{ "cells": [ { "cell_type": "markdown", "id": "c80cd461", "metadata": {}, "source": [ "(analysis-framework-tutorial)=\n", "# Tutorial 3. Building custom analyses - the data analysis framework\n", "\n", "```{seealso}\n", "\n", "The complete source code of this tutorial can be found in\n", "\n", "{nb-download}`Tutorial 3. Building custom analyses - the data analysis framework.ipynb`\n", "\n", "```\n", "\n", "Quantify provides an analysis framework in the form of a {class}`~quantify_core.analysis.base_analysis.BaseAnalysis` class and several subclasses for simple cases (e.g., {class}`~quantify_core.analysis.base_analysis.BasicAnalysis`, {class}`~quantify_core.analysis.base_analysis.Basic2DAnalysis`, {class}`~quantify_core.analysis.spectroscopy_analysis.ResonatorSpectroscopyAnalysis`). The framework provides a structured, yet flexible, flow of the analysis steps. We encourage all users to adopt the framework by sub-classing the {class}`~quantify_core.analysis.base_analysis.BaseAnalysis`.\n", "\n", "To give insight into the concepts and ideas behind the analysis framework, we first write analysis scripts to *\"manually\"* analyze the data as if we had a new type of experiment in our hands.\n", "Next, we encapsulate these steps into reusable functions packing everything together into a simple python class.\n", "\n", "We conclude by showing how the same class is implemented much more easily by extending the {class}`~quantify_core.analysis.base_analysis.BaseAnalysis` and making use of the quantify framework." ] }, { "cell_type": "code", "execution_count": 1, "id": "114e888a", "metadata": { "mystnb": { "code_prompt_show": "Imports and auxiliary utilities" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "import json\n", "import logging\n", "from pathlib import Path\n", "from typing import Tuple\n", "\n", "import lmfit\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import xarray as xr\n", "\n", "import quantify_core.visualization.pyqt_plotmon as pqm\n", "from quantify_core.analysis.cosine_analysis import CosineAnalysis\n", "from quantify_core.analysis.fitting_models import CosineModel, cos_func\n", "from quantify_core.data.handling import (\n", " default_datadir,\n", " get_latest_tuid,\n", " load_dataset,\n", " locate_experiment_container,\n", " set_datadir,\n", ")\n", "from quantify_core.measurement import MeasurementControl\n", "from quantify_core.utilities.examples_support import mk_cosine_instrument\n", "from quantify_core.utilities.inspect_utils import display_source_code\n", "from quantify_core.visualization.SI_utilities import set_xlabel, set_ylabel" ] }, { "cell_type": "markdown", "id": "97036a87", "metadata": {}, "source": [ "Before instantiating any instruments or starting a measurement we change the\n", "directory in which the experiments are saved using the\n", "{meth}`~quantify_core.data.handling.set_datadir`\n", "\\[{meth}`~quantify_core.data.handling.get_datadir`\\] functions.\n", "\n", "----------------------------------------------------------------------------------------\n", "\n", "⚠️ **Warning!**\n", "\n", "We recommend always setting the directory at the start of the python kernel and stick\n", "to a single common data directory for all notebooks/experiments within your\n", "measurement setup/PC.\n", "\n", "The cell below sets a default data directory (`~/quantify-data` on Linux/macOS or\n", "`$env:USERPROFILE\\\\quantify-data` on Windows) for tutorial purposes. Change it to your\n", "desired data directory. The utilities to find/search/extract data only work if\n", "all the experiment containers are located within the same directory.\n", "\n", "----------------------------------------------------------------------------------------" ] }, { "cell_type": "code", "execution_count": 2, "id": "efe3fa65", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Data will be saved in:\n", "/root/quantify-data\n" ] } ], "source": [ "set_datadir(default_datadir()) # change me!" ] }, { "cell_type": "markdown", "id": "6795b2b8", "metadata": {}, "source": [ "## Run an experiment\n", "\n", "We mock an experiment in order to generate a toy dataset to use in this tutorial." ] }, { "cell_type": "code", "execution_count": 3, "id": "881bb888", "metadata": { "mystnb": { "code_prompt_show": "Source code of a mock instrument" }, "tags": [ "hide-cell" ] }, "outputs": [ { "data": { "text/html": [ "
def mk_cosine_instrument() -> Instrument:\n",
       "    """A container of parameters (mock instrument) providing a cosine model."""\n",
       "\n",
       "    instr = Instrument("ParameterHolder")\n",
       "\n",
       "    # ManualParameter's is a handy class that preserves the QCoDeS' Parameter\n",
       "    # structure without necessarily having a connection to the physical world\n",
       "    instr.add_parameter(\n",
       "        "amp",\n",
       "        initial_value=0.5,\n",
       "        unit="V",\n",
       "        label="Amplitude",\n",
       "        parameter_class=ManualParameter,\n",
       "    )\n",
       "    instr.add_parameter(\n",
       "        "freq",\n",
       "        initial_value=1,\n",
       "        unit="Hz",\n",
       "        label="Frequency",\n",
       "        parameter_class=ManualParameter,\n",
       "    )\n",
       "    instr.add_parameter(\n",
       "        "t", initial_value=1, unit="s", label="Time", parameter_class=ManualParameter\n",
       "    )\n",
       "    instr.add_parameter(\n",
       "        "phi",\n",
       "        initial_value=0,\n",
       "        unit="Rad",\n",
       "        label="Phase",\n",
       "        parameter_class=ManualParameter,\n",
       "    )\n",
       "    instr.add_parameter(\n",
       "        "noise_level",\n",
       "        initial_value=0.05,\n",
       "        unit="V",\n",
       "        label="Noise level",\n",
       "        parameter_class=ManualParameter,\n",
       "    )\n",
       "    instr.add_parameter(\n",
       "        "acq_delay", initial_value=0.02, unit="s", parameter_class=ManualParameter\n",
       "    )\n",
       "\n",
       "    def cosine_model():\n",
       "        sleep(instr.acq_delay())  # simulates the acquisition delay of an instrument\n",
       "        return (\n",
       "            cos_func(instr.t(), instr.freq(), instr.amp(), phase=instr.phi(), offset=0)\n",
       "            + np.random.randn() * instr.noise_level()\n",
       "        )\n",
       "\n",
       "    # Wrap our function in a Parameter to be able to associate metadata to it, e.g. unit\n",
       "    instr.add_parameter(\n",
       "        name="sig", label="Signal level", unit="V", get_cmd=cosine_model\n",
       "    )\n",
       "\n",
       "    return instr\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{mk\\PYZus{}cosine\\PYZus{}instrument}\\PY{p}{(}\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{Instrument}\\PY{p}{:}\n", "\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}A container of parameters (mock instrument) providing a cosine model.\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\n", " \\PY{n}{instr} \\PY{o}{=} \\PY{n}{Instrument}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{ParameterHolder}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} ManualParameter\\PYZsq{}s is a handy class that preserves the QCoDeS\\PYZsq{} Parameter}\n", " \\PY{c+c1}{\\PYZsh{} structure without necessarily having a connection to the physical world}\n", " \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n", " \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amp}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mf}{0.5}\\PY{p}{,}\n", " \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{V}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n", " \\PY{p}{)}\n", " \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n", " \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{freq}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mi}{1}\\PY{p}{,}\n", " \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Hz}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n", " \\PY{p}{)}\n", " \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n", " \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{t}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mi}{1}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{s}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Time}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\n", " \\PY{p}{)}\n", " \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n", " \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{phi}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{,}\n", " \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Rad}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Phase}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n", " \\PY{p}{)}\n", " \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n", " \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{noise\\PYZus{}level}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mf}{0.05}\\PY{p}{,}\n", " \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{V}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Noise level}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n", " \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n", " \\PY{p}{)}\n", " \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n", " \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{acq\\PYZus{}delay}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mf}{0.02}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{s}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\n", " \\PY{p}{)}\n", "\n", " \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{cosine\\PYZus{}model}\\PY{p}{(}\\PY{p}{)}\\PY{p}{:}\n", " \\PY{n}{sleep}\\PY{p}{(}\\PY{n}{instr}\\PY{o}{.}\\PY{n}{acq\\PYZus{}delay}\\PY{p}{(}\\PY{p}{)}\\PY{p}{)} \\PY{c+c1}{\\PYZsh{} simulates the acquisition delay of an instrument}\n", " \\PY{k}{return} \\PY{p}{(}\n", " \\PY{n}{cos\\PYZus{}func}\\PY{p}{(}\\PY{n}{instr}\\PY{o}{.}\\PY{n}{t}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{instr}\\PY{o}{.}\\PY{n}{freq}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{instr}\\PY{o}{.}\\PY{n}{amp}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{phase}\\PY{o}{=}\\PY{n}{instr}\\PY{o}{.}\\PY{n}{phi}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{offset}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{)}\n", " \\PY{o}{+} \\PY{n}{np}\\PY{o}{.}\\PY{n}{random}\\PY{o}{.}\\PY{n}{randn}\\PY{p}{(}\\PY{p}{)} \\PY{o}{*} \\PY{n}{instr}\\PY{o}{.}\\PY{n}{noise\\PYZus{}level}\\PY{p}{(}\\PY{p}{)}\n", " \\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} Wrap our function in a Parameter to be able to associate metadata to it, e.g. unit}\n", " \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n", " \\PY{n}{name}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{sig}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Signal level}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{V}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{get\\PYZus{}cmd}\\PY{o}{=}\\PY{n}{cosine\\PYZus{}model}\n", " \\PY{p}{)}\n", "\n", " \\PY{k}{return} \\PY{n}{instr}\n", "\\end{Verbatim}\n" ], "text/plain": [ "def mk_cosine_instrument() -> Instrument:\n", " \"\"\"A container of parameters (mock instrument) providing a cosine model.\"\"\"\n", "\n", " instr = Instrument(\"ParameterHolder\")\n", "\n", " # ManualParameter's is a handy class that preserves the QCoDeS' Parameter\n", " # structure without necessarily having a connection to the physical world\n", " instr.add_parameter(\n", " \"amp\",\n", " initial_value=0.5,\n", " unit=\"V\",\n", " label=\"Amplitude\",\n", " parameter_class=ManualParameter,\n", " )\n", " instr.add_parameter(\n", " \"freq\",\n", " initial_value=1,\n", " unit=\"Hz\",\n", " label=\"Frequency\",\n", " parameter_class=ManualParameter,\n", " )\n", " instr.add_parameter(\n", " \"t\", initial_value=1, unit=\"s\", label=\"Time\", parameter_class=ManualParameter\n", " )\n", " instr.add_parameter(\n", " \"phi\",\n", " initial_value=0,\n", " unit=\"Rad\",\n", " label=\"Phase\",\n", " parameter_class=ManualParameter,\n", " )\n", " instr.add_parameter(\n", " \"noise_level\",\n", " initial_value=0.05,\n", " unit=\"V\",\n", " label=\"Noise level\",\n", " parameter_class=ManualParameter,\n", " )\n", " instr.add_parameter(\n", " \"acq_delay\", initial_value=0.02, unit=\"s\", parameter_class=ManualParameter\n", " )\n", "\n", " def cosine_model():\n", " sleep(instr.acq_delay()) # simulates the acquisition delay of an instrument\n", " return (\n", " cos_func(instr.t(), instr.freq(), instr.amp(), phase=instr.phi(), offset=0)\n", " + np.random.randn() * instr.noise_level()\n", " )\n", "\n", " # Wrap our function in a Parameter to be able to associate metadata to it, e.g. unit\n", " instr.add_parameter(\n", " name=\"sig\", label=\"Signal level\", unit=\"V\", get_cmd=cosine_model\n", " )\n", "\n", " return instr" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display_source_code(mk_cosine_instrument)" ] }, { "cell_type": "code", "execution_count": 4, "id": "f58b3e02", "metadata": { "mystnb": { "remove-output": true } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting iterative measurement...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1427bcb951164c88a817c4dc81f08a73", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "meas_ctrl = MeasurementControl(\"meas_ctrl\")\n", "plotmon = pqm.PlotMonitor_pyqt(\"plotmon\")\n", "meas_ctrl.instr_plotmon(plotmon.name)\n", "pars = mk_cosine_instrument()\n", "\n", "meas_ctrl.settables(pars.t)\n", "meas_ctrl.setpoints(np.linspace(0, 2, 30))\n", "meas_ctrl.gettables(pars.sig)\n", "dataset = meas_ctrl.run(\"Cosine experiment\")" ] }, { "cell_type": "code", "execution_count": 5, "id": "0e3dbd26", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAGhCAIAAACBOXXdAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4nOzdeUBU57k4/nd2ZmNmWIUZ9k0QEDCKKChR0IjWhRhTjVm0xsTba2pu0yZNc+9N0jS/26bNr22apLe5jYltNYtp1KgoEReM4s4OyibrDMgyO8w+3z+OmUxYZ4aZOWfOPJ+/4HBm5gGFZ973fd7npVitVgQAAACAWaPiHQAAAABAEpBTAQAAAPeAnAoAAAC4B+RUAAAAwD0gpwIAAADuATkVAAAAcA/IqQAAAIB7QE4FAAAA3IPkObWgoADvEAAAAPgLkudUAAAAwGsgpwIAAADuATkVAAAAcA/IqQAAAIB70PEOwOPOnTtn+/jBBx/EMRIAAADkRv6cCnkUAACAd8DcLwAAAOAekFMBAAAA94CcCgAAALgH5FQAAADAPchfowR1vwAAALyD/DkV8igAAADvgLlfAAAAwD0gpwIAAADuQf65XwAAAH6utkd5pKYPIVSaI84QCzz3QpBTAQAAkFlly8C+z+pGNAaE0JEa6Ttbs/ITQzz0WjD3CwAAgLRqe5T7Pr2fUBFCcq1+78Hq+j6Fh16O/ONU2EsDAAB+60hN34jWYH9FPmo4Wi3NEAs98XLkz6mQRwEAAHgHzP0CAAAgrdIcsZDDtL8iYDM3ZYs99HKQUwEAAJBWhljw523ZHCYN+1TAZry/PXuex0p/yT/3CwAAwJ/lJ4aEBbJyokRBXOambLHnEiqCnAqAj/LafjsAfF1Nj0LIZr79aJYXXov8ORXqfgH5eHO/HQC+7tC17q2Lor3zWhSr1eqdV8JFQUHBxYsX8Y4CAHeq7VHu+Oia/fYAEYd54EcLPbQ3AACfZrFaE18u6/j/SrzzclCjBICPmXS/3T+rumd8YG2P8rWvml77qqm+T+mx6AAgFm8OUpE/zP0C4A+O10u/qpelhPNT5vBT5vCxD4K4320hgOli4J8OXev5n9IMr70c5FQAfExpjvjL6j7F6HdDVQGbeXDXotgQ7p0B9Z1+9Z1+9enG/jv9aiqFMncOP3kOn8OgH7jSqRozYvdj7dlguhiQXn2fkoJQuheL+CCnAuBjsP12z/zjplZnQt/fb5cTLcqJFtnuHNLob/erW/rVh6732BIqxqPt2QAgCC9P/CJ/yKn79++3/3THjh14RQKAu+QnhvwgM6K1X50dLZpmv10Ij5WfyMpPDOmRj7UOqL0cJAC4O3Stu+PNtd58RfLnVEiigJSG1IY9DyYWpYY7cvPE6WIui+G59mwAEMEn13sefSCKQvHqi0LdLwA+qVGqmhcZ6ODN2HSx6NuSJQGbERsc0Dky6rHoAMCf9yd+kT+MUwEgH8WoccxoihCwHX9IfmLIgZ0Lj1ZLEULYdPGP/3lLrjVsXxzjsTABwE2zTGUwWeZHebtiAHIqAL6nSaZKi3B0kGqTIRbaFyW9+1jOK0ca3jnbtndFolujAwB/uAxSEcz9AuCLGqXKeZFu2B7wxsZ0g8n8+ldNs38qAAjl4LXubZBTPeGcHbxjAcA9mqSqNIcXU6f301UpkiD285/WuOXZACCCL272bsgS02neLU9CCPnD3C/0zQfk0yRVPVuY4K5n27k07svqvic/vPbxzkXuek4AcHTwWvfLJam4vDT5x6kAkIzZYm0b1KSE8934nJuyxTvz4zb8+ZIbnxMAXLQMqNU604IY0cy3egD5x6neBwdbAo9yrUBpRsuTQ4UcRsFvz138OUztAB/2ybWeHy6KwuvVYZzqZpUtAzs+vrb/0t39l+4+8eH1b9qG8I4IkI1TO1OdMl8iPLgrN/2/T5vMZD4CEpAbXtVJGMip7lTbo9z36f2jP9C3ncrr+xT4RgVIpkmqTHNH0e+kooI4V15eOfe/ygbVegTHwwFfc6S676H0OQEMGl4BkH/u177c19P1SpMebAmdyoF7NUlV67M82FaQx6K3/bpk4a/PPF+U+LuvW+F4OOBDDl7rfmFVCo4BkD+nQt0vIBkPraeO839PLCx9/5LZcn8SGI6HA8R3d0g7qNYvigvCMQaY+3WnJYnBdOr3fqQCNhM6lQM36hzWhvEDOEyPT20dqemzJVQMNuni6dcFwGUHr3Zvy8VtJRUDOdVtfnPq9q++avrZQym2TuUIIdvBlgC4hRu7PQBAMvhWJ2HIP/frBacb+1/6on73svjKnz+IEFqSEIS9nVeOGmt7lUsSYAkKuI3nin7HmXg8HEy6ACI7Xid9MCWMy8I5qUFOnZV+le6lL+pYdNrZF5aLOPeHp7ZO5TqjOev1r/csd1u/GwCapKonlnjjJBnseLi9h6rlWgNCiE6lwKQLILKDV7v/fUUS3lH4QU71XN3vH860fHKt538ezixMCZ30hgAG7cm8mP+t7HhmWbwbXxf4M+8UKGHsj4cbUOlaBzROTbr0K3UCDoON364G4D+6R0Z75WNLEoLxDsQPcqon6n7P3bn30hf1WxdFX3l55fR3PleUtOiNCsipwC1GtAaj2RIeGOC1V7Q/Hi7/N2dXpoZLRDMf2qoaMz3+4dXuYa1aZyqcG/Z/Tzzg2qubTCa5XG6xWIKCghgMhv2XtFqtUqkUCoUcDmeqh1sslrGxsYCAABrtu7xuMBgUCoXZbBYKhWz2lN+L0WgcHBzkcDhC4Xd1zqOjoxaLBfuYQqFwudypHq5SqTQaDZvNFggEVKpzZSsKhaKvr2/evHlOPQpHjY2NYrHY/gflfYeudm/FuzoJQ/6cOkvjGg2OaA0v/aveaLIc+/eljvxp4zLpW3Oj/+9ix64CSKtgtry2mDqpD59auPOj6+XPL5v+NqPZUvi7c7aN2mebBnbuv/7hjoXOvlxzc/OlS5fYbDaNRhsdHV2+fHlCwv1llNra2uvXrwcFBY2MjCxevDg9PX3cY8fGxk6cODE8PGyxWEpKSmJi7s+WS6XS48ePY3lOLpfn5OQ88MAk+V4qlZ46dUogEKjVaolEsnLlSgqFghA6fPiw0WjEciSDwdi+ffvExyoUioqKCrlcLhKJTCaTXq/Pz8+Pj3fi11+lUrW1tflQTm1ra+Pz+R7KqbW1tVQqNSMjY/rbDl3vPv8CIbZNQk6dTmXLwL7P6mx73otTw840D/xPacaqeXMcf5J9RUmL36yAnApmz13HpromOZxfmiP+n7LbL62ZO81tvzrRZN/5xILQzW75+TuDUy2RTEUoFG7ZsiUwMBAh1NjYePbs2djYWBqNplAoqqqqNm3aFB4e3t/ff/To0ZiYGD7/eycK0Gi07Ozs0NDQL774wv56aGjozp076XQ6Qkgmkx05ciQlJWXcY61W69mzZ7Ozs7Ozs3U63aefftrW1paUdH+hrqSkJCIiYqqY9Xr9sWPHJBLJhg0bsFeRy+UDAwNOfePR0dHR0YQYcjlow4YNnntylUo140C/rKE/Lz5YyGFMf5t3QE6d0v1Gg9rvGg0eq5F+vmexs3veeSz6lgeiPrx0d+fSOA+ECfxIk1RVlBaOYwDPLk/Y8r9V1+6OYNvqx21gxXQPj467otGZ7w5rCizj12IpFESlTHnCpX3qio6OrqysHBsb4/F4nZ2dISEh4eHhCKE5c+aIRKK7d+9mZmYihKqrqxMTE/l8PpPJtA1q7dlPIIeEhCCEjEYj9qntsYODgxqNJi0tDSEUEBCQkJDQ3t5uy6nTa25uplAoy5cvt802i0QikUiEEDKbzVevXm1vbzebzRKJpKCggMViIYTq6upqa2v1ej2LxXrggQdSU1P7+voaGhpWr16NECorK4uNjW1ubh4eHg4LC1u5ciWPx0MIKRSKb7755t69eywWKz09ff78+ROD6e7uvnbtmlKp5PP5S5YskUgkGo3m1KlThYWF2Pd+9uxZoVCYk5Nz8+ZNi8UyNDTU19cXGBhYUFCA/fCtVmttbW1TU5NOpwsNDV2+fDn2FqesrCwmJqa5uXloaGjr1q1VVVXp6elisbi7u7ulpUUgENTX19NotKVLl/L5/PPnz6vV6tjY2BUrVmDZcdLgb968iRAaGRnp7Ozk8XjLly+PjIzs6OhobW2lUCi9vb1cLnfdunWT/tgPXu3evYwof10hp05pYqNBncnsWqPBnxQlLfvtOcipYJaaZKrnVuJc2fjhUwsXv1nR8Npqtc6U9Xr5xBss1vGJ1my1vPFV0xvHm8ddfyA26NPdix150bt37wYGBtrSif00o1AoVCgUCCGLxXLlypXQ0NBx486JWlpaDAZDe3t7WlpaUFDQuMcqlUoOh4MlPOz5e3t7bY89efKk2WwWiUSLFi2yTSnbyGSyyMhI++Vbmxs3bkil0tLSUgaDcfbs2bNnz65Zs0apVF6/fn3z5s0CgWB0dHRsbAwhZDAYlMr73ZUVCkV9fX1xcTGPxzt79uzVq1dXrlxpNBqPHTu2YMGCkpISjUZz4sQJHo837j3E4ODgmTNn1qxZM2fOHKlUevr06UceeYTP58+dO7e8vHzz5s23b98eGBgoKChACGk0mjt37qxevXr16tV37tw5efLk9u3bWSxWXV1dW1vbunXreDxeXV3dqVOnHnnkEQqFolAoFArFqlWrAgMDqVSqUqk0GAxY5O3t7YsXL37iiSfu3r17/vx5sVi8du1aGo129OjRlpaWuXPnThW8RqNpa2tbtWrVihUr6uvrKyoqHn/88djY2ISEBCqVunjxYsoUb7+kirH2QU1BknOzIJ5DiJyq1+vHxsbodDr2O2NPqVQODQ3R6fTIyMhxRQoIIbPZLJPJdDqdSCQKDsa/4msqAjZjU7b4o8udTy2JxTsW4KuMZkvX8Ghi2PjfES/jsei/3pTxk0+q//jD7PY3Sya9p+A353rk90erNCp16wOSN0pnWA+bhlQqvXbt2po1a7BPTSaT/Z8CBoNhMpkQQlQqdceOHUwmc/JnsdPX16fT6VQqlUQiwa7YP9ZoNNo/P5PJxJ4fIfTggw+GhIRQKJQ7d+6cOnWqtLQ0NPR7f8r1er1AMPnk/J07dwoKCrCypiVLlvzzn//U6XRWq9VqtarV6sDAQA6HM2m9VWZmJjbSTU1NvXTpEkKoo6ODy+WmpqYihHg8Xnp6eltb27ic2tDQkJqaGh4ebrVaIyIixGJxZ2dnRkZGenq6VCotKysbGhrauHGj7TuNiorC3iKkpqY2NDTcvXt37ty59fX1BQUF2J/ljIyMmpqakZER7C9tRkbGpH9yORwONu5MSko6f/58amoq9vDY2NjBwcG5c+dOE3xsbGxUVBRCKD09vaqqamxsjM1mU6lUKpU68Y+/DRH6PNjDP6dardYTJ04MDAzExMSUlHzvV7SysrKxsZFKpVosFhaLVVRUZL/MMDg4WFZWptVqaTSa2WyOi4srLi6e+A7R5b007t3z/tzKpKK3L0BOBS4jTgelDVmRFc0Dx2ql6+dHTnrDuRcKf3Tg+q0uuc5o2fKA5I1NrifUgYGBU6dOrVixQiy+/6vHYDCwURHGYDDYUlFAgEMV0djfAa1W+8knn4SFhWF/x22Pnfj89okH+2D+/Pnd3d3t7e3jcmpAQMDo6Pipb4SQxWLRarW2dIsN79RqdWhoaG5u7oULF3Q6XVRUVG5u7sSUbPvuGAwGNlOtUqkUCsWnn35qu2dielOpVN3d3Z2dnbYr2Gw5QmjhwoWffPLJvHnz7B+FTepiBAKBRqOxWq0ajeabb76xLWeyWCy9Xj/xfnv2tdB0Ot32KYPBwH4y0wRvu5lOp1MoFIPBME1hts2ha93l+5bPeJvX4J9T6+rqRkdHsfV8e/X19Y2Njbm5uVlZWXq9/vTp0+Xl5Vu3bsV+7iaTqaysjMFgbNu2TSAQtLa2VlRUXL16dcmSJeOex+W9NOP2vAvYjNnseQ/iMtdmRvy9quvxPG9s2Afk0yhTzfPWztQZ/Wlr9rz/Pr1y7uRta+g0ysc7FpnMVjptyuVSRwwODp44cWLZsmX2dbMikai5+btp5JGREdtw0ylcLjcwMFCpVNoyJSYoKGhsbAwbJGHPjw0Tx2EwGGazedxFiURy48aNcSNdhBCVSsXSLTbVPDY2ZrFYsGSZkZGRkZGhVquvXbtWUVFRWlo6Y+QcDic4OHjjxo3T3MNmsyMiIhYtWjTuutVqraysjI+Pb21ttU+r2LQzRqvVisViCoUSEBCwfPly1368swnecV83DeREi4J5M09OeA3O/X6VSuW1a9eWLVs2sbKrpqYmLCwsJyeHSqWy2ezCwkKj0djY2Ih9ta2tTavVLl26FHtbl5SUlJiY2NDQYKs4cAtsz/uu/Lhd+XEHd+XOssvgT1Ym/bGi1V2xAX/T2KeaJyZKTkUI7X9q4Y6Prk9zw+wT6ldffZWbmxsTE2M0Go1Go9VqRQjFx8crFIru7m6EUFdXl1qtjouLQwhZrdbLly/bViKxhyCETCaT7bFDQ0M6nQ67oaurSy6Xz5kzZ9xjg4ODhUJhbW0tQkij0dgKlDQaje3Je3p6urq6xiVjhFBKSgqLxaqoqLC9Sm9vL/ZUcXFxtbW12PbW6urqsLAwLper1Wq1Wi1CiM/nSyQS+/HxNGJiYoaHhzs6OmzfqVwuH3dPUlJSU1MTttKMBY+90PXr100mU3Fx8cKFC8vLy21/MDs7O7HvbmBgYHBwEJsRTEpKunnzpi2qwcFB64TFcmc5Erw9DoejUqmm+ioRmuaPg/M49fz58/Hx8RMLxxUKha30DiMUCrFiAeydV29vL51Ot38DFRMT09raKpPJ3FuGbr/nfZZCeKxV88IJ+J8A+IQmmXLzAneOGGZpUVxQdpTQc23Cbt++rdfrKysrKysrsSulpaXh4eE8Hq+wsLC8vJzNZut0uhUrVmADPqxINTo6GnuffeDAASwZlJeXI4QeeuihuLi4/v7+qqoqBoNhsVioVOqyZcuwCthxjy0qKjp16lRra6ter09LS8NytkajOX78OLa8ZzabFy9ePPFPDYPB2LBhQ2Vl5ccff8zlco1GI1ZzixBavHjxmTNnDhw4QKfTmUzmqlWrEEIqlaqsrIzNZtPpdJ1OV1hY6MhPhsfjrV69+sKFC1VVVTQaTafT5ebmjhtMx8XFqdXqL7/8ks1mm81mi8Xy0EMPyeXyhoaGzZs3U6nUzMzMvr6+ixcvrlixAiEUHR19+vRphJBarV62bBlW55Wbm3vp0qV//OMfPB4P656B1Si5+k/qaPD2kpOTOzs7P/zwQx6Pt2XLFuwi1jZg1GCu61M+mBI2m3jcjjL79x0ua2houH79+tatWwMCAv72t79FRETY1lO7urpOnjy5atUq+4X3kydP9vf379y5EyF0+PBhk8n0wx/+0PbVwcHBw4cP5+fn2+8OLigouHjxore+oZndU+vX/enitV8W4R0I8D0pr5TVvbqaRSfWWVJFb1/4y/YF3q+cMplMWq2Wy+VOXDaantlsxoowpumChBDCSodYLJatABh9uyyKdVCaPrUYjcbR0VEOhzNuEliv15vNZvtaJOw5EUI8Hs/ZdDU6Omo2m7lc7lQ7OLE1URqNNk23KYTQhQsXWCxWbm6uWq3mcrnjqlIsFotarQ4ICLD/UczejMFPxb5tQACT/n9PLMhPJNA5Jbj9fqrV6itXruTn509aVoC9wRxXwsdkMm2zEAaDYeJXEUK2JXRiCuOzVswN++R6D96BAB/TMagVi9hES6jo2+ZK3n9dOp0uEAicTagIIRqNFhgYOH1CRQhRKJTAwMBxWYRKpfL5fEeSH4PBEAgEE6tVWSzWuPSGPSefz3dh/MfhcPh8/jQ5iUKh8Pn86ROq/c2BgYETyzypVKpAIHBvQkUOBD+p+20DNPcTgc5g2nuwur5P4d7YZgO3ud/z589HRERMv5PaqTE0dvPE/5fYBqxxcBy8/qQoufS9Sz9cOH4lBoBpNMmUaRFEPBMmOoizY2nca181/vcPfKaXHhgnIiLChXcnuJjYNkA+anCtbYCH4PNz7Ojo6O3tLSoqkslk2BWr1arX62UyGfYWEntPNG7QqdfrbYPagIAAWxWA7asIoYlvpgg194sQihAEFCSFfnajZ8sDkFaBo4hWoGRvx9LYx/929WLrUEESgabggOOSk5PxDoE88JlKwjYqnTlz5si3jEZjf3//kSNH2tvbEULYkvW4ejCsLTX2sUgkUqvVtr3YtpunWesmDigABs4i1EaaifCaAQb+pjRHLOR8b9VvNm0DPAGfcWpycvK4MvTPP/88LCxs+fLl2J4wPp8vEok6OjoWLlyITecODg6q1WrbWQ3R0dG3b9/u7OxMTEzErnR0dDCZTKwynuDEIvbi+OAvbvY+TKQyTkBkxGn4MCkGjfrO1uxn/3HzL9sX4B0LIDOsbcDTB26MGcxo1m0DPAGfcSqTyRR8H4VCwYoObJVHCxYskMvllZWVKpVqYGCgoqKCzWbbdtfExcWJRKJLly719PRoNJqbN292dXVlZ2dP2mmTgPatTPoDDFWBYwbVegoFhfDcXCTiXg+lz+EHMD6/AfV3wLPyE0MCGNTHFkW7pW2A2xF3XTopKUmj0dy4caOpqQkhJBAI1q5da1supVKpJSUl5eXlx48fxz7NzMzMzs7GM2JnRAVxHogRfVndR6hZC0BMTTJVGoEnfm3e2pyZ86uv5wSyz965h749chjvoADZ/OtW34MpYb+eRQdpj8Jzf6ojsC4bdDod6+k1kUKhwPpWT7onp6Cg4PXXX7d96nKfQk/oHNY+9eH18z8rxDsQQHTvn29X6YwvPjTdqaUE8dGljl+dvG02WxFCIi7rna1ZhNo7CEhg1f9f+edt2cnhM5w+hBfijlMxDAYjLGy6NhkzHi5PqDxqLzaYOz9KcLRGuiFr8kbkAGAapcqH0qc8B5s4anuUfzrbjiVUhJBcq997sPrAjxYSZ58D8HVnb9+TiNiETagI936/fu4nK5P/WNGCdxSA6BqlqnkELlCymWrvIF7xAPL5y4X2Z5dPcto8cUBOxVN8KDctQnC8Dv7ogCnpjGaZUhcXMkPfHwBI71a33GS2LoqbfB2QICCn4mxfUdIfzkABMJiSrxQoIV/YOwh82vvn2/cUEnqQiiCn4i4xjJcczj9ZL8M7EEBQBN+Zag/bOyji3k+rHCaNaHsHge/qGNS2D2qK08LxDmQGRK9Rmr1z587ZPiZmvdJPipKeO1hdkuEDRSjA+xqlqkyJz6Ql7Mjho9XSjkGNyWIl2t5B4Lvev9C+h9grqRjy51Ri5lF7KeH8IC5r50c3YoI5sKUPjNMkVf1wkS+1hrYdORz3ixNWK5rdaZsAIITQiNZQ0Tzw1uZMvAOZGcz94q+yZaCpX3n29sD+S3ef+PD6N21DeEcECKRRppxHyBNpZrQxS3ykpg/vKAAZ+MRKKgZyKs6w4wCVo0bsU2xLH6GOAwQ4ar2niQvm0mk+OdbbkCU+CjkVzJrZYv3w0t2nC+LxDsQhkFNxBlv6wDR8qEBposKU0OpuhXLMiHcgwLcRf0+qPcipABBXo1Q5L9InJ34xG7PFR6phqApmxYcmfpE/5NRzdvCOZRKwpQ9Mw6fHqQihDVmRR2tg0gW47p9XuzZkiXksnymn9ZlAXUbwul9sS9/eQ9VyrQEhxKBRYUsfsPGhhg+TyokWDWr0PSOjUUEcvGMBPun98+2f7M7DOwonkH+cSnzYlr5d+XFbHogK4TJgSx/A9Kt0TBo1iMuc+VYCg6EqcNnxOllWlFAiYuMdiBMgpxJChlj4yrq0327ORBSKTKnDOxxACL4+8YuBHTXAZb5VnYSBnEoseQnBVe3DeEcBCIEcOTUxjMekU5ukKrwDAT7mm7YhIZuR7msLYZBTiWVxfPCVDsipACHfL/q1gaEqcMFfzrc/6zvlvjbkz6kEr/sdJy8+uApyKkAI+X6Bkg3sqAHOauhTKsaM+Ym+V1wCdb/EEhXEMVusUsVYpNCXluWB22kNpiG1ISaYDOWyYXxWfCjvSsfw4vhgvGMBvsEXV1Ix5B+n+hwYqgJElsVUGxiqAsf1ysdqehTrMn3yqC7IqYQDZUoAkS6nwo4a4Djfapw0DuRUwoEyJYAQapSq5pEop7IZtILk0PLGfrwDAUSn0ZuO1vQ9lhuDdyAugpxKONgG5175GN6BADyRpkDJZmNW5BEYqoKZ+PQgFUFOJSYYqgKSzf0ihEoyIsqb+k1mK96BAELz3eokDPnrfvfv32//6Y4dO/CKxHF58cGXO4Y3L5DgHQjAx+1+dXI4j0rxyWNTp4FtVIX/2GAqH1zs2Lk0jkb14f/55M+pPpFEx8lLCP791y14RwFwQ75BKmZDlvivle2QU8FU3j/ffuY/luMdxazA3C8RRQrZNCqlZ2QU70AAPsi3mIopSApplKpGtAa8AwFE9PmNnpWp4b5+aAT5x6k+CtulCidk+adGqXLl3CS8o/AIbKPqzvw4vAMBRFHbo8RaV37d1H9gZy7e4cwWjFMJCsqU/BlZ534RbFQF31fZMrDj42v7L93df+nugNogVfr8fgfIqQSVlxBU1T6CdxQAB1LFGJdFF7AZeAfiEfMlQpXOeHdIi3cgAH+1Pcp9n9aNaO6vBRhN5r0Hq+v7FPhGNUvkn/u1b53vQ71/IwRsJp3SNTxKjo6vwHEk6/YwETZU3VdEzslt4LgjNX3jFtflo4aj1dIMsRCvkGaP/DnVh/LoONj0L+RUf0PWAiWbDVninR9dh5wKSAnmfokLmun7J9KPU+NCuIEBjNpe357iA7NXmiMWcr5X5StgMzdli/GKxy0gpxLX4oTgK9BM3/80SZVppDiKfBpQqQQQQhliwZ+3ZfMC7k+XCtiM97dnzxP79n9+yKnENScwIIBB6xyGag4/otaZlGNGrOczicHRbwCTnxiyMEZUmBy6Kz/u4K7cJQm+dwj5OORfT/Vp2LlvscFcvAMBXuIPg1SEUBCXmRYR+E3bUH6iz/8NBbN0qX244dXVTDpJBnjkz6k+WveLWRwffPb2wNZF0XgHAhfMS1MAACAASURBVLykUaaaR+oCJRtsqAo51c993TSwPDmUNAkV+UNO9bk8ai8vIfjXJ5rwjgJ4T5NUtTg+GO8ovGFjlvilf9X97pH5eAcC8HSiXrY2IwLvKNyJPO8OSCmMz+Ky6LBB3n+QvujXhk6jrEqbc7JehncgAE/H66TrMiPxjsKdXMypVqtVq9VaLBb3RgMmgh01fqVZpkr1j7lfBKeU+73yxv4Vc8PpNB8+2W0iJ+Z+LRbL5cuXKysra2tr+/v7LRYLlUoNDQ2dP3/+kiVLli1bxmCQs5savvISgsubBrbBkqofIHGb30mtmjfnuU9qdEZzAIOGdywAB8frZOsySTXxixzMqRaL5dixYwcOHBgcHAwODk5NTV20aBGXy9VqtSMjI9XV1eXl5SKR6NFHH92yZQtkVvdaHB/8+nFYUvULpO+gNBE2VP3hwii8AwE4OFkve/vRLLyjcDOHcupzzz3X1dW1bt261atXx8bGTryht7e3vLz8iy++OH78+KFDh9wc4+z4dN0vQiiUzwoMYLQPahJCeXjHAjzL38apCKGN2eI/nGmFnOqHTjf2r0wNp1NJNfGLHMypDz300MqVK9nsKfehSySSnTt3Pv744ydOnHBfbO7hi3l0HKzxL+RU0muQKh9Kn4N3FF61OD64Y7D6nlofxmfhHQvwKlJO/CIHa5SWLVvGZM589jqDwdi4ceOsQwLjwblvfsIPx6kIeir5qxN1srV+m1MrKytLS0vfe++9zs5OD8cDJpEXH1LVMYR3FMCDanuUL3xehygUP9w3tSFLfLQGcqp/KWvoXz0vnEoh28QvcjCnJiYmhoeHHzp06PHHH3/mmWeOHj2q1frdbz6OgnlMEYfZdk+DdyDAIypbBnZ8fO3wzR6NzvjEh9e/afOv90/zIgNVY6bnP6197aum+j4l3uEAbzhRJ11Lrm2pNhSr1ergrZ2dnSdPniwvLx8eHmaxWMuXLy8pKcnJyaEQ+L1GQUHBxYsX8Y7CDf7zaENyGP/xvBi8AwFuVtuj3PHRNfuTmUUc5oEfLfTpY5mdUtky8Mw/q8f0ZoSQiMt6Z2sWNCwkvbhfnOh4cy2BU4fraK+++qqDtwqFwoULF27ZsiUtLU2n01VWVp48ebKsrEyj0URERPB4TlfQGAyGgYGBgYEBvV4fEBBAo02yR02pVPb19anVai6XO/EGs9kslUrv3btntVo5nEnO7t6/f39cXFznt+Li4pwNkiDGjOZzt++RcvnBz/1vZUfV90/00xnNXCZ9WXIoXiF5U22Pcs8/b6nHTNinOqP53O3BpYnB4YEB+AYGPOdkvcxqRaQsUEIu9PulUql5eXl5eXlqtfrrr78uKyvbv3//Rx999IMf/OBnP/uZ489z6tSprq4uWycmNpudl5eXkpJif09lZWVjYyOVSrVYLCwWq6ioKDr6u9YHg4ODZWVlWq2WRqOZzea4uLji4uKJeZcEdb8Iobz44P880oB3FAC42ZGaPvsxOkJIPmo4Wi31n2G6HyJrdRLG9R76fD6/tLQ0PT39/fffv3Hjxt27d516uEajycvLi4mJ4XA4IyMjlZWVZ8+eDQwMjIi4/7Our69vbGzMzc3NysrS6/WnT58uLy/funUrl8tFCJlMprKyMgaDsW3bNoFA0NraWlFRcfXq1SVLlrj8HRFZEJcZwmO1DKiTw/l4xwLcqTRH/GV1n2L0u7wiYDM3ZYtxDAkAjzpRL3v3sRy8o/AUF/v9yuXyTz/99Mknn/zRj35069atRYsWPf744049w8MPP5yZmSkQCBgMRnh4+IoVKxBC7e3tthtqamrCwsJycnKoVCqbzS4sLDQajY2NjdhX29ratFrt0qVLBQIBQigpKSkxMbGhocFoNLr2HRHf4vigKx2wo4ZsMsSCP2/L5gbcf3crYDPe3549T0z+I1QxpTliIed7+/TgLQW5kXVbqo1z41STyXT58uWTJ09euXLFbDaLxeJdu3aVlJSEhjq99jOusglbjjWbzdinCoVCo9GkpaXZbhAKhUKhsLe3d9GiRQih3t5eOp0ukUhsN8TExLS2tspkMvv5YTLJSwg5VtP3BJQpkU5+YshD88J7hkczJcJN2WL/Sajo27cUew9Vy7UGhBA/gO5Xbyn80Ik66fosMr9ncjSntra2njx58uuvv1YqlQEBAcXFxWvXrs3Kclurxra2NoSQLUcqlUqEkFD4vTUVgUDQ39+PfaxQKPh8PpX63Tgbuxl7ICktjg96+V/1eEcBPKJXrvvpqpRc/zg5dZz8xJADOxcerZZe6RhekhC8JAGKfknLakWnGvvf374A70A8yKGcevr06TfeeAMhlJ6e/uyzz65YsWLSIluXKRSKK1euREZGxsfHY1cMBgNCaFzzJiaTiV3HbggICBj3VYSQXq8f9+QFBQUTX9EXN9iIOMwwPuvOgDoFllRJp6ZbnhUtwjsK3GSIhRli4aW2offOt898N/BZJ+qlazPIuS3VxqGcyuFwtm3btnbtWk9Mq2q12hMnTmBj33ETwo7vnbXdPHGzrC+mz6nkJQRXtQ9DTiWZZpkqPpTHortY3EAaSxNDfvTxDTj6jcSO18k2knriFzlYo1RQULBnzx5PJNTR0dFjx45ZLJb169fbj31ZLBaaMOjEtrFiHwcEBOh0unFftT2QrLBm+nhHAdysukeRHQVbRxBCqCg17EzzPbyjAB5htli/bhog/SkRTu+lGRwc/Pzzz1taWuRyuf04Mjk5+ZVXXnHqqcbGxo4dO2Y0Gjdu3Mjnf2/sJRKJEEJyudz+olwux65jN7S0tJhMJjqdbvuq7YFklZcQ/OIXdXhHAdysplvxQCyZ/986bmVqeEXzALnrQv3WiXrZ2gzy/8s6N900NDS0a9euzz77TK/XR0ZGiu2EhYU59VRjY2NHjx7V6/Xr168PDBx/FgefzxeJRB0dHba0PTg4qFarbWPl6Ohoi8Vi39O/o6ODyWTOmUPmN0ECNiNCyL4tU+EdCHCnmh5FFoxTEUIIrZwbVnEbxqnkRPpdNBjnxqlnzpwZGxv7+OOPY2Jmu6Pj2LFjcrl8/vz5MplMJpNhF3k8XlTU/dOJFyxYcObMmcrKyuzs7LGxsXPnzrHZbNvumri4OJFIdOnSJRaLJRKJ7ty509XVlZubO2mDQzLJiw+q6hiZG+F3J4KR1ajB3CsfhVYemEA2IyWcf71zZGFsEN6xAHcyWaxnmwf++jiZK34xzuVUhUKRlJQ0+4RqsVhGRkYQQrW1tfbXY2JibDk1KSlJo9HcuHGjqakJISQQCNauXWtbLqVSqSUlJeXl5cePH8c+zczMzM7OnmVgxJcXH3z4Vt+OpbF4BwLcAwap46xMDatovgc5lWTI3Y/QnnM5NTMzs6yszGg0MhiM2bwqlUrds2fPjLdlZ2enp6fL5XI6nR4UNP53LDAwcPPmzQqFQq/XCwSCcVtrbM6dO2f7mAS9fxfHB79wGJZUycPPd9FMVJQa/uw/br60Zi7egQB3Ol4n3fJAFN5ReINzOTUvL2/RokW//vWvf/zjH7vQO8kFDAZj+pXacX0hJiJBHrUXyGZIROwmqSotEqZ/yaC6R+Enf2sclBjGM5gs3SOj0UHu3AQPcGQ0W87fGfzgiQfwDsQbnMupFAply5YtL7zwQmlpKYfDsR+tpqWl/fa3v3V3eGAS2I4ayKnkUNOjeHNTBt5REEtRaviZ5oGdS331ZEYwjp9UJ2Gcy6nd3d3/9m//RqPRHnzwQaFQaN9gQSwm+U5e4siLD/7sRs/OfPiL4/P65GNMOjWUT+ZN1S5YmRr23vl2yKmkcaJO9sNF/jIZ43TdL51O/8c//hEc7I+NSQkiLyH4+U9r8I4CuAF0e5gUNFQiE4PJUtk6+H9P+sXEL3J2f6rRaIyLi4OEii8eix4TzGmUwi5VnwdFv1OBhkqk4VcTv8jZnLpgwYKurq7R0VEPReMJ5+zgHYvb5CWEVLUP4R0FmC0o+p3KirnhZ28P4B0FcAN/6Jtvz7mcmpOTU1JS8tJLLzU2Nmq1WoMdwh4G/qAdvGNxGzifnBxgnDoVGKeSg85ovtQ2vDLVuS57Ps259dRz58598sknCKFnn3123JcyMjLee+89t8UFppUXH/yTT2BJ1bc19CnnRgTSqeNPUgIIGiqRhf+0erBxLqcmJCTs2rVr0i+Fh4e7Ix7gEC6LHh/Cre9TZogFeMcCXASD1OlBQyUSOF4ne2LJbPvu+RbncmpsbGxsbKxnIgHOwXapQk71XdU9iiXxUO43pZWp4f8GDZV82ZjRfKVjeP+OhXgH4lX+fgyy78LOJ8c7CuC6mm5FVjSMU6eUFMbTmyzdI75UEQns+eHEL3Iwpzpef0TASiVS1v0ihLhMRmXL0GtfNdX3KfGOBThNrTPdU+sSQnl4B0JoWEMlvKMALjpeJ12X6UcVvxiHcuqePXsOHjyo1WqnuUen0/3rX//avn27mwJzG1LW/Va2DOw5eMNksey/dPeJD69/0wb7anxMTY88Kwp20cwAW1LFOwrgCq3BdP2uvDDFG23hCcWh9dTt27e/++67f/vb3/Lz8xcsWJCSkhIcHMzlcsfGxoaHh+/cuVNdXV1ZWcnhcHbv3u3piEFtj3Lfp3UjWgP2qVyr33uw+sCPFmaIYSLRZ1R3K7Jh4ncm0FDJd/nnxC9yMKcWFhYuWbLk1KlTX3755dmzZyfeEBcX9+yzz5aUlLDZbHdHCMY7UtNnS6gY+ajhaLUUcqoPqelRbF/sX/WQrlk5N6zi9r21Gf7419mnHa+T7fLLnuSO1v0ymcz169evX7++v7+/rq6uv79fo9HweLzw8PDMzMyICPgfD4ATanoUv3tkPt5R+ICVqeEVzQOQU32LVm+62SU/sHMR3oHgwLm9NAihOXPmzJkzxxOhAAeV5oi/rO5TjH43VBWwmZuy4Vwgn9E9Mspj0YO4TLwD8QFFqWGvftWIdxTAUbU9yiM1fS0D6qWJfrpPzOmc6nPsy33JUaaUIRb8eVv23kPVcq0BIUSnUt7fnj0PNqr6Duj24DhoqORDKlsG9n1WN6IxIIR4AYxv2obyE0PwDsrbyJ9TyZFHx8lPDDmwc+HRailC6LPrPakRcD65L4GdqU5ZkRp2FhoqEd642kmNzuiftZPQ88FXZYiFr6xLe2Vd2iMLo/51qw/vcIATqnvk2bCRxmGwS9UnTFU7iVc8eIGc6vM2L5AcvtmLdxTACbCRxinQUAn4EMipPi81ItCK0G0ZHFHuG2p7FPNhMdVJMFQlvtIcsZDzvbI7/6ydhJxKBg/niL+A6V8fUd2jyIac6iRoqER8GWLBjqWxDPr9nCJgM/yzdtKhGiW1Wm2xWGZ4Ijqdy+W6IyQ3279/v/2nO3bswCsSz3k4R1L09oVfrk3FOxAws5oeRWGy3zVsm6WliSE7P7quN1lYdBgGENf759s/eTq3rL4fIbQpW+yHCRU5mFOffPLJwcHB6e8h7JnkpEyi4wRxmZkSwfk7g37YXdPn1HQr9hUl4R2F78Gmf6H5A2H97HDdrzbMWxATtCDGryu0HcqpTz/99OjoDAUCISF+tw+JUB7OkXxxqxdyKsEpRo2KMUNsMBFndAgOGioR2cXWwX6l7pEHovAOBH8O5dQ1a9Z4Og4wSz+YH/n8ZzUmcxadRsE7FjAl6PbgMmioRGT/frC68uck7ATgAlcWJywWS1NT05kzZ5qbm7ErZrPZarW6NTDgtM05ksO3YFMNocERby4LZDOSw3g3uuR4BwLGe+VIw89WpwjYDLwDIQSnc2pzc/Njjz32zDPPvPbaa19//TVCyGw2l5aWHjp0yAPhASeU5kj+BTmV2G51K3JgZ6qrVqaFVzTBjhpiuXZ3pGVADYcs2TiXU5VK5U9/+lOBQPDWW28VFhZiF2k0WlFR0cWLF90fnTucs4N3LJ61KC5IqhjrlY/hHQiYEsz9zgbsUiWgfz9468/bcvCOgkCc6/d75swZKpX6+9//nsvlXrhwwXY9Pj7+9OnT7o7NPUjZ73cqWKXST1ZCWSkR3R3SBnOZgTBF5ipbQ6XoIA7esQCEEHrjRPPuZfFhfBbegRCIc+NUqVSalJQ0cR8ql8tVq9Xuiwq46OEFki+gTyFRQUvC2YOhKnHU9iqu3x3ZVRCPdyDE4lxODQwMvHdvkm4mbW1twcF+eloeoUQHccL4LKjjICYoUJo97IwavKMACCG092D1O9uy8Y6CcJzLqYsXL+7u7j569Kj9xfb29sOHDy9dutStgQEXlS6Q/AuGqoQEi6mzl58Ycr1zRG+aoa0b8LS3Tt95dGEUTMJP5FxOTUlJKS0t/d3vfvfjH/+4oaGhvr7+5Zdf3rVrF5fL9Yd2RT4BW1LFOwownsVqbehTZUr8sVube8H0L+5u96srmgd+/GAi3oEQkdN7aZ5//vkXX3xRq9V2dXXdvn371q1bxcXFf/3rX4OC/LofFXGw6NTitPDjdTK8AwHfA4NUd8EaKuEdhV/be/DWO1DrOwXn6n4x69atW7dundFoNBgMHA6HQiF04x77LTR+UgNcmiP5x5WudZnQxY1AaroVWVCg5A4rU8Neg4ZK+PlTReuajIikMB7egRCUczl1cHCQyWQKBAKEEIPBYDB8YFeAn+RReyvmhv3HZzWKUaOQ4wP/QH7iVrfiofRwvKMgAwGbkRTGu9ElfyAGCr687e6Q9svqvnMvFOIdCHE5N/dbV1e3cePGX/7yl998843ZbPZQTGD2YFWVaKDo142goRJe9h6qfmcr1PpOx7mcmp2dvWXLlqampl/84hebNm165513Ojo6PBQZmA3IqYQyrDGMGc0SERvvQEgCypRw8dfKjiUJwel+eSqq45yb+w0KCtqzZ88zzzxz48aNsrKyo0ePfvbZZ8nJySUlJUVFRdicMCCCtMhAi8V6u189dw4f71gAqu6RZ8Mg1X2SwnhqnfmFz+v4AfTSHHEG/JX3PJlSt//S3apfrMQ7EKKjzOY8Ga1We/bs2bKysvr6+szMzHfffdeNkblFQUEBYRsRe9pfKzuGNPqXS1LxDgSg35XfCaDT/n0F7D1wj8qWgd3/uKUzWBBCIi7rna1Z+YlwfrNnbX7/8kslqbCGPSNX6n5t2Gx2ZGRkRETE7du3CXvWmx/W/WI2L5AUvX0BcioR1HQrni1MwDsKkqjtUe77tA5LqAghuVa/92D1gR8tzBBDWbWb1fYoj9T0IYSYdOo8sQASqiNczKm9vb1lZWWnTp26d++eSCTatGnTunXr3BuZu/hVHrUXxGVmiAUXWgaXJ4fiHYu/q+5RZMPmVDc5UtM3ojXYX5GPGo5WSyGnuldly8C+z+pGNAaEEIVC/fuPFuIdkW9wLqeOjY1VVFScPHmyvr6eTqfn5eU9//zzeXl5NBrNQ/GB2cBa6kNOxVfbPU2EIIDLmtWcEADehE0G2N67WK0WmAxwkHN1v5cvX/7Nb36j0+mee+65I0eOvPnmm/n5+ZBQCWv9/MiT9TKThaDT8n4COii5V2mOWMhh2l8RsJmbssV4xUNKU00G4BWPD3HuvXNycvJHH32UkAArQz4DG6o+ujAK70D8161ueU40LES5TYZY8Odt2XsPVcu1BoSQgM14f3v2PCj9BcTg3Dg1KioqISHBYrE0NTWdOXOmubkZu242m3GpUTKbzb29vW1tbcPDw95/dZ8AG1VxB+NUt8tPDDmwc+Fji6LZDNrBXblLEqDo181gMsBlTq/xNDc3v/766729vQihRx55JDU11Ww2l5aWPvroo9u2bfNAhFMaHBwsKyvTarU0Gs1sNsfFxRUXF0+ciPbbul/MorigPsVYn3xMDA0H8GA0W1oHNGmRgXgHQjYZYmFGqbC8eSAsMADvWEgIJgNc5tw4ValU/vSnPxUIBG+99VZhYSF2kUajFRUVeXkbqMlkKisrYzAY27Zt2717d1FRUWdn59WrVyfe+aAdb0ZIHJtzJIdhqIqT6m5FNrTO95h5kYGNUhXeUZBTfmLIqz9IC+Yyd+XHwWSA45zLqWfOnKFSqb///e8XL17M4313LkF8fHxPT4+7Y5tOW1ubVqtdunQp1rwpKSkpMTGxoaHBaDR6MwyfUJoj+RfkVJzAxK9HzYsUNEqVeEdBWkaz9cG5Ya+sS4MRquOcy6lSqTQpKYnL5Y67zuVy1Wq1+6KaWW9vL51Ol0gktisxMTFms1kmg3NDx4sJ5oTwWDe75HgH4o8gp3oUjFM9qkmqgmULZzmXUwMDA+/duzfxeltbW3BwsJtCcohCoeDz+VTqd/ELhUKEkFIJb1onAZVKeIG5X4+CcapHNclUaRGQU53jXE5dvHhxd3f30aNH7S+2t7cfPnx46dKlbg1sBgaDgcn8Xlka9qler/dmGL4C21GDdxR+555ab7ZYIgRQHeYpMcGcIY1BqzfhHQg5NctUqZBTneRc3W9KSkppaenvfve78vJylUoVEBDw8ssvV1VVBQUF7dixw0MhOgjbzEOhUMZdLygomHizvzXWZ9GpRanhJ+plazMi8I7Fj9R0y7NgZ6qHYdO/i+KC8A6EbGTKMQ6TLmAz8A7Exzi9l+b5559PSko6fPhwV1eX1Wrt6ekpLi5+5plngoK8+n86ICBAp9PZX8FGqCwWa9yd/pY+p1KaIzl4rQtyqjfBxK8XpEcKGqRKyKlu1yRVp0XCSZFOc6UH6bp169atW2c0Gg0GA4fDmTg09AKRSNTS0mIymej0+9+CXC7Hrns/GJ+wMjXsPz6rUY4Z4Y2n11T3KPYVJeEdBcnNiwy83AEtX9wPJn5d49x6qj0Gg8HlcnFJqAih6Ohoi8XS2dlpu9LR0cFkMufMmYNLPD4BVlW9DIp+vQBKfz0EcqprHBqnqtVqi8UywxPR6RP32HhOXFycSCS6dOkSi8USiUR37tzp6urKzc2Fhv7TyBALf3W8sUc+VpojzoANZx52u18dG8wJYMB/SM+aGxHY0q+2WK1UnN7fk1WTTPXC6hS8o/A9DuXUJ598cnBwcPp7MjIy3nvvPXeE5BAqlVpSUlJeXn78+HHs08zMzOzsbK8F4HMqWwZ+daJxRGvYf+nukRrpO1uz8hOhMYoHwSDVa7ChKrxNdCOd0SxT6uJCvDdMIg2HcurTTz89Ojo6/T0hId7+Ax0YGLh582aFQqHX6wUCQUDA5G0//bzfL2bcaYhyrR5OQ/Q0KPr1GsipbtcsU6dGQIGSKxzKqWvWrPF0HC7DWj1Mw2/zqL2pTkOEnOo5NT2Kp5bG4R2FX/i28wMcaOg2sJjqMlfqfgEA06jtUX5xq7f1ntZonqEKAbjFPHHgl9V9eEdBKtBByWWu1/0CHwKnIXpNZcvAjo+vHajqNFssT3x4/Zu2IbwjIj/oUOh2ME51GeRUv4Cdhiji3k+rTDoVTkP0hPvr1prvrVvX9ynwjYr0WHSqRMRpH9TgHQh5QE51GeRUf5GfGHJg58Jd+XHrMiKSw3hwGqInTLVujVc8/gN2qbpR1/BoKJ/FYcI2MFeQfz0V6n5tMsTCDLFwzGjOef1rvGMBwJ3miQWNfcr18yPxDoQMYJA6G+TPqX6eRydiM2gSEbv1niYpjDfz3cAZpTniL6v7FKPfDVVh3do75kUG/uV8O95RkATk1Nnw1T5KYDYyJcK6XgXkVLfD1q13H7gxajAjhARsBqxbewfM/bpRk0y15QHYmOQiX+2jBGYjUyKo61U+nCPBOxASyk8MmR8l4DLpscHcTdliSKjeIeIwAxg0mXIMTqudPdhIMxs+3EcJuCxTIjxSA/v5PKWhT3X5pZX8APIvrBBKujiwoU8FOXWW1DqTaswoFsGP0UU+30cJuCBDIqjvhf18HtEoVUUHcSCheh82/VucFo53IL4NFlNnCfbS+CM6lZI8h98E608ecLl9CPYp4QI6P7gFTPzOktPvpi0Wy9mzZ2/evKlQKMxms+16XFzcnj173Bqbe8BemklligV1fcq0SPjlcbPLbcNPLInBOwp/BGVKbtEsU+XA2Q+z4FxOtVgsL730UlVVVUREhEwmi4qKGhkZ0Wq1wcHBwcHBHgpxliCPTiozSljXo/jhQqjuc7PL7UN/eXwB3lH4o0ghe9RgUowahRwG3rH4sGaZ6rFceFPoOufmfq9evVpVVfXaa6999tlnCKE33nijrKzsP//zP00m0/r16z0TIfAIbJyKdxRkc6tbPi9SwKLDkgo+YPp39mDud5ac++Wvr69PSEhYsWKF7QqFQlm1atX69evfffddd8cGPChdLGiUKq1WvOMgl8ttw0sSCTph4w9g+neWWu9p4oK5dBoF70B8mHM51WQy2eZ4GQyGWq3GPk5LS2tubnZzaMDDsM4PeEdBKlCghC8Yp84SFP3OnnM5NSQkZGjo/tlVEomkrq4O+7itrS0gIMDNoQEPwzo/4B0FqVxuH16SAONU3MA4dZaapapUqFucHedqlLKzs999992BgYHw8PDi4uK//e1vUqkUIXTq1Kni4mLPRDhbUPc7lfkS4ZWO4ccR1CO4R1X7cB4kVFwlhvG6R0YNJgsTlrRd0iRT7cyPwzsK3+ZcTk1KSnr99detVitCaNu2bQqFory8HCFUXFz83HPPeSTAWYM8OpUMieCDyg68oyAPmPglAmyomh0txDsQnwRzv7Pn9P7U5cuXYx/QaLS9e/fu3bvX3SEBL0kJ53cOa/UmC9SpusXl9uGXS1LxjsLfYUuqkFNdMKI1mCzWMD4L70B8G/wx9WtQpuQuBpOlvk+5IAY2y+MMllRdBrto3MLFrqQ6nW5kZMT+ADgWixUaGuqmqICXYI1/F8YG4R2Iz4PqJIKYFyk4dK0b7yh8Ekz8uoXTOfXcuXN//etfe3t7x12Hs9580XyJ8OztAbyjIIOq9qE8WEwlABinuqxZpspPhHHRbDmXU+/cufPqq68mJCTs3bs3DpbF8wAAIABJREFUKCiIQvlua7BQSNAFjP3799t/umPHDrwiIaBMieAPZ1rwjoIMLrcPv1magXcUANGolKQw3u1+9dw5fLxj8TFNUtXuZQl4R+HznMupV65cEQqF7733ng/tRoUkOo24EO6gWq/Rm3gsOJvMdRq96e6QNgOOHycGrEwJcqpTrFZ0ZwDeiLiBczVKer1eIpH4UEIFM4LOD7N3uW1oSSJM/BIFTP+6ABZT3cW5nJqbm9vR0aHVaj0UDfA+KP2dPShQIhTIqS6AnOouzuXUjIyMTZs2vfTSSw0NDVqt1mDHaDR6KETgUTBOnT3IqYQyTyxohDOXnAQbadzFuVW0c+fO/f3vf0cITTx+HOp+fVSmRPjmSTj/wHXDGsOwVp8cDgtRRMFj0YO4zO6R0eggDt6x+IxmmWplajjeUZCBczk1ISFh165dk34pPJyg/x7Q73d6EhF71GAe0RqCuEy8Y/FJ0JKQgLDpX8ipjmuWqVMj4H2hGziXU2NjY2NjYz0TiadAHp1RhlhQ36dcngxb01wBE78EhJX+rkmfg3cgvqFfpWPRqSIOvKt2A6fPT9VMRqvV2vdUAr4FllRnA8apBDRPHNjYB2VKjoICJTdybpx64cKFV199ddIvUanU2NjYjRs3bty40b4XBCC+TInwsxs9eEfhk6SKMaPZGhMMc4zEAoeTO6VJqkqDY1PdxLlxanJy8urVq6lU6tKlS5966qldu3atWrWKyWTm5OQ89thjXC737bff/vDDDz0UK/AQGKe6DCZ+iSmMz7JY0ZBGj3cgvgHGqW7k3DiVyWRWVVW9/fbbCxYssF3csWPHnj17duzYsXv37j/84Q+HDh16/PHHmUyYmvcZ4YEBCKEBlQ77ADjucvsQtEglJqxMCaoEHNEkU/1HcQreUZCEc+PUM2fOREdH2ydUhJBEIiksLDx69ChC6NFHH9Xr9d3dBDoX4pwdvGMhLhiquqaqfTgPxqmEBLtUHWQwWXrlY/GhXLwDIQnnxqlyudxqtU68brVa5XI5QigoKAghZDab3RKcW0DdryOw0t/iNIJuiCKmu0PaAAYtQgCDeyKaFxl4sk6GdxQ+ACZ+3cu5cWpCQkJzc3NVVZX9xc7OzoqKioSEBISQTCZD32ZW4EPmRwlre6BDoXNgkEpk0KHQQdBByb2cG6cWFxcfOXLkxRdffOCBB5KSkuh0end39zfffCMSibZt24YQOnfu3Jw5c+Bwcp+DjVPxjsLHXG4feig9Au8owORig7mDar3WYOIy4cyl6cA41b2cG6fS6fQ//vGP27dv7+rqOnjw4IEDB6qrqx966KEPPvggODgYIbRjx47PP//cM6ECDwriMjlMWq98DO9AfAkU/RIc7FJ1BHRQci+n38EFBATs3r179+7dOp3OYrFwOLAzjySwA2okIjbegfiG2/3qMD4LGjoSGTb9uygOlqKmA5tT3cv1WRFfOUUV+v06CCv9LcmAyUyHQPsk4kuPFFzuGMY7CkLrHhkN5jFhetyNHPpRqtVqi8UiEAiMRuPo6OjkT0Snc7lErMaGPOqgTInwz2db8Y7CZ1S1D295IArvKMB05kUGfvDNXbyjIDRYTHU7h3Lqk08+OTw8fOHChcrKyql6E8JZb74Otqg65XLb8B9+mIV3FGA6cyMCW/rVFquVCt1SpwA51e0cyqlPP/20TqdDCKWkpOzbt2/Se0JCYB7Mt/FY9FA+6+6QNi6EiPMNhFLbq0gM48GMGfFhS6oZYgHegRBUk0y9OUeMdxSk4tAfhTVr1mAfSCQSiUTiyXgAnrChKuTUGUHFr6+AnDq9ZpkqNSIV7yhIxfU32vfu3Tt+/Hh/f39kZOT69euhzwMJzJcIa3sVG7Ii8Q6E6C63De9eFod3FGBm3x5QAyvfk9DqTSNaQxSc3O5WDuXUkZGRJ5544umnn96wYQN2paOj49lnnx0bu7+d8csvv/zggw/CwsKcem2DwTA0NDQ6OsrlckNCQhgMxsR7lErl0NAQnU6PjIyceIPZbJbJZDqdTiQSYRtkwWxkSARlDf14R+EDqjqG9j+1EO8owMzmiQO/rO7DOwqCgg5KnuBQTr1165ZarS4oKLBd+dOf/qTX61988cXc3NwbN2689dZbH3300c9//nPHX/jUqVNdXV22k8zZbHZeXl5KyvfORqisrGxsbKRSqRaLhcViFRUVRUdH2746ODhYVlam1WppNJrZbI6LiysuLqbRaONeCPbSOA7boop3FER3vXMkO0pEp0HZiw+Ag1SnAd0ePMGhnNrV1RUREWGb3VWpVNXV1YWFhevWrUMIrVmzpq6u7vr16069sEajycvLi4mJ4XA4IyMjlZWVZ8+eDQwMjIi4vz+yvr6+sbExNzc3KytLr9efPn26vLx869at2I4dk8lUVlbGYDC2bdsmEAhaW1srKiquXr26ZMmScS8EedRxLDo1Nph7Z0CdEg6/aVOCxVQfwqJTJSJO+6AmIZSHdyyE0yRVZkWL8I6CbBzqTahUKu1nVuvq6iwWS15enu1KamrqvXv3nHrhhx9+ODMzUyAQMBiM8PDwFStWIITa29ttN9TU1ISFheXk5FCpVDabXVhYaDQaGxsbsa+2tbVptdqlS5cKBAKEUFJSUmJiYkNDg9FodCoMME6GRFAPO2qmBTnVt0Az/anAONUTHMqpIpFocHDQ9mldXR1CKDX1u2oxGo3m7CHklO/vGOPxeMjukDiFQqHRaGJjY203CIVCoVDY29uLfdrb20un0+2LkGNiYrDlVafCAONgZUp4R0FcFqv1+t2R3HjIqT4DDlKdCqyneoJDOTU5OVkmk124cAEhpNVqz5w5Ex4eHhMTY7uhu7vb2QKlcdra2hBCthypVCoRQkKh0P4egUCgUNz/c69QKPh8PpX6XfzYzdgDgcug88P0YJDqc2CcOqn2QU10EIdBc+4YFTAjh9ZTlyxZkpyc/F//9V/x8fFDQ0MKhWJc54dLly6lp6e7HIRCobhy5UpkZGR8fDx2xWAwIITGjX2ZTCZ2HbthXMNh7Ga9Xu9yGADB3O9MIKf6HMipk4IOSh7iUE6lUChvvfXWBx98UFNTExER8dRTT5WWltq+2tTUZLValy9fPtXDR0dHbcNHCoUyZ84c+69qtdoTJ04EBAQUFxePmxC2Wq2OfyfYzZQJTcjsy5VtLl686Pgz+xUqhZIWGdjQp0yHbfKTudw29Or6eXhHAZwg4jADGDSZcixCAGcufadJpk6DxVQPcLTnQ1BQ0Isvvjjpl9LS0v75z39O89iOjg5bDqPRaLt377Z9aXR09NixYxaLZePGjfbHxrFYLDRh0KnX621j04CAAKxdov1XbQ+0B+nTWZliQR3k1MmMGc13+tVZUcKZbwVEki4ObOhTQU611yxVPbEkZub7gJO80bB07ty5tkld+3Hk2NjYsWPHjEbjxo0b+fzvvWMSiUQIIblcbn9RLpdj17EbWlpaTCYTnU63fdX2QDAbmVHCmm75tkXRM9/qZy63DS9JhIlf34NN/xanheMdCIHA3K+HeGOBmk6nc77FZt9/qzg2Nnb06FG9Xr9+/frAwPH/tHw+XyQSdXR02KZ/BwcH1Wq1redDdHS0xWLp7Oy0PaSjo4PJZI6bWAYuwMapeEdBRHBmqo+Czg/jjGgNBrNlTqBvnIHtW3Ar+jp27JhcLk9KSpLJZM3f6unpsd2wYMECuVxeWVmpUqkGBgYqKirYbHZaWhr21bi4OJFIdOnSpZ6eHo1Gc/Pmza6uruzs7Il9lICz0iIDW/rVJosTi9l+AgqUfBSUKY0Dg1TPweewKovFMjIyghCqra21vx4TExMVdb/bdVJSkkajuXHjRlNTE0JIIBCsXbvWtlxKpVJLSkrKy8uPHz+OfZqZmZmdne3Vb4O8sOrf7GhYOPyOYtQoU47BXyJfFClkjxpMilGjkDNJU3E/BDnVc/DJqVQqdc+ePTPelp2dnZ6eLpfL6XT6xHNvAgMDN2/erFAo9Hq9QCAYt7XGBvr9ugBr/As51V5Vx3AetHrwWdj079JEmLpHCKFmmRoqAzyE6IcqMxiM6btJjOsLMRHkURdkSgSX24bxjoJYYDHVp2HTv5BTMU0y1a4COKzQI6CJBpgEHFAzERT9+jQoU7IHc7+eAzkVTCIpjNcrHxszmvEOhCjuqfVqnRHONvFdUKZkc1ummgsJ1WMgp4LJQZNCe5fbhpbAtKEvSwzjdY+MGkwWvAPBH3RQ8ijIqWByMP1rD3bRkAAMVTEw8etRRK9Rmj2o+3XNfImgvGkA7yjwV9ujPFLTd7JetnoetBPxbdiSKlSzN8lUhSkJeEdBWuTPqZBHXZMhEfy+vAXvKHBW2TKw77O6EY0BIfTC4bp3tmblwwywzxIEMA5UdbUPaktzxBl+3M4axqkeBXO/YHKxwdyRUYNqzIh3ILip7VHu+/R+QkUIybX6vQer6/tgPtwnVbYM/P1aV8uAev+lu098eP2btiG8I8LHgErHoFGDuMyZbwUugZwKpuTnjX+P1PSNaA32V+SjhqPVUrziAS7D3h6pRu+/QfTnt0fNMnUqFCh5EuRUMCUo/QXkAG+PbGDi19Mgp4IpzZcIa/249Lc0RyzkfG+KTMBmbsoW4xUPALPXJFOlQU71JPLn1HN28I7Fx2RKBHV+PE7NEAv+vC2bxbh/0pGAzXh/e/Y8P65t8V3w9gghVNujfO2rpsqWIRqVMvPdwFVQ9wumFClk603mYY0hmOenFQ35iSEBDMojOdEBDNqmbDEkVB+FvT3ae6harjUgv3x7ZF/B/ssjjYFsBlSwewj5x6lgNjLFwjq/LOXAXLs7khIe+MamjFfWpfnVn2DyyU8MObBz4a78uBAu8/X18/zqOASoYPcm8o9TwWxg078Ppkx3NBCJnaiXrc2IwDsK4B4ZYmGGWMigU6VKHd6xeNVUJVoZYn9vf+EJME4F0/HzDoXH66TrMiPxjgK40/Lk0Astg3hHAUgLciqYjj+XKV27O5IQyvPbtWSyWhwffKNrxGS24h2I90CJljeRP6dC3e9shPJZdCpF5mdzZRiY+CUrfxuqYiVagWwG9qkflmh5E/nXU6HudzZqe5QMOu2VLxv2FSf5W4vU43XS8n3L8Y4CuF9BUujF1sGVqX5UJZCfGPLoQsnltuG8+GCoYPco8udU4DJb/X33sPZWj8KvOsjDxC+JLUsKPVDViXcU3tZ+T/vTVSkr5vrROwlckH/uF7jGz+vvYeKXxOJDuXqTpU8+hncgXlXZOrgsKRTvKMgPciqYnJ+3SD1RJ1ubCTmVtJYlhVa2+tGSalX78MLYIDoNOih5HORUAMa7dnckPpQbwmPhHQjwlIKkkIutfnTcGwxSvQZyKpicP9ffw8Qv6flb6W9ly+CyZMip3kD+GqX9+/fbf7pjxw68IvEt41qkUijIf+rvT9TJTu0rwDsK4EFcFj05nFfdrciOJn8voRGtQabUzYuE42i8gfw5FZKoy7AWqdga6pnme0EcvyiChYlfP4ENVf0hp15sHSpI8peKfdyRP6eC2cBapCKEeAGMU439c/3g5EWY+PUTBUmhb55s3leUhHcgHgcTv94E66nAIQ+lzznV0I93FN4AFb9+YkGMqFmmGjWY8Q7E46BAyZsgpwKHzJ3D1xktncNavAPxLJj49SvLkkMryV6pdFumCuaxQvnwX9pLIKcCR/nDUBUmfv2KP+xSrWwdWgaLqV5E/pwKPfTdxS9yKkz8+hN/GKdebB0sgIlfLyJ/jRL00HeXrCihTKkbUOnCAwPwjsUjYOLX3/y/9u47vqlyfxz4k9mkJc1om6Z70JTRRVsKsqRg0VKEC8gXrReVjfLTK477uyBQhqB4kaF4RbyiKMJXQRm1/KpAKbRyy5TuPSjdJM1omzSrye+Pcw2hI3Sc5ITTz/uv5slzTj5JzyufPOM8jy+fzaBRa6SqIHcXomOxCZMJ/V4pPbpiItGBDCPkb6cCHJG7qQodv8MQuRdUgkaq/UFOBQOQGCb6tYi8ORU6focfcnf/wmCq/UFOBQMwaaRbUWNbW6ee6EDwBx2/wxO5pynBnan2BzkVDAxZm6rQ8Ts8MenUaH/+9epWogPBX0ubRtmpD/XkEB3I8EL+nArzfvFF1iFV6Pgdtp4Uu2eRcUgVGqmEgHm/YGBmjhauOXpb32Vk0Mjzgww6foezaWKPTWcK/v7MKKIDwVlWhfTpsZ5ERzHskOdrEdgN+Zqq0PE7nEX6cu/J1Ao12WYJwKRfQkBOBQNGwpwKHb/D2zSxRzZxM5Xy6pTbfine9ktxQYMSr3Pm1yv9Bc48ZwZeJwT9BDkVDBjJpilBxy8gcIvyrPKWZd/e+OZqzTdXa17++ubvlfiM7EIjlSiQU8GA0aiUmaOFF4pbiA4EH9DxC4ha+SGvTrnux3xZhw57KFdp3zh+p6BBMfQzw52pRCF/ToV5v7ZApqYqdPwCT1cWl80ob2m38+ueyW2QqXSWJXK17uydxiGeVmcw3rknnxjsNsTzgEGAeb9gMBLDRSmpRXv+J4roQIYKOn4BBltQiRx3c8KGqQQifzsV2IKLEz3aj4fX2A+B/l9BUxJ0/AKC7lKdE+lFoz70JcxlMxdE+wzxtHBnKoEgp4JBIsfs37T8pmeh4xcQMfX3XEHTS19dXz97FN+FiZXQaZSDS6LDfLhDPHN2hXQaDKYShPx9v8BGEsNF+y9W7JgfTnQggwcdv8CMQkFTQ9ztlo3eOZmn0XWVvJ+IEHoiWICNoV4sbnEb8tVYL+/UdxnJunud44OcCgbJfYRTgJvz7Vp5bACf6FgGCTp+gSWsqWrrnJpXp1h25ObGpDHPxfpiJRE+vAgfHkIoNlCw/0L5wSWxQzk/dPwSyyH6frVarUKh6Ojo6PmUUqmsqqqqra3V63tZ5aSrq6u+vr6ysrK1tc8lsGHer+087t2/0PELLNlh37e9F8pTUosuvj3dnFAtzQ4XVUtUZUObfgwTlIhFfDvVZDKdO3eupaUlICAgKSnJ8qmsrKyioiIqlWo0Gp2cnBISEvz9/c3PSiSS9PR0lUpFo9G6urqCgoJmzZpFo9G6nR/m/dpOYpjoxa+ub5wzhuhABgM6fkE3o0WcVpVO0q714OB/VUjatcuO3Hx6rOfZ/zPFSrV1s0KH2FTNLpfuWfzYT8h/fBHfTs3Pz1er1XR69+xeUFBQVFQ0ceLEVatWLV26VCAQnD9/XqVSYc8aDIb09HQGg/Hiiy+uXr06ISHh7t27169ft3v4w5qfwJnDohc3thEdyGBAxy/oyUbbqf54sy7p0+xdCyP+9pTYes0hNlVv18pHe3FcmMQ3loYtgnOqUqm8cePGk08+SaV2jyQ3N1coFMbExFCpVDabHR8fr9fri4qKsGcrKytVKtWUKVO4XC5CSCwWh4SEFBYW9tpFDGzn8V38ATp+QU9D7/7tuXjvmqO3/7gnv7kxIbx/E3qxpurgXh2WJCQcwTn18uXLwcHBlj26GGx4NTAw0FzC4/F4PF59fT32sL6+nk6n+/o+GJMICAjo6upqamqyfdTggcd0SBU6fkGvhrhIYbfFew9eqRJvTF8Y4/PRc5H9P8nscFGNVFXaPJim6pVyyXSYoEQoInNqYWGhTCabMqWX0QWlUokQ4vF4loVcLleh+O9KmAqFgsPhWLZuscrYgcBuQj05+i5jjVRFdCADAx2/oFcCF6Y3j104qP1hei7eu+e38hOvTnwmTDTQU61LCN1/ccBNVZXWUN7SEe3Pe3RVYDOEdbu3t7dfu3Zt+vTpLBar57M6nQ4hxGQyLQuZTCZWjlXodiBWWavVdjvVtGnTep4/Ozt7CLGDh2BN1dfiRxIdyACk5Tf9uq6XCwMArKnaz35aSz0X7zUYjefymqP9BAM9VWK4aP/F8tLm9tGiAayVCOvmOwJ75FS1Wm1uPlIoFJFIhBC6fPmyl5eXWGxtxN5kMvX/VbDKFAqlWzmkT1tLDBelnCl6jHIqdPwCK54Ue3x6qYLw6xlrqn4xkAnAcGeqI7BH3291dfWZP6WmpmIl9fX1oaGhTX8ymUxarbapqQmb2evk5IR6NDq1Wq25bcpisTQaTbdnzQcCe4ry5d1v1zQpNY+u6hig4xdYMWmk2827MkPXAH7QYxbG+PCcH+paG8rivYnhorsDHFWFO1MdgT3aqaNHjw4ODsb+xtqRarUaIXTx4kXLas3NzWfOnJkyZUpkZCSfz0cIyeVyywpyuRwrRwjx+fzy8nKDwWC+CQerbK4A7Anr/l02JZDoQB4hr055Jrfhx5t1h14e0lI1gNywO2pmjhYO6KgIH26bRs93YcpVOoQQl80Y4uK9A2qqVktUTnSqD5896JcDuLBHTqXT6d1uPw0NDfXz87MsOXnypFAonD59OpvNRghxOBw+n19dXR0XF4elYYlE0t7eHhYWhtX39/cvLS29e/duSEgIVlJdXc1kMrGOZWBniWGivRcrHDynZpW3rDvx3ykkb/6QdyB53NQQGHwCvcDuqBloTg3dlF66PbGspQ1bvHdBtM8QV8Mf0KgqNFIdBDHzfplMJvdhFAqFTqdzuVzzvKTY2Fi5XJ6VldXW1tbS0pKRkcFms8eOHYs9GxQUxOfzr169WldX19HRcfv27dra2ujo6J7rKAE7mBjsVtbcplA77s3BPedkvnH8TkGDgtiogGMaxMoPYSm/3UmZxaRTI3x4m54du+nZsUPfXgYNZAIw3JnqIBx3uQ2xWNzR0XHr1q3i4mKEEJfLnTNnjnm4lEqlJiUlnT9/Pi0tDXsYGRkZHR1NZMTDG7b4wwtxfo+uSoSeczLlat3ZO43Y2uUAWAr2cNHojY2KTm9ev7pSo7ad/8+GmbZYvSgxXLQ/o6K0qW20l6v1mlfKJYeWjMc9ADBQjpJTV6xY0bMwOjo6PDxcLpfT6XSBoPt8dFdX10WLFikUCq1Wy+Vye70nByFkuXQ+rP1rO4nhXkf+U+OwORWAAZke6nGlXJI8oftyND3FvH8h8914Lptho0jeShDvu1hx6CVro6rXqlvHBwjotO53PQD7I369X+sYDIZQKOyZUM14PJ6np2dfCRUhNMOCbWIECCEUP8ojp6pVazASHUjv4kd5IPTQN85Q5mQC0uvngkoTP8hIf3OawIX5yJqD9kyYqFamLm2ytqo23JnqOBw9p4LHiMOuU1je0v5/f8r/fuUE/p/ffUOfkwnIDWunWq8zedel02sne7r2+YMeL1hT1UoFuDPVcUBOBbhJDPf6tdDh1lu+VSt//fid6+89NTXE/bvlcSunBq2cGnR85cTJI+F3PeiTixM91HPEnXt9zmKbvjvzf1c90c8B1yGy3lSVq3UN8s5BLPwEbMFRxlMBCSSGidYeu010FA/JKLl/8HLl+beexB5G+PBgUhLoJ2z2b6/L5z6158rXS+MC3JztFoyVUdWscumTofAD0VFAOxXghkJBs8aKzjvM1m+n7zQcv1H702uTiQ4EPJb62vftmX1Zny+JGekxwp7BWGmqwp2pDoX8OTXTAtGxkJ/jbKd65D93s8olh1+JIzoQ8LiKDeCXNLWpdV2WhXM+zd77/LhRngNY2h4vfY2qZpdLpsFgqsMgf98vTPe1p8Rw0aYzBXsXExzGpxkVMpVu3/PjCI4DPOYiffmvH78T4Oa8MMYnwof7l39d/WBBRJj3I24VtZFnwkT7Lna/V7W0uV3gwhRyYJ1zR0H+nArsyZlJiw0QELuky45zJc5M2tZ5YUQFAMghq7yloEGh0hoQQmdyG91HMHYtjIzyI3I8/u0E8d6LFV9ajKrC8kmOhvx9v8DOZoeL0om7o+bvP+WLXJ3enhVKVACAHLDFLLGEihCSq7TNCi2TTvCiCk+Hiepk6hKLUVWYoORoIKcCnCWGi87lNW/7pXjbL8UFDUp7vvSao7cnBPJXTgu254sCUuq5mGW7Vo8tjk+sbqOq0E51NJBTAc4KG+Qqvf6bqzXfXK15+eubv1c+ejGawcmrU1pm7he+vLYwxud/xsPiiIDMLJuqkFAdEPnHU2G9X3vCeszM+zlj2798tyIO97tCLTduO5Pb6MqiffRc5BPBbvi+Chi2Fsb4nL7ToFA/aKo6zmKWbyWIt/1SMsaLc6NG9kRwn+u2AkKQP6dCHrUn+2z/8t+N21QPNm7r6mK4OME2fwA3ET7cz16MfuN/7+C1wTiOWAzKzdrWa9VShFCdvHPGaCHsBOw4yJ9TAfn0zNxtGj1s3AbwhS1midcG43jBflB2/dkV1Naps1FXEBgcyKkATz17zKgUalFjW26dYhyhNyEAMAgOuJgl7ATs4GCOEsAT1mNmuf3L9yvjlk0J3JpalPzva9kVj9jo45Ea5J37LpSn5TfSaQ9duo4z1gUAGM4oJpOJ6BhsaNq0adnZ2URHMewUNCh69pjlVLV+frlKptKunREyJ8JroOc8c6fhxK26Wpl68Xi/xeP9qiQdD491xcA+M2A4KGhQvnT4RrfJU8dXTnCQrmlA/py6fft280OYr0S4osa2zzMrCxqUa2eEvBD34L6XvDrlmdwGhBC2CNyD8nrFiZv1J27VzYn0Wjzeb/LIBzN7e83cAJDe75VS+EHpsMifU6Gd6oDuydSfZ1b+VtSydsbIVdOCLW+M4bs4HUgeF+XLO3Gr7sTNOhaDtjjOd/F4PwYNxikA+C/4QemwIKcCwsjVus8zq775/S6DTunUP9j9g0GjMugoOS5gcZwfIRuAAADA4MC8X0AYvjNz45wxui7Tt/+psSzXdxlfmRS06dmxRAUGAACDA/1pgGBUgpclBwAA3EBOBQRbGOPDc2ZalsCNMQCAxxT5x1OXL19uWbJs2TKiggF9gXmMAAByIH9OhTlKjwWYxwgAIAGYowQcggMuAgcAAAMF46kAAAAAPiCnAgAAAPiAnAoAAADgg/zjqZkr1NTDAAAUC0lEQVSZmea/Yb1fAAAAtkP+nAp5FAAAgH1A3y8AAACAD8ipAAAAAD4gp/bLtGnTiA5heIEP3P7gM7cz+MDtzw6fOeRUAAAAAB+QU+3tm2++cajzOOyp8OKA784BQ8KRY747xzwVXhzw3TlgSPZB/pyaaaGvCni9EC7nccxTOWBIOJ7KAUPC8VQOGBKOp3LAkBzzVA4YEo6ncpyQ4F4aAAAAAB/kb6cCAAAA9kH+vd6IDgEAAACpWNlClOQ5FQAAALAb6PsFAAAA8AE5FQAAAMAH5FQAAAAAH+S/l2aIurq6mpqaNBoNn893c3MjOhxSUSqVUqmUTqd7e3szGAzrNbsN/LNYLBaLZeMASUitVut0OmdnZyaT+cjKGo2mqanJZDIJhcIRI0bYITzy0el0arWayWQ6OztbrwkX+dDpdDqpVKpWq11cXNzd3a1/q2Bwv8ghp1ojkUjS09NVKhWNRuvq6goKCpo1axaNRiM6LjLIysoqKiqiUqlGo9HJySkhIcHf37+vyqdOndJoNJYlsbGxEyZMsH2YJNHZ2ZmZmSmRSNRqNUIoPj5+zJgx1g8pLS3NysoyGo0UCsVkMsXFxcXGxtolWJLIysqqr69XKpUIIbFYnJCQYL0+XORD9Ouvv9bW1hqNRuwhm82eNGnSqFGjrBxii4sccmqfDAZDeno6g8F48cUXuVxuRUVFRkbG9evXJ0+eTHRoj72CgoKioqKJEyeOGzdOq9X+9ttv58+fT05OdnFx6euQkJCQyMhI80MrNUFPBoNBrVYHBgYyGIy8vLxH1pdIJJcvXw4MDJw5cyaNRsvJyblx44abm1tgYKDtgyUJhUIhFArDwsJycnL6eQhc5EPR0dExadKkgIAAZ2dnmUyWlZV16dIlV1dXLy+vXuvb6CKH8dQ+VVZWqlSqKVOmcLlchJBYLA4JCSksLNTr9USH9tjLzc0VCoUxMTFUKpXNZsfHx+v1+qKiIiuHODs7e1qArsgB4XA4ixYtmj59elBQUH/q5+fnU6nUGTNmMJlMGo02ZcqUESNG5Obm2jpOMpk3b15CQkJUVFT/D4GLfCiee+65yMhILpfLYDA8PT1nzpyJEKqqquqrvo0ucsipfaqvr6fT6b6+vuaSgIAAbHiVwKhIQKFQdHR0WP4Y5PF4PB6vvr7e+oEmkwlup7aP+vp6Ly8vJycn7CGFQvH3929uboYflLYGF/mgUSgUy4fYL5Kurq6+6tvoIoe+3z4pFAoOh0OlPvjZwePxEELYAAkYNOwDxD5MMy6X29zcbOWosrKywsJCo9HI5/PDw8PDw8NtG+Uwptfr1Wp1txYtj8czmUxtbW0wU8924CLHUWVlJULIslFkyXYXOeTUPul0um6T7rCpklqtlqCISEKn06E/P0wzJpOJlffK3d1dJBJxOByNRlNWVpadna1UKqdMmWLzWIelvv5BCC5+W4KLHEcKheLatWve3t7BwcG9VrDdRQ45dQCwPpluPQxgcAbUwTV37lzz35GRkampqQUFBREREa6urjYIDfQCLn5bg4scLyqV6ty5cywWa9asWQO6YnG5yGE8tU8sFqvb1Hbs94u5/x0MDvYBdvsxqNVq+3krHpVKDQ8PN5lMLS0tNolv2OvrH4QQgtsl7QMu8kFTq9WpqalGo3HevHlW7gm23UUOObVPfD6/vb3dYDCYS+RyOVZOXFBkgH2A2IdpJpfL+//BYrcIm29EA/ii0+kcDqfnP4hKpUKbyW7gIh+Ezs7O1NRUvV7/l7/8hcPhWKlpu4sccmqf/P39jUbj3bt3zSXV1dVMJlMkEhEXFBlwOBw+n19dXW3u/pVIJO3t7eY1H0wmk1artTJhD5sfD5NlcKTX6y1/s/v7+7e0tHR0dGAPDQbDvXv3fH19YcETvMBFjrvOzs6zZ89qtdp58+b1mhd1Op3lnF4bXeS0rVu3DuV4EuPxeNXV1TU1NW5ubjQaraCgoLi4ePz48T4+PkSH9thzcnIqLi5Wq9UCgUChUFy6dIlCocycOZNOpyOEWltbjx07hhDCPurS0tKysjKTyWQwGGQy2Y0bNyoqKvz9/ceNG0fw23islJeX379/v6Wlpbm52cnJSaPRSKVSgUCAzWy/cOFCZmZmbGwsNpjE4/GKi4ubm5uFQqFOp8vOzpZKpTNmzLD+2x9Yqq+vb2hokEqltbW12IUtlUpZLBbW6wgXOe5OnToll8vHjh1rMBikf9JoNNgCAwihI0eO1NXVmVcQs9FFDnOU+kSlUpOSks6fP5+WloY9jIyMjI6OJjouMhCLxR0dHbdu3SouLkYIcbncOXPm9DVQTafTy8rK8vPzsYdUKnXMmDEwH3Kgrl69ap4fUFZWVlZWhhAKCgrq9Vc5l8tNTEy8dOnSiRMnEEJMJnPmzJl9rUcDelVUVFRdXY393dLSgo2MPv30071+ZcNFPkRGo1EmkyGEui0TFhAQ4Ofn1+shNrrIYU/yR1MoFFqtlsvlwgQNfOn1erlcTqfTBQKB9Zomk6m9vb2zs5NKpfJ4vP4sjQ2GDvueMplMAoEAen1tDS5yQuB+kUNOBQAAAPABc5QAAAAAfEBOBQAAAPABORUAAADAB+RUAAAAAB+QUwEAAAB8QE4FAAAA8AHrKAGSMBqN9+7dUyqVSqWyo6ODyWRii9cMK2q1urGxkcVidXvvEolELpf3cyHTn3766dKlSxMmTOj1WYlEsnv3bqFQ6OHhMfSAm5ubW1tblX2gUCiFhYVffvllXFxct225bEej0fzzn//08fGxvgC1Xq//+OOP3dzccPkcAGkMuy8dQFYKhWLJkiWWJQEBAa+++urUqVOJCqn/mpqa9u3b99JLL0VERAzlPDk5OVu3bv3oo48mT55sWb5r166ysjJsRbBHKiwsrKioeP3113t9tr29PSMjIz4+fuzYsUMJFbNlyxZsLa1eLVu2TCAQZGRk/O1vf3NxcRn6y/XHsWPHiouLAwMDrVdjMBhOTk779u07dOgQbIEHzCCnAlJJTExcvHixyWSqq6v76quv3nvvvf3798fExBAd1yN0dHTk5OQkJSURHYi9rV+/Xq1WY3//9ttvp0+f3rRpk6+vL1YiFArpdLpYLLbbfjhtbW0//PDDW2+9hS2DbN1f//rXRYsW/f7779OmTbNDbOCxADkVkAqPxxOLxQih0NBQHx+fVatWpaenYzlVJpPV1ta2t7d7enqKxWLLL02lUmk0Gvl8/v379ysqKjw9PUNCQvp5SHNzc2VlpZubm3lt7rq6utraWj8/v4CAgG7h6XS6kpISpVIpEonEYjHWvsHWaEQItbW1SSQShBCHwzEvhNnW1lZSUqLX60eOHGm5GKlarVapVO7u7mq1uqioiEKhxMXF9f+DMplMlZWVTU1NXC537Nix1lfC6+joKCgooNFokZGRvVYYdJBBQUHmv+/cuYMQCg4Oxv6DGI1GIxQKzZ+8RCJxdnZ2cXGpqKhoaWkJCgrC1qA3mUylpaUKhUIsFru7u/czvJ7S09NNJlN8fLxloVKprKqqUqlUXC43JCTEvCunh4dHdHT06dOnIacCM8ipgLRGjhyJEGptbUUIbd68+cqVKxQKhU6n63S64ODgXbt2mb9et2/frlQqJ06cePToUZPJNHv27Pfee68/h0yaNOnbb7+lUChGo3Hq1Knbt2/fu3dvWloalUo1Go3PPffcunXrzPFcvnz5448/ViqVTCZTp9OFhYXt3LnTzc3tjz/+ePfddxFCu3fvxmq+88478+fPN5lMhw8fPn78uMFgoNPpBoMhKSnp3XffxcZKT506dejQoZSUlN27d3d2dopEopMnT/bzk2lubt64cWN5eTmDwdDr9W5ubikpKX215rOysnbu3KlWq52cnFgs1sqVKy2ftV2QmF9//XXPnj1nz57FFoV+/vnn586dW19ff/PmTYQQhUJZs2ZNUlLSP/7xj9LSUqPRyGAw3nvvvYSEhP6E19PFixejoqIs97L++eefDx48aDAY2Gx2R0cHjUY7duyYeXOqyZMnf/bZZwqFgsfjDeh9AbKCnApIC9t6BWu1xMTELFu2LCAggEqlFhUVpaSk7Ny587PPPjNXrqmpoVAohw8f9vf3b2tr6+chI0aMOHHihLu7+48//vjFF1+sW7fOw8Pj7NmzHA7n4MGDJ0+efPrpp7Fxx/z8/C1btiQkJLz++ut8Pr+kpGTz5s1bt249cOBAXFzcwYMHX3vttc2bN2MtHmw+zvfff//dd9+tXbt2wYIFDAYjMzNzx44dQqFw+fLl5hgOHTq0devW6OhoLGZMS0uLeUcUTGdnp/lvo9G4fv16iUSyb9++mJiYhoaGzZs3b9iw4ejRo0KhsNtn2NjYuG3btjFjxmzbto3P52dnZ3/44YeWFQYd5KClpaUtXLhw+/btFAplx44dX375ZVZWVnx8/CeffKLVarHe/qlTp2IN/f6EZ6ZWq8vLy19++WVziUwm+/TTTxctWrRmzRomk6nRaK5fv245shsWFmYymXJzc7s1bcGwBffSAFKRSCT5+fl5eXlpaWnbtm2jUCjYIOWCBQuCg4NpNBqFQgkPD3/llVfy8vIUCoX5QIPBsGXLFrFY7OTkhM3kfOQhRqMxJSVFJBLR6fTk5OQRI0bU1tauX79eIBAwGIwVK1YghG7fvo1VPnLkiLe394YNG7DZpGPGjHn11Vdzc3Orq6upVCq2zx2TyWSz2Ww2m0aj6XS6Y8eOJSYmvvDCC05OTlQq9amnnkpKSjp16pTlvhfLli2bPHkym8329PQ0F+7du/eVhxUUFJifvXXrVlVV1YoVK8aPH0+lUv38/DZu3KhWq8+cOdPz80xNTTUYDJs2bXJzc6NSqdOnT7cc9B1KkIPm5+e3du1aFxcXZ2fnpUuXdnV1cTic5ORkFovF5XKTk5OVSmVlZWX/wzOrr683Go0ikchc0tTUZDQan3jiCexXDovFmj59umWTFOu3qK2tHfr7AuQA7VRAKhkZGRkZGQghKpUaHBz89ttvY7s6q9Xq1NTUwsJChUJhNBrb29sRQvfv3zd/P3p4eJinxmAeeYi3t7d5lzoqlerh4SEQCMzjoC4uLi4uLlKpFCFkMpny8vJGjx594cIF8/mxp2pqaoKDg3u+kfLycpVKRaPR0tPTzYU6nU6pVMrlcvPr9tph+8Ybb3Qb+Pzkk0/q6uqwv7F5tpYTg7ExyF7n35aUlPj5+VmmmQkTJpj7b4cS5KCFh4eb59liSTo8PNz8LFaCfbb9DM9MqVQihCz3Nw0ODhYIBDt27JgzZ05sbGxkZGS3gWds8hR2IAAIciogmblz57788stUKlUgEJjHzDQazerVqxUKxaxZs6KiohgMRk1Nzd27d/V6vfnAbuNh/TmEzWZbHkKj0bqV0On0rq4uhJBWq9XpdPX19T///LNlhVGjRvW1EzuWwnNzcysqKrodgp2z17Axvr6+o0ePtiyxHCBUqVQ9D+TxeFh5N9jEHMsSy7s2hxLkoFl+yNiGlz1LsFfvZ3hm2P+i27/4X//619dff3369OmjR486OzvPnz9/zZo15jlTWq3WfCAACHIqIBkXFxfLRhUmOzu7trb24MGD5gbNI+/UHMQhVjg5OTGZzJiYmC1btvTzEKwBlJycPG/evEG/rpUzt7a2mifaYA8tZ9taVm5qarIskclkdggSFwMNz83NDSFk2b2PEPL19U1JSTGZTOXl5adPnz5+/LiXl9f8+fOxZ7EWas8mLxi2YDwVkB82Ncbf399ckpWVhfshVlAolNjY2Bs3bnT7vjbDhus0Go25JDQ01NXV9fz5872O/A0F1i1s+Xby8vLkcnmv98lEREQ0NDRYjhdaHmi7IHEx0PC8vb15PF5VVVXPpygUyqhRo9avX89iscrLy83l2MBtWFgYXjGDxx3kVEB+WEfoF1980dra2tjYeODAgfz8fNwPsW7VqlUajebtt9++ceOGTCZrbGy8evXqpk2bsJ5Gb29vNpudlpaWk5Nz584dqVTKYDBWrVqVl5e3ZcuW0tJSpVJ59+7dc+fO7d+/fyhhIISioqIiIiK+/vrr9PR0qVR669atHTt2cLncXhtz8+bNc3Z2TklJKSkpkclkJ0+evHz5svlZ2wWJi4GGh90+W1hYaC65efPmgQMHioqKFAqFTCb78ccfNRrNqFGjzBXy8/NdXV0tS8AwB32/gPzCwsKWLl363Xff/fLLLwih8PDwN954Y9euXfgeYp1YLN6/f/+ePXveeecdrITBYGAzb7G/169ff/jw4Q0bNnR1dWH3p86fP59Op//73//OzMzEDnF1dV2wYMGgYzD74IMPduzY8cEHH2APAwMDd+7c2evytm5ubh9++OG2bdtWr16NEBKJRG+99db7779vrmC7IHEx0PCeffbZN998s7q6Gps4xmazr1y5cuLECexZFou1ZMmSuXPnYg+NRuOlS5dmz56NDeICgBCiOGanDQC4UyqVDQ0NXC7XchwR90Meqbm5WSqVcjgckUjUn7ktRqOxtrZWpVIJBAJPT08cv74lEklLS4urq6tlF3evDAZDZWUlnU4PDg7uddE+2wWJiwGFt3z58qioqDfffNNccv/+falUymKxvL29zfO6EUI5OTkbN248duyY9bWZwLACORUAAB74448//v73v//www+P3HBm9erVkZGRfW02AIYnyKkAAPCQyspKDw+PbjcRdYO13QMDAy1brgBATgUAAADwAfN+AQAAAHxATgUAAADwATkVAAAAwAfkVAAAAAAfkFMBAAAAfEBOBQAAAPABORUAAADAB+RUAAAAAB+QUwEAAAB8QE4FAAAA8AE5FQAAAMDH/wdxMUFbAjM2agAAAABJRU5ErkJggg==", "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "plotmon.main_QtPlot" ] }, { "cell_type": "markdown", "id": "b2e180c6", "metadata": {}, "source": [ "## Manual analysis steps\n", "\n", "### Loading the data\n", "\n", "The {class}`~xarray.Dataset` contains all the information required to perform a basic analysis of the experiment.\n", "We can alternatively load the dataset from disk based on its {class}`~quantify_core.data.types.TUID`, a timestamp-based unique identifier. If you do not know the tuid of the experiment you can find the latest tuid containing a certain string in the experiment name using {meth}`~quantify_core.data.handling.get_latest_tuid`.\n", "See the {ref}`data-storage` documentation for more details on the folder structure and files contained in the data directory." ] }, { "cell_type": "code", "execution_count": 6, "id": "6210845e", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 480B\n",
       "Dimensions:  (dim_0: 30)\n",
       "Coordinates:\n",
       "    x0       (dim_0) float64 240B 0.0 0.06897 0.1379 0.2069 ... 1.862 1.931 2.0\n",
       "Dimensions without coordinates: dim_0\n",
       "Data variables:\n",
       "    y0       (dim_0) float64 240B 0.4249 0.4583 0.3467 ... 0.2779 0.3968 0.536\n",
       "Attributes:\n",
       "    tuid:                             20250320-201305-609-cb3a88\n",
       "    name:                             Cosine experiment\n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         False\n",
       "    1d_2_settables_uniformly_spaced:  False
" ], "text/plain": [ " Size: 480B\n", "Dimensions: (dim_0: 30)\n", "Coordinates:\n", " x0 (dim_0) float64 240B 0.0 0.06897 0.1379 0.2069 ... 1.862 1.931 2.0\n", "Dimensions without coordinates: dim_0\n", "Data variables:\n", " y0 (dim_0) float64 240B 0.4249 0.4583 0.3467 ... 0.2779 0.3968 0.536\n", "Attributes:\n", " tuid: 20250320-201305-609-cb3a88\n", " name: Cosine experiment\n", " grid_2d: False\n", " grid_2d_uniformly_spaced: False\n", " 1d_2_settables_uniformly_spaced: False" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tuid = get_latest_tuid(contains=\"Cosine experiment\")\n", "dataset = load_dataset(tuid)\n", "dataset" ] }, { "cell_type": "markdown", "id": "868ba095", "metadata": {}, "source": [ "### Performing a fit\n", "\n", "We have a sinusoidal signal in the experiment dataset, the goal is to find the underlying parameters.\n", "We extract these parameters by performing a fit to a model, a cosine function in this case.\n", "For fitting we recommend using the lmfit library. See [the lmfit documentation](https://lmfit.github.io/lmfit-py/model.html) on how to fit data to a custom model." ] }, { "cell_type": "code", "execution_count": 7, "id": "e8f19380", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAACy3klEQVR4nOzdd5hU5dn48e+Zme29NxaWviwLLEUQBAFBwQL2msRuftGXGGOSV03yRqNvor6xG1PsGo0VRTSRKB0B6QssvS1le+9lyvn9MTvDLtt3Z+ac2bk/17XX6syZM/cOuzP3eZ77uR9FVVUVIYQQQggfZNA6ACGEEEIIrUgiJIQQQgifJYmQEEIIIXyWJEJCCCGE8FmSCAkhhBDCZ0kiJIQQQgifJYmQEEIIIXyWJEJCCCGE8FmSCAkhhBDCZ0kiJITwKEVReOyxx3r9uNzcXBRF4e23325333333cfFF1/c/+Dc7E9/+hPDhg3DaDSSlZWlaSznn38+//3f/61pDELogSRCQviot99+G0VRUBSF7777rt39qqqSmpqKoihcccUVGkTYMydOnOD111/n17/+tdahdOmbb77hv//7v7ngggt46623+OMf/6hpPA899BCvvPIKhYWFmsYhhNYkERLCxwUGBvLPf/6z3e3r1q3jzJkzBAQEaBBVz7344osMHTqUuXPnah1Kl1avXo3BYOCNN97g1ltv5bLLLtM0niuvvJLw8HD+8pe/aBqHEFqTREgIH3fZZZfxySefYLFY2tz+z3/+k8mTJ5OYmKhRZN0zm828//773HDDDVqH0q3i4mKCgoLw9/fXOhQADAYD1113He+++y6y97bwZZIICeHjbr75ZsrKyvj222+dtzU3N/Ppp59yyy23tDu+rq6OX/ziF6SmphIQEMDo0aN55pln2n2YNjU18fOf/5y4uDjCwsJYvHgxZ86c6TCGvLw87rzzThISEggICGDs2LG8+eab3cb+3XffUVpayvz589vd19jYyGOPPcaoUaMIDAwkKSmJa665hmPHjvX6Z/n222+ZOXMmkZGRhIaGMnr06F5NxSmKwltvvUVdXZ1zOvLtt9/usu7p3Fqqxx57DEVROHr0KLfffjuRkZFERERwxx13UF9f3+7x7733HlOnTiU4OJioqCguvPBCvvnmmzbHXHzxxZw8eZLs7Owe/yxCDDQmrQMQQmgrLS2N6dOn88EHH3DppZcC8PXXX1NVVcVNN93ESy+95DxWVVUWL17MmjVruOuuu8jKyuI///kPv/rVr8jLy+P55593Hnv33Xfz3nvvccsttzBjxgxWr17N5Zdf3u75i4qKOP/881EUhSVLlhAXF8fXX3/NXXfdRXV1NQ888ECnsW/atAlFUZg4cWKb261WK1dccQWrVq3ipptu4mc/+xk1NTV8++235OTkMHz48B7/LPv27eOKK65g/PjxPP744wQEBHD06FE2btzY49f4H//4B6+++ipbt27l9ddfB2DGjBk9fnxrN9xwA0OHDuXJJ59k586dvP7668THx/P00087j/n973/PY489xowZM3j88cfx9/dny5YtrF69mksuucR53OTJkwHYuHFju9dQCJ+hCiF80ltvvaUC6rZt29Q///nPalhYmFpfX6+qqqpef/316ty5c1VVVdUhQ4aol19+uaqqqrps2TIVUP/3f/+3zbmuu+46VVEU9ejRo6qqqmp2drYKqPfdd1+b42655RYVUB999FHnbXfddZealJSklpaWtjn2pptuUiMiIpwxnThxQgXUt956y3nMD3/4QzUmJqbdz/bmm2+qgPrcc8+1u89ms/XqZ3n++edVQC0pKengVey52267TQ0JCWlzW0c/k8O5r9Ojjz6qAuqdd97Z5rirr766zWtw5MgR1WAwqFdffbVqtVrbHOv42Vvz9/dX77333j78REIMDDI1JoTghhtuoKGhga+++oqamhq++uqrDqfF/v3vf2M0Grn//vvb3P6LX/wCVVX5+uuvnccB7Y47d3RHVVWWLl3KokWLUFWV0tJS59eCBQuoqqpi586dncZdVlZGVFRUu9uXLl1KbGwsP/3pT9vdpyhKr36WyMhIAL744gtsNlunsXjKT37ykzb/P2vWLMrKyqiurgZg2bJl2Gw2fve732EwtH2Ld/zsrUVFRVFaWuq+gIXQOUmEhBDExcUxf/58/vnPf/LZZ59htVq57rrr2h138uRJkpOTCQsLa3P7mDFjnPc7vhsMBoYPH97muNGjR7f5/5KSEiorK3n11VeJi4tr83XHHXcA9iLjrqgdFPoeO3aM0aNHYzJ1Pvvf05/lxhtv5IILLuDuu+8mISGBm266iY8//lizpGjw4MFt/t+RCFZUVAD2n91gMJCRkdGj86mq2mGCJISvkBohIQQAt9xyC/fccw+FhYVceumlzpEQd3IkEz/84Q+57bbbOjxm/PjxnT4+JibGmQC4S1BQEOvXr2fNmjX861//YsWKFXz00UdcdNFFfPPNNxiNxj6fu7MExGq1dvqYzp6vo4SwJyorK4mNje3TY4UYCGRESAgBwNVXX43BYOD777/vcFoMYMiQIeTn51NTU9Pm9oMHDzrvd3y32WxtVmgBHDp0qM3/O1aUWa1W5s+f3+FXfHx8pzGnp6dTUVFBVVVVm9uHDx/OoUOHMJvNnT62pz8L2Jeaz5s3j+eee479+/fzhz/8gdWrV7NmzZpOz98TjtGcysrKNrc7RqP6Yvjw4dhsNvbv39/tsXl5eTQ3NztHwYTwRZIICSEACA0N5a9//SuPPfYYixYt6vCYyy67DKvVyp///Oc2tz///PMoiuJcdeb43nrFGcALL7zQ5v+NRiPXXnstS5cuJScnp93zlZSUdBnz9OnTUVWVHTt2tLn92muvpbS0tF2ccHbkpKc/S3l5ebtzOLbHaGpq6jK+7oSHhxMbG8v69evb3N6fJodXXXUVBoOBxx9/vN303bmjRo7Xra8r2IQYCGRqTAjh1Nn0lMOiRYuYO3cuv/nNb8jNzWXChAl88803fPHFFzzwwAPOmqCsrCxuvvlm/vKXv1BVVcWMGTNYtWoVR48ebXfOp556ijVr1jBt2jTuueceMjIyKC8vZ+fOnaxcubLDRMRh5syZxMTEsHLlSi666CLn7bfeeivvvvsuDz74IFu3bmXWrFnU1dWxcuVK7rvvPq688soe/yyPP/4469ev5/LLL2fIkCEUFxfzl7/8hUGDBjFz5sy+vMxt3H333Tz11FPcfffdTJkyhfXr13P48OE+n2/EiBH85je/4YknnmDWrFlcc801BAQEsG3bNpKTk3nyySedx3777bcMHjxYls4L36bVcjUhhLZaL5/vSuvl86qqqjU1NerPf/5zNTk5WfXz81NHjhyp/ulPf2q3NLuhoUG9//771ZiYGDUkJERdtGiRevr06XbLwlVVVYuKitT/+q//UlNTU1U/Pz81MTFRnTdvnvrqq686j+lsqfn999+vjhgxol3c9fX16m9+8xt16NChznNed9116rFjx3r1s6xatUq98sor1eTkZNXf319NTk5Wb775ZvXw4cNdvm7n6mj5vCPOu+66S42IiFDDwsLUG264QS0uLu50+fy5y/gd/44nTpxoc/ubb76pTpw4UQ0ICFCjoqLU2bNnq99++63zfqvVqiYlJam//e1ve/VzCDHQKKoqvdWFEN7r+PHjpKen8/XXXzNv3jytw/Eay5Yt45ZbbuHYsWMkJSVpHY4QmpFESAjh9e69916OHj3aZpsQ0bXp06cza9Ys/u///k/rUITQlCRCQgjRDyUlJV0ud/f39yc6OtqDEQkhekMSISGE6Ie0tLQul7vPnj2btWvXei4gIUSvyKoxIYToh/fff5+GhoZO7+9oCxAhhH7IiJAQQgghfJY0VBRCCCGEz5KpsW7YbDby8/MJCwuTjQmFEEIIL6GqKjU1NSQnJ2MwdD7uI4lQN/Lz80lNTdU6DCGEEEL0wenTpxk0aFCn90si1I2wsDDA/kKGh4drHI0QQggheqK6uprU1FTn53hnJBHqhmM6LDw8XBIhIYQQwst0V9YixdJCCCGE8FmSCAkhhBDCZ0kiJIQQQgifJYmQEEIIIXyWJEJCCCGE8FmSCAkhhBDCZ0kiJIQQQgifJYmQEEIIIXyWJEJCCCGE8FnSWVoIIYQQnmezwslNUFsEoQkwZAYYjB4PQxIhIYQQQnjW/uWw4iGozj97W3gyLHwaMhZ7NBSZGhNCCCGE5+xfDh/f2jYJAqgusN++f7lHw5FESAghhBCeYbPaR4JQO7iz5bYVD9uP8xBJhIQQQgjhGSc3tR8JakOF6jz7cR4iiZAQQgghPKO2yLXHuYAkQkIIIYTwjNAE1x7nApIICSGEEMIzhsywrw5D6eQABcJT7Md5iCRCQgh9slnhxAbY+6n9uweLJ4UQbmIw2pfIA+2ToZb/X/iUR/sJSR8hIYT+6KjHiBDCxTIWww3vdvI3/pTH/8YVVVU7WsMmWlRXVxMREUFVVRXh4eFahyPEwOfoMdJueW3L1eIN70oyJMRA4ObO0j39/JYRISGEfnTbY0Sx9xhJv7z7N0ydtO8XQnTCYIShs7SOQhIhIYSO9KbHSFdvoDK1JoToISmWFkLohyt6jOisfb8QQt8kERJC6Ed/e4zosH2/EELfJBHSUE2jmUazvCEL4dTfHiM6bN+vhcr6ZvbnVyNrYYToniRCGnriq/0sfGE93x0p1ToUIfShvz1GdNi+39M2HS1l/nPruOylDVzz1038Z18hNpskREJ0RhIhjVQ3mll/uJTcsnp++MYWfvbhLkpqmrQOSwjtOXqMhCe1vT08uful8zps3+8pNpvKX9Ye5YdvbKG0thmAXacq+X//2MG/cwo0jk4I/ZI+Qt1wZx+hmkYzz35zmHc352JTITzQxEOXpnPzeYMxGDqbGhDCR/Rl+bvNCi9k2gujO6wTUuwJ1QN7B9RSelVVWfLPXfxrrz3huW7yIH42byQfbD3F6oPFLF8yE3+T/bp3X34VQ2JCCA2QRcNiYOvp57ckQt3wREPFPWcq+fXne8nJqwZg0uBIXrhxIoNjgt3yfEIMaM6GjNA2GRrYDRnf+/4kj3+1n8cXj+XG81JRFPvPa7Opzgsri9XGnGfWUt1g5rYZadw2I43Y0AAtwxbCbSQRchFPdZa22lTe3ZzLs98cJsBkYNUvZhMZ7O+25xNiQOuwj1CKJu373amyvtn5PqGqKqfLG7q8gDpVVs/tb23leGkdAAEmAzdMSeXHFw4jNVouvMTAIomQi7grEao311NrriU+OL7N7YVVjZworWP68BjA/ua242QFU9KiXfbcQviEAdxZutFs5fdf7uO7o6V8tWQWEcF+PX6s1aby7f5C/rruOLtPVwJgNChcPi6JB+aPZFhcqJuiFqJjVU1VRAREuPy8Pf38lmJpjfwl+y9cuexK/nngn1hb9TRJjAh0JkEAX+0p4Lq/beb//WM7+ZUNWoQqhHdytO8fd539+wBJgk6X13Pd3zbxwdbTnKloYMPRkl493mhQWJiZxLL7ZvDPe6Zx4ag4rDaV5bvzqag3uylqIdqraKzg8c2Pc+lnl1LaoN3qaamW04DFZmF3yW5qzbU8ufVJvjj2Bb+b/jvGxoxtd2xeZQMmg8J/9hXx3ZFSfn7xKG6fkYbJKDmsEL5mzcFiHvgom6oGM1HBfrx080RmjYzr07kURWHG8FhmDI8lJ6+KlQeKmDwkynl/o9lKoN/ASB6FvphtZj4+9DGvZL9CTXMNAKtPreaG0TdoEo9MjXXDXVNjVpuVTw9/yos7X6TGXINBMXBz+s0syVpCqH/boemDhdX85vMcdpysAGBscjh/uHocWamRLotHCKFfVpvKiysP89LqowBMSI3kLz+YREpkkFueb9muPP73Xwd48aYsLhgR65bnEL5pc/5mnt76NMeqjgEwOmo0D099mCmJU1z+XFIj5CLuLpYubSjl/7b9H1+f+BqA+KB4Hpr6EBcPudi56gPsKz8+2n6ap74+SE1DE1MNB7ltXCCXnp81oGofhHAVVVV5etvT7C7ejclgwmQwYTQYMRlM+Cl+bf7fpJicx5gMJoyK/fZgUzDXjLyGuOC+jbq4ynPfHualVUcAuHX6EH5z+RgCTO77m3/0ixze2XyS4XEhfP2zC51L74Xoq9M1p3lm2zOsPr0agMiASH468adcO/JajG76/JJEyEU8tWpsU/4m/vD9HzhVcwqAmSkz+fW0X5Malto2np1Lsf77IaIsreoCZFdtIdpZdWoVD6x5oN/nmZUyi7/M/0v/A+qHirpmrv/7ZpbMHcFVE1Pc/nxVDWbmPbuO0tom/nvhaO6bM8LtzykGpnpzPa/vfZ139r1Ds60Zo2LkpvSbuHfCvW4pkG5NEiEX8VQiBNBkbeL1va/zxt43MNvMBBgD+MmEn3Bbxm34Gf1a9Uc5959sYPdHEaK3rDYr1y6/lmNVx7hm5DVcmHIhZtWMxWbBarNisVnsX6rl7H+3/L/j/mZrIx8e/AgrNt6d8Asmjv+Rx0ZeVVVl87EyZrSalrJYbR6tDfxs5xke/Hg3QX5GVv5ittum4cTApKoq/zrxL57f/jzFDcUAnJ90Pg+d9xAjojyTWEsi5CKeTIQcjlcd5w/f/4GthVsBGB4xnP+Z9hsmf3BrFxtKDsyOuUL0xRdHv+C3G39LuH84X1/7NeH+vfzbbelD9JhfI0vDQ5nS0Mib9SYUD428OpKQp68dx43nDXb783VEVVVufPV7tp4oZ8HYBP7+I9fXcIiBaV/ZPp7a8hTZJdkApISm8KvzfsVFqRe1KflwN1k+78WGRQzj9Ute548z/0h0YDTHqo5x+zd38j/+jVQYOvsn841dtYXoTrO1mVeyXwHg7nF39y0J+th+0fGTyir8VJXtQYFsbi63375/uRuiPqvJYuXZbw4DkFtW79bn6oqiKDxxZSbGllWraw4WaxaL8A5lDWU8uulRbv7qZrJLsgkyBXH/xPv54qovmDd4nkeToN6QREinFEVh0fBFLL9qOdeOvBaAZWGhLB6UxOehIR3uogQM6F21heiJTw5/QkFdAfFB8dycfnPvHmyz2jtSt/yFJVqt3FhtX977cnSE/dYVD9uPc5OPtp0mr7KB+LAAfjZvpNuepydGJ4Zx5wVpAM5Vq0Kcy2w1886+d7ji8yv47MhnqKhcPuxyvrzqS+4Zfw8BRn1v4yJ9hHQuIiCCx2Y8xlXBaTy+7UmO+Pvzu7gYvggN4dGycoaaLW0fMAB31Raip+rMdby651UAfpL1EwJNgb07wclN7aaf76qsZmlYKDkBAawODmSeY+R16CxXhe3U0Gzl5ZYl8j+dN1IXfXx+Nn8UC8YmSnd70aGS+hLu/uZujlcdB2BM9BgemfYIE+MnahxZz8mIkJfIGv8jPqox8GB5JUE2GzuCAvl/ifE4+sDaVKjyi7cvpRfCR727/13KG8sZEj6Eq0Zc1fsTdDCiGmuz8cOWUaE/R0Vg7eQ4V3hncy4lNU0Migriximp3T/AA0IDTJIEiU69te8tjlcdJzowmsemP8YHl3/gVUkQSCLkPQxG/BY+zR1VNSzLKyTaaqXAZGJtcBBqy6qxXzf8gNzyRo0DFUIbFY0VvLPvHQCWZC3Bz9Dz/becOhlRva2qmjCrjaP+/qwICXbLyGt1o5m/rbM3mXtg/ihd9u45XV7Py6uOIGtsBECDpYFlR5cB8MQFT3DtKPf1BHIn/f2lic5lLIYb3iU5OJ5ra2oB+Cg8DCU8mT/H/Y5/Wc7j6RUHNQ5SCG28vvd16sx1jIkewyVpl/TtJENm2Fdf0raoM8KmcntVNQB/iYnBnHpeP6Nt71BhDaoKI+JDudoDvYJ6q7bJwuUvbeDZbw/zn31SiyhgxYkV1DTXkBKawgXJF2gdTp9JIuRtMhbDAzlce8lLKMCWoEBy7/yKhdf/GIMCX+cUcqCgWusohfCowrpCPjz4IQA/m/QzDEof39oMRntzUuDcZOiH1bVEW62cMip8cfyrfkTbsfPSotnw0FxeuWUSRoP+VteEBpi4dXoaAI9/uY/6ZkvXDxADmqqqfHDwAwBuGH2DV44EOUgipAWbFU5sgL2f2r/3dgWKwUjKmKuYNehCAD45spRRCWH8csFo3rlzKmOSPNPvSAi9+Ovuv9Jsa2ZKwhRmJPezTq5l5JXwpDY3B4clcXfaIgD+tvtvNFmb+vc8HQgP9GN0YpjLz+sq/zV3BCmRQeRXNTqLuoVvyinN4UD5AfwN/lw94mqtw+kXSYQ8bf9yeCET3rkClt5l//5CZp96k9w4+kYAlh1dRqOlkfvmjGD2KG33RBLC045XHXfWKfxs0s9c06ukZeSV276Ca9+wf39gLzfMfpyE4ASK6ov45NAn/X8eoKi6kZX7i7yi7ibI38hji8cC8PqG4xwtrtU4IqGVDw/ZR2AXpC0gKjBK42j6RxIhT2rVqK2N6oI+NWq7IPkCkkOSqW6u5puT37S5r6y2iUaz+3qdCKEXf971Z2yqjbmpc8mKz3LdiQ1G+xL5cdfZvxuMzm1vAF7b+xr15v43PHx59RHufnc7v/tiX7/P5QkXZyQwLz0es1Xld1/keEUCJ1yrsrGSFSdWAHBj+o0aR9N/kgh5yjmN2tpqua2XjdqMBiPXjboOgI8OfeS8/cOtp5jzp7W88d2JfgQshP7llObw7clvUVD46cSfeuQ5rxxxJalhqZQ3lvP+gff7da7T5fV8uPU0AJePT+rmaP14bPFYAkwGNh0rY0VOodbhCA9bdnQZzbZmxkSPYXzseK3D6TdJhDylg0ZtbfVti4yrR16NSTGxp2QPB8vtK8YC/YzUNFn469pjlNa6vo5BCL14ceeLACwavoiRUZ7pwuxn8OO+rPsAew+V6ua+L054YeURLDaVWSNjOX9YjKtCdLvU6GB+fvEo7p83krnp8VqHIzzIptqcF943jr5Rt9tm9IYkQp7S0wZsvWzUFhsUy7wh8wD4+NDHACyekMz4QRHUNll4/tvDvTqfEN7i+4Lv+b7ge0wGkzMx8ZRL0y5lROQIappreDvn7T6d42hxDZ/vOgPALy8Z7cLoPOMns4fz4MWjdNH9WnjOpvxNnKk9Q5hfGJcOvVTrcFxCEiFP6WkDtj40anMUTX91/Ctqm2sxGBR+e3kGAB9sPcWRoppen1MIPVNVlRd32EeDbhh1Aymhnu27YzQYWTJxCQDvHXiPsoayXp/juW8PY1PhkowEJqRGujhCz7LaVBl99hEfHbSPBl054kqC/YI1jsY1JBHylE4atZ2lQHhKn7bImJIwhaERQ2mwNPBVS3+TqUOjWTA2AZsKf/z3gb7HLYQOrTq1ipyyHIJMQdwz/h5NYrgo9SIyYzJpsDTw+t7Xe/XYnLwq/r23EEWBX3jhaFBrh4tqWPzn7/jJP3Zgs0nh9ECWV5vHujPrAHvvoIFCEiFP6aJRm/P/Fz5lP66XFEXhhlH2X8qPD3/sXMXx8KVjMBkU1hwqYcORkj4GLoS+WGwWXtr1EgC3ZtxKbFCsJnEoytkC7Y8PfUxhXc+LhpssVkYnhLF4QrKu+wb1RGiAiROldWw/WcHSnWe0Dke40aeHP0VFZVrSNIZGDNU6HJfxukTolVdeIS0tjcDAQKZNm8bWrVt79LgPP/wQRVG46qqr3BtgVzpp1EZ4sv32jMV9PvXiEYsJNAZypOII2SXZAAyNDeFH04dgNCgcLJDpMTEwfHnsS05UnSAiIILbxt6maSzTk6czJWEKzbZm/r7n7z1+3OQh0Xz9s1k8cVWmG6PzjOTIIO6fZy9Uf+rrg1TVm7t5hPBGzdZmPjvyGQA3j7757B39bRCsA16VCH300Uc8+OCDPProo+zcuZMJEyawYMECiouLu3xcbm4uv/zlL5k1a5aHIu1CJ43a+pMEAYT7hzsL11ovpf/ZvJF88/MLuefCYf06vxB60GRt4i+7/wLAPePuIcxf29EURVG4f9L9AHx+5HNOVZ/q8WMNBoXwwD5sDKtDd14wlBHxoZTVNfOnb2S/w4Ho25PfUt5YTnxwPLNTZ9tvdGGDYC15VSL03HPPcc8993DHHXeQkZHB3/72N4KDg3nzzTc7fYzVauUHP/gBv//97xk2TCfJQAeN2lzBMWf7Te43VDRWABAZ7M/wuFCXnF8IrX108CMK6wpJCE5wLhLQ2sT4icxMmYlVtTqTtM5sPlbG39cdo6HZ+66au+JvMvDElfbRrfe3nGLPmUptAxIu57jAvn7U9ZgMJpc3CNaS1yRCzc3N7Nixg/nz5ztvMxgMzJ8/n82bN3f6uMcff5z4+HjuuuuuHj1PU1MT1dXVbb68RWZsJhkxGZhtZueWA60dKKhm2a48zwcmhAvUNtc6i5LvnXAvgaZAjSM6y1Er9O/j/+ZIxZEOj1FVlae+PsCTXx/k5dUdH+PNpg+P4aqsZFQV/mdZDlYpnB4wDpUfYlfxLkyKiWtHXuuWBsFa8ppEqLS0FKvVSkJC2+XlCQkJFBZ2XKT43Xff8cYbb/Daa6/1+HmefPJJIiIinF+pqan9itvTHFfJnxz+BJtqc96ek1fF5S9t4OHP9lBQ1aBVeEL02bv736WiqYK08DSuHHGl1uG0kRGTwcVDLkZF5c+7/tzhMd/uL2L3mSqC/IzcccHAKTRt7deXjyEswITFpnKmov/bjwh9cIwGzRsyj7jgOLc1CNaK1yRCvVVTU8OPfvQjXnvtNWJje76q5JFHHqGqqsr5dfr0aTdG6XoL0xYS5hfG6ZrTfJ//vfP2scnhTB4SRaPZxjP/kSaLwruUN5bzzr53APvoi8lg0jii9pZkLcGgGFh9ejU5pTlt7rPZVJ79xv53d+fMNOLCArQI0e3iwwJZ+6s5/Ov+WQyJCdE6HOECNc01zrYszuloNzUI1orXJEKxsbEYjUaKitq+sEVFRSQmJrY7/tixY+Tm5rJo0SJMJhMmk4l3332X5cuXYzKZOHbsWIfPExAQQHh4eJsvbxLsF8yi4YuAtkXTiqLwm5Ymi5/tOkNOXpUm8QnRF6/teY16S71z5EWPhkUO44phVwDw8q6X29z35Z58DhXVEBZo4sezhmsRnsfEhA7MJM9XfXnsSxosDQyPGM6UhCn2G93YIFgLXpMI+fv7M3nyZFatWuW8zWazsWrVKqZPn97u+PT0dPbu3Ut2drbza/HixcydO5fs7Gyvm/LqDUfR9Noza9v0NslKjeTKljn8P/zrgOwaLbxCfm2+M6n/2aSf6Xpvo3sn3IvJYGJT/ia2FW4DwGy1Obe6+X8XDiMieGCsFOtOTaOZ/fneU2Mp2lNV9ey+Yumt9hVzY4NgLXhNIgTw4IMP8tprr/HOO+9w4MAB7r33Xurq6rjjjjsAuPXWW3nkkUcACAwMJDMzs81XZGQkYWFhZGZm4u/vr+WP4lbDI+2Zu021Ofs+OPxqwWj8TQY2Hy9j7SFpsij076+7/4rZZmZa4jSmJ7W/6NGTQWGD7MWkwMub/4C65xM2fPM5p8pqiQnxH7C1QefaeqKc8/6wkvve3yEXXF5se9F2jlcdJ8gUxKJhi87e4cYGwVrwqkToxhtv5JlnnuF3v/sdWVlZZGdns2LFCmcB9alTpygoKNA4Sn1wjAotPbwUs+1sg7NBUcH86PwhgH2ZqxB6dqzyGMuP2Zfh3j/pfl2PBjn8ODCNAFVlV/Uxvvt6CRdtuZPtIT/n6bEnCQnQX22TO4xNDsegKOSW1bMtt0LrcEQffXjwQwAWDVtEqP85bVjc2CDY07zur3LJkiUsWbKkw/vWrl3b5WPffvtt1wekU/MHzyc6MJrihmLWnV7H/CFn2w7ceF4q3+4vIis1QsMIhejeP/b/A5tq46LUixgfN17rcLq3fznxy5Zwc1QEb0eG83JUJDMbCom2ljJvzy8hPd6rPiD6KiTAxOXjkvhkxxk+2X6aqUOjtQ5J9FJxfTGrT60GuthXLGMxpF9uXx1WW2SvCRoyw2tGghy8akRI9Jyf0Y9rRl4D2PdBam1UQhjrfjWHJReN1CI0IXpEVVXWn1kPoJvmiV1q1Vvlzqpqgmw2DgT4szfAH1DtEwZe1Fulv66fYq/D/NfeAuqaLBpHI3pr6ZGlWFQLk+InMTq6i42B3dQg2JMkERrArht1HQoKmws2c7L6ZJv7vGGKQfi2g+UHKWkoIcgUxJTEKVqH071WvVWibDZmNjQC8F1QUMsB3tVbpb/OS4siLSaY+mYrX+f0fENaoT2zzcynhz4FvOQipJ8kERrAUkJTmJkyE4BPDn3S7v4mi5UVOQWcLpfGZ0J/NuRtAGBa0jT8jV6wuOGcnimz6u2NSzcEB3Z53EClKArXTR4EwCfbvasfm69be3otxQ3FRAdGtymrGKgkERrgHNn8smPLaLI2tbnvwY9285P3dvLRNnmTEvrjmBa7cNCFGkfSQ+f0TJnZYE+EcgICKDUYOj1uILtm0iAUBbafrKC4plHrcEQPfXTQvmT+2pHXesdFSD9JIjTAzUyZSVJIElVNVXyT+02b+xZm2htRfr4rD5vsCyR0pKKxgj0lewCYlTJL42h66JzeKnFWG2OamgHYGByEt/VWcYXkyCCevyGLDf89l/gw/ewNJzp3vPI4Wwq3YFAMXDfqOq3D8QhJhAY4o8Ho/GX+6NBH9kLNExtg76csCDlCRICBvMoGtuWWaxypEGdtzN+IisqoqFEkhrTvHK9LLb1VVMBxXXGhY3rMUSfkRb1VXOWqiSkkRwZ1f6DQhY8P2xfXXDjoQpJDkzWOxjMkEfIB14y8BpNiYnfJbg69nAnvXAFL78L/vcWs8/spCwxb+Wyn7Eov9MMxLeY1o0EOGYvZet7zFGJfLj6rZXpsU3AQluvf8oml812RkWd9qzfX88XRLwC4afRNGkfjOZII+YDYoFguikwH4GND253nIyyl/NXvBZr2LqPR7BvLeoW+WW1WNuZtBLyoPqiVvxaPZWbTS3yS+TcyL3+FSFMINQaF3bGDtQ5NM3vOVPKjN7bwy092ax2K6MK/T/ybWnMtqWGpTE/Wdxd3V5JEyBfYrNyYa38D+io0hLpWS+cVVFDgv3mblfvztYpQCKc9pXuobq4m3D/cO5ootqKqKuNTIkiKDGHy7EUYx9/ABYPnALDhzAZtg9PYhiOl/GtvAVUN5u4PFh7XZl+x0TdiUHwnPfCdn9SXndzEeeV5pDWbqTcY+FdoSJu7DUCyUkbZvnXaxCdEK46E4YLkCzAZvKv5vaIoPHjJaL57aC7D4uxbEjim9xztAHzRuJQIRieE0WSx8dUeueDSo90luzlYfpAAYwBXDr9S63A8ShIhX1BbhALcUFMLwEdhoXQ0U3/bOFnVIbTnrA8a5GX1Qa20blh6QfIFKCgcrjhMYZ1vNhZUFIXrp9h7Cn28/YzG0YiOOEaDFqYtJDIwUttgPEwSIV/Q0rdkcW0tgTYbhwP82R3QQW8IH+pvIvSpqK6IQxWHUFC4IOUCrcPplaLqRlYfLMJstbW5PTIw0jnF913ed1qEpgtXZqVgNCjsPl3JkaIarcMRrZQ3lvOf3P8AcFO67xRJO0gi5Ata+ptE2GBhnb2L9MdhYa0OONvfRPYEElpyTB+NixtHdKB3bdS5dOcZ7nx7O/e9v7Pdfc7pMR+uE4oLC2Du6HgAPtkho0J68vmRzzHbzIyNGUtmbKbW4XicJEK+oKW/CcAN1XUA/CckmEqDAUfzN3Xhk/z8k71MeuJbuVoTmnEkCl63bB5Ynm2vfZk/Jr7dfY5pvu8LvqfZ2uzRuPTEMT322c68diNnQjufHfkM8I19xToiiZCvyFgMN7xLZmAMY5qaaTYo/Cs02N4J94Z3UTKupKbRQpPFxme7pKeQ8LxmazObCzYD3rds/mBhNQcLa/A3Glg4Nqnd/enR6cQGxVJvqWdncfsRI19xUXo8F6XH88tLRmFTpaeQHpyuOc2pmlOYFBML0hZoHY4mJBHyJRmLUR7I4dJ0e9a/aeSF8MBeZ5O3ayalALBMttwQGthRtIMGSwOxQbGkR6drHU6vOEaD5oyOIyLYr939BsXg3ADZl6fH/IwG3rz9PG6aOpgAk2912Nar7wu+B2B83HiC/YI1jkYbkgj5GoORaWPtxXDbq49j5uzw9EXp8YQHmiioauT742VaRSh8VOtu0t7Uw0RVVb5oSYSuzErp9DhZRi/0aEvBFgDOTzpf40i04z3vNsJl0qPTiQiIoN5Sz77Sfc7bA/2MXD7evreMTI8JT3OsqPK2ZfM7TlaQV9lAiL+ReR3UBzlMT56OUTFyouoEp2tOezBC/amoa+btjSekp5DGbKrtbCKULImQ8CEGxcDUxKnA2WFRB8f02Nd7C2holi03hGecqj5FbnUuJsXE9CTvau3/3dFSABZkJhLo1/l0T5h/GBPjJ9of48PL6AG+3JPPY1/u55U1x7QOxacdKj9EZVMlwaZgn1wt5iCJkI9yDIOemwhNGRJFanQQdc1Wvtnvm83fhOc5posmJUwi1D9U42h654H5o1jxwCzumzOi22Mdo12+XCcEsHhCMv5GAwcKqsnJq9I6HJ/lGA2akjgFP0P72jZfIYmQj5qWNA2wt1WvN9c7b1cUhfvmjODXl6UzfXiMVuEJH+OoD/K21WIO6YnhjIjvPoFz1AltLdxKo6XR3WHpVmSwPxePtTdw/VR6CmnGcSHsy/VBIImQzxocNpjEkEQsNgu7ine1ue/mqYP58YXDiQ+TLTeE+9Wb69lWuA3wvv5Bll72whkROYLEkESarE3On9lXXT/Z3lNoWXYeTRaZhve0Zmuzs5WD48LYV0ki5KMURXFeBTiGR4XQwpaCLZhtZlJCUxgaMVTrcHqsvtnC+U+u5oEPd1HT2LMd1RVFkdVjLWaNjCMxPJDKejOrDhRrHY7P2V2ymwZLA9GB0YyMHKl1OJqSRMiHOa4Czq0TAmg0W1m64wy/+Xyvp8MSPmZ93tlpsdablerdygPFlNY2sfNUJaEBph4/rvV2G6oPNxU0GhSunWxfnPHJdt9eRacFxwXwtKRpXvV35w6SCPmwaYn2ROhg+UEqGyvb3NfQbOXhz/bw/pZTHCys1iA64QtUVfXabTWWZ9tbTFyZldyrD5JpSdPwM/hxpvYMudW5borOO1w3ORU/o0KQvxGrNHH1KMcFsLet0nQHSYR8WFxwHMMjhqOisrVwa5v7okL8nRskfr5TegoJ9zhccZii+iICjYGcl3ie1uH0WEVdM2sPlQD2RKg3gv2CmZIwBZDVY0NjQ9j+24v5yw8mYzT49qiEJ9U215JTmgNIoTRIIuTzHE20OqoTumbS2WJGuVoT7uCok5maNJVAk/cU53+dU4jFppKRFM6I+LBeP965jN7H64QAIoJ8d9m2VrYXbceqWhkcNpik0PZ74/kaSYR8nGN6bEth+0RobnocEUF+FFU3sfmYbLkhXM8xInJhinctm/+i1bRYXzimAbcXbW/TvsKX5ZbWcbpcXgtPkGXzbUki5OOmJE7BoBg4WX2SgtqCNvcFmIxcMd5+tfDZTun1IVyrqqmK7JJswLu21civbGBrbjkAiyb0LREaEj6E1LBULDZLh4sVfM0ra44y55m1vLLmqNah+ITWhdLYrHBiA+z91P7d5nutDCQR8nFh/mFkxthbq3f0huyYHluxr5D6ZotHYxMD26b8TdhUGyMiR5Ac2reEQguBfkZ+eclobpySSnJkUJ/OIcvo25o0OAqAr/YUyPuMm5XUl3C08igKClOry+GFTHjnClh6l/37C5mwf7nWYXqUJELCuYy+o+mxSYMjGRobwvhBEZTUNHk6NDGAeetqsegQf/5r7gievm58v87TersNX15GDzBtaDSp0UHUNllYkSNb+7iT430+PTiJyM9+AtXnbHxbXQAf3+pTyZAkQqJNY8Vz35AVReHf98/iwx9PZ0hMiBbhiQHIarN67W7zrjIlYQqBxkCK6os4UnlE63A0ZTAoXDcpFYBPtss0vDt9n99SH1R2BugoAW+5bcXDPjNNJomQYEL8BAKMAZQ2lHK86ni7+4P8O99RW4i+2Fe2j4qmCsL8wsiKz9I6nB77IjuP5bvzXTJ9E2gKZGrSVECW0QNcOzkFRYHNx8ukaNpNVFU9WyhdWdrVkVCdByc3eSYwjUkiJAgwBjAxfiLQcZ2QQ0lNE3vPyE7Rov8cm6xOT57uNbteq6rKs98c5v4PdvHt/iKXnFPqhM4aFBXMjJaNnmUjVvc4WX2Sovoi/BQjE5t6UOpQ65rfc72TREgAXW+3AbDmYDHnP7mKX36y2+frGUT/OT74vWm3+V2nKzlVXk+wv5GLMxJccs6ZKTMByC7OprpZOrhfP9k+PfavvQXdHCn6wvH+PjF8OEE9eR8Pdc3vud5JIiSAs23Wtxdux2JrP+w/aXAURoPCoaIa9hfIG7bou5L6EvaX7QfggpQLNI6m55Zn24tKL8lIINi/53uLdWVQ2CCGRQzDqlrZnL/ZJef0ZpeMTeDvP5rMF//lPb8X3sS5bH7oxRCeDHTWzVuB8BQYMsNjsWlJEiEBQHp0OmH+YdSaa50fUq1FBPsxf4xsuSH6z1EknRmTSWxQrMbR9IzFauOrPfZE6MqsFJeeu/UmrL4u2N/EgrGJhPRiE1vRM1ab1bli7PzkGbDw6ZZ7zk2GWv5/4VNg8I36UEmEBABGg5GpifbCzY622wC4eqK9p9AXu/OxWG0ei00MLI5pMW9aLbbpWBmltc1EBfsxc6RrkzfH6/Bd3nfYVPm7Eu5xsPwgNc01hPqFkhGTARmL4YZ3IfycLTbCk+23ZyzWJlANSCIknLqrE5o9Ko6oYD9KaprYKFtuiD4w28xsyrevRPGm+qAvWqbFLh+fhJ/RtW+bk+InEeIXQlljGQfKD7j03N7IZlN57tvDXP7SBuld5kKbC+xTr+clnofJ0DLilrEYHsiB276Ca9+wf39gr08lQSCJkGjFkQhlF2fTaGlsd7+/ycDili0FZMsN0Re7inZRZ64jOjDaflXqBVRVpbTW/oF8lYunxQD8jH7OGj2ZHrP3FFp9sIh9+dWsOVSsdTgDRqf7ixmMMHQWjLvO/t1HpsNak0RIOA0NH0p8cDzNtmZ2Fe/q8JirW7bcWLm/iCaLbzTbEq7jWDY/M2UmBsU73n4UReGdO6ey4b/nOreCcDXZjb6teen21UqrDvjG8m13a7Q0sqvI/p4uG6225x3vRMIjFEVp02W6IxMGRfDyzRPZ8NBFBJh878pB9I831gc5pEYHYzB0tsqmfxzL6PeW7KWiscItz+FN5o+xJ0LrD5fSaJYLrv7KLsmm2dZMfFA8QyOGah2O7kgiJNpw7jvWSSKkKAqLJiQTHeLvybDEAHCm5gzHq45jVIzMSPaOZbn1zRYq65vd/jzxwfGkR6ejorIxf6Pbn0/vMlPCSQgPoMFsZfNxqUfsr9a7zSuKe5J5byaJkGhjWqI9EdpXto+qJukiLVzHMRqUFZ9FuH+4xtH0zFe7CzjvDyt5/Mv2LSVcTZbRn6UoCvPGyPSYqzj3F0uWabGOSCIk2kgISWBoxFBUVLYXbu/0uHc25XLD3zezP1+aK4qecdQHedNqsWXZeZitKjGh7h8BdUwXbszfiNVHNrvsiqNv2aoDxdLNvh+qmqrYV7YPOHuhK9qSREi04/hj6WrfsQ1HStl6opzVB+VqTXSvwdLAtsJtAFyY4h2JUFF1o3NaxrFa0p3GxY4j3D+cqqYq9pbudfvz6d2M4bEkRQQybWg0dc2SGPbV9sLtqKgMjRhKQohvbJnRW5IIiXacBdOFHdcJAcxzXK0dlOWtonvbCrfRZG0iKSSJ4ZHDtQ6nR77aU4CqwpQhUaRGB7v9+UwGExck27eWcIye+bJAPyObHr6IF26aSKh0mu4zR/8gWS3WOUmERDtTEqdgUAycqDpBUV3HIz5zR9sToezTlc4eK0K0Y7PCiQ2s3/0WABemzPSaYk3HaOel45K6OdJ1znaZ3gAnNsDeT+3ffXSqzFt+V/SsdaG06JgkQqKdiIAIMqLtze46GxVKjAgkMyUcVYW1h0o8GZ7wFvuXwwuZqO9cwYaWadZZ2z+0365ztU0Wtp4oB+Ci9HiPPe+M5BkoKBwoP0jxe1fC0rvgnSvghUyveN3cQVVV9udXe2T13kBTWFdIbnUuBsXAeYnnaR2ObkkiJDrU3TJ6gItamp5JnZBoZ/9y+PhWqM7nuJ+JfD8T/jaVqeUF9tt1/qH+3ZESzFaVobEhDI0N8djzxpzYSGajvav7xqDAs3dUe8fr5g7/7x87uOylDfx7b6HWoXgdx/v32JixXrNSUwuSCIkOtd53rLMVG/NarpTXHy6l2SKbRYoWNiuseAiw/96sDw4C4LzGRoIcm4queFjX0z2TBkfx+JVj+fGFwzz3pC2v26yGBgA2tLxudi1/gzp/3dxh/KAIQJbR90Wn22qINiQREh2aGD8Rf4M/xfXF5FbndnjMuJQIBkcHc/6wGBm2Fmed3ATV+c7/3RBk/0C/sL6h5RYVqvPsx+lUfHggt05P4+apgz33pC2v26x6+4jQpqBAzG0O0P/r5g6OfkLfHS2lQVaP9ZiqqpII9ZAkQqJDgaZAsuKzgM6X0RsMCmt/OYfXb5tCfHhgh8cIH1R79sq9RlHYFRgA4Bzp6Og4gfP1yGhuJtpqpc5gILvltevoOF+RnhhGSmQQTRYb3x0t1Tocr3G86jilDaUEGAOYED9B63B0TRIh0anu9h0D3Lb3kvBioWd7lWQHBmBRFFLNZlLP3aQ3VJ89Tb7ak89735+kuLrRs0/c8noYgJkto2frg4I6Pc5XKIrSqrmibyWB/eG4gJ0UP4kAYwcJtXDyukTolVdeIS0tjcDAQKZNm8bWrVs7Pfa1115j1qxZREVFERUVxfz587s8XrTlqBPaWri12063p8vrKa+T6TEBDJkB4cnA2dGgiY2tWywoEJ5iP06HXt9wgt8uy/F8j6xWr9uMBnsSti2o9QeYvl83d3Jut3GwGJtNukz3hCMRkmXz3fOqROijjz7iwQcf5NFHH2Xnzp1MmDCBBQsWUFzc8RvW2rVrufnmm1mzZg2bN28mNTWVSy65hLy8PA9H7p0yYjII9QulprmGg+UHOz3u4aV7mPV/a1i644wHoxO6ZTDCwqcByA5oSYSaHIlQywjiwqfsx+lMWW0Tu89UAmd7ZXlMq9dtUqP9ouKgvz/1ioLeXzd3mzYsmhB/IyU1TezJkz0Qu2OxWZxbJMn+Yt3zqkToueee45577uGOO+4gIyODv/3tbwQHB/Pmm292ePz777/PfffdR1ZWFunp6bz++uvYbDZWrVrl4ci9k8lgYkriFKDr7TbSE8MAWCXL6IVDxmLM173F3nNHhMKT4YZ3IWOxhsF1bu2hElQVMpLCSYzQoO4tYzHc8C5JIfEkWCxYFYWcAH/dv27uFmAy8rtFGfzjrqlkJMky8O7sK9tHrbmWcP9w0qPStQ5H97wmEWpubmbHjh3Mnz/feZvBYGD+/Pls3ry5R+eor6/HbDYTHR3d6TFNTU1UV1e3+fJljjqhrhIhRz+hbbkVVDWYOz1O+JZDiSNpVBTCTcEMXfQ3uO0reGCvrj/MVx+yjy57soliOxmL4YEcJrZMaew6/27dv26ecON5g5k1Mg5/k9d8bGnGsdv8tKRpGH1wBLG3vOY3qrS0FKvVSkJC20LBhIQECgt71mjroYceIjk5uU0yda4nn3ySiIgI51dqamq/4vZ2jkRoV/Eumqwdb6UxOCaYkfGhWG0q6w9Ll2lht6t4FwBZiVMwjL8ehs7S9bSO2Wpz/v7O1TIRAjAYyRp6MQC7LOW6ft2E/siy+d7xmkSov5566ik+/PBDPv/8cwIDOx/yfuSRR6iqqnJ+nT592oNR6s+wiGHEBcXRZG1id/HuTo9zXEGvlk1YRQtHIjQxfqLGkfTMzpMV1DRaiA7xJys1UutwnK/bnuI92FRpWAqQk1fFE1/tZ/nu/O4P9lH15np2l9jfq6VQume8JhGKjY3FaDRSVNS2DqWoqIjExMQuH/vMM8/w1FNP8c033zB+/Pgujw0ICCA8PLzNly9TFIWpSVOB7qbH7InQ2kPFWGVVh89TVdXrEqHDxbUYDQqzR8Vh1EFbiFFRowgyBVFjruFo5VGtw9GF746W8sZ3J/hUFmZ0alfxLsw2M0khSQwO82BDUC/mNYmQv78/kydPblPo7Ch8nj59eqeP+7//+z+eeOIJVqxYwZQpUzwR6oAzLbFl37FONmAFmDwkivBAExX1ZrJPV3gqNKFTZ2rPUNpQislgYmzMWK3D6ZEfnT+Enf9zMb9cMFrrUAD7YoXxcfYLt+zibG2D0QlHP6Hvj5VR22TROBp9ar3bvKJon9B7A69JhAAefPBBXnvtNd555x0OHDjAvffeS11dHXfccQcAt956K4888ojz+Keffpr/+Z//4c033yQtLY3CwkIKCwupra3V6kfwSo555pzSHGqaazo8xmQ08NCl6fzth5NIT/TtUTRx9oM7IyaDQJP3dB2PCPIjJbKDJoYacYymOUbXfN3wuFDSYoJpttrYIPWIHZL6oN7zqkToxhtv5JlnnuF3v/sdWVlZZGdns2LFCmcB9alTpygoKHAe/9e//pXm5mauu+46kpKSnF/PPPOMVj+CV0oKTWJI+BBsqs3Zm6IjP5g2hIWZSYQEmDwYndAj57RYnHdMi+l1Otfx+kkiZKcoirO54soDUo94rorGCmfPN6kP6jmv+8RasmQJS5Ys6fC+tWvXtvn/3Nxc9wfkI6YlTuNk9Um2FG5h7uC5WocjdM7b6oP+3z92UFrbxG8vH8OUtM7ba3ja+LjxGBQDebV5lNSXEBccp3VImps3Jp43vjvBmpZ6RD3Uc+nF1sKtqKiMiBxBbFCs1uF4Da8aERLacVxddLXvGMCRohqe//YwX+8t6PI4MXBVN1dzrPIYgFds9thotvLd0RKyT1fqbjQz1D+UkZEjARkVcjgvLZqwQBPldc3sOiX1iK3JtFjfSCIkemRq4lQUFI5WHqWkvvO5+VUHi3lx1RE+2u7bbQd82e7i3aioDA4b7BVXpZuPldFotpEUEejskq4nWfFZgCRCDn5GA3NGx5MQHkBprexv2JrjQlUSod6RREj0SGRgJOnR9lbtXa0em9eyjH7TsTLqm2VVhy9yNlJs+QDXO0fvq7np8bpcZeOYXpSVY2f94epMvn9kHgszu26d4kvyavM4XXMao2J0bo0kekYSIdFjjquMrqbHRsSHkhodRLPFxsajZZ4KTeiIIxGaFD9J40i6p6qqMxG6yNObrPaQIxE6WH6QBkuDxtHoQ3igny6TVi053pfHxY4jxC9E42i8iyRCosda1wmpaserbBRFYV7L3mOrZRNWn2O2mckpzQG8o1D6SHEteZUN+JsMzBgRo3U4HUoKSSI+OB6LanG+tsLOalMpqel46x9f49hfTHab7z1JhESPTYyfiMlgoqCugNM1ndcAObpMrzpQ3GnCJAamg2UHabQ2EhEQQVpEmtbhdMsxGjR9WAzB/voqlHZQFEX6CXVg3eESzvvDSh74SF4Tm2pzlixIfVDvSSIkeizYL5isuCyg6+02pg2LJtjfSHFNE/vyqz0UndADZ31QXBYGRf9vL+mJYVyamcjl45K0DqVLkgi1NyQ6mPK6ZrYcL6e60ax1OJo6UnGE8sZygkxBjI/tehsp0Z7+36mErjimx7pKhAJMRmaNjCU80MTp8npPhSZ0ILskG/CeQuk5o+P56w8nc8N5qVqH0iXH67m7ZLdswNoiLTaE4XEhWGwq6w75dpfprYVbAZiUMAk/o5/G0XgfSYRErziGXbcWbu3yDfkPV49j5/9czKU6v9IWruONG616i9FRo+0bsDbXOHs0CZifYa9HXHXAt+sRHX93UxJktVhfSCIkemVs7FgCjYFUNVWRW5Xb6XGxoQGYjPLr5Uu8baPVdYdLOFZS6xV1bCaDyTnlIdNjZ81v2W5jzaESLFbfHClTVZXdxbsBmBCn/wameiSfVKJX/Ax+ZMZmAmenQbqiqqrsEu0jvGmjVZtN5RcfZzPv2XVsy/WO7sSO6THpJ3TWpMFRRAX7UdVgZvtJ7/h3dLXCukKKG4oxKkbne7PoHUmERK+1rlfoyppDxcx8eg2/+Djb/UEJzXnTRqt78qoorW0mNMBEVmqk1uH0iGO6cWfxTo0j0Q+jQWFuS/+nlft9c3rMcUGaHp1OkClI22C8lD7Xiwr9slmZYLP/2mTnbQKbFQzGDg+NCw0gr7KBivpmmixWAkwdHycGBmcilKD/RMixbH7WyFj8Td5xPTg+bjwKimzAeo5rJg0iMSKQy3y0HtFxQSrTYn3nHe8AQh/2L4cXMpnw798CcLy+kKoXM+23d2BscjgJ4QHUN1vZcrzck5EKD6tqquJo5VEAZ4sFPVvTalsNbxHmH8bIKNmA9VwzR8by3wvTyUyJ0DoUTTimSr1lpaYeSSIkemb/cvj4VqjOJ8pmY4jZ3rdjT3OF/fYOkiFFUZzNFR1X4GJgclyVDgkfQkyQPjs0OxRXN7I3rwqAOaO9a1RF+gmJ1hosDRwqPwTIiFB/SCIkumezwoqHgLOrayY02tvaZwf4229Y8bD9uHM45u9XHSzyitU5om+cV6VeMBq09rC958z4QRHEh+m7qPtcUjDdsUazlVUHivj7Ot9qLbCvdB8W1UJ8UDxJIb45NegKkgiJ7p3cBNX5bW6a0NQMwO7AAECF6jz7cee4YIS9BuN0eQNHi2s9Ea3QgDf1D1rXkgjN1ekmq12RDVg7VlrbxF3vbOfpFQepqGvWOhyPcRRKT4gbj5L7Hez9FE5s6PCiVHROEiHRvdr2qzGyWkaE9gb4Y+3iuJAAE9OH2adKVsn02IDkbRut/um68bxx2xSumZSidSi9lhySTHyQbMB6rkFRwaQnhmFTYe1h33mfcRZKH/gPvHMFLL3L/v2Fzms3RXuSCInuhSa0u2m42UyozUa9wcBRf79OjwO4ZlIKt00fwrSh0e6MUmjE2zZaDfY3MW9MAkNiQrQOpdcURXFOj0mdUFvzxjiW0ftGIqSqKrsL7FtrZFWds8VIdUGntZuiPUmERPeGzIDwZEBx3mQExjU56oQCIDzFflwHrsxK4fdXZjJxcJQHghWe5m0brXo7KZjumKPL9LrDJTRbBn6X6dNVuVRY6vFTVcY0nTsd2FKP2UntpmhL3rVE9wxGWPh0y/+cTYayGlvqhAICYOFTnfYTEgObN9UH/eQfO/i/FQcpq23SOpQ+c7zOsgFrWxMGRRIbGkBtk4UtJ8q0Dsftsg9+CsDYpmb8Ozyi89pN0ZYkQqJnMhbDDe9C+NmVCRMcI0Kxqfb7u2C22vj+eBnLduW5NUzhWd600eqpsnpW7Cvk1fXH8fOSJoodGRU9SjZg7YDBoHBRur0dwlof2I0+u2wfcLZes1Md1G6Ktrz33UB4XsZieCAHbvsKrn2Dcde8i4LC6aZyyhq6vgLbfbqSm179nkeX7/PZzREHojM1ZyhrLMPP4MfYWH1vtLr6oP0DYUpaFOGBfhpH03d+Bj/GxY4DZHrsXBeOsidCvrBCdXdDIXD2grRTndRuirMkERK9YzDC0Fkw7jrCRy5geORwoPt9xyYOjiKyZXPEHT66OeJAtKvE/kGcEZNBgDFA42i6tuaQ9y6bP5f0E+rY3NHxrPnlHN6+4zytQ3Gr2uZajtTZW5pMaFcf5KB0WbspzpJESPSLo5tpdzvRt94cUbpMDxzeMi1W32xh83H7qOVFXrStRmekYLpjIQEmhsaGoChK9wd7sb2le1FRSfGPIs5qo3Xtpl3L/0vtZo9IIiT6xZEI7S7uekQIzn4AST+hgcNb9jnadLSMZouNQVFBjIgP1TqcfpsQNwEFhTO1ZyhtKNU6HF0ayJ3snY0UU6a3q90E7Kt8b3i329pNYSe7z4t+cXwA7ivbh9lqxs/Yee3FhaPiMBoUjhbXcrKsziv7uIizvGmj1dWH7Mn3RenxA2K0IMw/jBFRIzhScYRdxbu4eMjFWoekG+V1zTzy2R725Vez9pdzMBkH3vW+48IzKz4L0hdD+uX21WG1RfaaoCEzZCSoFwbeb4jwqLTwNCICImiyNnGo4lCXx0YE+XFemr2XkEyPeT9v2mg1LMBEdIi/V+02352JcTI91pHwQBPfHy/nTEUDu89UaR2Oy9lUG3tK9gCtNlptVbvJ0FmSBPWSJEKiXxRFOVsn1IPCTcf02HYpmPZ6rRsp6t0jl41h22/mc+FI79ptvitSMN0xk9HAzBGxAKw/PPCW0R+vPE6NuYYgUxCjokZpHc6AIImQ6DfHB2F3K8cArspK4cslM3n5Jn0X14ruORKhSQmTNI6kZ4wGBaPB+6fFHBwF0wfKDsgGrOe4cJQ9EVo3ABMhx/tsZmwmJoNUt7iCJEKi33q6cgwgPjyQcYMiMAygDyRfZLae3WhV74XSx0tqB2ThbEpoCnFBcbIBawcc/YT2nKmksn5g7UbveJ/1hpFYbyGJkOi3zNhMjIqRwrpCCusKtQ5HeMCB8gM0WZuIDIhkaPhQrcPpVGV9M/OfW8f5T66iutGsdTgu1XoDVpkeayspIohRCaHYVPju6MBaVectKzW9iSRCot+C/YKdc9U9mR7Lq2zgl5/s5kdvbHF3aMJNWtcH6XkV1rrDJdhUiAzy9+pu0p2ZFG+flpSC6fYc9WADqU6osrGS3OpcAMbHjtc2mAFEEiHhEr0pmA72M7J05xk2HCmlsKrRzZEJd/CWq9I1LasTB9JqsdYcdULZJdmyAes55qbHM3lIFGOTI7QOxWX2lNpXi6WFpxEZGKltMAOIJELCJRwfiI5lnV2JCvFn/KBIANYfGThXa77CWzZatdpUZ7HsQOgm3ZHWG7AerzyudTi6csGIWJbeO4PbZqRpHYrLOC5AnMvmhUtIIiRcwvGHub98P03WbjYBBGaPHLjLWwc6b9lodc+ZSirqzYQFmpg0OFLrcNyizQasJTI9NtA5Sg/0PhLrbSQREi6REppCbFAsFpuF/WX7uz1+9mj7/P2GI6VYbQNvRc9AtrN4J6D/jVbXH7YXyc4cETsguws7SMF016rqzXzfss+cN7PYLOwt3QvIijFXG7jvDsKjettYccKgSMICTVQ1mNlzptK9wQmX8oZpMTg77epYSj1QyQasnTtdXs/EJ77h1je30tBs1TqcfjlScYQGSwNhfmEMixymdTgDiiRCwmV601ixbffXgbW8daBzJLp6T4R+cfEofnzhMGYP8ETIsQHr6ZrTsgHrOQZFBZEUEUSzxcb3J7x7VMjRP2h83HgMinx0u5K8msJlJsSfHRHqSQO72aPiGJ0QRnSov7tDEy5S1VTFsapjgP7rFGaMiOXXl40hOTJI61DcyrEBK8j02LkURXF2mfb2ekQplHYfSYSEy2TEZGAymChrLCOvNq/b4288L5X//PxCfnT+EA9EJ1zBMdqXFp5GdGC0xtEIB9mAtXOOEUFv327D8bfnuOAUriOJkHCZAGMAGdEZQM+229BzIz7RMWcjRR2PBqmqynPfHmb94RLMVt/orSMF052bMSIWo0HheEkdZyrqtQ6nT0obSsmrzUNBkUaKbiCJkHApx9XK7uLu64QcGs1WjhTVuCsk4ULeUCh9rKSWl1Yd4e53t2Ox+saKRMe/x/7y/TQ218GJDbD3U/t3m3cXCfdXeKAfE1MjAe+tR3S8n46IGkGof6jG0Qw8kggJl+pNwTTA7tOVTPj9N9z25tYBuTHmQOItG62ua/mwmzY0miB/o8bReIZzA1abhZy/TYF3roCld9m/v5AJ+5drHaKmHNNjuq0Tslm7TF5lo1X3MmkdgBhYHIV8hyoOUW+uJ9gvuMvjRyWEoQL5VY0cK6llRHyYB6IUfeFolqn3jVYdtSCOvaZ8gaIoZAUm8G1DCdnWWqa0vrO6AD6+FW54FzIWaxWipi4bn0RsWIA+WynsXw4rHoLq/LO3hSfDwqed/15SKO1eMiIkXCohJIGkkCRsqs05etCVIH8j04bai27Xeemwta9w7i+m441WG81WtrQ0z3M07fQJNisTz9hHYXcFntvksmWkdcXDPjtNNjwulJunDiZFbysI9y+3J6mtkyA4m7zuX06ztdnZpFbPI7HeTBIh4XLOxoo9KJiGgblL9EDkDYXSW0+U02SxkRgeyMh4H6qlOLmJiZX2v5/sAH/al4irUJ0HJzd5OjLRGZvVPhJERyUBZ5PXA6X7aLY1ExUQxeCwwZ6M0GdIIiRczvFB2dM6Icdw9ZYTZTSaffOKVe9ab7Q6KWGSxtF0zpFMXzgqVrejVm5RW8To5maCbDaqjUZO+HVS9VBb5Nm4dKSq3szbG0/w+JfdbwHkESc3tR8JasOevO4+/AXQ0jjTl36nPUgSIeFyjhGh3SW7e1QAPSohlMTwQBrNNrbllrs7PNEHp2tOU95Yjp/Bj4yYDK3D6dSBwmpg4G+r0U5oAn5AZlMz0NH02NnjfFWjxcpjX+7nrU0nKK9r1jqcHiel2eUHAOkf5E69ToRuu+021q9f745YxAAxOno0gcZAqpqqyK3O7fb4gdT9daByjAaNjRmr641W37trGv954ELmjI7XOhTPGjIDwpPJamoCYFfAuf9GCoSn2I/zUQnhgaQnhqGqsOGIDt5nepCUqsDuentzWimUdp9eJ0JVVVXMnz+fkSNH8sc//pG8vO47CAvf0nrUoKcN3q6dNIjfXDaGm6bKHLgeeUP/ILAn1aMTwwgN8LEFsQYjLHyaiY32kY7sNiNCLdMpC5+yH+fDzi6j18HCjJbk1fnv045CYWQKxc1VGBUjmbGZnozOp/Q6EVq2bBl5eXnce++9fPTRR6SlpXHppZfy6aefYjab3RGj8EK9rROaNiyGey4cxvA4Hypw9SLOFWM6LpT2+T5UGYuZcOmLKKrKKT8/Sg0tb+/hyT69dL41x5Tp+iMl2v++tCSvducmQ/b/z558CwDp0ekEmXS24m0A6VONUFxcHA8++CC7d+9my5YtjBgxgh/96EckJyfz85//nCNHjrg6TuFlettYUeiXN2y0arWpzHt2HT/9YBcVeqj/0Ej4+BsZHjUSgN1zH4TbvoIH9koS1GJKWhRBfkZKapo4UKCDbvYZi+1JanhS29tbktfdLSObMi3mXv0qli4oKODbb7/l22+/xWg0ctlll7F3714yMjJ4/vnnXRVjG6+88gppaWkEBgYybdo0tm7d2uXxn3zyCenp6QQGBjJu3Dj+/e9/uyUu0db4OPt+OEcrj1LdXN2jx1TWN/PpjjO8tfGEO0MTveQYDdLzRqu7z1RyvLSOdYeKCQv0sWmxczimL3cFBsHQWT4/HdZagMnI9OExgH1USBcyFsMDOfak9do32iSv3jASOxD0OhEym80sXbqUK664giFDhvDJJ5/wwAMPkJ+fzzvvvMPKlSv5+OOPefzxx10e7EcffcSDDz7Io48+ys6dO5kwYQILFiyguLi4w+M3bdrEzTffzF133cWuXbu46qqruOqqq8jJ6b7Rn+ifmKAYZ8+LvSV7e/SYYyW1/PKT3byw8ghWm49Pc+iIN/QPWnfI/qE2c2QsJqNvL4Z1JkIlshN9R2aPisPPqFBW26R1KGcZjPakddx1zuS1wdLAofJDgIwIuVuv3zGSkpK45557GDJkCFu3bmX79u385Cc/ITw83HnM3LlziYyMdGWcADz33HPcc8893HHHHWRkZPC3v/2N4OBg3nzzzQ6Pf/HFF1m4cCG/+tWvGDNmDE888QSTJk3iz3/+s8tjE+31trHihEGRhAWaqGows/tMpfsCE73i+PfTc6G04+rel7bV6IwjYd1ftp9GS6O2wejQtZMHkf27S/jN5fptAwGwr3QfFtVCfFA8SSFJ3T9A9FmvE6Hnn3+e/Px8XnnlFbKysjo8JjIykhMnXDu90dzczI4dO5g/f77zNoPBwPz589m8eXOHj9m8eXOb4wEWLFjQ6fHCtZwF0z3cid5kNDBrpCyj1xOzTf8brVbVm9l9uhLwwf5BHRgUOojYoFgsNgv7yvZpHY7uhAaYCPGCVYWOC5AJ8dJI0d16nQj96Ec/IjAw0B2xdKm0tBSr1UpCQtveCwkJCRQWFnb4mMLCwl4dD9DU1ER1dXWbL9E3jhGhPaV7sPZwjyPZbkNfDpUfosnaRERABGnhaVqH06HvjpZiU2FkfCjJettLSgOKojgXK/S0fYWv0nMne8dCE5kWcz/fnkzvwJNPPklERITzKzU1VeuQvNaIyBEEm4KpM9c5Vx11x3FFn326kqp6acegNUd90IS4CRgUfb5dnN1WQ0aDHByjdz2dlvY1R4truOLlDVz24gatQ+mQqqrOkXS9jsQOJPp8Z+tAbGwsRqORoqK2bcmLiopITEzs8DGJiYm9Oh7gkUceoaqqyvl1+vTp/gfvo4wGo3P1WE+vTJMjgxgRH4pNtV/pC2213nFer0YmhDIuJcLZLE+0nZbWvF+ODiWEB3KwoIbjpXWcKqvXOpx2TtWcoqKpAj+DH2Oix2gdzoDnNYmQv78/kydPZtWqVc7bbDYbq1atYvr06R0+Zvr06W2OB/j22287PR4gICCA8PDwNl+i71rvOwbYd1w+sQH2fmr/3sGUmeMD7UixDvp8+DBVVb1i+e7ds4bx5U9nyohQK2Oix+Bv8KeiqYJTNae0Dkd3wgL9mDQkCoB1ellG34rj/XJszFj8jf4aRzPw6b9irJUHH3yQ2267jSlTpjB16lReeOEF6urquOOOOwC49dZbSUlJ4cknnwTgZz/7GbNnz+bZZ5/l8ssv58MPP2T79u28+uqrWv4YPqVNh+n9y2HFQ213XA5PtndXbdXw7ccXDuPeOcOJDdXvnla+oLCukOKGYmnv74X8jf6MjR3LruJd7CrexZDwIVqHpDuzR8Wx9UQ56w+X8KPz9fX6eMMFyEDiNSNCADfeeCPPPPMMv/vd78jKyiI7O5sVK1Y4C6JPnTpFQUGB8/gZM2bwz3/+k1dffZUJEybw6aefsmzZMjIz5U3dU8bFjgPgZPVJyj+9vW0SBFBdAB/fak+SWiSEB0oSpAOO+hI9t/ffcbKC2iaL1mHokrNOSAqmO+RYmLH5WBlmq03jaNqSQmnP8qoRIYAlS5awZMmSDu9bu3Ztu9uuv/56rr/+ejdHJToTERDB8IhhHKs6zp4Af+Y0NJxzhAoosOJhSL+8XRdcVVVl6ahG9H5V2mi2cstr32NTVdb8cg6DooK1DklXZJubro1NDicmxJ+yumZ2nqxg2rAYrUMCoLa5liMV9m2qJBHyDK8aERLeaUKQvTg9O7CzuW4VqvPg5CbnLbtPV3LTq5u5593tHohQdMQxIqTXQuktJ8ppstiIDQ0gRZbNt+P4EO3NNje+xGBQnH3L1umoXcee0j2oqKSEphAXLHVvniCJkHC7LH/7m83ugG6mu2rPrvAL8jfy/fFyNhwp1XWvj4Gq3lzvbO+f1djUZXG7VpzL5kfGyahhB1pvc9PTpqa+ZmFmIosmJDMlLUrrUJxkWszzvG5qTHifCfET4NRycgL8MQN+nR0Yerb55cj4UBLDAymsbmTLiXJZGu1hOaU5WFUrCVaVxI9uPXtHB8XtWnFcxc8eLb8bncmKz+JUzSmyS7KZNWiW1uHozsLMJBZm6mv7Cukf5HkyIiTcLi39asJtKo0GA4f9O0qDFAhPgSEzzt6iKFw4Srbb0Er2vg8AmNhwTo+VDorbtZBf2cDR4loMClwwPFbTWPSst9vcCG3ZVBt7SvYAMiLkSZIICbczGP2YEDUagOx227O0TGksfKpdofTsUfGAJEIeZ7OSfeIbALKazt2hu6U534qHNZ0mc/xOZKVGEhHc6Rijz3PUd+0p3YPFJqvrOqKqKocKa1hzsFjrUDheeZwacw1BpiBGRY3SOhyfIYmQ8IgJQy8BYHdoRNs7wpPhhnc7nGqZOSIWgwJHimvJrzx3tZlwF1vud+w22hOerMbmDo5oX9zuac7d5mXKtEvDI4cT6hdKg6XBuRJJtLUtt4IFL6znV5/uxmbTtgu3Y4FCZmwmJoNUrniKvNLCI5xD9NEpcPHf7IXRoQn26bBzRoIcIoL9mJAaya5Tlaw/XMJNUwd7MGLflVu6n2qjkUCbjVHNHSVCLWqLOr/Pzf57QTrThsYwY7g+ljzrlUExMCFuAhvzN7KreBdjYmS7hnNlpUYS4m+ktLaZ/QXVZKZEdP8gN3EUSut1peZAJSNCwiPGxY7DoBjIryugOGE0jLsOhs7qNAlyWDg2kYvS40mMOHdKTbhLtqUKgMym5s4L26FNcbunpcWGcNuMNEYmhGkWg7eYEG+vNZENWDvmbzIwvSWhXq/xdht67901UEkiJDwi2C/YOefdmwZv/2/2cN68/TzmjI53V2jiHLtstQBkNXU2GtS+uF3o18T4iYAUTHfFsSp13SHtEqHKxkpyq3MBGB87XrM4fJEkQsJjHKsgpOW/vmU7hucbm3AWszt1XtzuKU99fZAPtp6iutGsyfN7m7OjsfkU1Wk3nalnjlozLbds2VNqXy2WFp5GZGCkJjH4KkmEhMe024m+F/IqG8jJq3J1SOIcFY0VzqvSCZe+AOHn9FjporjdEyrqmvn7+mM88tle6mSPsR4J8QtxjsbK9FjHhsSEMCQmGItNZfOxMk1icFwgyrJ5z5NESHiMowBwf9l+mq1dFOGe48vd+Vzw1Gr+54scN0UmHBw9TIZGDCVy/E3wQA7c9hVc+4b9+wN7NW2m+N3RUlQVRiWEkhQh22r0lIzGds8xPbZBozohZ6G01Ad5nKwaEx4zKGwQ0YHRlDeWs79sf4//4B3t73efrqSq3ix9Y9yo3f5iBqO9qF0nWm+rIXpuYvxEPjr0kWzA2oUfTBvCvDEJTBsa7fHnttgs7C3dC8iKMS3IiJDwGEVR+rQjdlJEECPjQ7Gp9hEB4T56XrWiqqpzVY9sq9E7jn/PA2UHaLQ0ahuMTo1ODGP2qDgC/Txf+3ao/BANlgbC/MMYFjnM48/v6yQREh7leEPeVbyrV49zFDOuO6x999eBymwzk1Nqn37U41Xp4aJaiqqbCPQzcF6a56/avVlySDJxQXFYVAv7yvZpHY44x87inYB95M6gyMeyp8krLjzKsZR3V/EuVLXnXVwdidD6w6W9epzouUPlh2i0NhLuH05aRJrW4bTjSIKnDY3R5KrdmymK0ueLEF+SV9nAH/99gEc+2+vR53X8mzjeH4VnSSIkPGpszFgCjAGUN5Y7Vyf1xLSh0QSYDBRWN3KkuNZ9Afqw1qtW9HhVWlDViEGRbTX6yrlqU/oJdarJbOXV9cf5dMdpj61KVFWVnUX2EaFJ8ZM88pyiLf2924kBzc/ox7jYcUDvrkwD/YxMG9bS/VU2YXULR6G0Xq9KH100ll3/cwnXTR6kdSheyfHvml2SLaOqnRgaa19Gb7aqHqtHPFVzirLGMvwMfoyNHeuR5xRtSSIkPM7xhuy4Cuqpe2YN5ZVbJnH95FR3hOXz9Fwo7RAR7EdEkKwa7Isx0WPwN/hT2VTJyeqTWoejS4qiMLeli/3aQ56pR3S8D2bGZhJgDPDIc4q2JBESHjcpwT786ygQ7KlZI+O4fHySLJ93g8K6QorqizAqRsbG6O+q1Gy1aR2C1/Mz+pEZmwlInVBX5qbbE6E1B0s8MnLm+LeQaTHtSCIkPC4rLguDYuB0zWlK6mWaSw8co0Gjo0cT7BesbTAduOKl77j2r5s4KvVh/eLYgFX6CXVu2tBoAv3s9YgHC2vc/nzORChBEiGtSCIkPC7UP9TZ8r+3V6any+t5ceURXlt/3B2h+ax2jRR15ExFPYeKasg+XUlcmEwd9Ifj31c6THcu0M/IBcNjAVh90L3TY2UNZWe3tJGtNTQjiZDQhLNOqJfTY0eKa3h+5WHe2nhCCj5dyJGQ6rE+aP1he9FqVmqk1Af1k+Pf91jVMaqaZO++zsxJjycuLACj4dxNh13LkZCOiBxBRECEW59LdE4SIaEJZ51QLwumpw+LJcBkIL+qkUNF7h+29gX15noOlR8C9DkiJNtquE50YDRDwocAZ/eVE+3dOCWVLY/M4yezh7v1eXYU7wCkPkhrkggJTUyMs48IHao4RJ25rsePC/I3csEIzwxb+4p9ZfuwqlYSghNICk3q/gEeZLba2NiyjPnCUbEaRzMwOKZgpGC6c/4mAwY3jwYB7CpqaaSYoM+WFb5CEiGhiYSQBFJCU7Cptl43eHOs6lh9QBIhV9Dzsvns05XUNFmIDPZj/KBIrcMZEBz/zlIw3T2bTeV0eb1bzl1vrudA+QEAJsdPdstziJ6RREhoxjEc3Ns6oYtaEqGdpyqoqGt2eVy+Rs+F0o5psZkjYt1er+ErHP/Oe0v3YrF5pnuyNzpWUsvUP67kylc2YrO5vh5xb+lerKqVxJBE3Y3E+hpJhIRmHHVCvR2iT4kMIj0xDJuKczdy0Tc21eYcGdDjiNCEQZEsGJvAgrGJWocyYAyPHE6YXxgNlgYOVxzWOhzdGhwdTJPFRnldM7vPVLr8/K03WhXakkRIaMYxIrSnZA9mq7lXj52bHk9YgIlyGRHql9zqXKqaqgg0BjI6erTW4bQzPyOBv/9oCosmJGsdyoBhUAyMjx8PSJ1QV/yMBmeB/ppDrr/gctQHSaG09iQREpoZGjGUyIBIGq2NzrnynrpvznB2/u5i7rhgqJui8w2O+qCxsWPxM8jSdF/hmB6TDVi7Nme0PRFy9XYbFpvFORIrI0Lak0RIaEZRFOebQG+vTMMC/fAzyq9vfzkLpXVYH/SffYXklvZ8RaHoOcc0qKM+THRsdksitOdMFSU1TS4776GKQ9Rb6gnzC2NE5AiXnVf0jXySCE05hoV3FO3o0+NVVaWyXqbH+kqvO843NFu5/4NdzHlmrWyr4QbjY8djUAwU1BVQWFeodTi6FR8WyLgUe6NDV44KOabFsuKzMBqMLjuv6BtJhISmHP0zdhXv6nWn6Jy8Kmb/aS03/v17d4Q24FU2VnKi6gQA4+PGaxxNWxuPltJksZESGcTwuBCtwxlwgv2CGR1lrwmTZfRdc7TrWOvCOiFHobTsL6YPkggJTWVEZxBoDKSyqZIT1Sd69dhBUUHOfajOVLin18dAtqfU3lk4LTyNqMAojaNpa9XBIgDmj4lHUWTZvDs4GivKvmNduzQzkZ/MHs6dM11Tj6iqqrMUQG8jsb5KEiGhKT+jH+PixgG9324jMtifyUPsH+BrpMt0r+m1kaKqqqxqaZZ50ZgEjaMZuJx1QpIIdWlMUjgPX5rufK/przM1ZyhtKMXP4EdmbKZLzin6RxIhobm+FkwDXJRu/6CU7TZ6T6+NFHPyqimuaSLY38j5w6K1DmfAciRCB8sP0mBp0DYYH+KYFhsbM5YAY4DG0QiQREjogKO9fG9HhOBsl+lNx8poaLa6NK6BzGwzs7dkL6C/EaGVB+zTYrNGxhJgkkJSd0kOSSY+KB6LamFf6T6tw9G1JouVNQeLeXHlkX6fy9lIUfYX0w1JhITmxsfZV7CcqT1DcX3vRnZGJYSSEhlEk8XGpmOlbopw4DlcfphGayNh/mEMjdBXL6YNLd3C58m0mFspisKE+JY6IVlG36WGZit3vbON51ce7nc9ouOCT/YX0w9JhITmQv1DnStYervvmKIozlEhmR7rudbTYgZFX28D7909jVd/NJn5kgi5nWNaVOqEuta6HrE/q8fKG8vJrc4F9DcS68v09Q4ofJZz37Gi3tcJXT4+iR+eP5grxss2DD2l10JpgGB/E5eMTSQ6xF/rUAa81o0Ve9u+wtfMGe1YRt/3Cy5HHeSIyBFEBES4JC7Rf5IICV1wFEz3dkQI4PxhMfzvVeOYPjzG1WENWHotlBaeNSZ6DAHGAKqaqpwjFaJjc1sSoY1Hy2g0960e0XGhJ8vm9UUSIaELjjeGwxWHqWmu0Tiaga2wrpDCukKMilFXy3cbzVau/stGnv3mUJ8/aETv+Bn9GBszFpDpse6MSQojMTyQBrOVLSfK+3QO6R+kT5IICV2ID45nUOggbKqNPSV7ev14i9XG1hPlvLs51/XBDTCOD7xRUaMI9gvWNphWNh0rZdepSpbuOEOASd6aPEX2HesZRVGYm96yG30f6hHrzfXsL9sPSEdpvZF3G6EbjjeHvuw7VlzTxA1/38xjy/dRUSd7j3XFOS2ms/qglS1NFOeNSZBu0h4kBdM956gTOlLc+1HrnNIcLKqFhOAEkkOknlFPJBESuuHYgLUvjRWTI4NITwzDpsK6w67bE2gg0uOO86qqstrZTTpe42h8i2MJ/fGq41Q1VWkcjb5dODKOlQ/O5r27pvX6sc79xeInSaKvM5IICd1wNBjbW7oXs9Xc68c7ltGvkmX0nao313Ow/CCgrzqFffnVFFY3EuRnZPowKXr3pOjAaNLC0wDZgLU7Qf5GRsSH9imRcdYHSSNF3ZFESOjG0PChRAVE0WRtYl9Z7zvdzmsZSVh3qBiL1ebq8AaEfWX7sKpW4oPjSQxJ1DocJ0cPqJkjYwn0k27SniYbsPaezdbzdgMWm8X52jpGvoV+SCIkdENRlH7tO5aVGkVUsB/VjRZ2nqp0cXQDg+OKPysuS1fD86sOnN1tXnieFEz3XEOzlf96fydT/7iSuiZLjx5zpOII9ZZ6Qv1CGRE5ws0Rit6SREjoiqNgui/9hIwGhdmj7Ks6Vh0scmlcA4UeGylabSrD40OJDvF39moRnuWoF8spzcFs6/20tC8J9DOQk19FaW0zG4/2bFsfx/vZhPgJGA0y4qk3kggJXWldMG1Tez+9dVHLtgy7ZESoHZtq02UjRaNB4bkbstj+m/nEhwdqHY5PGhY5jDD/MBosDRyuOKx1OLqmKIozYV/Tw+02ZH8xfZNESOhKekw6gcZAqpqqOFF1otePnzs6jmX/dQEf3nO+G6LzbrnVuVQ1VRFgDCA9Ol3rcNoxGPQzVedrDIpB6oR6Yc5o+8jz2kPF3W5NoqqqNFLUOUmEhK74GfwYHzce6Nv0WFigH1mpkfKh2oHdxfb6oLExY/Ez+mkcjV2j2cr+/GrZ50oHpJ9Qz50/LIZAPwMFVY0cLOy6p9CZ2jOUNJRgMph01cldnCWJkNAdZ51QUe8Todbkw7Utx7SYnq5KNx8v47KXNnDtXzdpHYrPk4Lpngv0M3LB8FgA1nSzCatjNGhszFgCTTL1q0eSCAnd6c/KMbCv6njo0z1c+Kc11Df3bFWHL9BjobRjtVh6UrjGkYhxseMwKAbnXnSia3Na+pZ1t92G44JOls3rl9ckQuXl5fzgBz8gPDycyMhI7rrrLmpra7s8/qc//SmjR48mKCiIwYMHc//991NVJZ1T9W5C3AQMioG82rw+vSEH+hn47mgpp8sb2HS0zA0Rep+qpiqOVx0HzvaM0VrrbtKybF57wX7BjI4aDcioUE/MHR3HhEERzB4V1+Xos9QH6Z/XJEI/+MEP2LdvH99++y1fffUV69ev58c//nGnx+fn55Ofn88zzzxDTk4Ob7/9NitWrOCuu+7yYNSiL0L8QpxvyH0ZFVIUxdlcUbpM2zn6B6WFpxEVGKVxNHYHCmrIr2ok0M/AjJZpBqEt5/SY1Al1a1BUMF8smcmSi0Z22pOrorHCeQEiiZB+eUUidODAAVasWMHrr7/OtGnTmDlzJi+//DIffvgh+fn5HT4mMzOTpUuXsmjRIoYPH85FF13EH/7wB7788kssFpku0bvJCfZlpn2tE5rbMmzdk1UdvsDxwaaX0SA4Oy02c4R0k9YLKZh2LceF3PCI4UQGRmobjOiUVyRCmzdvJjIykilTpjhvmz9/PgaDgS1btvT4PFVVVYSHh2MymdwRpnCh/tYJTW+1quNAQe93ih5o9Ljj/MqDZ3ebF/rg+P04WH6QenO9tsF4iepGMytyCjrcckP2F/MOXpEIFRYWEh/ftobAZDIRHR1NYWHPakhKS0t54oknupxOA2hqaqK6urrNl/A8x8qxwxWHqW7u/b9BoJ+RmSPs0y2rfbzLtNlmJqc0B9BPI8WSmiZ2n64Ezm6WK7SXFJJEfFA8VtXap/3+fI3NpjLnT2v5yXs72ZPXvv609Y7zQr80TYQefvhhFEXp8uvgwYP9fp7q6mouv/xyMjIyeOyxx7o89sknnyQiIsL5lZqa2u/nF70XGxTL4LDBqKjO/je95ZgeW+3jdUKHyg/RYGkgzD+MYZHDtA4HgMhgP967axoPX5pOgnST1g1FUaROqBcMBoXzh0UD7d9nGiwN7C/bD0h9kN5pmgj94he/4MCBA11+DRs2jMTERIqL2/6SWSwWysvLSUzsegftmpoaFi5cSFhYGJ9//jl+fl03knvkkUeoqqpyfp0+fbrfP6fom/5Oj12UHs/wuBDOGxrt03VC3xd8D9jrrgyKPgaB/YwGZo6M5Sezh2sdijiHIxHq69+dr3Fst7H2nH5COaU5WGwW4oPiSQlN0SI00UOaFsvExcURFxfX7XHTp0+nsrKSHTt2MHmyvYh29erV2Gw2pk2b1unjqqurWbBgAQEBASxfvpzAwO6vPAMCAggICOj5DyHcZlLCJL449gU7inb06fFJEUGs+sUc1wblhTbl25sVXpB8gcaRCG/gWKiwo2gHZqtZN13I9Wp2y3Ybe85UUVLTRFyY/fPD2T8oYVKnq8qEPujj8rAbY8aMYeHChdxzzz1s3bqVjRs3smTJEm666SaSk5MByMvLIz09na1btwL2JOiSSy6hrq6ON954g+rqagoLCyksLMRqtWr544gecsyr55Tm0Gxt1jga71Rvrnde2c9InqFxNHbbcst5/Mv97DhZrnUoogPp0elEBURRb6l3tl0QnYsPC2RcSgQA6w6f3YRV+gd5D69IhADef/990tPTmTdvHpdddhkzZ87k1Vdfdd5vNps5dOgQ9fX2lQ47d+5ky5Yt7N27lxEjRpCUlOT8kuku7zAkfAjRgdE025qdc+190Wi2su5wCWZr73ez93bbCrdhsVlICU0hNUwf9W5f7s7nzY0n+HTHGa1DER0wKAbOT7ZvWuwYTRRdm9syKuToMm21WZ0rNR0LP4R+eU0iFB0dzT//+U9qamqoqqrizTffJDQ01Hl/WloaqqoyZ84cAObMmYOqqh1+paWlafNDiF5RFMV5NdXX6TFVVZn37Dpue3MrO05WuDI8r9B6WkwPw/OqqrKqpZv0vHRZNq9XjmnUjfkbNY7EOzgWZqw/UoLFauNI5RHqzHWE+IUwMnKkxtGJ7nhNIiR8k2N6rK+Fm4qiMHWofVVHd3sCDUSOREgv02KHimrIq2wgwGTgghHSTVqvHL8vB8oOUN4oU5jdGT8okj9ePY5/3z8Lk9HgrA/KisvCaJBmoXoniZDQNcew8q7iXdjUvk1tXeSjy+jzavPIrc7FqBg5L+k8rcMBcI4GXTAiliB/+YDQq7jgOEZGjURF5fv877UOR/eMBoVbpg0mNToYkPogbyOJkNC10dGjCTIFUd1czbHKY306x4Wj4jAaFI4U13K63He65W7O3wzYdxUP99fH7u6ObTXmySaruifTY32jqmqbFWNC/yQRErrmZ/BjfNx4oO/TYxFBfkwZYt9o1JdGhZzTYin6mBYrrW1il3ST9hqO6bHN+Zt9ug9Xb3y5O58b3/wXxQ3FmAwmMmMztQ5J9IAkQkL3HHVCjnb1feFr02MWm8XZSFEv9UEny+pJCAtkbHI4SRFBWocjujEpYRKBxkBKGko4XHFY63C8wrrDJewssl+wZcRkEGSS33NvIImQ0D3HPHtfd6KHs1Mxm4+XUd9scUlceravbB81zTWE+YcxNmas1uEAMHlIFJsfuYh37pyqdSiiBwKMAUxOtDdXdEyziq4tnpCMMTgXgAmxUh/kLSQREro3IW4CRsVIQV0BBbUFfTrH8LhQfr94LF8umUmQ38Av0nVMi52fdD4mFDixAfZ+av9u066hqKIoxIZK53ZvIXVCvTNjeAwBIScBCLKN0Dga0VOabrEhRE8E+wWTHp3OvrJ97CreRVJoUq/PoSgKt81Ic31wOrUpr6U+SAmBFzKhOv/sneHJsPBpyFjssXhqGs0E+5swGrTvZSS6YbPCyU1QW8QFhrPbRTRYGmSqpxu15mpUf/uCgMMnY+F8jQMSPSIjQsIrOKfH+lEn5Cuqm6vZW7oXgBkb/tI2CQKoLoCPb4X9yz0W07PfHOa8P6zk423S1V3X9i+3J87vXAFL72LoJ/eQaFVptjX3uampL3F0k7Y2xbN2fx2NZtnOyRtIIiS8gmMZan8TofWHS7j3vR2s3F/kirB0aVvBNqyqlTSrSrKlo3qolhVAKx72yDSZqqqsPFBEeV0zkcGygadu7V9uT5BbJc4KMKO+DoCNe/+hUWDew1HHGGAZTk2ThbWHSrp5hNADSYSEV3CMCB2tOEpVU1Wfz/Pd0VK+zikc0PtcOeo5ZtTWdnGUCtV59ikQNztSXMuZigb8TQZmjpRu0rpks8KKh3Amya3MqG8AYFPeRk3ry7yB40JtSuIkpg+LISxQqk+8gSRCwivEBsUyJHwIKmq/dsS+KisFsC+jr6o3uyo83VBV9Wz/oIaG7h9Q6/6RsZUtTRRnDI8h2F8+GHTp5Kb2U6gtzm9swqCqHDcpFB76ysOBeY9GSyP7yvYB8Lv5l/PBj8+XbWS8hCRCwmu4Yhn9mKQwRieE0Wy18XVO31ag6dnpmtPk1eZhUoyc19jU/QNC3b/x6WrHJqtjZJNV3eoiIY6w2chsagZgU+EWT0XkXWxWcvb+E4vNQpx/BINCer+gQ2hHEiHhNfq7ASvYV49dNdE+KvT5rjyXxKUnjmmxifETCQ5Lwl7l0REFwlNgiHubLZbWNrHzVAUA86SbtH51kxDPaGgEYGP9wPub6beWAvOdax8FYGJ5PsqL42D/ckpqmvh2ANcjDhSSCAmv4SiY3lu6lyZrD0Y7OrE4KxmALSfKyavswfSRFzm7rcYF9iXyQPtkqOX/Fz4Fbt4Ze3l2PjYVxg+KIDlSll7r1pAZ9rYKnSTOF7QkQt9XH8UqdUJntSowXx9s//2e1tgE1QWoH9/K7576I/e+t4OKumaNAxVdkURIeI3BYYOJD47HbDOztWBrn8+TEhnEtKHRgP2DeqBo/bpMT55u7xN0w7sQfs4wfXiy/XYP9BGamx7PT2YP544L0tz+XKIfDMYuE+fMpmbCjIFUN1c762B8XqsC81KDgT0B/gDMrm8AVBTg9/7vYbNZWbGvUMtIRTckERJeQ1EU5gyaA8Ca02v6da6rJ6aQmRJOcmSgCyLThz0le6i31BMVEMWY6DH2GzMWwwM5cNtXcO0b9u8P7PVYM8WhsSE8fGk6V08c5JHnE/3QReJsuuFdpqXMBKTLtFOrAvP1wUGoisLYpiYSrI4RM5V4tZSphoMD6oJrIJIlHMKrzB08l48Pf8ya02v47fm/xaD0LZe/YUoqN00d7OLotLUxz/4BdX7y+W1fF4MRhs7SKCrhVTIWQ/rlzs7ShCbYp80MRmaYmlh5aiWb8jZx74R7tY5Ue60KzNe0TIvNqW8/1R5PJV+eKKO4upH48IFz4TWQyIiQ8CpTE6cS4hdCaUMpOaU5fT6PYQBu9eDYGFMPu81brDYeXrqHNQeLsdra96YROuZInMddZ//eUkfm2Hdsb+leqpurtYxQH1oKzBsUhe+D7AnO3Lr2iVBE/CBUFb7aM/BWqQ4UkggJ72Gz4n9qCzND0gBYc2pVv09Z02jm811nvP7DurKx0lm7oYdEaMORUj7cdppffLLb619bYZccmkxaeBpW1dqvGr0Bo6XAfHNQII0GA8lmC6PMrXuT2VdmjphyMQDLd8v0mF5JIiS8Q6s9kOYeXgfAmuw3+rVfls2mMv+5dfz8o91sOV7mqkg18X3B96iojIgcQXyw9svUP91p79y9eEIy/iZ5mxkoHEm21AnhLDBf2zItNre+oVWZ+dmVmZdOGIRBgf351ZTW9n21q3AfeYcS+nfOHkizGhowqSrHTAqnPruzz8mQwaBwUbp9eHtZtnf3R3Eum9fBaFBVvZlv99nrJ66bLEXSA8kFKfbpsU15m1BVGemzpl/Ouij7e8ic+vqzd7RamRkfFsjrt01h22/mExsaoFGkoiuSCAl962APpHCbyuSWrslrgoP6tXnoVS09hb7eW+i1O0W32VZDB4nQl3vyabbaSE8MY2xyuNbhCBeakjAFk8FEfl0+udW5Woejub2leym31BHmH8bk6z/udGXmRekJRMiGw7oliZDQt072QJrbcvW1OiSwX5uHnpcWTUpkEDVNFla1bAXhbY5XHaeovgh/gz+TEyZrHQ5LW6bFrp00CEUZeEXpvizYL9jZ4d2RfPuy1adXAzArZRZ+w+e0KzDviE1q5nRHEiGhb53sgXRRy+qM7IAAyg2GPm8eajAozk7T3jo95vhAmpwwmUCTtstzj5XUsutUJUaDwpUTkzWNRbiHY9RREiFYe3otAHNT53Z77KoDRVz9l408v/Kwe4MSvSaJkNC3TvZASrJaGdPUjE1RWBcc1K/NQ69u2Xts7aFiKuu9rxW+nqbFymqbGZ0QxuxRccSHSc+UgchRJ7StcBvNVu/7e3GV3KpcTlSdwGQwOV+TrtQ2Wdh1qpLlu/OlvkpnJBES+tbFHkiO6bE1EdH92jx0VEIYGUnhWGwqW0+U9/k8Wmi2NrO9cDsAM1K0T4SmDo1mxQOzeOnmiVqHItxkVNQoYgJjaLA0kF2crXU4mnGMBp2XcB5h/mHdHn9xRgJBfkZOltWzN6/KvcGJXpFESOhbF3sgza23bwS5OdCfBlv/rkyfvGYcmx+exyVjE/t1Hk/bWbyTRmsjsUGxjIwcqXU4gH0rlNAAaVo/UBkUg30vO3x7Gb1jm5+5g7ufFgMI9jcxb4y9tYVsuaEvkggJ/etkD6TRgXEk+0fSaDM7uyr31YTUSBIjvG8qp/W0mNaFydtyy6lvtmgag/AMX68TKm8sJ7skG8C5/2FPLJ5gr5v7ak+BFE3riCRCwjt0sHmo8sBe5g6/HOj/JqytNVtsLjuXu+llW43aJgu3vrGVKf+7klNl9d0/QHg1x+/bwfKDlDaUahyN560/sx6bamNM9BiSQpO6f0CL2aPjCAs0UVjdyLZc75qGH8gkERLeo4M9kByrNdafWY+1j72EHE6W1fGjN7ZwxcsbvKKYsbShlIPlBwE4P+l8TWP5994CGsxWEsMDSY0O0jQW4X4xQTGMiR4D0O/RWG+05pT9wmtO6pxePS7AZGRhy/S7bLmhH5IICa82KWESYf5hlDeWs7tkd7/OFR3iz9YT5RwuqmVfvv43lXR8AI2JHkNMUIymsSzd0dI7aLL0DvIVjjohX5sea7Q0srnA/rfXk2Xz57p6YgoXZyQwd7T2W+EIO0mEhFfzM/hx4aALgf5Pj4UF+jE/w74M//Nd+u8ppJdpsdPl9Ww5UY6inG1FIAY+x270m/I3YVO9Zzq5v7YUbKHB0kBiSCLp0em9fvyMEbG8dusU53uN0J4s7RBeb27qXP51/F+sPrWaByc/2K8RiauzUvjXngKW787n15eNwWjQ5+iGTbVp1j/IarVibrXL9r+zT5ISZmTS4CiiAxUaGxs9Go9oy9/fH4PB/de4WfFZBJmCKG8s51D5IcbEjHH7c+qB44JrzqA5Mvo5QEgiJLzezJSZ+Bn8OFVziuNVxxkeObzP57pwVByRwX6U1DSx6Vgps0bGuTBS1zlScYSyxjKCTEFkxWd55DlVVaWwsJDKyso2t48KbuSxufFEh/hx4sQJj8QiOmcwGBg6dCj+/v5ufR5/oz/nJZ7H+jPr2ZS/yScSIZtqY92ZdUDPl8135mRZHV/tKeCumUMJ9Ot8Sw7hfpIICa8X4hfCtKRpfJf3HWtOr+lXIuRvMnDF+CTe+/4Un+/K020i5BgNmpIwBX+jez/wHBxJUHx8PMHBwSiKQmOzleagOhRFYXhcqG5H0HyFzWYjPz+fgoICBg8e7PYRixnJM5yJ0F3j7nLrc+lBTmkOpQ2lhPqFcl7CeX0+j6qq3PLaFvIqGxgeF8LCzJ6vPBOuJ4mQGBDmps61J0Kn1nD3uLv7da6rJ6bw3ven+E9OIQ1XWQny19/VmiMR6klrf1ewWq3OJCgm5mxhdmAgBAcH0mi2ERIku2vrQVxcHPn5+VgsFvz83Ptv4qgT2lm8k3pzPcF+wW59Pq05psVmpszEz9j311ZRFK4Yn8Tf1x9n+e58SYQ0JsXSYkBwLGPdU7qHkvqSfp1r0uAoFk1I5n+uyECPJQANlgZ2Fu0Ezq7ccTdHTVBwcPsPOn+TkXBJgnTDMSVmtfavnURPDAkfQkpoChabhe1F293+fFpzbKvR22XzHVnU0lxx1YFiahrN3Rwt3EkSITEgxAfHMy52HABrz6zt17kUReHlmydy09TBupy731G0g2ZbM4khiQwNH+rR52491eINvZZ8kScLeBVFObvdRt7A3m7jdPVpjlYexaSYmJkys9/nG5sczrC4EJosNlYeKHJBhKKvJBESA4ajp4ej2dlA5ZwWS75A01UruWX15JbW0Wh2/8iD0K/Wy+gHstWnVwMwOWEyEQER/T6foigsGm8fFZK9x7QliZAYMC4afBEA3xd8T525rt/nK61t4q2NJ1iRU9Dvc7nSpjz7B46npsU60myxUdNoprrRrMvpw9bmzJnDAw880OPjc3NzURSF7Oxsl5537dq1KIrSbtVda4WFhVx88cWEhIQQGRkJ2D8wly1b1uPn8bRpSdMwKkZyq3PJq9V//62+ckyL9Xe1WGuLs+yJ0IYjpVTU9W/jaNF3kgiJAWNYxDAGhw3GbDO7ZJj+i+x8fv/lfv6+/rgLonONwrpCjlUdw6AYNN1Wo7LB/qYd4m8iwKS/6cPWPvvsM5544okeH5+amkpBQQGZmZlA5wlMb8/bE88//zwFBQVkZ2dz+PBhAAoKCrj00kuBnidpnhTmH8b4uPGAxqNCNiuc2AB7P7V/7+eWO61VNlays9hel+eK+iCH4XGhjE0Ox99k4ECB/rvZD1SSCIkBQ1GUs9NjLtiEddGEJAwK7DpVSW5p/0eYXMHRTTozJtMlw/N9oaoqFXX24s6oEP0XSUdHRxMWFtbj441GI4mJiZhMXS+q7e15e+LYsWNMnjyZkSNHEh9v34IhMTGRgIAAlz6Pqzm328jTKBHavxxeyIR3roCld9m/v5Bpv90FNuRtwKbaGBU1ipRQ13ZPf+nmiez47cXMGBHr0vOKnpNESAwojmHr9WfWY7b1byVGfFggM1v6CC3L1seQv+OKW8tpsQazlSaLFYOiEBHkR32zpdOvc+uHXHFsb507hZWWlsYf//hH7rzzTsLCwhg8eDCvvvqq8/7Woy65ubnMnWv/nYqKikJRFG6//fYOz/uPf/yDKVOmEBYWRmJiIrfccgvFxcU9jjMtLY2lS5fy7rvvtnme1lNjQ4fai+MnTpyIoijMmTOn16+HOzjqhLYUbMFi6/2/Ub/sXw4f3wrV59TZVBfYb3dBMuS4sOrL3mLdGR4XqssWHb5E+giJASUrLouogCgqmirYVbSLqUlT+3W+q7KSWX+4hC+y8/nZvJGaFidbbVbnZo9a7i/mGA0KD/LDaDCQ8buvOz127ug43rrj7L/B5CdW0tBJcfW0odF89P/OJngzn15DeQd1E7lPXd7X0J2effZZnnjiCX7961/z6aefcu+99zJ79mxGjx7d5rjU1FSWLl3Ktddey6FDhwgPDycoKKjDc5rNZp544glGjx5NcXExDz74ILfffjv//ve/exTTtm3buPXWWwkPD+fFF1/s8Hm2bt3K1KlTWblyJWPHjnV79+ieGhszlnD/cKqbq9lbupeJ8RM988Q2K6x4COhoBaMKKLDiYUi/HAx9SzaarE18l/cd4J5EyEFVVaobLURIKwqPkxEhMaAYDUZmp84Gzq7y6I8FYxMJ8jNyorSO3Weq+n2+/jhYfpCqpipC/EIYFzdOkxhsquqsD4oK9t437Msuu4z77ruPESNG8NBDDxEbG8uaNe2nU41GI9HR0QDEx8eTmJhIRETHU5J33nknl156KcOGDeP888/npZde4uuvv6a2trZHMcXFxREQEEBQUFCnzxMXZx+hjImJITEx0Rmb1owGo7NmzaN1Qic3tR8JakOF6jz7cX20tWArDZYG4oPiyYjJ6PN5urLnTCWXPL+eW9/c6pbzi67JiJAYcOamzmXZ0WWsObWGh857qF+jOCEBJi7OSGD57nyW7cojKzXSdYH20sZ8ewH4tMRp+Bk0SkJUSAwPpKbRQmiA/e1j/+MLOj3ccM5rv+N/5vf42O8ect/V9/jx453/rSgKiYmJvZrG6siOHTt47LHH2L17NxUVFdhs9h3ZT506RUaGez5A9eSClAv45uQ3bMrbxH9l/ZdnnrS2h/13enpcB1o3UXTXiHBSRBDHS+uw2lRy8qrITNGm/s9XyYiQGHCmJ08n0BhIfl0+hysO9/t8V09Mwc+o0NCsbb8crXabb81gUIgJDSAtNsT5oRDsb+r069yGlK441hXO3XpCURRn4tIXdXV1LFiwgPDwcN5//322bdvG559/DkBzs28si3b8XuaU5VDV5KHR09AE1x53Dptqc8uy+XPFhQWwuKXT9Asr+/+eJXpHEiEx4ASZgjg/2T5M74rpsVkjY9n2m/k8fd347g92kzpzHbuLdwPaJkK+qCdbVhw8eJCysjKeeuopZs2aRXp6er9HmPoai1YSQxIZHjEcm2rj+4LvPfOkQ2ZAeDLQ2UiNAuEp9uP6YH/Zfoobigk2BTM1sX/1ht356UUjMCiw8kAxe85UuvW5RFuSCIkB6aJUe3NFV3SZNhkNRAZrW5S6rXAbFtVCalgqqeGpmsTQ0Gyloq4Zi7XvIyfeaMiQISiKwldffUVJSUmHNT+DBw/G39+fl19+mePHj7N8+XKX9xgCe51SUFAQK1asoKioiKoqbevWzuVcRu+pOiGDERY+3fI/5yZDLf+/8Kk+F0o7VotdkHIB/kb3vgcMiwvlqiz70vwXVh5x63OJtiQREgPS7NTZGBQDB8oPUFhX6LLzniyr69MS7v5yNIjUcjSoptFMcU0jVQ2+tUFkSkoKv//973n44YdJSEhgyZIl7Y6Ji4vj7bff5pNPPiEjI4OnnnqKZ555xuWxmEwmXnrpJf7+97+TnJzMlVde6fLn6I8LUuzL6DfmbfTcXnQZi+GGdyH8nB3cw5Ptt2cs7vOp3blsviM/nTcSgwKrDxaTfbrSI88pQFFl58QuVVdXExERQVVVFeHh4VqHI3rhtq9vY2fxTh6Z+gi3jLml3+d78KNsPtuVxy8vGcWSi0a6IMKeabI2seDTBZQ1lvHi3BedW4l4Us6pUgrOnCIhJZWMQTGYjHINpVeNjY2cOHGCoUOHEhgY6NHnbrA0MPODmTTbmll25TKGRw733JPbrPbVYbVF9pqgITP6PBIEcKbmDJd+dilGxci6G9d5rIHpgx9n89nOPO6eOZTfXjHwi+zdqaef3/JuJgYsV3aZBpiTbu/0+7d1xzvsb+MuXx77krLGMhJDEpk1aJbHnre1b/bZR9VC/I2SBIlOBZmCOC/pPAA+P/K5Z5/cYIShs2Dcdfbv/UiC4OxqsYnxEz3axf2BeaN4647z+M3lYzz2nL5O3tHEgOVY5bG9cDvVzf3fx+eKcUlkpoRT22Th5dWemcO3qTbe2fcOAD8c80NNls2brTZWHbQvP5Zmb6I7t6TbR18/OfyJ51aPuYFztZiHpsUcBscEM3d0vKbNW32N1yRC5eXl/OAHPyA8PJzIyEjuuuuuHjcqU1WVSy+9VPe7OAvXGhI+hGERw7CoFr47812/z2cwKDy80H6V9t73JzldXt/vc3Zn7em15FbnEuYXxnWjrnP783Vk/eESKuvNGBUIDpDWY6Jrs1JmMTJqJPWWej4+9HHvHuzGjVN7o6qpiu1F2wHPJ0Jt4mgwe+R9xtd5TSL0gx/8gH379vHtt9/y1VdfsX79en784x/36LEvvPCCZNc+ylFP46rpsZkjY5k1MhazVeXZbw655JxdeXvf2wBcP/p6QvxC3P5851JVlbc35QIQ5G9q1/RQiHMpisIdY+8A4L0D79FoaezZA928cWpvfJf3HVbVyojIEZqt0lx1oIhZT6/m15/v1eT5fYlXJEIHDhxgxYoVvP7660ybNo2ZM2fy8ssv8+GHH5Kf31V7dcjOzubZZ5/lzTff9FC0Qk8cV3Mb8jbQbHVNXc9DC9MBWJadT06e+4b+s4uz2VW8C5PBxA/G/MBtz9OVZquNuNAA/IwGQgNkY0jRMwuHLiQpJInyxnKWH+tBIuOBjVN7w9OrxToyKiGM+mYrG46UsuNkuWZx+AKvSIQ2b95MZGQkU6ZMcd42f/58DAYDW7Zs6fRx9fX13HLLLbzyyiskJiZ6IlShM5mxmcQFxVFnrmNb4TbXnDMlgsUTkkkID6C0tskl5+yIYzToimFXEB8c77bn6UqAychzN2bxj7umSZG06DE/gx+3ZtwKwDv73sHa1RRXtxunYt841UPTZGar2bnJ6pzUOR55zo6kRgdz3eRBADz/rfQVcieveGcrLCwkPr7tB4HJZCI6OprCws57xPz85z9nxowZveq10dTURHV1dZsv4b0MisG5CaurpscAHl2UwdpfzmXOaPckKLlVuaw+Ze+KffvY293yHL0RFxagdQjCy1wz8hoiAiI4VXOKladWdn6gBzZO7Y1thduoM9cRGxRLZmymR56zM/81dwQmg8J3R0vZliujQu6iaSL08MMPoyhKl18HDx7s07mXL1/O6tWreeGFF3r1uCeffJKIiAjnV2qqNvPDwnVaL6N3VdusmNAAgvzdN1X07v53UVG5cNCFDA9P83gBaXF1Iz/7cJcUaoo+C/YL5ub0mwF4M+fNzv/2PLBxam84tuWZPcjelFVLqdHBXD/FMSo08PYgU1WV5bvzabZo261e03/lX/ziFxw4cKDLr2HDhnW4M7TFYqG8vLzTKa/Vq1dz7NgxIiMjMZlMmEz21S7XXnstc+bM6TSmRx55hKqqKufX6dOnXfbzCm1MS5pGkCmI4vpi9pftd+m5bTaVz3edYc1B1+0rVdZQxhdHvwDg9pBRmhSQ/t9/DvFFdj6/+GS3W59HK3PmzOGBBx7QOowB7+b0mwk0BrK/bD9bC7d2fJCbN07tDVVVncvmtWhc2pH/mjsCP6PCpmNlbDlepnU4LvV1TiH3f7CLa/66UdOtezRNhOLi4khPT+/yy9/fn+nTp1NZWcmOHTucj129ejU2m41p06Z1eO6HH36YPXv2kJ2d7fwCeP7553nrrbc6jSkgIIDw8PA2X8K7BRgDmJkyE3DNJqytvbflJD//aDe//3IfZhf9IX9w8AOabc1khqQwZcWjHi8gzT5dyac7zgDwyKXprn8CnSyR7qm1a9eiKAqVlZVah+J1ogOjuWrEVYB9VKhDbt44tTcOlB+gqL6IIFOQ2zdZ7alBUcFcPyUVgwK7B9BmrI1mK7//ch8AF6UnaFqD6BU1QmPGjGHhwoXcc889bN26lY0bN7JkyRJuuukmkpOTAcjLyyM9PZ2tW+1XHYmJiWRmZrb5AvvmiEOHDtXsZxHacHWXaYdrJw0iNtSf3LJ6Ptx6qt/nqzfX8+GhDwG4vfAUiocLSG02lceW29+crpmUwsTBUS49v56WSAvPuG3sbRgVI5vyN3Gg7ED7A9y8cWpvOEaDZiTPINDk2e1JuvLAvJGs+sUcfnyhB7cscbNAPyMv3DiReenx3DdH25/LKxIhgPfff5/09HTmzZvHZZddxsyZM3n11Ved95vNZg4dOkR9vdQ0iPYuHHQhRsXIkYojnK5x3XRnSICJn82z7zv24qoj1DX1b0PWZUeXUdVUxaDAWOaX5nVxpHsKSD/flUf26UpC/I08vNDFo0EaLZGuq6vj1ltvJTQ0lKSkJJ599tk29//jH/9gypQphIWFkZiYyC233OKcis/NzWXuXHsSHRUVhaIo3H777QCsWLGCmTNnEhkZSUxMDFdccQXHjh1zy8/gzQaFDeKStEsAeGtfJ6Pxbtw4tTf0sGy+I/HhgQyN9XwfMXebPjyGN24/j0A/bVtzeE0iFB0dzT//+U9qamqoqqrizTffJDQ01Hl/Wloaqqp2Wf+jqipXXXWV+4MVuhMREMHkhMkAztVYrnLT1MGkxQRTWtvM6xtO9Pk8FpuFd/e/C8CtcefRo7cGFxaQ1jZZeGqFfXHCkotGEh/uwitiDZdI/+pXv2LdunV88cUXfPPNN6xdu5adO3c67zebzTzxxBPs3r2bZcuWkZub60x2UlNTWbp0KQCHDh2ioKCAF198EbAnWA8++CDbt29n1apVGAwGrr76amw2bQs/9ejOzDsB+E/ufzhTc6bjgzIWwwM5cNtXcO0b9u8P7PVYErSnZA8Hyw9iUAya7enXE0eLazhQ4L2rmZssVs5U6GvAwmsSISH6a97geQD8Y/8/qDPXuey8fkYDv1wwGoBX1x/rc2+hladWklebR2RAJFcNXtCzB7mwgPTtjScoqWkiLSaYO2emuey8gGZLpGtra3njjTd45plnmDdvHuPGjeOdd97BYjk7cnfnnXdy6aWXMmzYMM4//3xeeuklvv76a2prazEajURHRwMQHx9PYmIiERH2DTivvfZarrnmGkaMGEFWVhZvvvkme/fuZf9+1xbkDwTp0enMSJ7RZu+8Drl449Sestgs/O/3/wvAomGLiA6M9sjz9tanO85w8fPreXT5PpetgPW0v609zsXPrecDF5QSuIokQsJnXD3yalJCUyiqL+KV7Fdceu7LMpMYPyiCumYrf159tNePV1WVt3PeBuCm9JsIGjbH4wWkd80cxs/nj+LRRWMJMLn4A0ijJdLHjh2jubm5zaKK6OhoRo8e7fz/HTt2sGjRIgYPHkxYWBizZ9v7Tp061fUb9ZEjR7j55psZNmwY4eHhpKWl9ehxvsoxKrTs6DLKG/XVE+ejQx9xoPwA4f7hPDjlQa3D6dTMEbH4GQxsPVHO5mPet4LsWEktr6w5SoPZSoiO9i2UREj4jCBTEL89/7cAvH/g/Y4LN/vIviFrOlmpkVya2fsu5tuLtrOvbB8BxgB77xUNCkiD/I38bP5I5qa7oUmkjpZIt1ZXV8eCBQsIDw/n/fffZ9u2bXz++ecANDd3vSXLokWLKC8v57XXXmPLli3OLvfdPc5XTU2cytiYsTRaG/ng4Adah+NU2lDKn3f9GYCfTfqZbkeDABIjArl5qr233fMrD3vVqJDNpvLIZ3tpttqYMzqOReOTun+Qh0giJHzKzJSZLEhbgE218fjmx7tu/d9LM0bE8vl9M5g2LKbXj30rx15EeuXwK8++EXuogDS/sgGrzc1vqBotkR4+fDh+fn5ttuKpqKjg8GF7c7qDBw9SVlbGU089xaxZs0hPT2/Xs8zf3x8Aq/Xs70pZWRmHDh3it7/9LfPmzWPMmDFUVFS4NPaBRlEU56jQBwc/oN6sjzqRZ7Y/Q625lsyYTK4dea3W4XTrvrkj8DcZ2JZbwcaj3jMq9MmO02w9UU6Qn5EnrszU1UbokggJn/PQeQ8R6hdKTlkOHx/+2KXnbv3H3dOrtaMVR9mQtwEFhVvH3tr2TjcXkJqtNm59cyuL//wdx0tqXXLODmm0RDo0NJS77rqLX/3qV6xevZqcnBxuv/12DAb7W9/gwYPx9/fn5Zdf5vjx4yxfvpwnnniizTmGDBmCoih89dVXlJSUUFtbS1RUFDExMbz66qscPXqU1atX8+CD+p1S0Yt5g+cxOGwwVU1VfHbkM63DYWvBVv51/F8oKPx2+m8xeqgmqT8SwgO5ZepgwHtGhUpqmvjDv+wj8L+4ZBSp0cEaR9SWJELC58QFx3H/pPsBeGnnSxTXu64rNEBNo5lnvznE//vHju4P5uzmqvMGz2NI+JD2B7ixgPTdzSc5WlxLYVUjMaFu3k9MoyXSf/rTn5g1axaLFi1i/vz5zJw5k8mT7SsI4+LiePvtt/nkk0/IyMjgqaee4plnnmnz+JSUFH7/+9/z8MMPk5CQwJIlSzAYDHz44Yfs2LGDzMxMfv7zn/OnP/3JLfEPJEaDkdvG3gbYt5Ex28yaxWK2mvnfLfYC6RtG38DYmLGaxdJb980ZToDJwI6TFWw4Uqp1ON164qv9VDdayEwJ5/YZaVqH046i/v/27jysqWvdH/h3JxAIUwCRGREHEBHFCRS1OKBgrZVbq9jrVK/zD9tyrG1te1rrzx6HVsW212OHo2Btj1TF6ahFKxonHCpOoBYRARFl0AqEGZJ1/0iJRqYEQhKS9/M8PMrOyt7rZSXZb9Zea6+OkE7qUGlpKUQiEUpKSugu0wZEKpNixpEZSHuShrCuYVgfsr7lJ6ko988KjN4gRq2UYcfcQIzo2bnJsoUVhQhLCEOdrA4/vfwT+nXup7F6tORJWTVGrhdDUlWHNa/5442/vmU2pqqqCllZWfDy8oK5eRun1cuk8tlhZQXyMUGewVqbHWQMNNpW7aBaWo2wPWF4UvUEq4evxsTuE3VSj62pW7HpyibYm9vjYMRBiMxEOqlHa/3//9zC3qsP8NlEP0T0d9N1dZokkzHEHL+D70/fQ8LiYPRx097fWdXzN/UIEaPE5/Hx6dBPweN4OJp9FGfzzmps3x72FpgxRN6zsy7xD8iaGX/z8+2fUSerwwDHAVpNggBg/bF0SKrq4Odqg6mDtLi4sI6mSBMtUGH5FDO+GWb0ngFAfoNFXXwXf1j2EN/d+A4AsGzQsg6XBAHAO2N64uwHo/U6CQLkE0neHeeD5OWjtZoEqYMSIWK0fDv5YrrvdADA5xc+R2Vdpcb2vWRUD1iZmSAtrxSHUh81Wqa8thy703cDAN70e1Njx1ZFWl4J4n+X32H7s1f9wOfpz8BF0kGpsXzKFO8psDCxQMbTDJzJO6P1qq67tA6VdZUY6DQQr3R7RevH1wSRhSms9GgKemOeT3Lb/dJ7G1AiRIzakoAlcLJwQl5ZHr6/8X3LT1BRJyszLHypGwBg/dF01NQ1vNvwnjt7IKmVwEvkhRCPEI0duyWMMaz8z00wBrzazxWDu+rvdGHSQai5fIrITIQp3lMAPJsxqS2nH5zGidwTMOFM8HHQx3o1e6k1GGP47VYBfs/Wr3szpT4oQcQ/k5GWV6LrqrSIEiFiPBrptrcwtcCHQR8CAOLS4nD3qfo3Q2zK3BFecLAyw/0/KxrcRbVWVoufbv8EAJjdezZ4nPbeiiWVtaiTMZib8rC8PVaXJ8allcunzOw9EyY8E1wuuIwbRTfavZoAUFVXhdUXVyuO39Oup1aO2562ns3C/B8v4/NDt/RmBlmdVIble2/gem4xfjhzT9fVaRElQsQ4NNNtP6bLGIz0GIk6VodVF1ZBxjSzVpSFwATRofIP2h/EdyDNPK1IwhLv/Yr88nx0Mu+EV7prt2ve1kKAhEXBOBA1HK62Qq0emxigVi6f4mTppLgstS1tWztW8Jl/pf4LeWV5cLJwwqJ+i7RyzPYW0d8NQlM+rj8owdGbmr0ze2vFJWfj5sNS2Jib4O8Teuu6Oi2iRIgYPhW67T8K/AhCEyGuFF7B/rv7NXboyMEe2NAnB2LB2+DvmAgkzAXb/griTn0EAJjuOx1mfO1fO+fxOPg4W2v9uMQAtWH5lDl+cwDIF0LOKmn9gsWqyCnNUSRcHwR+AAvTF+5lo8JAb33kYGWGWcHyyRlvx1/Ff643l5S2v9w/K7DhmPyGpR9P8EVna/0dG1SPEiFi2FTstnexcERUQBQAYGPKRo2thWSafgiT734Ek7JnA6bPC81xx4SDUCbDVGjvlgy5f1bgi8Q/UFZd13JhQlTVhuVTutl2w0iPkWBgzS/G2kaMMay+uBq1sloMcxuG0C6hygXUGOitj6LHeCPU1xE1dTK8tfMqvknK0MllMsYY/r4/DZW1UgR52Wt3NmobUCJEDJsa3fbTfafDx84HJdUl2HB5Q9uP3UQSFiuS98RMlpRDdHyl1r55rj5yG/8UZ2J5gnbGYxAj0cblU+b2mQsAOJh5EEUVRe1SxWM5x5D8MBkCngAfBX6kPEBazYHe+kgo4OO7mYPwP8O8AAAbfruDFQdvar0e/7nxCKfuFEHA52H1a/4dZiA6JULEsKnRbW/CM8GnQz8FBw4HMw/i0qNLbTt2I0nYbYEpLgiF4DOGmaWljY6daA/JmY/xa1o+eBywZHSPdj8eMSJtXD4lwDEAAxwHoFZWix23d2i8euW15fji0hcAgLn+c9HF5rkbh7ZyoLc+4vM4fDqxN1ZF9IHAhIdQX+0uYAxAcVluyege6N7ZSuvHby1KhIhhU7Pbvm/nvpjqMxUAsOrCKtRI27CSeCNJWJxIfilsXHkFXOukTZbTpKflNVh58BYAYHqQJ3o5G9cd0keOHIno6GhdVwMAsH//fvTo0QN8Ph/R0dGIi4uDra2trqvVdm1cPmVOH/lYod3puyGpkWi0aluubUFhZSE8rD0Ui74qtHKgtz6bOcQTZ94fhZe8n93Rvk6qmQkgLfl2xkCsn9IPi0K6a+V4mkKJEDFsrei2f3vA23AQOiC7NBtb07a2/tgvJGEPTfg4aikfoDmnpFSxPaemfQYtV9VKsUWciZe+PIn0AglEQlMsHevdLscyZmKxGBzHobi4uMWyCxcuxOuvv47c3FysWrUKkZGRuHPnjuLxzz77DAEBAe1X2fbUhgWCX3J/Cd1F3VFWW4bdd3ZrrEp3nt5R3Kbiw8APYW7ywpIjbRjorc+cbJ7Fea+oDGM2nkJyZvuvScbncXh9oDsEJh0rtehYtSVEXa3otrcR2OD9we8DAP5141/IKc1p3YySF5KwHTbWkHIcgiqr4FtTCxmAh6wTwvbWYffl3DaF2Zht57KwLvEPSKrq0MvZGtveHAw7S4HGj0NUU1ZWhsLCQoSFhcHV1RXW1tYQCoVwdHTUddU0p5XLp/A4nqJX6KdbP7WtJ/YvjDH848I/IGVShHYJxQj3EQ0LtWGgd0fxvyfuIudJBWZtvYRdv2v+c+bB0wp8dTwDlTX6f/mwKZQIEcPXim778K7hCHYNRo2sBquS3gFrzYySv5KwGgCnhUIkWMuvmct7gzhw4LDf6S3UMc1MZWeMoaTy2Wres4Z2RV93ETZM6YfDb4/AQE+7Nh+jo6qrq8OSJUsgEong4OCATz75RGlWTXV1NZYtWwY3NzdYWloiKCgIYrFY8XhOTg4mTpwIOzs7WFpaws/PD0eOHEF2djZGjRoFALCzswPHcXjzzTcbHF8sFsPaWt7Go0ePBsdxEIvFSpfG4uLisHLlSly/fh0cx4HjOMTFxbXXn0TvvOz1MpwsnFBUWaSRW1gczDyIK4VXIDQR4oPADxov1MaB3h3B6tf88Wo/V9TJGN5PuIE1v95udv1DVdRKZTh6Mx//E/c7XvriJGKO38HMrRf15oaO6tLvhUoI0ZTerwK9Jqi86jnHcfh70N/xX/tfxcXSTByWFkPptof1M0qaSKQqaitwJu8MkorO4nT3HiiXVQMAfKprEFxZBdi4gQtfi8W+ExHyqBR+rs8WI7xbKEH3zlZqzbi4nluMNb/eRmWNFPujhoHjOFiZmeDAX/9vD4wxja7Ppg6hiVCtuLZv3465c+fi0qVLuHz5MhYsWIAuXbpg/vz5AIAlS5bg1q1biI+Ph6urK/bt24fw8HCkpqaiZ8+eiIqKQk1NDU6fPg1LS0vcunULVlZW8PDwQEJCAiZPnoz09HTY2NhAKGx4k8rg4GCkp6fDx8cHCQkJCA4Ohr29PbKzsxVlIiMjkZaWhsTERBw/fhwAIBLp5yKV7cGUb4qZvWdi/eX1WHVhFeLT4zHcdTiGuQ1Df8f+EPBV780sqS7BxpSNAIDF/RbD2dK58YL1Pca7ZkGeDD1/Im95oHdHYG7Kx1fTAuDlYImvkjLw3al7yH5cjpjIAFgI1EsB7hWV4ZfLuUhIycPjsmrF9sCu9vh4gm+HmSX2IkqEiPGo77ZXkYeVKxaUV+MbCz6+7GSHEZWVECm+STEAnHxGSa8JAI+P4qpiiB+IkZSThOSHyaiRPevedxR2xmi73phrPwDc2J6KJIwDlJKg249KMel/zyG0tyP+EeHf4qWsnCfl+OJoOg7fkN+nSGDCwx/5Evi6yAdEt+cHU2VdJYL+HdRu+2/Oxf++2PCGeM3w8PBATEwMOI6Dj48PUlNTERMTg/nz5+P+/fuIjY3F/fv34erqCgBYtmwZEhMTERsbi9WrV+P+/fuYPHky/P39AQDdunVT7NveXr5Wm6OjY5MDnwUCgeISmL29PZydG56YhUIhrKysYGJi0ujjxmCK9xSkFKTg1INTyHiagYynGYi9GQuhiRBBzkEY7iZPjNyt3Zvdz9dXvsafVX+iu6i7YqX7JtX3GCd+oDxw2sZVngSpMMZJ33Ech7+N9YaXgyXe33MDR28WIPK7C4idMxgOKi6GWieVYcq35/GkXP655mAlwOSB7pg6yKNDzRBrDCVChDQlJxlzCvJw2M0F9wSm2GRnixVPnj5XgKGgPB8nzq9BUnk2LudfhpQ9u07exboLxniOQWiXUPRx6KPSemKpD0ogYwxHUvNxOfspvpzSDyHPzf6o97isGt8kZeDni/dRJ2PgOOC/+rvh3XE+cKNlMxoYMmSIUlI4dOhQbNiwAVKpFKmpqZBKpfD2Vh5IXl1djU6dOgEA3n77bSxevBjHjh1DaGgoJk+ejL59+2o1BmNgYWqBr0d/jeKqYlx4dAFn8s7gXN45PKl6AvEDMcQPxACArjZdMcxtGIa7Dccgp0FKg6DTHqcpBlx/PORjmPJMWz6wmj3GHVVEfze42wmxYEcKBCa8JlevZ4whNa8Ev6bl471xPuDxOJjweXh9oDsyCssQOdgDo3s5wpRvGKNrKBEipCllBTAF8MmTPzHHxQl7bKwxqawc9lIZkiyFOG5hgRvmZsDdXxRP8bHzUSQ/PWx7qN0jM3WwB3xdbBD9y1VkFpVj9rZLmD3UE8vH+0IokH8o3ymQ4LV/JivuEB3i3RkfhPdCb1ftTosXmghx8b8vavWYzx9bU8rKysDn85GSkgI+X/nEZ2Ul/6Y7b948hIWF4fDhwzh27BjWrFmDDRs24K233tJYPcgztua2CPcKR7hXOGRMhjtP7+Bs3lmczTuLa4XXkF2ajezSbPx8+2eY8c0wyGkQhrkNwzDXYVh1YRUYGCZ2m4jBzoNVP6iaPcYd1aCu9tj//4bB0owPc1Pl13tJRS32X8tD/O+5uP1IPrN1eA8HDOvhAABYPr5Xh7381RxKhAhpyl8zRQZVVSNCUob91laY5+yIap7yt6AAm24I9X4No7uMhod1228p7+8uwqG3RmBd4h+IS87G9vM5OHv3MTZF9oe/uwg9OlvBs5MFOA74cLyv4kNK2ziOU+vylC5dvKicsF24cAE9e/YEn89H//79IZVKUVhYiBEjmj4Renh4YNGiRVi0aBE+/PBD/PDDD3jrrbcgEMgvX0qlbZ81IxAINLIfQ8LjeOhl3wu97Hthnv88SGokuPjooiIxKqgowLmH53Du4TnFc6xNrbF00FId1lq/demk/L798ugfSMsrxfl7T1BTJ7/nkMCEh/F9nGH/3OV5Q0yCAEqECGla/YyS0kdY+mcxTlkI8ZTPhwljGFxVhTHllRjFE8Fx5l6Nd6ELBXx89qofRvVyxHu7ryOzqBzJmY/h7y4Cj8fJr+1bmoHHM8wPJk27f/8+li5dioULF+LKlSv45ptvsGGDfBkVb29vTJ8+HbNmzcKGDRvQv39/FBUVISkpCX379sWECRMQHR2N8ePHw9vbG0+fPsXJkyfh6+sLAPD09ATHcTh06BBefvllxVif1ujatSuysrJw7do1uLu7w9raGmZm+r9opTZZC6wR6hmKUM9QMMaQWZyJcw/P4WzeWaQUpKBWVou/DfobHIS6+YLQ0fye/Sc2n8xU/N7L2RrTBnsgor8bbC2M43YblAgR0pTnZpTYyRjiHhUgw9QUQ6qqnw2anrqlXccRhHh3xtHol/Dj+RzMG/FsgK6jtXkzzyIvmjVrFiorKxEYGAg+n4933nkHCxYsUDweGxuLzz//HO+++y7y8vLg4OCAIUOG4JVX5HMFpVIpoqKi8ODBA9jY2CA8PBwxMTEAADc3N6xcuRLLly/HnDlzMGvWrFZPe588eTL27t2LUaNGobi4GLGxsY1OxydyHMehh10P9LDrgdl+s1FRW4HCikJ0FXXVddU6jEGedlj7mj/uFJQhor8r/N1EBtvz0xSOddSJ/1pSWloKkUiEkpIS2NgY19IE5C+3DjYyo8TNYGaUqKKqqgpZWVnw8vKCuTklYfqM2ooQOVXP39QjREhLjGRGCSGEGCNKhAhRhZHMKCGEEGNjGDcBIIQQQghpBUqECCGEEGK0KBEihBBCiNGiRIgQojKaZKr/qI0IUQ8lQoSQFpmaytdrqqio0HFNSEtqauSLYr64XAghpHE0a4wQ0iI+nw9bW1sUFhYCACwsLIzupmsdgUwmQ1FRESwsLGBiQh/vhKiC3imEEJU4OzsDgCIZIvqJx+OhS5culKgSoiJKhAghKuE4Di4uLnB0dERtba2uq0OaIBAIwOPRqAdCVEWJECFELXw+n8afEEIMBn1tIIQQQojRokSIEEIIIUaLEiFCCCGEGC0aI9SC+puTlZaW6rgmhBBCCFFV/Xm7pZuMUiLUAolEAgDw8PDQcU0IIYQQoi6JRAKRSNTk4xyj+7E3SyaT4eHDh7C2ttbofTlKS0vh4eGB3Nxc2NjYaGy/+sTQY6T4Oj5Dj9HQ4wMMP0aKr/UYY5BIJHB1dW32lhLUI9QCHo8Hd3f3dtu/jY2NQb64n2foMVJ8HZ+hx2jo8QGGHyPF1zrN9QTVo8HShBBCCDFalAgRQgghxGhRIqQjZmZmWLFiBczMzHRdlXZj6DFSfB2focdo6PEBhh8jxdf+aLA0IYQQQowW9QgRQgghxGhRIkQIIYQQo0WJECGEEEKMFiVChBBCCDFalAhp0ObNm9G1a1eYm5sjKCgIly5darb87t270atXL5ibm8Pf3x9HjhxRepwxhk8//RQuLi4QCoUIDQ1FRkZGe4bQLHXi++GHHzBixAjY2dnBzs4OoaGhDcq/+eab4DhO6Sc8PLy9w2iWOjHGxcU1qL+5ublSmY7chiNHjmwQH8dxmDBhgqKMPrXh6dOnMXHiRLi6uoLjOOzfv7/F54jFYgwYMABmZmbo0aMH4uLiGpRR933dXtSNb+/evRg7diw6d+4MGxsbDB06FEePHlUq89lnnzVov169erVjFM1TN0axWNzoazQ/P1+pXEdtw8beXxzHwc/PT1FGn9pwzZo1GDx4MKytreHo6IiIiAikp6e3+DxdnwspEdKQX375BUuXLsWKFStw5coV9OvXD2FhYSgsLGy0fHJyMt544w3MnTsXV69eRUREBCIiIpCWlqYo88UXX+Drr7/Gt99+i4sXL8LS0hJhYWGoqqrSVlgK6sYnFovxxhtv4OTJkzh//jw8PDwwbtw45OXlKZULDw/Ho0ePFD87d+7URjiNUjdGQH431Ofrn5OTo/R4R27DvXv3KsWWlpYGPp+PKVOmKJXTlzYsLy9Hv379sHnzZpXKZ2VlYcKECRg1ahSuXbuG6OhozJs3TylZaM1ror2oG9/p06cxduxYHDlyBCkpKRg1ahQmTpyIq1evKpXz8/NTar+zZ8+2R/VVom6M9dLT05VicHR0VDzWkdvwq6++UoorNzcX9vb2Dd6D+tKGp06dQlRUFC5cuIDffvsNtbW1GDduHMrLy5t8jl6cCxnRiMDAQBYVFaX4XSqVMldXV7ZmzZpGy0+dOpVNmDBBaVtQUBBbuHAhY4wxmUzGnJ2d2Zdffql4vLi4mJmZmbGdO3e2QwTNUze+F9XV1TFra2u2fft2xbbZs2ezSZMmabqqraZujLGxsUwkEjW5P0Nrw5iYGGZtbc3KysoU2/StDesBYPv27Wu2zPvvv8/8/PyUtkVGRrKwsDDF7239m7UXVeJrTO/evdnKlSsVv69YsYL169dPcxXTIFViPHnyJAPAnj592mQZQ2rDffv2MY7jWHZ2tmKbPrdhYWEhA8BOnTrVZBl9OBdSj5AG1NTUICUlBaGhoYptPB4PoaGhOH/+fKPPOX/+vFJ5AAgLC1OUz8rKQn5+vlIZkUiEoKCgJvfZXloT34sqKipQW1sLe3t7pe1isRiOjo7w8fHB4sWL8eTJE43WXVWtjbGsrAyenp7w8PDApEmTcPPmTcVjhtaGW7duxbRp02Bpaam0XV/aUF0tvQc18TfTJzKZDBKJpMF7MCMjA66urujWrRumT5+O+/fv66iGrRcQEAAXFxeMHTsW586dU2w3tDbcunUrQkND4enpqbRdX9uwpKQEABq85p6nD+dCSoQ04PHjx5BKpXByclLa7uTk1OBadb38/Pxmy9f/q84+20tr4nvRBx98AFdXV6UXc3h4OH788UckJSVh3bp1OHXqFMaPHw+pVKrR+quiNTH6+Phg27ZtOHDgAH766SfIZDIEBwfjwYMHAAyrDS9duoS0tDTMmzdPabs+taG6mnoPlpaWorKyUiOve32yfv16lJWVYerUqYptQUFBiIuLQ2JiIrZs2YKsrCyMGDECEolEhzVVnYuLC7799lskJCQgISEBHh4eGDlyJK5cuQJAM59d+uLhw4f49ddfG7wH9bUNZTIZoqOjMWzYMPTp06fJcvpwLqTV50m7W7t2LeLj4yEWi5UGE0+bNk3xf39/f/Tt2xfdu3eHWCzGmDFjdFFVtQwdOhRDhw5V/B4cHAxfX1989913WLVqlQ5rpnlbt26Fv78/AgMDlbZ39DY0Fv/+97+xcuVKHDhwQGn8zPjx4xX/79u3L4KCguDp6Yldu3Zh7ty5uqiqWnx8fODj46P4PTg4GJmZmYiJicGOHTt0WDPN2759O2xtbREREaG0XV/bMCoqCmlpaTodc6Yq6hHSAAcHB/D5fBQUFChtLygogLOzc6PPcXZ2brZ8/b/q7LO9tCa+euvXr8fatWtx7Ngx9O3bt9my3bp1g4ODA+7evdvmOqurLTHWMzU1Rf/+/RX1N5Q2LC8vR3x8vEofqrpsQ3U19R60sbGBUCjUyGtCH8THx2PevHnYtWtXg0sQL7K1tYW3t3eHaL+mBAYGKupvKG3IGMO2bdswc+ZMCASCZsvqQxsuWbIEhw4dwsmTJ+Hu7t5sWX04F1IipAECgQADBw5EUlKSYptMJkNSUpJSj8Hzhg4dqlQeAH777TdFeS8vLzg7OyuVKS0txcWLF5vcZ3tpTXyAfKT/qlWrkJiYiEGDBrV4nAcPHuDJkydwcXHRSL3V0doYnyeVSpGamqqovyG0ISCf2lpdXY0ZM2a0eBxdtqG6WnoPauI1oWs7d+7EnDlzsHPnTqXbHjSlrKwMmZmZHaL9mnLt2jVF/Q2hDQH5bKy7d++q9GVEl23IGMOSJUuwb98+nDhxAl5eXi0+Ry/OhRoZck1YfHw8MzMzY3FxcezWrVtswYIFzNbWluXn5zPGGJs5cyZbvny5ovy5c+eYiYkJW79+Pbt9+zZbsWIFMzU1ZampqYoya9euZba2tuzAgQPsxo0bbNKkSczLy4tVVlbqfXxr165lAoGA7dmzhz169EjxI5FIGGOMSSQStmzZMnb+/HmWlZXFjh8/zgYMGMB69uzJqqqqtB5fa2JcuXIlO3r0KMvMzGQpKSls2rRpzNzcnN28eVNRpiO3Yb3hw4ezyMjIBtv1rQ0lEgm7evUqu3r1KgPANm7cyK5evcpycnIYY4wtX76czZw5U1H+3r17zMLCgr333nvs9u3bbPPmzYzP57PExERFmZb+Zvoc388//8xMTEzY5s2bld6DxcXFijLvvvsuE4vFLCsri507d46FhoYyBwcHVlhYqPX4GFM/xpiYGLZ//36WkZHBUlNT2TvvvMN4PB47fvy4okxHbsN6M2bMYEFBQY3uU5/acPHixUwkEjGxWKz0mquoqFCU0cdzISVCGvTNN9+wLl26MIFAwAIDA9mFCxcUj4WEhLDZs2crld+1axfz9vZmAoGA+fn5scOHDys9LpPJ2CeffMKcnJyYmZkZGzNmDEtPT9dGKI1SJz5PT08GoMHPihUrGGOMVVRUsHHjxrHOnTszU1NT5unpyebPn6+TD6fnqRNjdHS0oqyTkxN7+eWX2ZUrV5T215HbkDHG/vjjDwaAHTt2rMG+9K0N66dSv/hTH9Ps2bNZSEhIg+cEBAQwgUDAunXrxmJjYxvst7m/mTapG19ISEiz5RmT3y7AxcWFCQQC5ubmxiIjI9ndu3e1G9hz1I1x3bp1rHv37szc3JzZ29uzkSNHshMnTjTYb0dtQ8bkU8WFQiH7/vvvG92nPrVhY7EBUHpf6eO5kPur8oQQQgghRofGCBFCCCHEaFEiRAghhBCjRYkQIYQQQowWJUKEEEIIMVqUCBFCCCHEaFEiRAghhBCjRYkQIYQQQowWJUKEEEIIMVqUCBFCCCHEaFEiRAghhBCjRYkQIcSoFBUVwdnZGatXr1ZsS05OhkAgaLAKNiHE8NFaY4QQo3PkyBFEREQgOTkZPj4+CAgIwKRJk7Bx40ZdV40QomWUCBFCjFJUVBSOHz+OQYMGITU1Fb///jvMzMx0XS1CiJZRIkQIMUqVlZXo06cPcnNzkZKSAn9/f11XiRCiAzRGiBBilDIzM/Hw4UPIZDJkZ2frujqEEB2hHiFCiNGpqalBYGAgAgIC4OPjg02bNiE1NRWOjo66rhohRMsoESKEGJ333nsPe/bswfXr12FlZYWQkBCIRCIcOnRI11UjhGgZXRojhBgVsViMTZs2YceOHbCxsQGPx8OOHTtw5swZbNmyRdfVI4RoGfUIEUIIIcRoUY8QIYQQQowWJUKEEEIIMVqUCBFCCCHEaFEiRAghhBCjRYkQIYQQQowWJUKEEEIIMVqUCBFCCCHEaFEiRAghhBCjRYkQIYQQQowWJUKEEEIIMVqUCBFCCCHEaFEiRAghhBCj9X9Lt1hTjZTjHwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# create a fitting model based on a cosine function\n", "fitting_model = lmfit.Model(cos_func)\n", "\n", "# specify initial guesses for each parameter\n", "fitting_model.set_param_hint(\"amplitude\", value=0.5, min=0.1, max=2, vary=True)\n", "fitting_model.set_param_hint(\"frequency\", value=0.8, vary=True)\n", "fitting_model.set_param_hint(\"phase\", value=0)\n", "fitting_model.set_param_hint(\"offset\", value=0)\n", "params = fitting_model.make_params()\n", "\n", "# here we run the fit\n", "fit_result = fitting_model.fit(dataset.y0.values, x=dataset.x0.values, params=params)\n", "\n", "# It is possible to get a quick visualization of our fit using a build-in method of lmfit\n", "_ = fit_result.plot_fit(show_init=True)" ] }, { "cell_type": "markdown", "id": "488679bd", "metadata": {}, "source": [ "The summary of the fit result can be nicely printed in a Jupyter-like notebook:" ] }, { "cell_type": "code", "execution_count": 8, "id": "e6f191c1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "

Fit Result

Model: Model(cos_func)

Fit Statistics
fitting methodleastsq
# function evals41
# data points30
# variables4
chi-square 0.08965455
reduced chi-square 0.00344825
Akaike info crit.-166.389663
Bayesian info crit.-160.784873
R-squared 0.97688292
Parameters
namevaluestandard errorrelative errorinitial valueminmaxvary
frequency 1.01354010 0.00969484(0.96%)0.8 -inf infTrue
amplitude 0.49265483 0.01493243(3.03%)0.5 0.10000000 2.00000000True
offset-0.01096998 0.01155387(105.32%)0 -inf infTrue
phase-0.08093810 0.06854693(84.69%)0 -inf infTrue
Correlations (unreported values are < 0.100)
Parameter1Parameter 2Correlation
frequencyphase-0.8882
frequencyoffset-0.3681
offsetphase+0.3270
" ], "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fit_result" ] }, { "cell_type": "markdown", "id": "3a6641e6", "metadata": {}, "source": [ "### Analyzing the fit result and saving key quantities" ] }, { "cell_type": "code", "execution_count": 9, "id": "4c8a7ea6", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'amplitude': np.float64(0.4926548345920575),\n", " 'frequency': np.float64(1.0135400965444676)}" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "quantities_of_interest = {\n", " \"amplitude\": fit_result.params[\"amplitude\"].value,\n", " \"frequency\": fit_result.params[\"frequency\"].value,\n", "}\n", "quantities_of_interest" ] }, { "cell_type": "markdown", "id": "54821380", "metadata": {}, "source": [ "Now that we have the relevant quantities, we want to store them in the same\n", "`experiment directory` where the raw dataset is stored.\n", "\n", "First, we determine the experiment directory on the file system." ] }, { "cell_type": "code", "execution_count": 10, "id": "2084197a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "PosixPath('/root/quantify-data/20250320/20250320-201305-609-cb3a88-Cosine experiment')" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# the experiment folder is retrieved with a convenience function\n", "exp_folder = Path(locate_experiment_container(dataset.tuid))\n", "exp_folder" ] }, { "cell_type": "markdown", "id": "033c7543", "metadata": {}, "source": [ "Then, we save the quantities of interest to disk in the human-readable JSON format." ] }, { "cell_type": "code", "execution_count": 11, "id": "57d7ca8f", "metadata": {}, "outputs": [], "source": [ "with open(exp_folder / \"quantities_of_interest.json\", \"w\", encoding=\"utf-8\") as file:\n", " json.dump(quantities_of_interest, file)" ] }, { "cell_type": "markdown", "id": "9054cdd5", "metadata": {}, "source": [ "### Plotting and saving figures\n", "\n", "We would like to save a plot of our data and the fit in our lab logbook but the figure above is not fully satisfactory: there are no units and no reference to the original dataset.\n", "\n", "Below we create our own plot for full control over the appearance and we store it on disk in the same `experiment directory`.\n", "For plotting, we use the ubiquitous matplotlib and some visualization utilities." ] }, { "cell_type": "code", "execution_count": 12, "id": "81af206d", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHgCAYAAAChG7dTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/iElEQVR4nOzdd3yUVdbA8d8zk957gXQIhNBCBwUBQbGB6GJdey+su6uuiuuK2Nvr6tpQXLu7uuq6dqwoRaSKEEMJIUCA9JDeZ+77xzMzZEgCCSR5JpPz/XxCkmeemTmZMJMz9557rqaUUgghhBBCuDGT0QEIIYQQQnQ3SXiEEEII4fYk4RFCCCGE25OERwghhBBuTxIeIYQQQrg9SXiEEEII4fYk4RFCCCGE25OERwghhBBuTxIeIYQQQrg9SXiEEA6apnHfffcZHUavk5SUxBVXXGF0GEKII5CERwgXlZOTw/XXX09KSgo+Pj4EBQVx4okn8swzz1BXV2d0eKKXycrK4r777mP37t1GhyKEITyMDkAI0drnn3/Oeeedh7e3N5dddhnDhg2jsbGRlStX8pe//IXffvuNl19+ucvvt66uDg8PeVnorO3bt2Myufb7x6ysLBYtWsS0adNISkoyOhwhepy8sgnhYnJzc7nwwgtJTEzk+++/JzY21nHZzTffzM6dO/n888+75b59fHy65XbdkVKK+vp6fH198fb2NjocIcRRuPZbEiH6oMcff5zq6mr++c9/OiU7dgMHDuSPf/yj4/vm5mYeeOABBgwYgLe3N0lJSdx99900NDQ4XW/9+vXMmjWLiIgIfH19SU5O5qqrrnI65/Aanvvuuw9N09i5cydXXHEFISEhBAcHc+WVV1JbW9sqtrfffpsxY8bg6+tLWFgYF154IXl5eR36uffv389VV11FdHQ03t7eDB06lFdffdVxeV1dHWlpaaSlpTlN6ZWVlREbG8sJJ5yAxWIB4IorriAgIIBdu3Yxa9Ys/P396devH/fffz9KKaf7tVqtPP300wwdOhQfHx+io6O5/vrrOXjwoNN5SUlJnHXWWXz11VeMHTsWX19fXnrpJcdlLWt4Xn/9dTRNY+XKldxyyy1ERkYSEhLC9ddfT2NjI+Xl5Vx22WWEhoYSGhrKHXfccdxxrVy5kvHjx+Pj40NKSgpvvvmmUzznnXceANOnT0fTNDRN44cffujQ70YIt6CEEC6lf//+KiUlpcPnX3755QpQ8+bNU88//7y67LLLFKDmzp3rOKewsFCFhoaqQYMGqSeeeEItWbJE/fWvf1VDhgxxui1ALVy40PH9woULFaBGjRqlzj33XPXCCy+oa665RgHqjjvucLrugw8+qDRNUxdccIF64YUX1KJFi1RERIRKSkpSBw8ePOLPUFBQoOLi4lR8fLy6//771YsvvqjmzJmjAPX3v//dcd7PP/+szGaz+vOf/+w4duGFFypfX1+1fft2p8fEx8dHpaamqksvvVQ999xz6qyzzlKA+tvf/uZ039dcc43y8PBQ1157rVq8eLG68847lb+/vxo3bpxqbGx0nJeYmKgGDhyoQkND1V133aUWL16sli1b5rjs8ssvd5z72muvKUBlZGSo0047TT3//PPq0ksvdTxukydPVhdffLF64YUXHHG98cYbxxzX4MGDVXR0tLr77rvVc889p0aPHq00TVOZmZlKKaVycnLULbfcogB19913q7feeku99dZbqqCg4Ii/FyHciSQ8QriQiooKBaizzz67Q+dv2rRJAeqaa65xOn777bcrQH3//fdKKaU++ugjBah169Yd8fbaS3iuuuoqp/POOeccFR4e7vh+9+7dymw2q4ceesjpvC1btigPD49Wxw939dVXq9jYWFVSUuJ0/MILL1TBwcGqtrbWcWzBggXKZDKp5cuXq/fff18B6umnn3a6nj0J/MMf/uA4ZrVa1Zlnnqm8vLxUcXGxUkqpFStWKEC98847TtdfunRpq+OJiYkKUEuXLm0Vf3sJz6xZs5TVanUcnzRpktI0Td1www2OY83NzSouLk5NnTrVcexY4lq+fLnjWFFRkfL29la33Xab45j9sbInaUL0NTKlJYQLqaysBCAwMLBD53/xxRcA3HrrrU7Hb7vtNgBHrU9ISAgAn332GU1NTZ2O64YbbnD6fsqUKZSWljri/e9//4vVauX888+npKTE8RETE0NqairLli1r97aVUnz44YfMnj0bpZTT9WfNmkVFRQUbN250nH/fffcxdOhQLr/8cm666SamTp3KLbfc0uZtz58/3/G1pmnMnz+fxsZGvv32WwDef/99goODOeWUU5zud8yYMQQEBLSKOzk5mVmzZnX4cbv66qvRNM3x/YQJE1BKcfXVVzuOmc1mxo4dy65duxzHOhtXeno6U6ZMcXwfGRnJ4MGDnW5TiL5OipaFcCFBQUEAVFVVdej8PXv2YDKZGDhwoNPxmJgYQkJC2LNnDwBTp07ld7/7HYsWLeLvf/8706ZNY+7cuVx88cUdKrhNSEhw+j40NBSAgwcPEhQURHZ2NkopUlNT27y+p6dnu7ddXFxMeXk5L7/8crsrz4qKihxfe3l58eqrrzJu3Dh8fHx47bXXnJIKO5PJREpKitOxQYMGATiWZmdnZ1NRUUFUVNRR7xf0hKczDn/cgoODAYiPj291vGVtTmfjOvx+QP8dHV7vI0RfJgmPEC4kKCiIfv36kZmZ2anrtfUH//DLP/jgA37++Wc+/fRTvvrqK6666ir+7//+j59//pmAgIAjXt9sNrd5XNkKba1WK5qm8eWXX7Z57pFu32q1AnDJJZdw+eWXt3nOiBEjnL7/6quvAKivryc7O7vTiUjL+46KiuKdd95p8/LIyEin7319fTt1++09bm0dVy2Kljsb19F+P0IISXiEcDlnnXUWL7/8MqtXr2bSpElHPDcxMRGr1Up2djZDhgxxHC8sLKS8vJzExESn8ydOnMjEiRN56KGH+Ne//sXvf/973n33Xa655prjinnAgAEopUhOTnaMonRUZGQkgYGBWCwWZs6cedTzN2/ezP3338+VV17Jpk2buOaaa9iyZYtj9MTOarWya9cup3h27NgB4OhDM2DAAL799ltOPPHETicz3ak74jpaUiyEu5MaHiFczB133IG/vz/XXHMNhYWFrS7PycnhmWeeAeCMM84A4Omnn3Y656mnngLgzDPPBPSpp8Pf7WdkZAC0Wr5+LM4991zMZjOLFi1qdT9KKUpLS9u9rtls5ne/+x0ffvhhmyNbxcXFjq+bmpq44oor6NevH8888wyvv/46hYWF/PnPf27ztp977jmnOJ577jk8PT2ZMWMGAOeffz4Wi4UHHnig1XWbm5spLy8/4s/dXbojLn9/fwDDfiYhjCYjPEK4mAEDBvCvf/2LCy64gCFDhjh1Wv7pp594//33HT1fRo4cyeWXX87LL79MeXk5U6dOZe3atbzxxhvMnTuX6dOnA/DGG2/wwgsvcM455zBgwACqqqpYsmQJQUFBjqTpeGN+8MEHWbBgAbt372bu3LkEBgaSm5vLRx99xHXXXcftt9/e7vUfffRRli1bxoQJE7j22mtJT0+nrKyMjRs38u2331JWVgbAgw8+yKZNm/juu+8IDAxkxIgR3Hvvvdxzzz3MmzfP6Wfx8fFh6dKlXH755UyYMIEvv/ySzz//nLvvvtsxJTR16lSuv/56HnnkETZt2sSpp56Kp6cn2dnZvP/++zzzzDPMmzfvuB+fzuqOuDIyMjCbzTz22GNUVFTg7e3NySef3G6dkBBux5jFYUKIo9mxY4e69tprVVJSkvLy8lKBgYHqxBNPVM8++6yqr693nNfU1KQWLVqkkpOTlaenp4qPj1cLFixwOmfjxo3qoosuUgkJCcrb21tFRUWps846S61fv97pPmlnWbp9Gbedfdl1bm6u0/EPP/xQTZ48Wfn7+yt/f3+Vlpambr75ZqceOe0pLCxUN998s4qPj1eenp4qJiZGzZgxQ7388stKKaU2bNigPDw8nJaaK6Uv6x43bpzq16+fo9/P5Zdfrvz9/VVOTo469dRTlZ+fn4qOjlYLFy5UFoul1X2//PLLasyYMcrX11cFBgaq4cOHqzvuuEMdOHDAcU5iYqI688wz24y9vWXph7cBaO/xtMfblXFNnTrVaam7UkotWbJEpaSkKLPZLEvURZ+jKSVVbUII93LFFVfwwQcfUF1dbXQoQggXITU8QgghhHB7kvAIIYQQwu1JwiOEEEIItyc1PEIIIYRwezLCI4QQQgi3JwmPEEIIIdyeJDyi13n99dfRNM2xAeSRJCUlOZr0CSG63w8//ODYu00IVyIJj+hRP/30E/fdd1+vaG+/bds27rjjDjIyMggMDCQ2NpYzzzyT9evXt3n+/v37Of/88wkJCSEoKIizzz6bXbt2OZ2Tl5fHokWLGD9+PKGhoURERDBt2jS+/fbbVrdnT+za+igoKGh1/ieffMLo0aPx8fEhISGBhQsX0tzc7HTO8uXLmTNnDvHx8fj4+BATE8Npp53GqlWrnM6rra3l+eef59RTTyU2NpbAwEBGjRrFiy++iMViaXXfVquVxx9/nOTkZHx8fBgxYgT//ve/j/oYd+d9rV27lptuuokxY8bg6enZ7l5SdXV1XH311QwbNozg4GACAgIYOXIkzzzzDE1NTa3OLy8v57rrriMyMhJ/f3+mT5/Oxo0bW52XlJTU5u/uhhtu6NDjYvfee+8xadIk/P39CQkJ4YQTTuD7779vdd4///lPhgwZgo+PD6mpqTz77LNt3t67777r+H8SGRnJ1VdfTUlJSadi6iofffQRs2bNol+/fnh7exMXF8e8efM6vXluS1arlcWLF5ORkUFAQADR0dGcfvrp/PTTT63Ozc7O5sILLyQuLg4/Pz/S0tK4//77qa2tPZ4fS7gqY/seir7miSeeaLNDb2c0Nzeruro6ZbVaj3ru4R1wO+O2225TISEh6uqrr1YvvfSSevzxx9WAAQOU2WxW33zzjdO5VVVVKjU1VUVFRanHHntMPfXUUyo+Pl7FxcWpkpISx3nPPvus8vX1VRdddJF67rnn1NNPP61Gjx6tAPXqq6863aa9W+/999+v3nrrLaePuro6p3O/+OILpWmamj59unr55ZfVH/7wB2UymdQNN9zgdN6SJUvU2WefrR588EH1yiuvqCeeeEKNHDlSmUwm9eWXXzrO27Jli9I0Tc2cOVM9/vjjavHixeqcc85RgLrssstaPVZ33XWXAtS1116rXn75ZXXmmWcqQP373/8+6uPcXfe1cOFC5enpqcaMGaMGDRqk2nu5Ky0tVRMmTFB/+ctf1PPPP69efPFFdemllypN09RFF13kdK7FYlEnnHCC8vf3V/fdd5967rnnVHp6ugoMDFQ7duxwOjcxMVFlZGS0+t2tWbPmqI9Jy59B0zR13nnnqcWLF6tnn31WXX/99erNN990Om/x4sUKUL/73e/Uyy+/rC699FIFqEcffdTpvBdeeEEBasaMGer5559XCxYsUH5+fmrEiBGt/k8dq2XLlilAvf/++0c9d9GiReqCCy5Qjz76qHrllVfUgw8+qFJSUpSvr6/atGnTMd3/rbfeqgB1ySWXqJdeekk99thjKiUlRXl4eDg99nv37lUhISEqMTFRPfLII+qll15SV1xxhQLUnDlzjum+hWuThEf0qK5IeDrjeBKe9evXq6qqKqdjJSUlKjIyUp144olOxx977DEFqLVr1zqObd26VZnNZrVgwQLHsczMzFbbCtTX16u0tDQVFxfndLy97Qnakp6erkaOHKmampocx/76178qTdPU1q1bj3jdmpoaFR0drWbNmuU4VlxcrDIzM1ude+WVVypAZWdnO47t27dPeXp6qptvvtlxzGq1qilTpqi4uDjV3Nx8xPvvrvsqKChQtbW1Simlbr755nYTnvbMnz9fASo/P99x7L333mv1x7yoqEiFhIS0So6OtBVFR6xevVppmqaeeuqpI55XW1urwsPDW93X73//e+Xv76/KysqUUko1NDSokJAQddJJJzm9Wfj0008VoP7xj38cc6wtdSbhaUtBQYHy8PBQ119/faev29TUpHx9fdW8efOcju/atUsB6pZbbnEce+ihhxTQ6v/eZZddpgDH4ybch0xpiR5z33338Ze//AWA5ORkxxD/7t272b17N5qm8frrr7e6nqZp3HfffY7v26rhUUrx4IMPOoamp0+fzm+//dZmHDk5OeTk5Bw13jFjxhAQEOB0LDw8nClTprB161an4x988AHjxo1j3LhxjmNpaWnMmDGD//znP45jQ4cOJSIiwum63t7enHHGGezbt4+qqqo2Y6mqqmpzegcgKyuLrKwsrrvuOjw8Du0HfNNNN6GUOmothZ+fH5GRkU7TjBEREQwdOrTVueeccw6A08//8ccf09TUxE033eQ4pmkaN954I/v27WP16tVHvP/uuq/o6Gh8fX2PeN9HkpSUBDjvLv7BBx8QHR3Nueee6zgWGRnJ+eefz8cff9zmzvONjY3U1NR0+v6ffvppYmJi+OMf/4hSqt1tMpYtW0ZpaanTYwJw8803U1NTw+effw5AZmYm5eXlXHDBBU7Te2eddRYBAQG8++67HYqrvLycP//5zyQlJTmmoS677LJW02IWi4W7776bmJgY/P39mTNnDnl5eUe9/aioKPz8/FpNez/55JOccMIJhIeH4+vry5gxY1r9325qaqKuro7o6OhWt2kymZz+P1RWVgK0Ojc2NhaTyYSXl9dRYxW9iyQ8osece+65XHTRRQD8/e9/56233uKtt95y7Fx9PO69917+9re/MXLkSJ544glSUlI49dRT2/xDM2PGDGbMmHHM91VQUOCUtFitVjZv3szYsWNbnTt+/HhycnLaTWRa3qafnx9+fn6tLps+fTpBQUH4+fkxZ84csrOznS7/5ZdfAFrdf79+/YiLi3Nc3lJlZSUlJSVs27aNu+++m8zMzA49JvbaoZY//y+//IK/vz9DhgxxOnf8+PFO8XVWT94X6IlJSUkJeXl5fPTRRzz55JMkJiYycOBAp/sfPXo0JpPzS+f48eOpra1lx44dTse///57/Pz8CAgIICkpiWeeeabD8Xz33XeMGzeOf/zjH0RGRjrqyJ577jmn89r7/Y8ZMwaTyeS43J6MtZUE+vr68ssvv2C1Wo8YU3V1NVOmTOHZZ5/l1FNP5ZlnnuGGG25g27Zt7Nu3z+nchx56iM8//5w777yTW265hW+++YaZM2dSV1fX6nbLy8spLi5my5YtXHPNNVRWVrb6//jMM88watQo7r//fh5++GE8PDw477zzHAmd/eeYMGECr7/+Ou+88w579+5l8+bNXHHFFYSGhnLdddc5zp02bRoAV199NZs2bSIvL4/33nuPF198kVtuuQV/f/8jPhaiFzJ4hEn0Me1NaeXm5ipAvfbaa62uw2E7eB++U3dRUZHy8vJSZ555ptNQ/d13362AVlNaiYmJKjEx8ZjiX758udI0Tf3tb39zHCsuLnbU2hzu+eefV4Datm1bu7eZnZ2tfHx81KWXXup0/L333lNXXHGFeuONN9RHH32k7rnnHuXn56ciIiLU3r17HefZH9OWx+zGjRunJk6c2Or4rFmzFKAA5eXlpa6//vqj1nA0NDSo9PR0lZyc7DR1duaZZ6qUlJRW59fU1ChA3XXXXUe83Z64r45Maf373/92PCaAGjt2rNq8ebPTOf7+/uqqq65qdd3PP/9cAWrp0qWOY7Nnz1aPPfaY+t///qf++c9/qilTpihA3XHHHUeMQymlysrKFKDCw8NVQECAeuKJJ9R7772nTjvtNAWoxYsXO/1sZrO5zduJjIxUF154oVJK/3+qaZq6+uqrnc7Ztm2b42duWW/WlnvvvVcB6r///W+ry+zPPfuUVv/+/VVlZaXj8v/85z8KUM8880yr6w4ePNgRQ0BAgLrnnnta7Wpvn560a2xsVMOGDVMnn3yy0/Hs7GxHXZz9IyUlpc3n4AMPPKB8fX2dzv3rX/96xMdA9F6Hxr+F6KW+/fZbGhsb+cMf/uA0VP+nP/2Jhx9+uNX5HVnO3paioiIuvvhikpOTueOOOxzH7e9Yvb29W13Hx8fH6ZzD1dbWct555+Hr68ujjz7qdNn555/P+eef7/h+7ty5zJo1i5NOOomHHnqIxYsXd+j+7UP3LT366KPcdttt5OXl8cYbb9DY2NhqRdfh5s+fT1ZWFp9//rnT1FldXd0x/eyucl9206dP55tvvqG8vJzvvvuOX3/9tdUIYWfu/5NPPnE658orr+T000/nqaee4g9/+ANxcXHtxmKfviotLeXdd9/lggsuAGDevHkMHz6cBx98kOuvv95xn+1Nv/j4+DhiioiI4Pzzz+eNN95gyJAhnHPOOezfv58//OEPeHp6OqaDjuTDDz9k5MiRjunGlg5fBXfZZZcRGBjo+H7evHnExsbyxRdfcMsttzid+9prr1FZWcmuXbt47bXXqKurw2KxOI2ktRyZOnjwIBaLhSlTprRaoRcYGMjQoUOZNGkSM2bMoKCggEcffZS5c+eyYsUKpxHDpKQkTjrpJH73u98RHh7O559/zsMPP0xMTAzz588/4mMheh9JeESvt2fPHgBSU1OdjkdGRhIaGtol91FTU8NZZ51FVVUVK1eudKrtsb8Qt1W/UV9f73ROSxaLhQsvvJCsrCy+/PJL+vXrd9Q4Jk+ezIQJE5yWsR/t/tu674yMDMfXl1xyCaNHj+aKK65ot97niSeeYMmSJTzwwAOcccYZTpf5+vp26GevqKhw+oPq5eVFWFhYt9zXsYiOjnbUc8ybN4+HH36YU045hezsbGJiYo77/jVN489//jNfffUVP/zwA5dccgl1dXVUVFQ4nRcTE+O4HU9PT+bNm+e4zGQyccEFF7Bw4UL27t1LQkICvr6+NDY2tnmfh//+X3rpJerq6rj99tu5/fbbAf33P2DAAP773/86/l8f3vYgODgYX19fcnJy+N3vftfuz9jS4c9HTdMYOHBgm284Jk2a5Pj6wgsvdExZPvnkk47jn332GQ8++CCbNm1y+h20TLSam5uZOXMm06ZNc1qWP3PmTIYOHcoTTzzBY489BujL86+77jp27NjhSD7PPfdcrFYrd955JxdddBHh4eEd+llF7yA1PMIltNcjpb1C3Z7U2NjIueeey+bNm/n4448ZNmyY0+VhYWF4e3uTn5/f6rr2Y20lM9deey2fffYZr7/+OieffHKH44mPj6esrMzxfWxsrNN9HX7/R0ukvLy8mDNnDv/973/bfIf/+uuvc+edd3LDDTdwzz33tLo8NjaWgoIC1GHb8h3+s//xj38kNjbW8dGy8Ler76srzJs3j+rqaj7++GOn++/s77ml+Ph4AMfv77333nN6TOy/y7CwMHx8fAgPD8dsNjvdRlRUFKCPcthjslgsFBUVOZ3X2NhIaWmpU0zBwcF8/PHH7Nmzhx9//JHdu3fz1ltvkZ+fT2RkJCEhIY7bbPnx3nvvHfnB6kKhoaGcfPLJvPPOO45jK1asYM6cOfj4+PDCCy/wxRdf8M0333DxxRc7/V9Yvnw5mZmZzJkzx+k2U1NTGTJkiFO/qRdeeIFRo0a1GmmbM2cOtbW1x1UPJlyTjPCIHtVeYmMfiTl8ZYZ99OZIEhMTAb2JWEpKiuN4cXGx44/CsbJarVx22WV89913/Oc//2Hq1KmtzjGZTAwfPrzNhoRr1qwhJSXFaWgf4C9/+QuvvfYaTz/9tKOQu6N27drlVOhtH61Zv369o3gX4MCBA+zbt8+pULM9dXV1KKWoqqpyGhH4+OOPueaaazj33HN5/vnn27xuRkYGr7zyClu3biU9Pd1xfM2aNU7x3XHHHVxyySWOyw8ffevK++oK9uSv5QhMRkYGK1aswGq1Ok23rFmzBj8/PwYNGnTE27Q3orT//mbNmsU333zT6jyTyURGRgbr1q2jsbHRacrqwIEDTrfR8vffckRs/fr1WK3WNh+ThIQEEhISAP05t2HDBqeRm8Njsq+iGzBgQIebAh5eXK+UYufOnYwYMeKo1z185OvDDz/Ex8eHr776ymlK8bXXXnO6XmFhIdD2G6WmpianadvCwsI2R4DtzSaPNsUreiFDK4hEn/Piiy8qQP3yyy+tLouIiFDnnHOO07HbbrutQ0XLnp6eHS5a3rlzp9q5c2eH4r3pppsUoF566aUjnvfoo4+26pmzbds2ZTab1Z133ul07uOPP64Adffddx/xNouKilodsxfHtuwnopRSaWlpauTIkU59aO655x6laZrKyspyHCssLGx1mwcPHlTx8fEqPj7e6fiPP/6ofHx81PTp01V9fX27cebl5bXbG6d///5H7cPTE/d1pKLl4uLiNptY2vvwfPfdd45j7777bqseM8XFxSokJERdcMEFjmOlpaWtYmlsbFQnnnii8vLycurt056///3vClAvv/yy41hdXZ1KSUlR6enpjmO1tbUqLCxMnXXWWU7Xv+SSS5Sfn58qLS094v3ccMMNymQyOfWQak9XFC0//fTTjmNt/X/Mzc1VgYGBasqUKY5jt956q/Lz81M1NTVO5/n5+Tn9XtevX9/mc37Dhg2tGnGeddZZysvLS23fvt3p3Llz5yqTyaT2799/tIdD9DIywiN61JgxYwD461//yoUXXoinpyezZ8/G39+fa665hkcffZRrrrmGsWPHsnz58lbLfNsSGRnJ7bffziOPPMJZZ53FGWecwS+//MKXX37ZqucN4FjuerTi5aeffpoXXniBSZMm4efnx9tvv+10+TnnnONYunrTTTexZMkSzjzzTG6//XY8PT156qmniI6O5rbbbnNc56OPPuKOO+5wDLEffpunnHKKo47khBNOYNSoUYwdO5bg4GA2btzIq6++Snx8PHfffbfT9Z544gnmzJnDqaeeyoUXXkhmZibPPfcc11xzjdMS7tNPP524uDgmTJhAVFQUe/fu5bXXXuPAgQNO0xZ79uxhzpw5aJrGvHnzeP/9953ub8SIEY536nFxcfzpT3/iiSeeoKmpiXHjxvG///2PFStW8M4777Sakjlcd93Xnj17eOuttwAco28PPvggoI8KXnrppQC8/fbbLF68mLlz55KSkkJVVRVfffUV33zzDbNnz3aabpw3bx4TJ07kyiuvJCsri4iICF544QUsFguLFi1ynPfJJ5/w4IMPMm/ePJKTkykrK+Nf//oXmZmZjqLYo7n++ut55ZVXuPnmm9mxYwcJCQm89dZb7Nmzh08//dRxnq+vLw888AA333wz5513HrNmzWLFihW8/fbbPPTQQ051Uo8++iiZmZlMmDABDw8P/ve///H111/z4IMPOvWQas9f/vIXPvjgA8477zyuuuoqxowZQ1lZGZ988gmLFy9m5MiRjnPDwsKYPHkyV155JYWFhTz99NMMHDiQa6+91nHO8OHDmTFjBhkZGYSGhpKdnc0///lPmpqanIr4zzzzTJ566ilOO+00Lr74YoqKinj++ecZOHAgmzdvdpw3ZswYTjnlFN544w0qKys59dRTyc/P59lnn8XX15c//elPTj/Ll19+yZQpU5g/fz7h4eF89tlnfPnll1xzzTVdOj0qXITRGZfoex544AHVv39/ZTKZnEZqamtr1dVXX62Cg4NVYGCgOv/881VRUdFRR3iU0lv+L1q0SMXGxipfX181bdo0lZmZ2Wan5Y4uS7/88sudlqse/nH40vq8vDw1b948FRQUpAICAtRZZ53l1CVYKX2rgCPd5rJlyxzn/vWvf1UZGRkqODhYeXp6qoSEBHXjjTeqgoKCNuP96KOPVEZGhvL29lZxcXHqnnvuUY2NjU7nPPfcc2ry5MkqIiJCeXh4qMjISDV79my1fPlyp/Ps79Lb+2j5+7A//g8//LBKTExUXl5eaujQoertt98+6mPcnfd1pNudOnWq47x169ap8847TyUkJChvb2/l7++vRo8erZ566imnJfF2ZWVl6uqrr1bh4eHKz89PTZ06tVU37PXr16vZs2er/v37Ky8vLxUQEKAmT56s/vOf/3ToMbErLCxUl19+uQoLC1Pe3t5qwoQJTkvfW3r55ZfV4MGDlZeXlxowYID6+9//3mrk6rPPPlPjx49XgYGBys/PT02cOLHTMZWWlqr58+c7fra4uDh1+eWXO5a02x/3f//732rBggUqKipK+fr6qjPPPFPt2bPH6bYWLlyoxo4dq0JDQ5WHh4fq16+fuvDCC1u1A1BKqX/+858qNTVVeXt7q7S0NPXaa685nk8t1dbWqvvvv1+lp6crX19fFRwcrM4666w2R5XXrFmjTj/9dBUTE6M8PT3VoEGD1EMPPdTm7130fppSh1X/CSGEEEK4GVmlJYQQQgi3JwmPEEIIIdyeJDxCCCGEcHuS8AghhBDC7UnCI4QQQgi3JwmPEEIIIdyeJDxCCCGEcHuS8AghhBDC7UnCI4QQQgi3JwmPEEIIIdyebB4KWK1WDhw4QGBgIJqmGR2OEEIIITpAKUVVVRX9+vXDZDryGI4kPMCBAweIj483OgwhhBBCHIO8vDzi4uKOeI4kPEBgYCCgP2BBQUEGRyOEEEKIjqisrCQ+Pt7xd/xIJOEBxzRWUFCQJDxCCCFEL9ORchQpWhZCCCGE25OERwghhBBuTxIeIYQQQrg9SXiEEEII4fYk4RFCCCGE25OERwghhBBuTxIeIYQQQrg9SXiEEEII4fYk4RFCCCGE25NOy0IIIYToFharYm1uGUVV9UQF+jA+OQyzyZhNuiXhEUIIIUSXW5qZz6JPs8ivqHcciw32YeHsdE4bFtvj8ciUlhBCCCG61NLMfG58e6NTsgNQUFHPjW9vZGlmfo/HJAmPEEIIIbqMxapY9GkWqo3L7McWfZqFxdrWGd1HEh4hhBBCdJm1uWWtRnZaUkB+RT1rc8t6Ligk4RFCCCFEFyqqaj/ZOZbzuookPEIIIYToMlGBPl16XleRhEcIIYQQXWZ8chixwT60t/hcQ1+tNT45rCfDkoRHCGEsi1WxOqeUjzftZ3VOaY8XMgohupbZpLFwdnqbl9mToIWz03u8H4/04RFCGMbV+nQIIbrGacNiufP0NB79cpvT8RgDn9+S8AghDGHv03H4eI69T8eLl4yWpEeIXqy0ugGAiSlhXDQ+QTotCyH6nqP16dDQ+3Sckh5zxBdHV2pbL4Q4xGpVfLZZby545YnJzBoaY3BEkvAIIQzQ0T4d/1y5i/PHxhPi59XqHJkOE8J1rd9zkPyKegJ9PJg2ONLocABJeIQQBuho/42Hv9jGw19sIz7Ml+H9gxnWP5jh/YMpqqzn9vc3y3SYEC7qk1/3AzBraAzeHmaDo9FJwiOE6HEd7b8RHeRNYWUDeWV15JXV8cWWgiOe35npMCFE92i2WB3P1dkj+xkczSGS8Aghepy9T0dBRX2bdTwa+mqOlXeeTHVDM7/tr2Dz/gq27K9g/e4yCisb2r3tlm3rJw0I764fQQjRjlU5pZTVNBLm78WJLvQclD48Qoge15k+HcG+npwwMIIbpg7g+YtHc/cZQzp0Hz3dtl4Iofv01wMAnDE8Bg+z66QZrhOJEKJPOW1YLAvntE56YoJ9jliD46pt64UQUN9k4atMfTprzsj+BkfjTKa0hBCGiQnyBSA5wp8/zUzt0NLyo02HAYT6efZ423ohBPy4o5iqhmZig30YmxhqdDhOZIRHCGGYnUVVAIyKD+HsjP5MGhB+1ELjltNh7Z1ZVd/Mml2lXRmqEKIDPrFNZ501IhaTiy0akIRHCGGYnUXVAAyMDujU9U4bFsuLl4wmJth52io22IeRccE0WxXXvLmejXsPdlmsQogjq2lo5ruthYBrrc6ykymt7lZ3EHKXQ0k2NFSBTzBED4PESeAdaHR0Qhgq257wRHYu4QE96TklPaZVp+Vmq5VrXltDxa71fP3qlyRk+BMRHADBcZBwAkQM7OofQwgBfLu1kMCmMi4O3snwnN9gaw34hUHsSIifAJ6+hsYnCU93+v5BWPF/oKytL/P0g+Hz4KQ7ICS+52MTwmAWq3KM8KRGH1vybzZpzkvPm+oxr1vCG1UvYvLWG5+x6bAr9RsNJ94C6XNBc60hdyF6rb1rSPrqb6zxXoupQcGywy73CoAT/whT7zAkPJCEp3uFJuvJTmQa9B+jj+7UlsLen6F8D2x8Eza/D9PvhknzwSQzjKLv2H+wjoZmK14eJuJDu+Cd3+5V8PHNcDAXE6C8AlmjhrC1LpRgLzgzthLv/PVwYCO8fwUkTYG5L8obDiGOR0MVfHkXbHqbkQAa1EcMxyc+Q5/FqCqAvauhKl9GeNzakNmQMlUfSm9JKf0/wPcPwp5V8M3fYM9P8LtXwLvzQ/tC9EbZtoLllAj/4+/VsfoF+PoeUBYIjIXpd6MNP5+BDRp3v7SaXcU1PFvhz/vXDyTitzfgp3/A7hXw0hQ47w39eSqE6JzSHPj3hVCyA4D3mqfxdeiF/HP+Rc7nWa3637zIwQYEeYgMKXQnn6DWyQ7ow+iJJ8AVn8NZfwezN+z4Et48G2rLAH24f3VOKR9v2s/qnFIs1vYW4ArRO2Uf53QWoL95WPYwfLVAT3ZGXADz18Hoy8DTh4gAb96+egL9Q3zJLanhkn/vomLiHXDTz9BvlF5j9848yPqki34qIfqIom3w2ul6shMYywOR/8edzdcxevS41ueaTJB0IvhH9HycLcMw9N77Ok2DsVfBlV+AbyjsXw//vpCvf81l8mPfc9GSn/nju5u4aMnPTH7se5Zm5hsdsRBdJrvQlvBEHceo5g+PwI+P6V/PWAjnvNRqMUC/EF/euWYCkYHebCuo4vLX1lLtHw9XfQXpZ4OlET64EnK+P/Y4hOhLSnbC62dCdSFEDaXk91/z2j69UejsEa63OstOEh5XEDdWH+3xCYa8NWgfXE1hRa3TKfZdoCXpEe7C3oPnmBOeTf8+lOzMehim3NpuEXJShD9vXz2BED9PNuWVc92b66lXHljOfZWSpLPA2ozl35dg2b/p2GIRoq+oLYN/nQ+1JRAzAq74jM93WbEqGBkfQkK4n9ERtksSHlcRPRTLBf+iAU9OMW/gFo//Ol1sn9Ba9GmWTG+JXk8p1WJK6xgSnry18Okt+tdTbodJNx/1KoNjAnnjyvH4e5n5KaeU8xf/xImP/8gJ287jJ0s65uYaipb8jm83but8PEL0BZZm+M9lUJYDwfFwyYfgF+ZoNjjHBXvvtCQJjwtZax3CnY3XAnCL+SMmmX5zurzlLtBC9GYHKuqpbbTgYdJIDPfv3JXrK+CDq/SpqLSzYPpfO3zVkfEhvHL5ODxMGpv3V1JQWU8jnlzfdCu51mhiKcH60U0s3XKgkz+REH3Ayqf0Yn+vALj4PQiIYt/BWjbsOYim6d2VXZkkPC6kqKqe/1kn827zNEya4h+ezxFCVZvnCdGbZRfq/6+TI/zx7OwKrS/+AhV5etuHcxZ3up3D+OQwAn2cF6hW4cf8pltoUB6cat5A5sdPyUiqEC3lrYMfHtW/PuvvED0UgM8262UWE5LDiA5y7Q17JeFxIV62F/77mi8n29qfSK2CezzfaXWe7AIterudxzqdlfUxbH4PNDOcu+SYupWvzS3jYG1Tq+O/qWQeab4YgBub3mRT5pZO37YQbqmpHj66Xl8JOfw8GHG+46JPbdNZrriVxOEk4XERX27J567/bgagHm/ubLoWq9KYZ17OFJN+XEPfK0h2gRa9nX2F1sCoTiQs9ZXw5Z3611Nuhfg2lr92wJFGSN+wnMpa62D8tQb6r/qrvuxdiL5u5d/1up3AWDjjScfhnOJqfjtQiYdJ4/Rhrj2dBZLwGK6yvolb/7OJG9/ZSEVds6Pj7C9qEG9YTgXgQY9X8UJ/R7pwdvpRd5MWwtVlH8sKrR8e1bu1hqXohcrH6EgjpAoTC5quoUF5EFO4HLL+d8z3I4RbKNmp1+4AnPYI+IY4LrKP7kxOjSDM38uA4DpHEh4D/byrlNOfXsF/N+7HpMH86QP57rZpLLbtAv1k8/kUqhASTUVcbv6Ku88Ywmm9IIsW4kiOaYVW0VZYs1j/+ownwfPYp3XHJ4cRG+xDe28bdqn+vO1xrv7NN/fqw/lC9FVL79IXCAycqe8/Z6OUcqzOcuXeOy1JwmOAhmYLj3yxlYuW/Mz+8joSwvz4z/WTuH3WYLw8TJw2LJaVd57MK9dO58Bo/Z3sHzw+4sCBPIMjF+L4FVU1UFXfjEnTi5Y75NtFev1A2lkwcMZx3b/ZpLFwdjpAm0mPAhJm36UP35fvPZRoCdHX5K6And+AyQNOf9ypz1VWfiW7imvw8jBx6tBoA4PsOEl4ulFb20NsK6jk7OdW8dLyXSgFF46L54s/TmFsknNdjn0X6FGzb6Y2bChBWh0Dsp6jrKbRoJ9GiK5hr99JCvfH28N89Cvs/VnfekUzw8z7uiSG04bF8qJtJPVwE5LDOCVjAMy4Vz+w/EmoKe2S+xWi11AKvl2ofz3mCggf4HTxp7/qq7NOHhxFoI9nDwd3bGTz0G6yNDOfRZ9mkV9xaDg80MeDukYLzVZFuL8Xj/5uBKekHyUzNpnwPethePNsztO+593la7n89MndHL0Q3cdevzOwI/U7SsG39+lfj7oEIlK7LI7ThsVySnoMa3PLKKqqp6q+mXv+l8ma3DJW55QyacSF8PMLULAFVj/bZcmWEL3C1k9g/wbw9IeT7nC6SCnlqN+Zk9E7prNARni6xdLMfG58e6NTsgNQVd9Ms1Uxon8wX/35pKMnOzZayjSKw8fhrTXjv+5ZmizW7ghbiB7Rqfqd7K/1XZY9fGDaXV0ei30k9eyM/lwyMZFLJiYA8LePM2m0AtPu1k9c87KM8oi+w2qB7x/Uv550MwQ6/63auLec/eV1+HuZOTktyoAAj40kPF3MYlUs+jSLIy1mLa5uINSvcxXtwaf/DYDZlm/5cd0vxxGhEMba6dg09ChL0pWC5U/oX4+/FoK6/53kX05NIyLAi51F1SxZsQsGn67vF9RUA6uf6/b7F8IlbP1E3wXdJwRO+EOri+2jO6cOjcHHswPT0i5CEp4utja3rNXIzuGOZXsIr4FTyQsajbfWTPOP/3c8IQphqA5Pae1ZBfvWgdkbJrV+0e0OwX6e3H3GEACe/T6bvIN1h0aW1r6sb5wohDtTSu+7AzDhevAJcrrYYlWO7sqzR/auVcOS8HSxjm77cCzbQwTMugeA6bVfk5Wd0+nrC2G00uoGDtY2oWkwIPIoCY/9RXfUJa2G1LvTOaP6MzEljPomK4s+/Q0GnwExw6GxGta81GNxCGGInO8h/1fw9IMJN7S6+OddpZRUNxDi58nkgZEGBHjsJOHpYh3d9uFYtocITT+ZPT5D8Naa2Pv1s52+vhBGs9fvxIX64ut1hKHw/F9h57egmdocUu9Omqbx4NxheJg0vt1axNdZhTD5z/qF616RvjzCvdnfaIy5Avxad/W3T2edPiwGL4/elUL0rmh7gaM1NTuu7SE0TS8gA8YVfUjxwYpjjlMIIzgKlo9Wv7PqGf3z0HMhLLmbo2ptYFQg156UAsCiT7OoHXgmBMVBbQlseb/H4xGiR+zfoO+GbvJ0/K1pqbHZypeZBUDvaTbYkiQ8XexITc3s3x/P9hCJky+i2BRJuFbJr5+/fOyBCmGAnYUd2FKiMl/fJBTgxFt6IKq23XJyKv1DfNlfXsc/lu3W6xlAX6oue2wJd7R2if552LkQHNfq4hXZxVTUNREZ6M2ElPAeDu74uWTC8/zzz5OUlISPjw8TJkxg7dq1Hbreu+++i6ZpzJ07t3sDPIr2mprFBPvw4iWjj297CLMHhUMuByB55xs0NlmOJ1QhepR9hOeIBcsbXgdrM8RPhNiRPRNYG3y9zCyaMxSAV1bsYmf8uXpPkqIs2LXMsLiE6BY1JZD5of71+OudLrI30X3hh52APp3VG/d0dLnGg++99x633norixcvZsKECTz99NPMmjWL7du3ExXV/nr/3bt3c/vttzNlypQejLZ9hzc1iwrUp7G64j/J4DPmU/Pbcwwgj5XL/sfkU3/XBREL0f0O9eBpZ0qruRE2vKZ/Pf7aHoqqfTPTozklPZpvsgq5+8s83ht1Cdral/Ti5QEnGx2eEF1nw+v6nln9RkPcGMfhtprofr45nxMGhPe6vR1dboTnqaee4tprr+XKK68kPT2dxYsX4+fnx6uvvtrudSwWC7///e9ZtGgRKSkpPRjtkbVsajZpQHiXZcSe/qHsijkTALXh9S65TSG6W3ltI8VVDcARRni2fQrVhRAQDUPm9GB07Vs4Ox1fTzNrc8v42v9s/WD211Cxz9jAhOgqlmZYb/sbO+HQ6E57TXTLahq58e2NLM3M78koj5tLJTyNjY1s2LCBmTNnOo6ZTCZmzpzJ6tWr273e/fffT1RUFFdffXWH7qehoYHKykqnj94m7pSbAJhQv4ot27MNjkaIo9tpG93pF+xDgHc7g8v2GoIxV4BH55pzdpe4UD9umaFvaXH38lqaEiaDssLGtwyOTIgusv0LqNwPfhGOHdGP1ETXfmzRp1lYrL2nns2lEp6SkhIsFgvR0c49N6KjoykoKGjzOitXruSf//wnS5Ys6fD9PPLIIwQHBzs+4uPjjytuI4QOGMte3zS8NAs5375idDhCHJWjfqe96azi7fo2EppZT3hcyNWTk0mNCqC0ppEPsb0h++Ut/Z2xEL3dxjf1z6MvBU+99vRoTXQVx9ZE10gulfB0VlVVFZdeeilLliwhIiKiw9dbsGABFRUVjo+8vLxujLL7mMdeBUBG0f8orKg1OBohjizbsaVEO9NZv7ytf049tUe2kegMLw8TD84dBsDC7GSavUP1d8Q7vzU4MiGOU+UByPlO/3rUpY7D3dlE1ygulfBERERgNpspLCx0Ol5YWEhMTEyr83Nycti9ezezZ8/Gw8MDDw8P3nzzTT755BM8PDzIyWm7G7G3tzdBQUFOH71R/8m/p1bzI0krYPlXHxodjhBHZN9Sos2Ex9IMm9/Tvx71+x6MquMmpIRz7uj+NChPPtGm6QftBdZC9Fa//lufok2YBOEDHIe7s4muUVwq4fHy8mLMmDF89913jmNWq5XvvvuOSZMmtTo/LS2NLVu2sGnTJsfHnDlzmD59Ops2beqVU1Wd4h1AcZJe2Om79T/UyxJ14cJ2HmmX9J3f6sXKfuGQOquHI+u4u88YQrCvJ89WTNYPZH8NVYVHvpIQrkop+OUd/etRlzhdZG+i257jaqJrEJdKeABuvfVWlixZwhtvvMHWrVu58cYbqamp4corrwTgsssuY8GCBQD4+PgwbNgwp4+QkBACAwMZNmwYXl6uUfTYnfpP0x+X6dY1fLlR9tcSrqmqvslRDzAwso0ank226awRF7hMsXJbIgK8ueO0weSqWDapVFBWtnz1T1bnlPaq4k0hAMhbA2U5en8pW7GyXcsmuofriia6RnC5hOeCCy7gySef5N577yUjI4NNmzaxdOlSRyHz3r17yc/vXUvhupNHwgTKfePx1xrIWf4uSjrAChdkH92JCvQm2M/T+cKaUti+VP86wzWns1q6aFwCieF+fNCsj/Jom9/joiU/M/mx73vdMl3Rx/1iW2k4dC54tx55HZ8cjkcbCU2XNNE1gMs1HgSYP38+8+fPb/OyH3744YjXff3117s+IFemaXiPugh+epzxlV+zfs98xiX1niFG0TdkH2k6a8t/wNqkd1WOGdbDkXXe11kF7CmtpYKJ3OvxJsNMu0nV9rGzIo4b397YK/8QiD6ooRp++5/+9WHTWXYfbthHs1UxtF8g95yZTlFVQ5c20e1pLjfCIzrPd+xFAJxoyuS/P24wOBohWtt5pE1D7cXKGW2/6LoSe28SgHIC+cGaAcA55pW9tjeJ6KO2fwmN1RCarBcsH0Ypxb/W7gXg9xOSmDQgosub6PY0SXjcQVgKtdFjMWuKwOyPOFBeZ3REQjjJtm0a2qrDcmkOHPhF770z9BwDIuucw3uTfGTRp7XONq9Cw9ore5OIPsq+b9bweaC1TmBW55SSW1JDgLcHczJcq03EsZKEx034jb0YgLmmlbz18x6DoxHCmWNK6/CEJ/O/+ueUqRAQ2cNRdd7hPUe+t46iUvnRXytlomlru+cJ4VLqDh7qITWs7b0Y31mjj+7MHdWv/c7ovYwkPO5i6DlYTZ6km/awds1KWaIuXEZtYzP7Duqjjq02DbW/y2znRdfVHN5zpAEvPrNMAGCuaVW75wnhUrZ+ptfNRQ2FqCGtLi6qquer3/TdDS4en9jT0XUbSXjchV8Ymm335pOaVvG/X/YbHJAQupyiGgDC/b0I82+x5LwwC4q3gskT0s4yKLrOsfcmaTkB8In1RABONa/Hk+Ze15tE9EGONxrntnnx++v1YuVRCSGk9+udjXnbIgmPG9FsNRCnm9bw2qpcVueU8PGm/dIjRBjK3mF5QKvpLNuLbuop4BvSs0Edo5a9SexJz1prGsUqmFCtmhNMv/W63iSij6kugtwf9a/bSHisVsW/bcXKF49P6MnIup17TMwJ3eDTUSZPBrEfS9E2LlpS7bgoNtiHhbPTZbms6HFt1u8o1eums+xOGxbLi5eMZtGnWeRX1GPFxFLLOC71+JYHUneSIM8x4cqyPta3kug3GsJSWl28PLuYfQfrCPLx4KwR7lGsbCcjPO7EN4TiqBMAONO0xumigop6bnx7ozRGEz1uZ1sJz4Ff4GAuePjCoNMMiuzYnTYslpV3nsy/r53I388fyTKzvqw3Nv87sDQZHJ0QR9BydVYb7MXKvxsTh6+Xuaei6hGS8LgRi1XxUskIAM4wOyc80iNEGOXQHlotCpaz/qd/HjSrzQ6vvYHZpDFpQDjnjI4jPH06JSoIz8Zy2L3C6NCEaFtVIez9Wf/6sK0kAPIr6vhuq7433O8nuNd0FkjC41bW5pbxfvUIGpWZwaZ9DNCcC5elR4joafVNFvaU6kXLjhEepfRVIgDpcwyKrGvNGNqfryzjAFD27rVCuJrtnwMK+o+B4P6tLn5vXR5WpRfnD2yrSWgvJwmPGymqqqcSf1ZahwOtp7VanidET8gtqcGqIMjHg8hAb/1g8TZ9w0KzFww8xdgAu8hJgyL4RpsIgCXrU7A0GxyREG3Y+qn+uY1Vkc0WK++uzQPcc3QHJOFxK/beH19Y9b4gh09rHX6eEN0tu8V0lmbv5mof3UmZBj7useTVz8sDz5STKFWBeNSXwZ6VRockhLO6cshdrn89ZHari5dtL6agsp4wfy9OGxbTs7H1EEl43Ii9R8i3ljE0KxNppjzitULH5RpIjxDRo3batpRwKljeZkt4eknvnY6aMbQf31jG6N9s+9zYYIQ4XPbXYG2GiMEQkdrq4nfW6B36zxsTh7eHexUr20nC40bsPUIqCGCdNQ2AmaaNwKGeIdIjRPQk+wiPYw+t8jzI3wSaCQafYVxg3eDkIVF8q/SEx7L1C71WSQhXYZ/OamN0J6+slh93FANwkZv13mlJEh43Y+8RstZLn9Y6xaTvnh4T7MOLl4yWPjyiR2UfvkLLPvIRP7FX7J3VGVGBPlT1O5E65YW5ah8UZhodkhC6prpDe2cNaT2y+u66vSgFkwdGkBTh38PB9RxJeNzQacNimX/jLQCMN22jv089K+6YLsmO6FGNzVZ2lxy2Qss+ndXGi647mDo0kRW2RQNs+8LYYISwy/kemmohOB5iM5wuarJYeW/dPgAudtNiZTtJeNyUOSIFa2QaHpqVsY3r2V9eZ3RIoo/ZU1pDs1Xh72UmNtgHastgj22DTTer37E7NT2ab6y2aS2p4xGuwp58p50JmnNJwzdZhZRUNxAZ6M0p6dEGBNdzJOFxY6a0MwE4xbyRX/aWGxuM6HMc9Tv2FVrZ3+gt7aOHQaj77MDc0oDIAHKCT8SqNMwFv0KFbOIrDGa1QvZX+teDT291sb1Y+YKx8Xia3TslcO+frq+zFYVONf3K5t2FRzlZiK6VXXjYlhL2F93UUw2KqPtpmsbYYYP5RQ3UD+z40tiAhMj/BWqKwSsQEk5wuii3pIZVO0vRNLhwfLxBAfYcSXjcWb/R1HtHEKjV0ZwrfUFEz7Lvkp4aFaA34tv5nX7BoFkGRtX9TkmPdixPt0odjzDajq/1zwOmgYeX00X2XdGnDYokLtSvhwPreZLwuDOTCUuqvjFj6sEV1DdZDA5I9CWH9tAKgH3roL4cfEMhbpyxgXWz0QmhrPPWuy6TuwIaqowNSPRtjpFV5zca9U0W3l+vd1a+eIJ7TjEfThIeN+c3VJ+zPUnbROa+cmODEX1Gs8XKrmL7Cq3AQy+6A2eCyT2bmtmZTRopaaPYY43CZG081N1WiJ5WVQgHftG/Pmwq+avfCjhY20RssA/TB7tXi4j2SMLj5rSUqTTjQaKpiF3bNxsdjugj9pbV0mix4uNpon+I76Fh9VT3ns6yO2VoDD9YRwKgsr8xOBrRZ+20/d+LzYBA5xVY7/ysT2ddMC4eDzcvVrbrGz9lX+YdSEHIKAC0nfLCK3pGyw7Lpsp9UPSb3l154AyDI+sZk1MjWKXpz7vm7V9L12VhjB22kdVBpzkfLqxi7e4yzCaNC8e5d++dliTh6QMsA/QdqeNLVxkciegr7PU7AyMD9D18AOLGg1/f2MfNz8sDj5STaFCeeFbvh+LtRock+prmRshZpn89yHk6619r9NGdGWlRxAT3nc2kJeHpA6JG6/14Rll/I7+k1OBoRF+Qbd80NDrwUMIzyH2Xo7dl6rBE1tj2tENGV0VP27saGqvAPwpiRzkO1zVa+HBj3+isfDhJePoA335DKTJF4q01sW+jvPCK7mef0hoU7gG7ftQPunH/nbacnBbNDyoDgIZtXxsbjOh77NNZqaeA6dCf+s82H6Cqvpm4UF9OSu0bxcp2kvD0BZrG7lBbwyl5pym6mdWqyCnWE55hTZnQXAdB/fUOy31IZKA3xdEnAeCRtxoaqg2OSPQp9s1CU0/BYlWszinl4037WfxjDqDvim4yaUe4AffjYXQAomc0p8yE0o+Jkzoe0c32l9dR32TFy2wiuniFfnDgjFZ7+PQFQ4ePZu/3kSSYimH3ijZb+wvR5Sr2Qcl20Ex82zCEvz32PfkV9U6nRAR4GxSccWSEp4+IzTiVRmUm1pJPY1G20eEIN2bvsJwS6Y9pl61oMmW6gREZR1+engFA47avjA1G9B22YuXy0OFc+5+cVskOwF0fbmZpZn5PR2YoSXj6iKR+0fyiDQGgeONnBkcj3Jl9D60xYfVQlAVokDLN0JiMMiAygG2BEwBZni56kO2Nxn8rBnGk/3GLPs3CYu07/ycl4ekjNE0jN0Sv45FGaKI72QuWTzL/ph/ol9FnlqO3JWzoDBqUB361+6FERldFN7NaHSM8X9QOafc0BeRX1LM2t6yHAjOeJDx9iCXlZAAiyzZAc4PB0Qh3ZU94htVv0A8MONnAaIw3fXgS66yDAbDkfG9wNMLtFfwKdWU0efizSQ086ulFVa2nu9yVJDx9SELaGIpVEN6qXt/MUYguppRiZ2EVGlaiS1brB/t4wpMRH8pGjwwAyjNldFV0M9voTlXMJJo7sC4pKlAaDwo3NDIhlFVWfWlw7bbvDI5GuKP8inpqGi0MNe/Do64EPP31Dst9mNmkoWw1TP4HVoOl2diAhHuzjSKGDJ9FbLAP7a2N1IDYYB/GJ/ed6WZJePqQIB9PdvqPBaApW4bWRdezT2fNCdimH0iaDB5eBkbkGtJHTeagCsDHWoM6sNHocIS7aqyBvT8DYBo4g4Wz09s8zZ4ELZydjrkP9eKRhKePaUyYAkBg6WaorzA4GuFu7FtKTDZt0Q8M6JvL0Q83eVA0axgKQPGvSw2ORrit3avA2gTBCRCWwmnDYnn+4tEcntPEBPvw4iWjOW1YrDFxGkQaD/YxyQPTyNkWywBTPuxeCWlnGh2ScCM7i6rxppFB9faEp2/X79j5epkpjpwEJWto3PE9cK/RIQl3ZO97NWC6o9Fn/1BfrAp8PE08PHc4sSG+jE8O61MjO3YywtPHjEoIYaWtjsdq30lXiC6SXVTNeNM2PFQjBPaDiEFGh+Qywobre4lFV26RbSZE97CvAmzxRuP7bUUATB8cxblj4pg0ILxPJjsgCU+fkxoVyHrTSACasiXhEV1HKUV2YVWL6ayT++R2Eu2ZOHoMeSoST5opyfrB6HCEu6nYD8XbQDNB8kmOw8u2H0p4+jpJePoYs0mjrv8kLErDu3yn/iQRogsUVzVQWd/MSVK/06bwQB+2+40BoHCT1PGILrbrB/1zv1GORp9FVfVs3qfXak5L61s7o7dFEp4+aHBSHJvVAP2b3B+NDUa4jeyiasKoZIhpr34geaqxAbmiFP0xCTggm/iKLrbbtlFvi+fdD9uLARjeP7hP9dtpjyQ8fdCo+FBHHY/jXYEQxym7sIoJpq36N1HpECDvKA+XOvEsABKbdlFVKqOroosoBbn2hGeK4/AP9umsNJnOAkl4+qSMhBBHA0JrzjLZ0FB0ieyiaiaZsvRvkqYc+eQ+KjE+gWxTMgA7Vn9hcDTCbZTtgsp9YPKE+IkANFmsrNhRAsDJkvAAkvD0SREB3hQHj6ROeWGqKYKirUaHJNyAU8KTLAlPe8qi9U18G6X5p+gq9umsuLHg5QfAut1lVDU0E+7vxYj+wQYG5zok4emjhiVGOjY0dDxZhDgOBwvzSDXtR6FB4olGh+OywoadAkBi+Voam60GRyPcgn06q8XI6jLbcvSpgyMx9dFl6IeThKePGp0Qymqr3vlVEh5xvEqrG0ir/xUAFT3MsUpEtDZgzEyaMdNPK2HTll+NDkf0dkq1KFg+tBzd3n9HprMOkYSnjxqVEMLP1iEAqN2rwCrvNMWxsVgV/9u0X+p3OsjkE8h+P/2599tPn/Pxpv2szinFYpVaOnEMSrKhuhDM3hA3DoC9pbXkFNdgNmlMSZXFA3aytUQflRYTxA7zAGqUN/51ZVC8FaKHGh2W6GWWZuaz6NMs8ivq+d5LT3ju3BDMjPj8PrdPT2fkh4wmsTaTwII1/PHdUYC+c/XC2enyuInO2b1c/xw/Hjz1pef2ZoNjE0MJ9vU0KjKXIyM8fZSXh4kh/cNZ76jjWWlsQKLXWZqZz41vbyS/op4YSkkxFWBRGl9VD+DGtzeyNDPf6BBd0tLMfF7crSc1E7RDCwYKKurlcROdlyvTWR0lCU8fpk9rpevfSB2P6ASLVbHo0yzskzD26axMlUwl+iqRRZ9myTTNYeyP2zrrYJqViXhTMXGa3hzO/kjJ4yY6TKlDb1ZtU8m1jc2s3lUKSP+dw0nC04eNSgh11PEgdTyiE9bmlpFfUe/43p7wrLYl0ArIr6hnbW6ZEeG5LPvjVosPm1UK4DzKI4+b6JSirVBbAp5+0F/ftuSnnaU0NlvpH+JLalSAwQG6Fkl4+rBRCSFsUcnUKG+w1/EI0QFFVfVO39sTHseIYTvn9XUtHw/7YzXRXuzdznlCtMs+Mh8/ATy8APh++6HpLE0273UiCU8fFhvsS0RQgNTxiE5ruS9PnFZMvKmYZmU61NupjfOE8+NhH12daGr9RkMeN9EhubaCZVv9jlKKH6R+p10umfA8//zzJCUl4ePjw4QJE1i7dm275y5ZsoQpU6YQGhpKaGgoM2fOPOL5wpnU8YhjMT45jNhgHzRgkuk3ADarFGrwBUBDX3U0Pln68bTU8nFb30YdjzxuosOsVthj24TWlvBsL6ziQEU9Pp4mJg0INzA41+RyCc97773HrbfeysKFC9m4cSMjR45k1qxZFBUVtXn+Dz/8wEUXXcSyZctYvXo18fHxnHrqqezfLxvzdUTLfjxSxyM6ymzSWDjbeUrGXr9jH0RfODsds3R4ddLycas7rI5HHjfRKYWZUHcQvAIhNgM4tDrrhAER+HiaDQzONblcwvPUU09x7bXXcuWVV5Kens7ixYvx8/Pj1VdfbfP8d955h5tuuomMjAzS0tJ45ZVXsFqtfPfddz0cee80KiGULSqZWnykjkd0ymnDYnnx96OYZJuSsXfujgn24cVLRks/mXacNiyWFy8ZTUywj2N0dYJpK5GB3vK4iY6zlyAkTgKz3lLPvp3E9MHSbLAtLtV4sLGxkQ0bNrBgwQLHMZPJxMyZM1m9enWHbqO2tpampibCwtofEm5oaKChocHxfWVl5bEH3csN6xcMJk/WWQYx1bxZfxJJA0LRQVOj6/DVSmlSZs48Yw43x0YzPjlMRiiO4rRhsZySHsOOlRXw/SdMNGXxx5mpkuyIjrNPZ9n2rSuvbWTDnoOALEdvj0uN8JSUlGCxWIiOjnY6Hh0dTUFBQYdu484776Rfv37MnDmz3XMeeeQRgoODHR/x8fHHFXdv5utlZkhskNTxiGNStGUZAFu1AVw0OZ1JA8Il2ekgs0ljyIRTsGImwVTM9u2tV2sJ0SalYK9tECDxBACWZ5dgVTAoOoC4UD8Dg3NdLpXwHK9HH32Ud999l48++ggfn/ZXOSxYsICKigrHR15eXg9G6XpGSx2POEZNufq7zLzADGMD6a28A6mNGA6AtnslSknDQdEBJTugthQ8fB31O47pLBndaZdLJTwRERGYzWYKCwudjhcWFhITE3PE6z755JM8+uijfP3114wYMeKI53p7exMUFOT00ZfZ63jqNKnjEZ0TXLwOgNrYCQZH0nv5DpoKwNDGLWwvrDI4GtEr2Kez4saChxcWq+IHe/+dwZLwtMelEh4vLy/GjBnjVHBsL0CeNGlSu9d7/PHHeeCBB1i6dCljx47tiVDdyqiEEJrxYL1lkH5A+vGIjqguIrIhD6vSCEg90ehoei2zbUnxRFMWq3aWGhyN6BX22Kez9OfdprxyDtY2EejjwejEUAMDc20ulfAA3HrrrSxZsoQ33niDrVu3cuONN1JTU8OVV14JwGWXXeZU1PzYY4/xt7/9jVdffZWkpCQKCgooKCigurraqB+h10kI8yPM34ufLWn6gb0dKxAXfZtl908AbFfxpCb23Tq445YwASsmEkzFZG3bZnQ0ojfYoz/3SNQHAuzTWScNisTT7HJ/1l2Gyz0yF1xwAU8++ST33nsvGRkZbNq0iaVLlzoKmffu3Ut+/qHdhF988UUaGxuZN28esbGxjo8nn3zSqB+h19E0jVHxIYc6Lu9ZrRfFCXEEVTv0Lq8bSSM5wt/gaHox70AaImw9jPJ+ptkiNXTiCMr3QuU+MHlA3Digxe7oMp11RC61LN1u/vz5zJ8/v83LfvjhB6fvd+/e3f0B9QGjEkJ4dtsAmvHAo7oADuZCWIrRYQkXptneZR4IHiUrs46TT8qJUJLJcMtv/LqvgjEyLSHaYx/dic0AL38KKurJyq9E02Ca9N85Ipcb4RHGGJUQSgNeZJkG6gf2/mxsQMK11VcQVKFPvzTHt19fJzpGsy0tHmfawU87SwyORri0w6az7MXKI+NCCA/wNiqqXkESHgHAiLhgNA1+akzVD9ifVEK0JW8tGord1mjiE2Qk8Lgl6H+80rS9/JK929hYhGtzJDx6wfL3slloh3VoSmv06NGdulFN0/jkk0/o37//MQUlel6gjyeDogJZWzyYG/hUCpfFkdmWxa61ppHer2+3degSgdE0BSfhWbEb87511DWejK+X7IUkDlNdDKXZ+tfxE2hotrDSNiI4Xep3jqpDCc+mTZu47bbbCAgIOOq5SikeffRRp60bRO8wKiGELwptS9NLd+pPrgCZExatNe5ahRewTg3mrJhAo8NxCx7JJ8Km3WSwlfV7ypiSKs89cZi9ttGdqKHgF8ba7GJqGy1EBnozVN54HFWHi5b/8pe/EBXVsQzy//7v/445IGGcUQkhvLsugL0eSSQ079ZHedLnGB2WcDVNdXgU/AJAfsho/Lxccu1Dr6MlngCb3mGcaTvLckol4RGtOfrv2JejFwP6ZqEmWThwVB2q4cnNzSUysuNPvqysLBITE485KGGMUQn6ypBVTbY6HpnWEm3ZvwGTtYlCFUJIv0FGR+M+bHU8I7Uc1mUfMDgY4ZLsHZZt/1eWbZf6nc7oUMKTmJjIb7/91uEbjY+Px2yW+efeZmBkAIHeHqxusvXjkYRHtMX2LnOdNY30/sEGB+NGwlKw+EXirTVjyv+FiromoyMSrqS+Agoz9a8TTyC3pIbckho8zRonDowwNrZeosOrtEaMGMGECRNYsmQJVVWy34s7Mpk0MhJCWGdvQJi/GRqkY7U4jO1d5hprGumxUjfQZTQNc5K+PH2stp2fd8k2E6KFvLWgrBCaBEH9HKuzxiWFEejjaWxsvUSHE54ff/yRoUOHcttttxEbG8vll1/OihUrujM2YYBR8SHkE06ZZwwoC+xba3RIwpVYmlG2/xPrZIVW17NNVYw1bZd+PMLZYcvRl8ly9E7rcMIzZcoUXn31VfLz83n22WfZvXs3U6dOZdCgQTz22GMUFBR0Z5yih9jreDYo+75a0oBQtFCwGa2xhgrlR6nfAKICfYyOyL04Ep4drN5ZZHAwwqXYE56ESVQ3NLMmVx8BnC4JT4d1uvGgv78/V155JT/++CM7duzgvPPO4/nnnychIYE5c2RFT2+XER8CwLK6AfoBaUAoWtprr98ZzJD+IcbG4o6ih6E8/QnSajGXbKOwst7oiIQraKqHAxv1rxNPYNXOEposisRwP1JkH7sOO65OywMHDuTuu+/mnnvuITAwkM8//7yr4hIGCfX3Iincj7W2Oh5L3josTdJTSdjkrQFgvXWw1O90B7MHWsIEwDatlSPTWgLI/xUsjeAXAWEpjums6YOj0DRZjt5Rx5zwLF++nCuuuIKYmBj+8pe/cO6557Jq1aqujE0YYGlmPoWV9exU/SlTAZgt9Vz3+Ksszcw/+pWFe1NKL5wENlgHSf1Od0nQC5fHm7axaqcULgsO1VLGT0Ahy9GPVacSngMHDvDwww8zaNAgpk2bxs6dO/nHP/7BgQMHWLJkCRMnTuyuOEUPWJqZz41vb6SuyQporLeN8gyo3cyNb2+UpKevq8iDqnyalJnNKkVGeLpLgv46Os60nZ+yi1FKGRyQMJxtZJX4cfx2oJLCygZ8Pc2MTw4zNq5epsMJz+mnn05iYiLPPvss55xzDlu3bmXlypVceeWV+PvLHGJvZ7EqFn2aRcuXVvvy9HGm7QAs+jQLi1VefPss2+jObyoRzdOHZKkd6B5xY1EmT2K0g5iq8thTWmt0RMJILUZWiZ/gmM46cWAEPp7S764zOpzweHp68sEHH7Bv3z4ee+wxBg8e3J1xiR62NreM/ArnAsl1Vn2l1hjTdhSK/Ip61uaWGRGecAW2F92N1kGkxQRhllb23cPTF63fKADGa9tYJXU8fVv5XqguBJMH9Bsl01nHocMJzyeffMLZZ58tHZTdVFFV69Ugv6kk6pUnYVo1KVp+u+eJPsI2rL7Rmir1O93NVrg8xpTNT1LH07fZ3miomBF8vaOCjXvLAThpkHRX7qwOJTznnnsulZWVHb7R3//+9xQVSQ+J3qStfipNePCr0penjzHtaPc80Qc01kDBFsBWsCz1O90rXq/jGW3awU85JVhlKrnvsr3R+E9hLNe9tcFx+LzFq6WuspM6lPB8/PHHFBcXU1lZedSPiooKPv30U6qrZUuC3mR8chixwT4cPkmx0apvJDpGyyY22EeK5PqqA7+AslBIOPmEywhPd4sfD8BgbR/NtRVsLej4G07hXiqy9dXPy+290WwKKuplMUkndSjhUUoxaNAgQkNDj/oRFhZGTU1Nd8ctupjZpLFwdjqAU9Kz3qrvhj3atIOFs9OlbqOvsr3LXGcZiKZBWkygwQG5uYAoCE3GpClGybRWn2Wpr8K/fBtw6M2nnX3MTxaTdJxHR05atmxZp2+4f//+nb6OMNZpw2J58ZLRLPo0y1HAbH+SDTLtZ1CKt5HhCSPlrQP0guXkCH/8vDr00iGOR/wEOJjLGFM2q3JKuPakFKMjEj1s24YfGYqVAyqMfMJbXa7AsZhk0oDWlwtnHXrVmjp1anfHIVzEacNiOSU9hrW5Zfx2oIIHP9/KLmssKaZ82LceBp1qdIiipynlGOHZYE2V+p2eEj8eNr/LaG0HL+WW0dhsxcvjuJrji15G23doZeSRyGKSjpFnj2jFbNKYNCCca6akkBYTyAb7UKq9+ZXoW0pzoK6MRs2LLJUk9Ts9xdaAcLR5J/WNTfy6r9zYeESPi63cDLSezjqcLCbpGEl4xBHNGhrDBmV7dyEJT99k+71vNw2kCQ8Z4ekpkWngHYQ/9QzW8li1U/rx9ClKEVK2CeDQm87DaCCLSTpBEh5xRKcNi2GDbThV7d8AlmaDIxI9zjasvqpBXyUiIzw9xGSGuLGA3hZCCpf7mNKdaHUHaUQfWT2cffmILCbpOEl4xBGlxQTSFDqQCuWH1lQLhVuMDkn0NEeH5YFEBHjL8HlPirc3INzBL3kHqW2UNxx9hm1k9VdrMk14EO7v5XRxTLAPL14ymtOGxRoRXa8kSy3EEWmaxqxh/di4OpXp5l/1P362tveiD6ivgKKtgF44KaM7PczWj2e8x06a6hTrdh9k6qBIg4MSPUHtXYOG3uhzbkY//u/8DNbmllFUVU9UoD6NJSM7ndOhhGfUqFFoWsce2I0bNx5XQML1zBoWw/erBjHd/CuWPT9jnnC90SGJnrJvPaAo9epPSX2w1O/0tP5jQTPRXxUSyUF+2lkiCU8fUZ2zmkBgszaYe05LcywmEceuQwnP3LlzuzkM4coy4kJ4xXcoNL9P0+6fkd3U+hDbdNYWTa/jkhGeHuYTBFFDoXALo03ZrMpJNDoi0QPqq8oIrMwGYMTEU+gX4mtwRO6hQwnPwoULuzsO4cJMJo3+6Sdi+VXDp/YAVOyHYGks2SfY6gh+rNOb3skIjwHix0PhFsaadvD1gfGU1zYS4ud19OuJXuubrz9jNpBHDJedMtbocNzGMRUtl5eX88orr7BgwQLKysoAfSpr//79XRqccB3TR6awVenvLi17fjY4GtEjrBbYr29W+HPTQHw8TSRH+BscVB9kK1w+0TsHpWB1jqzWcmdFlfXkbf4BABU3Xrqad6FOJzybN29m0KBBPPbYYzz55JOUl5cD8N///pcFCxZ0dXzCRYxPCiPTlAZAYdZyg6MRPaJ4GzRU0uzhx3YVT1pMkBRJGsG+kag1B28aWZUj/Xjc2ZNfb2e4dTsAcSOmGRuMm+l0wnPrrbdyxRVXkJ2djY/PoeWpZ5xxBsuXyx9Cd+VhNmGN0194rXulAWGfYJvO2uc3FCsmqd8xSmgS+EdhVs0M03KlH48by9xfwYcb9jLKtBMAU8J4gyNyL51OeNatW8f117depdO/f38KCgq6JCjhmpJGTQcgpnYH1oYag6MR3c62YegmbAXLUr9jDE2DBH1aa6x5B7tKasivqDM4KNHVlFLc/2kWqewjQKsHrwCISjc6LLfS6YTH29ubysrKVsd37NhBZKQsl3Rno4ePoFCF4oGFnE0ymuf2bCM8y2qSAFmhZShbHc90v1wAVskoj9v5MrOAtbvLmOCpr84ibqzebVt0mU4nPHPmzOH++++nqakJ0BvT7d27lzvvvJPf/e53XR6gcB0+Xh4cCBwBwP4tPxocjehWNSVQlgPAsppENE3vui0MYkt49NoOxU+yr5ZbqW+y8PAXeoPPC6Lz9YNxMp3V1Tqd8Pzf//0f1dXVREVFUVdXx9SpUxk4cCCBgYE89NBD3RGjcCHeyZMA8Mpfh1LK4GhEt9mnT2fVBA+kkgCSI/xltYiRYkeC2Qv/5oMkaoX8lFMqzz838uqqXPYdrCMmyIe05m36QVuSK7pOp1/BgoOD+eabb1i5ciWbN2+murqa0aNHM3PmzO6IT7iY5NEnw5ZHGdK8jW35lQzpF2x0SKI72Kaz9voOA6R+x3Ae3vqWLnlrmOCxk/9UxrCrpIYBkQFGRyaOU1FlPc9/rxcp/+3kCExLd+kXxEn/na7W6YQnLy+P+Ph4Jk+ezOTJk7sjJuHCfONH0ah5EUo1H69bw5CzTzU6JNEd7BuGIh2WXUb8eMhbw6mBu/lP2WR+2lkiCY8bePLr7dQ0WhgZH8LpwXn6wcg08A0xNC531OkpraSkJKZOncqSJUs4ePBgd8QkXJmHFxWhwwEo27bC4GBEt7A0wX59T7xvKvVmkzLC4wLiJwIwCr1HixQu936Z+yt4f8M+AO49Kx2TbSrZ3ntJdK1OJzzr169n/Pjx3H///cTGxjJ37lw++OADGhoauiM+4YICU08AoF/VZnJLZHm62ynYAs11KJ8Qlh/UpyxlhMcF2P4IhtXuIogaVu8qxWKVOp7eSinF/Z9loRTMGdmPMYmhjpFVqd/pHp1OeEaNGsUTTzzB3r17+fLLL4mMjOS6664jOjqaq666qjtiFC7GJ1lPeMaadvDVb9J7ye3YXnQrI0ZhVSYiAryJCvQ5ypVEtwuIgtBkNBQneOdSUddE1oHWLUJE77A0s4C1uWX4eJq46/Q0aG6EA/rIqqzQ6h7HtJcW6MvRp0+fzpIlS/j2229JTk7mjTfe6MrYhKuyvdMcaDrAys3ZBgcjutw+PeHJ9R0KyOiOS7G98z8jZC8AS1bsYnWOjPT0NvVNFh7+Ul+Gft1JA/Td0Au3QHM9+IZC+ECDI3RPx5zw7Nu3j8cff5yMjAzGjx9PQEAAzz//fFfGJlyVfwTNIfru2R75G6Trq7uxjfBssKQCUr/jUuLHARBRsRmAT349wEVLfmbyY9+zNDPfyMjEUVisitU5pXy8aT/3ffIbeWV1RAd5c8NU/bXUMZ0VNx5Mx/ynWRxBp1dpvfTSS/zrX/9i1apVpKWl8fvf/56PP/6YxMTE7ohPuCiPxAlQvovRph18/Vshl5+QZHRIoitUHoCKPNBMfFsZBzTICI8LWdUwgBOB4SobE1astvesBRX13Pj2Rl68ZDSnDYs1NkjRytLMfBZ9mkV+Rb3T8dOHxRzqb2VrBWFPakXX63Qa+eCDDzJhwgQ2bNhAZmYmCxYskGSnL7JNa43RslmaKXU8bsP2LlNFD2NTYTMgIzyuwmJV3LG8iWrlQ6BWxyBtn+My+4TWok+zZHrLxSzNzOfGtze2SnYA3vhpz6GRuTz7Ci0pWO4unR7h2bt3L5qmdUcsojexPSlHmnJYn1tEWU0jYf5eBgcljluLguW63RZ8PE0kR/gbHJQAWJtbxv7KJjZ5DmCy+TdGm7LZZklwXK6A/Ip61uaWMWlAuHGBCgeLVbHo0yyOlIIu+jSLU/o3Y67cB5oZ+o3usfj6mk6P8GiaxooVK7jkkkuYNGkS+/fvB+Ctt95i5cqVXR6gcFGRaeAVSIBWTyp5fJMlozxuwTasnuOjFyynxQRhNskbHFdQVKWPEGxQejPIMaYdRzxPGG9tblmbIzt29iQ1Z+My/UD0UPCWZpLdpdMJz4cffsisWbPw9fXll19+cfTfqaio4OGHH+7yAIWLMpkdrc9Hm2Rayy001UP+rwCsbbYVLEv9jsuwtwbYaNUTntFa2wmPtBBwHR1NPs0HZDqrJxxTDc/ixYtZsmQJnp6ejuMnnngiGzdu7NLghIuzPTnHmHawamcplfVNBgckjkv+JrA2gX8Uq0v1aSyp33Ed45PDiA32YZN1AADJpkLCONSHRwNig30YnxxmUITicB1NPqPK9TcakvB0r04nPNu3b+ekk05qdTw4OJjy8vKuiEn0FrbVBBM8cmi0WFm2rcjggMRxcawSGU9WQRUgIzyuxGzSWDg7nUoC2GHtD+ijqy0tnJ0uU5AuxJ6ktvcb0YCkII2Ag7/pB2SFVrfqdMITExPDzp07Wx1fuXIlKSkpXRKU6CX6jwU0+qkCIimXrsu9na1guSpqDMVVDWgapMUEGhyUaOm0YbG8eMlotnoMAQ4lPKF+nrIk3QXZk9S22JOgR0+wolmbISAaQmTFc3fqdMJz7bXX8sc//pE1a9agaRoHDhzgnXfe4fbbb+fGG2/sjhiFq/INgahDL7zLthVT32QxNiZxbJRyJDw7vfUX6OQI/0M9QoTLOG1YLLPPPBuAaX65AFw2KUmSHRdlT1L9vc1Ox2OCfXjxktFM9LANIMSPB1kB3a06/Wp21113YbVamTFjBrW1tZx00kl4e3tz++2384c//KE7YhSuLH48FGVxkm8uX9WMY/mOYk4dGmN0VKKzDu6GmiIwebKuPgHIlfodF2ZK0HdOT23OxoNmdhZXGxyROJLThsXywYZ9fLu1iN+N7s+8MfGMTw7Tpx//3aLDsuhWx7Qs/a9//StlZWVkZmby888/U1xczAMPPNAd8XXY888/T1JSEj4+PkyYMIG1a9caGk+fYXuSTvHZBcBSmdbqnfbZVon0y2BLkb7yUup3XFj4QPAJwdNazxBtLzsLJeFxdbuKawA4Z1QckwaE68mOUo6966Rgufsd84YdXl5epKenO/bRMtJ7773HrbfeysKFC9m4cSMjR45k1qxZFBVJEW23sz1J4+q24Ukz32YV0mSxGhyU6DR7wXLceLIOVACyQsulmUyHup2bdrCrpFqedy6ssdnKnrJaAAZGtfh7eTAXaorB7AWxIw2Kru/o0JTWueee2+Eb/O9//3vMwRyrp556imuvvZYrr7wSgMWLF/P555/z6quvctddd7U6v6GhwdE/CKCysrLVOaKDwgeAbximujJO8N/HjzVJ/LyrlCmpkUZHJjrDlvA0xI5l14/6O1EZ4XFx8eMh+2vGe2TzesNp7CmtYWCUFJm7ot2lNVisigBvD6KDvA9dYN8wNDYDPKV/Unfr0AhPcHBwhz96WmNjIxs2bGDmzJmOYyaTiZkzZ7J69eo2r/PII484xRwfH99T4bofTXO80zwvSt8TRpoQ9jIN1VCoL4vd4Z2OUhAR4C0N7FydbTp5rFkves2WaS2XtbNI/90MiApw3prJnvDES/1OT+jQCM9rr73W3XEcs5KSEiwWC9HR0U7Ho6Oj2bZtW5vXWbBgAbfeeqvj+8rKSkl6jkf8eNixlAke2cAkvvqtkPvPHib9QHqL/RtAWSE4ns0VvoCM7vQK/ceAZiLKWkwMpeworOb04UYHJdpiT3gGRh5W/iEJT4865hqe3szb25ugoCCnD3EcbHU8EeW/EuRjpqS6gY17DxoclOiwFi+6WQf06d0hsTI14vK8AyB6GKC3hdhRVGVwQKI9joSnZf1OQxUU2RoOygqtHtHrE56IiAjMZjOFhYVOxwsLC4mJkeXRPaLfaNDMaFX5zBuoj+q8tjKXjzftZ3VOKRbrkfYKFoZrsUokK19PeKRguZewjQyMNmXLSi0X1mbC4xhZTYAg6aHUE3p9wuPl5cWYMWP47rvvHMesVivfffcdkyZNMjCyPsTLD2L0sfQRbAfgi8wC/vjuJi5a8jOTH/uepZn5RkYo2mO1OkZ4LP3HsS1fHyUYKlNavYNjP7tsWanloqxWxa6SNhIemc7qcb0+4QG49dZbWbJkCW+88QZbt27lxhtvpKamxrFqS/QA2wvvwW0rW11UUFHPjW9vlKTHFZVmQ305ePiy2yOZuiYLPp4mkiOMbTUhOsj2x3KYlovJ0sCe0hqDAxKH219eR32TFS+zifhQ30MXOPauk/47PcUtEp4LLriAJ598knvvvZeMjAw2bdrE0qVLWxUyi+5jjTs0tH44+4TWok+zZHrL1djfZfYfQ1ZhHQCDY4Kk4Ly3CEkE/yg8NQvDtFxZqeWC7NNZyRH+eJhtf3Kt1kPNPmXD0B7ToVVa//jHPzp8g7fccssxB3M85s+fz/z58w25bwG/qEGMAdK1PfjQQD3eTpcrIL+inrW5ZUwaEG5IjKINtneZ1rhxfJOl18GF+3thsSpJenoDe1uIbZ8xxrRDVmq5oDbrd0p2QH0FePo5Cs9F9+tQwvP3v/+9QzemaZphCY8w1j5rGP1VKDHaQUZou1irhrR5XlFVfQ9HJo7INsJz5xofPqk+AMD324qY/Nj3LJydLhtS9gbxE2DbZ4w27eRTWanlclr24HGwT2f1HwNmTwOi6ps6lPDk5uZ2dxyil4sK8mWDNZUzzWsZY8pmraXthEea2bmQuoNQoheZf1ud6HSRve7qxUtGS9Lj6lpsMfH3Akl4XI19Y1enER77ysg4mc7qSW5RwyOMNz45jJ1e6QCMNu1odbkGxAb7MD45rIcjE+2x7NVrCHZZYziI86osqbvqRWIzUCZPIrUKmkp3yUotF6KUarvpYJ5sGGqEDo3wHG7fvn188skn7N27l8bGRqfLnnrqqS4JTPQuZpPG+JNOg2Wv2wqXFXqaY/8XFs5Ol7oQF5Kf+SNxwEY1qM3Lpe6ql/D00Tee3L+e4WqH7KnlQkqqG6moa0LTICXSXz9YW6bX8ICM8PSwTic83333HXPmzCElJYVt27YxbNgwdu/ejVKK0aNHd0eMopeYdOLJWH70ItxaRZJWwG6lT4XEBPtIPYgL8i5YD8AGa+oRz5O6K9enxU+A/esZY8pmR2G1JDwuIttWUxUf6oePp1k/uE9/3hE+EPzljURP6vSU1oIFC7j99tvZsmULPj4+fPjhh+Tl5TF16lTOO++87ohR9BYe3pj760nvA6P1fiDh/p6svPNkSXZcjaWZsINbANh4lIRH6q56gRZ1PLI03XXktLVCS/rvGKbTCc/WrVu57LLLAPDw8KCuro6AgADuv/9+HnvssS4PUPQytp4S4z30HZxLa5qorm82MiLRlqIszM01VOPHThXX5ilSd9WL2BKeNG0vewqKDA5G2LW5JN2R8EiH5Z7W6YTH39/fUbcTGxtLTk6O47KSkpKui0z0TrZ3Ld75G+gfoncV3V4oK0dcju1Ftz56FJY2Xgak7qqXCepHvV8/zJrCI3+D0dEIG8cKLXvBsqUZ9m/Uv5YNQ3tcpxOeiRMnsnKlvn3AGWecwW233cZDDz3EVVddxcSJE7s8QNHL2J/ERVmMitL/UG4rqDQwINEmW5fXiLQpXD4psdXFMcE+siS9l7F3O4+p3CIrtVxEqx48Rb9BUw14B0FkmoGR9U2dLlp+6qmnqK7Wf4mLFi2iurqa9957j9TUVFmhJSAwWm93X76Hk/z28BmRbM2XER6X02JYvXGzvuz8rBGxnJIeTVSgPo0lIzu9i2/KRNjxPzKQlVquoLK+icLKBqDFlFZei/47JukK09M6nfCkpKQ4vvb392fx4sVdGpBwA/EToHwPI8gGItkuIzyupboIDu4GNIgbyy+f/QroCY+M6PRemm06ebQpm58KKiXhMZi9YDkq0JtgX1s3Zdkh3VDH1IcHoLGxkaKiIqxW56HThISE4w5K9HLx42HLf4iv2QKcwPaCKqxWhUlGDFyD/UU3agiV+DlqrEYnhBoYlDhuMcNp1LwJoYaS3Vkwor/REfVpUrDsejo9prZjxw6mTJmCr68viYmJJCcnk5ycTFJSEsnJyd0Ro+htbE9mv6KNeJuhptHCvoN1BgclHFq86P6aV45SEBfqS1SQLD/v1cyelAQPBcC0f43BwYhWW0pUFUL5HkCD/mONC6wP6/QIz5VXXomHhwefffYZsbGxaJq8axeHiRoKnv5oDVWcHF7Gl0VhbCuoJCHcz+jIBDi1td+4pxyAMYkyuuMOmmLHQflGwss2GR1Kn9eqB499/6yodPAJaudaojt1OuHZtGkTGzZsIC1NKsxFO8weEDcGcpcz3T+XLwljW0EVpw6NMToy0dwAB37Rv44bz4aNZYBMZ7kL/4EnwNaXGNiYRZPFiqdZCmON0moPLZnOMlynnw3p6enSb0ccna2AcqTS94yRpekuIn8zWBrALxxraAq/7D0IyAiPuwgffCIAqdp+8vbvNziavqu+ycLeslqgjRVakvAYptMJz2OPPcYdd9zBDz/8QGlpKZWVlU4fQgCOfjzxNZkAbCuQpekuoUVb+50lNVTVN+PraSYtRlb0uAMtIJL9pn4AlG7/yeBo+q7dpTVYFQT6eBAZ6O08sipbShim01NaM2fOBGDGjBlOx5VSaJqGxWLpmshE7xanF+X5VeUSSiW7S6Cu0YKvl9ngwPq4FsPqG/foozsj4oLxkKkPt5EfOJz+FQew7l0LXGB0OH1SyxVamqZB/q9gaQS/CAhLOcq1RXfpdMKzbNmy7ohDuBu/MIgYDCXbmeq3m//VjiC7qIoRcSFGR9Z3KeU0wrNhrUxnuaO6mDFQ8RXBpRuNDqXPalW/s/dn/XP8BJCFPobpdMIzderU7ohDuKP4cVCynel+ufyvdgTbCiThMVT5XqguBJMH9BvFxr168iMFy+7FO/kE2A4JtVvBagGTjKr2tFY9eOxvNBJkOstInU54Nm/e3OZxTdPw8fEhISEBb2/v4w5MuIH4CfDL24zEVrgsW0wYy140GTuS8iYzOcU1AIyWER630i81g6ovfQnU6mjKz8Sz/0ijQ+pznBIepZxaQQjjdDrhycjIOGLvHU9PTy644AJeeuklfHykkVmfZntyx9VuxYNmWalltBbTWb/sLQcgOcKfMH8v42ISXa5/WAA/kcqJbObg9pVEScLToyxWxa4S/c3EwKgAfRuXmiIwe0FshqGx9XWdrlT86KOPSE1N5eWXX2bTpk1s2rSJl19+mcGDB/Ovf/2Lf/7zn3z//ffcc8893RGv6E3CU8EnGA9rPWnaXrYVVKGUMjqqvqtlwbJtObpMZ7kfTdPY6z8MgMbd0nG5p+07WEtjsxUvDxNxoX6HnnexGeApgwBG6vQIz0MPPcQzzzzDrFmzHMeGDx9OXFwcf/vb31i7di3+/v7cdtttPPnkk10arOhlTCZ9efrObxhryub1mhSKqxuICpQnfY9rqIJCvUUA8RPZ8NMeAEYnhhgXk+g2VZGjYc+/CCjaYHQofY59Oislwh+zSZOGgy6k0yM8W7ZsITExsdXxxMREtmzZAujTXvn5+ccfnej9bNNaJ/nuAqSOxzD7N4CyQnACzf7R/JpXDsgKLXfllTAOq9IIqd8H1cVGh9OntC5YlvodV9HphCctLY1HH32UxsZGx7GmpiYeffRRx3YT+/fvJzo6uuuiFL2X7V3NSLYDsF0aEBqjRZfX7YVV1DRaCPD2IDVKGg66o8S4fuxQcfo39j2cRI9wSnjqK6HwN/0CSXgM1+kpreeff545c+YQFxfHiBEjAH3Ux2Kx8NlnnwGwa9cubrrppq6NVPRO/ceAZiK8uYhoytgqhcvGaFGwvNFWsDwqIUQfchduJzUqgOXWgaSZ8rDs+Rlz2plGh9RnOO2Svm8doCA0CQJlEMBonU54TjjhBHJzc3nnnXfYsUNfbnzeeedx8cUXExiov1u89NJLuzZK0Xt5B0D0UCjYwmhTNtvyk4yOqO+xWiFvnf51/Hg2rtALlkdJwbLb6h/iy2+mNGAZjbt/xtfogPoIpZTzCM9Wmc5yJZ1OeAACAwO54YYbujoW4a7iJ0DBFsaYdvBd0SSaLVbZyqAnlWyHhgrw9IPoYWzcuwKA0QkhxsYluo2maZSFj4KD4FX4KzQ3goe0H+huxVUNVNU3Y9L0lg9SsOxaOpTwfPLJJ5x++ul4enryySefHPHcOXPmdElgwo3EjYd1rzDWvJPGBiu5JTWkRkvtSI+xv+j2H0NJnYU9pfouzjLC4978YwdTVhZAmLUaCrZA3BijQ3J79tGdhDA/vE3AvvX6BTLC4xI6lPDMnTuXgoICoqKimDt3brvnyeahok22dzdDtVy8aWRrQZUkPD2pxSoR+4ahqVEBBPt6GhiU6G6DYgLZuCWVmeZf9KRXEp5u51S/U5QFjVXgFQhR6QZHJqCDq7SsVitRUVGOr9v7kGRHtCk0Cfyj8KSZYVou26VwuWe12LjQXrAsy9HdX2p0IButg/RvZKVWj7CP8AyICjg0sho3VvYzcxFSSCG6n6Y5Rnn0wmVZmt5jakqgLEf/Om6sY4RHOiy7v9SoADaqVABUnnRc7glOu6RL/x2X0+GEZ/Xq1Y5l53ZvvvkmycnJREVFcd1119HQ0NDlAQo3YUt4xpiy2Sa9eHqO/UU3Mo0m7xB+3VcOyIahfUH/EF92eqTSrExolQegYp/RIbk9pxVaUrDscjqc8Nx///389ttvju+3bNnC1VdfzcyZM7nrrrv49NNPeeSRR7olSOEGbO9yxph2sL+8lsr6JoMD6iNavOhmHaikodlKsK8nKRH+xsYlup2mafSPjmSrStAP5Mm0VneqrG+iqEp/0z/Qr0bfNBQN4sYZGpc4pMMJz6ZNm5gxY4bj+3fffZcJEyawZMkSbr31Vv7xj3/wn//8p1uCFG4gNgNMnkRqFcRpxdJxuae0LFh2bBgagkkaDvYJqVEBbLDX8UjC063sozvRQd4EFm3UD0YPBZ8gA6MSLXU44Tl48KDTdhE//vgjp59+uuP7cePGkZeX17XRCffh6QOxIwEYo+1gW74ULne75kY4YHvhjZ/ABqnf6XMGRQdI4XIPkeks19fhhCc6Oprc3FwAGhsb2bhxIxMnTnRcXlVVhaenLHMVR+CY1pI6nh5RsAWa68E3FMIH8ous0OpzUqMDHYXL5P8KTXXGBuTGcqRg2eV1OOE544wzuOuuu1ixYgULFizAz8+PKVOmOC7fvHkzAwYM6JYghZtouVJLEp7u12L/rILKBvaX12HSYGR8iKFhiZ6TGhXAPhVBoQoBazMc+MXokNyWfYRnULgn5G/SD0rC41I6nPA88MADeHh4MHXqVJYsWcKSJUvw8jrUqvzVV1/l1FNP7ZYghZuwJTxDtD3sLSjGalUGB+Tm8mz9d+LGOep3BscE4e99TDvKiF6of4gv/l4eUsfTA+xNB0eYc8HSCP5Reg8y4TI6/MoXERHB8uXLqaioICAgALPZuZHS+++/T0BAQJcHKNxIUD9UcBzmin0MbNzO/vI64sP8jI7KPSl1qOFgwiQ2ZOoJz5jEEONiEj1O0zQGRgey8UAqZ5jXSsLTTeqbLOSV6Vu2JNfZVjPHj9d7kAmX0enGg8HBwa2SHYCwsDCnER8h2qLZhnhHazKt1a3KdkF1IZi9oP+YFiu0pH6nr0mNCmCj1VbHk7dGT4ZFl8otqcGqIMjHA//CdfpBmc5yOdJpWfSsOHsDQlmp1a3sozv9RlGPJ7/t1x9rKVjuewZFB5CpkmnSPKG2BA7mGh2S27HX76RG+qHttdXOJZ5gYESiLZLwiJ7VonB5e36FwcG4sb0/6Z8TJvHbgQoaLVbC/b1IkCnEPic1OpBGPNlhsi0qkWmtLmdPeCYFl0FdGXj4OtpwCNchCY/oWTHDsZh9CNFqqDmw1eho3FeL+p2Ne8oBfTsJTWoK+pzUKL22cnWjPeGRfbW6mr1geYJ5u34gbiyYpU2Lq5GER/QssyeW2NEARFVspr7JYnBAbqi6CEp36l8nSMPBvk5fqWVmncW2UsueDIsuY+/Bk1q/RT8g01kuSRIe0eM8E20NCLXtZBdWGxyNG7L/QYtKR/mEsGGvfYWWJDx9kX2l1jrrYP1AURbUlhkblBuxWBW7SmoAiCizdTZPmGRgRKI9kvCIHqfZ3v2MM21jW4EULne5vav1zwmT2HewjuKqBjxMGiPigo2NSxgmNSqAMoIo803SD8goT5fJK6ulsdlKkmcZHlX7QDPLhqEuShIe0fMSJqDQSDYVsm+vrBjpci0SHvty9KH9gvDxbN1OQvQNg6L1Op4sr2H6AXtRuzhu9oLlM4J26wdiR4C39KRzRZLwiJ7nE0x5kD68bt632uBg3ExDNeRv1r9OnMRGW/3OKKnf6dNSowMBWNVo68ezRxKermIvWJ7kma0fSJD6HVclCY8wRHOcPscdfVD29ulS+9aBskBwPATHsdG2Yehoqd/p0wbZEp4vKpP1A/m/QmONgRG5D3sd4pDGTP1AotTvuCpJeIQhggafBMAIy28UVzUYHI0baTGdVdvYTFa+NBwU0C/YB38vM3ssETQF9NM3Et23zuiw3MLO4mqCqSaiNkc/ED/R2IBEuyThEYbwHjAZgMFaHjv35BkcjRtxJDwT2byvAotVER3kTb9gH2PjEoayr9QCKAodox+Uaa3jppQip6iasSZb/53wVAiINDYo0S6XSniUUtx7773Exsbi6+vLzJkzyc7OPuJ1HnnkEcaNG0dgYCBRUVHMnTuX7du391DE4pgFRFHoGYdJU1RmrzQ6GvdgaYJ96/WvE09wFCyPkYaDAhhka0C4zV64LAnPcSusbKC6oZnx5h36AZnOcmkulfA8/vjj/OMf/2Dx4sWsWbMGf39/Zs2aRX19fbvX+fHHH7n55pv5+eef+eabb2hqauLUU0+lpkbmp11dcdhYALz2yRLZLpG/GZpqwScEIgY7Cpal4aAASLWt1PqpydaAcN96aG40MKLez75Ca7KnLeGRgmWX5mF0AHZKKZ5++mnuuecezj77bADefPNNoqOj+d///seFF17Y5vWWLl3q9P3rr79OVFQUGzZs4KSTTur2uMWxsyZMgsL/EVO+0ehQ3EOL/bOUpknBsnBiX6m1ojwMfMP0PZ/yf4V46RlzrHYWVeFNI4OttvqdBKnfcWUuM8KTm5tLQUEBM2fOdBwLDg5mwoQJrF7d8aXLFRX6hpRhYWHtntPQ0EBlZaXTh+h5YenTABjYvJPmuipjg3EHjv2zJrK7tJaymka8zCaG9gsyNi7hEuwrtXJLa/U3GwB7VhkYUe+3s7iaUaadeNAMgbEQmmR0SOIIXCbhKSgoACA6OtrpeHR0tOOyo7FarfzpT3/ixBNPZNiwYe2e98gjjxAcHOz4iI+PP/bAxTHrlzCIfBWOp2ahcKu88B4XpQ4VLCee4JjOGh4XjLeHNBwUh1ZqNVkUpeG2wuW90gfreOwsqmasZqsZTZgEUivn0gxLeN555x0CAgIcH01NTcd9mzfffDOZmZm8++67RzxvwYIFVFRUOD7y8mSVkBFMZhM7fIYDUL1jucHR9HIlO6C2FDx8IDbDsX/W6IQQY+MSLqPlSq0d3vrzjr2rwWo1MKrebWdRDeNN2/RvZMNQl2dYwjNnzhw2bdrk+IiIiACgsLDQ6bzCwkJiYmKOenvz58/ns88+Y9myZcTFxR3xXG9vb4KCgpw+hDHKIvR3mj4H1hgcSS+327bSLW4ceHg5Rnik/45oyb5Sa31jHHj6Q32Fvpmo6LSK2iYOVtcy2mTvsCz1O67OsIQnMDCQgQMHOj7S09OJiYnhu+++c5xTWVnJmjVrmDSp/aV+Sinmz5/PRx99xPfff09ycnJPhC+6iJZ4IgAxVVtkxcjxsCc8SZOpqm9ie6FeEyUrtERL9pVaO4rqIX68flCmtY7JzuIq0rU9BGj14B0MUelGhySOwmVqeDRN409/+hMPPvggn3zyCVu2bOGyyy6jX79+zJ0713HejBkzeO655xzf33zzzbz99tv861//IjAwkIKCAgoKCqirqzPgpxCdFTNgJGUqAG/VoK8YEZ2n1KHi06TJ/JpXgVLQP8SXqCBpOCgOsa/Uyi6qOjQFI/14jsnOomommmyjY4kngElq5VydyyQ8AHfccQd/+MMfuO666xg3bhzV1dUsXboUH59DL9o5OTmUlJQ4vn/xxRepqKhg2rRpxMbGOj7ee+89I34E0UlpsUGss6YBUJ8jdTzHpHQnVBeC2Rv6j3VqOChES46VWiU1NMfZpmD2rtaTZtEpesKzVf8mabKxwYgOcZk+PKCP8tx///3cf//97Z6ze/dup++VPFF7tRA/L7Z5DWOWZT31O1fiM+02o0PqfXav0D/HjQNPHzbskYJl0Tb7Sq2aRgu7fdIYaPKEqnwo2wXhA4wOr1fZVVjBH+wFy5Lw9AouNcIj+qaDkXrHZb+CdWC1GBxNL7T70HSW1ar4xTHC034vKtE3Oa3UKrNAnP7cc9SAiQ7TCrcQpNXR7BkIMcONDkd0gCQ8wnC+CaOoVj54NVdBYabR4fQuSjkVLOcUV1NZ34yPp4m02EBjYxMuyb5Sa0dhFSRN0Q/aRwlFh9Q3WUip+QUAS4LU7/QWkvAIw6X1C2WtrY6HXHnh7ZTSHKguALMXxB2q3xkZF4KnWZ7eojX7Sq3swupDUzG5K6SOpxNyiquZoOn1O14DphgcjegoeUUUhkuLCWK1VV/SqXZL4XKnONXv+B6q35GCZdEOp5Va8eP1ZLm6QE+eRYfkFJQzzla/oyVJwtNbSMIjDJcS6c86hgKgdv8ElmaDI+pFWixHBxwbho6R/juiHS1XajWZvCHO1o9H3mx0WNXujQRpddSZAqR+pxeRhEcYztNsojFiKBXKD1NjlfTj6agW9TuWhBP4JquAnUXVAIyICzYyMuHCWu6ptbukBpJtIxQyndxhvgf0Zo1FYWOkfqcXkYRHuITB/UJZYx2ifyPvNDumbBdU5WM1eTLjvVqufXOD46Kzn1/F0sx8A4MTrkrTNAbYCpf/tXYvmV4j9Qt2r5Q6ng7qV64/1xrjTzQ4EtEZkvAIlzA4JtBRxyPvNDvINrqzvnkAuyud/1AVVNRz49sbJekRrSzNzNcLloHXVu3m3E8aaMALaoqgeLvB0bm+5qZGhjb9BkDg4GnGBiM6RRIe4RLSYgJZbdXreNj7s+yr1QFWW8Kz2j4y1oI9/Vn0aRYWq7xrF7qlmfnc+PZG6poO9btqxJN1llQAsn76zKjQeo2CHesI1OqoUP5EDRxjdDiiEyThES5hSGwQ21UcZSoAmmrgwEajQ3JtStFk24pjTRsJD+hJT35FPWtzy3owMOGqLFbFok+zaCv9/dk2ulqw+RtJkI+iZvsPAGz1GobJw6U2KxBHIQmPcAlRgd4E+3nLtFZHle3Cu7aARmVmozX1iKcWVdX3UFDCla3NLSO/ou3/C/bn3UjLb6zdVdLmOULnvU/fbDU/dKzBkYjOkoRHuARN05yntaRw+chy9cdnkxpIPd5HPDUqUHZMF0dOfDerAdQqb8K1Kur2S7fz9liam4g6qI8+7wkYJaNhvYwkPMJltGxASN5aaJKRiXbl/gjAr54ZaO2cogGxwT6MT5Y9tcSRE98mPFhvHQRAcpVMJ7dlaWY+1z32T/xULRXKj39k+TD5se9lYUAvIgmPcBlpMYHkqH6Um8KguR72rTM6JNdktcIuPeEZPuXsNmsy7EnQwtnpmE3tpUSiLxmfHEZssE+7CbJ9dDWpakM7Z/Rd9mLvwbX6Y7PaOhQrJlkN2ctIwiNcRlpsEKCxRtn78UgdT5sKt0BdGXgFMHHKqVw4Pr7VKTHBPrx4yWhOGxZrQIDCFZlNGgtn6yOohyc9GocKl7U9q/SkWgDOxd6TTfp030rrMEBWQ/Y2kvAIlzEoOgBNg2WNtoRHCpfbtusH/XPSZDB7UlzZAMAF4+J55sIM/n3tRFbeebIkO6KV04bF8uIlo4kJdp7eCg/w5oaLzgWvAKgvh4LNxgToguzF3j40MMa0A4BVtoQHZDVkbyIJj3AZfl4eJIb5Harj2bcOGmuNDcoV2ROe5KnUN1lYlaOvqrnihCTOzujPpAHhMo0l2nXasFhW3nky/752IoNj9H21bp4+gFkj4g/tnm7/PyYcxd7jTNvx1prZr8LJVTHtnidclyQ8wqWkxQSxR0VT7R0D1ibY+5PRIbmW5gbYo+/jQ8o0ft5VSn2TlZggH9Jsf7yEOBqzSWPSgHBmj9BHAdfvPqhfkDJd/7xrmUGRuR57sfdk0xYAVlqG03pSUFZD9gaS8AiXMigmANBYY9L397Hu/N7YgFxN3lporgP/KIgawg/biwGYnhaJpsmojuiccUn6Cr61u8tQSsEAW8KzZzU01RkYmeuwF3vb63daTmeBrIbsTSThES5jaWY+b67eA8B/KwYDkLvmU1kB0ZJ9qiFlGgr4flsRANMHRxkWkui9RsaH4GU2UVzVwJ7SWogYBEH9wdIAe2R0FfTRsAdPjWGoSX9t+sneKwxZDdnbSMIjXIJ92Wd5bRMAq6xDsSqNAWovC9/+TpIeuxYJz66SGvaW1eJp1jhxYIShYYneycfTzIi4YEAvzkXTZFqrDTO8twGw1ZpACcGO47IasneRjUCE4dra46ecQLaoZEZqu5hs2sKiT2M5JT2mb7+Lqq84tMdYylSWbdZHdyYkh+PvLU9lcWzGJ4exfs9B1u4u4/xx8fq01qa3IUcSHgfbG42V1mFcMjGBcUlhRAXq01h9+jWpl5ERHmG49vb4WWEdDsBk8xZZ9gmweyUoK4QPhOA4R/3OtMGRBgcmerNxttqTdbttz6+UafrnwkyoLjImKFeiFMqW/K20Duf8sfGyGrKXkoRHGK695ZwrLCMAfXWEhlWWfbaYzqpuaGZNbikAJ6dJ/Y44dmMSQ9E02FNaS2FlPfhHQIz+3JPl6UDZLrSKPBqVmd880kmPDTI6InGMJOERhmtvOedGlUqN8iZSq2SItleWfbZIeFbtLKHJokgM9yM5wt/QsETvFuTjyZAY/Y+4YxR1wMn65xxZJWl/3m1UgxiSGIuHWf5s9lbymxOGa2+PnyY8HE0Iz/Db2reXfR7cAyU7QDND0hR+2H5odZYsRxfHa/zh01r25ek5y0D18S0T7PU7lmGMT+rDr0FuQBIeYbgj7fGzwqoPrV8YvrNvz5fv/Fb/HD8e5RPMsm1SvyO6jj3hcYzwxE8EDx+oLoDibQZGZjBLM8pRsDzcUe8keidJeIRLaG+PnzWanvBElG7o29tM2BOegTPZml9FQWU9Pp4mJqaEGxuXcAv2BoTbC6uoqG0CTx9IPFG/sC9Pa+1bi9ZQSZkKYJtpIBnxIUZHJI6DJDzCZbTc4+evZ+gbiOZYY7EG9QdLY9/dZqK5EXb9qH+degrLbNNZJw6IwMfTbGBgwl1EBnqTEuGPUrB+TxvTWn1V9tcALLeOYFhcqDzfejlJeIRLse/xc82UZPqH+NJkhYKIE/QL++oL797V0FSjbycRPdxRvzNNVmeJLtRymwkABszQP+9e2Xe3mcjWR1Z/sGTIdJYbkIRHuCRN0zhpkF6fskrZlshmf2NgRAbaafu5B86kot7Chj36Ro/TpX5HdCFHPx57HU/UEAiK0/duy11hYGQGqcyHwi1Y0VhuHdG3F024CUl4hMuaakt43ixK0VcnlWyHg7uNDcoIO7/TPw+cwY/ZxVgVDIoOIC7Uz9i4hFuxr0DavK+CukaLvs1E6in6hbapnT7FVje32ZrCQS2IMYmhBgckjpckPMJlnTBQ72S6pVSjPnacfnBHH3vhrdgHRVmgmWDAyfwgm4WKbhIf5ktMkA/NVsUvefooIoNm6Z+zv+p7y9NtSd4P1pEMiQkiyMfT4IDE8ZKER7isIB9PxiTo76qyAifpB7O/MjAiA9hHd/qPweoTyg877MvRJeERXUvTtBbTWraEJ/kkMHtD+V69D1RfYWly9N/5wZIh01luQhIe4dJOGqTvAv5xzTD9QO4KaKwxMKIe5qjfOYVf95VTVtNIoLcHY5NkeF10vfG2/1eOBoRe/pA0Wf96Rx96s5G3FhoqqdAC2axSJOFxE5LwCJdmL1z+MC8AFZIAloZDS7TdnaWpxXL0mSyzbRY6ZVAEntLeXnSD8cl6X6cNew7SZLHqBx3TWn1oOtn2RmNZ83CsmBwr2ETvJq+awqUN6xdMmL8X1Q0WCqOn6gf7yrTWnlXQUAl+ERCbcWg5ukxniW6SGhVAsK8ndU0WfjtQaTtoK1zeuxrqK4wLrifZVoQus2SQEuFPZKC3wQGJriAJj3BpJpPGlFR9WmuFNkY/mP1N3yig3P6l/nnwaRTXNLN5n/7HRraTEN3FZNIYZ5/Wsi9PD0uB8FSwNveNXljleVCYiRUTK6wjZHTHjUjCI1yefXn6v4oSwNMPKvdDYabBUXUzpVokPGc4RneG9w+WXeNFt7L/gV9jT3gAUk/VP/eFXli25902zyGUESQNB92IJDzC5U1J1ROeXw7U05AwRT+4Y6mBEfWAoq1QvkffwDFlGj/Y6nek2aDobvYC3fV7yrBabSOpg+wJz9dgtRoUWQ/Z/gUAn9SNBGCCJDxuQxIe4fIiA71Jjw0CICtgon7Q3fvx2F50SZlGk9mX5dm25eiynYToZsP6B+Praaa8tomdxdX6wYQTwDsIaopg/3pD47NYFatz/r+9O4+Lqt4bOP6ZAYZNQFHZFAE3FBcScQErd8WyrHsrLVNpvZnd9One2637VGqWS0+Z2S3zlqKZuZRrXjVzwdLrgqBe9xVcEkSRVWSbOc8fhxkd2WFgYPy+X695wZw558z3xwHme35rGusO/c6ec2noDRZs3s7LVJfSAH7Wd8fH3YmWTZwtd35hVfbWDkCIyugb3JzjyVmsu9mZbgCX4yD7Krh5Wzu02mFqzhpG/IV0svOK8HTVEdqysVXDErbPwU5Lt1aN+c+5NPYn3qC9txvY69RmraM/wskN4N/TKrFtPprM1J+Ok5yZZ9rm6+HE5EdCiOrsW/M3OPMLGAq54RxIYp4vjwZ5otFoan5eUS9IDY9oEB4sbtbakKRB8esOKHDq39YNqrZkX719F90+yrQ6et/2zbHTyj9fUftMC4ne2Y+nw8Pq1xMbrDJoYPPRZMZ/l2CW7ACkZOYx/rsENh9NrvmbFN9o7LJXEzrpv2NbJOERDUL3gCa46uy4nlPA1RaD1I0nNlg3qNpi7J/Uoju4+RB70ji7svTfEXXD2G8lLukGijG5aTcY7HRw4xxcO1Wn8egNClN/Ok5paZZx29SfjteseUtfaOqUvSxDnei0p4zQsimS8IgGQWevJaKNOjx9G8XV6Yk74VaG9YKqLcb+O+2H8XvGLU5dzUaruT1aTYja1q1VE+y1GpIz87icfkvd6OgGrfup35/8qU7j2Z94o0TNzp0UIDkzz7xGqqqSdkF+JoVOzdhX2JrGLg6082pU/fOJekcSHtFg9C2u4Vh32RWad1DnBbG12V/zsuDcdvX7Dg+zo3ix0LBWTWjsorNiYOJe4qyzo3MLD+COZSYAOgxXv9Zx7WpqdtnJTnX2K1Xxjca5JvdjQEt4gCdaaUK2KZLwiAajb3E/noQL6eS3e0jdeGK9FSOqBad/Bn0BNGsPXh1N8+/0l9FZoo4Zm7XMak2CHwI0kHwIMi/XWSw6+8p9VFV7jiqDAU6otVZbDOEA9AyS9epsjSQ8osFo1dSFwKYuFBkUElyKFzQ8uw0Kcq0bmCUdX6t+DRlBXpGB3WfTAOm/I+qeqePynTU8jZpDq+KpIU7WzaCBw5cymLLuWLn7aFBHa1V7kc9L+yA7GcXRnSWprYHb64oJ2yEJj2hQjP1YNqQ2B49WUJh7uwmoocvPvj2TbcgI9ife4FahHm/32/MQCVFXwouXmDh/7SbXc/Jvv2Bs1jpe+7WrqxMu8+T8PVzNzsfbXV3PqqxGpsmPhFR/FGPxjUZWwGCu3QJnBzs6+cnfnK2RhEc0KMbV03eeuY5iGiZrI81aZ7aoq8F7tgbvzmwv7r/TP9hL5gIRda6xi45gbzfgjnW1AEIeVb9e2A1ZFhgKXooivYEPNhznjZWHKSgyMKijF1vf6MtXz4bh42HebKWz0zLv2bDqz8NjMMDxdQDEN+oHQFhAYxzs5OPR1sgVFQ1K79ZN0dlpuZx+iysthqobT/4bCm9ZNzBLOLZW/RryGGg0sjq6sDpjE5FZs1bjVtCyJ6CYEgVLysgt4LlFcXyzKxGAPw9oy7/GhOPm5EBUZ192/X0Ay17qzZRHQ9BqoEBvILCZa/Xf8PJ+yE4GR3d+yg4GoGegNGfZIkl4RIPi6mhvqmr/JasVePhDQU7DH61VcNOsOSvx+k2S0nJxsNNwf/Fq8ULUtR53zMdjpvMf1a9HV1n0/U5fzWbEF7v57cx1nB3s+HJ0GH8ZEmw2WspOqyGiTVOiI4OI6uwDQMyupOq/6bE1ACjBw9hzQV1Ko4d0WLZJkvCIBsfYrPXr2RvQ+Q/qxiM/WjEiCzizBYpuQeMA8A01NWf1DPKkkaOsACOswzjx3vErWWTnFd5+IWQEoFFrRzIuWuS9fj6WwuNf7OZCWi4tmziz+tVIHupSfjPV832CAFhz6HfS7uxnVFl3NGddb/UQKVl5ONhp6OYvCY8tkoRHNDjGjst7zqVR0PFxdePpn9U5bBoqY8LW6TGz5qz+0pwlrMjHw4lWni4YFIi/kH77BXdfCCweKVlcQ1JZdy/+WVhk4LOtZ/jTknhuFuiJaN2U9a/dT8dKdNTvHtCELi08KCgysGx/NRKvO5qzfjN0BaBLCw+cdXZVP5eo9+rVraOiKEyePJmvv/6ajIwM+vTpw7x582jXrl2ljp85cyZvv/02EydOZM6cORaPT6/XU1hYWPGOolQ6nQ6ttuY5dgcfN7zcHEnNzifuVkv6NG0HaWfUicNCR1kg0jqWe0NN2AC6juRmfhH7zqtNCNJ/R1hbj0BPLt7IJS7phvnvY6fHIek3OLoa+kys1LlKW/zT0V5LfpEBgOjIQP734Y6V7jCs0Wh4/v5A/mfFYb7dc4GXH2xT6Tl7APjvSvVrh4fZd9HYnCXLSdiqepXwfPTRR8ydO5fFixcTFBTEu+++y9ChQzl+/DhOTuVPKBUXF8f8+fPp2rWrxeNSFIWUlBQyMjIsfu57iVarJSgoCJ2uZjMGazQaHmzfnB/jL7PzzHX6dP4j7Jyp1pI0xITn+FowFIJ3Z/DuxH+OX6VAb8Df05k2zWvQGVMIC+gZ1IRVCZeJS0w3fyFkBGz8mzoJYdo5aNqm3PMYF/+8e7UrY7IzJiKAKY92qnJ8D3fxY/rGk6Rm57PpaDIj7mtRuQOL8uHYavX7rk8Rt0a9yZD1s2xXvUl4FEVhzpw5vPPOO4wYMQKAb7/9Fm9vb9auXcuoUWV/kOXk5DB69Gi+/vprPvjggwrfKz8/n/z82+29WVnlN4UYkx0vLy9cXFxkiHA1GAwGrly5QnJyMq1atarxz9CY8Px6+hr/GF2c8JzfATfTwLWBjbAw3mV2HQlg6r8zQIaji3rAOAHhoUsZ5BXqcXIobu5xbaaurXVuGxz5Afq9VeY5ylv802jr8atMeaRTlefS0dlrGdM7gNm/nGbhrkQeDfWr3N/NmS1wKx3cfElt1ovz12PRaCA8QBIeW1Vv+vAkJiaSkpLCoEGDTNs8PDzo1asXe/bsKffYCRMm8PDDD5sdW54ZM2bg4eFhevj7+5e5r16vNyU7TZs2xdnZGScnJ3lU8eHi4kLz5s3Jzc2lqKiocr8U5XigbTM0GjiZks1Vx1bg00VdW8t4x9ZQpCfBxT2ABro8gaIot4ejy3ISoh4IauZKs0aOFOgN/PdypvmLxhrVQ9+rHYDLUNHin1CzxT+f6dUKnb2Ww5czSbiYUbmDDi9Xv3Z5kgMX1ZveYG83PFwcqhWDqP/qTcKTkpICgLe3t9l2b29v02ulWb58OQkJCcyYMaPS7/X222+TmZlpely6dKnMfY19dlxcXCp9flE6Y1OWXq+v8bmauOro2rIxADtPX4PQZ9QXDn5X43PXqSM/qF+DHkTfyJeVBy6RnKmOFJGqdVEfaDQa07pSJYandxgOju6QcQEu/qfMc9T24p/NGjkyItQPgIW7Eys+4M5+c6FPmxKtai9NIRoEqyU8S5cupVGjRqZHdToDX7p0iYkTJ7J06dIK+/jcydHREXd3d7NHRaRpoeYs/TPsWzw/za+nr0HXp0DroPYnSDlq0fepNYpias460nQo98/azt9XHQGgUK8waPZONh+tnZlshagK07pad9fA6FzUzssAB5eWeXxlF/Ws9uKfwHPFQ9Q3H03hSkYFE5EeW632m/PpAt4hkvDcI6yW8Dz66KMcOnTI9GjWTP3wunr1qtl+V69excfHp9RzxMfHk5qaSlhYGPb29tjb27Nz507mzp2Lvb29RWoSRP3Vt3hBzd/OXEfv3BSCh6kvHCr7H2+98ns8XD+NXuvIM7u8SlT5p2TmMf67BEl6hNUZE574C+noDXf1xLlvtPr1+DrIzyn1+G6tGqMrZ+RVjRf/BEL83Ond2hO9QeHbPRfK39nYnNV1FFl5hZxIUZu0pFbVtlkt4XFzc6Nt27amR0hICD4+Pmzbts20T1ZWFvv27SMiIqLUcwwcOJAjR46YJU7h4eGMHj2aQ4cOYWdXf+ZSuHvuiRL/NESVhbZsjJuTPZm3Cvnv5QzoNkZ94fByKCqwamyVEr8IgC30JpuSTabG35CpPx2X3xdhVR193XFztCcnv4gTyXcN8vDvCZ5toPBmqUtNKIrC5HXHKNCX3sfHWO9bo8U/ixknIly2/yK5BWX0Fbx2Gi7HgUYLXZ4k/kI6igIBTV3wcq9+DZOo/+pNHx6NRsOkSZP44IMPWL9+PUeOHGHs2LH4+fnx2GOPmfYbOHAg//znPwE1aercubPZw9XVlaZNm9K5c2crlaSkzUeTuX/Wdp7+ei8Tlx/i6a/3cv+s7bV+5x4dHY1Go0Gj0eDg4IC3tzeDBw9m4cKFGMrpYHi3RYsW0bhx49oLtJrs7bQ8UNystfP0NWgzANx84dYNOL3JytFVIC9Lnb8EWHirb5m7KdSsM6cQlmCn1dC9eEmXEr+LGg3cV9yHrpTa1a92nmfFgUtoNTChfxt871r808fDqWaLf95hYEdv/D2dybxVyJqDv5e+U/GNBu2jwM37dnOW1O7YvHqT8AC8+eab/PnPf+bll1+mR48e5OTksHnzZrP+OefOneP69etWjLJqjHNPWKu5IioqiuTkZJKSkti0aRP9+/dn4sSJDB8+3CKjpaztwXbFy0ycvgZ29rdHjdT3zstHf4TCm2Q3ak2cElzh7tXtzCmEpRibtUp0XAYIfRrQqCuoXz9r2rzxSDKzNp8E4L3hIfxtaAfT4p+fjbqPZS/1ZtffB1gk2QE1MYuOVGt5YnYnoSh31YwW3oLD36vfd39OLU9xwiMTDtq+epXwaDQa3n//fVJSUsjLy2Pr1q20b9/ebJ+kpCSmTJlS5jliY2NrZZblOymKQm5BUYWP7LxCJq8/VurcE8ZtU9YfJzuvsFLnK/HHWwmOjo74+PjQokULwsLC+Mc//sG6devYtGkTixYtAmD27Nl06dIFV1dX/P39efXVV8nJUdviY2Njee6558jMzDTVFhl//kuWLCE8PBw3Nzd8fHx45plnSE1NrfoPtAaM62odupRBZm4h3Pes+sLZrZBR9ug7q4tfDEBa8ChuV+qXrSadOYWwhF5Btzsul/hf5NEC2g1Rvz+wEICDF9P5nxWHAHUG5eji5ibj4p8j7mtBRJumNW7GutuT4S1x1dlxNjWH387cdXN8fJ06946HP7QdSF6h3jTUvpckPDav3kw82JDcKtQT8t7PNT6PAqRk5dFlSuVW+j7+/lBcdDW/ZAMGDCA0NJTVq1fz4osvotVqmTt3LkFBQZw/f55XX32VN998ky+//JLIyEjmzJnDe++9x6lTpwBo1KgRoA7ZnzZtGsHBwaSmpvLGG28QHR3Nxo0baxxjZfk1dqadVyPOpOaw6+x1Hu7aFgIfUKe8P7AQBk2us1gq7cohdTSZnQ7nHs9it+dwmX10NKhV/jJ6RFhbl5Ye6Oy1pN0s4Pz1m7Rp3sh8h54vwZmf4dB3XO72Bi99e5D8IgMDOnjx7vCQOovT3cmBJ8P9WfSfJBbuTjTdFAFwIEb9GjYOtHYcSkqjQG/Ay82RVp4y9Yitq1c1PKLudOjQgaSkJAAmTZpE//79CQwMZMCAAXzwwQesXKkOl9bpdHh4eKDRaPDx8cHHx8eU8Dz//PMMGzaM1q1b07t3b+bOncumTZtMtUN1xbR6+ulr6oZef1K/JiyGwnrYFLT/awAK2j/McyvOl5vsgGU6cwpRU472dtzn3xi43Qxkps1AaBIIeZmsjPmU6zkFdPR1Z+7T3er89zc6MhCNBmJPXePcteL/R6kn4NJe0NhBN7Um+M7mLJl6xPZJDU81ODvYcfz9oRXutz/xBtExcRXut+i5HpW6g3d2sNyoM0VRTH/gW7duZcaMGZw8eZKsrCyKiorIy8sjNze33AkX4+PjmTJlCocPHyY9Pd3UEfrixYuEhNTdHV3f9s1ZsCuRnaevqeVqP0ytss68pM63YexQWR/kXIMjajI59eoDHE/OolkjR14f0JZ5O8+Z9fXy8XBi8iMhFuvfIERN9Qz0ZH/iDfYn3mBUz1bmL2q16Ls/j93W9xia+xMr3PqxMDqcRo51/zET2MyVgR282HoilUW7k5j2WGfYO099MXiYuto7sL+4P5I0Z90bpIanGjQaDS46+wofD7Rrjq+HU5k9NIxzTzzQrnmlzmfJO5ATJ04QFBREUlISw4cPp2vXrqxatYr4+Hi++OILAAoKyh7affPmTYYOHYq7uztLly4lLi6ONWvWVHhcbegZ5ImjvZaUrDzOpOaonZfDn1df3DdfneCvvjiwEPQFnNN1YOkVb9yd7Pn2+Z6MjQys1c6cQliC8cZsfykdlxVFYXpyOHmKA520F1gWpcHXw7muQzQxDlH/Mf4yWdeTb8+9EzEBgCK9gYQL6oKoPWSE1j1BEp5aZKfVMPkRtabj7lTFms0V27dv58iRI/zxj38kPj4eg8HAJ598Qu/evWnfvj1Xrlwx21+n05WYxPHkyZOkpaUxc+ZMHnjgATp06FDnHZaNnBzs6NVaXTDU1KwVNg7sHNW+Mpf2WSWuEoryUeK+AWBOziCcHOyIea4HIX7qTN+13ZlTiJoKC2iCVgOX02+RnGk+m/E3vyWyID6DdYY+ALQ+E2ONEE0i2jQl2NuNW4V6Tv97DujzwS8MWqnzuh1PzuJmgR53J3uCvd2sGquoG5Lw1LKozr7MezYMn1qce6I8+fn5pKSk8Pvvv5OQkMD06dMZMWIEw4cPZ+zYsbRt25bCwkI+//xzzp8/z5IlS/jqq6/MzhEYGEhOTg7btm3j+vXr5Obm0qpVK3Q6nem49evXM23atFotS3n6Fvfj2WlMeFybQqi6+ji75lgnqLsoR35EczOVZMWTrZpezB8TTndZmVk0II0c7enk5wGYz8fz87EUpm86AYDd/a+rG0/+W53kz0o0Gg3P3x+IIwW0TlymboyYoM4bxO34ewR6opWbi3uCJDx1IKqzr9WaKzZv3oyvry+BgYFERUWxY8cO5s6dy7p167CzsyM0NJTZs2cza9YsOnfuzNKlS0ssxBoZGckrr7zCyJEjad68OR999BHNmzdn0aJF/PDDD4SEhDBz5kw+/vjjWi9PWfq2Vycg3Jd4g1sFxbVRfSaps6me3gRXj1ktNgAMBtK2/B8AS/SD+b+R4aYkTYiGxNj889PhK6w79DtL917g9WUJKAqM6R3AH4cMUBcVRYH/fGbVWEfc14JnnPfiSSa3nH0hZITptf0y/849R6NUZ3IXG5OVlYWHhweZmZklFhLNy8sjMTGRoKCgKi1QKkqqzZ+loijcP2sHv2fcIua5HvQP9lJf+CEajq2BLk/CH7+x6HtWxS8/zmfw0TfJUlzYMuQXnuhTf2YCF6IqZmw8wfxfz5fY3snPnXUT+mBvp4VLcbBgkLqg76T/grufFSIF9EWkfxRKk/zLLHZ7kXF/+QRQ/1+ETfuF9NxCVo2PpHtAE+vEJ2qsvM/vu0kNj7AJGo2GB4treVbEXby9ZlnkJHWHo6vgRsl/0nVhxf4kWv5XXQ7ldNCzkuyIBmvz0eRSkx2A41ey2HqiePFn/x4Q0Eddkfw//6zDCO/y3+U0yb9MmuLOzGuRHCmeZPBsag7puYU4OWjp0sLDevGJOiUJj7AZ7k7q8NfNR6/eXrPs2zSu+TwIigF+rfsmt41Hktm+bhEdtRfJ17oQPvIfdR6DEJagNyhM/el4ufuYLXT7wBvq17hvILOMda1qk74Qdn4EwG9ez3ALJ2J2JwK3R5l182+Czl4+Bu8VcqWFTdh8NJl//ZpYYntKZh4vXxikPjm8DK6W/w+7JvQGhT3n0ky1SztPpTJpeTyv26mLhOr6vArOUnUuGqb9iTdKrAl4pxIL3bYZqNby6PNh56y6CfJOh5dDxgVwbU7rYRMB+Om/V0jNzpP1s+5RMvGgaPCMd55lrVl2SGnLdm1vBhj2wrb34ZnlFo9h89Fkpv50vMQHwuPaXXTSXkBxdEdTPP+HEA1RZRewNe2n0cDAybBwiLqYb+Tr0KxtLUZ4h8Jbptod+kyka2s/wlolknAxg5mbThJ7Sh3N2UP67txTpIZHNHiVufP84NYTKBo7dcTWhf9Y9P03H01m/HcJJWJwIp+/OawAQPPAG+Aid5Oi4arsArZm+7XqBe2HgaKH7XU4bcWeLyDzIri3gPAXAHUOIYDVCb+TcasQgL/+eJjNR5PrLi5hVZLwiAavMnee5xU/kgKeUJ/8/L9g0Jd/QCWVV7v0gt0m/DQ3SKYZ+p6vWOT9hLCWnkGelZo5vsQyOQPfVaeHOL4WEn+t5SiB7BT4bbb6/aCpoHNh89FkFvxWssk7NSuf8d8lSNJzj5CERzR4lb3zTAt/Axzd4UqCusSDBZRVu+Svucpr9msBmFEwkv2Xci3yfkJYS7VnjvfuZKpl4d9/VTsT16Zf3oPCm9CyB3R5osImb7irs7WwWZLwiAavojtPo38lZHOt19/VJ9veV+8Ea+jo75mlbFX40H4hzpoCdus7sd4QWen+D0LUZ9WeOX7A/4JLM7h+CvbU4jD1M7/Af1eoNUrDZoFGU/XO1sJmSadl0eAZ7zzHf5eABkq9k9MAW46nsuNkIDs8OtDy1knY8AaMWmqaar6yFEVh99k0Fuw6z47izo93+oP2Nx60O0K+4sD/Fj0PaCpdCyVEfRfV2ZfBIT7sT7xBanYeXm5qM1a5a785N4Eh02DteNgxHdoNBe8QywaWnw0/TVK/7/0qtOgOVKOztbBZUsNzD+rXrx+TJk2ydhgWVdadp6+HE189G8aW/3mQQR29KTRoeCljHAWKPZz6N3l7b8++fPew8ruruPMK9ayIu0jUnN94dsE+U7LjeMc8HgGaFN53WATAZ0WPc0HxLb1fgxANWLUWug19Wk109AWw+mUoyrdcQIoCG/8GWZehSSD0vz3fVbU6WwubJDU8Niw6OprFixeX2L5v3z46duxoeh4YGMikSZMafBJU0Z3nN+PCiUu6wYyNjZn1+0jedViK8vM/WJ0ZiINvCNM3njSr+vb1cGLyIyGEBTThuz0XWLrvImk3CwBw0dnxZPeWRPcJ4lRKFuO/S8CBIj53+JxGmjz2GTowX/8oUEa/BiHuNRoNPPo5zIuAq0fUwQMPW2gy0INL1Hm2NFoY8SXoXE0vGZu8UzLzyqz99ZGbknuCJDw2LioqipiYGLNtzZs3x87OzkoR1S7jnWdZegR6smp8JFuOBRG35hg99IcI/894Hi94nzTMp5hPzszjle8SsNOC3qBua9HYmXGRAYzs0QoPZwcAgpq5Mm90N5Q1r9DVkEi60oiJBRPw8nBh8iMhdbJIrBANgpu3mpAsGwlxX4NPZ+geXbNzXo5Xa3cABrwDgX3MXi6vybvcztbC5sjioVRj8VBFgUIrjLpxcKlSf5Po6GgyMjJYu3at2fZ+/fpx3333MWfOHPr168fOnTvNXq+tX4n6thBrUfY1bs3rj1vuJeIN7Xi24G1uUXpcYa0a88L9rRnayVtdHPFuO6bDzlkoGjv29v4S2g6uuF+DEPeqnf8HOz5QFxd9ehm0G1y981w7DQuHwq0banPZ08tBW3pPjdImBzXW4spNScNVlcVDpYanOgpzYboVVv/9xxWzqlpLWL16NaGhobz88su89NJLFj13fWfv1pyzg2Jove5RumvPsFg3ixcK/kY2LiX2/dvQDmXXHP36f6ap8zXDZxPRfVRthi1Ew/fgX+HaCXVR3+WjYdT30G5Q1c5x/QwseVxNdvzC4ImFZSY7UM3O1sKmSKdlG7dhwwYaNWpkejz55JNmr3t6emJnZ4ebmxs+Pj74+PhYKVLruKj1I7rg72QpLvTUnmKZ7gNaakqOvCp1BEdRgTrSa/sH6vP+79S8el6Ie4FGA4/Phw7D1bW2lo2CAzEVH2eU+Jtas5N1GZq2g9E/gGOjCg+rVmdrYTOkhqc6HFzU2hZrvG8V9e/fn3nz5pmeu7q68vTTT1syqgbNy82Jg0o7ni54h291M+isTeLfureZWfQ0K/T9MRTfE5QYwXH5AGz4H0j5L6BRh9xG/rnuCyBEQ2XnAE8uUkdsHVsNGybBuW0QNRM8WpZ+TF6WWqO655+gGMCvG4z+EVyb1WXkooGShKc6NBqLNy3VFldXV9q2raMF+xog4wiO45mBPJL/If/UzSVMe5YZDgt4xe4nVukf5KxLKD3d2sHvFyD5sPrP2ThFvlNj+MPX0H6IVcshRINk56A2Rfl0hu0fwomf4NRm6PQ4BA+D5sGgtYf0JDi3XV0BPS9DPbbbszDsowbzv1hYnyQ8Ap1Oh15vmbWlGpo7R3Ak04ynCt7jWbutTLJfRYA2lTe0P0Lhj/Dlu+YHarTqvCKDpkKj5tYJXghboNHAA39ROx1v+jtc2AVHVqqP0jRtC0M+hOCouo1TNHiS8AgCAwP59ddfGTVqFI6OjjRrdm9VDxsnLTSO4Fikj2K5vj9jGh3gBe8z+Nw8Cbnpah+BJkHQuh/c9zQ0bmXt0IWwHT6d4bl/w6U4OLZGTXwyLgEKuHpBy3C15qfNANDa5rQaonZJwiN4//33+dOf/kSbNm3Iz8+vtWHp9VnpIzgel06NQtQ1/x7qQwgLk3l4qMY8PKJa5GcphBDCkqoyD48MSxdCCCGEzZOERwghhBA2TxIeIYQQQtg8SXiEEEIIYfMk4akk6dtdc/IzFEIIYS2S8FTAwcEBgNxcK6yObmMKCgoAsLOTOTSEEELULZmHpwJ2dnY0btyY1NRUAFxcXNBoZG6WqjIYDFy7dg0XFxfs7eXXTgghRN2ST55KMK4gbkx6RPVotVpatWolCaMQQog6JwlPJWg0Gnx9ffHy8qKwsNDa4TRYOp0OrVZaUYUQQtQ9SXiqwM7OTvqfCCGEEA2Q3G4LIYQQwuZJwiOEEEIImycJjxBCCCFsnvTh4faEeFlZWVaORAghhBCVZfzcrszEtpLwANnZ2QD4+/tbORIhhBBCVFV2djYeHh7l7qNRZL5/DAYDV65cwc3NzeJzxGRlZeHv78+lS5dwd3e36LnrAylfw2frZZTyNXy2XkYpX/UpikJ2djZ+fn4VTnsiNTyoE+K1bNmyVt/D3d3dJn+RjaR8DZ+tl1HK1/DZehmlfNVTUc2OkXRaFkIIIYTNk4RHCCGEEDZPEp5a5ujoyOTJk3F0dLR2KLVCytfw2XoZpXwNn62XUcpXN6TTshBCCCFsntTwCCGEEMLmScIjhBBCCJsnCY8QQgghbJ4kPEIIIYSweZLw1KIvvviCwMBAnJyc6NWrF/v377d2SBWqSsxff/01DzzwAE2aNKFJkyYMGjSoxP7R0dFoNBqzR1RUVG0Xo0qqUuZFixaVKI+Tk1MdRluxqpSnX79+Jcqj0Wh4+OGHTfs0hGtYml9//ZVHHnkEPz8/NBoNa9eutXZIlVLVuFevXs3gwYNp3rw57u7uRERE8PPPP5vtM2XKlBLXsEOHDrVYisqranljY2NL/Z1NSUmpm4ArUNXylPb3pdFo6NSpk2mf+nz9yjNjxgx69OiBm5sbXl5ePPbYY5w6dcpq8UjCU0tWrFjBG2+8weTJk0lISCA0NJShQ4eSmppq7dDKVNWYY2Njefrpp9mxYwd79uzB39+fIUOG8Pvvv5vtFxUVRXJysumxbNmyuihOpVTnOrm7u5uV58KFC3UYcfmqWp7Vq1ebleXo0aPY2dnx5JNPmu1Xn69hWW7evEloaChffPGFtUOpkqrG/euvvzJ48GA2btxIfHw8/fv355FHHuHgwYNm+3Xq1MnsGu7atas2wq+y6l6nU6dOmZXHy8urliKsmqqW57PPPjMrx6VLl/D09CzxN1hfr195du7cyYQJE9i7dy+//PILhYWFDBkyhJs3b1onIEXUip49eyoTJkwwPdfr9Yqfn58yY8YMK0ZVvprGXFRUpLi5uSmLFy82bRs3bpwyYsQIS4dqMVUtc0xMjOLh4VFH0VVdTa/hp59+qri5uSk5OTmmbfX9GlYGoKxZs8baYVRZdeMOCQlRpk6dano+efJkJTQ01HKB1ZLKlHfHjh0KoKSnp9dJTDVRneu3Zs0aRaPRKElJSaZtDeX6VSQ1NVUBlJ07d1rl/aWGpxYUFBQQHx/PoEGDTNu0Wi2DBg1iz549VoysbJaIOTc3l8LCQjw9Pc22x8bG4uXlRXBwMOPHjyctLc2isVdXdcuck5NDQEAA/v7+jBgxgmPHjtVFuBWyxDVcsGABo0aNwtXV1Wx7fb2GoiSDwUB2dnaJv8MzZ87g5+dH69atGT16NBcvXrRShJZx33334evry+DBg9m9e7e1w7GYBQsWMGjQIAICAsy228L1y8zMBCjxu1lXJOGpBdevX0ev1+Pt7W223dvbu960M9/NEjH//e9/x8/Pz+wDNyoqim+//ZZt27Yxa9Ysdu7cybBhw9Dr9RaNvzqqU+bg4GAWLlzIunXr+O677zAYDERGRnL58uW6CLlcNb2G+/fv5+jRo7z44otm2+vzNRQlffzxx+Tk5PDUU0+ZtvXq1YtFixaxefNm5s2bR2JiIg888ADZ2dlWjLR6fH19+eqrr1i1ahWrVq3C39+ffv36kZCQYO3QauzKlSts2rSpxN+gLVw/g8HApEmT6NOnD507d7ZKDLJaurCImTNnsnz5cmJjY8068Y4aNcr0fZcuXejatStt2rQhNjaWgQMHWiPUGomIiCAiIsL0PDIyko4dOzJ//nymTZtmxchqbsGCBXTp0oWePXuabbe1a2jLvv/+e6ZOncq6devM+rQMGzbM9H3Xrl3p1asXAQEBrFy5khdeeMEaoVZbcHAwwcHBpueRkZGcO3eOTz/9lCVLllgxsppbvHgxjRs35rHHHjPbbgvXb8KECRw9etSqfY+khqcWNGvWDDs7O65evWq2/erVq/j4+FgpqvLVJOaPP/6YmTNnsmXLFrp27Vruvq1bt6ZZs2acPXu2xjHXlCWuk4ODA926dWvw5bl58ybLly+v1D/P+nQNxW3Lly/nxRdfZOXKlWa1rKVp3Lgx7du3t5lr2LNnzwZfFkVRWLhwIWPGjEGn05W7b0O7fq+99hobNmxgx44dtGzZ0mpxSMJTC3Q6Hd27d2fbtm2mbQaDgW3btpnVDtQn1Y35o48+Ytq0aWzevJnw8PAK3+fy5cukpaXh6+trkbhrwhLXSa/Xc+TIkQZfnh9++IH8/HyeffbZCt+nPl1DoVq2bBnPPfccy5YtM5tSoCw5OTmcO3fOZq7hoUOHGnxZdu7cydmzZyt109FQrp+iKLz22musWbOG7du3ExQUZPWARC1Yvny54ujoqCxatEg5fvy48vLLLyuNGzdWUlJSrB1amSqKecyYMcpbb71l2n/mzJmKTqdTfvzxRyU5Odn0yM7OVhRFUbKzs5W//vWvyp49e5TExERl69atSlhYmNKuXTslLy/PKmW8W1XLPHXqVOXnn39Wzp07p8THxyujRo1SnJyclGPHjlmrCGaqWh6j+++/Xxk5cmSJ7Q3hGpYlOztbOXjwoHLw4EEFUGbPnq0cPHhQuXDhgrVDK1dFcb/11lvKmDFjTPsvXbpUsbe3V7744guzv8OMjAzTPn/5y1+U2NhYJTExUdm9e7cyaNAgpVmzZkpqamqdl+9uVS3vp59+qqxdu1Y5c+aMcuTIEWXixImKVqtVtm7daq0imKlqeYyeffZZpVevXqWesz5fv/KMHz9e8fDwUGJjY81+N3Nzc60SjyQ8tejzzz9XWrVqpeh0OqVnz57K3r17rR1ShcqLuW/fvsq4ceNMzwMCAhSgxGPy5MmKoihKbm6uMmTIEKV58+aKg4ODEhAQoLz00kv1LumrSpknTZpk2tfb21t56KGHlISEBCtEXbaqlEdRFOXkyZMKoGzZsqXEuRrKNSyNcfjy3Y+7y1/fVBT3uHHjlL59+5r279u3b4XlHDlypOLr66vodDqlRYsWysiRI5WzZ8/WbcHKUNXyzpo1S2nTpo3i5OSkeHp6Kv369VO2b99uneBLUdXyKIqiZGRkKM7Ozsq//vWvUs9Zn69feUr7OQBKTEyMVeLRFAclhBBCCGGzpA+PEEIIIWyeJDxCCCGEsHmS8AghhBDC5knCI4QQQgibJwmPEEIIIWyeJDxCCCGEsHmS8AghhBDC5knCI4QQQgibJwmPEOKesWjRIho3blzuPlOmTOG+++6rk3juFhgYyJw5c+r8faOjo9FoNGg0GtauXVupYwIDA03HZGRk1Gp8QliCJDxCWNmdHzY6nY62bdvy/vvvU1RUZO3Qqq0qH5wVSUpKQqPRcOjQoRKv9evXj0mTJlnkfWpTbGys6RqX9YiNjSUuLo6XX37ZKjFGRUWRnJzMsGHDKrV/XFwcq1atquWohLAce2sHIIRQP2xiYmLIz89n48aNTJgwAQcHB95+++0qn0uv16PRaNBqG/79TGFhobVDqJbCwkIcHBxMzyMjI0lOTjY9nzhxIllZWcTExJi2eXp6otPp6jTOOzk6OuLj41Pp/Zs3b46np2ctRiSEZTX8/4hC2ADjh01AQADjx49n0KBBrF+/HoDZs2fTpUsXXF1d8ff359VXXyUnJ8d0rLGZZv369YSEhODo6MjFixeJi4tj8ODBNGvWDA8PD/r27UtCQoLZ+2o0GubPn8/w4cNxcXGhY8eO7Nmzh7Nnz9KvXz9cXV2JjIzk3LlzZsetW7eOsLAwnJycaN26NVOnTjXVSAUGBgLw+OOPo9FoTM8rOs4Yz7x583j00UdxdXXlww8/rNLPMT09nbFjx9KkSRNcXFwYNmwYZ86cKfeYmTNn4u3tjZubGy+88AJ5eXkl9vnmm2/o2LEjTk5OdOjQgS+//NL0mrEGasWKFfTt2xcnJyeWLl1qdrxOp8PHx8f0cHZ2Nl1z40On05Vo0qqN61NZBQUFvPbaa/j6+uLk5ERAQAAzZsyo0jmEqE8k4RGiHnJ2dqagoAAArVbL3LlzOXbsGIsXL2b79u28+eabZvvn5uYya9YsvvnmG44dO4aXlxfZ2dmMGzeOXbt2sXfvXtq1a8dDDz1Edna22bHTpk1j7NixHDp0iA4dOvDMM8/wpz/9ibfffpsDBw6gKAqvvfaaaf/ffvuNsWPHMnHiRI4fP878+fNZtGiRKTmJi4sDICYmhuTkZNPzio4zmjJlCo8//jhHjhzh+eefr9LPLTo6mgMHDrB+/Xr27NmDoig89NBDZdYUrVy5kilTpjB9+nQOHDiAr6+vWTIDsHTpUt577z0+/PBDTpw4wfTp03n33XdZvHix2X5vvfUWEydO5MSJEwwdOrRKcZfH0tensubOncv69etZuXIlp06dYunSpWbJqxANjlXWaBdCmIwbN04ZMWKEoiiKYjAYlF9++UVxdHRU/vrXv5a6/w8//KA0bdrU9DwmJkYBlEOHDpX7Pnq9XnFzc1N++ukn0zZAeeedd0zP9+zZowDKggULTNuWLVumODk5mZ4PHDhQmT59utm5lyxZovj6+pqdd82aNWb7VPa4SZMmme2TmJioAIqzs7Pi6upq9tBqtcrEiRMVRVGU06dPK4Cye/du07HXr19XnJ2dlZUrV5p+Vh4eHqbXIyIilFdffdXs/Xr16qWEhoaanrdp00b5/vvvzfaZNm2aEhERYRbfnDlzlMq685rfKSAgQPn0009Nz2vr+lQmnj//+c/KgAEDFIPBUOZxO3bsUAAlPT29zH2EqC+kD48Q9cCGDRto1KgRhYWFGAwGnnnmGaZMmQLA1q1bmTFjBidPniQrK4uioiLy8vLIzc3FxcUFUJtMunbtanbOq1ev8s477xAbG0tqaip6vZ7c3FwuXrxott+dx3l7ewPQpUsXs215eXlkZWXh7u7O4cOH2b17t1mNgV6vLxHT3Sp7XHh4eKnHr1ixgo4dO5ptGz16tOn7EydOYG9vT69evUzbmjZtSnBwMCdOnCj1nCdOnOCVV14x2xYREcGOHTsAuHnzJufOneOFF17gpZdeMu1TVFSEh4eH2XFlxV1TdXV97hYdHc3gwYMJDg4mKiqK4cOHM2TIEAuVSoi6JwmPEPVA//79mTdvHjqdDj8/P+zt1T/NpKQkhg8fzvjx4/nwww/x9PRk165dvPDCCxQUFJg+vJydndFoNGbnHDduHGlpaXz22WcEBATg6OhIRESEqanM6M7OtcZzlLbNYDAAkJOTw9SpU/nDH/5QohxOTk5llrGyx7m6upZ6vL+/P23btjXb5uzsXOb7WYKxr9TXX39tlkgB2NnZmT0vK+6aqqvrc7ewsDASExPZtGkTW7du5amnnmLQoEH8+OOP1SqHENYmCY8Q9YCrq2uJD3OA+Ph4DAYDn3zyiWnU1cqVKyt1zt27d/Pll1/y0EMPAXDp0iWuX79e41jDwsI4depUqfEaOTg4oNfrq3xcTXTs2JGioiL27dtHZGQkAGlpaZw6dYqQkJAyj9m3bx9jx441bdu7d6/pe29vb/z8/Dh//rxZbVJ9Zsmfs7u7OyNHjmTkyJE88cQTREVFcePGDRmdJRokSXiEqMfatm1LYWEhn3/+OY888gi7d+/mq6++qtSx7dq1Y8mSJYSHh5OVlcXf/vY3i9SIvPfeewwfPpxWrVrxxBNPoNVqOXz4MEePHuWDDz4A1JFa27Zto0+fPjg6OtKkSZNKHVcT7dq1Y8SIEbz00kvMnz8fNzc33nrrLVq0aMGIESNKPWbixIlER0cTHh5Onz59WLp0KceOHaN169amfaZOncrrr7+Oh4cHUVFR5Ofnc+DAAdLT03njjTdqHLelWernPHv2bHx9fenWrRtarZYffvgBHx+fCiduFKK+klFaQtRjoaGhzJ49m1mzZtG5c2eWLl1a6aHBCxYsID09nbCwMMaMGcPrr7+Ol5dXjWMaOnQoGzZsYMuWLfTo0YPevXvz6aefEhAQYNrnk08+4ZdffsHf359u3bpV+riaiomJoXv37gwfPpyIiAgURWHjxo1mTUB3GjlyJO+++y5vvvkm3bt358KFC4wfP95snxdffJFvvvmGmJgYunTpQt++fVm0aBFBQUEWi9uSLPVzdnNz46OPPiI8PJwePXqQlJTExo0bbWJ+J3Fv0iiKolg7CCGEENYTHR1NRkZGlWfHjo2NpX///qSnp0vNj6j3JFUXQghhGim4YcOGSu3fqVOnSi9DIUR9IDU8Qghxj0tNTSUrKwsAX1/fSo04u3DhgmlCx9atW0tTl6j3JOERQgghhM2TlFwIIYQQNk8SHiGEEELYPEl4hBBCCGHzJOERQgghhM2ThEcIIYQQNk8SHiGEEELYPEl4hBBCCGHzJOERQgghhM37f0zP6RPX8gGpAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# create matplotlib figure\n", "fig, ax = plt.subplots()\n", "\n", "# plot data\n", "dataset.y0.plot.line(ax=ax, x=\"x0\", marker=\"o\", label=\"Data\")\n", "\n", "# plot fit\n", "x_fit = np.linspace(dataset[\"x0\"][0].values, dataset[\"x0\"][-1].values, 1000)\n", "y_fit = cos_func(x=x_fit, **fit_result.best_values)\n", "ax.plot(x_fit, y_fit, label=\"Fit\")\n", "ax.legend()\n", "\n", "# set units-aware tick labels\n", "set_xlabel(dataset.x0.long_name, dataset.x0.units)\n", "set_ylabel(dataset.y0.long_name, dataset.y0.units)\n", "\n", "# add a reference to the origal dataset in the figure title\n", "fig.suptitle(f\"{dataset.attrs['name']}\\ntuid: {dataset.attrs['tuid']}\")\n", "\n", "# Save figure\n", "fig.savefig(exp_folder / \"Cosine fit.png\", dpi=300, bbox_inches=\"tight\")" ] }, { "cell_type": "markdown", "id": "ccfab7e1", "metadata": {}, "source": [ "## Reusable fitting model and analysis steps\n", "\n", "The previous steps achieve our goal, however, the code above is not easily reusable and hard to maintain or debug.\n", "We can do better than this! We can package our code in functions that perform specific tasks.\n", "In addition, we will use the objected-oriented interface of `lmfit` to further structure our code.\n", "We explore the details of the object-oriented approach later in this tutorial." ] }, { "cell_type": "code", "execution_count": 13, "id": "652768c7", "metadata": {}, "outputs": [], "source": [ "class MyCosineModel(lmfit.model.Model):\n", " \"\"\"\n", " `lmfit` model with a guess for a cosine fit.\n", " \"\"\"\n", "\n", " def __init__(self, *args, **kwargs):\n", " \"\"\"Configures the constraints of the model.\"\"\"\n", " # pass in the model's equation\n", " super().__init__(cos_func, *args, **kwargs)\n", "\n", " # configure constraints that are independent from the data to be fitted\n", "\n", " self.set_param_hint(\"frequency\", min=0, vary=True) # enforce positive frequency\n", " self.set_param_hint(\"amplitude\", min=0, vary=True) # enforce positive amplitude\n", " self.set_param_hint(\"offset\", vary=True)\n", " self.set_param_hint(\n", " \"phase\", vary=True, min=-np.pi, max=np.pi\n", " ) # enforce phase range\n", "\n", " def guess(self, data, **kws) -> lmfit.parameter.Parameters:\n", " \"\"\"Guess parameters based on the data.\"\"\"\n", "\n", " self.set_param_hint(\"offset\", value=np.average(data))\n", " self.set_param_hint(\"amplitude\", value=(np.max(data) - np.min(data)) / 2)\n", " # a simple educated guess based on experiment type\n", " # a more elaborate but general approach is to use a Fourier transform\n", " self.set_param_hint(\"frequency\", value=1.2)\n", "\n", " params_ = self.make_params()\n", " return lmfit.models.update_param_vals(params_, self.prefix, **kws)" ] }, { "cell_type": "markdown", "id": "47143c62", "metadata": {}, "source": [ "Most of the code related to the fitting model is now packed in a single object, while the analysis steps are split into functions that take care of specific tasks." ] }, { "cell_type": "code", "execution_count": 14, "id": "d288a58c", "metadata": {}, "outputs": [], "source": [ "def extract_data(label: str) -> xr.Dataset:\n", " \"\"\"Loads a dataset from its label.\"\"\"\n", " tuid_ = get_latest_tuid(contains=label)\n", " dataset_ = load_dataset(tuid_)\n", " return dataset_\n", "\n", "\n", "def run_fitting(dataset_: xr.Dataset) -> lmfit.model.ModelResult:\n", " \"\"\"Executes fitting.\"\"\"\n", " model = MyCosineModel() # create the fitting model\n", " params_guess = model.guess(data=dataset_.y0.values)\n", " result = model.fit(\n", " data=dataset_.y0.values, x=dataset_.x0.values, params=params_guess\n", " )\n", " return result\n", "\n", "\n", "def analyze_fit_results(fit_result_: lmfit.model.ModelResult) -> dict:\n", " \"\"\"Analyzes the fit results and saves quantities of interest.\"\"\"\n", " quantities = {\n", " \"amplitude\": fit_result_.params[\"amplitude\"].value,\n", " \"frequency\": fit_result_.params[\"frequency\"].value,\n", " }\n", " return quantities\n", "\n", "\n", "def plot_fit(\n", " fig_: matplotlib.figure.Figure,\n", " ax_: matplotlib.axes.Axes,\n", " dataset_: xr.Dataset,\n", " fit_result_: lmfit.model.ModelResult,\n", ") -> Tuple[matplotlib.figure.Figure, matplotlib.axes.Axes]:\n", " \"\"\"Plots a fit result.\"\"\"\n", " dataset_.y0.plot.line(ax=ax_, x=\"x0\", marker=\"o\", label=\"Data\") # plot data\n", "\n", " x_fit_ = np.linspace(dataset_[\"x0\"][0].values, dataset_[\"x0\"][-1].values, 1000)\n", " y_fit_ = cos_func(x=x_fit_, **fit_result_.best_values)\n", " ax_.plot(x_fit, y_fit_, label=\"Fit\") # plot fit\n", " ax_.legend()\n", "\n", " # set units-aware tick labels\n", " set_xlabel(dataset_.x0.long_name, dataset_.x0.units, ax_)\n", " set_ylabel(dataset_.y0.long_name, dataset_.y0.units, ax_)\n", "\n", " # add a reference to the original dataset_ in the figure title\n", " fig_.suptitle(f\"{dataset_.attrs['name']}\\ntuid: {dataset_.attrs['tuid']}\")\n", "\n", "\n", "def save_quantities_of_interest(tuid_: str, quantities_of_interest_: dict) -> None:\n", " \"\"\"Saves the quantities of interest to disk in JSON format.\"\"\"\n", " exp_folder_ = Path(locate_experiment_container(tuid_))\n", " # Save fit results\n", " with open(exp_folder_ / \"quantities_of_interest.json\", \"w\", encoding=\"utf-8\") as f_:\n", " json.dump(quantities_of_interest_, f_)\n", "\n", "\n", "def save_mpl_figure(tuid_: str, fig_: matplotlib.figure.Figure) -> None:\n", " \"\"\"Saves a matplotlib figure as PNG.\"\"\"\n", " exp_folder_ = Path(locate_experiment_container(tuid_))\n", " fig_.savefig(exp_folder_ / \"Cosine fit.png\", dpi=300, bbox_inches=\"tight\")\n", " plt.close(fig_)" ] }, { "cell_type": "markdown", "id": "c9d139bd", "metadata": {}, "source": [ "Now the execution of the entire analysis becomes much more readable and clean:" ] }, { "cell_type": "code", "execution_count": 15, "id": "358959d4", "metadata": {}, "outputs": [], "source": [ "dataset = extract_data(label=\"Cosine experiment\")\n", "fit_result = run_fitting(dataset)\n", "quantities_of_interest = analyze_fit_results(fit_result)\n", "save_quantities_of_interest(dataset.tuid, quantities_of_interest)\n", "fig, ax = plt.subplots()\n", "plot_fit(fig_=fig, ax_=ax, dataset_=dataset, fit_result_=fit_result)\n", "save_mpl_figure(dataset.tuid, fig)" ] }, { "cell_type": "markdown", "id": "31482522", "metadata": {}, "source": [ "If we inspect the experiment directory, we will find a structure that looks like the following:\n", "\n", "```{code-block}\n", "20230125-172712-018-87b9bf-Cosine experiment/\n", "├── Cosine fit.png\n", "├── dataset.hdf5\n", "├── quantities_of_interest.json\n", "└── snapshot.json\n", "```\n", "\n", "## Creating a simple analysis class\n", "\n", "Even though we have improved code structure greatly, in order to execute the same analysis against some other dataset we would have to copy-paste a significant portion of code (the analysis steps).\n", "\n", "We tackle this by taking advantage of the Object Oriented Programming (OOP) in python.\n", "We will create a python class that serves as a structured container for data (attributes) and the methods (functions) that act on the information.\n", "\n", "Some of the advantages of OOP are:\n", "\n", "- the same class can be instantiated multiple times to act on different data while reusing the same methods;\n", "- all the methods have access to all the data (attributes) associated with a particular instance of the class;\n", "- subclasses can inherit from other classes and extend their functionalities.\n", "\n", "Let's now observe what such a class could look like.\n", "\n", "```{warning}\n", "This analysis class is intended for educational purposes only.\n", "It is not intended to be used as a template!\n", "See the end of the tutorial for the recommended usage of the analysis framework.\n", "```" ] }, { "cell_type": "code", "execution_count": 16, "id": "da4a3264", "metadata": {}, "outputs": [], "source": [ "class MyCosineAnalysis:\n", " \"\"\"Analysis as a class.\"\"\"\n", "\n", " def __init__(self, label: str):\n", " \"\"\"This is a special method that python calls when an instance of this class is\n", " created.\"\"\"\n", "\n", " self.label = label\n", "\n", " # objects to be filled up later when running the analysis\n", " self.tuid = None\n", " self.dataset = None\n", " self.fit_results = {}\n", " self.quantities_of_interest = {}\n", " self.figs_mpl = {}\n", " self.axs_mpl = {}\n", "\n", " # with just slight modification our functions become methods\n", " # with the advantage that we have access to all the necessary information from self\n", " def run(self):\n", " \"\"\"Execute the analysis steps.\"\"\"\n", " self.extract_data()\n", " self.run_fitting()\n", " self.analyze_fit_results()\n", " self.create_figures()\n", " self.save_quantities_of_interest()\n", " self.save_figures()\n", "\n", " def extract_data(self):\n", " \"\"\"Load data from disk.\"\"\"\n", " self.tuid = get_latest_tuid(contains=self.label)\n", " self.dataset = load_dataset(tuid)\n", "\n", " def run_fitting(self):\n", " \"\"\"Fits the model to the data.\"\"\"\n", " model = MyCosineModel()\n", " guess = model.guess(self.dataset.y0.values)\n", " result = model.fit(\n", " self.dataset.y0.values, x=self.dataset.x0.values, params=guess\n", " )\n", " self.fit_results.update({\"cosine\": result})\n", "\n", " def analyze_fit_results(self):\n", " \"\"\"Analyzes the fit results and saves quantities of interest.\"\"\"\n", " self.quantities_of_interest.update(\n", " {\n", " \"amplitude\": self.fit_results[\"cosine\"].params[\"amplitude\"].value,\n", " \"frequency\": self.fit_results[\"cosine\"].params[\"frequency\"].value,\n", " }\n", " )\n", "\n", " def save_quantities_of_interest(self):\n", " \"\"\"Save quantities of interest to disk.\"\"\"\n", " exp_folder_ = Path(locate_experiment_container(self.tuid))\n", " with open(\n", " exp_folder_ / \"quantities_of_interest.json\", \"w\", encoding=\"utf-8\"\n", " ) as file_:\n", " json.dump(self.quantities_of_interest, file_)\n", "\n", " def plot_fit(self, fig_: matplotlib.figure.Figure, ax_: matplotlib.axes.Axes):\n", " \"\"\"Plot the fit result.\"\"\"\n", "\n", " self.dataset.y0.plot.line(ax=ax_, x=\"x0\", marker=\"o\", label=\"Data\") # plot data\n", "\n", " x_fit_ = np.linspace(\n", " self.dataset[\"x0\"][0].values, self.dataset[\"x0\"][-1].values, 1000\n", " )\n", " y_fit_ = cos_func(x=x_fit_, **self.fit_results[\"cosine\"].best_values)\n", " ax_.plot(x_fit_, y_fit_, label=\"Fit\") # plot fit\n", " ax_.legend()\n", "\n", " # set units-aware tick labels\n", " set_xlabel(self.dataset.x0.long_name, self.dataset.x0.attrs[\"units\"], ax_)\n", " set_ylabel(self.dataset.y0.long_name, self.dataset.y0.attrs[\"units\"], ax_)\n", "\n", " # add a reference to the original dataset in the figure title\n", " fig_.suptitle(f\"{dataset.attrs['name']}\\ntuid: {dataset.attrs['tuid']}\")\n", "\n", " def create_figures(self):\n", " \"\"\"Create figures.\"\"\"\n", " fig_, ax_ = plt.subplots()\n", " self.plot_fit(fig_, ax_)\n", "\n", " fig_id = \"cos-data-and-fit\"\n", " self.figs_mpl.update({fig_id: fig_})\n", " # keep a reference to `ax` as well\n", " # it can be accessed later to apply modifications (e.g., in a notebook)\n", " self.axs_mpl.update({fig_id: ax_})\n", "\n", " def save_figures(self):\n", " \"\"\"Save figures to disk.\"\"\"\n", " exp_folder_ = Path(locate_experiment_container(self.tuid))\n", " for fig_name, fig_ in self.figs_mpl.items():\n", " fig_.savefig(exp_folder_ / f\"{fig_name}.png\", dpi=300, bbox_inches=\"tight\")\n", " plt.close(fig_)" ] }, { "cell_type": "markdown", "id": "b56c4016", "metadata": {}, "source": [ "Running the analysis is now as simple as:" ] }, { "cell_type": "code", "execution_count": 17, "id": "ba6ee364", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHgCAYAAAChG7dTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/jUlEQVR4nOzdd3yUVdbA8d8zkzLphVRIh0DooYOCgKDYQHSxrr0X1t1VV8V1ReztdXVtKK7dXV11XTtWlCLSIkKkhRAgQHpI7zP3/eOZGTIkgQSSPJPJ+X4+Ickzz8ycTJjJmXvPPVdTSimEEEIIITyYyegAhBBCCCG6miQ8QgghhPB4kvAIIYQQwuNJwiOEEEIIjycJjxBCCCE8niQ8QgghhPB4kvAIIYQQwuNJwiOEEEIIjycJjxBCCCE8niQ8QggnTdO47777jA6jx0lKSuKKK64wOgwhxBFIwiOEm8rOzub6668nJSUFi8VCcHAwJ554Is888wy1tbVGhyd6mC1btnDfffexe/duo0MRwhBeRgcghGjp888/57zzzsPX15fLLruMYcOG0dDQwMqVK/nLX/7Cb7/9xssvv9zp91tbW4uXl7wsdNT27dsxmdz7/eOWLVtYtGgR06ZNIykpyehwhOh28somhJvJycnhwgsvJDExke+//57Y2FjnZTfffDM7d+7k888/75L7tlgsXXK7nkgpRV1dHX5+fvj6+hodjhDiKNz7LYkQvdDjjz9OVVUV//znP12SHYcBAwbwxz/+0fl9U1MTDzzwAP3798fX15ekpCTuvvtu6uvrXa63fv16Zs2aRUREBH5+fiQnJ3PVVVe5nHN4Dc99992Hpmns3LmTK664gtDQUEJCQrjyyiupqalpEdvbb7/NmDFj8PPzIzw8nAsvvJDc3Nx2/dz79+/nqquuIjo6Gl9fX4YOHcqrr77qvLy2tpa0tDTS0tJcpvRKS0uJjY3lhBNOwGq1AnDFFVcQGBjIrl27mDVrFgEBAfTt25f7778fpZTL/dpsNp5++mmGDh2KxWIhOjqa66+/noMHD7qcl5SUxFlnncVXX33F2LFj8fPz46WXXnJe1ryG5/XXX0fTNFauXMktt9xCZGQkoaGhXH/99TQ0NFBWVsZll11GWFgYYWFh3HHHHccd18qVKxk/fjwWi4WUlBTefPNNl3jOO+88AKZPn46maWiaxg8//NCu340QHkEJIdxKv379VEpKSrvPv/zyyxWg5s2bp55//nl12WWXKUDNnTvXeU5BQYEKCwtTAwcOVE888YRasmSJ+utf/6oGDx7scluAWrhwofP7hQsXKkCNGjVKnXvuueqFF15Q11xzjQLUHXfc4XLdBx98UGmapi644AL1wgsvqEWLFqmIiAiVlJSkDh48eMSfIT8/X8XFxan4+Hh1//33qxdffFHNmTNHAervf/+787yff/5Zmc1m9ec//9l57MILL1R+fn5q+/btLo+JxWJRqamp6tJLL1XPPfecOuussxSg/va3v7nc9zXXXKO8vLzUtddeqxYvXqzuvPNOFRAQoMaNG6caGhqc5yUmJqoBAwaosLAwddddd6nFixerZcuWOS+7/PLLnee+9tprClDp6enqtNNOU88//7y69NJLnY/b5MmT1cUXX6xeeOEFZ1xvvPHGMcc1aNAgFR0dre6++2713HPPqdGjRytN01RmZqZSSqns7Gx1yy23KEDdfffd6q233lJvvfWWys/PP+LvRQhPIgmPEG6kvLxcAerss89u1/kbN25UgLrmmmtcjt9+++0KUN9//71SSqmPPvpIAWrdunVHvL22Ep6rrrrK5bxzzjlH9enTx/n97t27ldlsVg899JDLeZs3b1ZeXl4tjh/u6quvVrGxsaq4uNjl+IUXXqhCQkJUTU2N89iCBQuUyWRSy5cvV++//74C1NNPP+1yPUcS+Ic//MF5zGazqTPPPFP5+PiooqIipZRSK1asUIB65513XK6/dOnSFscTExMVoJYuXdoi/rYSnlmzZimbzeY8PmnSJKVpmrrhhhucx5qamlRcXJyaOnWq89ixxLV8+XLnscLCQuXr66tuu+025zHHY+VI0oTobWRKSwg3UlFRAUBQUFC7zv/iiy8AuPXWW12O33bbbQDOWp/Q0FAAPvvsMxobGzsc1w033ODy/ZQpUygpKXHG+9///hebzcb5559PcXGx8yMmJobU1FSWLVvW5m0rpfjwww+ZPXs2SimX68+aNYvy8nIyMjKc5993330MHTqUyy+/nJtuuompU6dyyy23tHrb8+fPd36taRrz58+noaGBb7/9FoD333+fkJAQTjnlFJf7HTNmDIGBgS3iTk5OZtasWe1+3K6++mo0TXN+P2HCBJRSXH311c5jZrOZsWPHsmvXLuexjsY1ZMgQpkyZ4vw+MjKSQYMGudymEL2dFC0L4UaCg4MBqKysbNf5e/bswWQyMWDAAJfjMTExhIaGsmfPHgCmTp3K7373OxYtWsTf//53pk2bxty5c7n44ovbVXCbkJDg8n1YWBgABw8eJDg4mKysLJRSpKamtnp9b2/vNm+7qKiIsrIyXn755TZXnhUWFjq/9vHx4dVXX2XcuHFYLBZee+01l6TCwWQykZKS4nJs4MCBAM6l2VlZWZSXlxMVFXXU+wU94emIwx+3kJAQAOLj41scb16b09G4Dr8f0H9Hh9f7CNGbScIjhBsJDg6mb9++ZGZmduh6rf3BP/zyDz74gJ9//plPP/2Ur776iquuuor/+7//4+effyYwMPCI1zebza0eV/ZCW5vNhqZpfPnll62ee6Tbt9lsAFxyySVcfvnlrZ4zYsQIl++/+uorAOrq6sjKyupwItL8vqOionjnnXdavTwyMtLlez8/vw7dfluPW2vHVbOi5Y7GdbTfjxBCEh4h3M5ZZ53Fyy+/zOrVq5k0adIRz01MTMRms5GVlcXgwYOdxwsKCigrKyMxMdHl/IkTJzJx4kQeeugh/vWvf/H73/+ed999l2uuuea4Yu7fvz9KKZKTk52jKO0VGRlJUFAQVquVmTNnHvX8TZs2cf/993PllVeyceNGrrnmGjZv3uwcPXGw2Wzs2rXLJZ4dO3YAOPvQ9O/fn2+//ZYTTzyxw8lMV+qKuI6WFAvh6aSGRwg3c8cddxAQEMA111xDQUFBi8uzs7N55plnADjjjDMAePrpp13OeeqppwA488wzAX3q6fB3++np6QAtlq8fi3PPPRez2cyiRYta3I9SipKSkjavazab+d3vfseHH37Y6shWUVGR8+vGxkauuOIK+vbtyzPPPMPrr79OQUEBf/7zn1u97eeee84ljueeew5vb29mzJgBwPnnn4/VauWBBx5ocd2mpibKysqO+HN3la6IKyAgAMCwn0kIo8kIjxBupn///vzrX//iggsuYPDgwS6dln/66Sfef/99Z8+XkSNHcvnll/Pyyy9TVlbG1KlTWbt2LW+88QZz585l+vTpALzxxhu88MILnHPOOfTv35/KykqWLFlCcHCwM2k63pgffPBBFixYwO7du5k7dy5BQUHk5OTw0Ucfcd1113H77be3ef1HH32UZcuWMWHCBK699lqGDBlCaWkpGRkZfPvtt5SWlgLw4IMPsnHjRr777juCgoIYMWIE9957L/fccw/z5s1z+VksFgtLly7l8ssvZ8KECXz55Zd8/vnn3H333c4poalTp3L99dfzyCOPsHHjRk499VS8vb3Jysri/fff55lnnmHevHnH/fh0VFfElZ6ejtls5rHHHqO8vBxfX19OPvnkNuuEhPA4xiwOE0IczY4dO9S1116rkpKSlI+PjwoKClInnniievbZZ1VdXZ3zvMbGRrVo0SKVnJysvL29VXx8vFqwYIHLORkZGeqiiy5SCQkJytfXV0VFRamzzjpLrV+/3uU+aWNZumMZt4Nj2XVOTo7L8Q8//FBNnjxZBQQEqICAAJWWlqZuvvlmlx45bSkoKFA333yzio+PV97e3iomJkbNmDFDvfzyy0oppTZs2KC8vLxclporpS/rHjdunOrbt6+z38/ll1+uAgICVHZ2tjr11FOVv7+/io6OVgsXLlRWq7XFfb/88stqzJgxys/PTwUFBanhw4erO+64Qx04cMB5TmJiojrzzDNbjb2tZemHtwFo6/F0xNuZcU2dOtVlqbtSSi1ZskSlpKQos9ksS9RFr6MpJVVtQgjPcsUVV/DBBx9QVVVldChCCDchNTxCCCGE8HiS8AghhBDC40nCI4QQQgiPJzU8QgghhPB4MsIjhBBCCI8nCY8QQgghPJ4kPKLHef3119E0zbkB5JEkJSU5m/QJIbreDz/84Ny7TQh3IgmP6FY//fQT9913X49ob79t2zbuuOMO0tPTCQoKIjY2ljPPPJP169e3ev7+/fs5//zzCQ0NJTg4mLPPPptdu3a5nJObm8uiRYsYP348YWFhREREMG3aNL799tsWt+dI7Fr7yM/Pb3H+J598wujRo7FYLCQkJLBw4UKamppczlm+fDlz5swhPj4ei8VCTEwMp512GqtWrXI5r6amhueff55TTz2V2NhYgoKCGDVqFC+++CJWq7XFfdtsNh5//HGSk5OxWCyMGDGCf//730d9jLvyvtauXctNN93EmDFj8Pb2bnMvqdraWq6++mqGDRtGSEgIgYGBjBw5kmeeeYbGxsYW55eVlXHdddcRGRlJQEAA06dPJyMjo8V5SUlJrf7ubrjhhnY9Lg7vvfcekyZNIiAggNDQUE444QS+//77Fuf985//ZPDgwVgsFlJTU3n22Wdbvb13333X+f8kMjKSq6++muLi4g7F1Fk++ugjZs2aRd++ffH19SUuLo558+Z1ePPc5mw2G4sXLyY9PZ3AwECio6M5/fTT+emnn1qcm5WVxYUXXkhcXBz+/v6kpaVx//33U1NTczw/lnBXxvY9FL3NE0880WqH3o5oampStbW1ymazHfXcwzvgdsRtt92mQkND1dVXX61eeukl9fjjj6v+/fsrs9msvvnmG5dzKysrVWpqqoqKilKPPfaYeuqpp1R8fLyKi4tTxcXFzvOeffZZ5efnpy666CL13HPPqaefflqNHj1aAerVV191uU1Ht977779fvfXWWy4ftbW1Lud+8cUXStM0NX36dPXyyy+rP/zhD8pkMqkbbrjB5bwlS5aos88+Wz344IPqlVdeUU888YQaOXKkMplM6ssvv3Set3nzZqVpmpo5c6Z6/PHH1eLFi9U555yjAHXZZZe1eKzuuusuBahrr71Wvfzyy+rMM89UgPr3v/991Me5q+5r4cKFytvbW40ZM0YNHDhQtfVyV1JSoiZMmKD+8pe/qOeff169+OKL6tJLL1WapqmLLrrI5Vyr1apOOOEEFRAQoO677z713HPPqSFDhqigoCC1Y8cOl3MTExNVenp6i9/dmjVrjvqYNP8ZNE1T5513nlq8eLF69tln1fXXX6/efPNNl/MWL16sAPW73/1Ovfzyy+rSSy9VgHr00UddznvhhRcUoGbMmKGef/55tWDBAuXv769GjBjR4v/UsVq2bJkC1Pvvv3/UcxctWqQuuOAC9eijj6pXXnlFPfjggyolJUX5+fmpjRs3HtP933rrrQpQl1xyiXrppZfUY489plJSUpSXl5fLY793714VGhqqEhMT1SOPPKJeeukldcUVVyhAzZkz55juW7g3SXhEt+qMhKcjjifhWb9+vaqsrHQ5VlxcrCIjI9WJJ57ocvyxxx5TgFq7dq3z2NatW5XZbFYLFixwHsvMzGyxrUBdXZ1KS0tTcXFxLsfb2p6gNUOGDFEjR45UjY2NzmN//etflaZpauvWrUe8bnV1tYqOjlazZs1yHisqKlKZmZktzr3yyisVoLKyspzH9u3bp7y9vdXNN9/sPGaz2dSUKVNUXFycampqOuL9d9V95efnq5qaGqWUUjfffHObCU9b5s+frwCVl5fnPPbee++1+GNeWFioQkNDWyRHR9qKoj1Wr16tNE1TTz311BHPq6mpUX369GlxX7///e9VQECAKi0tVUopVV9fr0JDQ9VJJ53k8mbh008/VYD6xz/+ccyxNteRhKc1+fn5ysvLS11//fUdvm5jY6Py8/NT8+bNczm+a9cuBahbbrnFeeyhhx5SQIv/e5dddpkCnI+b8BwypSW6zX333cdf/vIXAJKTk51D/Lt372b37t1omsbrr7/e4nqapnHfffc5v2+thkcpxYMPPugcmp4+fTq//fZbq3FkZ2eTnZ191HjHjBlDYGCgy7E+ffowZcoUtm7d6nL8gw8+YNy4cYwbN855LC0tjRkzZvCf//zHeWzo0KFERES4XNfX15czzjiDffv2UVlZ2WoslZWVrU7vAGzZsoUtW7Zw3XXX4eV1aD/gm266CaXUUWsp/P39iYyMdJlmjIiIYOjQoS3OPeeccwBcfv6PP/6YxsZGbrrpJucxTdO48cYb2bdvH6tXrz7i/XfVfUVHR+Pn53fE+z6SpKQkwHV38Q8++IDo6GjOPfdc57HIyEjOP/98Pv7441Z3nm9oaKC6urrD9//0008TExPDH//4R5RSbW6TsWzZMkpKSlweE4Cbb76Z6upqPv/8cwAyMzMpKyvjggsucJneO+usswgMDOTdd99tV1xlZWX8+c9/JikpyTkNddlll7WYFrNardx9993ExMQQEBDAnDlzyM3NPertR0VF4e/v32La+8knn+SEE06gT58++Pn5MWbMmBb/txsbG6mtrSU6OrrFbZpMJpf/DxUVFQAtzo2NjcVkMuHj43PUWEXPIgmP6DbnnnsuF110EQB///vfeeutt3jrrbecO1cfj3vvvZe//e1vjBw5kieeeIKUlBROPfXUVv/QzJgxgxkzZhzzfeXn57skLTabjU2bNjF27NgW544fP57s7Ow2E5nmt+nv74+/v3+Ly6ZPn05wcDD+/v7MmTOHrKwsl8t/+eUXgBb337dvX+Li4pyXN1dRUUFxcTHbtm3j7rvvJjMzs12PiaN2qPnP/8svvxAQEMDgwYNdzh0/frxLfB3VnfcFemJSXFxMbm4uH330EU8++SSJiYkMGDDA5f5Hjx6NyeT60jl+/HhqamrYsWOHy/Hvv/8ef39/AgMDSUpK4plnnml3PN999x3jxo3jH//4B5GRkc46sueee87lvLZ+/2PGjMFkMjkvdyRjrSWBfn5+/PLLL9hstiPGVFVVxZQpU3j22Wc59dRTeeaZZ7jhhhvYtm0b+/btczn3oYce4vPPP+fOO+/klltu4ZtvvmHmzJnU1ta2uN2ysjKKiorYvHkz11xzDRUVFS3+Pz7zzDOMGjWK+++/n4cffhgvLy/OO+88Z0Ln+DkmTJjA66+/zjvvvMPevXvZtGkTV1xxBWFhYVx33XXOc6dNmwbA1VdfzcaNG8nNzeW9997jxRdf5JZbbiEgIOCIj4XogQweYRK9TFtTWjk5OQpQr732WovrcNgO3ofv1F1YWKh8fHzUmWee6TJUf/fddyugxZRWYmKiSkxMPKb4ly9frjRNU3/729+cx4qKipy1Nod7/vnnFaC2bdvW5m1mZWUpi8WiLr30Upfj7733nrriiivUG2+8oT766CN1zz33KH9/fxUREaH27t3rPM/xmDY/5jBu3Dg1ceLEFsdnzZqlAAUoHx8fdf311x+1hqO+vl4NGTJEJScnu0ydnXnmmSolJaXF+dXV1QpQd9111xFvtzvuqz1TWv/+97+djwmgxo4dqzZt2uRyTkBAgLrqqqtaXPfzzz9XgFq6dKnz2OzZs9Vjjz2m/ve//6l//vOfasqUKQpQd9xxxxHjUEqp0tJSBag+ffqowMBA9cQTT6j33ntPnXbaaQpQixcvdvnZzGZzq7cTGRmpLrzwQqWU/v9U0zR19dVXu5yzbds258/cvN6sNffee68C1H//+98Wlzmee44prX79+qmKigrn5f/5z38UoJ555pkW1x00aJAzhsDAQHXPPfe02NXeMT3p0NDQoIYNG6ZOPvlkl+NZWVnOujjHR0pKSqvPwQceeED5+fm5nPvXv/71iI+B6LkOjX8L0UN9++23NDQ08Ic//MFlqP5Pf/oTDz/8cIvz27OcvTWFhYVcfPHFJCcnc8cddziPO96x+vr6triOxWJxOedwNTU1nHfeefj5+fHoo4+6XHb++edz/vnnO7+fO3cus2bN4qSTTuKhhx5i8eLF7bp/x9B9c48++ii33XYbubm5vPHGGzQ0NLRY0XW4+fPns2XLFj7//HOXqbPa2tpj+tnd5b4cpk+fzjfffENZWRnfffcdv/76a4sRwo7c/yeffOJyzpVXXsnpp5/OU089xR/+8Afi4uLajMUxfVVSUsK7777LBRdcAMC8efMYPnw4Dz74INdff73zPtuafrFYLM6YIiIiOP/883njjTcYPHgw55xzDvv37+cPf/gD3t7ezumgI/nwww8ZOXKkc7qxucNXwV122WUEBQU5v583bx6xsbF88cUX3HLLLS7nvvbaa1RUVLBr1y5ee+01amtrsVqtLiNpzUemDh48iNVqZcqUKS1W6AUFBTF06FAmTZrEjBkzyM/P59FHH2Xu3LmsWLHCZcQwKSmJk046id/97nf06dOHzz//nIcffpiYmBjmz59/xMdC9DyS8Igeb8+ePQCkpqa6HI+MjCQsLKxT7qO6upqzzjqLyspKVq5c6VLb43ghbq1+o66uzuWc5qxWKxdeeCFbtmzhyy+/pG/fvkeNY/LkyUyYMMFlGfvR7r+1+05PT3d+fckllzB69GiuuOKKNut9nnjiCZYsWcIDDzzAGWec4XKZn59fu3728vJylz+oPj4+hIeHd8l9HYvo6GhnPce8efN4+OGHOeWUU8jKyiImJua471/TNP785z/z1Vdf8cMPP3DJJZdQW1tLeXm5y3kxMTHO2/H29mbevHnOy0wmExdccAELFy5k7969JCQk4OfnR0NDQ6v3efjv/6WXXqK2tpbbb7+d22+/HdB///379+e///2v8//14W0PQkJC8PPzIzs7m9/97ndt/ozNHf581DSNAQMGtPqGY9KkSc6vL7zwQueU5ZNPPuk8/tlnn/Hggw+yceNGl99B80SrqamJmTNnMm3aNJdl+TNnzmTo0KE88cQTPPbYY4C+PP+6665jx44dzuTz3HPPxWazceedd3LRRRfRp0+fdv2someQGh7hFtrqkdJWoW53amho4Nxzz2XTpk18/PHHDBs2zOXy8PBwfH19ycvLa3Fdx7HWkplrr72Wzz77jNdff52TTz653fHEx8dTWlrq/D42Ntblvg6//6MlUj4+PsyZM4f//ve/rb7Df/3117nzzju54YYbuOeee1pcHhsbS35+PuqwbfkO/9n/+Mc/Ehsb6/xoXvjb2ffVGebNm0dVVRUff/yxy/139PfcXHx8PIDz9/fee++5PCaO32V4eDgWi4U+ffpgNptdbiMqKgrQRzkcMVmtVgoLC13Oa2hooKSkxCWmkJAQPv74Y/bs2cOPP/7I7t27eeutt8jLyyMyMpLQ0FDnbTb/eO+99478YHWisLAwTj75ZN555x3nsRUrVjBnzhwsFgsvvPACX3zxBd988w0XX3yxy/+F5cuXk5mZyZw5c1xuMzU1lcGDB7v0m3rhhRcYNWpUi5G2OXPmUFNTc1z1YMI9yQiP6FZtJTaOkZjDV2Y4Rm+OJDExEdCbiKWkpDiPFxUVOf8oHCubzcZll13Gd999x3/+8x+mTp3a4hyTycTw4cNbbUi4Zs0aUlJSXIb2Af7yl7/w2muv8fTTTzsLudtr165dLoXejtGa9evXO4t3AQ4cOMC+fftcCjXbUltbi1KKyspKlxGBjz/+mGuuuYZzzz2X559/vtXrpqen88orr7B161aGDBniPL5mzRqX+O644w4uueQS5+WHj7515n11Bkfy13wEJj09nRUrVmCz2VymW9asWYO/vz8DBw484m06GlE6fn+zZs3im2++aXGeyWQiPT2ddevW0dDQ4DJldeDAAZfbaP77bz4itn79emw2W6uPSUJCAgkJCYD+nNuwYYPLyM3hMTlW0fXv37/dTQEPL65XSrFz505GjBhx1OsePvL14YcfYrFY+Oqrr1ymFF977TWX6xUUFACtv1FqbGx0mbYtKChodQTY0WzyaFO8ogcytIJI9DovvviiAtQvv/zS4rKIiAh1zjnnuBy77bbb2lW07O3t3e6i5Z07d6qdO3e2K96bbrpJAeqll1464nmPPvpoi54527ZtU2azWd15550u5z7++OMKUHffffcRb7OwsLDFMUdxbPN+IkoplZaWpkaOHOnSh+aee+5RmqapLVu2OI8VFBS0uM2DBw+q+Ph4FR8f73L8xx9/VBaLRU2fPl3V1dW1GWdubm6bvXH69et31D483XFfRypaLioqarWJpaMPz3fffec89u6777boMVNUVKRCQ0PVBRdc4DxWUlLSIpaGhgZ14oknKh8fH5fePm35+9//rgD18ssvO4/V1taqlJQUNWTIEOexmpoaFR4ers466yyX619yySXK399flZSUHPF+brjhBmUymVx6SLWlM4qWn376aeex1v4/5uTkqKCgIDVlyhTnsVtvvVX5+/ur6upql/P8/f1dfq/r169v9Tm/YcOGFo04zzrrLOXj46O2b9/ucu7cuXOVyWRS+/fvP9rDIXoYGeER3WrMmDEA/PWvf+XCCy/E29ub2bNnExAQwDXXXMOjjz7KNddcw9ixY1m+fHmLZb6tiYyM5Pbbb+eRRx7hrLPO4owzzuCXX37hyy+/bNHzBnAudz1a8fLTTz/NCy+8wKRJk/D39+ftt992ufycc85xLl296aabWLJkCWeeeSa333473t7ePPXUU0RHR3Pbbbc5r/PRRx9xxx13OIfYD7/NU045xVlHcsIJJzBq1CjGjh1LSEgIGRkZvPrqq8THx3P33Xe7XO+JJ55gzpw5nHrqqVx44YVkZmby3HPPcc0117gs4T799NOJi4tjwoQJREVFsXfvXl577TUOHDjgMm2xZ88e5syZg6ZpzJs3j/fff9/l/kaMGOF8px4XF8ef/vQnnnjiCRobGxk3bhz/+9//WLFiBe+8806LKZnDddV97dmzh7feegvAOfr24IMPAvqo4KWXXgrA22+/zeLFi5k7dy4pKSlUVlby1Vdf8c033zB79myX6cZ58+YxceJErrzySrZs2UJERAQvvPACVquVRYsWOc/75JNPePDBB5k3bx7JycmUlpbyr3/9i8zMTGdR7NFcf/31vPLKK9x8883s2LGDhIQE3nrrLfbs2cOnn37qPM/Pz48HHniAm2++mfPOO49Zs2axYsUK3n77bR566CGXOqlHH32UzMxMJkyYgJeXF//73//4+uuvefDBB116SLXlL3/5Cx988AHnnXceV111FWPGjKG0tJRPPvmExYsXM3LkSOe54eHhTJ48mSuvvJKCggKefvppBgwYwLXXXus8Z/jw4cyYMYP09HTCwsLIysrin//8J42NjS5F/GeeeSZPPfUUp512GhdffDGFhYU8//zzDBgwgE2bNjnPGzNmDKeccgpvvPEGFRUVnHrqqeTl5fHss8/i5+fHn/70J5ef5csvv2TKlCnMnz+fPn368Nlnn/Hll19yzTXXdOr0qHATRmdcovd54IEHVL9+/ZTJZHIZqampqVFXX321CgkJUUFBQer8889XhYWFRx3hUUpv+b9o0SIVGxur/Pz81LRp01RmZmarnZbbuyz98ssvd1muevjH4Uvrc3Nz1bx581RwcLAKDAxUZ511lkuXYKX0rQKOdJvLli1znvvXv/5Vpaenq5CQEOXt7a0SEhLUjTfeqPLz81uN96OPPlLp6enK19dXxcXFqXvuuUc1NDS4nPPcc8+pyZMnq4iICOXl5aUiIyPV7Nmz1fLly13Oc7xLb+uj+e/D8fg//PDDKjExUfn4+KihQ4eqt99++6iPcVfe15Fud+rUqc7z1q1bp8477zyVkJCgfH19VUBAgBo9erR66qmnXJbEO5SWlqqrr75a9enTR/n7+6upU6e26Ia9fv16NXv2bNWvXz/l4+OjAgMD1eTJk9V//vOfdj0mDgUFBeryyy9X4eHhytfXV02YMMFl6XtzL7/8sho0aJDy8fFR/fv3V3//+99bjFx99tlnavz48SooKEj5+/uriRMndjimkpISNX/+fOfPFhcXpy6//HLnknbH4/7vf/9bLViwQEVFRSk/Pz915plnqj179rjc1sKFC9XYsWNVWFiY8vLyUn379lUXXnhhi3YASin1z3/+U6WmpipfX1+VlpamXnvtNefzqbmamhp1//33qyFDhig/Pz8VEhKizjrrrFZHldesWaNOP/10FRMTo7y9vdXAgQPVQw891OrvXfR8mlKHVf8JIYQQQngYWaUlhBBCCI8nCY8QQgghPJ4kPEIIIYTweJLwCCGEEMLjScIjhBBCCI8nCY8QQgghPJ4kPEIIIYTweJLwCCGEEMLjScIjhBBCCI8nCY8QQgghPJ5sHgrYbDYOHDhAUFAQmqYZHY4QQggh2kEpRWVlJX379sVkOvIYjiQ8wIEDB4iPjzc6DCGEEEIcg9zcXOLi4o54jiQ8QFBQEKA/YMHBwQZHI4QQQoj2qKioID4+3vl3/Egk4QHnNFZwcLAkPEIIIUQP055yFClaFkIIIYTHk4RHCCGEEB5PEh4hhBBCeDxJeIQQQgjh8SThEUIIIYTHk4RHCCGEEB5PEh4hhBBCeDxJeIQQQgjh8SThEUIIIYTHk07LQgghhOgSVptibU4phZV1RAVZGJ8cjtlkzCbdkvAIIYQQotMtzcxj0adbyCuvcx6LDbGwcPYQThsW2+3xyJSWEEIIITrV0sw8bnw7wyXZAcgvr+PGtzNYmpnX7TFJwiOEEEKITmO1KRZ9ugXVymWOY4s+3YLV1toZXUcSHiGEEEJ0mrU5pS1GdppTQF55HWtzSrsvKCThEUIIIUQnKqxsO9k5lvM6iyQ8QgghhOg0UUGWTj2vs0jCI4QQQohOMz45nNgQC20tPtfQV2uNTw7vzrAk4RFCGMtqU6zOLuHjjftZnV3S7YWMQojOZTZpLJw9pNXLHEnQwtlDur0fj/ThEUIYxt36dAghOsdpw2K58/Q0Hv1ym8vxGAOf35LwCCEM4ejTcfh4jqNPx4uXjJakR4gerKSqHoCJKeFcND5BOi0LIXqfo/Xp0ND7dJwyJOaIL47u1LZeCHGIzab4bJPeXPDKE5OZNTTG4Igk4RFCGKC9fTr+uXIX54+NJ9Tfp8U5Mh0mhPtav+cgeeV1BFm8mDYo0uhwAEl4hBAGaG//jYe/2MbDX2wjPtyP4f1CGNYvhOH9QiisqOP29zfJdJgQbuqTX/cDMGtoDL5eZoOj0UnCI4Todu3tvxEd7EtBRT25pbXkltbyxeb8I57fkekwIUTXaLLanM/V2SP7GhzNIZLwCCG6naNPR355Xat1PBr6ao6Vd55MVX0Tv+0vZ9P+cjbvL2f97lIKKurbvO3mbesn9e/TVT+CEKINq7JLKK1uIDzAhxPd6DkofXiEEN2uI306Qvy8OWFABDdM7c/zF4/m7jMGt+s+urttvRBC9+mvBwA4Y3gMXmb3STPcJxIhRK9y2rBYFs5pmfTEhFiOWIPjrm3rhRBQ12jlq0x9OmvOyH4GR+NKprSEEIaJCfYDIDkigD/NTG3X0vKjTYcBhPl7d3vbeiEE/LijiMr6JmJDLIxNDDM6HBcywiOEMMzOwkoARsWHcnZ6Pyb173PUQuPm02FtnVlZ18SaXSWdGaoQoh0+sU9nnTUiFpObLRqQhEcIYZidhVUADIgO7ND1ThsWy4uXjCYmxHXaKjbEwsi4EJpsimveXE/G3oOdFqsQ4siq65v4bmsB4F6rsxxkSqur1R6EnOVQnAX1lWAJgehhkDgJfIOMjk4IQ2U5Ep7IjiU8oCc9pwyJadFpuclm45rX1lC+az1fv/olCekBRIQEQkgcJJwAEQM6+8cQQgDfbi0gqLGUi0N2Mjz7N9haDf7hEDsS4ieAt5+h8UnC05W+fxBW/B8oW8vLvP1h+Dw46Q4Ije/+2IQwmNWmnCM8qdHHlvybTZrr0vPGOszrlvBG5YuYfPXGZ2w87Ep9R8OJt8CQuaC515C7ED3W3jUkffU31viuxVSvYNlhl/sEwYl/hKl/MSQ8kISna4Ul68lOZBr0G6OP7tSUwN6foWwPZLwJm96H6XfDpPlgkhlG0XvsP1hLfZMNHy8T8WGd8M5v9yr4+GY4mIMJUD5BrFGD2VobRogPnBlbgW/eejiQAe9fAUlTYO6L8oZDiONRXwlf3gUb32YkgAZ1EcOxxKfrsxiV+bB3NVTmgbexKycl4elKg2dDylR9KL05pfT/AN8/CHtWwTd/gz0/we9eAd+OD+0L0RNl2QuWUyICjr9Xx+oX4Ot7QFkhKBam3402/HwG1Gvc/dJqdhVV82x5AO9fP4CI396An/4Bu1fAS1PgvDf056kQomNKsuHfF0LxDgDea5rG12EX8s/5F7meZ7Ppf/MiBxkQ5CEypNCVLMEtkx3Qh9ETT4ArPoez/g5mX9jxJbx5NtSUAvpw/+rsEj7euJ/V2SVYbW0twBWiZ8o6zuksQH/zsOxh+GqBnuyMuADmr4PRl4G3hYhAX96+egL9Qv3IKa7mkn/vonziHXDTz9B3lF5j98482PJJJ/1UQvQShdvgtdP1ZCcolgci/487m65j9OhxLc81mSDpRAiI6P44m4dh6L33dpoGY6+CK78AvzDYvx7+fSFf/5rD5Me+56IlP/PHdzdy0ZKfmfzY9yzNzDM6YiE6TVaBPeGJOo5RzR8egR8f07+esRDOeanFYoC+oX68c80EIoN82ZZfyeWvraUqIB6u+gqGnA3WBvjgSsj+/tjjEKI3Kd4Jr58JVQUQNZTi33/Na/v0RqGzR7jf6iwHSXjcQdxYfbTHEgK5a9A+uJqC8hqXUxy7QEvSIzyFowfPMSc8G/99KNmZ9TBMubXNIuSkiADevnoCof7ebMwt47o311OnvLCe+yrFSWeBrQnrvy/Bun/jscUiRG9RUwr/Oh9qivXVV1d8xue7bNgUjIwPJaGPv9ERtkkSHncRPRTrBf+iHm9OMW/gFq//ulzsmNBa9OkWmd4SPZ5SqtmU1jEkPLlr4dNb9K+n3A6Tbj7qVQbFBPHGleMJ8DHzU3YJ5y/+iRMf/5ETtp3HT9YhmJuqKVzyO77N2NbxeIToDaxN8J/LoDQbQuLh9x+Af7iz2eAcN+y905wkPG5krW0wdzZcC8At5o+YZPrN5fLmu0AL0ZMdKK+jpsGKl0kjsU9Ax65cVw4fXKVPRaWdBdP/2u6rjowP5ZXLx+Fl0ti0v4L8ijoa8Ob6xlvJsUUTSzG2j25i6eYDHfyJhOgFVj6lF/v7BMLF70FgFPsO1rBhz0E0Te+u7M4k4XEjhZV1/M82mXebpmHSFP/wfo5QKls9T4ieLKtA/3+dHBGAd0dXaH3xFyjP1ds+nLO4w+0cxieHE2RxXaBaiT/zG2+hXnlxqnkDmR8/JSOpQjSXuw5+eFT/+qy/Q/RQAD7bpJdZTEgOJzrYvTfslYTHjfjYX/jva7qcLFs/IrVy7vF+p8V5sgu06Ol2Hut01paPYdN7oJnh3CXH1K18bU4pB2saWxz/TSXzSNPFANzY+CYbMzd3+LaF8EiNdfDR9fpKyOHnwYjznRd9ap/OcsetJA4nCY+b+HJzHnf9dxMAdfhyZ+O12JTGPPNyppj04xr6XkGyC7To6RwrtAZEdSBhqauAL+/Uv55yK8S3svy1HY40QvqG9VTW2gYRoNXTb9Vf9WXvQvR2K/+u1+0ExcIZTzoPZxdV8duBCrxMGqcPc+/pLJCEx3AVdY3c+p+N3PhOBuW1Tc6Os7+ogbxhPRWAB71exQf9HenC2UOOupu0EO4u61hWaP3wqN6tNTxFL1Q+RkcaIVWYWNB4DfXKi5iC5bDlf8d8P0J4hOKdeu0OwGmPgF+o8yLH6M7k1AjCA3wMCK5jJOEx0M+7Sjj96RX8N2M/Jg3mTx/Ad7dNY7F9F+gnm86nQIWSaCrkcvNX3H3GYE7rAVm0EEdyTCu0CrfCmsX612c8eVwt6scnhxMbYqGttw27VD/e9jpX/+abe/XhfCF6q6V36QsEBszU95+zU0o5V2e5c++d5iThMUB9k5VHvtjKRUt+Zn9ZLQnh/vzn+kncPmsQPl4mThsWy8o7T+aVa6dzYLT+TvYPXh9x4ECuwZELcfwKK+uprGvCpOlFy+3y7SK9fiDtLBgw47ju32zSWDh7CECrSY8CEmbfpQ/fl+09lGgJ0dvkrICd34DJC05/3KXP1Za8CnYVVePjZeLUodEGBtl+kvB0oda2h9iWX8HZz63ipeW7UAouHBfPF3+cwtgk17ocxy7Qo2bfTE34UIK1WvpveY7S6gaDfhohOoejfiepTwC+XuajX2Hvz/rWK5oZZt7XKTGcNiyWF+0jqYebkBzOKen9Yca9+oHlT0J1SafcrxA9hlLw7UL96zFXQJ/+Lhd/+qu+OuvkQVEEWby7ObhjI5uHdpGlmXks+nQLeeWHhsODLF7UNlhpsin6BPjw6O9GcMqQo2TGJhN+Zz0Mb57Nedr3vLt8LZefPrmLoxei6zjqdwa0p35HKfj2Pv3rUZdARGqnxXHasFhOGRLD2pxSCivrqKxr4p7/ZbImp5TV2SVMGnEh/PwC5G+G1c92WrIlRI+w9RPYvwG8A+CkO1wuUko563fmpPeM6SyQEZ4usTQzjxvfznBJdgAq65posilG9Avhqz+fdPRkx05LmUZRn3H4ak0ErHuWRqutK8IWolt0qH4n62t9l2UvC0y7q9NjcYyknp3ej0smJnLJxAQA/vZxJg02YNrd+olrXpZRHtF72Kzw/YP615NuhiDXv1UZe8vYX1ZLgI+Zk9OiDAjw2EjC08msNsWiT7dwpMWsRVX1hPl3rKI95PS/ATDb+i0/rvvlOCIUwlg7nZuGHmVJulKw/An96/HXQnDXv5P8y6lpRAT6sLOwiiUrdsGg0yFmBDRWw+rnuvz+hXALWz/Rd0G3hMIJf2hxsWN059ShMVi82zEt7SYk4elka3NKW4zsHO5YtofwGTCV3ODR+GpNNP34f8cTohCGaveU1p5VsG8dmH1hUssX3a4Q4u/N3WcMBuDZ77PIPVh7aGRp7cv6xolCeDKl9L47ABOuB0uwy8VWm3J2V549smetGpaEp5O1d9uHY9keInDWPQBMr/maLVnZHb6+EEYrqarnYE0jmgb9I4+S8DhedEdd0mJIvSudM6ofE1PCqWu0sejT32DQGRAzHBqqYM1L3RaHEIbI/h7yfgVvf5hwQ4uLf95VQnFVPaH+3kweEGlAgMdOEp5O1t5tH45le4iwISezxzIYX62RvV8/2+HrC2E0R/1OXJgffj5HGArP+xV2fguaqdUh9a6kaRoPzh2Gl0nj262FfL2lACb/Wb9w3SvSl0d4NscbjTFXgH/Lrv6O6azTh8Xg49WzUoieFW0PcLSmZse1PYSm6QVkwLjCDyk6WH7McQphBGfB8tHqd1Y9o38eei6EJ3dxVC0NiAri2pNSAFj06RZqBpwJwXFQUwyb3+/2eIToFvs36Luhm7ydf2uaa2iy8WVmPtBzmg02JwlPJztSUzPH98ezPUTi5IsoMkXSR6vg189fPvZAhTDAzoJ2bClRkadvEgpw4i3dEFXrbjk5lX6hfuwvq+Ufy3br9QygL1WXPbaEJ1q7RP887FwIiWtx8YqsIsprG4kM8mVCSp9uDu74uWXC8/zzz5OUlITFYmHChAmsXbu2Xdd799130TSNuXPndm2AR9FWU7OYEAsvXjL6+LaHMHtRMPhyAJJ3vkFDo/V4QhWiWzlGeI5YsLzhdbA1QfxEiB3ZPYG1ws/HzKI5QwF4ZcUudsafq/ckKdwCu5YZFpcQXaK6GDI/1L8ef73LRY4mui/8sBPQp7N64p6Obtd48L333uPWW29l8eLFTJgwgaeffppZs2axfft2oqLaXu+/e/dubr/9dqZMmdKN0bbt8KZmUUH6NFZn/CcZdMZ8qn97jv7ksnLZ/5h86u86IWIhut6hHjxtTGk1NcCG1/Svx1/bTVG1beaQaE4ZEs03Wwq4+8tc3ht1Cdral/Ti5f4nGx2eEJ1nw+v6nll9R0PcGOfh1profr4pjxP69+lxezu63QjPU089xbXXXsuVV17JkCFDWLx4Mf7+/rz66qttXsdqtfL73/+eRYsWkZKS0o3RHlnzpmaT+vfptIzYOyCMXTFnAqA2vN4ptylEVyuraaCosh44wgjPtk+hqgACo2HwnG6Mrm0LZw/Bz9vM2pxSvg44Wz+Y9TWU7zM2MCE6i7UJ1tv/xk44NLrTVhPd0uoGbnw7g6WZed0Z5XFzq4SnoaGBDRs2MHPmTOcxk8nEzJkzWb16dZvXu//++4mKiuLqq69u1/3U19dTUVHh8tHTxJ1yEwAT6laxeXuWwdEIcXQ77aM7fUMsBPq2MbjsqCEYcwV4daw5Z1eJC/Pnlhn6lhZ3L6+hMWEyKBtkvGVwZEJ0ku1fQMV+8I9w7oh+pCa6jmOLPt2C1dZz6tncKuEpLi7GarUSHe3acyM6Opr8/PxWr7Ny5Ur++c9/smTJknbfzyOPPEJISIjzIz4+/rjiNkJY/7Hs9UvDR7OS/e0rRocjxFE563fams4q2q5vI6GZ9YTHjVw9OZnUqEBKqhv4EPsbsl/e0t8ZC9HTZbypfx59KXjrtadHa6KrOLYmukZyq4SnoyorK7n00ktZsmQJERER7b7eggULKC8vd37k5uZ2YZRdxzz2KgDSC/9HQXmNwdEIcWRZzi0l2pjO+uVt/XPqqd2yjURH+HiZeHDuMAAWZiXT5BumvyPe+a3BkQlxnCoOQPZ3+tejLnUe7somukZxq4QnIiICs9lMQUGBy/GCggJiYmJanJ+dnc3u3buZPXs2Xl5eeHl58eabb/LJJ5/g5eVFdnbr3Yh9fX0JDg52+eiJ+k3+PTWaP0laPsu/+tDocIQ4IseWEq0mPNYm2PSe/vWo33djVO03IaUP547uR73y5hNtmn7QUWAtRE/167/1KdqESdCnv/NwVzbRNYpbJTw+Pj6MGTOG7777znnMZrPx3XffMWnSpBbnp6WlsXnzZjZu3Oj8mDNnDtOnT2fjxo09cqqqQ3wDKUrSCzv9tv6HOlmiLtzYziPtkr7zW71Y2b8PpM7q5sja7+4zBhPi582z5ZP1A1lfQ2XBka8khLtSCn55R/961CUuFzma6LbluJroGsStEh6AW2+9lSVLlvDGG2+wdetWbrzxRqqrq7nyyisBuOyyy1iwYAEAFouFYcOGuXyEhoYSFBTEsGHD8PFxj6LHrtRvmv64TLet4csM2V9LuKfKukZnPcCAyFZqeDbap7NGXOA2xcqtiQj05Y7TBpGjYtmoUkHZ2PzVP1mdXdKjijeFACB3DZRm6/2l7MXKDs2b6B6uM5roGsHtEp4LLriAJ598knvvvZf09HQ2btzI0qVLnYXMe/fuJS+vZy2F60peCRMo84snQKsne/m7KOkAK9yQY3QnKsiXEH9v1wurS2D7Uv3rdPeczmruonEJJPbx54MmfZRH2/QeFy35mcmPfd/jlumKXu4X+0rDoXPBt+XI6/jkPni1ktB0ShNdA7hd40GA+fPnM3/+/FYv++GHH4543ddff73zA3JnmobvqIvgp8cZX/E16/fMZ1xSzxliFL1D1pGmszb/B2yNelflmGHdHFnHfb0lnz0lNZQzkXu93mSYaTep2j52lsdx49sZPfIPgeiF6qvgt//pXx82neXw4YZ9NNkUQ/sGcc+ZQyisrO/UJrrdze1GeETH+Y29CIATTZn898cNBkcjREs7j7RpqKNYOb31F1134uhNAlBGED/Y0gE4x7yyx/YmEb3U9i+hoQrCkvWC5cMopfjX2r0A/H5CEpP6R3R6E93uJgmPJwhPoSZ6LGZNEZT1EQfKao2OSAgXWfZNQ1t0WC7JhgO/6L13hp5jQGQdc3hvko+s+rTW2eZVaNh6ZG8S0Us59s0aPg+0lgnM6uwScoqrCfT1Yk66e7WJOFaS8HgI/7EXAzDXtJK3ft5jcDRCuHJOaR2e8GT+V/+cMhUCI7s5qo47vOfI97ZRVCh/+mklTDRtbfM8IdxK7cFDPaSGtb4X4ztr9NGduaP6tt0ZvYeRhMdTDD0Hm8mbIaY9rF2zUpaoC7dR09DEvoP6qGOLTUMd7zLbeNF1N4f3HKnHh8+sEwCYa1rV5nlCuJWtn+l1c1FDIWpwi4sLK+v46jd9d4OLxyd2d3RdRhIeT+EfjmbfvfmkxlX875f9BgckhC67sBqAPgE+hAc0W3JesAWKtoLJG9LOMii6jnH0Jmk+AfCJ7UQATjWvx5umHtebRPRCzjca57Z68fvr9WLlUQmhDOnbMxvztkYSHg+i2WsgTjet4bVVOazOLubjjfulR4gwlKPDcv8W01n2F93UU8AvtHuDOkbNe5M4kp61tjSKVAhhWhUnmH7rcb1JRC9TVQg5P+pft5Lw2GyKf9uLlS8en9CdkXU5z5iYE7pBp6NM3gxkP9bCbVy0pMp5UWyIhYWzh8hyWdHtWq3fUarHTWc5nDYslhcvGc2iT7eQV16HDRNLreO41OtbHkjdSYI8x4Q72/KxvpVE39EQntLi4uVZRew7WEuwxYuzRnhGsbKDjPB4Er9QiqJOAOBM0xqXi/LL67jx7QxpjCa63c7WEp4Dv8DBHPDyg4GnGRTZsTttWCwr7zyZf187kb+fP5JlZn1Zb2zed2BtNDg6IY6g+eqsVjiKlX83Jg4/H3N3RdUtJOHxIFab4qXiEQCcYXZNeKRHiDDKoT20mhUsb/mf/nngrFY7vPYEZpPGpP59OGd0HH2GTKdYBePdUAa7VxgdmhCtqyyAvT/rXx+2lQRAXnkt323V94b7/QTPms4CSXg8ytqcUt6vGkGDMjPItI/+mmvhsvQIEd2trtHKnhK9aNk5wqOUvkoEYMgcgyLrXDOG9uMr6zgAlKN7rRDuZvvngIJ+YyCkX4uL31uXi03pxfkDWmsS2sNJwuNBCivrqCCAlbbhQMtprebnCdEdcoqrsSkItngRGeSrHyzapm9YaPaBAacYG2AnOWlgBN9oEwGwbvkUrE0GRyREK7Z+qn9uZVVkk9XGu2tzAc8c3QFJeDyKo/fHFza9L8jh01qHnydEV8tqNp2lObq5OkZ3UqaBxTOWvPr7eOGdchIlKgivulLYs9LokIRwVVsGOcv1rwfPbnHxsu1F5FfUER7gw2nDYro3tm4iCY8HcfQI+dY6hiZlIs2US7xW4LxcA+kRIrrVTvuWEi4Fy9vsCU8P6b3TXjOG9uUb6xj9m22fGxuMEIfL+hpsTRAxCCJSW1z8zhq9Q/95Y+Lw9fKsYmUHSXg8iKNHSDmBrLOlATDTlAEc6hkiPUJEd3KM8Dj30CrLhbyNoJlg0BnGBdYFTh4cxbdKT3isW7/Qa5WEcBeO6axWRndyS2v4cUcRABd5WO+d5iTh8TCOHiFrffRprVNM+u7pMSEWXrxktPThEd0q6/AVWo6Rj/iJPWLvrI6ICrJQ2fdEapUP5sp9UJBpdEhC6BprD+2dNbjlyOq76/aiFEweEEFSREA3B9d9JOHxQKcNi2X+jbcAMN60jX6WOlbcMV2SHdGtGpps7C4+bIWWYzqrlRddTzB1aCIr7IsG2PaFscEI4ZD9PTTWQEg8xKa7XNRotfHeun0AXOyhxcoOkvB4KHNECrbINLw0G2Mb1rO/rNbokEQvs6ekmiabIsDHTGyIBWpKYY99g00Pq99xOHVINN/Y7NNaUscj3IUj+U47EzTXkoZvthRQXFVPZJAvpwyJNiC47iMJjwczpZ0JwCnmDH7ZW2ZsMKLXcdbvOFZoZX2jt7SPHgZhnrMDc3P9IwPJDjkRm9Iw5/8K5bKJrzCYzQZZX+lfDzq9xcWOYuULxsbjbfbslMCzf7rezl4UOtX0K5t2FxzlZCE6V1bBYVtKOF50U081KKKup2kaY4cN4hc1QD+w40tjAxIi7xeoLgKfIEg4weWinOJqVu0sQdPgwvHxBgXYfSTh8WR9R1NniSRIq6UpR/qCiO7l2CU9NSpQb8S38zv9goGzDIyq650yJNq5PN0mdTzCaDu+1j/3nwZePi4XOXZFnzYwkrgw/24OrPtJwuPJTCasA/SNGVMPrqCu0WpwQKI3ObSHViDsWwd1ZeAXBnHjjA2si41OCGOdr951mZwVUF9pbECid3OOrLq+0ahrtPL+er2z8sUTPHOK+XCS8Hg4/2H6nO1J2kYy95UZG4zoNZqsNnYVOVZoBR160R0wE0ye2dTMwWzSSEkbxR5bFCZbw6HutkJ0t8oCOPCL/vVhU8lf/ZbPwZpGYkMsTB/kWS0i2iIJj4fTkqfSiDeJpkJ2bd9kdDiil9hbWkOD1YbF20S/UL9Dw+qpnj2d5XDK0Bh+sI0EQGV9Y3A0otfaaf+/F5sOQa4rsN75WZ/OumBcPF4eXqzs0Dt+yt7MN5CCsFEAaDvlhVd0j+Ydlk0V+6DwN7278oAZBkfWPSanRrBK0593Tdu/lq7Lwhg77COrA09zPVxQydrdpZhNGheO8+zeO81JwtMLWFNmAhBfssrgSERv4ajfGRAZqO/hAxA3Hvx7xz5u/j5eeKWcRL3yxrtqPxRtNzok0ds0NUD2Mv3rga7TWf9ao4/uzEiLIiak92wmLQlPLxA1Wu/HM8r2G3nFJQZHI3qDLMemodFBhxKegZ67HL01U4clssa+px0yuiq6297V0FAJAVEQO8p5uLbByocZvaOz8uEk4ekF/PoOpdAUia/WyL4MeeEVXc8xpTWwjxfs+lE/6MH9d1pzclo0P6h0AOq3fW1sMKL3cUxnpZ4CpkN/6j/bdIDKuibiwvw4KbV3FCs7SMLTG2gau8PsDafknaboYjabIrtIT3iGNWZCUy0E99M7LPcikUG+FEWfBIBX7mqorzI4ItGrODYLTT0Fq02xOruEjzfuZ/GP2YC+K7rJpB3hBjyPl9EBiO7RlDITSj4mTup4RBfbX1ZLXaMNH7OJ6KIV+sEBM1rs4dMbDB0+mr3fR5JgKoLdK1pt7S9EpyvfB8XbQTPxbf1g/vbY9+SV17mcEhHoa1BwxpERnl4iNv1UGpSZWGseDYVZRocjPJijw3JKZACmXfaiyZTpBkZkHH15ejoADdu+MjYY0XvYi5XLwoZz7X+yWyQ7AHd9uImlmXndHZmhJOHpJZL6RvOLNhiAoozPDI5GeDLHHlpjwuugcAugQco0Q2MySv/IQLYFTQBkebroRvY3Gv8tH8iR/sct+nQLVlvv+T8pCU8voWkaOaF6HY80QhNdyVGwfJL5N/1A3/Resxy9NeFDZ1CvvPCv2Q/FMroqupjN5hzh+aJmcJunKSCvvI61OaXdFJjxJOHpRawpJwMQWboBmuoNjkZ4KkfCM6xug36g/8kGRmO86cOTWGcbBIA1+3uDoxEeL/9XqC2l0SuAjWrAUU8vrGw53eWpJOHpRRLSxlCkgvFVdfpmjkJ0MqUUOwsq0bARXbxaP9jLE570+DAyvNIBKMuU0VXRxeyjO5Uxk2hqx7qkqCBpPCg80MiEMFbZ9KXBNdu+Mzga4YnyyuuobrAy1LwPr9pi8A7QOyz3YmaThrLXMAUcWA3WJmMDEp7NPooYOnwWsSEW2lobqQGxIRbGJ/ee6WZJeHqRYIs3OwPGAtCYJUProvM5prPmBG7TDyRNBi8fAyNyD0NGTeagCsRiq0YdyDA6HOGpGqph788AmAbMYOHsIa2e5kiCFs4egrkX9eKRhKeXaUiYAkBQySaoKzc4GuFpHFtKTDZt1g/0753L0Q83eWA0axgKQNGvSw2ORnis3avA1gghCRCewmnDYnn+4tEcntPEhFh48ZLRnDYs1pg4DSKNB3uZ5AFpZG+Lpb8pD3avhLQzjQ5JeJCdhVX40sDAOkfC07vrdxz8fMwURU6C4jU07PgeuNfokIQncvS96j/d2eizX5gfNgUWbxMPzx1ObKgf45PDe9XIjoOM8PQyoxJCWWmv47E5dtIVopNkFVYx3rQNL9UAQX0hYqDRIbmN8OH6XmLRFZtlmwnRNRyrAJu90fh+WyEA0wdFce6YOCb179Mrkx2QhKfXSY0KYr1pJACNWZLwiM6jlCKroLLZdNbJvXI7ibZMHD2GXBWJN00Ub/nB6HCEpynfD0XbQDNB8knOw8u2H0p4ejtJeHoZs0mjtt8krErDt2yn/iQRohMUVdZTUdfESVK/06o+QRa2+48BoGCj1PGITrbrB/1z31HORp+FlXVs2qfXak5L6107o7dGEp5eaFBSHJtUf/2bnB+NDUZ4jKzCKsKpYLBpr34geaqxAbmjFP0xCTwgm/iKTrbbvlFvs+fdD9uLABjeL6RX9dtpiyQ8vdCo+DBnHY/zXYEQxymroJIJpq36N1FDIFDeUR4udeJZACQ27qKyREZXRSdRCnIcCc8U5+EfHNNZaTKdBZLw9ErpCaHOBoS27GWyoaHoFFmFVUwybdG/SZpy5JN7qcT4BLJMyQDsWP2FwdEIj1G6Cyr2gckb4icC0Gi1sWJHMQAnS8IDSMLTK0UE+lIUMpJa5YOpuhAKtxodkvAALglPsiQ8bSmN1jfxbZDmn6KzOKaz4saCjz8A63aXUlnfRJ8AH0b0CzEwOPchCU8vNSwx0rmhofPJIsRxOFiQS6ppPwoNEk80Ohy3FT7sFAASy9bS0GQzOBrhERzTWc1GVpfZl6NPHRSJqZcuQz+cJDy91OiEMFbb9M6vkvCI41VSVU9a3a8AqOhhzlUioqX+Y2bShJm+WjEbN/9qdDiip1OqWcHyoeXojv47Mp11iCQ8vdSohFB+tg0GQO1eBTZ5pymOjdWm+N/G/VK/004mSxD7/fXn3m8/fc7HG/ezOrsEq01q6cQxKM6CqgIw+0LcOAD2ltSQXVSN2aQxJVUWDzjI1hK9VFpMMDvM/alWvgTUlkLRVogeanRYoodZmpnHok+3kFdex/c+esJz54YQZsTn9bp9ejoiL3Q0iTWZBOWv4Y/vjgL0nasXzh4ij5vomN3L9c/x48FbX3ruaDY4NjGMED9voyJzOzLC00v5eJkY3K8P6511PCuNDUj0OEsz87jx7QzyyuuIoYQUUz5WpfFVVX9ufDuDpZl5RofolpZm5vHibj2pmaAdWjCQX14nj5vouByZzmovSXh6MX1aa4j+jdTxiA6w2hSLPt2CYxLGMZ2VqZKpQF8lsujTLTJNcxjH47bONogmZSLeVEScpjeHczxS8riJdlPq0JtV+1RyTUMTq3eVANJ/53CS8PRioxLCnHU8SB2P6IC1OaXkldc5v3ckPKvtCbQC8srrWJtTakR4bsvxuNVgYZNKAVxHeeRxEx1SuBVqisHbH/rp25b8tLOEhiYb/UL9SI0KNDhA9yIJTy82KiGUzSqZauULjjoeIdqhsLLO5XtHwuMcMWzjvN6u+ePheKwmOoq92zhPiDY5RubjJ4CXDwDfbz80naXJ5r0uJOHpxWJD/IgIDpQ6HtFhzfflidOKiDcV0aRMh3o7tXKecH08HKOrE00t32jI4ybaJcdesGyv31FK8YPU77TJLROe559/nqSkJCwWCxMmTGDt2rVtnrtkyRKmTJlCWFgYYWFhzJw584jnC1dSxyOOxfjkcGJDLGjAJNNvAGxSKVTjB4CGvupofLL042mu+eO2vpU6HnncRLvZbLDHvgmtPeHZXlDJgfI6LN4mJvXvY2Bw7sntEp733nuPW2+9lYULF5KRkcHIkSOZNWsWhYWFrZ7/ww8/cNFFF7Fs2TJWr15NfHw8p556Kvv3y8Z87dG8H4/U8Yj2Mps0Fs52nZJx1O84BtEXzh6CWTq8umj+uNUeVscjj5vokIJMqD0IPkEQmw4cWp11Qv8ILN5mA4NzT26X8Dz11FNce+21XHnllQwZMoTFixfj7+/Pq6++2ur577zzDjfddBPp6emkpaXxyiuvYLPZ+O6777o58p5pVEIYm1UyNVikjkd0yGnDYnnx96OYZJ+ScXTujgmx8OIlo6WfTBtOGxbLi5eMJibE4hxdnWDaSmSQrzxuov0cJQiJk8Cst9RzbCcxfZA0G2yNWzUebGhoYMOGDSxYsMB5zGQyMXPmTFavXt2u26ipqaGxsZHw8LaHhOvr66mvr3d+X1FRcexB93DD+oaAyZt11oFMNW/Sn0TSgFC009ToWvy0EhqVmTPPmMPNsdGMTw6XEYqjOG1YLKcMiWHHynL4/hMmmrbwx5mpkuyI9nNMZ9n3rSuraWDDnoOALEdvi1uN8BQXF2O1WomOjnY5Hh0dTX5+frtu484776Rv377MnDmzzXMeeeQRQkJCnB/x8fHHFXdP5udjZnBssNTxiGNSuHkZAFu1/lw0eQiT+veRZKedzCaNwRNOwYaZBFMR27e3XK0lRKuUgr32QYDEEwBYnlWMTcHA6EDiwvwNDM59uVXCc7weffRR3n33XT766CMslrZXOSxYsIDy8nLnR25ubjdG6X5GSx2POEaNOfq7zNygdGMD6al8g6iJGA6AtnslSknDQdEOxTugpgS8/Jz1O87pLBndaZNbJTwRERGYzWYKCgpcjhcUFBATE3PE6z755JM8+uijfP3114wYMeKI5/r6+hIcHOzy0Zs56nhqNanjER0TUrQOgJrYCQZH0nP5DZwKwNCGzWwvqDQ4GtEjOKaz4saClw9Wm+IHR/+dQZLwtMWtEh4fHx/GjBnjUnDsKECeNGlSm9d7/PHHeeCBB1i6dCljx47tjlA9yqiEUJrwYr11oH5A+vGI9qgqJLI+F5vSCEw90ehoeiyzfUnxRNMWVu0sMTga0SPscUxn6c+7jbllHKxpJMjixejEMAMDc29ulfAA3HrrrSxZsoQ33niDrVu3cuONN1JdXc2VV14JwGWXXeZS1PzYY4/xt7/9jVdffZWkpCTy8/PJz8+nqqrKqB+hx0kI9yc8wIefrWn6gb3tKxAXvZt1908AbFfxpCb23jq445YwARsmEkxFbNm2zehoRE+wR3/ukagPBDims04aGIm32e3+rLsNt3tkLrjgAp588knuvfde0tPT2bhxI0uXLnUWMu/du5e8vEO7Cb/44os0NDQwb948YmNjnR9PPvmkUT9Cj6NpGqPiQw91XN6zWi+KE+IIKnfoXV4zSCM5IsDgaHow3yDqI+w9jHJ/pskqNXTiCMr2QsU+MHlB3Dig2e7oMp11RG61LN1h/vz5zJ8/v9XLfvjhB5fvd+/e3fUB9QKjEkJ5dlt/mvDCqyofDuZAeIrRYQk3ptnfZR4IGSUrs46TJeVEKM5kuPU3ft1XzhiZlhBtcYzuxKaDTwD55XVsyatA02Ca9N85Ircb4RHGGJUQRj0+bDEN0A/s/dnYgIR7qysnuFyffmmKb7u+TrSPZl9aPM60g592FhscjXBrh01nOYqVR8aF0ifQ16ioegRJeAQAI+JC0DT4qSFVP+B4UgnRmty1aCh226KJT5CRwOOWoP/xStP28kvWbmNjEe7NmfDoBcvfy2ah7dauKa3Ro0d36EY1TeOTTz6hX79+xxSU6H5BFm8GRgWxtmgQN/CpFC6LI7Mvi11rS2NI397d1qFTBEXTGJKEd/luzPvWUdtwMn4+sheSOExVEZRk6V/HT6C+ycpK+4jgdKnfOap2JTwbN27ktttuIzAw8KjnKqV49NFHXbZuED3DqIRQviiwL00v2ak/uQJlTli01LBrFT7AOjWIs2KCjA7HI3glnwgbd5POVtbvKWVKqjz3xGH22kd3ooaCfzhrs4qoabASGeTLUHnjcVTtLlr+y1/+QlRU+zLI//u//zvmgIRxRiWE8u66QPZ6JZHQtFsf5Rkyx+iwhLtprMUr/xcA8kJH4+/jlmsfehwt8QTY+A7jTNtZll0iCY9oydl/x7EcvQjQNws1ycKBo2pXDU9OTg6Rke1/8m3ZsoXExMRjDkoYY1SCvjJkVaO9jkemtURr9m/AZGukQIUS2neg0dF4Dnsdz0gtm3VZBwwORrglR4dl+/+VZdulfqcj2pXwJCYm8ttvv7X7RuPj4zGbZf65pxkQGUiQrxerG+39eCThEa2xv8tcZ0tjSL8Qg4PxIOEpWP0j8dWaMOX9Qnlto9ERCXdSVw4FmfrXiSeQU1xNTnE13maNEwdEGBtbD9HuVVojRoxgwoQJLFmyhMpK2e/FE5lMGukJoaxzNCDM2wT10rFaHMZeR7DGlsaQWKkb6DSahjlJX54+VtvOz7tkmwnRTO5aUDYIS4Lgvs7VWeOSwgmyeBsbWw/R7oTnxx9/ZOjQodx2223ExsZy+eWXs2LFiq6MTRhgVHwoefSh1DsGlBX2rTU6JOFOrE2o3DWAfYRHCiU7l32qYqxpu/TjEa4OW46+TJajd1i7E54pU6bw6quvkpeXx7PPPsvu3buZOnUqAwcO5LHHHiM/P78r4xTdxFHHs0E59tWSBoSimfxNaA3VlCt/Svz7ExVkMToiz+JMeHawemehwcEIt+JIeBImUVXfxJocfQRwuiQ87dbhxoMBAQFceeWV/Pjjj+zYsYPzzjuP559/noSEBObMkRU9PV16fCgAy2r76wekAaFobq+jfmcQg/uFGhuLJ4oehvIOIFirwVy8jYKKOqMjEu6gsQ4OZOhfJ57Aqp3FNFoViX38SZF97NrtuDotDxgwgLvvvpt77rmHoKAgPv/8886KSxgkLMCHpD7+rLXX8Vhz12FtlJ5Kws4+nbXeNkjqd7qC2QstYQJgn9bKlmktAeT9CtYG8I+A8BTndNb0QVFomixHb69jTniWL1/OFVdcQUxMDH/5y18499xzWbVqVWfGJgywNDOPgoo6dqp+lKpAzNY6rnv8VZZm5h39ysKzKaUXTgIbbAOlfqerJOiFy+NN21i1UwqXBYdqKeMnoJDl6MeqQwnPgQMHePjhhxk4cCDTpk1j586d/OMf/+DAgQMsWbKEiRMndlWcohsszczjxrczqG20ARrr7aM8/Ws2cePbGZL09HbluVCZR6Mys0mlyAhPV0nQX0fHmbbzU1YRSimDAxKGs4+sEj+O3w5UUFBRj5+3mfHJ4cbG1cO0O+E5/fTTSUxM5Nlnn+Wcc85h69atrFy5kiuvvJKAAJlD7OmsNsWiT7fQ/KXVsTx9nGk7AIs+3YLVJi++vZZ9dOc3lYjmbSFZage6RtxYlMmbGO0gpspc9pTUGB2RMFKzkVXiJzins04cEIHFW/rddUS7Ex5vb28++OAD9u3bx2OPPcagQYO6Mi7RzdbmlJJX7loguc6mr9QaY9qOQpFXXsfanFIjwhPuwP6im2EbSFpMMGZpZd81vP3Q+o4CYLy2jVVSx9O7le2FqgIweUHfUTKddRzanfB88sknnH322dJB2UMVVrZcDfKbSqJOeROuVZGi5bV5nugl7MPqGbZUqd/pavbC5TGmLH6SOp7ezf5GQ8WM4Osd5WTsLQPgpIHSXbmj2pXwnHvuuVRUVLT7Rn//+99TWCg9JHqS1vqpNOLFr0pfnj7GtKPN80Qv0FAN+ZsBe8Gy1O90rXi9jme0aQc/ZRdjk6nk3sv+RuM/BbFc99YG5+HzFq+WusoOalfC8/HHH1NUVERFRcVRP8rLy/n000+pqpItCXqS8cnhxIZYOHySIsOmbyQ6RssiNsQiRXK91YFfQFkpoA959JERnq4WPx6AQdo+mmrK2Zrf/jecwrOUZ+mrn5c7eqPZ5ZfXyWKSDmpXwqOUYuDAgYSFhR31Izw8nOrq6q6OW3Qys0lj4ewhAC5Jz3qbvhv2aNMOFs4eInUbvZVjOwnrADQN0mKCDA7IwwVGQVgyJk0xSqa1ei1rXSUBZduAQ28+HRxjfrKYpP282nPSsmXLOnzD/fr16/B1hLFOGxbLi5eMZtGnW5wFzI4n2UDTfgam+BoZnjBS7jpAL1hOjgjA36ddLx3ieMRPgIM5jDFlsSq7mGtPSjE6ItHNtm34kaHYOKDCyaNPi8sVOBeTTOrf8nLhql2vWlOnTu3qOISbOG1YLKcMiWFtTim/HSjnwc+3sssWS4opD/ath4GnGh2i6G5KOUd4NthSpX6nu8SPh03vMlrbwUs5pTQ02fDxOq7m+KKH0fYdWhl5JLKYpH3k2SNaMJs0JvXvwzVTUkiLCWKDYyjV0fxK9C4l2VBbSoPmwxaVJPU73cXegHC0eSd1DY38uq/M2HhEt4ut2AS0nM46nCwmaR9JeMQRzRoawwZlf3chCU/vZH+Xud00gEa8ZISnu0SmgW8wAdQxSMtl1U7px9OrKEVo6UaAQ286D6OBLCbpAEl4xBGdNiyGDfbhVLV/A1ibDI5IdDt7oruqXl8lIiM83cRkhrixgN4WQgqXe5mSnWi1B2lAH1k9nGP5iCwmaT9JeMQRpcUE0Rg2gHLlj9ZYAwWbjQ5JdDdnh+UBRAT6yvB5d4p3NCDcwS+5B6lpkDccvYb9jcavtmQa8aJPgI/LxTEhFl68ZDSnDYs1IroeSZZaiCPSNI1Zw/qSsTqV6eZf9T9+9rb3oheoK4fCrYBeOCmjO93M3o9nvNdOGmsV63YfZOrASIODEt1B7V2Dht7oc256X/7v/HTW5pRSWFlHVJA+jSUjOx3TroRn1KhRaFr7HtiMjIzjCki4n1nDYvh+1UCmm3/FuudnzBOuNzok0V32rQcUJT79KK4Lkfqd7tZvLGgm+qkCIjnITzuLJeHpJaqyVxMEbNIGcc9pac7FJOLYtSvhmTt3bheHIdxZelwor/gNhab3adz9M7KbWi9in87arOl1XDLC080swRA1FAo2M9qUxarsRKMjEt2grrKUoIosAEZMPIW+oX4GR+QZ2pXwLFy4sKvjEG7MZNLoN+RErL9qWGoOQPl+CJHGkr2CfYXWj7V60zsZ4TFA/Hgo2MxY0w6+PjCespoGQv19jn490WN98/VnzAZyieGyU8YaHY7HOKai5bKyMl555RUWLFhAaWkpoE9l7d+/v1ODE+5j+sgUtir93aV1z88GRyO6hc1qn9KCnxsHYPE2kRwRYHBQvZC9cPlE32yUgtXZslrLkxVW1JG76QcAVNx46WreiTqc8GzatImBAwfy2GOP8eSTT1JWVgbAf//7XxYsWNDZ8Qk3MT4pnExTGgAFW5YbHI3oFkXboL6CJi9/tqt40mKCpUjSCI6NRG3Z+NLAqmzpx+PJnvx6O8Nt2wGIGzHN2GA8TIcTnltvvZUrrriCrKwsLJZDy1PPOOMMli+XP4Seystswhanv/Da9koDwl7BXr+zz38oNkxSv2OUsCQIiMKsmhim5Ug/Hg+Wub+cDzfsZZRpJwCmhPEGR+RZOpzwrFu3juuvb7lKp1+/fuTn53dKUMI9JY2aDkBMzQ5s9dUGRyO6nD3h2Yi9YFnqd4yhaZCgT2uNNe9gV3E1eeW1BgclOptSivs/3UIq+wjU6sAnEKKGGB2WR+lwwuPr60tFRUWL4zt27CAyUpZLerLRw0dQoMLwwkr2RhnN83j2xmfLqpMAWaFlKHsdz3T/HABWySiPx/kyM5+1u0uZ4K2vziJurN5tW3SaDic8c+bM4f7776exsRHQG9Pt3buXO++8k9/97nedHqBwHxYfLw4EjQBg/+YfDY5GdKnqEijNBmBZdSKapnfdFgaxJzx6bYfiJ9lXy6PUNVp5+Au9wecF0Xn6wTiZzupsHU54/u///o+qqiqioqKora1l6tSpDBgwgKCgIB566KGuiFG4EZ+UE/TPeetQShkcjegy9uXo1SEDqCCQ5IgAWS1ipNiRYPYhoOkgiVoBP2WXyPPPg7y6Kod9B2uJCbaQ1rRNP2hPckXn6fArWEhICN988w0rV65k06ZNVFVVMXr0aGbOnNkV8Qk3kzJqOmx6hMFN29iWV8HgviFGhyS6gn06a6/fMEDqdwzn5atv6ZK7hgleO/lPRQy7iqvpHxlodGTiOBVW1PH893qR8t9OjsC0dJd+QZz03+lsHU54cnNziY+PZ/LkyUyePLkrYhJuzC9+FA2aD2FU8fG6NQw++1SjQxJdIXcdABlIh2W3ET8ectdwatBu/lM6mZ92FkvC4wGe/Ho71Q1WRsaHcnpIrn4wMg38Qg2NyxN1eEorKSmJqVOnsmTJEg4ePNgVMQl35uVDedhwAEq3rTA4GNElrI2wfwMA31TozSZlhMcNxE8EYBR6jxYpXO75MveX8/6GfQDce9YQTPv0NxqO3kuic3U44Vm/fj3jx4/n/vvvJzY2lrlz5/LBBx9QX1/fFfEJNxSUqtfx9K3cRE6xLE/3OPmboakWZQll+UF9ylJGeNyA/Y9geM0ugqlm9a4SrDap4+mplFLc/9kWlII5I/syJjHM2QpC6ne6RocTnlGjRvHEE0+wd+9evvzySyIjI7nuuuuIjo7mqquu6ooYhZuxJOsJz1jTDr76TXoveRz7u8yKiFHYlImIQF+igixHuZLocoFREJaMhuIE3xzKaxvZcqBlixDRMyzNzGdtTikWbxN3nZ4GTQ1wIEO/UFZodYlj2ksL9OXo06dPZ8mSJXz77bckJyfzxhtvdGZswl3Z32kOMB1g5aYsg4MRnc5esJzjNxSQ0R23Yn/nf0boXgCWrNjF6mwZ6elp6hqtPPylvgz9upP667uhF2yGpjrwC4M+AwyO0DMdc8Kzb98+Hn/8cdLT0xk/fjyBgYE8//zznRmbcFcBETSF6rtne+VtkK6vnsY+rL7BmgpI/Y5biR8HQET5JgA++fUAFy35mcmPfc/SzDwjIxNHYbUpVmeX8PHG/dz3yW/kltYSHezLDVP111LndFbceDAd859mcQQdXqX10ksv8a9//YtVq1aRlpbG73//ez7++GMSExO7Ij7hprwSJ0DZLkabdvD1bwVcfkKS0SGJzlBxAMpzQTPxbUUcUC8jPG5kVX1/TgSGqyxM2LDZ37Pml9dx49sZvHjJaE4bFmtskKKFpZl5LPp0C3nldS7HTx8Wc6i/lX1k1ZHUis7X4TTywQcfZMKECWzYsIHMzEwWLFggyU5vZJ/WGqNlsTRT6ng8hv1dpooexsaCJkBGeNyF1aa4Y3kjVcpCkFbLQG2f8zLHhNaiT7fI9JabWZqZx41vZ7RIdgDe+GnPoZG5XMcKLSlY7iodHuHZu3cvmqZ1RSyiJ7E/KUeaslmfU0hpdQPhAT4GByWOmz3hqYgYRe1uKxZvE8kRAQYHJQDW5pSyv6KRjd79mWz+jdGmLLZZE5yXKyCvvI61OaVM6t/HuECFk9WmWPTpFo6Ugi76dAun9GvCXLEPNDP0Hd1t8fU2HR7h0TSNFStWcMkllzBp0iT2798PwFtvvcXKlSs7PUDhpiLTwDeYQK2OVHL5ZouM8ngE+5YS2Ra9YDktJhizSd7guIPCSn2EYIPSm0GOMe044nnCeGtzSlsd2XFwJKnZGcv0A9FDwVeaSXaVDic8H374IbNmzcLPz49ffvnF2X+nvLychx9+uNMDFG7KZIZ+YwAYbZJpLY/QWAcHNgKwtslesCz1O27D0Rogw6YnPKO11hMeaSHgPtqbfJoPyHRWdzimGp7FixezZMkSvL29ncdPPPFEMjIyOjU44ebsT84xph2s2llCRV2jwQGJ45K3EWyNEBDF6hJ9Gkvqd9zH+ORwYkMsbLT1ByDZVEA4h/rwaEBsiIXxyeEGRSgO197kM6rsV/0LSXi6VIcTnu3bt3PSSSe1OB4SEkJZWVlnxCR6Cnvh8gSvbBqsNpZtKzQ4IHFcnF1ex7MlvxKQER53YjZpLJw9hAoC2WHrB+ijq80tnD1EpiDdiCNJbes3ogFJwRqBB3/TD8gKrS7V4YQnJiaGnTt3tji+cuVKUlJSOiUo0UPEjQU0+qp8IimTrss9nX1ZbGXUGIoq69E0SIsJMjgo0dxpw2J58ZLRbPUaDBxKeML8vWVJuhtyJKmtcSRBj55gQ7M1QWA0hMqK567U4YTn2muv5Y9//CNr1qxB0zQOHDjAO++8w+23386NN97YFTEKd2UJgahDL7zLthVR12g1OChxTJRyjvDs9NVfoJMjAg71CBFu47Rhscw+82wApvnnAHDZpCRJdtyUI0kN8DW7HI8JsfDiJaOZ6GUfQIgfD7ICukt1+NXsrrvuwmazMWPGDGpqajjppJPw9fXl9ttv5w9/+ENXxCjcWfx4KNzCSX45fFU9juU7ijh1aIzRUYmOKtsD1YVg8mZdXQKQI/U7bsyUoO+cntqUhRdN7CyqMjgicSSnDYvlgw37+HZrIb8b3Y95Y+IZnxyuTz/+u1mHZdGljmlZ+l//+ldKS0vJzMzk559/pqioiAceeKAr4mu3559/nqSkJCwWCxMmTGDt2rWGxtNr2J+kUyy7AFgq01o9k6N+p286mwv1lZdSv+PG+gwASyjetjoGa3vZWSAJj7vbVVQNwDmj4pjUv4+e7CjlbAUhBctd75g37PDx8WHIkCHOfbSM9N5773HrrbeycOFCMjIyGDlyJLNmzaKwUIpou5z9SRpXuw1vmvh2SwGNVpvBQYkOc7S1jxvPlgPlgKzQcmsm06Fu56Yd7CqukuedG2tosrGntAaAAVHN/l4ezIHqIjD7QOxIg6LrPdo1pXXuuee2+wb/+9//HnMwx+qpp57i2muv5corrwRg8eLFfP7557z66qvcddddLc6vr6939g8CqKioaHGOaKc+/cEvHFNtKScE7OPH6iR+3lXClNRIoyMTHWFPeOpjx7LrR/2dqIzwuLn48ZD1NeO9sni9/jT2lFQzIEqKzN3R7pJqrDZFoK8X0cG+hy5wjKzGpoO39E/qau0a4QkJCWn3R3draGhgw4YNzJw503nMZDIxc+ZMVq9e3ep1HnnkEZeY4+Pjuytcz6NpzlGe86L0PWGkCWEPU18FBfqy2B2+Q1AKIgJ9pYGdu7NPJ48160WvWTKt5bZ2Fuq/m/5Rga5bMzVrBSG6XrtGeF577bWujuOYFRcXY7VaiY6OdjkeHR3Ntm3bWr3OggULuPXWW53fV1RUSNJzPOLHwY4vmeCVBUziq98KuP/sYdIPpKfYvwGUDULi2VTuB8joTo/QbwxoJqJsRcRQwo6CKk4fbnRQojWOhGdA5GHlH5LwdKtjruHpyXx9fQkODnb5EMfBPsITUfYrwRYzxVX1ZOw9aHBQot2aNxw8oE/vDo6VqRG35xsI0cMAvS3EjsJKgwMSbXEmPM3rd+orodDecFBWaHWLHp/wREREYDabKSgocDleUFBATIwsj+4WfUeDZkarzGPeAH1U57WVOXy8cT+rs0uw2o60V7AwXLNVIlvy9IRHCpZ7CPvIwGhTlqzUcmOtJjzOkdUECJYeSt2hxyc8Pj4+jBkzhu+++855zGaz8d133zFp0iQDI+tFfPwhRh9LH8F2AL7IzOeP727koiU/M/mx71mamWdkhKItNptzhMfabxzb8vRRgqEypdUzOPezy5KVWm7KZlPsKm4l4ZHprG7X4xMegFtvvZUlS5bwxhtvsHXrVm688Uaqq6udq7ZEN7C/8B7ctrLFRfnlddz4doYkPe6oJAvqysDLj91eydQ2WrF4m0iOMLbVhGgn+x/LYVoOJms9e0qqDQ5IHG5/WS11jTZ8zCbiw/wOXeBoBSH9d7qNRyQ8F1xwAU8++ST33nsv6enpbNy4kaVLl7YoZBZdxxZ3aGj9cI4JrUWfbpHpLXfjeJfZbwxbCmoBGBQTLAXnPUVoIgRE4a1ZGablyEotN+SYzkqOCMDLbP+Ta7PBvnX617JhaLdp1yqtf/zjH+2+wVtuueWYgzke8+fPZ/78+Ybct4Bf1EDGAEO0PViopw5fl8sVkFdex9qcUib172NIjKIV9neZtrhxfLNFr4PrE+CD1aYk6ekJNE0f5dn2GWNMO2SllhtqtX6neAfUlYO3v7PwXHS9diU8f//739t1Y5qmGZbwCGPts4XTT4URox1khLaLtWpwq+cVVtZ1c2TiiOwjPHeusfBJ1QEAvt9WyOTHvmfh7CGyIWVPED8Btn3GaNNOPpWVWm6neQ8eJ8d0Vr8xYPY2IKreqV0JT05OTlfHIXq4qGA/NthSOdO8ljGmLNZaW094pJmdG6k9CMV6kfm3VYkuFznqrl68ZLQkPe6u2RYTf8+XhMfdODZ2dRnhcayMjJPprO7kETU8wnjjk8PZ6TMUgNGmHS0u14DYEAvjk8O7OTLRFutevYZgly2Gg7iuypK6qx4kNh1l8iZSK6exZJes1HIjSqnWmw7myoahRmjXCM/h9u3bxyeffMLevXtpaGhwueypp57qlMBEz2I2aYw/aRYse81euKzQ0xzHv7Bw9hCpC3EjeZk/EgdkqIGtXi51Vz2Et0XfeHL/eoarHbKnlhsprmqgvLYRTYOUyAD9YE2pXsMDMsLTzTqc8Hz33XfMmTOHlJQUtm3bxrBhw9i9ezdKKUaPHt0VMYoeYtKJJ2P90Yc+tkqStHx2K30qJCbEIvUgbsg3fz0AG2ypRzxP6q7cnxY/AfavZ4wpix0FVZLwuIkse01VfJg/Fm+zfnCf/ryjzwAIkDcS3anDU1oLFizg9ttvZ/PmzVgsFj788ENyc3OZOnUq5513XlfEKHoKL1/M/fSk94HRej+QPgHerLzzZEl23I21ifCDmwHIOErCI3VXPUCzOh5Zmu4+sltboSX9dwzT4YRn69atXHbZZQB4eXlRW1tLYGAg999/P4899linByh6GHtPifFe+g7OJdWNVNU1GRmRaE3hFsxN1VThz04V1+opUnfVg9gTnjRtL3vyCw0ORji0uiTdmfBIh+Xu1uGEJyAgwFm3ExsbS3Z2tvOy4uLizotM9Ez2dy2+eRvoF6p3Fd1eICtH3I59lUhd9CisrbwMSN1VDxPclzr/vpg1hVfeBqOjEXbOFVqOgmVrE+zP0L+WDUO7XYcTnokTJ7Jypb59wBlnnMFtt93GQw89xFVXXcXEiRM7PUDRwziexIVbGBWl/6Hcll9hYECiVfZVIhFpU7h8UmKLi2NCLLIkvYdxdDuPqdgsK7XcRIsePIW/QWM1+AZDZJqBkfVOHS5afuqpp6iq0n+JixYtoqqqivfee4/U1FRZoSUgKFpvd1+2h5P89/AZkWzNkxEet9NsWL1hk77s/KwRsZwyJJqoIH0aS0Z2eha/lImw43+kIyu13EFFXSMFFfVAsymt3Gb9d0zSFaa7dTjhSUlJcX4dEBDA4sWLOzUg4QHiJ0DZHkaQBUSyXUZ43EtVIRzcDWgQN5ZfPvsV0BMeGdHpuTT7dPJoUxY/5VdIwmMwR8FyVJAvIX72bsqyQ7qhjqkPD0BDQwOFhYXYbK5DpwkJCccdlOjh4sfD5v8QX70ZOIHt+ZXYbAqTjBi4B8eLbtRgKvB31liNTggzMChx3GKG06D5Eko1xbu3wIh+RkfUq0nBsvvp8Jjajh07mDJlCn5+fiQmJpKcnExycjJJSUkkJyd3RYyip7G/0/QvzMDXDNUNVvYdrDU4KOHU7EX319wylIK4MD+igmX5eY9m9qY4RO92btq/xuBgRIstJSoLoGwPoEG/scYF1ot1eITnyiuvxMvLi88++4zY2Fg0Td61i8NEDQHvALT6Sk7uU8qXheFsy68goY+/0ZEJgH36lhLETyBjTxkAYxJldMcTNMaOg7IM+pRuNDqUXq9FDx7H/llRQ8AS3Ma1RFfqcMKzceNGNmzYQFqaVJiLNpi9IG4M5CxnekAOXxLOtvxKTh0aY3RkoqnBZVnshoxSQKazPEXAgBNg60sMaNhCo9WGt1kKY43SYg8tmc4yXIefDUOGDJF+O+Lo7NNaI5W+Z4wsTXcT+ZvAWg/+fbCFpfDL3oOAjPB4ij6DTgQgVdtP7v79BkfTe9U1WtlbWgO0skJLEh7DdDjheeyxx7jjjjv44YcfKCkpoaKiwuVDCMDZjye+OhOAbfmyNN0t7P1Z/xw/gZ3F1VTWNeHnbSYtRlb0eAItMJL9pr4AlGz/yeBoeq/dJdXYFARZvIgM8oWmejjwi36hbClhmA5Pac2cOROAGTNmuBxXSqFpGlartXMiEz1bnF6U51+ZQxgV7C6G2gYrfj5mgwPr5ZoNq2fs0Ud3RsSF4CVTHx4jL2g4/coPYNu7FrjA6HB6peYrtDRNg7xfwdoA/hEQnnKUa4uu0uGEZ9myZV0Rh/A0/uEQMQiKtzPVfzf/qxlBVmElI+JCjY6s91LKZePCDWtlOssT1caMgfKvCCnJMDqUXqtF/U6zkVVkoY9hOpzwTJ06tSviEJ4ofhwUb2e6fw7/qxnBtnxJeAxVtheqCsDkBX1HkbFXT36kYNmz+CafANshoWYr2KxgklHV7taiB4/jjUaCTGcZqcMJz6ZNm1o9rmkaFouFhIQEfH19jzsw4QHiJ8AvbzMSe+GybDFhLEfRZOxIyhrNZBdVAzBaRng8St/UdCq/9CNIq6UxLxPvfiONDqnXcUl4lGpWsCwJj5E6nPCkp6cfsfeOt7c3F1xwAS+99BIWizQy69XsT+64mq140SQrtYzWbDrrl71lACRHBBAe4GNcTKLT9QsP5CdSOZFNHNy+kihJeLqV1abYVay/mRgQFahv41JdCGYfiE03NLbersOVih999BGpqam8/PLLbNy4kY0bN/Lyyy8zaNAg/vWvf/HPf/6T77//nnvuuacr4hU9SZ9UsITiZasjTdvLtvxKlFJGR9V7NS9Yti9Hl+ksz6NpGnsDhgHQsFs6Lne3fQdraGiy4eNlIi7M/9DzLjYdvGUQwEgdHuF56KGHeOaZZ5g1a5bz2PDhw4mLi+Nvf/sba9euJSAggNtuu40nn3yyU4MVPYzJpO8KvPMbxpqyeL06haKqeqKC5Enf7eqroEBvEUD8RDb8tAeA0YmhxsUkukxl5GjY8y8CCzcYHUqv45jOSokIwGzSpOGgG+nwCM/mzZtJTExscTwxMZHNmzcD+rRXXl7e8Ucnej77tNZJfrsAqeMxzP71oGwQkkBTQDS/5pYBskLLU/kkjMOmNELr9kFVkdHh9CotC5alfsdddDjhSUtL49FHH6WhocF5rLGxkUcffdS53cT+/fuJjo7uvChFz2V/VzOS7QBslwaExmjW5XV7QSXVDVYCfb1IjZKGg54oMa4vO1Sc/o1jDyfRLVwSnroKKPhNv0ASHsN1eErr+eefZ86cOcTFxTFixAhAH/WxWq189tlnAOzatYubbrqpcyMVPVO/MaCZ6NNUSDSlbJXCZWM0K1jOsBcsj0oI1YfchcdJjQpkuW0AaaZcrHt+xpx2ptEh9Rouu6TvWwcoCEuCIBkEMFqHE54TTjiBnJwc3nnnHXbs0Jcbn3feeVx88cUEBenvFi+99NLOjVL0XL6BED0U8jcz2pTFtrwkoyPqfWw2yHXskD6ejBV6wfIoKVj2WP1C/fjNlAYso2H3z/gZHVAvoZRyHeHZKtNZ7qTDCQ9AUFAQN9xwQ2fHIjxV/ATI38wY0w6+K5xEk9UmWxl0p+LtUF8O3v4QPYyMvSsAGJ0QamxcostomkZpn1FwEHwKfoWmBvCS9gNdraiynsq6Jkya3vJBCpbdS7sSnk8++YTTTz8db29vPvnkkyOeO2fOnE4JTHiQuPGw7hXGmnfSUG8jp7ia1GipHek2jhfdfmMorrWyp0TfxVlGeDxbQOwgSksDCbdVQf5miBtjdEgezzG6kxDuj68J2Ldev0BGeNxCuxKeuXPnkp+fT1RUFHPnzm3zPNk8VLTK/u5mqJaDLw1sza+UhKc7NVsl4tgwNDUqkBA/bwODEl1tYEwQGZtTmWn+RU96JeHpci71O4VboKESfIIgaojBkQlo5yotm81GVFSU8+u2PiTZEa0KS4KAKLxpYpiWw3YpXO5erRQsy3J0z5caHUSGbaD+jazU6haOEZ7+UYGHnndxY2U/MzchhRSi62mac5RHL1yWpendproYSnbqX8eNdY7wSIdlz5caFUiGSgVA5UrH5e7gsku69N9xO+1OeFavXu1cdu7w5ptvkpycTFRUFNdddx319fWdHqDwEPaEZ4wpi23Si6f7OF50I9No9A3l131lgGwY2hv0C/Vjp1cqTcqEVnEAyvcZHZLHc1mhJQXLbqfdCc/999/Pb7/95vx+8+bNXH311cycOZO77rqLTz/9lEceeaRLghQewP4uZ4xpB/vLaqioazQ4oF6i2YvulgMV1DfZCPHzJiUiwNi4RJfTNI1+0ZFsVQn6gVyZ1upKFXWNFFbqb/oH+Ffrm4ai6dvrCLfQ7oRn48aNzJgxw/n9u+++y4QJE1iyZAm33nor//jHP/jPf/7TJUEKDxCbDiZvIrVy4rQi6bjcXZoXLDs3DA3FJA0He4XUqEA2OOp4JOHpUo7RnehgX4IKM/SD0UPBEmxgVKK5dic8Bw8edNku4scff+T00093fj9u3Dhyc3M7NzrhObwtEDsSgDHaDrblSeFyl2tqgAP2F974CWyQ+p1eZ2B0oBQudxOZznJ/7U54oqOjycnJAaChoYGMjAwmTpzovLyyshJvb1nmKo7AOa0ldTzdIn8zNNWBXxj0GcAvskKr10mNDnIWLpP3KzTWGhuQB8uWgmW31+6E54wzzuCuu+5ixYoVLFiwAH9/f6ZMmeK8fNOmTfTv379LghQeovlKLUl4ul6z5ej5FfXsL6vFpMHI+FBDwxLdJzUqkH0qggIVCrYmOPCL0SF5LMcIz8A+3pC3UT8oCY9baXfC88ADD+Dl5cXUqVNZsmQJS5YswcfnUKvyV199lVNPPbVLghQewp7wDNb2sDe/CJtNGRyQh8v9Wf8cN85ZvzMoJpgA32PaUUb0QP1C/Qjw8ZI6nm7gaDo4wpwD1gYIiNJ7kAm30e5XvoiICJYvX055eTmBgYGYza6NlN5//30CAwM7PUDhQYL7okLiMJfvY0DDdvaX1RIf7m90VJ5JKdhrT3gSJrEhU094xiSGGheT6HaapjEgOoiMA6mcYV4rCU8XqWu0kluqb9mSXGtfzRw/Xu9BJtxGhxsPhoSEtEh2AMLDw11GfIRojWYf4h2tybRWlyrdBVUFYPaBfmOardCS+p3eJjUqkAybvY4nd42eDItOlVNcjU1BsMWLgIJ1+kGZznI70mlZdK9m/XhkpVYXcozu9B1FHd78tl9/rKVgufcZGB1IpkqmUfOGmmI4mGN0SB7HUb+TGumPttdeO5d4goERidZIwiO6l70J12hTFtvzyg0OxoPt/Un/nDCJ3w6U02C10SfAhwSZQux1UqODaMCbHSb7ohKZ1up0joRnUkgp1JaCl5+zDYdwH5LwiO4VMxyr2UKoVk31ga1GR+O5mtXvZOwpA/TtJDSpKeh1UqP02srVDY6ER/bV6myOguUJ5u36gbixYJY2Le5GEh7RvczeWGNHAxBVvom6RqvBAXmgqsJDG4YmSMPB3k5fqWVmndW+UsuRDItO4+jBk1q3WT8g01luSRIe0e28E+11PNp2sgqqDI7GAzn+oEUNQVlC2bDXsUJLEp7eyLFSa51tkH6gcAvUlBoblAex2hS7iqsBiCi1dzZPmGRgRKItkvCIbqfZ3/2MM21jW74ULne6vav1zwmT2HewlqLKerxMGiPiQoyNSxgmNSqQUoIp9UvSD8goT6fJLa2hoclGkncpXpX7QDPLhqFuShIe0f0SJqDQSDYVsG+vrBjpdM0SHsdy9KF9g7F4t2wnIXqHgdF6Hc8Wn2H6AUdRuzhujoLlM4J36wdiR4Cv9KRzR5LwiO5nCaEsWB9eN+9bbXAwHqa+CvI26V8nTiLDXr8zSup3erXU6CAAVjXY+/HskYSnszgKlid5Z+kHEqR+x11JwiMM0RSnz3FHH5S9fTrVvnWgrBASDyFxZNg3DB0t9Tu92kB7wvNFRbJ+IO9XaKg2MCLP4ahDHNyQqR9IlPoddyUJjzBE8KCTABhh/Y2iynqDo/Egzaazahqa2JInDQcF9A2xEOBjZo81gsbAvvpGovvWGR2WR9hZVEUIVUTUZOsH4icaG5BokyQ8whC+/ScDMEjLZeeeXIOj8SDOhGcim/aVY7UpooN96RtiMTYuYSjHSi2AwrAx+kGZ1jpuSimyC6sYa7L33+mTCoGRxgYl2uRWCY9SinvvvZfY2Fj8/PyYOXMmWVlZR7zOI488wrhx4wgKCiIqKoq5c+eyffv2bopYHLPAKAq84zBpioqslUZH4xmsjbBvvf514gnOguUx0nBQAAPtDQi3OQqXJeE5bgUV9VTVNzHevEM/INNZbs2tEp7HH3+cf/zjHyxevJg1a9YQEBDArFmzqKura/M6P/74IzfffDM///wz33zzDY2NjZx66qlUV8v8tLsrCh8LgM8+WSLbKfI2QWMNWEIhYpCzYFkaDgqAVPtKrZ8a7Q0I962HpgYDI+r5HCu0JnvbEx4pWHZrXkYH4KCU4umnn+aee+7h7LPPBuDNN98kOjqa//3vf1x44YWtXm/p0qUu37/++utERUWxYcMGTjrppC6PWxw7W8IkKPgfMWUZRofiGZrtn6U0TQqWhQvHSq0VZeHgF67v+ZT3K8RLz5hjtbOwEl8aGGSz1+8kSP2OO3ObEZ6cnBzy8/OZOXOm81hISAgTJkxg9er2L10uL9c3pAwPD2/znPr6eioqKlw+RPcLHzINgAFNO2mqrTQ2GE/g3D9rIrtLaiitbsDHbGJo32Bj4xJuwbFSK6ekRn+zAbBnlYER9Xw7i6oYZdqJF00QFAthSUaHJI7AbRKe/Px8AKKjo12OR0dHOy87GpvNxp/+9CdOPPFEhg0b1uZ5jzzyCCEhIc6P+Pj4Yw9cHLO+CQPJU33w1qwUbJUX3uOi1KGC5cQTnNNZw+NC8PWShoPi0EqtRquipI+9cHmv9ME6HjsLqxir2WtGEyaB1Mq5NcMSnnfeeYfAwEDnR2Nj43Hf5s0330xmZibvvvvuEc9bsGAB5eXlzo/cXFklZAST2cQOy3AAqnYsNziaHq54B9SUgJcFYtOd+2eNTgg1Ni7hNpqv1Nrhqz/v2LsabDYDo+rZdhZWM960Tf9GNgx1e4YlPHPmzGHjxo3Oj4iICAAKCgpczisoKCAmJuaotzd//nw+++wzli1bRlxc3BHP9fX1JTg42OVDGKM0Qn+naTmwxuBIerjd9pVucePAy8c5wiP9d0RzjpVa6xviwDsA6sr1zURFh5XXNHKwqobRJkeHZanfcXeGJTxBQUEMGDDA+TFkyBBiYmL47rvvnOdUVFSwZs0aJk1qe6mfUor58+fz0Ucf8f3335OcnNwd4YtOoiWeCEBM5WZZMXI8HAlP0mQq6xrZXqDXRMkKLdGcY6XWjsI6iB+vH5RprWOys6iSIdoeArU68A2BqCFGhySOwm1qeDRN409/+hMPPvggn3zyCZs3b+ayyy6jb9++zJ0713nejBkzeO6555zf33zzzbz99tv861//IigoiPz8fPLz86mtrTXgpxAdFdN/JKUqEF9Vr68YER2n1KHi06TJ/JpbjlLQL9SPqGBpOCgOcazUyiqsPDQFI/14jsnOwiommuyjY4kngElq5dyd2yQ8AHfccQd/+MMfuO666xg3bhxVVVUsXboUi+XQi3Z2djbFxcXO71988UXKy8uZNm0asbGxzo/33nvPiB9BdFBabDDrbGkA1GVLHc8xKdkJVQVg9oV+Y10aDgrRnHOlVnE1TXH2KZi9q/WkWXSInvBs1b9JmmxsMKJd3KYPD+ijPPfffz/3339/m+fs3r3b5XslT9QeLdTfh20+w5hlXU/dzpVYpt1mdEg9z+4V+ue4ceBtYcMeKVgWrXOs1KpusLLbksYAkzdU5kHpLujT3+jwepRdBeX8wVGwLAlPj+BWIzyidzoYqXdc9s9fBzarwdH0QLsPTWfZbIpfnCM8bfeiEr2Ty0qtUivE6c89Zw2YaDetYDPBWi1N3kEQM9zocEQ7SMIjDOeXMIoqZcGnqRIKMo0Op2dRyqVgObuoioq6JizeJtJig4yNTbglx0qtHQWVkDRFP+gYJRTtUtdoJaX6FwCsCVK/01NIwiMMl9Y3jLX2Oh5y5IW3Q0qyoSofzD4Qd6h+Z2RcKN5meXqLlhwrtbIKqg5NxeSskDqeDsguqmKCptfv+PSfYnA0or3kFVEYLi0mmNU2fUmn2i2Fyx3iUr/jd6h+RwqWRRtcVmrFj9eT5ap8PXkW7ZKdX8Y4e/2OliQJT08hCY8wXEpkAOsYCoDa/RNYmwyOqAdpthwdcG4YOkb674g2NF+p1WjyhTh7Px55s9FulbszCNZqqTUFSv1ODyIJjzCct9lEQ8RQypU/poZK6cfTXs3qd6wJJ/DNlnx2FlYBMCIuxMjIhBtrvqfW7uJqSLaPUMh0crv5HdCbNRaGj5H6nR5EEh7hFgb1DWONbbD+jbzTbJ/SXVCZh83kzYz3arj2zQ3Oi85+fhVLM/MMDE64K03T6G8vXP7X2r1k+ozUL9i9Uup42qlvmf5ca4g/0eBIREdIwiPcwqCYIGcdj7zTbCf76M76pv7srnD9Q5VfXseNb2dI0iNaWJqZpxcsA6+t2s25n9RTjw9UF0LRdoOjc39NjQ0MbfwNgKBB04wNRnSIJDzCLaTFBLHaptfxsPdn2VerHWz2hGe1Y2SsGUf6s+jTLVht8q5d6JZm5nHj2xnUNh7qd9WAN+usqQBs+ekzo0LrMfJ3rCNIq6VcBRA1YIzR4YgOkIRHuIXBscFsV3GUqkBorIYDGUaH5N6UotG+FceaVhIe0JOevPI61uaUdmNgwl1ZbYpFn26htfT3Z/voav6mbyRBPorq7T8AsNVnGCYvt9qsQByFJDzCLUQF+RLi7yvTWu1VugvfmnwalJkMW+oRTy2srOumoIQ7W5tTSl556/8XHM+7kdbfWLuruNVzhM53n77Zal7YWIMjER0lCY9wC5qmuU5rSeHykeXoj89GNYA6fI94alSQ7Jgujpz4blL9qVG+9NEqqd0v3c7bYm1qJOqgPvq8J3CUjIb1MJLwCLfRvAEhuWuhUUYm2pTzIwC/eqejtXGKBsSGWBifLHtqiSMnvo14sd42EIDkSplObs3SzDyue+yf+KsaypU//9hiYfJj38vCgB5EEh7hNtJigshWfSkzhUNTHexbZ3RI7slmg116wjN8ytmt1mQ4kqCFs4dgNrWVEoneZHxyOLEhljYTZMfoalLlhjbO6L0cxd6DavTHZrVtKDZMshqyh5GER7iNtNhgQGONcvTjkTqeVhVshtpS8Alk4pRTuXB8fItTYkIsvHjJaE4bFmtAgMIdmU0aC2frI6iHJz0ahwqXtT2r9KRaAK7F3pNN+nTfStswQFZD9jSS8Ai3MTA6EE2DZQ32hEcKl1u36wf9c9JkMHtTVFEPwAXj4nnmwnT+fe1EVt55siQ7ooXThsXy4iWjiQlxnd7qE+jLDRedCz6BUFcG+ZuMCdANOYq9LdQzxrQDgFX2hAdkNWRPIgmPcBv+Pl4khvsfquPZtw4aaowNyh05Ep7kqdQ1WlmVra+queKEJM5O78ek/n1kGku06bRhsay882T+fe1EBsXo+2rdPL0/s0bEH9o93fF/TDiLvceZtuOrNbFf9SFHxbR5nnBfkvAIt5IWE8weFU2VbwzYGmHvT0aH5F6a6mGPvo8PKdP4eVcJdY02YoItpNn/eAlxNGaTxqT+fZg9Qh8FXL/7oH5BynT9865lBkXmfhzF3pNNmwFYaR1Oy0lBWQ3ZE0jCI9zKwJhAQGONSd/fx7bze2MDcje5a6GpFgKiIGowP2wvAmB6WiSaJqM6omPGJekr+NbuLkUpBf3tCc+e1dBYa2Bk7sNR7O2o32k+nQWyGrInkYRHuI2lmXm8uXoPAP8tHwRAzppPZQVEc46phpRpKOD7bYUATB8UZVhIoucaGR+Kj9lEUWU9e0pqIGIgBPcDaz3skdFV0EfDHjw1hqEm/bXpJ0evMGQ1ZE8jCY9wC45ln2U1jQCssg3FpjT6q70sfPs7SXocmiU8u4qr2Vtag7dZ48QBEYaGJXomi7eZEXEhgF6ci6bJtFYrZvhuA2CrLYFiQpzHZTVkzyIbgQjDtbbHTxlBbFbJjNR2Mdm0mUWfxnLKkJje/S6qrvzQHmMpU1m2SR/dmZDchwBfeSqLYzM+OZz1ew6ydncp54+L16e1Nr4N2ZLwONnfaKywDeeSiQmMSwonKkifxurVr0k9jIzwCMO1tcfPCttwACabN8uyT4DdK0HZoM8ACIlz1u9MGxRpcGCiJxtnrz1Zt9v+/EqZpn8uyISqQmOCcidKoezJ3yrbMM4fGy+rIXsoSXiE4dpazrnCOgLQV0do2GTZZ7PprKr6JtbklABwcprU74hjNyYxDE2DPSU1FFTUQUAExOjPPVmeDpTuQivPpUGZ+c1rCENig42OSBwjSXiE4dpazpmhUqlWvkRqFQzW9sqyz2YJz6qdxTRaFYl9/EmOCDA0LNGzBVu8GRyj/xF3jqL2P1n/nC2rJB3Puww1kMGJsXiZ5c9mTyW/OWG4tvb4acTL2YTwDP+tvXvZ58E9ULwDNDMkTeGH7YdWZ8lydHG8xh8+reVYnp69DFQv3zLBnvCstA5jfFIvfg3yAJLwCMMdaY+fFTZ9aP3CPjt793z5zm/1z/HjUZYQlm2T+h3ReRwJj3OEJ34ieFmgKh+KthkYmcGsTShHwmMb7qx3Ej2TJDzCLbS1x88aTU94Iko29O5tJhwJz4CZbM2rJL+iDou3iYkpfYyNS3gERwPC7QWVlNc0grcFEk/UL+zN01r71qLVV1CqAtlmGkB6fKjREYnjIAmPcBvN9/j56xn6BqLZtlhswf3A2tB7t5loaoBdP+pfp57CMvt01on9I7B4mw0MTHiKyCBfUiICUArW72llWqu3yvoagOW2EQyLC5PnWw8nCY9wK449fq6Zkky/UD8abZAfcYJ+YW994d27Ghqr9e0kooc763emyeos0YmabzMBQP8Z+ufdK3vvNhNZ+sjqD9Z0mc7yAJLwCLekaRonDdTrU1Yp+xLZrG8MjMhAO+0/94CZlNdZ2bBH3+hxutTviE7k7MfjqOOJGgzBcfrebTkrDIzMIBV5ULAZGxrLbSN696IJDyEJj3BbU+0Jz5uFKfrqpOLtcHC3sUEZYed3+ucBM/gxqwibgoHRgcSF+Rsbl/AojhVIm/aVU9tg1beZSD1Fv9A+tdOr2OvmNtlSOKgFMyYxzOCAxPGShEe4rRMG6J1MN5do1MWO0w/u6GUvvOX7oHALaCbofzI/yGahoovEh/sRE2yhyab4JVcfRWTgLP1z1le9b3m6Pcn7wTaSwTHBBFu8DQ5IHC9JeITbCrZ4MyZBf1e1JWiSfjDrKwMjMoBjdKffGGyWMH7Y4ViOLgmP6FyapjWb1rInPMkngdkXyvbqfaB6C2ujs//OD9Z0mc7yEJLwCLd20kB9F/CPq4fpB3JWQEO1gRF1M2f9zin8uq+M0uoGgny9GJskw+ui8423/79yNiD0CYCkyfrXO3rRm43ctVBfQbkWxCaVIgmPh5CER7g1R+Hyh7mBqNAEsNYfWqLt6ayNzZajz2SZfbPQKQMj8Jb29qILjE/W+zpt2HOQRqtNP+ic1upF08n2NxrLmoZjw+RcwSZ6NnnVFG5tWN8QwgN8qKq3UhA9VT/YW6a19qyC+grwj4DY9EPL0WU6S3SR1KhAQvy8qW208tuBCvtBe+Hy3tVQV25ccN3JviJ0mTWdlIgAIoN8DQ5IdAZJeIRbM5k0pqTq01ortDH6waxvekcB5fYv9c+DTqOouolN+/Q/NrKdhOgqJpPGOMe0lmN5engK9EkFW1Pv6IVVlgsFmdgwscI2QkZ3PIgkPMLtOZan/6swAbz9oWI/FGQaHFUXU6pZwnOGc3RneL8Q2TVedCnHH/g1joQHIPVU/XNv6IVlf95t8x5MKcHScNCDSMIj3N6UVD3h+eVAHfUJU/SDO5YaGFE3KNwKZXv0DRxTpvGDvX5Hmg2KruYo0F2/pxSbzT6SOtCR8HwNNptBkXWT7V8A8EntSAAmSMLjMSThEW4vMsiXIbHBAGwJnKgf9PR+PPYXXVKm0Wj2Y3mWfTm6bCchutiwfiH4eZspq2lkZ1GVfvD/27vzuKjqvYHjnxlg2AQUlU0RcENxR1zAyl2xLOveSsuN1pvZTZ9u630qNculp8zslnlL0cxcyjWvmrlg6XVBUHNfwSVBFFlFtpnz/HGc0ZEdBgbG7/v1mhfMmXPOfH8cYL7ntzaLAEd3uJECf+63anx6g8Lus6msPfgnu8+mojdYsHk7N0NdSgP4Rd8VH3cnmjZwttz5hVXZWzsAIcqjd3BjjiVlsvZGe7oAXIqFrCvg5m3t0KqHqTlrCHHn08jKLcTTVUenpvWtGpawfQ52Wro0q89/z6ayL+E6rb3dwF6nNmsd+QlOrAf/7laJbdORJKb8fIykjFzTNl8PJyY9HEJke9+qv8HpX8FQwHXnQBJyfXkkyBONRlP184paQWp4RJ3wwK1mrfWJGhS/roACJ/9j3aCqS9aV23fRrSNNq6P3bt0YO6388xXVz7SQ6J39eNo8pH49vt4qgwY2HUli3PfxZskOQHJGLuO+j2fTkaSqv8mtG42d9mpCJ/13bIskPKJO6BrQAFedHdey87nSZIC68fh66wZVXYz9k5p0BTcfYk4YZ1eW/juiZhj7rcQmXkcxJjetBoKdDq6fhasnazQevUFhys/HKC7NMm6b8vOxqjVv6QtMnbKXpqsTnXaXEVo2RRIeUSfo7LWEt1CHp2+hh7oxYQfcTLdeUNXF2H+n9RD+TL/JyStZaDW3R6sJUd26NGuAvVZDUkYul9Juqhsd3aB5H/X7Ez/XaDz7Eq4Xqdm5kwIkZeSa10hVVOJOyMugwKkRewuaU9/FgVZe9Sp/PlHrSMIj6ozet2o41l1ygcZt1HlBbG3219xMOLtN/b7NQ2y/tVhoaLMG1HfRWTEwcS9x1tnRvokHcMcyEwBthqpfa7h2NSWr5GSnMvsV69aNxtkG92FAS1iAJ1ppQrYpkvCIOqP3rX488efTyGtl7E+wzooRVYNTv4A+Hxq1Bq+2pvl3+sroLFHDjM1aZrUmwQ8CGkg6CBmXaiwWnX35PqoqPUeVwQDH1VqrzYYwALoHyXp1tkYSHlFnNGvoQmBDFwoNCvEuvdSNZ7ZCfo51A7OkY2vUryHDyC00sOtMKiD9d0TNM3VcvrOGp15jaHZraogTNTNo4NDFdCavPVrqPhrU0VqVXuTz4l7ISkJxdGdxSnPg9rpiwnZIwiPqFGM/lvUpjcGjGRTk3G4Cquvysm7PZBsyjH0J17lZoMfb/fY8RELUlLBbS0ycu3qDa9l5t18wNmsdq/7a1VXxl3hi3m6uZOXh7a6uZ1VSI9Okh0MqP4rx1o1GZsBArt4EZwc72vnJ35ytkYRH1CnG1dN3nL6G0sbGmrVOb1ZXg/dsDt7t2Xar/07fYC+ZC0TUuPouOoK93YA71tUCCHlE/Xp+F2RaYCh4MQr1Bj5cf4zXVhwiv9DAgLZebHmtN1+PCsXHw7zZSmenZe6o0MrPw2MwwLG1AMTV6wNAaEB9HOzk49HWyBUVdUrP5g3R2Wm5lHaTy00GqxtP/AcKblo3MEs4ukb9GjIMNBpZHV1YnbGJyKxZq34zaNodUEyJgiWl5+TzzMJYvt2ZAMDf+7Xk36PDcHNyILK9Lzvf6sfSF3oy+ZEQtBrI1xsIbORa+Te8tA+yksDRnZ+zggHoHijNWbZIEh5Rp7g62puq2n/NDFCbtfKz6/5orfwbdzRnPUrCtRskpubgYKfhvlurxQtR07rdMR+PmfZ/Vb8eWWnR9zt1JYthX+7i99PXcHaw46uRofxjULDZaCk7rYbwFg2Jiggisr0PANE7Eyv/pkdXA6AED2H3eXUpjW7SYdkmScIj6hxjs9ZvZ1Kh/WPqxsM/WTEiCzi9GQpvQv0A8O1kas7qHuRJPUdZAUZYh3HivWOXM8nKLbj9QsgwQKPWjqRfsMh7/XI0mce+3MX51ByaNnBm1csRPNih9GaqZ3sFAbD64J+k3tnPqLzuaM661uxBkjNzcbDT0MVfEh5bJAmPqHOMHZd3n00lv+1f1I2nflHnsKmrjAlbu0fNmrP6SnOWsCIfDyeaebpgUCDufNrtF9x9IfA+9ftbNSTldffinwWFBj7fcpq/LY7jRr6e8OYNWffKfbQtR0f9rgEN6NDEg/xCA0v3VSLxuqM563dDRwA6NPHAWWdX8XOJWq9W3ToqisKkSZP45ptvSE9Pp1evXsydO5dWrVqV6/gZM2bwzjvvMGHCBGbPnm3x+PR6PQUFBWXvKIql0+nQaqueY7fxccPLzZGUrDxibzahV8NWkHpanTis0wgLRFrDcq6rCRtAx+HcyCtk7zm1CUH67whr6xboyYXrOcQmXjf/fWz3GCT+DkdWQa8J5TpXcYt/OtprySs0ABAVEcj/PtS23B2GNRoNz94XyP8sP8R3u8/z4gMtyj1nDwB/rFC/tnmIvReMzVmynIStqlUJz8cff8ycOXNYtGgRQUFBvPfeewwePJhjx47h5FT6hFKxsbHMmzePjh07WjwuRVFITk4mPT3d4ue+l2i1WoKCgtDpqjZjsEaj4YHWjfkp7hI7Tl+jV4fHIWa6WktSFxOeY2vAUADe7cG7Hf89doV8vQF/T2daNK5CZ0whLKB7UANWxl8iNiHN/IWQYbDhDXUSwtSz0LBFqecxLv5592pXxmRndHgAkx9pV+H4Hurgx7QNJ0jJymPjkSSGdW5SvgML8+DoKvX7jk8Su1q9yZD1s2xXrUl4FEVh9uzZvPvuuwwbNgyA7777Dm9vb9asWcOIESV/kGVnZzNy5Ei++eYbPvzwwzLfKy8vj7y82+29mZmlN4UYkx0vLy9cXFxkiHAlGAwGLl++TFJSEs2aNavyz9CY8Px26ir/HPVXNeE5tx1upIJrHRthYbzL7PgkgKn/Tj8Zji5qAeMEhAcvppNboMfJ4VZzj2sjdW2ts1vh8I/Q5+0Sz1Ha4p9GW45dYfLD7So8l47OXsvongHM+vUUC3Ym8Egnv/L93ZzeDDfTwM2XlEY9OHctBo0GwgIk4bFVtaYPT0JCAsnJyQwYMMC0zcPDgx49erB79+5Sjx0/fjwPPfSQ2bGlmT59Oh4eHqaHv79/ifvq9XpTstOwYUOcnZ1xcnKSRwUfLi4uNG7cmJycHAoLC8v3S1GK+1s2QqOBE8lZXNH5g09HdW0t4x1bXZGWCBd2Axro8ASKotweji7LSYhaIKiRK43qOZKvN/DHpQzzF401qgd/UDsAl6CsxT+haot/Pt2jGTp7LYcuZRB/Ib18Bx1apn7t8AT7L6g3vcHebni4OFQqBlH71ZqEJzk5GQBvb2+z7d7e3qbXirNs2TLi4+OZPn16ud/rnXfeISMjw/S4ePFiifsa++y4uLiU+/yieMamLL1eX+VzNXDV0bFpfQB2nLoKnZ5SXzjwfZXPXaMO/6h+DXoAfT1fVuy/SFKGOlJEqtZFbaDRaEzrShUZnt5mKDi6Q/p5uPDfEs9R3Yt/NqrnyLBOfgAs2JVQ9gF39pvr9JQp0ar00hSiTrBawrNkyRLq1atnelSmM/DFixeZMGECS5YsKbOPz50cHR1xd3c3e5RFmhaqztI/w9635qf57dRVtTlI66D2J0g+YtH3qTaKYmrOOtxwMPfN3MZbKw8DUKBXGDBrB5uOVM9MtkJUhGldrbtrYHQuaudlgANLSjy+vIt6VnrxT+CZW0PUNx1J5nJ6GRORHl2l9pvz6QDeIZLw3COslvA88sgjHDx40PRo1Ej98Lpy5YrZfleuXMHHx6fYc8TFxZGSkkJoaCj29vbY29uzY8cO5syZg729vUVqEkTt1fvWgpq/n76G3rkhBA9RXzhY8j/eWuXPOLh2Cr3Wkad3ehWp8k/OyGXc9/GS9AirMyY8cefT0Bvu6onTeaT69dhayMsu9vguzeqjK2XkVZUX/wRC/Nzp2dwTvUHhu93nS9/Z2JzVcQSZuQUcT1abtKRW1bZZLeFxc3OjZcuWpkdISAg+Pj5s3brVtE9mZiZ79+4lPDy82HP079+fw4cPmyVOYWFhjBw5koMHD2JnV3vmUrh77oki/zREhXVqWh83J3sybhbwx6V06DJafeHQMijMt2ps5RK3EIDN9CSLok2mxt+QKT8fk98XYVVtfd1xc7QnO6+Q40l3DfLw7w6eLaDgRrFLTSiKwqS1R8nXF9/Hx1jvW6XFP28xTkS4dN8FcvJL6Ct49RRcigWNFjo8Qdz5NBQFAhq64OVe+RomUfvVmj48Go2GiRMn8uGHH7Ju3ToOHz7MmDFj8PPz49FHHzXt179/f/71r38BatLUvn17s4erqysNGzakffv2VipJUZuOJHHfzG089c0eJiw7yFPf7OG+mduq/c49KioKjUaDRqPBwcEBb29vBg4cyIIFCzCU0sHwbgsXLqR+/frVF2gl2dtpuf9Ws9aOU1ehRT9w84Wb1+HURitHV4bcTHX+EmDBzd4l7qZQtc6cQliCnVZD11tLuhT5XdRooPPT6vfF1K5+veMcy/dfRKuB8X1b4HvX4p8+Hk5VW/zzDv3beuPv6UzGzQJWH/iz+J1u3WjQOhLcvG83Z0ntjs2rNQkPwJtvvsnf//53XnzxRbp160Z2djabNm0y659z9uxZrl27ZsUoK8Y494S1misiIyNJSkoiMTGRjRs30rdvXyZMmMDQoUMtMlrK2h5odWuZiVNXwc7+9qiR2t55+chPUHCDrHrNiVWCy9y9sp05hbAUY7NWkY7LcGvQgEZdQf3aGdPmDYeTmLnpBADvDw3hjcFtTIt/fj6iM0tf6MnOt/pZJNkBNTGLilBreaJ3JaIod9WMFtyEQz+o33d9Ri3PrYRHJhy0fbUq4dFoNHzwwQckJyeTm5vLli1baN26tdk+iYmJTJ48ucRzxMTEVMssy3dSFIWc/MIyH1m5BUxad7TYuSeM2yavO0ZWbkG5zlfkj7ccHB0d8fHxoUmTJoSGhvLPf/6TtWvXsnHjRhYuXAjArFmz6NChA66urvj7+/Pyyy+Tna22xcfExPDMM8+QkZFhqi0y/vwXL15MWFgYbm5u+Pj48PTTT5OSklLxH2gVGNfVOngxnYycAug8Sn3hzBZIL3n0ndXFLQIgNXgEtyv1S1aVzpxCWEKPoNsdl4v8L/JoAq0Gqd/vXwDAgQtp/M/yg4A6g3LUreYm4+Kfwzo3IbxFwyo3Y93tibCmuOrsOJOSze+n77o5PrZWnXvHwx9a9ie3QG8aat9DEh6bV2smHqxLbhboCXn/lyqfRwGSM3PpMLl8K30f+2AwLrqqX7J+/frRqVMnVq1axfPPP49Wq2XOnDkEBQVx7tw5Xn75Zd58802++uorIiIimD17Nu+//z4nT54EoF69eoA6ZH/q1KkEBweTkpLCa6+9RlRUFBs2bKhyjOXlV9+ZVl71OJ2Szc4z13ioY0sIvF+d8n7/AhgwqcZiKbfLB9XRZHY6nLuNwm73oRL76GhQq/xl9Iiwtg5NPdDZa0m9kc+5azdo0bie+Q7dX4DTv8DB77nU5TVe+O4AeYUG+rXx4r2hITUWp7uTA0+E+bPwv4ks2JVguikCYH+0+jV0LGjtOJiYSr7egJebI808ZeoRW1eranhEzWnTpg2JiYkATJw4kb59+xIYGEi/fv348MMPWbFCHS6t0+nw8PBAo9Hg4+ODj4+PKeF59tlnGTJkCM2bN6dnz57MmTOHjRs3mmqHaopp9fRTV9UNPf6mfo1fBAW1sClo3zcA5Ld+iGeWnys12QHLdOYUoqoc7e3o7F8fuN0MZKZFf2gQCLkZrIj+jGvZ+bT1dWfOU11q/Pc3KiIQjQZiTl7l7NVb/49SjsPFPaCxgy5qTfCdzVky9YjtkxqeSnB2sOPYB4PL3G9fwnWiomPL3G/hM93KdQfv7GC5UWeKopj+wLds2cL06dM5ceIEmZmZFBYWkpubS05OTqkTLsbFxTF58mQOHTpEWlqaqSP0hQsXCAmpuTu63q0bM39nAjtOXVXL1XqIWmWdcVGdb8PYobI2yL4Kh9VkcsqV+zmWlEmjeo682q8lc3ecNevr5ePhxKSHQyzWv0GIquoe6Mm+hOvsS7jOiO7NzF/UatF3fRa7Le8zOOdnlrv1YUFUGPUca/5jJrCRK/3beLHleAoLdyUy9dH2sGeu+mLwEHW1d2Dfrf5I0px1b5AankrQaDS46OzLfNzfqjG+Hk4l9tAwzj1xf6vG5TqfJe9Ajh8/TlBQEImJiQwdOpSOHTuycuVK4uLi+PLLLwHIzy95aPeNGzcYPHgw7u7uLFmyhNjYWFavXl3mcdWhe5AnjvZakjNzOZ2SrXZeDntWfXHvPHWCv9pi/wLQ53NW14Yll71xd7Lnu2e7MyYisFo7cwphCcYbs33FdFxWFIVpSWHkKg60055naaQGXw/nmg7RxDhE/ae4S2ReS7o99074eAAK9Qbiz6sLonaTEVr3BEl4qpGdVsOkh9WajrtTFWs2V2zbto3Dhw/z17/+lbi4OAwGA59++ik9e/akdevWXL582Wx/nU5XZBLHEydOkJqayowZM7j//vtp06ZNjXdYNnJysKNHc3XBUFOzVuhYsHNU+8pc3GuVuIoozEOJ/RaA2dkDcHKwI/qZboT4qTN9V3dnTiGqKjSgAVoNXEq7SVKG+WzG3/6ewPy4dNYaegHQ/HS0NUI0CW/RkGBvN24W6Dn1n9mgzwO/UGimzut2LCmTG/l63J3sCfZ2s2qsomZIwlPNItv7MndUKD7VOPdEafLy8khOTubPP/8kPj6eadOmMWzYMIYOHcqYMWNo2bIlBQUFfPHFF5w7d47Fixfz9ddfm50jMDCQ7Oxstm7dyrVr18jJyaFZs2bodDrTcevWrWPq1KnVWpbS9L7Vj2eHMeFxbQidhqvf75xtnaDuohz+Cc2NFJIUT7ZoejBvdBhdZWVmUYfUc7SnnZ8HYD4fzy9Hk5m28TgAdve9qm488R91kj8r0Wg0PHtfII7k0zxhqboxfLw6bxC34+8W6IlWbi7uCZLw1IDI9r5Wa67YtGkTvr6+BAYGEhkZyfbt25kzZw5r167Fzs6OTp06MWvWLGbOnEn79u1ZsmRJkYVYIyIieOmllxg+fDiNGzfm448/pnHjxixcuJAff/yRkJAQZsyYwSeffFLt5SlJ79bqBIR7E65zM/9WbVSviepsqqc2wpWjVosNAIOB1M3/B8Bi/UD+b3iYKUkToi4xNv/8fOgyaw/+yZI953l1aTyKAqN7BvDXQf3URUVR4L+fWzXWYZ2b8LTzHjzJ4KazL4QMM722T+bfuedolMpM7mJjMjMz8fDwICMjo8hCorm5uSQkJBAUFFShBUpFUdX5s1QUhftmbufP9JtEP9ONvsFe6gs/RsHR1dDhCfjrtxZ9z4r49ad5DDzyJpmKC5sH/crjvWrPTOBCVMT0DceZ99u5Itvb+bmzdnwv7O20cDEW5g9QF/Sd+Ae4+1khUkBfSNrHnWiQd4lFbs8z9h+fAur/i9Cpv5KWU8DKcRF0DWhgnfhElZX2+X03qeERNkGj0fDArVqe5bEXbq9ZFjFR3eHISrhe9J90TVi+L5Gmf6jLoZwKGiXJjqizNh1JKjbZATh2OZMtx28t/uzfDQJ6qSuS//dfNRjhXf5YRoO8S6Qq7sy4GsHhW5MMnknJJi2nACcHLR2aeFgvPlGjJOERNsPdSR3+uunIldtrln2XylWfB0AxwG813+S24XAS29YupK32AnlaF8KG/7PGYxDCEvQGhSk/Hyt1H7OFbu9/Tf0a+y1klLCuVXXSF8COjwH43etpbuJE9K4E4PYosy7+DdDZy8fgvUKutLAJm44k8e/fEopsT87I5cXzA9Qnh5bCldL/YVeF3qCw+2yqqXZpx8kUJi6L41U7dZFQXa+XwVmqzkXdtC/hepE1Ae9UZKHbFv3VWh59HuyYWTNB3unQMkg/D66NaT5kAgA//3GZlKxcWT/rHiUTD4o6z3jnWdKaZQeVlmzT9qSfYQ9s/QCeXmbxGDYdSWLKz8eKfCA8pt1JO+15FEd3NLfm/xCiLirvAram/TQa6D8JFgxSF/ONeBUatazGCO9QcNNUu0OvCXRs7kdoswTiL6QzY+MJYk6qozm7Sd+de4rU8Ig6rzx3nh/efBxFY6eO2Dr/X4u+/6YjSYz7Pr5IDE7k8YbDcgA0978GLnI3Kequ8i5ga7Zfsx7QeggoethWg9NW7P4SMi6AexMIew5Q5xACWBX/J+k3CwB4/adDbDqSVHNxCauShEfUeeW58zyn+JEY8Lj65Jf/BYO+9APKqbTapefsNuKnuU4SjdB3f8ki7yeEtXQP8izXzPFFlsnp/546PcSxNZDwWzVHCWQlw++z1O8HTAGdC5uOJDH/96JN3imZeYz7Pl6SnnuEJDyizivvnWdq2Gvg6A6X49UlHiygpNolf80VXrFfA8D0/OHsu5hjkfcTwloqPXO8dztTLQv/eV3tTFydfn0fCm5A027Q4fEym7zhrs7WwmZJwiPqvLLuPI3+HZ/F1R5vqU+2fqDeCVbRkT8zitmq8JH9Apw1+ezSt2OdIaLc/R+EqM0qPXN8v/8Fl0Zw7STsrsZh6qd/hT+WqzVKQ2aCRlPxztbCZkmnZVHnGe88x30fjwaKvZPTAJuPpbD9RCDbPdrQ9OYJWP8ajFhimmq+vBRFYdeZVObvPMf2W50f7/QX7e88YHeYPMWB/y18FtCUuxZKiNousr0vA0N82JdwnZSsXLzc1GasUtd+c24Ag6bCmnGwfRq0GgzeIZYNLC8Lfp6oft/zZWjSFahEZ2ths6SG5x7Up08fJk6caO0wLKqkO09fDye+HhXK5v95gAFtvSkwaHghfSz5ij2c/A+5e27Pvnz3sPK7q7hzC/Qsj71A5OzfGTV/rynZcbxjHo8ATTIfOCwE4PPCxziv+Bbfr0GIOqxSC912ekpNdPT5sOpFKMyzXECKAhvegMxL0CAQ+t6e76pSna2FTZIaHhsWFRXFokWLimzfu3cvbdu2NT0PDAxk4sSJdT4JKuvO89uxYcQmXmf6hvrM/HM47zksQfnln6zKCMTBN4RpG06YVX37ejgx6eEQQgMa8P3u8yzZe4HUG/kAuOjseKJrU6J6BXEyOZNx38fjQCFfOHxBPU0uew1tmKd/BCihX4MQ9xqNBh75AuaGw5XD6uCBhyw0GeiBxeo8WxotDPsKdK6ml4xN3skZuSXW/vrITck9QRIeGxcZGUl0dLTZtsaNG2NnZ2eliKqX8c6zJN0CPVk5LoLNR4OIXX2UbvqDhP13HI/lf0Aq5lPMJ2Xk8tL38dhpQW9QtzWp78zYiACGd2uGh7MDAEGNXJk7sgvK6pfoaEggTanHhPzxeHm4MOnhkBpZJFaIOsHNW01Ilg6H2G/Apz10jaraOS/FqbU7AP3ehcBeZi+X1uRdamdrYXNk8VAqsXiookCBFUbdOLhUqL9JVFQU6enprFmzxmx7nz596Ny5M7Nnz6ZPnz7s2LHD7PXq+pWobQuxFmZd5ebcvrjlXCTO0IpR+e9wk+LjCm1Wn+fua87gdt7q4oh32z4NdsxE0dixp+dX0HJg2f0ahLhX7fg/2P6hurjoU0uh1cDKnefqKVgwGG5eV5vLnloG2uJ7ahQ3OaixFlduSuquiiweKjU8lVGQA9OssPrvPy+bVdVawqpVq+jUqRMvvvgiL7zwgkXPXdvZuzXmzIBomq99hK7a0yzSzeS5/DfIwqXIvm8MblNyzdFv/2eaOl8zdBbhXUdUZ9hC1H0PvA5Xj6uL+i4bCSN+gFYDKnaOa6dh8WNqsuMXCo8vKDHZgUp2thY2RTot27j169dTr1490+OJJ54we93T0xM7Ozvc3Nzw8fHBx8fHSpFaxwWtH1H5b5GpuNBde5Klug9pqik68qrYERyF+epIr20fqs/7vlv16nkh7gUaDTw2D9oMVdfaWjoC9keXfZxRwu9qzU7mJWjYCkb+CI71yjysUp2thc2QGp7KcHBRa1us8b4V1LdvX+bOnWt67urqylNPPWXJqOo0LzcnDiiteCr/Xb7TTae9NpH/6N5hRuFTLNf3xXDrnqDICI5L+2H9/0DyH4BGHXIb8feaL4AQdZWdAzyxUB2xdXQVrJ8IZ7dC5AzwaFr8MbmZao3q7n+BYgC/LjDyJ3BtVJORizpKEp7K0Ggs3rRUXVxdXWnZsoYW7KuDjCM4jmUE8nDeR/xLN4dQ7RmmO8znJbufWal/gDMuneju1gr+PA9Jh9R/zsYp8p3qw1++gdaDrFoOIeokOwe1KcqnPWz7CI7/DCc3QbvHIHgINA4GrT2kJcLZbeoK6Lnp6rFdRsGQj+vM/2JhfZLwCHQ6HXq9ZdaWqmvuHMGRRCOezH+fUXZbmGi/kgBtCq9pf4KCn+Cr98wP1GjVeUUGTIF6ja0TvBC2QKOB+/+hdjre+Bac3wmHV6iP4jRsCYM+guDImo1T1HmS8AgCAwP57bffGDFiBI6OjjRqdG9VDxsnLTSO4Fioj2SZvi+j6+3nOe/T+Nw4ATlpah+BBkHQvA90fgrqN7N26ELYDp/28Mx/4GIsHF2tJj7pFwEFXL2gaZha89OiH2htc1oNUb0k4RF88MEH/O1vf6NFixbk5eVV27D02qz4ERyPSadGIWqafzf1IYSFyTw8VGIeHlEp8rMUQghhSRWZh0eGpQshhBDC5knCI4QQQgibJwmPEEIIIWyeJDxCCCGEsHmS8JST9O2uOvkZCiGEsBZJeMrg4OAAQE6OFVZHtzH5+fkA2NnJHBpCCCFqlszDUwY7Ozvq169PSkoKAC4uLmg0MjdLRRkMBq5evYqLiwv29vJrJ4QQombJJ085GFcQNyY9onK0Wi3NmjWThFEIIUSNk4SnHDQaDb6+vnh5eVFQUGDtcOosnU6HViutqEIIIWqeJDwVYGdnJ/1PhBBCiDpIbreFEEIIYfMk4RFCCCGEzZOERwghhBA2T/rwcHtCvMzMTCtHIoQQQojyMn5ul2diW0l4gKysLAD8/f2tHIkQQgghKiorKwsPD49S99EoMt8/BoOBy5cv4+bmZvE5YjIzM/H39+fixYu4u7tb9Ny1gZSv7rP1Mkr56j5bL6OUr/IURSErKws/P78ypz2RGh7UCfGaNm1are/h7u5uk7/IRlK+us/Wyyjlq/tsvYxSvsopq2bHSDotCyGEEMLmScIjhBBCCJsnCU81c3R0ZNKkSTg6Olo7lGoh5av7bL2MUr66z9bLKOWrGdJpWQghhBA2T2p4hBBCCGHzJOERQgghhM2ThEcIIYQQNk8SHiGEEELYPEl4qtGXX35JYGAgTk5O9OjRg3379lk7pDJVJOZvvvmG+++/nwYNGtCgQQMGDBhQZP+oqCg0Go3ZIzIysrqLUSEVKfPChQuLlMfJyakGoy1bRcrTp0+fIuXRaDQ89NBDpn3qwjUszm+//cbDDz+Mn58fGo2GNWvWWDukcqlo3KtWrWLgwIE0btwYd3d3wsPD+eWXX8z2mTx5cpFr2KZNm2osRflVtLwxMTHF/s4mJyfXTMBlqGh5ivv70mg0tGvXzrRPbb5+pZk+fTrdunXDzc0NLy8vHn30UU6ePGm1eCThqSbLly/ntddeY9KkScTHx9OpUycGDx5MSkqKtUMrUUVjjomJ4amnnmL79u3s3r0bf39/Bg0axJ9//mm2X2RkJElJSabH0qVLa6I45VKZ6+Tu7m5WnvPnz9dgxKWraHlWrVplVpYjR45gZ2fHE088YbZfbb6GJblx4wadOnXiyy+/tHYoFVLRuH/77TcGDhzIhg0biIuLo2/fvjz88MMcOHDAbL927dqZXcOdO3dWR/gVVtnrdPLkSbPyeHl5VVOEFVPR8nz++edm5bh48SKenp5F/gZr6/UrzY4dOxg/fjx79uzh119/paCggEGDBnHjxg3rBKSIatG9e3dl/Pjxpud6vV7x8/NTpk+fbsWoSlfVmAsLCxU3Nzdl0aJFpm1jx45Vhg0bZulQLaaiZY6OjlY8PDxqKLqKq+o1/OyzzxQ3NzclOzvbtK22X8PyAJTVq1dbO4wKq2zcISEhypQpU0zPJ02apHTq1MlygVWT8pR3+/btCqCkpaXVSExVUZnrt3r1akWj0SiJiYmmbXXl+pUlJSVFAZQdO3ZY5f2lhqca5OfnExcXx4ABA0zbtFotAwYMYPfu3VaMrGSWiDknJ4eCggI8PT3NtsfExODl5UVwcDDjxo0jNTXVorFXVmXLnJ2dTUBAAP7+/gwbNoyjR4/WRLhlssQ1nD9/PiNGjMDV1dVse229hqIog8FAVlZWkb/D06dP4+fnR/PmzRk5ciQXLlywUoSW0blzZ3x9fRk4cCC7du2ydjgWM3/+fAYMGEBAQIDZdlu4fhkZGQBFfjdriiQ81eDatWvo9Xq8vb3Ntnt7e9eadua7WSLmt956Cz8/P7MP3MjISL777ju2bt3KzJkz2bFjB0OGDEGv11s0/sqoTJmDg4NZsGABa9eu5fvvv8dgMBAREcGlS5dqIuRSVfUa7tu3jyNHjvD888+bba/N11AU9cknn5Cdnc2TTz5p2tajRw8WLlzIpk2bmDt3LgkJCdx///1kZWVZMdLK8fX15euvv2blypWsXLkSf39/+vTpQ3x8vLVDq7LLly+zcePGIn+DtnD9DAYDEydOpFevXrRv394qMchq6cIiZsyYwbJly4iJiTHrxDtixAjT9x06dKBjx460aNGCmJgY+vfvb41QqyQ8PJzw8HDT84iICNq2bcu8efOYOnWqFSOruvnz59OhQwe6d+9utt3WrqEt++GHH5gyZQpr164169MyZMgQ0/cdO3akR48eBAQEsGLFCp577jlrhFppwcHBBAcHm55HRERw9uxZPvvsMxYvXmzFyKpu0aJF1K9fn0cffdRsuy1cv/Hjx3PkyBGr9j2SGp5q0KhRI+zs7Lhy5YrZ9itXruDj42OlqEpXlZg/+eQTZsyYwebNm+nYsWOp+zZv3pxGjRpx5syZKsdcVZa4Tg4ODnTp0qXOl+fGjRssW7asXP88a9M1FLctW7aM559/nhUrVpjVshanfv36tG7d2mauYffu3et8WRRFYcGCBYwePRqdTlfqvnXt+r3yyiusX7+e7du307RpU6vFIQlPNdDpdHTt2pWtW7eathkMBrZu3WpWO1CbVDbmjz/+mKlTp7Jp0ybCwsLKfJ9Lly6RmpqKr6+vReKuCktcJ71ez+HDh+t8eX788Ufy8vIYNWpUme9Tm66hUC1dupRnnnmGpUuXmk0pUJLs7GzOnj1rM9fw4MGDdb4sO3bs4MyZM+W66agr109RFF555RVWr17Ntm3bCAoKsnpAohosW7ZMcXR0VBYuXKgcO3ZMefHFF5X69esrycnJ1g6tRGXFPHr0aOXtt9827T9jxgxFp9MpP/30k5KUlGR6ZGVlKYqiKFlZWcrrr7+u7N69W0lISFC2bNmihIaGKq1atVJyc3OtUsa7VbTMU6ZMUX755Rfl7NmzSlxcnDJixAjFyclJOXr0qLWKYKai5TG67777lOHDhxfZXheuYUmysrKUAwcOKAcOHFAAZdasWcqBAweU8+fPWzu0UpUV99tvv62MHj3atP+SJUsUe3t75csvvzT7O0xPTzft849//EOJiYlREhISlF27dikDBgxQGjVqpKSkpNR4+e5W0fJ+9tlnypo1a5TTp08rhw8fViZMmKBotVply5Yt1iqCmYqWx2jUqFFKjx49ij1nbb5+pRk3bpzi4eGhxMTEmP1u5uTkWCUeSXiq0RdffKE0a9ZM0el0Svfu3ZU9e/ZYO6QylRZz7969lbFjx5qeBwQEKECRx6RJkxRFUZScnBxl0KBBSuPGjRUHBwclICBAeeGFF2pd0leRMk+cONG0r7e3t/Lggw8q8fHxVoi6ZBUpj6IoyokTJxRA2bx5c5Fz1ZVrWBzj8OW7H3eXv7YpK+6xY8cqvXv3Nu3fu3fvMss5fPhwxdfXV9HpdEqTJk2U4cOHK2fOnKnZgpWgouWdOXOm0qJFC8XJyUnx9PRU+vTpo2zbts06wRejouVRFEVJT09XnJ2dlX//+9/FnrM2X7/SFPdzAJTo6GirxKO5FZQQQgghhM2SPjxCCCGEsHmS8AghhBDC5knCI4QQQgibJwmPEEIIIWyeJDxCCCGEsHmS8AghhBDC5knCI4QQQgibJwmPEEIIIWyeJDxCiHvGwoULqV+/fqn7TJ48mc6dO9dIPHcLDAxk9uzZNf6+UVFRaDQaNBoNa9asKdcxgYGBpmPS09OrNT4hLEESHiGs7M4PG51OR8uWLfnggw8oLCy0dmiVVpEPzrIkJiai0Wg4ePBgkdf69OnDxIkTLfI+1SkmJsZ0jUt6xMTEEBsby4svvmiVGCMjI0lKSmLIkCHl2j82NpaVK1dWc1RCWI69tQMQQqgfNtHR0eTl5bFhwwbGjx+Pg4MD77zzToXPpdfr0Wg0aLV1/36moKDA2iFUSkFBAQ4ODqbnERERJCUlmZ5PmDCBzMxMoqOjTds8PT3R6XQ1GuedHB0d8fHxKff+jRs3xtPTsxojEsKy6v5/RCFsgPHDJiAggHHjxjFgwADWrVsHwKxZs+jQoQOurq74+/vz8ssvk52dbTrW2Eyzbt06QkJCcHR05MKFC8TGxjJw4EAaNWqEh4cHvXv3Jj4+3ux9NRoN8+bNY+jQobi4uNC2bVt2797NmTNn6NOnD66urkRERHD27Fmz49auXUtoaChOTk40b96cKVOmmGqkAgMDAXjsscfQaDSm52UdZ4xn7ty5PPLII7i6uvLRRx9V6OeYlpbGmDFjaNCgAS4uLgwZMoTTp0+XesyMGTPw9vbGzc2N5557jtzc3CL7fPvtt7Rt2xYnJyfatGnDV199ZXrNWAO1fPlyevfujZOTE0uWLDE7XqfT4ePjY3o4OzubrrnxodPpijRpVcf1Ka/8/HxeeeUVfH19cXJyIiAggOnTp1foHELUJpLwCFELOTs7k5+fD4BWq2XOnDkcPXqURYsWsW3bNt58802z/XNycpg5cybffvstR48excvLi6ysLMaOHcvOnTvZs2cPrVq14sEHHyQrK8vs2KlTpzJmzBgOHjxImzZtePrpp/nb3/7GO++8w/79+1EUhVdeecW0/++//86YMWOYMGECx44dY968eSxcuNCUnMTGxgIQHR1NUlKS6XlZxxlNnjyZxx57jMOHD/Pss89W6OcWFRXF/v37WbduHbt370ZRFB588MESa4pWrFjB5MmTmTZtGvv378fX19csmQFYsmQJ77//Ph999BHHjx9n2rRpvPfeeyxatMhsv7fffpsJEyZw/PhxBg8eXKG4S2Pp61Nec+bMYd26daxYsYKTJ0+yZMkSs+RViDrHKmu0CyFMxo4dqwwbNkxRFEUxGAzKr7/+qjg6Oiqvv/56sfv/+OOPSsOGDU3Po6OjFUA5ePBgqe+j1+sVNzc35eeffzZtA5R3333X9Hz37t0KoMyfP9+0benSpYqTk5Ppef/+/ZVp06aZnXvx4sWKr6+v2XlXr15ttk95j5s4caLZPgkJCQqgODs7K66urmYPrVarTJgwQVEURTl16pQCKLt27TIde+3aNcXZ2VlZsWKF6Wfl4eFhej08PFx5+eWXzd6vR48eSqdOnUzPW7Roofzwww9m+0ydOlUJDw83i2/27NlKed15ze8UEBCgfPbZZ6bn1XV9yhPP3//+d6Vfv36KwWAo8bjt27crgJKWllbiPkLUFtKHR4haYP369dSrV4+CggIMBgNPP/00kydPBmDLli1Mnz6dEydOkJmZSWFhIbm5ueTk5ODi4gKoTSYdO3Y0O+eVK1d49913iYmJISUlBb1eT05ODhcuXDDb787jvL29AejQoYPZttzcXDIzM3F3d+fQoUPs2rXLrMZAr9cXielu5T0uLCys2OOXL19O27ZtzbaNHDnS9P3x48ext7enR48epm0NGzYkODiY48ePF3vO48eP89JLL5ltCw8PZ/v27QDcuHGDs2fP8txzz/HCCy+Y9iksLMTDw8PsuJLirqqauj53i4qKYuDAgQQHBxMZGcnQoUMZNGiQhUolRM2ThEeIWqBv377MnTsXnU6Hn58f9vbqn2ZiYiJDhw5l3LhxfPTRR3h6erJz506ee+458vPzTR9ezs7OaDQas3OOHTuW1NRUPv/8cwICAnB0dCQ8PNzUVGZ0Z+da4zmK22YwGADIzs5mypQp/OUvfylSDicnpxLLWN7jXF1diz3e39+fli1bmm1zdnYu8f0swdhX6ptvvjFLpADs7OzMnpcUd1XV1PW5W2hoKAkJCWzcuJEtW7bw5JNPMmDAAH766adKlUMIa5OER4hawNXVtciHOUBcXBwGg4FPP/3UNOpqxYoV5Trnrl27+Oqrr3jwwQcBuHjxIteuXatyrKGhoZw8ebLYeI0cHBzQ6/UVPq4q2rZtS2FhIXv37iUiIgKA1NRUTp48SUhISInH7N27lzFjxpi27dmzx/S9t7c3fn5+nDt3zqw2qTaz5M/Z3d2d4cOHM3z4cB5//HEiIyO5fv26jM4SdZIkPELUYi1btqSgoIAvvviChx9+mF27dvH111+X69hWrVqxePFiwsLCyMzM5I033rBIjcj777/P0KFDadasGY8//jharZZDhw5x5MgRPvzwQ0AdqbV161Z69eqFo6MjDRo0KNdxVdGqVSuGDRvGCy+8wLx583Bzc+Ptt9+mSZMmDBs2rNhjJkyYQFRUFGFhYfTq1YslS5Zw9OhRmjdvbtpnypQpvPrqq3h4eBAZGUleXh779+8nLS2N1157rcpxW5qlfs6zZs3C19eXLl26oNVq+fHHH/Hx8Slz4kYhaisZpSVELdapUydmzZrFzJkzad++PUuWLCn30OD58+eTlpZGaGgoo0eP5tVXX8XLy6vKMQ0ePJj169ezefNmunXrRs+ePfnss88ICAgw7fPpp5/y66+/4u/vT5cuXcp9XFVFR0fTtWtXhg4dSnh4OIqisGHDBrMmoDsNHz6c9957jzfffJOuXbty/vx5xo0bZ7bP888/z7fffkt0dDQdOnSgd+/eLFy4kKCgIIvFbUmW+jm7ubnx8ccfExYWRrdu3UhMTGTDhg02Mb+TuDdpFEVRrB2EEEII64mKiiI9Pb3Cs2PHxMTQt29f0tLSpOZH1HqSqgshhDCNFFy/fn259m/Xrl25l6EQojaQGh4hhLjHpaSkkJmZCYCvr2+5RpydP3/eNKFj8+bNpalL1HqS8AghhBDC5klKLoQQQgibJwmPEEIIIWyeJDxCCCGEsHmS8AghhBDC5knCI4QQQgibJwmPEEIIIWyeJDxCCCGEsHmS8AghhBDC5v0/J8fpCzBq4IMAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a_obj = MyCosineAnalysis(label=\"Cosine experiment\")\n", "a_obj.run()\n", "a_obj.figs_mpl[\"cos-data-and-fit\"]" ] }, { "cell_type": "markdown", "id": "6b1d19bb", "metadata": {}, "source": [ "The first line will instantiate the class by calling the {code}`.__init__()` method.\n", "\n", "As expected this will save similar files into the `experiment directory`:\n", "\n", "```{code-block}\n", "20230125-172712-018-87b9bf-Cosine experiment/\n", "├── cos-data-and-fit.png\n", "├── Cosine fit.png\n", "├── dataset.hdf5\n", "├── quantities_of_interest.json\n", "└── snapshot.json\n", "```\n", "\n", "## Extending the BaseAnalysis\n", "\n", "While the above stand-alone class provides the gist of an analysis, we can do even better by defining a structured framework that all analyses need to adhere to and factoring out the pieces of code that are common to most analyses.\n", "Besides that, the overall functionality can be improved.\n", "\n", "Here is where the {class}`~quantify_core.analysis.base_analysis.BaseAnalysis` enters the scene.\n", "It allows us to focus only on the particular aspect of our custom analysis by implementing only the relevant methods. Take a look at how the above class is implemented where we are making use of the analysis framework. For completeness, a fully documented {class}`~quantify_core.analysis.fitting_models.CosineModel` which can serve as a template is shown as well." ] }, { "cell_type": "code", "execution_count": 18, "id": "0909e0d6", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
class CosineModel(lmfit.model.Model):\n",
       "    """\n",
       "    Exemplary lmfit model with a guess for a cosine.\n",
       "\n",
       "    .. note::\n",
       "\n",
       "        The :mod:`lmfit.models` module provides several fitting models that might fit\n",
       "        your needs out of the box.\n",
       "    """\n",
       "\n",
       "    def __init__(self, *args, **kwargs):\n",
       "        # pass in the model's equation\n",
       "        super().__init__(cos_func, *args, **kwargs)\n",
       "\n",
       "        # configure constraints that are independent from the data to be fitted\n",
       "        self.set_param_hint("frequency", min=0, vary=True)  # enforce positive frequency\n",
       "        self.set_param_hint("amplitude", min=0, vary=True)  # enforce positive amplitude\n",
       "        self.set_param_hint("offset", vary=True)\n",
       "        self.set_param_hint(\n",
       "            "phase", vary=True, min=-np.pi, max=np.pi\n",
       "        )  # enforce phase range\n",
       "\n",
       "    # pylint: disable=missing-function-docstring\n",
       "    def guess(self, data, x, **kws) -> lmfit.parameter.Parameters:\n",
       "        """\n",
       "        Guess parameters based on the data\n",
       "\n",
       "        Parameters\n",
       "        ----------\n",
       "        data: np.ndarray\n",
       "            Data to fit to\n",
       "        x: np.ndarray\n",
       "            Independet variable\n",
       "        """\n",
       "\n",
       "        self.set_param_hint("offset", value=np.average(data))\n",
       "        self.set_param_hint("amplitude", value=(np.max(data) - np.min(data)) / 2)\n",
       "\n",
       "        # Guess frequency and phase using Fourier Transform\n",
       "        freq_guess, phase_guess = fft_freq_phase_guess(data, x)\n",
       "        phase_wrap = (phase_guess + np.pi) % (2 * np.pi) - np.pi\n",
       "        self.set_param_hint("frequency", value=freq_guess)\n",
       "        self.set_param_hint("phase", value=phase_wrap)\n",
       "\n",
       "        params = self.make_params()\n",
       "        return lmfit.models.update_param_vals(params, self.prefix, **kws)\n",
       "\n",
       "    # Same design patter is used in lmfit.models to inherit common docstrings.\n",
       "    # We adjust these common docstrings to our docs build pipeline\n",
       "    __init__.__doc__ = get_model_common_doc() + mk_seealso("cos_func")\n",
       "    guess.__doc__ = get_guess_common_doc()\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k}{class}\\PY{+w}{ }\\PY{n+nc}{CosineModel}\\PY{p}{(}\\PY{n}{lmfit}\\PY{o}{.}\\PY{n}{model}\\PY{o}{.}\\PY{n}{Model}\\PY{p}{)}\\PY{p}{:}\n", "\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Exemplary lmfit model with a guess for a cosine.}\n", "\n", "\\PY{l+s+sd}{ .. note::}\n", "\n", "\\PY{l+s+sd}{ The :mod:`lmfit.models` module provides several fitting models that might fit}\n", "\\PY{l+s+sd}{ your needs out of the box.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\n", " \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf+fm}{\\PYZus{}\\PYZus{}init\\PYZus{}\\PYZus{}}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{,} \\PY{o}{*}\\PY{n}{args}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)}\\PY{p}{:}\n", " \\PY{c+c1}{\\PYZsh{} pass in the model\\PYZsq{}s equation}\n", " \\PY{n+nb}{super}\\PY{p}{(}\\PY{p}{)}\\PY{o}{.}\\PY{n+nf+fm}{\\PYZus{}\\PYZus{}init\\PYZus{}\\PYZus{}}\\PY{p}{(}\\PY{n}{cos\\PYZus{}func}\\PY{p}{,} \\PY{o}{*}\\PY{n}{args}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} configure constraints that are independent from the data to be fitted}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n+nb}{min}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{)} \\PY{c+c1}{\\PYZsh{} enforce positive frequency}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n+nb}{min}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{)} \\PY{c+c1}{\\PYZsh{} enforce positive amplitude}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{offset}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{)}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\n", " \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{phase}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{,} \\PY{n+nb}{min}\\PY{o}{=}\\PY{o}{\\PYZhy{}}\\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\\PY{p}{,} \\PY{n+nb}{max}\\PY{o}{=}\\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\n", " \\PY{p}{)} \\PY{c+c1}{\\PYZsh{} enforce phase range}\n", "\n", " \\PY{c+c1}{\\PYZsh{} pylint: disable=missing\\PYZhy{}function\\PYZhy{}docstring}\n", " \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{guess}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{,} \\PY{n}{data}\\PY{p}{,} \\PY{n}{x}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kws}\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{lmfit}\\PY{o}{.}\\PY{n}{parameter}\\PY{o}{.}\\PY{n}{Parameters}\\PY{p}{:}\n", "\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Guess parameters based on the data}\n", "\n", "\\PY{l+s+sd}{ Parameters}\n", "\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n", "\\PY{l+s+sd}{ data: np.ndarray}\n", "\\PY{l+s+sd}{ Data to fit to}\n", "\\PY{l+s+sd}{ x: np.ndarray}\n", "\\PY{l+s+sd}{ Independet variable}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{offset}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{n}{np}\\PY{o}{.}\\PY{n}{average}\\PY{p}{(}\\PY{n}{data}\\PY{p}{)}\\PY{p}{)}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{p}{(}\\PY{n}{np}\\PY{o}{.}\\PY{n}{max}\\PY{p}{(}\\PY{n}{data}\\PY{p}{)} \\PY{o}{\\PYZhy{}} \\PY{n}{np}\\PY{o}{.}\\PY{n}{min}\\PY{p}{(}\\PY{n}{data}\\PY{p}{)}\\PY{p}{)} \\PY{o}{/} \\PY{l+m+mi}{2}\\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} Guess frequency and phase using Fourier Transform}\n", " \\PY{n}{freq\\PYZus{}guess}\\PY{p}{,} \\PY{n}{phase\\PYZus{}guess} \\PY{o}{=} \\PY{n}{fft\\PYZus{}freq\\PYZus{}phase\\PYZus{}guess}\\PY{p}{(}\\PY{n}{data}\\PY{p}{,} \\PY{n}{x}\\PY{p}{)}\n", " \\PY{n}{phase\\PYZus{}wrap} \\PY{o}{=} \\PY{p}{(}\\PY{n}{phase\\PYZus{}guess} \\PY{o}{+} \\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\\PY{p}{)} \\PY{o}{\\PYZpc{}} \\PY{p}{(}\\PY{l+m+mi}{2} \\PY{o}{*} \\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\\PY{p}{)} \\PY{o}{\\PYZhy{}} \\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{n}{freq\\PYZus{}guess}\\PY{p}{)}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{phase}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{n}{phase\\PYZus{}wrap}\\PY{p}{)}\n", "\n", " \\PY{n}{params} \\PY{o}{=} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{make\\PYZus{}params}\\PY{p}{(}\\PY{p}{)}\n", " \\PY{k}{return} \\PY{n}{lmfit}\\PY{o}{.}\\PY{n}{models}\\PY{o}{.}\\PY{n}{update\\PYZus{}param\\PYZus{}vals}\\PY{p}{(}\\PY{n}{params}\\PY{p}{,} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{prefix}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kws}\\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} Same design patter is used in lmfit.models to inherit common docstrings.}\n", " \\PY{c+c1}{\\PYZsh{} We adjust these common docstrings to our docs build pipeline}\n", " \\PY{n+nf+fm}{\\PYZus{}\\PYZus{}init\\PYZus{}\\PYZus{}}\\PY{o}{.}\\PY{n+nv+vm}{\\PYZus{}\\PYZus{}doc\\PYZus{}\\PYZus{}} \\PY{o}{=} \\PY{n}{get\\PYZus{}model\\PYZus{}common\\PYZus{}doc}\\PY{p}{(}\\PY{p}{)} \\PY{o}{+} \\PY{n}{mk\\PYZus{}seealso}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cos\\PYZus{}func}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", " \\PY{n}{guess}\\PY{o}{.}\\PY{n+nv+vm}{\\PYZus{}\\PYZus{}doc\\PYZus{}\\PYZus{}} \\PY{o}{=} \\PY{n}{get\\PYZus{}guess\\PYZus{}common\\PYZus{}doc}\\PY{p}{(}\\PY{p}{)}\n", "\\end{Verbatim}\n" ], "text/plain": [ "class CosineModel(lmfit.model.Model):\n", " \"\"\"\n", " Exemplary lmfit model with a guess for a cosine.\n", "\n", " .. note::\n", "\n", " The :mod:`lmfit.models` module provides several fitting models that might fit\n", " your needs out of the box.\n", " \"\"\"\n", "\n", " def __init__(self, *args, **kwargs):\n", " # pass in the model's equation\n", " super().__init__(cos_func, *args, **kwargs)\n", "\n", " # configure constraints that are independent from the data to be fitted\n", " self.set_param_hint(\"frequency\", min=0, vary=True) # enforce positive frequency\n", " self.set_param_hint(\"amplitude\", min=0, vary=True) # enforce positive amplitude\n", " self.set_param_hint(\"offset\", vary=True)\n", " self.set_param_hint(\n", " \"phase\", vary=True, min=-np.pi, max=np.pi\n", " ) # enforce phase range\n", "\n", " # pylint: disable=missing-function-docstring\n", " def guess(self, data, x, **kws) -> lmfit.parameter.Parameters:\n", " \"\"\"\n", " Guess parameters based on the data\n", "\n", " Parameters\n", " ----------\n", " data: np.ndarray\n", " Data to fit to\n", " x: np.ndarray\n", " Independet variable\n", " \"\"\"\n", "\n", " self.set_param_hint(\"offset\", value=np.average(data))\n", " self.set_param_hint(\"amplitude\", value=(np.max(data) - np.min(data)) / 2)\n", "\n", " # Guess frequency and phase using Fourier Transform\n", " freq_guess, phase_guess = fft_freq_phase_guess(data, x)\n", " phase_wrap = (phase_guess + np.pi) % (2 * np.pi) - np.pi\n", " self.set_param_hint(\"frequency\", value=freq_guess)\n", " self.set_param_hint(\"phase\", value=phase_wrap)\n", "\n", " params = self.make_params()\n", " return lmfit.models.update_param_vals(params, self.prefix, **kws)\n", "\n", " # Same design patter is used in lmfit.models to inherit common docstrings.\n", " # We adjust these common docstrings to our docs build pipeline\n", " __init__.__doc__ = get_model_common_doc() + mk_seealso(\"cos_func\")\n", " guess.__doc__ = get_guess_common_doc()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
class CosineAnalysis(ba.BaseAnalysis):\n",
       "    """\n",
       "    Exemplary analysis subclass that fits a cosine to a dataset.\n",
       "    """\n",
       "\n",
       "    def process_data(self):\n",
       "        """\n",
       "        In some cases, you might need to process the data, e.g., reshape, filter etc.,\n",
       "        before starting the analysis. This is the method where it should be done.\n",
       "\n",
       "        See :meth:`~quantify_core.analysis.spectroscopy_analysis.ResonatorSpectroscopyAnalysis.process_data`\n",
       "        for an implementation example.\n",
       "        """  # pylint: disable=line-too-long\n",
       "\n",
       "    def run_fitting(self):\n",
       "        """\n",
       "        Fits a :class:`~quantify_core.analysis.fitting_models.CosineModel` to the data.\n",
       "        """\n",
       "        # create a fitting model based on a cosine function\n",
       "        model = CosineModel()\n",
       "        guess = model.guess(self.dataset.y0.values, x=self.dataset.x0.values)\n",
       "        result = model.fit(\n",
       "            self.dataset.y0.values, x=self.dataset.x0.values, params=guess\n",
       "        )\n",
       "        self.fit_results.update({"cosine": result})\n",
       "\n",
       "    def create_figures(self):\n",
       "        """\n",
       "        Creates a figure with the data and the fit.\n",
       "        """\n",
       "        fig, ax = plt.subplots()\n",
       "        fig_id = "cos_fit"\n",
       "        self.figs_mpl.update({fig_id: fig})\n",
       "        self.axs_mpl.update({fig_id: ax})\n",
       "\n",
       "        self.dataset.y0.plot(ax=ax, x="x0", marker="o", linestyle="")\n",
       "        qpl.plot_fit(ax, self.fit_results["cosine"])\n",
       "        qpl.plot_textbox(ax, ba.wrap_text(self.quantities_of_interest["fit_msg"]))\n",
       "\n",
       "        adjust_axeslabels_SI(ax)\n",
       "        qpl.set_suptitle_from_dataset(fig, self.dataset, "x0-y0")\n",
       "        ax.legend()\n",
       "\n",
       "    def analyze_fit_results(self):\n",
       "        """\n",
       "        Checks fit success and populates :code:`quantities_of_interest`.\n",
       "        """\n",
       "        fit_result = self.fit_results["cosine"]\n",
       "        fit_warning = ba.check_lmfit(fit_result)\n",
       "\n",
       "        # If there is a problem with the fit, display an error message in the text box.\n",
       "        # Otherwise, display the parameters as normal.\n",
       "        if fit_warning is None:\n",
       "            self.quantities_of_interest["fit_success"] = True\n",
       "            unit = self.dataset.y0.units\n",
       "            text_msg = "Summary\\n"\n",
       "            text_msg += format_value_string(\n",
       "                r"$f$", fit_result.params["frequency"], end_char="\\n", unit="Hz"\n",
       "            )\n",
       "            text_msg += format_value_string(\n",
       "                r"$A$", fit_result.params["amplitude"], unit=unit\n",
       "            )\n",
       "        else:\n",
       "            text_msg = fit_warning\n",
       "            self.quantities_of_interest["fit_success"] = False\n",
       "\n",
       "        # save values and fit uncertainty\n",
       "        for parameter_name in ["frequency", "amplitude"]:\n",
       "            self.quantities_of_interest[parameter_name] = ba.lmfit_par_to_ufloat(\n",
       "                fit_result.params[parameter_name]\n",
       "            )\n",
       "        self.quantities_of_interest["fit_msg"] = text_msg\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k}{class}\\PY{+w}{ }\\PY{n+nc}{CosineAnalysis}\\PY{p}{(}\\PY{n}{ba}\\PY{o}{.}\\PY{n}{BaseAnalysis}\\PY{p}{)}\\PY{p}{:}\n", "\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Exemplary analysis subclass that fits a cosine to a dataset.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\n", " \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{process\\PYZus{}data}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{)}\\PY{p}{:}\n", "\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ In some cases, you might need to process the data, e.g., reshape, filter etc.,}\n", "\\PY{l+s+sd}{ before starting the analysis. This is the method where it should be done.}\n", "\n", "\\PY{l+s+sd}{ See :meth:`\\PYZti{}quantify\\PYZus{}core.analysis.spectroscopy\\PYZus{}analysis.ResonatorSpectroscopyAnalysis.process\\PYZus{}data`}\n", "\\PY{l+s+sd}{ for an implementation example.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}} \\PY{c+c1}{\\PYZsh{} pylint: disable=line\\PYZhy{}too\\PYZhy{}long}\n", "\n", " \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{run\\PYZus{}fitting}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{)}\\PY{p}{:}\n", "\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Fits a :class:`\\PYZti{}quantify\\PYZus{}core.analysis.fitting\\PYZus{}models.CosineModel` to the data.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", " \\PY{c+c1}{\\PYZsh{} create a fitting model based on a cosine function}\n", " \\PY{n}{model} \\PY{o}{=} \\PY{n}{CosineModel}\\PY{p}{(}\\PY{p}{)}\n", " \\PY{n}{guess} \\PY{o}{=} \\PY{n}{model}\\PY{o}{.}\\PY{n}{guess}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{y0}\\PY{o}{.}\\PY{n}{values}\\PY{p}{,} \\PY{n}{x}\\PY{o}{=}\\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{x0}\\PY{o}{.}\\PY{n}{values}\\PY{p}{)}\n", " \\PY{n}{result} \\PY{o}{=} \\PY{n}{model}\\PY{o}{.}\\PY{n}{fit}\\PY{p}{(}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{y0}\\PY{o}{.}\\PY{n}{values}\\PY{p}{,} \\PY{n}{x}\\PY{o}{=}\\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{x0}\\PY{o}{.}\\PY{n}{values}\\PY{p}{,} \\PY{n}{params}\\PY{o}{=}\\PY{n}{guess}\n", " \\PY{p}{)}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{fit\\PYZus{}results}\\PY{o}{.}\\PY{n}{update}\\PY{p}{(}\\PY{p}{\\PYZob{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cosine}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{:} \\PY{n}{result}\\PY{p}{\\PYZcb{}}\\PY{p}{)}\n", "\n", " \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{create\\PYZus{}figures}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{)}\\PY{p}{:}\n", "\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Creates a figure with the data and the fit.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", " \\PY{n}{fig}\\PY{p}{,} \\PY{n}{ax} \\PY{o}{=} \\PY{n}{plt}\\PY{o}{.}\\PY{n}{subplots}\\PY{p}{(}\\PY{p}{)}\n", " \\PY{n}{fig\\PYZus{}id} \\PY{o}{=} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cos\\PYZus{}fit}\\PY{l+s+s2}{\\PYZdq{}}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{figs\\PYZus{}mpl}\\PY{o}{.}\\PY{n}{update}\\PY{p}{(}\\PY{p}{\\PYZob{}}\\PY{n}{fig\\PYZus{}id}\\PY{p}{:} \\PY{n}{fig}\\PY{p}{\\PYZcb{}}\\PY{p}{)}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{axs\\PYZus{}mpl}\\PY{o}{.}\\PY{n}{update}\\PY{p}{(}\\PY{p}{\\PYZob{}}\\PY{n}{fig\\PYZus{}id}\\PY{p}{:} \\PY{n}{ax}\\PY{p}{\\PYZcb{}}\\PY{p}{)}\n", "\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{y0}\\PY{o}{.}\\PY{n}{plot}\\PY{p}{(}\\PY{n}{ax}\\PY{o}{=}\\PY{n}{ax}\\PY{p}{,} \\PY{n}{x}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{x0}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{marker}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{o}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{linestyle}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", " \\PY{n}{qpl}\\PY{o}{.}\\PY{n}{plot\\PYZus{}fit}\\PY{p}{(}\\PY{n}{ax}\\PY{p}{,} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{fit\\PYZus{}results}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cosine}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{)}\n", " \\PY{n}{qpl}\\PY{o}{.}\\PY{n}{plot\\PYZus{}textbox}\\PY{p}{(}\\PY{n}{ax}\\PY{p}{,} \\PY{n}{ba}\\PY{o}{.}\\PY{n}{wrap\\PYZus{}text}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{fit\\PYZus{}msg}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{)}\\PY{p}{)}\n", "\n", " \\PY{n}{adjust\\PYZus{}axeslabels\\PYZus{}SI}\\PY{p}{(}\\PY{n}{ax}\\PY{p}{)}\n", " \\PY{n}{qpl}\\PY{o}{.}\\PY{n}{set\\PYZus{}suptitle\\PYZus{}from\\PYZus{}dataset}\\PY{p}{(}\\PY{n}{fig}\\PY{p}{,} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{p}{,} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{x0\\PYZhy{}y0}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n", " \\PY{n}{ax}\\PY{o}{.}\\PY{n}{legend}\\PY{p}{(}\\PY{p}{)}\n", "\n", " \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{analyze\\PYZus{}fit\\PYZus{}results}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{)}\\PY{p}{:}\n", "\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", "\\PY{l+s+sd}{ Checks fit success and populates :code:`quantities\\PYZus{}of\\PYZus{}interest`.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", " \\PY{n}{fit\\PYZus{}result} \\PY{o}{=} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{fit\\PYZus{}results}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cosine}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\n", " \\PY{n}{fit\\PYZus{}warning} \\PY{o}{=} \\PY{n}{ba}\\PY{o}{.}\\PY{n}{check\\PYZus{}lmfit}\\PY{p}{(}\\PY{n}{fit\\PYZus{}result}\\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} If there is a problem with the fit, display an error message in the text box.}\n", " \\PY{c+c1}{\\PYZsh{} Otherwise, display the parameters as normal.}\n", " \\PY{k}{if} \\PY{n}{fit\\PYZus{}warning} \\PY{o+ow}{is} \\PY{k+kc}{None}\\PY{p}{:}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{fit\\PYZus{}success}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]} \\PY{o}{=} \\PY{k+kc}{True}\n", " \\PY{n}{unit} \\PY{o}{=} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{y0}\\PY{o}{.}\\PY{n}{units}\n", " \\PY{n}{text\\PYZus{}msg} \\PY{o}{=} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Summary}\\PY{l+s+se}{\\PYZbs{}n}\\PY{l+s+s2}{\\PYZdq{}}\n", " \\PY{n}{text\\PYZus{}msg} \\PY{o}{+}\\PY{o}{=} \\PY{n}{format\\PYZus{}value\\PYZus{}string}\\PY{p}{(}\n", " \\PY{l+s+sa}{r}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{\\PYZdl{}f\\PYZdl{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{fit\\PYZus{}result}\\PY{o}{.}\\PY{n}{params}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{,} \\PY{n}{end\\PYZus{}char}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+se}{\\PYZbs{}n}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Hz}\\PY{l+s+s2}{\\PYZdq{}}\n", " \\PY{p}{)}\n", " \\PY{n}{text\\PYZus{}msg} \\PY{o}{+}\\PY{o}{=} \\PY{n}{format\\PYZus{}value\\PYZus{}string}\\PY{p}{(}\n", " \\PY{l+s+sa}{r}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{\\PYZdl{}A\\PYZdl{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{fit\\PYZus{}result}\\PY{o}{.}\\PY{n}{params}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{n}{unit}\n", " \\PY{p}{)}\n", " \\PY{k}{else}\\PY{p}{:}\n", " \\PY{n}{text\\PYZus{}msg} \\PY{o}{=} \\PY{n}{fit\\PYZus{}warning}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{fit\\PYZus{}success}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]} \\PY{o}{=} \\PY{k+kc}{False}\n", "\n", " \\PY{c+c1}{\\PYZsh{} save values and fit uncertainty}\n", " \\PY{k}{for} \\PY{n}{parameter\\PYZus{}name} \\PY{o+ow}{in} \\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{:}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{n}{parameter\\PYZus{}name}\\PY{p}{]} \\PY{o}{=} \\PY{n}{ba}\\PY{o}{.}\\PY{n}{lmfit\\PYZus{}par\\PYZus{}to\\PYZus{}ufloat}\\PY{p}{(}\n", " \\PY{n}{fit\\PYZus{}result}\\PY{o}{.}\\PY{n}{params}\\PY{p}{[}\\PY{n}{parameter\\PYZus{}name}\\PY{p}{]}\n", " \\PY{p}{)}\n", " \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{fit\\PYZus{}msg}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]} \\PY{o}{=} \\PY{n}{text\\PYZus{}msg}\n", "\\end{Verbatim}\n" ], "text/plain": [ "class CosineAnalysis(ba.BaseAnalysis):\n", " \"\"\"\n", " Exemplary analysis subclass that fits a cosine to a dataset.\n", " \"\"\"\n", "\n", " def process_data(self):\n", " \"\"\"\n", " In some cases, you might need to process the data, e.g., reshape, filter etc.,\n", " before starting the analysis. This is the method where it should be done.\n", "\n", " See :meth:`~quantify_core.analysis.spectroscopy_analysis.ResonatorSpectroscopyAnalysis.process_data`\n", " for an implementation example.\n", " \"\"\" # pylint: disable=line-too-long\n", "\n", " def run_fitting(self):\n", " \"\"\"\n", " Fits a :class:`~quantify_core.analysis.fitting_models.CosineModel` to the data.\n", " \"\"\"\n", " # create a fitting model based on a cosine function\n", " model = CosineModel()\n", " guess = model.guess(self.dataset.y0.values, x=self.dataset.x0.values)\n", " result = model.fit(\n", " self.dataset.y0.values, x=self.dataset.x0.values, params=guess\n", " )\n", " self.fit_results.update({\"cosine\": result})\n", "\n", " def create_figures(self):\n", " \"\"\"\n", " Creates a figure with the data and the fit.\n", " \"\"\"\n", " fig, ax = plt.subplots()\n", " fig_id = \"cos_fit\"\n", " self.figs_mpl.update({fig_id: fig})\n", " self.axs_mpl.update({fig_id: ax})\n", "\n", " self.dataset.y0.plot(ax=ax, x=\"x0\", marker=\"o\", linestyle=\"\")\n", " qpl.plot_fit(ax, self.fit_results[\"cosine\"])\n", " qpl.plot_textbox(ax, ba.wrap_text(self.quantities_of_interest[\"fit_msg\"]))\n", "\n", " adjust_axeslabels_SI(ax)\n", " qpl.set_suptitle_from_dataset(fig, self.dataset, \"x0-y0\")\n", " ax.legend()\n", "\n", " def analyze_fit_results(self):\n", " \"\"\"\n", " Checks fit success and populates :code:`quantities_of_interest`.\n", " \"\"\"\n", " fit_result = self.fit_results[\"cosine\"]\n", " fit_warning = ba.check_lmfit(fit_result)\n", "\n", " # If there is a problem with the fit, display an error message in the text box.\n", " # Otherwise, display the parameters as normal.\n", " if fit_warning is None:\n", " self.quantities_of_interest[\"fit_success\"] = True\n", " unit = self.dataset.y0.units\n", " text_msg = \"Summary\\n\"\n", " text_msg += format_value_string(\n", " r\"$f$\", fit_result.params[\"frequency\"], end_char=\"\\n\", unit=\"Hz\"\n", " )\n", " text_msg += format_value_string(\n", " r\"$A$\", fit_result.params[\"amplitude\"], unit=unit\n", " )\n", " else:\n", " text_msg = fit_warning\n", " self.quantities_of_interest[\"fit_success\"] = False\n", "\n", " # save values and fit uncertainty\n", " for parameter_name in [\"frequency\", \"amplitude\"]:\n", " self.quantities_of_interest[parameter_name] = ba.lmfit_par_to_ufloat(\n", " fit_result.params[parameter_name]\n", " )\n", " self.quantities_of_interest[\"fit_msg\"] = text_msg" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display_source_code(CosineModel)\n", "display_source_code(CosineAnalysis)" ] }, { "cell_type": "markdown", "id": "4c1eee01", "metadata": {}, "source": [ "Now we can simply execute it against our latest experiment as follows:" ] }, { "cell_type": "code", "execution_count": 19, "id": "c030ad1e", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAucAAAHgCAYAAAAG6sPtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAADgp0lEQVR4nOzdd3xV5f3A8c/33uy9B0nYyxD2EMQBKoK1YLXOalu1jvJrta27tUqttWq1jjrrqlqsGwcOnKCIyN5LRgIJZBIIWTfrPr8/zr3hEhJyE5LcjO/79bqGnPucc7733sR8z3O+z/OIMQallFJKKaWU79l8HYBSSimllFLKosm5UkoppZRSnYQm50oppZRSSnUSmpwrpZRSSinVSWhyrpRSSimlVCehyblSSimllFKdhCbnSimllFJKdRKanCullFJKKdVJaHKulFJKKaVUJ6HJuVKqQ4nIFSJiRKSvr2PpSkRkiut9m+LrWJRSSrUfTc6VagciEiUiz4pIoYiUi8hCERnTGc8jIueJyCciUiQi1SKyT0TeFJHT2zpe1f2JyM9E5Pe+jkMppboqMcb4OgaluhURsQGLgZHAg0AR8H9AGjDWGLO9M5xHRAR4EbgCWAO8DeQBycB5wFhgsjHmu7aI1+O8dsAfqDL6PyCvuT7vAKDaGOP0dTxNEZEPgQxjTF9fx6KUUl2RJudKtTERuQh4A7jQGPO2a1s88APwiTHmZ53hPCJyM1ZS/yhwY8NEWUR+Dmwzxixvi3hV64hIEJ08IfekyblSSh0fLWtRygsiEiwiW12PYI/tMSKSKyLfuXqEAS4A8oF57nbGmELgTeBcEQk8xnmmuuqKz2vkuZ+5npvUBucJBv4IbAVubqwH2xjzX8/EXET6i8hbIlIsIhUi8r2InNPIsa8XkU2uNgdEZKWI/Mzj+aNqzkUkS0Q+FJGTRWS5iDhEZJeI/KKR40eJyKMiki0iVSKyQ0Ruc/UsN0tEzhaRxa4yoFIR+UhEhnk8f7qIOEXkrw32c7//sz22GRF5QkQuE5FtrrhXicipjZw3RUReFJF8V9ybROSqBm3cdeWXiMjfRGQvUAFENFZzLiKLRGSjiIwQka9d7/kOEbnA9fxpIrJMRCpd8Z15nHFdJCJ3iEiO67V+KSIDPeMBzgH6uNobEcny5nNRSill0eRcKS8YYyqBXwIDgXs9nnoSiASuMMbUubaNBlY30tO5HAgBBh/jVIuAbOCyRp67DNhpjFnaBuc5GYgB/ucRd5NEJBH4DpgOPAXcAQQBH3heSIjINcC/gM3A74E5wFrgxObOgfXevg18DtwEHABeapA4hwBfA5cDrwA3AEuA+4CHvXgdPwc+AsqA24B7gHTgW/fFgjHmK9dr/KO46vdFJBl4HPgCeKbBYU/DuvswF7gLiAUWiEiGx3kTge+BM4EngN8BO4AXpPH67DuxktyHgD8B1cd4WdHAh8Ay4FagCnhdRC4GXgc+Bm4HQoG3RST8OOK6Havk6SGs93wi8KrH8/difd5FwM9dj8aOo5RSqinGGH3oQx9ePoC/A3XAKVg91wb4XYM2ZcALjez7I1f76V6cwwFEemyLB2qAv7TFebCSWgP8xMvX/Yir/cke28KAXUAmYHNtew/Y2MyxrnAdq6/HtizXtlMavGYH8JDHtj+7XvegBse8D6gF0o5x3jCshP/ZBtsTgYOe27EubrYDG4FArOS3BOjdYF/jeoz12NYbqATmeWx7HtgHxDbY/zXXuYNd309xHW+ne5tHW/dzUzy2LXJtu9Rj2xDXtjrgRI/tZ7m2X3EccW0GAhr5Ocrw2PYhkOWL30996EMf+ugOD+05V6pl/gJsAl7G6l39Gqun2FMwVu9lQw6P54/lFayE8AKPbRcDfli9s21xngjX19JmYnH7EbDcGPOte4Mxpgx4FuiL1fsMVkKXKiLjvTyup83GmMUexy8EtgH9PdpciDUI9oCIxLkfWD3aduCochIP04Ao4LUG+9Zh9TpP9Th3BdZFxAnAN1i92H8wxuxp5LhLjTGrPPbdA7wPTBcRu4gI8FNgPtY4XM9zf4p156XhDDsvG+tujTfKsHrI3effhvU5bDHGLPNo5/53f6gfENzSuP5jjPHsxXd/Xv1RSinVJvx8HYBSXYkxptpVj7sCKwm+0hjTsF67Eiu5bijI43n34E27x/NlxpgyY8xWEVmBVcbyguu5y4DvjTE7WnqeJhxyfQ0/RhtPfTic3Hna4vH8RuABrBKJ5SKyA/gMq3RmiRfnaCzxPYBVtuE2CBgBFDZxjIRjHH+Q6+tXTTx/yPMbY8wSEXka+A3wqTHmxSb2a2xWnB+wet/jASfWRcG1rkdjGsad2US7xuQ08jNYglUeVc8YU2Ll4/XvZ3wr4mr4GR1wfY1GKaVUm9DkXKmWm+76GoSV8DVMpHKxpiNsyL1tn+vrCqyk1u1urJ55sHrPHxORVKwEfCLw21aepzFbXV+HY5WitAljzBYRGQL8GJiB1TP7fyLyV2PMnGZ2b6r2XTz+bcOqSf9HE21/OMbx3XcKf441ZWRDtUec1BpQO8X17QARCXH1qLeU+7xzse64NGZ9g++97TWHpt+35t7P1sTlzWeklFLqOGhyrlQLiMgIrEF//wFGAc+LyHBjTIlHs7XAKSJiM0cO1jwRa+YNdwJ5GUeWnuzy+PfrWAMcL3W1qcGaNtGTt+dpzLdYvZ6XisjfTfODQndj1TI3NNTjeQCMMeWuWN8QkQCs2WTuEJH7jDGORo7REjuBMGPMF63cF6DAy/3vxipruRnrjsD9WDXWDQ1qZNtgrM/A3cNfCthbGXd7KaR94tL5eZVS6jhozblSXhIRf+AlrB7p32HVJCdiDZb09LZr+/ke+8Zh1UvPN8ZUgVU2YYz5wuNRn5wbY4qAT7BmJbkMWODa1uLzNMbVA/wAVvL5gKv+uOHrvVxEJri+/RiYIIencUREQrHKIbKwBgoiIrENzlPtek6wFh46Xm8Ck0RkesMnxJpi8VgdDp9ila78yfVZNtw/3uPfJ2Il5Y8aY/6JNR/8b0XktEaOO0k8VmUVkTTgXOAzY0yd68LnHeCnnjO4NHbejtSOcZVj1asrpZRqBe05V8p7f8bqLT/DGFMKrBdrLuy/icjbxpiPXe3expqe7j8iks7hlTvtWFMLeusV17HAmlqvoeM9z4PAMKxpC6eKiHuF0CTgJ8AE4CRX2/uxevE/EZF/AcVYU0v2A37q0XP/mYjkYU1vmI+V/P8W+Mj1nh2vB4FZwIci8hKwCmuKwOFYA2j7Yr0PRzHGHBJrjvL/AqtF5HWs3uPeWAM+l2Al4EFYZR7bsaaMBOv9nIn1Xg933R1w2wh86npfqrA+A/c+brdjDThdJiLPYV2wxGANuDzT9W9faI+4VgEXi8jDWKVbZcaY+W0Ur1JKdX++ni5GH/roCg+sZKUG+FeD7XasecX3AlEe26OxpqkrwupJXASMa+E5A7CS4INAUBNt2uI8P8XqVd7veo37sMpqTmvQrj/wFlY5TCXWANFzGrS5FmsGmyKsAbM7sOrDIzzaXEHjUyl+2Ehsi4BFDbaFYU03uR0rGS7ESqxvAvy9eL1TgAWu97XSFeN/cE2HiFVOVAtMaLDfWNf785THNoM1P/hlWGVEDmA1HtMderRNcLXdgzVveS7WLDPXNIjNABc0EXdjUykeNXXlMd5PAzzRVnFhXQw1nJ4xFGvu8wOu57J8/furD33oQx9d6SHGaHmgUp2Rq0RjH1aJyq98HY86mogY4EljTMPBukoppVSraM25Up3XT7Cmu3vFx3EopZRSqoNozblSnYxrMOIIrDrzNcaYr30cklJKKaU6iPacK9X5zAaeBgqAX/g4FqWUUkp1IK05V0oppZRSqpPQnnOllFJKKaU6CU3OlVJKKaWU6iQ0OVddjohcISJGRPp60TbLtViNUqoDiMgU1+/nBb6ORSmluiJNzlWHEpGTROQvIhLl61iaIyJDReQfIrJWREpFJFdEPhKRcU20TxGRN0XkoIgcEpH3RaR/gzZpIjJHRJaLyAERKRKRRSJyZiPHc1+ENPZIaqT9LBFZLSIOEdkjInc3XM5eRE4VkQ9EJNvVLk9EFojI5AbtQkTkNyLymet1l4rIGhGZLSL2Rs5tE5FbRSTTddz1InKpl+9zu5xLRCaIyFMiskpEalxzkjd2/mAReUFENopIiYiUicg6EfmdiPg30j5KRJ4VkUIRKReRhSIyppF2WU18ds948754HOdiEVnqOtdBEflORE5vpN2vRGSL6z3ZLiLXN3G8Szx+Tgpdrz2uJTG1FRE5T0Q+FZF9IlIlIjki8raIZBzHMW0i8mvX722ZiOSLyCciclIjbQeJyOuu81aIyFYRuUtEQo7vlSmlVOvpVIqqo52Etaz5S1grNLbGf7FWsKxqm5CadDXwK+Ad4CkgErgO+F5EZhhjvnA3FJEwYKGrzd+xVpL8A/C1iIwyxux3NT0XuA14D2uJeD+sGVk+F5GrjDH/aSSOu4DMBtsOen4jIme7jrkIuB5rOfs/Y63+ONuj6WDACTwD5GGtMHo58I2InGOMWeBq1x94HPgSa8XMQ8B01/swEfhlg3juxVoK/jmsJdvPBf4nIsYY83ojr8lTe53rR1if4Xpgl+u1NyYYGAZ8jLWyphPr5/QR4ETgZ+6GImIDPgJGAg9irYT6f8AiERlrjNne4NhrgX822PZDE3EcRUT+gvX5v431O+MPZAApDdpdh/WZvoP1Hp4C/EtEQowxD3i0m431vn4J3AikAr8DxonIicYYh7extZHhWCuJPob1XiYBVwHLRWSSMWZdK475INZrm4v1WqOwfm+/FpHJxpjlYF0oY63uW4K1QmoxMAm4G2s12HNb/7KUUuo4+HqJUn30rAdwMw2Wbm/n82UBL7Vy37FAWINtsVhTHH7bYPutrtc13mPbUKxl4P/usW0YENdg30BgC5DdYPsVrmOO8yLWTViJoJ/Htr9hJZpDm9k3BCtRX+CxLQ4Y1kjbF10xDfTYloK17PsTHtsE+AbIBuzNnL9dzgUkAsGufz9h/e+uRZ//467zJ3lsu4gGy9hjLRR1APhfIz97Hx7Hz+5E1+f3h2baBWMlth822D4XKAOiXd8HuOL8GtdMXa7tP3a9putbG2uD805p+B61cP9ErIvbZ1qxrx9QAbzVYHs/V0yPeWz7k2vbsAZtX3Ztj26L90Mf+tCHPlr60LIW1WFcvYAPur7N9LjN39f1MCJyRSP7Gde+7u+PqjkXy589bk8vFJFhTcQxQEQGNBevMWaVMaaswbb9wGLghAbNLwBWGGNWeLTditVDeZHHtk3GmKIGx6zC6rVNFZHwJmIOb6zEw/VcOpAOPGuMqfV46imsxPWYtb/GmAqgEKuH0b2tyBizqZHm77q+er7+c7F6dJ/y2N9gzdWeitUbeazzt8u5jDH5xpjKY527GVmur1Ee2y4A8oF5HucpBN4EzhWRwIYHEZEAEQltxfl/j3XR9Jjr5zusiXZTsS4an2qw/UkgFDjH9X0G1mt5w/WeueP/ECuJv8SboFxlPY+4ynbcpSivNFIaYxeRv4tVOlUuVjlVmhenKMBKsKManPdmV0nPfhGpFKtcqeHPtj/WxUp+I8d0Ap4/DxGurw3b5rraVnsRq1JKtTlNzlVHmge85vr3H4Cfux6FbXDsvwL3AOuAW7DKGD7DSk4a+tL1aK0krJ5KoL7UYQSwspG2y4EBTSXdDY5Z4Xo0tBCr1KPCleAMavD8aNfXI85vjNkH5Hg8X09EIkQkTqy6+r9jJW7evCfuWnfPC4zRQDlW77+n5Q3ia6mOPJc7iY4Ta1zAeVh3eXYDOxqcf7UxxtnI+UM4unTmdKzPtMyVzP6uBSGdgVW2cwPW74h73MNvG7Rr9PMHVmElme7n3RcOjV2wVAKjXT/LTXJdICzGKp36DKsk5hmsu0SpDZrfgXVh8ADwL2Aa8IWIBDdy3CgRiReR4cDzWIlzw5/H3wFrsMp8/oR1V+otEXFffOC6GFsGXCEil4lIbxEZgVUSdAB41uN4i1xfXxCRUa7P/WKsMrB/GWPKj/VeKKVUe9Gac9VhjDHrRWQ1cCnwnjEmy/2ciMS39riufW/FqgWe6e4VFJF7sf6ItxkROQWrd/ZvHptjsBKf3EZ2cW/rBWxr4pgDgfOxbsXXeTxVgZVUuJPzsVi1tN+JyBhjTLarXXKDczU8f69Gtr+JVdcNVg/hv7EubpokIgFYvbmZWEmjWzKQ79kb2yCexs5/TB15Lg/nc/jiEaxk96oGdyOSsUpoGvI8/wbXv9cD32J97rFYZUqPikgvY8xtxwpERKKxyn0mYyX4dwN7gCuBx0Wkxhjzb4+Y6owxBZ7HMMZUi8h+Dr8n27HKNSYD9WMbRGQIVmkOWGMQ9tO0W7Au5M43xrzrsf1vIiIN2sYAJxhjSl3nWY31c3cNVrLu6XtgiOvfZVi/Xy80aDPY806IiDwBrMb6nfjIo93lwBtYZT1uu4DJxphd7g3GmAUicifW/yNmebS91xjz50Zeu1JKdQhNzlV3cCZWPe3jDZK2R2kkOTfG9G3NSUQkAfgfVsL4D4+n3D2BjQ1QdTRo0/CYIcBbWD2XtzeI802sZMbtPRH5FCs5vAP4tZfnj2hk++1YAxXTsAZcBtD8/w+ewCqfOadBwhp8jHN7xtcSHXkut4VYvbtRWL3WIzn6zovX5zfGeCZ8iMh/gE+AG0XkcWNMzjFicZewxAKXGGPecB3jbazk/89YF1TuczZVguFwx2SMKRKRN4FfisgWrLKhFKza+hoOl4Qcy0+BdQ0Sc1zHb3jB9Io7MXd5G+si5kccnZxfifVz2t/172DAjtXz7z6+Z2Ie7Xp+MdbFvqdSrDEYS7F635Owft7fE5FTGpSVZWH9Pr2DdVFyDvAnEckzxjzR+FuglFLtS5Nz1R30cX09YqYMY0yhiBxoixO4aoY/BMKBkxvUoruThqPqjYGgBm08j2nHmnUmHTjbVYZyTMaYb0VkGdYFibfnP+rcxpi1HnHMxeqBfIkm6tNF5BasHs87jTEfN3i68hjnro9PRCI5MvmrNsYUt8e5WsMYk8/h+uO3ReRPWLPoDDLG5B3v+Y0xRkQewbpjMQWY6yrxiGzQLs/jODVYSa37OaeIvAHcLSK9jTF7XG0Dmjhtw8//OqzP4CHXA6we5p1Ydw7KAOToqTpLXMnxAKxE1hsNfx+NiOwA+jZsaIxZ6v63iLzO4bKlmz22/xjromQUR34GxqONH/AFsMgYc73H9i+wEvZbsGZLQkQuwSpzGexxoTTPVdrzgIi8Zg7PsqSUUh1Ga85VZ9HUHNSNDoLsSK4Si3lYdeXnGmM2NmhSjNWbmtxwX49tjSXez2HNlHGFMearFoSUjVUy4OYuqWjq/MdM+o0x1cAHwPlN1ANfgVU3/Iwx5m8Nn3edP6mRsoaGr/0xV1v3Y16D9m15rrbwNlYPtueUerm0/HP25C5Fcn9+F3Pke+L+LIuxer33Nyh1AmtwI1glKO6Y7K47O/VcP7exnjEZY0qMMediXdCehjVr0s9d8RcaYw56HNPzcXEzr6vNGGMOAF8Bl7m3ucrJPsB6T/4Pq/d9GtadLM+fhVOxym4+aHDM7VgJv+d8/v8HrGnkDsYHWOMHWj1+QSmljof2nKuO1mgSjjVYCxrM0MDhXvFj2e36OgirthSor0WPbnQPL7l60V7BKnO4yBjzdcM2rt7MDUBjixOdCOxqcHsfEXkQ6/b9740xrzWy37H058hBtGtdX8dxeGAkItILa5Ce5yC4pgRjJTnhePS0isi5WAP05gG/aWLftVjziZ8AbPbYfmKD+P7BkXXAR9zVaONztQX3hYpnz/Za4BQRsTUYFHoi1hiB5uYwdy9K5f78PsVKMo/g+plaC4wXkQDXBZSbu4bcfYy1rq/jsGb9weN7G428J64e9z1gDcbEGs/g2SPeMCb3bDo7sZJfbxwxcNl1QTUQqxa/OQ3vKPwUKzGf7prdyH3MKxvsl+j62thFvT9H/s1LpMHPoEc70L+PSilfOd65GPWhj5Y8sOqkDTCqkecKgXkNtj3kav8Xj21X4DFXOtZgtmqsshPP+ZvvdbV7qcExBwADvIz3Sdcxrm2m3W00mJMca4BbLXB/g7a3uNre28wx4xvZ9iMazNfs2r4FKwnznOf7Hqya3RM8tiU0csworERtT4Ptp2Il6l8BgceIM5Wm5x7PoZl5zjviXBxjnnOsgZfSyHb3POene2y7mKPnOY/DSvJe99gW0zAWrKTvW6y7LElNvUaP9r93nesaj21BWAnyJo9twVj10vMb7P9frJltYpo5z9NAHR5z9B+j7d2umM5r5DlxfZ3iapMDhHs8f6Fr+++a+XnsizUA+huPbf90vZaQBu3KPT9XrIuMxn7nx7he49Me2+a7PovBDdq+62rbq7n3Qx/60Ic+2uOhPQOqo61yfb3XVVtag5VUlGP1mt4uIs9jzZRxKk2v6ljPWLXlDwF/BD4UkY+xbkmfzZHT8Lm5p2jre6zjisjvsW59L8WaxvDyBk3eNYenW3sKq076I1csNVizSOTjsUKka4q+f2DV425p5JifG6v2GaxZWdZgvRclWAnGVVilEX9vsN8tWLfjP3O9rxnAb4HnjTGe0w5+IiI5WNPNFQC9sXrwe+FRuiAifVzHM1jlHRc2qCRZb4xZD2CMyRGRR4FbxFrufgXwE6xVKi8zR5dlHKG9zuU67s9d345zbXPPwrHbGPNf178vB34tIu9h3XkJx6oLn4b1s+lZcvQ21swi/xFrfnn3CqF2rJVv3WYBf3YN4MzEStZ/hvW5/MkcrmE/ln9j3SV4UkQGY11A/RzrbtJMdyNjTKVr1pEnReQtrN74U1yv6w7jUdcvIre7YliGdeH4E+As4M/GY47+Y3gQa1zCWyLyItbvc4zr9f4aaypTt2LgW9dA2ESsi40dWOVcbhtE5EusC8sDWL3tv8K6kPEcIP0R1u/TAhH5H9bKt79xHW+Ex3uxSkQ+xxr0GoE13WMy1tSPlViDxD1fy9nAYtfML/uxyszOxvq9acsSKaWU8p6vrw700fMeWIO6crB6pzx7wIOxEvSDWD1nb2D1ih+z59y1zYY1//E+rPKChVircWZxdC9aFpDlRZwvuc7T1KNvg/apWDOvlGDNGDEfj9UtXW3+0swxp3i0/RvWvM4HsXqLd2NdBCQ2Ee9PXO0dWAn8PYB/gza/wZrhohDrAqIAKzE+pUG7Kc3E+ZcG7W1YF0dZWL2RG7GSZW9+HtrlXM0cd5FHu3FYs+Lsdr13ZVhJ5x/wWHHVo3001s9pEVbP7SIarOKK1YP7AdbPeZXr52ExcGELf1cSXD+H+12xfY9V2tFY22uAra7z7cBKhqVBm3OwEvNDrtiXtiKmGKy7Cu7Xlu2KMbbB+34J1kVkPtbv5IdA70Z+H1ZgJfI1wF6s6SyHN3Leq7DKhhxYd4qucO1vGrQLBu7EKsWpwPr9mU/jd+smYJUC5WL9jm3DmuHpqM9dH/rQhz466uG+DamUUkoppZTyMZ2tRSmllFJKqU5Ck3OllFJKKaU6CU3OlVJKKaWU6iQ0OVdKKaWUUqqT0ORcKaWUUkqpTkKTc6WUUkoppToJTc6VUkoppZTqJDQ5V0oppZRSqpPQ5FwppZRSSqlOQpNzpZRSSimlOgk/XwfQGYiIAL2AUl/HopRSSqkWCQf2GWOMrwNRqi1ocm7pBeT4OgillFJKtUoqsNfXQSjVFjQ5t5QCZGdnExER4etYlFJKKeWFQ4cOkZaWBnrnW3Ujmpx7iIiI0ORcKaWUUkr5jA4IVUoppZRSqpPQ5FwppZRSSqlOQpNzpZRSSimlOglNzpVSSimllOokNDlXSimllFKqk9DkXCmllFJKqU5Ck3OllFJKKaU6CU3OlVJKKaWU6iQ0OVdKKaWUUqqT0BVClVJKKdUu6pyG5ZnFFJQ6SAgPYkK/GOw28XVYzRIRG9AXGAiEop2Zqm3UAeXAD8AeY4xprJEm50oppZRqcws25nL3/M3kljjqtyVHBjFnZjozMpJ9GNmxiUi/hISEX/bu3btf//79QxMTE42fn6ZL6vjV1NSQn58vu3btKtu9e/d2EXnZGJPTsJ3+tCmllFKqTS3YmMvsuatp2C2YV+Jg9tzVPH35mE6ZoItI3759+/7mpz/9aZ/LLrtsz8iRIzNtNu00V23H6XSyevXqiFdeeWXMu+++Gy4ijxtj9nq20eRcKaWUUm2mzmm4e/7moxJzAAMIcPf8zUxLT+p0JS6hoaEzZs6c2f9vf/vbxqCgIKev41Hdj81mY9y4cYcGDx68uaqqKuOll146A3jliDY+ik0ppZRS3dDyzOIjSlkaMkBuiYPlmcUdF5QXRCQyLS1t1JlnnpmviblqbxEREXVTpkwpSktLGyciwZ7PaXKulFJKqTZTUNp0Yt6adh2od3x8fPTJJ5+839eBqJ5h8uTJ+xMSEmKBVM/tmpwrpZRSqs0khAe1absOFBQYGGiPioqq9XUgqmeIi4urDggI8AeO6DnXmnOlVJdUV1fHihUrOHDgAHV1dQQHB5OcnEy/fv0IDg5u/gBKqXYxoV8MyZFBlB0qIcl2iEhxkOOMJM8ZAVg150mR1rSKnYzY7XajA0BVR/Hz8zMiIli/Foe3+ygepZQCWj8Pss1m47vvvqO0tPSI7Xa7nWHDhnHaaacRE9Pp/vgr1e0Jhoujd1NSnV2/rabGTp4zoj4DmTMzvdMNBvXGtm3bQmbPnj119erVg8vKykKDg4MdaWlpebfeeuvXV1xxRXbzR1CqeZqcK6V8piXzIBcUFPDdd98xa9YsbDYbIsKkSZMoLy/Hz8+P0tJS9uzZQ1FREevXryc/P5/rrrsOq1NCKdVRbDYbwwak8V1+DsUSTm5NEAXOMMDqMe/s85wfyznnnHNxbW2t/f7773931KhRBzIzM8M++uijfnl5eSG+jq0tlJWV2cPCwup8HUdPp8m5UsonWjIP8oYNG/jggw+ora0lLS2NsWPHAjBp0qQj9jXGsG/fPhYuXMiECRM0MVeqg+Tl5REaGkp4eDgAp556KhMmTCAsPKJLrhDamD179gTt3Lmz97PPPvvSNddcsxtg4sSJJZdeeulegKVLl0addNJJv5s3b96/zzvvvDz3Pn369Lnt3//+98vXXntt1rPPPtv3uuuu++Wjjz469x//+MeZBQUFcf369ct5//333/7kk0+SH3jggeklJSURI0eO/OGjjz76IC4urgZg0KBBV/Tt2zffbrebr7/+eqTdbq/71a9+9dUdd9yx4fzzz//RihUr0sPDw8v/9Kc/fXzjjTfuAKiurpYzzzxz5saNG/uVlpaGRUdHl5x77rkrnnvuuWXu1zR58uSflJeXB6Wnp+/98MMPJ/j5+dVOmzZt7ddffz0sLy/vKc/Xn5KS8uuJEydue+eddxZ21HveU2lhlVKqwzU3DzJY8yDXOQ3Lly9n3rx51NbWMmDAAIYMGXLEcZbu3M/7a/eydOd+nAZSUlK4/PLLGTRoUH27nTt3HlX+opRqG1lZWbz00ku8+uqrOBzWXbDAwEAiIyOx24RJA2I5d1QKkwbEdtnEHCAhIaE6ICCget68eUMPHTpkP55jPfLII1Puvffej994440XiouLI2bNmnXh888/P/Hpp59+58knn3x148aNA2688cYJnvssXrx4VHR0dMXHH3/83MyZM5c/8cQTPz799NMvGjt2bPaCBQv+PXLkyJ133nnn+UVFRf4AtbW1kpiYeOjpp59+a9GiRU9effXVX7/88stnzJkzZ5jncbds2dIvKysr7vXXX39l7ty5/7v11lvXFBQUxL3++uu93G3mzZuXlJubm/iHP/xh7fG8buUd7TlXSnU4b+dBfvuThWxduRiACRMmMGPGjPre8OZKYtzt9u7dy+uvv050dDRXXHEFISHd4u6zUp1CdnY2r776KrW1tQQFdbrZV9pUUFCQ889//vN7991336zY2NhxaWlpuSNGjNh91VVXbZw1a1Z+S4516623fuWuUX/33XfXzJ0794zFixf/6+STTz4A8Oqrr25euXJlP2CJe5+UlJS811577RuAyZMnL543b97JERERFY899thqgPj4+K+HDx8+bsGCBYmXX355TkhIiPOtt95a5N5/8uTJB1esWJH24YcfDrv77rs3ubcHBATUfPbZZx94lrOkp6fvfO6550Zfcskl+wCeeeaZ0QMHDsxyx6fal/acK6U6nDfzG/e2HahPzE855ZSjEvPZc1cfleC7S2IWbMyt3xYaGkpwcDCFhYW8+uqr1NTUtOErUarnKioq4rXXXqO2tpaBAwdy2WWXdfsE/c4779yyb9++fz788MOvTZgwYce6dev6nnfeedfdfPPNo1pynDPOOKM+mU9ISCjz9/ev8Ux8Y2Njyw4dOhTquU+/fv3q9wkICDAhISEVgwcPrt+Wnp5eBpCTk1O/3+zZs8enpaVdGxoaektgYOCfFi5cOLaoqCjS87gpKSn5DevML7300lXfffddxsGDB/3KysrsS5YsGX7++eevaclrVK2nyblSqsM1N79xEDWcGpAJwNixY5k6dWp9Yt6SkhiAqKgofvGLXxASEsK+ffv48MMPMaaxvZVS3nI4HPzvf/+jsrKSlJQULrzwQvz9/X0dVoeIioqqvf7663e9/vrr32RmZr4wefLktS+88MIUu91ugCP+/1JZWdlonhUcHFy/AqmIYLfbj1iRVEQwxhw5vZ6f31FtPLe5p4B0Op0CcOedd2Y8//zzZ82cOXPNf//73/9+9tlnz5xyyilramtrjyjJCQoKOqrH4qabbvrBz8+v7qGHHhr6yCOPDK6rq7Pdeuutm5t7b1Tb0LIWpVSHc8+DnFfiaDTJrsKftf4n8Kt0P370ox8dMbCzJUuDTxoQC0BcXBwXXnghr7zyCuvXryclJYUJEyY0eQylVNOMMXzwwQccOHCAqKgoLr30UgICAnwdls8MHDiwcNWqVUMHDhxYDpCZmRkO5AF89tlnSb6K6/vvv0/r379/9lNPPbXCvS03N9er+WWDgoKcU6dOXfvOO++M9vPzq5s0adLGmJgYXZypg2hyrpTqcHabMGdmOrPnrkbgiATdnYb/9tzJjU631tqlwfv27cu0adP47LPP+Oyzz+jbty8JCQmtewFK9WBlZWXk5ORgs9m44IILCA0NbX6nbmDHjh3BP/rRjy766U9/umbSpEn5sbGxVZ9//nmvt956a/LYsWO3xsTE1Pbp0yfn6aefPjkjI+PAnj17Qh966KHTfRVvv379ihcvXjzyscceGzB8+PCDTz755IisrKxesbGxB73Z/w9/+MPqM88887cAr7zyygvtGqw6gpa1KKV8YkZGMk9fPoakyMMlLgm2UvpGcMQ0ig0dz9LgEydOZNCgQdTV1bF8+fLWBa5UDxceHs6vf/1rLrzwQlJSUnwdTodJSEioPuGEE3Lmzp078eKLL75y6tSp//fUU0+dftZZZ6167733Pgb497///X5dXZ1t5syZ1/3lL3+ZcfPNN3/lq3gfeuihlePGjdty++23X3jOOedcffDgwZDp06evaH5Py9SpU4v79euXHR8fX3TZZZftbc9Y1ZFEay9BRCKAkpKSEiIiInwdjlI9inuF0H3FJWxf+A7O2hp+/vOfk5aW1mT7kx/4qsmSGPfS4N/ednqj07aVlpayadMmJkyYgC7TrVTXdujQISIjIwEijTGHjudYIjJh+vTptyxYsGBT8627P6fTSUJCwg2zZs1a8eKLLy71dTzdUXV1tUyfPj190aJFfzPGrHNv179MSimfcs+DHJC3iarKCiIiIkhObnr1QHdJDBwugXHzZmnw8PBwJk6cqIm5Ui20adMm1q9frwOqe4Bt27aFzJ49e0JpaWnYXXfdpbO0dDCtOVdK+Vxubi6rV68GYObMmfj5Hft/Te6SmIbznLd0afCamhq2bt3K8OHDWx+8Uj1AVVUVCxYsoKysDJvNRkZGhq9DUu1o6NCht4SEhFTcfPPN8/v27evdQB/VZjQ5b2d1JSWUf7+M6sxMnOVl2MIjCBoymOCx47CH9YxBNEodizGGzz77DICMjAz69Onj1X4zMpKZlp7U6NLgpq4Ox+bNVK5ZS21REeLnh3+vZILHjiWwXz8AamtreeaZZyguLiY4OJiBAwe222tUqqtbsmQJZWVlREdHM3To0Cbb1RYWUr5sOTXZe3BWVGCPiiIoPZ3g0aOxdfM50LsTY8zdvo6hJ9PkvB0VPPYYO958k6KYGAZt33HEcxIcTOSPzyFu9mz8e/Vq4ghKdX8//PADWVlZ2O12zjjjjBbt6y6JcXNWVbH/1f9R/N//Upub2+g+QcOHE/urqwifPp3Bgwfz/fff88UXXzBgwIAjpmxUSllKSkpYutQqOZ42bVqjd7YqVq9h/7//Tdk330AjZS+20FBir/4VcbNnt3u8SnV1mpy3o7L4BD4/6yzEGAYNH05MeDi1Bw5QuXoNNTk5HHzrbUrmf0j89dcTc+UViNbAqh6mrq6Ozz//HLBmUomKimr1sSpWrGDfHX+mZs8eAGxhYYSMH49/aiqmpprqnbuoWLsWx4YN7P39Hwg58UQmzrmLNWvWkJ+fz6ZNm/RWvVKN+Oqrr6itraVPnz5H9ZrXlZWT//e/UzJvXv22oPR0AtNPwB4aSm1hIRUrV1FbUIAEas+5Ut7Q5Lwd9Zk1kwFvvsnO7Gy2jh/PeeedB1i38StXraLw0ceoWLmSggcfpGLlSlIeehBbD5kvVimwkvPBgwezZcsWTjnllFYfp/jll8n/x4NQV4dfQgLxN1xPxMyZ2AIDj2hXu38/B159lf0vvEjFsmVUXfozxt1wPUt27GDhwoWkp6frQFGlPBQVFbF+/XoAzjrrrCPuLlXv3k327P+jetcuACJ/ej6xV19dXzrmZpxOKletImDAgI4LXKkuTP8KtSN7WBinz5gBwPr16yksLASsJXdDxo2j939fIekvf0ECAihbuJDdV11F3cGDgDVd3NKd+3l/7V6W7txfvxS5Ut1JQEAAZ511Ftdffz2BDRJpbxhjKPzX4+Tfdz/U1RExayb9P/6YqAsuOCoxB/CLjSX+hhvo/+F8gjIyqCspIfGhfxLs50dxcTFr165tg1elVPfxzTffADBkyBB6eZRgVu3YQdbll1O9axd+CQn0mftfet1771GJOYDYbISMH49fjFeLU3YJ11133YTo6Ojf2+32u84555yzfB2P6l40OW9nvXr1qr8N+PXXXx/xnIgQfcnF9PnvK9gjI3GsW0/27P/j01VZnPzAV1z63Pf87vW1XPrc95z8wFcs2Nh4Da1SXV1re6uLHn+CoqeeAiD+xhvp9cADXg20DkhLo8//XiV8+nT8KisZvHIVAIsXL8bpdLYqFqW6oxEjRpCamsppp51Wv60qM5Pdv/gldYVFBA4eTL933iZk3DgfRtmx3nvvvcTnn39++p///OeP1qxZ8/DLL7+88Fjtn3/++T4jRoy4NCIi4iYRmfP3v/+96RG1DcyePXt8TEzM7/39/f/cp0+fq1977bUjVn1q7ti/+c1vxvXq1Wt2UFDQH4OCgv7Yt2/fXz388MNHjH6/6KKLpojIHM9HQkLCb72NsbWxt3af5trk5uYGzJgxY0Z0dPTv/f397+jXr9+vXn/99fory5iYmN83fL0iMufMM8/80bFimzx58k9GjRp1ScPtzz77bF8RmbNnz542q9vS5LwDTJkyBbDmiN2/f/9RzwePHEnvV17BFhFB5Zo17L3pZvIPVhzRJq/Ewey5qzVBV92C0+nkgw8+YPfu3a0+xsH33qtPzBNuv424a69p0YBOW0AASQ89RPWpZzDghx8IdDiIDQ6msrKy1TEp1d0MHDiQX/3qV/VrD9QdPEjOr2dTV1xMYPoJ9H75Jfzi430cZcd68803B/fp02fvTTfdtH3EiBFlcXFxNcdqf+jQIf+BAwfm33bbbR+15Dx33XXXsOeee276lVdeuWj+/Pn/7tevX/5VV111+ZYtW+p7IJo7dp8+fQ7ddNNNX3zyySf//vjjj58dPXp05q233nrpxx9/fMSHlpiYWLhhw4Z/uh9Llix58VixDRo06Iqbb7551PHE3pp9vGkza9asWWvXru3/4IMPvvvFF188PX78+J1XXHHFL9asWRMOsHTp0mc9X+vjjz/+X4CLLrpo87Fec0fS5LwDJCYmMmjQIID6Ee8NBQ0ZTK8nnqDG5sekvE1cuvXzI553F7XcPX+zlrioLm/z5s2sWbOG119/nerq6hbvX7FmDXl33gVA7K+vI/aKK1p8jAUbcznloa+5IHIaG6P7cvaHH9Hn3y+xZIOuUq1UY0xtLTm/+z3Vu3fj1yuZ3s8+i190tK/D6lBxcXE3vPbaa6dnZmamicick0466bzm9rnxxht3zJs376s77rhja0vO9fLLL0+aOnXq6n/+859rZ8yYUfjFF198GBAQUPP3v/99tLfHvvXWW3+46aabtk+dOrX49NNP3//uu+9+FRAQUP3555+neraz2+3OjIyMMvdj0KBBFY0dry1jb80+zbUpLi72W716dfrNN9/8+dVXX737tNNOK37zzTcXxcfHF99zzz3jAYYMGVLh+Vo//PDDwbGxsQeuvvrqrON5zQBLly6NaqxXftCgQVe05DianHeQk046iYiICBISEppsszG2P4+MvhCAn237gpGF24943gC5JQ6WZxa3Z6hKtStjDN9//z0AJ554IgEBAS3av660lL033YSpqSF82pnE33BDi2NYsDGX2XNXk1vioMbuxz0nXkFhQCRx5QfIuf1PLNiwr8XHVKo7+eabb1i0aBHl5eX124qefZaKZcuwhYSQ9vQz+MXF+TBC31i8ePELMTExB375y19+vmHDhn+OGDFir4jMaevzlJWV2XNycnpNnTp1l3ubn5+fycjI2LV+/frUY+3blOrqarnzzjszqqur/adPn57j+VxhYWFMRETETbGxsb+bOHHi+cuXL4/syNi92cebNlVVVTan0ykhISG1nsf39/ev3bBhQ+/Gzrt48eIR06dPX9MWkwGMHTu2xLNXft68ef8OCQmpHDlyZItuE+tsLR2kT58+3HDDDdjt9ibbFJQ6WJg2lhFFO5mxezm3rvwfvz7jZkoDQo9qp1RXlZOTw969e7Hb7YwfP77F++fdcw+1+3Lx792b5Pvub/EUpHVOw93zN+N5/6nCP5j7xl/OI988zohDmbz/7L+Z9thfsNt03nPV81RVVbFkyRKqq6tJSUlh0KBBVK5dS9GTVhlZ0t1/IWjIYB9H6Rvx8fHVBw4ciDrzzDP3ZGRklKWlpR2Kj48/ul71OO3YsSPE6XRKWlpamef2mJiY8pycnBZdFc2fPz/hggsuuLq2ttYvICCg+oEHHnhjxowZhe7nJ06cmJOenv7emDFj9mdmZoY9+uijU6ZPn37l5s2bn0pOTq4GuOyyy055++2366fUqqmp8XvsscdSH3/88fo67cWLFz85YcKEktbE7s0+3rRJTk6u7tu3b84jjzxy2kknnVSUnp5eNmfOnOFZWVmpcXFxR/VsPvjgg0MdDkfQLbfcstab93LDhg2DAwMD/+S5zel01v+hCAgIMBkZGWUABw8e9Pvxj398yYABA7Jff/31Rd4c302T8w4iIsdMzAESwq2xBM8M/wnpxVn0Li3gmg3zeXjsJY22U6orcveaDx8+nNAWTh166NPPOPTBfLDbSfmHd4M/G1qeWUxuydEXuDujUnlh+I+JH+yPn5+NLz//jrOmT27x8ZXq6lavXk11dTVxcXEMHDgQZ1UV+2673ZoR6cc/JnLmTF+H6DMLFixIBDjrrLPyAe64446tLS1X6WhTp07d/9lnnz1TUFAQOHfu3PS77rrrJ8OGDXvJnaDfeOONnqsk5p933nl7Bw8e/Pt//OMfwx555JE1APfcc8/Ka6+9dpO70S9+8Yvzp0yZsuWqq67a4t42YsSI0g57Ucfw8ssvz7vqqqvOHT169I02m82kpqbmTpgwYWNmZmZyw7ZvvfXW6GHDhm0fNWqUV7EPGjQo89///vcR9f2ffvppyn333Xd+w7bTp08/1+FwBCxduvQVPz+/FtUja3Lewerq6tiyZQuBgYH1dehuE/rFkBwZRF4JPDL6Iv75zZNMy17JorTRrE4YggBJkdYS5Up1RQcPHmTLFuv/5RMnTmzRvnVlZeTfey8AsddeQ/CoUa2K4Vh3nj7oO5kbCj/nUHIsOQvmYc46SVcNVT2K0+lk+fLlgPU7KiIUPfucVWeekEDSXXf6OELf+v7775Pi4uKKExISjjkI9HgNHDiwwmazmezs7DDP7cXFxaFRUVFlTe3XmLCwsLrTTjutGODCCy/MHTp0aMoDDzxw4owZMz5srH3v3r0dCQkJ+3ft2lWfbPTv37+yf//+9aPlAwICauPj48vdxz3e2L3Zx9vjnnrqqQd27NjxUkFBgX9eXl7giBEjysaPH39BfHz8Ac/9vv/++8itW7f2v/fee99oLKbGBAUF1TR8zdu2bYto2O7SSy89dcOGDQMWLFjwnPvuQ0tozXkHW7FiBe+88w5fffUVpsESx3abMGdmOgDbYvoyv7/Va/fbtfPwr7PKp+bMTNdb7arLWr58OcYY+vfvT2JiYov2LXr8CWoLCvDv05u4X/+61TEc686TERtfBp0AwL6wEAo/atHkCkp1edu2bePgwYMEBwczYsQIqjIz2f/sswAk/umP2COOykN6lM2bNyf17t07v73PExYWVpeamrpv4cKF9RPH19bWysaNG/uPGDEi51j7NsfpdEp1dXWTnbP5+fkBRUVFMYmJiS26CHBrTeze7NPS4yYkJNSMGDGiLCsrK2jjxo0DTz/99G2ezz/88MOjw8LCyv/whz9sb7jv8bjnnntOeOutt0576KGH3jr11FMPNL/H0TQ572AjRozAbreTl5fH3r1HzwoxIyOZpy8fQ1JkEC+fMIP9QREkV+znsn3f8/TlY5iRcdRdGaW6jLi4OOLi4pgwYUKL9qvavp3iuXMBSLrzrkYXGPKW+w5VU5e4m4LSEEcddX5+LHvzLZxVVa0+l1JdzerVqwEYM2YM/v7+5N93H6amhtBTTiF8+nQfR+d7u3btShoyZEie+/t77713aHNzgufn5we8++67Se+++24SwM6dO6PefffdJM9Bl7/+9a8nDBky5Bee+/3yl79cumjRorG33HLLyE8//TRu2rRp51RXV/vffvvta7w99rnnnnvG888/32fp0qVR8+fPTzj33HPP2LFjR99LLrlkvfsY55xzzlnPPfdcn6VLl0a9/PLLaaeddtrFIuK86aabNnieZ+PGjWHux7vvvvv2FVdcscNzW3V1tXgbe2tfrzdtHnvssQGPPvrowCVLlkQ9/vjj/SdPnnxFYmJi0f3331/fpra2Vj7//PNRU6dOXRcUFNRmi1t89NFHCffcc89555577rennnpqofu92bVrV3BLjqNlLR0sJCSEjIwM1q1bx8qVK0lNPXrg8oyMZKalJ7E8sxhH2kF45iEu3fYFA3rd0vEBK9WGxowZw+jRTc6k1aSChx+BujrCp51J2MnHVwfuvkM1e+5qBI4YGCqu//YdP5nMDd+zLSGBSa+8Qtw11xzXOZXqCg4ePMiOHVb58ZgxYyhftpzybxaDnx9Jd/ypx5d41dbWyr59+xJGjx5dv6LggQMHggoLC2OPtd/777/f67rrrvul+/sXX3xx+osvvshJJ520bsmSJe8BFBcXhxQWFh5Rs/rXv/51U0FBQejzzz8/9ZFHHglLSUnJe/755+cOGzas3NtjHzhwIPTWW28979ChQ2FBQUFVqamp+Y899th/r7/++voZTwoKCiJuuummCyoqKoJDQ0MrBg8evOeTTz55fsiQIfXTKV5//fUnvfXWW4dXomrEd99999ikSZMOehN7a1+vN22Ki4uDnnjiiTNKSkoiQkJCKk888cQtL7744pchISH1SfhTTz3V/+DBg5G/+93v1tCGFi5c2KumpsZ/3rx5p86bN+9U9/aBAwfu3r59+0veHkcallb0RCISAZSUlJQQ0Ya37OqchuWZxRSUOkgIt2rF7TZh7969PP/889jtdm688UZCQkKaPIZxOsm84AKqNm8h+mc/6/H1fqrnqVi9mt0/uwzsdvrPn09g/6OXB2+NBRtzuXv+5iMGhyZHBjFnZjqnD47lnw88QLXTyWlLv+fk1/7X4+ZzVj3PwYMH+eabb6isrOSiiy4i6+JLcKxfT/TPLiXprrt8HV6jDh06RGRkJECkMebQ8RxLRCZMnz79lgULFmxqvrVSx6+6ulqmT5+evmjRor8ZY9a5t2vPeTs51h/+6cN6kZycTG5uLuvWrWPSpElNHkdsNhJvvZU9V1zJwbfeIvaaq/FP1tIW1bUcOHCA3bt3M2zYMPz9/b3ezxhDwT8fBiDq/PPbLDGHI+9QNbyABhg5dixrv/+eMruN4hf/Q8JNN7bZuZXqjKKiopg1axbGGEo/+xzH+vVISAhxs2f7OjSlehStOW8HnguceMorcTB77mo+3ZTHmDFjAFi7du1RA0MbCp04kZDx4zE1Nex/7rl2i1up9rJy5Uref/993n333RbtV/b111SuWoUEBhL329+0eVx2mzBpQCznjkph0oDYIwZbT5kyhV+fcgoDdu6i+NVXqT3QqnE9SnU9TieFjz0GQOwVv8QvPr6ZHZRSbUmT8zbW2AInbu5td8/fzNAT0rHb7QQGBlLlxYCzuN9a400OvvU2Nbm5bRewUu2srq6OtWvXAtaAaG8ZY9j/9DMARF92Gf4tnN3leIWEhBB95pkEpp+Aqaig+D8vdej5lepIy5YtY98+a2Xc0s8/p3rXLmyRkcRcdZWPI1Oq59HkvI01tcCJmwFySxxsyKvk97//PVdddRVBQc0vKhR64oT63vMi17RWSnUF27Zto6KigrCwsKPm9j+WihUrqFy3DgkIIPbKK9ovwGMQEeL+7/84GBXJgblztfdcdUuHDh1iwYIFPPfccxw4cID9z1p3aGMuuwx7WFgzeyul2pom523sWAucNGwX1sL/6bl7z0vemUft/jZfLVipdrF+vTVj18iRI5tdJdfT/ueeByDyp+f77La60+nk9V27+OzssykOCODA3Fd9EodS7Wnjxo0A9O7dG/9Nm3Fs3owEBxP988t9HJlSPZMm523sWAucNNWuoqKC4uKjFtk6SsiE8QSNGIGprubAa6+3OkalOkpFRQXbt1vrO7SkpMWxeTPlixeDzUasD2+r22w2oqKiAMjs348Dr72m856rbsd9AT1ixIj6BYeiL7pQZyhqxrx585LsdvudgwYNuuJ4j/Xzn//8ZBGZM2PGjBme23NzcwNmzJgxIzo6+vf+/v539OvX71evv/56L/fzv/nNb8b16tVrdlBQ0B+DgoL+2Ldv3189/PDDA48nlueff77PiBEjLo2IiLhJROb8/e9/H9qwzUUXXTRFROZ4Ppqb7701RowYcWl6enqjV4kvvPBCbxGZ88EHH3RszWMH0OS8jTW3wIlgzdoyoZ81vef69et5+OGH+fTTT5s9togQe4U1nemB//1PkwTV6W3evBmn00lSUhIJCQle77f/+RcAiDj7bALS0torPK+452Xf078/NQcOcOjDRle8VqpLys/PJz8/H7vdTn+gYvly8Pcn5oorfB1ap3fLLbec/eMf//i7nJyc40oOX3/99V4fffTR2OTk5KNWHp01a9astWvX9n/wwQff/eKLL54eP378ziuuuOIXa9asCQfo06fPoZtuuumLTz755N8ff/zxs6NHj8689dZbL/3444+bvN04aNCgK26++eZRTT1/6NAh/4EDB+bfdtttx1wiOTExsXDDhg3/dD+WLFnyYgtetlcuueSSNVu3bu2/atWqo+a5fumll0anpaXtmzVrVruv2NrRNDlvY+4FToCjEnT393NmptfPCtGrVy/q6urYvn075eXlNCf8rLPwS06mrriYQ/Pnt2HkSrW9wsJCAIYPH+71PjX5BRz67DMAYn/l+8FoAwYMIDQ0lCp/f/KTkih+6eVmZ1hSqqtw95oPGjSIyjffAiDi7Bk6ZW8z7rjjjuGhoaGOu+66a4XD4QhaunRpVGuOk5+fH3D99df/9K9//ev80NDQI+pii4uL/VavXp1+8803f3711VfvPu2004rffPPNRfHx8cX33HPPeIBbb731h5tuumn71KlTi08//fT977777lcBAQHVn3/++dErHHrpxhtv3DFv3ryv7rjjjq3Hame3250ZGRll7segQYMqjtV+0KBBV0ybNu3sGTNmzAgODr4tLCzs5t/97ndjCgoK/E8++eRzAwMD/xgXF3eDZ8//jTfe+ENoaGjFQw89NMrzWPn5+QHLly9PnzVrVpsuItRZdMrkXER+IyJZIuIQkWUi4tVa3yJyiYgYEXmvnUM8phkZyTx9+RiSIo8scUmKDOLpy8cwI+Pw//Ti4uLo1asXxhg2b97c7LHFz4+Yy607PMUva5KgOrezzz6b3/3udy1aFfTgm29CbS3BY8YQlJ7ejtF5x2azke6KY8+A/lRt3075d9/5OCqljp/T6WTDBmuF9mH9+3Po448B6v/GuNU5DUt37uf9tXtZunM/dc6e/XenoKDA/+mnnz7jwQcf/Hzs2LGHgoKCqhYuXJjk2ebmm28eJSJzmjvW+eef/6Nx48b98Nvf/nZXw+eqqqpsTqdTQkJCaj23+/v7127YsKF3w/bV1dVy5513ZlRXV/tPnz49pzWvrSUKCwtjIiIiboqNjf3dxIkTz1++fHlkc/ssXrx4VHR0dMXHH3/83MyZM5c/8cQTPz799NMvGjt2bPaCBQv+PXLkyJ133nnn+UVFRf4AQUFBzilTpqz7/PPPRzmd9Qt88o9//CPdGGO77bbbNrTjS/SZTrcIkYhcDDwM/BpYBvwe+FREhhhjCo6xX1/gIWBxB4TZrOYWOPE0bNgw9u3bx6ZNmxg/fnyzx4668AKKnnySqu07qFi2jNCJE9vjJSjVJtw1294w1dUcePMNAKIv+1k7RdRyw4cPZ8WKFexLS6PWbufAf+cSNnmyr8NS6riUlJQAEBQURPzKVRTX1BA0fDjBHuNDjrWgnmdHU09y3XXXnTJq1Kgd06dPLwJISkoqXLt2bRJQ39McHR3tiI+PP+bMDXfeeWfGrl27krds2dLoAibJycnVffv2zXnkkUdOO+mkk4rS09PL5syZMzwrKys1Li6ufqDa/PnzEy644IKra2tr/QICAqofeOCBN2bMmFHofv6yyy475e233z7F/X1NTY3fY489lvr444//yL1t8eLFT06YMKHE2/dg4sSJOenp6e+NGTNmf2ZmZtijjz46Zfr06Vdu3rz5qeTk5Oqm9ktJScl77bXXvgGYPHny4nnz5p0cERFR8dhjj60GiI+P/3r48OHjFixYkHj55ZfnANxwww1rPvzww5Oef/75vtdee20WwPvvvz967Nixm9PS0rplfW+nS86BG4HnjDH/ARCRXwPnAFcB9ze2g4jYgVeBOcApQFSHRNoM9wInzRk2bBiff/45u3fv5tChQ0REHFVadeRxIyKImDWTg6+/wcE339TkXHU6xhgqKysJCQlp0X6lX3xBXWER9vg4IqZNa6foWi41NZXIyEhKSkrIS07G75tvqMnN1Vv/qkuLjo7m97//PfsLCjh4yaUAxFx+Wf3z7gX1GvaTuxfUa3gnuCf49ttvoz/77LNxy5Yte8q9rU+fPgU//PDDET3nd9xxx9ZjlYWsXLky4pFHHpnxv//9779RUVG1TbV7+eWX51111VXnjh49+kabzWZSU1NzJ0yYsDEzM7P+jZ86der+zz777JmCgoLAuXPnpt91110/GTZs2EvuBP2ee+5Zee21125yt//FL35x/pQpU7ZcddVVW9zbRowYUdqS9+HGG2/c4fFt/nnnnbd38ODBv//HP/4x7JFHHmmy1KRfv3719eEBAQEmJCSkYvDgwfXb0tPTywBycnJC3dumTZtW1K9fv+yXXnpp9LXXXpv19ddfx+zcubP3rbfeurAlMXclnSo5F5EAYCxwn3ubMcYpIl8ATa9xD3cBBcaYF0TklGO0c58nEAj02BTeypDbRGRkJL1792bPnj1s2rSJSZOO9VIt0RddxMHX3+DQ51+QuH8/frHNXwQo1VHy8vJ47rnnGDp0KBdeeCEiTQ2RPlLxq/8DIPrCi5CAgPYMsUVEhGnTphEYGIh9VyaOnBwOvv0O8de3+eQESnUom81G4Pr11OblYY+JIdw1WUhzC+oJ1oJ609KTGr0j3F395je/mV5RURE8cuTIG93bjDESFRXlda8zwGeffdarvLw89LzzzrvOvc3pdMrOnTv72O32CZWVlfcEBASYU0899cCOHTteKigo8M/LywscMWJE2fjx4y+Ij4+vX3QhLCys7rTTTisGuPDCC3OHDh2a8sADD5w4Y8aMDwH69+9f2b9//0p3+4CAgNr4+Phy9z5toXfv3o6EhIT9u3btijlWOz8/P6fn9yJyxDabzaq2djqdR/xQ/eQnP1nzxBNPnJ2bm/vRo48+Oio2NvbA1VdfndVW8Xc2nSo5B+IAO9Bw5G0+cNRUPgAicjLwK2BUC87zR6xe9k5j2LBhLUrOg9LTCRo+HMeGDZS89x6xv/pVB0SplHc2b95cPx7C28S8audOKletArudqIsvas/wWmXYsGEAlFx0IfuWLePgO+8QN/vXiF9n+9+oUs1zOBwEBARgs9k4+PbbAET99KfYAq1+K28X1FueWezVHeLu4F//+teAHTt29J43b96/AwIC6hPKr776qtfDDz987p49e4J69+7t1WInV1555a6RI0c+7blt9uzZ56akpBT9+c9/XhIQEHDEdVFCQkJNQkJCTVZWVtDGjRsHXnPNNZ83dWyn0ynV1dUd+j+m/Pz8gKKiopjExMT17XH82267bdOTTz454+9///vwhQsXjjznnHNWuhP57qhL/1URkXDgv8A1xpiiFux6H1Zdu1s40O6DJ47FPeAsvQUD4KIvvojcDRs48OabxFx5JdKNf1BV1+E5uLklP88H580DIOzUU/FP7LzT1oZPm4Y9KoravDzKFi8mfOpUX4ekVIt9+umn7NixgzMnTiTg2yUARP30/PrnW7KgXk9QUVFhu/fee2f89Kc/XXLeeefleT4XHx9f9fDDD7NgwYIkd030vffeO/Sxxx47s6Cg4InGjpecnFx9zjnnHDGOLjAwsCYyMrLSc/tjjz02wBgj48ePL1q9enXM/ffff1ZiYmLR/fffvwbg3HPPPWPmzJk7hg0bVlJUVBTw/PPPD9+xY0ff66+//r/uY+Tn5wcUFhbW34p899133wbYuHFj/UqIgwcPLndfEOTn5wd899139T3gO3fujHr33XeTUlJSKt116eecc85ZP/nJT7ZlZGSU/PDDD+H33XffFBFx3nTTTe0yQDMxMbH6xBNP3PTCCy+cWVVVFXjLLbesbY/zdBadLTkvAuqAhn+ZE4G8o5szAOgLzPfonbMBiEgtMMQYs7PhTsaYKqB+EIG3PXvtKSwsjAkTvJqUpl7E2WeTf9/91OzeYw0M9aLHXan2VlBQQHFxMXa7nUGDBnm1j6mtpeSDDwCIPP+89gzvuJSUlLBs2TIO/vgchs99lYNvvKnJuepy6urq2Lp1Kw6HA1avBqeT4LFjCejbt75NaxbU686uv/76CeXl5cEPPfTQ8obPjRs3rsTf379m+fLl9cn5gQMHggoLC4/7lkJxcXHQE088cUZJSUlESEhI5YknnrjlxRdf/DIkJMTpOk/orbfeet6hQ4fCgoKCqlJTU/Mfe+yx/15//fX1s79cf/31J7311lunHes833333WOTJk06CPD+++/3uu66637pfu7FF1+c/uKLL3LSSSetW7JkyXsABQUFETfddNMFFRUVwaGhoRWDBw/e88knnzw/ZMiQY06neDyuueaa1YsXLx49bNiw7aNGjWpRjXxXI51tKj4RWQYsN8Zc7/reBuwBnjDG3N+gbRDQcCWsv2H1hP8O+MEY0+SoYY/jRAAlJSUlzQ7G7Gxy//IXDr7+BpHnzqLXAw/4OhylWLhwId988w1Dhgzhkksu8Wqf0oULyZn9f9ijoxn09aJOVW/uqbCwkKeeegq7zcasN97E3+lk0NeL8Itvcr0PpTqdHTt28OqrrxIaGsq5n39B7e7dJN977xE953VOw8kPfEVeiaPRunPBmh7429tO92nN+aFDh4iMjASINMYcOp5jiciE6dOn37JgwYJNzbdW6vhVV1fL9OnT0xctWvQ3Y8w69/bOWAfxMHCNiPxSRE4AngZCAffsLa+IyH0AxhiHMWaj5wM4CJS6vm82Me9sVq1axX//+18OHDjQfGMg8txzATj0+Rc4K9rtglUpr7S2pKVk3rsARM6a2WkTc7DWJYiNjaXO6aRo0iRwOlny7P907mfVpWzaZOWeg+Ljqd29GwkJIWLG9CPatHRBPaVU2+l0ybkx5g3gZuCvwFqsgZ4zjDHuQaK9gW47d9PGjRvZtWsXW7cec2GuesGjRuHfpzemooLSL75o5+iUOrbCwkKKioqw2+0MHjzYq31qDxygdNEiACLPP//YjX1MRDjhhBMAWBTVC4BDH8zn0ue+5+QHvmLBxlxfhqdUs+rq6ti2bRsAKdu3AxAxfTq20NCj2rZkQb1uwllbWyuei90o1Z6qq6ttTusHrs5ze2erOQfAGPME0OggCmPMlGb2vaIdQuowQ4cOJSsri61bt3o1a4uIEDlzFkVPPEHJ+x8QOWtWB0SpVOPCw8M555xzKC0tJSjIu1rUQ/PnQ02NNQPRkCHtHOHxOxBglbCYUBsOP38Gluyl96E8sknqsXM/q64jKyuLyspKQkNCCH3tdeDIgaANtWRBvW6gwuFw1OTm5gampKR0y8VtVOeSnZ0d5HA4qoEjSh86Xc95Tzd0qDVj5J49eygrK/Nqn8hZMwEoX7qUmoImF1FVqt0FBwczbtw4prZgkGTJB/OBzt9rDlYd7j8XF1DmDMBPDEuGjAXg9OzDC7XcPX+zlrioTmvLFmvdmf4hIVBRgX/v3gSPHXvMfdwL6p07KoVJA2K7a2IOkJmXl1fwzTffxPk6ENUzLFmyJC4vLy8XyPbcrsl5JxMZGUmya9VB963H5gT07k3w6NHgdHLow4/aMzyl2lT17t04Nm4Eu52Is2f4OpxmLc8sJvdQFbudUQBk9u0HwNSc1YhxHjH3s1Kd0ejRoznppJNI2/YDABHn/KhTzFjWGRhjKnNyclZ+8skncbm5uZ138IvqFrKysoK++OKLqJycnOXGmBrP5zQ574Tcvefe1p0DRJ5rlbO4p6NTqqNt27aNFStWUFrq/QxXhz7+GIDQiRO7xCq37jmdd9dFU2H82RMUT5lfEAmVBxletOuodkp1NikpKZw+YQJhC62VzyN/9CMfR9S5VFVVffTJJ5+svP3220944403ehUUFPj7OibVveTm5ga8+uqrKX/84x+HfP7550udTudnDdt0yprznu6EE05g4cKFZGZmUlVVRaBrxbZjiZgxg/x7/07V1q04fviBIC8H4ynVVpYtW0ZmZia1tbVejZeAw8l5RBdJENxzOuc7w3jDMQIQFqeM5Ozdyzg9ezXr4wce0U6pzqj0iy+gpobAwYMJ9HItgp7CGFMsIk+/+eabs7777ruxycnJA0JCQvz8/f21Vk0dt5qaGikvL6/Jzc0tyMnJeaeqquqDxqYA1eS8E4qLiyMhIYHw8HDKy8u9Ss7tUVGETp5M2aJFlC74VJNz1aEcDge7d+8GYIiXgzodP/xA1fYd4O9P+LQz2zO8NjOhXwzJkUFHzP28MHU0Z+9exqTcjTzh/Cnx0aFM6BdzzOMo5Qtff/01KSkp2D/qWhfFHc0YUwy8JCJv7tixYwDWdM5aaaDaQh1QBuwyxlQ21UiT805IRLjuuuuw2Vr2/4LwGdMpW7SIQ599Ssxvf9tTRterTmD79u04nU7i4+OJifEuMXX3moedcgr2LrL4l3vu59lzV7vmejbkJSSyPzCc2KpSRhbu4JpfXKq/a6rTOXjwIIsWLUJEmLV6NYFAxI/O9nVYnZoxpgJol+XolToWTc47qZYm5gDhp59Orr8/1Tt2ctEfX2WVRNc/lxwZxJyZ6TrFm2oXP/xgDS7zdm5zYwyHPv4E6Hq9d+65n//6wSYmV60gzFbNkv6jmLVlMbeF7GWC/o6pTsj9O5ocGEigw0HQ8OEE9O7t46iUUo3R2zSdXGlpqdcD7OwREVQMt6bEGrJtxRHP5ZU4mD13tS6SotpcXV0d212LmXhd0rJxEzV79iBBQYRPndJ+wbWTGRnJLL79DPqkJgHQd4ZVYx+1cgmmpuZYuyrlE+7Zv3plWzO2RZzTtS6KlepJNDnvxL788ksefvhhli1b5lX7Oqfhf8HWgLRT9q474jmdg1m1l927d1NVVUVoaCgpKSle7VP66QIAwqZMaXRlwq7AbhMmjBwGQEUA2GNiqCspoXz5ch9HptSRHA4HWVlZAMQvs34+I2Z0/qlLleqpNDnvxBISEgDqeyWbszyzmAWRQ6gRO31L80krzT/ieZ2DWbWHoqIibDYbgwYN8qocyxhD6edfABBx1rT2Dq9duct4srOz8Z9mvZbSBZ/6MiSljrJjxw6cTifRAQGEl5YSNGIE/klJvg5LKdUETc47sYEDByIiFBQUcPDgwWbbF5Q6KA8IZk2CNTVWw95zz3ZKtZUJEyZwyy23eL0qaPWOHVTv3o34+xN66qntHF37ioqKIiEhAWMM+0cMB6xp6kxtrY8jU+owd715SlERAOFndo3ZkZTqqTQ578SCg4NJS0sDvOs9d8+tvLjXSABO3rf+mO2UaitBQUFEeDnjSukXVq95yEmTsIeFtWdYHWKQa57o3cZgj46m7sABKlasaGYvpTrO/v37AYhftRrQ5Fypzk6T807O/Yffm+TcPQfzsuRh1ImNfofySCrfX/+8YM3aonMwq7bidDpbvE/pF18C3SdBcJe27Ni5k5AzTgcOv0alOoOrr76aX6SnE5ufT8CAAQT27+frkJRSx6DJeSfn/sOfmZlJTTOzQLjnYC4LCGFjrPU/3xPzNgPgnnV5zsx0nYNZtZnXXnuN559/nmzXDBDNqdm3D8emTWCzEX766e0cXcdITU3l1FNP5Wc/+xkRU13J+cKvMEYHXqvOQUTwX/wtNmO6zIJfSvVkmpx3cvHx8URGRlJbW0tmZmaz7d1zMG/ua5W2TMzdCEBSZBBPXz5G5zlXbaampobMzEz27t1LUJB3pVLuHuXgMaPxi41tz/A6jM1mY+rUqaSlpRF20iQkKIjafblUuaauU8qXjDE4HQ7KFi8GIPzMrj0IW6meQBch6uREhClTpmCz2errz5szIyOZ0/52LVkz5jGyOJPXL0ln/Ii+2mOu2lRWVhZ1dXVERkYSFxfn1T7uevPuUtLSkC04mNDJkyn78ktKv/ySoKFDfR2S6sEqKip44oknSAsNZYTDQUCvZIKGpfs6LKVUM7TnvAsYNWoUI0aMIDg42Ot9gvv2IXDQQMTp5ITsjZqYqza3Y8cOAAYMGIBI8z9ftQcOULFyJdA9e++2bdvGRx99hO2UkwEo+2qhjyNSPd3OnTuprKykqKDAKmk540yvfleVUr6lyXk3Fnb6GQCUfvWVjyNR3dHOnTsBa8pPb5QvXgxOJ4FDhhCQ6t1iRV3J119/zcqVK8lPTQURHJs2UZOX5+uwVA/mvoBO3L0bgPDTvZvuVCnlW5qcdxFFRUV8++239Uswe8P9P+LybxbjrK5ur9BUD3TgwAH279+PzWajf//+Xu1TtuhrAMJOO609Q/OZAQMGAJBVUEDwSGvMR9lC7T1XvmGMqb+ATtyViS00lJCxY30clVLKG5qcdxFbt27lyy+/ZM2aNV7vEzR8OH7x8TjLy6lYrvMuq7bj7pFLS0sjMDCw2famtpayJUsACJvSPZNz9x2EnTt3Euq6MC7V0hblI7m5uZSXl+MPxBYVEXrSSUhAgK/DUkp5QZPzLsLdK5eZmUldXZ1X+4jNRphr1cYyLW1RbSg2Npb09HTS070bXFa5bh3OkhLskZH1vcrdTWpqKgEBAVRUVFAxahQAFd9/T11ZuW8DUz2S+wI6qeQQdqez214UK9UdaXLeRSQlJRESEkJ1dTU5OTle7+f+H3LZ4sU677JqM/379+fCCy9kwoQJXrV3l7SEnnIKYre3Z2g+Y7fb6dfPWl9gt8OBf1oapqaGimXf+zgy1RO5k/MEVylk2Kmn+jIcpVQLaHLeRYhIfe+5u47QG6Ennoj4+1OTnU11VlY7RafUsZV93b3rzd3cv6O7du0i7JRTACj7ZrEvQ1I91IABA0gODiEpL4+gYcPwi4/3dUhKKS9pct6FuAfetSQ5t4WGEjzOGgRUvliTBHX89uzZQ1FRkdd3Ymr27aPqhx/AZiPMNc1gd+VOzsvKygh2T6m4+Bu9a6U63GmnncaPcnIILS8nbMoUX4ejlGoBTc67EPcf/n379lFRUeH1fmGnWLcztQdPtYVPPvmEJ598ks2bN3vVvuybbwAIHjUKe1RUO0bmezExMdxwww389re/JXziRCQggNp9uVS34IJaqbZgqqsp7+aDsJXqrjQ570LCw8NJSEjA39+fgoICr/cLO9W6vV6xfDnOysr2Ck/1ABUVFeS55u7u06ePV/t09ykUG4qOjgas1UJDxo8H9MJYdaydO3dyYNkynOXl2OPiCBo2zNchKaVawM/XAaiWufjii4mIiMDPz/uPLmDAAPx6JVO7L5eK5ct7TJKk2l5mZiYACQkJhIWFNdve6XBQ/r01IDLstJ41IM3pdBJ26imUL1lC+beLib3qSl+HpHqA0tJS5s6diw0418+PyFNOQWzaD6dUV6K/sV1MTExMixJzsAaTammLagu7du0CqJ+VpDkVK1ZiHA78kpIIHDKkPUPrNIwxvPnmm/zjH/+gbow13qNixUqc5Tqlomp/7t/RqLJy/GtrCTvtVOqchqU79/P+2r0s3bmfOqeOgVCqM9Oe8y7MGIOIeNU27NRTOPjGG5TpoFB1HNw9596uClpf83rKyV7/rHZ1IsKhQ4eoqqoip7aG8NRUanJyKF+2XJdPV+3OnZwn7NkNNhvfR/VnzgNfkVviqG+THBnEnJnpzMhI9lWYSqlj0J7zLmjFihU8+eSTrFjh/aqfISdOBH9/avbs0SkVVascOHCAAwcOICJe15u7k/PQk05qz9A6HfedhaysrPoxH2WLv/FlSKoHMMbUJ+eJeflUDRzKde9tPyIxB8grcTB77moWbMz1RZhKqWZoct4FORwOioqK6nsxvWEPCyVkrHWLXUtbVGu4f95SU1MJDAxstn1NfgFV27eDCCETJ7Z3eJ2K+87Crl27CDnZmlKx/BtdCEy1r6KiIsrKyrAbQ1xhIZ8G9aaxnzj3trvnb9YSF6U6IU3OuyDPXjmn0+n1fvWLomhpi2qFjIwMfvazn3GqlysNli/9DsBaAMU1g0lPkZqait1up6ysjMpBg6yFwPbupboFF9RKtZS71zx+/37sTiffRA5osq0BckscLM8s7qDolFLe0uS8C+rVqxcBAQE4HA7y8/O93i/U1YNXsXIlzurq9gpPdVMBAQEMGjSIgQMHetW+fImVnIdOntyeYXVK/v7+9O7dG4DdubmHFwL7bqkvw1LdXH29eU4OdcEhbI3u3ew+BaWOZtsopTqWJuddkM1mo2/fvgAtKm0JHDwIe2wsprKSyrVr2yc4pQDjdFL+nTs571n15m7uO1yZmZn1NfflSzU5V+1nxowZnBYRSUp2Ds4RY6iz2ZvdJyE8qAMiU0q1hCbnXVRrknMRIXTSJECTBNUyGzdu5IsvviA317sBZFU//EDd/v1ISAgho0a1b3Cd1IABA+jduzdpaWmETrKS84plyzC1tT6OTHVX0dHR9Fu7lvCyMlKmTSE5Moim5kgSrFlbJvSL6cgQlVJe0OS8i3L3yu3evZu6ujqv93Mn5xV6e121wLp161iyZInXF4P1s7SMH48EBLRnaJ1Wr169uPLKKznppJMIOmEo9shInGVlODZu9HVoqptyVlRQsXo1AOEnT2bOzHSAoxJ09/dzZqZjt/WMKU6V6ko0Oe+iEhMTSU5OJiMjg6qqKq/3C51kzZpRuWEDdaWl7RWe6kbq6urYvXs30JL5zXt2SUtDYrfXz1hT5ir3UaotLVq0iCXvvUeVCP69euHfpw8zMpJ5+vIxJEUeWbqSFBnE05eP0XnOleqkdBGiLkpEuPbaa1u8n3+vXgT07Ut1VhYVy5cTfsYZ7RCd6k727t1LTU0NISEhJCYmNtve6XBQsXIl0DMHgzZUWVlJYWEh4ZMmUfrpp9Zdq//7P1+HpbqR2tpalixZQm1tLTOCgkicPLl+0a8ZGclMS09ieWYxBaUOEsKtUhbtMVeq89LkvAcKPekkqrOyKP9uqSbnqllZrkWr+vbt69UqnxUrV2Gqq/FLTCTAy5727qq4uJjHH38cPz8//vCznwFQsW4dzvJybKGhPo5OdRd79+6ltraWoJoawg8dOuqi2G4TJg2I9VF0SqmW0rKWLs7pdLJv3z5qWzDILPQkHRSqvOcuafF6VdDvDk+h6E0y351FR0cTGhpKbW0t+YB/SgrU1FCxapWvQ1PdiPsCOn5fLmKzETrxRN8GpJQ6Lpqcd3HPPPMMzz33HNnZ2V7vEzJhAthsVO/aRU1eXjtGp7q6urq6+p8t9wxBzakfDKr15ohI/fu2e/fuwxfGOiBbtaH65Lwgn6CMDOxRUT6NRyl1fDQ57+KSk60BPS2ZUtEeEUHQ8AwAypd+3y5xqe7h4MGD+Pv7ExISQnx8fLPta4uLqdq2DYBQ1wDInu6I5FynMlVtrLa2lpycHAAS8gv0906pbkCT8y6uNfOdAx5Jgs4coZoWGxvLzTffzHXXXeddvfnyFQAEDhqEX6zWuMLhcqCcnBwCxo8HoGrbNmqLinwZluom6uvNq6oILy0l5MQJvg5JKXWcNDnv4tzzne/bt4/q6mqv93MvilK+dCnGmHaJTXUPIkJERIRXbSuWLwMg5ESteXWLi4urrzsvqKwk8IQTACj/fpmPI1PdQVFRESJCfF4e4u9PyJgxvg5JKXWcNDnv4qKiooiMjMTpdNbf2vRG8OhRSFAQdYVFVG3f3o4Rqq7KGNPiC7fyZcsBtPfOg4jU955nZWXpXSvVpsaOHct1gwYxcs1agkeMwBYc7OuQlFLHSZPzbsDzD7+3bAEBhIwdC0CFK6FSylNOTg4PP/wwH3/8sVftawsLqd65E0QIdZVvKMvYsWOZOXMmI0eOrF8ITOvOVVupXbmKkMpKQvWiWKluQZPzbsCdnO/Zs6dF+7lLDyqWa3KujpaVlUVZWRllZWVetS93/RwFDh2qs0U00L9/f8aMGUNkZKRVduDnR+2+XKpz9vo6NNWFue9uldeXk+lgUKW6A12EqBvo378/p512Wn39ubdCJ4ynEKhYsQLjdCI2vVZTh3k7v3md07A8sxg+XkgUEDxBe++OxRYaSnBGBpVr17Lhw6/ImXi6rtqoWmXx4sVsXb+ePiEh9AkIIHjUSF+HpJRqA5qcdwNRUVFMmTKlxfsFDRuGhIRQd/AgVdt3EDRkcNsHp7qkurq6+jsxx5rffMHGXO6ev5ncEgfPfb+MKODu7CB+sjGXGRnJHRJrV1FcXMz27duJiIigpN8JRK5dy5J3PuPhrBgAkiODmDMzXd835bVdu3aRu38/vfz8CR49GltgoK9DUkq1Ae0q7cE8R/ZraYvylJubS01NDcHBwSQkJDTaZsHGXGbPXU1uiYO4yoOklhdRh7A4OJXZc1ezYGNuB0fduW3fvp0FCxbw6dff8WBeGADD9++sfz6vxKHvm/LaEfObFxToIGyluhFNzruJqqoqtmzZwvIWJtkhrhIETc6VJ/fg4r59+zY6v3md03D3/M2453IZUWglmTujUij3t2aLuHv+ZuqcOk2nm7s8aH9+Lptj+1AnNpIqDpBQXgxQ/17q+6a8kZ2dTV1dHcEOB2GlpYTq9KVKdRuanHcTJSUlvPnmm3zxxRfU1dV5vV/oBGtWDXfduVJwODlvqt58eWYxuSWO+u9HFu0AYF3cQMBKNHNLHFYtugIgMTERv4BA/Kgj1L+WH6LSABjh0Xuu75vylntMSHxePrbgYIKHD/dxREqptqLJeTcRHx9PcHAwNTU15OZ6f1u8Yd25UgApKSkkJyc3WW9eUOo44vsRruR8ffyAY7bryUSEkJhEAJLspayPs96r4UU7j2qr75tqjntMSFxhASGjRyMBAT6OSCnVVjQ57yY8Fzpx96h4tZ/WnatGTJ06lWuvvZbExMRGn08IDzr87/JikioOUCc2NsX0a7KdguSU3gAk2crqk/MRjSTn+r6pY6mrq6uvN48vKCRkok6hqFR30imTcxH5jYhkiYhDRJaJSJMjXUTkGhFZLCIHXI8vjtW+O+vd2/rD35LkHLTuXLXchH4xJEcGIRwuafkhKo1KfyupFKzZRyb0i/FdkJ3QyaNPACDRVsaWRurO9X1T3nA4HAwaOJCI0lIiDh3SxYeU6mY6XXIuIhcDDwN3A2OAdcCnItL4lBEwBXgNmApMArKBz0Qkpf2j7VzcJQh79uzB2YL6ca07V57y8/Opqak5Zhu7TZgzMx2Aka6e33Wukhb38NE5M9N13u4GeiUnYfcPwI6TQH9zRN25vm/KW6GhocwcPpwZH36EPTSUoGHDfB2SUqoNdbrkHLgReM4Y8x9jzGbg10AFcFVjjY0xlxljnjLGrDXGbAWuxnpdZ3RYxJ1EYmIigYGBVFVVkZ+f7/V+Wneu3IwxvPzyy9x///0UFBQcs+2MjGSevmw0o4p3AbDeNRg0KTKIpy8fo/N1N8Jms3H1VVdy4k+uJDgi2qPufJe+b6pF3Hc6g8eNRfx0yRKlupNO9RstIgHAWOA+9zZjjFNEvsDqFfdGCOAPNDndgYgEAp6rNYS3PNrOx2az0bt3b7Zv305OTg7Jyd79kXfXnZd/+y0Vy5frYkQ9WFFREZWVlfj5+REbG9ts+9OjnewsP4Cx27ny2pncGh+tK102IykpiXOSYMaIVFa/5YA5X3FGVQ6/ve10fd9Us4wxFBcXU7FyJQCh48f7OCKlVFvrbD3ncYAdaNjtmw8keXmMB4B9wBfHaPNHoMTjkdOyMDuvM888kxtuuIFx48a1aD+tO1dweLxCamoqdru92fbuBCEkI4NZEwcyaUCsJphestuEMedMAbsde34uztx9vg5JdQFFRUU88cQTvBESggGCx471dUhKqTbW2ZLz4yIitwOXAOcZY441F9l9QKTHI7UDwusQCQkJREdHN7pwzLFo3bkCa2ETODy4uDmVq1YB1q115b0vv/yS5557joNVDoIyrHrh8hUrfByV6grcF9ChpaXYgoII1npzpbqdzpacFwF1QMP52xKBvGPtKCI3A7cDZxlj1h+rrTGmyhhzyP0ASo8j5m5B684VHP7D721yXrHC1XPewjs1Pd2ePXvYt28fe/bsIbT+rpUm56p59fObFxQSPHKkzm+uVDfUqZJzY0w1sAqPwZwi4h7cubSp/UTkVuBOYIYxZmV7x9nZbdmyhddff51169Z5vY/4+xMyejSgpS09VUlJCSUlJYgIqanN30yqLSqiOisLROrnylfecV/87NmzR0vKVIu4k/P4wkK9KFaqm+pUybnLw8A1IvJLETkBeBoIBf4DICKviEj9gFERuQ24B2s2lywRSXI9wnwQe6eQn5/Ptm3b2Lnz6MVNjiVkvPU/+orVq9ojLNXJuf/oJyUlERgY2ExrqFhp/ZwEDh6MPTKyXWPrbjyT8+DRY8BmoyYnh5oWzLKkep76C2hjiNm/nxAtJ1OqW+p0ybkx5g3gZuCvwFpgFFaPuPuvVm/AcxqS2UAA8DaQ6/G4uWMi7nw8//C3RLCr97Ny5SqMMW0el+rc0tLSmDFjBhMmeLegSYWr3jxEB6S1WFqaNb95cXExlRiChg4FDtfwK9UYd9lZdHEx/kDwyJG+DUgp1S461VSKbsaYJ4AnmnhuSoPv+3ZASF1KamoqIlLfyxLpZa9m8IgR4O9PbWEhNdnZBHhZd6y6h6ioKE488USv21escteba3LeUkFBQSQmJpKfn8+ePXuIGTsWx+bNVKxcRcSPfuTr8FQn5VlvHjQsHVtIiI8jUkq1h07Xc66OX0BAAElJ1syT7tk3vGELCiI4IwOAilWr2yU21T3UlZZStWUrAMFjte61Ndy953v27Km/+1CxWn/vVNMyMjIY4XSSsncvIfp7p1S3pcl5N+X5h78lQsZapS3uXlHVM+Tl5bFmzRoOHDjgVfvKNWvAGPx798Y/MaGdo+ue+vTpQ3h4OAEBAfW/d1XbtlF36JCPI1OdVd++fRmxfIUOBlWqm/OqrEVEWtqdY4BZxpi9LQ9JtYXevXuzfPnyFvWcg2tBi+dfoHKl1r72JBs3bmTJkiWMHj2aWbNmNdtep1A8funp6QwbNqx+TQL/Pr2p2b2HyjVrCDvtNB9Hpzqj2v37qc7MBCBkzGgfR6OUai/e1pyPAv4JlHnRVrDmG29+ugfVbnr37o3dbicwMBCn04nN5t1NEveUeNVZWdTu34+fF0u4q67PfYfF6/nNdTDocWv4Oxkydhwlu/dQsWq1JufqKDt27LDKDf38COvfH3tUlK9DUkq1k5YMCH3QGFPgTUMRuamV8ag2Eh4ezu23346fX8vG/NojIwkcNIiq7dupWLWKiLPOaqcIVWdRU1PD3r3WTS5vknOnw4Fjwwbg8PSbqvWMMTgcDkLGjqVk3rz6Cx+lPC1atIi9e/dyYmoKo3QQtlLdmrc15/2AwhYcNx3Y3fJwVFtqaWLu5l6KXad16xn27duH0+kkLCyM6OjoZttXrl+PqanBLz4ef9fYBtU6O3bs4KGHHuKtt96qrzt3rF+Ps6rKx5GpzqS6uprc3FzAtTKo3rFSqlvzKjk3xuwGhnl7UGNMtjGmrtVRqTZVU1PTovbuWQB0xpaewT13cu/evevrn4/FfdEWPG6sV+1V0yIiIqioqCAnJwdbair2uDhMTQ2OjRt9HZrqRHJycnA6nYSUlxNaUaFjPZTq5loyW8t6EVkmIteISHi7RaTaTHl5Oc888wwPPfQQdXXeXyvV9+Bt2YKzvLy9wlOdRIvrzV2DhTVBOH7x8fEEBwdTU1NDfn7+4SkVdUC28uAe2B9XWIR/Whr+iYk+jkgp1Z5akpyfBmzCGhiaKyIvi8gp7ROWagshISGUlJRQXV1NfguWBfdPTsa/Vy+oq6Ni7dr2C1D5nDGGnJwcwJrar9n2tbXWNIpoct4WRKTBfOeuqUxXa3KuDjucnOsUikr1BF4n58aYxcaYq4Bk4HqgL/C1iPwgIreJSFI7xahaqeEf/pY4XHeupS3dmYhwww03cMkll5CQ0Px85Y4tW3FWVGCLiCBw0KAOiLD7c9+x2LNnT30tceXqNZgW3O1S3ZfT6ay/gI4tKtIVeZXqAVq8CJExptwY8x9jzGnAYOAt4DfAHhH5oK0DVMfH/Ye/pfOdh4xx3V7XQaHdXkhICEOGDPFquk334lQhY8YgXk7PqY7NMzkPHDwYW0gIztJSqrZv93FkqjMoLCykqqoKv5oaIktKdPpSpXqA4/rraozZAfwd+BtQCpzTFkGptuPZc26M8WqfOqfhh8QBAJSvXUutQ2eOUJbKNWsBCHaVX6jjl5ycjJ+fHxUVFRSXlBA82lpcRi+MFVjjEq44bQonLl2Kf3Q0/l6UnymlurZWJ+cicqqIvATkAQ8C84DJbRSXaiMpKSnY7XbKyso4ePBgs+0XbMzl5Ae+4uIFeZQEhCBVVfzyT3NZsDG3/YNVHW7evHl89dVXVFRUNNvWGHO43ny0rk7YVvz8/BgzZgyTJ0/Gz8+vvmxBpzJVYC1WFbZrFyl79xE8erTOkKRUD9Ci5FxEeonIn0TkB2ARMBC4AehljLnGGPN9O8SojoOfnx/JyclA83XnCzbmMnvuanJLHCDCpph+ACTt3srsuas1Qe9mSktL2bBhA99++y12u73Z9rX79lFbUAB+fgRlZHRAhD3H2WefzZlnnklUVBTBYw7P2OLt3S7VvbkvioNHjfRxJEqpjuB1ci4in2AtLHQ98C5wgjHmZFf9uc6314mdcMIJjBgxgqhjLPdc5zTcPX8znqnA5lgrOR+2PxOAu+dvps6pyUJ34R5klpCQQGBgYLPt3TP3BJ1wAragoPYMrUcLHjkC/P2pLSigxrVyq+qZysrKmDdvHusLCzDoHSuleoqWLCFZA1wAfKgLDHUtJ510UrNtlmcWWz3mHja6kvP04kyMMeSWOFieWcykAbHtEqfqWO47KWlervJZX28+elQ7RdSzORwOcnJySEtLI3jYMCrXrqVi5UoCUlN9HZrykezsbDZs2EBkcjL9Nm7SO1ZK9RAtmUpxljHmfU3Mu6eCUsdR23ZGpVBl8yOyuoKUssIm26muyd1z7n1y7qo3HzWqvULq0V544QVeffVVdu/eTfAYa8Ct+4JI9UzuWbZiC4sIPOEElu0t5/21e1m6c7/exVSqG/MqOReReSIS4e1BReRVEWl+0mTVYYwx5OfnNzkoNCH86DKFWpsfP0RbiVt6cVaT7VTXU1tby759+wDvknNnRQWOrVsB6mcTUW0r1dVDnp2dTcgY6z12XxCpnql+8aGiIj6sjeXS577nd6+v5dLnvufkB77ScUBKdVPe9pyfC8SLSIQXj0hgJhDWfmGrlvr444955plnWLlyZaPPT+gXQ3JkEA3nAdgS0xeA9OLdJEcGMaFfTPsGqjrEvn37cDqdhIaGHnMsglvlxo1QV4dfUhL+rgHGqm25L5JycnIIdt2dqNq+nbrSUh9GpXyltraW3Fwr+Y4rKmJF2JHlTXklDh2or1Q35W1yLsAPwAEvHsVAaJtHqo5LSkoK0PRiRHabMGdmOsARCfpmV3J+QnEWc2amY7fpNF7dQWlpKYGBgaSlpXk1NVt9vbmWtLQbd3K+d+9eJDoa/969wRgq167zcWTKF/bt20ddXR2BDgehZWVsie57xPPuohYdqK9U9+PtgNCprTi2TjPQiXj+4a+rq2t06rwZGck8ffkY7p6/uX5wqLvnvE9pPoNTgzssXtW+hg0bRnp6Og6Hd2MIKl0ztYToYNB2ExcXR1BQEA6Hg/z8fEJGj6Jkzx4q16wh7JSTfR2e6mD1JS2FRRQFR1IUEnVUGwM6UF+pbsir5NwY83V7B6LaV0xMDCEhIVRUVJCbm1tf39rQjIxkpqUnsTyzmIJSBwnhQfhv+Q81WVlUrltH2GmndXDkqr2ICMHBzV9weS4+pPXm7UdESE1NZceOHWRnZzN49GhK3v+AyrVad94TlZaWgoHYosL6O5hN0YH6SnUvrV4hVHUt7j/8cHiWjqbYbcKkAbGcOyqFSQNi6+fWrdDBad1CSxe2qc7Kou7gQSQwkKChQ9spKgUN6s5Hu2ZsWbsOU6eTZPU0M2bM4MeZ2fTfuYut0X2O2VYH6ivVvWhy3oN4zgbREu55rXVat+5h/fr1PPbYY3z9tXc3xNw1z0EZGUhAQHuG1uMNHTqUc845h1NPPZXAgQOwhYXhrKigavt2X4emOpgxhrCtGwmoqWFLbN9G2wjoQH2luiFNznsQd69cS5Nzd8955fr1mNraNo9Ldazs7GwOHjxIVVWVV+3r5zfXevN2l5CQwLhx44iPj0fsdoJHWsu1V6xe7ePIVEerzszCWVKCMyCAXZG9jppJy/29DtRXqvvR5LwHSUlJ4dRTT2XWrFktKm0IGDAAW0QEprISx9Zt7Rih6gitXXxIZ2rpeO4af71r1bMsWLCAl995m329kgkdPpzHfzGBpMgjS1eSIoN4+vIxzMjQqU2V6m68na1FdQP+/v5MndryiXfEZiN41EjKv1lM5Zo1BGcMa4foVEeoqqoiPz8foMlBwZ7qSkup2rED0OS8o5SUlPDDDz8QGBhI//qSMh3v0ZNkZmZSUFFBP5uNkNGjGh2oP6FfjPaYK9VNeZWci8gaDk+rekzGmDHHFZHqlEJGj65Pzvn55b4OR7WSu9c8KiqK8PDwZttXrlsPxuDfuzd+cXHtHZ4C9uzZw8cff0yvXr0YdumlYLNRk5NDTUEB/gm68HJ353A4KCgoAKzFh9x3T9wD9ZVS3Z+3PefvtWcQquNUV1eza9cuSkpKOPHEE73ez/0HokKndevS3OMNWl7SMrLdYlJHcn82eXl5OAMDCRw8mKqtW6lcuxb/s87ycXSqvbkvoMNKSwlyVOkdK6V6IG/nOb+7vQNRHaOiooI33ngDm83GmDFj8Pf392q/4OHDwWajdl8uNXl5+CcltXOkqj20ODmvX3xI5zfvKJGRkYSFhVFWVsa+ffsIHj3KSs5XryFCk/Nuz/07GltUZN2xitXecqV6mlYNCBWRKBG5WkTuE5EY17YxIpLStuGpthYZGUl4eDhOp5N9+/Z5vZ8tNJTAoUMArX/typKTk0lKSqJ3797NtjV1dVSus6ZR1MWHOo6IHDGzUv1sSfp71yN4rgyqMyQp1TO1ODkXkRHAD8BtwM1AlOup84H72iwy1S48FyNq+ZSK1nACXYyo6zrzzDO57rrrSExMbLZt1Y6dOMvKsIWEEDhoUAdEp9w8k/P6GVs2b8bp5fSXqmtyOp31ZS2xHvXmSqmepTU95w8DLxljBgGeawZ/DJzaJlGpduW5CmFL6LRuPYu7pCVo5AjEbvdtMD2MZ3Lul5KCPS4OampwbNrk48hUe3I4HPTv14+wsjIiS0q03lypHqo1yfl44N+NbN8LaCFyF+D5h78l8527b7E6tmzBWVnZHqGpdlRcXExtCxaROrz4kPbedbTk5GTsdjsOh4NDhw5paUsPERISwk/GjOFH8z/ErneslOqxWpOcVwERjWwfDBQeXziqIyQlJWG326moqODAgQNe7+fXqxd+CQlQW0vlhg3tGKFqD6+++ir333+/1+VMuviQ79jtdq688kpuu+02oqKiDs+WtFqT8+7Oc4YkvWOlVM/UmuT8A+AuEXFP82FEpDfwAPBOm0Wm2o2fnx+9evUCWlbaIiJa2tJFlZeXU1xcTF1dHfHx8c22rz1wgOrduwHql5BXHSslJYXAwEAAgj0WI2rJ3S7VtZSUlNSP6dGLYqV6rtasEHoT8DZQAAQDX2OVsywF7mi70FR7mjFjBoGBgcTExLRov5Axoyn99FO9vd7FuHvL4+PjCQoKaqb14YuvgIEDsEdGtmdoygtBw4Yh/v7UFRdTs2cPAX36+Dok1cYOHTrEo48+Sojdztk2mw4GVaoHa3FybowpAaaJyMnACCAMWG2M+aKtg1Ptx91z3lLBHrWvxhhEdPnorqD1iw+Naq+QVDOcTidffvkl2dnZXHrppQRlZFC5Zg0Va9Zoct4NuX9HAyoqsDudesdKqR6sNVMppgEYY741xjxljPmHJuY9R9DQoUhgIHUlJVRnZvo6HOUlXXyo67HZbGzdupXs7Gz27t2rJWXdXP3iQ4VF1h2riMaGdimleoLW1JxnicjXInKNiES3eUSqw6xbt4633nqLPXv2eL2PBAQQNDwD0Jkjuora2tr6Bae8Sc5NTU39gF+9te5bRyxGNMaVnK9e7cuQVDtxj/+JKyrSi2KlerjWJOfjgOXAXUCuiLwnIheISGDbhqba286dO9m8eTOZLewBd//h0MWIuoa8vDzq6uoICQnxaoyBY+s2jMOBLTKSgL592z9A1STPBcPcJUZVO3ZQd+iQD6NSba2mpobc3FzAtfjQKE3OlerJWpycG2PWGGNuAXoDZ2NNn/gskC8iL7ZxfKoduf/wt3oxIp3WrUuIiIhg2rRpTJo0yasxAu6SluBRIxFba67fVVtx95zv3bsXW0wM/r17gzFUrlvn48hUW8rNzcXpdBLkcBBaXl4/O49Sqmdq9V9eY1lojLkGOBPIBH7ZZpGpdtfaxYjcPXjVu3ZRd/BgO0Sm2lJERAQnnXQSJ598slftdfGhziM+Pp7AwECqq6vJz8+vXwisfPUalu7cz/tr97J0537qnDq9Yld2uN68ED+9Y6VUj9fq5FxEUkXkVhFZi1XmUgb8pq0CU+0vMTERf39/qqqqKCz0fv0ov5iY+tkiKtevb6/wlI9UrNWZWjoLm812xB0u92fyzXsLufS57/nd62u59LnvOfmBr1iwMdeHkarm1DlNkxdUvXv3ZlREBKnZ1mesd6yU6tlaPJWiiFwH/AyYDGwFXgXONcbsbuPYVDuz2WykpKSQlZVFTk4OCQkJXu8bPGoU1bt3U7FmDWGnntqOUarjUVZWxq5du0hLSyM6uvnx2zX5+dTuywWbjeDhwzsgQtWc1NRU8vLyqK2tZXV4Gr2A/oWZ2IwTp1hJXF6Jg9lzV/P05WOYkZHs24DVURZszOXu+ZvJLXHUb0uODGLOzHRmZCSTlpaG7NlD6e7dBJ/3E98FqpTqFFpzef5nYBkw1hiTYYy5TxPzrstzwFlL6LRuXUNmZibvvvsu77zj3eK97s8zcOgQbKGh7RiZ8tbJJ5/MTTfdxIQTJ3Lnukoq/AIJqa2i96G8+jbuPti752/WEpdOZsHGXGbPXX1EYg6HL6jcdzwq11rjCHQwqFKqNcl5b2PMrcYYHZHUDaSlpWGz2aipqWnRfu7k3LF+Paa2tj1CU23AfdHlvghrTn29uZa0dBp+fn6ICMszi9lXWs226N4AnFB8ZJ+IAXJLHCzPLPZBlKoxdU7D3fM309jlknvbP99fwbYVK6ksLAS7nWDXVLVKqZ6rNbO1GBE5RUTmishSEUkBEJGfu1YNVV1I//79uf3227ngggtatF/gwAHYwsJwVlRQtX17O0WnjldrFx/S+c07n/xDldhwsiXGGu+RXpzVaLuCUkej21XHW55ZfFSPuScDxDpyeP3jj9g4fDiBQwbrHSulVKtWCP0p8ClQCYwG3PObRwJ/arvQVEfw8/PD39+/xfuJ3U7wiBGAznfeWbln+ADvknNnVRWVmzcDmpx3NqtWrWLr568xxm8vm2P6Akf3nLslhAd1YGTqWLy5UEqwlQOuxYe0pEUpRetrzn/tmkLRsxZiCTCmTaJSPtGS6RRB6847u71792KMISIigggvlgJ3bNoENTXY4+LwT0npgAiVt/z8/KiqrCA1oIIfXGUtKeVFRFaV1bcRrEGGE/o1v9CU6hjNXSj5UUe0VACuxYf0olgpReuS8yHAN41sLwGijisa5RPZ2dk899xzzJ07t0X71SfnrlII1bm0uKTFdZEVMnqUV4sVqY7j/gxjpJyKgCB2hycCMNTVe+7+tObMTMdu08+us5jQL4bkyCCa+kTibeXYBEIqKgiprNTFh5RSQOuS8zxgYCPbTwZ2HV84yhcCAwPZt28f2dnZOJ1Or/cLHjkCRKjJzqa2BfOkq47hXvnV68Gg9fOba+9dZxMdHU1ISAjG6eT+s9PIShoAHC5tSYoM0mkUOyG7TZgzMx3gqARdsJJzgNjCIuzxesdKKWVpTXL+HPCYiJyINZ6ll4hcBjwEPN2WwamO4V6FsKampr5G2Rv28HACB1rXaRXae97pzJw5k4suuoihQ4c229YYQ4Wr51x77zofEanvPU/xr+CiX5wNwEy/Il67ZiLf3na6Juad1IyMZJ6+fAxJkUeWuCRFBnFGmh2wSlpCRo3WO1ZKKaAVixAB92Ml9V8CIVglLlXAQ8aYx9swNtVBRITU1FR27txJdnY2ycne/5EPHj2aqu3bqVy7lohp09oxStVS4eHhnHDCCV61rdm7l7qiIvD3J2jYsHaOTLVGamoq27ZtIycnh7HjxgEQmvkDY3pHIFrK0qnNyEhmWnoSyzOLKSh1kBAexPi+0Tz8z4cAV735uef6OEqlVGfRqqkUjTH3AjFABjARiDfG3NnWwbWEiPxGRLJExCEiy0Rkgi/j6Wo8lwhvCfdy4jootGtzz28enJ6OLTCwmdbKF9w959nZ2fj36YMtMhLjcODYus3HkSlv2G3CpAGxnDsqhUkDYrHbhMsuu4yxW7YSdfCgDgZVStVrTVkLAMaYamPMZmPMcmNMWfN7tB8RuRh4GLgba8aYdcCnIuL9evQ9nOcf/pZwl0A4Nm7EVFe3dViqlZYtW8bXX3/N/v37vWpfn5zr4kOdVq9evUhLSyMjIwOnMQSPGgkc/uxU1yIixNfVMWDtWvzsdoKGpfs6JKVUJ+FVWYuIzPP2gMaY81sfTqvdCDxnjPkPgIj8GjgHuAqrDOcIIhLI4fnZAcI7IsjOzN1zfvDgQUpLSwkP9+4tCejbF3tUFHUHD+LYsoXgkSPbM0zlpVWrVlFYWEhiYiKxsbHNtj9cb669d52Vv78/V111Vf33IaNHU/71N9ZA3l/83IeRqdZyX1gFDRumd6yUUvW87TkvacGjQ4lIADAW+MK9zRjjdH0/qYnd/siRMbeslqMbCgwMZODAgQwbNoyamprmd3ARkfqEThcj6hwcDgeFrtlzvFp8qLycqm1WaYQm512H+y6HDsbumr766itWr11Ltb+/3rFSSh3Bq55zY8yV7R3IcYgD7EDDaUbygaamqbgPqwzGLRxN0LnssstatV/wqFGULVxo1Z1f0aYhqVZwjxuIjo4m1IulwCs3bACnE79eyfgnaiVYZ1ddXU1BQQG9hg8Hm43afbnU5OXhn5Tk69CUlxwOB4sXLwZglt2mF8VKqSO0uua8KzPGVBljDrkfQKmvY+rK3HXnlWvWtHiVUdX2Wr74kHXHQ5cO7/zKy8u5//77efHFF6n19ydw6BBAFwLratwX0KFlZQQ5qrTnXCl1hO6QnBcBdUBig+2JWAsmqRYwxlBUVERdXZ3X+wQPHw52O7UFBdTm5lLnNCzduZ/31+5l6c791Dk1Ye9ILV18yF0Wob13nV9oaCgREREYY9i7dy8hOltSl+T+HY0rLMK/Vy+9Y6WUOkJr5jnvVIwx1SKyCjgDeA9ARGyu75/wYWhd0tNPP01hYSFXXXWV1z2vtuBggoYOxbFpE0s/WMhtB5LILXHUP58cGcScmem6SEoHcDqd9X/4vfn8jNNJ5dp1gM7U0lWkpqZSUlJCdnY2I0eP5sD/XqNirY736Ercv6OxRUV6UayUOkp36DkHq378GhH5pYicgLVSaSjwH9+G1fW4Z/Zo+ZSK1h+Y7z5YdERiDpBX4mD23NUs2JjbNkGqJpWUlGCMISAggISE5nvjqjMzcZaUIEFBBLlKJFTn5r7oysnJqf+9c2zegrOqypdhKS8ZYzQ5V0odU7dIzo0xbwA3A38F1gKjgBnGGO/XolfA4VKIlibnga5e1xOKs456zl3Ucvf8zVri0s6io6O5/fbbue6667DZmv/1dtcqBw8fjvj7t3N0qi14rkng16sX9rg4qKnBsWmTjyNT3igsLKSqqgq/2loiS0r0jpVS6ijeznN+g7cHNMb8q/XhtJ4x5gm0jOW4ef7hN8Yg4t2y4Nti+xIJ9C/ZR2BtNVV+AUc8b4DcEgfLM4uZNKD5ebdV69lsNmJiYrxq657+MnDkSJbu3F+/tPiEfjHYdUn4TikxMRE/Pz8cDgf79+8nZPQoSj//gso1awgZM8bX4alm5OdbfUYxRfuxBwURNGSwjyNSSnU23tac/8HLdgbwSXKu2kavXr2w2WyUl5dz8OBBoqOjvdovPyiSmqAI4hyHGHQwm41xAxptV1DqaHS78g33QMK/7LKz4Lnv67frOIHOy263k5KSwu7du8nOzqbPqNFWcq4ztnQJw4cPJ27TJrLnf6h3rJRSjfKqrMUY08/LR//2Dli1Lz8/P3r16gW0rLQlISKYLTF9ATiheHfT7cKDjis+1bSKigqeeOIJ3n//fZxOZ7Pt60pKqN65E4DvAnsd8ZyOE+jcxo0bx9lnn02/fv3qpzKtWLNWpzLtIsyGDYSXlWlJi1KqUd2i5ly1rdbUnU/oF0NOr4EApDdSdy5YvbET+nlXbqFaLjs7m/3797N3716v6s3LXb3mOaFxHAo8crEiHSfQuWVkZDBhwgSio6MJGjYM/P2pKyqiJqfHr6XWJbjvWLkvrJRSylOrplIUkVRgFtAbOKK42BhzYxvEpXxo6NCh+Pn5MXDgQK/3sduEKeefDivnWT3nxoCrXt1duTxnZrrWMbcj98WUt/Ob71y0lCCov+PRkI4T6BpsgYEEpZ+AY916KteuJcDLKVBVx9u5cyeLFy0ixm5nEDp9qVKqcS1OzkXkDOADYBcwFNgI9MXKwVa3ZXDKN/r06UOfPn1avN+UH5/C1jn+RFaX06u8iH1h8QAkaf1yh2jJ/OYAdRvXA7Altu8x2+k4gc6puLiYrKwsevXqRcio0VZyvmYNkTNn+jo01YSsrCx25+QgMdEE9O2Ln5djepRSPUtres7vAx4yxswRkVLgp0AB8CqwoC2DU12LLSCAkOHDqVy9mn8N92PviaN05o8OUldXx969ewHves5NbS0hO7cCsCX62BdiOk6gc1q8eDFr167llFNOYdzo0fDyy1ToSqGdmufKoDq/uVKqKa2pOT8BeMX171og2BhTBtwF3NZWgSnfcjgcbN++nczMzBbt575Nm7J3O+eOSmHSgFhNzDtAfn4+tbW1BAUFERcX12z7qu3bkcpKKvyDyI5IbLSNjhPo3DzHhrhrl6u2bcNZXu7DqFRTnE5n/QW0tfjQKN8GpJTqtFqTnJdzuM48F/CcM6/5rEB1CevXr+d///sf3333XYv2c//B0WndOpa73jwtLc2ruendn4+kZ+AUGw330HECnZ+7fGnv3r3Y4+Px65UMTieVGzb4ODLVmPz8fGpqavCvqSHi0CGtN1dKNak1yfn3wMmuf38M/FNE7gBedD2nuoGGixF5K8T1B6dq+3bqSkvbIzTVCH9/f+Lj472uN3cvPpR28ok8ffkYkiKPLF1Jigzi6cvH6DiBTiw+Pp7AwEBqamrIz88nZJRVJqEXxp2T+wI6tqgIe1gYgS0YcK+U6llaU3N+IxDm+vcc178vBra7nlPdQGJiIv7+/lRVVVFYWEhCQoJX+/nFx+OfmkpNTg6V69YTdvLkdo5UAYwZM4YxY8Z4fSF1eCq30czISGZaehLLM4t1hdAuRERITU1l586dZGdnM3DUKA59/HH9hZfqXNz15rGFRQSPGoV4Md2pUqpnavH/HYwxu4wx613/LjfG/NoYM8IY81NjTNOrz6guxWazkZKSArRsvnOgfqCT9uB1PG9KWmqLiqjJzgYRgkeOAKypMCcNiNVxAl2M+05JTk6Ox+/dOowXi1CpjuXv70+gMcTuL9KSFqXUMbX60l1EAkQkVUR6ez7aMjjlW+4BZzktXNikvu5ce/A6hMPhoK6uzuv27oumwIEDsYeHt1NUqiN4lp8FDR2CBP1/e/ceH1V9Jn78853JZHIlNxISbiEE5CKXAIrcVFBBtCDqVqvWWrtqXWtXe1ut226t7f5qdbetrba2dW21dlu7bVWKIiooIHIzhAAh3EmAQELu10kyM5nv748zMwwhITPJTGaSPO/Xa16QmXMmz5lhmOd8z/N9vjG4Ghqwl5aGNzBxgZUrV/JPWz4h42ylTAYVQlxUb/qcXwK8DCzo/BDGuiXmIMQlIoDvF38g4jwjeHuMETy5fBtamzZtIj8/nyVLlrBgQeeP5YU8ZQ/Sym3gGz16NHfddRejR49GWSzETpuGLT+f1t27sY4fH+7whA9nVRXOsjJMShE7c2a4wxFCRLDeZE2/B1zACmAOMNt9m+X+UwwSnpHzmpoabDab3/tZJ05ExcXham6m/ejRUIUn3MrKynA6nSQkJPS8MUbZA0hyPhhER0czceJEYmNjgXPvqdSdRxaHw4HNc8Vq4kTMfn5WhRBDU28mhOYBc7TWB4Mci4gwcXFx3HrrrYwYMcL75e8PFRVF7IwZ2LZvp3V3ITGXXBLCKIc2p9NJeXk54OfiQ3Y7be5We7F5Mno32Mh8j8j02muvUVdWxmXp6VwiJ8VCiB70ZuS8GOlnPmRMnz6djIwMvyYa+pK68/5RXl5OR0cH8fHxpPixFHjbgQNoux1zirF8uBj4Ghsb2bBhA2vXrvWecNmPHqOjoSHMkQkwVu89c+YMzVoT29Ymk0GFED3qTXL+OPCsUmqxUipNKTXM9xbsAMXA5Ol3LiN4oeWZDzB69Gi/TqBsBefqzQM94RKRyel0smXLFgoKCmDYMKKzswFjzocIP88JdHR7OwlNTcTNlpFzIcTF9SY5Xw/MAzYAlUCd+1bv/lMMIh0dHezcuZM333wzoI4gnglP9tJSnHXyzyJUPJ10/F18qNU7GTQvVCGJfpaSkkJcXBwdHR2Ul5d7R2blxDgyePubV1cTlZqKZaw0NRNCXFxvkvMl7ts1nW6e+8QgYjKZ+Oijj9i7dy9nz571ez9zcjLRubnAuQVvRHBprb0j5/4k51prbLsLgHMddcTAp5Q6r7OSTAqNLOdWBq2RK1ZCCL/0ZhGiTRe7hSJIET6dv/gD4al/lRG80HC5XFxxxRVMmjSJrKysHrd3nD5DR1U1REURM21aP0Qo+ktXyXnbnr3oAK52ieDTWnPy5EkA0quqpKRFCOGXgJNzpdSMbm7TlVITlVLWUAQqwsfTBaTX/c5lBC8kzGYzixYt4o477sBisfS4ved9iJk6FVNMTKjDE/3INzmPzh2PKT4el81G+5EjYY5saKuvr6e5uRmTy0VKba20LxVC+KU3ZS2FwO4uboXAQaBBKfWqUkq+/QeJXo+ce5LzffvQDkfQ4xKB8STncVJvPuhkZWVhMploaWmhoanJO+dDTozDSynFnClTGFt6AovJRMyll4Y7JCHEANCb5PwW4AjwZYye53nuvx8C7gLuw6g9/8+gRCjCbtSoUSilaGxspCGA9mzROTmYkpLQbW20HTocwgiHpiNHjtDY2Oj39rZCWRl0sLJYLGRlZREbG0t9fb30O48QycnJXGm1MnfHDmIuvRSTVS4sCyF61ptFiL4DPKq1fs/nvn1KqTLgh1rruUqpFuAnwLeCEaQIr+joaDIzMykvL6esrIykpCS/9lMmE7EzZ9Cy+WNad+8mdpqMGgVLW1sbf/rTnwD45je/2ePqoK6WFtoPHgIgdpYs5DsY3XXXXcTGxqKUotndscUmk7HDzrZbToqFEIHpzcj5dOBEF/efcD8GRolLzzPUxIDh6aNdF2BbRKk7Dw1Pe7aUlJQeE3OA1r17weXCMnIklhEZoQ5PhEFcXJy3E0jszBmgFI6TJ3HW1IQ5sqHJbrdz4sQJmguNfvPSvlQI4a/eJOcHgW8rpaI9dyilLMC33Y8BjAL877snIt5VV13F448/zqJFiwLaz9vWrVCS82DydIDwt7+5jN4NLabERKwTJgBS2hIuJ06c4JVXXuHt8TmAtC8VQvivN8n5w8AKoEwptV4ptR4oc9/3kHub8cCvghOiiAQJCQlYe1EvGTt9OphMOM+U4wigT7q4OM/k3LF+Lmji6TUvyfngtm7dOp577jlKSkrOLUYkV63CwnMCnVpTg2XMGKLS08MckRBioOhNn/OtQA7wPWCv+/Y9IEdrvd29zWta6/8KZqBiYDLFx2OdNAmQxYiCpaOjI6CVQbXL5R09lUvrg1tLSwsNDQ2dFiMqDG9QQ5TnBHp4VbV87oQQAenNyDla6yat9a+11t9w336jtW4KdnAisuzZs4eXX36Zbdu2BbSfp3WfjOAFR0VFBU6nk5iYGNL9GI2zHzuGq6kJFRtLjPtESQxOnjUJysrKvAlhW1ER2m4PY1RDT0dHB6dPnwZgeHW1lLQIIQLiV3KulLrJXVfu+Xu3t9CGK8LJZrNRVlZGaWlpQPt5L69L7WtQ+Nab+7MUuLfefMYMVFRvGjSJgcJzJaWsrAxLdjbm5GR0ezttBw/2sKcIJs8JdLTdTmJjo5STCSEC4u839VtAJlDp/nt3NGDuW0giUvl+8Wut/UoMwWcxouJiXO3t0uu3j6ZPn05iYiKxsbF+bX+u3jwvdEGJiDBixAgsFgttbW3U1NQQm5dH88aNRivTGTPCHd6Q4TmBTquqwhwfj3XixDBHJIQYSPwaOddam7TWlT5/7+4mifkglpWVRVRUFDabjZoA2rNZRo/GPHw4OBy07d8fwgiHhoSEBKZNm0Zubq5f259bGVRG7wY7s9nMqFGjAM6vO5erVv3qvHrzmTNRZvlqFEL4r1c152Jo8v3i94wM+UMp5VN3XhiCyER3nLW12N1lSJ4l3cXg5qk7P3XqlE/HlsLwBTQEXXnllVzR3s7I06elpEUIETC/k3Ol1Hyl1IpO992jlCpRSlUqpX6rlJJ6hUHO07ovkOQcfOvOZVJoX5SUlPDxxx9TXl7u1/aeOv/oCbmYk5NDF5iIGNnZ2WRlZZGWlkbs9GlgNuOsqMDh578Z0XdZWVlM+DSfJKk3F0L0QiCzw74HbATeBlBKTQdeBl4BDgD/BpwBvh/MAEVk6XVy7tPWLZB6dXG+oqIiCgoKaG1tJSur50V4paRl6JkwYQIT3AsQAcRMmkRbcTGthYVY/Pg3I/rOWVWF49QpUIrYPLliJYQITCBlLXnABp+f7wB2aK0f0Fr/FHgEuD2IsYkINGbMGBITE8nMzMTpdPq9X8yll4LFQkd1NQ53izERuEAXH/J2asmT5HyoOndiLFet+sPevXvJf/992mKsWC+5BHNCQrhDEkIMMIEk5ymA7xKPVwPv+vz8KeDfWuJiwLJarXz961/n9ttvJyqAtnwmq5WYqVMA6XfeW62trVRVVQF+Lj5kt9O2rwiQlUGHIofDQV1d3bluSYV7whzR0LBlyxbeO3qUmrTh0iFJCNErgSTnZzFWBkUpFQ3MBrb7PJ4IOIIXmohUvS1JiXOP3kpy3jueUfO0tDTi4+N73L7t4EF0ezvmpCSic8aFODoRSY4ePcqPf/xj/vrXv3rne7QVF+NqawtvYIOc7wl0miw+JITopUCS87XAj5VSVwJPAzbgY5/HZwDHghibiGBaaxoaGgLaR9q69Y2nzt/fkhbPSVDsrFlS4z/EZGRk4HK5qKiowDU8jaj0dHA6aSsqCndog5rnBDqxqYmY9nZiZ88Oc0RCiIEokOT8PwAnsAl4AHhAa+27JvQ/A+8HMTYRodrb2/npT3/Kc889R1sAI3GeS7ztBw/hamkJUXSDl+eL35+SFgBbgafePC9UIYkINWzYMJKTk9Fac9qnnZ+s0hta3qtbVVWYhw/H4m5rKYQQgfA7OddaV2utr8KoPU/RWr/ZaZPbgKeCGZyITFarFYvFAhirhfrLMmIEUSOzwOWidd++UIU3KLlcLiorKwH/Rs611tgKdgEQN0dG74Yi385KnhM0m/Q7DynP1a3hVVXEzcqTK1ZCiF4JeBEirXWD1rqji/trO42ki0HM88V/4sSJgPbz1p3LCF5ATCYT3/rWt7j//vtJTU3tcXvHyZN0VFWjLBZiZNn2Iem85Ny7CNhutNZhjGrwcjqdnDlzBnCvDCodkoQQvSQrhIpe8Xzxey7j+kvauvWeZ4VWf0bjbLsKAIiZNg2TVdYGG4o8n9GysjIskyejLBY6amuN/tsi6CorK3E6nVjb20lsaiLusjnhDkkIMUBJci56xfeLP5B+5+dWCt2DdrlCEZoAbLvyASRBGMKGDx9OXFwcTqeTiupqY60BpFtSqIwcOZJ/vfVWFm7ajCkmhpipU8MdkhBigJLkXPRKWloacXFxdHR0+L2UPEDM5EmomBhcDQ3YS0pCGOHgobXm5ZdfZs2aNbS2tvq1T6t75Fy6RQxdSikWLFjA9ddfT3Jysly16gdqfzHDa2qInTkT5Z6XI4QQgZLkXPSKUqpXdefKYiF2+nRA6s79VVVVRVlZGfv27SM6OrrH7Z3V1dhLSwGIk+R8SFu4cCHz5s0jMTGR2Nnu+R7uEzcRfLZdnknYcsVKCNF7kpyLXrv00kuZP38+2dnZAe3n7RwhSYJfPCc/Y8aMwWw297i9rcB4Xa0TJ2JOSgppbGLg8CSM7UeO4KyrC3M0g0tFRQWvvfYaBRUVgJSTCSH6RpJz0WvTpk1j2bJlfvfd9vB8cXnqosXFeZJzf0+CWt2jd7GSIAigrq6OwsJCWsxmosePB6TuPNhKS0s5fvw45bGxYDYTO3NmuEMSQgxgkpyLfhc7ezYohePESRzu3t2ia1rrgJNzzxWJuNmSnAtYs2YNq1ev5vDhw8RddhkAtvxdYY5qcPF8RodXVRIzZQqm+PgwRySEGMgkORd9YrfbOX78OKdPn/Z7H3NiItbJk4Fzo7yia7W1tTQ3N3vbKPbE1dJC24EDgFxaFwbftqfeq1b5ctUqWLTW3sWH0iurpN5cCNFnkpyLPtm6dSuvvfYaO3bsCGg/GcHzj2dEbvTo0URFRfW4feuePdDRQdTILCxZWaEOTwwAvhO3PYljW3ExLpstnGENGtXV1dhsNswdLlLq6qScTAjRZ5Kciz7x/eIPZOVBT5IgI3gXp5QiLS3N+zr3xHOyEzfnslCGJQaQ0aNHYzKZaGxspCU+nqisLHA6jRM50WeeE+i06irMLpd0SBJC9Jkk56JPfL/46+vr/d7Pc3m9/fBhOhoaQhTdwDdr1iy++tWvsnjxYr+293RqiZsjCYIwREdHk+W+inLy5MlzV60+lRPjYPCUtAyvrCI6J4eotLQwRySEGOgiKjlXhh8opcqVUq1KqfVKqYk97POEUupTpVSTUqpSKfWWUmpSf8U81EVHRzNy5EggsH7nUcOHEz1uHGjtTShF90ymnj+q2uHwjoZK3avw5emo5FvaYpP5HkFhNpuxAOlVlTLPQwgRFBGVnAOPAY8A/wJcAbQA7ymlYi6yz9XAL4F5wFLAAryvlJLp8v1k3LhxgNFOLBBxl3vqzmUEryutra24XC6/t287cADd2oopKYno3NwQRiYGGk+nH2Pk3EggW/fsQdvt4QxrUFi1ahV3HDhIemUVsXJSLIQIgohJzpVSCvga8J9a69Va673APcBI4Obu9tNaL9dav6K13q+13gPcC4wF5H/JftLb5NzzRdYqk0K79MEHH/DMM8+wy88RTm+9+ezZKD9G2sXQMW7cOG6//Xa+9KUvEZ2bizk5Gd3WRltxcbhDG/BcbW2079+PSWu5YiWECIpI+gbPATKB9Z47tNYNwA5gfgDP41kSsba7DZRSVqXUMM8NSOxFvMJtzJgxmEwmGhoaAqw7vxyA1v37pXNEF06cOIHdbicx0b9/nrYCz2RQqTcX54uJiWHKlCnExcWhlPJ2FJGrVn1jt9tp3bMXHA6iMjKwjB4d7pCEEINAJCXnme4/z3a6/6zPYxellDIBzwGfaK2LLrLpE0CDz60soEjFeaKjo7nlllv4l3/5F5ICWC7eMmokUZmZRueIvXtDGOHA09TURG2tcX7pT6cWrTWt7sWH5NK66Imnm4+0Mu2b3/zmN7z0wfvUJyURd9kcjAvAQgjRN2FLzpVSn1dKNXtuGLXiffVLYBpwRw/bPY0xwu65yXBHH02bNo0RI0YE9OWklJLOEd3wdIDIzMwkJuZiUy4M9uPH6airQ1mtxF56aajDEwOQzWZj48aNvPnmm+cWIyooQAcwr0Gc4zmBbnA6ibPZ5KRYCBE04Rw5/weQ53Ordt8/otN2I4CKnp5MKfUCsAJYorW+6Ei41rpda93ouQFNAUUugsabJEjniPN4Ot/43d/8008BiJ05ExUdHbK4xMCllGLTpk3s3bsX55gxqLg4XI2NtB85Eu7QBiTPCXRKQwPRDofUmwshgiZsybnWuklrfdRzA4oxkvBrPdu468GvALZ19zzu9osvALcA12itS0IcuuhGYWEhb775Jg0B9C33jJy3FhZK5wgfnuTc02WjJ7adOwGImzs3ZDGJgS02NpbMTKNC8ERZGXF5eYDUnfeWZwL88LNnMSUmYp140a6/Qgjht4ipOdfG8pLPAd9VSt2klJoO/AE4A7zl2U4ptUEp9VWfXX8J3A3cBTQppTLdt9h+C14AkJ+fz969ewPq2iKdIy5ks9morKwE/EvOtda0uEfO4+ZeHtLYxMDm+fdUWlrqnRTaKletesXz/1zG2UriLrsMZTaHNyAhxKARMcm527PA88BvgU+BBGC51rrNZ5tcYLjPzw9h1I1vBMp9bp/rh3iFj960VJTOEV1bsmQJeXl5xMf33K7fXlJKR1U1Kjqa2Jkz+yE6MVB5PqPGYkTnJoUaYyPCX01NTVRXV4PWpFdWyhUrIURQRVRyrg3f01pnaq1jtNbXaa0Pd9pmnNb6+z4/q25ur/R3/EOd7xd/ILxJgkwKBSAuLo6rrrqKVatW+bW9p6QlduZMTFZrKEMTA5xn5Ly6upqO3PFgseCsrMThrp8W/vEMQHjrzeWKlRAiiCIqORcD25gxY1BKUVdX16u6c1tBAbqjI1ThDVo2b0mLjN6Ji/OtOz9ZUUHsjBkAtLhP8IR/UlNTmZmTw9iSEkyJicRMnhzukIQQg4gk5yJorFYrI0eOBAIrbYmZMhlTXByupibaDx0KUXQDQ2trK/v376elpcWv7bXWMhlUBCQ7Oxur1YrNZiP+CuPfjG2HJOeBGDVqFFc6nEw6eEjqzYUQQSfJuQgqz2XzQEpbVFQUsZcbo+ctQzxJOH78OH/729947bXX/NreXlqKs6oKZbEQO3NGiKMTg8GSJUt47LHHmDt3rveEzrZjh9SdB0hOioUQoSLJuQgqT925zWYLaL/4uVcY++3YEeyQBpSSEqMTqOd17Ilt57n+5iY/FisSwmq1YjIZ//XH5uWhLBacVVXYA7jaNZSdPXuWk6WlNBcYK/JKvbkQItiiwh2AGFxycnJ47LHHiI0NrJNl3BXu5Dw/H+10oqKG5j9NT3Kek5Pj1/ZSby76QlssxOblYfv0U2w7dmL189/dULZt2zb27NnDlHHjmHnihNSbCyGCTkbORVBFRUUFnJiDu+582DBczc1Dtt95Y2MjtbW1KKX87m/uubQec9llbDtWw+rC02w7VkOHS0oURPeKior4xS9+wbvvvnvuxHjn0L5q5Q+ttfcEOqNS+psLIUJjaA5Pin7hcrm8l897osxm4i6/nOYNG2jZscPbRWIo8XzpZ2VlEeNHiYrjxAmclZXoKAsrNtRzomW797GspBieXDmV5dOyQhavGLhM5ijq6uooOniUjInTSQRadn6K1hqlVLjDi1h1dXU0NjZi0pq06mopaRFChISMnIugq6ur45VXXuGFF14IaJLZUO8c4elw429Ji2dV0P1JoznR4jrvsYqGNh76YwHrisqDGqMY+NYVlfPgmydwaWhvaeCBT2qxmy10VFdjP3Ys3OFFNM8JdFptLVEdHcRLOZkQIgQkORdBl5CQQFlZGXV1ddTW1vq9n/fyekEB2m4PVXgRK9B6c09nm73Dcy94zHNK9NSaYilxEV7risp56I8FnGp0Uq2N1WfTLTb2p44D4NM3PwhjdJHPcwKdfqYc07BhWCdNCm9AQohBSZJzEXQWi4UxY8YARmtAf1knTsScnIy22WgtKgpVeBHrS1/6EjfffLP3tbsYrTUN24wa4X1dJOdgJOjlDW3sLPH/BEkMXh0uzVNrir0nbuUdwwAYaWr0nuCVrN8sJ3Pd0Fp7k/OMs2el3lwIETKSnIuQGD9+PHBuNNgfymQ6N3o+BFsqJiUlMXPmTKKjo3vc1nHyJKaaKhzKzIGUi08erWxqC1aIYgDbWVJLecO5fwtnXIkAZJmb2Dvc+LxOLD/CzmPVYYkv0lVXV9Pc3IxZa9JqaqTeXAgRMpKci5DwlGaUlJTgcrl62PqcOHfd+VBfjKgnLduNk5dDqWNpj7p4Mp+RKP3PxYUnaZWuBJzaRJxycDY1nTazhSR7C/UHDoYpwsiWmprKF79wD3MKCjG7XBwbOUmuMgghQkKScxESI0eOxGq10tbWRnm5/5MS490j5627d+Nqbw9VeBFFa83f//53tm7dSrufx9yyfRsAR0dPobveGgqja8vcnNTgBCoGtM4naS5MHO1I44AzHbvJwv4044Q649j+cIQX8T44UMm/v/Ah4w4foskSyx0bqln0zIcy6VoIEXSSnIuQMJlM542e+yt6/HjM6cPR7e20Fu4JVXgRpbKykqKiIjZu3IjZjxpW7XJh22a0TZx323KACxJ0z89PrpyK2SSt8QTMzUklKynmvH8r2xzZbHdk06Rj2Dt8AgDpR4fefI+eeCbSjikxTlz2Ds/FpUzSFUkIERKSnIuQueSSS5g0aRLDhw/3ex+lFPGXe1oqDo2682Pu9nXZ2dlE+bEyavvBg3TU12OKi2PxqsW8ePdsMpPOHxXNTIrhxbtnS59z4WU2KZ5cORXo+mTOMym0NT8fHUAp2mDX4dL8bPVO5ltKmaDPArA7fSIgXZGEEKEhixCJkJk1axazZs0KeL+4eVfQuHYtLTt3kM6/hiCyyOLpaJOb23XXlc5athklLXFz56IsFpZPy2Lp1Ex2ltRS2dRGRqJRyiIj5qKz5dOyePHu2Ty1ptg7OdSEi8mJDr580xJM+S/jamig7cABYi+9NMzRRoadJbXEtlYyyVKNSjNWPy7MuMT7uG9XpPm5aWGKUggxmEhyLiKOt+58z15cra2YYmPDHFHoOBwOTpw4AQSQnG81kvP4+fO895lNShID4ZfOJ3Nn92ymvPQwyfZU4ubOpXnjRmzbtkly7lbZ1MZIUwMAWeXlVMYmczr+wquB0hVJCBEsUtYiQq6+vp7Tp0/7vb1l7FiisrLA4cCWvyuEkYXfyZMncTqdJCYm+lX+47Lbse0yXpO4+fNDHZ4YpDwnc6vyRjFnmjEKXFJSQvyCBQC0bN0azvAiSopVkW5qAWBERQW70y8BdeFVKemKJIQIFknORUgVFxfz85//nLVr1/q1fYdLs/14LTWT8wBo3rIlhNGFn6fePDc3F9XFF35nrbsL0W1tmIcPxzpxYqjDE0OAZ02CsrIyoty9u235u3C1yUgwwHDdgEmBtdlGvM3G7ozzP3fSFUkIEWySnIuQ8qx2eebMGWw220W3XVdUzqJnPuTOl7bzy2ajRGPf6vcHdScEh8OB2WwOoN7cGNGMnz/fr2ReiJ6kpKSQkpKCy+WiXCmiMjPRdvugv2rlr5ISY07ImDNlAOxxd7UB6YokhAgNSc5FSCUmJpKRkQGcm/jYFU+rMs8ktcL0ibhQjK4v5zsvfTRoE/TPfOYzPP7440yePNmv7T2TQeOlpEUEkWf0/Pjx41La0onn6lZmeQWnUkZRH5PofUy6IgkhQkGScxFyEyYYI01Hjx7t8vEOl+apNcX4NiJrio7naPIoAPKqjgzqVmUWi8WvFoodTU207TN6UPtOBhWir3w/o/EL3cn5J5+EM6SI0NbWhslkQmlNemUlM1Yt5c8PzOPnd+Tx5wfmseXxayQxF0IEnSTnIuR8v/i1vjDB3llS6x0x91WQMQmA2ZWHva3KBhO73R7Q9radO8HlInrcOCxZkhCI4MnJycFkMlFbW4t9qtELvf3QIZzV1WGOLLxiYmJ4+OGHuWXbdixOJwkLF3gn0s7PTZNSFiFESEhyLkJu7NixWCwWWlpaqKiouODx7lqQFbh7Cc+qOozSrkHVqkxrzfPPP8+vf/1r6urq/NrH20JxgZS0iOCyWq2sXLmSBx54gOHjxmGdOgU4V0Y1lDlOniTqxAmwWIibMyfc4QghhgBJzkXImc1mb01rV6Ut3bUgO5CaTas5mpT2ZnIaygdVq7LKykqam5upra0lMTGx5x3wWXxI6s1FCOTl5TFy5EiUUiQsXAhAy5ahW9qitaajo+Pc5y4vD1NcXJijEkIMBZKci34xb948brvtNi6//PILHpubk0pWUswFS4o7TVHeJcWvbjo+qFqVeU5Sxo0b51e9ub3sNPbjx8Fs9i7SJESo+E4K7aoUbSgoKyvjmWeeYe3evYBcsRJC9B9JzkW/GDduHFOnTiUm5sLRb7NJ8eRKo861c4LuqTtfaT81qOo7Pcm53y0Ut3wMQGxeHuZhw0IWlxjajhw5wurVq6lKT0dZrTirqrB3M5F7sDt8+DAOhwN7dQ1w7oRFCCFCTZJzERGWT8vixbtnk5l0fvJ+KncaAHEH9+FqbQ1HaEHX1tbGyZMnAZjo50JCzZuN5DzhyitDFpcQxcXFFBYWcujYMeLcV7mah2jXliNHjgCQefIk5uRkYqZNC3NEQoihoufr6UIESV1dHXv27CEqKopFixZd8PjyaVksnZrJzpJaKpvayEiM4fJxKZTseBlneTm2/F0kXHnhfgPN8ePHcblcpKWlkZrac6mOtttp2b4dgISrJDkXoTNx4kQKCws5evQoly1YQMuWLbRs3UravfeGO7R+1djYyNmzZwHILC8nfulSlNkc5qiEEEOFjJyLflNTU8OmTZvYuXNnt3WsZpM6r1VZlNk06Poue0bk/B01txUUoG02zMOHY/VzsSIhemP8+PEopaiursaZNxMA285PcbUNnk5J/vB8Roe3tBDT3i4nxUKIfiXJueg3nsmPTU1NVFZW+r2fp3NE88cfhyq0fjVlyhRmzJjBlClT/NreW9KyaBHKJB9ZEToxMTGMGTMGgJMdHURlZaHb2rDt2BHmyPqXZ07IiGPHQSniu7jSJ4QQoSLf9KLfREVFkZOTA3S/WmhX4hcuBLMZ+7Fj2MvKQhVev7nkkku45ZZbGDt2rF/bt7hPSuIHQUmPiHyeRcOOHTtGwlVXAdC8aXM4Q+pXTqeTY8eOATDyzBlipk8nyo/yMyGECBZJzkW/8nzxey4b+8M8bBhxs2YB0LxxU0jiilSO8nLajxwBk0m6RYh+4fmMHj9+nBj3BOTmTZuGTEtFl8vFVVddxVi7neS6OpmELYTod5Kci351ySXGqp8nT57EZrP5vV/CksWAkSQMZAUFBVRUVPid6DRv2QJA7PTpRKWkhDI0IQDIzMwkMTGRlJQUnFMmo6KjcZx299kfAqKjo1l4xRUseO99FDIJWwjR/yQ5F/0qOTmZESNGoLUOaPQ84eqrAbDt2IErgKQ+kjQ3N7NmzRp+85vf0NLS4tc+Le5683hJEEQ/UUrx0EMP8dBDD5E+ahRxc+cCQ+uqVWthIa7mZmmhKIQIC0nORb+75JJLsFqttAbQtzw6NxfLqFHntRUcaDx19llZWSQkJPS4vXY4vEuHe2p/hegPsbGx3r97ToybNw/+uvPGxkb27t1LtbvGPn7RImmhKITod5Kci363cOFC/u3f/o158+b5vY9S6lySMEBH8A4fPgwE0EIxP98YvUtNJWbq1FCGJkSXHA4H5nlXAGDbtYuOpqYwRxRa+/fv58033+Td8nIAEq6Wk2IhRP+T5Fz0O6vVirkXo1HeuvPNmwfc5DSHw+EdOZ80aZJf+zR9+BFgHLeM3on+9sknn/Dss8+y69QponNywOmk5ZOt4Q4rpA4ePAhA1uHDxiRsdxtXIYToT5Kci7DRWtPc3Oz39nFz56JiY3FWVNB+6FAIIwu+48eP43A4GDZsGFlZWT1ur7Wm+SMjOU+85ppQhyfEBRISEnA6nRw+fPhcS8VBXNrS0tLCyZMnARh1+jSxs2ZJC0UhRFhIci7Corq6ml/84hf89re/9XsU3GS1Eu8uhWneuDGE0QWfZ0Ru8uTJKKV63L79yBEcZWUoq5X4+fNDHZ4QF5g4cSJKKc6ePYtz7uWA+6qVyxXmyELjkPuEP629nTibjcRrloQ5IiHEUCXJuQiL5ORkWlpaaGpqotxd3+mPgVh3rrX2jshNnjzZr32a3SUt8fPnY4qLC1lsQnQnLi7Ou1DWqZgYTAkJdFRX07pnT1jj6nBpth2rYXXhabYdq6HDFZwSN09ynnXEKD9LkCtWQogwiQp3AGJoioqKYsKECRw4cIBDhw4xcuRIv/ZLWGwk56179uCsqiIqPT2UYQaFUoqvfOUrlJaWkp2d7dc+TR99CECCjN6JMJo0aRInTpzg8LFjXHv11TS+8w7NGzZ4FwXrb+uKynlqTTHlDW3e+7KSYnhy5VSWT+u5XKw7drvduyroqBMniB4/Hqt7NWMhhOhvMnIuwsazIJGn5MMflsxMYmbMAK1p2vBhqEILOrPZTG5uLiZTzx85Z1UVbXv2ApCweHGIIxOie57Jy6WlpVjcJ8ZNH6wPy4TsdUXlPPTHgvMSc4CKhjYe+mMB64r8vwLXWVlZGR0dHQzrcDGssZHEa2XUXAgRPpKci7CZNGkSJpOJyspKampq/N4v8brrAGhavz5UoQWN1jrgRKbJXU8fM2MGloyMEEQlhH9SU1PJyMhAa01ZRgbKYsF+4gR29yhzf+lwaZ5aU0xXnyTPfU+tKe51icv48eP5+iOPMHfbNmNV0CWSnAshwkeScxE2sbGx5LgvHe/fv9/v/RKXGsl5y/btdDQ2hiS2YDl79izPP/88H37o/yh/s/uKQOKSxaEJSogAzJs3j6VLlzJhyhTiFhiTk/v7xHhnSe0FI+a+NFDe0MbOktpe/w7zgQOknjqFOS2N2Jkzev08QgjRV5Kci7Ca6l5c58CBA37vY83JIXpCLjidNG+K7ImhxcXF1NXVUVVV5df2Hc3NtHzyCQAJ114bytCE8MusWbNYsGABw4YNO3fV6oP+Tc4rm7pPzHuznS/PlS1PmZysKyCECDdJzkVYTZ48mTlz5rB06dKAyj8Sly4FoOn9D0IVWp9prb1XBKb6ucJn80cb0Q6HMSHNz5VEhegviddcA0rRtn8/jgC6LPVVRmJMULfz9Y9//IM//OEPHN+5E4BEOSkWQoSZJOcirOLi4lixYgXjx4/3q/+3h2cEr3nLFlytraEKr08qKiqora0lKirK71VBG99bB0Di9csCej2ECKX29nb27NnDJ0VFxM6eDUDT+g399vvn5qSSlRRDd58IhdG1ZW5OYIsGOZ1ODhw4QElJCR11dZgSEmRVUCFE2ElyLgakmKlTsYwciW5t9ZaBRJqioiLA6EoTHR3d4/YdzS20bP4YgGHXXx/S2IQIRGNjI2+99RabN28m2t3/u+n99/vt95tNiidXGlefOifonp+fXDkVsymwE9qjR4/S3t5OPJBWXU3itddg8uOzKoQQoSTJuYgIZWVlrFu3jrq6Or+2V0p5J4Y29mOS4C+tNcXFxQBceumlfu3TsnkT2m7Hkj0Wq58j7UL0h/T0dNLT03G5XFTkjgfAlp+P42xlv8WwfFoWL949m8yk80tXMpNiePHu2b3qc+4pOxt98iQKSFy+PBihCiFEn8giRCIifPTRRxw/fpz4+HiuvPJKv/ZJvH45ta/+geb1G3C1tWGKCbzeNFROnz5NfX09FouFiX7Wjjeuew+AYcuul5IWEXGmTp3Kpk2bOHjmDAvy8mgtLKTpvfdIvecL/RbD8mlZLJ2ayc6SWiqb2shINEpZAh0xB3A4HN5VQUcfPCglLUKIiCEj5yIieEaX9+3b5/fE0NhZeVhGjsRls9G8aXMowwtYbGwsl112GbNmzcJisfS4vctmo3mzcQyJy6WkRUQez2f02LFjWNxlV41r1/Z7HGaTYn5uGqvyRjE/N61XiTnAkSNHcDgcJACpNbVS0iKEiBiSnIuIMHXqVMxmM1VVVZw9e9avfZRSDLvxBgAa33knlOEFLC0tjc985jPccMMNfm3fvHkzuq0Ny+jRxPjZ2UWI/pSenk5mZiYul4tTY8eCUrQWFuI4fTrcofWKp6RlzIkTRknL9VLSIoSIDJKci4gQExPj7WiyZ88ev/cb9pnPANC8cSMdzc0hia0/NLz9NgDDlktJi4hcM2YYi/PsLy0h7vLLAWhcty6g5+hwabYdq2F14Wm2Havp9aqefTV58mTGpKUx+sABo6RlkZS0CCEiQ0TVnCsjK3kKeABIBj4BHtJaH/Fz/28DTwM/11p/LURhihCZPn06xcXFFBUVsXTpUkymns8drZMnE52Tg72khOYNG0hataofIr24wsJCUlNTGTNmjF+Jdkd9vbcsZ9jKm0IdnhC9Nn36dNavX09UVBRxy6/HtnMnjWvfJe2++/zaf11ROU+tKT5vtc+spBieXDm1VxM6+2L69OkMf+MN6uvqSVy1qtclLR0dHTgcjiBHJzwsFgtmWRRKDDERlZwDjwGPAF8ESoAfAu8ppaZqrS+69JtS6nLgQWBvyKMUITFx4kRiY2Npbm6mpKSE3NzcHvdRSjHsM5+h+oUXaHjnnbAn53a7nbVr1+JwOLjvvvsYPXp0j/s0rnsPHA6skyYRM+mSfohSiN5JSEjgG9/4BvHx8Thra6n+fz+ibf9+7CdOEJ2dfdF91xWV89AfC+g8Tl7R0MZDfyzodceV3nLZ7TStfReAYTetDHh/rTUVFRXU19cHOTLRWXJyMpmZmXJVUQwZEZOcu0fNvwb8p9Z6tfu+e4CzwM3A6xfZNwH4X4wR9+/68busgNXnrsTexi2Cx2w2c+mll3Lo0CFaA1hYaNiNN1L9wgu0bN2Gs66OqJSUEEZ5cQcOHMDhcJCamsqoUaP82qdhzRoAknqRIAjR3+Lj4wGISk0lfv58WrZsoWHN26R/9eFu9+lwaZ5aU3xBYg6gMXqVP7WmmKVTM3s9wdNfdXV1HDx4kHG1tXQ0NBCVkUH8vHkBP48nMc/IyCAuLk4SxxDQWmOz2aisNFp2ZmX179UVIcIlYpJzIAfIBNZ77tBaNyildgDzuUhyDvwSeEdrvV4p1WNyDjwBPNmXYEVoXHfdddxwww1+lbR4WMfnYJ06hfbiAzSuXUvq5z8fwggvrrCwEICZM2f69WVtLyujddcuUIphK1aEODohgqelpQXTDcthyxYa3nqL4V95CNXN53ZnSe15pSydaaC8oY2dJbXMz00LUcSG3bt38/HHHzPabmcBMGzlClSAZRMdHR3exDwtLbTxDnWxsbEAVFZWkpGRISUuYkiIpAmhme4/O7fqOOvz2AWUUncAszESbn89DST53HquPRD9wmq1BpSYeyS7y1ka3ngz2CH5rb6+ntLSUuDcxLmeNLongsbNuwJTekZETJQToifbtm3jJz/5CQUmE6aEBBxlZdjy87vdvrLpolWJAW/XW1pr9u41Kh9HF+wG6FUpnKfGPC4uLnjBiW55Xmep7RdDRdiSc6XU55VSzZ4b0HMz6AufYwzwc+DzPdWk+9Jat2utGz03oCnQ3y1Cy+VyeRNdfwxbuRIsFtr276fNvbBIf/N86efk5JCcnNzj9lprGv5hlLScnH0Vi575kDtf2s6jrxdy50vbWfTMh6wrKg9lyEL0SlZWFlpr9h88SIy7XejFTowzEv1bIMzf7XqrtLSUhoYGok0mRp48iXXKFGIu6f08Dyll6R/yOouhJpwj5/8A8nxu1e77R3TabgRQ0c1zzAEygAKllFMp5QSuBh5x/yzXvwYgp9PJ888/z6uvvup3z/Oo1FQSlywBoOGNN0IZXpe01ueVtPijbe9e7MeP44qO5sHSYRdc9vdMlJMEXUSa7Oxs0tLSsNvtnJk9C4DG99/H1dLS5fZzc1LJSoqhuxRLYXRtmZuTGpqA3XbvNkbLs2tqiOroIOkm6Y4khIg8YUvOtdZNWuujnhtQjJGEX+vZRik1DLgC2NbN02wApnN+kp+PMTk0T2vdEar4RehERUV5J/4UFBT4vV/yP90KQMPqf6Dt9pDE1p2Ghga01litVqb6uYhQ3V//CsD20TOxWS4cMfQUtTy1plhKXEREUUoxe/ZsAPZVVRGdnY222Wh87/0utzebFE+uND4XnRN0z89Prpwa0smgLS0tFBcXA5C9YyeYTCSt+EzIft9As3jxYr72ta+FOwwhBBFUc66NNdufA76rlLpJKTUd+ANwBnjLs51SaoNS6qvufZq01kW+N6AFqHH/XQxQc+bMAYxSEX/rDOMXLiQqI4OO+nqaPtoYwugulJyczCOPPML999+PxdJzhVZHczON7jZub4y8vNvtfCfKCRFJ8vLyMJvNlJeX0+6ezHyxq1bLp2Xx4t2zyUw6/0Q0MymmX9ooFhYW0tHRQbpSpNbVkbB4MVHp6SH9nZHo3nvvRSl1we3ZZ5/lhz/8oXe7cePG8dxzz4UvUCGGsEjq1gLwLBAP/BZjEaItwPJO9eS5wPD+D030p/Hjx5OcnEx9fT3FxcV+lYqoqCiSVq2i5qWXqH/j7wy7flk/ROrz+5Vi+HD//mk2vv0O2majfeRY9qfl9Lh9qCfKCRGouLg4pk6dyr59+ziSkc4lSmHLz6e9pARrTtf/ppdPy2Lp1Ex2ltRS2dRGRqJRyhLq9okAra2tmM1mcnYXApDyudtD/jsj1fLly/n9739/3n3p6enSCUWICBExI+dgjJ5rrb+ntc7UWsdora/TWh/utM04rfX3L/Ici2V10IHP97L5rl27/N4v6dZbAGj5eAuOM2dCEltnlZWVOJ3OgPapd5e0uG68CfyY7BTqiXJC9IbnCtfhkyeJveoqAOpf/8tF9zGbFPNz01iVN4r5uWn9kpiD0ab1vilTGH3wIFEjs4hftChoz621xmWzheVmXHQOjNVqJTMz87zbtdde6y1rWbx4MSdOnODrX/+6d2RdCNF/Im3kXAivWbNmsXHjRk6dOsWZM2cYOXJkj/tYc3KIu+IKbDt2UPf6X8j4xtdDGmNHRwevvfYaLpeLe+65hxEjOs9nvlDr/v207d+PsliY9qU7yfrtbioa2rpcoEVhXPYP9UQ5IXpj7Nix3HTTTUyePJmOTz/l1KZN1L/5JulfexSTuz91JGn/+xtEdXSQctttAfc2vxjd2sqh2XOC9nyBmFSwCxXklo5vvPEGM2fO5Mtf/jIPPPBAUJ9bCNGziBo5F8JXQkIC06ZNA+Dw4cM9bH1Oyt3GIkT1f/0rrvb2kMTmUVRURHNzMyaTye+Slrr//RMAiUuXEp2WGvaJckL0llKKWbNmERsbS/yiRVjGjMHV2EiDu39/JGhoaKCiooL2I0doLSgAs5mkW/8p3GGF1dtvv01CQoL3dtttt533eGpqKmazmcTERO/IuhCi/8jIuYhoV111FXPnzmXUqFF+75O4ZAlRI7Nwnimnce27JN9yc0hi01qzbZvRSGju3Ll+1Ws6a2poXGP0Nk/5wt3AuYlyT60pPq+dYmZSDE+unBryiXJCBIVSxN1+Ow0/+Ql1f/ozyZ/9bESUQ2zZsoX8/HxmuVxMBBKvWYJlREZQf4eKjWVSgf/ld8H+3YFasmQJL774ovfn+Ph47rzzzmCGJYToA0nORUTrzdLYKiqKlDvupOqnP6Xuj38k6eZVIUkSSkpKOHv2LBaLhcsuu8yvfepefx3tcBAzYwaxeXne+8M5UU6IvqqoqGDNmjWYtGah1Ur7gQO07t5NnHveSLjYbDbv+gNJW7YAkPrFLwb99yilgl5aEkrx8fFMmDAh3GEIIbohZS1iwLDZbH63VUy+7bOo6Gja9u+n1b3wSLBt3boVwHtZvycuu526P78OQOoX77nghCFcE+WE6Kv4+HgqKiooKy+n7aaVANT87ndhjgry8/NxOp0MN5tJP32GmOnTiZ0TntrwgSY6OpqODlkqRIhwkORcDAgff/wxP/vZz9i5c6df20elpJC0ylj9r+al/wl6PGfPnuXYsWMopZg3b55f+zS+s5aO6mqiRoxg2LL+bfMoRCglJiYyffp0AIrdbRSbN3xI+/HjYYvJ4XB4/7+YuLsQBaTe+8WIKLUZCMaNG8fmzZs5ffo01dXVPe8ghAgaSc7FgJCYmIjT6WTr1q3Y/Vz9M+2++8Bkovmjj2g75P+EUn8cO3YMgClTppCSktLj9trlouZl4yQh5a67UH4sVCREpOpwabYdq2F14Wm2Hauhw6VZuHAhAEdOnaJ9+fWgNTUvvxy2GPPz82lpaWGYxcKo4mKisrLkpDgAP/jBDygtLSU3N5f0IbhYkxDhJDXnYkCYMWMGmzdvpq6ujvz8fBYsWNDjPtHjxpF4/TKa3l1HzUsvMeq//yto8SxYsICcnBysVqtf2ze9/wH2o8cwJSaScucdQYtDiP62rqj8gsnLWe7Jy9OmTaOoqIjiKVOYte49Gv6xhvRHHsHiR4vRYLLb7XzyyScATCk+gElrUr/wBTkpBl555ZUu79+4ceN5P8+bN489e/aEPiAhxAVk5FwMCCaTiSuvvBIwar27qz3vPKKXct/9ADSuXYv95MmgxpSVlUVqas/9x7XLRbW7M0LqPfdgHjYsqHEI0V/WFZXz0B8LzkvMASoa2njojwWYsqYAcKSigtaFC8DhoPZ3v+/qqUKqtrYWk8lEkiWaMbt2YU5NJeWOz/V7HEII0RuSnIsBY8aMGSQnJ9PS0tJl7fm6onIWPfMhd760nUdfL+TOl7Zz3ZoKWmfNBZeL6hd/3ecYamtrqa+vD2if5g8/pP3QIUzx8aTe84U+xyBEOHS4NE+tKe5ysSzPfc9uKufSS421CcrdK3DW/fnPOCoq+idIt8zMTP71oYe4cts2TFqTdt99mAZQNxUhxNAmybkYMMxmM1dffTVgTBBtaWnxPnaxEb1/T7wCgIbVq2kLYDGjzrTWvPPOOzz//PPe9my+uqrD1S4XVb/8FWD0NTcnJfX69wsRTjtLai/4fPnSQHlDG8njZ3Lrrbdywxe/SNxll6Htdqrdn4H+1LJ2LXFHjmBOS5NSMiHEgCLJuRhQZs6cSVZWFh0dHZSVlQE9j+gdSs0mPzsPXC6qfvZcr3/34cOHOX78OEopsrOzz3usq1H7Rc98yJYXX6P9wAFMCQkh6a8sRH+pbOo+MffVYopl+vTpmEwm0r/xDQDq33iD9pKSUIYHGKuBFhQU4LTZvCcEvqPmXZ1ACyFEpJEJoWJAUUpx8803Y7VaSXKPQvszovfrCct46dQ+mj/6CFt+PnF+Lhrk0dHRwfvvvw8YE6V8O7R4Ru07f83X1TSi/8+oNU978MtE+dHVRYhIlZEYE/B25kun0rp0KbEffEDVz3/B6Od+FqrwANiwYQP79u3j2Pr1TDtzhqjMTO+o+cUmssoqvEKISCIj52LAycjI8Cbm4N+I3unEDBquuQGAs888iw5wcY2tW7dSW1tLfHy8d2IqXHzU/uZjm0lvbaA6PoWku6XWXAxsc3NSyUqKobsu4Qoj2Z2bY0ySrqys5IUXXmDDqJHYrVaa1q2jZfuOkMVXUlLCvn37ABj17joAMr75TUyxsT1OZF1XVB6yuIQQIlCSnIsBrbS0FFdtmV/bqi8+gCkhgbZ9+6j7y1/8/h3V1dVs2rQJgKVLl57XPrG7UfvMlho+d3gDAC9PvoH8My0XbCPEQGI2KZ5cORXgggTd8/OTK6d6V7ZNS0sjJiYGW3s7xbfeAkDFD3+I9nOV30A4HA7efvttAKY4HKSUlxM7cybDVnzGr4msT60plhIXIUTEkORcDFjHjx/n1Vdf5dDOjxg3TPU4onf5nImkf/1rAFT99Gc4Kit7/B1aa9asWUNHRwe5ubnMmDHjvMe7HLXXmq/u+TsxHQ4Kh09g4+hZftfrChHJlk/L4sW7Z5OZdH6JS2ZSDC/ePfu88hCz2czKlSsBOAxUTpyI/dgxarrps90XGzdupLa2lgSrlclvrQaTiRHf/Q5KKb8nsu4sqQ16XEII0RuSnIsBa9y4cYwaNYr29nZWJZ9GoXsc0Uu54w5ipk3D1dxMxVM/QOueR8umTJlCTEwMK1asuGDp767qcK89tYs5lYexm6J4Pu+fQCm/63WFiHTLp2Wx5fFr+PMD8/j5HXn8+YF5bHn8mi7rtseOHcsVVxjdkvLnz6PNaqX6F8/3qWtSZ8ePH2fr1q0AzM7fhcXpJPWee4idPh3wfyKrnEALISKFJOdiwDKZTNx8881YLBYaq87w77PpcURPmc1k/ecPURYLzRs2UP+X//Nu21UnB6UU8+bN49FHHyU5OfmCGDrX4WY1V/OVvW8C8KdJSylPSD+vDleIwcBsUszPTWNV3ijm56Z5S1m6cs011zB8+HCaHQ523XgDLoeDM489jstu73McLpeLNWvWADDJ6SSzqAjLmDGkP/Kv3m16M5FVCCHCSZJzMaANHz6cFStWAHD6wC5+f+voHkf0YiZP9rZ4O/vjH9N+5MgFrRDve2kzS378nneiWExM11/cvnW4FpeTb+f/kThnO/vSxvO3S5YA59fhCjHUREdHc9tttxEVFcXpmBhKZkyn/eBBKn/8TJ+f22Qycccdd5CbmMilb7wJJhMjf/T/zltwKNCJrENBRUUFjz76KBMmTCAmJoYRI0awcOFCXnzxRWw2W7jDE2LIk+RcDHgzZsxg9uzZALzx978zNqatxxG91C/eQ/zChei2Ng7d9yDffnmTty41GifLrIe5vL2Qx/53a4+dHJZPy+LFz8/i20VvcEl9GY2WOJ697C4ykuMuqMMVYijKyMhgxYoVTJw4kflf/jIAdX/6E3X/93897NmzYWfPctmrfyCqo4P0Rx8l7vLLz3s80Imsg93x48eZNWsW77//Pj/60Y/YvXs327Zt47HHHuPtt99m/fr14Q5RiCFPknMxKNx4443k5ubicDg4cuRIj9srk4mR//1fWMaMwVJZzn/seAWrs51onFwXfYQUUxtRyoUL5Vcnhzkf/Z0Fx3eiTWYav/ldnn9kebd1uEIMRTNnzuTOO+8k9brrSH/0EQAqfvifNG/eHNDzuFwu1q5dy7Fjx2g/fpxTX34Q3d5OwtVXk/bA/V3uE8hE1r6w2+3d3pxOp9/bOjp1tOluu974yle+QlRUFPn5+dx+++1MmTKF8ePHs2rVKt555x1WrlxJaWkpSqnzVkKur69HKcXGjRu99xUVFXHDDTeQkJDAiBEj+MIXvkB1dbX38b/97W9Mnz6d2NhY0tLSuO6667wrO2/cuJG5c+cSHx9PcnIyCxcu5MSJE706JiEGG1mESAwKZrOZ2267jYMHDzJz5ky/9olKSaHmu8+gvnofU2tP8GTBq3y6aD7J5nbatZkP2ifSrK00uzs5zM9N6/J5qn/9a6p/ZaxGmPX97zH19luCdlxCDCaeCdWpDz7IplOnMO/fD1/9V8b88gUSfNYP6I7D4WD16tXs37+fPYWFrPxoI+b6emKmT2fUT3+CMnU/3rR8WhZLp2ays6SWyqY2MhKNUpZgjpg//fTT3T42ceJE7rrrLu/P//3f/31BEu6RnZ3Nvffe6/355z//eZflJk8++WRA8dXU1HhHzOPj47vcpvOk9+7U19dzzTXXcP/99/Ozn/2M1tZWHn/8cW6//XY+/PBDysvLufPOO3n22We55ZZbaGpq4uOPP0ZrjdPp5Oabb+aBBx7gz3/+M3a7nZ07d/r9u4UY7CQ5F4OG1Wo9LzG32WwUFhZyxRVXYDabu9ynIimDF+ffz1dL1nDysqkkm9tpc5lZZ59EnT5Xt9pVJwdtt1Px9NPU//l1ANIffYSU228P8lEJMfiUlpZSZLXC7NnUpaZhf/RrjH38cVI+1/3np7KykjfeeIOzZ89iUorLd36K+dQponNyGPObX2PqJtn05ZnIOlQdPXoUrTWTJk067/7hw4fT1mb8H/fwww/z0EMP9fhcL7zwArNmzeJHP/qR977f/e53jBkzhsOHD9Pc3IzT6eTWW28lOzsbgOnuDjq1tbU0NDSwYsUKcnNzAaMrlhDCIMm5GJS01qxevZrDhw9TUFDAokWLuPTSS7FYLOdtl5EYgzM9nl2j5gGQXFfHzO351I9r573subiUybudr9Y9eyh/6inaiw8YrRL/7d9I++cv9c/BCTHA5eTksHTpUtavX8/JcdlUZGUy6fXXmf7JJ4x74ttYsowyE601VVVV7Nixg927d6O1Jga44sOPGFFRQcy0aYz57W+ISo2MyZxPPPFEt4+ZOo3qf+tb3+p2284jyI8++mjfAuvBzp07cblcfP7zn6e9vd2vffbs2cNHH31EQkLCBY8dO3aMZcuWce211zJ9+nSuv/56li1bxmc/+1lSUlJITU3l3nvv5frrr2fp0qVcd9113H777WRlSRmgECDJuRjEpk6dyunTp6mpqWH16tW8/fbbZGZmEhcXx4gRI7j22muZm5NKW3wmze1nONsex02fbmdEfQ2PFP6N2w5/xPqxl3E6ezJ5TKF1XzltxcU0vvsutu3bATAlJTHq2WdIuPrqMB+tEAOHUooFCxYwduxY/vGPf1BVVcW+vJns05q0p5/mFmsMidcsIWpcDr978w3a3eUfoysqmLV9O7GtbST9061kfuc753VmCbfo6Oiwb3sxEyZMQCnFoUOHzrt//PjxAMTGxgLnTiR814HoXILT3NzMypUreeaZC7vuZGVlYTab+eCDD9i6dSvvv/8+zz//PN/5znfYsWMHOTk5/P73v+eRRx5h3bp1/OUvf+G73/0uH3zwAfPmzQvKsQoxkCl/FmEZ7JRSw4CGhoYGhg0bFu5wRBC1t7ezc+dOCgoKqK+v994/evRo7rvvPgDWFZXz1T/m04EJk6uDz5Rs5e6D75PoaO3+iU0mklatIuNb3yQqbeheJheir1wuF3v37mXnli2U19QQ19LCin+s8T6+bcECXCYTlxw6RHpVFdHjxpHx+GMkLlkStpjb2tooKSkhJyen2zarker6669n//79HDp06IK688WLF5OXl8fTTz9NXFwc77zzDjfeeCMAH3zwAcuWLeOjjz5i8eLFfOc73+Hvf/87RUVFREX1PM7X0dFBdnY23/jGN/iGu5Wtr/nz53P55Zfzi1/84oLHLvZ6NzY2kpSUBJCktW70/5UQInLJyLkY1KxWK1deeSWLFi2irq6OiooKWltbSUxM9G6zfFoWL9x9GU+tKaa8oY1/5F7Je9lXcFPtfj7nOkXyqWN01Ndjio/HMnYM8fPnk3zzzVhGjQrjkQkxOJhMJvLy8sjLy6O5uZkzO3aQlJKK7dNPcZw5w8L9+4kaPpzYRYsYdsNy4hcuRHUzh0T07Fe/+hULFy7ksssu4/vf/z4zZszAZDLx6aefcvDgQebMmUNsbCzz5s3jxz/+MTk5OVRWVvLd7373vOd5+OGHeemll7jzzjt57LHHSE1N5ejRo7z++uv8z//8D/n5+WzYsIFly5aRkZHBjh07qKqqYsqUKZSUlPDb3/6Wm266iZEjR3Lo0CGOHDnCPffcE6ZXRYjIIsm5GBKUUqSmppLaTW1q150cbh4yvY+FiAQJCQlccu21cO214Q5l0MrNzWX37t386Ec/4oknnqCsrAyr1crUqVP51re+xVe+8hXAmNx53333MWfOHCZNmsSzzz7LsmXLvM8zcuRIPvnkEx5//HGWLVtGe3s72dnZLF++HJPJxLBhw9i8eTPPPfccjY2NZGdn85Of/IQbbriBs2fPcvDgQV599VVqamrIysri4Ycf5sEHHwzXyyJERJGyFqSsRQghhP8GclnLQCRlLWKokUWIhBBCCCGEiBCSnAshhBBCCBEhJDkXQgghhBAiQkhyLoQQQgghRISQ5FwIIYToBWmo0D/kdRZDjSTnQgghRAAsFgsANpstzJEMDZ7X2fO6CzHYSZ9zIYQQIgBms5nk5GQqKysBiIuLQylZEyHYtNbYbDYqKytJTk7GLItPiSFCknMhhBAiQJmZmQDeBF2ETnJysvf1FmIokORcCCGECJBSiqysLDIyMnA4HOEOZ9CyWCwyYi6GHEnOhRBCiF4ym82SPAohgkomhAohhBBCCBEhJDkXQgghhBAiQkhyLoQQQgghRISQmnMfjY2N4Q5BCCGEEH6S720xGClZeQuUUqOAsnDHIYQQQoheGa21Ph3uIIQIBknOAWWsHjESaArB0ydiJP6jQ/T84SbHN/AN9mOU4xv4BvsxyvH1/fnPaEloxCAhZS2A+wMdkjNun1XjmrTWg+76mxzfwDfYj1GOb+Ab7Mcox9dng+41E0ObTAgVQgghhBAiQkhyLoQQQgghRISQ5Dz02oGn3H8ORnJ8A99gP0Y5voFvsB+jHJ8QwksmhAohhBBCCBEhZORcCCGEEEKICCHJuRBCCCGEEBFCknMhhBBCCCEihCTnQgghhBBCRAhJzkNIKfWwUqpUKdWmlNqhlJob7ph6EkjMSqkHlFIfK6Xq3Lf1nbdXSr2ilNKdbutCfyT+C/CY7+3ieNr6M96eBHg8G7s4Hq2Uesdnm4h/D7uilLpKKbVGKXXGHfPN4Y7JH4HGrZS6VSn1gVKqSinVqJTappS6vtM23+/iPTwY0gPxUy+Od3E3/2Yz+ynki+rF8XT1+dJKqf0+20Ts+3cxSqknlFKfKqWalFKVSqm3lFKTwh2XEJFOkvMQUUp9DvgpRvuo2cAe4D2lVEZYA7uIXsS8GPgzsASYD5wC3ldKjeq03Togy+d2Z9CD76Vevk+NnH882aGO01+9OJ5bOf9YpgEdwF87bRex7+FFxGMc/8PhDiRAgcZ9FfABcCMwB/gIWKOUmtVpu/2c/x4uCkq0fdfb92kS5x9PZZDj6q1Aj+dRzj+OMUAtF34GI/X9u5irgV8C84ClgAXjOyI+rFEJEeGklWKIKKV2AJ9qrb/q/tmEkbw+r7X+cViD60ZfY1ZKmYE64Kta6z+473sFSNZa3xyquPsi0GNWSt0LPKe1Tu7POP0VhPfwa8APgCytdYv7vleI4PfQH0opDdyitX4r3LEEordxu0dd/6K1/oH75+8DN2ut84IdYzD5c7xKqcUYJyApWuv6fgmsl3rz/rlH2t8AcrTWJ9z3fZ8B8P71RCmVjnESdbXWenO44xEiUsnIeQgopaIxRrDWe+7TWrvcP88PV1wXE6SY4zBGRmo73b/YfUnzkFLqRaVUWjBi7qs+HHOCUuqEUuqUUmq1UurSEIfqlyC9h/cBr3sScx8R+R6KC7lPyBK58HM40V1qcVwp9b9KqbFhCC+YCpVS5e6SnoXhDiaI7gPWexJzH4Ph/Uty/9n536YQwock56ExHDADZzvdfxaIiLrILgQj5meAM/gkhxjlEPcA1wKPY1zmfNc9yh5uvTnmQ8A/A6uAuzE+Q1uVUqNDFWQA+vQeKqM2fRrwP50eiuT3UFzoW0AC8H8+9+0A7gWWAw8BOcDHSqnEfo+u78qBfwH+yX07BWxUSs0Oa1RBoJQaCdzAhZ/BAf/+uU8anwM+0VoXhTkcISJaVLgDEIODUurbwB3AYq21d4Kk1vp1n832KaX2Ascw6tU39GuQQaC13gZs8/yslNoKHAAeBP4jXHEFyX3APq31Tt87B9t7OJgppe4CngRWaa29Ndha63d9NtvrLn86AdwOvNy/UfaN1voQxkmyx1alVC7wdeAL4YkqaL4I1ANv+d45SN6/X2Kc/A+EWnkhwkpGzkOjGmNS3YhO948AKvo/HL/0Omal1LeAbwPLtNZ7L7at1vq4+3dN6H2oQdPn90lr7QB2M8CPxz1B6w78+KKPsPdQuCml7sAYcb1da73+Ytu6a7UPM3jew50M8GNRSimMq3Kvaa3tF9t2oL1/SqkXgBXAEq11WbjjESLSSXIeAu7/WHdhlAEA3kt61+Iz6hpJehuzUuoxjBHj5Vrr/J5+j7v8Iw3j0nRYBeN9cpd2TGfgH89tgBX4Y0+/J5LeQ2FQSt0J/B64U2v9jh/bJwC5DJ73MI+BfyxXYyTbPZ4gD5T3TxleAG4BrtFal4Q7JiEGAilrCZ2fAq8qpfIxRnW+htFi6/fhDKoHF41ZKfUH4LTW+gn3z49jdPa4CyhV5/oMN2utm91fIE8Cf8cYuc0FngWOAu/110H1INBj/h6wHeMYkoF/w2il2LlGNFwCOh4f9wFvaa1rfO8cIO9hl9yx+44s5iil8oBarfXJ8ETVs57iVko9DYzSWt/j3v4u4FWMlnw7fD6HrVrrBvc2/w2swSiFGInRarMDoxVqWPXieL8GlGC0FowB7geuAZb1Z9zdCfR4fNwH7OiqHjuS378e/BLj+2EV0OTzb7NBa90avrCEiHBaa7mF6AZ8FeM/03aMCT1XhDumvsQMbARe8fm5FNBd3L7vfjwWI4GrBOzu7X8LjAj3cfbhmH/ms20F8A4wK9zH0Nvjcd83yf2+Le3iuQbEe9jN67C4m3+fr4Q7tr7EDbwCbOz0nl70OIHXMSZrtwNl7p9zw32svTzexzBODluBGoy2ikvCfRy9PR73fUmADXigm+eM2Pevh9eiq9dBA/eGOza5yS2Sb9LnXAghhBBCiAghNedCCCGEEEJECEnOhRBCCCGEiBCSnAshhBBCCBEhJDkXQgghhBAiQkhyLoQQQgghRISQ5FwIIYQQQogIIcm5EEIIIYQQEUKScyGEEEIIISKEJOdCiCFDKXWvUqq+h22+r5Qq7J+ILvjdpe7l6fv7976ilNLu281+7lPqs09yaCMUQoihQ5JzIcKsU2JkV0odVUp9TykVFe7YeiuQJM+P5xrnfr68Lh7bqJR6Lhi/J5SUUot93uPubouBy4HfhinMdUAW8K6f218O/FPowhFCiKFpwH75CzHIrAO+BFiBG4FfAg7g6UCfSCllBrTW2hXUCMNAKWUJdwy9oZSyaK0dPndtxUh8PX4ODMN4zz1qtdb2/oivG+1a6wp/N9ZaVymlakMZkBBCDEUyci5EZGjXWldorU9orV8E1gM3ASilvqGU2qeUalFKnVJK/UopleDZ0VOqoZS6SSlVDLQDY5VSlyulPlBKVSulGpRSm5RSs31/qXvE9kGl1NtKKZtS6oBSar5SaoJ7VLpFKbVVKZXbab9VSqkCpVSbUuq4UupJz0i/UqrUvdmb7ucv9Wc/n3geUkr9QynVAnwnkBdRKZWilPqDUqrOfTzvKqUm9rDPt5VSZ5VSTUqpl4GYLra53/3atCmlDiqlvuLzmGdk/3Pu17gN+Lzv/lpru/v9rXAnwK2ce889N3vnspZQvD8BvJbRSqkXlFLl7uc5oZR6IpDnEEIIEThJzoWITK1AtPvvLuAR4FLgi8A1wLOdto8DHgfud29XCSQCrwKLgHnAEWCtUiqx077/AfwByAMOAn8CfoMxan8ZoIAXPBsrpa50b/9zYCrwIHAv5xLpy91/fgljtPhyP/fz+D7wJjAd+F3XL0+3XnHHfBMw3x372u5G4JVSt7t/37+79ysHvtJpm88DP3DHOcW97Q+VUl/s9HQ/dh/bFOC9AOO+mGC/P/56BON1vB2YhHHCUdrbgxBCCOEnrbXc5Ca3MN4wEsq33H9XwHVAG/Bf3Wz/WaDa5+d7AQ3M7OH3mIBGYIXPfRr4oc/P89z3/bPPfXcArT4/rwee6PTcdwNnOj3vzZ228Xe/n3XaZpz7fhvQ3OnWATzn3m6ie7sFPvumufe7zee1qvd5fCvwy06/bztQ6PPzUeDOTtt8F9jaKb5He/Oed7q/FPhaqN8ff+IBfgFsANRF9lvsjic5nJ8huclNbnIbTDepORciMqxQSjUDFowk+k8YI7oopa4DngAmY9QpRwExSqk4rbXNvb8d2Ov7hEqpEcB/YiRQGYAZY4R9bKff7bvfWfef+zrdF6OUGqa1bgRmAguVUr4jseYuYurM3/3yu9n/c8CBTvf9r8/fpwBOYIfnDq11jVLqkPuxrkwBft3pvm3AEgClVDyQC7yslHrJZ5sooKHTft3F3Vf99f509grwAXBIKbUOeFtr/X6vjkAIIYTfJDkXIjJ8BDyEkWSf0Vo7wahnBt4GXsQoS6jFKFN5GaPsxZNotWqtdafnfBVj5PhR4ARGLfo2zpXLePhOXNQXuc9TBpcAPAm80cVxtF3kGP3dr6Wb/U9prY/63qGUar3I7wsGT23/A/gk/W4dnX7uLu6+6q/35zxa6wKlVA5wA8bVnP9TSq3XWn/W3+cQQggROEnOhYgMLZ0TT7c5GEnXN7W7+4q7TtofC4GvaK3XuvcbAwwPQqwFwKRu4vVwYIzWBrpfXxzA+D/tCoxyFZRSaRj10sUX2ecKjBptj3mev2itzyqlzgDjtdb/23nnCBW019k9Ev8X4C9Kqb8B65RSqVpr6dIihBAhIsm5EJHtKEapy78qpdZgJNz/4ue+R4AvKKXyMcph/gtjomlf/QB4Wyl1EvgbxoTVmcA0rfV33duUAtcqpT7B6EpS5+d+vaa1PqKUWg28pJR6EGjCmKR5GljdzW4/B15xv0afYEx6vBQ47rPNk8AvlFINGC0vrRgTMVO01j/ta9whEJTXWSn1DYwJsrvdz3EbUAHUBztgIYQQ50i3FiEimNZ6D/ANjE4sRRjJo7/t7O4DUjBGUl/DmOBXGYSY3gNWAMuATzEmUH4do3TG45vAUuAURnLn73599SVgF0Yp0DaMCbY36vN7jvsey1+AH2J0v9kFZGOUEPlu8z8YXXC+hFHrvQljYmlJEOMOmiC+zk3AYxi19J9iTHy9UQ+C/vlCCBHJ1IVlqkIIIYYSpdQrGB1Xbg5wv8UY8yVStNb1wY5LCCGGIhk5F0IIAe6OQUqpFf5srJTaD7wb4piEEGLIkZFzIYQY4pRSGRjzEgDKtdY9dp5RSmVjzIcAOC7lLkIIERySnAshhBBCCBEhpKxFCCGEEEKICCHJuRBCCCGEEBFCknMhhBBCCCEihCTnQgghhBBCRAhJzoUQQgghhIgQkpwLIYQQQggRISQ5F0IIIYQQIkJIci6EEEIIIUSE+P+tKzjpDfFFNAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "a_obj = CosineAnalysis(label=\"Cosine experiment\").run()\n", "a_obj.display_figs_mpl()" ] }, { "cell_type": "markdown", "id": "5f30a46e", "metadata": {}, "source": [ "Inspecting the `experiment directory` will show something like this:\n", "\n", "```{code-block}\n", "20230125-172712-018-87b9bf-Cosine experiment/\n", "├── analysis_CosineAnalysis/\n", "│ ├── dataset_processed.hdf5\n", "│ ├── figs_mpl/\n", "│ │ ├── cos_fit.png\n", "│ │ └── cos_fit.svg\n", "│ ├── fit_results/\n", "│ │ └── cosine.txt\n", "│ └── quantities_of_interest.json\n", "├── cos-data-and-fit.png\n", "├── Cosine fit.png\n", "├── dataset.hdf5\n", "├── quantities_of_interest.json\n", "└── snapshot.json\n", "```\n", "\n", "As you can conclude from the {class}`!CosineAnalysis` code, we did not implement quite a few methods in there.\n", "These are provided by the {class}`~quantify_core.analysis.base_analysis.BaseAnalysis`.\n", "To gain some insight into what exactly is being executed we can enable the logging module and use the internal logger of the analysis instance:" ] }, { "cell_type": "code", "execution_count": 20, "id": "62be0929", "metadata": { "myst_nb": { "output_stderr": "show" } }, "outputs": [], "source": [ "# activate logging and set global level to show warnings only\n", "logging.basicConfig(level=logging.WARNING)\n", "\n", "# set analysis logger level to info (the logger is inherited from BaseAnalysis)\n", "a_obj.logger.setLevel(level=logging.INFO)\n", "_ = a_obj.run()" ] } ], "metadata": { "file_format": "mystnb", "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.21" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "1427bcb951164c88a817c4dc81f08a73": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_3539b07858504b3fb1f5774dd29008aa", "IPY_MODEL_6295b0d806df4291b0ad4a1645c827f9", "IPY_MODEL_7821850f446d4e3e9c6b07c20dabde6f" ], "layout": "IPY_MODEL_82a5bcab1759467191a81d7d736557d2", "tabbable": null, "tooltip": null } }, "25b7df4b902045478789ec6c3f85c465": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3539b07858504b3fb1f5774dd29008aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_25b7df4b902045478789ec6c3f85c465", "placeholder": "​", "style": "IPY_MODEL_9d2073bc00c74ac48241970406c426bc", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "584d3ae0650943ab97f7f42423457d50": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6295b0d806df4291b0ad4a1645c827f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_66fe590defae4ebebff6b02944b439c7", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f167b065514547ca9be05e3ff11d8c21", "tabbable": null, "tooltip": null, "value": 100.0 } }, "66fe590defae4ebebff6b02944b439c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7821850f446d4e3e9c6b07c20dabde6f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_584d3ae0650943ab97f7f42423457d50", "placeholder": "​", "style": "IPY_MODEL_a1a0f2682f04405b9d91a4152df07ebe", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ] " } }, "82a5bcab1759467191a81d7d736557d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9d2073bc00c74ac48241970406c426bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "a1a0f2682f04405b9d91a4152df07ebe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "f167b065514547ca9be05e3ff11d8c21": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }