{
"cells": [
{
"cell_type": "markdown",
"id": "c80cd461",
"metadata": {},
"source": [
"(analysis-framework-tutorial)=\n",
"# Tutorial 3. Building custom analyses - the data analysis framework\n",
"\n",
"```{seealso}\n",
"\n",
"The complete source code of this tutorial can be found in\n",
"\n",
"{nb-download}`Tutorial 3. Building custom analyses - the data analysis framework.ipynb`\n",
"\n",
"```\n",
"\n",
"Quantify provides an analysis framework in the form of a {class}`~quantify_core.analysis.base_analysis.BaseAnalysis` class and several subclasses for simple cases (e.g., {class}`~quantify_core.analysis.base_analysis.BasicAnalysis`, {class}`~quantify_core.analysis.base_analysis.Basic2DAnalysis`, {class}`~quantify_core.analysis.spectroscopy_analysis.ResonatorSpectroscopyAnalysis`). The framework provides a structured, yet flexible, flow of the analysis steps. We encourage all users to adopt the framework by sub-classing the {class}`~quantify_core.analysis.base_analysis.BaseAnalysis`.\n",
"\n",
"To give insight into the concepts and ideas behind the analysis framework, we first write analysis scripts to *\"manually\"* analyze the data as if we had a new type of experiment in our hands.\n",
"Next, we encapsulate these steps into reusable functions packing everything together into a simple python class.\n",
"\n",
"We conclude by showing how the same class is implemented much more easily by extending the {class}`~quantify_core.analysis.base_analysis.BaseAnalysis` and making use of the quantify framework."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "114e888a",
"metadata": {
"mystnb": {
"code_prompt_show": "Imports and auxiliary utilities"
},
"tags": [
"hide-cell"
]
},
"outputs": [],
"source": [
"import json\n",
"import logging\n",
"from pathlib import Path\n",
"from typing import Tuple\n",
"\n",
"import lmfit\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import xarray as xr\n",
"\n",
"import quantify_core.visualization.pyqt_plotmon as pqm\n",
"from quantify_core.analysis.cosine_analysis import CosineAnalysis\n",
"from quantify_core.analysis.fitting_models import CosineModel, cos_func\n",
"from quantify_core.data.handling import (\n",
" default_datadir,\n",
" get_latest_tuid,\n",
" load_dataset,\n",
" locate_experiment_container,\n",
" set_datadir,\n",
")\n",
"from quantify_core.measurement import MeasurementControl\n",
"from quantify_core.utilities.examples_support import mk_cosine_instrument\n",
"from quantify_core.utilities.inspect_utils import display_source_code\n",
"from quantify_core.visualization.SI_utilities import set_xlabel, set_ylabel"
]
},
{
"cell_type": "markdown",
"id": "97036a87",
"metadata": {},
"source": [
"Before instantiating any instruments or starting a measurement we change the\n",
"directory in which the experiments are saved using the\n",
"{meth}`~quantify_core.data.handling.set_datadir`\n",
"\\[{meth}`~quantify_core.data.handling.get_datadir`\\] functions.\n",
"\n",
"----------------------------------------------------------------------------------------\n",
"\n",
"⚠️ **Warning!**\n",
"\n",
"We recommend always setting the directory at the start of the python kernel and stick\n",
"to a single common data directory for all notebooks/experiments within your\n",
"measurement setup/PC.\n",
"\n",
"The cell below sets a default data directory (`~/quantify-data` on Linux/macOS or\n",
"`$env:USERPROFILE\\\\quantify-data` on Windows) for tutorial purposes. Change it to your\n",
"desired data directory. The utilities to find/search/extract data only work if\n",
"all the experiment containers are located within the same directory.\n",
"\n",
"----------------------------------------------------------------------------------------"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "efe3fa65",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data will be saved in:\n",
"/root/quantify-data\n"
]
}
],
"source": [
"set_datadir(default_datadir()) # change me!"
]
},
{
"cell_type": "markdown",
"id": "6795b2b8",
"metadata": {},
"source": [
"## Run an experiment\n",
"\n",
"We mock an experiment in order to generate a toy dataset to use in this tutorial."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "881bb888",
"metadata": {
"mystnb": {
"code_prompt_show": "Source code of a mock instrument"
},
"tags": [
"hide-cell"
]
},
"outputs": [
{
"data": {
"text/html": [
"
defmk_cosine_instrument()->Instrument:\n",
""""A container of parameters (mock instrument) providing a cosine model."""\n",
"\n",
" instr=Instrument("ParameterHolder")\n",
"\n",
" # ManualParameter's is a handy class that preserves the QCoDeS' Parameter\n",
" # structure without necessarily having a connection to the physical world\n",
" instr.add_parameter(\n",
" "amp",\n",
" initial_value=0.5,\n",
" unit="V",\n",
" label="Amplitude",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" "freq",\n",
" initial_value=1,\n",
" unit="Hz",\n",
" label="Frequency",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" "t",initial_value=1,unit="s",label="Time",parameter_class=ManualParameter\n",
" )\n",
" instr.add_parameter(\n",
" "phi",\n",
" initial_value=0,\n",
" unit="Rad",\n",
" label="Phase",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" "noise_level",\n",
" initial_value=0.05,\n",
" unit="V",\n",
" label="Noise level",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" "acq_delay",initial_value=0.02,unit="s",parameter_class=ManualParameter\n",
" )\n",
"\n",
" defcosine_model():\n",
" sleep(instr.acq_delay())# simulates the acquisition delay of an instrument\n",
" return(\n",
" cos_func(instr.t(),instr.freq(),instr.amp(),phase=instr.phi(),offset=0)\n",
" +np.random.randn()*instr.noise_level()\n",
" )\n",
"\n",
" # Wrap our function in a Parameter to be able to associate metadata to it, e.g. unit\n",
" instr.add_parameter(\n",
" name="sig",label="Signal level",unit="V",get_cmd=cosine_model\n",
" )\n",
"\n",
" returninstr\n",
"
\n"
],
"text/latex": [
"\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n",
"\\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{mk\\PYZus{}cosine\\PYZus{}instrument}\\PY{p}{(}\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{Instrument}\\PY{p}{:}\n",
"\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}A container of parameters (mock instrument) providing a cosine model.\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\n",
" \\PY{n}{instr} \\PY{o}{=} \\PY{n}{Instrument}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{ParameterHolder}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n",
"\n",
" \\PY{c+c1}{\\PYZsh{} ManualParameter\\PYZsq{}s is a handy class that preserves the QCoDeS\\PYZsq{} Parameter}\n",
" \\PY{c+c1}{\\PYZsh{} structure without necessarily having a connection to the physical world}\n",
" \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n",
" \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amp}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mf}{0.5}\\PY{p}{,}\n",
" \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{V}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n",
" \\PY{p}{)}\n",
" \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n",
" \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{freq}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mi}{1}\\PY{p}{,}\n",
" \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Hz}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n",
" \\PY{p}{)}\n",
" \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n",
" \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{t}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mi}{1}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{s}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Time}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\n",
" \\PY{p}{)}\n",
" \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n",
" \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{phi}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{,}\n",
" \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Rad}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Phase}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n",
" \\PY{p}{)}\n",
" \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n",
" \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{noise\\PYZus{}level}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mf}{0.05}\\PY{p}{,}\n",
" \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{V}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Noise level}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n",
" \\PY{p}{)}\n",
" \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n",
" \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{acq\\PYZus{}delay}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mf}{0.02}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{s}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\n",
" \\PY{p}{)}\n",
"\n",
" \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{cosine\\PYZus{}model}\\PY{p}{(}\\PY{p}{)}\\PY{p}{:}\n",
" \\PY{n}{sleep}\\PY{p}{(}\\PY{n}{instr}\\PY{o}{.}\\PY{n}{acq\\PYZus{}delay}\\PY{p}{(}\\PY{p}{)}\\PY{p}{)} \\PY{c+c1}{\\PYZsh{} simulates the acquisition delay of an instrument}\n",
" \\PY{k}{return} \\PY{p}{(}\n",
" \\PY{n}{cos\\PYZus{}func}\\PY{p}{(}\\PY{n}{instr}\\PY{o}{.}\\PY{n}{t}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{instr}\\PY{o}{.}\\PY{n}{freq}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{instr}\\PY{o}{.}\\PY{n}{amp}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{phase}\\PY{o}{=}\\PY{n}{instr}\\PY{o}{.}\\PY{n}{phi}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{offset}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{)}\n",
" \\PY{o}{+} \\PY{n}{np}\\PY{o}{.}\\PY{n}{random}\\PY{o}{.}\\PY{n}{randn}\\PY{p}{(}\\PY{p}{)} \\PY{o}{*} \\PY{n}{instr}\\PY{o}{.}\\PY{n}{noise\\PYZus{}level}\\PY{p}{(}\\PY{p}{)}\n",
" \\PY{p}{)}\n",
"\n",
" \\PY{c+c1}{\\PYZsh{} Wrap our function in a Parameter to be able to associate metadata to it, e.g. unit}\n",
" \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n",
" \\PY{n}{name}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{sig}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Signal level}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{V}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{get\\PYZus{}cmd}\\PY{o}{=}\\PY{n}{cosine\\PYZus{}model}\n",
" \\PY{p}{)}\n",
"\n",
" \\PY{k}{return} \\PY{n}{instr}\n",
"\\end{Verbatim}\n"
],
"text/plain": [
"def mk_cosine_instrument() -> Instrument:\n",
" \"\"\"A container of parameters (mock instrument) providing a cosine model.\"\"\"\n",
"\n",
" instr = Instrument(\"ParameterHolder\")\n",
"\n",
" # ManualParameter's is a handy class that preserves the QCoDeS' Parameter\n",
" # structure without necessarily having a connection to the physical world\n",
" instr.add_parameter(\n",
" \"amp\",\n",
" initial_value=0.5,\n",
" unit=\"V\",\n",
" label=\"Amplitude\",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" \"freq\",\n",
" initial_value=1,\n",
" unit=\"Hz\",\n",
" label=\"Frequency\",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" \"t\", initial_value=1, unit=\"s\", label=\"Time\", parameter_class=ManualParameter\n",
" )\n",
" instr.add_parameter(\n",
" \"phi\",\n",
" initial_value=0,\n",
" unit=\"Rad\",\n",
" label=\"Phase\",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" \"noise_level\",\n",
" initial_value=0.05,\n",
" unit=\"V\",\n",
" label=\"Noise level\",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" \"acq_delay\", initial_value=0.02, unit=\"s\", parameter_class=ManualParameter\n",
" )\n",
"\n",
" def cosine_model():\n",
" sleep(instr.acq_delay()) # simulates the acquisition delay of an instrument\n",
" return (\n",
" cos_func(instr.t(), instr.freq(), instr.amp(), phase=instr.phi(), offset=0)\n",
" + np.random.randn() * instr.noise_level()\n",
" )\n",
"\n",
" # Wrap our function in a Parameter to be able to associate metadata to it, e.g. unit\n",
" instr.add_parameter(\n",
" name=\"sig\", label=\"Signal level\", unit=\"V\", get_cmd=cosine_model\n",
" )\n",
"\n",
" return instr"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display_source_code(mk_cosine_instrument)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f58b3e02",
"metadata": {
"mystnb": {
"remove-output": true
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Starting iterative measurement...\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a8cfb959182143819c3c5a71571e6698",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"meas_ctrl = MeasurementControl(\"meas_ctrl\")\n",
"plotmon = pqm.PlotMonitor_pyqt(\"plotmon\")\n",
"meas_ctrl.instr_plotmon(plotmon.name)\n",
"pars = mk_cosine_instrument()\n",
"\n",
"meas_ctrl.settables(pars.t)\n",
"meas_ctrl.setpoints(np.linspace(0, 2, 30))\n",
"meas_ctrl.gettables(pars.sig)\n",
"dataset = meas_ctrl.run(\"Cosine experiment\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "0e3dbd26",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAGhCAIAAACBOXXdAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4nOzdeUCTd544/g85yUUSbghXgKCcGlBBUEELatFWpdoZmU47tvaaHbvtzu5Od3Zmtu12u8e0s/OdTtv5zU5ra2e0te3UG6WiiFIEsZwBucIVLgM5SELu5PfH4zzGgEAw8CTh/fqLPM8nyTvU8s7nen/87HY7AgAAAMADIxEdAAAAAOAjIKcCAAAA7gE5FQAAAHAPyKkAAACAe0BOBQAAANwDcioAAADgHpBTAQAAAPeAnAoAAAC4h4/n1I0bNxIdAgAAgOXCx3MqAAAAsGQgpwIAAADuATkVAAAAcA/IqQAAAIB7UIgOAKnV6omJCYQQn8/n8/nT746Pj1MolMjISCqV6nTXarWOjIwYDAY+nx8UFLREEQMAAAAzITKnGo3GS5cu9fX14VfWrFmzdu1a/GFVVZVEIiGRSDabjU6nFxYWxsTE4HflcnlZWZlOpyOTyVarVSgUFhUVkcnkpfwIAAAAAI6wnGq328+dO6dQKDZv3iwUCu12+8TEhM1mwxu0tLRIJJLs7OzVq1cbjcYLFy6Ul5fv37+fxWIhhCwWS1lZGZVKLS0t5XK5XV1dFRUVtbW1ubm5RH0iAAAAyxxh86kdHR2jo6ObN29euXIlnU739/cXCATR0dF4g8bGxtDQ0MzMTBKJxGAwCgoKzGazRCLB7nZ3d+t0ury8PC6XixASiUSJiYmtra1ms5mYzwMAAGDZIzKnstns+Ph4hJBj9xSjUqm0Wm1cXBx+hcfj8Xg8mUyGPZTJZBQKJSoqCm8QGxuLTa8ueugAAADATAgb+5XL5TExMY2NjY2NjXq9nsVipaamZmZm+vn5IYTUajVCiMfjOT6Fy+WOjo5iP6tUKg6HQyLd/U6ANcaeCAAAACw9YnKqxWIxm80ymUwmk61Zs4bNZvf09NTV1RmNRmxC1GQyIYRoNJrjs2g0GnYda+Dv7+90FyFkNBqX6DMAAAAA9yJ43e8jjzyCjd/Gx8cbDIaWlpbMzEw8Wdrt9vm/GtYY6+Y6Onz4sOPDAwcOPFDQAAAAwH0Qk1MpFAqZTCaRSI4TokKhUCaTjY+PR0VF0el0NK3TaTQa8XTr7+9vMBic7iKEsCc6giQKAABgaRC2RikwMNBxNhQhhG0txbqbWPEHpVLp2ECpVOJFIfh8vkajsVgsjnfxJwIAAABLj7CcGhsbazQaFQoFfmV4eBghFBgYiBDicDh8Pl8qleLDv3K5XKPR4DUfYmJibDabY70IqVRKo9HCw8OX7CMAAADwCk2D6tdPt71+uq1laHHXsRKWU9PT0/39/S9evDgyMjI5OdnQ0NDV1SUSibCSDgihrKwspVJZVVU1OTk5NjZWUVHBYDBSUlKwu0KhkM/nV1dXDw4OarXamzdv9vf3i8ViqKMEAADAUVXn2IFP6g5X9x6u7n3yoxvXuscX7738XFoH5F5yufzixYsqlQp7KBKJ8vPzHYv6NjQ01NfXYwO8XC63qKgoJCQEvzs5OVleXi6XyxFCJBIpLS0tNzfXaY3Sxo0br169uhQfBgAAgOdpGlQf+LhOoTPhV/hM2pFn1qYLeLM8a8GIzKkYpVJpMpkCAgIYDMb0u2azWalUUigUbEx4OpVKZTQauVyu09YaDORUAABYzl4/3Xa4utfp4sENwl/sTFmMtyP+XJrZVxVRqdTQ0NBZGjjVhQAAAACIAuenAgAA8FklmQKO/z3nhHIZtD1iwSK9HeRUAAAAPqt1SM32J/OYd6rycRnUD54Qpwq4i/R2xI/9AgAAAIvhlc8b/ankmlcfahlSnWwYRgjtEQsWL6EiyKkAAAB8j0yp3/eHmn/evgIb5k0X8BZpoa8TyKkAAAB8ylffyf73m86//nh9BHeG7SSLCnIqAAAA3/Gzr5otVvu1n20h5N19P6devnwZ/3nz5s0ERgIAAGDx3NYYH/9DzYsFCd9bG01UDL6fUyGPAgCAzzvTPPzG6bbjL6yPC2IRGIbv51QAAAC+pGlQfaJxCCFUkilIF3ARQr882arUmev+tZDo0CCnAgAA8B5VnWMvH29WaE0IoRONw/9Zkva/5Z1P5MT+cH0s0aEhBDUfAAAAeIumQfXLn99JqAghpc744qffHSpM9JCEiiCnAgAA8BYnGoccT5hBCNmRvbFfRVQ800FOBQAAANwDcioAAADvUJIpwCv3Yha1IP4CELZGyWg06vV6p4vTD25Tq9Xj4+MUCiUyMtLxuHKM1WodGRkxGAx8Pj8oKGgx4py+wAwAAAAh0gXc35eKDx1rUOpMaPEL4i8AYTm1q6tr+mnhzz//PIl0t+tcVVUlkUhIJJLNZqPT6YWFhTExMfhduVxeVlam0+nIZLLVahUKhUVFRWQy2Y1BOi0we3f/6g2JwW58fQAAAC7ZkBj87vdXHzxS/0R27GIXxF8AgvfSPPLII469T8eE2tLSIpFIsrOzV69ebTQaL1y4UF5evn//fhaLhRCyWCxlZWVUKrW0tJTL5XZ1dVVUVNTW1ubm5rortjsLzHR3F5gdOtpw5Jm1S1OIGQAAwIxMVntuQvAvdqYQHcgMCJ5PDQkJCXPgeKuxsTE0NDQzM5NEIjEYjIKCArPZLJFIsLvd3d06nS4vL4/L5SKERCJRYmJia2ur2Wx2V2zTF5gpp0zYaUGzaxpUv3667fXTbS1DancFAwAAANM0qFoV7aF9G+LXKNlstukXVSqVVquNi4vDr/B4PB6PJ5PJsIcymYxCoURFReENYmNjsenVRY22vG3sf7/pLJeMDimdJ4MxVZ1jBz6pO1zde7i698mPblzrHl/UeAAAYLlpkqlWRXloTiV47PfYsWN6vZ5KpcbExGRnZ2OdToSQWq1G05Yscbnc0dFR7GeVSsXhcBzHirHG2BPdoiRT8HXDkGrqbleV40/9UW6sxmj98ruh18+0aQ2W1MiAlEhuamRAamRAUhgHhosBAGCxNQ2qV0V71jQqjrCcSqVSRSJRWFgYhUK5ffv2rVu3ZDLZ3r17AwICEEImkwkhRKPds2aaRqNh17EG/v7+TncRQkaj0emNNm7cOP3dpy+Pmm6mBWaZuQl31yip9WbJ8GTbsLqqU/5BZY90XMtj0GYcLoacCgAAbjGomGL7U/j37qjxHITl1BUrVqxYsQL7OTk5WSgUnj179ubNm47HyNjt9vm/INbYz8/P6fp80uf9bEgMPvL0WmwOdfoCMy6DmpsQlJtwZw+PxWp/5fPG081zT7gCAABYGE8e+EWEj/3iYmJieDwePhtKp9PRtE6n0WjE+6b+/v4Gg8HpLv5EN0oX8ObZy6SQ/Z7Lj7/aPe44XOxp+5EBAMCrefLAL/KENUo4CoWCd0z5fD5CSKlUOjZQKpXYdayBRqOxWCyOd/EnEgUbLuaz7gxKUEh+nrYfGQAAvJqH91M9JacqlUqFQhEYGIg95HA4fD5fKpXiWVYul2s0GrzmQ0xMjM1m6+vrw19BKpXSaLTw8PClDdwZNlx8cIPw4AYhi0ZeGR5AbDwAAOBLPHkjDSJw7Pfs2bPx8fE8Ho9Cocjl8vr6eoSQWCzGG2RlZV28eLGqqkosFuv1+suXLzMYjJSUO5t8hUIhn8+vrq6m0+l8Pr+jo6O/vz87O9u9dZQWBh8uppJJn9cPvpifQHREAADgC26NaoTBLDrFU3qD0xFZ77eyshJ/yOPxCgoKHHuZIpFIq9XW19e3tbUhhLhc7o4dO/DpUhKJVFxcXF5efubMGexhRkaGY0r2BPvWRB88cgNyKgAAuIWHd1IRgTm1pKTEaDRqtVqz2cxkMrEtNE7EYnFaWppSqaRQKPiwMC4gIGDv3r0qlcpoNHK5XKetNZ4gPoTFY9C+G1BmxhA5ywsAAL7BwydTEbHrful0+pzLdKlUamho6CwNph9l41EeXxt9/MYg5FSwDI2qDVwmlUElfjoG+IymQdUPsmOJjmI2njsq7Rv2ZUV9cVNGdBQALKlJvWXXe9UP/7+q9H+7cPBI/YO8lM1m0+l0VqvV+S0mJ4eHh5021DnR6XTDw8NTU1P4FbvdrnVwv6fbbLaJiYnh4eHJyckZG0xNTc3+1lh4SqVyxtqrs1OpVHhhc68gkUhUKtUSvJHVZr81qkmN9OiFn56yP9VXkUl+u1ZH/vW7oZJM2KUKCLY0hwGbrbaCty/jBcUutY09ffjGRwfWuvo6er3+7NmzExMTNputuLg4NvZO78Rms128eHF4eJjP54+Pj2/atEkkEk1/elNT040bNwIDAxUKRU5OTlpaGkJocnLy6NGj+DxRdHR0YWGh0xPtdvuf/vQnNptNo9FUKpVAINi2bZtjGdTh4eGTJ09GR0fv3Llz+vuqVKqKigps45/FYjEajRs2bIiPj5//B5+cnOzu7k5NTZ3/U4jV3d3N4XAWaciwqamJRCKlp6cjbxj4RZBTl8Dja6J/e7ELciog1pIdBvzvZ9scK3TaELo5oKzskBesCHHpdchkslgsDgkJ+eqrrxyvt7W1jY2NlZaW0mi0oaGhsrKyqKgoBoPh2EalUtXU1OzZsycsLGx0dPTkyZOxsbEcDgch5Ofnd+DAgVne18/P78knn8TyrsFg+Oyzz7q6uvCibxaL5erVq/Hx8TMegWU0Gk+dOhUVFbVr1y4KhYIQUiqVY2NjLn3wmJgYx4OiPd+uXbsW78UnJyfxLzQeXu0BAzl10eXEB8mUTTKlPorPmLs1AItgwac7zN61tdpmqB46MDHldEVrsPZOaDfanFO4nx8iTSsmiqPRaAkJM6yZHx0djYmJwep7CwQCCoXS39+/cuVKhFBDQ0NiYiKHw+nr6wsODsaOjwwPD+fz+b29vRkZGbN8Uvy5CCHHem1sNtsxfdbV1SUkJNhsttu3b09/kfb2dj8/v/z8fHxTH5/PxwrRWK3W2tranp4eq9UaFRW1ceNGbDVJc3NzU1OT0Wik0+lr1qxJTk4eGhpqbW3dtm0bQqisrCwuLq69vX1iYiI0NPShhx5is9kIIZVKde3atdu3b9Pp9LS0tFWrVk0PZmBgoK6uTq1Wczic3NzcqKgorVZ7/vz5goKC4OBghNClS5d4PF5mZubNmzdtNtv4+PjQ0FBAQMDGjRsjIiIQQna7vampqa2tzWAwhISE5OfnY4tJy8rKYmNj29vbx8fH9+/fX1NTk5aWJhAIBgYGOjs7uVxuS0sLmUzOy8vjcDiVlZUajSYuLm7Lli1Ydpwx+Js3byKEFApFX18fm83Oz8+PjIyUSqVdXV1+fn4ymYzFYjXpogqSXPtmtvQgpy6FfWuiv6gffKUoiehAwDI142HA/3667ak8YTSfGR3ImLEi+exdW43BsvqN8unPsk0r022129483fbmmXan62viAj9/LsfVz0KlUvGzNGw2m8ViwSbzbDbb9evXQ0JCOByOSqVyHIrk8Xj4hJ/dbv/www/tdnt4eHheXh6W8ByfizWTyWSTk5NjY2MkEgkfW759+zZ21Ae2n366kZGRyMjIGXfJ19fXDw8Pl5SUUKnUS5cuXbp06eGHH1ar1Tdu3Ni7dy+Xy52amtLr9Qghk8mEn6+lUqlaWlqKiorYbPalS5dqa2sfeughs9l86tSprKys4uJirVZ79uxZNpvt9P1DLpdfvHjx4YcfDg8PHx4evnDhwr59+zgczsqVK8vLy/fu3Xvr1q2xsTHsiBGtVtvR0bFt27Zt27Z1dHScO3fuiSeeoNPpzc3N3d3dO3fuZLPZzc3N58+f37dvn5+fn0qlUqlUW7duDQgIIJFIarUa+y9iMpl6enpycnKefPLJ3t7eyspKgUCwY8cOMpl88uTJzs7OlStX3i94rVbb3d29devWLVu2tLS0VFRU/PCHP4yLi0tISCCRSDk5OX5+fu/89trfPzTDOL9HgZy6FB5fE13yfjXkVOBRDGbbueaRQeXUoEJvstqiA5nRfEZMIDM6kBnNZ06ZrL861aq8f9eW40/peat4xlfe+N+XB5V3eqtkEmn/mqg3S9LdFXZCQsK5c+f6+vpCQ0ObmposFgvWjySRSAcOHMD6rxaLhUql4k+hUqlYHVMGg7Fr167g4GCj0VhbW3vmzJnvf//7VCrV8bmY8fHx27dvy+Xy8PBwrHdls9kqKys3bdrkOLfqBNvXN+Otjo6OjRs3slgshFBubu5f/vIXg8Fgt9vtdrtGowkICGAymUwmc/oTMzIysMSfnJxcXV2NEJJKpSwWKzk5GSHEZrPT0tK6u7udcmpra2tycnJYWJjdbo+IiBAIBH19fenp6WlpacPDw2VlZePj47t378Z/S9HR0diMdXJycmtra29v78qVK1taWjZu3Ij1jNPT0xsbGxUKRVBQEPYQ+8EJk8nE+p0ikaiysjI5ORl7elxcnFwuX7ly5SzBx8XFRUdHI4TS0tJqamr0ej2DwSCRSCQSiUqlagyWca1RGMy63y/fQ/h+Tr18+TL+s+OhN0spguufEMK+1j2+SDNYAMyuJFPw5U2ZxnB3DJPLoP1nSTpejFpntAwqpgaV+gHFVN+47mqX/Ga/yvE0CISQcsr09XdzH1zYNKjekhx2sX1MNWUyWWyPr4l6c4/bEipCKCoqavPmzd99951er4+JiQkLC3McqsV+cOzLIoRMJhOWrmg0WmRkJPbDli1bPvzww5GREWzy0mmD++rVqxFCNpvtxIkTN2/ezMnJaWpqwhYuKRQKvV5vNpsdy6niATguM8Zhq5fxdIt17zQaTUhISHZ29pUrVwwGQ3R0tOMZ0jg80VKpVOzbw+TkpEql+vzzz/E209Pb5OTkwMCAY/VWbCQcIbR27drPPvssNTXV8VmOFQK4XK5Wq8XWSF+7dg3/DkGn0/FzTWasKIAQwr40YCgUCv6QSqViv5lZgscbUygUPz8/k8nkOE3uFQuU0HLIqUTlUSfY8C/kVECIdAHXz8/OY9KwNMllUJ1Od2DRKSsjAlZG3P1D+frptsPVvU6v8/G3vdXd42kCbqogIC2SmyoIYNHu+RviOFzMZ9L/vx9mLca/eZFIhI3Hms3mTz/9dM2aNU4N+Hx+e/vdoWaFQhEVFeXUhkQikcnk6bt0nNqEh4djO2pMJpNSqSwrK0MIGY1Gq9VaVla2f/9+x25rVFRUfX292Wx27CVjr4OlWywH6/V6m82GJcv09PT09HSNRlNXV1dRUVFSUjLnx2cymUFBQbt3756lDYPBiIiIWLdundN1u91eVVUVHx/f1dXlmFaxYWeMTqcTCAR+fn7+/v75+fnTf3UPYj7Bz8jzKyhhYH/qEtm1OrKsddRkcXmzGgAP7qfHm/7tkdRPn7lzusPRg9m5CXOkupJMAe/eSVYug3b6Jxt+VyrOTQySKfRvl3ese7Ni89uVPzna8IcrPVe7xq91jb/8+Z2EihBSThkPHW1oGVr4zkWz2Yz1zLABXuxEDYvFgvV4rFbrtWvXAgICsD/6drv922+/xWYi4+PjVSrVwMAAQqi/v1+j0QiFQoTQxMQE1tOy2+319fU2mw2rh+r4XK1Wi0++qlSqnp4ebMFOdnb2D/4mLS0tIiLiBz/4gdM48IoVK+h0ekVFBb57VSaTNTU1IYSEQmFTUxO2XbWhoSE0NJTFYul0Op1OhxDicDhRUVGOfetZxMbGTkxMSKVS/LfkdIQXQkgkErW1teEfRKvVYm9048YNi8VSVFS0du3a8vJyfPlVX18f9vHHxsbkcjnWdxeJRDdv3sSjksvlLp1pveDgHTGZTOw7TeOgarU35FTf76d6jn1Z0V/cHPTwIiDA95xsHLbYbI9lRiGE5nkYMPrbwYWHjjVgU6qOXdsVYZzHMu806x3XSYbVrUOTf6zqqetVGi33dPuUU6aTDXMPF9/PkSNHsD/o5eXlCKHt27cLhUKj0Xjs2DEajabX68PDwx9++GE/Pz/0t0WqMTExXC6XzWYXFBSUl5czGAyDwbBlyxasUyiTya5fv+7v7282mxkMxrZt27DRRcfnTk1NnT171m63k8lkk8mUkpKC7W2dDyqVumvXrqqqqk8++YTFYpnNZmzNLUIoJyfn4sWLR44coVAoNBpt69atCKHJycmysjIGg0GhUAwGQ0FBwXzehc1mb9u27cqVKzU1NWQy2WAwZGdnOx1zKRQKNRrN119/zWAwrFarzWbbvn27UqlsbW3du3cvViB9aGjo6tWrW7ZsQQjFxMRcuHABIaTRaDZt2oSt1crOzq6urv7zn//MZrP1er2/vz+2Rmmev40FB+8oKSmpr6/vo48+ip9CGVHz/Q9BIL8H/97hyTZu3Hj16lWio7ijaVD1q1OSk3+XR3QgYBlRTpm2vH2l4VdFC3t6y5DqZMMwQmiPWDDnScAzDhcf3CD8xc6Uhb37/VitVq1WS6PRnLalOrFYLDqdjsViYVtFHS/O/ly73a7T6ex2O4vFmmVF0izMZvPU1BSTyXQaBMYGjR3XImFTrQghNpvtarqampqyWq2zBInNiZLJ5BlXP+GuXLlCp9Ozs7M1Gg2LxXJat2yz2TQajb+//5ylZN0bvKPRScPu31df//lDbgxgkUA/demsiubpTdbOMU1SGIfoWMBy8dRHdZ887TypNn/4wYXzUZIp+LphyHFlE5dB2yN2f7UTMpl8v+W1jigUyvRmM1504ufnh61WXTAqlTrju0xPSyQSCd/A46rZMyVCyM/Pb/4v7ufnN+PKIxKJNJ/ftqvmDN5R86AqwxsGfhHMpy6xfWuivqiH8r9gibxd3rE1JTwjaolKz2DDxXzWnVnYAH/nlVDAM0VERMx+VAnhGmXq1Uv1z/gBQU5dUtiUKtFRgGXhRp+iVqr4yZbEpXzTDYnBR55ee3CDMCmU/XRe3JwroYAnSEpKcqki8dLzon6qR4z9Go1GvV5PoVCmj7eo1erx8XEKhRIZGek0M4EQslqtIyMjBoOBz+fPuAHZ0/CY1LVxgd+0jRWlhBEdC/BxT35Y991Cp1EfBDZcXNF++2hd/9K/O/BJ3rLoF3lCTrXb7WfPnh0bG4uNjS0uvqcsS1VVlUQiIZFINpuNTqcXFhY6lpaWy+VlZWU6nQ7bZCYUCouKimasCuZRHl8Tfbx+EHIqWFTPf3rzt99fTeDZpQ8lhz7/53qL1U4hP9AyUQB6x3UhHDqbTny2mg/ix36bm5unpqYcF+ZhWlpaJBJJdnb2s88++6Mf/SgwMLC8vBxbIIcQslgsZWVlVCq1tLT0ueeeKyws7Ovrq62tXfLwXVaUElbXq1DrZzjUAgC3OFo3EMSibUsNJzaM7akR5yUjxMYAfIAXdVIR4TlVrVbX1dXNWEKzsbExNDQ0MzOTRCIxGIyCggKz2Ywf1dvd3a3T6fLy8rAFaSKRKDExsbW1dcYDmDwN1lUlOgrgm4aU+vcud7/lvvq6C7Y9Lfx86yjRUQCv1yxTZXhDVUIMwTm1srIyPj5++mGBKpVKq9XGxcXhV3g8Ho/Hk8nuLJqVyWQUCsWxaFZsbCw2vbr4UT8oWP0LFs8PP6r99OlsoqNACHIqcBPop85Xa2urQqHIy5uhBgJWJcvp4Hgul+tYM4zD4Tj2brHG+BlJniwpjMOgkptkC6/ZBsCM3jjd9kRObHyIR5zdQSH5FawIvdju2oncADjxiqPIcYTN+mo0muvXr+fn5zsdB4HBCpI5Hr2EPcQrT5pMJqcnYo3xYxNwhw8fdnx44MCBB47dDR5fG3X8hswrjlkA3qKyQy4d1/7qETcXLXoQWFe1MBlW5IEFah1Sp0QGzHJ2vachLKdWVlZGRETgh/3OyKW6iVjj6cW9PCSJOtmXFZ12+sJ/7PGC8pXAK9jt6MDHdb3/uYPoQO6xPS38tVOSt/etIjoQ4K285Yg3HDFjv1KpVCaTJSUljfyN3W43Go0jIyPYyl6sgpdTp9NoNDoelIif/IDfRTOV/vJMNAppe2r4qaZhogMBPuLJj2qPeMY0qiM2nbIqmlfdPU50IMBbedfALyKqn4od1XTx4kXHi6OjoydOnMjLy8PPtXc6A0ipVOLHF/D5/M7OTovFgm/CwRrPcr6Bp3l8bfQfKnseXRVJdCDA6/3fVenK8ICNIk8sWrQ9Nfy8ZDQPTg4GC9I0qHpmo5DoKFxATE5NSkqKjo52vPLFF1+Ehobm5+djh0VwOBw+ny+VSteuXYsN58rlco1Gk5qairWPiYm5detWX19fYuKd0mtSqZRGo2GnIXqFDYnB//RF04jaEMGdYUYZgNk1DapPNA4hhNbE8b+ol5W/sonoiGa2PS38d7/r+vddMM0BXGa02PomdCu86tARYnIqjUZzWn/k5+fndF5EVlbWxYsXq6qqxGKxXq+/fPkyg8FISbmz/kIoFPL5/OrqajqdzufzOzo6+vv7s7OzPb+OkqN9a6K/qB986aHZJpUBmK6qc+zl43dO//742/7/t99zJyxDOPRoPvO7AWVmjNeMIQEP0TSoWuU9u2gwnlvtSSQSabXa+vr6trY2hBCXy92xYwc+XUoikYqLi8vLy8+cOYM9zMjIEIvFREbsusfXRH//jzWQU4FLmgbVL3/erNDdWQNvt9v+7YREGMRc8NHfiw1b/Qs5FbjK6xYoIc/Jqc8888z0i2KxOC0tTalUUiiUwMBAp7sBAQF79+5VqVRGo5HL5c64J8fDRfEZUXzmdelETrwXHAAAPMSJxiE8oWKUU6aTDcMem1O3pYY/+VHtz4uTiQ4EeJmmQdX2tAiio3AN8fV+Z0elUkNDQ6cnVByPxwsLC/PGhIqBmkrA58UGMRk0yq2RSaIDAV6mSaZe5SXHpuI8Paf6vMcyo040DlltLuzEBctcSaaAx7xnOQKXQdsjFhAVz3xgq3+JjgJ4E4XOpDNaogOZRAfiGsipxNuXFfXFTeiqgvlKF3B/XyrGy5twGdQPnhCnCjz66zzU/gWu8sbJVOQ586nL2b410W+da//+2ui5mwKAEEJoTG3YvDI4PjyT0+MAACAASURBVIiNENojFnh4QkUIrQznGMy2vgldXJBH1CIGns/rqj1gIKcSLyuWr5wySeU6Dyl9DjzfB1d6/vBEVmIom+hAXIB1VV/ITyA6EOAdmgZVT+bGEh2Fy2Ds1yNsSAz5+88aXz/d1jLkBefqAGJ90zYmDGZ5V0JFMPwLXOSlY7+QU4lX1Tl2qnm4ZUh1uLr3yY9uXIPiqGBWH1T2vFjgfb291dG8EbVhbNIwd1Ow7MmUeiaNHMiizd3Uw/h+Tr3sgOhYZoDt31f9bbuhUmc8dLShZQiOVgUzq+tVUMh+Xlo/AbqqYJ68tJOKlsN86ubNm4kOYTZet38fEOv9yu4fFyQSHcUCbU8N/92lrqdy44gOBHg6b6xKiPH9fioAPuPWyOTopLFgRQjRgSzQ+oQgyfDkpN5MdCDA03ljtQcM5FSCeeP+fUCU9yt7fuyFM6mOoPgDmA/op4IFwvbv8/82FU+nkDx//z4gxLBKX9+v9PYDd2FKFcypY0wTG8j0p3rTIWM4359P9XwbEoOPPL32ZMPwqNrQN6HLTYDTm8EMfKCTihDasjL0+U9vmq02Khm+0IOZNQ+qMryzk4ogp3qIdAEPW5QU/y/nbHY76W9l5wDAaI2WEw1Dra9vIzoQN8C6qo94eYcbLJ7GQfVqL6yghCHyq6Jer5fJZN3d3TKZTK/Xz9hGrVb39PT09/ebzTOsa7BardgrTExMLHKwS2R9QlBNj498FuBGvtFJxcDwL5hds0yV4Z0baRCB/dSamprGxkb8IYlESktLW79+PYl0N81XVVVJJBISiWSz2eh0emFhYUxMDH5XLpeXlZXpdDoymWy1WoVCYVFREZnslUPwuJz4oOvSibxEGP4F9/igslv61g6io3CP7anhLx1rIDoK4KFsdrtkeDLda9eUEJZTw8PDt27dGhISwmAwpqam6uvrm5ub2Wz2qlWrsAYtLS0SiSQ7O3v16tVGo/HChQvl5eX79+9nsVgIIYvFUlZWRqVSS0tLuVxuV1dXRUVFbW1tbm4uUZ/ILdYnBP3XuXaiowCe5Q9Xep7flOAzEwJkkt+WlaHftI0VpYQRHQvwOM0ydYZ37qLBEDb2KxQKExISAgICqFQql8vdsmULlUqVye4eedbY2BgaGpqZmUkikRgMRkFBgdlslkgk2N3u7m6dTpeXl8flchFCIpEoMTGxtbV1xiFiL7Imlt84qLLAcarAgZcWI5wF7KgB99M4qFrttQuUkOfspbFarTabjcm8c/ysSqXSarVxcXF4Ax6Px+Px8KQrk8koFEpUVBTeIDY21mq1joyMLGHUiwIb/iU6CuApjtYN7EiP4DKoRAfiTjClCu7HqydTEeE5Va1WT0xMDAwMYAO5q1evxq8jhHi8e36zXC5XpbpTCFelUnE4HMfJV6wx9kSvBsuUgCPf66QihFh0yupoXjUcFwGm8fZ+KsF7ac6cOTM5OYkQYjAYW7du5fPvVAY3mUwIIRrtngJDNBoNu4418Pf3d7qLEDIajUsQ9qLKiQ96C6ZUAUIIoTPNI6uiuNGBTKIDcT9s+BeW4wFHOqNlbNLo1SdJE5xTd+7cabFYNBpNS0vLmTNntm7dKhQK8bt2uwvTilhjv2kLOQ4fPuz48MCBAw8Q71LIiuU3y9SwKR4ghD6o7P6fvauIjmJRbE8L/93vuv59VxrRgQAP4u2dVER4TsVWGAUFBcXExBw/fvzbb7/FciqdTkfTOp1GoxHvm/r7+xsMBqe7+BMdeX4SnQ6bUt0o8tZS6cAtrnbJA1n01MgAogNZFCEcejSf+d2A0kvPrQOLwXvL/OI8pSdEIpGCg4MnJydtNhtCCBsEViqVjm2USiU+OMzn8zUajcVicbyLP9HbrY8PrJEqiI4CEMyX6jzMCFYqASfeexwNzlNyqtVqvX37NpPJxJYdcTgcPp8vlUrx4V+5XK7RaPCaDzExMTabra+vD38FqVRKo9HCw8OXPHb3W58QXNMDyzeWtaZB1ZTJuj4hiOhAFhHkVOAE+qkLd/r06ba2tuHh4fHxcalUeubMGbVajRd8QAhlZWUplcqqqqrJycmxsbGKigoGg5GSkoLdFQqFfD6/urp6cHBQq9XevHmzv79fLBZ7ex0ljDiGJxmeNFlsRAcCCOPznVSEUEwgk0WntI9MEh0I8Ai3NUab3R4e4D93Uw9G5Hzq1atXsZFehBCDwcjNzXXMqSKRSKvV1tfXt7W1IYS4XO6OHTvw6VISiVRcXFxeXn7mzBnsYUZGhlgsXvIPsVjWxwfVSCfyk2BKdTnqHdd1jmm2pfrCoMvssK5qcoRvzhkDl/hAJxURmFMfeeQRs9ms0WiwXTFcLnf6kl2xWJyWlqZUKikUSmBgoNPdgICAvXv3qlQqo9HI5XKdttZ4u5yEoOs9kFOXqeXQScVsTwt/6WjDK0VJRAcCiNckU63y5moPGCLnU6lUamBgYHh4OI/Hm55Q8TahoaHTEyqOx+OFhYX5WEJFf+unEh0FIMCE1nTp1ti+NdFEB7IUVoRxTFZb77iO6EAA8Xyjn+opa5SAk9XRvFujGoPZSnQgYKm9X9n944JEoqNYOlD7F2B8YNEvWnBOtdvtOp0Onw0FiyEnPvA67KhZZsxW25Ga/mc2COdu6itg9S9ACPWO64JYtADvr2vtwnyqzWb79ttvq6qqmpqaRkdHbTYbiUQKCQlZtWpVbm7upk2bqFSv/3V4FGxHTcEKmFJdRpbPTCpuVTRPptD/7KsWJo1ckinw3oMzwYPw9iPecPPKqTab7dSpU0eOHJHL5UFBQcnJyevWrWOxWDqdTqFQNDQ0lJeX8/n8733ve48//jhkVnfJiQ/81QkJ0VGApdA0qD7ROIQQOlY30PCrIqLDWVJVnWNas/nzGwMIoRONw+/uX70BigAvP74xmYrmmVNfeuml/v7+nTt3btu2zfH8NZxMJisvL//qq6/OnDlz7NgxN8e4XK2K4nXd1kyZrEyaL2y6BfdT1Tn28vFmhdaEEKJTKTf7lcsnqTQNql/+vNloujOLpNQZDx1tOPLM2nSBL/x5BfOBfaE80zzyz9t9Yfn3vHLq9u3bH3roIQaDcb8GUVFRTz/99A9/+MOzZ8+6LzZwp/DvlpWhRAcCFguWVBS6OwcuGc2WZZVUTjQO4Z8do5wynWwYXiYfHzh+oXzrXEcEl+HtXyjntUZp06ZNTseuzYhKpe7evfuBQwJ3wfnkPu9+SYWoeABYMne+UGrv/PvHRilahlTERvWA5pVTq6qqSkpK3n//fcf6ut7isgOiY3EZnE8OfFtJpoDHvOf7OpdB2yMWEBUPWEo++YVyXmO/iYmJYWFhx44dO3bsWEpKSnFxcWFhIYvlHcfGbt68megQFi5dwJXKdTqThUUj+FQ+sEhKMgVfNwyppu7+ZVlWSSVdwP19qfjQsQalzoQQ4jKoHzwhToWlv8BrkV977bU5GwUHBz/yyCNbtmzx9/dvbm6uqKj44osv+vv72Wx2RETE/UogeYLDhw8//fTTREfxQBoGVDwmNT6ETXQgYFGEBfinCbjnJWNmqw3dSSqZWbH3LRzme2ICmXmJQSwaRaE1Pbsxftey+T4Bgti0stZRx8o2XAbtFzuSQ725jL4ffpjaPNlsttra2nPnzlVXV5vN5vDw8Icffri4uNgzD1nbuHHj1atXiY7igfzpqnR00viLHclEBwIW0f7/q2FRKXHBrD1iwbLtpX11U/atdOKdfavmbgp8xbXu8ac+qrPa7OhvXyhzE7x7jZLLI4okEmn9+vXr16/XaDTffPNNWVnZ4cOHP/7440ceeeSf/umfFiPEZS4nPujVv7YQHQVYXA0D6sZfFflTl/Wmqa2p4a+dliDIqcuJyWLLjOFhpfN94wvlwmfpOBxOSUlJWlraBx98UF9f39vb68awAC5NwO0b12mNFjYdplR9U12vIiOKu8wTKkKI409JieTWSiey4335JHbg6N1LXb/amSqO8Z2tUwv8M61UKsvLy8+dOyeVSkkk0rp16/bu3eveyAAOW/1blBJGdCBgUVR2ygvgUD+EEELbUsIutI1BTl0mqrvHmTSKLyVU5GpOtVgs33777blz565fv261WgUCwcGDB4uLi0NCFvIXwWQyjY+PT01NsVis4ODgGYsaqtXq8fFxCoUSGRk5vYHVah0ZGTEYDHw+PyjIZ/8/xM59g5zqqyo7br+9FwY8EUKoKCWs9E+1v9qZQnQgYCm8e6n75UIR0VG42XxzaldX17lz57755hu1Wu3v719UVLRjx47Vq1cv+I3Pnz/f39+Pn2zDYDDWr1+/YsUKxzZVVVUSiYREItlsNjqdXlhYGBMTg9+Vy+VlZWU6nY5MJlutVqFQWFRURCb74ABaTnzQP37ZRHQUYFGMa423J40pkQFEB+IRogOZLDrl1sjkygj4hfi4G30Kq82e43NjEvPKqRcuXHjzzTcRQmlpaS+88MKWLVuYTOYDvrFWq12/fn1sbCyTyVQoFFVVVZcuXQoICIiIiMAatLS0SCSS7Ozs1atXG43GCxculJeX79+/H9sXa7FYysrKqFRqaWkpl8vt6uqqqKiora3Nzc19wMA8UEpkwKBiSmOwcPxhStXXXOmQ58PRQw62poSVt41BTvV5717qPrTFB88JnlcdJSaTWVpa+pe//OWDDz7YuXPngydUhNBjjz2WkZHB5XKpVGpYWNiWLVsQQj09PXiDxsbG0NDQzMxMEonEYDAKCgrMZrNEcueclu7ubp1Ol5eXx+VyEUIikSgxMbG1tdVsNj94bB4IO/eN6CiA+13ukG+GnOoAy6lERwEWV7NMrZoybfLFZQTzyqkbN2588cUXHcddH5xTpQg2m40QslrvbP5VqVRardbxDBwej8fj8WQyGfZQJpNRKJSoqCi8QWxsLDa96sYgPQecT+6rrnTezk+CMxLuShNwJ7TGEbWB6EDAInr3UtehLb42k4pxeSxRLpd/8cUXnZ2dSqXSsV5EUlLSL37xiwXH0d3djRDCc6RarUYI8Xj3rAfjcrmjo6PYzyqVisPhkEh3vxNgjbEn+p7c+KCX62FK1dc0DKgSQ9kwpO9ka2p4uWT0qdw4ogMBi6JjTDMwMeWriy5d+595fHz84MGDarU6OTk5MjLS8VZo6MK/a6tUquvXr0dGRsbHx2NXTCYTQsjpMBwajYZdxxr4+/s73UUIGY3GBYfhyVZGBIyo9Gq9mcuAI999B3RSZ1SUEvaHyh7Iqb7q3YruQw/54EwqxrWcevHiRb1e/8knn8TGxrorAp1Od/bsWWwtsdOAsEt1E7HG04sPHz582PHhgQMHFhopwbBz37alemINSLAwlzvkbzyaSnQUHmdDYvBzR+qnTFYmzQeX8S9zveM6ybD696ViogNZLK7lVJVKJRKJ3JhQp6amTp06ZbPZdu/e7bj0iU6no2mdTqPRiPdN/f39DQaD0138iY68N4k6wSo/QE71GWq9uW9ctyrapza8u0tRStg3bWO7VkfO3RR4ld9f6v6JLy73xc1rjRIuIyNDJpO5a22tXq8/deqU2WzetWsXh8NxvMXn8xFCSqXS8aJSqcSuYw00Go3FYnG8iz/RJ8H55D7mSqc83xfXPboFNqVKdBTAzUbU+m97Jh7LjJq7qddyLaeuX79+3bp1//Ef/yGXyx/wjfV6/cmTJ41G46OPPhoQ4LwXjcPh8Pl8qVSKD//K5XKNRoOvPY6JibHZbI5npEulUhqN5pnH47jFynDO2KRROWWauynwBpUdtwtWwGTqzGBHjU/y7ZlUjGtjv35+fo8//vg//uM/lpSUMJlMx2KBKSkp//M//zP/lzp16pRSqVy1atXIyAi+AYbNZkdHR2M/Z2VlXbx4saqqSiwW6/X6y5cvMxiMlJQ7RcuEQiGfz6+urqbT6Xw+v6Ojo7+/Pzs72yfrKOGwHTUPp/ns94ZlpbJD/osdUIRvZlQyKTchCLryvkShM52XjL5Vkk50IIvLtZw6MDDw4x//mEwmb968mcfjOS4IEghcOEnYZrMpFAqEUFPTPftDYmNj8ZwqEom0Wm19fX1bWxtCiMvl7tixA58uJZFIxcXF5eXlZ86cwR5mZGSIxT47743BKj9ATvUBrUPqSB4jkEWbu+lytS01/IJkFHKqz/hdRddLD/nmnlRHLq/7pVAof/7znx+wYD2JRHrxxRfnbCYWi9PS0pRKJYVCCQwMdLobEBCwd+9elUplNBq5XK7T1hqflBMf+Ofr/URHAdwAemBzKkoJ+9+LnW/t8fFuzTKhNVq+vClrfX0b0YEsOtfmU81ms1AoXMoTYKhUamho6PSEiuPxeGFhYcshoSKEksI441qjQgdTql6vskNeACUJZxXCoQt4jMZBFdGBADd4t6Lr0DLopCJXc2pWVlZ/f//U1NQiRQPmhJ37RnQU4IFMmaySYfXauPt+UwQYWKnkG8xW20fVfc9viic6kKXgWk7NzMwsLi5+9dVXJRKJTqczOfDV4vWeBnbU+AAY+J0n2FHjG3z1CJoZuTafevny5c8++wwh9MILLzjdSk9Pf//9990WF7iP9QlBn9T0ER0FeCCwi2aeEkPZVpu9d1wnDGYRHQtYuHcvdUnf2kF0FEvEtZyakJBw8ODBGW+FhflmQWRPkxjKVk6ZJrSmIDYsGfVWVzrkrxQlER2Fd8CGf5fJsKFP+v2l7r/bnDitaKzPci2nxsXFOZ6/BgiBTanuzIggOhCwEB1jGi6DGh6wLFbVPbii1PD/OtcOOdV7vXupq/k131/ui3NtPhV4AqzwL9FRgAW60iHPhxW/87Ymli8d18Fady/1f1elT66Po1OWUaKZ10ed//ojWKm0BGCZkleDyVRXYfX0iY4CLMSyWp2EmVdOffHFF48eParT6WZpYzAY/vrXvz7xxBNuCsxtLjsgOhb3SAhhTxrMco1vnhTr2yxWe12fIjdh6XZ4+4CtKeHlbbD61/scqenfvToyYJkd+Tyv+dQnnnjivffe+/DDDzds2JCVlbVixYqgoCAWi6XX6ycmJjo6OhoaGqqqqphM5nPPPbfYEbtq8+bNRIfgflhX9ZFVcBKWl6nsvF0Ah5C76KHk0GeP1NvsdtLyWejiE35X0XX+5Y1ER7HU5pVTCwoKcnNzz58///XXX1+6dGl6A6FQ+MILLxQXFzMYDHdHCGaALVOCnOp1oHzSwmxNDSuXjG2HStfe47Mbg4XJocFs5wOtfd581/3SaLRHH3300UcfHR0dbW5uHh0d1Wq1bDY7LCwsIyMjIgLWoC6p9QlB/3dVSnQUwGVXOuWwhHUBsClVyKmer2lQfaJxCCF0tmX46xfziA6HAK7tpUEIhYeH+/AZpd5CGMzSGS23NcZQzrL7Gui9esd1FJJfdCCT6EC8z7bU8H87KXkHrSI6EDCbqs6xl483K7QmhBCNQu6d0An4y27kchktcfYxsKPG68DA74Kx6ZQ0AReWu3uypkH1y5/fSagIIZPFeuhoQ8vQsjsCAXKqt4IdNV4HdtE8CGxKlegowH2daBxy2kasnDKdbBgmKh6iEJ9TJycnVSqVzWab8a5are7p6env759x56vVapXJZN3d3RMTyy67QD/V60Dp/AcBO2qAV3B5PtVdRkZG6urq5HI5lixLS0u5XK5Tm6qqKolEQiKRbDYbnU4vLCyMiYnB78rl8rKyMp1ORyaTrVarUCgsKioik8lL+jGIo56y3NYYf/ZVyxM5MekC518d8DRVnfJNkFAfQBSfwfGnto9MJkcEEB0LmEFJpuDrhiHV1N2uKpdB2yMWEBgSIQjrp2IVJFJSUoRC4YwNWlpaJBJJdnb2s88++6Mf/SgwMLC8vByvO2GxWMrKyqhUamlp6XPPPVdYWNjX11dbW7t0H4BQVZ1jBz6pmzJZPr8x8ORHN651jxMdEZgDTKY+ODhO1ZOlC7i/LxVzmXcqPHAZ1A+eEKcuv6/7hOXUxMTEXbt25ebmhoTM/IemsbExNDQ0MzOTRCIxGIyCggKz2SyRSLC73d3dOp0uLy8P692KRKLExMTW1tblUBzRaS2AUmdcnmsBvAtUe3hwcJyqh9uQGPzk+tgVYeyDG4RHD2bnJgQTHREB5jX2q9Fo7jffefeFKBQWy21nHKpUKq1Wm5KSgl/h8Xg8Hk8mk61btw4hJJPJKBRKVFQU3iA2Nrarq2tkZMRxfNgn3W8tQLqAR1RIYHYypd5kscWHwCGgDyQ1MkChM4+o9RHcZbdDw1vIFPoXChKX4ZAvbl459amnnpLL5bO3ce+Z5Gq1GiHE492TJLhc7ujonW+pKpWKw+GQSHf72Vhj7IkAeJQrnbfzoZPqDttSwy5Ixn6UG0d0IGBm16UT/7x9JdFREGleOfXZZ5+dmpqavU1wsDu7+SaTCSFEo91z7DaNRsOuYw38/f2d7iKEjEbfrywPawG8TmWH/PE10URH4QuKUsLer+yBnOqZ+iemaBRSBHdZnw08r5z68MMPL3YcM7Lb7a429ptWZfvw4cOODw8cOPDggRELWwtw6FiDUmdCCJFJfstzLYAXqeyQv/+DTKKj8AV5icHPHbmpM1lYNML2LID7uS6dyIlf7mcuLeTfpc1mu3Xr1vDwsEAgSE5ORghZrVYSiTQ9ny0YnU5H0zqdRqMR75v6+/sbDAanu/gTHflAEp1uQ2LwkafXYvupv7wpSwrjEB0RuK+anok1cXwqmfi94L6hKDXsG8nYbhiY8TzXpROwYczlnNre3v7GG2/IZDKE0L59+5KTk61Wa0lJyfe+973S0lJ3hcXn8xFCSqXS8aJSqcSuYw06OzstFguFQsHv4k9cDtIFPGxR0pTZWi4ZK8328ZVZ3gvKJ7nX1pSwM80jkFM9EEymIlf30qjV6p/+9KdcLvfXv/51QUEBdpFMJhcWFl69etWNYXE4HD6fL5VK8eFfuVyu0WjwNb0xMTE2m62vrw9/ilQqpdFoy7C+/7bU8AuwwcCDQfkk94KCSp4JJlMxruXUixcvkkikd955Jycnh81m49fj4+MHBwddeimj0dje3t7e3o6tKO7p6Wlvb5dK755flpWVpVQqq6qqJicnx8bGKioqGAwGvrtGKBTy+fzq6urBwUGtVnvz5s3+/n6xWLx86ijh8pNCaqQTJsscm50AIcYmDcop88pwGJx3GwrZb2NiyOWO20QHAu4Bk6kY18Z+h4eHRSLR9H2oLBZLo9G49FI6na6yshJ/iJVACgwMjI+/c7qkSCTSarX19fVtbW0IIS6Xu2PHDny6lEQiFRcXl5eXnzlzBnuYkZEhFotdisFnYPVldmbAKbYeB8onLQZsSnUzjKh7EphMxbiWUwMCAm7fnuHrYXd3d1CQa99QAgMDX3zxxdnbiMXitLQ0pVJJoVACAwOnB7N3716VSmU0GrlcrtPWmmUFqy8DOdUDXemUw38Xt9uWEv5OecdbJelEBwLugslUjGtjvzk5OQMDAydPnnS82NPT8+WXX+blLcqR7lQqNTQ0dHpCxfF4vLCwsOWcUBHUQfVgVzrk+dBPdbcgNi2YRf/J0YbXT7e1DEGZF+LBZCrOtX7qihUrSkpK3n777fLy8snJSX9//5///Oc1NTWBgYE+uWXFW/hTyWvjAq92yTeK4M+3B6nvVyZHcGAnpdtVdY4NqKY6xjQIoRONw+/uX70hcTmWlvUcMJmKc3nP3CuvvPKzn/1Mp9P19/ffunXru+++Kyoq+uMf/zhLVxIsAaxmG9FRgHvALprFgJ0hoTdasYdwhoQngJyKW8g36J07d+7cudNsNptMJiaT6cZSD2DBtqaG/66i683daUQHAu660iGHOT+3gzMkPBBMpuJc66fK5XK8SD2VSmWxWJBQPUQohx7BYzQNwrd1T6HQmYZUejguHvg8mEx15FpObW5u3r1797/+679eu3bNarUuUkxgYWClkkeBXTSLpCRTwGPec7oGnCFBLBj4deRaThWLxY8//nhbW9u//Mu/7Nmz591333Ws0gCIBSc2exQ4322RYGdI8Fl30iqXQYUzJIgFOdWRazkV21T61VdfvfPOO1lZWSdPnnzqqaeeeeaZr776Cg4uJZwolG2x2XvHdUQHstw1DapfP91W1joWwnE+0QG4BXaGxMENwig+4x8Kk3ITYNEvkSCnOlrIGiUSibRu3bp169bpdLpLly6VlZX99re/vXTp0nvvvef2+B7c5cuX8Z83b95MYCRLABv+fX5TPNGBLF9VnWMvH29WaE0Iob872gDbPBYJdoZEJJ/Rr5jjaGewqGAy1ckDnT/FYDAiIyMjIiKoVKpLZ50upc0OiI5l0cHwL7GwbR5YQkWwzWPx5SeFXOmUEx3FsgadVCcL3I0uk8nKysrOnz9/+/ZtPp+/Z8+enTt3ujcysABZsfzecZ1CZwpk0eZuDdwNtnkssYQQtt5sHVbpI3kMomNZpqDMrxPXcqper6+oqDh37lxLSwuFQlm/fv0rr7yyfv36ZXgajMfChn+/vzaa6EAAWAoFSSGVnfLSdXB+MDFgZ6oT18Z+v/322//+7/82GAwvvfTSiRMn3nrrrQ0bNkBC9Sgw/Esg2Oax9DYlhVTB8C9BYDJ1OtdyalJS0scff/zRRx/t27ePy4XF655oy8rQqk65xeah09u+Ddvm4U+98y0TtnksAcipBILJ1OlcG/uNjo5GCNlstlu3bg0PDwsEguTkZISQ1WolkUhQU8lDYF3V4nQ4YowAGxKDhcHMxBB2WID/HrEAEupiY9LIKREB9f3KNbF8omNZdmAydTqX1yi1t7e/8cYbMpkMIbRv377k5GSr1VpSUvK9732vtLR0ESKcjdVqHRkZMRgMfD7f1QNcfRg2pQo5lRAWm71rTFv295uIDmQZyV8ReqXjNuTUpQeTqdO5NvarVqt/+tOfcrncX//61wUFBdhFMplcWFh49epV90c3PQrLXQAAIABJREFUK7lc/pe//OX06dOXLl06fvz4+fPnoVwiBqZUCVQrnciG0bCltSkpuKpznOgolh2YTJ2Razn14sWLJBLpnXfeycnJYbPZ+PX4+PjBwUF3xzYbi8VSVlZGpVJLS0ufe+65wsLCvr6+2trapYzBYzFpZHEMv7ob/soQoLZXkS2Ecw+X1KooXt+ETq03Ex3I8gKTqTNyLacODw+LRCIWi+V0ncViaTQa90U1t+7ubp1Ol5eXhy2VEolEiYmJra2tZjP8f4UQ1NMnDvyhIQQUf1h6tb0T2UL4p+7MtZwaEBBw+/bt6de7u7uXeDpTJpNRKJSoqCj8SmxsLDa9upRheCwY/iVKXa9iHfRTlxzk1KVX06NYnwD/1J25llNzcnIGBgZOnjzpeLGnp+fLL7/My8tza2BzUKlUHA6HRLobP4/HQwhBKX9MBNc/mE1vGYLfxpKCyVSiwI6aJTagmKKS/SK4UL7KmWvrflesWFFSUvL222+Xl5dPTk76+/v//Oc/r6mpCQwMPHDgwCKFOCOTyeTvf8/cOI1GQwgZjcalDMOTYV1VOBN7KV3vVeRAJ5UIIRx6EJt+a2RyZUQA0bEsCzDHcT8u76V55ZVXRCLRl19+2d/fb7fbBwcHi4qKnn/++cBAgv+UYEX8p++R3bhx4/TGS79KeeltTQ176WjDT7euIDqQZaRWOvGTLSKio1imsCKFkFOXxnXpxIZE2Jk6g4XU0N+5c+fOnTvNZrPJZGIymYSUevD39zcYDI5XsB4qne58YuVySJ8zWhHG0ZutA4qpmEAm0bEsF7W9ik+hn0qQTUkhv7/U9UJ+AtGBLAs1PYp/2gbf12ew8LPeqFQqi8UiqnYSn8/XaDQWiwW/olQqseuExOOZYKXSUqrvV4qjeWQSVBMjRm5CUF2vAqpyLgGYTJ3FvHKqRqNRz0Wn0y12rI5iYmJsNltfXx9+RSqV0mi08PDwpQzDw8GOmqUEC5QIByuVlgZMps5iXmO/Tz31lFw+x7/U9PT0999/3x0hzYtQKOTz+dXV1XQ6nc/nd3R09Pf3Z2dnwyE5jtYJAzvHNKopM49JJToW33ddqnhuk5DoKJY1bEfNlpWhRAfi42AydRbzyqnPPvvs1NTU7G2Cg4PdEc98kUik4uLi8vLyM2fOYA8zMjLEYvFSxuAVtqaEl7eNPr4GjlNddLW9Ex8+tYboKJa1TUkhH3/bR3QUvg8mU2cxr5z68MMPL3YcCxAQELB3716VSmU0GrlcrtPWGoDZmhr2Wd0g5NTF1jioSokIoFEWvkABPDhhMMtisw8qpqJhXd6igcnU2Xn9nwAejxcWFgYJ9X4Kk8Mqbo3ZYd3GIoMZJg8BBZUWG/xTn53X51QwJ2z4l+gofFytVJEdD7toiAc5dbFBTp0d5FTftzU1rFwCq38XF9QT9xCw9HexQZnf2UFO9X3bUsMvwC7VxdQypE4IYTNpsOaceHQKaVU0r65XQXQgvgkmU+cEOdX3semU9ChuTc8E0YH4LNiZ6lGwIoVER+GbYOB3TpBTlwWYUl1UcA65R4Hh38UDOXVO3lpHCbgECiotKvhD41HSBNxhlV6hMxEdiA+CydQ5eWsdpfm7fPky/vPmzZsJjIRAAj6Dy6C2DU+mRMKpHW7WPjIZxWdy/BdyHAVYJFhXdbdYQHQgPgUmU+fDW+sozd+yzaNOsOFfyKluVyOdWA+dVA+D7aiBnOpeMB4zH15cRwm4ZFtq2D8cb3q5MInoQHxNrVRRkgl/uz1LflLIv59pIzoKXwNlfucD1igtF8kRARqDWabUEx2Ir4GdqR4okEWL4PpLhieJDsSnwGTqfLg8CWSz2S5dunTz5k2VSmW1WvHrQqHwxRdfdGtswM2w41Sf3gBnp7hNx5gmjOMPx/54oPwVoVc6bqfCZIebwGTqPLmWU20226uvvlpTUxMRETEyMhIdHa1QKHQ6XVBQUFAQfFX3dAnB7Hcvdw8q9SWZgnQBl+hwfAGUJPRY+aLg31zs+vHmRKID8REwmTpPro391tbW1tTUvP7668ePH0cIvfnmm2VlZb/85S8tFsujjz66OBEC96jqHHvnYseoWn+4uvfJj25c6x4nOiJfANUePFZ2fFDDgNJksREdiI+AnDpPruXUlpaWhISELVu24Ff8/Py2bt366KOPvvfee+6ODbhN06D65c+bFdo7O/aUOuOhow0tQypio/IB13sncmAy1VNBPX03gsnUeXItp1osFnyMl0qlajQa7OeUlJT29vaFRTA5OalSqWy2mb9OqtXqnp6e/v5+s9k8/a7VapXJZN3d3RMTUHhvNicah5y2wCunTCcbhomKxzf0yLU8Bi2ITSM6EDAzyKnuApOp8+fafGpwcHBtbS32c1RUVHNz86pVqxBC3d3drp5gOjIyUldXJ5fLsWRZWlrK5TrP8FVVVUkkEhKJZLPZ6HR6YWFhTEwMflcul5eVlel0OjKZbLVahUJhUVERmQx1zMESgclUD7cpKeSPVVKio/AFMPA7f67lVLFY/N57742NjYWFhRUVFX344YfDw8MIofPnzxcVFbn0Ulgtw5SUlMnJyd7e3ukNWlpaJBJJdnb26tWrjUbjhQsXysvL9+/fz2KxEEIWi6WsrIxKpWLJuKurq6Kiora2Njc316UwlomSTMHXDUOqqbtdVS6Dtgd2xD+Y69KJwpQwoqMA9xUTyCT5+fVN6OKCWETH4t1gZ+r8uTb2KxKJ3njjDbvdjhAqLS197LHHrl27du3ataKiopdeesmll0pMTNy1a1dubm5IyMz/qRobG0NDQzMzM0kkEoPBKCgoMJvNEokEu9vd3a3T6fLy8rDerUgkSkxMbG1tnXGIGKQLuL8vFfNZd0YpKSS/D54Qp8LS3wcDpfM936ak4KpOWI73oGAydf5c3p+an5+P/UAmkw8dOnTo0CF3h4QQQiqVSqvVpqSk4Fd4PB6Px5PJZOvWrUMIyWQyCoUSFRWFN4iNje3q6hoZGXEcHwa4DYnBR55ei82hHvm2LysW/g95IH0TOgaVHBbg2pQHWGL5SaFH6/qfXB9LdCBeDCZTXeKhhb/VajVCiMfjOV7kcrmjo3cOLFOpVBwOh0S628/GGmNPBDNKF/DSBTyEkEpvPt00vDcras6ngPuByVSvkJ8U8vyf64mOwrvBZKpLFphTDQaDQqFwXKxLp9PvN4q7ACaTCSFEo92zopJGo2HXsQZOq6Kwxkaj0V0x+LBHV0X+6Vov5NQHUdsLM0xegEL2WxsXWNMzsT4BsoLLmgbVJxqHrnaNP7IqguhYvIbLOfXy5ct//OMfZTKZ0/VZznqbmprCu49+fn7h4eHzfC9s4talxn5+fk7XDx8+7PjwwIED839NX7UpKeQnxxom9eYABhTVW6DrUsU/bl1BdBRgbtiOGsiprqrqHHv5+J1N7R9VG7Ni+RsSPfTwMY/iWk7t6Oh47bXXEhISDh06FBgY6JjAnMZpHUml0qtXr2I/k8nk5557bs43otPpaFqn02g04n1Tf39/g8HgdBd/oiNIojN6dFXkqabhJ3JgnmkhZEo9yQ9F8mCGyQvkJ4X8w/GmVx9eSXQg3uROlZi/bWpXT5kOHW048sxabPIIzMK1nHr9+nUej/f++++7tBt15cqV8fHx2M/T+5Ez4vP5CCGlUul4UalUYtexBp2dnRaLhUKh4HfxJ4I5Pboq8u3yDsipCwMlCb1IckSAXGMc1xqD2c5fuMH93K9KDOTUObm2l8ZoNEZFRbla3oFCoTD/hsGY11d7DofD5/OlUik+/CuXyzUaDb6mNyYmxmaz9fX14U+RSqU0Gm3+A8vL3DphYN+47rYGpp8X4nqvIgd20XgPKKgEloxrOTU7O1sqlWLlGh6Q0Whsb29vb2+Xy+UIoZ6envb2dqn0btGTrKwspVJZVVU1OTk5NjZWUVHBYDDw3TVCoZDP51dXVw8ODmq12ps3b/b394vFYqijNH+PrIo83QTlCRcC+qneJX9FyJUOyKkuKMkU8Jj3LBGFKjHz5NrYb3p6+p49e1599dXnn39eKBRSqXdXuPj5+Tk+nJNOp6usrMQfYiUPAwMD8VFikUik1Wrr6+vb2toQQlwud8eOHfh0KYlEKi4uLi8vP3PmDPYwIyNDLBa79HGWuUdXRf7qlOQZOE7VRSNqg9lqiwlkEh0ImK9NopBfnWwlOgpvglWJ+buj36mnzAghLoMKVWLmybWcevny5U8//RQhNP348VnW/c4oMDBwzjPMxWJxWlqaUqmkUCiBgc5DbQEBAXv37lWpVEajkcvlujoiDVZF8xQ606BiKhrSgyugk+p1eExqTCCzWabOiIKsMF8bEoNfyI8/Xid7KDl0j1gACXWeXMupCQkJBw8enPFWWNiiFD6lUqmhoaGzNJhlvTGYEzb8C+c2uwRKEnqjTUkhVZ1yyKkuGVMbn8qL+1FuHNGBeBPXcmpcXFxcXNziRAII8GhGxMvHmyCnuuS6dOK5TfFERwFck58U8j/nO36yBf6pu6CuT/H4mmiio/AyruVUi8XitCsU4+fnx2AwHCsFAq+wMiLAYrV139YmhrKJjsU7yDVGrdEiDIZzTrzM2rjA1iG13mxlUGEZ47xMmax947qUyACiA/EyruXUK1euvPbaazPeIpFIcXFxu3fv3r179zw3oQJPgBV/+IeiJKID8Q61vRPZQphM9Uqrovl/95eG2CBmSaYgHWYH53KjT7E2DuY4XOZaTk1KStq2bds333yzfv16kUhEoVAGBgYqKyvT0tJSU1MbGxt/85vfKBSKZ555ZpHCBW73yKrIpz++ATl1nq5LFTlQOt8LVXWOtQyrdAYLQuhE4/C7+1dDpb3ZQU5dGNdGa2k0Wk1NzW9+85v/+q//euaZZ5566qlf/vKXn3zyiVQqXbdu3fvvv//YY48dO3YMr3QPPJ8wmMWiU1qH4DyfeYFFv94Iq7SHJVSEkFJnPHS04f9v787jmrzvB4B/8+QGQhKOcAoEiQcgCHhMEEWHrsVj1rpD69qq1R6vdnNtt9rLo2u7bl3Xbt2vx1a1a6fttPXEUWkRC1orajmDchhAwmUgBznInd8fT/sYwyHHkzxJ+Lz/Sp7n+zx8EmM++d61HWpqo/JyFS3KeTAWb+zGllO/+uqruLi4rKws54OxsbF5eXnHjx9HCP3iF78wmUw3btwgM0bgZrD4wygp9eY+vVkCfc++ZriV9qiKxydAPXV8xtb2q1KphtwrxuFw4Mvt4rNIbTYbKcGRorS0lHi8ZMkSCiPxWqvTo9a+c+HZgplUB+LtYBYNmCSutKky44QwMGYcxlZPnTp16tWrVy9cuOB8sLW1taSkZOrUqQihrq4u9ENm9RJLnFAdi5eK4nOjBZwrbao7F53coOHXR8FKe2NV0aqcB5XUcRlbPXXZsmXHjh175pln5syZQ4xROnfunFAo3LBhA0KotLQ0MjKSxM3JgWfgzb9Z8bCrz0i+bVH+ci5M1/M9+Ep7T3xSqdKbEay0NwqXWpSwadX40Ma07zdCyGg0fvTRR6dPn7558yZCiM/n5+bmPvTQQ6Gh3vj7PTc3l9i6FYxAqTfn//Xr715cRnUg3qt/wLLwz6U1u5ZTHQgYp9oO9fHKzlM1Xb/Jl/xyXhzV4Xi1WbtPf7PjxzzO2CpdAI21nooQ4nA427Zt27Ztm9FotNvtAQGwVKw/CAlkzYjkfXO9L3uqN/428gbQmerrZsUIZsUIQoPYbUoD1bF4tWvd2hgBFxLq+Ix/5SMOhwMJ1Z/A6N+RfSvr+xF0pvq+XElYeVMv1VF4tcutyjnQmTpeo8qpWq1Wo9EghCwWi2YYpGyqCii0enb0iSrIqcOCeqp/SI3hd6gGVAaYQz8smJk6EaOq3T/wwAN9fX1ff/11WVnZcGsTjnWvN+BtAlmM+YkhZ67dXDpjpI2AJie92dqi0KfCqBa/gFdVV6dHUx2Il7rUqoSZdeM2qpy6detWfOn86dOnb9++fcgyYWFjXujLbDb39vYaDIbAwMCwsLAhtzTXaDS9vb0MBiM6OnpwAZvN1tXVZTQahUKhdw6S8i148y/k1MG+va780VT45e4n8H3fIKcOqUM1gGG0KD5sRz1Oo8qpd999N/4gNjY2NjaWlD/8xRdftLW12e12/CmXy12wYMH06dOdy5SVlUmlUgzD7HY7m83Oz8+Pi7s1Wk+hUBQVFen1ejqdbrPZxGLxsmXL6HTYdGL8VqVH/+5w9Zu/mE11IF4Hls73J7mSsNdPN1AdhZeCmakTNP6RXTdv3iwsLOzu7o6Ojl69evVY13nQ6XQLFiyIj48PCAhQKpVlZWVnzpwJDg6OiorCC9TW1kql0vnz58+ePdtkMp0+fbq4uHj9+vWBgYEIIavVWlRUxGQyN2zYwOfzm5qaSkpKLl68mJ2dPe5XBBgYbVlyRFFd992pkVTH4l0uypQvrUmhOgpAjohgDp/LbOzRTovgUR2L17nUopwLnakTMKoxSkqlcuXKlfiKvjiZTLZx48b9+/cXFRXt3bt306ZN+HTV0bv33nvT0tL4fD6TyYyIiFi6dClC6Pr160SBqqoqkUiUmZmJYRiXy83Ly7NYLFKpFD/b3Nys1+tzcnL4fD5CSCKRJCUl1dXVWSyWMYUBXMDoXxfV7Zqdx6V1nf0YLNTmR2D073Bgmd8JGlVO/e6777RabW5uLnHk73//u8lkeuaZZ44cOfLcc89ptdoPP/xwTH/YZY/VoKAg5LRQsFqt1ul0CQkJRAGBQCAQCORyOf5ULpczGAznhuj4+Hi8e3VMYQAXBbOiTku7bfaxrQTir8oaezb9u+KjC602u/3+fZfONcO3sJ/Au1SpjsLrqA0Whc4Eu0RMxKhyaltbW1RUFNG629/fX1lZmZeXt3LlyvDw8LvvvvsnP/nJpUuXJhJHc3MzQojIkfjUHYFA4FyGz+er1d9vz6RWq3k8Hobdih8vjF8IJgKqqjh8gzCl7vtJF7BBmD9ZJAkva4Kc6goqqRM3qpyq0WicR9XW1NTY7fYFCxYQR2bOnDnWtl9narX622+/jY6OTkxMxI/gO7CyWLcte81isYidWc1m8+CzCCGTyTTuMABuVVr0yRrIqbBBmD+j0VDO1DBoeHABOXXiRjVGSSgUKhS3ftPV1NQghGbOvDWBiU6nu2Q4ZwaDgag+0mi0yMjbxr/o9fpTp05xOJxly5a5NAiPaS1ivDBtUKfX/v37nZ9u2rRp9PecnH48U/TrTyr1ZmsgCxYnA34rd1p4eaNiYdKYJwH6sYoW5e7VMBZvQkb1pTlt2rR9+/Z9/fXXixcv1uv1X331VURERHz8rV0Lbty4IRINO6lRJpMRC9nT6fRt27YRpwwGw4kTJ+x2+5o1a5xXOmSz2WhQpdNkMnE438+a4nA4+JRZ57PEhc4giY7DqvSok9Vdk3wPlrWZMUcrO9ROC+7ABmH+ZJEk7MlD1c9SHYb3sNoddR2a2VMEdy4KhjeqnJqdnT1t2rSdO3cmJib29vaq1WqXlR/Onz+fmpo63OUzZswgGnWd65EDAwMnTpywWCxr1qzh8W4b1C4UChFC+D7nBJVKhR/HCzQ2NlqtVgaDQZwlLgQTtCo9+p2z1yd5TsU3CPvV3gq8CQQ2CPMzM6OCb2qNfTpzaNCwbWyTCsyiIcWo+lNpNNrrr79eUFBgNBqjoqK2b9++du1a4mx9fb3D4Vi8ePFwlzMYjIAfcLlc/ODAwMDx48dNJtPq1auDg4NdLuHxeEKhUCaTEc2/CoVCq9USaz7ExcXZ7fbW1lbiEplMxmKxXBqWwfjkJIVd7ep36U2chPQm648ShQ8tFD+0UHzwofnZU6Gd0K/ASCVnsNoDKUbbYRYSEvLMM88MeSo5OfnAgQNj/cMnTpxQqVTp6eldXV3EBJigoKApU76vG2VlZX311VdlZWUZGRkDAwOlpaVcLjc5ORk/KxaLhULh+fPn2Wy2UChsaGhoa2ubP38+rKNEFnz07wPZCVQHQqUDF288ujhp0bRwqgMBbpErCS9vUkB7Pu5yq3LboqlUR+HzqBmEYrfblUolQqi6utr5eHx8PJFTJRKJTqe7fPlyfX09QojP569YsYLoLsUwrKCgoLi4uLCwEH+alpaWkZHh0Zfh11alR7/2v6uTOad2qAauK3SQUP3Yomlhr/7vKtVReIuKFuUHD8ylOgqfR01OxTDs0UcfvWOxjIyM1NRUlUrFYDAGr30YHBy8bt06tVptMpn4fD4xfAmQYk68sEM90KUxTtrVtA9U3LhvXtydywGfFRbEDuOxr3X1z4hy7X6abGo7NNMieGzG+HfUBjhvfweZTKZIJBphMWGBQBAREQEJ1R0m+eIPBy+2bZgff+dywJctloR9DYsUwgAl8nh7TgUUmsw59X+1XdlTwwQBQ+w/CPwJPkuV6iioBwOUyAI5FQxrVgxfZ7K29OqpDoQCBy/e2DAfGn7938KksPPXe8eyuox/ghWUyAI5FYxkclZV25WGNqUBVtiZJPDRv1RHQaWWXn0whwnzdEkBORWMZFpE8L5zrXtO1td2TKLNCaCSOqkskoSVTe4uVaikkghyKhhWWWPPzhO16gHz/vMtk2qnMxjxO6lAl2pFi3IeDFAiCeRUMLRJu9NZYU3XIklYMBdGJ00W0yN4KoP5pnbybmkF9VQS+f/GI6WlpcTjJUuWUBiJbxlup7NZMX6+xPbBi22PL5VQHQXwKLyqem9WLNWBUEChNRnMtvjQgDsXBaPg/zkV8igYvdY+fafamD019M5FgR9ZJAk/c61ncuZUmEVDLmj7BUNbmxkjCLhtHOBk2OkMRidNToumhZU1TpbhAi5gtQdyQU4FQ8N3OhMGfp9WMRrauXKm3+90duDijfsgp04+wgBWjJBbN5kGtxOgM5Vc/t/2C8ZtYVLYR5vnHq/sRAhxmPQrN1T+3Th2orrzxzNEgWz4TzEZ5UrCypt6U/39V6MLg9nW0qtPiZ7syx2TCOqpYCSzYgQvrEx+YWXy0z+ZfuS7DqPFRnVEbgSV1Mlscu6lerlVOQcqqaSCnApGa/NC8b5zLVRH4S4tvfqb/cb5iTA6aZJaMDX0UovSap9cqxTCACXSQU4Fo/XQQvEH/ptToZIKJuEihbDaA+mozKkDAwNyuby5uVkulw8MDAxZRqPRXL9+va2tzWKxDD5rs9nwO/T19bk5WIBCAlmLpoUfq+ygOhC3gJ3dQO60sPJJNvr3cqtqToKQ6ij8CmXDMS5cuFBVVUU8xTAsNTV1wYIFGHYrzZeVlUmlUgzD7HY7m83Oz8+Pi7tVk1AoFEVFRXq9nk6n22w2sVi8bNkyOp3u0ZcxyWxZKH7uSO0av5tRc6yyY3lKZAALPjyT2iJJ+CP/uUJ1FJ5zpU2VESfAaDSqA/ErlOXUyMjI5cuXh4eHc7lcg8Fw+fLlmpqaoKCg9PR0vEBtba1UKp0/f/7s2bNNJtPp06eLi4vXr18fGBiIELJarUVFRUwmc8OGDXw+v6mpqaSk5OLFi9nZ2VS9oslgVgyfy6L7X3vRwYobTy+fTnUUgGJJoiC9ydqlMUbxOVTH4gnQmeoOlLX9isXiqVOnBgcHM5lMPp+/dOlSJpMpl8uJAlVVVSKRKDMzE8MwLpebl5dnsVikUil+trm5Wa/X5+Tk8Pl8hJBEIklKSqqrqxuyiRiQaHOOeN95v+pVbb6pU+rNfvYrAYzPomnhZZNmPX0Y9OsO3jJGyWaz2e32gIDv15xUq9U6nS4hIYEoIBAIBAIBkXTlcjmDwYiNvTVdMj4+3mazdXV1eTDqyeiu1MgauaZTPXT/ty+CtZMAYVINU/K/BidvQHFO1Wg0fX19N27cwBtyZ8+eTRxHCAkEty3Xzufz1erv90VRq9U8Hs+58xUvjF8I3MrPBgAfuNh2H4xOAgihybSXakOPNprP5XFghROSUfyGFhYW9vf3I4S4XO7y5cuFwu9HoJnNZoQQi3XberMsFgs/jhfgcDguZxFCJtPk3bDJYzYvFCfsOLVzZTLVgZDg8+/kK9Oi2QxvabAB1ArmMsWhgdVydXqsn++/BMv8uokncqrBYCCqjzQaLTIykji1cuVKq9Wq1Wpra2sLCwuXL18uFouJsw7HGOZf44Vpg8aw7d+/3/nppk2bxho/GGzLQvHecy1bForvXNS7fXLxxo6CmVRHAbwIPqPG73NqRYsyPzmC6ij8kCdyqkwmKy8vxx/T6fRt27YRp/ARRqGhoXFxcYcOHfrmm2/wnMpms9GgSqfJZCLqphwOx2g0upwlLnQGSdQdtiwUr3vvgq/n1MYebb/ROice5ueBWxZJwv9S3PD40iSqA3GvS62qZwtmUB2FH/JETp0xY0ZiYiL+eHA9EodhWFhYWFNTk91uxzAMbwRWqVTOZVQqFdE4LBQKGxsbrVYrg8EgzuLH3fQqgLNoATctlv9FXfddqZF3Lu2tYHQSGGyeOKSqXW222ln+2yPQoRrAMBTF51IdiB/yxIeGwWAE/IDLHfpf0Waz3bx5MyAgAB92xOPxhEKhTCYjmn8VCoVWqyXWfIiLi7Pb7a2trcQdZDIZi8VyblgGboU3/1IdxYTAeoRgSH6/nj7MTHUfyn6InTx5sr6+vrOzs7e3VyaTFRYWajQaYsEHhFBWVpZKpSorK+vv7+/p6SkpKeFyucnJ34+LEYvFQqHw/Pnz7e3tOp3uypUrbW1tGRkZsI6Sx8xNCDFZbTVyXx1o/dkV+U9nRzPpflsXAeOG7/tGdRRuBHumug+V437Ly8vtdjv+mMvlZmdnO+dUiUSi0+kuX75cX1+PEOLz+StWrCC6SzEMKygoKC4uLiwsxJ+mpaVlZGR4/EVMavj6D2/9YjbVgYzHgYttO1emUB0F8EaLpoV/+E0r1VG40aUW5aYc3x4M4bUoy6mrVq2yWCxarRafFcNZFUn/AAAgAElEQVTn8wd3tWZkZKSmpqpUKgaDERLi+qsqODh43bp1arXaZDLx+XyXqTXAA9ZkxLxUWK/Um0MCWXcu7U2udfUPWOwZcX4+thOMjzgs0GKzy1UDsUI/7HHUDFhuak0SURDVgfgnKhu+mExmSEhIZGSkQCAYbuwSk8kUiUSDEypBIBBERERAQqWKj67/cKDixn3zoCcVDMuPu1Rh+SS3gs4kMCFbchP3lsuojmLMYMQvGFnutPByP134FzpT3QpyKpgQNgNblzXlwMU2qgMZlep2zZ6T9Rs/uLh0hoiOwRZXYFh+vEgh5FS3gpwKJspXJtWUNfZs+nfF/vMt55p7v21RnWv2z29MQIpANmNaRFDlDTXVgZDManfUyjUwksB9IKeCiUoMD4wLCTjb4NUNZdXtmu3/rVHqvl8vWjtgfuJgZW2Hv31jAhL5ZZcq7O/mbpBTAQm2LEzce86re1WPVXUo9WbnIyqD+XhlJ1XxAO/nl12qMEDJ3SCnAhLkSsJ6+k2NPVqqAwGANHPihdLO/gGLjepAyIEPJvj0UnsYz3VRdEAi/988r7S0lHi8ZMkSCiPxb3iv6p/uTaM6kKGtzYw5WtmhNtyqqvK5rHsyYigMCXi/9CnCxw9UxoUGrM2MmRXDpzqc8Str7Nl+6Pu+j79+2ZQYFrgwKYzqoPwTbUz7qfmc3NxcYksc4G4pO09XvPDjQJaX/lA719y76cNLFqsdIcTnMt/dmJk9Fb5WwLDKGnsePVCpN9kQQsJA9tvrZ/toHqpu12z6sMK570MYwPpoy9xZMTBSiXzQ9gtIsyVXvLfcewcAL0wKs1htDy0UP7RQfPCh+ZBQwQjwQW14QkUIqfQm3x3UBoMJPAlyKiCNl0+qOVXbtWJW9Asrk19YmZziy+14wAMgD4HxgZwKSMPnMvOTIz6/Iqc6kKEVVneuTI+mOgoAPG1tZozL/kswmMB9IKcCMm3JEe89741VVZvdUVzfc7cv76AOPGltZowg4LadIXw0DxnMtl9/Uvnw4qnCHza64HOZ727MgKYaN/HS4STARyVHBwdzmN/K+n6UGEp1LLc5Vdu1YlYU1VEAnzErhv+PDRlPfFKp0psRQmwGlp8s8rk8dKlV+cC+ilO/zhWHBf4kRYS3Xd+TEeNzL8SHwLhfQLIv63s+KG9Jjg5GCHnPDIStH13++Zwpy5IjqA4E+JLaDjWRh7682mOzO55aPp3qoEbrw29aT9V0HX5kAdWBTC5eUU81mUwDAwMMBiMoyHVLP41G09vby2AwoqOjmUymy1mbzdbV1WU0GoVCYWiod1WMJi02A11qU15s6UMIHavq9IYZCGar/etGxb/un0NtGMDnzIoREBNOUmL4b59p/vPpht//xAfS6u8/qwlg0SGheh719VSHw3H06NGenp74+PiCggLnU2VlZVKpFMMwu93OZrPz8/Pj4m7tz6VQKIqKivR6PZ1Ot9lsYrF42bJldDrd+Q5QT/Uw75wJ9/l38m+a+974eTqFMQD/8E5pc7/RuuPuGVQHMpIVfy9/IDvh53OmUB3IZET9GKWamhqDwcBguNaYa2trpVLp/Pnzt27d+uCDD4aEhBQXF+v1evys1WotKipiMpkbNmzYtm1bfn5+a2vrxYsXPR4+uI13zkA4VdO1Ig06UwEJHluSJAhgvnLqKtWBDK2+sz9hx6k/r0uHhEoVinOqRqOpqKhYtGgRhrlGUlVVJRKJMjMzMQzjcrl5eXkWi0UqleJnm5ub9Xp9Tk4On89HCEkkkqSkpLq6OovF4unXALybwWz7Vta3dIaI6kCAn3hk8VRRMPulwnqqA3F1+HL7059Vt762IiU6mOpYJi+Kc+rZs2cTExOdW3RxarVap9MlJCQQRwQCgUAgkMu/n/sol8sZDEZsbCxRID4+Hu9edX/UYFheOAOhsKZzZRpMSwVk2pqbGCvg7j4hpTqQW3afkFa0qv7361yqA5nsqMypdXV1SqUyJydn8CmNRoMQEghu64Tj8/lq9fdrg6nVah6P51y7xQvjFwKq4DMQiJlwASw65TPhCmu6VkLDLyDb5oXihLDAF4/XUfLX8U1m9pysr+3QIIR+9t6FhLDA19d56Q4Wkwpl4361Wu233367ePFiDocz+KzZbEYIsVi31XhYLBZ+HC/gciFe2GQyuStiMDoLk8I+2jz3eGVnl9rYrjJQu6yu1mitvKFaNG0ehTEAf/VgdsLHF9qeO1r76j2zPPl3nTeZ+fy7DpPV+p8t8+fCTuPewRM51WAwENVHGo0WGRmJEDp79mxUVJREIhnhwjGNScYL02g0l+P79+93frpp06bR3xOMDzED4SdvljX0aKdH8KiK5GRN5ypo+AVu86sF8Qcv3tjxec1rntrlEF/cnxgJ2D9gFgSwOEzqR5sCnCdyqkwmIya00On0bdu2yWQyuVyen59PdH86HA6TydTV1RUcHBwYGMhms9GgSqfJZCLqphwOx2g0upxFCOEXOoMkSqFNC8X7z7V47OtmsMLqzseXjvS7DYAJ2jA/DsNov/usxjNNr4OH1qsN5uOVnbBxm5fwRE6dMWNGYmIi/hivRxoMBoTQV1995Vysu7v72LFjOTk5aWlpQqEQIaRSqZwLqFQq/DhCSCgUNjY2Wq1WYhIOXpgoALzBL+dO2X1Cunt1CodJv3NpsqkM5qtd2uypsBgIcK9fzp1Cp6GnDlW/8fP06nbNsaoO5E2LiAFP8kROZTAYLtNPp02bNmXKbdOnDh8+LBKJFi9ezOVyEUI8Hk8oFMpksrlz5+JpWKFQaLXalJQUvHxcXNy1a9daW1uTkpLwIzKZjMVi4Q3LwHtsyknYf7710bypnv/ThdVdK9NhdBLwhJ/NmYJhtPs+uHC1W4f3dLppEbG1mTFHKzvUhltVVcqH1gNn1LTCs1gs/u1oNBqDweDz+cS4pKysLJVKVVZW1t/f39PTU1JSwuVyk5OT8bNisVgoFJ4/f769vV2n0125cqWtrS0jI8NlHSVAuU054v0U7VQDnanAk5LCeVXt/XhCRW7bxnxWDP+Zu6bTse8HjsAmM97GK9b7HZJEItHpdJcvX66vr0cI8fn8FStWEN2lGIYVFBQUFxcXFhbiT9PS0jIyMqiMGAxFxGPPTQjx/LYwvTqTTKGfJ4bBkMBDjlV16E1W5yMq9/R0nqzufOmnKS0KPYJNZryPt+TULVu2DD6YkZGRmpqqUqkYDEZIiOuXY3Bw8Lp169Rqtclk4vP5Q87JAd7gwZyEP3/R4OGcerK6axU0/AK/82V9TyCbcd/8eKoDAUPz9hHYTCZTJBINTqgEgUAQEREBCdWbzU0IGbDY6jo8uhwHLJ8EPMwzi4jtOSndtSqF3HsCEnl7TgX+YVN2wv5vWj3257o0xk71QFY8DAIHnuOyiBhCiPSezn3nWpanRMYKuSTeE5DLW9p+gX+7Nyt290mpdlUKj+OJj9ypms4VUEkFHkcsIoYQYjOxUzXdJK4j5nCgP5yqb/njCrJuCNwBcirwEHwA8K9/7IkVGE7WdL20GtrHAAWctzHf8K9vv7neR9YMaWj19QnQ9gs8BJ+o6oE/JFcN9OlM6VNgWRlAsXfuy3rswBVSbtXWZyhtuPlgdgIpdwPuAzkVeIgwgLVoWtjxKrfvTw6jk4CXEAQwf3/XjOeO1E78VlBJ9RWQU4HnbM4R73P/+g+wuRvwHhvmxd1QGs41907kJueae81W+9IZIrKiAu7j//2ppaWlxOMlS5ZQGAlInyKgIVTVrp7ttobZ1j69zmhNhVnwwGu8c1/mwj+X1uxaPu477DkhfWdjFokhAffx/5wKedSrbF4o3neu5e/r3bXiFazxC7xNMJf5XMHMce8Hd7DixtyEEIkoiPTAgDtA2y/wqNXp0eeae102qyJRYW3XSs8u2ATAHf1y7pQOtbG8STGOa/eckO6CQey+A3Iq8DT3rap/XaGzWO0zooLdcXMAJuLdjZmP/ue7sV71p6Jr25dNYzPgi9pnwD8V8DT3TaqBNX6B1wpiM3auSv79ZzWjv+Sm1vT5d/JHF1OwTyIYN8ipwNOC2Iy7UiM/uyIn/c6wfBLwZj+fM6Wn3/h142hbgKHV1xdBTgUUcEfzb0OPFqPRYCgH8GbvbMx8bHQtwJfbVD39Rg/v5gQmDnIqoEBKdHAgm1HRoiTxnoXVnSvToZIKvFogi7F7dfLvRtEC/NJJ6U5Y5MEHUZZTTSaTepDBxTQazfXr19va2iwWy+CzNptNLpc3Nzf39fW5P2RApgezEz4kdacaWOoB+ISfzZnSqzWVNtwcoczRyo6p4UFpsTDN2vdQNj+1qampvLzc5eDDDz+MYbfSfFlZmVQqxTDMbrez2ez8/Py4uDjirEKhKCoq0uv1dDrdZrOJxeJly5bR6XQPvQAwMQWzovacrO/pN0YEk7D3bX1nP5dFF4cFTvxWALjbOxszM1/68uof7hquwJ6T0rNPw8R6n0Txmg+rVq1iMpnEU+eEWltbK5VK58+fP3v2bJPJdPr06eLi4vXr1wcGBiKErFZrUVERk8ncsGEDn89vamoqKSm5ePFidnY2BS8DjMuDOQkfnm995u4ZE7/VyZrOVTA6CfgILpP+8prUpw5Xv/Gz9MFn/1bS9MCCBEEAc/Ap4P0o7k8NDw+PcOJ8qqqqSiQSZWZmYhjG5XLz8vIsFotUKsXPNjc36/X6nJwcPp+PEJJIJElJSXV1dUM2EQPvROLyv9DwC3zLvVmxaoO55KprC7DWaP2gXPbbZdMoiQpMHPVjlOx2++CDarVap9MlJCQQRwQCgUAgkMu/n4Ahl8sZDEZsbCxRID4+3mazdXV1uTleQBo2A1ubGftJxY0J3qdGrhEGMKeEBJASFQCeMeROcLtPSnfD0CRfRnFO/eSTT95///0PPviguLhYo9EQx/HHAsFtK63z+XxiHJNarebxeM5txXhh55sA70fK+g+wuRvwRWwG9se1aU8eqiKOSDv7r3X135sVO8JVwMtR1p/KZDIlEklERASDwbh58+a1a9fkcvm6deuCg4MRQmazGSHEYrGcL2GxWPhxvACHw3E5ixAymUweegGADNMieGFBrG+u92VPDR33TU5Wdx15bAGJUQHgGWszY/5X2/Wv8pZO9QBC6FKrEjZJ9XWeyKkGg4GoPtJotMjISITQ9OnTp0+fjh+cOXOmWCw+derUlStXnLeRcTgco/8reGEajeZyPDc3d3DhwUOOAVXw9R/GnVMrb6gj+ewoPpfcqADwjA3zYzf/+wpyIIQQk0E324boCwM+xBM5VSaTETmMTqdv27ZtcJm4uDiBQED0hrLZbDSo0mkymYi6KYfDMRqNLmeJC51B+vRyy5Ijdp+UdqgGYoTjyYsw4hf4rup2zdOHa9EPdQeL1fbEwcqPtsydFeOuDYaBu3kip86YMSMxMRF/PLgeeSsUBoNo2hUKhQghlUrlXEClUuHH8QKNjY1Wq5XBYBBniQuBb9mcI/7TFw2hQSyE0NrMmFmj21G8ul1zrKrj04ob790P2zUDn3SsqsNl30OVwXy8shNyqu/yxBglBoMR8AMud+i6iEqlUiqVISEh+FMejycUCmUyGdH8q1AotFotseZDXFyc3W5vbW0l7iCTyVgsFt6wDHzL1HDuiZqO/edb9p9vuX/fpXPNvXe8pKyxZ9O/K/afbxmw2LZ/Wj2aSwAAwN0oG/d76tSpq1evdnV1KRSK+vr6kydPIoQyMjKIAllZWSqVqqysrL+/v6enp6SkhMvlJicn42fFYrFQKDx//nx7e7tOp7ty5UpbW1tGRgaso+Rzqts1Tx661fyl0pueOFhZ2zHEQpXOl2z/b41SZx79JQB4obWZMYKA20Zi8rmsezJiqIoHTBxl435NJtPZs2eJpwKBIC8vz7mWKZFIdDrd5cuX6+vrEUJ8Pn/FihVEdymGYQUFBcXFxYWFhfjTtLQ055QMfMWQzV+//bR6RhTPYnNYbHaLzW62OSxW+w+P7QqtWWu0uFwCLWbA58yK4f9jQ8YTn1Sq9GaEEJ/LfHdjRsro+j6Ad6Isp65du9ZkMul0OovFEhAQgE+hcZGRkZGamqpSqRgMBtEsTAgODl63bp1arTaZTHw+32VqDfBpsULuXalRTDqNSceYdIxFpzEZ2A+PsXfOXv/sSjvVMQJAgoVJYR9tnnu8shMhdE9GDCRUX0fler9sNnvwMF0XTCZTJBKNUMBlXQjgc9Zmxhyt7FAbblVV+VzW734yfYQvlwey47+62uNyCbSYAR81K0YATSx+g/q1CcEkhzd/CQO/71UaTfPXOC4BAAAPoI1pXQWfk5ubC/NTfUJth3qszV/juAQAANyK4r3eAMCNo/kLWswAAN4G2n4BAAAAckBOBQAAAMgBORUAAAAgh//3p5aWlhKPnTe9AQAAAMjl/zkV8igAAADPgLZfAAAAgByQUwEAAAByQE4dldzcXKpDmFzgDfc8eM89DN5wz/PAew45FQAAACAH5FRP279/v1fdx2tvRRYvfHVeGBKJvPPVeeetyOKFr84LQ/IMyKm3Tbbxhvt45628MCQSb+WFIZF4Ky8MicRbeWFI3nkrLwyJxFt5T0iQUwEAAAByQE4FAAAAyOH/e71RHQIAAAC/MsIWon6eUwEAAACPgbZfAAAAgByQUwEAAAByQE4FAAAAyOH/+9JMkM1m6+rqMhqNQqEwNDSU6nD8ikaj6e3tZTAY0dHRTCZz5JIuHf8cDofD4bg5QD9kMBjMZnNAQACLxbpjYaPR2NXV5XA4RCJRUFCQB8LzP2az2WAwsFisgICAkUvCh3zizGZzb2+vwWAIDAwMCwsb+VsFR/qHHHLqSBQKRVFRkV6vp9PpNptNLBYvW7aMTqdTHZc/KCsrk0qlGIbZ7XY2m52fnx8XFzdc4SNHjhiNRucjWVlZ8+bNc3+YfmJgYKC0tFShUBgMBoRQXl7ezJkzR77k2rVrZWVldrudRqM5HI65c+dmZWV5JFg/UVZWJpfLNRoNQkgikeTn549cHj7kE/TFF1+0tbXZ7Xb8KZfLXbBgwfTp00e4xB0fcsipw7JarUVFRUwmc8OGDXw+v6mpqaSk5OLFi9nZ2VSH5vNqa2ulUun8+fNnz55tMplOnz5dXFy8fv36wMDA4S5JSkpKS0sjno5QEgxmtVoNBkNCQgKTyayurr5jeYVCcfbs2YSEhKVLl9Lp9AsXLlRUVISGhiYkJLg/WD+hVqtFIlFKSsqFCxdGeQl8yCdCp9MtWLAgPj4+ICBAqVSWlZWdOXMmODg4KipqyPJu+pBDf+qwmpub9Xp9Tk4On89HCEkkkqSkpLq6OovFQnVoPq+qqkokEmVmZmIYxuVy8/LyLBaLVCod4ZKAgIAIJ9AUOSY8Hm/dunWLFy8Wi8WjKV9TU4Nh2JIlS1gsFp1Oz8nJCQoKqqqqcnec/mT16tX5+fnp6emjvwQ+5BNx7733pqWl8fl8JpMZERGxdOlShND169eHK++mDznk1GHJ5XIGgxEbG0sciY+Px7tXKYzKD6jVap1O5/xjUCAQCAQCuVw+8oUOhwOmU3uGXC6Piopis9n4UxqNFhcX193dDT8o3Q0+5ONGo9Gcn+K/SGw223Dl3fQhh7bfYanVah6Ph2G3fnYIBAKEEN5BAsYNfwPxN5PA5/O7u7tHuKqhoaGurs5utwuFwtTU1NTUVPdGOYlZLBaDweBSoxUIBA6Ho7+/H0bquQ98yEnU3NyMEHKuFDlz34cccuqwzGazy6A7fKikyWSiKCI/YTab0Q9vJoHFYuHHhxQWFhYZGcnj8YxGY0NDQ3l5uUajycnJcXusk9Jw/0AIPvzuBB9yEqnV6m+//TY6OjoxMXHIAu77kENOHQO8TcalhQGMz5gauFatWkU8TktLO3HiRG1t7axZs4KDg90QGhgCfPjdDT7kZNHr9adOneJwOMuWLRvTJ5aUDzn0pw6Lw+G4DG3Hf78Q7e9gfPA30OXHoMlkGuVUPAzDUlNTHQ5HT0+PW+Kb9Ib7B0IIwXRJz4AP+bgZDIYTJ07Y7fbVq1ePMCfYfR9yyKnDEgqFWq3WarUSR1QqFX6cuqD8Af4G4m8mQaVSjf6NxacIExPRALkYDAaPxxv8D4RhGNSZPAY+5OMwMDBw4sQJi8Xy05/+lMfjjVDSfR9yyKnDiouLs9vtra2txBGZTMZisSIjI6kLyh/weDyhUCiTyYjmX4VCodVqiTUfHA6HyWQaYcAePj4eBsuQyGKxOP9mj4uL6+np0el0+FOr1Xrjxo3Y2FhY8IQs8CEn3cDAwPHjx00m0+rVq4fMi2az2XlMr5s+5PTdu3dP5Ho/JhAIZDJZS0tLaGgonU6vra2tr6+fM2dOTEwM1aH5PDabXV9fbzAYQkJC1Gr1mTNnaDTa0qVLGQwGQqivr+/AgQMIIfytvnbtWkNDg8PhsFqtSqWyoqKiqakpLi5u9uzZFL8Mn9LY2Hjz5s2enp7u7m42m200Gnt7e0NCQvCR7V9++WVpaWlWVhbemSQQCOrr67u7u0UikdlsLi8v7+3tXbJkyci//YEzuVze0dHR29vb1taGf7B7e3s5HA7e6ggfctIdOXJEpVIlJydbrdbeHxiNRnyBAYTQhx9+2N7eTqwg5qYPOYxRGhaGYQUFBcXFxYWFhfjTtLS0jIwMquPyBxKJRKfTXb58ub6+HiHE5/NXrFgxXEc1g8FoaGioqanBn2IYNnPmTBgPOVbnz58nxgc0NDQ0NDQghMRi8ZC/yvl8/l133XXmzJlDhw4hhFgs1tKlS4dbjwYMSSqVymQy/HFPTw/eM7p8+fIhv7LhQz5BdrtdqVQihFyWCYuPj58yZcqQl7jpQw57kt+ZWq02mUx8Ph8GaJDLYrGoVCoGgxESEjJySYfDodVqBwYGMAwTCASjWRobTBz+PeVwOEJCQqDV193gQ04J0j/kkFMBAAAAcsAYJQAAAIAckFMBAAAAckBOBQAAAMgBORUAAAAgB+RUAAAAgByQUwEAAABywDpKwE/Y7fYbN25oNBqNRqPT6VgsFr54zaRiMBg6Ozs5HI7La1coFCqVapQLmX722WdnzpyZN2/ekGcVCsXrr78uEonCw8MnHnB3d3dfX59mGDQara6u7p///OfcuXNdtuVyH6PR+Oc//zkmJmbkBagtFstf/vKX0NBQUt4H4Dcm3ZcO8FdqtXrjxo3OR+Lj4x955JGFCxdSFdLodXV1vfnmm7/61a9mzZo1kftcuHBh9+7df/rTn7Kzs52Pv/baaw0NDfiKYHdUV1fX1NT0+OOPD3lWq9WWlJTk5eUlJydPJFTcrl278LW0hrRp06aQkJCSkpJf//rXgYGBE/9zo3HgwIH6+vqEhISRizGZTDab/eabb77//vuwBR4gQE4FfuWuu+76+c9/7nA42tvbP/jgg+eee+6tt97KzMykOq470Ol0Fy5cKCgooDoQT9uxY4fBYMAfnz59+ujRoy+88EJsbCx+RCQSMRgMiUTisf1w+vv7P/3009/+9rf4Msgju++++9atW3fu3Lnc3FwPxAZ8AuRU4FcEAoFEIkEITZs2LSYmZuvWrUVFRXhOVSqVbW1tWq02IiJCIpE4f2lqNBq73S4UCm/evNnU1BQREZGUlDTKS7q7u5ubm0NDQ4m1udvb29va2qZMmRIfH+8Sntlsvnr1qkajiYyMlEgkeP0GX6MRIdTf369QKBBCPB6PWAizv7//6tWrFotl6tSpzouRGgwGvV4fFhZmMBikUimNRps7d+7o3yiHw9Hc3NzV1cXn85OTk0deCU+n09XW1tLp9LS0tCELjDtIsVhMPK6srEQIJSYm4v+COKPRKBKJiHdeoVAEBAQEBgY2NTX19PSIxWJ8DXqHw3Ht2jW1Wi2RSMLCwkYZ3mBFRUUOhyMvL8/5oEajuX79ul6v5/P5SUlJxK6c4eHhGRkZR48ehZwKCJBTgd+aOnUqQqivrw8h9OKLL3799dc0Go3BYJjN5sTExNdee434en3ppZc0Gs38+fM//vhjh8Nx9913P/fcc6O5ZMGCBf/+979pNJrdbl+4cOFLL73017/+tbCwEMMwu91+7733bt++nYjn7Nmzf/nLXzQaDYvFMpvNKSkpr7zySmho6Hfffff0008jhF5//XW85FNPPbVmzRqHw7F3796DBw9arVYGg2G1WgsKCp5++mm8r/TIkSPvv//+zp07X3/99YGBgcjIyMOHD4/ynenu7n7++ecbGxuZTKbFYgkNDd25c+dwtfmysrJXXnnFYDCw2WwOh/PQQw85n3VfkLgvvvjijTfeOH78OL4o9C9+8YtVq1bJ5fJLly4hhGg02sMPP1xQUPDMM89cu3bNbrczmcznnnsuPz9/NOEN9tVXX6WnpzvvZf3555+/++67VquVy+XqdDo6nX7gwAFic6rs7Ox//OMfarVaIBCM6XUBfwU5FfgtfOsVvNaSmZm5adOm+Ph4DMOkUunOnTtfeeWVf/zjH0ThlpYWGo22d+/euLi4/v7+UV4SFBR06NChsLCw//73v++999727dvDw8OPHz/O4/Hefffdw4cPL1++HO93rKmp2bVrV35+/uOPPy4UCq9evfriiy/u3r377bffnjt37rvvvvvoo4+++OKLeI0HH4/zn//856OPPnrsscfuueceJpNZWlr68ssvi0SizZs3EzG8//77u3fvzsjIwGPG9fT0EDui4AYGBojHdrt9x44dCoXizTffzMzM7OjoePHFF5999tmPP/5YJBK5vIednZ179uyZOXPmnj17hEJheXn5H//4R+cC4w5y3AoLC9euXfvSSy/RaLSXX375n//8Z1lZWV5e3t/+9jeTyYS39i9cuBCv6I8mPILBYGhsbLz//vuJI0ql8u9///u6desefvhhFotlNBovXrzo3LObkpLicDiqqqpcqiUiwFAAAAbgSURBVLZg0oK5NMCvKBSKmpqa6urqwsLCPXv20Gg0vJPynnvuSUxMpNPpNBotNTX1gQceqK6uVqvVxIVWq3XXrl0SiYTNZuMjOe94id1u37lzZ2RkJIPBWL9+fVBQUFtb244dO0JCQphM5pYtWxBCV65cwQt/+OGH0dHRzz77LD6adObMmY888khVVZVMJsMwDN/njsVicblcLpdLp9PNZvOBAwfuuuuuX/7yl2w2G8OwH//4xwUFBUeOHHHe92LTpk3Z2dlcLjciIoI4+Ne//vWB29XW1hJnL1++fP369S1btsyZMwfDsClTpjz//PMGg+HYsWOD388TJ05YrdYXXnghNDQUw7DFixc7d/pOJMhxmzJlymOPPRYYGBgQEPDggw/abDYej7d+/XoOh8Pn89evX6/RaJqbm0cfHkEul9vt9sjISOJIV1eX3W7/0Y9+hP/K4XA4ixcvdq6S4u0WbW1tE39dwD9APRX4lZKSkpKSEoQQhmGJiYlPPvkkvquzwWA4ceJEXV2dWq222+1arRYhdPPmTeL7MTw8nBgag7vjJdHR0cQudRiGhYeHh4SEEP2ggYGBgYGBvb29CCGHw1FdXT1jxowvv/ySuD9+qqWlJTExcfALaWxs1Ov1dDq9qKiIOGg2mzUajUqlIv7ukA22TzzxhEvH59/+9rf29nb8MT7O1nlgMN4HOeT426tXr06ZMsU5zcybN49ov51IkOOWmppKjLPFk3RqaipxFj+Cv7ejDI+g0WgQQs77myYmJoaEhLz88ssrVqzIyspKS0tz6XjGB0/hFwKAIKcCP7Nq1ar7778fw7CQkBCiz8xoNG7btk2tVi9btiw9PZ3JZLa0tLS2tlosFuJCl/6w0VzC5XKdL6HT6S5HGAyGzWZDCJlMJrPZLJfLP//8c+cC06dPH24ndjyFV1VVNTU1uVyC33PIsHGxsbEzZsxwPuLcQajX6wdfKBAI8OMu8IE5zkecZ21OJMhxc36T8Q0vBx/B//oowyPg/xYu/8T/93//t2/fvqNHj3788ccBAQFr1qx5+OGHiTFTJpOJuBAABDkV+JnAwEDnShWuvLy8ra3t3XffJSo0d5ypOY5LRsBms1ksVmZm5q5du0Z5CV4BWr9+/erVq8f9d0e4c19fHzHQBn/qPNrWuXBXV5fzEaVS6YEgSTHW8EJDQxFCzs37CKHY2NidO3c6HI7GxsajR48ePHgwKipqzZo1+Fm8hjq4ygsmLehPBf4PHxoTFxdHHCkrKyP9khHQaLSsrKyKigqX72sC3l1nNBqJI9OmTQsODi4uLh6y528i8GZh55dTXV2tUqmGnCcza9asjo4O5/5C5wvdFyQpxhpedHS0QCC4fv364FM0Gm369Ok7duzgcDiNjY3EcbzjNiUlhayYga+DnAr8H94Q+t577/X19XV2dr799ts1NTWkXzKyrVu3Go3GJ598sqKiQqlUdnZ2nj9//oUXXsBbGqOjo7lcbmFh4YULFyorK3t7e5lM5tatW6urq3ft2nXt2jWNRtPa2nrq1Km33nprImEghNLT02fNmrVv376ioqLe3t7Lly+//PLLfD5/yMrc6tWrAwICdu7cefXqVaVSefjw4bNnzxJn3RckKcYaHj59tq6ujjhy6dKlt99+WyqVqtVqpVL53//+12g0Tp8+nShQU1MTHBzsfARMctD2C/xfSkrKgw8++NFHH508eRIhlJqa+sQTT7z22mvkXjIyiUTy1ltvvfHGG0899RR+hMlk4iNv8cc7duzYu3fvs88+a7PZ8Pmpa9asYTAY//rXv0pLS/FLgoOD77nnnnHHQHj11VdffvnlV199FX+akJDwyiuvDLm8bWho6B//+Mc9e/Zs27YNIRQZGfnb3/72D3/4A1HAfUGSYqzhrVy58je/+Y1MJsMHjnG53K+//vrQoUP4WQ6Hs3HjxlWrVuFP7Xb7mTNn7r77brwTFwCEEM07G20AIJ1Go+no6ODz+c79iKRfckfd3d29vb08Hi8yMnI0Y1vsdntbW5terw8JCYmIiCDx61uhUPT09AQHBzs3cQ/JarU2NzczGIzExMQhF+1zX5CkGFN4mzdvTk9P/81vfkMcuXnzZm9vL4fDiY6OJsZ1I4QuXLjw/PPPHzhwYOS1mcCkAjkVAABu+e677373u999+umnd9xwZtu2bWlpacNtNgAmJ8ipAABwm+bm5vDwcJdJRC7wuntCQoJzzRUAyKkAAAAAOWDcLwAAAEAOyKkAAAAAOSCnAgAAAOSAnAoAAACQA3IqAAAAQA7IqQAAAAA5IKcCAAAA5ICcCgAAAJADcioAAABADsipAAAAADkgpwIAAADk+H9QWyJHGYd1cgAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"plotmon.main_QtPlot"
]
},
{
"cell_type": "markdown",
"id": "b2e180c6",
"metadata": {},
"source": [
"## Manual analysis steps\n",
"\n",
"### Loading the data\n",
"\n",
"The {class}`~xarray.Dataset` contains all the information required to perform a basic analysis of the experiment.\n",
"We can alternatively load the dataset from disk based on its {class}`~quantify_core.data.types.TUID`, a timestamp-based unique identifier. If you do not know the tuid of the experiment you can find the latest tuid containing a certain string in the experiment name using {meth}`~quantify_core.data.handling.get_latest_tuid`.\n",
"See the {ref}`data-storage` documentation for more details on the folder structure and files contained in the data directory."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "6210845e",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
],
"text/plain": [
" Size: 480B\n",
"Dimensions: (dim_0: 30)\n",
"Coordinates:\n",
" x0 (dim_0) float64 240B 0.0 0.06897 0.1379 0.2069 ... 1.862 1.931 2.0\n",
"Dimensions without coordinates: dim_0\n",
"Data variables:\n",
" y0 (dim_0) float64 240B 0.5098 0.4986 0.3438 ... 0.2484 0.5301 0.5747\n",
"Attributes:\n",
" tuid: 20250528-190534-783-b8628f\n",
" name: Cosine experiment\n",
" grid_2d: False\n",
" grid_2d_uniformly_spaced: False\n",
" 1d_2_settables_uniformly_spaced: False"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tuid = get_latest_tuid(contains=\"Cosine experiment\")\n",
"dataset = load_dataset(tuid)\n",
"dataset"
]
},
{
"cell_type": "markdown",
"id": "868ba095",
"metadata": {},
"source": [
"### Performing a fit\n",
"\n",
"We have a sinusoidal signal in the experiment dataset, the goal is to find the underlying parameters.\n",
"We extract these parameters by performing a fit to a model, a cosine function in this case.\n",
"For fitting we recommend using the lmfit library. See [the lmfit documentation](https://lmfit.github.io/lmfit-py/model.html) on how to fit data to a custom model."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e8f19380",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAACztUlEQVR4nOzdd3hb5fXA8e+VZMl7b8eJnTjL2XuQkL0IBCgb2lBWf4VSRmgLlJZSaIG2zBZayoYWygqEMLIHJBCynb2cxE7ivfeSdH9/yFLixNuyr8b5PI+fFPlKOk5j6eh9z3uOoqqqihBCCCGEF9JpHYAQQgghhFYkERJCCCGE15JESAghhBBeSxIhIYQQQngtSYSEEEII4bUkERJCCCGE15JESAghhBBeSxIhIYQQQngtSYSEEEII4bUkERJC9ChFUXjsscc6fL+MjAwUReHtt9++4Ht33XUXc+bM6Xpw3exvf/sbffv2Ra/XM3LkSE1jmThxIr/5zW80jUEIVyCJkBBe6u2330ZRFBRFYfPmzRd8X1VVEhMTURSFSy+9VIMI2+fkyZO8/vrr/Pa3v9U6lFatXr2a3/zmN1x00UW89dZbPPnkk5rG8+CDD/Lyyy+Tm5uraRxCaE0SISG8nK+vL++///4Ft3/zzTecOXMGk8mkQVTt9+KLL5KcnMyMGTO0DqVV69evR6fT8cYbb7B48WIuueQSTeO5/PLLCQ4O5p///KemcQihNUmEhPByl1xyCR9//DFms7nJ7e+//z5jxowhNjZWo8ja1tDQwHvvvce1116rdShtys/Px8/PD6PRqHUoAOh0Oq6++mreffddZPa28GaSCAnh5W644QaKiopYs2aN47b6+no++eQTbrzxxguur6qq4oEHHiAxMRGTycTAgQN55plnLngzraur4/777ycqKoqgoCAWLVrEmTNnmo0hKyuLW2+9lZiYGEwmE0OGDOHNN99sM/bNmzdTWFjI7NmzL/hebW0tjz32GAMGDMDX15e4uDh+9KMfcfz48Q7/LGvWrGHKlCmEhoYSGBjIwIEDO7QVpygKb731FlVVVY7tyLfffrvVuqfza6kee+wxFEUhPT2dn/70p4SGhhISEsItt9xCdXX1Bff/73//y/jx4/H39ycsLIyLL76Y1atXN7lmzpw5ZGZmkpaW1u6fRQhPY9A6ACGEtpKSkpg0aRL/+9//WLBgAQArVqygrKyM66+/nr///e+Oa1VVZdGiRWzYsIHbbruNkSNHsmrVKn7961+TlZXF888/77j29ttv57///S833ngjkydPZv369SxcuPCC58/Ly2PixIkoisLdd99NVFQUK1as4LbbbqO8vJz77ruvxdi///57FEVh1KhRTW63WCxceumlrFu3juuvv557772XiooK1qxZw/79++nXr1+7f5YDBw5w6aWXMnz4cB5//HFMJhPp6el899137f47/s9//sOrr77Ktm3beP311wGYPHlyu+9/rmuvvZbk5GSeeuopdu3axeuvv050dDR/+ctfHNf88Y9/5LHHHmPy5Mk8/vjjGI1Gtm7dyvr165k7d67jujFjxgDw3XffXfB3KITXUIUQXumtt95SAXX79u3qSy+9pAYFBanV1dWqqqrqNddco86YMUNVVVXt06ePunDhQlVVVXXZsmUqoP7pT39q8lhXX321qiiKmp6erqqqqqalpamAetdddzW57sYbb1QB9Q9/+IPjtttuu02Ni4tTCwsLm1x7/fXXqyEhIY6YTp48qQLqW2+95bjmxz/+sRoREXHBz/bmm2+qgPrcc89d8D2r1dqhn+X5559XAbWgoKCZv8X2u/nmm9WAgIAmtzX3M9md//f0hz/8QQXUW2+9tcl1V155ZZO/g2PHjqk6nU698sorVYvF0uRa+89+LqPRqN55552d+ImE8AyyNSaE4Nprr6WmpoYvv/ySiooKvvzyy2a3xb7++mv0ej333HNPk9sfeOABVFVlxYoVjuuAC647f3VHVVWWLl3KZZddhqqqFBYWOr7mzZtHWVkZu3btajHuoqIiwsLCLrh96dKlREZG8stf/vKC7ymK0qGfJTQ0FIDPP/8cq9XaYiw95ec//3mT/546dSpFRUWUl5cDsGzZMqxWK48++ig6XdOXePvPfq6wsDAKCwu7L2AhXJwkQkIIoqKimD17Nu+//z6ffvopFouFq6+++oLrMjMziY+PJygoqMntgwcPdnzf/qdOp6Nfv35Nrhs4cGCT/y4oKKC0tJRXX32VqKioJl+33HILYCsybo3aTKHv8ePHGThwIAZDy7v/7f1ZrrvuOi666CJuv/12YmJiuP766/noo480S4p69+7d5L/tiWBJSQlg+9l1Oh2pqantejxVVZtNkITwFlIjJIQA4MYbb+SOO+4gNzeXBQsWOFZCupM9mfjxj3/MzTff3Ow1w4cPb/H+ERERjgSgu/j5+fHtt9+yYcMGvvrqK1auXMmHH37IzJkzWb16NXq9vtOP3VICYrFYWrxPS8/XXELYHqWlpURGRnbqvkJ4AlkREkIAcOWVV6LT6fjhhx+a3RYD6NOnD9nZ2VRUVDS5/fDhw47v2/+0Wq1NTmgBHDlypMl/20+UWSwWZs+e3exXdHR0izEPGjSIkpISysrKmtzer18/jhw5QkNDQ4v3be/PAraj5rNmzeK5557j4MGD/PnPf2b9+vVs2LChxcdvD/tqTmlpaZPb7atRndGvXz+sVisHDx5s89qsrCzq6+sdq2BCeCNJhIQQAAQGBvKvf/2Lxx57jMsuu6zZay655BIsFgsvvfRSk9uff/55FEVxnDqz/3nuiTOAF154ocl/6/V6rrrqKpYuXcr+/fsveL6CgoJWY540aRKqqrJz584mt1911VUUFhZeECecXTlp789SXFx8wWPYx2PU1dW1Gl9bgoODiYyM5Ntvv21ye1eaHF5xxRXodDoef/zxC7bvzl81sv+9dfYEmxCeQLbGhBAOLW1P2V122WXMmDGDRx55hIyMDEaMGMHq1av5/PPPue+++xw1QSNHjuSGG27gn//8J2VlZUyePJl169aRnp5+wWM+/fTTbNiwgQkTJnDHHXeQmppKcXExu3btYu3atc0mInZTpkwhIiKCtWvXMnPmTMftixcv5t1332XJkiVs27aNqVOnUlVVxdq1a7nrrru4/PLL2/2zPP7443z77bcsXLiQPn36kJ+fzz//+U969erFlClTOvPX3MTtt9/O008/ze23387YsWP59ttvOXr0aKcfLyUlhUceeYQnnniCqVOn8qMf/QiTycT27duJj4/nqaeecly7Zs0aevfuLUfnhXfT6riaEEJb5x6fb825x+dVVVUrKirU+++/X42Pj1d9fHzU/v37q3/7298uOJpdU1Oj3nPPPWpERIQaEBCgXnbZZerp06cvOBauqqqal5en/uIXv1ATExNVHx8fNTY2Vp01a5b66quvOq5p6aj5Pffco6akpFwQd3V1tfrII4+oycnJjse8+uqr1ePHj3foZ1m3bp16+eWXq/Hx8arRaFTj4+PVG264QT169Girf2/na+74vD3O2267TQ0JCVGDgoLUa6+9Vs3Pz2/x+Pz5x/jt/z+ePHmyye1vvvmmOmrUKNVkMqlhYWHqtGnT1DVr1ji+b7FY1Li4OPV3v/tdh34OITyNoqrSW10I4b5OnDjBoEGDWLFiBbNmzdI6HLexbNkybrzxRo4fP05cXJzW4QihGUmEhBBu78477yQ9Pb3JmBDRukmTJjF16lT++te/ah2KEJqSREgIIbqgoKCg1ePuRqOR8PDwHoxICNERkggJIUQXJCUltXrcfdq0aWzcuLHnAhJCdIicGhNCiC547733qKmpafH7zY0AEUK4DlkREkIIIYTXkoaKQgghhPBasjXWBqvVSnZ2NkFBQTKYUAghhHATqqpSUVFBfHw8Ol3L6z6SCLUhOzubxMRErcMQQgghRCecPn2aXr16tfh9SYTaEBQUBNj+IoODgzWORgghhBDtUV5eTmJiouN9vCWSCLXBvh0WHBwsiZAQQgjhZtoqa5FiaSGEEEJ4LUmEhBBCCOG13C4Revnll0lKSsLX15cJEyawbdu2Vq8vLS3lF7/4BXFxcZhMJgYMGMDXX3/dQ9EKIYQQwpW5VY3Qhx9+yJIlS3jllVeYMGECL7zwAvPmzePIkSNER0dfcH19fT1z5swhOjqaTz75hISEBDIzMwkNDe354IUQQgjhctyqs/SECRMYN24cL730EmDr8ZOYmMgvf/lLHnrooQuuf+WVV/jb3/7G4cOH8fHx6dRzlpeXExISQllZmRRLCyGEEG6ive/fbrM1Vl9fz86dO5k9e7bjNp1Ox+zZs9myZUuz91m+fDmTJk3iF7/4BTExMQwdOpQnn3yy1UnRdXV1lJeXN/kSQgghhGdym0SosLAQi8VCTExMk9tjYmLIzc1t9j4nTpzgk08+wWKx8PXXX/P73/+eZ599lj/96U8tPs9TTz1FSEiI40uaKQohhBCey20Soc6wWq1ER0fz6quvMmbMGK677joeeeQRXnnllRbv8/DDD1NWVub4On36dA9GLIQQQoie5DbF0pGRkej1evLy8prcnpeXR2xsbLP3iYuLw8fHB71e77ht8ODB5ObmUl9fj9FovOA+JpMJk8nk3OCFEEII4ZLcZkXIaDQyZswY1q1b57jNarWybt06Jk2a1Ox9LrroItLT07FarY7bjh49SlxcXLNJkBBCCCF6iNUCJzfBvk9sf1pbrt/tTm6zIgSwZMkSbr75ZsaOHcv48eN54YUXqKqq4pZbbgFg8eLFJCQk8NRTTwFw55138tJLL3Hvvffyy1/+kmPHjvHkk09yzz33aPljCCGEEN7t4HJY+SCUZ5+9LTge5v8FUhf1aChulQhdd911FBQU8Oijj5Kbm8vIkSNZuXKlo4D61KlT6HRnF7kSExNZtWoV999/P8OHDychIYF7772XBx98UKsfQQghhPBuB5fDR4uB87r3lOfYbr/23R5Nhtyqj5AWpI+QEEII4SRWC7wwtOlKUBOKbWXovn2g07dwTft4XB8hIYQQQri5zO9bSYIAVCjPsl3XQyQREkIIIUTPqMxr+5qOXOcEkggJIYQQomcExrR9TUeucwJJhIQQQgjRM/pMttUAobRwgQLBCbbreogkQkIIIYToGTq97Yg8cGEy1Pjf85/ucqF0h0LqsWcSQgghhEhdZDsiHxzX9Pbg+B4/Og9u1kdICCGEEB4gdREMWmg7HVaZZ6sJ6jO5R1eC7CQREkIIIUTP0+khearWUcjWmBBCCCG8lyRCQgghhPBasjUmhBBCiM6xWlyizqcrJBESQgghRMe50AT5rpCtMSGEEEJ0jH2C/Plzw+wT5A8u1yauTpBESAghhBDtZ7XYVoJQm/lm420rH7Jd5wYkERJCCCFE+7ngBPmukERICCGEEO3nghPku0KKpbXgAVX2QgghvJQLTpDvCkmEelpjlX1dRTY7Tb5Mrq11yyp7IYQQXso+Qb48h+brhBTb93twgnxXyNZYT2qssjeXZ/PrqEh+HhvFR0GBblllL4QQwks5cYL82sy1PLL5EWrNtU4NsSMkEeop51TZ64BoiwVVUXgiMpzXQ4Js17S3yt5qgZObYN8ntj/dpDJfCCGEh3DCBPkTpSd4ZPMjLD++nA+PfNhNgbZNtsZ6yjlV9jrgkaISgq1WXgsN4cXwUMp1Ou4vyULJ/L71IXQe0sBKCFdUUV/B8dLjHCs9RnpJOrlVudwx/A6GRg7VOjQhXE8XJshX1ldy74Z7qTZXMy52HDcNvqkHAm6eJEI95bzqeQW4p6SMYIuVZyPCeCs0mHKdjt9X5NDiPyF7A6vz92TtW2vtzMKF8HY15hpOlJ0gvSSd9NJ0R+KTV33hKZdjpcf4dNGn+Bp8NYhUCBfXiQnyVtXKbzf/lozyDGL8Y/jbxX/DoNMuHZFEqKe0UD3/0/IKgqxWHo8MZ2lwIJVnvuKpIVfio/dpemGbDawU29baoIVyAk2IRmarmZNlJ23JTskx0kttic+ZijOozf4uQYx/DClhKfQP7c/XJ7/mdMVp3tj/Br8Y+Ysejr7zVFXFYlUx6KX6Qbie1/e9zobTG/DR+fD89OeJ8IvQNB5JhHpKK1X2V1VWEWRVeTA6glUFu6jc8Euen/48fga/sxd1pIFVB7NzITxRrbmWn678KQeKDjT7/TBTGP3D+pMSmuJIfPqG9iXYGOy4ZnjUcJZsXMIb+95gYfJCkkKSeij6zjtVVM19H+7mYE45V43uxf9d3I/eEf5ahyUEAJvObOKl3S8B8LuJv2NY1DCNI5JEqOfYq+w/WoxtY+xsMmRVYU51NcaU+/lN5id8l/Ud/7fm/3hp1ktnX5Q9rIGVEN3twyMfcqDoACa9icHhg0kJS7ElPY1f7fkUOrv3bKYkTGFz1mb+tPVPvDbnNRTl/FMyrmP5nmwe+XQfFXVmAN7beoqFw+IkERIu4XT5aR7c9CAqKtcMuIYf9f+R1iEBkgj1LHuV/XnFzrlE8Mf6n7B30xgWTxvF+5l/YHf+bm5deSuvzHmFSL9Ij2tgJUR3qm6o5o19bwDw2wm/7fQLrqIo/HbCb7ny8yvZmrOVr09+zcK+C50ZqlNU15t5bPkBPtpxBoCxfcK44+K+bDlexKR+ZxO+t747SYDRwKKR8fj6yBa66DnVDdXct/E+KuorGB41nIfGP6R1SA6KqqrNb5QLAMrLywkJCaGsrIzg4OC279Ae53SWVgOjWVXZjz99fYQzJTUADO9bTUnQS5TWF9MnuA+vznmVeP8YeGFo2w2s7tsnNULC67229zX+vvvv9A7qzbIrluGj82n7Tq14de+r/GP3P4jwjWD5lcubbJ+5glvf3s76w/koCvxyRgr3zOp/QX1QZZ2ZSU+uo6LOTESAkZsm9uEnE/sQFWTSKGrhLVRV5cFND7Li5AoifCP48NIPiQno/g/t7X3/lko6Ldir7IddjZJ8MfOHJbB2yTSWzBmAr4+Ow5mB/GXyK8QHxJNZnsniFYs5UZHptAZWQniy8vpy3jrwFgB3jbyry0kQwE+H/JTkkGSKaov4+66/d/nxnO3eWf3pFebHe7dPYMncgc0WSesUuHtmCvEhvhRV1fP3dce46On1/OrjPRzKKdcgauEt/nvov6w4uQKDYuDZ6c/2SBLUEbIi1IZuWRFqxZmSanadKmXRiHjyqvL42ZqfcaLsBGGmMP41518MyTveTB+hBFsSJEfnheCl3S/x773/JiU0hU8u+wS9kz4cbMvZxm2rb0NB4f2F72vaW6i0up7dp0uZMTDacVuDxYpPO06JmS1WVh7I5Y3NJ9l9qtRx+x8XDeHmyUndEK3wZttzt3PH6juwqBYeGv9Qj/YLau/7tyRCbejpROh8m45n8H9r7kTvdwZfvT//nP0S46JHy9BWIZpRXFvMgqULqDZX8/z055ndZ7ZTH/+3m37LFye+YHD4YP638H9OS7I6YtvJYu79YDdFVfUsu+siUuM7/7q061QJb2w+yZoDeax7YBqJ4bai6pyyGsL8jVJHJLoktyqX6768juLaYi7teylPTnmyRw8byNaYh6isNqHP+znmqr7UWqq5fdX/sezYesfWGslTJQkSotFb+9+i2lzN4PDBzOo9y+mP/8DYBwgyBnGo+BAfHPnA6Y/fGotV5YW1R7n+1S3klNWSEOrX9p3aMLp3GC/fOJqtv53lSIIA/vD5AX761jasVvmcLDqnzlLH/Rvup7i2mEHhg3h00qMue+JSEiEXt2BYHBsfmM9lMY9irhiMlQZ+t+VX3PflG9SZZcaYEHYF1QX87/D/ALh71N3d8qIb4RfBfaPvA+Afu/9BfnW+05+jOTllNdz42g+8sPYYVhV+NDqBL345pUurQecKCzA6/ndNvYVvjxXww4li3tt2yimPL7zPU1ufYn/RfkJMIRf2xXMxkgi5gYhAE3+9agzvL/oXQeYJKIqVtYUvsvDNZ7DIJzYhAHht32vUWeoYETWCqQlTu2048dUDrmZ45HCqGqr42/a/OeUxW7P2YB4LXtzE1pPFBBj1PH/dCJ67diSBpu7pfuJn1PPQ/EEA/GXFYXLLtJsKLtzTJ0c/YemxpSgo/HXqX+kV1EvrkFoliZAbGdU7gk23/JvxEZehKCpFvh9RUV+hdVhCaC67MpuPj34MwC9H/RLl0Be2dhPvXApLb7P9+cJQ27y+LtIpOn438XfoFB0rM1byfdb3XX7M1hzJq6C0uoGhCcF8ec9UrhzV/W8qP5mUxKjeoVTWmfndsv1IKalor70Fe3ly65MA3DP6HiYnTNY4orZJIuRm9Do9ry/8M31D+mJW61mduVLrkITQ3Kt7X8VsNTM+djwTSvJsHdzPH0ljH07shGRocMRgbhx0IwB/2vonas3dt2ry82n9eOLyISy9czLJkQHd9jzn0usU/nLVcHz0CmsP5bFif26PPK9wb4U1hdy/8X4arA3M6j2L24bepnVI7SKJkBtSFMXRKfezY59JQaPwaqfKT7EsfRkAvxxxVxvDibENJ27PNlkbW2t3j7qbaL9ox1BWZ9pwOJ/aBtvz6XUKP5mUhMnQs4ciBsQEcef0FAAe/fwAZdUNPfr8wr00WBv41Te/Ir86n+SQZP500Z9ctjj6fJIIuanL+l2GQWdgf9F+pr/4Pw5kl2kdkhCa+Oeef2JRLUxNmMrImur2DyduzcHlbW6tBfgE8OD4BwF4Y98bZJRldP2HAQ5ml3PrO9uZ/dw3VNRqm3z8YkY/+kUFoFMgo6hK01iEa3tux3PszNtJgE8AL854kUBjoNYhtZskQm4q3DecGYkzAMjjW/7w+QHZxxdeJ70kna9PfA3AL0b9wjnDiQ8ub/fW2pw+c7go4SIarA38aeufnPI7+NSKQ6gqjOodRpBv17tid4XJoOffPxnDmiXTGJEYqmkswnV9cfwL/nvovwD8ecqfSQ5J1jiijpFEyI1dmXIlAD4hu9lxqoBlaVkaRyREz/rnnn+iojK792yGRAzp+nBiq6VDW2uKovDI+Ecw6U1szdnKipMrzj5OJ06sfXO0gE3HCvHRK/x67sD2/SzdLCU6iBA/bRMy4boyyjJ4fMvjANwx7I5u6d/V3SQRcmOT4ycT7R+Noq/GEHiQJ78+rPlSuhA95WDRQdZkrkFB4a6Rd9lu7DPZNnz4gnl8doptJE2fFk6yZH7f4a21xOBE7hh2BwB/2/E3yvd+2KkTaxarylNfHwJg8aQkekf4t3p9T1NVlU93neHlDelahyJcyMdHP6bWUsv42PH8YuQvtA6nUyQRcmN6nZ7L+10OQHDULgoq6vjHenmREt7h5bSXAViQvID+Yf1tN+r0XRtO3MmttVuG3kJScBKFNYX845sHO3Vi7dNdZzicW0Gwr4FfzkxpXxw9aGdmCUs+2sNza46yP0tqEgVYrBZWnrSdXL5p8E2ajJxxBkmE3NyV/W3bY2bTERRDCW9uPkl6vvQWEp4tLT+Nb898i17Rc+eIO5t+M3URXPsuBMc1vT043nZ7a8OJO7m1ZtQb+d343wLwYVAgB4zG8+7Q+om1mnoLz64+CtgmxIf6n39/7Y1NCmfh8DgsVpWHPt2L2WLVOiShsZ15O8mvySfIGMSUhClah9Npkgi5ucSgRMbHjkdFZWD/w5itKl/uzdE6LCG61UtpLwGwqN8ikkKSLrwgdRHctx9u/hKuesP25337Wk+CoEtbaxPqzSysrEJVFB6PDOPCdKflE2sVdbaGiQmhfiye1MzP4yIeu2wIIX4+7M8q583vTmodjtDY1ydtBxXm9pmLUe96yXt7SSLkAeyrQg1+23ht8Wjumz1A44iE6D7bcraxNWcrBp2Bn4/4ecsX6vQdH07cla21yjx+VVRCkMXKQZOJD4NaOD7czPZbdJAvr988jq/umeLSE9+jgkw8snAwAM+tOUqmHKn3WvWWetZkrgFs29PuTBIhDzC792yCfILIr8khIFQ+pQnPpaoq/9j9DwCu7n818YHxzn+Szm6tBcYQabVyb0kpAP8ID6VA38xLbCvbb664JXa+a8b0YnK/CGobrPz2s33StsNLfZf1HeX15UT5RTE2ZqzW4XSJJEIewNfgyyV9LwFg2bFlABRW1rH2YDsLP4VwE5uzNpNWkIZJb+KO4Xd03xN1ZmutcVvt6ooqhtXWUanT8bfwsHMuuHBb7URBJQ9/upf8cvcZbKooCk/9aBgmg47v0ovYdapE65CEBuzbYvOT57ttkbSdJEIewj5yY92pdRzIyWHGMxv5xfu7OF1crXFkQjjHuatB1w+8nmj/6O59wo5urTVuq+mB3xeVoFNVVgQGcNzHQEvban9ZeZj/bTvNH5Yf6LYfozv0iQjgz1cO46P/m8SYPuFahyN6WHVDNRtPbwRgYfJCTWNxBkmEPERqRCqDwgdRb60nrWQ9wxJCqDNbeeLLg1qHJoRTrD+1nkPFh/Az+HHrsFu1Dqd5jdtqg30jmVJjW+VZG+Df7Lba9oxiVh3IQ6fAkjnuV9d39ZhejE+WJMgbrT+9nlpLLX2C+5Aakap1OF0miZAHsXea/iz9M/5wWSp6ncLqg3l8c7RA48iE6BqL1eI4KfbjwT8m3NeF34Abt9Vmj7Rt3a1LHHbBtpqqqjzZ2DzxunGJ9I8J0iRUZ8ksqmJHRrHWYYgeYh9rsyB5gdsMVm2NJEIeZGHfhRh1Ro6UHMHsc5qbG4/h/nH5AerN0vNDuK9VGatIL00nyCeIm4fcrHU4bdPpmT7qZ+gUHYcqT3OmqmlLi6/35bL7VCn+Rj33u/kpzx9OFDHvhW/55f92S2d7L1BSW8KW7C2A+58Ws3O7ROjll18mKSkJX19fJkyYwLZt29p1vw8++ABFUbjiiiu6N0ANhZhCmNXHNufls2Ofcd+c/kQGGjlRWMVb0vNDuCmz1cw/9/wTgJuH3EyIKUTjiNonzDfMcZpm3al1jtvrzVb+uuowAHdM7Ut0sK8m8TnLiF6hRAf5klNWy99WHdE6HNHN1mSuwayaGRw+mL4hfbUOxyncKhH68MMPWbJkCX/4wx/YtWsXI0aMYN68eeTn57d6v4yMDH71q18xderUHopUO/ai6a9PfI3RYOHB+YMA+Pu6Y+S50ckUIey+OP4FmeWZhJnC+HHqj7UOp0PsAyjXn1rvuO2D7afILKomKsjEzy52/zcSP6Oep340DID//JApW2Qe7qsTXwG2HQhP4VaJ0HPPPccdd9zBLbfcQmpqKq+88gr+/v68+eabLd7HYrFw00038cc//pG+fd3/Ract42PHkxCYQEVDBWsy13DV6F6MSwrj6jG9XLpRmxDNqbfU8689/wLgtmG3EeAToHFEHTOz90wAdufvprCmEIDLRyTws4v78ut5AwkwGbQMz2kuSonkmjG9UFV46NN91Jkv7Kst3F9OZQ678nehoDAvaZ7W4TiN2yRC9fX17Ny5k9mzZztu0+l0zJ49my1btrR4v8cff5zo6Ghuu+22nghTczpFx+UptkGsn6V/hk6n8L87JvLHy4cS4uejcXRCdMyy9GXkVOUQ5RfFtQOv1TqcDosNiGVY5DBUVMeqUIi/D7+9ZDDXjk3UODrnemThYCIDjaTnV/LPDce1Dkd0gxUZKwAYEzOG2IBYjaNxHrdJhAoLC7FYLMTENO3KGhMTQ25ubrP32bx5M2+88QavvfZau5+nrq6O8vLyJl/u5op+V6CgsD13O6fLT2M4p7utqqpYrdIJVrgHe9O2m4fcjJ/BT+NoOse+PbYmY61Hd2EO9Tfy2KIhAPxzYzrHCyo1jkg4m/20mL2Br6dwm0SooyoqKvjJT37Ca6+9RmRkZLvv99RTTxESEuL4Skx0v09tcYFxTI63da/9LP0zx+1H8yq46fWtvLc1U6vQhGi3sroy0vLTAJjdZ3brF7sweyK0NXcb17y6jsO57vfhqr0WDovjmjG9uGt6CsG+sgLtSY6XHudIyREMOgNzes/ROhyncptEKDIyEr1eT15e07EReXl5xMZeuER3/PhxMjIyuOyyyzAYDBgMBt59912WL1+OwWDg+PHml24ffvhhysrKHF+nT5/ulp+nu9kHsX6e/jlmqxmwHXP9/ngRz6w+SnFVvZbhCdGmzVmbsagWUkJTSAhM0DqcTksKSSIxoC8qFtKKtnh0KwtFUfjbNSO4f84AooJMWocjnMi+OntR/EWE+oZqG4yTuU0iZDQaGTNmDOvWnT2GarVaWbduHZMmTbrg+kGDBrFv3z7S0tIcX4sWLWLGjBmkpaW1uNJjMpkIDg5u8uWOZiTOINQUSn5NPt9nfw/AjeN7MzgumLKaBjnmKlzeN6c3AjDNFAMnN4HVPQtwVVWlrtzWfTex13GG9wrVNiAhOkhV1bPbYsmetS0GbpQIASxZsoTXXnuNd955h0OHDnHnnXdSVVXFLbfcAsDixYt5+OGHAfD19WXo0KFNvkJDQwkKCmLo0KEYja4/5bkrjHojl/a9FLD1FAIw6HU8frltD/+D7afYn1WmWXxCtKZh/2dsPmErzJy+eym8cym8MBQOLtc4so775mgBJzNtJ1bLlf1UN3j+/D+zxcqqA7n8SUb8eIR9hfs4U3kGP4Mf0xOnax2O07lVInTdddfxzDPP8OijjzJy5EjS0tJYuXKlo4D61KlT5OTktPEo3sPeU2jj6Y0U1RQBMC4pnEUj4lFVeHOzNFkULujgctK+/DkVOoUwi4VhdY3buOU58NFit0qGLFaVp74+jLUujgBdNPXWOscKrScrrq7nF+/t4vXNJz26JspbrDhp+1AyI3EG/j7+GkfjfG6VCAHcfffdZGZmUldXx9atW5kwYYLjexs3buTtt99u8b5vv/02y5Yt6/4gXUT/sP4MixyGWTXz5YkvHbffclESAF/vz6FcWuILV2K1wMoH+cbf1m15anUNZ7tfNZ64WvmQ22yTLd15hiN5FYT4GbksxdZ3Ze2ptRpH1f2ig3yZk2r7gPq/rac0jkZ0hcVqcSRCntRE8VxulwiJjrEXTX967FPH0d2RiaEMiAmktsHKF3uytQxPiKYyv4fybL7xsx2Vv7i65rwLVCjPsl3nBpY3/n79cmYKC/vNBeCb09/QYPH8DyA3TugNwKe7s6ipd4/EVVxoW+42imqLCDGFMCnuwnpcTyCJkIdbkLQAP4MfJ8pOsKdgD2A72XHf7AE8c80IrhzlvqdxhAeqzCPTYCDD6INBVZlc08JYmMq85m93MW/fMo5nrhnBTyb1YXjUcCL9IqlsqGRr7latQ+t2F/WLpHe4PxW1Zr7YKx+43JX9tNjcPnPx0XtmSwRJhDxcoDGQOX1sPR/O7Sl0ybA4rh7TC3+jZ7T4Fx4iMIZv/G2rQWNq6whqqQFhYEzzt7sYg17H1WN6YTLo0Sk6R0+htZmevz2m0ylcP952Ovd/22R7zB3VWepYl2k7qe2Jp8XsJBHyAvai6ZUnV3rFiRXhxvpM5ptg23T5aRdsiwEoEJwAfSb3bFwdVFBRh9lyYb8geyK04fQGLG5S59QV14xJxKBT2H2qlEM5UjTtbjaf2UxFQwUx/jGMjhmtdTjdRhIhLzA6ejRJwUlUm6tZlbHKcXttg4XXN53g2le2yJBE4RLKzVXsalylnH5BIqTY/pj/NOhce4DwAx/vYdLT6/n2aEGT28fGjiXYGExxbTG783drFF3PiQoyMXdIDCN6hVBVZ9Y6HNFBX520TZpfkLwAneK56YLn/mTCQVEUrki5ArAVTdv56HW8vukk2zKKWXswX6PohDjr++zvMatWkn2jSPSPbvrN4Hi49l1IXaRNcO2UW1bL5mMFFFTU0Sei6VFjH52Pow/LulPrmrm353nu2pF8fvcUxiaFax2K6IDK+kq+Of0N4NnbYiCJkNdY1G8RekVPWkEaJw58BPs+QZ+5mWtGxwHw4Q73HCUiPIv9hXdav4Vw3364+Uu46g3bn/ftc/kkCOCz3VlYVRifFE6fiIALvm/fHlt3ap1HD2G18/Vx7dU70bz1p9dTb60nOSSZQeGDtA6nW0mlrJeI8o9iakh/NpYe5rO1v+aBklIA7g2M46juOlYfG09WaQ0Joe454Vu4P4vVwqasTQBM6zXNtv2VPFXjqDpGVVWW7joDwFVjmj+ROTl+Mn4GP3KqcjhYfJAhEUN6MkTNlNU0sPFIPpePlJOq7uDckRqKomgcTfeSFSFvcXA5Vx6xvcksDwrA3sXEUJnLK8YXmKts45MdZ7SLT3i9PQV7KKsrI9gYzMjokVqH0yl7zpSRnl+Jr4+OS4bFNXuNr8GXKQlTABwncjxdTb2FKX9Zz70fpHEgW0b7uLrCmkJ+yPkB8PxtMZBEyDs0duudWl1DhNlCsV7Pt/72lR8VUPiDz39YuiMDq9Xzl+qFa/rmjG1bbErCFAw691ysXrrT9mFi3pBYgnxb7rkyu/dswDu6TAP4GfVc3D8KkKP07mB1xmosqoWhEUPpHdxb63C6nSRC3qCxW68PsKiyCoDPggId31ZQiVeKiC9PY8uJIo2CFN7OUR/Ua5rGkXROndni6CR99ZherV57ca+L8dH5cLLsJCdKT/REeJqzd5petjub6no5QebK7E0UL+nr+atBIImQdzinC++VlZUAbPLzJV/ftIhxbm8I8fPMzqHCtZ2uOM3xsuPoFT0XJVykdTidYtTreO/2Cdw1vR+T+0W2em2gMZAJcbY5id6yKjSpbwRJEf5U1plltI8LO1Nxhj0Fe1BQmJ80X+tweoQkQt7gnC68yQ1mRtfWYlUUVgQ0Pdp767yJDE0I6enohODbM98CMCp6FCEm9/w3qCgKQxNC+M38Qeh1bReXOrbHvKDLNNg7TdtWhd7fJqdUXdXKjJUAjI8dT5R/lMbR9AxJhLxBn8m2HiyNDelmV9ka1W3x8228wD269QrP5e7bYp0xPXE6OkXHoeJDZFd6xwrJ1WN64aNX2HO6VIqmXdRXJ2xNFL1lWwwkEfIOOj3M/0vjfyhMbBxkucvXRP153XrT8yt5fZN31CwI11DVUMX2vO0ATEt0z0Tova2Z/OrjPew70/439wi/CEZH28YWeEtzxchAE/OGxKJvHLshXMvRkqOkl6bjo/Nx9LvyBpIIeYvURbauvMFxpDQ0EGG2UKPTsSf8bLfe8toGLnlxE3/66hD7s+TTmugZ32d/j9lqpndQb5KCk7QOp1P++8MpPtl5hrQzpR263+w+3rU9BvDreQP5/qGZ/HhiH61DEedZcXIFAFMTprrtFnVnSCLkTVIXwX37UW7+kolRIwH4YcrPHd16g319mDPEVk/0sXSaFj3EsS2WOM0tG7cdyC7jUE45Rr2Oy4Y33zuoJfZP3bvzd1NYU9gd4bmcPhEBxAT7tn2h6FGqqp5touhF22IgiZD3aezWOzH1WgB+yN3a5NvXjk0EYFlaNrUNMohVdC+ram3aTdoNLd2ZBcCc1BhC/Y0dum9sQCxDI4aiorLh9IbuCM+lZZeeP1hXaGVPwR6yq7LxN/i77e9iZ0ki5KUmxk0EYH/hfirqKxy3T0mJJD7El7KaBlYdyNUqPOEl9hXuo7i2mECfQEe9jDtpsFj5PM2WCLU0UqMts/o0zh7zki7TAFaryq1vb2fy0+tlG95F2IukZ/Weha/Bu1bsJBHyUrEBsSQFJ2FVrWzP3e64Xa9TuLpxVegj2R4T3cy+LXZRwkX46N2vh9XGIwUUVdUTGWhydE7uKPv22NacrZTXlzszPJel0yn4G219zKTTtPbMVjOrM1cD3rctBpIIeTV7Qzf7TBm7axq74n6XXsTp4uoej0t4D/tYDXddireP1LhyVDwGfedeTpNDkukX0g+zanb0U/IG9k7Tn6dlU1Unnaa1tDVnK8W1xYT7hjveF7yJJEJebFLcJODCRCgx3J+LUiII9fchPb9Si9CEF8ipzOFoyVF0is4xhNTdDE8MoU+EP1e1MVKjLd64PTapbwTJkQHSadoF2EdqzOkzBx+d+63MdpUkQl5sbOxYdIqOk2Unya1qWg/016tH8MPDs5gxKFqj6ISns68GjYgaQZhvmMbRdM5d01PY+KvpDIoN7tLj2LtMb87aTI3ZOwqIFUXhhvG2bfj3ZXtMMxarhQ2nbIX63jBpvjmSCHmxEFMIQyKGALal0XMlhPrh66Nv7m5COIU9Ebq418UaR9I1zjjyPyh8EAmBCdRaavk+63snROUerhrdC6Nex94zZVI0rZHDxYepaKggyCeIEVEjtA5HE5IIeTn76bHzEyE7VVU5llfR7PeE6Kzqhmq25WwDYHqv6doG0wmZRVV8vS+HOrNzWkwoiuIomvaWIawAEYEm5g2NBaR3mVa2NrZQGRMzBr3OOz/8SiLk5eyJ0A85P6CqapPvlVTVM/2ZjSz8+2ZKquq1CE94qB9yfqDeWk9CYAL9QvtpHU6Hvb/1FHe9t4tff7zXaY9pT4S+Of0NDZYGpz2uq7tjajJ/u3o4Dy0YrHUoXmlbru0Dyfi48RpHoh1JhLzciOgR+Op9Kagp4ERZ0xljYQFGAk0G6i1WPtudpVGEwhPZT0dN6+V+3aTN5/w+XDKsY52kWzMiagQRvhFUNFQ43py8wfBeoVwzNhE/o3euRmipwdrArrxdgG3avLeSRMjLmfQmRsfYGtmdf3oM4LpxZ3sKnb9iJERnWFWrWx+b35ReSH5FHWH+Psx04mECvU7PzN4zAe/aHjuXvMb0rAOFB6gx1xBqCqV/WH+tw9GMJELibD+h7AsToctHJGA06DicW8E+KWYUTnCo6BCFNYX4G/wZGztW63A6zN476PKRtt8NZ7KfHttwagMWq3eNuPnvD5nMff5b9p2R15meYl95HBc7Dp3ivemA9/7kwsFeJ7Q9bzsN1qa1CSH+PswfYitm/HC7FDOKrrOvBk2On4xR37HZXForq2lg9cE8wHbiydnGxY4jyBhEUW0Rewr2OP3xXdn2jGKO5VfKUfoedG4i5M0kERIMCh9EiCmEqoYqDhQeuOD79u2x5WnZ1NR716dU4XwbT28E3PPY/Fd7c6g3WxkQE8jQhK71DmqOj97HcYrO27bHbhhv6zS9PC2LSuk03e3qLfWk5acB3l0fBJIICUCn6JgQa9se25Kz5YLvT+obQa8wPyrqzKw/nN/T4QkPkleVx6HiQygoTO01VetwOsy+PXz1mF7dVuR9bpdpb6qZmZAcTt+oAKrqLSxPk07T3W1PwR7qLHVE+EbQN6Sv1uFoShIhAcDE+MZj9M3UCel0Co9emsoHP5vIJcNiezo04UG+zbKdFhsWOYxIv0iNo+m4p340jLVLpnHNmMRue47J8ZPx1fuSXZXNoeJD3fY8rkZRFG5sXBX6YLtsj3U3+7Dt8bHj3e7kprNJIiSAs3VCewv3Ut1w4aDVuUNimdg3wut/YUTXfHvalgi547aYXUp0IGEB3Vfb5Gfwc8xeW5vpXdtjV45KQKfA3jNlMvC5mznqg+K8uz4IJBESjRKDEkkITMBsNbMzb2er13rTcr1wnlpzraNFw/TE6doG00FWq0pZdc81OZzZ+Pfz/fGv4OQm8JITZBGBJsYnhwOw6kBuG1eLzqox1ziK8b29PggkERLnOLfLdHPKqht4bPkBFry4CYtVkiHRDlaL7Y183ydsS3uTWkstsQGxDAgboHVkHbLlRBHjnlzLw5/u6/4nO7iccV8+BMChqiwq370MXhgKB5d3/3O7gB+N6sXlI+MZEh+idSgeKy0/DbPVTIx/DL0DEhy/o96UdJ/LoHUAwnVMjJvI0mNLW0yEfI06Pk/LoqS6gW+PFshketG6g8th5YNQbit8/SYiDIKDmObf2+22WJfuPEO92Uq3h31wOXy0mFhUegXGccbHh92+JqaW58BHi+HadyF1UTcHoa1rxyVy7bjuq8ES59QH+cWhvDjM8TsKQHA8zP+Lx/87O5esCAkH+6yZoyVHKawpvOD7JoOeK0YlANJTSLSh8Q3d/gKrAt/4+wFw8b6v3Gp1o7LOzIr9tm2aq8c4v3eQg9ViSxyxrbaOra0DYIevyXEbKx/yyk/swrkc9UGH1zdNggDsSbcb/Y52lSRCwiHcN5xB4YMAHJPBz2fvKbTucB5lNd4zGFJ0wHlv6ABHjD7kGQz4Wq2Mr61zqzf0r/flUNNgoW9kAKMSQ7vviTK/b/KmdDYR8m28RYXyLNt1Hk5VVQ7llDu6eAvnqWqoYn/hfgAm1NY0c4X3Jd2SCIkm2qoTGhQbTP/oQBosKhuPSE8h0Yzz3tABNjauBk2sqcVXtbrVG7r9zfiqbuwdBEBlXpP/HFtbC8ABk5Hqc5/3vOs8UWZRNQte3MSDS/fKBy4n25W3C4tqIaHBTLy5pUTHe5JukERInMeeCG3J2dLi6bC5Q2IAOdUhWtDMG/W3frZEaFpNTavXuZrTxdVsPVmMotiOdnerwJgm/5lgthBnNmNRFNJ8TS1e54mSIgMYEBOI2aqy/rDr/ztxJ476oMZEu1Vu8DvqDJIIiSZGRY/CR+dDblUupyqab2o2N9XWVHHjkQJqG7xj6VR0wHlv1IV6Hfsa38gvrq5t8TpX9OmuLAAu6hdJfKhf9z5Zn8m2QlXOrv6MrTm3TkiB4ATbdV7APuNw5X75wOVMW3O3AjC+ph2JkBv8jjqDJEKiCX8ff0ZGjwRga87WZq8Z3iuE8cnh3DShtyRC4kLnvaFvalwNSq2rI9piwZ3e0G+YkMjvFg7mtinJ3f9kOr3ttA5g/7uzb4856oTmP227zgvMbUyEvjlaIDMOnaS8vpzDxYcBGG8I5dykuyn3+R11BkmExAXsc8daqhNSFIWP/m8SjyxMJdTfvaaHix5w3hu6/bTYtOpaHC+8bvKGHh3ky+1T+/Zcq4jURbYj8sFxwNmC6X0mIzVXve5VR5qHxAfTK8yP2gYr3xwt0Docj7AzdydW1UpScBLR85om3We51++oM0giJC5gnzu2NWcrFi85NSCcrPENvT44ju/9bKsZ06qrbStFXtALp0tSF8F9++HmL0lc9ArRxhDMisLeSO/qraMoimN7TOoRncNxbD523AVJt4MX/o5KQ0VxgSERQwj0CXQsow6JHNLsdfVmK1tOFNErzI9+UYE9HKVweamL2BMWQ83q24kwBDD4+qWQNMUtPmWqqsoDH+9hXFI4V45KwNenh2PW6SF5KgowpnQ7K06uYEfeDibETejZODQ2b2gsr28+yfaMYlRVdbtGnK7GngjZe8aRuggGLbSdDqvMs9UE9ZnsFr+jziQrQuICBp3B9okB2+mxlvxu2T5ufnMbH2yTSdGiebvy0wAYk3ARur7T3OYFdn9WOZ/uyuKJLw9qHYrjd3FH7g6NI+l5o3uH8e6t41n/wHRJgrqopLaEoyVHARgXc86g1cakm2FX2/50k99RZ5JESDSrrX5CADMG2uomVh3Ik0Gsoln2Ab5jYsZoHEnHrDlo24q5uH9Uz68GnWdszFgA9hbspc5Sp2ksPU2vU7h4QBRGg7xVddWOPFsinRKaQoRfhMbRuBb51yWaZa8T2p23m1pz88cs7S9Qp4qrOZJX0ZPhCTdgtppJK0gD3C8RWn3Q1j9lTqr2x4eTgpOI8I2g3lrPvoIeGPrqolRVlQ9cXWA/BSzT5i8kiZBoVnJwMtH+0dRb69mdv7vZawJMBi7uHwnA6gPe0XhLtN/h4sPUmGsIMgbRP6y/1uG02+niag7nVqDXKcx0gcHCiqIwNta2KmT/VO9t/r7uGNP+tpGdmSVah+K2HI0UJRG6gCRColmKorRre8zeXFFOdYjz2bfFRkePRqe4z0uNfTVobJ8wwgJcoz2EfXvMG+uEAE4UVHKquFpeZzqpsKaQE2UnUDibVIuz3OfVqdHLL79MUlISvr6+TJgwgW3bmh8OCvDaa68xdepUwsLCCAsLY/bs2a1eL5qyJ0ItNVYEmDU4Gp0CB7LLOVNS3VOhCTfg7vVBrrAtZmdPhPYU7KHB4n2zt+YPbewyfSBXtsc6wT5Ee1D4IEJMIRpH43rcKhH68MMPWbJkCX/4wx/YtWsXI0aMYN68eeTnNz/8c+PGjdxwww1s2LCBLVu2kJiYyNy5c8nKyurhyN2T/ajuwaKDlNWVNXtNRKCJsUnhAGw6VthjsQnXZlWt7MrfBcDomNEaR9N+FquKXqegU86udrqCfqH9CDOFUWupZX/Rfq3D6XEXD4jC10fH6eIaDuaUax2O22nSP0hcwK0Soeeee4477riDW265hdTUVF555RX8/f158803m73+vffe46677mLkyJEMGjSI119/HavVyrp163o4cvcU7R9Nv5B+qKiOX6TmPLRgECvuncr147yr4Zto2fHS45TVleFn8CM1PFXrcNpNr1N47/aJ7P79XHpH+GsdjoOiKI6VNW/cHvM3Gpg2IAqAVTJ7rMOkPqh1bpMI1dfXs3PnTmbPnu24TafTMXv2bLZsabnXzbmqq6tpaGggPDy8xWvq6uooLy9v8uXN7KfHfshuuU5odO8wBscFS58P4bArz7YaNDxqOD56H42j6bgQf9eL2dsLpuc5ukzLwYyOsA/Q1ik6t1qd7UlukwgVFhZisViIiWm6bx8TE0Nubvs+ITz44IPEx8c3SabO99RTTxESEuL4Skz07lWO9hRMC3E+R31QtPvUB9WbrRRVum6fHnud0O783TRYva9OaNagGAw6hSN5FZwoqNQ6HLdhX80fEjGEIGOQxtG4JrdJhLrq6aef5oMPPuCzzz7D1z7JuRkPP/wwZWVljq/Tp0/3YJSuZ2zMWPSKnlMVp8iqbLm26khuBfd+sJsHPtrTg9EJV6SqqlsWSn+XXsi4P6/lF+/v0jqUZvUP60+wMZgacw2Hig5pHU6PC/H3YdGIeG6a0Bu9Tlaf28teKC31QS1zm0QoMjISvV5PXl7TZdG8vDxiY1svanzmmWd4+umnWb16NcOHD2/1WpPJRHBwcJMvbxZoDGRY5DCg9dNjZquVz9Oy+WpfNjX1MqjVm52pPEN+TT4GnYFhUcO0DqfdVh/Mw6pCmAtuiwFNtja8dXvsuetG8ucrh9EnIkDrUNyCqp6t75T6oJa5TSJkNBoZM2ZMk0Jne+HzpEmTWrzfX//6V5544glWrlzJ2LHSP6Ez7KfHWqsTSo0LJiHUj9oGK98eK+ip0IQLsq8GDYkYgp/BT+No2sdqVVl7yN5N2nVOi53PPiPKGwumRcedqTxDTlUOBsXAqOhRWofjstwmEQJYsmQJr732Gu+88w6HDh3izjvvpKqqiltuuQWAxYsX8/DDDzuu/8tf/sLvf/973nzzTZKSksjNzSU3N5fKStlf7ghHP6HcrVhVa7PXKIriKGaULtPezR23xfacKaWgoo5Ak4GJfVs+TKE1e8H07vzdWKzeufJqtarsyChme0ax1qG4PPtpsWFRw/D3cZ1TkK7GrRKh6667jmeeeYZHH32UkSNHkpaWxsqVKx0F1KdOnSInJ8dx/b/+9S/q6+u5+uqriYuLc3w988wzWv0IbmlE1Aj8DH4U1xZzrORYi9fNHWL7/2Hd4TzMluYTJuH57CfG3CkRWtPYTXrawChMBtedvj0wbCBBPkFUNlRyuOSw1uFo4j8/ZHL1K1t4bvVRrUNxedI/qH3cKhECuPvuu8nMzKSuro6tW7cyYcIEx/c2btzI22+/7fjvjIwMx6C+c78ee+yxng/cjfnofRxvaq2dHhvbJ4zwACOl1Q1sk09rXqmguoBTFadQUBgZPVLrcNrNPlZjrgt1k26OXqdnVIxti8Nbt8fs89+2niyiuKpe42hcl6qqjkLpCbET2rjau7ldIiS00Z5j9Aa9jlmNL1KyPeaddubbtsUGhg8k2OgeBw1OFlaRnl+JQacwfaD2Q1bb4u1zxxLD/UmNC8aq4qjrEhfKKM+goKYAo87IiOgRWofj0iQREu1iT4R25u1sddbR3CGxpMYF0zdKTnV4o525ZwetuouIQCN/vWo4d81IIcTPNU+MncueCO3M3+m1dUL22WPSZbpl9vqgEdEjMOlNGkfj2gxaByDcQ/+w/oT7hlNcW8yegj0tTjCePTjapYZVip5lXxFyp/qgYF8frnWj8TCDIwbjb/Cnor6CY6XHGBQ+SOuQetz8obE8t+Yom44VUllnJtAkb2Xnk/qg9pMVIdEuOkV39hh9K9tjMmbDe5XVlZFekg6416BVd2PQnT0K7a3bY/2jA0mODKDeYmXjkeaHbnszVVUdK0JSH9Q2SYREu3Vk3EZVnZkN8gLlVXbn70ZFJSk4iUi/SK3DaZeNR/J5fdMJzpRUax1Kh3j73LFz23VsPlaocTSuJ700neLaYvwMfo6GuKJlsp4o2s2eCO0v3E9FfUWLc2tq6i2M//NaquotfPPr6dIF1ku4Y/+g97aeYs3BPCrrzNw3e4DW4bSbo04obydW1YpO8b7PtDdN6M2c1BhGJYZqHYrLsW+LjYwa6ZZDj3ua9/32iE6LD4ynd1BvLKql1SV5P6OeEY0vTnJ6zHu4W/+gmnoLmxq7oLtbXduQiCH46n0prSvleOlxrcPRRGK4P2P6hKGTuWMXsB+bHx8nYzXaQxIh0SHt3R5zdJk+KKc6vEF1QzUHiw4C7lMftDm9kNoGKwmhfqTGucdRfzsfvY/jSLS3bo+J5llVq+PfhMwXax9JhESHTIxvHLfRygBWOPsJe0dmCQUVdd0el9DWnoI9mFUzsQGxxAfEax1Ou6w+YEvS56TGuGWRv8wdg7LqBh7+dB/znv9Wutk3OlJ8hPL6cgJ8AkiNSNU6HLcgiZDoEPsnjONlxymsablIMT7Uj+G9QlBVWCdNzzzervyz22LukFRYrCrrD9uK+V29m3RLzi2YVlVV42i0EWDSs3J/DkfyKtieUaJ1OC7BXh80JmYMBp2UAbeHJEKiQ0JMIaSEpgCQlp/W6rX2Nxj7+ALhueyF0u7SSHHXqRKKquoJ9jUwLtl1h6y2ZljkMEx6E8W1xZwsP6l1OJow6HXMHmx7nVl1wIu34a0WOLkJ9n3CthMrAdkW6whJhESH2d/s7KsALZlrP96aXkh1vbnb4xLaqLfUs7dgL3D2NJOrO1FQidGgY+agaHz07vkyaNQbGR41HPDu7TFHl+kDud65MnZwObwwFN65FPPS29hZaPtdHFftXi0htOSerwBCU/ahj7vzdrd6Xf/oQJ760TDWLZmGv1GWaD3VwaKD1FnqCDOFkRySrHU47XLduN7s/v0cHlowWOtQusTb544BXJQSSYBRT05ZLXvPlGkdTs86uBw+Wgzl2QAcMhqp0ukIslgZ+NXDtu+LNkkiJDrMviJ0qPgQ1Q0tf+pQFIUbxvcmMdy/p0ITGrCfUBkdM9ot6oPsAkwGYkN8tQ6jSxyJkBfXCfn66JneOOx5pTdtj1ktsPJB4Oz/71v9bP+ex9XWogdY+ZDtOtEqSYREh8UFxBHjH4NFtbCvcJ/W4QiNuVv/oNoGz3ljGB41HB+dDwU1BZyqOKV1OJqZP+TsEFavSQgzv3esBNlt97UNVx1fWwuoUJ5lu060ShIh0WGKorS7Tgjgq7053Pb2dr5Pl1b4nsZitbA737ZF6i6J0A2v/cCCFzex90yp1qF0ma/B1zFCwZu3x2YMiqZ/dCBzUmNosHhJIlTZ9BBKA7C7MREaV1PX4nXiQpIIiY5pPJ0wqvFD9e68thOhzemFrDucz9f7c7o5ONHTjpYcpbKhkgCfAAaGDdQ6nDbll9ey+1Qph3LKiQl2720xO3sC6s2NFQNNBtYsmcbDlwzGaPCSt7XApm0f9plM1Oh0hFsspDQ0tHiduJCX/IsRTnHO6YTRP7wJwJ7sLZgPfNbq3eYNsf0irjmYh9XqJZ/WvIR9RXBk9Ej0Or3G0bRt7SFb76ARiaEekwhJPyEv1WcyBMcDtrq8bX621aCxNbWNb+wKBCfYrhOtkkRItM95pxNS6hsItFqpVhSOfv6zVk8nTOoXQaDJQF55HXs8YDtCnGXvH+Qux+bXNI58cdcmis0ZGTUSg2IgtyqXrMosrcPRVJ3ZwoYj+eSV12odSvfT6WH+Xxr/Q2G7ry2xH19bhz05Yv7TtutEqyQREm1r5nSCHhhRa9uH3u1ravV0gsmgZ/rAKECaK3oSVVXdqpFiVZ2Z744XAe43ZLU1/j7+pEbaRil48/YYwJ3/3cUtb23niz3ZbV/sCVIXwbXvUhccR5rpnELp4Hi49l3b90WbJBESbWvmdALA6MZEaJfJ2ObpBHtzxdXedLzVw2WUZ1BcW4xRZ2Ro5FCtw2nTt0cLqDdb6RPhT//oQK3DcSqZO2YzuV8EABuO5GscSQ9KXcSe69+iXqcQ5RNI0g2fwX37JAnqAEmERNtaOHUwqu7sipDaynUA0wdG4aNXOF5QRXp+ZTcEKXqafTVoeNRwjHqjxtG0bU3jauScwe45ZLU159YJebNZjeM2tp4opqK2oY2rPceOxlq9sb2movS9WLbDOkgSIdG2Fk4dDK2rx6CqFBgMnDHoWz2dEOzrw9T+UYxPCqeyTsZteALHtliM62+LASwcHscVI+NZMCxO61CcblT0KPSKnqzKLHIqvfd0ZnJkAMmRAZitKpuPeU+7DvuhBXep1XM1kgiJtp13OsHOT1VJrasHYHdoXJunE15bPJaPfj6JkYmh3RSo6Enu1khx1uAYXrh+FGP6hGkditMF+AQwONw2LsTbV4VmNnaZXn/YO7bHGqwNjll/o6JHaRyNe5JESLTtvNMJ53LUCfUd3+ZyrF7nWdsR3iy7Mpvsqmz0ip6RUSO1Dkcg22N29kRow5F8r2jXcbT4KDXmGoKMQfQL7ad1OG5JEiHRPo2nEwhuuq0wShcAQFp9SbsfqriqXuqE3Jx9W2xw+GD8fVx7lpyqqry+6QSHcso9us+ODGC1GZcUTqDJQGFlPQeyy7UOp9vZt8VGRY9Cp8hbemfISHDRfqmLYNBC2+mwyjwIjGFkzCD4eCbHy45TWltKqG9oqw/x2e4zPPDRHqb2j+KdW8f3TNzC6ewvvu6wLXYkr4I/fXUIk0HH7kfn4G/0zJe9UTGjUFA4VXGK/Op8ov2jtQ5JE0aDjmeuGU5SZAADY4K0Dqfb2UfcyLZY50n6KDpGp4fkqTDsakieSrh/FMkhyQCkFaS1efch8SFYVdhyoojqeimadlfuVCi95oDttNjU/pEemwQBBBuDGRQ+CJBVoflD4xgUG+xxpwPPp6qqIxFyh15erkoSIdFlHRnA2j86kIRQP+rNVr5PL+ru0EQ3KKop4mTZScA9XnzXHGo8Nu9BTRRbInPHvMuZijMU1hTio/NhSOQQrcNxW5IIiS6zL8nuztvd5rWKopw91eFNTc88iP0TaEpoSptboVrLKath75kyFAVmDvL8REgKps/69mgB9/xvt0d3mbZ/+BwSMQST3qRxNO5LEiHRZfZVgf1F+6k1tz3jZ+bgxlMdh/M9unjVU9m3xdyhPmhtYxPF0b3DiAry/DeKMdG2/09Olp2kcNfbcHJTi6NvPN2uUyUs35PNV3s9t6+Soz4oRuqDukISIdFlvYJ6EekXidlq5kDRgTavn9Q3Al8fHTlltRzOreiBCIUzuVMiZJ9t5w3bYgChJ75lgNn24WLn2ofgnUvhhaGtDkX2VLMaVwA3HSugzuyZyaB9RcgdtqhdmSRCossURTm7PZbf9vaYr4+eKSmRgPc0PfMUFfUVHCk5Arj+i2+92cr+rDLASxKhg8vho8WMrbK1ptjhZ5tGTnkOfLTY65KhIfHBRAWZqKq3sP1k+9t7uIvi2mJHrZ708uoaSYSEUzgKpvPaLpgGuHlyEn+9ajjXjO3VnWEJJ0vLT8OqWukV2IuYANdOLowGHVt/O5uP/m8S/aI8a8jqBawWWPkgoDK21rY9vcPXvhXYuP288iGv2ibT6RRmDIwCYN3hlucguqu0/DQA+oX0c/laPVcniZBwCvsetf2Nsi1T+0dx7bhEooN8uzs04UTu1D8IbMnQ+ORwrcPofpnfQ7mtKHhMY7f3dKOREp39JV6F8izbdV7EXiC/3gPrEaU+yHkkERJOMTBsIH4GPyoaKkgvTdc6HNFN3KU+yNPe9NpUeXbFI9xqpV+9bQbgLl9Ti9d5gyn9I/HRK2QWVXOisErrcJxK+gc5jyRCwikMOgMjokYA7TtGD5BfUcsbm0/yz42SOLmDWnMt+wr3Aa6fCO3LKmP63zbw7OojWofSMwKbblPaZwDuPj8RCnTt7UxnCzQZmNg3gqEJwZRW12sdjtPUmmsdB1Oko3TXeW6bVdHjRkeP5oecH9iVv4vrBl3X5vWniqp54suDBPsa+NnUvhj0kpe7HKvFMVJln7kMs9VMlF8UiUGJWkfWqnWH8skoqvaemXZ9JkNwvK0wGpVRtXV8HBzEbpM9EVJs3+8zWcsoNfHGzeMwGjzrtWV/4X7MVjPRftEkBCZoHY7bk0RIOI19r7o9J8cARvUOI9Tfh9LqBnadKvWOWg53cnC5rQC3sfZkZ2gwhIUyxi/W5UcXbGhs1jljkJfM29LpYf5fbKfDUBhdZ1sROmgyUq3o8FdVmP+07Tov42lJEJx9jR0ZPdLlfxfdgef9CxGaGR45HL2iJ6cqh5zKtpuY6XUK0wfYTnXIMXoX03gU254EAexs3GYZffRblz6KnV9Ry94ztmPz0xtPDXmF1EVw7bsQHEe82UK02YxZUdgfFme7PXWR1hFqqrLOTF552w1f3YGjf5AbzPpzB5IICafx9/F3DH1s76qQ/RP7BkmEXMc5R7HtGoA9jdssY2rrXPoo9sbDBQAM7xXifacSUxfBfftRbv6SMY29ZXZd/EuvT4L++0Mmox9fw19Xun/NmMVqYU/+HkDqg5xFEiHhVPZfzPYMYAWYNiAKnQJH8io4U1LdnaGJ9jrnKLbdYaORGp2OYIuFlIZ6lz6KbV9dnDHQS7bFzqfTQ/JURg2wJT+7C9K0jccF9I0MoN5i5Zuj+Vit7n2iML00nYqGCvwN/gwIG6B1OB5BEiHhVPal2vauCIX6Gxnbx1YbJKtCLqKZI9b2Y9ija+vOvmi44FHserOVTcdsK0KzBntpItTIfqw6LT8Ns9WscTTaGpsUTqDJQGFlPXsbu427K/tr64ioERh0UubrDB1OhG6++Wa+/fbb7ohFeAD7itCxkmOU15e36z4zBkVjNOgoqPSc461urZkj1vYuxfZmfS1dp7WqOjOXj0pgeK8QhsaHaB2OplJCUwj0CaTaXM3RkqNah6Mpo0HHxQMax/occr0EviPsq+3SSNF5OpwIlZWVMXv2bPr378+TTz5JVlZWd8Ql3FSkXyS9g3qjojr2sdty08TepD06hyVzZJnXJdiPYmM7jWLl7IqQLRFSIDjBJY9ihwUYefLKYSy/ewo6nXefptHr9IyMHgm0f4XWk9m3Stcfce+VZ/toDWmk6DwdToSWLVtGVlYWd955Jx9++CFJSUksWLCATz75hIaGhu6IUbiZjgxgBQj29cHfKEu8LsN+FBsAheM+PpTr9fhZrQyqb/wd99Kj2O6mozMAPdn0xkRof1a5254ey6nMIacqB72iZ1jkMK3D8RidqhGKiopiyZIl7Nmzh61bt5KSksJPfvIT4uPjuf/++zl27Jiz4xRuxF4n1N6C6XNV1Xl3LYPLOOcotv3Y/Ii6OnyC4132KHZ+RS07M4uxuHkxrDOde3jB68aOnCcqyMSIxFDAfesR7R8uB4UPwt/HX+NoPEeXiqVzcnJYs2YNa9asQa/Xc8kll7Bv3z5SU1N5/vnnnRWjcDP2F9/9hfupt7Sv7udkYRULXtzE3Oe/9foXbJfReBR75+A5AIwedA3ct88lkyCA5WnZXPWvLdz5351ah+IyhkYOxaAzUFhTyJmKM1qHo7lbL0riD5elcvEA9+wv5agPkmPzTtXhRKihoYGlS5dy6aWX0qdPHz7++GPuu+8+srOzeeedd1i7di0fffQRjz/+eHfEK9xAUnASYaYw6ix1HCw62K77xIX4crKwkqzSGo7kVXRzhKK9VEXHrsrTAIwZeKVLb4fZj81Lh/KzfA2+DI0YCnRuhdbTXD4ygVsuSiY+1E/rUDrFMWhVGik6VYcTobi4OO644w769OnDtm3b2LFjBz//+c8JDg52XDNjxgxCQ0OdGadwI4qidLhOyNdHz+R+tlMd6w6557K1JzpTeYb8mnwMOgPDoly3JqGitoFtJ4sBmDXY9U6zaamjo2+EayqvL+dYia3sRFaEnKvDidDzzz9PdnY2L7/8MiNHjmz2mtDQUE6ePNnV2Jr18ssvk5SUhK+vLxMmTGDbtm2tXv/xxx8zaNAgfH19GTZsGF9//XW3xCWa6kydkHSZdj32ItvUiFT8DK77KXrzsULMVpXkyACSIwO0Dsel2Aumd+bJliFAYWUd/9t2io+2n9Y6lA7Zk78HFZXeQb2J9IvUOhyP0uFE6Cc/+Qm+vtq0rf/www9ZsmQJf/jDH9i1axcjRoxg3rx55Oc3/8b5/fffc8MNN3Dbbbexe/durrjiCq644gr279/fw5F7H/snlrT8NKyqtV33mdmYCO06VUJJlfQUcgX2RHZM9BiNI2md13eTbsXIxlEbGeUZFNcWaxuMC9iRUcLDn+7jpQ3pblWPaF/Rk9Ug53OrztLPPfccd9xxB7fccgupqam88sor+Pv78+abbzZ7/Ysvvsj8+fP59a9/zeDBg3niiScYPXo0L730Ug9H7n0Ghw/GV+9LaV0pGWUZ7bpPQqgfg2KDsKrwbWN3YKEt+4qQK9ckWK2qY9q8t3eTbk6obygpoSmAbI8BTOkfiVGv41RxNccLqrQOp91k0Gr3cZtEqL6+np07dzJ79mzHbTqdjtmzZ7Nly5Zm77Nly5Ym1wPMmzevxesB6urqKC8vb/IlOs5H7+OoKenM9phMo9deYU0hGeUZgGt/Ct2XVUZhZT2BJgPjkqRQujmOmr08SYQCTQYm9HWvsT4Nlgb2F9p2Mlz5d9FduU0iVFhYiMViISamaSFkTEwMubm5zd4nNze3Q9cDPPXUU4SEhDi+EhMTux68l+powTTAvCGxXDkqgYXD4rorLNFO9v/fUkJTCDG57riKoQkhLL1zMn++cihGg9u8pPWojg5D9nSOLtNukggdLD5InaWOMFMYScFJWofjceRV4zwPP/wwZWVljq/Tp92roM6VdKar7cjEUJ6/biRzh8R2V1iinez/v42Jce36IL1OYUyfMC4fmaB1KC7Lvp1yqOgQ1Q3VGkejPfsW6vaMYsprXX8ign0lb2T0SBTFu0fHdAe3SYQiIyPR6/Xk5TUdmJeXl0dsbPNvmrGxsR26HsBkMhEcHNzkS3TOiKgR6BSd7Qh2tXt88hJn2U8ZyUwj9xcfEE+Mfwxm1ezYYvFmfSIC6BsVgNmqsuloodbhtMlRHyS/i93CbRIho9HImDFjWLduneM2q9XKunXrmDRpUrP3mTRpUpPrAdasWdPi9cK5Ao2BDAizDVLtyPaYqqoczC7nvz9kdldoog2V9ZUcKTkCuHZx5op9OTz86V62nijSOhSXpijK2RVa2R4DYObAaHQKnCys1DqUVqmqevbEmEyc7xZukwgBLFmyhNdee4133nmHQ4cOceedd1JVVcUtt9wCwOLFi3n44Ycd1997772sXLmSZ599lsOHD/PYY4+xY8cO7r77bq1+BK/TmTqhspoGLv3HJn63bD9ZpTXdFZpoxZ6CPVhVKwmBCcQGuO425edp2fxv22m2SCLUJvubqAxgtfnZtL7s+v0c7p7ZX+tQWnWy/CSldaWY9CZSw1O1DscjuVUidN111/HMM8/w6KOPMnLkSNLS0li5cqWjIPrUqVPk5OQ4rp88eTLvv/8+r776KiNGjOCTTz5h2bJlDB06VKsfwet0pk4o1N/I6N5hgPsUM3oad9gWqzdb2Zxu29aw96ASLbP/f7mnYA9mqww3jg7yJdTfqHUYbbLXBw2LHIaP3kfjaDyTQesAOuruu+9ucUVn48aNF9x2zTXXcM0113RzVKIlI6NHAnCk5AhVDVUE+LSv6+/MwdHsyCxhw+F8fjKxTzdGKJrjDj1LtmcUU1lnJjLQxNB41z3V5ipSQlMI8gmioqGCoyVHSY2Q1QW7BosVH71rrgvIoNXu55r/zwuPERsQS0JgAlbVyp6CPe2+n/0T/nfphdTUW7orPNGMeks9+wr2Aa6dCNln0s0YGIVOJydp2qLX6RkRPQKQxop2R3IruOpf33PVv77XOpQWyaDV7ieJkOh2nakTGhgTRHyIL3VmK1tOuP6pDk9yoOgA9dZ6wn3DSQ5O1jqcFtm7Scu2WPvJ3LGmIgKN7DpVwt4zZeSW1WodzgUKawo5XXEaBYURUSO0DsdjSSIkul1nutoqisLMwe7V9MxT2N8kR0WPctmeJScKKjlZWIWPXmFKfxlA2V72VYXd+bvdas5Wd4kMNDG8VyhwNrF2JfYPj/3D+hNkDNI4Gs8liZDodvZPoXsL99JgbX/zMvsn/W0nZVBkT3LMF3PhQun8ijqSIwMYnxxOkK8UkLbX0Mih+Oh8KKwp5EzFGa3DcQmzXHisj/13UeqDupckQqLb9Q3tS5AxiBpzDUeKj7T7fpP7RfLf2ybwxS+ndGN04lwWq4W0/DTAtTtKT+wbwYZfTefVn4zVOhS3YtKbGBIxBJB+Qnbn1iPWmV2rHtFRH+TCH0o8gSRCotvpFN3ZWUcdOEbv66NnSv9ITAZ9d4UmzpNemk5FQwX+Bn8Ghg/UOpw2BZjc7uCr5hz9hCQRAmBIfDDRQSaq6y1sPeE6q8/VDdUcLj4MSKF0d5NESPSIzhRMi55nrw8aETUCg841k4yiyjrqzVatw3BbY6JtK33SWNFGURTHqpArbY/tLdyLRbUQFxDn0k1NPYEkQqJHnNvevyNFmmaLlce/OMjs576htLq+u8ITjdyhf9DTKw4z6vHVfLRdBiJ3hr23V0Z5BsW1rrMCoqV5Q2OZNySGiX3DtQ7FwX64ROqDup8kQqJHDIkcgo/Oh+LaYk5VnGr3/Qx6Hd+lF5KeX8k3Rwu6MUKhqqrLT5y3WlU2HCmgqt5CfKif1uG4pRBTCCmhKYCs0NrNGBjNv38ylvlD47QOxUEGrfYcSYREjzDpTQyNtI026eiS/AwXXLb2RGcqzlBQU4BBZ2BY5DCtw2nWvqwyCivrCDDqGZ/sOp/e3U1navZEzzFbzY4GtDJotftJIiR6TGfrhOz7998cLcBild4n3cX+CXRIxBB8Db4aR9M8ezI8tX8URoO8fHXWuf2ExFkZhVV8tTen7Qu72dGSo9SYawjyCXKs3onuI68kosfYl3g7+uI7uncoIX4+lFY3sPtUSXeEJnCP+iDpJu0c9t/FQ0WHqG6o1jga13CmpJrpz2zkng92U1bd/n5n3cH+GjkiegQ6Rd6mu5v8DYsec26RZlFNUbvvZ9DrmDYgCoB1sj3WbRz1QdGuWR+UX1HL3jNlAEwfFKVxNO4tLiCOGP8YzKqZ/YX7tQ7HJfQK86d/dCAWq8rGo9q+zrhDU1NPIomQ6DEhphBSQvoBkLbjn3ByE1jb18DMvgKwQRKhblFYU0hGeQYKiiNhdTUbj9iK5Yf3CiE6yDW37tyFoihn547ly9wxuzmpMQCsOZinWQyqqjpWhOTEWM+QREj0nIPLGZV3DICdu1+Hdy6FF4bCweVt3nXagCgSQv0Y1TuMBov0kHE2+wtvSlgKIaYQjaNp3oTkcH49byA/mdhH61A8gqNOqAMzAD3d7MZE6JsjBZr1qjpTefbQgv2AiehekgiJnnFwOXy0mLHltr4lO3wbP9GX58BHi9tMhsICjGx+cAZP/WgYPnr5Z+ts7rAU3ycigF/MSOGasYlah+IR7KsNewr2YLaaNY7GNYzsFUpkoImKOjM/nGj/9r0z2T+UuPKhBU8j7yii+1ktsPJBQGVsbR0Ah40+lOkUoPEU2MqH2twmc9VJ6J7A3lHaVfsHCedLCU0hyCeIanM1R0uOah2OS9DpFGYPtm3Drz2kzfaYO3wo8TSSCInul/k9lGcDEG2xkFTfgKoo7LKvCqFCeZbtujZYrCo7M0uobXCt4YjurLK+kiMltmG4rvri+3laFsv3ZFNWo+1pHk+i1+kZET0CkH5C57LXCW06VqjJ80t9UM+TREh0v8qmn6zG1tYCsN3X1Op1zbni5e+46l/fs1mjFylPtKdgD1bVSkJgAjEBMVqH06wX1h7jnv/t5vt0+f/dmewrgDKA9ayLUiJ55cdj+OqeKT3+3KW1pZwoOwHgsocWPJEkQqL7BTZ9cx3fuD3mqBNq4brmjOkTBsDqg7nOiU24/LbYycIqThZW4aNXmNI/UutwPMq5TU47MgPQk/n66Jk/NBZ/Y88PHU4rSAMgOSSZMN+wHn9+byWJkOh+fSZDcDxgq/GxrwjZ6oR0ttuDE2zXtWFu47L1ukP50mXaSVx9ppG9m/S4pHCCfH00jsazDI0cio/Oh8KaQs5UnNE6HK/n6r+LnkoSIdH9dHqY/5fG/1CIslgddUI77dtj85+2XdeGccnhhPj5UFRVzy7pMt1l9ZZ69hXsA1y3o/T6w7YtU+km7XwmvYkhEUMA6Sd0LlVVeWHtURa8uIms0poee16ZOK8NSYREz0hdBNe+C8G26c7j7HVCwRG221MXtethfPQ6xxvi6gOyPdZVB4oOUG+tJ9w3nKTgJK3DuUBlnZltJ20tFyQR6h4yd+xCiqLwfXoRh3LKWdcTp8esFmrT17G/cC8Ao6NGdP9zCgdJhETPSV0E9+2Hm79k/PCfArAjfnC7kyA7+/bY6oN5UtfQRfb6oNHRo12yPcHmYwU0WFSSIvzpGxWodTgeyb4NIyfHmpqdaku8u73L9MHl8MJQDnx8A2bVSqTZQq83FrSr0axwDkmERM/S6SF5KmPH3w3AkZKjlNWVdeghLh5gmzyeWVTNsfzK7ojSazh6lrjottihnAoAZshqULc5dwZgcW2xtsG4kDmpsQD8cKKI8tpuatvQ2GiW8mx2N5YJjKqrQ2lno1nhHJIICU1E+kWSHJKMisqOvB0dum+AycCfrhjK0jsnkyKrBJ1msVpIy08DXDcRun/OAL5/aCZ3TO2rdSgeK8QUQkpoCiDjNs6VHBlAv6gAGiwq3zTOuXOqcxrNAuxqTIRG19bRkUazouskERKaGRczDoAduR1LhACuHZvImD5h6HSut53jLtJL06loqMDf4M/AsIFah9Oi+FA/4kP9tA7Dozm2x6SfUBP2VaFu2R47p9GsBUgzNa4INdZPdqTRrOgaSYSEZsbF2RKh7bnbNY7EO9nrg0ZGj8Sg6/meKW0xy3DdHjMq5mw/IXGWvcv0hiP5zh/2fE4D2SNGHyr0OgKsVgbWN7R4negekggJzYyNGQvA0U7UCQHszCzm4U/38tlu6X/SGa7cs0RVVWY/9w03v7mN7B48vuyt7P8GDhUdorqhWuNoXMfIxFD6RQUwe3AMFbVOHkx7TgPZrX625rJja+u44CNJOxrNiq6RREhoJtIvkr4hfW11Qp3YHtuRUcL/tp3m011Z3RCdZ1NV1aULpfdllZFRVM32jGLCA4xah+Px4gPjiQ2Ixaya2Ve4T+twXIZep7B2yTSev26k8/8dntNodmtjl/0JNbXnXND+RrOiayQREpoaF9u4PZbX8e0x+7L1luNFMoyzg85UnKGgpgCDzsCwyGFah3OBVY09oqYPjMLXp+1Gm6Lr7E38pE6oqW5rK9HYaLaBs4XS4x2JUONztrPRrOgaSYSEphyJUCfqhPpGBZISHYjZqrLxSL6zQ/No9i7CQyOG4mvwbePqnrfqgK0uYt6QWI0j8R727TE5OXYhVVU5kF1Gbllt2xd3ROoi9i14nBqdjnCLhf4NjR/oguM71GhWdI0kQkJT59YJldaWdvj+5zZXFO3nyttixwsqSc+vxEevSP+gHmRfEdpTsAez1cn1MG7uwaV7Wfj3zXy4/bTTH3uryTY/b1zsOHRXvQE3fwn37ZMkqAdJIiQ0FeEXQb+QfgAd7icEMLdxxWDj4XzqzNJvo73s2x+uOHHevi02qV8kwTJktcf0D+tPkE8Q1eZqjpQc0ToclzK2TzgAa7th3MbW3K0ATEi5FIZdDclTZTush0kiJDQ3Nta2KtSZ7bHhCSFEB5moqrew5XiRs0PzSIU1hWSWZ6KgOLoKu5Kz22JyWqYn6RSd49/D7kOfwL5P4OQmaeiHrbO5otiK+HPKnHeKsbqhmj0FewCYEDvBaY8rOkYSIaG5rhRM63QKc1JjSI4MoLZBXrDbw74t1j+sP8HGYI2jaUpVVa4ancDkfhGOYnjRc0Zja1y5a++7sPQ2eOdSeGGo1496iAoyMbp3GABrDzmvHjEtPw2z1UxcQByJQYlOe1zRMZIICc3Z64SOlRyjpLakw/f//aWprH9gGvOHxjk7NI9k3xaz14S4EkVRWDwpiffvmEh0kOsVcXu0g8sZtf0/AOw2mXCMM5a5VwDMHmxLzJ3ZZfqH3B8AGB873iWHHnsLSYSE5iL8IhyzjuzdjjvC10cvLyIdYF8RcsX6IKGRxrlXQ+vr8FFVCg16Thvsrf1k7hWc266jkAonDWHdmtNYHxQn22JakkRIuAT7qtC23G2dfow6s4WThVXOCskjVdZXOgphXa2jdFl1A+9vPUVBRZ3WoXifxrlXJhWG1tn+/u29bWxk7lW/qACSI21DWL89WtjlxyurK+NQ0SFAEiGtSSIkXEJX+gmBbdzGmCfWcvs7MresNWkFaVhVKwmBCcQEuFYNztpDefz2s3385I2tWofifc6ZZzWq1pYI7W6SCF14nbdRFIWHFgziv7dNcEr92o7cHaioJIckE+0vbSK0JImQcAn2k2PppekU1xZ3+P79Y4KoM1s4XlDF8YJKZ4fnMVx5W8x+bH6uFEn3vHPmWY1pTIS2NZcIefncq3lDYpnSPxKjoetvnfZj8+Njx3f5sUTXSCIkXEK4b3iX6oSCfX2Y2DcCcG4xo6ex/9262rZYTb2Fb48VAGd7Q4kedM7cqzG1dRhUlTM+PufUCcncK2ez1wdNjJuocSRCEiHhMrq6PWZ/A13duLIgmqq31LO/cD/geh2lvzlaQG2DlYRQP4bEu9aRfq/QOPcKIECFEY2rQlv8fJG5V00dy6vg8S8O8q+Nxzv9GAXVBZwoO4GC4njdE9qRREi4jK4mQnMaj7fuPl1KfoWTZwJ5gP2F+6m31hPuG05ScJLW4TRhT17nDYmVE4BaSV1km28VHMfkxuGfW/x8Ze7VeY4XVPHmdyd5f1smqqq2fYdm2LfFBoUPIsQU4szwRCdIIiRchv3kWHppOkU1He8SHRviy4heIagqrHNi0zNPYe8fNDp6tEslGw0Wq2N0gXST1ljqIrhvP5NmPgnA1uAIzPfsliToHBcPsNUInS6u4Whe5+oRt+XYTsfKaTHXIImQcBlhvmH0D+sPdK5OCGR7rDWO+iAX2xY7nFNBVb2FiAAjY5PCtQ5H6PSkDruRYGMwFZYa9hcf0joil+JvNDAlJRKANQc7/jqjqqr0D3IxkggJlzIupmvbY5cMi+NXcwfw8CWDnRmW27NYLaTlpwGulwgN6xXCjkdm8+riMeh1rrNS5c30Or2jiHdL9haNo3E99uPzazqx8nym8gzZVdkYFIPLHVrwVpIICZfS1Tqh5MgA7p7ZnwExQc4My+0dKz1GZUMl/gZ/BoYN1DqcC4QFGBnTR1aDXMnkeNsJse+zvbeJYktmDbL1/dlzupS88o7VI9pXg4ZHDcffx9/psYmOk0RIuBR7f5vjZcc7VSckmmffFhsZPRKDztDG1T2ns8WmovtNip8EwL7CfVTUV2gcjWuJDvZlZGIo0PF6RKkPcj2SCAmXEuYbxoCwAQDsyNvRqcdosFj5Yk82D3y0hwaL1ZnhuSerhV0nVgMw2ifCpeZFPbP6CFf/63vWH5beT64mPjCepOAkLKqlS6NvPNWc1Bhig32xdCCZV1VVGim6ILdJhIqLi7npppsIDg4mNDSU2267jcrKliv2i4uL+eUvf8nAgQPx8/Ojd+/e3HPPPZSVlfVg1KIzuro9plMU/vjFAZbuOsO2kx3vUu1RDi5HfWEouxr/Lkf/8Dq8MNQlJomrqsqKfbnsyCyhss51kjNxln1VSOqELnTblGS2PDyTn0zs0+772Dvn++p9GRE1ohujEx3hNonQTTfdxIEDB1izZg1ffvkl3377LT/72c9avD47O5vs7GyeeeYZ9u/fz9tvv83KlSu57bbbejBq0Rn2gukduZ1bEdLrFGYNshUzevXpsYPL4aPFnK7Op9Cgx6CqDKurh/Ic+Gix5slQen4lJwqrMOp1zBgYpWksonlSJ9QyXx99h9tQ2OuDRseMxkfv0x1hiU5wi0To0KFDrFy5ktdff50JEyYwZcoU/vGPf/DBBx+QnZ3d7H2GDh3K0qVLueyyy+jXrx8zZ87kz3/+M1988QVms7mHfwLREWNixqCgcLzsOIU1nZvyPLexH82ag3neWYditcDKBwG1sTswDK+rw1dVgca/j5UPabpNZp8tNjklgiBfeVNwReNix2FQDJyuOM3p8tNah+OSLFaVjMKqdl1r3xaT+iDX4haJ0JYtWwgNDWXs2LGO22bPno1Op2Pr1vZPqi4rKyM4OBiDwXWKRcWFQn1Du1wndFFKJP5GPdlltRzILndmeO4h83sot31I2OTvB8DU6nNPt6hQnmW7TiOrDtibKMpsMVcV4BPAiGjbFs6WHNkeO9+JgkrG/XktV/zzO8xt1COarWbHKveEWEmEXIlbJEK5ublER0c3uc1gMBAeHk5ubvu2PgoLC3niiSda3U4DqKuro7y8vMmX6Hn2OqHObo/5+ui5uL9tu8Urt8cqbUlGnQJbG6eIT62pafG6npZVWsO+rDIUBWYPlm7SrmxSnNQJtaR3uD9WVaW0uoGdmSWtXnuo6BCVDZUEGYMYFD6ohyIU7aFpIvTQQw+hKEqrX4cPH+7y85SXl7Nw4UJSU1N57LHHWr32qaeeIiQkxPGVmJjY5ecXHTc21rb619mCaTi7PbbaG6fRB9p+9p2+vtTqdESbzQyob2jxup5mT07H9gkjKsikSQyifex1QltztmK2SlnBuQx6HTMH2j6kr2njdca+LTYuZhx6GV7rUjRNhB544AEOHTrU6lffvn2JjY0lP79prwaz2UxxcTGxsa0vq1dUVDB//nyCgoL47LPP8PFpvRbh4YcfpqyszPF1+rTsi2thbMxYFBROlJ3odJ3QzEHRGHQKBr1CVZ2XvYD3mQzB8Wzys22LTamppWlZpwLBCbbrNNAvKpA5qTEsGhGvyfOL9kuNSLWN22ioYH/hfq3DcTlnu0y3Xo8oYzVcl6bFMlFRUURFtX1aZNKkSZSWlrJz507GjLE13Fu/fj1Wq5UJE1r+R1VeXs68efMwmUwsX74cX1/fNp/LZDJhMsknVK2FmEIYGD6Qw8WH2ZG7g/nJ8zv8GKH+Rrb+dhYRgV74/6dOD/P/wubvfgPA1Opzt8UaU6L5T9uu08DFA6K4eICcFHMH9nEbqzNXsyV7CyOjR2odkku5eEAURr2OzKJq0vMr6d9MV/s6Sx2783cDkgi5IreoERo8eDDz58/njjvuYNu2bXz33XfcfffdXH/99cTH2z5RZmVlMWjQILZtszX+Ki8vZ+7cuVRVVfHGG29QXl5Obm4uubm5WCzSs8Qd2KfRd2V7zCuToEaneo0kw+iDQVWZWHNOoXRwPFz7rkwUF+0mx+hbFmAyMDklAmh5G35vwV7qLHVE+kXSN6RvT4Yn2sEtEiGA9957j0GDBjFr1iwuueQSpkyZwquvvur4fkNDA0eOHKG6uhqAXbt2sXXrVvbt20dKSgpxcXGOL9nucg+Oxop5nU+E7CrrzNTUe1cCvClrEwCjYscRuPgLuOoNuPlLuG+fpknQyv05ZBa177ixcA0ybqN19u2xtYeaT4R+yPkBsHWT7mjvIdH93OYceXh4OO+//36L309KSmqyPzt9+nTv7B/jQez9hE6WnaSwppBIv8hOPc7jXxzkvz9k8ucrh3LNWO8pft+ctRmAqb0uhuSpGkdjU1Vn5p4P0qg3W1m7ZBop0YFahyTawT5uI6M8g22525jVe5bWIbmU2YNjOFNSw9zU5g8f2OeLTYyb2JNhiXZymxUh4X1CTCGOY6Zd2R4L9jNQb7F61emxWnOt4+9sSsIUjaM565ujBdSbrfQO96dfVIDW4YgOkHEbLYsJ9uXB+YMY1Tvsgu9VNVQ5iszHx8l8MVckiZBwaU45Rp9qO1m46ViB12yPbc/dTp2ljtiAWFJCU7QOx8HeTXrekBjZInAzUifUOTvzdmJWzfQK7EVCYILW4YhmSCIkXJp97lhXEqHBcUEkhPpR22Bl07ECZ4Xm0uz1QVMTprpMwlFvtrL+sK0NhnSTdj9Nxm1USJ1lczYfK+T+D9PIKj17SlOOzbs+SYSESxsdMxoFhYzyDAqqO5fEKIriVc0VVVVl0xlbIuRK22JbThRRUWsmMtDE6Ga2EIRrazJuQ7bHmvWP9cf4bHcWy3ZnOW7blmurD5JEyHVJIiRc2rl1QjtytsHJTbDvE9ufHRgYat8eW3cor82ZQO4uszyTM5VnMOgMLlWcae8mPSc1Bp3ONVapRMfIuI3WXTW6FwCf7jqDqqqU1JZwuNg2HcF+Cla4HkmEhMuzv4BsW/sbeOdSWHqb7c8XhsLB5e17jKQwQv19KGnHTCB3Z98WGxMzBn8ff42jsVFVlc3ptg7h84bIbDF3JeM2WrdgWCwmg47jBVXsyypzbOmnhKZ0+tSr6H6SCAmXN67BtoKzQ3feClB5Dny0uF3JkEGv4+fT+vHopan0jfLsI9uOY/MJrnFkHmzbkyvuncorPx7N5H7yhuCuZNxG64J8fRz1b5/uypL6IDchiZBwbVYLo7e+jaKqZBh9yNefOxKisU/UyofatU3282n9uHVKskcP+axuqHZ8Cp3ay3USIQB/o4H5Q+MwGuRlx13Zx22AbI+15EejbSfDlu/JPpsIxUoi5MrkFUm4tszvCS7LZlDj5PQdvucnMSqUZ0GmHOkFW2Fmg7WBhMAEkoOTtQ5HeCA5Rt+6KSmRRAWZKKkrILMiE52iY0zsGK3DEq2QREi4tkrbKa/xtbZZWdtaGpxb2b7TYJV1Zj7YdopnVx9xSniuxr4tNiVhisscmz+cW878F77l5Q3pWocinEDGbbTOoNdx+Yh44mJtLQaGRAwh2BiscVSiNZIICdcWaCusHdc4NHSHXwvbWoHtK8DNLq3hoU/38a+NxymqrHNKiK7i3GPzrlQftPpAHodzK9jl4UXq3sI+bsOiWhxHw0VTv5o3kOkjygDbfDHh2iQREq6tz2QIjmdUXT06VSXTx4e8JnVCCgQn2K5rhwExQYzoFYLZqrIsLbt7YtbIybKTZFdlY9QZXeqo7tlu0tJE0VPIuI3WmQw66R/kRiQREq5Np4f5fyHYqjZTJ9S49TP/adt17XT1GFuvj493nPaowbz2Y/NjY8e6zLH5zKIqDmSXo1Ng1uBorcMRTiJ1Qq3LLM8krzoPH50PVWW9tA5HtEESIeH6UhfBte8y3moAYLu9Tig4Hq591/b9Dlg0IgGjQcfh3AoOZJc7O1rNuOK22IfbbXUSU/pHERHouaf1vI2M22idfTWooao3t7+zl8yiKo0jEq2RREi4h9RFjLvkJQC2R/WGm7+E+/Z1OAkCCPH3YW6qrabo4x2e8SJe1VDFzvydgOscm2+wWPl45xkAbhiXqHE0wpkCfAIYHjUckO2x5vyQ8wMAscZhgK2nkHBdkggJtzEqdiw6RcepumKyovp2aDvsfNeMtb0xf74nmzqz+0+k/yHnB8xWM4lBifQJ7qN1OACsP5xPQUUdkYFGZg2WbtKexr49JolQU1bV6ujlddmAiwH4dPcZj9qG9zSSCAm3EWQMYmzMWADWZKzp0mNNSYkkIdSP4b1CKa6qd0Z4mnLFbtK9w/350agEbprQR5ooeiAZt9G8oyVHKa0rxd/gz0/HTiHAqOd0cQ075NSky5JXJ+FW5iXNA2BVxqouPY5ep7B2yTTevXU8cSF+zghNM646bX5wXDDPXTeS++cM0DoU0Q1k3Ebz7N2kx8SMIdjXjwXD4gDbIFbhmiQREm5lVu9Z6BQd+4v2c6aiay8sfsbOb625kmOlx8irzsOkN7nUsXnh2WTcRvPOny9mH7nx5d4cahvcfxveE0kiJNxKhF+E481+deZqpzxmTlmNW0+kt2+LjY8dj6+hhc7bPchqVfnbqsMcyvGcE3mieY5+QjmSCAE0WBvYmWc7tGBPhCYmRxAf4ktFrZntGcVahidaIImQcDvO2h4D2Hgkn4ueXs+vP97jtsWMrrYttim9kJc3HOe6f2/xiEJ00TJ7IrS3YK+M2wAOFB6g2lxNqCmUAWG2LWGdTuGvV49g46+mM7V/lMYRiuZIIiTczqzes9Areg4WHeR0edeOv49NCsdk0HOisIpdp9xvVaiivoK0/DTAdY7Nf7j9FAA/Gt0Lk8Ezth9F8xICE2Tcxjnsx+bHxY5Dp5x9e53SP5KkyACtwhJtkERIuJ1w33DH/J5VmV1bFQo0GbiksZjx4x3uV8z4Q84PmFUzScFJJAZp36unsLKONQdtA3Cvk95BXkHGbZxlTwbttVPNsVjdc+XZk0kiJNySfXtsdUbX64SuGWtrgf/l3hyq693rGLCrbYst3XmGBovKiMRQBsfJxG1vIOM2bGrMNY7V2eYGrWYWVfF//9nBtf+WhNHVSCIk3JJ9e+xQ8SEyyzO79FgTksPpHe5PZZ2ZlftznRRh91NV9Wz/IBfYFlNV1TFS43pZDfIaMm7DJi0/jQZrAzH+Mc02NQ00GVh3KJ+dmSUcy5N6KlciiZBwS6G+oY7l566uCimKcs4gVvfZHjtScoSCmgL8DH6ORpNa2naymBOFVfgb9Vw2Il7rcEQPkXEbNvYVsQlxE1AU5YLvRwSamD7QNnj4090ycsOVSCIk3JYzT49dNaYXigJ7zpRSWu0enabtq0ETYidg1Bs1jgYKKuuIDDRx2fB4Ak0GrcMRPcjbx21YrBa+Pvk1ANN6TWvxuqsaewot250ltUIuRBIh4bZm9p6JQTFwpOQIJ8tOdumxEkL9eH3xWLb+dhah/tonFe3havVBlw6PZ8vDM3n4kkFahyJ6mLeP29iWu4386nyCjEFMT5ze4nUzB0cT7Gsgp6yWH04U9VyAolWSCAm3FWIKYWK8c7bHAGYNjiHI16fLj9MTyurKSCtIA2BKL9dIhAB89Dq3SSSF83j7uI0vjn8BwIKkBa2uzpoMei5t3DaWifSuQxIh4dYc22NdPEZ/Pldvhb8lZwtW1Uq/kH4kBCZoGouqqvxwokiW+r2YN4/bqG6oZu2ptQBc1u+yNq+3b4+t2O9+p1Q9lSRCwq3NSJyBQWfgWMkxTpSe6PLjfX+8kIV/38TDn+5zQnTdx5W2xfaeKeP6V39gznPfYLZYtQ5HaMRbx22sPbWWGnMNvYN6MyJqRJvXj+4dxvwhsfxq7kDctJm9x5FESLi1EFMIk+JsL8DOWBXy89FzILucFftzKK9t6PLjdQerauW7rO8A1zg2/0HjkflhvUIw6OUlxVt567iN5ceXA7bVoOZOi51PURRe+ckYbp2STIAcKnAJ8qol3J4zmyuOTAwlJTqQ2gYrX+3N6fLjdYdDxYcoqi3C3+DP6OjRmsZSVWdmeZqt1uH6cb01jUVoyxvHbeRW5bItx/azXtr3Uo2jEZ0liZBwezN627bH0kvTSS9J79JjKYrCNY6eQi7SHM5qgZObYN8ncHITm05/C9ja+PvotS3u/mpvDlX1FpIi/JnYN1zTWIT2vG3cxpcnvkRFZUzMGHoF9erQfctrG/hw+ym+3JvdTdGJ9pJ1OeH2go3BXBR/Ed+c+YbVmatJCUvp0uNdOSqBv646wq5TpaTnV5ISHeikSDvh4HJY+SCUn32x3NwrEXwUzbbFLBYLDQ22bcM1+06TEKTn5gkJ1NXVaRKPaMpoNKLTafMZd3L8ZP53+H9eMW5DVVXHabFF/RZ1+P5f7c3h4U/3MSAmkIXD4tq1rSa6hyRCwiPMS5rHN2e+YVXGKu4ccWeXXlSig32ZNiCK9Yfz+WTnGR5aoFFfnIPL4aPFwNmKylKdjr2Nv7VTqmt6NBxVVcnNzaW0tBSABouVawf5ogzyJTbEzMmTXevlJJxDp9ORnJyM0djzbQzOH7fhCoOAu8vBooOcKDuBSW9ibp+5Hb7/JcPi+MPyAxzNq+RAdjlDE0K6IUrRHpIICY8wPXE6PjofTpSdIL00nf5h/bv0eNeM6cX6w/l8uusMv5o7oOeLgK0W20oQTY+VfO/ni6oo9K+vJ3b9UzD8RtDpeyQkexIUHR2Nv78/xVX1qIF1BJoMJIT590gMonVWq5Xs7GxycnLo3bt3j68yBPgEMDJ6JDvydrAqYxW3D7u9R5+/J9mLpGf2nkmgseOrxiF+PswZHMNX+3L4bHeWJEIakkRIeIQgYxAXJVzExtMbWZWxqsuJ0KzBMVw5KoFLtFqyzvy+yXaY3SZ/PwCmVNdCeantuuTu3yKzWCyOJCgiIgKAeF9fQoMs6BQFX2PPJGOibVFRUWRnZ2M2m/Hx6fkasitSrmBH3g4+PvIxtwy5BX0PJeo9qcHSwIqTK4DGbTGrxfa7WJkHgTHQZ3K7PqD8aHQCX+3L4fO0LB5eMEhOXWpE/taFxzh39pjaxQYdRoOO568byZzUGPQ6DRKhyrwLbrIC3/n5AjC1pqbF67qDvSbI3//syo+iKASYDPhJEuRS7FtiFos2TUHnJc0jxBRCdlW2Yx6ep9mctZmSuhIi/SKZWFoALwyFdy6FpbfZ/nxhqG1ruw0XD4giIsBIYWU9m44V9kDkojmSCAmPMb3XdIw6IxnlGRwtOap1OF0TGHPBTQeMRkr0egKtVkbW1rV4XXeyr45ZpYu0y9K06NZqwff0dq4MSQXgg8P/0y6WbvTFCVuR9MLgQRg+vuXC1dvyHFt9XxvJkI9ex6KRtpEbS3ed6ZZYRdskERIeI9AY6Oi07IyJ9ACni6t5dvURlu3u4blAfSZDcDxw9k3Nvi02qaYWHxQITrBd18PqzBYO5ZSTVVLd5ZU34UEOLnesjFy7cykA32Vt5vSutzQOzLnK6srYeHojAJcd2cj5dXw2jbetfMi2bdaKH43qhU6B2gar/D5pRBIh4VHs22NrMtc45UVl7aE8/rE+ndc3d318R4fo9DD/L43/YUuGNtu3xaprbTfPf7rHCqXPVVJVj0VVqbeobnHkd/r06dx3333tvj4jIwNFUUhLS3Pq427cuBFFURyn7pqTm5vLnDlzCAgIIDQ0FLCt8Cxbtqzdz6MJ+wnHxpWRRLOZi6prUBWFjzc91q5tInexKmMVDdYGBgb0YmBJaz2AVCjPstUOtWJoQjA/PDyL128e6xa/T55IEiHhUaYlTsOkNzlte+zykQn46BX2Z5VzKKfcCRF2QOoiuPZdCI6jSKdjv8lW+3GRPsR2e2rHe5d0lVVVKa621QuFB2jbzLG9Pv30U5544ol2X5+YmEhOTg5Dhw4FWk5gOvq47fH888+Tk5NDWloaR4/a/v3m5OSwYMECoP1JWo9q4YTj9eWVAHwWFEBdO1ZG3MXnxz8H4LLQ1PbdoY06PkVRiA727WpYogskERIeJcAngKkJtlNUztgeCw8wMnuwrQ7n4x0a7OGnLoL79vP93EdQFYVBAb2IvnefJkkQ2EZqmC1WDDodQb7ukQiFh4cTFBTU7uv1ej2xsbEYDK0fqu3o47bH8ePHGTNmDP379yc6OhqA2NhYTCaTU5/HqVo44Ti1poY4s5lSvZ7V1pI2V0bcQUZZBnsL9qJTdCxMnNG+O3Wgju94QSUnCio7GZ3oLEmEhMdx5ukxgGvG2lrnL0vLot6swXR1nZ5v62yfKqf2XaDJdphdeY1tNSgswAdd4zJ+db25xa/ahqarAM64tqPO38JKSkriySef5NZbbyUoKIjevXvz6quvOr5/7qpLRkYGM2bY3vDCwsJQFIWf/vSnzT7uf/7zH8aOHUtQUBCxsbHceOON5OfntzvOpKQkli5dyrvvvtvkec7dGktOTgZg1KhRKIrC9OnTO/z34XQtrHjogWsbV4U+CArqsROO3cleJD05fjKR/RdcUMfXVMfq+D7cfoq5z3/LE18edE6wot2kj5DwOBf3uhhfvS+nKk5xuPgwgyMG277RyV4fF/ePIjrIRH5FHesP5zN/aGw3/wRN5VXlsfbUWgBmtPdTaDewWFWq6sxgMBLuf7ZrceqjLa+8zRgYxVu3jHf895gn1lLT0PwWyYTkcD78v0mO/57ylw0UV9VfcF3G0ws7E34Tzz77LE888QS//e1v+eSTT7jzzjuZNm0aAwcObHJdYmIiS5cu5aqrruLIkSMEBwfj5+fX7GM2NDTwxBNPMHDgQPLz81myZAk//elP+frrr9sV0/bt21m8eDHBwcG8+OKLzT7Ptm3bGD9+PGvXrmXIkCGadI++QCsrHldWVPJyWAh7fU0cVOto52aSS7KqVr48/iXQ2DvIXsf30WJsydC5H7oak6MO1PFNSI5AATYcKWDriSIm9I1wZviiFbIiJDyOv4+/Yw6XY3vsnBMtHe31YdDruHJ0AgCf7Oz5Qaz/OfgfzFYzo6NHMyxqWI8/v11VvRkVCDAZMPm4d++gSy65hLvuuouUlBQefPBBIiMj2bBhwwXX6fV6wsNtw2Sjo6OJjY0lJKT5DsC33norCxYsoG/fvkycOJG///3vrFixgsrK9m11REVFYTKZ8PPza/F5oqKiAIiIiCA2NtYRm6aaOeFoF2G1MreqGoCPKo70cGDOtTNvJ9lV2QT6BJ79QHJOHV8TwfEdruNLigzghvG9AfjLysNygqwHyYqQ8EjzkuaxJnMNqzJWca9vMsrHN3PBMVd7r492vGBdMyaR9384RXyoH6rac6elyurK+PjoxwDcNuy2HnnOlvgb9YQGmAgObFqvcvDxeS3eR3fe39PO389u97WbH+y+1a/hw4c7/reiKMTGxnZoG6s5O3fu5LHHHmPPnj2UlJRgtdq2UU+dOkVqqjuvhbShjZWR68sr+TowgK9OrmDJuF8RbAzWKNCusQ9YnZs0F1/DOcXNqYtg0MJOrTaf75czU/hk5xl2nSpl7aF85qT2bJ8wbyUrQsIjTU2Yip/BjzOVZzi49iG62usjJTqQHb+fzeOXD+3RI64fHP6AanM1A8IGOIrAtWLQ6YgKMhHi17RI2t9oaPHL97yVI2dc6wznj55QFMWRuHRGVVUV8+bNIzg4mPfee4/t27fz2WefAVBff+H2nsdpZWVk5KLXGBA2gFpLLcvT3fMYfY25htWZqwG4rO9lF16g09tG3Qy72vZnJ+v4ooN9uXVKEgB/W3UYizQu7RGSCAmP5O/jz8W9LgZgFdWtXNm+Xh8AJkPPbgfVmGt479B7ANw29DbpMaKR9oysOHz4MEVFRTz99NNMnTqVQYMGdXmFqbOxaKbxhCM3fwlXvWH78759KEMu57qB1wHw4ZEP3XLLZ8OpDVQ1VJEQmMDomNHd+lw/u7gfIX4+HM2r7PlGrl5KEiHhseynx1YH+De7HtREB0607Mgo5nfL9nX7C/qnxz6lpK6EXoG9mJs0t1ufqzWFlXX8ftl+ahosbvkm1lV9+vRBURS+/PJLCgoKmq356d27N0ajkX/84x+cOHGC5cuXO73HENjqlPz8/Fi5ciV5eXmUlZU5/Tm6pIWVkUv7XkqATwAZ5Rlszd2qcZAdt/yEbSXr0r6XolO6920zxM+Hu6b3I9jXQINFg1OqXshtEqHi4mJuuukmgoODCQ0N5bbbbmt3EaKqqixYsMA9OrQKp5mSMAU/nYksHwMH2jpd085eH2XVDSx+cxv//eEUX+/LdUKUzWuwNvDOgXcAuGXoLRh02pXzfbLzDN8fL6Si1uyVq1IJCQn88Y9/5KGHHiImJoa77777gmuioqJ4++23+fjjj0lNTeXpp5/mmWeecXosBoOBv//97/z73/8mPj6eyy+/3OnP0R38ffxtJ62ADw9/qHE0HVNQXcCW7C0AXNavmW2xbnDz5CQ2/WYm1zcWT4vupahu8hFvwYIF5OTk8O9//5uGhgZuueUWxo0bx/vvv9/mfZ9//nnWrFnDihUr+Oyzz7jiiiva/bzl5eWEhIRQVlZGcLB7Fvl5s99882tWZKzkp6XlPFBS2swViu2Ex3372r2v/+LaYzy/9igJoX6se2DaBbUtzrD8+HIe2fwIEb4RrLp6FSa9Ng31iqvqmfnsRgL0Vl5cmMDQQf3x9ZUuuK6straWkydPkpyc7FL/Xx0vPc4Vn1+BXtGz8qqVxAb0bBuKNrXQXuOdA+/wzI5nGBE1gv9e8l+toxQd0N73b7dYETp06BArV67k9ddfZ8KECUyZMoV//OMffPDBB2RntzbrBdLS0nj22Wd58803eyha4UrmJc0HYFWgP+oFx3s73usD4GcX9yUuxJes0hre2HzSSZGeZVWtvLHvDQB+nPpjzZIggKe+PkRpdQPJkQH4G937yLzQVr/QfoyLHYdFtbD02FKtw2mqlfYay4/btsXsK1o9SVVVNhzO54Ntp3r8ub2JWyRCW7ZsITQ0lLFjxzpumz17Njqdjq1bW95vrq6u5sYbb+Tll18mNrZ9nz7q6uooLy9v8iXc10UJF+Fv8CfHYGBfeNd7fQD4GfU8tGAQAP/ckE5+ea2zwgVg4+mNnCg7QaBPoKPIVAvbM4r5eKdtrMj9s/t75baYcC77v+dPjn5Cg7VB42ganTcw1qE8hyPLbuNoyVF8dD6OmsOe9F16Ebe8vZ0nvjxIYWVdjz+/t3CLRCg3N9cxd8fOYDAQHh5Obm7LdRr3338/kydP7tA++lNPPUVISIjjKzExsdNxC+35GnyZnjgdgFUTb7ngREtnZ3YtGhHPqN6hVNVbeGa18xrFqarqWA26buB1BBmdO8uqvRosVh75bB8AN4xPZEhCqCZxCM8ys/dMIv0iKawpZP2p9VqH0+LAWBuV5YEBAEzvNY0QU/ONNLvTRSkRDO8VQlW9hZc3pPf483sLTROhhx56CEVRWv06fPhwpx57+fLlrF+/nhdeeKFD93v44YcpKytzfJ0+3fOdhIVzOU6PnVqDNemiLvf6AFvfmd9famuS9/HOMxzJrXBKrDvydrC3cC9GnZEfp/7YKY/ZGV/vy+FoXiXhAUYenD9IsziEZ/HR+XD1gKsB21H6C1gtcHIT7PvE9md3T6xvYWAsgBn4KsAfgMuCUro3jhYoiuL4/Xvvh1OcLm6tFYj7OV1cbRvbozFNO0s/8MADjsGCLenbt2+zXV/NZjPFxcUtbnmtX7+e48ePExoa2uT2q666iqlTp7Jx48Zm72cymVx70rPosIsSLiLAJ4Dcqlz2FuxlZPRIpzzu6N5h3D4lmdT4YPpHBzrlMe2rQVf2v5JIv0inPGZnLBoRD9iaKIb6G6mtde72n/BeV/W/itf2vsb23O0cLz1Ov9B+tm8cXG5bnTk3MQmOt3Wt7uTKbZtaaZuxxc+XIoOeMIuFKT7a/S5elBLJlJRINqcX8vzaozx37UjNYnGmBouVn/93J+W1DfzrpjEMTej5FTc7TROhqKgox+yc1kyaNInS0lJ27tzJmDFjAFuiY7VamTBhQrP3eeihh7j99tub3DZs2DCef/55LrusZ45ACtdg0puYkTiDL098yaqMVU5LhAB+d6nzRiccLDrId9nfoVf0/HTIT532uJ2hKAqXj0zQNAbhmWIDYpmROIO1p9by4ZEP+e2E356t0+nCGJxOaaVtxheN22ILKqvxCY53/nN3wK/nDWRzeiGf7c7i/y7ux8BYbbbMnemfG45zILucUH8fooO1XXxwixqhwYMHM3/+fO644w62bdvGd999x9133831119PfLztH2hWVhaDBg1i27ZtAMTGxjJ06NAmX2BrfJacnKzZzyK04dgey1yNVe2eJmVVdWbqzJ1fyn9zv+1k47ykefQK6uWssDrkQHYZZTUuUsQqPNZ1g2xF08uPL6e6rqLVOh2gXWNwOqWFgbEVisJ6fz8AFqn+tus0NCIxlEuGxaKq8LdV7j28FuBgdjn/WH8MgD8uGkJ0kLZtHtwiEQJ47733GDRoELNmzeKSSy5hypQpvPrqq47vNzQ0cOTIEaqrPWsPVTjH5PjJBPoEkl+dz56CPU5//BX7cpjxzEbe3JzRqftnlmeyJnMNoN1w1ep6Mz97dyeznv2G/Vku1rFYeJQJsRNICk6iqqGKL3f8o8U6HZv2j8HpMPvAWODcZGhNgD91Oh196xtInf1Ul+oJneWBuQMZFBvENWO1+ZDkLPVmK7/6eA9mq8rc1BjHNryW3CYRCg8P5/3336eiooKysjLefPNNAgPP1mUkJSWhqirTp09v8TFUVe1QM0XhOYx6IzN7zwRg6VHn9zCpabCQX1HHyxvSya/oeD3NW/vfwqpaubjXxQwIG+D0+NrjxXXHyCqtwWTQ0S/KOTVPrmr69Oncd999WofhtRRFOTt/LGt92yNwoENjcDqkmYGx9tNil/VdiDLENbp394sKZMW9U5k3xMUaUXbQyxvSOZhTTpi/D3++cphLtOVwm0RIiK66qv9VAHx+/HO+PfOtUx/7ipEJjOgVQmWdmedWH+3QffOr8x1N224fdnsbV3ePI7kVvLHJ1hzy8cuH4NedzRN7+mRQF23cuBFFUSgtLdU6FI+yKGURvnpfjtbkkWZqYwQOtHsMTqecMzD2zKXPsNPPFwWFSyf+uvuesxPOTRrcZChEEweyyxxtAP54+VCiglzjYJIkQsJrjI4ZzY8H246kP/rdoxTXFjvtsXU6hUcvsxVOf7jjNAey27+19J+D/6HB2sDo6NGMih7ltJjay2pV+d2yfY6l6lmDu/ENp5UOvsK7BBuDWdh3IQAfRERzfp3OWQoEJ3R/nU7jwNgvfWyJ+fi48a43BgSobbDw+qYT3PT6VqxW90qGooJMzBgUzfwhsVw2PK7tO/QQSYSEV7l39L30C+lHUW0Rf/z+j079VDWmTziXjYhHVeHxLw6267HL6sr46MhHgHa1QZ/sOsP2jBL8fPT8YdGQ7nuiVjr48tHibkuGqqqqWLx4MYGBgcTFxfHss882+f5//vMfxo4dS1BQELGxsdx4442Odh0ZGRnMmDEDgLCwMBRFcbT8WLlyJVOmTCE0NJSIiAguvfRSjh8/3i0/g6e6duC1AKz29aFIp+PCZKhzY3A6S1VVvjj+BaDNSI32qG2w8OK6Y3x/vIjle1ofMeVqooN8efUnY3jh+pEusSVmJ4mQ8Cq+Bl+evvhpDDoD60+vZ1n6Mqc+/oPzB2Iy6Nh6sphVB9quafjg8AdUm6vpH9afqQlTnRpLe5RU1fPU14cAuH9OfxJC/brnidro4At028mgX//613zzzTd8/vnnrF69mo0bN7Jr1y7H9xsaGnjiiSfYs2cPy5YtIyMjw5HsJCYmsnSprabsyJEj5OTk8OKLLwK2BGvJkiXs2LGDdevWodPpuPLKK7Fau+dUoidKjUhleNRwzKqFzybf0qROB+j0GJzO2lOwh1MVp/Az+DG79+weec6OCvU38vNptt5Lz645Qr3Z9f+9VZ7TNFH5//buPK6pY+0D+C8JhH1V2WRXWcS9Ckq1qKDgpVzxUrdb17pcLS601ap9tdbXtmLVarVWq1dFbQvVCtrXBS1i1Cqioii4UKQgKCCICwSRJZn3j9TUyJZgQkLyfD8fPsrJ5JwZJsl5MufMMxyOShaqfh1qzSNEiDp4WXthbu+5WJ+2HqsurkJf275wMlfOUiqOVsaY+ZY7NiXfwZX8xwjp1vjQelVdFX689SMAYFq3aWr7hjTUyxY3Cp9i6psqTCvRRAZfiZdmBrkpLyAUCoXYsWMHfvjhBwQGBgIAdu/eDUfHv2fevPfee9L/u7u7Y+PGjejXrx+EQiFMTU1hbW0NALCxsZFJ0BoRESFzrJ07d6JDhw64efOmNF0Had44z3G4Xnod+55kYOq8a+AVpNZbAb61vBgNGuYyDMb6xq12XEVNfdMVMefzUPCoCrEX8zHZ31XdVWpUTZ0Y72w5D087M6z4pw8sjeW4H6yV0YgQ0UmTu07GG7ZvoKquCkt+X4I6sfLSvM8K6IRfZg3AJ//wbrJcfHY8Hlc/RkfTjmpZ0BEArEz4WDemJ+Lf94c+T4UfB/LO+FHyzKCcnBzU1NTIJF61traGp6en9Pe0tDSEhYXB2dkZZmZmCAgIAADk5ze94nd2djbGjx8Pd3d3mJubw9XVVa7nEVnDXYfD0sASRZVFOFv0VyCshGVwFFVWVYZjeccAAGGdNDvprjFfD/MCuwAANiVna8QyFY3ZlJyN28UV+D37IUQaek8TBUJEJ/G4PHw58EuY6pviWuk1/Dfjv0rbt4mBHvq6WjdZplZci903dgMApvpMhR63dQdnX73J0piv4uPLO+NHlTODGlBZWYng4GCYm5vjxx9/xKVLl5CQkAAAqKmpafK5YWFhePToEbZv347U1FSkpqbK9Twiy4BngFFdRgEA4rLi1FKHytpKzE6ajYqaCriau6KfbT+11EMR4/o5waWdMR4Ka7Dz91x1V6dBGfee4juB5L65leHd0M5UM2aJvYoCIaKzHEwdJOn9AWy9thWZDzOVfoz7T6qw71L9hXuP5R5DUWUR2hm2Q3iXcKUftzn//f1PTN99Cfcet1IC0kYy+P5NNTODOnXqBH19fWmQAgCPHz/GH39IUhzcvn0bZWVliI6OxqBBg+Dl5VVvXUM+XzKULxL9ff9SWVkZsrKysHTpUgQGBsLb2xuPHz9Wat11yWiP0eCAg3P3z6GgvHUXuq4R1WD+qfm49egWrAyssGnoJvA0IIFic/R5XHw0XDKyuf3sn6iq0aw0FNV1IizYfw0iMUNoD3v8o7vmzBJ7FQVCRKe97f42gl2DIWIiLDm7BM9qlRcYFD2tQuA6ARbHX8etonLpdjETY2eGZDmNCV0nwIDXut+S7j+pwvrfspF0qwTnc8pa56CNZPCV+V0FM4NMTU0xbdo0LFy4EMnJycjMzMSUKVPA5Uo++pydncHn87Fp0yb8+eef+PXXX7Fy5UqZfbi4uIDD4eDw4cMoLS2FUCiElZUV2rVrh23btuHOnTtITk7Ghx9+qNS66xInMycM7DgQALDvj32tdlyRWIRPfv8EqUWpMNYzxpagLXC1cG2147+ut7vb47033bB/lr9qc3+1wKaTd5D1oALtTPj4X1XORlUCCoSITuNwOFjWfxlsjG2QV56HdZfXNf8kOdlbGCHQyxZiBnx+5O/p9IICAXKe5sBU31SaXbc1rfj1BqpqRejnaoV3+rRiuv4GMvgCUPnMoDVr1mDQoEEICwtDUFAQBg4cKF28uUOHDoiJicH+/fvRtWtXREdHY+3atTLP79ixI1asWIHFixfD1tYWc+bMAZfLRVxcHNLS0tCtWzd88MEHWLNmjUrqryvGeY0DACTcScDzOsWzsyuKMYboi9E4nnccelw9bBiyAT7tNfuE/aoX+cs0bRHW6/eeYMtpySWxzzX4ktgLHNYW01O2ovLyclhYWODp06cwNzdXd3WIilwouoAZJ2YAADYHbsZbjm8pZb8Fj54h8OvTqKkTY/ukvgjytsGEoxNw/eF1TOs2DVFvRCnlOPJKuvkA0/dchh6XgyPzBsn9Afr8+XPk5ubCzc0NhoavuUCiWCSZHaammUHaTql91YpEYhFCE0JxX3gfn7/5OUZ2Vu3SFt9f+x7fpn8LDjj46q2vEOIWotLjtYa9F+4iyNsG9hYqSoMhp5ScMkT9fBX9XK3x7b/7qK0e8p6/aUSIEAD97ftLs04vO7cMZVXKuWTkZG2M6QMl09K/OHITKYUXcf3hdfC5fEzoOkEpx5DXs5o6LP/1BgBg2iA39X2L/CuDrzpmBhHNxePyMNpjNABgy7UtyHqkulXW9/+xH9+mfwsAWOS7SCuCoMPXC7HsYCbCNp3DpTzlZc1viQGd2uFEVAA+D28baSQoECLkL1FvRKGzZWc8ev4In6V8prSs0+8P6YwOZgbIK3uGz85sAgCM6jIK7Y3aK2X/8tqUfAf3n1Sho6UR5v819ZYQTRLRJQJ2Jna4L7yPfx/5N3689aPS19RKupuEzy98DgCY0X0G3vV+V6n7V5eejpbwsjPDQ2E1xm+7gB8u3G319chePp6Fsb5G5gxqCAVChPzFgGeA6EHR0OfqQ1AgQHx2vFL2a2qgh4+DPcE1vI+immvggospPlOUsm951dSJcfxGMQDgs3/6qH66PCEtYGloiX1v78Ngx8GoEdcg+mI05ibPVdq6gJeKL2HRmUUQMzEiukRgbu+5StmvJnCyNkb8+/4I7WGPOjHD0oOZWBKfgeq61plN9rxWhNFbU/BL2r02tyAsBUKEvMTT2lP64bj60mrklysnOd47bziiT/erAIAQtxA4mrXiTcoA+HpcHJ03CF+P6YlhXVs3Vw8hirAytMLGoRvxid8n4HP5OH3vNN759R2kFKa81n6zHmVhXvI81IhrMNRpKJb2X6pR610pgzFfD9+O741FIV7gcIC4SwUYt+0CHpSr/ubzb05m4/Ldx4g+dhsVGpzgsSEUCBHyikldJ6GfXT9J1umzr591ulBYiK3XtiK78jyAvxdXLal4jvdiLiGnVPjadW5IdZ0Ie1PyUCasBgAY6vPwr9acJUZIC3E4HIz3Go/Yt2PRyaITSqtK8Z/f/oOv075GrahW4f0VVBRgVtIsCGuF6GPTB6vfWt3qSUxbC4fDwezBnRAz1Rfmhnq4mv8EV+6qNsdVesETfP/XLLEvRnWDuaG+So+nbBQIEfIKHpeHL978Amb6Zrj+8Dq2X9+u8D6qRdU4lnsMM0/MRMiBEHx37TuImRghriHwsPIAAKw6ehvJt0sw4puz2Ho6B3Ui5SyeWCsSI+5iPoauPY1lh25g62laEZ20TR5WHoh9OxZjPMaAgWFX5i5MPDZRoZHasqoyzPptFh5WPYSHlQc2BW6CoV7bmU3XUgEeHfDrnIFYHtYVI1SYzLDg0TMs2H8NYgaM7OWAYJ/G11fUVDR9vhk0fV53Hf7zMJacXQIeh4c9I/agR4cezT7nVtktxGfH40juEVTUVEi3+9n7YVTnURjuMhz6PMm3pftPqrAkPgNn/igFAPR0tMCa0T3hYduy2VwiMcOh9Pv45mQ27pZJEkPamhvgw2EeGNvPuUX7fKGtTsnWRdraVyfvnsSn5z9FeU05jPWMsbT/0mbXBKusrcR7x9/DzbKb6GjaEXtG7IGNsU0r1VjzlJQ/x67zefggyAN8vdcbB7lTIsQnCRm4mCu5f6u9qQF+++AtWJlozg3S8p6/KRBqBgVCuosxhkVnFuFY3jE4mzljf9j+BlekfvL8CY7kHsHBOwdx+9Ft6XY7EzuEdw7HyE4jG70niDGG/Wn3sPLwTVQ8r4M+j4N5Q7tg1uBOCi2CmphZhLUn/sCdEslltvamfMwK6IQJ/V1gqP/609O19eSqjbS5r4ori7H47GKkPUgDAIS6h2Kp31KY8k3rla0R1eD9k+8jtSgVVgZW2DNiT5vKGq1sjDGM3pqCy3cfo5+rFTa/2wc2ZvK/PupEYpQKq6U5ip48q4HvFydRKxbDv1M7LArxQg9HSxXVvmUoEFISCoR029Pqp4j4NQIPnj3AOx7vYPmA5QAkyd9Si1IRfyceyfnJqBVL7lvQ5+oj0DkQo7qMgp+dn9xrFhU/fY7/ScjAyduSda4WBnsickhnuev56aFM7Em5CwsjfcwK6ITJ/i5KnRmmzSdXbaPtfSUSi/DfjP9iy7UtEDERHE0dsfqt1TIjtmImxsdnPsbxvOMw1jPGzuCdbS5rtCok336A+bHpqKiug525Ib6f+AZ6Olk2+ZxbReWIv3IPB9ML4WhlhIT335Q+lphZhJ5OlmpP4NgYCoSUhAIhklqUiuknpgMAPh3wKR5UPsChnEMoriyWlvGy9sKozqMQ6h4KCwOLFh2HMYZD6YXY8Xsu4mb2h4lBw4EMYwxnsh/CztxQmhTxQflzxF7Mx3sD3VRyo2JbPrkOHjwYvXr1woYNG9RdFRw8eBALFixAbm4u5s6di169eiEqKgpPnjxR2jHacl8pIr0kHYvOLEJhZSH0OHqI7B2J97q9Bw44WHVxFWJvx0KPq4fvAr/DAIcB6q6uxsgpFWLmnsvIKa0EX4+LL8K7YXRfJ5kypRXVOJR+H/FX7uPmS+skWpvwkfxRQJvJD0SBkJJQIEQAYM2lNdhzc4/MNnO+OULdQzGq8yh4t/NW2rEYY9JpvWIxw9JDmRjXzwk9HC2RklOGdSeycPnuYwz1ssHOKf2UdtymtOWTq6oDIYFAgCFDhuDx48ewtLRssqytrS2mTp2KefPmwczMDHp6eqioqICNjeS+lc8++wwHDx5Eenp6i+vTlvtKUeU15ViZshKJeYkAAD9LT3Tlt8OukvNatXSGslU8r8UHP19D0q0HAIAp/q74n1Bv6PO4+CYpGxuTsyESS0IDPo+LQG8b/KuPIwI8Orz2vUWtSd7zt3bOHyREyeb1mYfLDy7jVtkt9Lfvj1FdRmGo81CVrBz/cm6Tny8X4KfUfPx8qQBd7c2Rcf8pAEleILf2JhCJGXhc7cqFoq2EQiFKSkoQHBwMBwcH6XYjI828rNAWmPPN8dVbX8EfRliVG4/UJ1lI/euxRZV1CKmqUWv9NJWZoT62TXwDG5OzsSEpG+dzHqKmTgx9HhedbCSfK72dLfGvPo4I62HfZkaAWqrthHaEqJEBzwB7R+zF2XFnsW34NoxwG6GSIOhVw7vaIqynA0Rihoz7T6HP42BifxecWTgEy97uSkGQnOrq6jBnzhxYWFigffv2WLZsmUz22+rqaixYsAAdO3aEiYkJ/Pz8IBAIpI/fvXsXYWFhsLKygomJCXx8fHD06FHk5eVhyJAhAAArKytwOBxMmTKl3vEFAgHMzCSXMYcOHQoOhwOBQICYmBjpKFJMTAxWrFiBa9eugcPhgMPhICYmRlV/Eq3BufV/GHVqI36+XwTvakngM/PxU7xbUgjsmwTc/FXNNdRMXC4HUUEe2D6pL7ZN7Cu9FB/kbYvkjwKQ8P6bmNjfReuDIIBGhAiRG5/HB5/Xwg+FFq643s7UAJvG90Z4Lwek3X2M8b7OcLKuP3NNHRhjqKqrUsuxjfSMFMoKvHv3bkybNg0XL17E5cuXMXPmTDg7O2PGjBkAgDlz5uDmzZuIi4uDg4MDEhISEBISgoyMDHTp0gWRkZGoqanBmTNnYGJigps3b8LU1BROTk44cOAAIiIikJWVBXNz8wZHePz9/ZGVlQVPT08cOHAA/v7+sLa2Rl5enrTM2LFjkZmZicTERCQlJQEALCxadr+ZzhCLgMRFABjcauvwU2ExivV4cJQuK8EBEhcDXqG0uG8jXs00b6jPg3uH+rPwtBkFQoTIo4WBDADJN9LERUB54d/bzB2AkNVA13/KtYtAb1sEemvW0hhVdVXw+8lPLcdO/Xdqg6kMGuPk5IT169eDw+HA09MTGRkZWL9+PWbMmIH8/Hzs2rUL+fn50ktWCxYsQGJiInbt2oUvv/wS+fn5iIiIQPfu3QEA7u7u0n1bW1sDAGxsbBq9R4jP50vvA7K2toadXf2kc0ZGRjA1NYWenl6Dj5MG3D0v877SA14KggCAAeX3JeXcBrV69UjbQIEQIc15nUDm5q+S4Xm8MiehvEiyfcweuYMh0nL9+/eXGUEaMGAA1q1bB5FIhIyMDIhEInh4eMg8p7q6Gu3atQMAzJs3D7Nnz8aJEycQFBSEiIgI9OjRfIJNomLCB8otR3QSBUKENOV1ApmXhu3rY2jrw/ZGekZI/Xdq8wVVdGxlEQqF4PF4SEtLA48n2w+mppJLBNOnT0dwcDCOHDmCEydOYNWqVVi3bh3mztWe1cvbJFM5R0nlLUd0EgVChDTmdQOZV4btG9xHGx6253A4Cl2eUqfUVNmA7cKFC+jSpQt4PB569+4NkUiEkpISDBrUeD84OTlh1qxZmDVrFpYsWYLt27dj7ty54PMl942JRKJGnysvPp+vlP3oDBd/yehseREafp9yJI+7+Ld2zUgbQrPGCGmMIoFMQ2jYXmPk5+fjww8/RFZWFmJjY7Fp0ybMnz8fAODh4YF3330XkyZNQnx8PHJzc3Hx4kWsWrUKR44cAQBERUXh+PHjyM3NxZUrV3Dq1Cl4e0tyR7m4uIDD4eDw4cMoLS2FUChscT1dXV2Rm5uL9PR0PHz4ENXV1a/feG3G5UkuUQMAXr15/q/fQ6Lb5IgraT0UCBHSmNcNZGjYXmNMmjQJVVVV8PX1RWRkJObPn4+ZM2dKH9+1axcmTZqEjz76CJ6enggPD8elS5fg7CxZrFYkEiEyMhLe3t4ICQmBh4cHvvvuOwBAx44dsWLFCixevBi2traYM2dOi+sZERGBkJAQDBkyBB06dEBsbOzrNVwXdP2n5BK1+SsrrJs70D14RC6UWboZlFlah+WeBXa/3Xy5yYcbvrQlFgEbujU/bB+VofHfWHUpW3Fbp7N99TozO4lWoszShLyu173/4MWw/b5JkrIy+6Bhe0KUistrk/faEfWjS2OENEYZ9x/QsD0hhGg0GhEipCkvApkG8whFyxfIdP2nZGYZDdsTQojGoUCIkOYoI5ChYXtCCNFIFAgRIg8KZAghRCvRPUKEELnRJFPNR31EiGIoECKENEtfXx8A8OzZMzXXhDSnpqYGAOotF0IIaRhdGiOENIvH48HS0hIlJSUAAGNjY5lFTIlmEIvFKC0thbGxMfT06OOdEHnQO4UQIhc7OzsAkAZDRDNxuVw4OztToEqInCgQIoTIhcPhwN7eHjY2NqitrVV3dUgj+Hw+uFy664EQeVEgRAhRCI/Ho/tPCCFag742EEIIIURnUSBECCGEEJ1FgRAhhBBCdBbdI9SMF8nJysvL1VwTQgghhMjrxXm7uSSjFAg1o6KiAgDg5OSk5poQQgghRFEVFRWwsLBo9HEOo3zsTRKLxSgsLISZmZlS83KUl5fDyckJBQUFMDc3V9p+NYm2t5Ha1/Zpexu1vX2A9reR2tdyjDFUVFTAwcGhyZQSNCLUDC6XC0dHR5Xt39zcXCtf3C/T9jZS+9o+bW+jtrcP0P42UvtapqmRoBfoZmlCCCGE6CwKhAghhBCisygQUhMDAwMsX74cBgYG6q6Kymh7G6l9bZ+2t1Hb2wdofxupfapHN0sTQgghRGfRiBAhhBBCdBYFQoQQQgjRWRQIEUIIIURnUSBECCGEEJ1FgZASbd68Ga6urjA0NISfnx8uXrzYZPn9+/fDy8sLhoaG6N69O44ePSrzOGMMn376Kezt7WFkZISgoCBkZ2ersglNUqR927dvx6BBg2BlZQUrKysEBQXVKz9lyhRwOByZn5CQEFU3o0mKtDEmJqZe/Q0NDWXKtOU+HDx4cL32cTgchIaGSstoUh+eOXMGYWFhcHBwAIfDwcGDB5t9jkAgQJ8+fWBgYIDOnTsjJiamXhlF39eqomj74uPjMWzYMHTo0AHm5uYYMGAAjh8/LlPms88+q9d/Xl5eKmxF0xRto0AgaPA1WlxcLFOurfZhQ+8vDocDHx8faRlN6sNVq1ahX79+MDMzg42NDcLDw5GVldXs89R9LqRASEl+/vlnfPjhh1i+fDmuXLmCnj17Ijg4GCUlJQ2WP3/+PMaPH49p06bh6tWrCA8PR3h4ODIzM6VlvvrqK2zcuBFbt25FamoqTExMEBwcjOfPn7dWs6QUbZ9AIMD48eNx6tQppKSkwMnJCcOHD8f9+/dlyoWEhKCoqEj6Exsb2xrNaZCibQQk2VBfrv/du3dlHm/LfRgfHy/TtszMTPB4PIwePVqmnKb0YWVlJXr27InNmzfLVT43NxehoaEYMmQI0tPTERUVhenTp8sECy15TaiKou07c+YMhg0bhqNHjyItLQ1DhgxBWFgYrl69KlPOx8dHpv9+//13VVRfLoq28YWsrCyZNtjY2Egfa8t9+M0338i0q6CgANbW1vXeg5rSh6dPn0ZkZCQuXLiA3377DbW1tRg+fDgqKysbfY5GnAsZUQpfX18WGRkp/V0kEjEHBwe2atWqBsuPGTOGhYaGymzz8/Nj//nPfxhjjInFYmZnZ8fWrFkjffzJkyfMwMCAxcbGqqAFTVO0fa+qq6tjZmZmbPfu3dJtkydPZiNHjlR2VVtM0Tbu2rWLWVhYNLo/bevD9evXMzMzMyYUCqXbNK0PXwDAEhISmizz8ccfMx8fH5ltY8eOZcHBwdLfX/dvpirytK8hXbt2ZStWrJD+vnz5ctazZ0/lVUyJ5GnjqVOnGAD2+PHjRstoUx8mJCQwDofD8vLypNs0uQ9LSkoYAHb69OlGy2jCuZBGhJSgpqYGaWlpCAoKkm7jcrkICgpCSkpKg89JSUmRKQ8AwcHB0vK5ubkoLi6WKWNhYQE/P79G96kqLWnfq549e4ba2lpYW1vLbBcIBLCxsYGnpydmz56NsrIypdZdXi1to1AohIuLC5ycnDBy5EjcuHFD+pi29eGOHTswbtw4mJiYyGzXlD5UVHPvQWX8zTSJWCxGRUVFvfdgdnY2HBwc4O7ujnfffRf5+flqqmHL9erVC/b29hg2bBjOnTsn3a5tfbhjxw4EBQXBxcVFZrum9uHTp08BoN5r7mWacC6kQEgJHj58CJFIBFtbW5nttra29a5Vv1BcXNxk+Rf/KrJPVWlJ+161aNEiODg4yLyYQ0JCsGfPHpw8eRKrV6/G6dOnMWLECIhEIqXWXx4taaOnpyd27tyJQ4cO4YcffoBYLIa/vz/u3bsHQLv68OLFi8jMzMT06dNltmtSHyqqsfdgeXk5qqqqlPK61yRr166FUCjEmDFjpNv8/PwQExODxMREbNmyBbm5uRg0aBAqKirUWFP52dvbY+vWrThw4AAOHDgAJycnDB48GFeuXAGgnM8uTVFYWIhjx47Vew9qah+KxWJERUXhzTffRLdu3RotpwnnQlp9nqhcdHQ04uLiIBAIZG4mHjdunPT/3bt3R48ePdCpUycIBAIEBgaqo6oKGTBgAAYMGCD93d/fH97e3vj++++xcuVKNdZM+Xbs2IHu3bvD19dXZntb70Nd8dNPP2HFihU4dOiQzP0zI0aMkP6/R48e8PPzg4uLC/bt24dp06apo6oK8fT0hKenp/R3f39/5OTkYP369di7d68aa6Z8u3fvhqWlJcLDw2W2a2ofRkZGIjMzU633nMmLRoSUoH379uDxeHjw4IHM9gcPHsDOzq7B59jZ2TVZ/sW/iuxTVVrSvhfWrl2L6OhonDhxAj169GiyrLu7O9q3b487d+68dp0V9TptfEFfXx+9e/eW1l9b+rCyshJxcXFyfaiqsw8V1dh70NzcHEZGRkp5TWiCuLg4TJ8+Hfv27at3CeJVlpaW8PDwaBP91xhfX19p/bWlDxlj2LlzJyZOnAg+n99kWU3owzlz5uDw4cM4deoUHB0dmyyrCedCCoSUgM/n44033sDJkyel28RiMU6ePCkzYvCyAQMGyJQHgN9++01a3s3NDXZ2djJlysvLkZqa2ug+VaUl7QMkd/qvXLkSiYmJ6Nu3b7PHuXfvHsrKymBvb6+UeiuipW18mUgkQkZGhrT+2tCHgGRqa3V1NSZMmNDscdTZh4pq7j2ojNeEusXGxmLq1KmIjY2VSXvQGKFQiJycnDbRf41JT0+X1l8b+hCQzMa6c+eOXF9G1NmHjDHMmTMHCQkJSE5OhpubW7PP0YhzoVJuuSYsLi6OGRgYsJiYGHbz5k02c+ZMZmlpyYqLixljjE2cOJEtXrxYWv7cuXNMT0+PrV27lt26dYstX76c6evrs4yMDGmZ6OhoZmlpyQ4dOsSuX7/ORo4cydzc3FhVVZXGty86Oprx+Xz2yy+/sKKiIulPRUUFY4yxiooKtmDBApaSksJyc3NZUlIS69OnD+vSpQt7/vx5q7evJW1csWIFO378OMvJyWFpaWls3LhxzNDQkN24cUNapi334QsDBw5kY8eOrbdd0/qwoqKCXb16lV29epUBYF9//TW7evUqu3v3LmOMscWLF7OJEydKy//555/M2NiYLVy4kN26dYtt3ryZ8Xg8lpiYKC3T3N9Mk9v3448/Mj09PbZ582aZ9+CTJ0+kZT766CMmEAhYbm4uO3fuHAsKCmLt27dnJSUlrd4+xhRv4/r169nBgwdZdnY2y8jIYPPnz2dcLpclJSVJy7TlPnxhwoQJzM/Pr8F9alIfzp49m1lYWDCBQCDzmnv27Jm0jCaeCykQUqJNmzYxZ2dnxufzma+vL7tw4YL0sYCAADZ58mSZ8vv27WMeHh6Mz+czHx8fduTIEZnHxWIxW7ZsGbO1tWUGBgYsMDCQZWVltUZTGqRI+1xcXBiAej/Lly9njDH27NkzNnz4cNahQwemr6/PXFxc2IwZM9Ty4fQyRdoYFRUlLWtra8v+8Y9/sCtXrsjsry33IWOM3b59mwFgJ06cqLcvTevDF1OpX/150abJkyezgICAes/p1asX4/P5zN3dne3atavefpv6m7UmRdsXEBDQZHnGJOkC7O3tGZ/PZx07dmRjx45ld+7cad2GvUTRNq5evZp16tSJGRoaMmtrazZ48GCWnJxcb79ttQ8Zk0wVNzIyYtu2bWtwn5rUhw21DYDM+0oTz4WcvypPCCGEEKJz6B4hQgghhOgsCoQIIYQQorMoECKEEEKIzqJAiBBCCCE6iwIhQgghhOgsCoQIIYQQorMoECKEEEKIzqJAiBBCCCE6iwIhQgghhOgsCoQIIYQQorMoECKE6JTS0lLY2dnhyy+/lG47f/48+Hx+vVWwCSHaj9YaI4TonKNHjyI8PBznz5+Hp6cnevXqhZEjR+Lrr79Wd9UIIa2MAiFCiE6KjIxEUlIS+vbti4yMDFy6dAkGBgbqrhYhpJVRIEQI0UlVVVXo1q0bCgoKkJaWhu7du6u7SoQQNaB7hAghOiknJweFhYUQi8XIy8tTd3UIIWpCI0KEEJ1TU1MDX19f9OrVC56entiwYQMyMjJgY2Oj7qoRQloZBUKEEJ2zcOFC/PLLL7h27RpMTU0REBAACwsLHD58WN1VI4S0Mro0RgjRKQKBABs2bMDevXthbm4OLpeLvXv34uzZs9iyZYu6q0cIaWU0IkQIIYQQnUUjQoQQQgjRWRQIEUIIIURnUSBECCGEEJ1FgRAhhBBCdBYFQoQQQgjRWRQIEUIIIURnUSBECCGEEJ1FgRAhhBBCdBYFQoQQQgjRWRQIEUIIIURnUSBECCGEEJ1FgRAhhBBCdNb/Ax236q8Yh4axAAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# create a fitting model based on a cosine function\n",
"fitting_model = lmfit.Model(cos_func)\n",
"\n",
"# specify initial guesses for each parameter\n",
"fitting_model.set_param_hint(\"amplitude\", value=0.5, min=0.1, max=2, vary=True)\n",
"fitting_model.set_param_hint(\"frequency\", value=0.8, vary=True)\n",
"fitting_model.set_param_hint(\"phase\", value=0)\n",
"fitting_model.set_param_hint(\"offset\", value=0)\n",
"params = fitting_model.make_params()\n",
"\n",
"# here we run the fit\n",
"fit_result = fitting_model.fit(dataset.y0.values, x=dataset.x0.values, params=params)\n",
"\n",
"# It is possible to get a quick visualization of our fit using a build-in method of lmfit\n",
"_ = fit_result.plot_fit(show_init=True)"
]
},
{
"cell_type": "markdown",
"id": "488679bd",
"metadata": {},
"source": [
"The summary of the fit result can be nicely printed in a Jupyter-like notebook:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "e6f191c1",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
Fit Result
Model: Model(cos_func)
Fit Statistics
fitting method
leastsq
# function evals
51
# data points
30
# variables
4
chi-square
0.03488601
reduced chi-square
0.00134177
Akaike info crit.
-194.706002
Bayesian info crit.
-189.101212
R-squared
0.99127159
Parameters
name
value
standard error
relative error
initial value
min
max
vary
frequency
0.99286424
0.00577137
(0.58%)
0.8
-inf
inf
True
amplitude
0.50757746
0.00941898
(1.86%)
0.5
0.10000000
2.00000000
True
offset
0.00841403
0.00726179
(86.31%)
0
-inf
inf
True
phase
0.00474968
0.04107156
(864.72%)
0
-inf
inf
True
Correlations (unreported values are < 0.100)
Parameter1
Parameter 2
Correlation
frequency
phase
-0.8880
frequency
offset
-0.3882
offset
phase
+0.3441
frequency
amplitude
-0.1285
amplitude
phase
+0.1132
"
],
"text/plain": [
""
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fit_result"
]
},
{
"cell_type": "markdown",
"id": "3a6641e6",
"metadata": {},
"source": [
"### Analyzing the fit result and saving key quantities"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "4c8a7ea6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'amplitude': np.float64(0.5075774564002612),\n",
" 'frequency': np.float64(0.9928642418093099)}"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"quantities_of_interest = {\n",
" \"amplitude\": fit_result.params[\"amplitude\"].value,\n",
" \"frequency\": fit_result.params[\"frequency\"].value,\n",
"}\n",
"quantities_of_interest"
]
},
{
"cell_type": "markdown",
"id": "54821380",
"metadata": {},
"source": [
"Now that we have the relevant quantities, we want to store them in the same\n",
"`experiment directory` where the raw dataset is stored.\n",
"\n",
"First, we determine the experiment directory on the file system."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "2084197a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"PosixPath('/root/quantify-data/20250528/20250528-190534-783-b8628f-Cosine experiment')"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# the experiment folder is retrieved with a convenience function\n",
"exp_folder = Path(locate_experiment_container(dataset.tuid))\n",
"exp_folder"
]
},
{
"cell_type": "markdown",
"id": "033c7543",
"metadata": {},
"source": [
"Then, we save the quantities of interest to disk in the human-readable JSON format."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "57d7ca8f",
"metadata": {},
"outputs": [],
"source": [
"with open(exp_folder / \"quantities_of_interest.json\", \"w\", encoding=\"utf-8\") as file:\n",
" json.dump(quantities_of_interest, file)"
]
},
{
"cell_type": "markdown",
"id": "9054cdd5",
"metadata": {},
"source": [
"### Plotting and saving figures\n",
"\n",
"We would like to save a plot of our data and the fit in our lab logbook but the figure above is not fully satisfactory: there are no units and no reference to the original dataset.\n",
"\n",
"Below we create our own plot for full control over the appearance and we store it on disk in the same `experiment directory`.\n",
"For plotting, we use the ubiquitous matplotlib and some visualization utilities."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "81af206d",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHgCAYAAAChG7dTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC6LUlEQVR4nOzdd1iUV/bA8e87Qxk6CFJUBCyI2LD3kmjUNNeYvinG9GLKpq5pRtPLJtlsurvpySa/JJtNTKLZaIwl9oKKWFBBUGmKgIC0mfv744XREVBQ4J1hzud55pF5552Zw+DAmXvPPVdTSimEEEIIIdowk9EBCCGEEEK0NEl4hBBCCNHmScIjhBBCiDZPEh4hhBBCtHmS8AghhBCizZOERwghhBBtniQ8QgghhGjzJOERQgghRJsnCY8QQggh2jxJeIQQdpqm8dRTTxkdhsuJjY3lhhtuMDoMIcQpSMIjhJPas2cPt912G126dMFisRAYGMjIkSP5+9//zrFjx4wOT7iY1NRUnnrqKTIyMowORQhDeBgdgBCirp9++onLL78cb29vrr/+enr37k1lZSUrVqzgoYceYtu2bbz//vvN/rzHjh3Dw0N+LTTVzp07MZmc+/Njamoqc+bMYdy4ccTGxhodjhCtTn6zCeFk0tPTueqqq4iJieG3334jKirKfttdd93F7t27+emnn1rkuS0WS4s8bluklKK8vBwfHx+8vb2NDkcIcRrO/ZFECDf00ksvUVJSwr/+9S+HZKdWt27duPfee+3Xq6urefrpp+natSve3t7Exsby6KOPUlFR4XC/9evXM2nSJMLCwvDx8SEuLo4bb7zR4ZyTa3ieeuopNE1j9+7d3HDDDQQHBxMUFMSMGTMoKyurE9tnn33GwIED8fHxoV27dlx11VVkZWU16vs+cOAAN954IxEREXh7e9OrVy8++OAD++3Hjh0jISGBhIQEhym9goICoqKiGDFiBFarFYAbbrgBf39/9u7dy6RJk/Dz86NDhw7MnTsXpZTD89psNl5//XV69eqFxWIhIiKC2267jSNHjjicFxsby0UXXcQvv/zCoEGD8PHx4b333rPfdmINz0cffYSmaaxYsYJ77rmH9u3bExwczG233UZlZSWFhYVcf/31hISEEBISwsMPP3zWca1YsYIhQ4ZgsVjo0qULn3zyiUM8l19+OQDnnHMOmqahaRq///57o342QrQJSgjhVDp27Ki6dOnS6POnT5+uAHXZZZept956S11//fUKUFOnTrWfk5ubq0JCQlR8fLx6+eWX1bx589Rjjz2mevbs6fBYgJo9e7b9+uzZsxWg+vfvr6ZNm6befvttdfPNNytAPfzwww73feaZZ5SmaerKK69Ub7/9tpozZ44KCwtTsbGx6siRI6f8HnJyclSnTp1UdHS0mjt3rnrnnXfUlClTFKBee+01+3mrV69WZrNZ/eUvf7Efu+qqq5SPj4/auXOnw2tisVhU9+7d1XXXXafefPNNddFFFylAPfHEEw7PffPNNysPDw91yy23qHfffVc98sgjys/PTw0ePFhVVlbaz4uJiVHdunVTISEh6q9//at699131ZIlS+y3TZ8+3X7uhx9+qACVlJSkJk+erN566y113XXX2V+3UaNGqT//+c/q7bfftsf18ccfn3FcPXr0UBEREerRRx9Vb775phowYIDSNE2lpKQopZTas2ePuueeexSgHn30UfXpp5+qTz/9VOXk5Jzy5yJEWyIJjxBOpKioSAHqT3/6U6POT05OVoC6+eabHY4/+OCDClC//fabUkqp7777TgFq3bp1p3y8hhKeG2+80eG8Sy65RIWGhtqvZ2RkKLPZrJ599lmH87Zu3ao8PDzqHD/ZTTfdpKKiotShQ4ccjl911VUqKChIlZWV2Y/NmjVLmUwmtWzZMvX1118rQL3++usO96tNAu+++277MZvNpi688ELl5eWl8vPzlVJKLV++XAHq888/d7j/woUL6xyPiYlRgFq4cGGd+BtKeCZNmqRsNpv9+PDhw5Wmaer222+3H6uurladOnVSY8eOtR87k7iWLVtmP5aXl6e8vb3VAw88YD9W+1rVJmlCuBuZ0hLCiRQXFwMQEBDQqPN//vlnAO6//36H4w888ACAvdYnODgYgB9//JGqqqomx3X77bc7XB89ejSHDx+2x/uf//wHm83GFVdcwaFDh+yXyMhIunfvzpIlSxp8bKUU3377LRdffDFKKYf7T5o0iaKiIjZu3Gg//6mnnqJXr15Mnz6dO++8k7Fjx3LPPffU+9gzZ860f61pGjNnzqSyspJFixYB8PXXXxMUFMR5553n8LwDBw7E39+/TtxxcXFMmjSp0a/bTTfdhKZp9utDhw5FKcVNN91kP2Y2mxk0aBB79+61H2tqXImJiYwePdp+vX379vTo0cPhMYVwd1K0LIQTCQwMBODo0aONOn/fvn2YTCa6devmcDwyMpLg4GD27dsHwNixY7n00kuZM2cOr732GuPGjWPq1Kn8+c9/blTBbefOnR2uh4SEAHDkyBECAwNJS0tDKUX37t3rvb+np2eDj52fn09hYSHvv/9+gyvP8vLy7F97eXnxwQcfMHjwYCwWCx9++KFDUlHLZDLRpUsXh2Px8fEA9qXZaWlpFBUVER4eftrnBT3haYqTX7egoCAAoqOj6xw/sTanqXGd/Dyg/4xOrvcRwp1JwiOEEwkMDKRDhw6kpKQ06X71/cE/+fZvvvmG1atXM3/+fH755RduvPFG/va3v7F69Wr8/f1PeX+z2VzvcVVTaGuz2dA0jQULFtR77qke32azAXDttdcyffr0es/p27evw/VffvkFgPLyctLS0pqciJz43OHh4Xz++ef13t6+fXuH6z4+Pk16/IZet/qOqxOKlpsa1+l+PkIISXiEcDoXXXQR77//PqtWrWL48OGnPDcmJgabzUZaWho9e/a0H8/NzaWwsJCYmBiH84cNG8awYcN49tln+eKLL7jmmmv48ssvufnmm88q5q5du6KUIi4uzj6K0ljt27cnICAAq9XKhAkTTnv+li1bmDt3LjNmzCA5OZmbb76ZrVu32kdPatlsNvbu3esQz65duwDsfWi6du3KokWLGDlyZJOTmZbUEnGdLikWoq2TGh4hnMzDDz+Mn58fN998M7m5uXVu37NnD3//+98BuOCCCwB4/fXXHc559dVXAbjwwgsBferp5E/7SUlJAHWWr5+JadOmYTabmTNnTp3nUUpx+PDhBu9rNpu59NJL+fbbb+sd2crPz7d/XVVVxQ033ECHDh34+9//zkcffURubi5/+ctf6n3sN9980yGON998E09PT8aPHw/AFVdcgdVq5emnn65z3+rqagoLC0/5fbeUlojLz88PwLDvSQijyQiPEE6ma9eufPHFF1x55ZX07NnTodPyypUr+frrr+09X/r168f06dN5//33KSwsZOzYsaxdu5aPP/6YqVOncs455wDw8ccf8/bbb3PJJZfQtWtXjh49yrx58wgMDLQnTWcb8zPPPMOsWbPIyMhg6tSpBAQEkJ6eznfffcett97Kgw8+2OD9X3jhBZYsWcLQoUO55ZZbSExMpKCggI0bN7Jo0SIKCgoAeOaZZ0hOTmbx4sUEBATQt29fnnzySR5//HEuu+wyh+/FYrGwcOFCpk+fztChQ1mwYAE//fQTjz76qH1KaOzYsdx22208//zzJCcnM3HiRDw9PUlLS+Prr7/m73//O5dddtlZvz5N1RJxJSUlYTabefHFFykqKsLb25tzzz23wTohIdocYxaHCSFOZ9euXeqWW25RsbGxysvLSwUEBKiRI0eqf/zjH6q8vNx+XlVVlZozZ46Ki4tTnp6eKjo6Ws2aNcvhnI0bN6qrr75ade7cWXl7e6vw8HB10UUXqfXr1zs8Jw0sS69dxl2rdtl1enq6w/Fvv/1WjRo1Svn5+Sk/Pz+VkJCg7rrrLoceOQ3Jzc1Vd911l4qOjlaenp4qMjJSjR8/Xr3//vtKKaU2bNigPDw8HJaaK6Uv6x48eLDq0KGDvd/P9OnTlZ+fn9qzZ4+aOHGi8vX1VREREWr27NnKarXWee73339fDRw4UPn4+KiAgADVp08f9fDDD6uDBw/az4mJiVEXXnhhvbE3tCz95DYADb2etfE2Z1xjx451WOqulFLz5s1TXbp0UWazWZaoC7ejKSVVbUKItuWGG27gm2++oaSkxOhQhBBOQmp4hBBCCNHmScIjhBBCiDZPEh4hhBBCtHlSwyOEEEKINk9GeIQQQgjR5knCI4QQQog2TxIe4bI++ugjNE2zbwR5KrGxsfZmfUKIs/PUU0+haRqHDh0yOpRm9fLLL9OlSxfMZrO9E7loOyThEYZYuXIlTz31lEu0ud+xYwcPP/wwSUlJBAQEEBUVxYUXXsj69evrPf/AgQNcccUVBAcHExgYyJ/+9Cf27t3rcE5WVhZz5sxhyJAhhISEEBYWxrhx41i0aFGdx6tN7Oq75OTk1Dn/hx9+YMCAAVgsFjp37szs2bOprq4+o8c8fPgwL7/8MmPGjKF9+/YEBwczbNgwvvrqq3q/97S0NK666io6deqEr68vCQkJzJ07l7KystO+zgBfffUV1157Ld27d0fTNMaNG9fguRs2bGDy5MkEBgYSEBDAxIkTSU5OrvfclStXMmrUKHx9fYmMjOSee+6p06Pn999/b/A1Wb16tcO5zz33HMOGDaN9+/ZYLBa6d+/Offfd57ANRn0+//xzNE077WattTIyMhqMSdM0brnlFofzG/v6n2n8Z8Jms/Huu++SlJSEv78/ERERnH/++axcubLe8zdu3MiUKVNo164dvr6+9O7dmzfeeMN+e1lZGW+99RYTJ04kKiqKgIAA+vfvzzvvvIPVaq3zeNnZ2dx6663ExcXh4+ND165duf/+++tsd/K///2Phx9+mJEjR/Lhhx/y3HPPNe8LIQwnW0sIQ6xcuZI5c+Zwww03EBwcfEaPcd1113HVVVfh7e3dvMGd5J///Cf/+te/uPTSS7nzzjspKirivffeY9iwYSxcuNBhw8uSkhLOOeccioqKePTRR/H09OS1115j7NixJCcnExoaCsD333/Piy++yNSpU5k+fTrV1dV88sknnHfeeXzwwQfMmDGjThxz586tsyv4ya/dggULmDp1KuPGjeMf//gHW7du5ZlnniEvL4933nmnyY+5atUqHnvsMS644AIef/xxPDw8+Pbbb7nqqqtITU1lzpw59nOzsrIYMmQIQUFBzJw5k3bt2rFq1Spmz57Nhg0b+P7770/7Wr/zzjts2LCBwYMHn3L/rY0bNzJq1Ciio6OZPXs2NpuNt99+2761Ro8ePeznJicnM378eHr27Mmrr77K/v37eeWVV0hLS2PBggV1Hvuee+5h8ODBDse6devmcH3Dhg0kJSVx1VVXERAQwPbt25k3bx4//fQTycnJ9n2rTlRSUmLfJ62x2rdvz6efflrn+MKFC/n888+ZOHGi/VhTXv8zif9MPfTQQ7z66qtce+213HnnnRQWFvLee+8xduxY/vjjD4YMGWI/93//+x8XX3wx/fv354knnsDf3589e/awf/9++zl79+7l7rvvZvz48dx///0EBgbyyy+/cOedd7J69Wo+/vhj+7klJSUMHz6c0tJS7rzzTqKjo9m8eTNvvvkmS5YsYcOGDZhM+uf+3377DZPJxL/+9S+8vLya7fsXTsTYRs/CXb388sv1bk3QUk5u/d8U69evV0ePHnU4dujQIdW+fXs1cuRIh+MvvviiAtTatWvtx7Zv367MZrOaNWuW/VhKSkqd7QXKy8tVQkKC6tSpk8PxhrYpqE9iYqLq16+fqqqqsh977LHHlKZpavv27U1+zL1796qMjAyHYzabTZ177rnK29tblZSU2I8/++yzClApKSkO519//fUKUAUFBaeNPzMz0771Q69evepsjVDrggsuUCEhIerQoUP2YwcPHlT+/v5q2rRpDueef/75KioqShUVFdmPzZs3TwHql19+sR9bsmSJAtTXX3992jjr88033yhA/fvf/6739kceeUT16NFDXXPNNfVuI9EU48ePV4GBgerYsWP2Y2f7+p8u/hM1tEXGyaqqqpSPj4+67LLLHI7v3btXAeqee+6xHysqKlIRERHqkksuqXf7j1r5+fl1vkellJoxY4YCVFpamv3Y559/rgD1448/Opz75JNPKkBt3LjR4f5n+3MRzk2mtESre+qpp3jooYcAiIuLsw/PZ2Rk2IfwP/roozr30zSNp556yn69vhoepRTPPPOMfUj/nHPOYdu2bfXGsWfPHvbs2XPaeAcOHFhnCiI0NJTRo0ezfft2h+PffPMNgwcPdhghSEhIYPz48fzf//2f/VivXr0ICwtzuK+3tzcXXHAB+/fv5+jRo/XGcvTo0XqH7QFSU1NJTU3l1ltvxcPj+ODtnXfeiVKKb775psmPGRcXR0xMjMMxTdOYOnUqFRUVDlN1xcXFAERERDicHxUVhclkatSn5ujoaPsn7lNZvnw5EyZMsI+Y1T7P2LFj+fHHH+3TVcXFxfz6669ce+21BAYG2s+9/vrr8ff3d/iZnOjo0aN1pgFPJzY2Fqh/N/K0tDRee+01Xn31VYefzZnIzs5myZIlTJs2DYvFYj9+tq//qeJvyKFDh7jiiisIDAwkNDSUe++9l/LycvvtVVVVHDt2rE5M4eHhmEwmfHx87Me++OILcnNzefbZZzGZTJSWlmKz2eo8Z1hYGL169apz/JJLLgFweE+e6jUB7M+vaRoffvghpaWl9t9H9f0OEq5NEh7R6qZNm8bVV18NwGuvvcann37Kp59+at/B+mw8+eSTPPHEE/Tr189egDhx4kRKS0vrnDt+/HjGjx9/xs+Vk5PjkLTYbDa2bNnCoEGD6pw7ZMgQ9uzZ02Aic+Jj+vr64uvrW+e2c845h8DAQHx9fZkyZQppaWkOt2/atAmgzvN36NCBTp062W9vymOeKk7A4fuvrbe56aabSE5OJisri6+++op33nmHe+65p1mnSSoqKhz+WNby9fWlsrKSlJQUALZu3Up1dXWd18TLy4ukpKR6X5MZM2YQGBiIxWLhnHPOabBWSynFoUOHyMnJYfny5dxzzz2YzeZ6647uu+8+zjnnnGbZmf7LL7/EZrNxzTXXOBxv6uvflPgbcsUVV1BeXs7zzz/PBRdcwBtvvMGtt95qv93Hx4ehQ4fy0Ucf8fnnn5OZmcmWLVu44YYbCAkJcTh30aJFBAYGcuDAAXr06IG/vz+BgYHccccdDklUQ+r7PzlmzBhMJhP33nsvq1evZv/+/fz88888++yzTJ06lYSEBAA+/fRTRo8ejbe3t/330ZgxYxr9OggXYewAk3BXDU1ppaenK0B9+OGHde7DSTt5n7xjd15envLy8lIXXnihstls9vMeffRRBdSZ0oqJiVExMTFnFP+yZcuUpmnqiSeesB/Lz89XgJo7d26d89966y0FqB07djT4mGlpacpisajrrrvO4fhXX32lbrjhBvXxxx+r7777Tj3++OPK19dXhYWFqczMTPt5ta/picdqDR48WA0bNqzJj1mfw4cPq/DwcDV69Og6tz399NPKx8dHAfbLY489dsrHa8ipprT69Omj4uPjVXV1tf1YRUWF6ty5swLUN998o5RS6uuvv1aAWrZsWZ3HuPzyy1VkZKT9+h9//KEuvfRS9a9//Ut9//336vnnn1ehoaHKYrE4TH3Uys7Odvg+O3XqpL766qs65/3444/Kw8NDbdu2TSnV8M7ojTVw4EAVFRVV77RPU17/xsZfn9oprSlTpjgcv/POOxWgNm/ebD+WlpamBgwY4PBcXbp0qfNe6Nu3r/L19VW+vr7q7rvvVt9++626++67FaCuuuqqU8ZTUVGhEhMTVVxcnMN0rlJK/fOf/1TBwcEOzz99+vQ6553tz0U4PylaFm3GokWLqKys5O6770bTNPvx++67r94VF41Zzl6fvLw8/vznPxMXF8fDDz9sP37s2DGAeouoa6ceas85WVlZGZdffjk+Pj688MILDrddccUVXHHFFfbrU6dOZdKkSYwZM4Znn32Wd999t1HPXzu835THPFntyEJhYSH/+Mc/6tweGxvLmDFjuPTSSwkNDeWnn37iueeeIzIykpkzZ9b7mGfizjvv5I477uCmm27i4Ycfxmaz8cwzz5CdnQ0cfy1O95qc+PMYMWIEI0aMsF+fMmUKl112GX379mXWrFksXLjQ4f7t2rXj119/pby8nE2bNvGf//ynzsqvyspK/vKXv3D77beTmJh41t/3rl272LBhA3/5y1/qnfpryuvfmPhP56677nK4fvfdd/P222/z888/07dvXwACAgLo1asXw4cPZ/z48eTk5PDCCy8wdepUli9fbh+RKSkpoaysjNtvv92+KmvatGlUVlby3nvvMXfuXLp3715vHDNnziQ1NZWffvqpzpRhx44dGTJkCBdccAExMTEsX76cN954g7CwMF555ZUmfb/CxRmdcQn31BIjPM8//7wC1J49e+rcNyQk5IyLlk9UUlKiBg8erIKCgtTWrVsdbjvTEZ7q6mp18cUXKy8vL7V48eJGxzJs2DDVtWtX+/WmjPA09jFPVvsJ/pNPPqlz27///W/l4+OjsrKyHI7fcMMNytfX115gfPjwYZWdnW2/FBYW1vtcpxrhUUofufP09LR/ah80aJB67LHHFKC+++47pVTTRngactVVVykvLy+H0aT6/PHHHwpQ8+fPtx974YUXVEhIiDp8+LD9WH0jCYWFhQ6vyYnnn6i22Hb9+vV1bmvs69/Y+Kurqx1iys7OVhUVFUqp4yM8e/fudXiMyspKZTKZ1G233aaU0ouWe/furWbOnOlw3q5du5Snp6d6+OGH7cd69eqlALV06VKHc5cuXaoA9fHHH9cb90svvaQA9fTTT9e5bcWKFcpsNtcpzn/qqaeUpmn2UTelZITHHUgNj3AqJ47MnKihotrWVFlZybRp09iyZQvff/89vXv3dri9Xbt2eHt720cZTlR7rEOHDnVuu+WWW/jxxx/56KOPOPfccxsdT3R0NAUFBfbrtYWYDT1/fc99usc80Zw5c3j77bd54YUXuO666+rc/vbbb9O/f386derkcHzKlCmUlZXZ62WmTZtGVFSU/XLvvfeeNq76PPvss+Tm5rJ8+XK2bNnCunXr7EWu8fHxQPO9JpWVlfXWgZ1oxIgRREVF8fnnnwNQVFTEM888wy233EJxcbG9KL+kpASlFBkZGeTl5QFw7733Orwm06ZNq/c5vvjiC3r06MHAgQPr3NbY17+x8WdlZTnEFBUV1WDvnFonv3+XLVtGSkoKU6ZMcTjevXt3evbsyR9//GE/VvuzqK/AGeDIkSN1nu+jjz7ikUce4fbbb+fxxx+vc/t7771HREREnRquKVOmoJQ67fcj2haZ0hKGaCixCQkJAequFNm3b99pH7N2NVFaWhpdunSxH8/Pz6/3l2VT2Gw2rr/+ehYvXsz//d//MXbs2DrnmEwm+vTpU2+R65o1a+jSpQsBAQEOxx966CE+/PBDXn/9dXshd2Pt3bvXodC7tjPs+vXrHXqbHDx4kP379zsUiDb2MWu99dZbPPXUU9x333088sgj9d43NzfX/vM7UVVVFYB91dPf/vY3h59HY5KOhoSEhDBq1Cj79UWLFtGpUyd7MWrv3r3x8PBg/fr1DlN4lZWVJCcnOxxryN69e7FYLI1qFlheXk5RURGg/4EuKSnhpZde4qWXXqpzblxcHH/605/473//y8MPP8y1117r8H2dbM2aNezevZu5c+fW+9yNff0bG39kZCS//vqrw+39+vVzuJ6WlubQx2n37t3YbDb7iq/c3Fyg/g8sVVVVDjENHDiQX3/91V60XOvgwYMAdf5ffv/999x8881MmzaNt956q97vJzc3t8Hnhsa9JqINMXqISbind955RwFq06ZNdW4LCwtTl1xyicOxBx54oFFFy56eno0uWt69e7favXt3o+Ktncp57733TnneCy+8UKe/zY4dO5TZbFaPPPKIw7m1Q/GPPvroKR8zLy+vzrGffvqpTh8TpZRKSEhQ/fr1c5h+efzxx5WmaSo1NfWMHvPLL79UJpNJXXPNNQ6v68kuuugi5eXlpXbu3OlwfOrUqcpkMqkDBw6c8vs82emmtE725ZdfKkC98sorDscnT56soqKiVHFxsf3YP//5TwWoBQsW2I/V95okJycrT09Ph+LckpISVVpaWufc2j42tYXspaWl6rvvvqtzOeecc5TFYlHfffedWr16daO/v3vuuUcBDf6fbezr39j4T+V0RcvJyclKKb2HVX3vvQ0bNiiTyaRuv/12+7GNGzcqQP35z392OPfqq69WHh4eDv9/li5dqiwWizrnnHNUeXl5g3HOnDlTAWrJkiUOx++77z4FOLz+MqXV9skIjzBE7ZD8Y489xlVXXYWnpycXX3wxfn5+3HzzzbzwwgvcfPPNDBo0iGXLlrFr167TPmb79u158MEHef7557nooou44IIL2LRpEwsWLKjT8wawL0k/XfHy66+/zttvv83w4cPx9fXls88+c7j9kksusS/5vfPOO5k3bx4XXnghDz74IJ6enrz66qtERETwwAMP2O/z3Xff8fDDD9uH9k9+zPPOO88+tD9ixAj69+/PoEGDCAoKYuPGjXzwwQdER0fz6KOPOtzv5ZdfZsqUKUycOJGrrrqKlJQU3nzzTW6++WZ69uxpP6+xj7l27Vquv/56QkNDGT9+vH2648THqR1Ne+ihh1iwYAGjR49m5syZhIaG8uOPP7JgwQJuvvnmRo3kLFu2jGXLlgH6yFxpaSnPPPMMoC8xrl0qvGzZMubOncvEiRMJDQ1l9erVfPjhh0yePLnOFNmzzz7LiBEjGDt2LLfeeiv79+/nb3/7GxMnTmTy5Mn286688kp8fHwYMWIE4eHhpKam8v777+Pr6+tQSJ6WlsaECRO48sorSUhIwGQysX79ej777DNiY2Ptz+/r68vUqVPrfI///e9/Wbt2bb23NcRqtfLVV18xbNgwunbtWu85jX39Gxt/Y6SnpzNlyhQmT57MqlWr+Oyzz/jzn/9sHwkaOHAg5513Hh9//DHFxcVMnDiR7Oxs/vGPf+Dj48N9991nf6z+/ftz44038sEHH1BdXc3YsWP5/fff+frrr5k1a5Y9/n379jFlyhQ0TeOyyy7j66+/doipb9++9oLpmTNn8uGHH3LxxRdz9913ExMTw9KlS/n3v//Neeedx9ChQxv9vYo2wOiMS7ivp59+WnXs2FGZTCaHkZqysjJ10003qaCgIBUQEKCuuOIKlZeXd9oRHqWUslqtas6cOSoqKkr5+PiocePGqZSUlHo7LTd2Wfr06dMdlrSefDm58DorK0tddtllKjAwUPn7+6uLLrrIofurUsc/ITd0OfET6WOPPaaSkpJUUFCQ8vT0VJ07d1Z33HGHysnJqTfe7777TiUlJSlvb2/VqVMn9fjjj6vKykqHcxr7mLWvcUOXk4vL16xZo84//3wVGRmpPD09VXx8vHr22WfrLAFuyKlelxN/9rt371YTJ05UYWFhytvbWyUkJKjnn3/eXlR7suXLl6sRI0Yoi8Wi2rdvr+666y6HER+llPr73/+uhgwZotq1a6c8PDxUVFSUuvbaa+v87PLz89Wtt96qEhISlJ+fn/Ly8lLdu3dX991332k7Dyt1ZiMJCxcuVIB64403TnleY17/s41fqeM/p9TUVHXZZZepgIAAFRISombOnOnQ/Vkp/f08d+5clZiYqHx8fFRQUJC66KKL6h3draysVE899ZSKiYlRnp6eqlu3buq1115zOKe2I3Zj/p8opY+wXnbZZSo6Olp5enqqmJgY9eCDD9YZ5ZIRnrZPU0qpFsynhBBCCCEMJ6u0hBBCCNHmScIjhBBCiDZPEh4hhBBCtHmS8AghhBCizZOERwghhBBtniQ8QgghhGjzJOERQgghRJsnCY8QQggh2jxJeIQQQgjR5knCI4QQQog2TzYPBWw2GwcPHiQgIABN04wORwghhBCNoJTi6NGjdOjQAZPp1GM4kvAABw8eJDo62ugwhBBCCHEGsrKy6NSp0ynPkYQHCAgIAPQXLDAw0OBohBBCCNEYxcXFREdH2/+On4okPGCfxgoMDJSERwghhHAxjSlHkaJlIYQQQrR5kvAIIYQQos2ThEcIIYQQbZ5TJjxvvfUWsbGxWCwWhg4dytq1a095fmFhIXfddRdRUVF4e3sTHx/Pzz//3ErRCiGEEMLZOV3R8ldffcX999/Pu+++y9ChQ3n99deZNGkSO3fuJDw8vM75lZWVnHfeeYSHh/PNN9/QsWNH9u3bR3BwcOsHL4QQQginpCmllNFBnGjo0KEMHjyYN998E9CbAkZHR3P33Xfz17/+tc757777Li+//DI7duzA09OzUc9RUVFBRUWF/XrtsraioiJZpSWEEEK4iOLiYoKCghr199upprQqKyvZsGEDEyZMsB8zmUxMmDCBVatW1XufH374geHDh3PXXXcRERFB7969ee6557BarQ0+z/PPP09QUJD9Ik0HhRBCiLbNqRKeQ4cOYbVaiYiIcDgeERFBTk5OvffZu3cv33zzDVarlZ9//pknnniCv/3tbzzzzDMNPs+sWbMoKiqyX7Kyspr1+xBCCCGEc3G6Gp6mstlshIeH8/7772M2mxk4cCAHDhzg5ZdfZvbs2fXex9vbG29v71aOVAghhBBGcaqEJywsDLPZTG5ursPx3NxcIiMj671PVFQUnp6emM1m+7GePXuSk5NDZWUlXl5eLRqzEEIIIepntSnWpheQd7Sc8AALQ+LaYTYZs0m3UyU8Xl5eDBw4kMWLFzN16lRAH8FZvHgxM2fOrPc+I0eO5IsvvsBms9l3St21axdRUVGS7AghhBAGWZiSzZz5qWQXlduPRQVZmH1xIpN7R7V6PE5VwwNw//33M2/ePD7++GO2b9/OHXfcQWlpKTNmzADg+uuvZ9asWfbz77jjDgoKCrj33nvZtWsXP/30E8899xx33XWXUd+CEEII4dYWpmRzx2cbHZIdgJyicu74bCMLU7JbPSanGuEBuPLKK8nPz+fJJ58kJyeHpKQkFi5caC9kzszMtI/kAERHR/PLL7/wl7/8hb59+9KxY0fuvfdeHnnkEaO+BSGEEMJtWW2KOfNTqa/njQI0YM78VM5LjGzV6S2n68NjhKas4xdCCCFEw1btOczV81af9rx/3zKM4V1Dz+q5XLYPjxBCCCFcW97R8tOf1ITzmoskPEIIIYRoNuEBlmY9r7lIwiOEEEKIZtPOzwvzKUpzNPTVWkPi2rVaTCAJjxBCCCGaybqMAq54bxXWBqqDa/Og2Rcntno/Hkl4hBBCCHHWftqSzTX/XEPRsSr6dw7m5cv6EhXkOG0VGWThnWsHGNKHx+mWpQshhBDCtfxz+V6e/Xk7SsF5iRG8cVV/fLzMTBvQSTotCyGEEMK1WW2KZ35K5cM/MgCYPjyGJy/uZU9qzCbtrJeeNxdJeIQQQgjRZOVVVu77MpmF23IAePSCBG4Z3QVNM2YE53Qk4RFCCCFEkxwpreTmT9azYd8RvMwmXrmiH1P6dTA6rFOShEcIIYQQDTp5x/PIQAs3fbyOvYdKCbR48P71gxjWxTmmrU5FEh4hhBBC1Ku+Hc9NGtgUdAz24aMZg+keEWBghI0nCY8QQggh6qjd8fzkljq2mgN3n9vNZZIdkD48QgghhDjJqXY8B72B4N8Xp2G1uc7+45LwCCGEEMLB2vQCh2mskykgu6ictekFrRfUWZKERwghhBAOnHXH87MhNTwt6OTKdiM7TAohhBCN5aw7np8NSXhayMKUbF77YQ2lRwvJU8FU4klUkIXZFycasoeIEG6tshQqSsDbH7z8jI5GCKc3JK4dUUEWcorK663j0dD3xWrtHc/PhiQ8LaC2sv0G8yJme38KQIYtghWlvXnr83Pgmssk6RGiJSkFGStg879hzxI4evD4bcGdIW4sJF0DnYeBk3aFFcJIZpPG7IsTueOzjXVua/KO55lrYP2/YOht0HFg8wbaBJLwNLMTK9stVFGhPPHWqog15RJryuVaj8Ws/M9/sEa8j7l991M+jkyHCXEGDm6Cnx+C/etOukEDFBRmwqZP9UvsaJj8AkT2NiJSIZza5N5RvHF1Enf/O9nheGRjZyvydsCChyF9qX7dw1sSnrbkxMr2d6xTeMd6McGU0N+0mz+Z/+BC0xpG2DZie3ckXPAyDLi+zifM+ho9yXSYEKdhs8Hyv8Hvz4GygYcP9LsKek2FqCSwBEF5ERzcCCn/gS1fQcZyeH8cjH8SRtwtoz1CnKRre73Pjp+Xmecu6UN4YCM+gCsFa96DX58AayWYPKHflTDoxlaKun6aUsp1FtG3kOLiYoKCgigqKiIwMPCsHuv75APc+2Vyg7fHadnM9fiQ0eYUADZ1uJrScXPp1zmEAItng42eav9rvXPtAEl6hDhZdQX85xZI/V6/3vtSmPQcBEQ2fJ/CLFjwCOz8Sb/e9yqY8g/w8Gr5eIVwEf/ZuJ/7/28zQ+Pa8dVtw09/B2uVPsK64UP9eveJcMErEBLTIvE15e+3jPA0s9NVrKerKK6v+it32ObzsOdX9D/4b7759ADTq2+la/tAsgqP1VsgptCTnjnzUzkvMVKmt4SoVVkGX10LexaD2Qsueg36X3v6+wVHw1Wfw7p/6onPli+hqhQu+xDMni0ftxAuYHt2MQA9oxoxGGCzwrc3Q+p/AQ3Om+tUI6fSh6eZ1Va2N/Tj1SvbfTnvthdZ3utprJi4zLyMx82fsivvKMcqrQ0+tis2ehKiRdX+gt2zGDx94c9fNS7ZqaVpMOQW/X5mL9g+H767TZ8eE0KwI+coAAmRp9lCwmaDH+7Wkx2TJ1z5GYy8x2mSHZCEp9nVVrYDdZKeEyvb+3cOYfTl92C+dB4AMzx+4f1uaxr1HK7U6EmIFvXLY/qUlNkbrvkGup57Zo/T/Ty44hMweUDKt7D0heaNUwgXtT27JuE53QjPspch+XPQzHDZB9DzolaIrmkk4WkBk3tH8c61A4gMcpzeigyy1K3B6XMZnPc0AOft/wfDTdtO+/iu1OhJiBaT/AWseUf/+pJ3IXbk2T1ej/Nhypv610tfPF4PJISbyj9awaGSCjQN4iP8Gz5x1y/w+/P61xe9BolTWifAJpIanhYyuXcU5yVGNm5p+Yi7IX8HWvLnvOH1NueXP8chguqc5oqNnoRoEYfS4KcH9K/HPQq9pzXP4yZdDTlbYPXb8N87IaofhMQ2z2ML4WJ21kxnxYb64evVQLpQmAXf3gIoGHQTDJzeegE2kYzwtCCzSWN411D+lNSR4V1DGy401jR9iXr7BNpzhJc930VrYI/aRjd6EqKtqq6Er2dAVRnEjYExDzbv45/3NEQPg8oS+O4OvU5ICDe0I0cvWG6wfsdmg+/vgooi6DhI72nlxCThcRZefjWrQ7w4x7yZG/wd63l8vcyyJF0IgD9eh9yt4BsKl7wPJnPzPr7ZQ58i8/KHzJWw6q3mfXwhXIS9fieygfqddf/Umwp6+MC0952+pYMkPM4kIhHGPgLAk56f8vW13bhzXFcAvD1MTOgZYWR0Qhgvf6deHAlw/ksQ2EIfANrF6X18AJY8p3dnFsLN2Ed4ouoZ4Sk6AIue0r8+by6Edm29wM6QJDzOZuS9ENEH7dgRBu96lb+cF0+IrydHyqpkObpwb0rBj3/RO7d2n6g3F2xJA66HmFFQfQwW/LVln0sIJ1NttZGWWwJAz/pGeH59Qu9bFT0UBt/cytGdGUl4nI3ZE6b8Xf96y5d4Zm9kYqLeLfbnlGwDAxPCYNt/gH1/6MPnF/6t5ft7aJr+PCYPfen7zoUt+3xCOJH0Q6VUWm34e3vQKcTH8caMFXr7BmrqT02ukUq4RpTupuNA6Pdn/euFf+X83vpU1sKUXKw2t98JRLij6gr49Un965H36Dueo2+yu2rPYb5PPsCqPYeb//0RngDD79K//vVJsFY37+ML4aS216zQ6hEZgOnEhTLWavj5Yf3rQTP0lYwuQpalO6vxT+p9QPavY1TFMgItgRwqqWDDviOyLF24n7Xz4EgG+EfAiHuAVtxkd/QDsPETOLQTNv8bBlzXfI8thJPakd3ACq0tX0LeNrAEw7lPtH5gZ0FGeJxVYJRezwN4LHuRST3DAPh5q0xrCTdz7Agse0n/+twnwNvfvsnuickOQE5ROXd8tpGFzTn9awmC0TVL35c8B1XHmu+xhXBS9i0lTuywXF0Bv7+ofz36AfB1rQ/fkvA4s2F3gE8IHE5jesB6ABam5GCTaS3hTla/C+VFEJ4ISX/GalPMmZ/a4Ca7oG+y25jprUZPiQ2+GQI7wdGDsOa9M/5WhHAVtSM8PU8c4dn4CRRlgn+kyxQqn0gSHmdmCbQP3yemvUOQt0ZOcTmbsgqNjUuI1lJeBKtrto8Y+wiYzKxNL6gzsnOi2k12l+zMO+VDL0zJZtSLv3H1vNXc+2UyV89bzagXf6t/dMjTAuc+pn/9x9+hsvQMvyEhnF9hWSUHa95j8bUJT9UxWPaK/vWYB8HL16DozpwkPM5uyK3gG4bpSDqPRG0CYIFMawl3seZ9vYtr+wToqe/P09jNc2/+eD2DnvmVy99dycPfbObdpXv4ZVsOu/OOMn/zgaZPifW5AkLi4FiB/klXiDaqdjqrU4gPgRZP/eCGj6AkB4I66y0bXJAULTs7b3+9lufXJ/hTyf/xGH1ZkJLDYxf2RGvpZblCGKm8GFbVbOY55iH70tembJ57qKSSQyWVrMs40qjzFfqedXPmp3JeYqTjNi5mDxh1H8y/F/54A+vAG1mbWXL6vfKEcDHHC5Zr6nesVbCy5r04+n7w8DYosrMjCY8rGDQDlr+CX0kGF3klM79wAFsPFNG3U7DRkQnRcjZ8BOWFEBYPvS6xHx4S146oIEuD01q1m+wuvG8MmYfL2HuohL35paQf0i9puUcpr7Y1+LS1U2KfrMrg6iGdsXiesHVFv6vh9xfg6EFefPEp3i8ZZb+pRVaICWGA2hGenrUdllP+A8X7wS9cfw+4KJnScgXeATDoRgDu89Wbn/28NcfIiIRoWdbq48XBI+5x2C/LbNK4b0J8vXerHV+ZfXEiQT6e9OkUxJ+SOvKX8+J54+r+zL97FC9e2rdRIcyZn0qfp35h6lt/8PSPqfy8NZvcMsWOOH04/+rKbzFxPHFqkRViQhigtgdPQmSg3uH8j5pmuENv0+vZXJQkPK5i6O1g9qJreQoDtF0sSMlGKVmtJdqo7d/XfKJsD30ur3Pzyj2HAPA4aQopMshy2k12wwMb9ws70OJJlVWRnFXIv1akc+fnGxn63GIuW9eDQuVHnCmXc02b7Oc3dYWYEM7IalPssi9JD4Ddi/W+O55+MPgmg6M7OzKl5SoCIqHvFbDpM27z/JnbDseTml1Mrw5BRkcmRPNS6vgO5YNvrvOJcnlaPt8nH8Skwde3D6e8ytakOpraKbGcovJ6l7bXToktf/gcsovK2bDviP2yPbuYEmXhS+u53O4xnxvMC1lkG3g8dPTpsLXpBQzvGnp2r4MQBsgsKONYlRVvDxOxoX6w4B/6DQNv0NukuDAZ4XElw+8G4DzTejpwiIUpMq0l2qCstXBgA5i9YZDjJ8ryKitP/DcFgOuHx9K/cwjDu4byp6SODO8a2qiiYbNJY/bFicDxKbBaJ06JeZhNRLfzZWr/jjw9tTc/3zuaFy7tA8Cn1ROwKo1R5m100/bXeY7GriQTwtnUFiz3iAzAXLAb9v4OaPp0louThMeVhCdA3BhM2Lja4zd+2irTWqINWvOu/m/fy8G/vcNNby/ZTcbhMiICvXlgYv11PI0xuXcU71w7gMggx9Gj002JdW7nB8AB2vM/2yAAbjD/Uue8pqwkE8KZHK/fCYB1/9QPxk+GkBgDo2oeMqXlagbdBOnLuMq8hDfyp5GWV0J8RMDp7yeEKyjJh+3z9a+H3Opw0+68Et5ZugeA2Rf3IqC2P8gZmtw7ivMSI1mbXtDoKbETp8M+tk7ifPM6pplX8FL1lRTjb58Ok/3uhKuqHeHp3d4TVn6hH3TBrsr1kREeV5NwIfhH0l4rYpJpneytJdqWzV+ArQo6DHDYhVkpxWPfbaXKqjinR3vO7x3ZLE9nNmlNmhI7cTpsja0n223R+GoVTDOvsJ8z++JE6ccjXFbtkvSRZYuholhvttn1XIOjah6S8LgasycMnA7AtR6LWCDL00VboZTeewf0AskTfLvxAGvSC7B4mpj7p96GNt08Ph3mw7+t+h+CK81LsHhqp10hJoQzK6moJrOgDFDE7P23fnDwTfamn66ubXwX7mbAdJRmZphpO9V5O9iTX2J0REKcvYzlULAXvAKg96X2w0dKK3nu5+0A3Ds+nuh2xu/hM7l3FCseOZeLrrmPas2LnqYsBprTmZjYPCNPQhhhZ83ozjj/A3jkb9MXDiRdY3BUzUcSHlcU1BEtfhIAl5mXyWot0Tas/1D/t+/l+pYqNZ5fsJ2C0kp6RARw8+g4g4Kry2zSGJLYBVMvfY+vC6oXk3KwyOCohDhzO3L0+p3rLMv1Az0vAt+2U48mCY+rSvozANPMy1m4pe6yWCFcSumh48XKJ0xnrU0v4P/W6/+/n5vWG0+z8/3KMtVMMU8xr2TVjiyDoxHizG3PLsabSkYcW6ofaEOjO+CkCc9bb71FbGwsFouFoUOHsnbt2kbd78svv0TTNKZOndqyATqD7pOw+bQjQiskNPcP9h0uNToiIc7clq/0YuWoJHuxcmW1jce+2wrA1UOiGRjjpJ80Y0Zx1KcTAdoxqrd+Z3Q0QpyxHdlHmWDaiI+1GAI7QpdxRofUrJwu4fnqq6+4//77mT17Nhs3bqRfv35MmjSJvLy8U94vIyODBx98kNGjR7dSpAbz8MLU9wpAn9ZaINNawpVt+Ur/t/+19kPzlu8lLa+EUD8vHpmcYFBgjWAyUd1Pj3vwkZ8oqag2OCAhmk4pxY6co1xurhnd6Xe1wx52bYHTJTyvvvoqt9xyCzNmzCAxMZF3330XX19fPvjggwbvY7Vaueaaa5gzZw5dunRpxWgNVjOtdZ5pPcu2pBkcjBBnKG8HZG8Gkwf0mgZA5uEy3lis/59+/KKeBPt6GRnhaYWMmI4VE0NMO0jevOn0dxDCyew/cgy/ijxGm7boB2r+vrQlTpXwVFZWsmHDBiZMmGA/ZjKZmDBhAqtWrWrwfnPnziU8PJybbmrcxmYVFRUUFxc7XFxSZF+q2yfirVXTJWch+4+UGR2REE235Uv9327ngV8oSime+D6FimobI7uFMjWpo7HxNUZgB9ID9D21KjZ9ZXAwQjTdjpyjXGpejllTEDMSQrsaHVKzc6qE59ChQ1itViIiIhyOR0REkJNT/5TNihUr+Ne//sW8efMa/TzPP/88QUFB9kt0dPRZxW0YTcNjgD6ULqu1hEuy2WDL1/rX/a4E4Ket2SzdlY+X2cTTBvfcaYryBH10qlvOAr2nkBAuZMfBIqbWNtBsg6M74GQJT1MdPXqU6667jnnz5hEWFtbo+82aNYuioiL7JSvLhVdW9LkcGyaSTHvYmLzR6GiEaJp9f0DxfvAOgvjzKS6vYs78VADuPKcrXdr7n+YBnEfMqKuoUJ7EqP1k72zcQgshnEVx5mbiTQeoNnlBz4uNDqdFONVeWmFhYZjNZnJzcx2O5+bmEhlZt6HXnj17yMjI4OKLj/9wbDYbAB4eHuzcuZOuXesOy3l7e+Pt7d3M0RvEP5yqzqPxzlxKbM4v5BRdVGdDRCGcVs10Vm70ZFZvO8xPW7LJP1pBlzA/7hjnWkPqAUHtWGUZyvCKFRxZ/RlRCUONDkmIRovNWQhAYYdxhFmCDI6mZTjVCI+XlxcDBw5k8eLF9mM2m43FixczfPjwOucnJCSwdetWkpOT7ZcpU6ZwzjnnkJyc7LpTVU3knXQ5ABebV/HLNpnWEi6iqpyqrf8F4J5t8dz7ZTL/S9U/7ExJ6oC3h+utECnoMhWAqKyfwGY1NhghGulYRTWjK/TVWZ41f0/aIqdKeADuv/9+5s2bx8cff8z27du54447KC0tZcaMGQBcf/31zJo1CwCLxULv3r0dLsHBwQQEBNC7d2+8vJx7ZUez6XkRVs2DnqYstmxsuLhbCGeycck3eFaXcFC1Y63q4XDb3xelsTDF9TbGjR46hSLlS4j1MNXpK05/ByGcwIFty+is5VOKhcC+FxodTotxuoTnyiuv5JVXXuHJJ58kKSmJ5ORkFi5caC9kzszMJDvb9X4RtiifECrj9E0MY3J+If9ohcEBCXFqVpsib7W+mmmBdSiqnl9Fc+anYrW5VvFvr87hLNb00egjqz8zOBohGse25RsANvmOQPPyMzialuNUNTy1Zs6cycyZM+u97ffffz/lfT/66KPmD8gF+CRdAXv/x0WmVfySks21w2ONDkmIBq3bnc1I6zrQ4Cdr3VoXBWQXlbM2vYDhXUNbP8AzZDZpZHW6EPYvxj99IVirwOxpdFhCNMxmJWq/Xr+T1eECg4NpWU43wiPOUI/zqTJZ6GLKYfum5UZHI8Sp7fmNAO0Y2aodm1S3Bk/LO1reikE1jw59zuWQCsSnuhgyZFpLOLmMFQRUH6ZQ+eEZP97oaFqUJDxthbc/lV3OAyAmeyEFpZUGByREw7rmLwJggXVIvdNZtcIDXG/F4aiESP5nrWlCuEX21hLOTaX+AMBC62ASOrrOaOqZkISnDfHrfykAE7V1/LpN6pyEk6quIOyAvhLzZ+uQek/RgKggC0PinHTD0FOICvJhS+A4/cqOH2W1lnBeNhu27fMB+J8aSrdw1+l7dSYk4WlLup1HteZFrCmXLRtXGx2NEPXbswStophySzgbVHydm2v7Ks++OBGzyTW6LJ8sIOFcCpUf3hWHIVNWTgondWAD5tJcjiofctoNweLpeq0gmkISnrbE25+KmDEAtN//P4rKqgwOSIh6pH4PQGX8RfVOZ0UGWXjn2gFM7h3V2pE1m5E9Ivm1ZlpLbfuvscEI0ZDt+nTWb7b+dO3QtqezwElXaYkz59fvEshYxHmmdbyzdA89owIID9CnBlz107JoQ6orYedPAHxfpU9njYsP47ax3cg7Wt5m/q8OjQvlXm0Yl7MMa+oPeJz/Epjk86VwIkrpU67o9Tu9IwMMDqjlScLT1sSfjw0TvUz7uG3ZKt5V4YBeDzH74kSX/tQs2oCMZVBehPKP4PWd7YBqrhkW61JLzxvDx8tMZecxFO//B4GlubB/HXSWrSaEE8lLhYK9VOLJUls/Lo9q+wmPfORoYxamV7LGmgDAJNM6+/GconLu+GyjS3avFW3Ijp8ByAgby+GyaiIDLZzTo73BQbWMET068Jutv35lx3xjgxHiZDXFystsfSnDQkJkoMEBtTxJeNoQq00xZ34qv9gGATDJvN5+W22/WlfsXivaCKVg5wIAvizqDcCVg6PxMLfNX0Oju7fnV6v+XrTtXGhwNEKcZLs+nbWgejCBFg+i3GDT6bb5m8ZNrU0vILuonP/V/JIdpO0ijCL77Sd2rxWi1WVvhqMHsXn48FF2Z0waXDWk7W7wmxAZwDbfQVQqM6bDaXBot9EhCaErSIfcrdg0M4tsA0iICkTTXLturjEk4WlDarvSHiSMLbY4TJpignlDg+cJ0apqRnd2+Q+hAi/OTYggKsjH4KBajqZpDIiPYbUtUT+wa4GxAQlRq6ZYeV9Af4rwp6cbFCyDJDxtyoldaRdaBwOOdTz1nSdEq9mp1+98XjOddc3QzkZG0yrGxrdnkW2AfmWnJDzCSdRMsS436SslE6Lafv0OSMLTpgyJa0dUkAUN+LWmjme4KRUL+u7prty9Vri4ov2QswWFiZ+O9aFjsA9j4ttmsfKJRnYLY7FVT3hU5iook+lkYbBjR+zNML8t0T98JMgIj3A1ZpPG7Iv14fPdqiP7VRgWrYoRpm1tonutcGE1oxs7PHtSQCBXDY52i/+HYf7ehHTsynZbZzRlg7RfjQ5JuLs9v4GyUh3ag80lwWgaxEdIwiNc0OTeUbxz7QAig3z4zaoviR1v2tQmutcKF1aT8HxX1hezSeOKwW23WPlko7u351f7tNbPxgYjxK5fAMiJGAtATDtf/LzdoyWfJDxt0OTeUax45Fy6jJgGwLnmTSx5YKwkO8IY5cWQvgyARbaBTOgZTkSg+9SRjenenkW120zsXqx3mxbCCDYrpP0PgE0WvRGmO/TfqSUJTxtlNmmMGD+VY3gRpRWQtWP96e8kREvY8xvYqkgnir2qA9cMjTE6olY1MCaEPZ7dyFPBaJVHYd8Ko0MS7mr/Or2GxxLMsmNxACS4QYflWpLwtGEmb192WPRprZKtPxkcjXBbu/W6lUXV/enczpdR3cIMDqh1eXmYGNalPYtqppiRJoTCKDXTWXSbQGpuGQA93WSFFkjC0+Yd7jAOgOD9vxkbiHBPSsHuxQD8buvHVUOiMblBsfLJRncPY0ntNhO7pXBZGKQm4bF2m0habgkAPWVKS7QVvr0uAKDzsVRZEitaX24KHM2mTHmziZ5cPtB9ipVPNCa+PSttvahUZijYC4f3GB2ScDeFmZC3DTQTGSHDqbTa8PMy0ymk7Tb/PJkkPG1cQkIi223RmLFRtk2G0kUrq1mGvdKWyDm9omkf4G1wQMaIC/MjOLgd62099AN7ZMRVtLLa6azooWwr1Fdl9YgMcKsRV0l42rh2fl5s8Na7aZakyJJY0bqsaYsA+N2WxJ/doLNyQzRNY0x8e5ba+ukHpB+PaG01q7PoPpEd2cWA+3RYriUJjxs4HDUOgMADS/VliUK0hvJitKw1AOwNGsbwLqEGB2SsMd3Djic8GcuhSva0E62kugIyalYHdj+PHTlHAdxmD61akvC4geDuwylWvliqi+HgJqPDEe5i7++YVDV7bFGMGzbYrYbO6zOiWxi7iCZHhUBVmb29vxAtLnOV/n/OPwIiessIj2i7kmLbs8Km75mialbMCNHSCjbrU6jLVRKXuWmx8omCfDxJig5hqbVmlGf3ImMDEu6jtmas67kUHavmYJE+uthDRnhEW9MzKpBV9AWgYqfUDohWoBSmvXpyfSxmHO38vAwOyDnodTz6e1ESHtFqdtcmPOPZkaOP7nQM9iHQ4mlgUK1PEh434OVhIi98pP51zkYoLzI4ItHWle7fSnBVHuXKkwFjLjY6HKcxurs+2mpFg/wdUJhldEiirTuaC7lb9a+7nnO8fseNOizXkoTHTXSMTWCPLQqTstr3NRKipexY8R0Amz36MqR7B4OjcR79OgWBJZiNtu76ARnlES2tdjorqh/4hdlHeNxpD61akvC4iaTOwSy39dGvSA8Q0YKUUpj36H/IbV3Ho2nuXax8Ig+ziZHdwqSOR7SePcenswC2Z+sjPO60h1YtSXjcRP/oYJbV1A7YdkvCI1rOlr0HSazaBkCvMdMMjsb5OPTj2bsUrFXGBiTaLpvteMLTbTw2m2JnzZSWjPCINqtTiA9pPv2oVGZMhRnS2l60mHVLf8JLs3LYM5LAjglGh+N0RncPI0XFclgFQuVRyFprdEiircrZAmWHwMsfOg1hX0EZx6qseHuYiA31NTq6VicJj5vQNI0enTuwQVrbixZUdKwKU8bvANhix4JMZ9XRKcSXuPYB9lYRpC81NiDRdu2paUMSNwY8vOz9d+IjAvAwu9+ff/f7jt1Yf6njES3sv5sOMIwUAML6TjI4Guc1pvvx3ljs/d3QWEQbtmeJ/m/XcwHY7sYrtEASHreSFB18vAdI+jKpHRDNSinFT6u2kGjaB4DWZazBETmvMfFh/GHVEx7b/vWs3Z6B1aYMjkq0KRUlkLla/7om4bF3WHbD+h2QhMet9O0UxHZiOKQCobJEagdEs7DaFKv2HObvi9OIOKzvnWUN7wN+YQZH5ryOlldzkDD22iIxKSvvffoJo178jYUp2UaHJtqKjBVgq4KQWKwhXVi15zAb9h0BID7C3+DgjCEJjxsJsHjSLTzw+FC6TGuJs7QwJZtRL/7G1fNW8/qiNEaa9OmszODBBkfmvBamZHPfl8kArLT1AmCUKYWconLu+GyjJD2iedTUhmWGDLW/Rw+XVgJw//9tdsv/Z5LwuJn+0SH8YS+WlAaE4swtTMnmjs82kl1Uu+u3YpRZT3ieSmnvlr9QT8dqU8yZn0rt5NWKmpq6kaYU+7E581Nlekucvb16wvPSjogT3qO6/KMVbplcS8LjZpI6B7PSqn+q5MAGqDhqbEDCJZ38hxsgRsulk3aICuXBOlsP+cNdj7XpBQ5/fFbZErEpjXjTAcI5ggKyi8pZm15gXJDC9ZXkQ57eC2ulLbHOze6aXEvC42b6dw7mAO3JVBGgrLBvpdEhCRd08h9u0KdlADba4inDIn+465F31PE1K8KfrSoOwD4dWN95QjRJhj56v93WmQLqL1B2x+RaEh430z08AD8vMyusNVm/TGuJM1DfH+TaP9j2GrEGznNn4QGWOsdqp5hrpwMbOk+IRquZzvqjpkbsVNzpPSoJj5sxmzT6dApiVe0bYa80PRNNd/IfZBM2Rpj0IfQ/Tkh45A+3oyFx7YgKsnBiO8baBHGkKQUNRVSQhSFx7YwJULQNNR9kT3wvNsSd3qOS8Lih/p1Djic8uVuh9LCxAQmXc/If7l5aBsFaKcXKl60qDg3kD3c9zCaN2Rfro6u1r90GWzzlypNI7QhdtYPMvjgRs0k6VIszVJgJR9JRmplM/3409D/JHd+jkvC4oaToYA4RRLopRj+QsdzYgITLOfEPNxyv31llS8SGGUD+cDdgcu8o3rl2AJFB+ifrCrxYV7PlyxtDC5ncO8rI8ISrqxnd0ToO5KEpg6ivJLn2Xelu71FJeNxQ/+hgAH6v7KkfkL18xBmY3DuKVy7Xd/0eadoK6NMzkUEW3rl2gPzhPoXJvaNY8ci5/PuWYYzsFmqfekgs22hwZMLl1ZYpxI1hcu8ohncJrXOKu75HPYwOQLS+8EALHYN9+KO4FzNYKIXL4owF+3riTSWDzbsAmHbptTyVNMitPjWeKbNJY3jXUIqOVfHWnppai31/gM0KJrOxwQnXpNTxD7BdxnKktJKNmXp35TlTEgn29SI8QJ/Gcsf3qCQ8biopOpjlWxOwYcJ0eDcUHYCgjkaHJVzM2vQCBpjS8KYKAqLo33+Q7JDeRMO7hnI3MRQrHwIriiFnC3Tob3RYwhUd2gUlueBhgU5D+HpVFhXVNhKjArl+eCyam783ZUrLTfXvHEwxfmR4x+sHZJRHnIE16QUMM23Xr8SOkmTnDAT5eNKrUyhrbQn6gXSpqRNnqHY6K3ooNrM3n63OBOD64TFun+yAJDxuK6mmjmdZVW0djyQ8omlKK6rZeqCIYaZU/UDsaGMDcmGjuoWxurYjbsYKY4MRruuE6aylu/LJLCgjwOLBlKQOxsblJCThcVO9OwbhYdJYVF77qXKpPv8rRCNtzDyCh62C/qbd+oHYUcYG5MJGdQ9jVU3CozJXgbXa4IiEy7FZj6+4jRvHJ6syALh8YDS+XlK9ApLwuC2Lp5meUYGst8VjNXlC8QEo2Gt0WMKF1NbveFENAR2gXRejQ3JZ/TsHk+HRhWLli1ZRDDmbjQ5JuJrszVBeBN6BZHp35/dd+QBcNzzG4MCch1MmPG+99RaxsbFYLBaGDh3K2rVrGzx33rx5jB49mpCQEEJCQpgwYcIpzxfH9e8cTDne7Pet3T1dlqeLxtPrd2qns6R+52x4e5gZ3CWMNbV1PDKtJZqqdnQnZiSfrTuAUjC6exhxYX7GxuVEnC7h+eqrr7j//vuZPXs2GzdupF+/fkyaNIm8vLx6z//999+5+uqrWbJkCatWrSI6OpqJEydy4MCBVo7c9dTW8axSNV2XpY5HNFJ5lZXkrELHgmVxVqSOR5yVjD8AqOo8gv9bnwXA9cNjDQzI+ThdwvPqq69yyy23MGPGDBITE3n33Xfx9fXlgw8+qPf8zz//nDvvvJOkpCQSEhL45z//ic1mY/Hixa0cueupTXjmF3XVD2T8IXU8olE2ZxViqj52vH4nTgqWz9bIExIetW+l1PGIxrNZIXMVAL+Xx1NYVkXHYB/OTQg3ODDn4lQJT2VlJRs2bGDChAn2YyaTiQkTJrBq1apGPUZZWRlVVVW0a9fw/iAVFRUUFxc7XNxRXJgfQT6erK+Ow2b2htI8OLzb6LCEC1ibXkB/0269fiewI4TEGR2Sy0uIDCDftytFyhetskSvyRCiMXK2QEUxyjuQN1N9ALhmWGe3bC54Kk6V8Bw6dAir1UpERITD8YiICHJychr1GI888ggdOnRwSJpO9vzzzxMUFGS/REdHn1XcrkrTNJKig6nAi7zAPvpBGUoXjbA2o4DhNbujS/1O89A0jeHdI1hjq2kVkSFTzKKRaqazitsPZPPBErzMJq4c5J5/107FqRKes/XCCy/w5Zdf8t1332GxNLzl/axZsygqKrJfsrKyWjFK59K/czAAm801dTz7/jAuGOESqqw2Nuw7IvU7LUDqeMQZqfm9vaxS34T2or5RhPp7GxmRU3KqxflhYWGYzWZyc3Mdjufm5hIZGXnK+77yyiu88MILLFq0iL59+57yXG9vb7y95T8DHK/j+aWkG5PgeB2PfGIXDdh2sBhbZRn9LdJ/p7mN6h7GB/Y6nlVo1iowexoclXBqNhvsWwnAxwc7AbIUvSGNSngGDBjQpAfVNI0ffviBjh2btjeTl5cXAwcOZPHixUydOhXAXoA8c+bMBu/30ksv8eyzz/LLL78waNCgJj2nu6tNeH4u7MTffD3Rjh6EI+nSU0U0aG36YQaY0vDECoGdpH6nGUUF+VAVmkDhUT+Cq0rhYDJEDzY6LOHM8rZBeSGVZl82lcfQp2OQ/fe6cNSohCc5OZkHHngAf3//056rlOKFF16goqLijAK6//77mT59OoMGDWLIkCG8/vrrlJaWMmPGDACuv/56OnbsyPPPPw/Aiy++yJNPPskXX3xBbGysvdbH39+/UfG6u2BfL7qE+bH3EBS160vwoQ36KI8kPKIBa/YWMFz677SYkd3DWbO+J5PM6/XeKpLwiFOpqd/ZqHpgxcx1sm9Wgxo9pfXQQw8RHt64JW5/+9vfzjigK6+8kvz8fJ588klycnJISkpi4cKF9kLmzMxMTKbjpUfvvPMOlZWVXHbZZQ6PM3v2bJ566qkzjsOdJEUHs/dQKTst/RjKBn0+eMB1RoclnJDVplibUcDtJyY8olmN6t6eP9Ym1iQ8K2D0/UaHJJzZPr3Wa1lFPMG+nkzpJ/tmNaRRCU96ejrt27dv9IOmpqbSocOZv+gzZ85scArr999/d7iekZFxxs8jdP07B/OfTQf4vSKeoSDFkqJBO3OOUl1eQpL3Hv2AJDzNbmiXdryGXsdjy1yFSep4RENsNvsIz2pbT64YFI3F02xwUM6rUau0YmJi2LZtW6MfNDo6GrNZXnRXkRQdAsB3+R1RJg8oyoIj+wyOSjgje/2OVlu/E2t0SG1OoMUT3459KFD+mKrK4MBGo0MSzip/Bxwr4JjyIoUuXDtUipVPpdHL0vv27cvQoUOZN28eR48ebcmYRCtLiArA28NETrmZivY1K9xkebqox9qMguPL0eNGS/1OCxnRPZy1tf145L0oGlLzf2ODrTsj46PoHOprcEDOrdEJz9KlS+nVqxcPPPAAUVFRTJ8+neXLl7dkbKKVeJpN9OkYBMC+gP76wQz5JSscKaVYm17AENMO/UDn4cYG1IaN6hbG2pqNRNW+xnWZF+6neq/+N3i1LVH2zWqERic8o0eP5oMPPiA7O5t//OMfZGRkMHbsWOLj43nxxRcb3QlZOKfaZYz2Lq/7pI5HONqTX0pxSSn9tJr6nZgRxgbUhvXvHMxWc20dz2p9ryQhTqSUPeFJ909iTHzj62zdVZM7Lfv5+TFjxgyWLl3Krl27uPzyy3nrrbfo3LkzU6ZMaYkYRSvo31mv45l/pDNoJjiSAUWy47w4bm16Ab21dCxaFfiGQWg3o0NqszzNJoLiBnBU+WCuLIbcxtdQCvegDu3CUllAufIkadh42TerEc5qa4lu3brx6KOP8vjjjxMQEMBPP/3UXHGJVpZUs8XEplwrtsh++kGpHRAnWJt+mMGmnfqVzsOkfqeFjegewUZbd/1KpkxrCUeZG/8HwGbVncuGdDU4GtdwxgnPsmXLuOGGG4iMjOShhx5i2rRp/PGH/IF0VR2CLIQHeFNtU+S1G6gflOXpooZSijXpBQyyJzxSv9PSRnUPY01NHY81Xd6LwtGhlN8AKIoYQoifl8HRuIYmJTwHDx7kueeeIz4+nnHjxrF7927eeOMNDh48yLx58xg2bFhLxSlaWO3O6QCbzbJzunC0/8gxcorKGGTapR+QhKfFdQ/3Z7dFfy9aM1bqe9wJAeQXl9OpWG9X0HXwJIOjcR2NTnjOP/98YmJi+Mc//sEll1zC9u3bWbFiBTNmzMDPz68lYxStpHZa69eSLoAGBXvgqBSjC1iTXkBX7SAhWgl4+kLUqTfoFWdP0zSCuw2lQnniVX4IDu8xOiThJBYu/4MIrZAqPOja/xyjw3EZjU54PD09+eabb9i/fz8vvvgiPXr0aMm4hAH61zQgXHmgCiJ66weldkCg1+8MqZ3O6jRIOv+2kmE9OpKsauozMlcaG4xwCtVWG1mbFgH6/od4+hgcketodMLzww8/8Kc//Uk6KLdhfTsFYdLgYFE5ZVE1GxZKDxCBvkJL6nda38gT+vFU7JG+Z+7MalOs2nOY5xfsoHt5CgDBCeOMDcrFNCrhmTZtGsXFxY1+0GuuuYa8vLwzDkoYw8/bg/iIAAB2edfU8cgIj9vLLS4n43CZ4wot0SoiAi0cDEwCwJouIzzuamFKNqNe/I2r563mXyvS7R8+krUEgyNzLY1KeL7//nvy8/MpLi4+7aWoqIj58+dTUlLS0rGLFtC/po5nRWXNctjcFChvfLIr2p616QVEcphoLV/v0dRpsNEhuZXA+JFYlYZv2X7pjeWGFqZkc8dnG8kuKgegPYXEmXKxKY0bF2ssTMk2OELX0aiERylFfHw8ISEhp720a9eO0tLSlo5btJDalVorcj30jSGVDbLWGhqTMNba9ILjozuRfcE7wNiA3MyQHjFsU7H6FRlxdStWm2LO/FROXJ83sGal5E4VzVH8mDM/FatNVvA1hkdjTlqyZEmTH7hjx45Nvo8wXm3H5S37i7D1H47pSIb+S7b7BGMDE4ZZk36Ya6R+xzBDu4TytUqgL+kc3bmUgD6XGR2SaCVr0wvsIzu1aj98rLP1QAHZReWsTS9geNdQAyJ0LY1KeMaOHdvScQgn0bW9P/7eHpRUVJMTPIAO/Fs+VbqxgtJKduWWMNirtv+O1O+0Nn9vDw6FDoTCBXo/HuE28o6W1zlWW7+z3tbjlOeJus5qawnR9phNGn07BQLw+cEOAKj966G6wsiwhEHWZRQQQBkJpkz9gIzwGCKoh/6hM7hkN5QVGByNaC3hARaH676U00vLAPQRnobOE/WThEc4WJiSzeb9RQC8tRXyVSCatYLVKxYZHJkwwtr0AgaadmFCQbsuEBBhdEhuaWBiN9JsepmAdZ+M8riLIXHtiAqyULtrXZJpNx6ajf0qjGxC0YCoIAtD4toZGabLkIRH2NWuBiitsNYc0ezDpr//+oOsBnBD0n/HOfTrFMwmrScABalLDY5GtBazSWP2xYn264O12umseHsSNPviRNkpvZEk4RFA/asB4Pg88WDTTlkN4GaKy6vYdrBI+u84AQ+ziaJwvR2ALUM2aXYnk3tHMXuKnvScWL8TGWThnWsHMLl3lJHhuRRJeARQ/2oAwN7ldZBpJzlFZaxNl/oBd7Fh3xE8VBVJpr36ARnhMVRIgl7HE3Z0O1RInzN3EmjxxIyVQebdAFx+yeWseORcSXaaqFGrtPr374+mNW7IbOPGjWcVkDBGQ1X+qSqGUuVNkFZGvLZfVgO4kbXpBfTW0vGmEnzDILSb0SG5taQ+fdi/LIxO2iEqM1bj1UNaRbiL5KxCErV9+FAO3kH0GzAcZBqryRqV8EydOrWFwxBGa6jK34qZjbbujDanMNi0U1YDuBGHhoOdh0EjP/SIltG1vR8Lzb3oZFtKztYldJaEx20kZxWe8F4cCiaZnDkTjUp4Zs+e3dJxCIPVrgbIKSqvU8ezzpbAaHMKY7zTZDWAmzhWaWXL/kJul4Jlp6FpGiURQyB7KWqf1PG4i/IqK9uzi094L0ot3Zk6ozSxsLCQf/7zn8yaNYuCAr2mY+PGjRw4IPu8uKoTVwOc/Dl+ndILl8d4p2GWD/luYVPWEaqtVoaYaxsOSsLjDEJ6jgEg4mgqVFcaHI1oDdsOFlNltcl7sRk0OeHZsmUL8fHxvPjii7zyyisUFhYC8J///IdZs2Y1d3yiFU3uHcU71w4gMshx2mqHuQc2zQPLsVwozDQoOtGa1uwtoKt2kCBKwNMXovoaHZIA+iUNoUD5Y6GCovQNRocjWkFyViExWi5hFILZCzoMMDokl9XkhOf+++/nhhtuIC0tDYvl+B/GCy64gGXLljVrcKL1Te4dxYpHzuXftwzj9rFdAbD4+KF1SNJPkG0m3MLa9AKG1A6hdxoEZk9jAxIAtA+0sMtTH4ndv7npexwK1+NQv9OhP3hKHeWZanLCs27dOm677bY6xzt27EhOTk6zBCWMZTZpDO8ayr3ju+NlNpFdXEFR+0H6jdLltc2rrLaxMfOINBx0UqURej8eJR8+3EJy1hEGaVK/0xyanPB4e3tTXFxc5/iuXbto3759swQlnIOPl5mBMfru6Zs0vR8PmasNjEi0hq0HCqmotjHULBuGOqPgmjqejsXJKJvN4GhESzpcUkFWwbETVmiNMDYgF9fkhGfKlCnMnTuXqqoqQF85kJmZySOPPMKll17a7AEKY43qHgbADwWd9QOHdkLpYQMjEi1tTXoBkRymI3mgmaHTYKNDEifoOWA0FcqTEIo5sHeb0eGIFpScVUg7iulqqtnWJ3qIsQG5uCYnPH/7298oKSkhPDycY8eOMXbsWLp160ZAQADPPvtsS8QoDDS6JuFZlFGNCqsd5ZGh9LZszd4T+u9E9gHvAGMDEg58ff3Y6xUPwB9LfmTVnsOy5UsblZxVeHxquX1P8JW2IGejUX14ThQUFMSvv/7KihUr2LJlCyUlJQwYMIAJE6QJVlvUq0MQQT6eFB2r4lDoANof2qEnPD0vMjo00QKqrTY27DvCQ1K/47QWpmSzv7I7PbVtsG81V8/rS1SQhdkXJ8pWA21MclYho00ytdxcmjzCk5WVBcCoUaO48847efjhhyXZacPMJo2R3UIB2IiM8LR127OPUlJRzVAP+SXrjBamZHPHZxtZWaVv81H76T+nqJw7PtvIwpRsI8MTzchmUyd1WJYPH2eryQlPbGwsY8eOZd68eRw5cqQlYhJOZlQ3vRj9+4IY/cDBZKgsNS4g0WLWpB8mgDLiqem3JL9knYbVppgzPxUFbLDpU1pdTdm0o9jeHX3O/FSZ3moj9h4qpaq8lN5aun5APnyctSYnPOvXr2fIkCHMnTuXqKgopk6dyjfffENFRUVLxCecwKhueh3P/w54YgvoAMoK+9cbHJVoCWvTCxho2oUJBe26QECE0SGJGmvTC8gu0jfvLcKfnbZOwPFRHgVkF5WzNr3AqBBFM0rOKiTJtAdPzQoBHSC4s9EhubwmJzz9+/fn5ZdfJjMzkwULFtC+fXtuvfVWIiIiuPHGG1siRmGwzqG+dG7nS7UN8kJqunzK8vQ2x2ZTrMsokP47TirvaLnD9dpRnoG1NR4NnCdcU53+O7J571k74y1XNU3jnHPOYd68eSxatIi4uDg+/vjj5oxNOJHa5ekbavbVkjqetictr4QjZVXSf8dJhQc4dthdZ9Pfi/YajwbOE65pU2YhQ0w79Cvy4aNZnHHCs3//fl566SWSkpIYMmQI/v7+vPXWW80Zm3AitdNa39f249m/DqzVBkYkmpPVpvhqXSZeVNFX26MflF+yTmVIXDuigiz2zX1rN/XtraXjTSUaEBVkYUicLF12dccqraTlFDLAlKYfkA8fzaLJCc97773H2LFjiY2N5ZNPPuHKK69kz549LF++nNtvv70lYhROYETXUDQNFh0OxeYdCJUlkJtidFiiGSxMyWbUi7/xwR8Z9j+eBQSyMNvP6NDECcwmjdkX6/toacB+1Z5cFYyXZqVfTZI6++JEzCaZ+nB1KQeL6K4y8dfKUV4BENHL6JDahCYnPM888wxDhw5lw4YNpKSkMGvWLGJiYloiNuFEgn296NsxCBsm8oL66QdlWsvl1S5zri2GrZ0eWWvtwR2fb5Jlzk5mcu8o3rl2AJFBFkCzT2sN99zFO9cOkD48bURy5vGGg1r0EDCZDY6obWhy48HMzEw0KZ5ySyO7hbF5fxHrVQIXsVxPeIbdYXRY4gyduMy5Vu0v2XU1BbFz5qdyXmKkjBo4kcm9ozgvMZK16QVUrNgA6WsYbNrFyF6RRocmmklyViHny+KBZtfkER5N01i+fDnXXnstw4cP58CBAwB8+umnrFixotkDFM6jtnDZXseTuRqU9PxwVScucwbQsDGoZsXPelsPWebsxMwmjeFdQxlx7oUA9FU72Zt/1OCoRHNJzjxywmpJqd9pLk1OeL799lsmTZqEj48PmzZtsvffKSoq4rnnnmv2AIXzGBgTgsXTxLLSaGwmLyjJhSPpRoclztDJy5e7aQcJ0UooU95sU7ENniech1eHfpRrFgK1MnZtWWt0OKIZ5B0tRyvOJFI7gjJ5QMeBRofUZpxRDc+7777LvHnz8PT0tB8fOXIkGzdubNbghHPx9jAzJC6UCrzID+ipH5R+PC7r5OXLtfU7m2zdqD5htluWOTsxswe5gX0BKN0tI+xtQXJmIYNr+u9oUUng5WtsQG1IkxOenTt3MmbMmDrHg4KCKCwsbI6YhBMb3e2kfjz7VhoYjTgbJy9zrh1CX1/zs5Vlzi4ieigAAfkbDA5ENAfH/bNkOqs5NTnhiYyMZPfu3XWOr1ixgi5dujRLUMJ51dbxzC+M1Q/ICI/Lql3mXFuFVfupcp2thz0JkmXOzi+89zgAelWncrDwmLHBiLOWnFUo3c5bSJMTnltuuYV7772XNWvWoGkaBw8e5PPPP+fBBx/kjjtkxU5b1yMigDB/L1ZW6rs1czgNSg8ZG5Q4Y5N7R3HpgI5EcphoUz7VysQmWzcigyyyzNlF+MQNxYqJTtohtm5PNToccRasNsW+/fuJN+mLgWSEp3k1eVn6X//6V2w2G+PHj6esrIwxY8bg7e3Ngw8+yN13390SMQonYjJpjOwWxvfJlRzy6ULYsb36KE/Pi4wOTZyh8mqbfQi9JKQn/7z4HIbEtZORHVfhHUCeb3eiynZyZPtyGC5Frq5qT34JCVWp4AUqNB7NL8zokNqUM1qW/thjj1FQUEBKSgqrV68mPz+fp59+uiXiE06odpuJ9bKvVpuw+YQh9OAeYxjeNVSSHRdT0WEIAJYcWanlypIzCxlc0xpCi5HRneZ2xntpeXl5kZiYaN9HS7iP2jqeX47G6Qck4XFZh0oq2H/kmP2XrAyhu6bQnmMB6F6ewpHSSoOjEWdqk9TvtKhGTWlNmzat0Q/4n//854yDEa4hKsiHru39WJvfAzyB7M1QWQpesveSq9mcVUgAZSSYMvUD8kvWJQV0HwVAgpbJ72mZjE/qZnBE4kykZuYyx755r3z4aG6NGuEJCgpq9MUob731FrGxsVgsFoYOHcratTK025JGd2/PAcIo8gwHWzUckCWxrmhzViEDTbswoaBdFwiIMDokcSYCoyjwisKsKXJTlxsdjTgDZZXVWPI246VZsfqGQ0ic0SG1OY0a4fnwww9bOo6z8tVXX3H//ffz7rvvMnToUF5//XUmTZrEzp07CQ8PNzq8NmlktzA+WpnBelsPxpOnFy7H1e3PJJxb8v4ihsgQeptQEj6Ydvt/wJy1GphhdDiiibbuL2KgtgMAc+xwkD0rm90Z1/A4k1dffZVbbrmFGTNmkJiYyLvvvouvry8ffPBBvedXVFRQXFzscBFNM6yLvorn9/Ku+gGp43E5Sik2S5OzNiMgXp/Wii7dSmlFtcHRiKZybDgoHz5agssnPJWVlWzYsIEJEybYj5lMJiZMmMCqVfX/EX7++ecdpuGio6NbK9w2I8DiSf/oYNbbalZqZa0Fq/ySdSUZh8s4dqyMfvaagRHGBiTOSkiCPsKapO0mOSPf4GhEU23OPMxAU5p+RT58tAiXT3gOHTqE1WolIsKx9iAiIoKcnJx67zNr1iyKiorsl6ysrNYItc0Z2S2MnSqaYyY/qCyB3BSjQxJNsDmrkN5aOhatCnzDILSr0SGJsxHWg1JTAL5aBRnbpAO6qynO3EqgVobVwxci+hgdTpvk8gnPmfD29iYwMNDhIppudPcwbJjYYIvXD8g2Ey6lzp49UjPg2kwmCkP7A1CdIVPMriS3uJzYsq36lU6DwdzknsCiEVw+4QkLC8NsNpObm+twPDc3l8jISIOicg/9ooPx9/ZgZVV3/YDU8bgU2bOn7fHuqk9LRhRuorLaZnA0orE2ZR7/8GGOlanlltKoNPKNN95o9APec889ZxzMmfDy8mLgwIEsXryYqVOnAmCz2Vi8eDEzZ85s1VjcjafZxLAu7Vi/o7bj8mpQSkYKXEBltY3tBwsZ5FHbcFASnrYgtOdYWP0CA7RdbN1/hIGxoUaHJBohOauQ62TxQItrVMLz2muvNerBNE1r9YQH4P7772f69OkMGjSIIUOG8Prrr1NaWsqMGbI0s6WN6hbG89u7Uo0HHiU5cCRd7+cinNqOnGI62/YTopWgPH3RovoaHZJoBlqHAVThSbhWyK/btzIwdpzRIYlGyErfSUftMDbNjKnjIKPDabMalfCkp6e3dBxn5corryQ/P58nn3ySnJwckpKSWLhwYZ1CZtH8RnVvTwVebFFxDNDS9FEeSXic3on1O1qnQWD2NDgi0Sw8LRQEJRJRtJlje/4AxhkdkTgNq03hl7MOTFAR1gsfb9mqqaW4fA1PrZkzZ7Jv3z4qKipYs2YNQ4cONTokt9C1vR+RgRbWWhP0A1LH4xKkfqft0mL0n2fwoQ1YbcrgaMTppOUdpY9tOwDeXUYZHE3bdkal4Pv37+eHH34gMzOTykrHjepeffXVZglMuAZN0xjVPYx1m+K5HWSllovYnFXIXzSpGWiLQhNGw5Z36Wfbwc6coyR2kFWoziw58/iHD1OMfPhoSU1OeBYvXsyUKVPo0qULO3bsoHfv3mRkZKCUYsCAAS0Ro3Byo7uHMXtDzdL0Q7ug9BD4hRkblGhQcXkVpfmZRFvyUZoZrdNgo0MSzchc80ezu+kAX+7aS2KHJGMDEqe0MyOLK7T9+hX58NGimjylNWvWLB588EG2bt2KxWLh22+/JSsri7Fjx3L55Ze3RIzCyY3oGkYhAeyyddQPyCiPU9uSVXS8fieyD3gHGByRaFZ+oRT46BtPHtm1wuBgxOlY963GpClK/WPBX/Z+bElNTni2b9/O9ddfD4CHhwfHjh3D39+fuXPn8uKLLzZ7gML5tQ/wJiEy4Pg2E1LH49Q275f6nbauuuMQAPxy1qKU1PE4q9KKaqKKkgEwxcjoTktrcsLj5+dnr9uJiopiz5499tsOHTrUfJEJlzK6exhrbbWFyzLC48z0FVq1/Xfkl2xbFNxT31crsXo7+w6XGRyNaMiW/UUMrPnw4dNVCpZbWpMTnmHDhrFihT5MesEFF/DAAw/w7LPPcuONNzJsmPzydFcju4WxXukjPCo7GSrll6wzUkqxO/MACVqmfkBGeNokrzi9W29fbQ8b9hw0OBrRkK0ZuSds3ivvxZbW5ITn1VdftS/5njNnDuPHj+err74iNjaWf/3rX80eoHANQ+NCyTOFk63aodmq4cAGo0MS9cguKiemLAWTprCFdIEA6VXVJoXEUeIZhpdmJXf7SqOjEQ0o3LMWb62aMs92snlvK2jyKq0uXY43lfPz8+Pdd99t1oCEa/LxMjMwph3rs+K52Lxar+OJG210WOIkm7NkCaxb0DRKo4bgn/kzngfWANONjkjUwzd3HQDlUUPwlS15WtwZNx6srKxk//79ZGZmOlyE+xrVPYx1Urjs1JL3n7RDumizAuP1Dxzx5VvJLS43OBpxsuyiYyRUbgPAP17qd1pDkxOeXbt2MXr0aHx8fIiJiSEuLo64uDhiY2OJi4triRiFixjVLYx1NYXLKmstWKsNjkicLGVfHklSM+AWaotgB5jSWLs33+BoxMmS9xUwqGbxQG3NlWhZTZ7SmjFjBh4eHvz4449ERUWhyTCcqNG7YxA53nEUKx8CK0sgbxtE9TM6LFHDalNwcBPepiqqfcLwCO1mdEiiJUX0otzkR4CtlKzt6yAp2uiIxAn279pEsFZKpcmCV6Rs3tsampzwJCcns2HDBhISEloiHuHCzCaNYd3C2bgznnHmzbBvlSQ8TmR3Xgl9rdvBVNONVz6stG0mM8XtB2DJXY6WuRKYZnRE4kQ17TuOhPQjQjbvbRVNntJKTEyUfjuiQSfW8RzY8hur9hyWDQydxIkFy1qMDKG7A7/ueh1PTMlmisqqDI5G1Kq22ogo3ASAR6xMLbeWJic8L774Ig8//DC///47hw8fpri42OEi3JvNhr3jsseBNVw9bxWjXvyNhSnZBkcmkjMLTuiwLAXL7qA24Rlk2sX6jMMGRyNq7cotYYC2A4CQnuOMDcaNNHlKa8KECQCMHz/e4bhSCk3TsFqtzROZcDkLU7J58vsUvOhKpTIToRUSreWxvyiCOz7byDvXDmBy7yijw3RbhRmbCdLKqPbwxUNqBtxDhwFUa56EU0jazi2MT4w0OiIB7Nq1g6naIayYMEcPMjoct9HkhGfJkiUtEYdwcVabYs78VBRQgRdbVRcGamkM1naSpSLQgDnzUzkvMRKzSWpHWtuxSivtj2wED7B2GIyHuclvfeGKPC0UBvcm7MgmKveuBCYaHZEASnfruxXk+8UTKZv3tpom/9YbO3ZsS8QhXNza9AKyi473+lhn68FAUxqDTTv5j20MCr3L79r0AoZ3DTUuUDe17WARA2uG0L26jDQ4GtGavLqMhA2biCrcxLFKKz5eZqNDcnsBNQ0HKzoMNTgS99LkhGfLli31Htc0DYvFQufOnfH29j7rwIRryTvq2NhMr+P58XiTuwbOE60jOfMIF9oLlqVI0p0ExI+GDW8yUNvBpqwjjOgaZnRIbu1oeRXdK1LABMEJY4wOx600OeFJSko6Ze8dT09PrrzySt577z0sFstZBSdcR3iA4896vS0egG6mg7SjmAIC6z1PtI6s9B1EaQVYNQ/MHaVmwJ1onYdhQ6OLKYdFO9Mk4THYtr1ZDNGyAAiSDsutqsmrtL777ju6d+/O+++/T3JyMsnJybz//vv06NGDL774gn/961/89ttvPP744y0Rr3BSQ+LaERVkoTYVLiSAXbaOAAw07UIDooIsDIlrZ1iM7kzfTwlKQ/uAl6/B0YhW5RNMYUB3AMpqakeEcfJTl2PSFPmeHSBAishbU5NHeJ599ln+/ve/M2nSJPuxPn360KlTJ5544gnWrl2Ln58fDzzwAK+88kqzBiucl9mkMfviRO74bCMaoNCnteJNBxhs2ski2yBmX5woBcsGOFxSQZeyLeAB3l2lfscdaZ2Hw7ZdtDu0gSqrDU/zGW+jKM6SKaum4WDYINobHIu7afL/+q1btxITE1PneExMDFu3bgX0aa/sbOm74m4m947inWsHEBmkT1vVNiAc5rFLlqQbaPP+QobU1O94x0nC446Ceui1IknsIOVAkcHRuCerTbFqzyFpOGigJic8CQkJvPDCC1RWVtqPVVVV8cILL9i3mzhw4AARERHNF6VwGZN7R7HikXP59y3DMNW8oXuxl8nxQQZH5r527s2gm+mgfkUaDrolU02hei8tg+TdWQZH434WpmQz6sXfmD5vBb3ZDcBf1/tJQ9ZW1uQprbfeeospU6bQqVMn+vbVm5dt3boVq9XKjz/+CMDevXu58847mzdS4TLMJo3hXUOxWkeQ83kIkdoRbPvXY+oiKxKMoPdfgUL/rgT7Sg2VWwrqSLGlA4HlBzmycyWcK40nW8vClGzu+GwjChigpWPRqjisAlh3NJR10pC1VTU54RkxYgTp6el8/vnn7Nqlb21/+eWX8+c//5mAAL2B0nXXXde8UQqXNKRLKItJ4HxWkbftdyIl4Wl1SilCDq0HwNpJhtDdWXXHYbDnP/jlrsVmuw2T1NO1uBMbsgL2Nh3rbT1QaNKQtZWdUbvVgIAAbr/99uaORbQxXh4mitoPgkOrKN/zh9HhuKV9h8voa0sFEwT1GG10OMJAgQmjYc9/6GvdTlpeCT0ipcNvSzu5IWvtXna19Y3SkLV1NSrh+eGHHzj//PPx9PTkhx9+OOW5U6ZMaZbARNvQrudYWP4Pwos2g80KJuny2ppSMg4wWcsAwEMKlt2aR6z+8+9vSuPbvbmS8LSCExutatgYZNJnRWo3WK7vPNFyGpXwTJ06lZycHMLDw5k6dWqD58nmoeJk/QeN5OgyHwI4xuG9GwntNtjokNxKwc5VeGg2Cr0iCA6ONjocYaSweI55BOFTXUTujtUwopvREbV5JzZajdf2E6KVUKq8SVGxDZ4nWk6jVmnZbDbCw8PtXzd0kWRHnKx9kC9pXokAZGxcZHA07sfrgN7z42i4dFd2e5pGWaT+gcPzwBqUUqe5gzhbJzZkHWraDsAGWzzVNWMN0pC1dUn3KdHiKjrov2Rt+1YbHIl7qay2EVOyGQDfblK/IyCwph9PQuU29h85ZnA0bV9tQ1aAISZ98961Nr19S22JsjRkbT2NTnhWrVplX3Ze65NPPiEuLo7w8HBuvfVWKioqmj1A4foi+pwLQOeSzZRXVhscjfvYebCAfpre86Ndz7EGRyOcgWecvnfTINNO1u49ZHA07mFy7yjeuaY/Q2sSnjW2ngBEBllkSXora3TCM3fuXLZt22a/vnXrVm666SYmTJjAX//6V+bPn8/zzz/fIkEK1xbXdxRVeBChHSF5a7LR4biNrG2r8NUqKDEFoLVPMDoc4Qyi+lJpshCilbBvxyajo3Eb48OP0l4rokJ5csGkC/j3LcNY8ci5kuy0skYnPMnJyYwfP95+/csvv2To0KHMmzeP+++/nzfeeIP/+7//a5EghWvTvPzI9tVXJRzcvMTgaNxHdYbecDA3KAlMMnstALMnJWFJ+tdZqwwNxZ3kp/wGwFatGzeMTWB411CZxjJAo38LHjlyxGG7iKVLl3L++efbrw8ePJisLGlZLupni9a3NPCQYslWE3p4AwCqszQcFMfV1nPFlW3hs9X7WLXnMFabvCdbUuUefZf6zID+aJokOkZpdMITERFBeno6AJWVlWzcuJFhw47vy3P06FE8PT2bP0LRJkT1OQeAnlWppOWVGBxN21d8rIJeVSkAhPU+x+BohDPZatZrSAabdvL4f1O4et5qRr34m+zr1FKUIjh/LQAVHeXDh5EanfBccMEF/PWvf2X58uXMmjULX19fRo8+vvJjy5YtdO3atUWCFK7PO24EAN1NB/hj806Do2n79qSsJVgrpQwLwV2k95HQLUzJZvqvUKXMdNIO0UnLByCnqJw7PtsoSU9LKMwkuCqPKmWmXQ9p/mmkRic8Tz/9NB4eHowdO5Z58+Yxb948vLy87Ld/8MEHTJw4sUWCFG2AXyiFfl0AyEtdanAwbV/Jjt8ByPDtA2YZeRXH93Uqw8IWpb8Xh5lSAex7Pc2ZnyrTW82sKl2fztqq4kiMkSJlIzV6L62wsDCWLVtGUVER/v7+mM2OWwR8/fXX+Pv7N3uAou3wjBsBKXsJObSBI6WVhPh5nf5O4oz4Za8BoDRqqMGRCGdx4r5Oq209GWhKY5hpO99Y9ZYFsq9Tyyje8TuhwGZTL24I8TE6HLfW5KUbQUFBdZIdgHbt2jmM+AhxMr9ueg+QIaYdLN2Vb3A0bZjNRlyZ3nDQv8c4Y2MRTuPE/Zpqe8EM1baf8jxx9jz36w1XC9oPloJlg8laVdF6YvQ6nt5aOitSM4yNpQ3LT08mhGLKlDexfUYZHY5wEifu17Te1oNqZSLalE9H8hs8T5yl4mwCyzKxKQ2vmjpGYRxJeETrCYmhwr8THpqN0rQVVFttRkfUJuVv1Xt+7PTsiY+PDKEL3Yn7Op1Yx1O7x5Ps69QC9v0BQKqKoUdMR4ODEZLwiFbl2VXfy6dv9VY27DticDRtk5apNxzMD5UNQ8VxJ+7rpHF8WmuYabvs69RCqtP1hGetLYG+nYKNDUZIwiNalylOb2UwzLSd33bkGRxNG6QUHQr1hoPmLrJhqHA0uXcU71w7gMggC6ttevIzzJRKO38v2depBVTt1VdobffuS0Sgt8HRCEl4ROuK1WtK+mh7Wbk9w9hY2iBr3k6CbIWUK0+ie0v9jqhrcu8oVjxyLndefw1WTHQ25XPfIIskO82t9DA+hbsAqOwwRAqWnYAkPKJ1BXfGFhSDh2aj3eFN7DtcanREbcqhbXr9TjLxdI2SpcWifmaTxtCEGA4H6qM8FbtXGBxRG1QztbzL1pG4mBiDgxEgCY8wwPFprVSZ1mpmFbuXAZAV0F9qMcRpqRi982/ooTXYpOFg89qnJzxrbD3pJ/U7TkESHtH6aqa1pI6nmSlFcF7Nnj2dZAmsOL3QXucC0N+Wyp582eOuOVlrOiyvsyXQu2OQwdEIkIRHGCFW/1TZR9vL1r37KamoNjigNuLwHgKrD1OhPGmfIHv2iNPziB2BDROxplxSttdtQijOUFkBptytAKT7J9E+QAqWnYEkPKL1BXdGBet1PP3UTlakSdfls2W1KXauXQBAsupKYudwgyMSLsESSJ5fDwBKdsked81m3x9oKNJsHekQHWd0NKKGJDzCEFqs1PE0l4Up2Yx68TdSV+kJz2pbTy5/b5XsfC0apbqzPhoYlLva4EjakPTlAKyyJUr/HSfiVAmPUoonn3ySqKgofHx8mDBhAmlpaae8z/PPP8/gwYMJCAggPDycqVOnsnPnzlaKWJwxhzqefCmYPEMLU7K547ONZBcdY1hNx9zVtkRyi8q547ONkvSI0wrtPR6APlVbyS46ZnA0bUS6vnhglS2RPlK/4zScKuF56aWXeOONN3j33XdZs2YNfn5+TJo0ifLyhjezW7p0KXfddRerV6/m119/paqqiokTJ1JaKsudndoJ/XiOlRSy9UCRwQG5HqtNMWd+KgrorOURpRVQqcxssnWjNn2cMz8VqyST4hR8uo7Eiok4Uy5bt+8wOhzXV5IH+bUfPnpKwuNEnCbhUUrx+uuv8/jjj/OnP/2Jvn378sknn3Dw4EH++9//Nni/hQsXcsMNN9CrVy/69evHRx99RGZmJhs2bGi94EXTBUdDSCwemo1Bpl0slmmtJlubXkB2kf5hYIRpGwDJqhvl6AWSCsguKmdteoFRIQpXYAki1zcegKLtSwwOpg3I0Keztts6E9AukhA/L4MDErWcJuFJT08nJyeHCRMm2I8FBQUxdOhQVq1a1ejHKSrSRwratWt4A7yKigqKi4sdLsIA9mmtVH7bkWtwMK4n7+jxkc+RphQAVtp6nfI8IepT3nEYAP7ZUsdz1mrqd1baetGnk4zuOBOnSXhycnIAiIiIcDgeERFhv+10bDYb9913HyNHjqR3794Nnvf8888TFBRkv0RHR5954OLMxR7fVyvlQDE5RfKHuSnCAyw1XymGm1IB+MNa9//98fOEqF+7RL0fT0L5ZoqOVRkcjYs7oX6nr0xnORXDEp7PP/8cf39/+6Wq6uzfZHfddRcpKSl8+eWXpzxv1qxZFBUV2S9ZWVln/dziDNR0ee1r2osfx1iyU6a1mmJIXDuigiwkaFmEacWUKW+SVTf77RoQFWRhSFzDo51CAAQnjK2p48lh2/ZUo8NxXcUHoWAPVkystSXICI+TMSzhmTJlCsnJyfZLWFgYALm5jlMbubm5REZGnvbxZs6cyY8//siSJUvo1KnTKc/19vYmMDDQ4SIMUFPHY8bGYNMOFm+XhKcpzCaN2RcnMrymfmedrQdVeAB6sgMw++JE2WJCnJ5PMPt9EgAo3ParwcG4sJrprBRbLMX4SYdlJ2NYwhMQEEC3bt3sl8TERCIjI1m8eLH9nOLiYtasWcPw4cMbfBylFDNnzuS7777jt99+Iy5Omjy5lLgxAIw0beOP3Ycor7IaHJBrmdw7ij8F7QYc63cigyy8c+0A2QFbNFppB33E1f/gHwZH4sLs01m96BLmR6DF0+CAxImcpoZH0zTuu+8+nnnmGX744Qe2bt3K9ddfT4cOHZg6dar9vPHjx/Pmm2/ar99111189tlnfPHFFwQEBJCTk0NOTg7Hjkk/CZfQZRwA4zy3cazKyuq9h42Nx8XYqqvoVrYZgNjBF/D3q5L49y3DWPHIuZLsiCYJ7q0vGEko20hFlWz3ckYyTui/I9NZTsfD6ABO9PDDD1NaWsqtt95KYWEho0aNYuHChVgsx4su9+zZw6FDh+zX33nnHQDGjRvn8FgffvghN9xwQ2uELc5G3FgAuqt9hFLEbzvyGNdDtkVorB2blpFIGUXKj0vOn4zFW5bAijMT1Xss5d97Ea4Vsi11A736DTU6JNdyJAMKM6nGzDpbDx6QDstOx6kSHk3TmDt3LnPnzm3wnIyMDIfrSklTNZfmFwaRfSBnKyNM21i8PZI5UxSaJnUnjXFw40ISgX2BA+gryY44C5qnD3t9epN4bCNHUhaBJDxNU1O/k6p1owwLfWWEx+k4zZSWcGM101pjPLZxoPAYu3JLjI3HRVRbbQTk6D2qLPHnGhyNaAtKaup4/PYvNzgSF1RTv/N7VU9MGiRGyWIYZyMJjzBe3DgAzvHcBigWSxPCRlmddpB+Nn0rgLjB5xscjWgLgntNBKDbsWRs1dKPp9GUsndYXmXrRbdwf/y8nWoCRSAJj3AGMcPB5EmYNY8YLZffZHl6o6Ss+h8WrYpij1A8IxKMDke0AXF9hlOk/AjgGPtTVxodjuvI3wFHs6k2ebPR1p0+HYONjkjUQxIeYTwvP4jW6wVGmraxYd8Rvlizj1V7DsvGlw2oqLZi2qd/oqzsPBqk5kk0A09PT3b6JAFweKv042m0PfoeZDu8elOBl9TvOClJeIRzqKnjGW1OQQGPfpfC1fNWM+rF31iYkm1oaM5o6c58Btm2ANCu94TTnC1E45V0GAGA34EVBkfiQvbqCc+iykQASXiclCQ8wimsRm+aN0zbhgmb/XhOUTl3fLZRkp6T/LppN321vQCYuow1OBrRlgTV1PHElKVAlfQzO63qCsjQk8OFx3rhYdLoKQXLTkkSHmE4q03x4B8eHFU+hGglJGoZ9ttqJ7TmzE+V6a0aZZXVlOxciodmoyIgBoI7Gx2SaEN69OpPtmqHN1Uc2r7M6HCcX9ZaqCqjwjuMHSqa+IgALJ5mo6MS9ZCERxhubXoB+4urWG3Th4NH1uwNVUsB2UXlrE0vMCA657Noex7D1CYAvHrIdJZoXv4WT1It/QE4svV/BkfjAmqms/YEDAI0mc5yYpLwCMPlHS0HYIWtNwAjTSmnPM/d/ZB8kDEmvX5H6zbe4GhEW1Qcpffj8dkvdTynVVOwvLzm95dsKeG8JOERhgsP0LcOqU14hph24E1lg+e5s6KyKvbu2kqcKRdl8oDY0UaHJNqgoEQ9ke5wbCeUyv52DSorgIP6aOvXBd0B6CtL0p2WJDzCcEPi2hEVZGGv6kCuCsaiVTHQtMt+uwZEBVkYEtfOuCCdxC/bchhOzehOpyFgkeJI0fz69OzJdls0JhRlOxYZHY7zSl8KKCrb9WB3eQBeZhM9IgOMjko0QBIeYTizSWP2xYmAxgpbHwDGmLY6nDP74kTMJuk1M3/L8eksusl2EqJltA/wZrP3IACKti4wOBonVjOdtb+d3kesZ1QAXh7yZ9VZyU9GOIXJvaN459oBJHsPBmCsKdl+29w/9WZy7yiDInMe+UcrWLM7hxG1Rd1dpX5HtJyiDmMACDiwTN86QThSyl6wvN6UBEj9jrOThEc4jcm9o3jqvpkoNHqashgbqdfx5EuxMgA/b82mL7sJ0I6BbyhEJRkdkmjDQnuOpUx54191GHLrX0jg1gr2QmEmmDz5ubgrIPU7zk4SHuFUzP6haB0HAnBfXBYA3248gE168DB/80HGmGums7qcAyZ5+4qWM7BbJCtrWkVU7ZRtJuqoGd1R0UPZkF0ByAiPs5PfmML5dNN7y/Q9to4AiwcHCo+xco97rxQ5UHiM9fuOMLa2fqer1O+IlhUb6stGzwEAHNv+i8HROKE0vZi7IGoURyuq8fYw0T3c3+CgxKlIwiOcT/fzADCnL2Vq33AAvt6QZWREhvtx80FCKKaPKV0/IAmPaGGapnG00zgA/HLXQcVRYwNyJlXlNSu0YLNlCAC9OgTiYZY/qc5MfjrC+XToDz4hUFHE9Z0PAbAwJYeiY1UGB2acHzYfZJQpBRMKwntBoBRxi5YXG9+HDFsEZmWF9OVGh+M8MldCVRkERLGiOBKAvp2CjY1JnJYkPML5mMz2EYxuRavpHu5PRbWNH7ccNDgwY+zJL2HbwWLGmGuW6stydNFKBseGsMzWFwC1W/rx2KXV1DR1m8DWg0WA7JDuCiThEc6pmz6tpe1exOWDOgHw9fr9RkZkmPmbDwKKCV41K2VkOku0ksSoQFab9H21qnb+KsvTa6Xpe4xZu51HyoFiQBIeVyAJj3BOtX/Us5O5JN4Ts0kjOauQ3XnuVUeglGL+5oP00jIIsR4GTz+IGWl0WMJNeJhNlHcaQaUy43U0U1+K7e4K9sLh3WDyID1wMMeqrPh5mYkLk4JlZycJj3BOAREQqQ+lt89dyTk92gPuN8qTml3MnvxSJnok6we6ngMe3obGJNxL3y4dWW/roV9Jk+Xptauz6DycTblWAHp1DJJO8C5AEh7hvGpWa7F7EZcPigbgP5sOUG21GRhU65q/ORuAKb419TvxkwyMRrijwbHt+N3WT7+SJsvTa6ez6H4eWw/U1O90lOksVyAJj3BeNf142L2Yc+NDCfXzIv9oBUt35RsbVyupnc4Ko4i4ih36we4TjQ1KuJ2k6GB+V3ozUJWxwr2Xp1cdg4ya1WrdzmPLfj3hkYaDrkESHuG8Og0BSzAcK8Dz4Hqm9u8IuM+01sbMQg4UHmOSV02zwagkCIg0NCbhfvy8PfCJSiDDFoFmrYQ9vxkdknEyVkB1OQR2oiq0B6nZtQXLwcbGJRpFEh7hvMwex0c0di2wr9ZavCOXgtJKAwNrHfrqLLgiKFU/ED/ZwGiEOxsUF8pim951mZ0LjQ3GSCdMZ+3KK6Gy2kaAxYPYUF9j4xKNIgmPcG49ztf/3bmAhMhA+nQMosqq+O+mA8bG1cKsNsWPW7LxpJpex9brB6V+RxhkcGwIi2oTnrT/gc1qbEBGUAp2LtC/7j6RrfuP99/RNClYdgWS8Ajn1m08mDzg0C44tPt4T54NbXtaa/XewxwqqeBcnzQ8qkvBL1x2RxeGGRTbjnW2HhQrXyg7BAc2GB1S68vZCkVZ4OEDXcaxubZ+R3ZIdxmS8AjnZgmC2FH617sWMKVfB7zMJrZnF5NSs0KiLfohWZ/Oui50p34gfqLsji4ME+bvTeewIJbWdF22j3S4k50/6/92PRe8fNl6oBCQhoOuRH6DCufX4wL9350LCfb14rxeEQB800ZHeSqrbSxIyQYUAyvW6AelfkcYbFBsCIusNdNau9ywjmfHT/q/CRdQXmVlZ46+Wq2PLEl3GZLwCOdX+8c+cxWUFXD5QH1a67/JB6iobnu1BMt25VNcXs1Q/3x8ju4Dsxd0GWd0WMLN6f14krBigrxUOLLP6JBaT2EW5GwBzQTxk9mZc5QqqyLE15NOIT5GRycaSRIe4fxCYiCiNygrpP3K6O7tiQy0UFhWxaLUPKOja3bzazZJvT28ZnVWl3HgHWBcQEKgJzxF+LOhtuuyO43y1E7hRQ8FvzC21DYc7BQsBcsuRBIe4RpqR3l2/ozZpDFtQE1Png1ZBgbVvKw2xdKdeSzYqndXHlKxUr+h58UGRiWELibUlzB/b3616puJ2qd43MHOmu+1Znp96/5CQOp3XI0kPMI11Nbx7F4M1RVcVjOttWxXPjlF5QYG1jwWpmQz6sXfmP7hOiqtik5aPn6HU1CYjn/vQhhI0zSGxIXwP9sg/UDGCigrMDao1nCsUP9eARIuBDjeYVnqd1yKJDzCNXToD/6RUHkU9i6lS3t/BsWEYFPwn02uXby8MCWbOz7bSPYJidsk0zoA1th6sDC9yqjQhHAwKKYd+1QkmZ5d9Cnm2pVLbdnuRWCrhrAeENqVY5VW0vJKAOmw7Gok4RGuwWSCxCn616nfA9h78nyzfj9KKaMiOytWm2LO/FROjn6iWW82+It1MHPmp2K1ueb3J9qWwbHtAPihqmaUp+a92KadsDoLIDW7CKtN0T7Am4hAbwMDE00lCY9wHYl/0v/d8SNYq7iwbwd8PM3sPVTKxswjxsZ2htamFziM7ACEUcRgTe+/s9A6mOyictamu8HUgXB6PaMC8PMy89+KmoRnzxIob7v9sKg6dnw7iR4XYrUpe4+s6GAf5HOIa5GER7iOzsPBrz2UF0L6Uvy9PTi/j76ZpqtuKJp3tG790QTzBkyaYrOtC9mENnieEK3Nw2xiQEwIu1UnivziwFYFu34xOqyWs3sxVJZAYCcWFnZk1Iu/8fEqfTn+xqxCRr34GwtTsg0OUjSWJDzCdfx/e3ce3kS1PnD8m6RNN9pCoSuUlrJD2cpaEAEpUBAERQWVVQUFvML1elHvTwVEBbwKiAtyFVtFBEFkkcsiW9kuIJRF1gKlZW0pS6Gb3ZL5/TE0GFro3qTp+3mePGQmZ2bekyHNmzNnztHq7t6xlHdZq60/AGv/SCAjO9dSkZWYl6tjvnXhd/rvbDS0f2A5ISyhXYB6WWurthMAN/Yvt91LridWARDv3ZNxiw/la41NvJ3JuB8OStJTSUjCIyqXZoPUf0+uBUMuHet5UNfDmbSsXDYcS7RoaCXRoZ4Hvu53kxlXMuisPQbARmM7NICvuyMd6nlYKEIhzOX1l/v6egsAnC9EETZzne196ef8aRp/5/34Jvn62QGmddLPrnKQhEdULgFdwLkm/HkT4nei1WpMt6hXxstaOq2GKQOamZZ7aw+g1xg4Y6zNOUUda2jKgGbotDK4mbC8DccS+HTLGQBOKAGcN3rhpMmmado+22vpuHM5K8vZl82pde9bTAHpZ1dJSMIjKhedHTTprz6/c1lrcNs6aDSw59wNLt7MsGBwJRMe7Iu3q3q3x2M6dbDBXw2h+Lg7Mn9YCOHBvpYMTwigoDsKNaw3dgCgr06d882mWjruXM666NsbKPwHh/Szs36S8IjKp/kg9d+Tv4LRQO3qTnSpXwuonBOKxl9P52pqFl7aFLraHQegx5Pj2PXGI5LsCKtR0B2F6w1qwvOI9hCOZNpOS0dOJsSoU2f82bBoI51LPzvrJwmPqHwCu4JTDci4bhoB1TQmT/QljJXsF+a2GHU+sJc9j6FVDODbmjZt2sllLGFVCmrBOKLU57zRCxdNFr20B+9brtKJ3QLZqShudViZ9OAfHdLPrvKQhEdUPjr7u2PyHF0GQJ/mPrg62nH51p98uyuO1Ycvsyf2RqVoXt96Sk14+mruzJ0VPNiC0QhRsIJbMDSsNnYGYKBu9wPKVTJHlwOw074L3/7v7qzw9/4EyVuWfnaVgyQ8onJqOUT998QayPkTR3sdrf2rA/D+upNMXHqYZ77ea/XjZKRn5bLv3E18uIHPrUPqyuAnLBuUEAXIu6Pw3q/11YYuADys/YMmbtmVv6Uj8zbKnbuzZl1piVYD/36yJV8NC8HH3TyZk352lYudpQMQokT8O4F7Xbh9AWLWs4FQdp65nq9Y3jgZ1vpH6X+xN8g2GBnmGo0mR1EHV3SvY+mwhMgn747CcT8cRMPdW7JjldocNQbSQhvPq77H0Wkft2SYpZZ9dBX63ExOG2tzWluPL4aG0LeF+rejVzMffo+7SVJqJl6u6mUsadmpPKSFR1ROWi20fAoA5Y+fmPbriQKLWfs4GXmXsx6326OukMtZwoqFB/syv4CWjvU8BIB3/BoOxFfeTsupmTmc3vQNAGvpyjcjO5iSHVCTvtD6NRnYujah9WtKslPJSAuPqLxaPA07P0E5s5nMPwcBbgUW++s4GaH1a1ZkhA+kKApRMUk01Fyi9p8xoLWD5pX717GwfeHBvvlaOtrWaIVx3mLaamLo9906Ph8/iCDPapYOtVhupmfz+tdr+Tb7DwDCnn6Flo08LRyVKEvSwiMqL68m4NsKrZLLo3fGAXkQa7t75FRiKgm3M3nGfru6olE4uNSybFBCFMG9LR16jzooAV0B6JG9nVER+7mRlmXhKIsu8XYmTy/YQ+Nr6rxg6b6daBncwsJRibJmVQmPoii8++67+Pr64uTkRFhYGGfOnCny9jNnzkSj0TBp0qTyC1JYlzudl5/Q7Sy0qLXdPbItJgk7chlsp97dQuvnLBuQEKWgaz0UgGf0O7hwM50Xvz9AZo7BwlEV7vyNdJ786n+cTUrlKb36WXRpL59FW2RVCc9HH33EvHnz+Oqrr9i3bx8uLi706dOHzMzCf5nv37+fBQsW0LJlywqIVFiN4CdRNDpCtGdpoLlcYBFrHSdj26kkumuP4G68pc4C37CXpUMSouSaDQS9K3WURHo6nuHQhVtMWnrYqvrOGYwKe2JvmIatOHElhae+2sOl5D/pXT2BIOUi6BzuDnshbIrVJDyKojB37lzefvttBg4cSMuWLfn++++5cuUKq1ateuC2aWlpPPfcc3z99dfUqFGjYgIW1sHVG02jPgAM1W297wDw1jZOxq2MbKLPJ/OU7s7lrJZD1PGFhKisHKqZhlSYFXQYvU7LhuOJfLjupIUDU204lsBDs7byzNd7TcNWPPrZTpJSs2ji48qnjdS+OzTtD47ulg1WlAurSXji4uJITEwkLCzMtM7d3Z2OHTuyZ8+eB247YcIEHn30UbNtHyQrK4uUlBSzh6jE2o4CYITzHvzddGYvOdnrrPKW9B1nrlNDuU1P3Z2xd+RylrAFISMBqHVhA3MH1QNg4a44InfHWTIqNhxLYNwPB/NNjXFn4ndeDvXG6dRKdeHO3xNhe6zmLq3ExEQAvL29zdZ7e3ubXivI0qVLOXjwIPv37y/ysWbMmMG0adOKHaPBYCAnJ6fY2wmVXq9Hqy2HHLtBGLjVRp9ymagn0tjn0oN9cTeYu/kMiqLwUEPru9Ni26kkBul2Y4cB/NqAd7PCNxLC2tUOAa9mkHSCfspOJof34KMNMUxbewK/6k70bu5T4SHln/TUnAY4vuk7BuWmgkeQOnWNsEkWS3gWL17MSy+9ZFr+73//W+x9XLx4kYkTJ7Jp0yYcHYveIfWtt97itddeMy2npKTg7+9/3/KKopCYmMitW7eKHaO4S6vVUq9ePfR6fRnvWAdthsH2WWgPRhI66kk6BXmw+vAV4q6ns/5oAk+1u//5rWgGo8L2mCSW67aoK9oMs2xAQpQVjQbaDIeNb8GhRYwb+yIXb/7Jkt8v8OrSQywdG0qL2u4VOnhfQZOe/pUC9MveqF7vCBmh1kHYJIslPI899hgdO3Y0LWdlqbcwXr16FV/fu5cfrl69SuvWrQvcR3R0NElJSYSEhJjWGQwGduzYweeff05WVhY6nS7fdg4ODjg4OBQ51rxkx8vLC2dnZzTygSg2o9HIlStXSEhIoG7dumX/HrYZBts/gvidcCMWTc36DA6pzce/nWbFwUtWlfAcuXSLJpmHqK9PQNFXQ5M3TYYQtqDlENg8BRKOoEk4zPSBrUi4/SdRMdcYvnAfjvY6rqXevWXd192RKQOaldtl58KGo2isuUAb7VmMGju0cmnZplks4XF1dcXV1dW0rCgKPj4+bNmyxZTgpKSksG/fPsaNG1fgPnr27MnRo0fN1o0ePZomTZrwxhtvFJjsFJfBYDAlOzVrWs+gdZWRp6cnV65cITc3F3v7Mu6gW70uNOgJZzdDdCT0ns7jIXX4ZNNp9p67ycWbGfh7OJftMUto26kkRug2AaBpNRQcXAvZQohKxKUmNH0Mjv0Mv3+D3aAv+PzZEPrO3cHF5D9Jzcw1K17e078UNhzFMN1mAJL9e1KzmleZH19YD6vptJw3fs7777/PmjVrOHr0KCNGjMDPz49BgwaZyvXs2ZPPP/8cUJOm4OBgs4eLiws1a9YkODi4TOLK67Pj7GwdX5aVWd6lLIOhnMbmaDta/ffQIsjOoHZ1J0KD1CR15aGCb1m3hD9OnKCX9oC60P5FywYjRHnoeKe7wtHlkH4dJ3sdWbnGAouW9/QveZOeFsSNNAbfGcOrercJZX5sYV2sJuEBmDx5Mn/7298YO3Ys7du3Jy0tjQ0bNpj1z4mNjeX69fyTRJY3uYxVeuX+Hjbuq7b0/JkMfywFYHCIOhHnLwcvoSiWHw8kKSWTttdXodMoZPt3Aa+mlg5JiLJXp73aGd+QBdGRd/rs3H/k5b9O/1LWdFoN/+rXpMDXhuqicNZkkeLeGF3Qw2V+bGFdrCrh0Wg0vPfeeyQmJpKZmcnmzZtp1KiRWZn4+HimTp16331ERUUxd+7c8g1UWCetDjq+rD7fOx+MRsKDfXDW64i/kUH0+WTLxgfsPHGRZ3RbAdB3GmvhaIQoJxrN3c/i/oVcu51apM3Ka/qXlDuX0f7aN1qHgdH26qVlt26vSGflKsCqEh5bdu8In9Y0+qhNaTMc9K5w/TSc24qLgx197/QLWHHwkoWDg8wDi/HUpJDi4AtN+ls6HCHKT/PH1RHEU6/QJHl7kTYpj+lfcgxG5kfFAvB/jzZlyZhOfDq0Net6p+DLNXDygBZPlflxhfWRhKcCFDTC50OztrLhWEK5HnfUqFFoNBo0Gg329vZ4e3vTq1cvvv32W4zGgq+nFyQyMpLq1auXX6BlydHt7m3ee74EYHDb2gCsPZJg0bl9srNzeOjaEgBS27wEOqsZBkuIsmfnAO1eAKDh2YX4ujncdyT08pz+ZdWhy1xK/pNa1fQ82yFAnfS0lR+N475XC7QbDfZOZX5cYX0k4Sln9xvhM+/OhPJOesLDw0lISCA+Pp7169fTo0cPJk6cSP/+/cnNzS18B5VRx7Gg0ULsFkg4Qqd6Nald3YnUrFx+O3HVYmGd2/UTAZpEblEN3+5jLBaHEBWmw1iwd0aTcITPOqj9cwpKehTKZ/oXg1HhyzutO2O6BuGkv3PnbvwuuLhPnTerg1xariok4SkBRVHIyM4t9JGamcOUNccLHOEzb93UNSdIzcwp0v5K0unWwcEBHx8fateuTUhICP/6179YvXo169evJzIyEoDZs2fTokULXFxc8Pf3Z/z48aSlpQFqn6jRo0dz+/ZtU2tRXh+qRYsW0a5dO1xdXfHx8eHZZ58lKSmp+G9oWfMIguDB6vPtH6HVangiRG3lWRFtoctaioJr9BcA7PccjNaxmmXiEKIiudQ03T3Z7mIk84eF4FPAHVMd63mUyy3pa/9QBx+t7mzPsE4Bd1/Y+bH6b8hwcK340Z+FZUibegn8mWOg2bsbS70fBUhMyaTF1N+KVP7Ee31w1pf+lD3yyCO0atWKX375hRdffBGtVsu8efOoV68e586dY/z48UyePJkvv/ySzp07M3fuXN59911iYmIAqFZN/bLOyclh+vTpNG7cmKSkJF577TVGjRrFunXrSh1jqXV9HY7+DKfWwtXjDA4J5LOtZ9l55hpXUzLxdiv7vgIPdG4btdNPkKnYo5FflKIq6fwK/P4fOL+b8J7n6fXGI6aRllMzc3l71TH2xd3k0IVk2tQtu8mfjUaFz7eeBeCFLvVwcbjzt/NSNJyLAq0ddJlYZscT1k9aeKqoJk2aEB8fD8CkSZPo0aMHgYGBPPLII7z//vssW7YMUMfOcXd3R6PR4OPjg4+Pjynhef755+nbty9BQUF06tSJefPmsX79elPrkEV5NYFmj6nPd3xMYC0X2gXUwKio1/QrlKKQtVGdu22JMYwOLRpX7PGFsCQ3P2j9jPp8x7/RaTVqP5rWtRnWKYAn26pDR0z79QTGMryZY+PxRM4kpeHqaMfILoF3X8hr3Wk5RB3GQlQZ0sJTAk72Ok6816fQcr/H3WRUROGTmkaObl+kznpO9qUfOTqPoiimcXE2b97MjBkzOHXqFCkpKeTm5pKZmUlGRsYDB1yMjo5m6tSpHDlyhOTkZFNH6AsXLtCsmRVMhvnwP+HEaji+ErpNZnDbOhw4n8yKg5cY+3BQxY2tFLMeh6TDZCgO7PEbyWjHMh5lWghr99Df4fCP6kjo8bsg8CHTS5P7NGb90QQOX7zF6iOXebxNnVIfTlEUPrvTujO6cyBueZ+5SwcgZp3ax++hv5f6OKJykRaeEtBoNDjr7Qp9dG3oia+7Y6F3JnRt6Fmk/ZXlF/TJkyepV68e8fHx9O/fn5YtW7JixQqio6P54gu1r0l2dvZ9t09PT6dPnz64ubmxePFi9u/fz8qVKwvdrkL5tLhz67cCm6bwaEtfHOy0nL6axrHLKRUTg9EI2z4AIMLQh3bNGxWygRA2yCMI2o5Sn2+aAn/pj+jl5sj4Hg0AmLn+FOlZpb+ZYuupJE4kpOCi1zG6Sz11paLAb++oz1s/C7Ualvo4onKRhKcc6bQapgxQWzruTVXylsvjzoTCbN26laNHjzJ48GCio6MxGo188skndOrUiUaNGnHlyhWz8nq9Pt90EKdOneLGjRvMnDmTrl270qRJE+vosHyvsGnqtfozG3G78j96N1c7KFbYmDzHVsDVY6QqTvwntz89GstcPaKKengy2LvA5QNw8lezl154qB7+Hk5cTcniq+2xpTqMoijMu9O6Myw0gBou6pQ2nN4AF/4Hdo7Q/V+lOoaonCThKWfhwb4F3png4+5YbpPl/VVWVhaJiYlcvnyZgwcP8uGHHzJw4ED69+/PiBEjaNCgATk5OXz22WecO3eORYsW8dVXX5ntIzAwkLS0NLZs2cL169fJyMigbt266PV603Zr1qxh+vTp5VqXEqnVANo9rz7/7W0Gt1Hf79WHL5N9n7l9ykx2Omx6F4D5uQNwreFJAy+5O0tUUa7eEHpnvqot70Hu3ZZgR3sd/9dPnWZlwY5zXLyZUeLD7Dp7nSMXb+For2VM1yB1pSFXbVkC6DQO3GuXeP+i8pKEpwKEB/uy641HTCN8LhnTiV1vPFLuyQ7Ahg0b8PX1JTAwkPDwcLZt28a8efNYvXo1Op2OVq1aMXv2bGbNmkVwcDCLFy9mxowZZvvo3LkzL7/8MkOGDMHT05OPPvoIT09PIiMjWb58Oc2aNWPmzJl8/PHH5V6fEun2Bji4QeIfPJyxGS9XB5IzctgWU84tUrvmQOoVbup9WWjoR4/GXjInm6jaOv9NHX35xhnY+6XZS32a+xAaVJPsXCMz158q8SE+26K27jzToS61qjmoK/d/A9dj1FGVpe9OlaVRrGFGRQtLSUnB3d2d27dv4+bmZvZaZmYmcXFx1KtXz2wSU1F8Fn0vd82FzVPAyYO5TX5k7p6b9G7mzX9GtCuf492IhS9DwZDFW/ZvsCS1FRGj2tOjiVzSElXc4SWw6mWwd4YJ+8zulDqZkMKj83ZiVOCnsZ3oGFSzWLvee+4GQ/+zF71Oy47JPdSW9ZQr8HkHyE6F/nPutvgKm/Cg7+97SQuPqBpCJ4BXc/jzJqPTvwFgW0wSN9PLoYO10Qhr/gaGLNLrPMyS1JY42GnpVMw/3kLYpFZDoW5nyMmAdZPNOjA39XVjaAc1AZr264lizzmYN+7O0+3r3O1GsP4NNdmp0wFCRpVJFUTlJAmPqBp09vDYPECD++mfGe0ZQ45BYc3hchiTZ/83cH432LuwsvZkQEPn+jXvDmsvRFWm0UD/2aC1h9Pr4fBis5f/0asRro52nEhIYfmBi0Xe7cELyew6ex07rYaXu9VXV/6xHE6uAY1Obd3RyldeVSZnX1QdddpBp/EAvJE5D0+SWXGwjBOepJPqpTOAXtNYc0Ed6uoRuZQlxF1eTeGR/1Ofr38DkuNNL9Ws5sDEnuot4//eGENKZk6RdvnZljMAPBFSmzo1nOHWBfjva+qL3SaDT3CZhS8qJ0l4RNUSNgW8W+CYk8xc/XyOX07m9NXUstl3VhosG6E21Qf14HbzEUSfTwagu9yOLoS5zq9C3VDIToNlIyHnT9NLI0IDCfJ04UZ6tuky1YMcu3ybbTHX0GpgfPcGkJsFK16ErBT1UlbX18uzJqKSkIRHVC12DvDkQrBzoov2GG/b/VA2E4oajbB6Alw/Da5+MPgbdsbewGBUaOhVDX+P+49YLUSVpNXB4wvUO6cSDsOvE039efR2Wt55VB3DLGJ3HHHX0x+4q8+2qq07j7XyI7CmM6x9TZ0N3cENnlgAOplUQEjCI6oiz8bwuDrW0PN2G9Ad+JpcQynG5FEU2PgvOLFK7Zfw5LfgUoutp9Tb3uXOLCHuo0YAPBWp9rH54yeImml6qUcTL7o39iTHoPDBf0/cdxcxialsPH4VjQZeeaSBOhzE4R/U6SOejFBHeRYCSXhEVdV8ELk91GHmJxsXErv+05LtR1HUqSP2zVeXH/8KAkIxGhW2x1wDkNGVhXiQoG7Qd5b6fPtM2PmJ6aW3H22GnVbD5pNJ7Dh9rcDNP9+mXvLqF+xLgzMRsEWdqJfeH0DDsHINXVQukvCIKsvu4X+wx2sIAI0PTIXtH6mXporKkAO/vgo7/q0u9/kQWjwJwB+Xb3MjPRtXBzvaBdYo48iFsDEdxkDYVPX5lvdg/ZtgyKWBVzWGhwYAMH3tiXwtsbHX0lj7xxU0GJnm8jNsujNXVrc3IXR8BVZAVAaS8IiqS6Oh2oCP+DL3MXV52wfw41OQmlj4ttfPwrfhcPB7tem8/5y7w+aD6XJW10a1sNfJx0yIQj30d+h55w7HffNh0SC4Gcekno2o4WzPmaQ0Fu+7YLbJl9ti8VOusbb6HGodVic9pvu/oMdbFRu7qBTkL3EV1L17dyZNmmTpMKxCcB13VtV8kX/mjCVX6wBnN8O8ENg8zexWWUC9fJV0Ev77OnzZSZ0E0cEdhvyQb/TWqDvTVsjlLCGKoetr8PT36iSj8Tvhy064b3+HqZ3VCUBnbzrN9dQs9sTe4OeNUTT5YxabHCbTPDNanRT0ia+h+xsWroSwVtJ13YaNGjWK7777Lt/6ffv20bRpU9NyYGAgkyZNqpJJkEajYXBIHWas705u9dbMcY6AS/th12z1USNQHfreaISbsZCacHfjBr3UAdT+MjQ+QFJqJn9cug1At8aeFVgbIWxAs4HgHazetRW/E/bNZyDz6eTkSWyuJ2c/1uDPVUI1103fYDdrtcNj6AJ1smAh7kMSHhsXHh5ORESE2TpPT090Ohn1N8/jbWoza8MpVl6pzqv/WEW9a1th/9cQv0tt5flrS4/WDhqFq30OgroXuL+oO52VW9Zxx8tV5l8Tothq1oeRv0LsVtg7H85F4W28hrfubsflHEXHbmMwkYY+bL/UivmJLoTXsmDMwupJwlMSiqIOLlfR7J3VYdmLwcHBAR8fH7N13bt3p3Xr1sydO5fu3btz/vx5/v73v/P3v6uzCFe1+WS93Bzp2tCT7aev8cuhy/yj92PQ7DHIvA1XDkPaVXXMkGo+4NcG9AWPqWMwKvwed5Mf950HoFsjad0RosQ0GmjQExr0xPDnbcbPXoRj+mUUNCQqHpxS6pKCi1oUde6tXs180GmL9zdSVB2S8JRETgZ86Ffxx/3XFdC7lOkuf/nlF1q1asXYsWMZM2ZMme67Mhnctg7bT19jyb4L1PeshrebIx3qeaAL6lak7TccS2DarydIuJ1pWvfjvgs093MjPNi3vMIWokr4/UouG1PrAfUKfF0BEm5n8nvcTULryyS9omCS8Ni4tWvXUq1aNdNy3759zV738PBAp9Ph6uqaryWoSlEUNMD19Gwm/XQYAF93R6YMaFZowrLhWALjfjjIve1iN9OzGffDQeYPC5GkR4hSSErNLLxQMcqJqkkSnpKwd1ZbWyxx3GLq0aMH8+fPNy27uLjwzDPPlGVUld6GYwlMXHo4X8KSeDuz0ITFYFSY9uuJfNuC+qtTmtqFKL2i9oWTPnPiQSThKQmNpswvLZUXFxcXGjSQOxfup7CEBeD/Vh7DRW9HrlEhK9dItsFIdq76iElMMbuMVdA+pKldiNLpUM8DX3dHEm9nFvhZ1QA+7uplaCHuRxIegV6vx2AwWDoMi/g97uYDExaAG+nZDP/291IdR5rahSg5nVbDlAHNGPfDQTRglvTktZtOGdBMWlHFA8nAg4LAwEB27NjB5cuXuX79uqXDqVBFTUR83BwIru1GSN3qdAry4OFGnvRq5k2noKL9opSmdiFKJzzYl/nDQvBxN/8s+bg7Sj85USTSwiN47733eOmll6hfvz5ZWVlV6rb0oiYic4a0KfCSlMGo8NCsrdLULkQFCA/2pVczH36Pu0lSaiZernfuppSWHVEEkvDYsMjIyALXR0VFmS136tSJI0eOlH9AVqi0fQOkqV2IiqXTaqQ/nCgRuaQlqrS8hAXuJih5ipqwSFO7EEJYP2nhEVVeXsJy78CBPkUchydvH9LULoQQ1ksSHiEom4RFmtqFEMJ6ScIjxB2SsAghhO2SPjxFVJXuXCov8h4KIYSwFEl4CmFvbw9ARoYFZke3MdnZ2QDodDoLRyKEEKKqkUtahdDpdFSvXp2kpCQAnJ2d0WikI2pxGY1Grl27hrOzM3Z28t9OCCFExZJvniLIm0U8L+kRJaPVaqlbt64kjEIIISqcJDxFoNFo8PX1xcvLi5ycHEuHU2np9Xq0WrmKKoQQouJJwlMMOp1O+p8IIYQQlZD83BZCCCGEzZOERwghhBA2TxIeIYQQQtg86cPD3QHxUlJSLByJEEIIIYoq73u7KAPbSsIDpKamAuDv72/hSIQQQghRXKmpqbi7uz+wjEaR8f4xGo1cuXIFV1fXMh8jJiUlBX9/fy5evIibm1uZ7tsaSP0qP1uvo9Sv8rP1Okr9Sk5RFFJTU/Hz8yt02BNp4UEdEK9OnTrlegw3Nzeb/I+cR+pX+dl6HaV+lZ+t11HqVzKFtezkkU7LQgghhLB5kvAIIYQQwuZJwlPOHBwcmDJlCg4ODpYOpVxI/So/W6+j1K/ys/U6Sv0qhnRaFkIIIYTNkxYeIYQQQtg8SXiEEEIIYfMk4RFCCCGEzZOERwghhBA2TxKecvTFF18QGBiIo6MjHTt25Pfff7d0SIUqTsxff/01Xbt2pUaNGtSoUYOwsLB85UeNGoVGozF7hIeHl3c1iqU4dY6MjMxXH0dHxwqMtnDFqU/37t3z1Uej0fDoo4+aylSGc1iQHTt2MGDAAPz8/NBoNKxatcrSIRVJceP+5Zdf6NWrF56enri5uREaGsrGjRvNykydOjXfOWzSpEk51qLoilvfqKioAv/PJiYmVkzAhShufQr6fGk0Gpo3b24qY83n70FmzJhB+/btcXV1xcvLi0GDBhETE2OxeCThKSc//fQTr732GlOmTOHgwYO0atWKPn36kJSUZOnQ7qu4MUdFRfHMM8+wbds29uzZg7+/P7179+by5ctm5cLDw0lISDA9lixZUhHVKZKSnCc3Nzez+pw/f74CI36w4tbnl19+MavLsWPH0Ol0PPXUU2blrPkc3k96ejqtWrXiiy++sHQoxVLcuHfs2EGvXr1Yt24d0dHR9OjRgwEDBnDo0CGzcs2bNzc7h7t27SqP8IutpOcpJibGrD5eXl7lFGHxFLc+n376qVk9Ll68iIeHR77PoLWevwfZvn07EyZMYO/evWzatImcnBx69+5Nenq6ZQJSRLno0KGDMmHCBNOywWBQ/Pz8lBkzZlgwqgcrbcy5ubmKq6ur8t1335nWjRw5Uhk4cGBZh1pmilvniIgIxd3dvYKiK77SnsM5c+Yorq6uSlpammmdtZ/DogCUlStXWjqMYitp3M2aNVOmTZtmWp4yZYrSqlWrsgusnBSlvtu2bVMAJTk5uUJiKo2SnL+VK1cqGo1GiY+PN62rLOevMElJSQqgbN++3SLHlxaecpCdnU10dDRhYWGmdVqtlrCwMPbs2WPByO6vLGLOyMggJycHDw8Ps/VRUVF4eXnRuHFjxo0bx40bN8o09pIqaZ3T0tIICAjA39+fgQMHcvz48YoIt1BlcQ4XLlzI0KFDcXFxMVtvredQ5Gc0GklNTc33OTxz5gx+fn4EBQXx3HPPceHCBQtFWDZat26Nr68vvXr1Yvfu3ZYOp8wsXLiQsLAwAgICzNbbwvm7ffs2QL7/mxVFEp5ycP36dQwGA97e3mbrvb29reY6873KIuY33ngDPz8/sy/c8PBwvv/+e7Zs2cKsWbPYvn07ffv2xWAwlGn8JVGSOjdu3Jhvv/2W1atX88MPP2A0GuncuTOXLl2qiJAfqLTn8Pfff+fYsWO8+OKLZuut+RyK/D7++GPS0tJ4+umnTes6duxIZGQkGzZsYP78+cTFxdG1a1dSU1MtGGnJ+Pr68tVXX7FixQpWrFiBv78/3bt35+DBg5YOrdSuXLnC+vXr830GbeH8GY1GJk2aRJcuXQgODrZIDDJbuigTM2fOZOnSpURFRZl14h06dKjpeYsWLWjZsiX169cnKiqKnj17WiLUUgkNDSU0NNS03LlzZ5o2bcqCBQuYPn26BSMrvYULF9KiRQs6dOhgtt7WzqEt+/HHH5k2bRqrV68269PSt29f0/OWLVvSsWNHAgICWLZsGS+88IIlQi2xxo0b07hxY9Ny586diY2NZc6cOSxatMiCkZXed999R/Xq1Rk0aJDZels4fxMmTODYsWMW7XskLTzloFatWuh0Oq5evWq2/urVq/j4+FgoqgcrTcwff/wxM2fO5LfffqNly5YPLBsUFEStWrU4e/ZsqWMurbI4T/b29rRp06bS1yc9PZ2lS5cW6Y+nNZ1DcdfSpUt58cUXWbZsmVkra0GqV69Oo0aNbOYcdujQodLXRVEUvv32W4YPH45er39g2cp2/l555RXWrl3Ltm3bqFOnjsXikISnHOj1etq2bcuWLVtM64xGI1u2bDFrHbAmJY35o48+Yvr06WzYsIF27doVepxLly5x48YNfH19yyTu0iiL82QwGDh69Gilr8/y5cvJyspi2LBhhR7Hms6hUC1ZsoTRo0ezZMkSsyEF7ictLY3Y2FibOYeHDx+u9HXZvn07Z8+eLdKPjspy/hRF4ZVXXmHlypVs3bqVevXqWTwgUQ6WLl2qODg4KJGRkcqJEyeUsWPHKtWrV1cSExMtHdp9FRbz8OHDlTfffNNUfubMmYper1d+/vlnJSEhwfRITU1VFEVRUlNTlddff13Zs2ePEhcXp2zevFkJCQlRGjZsqGRmZlqkjvcqbp2nTZumbNy4UYmNjVWio6OVoUOHKo6Ojsrx48ctVQUzxa1PnoceekgZMmRIvvWV4RzeT2pqqnLo0CHl0KFDCqDMnj1bOXTokHL+/HlLh/ZAhcX95ptvKsOHDzeVX7x4sWJnZ6d88cUXZp/DW7dumcr84x//UKKiopS4uDhl9+7dSlhYmFKrVi0lKSmpwut3r+LWd86cOcqqVauUM2fOKEePHlUmTpyoaLVaZfPmzZaqgpni1ifPsGHDlI4dOxa4T2s+fw8ybtw4xd3dXYmKijL7v5mRkWGReCThKUefffaZUrduXUWv1ysdOnRQ9u7da+mQCvWgmLt166aMHDnStBwQEKAA+R5TpkxRFEVRMjIylN69eyuenp6Kvb29EhAQoIwZM8bqkr7i1HnSpEmmst7e3kq/fv2UgwcPWiDq+ytOfRRFUU6dOqUAym+//ZZvX5XlHBYk7/blex/31t/aFBb3yJEjlW7dupnKd+vWrdB6DhkyRPH19VX0er1Su3ZtZciQIcrZs2crtmL3Udz6zpo1S6lfv77i6OioeHh4KN27d1e2bt1qmeALUNz6KIqi3Lp1S3FyclL+85//FLhPaz5/D1LQ+wAoERERFolHcycoIYQQQgibJX14hBBCCGHzJOERQgghhM2ThEcIIYQQNk8SHiGEEELYPEl4hBBCCGHzJOERQgghhM2ThEcIIYQQNk8SHiGEEELYPEl4hBBVRmRkJNWrV39gmalTp9K6desKiedegYGBzJ07t8KPO2rUKDQaDRqNhlWrVhVpm8DAQNM2t27dKtf4hCgLkvAIYWF//bLR6/U0aNCA9957j9zcXEuHVmLF+eIsTHx8PBqNhsOHD+d7rXv37kyaNKlMjlOeoqKiTOf4fo+oqCj279/P2LFjLRJjeHg4CQkJ9O3bt0jl9+/fz4oVK8o5KiHKjp2lAxBCqF82ERERZGVlsW7dOiZMmIC9vT1vvfVWsfdlMBjQaDRotZX/90xOTo6lQyiRnJwc7O3tTcudO3cmISHBtDxx4kRSUlKIiIgwrfPw8ECv11donH/l4OCAj49Pkct7enri4eFRjhEJUbYq/19EIWxA3pdNQEAA48aNIywsjDVr1gAwe/ZsWrRogYuLC/7+/owfP560tDTTtnmXadasWUOzZs1wcHDgwoUL7N+/n169elGrVi3c3d3p1q0bBw8eNDuuRqNhwYIF9O/fH2dnZ5o2bcqePXs4e/Ys3bt3x8XFhc6dOxMbG2u23erVqwkJCcHR0ZGgoCCmTZtmapEKDAwE4PHHH0ej0ZiWC9suL5758+fz2GOP4eLiwgcffFCs9zE5OZkRI0ZQo0YNnJ2d6du3L2fOnHngNjNnzsTb2xtXV1deeOEFMjMz85X55ptvaNq0KY6OjjRp0oQvv/zS9FpeC9RPP/1Et27dcHR0ZPHixWbb6/V6fHx8TA8nJyfTOc976PX6fJe0yuP8FFV2djavvPIKvr6+ODo6EhAQwIwZM4q1DyGsiSQ8QlghJycnsrOzAdBqtcybN4/jx4/z3XffsXXrViZPnmxWPiMjg1mzZvHNN99w/PhxvLy8SE1NZeTIkezatYu9e/fSsGFD+vXrR2pqqtm206dPZ8SIERw+fJgmTZrw7LPP8tJLL/HWW29x4MABFEXhlVdeMZXfuXMnI0aMYOLEiZw4cYIFCxYQGRlpSk72798PQEREBAkJCablwrbLM3XqVB5//HGOHj3K888/X6z3bdSoURw4cIA1a9awZ88eFEWhX79+920pWrZsGVOnTuXDDz/kwIED+Pr6miUzAIsXL+bdd9/lgw8+4OTJk3z44Ye88847fPfdd2bl3nzzTSZOnMjJkyfp06dPseJ+kLI+P0U1b9481qxZw7Jly4iJiWHx4sVmyasQlY5F5mgXQpiMHDlSGThwoKIoimI0GpVNmzYpDg4Oyuuvv15g+eXLlys1a9Y0LUdERCiAcvjw4Qcex2AwKK6ursqvv/5qWgcob7/9tml5z549CqAsXLjQtG7JkiWKo6Ojablnz57Khx9+aLbvRYsWKb6+vmb7XblypVmZom43adIkszJxcXEKoDg5OSkuLi5mD61Wq0ycOFFRFEU5ffq0Aii7d+82bXv9+nXFyclJWbZsmem9cnd3N70eGhqqjB8/3ux4HTt2VFq1amVarl+/vvLjjz+alZk+fboSGhpqFt/cuXOVovrrOf+rgIAAZc6cOabl8jo/RYnnb3/7m/LII48oRqPxvttt27ZNAZTk5OT7lhHCWkgfHiGswNq1a6lWrRo5OTkYjUaeffZZpk6dCsDmzZuZMWMGp06dIiUlhdzcXDIzM8nIyMDZ2RlQL5m0bNnSbJ9Xr17l7bffJioqiqSkJAwGAxkZGVy4cMGs3F+38/b2BqBFixZm6zIzM0lJScHNzY0jR46we/dusxYDg8GQL6Z7FXW7du3aFbj9Tz/9RNOmTc3WPffcc6bnJ0+exM7Ojo4dO5rW1axZk8aNG3Py5MkC93ny5Elefvlls3WhoaFs27YNgPT0dGJjY3nhhRcYM2aMqUxubi7u7u5m290v7tKqqPNzr1GjRtGrVy8aN25MeHg4/fv3p3fv3mVUKyEqniQ8QliBHj16MH/+fPR6PX5+ftjZqR/N+Ph4+vfvz7hx4/jggw/w8PBg165dvPDCC2RnZ5u+vJycnNBoNGb7HDlyJDdu3ODTTz8lICAABwcHQkNDTZfK8vy1c23ePgpaZzQaAUhLS2PatGk88cQT+erh6Oh43zoWdTsXF5cCt/f396dBgwZm65ycnO57vLKQ11fq66+/NkukAHQ6ndny/eIurYo6P/cKCQkhLi6O9evXs3nzZp5++mnCwsL4+eefS1QPISxNEh4hrICLi0u+L3OA6OhojEYjn3zyiemuq2XLlhVpn7t37+bLL7+kX79+AFy8eJHr16+XOtaQkBBiYmIKjDePvb09BoOh2NuVRtOmTcnNzWXfvn107twZgBs3bhATE0OzZs3uu82+ffsYMWKEad3evXtNz729vfHz8+PcuXNmrUnWrCzfZzc3N4YMGcKQIUN48sknCQ8P5+bNm3J3lqiUJOERwoo1aNCAnJwcPvvsMwYMGMDu3bv56quvirRtw4YNWbRoEe3atSMlJYV//vOfZdIi8u6779K/f3/q1q3Lk08+iVar5ciRIxw7doz3338fUO/U2rJlC126dMHBwYEaNWoUabvSaNiwIQMHDmTMmDEsWLAAV1dX3nzzTWrXrs3AgQML3GbixImMGjWKdu3a0aVLFxYvXszx48cJCgoylZk2bRqvvvoq7u7uhIeHk5WVxYEDB0hOTua1114rddxlraze59mzZ+Pr60ubNm3QarUsX74cHx+fQgduFMJayV1aQlixVq1aMXv2bGbNmkVwcDCLFy8u8q3BCxcuJDk5mZCQEIYPH86rr76Kl5dXqWPq06cPa9eu5bfffqN9+/Z06tSJOXPmEBAQYCrzySefsGnTJvz9/WnTpk2RtyutiIgI2rZtS//+/QkNDUVRFNatW2d2CeivhgwZwjvvvMPkyZNp27Yt58+fZ9y4cWZlXnzxRb755hsiIiJo0aIF3bp1IzIyknr16pVZ3GWprN5nV1dXPvroI9q1a0f79u2Jj49n3bp1NjG+k6iaNIqiKJYOQgghhOWMGjWKW7duFXt07KioKHr06EFycrK0/AirJ6m6EEII052Ca9euLVL55s2bF3kaCiGsgbTwCCFEFZeUlERKSgoAvr6+Rbrj7Pz586YBHYOCguRSl7B6kvAIIYQQwuZJSi6EEEIImycJjxBCCCFsniQ8QgghhLB5kvAIIYQQwuZJwiOEEEIImycJjxBCCCFsniQ8QgghhLB5kvAIIYQQwub9PzpxnrU5dtS1AAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# create matplotlib figure\n",
"fig, ax = plt.subplots()\n",
"\n",
"# plot data\n",
"dataset.y0.plot.line(ax=ax, x=\"x0\", marker=\"o\", label=\"Data\")\n",
"\n",
"# plot fit\n",
"x_fit = np.linspace(dataset[\"x0\"][0].values, dataset[\"x0\"][-1].values, 1000)\n",
"y_fit = cos_func(x=x_fit, **fit_result.best_values)\n",
"ax.plot(x_fit, y_fit, label=\"Fit\")\n",
"ax.legend()\n",
"\n",
"# set units-aware tick labels\n",
"set_xlabel(dataset.x0.long_name, dataset.x0.units)\n",
"set_ylabel(dataset.y0.long_name, dataset.y0.units)\n",
"\n",
"# add a reference to the origal dataset in the figure title\n",
"fig.suptitle(f\"{dataset.attrs['name']}\\ntuid: {dataset.attrs['tuid']}\")\n",
"\n",
"# Save figure\n",
"fig.savefig(exp_folder / \"Cosine fit.png\", dpi=300, bbox_inches=\"tight\")"
]
},
{
"cell_type": "markdown",
"id": "ccfab7e1",
"metadata": {},
"source": [
"## Reusable fitting model and analysis steps\n",
"\n",
"The previous steps achieve our goal, however, the code above is not easily reusable and hard to maintain or debug.\n",
"We can do better than this! We can package our code in functions that perform specific tasks.\n",
"In addition, we will use the objected-oriented interface of `lmfit` to further structure our code.\n",
"We explore the details of the object-oriented approach later in this tutorial."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "652768c7",
"metadata": {},
"outputs": [],
"source": [
"class MyCosineModel(lmfit.model.Model):\n",
" \"\"\"\n",
" `lmfit` model with a guess for a cosine fit.\n",
" \"\"\"\n",
"\n",
" def __init__(self, *args, **kwargs):\n",
" \"\"\"Configures the constraints of the model.\"\"\"\n",
" # pass in the model's equation\n",
" super().__init__(cos_func, *args, **kwargs)\n",
"\n",
" # configure constraints that are independent from the data to be fitted\n",
"\n",
" self.set_param_hint(\"frequency\", min=0, vary=True) # enforce positive frequency\n",
" self.set_param_hint(\"amplitude\", min=0, vary=True) # enforce positive amplitude\n",
" self.set_param_hint(\"offset\", vary=True)\n",
" self.set_param_hint(\n",
" \"phase\", vary=True, min=-np.pi, max=np.pi\n",
" ) # enforce phase range\n",
"\n",
" def guess(self, data, **kws) -> lmfit.parameter.Parameters:\n",
" \"\"\"Guess parameters based on the data.\"\"\"\n",
"\n",
" self.set_param_hint(\"offset\", value=np.average(data))\n",
" self.set_param_hint(\"amplitude\", value=(np.max(data) - np.min(data)) / 2)\n",
" # a simple educated guess based on experiment type\n",
" # a more elaborate but general approach is to use a Fourier transform\n",
" self.set_param_hint(\"frequency\", value=1.2)\n",
"\n",
" params_ = self.make_params()\n",
" return lmfit.models.update_param_vals(params_, self.prefix, **kws)"
]
},
{
"cell_type": "markdown",
"id": "47143c62",
"metadata": {},
"source": [
"Most of the code related to the fitting model is now packed in a single object, while the analysis steps are split into functions that take care of specific tasks."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "d288a58c",
"metadata": {},
"outputs": [],
"source": [
"def extract_data(label: str) -> xr.Dataset:\n",
" \"\"\"Loads a dataset from its label.\"\"\"\n",
" tuid_ = get_latest_tuid(contains=label)\n",
" dataset_ = load_dataset(tuid_)\n",
" return dataset_\n",
"\n",
"\n",
"def run_fitting(dataset_: xr.Dataset) -> lmfit.model.ModelResult:\n",
" \"\"\"Executes fitting.\"\"\"\n",
" model = MyCosineModel() # create the fitting model\n",
" params_guess = model.guess(data=dataset_.y0.values)\n",
" result = model.fit(\n",
" data=dataset_.y0.values, x=dataset_.x0.values, params=params_guess\n",
" )\n",
" return result\n",
"\n",
"\n",
"def analyze_fit_results(fit_result_: lmfit.model.ModelResult) -> dict:\n",
" \"\"\"Analyzes the fit results and saves quantities of interest.\"\"\"\n",
" quantities = {\n",
" \"amplitude\": fit_result_.params[\"amplitude\"].value,\n",
" \"frequency\": fit_result_.params[\"frequency\"].value,\n",
" }\n",
" return quantities\n",
"\n",
"\n",
"def plot_fit(\n",
" fig_: matplotlib.figure.Figure,\n",
" ax_: matplotlib.axes.Axes,\n",
" dataset_: xr.Dataset,\n",
" fit_result_: lmfit.model.ModelResult,\n",
") -> Tuple[matplotlib.figure.Figure, matplotlib.axes.Axes]:\n",
" \"\"\"Plots a fit result.\"\"\"\n",
" dataset_.y0.plot.line(ax=ax_, x=\"x0\", marker=\"o\", label=\"Data\") # plot data\n",
"\n",
" x_fit_ = np.linspace(dataset_[\"x0\"][0].values, dataset_[\"x0\"][-1].values, 1000)\n",
" y_fit_ = cos_func(x=x_fit_, **fit_result_.best_values)\n",
" ax_.plot(x_fit, y_fit_, label=\"Fit\") # plot fit\n",
" ax_.legend()\n",
"\n",
" # set units-aware tick labels\n",
" set_xlabel(dataset_.x0.long_name, dataset_.x0.units, ax_)\n",
" set_ylabel(dataset_.y0.long_name, dataset_.y0.units, ax_)\n",
"\n",
" # add a reference to the original dataset_ in the figure title\n",
" fig_.suptitle(f\"{dataset_.attrs['name']}\\ntuid: {dataset_.attrs['tuid']}\")\n",
"\n",
"\n",
"def save_quantities_of_interest(tuid_: str, quantities_of_interest_: dict) -> None:\n",
" \"\"\"Saves the quantities of interest to disk in JSON format.\"\"\"\n",
" exp_folder_ = Path(locate_experiment_container(tuid_))\n",
" # Save fit results\n",
" with open(exp_folder_ / \"quantities_of_interest.json\", \"w\", encoding=\"utf-8\") as f_:\n",
" json.dump(quantities_of_interest_, f_)\n",
"\n",
"\n",
"def save_mpl_figure(tuid_: str, fig_: matplotlib.figure.Figure) -> None:\n",
" \"\"\"Saves a matplotlib figure as PNG.\"\"\"\n",
" exp_folder_ = Path(locate_experiment_container(tuid_))\n",
" fig_.savefig(exp_folder_ / \"Cosine fit.png\", dpi=300, bbox_inches=\"tight\")\n",
" plt.close(fig_)"
]
},
{
"cell_type": "markdown",
"id": "c9d139bd",
"metadata": {},
"source": [
"Now the execution of the entire analysis becomes much more readable and clean:"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "358959d4",
"metadata": {},
"outputs": [],
"source": [
"dataset = extract_data(label=\"Cosine experiment\")\n",
"fit_result = run_fitting(dataset)\n",
"quantities_of_interest = analyze_fit_results(fit_result)\n",
"save_quantities_of_interest(dataset.tuid, quantities_of_interest)\n",
"fig, ax = plt.subplots()\n",
"plot_fit(fig_=fig, ax_=ax, dataset_=dataset, fit_result_=fit_result)\n",
"save_mpl_figure(dataset.tuid, fig)"
]
},
{
"cell_type": "markdown",
"id": "31482522",
"metadata": {},
"source": [
"If we inspect the experiment directory, we will find a structure that looks like the following:\n",
"\n",
"```{code-block}\n",
"20230125-172712-018-87b9bf-Cosine experiment/\n",
"├── Cosine fit.png\n",
"├── dataset.hdf5\n",
"├── quantities_of_interest.json\n",
"└── snapshot.json\n",
"```\n",
"\n",
"## Creating a simple analysis class\n",
"\n",
"Even though we have improved code structure greatly, in order to execute the same analysis against some other dataset we would have to copy-paste a significant portion of code (the analysis steps).\n",
"\n",
"We tackle this by taking advantage of the Object Oriented Programming (OOP) in python.\n",
"We will create a python class that serves as a structured container for data (attributes) and the methods (functions) that act on the information.\n",
"\n",
"Some of the advantages of OOP are:\n",
"\n",
"- the same class can be instantiated multiple times to act on different data while reusing the same methods;\n",
"- all the methods have access to all the data (attributes) associated with a particular instance of the class;\n",
"- subclasses can inherit from other classes and extend their functionalities.\n",
"\n",
"Let's now observe what such a class could look like.\n",
"\n",
"```{warning}\n",
"This analysis class is intended for educational purposes only.\n",
"It is not intended to be used as a template!\n",
"See the end of the tutorial for the recommended usage of the analysis framework.\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "da4a3264",
"metadata": {},
"outputs": [],
"source": [
"class MyCosineAnalysis:\n",
" \"\"\"Analysis as a class.\"\"\"\n",
"\n",
" def __init__(self, label: str):\n",
" \"\"\"This is a special method that python calls when an instance of this class is\n",
" created.\"\"\"\n",
"\n",
" self.label = label\n",
"\n",
" # objects to be filled up later when running the analysis\n",
" self.tuid = None\n",
" self.dataset = None\n",
" self.fit_results = {}\n",
" self.quantities_of_interest = {}\n",
" self.figs_mpl = {}\n",
" self.axs_mpl = {}\n",
"\n",
" # with just slight modification our functions become methods\n",
" # with the advantage that we have access to all the necessary information from self\n",
" def run(self):\n",
" \"\"\"Execute the analysis steps.\"\"\"\n",
" self.extract_data()\n",
" self.run_fitting()\n",
" self.analyze_fit_results()\n",
" self.create_figures()\n",
" self.save_quantities_of_interest()\n",
" self.save_figures()\n",
"\n",
" def extract_data(self):\n",
" \"\"\"Load data from disk.\"\"\"\n",
" self.tuid = get_latest_tuid(contains=self.label)\n",
" self.dataset = load_dataset(tuid)\n",
"\n",
" def run_fitting(self):\n",
" \"\"\"Fits the model to the data.\"\"\"\n",
" model = MyCosineModel()\n",
" guess = model.guess(self.dataset.y0.values)\n",
" result = model.fit(\n",
" self.dataset.y0.values, x=self.dataset.x0.values, params=guess\n",
" )\n",
" self.fit_results.update({\"cosine\": result})\n",
"\n",
" def analyze_fit_results(self):\n",
" \"\"\"Analyzes the fit results and saves quantities of interest.\"\"\"\n",
" self.quantities_of_interest.update(\n",
" {\n",
" \"amplitude\": self.fit_results[\"cosine\"].params[\"amplitude\"].value,\n",
" \"frequency\": self.fit_results[\"cosine\"].params[\"frequency\"].value,\n",
" }\n",
" )\n",
"\n",
" def save_quantities_of_interest(self):\n",
" \"\"\"Save quantities of interest to disk.\"\"\"\n",
" exp_folder_ = Path(locate_experiment_container(self.tuid))\n",
" with open(\n",
" exp_folder_ / \"quantities_of_interest.json\", \"w\", encoding=\"utf-8\"\n",
" ) as file_:\n",
" json.dump(self.quantities_of_interest, file_)\n",
"\n",
" def plot_fit(self, fig_: matplotlib.figure.Figure, ax_: matplotlib.axes.Axes):\n",
" \"\"\"Plot the fit result.\"\"\"\n",
"\n",
" self.dataset.y0.plot.line(ax=ax_, x=\"x0\", marker=\"o\", label=\"Data\") # plot data\n",
"\n",
" x_fit_ = np.linspace(\n",
" self.dataset[\"x0\"][0].values, self.dataset[\"x0\"][-1].values, 1000\n",
" )\n",
" y_fit_ = cos_func(x=x_fit_, **self.fit_results[\"cosine\"].best_values)\n",
" ax_.plot(x_fit_, y_fit_, label=\"Fit\") # plot fit\n",
" ax_.legend()\n",
"\n",
" # set units-aware tick labels\n",
" set_xlabel(self.dataset.x0.long_name, self.dataset.x0.attrs[\"units\"], ax_)\n",
" set_ylabel(self.dataset.y0.long_name, self.dataset.y0.attrs[\"units\"], ax_)\n",
"\n",
" # add a reference to the original dataset in the figure title\n",
" fig_.suptitle(f\"{dataset.attrs['name']}\\ntuid: {dataset.attrs['tuid']}\")\n",
"\n",
" def create_figures(self):\n",
" \"\"\"Create figures.\"\"\"\n",
" fig_, ax_ = plt.subplots()\n",
" self.plot_fit(fig_, ax_)\n",
"\n",
" fig_id = \"cos-data-and-fit\"\n",
" self.figs_mpl.update({fig_id: fig_})\n",
" # keep a reference to `ax` as well\n",
" # it can be accessed later to apply modifications (e.g., in a notebook)\n",
" self.axs_mpl.update({fig_id: ax_})\n",
"\n",
" def save_figures(self):\n",
" \"\"\"Save figures to disk.\"\"\"\n",
" exp_folder_ = Path(locate_experiment_container(self.tuid))\n",
" for fig_name, fig_ in self.figs_mpl.items():\n",
" fig_.savefig(exp_folder_ / f\"{fig_name}.png\", dpi=300, bbox_inches=\"tight\")\n",
" plt.close(fig_)"
]
},
{
"cell_type": "markdown",
"id": "b56c4016",
"metadata": {},
"source": [
"Running the analysis is now as simple as:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "ba6ee364",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHgCAYAAAChG7dTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC6LklEQVR4nOzdd1hUV/rA8e+doQwdBCkqAhZERMXeS6JR01xj+qaaXkzZ1DXNaHrZJJtNdzc92eSXZLOJSTQbjbEkdkVFLKggqDRFQEDazPn9cWF0BBQUuDPM+3meeWTO3LnzMjgz75zznnM0pZRCCCGEEKIdMxkdgBBCCCFEa5OERwghhBDtniQ8QgghhGj3JOERQgghRLsnCY8QQggh2j1JeIQQQgjR7knCI4QQQoh2TxIeIYQQQrR7kvAIIYQQot2ThEcIYadpGk8++aTRYbic2NhYrr/+eqPDEEKchCQ8Qjip3bt3c+utt9KtWzcsFguBgYGMGjWKv//97xw9etTo8ISLSUtL48knnyQzM9PoUIQwhIfRAQgh6vvxxx+59NJL8fb25tprryUpKYmqqipWrFjBgw8+yNatW3nvvfda/HGPHj2Kh4e8LTTXjh07MJmc+/tjWloac+bMYfz48cTGxhodjhBtTt7ZhHAyGRkZXHHFFcTExPDrr78SFRVlv+3OO+9k165d/Pjjj63y2BaLpVXO2x4ppaioqMDHxwdvb2+jwxFCnIJzfyURwg29+OKLlJaW8q9//csh2anTo0cP7rnnHvv1mpoannrqKbp37463tzexsbE88sgjVFZWOtxv3bp1TJ48mbCwMHx8fIiLi+OGG25wOObEGp4nn3wSTdPYtWsX119/PcHBwQQFBTFjxgzKy8vrxfbpp58yaNAgfHx86NChA1dccQXZ2dlN+r3379/PDTfcQEREBN7e3vTp04f333/ffvvRo0dJSEggISHBYUivsLCQqKgoRo4cidVqBeD666/H39+fPXv2MHnyZPz8/OjUqRNz585FKeXwuDabjddee40+ffpgsViIiIjg1ltv5fDhww7HxcbGcsEFF/Dzzz8zePBgfHx8ePfdd+23HV/D8+GHH6JpGitWrODuu++mY8eOBAcHc+utt1JVVUVRURHXXnstISEhhISE8NBDD51xXCtWrGDo0KFYLBa6devGxx9/7BDPpZdeCsBZZ52FpmlomsZvv/3WpL+NEO2CEkI4lc6dO6tu3bo1+fjrrrtOAeqSSy5Rb775prr22msVoKZNm2Y/Ji8vT4WEhKj4+Hj10ksvqXnz5qlHH31U9e7d2+FcgJo9e7b9+uzZsxWgBgwYoKZPn67eeustddNNNylAPfTQQw73ffrpp5Wmaeryyy9Xb731lpozZ44KCwtTsbGx6vDhwyf9HXJzc1WXLl1UdHS0mjt3rnr77bfV1KlTFaBeffVV+3GrVq1SZrNZ/eUvf7G3XXHFFcrHx0ft2LHD4TmxWCyqZ8+e6pprrlFvvPGGuuCCCxSgHn/8cYfHvummm5SHh4e6+eab1TvvvKMefvhh5efnp4YMGaKqqqrsx8XExKgePXqokJAQ9de//lW98847asmSJfbbrrvuOvuxH3zwgQJUcnKymjJlinrzzTfVNddcY3/eRo8erf785z+rt956yx7XRx99dNpx9erVS0VERKhHHnlEvfHGG2rgwIFK0zSVmpqqlFJq9+7d6u6771aAeuSRR9Qnn3yiPvnkE5Wbm3vSv4sQ7YkkPEI4keLiYgWoP/3pT006PiUlRQHqpptucmh/4IEHFKB+/fVXpZRS3377rQLU2rVrT3q+xhKeG264weG4iy66SIWGhtqvZ2ZmKrPZrJ555hmH47Zs2aI8PDzqtZ/oxhtvVFFRUergwYMO7VdccYUKCgpS5eXl9rZZs2Ypk8mkli1bpr766isFqNdee83hfnVJ4F133WVvs9ls6vzzz1deXl6qoKBAKaXU8uXLFaA+++wzh/svXLiwXntMTIwC1MKFC+vF31jCM3nyZGWz2eztI0aMUJqmqdtuu83eVlNTo7p06aLGjRtnbzuduJYtW2Zvy8/PV97e3ur++++3t9U9V3VJmhDuRoa0hHAiJSUlAAQEBDTp+J9++gmA++67z6H9/vvvB7DX+gQHBwPwww8/UF1d3ey4brvtNofrY8aM4dChQ/Z4//Of/2Cz2bjssss4ePCg/RIZGUnPnj1ZsmRJo+dWSvHNN99w4YUXopRyuP/kyZMpLi5mw4YN9uOffPJJ+vTpw3XXXccdd9zBuHHjuPvuuxs898yZM+0/a5rGzJkzqaqqYtGiRQB89dVXBAUFcc455zg87qBBg/D3968Xd1xcHJMnT27y83bjjTeiaZr9+rBhw1BKceONN9rbzGYzgwcPZs+ePfa25saVmJjImDFj7Nc7duxIr169HM4phLuTomUhnEhgYCAAR44cadLxe/fuxWQy0aNHD4f2yMhIgoOD2bt3LwDjxo3j4osvZs6cObz66quMHz+eadOm8ec//7lJBbddu3Z1uB4SEgLA4cOHCQwMJD09HaUUPXv2bPD+np6ejZ67oKCAoqIi3nvvvUZnnuXn59t/9vLy4v3332fIkCFYLBY++OADh6Sijslkolu3bg5t8fHxAPap2enp6RQXFxMeHn7KxwU94WmOE5+3oKAgAKKjo+u1H1+b09y4Tnwc0P9GJ9b7COHOJOERwokEBgbSqVMnUlNTm3W/hj7wT7z966+/ZtWqVcyfP5+ff/6ZG264gb/97W+sWrUKf3//k97fbDY32K5qC21tNhuaprFgwYIGjz3Z+W02GwBXX3011113XYPH9OvXz+H6zz//DEBFRQXp6enNTkSOf+zw8HA+++yzBm/v2LGjw3UfH59mnb+x562hdnVc0XJz4zrV30cIIQmPEE7nggsu4L333mPlypWMGDHipMfGxMRgs9lIT0+nd+/e9va8vDyKioqIiYlxOH748OEMHz6cZ555hs8//5yrrrqKL774gptuuumMYu7evTtKKeLi4uy9KE3VsWNHAgICsFqtTJw48ZTHb968mblz5zJjxgxSUlK46aab2LJli733pI7NZmPPnj0O8ezcuRPAvg5N9+7dWbRoEaNGjWp2MtOaWiOuUyXFQrR3UsMjhJN56KGH8PPz46abbiIvL6/e7bt37+bvf/87AOeddx4Ar732msMxr7zyCgDnn38+oA89nfhtPzk5GaDe9PXTMX36dMxmM3PmzKn3OEopDh061Oh9zWYzF198Md98802DPVsFBQX2n6urq7n++uvp1KkTf//73/nwww/Jy8vjL3/5S4PnfuONNxzieOONN/D09GTChAkAXHbZZVitVp566ql6962pqaGoqOikv3draY24/Pz8AAz7nYQwmvTwCOFkunfvzueff87ll19O7969HVZa/uOPP/jqq6/sa77079+f6667jvfee4+ioiLGjRvHmjVr+Oijj5g2bRpnnXUWAB999BFvvfUWF110Ed27d+fIkSPMmzePwMBAe9J0pjE//fTTzJo1i8zMTKZNm0ZAQAAZGRl8++233HLLLTzwwAON3v/5559nyZIlDBs2jJtvvpnExEQKCwvZsGEDixYtorCwEICnn36alJQUFi9eTEBAAP369eOJJ57gscce45JLLnH4XSwWCwsXLuS6665j2LBhLFiwgB9//JFHHnnEPiQ0btw4br31Vp577jlSUlKYNGkSnp6epKen89VXX/H3v/+dSy655Iyfn+ZqjbiSk5Mxm8288MILFBcX4+3tzdlnn91onZAQ7Y4xk8OEEKeyc+dOdfPNN6vY2Fjl5eWlAgIC1KhRo9Q//vEPVVFRYT+uurpazZkzR8XFxSlPT08VHR2tZs2a5XDMhg0b1JVXXqm6du2qvL29VXh4uLrgggvUunXrHB6TRqal103jrlM37TojI8Oh/ZtvvlGjR49Wfn5+ys/PTyUkJKg777zTYY2cxuTl5ak777xTRUdHK09PTxUZGakmTJig3nvvPaWUUuvXr1ceHh4OU82V0qd1DxkyRHXq1Mm+3s91112n/Pz81O7du9WkSZOUr6+vioiIULNnz1ZWq7XeY7/33ntq0KBBysfHRwUEBKi+ffuqhx56SB04cMB+TExMjDr//PMbjL2xaeknLgPQ2PNZF29LxjVu3DiHqe5KKTVv3jzVrVs3ZTabZYq6cDuaUlLVJoRoX66//nq+/vprSktLjQ5FCOEkpIZHCCGEEO2eJDxCCCGEaPck4RFCCCFEuyc1PEIIIYRo96SHRwghhBDtniQ8QgghhGj3JOERLuvDDz9E0zT7RpAnExsba1+sTwhxZp588kk0TePgwYNGh9KiXnrpJbp164bZbLavRC7aD0l4hCH++OMPnnzySZdY5n779u089NBDJCcnExAQQFRUFOeffz7r1q1r8Pj9+/dz2WWXERwcTGBgIH/605/Ys2ePwzHZ2dnMmTOHoUOHEhISQlhYGOPHj2fRokX1zleX2DV0yc3NrXf8999/z8CBA7FYLHTt2pXZs2dTU1NzWuc8dOgQL730EmPHjqVjx44EBwczfPhwvvzyywZ/9/T0dK644gq6dOmCr68vCQkJzJ07l/Ly8lM+zwBffvklV199NT179kTTNMaPH9/osevXr2fKlCkEBgYSEBDApEmTSElJafDYP/74g9GjR+Pr60tkZCR33313vTV6fvvtt0afk1WrVjkc++yzzzJ8+HA6duyIxWKhZ8+e3HvvvQ7bYDTks88+Q9O0U27WWiczM7PRmDRN4+abb3Y4vqnP/+nGfzpsNhvvvPMOycnJ+Pv7ExERwbnnnssff/zR4PEbNmxg6tSpdOjQAV9fX5KSknj99dftt5eXl/Pmm28yadIkoqKiCAgIYMCAAbz99ttYrdZ658vJyeGWW24hLi4OHx8funfvzn333Vdvu5P//e9/PPTQQ4waNYoPPviAZ599tmWfCGE42VpCGOKPP/5gzpw5XH/99QQHB5/WOa655hquuOIKvL29Wza4E/zzn//kX//6FxdffDF33HEHxcXFvPvuuwwfPpyFCxc6bHhZWlrKWWedRXFxMY888gienp68+uqrjBs3jpSUFEJDQwH47rvveOGFF5g2bRrXXXcdNTU1fPzxx5xzzjm8//77zJgxo14cc+fOrbcr+InP3YIFC5g2bRrjx4/nH//4B1u2bOHpp58mPz+ft99+u9nnXLlyJY8++ijnnXcejz32GB4eHnzzzTdcccUVpKWlMWfOHPux2dnZDB06lKCgIGbOnEmHDh1YuXIls2fPZv369Xz33XenfK7ffvtt1q9fz5AhQ066/9aGDRsYPXo00dHRzJ49G5vNxltvvWXfWqNXr172Y1NSUpgwYQK9e/fmlVdeYd++fbz88sukp6ezYMGCeue+++67GTJkiENbjx49HK6vX7+e5ORkrrjiCgICAti2bRvz5s3jxx9/JCUlxb5v1fFKS0vt+6Q1VceOHfnkk0/qtS9cuJDPPvuMSZMm2dua8/yfTvyn68EHH+SVV17h6quv5o477qCoqIh3332XcePG8fvvvzN06FD7sf/73/+48MILGTBgAI8//jj+/v7s3r2bffv22Y/Zs2cPd911FxMmTOC+++4jMDCQn3/+mTvuuINVq1bx0Ucf2Y8tLS1lxIgRlJWVcccddxAdHc2mTZt44403WLJkCevXr8dk0r/3//rrr5hMJv71r3/h5eXVYr+/cCLGLvQs3NVLL73U4NYEreXEpf+bY926derIkSMObQcPHlQdO3ZUo0aNcmh/4YUXFKDWrFljb9u2bZsym81q1qxZ9rbU1NR62wtUVFSohIQE1aVLF4f2xrYpaEhiYqLq37+/qq6utrc9+uijStM0tW3btmafc8+ePSozM9OhzWazqbPPPlt5e3ur0tJSe/szzzyjAJWamupw/LXXXqsAVVhYeMr4s7Ky7Fs/9OnTp97WCHXOO+88FRISog4ePGhvO3DggPL391fTp093OPbcc89VUVFRqri42N42b948Baiff/7Z3rZkyRIFqK+++uqUcTbk66+/VoD697//3eDtDz/8sOrVq5e66qqrGtxGojkmTJigAgMD1dGjR+1tZ/r8nyr+4zW2RcaJqqurlY+Pj7rkkksc2vfs2aMAdffdd9vbiouLVUREhLrooosa3P6jTkFBQb3fUSmlZsyYoQCVnp5ub/vss88UoH744QeHY5944gkFqA0bNjjc/0z/LsK5yZCWaHNPPvkkDz74IABxcXH27vnMzEx7F/6HH35Y736apvHkk0/arzdUw6OU4umnn7Z36Z911lls3bq1wTh2797N7t27TxnvoEGD6g1BhIaGMmbMGLZt2+bQ/vXXXzNkyBCHHoKEhAQmTJjA//3f/9nb+vTpQ1hYmMN9vb29Oe+889i3bx9HjhxpMJYjR4402G0PkJaWRlpaGrfccgseHsc6b++44w6UUnz99dfNPmdcXBwxMTEObZqmMW3aNCorKx2G6kpKSgCIiIhwOD4qKgqTydSkb83R0dH2b9wns3z5ciZOnGjvMat7nHHjxvHDDz/Yh6tKSkr45ZdfuPrqqwkMDLQfe+211+Lv7+/wNznekSNH6g0DnkpsbCzQ8G7k6enpvPrqq7zyyisOf5vTkZOTw5IlS5g+fToWi8XefqbP/8nib8zBgwe57LLLCAwMJDQ0lHvuuYeKigr77dXV1Rw9erReTOHh4ZhMJnx8fOxtn3/+OXl5eTzzzDOYTCbKysqw2Wz1HjMsLIw+ffrUa7/ooosAHF6TJ3tOAPvja5rGBx98QFlZmf39qKH3IOHaJOERbW769OlceeWVALz66qt88sknfPLJJ/YdrM/EE088weOPP07//v3tBYiTJk2irKys3rETJkxgwoQJp/1Yubm5DkmLzWZj8+bNDB48uN6xQ4cOZffu3Y0mMsef09fXF19f33q3nXXWWQQGBuLr68vUqVNJT093uH3jxo0A9R6/U6dOdOnSxX57c855sjgBh9+/rt7mxhtvJCUlhezsbL788kvefvtt7r777hYdJqmsrHT4sKzj6+tLVVUVqampAGzZsoWampp6z4mXlxfJyckNPiczZswgMDAQi8XCWWed1WitllKKgwcPkpuby/Lly7n77rsxm80N1h3de++9nHXWWS2yM/0XX3yBzWbjqquucmhv7vPfnPgbc9lll1FRUcFzzz3Heeedx+uvv84tt9xiv93Hx4dhw4bx4Ycf8tlnn5GVlcXmzZu5/vrrCQkJcTh20aJFBAYGsn//fnr16oW/vz+BgYHcfvvtDklUYxr6Pzl27FhMJhP33HMPq1atYt++ffz0008888wzTJs2jYSEBAA++eQTxowZg7e3t/39aOzYsU1+HoSLMLaDSbirxoa0MjIyFKA++OCDevfhhJ28T9yxOz8/X3l5eanzzz9f2Ww2+3GPPPKIAuoNacXExKiYmJjTin/ZsmVK0zT1+OOP29sKCgoUoObOnVvv+DfffFMBavv27Y2eMz09XVksFnXNNdc4tH/55Zfq+uuvVx999JH69ttv1WOPPaZ8fX1VWFiYysrKsh9X95we31ZnyJAhavjw4c0+Z0MOHTqkwsPD1ZgxY+rd9tRTTykfHx8F2C+PPvroSc/XmJMNafXt21fFx8ermpoae1tlZaXq2rWrAtTXX3+tlFLqq6++UoBatmxZvXNceumlKjIy0n79999/VxdffLH617/+pb777jv13HPPqdDQUGWxWByGPurk5OQ4/J5dunRRX375Zb3jfvjhB+Xh4aG2bt2qlGp8Z/SmGjRokIqKimpw2Kc5z39T429I3ZDW1KlTHdrvuOMOBahNmzbZ29LT09XAgQMdHqtbt271Xgv9+vVTvr6+ytfXV911113qm2++UXfddZcC1BVXXHHSeCorK1ViYqKKi4tzGM5VSql//vOfKjg42OHxr7vuunrHnenfRTg/KVoW7caiRYuoqqrirrvuQtM0e/u9997b4IyLpkxnb0h+fj5//vOfiYuL46GHHrK3Hz16FKDBIuq6oYe6Y05UXl7OpZdeio+PD88//7zDbZdddhmXXXaZ/fq0adOYPHkyY8eO5ZlnnuGdd95p0uPXde8355wnqutZKCoq4h//+Ee922NjYxk7diwXX3wxoaGh/Pjjjzz77LNERkYyc+bMBs95Ou644w5uv/12brzxRh566CFsNhtPP/00OTk5wLHn4lTPyfF/j5EjRzJy5Ej79alTp3LJJZfQr18/Zs2axcKFCx3u36FDB3755RcqKirYuHEj//nPf+rN/KqqquIvf/kLt912G4mJiWf8e+/cuZP169fzl7/8pcGhv+Y8/02J/1TuvPNOh+t33XUXb731Fj/99BP9+vUDICAggD59+jBixAgmTJhAbm4uzz//PNOmTWP58uX2HpnS0lLKy8u57bbb7LOypk+fTlVVFe+++y5z586lZ8+eDcYxc+ZM0tLS+PHHH+sNGXbu3JmhQ4dy3nnnERMTw/Lly3n99dcJCwvj5ZdfbtbvK1yc0RmXcE+t0cPz3HPPKUDt3r273n1DQkJOu2j5eKWlpWrIkCEqKChIbdmyxeG20+3hqampURdeeKHy8vJSixcvbnIsw4cPV927d7dfb04PT1PPeaK6b/Aff/xxvdv+/e9/Kx8fH5Wdne3Qfv311ytfX197gfGhQ4dUTk6O/VJUVNTgY52sh0cpvefO09PT/q198ODB6tFHH1WA+vbbb5VSzevhacwVV1yhvLy8HHqTGvL7778rQM2fP9/e9vzzz6uQkBB16NAhe1tDPQlFRUUOz8nxxx+vrth23bp19W5r6vPf1PhramocYsrJyVGVlZVKqWM9PHv27HE4R1VVlTKZTOrWW29VSulFy0lJSWrmzJkOx+3cuVN5enqqhx56yN7Wp08fBailS5c6HLt06VIFqI8++qjBuF988UUFqKeeeqrebStWrFBms7lecf6TTz6pNE2z97opJT087kBqeIRTOb5n5niNFdW2paqqKqZPn87mzZv57rvvSEpKcri9Q4cOeHt723sZjlfX1qlTp3q33Xzzzfzwww98+OGHnH322U2OJzo6msLCQvv1ukLMxh6/occ+1TmPN2fOHN566y2ef/55rrnmmnq3v/XWWwwYMIAuXbo4tE+dOpXy8nJ7vcz06dOJioqyX+65555TxtWQZ555hry8PJYvX87mzZtZu3atvcg1Pj4eaLnnpKqqqsE6sOONHDmSqKgoPvvsMwCKi4t5+umnufnmmykpKbEX5ZeWlqKUIjMzk/z8fADuueceh+dk+vTpDT7G559/Tq9evRg0aFC925r6/Dc1/uzsbIeYoqKiGl07p86Jr99ly5aRmprK1KlTHdp79uxJ7969+f333+1tdX+LhgqcAQ4fPlzv8T788EMefvhhbrvtNh577LF6t7/77rtERETUq+GaOnUqSqlT/j6ifZEhLWGIxhKbkJAQoP5Mkb17957ynHWzidLT0+nWrZu9vaCgoME3y+aw2Wxce+21LF68mP/7v/9j3Lhx9Y4xmUz07du3wSLX1atX061bNwICAhzaH3zwQT744ANee+01eyF3U+3Zs8eh0LtuZdh169Y5rG1y4MAB9u3b51Ag2tRz1nnzzTd58sknuffee3n44YcbvG9eXp7973e86upqAPusp7/97W8Of4+mJB2NCQkJYfTo0fbrixYtokuXLvZi1KSkJDw8PFi3bp3DEF5VVRUpKSkObY3Zs2cPFoulSYsFVlRUUFxcDOgf0KWlpbz44ou8+OKL9Y6Ni4vjT3/6E//973956KGHuPrqqx1+rxOtXr2aXbt2MXfu3AYfu6nPf1Pjj4yM5JdffnG4vX///g7X09PTHdZx2rVrFzabzT7jKy8vD2j4C0t1dbVDTIMGDeKXX36xFy3XOXDgAEC9/5ffffcdN910E9OnT+fNN99s8PfJy8tr9LGhac+JaEeM7mIS7untt99WgNq4cWO928LCwtRFF13k0Hb//fc3qWjZ09OzyUXLu3btUrt27WpSvHVDOe++++5Jj3v++efrrW+zfft2ZTab1cMPP+xwbF1X/COPPHLSc+bn59dr+/HHH+utY6KUUgkJCap///4Owy+PPfaY0jRNpaWlndY5v/jiC2UymdRVV13l8Lye6IILLlBeXl5qx44dDu3Tpk1TJpNJ7d+//6S/54lONaR1oi+++EIB6uWXX3ZonzJlioqKilIlJSX2tn/+858KUAsWLLC3NfScpKSkKE9PT4fi3NLSUlVWVlbv2Lp1bOoK2cvKytS3335b73LWWWcpi8Wivv32W7Vq1aom/3533323Ahr9P9vU57+p8Z/MqYqWU1JSlFL6GlYNvfbWr1+vTCaTuu222+xtGzZsUID685//7HDslVdeqTw8PBz+/yxdulRZLBZ11llnqYqKikbjnDlzpgLUkiVLHNrvvfdeBTg8/zKk1f5JD48wRF2X/KOPPsoVV1yBp6cnF154IX5+ftx00008//zz3HTTTQwePJhly5axc+fOU56zY8eOPPDAAzz33HNccMEFnHfeeWzcuJEFCxbUW/MGsE9JP1Xx8muvvcZbb73FiBEj8PX15dNPP3W4/aKLLrJP+b3jjjuYN28e559/Pg888ACenp688sorREREcP/999vv8+233/LQQw/Zu/ZPPOc555xj79ofOXIkAwYMYPDgwQQFBbFhwwbef/99oqOjeeSRRxzu99JLLzF16lQmTZrEFVdcQWpqKm+88QY33XQTvXv3th/X1HOuWbOGa6+9ltDQUCZMmGAf7jj+PHW9aQ8++CALFixgzJgxzJw5k9DQUH744QcWLFjATTfd1KSenGXLlrFs2TJA75krKyvj6aefBvQpxnVThZctW8bcuXOZNGkSoaGhrFq1ig8++IApU6bUGyJ75plnGDlyJOPGjeOWW25h3759/O1vf2PSpElMmTLFftzll1+Oj48PI0eOJDw8nLS0NN577z18fX0dCsnT09OZOHEil19+OQkJCZhMJtatW8enn35KbGys/fF9fX2ZNm1avd/xv//9L2vWrGnwtsZYrVa+/PJLhg8fTvfu3Rs8pqnPf1Pjb4qMjAymTp3KlClTWLlyJZ9++il//vOf7T1BgwYN4pxzzuGjjz6ipKSESZMmkZOTwz/+8Q98fHy499577ecaMGAAN9xwA++//z41NTWMGzeO3377ja+++opZs2bZ49+7dy9Tp05F0zQuueQSvvrqK4eY+vXrZy+YnjlzJh988AEXXnghd911FzExMSxdupR///vfnHPOOQwbNqzJv6toB4zOuIT7euqpp1Tnzp2VyWRy6KkpLy9XN954owoKClIBAQHqsssuU/n5+afs4VFKKavVqubMmaOioqKUj4+PGj9+vEpNTW1wpeWmTku/7rrrHKa0nng5sfA6OztbXXLJJSowMFD5+/urCy64wGH1V6WOfUNu7HL8N9JHH31UJScnq6CgIOXp6am6du2qbr/9dpWbm9tgvN9++61KTk5W3t7eqkuXLuqxxx5TVVVVDsc09Zx1z3FjlxOLy1evXq3OPfdcFRkZqTw9PVV8fLx65pln6k0BbszJnpfj//a7du1SkyZNUmFhYcrb21slJCSo5557zl5Ue6Lly5erkSNHKovFojp27KjuvPNOhx4fpZT6+9//roYOHao6dOigPDw8VFRUlLr66qvr/e0KCgrULbfcohISEpSfn5/y8vJSPXv2VPfee+8pVx5W6vR6EhYuXKgA9frrr5/0uKY8/2cav1LH/k5paWnqkksuUQEBASokJETNnDnTYfVnpfTX89y5c1ViYqLy8fFRQUFB6oILLmiwd7eqqko9+eSTKiYmRnl6eqoePXqoV1991eGYuhWxm/L/RCm9h/WSSy5R0dHRytPTU8XExKgHHnigXi+X9PC0f5pSSrViPiWEEEIIYTiZpSWEEEKIdk8SHiGEEEK0e5LwCCGEEKLdk4RHCCGEEO2eJDxCCCGEaPck4RFCCCFEuycJjxBCCCHaPUl4hBBCCNHuScIjhBBCiHZPEh4hhBBCtHuyeShgs9k4cOAAAQEBaJpmdDhCCCGEaAKlFEeOHKFTp06YTCfvw5GEBzhw4ADR0dFGhyGEEEKI05CdnU2XLl1OeowkPEBAQACgP2GBgYEGRyOEEEKIpigpKSE6Otr+OX4ykvCAfRgrMDBQEh4hhBDCxTSlHEWKloUQQgjR7knCI4QQQoh2TxIeIYQQQrR7TpnwvPnmm8TGxmKxWBg2bBhr1qw56fFFRUXceeedREVF4e3tTXx8PD/99FMbRSuEEEIIZ+d0Rctffvkl9913H++88w7Dhg3jtddeY/LkyezYsYPw8PB6x1dVVXHOOecQHh7O119/TefOndm7dy/BwcFtH7wQQgghnJKmlFJGB3G8YcOGMWTIEN544w1AXxQwOjqau+66i7/+9a/1jn/nnXd46aWX2L59O56enk16jMrKSiorK+3X66a1FRcXyywtIYQQwkWUlJQQFBTUpM9vpxrSqqqqYv369UycONHeZjKZmDhxIitXrmzwPt9//z0jRozgzjvvJCIigqSkJJ599lmsVmujj/Pcc88RFBRkv8iig0IIIUT75lQJz8GDB7FarURERDi0R0REkJub2+B99uzZw9dff43VauWnn37i8ccf529/+xtPP/10o48za9YsiouL7Zfs7OwW/T2EEEII4VycroanuWw2G+Hh4bz33nuYzWYGDRrE/v37eemll5g9e3aD9/H29sbb27uNIxVCCCGEUZwq4QkLC8NsNpOXl+fQnpeXR2RkZIP3iYqKwtPTE7PZbG/r3bs3ubm5VFVV4eXl1aoxCyGEEKJhVptiTUYh+UcqCA+wMDSuA2aTMZt0O1XC4+XlxaBBg1i8eDHTpk0D9B6cxYsXM3PmzAbvM2rUKD7//HNsNpt9p9SdO3cSFRUlyY4QQghhkIWpOcyZn0ZOcYW9LSrIwuwLE5mSFNXm8ThVDQ/Afffdx7x58/joo4/Ytm0bt99+O2VlZcyYMQOAa6+9llmzZtmPv/322yksLOSee+5h586d/Pjjjzz77LPceeedRv0KQgghhFtbmJrD7Z9ucEh2AHKLK7j90w0sTM1p85icqocH4PLLL6egoIAnnniC3NxckpOTWbhwob2QOSsry96TAxAdHc3PP//MX/7yF/r160fnzp255557ePjhh436FYQQQgi3ZbUp5sxPo6E1bxSgAXPmp3FOYmSbDm853To8RmjOPH4hhBBCNG7l7kNcOW/VKY/7983DGdE99Iwey2XX4RFCCCGEa8s/UnHqg5pxXEuRhEcIIYQQLSY8wNKix7UUSXiEEEII0WI6+HlhPklpjoY+W2toXIc2iwkk4RFCCCFEC1mbWchl767E2kh1cF0eNPvCxDZfj0cSHiGEEEKcsR8353DVP1dTfLSaAV2DeemSfkQFOQ5bRQZZePvqgYasw+N009KFEEII4Vr+uXwPz/y0DaXgnMQIXr9iAD5eZqYP7CIrLQshhBDCtVltiqd/TOOD3zMBuG5EDE9c2Mee1JhN2hlPPW8pkvAIIYQQotkqqq3c+0UKC7fmAvDIeQncPKYbmmZMD86pSMIjhBBCiGY5XFbFTR+vY/3ew3iZTbx8WX+m9u9kdFgnJQmPEEIIIRp14o7nkYEWbvxoLXsOlhFo8eC9awczvJtzDFudjCQ8QgghhGhQQzuemzSwKegc7MOHM4bQMyLAwAibThIeIYQQQtRTt+P5iUvq2Gob7jq7h8skOyDr8AghhBDiBCfb8Rz0BQT/vjgdq8119h+XhEcIIYQQDtZkFDoMY51IATnFFazJKGy7oM6QJDxCCCGEcOCsO56fCanhaUUnVrYbucKkEEII0VTOuuP5mZCEp5UsTM3h1e9XU3akiHwVTBWeRAVZmH1hoiF7iAjh1qrKoLIUvP3By8/oaIRwekPjOhAVZCG3uKLBOh4NfV+stt7x/ExIwtMK6irbrzcvYrb3JwBk2iJYXtaXNz47C666WJIeIVqTUpC5Ajb9G3YvgSMHjt0W3BXixkHyVdB1ODjpqrBCGMls0ph9YSK3f7qh3m3N3vE8azWs+xcMuxU6D2rZQJtBEp4Wdnxlu4VqKpUn3lo1saY8Yk15XOOxiN//8w3WiPcwd+x50vPIcJgQp+HARvjpQdi3tuHbi7Jg4yf6JXYMTHkeIpPaNkYhXMCUpChevzKZu/6d4tAe2dTRivztsOAhyFiqX/fwloSnPTm+sv1t61Tetl5ICEdINu3mT+bfOd+0mlG2DdjeGQXnvQQDr633DbOhhZ5kOEyIU7DZYPnf4LdnQdnAwwf6XwF9pkFUMliCoKJIT4hS/wObv4TM5fDeeJjwBIy8S3p7hDhB9476Ojt+Xmaevagv4YFN+AKuFKx+F355HKxVYPKE/pfD4BvaKOqGaUop15lE30pKSkoICgqiuLiYwMDAMzrXdyn7ueeLlEZvj9NymOvxAWPMqQBs7HQlZePn0r9rCAEWz0YXeqr7r/X21QMl6RHiRDWV8J+bIe07/XrSxTDpGQg8yWulKBsWPAw7ftSv97sCpv4DPLxaP14hXMR/Nuzjvv/bxLC4Dnx564hT38Farfewrv9Av95zEpz3MoTEtEp8zfn8lh6eFnaqivUMFcW11X/ldtt8HvL8kgEH/s3Xn+znuppb6N4xkOyiow0WiCn0pGfO/DTOSYyU4S0h6lSVw5dXw+7FYPaCC16FAVef+n7B0XDFZ7D2n3ris/kLqC6DSz4As2frxy2EC9iWUwJA76gmdAbYrPDNTZD2X0CDc+Y6Vc+prMPTwuoq2xv78+qV7b6cc+sLLO/zFFZMXGJexmPmT9iZf4SjVdZGz+2KCz0J0arq3mB3LwZPX/jzl01LdupoGgy9Wb+f2Qu2zYdvb9OHx4QQbM89AkBC5Cm2kLDZ4Pu79GTH5AmXfwqj7naaZAck4WlxdZXtQL2k5/jK9gFdQxhz6d2YL54HwAyPn3mvx+omPYYrLfQkRKv632P6kJTZG676GrqffXrn6XkOXPYxmDwg9WtY+nzLximEi9qWU5vwnKqHZ9lLkPIZaGa45H3ofUEbRNc8kvC0gilJUbx99UAigxyHtyKDLPVrcPpeAuc8BcA5+/7BCNPWU57flRZ6EqLVpHwOq97Sf77oHYgddWbn63UuTH1D/3npC8fqgYRwUwVHKjlYWommQXyEf+MH7vwZfntO//mCVyFxatsE2ExSw9NKpiRFcU5iZNOmlo+8Cwq2o6V8xuteb3FuxbMcJKjeYa640JMQreJgOvx4v/7z+EcgaXrLnDf5SsjdrCdS/71Tn93VSsWWQji7HbXDWbGhfvh6NZIuFGXDNzcDCgbfCIOua7sAm0l6eFqR2aQxonsof0ruzIjuoY0XGmuaPkW9YwIdOcxLnu+gNbJHbZMXehKivaqpgq9mQHU5xI2FsQ+07PnPeQqih0PVkdp6nsbr6oRoz7bn6gXLjdbv2Gzw3Z1QWQydB+trWjkxSXichZdf7ewQL84yb+J6f8d6Hl8vs0xJFwLg99cgbwv4hsJF74HJ3LLnN3voQ2Re/pD1B6x8s2XPL4SLsNfvRDZSv7P2n/qigh4+MP09p1/SQRIeZxKRCOMeBuAJz0/46uoe3DG+OwDeHiYm9o4wMjohjFewQy+OBDj3xZOvs3MmOsTB5Gf1n5c8q6/OLISbsffwRDXQw1O8HxY9qf98zlwI7d52gZ0mSXiczah7IKIv2tHDDNn5Cn85J54QX08Ol1fLdHTh3pSCH/6ir9zac5K+uGBrGngtxIyGmqOw4K+t+1hCOJkaq430vFIAejfUw/PL4/q6VdHDYMhNbRzd6ZGEx9mYPWHq3/WfN3+BZ84GJiVGAvBTao6BgQlhsG3fw97f9e7z8//W+ut7aJr+OCYPfer7joWt+3hCOJGMg2VUWW34e3vQJcTH8cbMFZD6DVBbf2pyjVTCNaJ0N50HQf8/6z8v/CvnJulDWQtT87Da3H4nEOGOairhlyf0n0fdre94jr7J7srdh/guZT8rdx9q+ddHeAKMuFP/+ZcnwFrTsucXwkltq52h1SsyANPxE2WsNfDTQ/rPg2dAVH8Dojs9Mi3dWU14Ql8HZN9aRlcuI9ASyMHSStbvPSzT0oX7WTMPDmeCfwSMvBtow012x9wPGz6Ggztg079h4DUtd24hnNT2nEZmaG3+AvK3giUYzn687QM7A9LD46wCo/R6HsBj2QtM7h0GwE9bZFhLuJmjh2HZi/rPZz8O3v72TXaPT3YAcosruP3TDSxsyeFfSxCMqZ36vuRZqD7acucWwknZt5Q4foXlmkr47QX95zH3g69rffmWhMeZDb8dfELgUDrXBawDYGFqLjYZ1hLuZNU7UFEM4YmQ/GesNsWc+WmNbrIL+ia7TRneavKQ2JCbILALHDkAq9897V9FCFdR18PT+/geng0fQ3EW+Ee6TKHy8SThcWaWQHv3fWL62wR5a+SWVLAxu8jYuIRoKxXFsOpt/edxD4PJzJqMwno9O8er22R3yY78k556YWoOo1/4lSvnreKeL1K4ct4qRr/wa8O9Q54WOPtR/eff/w5VZaf5Cwnh/IrKqzhQ+xqLr0t4qo/Cspf1n8c+AF6+BkV3+iThcXZDbwHfMEyHM3g4aiMAC2RYS7iL1e/pq7h2TIDe+v48Td0896aP1jH46V+49J0/eOjrTbyzdDc/b81lV/4R5m/a3/whsb6XQUgcHC3Uv+kK0U7VDWd1CfEh0OKpN67/EEpzIairvmSDC5KiZWfn7a/X8vzyOH8q/T8epR8LUnN59PzeaK09LVcII1WUwMrazTzHPmif+tqczXMPllZxsLSKtZmHm3S8Qt+zbs78NM5JjHTcxsXsAaPvhfn3wO+vYx10A2uySk+9V54QLuZYwXJt/Y61Gv6ofS2OuQ88vA2K7MxIwuMKBs+A5S/jV5rJBV4pzC8ayJb9xfTrEmx0ZEK0nvUfQkURhMVDn4vszUPjOhAVZGl0WKtuk92F944l61A5ew6WsqegjIyD+iU97wgVNbZGH7ZuSOzjlZlcObQrFs/jtq7ofyX89jwcOcALLzzJe6Wj7Te1ygwxIQxQ18PTu26F5dT/QMk+8AvXXwMuSoa0XIF3AAy+AYB7ffXFz37akmtkREK0LmvNseLgkXc77JdlNmncOzG+wbvV9a/MvjCRIB9P+nYJ4k/JnfnLOfG8fuUA5t81mhcu7tekEObMT6Pvkz8z7c3feeqHNH7akkNeuWJ7nN6df2XVN5g4lji1ygwxIQxQtwZPQmSgvsL577WL4Q67Va9nc1GS8LiKYbeB2YvuFakM1HayIDUHpWS2lmintn1X+42yI/S9tN7Nf+w+CIDHCUNIkUGWU26yGx7YtDfsQIsn1VZFSnYR/1qRwR2fbWDYs4u5ZG0vipQfcaY8zjZttB/f3BliQjgjq02x0z4lPQB2LdbX3fH0gyE3GhzdmZEhLVcREAn9LoONn3Kr50/ceiietJwS+nQKMjoyIVqWUsd2KB98Y71vlMvTC/gu5QAmDb66bQQV1bZm1dHUDYnlFlc0OLW9bkhs+UNnkVNcwfq9h+2XbTkllCoLX1jP5jaP+VxvXsgi26BjoaMPh63JKGRE99Azex6EMEBWYTlHq614e5iIDfWDBf/Qbxh0vb5MiguTHh5XMuIuAM4xraMTB1mYKsNaoh3KXgP714PZu943yopqK4//NxWAa0fEMqBrCCO6h/Kn5M6M6B7apKJhs0lj9oWJwLEhsDrHD4l5mE1Ed/Bl2oDOPDUtiZ/uGcPzF/cF4JOaiViVxmjzVnpo++o9RlNnkgnhbOoKlntFBmAu3AV7fgM0fTjLxUnC40rCEyBuLCZsXOnxKz9ukWEt0Q6tfkf/t9+l4B/ucNNbS3aReaiciEBv7p/UcB1PU0xJiuLtqwcSGeTYe3SqIbGuHfwA2E9H/mcbDMD15p/rHdecmWRCOJNj9TsBsPafemP8FAiJMTCqliFDWq5m8I2QsYwrzEt4vWA66fmlxEcEnPp+QriC0gLYNl//eegtDjftyi/l7aW7AZh9YR8C6tYHOU1TkqI4JzGSNRmFTR4SO3447CPrZM41r2W6eQUv1lxOCf724TDZ7064qroenqSOnvDH53qjC66q3BDp4XE1CeeDfyQdtWImm9bK3lqifdn0OdiqodNAh12YlVI8+u0Wqq2Ks3p15NykyBZ5OLNJa9aQ2PHDYattvdlmi8ZXq2S6eYX9mNkXJsp6PMJl1U1JH1W+GCpLoEM36H62wVG1DEl4XI3ZEwZdB8A1Hr+wQKani/ZCKX3tHdALJI/zzYb9rM4oxOJpYu6fkgxddPPYcJgP/7bqHwSXm5dg8dROOUNMCGdWWllDVmE5oIjZ82+9cfCN9kU/XV37+C3czcDrUJqZYabt1ORvZ3dBqdERCXHmMpdD4R7wCoCki+3Nh8uqePanbQDcMyGe6A7G7+EzJSmKFQ+fzQVX3UuN5kVvUzaDzBlMSmyZnichjLCjtndnvP9+PAq26hMHkv9scFQtRxIeVxTUGS1+MgCXmpfJbC3RPqz7QP+336X6liq1nluwjcKyKnpFBHDTmDiDgqvPbNIYmtgNUx99j6/zahaTeqDY4KiEOH3bc/X6nWssy/WG3heAb/upR5OEx1XVZt0XmZezcHP9abFCuJSyg8eKlY8bzlqTUcj/rdP/fz87PQlPs/O9ZZlqh5inmv9g5fZsg6MR4vRtyynBmypGHf1Nb0i+ytB4WprzvXsAb775JrGxsVgsFoYNG8aaNWuadL8vvvgCTdOYNm1a6wboDHpOxubTgQitiNC839l7qMzoiIQ4fZu/1IuVo5LtxcpVNTYe/XYLAFcOjWZQjJN+04wZzRGfLgRoR6nZ8q3R0Qhx2rbnHOEc03os1iMQ2Bm6jTc6pBbldAnPl19+yX333cfs2bPZsGED/fv3Z/LkyeTn55/0fpmZmTzwwAOMGTOmjSI1mIcXpn6XAXCJeRkLZFhLuLLNX+r/Drja3jRv+R7S80sJ9fPi4SkJBgXWBCYTNf31uIcc/pHSyhqDAxKi+ZRSbM89wqXmpXpD/ysd9rBrD5wu4XnllVe4+eabmTFjBomJibzzzjv4+vry/vvvN3ofq9XKVVddxZw5c+jWrVsbRmuw2mGtc0zrWLY53eBghDhN+dshZxOYPKDPdACyDpXz+mL9//RjF/Qm2NfLyAhPKWTkdVgxMdS0nZRNG099ByGczL7DR/GvzGOMSe9VbU/FynWcKuGpqqpi/fr1TJw40d5mMpmYOHEiK1eubPR+c+fOJTw8nBtvbNrGZpWVlZSUlDhcXFJkP2o6JuKt1dAtdyH7DpcbHZEQzbf5C/3fHueAXyhKKR7/LpXKGhujeoQyLbmzsfE1RWAnMgL0PbUqN35pcDBCNN/23CNMN6/ApCmIGQWh3Y0OqcU5VcJz8OBBrFYrERERDu0RERHk5jY8ZLNixQr+9a9/MW/evCY/znPPPUdQUJD9Eh0dfUZxG0bT8Biod6VfIrO1hCuy2WDzV/rP/S8H4MctOSzdWYCX2cRTBq+50xwVCXrvVI/cBfqaQkK4kO0HirmobgHNdti7A06W8DTXkSNHuOaaa5g3bx5hYWFNvt+sWbMoLi62X7KzXXhmRd9LsWEi2bSbDSkbjI5GiObZ+zuU7APvIIg/l5KKaubMTwPgjrO6062j/ylO4DxiRl9BpfIkRu0jZ0fTJloI4SxKsjbR07SfGpMX9L7Q6HBahVPtpRUWFobZbCYvL8+hPS8vj8jI+gt67d69m8zMTC688Ngfx2azAeDh4cGOHTvo3r1+t5y3tzfe3t4tHL1B/MOp7joG76ylxOb+TG7xBfU2RBTCadUOZ+VFT2HV1kP8uDmHgiOVdAvz4/bxrtWlHhDUgZWWYYyoXMHhVZ8SlTDM6JCEaLK43AUAFHUaT5glyOBoWodT9fB4eXkxaNAgFi9ebG+z2WwsXryYESNG1Ds+ISGBLVu2kJKSYr9MnTqVs846i5SUFNcdqmom7+RLAbjQvJKft8qwlnAR1RVUb/kvAHdvjeeeL1L4X5r+ZWdqcie8PVxvhkhht2kARGX/CDarscEI0URHK2sYU7kMAM/az5P2yKkSHoD77ruPefPm8dFHH7Ft2zZuv/12ysrKmDFjBgDXXnsts2bNAsBisZCUlORwCQ4OJiAggKSkJLy8nHtmR4vpfQFWzYPepmw2b2i8uFsIZ7Jhydd41pRyQHVgjerlcNvfF6WzMNX1NsaNHjaVYuVLiPUQNRkrTn0HIZzA/q3LiNYKKMNCYL/zjQ6n1ThdwnP55Zfz8ssv88QTT5CcnExKSgoLFy60FzJnZWWRk+N6b4StyieEqjh9E8OY3J8pOFJpcEBCnJzVpshfpc9mWmAdhmrgrWjO/DSsNtcq/u3TNZzFmt4bfXjVpwZHI0TT2DZ/DcBG35FoXn4GR9N6nKqGp87MmTOZOXNmg7f99ttvJ73vhx9+2PIBuQCf5Mtgz/+4wLSSn1NzuHpErNEhCdGotbtyGGVdCxr8aK1f66KAnOIK1mQUMqJ7aNsHeJrMJo3sLufDvsX4ZywEazWYPY0OS4jG2axE7VsIQHan8wwOpnU5XQ+POE29zqXaZKGbKZdtG5cbHY0QJ7f7VwK0o+SoDmxUPRo9LP9IRRsG1TI69T2bgyoQn5oSyJRhLeHkMlcQUHOIIuWHZ/wEo6NpVZLwtBfe/lR1OweAmJyFFJZVGRyQEI3rXrAIgAXWoQ0OZ9UJD3C9GYejEyL5n7V2EcLNsreWcG4q7XsAFlqHkNDZdXpTT4ckPO2I34CLAZikreWXrVLnJJxUTSVh+/WZmD9ZhzZ4iAZEBVkYGuekG4aeRFSQD5sDx+tXtv8gs7WE87LZsG2bD8D/1DB6hLvOulenQxKe9qTHOdRoXsSa8ti8YZXR0QjRsN1L0CpLqLCEs17F17u5bl3l2RcmYja5xirLJwpIOJsi5Yd35SHIkpmTwkntX4e5LI8S5UNuh6FYPF1vKYjmkISnPfH2pzJmLAAd9/2P4vJqgwMSogFp3wFQFX9Bg8NZkUEW3r56IFOSoto6shYzqlckv9QOa6mt/zU2GCEaU9u7s8Q2gO6d2vdwFjjpLC1x+vz6XwSZizjHtJa3l+6md1QA4QH60ICrflsW7UhNFez4EYDvqvXhrPHxYdw6rgf5Ryrazf/VYXGh3KMN51KWYU37Ho9zXwSTfL8UTkQpe8Kz0DqEpMgAgwNqfZLwtDfx52LDRB/TXm5dtpJ3VDig10PMvjDRpb81i3YgcxlUFKP8I3htRweghquGx7rU1POm8PEyU9V1LCX7/kFgWR7sWwtdZasJ4UTy0+BwBpV4sdTWn0uj2n/CI1852pmFGVWstiYAMNm01t6eW1zB7Z9ucMnVa0U7sv0nADLDxnGovIbIQAtn9epocFCtY2SvTvxqG6Bf2T7f2GCEOFFt785yW1/KsZAQGWhwQK1PEp52xGpTzJmfxs+2wQBMNq+z31a3Xq0rrl4r2gmlYIe+QeEXxUkAXD4kGg9z+3wbGtOzI79Y9deibcdCg6MR4gTbfgBgQc0QAi0eRLnBptPt853GTa3JKCSnuIL/1b7JDtZ2Ekax/fbjV68Vos3lbIIjB7B5+PBhTldMGlwxtP1u8JsQGcBW38FUKTOmQ+lwcJfRIQmhK8yAvC3YNDOLbANJiApE01y7bq4pJOFpR+pWpT1AGJttcZg0xUTz+kaPE6JN1fbu7PQfSiVenJ0QQVSQj8FBtR5N0xgYH8MqW6LesHOBsQEJUWe73ruzN2AAxfjT2w0KlkESnnbl+FVpF1qHAI51PA0dJ0Sb2aHX73xWO5x11bCuRkbTJsbFd2SxbaB+ZYckPMJJ1A6xLjfpMyUTotp//Q5IwtOuDI3rQFSQBQ34pbaOZ4QpDQv67umuvHqtcHHF+yB3MwoTPx7tS+dgH8bGt89i5eON6hFmT3hU1kool+FkYbCjh+2LYX5Tqn/5SJAeHuFqzCaN2Rfq3ee7VGf2qTAsWjUjTVvbxeq1woXV9m5s9+xNIYFcMSTaLf4fhvl7E9ypO9tsXdGUDdJ/MTok4e52/wrKSk1oAptKg9E0iI+QhEe4oClJUbx99UAig3z41apPiZ1g2tguVq8VLqw24fm2vB9mk8ZlQ9pvsfKJxvTsyC/2Ya2fjA1GiJ0/A5Aboa/KH9PBFz9v91iSTxKedmhKUhQrHj6bbiOnA3C2eSNL7h8nyY4wRkUJZCwDYJFtEBN7hxMR6D51ZGN7dmSxtXZYa9difbVpIYxgs0L6/wDYaNEXwnSH9XfqSMLTTplNGiMnTOMoXkRphWRvX3fqOwnRGnb/CrZqMohij+rEVcNijI6oTQ2KCWGXZ0/yVTBa1RHYu8LokIS72rdWr+GxBLPsaBwACW6wwnIdSXjaMZO3L9st+rBW6ZYfDY5GuK1det3KopoBdO3gy+geYQYH1La8PEwM79aRRbVDzMgihMIotcNZ9JhIWl45AL3dZIYWSMLT7h3qNB6A4H2/GhuIcE9Kwa7FAPxm688VQ6MxuUGx8onG9AxjSd02E7ukcFkYpDbhsfaYRHpeKQC9ZUhLtBe+fc4DoOvRNJkSK9peXiocyaFcebOR3lw6yH2KlY83Nr4jf9j6UK3MULgHDu02OiThboqyIH8raCYyQ0ZQZbXh52WmS0j7XfzzRJLwtHMJCYlss0Vjxkb5VulKF22sdhr2H7ZEzuoTTccAb4MDMkZcmB/BwR1YZ+ulN+yWHlfRxuqGs6KHsbVIn5XVKzLArXpcJeFp5zr4ebHeW19NszRVpsSKtmVNXwTAb7Zk/uwGKys3RtM0xsZ35Ddbf71B1uMRba12dhY9J7E9pwRwnxWW60jC4wYORY0HIHD/Un1aohBtoaIELXs1AHuChjOiW6jBARlrbM8wltYlPJnLoVr2tBNtpKYSMmtnB/Y8h+25RwDcZg+tOpLwuIHgniMoUb5YakrgwEajwxHuYs9vmFQNu21RjB8+xK26zhsyskcYO4kmV4VAdbl9eX8hWl3WSv3/nH8ERCRJD49ov5JjO7LCpu+ZompnzAjR2go36UOoy1Uyl7hpsfLxgnw8SY4OYam1tpdn1yJjAxLuo65mrPvZFB+t4UCx3rvYS3p4RHvTOyqQlfQDoHKH1A6INqAUpj16cn00Zjwd/LwMDsg5jI3vyFKb/lqUhEe0mV11Cc8EtufqvTudg30ItHgaGFTbk4THDXh5mMgPH6X/nLsBKooNjki0d2X7thBcnU+F8mTg2AuNDsdpjOmp97Za0aBgOxRlGx2SaO+O5EHeFv3n7mcdq99xoxWW60jC4yY6xyaw2xaFSVnt+xoJ0Vq2r/gWgE0e/Rjas5PB0TiP/l2CwBLMBltPvUF6eURrqxvOiuoPfmH2Hh532kOrjiQ8biK5azDLbX31K7IGiGhFSinMu/UPclv3CWiaexcrH8/DbGJUjzCp4xFtZ/ex4SyAbTl6D4877aFVRxIeNzEgOphltbUDtl2S8IjWs3nPARKrtwLQZ+x0g6NxPnodT23Cs2cpWKuNDUi0XzbbsYSnxwRsNsWO2iEt6eER7VaXEB/SffpTpcyYijJlaXvRatYu/REvzcohz0gCOycYHY7TGdMzjFQVyyEVCFVHIHuN0SGJ9ip3M5QfBC9/6DKUvYXlHK224u1hIjbU1+jo2pwkPG5C0zR6de3EelnaXrSi4qPVmDJ/A8AWOw5kOKueLiG+xHUMsC8VQcZSYwMS7dfu2mVI4saCh5d9/Z34iAA8zO738e9+v7EbGyB1PKKV/XfjfoaTCkBYv8kGR+O8xvY8tjYWe34zNBbRju1eov/b/WwAtrnxDC2QhMetJEcHH1sDJGOZ1A6IFqWU4seVm0k07QVA6zbO4Iic19j4MH636gmPbd861mzLxGpTBkcl2pXKUshapf9cm/DYV1h2w/odkITHrfTrEsQ2YjioAqGqVGoHRIuw2hQrdx/i74vTiTik751lDe8LfmEGR+a8jlTUcIAwMmwRmJSVdz/5mNEv/MrC1ByjQxPtReYKsFVDSCzWkG6s3H2I9XsPAxAf4W9wcMaQhMeNBFg86REeeKwrXYa1xBlamJrD6Bd+5cp5q3htUTqjTPpwVlbwEIMjc14LU3O494sUAH6vfS2ONqWSW1zB7Z9ukKRHtIza2rCskGH21+ihsioA7vu/TW75/0wSHjczIDrE/iYrCxCKM7EwNYfbP91ATnHdrt+K0WY94XkytaNbvqGeitWmmDM/jbrBqxW1NXWjTKn2tjnz02R4S5y5PXrC8+L2iONeo7qCI5VumVxLwuNmkrsG84e1j35l/3qoPGJsQMIlnfjBDRCj5dFFO0il8mCtrZd8cDdgTUahw4fPSlsiNqURb9pPOIdRQE5xBWsyCo0LUri+0gLI19fC+sOWWO9md02uJeFxMwO6BrOfjmSpCFBW2PuH0SEJF3TiBzfowzIAG2zxlGORD+4G5B9xfM6K8WeLigOwDwc2dJwQzZKp995vs3WlkIYLlN0xuZaEx830DA/Az8vMCmtt1i/DWuI0NPSBXPeBba8Ra+Q4dxYeYKnXZq/jMaee9Dghmqx2OOt3W59THupOr1FJeNyM2aTRt0sQK+teCHtk0TPRfCd+IJuwMdKkd6H/flzCIx/cjobGdSAqyMLxyzHWJYijTKloKKKCLAyN62BMgKJ9qP0ie/xrsTHu9BqVhMcNDegacizhydsCZYeMDUi4nBM/uPtomQRrZZQoX7aoODSQD+4GmE0asy/Ue1frnrv1tngqlCeR2mG6aweYfWEiZpOsUC1OU1EWHM5AaWay/PvT2P8kd3yNSsLjhpKjgzlIEBmmGL0hc7mxAQmXc/wHNxyr31lpS8SGGUA+uBsxJSmKt68eSGSQ/s26Ei/W1m758vqwIqYkRRkZnnB1tb07WudBPDh1MA2VJNe9Kt3tNSoJjxsaEB0MwG9VvfUG2ctHnIYpSVG8fKm+6/co0xZAH56JDLLw9tUD5YP7JKYkRbHi4bP5983DGdUj1D70kFi+weDIhMurK1OIG8uUpChGdAutd4i7vkY9jA5AtL3wQAudg334vaQPM1gohcvitAX7euJNFUPMOwGYfvHVPJk82K2+NZ4us0ljRPdQio9W8+bu2lqLvb+DzQoms7HBCdek1LEvsN3Gcbisig1Z+urKc6YmEuzrRXiAPozljq9RSXjcVHJ0MMu3JGDDhOnQLijeD0GdjQ5LuJg1GYUMNKXjTTUERDFgwGDZIb2ZRnQP5S5iKFE+BFaWQO5m6DTA6LCEKzq4E0rzwMMCXYby1cpsKmtsJEYFcu2IWDQ3f23KkJabGtA1mBL8yPSO1xukl0echtUZhQw3bdOvxI6WZOc0BPl40qdLKGtsCXpDhtTUidNUN5wVPQyb2ZtPV2UBcO2IGLdPdkASHreVXFvHs6y6ro5HEh7RPGWVNWzZX8xwU5reEDvG2IBc2OgeYayqWxE3c4WxwQjXddxw1tKdBWQVlhNg8WBqcidj43ISkvC4qaTOQXiYNBZV1H2rXKqP/wrRRBuyDuNhq2SAaZfeEDva2IBc2OieYayy6V8+VNZKsNYYHJFwOTbrsRm3ceP5eGUmAJcOisbXS6pXQBIet2XxNNM7KpB1tnisJk8o2Q+Fe4wOS7iQuvodL2ogoBN06GZ0SC5rQNdgMjy6U6J80SpLIHeT0SEJV5OzCSqKwTuQLO+e/LazAIBrRsQYHJjzcMqE58033yQ2NhaLxcKwYcNYs2ZNo8fOmzePMWPGEBISQkhICBMnTjzp8eKYAV2DqcCbfb51u6fL9HTRdHr9Tt1wltTvnAlvDzNDuoWxuq6OR4a1RHPV9e7EjOLTtftRCsb0DCMuzM/YuJyI0yU8X375Jffddx+zZ89mw4YN9O/fn8mTJ5Ofn9/g8b/99htXXnklS5YsYeXKlURHRzNp0iT279/fxpG7nro6npWqdtVlqeMRTVRRbSUlu8ixYFmcEanjEWck83cAqruO5P/WZQNw7YhYAwNyPk6X8LzyyivcfPPNzJgxg8TERN555x18fX15//33Gzz+s88+44477iA5OZmEhAT++c9/YrPZWLx4cRtH7nrqEp75xd31hszfpY5HNMmm7CJMNUeP1e/EScHymRp1XMKj9v4hdTyi6WxWyFoJwG8V8RSVV9M52IezE8INDsy5OFXCU1VVxfr165k4caK9zWQyMXHiRFauXNmkc5SXl1NdXU2HDo3vD1JZWUlJSYnDxR3FhfkR5OPJupo4bGZvKMuHQ7uMDku4gDUZhQww7dLrdwI7Q0ic0SG5vITIAAp8u1OsfNGqSvWaDCGaInczVJagvAN5I80HgKuGd3XLxQVPxqkSnoMHD2K1WomIiHBoj4iIIDc3t0nnePjhh+nUqZND0nSi5557jqCgIPslOjr6jOJ2VZqmkRwdTCVe5Af21RulK100wZrMQkbU7o4u9TstQ9M0RvSMYHXtbC3Z4040We1wVknHQWw6UIqX2cTlg93zc+1knCrhOVPPP/88X3zxBd9++y0WS+Nb3s+aNYvi4mL7JTs7uw2jdC4DugYDsMlcW8ez93fjghEuodpqY/3ew1K/0woc63gk4RFNVPu+vaxK34T2gn5RhPp7GxmRU3KqyflhYWGYzWby8vIc2vPy8oiMjDzpfV9++WWef/55Fi1aRL9+/U56rLe3N97e8p8BjtXx/Fzag8lwrI5HvrGLRmw9UIKtqpwBFll/p6WN7hnG+/Y6npVo1mowexoclXBqNhvs/QOAjw50AWQqemOalPAMHDiwWSfVNI3vv/+ezp2btzeTl5cXgwYNYvHixUybNg3AXoA8c+bMRu/34osv8swzz/Dzzz8zePDgZj2mu6tLeH4q6sLffD3RjhyAwxmypopo1JqMQww0peOJFQK7SP1OC4oK8qE6NIGiI34EV5fpdTxd5D1NnET+Vqgoosrsy8aKGPp2DrK/rwtHTUp4UlJSuP/++/H39z/lsUopnn/+eSorK08roPvuu4/rrruOwYMHM3ToUF577TXKysqYMWMGANdeey2dO3fmueeeA+CFF17giSee4PPPPyc2NtZe6+Pv79+keN1dsK8X3cL82HMQikP7E1ywTu/lkYRHNGL1nkJGyPo7rWZUz3BWr+vNZPM6fakISXjEydTW72xQvbBi5hrZN6tRTR7SevDBBwkPb9oUt7/97W+nHdDll19OQUEBTzzxBLm5uSQnJ7Nw4UJ7IXNWVhYm07HSo7fffpuqqiouueQSh/PMnj2bJ5988rTjcCfJ0cHsOVjGDu9+DGOdPh488BqjwxJOyGpTrMks5LbjEx7Rokb37MjvaxL1hCdzBYy5z+iQhDPbq080WVYZT7CvJ1P7y75ZjWlSwpORkUHHjh2bfNK0tDQ6dTr9J33mzJmNDmH99ttvDtczMzNP+3GEbkDXYP6zcT+/VcYzDGSmlmjUjtwj1FSUkuy9W2+QhKfFDevWgVfR63hsWSsxSR2PaIzNZu/hWWXrzWWDo7F4mg0Oynk1aZZWTEwMW7dubfJJo6OjMZvlSXcVydEhAHxb0Bll8oDibDi81+CohDOy1+9odfU7sUaH1O4EWjzx7dyXQuWPqbocDmw0OiThrAq2w9FCjiovUunG1cOkWPlkmjwtvV+/fgwbNox58+Zx5MiR1oxJtLGEqAC8PUzkVpip7Fg7w02mp4sGrMksPDYdPW6M1O+0kpE9w1lTtx6PvBZFY2r/b6y39WRUfBRdQ30NDsi5NTnhWbp0KX369OH+++8nKiqK6667juXLZZ2I9sDTbKJv5yAA9gYM0Bsz5U1WOFJKsSajkKGm7XpD1xHGBtSOje4RxprajURV5h8GRyOcVc0e/TN4lS1R9s1qgiYnPGPGjOH9998nJyeHf/zjH2RmZjJu3Dji4+N54YUXmrwSsnBOddMY7au87pU6HuFod0EZJaVl9Ndq63diRhobUDs2oGswW8x1dTyr9L2ShDieUvaEJ8M/mbHxTa+zdVfNXmnZz8+PGTNmsHTpUnbu3Mmll17Km2++SdeuXZk6dWprxCjawICueh3P/MNdQTPB4Uwolh3nxTFrMgpJ0jKwaNXgGwahPYwOqd3yNJsIihvIEeWDuaoE8ppeQyncgzq4E0tVIRXKk+ThE2TfrCY4o60levTowSOPPMJjjz1GQEAAP/74Y0vFJdpYcu0WExvzrNgik/VGqR0Qx1mTcYghph36la7DpX6nlY3sGcEGW0/9SlbTNk8W7iNrw/8A2KR6csnQ7gZH4xpOO+FZtmwZ119/PZGRkTz44INMnz6d33+XD0hX1SnIQniANzU2RX6HQXqjTE8XtZRSrM4oZLA94ZH6ndY2umcYq2vreKwZ8loUjg6m/gpAccRQQvy8DI7GNTQr4Tlw4ADPPvss8fHxjB8/nl27dvH6669z4MAB5s2bx/Dhw1srTtHK6nZOB9hkTtIbJeERtfYdPkpucTmDTTv1Bkl4Wl3PcH92WfoCYM38Q9/jTgigoKSCLiUbAOg+ZLLB0biOJic85557LjExMfzjH//goosuYtu2baxYsYIZM2bg5+fXmjGKNlI3rPVLaTdAg8LdcESK0QWsziiku3aAEK0UPH0h6uQb9Iozp2kawT2GUak88ao4CId2Gx2ScBILl/9OhFZENR50H3CW0eG4jCYnPJ6ennz99dfs27ePF154gV69erVmXMIAA2oXIPxjfzVE1vbySO2AQK/fGVo3nNVlsKz820aG9+pMiqqtz8iS6ekCaqw2sjcuAqC4Qz/w9DE4ItfR5ITn+++/509/+pOsoNyO9esShEmDA8UVlEcO0Rv3SsIj9BlaUr/T9kYdtx5P5W5Z98ydWW2KlbsP8dyC7fSsSAUgOGG8sUG5mCYlPNOnT6ekpKTJJ73qqqvIz88/7aCEMfy8PYiPCABgp7deOyA9PCKvpILMQ+WOM7REm4gItHAgMBkAa4b08Lirhak5jH7hV66ct4p/rciwf/lI0RIMjsy1NCnh+e677ygoKKCkpOSUl+LiYubPn09paWlrxy5awYDaOp4VVbXTYfNSoaLpya5of9ZkFBLJIaK1An2Npi5DjA7JrQTGj8KqNHzL98naWG5oYWoOt3+6gZziCgA6UkScKQ+b0rhhscbC1ByDI3QdTUp4lFLEx8cTEhJyykuHDh0oKytr7bhFK6mbqbUiz0PfGFLZIHuNoTEJY63JKDzWuxPZD7wDjA3IzQztFcNWFatfkR5Xt2K1KebMT+P4+XmDamdK7lDRHMGPOfPTsNpkBl9TeDTloCVLljT7xJ07d272fYTx6lZc3ryvGNuAEZgOZ+pvsj0nGhuYMMzqjENcJfU7hhnWLZSvVAL9yODIzmUE9L3E6JBEG1mTUWjv2alT9+Vjra0XCsgprmBNRiEjuocaEKFraVLCM27cuNaOQziJ7h398ff2oLSyhtzggXTi3/Kt0o0VllWxM6+UIV516+9I/U5b8/f24GDoIChagDVDFnd1J/lHKuq11dXvrLP1Oulxor4z2lpCtD9mk0a/LoEAfHagEwBq3zqoqTQyLGGQtZmFBFBOgilLb5AeHkME9dK/dAaX7oLyQoOjEW0lPMDicN2XCvpomYDew9PYcaJhkvAIBwtTc9i0rxiAN7dAgQpEs1ayasUigyMTRliTUcgg005MKOjQDQIijA7JLQ1K7EG6TS8TsO6V2VruYmhcB6KCLNTtWpds2oWHZmOfCiOHUDQgKsjC0LgORobpMiThEXZ1swHKKq21LZq92/S3X76X2QBuSNbfcQ79uwSzUesNQGHaUoOjEW3FbNKYfWGi/foQrW44K96eBM2+MFF2Sm8iSXgE0PBsADg2TjzEtENmA7iZkopqth4olvV3nICH2URxuL4cgC1T6njcyZSkKGZP1ZOe4+t3IoMsvH31QKYkRRkZnkuRhEcADc8GAOyrvA427SC3uJw1GVI/4C7W7z2Mh6om2bRHb5AeHkOFJOh1PGFHtkGlrHPmTgItnpixMti8C4BLL7qUFQ+fLclOMzVpltaAAQPQtKZ1mW3YsOGMAhLGaKzKP03FUKa8CdLKidf2yWwAN7Imo5AkLQNvqsA3DEJ7GB2SW0vu25d9y8Looh2kKnMVXr1kqQh3kZJdRKK2Fx8qwDuI/gNHgAxjNVuTEp5p06a1chjCaI1V+Vsxs8HWkzHmVIaYdshsADfisOBg1+HQxC89onV07+jHQnMfutiWkrtlCV0l4XEbKdlFx70Wh4FJBmdOR5MSntmzZ7d2HMJgdbMBcosr6tXxrLUlMMacyljvdJkN4CaOVlnZvK+I26Rg2WlomkZpxFDIWYraK3U87qKi2sq2nJLjXotSS3e6TitNLCoq4p///CezZs2isFCv6diwYQP798s+L67q+NkAJ36PX6v0wuWx3umY5Uu+W9iYfZgaq5Wh5roFByXhcQYhvccCEHEkDWqqDI5GtIWtB0qottrktdgCmp3wbN68mfj4eF544QVefvllioqKAPjPf/7DrFmzWjo+0YamJEXx9tUDiQxyHLbabu6FTfPAcjQPirIMik60pdV7CumuHSCIUvD0hah+RockgP7JQylU/liopDhjvdHhiDaQkl1EjJZHGEVg9oJOA40OyWU1O+G57777uP7660lPT8diOfbBeN5557Fs2bIWDU60vSlJUax4+Gz+ffNwbhvXHQCLjx9ap2T9ANlmwi2syShkaF0XepfBYPY0NiABQMdACzs99Z7YfZuav8ehcD0O9TudBoCn1FGermYnPGvXruXWW2+t1965c2dyc3NbJChhLLNJY0T3UO6Z0BMvs4mckkqKOw7Wb5RVXtu9qhobG7IOy4KDTqosQl+PR8mXD7eQkn2YwZq8FltCsxMeb29vSkpK6rXv3LmTjh07tkhQwjn4eJkZFKPvnr6hdpVXslYZGJFoC1v2F1FZY2OYWTYMdUbBtXU8nUtSUDabwdGI1nSotJLswqPHzdCShOdMNDvhmTp1KnPnzqW6uhrQZw5kZWXx8MMPc/HFF7d4gMJYo3uGATC/MFpvOLgDyg4ZGJFobaszConkEJ3JB80MXYYYHZI4Tu+BY6hUnoRQwv49W40OR7SilOwiOlBCd1Pttj7RQ40NyMU1O+H529/+RmlpKeHh4Rw9epRx48bRo0cPAgICeOaZZ1ojRmGgMbUJz6LMGlSYvuqy1PG0b6v3HLf+TmRf8A4wNiDhwNfXjz1e8QD8vuQHVu4+JFu+tFMp2UXHhpY79gZfWRbkTDRpHZ7jBQUF8csvv7BixQo2b95MaWkpAwcOZOJEWQSrPerTKYggH0+Kj1ZzMHQgHQ9u1xOe3hcYHZpoBTVWG+v3HuZB6UJ3WgtTc9hX1ZPe2lbYu4or5/UjKsjC7AsTZauBdiYlu4gxJhlabinN7uHJzs4GYPTo0dxxxx089NBDkuy0Y2aTxqgeoQBsQHp42rttOUcoraxhmIe8yTqjhak53P7pBv6o1rf5qPv2n1tcwe2fbmBhao6R4YkWZLOpE1ZYli8fZ6rZCU9sbCzjxo1j3rx5HD58uDViEk5mdA+9GP27whi94UAKVJUZF5BoNaszDhFAOfHUrrckb7JOw2pTzJmfhgLW2/Qhre6mHDpQYl8dfc78NBneaif2HCyjuqKMJC1Db5AvH2es2QnPunXrGDp0KHPnziUqKopp06bx9ddfU1lZ2RrxCScwuodex/O//Z7YAjqBssK+dQZHJVrDmoxCBpl2YkJBh24QEGF0SKLWmoxCcor1zXuL8WeHrQtwrJdHATnFFazJKDQqRNGCUrKLSDbtxlOzQkAnCO5qdEgur9kJz4ABA3jppZfIyspiwYIFdOzYkVtuuYWIiAhuuOGG1ohRGKxrqC9dO/hSY4P8kNpVPmV6ertjsynWZhbK+jtOKv9IhcP1ul6eQXU1Ho0cJ1yT4/o7snlvSzjtLVc1TeOss85i3rx5LFq0iLi4OD766KOWjE04kbrp6etr99WSOp72Jz2/lMPl1bL+jpMKD3BcYXetTX8t2ms8GjlOuKaNWUUMNW3Xr8iXjxZx2gnPvn37ePHFF0lOTmbo0KH4+/vz5ptvtmRswonUDWt9V1jbrbpvLVhrDIxItCSrTfHl2iy8qKaftltvlDdZpzI0rgNRQRb75r51m/omaRl4U4UGRAVZGBonU5dd3dEqK+m5RQw0pesN8uWjRTQ74Xn33XcZN24csbGxfPzxx1x++eXs3r2b5cuXc9ttt7VGjMIJjOweiqbBokOh2LwDoaoU8lKNDku0gIWpOYx+4Vfe/z3T/uFZSCALc/yMDk0cx2zSmH2hvo+WBuxTHclTwXhpVvrXJqmzL0zEbJKhD1eXeqCYnioLf60C5RUAEX2MDqldaHbC8/TTTzNs2DDWr19Pamoqs2bNIiYmpjViE04k2NeLfp2DsGEiP6i/3ijDWi6vbppzXTFs3fDIGmsvbv9so0xzdjJTkqJ4++qBRAZZAM0+rDXCcydvXz1Q1uFpJ1Kyji04qEUPBZPZ4Ijah2YvPJiVlYUmxVNuaVSPMDbtK2adSuAClusJz/DbjQ5LnKbjpznXqXuTXVtbEDtnfhrnJEZKr4ETmZIUxTmJkazJKKRyxXrIWM0Q005G9Yk0OjTRQlKyizhXJg+0uGb38GiaxvLly7n66qsZMWIE+/fvB+CTTz5hxYoVLR6gcB51hcv2Op6sVaBkzQ9Xdfw0ZwANG4NrZ/yss/WSac5OzGzSGNE9lJFnnw9AP7WDPQVHDI5KtJSUrMPHzZaU+p2W0uyE55tvvmHy5Mn4+PiwceNG+/o7xcXFPPvssy0eoHAeg2JCsHiaWFYWjc3kBaV5cDjD6LDEaTpx+nIP7QAhWinlyputKrbR44Tz8OrUnwrNQqBWzs7Na4wOR7SA/CMVaCVZRGqHUSZP6DzI6JDajdOq4XnnnXeYN28enp6e9vZRo0axYcOGFg1OOBdvDzND40KpxIuCgN56o6zH47JOnL5cV7+z0daDmuNGu2WasxMze5AX2A+Asl3Sw94epGQVMaR2/R2tUzJ4+RobUDvS7IRnx44djB07tl57UFAQRUVFLRGTcGJjepywHs/ePwyMRpyJE6c513Whr6v928o0ZxcRPQyAgIL1BgciWoLj/lkynNWSmp3wREZGsmvXrnrtK1asoFu3bi0SlHBedXU884ti9Qbp4XFZddOc66qw6r5VrrX1sidBMs3Z+YUnjQegT00aB4qOGhuMOGMp2UWy2nkraXbCc/PNN3PPPfewevVqNE3jwIEDfPbZZzzwwAPcfrvM2GnvekUEEObvxR9V+m7NHEqHsoPGBiVO25SkKC4e2JlIDhFtKqBGmdho60FkkEWmObsIn7hhWDHRRTvIlm1pRocjzoDVpti7bx/xJn0yUF3vnWgZzZ6W/te//hWbzcaECRMoLy9n7NixeHt788ADD3DXXXe1RozCiZhMGqN6hPFdShUHfboRdnSP3svT+wKjQxOnqaLGZu9CLw3pzT8vPIuhcR2kZ8dVeAeQ79uTqPIdHN62HEZIkaur2l1QSkJ1GniBCo1H8wszOqR25bSmpT/66KMUFhaSmprKqlWrKCgo4KmnnmqN+IQTqttmYp3sq9UubDquCz2411hGdA+VZMfFVHYaCoAlV2ZqubKUrCKG1C4NocVI/U5LO+29tLy8vEhMTLTvoyXcR10dz89H4vQGSXhc1sHSSvYdPmp/k5UiSdcU2nscAD0rUjlcVmVwNOJ0bZT6nVbVpCGt6dOnN/mE//nPf047GOEaooJ86N7RjzUFvcATyNkEVWXgJXsvuZpN2UUEUE6CKUtvkDdZlxTQczQACVoWv6VnMSG5h8ERidORlpXHHPvmvfLlo6U1qYcnKCioyRejvPnmm8TGxmKxWBg2bBhr1kjXbmsa07Mj+wmj2DMcbDWwX6bEuqJN2UUMMu3EhIIO3SAgwuiQxOkIjKLQKwqzpshLW250NOI0lFfVYMnfhJdmxeobDiFxRofU7jSph+eDDz5o7TjOyJdffsl9993HO++8w7Bhw3jttdeYPHkyO3bsIDw83Ojw2qVRPcL48I9M1tl6MYF8vXA5rv76TMK5pewrZqh0obcLpeFD6LDve8zZq4AZRocjmmnLvmIGadsBMMeOANmzssWddg2PM3nllVe4+eabmTFjBomJibzzzjv4+vry/vvvN3h8ZWUlJSUlDhfRPMO76bN4fqvorjdIHY/LUUqxSRY5azcC4vVhreiyLZRV1hgcjWguxwUH5ctHa3D5hKeqqor169czceJEe5vJZGLixImsXNnwh/Bzzz3nMAwXHR3dVuG2GwEWTwZEB7POVjtTK3sNWOVN1pVkHirn6NFy+ttrBkYaG5A4IyEJeg9rsraLlMwCg6MRzbUp6xCDTOn6Ffny0SpcPuE5ePAgVquViAjH2oOIiAhyc3MbvM+sWbMoLi62X7Kzs9si1HZnVI8wdqhojpr8oKoU8lKNDkk0w6bsIpK0DCxaNfiGQWh3o0MSZyKsF2WmAHy1SjK3ygrorqYkawuBWjlWD1+I6Gt0OO2Syyc8p8Pb25vAwECHi2i+MT3DsGFivS1eb5BtJlxKvT17pGbAtZlMFIUOAKAmU4aYXUleSQWx5Vv0K12GgLnZawKLJnD5hCcsLAyz2UxeXp5De15eHpGRkQZF5R76Rwfj7+3BH9U99Qap43EpsmdP++PdXR+WjCjaSFWNzeBoRFNtzDr25cMcK0PLraVJaeTrr7/e5BPefffdpx3M6fDy8mLQoEEsXryYadOmAWCz2Vi8eDEzZ85s01jcjafZxPBuHVi3vW7F5VWglPQUuICqGhvbDhQx2KNuwUFJeNqD0N7jYNXzDNR2smXfYQbFhhodkmiClOwirpHJA62uSQnPq6++2qSTaZrW5gkPwH333cd1113H4MGDGTp0KK+99hplZWXMmCFTM1vb6B5hPLetOzV44FGaC4cz9PVchFPbnltCV9s+QrRSlKcvWlQ/o0MSLUDrNJBqPAnXivhl2xYGxY43OiTRBNkZO+isHcKmmTF1Hmx0OO1WkxKejIyM1o7jjFx++eUUFBTwxBNPkJubS3JyMgsXLqxXyCxa3uieHanEi80qjoFaut7LIwmP0zu+fkfrMhjMngZHJFqEp4XCoEQiijdxdPfvwHijIxKnYLUp/HLXggkqw5Lw8ZatmlqLy9fw1Jk5cyZ79+6lsrKS1atXM2zYMKNDcgvdO/oRGWhhjTVBb5A6Hpcg9Tvtlxaj/z2DD67HalMGRyNOJT3/CH1t2wDw7jbK4Gjat9MqBd+3bx/ff/89WVlZVFU5blT3yiuvtEhgwjVomsbonmGs3RjPbSAztVzEpuwi/qJJzUB7FJowBja/Q3/bdnbkHiGxk8xCdWYpWce+fJhi5MtHa2p2wrN48WKmTp1Kt27d2L59O0lJSWRmZqKUYuDAga0Ro3ByY3qGMXt97dT0gzuh7CD4hRkblGhUSUU1ZQVZRFsKUJoZrcsQo0MSLchc+6HZ07SfL3buIbFTsrEBiZPakZnNZdo+/Yp8+WhVzR7SmjVrFg888ABbtmzBYrHwzTffkJ2dzbhx47j00ktbI0bh5EZ2D6OIAHbaOusN0svj1DZnFx+r34nsC94BBkckWpRfKIU++saTh3euMDgYcSrWvaswaYoy/1jwl70fW1OzE55t27Zx7bXXAuDh4cHRo0fx9/dn7ty5vPDCCy0eoHB+HQO8SYgMOLbNhNTxOLVN+6R+p72r6TwUAL/cNSgldTzOqqyyhqjiFABMMdK709qanfD4+fnZ63aioqLYvXu3/baDBw+2XGTCpYzpGcYaW13hsvTwODN9hlbd+jvyJtseBffW99VKrNnG3kPlBkcjGrN5XzGDar98+HQfbXA07V+zE57hw4ezYoXeTXreeedx//3388wzz3DDDTcwfLi8ebqrUT3CWKf0Hh6VkwJV8ibrjJRS7MraT4KWpTdID0+75BWnr9bbT9vN+t0HDI5GNGZLZt6xzXtjZIXl1tbshOeVV16xT/meM2cOEyZM4MsvvyQ2NpZ//etfLR6gcA3D4kLJN4WTozqg2Wpg/3qjQxINyCmuIKY8FZOmsIV0gwBZq6pdComj1DMML81K3rY/jI5GNKJo9xq8tRrKPTvI+mVtoNmztLp1O/ZH8fPz45133mnRgIRr8vEyMyimA+uy47nQvEqv44kbY3RY4gSbsmUKrFvQNMqihuKf9ROe+1cD1xkdkWiAb95aACqihuIrW/K0utNeeLCqqop9+/aRlZXlcBHua3TPMNZK4bJTS9l3wg7pot0KjNe/cMRXbCGvpMLgaMSJcoqPklC1FQD/eKnfaQvNTnh27tzJmDFj8PHxISYmhri4OOLi4oiNjSUuLq41YhQuYnSPMNbWFi6r7DVgrTE4InGi1L35JNfVDEj9TrtWVwQ70JTOmj0FBkcjTpSyt5DBtZMH6mquROtq9pDWjBkz8PDw4IcffiAqKgpNuuFEraTOQeR6x1GifAisKoX8rRDV3+iwRC2rTcGBjXibqqnxCcMjtIfRIYnWFNGHCpMfAbYysretheRooyMSx9m3cyPBWhlVJgtekbJ5b1todsKTkpLC+vXrSUhIaI14hAszmzSG9whnw454xps3wd6VkvA4kV35pfSzbgNT7Wq88mWlfTOZKek4EEvecrSsP4DpRkckjle7fMfhkP5EyOa9baLZQ1qJiYmy3o5o1PF1PPs3/8rK3YdkA0MncXzBsiZTYN2CX0+9jiemdBPF5dUGRyPq1FhtRBRtBMBDhrPaTLMTnhdeeIGHHnqI3377jUOHDlFSUuJwEe7NZsO+4rLH/tVcOW8lo1/4lYWpOQZHJlKyCo9bYVkKlt1BXcIz2LSTdZmHDI5G1NmZV8pAbTsAIQnjDI7GfTR7SGvixIkATJgwwaFdKYWmaVit1paJTLichak5PPFdKl50p0qZidCKiNby2Vccwe2fbuDtqwcyJSnK6DDdVlHmJoK0cmo8fPGQmgH30GkgNZon4RSRvmMzExIjjY5IADt3bmeadhArJszRg40Ox200O+FZsmRJa8QhXJzVppgzPw0FVOLFFtWNQVo6Q7QdZKsINGDO/DTOSYzEbJLakbZ2tMpKx8MbwAOsnYbgYW72S1+4Ik8LRcFJhB3eSNWeP4BJRkckgLJd+m4FBX7xRMrmvW2m2e9648ZJ95uob01GITnFx9b6WGvrxSBTOkNMO/iPbSwKfZXfNRmFjOgealygbmrrgWIG1Xahe3UbZXA0oi15dRsF6zcSVbSRo1VWfLzMRofk9gJqFxys7DTM4EjcS7MTns2bNzfYrmkaFouFrl274u3tfcaBCdeSf8RxYTO9jueHY4vcNXKcaBspWYc5316wLOvvuJOA+DGw/g0GadvZmH2Ykd3DjA7JrR2pqKZnZSqYIDhhrNHhuJVmJzzJycknXXvH09OTyy+/nHfffReLxXJGwQnXER7g+LdeZ4sHoIfpAB0ooZDABo8TbSM7YztRWiFWzQNzZ6kZcCda1+HY0OhmymXRjnRJeAy2dU82Q7VsAILiZfudttTsWVrffvstPXv25L333iMlJYWUlBTee+89evXqxeeff86//vUvfv31Vx577LHWiFc4qaFxHYgKslCXChcRwE5bZwAGmXaiAVFBFobGdTAsRnem76cEZaF9wcvX4GhEm/IJpiigJwDltbUjwjgFacsxaYp8z86yeW8ba3YPzzPPPMPf//53Jk+ebG/r27cvXbp04fHHH2fNmjX4+flx//338/LLL7dosMJ5mU0asy9M5PZPN6ABCn1YK960nyGmHSyyDWb2hYlSsGyAQ6WVdCvfDB7g3V3qd9yR1nUEbN1Jh4Prqbba8DSf9jaK4gyZsvUFB4vCBhFucCzuptn/67ds2UJMTEy99piYGLZs2QLow145ObLuiruZkhTF21cPJDJIH7aqW4BwuMdOmZJuoE37ihhaW7/jHScJjzsK6qXXiiSzndT9xQZH456sNsXK3QePLTgYK7V0ba3ZCU9CQgLPP/88VVVV9rbq6mqef/55+3YT+/fvJyJCuurc0ZSkKFY8fDb/vnk4ptoXdB/2MCU+yODI3NeOPZn0MB3Qr8iCg27JVFuo3kfLJGVXtsHRuJ+FqTmMfuFXrpu3giR2AfDXdX6yIGsba/aQ1ptvvsnUqVPp0qUL/frpi5dt2bIFq9XKDz/8AMCePXu44447WjZS4TLMJo0R3UOxWkeS+1kIkdphbPvWYeomMxKMoK+/AkX+3Qn2lRoqtxTUmRJLJwIrDnB4xx9wtiw82VYWpuZw+6cbUMBALQOLVs0hFcDaI6GslQVZ21SzE56RI0eSkZHBZ599xs6d+tb2l156KX/+858JCNAXULrmmmtaNkrhkoZ2C2UxCZzLSvK3/kakJDxtTilFyMF1AFi7SBe6O6vpPBx2/we/vDXYbLdiknq6Vnf8gqyAfZmOdbZeKDRZkLWNndZyqwEBAdx2220tHYtoZ7w8TBR3HAwHV1Kx+3ejw3FLew+V08+WBiYI6iVTYN1ZYMIY2P0f+lm3kZ5fSq9IWeG3tZ24IGvdXnZ19Y2yIGvbalLC8/3333Puuefi6enJ999/f9Jjp06d2iKBifahQ+9xsPwfhBdvApsVTLLKa1tKzdzPFC0TAA8pWHZrHrH633+AKZ1v9uRJwtMGjl9oVcPGYJM+KlK3wXJDx4nW06SEZ9q0aeTm5hIeHs60adMaPU42DxUnGjB4FEeW+RDAUQ7t2UBojyFGh+RWCnesxEOzUeQVQXBwtNHhCCOFxXPUIwifmmLytq+CkT2MjqjdO36h1XhtHyFaKWXKm1QV2+hxovU0aZaWzWYjPDzc/nNjF0l2xIk6BvmS7pUIQOaGRQZH43689utrfhwJl9WV3Z6mUR6pf+Hw3L8apdQp7iDO1PELsg4zbQNgvS2emtq+BlmQtW3J6lOi1VV20t9kbXtXGRyJe6mqsRFTugkA3x5SvyMgsHY9noSqrew7fNTgaNq/ugVZAYaa9M1719j05VvqSpRlQda20+SEZ+XKlfZp53U+/vhj4uLiCA8P55ZbbqGysrLFAxSuL6Lv2QB0Ld1ERVWNwdG4jx0HCumv6Wt+dOg9zuBohDPwjBsN6MWza/YcNDga9zAlKYq3rxrAsNqEZ7WtNwCRQRaZkt7GmpzwzJ07l61bt9qvb9myhRtvvJGJEyfy17/+lfnz5/Pcc8+1SpDCtcX1G001HkRoh0nZkmJ0OG4je+tKfLVKSk0BaB0TjA5HOIOoflSZLIRopezdvtHoaNzGhPAjdNSKqVSenDf5PP5983BWPHy2JDttrMkJT0pKChMmTLBf/+KLLxg2bBjz5s3jvvvu4/XXX+f//u//WiVI4do0Lz9yfPVZCQc2LTE4GvdRk6kvOJgXlAwmGb0WgNmT0rBk/efslYaG4k4KUn8FYIvWg+vHJTCie6gMYxmgye+Chw8fdtguYunSpZx77rn260OGDCE7W5YsFw2zRetbGnhIsWSbCT20HgDVVRYcFMfU1XPFlW/m01V7Wbn7EFabvCZbU9VufZf6rIABaJokOkZpcsITERFBRkYGAFVVVWzYsIHhw4/ty3PkyBE8PT1bPkLRLkT1PQuA3tVppOeXGhxN+1dytJI+1akAhCWdZXA0wplsMes1JENMO3jsv6lcOW8Vo1/4VfZ1ai1KEVywBoDKzvLlw0hNTnjOO+88/vrXv7J8+XJmzZqFr68vY8Ycm/mxefNmunfv3ipBCtfnHTcSgJ6m/fy+aYfB0bR/u1PXEKyVUY6F4G6y9pHQLUzN4bpfoFqZ6aIdpItWAEBucQW3f7pBkp7WUJRFcHU+1cpMh16y+KeRmpzwPPXUU3h4eDBu3DjmzZvHvHnz8PLyst/+/vvvM2nSpFYJUrQDfqEU+XUDID9tqcHBtH+l238DINO3L5il51Uc29epHAublf5aHG5KA7Dv9TRnfpoMb7Ww6gx9OGuLiiMxRoqUjdTkvbTCwsJYtmwZxcXF+Pv7YzY7bhHw1Vdf4e/v3+IBivbDM24kpO4h5OB6DpdVEeLndeo7idPil7MagLKoYQZHIpzF8fs6rbL1ZpApneGmbXxt1ZcskH2dWkfJ9t8IBTaZ+nB9iI/R4bi1Zk/dCAoKqpfsAHTo0MGhx0eIE/n10NcAGWraztKdBQZH047ZbMSV6wsO+vcab2wswmkcv19T3Voww7RtJz1OnDnPffqCq4Udh0jBssFkrqpoOzF6HU+SlsGKtExjY2nHCjJSCKGEcuVNbN/RRocjnMTx+zWts/WiRpmINhXQmYJGjxNnqCSHwPIsbErDq7aOURhHEh7RdkJiqPTvgodmoyx9BTVWm9ERtUsFW/Q1P3Z49sbHR7rQhe74fZ2Or+Op2+NJ9nVqBXt/ByBNxdArprPBwQhJeESb8uyu7+XTr2YL6/ceNjia9knL0hccLAiVDUPFMcfv66RxbFhruGmb7OvUSmoy9IRnjS2Bfl2CjQ1GSMIj2pYpTl/KYLhpG79uzzc4mnZIKToV6QsOmrvJhqHC0ZSkKN6+eiCRQRZW2fTkZ7gpjQ7+XrKvUyuo3qPP0Nrm3Y+IQG+DoxGS8Ii2FavXlPTV9vDHtkxjY2mHrPk7CLIVUaE8iU6S+h1R35SkKFY8fDZ3XHsVVkx0NRVw72CLJDstrewQPkU7AajqNFQKlp2AJDyibQV3xRYUg4dmo8Ohjew9VGZ0RO3Kwa16/U4K8XSPkqnFomFmk8awhBgOBeq9PJW7VhgcUTtUO7S809aZuJgYg4MRIAmPMMCxYa00GdZqYZW7lgGQHTBAajHEKakYfeXf0IOrscmCgy1rr57wrLb1pr/U7zgFSXhE26sd1pI6nhamFMH5tXv2dJEpsOLUQvucDcAAWxq7C2SPu5ZkrV1hea0tgaTOQQZHI0ASHmGEWP1bZV9tD1v27KO0ssbggNqJQ7sJrDlEpfKkY4Ls2SNOzSN2JDZMxJrySN1WfxFCcZrKCzHlbQEgwz+ZjgFSsOwMJOERbS+4KypYr+Ppr3awIl1WXT5TVptix5oFAKSo7iR2DTc4IuESLIHk+/UCoHSn7HHXYvb+joYi3daZTtFxRkcjaknCIwyhxUodT0tZmJrD6Bd+JW2lnvCssvXm0ndXys7Xoklquuq9gUF5qwyOpB3JWA7ASluirL/jRJwq4VFK8cQTTxAVFYWPjw8TJ04kPT39pPd57rnnGDJkCAEBAYSHhzNt2jR27NjRRhGL0+ZQx1MgBZOnaWFqDrd/uoGc4qMMr10xd5UtkbziCm7/dIMkPeKUQpMmANC3egs5xUcNjqadyNAnD6y0JdJX6nechlMlPC+++CKvv/4677zzDqtXr8bPz4/JkydTUdH4ZnZLly7lzjvvZNWqVfzyyy9UV1czadIkyspkurNTO249nqOlRWzZX2xwQK7HalPMmZ+GArpq+URphVQpMxttPahLH+fMT8MqyaQ4CZ/uo7BiIs6Ux5Zt240Ox/WV5kNB3ZeP3pLwOBGnSXiUUrz22ms89thj/OlPf6Jfv358/PHHHDhwgP/+97+N3m/hwoVcf/319OnTh/79+/Phhx+SlZXF+vXr2y540XzB0RASi4dmY7BpJ4tlWKvZ1mQUklOsfxkYadoKQIrqQQV6gaQCcoorWJNRaFSIwhVYgsjzjQegeNsSg4NpBzL14axttq4EdIgkxM/L4IBEHadJeDIyMsjNzWXixIn2tqCgIIYNG8bKlSubfJ7iYr2noEOHxjfAq6yspKSkxOEiDGAf1krj1+15BgfjevKPHOv5HGVKBeAPW5+THidEQyo6DwfAP0fqeM5Ybf3OH7Y+9O0ivTvOxGkSntzcXAAiIiIc2iMiIuy3nYrNZuPee+9l1KhRJCUlNXrcc889R1BQkP0SHR19+oGL0xd7bF+t1P0l5BbLB3NzhAdYan9SjDClAfC7tf7/+2PHCdGwDon6ejwJFZsoPlptcDQu7rj6nX4ynOVUDEt4PvvsM/z9/e2X6uozf5HdeeedpKam8sUXX5z0uFmzZlFcXGy/ZGdnn/Fji9NQu8prP9Me/DjKkh0yrNUcQ+M6EBVkIUHLJkwroVx5k6J62G/XgKggC0PjGu/tFAIgOGFcbR1PLlu3pRkdjusqOQCFu7FiYo0tQXp4nIxhCc/UqVNJSUmxX8LCwgDIy3Mc2sjLyyMyMvKU55s5cyY//PADS5YsoUuXLic91tvbm8DAQIeLMEBtHY8ZG0NM21m8TRKe5jCbNGZfmMiI2vqdtbZeVOMB6MkOwOwLE2WLCXFqPsHs80kAoGjrLwYH48Jqh7NSbbGU4CcrLDsZwxKegIAAevToYb8kJiYSGRnJ4sWL7ceUlJSwevVqRowY0eh5lFLMnDmTb7/9ll9//ZW4OFnkyaXEjQVglGkrv+86SEW11eCAXMuUpCj+FLQLcKzfiQyy8PbVA2UHbNFkZZ30Hlf/A78bHIkLsw9n9aFbmB+BFk+DAxLHc5oaHk3TuPfee3n66af5/vvv2bJlC9deey2dOnVi2rRp9uMmTJjAG2+8Yb9+55138umnn/L5558TEBBAbm4uubm5HD0q60m4hG7jARjvuZWj1VZW7TlkbDwuxlZTTY/yTQDEDjmPv1+RzL9vHs6Kh8+WZEc0S3CSPmEkoXwDldWy3ctpyTxu/R0ZznI6HkYHcLyHHnqIsrIybrnlFoqKihg9ejQLFy7EYjlWdLl7924OHjxov/72228DMH78eIdzffDBB1x//fVtEbY4E3HjAOip9hJKMb9uz2d8L9kWoam2b1xGIuUUKz8uOncKFm+ZAitOT1TSOCq+8yJcK2Jr2nr69B9mdEiu5XAmFGVRg5m1tl7cLyssOx2nSng0TWPu3LnMnTu30WMyMzMdrisli6q5NL8wiOwLuVsYadrK4m2RzJmq0DSpO2mKAxsWkgjsDRxIP0l2xBnQPH3Y45NE4tENHE5dBJLwNE9t/U6a1oNyLPSTHh6n4zRDWsKN1Q5rjfXYyv6io+zMKzU2HhdRY7URkKuvUWWJP9vgaER7UFpbx+O3b7nBkbig2vqd36p7Y9IgMUomwzgbSXiE8eLGA3CW51ZAsVgWIWySVekH6G/TtwKIG3KuwdGI9iC4zzkA9Diagq1G1uNpMqXsKyyvtPWhR7g/ft5ONYAikIRHOIOYEWDyJMyaT4yWx68yPb1JUlf+D4tWTYlHKJ4RCUaHI9qBuL4jKVZ+BHCUfWl/GB2O6yjYDkdyqDF5s8HWk76dg42OSDRAEh5hPC8/iNbrBUaZtrJ+72E+X72XlbsPycaXjaissWLaq3+jrOo6BqTmSbQAT09PdvgkA3Boi6zH02S79T3ItnslUYmX1O84KUl4hHOoreMZY05FAY98m8qV81Yx+oVfWZiaY2hozmjpjgIG2zYD0CFp4imOFqLpSjuNBMBv/wqDI3Ehe/SEZ1FVIoAkPE5KEh7hFFahL5o3XNuKCZu9Pbe4gts/3SBJzwl+2biLftoeAEzdxhkcjWhPghL1Op6Y8lSolvXMTqmmEjL15HDh0T54mDR6S8GyU5KERxjOalM88LsHR5QPIVopiVqm/ba6Aa0589NkeKtWeVUNpTuW4qHZqAyIgeCuRock2pFeSQPJUR3wppqD25YZHY7zy14D1eVUeoexXUUTHxGAxdNsdFSiAZLwCMOtyShkX0k1q2x6d/BoU6rD7QrIKa5gTUahAdE5n0Xb8hmuNgLg1UuGs0TL8rd4kmYZAMDhLf8zOBoXUDuctTtgMKDJcJYTk4RHGC7/SAUAK2xJAIys3QyzsePc3fcpBxhr0ut3tB4TDI5GtEdHovQ6Hp99UsdzSrUFy8tr379kSwnnJQmPMFx4gL51SF3CM9S0HW+qGj3OnRWXV7Nn5xbiTHkokwfEjjE6JNEOBSbqPYedju6AMtnfrlHlhXBA7239qrAnAP1kSrrTkoRHGG5oXAeigizsUZ3IU8FYtGoGmXbab9eAqCALQ+M6GBekk/h5ay4jqO3d6TIULFIcKVpe39692WaLxoSifPsio8NxXhlLAUVVh17sqgjAy2yiV2SA0VGJRkjCIwxnNmnMvjAR0Fhh6wvAWNMWh2NmX5iI2SRrzczffGw4ix6ynYRoHR0DvNnkPQiA4i0LDI7GidUOZ+3roK8j1jsqAC8P+Vh1VvKXEU5hSlIUb189kBTvIQCMM6XYb5v7pySmJEUZFJnzKDhSyepducdqnLpL/Y5oPcWd9OUOAvYv07dOEI6UshcsrzMlA1K/4+wk4RFOY0pSFE/eOxOFRm9TNuMi9TqeAilWBuCnLTn0YxcB2lHwDYWoZKNDEu1YaO9xlCtv/KsPQV7qqe/gbgr3QFEWmDz5qaQ7IPU7zk4SHuFUzP6haJ31rvR7Y7MB+GbDfmyyBg/zNx1grLl2OKvbWWCSl69oPYN6RLKydqmI6h2yzUQ9tb07KnoY63MqAenhcXbyjimcTw99hki/irUEWDzYX3SUP3a790yR/UVHWbf3MOPq6ne6S/2OaF2xob6s9xwIwNFtPxscjRNK14u5C6NGc6SyBm8PEz3D/Q0OSpyMJDzC+fTUl7Y3ZyxlWr9wAL5an21kRIb7YdMBQiihrylDb5CER7QyTdM40mU8AH5566DyiLEBOZPqitoZWrDJMhSAPp0C8TDLR6ozk7+OcD6dBoBPCFQWc230QQAWpuZSfLTa4MCM8/2mA4w2pWJCQXgfCJQibtH6YuP7stcWjlnVQMZyo8NxHll/QHU5BESxoiQSgH5dgo2NSZySJDzC+ZjM9h6MHiWr6BnuT2WNjR82HzA4MGPsLihl64ESxpprp+rLdHTRRobEhrDU1h8AtUvW47FLr61p6jGRLQeKAdkh3RVIwiOcUw99WEvbtYhLB3cB4Kt1+4yMyDDzNx0AFBO9amfKyHCWaCOJUYGsMun7alXv+EWmp9dJ1/cYs/Y4h9T9JYAkPK5AEh7hnOo+1HNSuCjeE7NJIyW7iF357lVHoJRi/qYD9NEyCbEeAk8/iBlldFjCTXiYTVR0GUmVMuN1JEufiu3uCvfAoV1g8iAjcAhHq634eZmJC5OCZWcnCY9wTgERENkPgI55f3BWr46A+/XypOWUsLugjEkeKXpD97PAw9vQmIR76detM+tsvfQr6TI9vW52Fl1HsDHPCkCfzkGyErwLkIRHOK/a2VrsWsSlg6MB+M/G/dRYbQYG1bbmb8oBYKpvbf1O/GQDoxHuaEhsB36rreMhXaan1w1n0fMctuyvrd/pLMNZrkASHuG8atfjYddizo4PJdTPi4IjlSzdWWBsXG2kbjgrjGLiKrfrjT0nGRuUcDvJ0cH8pvTFQFXmCveenl59FDJrZ6v1OIfN+/SERxYcdA2S8Ajn1WUoWILhaCGeB9YxbUBnwH2GtTZkFbG/6CiTvWoXG4xKhoBIQ2MS7sfP2wOfqAQybRFo1ir7hpluKXMF1FRAYBeqQ3uRllNXsBxsbFyiSSThEc7L7HGsR2PnAvtsrcXb8ygsqzIwsLahz86Cy4LS9Ib4KQZGI9zZ4LhQFtv0VZfZudDYYIx03HDWzvxSqmpsBFg8iA31NTYu0SSS8Ajn1utc/d8dC0iIDKRv5yCqrYr/btxvbFytzGpT/LA5B09q6HN0nd4o9TvCIENiQ1hkT3h+BpvV2ICMoBTsWKD/3HMSW/YdW39H06Rg2RVIwiOcW48JYPKAgzvh4K5ja/Ksb9/DWqv2HOJgaSVn+6TjUVMGfuGyO7owzODYDqy19aJE+UL5Qdi/3uiQ2l7uFijOBg8f6DaeTXX1O7JDusuQhEc4N0sQxI7Wf965gKn9O+FlNrEtp4TU2hkS7dH3Kfpw1jWhO/SG+EmyO7owTJi/N13Dglhq05eKsPd0uJMdP+n/dj8bvHzZsr8IkAUHXYm8gwrn1+s8/d8dCwn29eKcPhEAfN1Oe3mqamwsSM0BFIMqV+uNUr8jDDY4NoRFVjeu49n+o/5vwnlUVFvZkavPVusrU9JdhiQ8wvnVfdhnrYTyQi4dpA9r/TdlP5U17a+WYNnOAkoqahjmX4DPkb1g9oJu440OS7g5fT2eZKyYID8NDu81OqS2U5QNuZtBM0H8FHbkHqHaqgjx9aRLiI/R0YkmkoRHOL+QGIhIAmWF9F8Y07MjkYEWisqrWZSWb3R0LW5+7Sapt4XXzs7qNh68A4wLSAj0hKcYf9bXrbq8040WIawbwoseBn5hbK5bcLBLsBQsuxBJeIRrqOvl2fETZpPG9IG1a/KszzYwqJZltSmW7shnwRZ9deWhlX/oN/S+0MCohNDFhPoS5u/NL1Z9M1F2/GhsQG2p7netHV7fsq8IkPodVyMJj3ANdXU8uxZDTSWX1A5rLdtZQG5xhYGBtYyFqTmMfuFXrvtgLVVWRRetAL9DqShMx353IQykaRpD40L4n22w3pCxHMoLjQ2qLRwt0hccBEg4H+DYCstSv+NSJOERrqHTAPCPhKojsGcp3Tr6MzgmBJuC/2x07eLlhak53P7pBnKOS9wmm9YCsNrWi4UZ1UaFJoSDwTEd2KsiyfLspg8x181cas92LQJbDYT1gtDuHK2ykp5fCsgKy65GEh7hGkwmSJyq/5z2HYB9TZ6v1+1DKWVUZGfEalPMmZ/GidFPMuuLDf5sHcKc+WlYba75+4n2ZUhsBwC+r67t5Un73sBo2shxs7MA0nKKsdoUHQO8iQj0NjAw0VyS8AjXkfgn/d/tP4C1mvP7dcLH08yeg2VsyDpsbGynaU1GoUPPDkAYxQzR9PV3FlqHkFNcwZoMNxg6EE6vd1QAfl5m/ltZm/Ds/hUq2u96WFQfPbadRK/zsdqUfY2s6GAf5HuIa5GER7iOriPAryNUFEHGUvy9PTi3r76ZpqtuKJp/pH790UTzekyaYpOtGzmENnqcEG3Nw2xiYEwIu1QXiv3iwFbdvmdr7VoMVaUQ2IWFRZ0Z/cKvfLRSn46/IbuI0S/8ysLUHIODFE0lCY9wHSbzsRlLdcNag6KB/2/vvsOjqNYHjn93N9k0kkAgFUJC6BBaqAGRFiAgCFZQKbGAIl7her2o96cCogJeBcSCXMVEEUEQKXIp0kK7gHSpAUJCTQiBQJppu/P7Y8jikkB6drN5P8+zDzuzZ2bes8Nm3z1z5hxY80cCmTl5loqs1LxcHQusC7/df2eDoeN9ywlhCR0C1MtaW7RdALi+b5ntXnI9sRKAeO8+jFt0qEBrbOKtLMb9cFCSnipCEh5RtbQYqv57cg0Y8ujcwIP6Hs6kZ+ex/liiRUMrjU4NPPB1v5PMuJJJV+0xADYYO6ABfN0d6dTAw0IRCmEuv7/c18mtAHC+EE3YjLW296Wf+6dp/J3345sV6GcHmNZJP7uqQRIeUbUEdAPn2vDnDYjfgVarMd2iXhUva+m0GiYPbmFa7qfdj15j4IyxLucUdayhyYNboNPK4GbC8tYfS+DTzWcAOKEEcN7ohZMmh+bpe22vpeP25axsZ182pdW/ZzEFpJ9dFSEJj6hadHbQbJD6/PZlrcfa10Ojgd3nrnPxRqYFgyud8GBfvF3Vuz0e1qmDDf5qCMXH3ZF5I0IID/a1ZHhCAIXdUahhnbETAAN06pxvNtXScfty1kXffkDRPzikn531k4RHVD0th6r/nvwVjAbq1nSiW8M6QNWcUDQ+OYOradl4aVPpbnccgF6Pj2PnG70l2RFWo7A7CtcZ1ISnt/YQjmTZTktHbhbEqBOk/tm4eCOdSz876ycJj6h6AruDUy3ITDaNgGoak+fAJYxV7Bfm1hh1PrCXPI+hVQzg25Z27TrIZSxhVQprwTiiNOS80QsXTTZ9tQfvWa7Kid0MOWkobvVYkXT/Hx3Sz67qkIRHVD06+ztj8hxdCkD/lj64Otpx+eaffLszjlWHL7M79nqVaF7fckpNeAZobs+dFfyYBaMRonCFt2BoWGXsCsAQ3a77lKtiji4DYId9N779351Z4e/+CZK/LP3sqgZJeETV1HqY+u+J1ZD7J472Otr61wTg/bUnmbDkME99vcfqx8nIyM5j77kb+HAdn5uH1JXBj1o2KCEKkX9H4d1f66sM3QB4UPsHzdxyqn5LR9YtlNt3Z8280hqtBv79eGu+GhGCj7t5Mif97KoWO0sHIESp+HcB9/pw6wLErGM9oew4k1ygWP44Gdb6R+l/sdfJMRgZ4XoATa6iDq7oXs/SYQlRQP4dheN+OIiGO7dkxyp1OWoMpJU2nld9j6PTPmLJMMss5+hK9HlZnDbW5bS2AV8MD2FAK/VvR98WPvwed4OktCy8XNXLWNKyU3VIC4+omrRaaP0EAMofPzH11xOFFrP2cTLyL2c9YrdbXSGXs4QVCw/2ZV4hLR3reAAA7/jV7I+vup2W07JyOb3xGwDW0J1vRncyJTugJn2hDWszpG1dQhvWlmSnipEWHlF1tXoSdnyCcmYTWX8OBdwKLfbXcTJCG9auzAjvS1EUomOSaKy5RN0/Y0BrBy2r9q9jYfvCg30LtHS0r9UG49xFtNfEMPC7tXz+8lCCPGtYOtQSuZGRw+tfr+HbnD8ACHvyFVo38bRwVKI8SQuPqLq8moFvG7RKHg/dHgfkfqzt7pFTiWkk3MriKftt6oom4eBSx7JBCVEMd7d06D3qoQR0B6BXzjYiIvdxPT3bwlEWX+KtLJ6cv5um19R5wTJ8u9A6uJWFoxLlzaoSHkVRePfdd/H19cXJyYmwsDDOnDlT7O1nzJiBRqNh4sSJFReksC63Oy8/qttRZFFru3tka0wSduTxmJ16dwttn7FsQEKUga7tcACe0m/nwo0MXvh+P1m5BgtHVbTz1zN4/Kv/cTYpjSf06mfRpaN8Fm2RVSU8H330EXPnzuWrr75i7969uLi40L9/f7Kyiv5lvm/fPubPn0/r1q0rIVJhNYIfR9HoCNGepZHmcqFFrHWcjK2nkuipPYK78aY6C3zjvpYOSYjSazEE9K7UUxLp43iGQxduMnHJYavqO2cwKuyOvW4atuLElVSe+Go3l1L+pF/NBIKUi6BzuDPshbApVpPwKIrCnDlzePvttxkyZAitW7fm+++/58qVK6xcufK+26anp/PMM8/w9ddfU6tWrcoJWFgHV280TfoDMFy35Z4DwFvbOBk3M3M4cD6FJ3S3L2e1HqaOLyREVeVQwzSkwsygw+h1WtYfT+TDtSctHJhq/bEEHpi5hae+3mMatuKhz3aQlJZNMx9XPm2i9t2h+SBwdLdssKJCWE3CExcXR2JiImFhYaZ17u7udO7cmd27d9932/Hjx/PQQw+ZbXs/2dnZpKammj1EFdY+AoBRzrvxd9OZveRkr7PKW9K3n0mmlnKLPrrbY+/I5SxhC0JGA1DnwnrmDG0AwIKdcUTtirNkVKw/lsC4Hw4WmBrj9sTvvBTqjdOpFerC7b8nwvZYzV1aiYmJAHh7e5ut9/b2Nr1WmCVLlnDw4EH27dtX7GNNnz6dqVOnljhGg8FAbm5uibcTKr1ej1ZbATl2ozBwq4s+9TLRj6az16UXe+OuM2fTGRRF4YHG1nenxdZTSQzV7cIOA/i1A+8WRW8khLWrGwJeLSDpBAOVHUwK78VH62OYuuYEfjWd6NfSp9JDKjjpqTkNcHzjdwzNSwOPIHXqGmGTLJbwLFq0iBdffNG0/N///rfE+7h48SITJkxg48aNODoWv0PqW2+9xWuvvWZaTk1Nxd/f/57lFUUhMTGRmzdvljhGcYdWq6VBgwbo9fpy3rEO2o2AbTPRHowiNOJxugR5sOrwFeKSM1h3NIEnOtz7/FY2g1FhW0wSy3Sb1RXtRlg2ICHKi0YD7UbChrfg0ELGjX2Bizf+ZPHvF3h1ySGWjA2lVV33Sh28r7BJT/9KAQbmbFCvd4SMUusgbJLFEp6HH36Yzp07m5azs9VbGK9evYqv753LD1evXqVt27aF7uPAgQMkJSUREhJiWmcwGNi+fTuff/452dnZ6HS6Ats5ODjg4OBQ7Fjzkx0vLy+cnZ3RyAeixIxGI1euXCEhIYH69euX/3vYbgRs+wjid8D1WDS1G/JYSF0+/u00yw9esqqE58ilmzTLOkRDfQKKvgaa/GkyhLAFrYfBpsmQcARNwmGmDWlDwq0/iY65xsgFe3G013Et7c4t677ujkwe3KLCLjsXNRxFU80F2mnPYtTYoZVLyzbNYgmPq6srrq6upmVFUfDx8WHz5s2mBCc1NZW9e/cybty4QvfRp08fjh49arbu2WefpVmzZrzxxhuFJjslZTAYTMlO7drWM2hdVeTp6cmVK1fIy8vD3r6cO+jWrA+N+sDZTXAgCvpN45GQenyy8TR7zt3g4o1M/D2cy/eYpbT1VBKjdBsB0LQZDg6uRWwhRBXiUhuaPwzHfobfv8Fu6Bd8/nQIA+Zs52LKn6Rl5ZkVr+jpX4oajmLk7c9iin8fatfwKvfjC+thNZ2W88fPef/991m9ejVHjx5l1KhR+Pn5MXToUFO5Pn368PnnnwNq0hQcHGz2cHFxoXbt2gQHB5dLXPl9dpydrePLsirLv5RlMFTQ2Bztn1X/PbQQcjKpW9OJ0CA1SV1xqPBb1i3hjxMn6Kvdry50fMGywQhRETrf7q5wdBlkJONkryM7z1ho0Yqe/iV/0tPCuJHOo7qdANTsMb7cjy2si9UkPACTJk3ib3/7G2PHjqVjx46kp6ezfv16s/45sbGxJCcXnCSyosllrLKr8Pew6QC1pefPFPhjCQCPhagTcf5y8BKKYvnxQJJSs2ifvBKdRiHHvxt4Nbd0SEKUv3od1c74hmw4EHW7z869R17+6/Qv5U2n1fCvgc0Kfe0p3VacNdmkujdFF/RguR9bWBerSng0Gg3vvfceiYmJZGVlsWnTJpo0aWJWJj4+nilTptxzH9HR0cyZM6diAxXWSauDzi+pz/fMA6OR8GAfnPU64q9ncuB8imXjA3acuMhTui0A6LuMtXA0QlQQjebOZ3HfAq7dSivWZhU1/Uvq7ctof+0brcNAhL16OcutxyvSWbkasKqEx5bdPcKnNY0+alPajQS9KySfhnNbcHGwY8DtfgHLD16ycHCQtX8RnppUUh18odkgS4cjRMVp+Yg6gnjaFZqlbCvWJhUx/Uuuwci86FgA/u+h5iwe04VPh7dlbb9UfEkGJw9o9US5H1dYH0l4KkFhI3w+MHML648lVOhxIyIi0Gg0aDQa7O3t8fb2pm/fvnz77bcYjYVfTy9MVFQUNWvWrLhAy5Oj253bvHd/CcBj7esCsOZIgkXn9snJyeWBa4sBSGv3IuisZhgsIcqfnQN0eB6AxmcX4OvmcM+R0Cty+peVhy5zKeVP6tTQ83SnAHXS0zZ+NI37Xi3Q4Vmwdyr34wrrIwlPBbvXCJ/5dyZUdNITHh5OQkIC8fHxrFu3jl69ejFhwgQGDRpEXl5e0TuoijqPBY0WYjdDwhG6NKhN3ZpOpGXn8duJqxYL69zOnwjQJHKTGvj2HGOxOISoNJ3Ggr0zmoQjfNZJ7Z9TWNKjUDHTvxiMCl/ebt0Z0z0IJ/3tO3fjd8LFveq8WZ3k0nJ1IQlPKSiKQmZOXpGPtKxcJq8+XugIn/nrpqw+QVpWbrH2V5pOtw4ODvj4+FC3bl1CQkL417/+xapVq1i3bh1RUVEAzJo1i1atWuHi4oK/vz8vv/wy6enpgNon6tlnn+XWrVum1qL8PlQLFy6kQ4cOuLq64uPjw9NPP01SUlLJ39Dy5hEEwY+pz7d9hFar4dEQtZVn+QELXdZSFFwPfAHAPs/H0DrWsEwcQlQml9qmuyc7XIxi3ogQfAq5Y6pzA48KuSV9zR/q4KM1ne0Z0SXgzgs7Plb/DRkJrpU/+rOwDGlTL4U/cw20eHdDmfejAImpWbSa8luxyp94rz/O+rKfst69e9OmTRt++eUXXnjhBbRaLXPnzqVBgwacO3eOl19+mUmTJvHll1/StWtX5syZw7vvvktMTAwANWqoX9a5ublMmzaNpk2bkpSUxGuvvUZERARr164tc4xl1v11OPoznFoDV4/zWEggn205y44z17iamoW3W/n3Fbivc1upm3GCLMUejfyiFNVJ11fg9//A+V2E9zlP3zd6m0ZaTsvK4+2Vx9gbd4NDF1JoV7/8Jn82GhU+33IWgOe7NcDF4fbfzkv74Vw0aO2g24RyO56wftLCU001a9aM+Ph4ACZOnEivXr0IDAykd+/evP/++yxduhRQx85xd3dHo9Hg4+ODj4+PKeF57rnnGDBgAEFBQXTp0oW5c+eybt06U+uQRXk1gxYPq8+3f0xgHRc6BNTCqKjX9CuVopC9QZ27bbExjE6tmlbu8YWwJDc/aPuU+nz7v9FpNWo/mrZ1GdElgMfbq0NHTP31BMZyvJljw/FEziSl4+pox+hugXde2H67daf1MHUYC1FtSAtPKTjZ6zjxXv8iy/0ed4OIyKInNY16tmOxOus52Zd95Oh8iqKYxsXZtGkT06dP59SpU6SmppKXl0dWVhaZmZn3HXDxwIEDTJkyhSNHjpCSkmLqCH3hwgVatLCCyTAf/CecWAXHV0CPSTzWvh77z6ew/OAlxj4YVHljK8WswyHpMJmKA7v9RvOsYzmPMi2EtXvg73D4R3Uk9PidEPiA6aVJ/Zuy7mgChy/eZNWRyzzSrl6ZD6coCp/dbt15tmsgbvmfuYv74PQ6tY/fA38v83FE1SItPKWg0Whw1tsV+eje2BNfd8ci70zo3tizWPsrzy/okydP0qBBA+Lj4xk0aBCtW7dm+fLlHDhwgC++UPua5OTk3HP7jIwM+vfvj5ubG4sWLWLfvn2sWLGiyO0qlU+r27d+K7BxMg+19sXBTsvpq+kcu5xaOTEYjbD1AwAiDf3p0LJJERsIYYM8gqB9hPp842T4S39ELzdHXu7VCIAZ606RkV32mym2nEriREIqLnodz3ZroK5UFNj4rvq87dNQp3GZjyOqFkl4KpBOq2HyYLWl4+5UJX+5Iu5MKMqWLVs4evQojz32GAcOHMBoNPLJJ5/QpUsXmjRpwpUrV8zK6/X6AtNBnDp1iuvXrzNjxgy6d+9Os2bNrKPD8t3CpqrX6s9swO3K/+jXUu2gWGlj8hxbDlePkaY48Z+8QfRqKnP1iGrqwUlg7wKX98PJX81eev6BBvh7OHE1NZuvtsWW6TCKojD3duvOiNAAarmoU9oQsw4u/A/sHKHnv8p0DFE1ScJTwcKDfQu9M8HH3bHCJsv7q+zsbBITE7l8+TIHDx7kww8/ZMiQIQwaNIhRo0bRqFEjcnNz+eyzzzh37hwLFy7kq6++MttHYGAg6enpbN68meTkZDIzM6lfvz56vd603erVq5k2bVqF1qVU6jSCDs+pz397m8faqe/3qsOXybnH3D7lJifD9ItyXt5gXGt50shL7s4S1ZSrN4Tenq9q83uQd6cl2NFex/8NVKdZmb/9HBdvZJb6MDvPJnPk4k0c7bWM6R6krjTkwaYp6vMu48C9bqn3L6ouSXgqQXiwLzvf6G0a4XPxmC7sfKN3hSc7AOvXr8fX15fAwEDCw8PZunUrc+fOZdWqVeh0Otq0acOsWbOYOXMmwcHBLFq0iOnTp5vto2vXrrz00ksMGzYMT09PPvroIzw9PYmKimLZsmW0aNGCGTNm8PHHH1d4fUqlxxvg4AaJf/Bg5ia8XB1Iycxla0wFt0jtnA1pV7ih92WBYSC9mnrJnGyieuv6N3X05etnYM+XZi/1b+lDaFBtcvKMzFh3qtSH+Gyz2rrzVKf61KnhoK7c9w0kx6ijKkvfnWpLo1jDjIoWlpqairu7O7du3cLNzc3staysLOLi4mjQoIHZJKai5Cz6Xu6cA5smg5MHc5r9yJzdN+jXwpv/jOpQMce7HgtfhoIhm7fs32BxWhsiIzrSq5lc0hLV3OHFsPIlsHeG8XvN7pQ6mZDKQ3N3YFTgp7Fd6BxUu0S73nPuOsP/swe9Tsv2Sb3UlvXUK/B5J8hJg0Gz77T4Cptwv+/vu0kLj6geQseDV0v48wbPZnwDwNaYJG5kVEAHa6MRVv8NDNlk1HuQxWmtcbDT0qWEf7yFsElthkP9rpCbCWsnmXVgbu7rxvBOagI09dcTJZ5zMH/cnSc71rvTjWDdG2qyU68ThESUSxVE1SQJj6gedPbw8FxAg/vpn3nWM4Zcg8LqwxUwJs++b+D8LrB3YUXdSYCGrg1r3xnWXojqTKOBQbNAa6/eIn54kdnL/+jbBFdHO04kpLJs/8Vi7/bghRR2nk3GTqvhpR4N1ZV/LIOTq0GjU1t3tPKVV53J2RfVR70O0OVlAN7ImosnKSw/WM4JT9JJ9dIZQN+prL6gDnXVWy5lCXGHV3Po/X/q83VvQEq86aXaNRyY0Ee9ZfzfG2JIzcot1i4/23wGgEdD6lKvljPcvAD/fU19scck8Akut/BF1SQJj6hewiaDdyscc1OYo5/H8cspnL6aVj77zk6HpaPUpvqgXtxqOYoD51MA6Cm3owthruurUD8UctJh6WjI/dP00qjQQII8XbiekWO6THU/xy7fYmvMNbQaeLlnI8jLhuUvQHaqeimr++sVWRNRRUjCI6oXOwd4fAHYOdFNe4y37X4onwlFjUZYNR6ST4OrHzz2DTtir2MwKjT2qoG/x71HrBaiWtLq4JH56p1TCYfh1wmm/jx6Oy3vPKSOYRa5K4645Iz77uqzLWrrzsNt/Ais7QxrXlNnQ3dwg0fng04mFRCS8IjqyLMpPKKONfSc3Xp0+78mz1CGMXkUBTb8C06sVPslPP4tuNRhyyn1tne5M0uIe6gVAE9EqX1s/vgJomeYXurVzIueTT3JNSh88N8T99xFTGIaG45fRaOBV3o3UoeDOPyDOn3E45HqKM9CIAmPqK5aDiWv1zsATDIuIHbdp6Xbj6KoU0fsnacuP/IVBIRiNCpsi7kGIKMrC3E/QT1gwEz1+bYZsOMT00tvP9QCO62GTSeT2H76WqGbf75VveQ1MNiXRmciYbM6US/9PoDGYRUauqhaJOER1Zbdg/9gt9cwAJrunwLbPlIvTRWXIRd+fRW2/1td7v8htHocgD8u3+J6Rg6uDnZ0CKxVzpELYWM6jYGwKerzze/BujfBkEcjrxqMDA0AYNqaEwVaYmOvpbPmjytoMDLV5WfYqP6IocebEPpyJVZAVAWS8IjqS6OhxuCP+DLvYXV56wfw4xOQllj0tsln4dtwOPi92nQ+aPadYfPBdDmre5M62OvkYyZEkR74O/S5fYfj3nmwcCjciGNinybUcrbnTFI6i/ZeMNvky62x+CnXWFNzNnUOq5Me0/Nf0Outyo1dVAnyl7ga6tmzJxMnTrR0GFYhuJ47K2u/wD9zx5KndYCzm2BuCGyaanarLKBevko6Cf99Hb7sok6C6OAOw34oMHpr9O1pK+RylhAl0P01ePJ7dZLR+B3wZRfct73DlK7qBKCzNp4mOS2b3bHX+XlDNM3+mMlGh0m0zDqgTgr66NfQ8w0LV0JYK+m6bsMiIiL47rvvCqzfu3cvzZs3Ny0HBgYyceLEapkEaTQaHgupx/R1Pcmr2ZbZzpFwaR/snKU+agWqQ98bjXDjHKT9ZSb5RmFqy85fhsYHSErL4o9LtwDo0dSzEmsjhA1oMQS8g9W7tuJ3wN55DGEeXZw8ic3z5OzHGvy5Sqgm2fQNdqNOBzyGz1cnCxbiHiThsXHh4eFERkaarfP09ESnk1F/8z3Sri4z159ixZWavPqPlTS4tgX2fQ3xO9VWnr+29GjtoEm42ucgqGeh+4u+3Vm5dT13vFxl/jUhSqx2Qxj9K8RugT3z4Fw03sZreOvudFzOVXTsMgYTZejPtkttmJfoQngdC8YsrJ4kPKWhKOrgcpXN3lkdlr0EHBwc8PHxMVvXs2dP2rZty5w5c+jZsyfnz5/n73//O3//uzqLcHWbT9bLzZHujT3Zdvoavxy6zD/6PQwtHoasW3DlMKRfVccMqeEDfu1AX/iYOgajwu9xN/hx73kAejSR1h0hSk2jgUZ9oFEfDH/eYvys73HIuIKChkTFg1NKfVJxUYuizr3Vt4UPOm3J/kaK6kMSntLIzYQP/Sr/uP+6AnqXct3lL7/8Qps2bRg7dixjxowp131XJY+1r8e209dYvPcCDT1r4O3mSKcGHuiCehRr+/XHEpj66wkSbmWZ1v249wIt/dwID/atqLCFqBZ+v5LH+rQgoPAxdRQg4VYWv8fdILShTNIrCicJj41bs2YNNWrUMC0PGDDA7HUPDw90Oh2urq4FWoKqFUVBAyRn5DDxp8MA+Lo7MnlwiyITlvXHEhj3w0Hubhe7kZHDuB8OMm9EiCQ9QpRBUlpW0YVKUE5UT5LwlIa9s9raYonjllCvXr2YN2+eadnFxYWnnnqqPKOq8tYfS2DCksMFEpbEW1lFJiwGo8LUX08U2BbUX53S1C5E2RW3L5z0mRP3IwlPaWg05X5pqaK4uLjQqJHcuXAvRSUsAP+34hguejvyjArZeUZyDEZy8tRHTGKq2WWswvYhTe1ClE2nBh74ujuSeCur0M+qBvBxVy9DC3EvkvAI9Ho9BoPB0mFYxO9xN+6bsABcz8hh5Le/l+k40tQuROnptBomD27BuB8OogGzpCe/3XTy4BbSiiruSwYeFAQGBrJ9+3YuX75McnKypcOpVMVNRHzcHAiu60ZI/Zp0CfLgwSae9G3hTZeg4v2ilKZ2IcomPNiXeSNC8HE3/yz5uDtKPzlRLNLCI3jvvfd48cUXadiwIdnZ2dXqtvTiJiKzh7Ur9JKUwajwwMwt0tQuRCUID/albwsffo+7QVJaFl6ut++mlJYdUQyS8NiwqKioQtdHR0ebLXfp0oUjR45UfEBWqKx9A6SpXYjKpdNqpD+cKBW5pCWqtfyEBe4kKPmKm7BIU7sQQlg/aeER1V5+wnL3wIE+xRyHJ38f0tQuhBDWSxIeISifhEWa2oUQwnpJwiPEbZKwCCGE7ZI+PMVUne5cqijyHgohhLAUSXiKYG9vD0BmpgVmR7cxOTk5AOh0OgtHIoQQorqRS1pF0Ol01KxZk6SkJACcnZ3RaKQjakkZjUauXbuGs7Mzdnby304IIUTlkm+eYsifRTw/6RGlo9VqqV+/viSMQgghKp0kPMWg0Wjw9fXFy8uL3NxcS4dTZen1erRauYoqhBCi8knCUwI6nU76nwghhBBVkPzcFkIIIYTNk4RHCCGEEDZPEh4hhBBC2Dzpw8OdAfFSU1MtHIkQQgghiiv/e7s4A9tKwgOkpaUB4O/vb+FIhBBCCFFSaWlpuLu737eMRpHx/jEajVy5cgVXV9dyHyMmNTUVf39/Ll68iJubW7nu2xpI/ao+W6+j1K/qs/U6Sv1KT1EU0tLS8PPzK3LYE2nhQR0Qr169ehV6DDc3N5v8j5xP6lf12XodpX5Vn63XUepXOkW17OSTTstCCCGEsHmS8AghhBDC5knCU8EcHByYPHkyDg4Olg6lQkj9qj5br6PUr+qz9TpK/SqHdFoWQgghhM2TFh4hhBBC2DxJeIQQQghh8yThEUIIIYTNk4RHCCGEEDZPEp4K9MUXXxAYGIijoyOdO3fm999/t3RIRSpJzF9//TXdu3enVq1a1KpVi7CwsALlIyIi0Gg0Zo/w8PCKrkaJlKTOUVFRBerj6OhYidEWrST16dmzZ4H6aDQaHnroIVOZqnAOC7N9+3YGDx6Mn58fGo2GlStXWjqkYilp3L/88gt9+/bF09MTNzc3QkND2bBhg1mZKVOmFDiHzZo1q8BaFF9J6xsdHV3o/9nExMTKCbgIJa1PYZ8vjUZDy5YtTWWs+fzdz/Tp0+nYsSOurq54eXkxdOhQYmJiLBaPJDwV5KeffuK1115j8uTJHDx4kDZt2tC/f3+SkpIsHdo9lTTm6OhonnrqKbZu3cru3bvx9/enX79+XL582axceHg4CQkJpsfixYsrozrFUprz5ObmZlaf8+fPV2LE91fS+vzyyy9mdTl27Bg6nY4nnnjCrJw1n8N7ycjIoE2bNnzxxReWDqVEShr39u3b6du3L2vXruXAgQP06tWLwYMHc+jQIbNyLVu2NDuHO3furIjwS6y05ykmJsasPl5eXhUUYcmUtD6ffvqpWT0uXryIh4dHgc+gtZ6/+9m2bRvjx49nz549bNy4kdzcXPr160dGRoZlAlJEhejUqZMyfvx407LBYFD8/PyU6dOnWzCq+ytrzHl5eYqrq6vy3XffmdaNHj1aGTJkSHmHWm5KWufIyEjF3d29kqIrubKew9mzZyuurq5Kenq6aZ21n8PiAJQVK1ZYOowSK23cLVq0UKZOnWpanjx5stKmTZvyC6yCFKe+W7duVQAlJSWlUmIqi9KcvxUrVigajUaJj483rasq568oSUlJCqBs27bNIseXFp4KkJOTw4EDBwgLCzOt02q1hIWFsXv3bgtGdm/lEXNmZia5ubl4eHiYrY+OjsbLy4umTZsybtw4rl+/Xq6xl1Zp65yenk5AQAD+/v4MGTKE48ePV0a4RSqPc7hgwQKGDx+Oi4uL2XprPYeiIKPRSFpaWoHP4ZkzZ/Dz8yMoKIhnnnmGCxcuWCjC8tG2bVt8fX3p27cvu3btsnQ45WbBggWEhYUREBBgtt4Wzt+tW7cACvzfrCyS8FSA5ORkDAYD3t7eZuu9vb2t5jrz3coj5jfeeAM/Pz+zL9zw8HC+//57Nm/ezMyZM9m2bRsDBgzAYDCUa/ylUZo6N23alG+//ZZVq1bxww8/YDQa6dq1K5cuXaqMkO+rrOfw999/59ixY7zwwgtm6635HIqCPv74Y9LT03nyySdN6zp37kxUVBTr169n3rx5xMXF0b17d9LS0iwYaen4+vry1VdfsXz5cpYvX46/vz89e/bk4MGDlg6tzK5cucK6desKfAZt4fwZjUYmTpxIt27dCA4OtkgMMlu6KBczZsxgyZIlREdHm3XiHT58uOl5q1ataN26NQ0bNiQ6Opo+ffpYItQyCQ0NJTQ01LTctWtXmjdvzvz585k2bZoFIyu7BQsW0KpVKzp16mS23tbOoS378ccfmTp1KqtWrTLr0zJgwADT89atW9O5c2cCAgJYunQpzz//vCVCLbWmTZvStGlT03LXrl2JjY1l9uzZLFy40IKRld13331HzZo1GTp0qNl6Wzh/48eP59ixYxbteyQtPBWgTp066HQ6rl69arb+6tWr+Pj4WCiq+ytLzB9//DEzZszgt99+o3Xr1vctGxQURJ06dTh79myZYy6r8jhP9vb2tGvXrsrXJyMjgyVLlhTrj6c1nUNxx5IlS3jhhRdYunSpWStrYWrWrEmTJk1s5hx26tSpytdFURS+/fZbRo4ciV6vv2/Zqnb+XnnlFdasWcPWrVupV6+exeKQhKcC6PV62rdvz+bNm03rjEYjmzdvNmsdsCaljfmjjz5i2rRprF+/ng4dOhR5nEuXLnH9+nV8fX3LJe6yKI/zZDAYOHr0aJWvz7Jly8jOzmbEiBFFHseazqFQLV68mGeffZbFixebDSlwL+np6cTGxtrMOTx8+HCVr8u2bds4e/ZssX50VJXzpygKr7zyCitWrGDLli00aNDA4gGJCrBkyRLFwcFBiYqKUk6cOKGMHTtWqVmzppKYmGjp0O6pqJhHjhypvPnmm6byM2bMUPR6vfLzzz8rCQkJpkdaWpqiKIqSlpamvP7668ru3buVuLg4ZdOmTUpISIjSuHFjJSsryyJ1vFtJ6zx16lRlw4YNSmxsrHLgwAFl+PDhiqOjo3L8+HFLVcFMSeuT74EHHlCGDRtWYH1VOIf3kpaWphw6dEg5dOiQAiizZs1SDh06pJw/f97Sod1XUXG/+eabysiRI03lFy1apNjZ2SlffPGF2efw5s2bpjL/+Mc/lOjoaCUuLk7ZtWuXEhYWptSpU0dJSkqq9PrdraT1nT17trJy5UrlzJkzytGjR5UJEyYoWq1W2bRpk6WqYKak9ck3YsQIpXPnzoXu05rP3/2MGzdOcXd3V6Kjo83+b2ZmZlokHkl4KtBnn32m1K9fX9Hr9UqnTp2UPXv2WDqkIt0v5h49eiijR482LQcEBChAgcfkyZMVRVGUzMxMpV+/foqnp6dib2+vBAQEKGPGjLG6pK8kdZ44caKprLe3tzJw4EDl4MGDFoj63kpSH0VRlFOnTimA8ttvvxXYV1U5h4XJv3357sfd9bc2RcU9evRopUePHqbyPXr0KLKew4YNU3x9fRW9Xq/UrVtXGTZsmHL27NnKrdg9lLS+M2fOVBo2bKg4OjoqHh4eSs+ePZUtW7ZYJvhClLQ+iqIoN2/eVJycnJT//Oc/he7Tms/f/RT2PgBKZGSkReLR3A5KCCGEEMJmSR8eIYQQQtg8SXiEEEIIYfMk4RFCCCGEzZOERwghhBA2TxIeIYQQQtg8SXiEEEIIYfMk4RFCCCGEzZOERwghhBA2TxIeIUS1ERUVRc2aNe9bZsqUKbRt27ZS4rlbYGAgc+bMqfTjRkREoNFo0Gg0rFy5sljbBAYGmra5efNmhcYnRHmQhEcIC/vrl41er6dRo0a899575OXlWTq0UivJF2dR4uPj0Wg0HD58uMBrPXv2ZOLEieVynIoUHR1tOsf3ekRHR7Nv3z7Gjh1rkRjDw8NJSEhgwIABxSq/b98+li9fXsFRCVF+7CwdgBBC/bKJjIwkOzubtWvXMn78eOzt7XnrrbdKvC+DwYBGo0Grrfq/Z3Jzcy0dQqnk5uZib29vWu7atSsJCQmm5QkTJpCamkpkZKRpnYeHB3q9vlLj/CsHBwd8fHyKXd7T0xMPD48KjEiI8lX1/yIKYQPyv2wCAgIYN24cYWFhrF69GoBZs2bRqlUrXFxc8Pf35+WXXyY9Pd20bf5lmtWrV9OiRQscHBy4cOEC+/bto2/fvtSpUwd3d3d69OjBwYMHzY6r0WiYP38+gwYNwtnZmebNm7N7927Onj1Lz549cXFxoWvXrsTGxpptt2rVKkJCQnB0dCQoKIipU6eaWqQCAwMBeOSRR9BoNKblorbLj2fevHk8/PDDuLi48MEHH5TofUxJSWHUqFHUqlULZ2dnBgwYwJkzZ+67zYwZM/D29sbV1ZXnn3+erKysAmW++eYbmjdvjqOjI82aNePLL780vZbfAvXTTz/Ro0cPHB0dWbRokdn2er0eHx8f08PJycl0zvMfer2+wCWtijg/xZWTk8Mrr7yCr68vjo6OBAQEMH369BLtQwhrIgmPEFbIycmJnJwcALRaLXPnzuX48eN89913bNmyhUmTJpmVz8zMZObMmXzzzTccP34cLy8v0tLSGD16NDt37mTPnj00btyYgQMHkpaWZrbttGnTGDVqFIcPH6ZZs2Y8/fTTvPjii7z11lvs378fRVF45ZVXTOV37NjBqFGjmDBhAidOnGD+/PlERUWZkpN9+/YBEBkZSUJCgmm5qO3yTZkyhUceeYSjR4/y3HPPleh9i4iIYP/+/axevZrdu3ejKAoDBw68Z0vR0qVLmTJlCh9++CH79+/H19fXLJkBWLRoEe+++y4ffPABJ0+e5MMPP+Sdd97hu+++Myv35ptvMmHCBE6ePEn//v1LFPf9lPf5Ka65c+eyevVqli5dSkxMDIsWLTJLXoWociwyR7sQwmT06NHKkCFDFEVRFKPRqGzcuFFxcHBQXn/99ULLL1u2TKldu7ZpOTIyUgGUw4cP3/c4BoNBcXV1VX799VfTOkB5++23Tcu7d+9WAGXBggWmdYsXL1YcHR1Ny3369FE+/PBDs30vXLhQ8fX1NdvvihUrzMoUd7uJEyealYmLi1MAxcnJSXFxcTF7aLVaZcKECYqiKMrp06cVQNm1a5dp2+TkZMXJyUlZunSp6b1yd3c3vR4aGqq8/PLLZsfr3Lmz0qZNG9Nyw4YNlR9//NGszLRp05TQ0FCz+ObMmaMU11/P+V8FBAQos2fPNi1X1PkpTjx/+9vflN69eytGo/Ge223dulUBlJSUlHuWEcJaSB8eIazAmjVrqFGjBrm5uRiNRp5++mmmTJkCwKZNm5g+fTqnTp0iNTWVvLw8srKyyMzMxNnZGVAvmbRu3dpsn1evXuXtt98mOjqapKQkDAYDmZmZXLhwwazcX7fz9vYGoFWrVmbrsrKySE1Nxc3NjSNHjrBr1y6zFgODwVAgprsVd7sOHToUuv1PP/1E8+bNzdY988wzpucnT57Ezs6Ozp07m9bVrl2bpk2bcvLkyUL3efLkSV566SWzdaGhoWzduhWAjIwMYmNjef755xkzZoypTF5eHu7u7mbb3Svusqqs83O3iIgI+vbtS9OmTQkPD2fQoEH069evnGolROWThEcIK9CrVy/mzZuHXq/Hz88POzv1oxkfH8+gQYMYN24cH3zwAR4eHuzcuZPnn3+enJwc05eXk5MTGo3GbJ+jR4/m+vXrfPrppwQEBODg4EBoaKjpUlm+v3auzd9HYeuMRiMA6enpTJ06lUcffbRAPRwdHe9Zx+Ju5+LiUuj2/v7+NGrUyGydk5PTPY9XHvL7Sn399ddmiRSATqczW75X3GVVWefnbiEhIcTFxbFu3To2bdrEk08+SVhYGD///HOp6iGEpUnCI4QVcHFxKfBlDnDgwAGMRiOffPKJ6a6rpUuXFmufu3bt4ssvv2TgwIEAXLx4keTk5DLHGhISQkxMTKHx5rO3t8dgMJR4u7Jo3rw5eXl57N27l65duwJw/fp1YmJiaNGixT232bt3L6NGjTKt27Nnj+m5t7c3fn5+nDt3zqw1yZqV5/vs5ubGsGHDGDZsGI8//jjh4eHcuHFD7s4SVZIkPEJYsUaNGpGbm8tnn33G4MGD2bVrF1999VWxtm3cuDELFy6kQ4cOpKam8s9//rNcWkTeffddBg0aRP369Xn88cfRarUcOXKEY8eO8f777wPqnVqbN2+mW7duODg4UKtWrWJtVxaNGzdmyJAhjBkzhvnz5+Pq6sqbb75J3bp1GTJkSKHbTJgwgYiICDp06EC3bt1YtGgRx48fJygoyFRm6tSpvPrqq7i7uxMeHk52djb79+8nJSWF1157rcxxl7fyep9nzZqFr68v7dq1Q6vVsmzZMnx8fIocuFEIayV3aQlhxdq0acOsWbOYOXMmwcHBLFq0qNi3Bi9YsICUlBRCQkIYOXIkr776Kl5eXmWOqX///qxZs4bffvuNjh070qVLF2bPnk1AQICpzCeffMLGjRvx9/enXbt2xd6urCIjI2nfvj2DBg0iNDQURVFYu3at2SWgvxo2bBjvvPMOkyZNon379pw/f55x48aZlXnhhRf45ptviIyMpFWrVvTo0YOoqCgaNGhQbnGXp/J6n11dXfnoo4/o0KEDHTt2JD4+nrVr19rE+E6ietIoiqJYOgghhBCWExERwc2bN0s8OnZ0dDS9evUiJSVFWn6E1ZNUXQghhOlOwTVr1hSrfMuWLYs9DYUQ1kBaeIQQoppLSkoiNTUVAF9f32LdcXb+/HnTgI5BQUFyqUtYPUl4hBBCCGHzJCUXQgghhM2ThEcIIYQQNk8SHiGEEELYPEl4hBBCCGHzJOERQgghhM2ThEcIIYQQNk8SHiGEEELYPEl4hBBCCGHz/h/HD52sBGsSWwAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a_obj = MyCosineAnalysis(label=\"Cosine experiment\")\n",
"a_obj.run()\n",
"a_obj.figs_mpl[\"cos-data-and-fit\"]"
]
},
{
"cell_type": "markdown",
"id": "6b1d19bb",
"metadata": {},
"source": [
"The first line will instantiate the class by calling the {code}`.__init__()` method.\n",
"\n",
"As expected this will save similar files into the `experiment directory`:\n",
"\n",
"```{code-block}\n",
"20230125-172712-018-87b9bf-Cosine experiment/\n",
"├── cos-data-and-fit.png\n",
"├── Cosine fit.png\n",
"├── dataset.hdf5\n",
"├── quantities_of_interest.json\n",
"└── snapshot.json\n",
"```\n",
"\n",
"## Extending the BaseAnalysis\n",
"\n",
"While the above stand-alone class provides the gist of an analysis, we can do even better by defining a structured framework that all analyses need to adhere to and factoring out the pieces of code that are common to most analyses.\n",
"Besides that, the overall functionality can be improved.\n",
"\n",
"Here is where the {class}`~quantify_core.analysis.base_analysis.BaseAnalysis` enters the scene.\n",
"It allows us to focus only on the particular aspect of our custom analysis by implementing only the relevant methods. Take a look at how the above class is implemented where we are making use of the analysis framework. For completeness, a fully documented {class}`~quantify_core.analysis.fitting_models.CosineModel` which can serve as a template is shown as well."
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "0909e0d6",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
classCosineModel(lmfit.model.Model):\n",
""""\n",
" Exemplary lmfit model with a guess for a cosine.\n",
"\n",
" .. note::\n",
"\n",
" The :mod:`lmfit.models` module provides several fitting models that might fit\n",
" your needs out of the box.\n",
" """\n",
"\n",
" def__init__(self,*args,**kwargs):\n",
" # pass in the model's equation\n",
" super().__init__(cos_func,*args,**kwargs)\n",
"\n",
" # configure constraints that are independent from the data to be fitted\n",
" self.set_param_hint("frequency",min=0,vary=True)# enforce positive frequency\n",
" self.set_param_hint("amplitude",min=0,vary=True)# enforce positive amplitude\n",
" self.set_param_hint("offset",vary=True)\n",
" self.set_param_hint(\n",
" "phase",vary=True,min=-np.pi,max=np.pi\n",
" )# enforce phase range\n",
"\n",
" # pylint: disable=missing-function-docstring\n",
" defguess(self,data,x,**kws)->lmfit.parameter.Parameters:\n",
""""\n",
" Guess parameters based on the data\n",
"\n",
" Parameters\n",
" ----------\n",
" data: np.ndarray\n",
" Data to fit to\n",
" x: np.ndarray\n",
" Independet variable\n",
" """\n",
"\n",
" self.set_param_hint("offset",value=np.average(data))\n",
" self.set_param_hint("amplitude",value=(np.max(data)-np.min(data))/2)\n",
"\n",
" # Guess frequency and phase using Fourier Transform\n",
" freq_guess,phase_guess=fft_freq_phase_guess(data,x)\n",
" phase_wrap=(phase_guess+np.pi)%(2*np.pi)-np.pi\n",
" self.set_param_hint("frequency",value=freq_guess)\n",
" self.set_param_hint("phase",value=phase_wrap)\n",
"\n",
" params=self.make_params()\n",
" returnlmfit.models.update_param_vals(params,self.prefix,**kws)\n",
"\n",
" # Same design patter is used in lmfit.models to inherit common docstrings.\n",
" # We adjust these common docstrings to our docs build pipeline\n",
" __init__.__doc__=get_model_common_doc()+mk_seealso("cos_func")\n",
" guess.__doc__=get_guess_common_doc()\n",
"
\n"
],
"text/latex": [
"\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n",
"\\PY{k}{class}\\PY{+w}{ }\\PY{n+nc}{CosineModel}\\PY{p}{(}\\PY{n}{lmfit}\\PY{o}{.}\\PY{n}{model}\\PY{o}{.}\\PY{n}{Model}\\PY{p}{)}\\PY{p}{:}\n",
"\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\\PY{l+s+sd}{ Exemplary lmfit model with a guess for a cosine.}\n",
"\n",
"\\PY{l+s+sd}{ .. note::}\n",
"\n",
"\\PY{l+s+sd}{ The :mod:`lmfit.models` module provides several fitting models that might fit}\n",
"\\PY{l+s+sd}{ your needs out of the box.}\n",
"\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\n",
" \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf+fm}{\\PYZus{}\\PYZus{}init\\PYZus{}\\PYZus{}}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{,} \\PY{o}{*}\\PY{n}{args}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)}\\PY{p}{:}\n",
" \\PY{c+c1}{\\PYZsh{} pass in the model\\PYZsq{}s equation}\n",
" \\PY{n+nb}{super}\\PY{p}{(}\\PY{p}{)}\\PY{o}{.}\\PY{n+nf+fm}{\\PYZus{}\\PYZus{}init\\PYZus{}\\PYZus{}}\\PY{p}{(}\\PY{n}{cos\\PYZus{}func}\\PY{p}{,} \\PY{o}{*}\\PY{n}{args}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)}\n",
"\n",
" \\PY{c+c1}{\\PYZsh{} configure constraints that are independent from the data to be fitted}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n+nb}{min}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{)} \\PY{c+c1}{\\PYZsh{} enforce positive frequency}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n+nb}{min}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{)} \\PY{c+c1}{\\PYZsh{} enforce positive amplitude}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{offset}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{)}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\n",
" \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{phase}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{,} \\PY{n+nb}{min}\\PY{o}{=}\\PY{o}{\\PYZhy{}}\\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\\PY{p}{,} \\PY{n+nb}{max}\\PY{o}{=}\\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\n",
" \\PY{p}{)} \\PY{c+c1}{\\PYZsh{} enforce phase range}\n",
"\n",
" \\PY{c+c1}{\\PYZsh{} pylint: disable=missing\\PYZhy{}function\\PYZhy{}docstring}\n",
" \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{guess}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{,} \\PY{n}{data}\\PY{p}{,} \\PY{n}{x}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kws}\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{lmfit}\\PY{o}{.}\\PY{n}{parameter}\\PY{o}{.}\\PY{n}{Parameters}\\PY{p}{:}\n",
"\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\\PY{l+s+sd}{ Guess parameters based on the data}\n",
"\n",
"\\PY{l+s+sd}{ Parameters}\n",
"\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n",
"\\PY{l+s+sd}{ data: np.ndarray}\n",
"\\PY{l+s+sd}{ Data to fit to}\n",
"\\PY{l+s+sd}{ x: np.ndarray}\n",
"\\PY{l+s+sd}{ Independet variable}\n",
"\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{offset}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{n}{np}\\PY{o}{.}\\PY{n}{average}\\PY{p}{(}\\PY{n}{data}\\PY{p}{)}\\PY{p}{)}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{p}{(}\\PY{n}{np}\\PY{o}{.}\\PY{n}{max}\\PY{p}{(}\\PY{n}{data}\\PY{p}{)} \\PY{o}{\\PYZhy{}} \\PY{n}{np}\\PY{o}{.}\\PY{n}{min}\\PY{p}{(}\\PY{n}{data}\\PY{p}{)}\\PY{p}{)} \\PY{o}{/} \\PY{l+m+mi}{2}\\PY{p}{)}\n",
"\n",
" \\PY{c+c1}{\\PYZsh{} Guess frequency and phase using Fourier Transform}\n",
" \\PY{n}{freq\\PYZus{}guess}\\PY{p}{,} \\PY{n}{phase\\PYZus{}guess} \\PY{o}{=} \\PY{n}{fft\\PYZus{}freq\\PYZus{}phase\\PYZus{}guess}\\PY{p}{(}\\PY{n}{data}\\PY{p}{,} \\PY{n}{x}\\PY{p}{)}\n",
" \\PY{n}{phase\\PYZus{}wrap} \\PY{o}{=} \\PY{p}{(}\\PY{n}{phase\\PYZus{}guess} \\PY{o}{+} \\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\\PY{p}{)} \\PY{o}{\\PYZpc{}} \\PY{p}{(}\\PY{l+m+mi}{2} \\PY{o}{*} \\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\\PY{p}{)} \\PY{o}{\\PYZhy{}} \\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{n}{freq\\PYZus{}guess}\\PY{p}{)}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{phase}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{n}{phase\\PYZus{}wrap}\\PY{p}{)}\n",
"\n",
" \\PY{n}{params} \\PY{o}{=} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{make\\PYZus{}params}\\PY{p}{(}\\PY{p}{)}\n",
" \\PY{k}{return} \\PY{n}{lmfit}\\PY{o}{.}\\PY{n}{models}\\PY{o}{.}\\PY{n}{update\\PYZus{}param\\PYZus{}vals}\\PY{p}{(}\\PY{n}{params}\\PY{p}{,} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{prefix}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kws}\\PY{p}{)}\n",
"\n",
" \\PY{c+c1}{\\PYZsh{} Same design patter is used in lmfit.models to inherit common docstrings.}\n",
" \\PY{c+c1}{\\PYZsh{} We adjust these common docstrings to our docs build pipeline}\n",
" \\PY{n+nf+fm}{\\PYZus{}\\PYZus{}init\\PYZus{}\\PYZus{}}\\PY{o}{.}\\PY{n+nv+vm}{\\PYZus{}\\PYZus{}doc\\PYZus{}\\PYZus{}} \\PY{o}{=} \\PY{n}{get\\PYZus{}model\\PYZus{}common\\PYZus{}doc}\\PY{p}{(}\\PY{p}{)} \\PY{o}{+} \\PY{n}{mk\\PYZus{}seealso}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cos\\PYZus{}func}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n",
" \\PY{n}{guess}\\PY{o}{.}\\PY{n+nv+vm}{\\PYZus{}\\PYZus{}doc\\PYZus{}\\PYZus{}} \\PY{o}{=} \\PY{n}{get\\PYZus{}guess\\PYZus{}common\\PYZus{}doc}\\PY{p}{(}\\PY{p}{)}\n",
"\\end{Verbatim}\n"
],
"text/plain": [
"class CosineModel(lmfit.model.Model):\n",
" \"\"\"\n",
" Exemplary lmfit model with a guess for a cosine.\n",
"\n",
" .. note::\n",
"\n",
" The :mod:`lmfit.models` module provides several fitting models that might fit\n",
" your needs out of the box.\n",
" \"\"\"\n",
"\n",
" def __init__(self, *args, **kwargs):\n",
" # pass in the model's equation\n",
" super().__init__(cos_func, *args, **kwargs)\n",
"\n",
" # configure constraints that are independent from the data to be fitted\n",
" self.set_param_hint(\"frequency\", min=0, vary=True) # enforce positive frequency\n",
" self.set_param_hint(\"amplitude\", min=0, vary=True) # enforce positive amplitude\n",
" self.set_param_hint(\"offset\", vary=True)\n",
" self.set_param_hint(\n",
" \"phase\", vary=True, min=-np.pi, max=np.pi\n",
" ) # enforce phase range\n",
"\n",
" # pylint: disable=missing-function-docstring\n",
" def guess(self, data, x, **kws) -> lmfit.parameter.Parameters:\n",
" \"\"\"\n",
" Guess parameters based on the data\n",
"\n",
" Parameters\n",
" ----------\n",
" data: np.ndarray\n",
" Data to fit to\n",
" x: np.ndarray\n",
" Independet variable\n",
" \"\"\"\n",
"\n",
" self.set_param_hint(\"offset\", value=np.average(data))\n",
" self.set_param_hint(\"amplitude\", value=(np.max(data) - np.min(data)) / 2)\n",
"\n",
" # Guess frequency and phase using Fourier Transform\n",
" freq_guess, phase_guess = fft_freq_phase_guess(data, x)\n",
" phase_wrap = (phase_guess + np.pi) % (2 * np.pi) - np.pi\n",
" self.set_param_hint(\"frequency\", value=freq_guess)\n",
" self.set_param_hint(\"phase\", value=phase_wrap)\n",
"\n",
" params = self.make_params()\n",
" return lmfit.models.update_param_vals(params, self.prefix, **kws)\n",
"\n",
" # Same design patter is used in lmfit.models to inherit common docstrings.\n",
" # We adjust these common docstrings to our docs build pipeline\n",
" __init__.__doc__ = get_model_common_doc() + mk_seealso(\"cos_func\")\n",
" guess.__doc__ = get_guess_common_doc()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"
classCosineAnalysis(ba.BaseAnalysis):\n",
""""\n",
" Exemplary analysis subclass that fits a cosine to a dataset.\n",
" """\n",
"\n",
" defprocess_data(self):\n",
""""\n",
" In some cases, you might need to process the data, e.g., reshape, filter etc.,\n",
" before starting the analysis. This is the method where it should be done.\n",
"\n",
" See :meth:`~quantify_core.analysis.spectroscopy_analysis.ResonatorSpectroscopyAnalysis.process_data`\n",
" for an implementation example.\n",
" """# pylint: disable=line-too-long\n",
"\n",
" defrun_fitting(self):\n",
""""\n",
" Fits a :class:`~quantify_core.analysis.fitting_models.CosineModel` to the data.\n",
" """\n",
" # create a fitting model based on a cosine function\n",
" model=CosineModel()\n",
" guess=model.guess(self.dataset.y0.values,x=self.dataset.x0.values)\n",
" result=model.fit(\n",
" self.dataset.y0.values,x=self.dataset.x0.values,params=guess\n",
" )\n",
" self.fit_results.update({"cosine":result})\n",
"\n",
" defcreate_figures(self):\n",
""""\n",
" Creates a figure with the data and the fit.\n",
" """\n",
" fig,ax=plt.subplots()\n",
" fig_id="cos_fit"\n",
" self.figs_mpl.update({fig_id:fig})\n",
" self.axs_mpl.update({fig_id:ax})\n",
"\n",
" self.dataset.y0.plot(ax=ax,x="x0",marker="o",linestyle="")\n",
" qpl.plot_fit(ax,self.fit_results["cosine"])\n",
" qpl.plot_textbox(ax,ba.wrap_text(self.quantities_of_interest["fit_msg"]))\n",
"\n",
" adjust_axeslabels_SI(ax)\n",
" qpl.set_suptitle_from_dataset(fig,self.dataset,"x0-y0")\n",
" ax.legend()\n",
"\n",
" defanalyze_fit_results(self):\n",
""""\n",
" Checks fit success and populates :code:`quantities_of_interest`.\n",
" """\n",
" fit_result=self.fit_results["cosine"]\n",
" fit_warning=ba.check_lmfit(fit_result)\n",
"\n",
" # If there is a problem with the fit, display an error message in the text box.\n",
" # Otherwise, display the parameters as normal.\n",
" iffit_warningisNone:\n",
" self.quantities_of_interest["fit_success"]=True\n",
" unit=self.dataset.y0.units\n",
" text_msg="Summary\\n"\n",
" text_msg+=format_value_string(\n",
" r"$f$",fit_result.params["frequency"],end_char="\\n",unit="Hz"\n",
" )\n",
" text_msg+=format_value_string(\n",
" r"$A$",fit_result.params["amplitude"],unit=unit\n",
" )\n",
" else:\n",
" text_msg=fit_warning\n",
" self.quantities_of_interest["fit_success"]=False\n",
"\n",
" # save values and fit uncertainty\n",
" forparameter_namein["frequency","amplitude"]:\n",
" self.quantities_of_interest[parameter_name]=ba.lmfit_par_to_ufloat(\n",
" fit_result.params[parameter_name]\n",
" )\n",
" self.quantities_of_interest["fit_msg"]=text_msg\n",
"
\n"
],
"text/latex": [
"\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n",
"\\PY{k}{class}\\PY{+w}{ }\\PY{n+nc}{CosineAnalysis}\\PY{p}{(}\\PY{n}{ba}\\PY{o}{.}\\PY{n}{BaseAnalysis}\\PY{p}{)}\\PY{p}{:}\n",
"\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\\PY{l+s+sd}{ Exemplary analysis subclass that fits a cosine to a dataset.}\n",
"\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\n",
" \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{process\\PYZus{}data}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{)}\\PY{p}{:}\n",
"\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\\PY{l+s+sd}{ In some cases, you might need to process the data, e.g., reshape, filter etc.,}\n",
"\\PY{l+s+sd}{ before starting the analysis. This is the method where it should be done.}\n",
"\n",
"\\PY{l+s+sd}{ See :meth:`\\PYZti{}quantify\\PYZus{}core.analysis.spectroscopy\\PYZus{}analysis.ResonatorSpectroscopyAnalysis.process\\PYZus{}data`}\n",
"\\PY{l+s+sd}{ for an implementation example.}\n",
"\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}} \\PY{c+c1}{\\PYZsh{} pylint: disable=line\\PYZhy{}too\\PYZhy{}long}\n",
"\n",
" \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{run\\PYZus{}fitting}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{)}\\PY{p}{:}\n",
"\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\\PY{l+s+sd}{ Fits a :class:`\\PYZti{}quantify\\PYZus{}core.analysis.fitting\\PYZus{}models.CosineModel` to the data.}\n",
"\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
" \\PY{c+c1}{\\PYZsh{} create a fitting model based on a cosine function}\n",
" \\PY{n}{model} \\PY{o}{=} \\PY{n}{CosineModel}\\PY{p}{(}\\PY{p}{)}\n",
" \\PY{n}{guess} \\PY{o}{=} \\PY{n}{model}\\PY{o}{.}\\PY{n}{guess}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{y0}\\PY{o}{.}\\PY{n}{values}\\PY{p}{,} \\PY{n}{x}\\PY{o}{=}\\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{x0}\\PY{o}{.}\\PY{n}{values}\\PY{p}{)}\n",
" \\PY{n}{result} \\PY{o}{=} \\PY{n}{model}\\PY{o}{.}\\PY{n}{fit}\\PY{p}{(}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{y0}\\PY{o}{.}\\PY{n}{values}\\PY{p}{,} \\PY{n}{x}\\PY{o}{=}\\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{x0}\\PY{o}{.}\\PY{n}{values}\\PY{p}{,} \\PY{n}{params}\\PY{o}{=}\\PY{n}{guess}\n",
" \\PY{p}{)}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{fit\\PYZus{}results}\\PY{o}{.}\\PY{n}{update}\\PY{p}{(}\\PY{p}{\\PYZob{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cosine}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{:} \\PY{n}{result}\\PY{p}{\\PYZcb{}}\\PY{p}{)}\n",
"\n",
" \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{create\\PYZus{}figures}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{)}\\PY{p}{:}\n",
"\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\\PY{l+s+sd}{ Creates a figure with the data and the fit.}\n",
"\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
" \\PY{n}{fig}\\PY{p}{,} \\PY{n}{ax} \\PY{o}{=} \\PY{n}{plt}\\PY{o}{.}\\PY{n}{subplots}\\PY{p}{(}\\PY{p}{)}\n",
" \\PY{n}{fig\\PYZus{}id} \\PY{o}{=} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cos\\PYZus{}fit}\\PY{l+s+s2}{\\PYZdq{}}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{figs\\PYZus{}mpl}\\PY{o}{.}\\PY{n}{update}\\PY{p}{(}\\PY{p}{\\PYZob{}}\\PY{n}{fig\\PYZus{}id}\\PY{p}{:} \\PY{n}{fig}\\PY{p}{\\PYZcb{}}\\PY{p}{)}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{axs\\PYZus{}mpl}\\PY{o}{.}\\PY{n}{update}\\PY{p}{(}\\PY{p}{\\PYZob{}}\\PY{n}{fig\\PYZus{}id}\\PY{p}{:} \\PY{n}{ax}\\PY{p}{\\PYZcb{}}\\PY{p}{)}\n",
"\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{y0}\\PY{o}{.}\\PY{n}{plot}\\PY{p}{(}\\PY{n}{ax}\\PY{o}{=}\\PY{n}{ax}\\PY{p}{,} \\PY{n}{x}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{x0}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{marker}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{o}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{linestyle}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n",
" \\PY{n}{qpl}\\PY{o}{.}\\PY{n}{plot\\PYZus{}fit}\\PY{p}{(}\\PY{n}{ax}\\PY{p}{,} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{fit\\PYZus{}results}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cosine}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{)}\n",
" \\PY{n}{qpl}\\PY{o}{.}\\PY{n}{plot\\PYZus{}textbox}\\PY{p}{(}\\PY{n}{ax}\\PY{p}{,} \\PY{n}{ba}\\PY{o}{.}\\PY{n}{wrap\\PYZus{}text}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{fit\\PYZus{}msg}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{)}\\PY{p}{)}\n",
"\n",
" \\PY{n}{adjust\\PYZus{}axeslabels\\PYZus{}SI}\\PY{p}{(}\\PY{n}{ax}\\PY{p}{)}\n",
" \\PY{n}{qpl}\\PY{o}{.}\\PY{n}{set\\PYZus{}suptitle\\PYZus{}from\\PYZus{}dataset}\\PY{p}{(}\\PY{n}{fig}\\PY{p}{,} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{p}{,} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{x0\\PYZhy{}y0}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n",
" \\PY{n}{ax}\\PY{o}{.}\\PY{n}{legend}\\PY{p}{(}\\PY{p}{)}\n",
"\n",
" \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{analyze\\PYZus{}fit\\PYZus{}results}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{)}\\PY{p}{:}\n",
"\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\\PY{l+s+sd}{ Checks fit success and populates :code:`quantities\\PYZus{}of\\PYZus{}interest`.}\n",
"\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
" \\PY{n}{fit\\PYZus{}result} \\PY{o}{=} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{fit\\PYZus{}results}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cosine}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\n",
" \\PY{n}{fit\\PYZus{}warning} \\PY{o}{=} \\PY{n}{ba}\\PY{o}{.}\\PY{n}{check\\PYZus{}lmfit}\\PY{p}{(}\\PY{n}{fit\\PYZus{}result}\\PY{p}{)}\n",
"\n",
" \\PY{c+c1}{\\PYZsh{} If there is a problem with the fit, display an error message in the text box.}\n",
" \\PY{c+c1}{\\PYZsh{} Otherwise, display the parameters as normal.}\n",
" \\PY{k}{if} \\PY{n}{fit\\PYZus{}warning} \\PY{o+ow}{is} \\PY{k+kc}{None}\\PY{p}{:}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{fit\\PYZus{}success}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]} \\PY{o}{=} \\PY{k+kc}{True}\n",
" \\PY{n}{unit} \\PY{o}{=} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{y0}\\PY{o}{.}\\PY{n}{units}\n",
" \\PY{n}{text\\PYZus{}msg} \\PY{o}{=} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Summary}\\PY{l+s+se}{\\PYZbs{}n}\\PY{l+s+s2}{\\PYZdq{}}\n",
" \\PY{n}{text\\PYZus{}msg} \\PY{o}{+}\\PY{o}{=} \\PY{n}{format\\PYZus{}value\\PYZus{}string}\\PY{p}{(}\n",
" \\PY{l+s+sa}{r}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{\\PYZdl{}f\\PYZdl{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{fit\\PYZus{}result}\\PY{o}{.}\\PY{n}{params}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{,} \\PY{n}{end\\PYZus{}char}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+se}{\\PYZbs{}n}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Hz}\\PY{l+s+s2}{\\PYZdq{}}\n",
" \\PY{p}{)}\n",
" \\PY{n}{text\\PYZus{}msg} \\PY{o}{+}\\PY{o}{=} \\PY{n}{format\\PYZus{}value\\PYZus{}string}\\PY{p}{(}\n",
" \\PY{l+s+sa}{r}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{\\PYZdl{}A\\PYZdl{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{fit\\PYZus{}result}\\PY{o}{.}\\PY{n}{params}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{n}{unit}\n",
" \\PY{p}{)}\n",
" \\PY{k}{else}\\PY{p}{:}\n",
" \\PY{n}{text\\PYZus{}msg} \\PY{o}{=} \\PY{n}{fit\\PYZus{}warning}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{fit\\PYZus{}success}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]} \\PY{o}{=} \\PY{k+kc}{False}\n",
"\n",
" \\PY{c+c1}{\\PYZsh{} save values and fit uncertainty}\n",
" \\PY{k}{for} \\PY{n}{parameter\\PYZus{}name} \\PY{o+ow}{in} \\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{:}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{n}{parameter\\PYZus{}name}\\PY{p}{]} \\PY{o}{=} \\PY{n}{ba}\\PY{o}{.}\\PY{n}{lmfit\\PYZus{}par\\PYZus{}to\\PYZus{}ufloat}\\PY{p}{(}\n",
" \\PY{n}{fit\\PYZus{}result}\\PY{o}{.}\\PY{n}{params}\\PY{p}{[}\\PY{n}{parameter\\PYZus{}name}\\PY{p}{]}\n",
" \\PY{p}{)}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{fit\\PYZus{}msg}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]} \\PY{o}{=} \\PY{n}{text\\PYZus{}msg}\n",
"\\end{Verbatim}\n"
],
"text/plain": [
"class CosineAnalysis(ba.BaseAnalysis):\n",
" \"\"\"\n",
" Exemplary analysis subclass that fits a cosine to a dataset.\n",
" \"\"\"\n",
"\n",
" def process_data(self):\n",
" \"\"\"\n",
" In some cases, you might need to process the data, e.g., reshape, filter etc.,\n",
" before starting the analysis. This is the method where it should be done.\n",
"\n",
" See :meth:`~quantify_core.analysis.spectroscopy_analysis.ResonatorSpectroscopyAnalysis.process_data`\n",
" for an implementation example.\n",
" \"\"\" # pylint: disable=line-too-long\n",
"\n",
" def run_fitting(self):\n",
" \"\"\"\n",
" Fits a :class:`~quantify_core.analysis.fitting_models.CosineModel` to the data.\n",
" \"\"\"\n",
" # create a fitting model based on a cosine function\n",
" model = CosineModel()\n",
" guess = model.guess(self.dataset.y0.values, x=self.dataset.x0.values)\n",
" result = model.fit(\n",
" self.dataset.y0.values, x=self.dataset.x0.values, params=guess\n",
" )\n",
" self.fit_results.update({\"cosine\": result})\n",
"\n",
" def create_figures(self):\n",
" \"\"\"\n",
" Creates a figure with the data and the fit.\n",
" \"\"\"\n",
" fig, ax = plt.subplots()\n",
" fig_id = \"cos_fit\"\n",
" self.figs_mpl.update({fig_id: fig})\n",
" self.axs_mpl.update({fig_id: ax})\n",
"\n",
" self.dataset.y0.plot(ax=ax, x=\"x0\", marker=\"o\", linestyle=\"\")\n",
" qpl.plot_fit(ax, self.fit_results[\"cosine\"])\n",
" qpl.plot_textbox(ax, ba.wrap_text(self.quantities_of_interest[\"fit_msg\"]))\n",
"\n",
" adjust_axeslabels_SI(ax)\n",
" qpl.set_suptitle_from_dataset(fig, self.dataset, \"x0-y0\")\n",
" ax.legend()\n",
"\n",
" def analyze_fit_results(self):\n",
" \"\"\"\n",
" Checks fit success and populates :code:`quantities_of_interest`.\n",
" \"\"\"\n",
" fit_result = self.fit_results[\"cosine\"]\n",
" fit_warning = ba.check_lmfit(fit_result)\n",
"\n",
" # If there is a problem with the fit, display an error message in the text box.\n",
" # Otherwise, display the parameters as normal.\n",
" if fit_warning is None:\n",
" self.quantities_of_interest[\"fit_success\"] = True\n",
" unit = self.dataset.y0.units\n",
" text_msg = \"Summary\\n\"\n",
" text_msg += format_value_string(\n",
" r\"$f$\", fit_result.params[\"frequency\"], end_char=\"\\n\", unit=\"Hz\"\n",
" )\n",
" text_msg += format_value_string(\n",
" r\"$A$\", fit_result.params[\"amplitude\"], unit=unit\n",
" )\n",
" else:\n",
" text_msg = fit_warning\n",
" self.quantities_of_interest[\"fit_success\"] = False\n",
"\n",
" # save values and fit uncertainty\n",
" for parameter_name in [\"frequency\", \"amplitude\"]:\n",
" self.quantities_of_interest[parameter_name] = ba.lmfit_par_to_ufloat(\n",
" fit_result.params[parameter_name]\n",
" )\n",
" self.quantities_of_interest[\"fit_msg\"] = text_msg"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display_source_code(CosineModel)\n",
"display_source_code(CosineAnalysis)"
]
},
{
"cell_type": "markdown",
"id": "4c1eee01",
"metadata": {},
"source": [
"Now we can simply execute it against our latest experiment as follows:"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "c030ad1e",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAHgCAYAAACMxVqsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAADp/klEQVR4nOzdeXhU1fnA8e+ZyWTfNxIgQFgl7CCbIAKKUCniVjdsq9altFrrbl1qrT+3arXUhdalbrTghgsuKAqyCILshH1JIEAgCSH7PnN+f9y5YTJMkknIMknez/PMA7n33Dsnk0zmvee+5z1Ka40QQgghhBDCO5bW7oAQQgghhBBtiQTQQgghhBBCNIAE0EIIIYQQQjSABNBCCCGEEEI0gATQQgghhBBCNIAE0EIIIYQQQjSABNBCCCGEEEI0gATQQgghhBBCNIAE0EIIIYQQQjSABNBCiBallLpeKaWVUj1auy9tiVJqovN1m9jafRFCiI5OAmghmoFSKlIp9apSKlspVayUWqaUGu6Lz6OUulQp9ZVSKkcpVaGUOqqUel8pNbmp+yvaP6XUtUqpP7Z2P4QQojkprXVr90GIdkUpZQFWAkOAZ4Ec4HdAEjBCa73XF55HKaWA/wDXA5uAD4FjQCJwKTACGKe1Xt0U/XV5XitgA8q1/AHymvPn7Q9UaK0drd2f2iilPgcGaq17tHZfhBCiuUgALUQTU0pdCbwH/EJr/aFzWxywB/hKa32tLzyPUuoejMD7H8Bd7sGsUuqXwG6t9bqm6K9oHKVUID4eNLuSAFoI0RFICocQXlBKBSmldjkfQS7bo5VSmUqp1c6RVYArgOPAQrOd1jobeB+YqZQKqON5JjnzXC/1sO9a576xTfA8QcCfgF3APZ5GgrXW77oGz0qpnkqpD5RSuUqpEqXUj0qp6R7OfbtSaruzzUml1Hql1LUu+0/LgVZKpSulPldKjVdKrVNKlSmlDiilfuXh/JFKqX8opTKUUuVKqX1KqfudI7T1Ukr9TCm10pnyUqiU+kIpNcBl/2SllEMp9Ve348zXf7bLNq2UekkpNUsptdvZ7w1KqQkenreLUuo/Sqnjzn5vV0rd6NbGzHO+Win1f0qpI0AJEO4pB1op9b1SKlUpNVgptdz5mu9TSl3h3H+eUmqtUqrU2b8LzrBfVyqlHlJKHXZ+r98ppXq79geYDnR3ttdKqXRvfi5CCNGWSAAthBe01qXAr4HewBMuu14GIoDrtdZ257ZhwEYPI4brgGCgbx1P9T2QAczysG8WsF9rvaYJnmc8EA38z6XftVJKdQJWA1OBV4CHgEDgM9dgXyl1M/BPYAfwR+BRYDMwur7nwHhtPwSWAHcDJ4G33ILbYGA5cB3wDvAH4AfgKeB5L76PXwJfAEXA/cDjQAqwygzotdZLnd/jn5Qzn1wplQi8CHwL/MvttOdhjOLPA/4MxACLlVIDXZ63E/AjcAHwEnAHsA94Q3nOF34EIxB9DngQqKjj24oCPgfWAvcB5cACpdRVwALgS+ABIAT4UCkVdgb9egAjvec5jNd8DPBfl/1PYPy8c4BfOh+eziOEEG2b1loe8pCHlw/gScAOnIsxAqyBO9zaFAFveDj2Imf7qV48RxkQ4bItDqgE/tIUz4MReGrgEi+/7xec7ce7bAsFDgBpgMW57RMgtZ5zXe88Vw+XbenObee6fc9lwHMu2x52ft993M75FFAFJNXxvKEYQfmrbts7AXmu2zEuQPYCqUAARoCaD3RzO1Y7HyNctnUDSoGFLtteB44CMW7Hz3c+d5Dz64nO8+03t7m0NfdNdNn2vXPbNS7b+jm32YHRLtsvdG6//gz6tQPw9/B7NNBl2+dAemu8P+UhD3nIo6UeMgItRMP8BdgOvI0xSrkcY8TVVRDGKKC7Mpf9dXkHI2i7wmXbVYAfxihnUzxPuPPfwnr6YroIWKe1XmVu0FoXAa8CPTBGccEIuroqpUZ6eV5XO7TWK13Onw3sBnq6tPkFxsTJk0qpWPOBMTJsBU5LnXAxBYgE5rsda8cYvZ3k8twlGIF+f2AFxmjwnVrrQx7Ou0ZrvcHl2EPAp8BUpZRVKaWAy4FFGHM3XZ/7a4w7GO6VU97Wxl0PbxRhjDSbz78b4+ewU2u91qWd+f+eUD2JtKH9elNr7Toabv68eiKEEB2IX2t3QIi2RGtd4cwP/QkjUL1Ba+2eP1yKEQC7C3TZb074s7rsL9JaF2mtdymlfsJI2XjDuW8W8KPWel9Dn6cWBc5/w+po46o7pwIwVztd9qcCz2CkA6xTSu0DvsFIE/nBi+fwFJyexEhRMPUBBgPZtZwjvo7z93H+u7SW/QWuX2itf1BKzQV+D3yttf5PLcd5qnayB2MUOw5wYATutzgfnrj3O62Wdp4c9vA7mI+RClRNa51vxMzVr2dcI/rl/jM66fw3CiGE6EAkgBai4aY6/w3ECMrcg51MjFJw7sxtR53//oQReJoewxjhBmMUeo5SqitGkDwGuK2Rz+PJLue/gzDSLpqE1nqnUqof8HNgGsYI5++UUn/VWj9az+G15WIrl/9bMHKk/1ZL2z11nN+84/ZLjHJ97qpqPKkxCXOi88teSqlg58h0Q5nPOw/jzoUnW92+9nb0GWp/3ep7PRvTL29+RkII0e5JAC1EAyilBmNMFHsTGAq8rpQapLXOd2m2GThXKWXRNSf4jcaoqGAGebOomWZxwOX/CzAmxV3jbFOJUbLOlbfP48kqjNHDa5RST+r6JxIexMitdXeWy34AtNbFzr6+p5Tyx6gS8pBS6imtdZmHczTEfiBUa/1tI48FyPLy+McwUjjuwRhZfxoj59ddHw/b+mL8DMyR8kLA2sh+N5dsmqdfUhtVCNHuSQ60EF5SStmAtzBGdu/AyJHthDHBztWHzu2XuRwbi5G/u0hrXQ5GioDW+luXR3UArbXOAb7CqDYxC1js3Nbg5/HEOZL6DEaA+IwzH9b9+71OKTXK+eWXwCh1qoQeSqkQjFv/6RiTy1BKxbg9T4Vzn8JYPOVMvQ+MVUpNdd+hjPJ2dQ0KfI2RpvGg82fpfnycy/9HYwTO/9Ba/x2jXvZtSqnzPJx3rHJZ/VEplQTMBL7RWtudFycfAZe7Vubw9LwtqRn7VYyRPy2EEO2WjEAL4b2HMUadz9daFwJblVEr+P+UUh9qrb90tvsQozTYm0qpFE6tEGjFKOvmrXec5wKjrJm7M32eZ4EBGCXjJimlzJUIE4BLgFHAOc62T2OMhn+llPonkItR1i8ZuNxlBPwbpdQxjNJyxzEC9NuAL5yv2Zl6FrgY+Fwp9RawAaM82yCMSZc9MF6H02itC5RRw/ldYKNSagHGKGw3jEmCP2AEyYEYKQ17Mcr1gfF6zsB4rQc5R9lNqcDXztelHONnYB5jegBjkuJapdRrGBcV0RiT9C5w/r81NEe/NgBXKaWex0hTKtJaL2qi/gohhG9o7TIg8pBHW3hgBBSVwD/dtlsx6i4fASJdtkdhlAjLwRiR+x44u4HP6Y8RqOYBgbW0aYrnuRxjdPaE83s8ipFCcp5bu57ABxipH6UYkwqnu7W5BaMySQ7GJMt9GPnK4S5trsdzGbvPPfTte+B7t22hGKX+9mIErNkYwe/dgM2L73cisNj5upY6+/gmzlJ0GKkzVcAot+NGOF+fV1y2aYz6ybMwUmbKgI24lJpzaRvvbHsIo65zJkb1kJvd+qaBK2rpt6cydqeVDazj9dTAS03VL4wLFvfSeCEYtaFPOvelt/b7Vx7ykIc8mvohS3kL4aOc6QhHMdIxftPa/RGnU0pp4GWttfsETyGEEO2Y5EAL4bsuwSg19k4r90MIIYQQLiQHWggf45zANhgj73mT1np5K3dJCCGEEC5kBFoI3zMbmAtkAb9q5b4IIYQQwo3kQAshhBBCCNEAMgIthBBCCCFEA0gALYQQQgghRANIAC3aLKXU9UoprZTq4UXbdOfCG0KIM6SU+ovzvRfb2n1pSkqpe5VSB5RSdqXU5tbujxDCd0kALVqFUuoc54dwZGv3pT5KqbOUUn9TSm1WShUqpTKVUl8opc6upX0XpdT7Sqk8pVSBUupTpVRPtzZJSqlHlVLrlFInlVI5SqnvlVIXeDifeaHg6ZHgof3FSqmNSqkypdQhpdRj7ktce3tOpVSMM6hYoZTKdn5PPyqlrqrle++jlFqglDqslCpRSu1SSv1ZKRXs5Wt9lVJqnlJqr7Mv39fRdoRSarHzNS5USn2jlBpaS9tzlFKrnH06ppT6p1Iq1K3NxDpekzFubR90vg7Zztd5r1LqH/Utf62UmuU8X5GXr0ePOvqknasHurb36vVvbP8bQyllUUr91vn+KVJKHVdKfaWUOqeW9sOVUp8ppXKd30OqUuoPLvuDlVK/d/68M50/+01KqdlKKauH8yUqpV5VSqUppUqVUvuVUs8rt2XnlVIXYiz68wNwA/Bg074SQoj2RMrYidZyDsZSx29hrAjXGO9irJhX3jRdqtVNwG+Aj4BXgAjgVuBHpdQ0rfW3ZkNnULbM2eZJjJXr7gSWK6WGaq1POJvOBO4HPsFYNtoPo+LGEqXUjVrrNz30489Amtu2PNcvlFI/c57ze+B2jCWuH8ZYbW52I845FngC+BL4P4wV+i4HFiilUrTW1ctVK6WSMFZlzMdY2S7XefxjGKv4zfTw/O5mO9v+BMTU1kgpNRxYBWQ4z2/BWEJ7uVJqlNZ6t0vbocB3wE7gLqArcA/QB/iZh9P/0/n8rva5fT0C2Izx+1eIsWT5zcB058+52K29+bvxN4wVI72VDfzSw/ZpGKsffuNy/oa8/g3u/xl4FuN1n4fx/onEeP8sV0qN01qvc/keLgQWAZuAx4EioBfGz8zUE3gR42f6PFAATHWeewzGEvPm+UKBNRirI76C8fsyBGN5+UlKqRH61DL0kwEH8ButdUXTfftCiHaptZdClEfHfGAEMDWWc27m50sH3mrksSOAULdtMRhl5la5bb/P+X2NdNl2Fkbg+aTLtgFArNuxARhBXobb9uud56x3iW5gO0Zg5Oey7f8wAoOzGnpOIBno7rZNYQQvZUCIy/YHnecc4Nb+bef2KC/6nwRYnP9PxW0Zb5d2X2AEiDEu2xIxgsGP3Np+ibGio+ty4jc5+3Shy7aJ1LKMtpe/J5c7j7+6lv1PA7swAsmiM/x9/hYjUA502XZGr399/Xdr+xdn29h62vkBJcAHHn6vNDDHZVs4cAxYaP4O1HLOWPfv0bn9P85z9nbZdq1zm/uS8485tw9zO/6Mfi7ykIc8Os5DUjhEi1NK/QVjVAogzeV2dA+XW9bXezhOO481vz4tB1oZHna5hb1MKTWgln70Ukr1qq+/WusNWusit20ngJUYI3eurgB+0lr/5NJ2F0bAeaXLtu1a6xy3c5ZjBHtdlVJhtfQ5zNNtaue+FCAFeFVrXeWy6xWMoPeKhp5Ta52mtT7otk1jjHIHYIwGmsKd/x53O00mRgBf76ie1jpDnxoRrMu5wLf61Ig+WutMYDnwczM9QykVDkwB5mmtC1yOfwdjdPNKPHC+Jg29Q5fu/DfSw/n6YNyJuAvjYqrRlFKJwCRgoda6zGXXmb7+6c5/IxvQnVhlpCsVKKVOKKXmKKUCXfbbgCAPfcpy9qnUZdu1QCfgIa21QykVopQ67TNKa52jtd7uoS8fO/91fU/W9ZpgPr8ylmS/AQhx+Xt0vadvWAghQHKgRetYCMx3/v9OjFvUv8S4XX2m/opx63cLcC9wAOM2d4iHtt85H42VAFQHwc4P+8HAeg9t1wG9aguM3c5Z4ny4W4Zxu7rEmSPax23/MOe/NZ5fa30UOOyyvyHnrKuf4PL9Y6SNALyhlBqqjDzvqzDSMv6pmzYtIICawZepBPAHBjq/HoQxCur+mlRgjNR7ek3exHhNypwXYLXluiulVKxSKkEpdS5G6oedU6+Dq38Ay7TWX9b9bXnlaoy/3f91224+r1evfwP7X5v3gUDgTxgXf38AXjV3aq1LgbXA9crI/+6mlBqMkbp10rUtcAHG695FKbUb4wKnQCk11y0or42n38kVGIH6HKXUGKVUV6XURcBDwCfOi1sw/v6sxEgHM/8erfDyNRBCdECSAy1anNZ6q1JqI3ANxodYurlPncEkJuex92Hc3p/hHClFKfUETTwhyBlwjMVIjzBFYwR2mR4OMbd1BnZ72I9SqjdwGcbtbrvLrhKMgMMMdkdgjGSuVkoN11pnONsluj2X+/N3bsQ5PfUzGiMFYqVz1BcArfVipdQjGK/1xS6HPKG1fri28zXSbmCMUspqvlZKKX9gtHN/F+e/9b0m57p8XYGR5/4lRhCWgpFqtFIpdY7WepPb8Z3cznsYuNYlKMPZr+nAhRi5t01hlvN5l7pubMTr71X/65GmtTZzq19WShUAv1NKPae13urcfh3wHkbqiukAME5rfcBlWx+Mz6RPgTcwgvKJGLn8kRh/Lzxy/uz/iJHP73r3Z4dS6hbgOYxcaNPbGL/DZrt5ypjAO1xr7dpPIYTwSAJo0Z5cgDH6+KIZPDv9Aw8BtNa6R2OeRCkVD/wP48P6by67gpz/eprUWObWxv2cwcAHGKOqD7j1832MkT7TJ0qprzFGyB4Cfuvl85u3sxtyTvd+miOfkRiBjbt05zk+Ak4A04EHlVLHtNYveTpnI72Csdz5G0qpv2GMyD7MqYA5yO3f2l6T6p+H1no1sNpl/2dKqQ+BrcBTGBP3XOVipIcEYoxkXwa4V/bwB14A/qW13tGA788jpVRfjIudF2pJdUnH+9e/3v574WW3r1/EmMx5EcbrBkZe+naMAPY7jJHiBzB+5851SWUKBYIxXiuz6sZC52t4q1Lqz1rrvbX04yWMC57pbulLAEcw7gB9CRzEuGj6A8ZF0j0N/H6FEAKQAFq0L92d/9b4kNVaZyulTjbFEyilQoDPgTBgvFtutJlSEODh0EC3Nq7ntGJUQ0gBfuZMuaiT1nqVUmotxkWDt8/vKeWhvnO6exEjkPyV1nqL6w6l1NUYt+T7aq0POzcvdAbdzyil5mutTzhHsP1d+621zq+rbx76+i9lVJ24l1NVF9ZjXNA8hHH7H878NdmnlPoUuMx1tNu5rwJjMh/A50qp74AflFJZWuvPndvvxJj09ih1UEpFUPPiqkJrneuh6Sznv+7pG16//t723/l76X5HKFfXrFDhHtDux0iZ6OHsk5/zOb7XWldfcCmlvsUIqu/FqEYDp34WZnqX6X8YVTvGeng+lFL3YlQQecQ9RUYpNQ7j/TpGa22m8XziHCl/VCn1n6a4sBFCdDySAy18jfa0sbZJbi3JORK2ECPPeabWOtWtSS7GSGei+7Eu2zwFx68BPweu11ov9bC/NhkYaSMm83Z8bc9fb2Du4ZzVlFKPYowuPqC1ftdDk98Bm1yCN9NnGCOLZr7xQmdfzcccL/p1Gq31QxhpCOcCg7XWIzn1N22P89+mek388ZxH79qf1c7nmwXVQfHDGD/fcOWcJIsx0qqcX8c7D59DzddkYS1Pcy2wW2u9wcM+b19/r/qPUREl0+3hsXaz62ncvp6AkY/+mdtz7cWoODPOZbP5s/A04RAgyv3JnBP9nsEYtf4/9/0Ygfdxl+DZ9BnGxNr6vh8hhPBIRqBFa/EYKGNMLILTKwF0p35mtYg+GDmWQHVu9Gkfvg3hHMV7BzgfuFJrvdy9jbNywDbA06Sz0cABrXWh23mfxZj9/0ettfvIW316UnPi5Wbnv2dj3LI2n6MzRh1d1wlb3p7TPMfvMUqX/UNr/Uwtx3bi1M/Plc35r/n35m5q/jy8CWI90lqfxKgHbboAI5fXzONNxah6cTYuKSvOi6Gh1ExjqU1PjHQPbxY/CcSoAQ7G9xiKkZd/n4e2aRj5vpdgjJy75t6e9joqpUYDvTFqd3vi7etfF9f+H8NI8XC1xe3rPtSsI94b4yIm3aVPAJ4ugG1ufdrgfL4u1JwnYObu1/i9VErNBF7HuNj4vYfzm89f23ODfAYKIRpJRqBFazErAkS6bnSWGsvBGLly9TsvzvktxsIltyullMv2P3pqrLwsY+f0InAV8DutdW2jgwAfAiNdKzcopfphLNLwgdvz34uRg/mk1rrWUVhPEyudlQRGAIvNbc7SXruAW9xG7GdjXLB82NBzOrdfhVGh4b8YEw1rswcY5szTdXUNxm39rc5+btBaf+vyaJJb6M5+jsQI8h3O58rH+L24TtWsgPJLjOD2A5fjPb0mQzAm5H1jnlMZ5dVOW1lRKXU5RtBsjnZmAZd6eCzDCMgvxcitRmu9w+018TTCfK3z3//V8hJ49fp723+tdZlbn751XrC4cg9czTSNr1z6BEblENfnGg70w1gwxWRezPzG7Zw3YVwEfe9y/ASMtKcVwKw6Sh/uAToppSa6bTcnJLpPDBVCCK/I1bdoLWaA8IRSagFG4LvIWWrrdeABpdTrGB/mEwD3oOA0zlzn5zBm73+ulPoS47b1z6hZ2spklrDrUdd5lVJ/xAjg12CUe7vOrcnHLiXCXsHIx/zC2ZdKjKDzOPB3l3NeijHquBfY6eGcS7TW5q3s1UqpTRivRT4wHLgRI7XgSbfj7sW4Pf2N83UdiLHq2uta650u7bw6p1JqFMbI+wmM12tWzWsTVrtUUngW47VeqZR6yXnMz53bXvcmt9sZGJkXT3EYdXnNChIrtNYrXNr9GaNE4QmMFehuwAj+3S9GHsKYHLhcKfUqxmj83RhBsevFwntKqVJn2yyMnPRbMCqWuE7s7AN8q5R6D+OCxYExwn0dxsjrHACtdQlGvWz37/ESYJTW+rR9tXFeEF0F/Ki13l9LM29ff6/676VkpdRnGK/7WOc5/mfmx2utNyillgC/VkZN7m8wUmdux8h5/od5Iq31JqXUf4AbnbnTyzGqcPwCeMrsv1KqO8bvuHlR+Au338mtLhVAXsL4vViklHoR4y7VeRgB9BKt9doGfK9CCHGK9oHVXOTRMR8Y+aGHMWrPVq9KiDGZ6nWMJaULMEpgxTnb/MXl+Otdj3Nus2AEVkcxAp9lGKv+peO2EqFzW7oX/XzL+Ty1PXq4te+KMbKZj1GBYBEuq6M52/ylnnNOdGn7fxgjZXkYpdYOYgTqnWrp7yXO9mUYAfHjgM2tjVfndHmNa3tc79Z+FEa1g0zneXdjVEDxq+919uJ1cf3Z9wK+xritX4aRT/sA4F/LeccDP2AEbVkYgVWYW5s/YNQsPoFx4XMUY7l4959dLPBv53MWYeS978GotlHnynwuv08NWvEOY6lqDdxeT7t6X/8z7b/bz6k/xu96AcYcgBdxWR3R5f38CMakwRLn79wiYKiH89owJlymO/u/FyO9ybXNxHp+J//i1r6fs4+HnOdMx7jYCD7Tn4s85CGPjvtQWteWiiqEEEIIIYRwJznQQgghhBBCNIAE0EIIIYQQQjSABNBCCCGEEEI0gATQQgghhBBCNIAE0EIIIYQQQjSABNBCCCGEEEI0gATQQgghhBBCNIAE0EIIIYQQQjSABNBCCCGEEEI0gATQQgghhBBCNIBfa3fAFyilFNAZKGztvgghhBCiQcKAo1pr3dodER2HBNCGzsDh1u6EEEIIIRqlK3CktTshOg4JoA2FABkZGYSHh7d2X4QQQgjhhYKCApKSkkDuIIsWJgG0i/DwcAmghRBCCCFEnWQSoRBCCCGEEA0gAbQQQgghhBANIAG0EEIIIYQQDeCTAbRS6vdKqXSlVJlSaq1SalQ97SOVUi8rpTKVUuVKqT1KqYtaqr9CCCGEEKLj8LlJhEqpq4Dngd8Ca4E/Al8rpfpprbM8tPcHlgBZwBUYZWy6A3kt1GUhhBBCCNGB+FwADdwFvKa1fhNAKfVbYDpwI/C0h/Y3AtHAOVrrSue29LqeQCkVAAS4bAo7wz4LIYQQQogOwqdSOJyjySOAb81tWmuH8+uxtRx2MbAGeFkpdVwplaqUelApZa3jqf4E5Ls8ZBEVIYQQQgjhFZ8KoIFYwAocd9t+HEio5ZieGKkbVuAi4HHgbuDhOp7nKSDC5dG18V0WQgghhBAdiS+mcDSUBSP/+RattR3YoJTqAtwLPObpAK11OVBufq2Uaol+CiGEEEKIdsDXAugcwA50ctveCThWyzGZQKUzeDbtBBKUUv5a64qm76YQQggh6mN3aNal5ZJVWEZ8WCCjkqOxWnx/0EopZQF6AL2BEHzvjr1oXhVANrBDa13gqYFPBdBa6wql1AbgfOATqP4lPh94qZbDfgCuVUpZnPnSAH2BTAmehRBCiNaxODWTxxbtIDO/rHpbYkQgj85IYdrAxFbsWd2UUsnx8fG/7tatW3LPnj1DOnXqpP38fCpcEs1Ia61KSkr0gQMHyMjIyAkMDFxeXl7+oda6yrWd0lq3Vh89cpaxexu4FViHUcbuSuAsrfVxpdQ7wBGt9Z+c7ZOA7c5jXgT6AP8B/qm1fsLL5wwH8vPz8wkPD2/i70gIIYToWBanZjJ73kbcIwxz7HnudcObJIguKCggIiICIKK2kcKGUEr16NGjx22XX35591mzZh0aMmRIocUig88dUV5ent+SJUviXn/99ejly5d/Vl5e/j/XbAefu6TSWr+nlIoD/ooxcXAzME1rbU4s7AY4XNpnKKWmAi8AWzHqQM8BnmnJfgshhBDCSNt4bNGO04JnAI0RRD+2aAdTUhJ8Lp0jJCRk2owZM3r+3//9X2pgYKCj/iNEexUZGVn1i1/8IjM2NrY8Ly/vwnXr1q0F9pj7ffKySmv9kta6u9Y6QGs9Wmu91mXfRK319W7t12itx2itA7XWvbTWT7rlRAshhBCiBaxLy62RtuFOA5n5ZaxLy225TnlBKRWRlJQ09IILLjguwbMwnXfeebkDBgwItlgsA1y3+2QALYQQ9SkoKGDbtm2sXLmSZcuWkZ2d3dpdEkIAWYVG8KzQdLXkMdDvGLGqqNZ2PqRbXFxc1Pjx40+0dkeE77BYLAwdOrQkPj4+xXW7z6VwCCFEbbTW7N27lzVr1pCenl5jX9euXYmLiwOgoqKCqqoqgoODW6GXQnRs8WGB1f8/zz8Nf2VnA53JqQqttZ2PCAwICLBGRkZW1d9UdCTh4eEVNputxi+wBNBCiDahoKCARYsWsW/fPsCo356YmEh8fDx+fn5ER0dXt/3hhx9Yu3YtF154IcOGDZNa70K0gMrKSrZt28aoocNIjAjkWH4Z++3R+GMnzxFU3U4BCRFGSTsfo6xWq5ZJg8Kd8/eixi+GBNBCiDahrKyM9PR0rFYro0aNYvTo0ebs+xq01qSlpVFeXs6iRYtIS0vj4osvxmaztUKvhegY8vLymD9/PllZWURGRvLojBRmz9vI2sruNSYTmpeyj85I8bkJhN7YvXt38OzZsydt3Lixb1FRUUhQUFBZUlLSsfvuu2/59ddfn9Ha/RMtRwJoIUSbEB8fzxVXXEFMTAyxsbG1tlNKcf3117NmzRqWLl1KamoqBQUFXHPNNQQG+twtYyHavKysLObNm0dhYSEhISFYLBamDUxk7nXDT6sDndAG6kDXZfr06VdVVVVZn3766Y+HDh16Mi0tLfSLL75IPnbsWLvIFysqKrKGhoZKEQYvyH0KIYTP2rlzJ5mZmdVf9+vXr87g2WSxWBg3bhy//OUvCQgI4NChQ8yfP5/Kysrm7K4QHU5OTg5vvfUWhYWFxMXFccstt9CjRw8Apg1MZNX9k5l/8xjmXD2U+TePYdX9k9ts8Hzo0KHA/fv3d3vooYeW/Pa3v00fM2ZM/jXXXHNk3rx5qx544IHda9asiVRKPfrxxx8nuB6jlHr01Vdf7QHw6quv9lBKPTpnzpxeXbp0udVmsz3Ut2/fX+/cuTPk+eef792pU6ffBwYG/mn06NGX5+TkVN8269Onz/VTpkz52bRp06YFBQXdHxoaes8dd9wxPCsryzZ+/PiZAQEBf4qNjf3D888/39s8pqKiQk2YMOHi6OjoO2w220Px8fG33XzzzaNdv6dx48ZdMnTo0Kuvvfbac8PDw+/u1q3bbVddddV5CQkJv3P//rt06fLbyy+/fFKzvLhtkATQQgiflJGRwUcffcS8efMoKGjc+gg9evTg17/+dXUQ/cEHH+Bri0cJ0VYVFRUxb948SktL6dy5MzfccMNpi5FZLYqxvWKYObQLY3vFtMm0DVN8fHyFv79/xcKFC88qKCiwnsm5XnjhhYlPPPHEl++9994bubm54RdffPEvXn/99TFz58796OWXX/5vampqr7vuumuU6zErV64cGhUVVfLll1++NmPGjHUvvfTSzydPnnzliBEjMhYvXvzvIUOG7H/kkUcuMwPvqqoq1alTp4K5c+d+8P3337980003LX/77bfPf/TRR2uUY9u5c2dyenp67IIFC96ZN2/e/+67775NWVlZsQsWLOhstlm4cGFCZmZmpzvvvHPzmXzf7YmkcAghfI6ZT2m320lKSiI0NLT+g2qRmJjItddey4IFC+jfv79MKBSiCVRVVTF//nzy8/OJjo7m2muvJSgoqP4D27DAwEDHww8//MlTTz11cUxMzNlJSUmZgwcPPnjjjTemXnzxxcfrP8Mp991331IzZ/rjjz/eNG/evPNXrlz5z/Hjx58E+O9//7tj/fr1ycAP5jFdunQ5Nn/+/BUA48aNW7lw4cLx4eHhJXPmzNkIEBcXt3zQoEFnL168uNN11113ODg42PHBBx98bx4/bty4vJ9++inp888/H/DYY49tN7f7+/tXfvPNN5+5pm6kpKTsf+2114ZdffXVRwH+9a9/Devdu3e62T8hI9BCCB9jt9v56KOPKC0tJTExkcsuu4wznRXfrVs3/vjHPzJs2LAm6qUQHZvFYqFXr14EBwcza9YsQkJCWrtLLeKRRx7ZefTo0b8///zz80eNGrVvy5YtPS699NJb77nnnqENOc/5559fHXDHx8cX2Wy2StfgNCYmpqigoKDGi5qcnFx9jL+/vw4ODi7p27dv9baUlJQigMOHD1cfN3v27JFJSUm3hISE3BsQEPDgsmXLRuTk5NSYfd2lS5fj7nnP11xzzYbVq1cPzMvL8ysqKrL+8MMPgy677LJNDfke2zsJoIUQPmXZsmUcPnyYwMBArrzySvz9/ZvkvK7nKS8vp7i4uEnOK0R7Z3do1uw/waebj7Bm/wnsDo3FYmHy5MncfvvtNUpIdgSRkZFVt99++4EFCxasSEtLe2PcuHGb33jjjYlWq1UDNdLESktLPcZZQUFB1SsdKqWwWq01Vj5USqG1rnG7zM/P77Q2rtvMgQaHw6EAHnnkkYGvv/76hTNmzNj07rvvvvvNN9/869xzz91UVVVVI/0kMDDwtMkhd9999x4/Pz/7c889d9YLL7zQ1263W+67774d9b02HYmkcAghfEZGRgY//GDcsZwxYwaRkZHN8hwffvghnTp14pprrpGUDiHqsDg1s0YlDT/sxIUH8+jFA5g2MFEq2wC9e/fO3rBhw1m9e/cuBkhLSwsDjgF88803CXUe3Ix+/PHHpJ49e2a88sorP5nbMjMzvbraCQwMdEyaNGnzRx99NMzPz88+duzY1OjoaFlgxoUE0EIIn7FmzRoAhg4dSkpKSj2tGycgIIDi4mL27t3Lli1bGDp0aLM8jxBt3eLUTGbP21ijjvMY2yEiy0v503/zYNa4NltRozH27dsXdNFFF115+eWXbxo7duzxmJiY8iVLlnT+4IMPxo0YMWJXdHR0Vffu3Q/PnTt3/MCBA08eOnQo5LnnnpvcWv1NTk7OXbly5ZA5c+b0GjRoUN7LL788OD09vXNMTEyeN8ffeeedGy+44ILbAN555503mrWzbZCkcAghfMZll13G+eefz4UXXthszxEfH8/EiRMB+OabbygtLW225xKirbI7NI8t2lEjeE60FNDH7wSxqgQbdh5btAO7o+NUtYmPj6/o37//4Xnz5o256qqrbpg0adLvXnnllckXXnjhhk8++eRLgH//+9+f2u12y4wZM279y1/+Mu2ee+5Z2lr9fe6559afffbZOx944IFfTJ8+/aa8vLzgqVOn/lT/kYZJkyblJicnZ8TFxeXMmjXrSHP2tS1SUtIJlFLhQH5+fv5pJXiEEO2P3W7n3//+N9nZ2YwcOZKLLrqotbskhE9Zs/8E17z2Y/XXCs3MgO1EWcrYURXP2spuAMy/eQxje8W0VjcpKCgwVySN0Fo3rt6lk1Jq1NSpU+9dvHjx9vpbt38Oh4P4+Pg/XHzxxT/95z//WdPa/WlN7777btdHHnnkRHp6+v3mNhmBFkK0uv379+NwOOpv2ESsVis/+9nPAFi/fj3Hjh1rsecWoi3IKiyr8XVfazZRljLKtB+bKjvX2k60D84ly0cVFhaG/vnPf5bqGx5IAN2M7A7Nih1HmLfkp+qZy0KImo4ePcq8efP417/+1aIrBSYnJ5OSkoLWmu+++67FnleItiA+7NTkQBt2htmOArC5sjMVLtOnXNuJ9uOss866d968eefdc889i3r06CFXSR7IJMJmsjg1k38vWMZA6z60gie+HURkZDiPzkjpUJMuhKiL1polS5YAxoInNputniMa8RxVVVRmZuIoLsYaHo5ffDzKz/jTd/7557Nr1y6sVitVVVX4+cmfRCEARiVHkxgRyLH8Mgb5ZRKkqshzBLLLHguAAhIiAhmV3LFK2HUUWuvHWrsPvk4+LZqBOXN55r4txHYtJy8qigcPfkj5ukre2DMK7ryGaYO7tHY3hWh1Bw4cID09HT8/PyZPbrrJ6rqykoJvviH/k08pWb8e7TJR0BIcTPCoUURcfhlRkyZx++23N0u5PCHaMqtF8eiMFGbP20BnayEA6yu7orFgFn58dEZKvUtza7udwu++4+T/5hN3+20EjxjRzD0XomVIAN3EXGcuO5Si6+408sZEcbBPT6bvXMS4zG2k7/mGopf+RuiwoXWeZ11aLlmFZcSHGVf59f2hEqIt0VqzfPlyAEaMGGFOBDpjRStXcvyJJ6lIT6/epgICsISGYi8owFFSQtH331P0/fcE9OlNp4cegjFjmuS5hWhPpg1MZO51I3jss0BUURZHHcYk+4SIQK/uppb89BPHnniS8l27ADgZHS0BtGg3JIBuYuvScqsLzn/W61w+Yzwz7DuJ9Sth0dgpTF+1hB4nMjg0axZxv/8dsbNno9yWKXYvXA+Q6OUfLCHaivT0dDIyMrBarYwbN+6Mz+eoqCDruec4+c67AFijooi65mrCpk0joHdvlMWCdjgo37WLgsVfk/fee5Tv3ceh628g+oYbCLjpN+zcs4cxY8bI4ipCOE0bmMiUlIQGDejoqipyXplLzty5oDWWsDCirrmGqKuvasGeC9G8JIBuYqfPSFZsrOrChda9VCSEM3vKvfx625dMPryRnBdfouJAGp2fehLlXGbYU+F6gGP5Zcyet5G51w2XIFq0CytWrABg2LBhhIWFndG57EVFHJ79O0p+MkqcRv3yl8Td8QesoaE12imLhcCUFAJTUoi58Qay/vEP8ha8R9Y777CopJhKi4XOnTvTvXv3M+qPEO1BRkYGCQkJ2Gw2r0vVOcrKOPLHOyn6/nsAIi69lPj77sUvKqoZe9rybr311lHvv//+OQUFBeHTpk378YsvvvimtfskWpZU4WhinmYkH3GEc8IRhE05SAwp4dmzr6Xkjw+Cnx8FX3xBxu9vw1FR4bFwvcnc1tEK14v2qaKiAq01FouF8ePHn9G57Hl5HLr+Bkp++glLaChd/zWXhIcePC14dmeNjCTxL3+hyz/nYLPZ6LZ/PwCrnGklQnRkZWVlzJs3jzlz5pCbm+vVMY7iYjJu/S1F33+PCgig87PP0vmpJ9td8PzJJ590ev3116c+/PDDX2zatOn5t99+e1ld7TMzM/2nTZs2LSoq6o82m+2h5OTk3yxYsKBzQ9tcd91147t163ZzQEDAn0JDQ+8dOnTo1d9++22dVzbenLehrrzyyolKqUddH/Hx8bfV1r6iokJdfvnlk6Kjo++w2WwPxcTE/OHqq6+e0BylS8eNG3fJ0KFDr3bf/uqrr/ZQSj166NChJisbIwF0EzNnLte8uaVIrUrAoSFQVZEYEcjQW64jae4rqKAgileuJPOBB1i3P6dG2oY7DWTml7Euzbs/ZkL4Kn9/f66//np+//vfn1Hus6O8nIzf/Z6y1FSsUVF0e/stwpyrDHor/MIL6fafNzjr8BGUw8G+tDSOHZFFt0THtmnTJioqKggODibKiwBYV1Vx5K67KVm7FktICEmvvUrEjJ+3QE9b3vvvv9+3e/fuR+6+++69gwcPLoqNja2z/ubFF1988ebNm3s+++yzH3/77bdzR44cuf/666//1aZNm8Ia0mbjxo09rrzyyp8+/vjj1+fNm/dOVVWV5Re/+MUvs7Kyai1f5M153fXp0+f6e+65Z2hd31OnTp2yt23b9nfz8cMPP/yntrY33HDD+MWLF4988MEHv1yxYsXLd9xxx7cff/zxuN/+9rej63oOXycpHE3s1MzljShOjRyn2aPIcoRSrAOY65y5HHruuSS98jKHbrmVgi+/wmEJBb/6f5+kcL1oL6KjG18CSzscHH3gAUo3bsQSFka3t98isG/fRp0rePhwBrz4T7a++CIZXbqw9N//5prHHpNcaNEhORwO1q5dC8Do0aPrfR9orTn2xBMULV+OCgwk6fXXCB42rCW62uJiY2P/cOLEiSgApdSjY8eO3bp69eqPa2ufm5vrt3HjxpRnnnlm/k033XQQ4Lzzzvs+KSmp7+OPPz5y4cKFS71pA7Bjx455rufu37//J2eddda9n332WWfzuIY+d2NfB6vV6hg4cGCRN223bt2aNGLEiF333HPPXoCxY8fmffLJJwO3bt1aZzmyPn36XN+jR4/jVqtVL1++fIjVarX/5je/WfrQQw9tu+yyyy766aefUsLCwooffPDBL++66659Den/mjVrIs8555w73Lf37t374N69e9/y5hwyAt0MjJnLw0mIOHWnQGMhLDzitBzmkLFj6fx/jwMQ/fkHjD+ypd7zS+F60ZYdOHCAkpKSMz5P7n/+Q+FXi8Fmo+uLLzY6eDYFDRrEuT83Rsz2KcXh//73jPsoRFu0a9cu8vPzCQoKYvDgwfW2z1+4kLz5C0ApOj/7t3YbPAOsXLnyjejo6JO//vWvl2zbtu3vgwcPPqKUerS29uXl5RaHw6GCg4OrXLfbbLaqbdu2dfO2jSfHjh0LBEhMTCz1tL+x5/VGdnZ2dHh4+N0xMTF3jBkz5rJ169bVeitx8ODBGampqT2XLl0aA0YKzJ49e7pNnjx5b33Ps3LlyqFRUVElX3755WszZsxY99JLL/188uTJV44YMSJj8eLF/x4yZMj+Rx555LKcnJwGLSIwYsSIfNcR9IULF/47ODi4dMiQIaddiNRGRqCbSV0zl3NyctBaExcXB0DEzJmU79vHidde587NH7A/sguZIbGnnVMK14u2rry8nPfffx+73c7NN99MfHx8o85TunkzWf+YA0DCww8TMqZp7gT2ufhiErdvJ7OigrWLFhE3YgSB/fs3ybmFaCt+/PFHAM4+++x6Fzcq37ePY4//HwBxd9xB+JQpzd6/1hQXF1dx8uTJyAsuuODQwIEDi5KSkgri4uJO1NY+MTGxokePHodfeOGF884555yclJSUokcffXRQenp619jY2Fxv27irqqpSt91227Tk5OSM6dOnZzX2uQFmzZp17ocffniu+XVlZaXfnDlzur744osXmdtWrlz58qhRo/IBxowZczglJeWT4cOHn0hLSwv9xz/+MXHq1Kk37Nix45XExMQK9368/fbbqy6//PKACy644DallENrbbn22mu/e/LJJ7fV93p36dLl2Pz581cAjBs3buXChQvHh4eHl8yZM2ej8+exfNCgQWcvXry403XXXXcYYNu2bX0DAgIedD2Pw+GocRvF399fmyPoeXl5fj//+c+v7tWrV8aCBQu+r69PJgmgm5HVok6bubxu3Tq++uor+vXrx9VXn8pzj/vDHyjZsBE2buT+9f/l7gm3Y1enbhA0pHC9EL5q8+bNlJeXExMTU30B2VD2omKO3H0PVFURftHPiLzyF03ax7HTp7Poo4/AbufI3feQ/PFCLAEBTfocQviqo0ePkpGRgcViYeTIkXW2dVRUcOSuu9FlZYSccw4xt9zcQr1sPYsXL+4EcOGFFx4HeOihh3Y99NBDu+o65u2331544403zhw2bNhdFotFd+3aNXPUqFGpaWlpiQ1p4+rCCy+86MiRI/FLliypNffY2/M+/vjj62+55Zbt5te/+tWvLps4ceLOG2+8cae5bfDgwYXm/93SJY5feumlR/r27fvHv/3tbwNeeOGFTe59eOyxxwYsX7580EMPPfTRqFGjsn744YeEf/7zn9PuvffewmeffbbO2+7JycnHzf/7+/vr4ODgkr59+1ZvS0lJKQI4fPhwiLmtT58+af/+97+/cD3P119/3eWpp566zNNzTJ06dWZZWZn/mjVr3vHz8/O6SoME0C0sOTkZgD179pCfn189gUrZbHT5+3McuHgm/U5mcN2RNbzd9VRtXG8L1wvhq7TWrF+/HvAur7I22S+8QOWRI9i6dCGhGfKUUwYMoGenThy54goqsnPIefkV4u+6s0mfQwhflZaWBsCAAQPqLS954t+vUr5nD9boaDr/7ZnT1jRoj3788ceE2NjY3Pj4+DonDrqaMGHCyX379r2VlZVlO3bsWMDgwYOLRo4ceUVcXNzJhrQxTZky5aKNGzf2/eKLL94cMWJEwZk+d8+ePUt79uxZnQbi7+9fFRcXV3zeeed5VbGgW7duZfHx8ScOHDjg8fb4iy++OOWaa65Z9fjjj6cCzJgxI+vgwYORb7/99rn1BdB+fn41SnUopWpsszh/51xHmAMDAyvd+7579+5wT+e/5pprJmzbtq3X4sWLX/M0el6X9v/b7mPi4uLo0aMHWms2btxYY58tMZH4++4F4JrUr3hvelfmXD2U+TePYdX9kyV4Fm1aRkYGOTk52Gw2r/IqPSnZuImT//sfAImP/xXrGdaP9sRqtRLSqRMJf/4zACfeeIPS7dvrOUqI9mHcuHHcdtttnHfeeXW2K9+7l5xXXwUg4ZGH8Ys9Pe2wPdqxY0dCt27djtff8nTx8fGVgwcPLkpPTw9MTU3tPXny5N0NaeNwOJgyZcpF69atO+vjjz9+e9y4cXlN+dyNdfz4cf+cnJzoTp06eZxUWFFRYbNYLDVGdq1Wq0Nr3aq30x9//PH+H3zwwXnPPffcBxMmTDjtQqU+MgLdCs4++2zS09PZuHEjEyZMwGq1Vu+LvOIKCr74kpIffyTxnZcZ/dqrrdhTIZqOecE4YMAAAhqREqGrqjj26J9BayIuvZSQc85p6i7WEHbBBZRMn47j++859te/0mP+/A4xwiZETEzdi6Zorcl89C9QWUno5MmETZvWMh3zAQcOHEgYN25cdfD5xBNPnDVnzpwLsrKyXqrtmDlz5vTSWquRI0fmbNy4Mfrpp5++sFOnTjlPP/30poa0mTJlyvTVq1cP+uc//zk/Li6uIjU1NRSgc+fOZdHR0VUAv/3tb0ctW7bsrN27d7/j7XmPHz/un52d7W9+/fHHH38IYJ4foG/fvsX+/v4aYPr06RdecskluwcOHJi/Z8+esKeeemqiUspx9913b/PUh2HDhu2ZN2/ehOTk5Pxx48ZlL126NOHjjz8ee/7555+W7tFSvvjii/jHH3/80pkzZ66aMGFCtvm9BgcH211H4+siAXQrOOusswgNDaWoqIjdu3eTkpJSvU8pReJfHmX/jIspXrmSouXLCa1nJEAIX1dWVsZ25yju8OHDG3WOvA8/pHzvPqwREXS6/76m7J5HX3/9NWvDwzirf39C16+nYNEiImbObPbnFaK1lJSUEBwcXG+7wq+/pnTjRlRQEAl/fqTDlHusqqpSR48ejR82bFj1aksnT54MzM7OrvOKIzc3N/Cll146Pz8/Pzw4OLh09OjRO//zn/98Fxwc7GhIm6VLl54NcMstt1zvev6777770+eee26z8zzB2dnZ0Q057+23337OBx98UGegsXr16jljx47NA8jKygq/++67rygpKQkKCQkp6du376Gvvvrq9X79+pV46sOHH3745Q033DD5iSeemF5UVBQSHh5eOHXq1A3vvPNOq61atWzZss6VlZW2hQsXTli4cOEEc3tDytgprWVVO6VUOJCfn59PeLjHNJkm991337Fq1Sr69OnDtddee9r+4397ltz//Af/5GR6fvpJ9VLfQrRF+/btY/78+cTExDB79uwGf+DaCwvZP3Ua9txcOj38MNHXzTK2O7THSjdNYdeuXbz33nsEWSxM/998/GNj6bX4KywhIfUfLEQbk5mZyeuvv05KSgqXXXZZre9RR3k5B6b/nMrDh4m97Tbibvt9C/e0poKCAnMuUYTWus584PoopUZNnTr13sWLF0vOlqjh3Xff7frII4+cSE9Pv9/cJvcjW8mQIUMAOHz4MJWVp89FiJ39W6wxMVSkpXHy/Q9auntCNKnevXtz1113cckllzRqtOrEv/+NPTcX/+Rkoq66EoDFqZmMf2Yp17z2I3cs2Mw1r/3I+GeWsjg1s0n63KdPH0JCQih1OMgePIiq7GxOvPlWk5xbCF+zceNGHA4HWus636Mn582j8vBh/OLjibnxhhbsoRC+RQLoVhIbG8usWbO48847PdbZtIaFEXe7sbR8zr//haPUq5QcIXxWSEgInTt3bvBxlZmZ5L79DgDx992LstlYnJrJ7HkbycyvuSrnsfwyZs/b6HUQbXdo1uw/waebj7Bm/wnsjlN35KxWK4MGDQLgyDijIk7uW29hz8tr8PcghC+rrKxk2zajJG9dKVb2vDxy5v4LgLg778TiRbqHEO2VBNCtqHfv3nUWqY+87DJsXbpgz87h5PwFLdgzIZpOeXn5GR2f8+qr6MpKgkeOJHTiROwOzWOLduAp+czc9tiiHTWCYU+8GcEeOnQoAAfy89EpKTiKijjxnzfP6PsRwtfs2bOH8vJyIiIiqkutepL7zjs4iooI6NePiJkXt2APhfA9EkD7AK21xzQO5e9P7O9mA3DitddwFBe3dNeEOCMOh4MXX3yRN998k4KChqcnVh47Rv6HHwEQe9ttKKVYl5Z72sizKw1k5pexLq32EqbejmB36tSJxMREHA4H2ZcYEwhz582jKter8qhCtAlbt24FYNCgQbWmb9jz88l9510AYn/3O6lIIzo8eQe0sl27dvHyyy/z7bffetwfMXMmtu7dsJ88Se68/7Zw74Q4MwcOHKC4uJicnBxCGjH57sSrrxmjz2efTcjoUQBkFdYePLuqrV1DR7DNUejDViuBAwagS0o48fobDfk2hPBZJSUl7NtnLCxXV3323HfnGaPPffoQNuWCluqeED5LAuhWZrVaOXHiBKmpqdjt9tP2Kz8/4n73O8B5++wMb4cL0ZLMvMoBAwbUqHfujcrjx8n7wJhAG+sy0z8+LNCr42tr19AR7EGDBnHddddxzTXXEPeH2wHIW7CAirz8WvOnhWgrtm/fjsPhICEhgbi4OI9t7IWF5L5jzEOI/b2MPpsWLlyYYLVaH+nTp8/1jTn+yiuvnKiUetT1ER8ff5t7u9mzZ4+Mjo7+o81me7h79+43zZ8/v4u5Lzo6+o/u51BKPXrBBRdcVN/zb9q0KWzMmDGXBQcH32ez2R5KTEyc/d577zV8ogqQmZnpP23atGlRUVF/tNlsDyUnJ/9mwYIFXp/rl7/85Xil1KPTpjV9UfHBgwdfk5KScp2nfW+88UY3pdSjn332WaeGnlfqQLeyXr16ERISQnFxMQcOHKBPnz6ntQm/6CKy/jGHqsxM8j/5tLoKgRC+rKKigp07dwJ1j2zVJvedd9CVlQSNGEHw6NHV20clR5MYEcix/DKPo8gKSIgwStp50tAR7KCgIHr16gVAyIQJBPTpQ/nevTzzuyd5o1t1+VASIwJ5dEaKrBgq2pSUlBS01nXWfz65YAGOggL8e/ci7MILW7B3vu3ee+/92c9//vPV33zzzdmNPUenTp2yv/3223fMrwMCAmosXf3nP/95wGuvvTb1jjvu+HzKlClHnn766TE33njjdUOHDn2pf//+xWvWrHm1srKy+orm+++/j7/99tt/eeWVV+6o63nT09MDzz///N+kpKSkvfHGG//t1q1b8YYNG2ISExNrrVjQp0+f62fOnLnZrDnt6uKLL744IyMj/tlnn/24T58+hS+//PLg66+//lf9+vV7ediwYYV19WXBggWdv/jiixGJiYmNWuGxPldfffWmhx9++MoNGzaEuy99/tZbbw1LSko6evHFFzf4ueUyspVZLJbqhVS217JcsLLZiP71rwDIffNNtMPhsZ0QvmT37t1UVlYSFRVFly5d6j/AhaO4mDxn+caYm35TIy/TalE8OsN4z7hna5pfPzojpdZ60Gcygq215vCFlwEwefsybPaq6n0NrQAihC8ICQlh1KhRDBw40ON+XVnJSWf6YMxvbpLRZ6eHHnpoUEhISNmf//znn8rKygLXrFkT2ZjzWK1Wx8CBA4vMR58+fUpc97/99ttjJ02atPHvf//75mnTpmV/++23n/v7+1c++eSTwwD69etX4nr8559/3jcmJubkTTfdlF7X895xxx3jo6Ki8letWvXpNddcc2TcuHF5f/jDH/Y3Zknr3Nxcv40bN6bcc889S2666aaD5513Xu7777//fVxcXO7jjz8+sq5jjx8/7n/77bdf/te//nVRSEiIV6Mbffr0uX7KlCk/mzZt2rSgoKD7Q0ND77njjjuGZ2Vl2caPHz8zICDgT7GxsX94/vnnewPcdddde0JCQkqee+65oe7PvW7dupSLL764USsiyjvBB5h/uHbt2kVVVZXHNpFX/AJLWBgV6ekULV3akt0TolHM9I26JibVJm/hxzgKC/Hv0cPjSpzTBiYy97rhJETUDHITIgKZe93wOkeBzRHs2nqkMEaT3Uewv/32W1544QWeygsnJzCC6PJCJmVsqN7fkAogQrQVBYu/pur4cayxsYRPrzcroEPIysqyzZ079/xnn312yYgRIwoCAwPLly1bluDa5p577hmqlHq0vnNlZ2dHh4eH3x0TE3PHmDFjLlu3bl2Eua+oqMh6+PDhzpMmTTpgbvPz89MDBw48sHXr1q7u5yoqKrKuXLly8NSpUzdZ6rnQ+fHHH/v17dv36IgRI34RGhp6b5cuXW694447GrVMbHl5ucXhcKjg4OAaAYzNZqvatm1bt7qOveyyyy46++yz99x2220H6mrnbuXKlUOjoqJKvvzyy9dmzJix7qWXXvr55MmTrxwxYkTG4sWL/z1kyJD9jzzyyGU5OTm2wMBAx8SJE7csWbJkqMNlAPJvf/tbitbacv/9929r0DfsJAG0D0hKSiIsLIzy8vLqyRzurKEhRF19NYCU0RI+z3VikllL2Vvabq/Ot4z+9a9qHfGaNjCRVfdPZv7NY5hz9VDm3zyGVfdPrjeForEj2CdPnqSoqIiQ8iw+7nUuAJfvWw4uq7l6UwFECF/x2WefsX79eioqKjzu11qT+9ZbAETPuhaLrIgLwK233nru0KFD902dOjUHICEhIXvz5s01AuioqKiyuLi4E3WdZ8yYMYcffPDBT+bNmzfvz3/+8+fHjx+Pmjp16g2ZmZn+APv27Qt2OBwqKSmpyPW46Ojo4ry8vFD38z377LNnlZWVBd57772b6/secnNzo7799tuRSUlJue+88867l19++fpXXnnlZ/fee+8Qs82sWbPODQgIeNB87N+/v9ucOXN+7rpt3bp1EYmJiRU9evQ4/MILL5y3efPmsIqKCvWnP/1pcHp6etf8/PzT+ml65JFHBh44cCBx/vz539XXX3ddunQ5Nn/+/BWTJk3Kffvtt1f6+flVhYeHl8yZM2fjpEmTcufMmbO8pKQkaPHixZ0A/vCHP2w6ceJE1Ouvv97DPMenn346bMSIETuSkpIaNblMcqB9gFKKAQMG8OOPP7J9+3bOOussj+2ifnkdJ956i9KNGynbsYNAZ+qHEL7GZrNxySWXcPToUWJjYxt0bOHSpVRmZGCNiCBi5sw621otirG9YhrcP3ME+7FFO2pMKEyoI4954MCB7Nixg2TrSb7oMZpZu5fQrSiLoTn72BxXc+6Ct3nWQrSW7OxsNm3axJYtW2pN3yjdsIGy7dtRAQFEOgdwOrpVq1ZFffPNN2evXbv2FXNb9+7ds/bs2VMjgH7ooYd2PfTQQ7vqOtddd93lOmJ2/NJLLz3St2/fP/7tb38b8MILLzQ4reCDDz4YNmDAgL1Dhw6tM+cYQGutkpKSjn7yySffAVx22WXHdu3aFf/BBx+c/eyzz24BePzxx9ffcsst1bmlv/rVry6bOHHizhtvvHGnuW3w4MGFAG+//fbCG2+8ceawYcPuslgsumvXrpmjRo1KTUtL8ziisX79+vAXXnhh2v/+9793IyMjPd96r0NycnJ1zrK/v78ODg4u6du3b/W2lJSUIoDDhw+HAEyZMiUnOTk546233hp2yy23pC9fvjx6//793e67775lDX1ukwTQPmLQoEGUlZXVOdnKFh9P+JQpFHz5JSfnLyDx8b+2YA+F8J7NZmPw4MGNmjxo5ltGXnVVs650Nm1gIlNSEliXlktWYRnxYUbaRm25071798bqZyO0qoLQADvfJY1gRtpqph9YfVoA7W2etRCtxZzg26tXLwIDPf++5r47DzDKqfpFRbVY33zZ73//+6klJSVBQ4YMucvcprVWkZGR+Wd67m7dupXFx8efOHDgQDRA7969SywWi87IyKgxipubmxsSGRlZY1T6xx9/jNi1a1fPJ5544j1vnissLKwwKSkp23Vbnz59steuXdvf/Lpnz56lPXv2rJ5U6O/vXxUXF1d83nnnnXaLbcKECSf37dv3VlZWlu3YsWMBgwcPLho5cuQVcXFxHnOqv/nmm87FxcUhl1566a3mNofDofbv39/darWOKi0tfdzf37/WXDg/P78ak8GUUjW2mSksDoej+g/6JZdcsumll176WWZm5hf/+Mc/hnqTK14XCaB9ROfOnZlZz2gbQNS111Dw5Zfkf/458ffegzU8vAV6J0TLKE9Lo2TtWrBYiLr6qmZ/voaMYNtsNvr3P4vUbdvoac3l8+RzmJG2mrHHthNbmkdOUGS9FUCE8BU7dhhFGvr37+9xf1V2NoXfGXfWo2bNarF++bJ//vOfvfbt29dt4cKF//b3968O1pYuXdr5+eefn3no0KHAbt26Nfr20/Hjx/1zcnKiO3XqtBUgNDTU3rVr16PLli1LfvDBB3cBVFVVqdTU1J4XX3zxOtdjn3/++WGhoaHFd955515vnqtv374ZR44cqfHH78CBAzHR0dFndCEQHx9fGR8fX5menh6Ympra++abb17iqd0NN9xwYMiQIXNdt82ePXtmly5dch5++OEf6gqeG+v+++/f/vLLL0978sknBy1btmzI9OnT19eXK14XCaDbmKARI6rLaOV/8inRv/pla3dJiBr27t1LVlYWAwYMIDIyskHHmpU3Qs89F1vnRpUjbVaDBg4kdds2ullPsjZ8MFtjejL4xAF+lv4j8/ob5UvrqgAihC84ceIEx48fx2Kx1JoymPfxJ1BVRdDQoQT269uyHfRBJSUllieeeGLa5Zdf/sOll156zHVfXFxc+fPPP8/ixYsTbrnllnSAJ5544qw5c+ZckJWV9VJt55w+ffqFl1xyye6BAwfm79mzJ+ypp56aqJRy3H333dWT2n7961+veeqppy699957j15wwQVHnn766TEVFRW2Bx54oDrFo6qqSi1ZsmTopEmTtgQGBp5Wpuu3v/3tqGXLlp21e/fu6nJ5d95555pZs2b9ZtasWefecsst27/55psu33333Yh77rlnkdnm+PHj/tnZ2dWJ7x9//PGHAKmpqdUj4n379i329/fXc+bM6aW1ViNHjszZuHFj9NNPP31hp06dcp5++ulNnvqRmJhYMX369CzXfgYEBFRGRESUum9vKp06daoYPXr09jfeeOOC8vLyAG9yxesiAbQP0Vpz5MgRdu/ezYQJE7DZbKe1UUoRde01HHvsr5ycP5+oX17X4AoHQjSn9evXs2fPHiorK5k4caLXxzkqKsj/+GPASN/wRT179sTf3x8qKugXVsXnPc9h8IkDTEtfy7KRP+fhSwZLHWjh88zR5+TkZIKCgk7brx2O6kWMIq+UdQcAbr/99lHFxcVBzz333Dr3fWeffXa+zWarXLduXXUAffLkycDs7Ow6b29lZWWF33333VeUlJQEhYSElPTt2/fQV1999Xq/fv2qS9n99a9/3Z6VlRXy+uuvT3rhhRdCu3Tpcuz111+fN2DAgGKzzSuvvNIzLy8v4o477vCYN52bmxucnZ1d47bY1VdffTQjI+O9559//vz333//vOjo6JOzZ89e/OSTT1YH77fffvs5H3zwwellkFysXr16ztixY/Nyc3MDX3rppfPz8/PDg4ODS0ePHr3zP//5z3fBwcHVAb2nfrS0m2++eePKlSu9zhWvi9Jayi0ppcKB/Pz8fMJbMSVCa82cOXPIz8/nqquuqnVkwF5UzL4JE3CUlNDtnbcJGTWqhXsqhGfl5eU8++yz2O12Zs+eTXx8vNfH5n/+BUfvuQe/hAR6f7sE5eeb1/eLFy9GKcXwEWezL6eS0Osvxy8vl8Q5c4icKotMCN/36quvkpmZyYwZMxg+/PTKZUU//EDGb27CEhZGnxXLsXgIsn1FQUEBERERABFa64L62tdFKTVq6tSp9y5evNjzogyiw3r33Xe7PvLIIyfS09PvN7dJGTsfopSiX79+gLEIRW2soSHV9TjzP/6kJbomhFf27NmD3W4nNja21mWBa5P3njH3JfLyy302eAaYNm0aU6dOJS42hrFnJdDpF8bCKoWffNK6HRPCC1VVVQQFBWG1WmtP33jvfQAiLr7Yp4NnIVqTBNA+xpzQsXv3bhx1rDgYcanxoV3w9dc4iotrbSdES3KdmNSQ1KLyA2mU/PQTWCxEXnF5c3WvWURceikARStWUJWdXU9rIVqXn58fv/zlL7n33ns9Lt9dlZ1NoXOxrg6YvuGoqqpSdX32io6pqqrK4nA47K7bfDKAVkr9XimVrpQqU0qtVUp5laOglLpaKaWVUp80cxebTbdu3QgKCqK0tJRDhw7V2i5o2FD8e/RAl5RQ8PU3LdhDITyrrKxk//79QO0z+2tj5j6HnnsutkTfzyG22+0cOHCAffv2EdCzJ0FDhoDdTv5ni+o/WAgfEBAQ4HF7/meLjMmDQ4Z0xMmDJWVlZZWZmZmeXxzRYZ04cSKgrKysRkk+nwuglVJXAc8DjwHDgS3A10qpOpMplVI9gOeAlc3dx+ZksViq0zjMOp2eKKWqR77yFy5skb4JUZe0tDQqKysJDw8nISGh/gOctMNB/uefAxBx6SXN1LumtXXrVt59912WOkfqIi4z7gjlf/IxMq9E+KqKigqKiorqbJP/2WfAqTsrHUzasWPHslasWNGw1Z9Eu+ZwOFi3bl1gdnZ2qut2nwuggbuA17TWb2qtdwC/BUqAG2s7QCllBf4LPArUu566UipAKRVuPoCwpul603DNg67rwzhi5sVgsVCyfj0VdYxWC9ES8vPz8fPzo2/fvg1K3yhZ9xNVmZlYwsIInTSpGXvYdMzvMTMzk7y8PMIv+hkqIIDyvfsoS02t/wRCtIKdO3fy97//nU9qydcv272b8t27UTYb4T+b1rKd8wFa69LDhw+v/+qrr2LN5bSF+O9//9t1165dJ4Eak0t9KoBWSvkDI4BvzW1aa4fz67F1HPpnIEtr/YaXT/UnIN/lcbhRHW4mvXr1wmazUVlZSWFh7VVWbAkJhJxzDgD5MoFJtLKRI0dy3333Nah0HUD+p58CED5tGpZabiv7mpCQELp16wYYF7rWsDDCpkwBIE/uCAkftWfPHoBaq03lf2qMPodOnIjVqGzR4ZSXl3/x1VdfrX/ggQf6v/fee52zsrJOrycr2j3nqHPEs88+2/fll18O2LZt23tAhmsbX5vqHgtYgeNu248DHqcLK6XGA78BhjbgeZ7CSBMxheFDQbTNZuPmm28mJiaG+lbJibzsUopXrSL/k0+Jvf12qQktWpXNZvNYv7w2jtJSCr/+GnDeUWlD+vbty8GDB9m7dy+jR48m8rJLKfj8cwq++JKEP/0J5S8DWMJ3VFVVsW/fPuDUXU5X2m6nwEylamPvxaaktc5VSs19//33L169evWIxMTEXsHBwX42m01yszoIrbUqKysjLy+v6MiRI7uPHTu2FFil3VICfC2AbhClVBjwLnCz1jrH2+O01uVAuct5mqF3Z8bbEmChkydjCQmh8uhRSjdtJnj4sGbumRCnq6ioMBYYaaDC75biKCnB1qULQR7q0fqyvn37smTJEtLT06moqCB49Gj84uKoys6maNUPhE1uG+koomMwf09DQ0Pp7GGVz+Iff6QqKwtrRAShEya0Qg99h9Y6F3hLKfX+vn37egEh+Ngde9HsKoAsIMM9cDb5WgCdA9iBTm7bOwHHTm9OL6AHsMglCLYAKKWqgH5a6/3N0tMWorVGa13rSLQlMJCwC84n/9PPKPjySwmgRat48803sdvtXHrppSQ2oIpG/mdG+kbhuRfw2dZM4sMCGZUc3SaWwo6JiSEqKoqTJ09y4MABzjrrLMJ+No2T77xLwZdfSgAtfIq5tkBtcxQKnJMHwy76mdw9cdJalwDb6m0oOiSfuqLSWlcAG4DzzW1KKYvz6zUeDtkFDMJI3zAfnwHLnP/P8HBMm/HDDz/wwgsvsGXLljrbhV9kLKpSsHgxuqqqJbomRLX8/HyOHTtGdnZ2g1byrMrNpWjVDwDclpPAHQs2c81rPzL+maUsTs1sru42GaUUffr0AeDgwYMAREyfDkDh0qU4SktbrW9CuNJaV+c/e0rfcJSWUrDEmHoUcXHHTd8QoiF8KoB2eh64WSn1a6VUf2Auxu2TNwGUUu8opZ4C0FqXaa1TXR9AHlDo/Lqilb6HJmFOIty7d2+d7ULOOQdrRAT2nBxjMQohWpD5wZyUlERISIjXx/341ocoh4O9EV04EnoqZelYfhmz521sE0H06NGjufXWW7nwQmMJ78DBg7F17YouKaFo2bJW7p0QhuPHj1NQUICfnx/Jycmn7S9avgJtplINHdryHRSiDfK5AFpr/R5wD/BXYDPGSPI0rbU5sbAb4PsrLTQBc3Rr//792O32Wtspm42wqVMByP/iixbpmxAmM4Du29f7RRfsDs3xRV8CsLLLkBr7zGSzxxbtwO7w7Xk70dHRJCQkVN8SV0pV3xHK//LL1uyaENUiIyO55JJLmDhxosdJvgVfLwYgbNpUn5wTJIQv8rkAGkBr/ZLWurvWOkBrPVprvdZl30St9fV1HHu91vqSluhnc+vcuTMhISFUVFTUuSohQLh56/ibJeiKNj3wLtqQiooK0tLSAM+3hmvz0+b99Ms0Am/3ABqMIDozv4x1ablN0s+WFD7dCKCLl6/AXlDQyr0RAgIDAxkyZAjjxo07bZ+jtJSi75cDRilJIYR3fDKAFgalFL179wZOjfLVJvjsEfjFxeEoKKDohx9aontCcPDgQex2OxEREcTGer94V9nS77Ci2RvRhWMhMbW2yyosa4puNquTJ0/y8ccf87///Q+AgL598e/dC11ZSeG337Vy74SoW9GKlejSUmxduhA4cGBrd0eINkMCaB9npnHUlwetrFbCnCtHFXz1VbP3Swiguq5s7969G3TrN/qnlYDn0WdX8WGBje9cC/Hz82Pr1q3s3buXoqKiGmkcBYvlvShaV3p6OqtXr+bEiRMe9xea6RtTJX1DiIaQANrH9erVC4vFwokTJ8jNrft2drgzD7po2feSxiFaRJ8+fRg6dCj9+/f3+piq3Fxs2zYBsKqWAFoBiRFGSTtfFxYWVl26z7ygCHdOKixZ8yP2OlYTFaK5bdmyhSVLlrBhw4bT9jnKyiisTt+Y2tJdE6JNkwDaxwUGBjJ48GBGjx5d76qEQUOHYo2NxVFYSPE6qcYhml/v3r2ZOXMmvXr18vqYwiXfgsNBec8+HAuJwX3My/z60RkpbaIeNJy6U2QG0P69euGfnIyurKRo+YrW7JrowLTWNe4SuSta4ay+0bkzgYMGtXT3hGjTJIBuA2bOnMm0adOIjIyss52yWgmbPBmAgm++Yc3+E3y6+Qhr9p/w+WoGouMwbxl3vWQGc68bTkJEzTSNhIhA5l43nGkD206xHTM4OXDgAA6HA6UUYVOmAFD47bet2TXRgR0/fpyioiJsNhvdunU7bX/h4q8BCJs2TdI3hGggX1uJUJyhsClTyHv/fQ599hWzys/GoYxrpMSIQB6dkdKmghLh21JTU4mOjiYxMdHrD9+qkycpXrsOMG4ZT+uWyJSUBNal5ZJVWNamViJ01aVLFwICAigtLSUzM5MuXboQNuUCTrz6KkUrVuAoK8MS6Pv53KJ9MUefk5OT8fOr+XFvpG98D0j6hhCNISPQbURVVRVpaWm1TgQxrQrtRpFfIBFlhZyVe7B6e1tanEL4PrvdzqJFi3jttdc4duyY18cVLV0GdjsBKf3xd46IWS2Ksb1imDm0C2N7xbS54BnAYrFUL1Cxf/9+AAIHDsQvIQFdUkLxak8LqQrRvOpK3yhevRpdUoJf50RJ3xCiESSAbiO++OIL3nnnHTZt2lRrG7tD89jivaxLSAHgnMzU6n1taXEK4fsyMjKoqKggJCSEhIQEr48rXLYUgLDJ5zdX11pN7969SUhIqF6NUSlF2AUXAFC4ZElrdk10QOXl5WRkZACeA+jCpafei5K+IUTDSQDdRriPbnmyLi2XzPwyVicatTzPOboN9KlguS0vTiF8izmy1atXL68/fB1lZRT/sBqAsPMnN1vfWsvw4cO59dZbGTFiRPU2Mw+6aOlSdFVVa3VNdEDHjx/HYrEQExNDVFRUjX3abqdo2fdA+3wvCtESJIBuI3r27AnAsWPHKC4u9tjGXHRifad+lFv8SCzJJbng9JSNtrA4hfBtrgG0t4rXrEGXluLXOZGAs85qrq61Gk8XEsEjhmONjMSen0/J+vWt0CvRUXXr1o377ruPq6+++rR9pVu3Yj9xAktYGMFnn90KvROi7ZMAuo0IDQ2lU6dOgDHT3xNz0YlyvwA2xBvLKo87uq3WdkI0RmFhIcePHwcaFkAXmbeMJ01u17eMKyoqyMrKAkD5+RHqHOErXCLVOETLstlsHlcILVq6DIDQc89F2Wwt3S0h2gUJoNsQM1ipLYAelRxNYkQgCljT2UjjGOuSB92WFqcQvstMI+rcuXN1vm99tMNBofOWcejkSc3VtVZ36NAhnnnmGRYsWFC9rToPeulStJb5B6L51fd7ZuY/h0r6hhCNJgF0G2Kmcezfv9/jH0irRfHoDGMC4U+dUnCg6FmQSWxJXptcnEL4pvT0dKBho89lW7diz8nBEhpKyMiRzdSz1mfeJTp58mT1yqEhY8eiAgOpysykfM+e1uye6CA2btzI3Llz+emn0xfUqkhPp2L/fvDzI/Tcc1uhd0K0DxJAtyHdunXDz8+PwsJCcnJyPLaZNjCRudcNJzg+hp3R3QEYeXxnm1ycQvimGTNmcP311zNs2DCvjyk0bxlPOBfl799cXWt1AQEBJCUlAadG6i2BgYSMGQNQPXFLiOZ04MABsrKyKCkpOW2f+V4MGTUSa3h4S3dNiHZDAug2xGazMXPmTG699VaPeW2maQMTWXX/ZHr+/EIAZgdksur+yRI8iyZhtVrp3r37aTP761K49DsAQtth+Tp35si8a8Wc0IkTAShavrw1uiQ6EK01aWlpwKm7lq7MuQihkyR9Q4gzIQF0GzNw4EASEhLqnYRltShSLr8IAP+tG1EV5S3RPSFOU3HwIBX7nLeMJ7T/W8Zm0JKeno7D4QAg9LwJAJRu3kzVyZOt1jfR/h07dozS0lL8/f3p3LlzjX1VJ09SsnEjAGHteC6CEC1BAuh2LKBvX2MltLIyStaube3uiHbgq6++4osvvqg1hciTIudywcFnn90hbhknJiYSEBBAeXl59SqNtkRn6T6tKV6xopV7KNozc5J5jx49sFqtNfYVr1wJDgcB/fph69KlNbonRLshAXQbtGvXLj7++OPqVaZqo5QidOJ5ABQ6gxghGsvhcLBlyxbWr19PRUWF18cVrVgJQOh55zVX13yKxWKhR48eANW30gF5L4oWYf7OmYtvuSpably8mSlFQojGkwC6DdqxYwdbt26tXsyiLmbQUrR8uZTQEmfk6NGjlJeXExgY6PXy3Y7SUkqclQA6QvqGafjw4UybNo3+/ftXbwtzBi3Fq35AV1a2Us9Ee1ZVVcXBgweB0/Oftd1O8apVQMd6LwrRXCSAboM8jW7VJmTMGFRAAFVHMynfs7eZeybaM/P3rUePHlgs3v3pKF67Fl1Rga1zZ/w9TGhqr/r27cvo0aOJjj5Vcz1w0CCsUVE4Cgsp2bipFXsn2qvy8nIGDhxIYmIicXFxNfaVbduGPT8fS3g4QUOGtFIPhWg/JIBug8xbc0eOHKn3VrolKOhUCS2pACDOgJlb6enWcG2KnekbIRPObderD3pDWa2ETjAmExZJGodoBiEhIcycOZNbbrnltPebmUoVcs45KD+/1uieEO2KBNBtUGRkJBERETgcDg4dOlRvezP3smjZsubumminKisrq3PuPZXG8kRrTdFKZ/6zM3DsSAoLC9m4cSM7duyo3hY6aSIgAbRoedXvRVk8RYgmIQF0G6SUqh4F9CaNw8yDLt2yBXt+frP2TbRPGRkZ2O12wsLCiImJ8eqYivR0KjMyUDYbIaNHN3MPfc+ePXtYtGgRa10q4ISMGwdWKxVpaVQcPtKKvRPtTUVFBZmZmR7nulTl5lKWmgpAyLnjW7prQrRLEkC3UWYetLmscl2q808dDorX/Ni8HRPtUnl5OZGRkSQnJ3udilHsHPEKOnsElpCQ5uyeTzIvcg8fPlydamUNC6vOPzUndAnRFA4cOMCrr77KG2+8cdq+4lWrQGsC+vfHFh/fCr0Tov2RALqNMj+cHQ4Hdru93vYh48cBUPzDD83aL9E+9e/fnzvuuIMZM2Z4fUx1+bpzO176BkBUVJTHVCt5L4rmYA6meKqQc+q9KOkbQjQVCaDbqPDwcO69915uvfXW04rlexI63rhtV/TDKilnJxrNz8vJR47SUkrWrQM6bsms2lKtzPdi8Y8/oquqWqVvov0xy9eZdydNUr5OiOYhAXQbFhwc7H3bkSNRNhtVRzOp8CJvWghTeXl59ZLU3ipZtw5dUYFf50T8e/Vqpp75PjOAdk21ChwwAGtEBI7CQkq3bm2lnon2pLS0tHrVS/cAuiw1FXteHpbQUClfJ0QTkgC6HfAmhcMSFETQ2SMAyb0UDbN8+XL+9re/1ZgMVx/X9I2OXL7ODKAzMzMpLS0FjHJ2IePOAeS9KJqGOfocGxtLaGhojX01ytfZbC3eNyHaKwmg2zC73c7bb7/N008/TUlJSb3tT6VxSO6l8N7BgwcpLy9v0B2PU+XrOvYt47CwMGJjY9Fak5mZWb09ZJyRB120St6L4syZdzi6d+9+2r6iVfJeFKI5SADdhlmtVoqLi6mqqvKqGkeIM4AuWfcTjnoWYBECoKysrDrw8/Th7ElFRgaVhw6Bnx/Bo8c0Z/fahCuuuIL77ruvRv1sM4Au27aNqpMnW6trop2oLf/ZnpdH2dZtAITIBEIhmpQE0G1cQ8rZBfTti19cHLq0lNING5q3Y6JdyMjIQGtNVFQU4eHhXh1TvHoNAEFDh2AN7Xjl69x16tSJoKCgGttsCQkE9OkNWlPyo5SWFGfmwgsvZMKECacF0MVr14HW+Pfuha1Tp9bpnBDtlATQbVxDFlRRSrncOpbcS1G/um4N16Z49WoAQsaObY4utRsh45wpVfJeFGcoOTmZSZMmnZb/XLzGfC+e0xrdEqJdkwC6jTMDm5ycHIqLi+ttbwbQxT+sbtZ+ifahtlvDtdF2e/WIasg58qFtWrduHW+99Rb79u2r3hbkfC/mLFvBmn052B1SXlI0LfNuUMg5cjErRFOTALqNCw4OJt65spTrYg21CRl3DihF+a5dVGVnN3f3RBtWXl7O0aNHgboDaLtDs2b/CT7dfISflvyIPT8fS0gIQYMGtVBPfd+xY8c4ePBg9Z2ixamZ/Pz7Qsotfthyc7j/+U8Z/8xSFqdm1nMmIWpavXo1u3fvprKyssb2isOHjbkIVivBI0e1Uu+EaL8kgG4HunXrBpwaLayLX3Q0gSkpgFTjEHVzOBxMmDCBgQMHEhER4bHN4tRMxj+zlGte+5E7Fmzmg1cXAlDUfwjKy0VXOgLzTtHBgwdZnJrJ7HkbOVTsYFusUSN7RNZujuWXMXveRgmihdfKyspYsmQJCxYsoKysrMa+4jXOuQhDhkBwcPVF7pr9J+RuhxBNQD7h2oHevXtTUFBA586dvWofMm4cZdu3U7JmDZGXXNK8nRNtVlBQEBMnTqx1vxkIun4UD8veC8BbFfFkp2YybWBi83ayjTBH8I8ePcpbn22tfs02xvfl7KzdDMvey8e9z0MBjy3awZSUBKyWjls/W3jHHDSJiYkhLCysxr4SZwCd2XsQ1zyzlMz8UwF2YkQgj85IkfenEGdARqDbgX79+nHNNdcwePBgr9qHjDVKixWv+VGW9RaNYndoHlu0o0bw7G+vZMAJI0Vhc1xfHlu0Q0a6nCIiIoiMjERrjaPoRPX2zXF9ABiYcwCrw44GMvPLWJeW20o9FW1JbZN8tcNB8RpjLsL/ZYbWCJ4BudshRBOQALoDCho2DOXvT1VWlizrLTyqqKhg586dtS7Qsy4t97QP5ZQTafg7qsgJjCAjNE4CQTdmkJNgKazelh6eQL5/CEH2CvqdPDWHIauw7LTjhXBX2yTf8l27sJ88SZlfALuiup12nHlZKxe5QjSeBNDtSH5+PseOHau3nSUwkKDhwwEolhq0woOMjAzef/99Xn31VY/7PQV4w7P3ALAxvg84l++WQPCUUwF0UfU2rSxsceZBD3WmvwDEhwW2bOdEm1NWVlb99/60+s/O9I0tMT2xW6wej5e7HUKcGQmg24nU1FT+8Y9/8MUXX3jVPmTMaABK1kgALU5njmzVVv/ZU4A3NMsIADfH9a2zXUfVvXt3AgMDcdgCUS7JL2Yax9DsfSiM/NRRydGt1EvRVhw6dAitNdHR0aflP5tlSjfG9/V0aA1ykStE40gA3U506dIFMCYpuZcz8iRkjDMPet06tN3erH0TbU99AfSo5GgSIwIxp7mFlxfTK98oebc5rrcEgh5ERUVx3333ccmllwGq+rXbEtcbgLNyDxJQVcGjM1JkAqGo15EjR4DT36OO8nJKnCvNmhdndZGLXCEaRwLodiIyMpLw8HAcDgeHDx+ut33gwIFYQkJw5OdTtnNXC/RQtBWVlZXVH8611X+2WhSPzjDKISpgSM5eLGjSwhPJCzSW/JZAsCalFEoppg1MZO51w0mIMAKXoyGxZAVFYtN2/jXUKpURhFcmTpzI7bffzvjx42tsL920CV1ejjUujsqu3antHSgXuUKcGQmg2wmlVI1as/W29/MjeORIAErWShqHOOXw4cPY7XbCwsKIioqqtZ1rIDjMmb6xKa4PCRGBzL1uuASCdRjfI4xV909m/s1jmHPNMCLGGas2phzb08o9E22FUoro6Giio2sGwObqg6HnjOXRiwcYbd2Pdf4rF7lCNJ4E0O1IQxZUgZrl7IQwmStadu/eHaXq/nCdNjCRVfdP5sIy45gLfzmDVfdPluC5FkVFRfzjH/9gzpw5aIedsb1imDm0C8kXngdA8Y9rW7mHoq0rXm3kP4ecc85pdztMcpErxJmThVTaEXME2hxBtFo9z742BY8ZC0DJhg3oigqUv3+z91H4voyMDACSkpK8am8/egTr8Uzw82PEjElYZESrViEhIVRVVVFVVcXRo0erL3qDRxsXs2Xbt2PPz8day8qPQgCsW7eO9PR0hg0bRp8+p/Kc7fn5lG3fDpz6+z5tYCJTUhJYl5ZLVmEZ8WFG2oaMPAtxZmQEuh2JjY0lODi4+sO5PgF9emONjkaXllK6dWsL9FC0BdOnT2fmzJn07Vv/DH6AkrXGqGnQoEFYQkKas2ttXm2pVrZO8fj37AlaU7xuXWt1T7QRe/bsYefOnZw8ebLG9pL160Fr/JOTsXWKr95utajqux1je8VI8CxEE5AAuh1RSnH++edzxRVXEBcXV397i6W6nJ2kcQhTVFQUQ4cOJTIy0qv2Jc6AL3j0qGbsVfthjuybI/0mszKOlJYUdXE4HNW/O+YdDJO8F4VoORJAtzPDhw9nwIABBAZ6V5oo2CxnJwuqiEbQWlO81vjQDhklH9reMIMes46vKdi8mF0redCidsePH6eiooKAgADi4+Nr7JP3ohAtRwLoDi5krJEnV7plC47i4lbujWhta9asYc2aNRQUFHjVvjIjg6pjx8BmI2jYsGbuXfuQkJCAzWajvLycrKys6u0ho0aBUlTs30/l8aw6ziA6MnOSb1JSEhbLqY9we14e5bt3AxAsAbQQzU4C6Hbo8OHDrFixgpycnHrb2rp2xda5M1RVUbJxYwv0TvgqrTWrV6/mm2++OS23sjbmaGnQ4MFYgoKas3vthsViqU7jMIMhAGtkJIEpRm1tKS0pamP+zrinbxT/9JOR/9yrF36xsa3RNSE6FJ8MoJVSv1dKpSulypRSa5VStV5OK6VuVkqtVEqddD6+rat9R7BixQqWLVvGvn376m2rlCJYytkJIC8vj6KiIiwWC507d/bqmJJ1PwEQIjmXDTJgwABGjRpFYmLNMmJSWlLURWtdawAt70UhWpbPBdBKqauA54HHgOHAFuBrpVR8LYdMBOYDk4CxQAbwjVKqS/P31jfVNkmpNiGjjdzLkp9+arY+Cd9nfjB37twZm81Wb3utdXUFDrll3DDDhw/nZz/7GV27dq2x3Xwd5b0oPCkvLycyMhJ/f3+6dKn5ESfvRSFali/Wgb4LeE1r/SaAUuq3wHTgRuBp98Za61muXyulbgIuB84H3vH0BEqpACDAZVNYk/TcR7jeHtZa17sYhrkiYdn27diLirCGhjZ7H4XvMcuquY9s1aby4EGqsrJQNhtBQ4c2Y886jqDhw8FqpfLwYSqPHjXSq4RwCgwM5De/+c1pdf6rTp6kfI+xiqX591wI0bx8agRaKeUPjAC+NbdprR3Or8d6eZpgwAbk1tHmT0C+y+NwY/rrq7p06YLFYqGoqIi8vLx629sSE7ElJYHDQankQXdYtZXGqo054z9oyBAsXlZ9EadUVlZy8ODBGhMJraGhp/KgZRRa1MJ9kSwzfSOgT2/8YmJao0tCdDg+FUADsYAVOO62/TiQ4OU5ngGO4hKEe/AUEOHy6FpH2zbHZrNV51Z6m8ZhjlqUyCIOHVJxcXH1pFNvVyA8VXN2dLP1qz377rvveOutt1i/fn2N7cGjjPdisQTQwk1FRYXH7dXvxVHyXhSipfhaAH1GlFIPAFcDl2qty2prp7Uu11oXmA+gsMU62UI8zfKvi3xod2zZ2dlYLBbi4uIIDg6ut73WmuJ1knN5JlzrQbuqvpiV96JwUVRUxNNPP81rr72G3W6vsa9E3otCtDhfC6BzADvQyW17J+BYXQcqpe4BHgAu1Fp3+HWpzQ/nzMxMr9qHmHnQqdulHnQH1KNHDx544AGuuuoqr9pXpKVjz85B+fsTNHRIM/eufTIvco8fP05Z2anr/eARI8BiofLgISqPu9+MEx2VOaelqqqqZv7ziROU7zUqLpkDIUKI5ufVJEKlVEMTYzVwsdb6SIMO0rpCKbUBYwLgJ87ntji/fqmO/t0HPARM1Vqvr61dR5KcnMxNN91EQoJ3mS+2Ll2wdelC5ZEjlGzcROi545u5h8LX2Gw2YrzMnzRHvIKGDsUSEFBPa+FJWFgYUVFRnDx5ksOHD9O7d28ArGFhBPbvT9n27ZSs+4mIGT9v5Z4KX1Br+TrnnYqAvn3xi4pq8X4J0VF5W4VjKPB3oMiLtgpjJLixn6rPA28rpdYD64A/AiGAWZXjHeCI1vpPzq/vB/4KXAukK6XMiLFIa+1Nf9ulwMDA08oc1Sd45Ejyjxyh5KefJIAWdTqV/yy3jM9Et27dOHnyJIcOHaoOoMG4FW8E0OskgBZA7ZN8zcWMZC6CEC2rIWXsntVae7W+rFLq7kb2B631e0qpOIygOAHYDEzTWpv3MrsBDpdDZgP+wIdup3oM+Etj+9ERBY8aRf4nn8hEwg7m4MGDLF68mLPOOovzzjuv3vZG/rNz0QbJuTwjSUlJbNmy5bTJvsEjR5L75puSBy0AY/KgmY7XvXv3GvvMChySviFEy/I2gE4Gshtw3hSMShiNorV+iVpSNrTWE92+7tHY52nvTpw4wQ8//IDWmpkzZ9bb3vwDXJqaiqOkBIsXk8lE23fw4EGOHTvmdfpGxYED2HNyUAEBBA6R/OczYY4mHj58uEZt3+CzR4BSVKSnU5mVhS2+tnWkREdw+PBhtNZEREQQHh5evb0qO5uK/ftBKYLPPrsVeyhEx+PVJEKt9UFggLcn1VpnaK3t9bcUzcnhcLBp0yZSU1NPm7Xtia1LF/wSE6GqitLNm5u/g8In1JZbWRvzlnHQsGFY/P2brV8dQWxsLNOmTeP666+vseCRNTycgP5nAVKNQ3iR/9yvn+Q/C9HCGlKFY6tSaq1S6malVLtaua+9io2NJTAwkKqqKo4dq7OICQBKKULMcnaSxtEhOByOBi+gYn5oyy3jM6eUYvTo0dWLH7kKkXJ2wikxMZGBAwfSp0+fGtuL5b0oRKtpSAB9HrAdYzJhplLqbaXUuc3TLdEUlFLVQVGDF1T5SYqZdATHjx+noqKCgIAA4r1IE9BaU7rBKMojt4ybl1nT18xxFR1Xv379uPzyyxk0aFCN7aXrNwDyXhSiNXgdQGutV2qtbwQSgduBHsBypdQepdT9LtUvhA8xa816HUA7P7RLt27FUVrabP0SvsH8vejatetpI6CeVB4+TFVWFthsBA0e3Nzd6xAqKyvZvHkzX331FVrr6u3BI5x50AcOUOVcJVIIkz0/n/K9ewEIHj68lXsjRMfT4IVUtNbFWus3tdbnAX2BD4DfA4eUUp81dQfFmXFdkdD1w7k2tqQk/Dp1gspKSrdsae7uiVZ2+PBhwAigvVGywRjxChowAEtgYLP1qyNRSvH555+zbt06Tpw4Ub3dGhlJQL9+gKRxdGQ5OTlkZ2ef9ve7ZKNxJ8i/Rw/8YmNbo2tCdGhntBKh1nof8CTwfxjLYU9vik6JptO5c2csFgtFRUXk5eXV214pJbeOO5CQkBAiIiKqL7TqU2oG0CNkxKup+Pn5Vddsl2W9hbtVq1bxyiuvsGLFihrbS50BtLwXhWgdjQ6glVITlFJvYSyx/SywEBjXRP0STcRms9G5c2diYmIoKvJuXZngkUY+ndSDbv+mTp3KH//4R3r27OlV+xIz/3mE5Fw2JfMCxrwjYDInh0kA3XGZaVbuC2OVmPnP8l4UolU0ZCEVlFKdgeudj97AauAPwPta6+Km7pxoGr/+9a/x8/P+R22OepVu2YKjvFyWau4AXEuo1aYqN5eKAwcACBo2tJl71LHUGkA7J4eV791HVW4uftHRLd430XqKi4vJzc0FaqZZOcrKKE1NBSBYRqCFaBVej0Arpb4CDmJMIPwY6K+1Hu/Mh5bg2Yc1JHgGI6fOGheLrqykbOvWZuqVaG0lJSVe5cWbzFvGAX16S83ZJmYGR9nZ2ZS6TN71i4oioI+xxLeZfy46DnP0OS4ujkCXOQdl27ZBZSXWuFhsXpafFEI0rYakcFQCVwBdtdb3a613N1OfRDNxOBw4HI562ymlqm8Lyod2+7VgwQL+9re/sX//fq/am7eMg4aPaM5udUghISFEO0eX3Uehg0YYr7dZskx0HObvgvschepUquEjvLp7JIRoeg0pY3ex1vpTWWGwbfr00095+umnvQ6Wgp0f2iXyod0u2e12jh49SllZGZGRkV4dY876Dz5bAujmYAZJ2dnZNbbLxWzHZY5AJyUlYXdo1uw/waebj3B05Rrg1N9pIUTL8+revlJqIXC91rrAy/b/Be7UWmedSedE09FaU1lZyaFDh05bzcoTM0gq3bQJbbejrNbm7qJoQZmZmdjtdoKDg6tHPuviKCmhbMcOQGrONpeJEycyZcoUQkJCamw334tlO3fiKC7G4rZftE/mRS5AWmkAs59ZSmZ+GRbt4P0tW7ABmyO7Mbl1uylEh+XtCPRMIE4pFe7FIwKYAYQ2X7dFQzV0QZWAvn2xhIbiKC6mbNeu5uyaaAWuC6h4cwu4dOtWqKrCLzERm1s1ANE0IiMjTwueAWyJidg6dwa7nZLNm1u+Y6LVXHnllXTpP4K7Pt1PZn4ZAD3yMwmpKqPEL4CbV+WzODWzlXspRMfkbQCtgD3ASS8euYAMkfgYc0nvI0eOYLfXn4WjrFaChg8DTtX+Fe1HgxdQMUtmyehzqwgy7wjJe7HDsFqt9OzVmzf2B6E5dZE7IDcNgJ3R3XFYrDy2aAd2h/eTgYUQTcPb8gyTGnHuI404RjST2NhYAgMDKSsr4/jx43Tu3LneY4JHnE3xipWUrN9A9K9+1QK9FC1Ba10jt9IbpRudAbTkPzerLVu2sGXLFgYPHszQoUOrtwePOJuCzxbJnIQOZl1abvXIs2nACSOATo3piQYy88tYl5bL2F4xrdBDITourwJorfXy5u6IaF5KKbp06cL+/fs5fPhwnQG03aFZl5ZLQUQ3umFMXtJay2zvdqKgoIDCwsLq34n66KoqSjYby7pLBY7mlZubS1paGmFhYTUDaHMEessWdEUFyt+/lXooWoLWmpUrV5JeYsOCA4d5s1jr6gB6e3SP6vZZhWUeziKEaE5ntJS3aFtqW6zB1eLUTMY/s5RrXvuR2zaUU2Hxw37iBN8tkZXQ2guLxcL48eMZPnw4Nput3vZlO3ehS0qwhIdX1yQWzaO2uQr+PXtijYpCl5dTun17a3RNtKCCggKWLVtG+rolKE6lZySU5BJbVkClsrIn6lT95/iwQE+nEUI0IwmgO5AePXrQu3fvWm/bL07NZPa8jdW3DCutfuyOMtp+8J/PZbJKOxEWFsb555/Pz3/+c6/al2xYD0DwsGEoi/zJaE5mTvrJkycpLj61PpVSiiDninOSB93+mRdQCQmJxEeEVGdAm6PP+yK7Uu7njwISIwIZlSwrVArR0uTTsAPp3r07s2bNYqRzqW5XdofmsUU7cJ+Ksj2mJ2D84ZbJKh1TqXPRhiDJf252gYGBxMXFAaePQlfXg5Y86Hbv1ByFrjw6IwUwZvKfyn9Org6qH52RgtUi6XVCtDQJoAXgebIKGH+oAQaeSKuerCLarsrKSvbu3Vtjuei6aK2rF/CQRRtaRm2pVmYedMmmTWgvVhQVbZfrJN9pAxOZe91wEiICT+U/xySTEBHI3OuGM21gYmt2VYgOSwLoDqiwsJCsrJpr3NQ2CWVndA/sKBJLThBdmi+TVdq4o0eP8r///Y+5c+d61b4iPR17bi7K35/AgQObuXcCTqVxuI9AB/bvjwoOxpGfT/nefa3RNdECKioqOHbsGHDqYmrawES+v3ko3YqMv9t3/vEKVt0/WYJnIVqRtysRboLT7u57pLWWQrE+LDU1lY8++ohu3bpxww03VG+vbRJKiS2QtIjO9M4/wsATacSHTW2propm0ODydc7R58DBg7BI5YcWkZSUREBAAMHBwTWq3yg/P4KHDqF49RpKNqwnsF/fVu6paA5Hjx5Fa014eDgRERHV2ys2bwLAv3cvxgzr2VrdE0I4eVsH+pPm7IRoOQkJCYDxR9put2N1LtE9KjmaxIhAjuWXnXallBqTTO/8I4wqPCSTVdq4Bi+g4sx/NvNvRfOLiYnhvvvuw+JhwmbQiBEUr15D6foNcO21rdA70dyOHDGWUHC/yK1ezEjei0L4BG/rQD/W3B0RLSMmJoagoCBKS0s5duxYdR1gq0Xx6IwUZs/biKLm7YbtMclccmAV55YdlskqbVhjFlCpzn+WCYQtRilVa8316omEUpu93TrnnHPo168fDrc895KN5sWs3OQVwhc0KgdaKRWplLpJKfWUUirauW24Uqr+VRlEq1JKVY8+uk9Scp2s4io7uT8A/ofSsBcUtExHRZM7efIkJSUlWK3W6jsRdanMyqLy0CFQiiCXRT1Ey6moqKjxddCQwWCzUXX8OJVHZLHX9kgpRWxsLPHx8dXbHCUllO3YAchkXiF8hbcpHNWUUoOBb4F8oAfwGpALXAZ0A2TNZx/XtWtX9u7dS0ZGBqNHj66xb9rARKakJLAuLZeswjLiw4wao+lr/03FwYOUbNxI2MSJrdNxcUbM0efOnTvj51f/W7/UOeIVcNZZWMPCmrVvoqbs7Gzmz5+P3W7nzjvvrN5uCQoiKCWF0i1bKFm/Hn8vU3FE21a6ZQtUVeGXkIBfHavICiFaTmNGoJ8H3tJa9wFcSzJ8CUxokl6JZlXfioRWi2JsrxhmDu3C2F4xWC2qugawLOLQdpkBdIPzn4fLLeOWFhERQV5eHgUFBeTn59fYJ+/F9mvnzp189NFH7Ny5s8b2U3MRRkjajhA+ojEB9Ejg3x62HwHqvy8sWl2XLl1QSpGfn0+BlykZsohD23fOOecwY8YMBnpZjq56BULJf25x/v7+dOrUCfBQD1rei+3W3r17SU1NrZ5IaDLfi0GS/yyEz2hwCgdQDoR72N4XyD6z7oiW4O/vz8SJE4mMjCQgIMCrY8wgqjQ1FUdZGZZAz2XvhO+Kjo4mOtq7Kir2oiLKd+0GIGi4BNCtISkpiWPHjpGRkcGAAQOqtwcPHwZARVoaVSdO4BcT01pdFE3MvFhyneSrKysp3bIVkAocQviSxoxAfwb8WSllc36tlVLdgGeAj5qsZ6JZTZgwgcGDB3sdQNuSkvCLi4PKSkq3bm3m3onWVrppMzgc2JKSsHWKr7e9aHq1pVpZIyPx79MHgOUfLWHN/hPYHV6V6Rc+rLS0lOxsYwzKNc2qbNcudEkJlvBwAvr0bq3uCSHcNCaAvhsIBbKAIGA5sA8oBB5quq4JX6KU5EG3ZTt37mTdunXk5nq3FHvJRmf5Osl/bjVmAJ2ZmUllZWX19sWpmSy2GNlyaz9dyjWv/cj4Z5ayODWzVfopmoZ5oRQdHU1ISEj19upSksOGoTzUBhdCtI4Gvxu11vla6ynADOAPwEvARVrr87TWxU3dQdE8zJrAq1evpqqqyqtjJPey7dqwYQNfffUV+/Z5twR0qfNnHCT5z60mIiKC0NBQHA4HmZlGcLw4NZPZ8zayLqwbAANOpAFwLL+M2fM2ShDdhtVWo90csJD3ohC+pTFl7JK01hla61XAqmbok2ghCxYsoKSkhG7dunlVmaE6D3rTJnRVFcqLUmii9WmtPeZW1tq+oqI6TUdqzrYepRSDBw+moqKCwMBA7A7NY4t2oDEWNwLolXeEoMoySm2BKOCxRTuYkpIgCx61QZ5WCdVa16jAIYTwHY25H5SulFqulLpZKRXV5D0SLcJ1QRVz5KM+AX36YAkNNYr6797dnN0TTSg7O5vy8nJsNlt1ZYe6lG7fji4vxxoVhX9ycgv0UNRmypQpTJ8+nfj4eNal5ZKZb1QOzQmK5FhwFFY0Z508BBirh2bml7Euzbs0HeFbzJUlXS9yK9LSsefmovz9CfSyeo4QomU0JoA+G1gH/BnIVEp9opS6Qinl3Ww04TNqW5GwNspqJchZAUDyoNsO8wKpS5cuWLzIoTQXUAkaMVxqzvqQrMKyGl9vjzYubgaeOFBnO9E2/PrXv+aBBx6osQJhqXMuQuDgQVj8/Vura0IIDxqTA71Ja30vxqqDP8MoXfcqcFwp9Z8m7p9oRuZIh7cj0ADBzpJm5m1F4fs83Rqui5njLiWzfENVVRWHDx8m0r9mpY3tsT0BSHHmQZviw6TEZFvl7+9f46JV3otC+K5GT+nVhmVa65uBC4A04NdN1jPR7Dp37oxSisLCwtNWO6uNmQddsnEDWkvprLagtslJruwOzZr9J/h0YwYF1R/aUoHDF7z77ru88cYbRFScIDHCyHUG2B7dA4CzTh7Cz1GFAhIjAhmV7F2tb+E7avtbWrLRzH+W96IQvqbRAbRSqqtS6j6l1GaMlI4i4PdN1THR/Opa7aw2gYMGoWw27Nk5VB461JzdE02gvLy8unRdbSPQi1MzGf+MUQ7t769/g6WwgHI/f5Y7ZIqDL+jcuTMAR44c5tEZKQAo4FBYJ/L9gwm0V9I7z1i57tEZKTKBsA2aO3cur7/+enUdaIDKrCzjb6xSBA0b1oq9E0J40uAAWil1q1JqOZAO/Ap4D+iltT5Xa/2vJu6faGYNTeOwBAQQOGgQIGkcbUFAQAD3338/N9xwA8HBwaftN8uimZPTzLJoOyO7MXvBVimL5gNcF1SZNjCRudcNJyEiEJRihzMPekxxBnOvG860gYmt2VXRCCUlJWRnZ3PkyBFCQ0Ort5tzEQL69cMaFtZa3RNC1KIxdcgeBuYDf9Bab2ni/ogWNnLkSAYNGkRiovcfvMEjhlO6cSMlG9YTedmlzdg70RQCAgLo1q3badtdy6KZBjoD6FRnmTQpi9b6zDsHx48fp6KigmkDE5mSksC6tFwqQ/bAf7dzY0QB3SR4bpPMu38xMTEEBQVVbz+V/yzl64TwRY1J4eimtb5Pguf2IS4ujqSkJPwaUNM5aIS5IqGMQLdlrmXRTOYI9PaYZCmL5iPCw8OJiIhAa82RI0aqhtWiGNsrhpEzJgFQtnEj2uFozW6KRqptjkL1aqCS/yyET2pMFQ6tlDpXKTVPKbVGKdUFQCn1S6XU+KbvovA1wcOGgVJUpKdTlZPT2t0RtXA4HLz99tt8/fXXVFRUnLbfvdxZbEkenUpPYlcWdkV3r7WdaHm11WwPTElBBQZiz8ujIi3N06HCx3mqkmMvKqJ8l1FrP0hGoIXwSY3Jgb4c+BooBYYBZv3nCODBpuuaaCnp6el88cUXbHWuPlcfa0QEAX36AKdmiQvfc/z4cdLT09m0aRM2m+20/e7lzgbkGgHY/ojOlPkF1NpOtLzaarYrf3+CBg8GTt3yF22Hw+GovqvgOgJdumkzOBzYunbF5sXiR0KIlteYFI6Hgd86y9dVumz/AZB7TW3QkSNHWL9+Pbt27fL6mCDnbUVZUMV3uY5seVoQZVRydI2yaOaCHKkxRn1hKYvmO3r37s0FF1zAeeedd9o+s7SkueiGaDuysrKorKwkICCAuLi46u0lG9YDkv8shC9rTADdD1jhYXs+EHlGvRGtwvX2sLe1nc3C/lKJw3fVt4CK1aJqlEUbcCIdMPKfzaBayqL5htjYWMaNG0eXLl1O2xdkLm4kI9BtUkpKCv369atxkWvOLwmS/GchfFZjAuhjQG8P28cDBzxsFz6uc+fOWCwWioqKvF9QxfmHvWznThzFxc3ZPdFIZr5sXSsQmmXRegY66F5wDIDtMT1IiAiUsmhtRNDQoWCxUHnkCJXHjrV2d0QDJCQk8Itf/IJLLz1VzchRUUGpM50u+GxZgVAIX9WYAPo1YI5SajSggc5KqVnAc8DcpuycaBk2m42EhATA+3rQtsREbJ07g91O6RYpyOJriouLOXnyJFD/Et7TBiay8LwwLGgqOifxr9umsOr+yRI8+5ji4mK2bdvGtm3bamy3hoYQeNZZwKnawaLtKtu+HV1ejjUqCv/k5NbujhCiFo0JoJ8G/gd8B4RipHO8Dvxba/1iE/ZNtKDaJinVxZwdLreOfY/5c4yLiyMwsP5JgOXO/Nm4c0YxtleMpG34oIyMDBYuXMjKlStP2yfvxbanoqKC3Nzc09LmzHklQSOGe5y7IITwDY0qY6e1fgKIBgYCY4A4rfUjTd050XJcVzvzljnBRSpx+J6ysjJCQ0PrHX02mbnsZm678D3mezQ7O5uyspqlBeW92PakpaXx4osv8uabb9bYXv1eHC4TCIXwZY1ZiRAArXUFsKMJ+yJakRlolZeX43A4sFjqv7Yy86BLt2xBV1aiPJRKE61jyJAhDB48mKqqqnrbOsrLKXOmBciiDb4rJCSEqKgoTp48yZEjR+jVq1f1PvPnVr57N/aCAqzh4a3VTeEl1xUITdrhqL4IMqurCCF8k1cBtFJqobcn1Fpf1vjuNJ5S6vfAvUACsAW4XWu9rjX60hZFRERw9913Exoa6vUx/r16YY2IwJ6fT9nOndX1aIVvUEp5rP/srmzbNnRlJX5xcdjcVkMTviUpKYmTJ0+SkZFRI4D2i4vD1r0blQcPUbp5M6ETJrRiL4U3zADatf5zxf79OPLzUUFBBPbv31pdE0J4wdsUjvwGPFqcUuoq4HngMYxa1FuAr5VS8a3Rn7ZIKdWg4BlAWSwEDTdGviT30nc4HA6vyxHCqZ9d0IgRknPp4+qaqxAs5ezaDNcFVFzTrErM/OchQ+SOnhA+zqsRaK31Dc3dkTN0F/Ca1vpNAKXUb4HpwI0Ykx5rUEoFcGoFRYCwluhkW6G19jqQCj57BEXLllGycQMxN/r6r0nHsH79elasWMHIkSM9LrzhrsQ5gVAWbfB9rgG0+/s0+OwR5H/8cfXPU/iu48eP17KAipn/LKlUQvi6xlTh8ClKKX9gBPCtuU1r7XB+PbaWw/5EzVFz72fOtWOFhYXMmzePl19+2esRTHMEunTDxgaNeormc/jwYYq9rM2t7XZKN24CJP+5LejUqRM2m43y8nJycnJq7DPfi2Vbt+GoqGiN7gkv1bZKaPUKhJL/LITPa/MBNBALWIHjbtuPY+RDe/IUEOHy8K5UQTsXFBREeno6J06cqK4hXO8xAwagAgKwnzxJRVpaM/dQeMObBVRM5Xv24CgqwhISQkC/fs3dNXGGLBYL1157LXfddVeNkUsA/x49sMbEoCsqKEtNbaUeCm94WiW08uhRqo5mgtVK0JAhrdU1IYSX2kMA3WBa63KtdYH5AApbu0++wM/Pj8REY/EMbxdUUf7+1ZMHS9avb7a+Ce8UFRWRl5cHeBdAm7eMg4YNQ1mtzdk10UR69OhBWNjpWWdKqepb/5IH7duGDBnCOeecQ58+faq3me/FwP79sYSEtFbXhBBeag8BdA5gBzq5be+Esey4aABzRri3ATQYBf/BSOMQrcv8ucXHxxMQEFBPa7ll3N6YP0dzMQ7hm3r27MmUKVPo0qVL9bZTcxEklUqItqDNB9DOetQbgPPNbUopi/PrNa3Vr7aqcQuqGItvlMiHdqvzdGu4Nlrr6oueIJm01GZorVmxYgX//e9/KSkpqbEvyKzEsWkT2uFoje6JRip1qYYjhPB93taB/oO3J9Ra/7Px3Wm054G3lVLrgXXAH4EQ4M26DhKnMwOvrKwsysvLvRrFDBo2FCwWKg8fpvL4cWyd3G8GiJbSkAC68vBhqrKywGaTGt5tiFKKrVu3cuLECQ4fPkzfvn2r9wX2PwsVHIyjoIDyvfsI7Ne3jjOJ1nDgwAG01nTt2rX676s9P5/yvXsBqcAhRFvh7UqEd3rZTgMtHkBrrd9TSsUBf8WYOLgZmKa1dp9YKOoRFhZGZGQkeXl5HDlyhJ49e9Z7jDU0lICz+lG+YyelGzZgu+iiFuip8KRHjx5orenWrVu9batrzg4YgCUwsLm7JppQUlISJ06cICMjo0YArfz8CB46hOLVayjZsF4CaB+0YsUKDh48yIwZMxhu5qw7Vx/079EDv9jY1uyeEMJLXqVwaK2TvXzUH201E631S1rr7lrrAK31aK312tbqS1vXs2dPkpOTvVrO21S9iIPkQbeqSZP+v707j4+qPBv//7lnyR4SkhCSQIAQFgk7yCYqixVxwV1bl1rr0oq21fbxqfprv7W2fbTaWvWpLW1trVXr0trHBVRUXFFW2WRfEwgkISH7vszcvz/OzDBJJslMMlsm1/v1mhdk5pzJdWY4zDX3ue7rXsQtt9zSbnngrjjrZKX+uf/pbkEVZwmAzEkIPzabzbWAivsKhI2OBDpWzkUh+g1vR6DFALJs2TKf94k7cyaVL74oddD9iKsDxwz50O5vnMnXiRMnsNvt7b7sOhfEadiyxadFkUTgnTx5kra2NmJiYkhzG2l2dk2Jk3NRiH6jVwm0Umo4cCkwAohyf0xr/SM/xCX6GecktOb9+7HV1mL20GZLBNbJkydJTk72qm69raKCliNHAIibMT3QoQk/GzJkCNHR0TQ3N3Py5ElX+0nAqGe3WGgrKaGtqAirW6cHEVqeFlCxNzXR6OjbLVeDhOg/fO7CoZQ6D9gPLAf+C1gEfBtj2exp/gxOhFZDQwPNzc1ebWtNT8c6YgRoTeO2bQGOTHjy8ssv8+tf/9qrFoTOS8bRY8dgTk4OcGTC35RSrjKOju+3KS6OmLw84HRtrQgPnib5Nu3cCa2tmIekYXUr6xBChLfetLF7BPit1noy0ARcBWQDnwL/9mNsIoRef/11fvOb37B7926v93Et4iC1l0FXW1tLdXU1SinS09N73L5BWmb1e8OHD8dqtdLU1NTpMVcZhyyoElY8rRLq/P8ybuaZUm4jRD/SmwR6AvC84+9tQKzWug74GXCfvwIToTVo0CDAtwVVnJcfnYtziODxeQGVrc4PbUmg+6uzzjqL+++/n3PPPbfTY87FOBq3SgIdLrpaJdQ5b0Ta1wnRv/SmBrqe03XPxUAu4BymlP47EaK7Wf5dcU5Ga/pqJ/aWFkxRUT3sIfzF08hWV+wNDTTt2QNIAt2fRXVzfrnmJBw8RFtlJZbBg4MVluhCXFwcd9xxB2VlZa4vudpmc5W8Sf2zEP1Lb0agNwBnO/7+DvC4UuonwLOOx0QEcM7yP3XqFI2NjV7tE5UzCnNKCrqlhSbHpBgRHM4vOtle1FA2fvUVtLVhycrEmpUV6NBEEGit2/1sSUkhytHDvXHb9hBEJDoymUwMHTqUSZMmue5rPnAAe10dpvh4osePD2F0Qghf9SaB/hHg7LH8IPAh8HWgALjVP2GJUIuLiyMlJQXwfhRaKeW6dCzt7IKnra2N4uJiwLsRaGmZFTm2b9/O008/zYcfftjpsdPnopRUhStXK8np01Fmc4ijEUL4wucEWmt9RGv9lePv9VrrO7TWU7TWV2mtj/o/RBEqztFMX+qgXYs4yOSloCkpKcFms7X70tMdZ12sXDKODM4VCTuSBVXCh81m480332Tz5s3YbDbX/c4vN84vO0KI/qPXC6kopaKAdDok4VrrY30NSoSH4cOHs2PHDp/qoF2z/7dtQ9vtKB9WMxS9k5yczEUXXURbW1uPs/h1WxsN23cAp+tkRf/lvOJQVFSEzWbD7DaK6TwXG3fvxt7UJMu1h1BJSQnbt29n3759nHnmmYBRduMcaJDFjITof3rTB3qcUmot0AgcBfIdtwLHnyJCjBo1ihkzZjB9uvcLbcRMmICKi8NeU0PzwUMBjE44JSQkMGvWLObNm9fjtk1796IbGjAlJRE9ZkwQohOBlJqaSmxsLG1tbZSUlLR7zDp8OJb0dGhtNereRch4WkCltbCQtrIysFqJnTollOEJIXqhN8ODfwfswCXATGCG4zbd8aeIEGlpaSxbtozJkyd7vY+yWFwfBtJCK/ycrn+eIVcHIkB3C6oopYh1trOTOQkh5WkBFVcv9kmT5OqAEP1Qbz5BpwHf1Vq/q7XerrXe4X7zc3yiH3JejjzwwVrWHy7HZtc97CF6q76+ni+//JLS0lKvtnfVXEr9c8ToruVk3EyjXEAWNwot55cb9y45ci4K0b/1JoHeg/R7HjBsNhsnTpzg0CHvyjFW7yrm/oPGP6umbdu47pkNnP3oR6zeVRzIMAesgoIC3n77bV5//fUet9V2u6vmUvo/R47uJvu6FlTZtg3tNnlNBI9zlVCAYcOGue5vlNVAhejXepNA3wc8ppRaqJRKVUoNcr/5O0ARWvn5+fz1r3/lnXfe6XHb1buKWf7iVr6IysCmTKQ3VpHeUEFJdRPLX9wqSXQAeLo03JWWI0ewVVWhYmKIycsLdGgiSIYNG8aQIUPIzc2lra2t3WPR48ZhSkjAXl9P8/79IYpwYHOeo+6rhLaVldFy9CgoJSsQCtFP9SaBXgPMxej/XApUOm5Vjj9FBHEmZpWVldTX13e5nc2ueWjlHjTQbInmUJIx0jKxvABnAcdDK/dIOYefebo03BVXzeXUqShZJTJiREVFceedd3LppZdisbRvrKTMZmIdk4AbpLVkSFRUVAAdl+82Smqix43DPEjGnYToj3qTQC9y3BZ3uDnvExEkJiaGIUOGAN33g96UX0FxdZPr592pOQBMLD8CgAaKq5vYlF8RuGAHGJ8XUNki5RsDkau15Fapgw6F+fPnc99997Fw4ULXfXIuCtH/+dwHWmv9aSACEeFr+PDhlJWVcfz4cc444wyP25TWNrX7eXdqDlce/oyJ5fndbid6r7i4GLvdTlxcHIMHD+5xe5m0FNlsNhsVFRWuL7xO7isSaq177BUu/C8mJoYYt04bci4K0f/5nEArpbpqWKmBJuCY1rq5T1GJsJKdnc22bdu6HYFOT2zfhml36igARtWeJLGlntqoeI/bid5zL9/oKSlqLSqiragYzGZip04NRngiiGpra/nf//1f7HY7DzzwQLtSjpgpU1BWK7ayU7QWFhI1YkQIIxW2ujqa9xn16LGOLilCiP6nNyUc24FtHm7bgX1AtVLqH0opyZQihLO+1rnamSezc1LITIrBmcZVRydSmGCMhOWVF6CAzKQYZuf0vNS08I5P9c+OS8YxeXmY4uMDGpcIvoSEBKKjo7Hb7RQVFbV7zBQdTcykSYC0swu2jRs38uyzz/KV20I2jdu2gd2ONTsb69D0EEYnhOiL3iTQVwAHge9g9ISe5vj7fuB64FaMWuhf+SVCEXLdrXbmZDYpHlxmdHZwJtHOOuhJjjKOB5flYTbJ5WN/ueyyy7jhhhuYOHFij9s2SPu6iOa+oIrHftCOUgFn6YAIjvz8fAoLC6mrq3PdJ+eiEJHB5xIO4CfA3Vrr99zu26mUOg78Ums9WylVDzwO3OuPIEVoKaW4+OKLiY+PJz296xGTpZMyWXHjDB5auYfi6iZ2p+aw9OgmplUfZcWNM1g6KTOIUUe+mJgYxni5HLfUXEa+7Oxs9u/f7zGBjp3hXJFQRqCDRWvtuko0YsQIbHbNpvwKoj5dRxwQIwm0EP1abxLoycBRD/cfdTwGRjmHZEsRxJtRTjCS6PPzMtiUX0HlwXTY+ipjKgsZP6bnSW4iMNoqK2k5dBiQRRsimfuS3h0nCzp7Dbfk59NWXo4lNTUkMQ4kFRUVNDQ0YLFY+KoCrnnhI05V1PHagb0A3LKlhTsmFMvAghD9VG9KOPYB9yulXI1klVJW4H7HYwDDgJN9D0/0R2aTYl5uKhdecCaWIUOgrY1GtxpA0Xfr1q3jgw8+8GoJ70ZH+7Ko3FwsXnTrEP1TVlYWJpOJuro618p3TuakJKLHjgWknV2wHDt2DIDY5DTuemkHxdVNjKsqJMreRmV0Ajv0IFlgSoh+rDcJ9F3AJcBxpdQapdQa4LjjvuWObUYDf/RPiCJc7Nmzh9WrV1NbW+vV9kop14hn4xZZxMGftm3bxrp161yLNHRHai4HBqvVSkZGBuC5Z3uso3ynURZUCQrne7CjwuJaTMrZF393ag7acYVAFpgSon/yOYHWWq8DcoCfAV85bj8DcrTWGxzbvKC1/o0/AxWht3btWjZu3NhtO7uOXIs4SO2l3zQ2NnLq1CnAtw4cUv8c+WbMmMHixYvJzOxcFhA3QxZUCSbn/5NHGk83pHJOqN6VOhqQBaaE6M96UwON1roW+JOfYxFhbvjw4ZSUlFBYWEheXp5X+zgXcWjctg1ts6HM5kCGOCA4P5hTU1OJ76Elnb2hgaY9ewAZgR4IZnbzHjvPxaY9e7DX10s7wwCy2+2kpaVRVVtHaaPxOpu0nbzyAgB2OToUOckCU0L0P16NQCulLnXUOTv/3uUtsOGKUHKOdnqa5d+V6PHjMcXHY6+vp3n//kCFNqA4ayu9GX1u3LED2tqwZGZiHTYs0KGJMGbNysKSlQk2m8xJCDCTycTXv/51Fl19K81YARhVXUx8WxMNlmjyk7LabS8LTAnR/3hbwvEGMNjt713dXvdXYCL8OGf5FxUV0dra6tU+ymwmdvp04HQtrugb99ZYPZH654GnpqaG3bt3U15e3ukxVxmHnItBMWd0qmuBKWf5xp6UUdiV8dErC0wJ0X95lUBrrU1a61K3v3d1k+vzEWzw4MEkJCR4XO2sO65FHKT2ss9sNpvrtfeq/vlL6f880Lz33nu89tpr7N27t9Njp89FSaADqa6uDq11uwWmJrlNIITTC07JAlNC9E+96cIhBiillGvU01lG4A3nIg4NW75Ea5lt3hdVVVVERUURFxdHag+9fHVLi1HCgYxADyTu/aA7ci2osn0H2surSMI3NpuNp556iieeeILa2lpjgakbpjO5sgA4Xf+ckRQjC0wJ0Y95PYlQKTUPSNVar3K77ybgISAeo4Tj+1rrZn8HKcJHdnY2e/bscXWB8EbslClgtWIrO0VrYSFRXpQeCM9SU1O59957qaura7dQhidNe/agm5owJycTlZsbpAhFqDmvTHhaUCV6zBhMSUnYq6tp2reP2MmTu3oa0UvFxcW0tbXR1tZGQkICAIsHtXK4sQZtsfKd7yxjSOogZuekyMizEP2YLyPQPwNcy9EppSYDfwPWAL8GlgEP+DU6EXamTJnCPffcwxVXXOH1PqaYGGIdKxlK7WXfKaVITEzscTtn+7rYmTNRJrnYNFBkZmZisVjatTt0UiYTcTInIaCcI//Z2dmuLy+uUqqpU7h0dg7zclMleRain/PlU3Ua8KHbz98ANmqtb9da/w74AXCtH2MTYSguLo6kpCTf95Payz7TWvtUAiMTCAcms9nsKuPwVGrlPBePf7aeN7efYP3hclnIw4/cE2gnOReFiDy+JNCDab889wLgXbefNwM9z2oSA1LsDFkFra8qKyt54okneP3113tMpLXNdnoBlVlnBiM8EUa6m6vwVfJIwLhCcffL27jumQ2c/ehHsqS0H2itXa+5e5echs2bATkXhYgkviTQJzFWIEQpFQXMADa4PZ4IyKyUAeDYsWO8/PLLvPPOO17vEzfDuGzcUlBAm4f2WqJnx44do7a2lsrKyh7rn5v378deU4MpPp6YCROCFKEIF10l0Kt3FfOdjQ00mywkt9QzrK4MgJLqJpa/uFWS6D6qqqqivr4ek8nkWg2ytaiI1uPHwWwmdvqMEEcohPAXXxLod4BfK6XOAR4BGoC1bo9PAQ77MTYRptra2jhw4AAHDhzweh9zcjLRY8cAp2tzhW88XRruSv2mTQDEnjkTZenVgqOiH8vOzubKK6/k5ptvdt1ns2seWrmHVrOFA4ONBHuiozex83rGQyv3SDlHHzi/sGRlZWG1GguoOEefYyZOxJwgqz8KESl8SaD/H9AGfArcDtyutW5xe/wW4H0/xibC1PDhw1FKUV1dTXV1tdf7xTrq/xq3SD/o3vAlgW7YbExaip81K6AxifAUFRXF5MmT281X2JRfQXG1sWS0s5Wac3EPMJLo4uomNuVXBDXWSDJkyBDmzp3LZLfuJs4vs/Gz5VwUIpJ4PTSltT4FnKuUSgLqtNa2DptcA9T5MzgRnqKiosjMzKSoqIhjx461+7DoTtzMmVS98qprRrrwXmNjI2VlxuX2nhJobbefnvU/e3bAYxP9Q2ltk+vvu10J9JFutxO+ycrKIiur/TLdzi+zcfJlVoiI4nNvK611tYfkGa11RYcRaRHBerOgivMDpGnvXmy1tQGJK1I5R59TU1OJj+/+MnDzgQPYq6sxxcURk5cXjPBEGGpoaODzzz93zVVIT4xxPbYnZRQ2ZSKzoYL0hvYjzu7bib5pLSmh9dgxMJlcV+CEEJFBmsOKXnEm0J5WO+uKNSMD68gR4DZCKrzjU/mGs/55ptQ/D2R2u50PP/yQzZs309TUxOycFDKTYlBAozWGA8nGv6Upp4ypKwrITIphdk5K6ILux06dOkV+fj6tbis8tq9/TghVaEKIAJAEWvSKM5E7efIkTU3eX/KNd5QUNGzaHJC4ItWgQYPIyspi5MiRPW57umWWXDIeyBISEkhJMZLhwsJCzCbFg8uMKxIK+CrNWJ1y8qnDOHu6PLgsTxb46KVt27bx/PPP8+67p7u7Or/MyrkoROSRBFr0SkJCAunp6YwcOZL6+nqv94ubPQeAho0bAxVaRJo1axa3334706ZN63Y7bbe7vpzIpCXRsdRq6aRMVtw4g4ykGFcCPeXUYTKSYlhx4wyWTsoMWaz9nfM1dv+S65xAGCfnohARR67vil674447euxH3JFzUlvT3r3YamowDxoUiNAGrOaDB7FVV6Pi4ohxLJ8uBq7s7Gy2b9/ebq7C0kmZnJ+XwaY949Bff5aMhko+vnE8MdmSPPdWa2srRUVFwOkvLa0nT9J61Kh/lhUIhYg8MgItes3X5BnAOjSdqFGjQGvX8raie1VVVbS0eDc/1zn6HDd9OsrRh1YMXM7R0BMnTtDW1ua632xSzJuUTZyjg07TZimp6ovjx49jt9sZNGgQycnJwOlzMWbCBMyJiSGMTggRCJJAiz5rbGzEZuvUmKVLzlFoKePwzqpVq3j00UfZtWtXj9u6ai6lfZ0AUlJSiIuLw2azUVzceZVB17no+Hcjeufo0aOAMfrsHFhwzUWQc1GIiCQJtOiT559/nscee8x1+dIbzg+U+s3yod0Tu91OYWEhdrudtLS0brdt1/9ZJi0JjKtEI0aMwGKxUFlZ2enxuDmOc3HTRrSWFQh7y1ki4yzfAJlAKESkkxpo0SfR0dGA8QHiTYs1OD2hpnnvPmzV1ZjdVksT7ZWUlNDS0kJ0dDTp6endbtt86BC2ykpUbCyxk6T+WRguvvhiYmJisHhoaRg3fTpYrbQVFdN64gRRw4eHIML+zWazcfz4ceB0yUxraSktBQWgFHFnSv2zEJFIRqBFn/RmQRVrejpROTmOOmjpB90d90vDJlPXp6vNrtn9zicAtIyfiN0i9c/CkJCQ4DF5BjDFxRHrqIOWkqreMZlMfPvb3+bCCy9kyJAhwOnyjegJZ8hEaSEilCTQok/cE2hfLgE7Lx1L7WX3PLXG6mj1rmLOfvQjtrz1IQAvNadx9qMfsXpX55pXMbB5OkedV4TkXOwdpRSZmZnMnj37dP2zs5XkLKl/FiJShVUCrQy/UEoVK6UalVJrlFJje9jnAaXUZqVUrVKqVCn1hlJqfLBiHugyMjKwWq00NTVRWlrq9X7OBVXqZUGVLmmtXSPQXSXQq3cVs/zFrRRXNTLZsaLczrRcSqqbWP7iVkmiBQAbN25kxYoVbNnSufON+7koddD+cXoCodQ/CxGpwiqBBn4M/AC4A5gD1APvKaViutlnAfAHYC5wPmAF3ldKxQc4VgGYzWbXKHRBQYHX+zknEjbv24etqioAkfV/ZWVlNDY2YrFYyMzs3KPXZtc8tHIPGhhRe5LklnqazFYOJGfjTIMeWrkHm12SooGusbGR0tJSj6VWsc466OJiWh1LxgvvaK1ZtWoV27Ztc7UJbCsro+XIEaP+Wfo/CxGxwiaBVsa1r3uAX2mt39RafwXcBGQBl3e1n9Z6qdb6Oa31bq31DuBmYATQ5f9cSqlopdQg5w2QJp194BwddY6WesOSlkZUbq7UQXcjPj6epUuXMn/+fMxmc6fHN+VXUFxtLKM+rewQAHtSRtFqNupdNVBc3cSm/IqgxSzCk/NL7tGjRzuNMptiY4mdMgWQMg5flZaWsmXLFt59911X+Ub9BqOWPPqMMzA7ekILISJP2CTQQA6QAaxx3qG1rgY2AvN8eB5nS4fusoYHgGq323GfIhXt5ObmMnXqVCb6uPKd8/JmvXxoexQfH8+cOXNYuHChx8dLa5tcf59adhCA7UM6Vzy5bycGpuzsbEwmEzU1NR7b2cW72tnJuegL54h+dna260tu/Yb1AMTPnRuyuIQQgRdOCXSG48+THe4/6fZYt5RSJuBJ4AutdXerTjyCkWg7b9K7qQ+ysrK4/PLLfU6g4+fMAaBho3xo90Z6olHZZLLbmOKof94xZEyX24mBy2q1MmzYMMDzlaLTixttkjpoH7h3yQGjpKNh/QYA4udJAi1EJAtZAq2UukEpVee8YdQu99UfgEnAN7rbSGvdrLWucd6AWj/8buEj5wIDzfv30+ZhVGwgq62tZevWrZSXl3e5zeycFDKTYhhbfYKEtiZqrbEcSj79XVABmUkxzM5JCULEItw5S608zVWInTYNZbXSdvIkrT60pBzItNaduuS0Hj9Oa1ERWCxS/yxEhAvlCPRbwDS32ynH/UM7bDcUKOnpyZRSTwOXAIu01lKSEWRaa0pKSjh48KDX+1hSU4kea4yYNkg3jnYOHz7MypUrefPNN7vcxmxSPLgsj2mO8o2dabnYlXFKK8c2Dy7Lw2xSXTyDGEhGjRoFdFEHHRND7NSpANQ7RlBF96qqqqitrcVkMrlG9+vXG+UbsVOnYoqXeexCRLKQJdBa61qt9SHnDdiDkSif59zGMcFvDrC+q+dxtL57GrgCWKy1zg9w6MKDY8eO8ec//5k333zTt37Qc43y9vr16wIVWr/U8dJwV5ZOyuTrZqPqabtb+UZGUgwrbpzB0kmdu3eIgSk7O5vU1FRycnKw2WydHo87y3EubpAE2hvOc3TYsGFYrcYF1AbHayf1z0JEvrBZyltrrZVSTwI/VUodBPKBXwJFwBvO7ZRSHwKva62fdtz1B+B64DKgVinlrJeu1lo3Bin8AW/YsGGYzWbq6+spLy8nLS3Nq/3i582j8oUXXCM3wuDNAioA9uZm4g7sRgM3Lr+Krw3OJD3RKNuQkWfhLioqiu9973tdPh4/bx6n/vf3NKxfj7bbUd2sfCmgosKYp+6qf7bbXR04pP5ZiMgXNgm0w2NAPPAXIBn4HFiqtXZvI5ALuGdnyx1/ftLhub4NPBeIIEVnFouF7OxsCgoKKCgo8DqBjps9C8xmWo8eo+X4CaKGDwtwpOGvtraWiooKlFJkZ2d3u23jtm3o5mYsQ4Ywe+FMVystIXwVO3kypvh4bNXVNO3dS6yPk4IHmsWLFzN37lzsdjsAzQcPYquoQLm1BRRCRK6wGmLQhp9prTO01jFa669prQ902GaU1vrnbj+rLm7PBTv+ga43/aDNCQmne9BukFFoOP36DR06lJiY7jtoOOtV4+bOleRZeMVut1NS0nlaibJYiHN2xpErQl6Ji4sjISEBOF3/HHfmmaioqFCGJYQIgrBKoEX/5p5A+1IHHT/PUXu5Tj60AfLzjTJ+56Sv7kjPWeELm83G448/zp///GeqPKwAKudi77na18m5KMSAIAm08Jvhw4djNpupra31uFhDV+LdJi9px+XQgcw5At1TAm2rraVpp9HuXGouhTfMZjMpKUZbQ09XipznYsOWLdibm4MaW3/y1ltv8dxzz7m+7OrWVho2G52E5FwUYmCQBFr4jftiDZ56zXYldupUTHFx2CoqaD5woOcdItytt97K17/+9R4T6IbNX4LdjnXkCKxZWcEJTvR73fWDjho9Gkt6Orq5mcZt24IcWf+gtebQoUPtrrQ17tyFvaEBc3Iy0WecEeIIhRDBIAm08KsFCxbwzW9+k8mTJ3u9j7JaXYuq1H6xjvWHy3lz+wnWHy7HZh94q6LFxsZyxhlnEB0d3e12p8s3fFnpXgx0zi9mnhJopdTpMo4vpLWkJxUVFdTW1mI2m12TfJ3nYtycOdK9RIgBIty6cIh+bvTo0b3aL/6sedR9+ikfv/Q2Pz54ei2dzKQYHlyWJ/2MPZAlg0VvZGdno5SiqqqK6upqkpKS2j0ef9Y8qt98U1pLdsH5xWP48OGn+z/LuSjEgCNflUVY2DZkLABjSw5itbW57i+pbmL5i1tZvas4VKEF1b///W8++ugjGhu7b2HeduoUzY5VH52dE4TwRnR0NFmOkh9Po9DOxY2adu/G5mGi4UDnfM2cpTD2xkYat28HZAKhEAOJJNDC744dO8Z7773HAS/rmW12zU+3N1ARnUiMrZUzKgpcjzkLOB5auSfiyzkqKyvZs2cPX3zxBWazudttnaOD0RMmYBk8OBjhiQjSXctJ69B0osbkgtbUb9wU7NDCmtbalUDn5OQA0PDlFnRrK5bMTKw9LHwkhIgckkALvzt48CAbNmxg9+7dXm2/Kb+C4ppmtjtGoaeXHWz3uAaKq5vYlF/h71DDivODediwYUT10Ee2/vPPAUg4e36gwxIR6IwzzuDcc89l5syZHh+Pn3cWAPXrpQ7aXXl5OXV1dZjNZoYPHw6cPhfj558lvdiFGEAkgRZ+56yDPnLkiFf9oEtrjYUmt3WRQHfcLlI5E+ieum9ou506xwSv+PlnBzgqEYmys7NZtGiRq2tOR66JhFIH3U5bWxvjxo1j7NixWCzGFKK6L5xfZuVcFGIgkUmEwu+ys7OxWCzU1dVx6tQphgwZ0u326YnGanvOEeixlYXEtzRSHxXrcbtIpLX2egGV5v37sZ06hYqLI27G9CBEJwaauNmzwGym9egxWo6fIGq450R7oMnIyOC6665z/dxaXEzLocNgMrm+dAghBgYZgRZ+Z7FYGDFiBGCMQvdkdk4KmUkxlMclU5gwBDOaqacOuR5XGN04ZuekBCrkkPPUGqsrdc5LxrNny5LBoteam5vZu3cv2zz0ezYnJBA7ZQoA9eu+CHZo/YbzXIydMgVzh24mQojIJgm0CAjnBBvnqGp3zCbFg8vyANiaPh6AmaX7ASN5BnhwWR5mU+TWFzpfJ/fWWF2p/9xIaOLlkrHog5KSEv71r3+xZs0aj6VW8Y76+vq1nwc7tLDU0NBAdXV1u/vkXBRi4JIEWgSEM4EuKCjA7sXy3EsnZbLixhkcyTEWYDnz5D7QmoykGFbcOCPi+0C3tLQQExPTY/mGvb6ehq1bAZlAKPrG+WWtoaGB0tLSTo8nnHsuYNRB69bWYIcXdnbt2sWTTz7J66+/DoBua3PViMu5KMTAIzXQIiAyMzOJiYnBarVSXV3NYC9arS2dlMl5v7mdg3P/RnpjFa9eMJQzF54Z0SPPTmeddRZz587FZrN1u139pk3Q2op1+HBpmSX6xGw2M3LkSA4dOsSRI0cYOnRou8djJk7EPHgwtspKGrdvd60WOlA5y9HS0tIAaNy5E3tNDaakJGJ8WHlVCBEZZARaBITJZOLOO+/khz/8oVfJs5M1LpaE2bMBGFOwa0Akz04mk6nn8g3H5fT4c86Wllmiz7ortVImk6s0oe6ztUGNK9zY7XZXl5zc3FzArXxj3jxUD33bhRCRRxJoETCJiYm9SvISzj0HgLq1n/k7pLDU3NzsVbs/kJZZwr+cLSePHj3q8epHwjmOBPrzgV0HfeLECZqbm4mNjSUjIwNw68V+jpyLQgxEkkCLgNNae1UH7RR/jpFAN365BXt9faDCChv/+te/eOqppzh8+HC327UUFtJ69BhYLLJ8t/CLoUOHEhcXR0tLCydOnOj0ePzZZ4NSNO/dS6uHOumBwnlu5uTkYDKZsFVV0bhzJwDx86X+WYiBSBJoEVDvvvsuv/nNb1yXP70RNWoU1uxsdGtrxC8l3NbWxrFjx6iuriYxMbHbbZ0jXnHTpmFOSAhGeCLCKaVcE1c9JdCWlBRiJk0CBnY3Dmf9s3PEvn79erDbiR47BqtjRFoIMbBIAi0Cqrm5mcbGRq/6QTsppU5fOo7wMo5jx47R1tZGYmJijwvO1EnLLBEAixYt4gc/+AHzulgI5HQZx8Csg25qauL48ePA6fpnVy92WQlUiAFLEmgRUL70g3bnLOOo/2yt1/XB/ZHz0vDo0aO7rRe3t7TQ4GiZJQm08Ke0tLRuJ/q6zsUv1qHb2oIVVtiwWCxcffXVnH322SQnJ6O1Pj2ZV85FIQYsSaBFQDkT6KKiIhobG73eL37OHJTVSuuJE7T4mHz3J86ReefIVlcaNm/G3tCAZcgQYvImBCM0IQBjlT1TUhL2mhoav/oq1OEEncViIS8vj/POOw+A5r17aSstRcXFGUueCyEGJEmgRUANGjTIVZrgSxmHKS7O1Xe2fm1kXjqur6+npKQEOF1b2ZW6Tz4FIGHhApRJTlvhXwUFBbzyyit89NFHnR5TZjMJ888CoC5Cz0Vf1H78MQAJ88/CFBUV4miEEKEin8Qi4Jyjq4cOHfJpP+el40jtQev8QjF06FDi4+O73E5rTZ3zQ3vhwmCEJgaYhoYG9u/fz969ez0+Hn+OY1XCCD0Xu1JTU8Mnn3ziqoEG9y+zC0MUlRAiHEgCLQJuzJgxgFHv60s9s7MfdMOmTRHZzi4tLY3Zs2czbdq0brdrOXKE1uPHUVFRxM+dG5zgxIDirME/deoUVVVVnR53LlXdtHv3gGpnd+jQIT799FPef/99ANrKymhytK9zLnUuhBiYJIEWATdy5Eiys7OZNm1aj0tVu4saPRrriBHo1lbq1q0LYIShkZmZyYUXXsjcHpLiuk8+ASBuzhxM3YxUC9FbMTExZGdnA56vFFmGDCFmyhTg9L/HgaBj+7q6z4yuQDGTJ2PpoWuOECKySQItAs5isXDLLbewePFiLBaL1/sppUhctAiAuo8+DlR4Yc9Vc7lwQYgjEZHMWWrV1YI+iYsH1rlot9s7J9COLw9yLgohJIEWYS1h8WLA+ODSPoxeh7vCwkLy8/Np66EtmK2qisat2wBIWLAwCJGJgWrs2LGAMerqcVnvRca5WL9+PfaGhqDGFgrFxcU0NjYSFRXFsGHDsLe0UPeFcSVM6p+FEJJAi6Bpbm5m3759tLS0eL1P3MwZmJKSsFVW0rh9e+CCC7JPP/2U559/ns2bN3e7Xd3azx0rno0laviwIEUnBqKMjAzi4+NpaWmhsLCw0+PR48ZiHTYM3dxsrMQX4Q4ePAgYI/Nms5mGjZvQDQ1Y0tOJycsLcXRCiFCTBFoEzTPPPMOrr77q06IqymIhYYExWafWQ4ut/qilpcW1tLlz1K8rpy8ZLwxsUGLAU0oxduxYRowY4XGyr1KKhPOMUehIORe746wFd06Cdp2LCxZ0u+iREGJgkARaBI1zURVf29klOss4IqT2Mj8/H5vNRnJyMqmpqV1up1tbXX13ExYtDE5wYkC79NJL+fa3v+06VztynYsfR1ZJVUctLS1UVFQAxpdcrfXpBHrRwpDFJYQIH5JAi6BxjuQcOnTIp3Z28WefDVYrLfn5NB/p/6sSOi8Njx07ttuRrIYvv8ReU4N58GBip04NVnhiAOtpZDVu5kxMiYnYKioielXCqKgo7r33Xm6//XYSExNp3r+f1hMnUNHR0kpSCAFIAi2CKCcnB5PJRFVVlWt0xxvmhATiZ88GcC0o0l9prdsl0N2p/eADABK/dh7KbA54bEI4NTQ0UFlZ2el+ZbW6+h9HyhWhrphMJrKysgCofd84F+PPORtTXFwowxJChAlJoEXQREVFMXLkSMD3Mo4ERwut2o/7d+1lWVkZNTU1WCwWRo0a1e4xm12z/nA5b24/wfqDZdR8sAaAxPPPD0GkYqD68ssv+e1vf8uHH37o8fFIORe7orXudIXM+WV2kJyLQggHSaBFUPV2WW9nP+jGrdto82H0Otw4+8rm5ORgtVpd96/eVczZj37Edc9s4O5XtvPQb/6FrawMe1w8cXLJWATR0KFD0Vpz+PBh7HZ7p8cTzjkHLBZaDh2mxTEZNpIUFhby1FNPub5ANOfn03zwIFgsMplXCOEiCbQIqnHjxgHGRDpf2tlZs7KM1lF2O7Vr1gQqvICbM2cO3/nOd1jo9kG8elcxy1/cSnF1k+u++UXGcsGfpozj/QPlwQ5TDGDDhg0jNjaWpqYmj+3szIMGET9nDgA1770f7PAC7uDBg1RXV7uWNK91XAmKnzMHc1JSCCMTQoQTSaBFUKWlpbFs2TLuuusuoqKifNo3celSAGpXvxeI0IJCKUVmZqarttJm1zy0cg/tLhhrzfyiXQCsy5zMQyv3YLN7P+lSiL4wmUyu+vz9+/d73CZx6QUA1Ly3OmhxBUvHOQquuQhSviGEcCMJtAgqpRQzZsxg8ODBPu876IIlANRv3EibhwlO/dGm/Ip2I88AOTXFZDaU02yysHnoeIqrm9iU33/LVkT/M378eMBIoD11zEn82tfAbKZ5z15ajh0LdngBU1NTw8mTJwGj3Ky1qIimnTtBKRLPW9x+nsLhcvliK8QAJgm06DeiRo4kesIEsNmo62KCUzh77733eOONNygpKXHdV1rb1Gk7Z/nGlqFn0GyJ7nI7IQLFufpeRUUF5eWdS4hUUjKtk6cDsOul1yMmkXSOPg8bNoz4+Hhq1xj/z8TOmMGak23t5ilc98wGzn70I1bvKg5lyEKIEJEEWoTEzp07efnllzl+/LhP+w26wHHpuJ+Vcdjtdnbs2MGOHTtoajqdDKcnxnTa9qxiI4H+InNyt9sJESjR0dGuLjEdyzicE15XaKOjTuEbqyImkdy3bx9wegTeWb5xYvKcTvMUAEqqm1j+4taIOHYhhG8kgRYhcfDgQQ4cOMDevXt92i/RWcaxYQM2xySf/uDYsWM0NjYSGxvLiBEjXPfPzkkhMykG5/IVw+rKyKkpoU2Z2JQxAQVkJsUwOyclJHGLgWvOnDksW7aMqW6L+LhPeF2XNQkbinFVx9FFJ/p9Itnc3Ex+vrFQ0xlnnEFbeTkNW7YA8EhtBp7G2J33yTwFIQYeSaBFSDi7cRw4cMCn/aJzcogePx7a2qjtR2Uc7iNbJtPp085sUjy4LA8ABSw4vg2AbUPGUh9lLNjw4LI8zKbuV4gTwt/Gjh3LjBkzSEhIADpPeK2OTmRnmtGWcn6RsSphf04k29raOPPMM8nJySEtLY2a1avBbqdt7BnssnW9eIoGmacgxAAkCbQIiTFjxmAymTh16pTHGsvuDHJ1AOgfZRxa606Xht0tnZTJihtnkDEomoWOBPrT4dPJSIphxY0zWDopM6jxCuGJpwmvnw+bAsDZRV/1+0QyPj6epUuXctNNN6GUoubtdwComLvQq/1lnoIQA4sk0CIkYmJiuqyx7EniBUY7u/r1G7BVV/s7NL87efIk1dXVWCwW10IyHS2dlMmaSzPJrivDbo3itge+zef3LZbkWYRUfX09GzZs4JNPPvGYIH6RORk7ijMqC0lvMBLnSEgkW4uKaNy6FZQi+msXeLWPzFMQYmCRBFqETK/LOEbnED1uHLS2UvN++C/k4Bx9zs3Nbbf6YEd17xojXkmLFjJv8ggp2xAhV1NTw3vvvce6detIjbN0erwqJpGdaaMBWHB8O9A/E8mysjLy8/Ox2WwA1LxjnItxs2Yxa9b4dvMUOpJ5CkIMTJJAi5BxljMcPXqUuro6n/YddMklANS8tbLd/eHYpzUhIYH09HTOOOOMLrfRdjs177wLwKCLLw5WaEJ0KyMjg0GDBtHa2kqqvdJjIvnx8BkALC7cQuag6H6ZSG7evJnnn3+e9xxlYdWO8o1BF1/caZ6CO+fPMk9BiIFHEmgRMsnJyQwfPpyRI0dSX1/v075Jy4wEumHzZlpPnABOt9cKtz6tZ555JsuXL2/XzaCjxm3baCsuxhQfT8KCc4MYnRBdU0oxYcIEAPbt3esxkfw8awotJgujak/yq8nR/S6R1Fq7ysjGjBlD8+HDNO/dCxYLiUuM1Qdd8xSS2o+uyzwFIQauztfkhAiim2++GbPZ7PN+1sxM4mbPpmHTJqpXvc2X85ex/MWtnVpNOfu0hsOHnFJdJxY1b78NGCu8mWL63yVwEbny8vLYuHEj+/fv595ly1hx4wweWrnHNaGwPiqWHdmTmXV0G5P2rIdl54Q4Yt+cOHGCmpoaoqKiyMnJoWrFCgAS5s/H4rZi6tJJmZyfl8Gm/ApKa5tITzTKNvrbFwYhhH9IAi1CqjfJs1PSZZcaCfSbb/JQ+egu+7QqjPZa5+dlBP3D7siRI2RnZ3db+6xbWqh5dzUAgy6R8g0RXrKzs0lMTKS2tpYjR46wdNK4Tolk3pFoir7/fWpWrSL93v9C9eG8Drbdu3cDRkmZxWKhepXxZdZZJubObFLMy00NanxCiPAkJRwiLNTX13Pq1Cmf9klcsgQVHU3LkSPEHTvc5Xahaq9VVVXFCy+8wOOPP05zc3OX29V++im2ykrMQ9KInzcviBEK0TP3Mo49e/YApxPJy6YNY15uKoMWnIs5KYm2sjLqN2wIZbg+0Vq7jikvL4/GL7+k9dgxTHFxJC5eFOLohBDhTBJoEXJfffUVjz/+OKtXr/ZpP3NiIgmOD7nzCrf0uH2w22s5P5gzMzOJjo7ucrvq//wfAMmXXYayyEUhEX7y8vIwm81o7XlSroqKIvGiC4HOE3vD2fHjx13lG2PGjKHq/14HIPGiCzHFx4c4OiFEOAurBFoZfqGUKlZKNSql1iilxvqw//1KKa2UejKAYQo/GzZsGFprjhw5QkNDg0/7Jl16KQALj2/DbLd1u22w22s5Lw3n5eV1uU1bWRl1a9cCkHTllUGJSwhfZWdnc++993LFFVd0uY3zXKz54APsPk4KDpaOXXoOHjwEGEt3q6ZmY/VBIFnORSFED8JtuOvHwA+AbwH5wC+B95RSeVrrbocPlVKzgO8CXwU8SuFXqampDB06lJMnT7J//36mT5/u9b4JZ5+NOTWVweXlzCnZw7qsyZ22URiz5YPZXquyspKioiKUUt0m0NVvvQU2G7HTphE9enTQ4hPCFyaTiZgeJrfGTptG1KhRtBQUUP3OOwy+5pogReed1buK201+BMgcFM29i69g/vgMat9bjW5sJGrUKGJ9+D9ICDEwhc0ItDJaFNwD/Epr/abW+ivgJiALuLyHfROAfwK3A5WBjVQEgjPJ3LVrl0/7KavVNVp0YcGGsOnT6hx9HjVqFPFdXArWWlPlKN9IurLrkT0hwkl5eTltbW2d7ldKkexImqv+9e9gh9Wt1buKWf7i1k5LkZfUNHPv24VsLbW5nYtXdtsxRwghIIwSaCAHyADWOO/QWlcDG4GeZlb9AXhba72mh+0AUEpFK6UGOW9AYi9jFn4yebIxcnzkyBFqa2t92jf5mqsBmFl2gInm9peOQ9Wn1Vn/PHHixC63adqxg5YjR1AxMQy66KJghSZEr/3rX//i6aef5uDBgx4fT7ricrBaadq5k6a9e4MbXBdsds1DK/d46NKjXff96cWPjaW7TSaSLrssuAEKIfqlcEqgMxx/nuxw/0m3xzpRSn0DmAE84MPvegCodrsd92FfEQCDBw8mOzsb8H0UOmrECOLPmofSmr8NKebl2+fy1Dem8fLtc/n8vsVBT56rq6spLi5u173Ak6r//AeAQRcswZyQEKzwhOi15ORkAHbu3OnxcUtKCoPO/xoAVf8Oj1HoTfkVnUaeFXauit7FfGs+UbQxfffnACSccw7WoemhCFMI0c+ErAZaKXUD8Ge3u3xugKuUygaeAs7vqUa6g0eA37n9nIgk0SE3efJkCgsL2bVrF/N8bOeWfO211K9bT81//sPc792FsoSuV2tSUhLf//73OX78OHFxcR63sVVXU71yFYDrsrcQ4W7q1KmsX7+eAwcO0NjYSGxsbKdtkq+5hpp33qX6rZWk33svpg7ngM2ug7oYiafuO8NMNQwyNWNVNjY3DeOCo5scsV/t8/PbbDZaW1v7HKfwzGq19mm9ACECJZSTCN/CKM9wcvb5Ggq4r708FNjexXPMBNKBrW41a2bgXKXU94BorXWn1gxa62bA1ZhX6t3Cw8SJE1FKdVv20JXExYsxp6QYXS0+/ZTE884LQITeS0lJISWl60mLVa+/jm5qInr8eGJnzgxiZEL03tChQ0lPT6e0tJQ9e/Yw08O/3bg5c7COGEHrsWPUvLua5KtOd7TwOJEvKYYHl+UF7EqRp+47Y8zlAByxpXDOia9IaqnHPiSdhIULvX5erTUlJSVUVVX5KVLRleTkZDIyMuSzWoSVkCXQWutawFXs6phEWAKchyNhdtQnzwFWdPE0HwId2y78HdgHPOopeRbhKy4ujjPPPLNX+6qoKJKuuJyKvz1L5cuvhCyB1lr3+J+8ttupfPllAAZff718KIh+ZcqUKaxZs4adO3d6TKCVyUTy1VdT9rvfUfnyyyRdeQVKKddEvo61yCXVTSx/cWvA5irMzkkhMymGkuomNBBFG9nmKgAOtaXxs3yj9/OQ66/zqQ+7M3lOT08nLi5OzuMA0FrT0NBAaWkpYPTUFyJchE0bO621s3/zT5VSBzndxq4IeMO5nVLqQ+B1rfXTjiS8XcGsUqoeKNda+1ZIK/q9wd/4BhXP/p36zz+n+fBhonNzgx7DypUraWhoYMGCBV3+Z1//xRe0Hj2GKTGRpGWdlwsWIpxNnjyZNWvWcPToUaqqqlx10e6Sr76KU08/TdOuXTRu20b0tOldTOQzVgpVwEMr93B+XobfyznMJsWDy/JY/uJWFDDKXIlFaSrtsaRVlDG+shBtsZJyrfelVDabzZU8p6bK0t6B5CwTKi0tJT09Xco5RNgIp0mEAI8Bvwf+AmwGEoClHeqbc4G0EMQmgmT79u387W9/o6CgwKf9orKzSThvMQAV/3g+AJF1r6WlhV27drF//36Pbb6cKv/5EmB0LOhYHypEuBs0aBA5OTlA1xN+LSkpDLp0GWCci54m8rnTQHF1E5vyK/weL8DSSZmsuHEGGUkx5DrKNw7ZUrnmuFH7nHTRUiw+JMLOmueu5jgI/3K+zlJrLsJJWCXQ2vAzrXWG1jpGa/01rfWBDtuM0lr/vJvnWKi1vifQsYrAKSws5Pjx42zdutXnfVO/9S0Aqt98k7bK4LYE37t3L62traSkpDB8+HCP2zQfPkzdJ5+AUgy+7rqgxieEv8yfP5+rrrqKuXPndrlNyk03AVD7wQdUHC7w6nk9Tfjzl6WTMnnr9mlkmOsAxb1LZnL20S0ApFx/fa+eU8o2gkNeZxGOwiqBFgJw1VXu2bPH56W9Y888k5i8PHRzM1Wv/isQ4XVp+/btgFEj2tV/+OXPPgtAwnmLiXaM4gnR3+Tm5jJp0iQs3dQMx4wbR/xZ88BuJ+vjlV49r6cJf/4UGxPNggULmD59GhM2fgBtbcTOnEnstGkB/b1CiMgjCbQIO5mZmWRkZGCz2fjqK99WZldKkXKzMQpd+c9/Ym9u7mEP/ygvL3eVnEydOtXjNq0nS6l+y0gkUm+9NShxCRFoWnuqbDakOK4IxX3wNqNj7Z1WCnVSGN04Zud03bnGHxISEli4cCEXL1pE1SuvApB6m5yLAAsXLuSee+4JdRhC9BuSQIuwo5RixowZAGzdurXbD2hPBi1diiUzk7ayMtdiJYG2ZYtxKXjs2LEeJ1UBVDz/D2htJfbMmcRNnx6UuIQIFLvdztq1a/nDH/5AXV2dx23izzmH6LFjsdfV8T92Y3XOjkm08+cHl+UFtB+0u8pXXsFeX0/02DEkLFgQlN8ZLm6++WaUUp1ujz32GL/85S9d240aNYonn3wydIEKEeYkgRZhafLkyVitVsrKyjh+3Lc1blRUFKm33wZA+TN/Rbe0BCJEl7a2Nlf5Rldt+GzV1adHvGT0WUQAk8nE/v37KS8vZ8eOHR63USYTacvvACBl9ev86crxZCS1L9PISIoJWAs7dx999JExT6GhgYrnjUnGKbfcijINvI/BpUuXUlxc3O42c+ZMEhMTQx2aEP1G2LSxE8JdTEwMEydOZPv27WzZssW1zLe3kq+6ivIVf6KtuJiqN95g8LXXBihSw6JFizhw4ABjxozx+Hj53//uGPEaO+BGvETkmjlzJidOnGDr1q2cddZZHmv/Ey+4gKicp2nJz2fm9o/5/L7bgroSIUBFRQVr164F4JtZWdjKTmHJzCTp4ov88vxaa3Rjo1+ey1cqNtbnSXbR0dFkZGS0u2/hwoVMmzaNJ598koULF3L06FF++MMf8sMf/hDovlRHiIFIEmgRtmbOnElNTQ2TJ3dcK6dnpuhoUm+/jZMPP0L5n/9C8hVXoKzWAEQJFouFWbNmMWvWLI+Pt5WXU/H8CwAMufsHA3LES0SmiRMnsnr1aioqKjhy5Ai5HnqvK7OZtDu+S9F991Px97+TcsP1zMsNbu9kZ4lV7qhRtP35LwCk3bkcFRXll+fXjY3snxGaFUXHb92C8nM7vf/7v/9j6tSpfOc73+H222/363MLESnkk1yEreHDh/PNb37T44eyN5KvuQZzWhqtJ05Q+e9/+zk675X/5Rl0QwMxkyaREOIlxoXwp6ioKNek2Y0bN3a53aCLL8Y6cgS2ykrKn3suSNEZWlpaXC0xx1VWYquowDpyBMmXXx7UOMLJqlWrSEhIcN2uuab9IjIpKSmYzWYSExPJyMjoNFothJARaBHBTLGxDLnrTkoe+gWnfv80ScuWYfZzjd9HH31EUlISU6ZMwephhLu1pMS1bPeQu++WfqYi4syZM4fNmzdz8OBBTp06RVpa53WulMVC+j33cOKHP6L8b8+SfM01WNPTgxLfjh07aGpqYnBSEomORYyGfO/7fr0ipWJjGb91i9+ez9ff7atFixaxYsUK18/x8fFcJ33phfCJjECLsFdbW+uaAOSr5KuvJmr0aGPk6y/P+DWumpoavvjiC1atWkVZWZnHbcqeeALd0kLsmTOJP3u+X3+/EOEgNTWV8ePHA7Bhw4Yut0tcupSYqVPQDQ2c+v3TQYlNa+2KaWJdHdTWEj12LIP8VPvspJTCFBcXkltvvpTHx8czZswY1y0zM7ATOIWIRJJAi7C3fft21q5dy9q1a32eyKKsVtLvvReAin/8g9YTJ/wW18aNG7Hb7YwaNYqsrKxOjzds3Ub1m2+BUgy9734ZfRYRa968eUyePNnVftITpRRD77sPgKr//Iem/Qe63NZfDhw4QEVFBdFRUQxxlHGl33+fzEPwQlRUFDabLdRhCBG25H8REfZmzpyJxWKhuLiY/Px8n/dPWLSQuNmz0S0tlDzyiF9iam5udk1M8rScsbbZOPk//wNA0lVXEjt5kl9+rxDhaOTIkVx55ZUev0i6i5sxg8QlS8Bup+SXv0Db7QGNKyoqiqysLMaVlWFtbiHha+eRMF+uBHlj1KhRfPbZZ5w4cYJTp06FOhwhwo4k0CLsxcXFMd2x8Mhnn33m8/5KKYb+9CdgsVC35kNq3n+/zzF9+eWXNDc3k5qayrhx4zo9XvniizTt3o0pIYF0RxsoIQQMve/HqNhYGr/cQtVrrwX0d+Xk5HBNejrjVr+HiopyjYCLnv3iF7+goKCA3NxchgwZEupwhAg7kkCLfuHss8/GbDZz9OhR15LZvogZN861ZO/JX/4KW01Nr2NpaWlh3bp1AJxzzjmdSjNajh6l9IknAUi/914sqcFt2SVEqFRWVvLWW2+5zg9PrMOGMeTuHwBQ+pvf0nqyNGDxtJaWcvLhRzDb7aTdeSdRPvaTj0TPPfccb7zxRqf7P/nkk3YrD86dO9c1AVN6QAvRmSTQol8YNGgQ06ZNA3o3Cg2Qtnw5USNH0lZWRvHPHuz1h8KmTZtoaGggJSWlU49q3dZG0U9+gm5qIm7uXJK/HtgFXIQIJ4WFhWzbto3PP/+clm5WAE355jeJmTQJe20txQ/c7/dSjsLCQj777DMKf/4Q9upqYiZOdH2BFkIIf5AEWvQb55xzDiaTifz8fI4dO+bz/qboaLJ+8xhYLNSuXk31f/7TqzhycnLIzc3l3HPPxdRhMlLZ75+m8UtjYYPMX/1SJg6KAWXSpEmkpKTQ2NjIpk2butxOmc1kPfYoKjaW+nXrqXj2Wb/G8fHHH/Pxxx+zoaoSrFYyH34YZZGurUII/5EEWvQbSUlJzJgxgxkzZpCSktKr54idMoX0e+4GoORX/0Pjzl0+P8ewYcO48cYbmTJlSrv76z79lPI//xmAzF/+gqjhw3sVoxD9lclk4txzzwXgiy++oLGb5a2jR49m6P/3AAClTz5F/fr1fokhPz+f/Px8TDY74/btZ+gD9xMzvvM8BSGE6AtJoEW/ctFFF7Fs2TISEhJ6/Rwpt9xC/IJz0U1NFN65nNbiYq/261jy4T663Lh7Nyd+9F8ADL7hBpIuvrjX8QnRn02ePJn09HSampr45JNPut02+eqrGbRsGbS1cfzue2g+cqRPv9tut7N65UoARh8+ROaiRQyWBUKEEAEgCbToVzqWRPSmjlmZTAx7/HGix43DVnaKY7fdTmtpzxOZ3n77bd59991Oo2otR49S+J3vYq+vJ27OHNLv+7HPMQkRKUwmExdccAFgdKvprgWaUorMX/2S2OnTsdfUUHjb7bQUFvb6d29du5bSykqsLS3MaG0j8xcPSRmVECIgJIEW/dKpU6d46aWX+OKLL3q1vzkhgew/rcAydCgthw9z7Js30VpU1OX2xcXFbNmyhU2bNrVLCBp37abg+huwlZcTPWECw//wNKaoqF7FJESkGD16NOPGjcNut7N27dputzVFRzP8D08TNWoUrUVFHL3xmzQf8b3fe/W+fXz43nsATC4qYuyKP2KKj+9V/EII0RNJoEW/dOLECQ4ePMhnn31GZWVlr57DmpXFyBdfwDpsGC1Hj5J/1dXUrf2803Z2u52VjsvCkyZNItvRCqv67bc5etNNruR5xDN/wdyH0hIhIsn555/PWWedxYUXXtjjtpaUFEY8/w+ixuTSdvIkBddeS8173vdrr/3kE9759aM0RUeT2NjIeT9/SNpHCiECShJo0S9NmTKFUaNG0drayqpVq3rdki4qO5uRL75A9IQJ2CorKfzOdyj+fz9rV9KxYcMGiouLiYmJ4YILLqDl6FGO/+Buiv7rXnRDA3Hz5jLyheexpKX56/CE6PfS0tI4//zziYmJ8Wp7a3o6I59/ntgZM7DX1XHi7rs5ce9/03riRJf7tBYVUXTf/Ry/Yznjduwgu6aGS6+/nriRI/x1GEII4ZGSBumglBoEVFdXVzNo0KBQhyO8VFFRwYoVK2hra+OSSy5h5syZvX4ue3MzJx95hKpXXjXusFhIXLSQpukzePXEcdrsdhYPTmHk9u1GtwCtwWQi7Y47SLtzubTIEqIbWmvy8/MZPXp0z9u2tlL65JNUPPt313kWf87ZJJx1FtbsbOx2zaGvDmD/chPx2zej7DYAUr51E0N+9CNM0dGBPhyamprIz88nJyfH6y8Iove6e71rampISkoCSNJa936FLCF8JAk0kkD3Z+vWreODDz7AYrFw++23k56e3qfna9iyhdLHf0fj1q20mc18uOR8qpOTGVpcwrmffIJzOlL8gnNJ/9F/SXssIXpgs9l48cUXKSgo4IorrujU/rErjbt2U/a7x6lf1317uy3jppF18+0svnKxP8L1iiTQwSUJtAhHMmwm+rV58+Zx5MgRDh8+zGuvvcZtt91GVB8m8cXNnMmol/5J0759FLz/Pk2nyolpbeXcmmoGnf81YqdOJXHJEqJGyCViIbxhNpsZMWIEBQUFrFq1iqysLNK8KHeKnTSREc8+S/Phw9R++BFHP9vA8UPH0CgqYxLZP3gER0aPZuKgCt7ZtpfmsWdw4eSsIBxR/1dSUsIjjzzC22+/zfHjx0lKSmLMmDHceOONfOtb3yIuLi7UIQoR9iSBFv2aUoorrriCP/3pT5hMJlpaWnqdQNvsmk35FZTWNpGeOITZ3/s+d9bVUl1d7Zo46P3+MczOScFskhZaQixYsIBjx45RUFDAyy+/zC233EK8lx0yonNzseSMZln5aIqHN7nuH2qq5YKoAwA0aiu/WLWXJRMz5ZzrwZEjR5g/fz7Jyck8/PDDTJ48mejoaHbu3Mlf/vIXhg0bxqWXXhrqMIUIe5JAi34vPj6eG264geTk5F5fTl29q5iHVu6huLqJGFppwkpmUgwPLstj6aSek2f3/Z1O75/Zq5iEiBQmk4mrrrqKv/71r1RUVPDSSy/xrW99y+svu5vyK9qdW0mqkcVRhzArTYEtmW1tWVDdxKb8Cublhq77RktLS5ePmUwmLG5zJbrbVimF1WrtcdveDBbceeedWCwWvvzyy3ZfYkaPHs1ll12G1pqCggJycnLYtm0b06ZNA6CqqorBgwfz8ccfs3DhQgB27drFf//3f7N27Vri4+NZsmQJTzzxhOsKw2uvvcZDDz3EoUOHiIuLY/r06bz55pvEx8fzySef8OMf/5jdu3djtVqZOHEiL730EiNHjvT5mIQIBUmgRUTIyMho9/PBgwfJzc3FZOq50czqXcUsf3ErGsg1lzPPepSPWnIproblL25lxY0zuk2C3fd3V1Ld5NX+QgwECQkJ3HjjjTz77LMUFRXxwgsvcN1113lVLlBaezp5TlX1LIk+SIyyUWaP57OWHHDMTnDfLhQeeeSRLh8bO3Ys119/vevn3/72t7S2tnrcduTIkdx8882un5966ikaGho6bffggw/6FF95eTnvv/8+Dz/8cJdXALxdeKaqqorFixdz22238cQTT9DY2Mh9993Htddey0cffURxcTHXXXcdjz32GFdccQW1tbWsXbsWrTVtbW1cfvnl3H777bz88su0tLSwadMmWfRG9CuSQIuIs2XLFlatWsW4ceO4/PLLiY2N7XJbm13z0Mo9gGaqpZgZVmMxlZHmKorsSSjgoZV7OD8vw+OlYef+nqbiauhxfyEGkrS0NG644QZefPFFSktLqamp8SqBTk80riwNN1WxICqfKGWjzB7HB81jsWHutJ3w7NChQ2itGT9+fLv709LSaGoyvnzcddddLF++vMfnevrpp5k+fToPP/yw675nn32W7OxsDhw4QF1dHW1tbVx55ZWuUeXJkycDRgel6upqLrnkEnJzcwGYMGGCX45RiGCRBFpEnLi4OMxmMwcOHOBPf/oTF1xwARMmTPA4urEpv4KmmgqWRh0jw1wHwO62dDa1GmUbGiju5tJwx0vLHfW0vxADzbBhw7jllluoq6tzXTnSWmOz2dqVOLibnZNCZlIM1CqilI1iWyJrWsbQ5kieFZCRZMw7CKUHHnigy8c6Xg279957u9y24/9Vd999d98C68GmTZuw2+3ccMMNNDc3e7XPjh07+Pjjj0nwsHjU4cOHWbJkCeeddx6TJ0/mggsuYMmSJVx99dUMHjyYlJQUbr75Zi644ALOP/98vva1r3HttdeSmSlX6kT/IQm0iDgTJkzglltu4T//+Q8VFRX8+9//ZsiQIUyZMoXx48czZMgQAE6ePMn691dxWfRxlIJWbWJD6wgO2Tp3COjq0rC3l4xDfWlZiHAyZMgQ13kIsG/fPt555x2mTJlCTk4OSUlJ2O12Tp06RVNTEzNnzuTBZXksf7GJD5rHcsKeiHasA+ZMNR9clhfyqzy+1CQHatvujBkzBqUU+/fvb3e/sz+382qdM9l3b3Pbsdykrq6OZcuW8eijj3b6PZmZmZjNZj744APWrVvH+++/z+9//3t+8pOfsHHjRnJycvj73//OD37wA1avXs2rr77KT3/6Uz744APmzp3rl2MVItBkJUIRkbKysvjud7/Lueeei9VqpaysjA8//JCtW7e6trHZbNSWHgcgv20wbzRP9Jg8Q9eXhr29ZCyXloXo2qZNm6irq2PdunX885//5I9//CN/+tOfeO2113j33Xepr69n6aRMVtw4A1viUFfyDMbIs8wz8E5qairnn38+Tz/9NPX19V1u5/xyU1xc7Lpv+/bt7baZMWMGu3fvZtSoUYwZM6bdzVlfrZRi/vz5PPTQQ2zbto2oqChef/1113NMnz6dBx54gHXr1jFp0iReeuklPx6tEIElI9AiYkVFRbFo0SLmzZvHzp07OXz4MCkppy/xZmRkcO6CBfxyXR35NcpjHXNPl4adl5ZLqpt6tb8QAm688Ub279/Pvn37KCoqor6+HqUUSUlJjBw50jX6uXRSJufnZUi7yD744x//yPz58znzzDP5+c9/zpQpUzCZTGzevJl9+/Yxc+ZMYmNjmTt3Lr/+9a/JycmhtLSUn/70p+2e56677uKZZ57huuuu48c//jEpKSkcOnSIV155hb/+9a98+eWXfPjhhyxZsoT09HQ2btxIWVkZEyZMID8/n7/85S9ceumlZGVlsX//fg4ePMhNN90UoldFCN9JAi0iXkxMDLNmzWLWrFnt7jeZTCxauJDmNKOLhoJ2SbA3l4bNJuW4tNy7/YUQxmIreXl55OXl9bytScl8gj7Izc1l27ZtPPzwwzzwwAMcP36c6Oho8vLyuPfee7nzzjsBY0LgrbfeysyZMxk/fjyPPfYYS5YscT1PVlYWX3zxBffddx9LliyhubmZkSNHsnTpUkwmE4MGDeKzzz7jySefpKamhpEjR/L4449z4YUXcvLkSfbt28c//vEPysvLyczM5K677uK73/1uqF4WIXwmS3kjS3mLvvdxlj7QQgwcspR3cMlS3iIcyQi0EPT90rBcWhZCCCEGDkmghXDo66VhubQshBBCDAzShUMIIYQQQggfSAIthBBCCCGEDySBFkIIIXpBJuEHh7zOIhxJAi2EEEL4wGq1AtDQ0BDiSAYG5+vsfN2FCAcyiVAIIYTwgdlsJjk5mdLSUgDi4uJQSjru+JvWmoaGBkpLS0lOTsZsNoc6JCFcJIEWQgghfJSRkQHgSqJF4CQnJ7tebyHChSTQQgghhI+UUmRmZpKenu5aalz4n9VqlZFnEZYkgRZCCCF6yWw2S4InxAAkkwiFEEIIIYTwgSTQQgghhBBC+EASaCGEEEIIIXwgNdBuampqQh2CEEIIIbwkn9siVJSs8ANKqWHA8VDHIYQQQoheGa61PhHqIMTAIQk0oIwO+FlAbQCePhEjOR8eoOcPNTm+/i/Sj1GOr/+L9GOU4+v78xdpSWhEEEkJB+A46QLyzdVtdaparXXEXWuS4+v/Iv0Y5fj6v0g/Rjm+Pou410yEP5lEKIQQQgghhA8kgRZCCCGEEMIHkkAHXjPwkOPPSCTH1/9F+jHK8fV/kX6McnxC9DMyiVAIIYQQQggfyAi0EEIIIYQQPpAEWgghhBBCCB9IAi2EEEIIIYQPJIEWQgghhBDCB5JAB5BS6i6lVIFSqkkptVEpNTvUMfXEl5iVUrcrpdYqpSodtzUdt1dKPaeU0h1uqwN/JN7z8Zhv9nA8TcGMtyc+Hs8nHo5HK6Xedtsm7N9DT5RS5yqlViqlihwxXx7qmLzha9xKqSuVUh8opcqUUjVKqfVKqQs6bPNzD+/hvoAeiJd6cbwLu/g3mxGkkLvVi+PxdH5ppdRut23C9v3rjlLqAaXUZqVUrVKqVCn1hlJqfKjjEsIfJIEOEKXU14HfYbTumQHsAN5TSqWHNLBu9CLmhcDLwCJgHlAIvK+UGtZhu9VAptvtOr8H30u9fJ9qaH88IwMdp7d6cTxX0v5YJgE24N8dtgvb97Ab8RjHf1eoA/GRr3GfC3wAXATMBD4GViqlpnfYbjft38Oz/RJt3/X2fRpP++Mp9XNcveXr8dxN++PIBirofA6G6/vXnQXAH4C5wPmAFeMzIj6kUQnhD1pruQXgBmwEnnb72YSxXPj9oY4tUDEDZozk8ia3+54D3gj1sfnrmIGbgapQxx3A9/Aex3sY31/eQy+PSwOXhzqOYMWNkWz9zO3nnwPbQ308/jhejC/uGkgOdbyBeP+AywE7MLK/vX9eHNsQx2tybqhjkZvc+nqTEegAUEpFYYwErXHep7W2O36eF6q4uuOnmOMwRhgqOty/0HH5br9SaoVSKtUfMfdVH445QSl1VClVqJR6Uyk1McChesVP7+GtwCta6/oO94fleyg6U0qZgEQ6n4djHWUFR5RS/1RKjQhBeP60XSlV7ChfmR/qYPzoVmCN1vpoh/sj4f1LcvzZ8d+mEP2OJNCBkYYxGnuyw/0ngbCo0/PAHzE/ChThlsBhXPq/CTgPuA/jkt67Silzn6L1j94c837gFuAy4EaMc2idUmp4oIL0QZ/eQ0et9CTgrx0eCuf3UHR2L5AA/Mvtvo0YV0+WAsuBHGCtUiox6NH1XTFwB3CV41YIfKKUmhHSqPxAKZUFXEjnc7Dfv3+OL3ZPAl9orXeFOBwh+swS6gBEZFBK3Q98A1iotXZNqtNav+K22U6l1FfAYYzLsB8GNUg/0FqvB9Y7f1ZKrQP2At8F/l+o4vKTW4GdWutN7ndG2nsYyZRS1wMPApdprV01wVrrd902+0optRE4ClwL/C24UfaN1no/xhdZp3VKqVzgh8A3QxOV33wLqALecL8zQt6/P2B8Qe8PtdtC9EhGoAPjFMZErKEd7h8KlAQ/HK/0Omal1L3A/cASrfVX3W2rtT7i+F1jeh+q3/T5fdJatwLb6OfH45jU8w28+DAOs/dQOCilvoExcnmt1npNd9tqrauAA0TOe7iJfn4sSimFcXXrBa11S3fb9rf3Tyn1NHAJsEhrfTzU8QjhD5JAB4DjP78tGJe8Adflq/NwG70MJ72NWSn1Y4yR16Va6y97+j2OUodUjMuwIeWP98lRxjCZ/n881wDRwIs9/Z5weg+FQSl1HfB34Dqt9dtebJ8A5BI57+E0+v+xLMBIiHv8Ettf3j9leBq4Alistc4PdUxC+IuUcATO74B/KKW+xBgduQejvdHfQxlUD7qNWSn1PHBCa/2A4+f7gF8A1wMFbn1Y67TWdY7/5B8E/oMxApoLPAYcAt4L1kH1wNdj/hmwAeMYkoH/xmhj17FmMVR8Oh43t2J02ih3v7OfvIceOWJ3H6HLUUpNAyq01sdCE1XPeopbKfUIMExrfZNj++uBf2C0Q9vodh42aq2rHdv8FliJcdk/C6PNoQ2jDWVI9eJ47wHyMTqNxAC3AYuBJcGMuyu+Ho+bW4GNnuqDw/n968EfMD4fLgNq3f5tVmutG0MXlhB+EOo2IJF8A76H8R9eM8YkkDmhjqkvMQOfAM+5/VyA0ZKo4+3njsdjMZKsUqDFsf1fgKGhPs4+HPMTbtuWAG8D00N9DL09Hsd94x3v2/kenqtfvIddvA4Lu/j3+VyoY+tL3BhtBT/p8J52e5zAKxgTfJuB446fc0N9rL083h9jfIFrBMox+l4vCvVx9PZ4HPclAQ3A7V08Z9i+fz28Fp5eBw3cHOrY5Ca3vt6U1hohhBBCCCGEd6QGWgghhBBCCB9IAi2EEEIIIYQPJIEWQgghhBDCB5JACyGEEEII4QNJoIUQQgghhPCBJNBCCCGEEEL4QBJoIYQQQgghfCAJtBBCCCGEED6QBFoIMWAopW5WSlX1sM3PlVLbgxNRp99d4FiqOti/9zmllHbcLvdynwK3fZIDG6EQQoQXSaCFCLEOyUuLUuqQUupnSilLqGPrLV8SMS+ea5Tj+aZ5eOwTpdST/vg9gaSUWuj2Hnd1WwjMwlgqPRRWA5nAu15uPwu4KnDhCCFE+Oq3H9BCRJjVwLeBaOAi4A9AK/CIr0+klDIDWmtt92uEIaCUsoY6ht5QSlm11q1ud63DSE6dngIGYbznThVa65ZgxNeFZq11ibcba63LlFIVgQxICCHClYxACxEemrXWJVrro1rrFcAa4FIApdSPlFI7lVL1SqlCpdQflVIJzh2dZQlKqUuVUnuAZmCEUmqWUuoDpdQppVS1UupTpdQM91/qGPn8rlJqlVKqQSm1Vyk1Tyk1xjG6W6+UWqeUyu2w32VKqa1KqSal1BGl1IPOEXOlVIFjs9cdz1/gzX5u8SxXSr2llKoHfuLLi6iUGqyUel4pVek4nneVUmN72Od+pdRJpVStUupvQIyHbW5zvDZNSql9Sqk73R5zjpB/3fEaNwE3uO+vtW5xvL8ljiS1kdPvufPW0rGEIxDvjw+vZZRS6mmlVLHjeY4qpR7w5TmEECJSSQItRHhqBKIcf7cDPwAmAt8CFgOPddg+DrgPuM2xXSmQCPwDOBuYCxwE3lFKJXbY9/8BzwPTgH3AS8CfMUa/zwQU8LRzY6XUOY7tnwLygO8CN3M62Z3l+PPbGKOus7zcz+nnwOvAZOBZzy9Pl55zxHwpMM8R+ztdjWQrpa51/L7/z7FfMXBnh21uAH7hiHOCY9tfKqW+1eHpfu04tgnAez7G3R1/vz/e+gHG63gtMB7jS0FBbw9CCCEiitZabnKTWwhvGEnfG46/K+BrQBPwmy62vxo45fbzzYAGpvbwe0xADXCJ230a+KXbz3Md993idt83gEa3n9cAD3R47huBog7Pe3mHbbzd74kO24xy3N8A1HW42YAnHduNdWx3ltu+qY79rnF7rarcHl8H/KHD79sAbHf7+RBwXYdtfgqs6xDf3b15zzvcXwDcE+j3x5t4gP8FPgRUN/stdMSTHMpzSG5yk5vcgn2TGmghwsMlSqk6wIqR6L6EMTKKUuprwAPAGRh1sxYgRikVp7VucOzfAnzl/oRKqaHArzCSnHTAjDFSPaLD73bf76Tjz50d7otRSg3SWtcAU4H5Sin3EU2zh5g68na/L7vY/+vA3g73/dPt7xOANmCj8w6tdblSar/jMU8mAH/qcN96YBGAUioeyAX+ppR6xm0bC1DdYb+u4u6rYL0/HT0HfADsV0qtBlZprd/v1REIIUSEkQRaiPDwMbAcIxEu0lq3gVFfC6wCVmBcgq/AKMn4G0aJhzMZatRa6w7P+Q+MEdi7gaMYtdHrOV0a4uQ+2U13c5+z5CsBeBD4Pw/H0dTNMXq7X30X+xdqrQ+536GUauzm9/mDs9b8dtwScwdbh5+7iruvgvX+tKO13qqUygEuxLgq8i+l1Bqt9dXePocQQkQqSaCFCA/1HZNDh5kYidF/aUdXDUfdrjfmA3dqrd9x7JcNpPkh1q3A+C7idWrFGPX0db++2Ivxf9ocjNIMlFKpGPW7e7rZZw5GzbDTXOdftNYnlVJFwGit9T877hym/PY6O0a0XwVeVUq9BqxWSqVoraX7hhBiQJMEWojwdgijrOP7SqmVGEnxHV7uexD4plLqS4zSj99gTE7sq18Aq5RSx4DXMCY5TgUmaa1/6timADhPKfUFRreJSi/36zWt9UGl1JvAM0qp7wK1GBP7TgBvdrHbU8BzjtfoC4yJchOBI27bPAj8r1KqGqPdYDTG5L3BWuvf9TXuAPDL66yU+hHGpMptjue4BigBqvwdsBBC9DfShUOIMKa13gH8CKPDxi6MBM/bVmK3AoMxRiRfwJgUVuqHmN4DLgGWAJsxJt39EKNMxOm/gPOBQowEzNv9+urbwBaMspf1GJMyL9LtezK7H8urwC8xuppsAUZilMu4b/NXjO4m38aoPf4UYzJivh/j9hs/vs61wI8xars3Y0yWvEhHQH9xIYToK9W5bFIIIcRAopR6DqOTxuU+7rcQo35/sNa6yt9xCSFEuJIRaCGEEODoBKOUusSbjZVSu/F+2W8hhIgoMgIthBADnFIqHaNOHqBYa91jRxGl1EiM+nyAI1LaIYQYSCSBFkIIIYQQwgdSwiGEEEIIIYQPJIEWQgghhBDCB5JACyGEEEII4QNJoIUQQgghhPCBJNBCCCGEEEL4QBJoIYQQQgghfCAJtBBCCCGEED6QBFoIIYQQQggf/P8xzLQo+lU0/AAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"a_obj = CosineAnalysis(label=\"Cosine experiment\").run()\n",
"a_obj.display_figs_mpl()"
]
},
{
"cell_type": "markdown",
"id": "5f30a46e",
"metadata": {},
"source": [
"Inspecting the `experiment directory` will show something like this:\n",
"\n",
"```{code-block}\n",
"20230125-172712-018-87b9bf-Cosine experiment/\n",
"├── analysis_CosineAnalysis/\n",
"│ ├── dataset_processed.hdf5\n",
"│ ├── figs_mpl/\n",
"│ │ ├── cos_fit.png\n",
"│ │ └── cos_fit.svg\n",
"│ ├── fit_results/\n",
"│ │ └── cosine.txt\n",
"│ └── quantities_of_interest.json\n",
"├── cos-data-and-fit.png\n",
"├── Cosine fit.png\n",
"├── dataset.hdf5\n",
"├── quantities_of_interest.json\n",
"└── snapshot.json\n",
"```\n",
"\n",
"As you can conclude from the {class}`!CosineAnalysis` code, we did not implement quite a few methods in there.\n",
"These are provided by the {class}`~quantify_core.analysis.base_analysis.BaseAnalysis`.\n",
"To gain some insight into what exactly is being executed we can enable the logging module and use the internal logger of the analysis instance:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "62be0929",
"metadata": {
"myst_nb": {
"output_stderr": "show"
}
},
"outputs": [],
"source": [
"# activate logging and set global level to show warnings only\n",
"logging.basicConfig(level=logging.WARNING)\n",
"\n",
"# set analysis logger level to info (the logger is inherited from BaseAnalysis)\n",
"a_obj.logger.setLevel(level=logging.INFO)\n",
"_ = a_obj.run()"
]
}
],
"metadata": {
"file_format": "mystnb",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.22"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
"374d4b6eae36410881d0533b271d4e97": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"5d301a64dd954b6b9d0fc50a233e3e8c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
"layout": "IPY_MODEL_a0261518bc514529a50c06037374b88e",
"placeholder": "",
"style": "IPY_MODEL_fbbdbe747b0443b5b63dcfa93dcd5301",
"tabbable": null,
"tooltip": null,
"value": " [ elapsed time: 00:00 | time left: 00:00 ] "
}
},
"70ac0416d45342dbad8d451903db0a3b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_allow_html": false,
"layout": "IPY_MODEL_70da9f7b9fbb4db099a98688ae0f6692",
"max": 100.0,
"min": 0.0,
"orientation": "horizontal",
"style": "IPY_MODEL_374d4b6eae36410881d0533b271d4e97",
"tabbable": null,
"tooltip": null,
"value": 100.0
}
},
"70da9f7b9fbb4db099a98688ae0f6692": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border_bottom": null,
"border_left": null,
"border_right": null,
"border_top": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"8398165d87d94e888da7c334b77e9ac0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border_bottom": null,
"border_left": null,
"border_right": null,
"border_top": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"91e0fb2476a4483982c80c01e9c9bdde": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
"background": null,
"description_width": "",
"font_size": null,
"text_color": null
}
},
"a0261518bc514529a50c06037374b88e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border_bottom": null,
"border_left": null,
"border_right": null,
"border_top": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a7f03b8e09a04de9a812117a73321c0f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
"layout": "IPY_MODEL_8398165d87d94e888da7c334b77e9ac0",
"placeholder": "",
"style": "IPY_MODEL_91e0fb2476a4483982c80c01e9c9bdde",
"tabbable": null,
"tooltip": null,
"value": "Completed: 100%"
}
},
"a8cfb959182143819c3c5a71571e6698": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_a7f03b8e09a04de9a812117a73321c0f",
"IPY_MODEL_70ac0416d45342dbad8d451903db0a3b",
"IPY_MODEL_5d301a64dd954b6b9d0fc50a233e3e8c"
],
"layout": "IPY_MODEL_d4024c166d9449a89452ed0492746459",
"tabbable": null,
"tooltip": null
}
},
"d4024c166d9449a89452ed0492746459": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border_bottom": null,
"border_left": null,
"border_right": null,
"border_top": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"fbbdbe747b0443b5b63dcfa93dcd5301": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
"background": null,
"description_width": "",
"font_size": null,
"text_color": null
}
}
},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}