv05FblcqbyTJcf59LGnaK/2++9q8fWn1kPnC9+dRWbjpdQWWciOtiXMX3D1Q5HnNpkHwmy8VVgfJ31onBDgC9U5FrPE3aBvvoOkyDAvtu8jAa5JlUToYceegiNRtPu16FDh7r9PBUVFVx22WWkp6fz2GOPtXvuww8/THl5uf0rJ0c2HnS2AEMAw6OHA9YVT11lW9Wx9kgRtQ3mHonNnZTXl7OneA8AU/u4ViJk6/E0Z2gsWq0UjqquqvWLhSk11umxDf7+7Z4naHcKXuqDXJuqU2O//e1v+clPftLuOf369SMuLo6ioqJmx00mE6WlpcTFtd+ErbKykrlz5xIcHMznn3+OwdB+9u7r64uvrwzTq21C3AR2Fe1iS/4Wrh7o2NTnhYYmhJAY5k9uWS3rjxbbEyNvsTF3IxbFwoCwASQEJagdjp3ZovB9Y++VuUPjVY5GANYNkFsxtbaOp4Ddfr5UaTQEtXGeN6uqN3Hr61vJyq9g+59mEeLX/DPmbO1Ze4du2zZCwrWoOiIUHR1NWlpau18+Pj5MmjSJsrIyduzYYb/v6tWrsVgsZGS0PdRYUVHBpZdeio+PD0uXLsXPz3VqJET7bEPImQWZXe4FpNFovHrvsfW5jdNiLjYatC27lLPVDYQFGMjo51r7nnmt5MkQkgA0H51LMplINhoxaTRsiUywnieaCfLVU1VvosFkYe3h4ha32zZZHRQ+yOX2+RNWblEjNGTIEObOncudd95JZmYmGzdu5J577uHGG28kIcF6pZubm0taWhqZmdY/OlsSVF1dzRtvvEFFRQUFBQUUFBRgNnvfNIm7GRk9El+dLyW1JZwsP9nlx5nTWCe06mARRrOlp8JzeWaLmY25GwG4ONG1ls3b9habPSQWg84t3oI8n1YHc59u/KF5MjSlpg6ADakZUijdhkvTG+sRW7ngkm01XJ/bvAu9//77pKWlMXPmTObPn8+UKVN49dVX7bcbjUYOHz5MTU0NADt37mTr1q3s27ePAQMGEB8fb/+Suh/X56PzYXTMaOB8oWFXjEuJIDLQh+p6E4fyK3sqPJe3r2QfZfVlBBuCGRkzUu1wmqltMGPQaZg7zLumKl1e+gK4/l0IaT5dOVUTAMAPNaelU3sbLrXVIx4qot7U/ELb9v4l9UGuyy2WzwNERETwwQcftHl7SkpKsxfptGnT5EXr5jLiM9iSv4XMgkxuHnJzlx5Dp9Xw2m3j6B8VRGhAx6s7PIVt2fzkxMkYtK71ez993Qj+ePkQ/PQyuuBy0hdYl8if2mQtjA6KZVyfsfh9dIl9N/rBEYPVjtLljEgMJTbEl8KKejYdP8v0wdZVzmcqz5BblYteo3e5Pl7iPLcZERLex7YB67aCbZgtXZ/OHNM33KuSIMDeTdrVls3bhPgZ8NHL249L0uogdSoMvw5Sp+JrCJDd6Dug1WqY3Tg99vWefPtx27TY8OjhBBgCVIlNdEzeiYTLGhI5hCBDEBUNFRw+d7hHHtNi8fxRwqKaIg6WHgTO7yLuChRFIb+8Vu0wRBfIbvQdu2qUtVHit/vzqa637l4g9UHuQRIh4bL02vPDyd3tMr0yq5CrXt7I37/vmYTKldk+rIZFDiPSP1LlaM7Lyq9g0lOruf4/m2Xa2s3IbvQdG5sczvXj+vD0tSMw6LQoimLfJsg2ui1ckyRCwqX11L5jdSYzu3PKWL6/wOM/hG3dpO2brFrMcPIH2LfE+r0b04zdYVstFuZvkN233UxSSBLJIcnW3ei7sXjBY1nMaLI38LfBR7ki5Dg+WoWjZUcprSvFX+/PyGjXWrAgmnObYmnhnWwNyHYW7sRorMNwZpu9iJPkyQ4v5502OAYfvZaTJdUcLapiUGxwb4atGqPZyOa8zUBjIpS11LqHVNPtE0ISrEul0xc4NTZbIjRvuKwWc0dTEqdwquIUG3I3MCt5ltrhuI42XmNbRllfX2NixmDQeVeNoruRESHh0gaEDSDCL4JaUy37/j0a3rkcPr3D+v2FYQ7viB3kq2fqgCjg/AeyJ9pRtIMaUw2RfpEMKTzabDdxu4p863En7iZ+rKiKo0VVGHQaZqRJd2J3ZJse+yH3B48fVXVY1tJWX2NKRR5bD38KSH2QO5BESLg0rUbLeH9rEeJWywW1CZ38QLf1rfliV67HvpHbVotNSbwI7XcP03Q38fMajy1/yGnTZMv3W1fSTO4f5dAmlcL1jIsbh5/Oz76M3utZzNaRoFZeYyZgu591q6aM2PHOjUt0miRCwrVZzGTk7AYgs8UWKZ37QJ83PJ4AHx0nSqrZfupcz8bpIuy7zfvEtBwJakZx6m7iyxs77s6TJopuy1fnK8vomzq1qc3X2AFfH2q0WkLNZtIqzzo5MNFZkggJ13ZqExnnrBt07vHzpbZFka3jH+hBvnouH2HtmvvRNs/rLp5TkUN2RTY6jY7JPg6uFnPCbuI5pTXsz61Aq8Hea0W4J1lG30Q7r50t/taLtgl19WirW+4/JlyLJELCtVUVkmQyEWcyYdRo2OXr2+Z5jrhhfF9mDYnhsuGet+u5bZPV0TGjCQ5NduxOTthNPDLIhxdvGs2vZgwkMqiNfz/hFmQZfRPtvHa2No5eT6yto84vylkRiS6SREi4tqBYNEBGrXXjx0z/Nj5IHfxAH5sczuu3jWd6WkwPBeg6bPVBF/e5uM3dxM/TQEiiU3YTD/DRs2BkAvfNHtTrzyV6lyyjb6KN11itRsOexvqg1Bo/vq1MVSE40RmSCAnX1vhmk1FXD7RWJ+S8D3RXVmOsYVvBNqAxEWpnN3H7z3MXy27iotNkeqxRG6+xXX6+GDUa4kwmXqu9hU93eu4qVU8hiZBwbY1vNhNqrYnQAV8fKrS2N52uf6DnlNbw3PeHOVbkGTvSZxZk0mBpICEwgX6h/awH29hNnJAE63En9BF6b3M2/1h5lMKKul5/LuEctkRIltHT6mtsS+PF2qjIsWzQTyY2xA+zF2zt486koaJwfekLiOUtUrb8gWydhh1+fkyvqW1sDLi4Sx/of/0mi+8OFFLTYOZPl6f3QtDOZd9ktc/U5l2bW9lNvDONKLvDbFH419rj5JfXkRIVwJWNezEJ9zYutvkyeq/fjf6C19iWI29CVQ4XD7+BJy6bjZ9BRl1dnYwICfeQvoCMIdcDkDnscrjta7h3X5dHNa4flwTAZ7tyaTBZeixMNSiKYi+Utm+r0dQFu4k7azps7eEi8svrCA8w2Hs4Cffnp/eTZfQXanyNlQ+azaGqM4C1kaIkQe5BEiHhNibETwRgi/Fstz/QLxkUTUywL6XVDaw62PtLyHvTsbJjFFQXNOvz4go+2HoagOvG9sFXLx8InkTqhFqXWZCJgkK/0H7EBJxfkHEgr5zskmoVIxPtkURIuA3bh/yxsmMU1RR167H0Oi3Xje0DwEfb3bunkK2J4vi48fjr/VWOxiqvrJY1h63/RjdO6KtyNKKnyTL61m3Nt24OPbHxog3g798d4rIXN/Cf9cfVCkt0QBIh4TbC/cIZHTMagO+yv+v249mmx9YfKSa/vLbbj6eWFrvNu4CPtuVgUWBivwj6RwepHY7oYbKMvnW2RKjp/mIXNe5x+PWefOqMztnSRnSOJELCrcxLnQfAshPLuv1YKVGBZKRGYFFgyfYz3X48NZTXl7OneA9w/ipdbSazhY8bR9luktEgjyXTY80VVBeQXZGNVqNlXNw4+/GJqZEkhvlTWW/iuwOylN4VSSIk3MqlyZei0+jYf3Y/pytOd/vxrh+XRJCvHpObLm/dnLcZs2KmX2g/+gT3UTscAKrrzUwdGEVimL8USXswWUbfnG00aGjkUEJ8QuzHtVoN1zZOwy/Z4Z4XXJ5OEiHhViL9I+3z78tOdn9U6PKR8WT+cabbdj3+IbdJN2kXERpg4G/XjWTdA9OkSNqDXbiM3tutyVkDNK8Psrl2jLV1xMZjJRSUS08tVyOJkHA78/vNB6yJUHevRH31OgJ83LOdlkWx2KclXGVarCm9Tt5ePJksoz+vvL6cdWfWATA3dW6L25MjA5mQYp2G/2yXjAq5GnmnEm5nRtIMfHW+nCw/yeFzh3vkMRVFYdfpc5TXGnvk8Zxhf8l+SutKCTQEMjp2tNrhALDqYCH7zpSrHYZwEqkTsvou+ztMFhODwgcxKLz10WXbKtW1h2Q3elcjiZBwO0E+QfapoJ4omga454NdXP2vTXy5O7dHHs8ZbNNikxMmY9AaVI7GWiT9x8/3c8VLG1h9yL17MwnHyDJ6q69PfA3AFf2uaPOc+SPieeO2cbx/Z0ab5wh1SCIk3NJlqZcB8G32t1iU7neGHpscDmBf7eQObMvmXWVabM3hYgoq6ogI9LEvGRaeTZbRQ05lDruKdqFBY1/V2pogXz0zh8RikCljlyP/IsItTekzhSBDEAXVBewq2tXtx7t6dCI+Oi37cys4kOf6UzsltSVknc0CrPuLuYIPtp4CpJO0t/H26THbqHRGfAaxgbEO3cdsUTCZ3XtrH08iiZBwS746X2YlzwJ6ZnosPNCH2UOtb2Ifb3P9USHbJqvpkelE+as/+pJbVsvaI9baB+kd5F28eRm9oij2abHL+13u0H3e2HCSKU+vZrn0FHIZkggJtzU/1bp67PtT32O0dL/I+YbGTtNf7M5z+Q6wrrZs/qPM0ygKTO4fSWpUoNrhCCfy5mX0B84eILsiGz+dn/3CrCPnqhvIL6/jU+kp5DIkERJua0LcBCL9IimrL2Nz3uZuP96UAdYmgOW1RpfuAGu0GO2/ryvUB5nMFvt+bTIa5H28eRn9V8e/AmB63+kEGhy7ALA1V1x3pJiiCukp5AokERJuS6fV2Xt2fHvy224/nlarsS9xXXmwe5u69qZdhbuoMlYR4RfBsKhhaofDqdIaACIDfZgzVDpJeyNvrBMyWowsz14OtL9a7EKpUYGMTQ7HosDnu9xnlaonk0RIuDXbKo1Vp1dRa+r+xqk3TejLO7dP4IUbRnX7sXqLbVrsooSL0GrUfwn3jw5i44Mz+OjnE/HRqx+PcD5vXEa/OW8zpXWlRPhFMClhUqfua7vg+nTnGa+rq3JF8q4l3NqIqBEkBiVSa6plXc66bj9eXKgflwyKRqfV9EB0vcMVd5vX67QMiAlWOwyhEm9cRv/1cWuR9PzU+ei1netOf9mIeHz1Wo4UVrEv1/VXqXo699xbQIhGGo2G+anzeW3fayw7uazV9vZdZTRb0Go0LpUUnak8w4nyE+g0uk5fhfYUs9mM0WgtTs8prSY+1F+203AhPj4+aLXO//eYkjiFUxWn2JC7weHCYXdV1VDF6pzVgOOrxZoK8TMwZ2gcS/fksWTHGUb0CevhCEVnSCIk3J4tEfoh9wfK68sJ9Q3t9mO+vOYYb23M5pkfjWDa4JgeiLJn2KbFRkaP7JHfszMURaGgoICysrLzP1fUkwNEBflIozgXodVqSU1NxcfHx6nPOyVxCu8ffN++jF6jcZ0LiJ628vRK6s31pIamkh6Z3qXHuGlCX4L99PZpMqEeSYSE2xsQPoBB4YM4cu4Iq06v4pqB13T7MYsr6ympqufj7TmulQidUW/ZvC0JiomJISAggKp6E8aAWnRaLf2iA9F68Aefu7BYLOTl5ZGfn0/fvn2dmoxcuIx+cMRgpz23s9mmxS7vd3mX/x9P6h/JpP6RPRmW6CJJhIRHmJc6jyPnjrDsxLIeSYSuH5fE25uyWZFVyNmqeiKDfHsgyu6pNdWSWZAJOL+btNlstidBkZHWN++C6mo0eh8ig30J8Pd3ajyibdHR0eTl5WEymTAYnLcHnW0Z/Q+5P7Ahd4PHJkIF1QX21+Fl/S5TORrRE2QsW3gE2+qxzIJMimq6v/Q9PSGEYYkhGM2Kyyxx3VawjXpzPXGBcQwMG+jU57bVBAUEBADQYDJTWWc9FhHg3CkY0T7blJjZ7PymoN6wjH7ZyWUoKIyJGUNiUGK3H2/HqVIe/mwvxZX1PRCd6ApJhIRHSAxKZFT0KBQUvsv+rkce09Zp+uPtOS6xxLXpJqtq1V/Ynre02poEBfnq8TXIvmKuRM3aHG9YRm/fab6/472D2vPE1wf5X2YOX+52jQsubySJkPAY8/tZt9xoc+8xixlO/gD7lli/W9q/Yl4wKtG+xHXPGXWXuCqKomp9UFMWReFcTQMAEYEyGiTOa7qMfu2ZtWqH0+MOlx7m6LmjGLQGZifP7pHHtBVLL9khPYXUIomQ8BiXJl+KTqNj/9n9nK443fzGrKXwwjB453L49A7r9xeGWY+3IdTfwLxh1k7JH6m8EeuJ8hPkVefho/VhQtwEVWOprjdhNFvQa7WE+DuvBqWrpk2bxr333uvw+dnZ2Wg0Gnbv3t2jj7t27Vo0Go191V1rCgoKmD17NoGBgYSFhQHWEZ4vvvjC4edRm61u5r9Z//W4D3bbaNC0pGk9tmrzihEJ+Oi1HCqo5EBeRY88pugcSYSEx4j0j2Ri/ETAOo9vl7UUPl4IFXnN71CRbz3eTjJ068RkfjI5hYWTknsjZIfZpsXGx40nwBCgaizBfgYGxASRGO7vFivFPvvsM5544gmHz09KSiI/P59hw6zbl7SVwHT2cR3x/PPPk5+fz+7duzlyxLqBaX5+PvPmWWvgHE3S1HTD4Bvw1fly4OwBdhbtVDucHmO2mO2jzT1ZJB0aYGB2eixgHRUSzieJkPAo9umxk8usV6MWMyx/EGjtyrTx2PKH2pwmG5cSwWMLhjIkPqR3AnbQytMrAeevFmtLgI+eUDcYDQKIiIggONjxrtc6nY64uDj0+vYX1Xb2cR1x/Phxxo4dy8CBA4mJsbZtiIuLw9dX/VWLjorwi7DXz7x74F2Vo+k5mQWZFNUWEeIT0uObHV83xjo9tnRPHnVG5xe5eztJhIRHmZE0A1+dLyfLT3L43GE4tanlSFAzClTkWs9zUTsLd7K3eC8GrYFLky9VNZbWpjpqGkxtfl34pt4T53bWhVNYKSkpPPnkk9x+++0EBwfTt29fXn31VfvtTUddsrOzmT59OgDh4eFoNBp+8pOftPq47733HuPGjSM4OJi4uDhuvvlmioocX8GYkpLCp59+yrvvvtvseZpOjaWmpgIwevRoNBoN06ZN6/T/D2f4cfqPAViTs4ZTFadUjqZn2KbF5qbMxUfXs7VxUwdGkRjmT2l1A29vyu7RxxYdkz5CwqME+QRxcZ+LWXFqBctOLCPNt69jd6wqbPfmzJOlfJh5mntmDKBfdFAPROq4N/e/CcCC/guIDoh26nM3pSgKJ0uqCQlUiAv1s2+rkf5I26v0pg+O5q1F52uaxj6xkto2rngzUiP46Ofntw2Z8vQaSqsbWpyXvbj70xLPPvssTzzxBH/4wx9YsmQJd911F5dccgmDBzfvfZOUlMSnn37Ktddey+HDhwkJCcG/jZ5JRqORJ554gsGDB1NUVMT999/PT37yE5Yta6N4/wLbtm1j4cKFhISE8I9//KPV58nMzGTChAmsXLmSoUOHOr17tKP6hfbj4j4Xs/7Mev6b9V/+OPGPaofULTXGGlaeso7KXt6/81tqdESv03LvrIH8/bvDxIa4z+ifp5ARIeFxLku1flB+m/0tlkAHE4eg2HZv/vfaY3y2K5ePtzt3Dv/IuSOsO7MODRoWDVvk1Oe+UJ3RgtFsoaLOhNaF9l/rivnz53P33XczYMAAHnzwQaKiolizZk2L83Q6HREREQDExMQQFxdHaGjrRbK333478+bNo1+/fkycOJEXX3yRb7/9lqoqx5aRR0dH4+vri7+/f5vPEx1t/XuOjIwkLi7OHpsrWpi+EIAvj39Jeb17byy6JmcNNaYae5uO3nDNmD6sfWAaV4+WLTecTUaEhMeZ0mcKQYYgCqoL2OUfwNiQBGthdKt1QhoISYDkye0+5g3jk1hzuJhPd57ht5cOctq+Wm/tfwuA2cmzSQ5Rt2C7usFECBARaGhWJJ31+Jw273NhMfWOP7e9GeeF5254cHrXAnXAiBEj7P+t0WiIi4vr1DRWa3bs2MFjjz3Gnj17OHfuHBaLBYDTp0+Tnt61/ajc2YS4CaRFpHGo9BCfHPmEnw7/qdohdZltWqw7W2p0RKfVEOAjH8lqkBEh4XF8db723a+/PfUdzH268ZYL38Aaf567GLTtNwWckRZLVJAPxZXW/cecIbcql29PfgvA7cNvd8pztiXvXC11RusHe/gFvYMCfPRtfvld0GyxJ87tCRduPaHRaOyJS1dUV1czZ84cQkJCeP/999m2bRuff/45AA0NLaf3PFaTXl2a7A0sHHIrAB8c/ACj2ahycF1TUlvC5rzNQNd2mu8si0Xh811neHr5oV5/LmEliZDwSLYtN77L/g5j2jy4/l0IiW9+UkiC9Xj6gg4fz0ev5ZfTBwDwzHeHKa/p/Tf1dw68g1kxMyl+EkMjh/b687Vn2f58AAJ8dPjqvauTtCNbVhw6dIizZ8+yePFipk6dSlpaWrdHmLoai2pa6dU1d+lDxBiCKa4t5tvsb9WOsEuWn1yOWTEzPGo4KaEpvf58hwsrue+jPbyy7jhZ0lfIKSQREh5pQtwEIv0iKasvs17NpS+Ae/fDbV/DtW9Yv9+7z6EkyObWickMjAniXI2R51ce6cXo4WztWT47+hkAdwy/o1efqyNGs4Vv9xcAEBbgHkvme1JycjIajYavv/6a4uLiVmt++vbti4+PD//85z85ceIES5cu7fEeQ2CtU/L392f58uUUFhZSXu4itTdt9OoyVORzU6F1BPWdA++4ZYPFr058BThnNAhgSHwIl4+IR1FgsYwKOYXbJEKlpaXccssthISEEBYWxh133OFwEaKiKMybN8/tOrSKrtNr9cxNnQtgn15Cq4PUqTD8Ouv3DqbDLmTQaXn0CuvIzHtbTnGsqPf2Uvrg0AfUm+sZFjlM9U7SK7MKKatpQKfVEOjrfYlQYmIif/nLX3jooYeIjY3lnnvuaXFOdHQ0b7/9Np988gnp6eksXryYZ555psdj0ev1vPjii/znP/8hISGBK6+8ssefo9M66NX1o8pq/BWFI+eOsLVgq7Oj65YTZSfIOpuFXnP+/cQZHpgzGINOw/ojxWw8VuK05/VWGsVNUvR58+aRn5/Pf/7zH4xGI4sWLWL8+PF88MEHHd73+eefZ8WKFXz77bd8/vnnXHXVVQ4/b0VFBaGhoZSXlxMSom5TPdE5e4r3cOuyW/HX+7PuhnX461tf9txZDy7Zy7A+odw0Psm+hLwnVRurmb1kNpUNlTw/7Xl7vZNaCivqWLojm1FhRoYPGYifn5+q8Yj21dXVcfLkSVJTU53zb3XyB+t0WDuejAjnf6HBTE2cyr9m/av3Y+ohL+58kdf2vcYlfS7hpZkvOfW5H1t6gLc3ZTMsMYSlv5zi9is11eDo57dbjAgdPHiQ5cuX8/rrr5ORkcGUKVP45z//yYcffkheXnvN8mD37t08++yzvPnmm06KVriKEVEjSAxKpNZUy7oz63rscZ++bgQ/npjcK0kQwJIjS6hsqCQlJIUZfWf0ynN0RmyIHz+elEKQn6xoEa3ooAcXwK0VlWiAH3J/4ETZid6PqQdYFAvfnPgGcN60WFO/mjGAIF89+3Mr+Gpv+59zonvcIhHavHkzYWFhjBs3zn5s1qxZaLVatm5te6i1pqaGm2++mZdffpm4uDiHnqu+vp6KiopmX8I9aTQa5qd2sCN9N9UZzdSbeq5wtcHcYN+W4PZht6PVqPcSLa81YjJ3fSWV8BId9OAC6GsyMSNyJADvZrnHthu7inaRV51HoCGQaUnTnP78kUG+/PzifgA88/1heS32IrdIhAoKCuz77tjo9XoiIiIoKCho83733XcfkydP7tQ8+lNPPUVoaKj9KykpqctxC/XZEqEfcn/oXlO3JsuCOfkDWMysOVzErOfW8foPJ3soWmu/kqLaImICYnp0Y8fOUhSF3368h6v+tZFDBXIxINqRPNm6ArNFewobDYQksnDcvQB8dfwrztaedVZ0XfbVcWuR9Ozk2fjp1ZkOvmNqKrOGxPLMdSN7bQRaba5QnaPq/9mHHnoIjUbT7tehQ12rml+6dCmrV6/mhRde6NT9Hn74YcrLy+1fOTnO6RkjeseA8AEMCh+EyWJi1elVXXuQVpYF88IwAo59w5lztby85hgF5XXdjtVsMdsbKC5MX9jj+xl1xncHCll5sJDDBZVuscO8UJFW51CvrtGxYxkeNZwGSwMfH/7YmRF2Wr25nu+zvwfgin5XqBZHgI+e128bR0a/SNVi6E0lVfVc/s8NrDtSrGocqiZCv/3tbzl48GC7X/369Wu166vJZKK0tLTNKa/Vq1dz/PhxwsLC0Ov19p2kr7322nY3KvT19SUkJKTZl3Bvtp5CXZoea2NZMBX5TNh2H3fFHKCmwdwjzc9W56wmuyKbEJ8Qrht0Xbcfr6sq64w8tvQAAD+/uD+DYnt2h3XhgdIXdNirS6PR2Lfd+PDwh9SZun/x0FvWn1lPpbGS2IBYxsWN6/gOTuJJO9MrisIfPtvHgbwKnlp2ELNFvZEhVasfo6Oj7XvntGfSpEmUlZWxY8cOxo4dC1gTHYvFQkZGRqv3eeihh/jpT5u3dB8+fDjPP/88V1yhXoYvnG9e6jz+sfMfZBZkUlxT7PjGpR0sC9ag4T7zm7yq+Tuf78rl1onJjE0Ob/uxTm2yFpYGxVqnE5os31cUhTf2vQHATWk3EWgI7Nwv2YOe+e4wBRV1pEQGcM+MAarFIdxM+gJIu6zdv/NZybOID4wnvzqfb058w7WDrlUx4LZ9fdy6pcZl/S5TtU7Pxmi28M9VR/nv1tMs+/VU4kLdf+VmcWU9e8+UY9BpeO76UehUXBWn/r+wA4YMGcLcuXO58847yczMZOPGjdxzzz3ceOONJCQkAJCbm0taWhqZmZkAxMXFMWzYsGZfYG18lpqaqtrvIpzPtlGigsLy7OWO3/HUppYjQc0o+FTn88Bga73D418dwNLaVU0bU2tkLbWfsrVgKwfOHsBP58fNQ252PMYetjunjHe3nALgr1cNb7HthRDt6qBXl16r55YhtwDWomlXqA+5UFldGetz1wPqrBZrjV6rYePxs5RWN/BCLzdzdZaYED++u/di/n3LWNIT1J15cYtECOD9998nLS2NmTNnMn/+fKZMmcKrr75qv91oNHL48GFqampUjFK4qvn9urB6zIFlwQA3p/sS5Ktnz5lyluy8YHf6dqbW+HihPRmyjQZdM/AaIvzU2VHcaLbw8Gf7UBS4enQiUwZGqRKH8GzXDryWQEMgJ8pPsCF3g9rhtPD9qe8xWUykRaQxMHyg2uEA1hWwD89LA+Dj7TkcLaxUOaKeERpgYFZ6x6sOe5vbJEIRERF88MEHVFZWUl5ezptvvklQUJD99pSUFBRFabf+R1GUTjVTFJ7j0uRL0Wl07D+7n9MVpx27kwPLggFCovvw65nWKaSdp86dv6GDqTUAlj/EgeK9bMnfgk6j47ahtzkWWy84V9OAv0FLWICBP102RLU4nGHatGnce++9aofhlYJ8grh2oHVKrMVS+lZWZzqbbbWYq4wG2YxLieDS9FgsCjy9/LDa4XTZx9tz+Hh7jkuNBrpNIiREd0T6RzIxfiIAXx7/0rE7ObgsmOTJ/GRyKh/8NIPF1444f7MDU2tU5PJGpnUrhvmp80kISnAstl4QE+zHkl9M5tO7JhMZ5Nt7T+QCH3adsXbtWjQaDWVlZWqH4jFuGXILOo2OLflbOFza+KHuwBRyb8upzGF38W60Gq19kYUr+f3cNHRaDSsPFrItu1TtcDotu6SaR788wO+X7OX7LMdG3J1BEiHhNa4acBUAb+5/kwMlBzq+g4PLgtHq8NFrmTzggqkkB6bWThr0rCzZBcCiYYs6jqmXabUa+kcHdXxiV7nAh51QX0JQArOTZwONo0IOTiH3tq9PWIukM+IyiAmI6eBs5xsQE8T146y97Z5cdtClRlU6YrYo/O6TPdQazUzqF8nsIepPidlIIiS8xpyUOczsOxOTxcRv1/2WigYHGgU6sCz4QsWV9by54aRDU2tvh4agANP6TFOtHmHZvnyeXHaQmgZT7z6RSh921dXVLFy4kKCgIOLj43n22Web3f7ee+8xbtw4goODiYuL4+abb7a368jOzmb69OkAhIeHo9Fo+MlPfgLA8uXLmTJlCmFhYURGRnL55Zdz/PjxXvkdPJFtKf2yk8so+q7jKeTeHjlsuqXGFf1dd2XxfbMG4m/QcSC3giOFvbfxc097/YcTbD91jiBfPX//0QiX2jtNEiHhNTQaDY9f9DiJQYnkVuXyyMZHHLuiSl8A9+6H276Ga9+wfr93X6tJUHW9iTkvrOfxr7NYUzug3am1Qp2epUHWZfJ3DL+jO79al5XXGnl06QFeXX+C/zauFusVDtZL9caH3QMPPMC6dev48ssv+f7771m7di07d+603240GnniiSfYs2cPX3zxBdnZ2fZkJykpiU8//RSAw4cPk5+fzz/+8Q/AmmDdf//9bN++nVWrVqHVarn66quxWGQrBEcMjx7OmJgxmCwmPtRWt3OmdQqZU5t6NZ6Xdr3EqYpTBOgDmNl3Zq8+V3fEhPjx/A0jWfXbSxgc5x49vg4XVPLs99bVbo9cnk6f8ACVI2pOdlEUXiXEJ4RnL3mWW7+9lVWnV/H+wfe5Nf3Wju9oWxbcgUBfPdeN7cOr60/wxLLDTJm7GMOS27AmQ02TAA3vhQZh0mgYEzOGUTGjuvgbdc/flh+iuLKeftGB3DY5pfeeyMF6KU5tcuj/s6Oqqqp44403+O9//8vMmdYPt3feeYc+ffrYz7n99tvt/92vXz9efPFFxo8fT1VVFUFBQUREWFfxxcTEEBYWZj/32mub98B58803iY6OJisry96uQ7Rv4dCF7CzayUfBQfy0rIKA9i5MHFzF2RXfnvyW1/a9BsCfJv6JAINrfVBfaO6w+I5PchFGs4X7P95Ng9nCjLQYfjSuT8d3cjIZERJeZ2jUUH437ncAPLvjWfYV7+vRx79nxgCignw4UVLN26XDW51aKw9N4JNwa02RWqNBO06V8v5W6wq6J68ejq++F3sGOfoh1sMfdsePH6ehoaFZ49WIiAgGDx5s/3nHjh1cccUV9O3bl+DgYC655BIATp9uf3Xh0aNHuemmm+jXrx8hISGkpKQ4dD9x3rQ+00jyi6ZCp7OPjrbJwVWcnXWg5AB/3vhnABYNXeTS02Kt2ZNTRnV9L09rd8Pm42fJyq8gLMDA4muGo3HBLXskERJe6ea0m5mdPBuTxcTv1v2uexuyXiDEz8Dv51h7fry46ijFSXNaTK19OP3X1FgaGBg+kKmJPTcC4qgGk7VnEMD14/owsbf3MnL0Q6yXPuzaUl1dzZw5cwgJCeH9999n27ZtfP755/x/e3ce1dS1/g38mwTCIJMos4A4MIgodYBCS9ErClaptNahVbQu0dteVLgO1fa2F1n+bsWKQ+trtfVatN4WHNFWLFIVcEZFURBFwSA4gsg8k+z3j2g0MiUYSEiez1os5WSfk/2wk5wn5+wBABoaGtrcNzAwEE+fPsW2bduQlpaGtLQ0mfYjL/C4PMx89kVgl7EhWr6p+GJ0Zps6MBqxuKYYi5IXoV5Yj3f6vIOwYWFyx6BM3xy5gUmbzyh04WdFe8fRDLvne2HdlKEwN1LNGbEpESIaicPhINI7En0M+uBB9QN8feZrhY7A+HB4HwzpY4zK+iasPXpTasbdWtsR+PXmbwCAuYPnKuUb0rZTd3DrcRVMe/DxxfgumDNIjqkIFKl///7Q1taWJCkAUFpailu3xP0Vbt68iZKSEkRFRcHHxwfOzs7N1jXk88WL3wqFL06sJSUlyMnJwVdffYUxY8bAxcUFpaWlIPILGvg+jHh6KNDWRoq+3iuPSo/ObFUHRiPWC+sRlhyGopoi9DPuhzU+a8Br6zlUkJuNMQDgp5N5eFJVr+TatM7DwRRjVGiU2KsoESIay5BviHWj1kGbq43kwuTmk7u9Bi6Xg4hAVwDA3vR7uFpYJnks/nY8SutLYWNgA/++/gp7TlnVNQoRc0b8DfLriS7o2aMLVrmXYyoCRTIwMMDcuXOxbNkynDhxAllZWfjkk0/A5Yo/+uzs7MDn87Fp0ybcuXMHv//+O1atWiV1DHt7e3A4HBw+fBjFxcWoqqpCz5490atXL/z000/Izc3FiRMnsHjxYoXWXVPoa+tjyrNlZX4xfWUKijZGZ0p0YDQiYwwrz65E5pNMGPGNsOlvm2DA78RpIzrJBDcrDOljjOoGITYdv63s6kjZdf4uBE/a6gSvOigRIhptUK9B+Hzk5wCAjekbcbX4qsKOPdy+J6YM74M53g7o21vc/6FR1Iid13cCAD5x/QRa3K4fr6CrzcPhhT5YPNYRQe42XffEHZiKQBHWrl0LHx8fBAYGws/PD2+//bZk8WYzMzPs2LEDe/fuxaBBgxAVFYXo6Gip/W1sbBAZGYkVK1bAwsICCxYsAJfLRVxcHNLT0zF48GD885//xNq1azul/prgY5ePocXVQro2B9c/2Nzu6EyJDo5GjLkeg8N3DoPH4WH9qPWwM7JTWCxdicvlYMWzpTd+TStAvookHufvlODfh7Lw7nen8KCsVtnVaReHdacZmZSgoqICxsbGKC8vh5GRcheGI52DMYZlJ5fhaP5RWPWwwt7AvTDWMVbYsV++9fVH3h/48vSXMNU1xdHJR6GrpZr3zF9VV1cHgUAABwcH6Oq+Zp1FwjZXKCevR6Ft1YW+PPUl/rjzB8Y7jMe373wr206CU+LbYO2ZfVgyGjG1MBULTywEA8OXnl/iI+ePXqPWquGTmAtIySmGQ+8e+DF4OBwtlDesvqq+CeO/O4nCp7WYNsIWaz4c0v5OnUTW8zddESIaj8PhYKXXStgZ2uFh9UP86/S/FNZf6OUkSCgSShZXnekys8uToLKaBpy6Xdylz9midlYoJ5pplqt4gsWk/CQ8rHoo205yjkbMLc3F8lPLwcAwxXEKpjtN70hVVc7KQFdYG+tC8KQaITsvoUmovLms/pNwA4VPa2FjooevJnaPNQspESIE4oUgo32jwefykXovVXL7SlFyHlUicPt/kVeeB32tHpjmPE2hx5fF6iM3Ebz9AtYldd8FG4n6cjZ1hqelJ4RMiO1Z22X7MiLHaMSyujIsPLEQ1Y3VGGExAl94fqGSQ7k7om/vHvhj4dt4x9EMayYPgRZPOaf25JwixF4QTx8RPWUoDHW1lVIPeVEiRMgzLr1csNxjOQBg4+WNyCjKUNix75XWQNAkXtVaWO6JzIKuHWKddqcEuy8VAgB8Hc269LkJkdXzq0K7c3Zj5p8z238PyjgasdF2JJakLsG9qnuwMbDB+lHroc3tHidpWfUy0MHOOSPh1f/FVBjn8kq6bDRZWU0Dlu+7BgCY81ZfqXqoOkqECHnJFMcpGN93PIRMiKWpS1FWV/bax8woykDC4zXQ0r8LMB5KHryJGf9Nw+f7rqK8pvH1K92OuyXV+DJePGfQRx52GNHXtNOfk5CO8LHxweLhi6GnpYdrxdcQ/GcwlqUuw/2q+y3vIONoxG8vrcOFRxegr6WPTX/bhJ66PTsrBKV6+QpXblElQnZeROCm08h4adRqZ9l+WoCiZ7PULw9w7vTnUyRKhAh5CYfDQYR3BOyN7PG45jG+PP0lREz+++1NoiYk5idixpEZCP4zGH/d/QsAEOI2D7NGuoHDAfZcuge/Dan4M1PG/hByKiipwef7ruJv61KRV1yN3gY6WNHNPqCIZuFwOJgzeA4S3k/ABwM/AAccJOYn4r3497AxfSOqGlpYZLSd0Yh7eHWIy4kDBxxE+UQpbXHjrseBhZEuHpbXYerWc5JbVp1l0ZiBCBszEOumDIWudvfq90ejxtpBo8Y0U87THMw4MgP1wnqEDwuXeRmMioYKHLh1AL/d/A0Pq8UJjjZXGxP7TcTMQTPh2NMRAHAp/ymW77+GvOJqTHCzwuYZwxQew4dbzuLSXfEkf76OZvjXBJcOjybpriORNJE6tdXNpzcRfTEaaY/EE2Ka6poi1D0UHwz8oPnUEy2MRrxYdBnzk+ajiTUhbFgYQtxClBCF8lTWNWLJnqtIyhZ3Fp8+0hYr33NVWKJS2yDEnSdVcLVWzChbRZP1/E2JUDsoEdJc+27tQ+S5SPA4PPzs/zOGWbSerBRWFOLXm78i/nY8appqAIg/tKc5TcNUp6norde72T51jUJsTc3DDE97mBnqAABqGpqgp83rUCfOe6U1MNbTlnRQTMkpwvbTAoT7OWK4/evdClCnk6u6U7e2Yowh9V4q1l1ah/yKfADAAJMBWDZiGbxtWp+JvLCyEB8nfIyy+jK86/Auonyi1KZztDxEIoYtqXmITsoBY8DQPsbYMnM4rE1encVbNkIRw7m8EsRfuY/ErIcw0NXC2RVjwOOq3t+WEiEFoURIczHG8MXpL5BwJwHm+ubYG7gXprqmUo9fLrqMXdm7cKLgBNizCdwGmAxA8KBgTOg3ATo8HbmeM/TXyyirbcDq94fArpdsK2DfL6vF5uRc7L1UiAWjByLMT/GX/tXt5KrO1LWtGkWN2JOzB1uubpGsDfi2zdtYOmIp+pv0lypb3ViNmUdmIrcsF4N7DUZMQEy3mbOrs5y8VYxFcVdQVtOIf4zqj8/lvE1+42EF4q/cx6GM+3hc8aIDtq2pHn4LeRO2prJ9XnUlSoQUhBIhzVbTWINph6chvyIfb9m8hR/G/AAhE+Jo/lHsyt6F7JJsSdm3bN7CrEGz4GXl1aFvnoVPazB2QyrqGkXQ1eZi6TgnzHnLodVvWg/LxQnQ7ouFaBSK38YBrpbYGjy8Y8G2QV1PrupI3duqvL4cP177EbE3Y9EkagKPw8OHjh/iH+7/gKmuKURMhLDkMKQUpsBMzwyxE2Jh0UN117nqSoVPa/DjyTxEBLpCW44h9v/vxG1EJ92S/G6sp42JQ6zw/hs2GG7fU2WvtFEipCCUCJFbpbfwccLHqBfWY4zdGGQ+yURRjXhhTh2eDgL7ByLYJRj9TPq99nPdLanGiv2ZOHenBAAw1NYEaya7wdnyxWvvUXkdfkjJRdyFQjQ8mzjtzX6mCPdz7LRV5LvzyXXUqFFwd3fHxo0blV0VHDx4EEuXLoVAIMDChQvh7u6O8PBwlJWVKew5unNbyeNuxV1sSN+A4wXHAQAG2gaYP2Q+SutKEXM9BnwuHzsCdsDNzE3JNVVdjUIRfkjOw1wfBxjoiPtcVdY14s+sRxhkZYTBzxZ1zSgsw9St5zDGxRxBb9hglJMZdLRUv0M0JUIKQokQAYADtw8g4myE5Pfeer0x3Wk6pjpNVfhQXMYYdl8sxH+O3EBlXRO0uBz8Y1R/hP5tAHS0eFi29yr2pt8DAHj0NUX42IHw7t+8D5IideeTa2cnQikpKRg9ejRKS0thYmLSZlkLCwvMmTMHixYtgqGhIbS0tFBZWQlzc3MAwMqVK3Hw4EFkZGR0uD7dua064uKji1h7cS1uPL0htT3KJwoT+k1QUq26h/87nI3/nhZggLkBFowegGM3HuOv7MeobxJh+khbRE0WL4/BGENFXROM9brX3Euynr+7fsVHQrqh9we8j8LKQmQUZeD9ge8joG8A+LzOWbWdw+FguocdRjub4+uDWUjKfox96fcw37c/dLSA0NEDUPC0BovGDIR3/14qe1maSKuqqkJRURH8/f1hbW0t2a6n17FOq0RspOVIxE2Mwx95f+D7y9+jqLYIIW4h8idBGrgG3ng3S/x+9QFyi6oQvjtDsr2/WQ84Wb4YYcrhcLpdEiQXRtpUXl7OALDy8nJlV4VoIJFIxBKuPWAnbxUptR61tbUsOzub1dbWKrUeHeHr68tCQ0NZaGgoMzIyYr169WJfffUVE4lEkjJ1dXVsyZIlzNramunr6zMPDw+WnJwseTw/P59NnDiRmZiYMH19fTZo0CCWkJDABAIBg3iZc8nP7Nmzm9UhOTm5Wbnk5GQWExPDjI2NGWOMxcTENCsTExMjd7zdua1eV01jDbtRckOqbWVy/RBj65wZizB68bPOWbxdzT2uqGUz/3ueef7nGIv8/Tq7Vlgm/99PRcl6/qYrQoSoMA6Hg3fdrNovqASMMdQ21SrlufW09OS6ErZz507MnTsXFy5cwKVLlzB//nzY2dlh3rx5AIAFCxYgOzsbcXFxsLa2Rnx8PAICApCZmYmBAwciNDQUDQ0NOHnyJHr06IHs7GwYGBjA1tYW+/fvx+TJk5GTkwMjI6MWr/B4e3sjJycHTk5O2L9/P7y9vWFqaor8/HxJmWnTpiErKwuJiYk4duwYAMDYWDXnZ1FVelp6cDaVc9LQ7N+BPbMAvNJLpOKhePvUX8STNqopc0Nd7JrrqexqKBUlQoSoOhW9ZF/bVAvP35TzAZr2cRr0tWUfrmtra4sNGzaAw+HAyckJmZmZ2LBhA+bNm4eCggLExMSgoKBAcstq6dKlSExMRExMDL755hsUFBRg8uTJcHMTd7zt1+9Fx3hTU/GUCubm5q32EeLz+ZJ+QKamprC0tGxWRk9PDwYGBtDS0mrxcdIJREIgcTmaJUHAs20cIHEF4DxBJd5zpHNQIkSIKsv+XfxBXfHgxTYja/H6Smr8LVXR3nzzTakrSF5eXli3bh2EQiEyMzMhFArh6OgotU99fT169RKPwlu0aBE+++wzJCUlwc/PD5MnT8aQIUO6NAbSCe6elX5vNcOAivvicg4+XVYt0rUoESJEVan4JXs9LT2kfZymtOdWlKqqKvB4PKSnp4PHk/7Wb2BgAAAICQmBv78/EhISkJSUhNWrV2PdunVYuHChwupBlKDqsWLLkW6JEiFCVFE3uGTP4XDkuj2lTGlp0gnb+fPnMXDgQPB4PLzxxhsQCoUoKiqCj0/r3/ptbW3x6aef4tNPP8UXX3yBbdu2YeHCheDzxaMHhULha9eTz+cr5DhERgYyTrQoaznSLdHq84SoInku2ZN2FRQUYPHixcjJyUFsbCw2bdqEsLAwAICjoyNmzJiBWbNm4cCBAxAIBLhw4QJWr16NhIQEAEB4eDiOHj0KgUCAy5cvIzk5GS4uLgAAe3t7cDgcHD58GMXFxaiqamGFdBn17dsXAoEAGRkZePLkCerr69vfiXScvbf4VjNa63jPAYxsxOWI2qJEiBBVRJfsFWrWrFmora2Fh4cHQkNDERYWhvnz50sej4mJwaxZs7BkyRI4OTkhKCgIFy9ehJ2dHQDx1Z7Q0FC4uLggICAAjo6O+OGHHwAANjY2iIyMxIoVK2BhYYEFCxZ0uJ6TJ09GQEAARo8eDTMzM8TGxr5e4KRtXJ64vx2A5snQs98DoqijtJqjmaXbQTNLE6UQnAJ2Tmy/3OzDXdKJU9NmK+7OqK06oMVBCTbiJIgGJXRbNLM0Id3Z80v2FQ/Rcj8hjvhxumRPyOsb9J64v50KTlNBOh8lQoSooueX7PfMgvgS/cvJEF2yJ0ThuDwaIq+hqI8QIapq0HviIfJGr8wsbWSt9KHzhBCiLuiKECGqjC7ZE0JIp6JEiBBVR5fsCSGk09CtMUKIzGiQqeqjNiJEPpQIEULapa2tDQCoqalRck1IexoaGgCg2XIhhJCW0a0xQki7eDweTExMUFRUBADQ19eXWsSUqAaRSITi4mLo6+tDS4s+3gmRBb1TCCEysbS0BABJMkRUE5fLhZ2dHSWqhMiIEiFCiEw4HA6srKxgbm6OxsZGZVeHtILP54PLpV4PhMiKEiFCiFx4PB71PyGEqA362kAIIYQQjUWJECGEEEI0FiVChBBCCNFY1EeoHc8nJ6uoqFByTQghhBAiq+fn7fYmGaVEqB2VlZUAAFtbWyXXhBBCCCHyqqyshLGxcauPcxjNx94mkUiEBw8ewNDQUKHzclRUVMDW1haFhYUwMjJS2HFVibrHSPF1f+oeo7rHB6h/jBRfxzHGUFlZCWtr6zanlKArQu3gcrno06dPpx3fyMhILV/cL1P3GCm+7k/dY1T3+AD1j5Hi65i2rgQ9R52lCSGEEKKxKBEihBBCiMaiREhJdHR0EBERAR0dHWVXpdOoe4wUX/en7jGqe3yA+sdI8XU+6ixNCCGEEI1FV4QIIYQQorEoESKEEEKIxqJEiBBCCCEaixIhQgghhGgsSoQUaPPmzejbty90dXXh6emJCxcutFl+7969cHZ2hq6uLtzc3HDkyBGpxxlj+Pe//w0rKyvo6enBz88Pt2/f7swQ2iRPfNu2bYOPjw969uyJnj17ws/Pr1n5Tz75BBwOR+onICCgs8Nokzwx7tixo1n9dXV1pcp05zYcNWpUs/g4HA4mTJggKaNKbXjy5EkEBgbC2toaHA4HBw8ebHeflJQUDBs2DDo6OhgwYAB27NjRrIy87+vOIm98Bw4cwNixY2FmZgYjIyN4eXnh6NGjUmVWrlzZrP2cnZ07MYq2yRtjSkpKi6/RR48eSZXrrm3Y0vuLw+HA1dVVUkaV2nD16tUYOXIkDA0NYW5ujqCgIOTk5LS7n7LPhZQIKcju3buxePFiRERE4PLlyxg6dCj8/f1RVFTUYvmzZ8/io48+wty5c3HlyhUEBQUhKCgIWVlZkjLffvstvv/+e2zduhVpaWno0aMH/P39UVdX11VhScgbX0pKCj766CMkJyfj3LlzsLW1xbhx43D//n2pcgEBAXj48KHkJzY2tivCaZG8MQLi2VBfrv/du3elHu/ObXjgwAGp2LKyssDj8TBlyhSpcqrShtXV1Rg6dCg2b94sU3mBQIAJEyZg9OjRyMjIQHh4OEJCQqSShY68JjqLvPGdPHkSY8eOxZEjR5Ceno7Ro0cjMDAQV65ckSrn6uoq1X6nT5/ujOrLRN4Yn8vJyZGKwdzcXPJYd27D7777TiquwsJCmJqaNnsPqkobpqamIjQ0FOfPn8dff/2FxsZGjBs3DtXV1a3uoxLnQkYUwsPDg4WGhkp+FwqFzNramq1evbrF8lOnTmUTJkyQ2ubp6cn+/ve/M8YYE4lEzNLSkq1du1byeFlZGdPR0WGxsbGdEEHb5I3vVU1NTczQ0JDt3LlTsm327Nls0qRJiq5qh8kbY0xMDDM2Nm71eOrWhhs2bGCGhoasqqpKsk3V2vA5ACw+Pr7NMp9//jlzdXWV2jZt2jTm7+8v+f11/2adRZb4WjJo0CAWGRkp+T0iIoINHTpUcRVTIFliTE5OZgBYaWlpq2XUqQ3j4+MZh8Nh+fn5km2q3IZFRUUMAEtNTW21jCqcC+mKkAI0NDQgPT0dfn5+km1cLhd+fn44d+5ci/ucO3dOqjwA+Pv7S8oLBAI8evRIqoyxsTE8PT1bPWZn6Uh8r6qpqUFjYyNMTU2ltqekpMDc3BxOTk747LPPUFJSotC6y6qjMVZVVcHe3h62traYNGkSrl+/LnlM3dpw+/btmD59Onr06CG1XVXaUF7tvQcV8TdTJSKRCJWVlc3eg7dv34a1tTX69euHGTNmoKCgQEk17Dh3d3dYWVlh7NixOHPmjGS7urXh9u3b4efnB3t7e6ntqtqG5eXlANDsNfcyVTgXUiKkAE+ePIFQKISFhYXUdgsLi2b3qp979OhRm+Wf/yvPMTtLR+J71fLly2FtbS31Yg4ICMAvv/yC48ePY82aNUhNTcX48eMhFAoVWn9ZdCRGJycn/Pzzzzh06BD+97//QSQSwdvbG/fu3QOgXm144cIFZGVlISQkRGq7KrWhvFp7D1ZUVKC2tlYhr3tVEh0djaqqKkydOlWyzdPTEzt27EBiYiK2bNkCgUAAHx8fVFZWKrGmsrOyssLWrVuxf/9+7N+/H7a2thg1ahQuX74MQDGfXariwYMH+PPPP5u9B1W1DUUiEcLDw/HWW29h8ODBrZZThXMhrT5POl1UVBTi4uKQkpIi1Zl4+vTpkv+7ublhyJAh6N+/P1JSUjBmzBhlVFUuXl5e8PLykvzu7e0NFxcX/Pjjj1i1apUSa6Z427dvh5ubGzw8PKS2d/c21BS//fYbIiMjcejQIan+M+PHj5f8f8iQIfD09IS9vT327NmDuXPnKqOqcnFycoKTk5Pkd29vb+Tl5WHDhg3YtWuXEmumeDt37oSJiQmCgoKktqtqG4aGhiIrK0upfc5kRVeEFKB3797g8Xh4/Pix1PbHjx/D0tKyxX0sLS3bLP/8X3mO2Vk6Et9z0dHRiIqKQlJSEoYMGdJm2X79+qF3797Izc197TrL63VifE5bWxtvvPGGpP7q0obV1dWIi4uT6UNVmW0or9beg0ZGRtDT01PIa0IVxMXFISQkBHv27Gl2C+JVJiYmcHR07Bbt1xoPDw9J/dWlDRlj+PnnnxEcHAw+n99mWVVowwULFuDw4cNITk5Gnz592iyrCudCSoQUgM/nY/jw4Th+/Lhkm0gkwvHjx6WuGLzMy8tLqjwA/PXXX5LyDg4OsLS0lCpTUVGBtLS0Vo/ZWToSHyDu6b9q1SokJiZixIgR7T7PvXv3UFJSAisrK4XUWx4djfFlQqEQmZmZkvqrQxsC4qGt9fX1mDlzZrvPo8w2lFd770FFvCaULTY2FnPmzEFsbKzUtAetqaqqQl5eXrdov9ZkZGRI6q8ObQiIR2Pl5ubK9GVEmW3IGMOCBQsQHx+PEydOwMHBod19VOJcqJAu14TFxcUxHR0dtmPHDpadnc3mz5/PTExM2KNHjxhjjAUHB7MVK1ZIyp85c4ZpaWmx6OhoduPGDRYREcG0tbVZZmampExUVBQzMTFhhw4dYteuXWOTJk1iDg4OrLa2VuXji4qKYnw+n+3bt489fPhQ8lNZWckYY6yyspItXbqUnTt3jgkEAnbs2DE2bNgwNnDgQFZXV9fl8XUkxsjISHb06FGWl5fH0tPT2fTp05muri67fv26pEx3bsPn3n77bTZt2rRm21WtDSsrK9mVK1fYlStXGAC2fv16duXKFXb37l3GGGMrVqxgwcHBkvJ37txh+vr6bNmyZezGjRts8+bNjMfjscTEREmZ9v5mqhzfr7/+yrS0tNjmzZul3oNlZWWSMkuWLGEpKSlMIBCwM2fOMD8/P9a7d29WVFTU5fExJn+MGzZsYAcPHmS3b99mmZmZLCwsjHG5XHbs2DFJme7chs/NnDmTeXp6tnhMVWrDzz77jBkbG7OUlBSp11xNTY2kjCqeCykRUqBNmzYxOzs7xufzmYeHBzt//rzkMV9fXzZ79myp8nv27GGOjo6Mz+czV1dXlpCQIPW4SCRiX3/9NbOwsGA6OjpszJgxLCcnpytCaZE88dnb2zMAzX4iIiIYY4zV1NSwcePGMTMzM6atrc3s7e3ZvHnzlPLh9DJ5YgwPD5eUtbCwYO+++y67fPmy1PG6cxsyxtjNmzcZAJaUlNTsWKrWhs+HUr/68zym2bNnM19f32b7uLu7Mz6fz/r168diYmKaHbetv1lXkjc+X1/fNsszJp4uwMrKivH5fGZjY8OmTZvGcnNzuzawl8gb45o1a1j//v2Zrq4uMzU1ZaNGjWInTpxodtzu2oaMiYeK6+npsZ9++qnFY6pSG7YUGwCp95Uqngs5zypPCCGEEKJxqI8QIYQQQjQWJUKEEEII0ViUCBFCCCFEY1EiRAghhBCNRYkQIYQQQjQWJUKEEEII0ViUCBFCCCFEY1EiRAghhBCNRYkQIYQQQjQWJUKEEEII0ViUCBFCNEpxcTEsLS3xzTffSLadPXsWfD6/2SrYhBD1R2uNEUI0zpEjRxAUFISzZ8/CyckJ7u7umDRpEtavX6/sqhFCuhglQoQQjRQaGopjx45hxIgRyMzMxMWLF6Gjo6PsahFCuhglQoQQjVRbW4vBgwejsLAQ6enpcHNzU3aVCCFKQH2ECCEaKS8vDw8ePIBIJEJ+fr6yq0MIURK6IkQI0TgNDQ3w8PCAu7s7nJycsHHjRmRmZsLc3FzZVSOEdDFKhAghGmfZsmXYt28frl69CgMDA/j6+sLY2BiHDx9WdtUIIV2Mbo0RQjRKSkoKNm7ciF27dsHIyAhcLhe7du3CqVOnsGXLFmVXjxDSxeiKECGEEEI0Fl0RIoQQQojGokSIEEIIIRqLEiFCCCGEaCxKhAghhBCisSgRIoQQQojGokSIEEIIIRqLEiFCCCGEaCxKhAghhBCisSgRIoQQQojGokSIEEIIIRqLEiFCCCGEaCxKhAghhBCisf4/oyC5gHvDo0QAAAAASUVORK5CYII=",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# create a fitting model based on a cosine function\n",
"fitting_model = lmfit.Model(cos_func)\n",
"\n",
"# specify initial guesses for each parameter\n",
"fitting_model.set_param_hint(\"amplitude\", value=0.5, min=0.1, max=2, vary=True)\n",
"fitting_model.set_param_hint(\"frequency\", value=0.8, vary=True)\n",
"fitting_model.set_param_hint(\"phase\", value=0)\n",
"fitting_model.set_param_hint(\"offset\", value=0)\n",
"params = fitting_model.make_params()\n",
"\n",
"# here we run the fit\n",
"fit_result = fitting_model.fit(dataset.y0.values, x=dataset.x0.values, params=params)\n",
"\n",
"# It is possible to get a quick visualization of our fit using a build-in method of lmfit\n",
"_ = fit_result.plot_fit(show_init=True)"
]
},
{
"cell_type": "markdown",
"id": "488679bd",
"metadata": {},
"source": [
"The summary of the fit result can be nicely printed in a Jupyter-like notebook:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "e6f191c1",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
Fit Result
Model: Model(cos_func)
Fit Statistics
fitting method
leastsq
# function evals
36
# data points
30
# variables
4
chi-square
0.12127645
reduced chi-square
0.00466448
Akaike info crit.
-157.326401
Bayesian info crit.
-151.721612
R-squared
0.96981045
Parameters
name
value
standard error
relative error
initial value
min
max
vary
frequency
0.99578884
0.01089921
(1.09%)
0.8
-inf
inf
True
amplitude
0.50271117
0.01753180
(3.49%)
0.5
0.10000000
2.00000000
True
offset
0.00450279
0.01352847
(300.45%)
0
-inf
inf
True
phase
0.01183394
0.07730958
(653.29%)
0
-inf
inf
True
Correlations (unreported values are < 0.100)
Parameter1
Parameter 2
Correlation
frequency
phase
-0.8876
frequency
offset
-0.3861
offset
phase
+0.3424
frequency
amplitude
-0.1248
amplitude
phase
+0.1104
"
],
"text/plain": [
""
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fit_result"
]
},
{
"cell_type": "markdown",
"id": "3a6641e6",
"metadata": {},
"source": [
"### Analyzing the fit result and saving key quantities"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "4c8a7ea6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'amplitude': np.float64(0.5027111655097293),\n",
" 'frequency': np.float64(0.9957888361553193)}"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"quantities_of_interest = {\n",
" \"amplitude\": fit_result.params[\"amplitude\"].value,\n",
" \"frequency\": fit_result.params[\"frequency\"].value,\n",
"}\n",
"quantities_of_interest"
]
},
{
"cell_type": "markdown",
"id": "54821380",
"metadata": {},
"source": [
"Now that we have the relevant quantities, we want to store them in the same\n",
"`experiment directory` where the raw dataset is stored.\n",
"\n",
"First, we determine the experiment directory on the file system."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "2084197a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"PosixPath('/root/quantify-data/20241106/20241106-153035-204-63ac0b-Cosine experiment')"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# the experiment folder is retrieved with a convenience function\n",
"exp_folder = Path(locate_experiment_container(dataset.tuid))\n",
"exp_folder"
]
},
{
"cell_type": "markdown",
"id": "033c7543",
"metadata": {},
"source": [
"Then, we save the quantities of interest to disk in the human-readable JSON format."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "57d7ca8f",
"metadata": {},
"outputs": [],
"source": [
"with open(exp_folder / \"quantities_of_interest.json\", \"w\", encoding=\"utf-8\") as file:\n",
" json.dump(quantities_of_interest, file)"
]
},
{
"cell_type": "markdown",
"id": "9054cdd5",
"metadata": {},
"source": [
"### Plotting and saving figures\n",
"\n",
"We would like to save a plot of our data and the fit in our lab logbook but the figure above is not fully satisfactory: there are no units and no reference to the original dataset.\n",
"\n",
"Below we create our own plot for full control over the appearance and we store it on disk in the same `experiment directory`.\n",
"For plotting, we use the ubiquitous matplotlib and some visualization utilities."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "81af206d",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHgCAYAAAChG7dTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADCDklEQVR4nOzdd1iT5/rA8W8SRth7gywnouLEPapWO7R221275+k5nceenlrtHqc9PW1Ph7/O09o97bBDa9U6cBSVutkiS5C9k/f3x5tEIkNQICHcn+viAt68CXcgJHee537uR6MoioIQQgghhAPT2joAIYQQQojuJgmPEEIIIRyeJDxCCCGEcHiS8AghhBDC4UnCI4QQQgiHJwmPEEIIIRyeJDxCCCGEcHiS8AghhBDC4UnCI4QQQgiHJwmPEMJCo9HwyCOP2DqMXicmJoZrr73W1mEIIdohCY8Qdio9PZ2bb76ZuLg49Ho93t7eTJo0iRdffJHa2lpbhyd6mT179vDII4+QlZVl61CEsAknWwcghGjpu+++4+KLL8bV1ZWrr76axMREGhoa2LBhA/fddx9//vknb7zxRpf/3NraWpyc5Gmhs/bv349Wa9/vH/fs2cPSpUuZPn06MTExtg5HiB4nz2xC2JnMzEwWLlxIdHQ0a9asISwszHLZ7bffzqFDh/juu++65Wfr9fpuuV1HpCgKdXV1uLm54erqautwhBAnYd9vSYTog5555hmqqqp48803rZIds/79+3PXXXdZvm9qauLRRx8lPj4eV1dXYmJiePDBB6mvr7e63rZt25gzZw6BgYG4ubkRGxvLddddZ3XOiTU8jzzyCBqNhkOHDnHttdfi6+uLj48PixYtoqampkVs77//PqNHj8bNzQ1/f38WLlxIbm5uh+53Xl4e1113HSEhIbi6ujJ06FDeeusty+W1tbUMHjyYwYMHW03plZaWEhYWxsSJEzEYDABce+21eHp6kpGRwZw5c/Dw8CA8PJxly5ahKIrVzzUajfz73/9m6NCh6PV6QkJCuPnmmzl27JjVeTExMZx77rn8+OOPjBkzBjc3N15//XXLZc1reN555x00Gg0bNmzgL3/5C0FBQfj6+nLzzTfT0NBAWVkZV199NX5+fvj5+XH//fefdlwbNmxg3Lhx6PV64uLieO+996ziufjiiwGYMWMGGo0GjUbD2rVrO/S3EcIhKEIIuxIREaHExcV1+PxrrrlGAZSLLrpIeeWVV5Srr75aAZQFCxZYziksLFT8/PyUgQMHKs8++6yyfPly5R//+IcyZMgQq9sClCVLlli+X7JkiQIoI0eOVC644ALlv//9r3LDDTcogHL//fdbXfexxx5TNBqNcumllyr//e9/laVLlyqBgYFKTEyMcuzYsXbvQ0FBgRIZGalERUUpy5YtU1599VVl/vz5CqC88MILlvM2b96s6HQ65W9/+5vl2MKFCxU3Nzdl//79Vr8TvV6vDBgwQLnqqquUl19+WTn33HMVQPnnP/9p9bNvuOEGxcnJSbnxxhuV1157TXnggQcUDw8PZezYsUpDQ4PlvOjoaKV///6Kn5+f8ve//1157bXXlF9//dVy2TXXXGM59+2331YAJSkpSZk7d67yyiuvKFdddZXl9zZ58mTl8ssvV/773/9a4nr33XdPOa5BgwYpISEhyoMPPqi8/PLLyqhRoxSNRqOkpaUpiqIo6enpyl/+8hcFUB588EHlf//7n/K///1PKSgoaPfvIoQjkYRHCDtSXl6uAMp5553XofNTU1MVQLnhhhusjt97770KoKxZs0ZRFEX58ssvFUDZunVru7fXVsJz3XXXWZ13/vnnKwEBAZbvs7KyFJ1Opzz++ONW5+3evVtxcnJqcfxE119/vRIWFqYcPXrU6vjChQsVHx8fpaamxnJs8eLFilarVdatW6d8+umnCqD8+9//trqeOQm88847LceMRqNyzjnnKC4uLkpxcbGiKIqyfv16BVA++OADq+uvWrWqxfHo6GgFUFatWtUi/rYSnjlz5ihGo9FyfMKECYpGo1FuueUWy7GmpiYlMjJSmTZtmuXYqcS1bt06y7GioiLF1dVVueeeeyzHzL8rc5ImRF8jU1pC2JGKigoAvLy8OnT+999/D8Ddd99tdfyee+4BsNT6+Pr6AvDtt9/S2NjY6bhuueUWq++nTJlCSUmJJd4vvvgCo9HIJZdcwtGjRy0foaGhDBgwgF9//bXN21YUhc8//5x58+ahKIrV9efMmUN5eTk7duywnP/II48wdOhQrrnmGm677TamTZvGX/7yl1Zv+4477rB8rdFouOOOO2hoaOCXX34B4NNPP8XHx4fZs2db/dzRo0fj6enZIu7Y2FjmzJnT4d/b9ddfj0ajsXyfnJyMoihcf/31lmM6nY4xY8aQkZFhOdbZuBISEpgyZYrl+6CgIAYNGmR1m0L0dVK0LIQd8fb2BqCysrJD52dnZ6PVaunfv7/V8dDQUHx9fcnOzgZg2rRpXHjhhSxdupQXXniB6dOns2DBAi6//PIOFdz269fP6ns/Pz8Ajh07hre3NwcPHkRRFAYMGNDq9Z2dndu87eLiYsrKynjjjTfaXHlWVFRk+drFxYW33nqLsWPHotfrefvtt62SCjOtVktcXJzVsYEDBwJYlmYfPHiQ8vJygoODT/pzQU14OuPE35uPjw8AUVFRLY43r83pbFwn/hxQ/0Yn1vsI0ZdJwiOEHfH29iY8PJy0tLROXa+1F/wTL//ss8/YvHkzK1eu5Mcff+S6667jX//6F5s3b8bT07Pd6+t0ulaPK6ZCW6PRiEaj4Ycffmj13PZu32g0AnDllVdyzTXXtHrO8OHDrb7/8ccfAairq+PgwYOdTkSa/+zg4GA++OCDVi8PCgqy+t7Nza1Tt9/W762140qzouXOxnWyv48QQhIeIezOueeeyxtvvMGmTZuYMGFCu+dGR0djNBo5ePAgQ4YMsRwvLCykrKyM6Ohoq/PHjx/P+PHjefzxx1mxYgVXXHEFH330ETfccMNpxRwfH4+iKMTGxlpGUToqKCgILy8vDAYDs2bNOun5u3btYtmyZSxatIjU1FRuuOEGdu/ebRk9MTMajWRkZFjFc+DAAQBLH5r4+Hh++eUXJk2a1Olkpjt1R1wnS4qFcHRSwyOEnbn//vvx8PDghhtuoLCwsMXl6enpvPjiiwCcffbZAPz73/+2Ouf5558H4JxzzgHUqacT3+0nJSUBtFi+fiouuOACdDodS5cubfFzFEWhpKSkzevqdDouvPBCPv/881ZHtoqLiy1fNzY2cu211xIeHs6LL77IO++8Q2FhIX/7299ave2XX37ZKo6XX34ZZ2dnZs6cCcAll1yCwWDg0UcfbXHdpqYmysrK2r3f3aU74vLw8ACw2X0SwtZkhEcIOxMfH8+KFSu49NJLGTJkiFWn5Y0bN/Lpp59aer6MGDGCa665hjfeeIOysjKmTZtGSkoK7777LgsWLGDGjBkAvPvuu/z3v//l/PPPJz4+nsrKSpYvX463t7claTrdmB977DEWL15MVlYWCxYswMvLi8zMTL788ktuuukm7r333jav/9RTT/Hrr7+SnJzMjTfeSEJCAqWlpezYsYNffvmF0tJSAB577DFSU1NZvXo1Xl5eDB8+nIcffpiHHnqIiy66yOq+6PV6Vq1axTXXXENycjI//PAD3333HQ8++KBlSmjatGncfPPNPPnkk6SmpnLmmWfi7OzMwYMH+fTTT3nxxRe56KKLTvv301ndEVdSUhI6nY6nn36a8vJyXF1dOeOMM9qsExLC4dhmcZgQ4mQOHDig3HjjjUpMTIzi4uKieHl5KZMmTVJeeuklpa6uznJeY2OjsnTpUiU2NlZxdnZWoqKilMWLF1uds2PHDuWyyy5T+vXrp7i6uirBwcHKueeeq2zbts3qZ9LGsnTzMm4z87LrzMxMq+Off/65MnnyZMXDw0Px8PBQBg8erNx+++1WPXLaUlhYqNx+++1KVFSU4uzsrISGhiozZ85U3njjDUVRFGX79u2Kk5OT1VJzRVGXdY8dO1YJDw+39Pu55pprFA8PDyU9PV0588wzFXd3dyUkJERZsmSJYjAYWvzsN954Qxk9erTi5uameHl5KcOGDVPuv/9+5ciRI5ZzoqOjlXPOOafV2Ntaln5iG4C2fp/meLsyrmnTplktdVcURVm+fLkSFxen6HQ6WaIu+hyNokhVmxDCsVx77bV89tlnVFVV2ToUIYSdkBoeIYQQQjg8SXiEEEII4fAk4RFCCCGEw5MaHiGEEEI4PBnhEUIIIYTDk4RHCCGEEA5PEh7R67zzzjtoNBrLBpDtiYmJsTTpE0IIM/PzyLZt22wdiughkvCIHrVx40YeeeSRXtHeft++fdx///0kJSXh5eVFWFgY55xzTptPkHl5eVxyySX4+vri7e3NeeedR0ZGhtU5ubm5LF26lHHjxuHn50dgYCDTp0/nl19+OWk8N954IxqNhnPPPbfFZR9//DFXXnklAwYMQKPRMH369FZvo6qqiiVLljB37lz8/f3RaDS88847bf7MvXv3MnfuXDw9PfH39+eqq66y2uqhufT0dC6//HKCg4Nxc3NjwIAB/OMf/zjp/QL46aefuP7660lMTESn01n2ujpRVlYWGo2m1Y+PPvrI6tzly5czbdo0QkJCcHV1JTY2lkWLFrWZKL/55psMGTIEvV7PgAEDeOmll1qc8+WXXzJnzhzCw8NxdXUlMjKSiy66qNUtMWJiYlqN85ZbbunQ7+SLL77g0ksvJS4uDnd3dwYNGsQ999zT5v/ON998w6hRo9Dr9fTr148lS5bQ1NTU7s9o7zHVnsLCQm6++WYiIiLQ6/XExMRw/fXXW53Tmd9VV+vM41b0HbK1hOhRGzduZOnSpVx77bX4+vqe0m1cddVVLFy4EFdX164N7gT/93//x5tvvsmFF17IbbfdRnl5Oa+//jrjx49n1apVVhtdVlVVMWPGDMrLy3nwwQdxdnbmhRdeYNq0aaSmphIQEADA119/zdNPP82CBQu45ppraGpq4r333mP27Nm89dZbLFq0qNVYtm3bxjvvvINer2/18ldffZXt27czduzYdvetOnr0KMuWLaNfv36MGDGCtWvXtnnu4cOHmTp1Kj4+PjzxxBNUVVXx3HPPsXv3blJSUnBxcbGcm5qayvTp04mIiOCee+4hICCAnJwccnNz2/sVW6xYsYKPP/6YUaNGER4eftLzL7vsshZbYpy40eoff/xBbGws8+fPx8/Pj8zMTJYvX863337Lzp07rX7O66+/zi233MKFF17I3Xffzfr16/nLX/5CTU0NDzzwgOW83bt34+fnx1133UVgYCAFBQW89dZbjBs3jk2bNjFixAirGJKSkrjnnnusjnV0c9WbbrqJ8PBwrrzySvr168fu3bt5+eWX+f7779mxY4fVpqI//PADCxYsYPr06bz00kvs3r2bxx57jKKiIl599dVWb/9kj6m25ObmMmnSJABuueUWIiIiOHLkCCkpKVbndfZ31VU687gVfYxtGz2LvubZZ59tdUuC7nJiy//O2LZtm1JZWWl17OjRo0pQUJAyadIkq+NPP/20AigpKSmWY3v37lV0Op2yePFiy7G0tLQW2wrU1dUpgwcPViIjI1uNw2g0KhMmTFCuu+66NrcRyMnJsWyZMHTo0BZbCjT/Wfn5+YqiKMrWrVsVQHn77bdbPffWW29V3NzclOzsbMuxn3/+WQGU119/3XLMYDAoiYmJSnJyslJTU9PqbZ1MXl6e0tDQoCiKopxzzjlKdHR0q+dlZmYqgPLss8+e0s/Ztm2bAihPPvmk5VhNTY0SEBDQ4vd6xRVXKB4eHkppaWm7t1lQUKA4OTkpN998s9Xx9rai6IjWtn149913FUBZvny51fGEhARlxIgRSmNjo+XYP/7xD0Wj0Sh79+5tcTsdeUy15ayzzlJiY2OVo0ePdvzOmLT1u+pKHX3ctrX9h3BcMqUleswjjzzCfffdB0BsbKxliD8rK8syVdHa9IpGo+GRRx6xfN9aDY+iKDz22GNERkbi7u7OjBkz+PPPP1uNIz09nfT09JPGO3r0aDw9Pa2OBQQEMGXKFPbu3Wt1/LPPPmPs2LGMHTvWcmzw4MHMnDmTTz75xHJs6NChBAYGWl3X1dWVs88+m8OHD1NZWdkijv/973+kpaXx+OOPtxlrVFQUWu3J/51dXV0JDQ096XkAn3/+Oeeeey79+vWzHJs1axYDBw60uk8//fQTaWlpLFmyBDc3N2pqajAYDB36GWbh4eE4Ozt36jrV1dU0NDR06jrmqbLm00K//vorJSUl3HbbbVbn3n777VRXV/Pdd9+1e5vBwcG4u7u3OdXU0NBAdXV1p+IEWp2WPP/88wGsHn979uxhz5493HTTTTg5HR+0v+2221AUhc8++6zF7XTkMdWaffv28cMPP3DfffcREBBAXV0djY2NHb5+W7+r5557jokTJxIQEICbmxujR49uNW6A999/n3HjxuHu7o6fnx9Tp07lp59+slze0cetWU1NDTfffDMBAQF4e3tz9dVXc+zYsQ7fJ9F7SMIjeswFF1zAZZddBsALL7zA//73P/73v/9Zdq4+HQ8//DD//Oc/GTFiBM8++yxxcXGceeaZrb7QzJw5k5kzZ57yzyooKLBKWoxGI7t27WLMmDEtzh03bhzp6emtJjIn3qa7uzvu7u5WxysrK3nggQd48MEHO5yodIW8vDyKioravE9//PGH5Xtz/ZGrqytjxozBw8MDd3d3Fi5caNnlvKstXboUT09P9Ho9Y8eOtXrBO1FJSQlFRUVs27bNMmXY/O9vvi8n3tfRo0ej1Wqt7qtZWVkZxcXF7N69mxtuuIGKiopWH1Nr1qzB3d0dT09PYmJiePHFF0/p/poVFBQAWD3+2oo/PDycyMjIFvGfzmPK/LcOCQlh5syZuLm54ebmxllnndVmbVRHflcvvvgiI0eOZNmyZTzxxBM4OTlx8cUXt0g2ly5dylVXXYWzszPLli1j6dKlREVFsWbNGqBzj1uzO+64g7179/LII49w9dVX88EHH7BgwQIUaVHncKSGR/SY4cOHM2rUKD788EMWLFhgVZh6OgWFxcXFPPPMM5xzzjmsXLkSjUYDwD/+8Q+eeOKJ0w3byvr169m0aRMPPfSQ5VhpaSn19fWEhYW1ON987MiRIwwaNKjV2zx06BBffPEFF198MTqdzuqyZcuW4ebmxt/+9rcuvBcnl5+fD9DmfTLfZ1dXVw4ePAjAJZdcwty5c1m8eDE7d+7kySefJDc3lw0bNlj+JqdLq9Vy5plncv755xMREUFGRgbPP/88Z511Ft988w3nnHNOi+tERERQX18PqCN0//nPf5g9e7bVfdXpdAQHB1tdz8XFhYCAAI4cOdLiNsePH8/+/fsB8PT05KGHHmpRtDt8+HAmT57MoEGDKCkp4Z133uGvf/0rR44c4emnnz6l+//000+j0+m46KKLrOKHtv9WJ8Z/Oo8p89/6pptuYuzYsXz88cfk5OSwdOlSZs2axa5du1ok7R35XR04cMCqJumOO+5g1KhRPP/885a/6aFDh1i2bBnnn38+n332mdWIpjk56czj1szFxYXVq1dbRhijo6O5//77WblyJfPnz+/070jYL0l4RK/3yy+/0NDQwJ133mn1wvrXv/611YSnI8vZW1NUVMTll19ObGws999/v+V4bW0tQKtF1OaCUPM5J6qpqeHiiy/Gzc2Np556yuqyAwcO8OKLL/Lhhx92e4H2iTp6n1xdXS07ko8dO5b3338fgAsvvBB3d3cWL17M6tWrrQq8T0e/fv348ccfrY5dddVVJCQkcM8997Sa8Pzwww/U1dWxd+9e3n///RajfrW1tW0Wsur1+lb/dm+//TYVFRVkZGTw9ttvU1tbi8FgsHoR/uabb6yus2jRIs466yyef/557rzzTiIjIzt8v0Et7H7zzTe5//77GTBggFX80PbfqqKiwvL96T6mzH/r0NBQvvvuO8v9jYyM5LLLLmPFihXccMMNVtfpyO+qebJz7NgxDAYDU6ZM4cMPP7Qc/+qrrzAajTz88MMtpm/N//ededya3XTTTVbTqbfeeisPPvgg33//vSQ8DkYSHtHrZWdnA1i9CAAEBQXh5+fXJT+jurqac889l8rKSjZs2GBV22N+sjaPIjRXV1dndU5zBoOBhQsXsmfPHn744YcWq5PuuusuJk6cyIUXXtgl96EzOnOfzJ/N05Vml19+OYsXL2bjxo3MmjWL8vJyq+TBxcUFf3//047V39+fRYsW8dRTT3H48OEWicSMGTMAOOusszjvvPNITEzE09OTO+64wxJ/W7VAdXV1rf7tmq8IW7hwIUOGDAHUWpS2aDQa/va3v/Hjjz+ydu1arrzySmpraykvL7c6r7VppvXr13P99dczZ86cFnU3J/tbNY+/o4+p4uJiqzosT09PPD09Lbd1ySWXWCUdF198MVdddRUbN25skfB05Hf17bff8thjj5Gammp1P5q/gUlPT0er1ZKQkNBm3Kfyv3ji84anpydhYWGn/MZI2C+p4RF2oa0pj84Wv3aHhoYGLrjgAnbt2sXXX39NYmKi1eX+/v64urpahtObMx9rban1jTfeyLfffss777zDGWecYXXZmjVrWLVqFXfddZelqDsrK4umpiZqa2vJysqyeufe1cxTAm3dJ/N9huP3LSQkxOo88xSRuQD0rrvuIiwszPJxwQUXdFm8UVFRACetGYqPj2fkyJF88MEHlmNhYWEYDAaKioqszm1oaKCkpOSky+T9/Pw444wzrG6zo3F+/PHHVr+T1qZidu7cyfz580lMTOSzzz6zKkw2xw9t/63M8XfmMTV27FirmMzJSVt/a51OR0BAwEmLfVv7Xa1fv5758+ej1+v573//y/fff8/PP//M5Zdf3uk6ms48bkXfIyM8oke1ldiYR2JOXL1hHr1pT3R0NKDWF8TFxVmOFxcXn/ZqC6PRyNVXX83q1av55JNPmDZtWotztFotw4YNa7Uh4ZYtW4iLi8PLy8vq+H333cfbb7/Nv//97xYjIwA5OTkArSYFeXl5xMbG8sILL/DXv/71FO9Z+yIiIggKCmr1PqWkpJCUlGT5fvTo0Sxfvpy8vDyr88y1I+ai9Pvvv58rr7zScnlXjb4BlgaPHSmAr62ttRoBMN+Xbdu2WfX22bZtG0aj0eq+tnebJ47UdCTOOXPm8PPPP7d5fnp6OnPnziU4OJjvv/++xarBE+MfN26c5fiRI0c4fPgwN910E9C5x9QHH3xgNRpn/r8aPXq05fzmGhoaOHr0aId//81/V59//jl6vZ4ff/zRKhl5++23ra4XHx+P0Whkz549bf5NOvO4NTt48KBlFBDUabv8/PwWfZ6EA7DponjR57z66qsKoPzxxx8tLgsMDFTOP/98q2P33HOPAihLliyxHDP3zzD38ikqKlKcnZ2Vc845RzEajZbzHnzwQQVo0Yfn0KFDyqFDhzoU72233daif0drnnrqqRY9Pfbt26fodDrlgQcesDr3mWeeUQDlwQcfbPP2srOzlS+//LLFR1BQkDJmzBjlyy+/bPM+tNeHp7mT9eG55ZZbFDc3NyUnJ8dy7JdfflEA5dVXX7Ucy8/PV1xdXZXJkydbegEpiqIsXry4RW+ijmivD09RUVGLY4cPH1b8/PyU4cOHW441Nja22j9ny5Ytik6nU6666irLsZqaGsXf318599xzrc698sorFXd3d6WkpMRyrLCwsMVtZmZmKl5eXsqUKVMsx0pKSpSmpiar8xoaGpRJkyYpLi4ull5I7cnPz1fi4uKU8PDwk/atGjx4sDJixAirn/nQQw8pGo1G2bNnj6Iop/eYMqurq1OCg4OVuLg4pba21nL89ddfVwDlk08+sRzr6O/q7rvvVtzd3ZXq6mqr89zd3ZXmL1EHDx5UtFqtcv7551s9zhRFsfq/7+jj1vw8Mnr0aEsPKEU5/v/51Vdftfu7EL2PRlFk7Z3oOVu3bmXcuHGcffbZLFy4EGdnZ+bNm4eHhweLFy/mqaee4vrrr2fMmDGsW7eOAwcOsH37dpYsWWLpxfPOO++waNEiMjMzLSu9HnzwQZ588knOPvtszj77bP744w9++OEHGhoaOOecc6z6+5ivc7I5+n//+9/87W9/Y8KECS16tIDaE8XDwwNQl/qOHDmSyspK7r33XpydnXn++ecxGAykpqZa3vl++eWXXHDBBQwYMICHH364xW3Onj27xXRBczExMSQmJvLtt99aHV+3bh3r1q0D4KWXXsLd3d2yEmbq1KlMnTrVcu7LL79MWVkZR44c4dVXX+WCCy5g5MiRANx55534+PgAakfdkSNH4uvry1133UVVVRXPPvsskZGRbN261erd+KOPPsrDDz/M7NmzWbBgATt37mT58uUsXLiQFStWtPt7Bti1a5elyPf999+nsLDQ0qF4xIgRzJs3D1ALf9PT05k5cybh4eFkZWXx+uuvU1lZyY8//mjpXVNWVkZkZCSXXnopQ4cOxcPDg927d/P222+j1+vZvHmzVe3Gf//7X26//XYuuugi5syZw/r163nvvfd4/PHHefDBBy3nmZdjJyUl4efnx8GDB3nzzTepqalh9erVTJw4EVAfo4899hgXXXQRsbGxlJaWsmLFCtLS0njiiSdYvHjxSX8nSUlJ7Ny5k/vvv59hw4ZZXRYSEmK10uzbb79l/vz5zJgxg4ULF5KWlsbLL7/M9ddfzxtvvNHuz2nrMdWW9957j2uuuYaxY8dy1VVXkZOTw4svvsj48eP59ddfLSsNO/q7WrNmDTNnzmTKlClcfvnlFBUV8corrxAaGsquXbusprUefvhhHn30USZOnMgFF1yAq6srW7duJTw8nCeffBLo+OPW/DwybNgwfH19ueSSS9i/fz///e9/mThxIuvWreuy1YXCTtg44RJ90KOPPqpEREQoWq3WaqSmpqZGuf766xUfHx/Fy8tLueSSS5SioqKTjvAoitrtd+nSpUpYWJji5uamTJ8+XUlLS2u103J0dHSbIwjNXXPNNQrQ5seJ77pzc3OViy66SPH29lY8PT2Vc889Vzl48KDVOUuWLGn3Nlvrrnti7K11xW3vdpv/7sy30dH7lJaWppx55pmKu7u74uvrq1xxxRVKQUFBi59vNBqVl156SRk4cKDi7OysREVFKQ899JDVO+f2mP+mrX00//utWLFCmTp1qhIUFKQ4OTlZRgW3b99udXv19fXKXXfdpQwfPlzx9vZWnJ2dlejoaOX6669vc7TkjTfeUAYNGqS4uLgo8fHxygsvvGA1cmD+PY8ZM0bx8/NTnJyclPDwcGXhwoXKrl27rM7btm2bMm/ePCUiIkJxcXFRPD09lcmTJ1uNgJxMe4+T1kbwvvzySyUpKUlxdXVVIiMjO/z7P5WO0B9++KEyYsQIxdXVVQkJCVHuuOMOpaKiwuqcjv6uFEVR3nzzTWXAgAGKq6urMnjwYOXtt9+2PKZP9NZbbykjR45UXF1dFT8/P2XatGnKzz//bHVORx635sfcb7/9ptx0002Kn5+f4unpqVxxxRVWo3rCccgIjxBCCCEcnqzSEkIIIYTDk4RHCCGEEA5PEh4hhBBCODxJeIQQQgjh8CThEUIIIYTDk4RHCCGEEA5PEh4hhBBCODxJeIQQQgjh8CThEUIIIYTDk4RHCCGEEA7PydYB2AOj0ciRI0fw8vKSzeKEEEKIXkJRFCorKwkPD0erbX8MRxIe4MiRI0RFRdk6DCGEEEKcgtzcXCIjI9s9RxIewMvLC1B/Yd7e3jaORgghhBAdUVFRQVRUlOV1vD2S8IBlGsvb21sSHiGEEKKX6Ug5ihQtCyGEEMLhScIjhBBCCIcnCY8QQgghHJ4kPEIIIYRweJLwCCGEEMLhScIjhBBCCIcnCY8QQgghHJ4kPEIIIYRweJLwCCGEEMLh2WXC88orrxATE4Neryc5OZmUlJR2zy8rK+P2228nLCwMV1dXBg4cyPfff99D0QohbMVgVNiUXsLXqXlsSi/BYFRsHZIQwk7Z3dYSH3/8MXfffTevvfYaycnJ/Pvf/2bOnDns37+f4ODgFuc3NDQwe/ZsgoOD+eyzz4iIiCA7OxtfX9+eD14I0WNWpeWzdOUe8svrLMfCfPQsmZfA3MQwG0YmhLBHGkVR7OotUXJyMmPHjuXll18GwGg0EhUVxZ133snf//73Fue/9tprPPvss+zbtw9nZ+cO/Yz6+nrq6+st35s3HysvL5e9tIToBVal5XPr+zs48cnLvJvOq1eOkqRHiD6goqICHx+fDr1+29WUVkNDA9u3b2fWrFmWY1qtllmzZrFp06ZWr/PNN98wYcIEbr/9dkJCQkhMTOSJJ57AYDC0+XOefPJJfHx8LB9RUVFdfl+EEN3DYFRYunJPi2QHsBxbunKPTG8JIazYVcJz9OhRDAYDISEhVsdDQkIoKCho9ToZGRl89tlnGAwGvv/+e/75z3/yr3/9i8cee6zNn7N48WLKy8stH7m5uV16P4QQ3Scls9RqGutECpBfXkdKZmnPBSWEsHt2V8PTWUajkeDgYN544w10Oh2jR48mLy+PZ599liVLlrR6HVdXV1xdXXs4UiFEVyiqbDvZOZXzhBB9g10lPIGBgeh0OgoLC62OFxYWEhoa2up1wsLCcHZ2RqfTWY4NGTKEgoICGhoacHFx6daYhRA9K9hL36XnCSH6Brua0nJxcWH06NGsXr3acsxoNLJ69WomTJjQ6nUmTZrEoUOHMBqNlmMHDhwgLCxMkh0hHNC4WH/CfPSWAuUTaVBXa42L9e/JsIQQds6uEh6Au+++m+XLl/Puu++yd+9ebr31Vqqrq1m0aBEAV199NYsXL7acf+utt1JaWspdd93FgQMH+O6773jiiSe4/fbbbXUXhBDdSKfVsGReQrvnLJmXgE7bVkokhOiL7GpKC+DSSy+luLiYhx9+mIKCApKSkli1apWlkDknJwet9nieFhUVxY8//sjf/vY3hg8fTkREBHfddRcPPPCAre6CEKKbzU0M4z+XJXHnh6ktLrt3zkBZki6EaMHu+vDYQmfW8Qsh7MPmjBIWvrEZb70zj543lC/+OMxvB45ywagInr8kydbhCSF6QK/twyOEEB21Kb0EgKkDAzlvZAR/nTUQgG935VNW02DL0IQQdkgSHiFEr7QpQ014JsQHAJAU5UtCmDcNTUY+35Fny9CEEHZIEh4hRK9T12ggNacMgAlxasKj0Wi4PLkfAB9syUZm64UQzUnCI4TodbZnH6PBYCTE25XYQA/L8QUjI/Bw0ZFRXM0W6bQshGhGEh4hRK9jrt+ZEBeARnN8+bmnqxPzkyIAWLElxyaxCSHskyQ8Qohe58T6neauME1r/ZCWT0lVfY/GJYSwX5LwdCODUWFTeglfp+axKb1Edm8WogtU1zexM7cMgAlxgS0uT4zwYUSkD40Ghc+2H+7h6IQQ9sruGg86ilVp+SxducdqV+cwHz1L5iV0qCmawaiQkllKUWUdwV5qm3zpHCsEbMs+RpNRIcLXjSh/t1bPuTy5HzsP72ZFSg43TolDK/87QvR5kvB0g1Vp+dz6/g5OHM8pKK/j1vd38OqVo9pNek43WRLCkZnrd8afUL/T3LwR4Tz27V6yS2rYmF7C5AEtR4KEEH2LTGl1MYNRYenKPS2SHcBybOnKPW1Ob5mTpebJDhxPllal5XdtwEL0Mub6nYmt1O+Yubs4cf4otXj5gy3ZPRKXEMK+yQhPF0vJLG2RrDSnAPnldSx4ZQMDgr0I8nYlyNOVYG89Ae4u/POrtDaTJQ1qsjQ7IVSmt0SfVFHXyO7DZUDrBcvNXZ7cj/c2ZfPznkKKKuoI9tb3QIRCCHslCU8XK6psO9lpbndeBbvzKjp12+ZkKSWz9KRP9kI4oq2ZpRgViA5wJ9y39fods8Gh3oyO9mN79jE+2ZbLHWcM6KEohRD2SBKeLhbs1bF3kbdOi8fbzZniynqKKusorqwn82g1RZUnX0bb0aRKCEfTvP9OR1yR3I/t2cf4MCWXW6f3l5FRIfowSXi62LhYf8J89BSU17U6NaUBQn303DtnUIsn303pJVy2fPNJf0ZHkyohHE17/Xdac/awMJau3ENeWS3rDhYzY1Bwd4YnhLBjUrTcxXRaDUvmJQBqctOc+fsl8xJafadpTpbaeg+qQV2tNS7Wv6vCFaLXKKtpYE++Og3c0REevbOOC0dFAvDBZum8LERfJglPN5ibGMarV44i1Md6JCbUR9/ukvTTSZaEcHRbMktRFIgL8uhUAbJ5Q9E1+wrJL6/trvCEEHZOprS6ydzEMGYnhHa6eaA5WTqxD4+fuwtPXJAofXhEn9XZ+h2z/sGeJMf6syWzlI9Scvnb7IHdEZ4Qws7JCE830mk1TIgP4LykCCbEB3R4ZGZuYhgbHjiDD28cz4R4dfrq/FHhkuyIPm1zJ+t3mrtifDQAH2/Npclg7NK4hBC9gyQ8dsqcLF02Tn2i3pxRauOIhLCdkqp69hVUAmqH5c6aMzQEfw8XCirqWLOvqKvDE0L0AjKl1Z0O/Ag73gO/GAgdBvEzwTOoUzcxPk4d4dmTX0FZTQO+7i7dEKgQ9m1LpprwDwzxJNDTtWNXKtoLmeugaC+udeW86W/ghzp3fl9/jDMTroA2tqUQQnShunI4+DPkboHB50LcNJuFIglPdzryB+z79vj3Gh0kzIep90NIQoduIthLz4BgTw4WVbE5o5S5iaHdFKwQ9qvD9TuKAvu+g3XPQn6q1UUjgZHOQMGHNL70Is5T7oIRl4FW1y0xC9GnHcuGdc/Ark/BYOovp3ORhMdhDTob3PzhWCZkbYCCXfDnl7DnG5hwG5zxMDidfMRmYnwAB4uq2JR+VBIe0Sd1qP9OWS58fTtk/qZ+r3VWn1zDR6r/h/UVbNu8loTaHbiXHlDPTVkOF7wBQYN64F4I0QcYjbDlNfjlEUuiU+MdT37gROo8khlsVGy20lgSnu4UNlz9MCvYDWufUkd9Nr4EWb/DwhXg3X4x8oT4QN7dlM1G07tcIfqSoso6DhVVodFAcmwbCU/mevj4CnX43MlNfUMx/jbwsN4lvTjgGpI/2MCN7r9xp/NXaPJT4fVpcP6rMPT87r8zQjiyugr49BpIXwNASVAyi8vO46eiaCjSwB4IW7+GJfMSbLIIR4qWe1LoMFj4ASz8EPS+cGQHvDUHSjPbvdr4OH80GjhYVCXbSog+x1ywPyTUGz+PVkZEd38G/ztfTXbCR8Gtv8PMh1skOwCzEkLQe/nxfM1ZrJn5HcTNgKZa+HQRbHm9u++KEI6rsgDePltNdpzd+XPUI4zJ/Qs/VcbQvLNcQXkdt76/g1Vp+T0eoiQ8tjD4bLj5N/CLhbJseGtuu0mPr7sLQ8O9geO1DEL0FZb6ndams/Z8DV/cCMZGGDIfFn0PAfFt3pazTsulY6IAeHtXHVz5OYy9EVDgh/th82vdcReE6NUMRoVN6SV8nZrHpvQSDMYTNk6qLoF350HhbvAIwnDt99zw53CUVvYNMF9z6co9LW+nm0nCYyt+MXDdKghOgKoC+OAiqGl76bm5WNPci0SIvmJT+lGglYLl9F/h8xtAMcLIK+Hid8G5/R3UARaOi0KjgQ2HjpJVWgdnPwvTHlAvXPV3SPu8q++CEL3WqrR8Jj+9hsuWb+auj1K5bPlmJj+95vgITUM1rLgEjh4A7wiU637im8Igq8a5J1KA/PI6UjJ7tt2KJDy25BUKV34B3pFQcgg+uhwMja2eOjFeHZ6XOh7Rl+SX15JVUoNWA+Pimu0hV5qp1goYGiDhPJj3H9B27Oks0s+d6QPV9hAfpuSoy9OnL4ZxNwEKfHkL5G3vhnsjRO+yKi2fW9/f0SJ5MU9L/bDrCLWf3gx526jVeXOf2yOMeOkgf/tkZ4duv6dLNCThsTXvMLjyM3D1hpxNsHpZq6eNNW1LkV1Sw+FjNT0cpBC2YZ7OSozwwVvvrB5sqIGPr1JrdiLGwAXLO720/PJktaHnJ9tyWXegiK93HmHTgPtQBp2jJlGfXNvuiKsQjs5gVFi6cg+tTToppo+UT57E7eBKGhUdV9X8lU+zPaioa8Kpg6uwgr06videV5CExx4ED4HzXlG/3vgftWHhCTxdnRgR6QNIHY/oO1rtv/PTPyy1AlzyHjh1sBFhMzMGBeHr7syxmkaufmurOlT/5lZmZy6k2qMflOfAV7eqfX2E6INSMkvbnZYarknnQd0HALzpfj0Dxs7mifOH8e2dk0lbOocwH30rFTwqDRDmo+4v2ZMk4bEXCfNNQ+rA13e0+u7SPK0lCY/oK8z9d8abC5YPrYZtb6lfX7AcfCJO6XZ/2VtIWU3L6eP0Ch0Xl96CQesCB1ZB6opTun0herv2pptcaeA559dw1hg4HHYmt9z/DE9eMJzLk/uRGOGD3lnHknlqc90Tkx7z90vmJfR4Px5JeOzJmY9B4CCoLoIf/9HiYvMqlY3pJSjyzlM4uNzSGg4fq0Wn1TA2xl+dwvrmTvXCcTdB/IxTul3zUH1rFGCvEsOrmkvVA6sWQ8WRU/o5QvRm7U03/cXpCwZq8yhWfMif8mSr27TMTQzj1StHEepjfTuhPnpevXKUTfrwSONBe+LkCue9DG+eCTtXwLALof8sy8Wjo/1w0WkpqKgj82g1cUGeNgxWiO5lHt0ZHumDp6sT/PAEVOSp7RxmPXLKt3uyoXoFeKH6TK6J2IVXyU747l64TEZ6RN8yLtafMB89BeV1VnU8QzTZ3KJbCcBzzrfwxOC220DMTQxjdkIoKZmlFFXWEeylTmPZqtOyjPDYm6hxkHyL+vX390FTg+UivbOOUdG+wPEXAyEc1ebm9TuFe9RtIADOfR5cPE75djuyMsSAjq0jloHWCfZ/Bwd/OeWfJ0RvpNNqLNNSxyk84vwuOo3C94ZxzFiw6KTJi06rYUJ8AOclRTAhPsBmyQ5IwmOfZjwIHsFQmqHuSdKMLE8XfYGiKMf3z4rzV5sCKgYYMg/izzit2+7oyhC3iGEw7mb1m1V/t3rzIURfMDcxjLtmDbB8f7Z2C8nafdTjgvu8p2wyLXU6JOGxR3pvmLVE/fq3Z6CqyHLRRFMdz+b0Eow93KVSiJ6SXVJDfnkdzjoNyTXrIGs9OOnhzMdP+7bNQ/UdWkEy/QF1NVjJQdi6/LR/thC9jfl1ZkasB8/5fAqA89S/MX3caFuGdUok4bFXIy5Xd3luqIR1z1oOD4/0xd1FR0l1AweKKm0YoBDdxzy6MybSC5d1piRn0l/BL/q0b7v5UP1JV5DofeCMf6oH1z2nbo4oRB9i/l/8q9ca3GvzwTsS7eS/2jaoUyQJj73SamG2qQnh9negLBcAFyctY2LU3gUbD8m0lnBM5tYLizw3qVO77oEw8c4uu/22VpAEerm2XEGSdAUE9IfaUtj8apfFIIS9q20wkJpbhhc1JGa/qx6c+TC4uNs2sFMkCY89i50KMVPUzq/NRnkmNlueLoSjMdfvuNDItHxTz50pd4Nr165KnJsYxoYHzuDDG8czKMQLgBsmx7asS9A5wQxTm4iNL0kHZtFnbM8+RqNB4S8eP6OrL1Pbpgy7yNZhnTJJeOzdGQ+pn/94X32ny/GEZ0tmK7vWCtHLpRdXU1xZz1XOv+Jakw9e4TDm+m75WeYVJJeNU3dQX72vqPUTExZAyDB1innDC90SixD2ZlPGUbyp4krlW/XA9L93ehsXeyIJj73rNx76z1ZXqKx7DoCh4T546Z2orGvizyPlNg5QiK61Kf0oLjRyh/M36oFp94Fz9+65MyshBIBtWaUcq25lNZZWe/zNx9Y3ZZRH9Amb0ku4wel73IzVEDxUTfx7MUl4eoPpi9XPuz6B8jx0Wg3j42RaSzimTRklLNBtwM9Yqo7uJF3Z7T8z0s+dIWHeGBX4dX8bozwD56ijPI3VsPX/uj0mIWypur6J9MMFXKv7ST0w/e9q4t+L9e7o+4rI0RA9GYyNsEUtmpQ6HuGIjEaFLelHuVlnGkKfcBs4ufTIz549JBhQ99lqlUYD5tUpW15Td20XwkFtyz7GRZo1eGtqIGAADD7X1iGdNkl4eotJd6mft70DtWWWfbW2ZpbS0GS0XVxCdKEDRZWMrttEvDYfxdUbRl/bYz/bPK312/5i6psMrZ+UsAB8o6GmRK2rE8JBbTlYyHVOP6jfTLyj14/ugCQ8vceA2RCcoBZNbnuLgcFeBHi4UNtoYOfhMltHJ0SX2HToKLc4qfv0aMbeAK5ePfazE8N9CPF2pbrBYFkW34LO6fjy+I0vgaGpx+IToic57fuKCE0Jda4BMHyhrcPpEpLw9BYazfEn2i2voTU2Mt40ytPmk7MQvUzBnt8ZpT2EQeN8fE+5HqLVapg1RB3laXNaC9S+PO4BUJ4DB37ooeiE6DmVtQ3MLf8EgPrRN3b7ooGeIglPb5J4EXiGQFUh7FvZrI7nqI0DE+L0GY0KiUfUJ9my+HngFdLjMZintX7ZU4SitNHywcUdRl2jfp3yRg9FJkTPObjtFxK02dThgs/km20dTpeRhKc3cXJp9kT7f5aNRHdkl1HX2EbNgRC9xP7MLM5UNgLgM/U2m8QwIS4AdxcdBRV1pOW1s43EmOtAo4XMdVC0r+cCFKIHuKS+DcBu39ng7m/jaLqOJDy9zZhFoNFBzkZimjIJ9dbTYDCyPfuYrSMT4rRUbnwLV00TmS4Dceo31iYx6J11TB0QBMDP7U1r+UbBoLPVr2VTUeFIqooZVLJG/XLEtbaNpYtJwtPbeIfD4HMA0Gz9P5nWEo7BaCA2W53Oyo67zKahzLZMa7WT8AAkm4b6Uz+EOmkAKhxD3dZ3caaJVGMcQ0ZNtXU4XcouE55XXnmFmJgY9Ho9ycnJpKSkdOh6H330ERqNhgULFnRvgLY27kb1865PmNJP7VEi/XhEb2bY/yNBTQWUKR4Ejr/CprHMGByMVgN78ivIK6tt+8SYKRA0RG1EuOuTngtQiO5iNKBsVfevW+V2bovNdXs7u0t4Pv74Y+6++26WLFnCjh07GDFiBHPmzKGoqI3upyZZWVnce++9TJkypYcitaGYKeombo3VTG9cD8Cuw+VU1csSWdH7GIwKBatfAeBLZToDI4NsGo+/hwtjotW6hXZHeTQaGG2qqZOePMIRHPoFt5o8yhQPqgecZ+toupzdJTzPP/88N954I4sWLSIhIYHXXnsNd3d33nrrrTavYzAYuOKKK1i6dClxcXE9GK2NaDQwUm2377f/E6ID3DEYFbZmyv4+ondZlZbP+U99Smjx7wC823gG0579lVVp+TaNa1bCSboumw27BLTOkJ8KBbu7PzAhutM2tVj5U8M0xg4It3EwXc+uEp6Ghga2b9/OrFmzLMe0Wi2zZs1i06ZNbV5v2bJlBAcHc/31HdtRub6+noqKCquPXmfEQrV4OW8bCyLU+KWOR/Qmq9LyufX9HUyqXo1Oo5BiHESWEkZBeR23vr/DpkmPuR/P5owSKuoa2z7RI8BSUyejPKJXqypCOajum/WRYQbj4xxndZaZXSU8R48exWAwEBJi3X8jJCSEgoKCVq+zYcMG3nzzTZYv7/hKiSeffBIfHx/LR1RU1GnFbROewepmhsC5xl8BqeMRvYfBqLB05R4UFC7S/Qao7yoBzN1vlq7cg8HYRi+cbhYX5El8kAeNBoV1B4rbP3nkVernXR9DU333BydEd9j9KRrFQKoxHgIHEuzlWPU7YGcJT2dVVlZy1VVXsXz5cgIDAzt8vcWLF1NeXm75yM3N7cYou5FpWiv+yEqcaGJPfgXHqhtsHJQQJ5eSWUp+eR2jNAeJ1+ZTo7jyvSHZcrkC5JfXkWLDadpZHV2tFT8DvCOg9hjs+64HIhOiG6SuAOAzw1TLXo2Oxq4SnsDAQHQ6HYWF1k8whYWFhIaGtjg/PT2drKws5s2bh5OTE05OTrz33nt88803ODk5kZ6e3urPcXV1xdvb2+qjVxpwJngEoa05yuV++1EU2JIpozzC/hVV1gFwkW4dAD8Yx1GNW5vn2cJs07TWmn1FNBra2aBXq4Oky9Wv//hfD0QmRBfL3wWFaTTgxDeGCUyI6/gAQm9iVwmPi4sLo0ePZvXq1ZZjRqOR1atXM2HChBbnDx48mN27d5Oammr5mD9/PjNmzCA1NbV3TlV1hs4Zhl8KwGUu6guHTGuJ3iDYS4+ees7VqbV55ums1s6zlZH9/AjwcKGiromtWScZaUoyLaVP/xUqjnR/cEJ0JdPozk+G0VTgSbID1u+AnSU8AHfffTfLly/n3XffZe/evdx6661UV1ezaNEiAK6++moWL14MgF6vJzEx0erD19cXLy8vEhMTcXFxseVd6Rmmaa1BFZvwpVI2EhW9wrhYfy713Im3ppZcYxBbjIOtLtcAYT56xsXa7olXp9VwxmDTaq097bfFwD8W+k0AFEj7ovuDE6KrNDXAbrWP1GeGqQwM8STQ09XGQXUPu0t4Lr30Up577jkefvhhkpKSSE1NZdWqVZZC5pycHPLzbbtk1a4ED4GQYWiVJs7WpXCwqMqm0wBCdIROq+H2wD8A+Nw4BaXZU5HG9HnJvAR0Wk0r1+455jqen/cWtL2ZqNmwi9TPuz/t5qiE6EKHfoGaEiqdAlhvHM6EOMes3wE7THgA7rjjDrKzs6mvr2fLli0kJx8vZly7di3vvPNOm9d95513+Oqrr7o/SHtieqJd6KZ2pJZRHmH3akoJLlJ773xjmGh1UaiPnlevHMXcxDBbRGZlyoBAXJy05JbWcqCwqv2TE84HrZPak+fowR6JT4jTlvYZAD9qJ2NA57AFy2CnCY/opMQLARjWlEYIpZLwCPu35yswNrGHWDKUcJadN5QXFybx4Y3j2fDAGXaR7AC4uzgxub9awHnSJoQeARB/hvq1jPKI3qChGvb/AMB7lWMASI6VhEfYM98oiBqPBoVzdZukcFnYP1Ody1eN4/Fzd+aK5GjOS4pgQnyAzaexTmTeTPTnky1PBxh2sfp596dwsikwIWztwCporKHaI4pdShyDQ73w83Dc2ldJeByFaVprgW4jOaU15JbW2DggIdpQcQSyNgDwrWEC0wYG2V2S09xMU+Fyam7ZyevjBp0Nzu5QmgFHdvRAdEKcBtMbj60e0wGNQ09ngSQ8jmPo+aDRMUybSawmn00ZMsoj7NSfXwIKf+qGcIRAZpgSCnsV7K1nRJQvAGv2nmS1lqunmvQA7JJpLWHH6srBtJXE/6rU6SxHLlgGSXgch0eg2vEVmK/dyGaZ1hL2Ku1zAD6uG4dWA1MH2HZ39I6YPURNyjo2rWVarbXnazC207BQCFva9x0YGmgKGMTq0kA0Gseu3wFJeByLqXh5ri6FjeklJ19GK0RPK82EvO0Y0fK9YTwj+/n1ipoB8/L0DYeOUtPQ1P7J8WeAixdUHoG87T0QnRCnwDSddTDoTEBDQpg3Pu7Oto2pm0nC40gGzkXROjFEm4u+MpPMo9W2jkgIa3tXArBfP4Kj+DBjkP2P7gAMCvEiyt+N+iYjGw4ebf9kJ1fLxr7s/br7gxOis2pKIUPddPp7ZTzg+NNZIAmPY3H3RxMzBYC52q2yWkvYH1PC82nNSACmD7Lv+h0zjUbDLNPeWiddng6QMF/9vOdrWa0l7M/+H8DYBCGJrDzsAeDwBcsgCY/jMT3RztWl8O3OI3ydmsem9BIMRnnSFTZWkQ+H1eaY3zaMJtjLlaHhvWfjXvNmoqv3Fp38/6n/LHByg7IcyN/ZA9EJ0Qn7vgWgMnYuWSU1aDUw1obbuPQUSXgczaBzUNCQpM0gJ/MAd32UymXLNzP56TWsSpMtOYQNmZ5kcz0SKcKPGYOC0Wjsdzn6icbG+uOtd6KkuoHU3GPtn+ziAQNmqV/v/ab7gxOio+qrIH0NACl6tct5YoQP3nrHrt8BSXgczqpsI1uNgwCYo9tqOV5QXset7++QpEfYjmk667tGdQnsjMG9o37HzFmntSyh//lkm4kCJCxQP+/5Rqa1hP049As01YFfLD8Wq9NYfaF+ByThcSgGo8LSlXtYZRgLwNxmCY/56Xbpyj0yvSV6Xk2ppdngisoROGk1TDJt2dCbdKqOZ8CZoHOBkoNQvK+bIxOig0wjrQw5l02ZpQCM7wP1OyAJj0NJySwlv7zOkvCM1ewnkHLL5QqQX15HiulBLkSPObAKFAMlngPJUUIYG+OPVy8cQp82KAgnrYZDRVUnXwWp9z6+t9YemdYSdqCpAQ78CEBRxGxyS2vRaTWMjXH8+h2QhMehmNveHyGQncY4tBqF2bptbZ4nRI8xTWet1alLYHvbdJaZt96Z8abh/1860oRwiGm1ltTxCHuQuQ7qK8AzhHW1sQAMi/DB09XJxoH1DEl4HEiwl97y9SrDOEBdnt7eeUJ0u/oqOLQagLdLEgGY0UuWo7fGsploR6a1Bp0FGi0UpqkrtoSwpX3qGw8Gn8OmDLXwvi8sRzeThMeBjIv1J8xHjwb4yTgagPHaPXhQC4AGCPPRM64PLD8UduTQL2Cop8YzmrSmCCL93Ogf7GnrqE7ZTNM2E9uySjlW3dD+ye7+EKWOarF/VTdHJkQ7jAZ1OwlAGXwum037LfaVgmWQhMeh6LQalsxLACBDCSfTGIKrponJ2t2YF/8umZdg1ztTCwd0QH2h3+E2AdD0uuXoJ4r0c2dImDdGBX7d34HVWoPOUj8f+KF7AxOiPYe3QnUx6H047DOavLJanLQaxsT42TqyHiMJj4OZmxjGq1eOItTHjTXGUQDM0u4g1EfPq1eOYm5imI0jFH2K0WDZkfnD8qFA763faa5Tm4maE57M9VBX0Y1RCdEO0xsP+s9mU1YlACOifHF36Rv1OyAJj0OamxjGhgfOwHXo2QDMdt7JhvumSbIjel7eDqgpweDizY8V0bg4aZkQ1/uWo59odkIoAGv2FfHZ9tz2u5kHDgD/eDA2Whq+CdHjDqhvPBg4l019cDoLJOFxWDqthiHj51ChuOGrlKPL/8PWIYm+yPSuMtN3PE04MSEuADcXnY2DOn2Hj6nt+OubjNz76a6TdzO3TGtJHY+wgbJcKPoTNFqU/jPZZNpnsS8VLIMkPA5tQJg/64wjAKjb852NoxF9kqnnx6oG9XF4xuDeuzrLbFVaPrd9sIMTB3Ta7WY+cK76+eBP6jSfED3poPp/SFQy2TWuFFTU4aLTMqpf36nfAUl4HJq33pntrskAGPd9b+NoRJ9TfhgKd6NotLxb1B/o3cvR4Xg389Ymr9rtZt5vPOh9oKZELR4VoieZ3ngw4EzLdFZSlK9DjLZ2hiQ8Dq4odCoGRYP7sf3SB0T0LNOT7DH/JIqNXsQFedAvwN3GQZ0eczfztrTZzVznDP1nq1/vl9Vaogc11KgNBwEGzrFMZ/WV7SSak4THwUWGR7BdGah+I31ARE8yJTxbnEybhfby0R3oeJfyVs+TOh5hC1nr1c1CfaJQgob02YJlkITH4Q0M8WK1QV2eLk+0osc01EDmbwC8WzIYcIyEp6Ndymsamloe7D8LNDp1I9FjWV0bmBBtMT/vDziTjJIaiivrcXHSMrKfr03DsgVJeBzcwBAvfjH141Gy1kPDSTY8FKIrmN5VNnhGsLkqBA8XHWNje3+BZPNu5u1Z/EUad374B1nNNxh184UotabOvNWGEN1KUayXo5ums0b180Xv3Lfqd0ASHofXP9iTDMI5rASiMTRA1u+2Dkn0BaZ3lfu8JgIaJvUPxNWp9z/BNu9mfmLSY/5+TLSa2K3ceYRZz//Gg1/uprDCNMXVf6b6+dAvGIwKm9JL+Do1r/0+PkKcqsI/oeIwipMbW5ShfLb9MADJsX1vOgug77RY7KPcXHRE+3vwW/kIrnBare5rNPBMW4clHJmiWOp3vqkxbRbqAMvRzczdzJeu3GNVwBzqo2fJvATmJoaRllfOcz/tZ+3+YlZsyeHz7Ye5dmIMdwyZjheP0nRoLTOe+pHciuNL1MOaXV+ILmFajr7RmMAVb6daDr+/OZshYV597rEmCU8fMDDEi9+ODecKTAmPEN2peB9U5KE46Xm/KBqA6YN6/3YSzc1NDGN2QigpmaUUVdYR7KVuymvepy4xwod3Fo0jJbOUZ1btY1v2MV5fl8GHW7RscPLD23CMyNpd5DLUcpvmPj6yBYzoKsdSv8UP+L5+hNXx0uqGPvlYkymtPmBQqBcbjUMxoIPSdCjNsHVIwpGZ6lOK/MdQp7gwONSLMB83GwfV9XRaDRPiAzgvKYIJ8QGtbso7LtafT2+ZwFvXjmFwqBcV9UZ+blBHvaZpd1qd224fHyE6yVBzDK+SVADWGqwTnr76WJOEpw8YGOJFFe7sdVZrD6RgUnSrdPXxtZHhgGN0Vz4dGo2GMwaH8P1fpnDHjHh+M734nJjwQDt9fITopENbvscJI4eM4eTRcoS1Lz7WJOHpAwaGeAHwc8Mw9YAkPKK7NNZC9kYA3i82dVfu4wmPmVarYUCIF+uNiRgVDUO0uYTQ+otNR/v9CNEW1+xfAVhvHNbueX3psSYJTx8QG+iBk1ZjGUoncx00Ndg2KOGYsjeqy9HdQ9leG4K33omRUb62jspuBHvpOYY3O5V4AKbpWo7ymM8T4pQpCqHF6huPdcbh7Z7alx5rkvD0AS5OWuKCPNijRFOvD4LGasjdbOuwhCNKXwPAfs+xgIapA4Nw0snTjJm5j89vphehE6e1NKirtcbF+tsgOuEwSjPQV+fRiBNbjENaPaUvPtbkmaiPUKe1NGT5mhufyWot0Q1M06Xf16hPso7QXbkrmfv4mOt4pmjT0GG9e/qSeQmtFkAL0WGm/8OKoNHU0nIEx/zo6muPNUl4+ohBpjqeFN1I9YDU8YiuVnEEiveioOHDo/FoNDDNwZajd4W5iWHcfPlFlOOJt6aGJM0hALxcnfrcMmHRTUwjrQHD57L47MEtLg710ffJx5r04ekjBoaqCc8PNYO5Cg0UpkFFPnj3rQe86EamJ9lS30TKCrwYEelLoKerjYOyT3OHRWLcNwf+/Jw7ojJZlDOIAE8X5gwNtXVoordralC3dgHoP5O6PUYARvXz45qJ0S16RvUlMsLTR5hXam0v1qGEmzYTlWkt0ZVMo4abNUkAzJDRnXZpTdtMTNWl4e6iI6ukhh05ZbYNSvR+h1OgoQrcAyFkGKv3FgJwyZjIdntG9QWS8PQR/fzdcXXSUt9kpCxiinowY61NYxIOxGiADHUZ7EelAwCp3zmpuOkA6ApSOX+IBwCf7zhsw4CEQzCNtBI/g6KqBnYeLgekHxZIwtNn6LQaBoR4AnDAY6x6MGMtGI22C0o4jvxUqD1Gk7Mnm+pjCPBwYViEj62jsm8+ERA4EBQjV4bkAPDtziPUNRpOckUh2mGuz4yfyZp9RQCMiPQh2LvvLD9viyQ8fYh5WmtbYxw4e0DNUSjaY+OohEM4pL6rTPccTRNOTBsUhLaPDpt3immUZ3DNdsJ99FTUNbF6b5FtYxK9V/VRyDe1OoifwS+mx9LMISE2DMp+SMLTh5hXau0troOYSepBmdYSXcE0jP5DrboZpgyfd5Ap4dFkrGXByAgAvpBpLXGqMtYCCoQkUqcPYsOhYgBmDpH/R5CEp08xr9Q6UFgJsdPUg5LwiNNVV6EWSgKflQ9Ep9Uwpb8ULHdIzGTQaKE0nUvU0ifWHiimuLLetnGJ3qlZ/c7G9KPUNRoJ99GTEOZt27jshCQ8fYh5hCejuJrG6KnqwezfZZsJcXqyN4KxiQr3KA4rwYzu54ePu7Oto+od9D4QMRqAmPKtjIjyxWBU+GbnERsHJnodRWmW8Jxhmc46Y0gwGo1ML4MkPH1KmI8eL1cnmowKGdpo8AiCxhrI22br0EQvZsz4DYDfDep01tRBgbYMp/cxTWuRsZaLRqnTWp9vl2kt0UlHD0JlPuhcUaLGs0bqd1qQhKcP0WiardQqqpZpLXHaVqXlk57yHQDfVapzMu/8nsWqtHxbhtW7NEt4zh0WirNOw578CvbmV9g0LNHLZKpvPIgax5/FjRRU1OHuomNCXIBt47IjkvD0MYOa1/E0e6IVorNWpeXzj/fXMkDJBmCTMQGAkqoGbn1/hyQ9HRU5FpzdoeYoflWHmDlYfUcuxcuiUzLXqZ9jp/GLqdnglAGB6J11NgzKvkjC08eYl6bvL6iEONMIz+FtauGpEB1kMCosXbmH8Vq1rcFeYxQlqH13FNM5S1fuwWBU2rgFYeHkCtHHV01eYJrW+ir1CE0G6ZMlOsBoPL6dRNw0S2sDmc6yJglPH2MuXD5QWAm+/cA/DhSDWrwsRAelZJaSX17HJG0aABuNiVaXK0B+eR0pmaU2iK4XajbaOn1QMP4eLhRX1rP+0FGbhiV6icLdUHsMXDwp8BjC7rxyNBppD3Eiu0x4XnnlFWJiYtDr9SQnJ5OSktLmucuXL2fKlCn4+fnh5+fHrFmz2j2/rzMvTc8uraG2wdDsifY32wUlep2iyjoAJmj/BOB349B2zxMnYf4/zP4dF5qYPyIcgC925NkuJtF7mKezoiex+qD6JiMpSjbvPZHdJTwff/wxd999N0uWLGHHjh2MGDGCOXPmUFTUevfRtWvXctlll/Hrr7+yadMmoqKiOPPMM8nLkyeK1gR6uuLv4YKiwKGiKqnjEack2EtPOEeJ1RbSpGhJMQ5u8zzRAcEJx1dNHt7KhaMiAfjpzwIq6hptHJywe+Y3rLFTLdNZs2Q6qwW7S3ief/55brzxRhYtWkRCQgKvvfYa7u7uvPXWW62e/8EHH3DbbbeRlJTE4MGD+b//+z+MRiOrV6/u4ch7j4HmlVqFlRAzBdBA8V6oLLBtYKLXGBfrz1meBwDYpcRRhbvV5RrUNgjjYv1tEF0vpNU2WzX5K4kR3gwI9qS+ycj3u6T4W7TD0Kj2wgLqoibzu2kaVLort+TUkZNGjRrVqRvVaDR88803REREdOp6DQ0NbN++ncWLF1uOabVaZs2axaZNmzp0GzU1NTQ2NuLv3/YTbX19PfX1xzuZVlT0rYLdQSFebM4oVROe0ZEQNkLd/DHjNxhxqa3DE72ATqvhuvAcyIHfT6jfMbc4WzIvAZ3sp9VxcdMh7TPI+A3NGQ9x4ehInvphH5/vOMzCcf1sHZ2wV3k7oLEa3PxZXxFCfVMeEb5ulnpNcVyHEp7U1FTuuecePD09T3quoig89dRTVglFRx09ehSDwUBIiPVQXEhICPv27evQbTzwwAOEh4cza9asNs958sknWbp0aafjcxTmOp79hZXqgbjppoRnrSQ8omMUhfBStVZu4wn1O6E+epbMS2BuYpgtIuu9Yqeon4/sgPoqFiRF8MyqfWzNOkZ2STXRAR62jU/YJ3P/ndgprN6n7p01S7ort6pDCQ/AfffdR3Bwx4bI/vWvf51yQKfjqaee4qOPPmLt2rXo9W3XDixevJi7777b8n1FRQVRUVE9EaJdsKzUKjAlPLFT4Pd/Q9YG2wUlepejB9FUFVCvOJPhmsB7l43lWE0jwV7qNJaM7JwCvxjw6QflOZC7mdD+s5jUP5D1B4/yxY48/jZ7oK0jFPbIVLBsjJnG6p9lOXp7OlTDk5mZSVBQxzcD3LNnD9HR0Z0OJjAwEJ1OR2FhodXxwsJCQkND273uc889x1NPPcVPP/3E8OHD2z3X1dUVb29vq4++ZIAp4TlSXqcWREaNB62T+kR7LNvG0YlewfSucptxIAvGxjN1YDDnJUUwIT5Akp3TETNZ/Zyp9lQxFy9/8cdhFEV6GokTNNZC7hYA9ruPpLiyHg8XHclxUjvXmg4lPNHR0fz5558dvtGoqCh0us53d3RxcWH06NFWBcfmAuQJEya0eb1nnnmGRx99lFWrVjFmzJhO/9y+xsfNmVBvdQTsYGEluHpCuKlOS0Z5RAfU7Fc3KfzdOJTLpL6k65intUxN5OYMDcXDRUduaS1bs47ZMDBhl3I2g6EBvML5IU9dODB1YBCuTtJduTUdXqU1fPhwkpOTWb58OZWVld0W0N13383y5ct599132bt3L7feeivV1dUsWrQIgKuvvtqqqPnpp5/mn//8J2+99RYxMTEUFBRQUFBAVVVVt8XoCAZatpgw/Z5OeKIVok1GAxpTYlwdPomYQKkt6TIx5jqeVKirwM1Fx9nD1Foo2WpCtGDuvxM3jV9M9TsyndW2Dic8v/32G0OHDuWee+4hLCyMa665hvXru/7F8dJLL+W5557j4YcfJikpidTUVFatWmUpZM7JySE///gyzVdffZWGhgYuuugiwsLCLB/PPfdcl8fmSAaZlqbvN9fxmIfSszaADJ2LdjQe2YmboYIKxY0Jk2faOhzH4hul1vIoBvXdO3DhaHVa67td+dQ1GmwYnLA7poTnWMh49uRXoNHAjEEdLz/pazqc8EyZMoW33nqL/Px8XnrpJbKyspg2bRoDBw7k6aefpqCg63q43HHHHWRnZ1NfX8+WLVtITk62XLZ27Vreeecdy/dZWVkoitLi45FHHumyeBzRwOZbTABEJYPWGcpz4ViW7QITdu/Q5u8BSNUOZWZi51pPiA4wj/JkqS9m42L8ifB1o7K+iZ/2FLZzRdGn1JWrK/qANfVDABjVz48A6a7cpk43HvTw8GDRokX89ttvHDhwgIsvvphXXnmFfv36MX/+/O6IUXQDq13TAVw8IGK0+rXU8Yh21B1SC5YN/SbjrLO73qW9nznhMRUua7UaLjRtKPr5dpnWEibZG0Exgn88K7PUhQLSbLB9p/Vs1b9/fx588EEeeughvLy8+O6777oqLtHN+gd7otHA0aoGjlaZeiZZprWkjke0LrOogvhadcPQhIln2TgaB2WupyvYBbVlAJxvWq21/mAxRRWyP5nA8sa0sd9kNqaXALKdxMmccsKzbt06rr32WkJDQ7nvvvu44IIL+P132XG7t3B3cSLKT63qt4zyWAqXpY5HtG71b7/iramhVuNOyICxtg7HMXmHg3+8+u49R+0wHxvowehoP4wKfJUq+wQKIFt9vd3rOoyGJiP9/N0ZEHzy5sB9WacSniNHjvDEE08wcOBApk+fzqFDh/jPf/7DkSNHWL58OePHj++uOEU3MNfxHDSv1Iocp9bxVORBaYYNIxP2qK7RQOmeXwGoDh0DWln62m1irae1AC6wTGvlSU+evq6+EvJ3AbDymNrzbqZ0Vz6pDic8Z511FtHR0bz00kucf/757N27lw0bNrBo0SI8PGRZam80KNS0UstSx+MOkaZ37VLHI06wKq2AxCa1H5f/kBk2jsbBnVC4DHDusHBcnLTsL6zkzyN9a/8/cYLcFFAMKL7RfJmhJjkynXVyHU54nJ2d+eyzzzh8+DBPP/00gwYN6s64RA8YeOIWEyB1PKJNKzZnM06r7mmnjZlk42gcnPn/sCANakoB8HF3ZrbpRe2LHTKt1aeZdkcvDRzD0aoGvFydGBsj3ZVPpsMJzzfffMN55513Sh2UhX0a1GwTUcsQudTxiFYcKKykJCeNQE0Fik4P4SNtHZJj8wqFwIGAYnlxA7hwtDqt9XVqHo0Go42CEzZnekykKIMBmDooCBcnWTF5Mh36DV1wwQVUVHR8CPWKK66gqKjolIMSPSMu0BMnrYbKuiYKzCs/IseCzgUq86WOR1is2JJjGd3RRI0FJxcbR9QHxLTsfj5lQBCBni6UVDew7kCxjQITNtVYB3nbAPikSN3WZZYsR++QDiU8X3/9NcXFxVRUVJz0o7y8nJUrV8rWDr2Ai5PWsi2ApeOys9vxOp7MdW1cU/QltQ0GPt9x2JLwEC3TWT2iefdzE2edlvOSTMXLstVE35S3HQwNGDxC+LXYE60Gpg+UhKcjOpTwKIrCwIED8fPzO+mHv78/1dXV3R236CKDTlypBc3eWUrhsoCVu45QWdfIJCdzwjPRtgH1Feb/w8I0qC6xHDav1vrpz0I+SslhU3oJBqNMP/cZpumsHK8kQMOYaH/8PGTEtSOcOnLSr7/+2ukbjoiQlvO9wcAQL77bnX98pRao7yx/Qx1KVxSQpY592gdbcojUHCVYKQGt0/ERQNG9PIMgaAgU71V7riSonexzS2tw0mpoMir8/YvdAIT56FkyL4G5iWG2jFj0BFP/nd/qBgDSXbkzOpTwTJs2rbvjEDZiXpp+oHnCEzkWdK5QVQglhyBwgI2iE7aWllfOztwyLjaP7oSPVNsXiJ4RPdGU8GyEhPmsSsvn1vd3cOJ4TkF5Hbe+v4NXrxwlSY8jMzSqS9KBz4rV+h3ZHb3jpKy7j2u+iajRPCzurIeocerXUsfTp61IyQHg/IBs9YBMZ/Us8/L/7N8xGBWWrtzTItkBLMeWrtwj01uOLH8XNFbT4OzDn4ZwYgLciQ+SPngdJQlPHxcd4IGLk5a6RiO5x2qOX2AumMyW7UL6qqr6Jr7+Q+33MtK4Rz0oBcs9q58pwSzYzfb9WeSXt72PlgLkl9eRklnaM7GJnmd6Pj7gmoiClplDQqS7cidIwtPH6bQa+geZOi43b0BofmHL3ij9ePqor/7Io7rBwNiAetwqswANRCXbOqy+xTsM/OMABUP2pg5dpahSNhd1WKaC5Z+q4wGp3+ksSXiEpQHhwaJmK7Uix6j7alXmw7FMG0UmbEVRFD7Yok5n3Rpn6qkVmghuvrYLqq8yTSP2q/yjQ6cHe+m7MxphK0Yj5KgJz9q6AXjppbtyZ0nCIyx1PFYjPM5uEDFa/bpZp1fRN6TmlrE3vwJXJy2TnParB2U6yzZMv/fwsj8I89HT1gSGBnW11rhYeRF0SEV7oK6cBq0bfyoxTB8UjLNOXsI7o0OrtEaOHNnhecIdO3acVkCi57W6UgvUd5a5m9WEZ+SVNohM2Ip5dOfc4eG45m1RD0rBsm2YEh5N/h8smx/DTR/tQwOtFi8vmZeATis1HY7ImL0RLbBDGYgBHWcMCrJ1SL1OhxKeBQsWdHMYwpbMIzzpxVU0GozH3zVET4QNz0vhch9TXtPIyp1HALgqyRtWqDukWwpoRc/y7QfekVBxmNneubx65SiWrtxjVcAc4OHC4+cnypJ0B7UqLR+nH79kFrC+Qd24+6lV+3Bz0cnfvBM6lPAsWbKku+MQNhTh64aHi47qBgNZR6sZYEqAiBoHGi0cy4LyPPCRZpJ9wec7DlPfZGRwqBcjzKuzAgeqjfBEz9No1Dcfuz+B7I3MnTGd2QmhpGSW8vh3e0g7UsFfZvaXFz4HpfZe2s4W1z2ggRSjumFoUUW99F7qpFOaACwrK+P//u//WLx4MaWl6hLIHTt2kJeX16XBiZ6h0WgsSY5Vx2W9D4QOU7/O6dgKEdG7KYpi6b1zxfhoNOb6LZnOsi3z7z9LHW3VaTVMiA9gUv9AADKP1rR1TdGLmXsvRWsKCNaUUa84s0uJA6T30qnodMKza9cuBg4cyNNPP81zzz1HWVkZAF988QWLFy/u6vhEDxlkaUB4wqav0ccbnwnHl5JZyqGiKtxddCxICj9esC4Fy7Zl/v0f3gpN9ZbD8aaWEunFslmzI0rJLCW/vM6ycW+qEk89x/fNkt5LndPphOfuu+/m2muv5eDBg+j1x5c/nn322axbJ115e6uBpqXpBwpaKVwGWanl4AxGhU3pJTy9Sn1inTciDC9NHeTvVE+QER7bChwAHkFgqIe84wtD4oPVLrvpRZLwOCJzT6VkU8Jjns5q6zzRvg7V8DS3detWXn/99RbHIyIiKCgo6JKgRM8b1GyLCSv9Jqifi/epOzZ7BPRwZKK7rUrLb1EE+8veIrb6HGCsYlCLZn0ibRihsNTx7PlaHW2NVv8v4wLVEZ4j5XXUNDTh7tLpp3Rhx8w9lcZp2k94pPdSx3R6hMfV1ZWKiooWxw8cOEBQkBQ19lYDTUvTs0qqqWs0HL/AIxCCTP9kUsfjcMybUZ64ZUFpVQOb136rfiPTWfahefdzEz8PF/w91CmOjOJqW0QlutG4WH+SvCuJ0hbTpGjZYbTeyFl6L3VOpxOe+fPns2zZMhobGwG14DUnJ4cHHniACy+8sMsDFD0jyNMVP3dnjAocOnF4XKa1HNLJNqM01w0YzaN8wrbM/4e5W8DQZDls3jxS6ngcj06rYWmSOsCQpsRQjZvlMnO3Jem91HGdTnj+9a9/UVVVRXBwMLW1tUybNo3+/fvj5eXF448/3h0xih7QfKVWywaEUrjsiMwFka1xpYEkTToAO7VDezIs0ZbgBHXlZEMVFOy0HD5euCwjPI4ooSENgBTjEKvjoT56WZLeSZ2e8PXx8eHnn39mw4YN7Nq1i6qqKkaNGsWsWbO6Iz7RgwaFeJGSWWq9NB2O1/EU7IK6CtB793xwosu1V+g4XJOBq6aRIsWXHEIZ2YNxiTZoder/4oFV6miraesXWanl2GoOrsMHyPIYwYeXJFNUWU+wlzqNJSM7ndPphCc3N5eoqCgmT57M5MmTuyMmYSPmlVoHT1ya7hMBfjFqA8LcFBggya0jaK/QcVyzVSHB3m5tnid6WPSk4wnPxDsBWanl0KqK8alWN28eNG42E+IDbRxQ79bpKa2YmBimTZvG8uXLOXbsWHfEJGxkUGubiJrJtJbDGRfr3+ZmlMnavQDscx0mBZH2pHnhstEIHB/hyTxajVEa0DmUnNRfANin9GPe+EQbR9P7dTrh2bZtG+PGjWPZsmWEhYWxYMECPvvsM+rr609+ZWHXBoaoT5x5ZbVU1jVaXyiFyw5Hp9WwZF5Cy+MYGK09AMD4GefKsLk9CRsOzh5QV6bung1E+rnjotNS32Qkr6zWtvGJLnXYlPAU+Y2yrMYTp67TCc/IkSN59tlnycnJ4YcffiAoKIibbrqJkJAQrrvuuu6IUfQQX3cXQrxdATjY1kqtvO3QKE+qjmJuYhiPLbB+5zhUk4WHpp4GZx8mT5hqo8hEq3TO6h53YHnzodNqiAl0B6SOx5FU1zfhV7wNgJBhZ9g4GsdwSntpgbqqZ8aMGSxfvpxffvmF2NhY3n333a6MTdiAeef0Fh2X/WLBKwyMjXB4mw0iE90l0l99sYzw1fPiwiT+M1FNaF3iJoH2lJ8iRHdpZXpZVmo5nh+27WcQ2QAMHHumjaNxDKf8bHb48GGeeeYZkpKSGDduHJ6enrzyyitdGZuwgYGtbSIKxzu9gkxrOZgM06hAYoQP5yVFEFOVql4g20nYp5hmdTyKWrMjK7Ucz59bfkKrUShz64fGW5aed4VOr9J6/fXXWbFiBb///juDBw/miiuu4OuvvyY6Oro74hM9zFy43GKlFqgvgGmfS+GygzF36I0L8lQLYWWHdPsWPgp0rlBdBCXpENhfVmo5mLS8coJLt4MTuPWX1dBdpdMjPI899hjJycls376dtLQ0Fi9eLMmOAzEvTW8xwgPHh9JzU6CpoQejEt3JPCoQH+QJxXvVglhnDwgdYdvAROuc9RA5Rv06ewMgU1qOZkVKjqU1hGv8FBtH4zg6nfDk5OTwzDPPMGKEPBk6ogHB6hNncWU9pdUnJDWBg8DNH5pqj++iLXq94yM8HsdHd6LGgU42orRbJ0wvx5kSnqNV9ZTXNrZ1LdELVNc38eMfGQzXZKgHZKS1y3Q64dFoNKxfv54rr7ySCRMmkJeXB8D//vc/NmzY0OUBip7l4epElL/aaK7FFhNabbMnWpnWcgRV9U0UVKgdl+MDPY//XWXDUPtm+T9UN/T1dHWyrLDMkDqeXu2bnUcY2LQfZ40BxTsCfGUGpat0OuH5/PPPmTNnDm5ubvzxxx+W/jvl5eU88cQTXR6g6HmD2tpTC6Rw2cFkmkZ3Aj1d8HFzkvqd3iJyHGh0UJ4DZTmATGs5ig9TciyNPzXRE9UFI6JLnFINz2uvvcby5ctxdna2HJ80aRI7duzo0uCEbcSbprV+TCtgU3oJhubdW80vhDmbwGiwQXSiK2UcVUcD4gI9oTQDqgpB52LZp0nYKVdPCDOVFZhGeWSlVu+XllfOrsPlJGv3qwfkjUeX6nTCs3//fqZObdmMzMfHh7Kysq6ISdjQqrR8Pk7JBeD39BIuW76ZyU+vYVVavnpCyDBw8YT6Cij804aRiq6QblW/Y5rOihijFsYK+3bC9HJ8kKzU6u1WpOTgTBOjdQfVAzK13KU6nfCEhoZy6NChFsc3bNhAXFxclwQlbGNVWj63vr+DshOKHgvK67j1/R1q0qNzgqhk9QKZ1ur1rFZoyXRW72J+McwxjfAEywhPb1Zd38TXf+QxTJOBi9IA7gEQONDWYTmUTic8N954I3fddRdbtmxBo9Fw5MgRPvjgA+69915uvfXW7ohR9ACDUWHpyj20tvWg+djSlXvU6S3LtJYkPL1dRmsjPJLw9A79xqufjx6AqmLLlFZOaQ2NBqMNAxOn4pudR6huMDDXK109IPU7Xa7T607//ve/YzQamTlzJjU1NUydOhVXV1fuvfde7rzzzu6IUfSAlMxS8svr2rxcAfLL60jJLGVC88JlRZF/yl7KaFTINNXwDNCXqcWvGt3xvZqEfXP3h+AEdRPRnI2EDp6Pm7OO2kYDuaU1lqXqonf4MEUtPp/rlQElyHRWNzilZen/+Mc/KC0tJS0tjc2bN1NcXMyjjz7aHfGJHlJU2Xay0+I8S6fXYrXTq+iVjpTXUtdoxFmnIaL8D/Vg2Ahw9bJtYKLjmi1P12o16kgdslKrtzEXK+t1EFVp6nEmI61d7pT30nJxcSEhIcGyj5bo3YK9OlakGuylP6HTq/Tj6a3M01nRAR7octU6EHmS7WVaFC5LHU9vtMI0urOofxWahipw9YaQRBtH5Xg6NKV1wQUXdPgGv/jii1MORtjOuFh/wnz0FJTXtVrHowFCffSMi/VXD/SboD7JZm+E0df0ZKiii5gb1MUFNuuwLMPovUs/U8JTsBvqyo8nPLJSq9cwFysDXBKUA9moC0O0OtsG5oA6lPD4+Ph0dxzCxnRaDUvmJXDr+zvQQKtJz5J5Cei0pnqd6ImwHilc7sXM0x7D/Bog44B60FwIK3oH7zDwi4VjmZCzhfhgdVRARnh6D3OxcmygBzHVMp3VnTqU8Lz99tvdHYewA3MTw3j1ylEsXbnHqoDZWafhpctGMjcx7PjJUaZOr2U5UJYLvlE2iFicDnPTwdGomxQSPFQthBW9S/QkU8KzkfihasKaXlyNoihoZEGB3TMXK182NhLNFhlp7U6nXMNjb1555RViYmLQ6/UkJyeTkpJi65B6pbmJYWx44Aw+vHE8j8xPAKDJoJAcG2B9oqsXhA1Xvzb1ARG9i7mGJ75G3lX2as1WTcYGeqDRQHltY8vNf4XdMRcru+i0XBJbBzUl4KSH8JG2Ds0hOUTC8/HHH3P33XezZMkSduzYwYgRI5gzZw5FRUW2Dq1X0mk1TIgP4NqJsQwO9UIB1h0sbnmi+V2INCDsdarrmyyjeAEl29WDkvD0TtET1M95O9Ar9UT4qpv/ykot+2cuVp6TGIpvkelNeuRYcHKxYVSOyyESnueff54bb7yRRYsWkZCQwGuvvYa7uztvvfWWrUPr9aYPCgZgzb5WkkfZSLTXyjxqWqHl3ohTUZp6UBKe3skvFrzCwNgIedtkpVYv0bxY+bJxUbJwoAf0+oSnoaGB7du3M2vWLMsxrVbLrFmz2LSp9amW+vp6KioqrD5E684YrCY8vx0ott5EFNSVWgBH90P10R6OTJwO84vhHJ8sQAH/ePAKtWlM4hRpNFb9eGSlVu/QvFh5Qqw/ZEmn8+7W6xOeo0ePYjAYCAkJsToeEhJCQUFBq9d58skn8fHxsXxERUnBbVtG9fPFx82ZsppG/sg5Zn2huz8EDVG/ljqeXsU83THRybQ6S55ke7dm/Xjig83NByXhsWeWYuVxUWjKc6DyCGid1Ckt0S06tErrP//5T4dv8C9/+cspB9NTFi9ezN133235vqKiQpKeNjjptEwdGMTKnUf4dX8RY2JOWMUTPRGK96rDsUPm2SZI0WnmHjyD63erB2QYvXcz9+PJTaH/RLX+I+Oo1PDYq+bFyheNjoKDn6kXhI8CF3fbBufAOpTwvPDCCx26MY1G0+MJT2BgIDqdjsLCQqvjhYWFhIa2PkTv6uqKq6trT4TnEM4YrCY8a/YVc9+cwdYXRk+EbW9Kx+VeJqO4Gj31BFfuUQ/ICE/vFjQY3Pyg9hgDjRkA5JbWUNdoQO8sDezsTfNiZX8PF9m4t4d0KOHJzMzs7jhOmYuLC6NHj2b16tUsWLAAAKPRyOrVq7njjjtsG5yDmDYwGI0G9uZXkF9eS5iP2/ELzXU8BbuhrgL03rYJUnSY0aiQcbSKkdpDaJUm8I4E3362DkucDq1WHeXZ/x2+xdvw0g+msq6J7JIaBoXK3mj2wGBUSMksJfdYDV9sPwyYipWhWcGyJDzdqdfX8ADcfffdLF++nHfffZe9e/dy6623Ul1dzaJFi2wdmkPw93BhZJQvAL/uO2F5uk8E+MWAYoRc6X3UG+RX1FHXaGSCztRwMHqi7HjvCEwvlpqcjbJSy86sSstn8tNruGz5Zu7/bBd1TUZ0Wg3lNY1QkQ+lGYBG3VJCdJsOjfCc6PDhw3zzzTfk5OTQ0GDd3Or555/vksA649JLL6W4uJiHH36YgoICkpKSWLVqVYtCZnHqzhgczI6cMtbsK+Ly5BNGA/pNhGNZ6rDsgFmtXl/YD3P9zhSXA2BA3lU6CnM/npxN9I/9O6m5ZbJSyw6sSsvn1vd3tNiux2BUuO2DHXw5rYAkgNBEcPPt8fj6kk4nPKtXr2b+/PnExcWxb98+EhMTycrKQlEURo0a1R0xdsgdd9whU1jdaMbgYJ776QC/Hzrasi4geiLsXCErtXqJ9KIqnGliqHG/ekAKlh1D6Ahw9oC6csZ6FPAZMsJjawajwtKVe1rdm9AsfetPasIj/4fdrtNTWosXL+bee+9l9+7d6PV6Pv/8c3Jzc5k2bRoXX3xxd8Qo7EBCmDeh3npqGw1sySy1vtA8QpC3HRprez440SkZR6sZpsnARWkA90AIHGDrkERX0DlBP3VKZLjhT0BWatlaSmap1b6EJ1KAhCb1byUjrd2v0wnP3r17ufrqqwFwcnKitrYWT09Pli1bxtNPP93lAQr7oNFomDE4CIBfT+y67B8HniFgaFCTHmHX0ourSNZK/Y5DMr1oRlb8AaijeYrS3viC6E5FlW0nOwA+VDFEm6t+008Snu7W6YTHw8PDUrcTFhZGenq65bKjR6XbriOb0WybCasn0RM6vQr7llFczTjtXvUbeVfpWEwvmp4FKei0UN1goLCi3sZB9V3BXvp2Lx+rVaeVa7zjwTOoJ0Lq0zqd8IwfP54NGzYAcPbZZ3PPPffw+OOPc9111zF+/PguD1DYj0n9A3HRackprWm5MaFlI1Hpx2PPquubKCyvYYxWOiw7pIjRoHNBU13ERN9yQOp4bGlcrD9hPnraGkM1j7Tq+0/puaD6sE4nPM8//zzJyeo88dKlS5k5cyYff/wxMTExvPnmm10eoLAfHq5OJMepnZZbTGuZ+/HkpoChqYcjEx2VebSaIZpsvDS14OoNIYm2Dkl0JWc9RIwBYKb7IUASHlvSaTUsmZfQ6mUasIy0amOkYLkndDrhiYuLY/jw4YA6vfXaa6+xa9cuPv/8c6Kjo7s8QGFfzNNav+4/IeEJTgC9DzRWQ8FOG0QmOsKqfqffeNBKF16HY1qePhr1xVSWptvW3MQwXr1yFE5a63GeOG+FYbps9RsZae0Rp9x4sKGhgcOHD5OTk2P1IRybeff0lMxSKusaj19g7vQKx7uGCruj1u80K1gWjsf0d42tVt94yEot25s8IAiDUa17XDZ/KB/eOJ6fLnZDqxjULuc+kTaOsG/odMJz4MABpkyZgpubG9HR0cTGxhIbG0tMTAyxsbHdEaOwIzGBHsQFetBkVNhw8IQidXPjM0l47FZ6UWWzgmUZRndIUcmg0eJZm0cYJTLCYwf+yDmGAkT6uXH1xBgmxAegyzFvJyH/hz2l040HFy1ahJOTE99++y1hYWFoZElrnzNjcDAZGzJZs6+Is4aFHb/A/I+bswmMRnXUR9iVxsJ9+GuqMOj06MKSbB2O6A6uXhA2Ao78wVjtPr4pD6C6vgkP11NqrC+6wNasYwCMjfE/ftD8xtBc/yi6Xaf/A1JTU9m+fTuDBw8++cnCIZ0xOJg3N2Ty6/5ijEYFrXluOmwEOLtD7TEo3gchrRfrCdswGhXCynaAFhpCR+Pm5GLrkER36TcRjvzBVNcDfFM7icyj1SRG+Ng6qj5re7barHVMjJ96oLEO8rapX8sIT4/p9FvwhIQE6bfTx42N8cfT1YmjVfWkHSk/foHOGSLHql/L8nS7k19Rx0hlDwAu8bIM1qGZ6njGm/q8yEot22k0GPkjpwyAMdGmEZ687WqjVo9gCIi3XXB9TKcTnqeffpr777+ftWvXUlJSQkVFhdWHcHwuTlom9w8E1CaEVppPawm7klFUaSlY1sXKu0qHZpomiTTk4E+F1PHY0N78CmoaDHjrnRgQrO5ib5nOkk7nParTCc+sWbPYvHkzM2fOJDg4GD8/P/z8/PD19cXPz687YhR2yLxaq0U/nuhmK7Wkpb1dKco5QJimlCacLL1ahIPyCICgIYDazTddVmrZzDZT/c7oaL/j0//mEXCZzupRna7h+fXXX7sjDtHLTDftq7XzcDnFlfUEebmqF0SOAa0zVObDsUx1ny1hF7Q56pNsgecQIl3cbRyN6HbRE6B4L+O0+/i06AxbR9NnbbPU75imswyNaoNWAGk42KM6nfBMmzatO+IQvUywl55hET7szitn7f4iLh4TpV7g7AYRoyB3i7qvliQ8diPgqFokWRmabONIRI+IngTb3mKsdh/PHK3GYFTQaWX6pCcpimIZ4RkTbZoByd+pNmh187OMwome0emEZ9euXa0e12g06PV6+vXrh6ur62kHJuzfjMHBpoSn+HjCA+q0Vu4WdVpr5BW2C1BYia9RG9E5xU62cSSiR5jqeIZqsnBuquJIWS1R/jKy15NyS2spqqzHWadhRJSvejBL3YuSfhOldUcP63TCk5SU1G7vHWdnZy699FJef/119Pr2d4oVvduMQUH8Z/VB1h0optFgxFln+uftNxF4QVZq2ZHao9lEUEiToiUwQUZp+wSfCPCLQXcsi9HagxwqrpKEp4eZp7OGRfigdzZt49K8YFn0qE6nl19++SUDBgzgjTfeIDU1ldTUVN544w0GDRrEihUrePPNN1mzZg0PPfRQd8Qr7MiISF8CPFyorG+yDNsC0C8Z0Kg1PBX5NotPHHf0T7X2bp8mDj8//5OcLRyGabuXcdq9slLLBswNBy31O0bD8RWsUr/T4zo9wvP444/z4osvMmfOHMuxYcOGERkZyT//+U9SUlLw8PDgnnvu4bnnnuvSYIV90Wo1TBsUxBc78vh1fxET4gPUC/Q+EDoMCnZBzkZIvNC2gQoMmeoweob7cGR/9D4keiLsXMFY7X6+kpVaPW5blqlg2Vy/U5gG9RXg4gUhw2wYWd/U6RGe3bt3t7orenR0NLt37wbUaa/8fHln3xeYl6e37McjG4naE+9CdVVISeBYG0ciepTp/3CEJp2cwhIbB9O3lNU0cNA0qjbanPBkmab5+40HnWz10dM6nfAMHjyYp556ioaGBsuxxsZGnnrqKct2E3l5eYSEhHRdlMJuTRkQhE6r4VBRFbmlNccvsCQ80oDQ5ioL8a/NxqhoZN+evsY/jka3IFw1TbgX77R1NH3K9mx1OisuyIMAT9NCHnNdo0xn2USnU8xXXnmF+fPnExkZyfDhwwF11MdgMPDtt98CkJGRwW233da1kQq75OPmzJhoP7ZklrJmXxHXTIxRLzDVDlD0J9SUgrvUjdiM6Ul2n9KPyPBwGwcjepRGgyZmEuz9ikF1uyivacTH3dnWUfUJ27JPWI5uNDYrWJaExxY6PcIzceJEMjMzWbZsGcOHD2f48OEsW7aMzMxMxo8fD8BVV13Ffffd1+XBCvvU6rSWZxAEDFC/zt1ig6iEmWJ6kt1iHExckIeNoxE9zdyGQO24LIXLPcVSv2MuWC7eB7Wl6gbLYUm2C6wPO6VJRC8vL2655ZaujkX0UmcMDubJH/axKaOEmoYm3F1MD6voiVByUB1hGHSWbYPsw5oy1uMMbFOGcKUsS+57TNPLo7UH+KHgGKP6yRZA3a2+ycDOw+rGymPNCY95OityLDi52Ciyvq1DCc8333zDWWedhbOzM9988027586fP79LAhO9R/9gTyL93Dh8rJaNh0qYlWCq34qeBDvelcJlW6ouwblE3TD0iO+o472SRN8RNIQanRcehkpqcv6AcdL9vLul5ZXT0GQkwMOFmADTmwxL/Y40/rSVDiU8CxYsoKCggODgYBYsWNDmeRqNBoPB0FWxiV5Co9FwxuBg3tuUzZr9Rc0SHlOBbP5OqK8CV0/bBdlXmXp+HDRGEBAcYeNghE1otZT4j8K9+DfcjmwBpE1Ed7NsJxHjpzbqVRSp37EDHXq7ZzQaCQ4Otnzd1ockO33XDFMdz9p9RSjmXdJ9+4FPFBib4PBWG0bXh5neVW4xDiY+WOp3+qqmSPXNR3jFHzaOpG+wNByMNk1nlaRDVSHoXCFitA0j69tkfFt0iQlxAeidtRwpr2N/YeXxC6Qfj22Z9u3ZYhxCfKCMsPVVXoOnAjC08U8am5psHI1jUxSF7ZYd0k31Upb6nTHgLFsu2UqHE55NmzZZlp2bvffee8TGxhIcHMxNN91EfX19lwcoege9s46J8YHACau1zH1fcqQfT4+rK4cCtRnoFuMQWaHVhwXEj6VGccVXU03BIRnl6U7pxdUcq2nE1UnL0HAf9aA54ZH9s2yqwwnPsmXL+PPPPy3f7969m+uvv55Zs2bx97//nZUrV/Lkk092S5CidzBPa/3aPOExz1cf3gpNkhD3qJzNgEKmMYQi/IgPkhGevkrj5MJ+lyEAVO1fZ+NoHJt5OXpSlC8uTqaXWKnfsQsdTnhSU1OZOXOm5fuPPvqI5ORkli9fzt13381//vMfPvnkk24JUvQO5n4827OPUVZj6sQdOADcA6GpDo7IO8se1Ww6y8/dGT8PWQrblx3xGQWA0+HNNo7EsZkbDlqWox/LhvJc0DpB1DgbRiY6nPAcO3bMaruI3377jbPOOt5bZezYseTm5nZtdKJXifB1Y1CIF0YFfjtQrB7UaI6v1pI6np5l+n2nGAcTJ6M7fV5dWDIAwce2q6uGRLcwj/CMttTvmJ73wkeCi0wr21KHE56QkBAyMzMBaGhoYMeOHZbOygCVlZU4O0vL8r7OPK31ydZcvk7NY1N6CcZ+Urjc4+qrLCNqW4xDiJf6nT7PPS6ZBkWHT1MJlGbYOhyHVFxZT1ZJDRoNxxs8ZqsjrTKdZXsd7rR89tln8/e//52nn36ar776Cnd3d6ZMmWK5fNeuXcTHx3dLkKL38HDRAfB7egm/p6u7M0/zcuZdUGtKDE2yS3BPOJwCioFSpxDyCJIRHkFsWAA7lXjGag6gZG9EEyDP113NvDprUIgXPm6mAQCp37EbHR7hefTRR3FycmLatGksX76c5cuX4+JyvCbgrbfe4swzz+yWIEXvsCotn+d/PtDi+IbKUMoVd2iohALZsblHZKmrQv7QJgAQFygjPH1dTIAHKcbBANSnb7BxNI5pa7OGgwBU5KujaRot9Eu2YWQCOjHCExgYyLp16ygvL8fT0xOdTmd1+aeffoqnp7yL7KsMRoWlK/fQWmWAAS0pxiHM1m3HmLEerTTe6n6mZbC/1g0EID5Y/jf7Or2zjkyP4VD/zfFl0qJLHd8h/YT9s0KHgd7HRlEJs043HvTx8WmR7AD4+/tbjfiIviUls5T88ro2L99kVEcayveu6amQ+q7GWsjbDsCGxoE4aTX0k01DBVAVPAaDokFflQvlh20djkOpbTDwZ566YahlhCdrvfo5WvbPsgfSaVl0iaLKtpMdOJ7weBWmgKGxJ0Lqu3K3gKGBercQspRQ+vm7y6ahAoCIkBB2K6bNQzPX2zYYB5OaW0aTUSHMR0+Er5t60Pw7jp1qu8CEhTwLii4R7NV+u/R9ShSliidOhlrpx9PdTE+yeb6jAY0ULAuL+CBPy5sPMqUBYVeyLEePNm0YWp4Hpelq/Y65NYewKUl4RJcYF+tPmI8eTZtnaNmpS1S/lCfa7mUaRt/tnAQgS9KFRXyQBxuNQ9VvstZLP54u1KLhoHk6KyxJ6nfshCQ8okvotBqWzFPfObaV9IQMn6V+kSVD6d2mvspSv/Nb4yAA2UNLWMQHe7LNOJAGRad2/z2WaeuQHILBqLDDlPCMjjbV71ims6a0cS3R0yThEV1mbmIYr145ilCfltNbf501kISJ56rf5GyWfbW6S85mMDaBbz+2HPMGkD20hEWAhwvOek9Slf7qAanj6RIHCiuprG/C09WJwaFe6sEs00i21O/YDUl4RJeamxjGhgfO4MMbx/PiwiRmD1G3I9maVQpBg8EjSN1X6/A2G0fqoExPsk39JpNXVgsgNTzCQqPREB8sdTxdzVy/M7KfL046LRzLgrIc0/5Z49u/sugxkvCILqfTapgQH8B5SREsmZ+Ak1bDhkNHST1cDjGm5ZkyrdU9TC9gBf5jAfB1d8ZfNg0VzaiFy1LH05UsDQfN/XfMI2cRo8FV3nDYC0l4RLeK9HPnvKQIAF759RDEmOazZSi969WWQb7ayXqvPgmQ6SzRUnyQJ38Y+9OocYaqQjh60NYh9XrbLQXLJ/TfiZH6HXsiCY/odrfNiEejgZ/3FJLhNUo9eDhFbZAnuk72RlCM4B/Pniq1jkC2lBAnig/yoB4X9ujM01q/2TagXu5IWS15ZbXotBqS+vmqI2aZUr9jjyThEd0uPsiTsxPDAHjxDwU8Q8HQALkpNo7MwWQdb3KWXlwFSP2OaMm8zcjaBnUVn0wvnx7zcvSh4d64uzhBSTpU5oPOBaLG2Tg60ZwkPKJH3Dpd3Zl55a58qsJNTbjkibZrNVsGm3FUTXikB484UT9/d5y0GtY1DlEPZK4Ho9G2QfVizRsOAsdXZ0WOA2c3G0UlWiMJj+gRiRE+zBgUhFGBH6sHqAeljqfrVJdA4W4AlOjJZBRXAzLCI1py1mnpF+DOLiUeg5M71JZC0R5bh9Vrbcs6oeGgTGfZLbtKeBRF4eGHHyYsLAw3NzdmzZrFwYPtF9Q9+eSTjB07Fi8vL4KDg1mwYAH79+/voYhFZ9xxhtr7479Z4eqBvO3QUG3DiBxI9gb1c9AQCoze1DQY0MmmoaINcYEeNOLEQb3a/dyYIXU8p6KirpF9BRUAjIn2U+t3skz/i9Jw0O7YVcLzzDPP8J///IfXXnuNLVu24OHhwZw5c6ira3tjyt9++43bb7+dzZs38/PPP9PY2MiZZ55JdbW8kNqb0dH+JMf6k24Iotw5BIyNaqM8cfqaT2eZRnei/d1xcbKrf3FhB1al5bMpvQSAL4+pU80bfvmSVWn5tgyrV/ojpwyjok4TBnvroXgfVBeDk5u6JF3YFbt5NlQUhX//+9889NBDnHfeeQwfPpz33nuPI0eO8NVXX7V5vVWrVnHttdcydOhQRowYwTvvvENOTg7bt2/vueBFh6mjPBp+rZeCyS5lHkaPmUKGpWBZ6neEtVVp+dz6/g6qGwwAlgaESYY/uf39bZL0dNJ2U/3OmJgTtpPolwxOrjaKSrTFbhKezMxMCgoKmDVrluWYj48PycnJbNq0qcO3U15eDoC/v3+b59TX11NRUWH1IXrG5P6BjIj0YX2TeUmsJDynrbIQju4HNBAzmXSp3xGtMBgVlq7cQ/M2g38qMVQo7nhrahiqyWLpyj0YjNKIsKNaNhw0TQ1K/Y5dspuEp6CgAICQkBCr4yEhIZbLTsZoNPLXv/6VSZMmkZiY2OZ5Tz75JD4+PpaPqKioUw9cdIpGo+G2Gf0t7yyVI39AXbmNo+rlzKNkoYng7m9Zki4rtERzKZml5JdblwcY0LHFOBiACdo/yS+vIyWz1Bbh9TqNBiOpuWWAqeGg0QDZv6sXxkjCY49slvB88MEHeHp6Wj4aGxtP+zZvv/120tLS+Oijj9o9b/HixZSXl1s+cnNzT/tni46bPSQEz5AYMoyhaBTD8SI/cWrM7ypNT7KyQku0pqiy9VpI8zYTE7R72j1PWNtzpILaRgM+bs5qR/P8nVB7DFy9ITzJ1uGJVjjZ6gfPnz+f5ORky/f19eru2YWFhYSFhVmOFxYWkpSUdNLbu+OOO/j2229Zt24dkZGR7Z7r6uqKq6vMr9qKVqvh9hn92fDZMOK0BTQeXI3z4HNsHVbvpCiQvlb9On4GtQ2G45uGSpdl0Uywl77V4+bR1rHafTjT1OZ5wpq54eCYaD+0Wg1k/KpeEDMFdM42jEy0xWYjPF5eXvTv39/ykZCQQGhoKKtXr7acU1FRwZYtW5gwYUKbt6MoCnfccQdffvkla9asITY2tifCF6fpnGFh7HNXVzFU7/3FxtH0YqUZUJ6jdnWNnkjmUXV0RzYNFScaF+tPmI8ezQnH9ylRHFW88dDUM9srm3Gxbdc/iuMsDQfNBcvppoQnbrptAhInZTc1PBqNhr/+9a889thjfPPNN+zevZurr76a8PBwFixYYDlv5syZvPzyy5bvb7/9dt5//31WrFiBl5cXBQUFFBQUUFsr+zTZMyedllHT5mNQNPjWZFNfkm3rkHqn9DXq56hkcPGwdFiOC/RAoznxpU30ZTqthiXz1NGc5o8MBS2/G9Wax3vi89Bp5XFzMoqiWAqWx8b4Q0MN5G5RL4yfYcPIRHvsJuEBuP/++7nzzju56aabGDt2LFVVVaxatQq9/vgQa3p6OkePHrV8/+qrr1JeXs706dMJCwuzfHz88ce2uAuiE+YlD2aPVu26nLr2K9sG01tlrFU/m95VphdJ/Y5o29zEMF69chShPtbTVlt1SQDEV261QVS9T05pDUer6nHRaRkW4QM5G9X9Ab0jIaC/rcMTbbBZDU9rNBoNy5YtY9myZW2ek5WVZfW9osgSyt7K1UlHU8x0yDxA5Z6faVpwJ046u8rB7Zuh6Xj/HdO7yuN7aEnCI1o3NzGM2QmhpGSWsmJLDit3HaE2cgoc/i/k7YCaUnCXaa32mEd3hkX6oHfWHZ/Oip8OMrJqt+TVRdjUkEnzARjZlMq3O/NsHE0vc2QH1FeA3hfCkoDmK7SkYFm0TafVMCE+gJunxQGwKkeLEjgIUI4n0aJN27NPaDhoGWmV6Sx7JgmPsCl97HgadO4EaCpZteYXjNL0rOMsRZLTQKtDURRLl2XpwSM6IiHMmwAPF6obDBQGTVQPmlcbiTZZNRysKoLCNPUCKVi2a5LwCNvSOaOJmQRAv2Nb+HlvoY0D6kXML0ymd5WFFfVUWzYNlYRHnJxWq2FS/0AANirD1IPpa9R2B6JVx6obOFSkvrEYHe13fHQndDh4BNouMHFSkvAIm3MeMBOAydo0Xvn1kNRldURdBRw2FZjGz8BgVPh25xEAgjxdZaWN6LApA9QX6Y+PRoPWGcpy1HYHogWDUeGDLeqK0nAfPT5uzrIcvReRhEfYnmmEYpx2H/sPF7N8fQZfp+axKb1E9vVpS9YGMDaBXyyr8lyZ/PQaHvt+LwAFFXVMfnqNbAQpOmTKgCAAtubV0xQxVj0o01otrErLZ/LTa3jupwMAHCmvY/JTq6nbb+ojJsvR7Z4kPML2ggaBVxh6TSOjtQd44vt93PVRKpct3ywv3G0xvSDl+CVz6/s7WuyRVFBex63v75DfnTipUB89A4I9MSqQ7j1OPZguCU9z5l3mT/w/86xMR19XhEHrAv3abpAr7IMkPML2NBry/NUn2ina3VYXyQt3G0wvSP/N6UdrY2DmY7L7tegI8yjPL/VqY0Iy16ltD0Sru8ybTdKqxcrblcEYdLIlh72ThEfYnMGosDwvBoDJJyQ88sLdivLDUHIQRaPl+6oBbZ6mgOx+LTpkykC1juejXH8Uva/a7uDIDtsGZSda22XezPx8tbphqPyf9QKS8AibS8ks5buqQQAM1WQTQLnV5fLCfQLT6M4x30QqOPlqLNn9WpxMcqw/LjotueUN1ERMVg+aty3p49r6/3GmifFatW5ug3GY/J/1ApLwCJsrqqyjGF/+NEaj1SgtprWanyewvBDVRE7t0Omy+7U4GXcXJ3WJNbDLdZR6UOp4gLb/f8Zo9+OpqeOo4s0epZ/8n/UCkvAImzM/Uaw1jgBghi613fP6NEOTJeEJG31uq7tfm2mAMB+97H4tOmSyaXn615XqaCuHt0Jtme0CshNt7TI/TbsTgN+MIwj1cZf/s15AEh5hc+YnlN8MSQBM1e5Ci9FyubxwN5O3DerKQO+LLmqsZffrE5mfnJfMS5CePKJDppoKl7/NcUYJGACK4XhTvT6s+S7zzU03JTxrDSPk/6yXkIRH2Jz5CWWHMoAKxR0/TRUjNOmWyxXkhdvi4M/q5/4zQedk2f3a6YTfTaiPnlevHMXcxDAbBCl6o6Hh3vi5O1NV30RhiGm61Px46+PmJoZx75xBlu/DKGGwNhcDWhZcdKX8n/USkvAIuzA3MYyXrxzLVl0SANN1Oy2XnZ0YKk8oZgd/Uj/3n205dMbgEMuIzsPnJvDhjePZ8MAZ8jsTndJ8m4kNmpHqwUM/g9HYzrX6Di+9EwAjo3x5dXwJANrIscwcNcSWYYlOkIRH2I25iWHMOPdyAK4OPMjfZqlLrn9PL6G6XnqCUFkABbvUr/vPshw+VFRFo1HBS+/EokkxTIgPkNEwcUrM01ofF0WBswdUFR5/zPVxuw+rq0enDAgkqW4bAJoBs9u7irAzkvAIu6I1PYH4laVxR7IfsYEelNc28tHWXBtHZgcOmVrYh48EzyDL4T+PqE/ECWHeaDSS6IhTZy5c3n64msZomdZqLu1IBQDDwtyO1zYNmNX2FYTdkYRH2BevUAgdBijoMtZw45Q4AN5cn0GjoY8PrZtfeAacaXX4T9MT8dBwn56OSDiYcF834oM8MCqw33u8etA8jdqH1TUaOFhYCcBI9kNDFXgEQ+gIG0cmOkMSHmF/zPUph37mglERBHq6cqS8jpWm3cD7JEPj8b4oJyQ8e0wJT0K4d09HJRyQeZuJ72oT1QOHt0J1iQ0jsr39BZU0GRUCPFwIOPKberD/LNDKS2hvIn8tYX/M8+KHVqPXwXWTYwB4/bcMFKWPbi+RmwL15eDmr05pmRiNCnvyzSM8kvCI0zfVtM3Et9laCB4KKH2+63Kaadp4aIQPmkPmkVaZzuptJOER9idyHLj6QG0p5O3giuRoPF2d2F9Yydr9xbaOzjbMT7L9Z4FWZzmce6yGqvomXJy09A/2tFFwwpEkxwbgrNOQW1pLeeR09WAfn9ZKy1MTngkBNVC8DzRaiD/DxlGJzpKER9gfnRPEz1C/PvQzPm7OXJ7cD4BXf0tv54oOzFK/Y70qxFy/MyjEC2ed/DuL0+fh6sSofuo2E5udRqsHD/0CRoMNo7KttDz1/2wKf6gHIseBm58NIxKnQp4hhX0y16ns/wGA6ybF4qzTkJJZyo6cYzYMzAYqjkBhGqCB+JlWF5lXaMl0luhKUweqdTxfFUdYjbb2RQ1NRvYXqAXL8WUb1YMyndUrScIj7NPAOeqwccEuKD9MqI+eBUkRALy2to+N8piSPiLHgEeA1UVSsCy6w2RzA8KMcoxxptHWgz/aMCLbOVBYSYPBSKjegD53nXpw4Fm2DUqcEkl4hH3yCISoZPVr0wv+zdPUJeo/7y3kUFGVrSLrefu/Vz8POrvFRceXpEvCI7pOYoQPvu7OVNY3kR0wWT24f5Vtg7IR8yjqJQGH0DTVgW8/CBlq46jEqZCER9ivQaZ3UaYX/P7BXsxOCEFRYPm6DBsG1oPqKyHT9K5y8DlWFxVX1lNUWY9GA4NDJeERXUen1TApXh3lWdUwQh1tLdwNx7JtHFnP220qWJ6p2a4eGHQOSIPPXkkSHmG/zCMa/9/encdFVe+PH3/NDAybLKIIqAi4oeRKbpjmhopmWd1K29TKvKl9r9btttxf5Vap3VKzW2ZlYmWalvtVyw1NczdNFHfcQURFtthmzu+P44yObAMMDAzv5+PBw5kzn3PmfTgO8z6fNeE3yFZrMl7q0QSA5X9c4kpatr0iqzynNoEhF3ybQN3mFi+Z7jxD63rg4eJkj+iEA+t+a9bljefyoVFXdaOpebUGibuUhhYjLdJu9d8Jk+as6koSHlF11W0GdZqBMc+8rMK9wbXpGFKbXIORb3Yk2DnASmBuzhpQ4K7SNP9OeKDU7gjbMy0zcfBCKn816a9uPLbGjhFVvnyDkfjENNprTuKSex1cvSG4q73DEmUkCY+o2szNWrfvLE21PD/sOk9adp49oqochjw4cauj6F3NWSBLSoiK1bC2O43remAwKuzRR6obz/0OWdftG1glOnU1g5x8Iw/obw1Hb9YPdM72DUqUmSQ8omozNWud/EVNAIBeYfVo7l+L9Jx8Fu46b8fgKtj5nZCdCu51bnfgvsNR6bAsKpipWWtDkqs667JiqFGTEJrm3+nvdGtIfiEDB0T1IQmPqNqCOqlf+Nk31QQA0Go1jLpfreX5ZkcC2XkOOiHasVvNWc2jLWZXBsjIySchJROQIemi4pjW1frtZMrtWsZj/7NjRJUr7tJNGmsu08BwEbTO6kznotqShEdUbVqd+oUPFs1aD7WtT6C3K1fTc1jxxyU7BVeBFKXY4ejxt/rv+Hu5ULeWS2VGJmqQLk3q4KTVcO5aFomBt5ZSOLUJ8mrAgAHUhCdKe2t0Vmh3cJWbi+pMEh5R9Zn68cSvVhMBQO+k5YVuoQB8ue0MBqODLSqafBRSz4GT6+1lNu5wVPrviEpQ645lJjbfDASvBpCXCQlb7RxZxTMYFY5cTqOvzjQcXZqzqjtJeETV1zQKnD3g5gW4fHt6+6GdGuHl6sSZlEw2HE2yY4AVIH61+m/jnqD3KPCyLCkhKoupH89vJ6/d/tKvAaO1ElIy8MxL4V7NSXWDJDzVniQ8oupzdoPmt9bWOrLCvLmWixPDIkMAmLP1DIriQLU8pvMMH1z4y9JhWVQS0/D030+nYGhuSnjWgiHfjlFVvLhLaUTr9qDVKOqgAe8G9g5JlJMkPKJ6CH9Y/ffoSnOzFsCI+0LQO2k5dCGV3QkOMlz26nG4Gq92kizkrjI338iJK+pihtKkJSpam4Y+eLk6kZadzyHn1uDmC1kpcG67vUOrUIcv3eQB3W71SRE3HqJ6kYRHVA/N+oKTm9qvJfGgeXPdWi48fm9DAL7Y6iCLippqd5r0AjefAi+fSs4gz6Dg6epEw9pulRqaqHl0Wo25lue3U6kQ/pD6wpHl9guqElw4n0BHzXH1ScuH7BuMsAlJeET1oPe43ax1dKXFS6Pub4xWA7HHr5pHL1VrR1eo/5pqte5i6r8THuiFRtb0EZWgW1N1ePr2U1fhnkfUjUdXOWyzltGoEHRlE1qNwl/12oNPkL1DEjYgCY+oPkzVykdWWDRrBdfxYEDrQEAdsVWtXT2hjtDSOkOLwjtJygzLorKZOi4fOJ9KekBncK8Lf12Hs9vsHFnFOHc9iz5Gdd4vfZtH7ByNsBVJeET10ay/Okz7RgIkHbZ46aVbExGuPHiJVYcusfLgJXaevlb9hqubaq8a9wS32oUXkQ7LopIF+boTemuZiZ0JNx2+WevEmTN01sYDoLtH+u84Ckl4RPXhUkvtywO3m31uad3QmxYBtTAq8I9FBxm3+CBPfrWLbtM3sz4usfJjLSvTed3zcKEvG43K7UVDJeERlahbU7WWZ/uplNvNWvGrzUu+OBLl6Cp0GoWLbi2gdoi9wxE2IgmPqF5M/VruatZaH5fIsaSMAsWTbmYz+vsD1SPpuXoCrsSB1qnIOT8u3MgiIycfvZOWpvVqVXKAoia7PR9PCgTfBx5+8NcNOON4kxAGX1Zndb8WPMDOkQhbkoRHVC/N+6ujta6fNk9CaDAqTFp9tNDippRo0uqjVb95688f1X+bRoG7b6FFTP13wvw9cdbJx1dUni5N6qDTakhIyeRCas4dfeocq1lLuXGOlrmHMSoaXNsPsXc4wobkL6aoXlw8by9i+OcSAPYkXCfxZtFr+yhA4s1s9lTleXoUBQ6r50ObJ4osJjMsC3vxcnWmfZAPcFez1rHVkJ9jv8Bs7ObexQDsUVoS2iTMztEIW5KER1Q/bW7ddR3+CQx5JKdbt5ChteXs4sJuSD0P+lrQvOhqdJlhWdjT7dXTr0KjruraWtk34cR6O0dmO7q4pQDs9YxC7yRfkY5Erqaofpr0UofFZqXAmVjqebpatZu15ezC1JzV8iHQuxdZzDRCSzosC3swTUC449Q1DGhu10YeWmzHqGwoKQ7PtJPkKE5cD5H+O45GEh5R/eicofVj6uM/f6RTqC+B3q4UNwWfj5sznUIL7xdjd/m5ELdMfdzm8SKLXU3PITk9B40GWgRIwiMqX9uG3ni6OnHzrzwOX7oJbYaqL5z8FTJT7BucLdy68dhibE/TRrJ2lqORhEdUT6Y7y/g16PIymPBgOECRSU/qX3ks3XehcmIrrVMbIDsVavlDaI8ii5n674TW9cDDxamSghPiNiedlvuaqLU8P+w6x8rLnmTUaQ3G/NtJe3VlNKLE/QzAcsN9tJKJPR2OJDyieqofAXWaQv5fEL+G6FaBzHkmggBvy2arQG9XejRX+x28ueww3+48a4dgS2Bqzmr9OGh1RRaTGZZFVVDbwxmAJfsvMm7xQf6TFAFA6q5v7RlW+Z39DU3aJdIUd36jPWEBnvaOSNiY3CaK6kmjUTsvb3kfDi6Edk8S3SqQvuEB7Em4TnJ6NvU8XekU6otWAx+sjeer3xJ4d+URsvMMjLo1M7PdZV6DY2vVx8WMzgJuTzgYKM1Zwj7WxyWyaI9lTelqQyRvO32Pz43D/Pb7drp37Wan6MrpgJqwrTJEEuxfB1fnom8+RPUkNTyi+mr7JKCBs7/BNXWldJ1WQ2STOgxu14DIW/OGaDQa/j2wJf/o3RSAD9Ye49NNJ+0Y+B3+XAzGPAhsq/4UQ5aUEPZU1HxX1/Ei1tgOgIRN86r+fFeFybquzhoNLDb0onUD+Yw5oiqV8CiKwrvvvktgYCBubm5ERUVx8qT1X0zTpk1Do9Ewfvz4igtSVB0+QeokfWC+OyuKRqPh1X5h/Ku/Oq/GxxtO8J9fjqEodvzjrCiwf4H6OGJ4sUUzcvJJSMkEJOER9lHcfFc/GboDEJ2/mb2nr1RmWLZxeCkYcjinb0KcEkqrBtJs7IiqVMLz4YcfMnv2bL744gt2796Nh4cH/fv3Jzu75PlT9u7dy9y5c2nTpk0lRCqqjHtvJQoHf7BqTZ+xvZry9gMtAfhsy2ne+1+8/ZKeC3sg5Tg4u98edVaE+FvNWQFertSp5VIZ0Qlhobh5rDYZI0hWfKinSUV7Yl0lRmUDd9x4/JjfE9BIPzkHVWUSHkVRmDVrFm+//TaDBw+mTZs2fPvtt1y+fJkVK1YUu29GRgZPP/00X331FbVrF77C9J1ycnJIS0uz+BHVVPNo8KgHmclw3Lo/tCO7N2bKw60AmLc9gXdWxmG0RzX8gVu1O/c8Aq7F/4E9ckkdoSXz7wh7KW4eq3ycWGJQRxg2v/hTZYVkG5cPQPIRFJ0L32d1RquRfnKOqsp0Wk5ISCApKYmoqCjzNm9vbzp37szOnTsZOnRokfuOHTuWBx54gKioKN57770S32vq1KlMmjSp1DEaDAby8hxvZeDKotfr0WptnGPrnKH907B9ptqsFf6QVbs92yUYF52WN5b9yfe7zpOTZ+T9R1qz/9wNiw7POm1xs/uUQ/bN22sQRQwrsbipw7I0Zwl7Mc13lXQzm8JuDxYbejPGaRU+idvVPnV1qsjAgJLcag6/0rA/acdr0bxeLdz00mHZEVWZhCcpKQkAf39/i+3+/v7m1wqzePFiDhw4wN69e61+r7feeotXX33V/DwtLY2goKAiyyuKQlJSEqmpqVa/hyhIq9USGhqKXq+37YEjhqkJz6mNkHpB7dtjhSc6BuHirOXVJYdYuv8iq/+8THae0fx6oLcrEx4MJ7pVoG3jBXVZjLwsqBsGQZ1LLC5LSgh702k1THgwnNHfH0ADBZKei4ofWw1t6KU7pNZe9p1sjzBLJztN/SwCOzwHAkj/HQdmt4Rn4cKF/P3vfzc//9///lfqY1y4cIFx48axYcMGXF2tXzbAxcUFFxfr+0GYkp169erh7u6ORlNBd/0OzGg0cvnyZRITE2nUqJFtf4e+jdUJ+xK2wr55EDXR6l0Ht2vAkUs3+fK3BItkByDpZjajvz/AnGcibJv0KArs+VJ9fO8IdYh9MXLzjZy4kg7IHDzCvkzzXU1afdSiA3OgtyvN/T354VQfeukOkbn7W9x6/Butvgov5wJq37/cDKgbxvrMpkCyTDjowOyW8Dz00EN07nz7zjYnR11t98qVKwQG3v5yuXLlCu3atSv0GPv37yc5OZmIiAjzNoPBwLZt2/jvf/9LTk4OOl35qiYNBoM52alTp065jlXT+fn5cfnyZfLz83F2drbtwTuNUhOe/TFw/+vFrkd1J4NRYfWfiYW+pqDO3Dxp9VH6hgeU2LxlMCoF5gAqdJ8zsXD1mLpQaPunS4zxZHI6eQYFT1cnGtZ2K/mkhKhAxc139cUWLxK3xhCYf52Y+Z/y5Auv4uJURZuHjEbYM1d93HkUcRvVWlSp4XFcdkt4PD098fS8PZOloigEBASwadMmc4KTlpbG7t27GT16dKHH6NOnD4cPH7bY9txzz9GiRQveeOONcic7gLnPjru7dV+gomimpiyDwWD7hCdsAPgEQ+o5OLxErTmxQnFDbUFNehJvZrNk33mGdGiEtoikZ31cYqF3vYU2ie3+Qv233VMldlaGOxYMDfSS2kVRJZjmu7rb6N4tOHrlKQKP/5f2l35g+Lz7mDusI95uNv6828LpTXD9DLh4k9LkERJ/3oVGIwMDHFmVGaVlmj/nvffeY9WqVRw+fJhhw4ZRv359Hn74YXO5Pn368N///hdQk6ZWrVpZ/Hh4eFCnTh1atWpl8/hE+VTo71CrU2t5AHZ9oTYbWaG4obZ3emtZHO0m/8rIBXv5atsZ/ryYSr5BbQJbH5fI6O8PFEicTE1i6+PuqEG6dhpO/KI+NsVbAllSQlQn4Q+9gkHnQlvtGYxnf+eJL3ZyOfUve4dVkOnGI+JZjqSon+XQuh7UknXqHFaVurKvv/46mZmZjBo1itTUVLp168b69est+uecPn2alBQHWJVX2F77Z2DLB3A1Xm3eatyzxF2KG2p7J1cnLWnZ+WyMT2ZjfDIAtVycuDfYhwPnUgsdtVJok9ier9RXmvaFus2sem+ZYVlUKx510bV7EvbHMNZ1PcOvtOTRz38n5vmOtAjwsr7ptyJdPa4OckADHUcSd0id9qG1NGc5tCqV8Gg0GiZPnszkyUX37j979myxx4iNjbVtUDZSJT7kjs7NR+0Ts+dL2DHbqoSnpKG2GiDA25XY13oSn5TOnoRr7D5znT1nr5Oenc/WE8Un36YmsT0J14kM1Nyee6fLS1adktGo3B6SLtPdi+qiy1jYH8P9yj561Elj6zV4fM5OXugeyo97L1jX9FuRts9S/23xAPiGEndpP4B0WHZwVaZJy5Gtj0uk2/TNPPnVLsYtPsiTX+2i2/TNlk0dFWDEiBFoNOpaUs7Ozvj7+9O3b1+++eYbjEZjyQe4JSYmBh8fn4oL1JYix4JGp7bPXzpQYnHTUFtQk5s7mZ5PeDAcF2cd7YJ8GHV/E+aN6MjBd/ux5v+68Uj7BlaFlZyeDbvmqEPRA9pAkz5W7XfhRhYZOfnonbQ08atl1T5C2J1fc2jWHw0KXzbbRacQX9Jz8pm18aR1Tb8VKfW82s8PoJs6PcnhWxN7yk2FY5OEp4KVqn9HBYiOjiYxMZGzZ8+ybt06evXqxbhx4xg0aBD5+fkV+t52UTsEWj+uPv7tY6t2MQ21DfC2bN4K8HYtcki6TquhVQNvnuhg3Zw/gS55t0eEdP9niUPRTUz9d8L8PXHWycdVVCP3jQPA5fAPxPytPq7Ohf//NdWsTlp9tHIWHv39UzDmq1NZNLyX1KxcLt5Q+xhJPznHJn9By0BRFLJy80v8Sc/OY8KqI0X27wCYuOoo6dl5Vh2vLGs+ubi4EBAQQIMGDYiIiODf//43K1euZN26dcTExAAwY8YMWrdujYeHB0FBQYwZM4aMjAxAbSJ87rnnuHnzprm2aOLEiQB89913dOjQAU9PTwICAnjqqadITk4u/S/U1rq/Cmjg2Bq4UnB158JEtwpk+xu9WfRiFz4Z2o5FL3Zh+xu9S6xmNzWJFZW+aFCr7DukLFdnV67bHFpaNxs0wJHLt+48pf+OqG5C7oPgbmDIJW3DhwXmubrTnU2/FSoj+fZCw93V2h3TTUVwHfeqOZpM2EyV6sNTXfyVZyD83V/KfRwFSErLpvXEX60qf3Ryf9z15b9kvXv3pm3btixbtoyRI0ei1WqZPXs2oaGhnDlzhjFjxvD666/z+eef07VrV2bNmsW7777L8ePHAahVS21aycvLY8qUKYSFhZGcnMyrr77KiBEjWLt2bbljLBe/MHWJiaMr1Vqex+ZZtVtRQ21L2qe42WcBJg8IQbvh1iSb3V6BUiyvITMsi2qt5xuwYDt+p34kgM4kUfzny9pRk2W24xPIz4YG96o1PNxuzpL5dxyf1PDUUC1atDB3AB8/fjy9evUiJCSE3r17895777FkidrGrdfr8fb2RqPREBAQQEBAgDnhef755xkwYACNGzemS5cuzJ49m3Xr1plrh+yq+2vqv3E/Q9Lh4suWU1FNYgDP3RdC35vLIPOqOk+QqbnNSqaER+YGEdVSSHdo1BWdMY+XnFaXWHxTfDLnrmVWTCw3L94aJQn0fMvcrBxnSnikOcvhSQ1PGbg56zg6uX+J5fYkXGfE/JLX+Ip5riOdQn2tel9bURTFPC/Oxo0bmTp1KseOHSMtLY38/Hyys7PJysoqdsLF/fv3M3HiRA4dOsSNGzfMHaHPnz9PeHi4zWItk8A2cM+jcGQZbJgAzy6r0Le7e/bZ309f48e9F9gVdxJFmaU2efV5V13s1ErJ6dlcTc9Bo4EWAZLwiGpIo4Geb8K3D/G002bmGwZwTvEvsviqQ5dZdegykY3rMLRTEP3vCcD1rr97ZR7xGjsNDDlqM1vT24tUmxMe6bDs8CThKQONRmNV01L3Zn5WDXnu3syv0oeox8fHExoaytmzZxk0aBCjR4/m/fffx9fXl+3bt/PCCy+Qm5tbZMKTmZlJ//796d+/PwsXLsTPz4/z58/Tv39/cnNzK/VcitTnHYhfrY7YOhNr1TD18rizSaxfeABbj1/lb5nfoXHKUEdm3fNoqY5nmn8ntK4HHjIZmqiuGveAJn1wPr2JN50WMSZvvMXfQ9NfvlH3h3IsKYNtJ6+y88w1dp65ho+7M4+2b8iTnYJo5u9ZuhnN73T1OBxcqD6OmmCu3UnLzuPstSxAanhqAmnSqkDWDnmu7GRn8+bNHD58mL/97W/s378fo9HIxx9/TJcuXWjevDmXL1+2KK/X6zEYDBbbjh07xrVr15g2bRrdu3enRYsWVaPD8p18G0OH59XHG95V186pJG56He/c58Yzug0AZN7/bqn67oDMsCwcSL/3QKNlgG4P/T3PWLxkGg351sBwFjzfie1v9GZcn2YEeruSmpXHNzsS6DtzG70/juWlso543TgRFCOEPQBBncybTTcVDXzcqO2ht9npiqpJEp4KVpYhz7aUk5NDUlISly5d4sCBA3zwwQcMHjyYQYMGMWzYMJo2bUpeXh6ffvopZ86c4bvvvuOLL76wOEZISAgZGRls2rSJlJQUsrKyaNSoEXq93rzfqlWrmDJlSoWeS5n0eB30npB4CA7EVN77KgoDL87CRZPPb4ZWzD7bsNSHkBmWhcPwD4eIYQDM8fuZRSM7FTkasoGPG6/0bc72N3ozf0RH+oX7o9XAmauF9+0pcVj7iV/g+FrQOqm1O3cwNWfJDMs1gyQ8laCsQ55tYf369QQGBhISEkJ0dDRbtmxh9uzZrFy5Ep1OR9u2bZkxYwbTp0+nVatWLFy4kKlTp1oco2vXrrz00ksMGTIEPz8/PvzwQ/z8/IiJiWHp0qWEh4czbdo0Pvroowo/n1LzqAu9/5/6eONEdVhqZTi+Fs3JXzBqnZmYP5z5v5/l4o2sUh3CNMNyeKAkPMIB9Pp/oPdEc/kPIm+sZHC7BkQ2qVNkDbdOq6FXi3p8OawDnz0VUeyhixzWnvcXrP2X+rjLGHUE5x2k/07NolHKMrmLg0lLS8Pb25ubN2/i5WX5Hz87O5uEhARCQ0Mt1vQSpWe336XRAF/1Umt5Wj8Of/u6Yt8vJx0+j4SbF1C6vcpTZ/qz88w1Hm3fgBlD2ll1iIycfFpNUKc+2P92FHVquVRgwEJUkl1fwPo31FrXl/eAV32rdlt58BLjFh8ssdwnQ9sxuN0ds59vmqxOTeFZX30/F0+L8n0+juX01UxinutIz7B6pTkTUUUU9/19N6nhEY5Pq4NBs0CjhcNL4YR18x6V2S//hpsXwKcRmvtf462BLQBYfvCSeSLBksTfqt0J8HKVZEc4jk4vQoMOkJsOa14FK++3rV3k16LcxX2wfab6eMC0AslOZk4+Z1LUZjLpJ1czSMIjaoYGEdD51oKdK8dUXNPW8XW3ZnLVwMNzQO9Bm4Y+PNS2PooC09Yds+owRy7JDMvCAWl18NCnoHWGE+tgn3WTgpY0ozlAgJfL7ek9crNg+d/VjsqtH4fwwQXKxyemoSjqTYWfp9xU1ASS8Iiao88E8G+lTgK4/CXbj9pKPQ8rx6qPI8dCSDfzS//qH4azTsNvJ1PYduJqiYeSCQeFw/IPh6iJ6uP1/4YrR0rcpbgRryYeLk7k5BvUWqM1r8C1U+AZCAP/U2h5mWG55pGER9Qczq7wt3ng5KbOzbN5su2OnfcX/PgMZF1T59zp/Y7Fy0G+7gyLDAFg6rpjGEtYJNHUYVlqeIRD6jIGmvVTJwJc/DRkXitxl6JGvNatpcfNWcvpq5mM+nY/ebu+hD8Xg0YHj34FbrULPV7cJfUzJh2Waw5JeETNUq8FPDRbfbx9JvzxffmPaTSo1eeJh8C9DgxdqCZXd3m5V1M8XZ2IT0xjxcFLRR4uN9/IiSvpgPQtEA5Kq1WbfH0awY0EWPwU5JW8jlZhI153/zuKhS92wUOvw/nMBjS/vKUW7jsZQrsXeSwZkl7zSMIjap42T8D9r6uPV/0DDv9U9mMZjbDq/9SFSrXO8HiM+ke8ELU99Izp2RSAj345TnaeodByJ5PTyTMoeLk60bC2W9ljE6Iq86gLTy0FF2+4sAuWDLMq6THNaH7nsPaIRrVZ0t/AHOdZOGFgt2dfDJ3HFHmMv3INnExWbyqkSavmkIRH1Ew934J2z4BigGUvwoHvSn+MvL/UfQ8uVKvPH/sGQu8vdpfn7gsh0NuVyzezWfD72ULL3Nl/x7TemRAOqV4LGPo9OLnCyV9g0RB1WofSOrqKe7Y8j6smjw3GDjx99VneXHa4yKbjY0lpGBWoW8uFetJhucaQhEfUTFqtOlokYpg6kmPVy2pHx/wc6/a/cQ5iBkHcT+oMro/MhfCHStzN1VnHP/upk599tuUUqVkF1x0zzbAcHih3nqIGCL0fnv4JnD3UNe++7AlJcdbta8iHrR+qtUP52dCsH8rf5qFonVm6/yKT1xylsKnmbjdnyU1FTSIJj6i5tFoY9An0eBPQwL5v1AkD41er/XIKk5OhTmT2eSRc2geuPvDscmjzuNVv+0j7BrQI8CQtO5/Ptpwq8LosKSFqnNDuMHw1eDVQR1d91Utd/66ozsyKoiZHX/eBLe8DCnQcCUMX0a9tCP95rA0AMb+f5T+/HC+w++0Oy3JTUZPIEsw1UM+ePWnXrh2zZs2ydyj2p9VCr7egYQd1SPn10+poK59G0HyAOoRWXwsyU+DiXjixHnIz1H0bdYWHP1MXKS0FnVbDWwNbMvybPSz4/RzDIkMI8lVXpTcaldsjtGT0iKhJGt4Lf/9NnSfrxHrY8Yk6M3OzvtAoEjwD1Fqcq8fU9bFSTqj7uXjDwA+hzRDzKuiPRjQkK9fA2yvi+Dz2NB4uTozt1dT8VjIkvWaShMeBjRgxggULFhTYvnv3blq2bGl+HhISwvjx4xk/fnwlRlfFNOsLL9+amXXfPHVOnT1zCy9bp6na6bn146VeAd3k/mZ16da0LttPpfDxr8eZNbQ9AOevZ5GRk4/eSUsTv1plPRshqiePOvDkYjWhiZ0KiQfh2Br1525ObmqT9P2vQa2Cy0I80yWYv3INvL82nv/8chx3vY5hkSHsOHWVY0nqTUVLWaeuRpGEx8FFR0czf/58i21+fn7odDo7RVSFuXqpqynf/xqc3gwJ2+DGWfWu0sUL/O+BJn0gqJP5TrKsNBoNbw5owaBPt7Pi4GVGdm9Mqwbe5tqdMH9PnHXS4ixqII0GwqKheX91qodTG+FKnFrL6uQCPsEQ1BnCBqif2WK8eH9jMnPzmbXxJJNWH2XWxpPc/CvP/PoTc3cy8cHwSlnIWdifJDxloSiQV7qVr23C2b3UX7QuLi4EBARYbLuzSatnz56cO3eOV155hVdeeQWg0E5+NYreA1o+qP5UoFYNvHm4XX1WHLzMB2vjWTiys3mtLem/I2o8jQbqt1N/ymFcn2YcuZzGhqNXLJIdgCs3sxn9/QHmPBMhSU8NIAlPWeRlwQfWrfJrU/++rH4Z29CyZcto27Yto0aN4sUXX7TpsUXJ/tkvjLWHk/j99DW2HEtm+6kUANz1OgxGBZ1WRpAIUR5G5XafnbspqEtVTFp9lL7hAfJ5c3BSZ+7g1qxZQ61atcw/jz9uOZrI19cXnU6Hp6cnAQEBBWqDRMUK8nVneNdgAEZ9t59DF9Q/zN/sOEu36ZtZH5doz/CEqPb2JFwn6WbRExoqQOLNbPYkXK+8oIRdSA1PWTi7q7Ut9njfUurVqxdz5swxP/fw8ODJJ5+0ZVSinFoEeAKQf9ckaUlS3S5EuSWnlzx7c2nKiepLEp6y0Ghs3rRUUTw8PGjatGnJBYVdGIwKH/16otDXpLpdiPKr51lwXbvylBPVlzRpCfR6PQZDERPtiQq1J+E6iVLdLkSF6RTqS6C3K0XdLmiAQG9XOoX6VmZYwg4k4RGEhISwbds2Ll26REpKir3DqVGkul2IiqXTapjwYDhAgaTH9HzCg+FSg1oDSMIjmDx5MmfPnqVJkyb4+fnZO5waRarbhah40a0CmfNMBAHelp+jAG9X6SNXg0gfHgcWExNT6PbY2FiL5126dOHQoUMVH5AowFTdnnQzm8JmP9Kg/lGW6nYhyie6VSB9wwPYk3Cd5PRs6nmqnyup2ak5JOERwo5M1e2jvz+ABiySHqluF8K2dFoNkU3q2DsMYSfSpCWEnUl1uxBCVDyp4RGiCpDqdiGEqFiS8AhRRUh1uxBCVBxp0rJSjV9Q0wbkdyiEEMJeJOEpgbOzMwBZWXZYHd3B5ObmAqDT6ewciRBCiJpGmrRKoNPp8PHxITk5GQB3d3c0GulXUVpGo5GrV6/i7u6Ok5P8txNCCFG55JvHCqYVxE1JjygbrVZLo0aNJGEUQghR6SThsYJGoyEwMJB69eqRl5dn73CqLb1ej1YrrahCCCEqnyQ8paDT6aT/iRBCCFENye22EEIIIRyeJDxCCCGEcHiS8AghhBDC4UkfHm5PiJeWlmbnSIQQQghhLdP3tjUT20rCA6SnpwMQFBRk50iEEEIIUVrp6el4e3sXW0ajyHz/GI1GLl++jKenp83niElLSyMoKIgLFy7g5eVl02NXBXJ+1Z+jn6OcX/Xn6Oco51d2iqKQnp5O/fr1S5z2RGp4UCfEa9iwYYW+h5eXl0P+RzaR86v+HP0c5fyqP0c/Rzm/simpZsdEOi0LIYQQwuFJwiOEEEIIhycJTwVzcXFhwoQJuLi42DuUCiHnV/05+jnK+VV/jn6Ocn6VQzotCyGEEMLhSQ2PEEIIIRyeJDxCCCGEcHiS8AghhBDC4UnCI4QQQgiHJwlPBfrss88ICQnB1dWVzp07s2fPHnuHVKLSxPzVV1/RvXt3ateuTe3atYmKiipQfsSIEWg0Gouf6Ojoij6NUinNOcfExBQ4H1dX10qMtmSlOZ+ePXsWOB+NRsMDDzxgLlMdrmFhtm3bxoMPPkj9+vXRaDSsWLHC3iFZpbRxL1u2jL59++Ln54eXlxeRkZH88ssvFmUmTpxY4Bq2aNGiAs/CeqU939jY2EL/zyYlJVVOwCUo7fkU9vnSaDTcc8895jJV+foVZ+rUqXTs2BFPT0/q1avHww8/zPHjx+0WjyQ8FeTHH3/k1VdfZcKECRw4cIC2bdvSv39/kpOT7R1akUobc2xsLE8++SRbtmxh586dBAUF0a9fPy5dumRRLjo6msTERPPPokWLKuN0rFKW6+Tl5WVxPufOnavEiItX2vNZtmyZxbnExcWh0+l4/PHHLcpV5WtYlMzMTNq2bctnn31m71BKpbRxb9u2jb59+7J27Vr2799Pr169ePDBB/njjz8syt1zzz0W13D79u0VEX6plfU6HT9+3OJ86tWrV0ERlk5pz+eTTz6xOI8LFy7g6+tb4DNYVa9fcbZu3crYsWPZtWsXGzZsIC8vj379+pGZmWmfgBRRITp16qSMHTvW/NxgMCj169dXpk6daseoilfemPPz8xVPT09lwYIF5m3Dhw9XBg8ebOtQbaa05zx//nzF29u7kqIrvfJew5kzZyqenp5KRkaGeVtVv4bWAJTly5fbO4xSK2vc4eHhyqRJk8zPJ0yYoLRt29Z2gVUQa853y5YtCqDcuHGjUmIqj7Jcv+XLlysajUY5e/aseVt1uX4lSU5OVgBl69atdnl/qeGpALm5uezfv5+oqCjzNq1WS1RUFDt37rRjZEWzRcxZWVnk5eXh6+trsT02NpZ69eoRFhbG6NGjuXbtmk1jL6uynnNGRgbBwcEEBQUxePBgjhw5UhnhlsgW13DevHkMHToUDw8Pi+1V9RqKgoxGI+np6QU+hydPnqR+/fo0btyYp59+mvPnz9spQtto164dgYGB9O3blx07dtg7HJuZN28eUVFRBAcHW2x3hOt38+ZNgAL/NyuLJDwVICUlBYPBgL+/v8V2f3//KtPOfDdbxPzGG29Qv359iy/c6Ohovv32WzZt2sT06dPZunUrAwYMwGAw2DT+sijLOYeFhfHNN9+wcuVKvv/+e4xGI127duXixYuVEXKxynsN9+zZQ1xcHCNHjrTYXpWvoSjoo48+IiMjgyeeeMK8rXPnzsTExLB+/XrmzJlDQkIC3bt3Jz093Y6Rlk1gYCBffPEFP//8Mz///DNBQUH07NmTAwcO2Du0crt8+TLr1q0r8Bl0hOtnNBoZP3489913H61atbJLDLJaurCJadOmsXjxYmJjYy068Q4dOtT8uHXr1rRp04YmTZoQGxtLnz597BFquURGRhIZGWl+3rVrV1q2bMncuXOZMmWKHSMrv3nz5tG6dWs6depksd3RrqEj++GHH5g0aRIrV6606NMyYMAA8+M2bdrQuXNngoODWbJkCS+88II9Qi2zsLAwwsLCzM+7du3K6dOnmTlzJt99950dIyu/BQsW4OPjw8MPP2yx3RGu39ixY4mLi7Nr3yOp4akAdevWRafTceXKFYvtV65cISAgwE5RFa88MX/00UdMmzaNX3/9lTZt2hRbtnHjxtStW5dTp06VO+byssV1cnZ2pn379tX+fDIzM1m8eLFVfzyr0jUUty1evJiRI0eyZMkSi1rWwvj4+NC8eXOHuYadOnWq9ueiKArffPMNzz77LHq9vtiy1e36vfzyy6xZs4YtW7bQsGFDu8UhCU8F0Ov13HvvvWzatMm8zWg0smnTJovagaqkrDF/+OGHTJkyhfXr19OhQ4cS3+fixYtcu3aNwMBAm8RdHra4TgaDgcOHD1f781m6dCk5OTk888wzJb5PVbqGQrVo0SKee+45Fi1aZDGlQFEyMjI4ffq0w1zDgwcPVvtz2bp1K6dOnbLqpqO6XD9FUXj55ZdZvnw5mzdvJjQ01O4BiQqwePFixcXFRYmJiVGOHj2qjBo1SvHx8VGSkpLsHVqRSor52WefVd58801z+WnTpil6vV756aeflMTERPNPenq6oiiKkp6errz22mvKzp07lYSEBGXjxo1KRESE0qxZMyU7O9su53i30p7zpEmTlF9++UU5ffq0sn//fmXo0KGKq6urcuTIEXudgoXSno9Jt27dlCFDhhTYXh2uYVHS09OVP/74Q/njjz8UQJkxY4byxx9/KOfOnbN3aMUqKe4333xTefbZZ83lFy5cqDg5OSmfffaZxecwNTXVXOaf//ynEhsbqyQkJCg7duxQoqKilLp16yrJycmVfn53K+35zpw5U1mxYoVy8uRJ5fDhw8q4ceMUrVarbNy40V6nYKG052PyzDPPKJ07dy70mFX5+hVn9OjRire3txIbG2vxfzMrK8su8UjCU4E+/fRTpVGjRoper1c6deqk7Nq1y94hlai4mHv06KEMHz7c/Dw4OFgBCvxMmDBBURRFycrKUvr166f4+fkpzs7OSnBwsPLiiy9WuaSvNOc8fvx4c1l/f39l4MCByoEDB+wQddFKcz6KoijHjh1TAOXXX38tcKzqcg0LYxq+fPfP3edf1ZQU9/Dhw5UePXqYy/fo0aPE8xwyZIgSGBio6PV6pUGDBsqQIUOUU6dOVe6JFaG05zt9+nSlSZMmiqurq+Lr66v07NlT2bx5s32CL0Rpz0dRFCU1NVVxc3NTvvzyy0KPWZWvX3EK+z0Ayvz58+0Sj+ZWUEIIIYQQDkv68AghhBDC4UnCI4QQQgiHJwmPEEIIIRyeJDxCCCGEcHiS8AghhBDC4UnCI4QQQgiHJwmPEEIIIRyeJDxCCCGEcHiS8AghaoyYmBh8fHyKLTNx4kTatWtXKfHcLSQkhFmzZlX6+44YMQKNRoNGo2HFihVW7RMSEmLeJzU1tULjE8IWJOERws7u/LLR6/U0bdqUyZMnk5+fb+/Qyqw0X5wlOXv2LBqNhoMHDxZ4rWfPnowfP94m71ORYmNjzde4qJ/Y2Fj27t3LqFGj7BJjdHQ0iYmJDBgwwKrye/fu5eeff67gqISwHSd7ByCEUL9s5s+fT05ODmvXrmXs2LE4Ozvz1ltvlfpYBoMBjUaDVlv972fy8vLsHUKZ5OXl4ezsbH7etWtXEhMTzc/HjRtHWloa8+fPN2/z9fVFr9dXapx3cnFxISAgwOryfn5++Pr6VmBEQthW9f+LKIQDMH3ZBAcHM3r0aKKioli1ahUAM2bMoHXr1nh4eBAUFMSYMWPIyMgw72tqplm1ahXh4eG4uLhw/vx59u7dS9++falbty7e3t706NGDAwcOWLyvRqNh7ty5DBo0CHd3d1q2bMnOnTs5deoUPXv2xMPDg65du3L69GmL/VauXElERASurq40btyYSZMmmWukQkJCAHjkkUfQaDTm5yXtZ4pnzpw5PPTQQ3h4ePD++++X6vd448YNhg0bRu3atXF3d2fAgAGcPHmy2H2mTZuGv78/np6evPDCC2RnZxco8/XXX9OyZUtcXV1p0aIFn3/+ufk1Uw3Ujz/+SI8ePXB1dWXhwoUW++v1egICAsw/bm5u5mtu+tHr9QWatCri+lgrNzeXl19+mcDAQFxdXQkODmbq1KmlOoYQVYkkPEJUQW5ubuTm5gKg1WqZPXs2R44cYcGCBWzevJnXX3/donxWVhbTp0/n66+/5siRI9SrV4/09HSGDx/O9u3b2bVrF82aNWPgwIGkp6db7DtlyhSGDRvGwYMHadGiBU899RR///vfeeutt9i3bx+KovDyyy+by//2228MGzaMcePGcfToUebOnUtMTIw5Odm7dy8A8+fPJzEx0fy8pP1MJk6cyCOPPMLhw4d5/vnnS/V7GzFiBPv27WPVqlXs3LkTRVEYOHBgkTVFS5YsYeLEiXzwwQfs27ePwMBAi2QGYOHChbz77ru8//77xMfH88EHH/DOO++wYMECi3Jvvvkm48aNIz4+nv79+5cq7uLY+vpYa/bs2axatYolS5Zw/PhxFi5caJG8ClHt2GWNdiGE2fDhw5XBgwcriqIoRqNR2bBhg+Li4qK89tprhZZfunSpUqdOHfPz+fPnK4By8ODBYt/HYDAonp6eyurVq83bAOXtt982P9+5c6cCKPPmzTNvW7RokeLq6mp+3qdPH+WDDz6wOPZ3332nBAYGWhx3+fLlFmWs3W/8+PEWZRISEhRAcXNzUzw8PCx+tFqtMm7cOEVRFOXEiRMKoOzYscO8b0pKiuLm5qYsWbLE/Lvy9vY2vx4ZGamMGTPG4v06d+6stG3b1vy8SZMmyg8//GBRZsqUKUpkZKRFfLNmzVKsdec1v1NwcLAyc+ZM8/OKuj7WxPN///d/Su/evRWj0Vjkflu2bFEA5caNG0WWEaKqkD48QlQBa9asoVatWuTl5WE0GnnqqaeYOHEiABs3bmTq1KkcO3aMtLQ08vPzyc7OJisrC3d3d0BtMmnTpo3FMa9cucLbb79NbGwsycnJGAwGsrKyOH/+vEW5O/fz9/cHoHXr1hbbsrOzSUtLw8vLi0OHDrFjxw6LGgODwVAgprtZu1+HDh0K3f/HH3+kZcuWFtuefvpp8+P4+HicnJzo3LmzeVudOnUICwsjPj6+0GPGx8fz0ksvWWyLjIxky5YtAGRmZnL69GleeOEFXnzxRXOZ/Px8vL29LfYrKu7yqqzrc7cRI0bQt29fwsLCiI6OZtCgQfTr189GZyVE5ZOER4gqoFevXsyZMwe9Xk/9+vVxclI/mmfPnmXQoEGMHj2a999/H19fX7Zv384LL7xAbm6u+cvLzc0NjUZjcczhw4dz7do1PvnkE4KDg3FxcSEyMtLcVGZyZ+da0zEK22Y0GgHIyMhg0qRJPProowXOw9XVtchztHY/Dw+PQvcPCgqiadOmFtvc3NyKfD9bMPWV+uqrrywSKQCdTmfxvKi4y6uyrs/dIiIiSEhIYN26dWzcuJEnnniCqKgofvrppzKdhxD2JgmPEFWAh4dHgS9zgP3792M0Gvn444/No66WLFli1TF37NjB559/zsCBAwG4cOECKSkp5Y41IiKC48ePFxqvibOzMwaDodT7lUfLli3Jz89n9+7ddO3aFYBr165x/PhxwsPDi9xn9+7dDBs2zLxt165d5sf+/v7Ur1+fM2fOWNQmVWW2/D17eXkxZMgQhgwZwmOPPUZ0dDTXr1+X0VmiWpKER4gqrGnTpuTl5fHpp5/y4IMPsmPHDr744gur9m3WrBnfffcdHTp0IC0tjX/96182qRF59913GTRoEI0aNeKxxx5Dq9Vy6NAh4uLieO+99wB1pNamTZu47777cHFxoXbt2lbtVx7NmjVj8ODBvPjii8ydOxdPT0/efPNNGjRowODBgwvdZ9y4cYwYMYIOHTpw3333sXDhQo4cOULjxo3NZSZNmsQ//vEPvL29iY6OJicnh3379nHjxg1effXVcsdta7b6Pc+YMYPAwEDat2+PVqtl6dKlBAQElDhxoxBVlYzSEqIKa9u2LTNmzGD69Om0atWKhQsXWj00eN68edy4cYOIiAieffZZ/vGPf1CvXr1yx9S/f3/WrFnDr7/+SseOHenSpQszZ84kODjYXObjjz9mw4YNBAUF0b59e6v3K6/58+dz7733MmjQICIjI1EUhbVr11o0Ad1pyJAhvPPOO7z++uvce++9nDt3jtGjR1uUGTlyJF9//TXz58+ndevW9OjRg5iYGEJDQ20Wty3Z6vfs6enJhx9+SIcOHejYsSNnz55l7dq1DjG/k6iZNIqiKPYOQgghhP2MGDGC1NTUUs+OHRsbS69evbhx44bU/IgqT1J1IYQQ5pGCa9assar8PffcY/UyFEJUBVLDI4QQNVxycjJpaWkABAYGWjXi7Ny5c+YJHRs3bixNXaLKk4RHCCGEEA5PUnIhhBBCODxJeIQQQgjh8CThEUIIIYTDk4RHCCGEEA5PEh4hhBBCODxJeIQQQgjh8CThEUIIIYTDk4RHCCGEEA7v/wNJETWX8qe9wAAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# create matplotlib figure\n",
"fig, ax = plt.subplots()\n",
"\n",
"# plot data\n",
"dataset.y0.plot.line(ax=ax, x=\"x0\", marker=\"o\", label=\"Data\")\n",
"\n",
"# plot fit\n",
"x_fit = np.linspace(dataset[\"x0\"][0].values, dataset[\"x0\"][-1].values, 1000)\n",
"y_fit = cos_func(x=x_fit, **fit_result.best_values)\n",
"ax.plot(x_fit, y_fit, label=\"Fit\")\n",
"ax.legend()\n",
"\n",
"# set units-aware tick labels\n",
"set_xlabel(dataset.x0.long_name, dataset.x0.units)\n",
"set_ylabel(dataset.y0.long_name, dataset.y0.units)\n",
"\n",
"# add a reference to the origal dataset in the figure title\n",
"fig.suptitle(f\"{dataset.attrs['name']}\\ntuid: {dataset.attrs['tuid']}\")\n",
"\n",
"# Save figure\n",
"fig.savefig(exp_folder / \"Cosine fit.png\", dpi=300, bbox_inches=\"tight\")"
]
},
{
"cell_type": "markdown",
"id": "ccfab7e1",
"metadata": {},
"source": [
"## Reusable fitting model and analysis steps\n",
"\n",
"The previous steps achieve our goal, however, the code above is not easily reusable and hard to maintain or debug.\n",
"We can do better than this! We can package our code in functions that perform specific tasks.\n",
"In addition, we will use the objected-oriented interface of `lmfit` to further structure our code.\n",
"We explore the details of the object-oriented approach later in this tutorial."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "652768c7",
"metadata": {},
"outputs": [],
"source": [
"class MyCosineModel(lmfit.model.Model):\n",
" \"\"\"\n",
" `lmfit` model with a guess for a cosine fit.\n",
" \"\"\"\n",
"\n",
" def __init__(self, *args, **kwargs):\n",
" \"\"\"Configures the constraints of the model.\"\"\"\n",
" # pass in the model's equation\n",
" super().__init__(cos_func, *args, **kwargs)\n",
"\n",
" # configure constraints that are independent from the data to be fitted\n",
"\n",
" self.set_param_hint(\"frequency\", min=0, vary=True) # enforce positive frequency\n",
" self.set_param_hint(\"amplitude\", min=0, vary=True) # enforce positive amplitude\n",
" self.set_param_hint(\"offset\", vary=True)\n",
" self.set_param_hint(\n",
" \"phase\", vary=True, min=-np.pi, max=np.pi\n",
" ) # enforce phase range\n",
"\n",
" def guess(self, data, **kws) -> lmfit.parameter.Parameters:\n",
" \"\"\"Guess parameters based on the data.\"\"\"\n",
"\n",
" self.set_param_hint(\"offset\", value=np.average(data))\n",
" self.set_param_hint(\"amplitude\", value=(np.max(data) - np.min(data)) / 2)\n",
" # a simple educated guess based on experiment type\n",
" # a more elaborate but general approach is to use a Fourier transform\n",
" self.set_param_hint(\"frequency\", value=1.2)\n",
"\n",
" params_ = self.make_params()\n",
" return lmfit.models.update_param_vals(params_, self.prefix, **kws)"
]
},
{
"cell_type": "markdown",
"id": "47143c62",
"metadata": {},
"source": [
"Most of the code related to the fitting model is now packed in a single object, while the analysis steps are split into functions that take care of specific tasks."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "d288a58c",
"metadata": {},
"outputs": [],
"source": [
"def extract_data(label: str) -> xr.Dataset:\n",
" \"\"\"Loads a dataset from its label.\"\"\"\n",
" tuid_ = get_latest_tuid(contains=label)\n",
" dataset_ = load_dataset(tuid_)\n",
" return dataset_\n",
"\n",
"\n",
"def run_fitting(dataset_: xr.Dataset) -> lmfit.model.ModelResult:\n",
" \"\"\"Executes fitting.\"\"\"\n",
" model = MyCosineModel() # create the fitting model\n",
" params_guess = model.guess(data=dataset_.y0.values)\n",
" result = model.fit(\n",
" data=dataset_.y0.values, x=dataset_.x0.values, params=params_guess\n",
" )\n",
" return result\n",
"\n",
"\n",
"def analyze_fit_results(fit_result_: lmfit.model.ModelResult) -> dict:\n",
" \"\"\"Analyzes the fit results and saves quantities of interest.\"\"\"\n",
" quantities = {\n",
" \"amplitude\": fit_result_.params[\"amplitude\"].value,\n",
" \"frequency\": fit_result_.params[\"frequency\"].value,\n",
" }\n",
" return quantities\n",
"\n",
"\n",
"def plot_fit(\n",
" fig_: matplotlib.figure.Figure,\n",
" ax_: matplotlib.axes.Axes,\n",
" dataset_: xr.Dataset,\n",
" fit_result_: lmfit.model.ModelResult,\n",
") -> Tuple[matplotlib.figure.Figure, matplotlib.axes.Axes]:\n",
" \"\"\"Plots a fit result.\"\"\"\n",
" dataset_.y0.plot.line(ax=ax_, x=\"x0\", marker=\"o\", label=\"Data\") # plot data\n",
"\n",
" x_fit_ = np.linspace(dataset_[\"x0\"][0].values, dataset_[\"x0\"][-1].values, 1000)\n",
" y_fit_ = cos_func(x=x_fit_, **fit_result_.best_values)\n",
" ax_.plot(x_fit, y_fit_, label=\"Fit\") # plot fit\n",
" ax_.legend()\n",
"\n",
" # set units-aware tick labels\n",
" set_xlabel(dataset_.x0.long_name, dataset_.x0.units, ax_)\n",
" set_ylabel(dataset_.y0.long_name, dataset_.y0.units, ax_)\n",
"\n",
" # add a reference to the original dataset_ in the figure title\n",
" fig_.suptitle(f\"{dataset_.attrs['name']}\\ntuid: {dataset_.attrs['tuid']}\")\n",
"\n",
"\n",
"def save_quantities_of_interest(tuid_: str, quantities_of_interest_: dict) -> None:\n",
" \"\"\"Saves the quantities of interest to disk in JSON format.\"\"\"\n",
" exp_folder_ = Path(locate_experiment_container(tuid_))\n",
" # Save fit results\n",
" with open(exp_folder_ / \"quantities_of_interest.json\", \"w\", encoding=\"utf-8\") as f_:\n",
" json.dump(quantities_of_interest_, f_)\n",
"\n",
"\n",
"def save_mpl_figure(tuid_: str, fig_: matplotlib.figure.Figure) -> None:\n",
" \"\"\"Saves a matplotlib figure as PNG.\"\"\"\n",
" exp_folder_ = Path(locate_experiment_container(tuid_))\n",
" fig_.savefig(exp_folder_ / \"Cosine fit.png\", dpi=300, bbox_inches=\"tight\")\n",
" plt.close(fig_)"
]
},
{
"cell_type": "markdown",
"id": "c9d139bd",
"metadata": {},
"source": [
"Now the execution of the entire analysis becomes much more readable and clean:"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "358959d4",
"metadata": {},
"outputs": [],
"source": [
"dataset = extract_data(label=\"Cosine experiment\")\n",
"fit_result = run_fitting(dataset)\n",
"quantities_of_interest = analyze_fit_results(fit_result)\n",
"save_quantities_of_interest(dataset.tuid, quantities_of_interest)\n",
"fig, ax = plt.subplots()\n",
"plot_fit(fig_=fig, ax_=ax, dataset_=dataset, fit_result_=fit_result)\n",
"save_mpl_figure(dataset.tuid, fig)"
]
},
{
"cell_type": "markdown",
"id": "31482522",
"metadata": {},
"source": [
"If we inspect the experiment directory, we will find a structure that looks like the following:\n",
"\n",
"```{code-block}\n",
"20230125-172712-018-87b9bf-Cosine experiment/\n",
"├── Cosine fit.png\n",
"├── dataset.hdf5\n",
"├── quantities_of_interest.json\n",
"└── snapshot.json\n",
"```\n",
"\n",
"## Creating a simple analysis class\n",
"\n",
"Even though we have improved code structure greatly, in order to execute the same analysis against some other dataset we would have to copy-paste a significant portion of code (the analysis steps).\n",
"\n",
"We tackle this by taking advantage of the Object Oriented Programming (OOP) in python.\n",
"We will create a python class that serves as a structured container for data (attributes) and the methods (functions) that act on the information.\n",
"\n",
"Some of the advantages of OOP are:\n",
"\n",
"- the same class can be instantiated multiple times to act on different data while reusing the same methods;\n",
"- all the methods have access to all the data (attributes) associated with a particular instance of the class;\n",
"- subclasses can inherit from other classes and extend their functionalities.\n",
"\n",
"Let's now observe what such a class could look like.\n",
"\n",
"```{warning}\n",
"This analysis class is intended for educational purposes only.\n",
"It is not intended to be used as a template!\n",
"See the end of the tutorial for the recommended usage of the analysis framework.\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "da4a3264",
"metadata": {},
"outputs": [],
"source": [
"class MyCosineAnalysis:\n",
" \"\"\"Analysis as a class.\"\"\"\n",
"\n",
" def __init__(self, label: str):\n",
" \"\"\"This is a special method that python calls when an instance of this class is\n",
" created.\"\"\"\n",
"\n",
" self.label = label\n",
"\n",
" # objects to be filled up later when running the analysis\n",
" self.tuid = None\n",
" self.dataset = None\n",
" self.fit_results = {}\n",
" self.quantities_of_interest = {}\n",
" self.figs_mpl = {}\n",
" self.axs_mpl = {}\n",
"\n",
" # with just slight modification our functions become methods\n",
" # with the advantage that we have access to all the necessary information from self\n",
" def run(self):\n",
" \"\"\"Execute the analysis steps.\"\"\"\n",
" self.extract_data()\n",
" self.run_fitting()\n",
" self.analyze_fit_results()\n",
" self.create_figures()\n",
" self.save_quantities_of_interest()\n",
" self.save_figures()\n",
"\n",
" def extract_data(self):\n",
" \"\"\"Load data from disk.\"\"\"\n",
" self.tuid = get_latest_tuid(contains=self.label)\n",
" self.dataset = load_dataset(tuid)\n",
"\n",
" def run_fitting(self):\n",
" \"\"\"Fits the model to the data.\"\"\"\n",
" model = MyCosineModel()\n",
" guess = model.guess(self.dataset.y0.values)\n",
" result = model.fit(\n",
" self.dataset.y0.values, x=self.dataset.x0.values, params=guess\n",
" )\n",
" self.fit_results.update({\"cosine\": result})\n",
"\n",
" def analyze_fit_results(self):\n",
" \"\"\"Analyzes the fit results and saves quantities of interest.\"\"\"\n",
" self.quantities_of_interest.update(\n",
" {\n",
" \"amplitude\": self.fit_results[\"cosine\"].params[\"amplitude\"].value,\n",
" \"frequency\": self.fit_results[\"cosine\"].params[\"frequency\"].value,\n",
" }\n",
" )\n",
"\n",
" def save_quantities_of_interest(self):\n",
" \"\"\"Save quantities of interest to disk.\"\"\"\n",
" exp_folder_ = Path(locate_experiment_container(self.tuid))\n",
" with open(\n",
" exp_folder_ / \"quantities_of_interest.json\", \"w\", encoding=\"utf-8\"\n",
" ) as file_:\n",
" json.dump(self.quantities_of_interest, file_)\n",
"\n",
" def plot_fit(self, fig_: matplotlib.figure.Figure, ax_: matplotlib.axes.Axes):\n",
" \"\"\"Plot the fit result.\"\"\"\n",
"\n",
" self.dataset.y0.plot.line(ax=ax_, x=\"x0\", marker=\"o\", label=\"Data\") # plot data\n",
"\n",
" x_fit_ = np.linspace(\n",
" self.dataset[\"x0\"][0].values, self.dataset[\"x0\"][-1].values, 1000\n",
" )\n",
" y_fit_ = cos_func(x=x_fit_, **self.fit_results[\"cosine\"].best_values)\n",
" ax_.plot(x_fit_, y_fit_, label=\"Fit\") # plot fit\n",
" ax_.legend()\n",
"\n",
" # set units-aware tick labels\n",
" set_xlabel(self.dataset.x0.long_name, self.dataset.x0.attrs[\"units\"], ax_)\n",
" set_ylabel(self.dataset.y0.long_name, self.dataset.y0.attrs[\"units\"], ax_)\n",
"\n",
" # add a reference to the original dataset in the figure title\n",
" fig_.suptitle(f\"{dataset.attrs['name']}\\ntuid: {dataset.attrs['tuid']}\")\n",
"\n",
" def create_figures(self):\n",
" \"\"\"Create figures.\"\"\"\n",
" fig_, ax_ = plt.subplots()\n",
" self.plot_fit(fig_, ax_)\n",
"\n",
" fig_id = \"cos-data-and-fit\"\n",
" self.figs_mpl.update({fig_id: fig_})\n",
" # keep a reference to `ax` as well\n",
" # it can be accessed later to apply modifications (e.g., in a notebook)\n",
" self.axs_mpl.update({fig_id: ax_})\n",
"\n",
" def save_figures(self):\n",
" \"\"\"Save figures to disk.\"\"\"\n",
" exp_folder_ = Path(locate_experiment_container(self.tuid))\n",
" for fig_name, fig_ in self.figs_mpl.items():\n",
" fig_.savefig(exp_folder_ / f\"{fig_name}.png\", dpi=300, bbox_inches=\"tight\")\n",
" plt.close(fig_)"
]
},
{
"cell_type": "markdown",
"id": "b56c4016",
"metadata": {},
"source": [
"Running the analysis is now as simple as:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "ba6ee364",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHgCAYAAAChG7dTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADCDklEQVR4nOzdd1iT5/rA8W8SRth7gywnouLEPapWO7R221275+k5nceenlrtHqc9PW1Ph7/O09o97bBDa9U6cBSVutkiS5C9k/f3x5tEIkNQICHcn+viAt68CXcgJHee537uR6MoioIQQgghhAPT2joAIYQQQojuJgmPEEIIIRyeJDxCCCGEcHiS8AghhBDC4UnCI4QQQgiHJwmPEEIIIRyeJDxCCCGEcHiS8AghhBDC4UnCI4QQQgiHJwmPEMJCo9HwyCOP2DqMXicmJoZrr73W1mEIIdohCY8Qdio9PZ2bb76ZuLg49Ho93t7eTJo0iRdffJHa2lpbhyd6mT179vDII4+QlZVl61CEsAknWwcghGjpu+++4+KLL8bV1ZWrr76axMREGhoa2LBhA/fddx9//vknb7zxRpf/3NraWpyc5Gmhs/bv349Wa9/vH/fs2cPSpUuZPn06MTExtg5HiB4nz2xC2JnMzEwWLlxIdHQ0a9asISwszHLZ7bffzqFDh/juu++65Wfr9fpuuV1HpCgKdXV1uLm54erqautwhBAnYd9vSYTog5555hmqqqp48803rZIds/79+3PXXXdZvm9qauLRRx8lPj4eV1dXYmJiePDBB6mvr7e63rZt25gzZw6BgYG4ubkRGxvLddddZ3XOiTU8jzzyCBqNhkOHDnHttdfi6+uLj48PixYtoqampkVs77//PqNHj8bNzQ1/f38WLlxIbm5uh+53Xl4e1113HSEhIbi6ujJ06FDeeusty+W1tbUMHjyYwYMHW03plZaWEhYWxsSJEzEYDABce+21eHp6kpGRwZw5c/Dw8CA8PJxly5ahKIrVzzUajfz73/9m6NCh6PV6QkJCuPnmmzl27JjVeTExMZx77rn8+OOPjBkzBjc3N15//XXLZc1reN555x00Gg0bNmzgL3/5C0FBQfj6+nLzzTfT0NBAWVkZV199NX5+fvj5+XH//fefdlwbNmxg3Lhx6PV64uLieO+996ziufjiiwGYMWMGGo0GjUbD2rVrO/S3EcIhKEIIuxIREaHExcV1+PxrrrlGAZSLLrpIeeWVV5Srr75aAZQFCxZYziksLFT8/PyUgQMHKs8++6yyfPly5R//+IcyZMgQq9sClCVLlli+X7JkiQIoI0eOVC644ALlv//9r3LDDTcogHL//fdbXfexxx5TNBqNcumllyr//e9/laVLlyqBgYFKTEyMcuzYsXbvQ0FBgRIZGalERUUpy5YtU1599VVl/vz5CqC88MILlvM2b96s6HQ65W9/+5vl2MKFCxU3Nzdl//79Vr8TvV6vDBgwQLnqqquUl19+WTn33HMVQPnnP/9p9bNvuOEGxcnJSbnxxhuV1157TXnggQcUDw8PZezYsUpDQ4PlvOjoaKV///6Kn5+f8ve//1157bXXlF9//dVy2TXXXGM59+2331YAJSkpSZk7d67yyiuvKFdddZXl9zZ58mTl8ssvV/773/9a4nr33XdPOa5BgwYpISEhyoMPPqi8/PLLyqhRoxSNRqOkpaUpiqIo6enpyl/+8hcFUB588EHlf//7n/K///1PKSgoaPfvIoQjkYRHCDtSXl6uAMp5553XofNTU1MVQLnhhhusjt97770KoKxZs0ZRFEX58ssvFUDZunVru7fXVsJz3XXXWZ13/vnnKwEBAZbvs7KyFJ1Opzz++ONW5+3evVtxcnJqcfxE119/vRIWFqYcPXrU6vjChQsVHx8fpaamxnJs8eLFilarVdatW6d8+umnCqD8+9//trqeOQm88847LceMRqNyzjnnKC4uLkpxcbGiKIqyfv16BVA++OADq+uvWrWqxfHo6GgFUFatWtUi/rYSnjlz5ihGo9FyfMKECYpGo1FuueUWy7GmpiYlMjJSmTZtmuXYqcS1bt06y7GioiLF1dVVueeeeyzHzL8rc5ImRF8jU1pC2JGKigoAvLy8OnT+999/D8Ddd99tdfyee+4BsNT6+Pr6AvDtt9/S2NjY6bhuueUWq++nTJlCSUmJJd4vvvgCo9HIJZdcwtGjRy0foaGhDBgwgF9//bXN21YUhc8//5x58+ahKIrV9efMmUN5eTk7duywnP/II48wdOhQrrnmGm677TamTZvGX/7yl1Zv+4477rB8rdFouOOOO2hoaOCXX34B4NNPP8XHx4fZs2db/dzRo0fj6enZIu7Y2FjmzJnT4d/b9ddfj0ajsXyfnJyMoihcf/31lmM6nY4xY8aQkZFhOdbZuBISEpgyZYrl+6CgIAYNGmR1m0L0dVK0LIQd8fb2BqCysrJD52dnZ6PVaunfv7/V8dDQUHx9fcnOzgZg2rRpXHjhhSxdupQXXniB6dOns2DBAi6//PIOFdz269fP6ns/Pz8Ajh07hre3NwcPHkRRFAYMGNDq9Z2dndu87eLiYsrKynjjjTfaXHlWVFRk+drFxYW33nqLsWPHotfrefvtt62SCjOtVktcXJzVsYEDBwJYlmYfPHiQ8vJygoODT/pzQU14OuPE35uPjw8AUVFRLY43r83pbFwn/hxQ/0Yn1vsI0ZdJwiOEHfH29iY8PJy0tLROXa+1F/wTL//ss8/YvHkzK1eu5Mcff+S6667jX//6F5s3b8bT07Pd6+t0ulaPK6ZCW6PRiEaj4Ycffmj13PZu32g0AnDllVdyzTXXtHrO8OHDrb7/8ccfAairq+PgwYOdTkSa/+zg4GA++OCDVi8PCgqy+t7Nza1Tt9/W762140qzouXOxnWyv48QQhIeIezOueeeyxtvvMGmTZuYMGFCu+dGR0djNBo5ePAgQ4YMsRwvLCykrKyM6Ohoq/PHjx/P+PHjefzxx1mxYgVXXHEFH330ETfccMNpxRwfH4+iKMTGxlpGUToqKCgILy8vDAYDs2bNOun5u3btYtmyZSxatIjU1FRuuOEGdu/ebRk9MTMajWRkZFjFc+DAAQBLH5r4+Hh++eUXJk2a1Olkpjt1R1wnS4qFcHRSwyOEnbn//vvx8PDghhtuoLCwsMXl6enpvPjiiwCcffbZAPz73/+2Ouf5558H4JxzzgHUqacT3+0nJSUBtFi+fiouuOACdDodS5cubfFzFEWhpKSkzevqdDouvPBCPv/881ZHtoqLiy1fNzY2cu211xIeHs6LL77IO++8Q2FhIX/7299ave2XX37ZKo6XX34ZZ2dnZs6cCcAll1yCwWDg0UcfbXHdpqYmysrK2r3f3aU74vLw8ACw2X0SwtZkhEcIOxMfH8+KFSu49NJLGTJkiFWn5Y0bN/Lpp59aer6MGDGCa665hjfeeIOysjKmTZtGSkoK7777LgsWLGDGjBkAvPvuu/z3v//l/PPPJz4+nsrKSpYvX463t7claTrdmB977DEWL15MVlYWCxYswMvLi8zMTL788ktuuukm7r333jav/9RTT/Hrr7+SnJzMjTfeSEJCAqWlpezYsYNffvmF0tJSAB577DFSU1NZvXo1Xl5eDB8+nIcffpiHHnqIiy66yOq+6PV6Vq1axTXXXENycjI//PAD3333HQ8++KBlSmjatGncfPPNPPnkk6SmpnLmmWfi7OzMwYMH+fTTT3nxxRe56KKLTvv301ndEVdSUhI6nY6nn36a8vJyXF1dOeOMM9qsExLC4dhmcZgQ4mQOHDig3HjjjUpMTIzi4uKieHl5KZMmTVJeeuklpa6uznJeY2OjsnTpUiU2NlZxdnZWoqKilMWLF1uds2PHDuWyyy5T+vXrp7i6uirBwcHKueeeq2zbts3qZ9LGsnTzMm4z87LrzMxMq+Off/65MnnyZMXDw0Px8PBQBg8erNx+++1WPXLaUlhYqNx+++1KVFSU4uzsrISGhiozZ85U3njjDUVRFGX79u2Kk5OT1VJzRVGXdY8dO1YJDw+39Pu55pprFA8PDyU9PV0588wzFXd3dyUkJERZsmSJYjAYWvzsN954Qxk9erTi5uameHl5KcOGDVPuv/9+5ciRI5ZzoqOjlXPOOafV2Ntaln5iG4C2fp/meLsyrmnTplktdVcURVm+fLkSFxen6HQ6WaIu+hyNokhVmxDCsVx77bV89tlnVFVV2ToUIYSdkBoeIYQQQjg8SXiEEEII4fAk4RFCCCGEw5MaHiGEEEI4PBnhEUIIIYTDk4RHCCGEEA5PEh7R67zzzjtoNBrLBpDtiYmJsTTpE0IIM/PzyLZt22wdiughkvCIHrVx40YeeeSRXtHeft++fdx///0kJSXh5eVFWFgY55xzTptPkHl5eVxyySX4+vri7e3NeeedR0ZGhtU5ubm5LF26lHHjxuHn50dgYCDTp0/nl19+OWk8N954IxqNhnPPPbfFZR9//DFXXnklAwYMQKPRMH369FZvo6qqiiVLljB37lz8/f3RaDS88847bf7MvXv3MnfuXDw9PfH39+eqq66y2uqhufT0dC6//HKCg4Nxc3NjwIAB/OMf/zjp/QL46aefuP7660lMTESn01n2ujpRVlYWGo2m1Y+PPvrI6tzly5czbdo0QkJCcHV1JTY2lkWLFrWZKL/55psMGTIEvV7PgAEDeOmll1qc8+WXXzJnzhzCw8NxdXUlMjKSiy66qNUtMWJiYlqN85ZbbunQ7+SLL77g0ksvJS4uDnd3dwYNGsQ999zT5v/ON998w6hRo9Dr9fTr148lS5bQ1NTU7s9o7zHVnsLCQm6++WYiIiLQ6/XExMRw/fXXW53Tmd9VV+vM41b0HbK1hOhRGzduZOnSpVx77bX4+vqe0m1cddVVLFy4EFdX164N7gT/93//x5tvvsmFF17IbbfdRnl5Oa+//jrjx49n1apVVhtdVlVVMWPGDMrLy3nwwQdxdnbmhRdeYNq0aaSmphIQEADA119/zdNPP82CBQu45ppraGpq4r333mP27Nm89dZbLFq0qNVYtm3bxjvvvINer2/18ldffZXt27czduzYdvetOnr0KMuWLaNfv36MGDGCtWvXtnnu4cOHmTp1Kj4+PjzxxBNUVVXx3HPPsXv3blJSUnBxcbGcm5qayvTp04mIiOCee+4hICCAnJwccnNz2/sVW6xYsYKPP/6YUaNGER4eftLzL7vsshZbYpy40eoff/xBbGws8+fPx8/Pj8zMTJYvX863337Lzp07rX7O66+/zi233MKFF17I3Xffzfr16/nLX/5CTU0NDzzwgOW83bt34+fnx1133UVgYCAFBQW89dZbjBs3jk2bNjFixAirGJKSkrjnnnusjnV0c9WbbrqJ8PBwrrzySvr168fu3bt5+eWX+f7779mxY4fVpqI//PADCxYsYPr06bz00kvs3r2bxx57jKKiIl599dVWb/9kj6m25ObmMmnSJABuueUWIiIiOHLkCCkpKVbndfZ31VU687gVfYxtGz2LvubZZ59tdUuC7nJiy//O2LZtm1JZWWl17OjRo0pQUJAyadIkq+NPP/20AigpKSmWY3v37lV0Op2yePFiy7G0tLQW2wrU1dUpgwcPViIjI1uNw2g0KhMmTFCuu+66NrcRyMnJsWyZMHTo0BZbCjT/Wfn5+YqiKMrWrVsVQHn77bdbPffWW29V3NzclOzsbMuxn3/+WQGU119/3XLMYDAoiYmJSnJyslJTU9PqbZ1MXl6e0tDQoCiKopxzzjlKdHR0q+dlZmYqgPLss8+e0s/Ztm2bAihPPvmk5VhNTY0SEBDQ4vd6xRVXKB4eHkppaWm7t1lQUKA4OTkpN998s9Xx9rai6IjWtn149913FUBZvny51fGEhARlxIgRSmNjo+XYP/7xD0Wj0Sh79+5tcTsdeUy15ayzzlJiY2OVo0ePdvzOmLT1u+pKHX3ctrX9h3BcMqUleswjjzzCfffdB0BsbKxliD8rK8syVdHa9IpGo+GRRx6xfN9aDY+iKDz22GNERkbi7u7OjBkz+PPPP1uNIz09nfT09JPGO3r0aDw9Pa2OBQQEMGXKFPbu3Wt1/LPPPmPs2LGMHTvWcmzw4MHMnDmTTz75xHJs6NChBAYGWl3X1dWVs88+m8OHD1NZWdkijv/973+kpaXx+OOPtxlrVFQUWu3J/51dXV0JDQ096XkAn3/+Oeeeey79+vWzHJs1axYDBw60uk8//fQTaWlpLFmyBDc3N2pqajAYDB36GWbh4eE4Ozt36jrV1dU0NDR06jrmqbLm00K//vorJSUl3HbbbVbn3n777VRXV/Pdd9+1e5vBwcG4u7u3OdXU0NBAdXV1p+IEWp2WPP/88wGsHn979uxhz5493HTTTTg5HR+0v+2221AUhc8++6zF7XTkMdWaffv28cMPP3DfffcREBBAXV0djY2NHb5+W7+r5557jokTJxIQEICbmxujR49uNW6A999/n3HjxuHu7o6fnx9Tp07lp59+slze0cetWU1NDTfffDMBAQF4e3tz9dVXc+zYsQ7fJ9F7SMIjeswFF1zAZZddBsALL7zA//73P/73v/9Zdq4+HQ8//DD//Oc/GTFiBM8++yxxcXGceeaZrb7QzJw5k5kzZ57yzyooKLBKWoxGI7t27WLMmDEtzh03bhzp6emtJjIn3qa7uzvu7u5WxysrK3nggQd48MEHO5yodIW8vDyKioravE9//PGH5Xtz/ZGrqytjxozBw8MDd3d3Fi5caNnlvKstXboUT09P9Ho9Y8eOtXrBO1FJSQlFRUVs27bNMmXY/O9vvi8n3tfRo0ej1Wqt7qtZWVkZxcXF7N69mxtuuIGKiopWH1Nr1qzB3d0dT09PYmJiePHFF0/p/poVFBQAWD3+2oo/PDycyMjIFvGfzmPK/LcOCQlh5syZuLm54ebmxllnndVmbVRHflcvvvgiI0eOZNmyZTzxxBM4OTlx8cUXt0g2ly5dylVXXYWzszPLli1j6dKlREVFsWbNGqBzj1uzO+64g7179/LII49w9dVX88EHH7BgwQIUaVHncKSGR/SY4cOHM2rUKD788EMWLFhgVZh6OgWFxcXFPPPMM5xzzjmsXLkSjUYDwD/+8Q+eeOKJ0w3byvr169m0aRMPPfSQ5VhpaSn19fWEhYW1ON987MiRIwwaNKjV2zx06BBffPEFF198MTqdzuqyZcuW4ebmxt/+9rcuvBcnl5+fD9DmfTLfZ1dXVw4ePAjAJZdcwty5c1m8eDE7d+7kySefJDc3lw0bNlj+JqdLq9Vy5plncv755xMREUFGRgbPP/88Z511Ft988w3nnHNOi+tERERQX18PqCN0//nPf5g9e7bVfdXpdAQHB1tdz8XFhYCAAI4cOdLiNsePH8/+/fsB8PT05KGHHmpRtDt8+HAmT57MoEGDKCkp4Z133uGvf/0rR44c4emnnz6l+//000+j0+m46KKLrOKHtv9WJ8Z/Oo8p89/6pptuYuzYsXz88cfk5OSwdOlSZs2axa5du1ok7R35XR04cMCqJumOO+5g1KhRPP/885a/6aFDh1i2bBnnn38+n332mdWIpjk56czj1szFxYXVq1dbRhijo6O5//77WblyJfPnz+/070jYL0l4RK/3yy+/0NDQwJ133mn1wvrXv/611YSnI8vZW1NUVMTll19ObGws999/v+V4bW0tQKtF1OaCUPM5J6qpqeHiiy/Gzc2Np556yuqyAwcO8OKLL/Lhhx92e4H2iTp6n1xdXS07ko8dO5b3338fgAsvvBB3d3cWL17M6tWrrQq8T0e/fv348ccfrY5dddVVJCQkcM8997Sa8Pzwww/U1dWxd+9e3n///RajfrW1tW0Wsur1+lb/dm+//TYVFRVkZGTw9ttvU1tbi8FgsHoR/uabb6yus2jRIs466yyef/557rzzTiIjIzt8v0Et7H7zzTe5//77GTBggFX80PbfqqKiwvL96T6mzH/r0NBQvvvuO8v9jYyM5LLLLmPFihXccMMNVtfpyO+qebJz7NgxDAYDU6ZM4cMPP7Qc/+qrrzAajTz88MMtpm/N//ededya3XTTTVbTqbfeeisPPvgg33//vSQ8DkYSHtHrZWdnA1i9CAAEBQXh5+fXJT+jurqac889l8rKSjZs2GBV22N+sjaPIjRXV1dndU5zBoOBhQsXsmfPHn744YcWq5PuuusuJk6cyIUXXtgl96EzOnOfzJ/N05Vml19+OYsXL2bjxo3MmjWL8vJyq+TBxcUFf3//047V39+fRYsW8dRTT3H48OEWicSMGTMAOOusszjvvPNITEzE09OTO+64wxJ/W7VAdXV1rf7tmq8IW7hwIUOGDAHUWpS2aDQa/va3v/Hjjz+ydu1arrzySmpraykvL7c6r7VppvXr13P99dczZ86cFnU3J/tbNY+/o4+p4uJiqzosT09PPD09Lbd1ySWXWCUdF198MVdddRUbN25skfB05Hf17bff8thjj5Gammp1P5q/gUlPT0er1ZKQkNBm3Kfyv3ji84anpydhYWGn/MZI2C+p4RF2oa0pj84Wv3aHhoYGLrjgAnbt2sXXX39NYmKi1eX+/v64urpahtObMx9rban1jTfeyLfffss777zDGWecYXXZmjVrWLVqFXfddZelqDsrK4umpiZqa2vJysqyeufe1cxTAm3dJ/N9huP3LSQkxOo88xSRuQD0rrvuIiwszPJxwQUXdFm8UVFRACetGYqPj2fkyJF88MEHlmNhYWEYDAaKioqszm1oaKCkpOSky+T9/Pw444wzrG6zo3F+/PHHVr+T1qZidu7cyfz580lMTOSzzz6zKkw2xw9t/63M8XfmMTV27FirmMzJSVt/a51OR0BAwEmLfVv7Xa1fv5758+ej1+v573//y/fff8/PP//M5Zdf3uk6ms48bkXfIyM8oke1ldiYR2JOXL1hHr1pT3R0NKDWF8TFxVmOFxcXn/ZqC6PRyNVXX83q1av55JNPmDZtWotztFotw4YNa7Uh4ZYtW4iLi8PLy8vq+H333cfbb7/Nv//97xYjIwA5OTkArSYFeXl5xMbG8sILL/DXv/71FO9Z+yIiIggKCmr1PqWkpJCUlGT5fvTo0Sxfvpy8vDyr88y1I+ai9Pvvv58rr7zScnlXjb4BlgaPHSmAr62ttRoBMN+Xbdu2WfX22bZtG0aj0eq+tnebJ47UdCTOOXPm8PPPP7d5fnp6OnPnziU4OJjvv/++xarBE+MfN26c5fiRI0c4fPgwN910E9C5x9QHH3xgNRpn/r8aPXq05fzmGhoaOHr0aId//81/V59//jl6vZ4ff/zRKhl5++23ra4XHx+P0Whkz549bf5NOvO4NTt48KBlFBDUabv8/PwWfZ6EA7DponjR57z66qsKoPzxxx8tLgsMDFTOP/98q2P33HOPAihLliyxHDP3zzD38ikqKlKcnZ2Vc845RzEajZbzHnzwQQVo0Yfn0KFDyqFDhzoU72233daif0drnnrqqRY9Pfbt26fodDrlgQcesDr3mWeeUQDlwQcfbPP2srOzlS+//LLFR1BQkDJmzBjlyy+/bPM+tNeHp7mT9eG55ZZbFDc3NyUnJ8dy7JdfflEA5dVXX7Ucy8/PV1xdXZXJkydbegEpiqIsXry4RW+ijmivD09RUVGLY4cPH1b8/PyU4cOHW441Nja22j9ny5Ytik6nU6666irLsZqaGsXf318599xzrc698sorFXd3d6WkpMRyrLCwsMVtZmZmKl5eXsqUKVMsx0pKSpSmpiar8xoaGpRJkyYpLi4ull5I7cnPz1fi4uKU8PDwk/atGjx4sDJixAirn/nQQw8pGo1G2bNnj6Iop/eYMqurq1OCg4OVuLg4pba21nL89ddfVwDlk08+sRzr6O/q7rvvVtzd3ZXq6mqr89zd3ZXmL1EHDx5UtFqtcv7551s9zhRFsfq/7+jj1vw8Mnr0aEsPKEU5/v/51Vdftfu7EL2PRlFk7Z3oOVu3bmXcuHGcffbZLFy4EGdnZ+bNm4eHhweLFy/mqaee4vrrr2fMmDGsW7eOAwcOsH37dpYsWWLpxfPOO++waNEiMjMzLSu9HnzwQZ588knOPvtszj77bP744w9++OEHGhoaOOecc6z6+5ivc7I5+n//+9/87W9/Y8KECS16tIDaE8XDwwNQl/qOHDmSyspK7r33XpydnXn++ecxGAykpqZa3vl++eWXXHDBBQwYMICHH364xW3Onj27xXRBczExMSQmJvLtt99aHV+3bh3r1q0D4KWXXsLd3d2yEmbq1KlMnTrVcu7LL79MWVkZR44c4dVXX+WCCy5g5MiRANx55534+PgAakfdkSNH4uvry1133UVVVRXPPvsskZGRbN261erd+KOPPsrDDz/M7NmzWbBgATt37mT58uUsXLiQFStWtPt7Bti1a5elyPf999+nsLDQ0qF4xIgRzJs3D1ALf9PT05k5cybh4eFkZWXx+uuvU1lZyY8//mjpXVNWVkZkZCSXXnopQ4cOxcPDg927d/P222+j1+vZvHmzVe3Gf//7X26//XYuuugi5syZw/r163nvvfd4/PHHefDBBy3nmZdjJyUl4efnx8GDB3nzzTepqalh9erVTJw4EVAfo4899hgXXXQRsbGxlJaWsmLFCtLS0njiiSdYvHjxSX8nSUlJ7Ny5k/vvv59hw4ZZXRYSEmK10uzbb79l/vz5zJgxg4ULF5KWlsbLL7/M9ddfzxtvvNHuz2nrMdWW9957j2uuuYaxY8dy1VVXkZOTw4svvsj48eP59ddfLSsNO/q7WrNmDTNnzmTKlClcfvnlFBUV8corrxAaGsquXbusprUefvhhHn30USZOnMgFF1yAq6srW7duJTw8nCeffBLo+OPW/DwybNgwfH19ueSSS9i/fz///e9/mThxIuvWreuy1YXCTtg44RJ90KOPPqpEREQoWq3WaqSmpqZGuf766xUfHx/Fy8tLueSSS5SioqKTjvAoitrtd+nSpUpYWJji5uamTJ8+XUlLS2u103J0dHSbIwjNXXPNNQrQ5seJ77pzc3OViy66SPH29lY8PT2Vc889Vzl48KDVOUuWLGn3Nlvrrnti7K11xW3vdpv/7sy30dH7lJaWppx55pmKu7u74uvrq1xxxRVKQUFBi59vNBqVl156SRk4cKDi7OysREVFKQ899JDVO+f2mP+mrX00//utWLFCmTp1qhIUFKQ4OTlZRgW3b99udXv19fXKXXfdpQwfPlzx9vZWnJ2dlejoaOX6669vc7TkjTfeUAYNGqS4uLgo8fHxygsvvGA1cmD+PY8ZM0bx8/NTnJyclPDwcGXhwoXKrl27rM7btm2bMm/ePCUiIkJxcXFRPD09lcmTJ1uNgJxMe4+T1kbwvvzySyUpKUlxdXVVIiMjO/z7P5WO0B9++KEyYsQIxdXVVQkJCVHuuOMOpaKiwuqcjv6uFEVR3nzzTWXAgAGKq6urMnjwYOXtt9+2PKZP9NZbbykjR45UXF1dFT8/P2XatGnKzz//bHVORx635sfcb7/9ptx0002Kn5+f4unpqVxxxRVWo3rCccgIjxBCCCEcnqzSEkIIIYTDk4RHCCGEEA5PEh4hhBBCODxJeIQQQgjh8CThEUIIIYTDk4RHCCGEEA5PEh4hhBBCODxJeIQQQgjh8CThEUIIIYTDk4RHCCGEEA7PydYB2AOj0ciRI0fw8vKSzeKEEEKIXkJRFCorKwkPD0erbX8MRxIe4MiRI0RFRdk6DCGEEEKcgtzcXCIjI9s9RxIewMvLC1B/Yd7e3jaORgghhBAdUVFRQVRUlOV1vD2S8IBlGsvb21sSHiGEEKKX6Ug5ihQtCyGEEMLhScIjhBBCCIcnCY8QQgghHJ4kPEIIIYRweJLwCCGEEMLhScIjhBBCCIcnCY8QQgghHJ4kPEIIIYRweJLwCCGEEMLh2WXC88orrxATE4Neryc5OZmUlJR2zy8rK+P2228nLCwMV1dXBg4cyPfff99D0QohbMVgVNiUXsLXqXlsSi/BYFRsHZIQwk7Z3dYSH3/8MXfffTevvfYaycnJ/Pvf/2bOnDns37+f4ODgFuc3NDQwe/ZsgoOD+eyzz4iIiCA7OxtfX9+eD14I0WNWpeWzdOUe8svrLMfCfPQsmZfA3MQwG0YmhLBHGkVR7OotUXJyMmPHjuXll18GwGg0EhUVxZ133snf//73Fue/9tprPPvss+zbtw9nZ+cO/Yz6+nrq6+st35s3HysvL5e9tIToBVal5XPr+zs48cnLvJvOq1eOkqRHiD6goqICHx+fDr1+29WUVkNDA9u3b2fWrFmWY1qtllmzZrFp06ZWr/PNN98wYcIEbr/9dkJCQkhMTOSJJ57AYDC0+XOefPJJfHx8LB9RUVFdfl+EEN3DYFRYunJPi2QHsBxbunKPTG8JIazYVcJz9OhRDAYDISEhVsdDQkIoKCho9ToZGRl89tlnGAwGvv/+e/75z3/yr3/9i8cee6zNn7N48WLKy8stH7m5uV16P4QQ3Scls9RqGutECpBfXkdKZmnPBSWEsHt2V8PTWUajkeDgYN544w10Oh2jR48mLy+PZ599liVLlrR6HVdXV1xdXXs4UiFEVyiqbDvZOZXzhBB9g10lPIGBgeh0OgoLC62OFxYWEhoa2up1wsLCcHZ2RqfTWY4NGTKEgoICGhoacHFx6daYhRA9K9hL36XnCSH6Brua0nJxcWH06NGsXr3acsxoNLJ69WomTJjQ6nUmTZrEoUOHMBqNlmMHDhwgLCxMkh0hHNC4WH/CfPSWAuUTaVBXa42L9e/JsIQQds6uEh6Au+++m+XLl/Puu++yd+9ebr31Vqqrq1m0aBEAV199NYsXL7acf+utt1JaWspdd93FgQMH+O6773jiiSe4/fbbbXUXhBDdSKfVsGReQrvnLJmXgE7bVkokhOiL7GpKC+DSSy+luLiYhx9+mIKCApKSkli1apWlkDknJwet9nieFhUVxY8//sjf/vY3hg8fTkREBHfddRcPPPCAre6CEKKbzU0M4z+XJXHnh6ktLrt3zkBZki6EaMHu+vDYQmfW8Qsh7MPmjBIWvrEZb70zj543lC/+OMxvB45ywagInr8kydbhCSF6QK/twyOEEB21Kb0EgKkDAzlvZAR/nTUQgG935VNW02DL0IQQdkgSHiFEr7QpQ014JsQHAJAU5UtCmDcNTUY+35Fny9CEEHZIEh4hRK9T12ggNacMgAlxasKj0Wi4PLkfAB9syUZm64UQzUnCI4TodbZnH6PBYCTE25XYQA/L8QUjI/Bw0ZFRXM0W6bQshGhGEh4hRK9jrt+ZEBeARnN8+bmnqxPzkyIAWLElxyaxCSHskyQ8Qohe58T6neauME1r/ZCWT0lVfY/GJYSwX5LwdCODUWFTeglfp+axKb1Edm8WogtU1zexM7cMgAlxgS0uT4zwYUSkD40Ghc+2H+7h6IQQ9sruGg86ilVp+SxducdqV+cwHz1L5iV0qCmawaiQkllKUWUdwV5qm3zpHCsEbMs+RpNRIcLXjSh/t1bPuTy5HzsP72ZFSg43TolDK/87QvR5kvB0g1Vp+dz6/g5OHM8pKK/j1vd38OqVo9pNek43WRLCkZnrd8afUL/T3LwR4Tz27V6yS2rYmF7C5AEtR4KEEH2LTGl1MYNRYenKPS2SHcBybOnKPW1Ob5mTpebJDhxPllal5XdtwEL0Mub6nYmt1O+Yubs4cf4otXj5gy3ZPRKXEMK+yQhPF0vJLG2RrDSnAPnldSx4ZQMDgr0I8nYlyNOVYG89Ae4u/POrtDaTJQ1qsjQ7IVSmt0SfVFHXyO7DZUDrBcvNXZ7cj/c2ZfPznkKKKuoI9tb3QIRCCHslCU8XK6psO9lpbndeBbvzKjp12+ZkKSWz9KRP9kI4oq2ZpRgViA5wJ9y39fods8Gh3oyO9mN79jE+2ZbLHWcM6KEohRD2SBKeLhbs1bF3kbdOi8fbzZniynqKKusorqwn82g1RZUnX0bb0aRKCEfTvP9OR1yR3I/t2cf4MCWXW6f3l5FRIfowSXi62LhYf8J89BSU17U6NaUBQn303DtnUIsn303pJVy2fPNJf0ZHkyohHE17/Xdac/awMJau3ENeWS3rDhYzY1Bwd4YnhLBjUrTcxXRaDUvmJQBqctOc+fsl8xJafadpTpbaeg+qQV2tNS7Wv6vCFaLXKKtpYE++Og3c0REevbOOC0dFAvDBZum8LERfJglPN5ibGMarV44i1Md6JCbUR9/ukvTTSZaEcHRbMktRFIgL8uhUAbJ5Q9E1+wrJL6/trvCEEHZOprS6ydzEMGYnhHa6eaA5WTqxD4+fuwtPXJAofXhEn9XZ+h2z/sGeJMf6syWzlI9Scvnb7IHdEZ4Qws7JCE830mk1TIgP4LykCCbEB3R4ZGZuYhgbHjiDD28cz4R4dfrq/FHhkuyIPm1zJ+t3mrtifDQAH2/Npclg7NK4hBC9gyQ8dsqcLF02Tn2i3pxRauOIhLCdkqp69hVUAmqH5c6aMzQEfw8XCirqWLOvqKvDE0L0AjKl1Z0O/Ag73gO/GAgdBvEzwTOoUzcxPk4d4dmTX0FZTQO+7i7dEKgQ9m1LpprwDwzxJNDTtWNXKtoLmeugaC+udeW86W/ghzp3fl9/jDMTroA2tqUQQnShunI4+DPkboHB50LcNJuFIglPdzryB+z79vj3Gh0kzIep90NIQoduIthLz4BgTw4WVbE5o5S5iaHdFKwQ9qvD9TuKAvu+g3XPQn6q1UUjgZHOQMGHNL70Is5T/gojLgOtDHQL0eWOZcO6Z2DXp2Aw9ZfTuUjC47AGnQ1u/nAsE7I2QMEu+PNL2PMNTLgNzngYnE4+YjMxPoCDRVVsSj8qCY/okzrUf6csF76+HTJ/U7/XOqtPruEj1f/D+gq2bV5LQu0O3EsPwNe3QcobcMEbEDSoB+6FEH2A0QhbXoNfHrEkOjXe8eQHTqTOI5nBRsVmK40l4elOYcPVD7OC3bD2KXXUZ+NLkPU7LFwB3u0XI0+ID+TdTdlsNL3LFaIvKaqs41BRFRoNJMe2kfBkroePr1CHz53c1DcU428DD+td0osDriH5gw3c6P4bdzp/hSY/FV6fBue/CkPP7/47I4Qjq6uAT6+B9DUAlAQls7jsPH4qioYiDeyBsPVrWDIvwSaLcGQstyeFDoOFH8DCD0HvC0d2wFtzoDSz3auNj/NHo4GDRVWyrYToc8wF+0NCvfHzaGVEdPdn8L/z1WQnfBTc+jvMfLhFsgMwKyEEvZcfz9ecxZqZ30HcDGiqhU8XwZbXu/uuCOG4Kgvg7bPVZMfZnT9HPcKY3L/wU2UMzTvLFZTXcev7O1iVlt/jIUrCYwuDz4abfwO/WCjLhrfmtpv0+Lq7MDTcGzheyyBEX2Gp32ltOmvP1/DFjWBshCHzYdH3EBDf5m0567RcOiYKgLd31cGVn8PYGwEFfrgfNr/WHXdBiF7NYFTYlF7C16l5bEovwWA8YeOk6hJ4dx4U7gaPIAzXfs8Nfw5HaWXfAPM1l67c0/J2upkkPLbiFwPXrYLgBKgqgA8ugpq2l56bizXNvUiE6Cs2pR8FWilYTv8VPr8BFCOMvBIufhec299BHWDhuCg0Gthw6ChZpXVw9rMw7QH1wlV/h7TPu/ouCNFrrUrLZ/LTa7hs+Wbu+iiVy5ZvZvLTa46P0DRUw4pL4OgB8I5Aue4nvikMsmqceyIFyC+vIyWzZ9utSMJjS16hcOUX4B0JJYfgo8vB0NjqqRPj1eF5qeMRfUl+eS1ZJTVoNTAurtkecqWZaq2AoQESzoN5/+nwaqtIP3emD1TbQ3yYkqMuT5++GMbdBCjw5S2Qt70b7o0QvcuqtHxufX9Hi+TFPC31w64j1H56M+Rto1bnzX1ujzDipYP87ZOdHbr9ni7RkITH1rzD4MrPwNUbcjbB6mWtnjbWtC1FdkkNh4/V9HCQQtiGeTorMcIHb72zerChBj6+Sq3ZiRgDFywHra5Tt3t5strQ85Ntuaw7UMTXO4+wacB9KIPOUZOoT65td8RVCEdnMCosXbmH1iadFNNHyidP4nZwJY2Kjqtq/sqn2R5U1DXh1MFVWMFeHd8TrytIwmMPgofAea+oX2/8j9qw8ASerk6MiPQBpI5H9B2t9t/56R+WWgEueQ+cOtiIsJkZg4LwdXfmWE0jV7+1VR2qf3MrszMXUu3RD8pz4Ktb1b4+QvRBKZml7U5LDdek86DuAwDedL+eAWNn88T5w/j2zsmkLZ1DmI++lQoelQYI81H3l+xJkvDYi4T5piF14Os7Wn13aZ7WkoRH9BXm/jvjzQXLh1bDtrfUry9YDj4Rp3S7v+wtpKym5fRxeoWOi0tvwaB1gQOrIHXFKd2+EL1de9NNrjTwnPNrOGsMHA47k1vuf4YnLxjO5cn9SIzwQe+sY8k8tbnuiUmP+fsl8xJ6vB+PJDz25MzHIHAQVBfBj/9ocbF5lcrG9BIUeecpHFxuaQ2Hj9Wi02oYG+OvTmF9c6d64bibIH7GKd2ueai+NQqwV4nhVc2l6oFVi6HiyCn9HCF6s/amm/7i9AUDtXkUKz7kT3my1W1a5iaG8eqVowj1sb6dUB89r145yiZ9eKTxoD1xcoXzXoY3z4SdK2DYhdB/luXi0dF+uOi0FFTUkXm0mrggTxsGK0T3Mo/uDI/0wdPVCX54Airy1HYOsx455ds92VC9ArxQfSbXROzCq2QnfHcvXCYjPaJvGRfrT5iPnoLyOqs6niGabG7RrQTgOedbeGJw220g5iaGMTshlJTMUooq6wj2UqexbNVpWUZ47E3UOEi+Rf36+/ugqcFykd5Zx6hoX+D4i4EQjmpz8/qdwj2Qsly94NznwcXjlG+3IytDDOjYOmIZaJ1g/3dw8JdT/nlC9EY6rcYyLXWcwiPO76LTKHxvGMeMBYtOmrzotBomxAdwXlIEE+IDbJbsgCQ89mnGg+ARDKUZ6p4kzcjydNEXKIpyfP+sOH+1KaBigCHzIP6M07rtjq4McYsYBuNuVr9Z9XerNx9C9AVzE8O4a9YAy/dna7eQrN1HPS64z3vKJtNSp0MSHnuk94ZZS9Svf3sGqoosF0001fFsTi/B2MNdKoXoKdklNeSX1+Gs05Bcsw6y1oOTHs58/LRv2zxU36EVJNMfUFeDlRyErctP+2cL0duYX2dmxHrwnM+nADhP/RvTx422ZVinRBIeezXicnWX54ZKWPes5fDwSF/cXXSUVDdwoKjShgEK0X3MoztjIr1wWWdKcib9FfyiT/u2mw/Vn3QFid4HzvinenDdc+rmiEL0Ieb/xb96rcG9Nh+8I9FO/qttgzpFkvDYK60WZpuaEG5/B8pyAXBx0jImRu1dsPGQTGsJx2RuvbDIc5M6teseCBPv7LLbb2sFSaCXa8sVJElXQEB/qC2Fza92WQxC2LvaBgOpuWV4UUNi9rvqwZkPg4u7bQM7RZLw2LPYqRAzRe382myUZ2Kz5elCOBpz/Y4LjUzLN/XcmXI3uHbtqsS5iWFseOAMPrxxPINCvAC4YXJsy7oEnRPMMLWJ2PiSdGAWfcb27GM0GhT+4vEzuvoytW3KsItsHdYpk4TH3p3xkPr5j/fVd7ocT3i2ZLaya60QvVx6cTXFlfVc5fwrrjX54BUOY67vlp9lXkFy2Th1B/XV+4paPzFhAYQMU6eYN7zQLbEIYW82ZRzFmyquVL5VD0z/e6e3cbEnkvDYu37jof9sdYXKuucAGBrug5feicq6Jv48Um7jAIXoWpvSj+JCI3c4f6MemHYfOHfvnjuzEkIA2JZVyrHqVlZjabXH33xsfVNGeUSfsCm9hBucvsfNWA3BQ9XEvxeThKc3mL5Y/bzrEyjPQ6fVMD5OprWEY9qUUcIC3Qb8jKXq6E7Sld3+MyP93BkS5o1RgV/3tzHKM3COOsrTWA1b/6/bYxLClqrrm0g/XMC1up/UA9P/rib+vVjvjr6viBwN0ZPB2Ahb1KJJqeMRjshoVNiSfpSbdaYh9Am3gZNLj/zs2UOCAXWfrVZpNGBenbLlNXXXdiEc1LbsY1ykWYO3pgYCBsDgc20d0mmThKe3mHSX+nnbO1BbZtlXa2tmKQ1NRtvFJUQXOlBUyei6TcRr81FcvWH0tT32s83TWr/tL6a+ydD6SQkLwDcaakrUujohHNSWg4Vc5/SD+s3EO3r96A5IwtN7DJgNwQlq0eS2txgY7EWAhwu1jQZ2Hi6zdXRCdIlNh45yi5O6T49m7A3g6tVjPzsx3IcQb1eqGwyWZfEt6JyOL4/f+BIYmnosPiF6ktO+r4jQlFDnGgDDF9o6nC4hCU9vodEcf6Ld8hpaYyPjTaM8bT45C9HLFOz5nVHaQxg0zsf3lOshWq2GWUPUUZ42p7VA7cvjHgDlOXDghx6KToieU1nbwNzyTwCoH31jty8a6CmS8PQmiReBZwhUFcK+lc3qeI7aODAhTp/RqJB4RH2SLYufB14hPR6DeVrrlz1FKEobLR9c3GHUNerXKW/0UGRC9JyD234hQZtNHS74TL7Z1uF0GUl4ehMnl2ZPtP9n2Uh0R3YZdY1t1BwI0Uvsz8ziTGUjAD5Tb7NJDBPiAnB30VFQUUdaXjvbSIy5DjRayFwHRft6LkAheoBL6tsA7PadDe7+No6m60jC09uMWQQaHeRsJKYpk1BvPQ0GI9uzj9k6MiFOS+XGt3DVNJHpMhCnfmNtEoPeWcfUAUEA/NzetJZvFAw6W/1aNhUVjqSqmEEla9QvR1xr21i6mCQ8vY13OAw+BwDN1v+TaS3hGIwGYrPV6azsuMtsGspsy7RWOwkPQLJpqD/1Q6iTBqDCMdRtfRdnmkg1xjFk1FRbh9Ol7DLheeWVV4iJiUGv15OcnExKSkqHrvfRRx+h0WhYsGBB9wZoa+NuVD/v+oQp/dQeJdKPR/Rmhv0/EtRUQJniQeD4K2way4zBwWg1sCe/gryy2rZPjJkCQUPURoS7Pum5AIXoLkYDylZ1/7pVbue22Fy3t7O7hOfjjz/m7rvvZsmSJezYsYMRI0YwZ84ciora6H5qkpWVxb333suUKVN6KFIbipmibuLWWM30xvUA7DpcTlW9LJEVvY/BqFCw+hUAvlSmMzAyyKbx+Hu4MCZarVtod5RHo4HRppo66ckjHMGhX3CryaNM8aB6wHm2jqbL2V3C8/zzz3PjjTeyaNEiEhISeO2113B3d+ett95q8zoGg4ErrriCpUuXEhcX14PR2ohGAyPVdvt++z8hOsAdg1Fha6bs7yN6l1Vp+Zz/1KeEFv8OwLuNZzDt2V9ZlZZv07hmJZyk67LZsEtA6wz5qVCwu/sDE6I7bVOLlT81TGPsgHAbB9P17CrhaWhoYPv27cyaNctyTKvVMmvWLDZt2tTm9ZYtW0ZwcDDXX9+xHZXr6+upqKiw+uh1RixUi5fztrEgQo1f6nhEb7IqLZ9b39/BpOrV6DQKKcZBZClhFJTXcev7O2ya9Jj78WzOKKGirrHtEz0CLDV1MsojerWqIpSD6r5ZHxlmMD7OcVZnmdlVwnP06FEMBgMhIdb9N0JCQigoKGj1Ohs2bODNN99k+fKOr5R48skn8fHxsXxERUWdVtw24RmsbmYInGv8FZA6HtF7GIwKS1fuQUHhIt1vgPquEsDc/Wbpyj0YjG30wulmcUGexAd50GhQWHeguP2TR16lft71MTTVd39wQnSH3Z+iUQykGuMhcCDBXo5VvwN2lvB0VmVlJVdddRXLly8nMDCww9dbvHgx5eXllo/c3NxujLIbmaa14o+sxIkm9uRXcKy6wcZBCXFyKZml5JfXMUpzkHhtPjWKK98bki2XK0B+eR0pNpymndXR1VrxM8A7AmqPwb7veiAyIbpB6goAPjNMtezV6GjsKuEJDAxEp9NRWGj9BFNYWEhoaGiL89PT08nKymLevHk4OTnh5OTEe++9xzfffIOTkxPp6emt/hxXV1e8vb2tPnqlAWeCRxDamqNc7rcfRYEtmTLKI+xfUWUdABfp1gHwg3Ec1bi1eZ4tzDZNa63ZV0SjoZ0NerU6SLpc/fqP//VAZEJ0sfxdUJhGA058Y5jAhLiODyD0JnaV8Li4uDB69GhWr15tOWY0Glm9ejUTJkxocf7gwYPZvXs3qamplo/58+czY8YMUlNTe+dUVWfonGH4pQBc5qK+cMi0lugNgr306KnnXJ1am2eezmrtPFsZ2c+PAA8XKuqa2Jp1kpGmJNNS+vRfoeJI9wcnRFcyje78ZBhNBZ4kO2D9DthZwgNw9913s3z5ct5991327t3LrbfeSnV1NYsWLQLg6quvZvHixQDo9XoSExOtPnx9ffHy8iIxMREXFxdb3pWeYZrWGlSxCV8qZSNR0SuMi/XnUs+deGtqyTUGscU42OpyDRDmo2dcrO2eeHVaDWcMNq3W2tN+Wwz8Y6HfBECBtC+6PzghukpTA+xW+0h9ZpjKwBBPAj1dbRxU97C7hOfSSy/lueee4+GHHyYpKYnU1FRWrVplKWTOyckhP9+2S1btSvAQCBmGVmnibF0KB4uqbDoNIERH6LQabg/8A4DPjVNQmj0VaUyfl8xLQKfVtHLtnmOu4/l5b0Hbm4maDbtI/bz7026OSogudOgXqCmh0imA9cbhTIhzzPodsMOEB+COO+4gOzub+vp6tmzZQnLy8WLGtWvX8s4777R53XfeeYevvvqq+4O0J6Yn2oVuakdqGeURdq+mlOAitffON4aJVheF+uh59cpRzE0Ms0VkVqYMCMTFSUtuaS0HCqvaPznhfNA6qT15jh7skfiEOG1pnwHwo3YyBnQOW7AMdprwiE5KvBCAYU1phFAqCY+wf3u+AmMTe4glQwln2XlDeXFhEh/eOJ4ND5xhF8kOgLuLE5P7qwWcJ21C6BEA8WeoX8soj+gNGqph/w8AvFc5BoDkWEl4hD3zjYKo8WhQOFe3SQqXhf0z1bl81TgeP3dnrkiO5rykCCbEB9h8GutE5s1Efz7Z8nSAYRern3d/CiebAhPC1g6sgsYaqj2i2KXEMTjUCz8Px619lYTHUZimtRboNpJTWkNuaY2NAxKiDRVHIGsDAN8aJjBtYJDdJTnNzTQVLqfmlp28Pm7Q2eDsDqUZcGRHD0QnxGkwvfHY6jEd0Dj0dBZIwuM4hp4PGh3DtJnEavLZlCGjPMJO/fkloPCnbghHCGSGKaGwV8HeekZE+QKwZu9JVmu5eqpJD8AumdYSdqyuHExbSfyvSp3OcuSCZZCEx3F4BKodX4H52o1slmktYa/SPgfg47pxaDUwdYBtd0fviNlD1KSsY9NaptVae74GYzsNC4WwpX3fgaGBpoBBrC4NRKNx7PodkITHsZiKl+fqUtiYXnLyZbRC9LTSTMjbjhEt3xvGM7KfX6+oGTAvT99w6Cg1DU3tnxx/Brh4QeURyNveA9EJcQpM01kHg84ENCSEeePj7mzbmLqZJDyOZOBcFK0TQ7S56CszyTxabeuIhLC2dyUA+/UjOIoPMwbZ/+gOwKAQL6L83ahvMrLh4NH2T3ZytWzsy96vuz84ITqrphQy1E2nv1fGA44/nQWS8DgWd380MVMAmKvdKqu1hP0xJTyf1owEYPog+67fMdNoNMwy7a110uXpAAnz1c97vpbVWsL+7P8BjE0QksjKwx4ADl+wDJLwOB7TE+1cXQrf7jzC16l5bEovwWCUJ11hYxX5cFhtjvltw2iCvVwZGt57Nu41bya6em/Ryf+f+s8CJzcoy4H8nT0QnRCdsO9bACpj55JVUoNWA2NtuI1LT5GEx9EMOgcFDUnaDHIyD3DXR6lctnwzk59ew6o02ZJD2JDpSTbXI5Ei/JgxKBiNxn6Xo59obKw/3nonSqobSM091v7JLh4wYJb69d5vuj84ITqqvgrS1wCQole7nCdG+OCtd+z6HZCEx+Gsyjay1TgIgDm6rZbjBeV13Pr+Dkl6hO2YprO+a1SXwM4Y3Dvqd8ycdVrLEvqfT7aZKEDCAvXznm9kWkvYj0O/QFMd+MXyY7E6jdUX6ndAEh6HYjAqLF25h1WGsQDMbZbwmJ9ul67cI9NboufVlFqaDa6oHIGTVsMk05YNvUmn6ngGnAk6Fyg5CMX7ujkyITrINNLKkHPZlFkKwPg+UL8DkvA4lJTMUvLL6ywJz1jNfgIpt1yuAPnldaSYHuRC9JgDq0AxUOI5kBwlhLEx/nj1wiH0aYOCcNJqOFRUdfJVkHrv43tr7ZFpLWEHmhrgwI8AFEXMJre0Fp1Ww9gYx6/fAUl4HIq57f0RAtlpjEOrUZit29bmeUL0GNN01lqdugS2t01nmXnrnRlvGv7/pSNNCIeYVmtJHY+wB5nroL4CPENYVxsLwLAIHzxdnWwcWM+QhMeBBHvpLV+vMowD1OXp7Z0nRLerr4JDqwF4uyQRgBm9ZDl6ayybiXZkWmvQWaDRQmGaumJLCFvap77xYPA5bMpQC+/7wnJ0M0l4HMi4WH/CfPRogJ+MowEYr92DB7UAaIAwHz3j+sDyQ2FHDv0ChnpqPKNJa4og0s+N/sGeto7qlM00bTOxLauUY9UN7Z/s7g9R6qgW+1d1c2RCtMNoULeTAJTB57LZtN9iXylYBkl4HIpOq2HJvAQAMpRwMo0huGqamKzdjXnx75J5CXa9M7VwQAfUF/odbhMATa9bjn6iSD93hoR5Y1Tg1/0dWK016Cz184EfujcwIdpzeCtUF4Peh8M+o8krq8VJq2FMjJ+tI+sxkvA4mLmJYbx65ShCfdxYYxwFwCztDkJ99Lx65SjmJobZOELRpxgNlh2ZPywfCvTe+p3mOrWZqDnhyVwPdRXdGJUQ7TC98aD/bDZlVQIwIsoXd5e+Ub8DkvA4pLmJYWx44Axch54NwGznnWy4b5okO6Ln5e2AmhIMLt78WBGNi5OWCXG9bzn6iWYnhAKwZl8Rn23Pbb+beeAA8I8HY6Ol4ZsQPe6A+saDgXPZ1Aens0ASHoel02oYMn4OFYobvko5uvw/bB2S6ItM7yozfcfThBMT4gJwc9HZOKjTd/iY2o6/vsnIvZ/uOnk3c8u0ltTxCBsoy4WiP0GjRek/k02mfRb7UsEySMLj0AaE+bPOOAKAuj3f2Tga0SeZen6salAfh2cM7r2rs8xWpeVz2wc7OHFAp91u5gPnqp8P/qRO8wnRkw6q/4dEJZNd40pBRR0uOi2j+vWd+h2QhMeheeud2e6aDIBx3/c2jkb0OeWHoXA3ikbLu0X9gd69HB2OdzNvbfKq3W7m/caD3gdqStTiUSF6kumNBwPOtExnJUX5OsRoa2dIwuPgikKnYlA0uB/bL31ARM8yPcke80+i2OhFXJAH/QLcbRzU6TF3M29Lm93Mdc7Qf7b69X5ZrSV6UEON2nAQYOAcy3RWX9lOojlJeBxcZHgE25WB6jfSB0T0JFPCs8XJtFloLx/dgY53KW/1PKnjEbaQtV7dLNQnCiVoSJ8tWAZJeBzewBAvVhvU5enyRCt6TEMNZP4GwLslgwHHSHg62qW8pqGp5cH+s0CjUzcSPZbVtYEJ0Rbz8/6AM8koqaG4sh4XJy0j+/naNCxbkITHwQ0M8eIXUz8eJWs9NJxkw0MhuoLpXWWDZwSbq0LwcNExNrb3F0g272bensVfpHHnh3+Q1XyDUTdfiFJr6sxbbQjRrRTFejm6aTprVD9f9M59q34HJOFxeP2DPckgnMNKIBpDA2T9buuQRF9gele5z2sioGFS/0BcnXr/E2zzbuYnJj3m78dEq4ndyp1HmPX8bzz45W4KK0xTXP1nqp8P/YLBqLApvYSvU/Pa7+MjxKkq/BMqDqM4ubFFGcpn2w8DkBzb96azAPpOi8U+ys1FR7S/B7+Vj+AKp9XqvkYDz7R1WMKRKYqlfuebGtNmoQ6wHN3M3M186co9VgXMoT56lsxLYG5iGGl55Tz3037W7i9mxZYcPt9+mGsnxnDHkOl48ShNh9Yy46kfya04vkQ9rNn1hegSpuXoG40JXPF2quXw+5uzGRLm1ecea5Lw9AEDQ7z47dhwrsCU8AjRnYr3QUUeipOe94uiAZg+qPdvJ9Hc3MQwZieEkpJZSlFlHcFe6qa85n3qEiN8eGfROFIyS3lm1T62ZR/j9XUZfLhFywYnP7wNx4is3UUuQy23ae7jI1vAiK5yLPVb/IDv60dYHS+tbuiTjzWZ0uoDBoV6sdE4FAM6KE2H0gxbhyQcmak+pch/DHWKC4NDvQjzcbNxUF1Pp9UwIT6A85IimBAf0OqmvONi/fn0lgm8de0YBod6UVFv5OcGddRrmnan1bnt9vERopMMNcfwKkkFYK3BOuHpq481SXj6gIEhXlThzl5ntfZACiZFt0pXH18bGQ44Rnfl06HRaDhjcAjf/2UKd8yI5zfTi8+JCQ+008dHiE46tOV7nDByyBhOHi1HWPviY00Snj5gYIgXAD83DFMPSMIjuktjLWRvBOD9YlN35T6e8JhptRoGhHix3piIUdEwRJtLCK2/2HS0348QbXHN/hWA9cZh7Z7Xlx5rkvD0AbGBHjhpNZahdDLXQVODbYMSjil7o7oc3T2U7bUheOudGBnla+uo7Eawl55jeLNTiQdgmq7lKI/5PCFOmaIQWqy+8VhnHN7uqX3psSYJTx/g4qQlLsiDPUo09fogaKyG3M22Dks4ovQ1AOz3HAtomDowCCedPM2Ymfv4/GZ6ETpxWkuDulprXKy/DaITDqM0A311Ho04scU4pNVT+uJjTZ6J+gh1WktDlq+58Zms1hLdwDRd+n2N+iTrCN2Vu5K5j4+5jmeKNg0d1runL5mX0GoBtBAdZvo/rAgaTS0tR3DMj66+9liThKePGGSq40nRjVQPSB2P6GoVR6B4LwoaPjwaj0YD0xxsOXpXmJsYxs2XX0Q5nnhrakjSHALAy9Wpzy0TFt3ENNIaMHwui88e3OLiUB99n3ysSR+ePmJgqJrw/FAzmKvQQGEaVOSDd996wItuZHqSLfVNpKzAixGRvgR6uto4KPs0d1gkxn1z4M/PuSMqk0U5gwjwdGHO0FBbhyZ6u6YGdWsXgP4zqdtjBGBUPz+umRjdomdUXyIjPH2EeaXW9mIdSrhpM1GZ1hJdyTRquFmTBMAMGd1pl9a0zcRUXRruLjqySmrYkVNm26BE73c4BRqqwD0QQoaxem8hAJeMiWy3Z1RfIAlPH9HP3x1XJy31TUbKIqaoBzPW2jQm4UCMBshQl8F+VDoAkPqdk4qbDoCuIJXzh3gA8PmOwzYMSDgE00gr8TMoqmpg5+FyQPphgSQ8fYZOq2FAiCcABzzGqgcz1oLRaLughOPIT4XaYzQ5e7KpPoYADxeGRfjYOir75hMBgQNBMXJlSA4A3+48Ql2j4SRXFKId5vrM+Jms2VcEwIhIH4K9+87y87ZIwtOHmKe1tjXGgbMH1ByFoj02jko4hEPqu8p0z9E04cS0QUFo++iweaeYRnkG12wn3EdPRV0Tq/cW2TYm0XtVH4V8U6uD+Bn8YnoszRwSYsOg7IckPH2IeaXW3uI6iJmkHpRpLdEVTMPoP9Sqm2HK8HkHmRIeTcZaFoyMAOALmdYSpypjLaBASCJ1+iA2HCoGYOYQ+X8ESXj6FPNKrQOFlRA7TT0oCY84XXUVaqEk8Fn5QHRaDVP6S8Fyh8RMBo0WStO5RC19Yu2BYoor620bl+idmtXvbEw/Sl2jkXAfPQlh3raNy05IwtOHmEd4MoqraYyeqh7M/l22mRCnJ3sjGJuocI/isBLM6H5++Lg72zqq3kHvAxGjAYgp38qIKF8MRoVvdh6xcWCi11GUZgnPGZbprDOGBKPRyPQySMLTp4T56PFydaLJqJChjQaPIGisgbxttg5N9GLGjN8A+N2gTmdNHRRoy3B6H9O0FhlruWiUOq31+XaZ1hKddPQgVOaDzhUlajxrpH6nBUl4+hCNptlKraJqmdYSp21VWj7pKd8B8F2lOifzzu9ZrErLt2VYvUuzhOfcYaE46zTsya9gb36FTcMSvUym+saDqHH8WdxIQUUd7i46JsQF2DYuOyIJTx8zqHkdT7MnWiE6a1VaPv94fy0DlGwANhkTACipauDW93dI0tNRkWPB2R1qjuJXdYiZg9V35FK8LDolc536OXYav5iaDU4ZEIjeWWfDoOyLJDx9jHlp+v6CSogzjfAc3qYWngrRQQajwtKVexivVdsa7DVGUYLad0cxnbN05R4MRqWNWxAWTq4QfXzV5AWmaa2vUo/QZJA+WaIDjMbj20nETbO0NpDpLGuS8PQx5sLlA4WV4NsP/ONAMajFy0J0UEpmKfnldUzSpgGw0ZhodbkC5JfXkZJZaoPoeqFmo63TBwXj7+FCcWU96w8dtWlYopco3A21x8DFkwKPIezOK0ejkfYQJ7LLhOeVV14hJiYGvV5PcnIyKSkpbZ67fPlypkyZgp+fH35+fsyaNavd8/s689L07NIaahsMzZ5of7NdUKLXKaqsA2CC9k8AfjcObfc8cRLm/8Ps33GhifkjwgH4Ykee7WISvYd5Oit6EqsPqm8ykqJk894T2V3C8/HHH3P33XezZMkSduzYwYgRI5gzZw5FRa13H127di2XXXYZv/76K5s2bSIqKoozzzyTvDx5omhNoKcr/h4uKAocKqqSOh5xSoK99IRzlFhtIU2KlhTj4DbPEx0QnHB81eThrVw4KhKAn/4soKKu0cbBCbtnfsMaO9UynTVLprNasLuE5/nnn+fGG29k0aJFJCQk8Nprr+Hu7s5bb73V6vkffPABt912G0lJSQwePJj/+7//w2g0snr16h6OvPcYaF6pVVgJMVMADRTvhcoC2wYmeo1xsf6c5XkAgF1KHFW4W12uQW2DMC7W3wbR9UJabbNVk7+SGOHNgGBP6puMfL9Lir9FOwyNai8soC5qMr+bpkGlu3JLTh05adSoUZ26UY1GwzfffENERESnrtfQ0MD27dtZvHix5ZhWq2XWrFls2rSpQ7dRU1NDY2Mj/v5tP9HW19dTX3+8k2lFRd8q2B0U4sXmjFI14RkdCWEj1M0fM36DEZfaOjzRC+i0Gq4Lz4Ec+P2E+h1zi7Ml8xLQyX5aHRc3HdI+g4zf0JzxEBeOjuSpH/bx+Y7DLBzXz9bRCXuVtwMaq8HNn/UVIdQ35RHh62ap1xTHdSjhSU1N5Z577sHT0/Ok5yqKwlNPPWWVUHTU0aNHMRgMhIRYD8WFhISwb9++Dt3GAw88QHh4OLNmzWrznCeffJKlS5d2Oj5HYa7j2V9YqR6Im25KeNZKwiM6RlEIL1Vr5TaeUL8T6qNnybwE5iaG2SKy3it2ivr5yA6or2JBUgTPrNrH1qxjZJdUEx3gYdv4hH0y99+JncLqfereWbOku3KrOpTwANx3330EB3dsiOxf//rXKQd0Op566ik++ugj1q5di17fdu3A4sWLufvuuy3fV1RUEBUV1RMh2gXLSq0CU8ITOwV+/zdkbbBdUKJ3OXoQTVUB9YozGa4JvHfZWI7VNBLspU5jycjOKfCLAZ9+UJ4DuZsJ7T+LSf0DWX/wKF/syONvswfaOkJhj0wFy8aYaaz+WZajt6dDNTyZmZkEBXV8M8A9e/YQHR3d6WACAwPR6XQUFhZaHS8sLCQ0NLTd6z733HM89dRT/PTTTwwfPrzdc11dXfH29rb66EsGmBKeI+V1akFk1HjQOqlPtMeybRyd6BVM7yq3GQeyYGw8UwcGc15SBBPiAyTZOR0xk9XPmWpPFXPx8hd/HEZRpKeROEFjLeRuAWC/+0iKK+vxcNGRHCe1c63pUMITHR3Nn3/+2eEbjYqKQqfrfHdHFxcXRo8ebVVwbC5AnjBhQpvXe+aZZ3j00UdZtWoVY8aM6fTP7Wt83JwJ9VZHwA4WVoKrJ4Sb6rRklEd0QM1+dZPC341DuUzqS7qOeVrL1ERuztBQPFx05JbWsjXrmA0DE3YpZzMYGsArnB/y1IUDUwcG4eok3ZVb0+FVWsOHDyc5OZnly5dTWVnZbQHdfffdLF++nHfffZe9e/dy6623Ul1dzaJFiwC4+uqrrYqan376af75z3/y1ltvERMTQ0FBAQUFBVRVVXVbjI5goGWLCdPv6YQnWiHaZDSgMSXG1eGTiAmU2pIuE2Ou40mFugrcXHScPUythZKtJkQL5v47cdP4xVS/I9NZbetwwvPbb78xdOhQ7rnnHsLCwrjmmmtYv77rXxwvvfRSnnvuOR5++GGSkpJITU1l1apVlkLmnJwc8vOPL9N89dVXaWho4KKLLiIsLMzy8dxzz3V5bI5kkGlp+n5zHY95KD1rA8jQuWhH45GduBkqqFDcmDB5pq3DcSy+UWotj2JQ370DF45Wp7W+25VPXaPBhsEJu2NKeI6FjGdPfgUaDcwY1PHyk76mwwnPlClTeOutt8jPz+ell14iKyuLadOmMXDgQJ5++mkKCrquh8sdd9xBdnY29fX1bNmyheTkZMtla9eu5Z133rF8n5WVhaIoLT4eeeSRLovHEQ1svsUEQFQyaJ2hPBeOZdkuMGH3Dm3+HoBU7VBmJnau9YToAPMoT5b6YjYuxp8IXzcq65v4aU9hO1cUfUpdubqiD1hTPwSAUf38CJDuym3qdONBDw8PFi1axG+//caBAwe4+OKLeeWVV+jXrx/z58/vjhhFN7DaNR3AxQMiRqtfSx2PaEfdIbVg2dBvMs46u+td2vuZEx5T4bJWq+FC04ain2+XaS1hkr0RFCP4x7MyS10oIM0G23daz1b9+/fnwQcf5KGHHsLLy4vvvvuuq+IS3ax/sCcaDRytauBolalnkmVaS+p4ROsyiyqIr1U3DE2YeJaNo3FQ5nq6gl1QWwbA+abVWusPFlNUIfuTCSxvTBv7TWZjegkg20mczCknPOvWrePaa68lNDSU++67jwsuuIDff5cdt3sLdxcnovzUqn7LKI+lcFnqeETrVv/2K96aGmo17oQMGGvrcByTdzj4x6vv3nPUDvOxgR6MjvbDqMBXqbJPoACy1dfbva7DaGgy0s/fnQHBJ28O3Jd1KuE5cuQITzzxBAMHDmT69OkcOnSI//znPxw5coTly5czfvz47opTdANzHc9B80qtyHFqHU9FHpRm2DAyYY/qGg2U7vkVgOrQMaCVpa/dJtZ6WgvgAsu0Vp705Onr6ishfxcAK4+pPe9mSnflk+pwwnPWWWcRHR3NSy+9xPnnn8/evXvZsGEDixYtwsNDlqX2RoNCTSu1LHU87hBpetcudTziBKvSCkhsUvtx+Q+ZYeNoHNwJhcsA5w4Lx8VJy/7CSv480rf2/xMnyE0BxYDiG82XGWqSI9NZJ9fhhMfZ2ZnPPvuMw4cP8/TTTzNo0KDujEv0gIEnbjEBUscj2rRiczbjtOqedtqYSTaOxsGZ/w8L0qCmFAAfd2dmm17Uvtgh01p9mml39NLAMRytasDL1YmxMdJd+WQ6nPB88803nHfeeafUQVnYp0HNNhG1DJFLHY9oxYHCSkpy0gjUVKDo9BA+0tYhOTavUAgcCCiWFzeAC0er01pfp+bRaDDaKDhhc6bHRIoyGICpg4JwcZIVkyfTod/QBRdcQEVFx4dQr7jiCoqKik45KNEz4gI9cdJqqKxrosC88iNyLOhcoDJf6niExYotOZbRHU3UWHBysXFEfUBMy+7nUwYEEejpQkl1A+sOFNsoMGFTjXWQtw2AT4rUbV1myXL0DulQwvP1119TXFxMRUXFST/Ky8tZuXKlbO3QC7g4aS3bAlg6Lju7Ha/jyVzXxjVFX1LbYODzHYctCQ/RMp3VI5p3Pzdx1mk5L8lUvCxbTfRNedvB0IDBI4Rfiz3RamD6QEl4OqJDCY+iKAwcOBA/P7+Tfvj7+1NdXd3dcYsuMujElVrQ7J2lFC4LWLnrCJV1jUxyMic8E20bUF9h/j8sTIPqEsth82qtn/4s5KOUHDall2AwyvRzn2GazsrxSgI0jIn2x89DRlw7wqkjJ/3666+dvuGICGk53xsMDPHiu935x1dqgfrO8jfUoXRFAVnq2Kd9sCWHSM1RgpUS0DodHwEU3cszCIKGQPFetedKgtrJPre0Biethiajwt+/2A1AmI+eJfMSmJsYZsuIRU8w9d/5rW4AIN2VO6NDCc+0adO6Ow5hI+al6QeaJzyRY0HnClWFUHIIAgfYKDpha2l55ezMLeNi8+hO+Ei1fYHoGdETTQnPRkiYz6q0fG59fwcnjucUlNdx6/s7ePXKUZL0ODJDo7okHfisWK3fkd3RO07Kuvu45puIGs3D4s56iBqnfi11PH3aipQcAM4PyFYPyHRWzzIv/8/+HYNRYenKPS2SHcBybOnKPTK95cjyd0FjNQ3OPvxpCCcmwJ34IOmD11GS8PRx0QEeuDhpqWs0knus5vgF5oLJbNkupK+qqm/i6z/Ufi8jjXvUg1Kw3LP6mRLMgt1s359Ffnnb+2gpQH55HSmZpT0Tm+h5pufjA66JKGiZOSREuit3giQ8fZxOq6F/kKnjcvMGhOYXtuyN0o+nj/rqjzyqGwyMDajHrTIL0EBUsq3D6lu8w8A/DlAwZG/q0FWKKmVzUYdlKlj+qToekPqdzpKER1gaEB4sarZSK3KMuq9WZT4cy7RRZMJWFEXhgy3qdNatcaaeWqGJ4OZru6D6KtM0Yr/KPzp0erCXvjujEbZiNEKOmvCsrRuAl166K3eWJDzCUsdjNcLj7AYRo9Wvm3V6FX1Dam4Ze/MrcHXSMslpv3pQprNsw/R7Dy/7gzAfPW1NYGhQV2uNi5UXQYdUtAfqymnQuvGnEsP0QcE46+QlvDM6tEpr5MiRHZ4n3LFjx2kFJHpeqyu1QH1nmbtZTXhGXmmDyIStmEd3zh0ejmveFvWgFCzbhinh0eT/wbL5Mdz00T400Grx8pJ5Cei0UtPhiIzZG9ECO5SBGNBxxqAgW4fU63Qo4VmwYEE3hyFsyTzCk15cRaPBePxdQ/RE2PC8FC73MeU1jazceQSAq5K8YYW6Q7qlgFb0LN9+4B0JFYeZ7Z3Lq1eOYunKPVYFzAEeLjx+fqIsSXdQq9LycfrxS2YB6xvUjbufWrUPNxed/M07oUMJz5IlS7o7DmFDEb5ueLjoqG4wkHW0mgGmBIiocaDRwrEsKM8DH2km2Rd8vuMw9U1GBod6McK8OitwoNoIT/Q8jUZ987H7E8jeyNwZ05mdEEpKZimPf7eHtCMV/GVmf3nhc1Bq76XtbHHdAxpIMaobhhZV1EvvpU46pQnAsrIy/u///o/FixdTWqougdyxYwd5eXldGpzoGRqNxpLkWHVc1vtA6DD165yOrRARvZuiKJbeO1eMj0Zjrt+S6SzbMv/+s9TRVp1Ww4T4ACb1DwQg82hNW9cUvZi591K0poBgTRn1ijO7lDhAei+dik4nPLt27WLgwIE8/fTTPPfcc5SVlQHwxRdfsHjx4q6OT/SQQZYGhCds+hp9vPGZcHwpmaUcKqrC3UXHgqTw4wXrUrBsW+bf/+Gt0FRvORxvaimRXiybNTuilMxS8svrLBv3pirx1HN83yzpvdQ5nU547r77bq699loOHjyIXn98+ePZZ5/NunXSlbe3Gmhamn6goJXCZZCVWg7OYFTYlF7C06vUJ9Z5I8Lw0tRB/k71BBnhsa3AAeARBIZ6yDu+MCQ+WO2ym14kCY8jMvdUSjYlPObprLbOE+3rUA1Pc1u3buX1119vcTwiIoKCgoIuCUr0vEHNtpiw0m+C+rl4n7pjs0dAD0cmutuqtPwWRbC/7C1iq88BxioGtWjWJ9KGEQpLHc+er9XR1mj1/zIuUB3hOVJeR01DE+4unX5KF3bM3FNpnKb9hEd6L3VMp0d4XF1dqaioaHH8wIEDBAVJUWNvNdC0ND2rpJq6RsPxCzwCIcj0TyZ1PA7HvBnliVsWlFY1sHntt+o3Mp1lH5p3Pzfx83DB30Od4sgorrZFVKIbjYv1J8m7kihtMU2Klh1G642cpfdS53Q64Zk/fz7Lli2jsbERUAtec3JyeOCBB7jwwgu7PEDRM4I8XfFzd8aowKETh8dlWsshnWwzSnPdgNE8yidsy/x/mLsFDE2Ww+bNI6WOx/HotBqWJqkDDGlKDNW4WS4zd1uS3ksd1+mE51//+hdVVVUEBwdTW1vLtGnT6N+/P15eXjz++OPdEaPoAc1XarVsQCiFy47IXBDZGlcaSNKkA7BTO7QnwxJtCU5QV042VEHBTsvh44XLMsLjiBIa0gBIMQ6xOh7qo5cl6Z3U6QlfHx8ffv75ZzZs2MCuXbuoqqpi1KhRzJo1qzviEz1oUIgXKZml1kvT4XgdT8EuqKsAvXfPBye6XHuFjsM1GbhqGilSfMkhlJE9GJdog1an/i8eWKWOtpq2fpGVWo6t5uA6fIAsjxF8eEkyRZX1BHup01gystM5nU54cnNziYqKYvLkyUyePLk7YhI2Yl6pdfDEpek+EeAXozYgzE2BAZLcOoL2Ch3HNVsVEuzt1uZ5oodFTzqe8Ey8E5CVWg6tqhifanXz5kHjZjMhPtDGAfVunZ7SiomJYdq0aSxfvpxjx451R0zCRga1tomomUxrOZxxsf5tbkaZrN0LwD7XYVIQaU+aFy4bjcDxEZ7Mo9UYpQGdQ8lJ/QWAfUo/5o1PtHE0vV+nE55t27Yxbtw4li1bRlhYGAsWLOCzzz6jvr7+5FcWdm1giPrEmVdWS2Vdo/WFUrjscHRaDUvmJbQ8joHR2gMAjJ9xrgyb25Ow4eDsAXVl6u7ZQKSfOy46LfVNRvLKam0bn+hSh00JT5HfKMtqPHHqOp3wjBw5kmeffZacnBx++OEHgoKCuOmmmwgJCeG6667rjhhFD/F1dyHE2xWAg22t1MrbDo3ypOoo5iaG8dgC63eOQzVZeGjqaXD2YfKEqTaKTLRK56zucQeWNx86rYaYQHdA6ngcSXV9E37F2wAIGXaGjaNxDKe0lxaoq3pmzJjB8uXL+eWXX4iNjeXdd9/tytiEDZh3Tm/RcdkvFrzCwNgIh7fZIDLRXSL91RfLCF89Ly5M4j8T1YTWJW4SaE/5KUJ0l1aml2WlluP5Ydt+BpENwMCxZ9o4Gsdwys9mhw8f5plnniEpKYlx48bh6enJK6+80pWxCRsY2NomonC80yvItJaDyTCNCiRG+HBeUgQxVanqBbKdhH2KaVbHo6g1O7JSy/H8ueUntBqFMrd+aLxl6XlX6PQqrddff50VK1bw+++/M3jwYK644gq+/vproqOjuyM+0cPMhcstVmqB+gKY9rkULjsYc4feuCBPtRBWdki3b+GjQOcK1UVQkg6B/WWlloNJyysnuHQ7OIFbf1kN3VU6PcLz2GOPkZyczPbt20lLS2Px4sWS7DgQ89L0FiM8cHwoPTcFmhp6MCrRncyjAvFBnlC8Vy2IdfaA0BG2DUy0zlkPkWPUr7M3ADKl5WhWpORYWkO4xk+xcTSOo9MJT05ODs888wwjRsiToSMaEKw+cRZX1lNafUJSEzgI3Pyhqfb4Ltqi1zs+wuNxfHQnahzoZCNKu3XC9HKcKeE5WlVPeW1jW9cSvUB1fRM//pHBcE2GekBGWrtMpxMejUbD+vXrufLKK5kwYQJ5eXkA/O9//2PDhg1dHqDoWR6uTkT5q43mWmwxodU2e6KVaS1HUFXfREGF2nE5PtDz+N9VNgy1b5b/Q3VDX09XJ8sKywyp4+nVvtl5hIFN+3HWGFC8I8BXZlC6SqcTns8//5w5c+bg5ubGH3/8Yem/U15ezhNPPNHlAYqeN6itPbVACpcdTKZpdCfQ0wUfNyep3+ktIseBRgflOVCWA8i0lqP4MCXH0vhTEz1RXTAiusQp1fC89tprLF++HGdnZ8vxSZMmsWPHji4NTthGvGla68e0Ajall2Bo3r3V/EKYswmMBhtEJ7pSxlF1NCAu0BNKM6CqEHQuln2ahJ1y9YQwU1mBaZRHVmr1fml55ew6XE6ydr96QN54dKlOJzz79+9n6tSWzch8fHwoKyvripiEDa1Ky+fjlFwAfk8v4bLlm5n89BpWpeWrJ4QMAxdPqK+Awj9tGKnoCulW9Tum6ayIMWphrLBvJ0wvxwfJSq3ebkVKDs40MVp3UD0gU8tdqtMJT2hoKIcOHWpxfMOGDcTFxXVJUMI2VqXlc+v7Oyg7oeixoLyOW9/foSY9OieISlYvkGmtXs9qhZZMZ/Uu5hfDHNMIT7CM8PRm1fVNfP1HHsM0GbgoDeAeAIEDbR2WQ+l0wnPjjTdy1113sWXLFjQaDUeOHOGDDz7g3nvv5dZbb+2OGEUPMBgVlq7cQ2tbD5qPLV25R53eskxrScLT22W0NsIjCU/v0G+8+vnoAagqtkxp5ZTW0Ggw2jAwcSq+2XmE6gYDc73S1QNSv9PlOr3u9O9//ztGo5GZM2dSU1PD1KlTcXV15d577+XOO+/sjhhFD0jJLCW/vK7NyxUgv7yOlMxSJjQvXFYU+afspYxGhUxTDc8AfZla/KrRHd+rSdg3d38ITlA3Ec3ZSOjg+bg566htNJBbWmNZqi56hw9T1OLzuV4ZUIJMZ3WDU1qW/o9//IPS0lLS0tLYvHkzxcXFPProo90Rn+ghRZVtJzstzrN0ei1WO72KXulIeS11jUacdRoiyv9QD4aNAFcv2wYmOq7Z8nStVqOO1CErtXobc7GyXgdRlaYeZzLS2uVOeS8tFxcXEhISLPtoid4t2KtjRarBXvoTOr1KP57eyjydFR3ggS5XrQORJ9lepkXhstTx9EYrTKM7i/pXoWmoAldvCEm0cVSOp0NTWhdccEGHb/CLL7445WCE7YyL9SfMR09BeV2rdTwaINRHz7hYf/VAvwnqk2z2Rhh9TU+GKrqIuUFdXGCzDssyjN679DMlPAW7oa78eMIjK7V6DXOxMsAlQTmQjbowRKuzbWAOqEMJj4+PT3fHIWxMp9WwZF4Ct76/Aw20mvQsmZeATmuq14meCOuRwuVezDztMcyvATIOqAfNhbCid/AOA79YOJYJOVuID1ZHBWSEp/cwFyvHBnoQUy3TWd2pQwnP22+/3d1xCDswNzGMV68cxdKVe6wKmJ11Gl66bCRzE8OOnxxl6vRalgNlueAbZYOIxekwNx0cjbpJIcFD1UJY0btETzIlPBuJH6omrOnF1SiKgkYWFNg9c7HyZWMj0WyRkdbudMo1PPbmlVdeISYmBr1eT3JyMikpKbYOqVeamxjGhgfO4MMbx/PI/AQAmgwKybEB1ie6ekHYcPVrUx8Q0buYa3jia+RdZa/WbNVkbKAHGg2U1za23PxX2B1zsbKLTsslsXVQUwJOeggfaevQHJJDJDwff/wxd999N0uWLGHHjh2MGDGCOXPmUFRUZOvQeiWdVsOE+ACunRjL4FAvFGDdweKWJ5rfhUgDwl6nur7JMooXULJdPSgJT+8UPUH9nLcDvVJPhK+6+a+s1LJ/5mLlOYmh+BaZ3qRHjgUnFxtG5bgcIuF5/vnnufHGG1m0aBEJCQm89tpruLu789Zbb9k6tF5v+qBgANbsayV5lI1Ee63Mo6YVWu6NOBWlqQcl4emd/GLBKwyMjZC3TVZq9RLNi5UvGxclCwd6QK9PeBoaGti+fTuzZs2yHNNqtcyaNYtNm1qfaqmvr6eiosLqQ7TujMFqwvPbgWLrTURBXakFcHQ/VB/t4cjE6TC/GM7xyQIU8I8Hr1CbxiROkUZj1Y9HVmr1Ds2LlSfE+kOWdDrvbr0+4Tl69CgGg4GQkBCr4yEhIRQUFLR6nSeffBIfHx/LR1SUFNy2ZVQ/X3zcnCmraeSPnGPWF7r7Q9AQ9Wup4+lVzNMdE51Mq7PkSbZ3a9aPJz7Y3HxQEh57ZilWHheFpjwHKo+A1kmd0hLdokOrtP7zn/90+Ab/8pe/nHIwPWXx4sXcfffdlu8rKiok6WmDk07L1IFBrNx5hF/3FzEm5oRVPNEToXivOhw7ZJ5tghSdZu7BM7h+t3pAhtF7N3M/ntwU+k9U6z8yjkoNj71qXqx80egoOPiZekH4KHBxt21wDqxDCc8LL7zQoRvTaDQ9nvAEBgai0+koLCy0Ol5YWEhoaOtD9K6urri6uvZEeA7hjMFqwrNmXzH3zRlsfWH0RNj2pnRc7mUyiqvRU09w5R71gIzw9G5Bg8HND2qPMdCYAUBuaQ11jQb0ztLAzt40L1b293CRjXt7SIcSnszMzO6O45S5uLgwevRoVq9ezYIFCwAwGo2sXr2aO+64w7bBOYhpA4PRaGBvfgX55bWE+bgdv9Bcx1OwG+oqQO9tmyBFhxmNChlHqxipPYRWaQLvSPDtZ+uwxOnQatVRnv3f4Vu8DS/9YCrrmsguqWFQqOyNZg8MRoWUzFJyj9XwxfbDgKlYGZoVLEvC0516fQ0PwN13383y5ct599132bt3L7feeivV1dUsWrTI1qE5BH8PF0ZG+QLw674Tlqf7RIBfDChGyJXeR71BfkUddY1GJuhMDQejJ8qO947A9GKpydkoK7XszKq0fCY/vYbLlm/m/s92UddkRKfVUF7TCBX5UJoBaNQtJUS36dAIz4kOHz7MN998Q05ODg0N1s2tnn/++S4JrDMuvfRSiouLefjhhykoKCApKYlVq1a1KGQWp+6MwcHsyCljzb4iLk8+YTSg30Q4lqUOyw6Y1er1hf0w1+9McTkABuRdpaMw9+PJ2UT/2L+TmlsmK7XswKq0fG59f0eL7XoMRoXbPtjBl9MKSAIITQQ33x6Pry/pdMKzevVq5s+fT1xcHPv27SMxMZGsrCwURWHUqFHdEWOH3HHHHTKF1Y1mDA7muZ8O8Puhoy3rAqInws4VslKrl0gvqsKZJoYa96sHpGDZMYSOAGcPqCtnrEcBnyEjPLZmMCosXbmn1b0JzdK3/qQmPPJ/2O06PaW1ePFi7r33Xnbv3o1er+fzzz8nNzeXadOmcfHFF3dHjMIOJIR5E+qtp7bRwJbMUusLzSMEeduhsbbngxOdknG0mmGaDFyUBnAPhMABtg5JdAWdE/RTp0SGG/4EZKWWraVkllrtS3giBUhoUv9WMtLa/Tqd8Ozdu5err74aACcnJ2pra/H09GTZsmU8/fTTXR6gsA8ajYYZg4MA+PXErsv+ceAZAoYGNekRdi29uIpkrdTvOCTTi2ZkxR+AOpqnKO2NL4juVFTZdrID4EMVQ7S56jf9JOHpbp1OeDw8PCx1O2FhYaSnp1suO3pUuu06shnNtpmwehI9odOrsG8ZxdWM0+5Vv5F3lY7F9KLpWZCCTgvVDQYKK+ptHFTfFeylb/fysVp1WrnGOx48g3oipD6t0wnP+PHj2bBhAwBnn30299xzD48//jjXXXcd48eP7/IAhf2Y1D8QF52WnNKalhsTWjYSlX489qy6vonC8hrGaKXDskOKGA06FzTVRUz0LQekjseWxsX6E+ajp60xVPNIq77/lJ4Lqg/rdMLz/PPPk5yszhMvXbqUmTNn8vHHHxMTE8Obb77Z5QEK++Hh6kRynNppucW0lrkfT24KGJp6ODLRUZlHqxmiycZLUwuu3hCSaOuQRFdy1kPEGABmuh8CJOGxJZ1Ww5J5Ca1epgHLSKs2RgqWe0KnE564uDiGDx8OqNNbr732Grt27eLzzz8nOjq6ywMU9sU8rfXr/hMSnuAE0PtAYzUU7LRBZKIjrOp3+o0HrXThdTim5emjUV9MZWm6bc1NDOPVK0fhpLUe54nzVhimy1a/kZHWHnHKjQcbGho4fPgwOTk5Vh/CsZl3T0/JLKWyrvH4BeZOr3C8a6iwO2r9TrOCZeF4TH/X2Gr1jYes1LK9yQOCMBjVusdl84fy4Y3j+eliN7SKQe1y7hNp4wj7hk4nPAcOHGDKlCm4ubkRHR1NbGwssbGxxMTEEBsb2x0xCjsSE+hBXKAHTUaFDQdPKFI3Nz6ThMdupRdVNitYlmF0hxSVDBotnrV5hFEiIzx24I+cYyhApJ8bV0+MYUJ8ALoc83YS8n/YUzrdeHDRokU4OTnx7bffEhYWhkaWtPY5MwYHk7EhkzX7ijhrWNjxC8z/uDmbwGhUR32EXWks3Ie/pgqDTo8uLMnW4Yju4OoFYSPgyB+M1e7jm/IAquub8HA9pcb6ogtszToGwNgY/+MHzW8MzfWPott1+j8gNTWV7du3M3jw4JOfLBzSGYODeXNDJr/uL8ZoVNCa56bDRoCzO9Qeg+J9ENJ6sZ6wDaNRIaxsB2ihIXQ0bk4utg5JdJd+E+HIH0x1PcA3tZPIPFpNYoSPraPqs7Znq81ax8T4qQca6yBvm/q1jPD0mE6/BU9ISJB+O33c2Bh/PF2dOFpVT9qR8uMX6Jwhcqz6tSxPtzv5FXWMVPYA4BIvy2AdmqmOZ7ypz4us1LKdRoORP3LKABgTbRrhyduuNmr1CIaAeNsF18d0OuF5+umnuf/++1m7di0lJSVUVFRYfQjH5+KkZXL/QEBtQmil+bSWsCsZRZWWgmVdrLyrdGimaZJIQw7+VEgdjw3tza+gpsGAt96JAcHqLvaW6SzpdN6jOp3wzJo1i82bNzNz5kyCg4Px8/PDz88PX19f/Pz8uiNGYYfMq7Va9OOJbrZSS1ra25WinAOEaUppwsnSq0U4KI8ACBoCqN1802Wlls1sM9XvjI72Oz79bx4Bl+msHtXpGp5ff/21O+IQvcx0075aOw+XU1xZT5CXq3pB5BjQOkNlPhzLVPfZEnZBm6M+yRZ4DiHSxd3G0YhuFz0BivcyTruPT4vOsHU0fdY2S/2OaTrL0Kg2aAWQhoM9qtMJz7Rp07ojDtHLBHvpGRbhw+68ctbuL+LiMVHqBc5uEDEKcreo+2pJwmM3Ao6qRZKVock2jkT0iOhJsO0txmr38czRagxGBZ1Wpk96kqIolhGeMdGmGZD8nWqDVjc/yyic6BmdTnh27drV6nGNRoNer6dfv364urqedmDC/s0YHGxKeIqPJzygTmvlblGntUZeYbsAhZX4GrURnVPsZBtHInqEqY5nqCYL56YqjpTVEuUvI3s9Kbe0lqLKepx1GkZE+aoHs9S9KOk3UVp39LBOJzxJSUnt9t5xdnbm0ksv5fXXX0evb3+nWNG7zRgUxH9WH2TdgWIaDUacdaZ/3n4TgRdkpZYdqT2aTQSFNClaAhNklLZP8IkAvxh0x7IYrT3IoeIqSXh6mHk6a1iED3pn0zYuzQuWRY/qdHr55ZdfMmDAAN544w1SU1NJTU3ljTfeYNCgQaxYsYI333yTNWvW8NBDD3VHvMKOjIj0JcDDhcr6JsuwLQD9kgGNWsNTkW+z+MRxR/9Ua+/2aeLw8/M/ydnCYZi2exmn3SsrtWzA3HDQUr9jNBxfwSr1Oz2u0yM8jz/+OC+++CJz5syxHBs2bBiRkZH885//JCUlBQ8PD+655x6ee+65Lg1W2BetVsO0QUF8sSOPX/cXMSE+QL1A7wOhw6BgF+RshMQLbRuowJCpDqNnuA9H9kfvQ6Inws4VjNXu5ytZqdXjtmWZCpbN9TuFaVBfAS5eEDLMhpH1TZ0e4dm9e3eru6JHR0eze/duQJ32ys+Xd/Z9gXl5est+PLKRqD3xLlRXhZQEjrVxJKJHmf4PR2jSySkssXEwfUtZTQMHTaNqo80JT5Zpmr/feNDJVh89rdMJz+DBg3nqqadoaGiwHGtsbOSpp56ybDeRl5dHSEhI10Up7NaUAUHotBoOFVWRW1pz/AJLwiMNCG2ushD/2myMikb27elr/ONodAvCVdOEe/FOW0fTp2zPVqez4oI8CPA0LeQx1zXKdJZNdDrFfOWVV5g/fz6RkZEMHz4cUEd9DAYD3377LQAZGRncdtttXRupsEs+bs6MifZjS2Ypa/YVcc3EGPUCU+0ARX9CTSm4S92IzZieZPcp/YgMD7dxMKJHaTRoYibB3q8YVLeL8ppGfNydbR1Vn7At+4Tl6EZjs4JlSXhsodMjPBMnTiQzM5Nly5YxfPhwhg8fzrJly8jMzGT8+PEAXHXVVdx3331dHqywT61Oa3kGQcAA9evcLTaISpgppifZLcbBxAV52Dga0dPMbQjUjstSuNxTLPU75oLl4n1QW6pusByWZLvA+rBTmkT08vLilltu6epYRC91xuBgnvxhH5sySqhpaMLdxfSwip4IJQfVEYZBZ9k2yD6sKWM9zsA2ZQhXyrLkvsc0vTxae4AfCo4xqp9sAdTd6psM7Dysbqw81pzwmKezIseCk4uNIuvbOpTwfPPNN5x11lk4OzvzzTfftHvu/PnzuyQw0Xv0D/Yk0s+Nw8dq2XiohFkJpvqt6Emw410pXLal6hKcS9QNQ4/4jjreK0n0HUFDqNF54WGopCbnDxgn3c+7W1peOQ1NRgI8XIgJML3JsNTvSONPW+lQwrNgwQIKCgoIDg5mwYIFbZ6n0WgwGAxdFZvoJTQaDWcMDua9Tdms2V/ULOExFcjm74T6KnD1tF2QfZWp58dBYwQBwRE2DkbYhFZLif8o3It/w+3IFkDaRHQ3y3YSMX5qo15FkfodO9Cht3tGo5Hg4GDL1219SLLTd80w1fGs3VeEYt4l3bcf+ESBsQkOb7VhdH2Y6V3lFuNg4oOlfqevaopU33yEV/xh40j6BkvDwWjTdFZJOlQVgs4VIkbbMLK+Tca3RZeYEBeA3lnLkfI69hdWHr9A+vHYlmnfni3GIcQHyghbX+U1eCoAQxv/pLGpycbRODZFUdhu2SHdVC9lqd8ZA86y5ZKtdDjh2bRpk2XZudl7771HbGwswcHB3HTTTdTX13d5gKJ30DvrmBgfCJywWsvc9yVH+vH0uLpyKFCbgW4xDpEVWn1YQPxYahRXfDXVFBySUZ7ulF5czbGaRlydtAwN91EPmhMe2T/Lpjqc8Cxbtow///zT8v3u3bu5/vrrmTVrFn//+99ZuXIlTz75ZLcEKXoH87TWr80THvN89eGt0CQJcY/K2QwoZBpDKMKP+CAZ4emrNE4u7HcZAkDV/nU2jsaxmZejJ0X54uJkeomV+h270OGEJzU1lZkzZ1q+/+ijj0hOTmb58uXcfffd/Oc//+GTTz7pliBF72Dux7M9+xhlNaZO3IEDwD0QmurgiLyz7FHNprP83J3x85ClsH3ZEZ9RADgd3mzjSBybueGgZTn6sWwozwWtE0SNs2FkosMJz7Fjx6y2i/jtt98466zjvVXGjh1Lbm5u10YnepUIXzcGhXhhVOC3A8XqQY3m+GotqePpWabfd4pxMHEyutPn1YUlAxB8bLu6akh0C/MIz2hL/Y7peS98JLjItLItdTjhCQkJITMzE4CGhgZ27Nhh6awMUFlZibOztCzv68zTWp9szeXr1Dw2pZdg7CeFyz2uvsoyorbFOIR4qd/p89zjkmlQdPg0lUBphq3DcUjFlfVkldSg0XC8wWO2OtIq01m21+FOy2effTZ///vfefrpp/nqq69wd3dnypQplst37dpFfHx8twQpeg8PFx0Av6eX8Hu6ujvzNC9n3gW1psTQJLsE94TDKaAYKHUKIY8gGeERxIYFsFOJZ6zmAEr2RjQB8nzd1cyrswaFeOHjZhoAkPodu9HhEZ5HH30UJycnpk2bxvLly1m+fDkuLsdrAt566y3OPPPMbglS9A6r0vJ5/ucDLY5vqAylXHGHhkookB2be0SWuirkD20CAHGBMsLT18UEeJBiHAxAffoGG0fjmLY2azgIQEW+Opqm0UK/ZBtGJqATIzyBgYGsW7eO8vJyPD090el0Vpd/+umneHrKu8i+ymBUWLpyD61VBhjQkmIcwmzddowZ69FK463uZ1oG+2vdQADig+V/s6/TO+vI9BgO9d8cXyYtutTxHdJP2D8rdBjofWwUlTDrdONBHx+fFskOgL+/v9WIj+hbUjJLyS+va/PyTUZ1pKF875qeCqnvaqyFvO0AbGgciJNWQz/ZNFQAVcFjMCga9FW5UH7Y1uE4lNoGA3/mqRuGWkZ4starn6Nl/yx7IJ2WRZcoqmw72YHjCY9XYQoYGnsipL4rdwsYGqh3CyFLCaWfv7tsGioAiAgJYbdi2jw0c71tg3EwqbllNBkVwnz0RPi6qQfNv+PYqbYLTFjIs6DoEsFe7bdL36dEUap44mSolX483c30JJvnOxrQSMGysIgP8rS8+SBTGhB2Jcty9GjThqHleVCartbvmFtzCJuShEd0iXGx/oT56NG0eYaWnbpE9Ut5ou1epmH03c5JALIkXVjEB3mw0ThU/SZrvfTj6UItGg6ap7PCkqR+x05IwiO6hE6rYck89Z1jW0lPyPBZ6hdZMpTebeqrLPU7vzUOApA9tIRFfLAn24wDaVB0avffY5m2DskhGIwKO0wJz+hoU/2OZTprShvXEj1NEh7RZeYmhvHqlaMI9Wk5vfXXWQNJmHiu+k3OZtlXq7vkbAZjE/j2Y8sxbwDZQ0tYBHi44Kz3JFXprx6QOp4ucaCwksr6JjxdnRgc6qUezDKNZEv9jt2QhEd0qbmJYWx44Aw+vHE8Ly5MYvYQdTuSrVmlEDQYPILUfbUOb7NxpA7K9CTb1G8yeWW1AFLDIyw0Gg3xwVLH09XM9Tsj+/nipNPCsSwoyzHtnzW+/SuLHiMJj+hyOq2GCfEBnJcUwZL5CThpNWw4dJTUw+UQY1qeKdNa3cP0AlbgPxYAX3dn/GXTUNGMWrgsdTxdydJw0Nx/xzxyFjEaXOUNh72QhEd0q0g/d85LigDglV8PQYxpPluG0rtebRnkq52s9+qTAJnOEi3FB3nyh7E/jRpnqCqEowdtHVKvt91SsHxC/50Yqd+xJ5LwiG5324x4NBr4eU8hGV6j1IOHU9QGeaLrZG8ExQj+8eypUusIZEsJcaL4IA/qcWGPzjyt9ZttA+rljpTVkldWi06rIamfrzpilin1O/ZIEh7R7eKDPDk7MQyAF/9QwDMUDA2Qm2LjyBxM1vEmZ+nFVYDU74iWzNuMrG1QV/HJ9PLpMS9HHxrujbuLE5SkQ2U+6FwgapyNoxPNScIjesSt09WdmVfuyqcq3NSES55ou1azZbAZR9WER3rwiBP183fHSathXeMQ9UDmejAabRtUL9a84SBwfHVW5DhwdrNRVKI1kvCIHpEY4cOMQUEYFfixeoB6UOp4uk51CRTuBkCJnkxGcTUgIzyiJWedln4B7uxS4jE4uUNtKRTtsXVYvda2rBMaDsp0lt2yq4RHURQefvhhwsLCcHNzY9asWRw82H5B3ZNPPsnYsWPx8vIiODiYBQsWsH///h6KWHTGHWeovT/+mxWuHsjbDg3VNozIgWRvUD8HDaHA6E1NgwGdbBoq2hAX6EEjThzUq93PjRlSx3MqKuoa2VdQAcCYaD+1fifL9L8oDQftjl0lPM888wz/+c9/eO2119iyZQseHh7MmTOHurq2N6b87bffuP3229m8eTM///wzjY2NnHnmmVRXywupvRkd7U9yrD/phiDKnUPA2Kg2yhOnr/l0lml0J9rfHRcnu/oXF3ZgVVo+m9JLAPjymDrVvOGXL1mVlm/LsHqlP3LKMCrqNGGwtx6K90F1MTi5qUvShV2xm2dDRVH497//zUMPPcR5553H8OHDee+99zhy5AhfffVVm9dbtWoV1157LUOHDmXEiBG888475OTksH379p4LXnSYOsqj4dd6KZjsUuZh9JgpZFgKlqV+R1hblZbPre/voLrBAGBpQJhk+JPb398mSU8nbTfV74yJOWE7iX7J4ORqo6hEW+wm4cnMzKSgoIBZs2ZZjvn4+JCcnMymTZs6fDvl5eUA+Pv7t3lOfX09FRUVVh+iZ0zuH8iISB/WN5mXxErCc9oqC+HofkADMZNJl/od0QqDUWHpyj00bzP4pxJDheKOt6aGoZoslq7cg8EojQg7qmXDQdPUoNTv2CW7SXgKCgoACAkJsToeEhJiuexkjEYjf/3rX5k0aRKJiYltnvfkk0/i4+Nj+YiKijr1wEWnaDQabpvR3/LOUjnyB9SV2ziqXs48ShaaCO7+liXpskJLNJeSWUp+uXV5gAEdW4yDAZig/ZP88jpSMkttEV6v02gwkppbBpgaDhoNkP27emGMJDz2yGYJzwcffICnp6flo7Gx8bRv8/bbbyctLY2PPvqo3fMWL15MeXm55SM3N/e0f7bouNlDQvAMiSHDGIpGMRwv8hOnxvyu0vQkKyu0RGuKKluvhTRvMzFBu6fd84S1PUcqqG004OPmrHY0z98JtcfA1RvCk2wdnmiFk61+8Pz580lOTrZ8X1+v7p5dWFhIWFiY5XhhYSFJSUknvb077riDb7/9lnXr1hEZGdnuua6urri6yvyqrWi1Gm6f0Z8Nnw0jTltA48HVOA8+x9Zh9U6KAulr1a/jZ1DbYDi+aah0WRbNBHvpWz1uHm0dq92HM01tniesmRsOjon2Q6vVQMav6gUxU0DnbMPIRFtsNsLj5eVF//79LR8JCQmEhoayevVqyzkVFRVs2bKFCRMmtHk7iqJwxx138OWXX7JmzRpiY2N7Inxxms4ZFsY+d3UVQ/XeX2wcTS9WmgHlOWpX1+iJZB5VR3dk01BxonGx/oT56NGccHyfEsVRxRsPTT2zvbIZF9t2/aM4ztJw0FywnG5KeOKm2yYgcVJ2U8Oj0Wj461//ymOPPcY333zD7t27ufrqqwkPD2fBggWW82bOnMnLL79s+f7222/n/fffZ8WKFXh5eVFQUEBBQQG1tbJPkz1z0mkZNW0+BkWDb0029SXZtg6pd0pfo36OSgYXD0uH5bhADzSaE1/aRF+m02pYMk8dzWn+yFDQ8rtRrXm8Jz4PnVYeNyejKIqlYHlsjD801EDuFvXC+Bk2jEy0x24SHoD777+fO++8k5tuuomxY8dSVVXFqlWr0OuPD7Gmp6dz9OhRy/evvvoq5eXlTJ8+nbCwMMvHxx9/bIu7IDphXvJg9mjVrsupa7+ybTC9VcZa9bPpXWV6kdTviLbNTQzj1StHEepjPW21VZcEQHzlVhtE1fvklNZwtKoeF52WYRE+kLNR3R/QOxIC+ts6PNEGm9XwtEaj0bBs2TKWLVvW5jlZWVlW3yuKLKHsrVyddDTFTIfMA1Tu+ZmmBXfipLOrHNy+GZqO998xvas8voeWJDyidXMTw5idEEpKZikrtuSwctcRaiOnwOH/Qt4OqCkFd5nWao95dGdYpA96Z93x6az46SAjq3ZLXl2ETQ2ZNB+AkU2pfLszz8bR9DJHdkB9Beh9ISwJaL5CSwqWRdt0Wg0T4gO4eVocAKtytCiBgwDleBIt2rQ9+4SGg5aRVpnOsmeS8Aib0seOp0HnToCmklVrfsEoTc86zlIkOQ20OhRFsXRZlh48oiMSwrwJ8HChusFAYdBE9aB5tZFok1XDwaoiKExTL5CCZbsmCY+wLZ0zmphJAPQ7toWf9xbaOKBexPzCZHpXWVhRT7Vl01BJeMTJabUaJvUPBGCjMkw9mL5GbXcgWnWsuoFDReobi9HRfsdHd0KHg0eg7QITJyUJj7A55wEzAZisTeOVXw9JXVZH1FXAYVOBafwMDEaFb3ceASDI01VW2ogOmzJAfZH++Gg0aJ2hLEdtdyBaMBgVPtiirigN99Hj4+Ysy9F7EUl4hO2ZRijGafex/3Axy9dn8HVqHpvSS2Rfn7ZkbQBjE/jFsirPlclPr+Gx7/cCUFBRx+Sn18hGkKJDpgwIAmBrXj1NEWPVgzKt1cKqtHwmP72G5346AMCR8jomP7Wauv2mPmKyHN3uScIjbC9oEHiFodc0Mlp7gCe+38ddH6Vy2fLN8sLdFtMLUo5fMre+v6PFHkkF5XXc+v4O+d2Jkwr10TMg2BOjAune49SD6ZLwNGfeZf7E/zPPynT0dUUYtC7Qr+0GucI+SMIjbE+jIc9ffaKdot1tdZG8cLfB9IL035x+tDYGZj4mu1+LjjCP8vxSrzYmJHOd2vZAtLrLvNkkrVqsvF0ZjEEnW3LYO0l4hM0ZjArL82IAmHxCwiMv3K0oPwwlB1E0Wr6vGtDmaQrI7teiQ6YMVOt4Psr1R9H7qu0OjuywbVB2orVd5s3Mz1erG4bK/1kvIAmPsLmUzFK+qxoEwFBNNgGUW10uL9wnMI3uHPNNpIKTr8aS3a/FySTH+uOi05Jb3kBNxGT1oHnbkj6urf8fZ5oYr1Xr5jYYh8n/WS8gCY+wuaLKOorx5U9jNFqN0mJaq/l5AssLUU3k1A6dLrtfi5Nxd3FSl1gDu1xHqQeljgdo+/9njHY/npo6jire7FH6yf9ZLyAJj7A58xPFWuMIAGboUts9r08zNFkSnrDR57a6+7WZBgjz0cvu16JDJpuWp39dqY62cngr1JbZLiA70dYu89O0OwH4zTiCUB93+T/rBSThETZnfkL5zZAEwFTtLrQYLZfLC3czedugrgz0vuiixlp2vz6R+cl5ybwE6ckjOmSqqXD52xxnlIABoBiON9Xrw5rvMt/cdFPCs9YwQv7PeglJeITNmZ9QdigDqFDc8dNUMUKTbrlcQV64LQ7+rH7uPxN0Tpbdr51O+N2E+uh59cpRzE0Ms0GQojcaGu6Nn7szVfVNFIaYpkvNj7c+bm5iGPfOGWT5PowSBmtzMaBlwUVXyv9ZLyEJj7ALcxPDePnKsWzVJQEwXbfTctnZiaHyhGJ28Cf1c//ZlkNnDA6xjOg8fG4CH944ng0PnCG/M9EpzbeZ2KAZqR489DMYje1cq+/w0jsBMDLKl1fHlwCgjRzLzFFDbBmW6ARJeITdmJsYxoxzLwfg6sCD/G2WuuT69/QSquulJwiVBVCwS/26/yzL4UNFVTQaFbz0TiyaFMOE+AAZDROnxDyt9XFRFDh7QFXh8cdcH7f7sLp6dMqAQJLqtgGgGTC7vasIOyMJj7ArWtMTiF9ZGnck+xEb6EF5bSMfbc21cWR24JCphX34SPAMshz+84j6RJwQ5o1GI4mOOHXmwuXth6tpjJZprebSjlQAMCzM7Xht04BZbV9B2B1JeIR98QqF0GGAgi5jDTdOiQPgzfUZNBr6+NC6+YVnwJlWh/80PREPDffp6YiEgwn3dSM+yAOjAvu9x6sHzdOofVhdo4GDhZUAjGQ/NFSBRzCEjrBxZKIzJOER9sdcn3LoZy4YFUGgpytHyutYadoNvE8yNB7vi3JCwrPHlPAkhHv3dFTCAZm3mfiuNlE9cHgrVJfYMCLb219QSZNRIcDDhYAjv6kH+88CrbyE9iby1xL2xzwvfmg1eh1cNzkGgNd/y0BR+uj2ErkpUF8Obv7qlJaJ0aiwJ988wiMJjzh9U03bTHybrYXgoYDS57sup5mmjYdG+KA5ZB5plems3kYSHmF/IseBqw/UlkLeDq5IjsbT1Yn9hZWs3V9s6+hsw/wk238WaHWWw7nHaqiqb8LFSUv/YE8bBSccSXJsAM46DbmltZRHTlcP9vFprbQ8NeGZEFADxftAo4X4M2wclegsSXiE/dE5QfwM9etDP+Pj5szlyf0AePW39Hau6MAs9TvWq0LM9TuDQrxw1sm/szh9Hq5OjOqnbjOx2Wm0evDQL2A02DAq20rLU//PpvCHeiByHLj52TAicSrkGVLYJ3Odyv4fALhuUizOOg0pmaXsyDlmw8BsoOIIFKYBGoifaXWReYWWTGeJrjR1oFrH81VxhNVoa1/U0GRkf4FasBxftlE9KNNZvZIkPMI+DZyjDhsX7ILyw4T66FmQFAHAa2v72CiPKekjcgx4BFhdJAXLojtMNjcgzCjHGGcabT34ow0jsp0DhZU0GIyE6g3oc9epBweeZdugxCmRhEfYJ49AiEpWvza94N88TV2i/vPeQg4VVdkqsp63/3v186CzW1x0fEm6JDyi6yRG+ODr7kxlfRPZAZPVg/tX2TYoGzGPol4ScAhNUx349oOQoTaOSpwKSXiE/RpkehdlesHvH+zF7IQQFAWWr8uwYWA9qL4SMk3vKgefY3VRcWU9RZX1aDQwOFQSHtF1dFoNk+LVUZ5VDSPU0dbC3XAs28aR9bzdpoLlmZrt6oFB54A0+Pz/9u48Lqp6f/z4a2Zg2GQRRUBFwA0lV3LDNDdUNMvqVtqmVuZN7Xu1brfl/iq3Su2Wmt0yKxMr07Tcr1puaJq7aaK44w4iKrLFNnN+fxxndGQbYGBgeD8fDx7OnDnnzPvDcZj3+azVkiQ8ouoy1Wgk/AbZak3GSz2aALD8j0tcScu2V2SV59QmMOSCbxOo29ziJdOdZ2hdDzxcnOwRnXBg3W/NurzxXD406qpuNDWv1iBxl9LQYqRF2q3+O2HSnFVdScIjqq66zaBOMzDmmZdVuDe4Nh1DapNrMPLNjgQ7B1gJzM1ZAwrcVZrm3wkPlNodYXumZSYOXkjlryb91Y3H1tgxosqXbzASn5hGe81JXHKvg6s3BHe1d1iijCThEVWbuVnr9p2lqZbnh13nScvOs0dUlcOQBydudRS9qzkLZEkJUbEa1nancV0PDEaFPfpIdeO53yHrun0Dq0SnrmaQk2/kAf2t4ejN+oHO2b5BiTKThEdUbaZmrZO/qAkA0CusHs39a5Gek8/CXeftGFwFO78TslPBvc7tDtx3OCodlkUFMzVrbUhyVWddVgw1ahJC0/w7/Z1uDckvZOCAqD4k4RFVW1An9Qs/+6aaAABarYZR96u1PN/sSCA7z0EnRDt2qzmrebTF7MoAGTn5JKRkAjIkXVQc07pav51MuV3LeOx/doyocsVdukljzWUaGC6C1lmd6VxUW5LwiKpNq1O/8MGiWeuhtvUJ9HblanoOK/64ZKfgKpCiFDscPf5W/x1/Lxfq1nKpzMhEDdKlSR2ctBrOXcsiMfDWUgqnNkFeDRgwgJrwRGlvjc4K7Q6ucnNRnUnCI6o+Uz+e+NVqIgDonbS80C0UgC+3ncFgdLBFRZOPQuo5cHK9vczGHY5K/x1RCWrdsczE5puB4NUA8jIhYaudI6t4BqPCkctp9NWZhqNLc1Z1JwmPqPqaRoGzB9y8AJdvT28/tFMjvFydOJOSyYajSXYMsALEr1b/bdwT9B4FXpYlJURlMfXj+e3ktdtf+jVgtFZCSgaeeSncqzmpbpCEp9qThEdUfc5u0PzW2lpHVpg313JxYlhkCABztp5BURyolsdUzvDBhb8sHZZFJTENT//9dAqG5qaEZy0Y8u0YVcWLu5RGtG4PWo2iDhrwbmDvkEQ5ScIjqofwh9V/j640N2sBjLgvBL2TlkMXUtmd4CDDZa8eh6vxaifJQu4qc/ONnLiiLmYoTVqiorVp6IOXqxNp2fkccm4Nbr6QlQLntts7tAp1+NJNHtDtVp8UceMhqhdJeET10KwvOLmp/VoSD5o3163lwuP3NgTgi60OsqioqXanSS9w8ynw8qnkDPIMCp6uTjSs7VapoYmaR6fVmGt5fjuVCuEPqS8cWW6/oCrBhfMJdNQcV5+0fMi+wQibkIRHVA96j9vNWkdXWrw06v7GaDUQe/yqefRStXZ0hfqvqVbrLqb+O+GBXmhkTR9RCbo1VYenbz91Fe55RN14dJXDNmsZjQpBVzah1Sj8Va89+ATZOyRhA5LwiOrDVK18ZIVFs1ZwHQ8GtA4E1BFb1drVE+oILa0ztCi8k6TMsCwqm6nj8oHzqaQHdAb3uvDXdTi7zc6RVYxz17PoY1Tn/dK3ecTO0QhbkYRHVB/N+qvDtG8kQNJhi5deujUR4cqDl1h16BIrD15i5+lr1W+4uqn2qnFPcKtd+C7SYVlUsiBfd0JvLTOxM+GmwzdrnThzhs7aeAB090j/HUchCY+oPlxqqX154Hazzy2tG3rTIqAWRgX+segg4xYf5MmvdtFt+mbWxyVWfqxlZSrXPQ8X+rLRqNxeNFQSHlGJujVVa3m2n0q53awVv9q85IsjUY6uQqdRuOjWAmqH2DscYSOS8IjqxdSv5a5mrfVxiRxLyiiwe9LNbEZ/f6B6JD1XT8CVONA6FTnnx4UbWWTk5KN30tK0Xq1KDlDUZLfn40mB4PvAww/+ugFnHG8SwuDL6qzu14IH2DkSYUuS8IjqpXl/dbTW9dPmSQgNRoVJq48WurspJZq0+mjVb97680f136ZR4O5b6C6m/jth/p446+TjKypPlyZ10Gk1JKRkciE1544+dY7VrKXcOEfL3MMYFQ2u7YfYOxxhQ/IXU1QvLp63FzH8cwkAexKuk3iz6LV9FCDxZjZ7qvI8PYoCh9Xy0OaJIneTGZaFvXi5OtM+yAe4q1nr2GrIz7FfYDZ2c+9iAPYoLQltEmbnaIQtScIjqp82t+66Dv8EhjyS061byNDa/eziwm5IPQ/6WtC86Gp0mWFZ2NPt1dOvQqOu6tpa2TfhxHo7R2Y7urilAOz1jELvJF+RjkSupqh+mvRSh8VmpcCZWOp5ulp1mLX72YWpOavlQ6B3L3I30wgt6bAs7ME0AeGOU9cwoLldG3losR2jsqGkODzTTpKjOHE9RPrvOBpJeET1o3OG1o+pj//8kU6hvgR6u1LcFHw+bs50Ci28X4zd5edC3DL1cZvHi9ztanoOyek5aDTQIkASHlH52jb0xtPViZt/5XH40k1oM1R94eSvkJli3+Bs4daNxxZje5o2krWzHI0kPKJ6Mt1Zxq9Bl5fBhAfDAYpMelL/ymPpvguVE1tpndoA2alQyx9CexS5m6n/TmhdDzxcnCopOCFuc9Jpua+JWsvzw65zrLzsSUad1mDMv520V1dGI0rczwAsN9xHK5nY0+FIwiOqp/oRUKcp5P8F8WuIbhXInGciCPC2bLYK9HalR3O138Gbyw7z7c6zdgi2BKbmrNaPg1ZX5G4yw7KoCmp7OAOwZP9Fxi0+yH+SIgBI3fWtPcMqv7O/oUm7RJrizm+0JyzA094RCRuT20RRPWk0auflLe/DwYXQ7kmiWwXSNzyAPQnXSU7Ppp6nK51CfdFq4IO18Xz1WwLvrjxCdp6BUbdmZra7zGtwbK36uJjRWcDtCQcDpTlL2Mf6uEQW7bGsKV1tiORtp+/xuXGY337fTveu3ewUXTkdUBO2VYZIgv3r4Opc9M2HqJ6khkdUX22fBDRw9je4pq6UrtNqiGxSh8HtGhB5a94QjUbDvwe25B+9mwLwwdpjfLrppB0Dv8Ofi8GYB4Ft1Z9iyJISwp6Kmu/qOl7EGtsBkLBpXtWf76owWdfVWaOBxYZetG4gnzFHVKUSHkVRePfddwkMDMTNzY2oqChOnrT+i2natGloNBrGjx9fcUGKqsMnSJ2kD8x3Z0XRaDS82i+Mf/VX59X4eMMJ/vPLMRTFjn+cFQX2L1AfRwwvdteMnHwSUjIBSXiEfRQ339VPhu4AROdvZu/pK5UZlm0cXgqGHM7pmxCnhNKqgTQbO6IqlfB8+OGHzJ49my+++ILdu3fj4eFB//79yc4uef6UvXv3MnfuXNq0aVMJkYoq495bicLBH6xa02dsr6a8/UBLAD7bcpr3/hdvv6Tnwh5IOQ7O7rdHnRUh/lZzVoCXK3VquVRGdEJYKG4eq03GCJIVH+ppUtGeWFeJUdnAHTceP+b3BDTST85BVZmER1EUZs2axdtvv83gwYNp06YN3377LZcvX2bFihXFHpuRkcHTTz/NV199Re3aha8wfaecnBzS0tIsfkQ11TwaPOpBZjIct+4P7cjujZnycCsA5m1P4J2VcRjtUQ1/4Fbtzj2PgGvxf2CPXFJHaMn8O8JeipvHKh8nlhjUEYbNL/5UWSHZxuUDkHwERefC91md0Wqkn5yjqjKdlhMSEkhKSiIqKsq8zdvbm86dO7Nz506GDh1a5LFjx47lgQceICoqivfee6/E95o6dSqTJk0qdYwGg4G8PMdbGbiy6PV6tFob59g6Z2j/NGyfqTZrhT9k1WHPdgnGRafljWV/8v2u8+TkGXn/kdbsP3fDosOzTlvc7D7lkH3z9hpEEcNK3N3UYVmas4S9mOa7SrqZTWG3B4sNvRnjtAqfxO1qn7o6VWRgQEluNYdfadiftOO1aF6vFm566bDsiKpMwpOUlASAv7+/xXZ/f3/za4VZvHgxBw4cYO/evVa/11tvvcWrr75qfp6WlkZQUFCR+yuKQlJSEqmpqVa/hyhIq9USGhqKXq+37YkjhqkJz6mNkHpB7dtjhSc6BuHirOXVJYdYuv8iq/+8THae0fx6oLcrEx4MJ7pVoG3jBXVZjLwsqBsGQZ1L3F2WlBD2ptNqmPBgOKO/P4AGCiQ9FxU/thra0Et3SK297DvZHmGWTnaa+lkEdngOBJD+Ow7MbgnPwoUL+fvf/25+/r///a/U57hw4QLjxo1jw4YNuLpav2yAi4sLLi7W94MwJTv16tXD3d0djaaC7vodmNFo5PLlyyQmJtKoUSPb/g59G6sT9iVshX3zIGqi1YcObteAI5du8uVvCRbJDkDSzWxGf3+AOc9E2DbpURTY86X6+N4R6hD7YuTmGzlxJR2QOXiEfZnmu5q0+qhFB+ZAb1ea+3vyw6k+9NIdInP3t7j1+DdafRVezgXUvn+5GVA3jPWZTYFkmXDQgdkt4XnooYfo3Pn2nW1Ojrra7pUrVwgMvP3lcuXKFdq1a1foOfbv309ycjIRERHmbQaDgW3btvHf//6XnJwcdLryVU0aDAZzslOnTp1ynaum8/Pz4/Lly+Tn5+Ps7Gzbk3capSY8+2Pg/teLXY/qTgajwuo/Ewt9TUGduXnS6qP0DQ8osXnLYFQKzAFU6DFnYuHqMXWh0PZPlxjjyeR08gwKnq5ONKztVnKhhKhAxc139cUWLxK3xhCYf52Y+Z/y5Auv4uJURZuHjEbYM1d93HkUcRvVWlSp4XFcdkt4PD098fS8PZOloigEBASwadMmc4KTlpbG7t27GT16dKHn6NOnD4cPH7bY9txzz9GiRQveeOONcic7gLnPjru7dV+gomimpiyDwWD7hCdsAPgEQ+o5OLxErTmxQnFDbUFNehJvZrNk33mGdGiEtoikZ31cYqF3vYU2ie3+Qv233VMldlaGOxYMDfSS2kVRJZjmu7rb6N4tOHrlKQKP/5f2l35g+Lz7mDusI95uNv6828LpTXD9DLh4k9LkERJ/3oVGIwMDHFmVGaVlmj/nvffeY9WqVRw+fJhhw4ZRv359Hn74YfN+ffr04b///S+gJk2tWrWy+PHw8KBOnTq0atXK5vGJ8qnQ36FWp9byAOz6Qm02skJxQ23v9NayONpN/pWRC/by1bYz/HkxlXyD2gS2Pi6R0d8fKJA4mZrE1sfdUYN07TSc+EV9bIq3BLKkhKhOwh96BYPOhbbaMxjP/s4TX+zkcupf9g6rINONR8SzHElRP8uhdT2oJevUOawqdWVff/11MjMzGTVqFKmpqXTr1o3169db9M85ffo0KSkOsCqvsL32z8CWD+BqvNq81bhniYcUN9T2Tq5OWtKy89kYn8zG+GQAark4cW+wDwfOpRY6aqXQJrE9X6mvNO0LdZtZ9d4yw7KoVjzqomv3JOyPYazreoZfacmjn/9OzPMdaRHgZX3Tb0W6elwd5IAGOo4k7pA67UNrac5yaFUq4dFoNEyePJnJk4vu3X/27NlizxEbG2vboGykSnzIHZ2bj9onZs+XsGO2VQlPSUNtNUCAtyuxr/UkPimdPQnX2H3mOnvOXic9O5+tJ4pPvk1NYnsSrhMZqLk9906Xl6wqktGo3B6SLtPdi+qiy1jYH8P9yj561Elj6zV4fM5OXugeyo97L1jX9FuRts9S/23xAPiGEndpP4B0WHZwVaZJy5Gtj0uk2/TNPPnVLsYtPsiTX+2i2/TNlk0dFWDEiBFoNOpaUs7Ozvj7+9O3b1+++eYbjEZjySe4JSYmBh8fn4oL1JYix4JGp7bPXzpQ4u6mobagJjd3Mj2f8GA4Ls462gX5MOr+Jswb0ZGD7/Zjzf9145H2DawKKzk9G3bNUYeiB7SBJn2sOu7CjSwycvLRO2lp4lfLqmOEsDu/5tCsPxoUvmy2i04hvqTn5DNr40nrmn4rUup5tZ8fQDd1epLDtyb2lJsKxyYJTwUrVf+OChAdHU1iYiJnz55l3bp19OrVi3HjxjFo0CDy8/Mr9L3tonYItH5cffzbx1YdYhpqG+Bt2bwV4O1a5JB0nVZDqwbePNHBujl/Al3ybo8I6f7PEoeim5j674T5e+Ksk4+rqEbuGweAy+EfiPlbfVydC///a6pZnbT6aOUsPPr7p2DMV6eyaHgvqVm5XLyh9jGSfnKOTf6CloGiKGTl5pf4k56dx4RVR4rs3wEwcdVR0rPzrDpfWdZ8cnFxISAggAYNGhAREcG///1vVq5cybp164iJiQFgxowZtG7dGg8PD4KCghgzZgwZGRmA2kT43HPPcfPmTXNt0cSJEwH47rvv6NChA56engQEBPDUU0+RnJxc+l+orXV/FdDAsTVwpeDqzoWJbhXI9jd6s+jFLnwytB2LXuzC9jd6l1jNbmoSKyp90aBW2XdIWa7Orly3ObS0bjZogCOXb915Sv8dUd2E3AfB3cCQS9qGDwvMc3WnO5t+K1RG8u2FhrurtTumm4rgOu5VczSZsJkq1Yenuvgrz0D4u7+U+zwKkJSWTeuJv1q1/9HJ/XHXl/+S9e7dm7Zt27Js2TJGjhyJVqtl9uzZhIaGcubMGcaMGcPrr7/O559/TteuXZk1axbvvvsux48fB6BWLbVpJS8vjylTphAWFkZycjKvvvoqI0aMYO3ateWOsVz8wtQlJo6uVGt5Hptn1WFFDbUt6ZjiZp8FmDwgBO2GW5NsdnsFSrG8hsywLKq1nm/Agu34nfqRADqTRPGfL2tHTZbZjk8gPxsa3KvW8HC7OUvm33F8UsNTQ7Vo0cLcAXz8+PH06tWLkJAQevfuzXvvvceSJWobt16vx9vbG41GQ0BAAAEBAeaE5/nnn2fAgAE0btyYLl26MHv2bNatW2euHbKr7q+p/8b9DEmHi9+3nIpqEgN47r4Q+t5cBplX1XmCTM1tVjIlPDI3iKiWQrpDo67ojHm85LS6xN03xSdz7lpmxcRy8+KtUZJAz7fMzcpxpoRHmrMcntTwlIGbs46jk/uXuN+ehOuMmF/yGl8xz3WkU6ivVe9rK4qimOfF2bhxI1OnTuXYsWOkpaWRn59PdnY2WVlZxU64uH//fiZOnMihQ4e4ceOGuSP0+fPnCQ8Pt1msZRLYBu55FI4sgw0T4NllFfp2d88++/vpa/y49wK74k6iKLPUJq8+76qLnVopOT2bq+k5aDTQIkASHlENaTTQ80349iGedtrMfMMAzin+Re6+6tBlVh26TGTjOgztFET/ewJwvevvXplHvMZOA0OO2szW9PYi1eaERzosOzxJeMpAo9FY1bTUvZmfVUOeuzfzq/Qh6vHx8YSGhnL27FkGDRrE6NGjef/99/H19WX79u288MIL5ObmFpnwZGZm0r9/f/r378/ChQvx8/Pj/Pnz9O/fn9zc3EotS5H6vAPxq9URW2dirRqmXh53Non1Cw9g6/Gr/C3zOzROGerIrHseLdX5TPPvhNb1wEMmQxPVVeMe0KQPzqc38abTIsbkjbf4e2j6yzfq/lCOJWWw7eRVdp65xs4z1/Bxd+bR9g15slMQzfw9Szej+Z2uHoeDC9XHURPMtTtp2XmcvZYFSA1PTSBNWhXI2iHPlZ3sbN68mcOHD/O3v/2N/fv3YzQa+fjjj+nSpQvNmzfn8uXLFvvr9XoMBoPFtmPHjnHt2jWmTZtG9+7dadGiRdXosHwn38bQ4Xn18YZ31bVzKombXsc797nxjG4DAJn3v1uqvjsgMywLB9LvPdBoGaDbQ3/PMxYvmUZDvjUwnAXPd2L7G70Z16cZgd6upGbl8c2OBPrO3Ebvj2N5qawjXjdOBMUIYQ9AUCfzZtNNRQMfN2p76G1WXFE1ScJTwcoy5NmWcnJySEpK4tKlSxw4cIAPPviAwYMHM2jQIIYNG0bTpk3Jy8vj008/5cyZM3z33Xd88cUXFucICQkhIyODTZs2kZKSQlZWFo0aNUKv15uPW7VqFVOmTKnQspRJj9dB7wmJh+BATOW9r6Iw8OIsXDT5/GZoxeyzDUt9CplhWTgM/3CIGAbAHL+fWTSyU5GjIRv4uPFK3+Zsf6M380d0pF+4P1oNnLlaeN+eEoe1n/gFjq8FrZNau3MHU3OWzLBcM0jCUwnKOuTZFtavX09gYCAhISFER0ezZcsWZs+ezcqVK9HpdLRt25YZM2Ywffp0WrVqxcKFC5k6darFObp27cpLL73EkCFD8PPz48MPP8TPz4+YmBiWLl1KeHg406ZN46OPPqrw8pSaR13o/f/UxxsnqsNSK8PxtWhO/oJR68zE/OHM//0sF29kleoUphmWwwMl4REOoNf/A70nmst/EHljJYPbNSCySZ0ia7h1Wg29WtTjy2Ed+OypiGJPXeSw9ry/YO2/1MddxqgjOO8g/XdqFo1SlsldHExaWhre3t7cvHkTLy/L//jZ2dkkJCQQGhpqsaaXKD27/S6NBviql1rL0/px+NvXFft+OenweSTcvIDS7VWeOtOfnWeu8Wj7BswY0s6qU2Tk5NNqgjr1wf63o6hTy6UCAxaikuz6Ata/oda6vrwHvOpbddjKg5cYt/hgift9MrQdg9vdMfv5psnq1BSe9eHlveBiOVt5n49jOX01k5jnOtIzrF5pSiKqiOK+v+8mNTzC8Wl1MGgWaLRweCmcsG7eozL75d9w8wL4NEJz/2u8NbAFAMsPXjJPJFiS+Fu1OwFerpLsCMfR6UVo0AFy02HNq2Dl/ba1i/xa7HdxH2yfqT4eML1AspOZk8+ZFLWZTPrJ1QyS8IiaoUEEdL61YOfKMRXXtHV83a2ZXDXw8BzQe9CmoQ8Pta2PosC0dcesOs2RSzLDsnBAWh089CloneHEOthn3aSgJc1oDhDg5XJ7eo/cLFj+d7Wjcusn1IlI7xKfmIaiqDcVfp5yU1ETSMIjao4+E8C/lToJ4PKXbD9qK/U8rByrPo4cCyHdzC/9q38YzjoNv51MYduJqyWeSiYcFA7LPxyiJqqP1/8brhwp8ZDiRryaeLg4kZNvUGuN1rwC106BZyAM/LDQ/WWG5ZpHEh5Rczi7wt/mgZObOjfP5sm2O3feX/DjM5B1TZ1zp/c7Fi8H+bozLDIEgKnrjmEsYZFEU4dlqeERDqnLGGjWT50IcPHTkHmtxEOKGvFat5YeN2ctp69mMurb/eTt+hL+XAwaHTz6FbjVLvR8cZfUz5h0WK45JOERNUu9FvDQbPXx9pnwx/flP6fRoFafJx4C9zowdKGaXN3l5V5N8XR1Ij4xjRUHLxV5utx8IyeupAPSt0A4KK1WbfL1aQQ3EmDxU5BX8jpahY143f3vKBa+2AUPvQ7nMxvQ/PKWunPfyRDavchzyZD0mkcSHlHztHkC7n9dfbzqH3D4p7Kfy2iEVf+nLlSqdYbHY9Q/4oWo7aFnTM+mAHz0y3Gy8wyF7ncyOZ08g4KXqxMNa7uVPTYhqjKPuvDUUnDxhgu7YMkwq5Ie04zmdw5rj2hUmyX9DcxxnoUTBnZ79sXQeUyR5/gr18DJZPWmQpq0ag5JeETN1PMtaPcMKAZY9iIc+K7058j7Sz324EK1+vyxbyD0/mIPee6+EAK9Xbl8M5sFv58tdJ87+++Y1jsTwiHVawFDvwcnVzj5Cywaok7rUFpHV3HPludx1eSxwdiBp68+y5vLDhfZdHwsKQ2jAnVruVBPOizXGJLwiJpJq1VHi0QMU0dyrHpZ7eiYn2Pd8TfOQcwgiPtJncH1kbmFjgS5m6uzjn/2Uyc/+2zLKVKzCq47ZpphOTxQ7jxFDRB6Pzz9Ezh7qGvefdkTkuKsO9aQD1s/VGuH8rOhWT+Uv81D0TqzdP9FJq85SmFTzd1uzpKbippEEh5Rc2m1MOgT6PEmoIF936gTBsavVvvlFCYnQ53I7PNIuLQPXH3g2eXQ5nGr3/aR9g1oEeBJWnY+n205VeB1WVJC1Dih3WH4avBqoI6u+qqXuv5dUZ2ZFUVNjr7uA1veBxToOBKGLqJf2xD+81gbAGJ+P8t/fjle4PDbHZblpqImkSWYa6CePXvSrl07Zs2aZe9Q7E+rhV5vQcMO6pDy66fV0VY+jaD5AHUIrb4WZKbAxb1wYj3kZqjHNuoKD3+mLlJaCjqthrcGtmT4N3tY8Ps5hkWGEOSrrkpvNCq3R2jJ6BFRkzS8F/7+mzpP1on1sOMTdWbmZn2hUSR4Bqi1OFePqetjpZxQj3PxVoeetxliXgX90YiGZOUaeHtFHJ/HnsbDxYmxvZqa30qGpNdMkvA4sBEjRrBgwYIC23fv3k3Lli3Nz0NCQhg/fjzjx4+vxOiqmGZ94eVbM7Pum6fOqbNnbuH71mmqdnpu/XipV0A3ub9ZXbo1rcv2Uyl8/OtxZg1tD8D561lk5OSjd9LSxK9WCWcRwsF41IEnF6sJTexUSDwIx9aoP3dzclObpO9/DWoVXBbimS7B/JVr4P218fznl+O463UMiwxhx6mrHEtSbypayjp1NYokPA4uOjqa+fPnW2zz8/NDp9PZKaIqzNVLXU35/tfg9GZI2AY3zqp3lS5e4H8PNOkDQZ3Md5JlpdFoeHNACwZ9up0VBy8zsntjWjXwNtfuhPl74qyTFmdRA2k0EBYNzfurUz2c2ghX4tRaVicX8AmGoM4QNkD9zBbjxfsbk5mbz6yNJ5m0+iizNp7k5l955tefmLuTiQ+GV8pCzsL+JOEpC0WBvNKtfG0Tzu6l/qJ1cXEhICDAYtudTVo9e/bk3LlzvPLKK7zyyisAhXbyq1H0HtDyQfWnArVq4M3D7eqz4uBlPlgbz8KRnc1rbUn/HVHjaTRQv536Uw7j+jTjyOU0Nhy9YpHsAFy5mc3o7w8w55kISXpqAEl4yiIvCz6wbpVfm/r3ZfXL2IaWLVtG27ZtGTVqFC+++KJNzy1K9s9+Yaw9nMTvp6+x5Vgy20+lAOCu12EwKui0MoJEiPIwKrf77NxNQV2qYtLqo/QND5DPm4OTOnMHt2bNGmrVqmX+efxxy9FEvr6+6HQ6PD09CQgIKFAbJCpWkK87w7sGAzDqu/0cuqD+Yf5mx1m6Td/M+rhEe4YnRLW3J+E6STeLntBQARJvZrMn4XrlBSXsQmp4ysLZXa1tscf7llKvXr2YM2eO+bmHhwdPPvmkLaMS5dQiwBOA/LsmSUuS6nYhyi05veTZm0uzn6i+JOEpC43G5k1LFcXDw4OmTZuWvKOwC4NR4aNfTxT6mlS3C1F+9TwLrmtXnv1E9SVNWgK9Xo/BUMREe6JC7Um4TqJUtwtRYTqF+hLo7UpRtwsaINDblU6hvpUZlrADSXgEISEhbNu2jUuXLpGSkmLvcGoUqW4XomLptBomPBgOUCDpMT2f8GC41KDWAJLwCCZPnszZs2dp0qQJfn5+9g6nRpHqdiEqXnSrQOY8E0GAt+XnKMDbVfrI1SDSh8eBxcTEFLo9NjbW4nmXLl04dOhQxQckCjBVtyfdzKaw2Y80qH+UpbpdiPKJbhVI3/AA9iRcJzk9m3qe6udKanZqDkl4hLAjU3X76O8PoAGLpEeq24WwLZ1WQ2STOvYOQ9iJNGkJYWdS3S6EEBVPaniEqAKkul0IISqWJDxCVBFS3S6EEBVHmrSsVOMX1LQB+R0KIYSwF0l4SuDs7AxAVpYdVkd3MLm5uQDodDo7RyKEEKKmkSatEuh0Onx8fEhOTgbA3d0djUb6VZSW0Wjk6tWruLu74+Qk/+2EEEJULvnmsYJpBXFT0iPKRqvV0qhRI0kYhRBCVDpJeKyg0WgIDAykXr165OXl2Tucakuv16PVSiuqEEKIyicJTynodDrpfyKEEEJUQ3K7LYQQQgiHJwmPEEIIIRyeJDxCCCGEcHjSh4fbE+KlpaXZORIhhBBCWMv0vW3NxLaS8ADp6ekABAUF2TkSIYQQQpRWeno63t7exe6jUWS+f4xGI5cvX8bT09Pmc8SkpaURFBTEhQsX8PLysum5qwIpX/Xn6GWU8lV/jl5GKV/ZKYpCeno69evXL3HaE6nhQZ0Qr2HDhhX6Hl5eXg75H9lEylf9OXoZpXzVn6OXUcpXNiXV7JhIp2UhhBBCODxJeIQQQgjh8CThqWAuLi5MmDABFxcXe4dSIaR81Z+jl1HKV/05ehmlfJVDOi0LIYQQwuFJDY8QQgghHJ4kPEIIIYRweJLwCCGEEMLhScIjhBBCCIcnCU8F+uyzzwgJCcHV1ZXOnTuzZ88ee4dUotLE/NVXX9G9e3dq165N7dq1iYqKKrD/iBEj0Gg0Fj/R0dEVXYxSKU2ZY2JiCpTH1dW1EqMtWWnK07NnzwLl0Wg0PPDAA+Z9qsM1LMy2bdt48MEHqV+/PhqNhhUrVtg7JKuUNu5ly5bRt29f/Pz88PLyIjIykl9++cVin4kTJxa4hi1atKjAUlivtOWNjY0t9P9sUlJS5QRcgtKWp7DPl0aj4Z577jHvU5WvX3GmTp1Kx44d8fT0pF69ejz88MMcP37cbvFIwlNBfvzxR1599VUmTJjAgQMHaNu2Lf379yc5OdneoRWptDHHxsby5JNPsmXLFnbu3ElQUBD9+vXj0qVLFvtFR0eTmJho/lm0aFFlFMcqZblOXl5eFuU5d+5cJUZcvNKWZ9myZRZliYuLQ6fT8fjjj1vsV5WvYVEyMzNp27Ytn332mb1DKZXSxr1t2zb69u3L2rVr2b9/P7169eLBBx/kjz/+sNjvnnvusbiG27dvr4jwS62s1+n48eMW5alXr14FRVg6pS3PJ598YlGOCxcu4OvrW+AzWFWvX3G2bt3K2LFj2bVrFxs2bCAvL49+/fqRmZlpn4AUUSE6deqkjB071vzcYDAo9evXV6ZOnWrHqIpX3pjz8/MVT09PZcGCBeZtw4cPVwYPHmzrUG2mtGWeP3++4u3tXUnRlV55r+HMmTMVT09PJSMjw7ytql9DawDK8uXL7R1GqZU17vDwcGXSpEnm5xMmTFDatm1ru8AqiDXl3bJliwIoN27cqJSYyqMs12/58uWKRqNRzp49a95WXa5fSZKTkxVA2bp1q13eX2p4KkBubi779+8nKirKvE2r1RIVFcXOnTvtGFnRbBFzVlYWeXl5+Pr6WmyPjY2lXr16hIWFMXr0aK5du2bT2MuqrGXOyMggODiYoKAgBg8ezJEjRyoj3BLZ4hrOmzePoUOH4uHhYbG9ql5DUZDRaCQ9Pb3A5/DkyZPUr1+fxo0b8/TTT3P+/Hk7RWgb7dq1IzAwkL59+7Jjxw57h2Mz8+bNIyoqiuDgYIvtjnD9bt68CVDg/2ZlkYSnAqSkpGAwGPD397fY7u/vX2Xame9mi5jfeOMN6tevb/GFGx0dzbfffsumTZuYPn06W7duZcCAARgMBpvGXxZlKXNYWBjffPMNK1eu5Pvvv8doNNK1a1cuXrxYGSEXq7zXcM+ePcTFxTFy5EiL7VX5GoqCPvroIzIyMnjiiSfM2zp37kxMTAzr169nzpw5JCQk0L17d9LT0+0YadkEBgbyxRdf8PPPP/Pzzz8TFBREz549OXDggL1DK7fLly+zbt26Ap9BR7h+RqOR8ePHc99999GqVSu7xCCrpQubmDZtGosXLyY2NtaiE+/QoUPNj1u3bk2bNm1o0qQJsbGx9OnTxx6hlktkZCSRkZHm5127dqVly5bMnTuXKVOm2DGy8ps3bx6tW7emU6dOFtsd7Ro6sh9++IFJkyaxcuVKiz4tAwYMMD9u06YNnTt3Jjg4mCVLlvDCCy/YI9QyCwsLIywszPy8a9eunD59mpkzZ/Ldd9/ZMbLyW7BgAT4+Pjz88MMW2x3h+o0dO5a4uDi79j2SGp4KULduXXQ6HVeuXLHYfuXKFQICAuwUVfHKE/NHH33EtGnT+PXXX2nTpk2x+zZu3Ji6dety6tSpcsdcXra4Ts7OzrRv377alyczM5PFixdb9cezKl1DcdvixYsZOXIkS5YssahlLYyPjw/Nmzd3mGvYqVOnal8WRVH45ptvePbZZ9Hr9cXuW92u38svv8yaNWvYsmULDRs2tFsckvBUAL1ez7333sumTZvM24xGI5s2bbKoHahKyhrzhx9+yJQpU1i/fj0dOnQo8X0uXrzItWvXCAwMtEnc5WGL62QwGDh8+HC1L8/SpUvJycnhmWeeKfF9qtI1FKpFixbx3HPPsWjRIospBYqSkZHB6dOnHeYaHjx4sNqXZevWrZw6dcqqm47qcv0UReHll19m+fLlbN68mdDQULsHJCrA4sWLFRcXFyUmJkY5evSoMmrUKMXHx0dJSkqyd2hFKinmZ599VnnzzTfN+0+bNk3R6/XKTz/9pCQmJpp/0tPTFUVRlPT0dOW1115Tdu7cqSQkJCgbN25UIiIilGbNminZ2dl2KePdSlvmSZMmKb/88oty+vRpZf/+/crQoUMVV1dX5ciRI/YqgoXSlsekW7duypAhQwpsrw7XsCjp6enKH3/8ofzxxx8KoMyYMUP5448/lHPnztk7tGKVFPebb76pPPvss+b9Fy5cqDg5OSmfffaZxecwNTXVvM8///lPJTY2VklISFB27NihREVFKXXr1lWSk5MrvXx3K215Z86cqaxYsUI5efKkcvjwYWXcuHGKVqtVNm7caK8iWChteUyeeeYZpXPnzoWesypfv+KMHj1a8fb2VmJjYy3+b2ZlZdklHkl4KtCnn36qNGrUSNHr9UqnTp2UXbt22TukEhUXc48ePZThw4ebnwcHBytAgZ8JEyYoiqIoWVlZSr9+/RQ/Pz/F2dlZCQ4OVl588cUql/SVpszjx4837+vv768MHDhQOXDggB2iLlppyqMoinLs2DEFUH799dcC56ou17AwpuHLd//cXf6qpqS4hw8frvTo0cO8f48ePUos55AhQ5TAwEBFr9crDRo0UIYMGaKcOnWqcgtWhNKWd/r06UqTJk0UV1dXxdfXV+nZs6eyefNm+wRfiNKWR1EUJTU1VXFzc1O+/PLLQs9Zla9fcQr7PQDK/Pnz7RKP5lZQQgghhBAOS/rwCCGEEMLhScIjhBBCCIcnCY8QQgghHJ4kPEIIIYRweJLwCCGEEMLhScIjhBBCCIcnCY8QQgghHJ4kPEIIIYRweJLwCCFqjJiYGHx8fIrdZ+LEibRr165S4rlbSEgIs2bNqvT3HTFiBBqNBo1Gw4oVK6w6JiQkxHxMampqhcYnhC1IwiOEnd35ZaPX62natCmTJ08mPz/f3qGVWWm+OEty9uxZNBoNBw8eLPBaz549GT9+vE3epyLFxsaar3FRP7Gxsezdu5dRo0bZJcbo6GgSExMZMGCAVfvv3buXn3/+uYKjEsJ2nOwdgBBC/bKZP38+OTk5rF27lrFjx+Ls7Mxbb71V6nMZDAY0Gg1abfW/n8nLy7N3CGWSl5eHs7Oz+XnXrl1JTEw0Px83bhxpaWnMnz/fvM3X1xe9Xl+pcd7JxcWFgIAAq/f38/PD19e3AiMSwraq/19EIRyA6csmODiY0aNHExUVxapVqwCYMWMGrVu3xsPDg6CgIMaMGUNGRob5WFMzzapVqwgPD8fFxYXz58+zd+9e+vbtS926dfH29qZHjx4cOHDA4n01Gg1z585l0KBBuLu707JlS3bu3MmpU6fo2bMnHh4edO3aldOnT1sct3LlSiIiInB1daVx48ZMmjTJXCMVEhICwCOPPIJGozE/L+k4Uzxz5szhoYcewsPDg/fff79Uv8cbN24wbNgwateujbu7OwMGDODkyZPFHjNt2jT8/f3x9PTkhRdeIDs7u8A+X3/9NS1btsTV1ZUWLVrw+eefm18z1UD9+OOP9OjRA1dXVxYuXGhxvF6vJyAgwPzj5uZmvuamH71eX6BJqyKuj7Vyc3N5+eWXCQwMxNXVleDgYKZOnVqqcwhRlUjCI0QV5ObmRm5uLgBarZbZs2dz5MgRFixYwObNm3n99dct9s/KymL69Ol8/fXXHDlyhHr16pGens7w4cPZvn07u3btolmzZgwcOJD09HSLY6dMmcKwYcM4ePAgLVq04KmnnuLvf/87b731Fvv27UNRFF5++WXz/r/99hvDhg1j3LhxHD16lLlz5xITE2NOTvbu3QvA/PnzSUxMND8v6TiTiRMn8sgjj3D48GGef/75Uv3eRowYwb59+1i1ahU7d+5EURQGDhxYZE3RkiVLmDhxIh988AH79u0jMDDQIpkBWLhwIe+++y7vv/8+8fHxfPDBB7zzzjssWLDAYr8333yTcePGER8fT//+/UsVd3FsfX2sNXv2bFatWsWSJUs4fvw4CxcutEhehah27LJGuxDCbPjw4crgwYMVRVEUo9GobNiwQXFxcVFee+21QvdfunSpUqdOHfPz+fPnK4By8ODBYt/HYDAonp6eyurVq83bAOXtt982P9+5c6cCKPPmzTNvW7RokeLq6mp+3qdPH+WDDz6wOPd3332nBAYGWpx3+fLlFvtYe9z48eMt9klISFAAxc3NTfHw8LD40Wq1yrhx4xRFUZQTJ04ogLJjxw7zsSkpKYqbm5uyZMkS8+/K29vb/HpkZKQyZswYi/fr3Lmz0rZtW/PzJk2aKD/88IPFPlOmTFEiIyMt4ps1a5ZirTuv+Z2Cg4OVmTNnmp9X1PWxJp7/+7//U3r37q0YjcYij9uyZYsCKDdu3ChyHyGqCunDI0QVsGbNGmrVqkVeXh5Go5GnnnqKiRMnArBx40amTp3KsWPHSEtLIz8/n+zsbLKysnB3dwfUJpM2bdpYnPPKlSu8/fbbxMbGkpycjMFgICsri/Pnz1vsd+dx/v7+ALRu3dpiW3Z2NmlpaXh5eXHo0CF27NhhUWNgMBgKxHQ3a4/r0KFDocf/+OOPtGzZ0mLb008/bX4cHx+Pk5MTnTt3Nm+rU6cOYWFhxMfHF3rO+Ph4XnrpJYttkZGRbNmyBYDMzExOnz7NCy+8wIsvvmjeJz8/H29vb4vjioq7vCrr+txtxIgR9O3bl7CwMKKjoxk0aBD9+vWzUamEqHyS8AhRBfTq1Ys5c+ag1+upX78+Tk7qR/Ps2bMMGjSI0aNH8/777+Pr68v27dt54YUXyM3NNX95ubm5odFoLM45fPhwrl27xieffEJwcDAuLi5ERkaam8pM7uxcazpHYduMRiMAGRkZTJo0iUcffbRAOVxdXYsso7XHeXh4FHp8UFAQTZs2tdjm5uZW5PvZgqmv1FdffWWRSAHodDqL50XFXV6VdX3uFhERQUJCAuvWrWPjxo088cQTREVF8dNPP5WpHELYmyQ8QlQBHh4eBb7MAfbv34/RaOTjjz82j7pasmSJVefcsWMHn3/+OQMHDgTgwoULpKSklDvWiIgIjh8/Xmi8Js7OzhgMhlIfVx4tW7YkPz+f3bt307VrVwCuXbvG8ePHCQ8PL/KY3bt3M2zYMPO2Xbt2mR/7+/tTv359zpw5Y1GbVJXZ8vfs5eXFkCFDGDJkCI899hjR0dFcv35dRmeJakkSHiGqsKZNm5KXl8enn37Kgw8+yI4dO/jiiy+sOrZZs2Z89913dOjQgbS0NP71r3/ZpEbk3XffZdCgQTRq1IjHHnsMrVbLoUOHiIuL47333gPUkVqbNm3ivvvuw8XFhdq1a1t1XHk0a9aMwYMH8+KLLzJ37lw8PT158803adCgAYMHDy70mHHjxjFixAg6dOjAfffdx8KFCzly5AiNGzc27zNp0iT+8Y9/4O3tTXR0NDk5Oezbt48bN27w6quvljtuW7PV73nGjBkEBgbSvn17tFotS5cuJSAgoMSJG4WoqmSUlhBVWNu2bZkxYwbTp0+nVatWLFy40OqhwfPmzePGjRtERETw7LPP8o9//IN69eqVO6b+/fuzZs0afv31Vzp27EiXLl2YOXMmwcHB5n0+/vhjNmzYQFBQEO3bt7f6uPKaP38+9957L4MGDSIyMhJFUVi7dq1FE9CdhgwZwjvvvMPrr7/Ovffey7lz5xg9erTFPiNHjuTrr79m/vz5tG7dmh49ehATE0NoaKjN4rYlW/2ePT09+fDDD+nQoQMdO3bk7NmzrF271iHmdxI1k0ZRFMXeQQghhLCfESNGkJqaWurZsWNjY+nVqxc3btyQmh9R5UmqLoQQwjxScM2aNVbtf88991i9DIUQVYHU8AghRA2XnJxMWloaAIGBgVaNODt37px5QsfGjRtLU5eo8iThEUIIIYTDk5RcCCGEEA5PEh4hhBBCODxJeIQQQgjh8CThEUIIIYTDk4RHCCGEEA5PEh4hhBBCODxJeIQQQgjh8CThEUIIIYTD+//dwDWUJoH+YwAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a_obj = MyCosineAnalysis(label=\"Cosine experiment\")\n",
"a_obj.run()\n",
"a_obj.figs_mpl[\"cos-data-and-fit\"]"
]
},
{
"cell_type": "markdown",
"id": "6b1d19bb",
"metadata": {},
"source": [
"The first line will instantiate the class by calling the {code}`.__init__()` method.\n",
"\n",
"As expected this will save similar files into the `experiment directory`:\n",
"\n",
"```{code-block}\n",
"20230125-172712-018-87b9bf-Cosine experiment/\n",
"├── cos-data-and-fit.png\n",
"├── Cosine fit.png\n",
"├── dataset.hdf5\n",
"├── quantities_of_interest.json\n",
"└── snapshot.json\n",
"```\n",
"\n",
"## Extending the BaseAnalysis\n",
"\n",
"While the above stand-alone class provides the gist of an analysis, we can do even better by defining a structured framework that all analyses need to adhere to and factoring out the pieces of code that are common to most analyses.\n",
"Besides that, the overall functionality can be improved.\n",
"\n",
"Here is where the {class}`~quantify_core.analysis.base_analysis.BaseAnalysis` enters the scene.\n",
"It allows us to focus only on the particular aspect of our custom analysis by implementing only the relevant methods. Take a look at how the above class is implemented where we are making use of the analysis framework. For completeness, a fully documented {class}`~quantify_core.analysis.fitting_models.CosineModel` which can serve as a template is shown as well."
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "0909e0d6",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
classCosineModel(lmfit.model.Model):\n",
""""\n",
" Exemplary lmfit model with a guess for a cosine.\n",
"\n",
" .. note::\n",
"\n",
" The :mod:`lmfit.models` module provides several fitting models that might fit\n",
" your needs out of the box.\n",
" """\n",
"\n",
" def__init__(self,*args,**kwargs):\n",
" # pass in the model's equation\n",
" super().__init__(cos_func,*args,**kwargs)\n",
"\n",
" # configure constraints that are independent from the data to be fitted\n",
" self.set_param_hint("frequency",min=0,vary=True)# enforce positive frequency\n",
" self.set_param_hint("amplitude",min=0,vary=True)# enforce positive amplitude\n",
" self.set_param_hint("offset",vary=True)\n",
" self.set_param_hint(\n",
" "phase",vary=True,min=-np.pi,max=np.pi\n",
" )# enforce phase range\n",
"\n",
" # pylint: disable=missing-function-docstring\n",
" defguess(self,data,x,**kws)->lmfit.parameter.Parameters:\n",
""""\n",
" guess parameters based on the data\n",
"\n",
" Parameters\n",
" ----------\n",
" data: np.ndarray\n",
" Data to fit to\n",
" x: np.ndarray\n",
" Independet variable\n",
" """\n",
"\n",
" self.set_param_hint("offset",value=np.average(data))\n",
" self.set_param_hint("amplitude",value=(np.max(data)-np.min(data))/2)\n",
"\n",
" # Guess frequency and phase using Fourier Transform\n",
" freq_guess,phase_guess=fft_freq_phase_guess(data,x)\n",
" phase_wrap=(phase_guess+np.pi)%(2*np.pi)-np.pi\n",
" self.set_param_hint("frequency",value=freq_guess)\n",
" self.set_param_hint("phase",value=phase_wrap)\n",
"\n",
" params=self.make_params()\n",
" returnlmfit.models.update_param_vals(params,self.prefix,**kws)\n",
"\n",
" # Same design patter is used in lmfit.models to inherit common docstrings.\n",
" # We adjust these common docstrings to our docs build pipeline\n",
" __init__.__doc__=get_model_common_doc()+mk_seealso("cos_func")\n",
" guess.__doc__=get_guess_common_doc()\n",
"
\n"
],
"text/latex": [
"\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n",
"\\PY{k}{class} \\PY{n+nc}{CosineModel}\\PY{p}{(}\\PY{n}{lmfit}\\PY{o}{.}\\PY{n}{model}\\PY{o}{.}\\PY{n}{Model}\\PY{p}{)}\\PY{p}{:}\n",
"\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\\PY{l+s+sd}{ Exemplary lmfit model with a guess for a cosine.}\n",
"\n",
"\\PY{l+s+sd}{ .. note::}\n",
"\n",
"\\PY{l+s+sd}{ The :mod:`lmfit.models` module provides several fitting models that might fit}\n",
"\\PY{l+s+sd}{ your needs out of the box.}\n",
"\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\n",
" \\PY{k}{def} \\PY{n+nf+fm}{\\PYZus{}\\PYZus{}init\\PYZus{}\\PYZus{}}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{,} \\PY{o}{*}\\PY{n}{args}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)}\\PY{p}{:}\n",
" \\PY{c+c1}{\\PYZsh{} pass in the model\\PYZsq{}s equation}\n",
" \\PY{n+nb}{super}\\PY{p}{(}\\PY{p}{)}\\PY{o}{.}\\PY{n+nf+fm}{\\PYZus{}\\PYZus{}init\\PYZus{}\\PYZus{}}\\PY{p}{(}\\PY{n}{cos\\PYZus{}func}\\PY{p}{,} \\PY{o}{*}\\PY{n}{args}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)}\n",
"\n",
" \\PY{c+c1}{\\PYZsh{} configure constraints that are independent from the data to be fitted}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n+nb}{min}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{)} \\PY{c+c1}{\\PYZsh{} enforce positive frequency}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n+nb}{min}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{)} \\PY{c+c1}{\\PYZsh{} enforce positive amplitude}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{offset}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{)}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\n",
" \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{phase}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{,} \\PY{n+nb}{min}\\PY{o}{=}\\PY{o}{\\PYZhy{}}\\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\\PY{p}{,} \\PY{n+nb}{max}\\PY{o}{=}\\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\n",
" \\PY{p}{)} \\PY{c+c1}{\\PYZsh{} enforce phase range}\n",
"\n",
" \\PY{c+c1}{\\PYZsh{} pylint: disable=missing\\PYZhy{}function\\PYZhy{}docstring}\n",
" \\PY{k}{def} \\PY{n+nf}{guess}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{,} \\PY{n}{data}\\PY{p}{,} \\PY{n}{x}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kws}\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{lmfit}\\PY{o}{.}\\PY{n}{parameter}\\PY{o}{.}\\PY{n}{Parameters}\\PY{p}{:}\n",
"\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\\PY{l+s+sd}{ guess parameters based on the data}\n",
"\n",
"\\PY{l+s+sd}{ Parameters}\n",
"\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n",
"\\PY{l+s+sd}{ data: np.ndarray}\n",
"\\PY{l+s+sd}{ Data to fit to}\n",
"\\PY{l+s+sd}{ x: np.ndarray}\n",
"\\PY{l+s+sd}{ Independet variable}\n",
"\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{offset}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{n}{np}\\PY{o}{.}\\PY{n}{average}\\PY{p}{(}\\PY{n}{data}\\PY{p}{)}\\PY{p}{)}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{p}{(}\\PY{n}{np}\\PY{o}{.}\\PY{n}{max}\\PY{p}{(}\\PY{n}{data}\\PY{p}{)} \\PY{o}{\\PYZhy{}} \\PY{n}{np}\\PY{o}{.}\\PY{n}{min}\\PY{p}{(}\\PY{n}{data}\\PY{p}{)}\\PY{p}{)} \\PY{o}{/} \\PY{l+m+mi}{2}\\PY{p}{)}\n",
"\n",
" \\PY{c+c1}{\\PYZsh{} Guess frequency and phase using Fourier Transform}\n",
" \\PY{n}{freq\\PYZus{}guess}\\PY{p}{,} \\PY{n}{phase\\PYZus{}guess} \\PY{o}{=} \\PY{n}{fft\\PYZus{}freq\\PYZus{}phase\\PYZus{}guess}\\PY{p}{(}\\PY{n}{data}\\PY{p}{,} \\PY{n}{x}\\PY{p}{)}\n",
" \\PY{n}{phase\\PYZus{}wrap} \\PY{o}{=} \\PY{p}{(}\\PY{n}{phase\\PYZus{}guess} \\PY{o}{+} \\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\\PY{p}{)} \\PY{o}{\\PYZpc{}} \\PY{p}{(}\\PY{l+m+mi}{2} \\PY{o}{*} \\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\\PY{p}{)} \\PY{o}{\\PYZhy{}} \\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{n}{freq\\PYZus{}guess}\\PY{p}{)}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{phase}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{n}{phase\\PYZus{}wrap}\\PY{p}{)}\n",
"\n",
" \\PY{n}{params} \\PY{o}{=} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{make\\PYZus{}params}\\PY{p}{(}\\PY{p}{)}\n",
" \\PY{k}{return} \\PY{n}{lmfit}\\PY{o}{.}\\PY{n}{models}\\PY{o}{.}\\PY{n}{update\\PYZus{}param\\PYZus{}vals}\\PY{p}{(}\\PY{n}{params}\\PY{p}{,} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{prefix}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kws}\\PY{p}{)}\n",
"\n",
" \\PY{c+c1}{\\PYZsh{} Same design patter is used in lmfit.models to inherit common docstrings.}\n",
" \\PY{c+c1}{\\PYZsh{} We adjust these common docstrings to our docs build pipeline}\n",
" \\PY{n+nf+fm}{\\PYZus{}\\PYZus{}init\\PYZus{}\\PYZus{}}\\PY{o}{.}\\PY{n+nv+vm}{\\PYZus{}\\PYZus{}doc\\PYZus{}\\PYZus{}} \\PY{o}{=} \\PY{n}{get\\PYZus{}model\\PYZus{}common\\PYZus{}doc}\\PY{p}{(}\\PY{p}{)} \\PY{o}{+} \\PY{n}{mk\\PYZus{}seealso}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cos\\PYZus{}func}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n",
" \\PY{n}{guess}\\PY{o}{.}\\PY{n+nv+vm}{\\PYZus{}\\PYZus{}doc\\PYZus{}\\PYZus{}} \\PY{o}{=} \\PY{n}{get\\PYZus{}guess\\PYZus{}common\\PYZus{}doc}\\PY{p}{(}\\PY{p}{)}\n",
"\\end{Verbatim}\n"
],
"text/plain": [
"class CosineModel(lmfit.model.Model):\n",
" \"\"\"\n",
" Exemplary lmfit model with a guess for a cosine.\n",
"\n",
" .. note::\n",
"\n",
" The :mod:`lmfit.models` module provides several fitting models that might fit\n",
" your needs out of the box.\n",
" \"\"\"\n",
"\n",
" def __init__(self, *args, **kwargs):\n",
" # pass in the model's equation\n",
" super().__init__(cos_func, *args, **kwargs)\n",
"\n",
" # configure constraints that are independent from the data to be fitted\n",
" self.set_param_hint(\"frequency\", min=0, vary=True) # enforce positive frequency\n",
" self.set_param_hint(\"amplitude\", min=0, vary=True) # enforce positive amplitude\n",
" self.set_param_hint(\"offset\", vary=True)\n",
" self.set_param_hint(\n",
" \"phase\", vary=True, min=-np.pi, max=np.pi\n",
" ) # enforce phase range\n",
"\n",
" # pylint: disable=missing-function-docstring\n",
" def guess(self, data, x, **kws) -> lmfit.parameter.Parameters:\n",
" \"\"\"\n",
" guess parameters based on the data\n",
"\n",
" Parameters\n",
" ----------\n",
" data: np.ndarray\n",
" Data to fit to\n",
" x: np.ndarray\n",
" Independet variable\n",
" \"\"\"\n",
"\n",
" self.set_param_hint(\"offset\", value=np.average(data))\n",
" self.set_param_hint(\"amplitude\", value=(np.max(data) - np.min(data)) / 2)\n",
"\n",
" # Guess frequency and phase using Fourier Transform\n",
" freq_guess, phase_guess = fft_freq_phase_guess(data, x)\n",
" phase_wrap = (phase_guess + np.pi) % (2 * np.pi) - np.pi\n",
" self.set_param_hint(\"frequency\", value=freq_guess)\n",
" self.set_param_hint(\"phase\", value=phase_wrap)\n",
"\n",
" params = self.make_params()\n",
" return lmfit.models.update_param_vals(params, self.prefix, **kws)\n",
"\n",
" # Same design patter is used in lmfit.models to inherit common docstrings.\n",
" # We adjust these common docstrings to our docs build pipeline\n",
" __init__.__doc__ = get_model_common_doc() + mk_seealso(\"cos_func\")\n",
" guess.__doc__ = get_guess_common_doc()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"
classCosineAnalysis(ba.BaseAnalysis):\n",
""""\n",
" Exemplary analysis subclass that fits a cosine to a dataset.\n",
" """\n",
"\n",
" defprocess_data(self):\n",
""""\n",
" In some cases, you might need to process the data, e.g., reshape, filter etc.,\n",
" before starting the analysis. This is the method where it should be done.\n",
"\n",
" See :meth:`~quantify_core.analysis.spectroscopy_analysis.ResonatorSpectroscopyAnalysis.process_data`\n",
" for an implementation example.\n",
" """# pylint: disable=line-too-long\n",
"\n",
" defrun_fitting(self):\n",
""""\n",
" Fits a :class:`~quantify_core.analysis.fitting_models.CosineModel` to the data.\n",
" """\n",
" # create a fitting model based on a cosine function\n",
" model=CosineModel()\n",
" guess=model.guess(self.dataset.y0.values,x=self.dataset.x0.values)\n",
" result=model.fit(\n",
" self.dataset.y0.values,x=self.dataset.x0.values,params=guess\n",
" )\n",
" self.fit_results.update({"cosine":result})\n",
"\n",
" defcreate_figures(self):\n",
""""\n",
" Creates a figure with the data and the fit.\n",
" """\n",
" fig,ax=plt.subplots()\n",
" fig_id="cos_fit"\n",
" self.figs_mpl.update({fig_id:fig})\n",
" self.axs_mpl.update({fig_id:ax})\n",
"\n",
" self.dataset.y0.plot(ax=ax,x="x0",marker="o",linestyle="")\n",
" qpl.plot_fit(ax,self.fit_results["cosine"])\n",
" qpl.plot_textbox(ax,ba.wrap_text(self.quantities_of_interest["fit_msg"]))\n",
"\n",
" adjust_axeslabels_SI(ax)\n",
" qpl.set_suptitle_from_dataset(fig,self.dataset,"x0-y0")\n",
" ax.legend()\n",
"\n",
" defanalyze_fit_results(self):\n",
""""\n",
" Checks fit success and populates :code:`quantities_of_interest`.\n",
" """\n",
" fit_result=self.fit_results["cosine"]\n",
" fit_warning=ba.check_lmfit(fit_result)\n",
"\n",
" # If there is a problem with the fit, display an error message in the text box.\n",
" # Otherwise, display the parameters as normal.\n",
" iffit_warningisNone:\n",
" self.quantities_of_interest["fit_success"]=True\n",
" unit=self.dataset.y0.units\n",
" text_msg="Summary\\n"\n",
" text_msg+=format_value_string(\n",
" r"$f$",fit_result.params["frequency"],end_char="\\n",unit="Hz"\n",
" )\n",
" text_msg+=format_value_string(\n",
" r"$A$",fit_result.params["amplitude"],unit=unit\n",
" )\n",
" else:\n",
" text_msg=fit_warning\n",
" self.quantities_of_interest["fit_success"]=False\n",
"\n",
" # save values and fit uncertainty\n",
" forparameter_namein["frequency","amplitude"]:\n",
" self.quantities_of_interest[parameter_name]=ba.lmfit_par_to_ufloat(\n",
" fit_result.params[parameter_name]\n",
" )\n",
" self.quantities_of_interest["fit_msg"]=text_msg\n",
"