Source code for quantify_core.visualization.plot_interpolation

# Repository: https://gitlab.com/quantify-os/quantify-core
# Licensed according to the LICENCE file on the main branch
"""Plot interpolations."""
import logging
from typing import Literal

import numpy as np
from scipy import interpolate


def areas(ip):
    p = ip.tri.points[ip.tri.simplices]
    q = p[:, :-1, :] - p[:, -1, None, :]
    areas = abs(q[:, 0, 0] * q[:, 1, 1] - q[:, 0, 1] * q[:, 1, 0]) / 2
    return areas


def scale(points, xy_mean, xy_scale):
    points = np.asarray(points, dtype=float)
    return (points - xy_mean) / xy_scale


def unscale(points, xy_mean, xy_scale):
    points = np.asarray(points, dtype=float)
    return points * xy_scale + xy_mean


[docs] def interpolate_heatmap( x, y, z, n: int = None, interp_method: Literal["linear", "nearest", "deg"] = "linear", ): """ The output of this method can directly be used for plt.imshow(z_grid, extent=extent, aspect='auto') where the extent is determined by the min and max of the x_grid and y_grid. The output can also be used as input for ax.pcolormesh(x, y, Z,**kw) Parameters ---------- x : :class:`numpy.ndarray` x data points y : :class:`numpy.ndarray` y data points z : :class:`numpy.ndarray` z data points n number of points for each dimension on the interpolated grid if set to None will auto determine amount of points needed interp_method determines what interpolation method is used. Returns ------- x_grid : :class:`numpy.ndarray` N*1 array of x-values of the interpolated grid y_grid : :class:`numpy.ndarray` N*1 array of x-values of the interpolated grid z_grid : :class:`numpy.ndarray` N*N array of z-values that form a grid. """ points = list(zip(x, y)) lbrt = np.min(points, axis=0), np.max(points, axis=0) lbrt = lbrt[0][0], lbrt[0][1], lbrt[1][0], lbrt[1][1] xy_mean = np.mean([lbrt[0], lbrt[2]]), np.mean([lbrt[1], lbrt[3]]) xy_scale = np.ptp([lbrt[0], lbrt[2]]), np.ptp([lbrt[1], lbrt[3]]) # interpolation needs to happen on a rescaled grid, this is somewhat akin # to an assumption in the interpolation that the scale of the experiment # is chosen sensibly. N.B. even if interp_method == "nearest" the linear # interpolation is used to determine the amount of grid points. ip = interpolate.LinearNDInterpolator( scale(points, xy_mean=xy_mean, xy_scale=xy_scale), z ) if n is None: # Calculate how many grid points are needed. # factor from A=√3/4 * a² (equilateral triangle) # N.B. a factor 4 was added as there were to few points for uniform grid otherwise. all_areas = areas(ip) area_min = all_areas[all_areas > 0.0].min() n = int(0.658 / np.sqrt(area_min)) * 4 n = max(n, 10) if n > 500: logging.debug("n: {} larger than 500".format(n)) n = 500 x_lin = y_lin = np.linspace(-0.5, 0.5, n) if interp_method == "linear": z_grid = ip(x_lin[:, None], y_lin[None, :]).squeeze() elif interp_method == "nearest": ip = interpolate.NearestNDInterpolator( scale(points, xy_mean=xy_mean, xy_scale=xy_scale), z ) z_grid = ip(x_lin[:, None], y_lin[None, :]).squeeze() elif interp_method == "deg": # Circular interpolation in deg units phases = np.deg2rad(z) newdata_cos = np.cos(phases) newdata_sin = np.sin(phases) ip_cos = interpolate.LinearNDInterpolator( scale(points, xy_mean=xy_mean, xy_scale=xy_scale), newdata_cos ) newdata_cos = ip_cos(x_lin[:, None], y_lin[None, :]).squeeze() ip_sin = interpolate.LinearNDInterpolator( scale(points, xy_mean=xy_mean, xy_scale=xy_scale), newdata_sin ) newdata_sin = ip_sin(x_lin[:, None], y_lin[None, :]).squeeze() z_grid = (np.rad2deg(np.arctan2(newdata_sin, newdata_cos)) % 360).squeeze() else: raise ValueError("interp_method must be one of {'linear', 'nearest', 'deg'}") # x and y grid points need to be rescaled from the linearly chosen points points_grid = unscale(list(zip(x_lin, y_lin)), xy_mean=xy_mean, xy_scale=xy_scale) x_grid = points_grid[:, 0] y_grid = points_grid[:, 1] return x_grid, y_grid, z_grid.T