{
"cells": [
{
"cell_type": "markdown",
"id": "c80cd461",
"metadata": {},
"source": [
"(analysis-framework-tutorial)=\n",
"# Tutorial 3. Building custom analyses - the data analysis framework\n",
"\n",
"```{seealso}\n",
"\n",
"The complete source code of this tutorial can be found in\n",
"\n",
"{nb-download}`Tutorial 3. Building custom analyses - the data analysis framework.ipynb`\n",
"\n",
"```\n",
"\n",
"Quantify provides an analysis framework in the form of a {class}`~quantify_core.analysis.base_analysis.BaseAnalysis` class and several subclasses for simple cases (e.g., {class}`~quantify_core.analysis.base_analysis.BasicAnalysis`, {class}`~quantify_core.analysis.base_analysis.Basic2DAnalysis`, {class}`~quantify_core.analysis.spectroscopy_analysis.ResonatorSpectroscopyAnalysis`). The framework provides a structured, yet flexible, flow of the analysis steps. We encourage all users to adopt the framework by sub-classing the {class}`~quantify_core.analysis.base_analysis.BaseAnalysis`.\n",
"\n",
"To give insight into the concepts and ideas behind the analysis framework, we first write analysis scripts to *\"manually\"* analyze the data as if we had a new type of experiment in our hands.\n",
"Next, we encapsulate these steps into reusable functions packing everything together into a simple python class.\n",
"\n",
"We conclude by showing how the same class is implemented much more easily by extending the {class}`~quantify_core.analysis.base_analysis.BaseAnalysis` and making use of the quantify framework."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "114e888a",
"metadata": {
"mystnb": {
"code_prompt_show": "Imports and auxiliary utilities"
},
"tags": [
"hide-cell"
]
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_1108/2040176852.py:12: DeprecationWarning: This package has reached its end of life. It is no longer maintained and will not receive any further updates or support. For further developments, please refer to the new Quantify repository: https://gitlab.com/quantify-os/quantify.All existing functionalities can be accessed via the new Quantify repository.\n",
" import quantify_core.visualization.pyqt_plotmon as pqm\n"
]
}
],
"source": [
"import json\n",
"import logging\n",
"from pathlib import Path\n",
"from typing import Tuple\n",
"\n",
"import lmfit\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import xarray as xr\n",
"\n",
"import quantify_core.visualization.pyqt_plotmon as pqm\n",
"from quantify_core.analysis.cosine_analysis import CosineAnalysis\n",
"from quantify_core.analysis.fitting_models import CosineModel, cos_func\n",
"from quantify_core.data.handling import (\n",
" default_datadir,\n",
" get_latest_tuid,\n",
" load_dataset,\n",
" locate_experiment_container,\n",
" set_datadir,\n",
")\n",
"from quantify_core.measurement import MeasurementControl\n",
"from quantify_core.utilities.examples_support import mk_cosine_instrument\n",
"from quantify_core.utilities.inspect_utils import display_source_code\n",
"from quantify_core.visualization.SI_utilities import set_xlabel, set_ylabel"
]
},
{
"cell_type": "markdown",
"id": "97036a87",
"metadata": {},
"source": [
"Before instantiating any instruments or starting a measurement we change the\n",
"directory in which the experiments are saved using the\n",
"{meth}`~quantify_core.data.handling.set_datadir`\n",
"\\[{meth}`~quantify_core.data.handling.get_datadir`\\] functions.\n",
"\n",
"----------------------------------------------------------------------------------------\n",
"\n",
"⚠️ **Warning!**\n",
"\n",
"We recommend always setting the directory at the start of the python kernel and stick\n",
"to a single common data directory for all notebooks/experiments within your\n",
"measurement setup/PC.\n",
"\n",
"The cell below sets a default data directory (`~/quantify-data` on Linux/macOS or\n",
"`$env:USERPROFILE\\\\quantify-data` on Windows) for tutorial purposes. Change it to your\n",
"desired data directory. The utilities to find/search/extract data only work if\n",
"all the experiment containers are located within the same directory.\n",
"\n",
"----------------------------------------------------------------------------------------"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "efe3fa65",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data will be saved in:\n",
"/root/quantify-data\n"
]
}
],
"source": [
"set_datadir(default_datadir()) # change me!"
]
},
{
"cell_type": "markdown",
"id": "6795b2b8",
"metadata": {},
"source": [
"## Run an experiment\n",
"\n",
"We mock an experiment in order to generate a toy dataset to use in this tutorial."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "881bb888",
"metadata": {
"mystnb": {
"code_prompt_show": "Source code of a mock instrument"
},
"tags": [
"hide-cell"
]
},
"outputs": [
{
"data": {
"text/html": [
"
defmk_cosine_instrument()->Instrument:\n",
""""A container of parameters (mock instrument) providing a cosine model."""\n",
"\n",
" instr=Instrument("ParameterHolder")\n",
"\n",
" # ManualParameter's is a handy class that preserves the QCoDeS' Parameter\n",
" # structure without necessarily having a connection to the physical world\n",
" instr.add_parameter(\n",
" "amp",\n",
" initial_value=0.5,\n",
" unit="V",\n",
" label="Amplitude",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" "freq",\n",
" initial_value=1,\n",
" unit="Hz",\n",
" label="Frequency",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" "t",initial_value=1,unit="s",label="Time",parameter_class=ManualParameter\n",
" )\n",
" instr.add_parameter(\n",
" "phi",\n",
" initial_value=0,\n",
" unit="Rad",\n",
" label="Phase",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" "noise_level",\n",
" initial_value=0.05,\n",
" unit="V",\n",
" label="Noise level",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" "acq_delay",initial_value=0.02,unit="s",parameter_class=ManualParameter\n",
" )\n",
"\n",
" defcosine_model():\n",
" sleep(instr.acq_delay())# simulates the acquisition delay of an instrument\n",
" return(\n",
" cos_func(instr.t(),instr.freq(),instr.amp(),phase=instr.phi(),offset=0)\n",
" +np.random.randn()*instr.noise_level()\n",
" )\n",
"\n",
" # Wrap our function in a Parameter to be able to associate metadata to it, e.g. unit\n",
" instr.add_parameter(\n",
" name="sig",label="Signal level",unit="V",get_cmd=cosine_model\n",
" )\n",
"\n",
" returninstr\n",
"
\n"
],
"text/latex": [
"\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n",
"\\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{mk\\PYZus{}cosine\\PYZus{}instrument}\\PY{p}{(}\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{Instrument}\\PY{p}{:}\n",
"\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}A container of parameters (mock instrument) providing a cosine model.\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\n",
" \\PY{n}{instr} \\PY{o}{=} \\PY{n}{Instrument}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{ParameterHolder}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n",
"\n",
" \\PY{c+c1}{\\PYZsh{} ManualParameter\\PYZsq{}s is a handy class that preserves the QCoDeS\\PYZsq{} Parameter}\n",
" \\PY{c+c1}{\\PYZsh{} structure without necessarily having a connection to the physical world}\n",
" \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n",
" \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amp}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mf}{0.5}\\PY{p}{,}\n",
" \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{V}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n",
" \\PY{p}{)}\n",
" \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n",
" \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{freq}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mi}{1}\\PY{p}{,}\n",
" \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Hz}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n",
" \\PY{p}{)}\n",
" \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n",
" \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{t}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mi}{1}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{s}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Time}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\n",
" \\PY{p}{)}\n",
" \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n",
" \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{phi}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{,}\n",
" \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Rad}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Phase}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n",
" \\PY{p}{)}\n",
" \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n",
" \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{noise\\PYZus{}level}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mf}{0.05}\\PY{p}{,}\n",
" \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{V}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Noise level}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\\PY{p}{,}\n",
" \\PY{p}{)}\n",
" \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n",
" \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{acq\\PYZus{}delay}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{initial\\PYZus{}value}\\PY{o}{=}\\PY{l+m+mf}{0.02}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{s}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{parameter\\PYZus{}class}\\PY{o}{=}\\PY{n}{ManualParameter}\n",
" \\PY{p}{)}\n",
"\n",
" \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{cosine\\PYZus{}model}\\PY{p}{(}\\PY{p}{)}\\PY{p}{:}\n",
" \\PY{n}{sleep}\\PY{p}{(}\\PY{n}{instr}\\PY{o}{.}\\PY{n}{acq\\PYZus{}delay}\\PY{p}{(}\\PY{p}{)}\\PY{p}{)} \\PY{c+c1}{\\PYZsh{} simulates the acquisition delay of an instrument}\n",
" \\PY{k}{return} \\PY{p}{(}\n",
" \\PY{n}{cos\\PYZus{}func}\\PY{p}{(}\\PY{n}{instr}\\PY{o}{.}\\PY{n}{t}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{instr}\\PY{o}{.}\\PY{n}{freq}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{instr}\\PY{o}{.}\\PY{n}{amp}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{phase}\\PY{o}{=}\\PY{n}{instr}\\PY{o}{.}\\PY{n}{phi}\\PY{p}{(}\\PY{p}{)}\\PY{p}{,} \\PY{n}{offset}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{)}\n",
" \\PY{o}{+} \\PY{n}{np}\\PY{o}{.}\\PY{n}{random}\\PY{o}{.}\\PY{n}{randn}\\PY{p}{(}\\PY{p}{)} \\PY{o}{*} \\PY{n}{instr}\\PY{o}{.}\\PY{n}{noise\\PYZus{}level}\\PY{p}{(}\\PY{p}{)}\n",
" \\PY{p}{)}\n",
"\n",
" \\PY{c+c1}{\\PYZsh{} Wrap our function in a Parameter to be able to associate metadata to it, e.g. unit}\n",
" \\PY{n}{instr}\\PY{o}{.}\\PY{n}{add\\PYZus{}parameter}\\PY{p}{(}\n",
" \\PY{n}{name}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{sig}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{label}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Signal level}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{V}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{get\\PYZus{}cmd}\\PY{o}{=}\\PY{n}{cosine\\PYZus{}model}\n",
" \\PY{p}{)}\n",
"\n",
" \\PY{k}{return} \\PY{n}{instr}\n",
"\\end{Verbatim}\n"
],
"text/plain": [
"def mk_cosine_instrument() -> Instrument:\n",
" \"\"\"A container of parameters (mock instrument) providing a cosine model.\"\"\"\n",
"\n",
" instr = Instrument(\"ParameterHolder\")\n",
"\n",
" # ManualParameter's is a handy class that preserves the QCoDeS' Parameter\n",
" # structure without necessarily having a connection to the physical world\n",
" instr.add_parameter(\n",
" \"amp\",\n",
" initial_value=0.5,\n",
" unit=\"V\",\n",
" label=\"Amplitude\",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" \"freq\",\n",
" initial_value=1,\n",
" unit=\"Hz\",\n",
" label=\"Frequency\",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" \"t\", initial_value=1, unit=\"s\", label=\"Time\", parameter_class=ManualParameter\n",
" )\n",
" instr.add_parameter(\n",
" \"phi\",\n",
" initial_value=0,\n",
" unit=\"Rad\",\n",
" label=\"Phase\",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" \"noise_level\",\n",
" initial_value=0.05,\n",
" unit=\"V\",\n",
" label=\"Noise level\",\n",
" parameter_class=ManualParameter,\n",
" )\n",
" instr.add_parameter(\n",
" \"acq_delay\", initial_value=0.02, unit=\"s\", parameter_class=ManualParameter\n",
" )\n",
"\n",
" def cosine_model():\n",
" sleep(instr.acq_delay()) # simulates the acquisition delay of an instrument\n",
" return (\n",
" cos_func(instr.t(), instr.freq(), instr.amp(), phase=instr.phi(), offset=0)\n",
" + np.random.randn() * instr.noise_level()\n",
" )\n",
"\n",
" # Wrap our function in a Parameter to be able to associate metadata to it, e.g. unit\n",
" instr.add_parameter(\n",
" name=\"sig\", label=\"Signal level\", unit=\"V\", get_cmd=cosine_model\n",
" )\n",
"\n",
" return instr"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display_source_code(mk_cosine_instrument)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f58b3e02",
"metadata": {
"mystnb": {
"remove-output": true
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Starting iterative measurement...\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a95b1bdb81a7485ca23ed76d34b6a7d5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"meas_ctrl = MeasurementControl(\"meas_ctrl\")\n",
"plotmon = pqm.PlotMonitor_pyqt(\"plotmon\")\n",
"meas_ctrl.instr_plotmon(plotmon.name)\n",
"pars = mk_cosine_instrument()\n",
"\n",
"meas_ctrl.settables(pars.t)\n",
"meas_ctrl.setpoints(np.linspace(0, 2, 30))\n",
"meas_ctrl.gettables(pars.sig)\n",
"dataset = meas_ctrl.run(\"Cosine experiment\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "0e3dbd26",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAGhCAIAAACBOXXdAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4nOzdeWCTZZ448Cdnk+bumd4tbXrQFmg5ylUoRzkKIlbEAa8BUcEdXZzZHV13DnWd/e2szuyMo86uo+CgIh4zAgMUKqVYQCi09obeZ3qmzZ3mapLfHy/GkF5JmuRN3nw/fzVv3rTfYs03z/N8n+9DslgsCAAAAABzRsY7AAAAAIAgIKcCAAAA7gE5FQAAAHAPyKkAAACAe0BOBQAAANwDcioAAADgHpBTAQAAAPeAnAoAAAC4B8Fzan5+Pt4hAAAACBRUvANACoVibGwMISQQCAQCweRnR0dHqVRqdHQ0jUaze9ZkMg0ODup0OoFAEBoa6qWIAQAAgKngmVP1ev2lS5e6u7utV5YsWbJ06VLrw4qKiqamJjKZbDabg4KCNm7cGB8fb31WIpGUlJRoNBoKhWIymZKSkgoLCykUit1PKS8vt369bt06T/0yAAAAAh5uOdVisZw7d04qla5bty4pKclisYyNjZnNZusNDQ0NTU1NeXl5ixYt0uv1Fy5cKC0t3bNnD4vFQghNTEyUlJTQaLS9e/fyeLy2traysrLKysqVK1fa/SDIowAAALwDt/XUlpaWoaGhdevWpaenBwUFMRiMmJiYuLg46w21tbURERG5ublkMpnJZBYUFBiNxqamJuzZ9vZ2jUazatUqHo+HEBKJRCkpKY2NjUajEZ/fBwAAQMDDM6ey2ex58+YhhGyHpxi5XK5WqxMTE61X+Hw+n88Xi8XYQ7FYTKVSY2NjrTckJCRgy6seDx0AAACYCm5zvxKJJD4+vra2tra2VqvVsliszMzM3NxcEomEEFIoFAghPp9v+xIejzc0NIR9LZfLORwOmfzDZwLsZuyFAAAAgPfhk1MnJiaMRqNYLBaLxUuWLGGz2R0dHTdv3tTr9diCqMFgQAjR6XTbV9HpdOw6dgODwbB7FiGk1+u99DsAAAAA98K57ve+++7D5m/nzZun0+kaGhpyc3OtydKp89Kxm7Fhrq0pt6heuXLFxaABAACAaeCTU6lUKoVCIZPJtguiSUlJYrF4dHQ0NjY2KCgITRp06vV6a7plMBg6nc7uWYQQ9kJbkD4BAAB4B241SiEhIbaroQghbGspNtzEmj/IZDLbG2QymbUphEAgUKlUExMTts9aXwgAAAB4H245NSEhQa/XS6VS65WBgQGEUEhICEKIw+EIBILOzk7r9K9EIlGpVNaeD/Hx8Waz2bZfRGdnJ51OFwqFXvsVAAAAAFu45dTs7GwGg3Hx4sXBwUGlUllTU9PW1iYSibCWDgihxYsXy2SyiooKpVI5PDxcVlbGZDLnz5+PPZuUlCQQCK5du9bX16dWq6urq3t6enJycib3UQIAAAC8g+RUHZB7SSSSixcvyuVy7KFIJFq7dq1tU9+ampqqqipsgpfH4xUWFoaHh1ufVSqVpaWlEokEIUQmk7OyslauXGlXo5Sfnw/rqQAAALwDz5yKkclkBoOBy+UymczJzxqNRplMRqVSsTnhyeRyuV6v5/F4dltrMPn5+a+99pr1IfQpBAAA4Dn451SPgnEqAFZ1fYqTtf0IoeLcmOwYHt7hAEBA+J/1BgDwgorW4cOf10vVBoTQydqBP+1ZtDolDO+gACAagp9JDgBACNX1KQ5/djehIoRkGv1zx2sa+uX4RgUA8UBOBYD4Ttb2SzUG2yuyccOpmgG84gGAqCCnAgAAAO5B/PXU8vJy69dQ9wsCU3FuzFc1/fLxH4aqPCb9gZwYHEMCgJCg7heAgHC1ffTgx9Vq3QRCiE4hf7h/6cpkqFECwM2IP04FACCEVqeE3bcwqmVQlRsvuNE5RiXDug8A7gc5FYBAIZZqXyhMyxeFDSl1O9++duPlDXhHBADRwGdVAAJFVbdsSaIAISTkMn68KvG/SprxjggAooGcCkBAuD2gTApnMWl3D5k4uDb5cqukeVCJb1QAEAzx536h7hcAhFBVj2xJwj2nC//xR4ueP15z4YU1eIUEAPEQP6dCHgUAIVTdI12fHml7JS2Ssz4j4s+XOw4VJOMVFQAEA3O/AASEyeNUhNCLW9I/utEzINfiEhIAxAM5FQDiG1LqTCZLjGCK4xT/+KNF/3yi1vshAUBIxJ/79T44UQv4muoe2eJJg1TM0sSQ1EjOJ5U9j+QleDkqAIgHcqqbwYlawAdVd8sWJ06dUxFCv3kgK/PXF3YuimEFwRsCAHNC/Lnfchue/llwohbwTVU90iUJITPcADPAALgF8T+WerPud7oTtbJj+F6LAQA7EybL7UHlgtiZliE2ZkSeqh34R93AfQujvRYYAMRD/HEqAAFu1kEqBoaqAMwd5FR3Ks6NYdLvGfrDiVoAd9aWhDMjk0hvPrTwp59DWgXAdZBT3enjGz1rU8MELDr2kEYh//nRnEwo/QW4mqHo105xbsyo2lDRKvF0SAAQFeRUt9n5zrXceMH/Prr42P6lB1Yn7VuZSLJY4IhKgDsH534xMAMMwFwQv0bp6NGjtg/37dvn9h8hlmk3/c83x59aviiOjxDKjuFjRUkdo5qKVsma1HC3/0QAHNQ6rIriMTkMR/9PFwTT/3mj6JXTTa/syPRoYAAQEvFzqieSqK2yOyO/Pt1Y9YvCYDrF7qktmcLzTUOQUwGOHJ/4tfrxysSd71yr7ZNjnxEBAI6Dud85+fPljuM3e66+uH5yQkUIbcqMLG0a9n5UAFhN2eZ3Vn/8Uc4/n6jxRDwAEBvkVNcd/qxWqTN+8MTS6W4IYwfFhwR/1yvzZlQA2Jq5g9J0EkKDi3Nj/+frVk+EBACBEX/u10O2/vHKM2vm7Zxtnww2VM2Nd/pNDYC5G1MbVHpjYijLhdf+8wbRujcvpwu5N7ulCJpXA+AYGKc6rUOiTn753O93L5w1oSKENmcKLzQNeSEqACar7pEudrjid7J9q+J/cuK7o9e6jl7revzIravto26MDQBCIv441bbNrwt9Cu0OmTnXMPi70tbW17dSyCRHXp4UxqKSSW0jalEE29kfDcAcubaYiqnrU/zhYofJZMEeYs2rjz25FBptAjAD4ufUufT7tTtkZl1amM5oLvvZWqe+yeYs4YXGIdH6FJfDAMA1Vd2yX2zPcO210LwaABfA3O+0Jh8yc65h6FDBPGe/z6b5wtLbMP0LcPBdrwzW8gHx1PUpXv3H7Vf/cbuhX4F3LPaIP0512eTP6TqjyYXP6QtieRKVflChi+Ix3BogADOZy8QvQqg4N+armn75+A//C1gspJDv+24CgBfXzqi2W8XzXHgwTvWGTZnCUqhUAt5V1S1dkuh6gVJ2DO/tvTnW5tU8Ju34U0ubh1T7jt5SaI2OfIchhU5rNLkcAACTuXZGdUXr8L6/3vROtR3k1GkV58bwg+/5VO7yITNQ/Qu8z4UOSnZWp4RhzasPrE46fiBvVUr4W3tyHl+ZsOa/yz/8tnuGFyq1E/e/c23rHyuyf33hwLGqucRgNps1Go3JZJ+bp7tuZTAYRkZGBgcHtVqts681m81jY2MDAwNKpdL2+vj4uPp7Go1mhrCVSuXAwIBMJjObzTPcNiW5XN7U1OTsq3DU1NQkl8+S1dxlumX+GV7iWhp2GfHnfl2u+8U+pz/3aY1MY0AI8Zg0lw+ZWZkc+tSxKo1+ghVE/H9w4COqe2S/fXDBHL+JtXm11bq0iLpfb3rldNP971z7w8OLksLsN78aTeaCN8utb3yXbg/vP3rryL5pW6NMR6vVnj17dmxszGw2FxUVJSQkzHzd1sDAwJkzZ3g8HplMlslkubm5S5YscfC1Fovl/fffZ7PZdDpdLpfHxMRs3ryZTCYjhL788kuj0Yh9TaPRHn300ckvl8vlZWVlMplMIBBMTEzo9frVq1fPm+dEHYZSqWxvb8/M9Jt+y+3t7RwOh8/3SPFaXV0dmUzOzs6e4Z5PKnvLmkfYQVRWEJUdRGUFUb7/gsoJopY1j3iz2o74b/FzqfvFPqdjH4IeyImZy6ltWO/fB3NjXf4OADiua1TDY9I8t/z5yo7Muj75/g9v7VgY/UJhqu1T/3H2tu1bmBmh6l7Z5RZJQZpzja8pFEpOTk54ePjf/vY3R67bCg8P379/P5VKRQgNDg6ePHkyLS2Nw+E48loSifT4448zGAyEkE6nO3HiRFtbW1paGvZsUVFRVFTUdK/V6/WnT5+OjY29//77sZ8uk8mGh51rUBofHx8fH+/US/B1//33e+6bK5VK7EMMZvIyP5dJf3fPopiQYLV+QqOfUOsnNHrT919MiOXaEZXec+FNRvycOkeTP6e7ZlNm5N+/64ecCrxj7hO/s1oYx7/407VvXWrL/235/zy8MOf7AuPesXG7O9U6U9eYOt9sX0hCIiEyadp93nQ6PTk52fHrCKGampqUlBQOh0Oj0awXw8LCEEJGo9HB1yKEsISKfcFms7HXOuLOnTskEmnt2rUUyt0G4AKBQCAQIIRMJlNlZWVHR4fJZIqNjc3Pzw8KCkII1dfX19XV6fX6oKCgJUuWZGRk9Pf3NzY2bt68GSFUUlKSmJh4586dsbGxiIiIDRs2sNlshJBcLr969erIyEhQUFBWVtbChQsnB9Pb23vz5k2FQsHhcFauXBkbG6tWq8+fP19QUID9m1y6dInP5+fm5lZXV5vN5tHR0f7+fi6Xm5+fj31usFgsdXV1t2/f1ul04eHha9eu5XK5WFQJCQl37twZHR3ds2fP9evXs7KyYmJient7W1tbeTxeQ0MDhUJZtWoVh8O5fPmySqVKTExcv349lh2nDL66uhohJJVKu7u72Wz22rVro6OjOzs729raSCSSWCxmsVjbt2/Hpg+f+ahao59A308fznykZkO/4rEPbtqmYZdX8RwBOdVLNmcKn/moGu8oQKCYY4GSI1S6iUWvlWJfP/R/1xG6myBNFovdnSaL+fV/3H79zB2760sSQz57erm74jGbzTdu3AgPD8fyIkKotbXVYDB0dHTMnz8/JGSmf43JrxWLxUqlcnh4mEwmi0Qi653nzp0zmUwCgWDZsmWTp44HBwejo6OtCdVWVVXVwMBAcXExjUa7dOnSpUuXtm7dqlAobt26tWvXLh6PNz4+ji39GgwGheLuFhG5XN7Q0FBYWMhmsy9dulRZWblhwwaj0Xj69OnFixcXFRWp1eqzZ8+y2Wy7zwoSieTixYtbt24VCoUDAwMXLlx46KGHOBxOenp6aWnprl27mpubh4eH8/PzEUJqtbqlpWXz5s2bN29uaWk5d+7co48+GhQUVF9f397evn37djabXV9ff/78+YceeohEIsnlcrlcvmnTJi6XSyaTFQqFwWDAIu/o6Fi+fPnjjz/e1dV1+fLlmJiYbdu2USiUU6dOtba2pqenTxe8Wq1ub2/ftGnT+vXrGxoaysrKHnvsscTExOTkZDKZvHz5ctL3H79Wp4TFCZipkewIDsOR6UM3ruI5AnKq9xTOj/z69nDh/Ei8AwHEV9UjO5Dv9F5qp3AY1I7/LLI+/Oh6z2/PNz+1JuGv1/us9SAIIQqZvGdJ7OvFM62HuQWZTN63bx+d/sN0d39/v06nUyqVsbGzzA9Nfu3o6OjIyIhEIhEKhda5x3Xr1oWFhZFIpJaWlvPnzxcXF4eH3zOhrdfrebyp36xbWlry8/NZLBZCaOXKlZ988olOp7NYLBaLRaVScbnc4ODg4ODgyS9csGABNtLNyMi4du0aQqizs5PFYmVkZCCE2Gx2VlZWe3u7XU5tbGzMyMiIjIy0WCxRUVExMTHd3d3Z2dlZWVkDAwMlJSWjo6M7d+60Dujj4uKwjwgZGRmNjY1dXV3p6ekNDQ35+fnYyDg7O7u2tlYqlYaGhmIPsS/sBAcHY+NOkUh0+fLljIwM7OWJiYkSiSQ9PX2G4BMTE+Pi4hBCWVlZ169f12q1TCaTTCaTyWTbiYeaXjmTTnlrT+60/zknceMq3qwgp3oPtqQKORV4mlJrHFHpU7zbDvOxFQmiCM5jRyqNpnsqXQszI7yQUDHWOVsMVkuh0WhOnDgRERGBvV87+NpFixYhhMxm88mTJ6urq5cvX44Qsn6HhQsX9vb2dnR02OVUBoMxPm4/9Y2+rzS2pltseKdSqcLDw/Py8r755hudThcXF5eXlzc5JVsTLY1Gw2ahlUqlXC7/7LPPrPdMTm9KpbK3t7e7u9t6JTLy7jvP0qVLT5w4kZmZafsqbFIXw+Px1Gq1xWJRq9VXr161fqQICgrS6/WT77eFfWjAUKlU60MajYb9y8wQvPVmKpVKIpEMBgOTyZz8Iz642vnkaqc/L7prFW9WxM+pc+z360abMoWv/KMJPTTFygcAbjTHbg8uu3B7yC6hIoRieVO8LXoTi8XicrkKhWLmnDolMpksFArtdtRgaDTa5N04sbGxVVVVRqPRdlyFfR8s3WJT0Fqt1mw2Y8kyOzs7OztbpVLdvHmzrKysuLh41qiCg4NDQ0N37tw5wz1MJjMqKmrZsmV21y0WS0VFxbx589ra2mzTqu2OI41GExMTQyKRGAzG2rVrZx3lO8WR4GcwpNRVdcve3uvEINXLiL8/dZ0NfCPhMKhZMbzrHWP4hgEID6+c6nZGoxEbmU1MTBiNRsv3K7VTXrdYLN9++y22Ejk6OqrT6bCbe3p6ZDKZUCh08LVqtdq621Iul3d0dGAFO2q12rrM2dfX19PTMzlJp6WlBQUFlZWVWX+6WCyuq6tDCCUlJdXV1WHbVWtqaiIiIlgslkajwfa5cjic2NhYbFVyVgkJCWNjY52dndbfSCazP6RZJBLdvn3b+otYN9TeunVrYmKisLBw6dKlpaWl1vKr7u5u7LcbHh6WSCRY4bFIJKqurrZGJZFILJMWy53lSPC2goODbT/TvH+l60B+0hxj8Cjij1N9Ctb7d0XyFOsQALhLVbf0Xzalef/nTt7nMMcCy2PHjmFv6KWlpQihLVu2JCUlTXcdK1KNj4/n8XhDQ0PXr1+n0Whms5lMJq9ZswardHXktePj42fPnrVYLBQKxWAwzJ8/PysrCyGkVqvPnDmDLe+ZTKbly5dP3vFCo9Huv//+ioqKv/71rywWy2g0YjW3CKHly5dfvHjx2LFjVCqVTqdv2rQJIaRUKktKSphMJpVK1el0BQUFjvyzsNnszZs3f/PNN9evX6dQKDqdLi8vD1tztUpKSlKpVF999RWTyTSZTGazecuWLTKZrLGxcdeuXWQyecGCBf39/VeuXFm/fj1CKD4+/sKFCwghlUq1Zs0arFYrLy/v2rVrH3/8MZvN1mq1DAYDq1Fy8T+nw8HbSk1N7e7uPnLkCJvN3r179/tXOrv/a9tcAvA00tw/d/iy/Pz8K1eu4B3FDwYV2uJ3r1//t/V4BwKILOXlc82vb6U6dhyhe11tH7UWWLLo1L88sXjmfQ6eYzKZNBoNhUKxXeFzkMVi0Wg0FouFxWLZbo7ElkVJJBKLxZo5tRiNxvHx8eDgYLtJYL1ebzKZbGuRsO+JEGKz2c6mq/HxcZPJZBek3S+iVqspFMqU1U9W33zzTVBQUF5enkqlYrFYdnXLZrNZpVIxGAxs84+7zBr8ZB9c7RqQa3+5fb4bw3A7GKd6VRSPGcqmN/YrsjxZeAYCWV2fPDOGh0tCRTYFlq3DKgaVgldCRQhRKJTp6mhmRSKRsGpVO2Qy2brZZmY0Gm3KAuDJacnx7znZzJkSIUQikRz/5iQSacp/MTKZPF0x81zMGvxk71/p+vuzK9weiXv5RE7V6/VarZZKpU7+O1YoFKOjo1QqNTo62u4TH0LIZDINDg7qdDqBQDBlYbcPwnr/Qk4FHoL7YipWYKk1mnJf+xrHMIDjoqKisK5Pvuxcw2BOPD8K75K3WeH/72ixWM6ePTs8PJyQkFBUVGT7VEVFRVNTE5lMNpvNQUFBGzdutF3AkEgkJSUl2PSOyWRKSkoqLCycvNvad+p+MZsyI58/XvMzPJa7QCCo7pFtXzBt8zyvYdIoq0VhsCHbL6Smps5+E97ev9L1i+0ZeEcxO/xzan19/fj4+ORPSQ0NDU1NTXl5eYsWLdLr9RcuXCgtLd2zZw+2OjIxMVFSUkKj0fbu3cvj8dra2srKyiorK7FyAFu+kEdtpUVy9BPm7jFNYqjTyzwAzKqqW/rKDp9ov75jYfTpugHIqWDuanrlFmTJjfeDanac99IoFIqbN2+uWbNm8jJ1bW1tREREbm4umUxmMpkFBQVGo9F6BFJ7e7tGo1m1ahU20S8SiVJSUhobGx3vzImjTZmRpU3OtdUGwBF90vEgGiWC485aEpfdtzD6H3UzHcIFgIPev9Lp6b5g7oJzTr18+fK8efMml6TL5XK1Wp2YmGi9wufz+Xy+WCzGHorFYiqVarsZOSEhAVte9XzUcwXHqQIP8ULrfKdAWgVzN6TUVffItmXjv6LhCDxzamNjo1QqXbVq1eSnsN3Hdgfy8Xg8273YHA7HdnSL3WzdlO3LFicIukY1dkf6ATB3uBco2cGmf/GOAvg33+/zYAu3nKpSqW7cuLF69Wq7NpsYbFO2bUtr7KG1o4fBYJj8LELI2o7Sx2G9f/GOAhCNr+XUwvmRV9tGtUb7Hn4AOM6PJn4RjjVKly9fjoqKsj1EaTKn+lFgN0/eNI0dZmQH90YQmzKFH37btXeZP508DHzcuMHUO6ZJj3JxU6aHYNO/u5c43WsXAITQB1e7nlztN4NUhFdO7ezsFIvFGzdutC5/WiwWvV4/ODjI5XJZLBa2M9pu0KnX623PCrZ21LQ+i6baUo17+pxSQVr40x9VGSbMdCrxWy4D76jukS5O8OyZqS7YsSj6fy93QE4Frnn/Suffn51ifdBn4ZNTsUN/Ll68aHtxaGjo5MmTq1atsp4XaNdbWSaTWdtCCgSC1tbWiYkJ6yYc7OYZ+kb6Gqz37/YF0XgHAgiiqlu2JNHn/v5Xp4Q9/2mNVGMIYdFnvxsAG+caBnPiBVG8KdYHfRY+OTU1NdXuSIcvvvgiIiJi7dq12IF5HA5HIBB0dnYuXboUm86VSCQqlSoz8+7Gu/j4+Obm5u7u7pSUFOxKZ2cnnU63nj7h+7ZkRZ5vHIacCtylukd2sCB59vu8Dpv+fWJlIt6BAD/jL30ebOEz8Uin03n3IpFIVCqVx+NZK48WL14sk8kqKiqUSuXw8HBZWRmTyZw//2735KSkJIFAcO3atb6+PrVaXV1d3dPTk5OTM7mPks/Cxql4RwGIw9cKlKyg+he4wI/6PNjCv4/SdEQikVqtrqqqun37NkKIx+Nt27bNulxKJpOLiopKS0vPnDmDPVywYEFOTg6eETuJTiWvTA693CIpSAvHOxbg95oGlMnhLAbNFz9TLk4QDCp0A3JtNN/Xm7UC3+Ff5b5WvpJTn3zyyckXc3JysrKyZDIZlUoNCbEvvuByubt27ZLL5Xq9nsfjTbknB/lev19bmzKFpU1DkFPB3FV1S5ck+lyBktX9C6NP1Q0cWuuLU9PABw0qdN/1yt55JBfvQJzmKzl1OjQaLSIiYoYb7PpCTOZredTWlkzhmxda/rM4G+9AgN+r7pFt9OHOuvctjP6XL+sgpwIH+d0WGivYyIGnEBY9KYxV3SOb/VYAZuSzi6mY+dFcvdHcIVHjHQjwD3468Ysgp+IOev+CuRtU6CwWi4+vVu5YFH26FiqVwOz8d5CKIKfiDs6oAXPna63zpwTVv8BB/jtIRZBTcZcYygqikluGVXgHAvyYb3ZQspMUxmIFURv7/eCUC4Cjsw2Duf7W58GWr9cozZ0v1/1isKFqWiQH70CAv6rqlhXnxs5+H96woWpWDA/vQIDv+sAP+zzYIv44dZ0NvGOZGiypgrkwmszNQ6psf0hUsKQKZuanfR5sET+n+r6sGN6Y2jCo0OIdCPBLvtnmd0pCLiMuJPhWtxTvQICP8uuVVAzkVJ+A9f7FOwrgl3x8F40dqFQC08H6PGzLjsI7kDmBnOoTksM4/1fR+eo/bjdABQdwkl8UKFnB9C+YDgEGqQhyqi+oaB3+fVnLkEJ79FrX40duXW0fxTsi4E/8aO4XIcRj0hbG8StaJXgHAnxFXZ/i1X/cfvUft49c8+NtqVZQ94uzuj7F4c/qpRoD9lCm0T93vObYk0uzY2bpuQgAQqhlWBXDZ7KD/Ol/ZGz6d00qtLkGqKJ1+PDn9VK1ASEURKNebR9dnRKGd1BzQvxxqo/X/Z6s7bcmVIxs3HCqBibHgEP8otuDHVhSBZi7Iwr13TdAvXHiueM1Df1yfKOaI+LnVAAIrLpbtth/Jn4xdCp5XVoE7B8DhBxRQE7FWXFuDD+YbnuFx6Q/kBODVzzAv1T1SJf4T4GS1X0Lo/8BQ1VARJBTcZYdw3t7b46AdTet0inkPz+ak+kP+/cBvur6FC/9vWFYqVfqjHjH4rTtC6LONQyZLRa8AwF4IuSIAnIq/lanhB3bv/TA6qQ9S+O4DOrKZP9eogdeUNE6vO+vN0/c7NUZTX5aKw6bagA2omAx7lbY8Zg0Aowo/Klc0DU+XveLyY7hY4W+teIrdwaVGVFcvCMCvosYteI7FkZ/fKNnp58PSsAcrU4JW5YgsFhQSgT7gZwYf0+oKBByqs/m0SltyIgouzMCORXMYLrKDv/KqevTI547XqMxTLDoxH8XAjO40Sn97leFTBoF70DcA+Z+fcuG9MiyZmhSCAICTP+CK22SJYkhhEmoCHKqr8mJ53ePjsvGDbPfCgLVqFpPpdzzf66fVnbARlVQ0ji0NUuIdxTuBDnV56zPiLh0ZwTvKIAvGlLqNvzum8UJgg/3LbXWivtvZceK5NC2YfWoWo93IAA35xuHthArp8JKhs/ZkB5xpn7wwcV+cMQ08Ka/VYvfuNDyyVN5yeFshNCx/Uux3fF+XdmBDVX3r/L7Lq/ABVU9snlhrBAWffZb/Qfxc+rRo0dtH+7btw+vSBy0Pj3ipyHpb5gAACAASURBVJ/X4R0F8C2HP6ulkEk3Xt5gvWKtFfdrOxZFv3K6CXJqYCLeIBUFQk71/SRqh0Gj5Mbzv+0YW5kcincsAH8tw6pH/lL5i20ZhNx2siiOP6Yx9EnH40KC8Y4FeNv5xsETT6/AOwo3g/VUX7QhI7LsDlT/AvTB1a7nj9ecP5xPyISKgT6FgalpQMlj0mIFTLwDcTPIqb5ofXrEpWYoUwp0+47eGpBrL7ywJowdhHcsHgTVv4HpQtPQ5kyiTfyiQJj79UdJYSyEUNeoBvsCEF5dn+JkbT9CqDg3JjuGd7NLuvf9G395fMm6tAi8Q/O4dCFn3GA+/FmtIJiO/fp4RwS84Xzj0Nt7c/COwv0gp/oobPr3QP48vAMBHmd7LPPJ2oG1qWEDcm3za1upFBLeoXlDReuwRKM7WdOPEDpZO/CnPYv8/VRqMKuuUY3RZE6N5OAdiPsRf+633AbesThhQ3pEGUz/BgC7Y5llGv35xqFfbs8IkISK/fpavQl7iPUu9vdTqcGszjcNbSHixC8KhHGqf/X7tVqRHLr/w1tao4lIXbvAZJOb9+qMJr9r3usyYvQuBs463zj02o5MvKPwCOKPU/0X1k8f7ygAAMCdhpS6YYVuYRwxPza5mFMtFotGozGbze6NBthanx55CfrpEx0hj2V2XID/+oHpQuPQZsK1erByYu7XbDZ/++23FRUVdXV1Q0NDZrOZTCaHh4cvXLhw5cqVa9asodFongs0AG3IiHj1H014RwE8CzuW+eDH1WrdBPLn5r2uwX795z6tkWkMKPB+/cB0vmno+fUivKPwFIdyqtlsPn369LFjxyQSSWhoaEZGxrJly1gslkajkUqlNTU1paWlAoHg4Ycf3r17t69lVr84k3xKPCYtJYJd3SNbnCDAOxbgQatTwoqyhZ3DmkXxfL9u3uua1Slhx/Yv/Vt1/0fXe44fyAu0Xz/QKLXGpgHlCuI2iXMopz7//PM9PT3bt2/fvHlzYmLi5BvEYnFpaenf/va3M2fOfPrpp26OcW78K4/awap/IacS3rBC/9xG0drUcLwDwQfWu/hS8wiH6VufyIHbEbXVg5VDOXXLli0bNmxgMqdtIhUbG7t///7HHnvs7Nmz7osNoPUZkYdP1Px8cxregQDPauhXQK+DNCGnZUgVD41/Ce1809DeZQl4R+FBDtUorVmzhk6f/TgeGo22c+fOOYcEfpAu5Ci0E4MKLd6BAA8aVGiDqBSCnXjlgnQhp3lIhXcUwIMmTJZvWiUbMojcHcyhnFpRUVFcXPzuu+92d3d7OB5gD3bUEF69WLEgNtAHqQihNCG3ZUiJdxTAgwjc6sHKoZyakpISGRn56aefPvbYY88888ypU6c0Go2nIwMYyKmEBxO/GBinEh4hD0y149B6anp6+nvvvdfd3X3u3LnS0tI333zzT3/609q1a4uKinJzc0kkn26i5r91v5h1aRH7P7xlsSDf/mcGrmsQK/avhkO5UUoEu2tUYzJbKGT4Wyem802Df3h4Ed5ReJYT+1MTExOfffbZgwcPVlZWnjt3rry8vLS0VCgUbt26taioSCj00U8f/phH7WxIjyxrHt6YEYl3IMAjYJxqlRrJaR1WZURx8Q4EuN+l5pE1onDCN7J2uo8SmUxesWLFf/zHf5w6deqFF17g8/lHjx7dvXv3G2+84Yn4AEJofUbEJZj+JagBuZZBgwKlu2D6l8ACYeIXzaXfL4fDKS4u/td//dclS5ZYLJauri43hgVswRk1BAaDVFvYdhq8owAeEQgFSsjlc2lkMllpaem5c+c6OzvJZPKyZct27drl3siAVSSXEcamNw0oM6NhToxoIKfaShdyP/wWPp0T0I3OsflRXG4A9PRwLqdOTEx8++23586du3HjhslkiomJOXDgQFFRUXh4gPZ/8RrsiHLIqcQDBUq2YJxKVAEy8Yscz6ltbW3nzp37+uuvFQoFg8EoLCzctm3bokVzquAyGAyjo6Pj4+MsFissLGzKRsEKhWJ0dJRKpUZHR0++wWQyDQ4O6nQ6gUAQGjp1A0l/r/vFbEiP+NXppuc3ELbxdMCCcaqtKB5DYzAptcZAGNAElPONQyd/sgrvKLzBoZx64cKF119/HSGUlZV18ODB9evXBwfPtX/Y+fPne3p6rKfFMZnMFStWpKXd04SvoqKiqamJTCabzeagoKCNGzfGx8dbn5VIJCUlJRqNhkKhmEympKSkwsJCCsX+BG//zaO2Fsbx+6TjUo0BilmIBAqUJkuL5LQMq5YmhuAdCHCbOrE8kssQchl4B+INDuXU4ODgvXv3btu2zTalzZFarV6xYkVCQkJwcLBUKq2oqLh06RKXy42KisJuaGhoaGpqysvLW7RokV6vv3DhQmlp6Z49e1gsFkJoYmKipKSERqPt3buXx+O1tbWVlZVVVlauXLnSXRH6Gmz696ElcXgHAtwGBqmTYdO/kFOJJHAmfpGDdb/5+fmHDh1yY0JFCD344IMLFizg8Xg0Gi0yMnL9+vUIoY6ODusNtbW1ERERubm5ZDKZyWQWFBQYjcamprvniba3t2s0mlWrVvF4PISQSCRKSUlpbGw0Go1uDNKnQPUv8UBOnQy20xBPQOVUp+t+JRLJF1980draKpPJLBaL9XpqauovfvELx7+PXfclNpuNEDKZTNhDuVyuVqvnz59vvYHP5/P5fLFYvGzZMoSQWCymUqmxsbHWGxISEtra2gYHB92b+33H+vSI50/U4B0FcKd6seIAFCjdK03IOVU7gHcUwG1ah1U0CjkpjIV3IF7iXE4dHR09cOCAQqHIyMiIjo62fSoiYk5HDbS3tyOErDlSoVAghPh8vu09PB5vaGgI+1oul3M4HDL5h3E2djP2QkKiU8nLEkOuto+uTgnDOxbgHo39iiwYp94rXchthk76BHKhaXhzZgD1gHMup168eFGr1f71r39NSHDnAXhyufzGjRvR0dHz5s3DrhgMBoSQ3QFzdDodu47dwGAw7J5FCOn1ertvnp+fP/knXrlyxU2xexXWUAlyKjFAgdKUOAwqO4g2qNBG8aY9sBn4kfONg/+9ayHeUXiPczlVLpeLRCL3JlSNRnP27Flsf47dhLDt3PKssJsnN/T30/Q5pQ3pkY8fqfzVffNnvxX4PDjibTrYkirkVAIQy7QKrTGgNtY715twwYIFYrHYjXVA4+Pjp0+fNpvNO3bssN2fExQUhCYNOvV6vXVsymAwdDqd3bPWFxJVQmgwlUzukKjxDgS4ARQoTQc6PxDGhaahzQHQj9CWczl1xYoVy5Yt+81vfiORSOb+s7Va7enTp41G4/3338/hcGyfEggECCGZTGZ7USaTYdexG1Qq1cTEhO2z1hcSGBynShiQU6cDOZUwAqriF+NcTiWRSLt3766pqSkuLt68efN2Gz//+c+d+lZarfbUqVN6vX7Hjh1crv3MAIfDEQgEnZ2d1ulfiUSiUqmsNb3x8fFms7m7u9v6ks7OTjqd7rNHzrkL7KghDChQmg5spyEGqcbQIVEH2lZj59ZTe3t7n332WQqFsm7dOj6fb7t4GRMT49S3On36tEwmW7hw4eDg4ODgIHaRzWbHxd3tabB48eKLFy9WVFTk5ORotdry8nImk2ndXZOUlCQQCK5duxYUFCQQCFpaWnp6evLy8ib3USKYvHmhjeIqjWGCRXfx/APgC/plWiYdCpSmBuNUYgiQg2jsOF33S6VSP/744+ma6zrIbDZLpVKEUF1dne31hIQEa04ViURqtbqqqur27dsIIR6Pt23bNutyKZlMLioqKi0tPXPmDPZwwYIFOTk5k38WMfr92sKqf+9bGD37rcBXwcTvDMgkUnI4q21ELYpg4x0LcN35xqEA3H7tXE41Go1JSUlzTKgIITKZfOjQoVlvy8nJycrKkslkVCo1JMR+AoHL5e7atUsul+v1eh6PZ7e1xooYedQWNv0LOdWvQU6dWZqQ2zKkhJzqv7RG060u6bH9y/AOxNucW09dvHhxT0/P+Pi4h6KZjEajRURETE6oVnw+PzIycrqESkhY41+8owBzAjl1ZjD96+8uNA5tDrDqJIxzOTU3N7eoqOill15qamrSaDQGGwRutOtrOAxqupB7q1uKdyDAdQ1iRTZsTp0elCn5u8BcTEXOzv2Wl5efOHECIXTw4EG7p7Kzs9999123xQVmhC2pBlpBHWH0y7TBQRRBMBQoTQvGqf7ufOPQ/z66GO8ocOBcTk1OTj5w4MCUT0VGBlBHR9xtSI/4yfGaF7em4x0IcAVM/M4qPiRYotJrjSYmjeCV/ART16c4WdvfOza+PHmuZTd+yrmcmpiYmJiY6JlIPIV4db8IodRIjsYw0S/Txgigf5v/gZzqCGyouiiOP/utwDdUtA4f/rxeqjYghFhBtMA88MO59VR/tM4G3rG4EzR/8F/Q6dcRsKTqX+r6FIc/u5tQEUIavfG54zUN/XJ8o/I+h3Kq4/VHUKnkNVD967+gg5IjUoWcVsip/uNkbb9UY7C9Ihs3nKoJuKNwHcqphw4dOn78uEajmeEenU7397///dFHH3VTYGAWfCa9om30ldO3G/oJe2QsIUGBkoPgIFXgjxxaT3300UffeeedDz74YPXq1YsXL05LSwsNDWWxWFqtdmxsrKWlpaampqKiIjg4+Omnn/Z0xAB9v25hsVg+/LbrVN3An/YsCsB1Cz8Fi6kOgrlf/1KcG/NVTb98/IehKo9JfyDHuZ61BOBQTi0oKFi5cuX58+e/+uqrS5cuTb4hKSnp4MGDRUVFTCaUzHjc3XWL76dZZBr9c8drjj25NDsGqjn8QH2/YgHkVAeEsOhkEmlUrQ9jE/kAR8LIjuG9vTfnJ5/WyDUGhBCPSfvzozmZgfen7mjdL51O37Fjx44dO4aGhurr64eGhtRqNZvNjoyMXLBgQVRUlEejnAvi1f1Ot24BOdUvNIgVT68JuCaorsGGqqtTIKf6h9UpYT/dmPJ/33RtzRI+kBMTgAkVObuXBiEkFAr96zw1YuRRQBhQoOQ4bDsNrGv4kRGVYc+y+J+sT8E7ENwQfy8N8RTnxvDvrXAJzHULfwQFSk6Bbkp+52aXdFlSQPd3g5zqf7B1C8H3R2+SSCgw1y38ESymOgVyqt+51S0N8J6pcK61X1qdEnZs/1Js71fZnREY9/gLKPp1Cmyn8S+3uqVLEkJIJLzjwBXkVH+VHcPHipK4TFpJ41BGFBfviMDsoEDJKUFUchSP2T2mSQxl4R0LmN2tLunSwJ74RYEw91tuA+9YPGJLlvB84xDeUQCHQIGSs2D614/c7JYuC+yJXxQI41TC1/2mRnKMJnPXqCYpDD7L+zSxTMuCAiUnYdtpNgfkSZx+51aX7J1HcvGOAmcO5VSVSmU2m2f5RlQqiwXv6fjAhqqHCpLxDgTMBBZTXZAm5JypH8Q7CjC7pgFlYlgwi078cdrMHPr9n3jiCYlEMvM9cCY5jrZkCX91sglyqo+DnOqCNCHnd6WteEcBZge7aDAO5dSnnnpqfHx85nvCwmBfNm4WxvJHVPpBhTaKB70hfRcUKLkgOZzdM6aZMFuo5MAuJ/V5t7ql2xf4bkM9r3Eop27dutXTcYA52polLGkc2r8K3rJ9V0O/HPpHugArU8qMhsp2n1bZNfYf92fhHQX+XJn7NpvNzc3NAwMDMTExGRkZCCGTyUQmk0k+uS/p6NGjtg/37duHVyQetSVL+GZpC+RUnyWWadlBVH4wDe9A/A+2SxVyqi/rGtVwGbRQNtTfOZ9T79y589prr4nFYoTQQw89lJGRYTKZiouLH3744b1793ogwrkiahK1sywppG1YLRs3QFmpb4LFVJfBdhrfB4upVs7tT1UoFD/72c94PN4bb7xRUFCAXaRQKBs3brxy5Yr7owPOwKZ/8Y4CTA1yqsvgIFXfBznVyrmcevHiRTKZ/Lvf/W758uVsNtt6fd68eX19fe6ODTgHmj/4sgaxPDsWFlNdkSrktEJO9W3Q7cHKuZw6MDAgEokm70NlsVgqFfzR42xNavitLqnWaMI7EDAFGKe6TMhlaI0mhdaIdyBgakNKnXHCHBcSjHcgPsG5nMrlckdGRiZfb29vDw0NdVNIwHUwVPVNUKA0R7Ck6stg4teWczl1+fLlvb29p06dsr3Y0dHx5Zdfrlq1yq2BuQ3h+/3agpzqm2CQOkewpOrLIKfacq7uNy0trbi4+M033ywtLVUqlQwG4+WXX75+/XpISIjPltcSvt+vrc2ZwoMfV1ssyCe3NQWuerF8ASymzkG6kNs4oMA7CjC1W13Sx1Yk4B2Fr3D6XJoXXnjhxRdf1Gg0PT09zc3N3333XWFh4XvvvRcSAp9TfMKWTOH5Jhiq+hY4jmaOYO7XZym0xiGlLi2Sg3cgvsKVng/bt2/fvn270Wg0GAzBwcG+2eohYG3JijrfOLg1C87x8CEw9ztHkFN9Fkz82nFunCqRSBSKuzMwNBqNxWJBQvU1sKTqa6BAae7YQVQukzYg1+IdCLB3q1u6FHbR2HAup9bX1+/cufPf//3fr169ajLBng1fFEQlr0gOvdwyyzlCwGtgMdUtoEzJN8E41Y5zc785OTm7d+8uLS2tqKgQCASFhYXbtm2bN2+eh4JzC9ty3wCpV9qaFVXSOFiQFo53IAAhmPh1E2z6d316BN6BgB8YTeamAeWiOPjI+APncmpISMihQ4eeeeaZqqqqkpKSU6dOff7556mpqUVFRRs3buTxfPGNI0DyqK0tWcL/PHfntw8uwDsQgBBCjf2Kp9fA0bZzlS7kXmoexjsKcA8YpE7mdN0vQohMJi9btuzXv/71qVOnfv7znwcFBf3hD394+eWX3R4ccA2PScuI4t7oHMM7EIAQjFPdBMqUfBAspk7mSk61YjKZ0dHRUVFRNBrNYrG4KyYwd1Cp5CP6pOMcBg0KlOYuLZLTMgw51bdUdknzYJx6L1f20iCExGJxSUnJ+fPnR0ZGBALBAw88sH37dvdGBuZia5Zwx9vXXtmRiXcggQ4Gqe5CIiFRBKd1WJUKWyF9xq0u6VLIqfdyLqdqtdqysrJz5841NDRQqdQVK1a88MILK1asoFAoHooPuCaSy4jiMWr75FA+gC/IqW6ETf9CTvURNb3y7FgelQzbKe/hXE799ttvf/vb34pEoueff37Tpk2+WZRkJwDrfjHY9C/kVHxBgZIbYdtp7luIdxwAIYRQZddYXhIcnWLPuZyampr64YcfJif703tEQOVRW1uyhD8+cuulrel4BxLQ6sWKBbF+8NHTL6QJOSduwjnNvuJWt3TvMmjza8+5GqW4uLjk5GSz2Xz79u2LFy/euXMHu24ymaBGydckhrIYNDJsk8dRn3Scy6TxmFCg5B7pQm7zkBLvKMBdsJFmSk7X/d65c+eRRx555plnXn311a+//hohZDKZiouLP/30Uw+EB+YE6/2LdxSBCxZT3StWwJRpjBrDBN6BANQ8qIwRBHMYLla5EphzOVWhUPzsZz/j8XhvvPFGQUEBdpFCoWzcuPHKlSvujw7MDeyowRfkVLdLFbJbh9R4RwHQzW7ZskQB3lH4Iudy6sWLF8lk8u9+97vly5ez2Wzr9Xnz5vX14bDOYTKZxGJxe3v72Bj0N5hCupCjM5q7xzR4BxKgGsSKbFhMdSuY/vURMPE7HedG7gMDAyKRiMVi2V1nsVgqlbfX7SQSSUlJiUajoVAoJpMpKSmpsLBw8q6egK37xWBD1YNr/amsjDBgnOp20E3JR9zsGvvVffPxjsIXOZdTuVzuyMjI5Ovt7e2hoV4tqp6YmCgpKaHRaHv37uXxeG1tbWVlZZWVlStXrrS7MwDzqK0tWcJXTjdBTvU+KFDyhHQhB5YzcNczNs6kUyI4QXgH4oucm/tdvnx5b2/vqVOnbC92dHR8+eWXq1atcmtgs2hvb9doNKtWrcL2yIpEopSUlMbGRqPR6M0wfN+iOP6QQjek1OEdSMCBQaonwDjVF0Cb3xk4l1PT0tKKi4vffPPNf/qnf2psbGxoaHj55ZcPHDjAYrH27dvnoRCnJBaLqVRqbGys9UpCQoLJZBochDJXe1CphAtYTPUEQTCdRiGNqPR4BxLQYDF1Bk7vpXnhhRdefPFFjUbT09PT3Nz83XffFRYWvvfeeyEhXv0nlsvlHA6HTP4hfj6fjxBSKBTeDMMvQE7FBYxTPQSGqriDnDoDV3YXbd++ffv27Uaj0WAwBAcHk0g49Hs0GAwMBsP2Cp1ORwjp9fAB1t7yeaF3BqsVWiOs7XkT5FQPSRNyW4aU+aIwvAMJUBKVXmOYSAy1r1QFGNd37NJoNBrNh96jsUZOkxN8fn7+5JsDbTft1ixhSePQj5bG4R1IQKjrU3x0o8dkQb3ScUirbpcu5MDZwDi62S1dBoup03Mop6pUKrPZPMs3olIn77HxHAaDodPdU3eDjVCDguxL0QItfU5pS1bUh992QU71gorW4cOf10vVBoTQ40du/WnPotUpMKJypzQh56/fduMdReCCid+ZOZRTn3jiCYlEMvM92dnZ7777rjtCcohAIGhtbZ2YmKBS7/4KMpkMu+61GPxIQVr4Mx9V6SfMQdQ5nUIPZlbXpzj8Wb1UY8AeyjT6547XHHtyaXYMnA7kNtjpNHhHEbhudknh0/kMHMqpTz311Pj4+Mz3hIV59cN4fHx8c3Nzd3d3SkoKdqWzs5NOpwuFQm+G4UewSqX7F0XjHQiRnazttyZUjGzccKpmAHKqG9Eo5FgBs2tUkxQGS3reptFP9ErHM6K4eAfiuxzKqVu3bvV0HM5KSkoSCATXrl0LCgoSCAQtLS09PT15eXlwOvp0tmRFna7th5wKCAAr/YWc6n2VXdI8mPidkb/OBJLJ5KKiIhaLdebMmY8++qiqqmrBggU5OTl4x+W7sDIlvKMguOLcGH4w3fYKj0l/ICcGr3iICqZ/8XKrS7oUcuqM/PikHi6Xu2vXLrlcrtfreTye3dYaqwDv92trc6bwQtPQ5kyYHveU7Bje23tznjhy02S2IIR4TNqfH83JhNJfd0sTck/X9uMdRSC62S19uSgD7yh8mh/nVAzW6mEGAZ5HbWFLqpBTPSqYThFFsLFa3wdyYiChekK6kPPfME71OpPZUtsnX5wAdaAz8fucChwXww8+XTfID6YX58bAvkkP+aSy96n8eQ8ujp39VuCqpDCWWKY1msw0ir+uXvkjaPPrCPiLDBQVrcMHP6kymc1Hr3U9fuTW1fZRvCMiIP2E+UzdACRUL4AlVe+DnamOgJwaEO7um1Tfs2+yoV+Ob1TE80llzyN5CXhHERBShZxWyKneBTnVEf7aRwk4BfZNescnN3rfe3wx3lEEBBinet/NbumRxKV4R+Hr/LWPkuOg7hd4x80uaSibnhzOxjuQgECnkM82DE6YLVAc4B11YnmGkEuHRmyz8dc+So6DPIoQKs6N+aqmXz7+w1AV9k263cc3eh5dDhO/3lDROvw/Za1yjfHota6TtQPQVNkLYGeqg/y1jxJwCrZv8rlPa2QaA0KIQibBvkn30ugnyppH3toDXUc8DisOkGuM2ENoquwdlV3S3Uugze/sYCAfKFanhB3bv/TA6qQDq5PICC1JgI+c7vRxZe+jefF4RxEQpisOwCueAAEbaRzk9P5Us9l86dKl6upquVxuMpms15OSkg4dOuTW2ICbZcfwsc/y3WPjFW2SjRmReEdEHMcre47tz8M7CgA8om1EHc4O4gf70IHZPsu5nGo2m1966aXr169HRUUNDg7GxcVJpVKNRhMaGhoaGuqhEIHb5YvCrrSNQk51l6vto3GC4ITQYLwDCQhQHOB9N7vGliXBO7xDnJv7raysvH79+quvvvr5558jhF5//fWSkpJf/vKXExMTO3bs8EyEc1VuA+9YfMWa1PCK1lkKuYHjjlf27oWJX2/BigMErLtnFVgsCIoDPA12pjrOuXFqQ0NDcnLy+vXrrVdIJNKmTZu6u7vfeeedt99+293huQHU/U6WFMYymsximTZWwMQ7Fr8nGzdc7xh795FcvAMJIFhxALaGymfSPq8Sr0yGul8Putkle2lrOt5R+AfnxqkTExPWOV4ajaZS3d1zPX/+/Dt37rg5NOBJa0ThFW0wVHUDGKTiIjuG/4vt83+xff5PNogU48bylhG8IyIssUxLIaMoHnz+dohzOTUsLGx09G6f2NjY2Pr6euzr9vb26Y5aA74Jpn/d5ZPK3kcgp+LqT3tznjteg3cUhAUTv05xbu43JyfnnXfeGR4ejoyMLCws/OCDDwYGBhBC58+fLyws9EyEwCPyU8N+9nkd3lH4vcstktRIdjQfPsLjiR1E/bei9H//qvE3D2ThHQuh1PUpTtb2X2sf3ZQJ9YyOci6nikSi1157zWKxIIT27t0rl8tLS0sRQoWFhc8//7xHAgSewaJT04Sc73plufFwGqLroGm+j3gkL2H3/12HEZUbVbQOH/787sEbQ0r98nmh0KzKESQsQRJVfn7+a6+9Zn0I9Uq2/nCxFSHS4Y0ivAPxVxKVvuitK7f+fSPegQCEEBpU6IrfvXb93zbgHQgR1PUp9n1407a3hiCYDs2qHEH8PkrrbOAdi2+BJdU5gpVUnxLFY/x4VdL/OwfFkm4Azapc5mJO1el0AwMDYhuzHlwDfE1uvKBlSKUxTOAdiL+CiV9f88yaeVfaR28PKPEOBAQup3sTlpeXv/fee2Kx2O66z571BmaQnxp2pXV0S5YQ70D8z9e3hxfF8cM5QXgHAu7x1o9yDn5cffGna/EOxL9BsyqXOZdTW1paXnnlleTk5Oeeey4kJIREIlmf4vNhnt3/YNO/kFNd8Ellz49XJuEdBbCXEsEuyo56q6zt+Q1QKOA6rFnVs598p9QaEUI8Jg2aVTnIuZx648YNPp//MxJnogAAIABJREFU7rvvwm5UYlgjCn+3vB3vKPzPoELbMqQuSAvHOxAwhZ8Wpq59o/z+RTHQgXkuVqeEPbQ45manLG9eyAM5MZBQHeRcTtXr9bGxsf6VUI8ePWr7cN++fXhF4oNiBUwahdw1qkkKY+Ediz/5+Ebvo8uhOsl3vfWjnOdP1Jz6p1V4B+LfmofULxWlr4ItNM5wLqfm5eV99dVXGo2GxfKbt2BIojPDzqiBnOqU45W9l/4FVux818I4/uJ4wZFrXftXwfy8i4wm880u6ScH4ARD5zhX95udnf3AAw+89NJLjY2NGo3GYMNoNHooROBRsKPGWecaBlckhwqC6XgHAmbyq/vmv1PePqY2zH4rmEp588i69Ai8o/A/zo1Ty8vLP/roI4TQ5OPHoe7XT60RhT/7yXd4R+FPjlf2HixIxjsKMDtsBhhGWq651DyyHnKq85zLqcnJyQcOHJjyqchIaAjpl+hU8qI4PjR1c1DP2HifbByatPmFVSlhp2oHPq/q270kDu9Y/E95i+SFwlS8o/A/zuXUxMTExMREz0QCcLM2NfybVgnkVEccr+zZC30e/Md/71qQ/svzOxZGM2gUvGPxJ3cGlSEseiTXn8pRfYTT56eqp6LRaMxms4dCnKNyG3jH4qPyReFX4CxVx3xc2fso9CP0K2/9aNHzJ2rxjsLPwGKqy5wbp37zzTevvPLKlE+RyeTExMSdO3fu3LnTthcE7qDN76wWxPJ6xsYVWiOPScM7Fp92um5gQ3oEK8jp7mMAR5syhadqB842DG7LjsI7Fr9R3iL5+ZY0vKPwS869O6Smpm7evPnrr79esWKFSCSiUqm9vb2XL1/OysrKzMysra39/e9/L5VKn3zySQ+FCzwEq/69b2E03oH4tI9v9PzLJnij8T9/3JOT/ouSWH7wydp+hFBxbkw2dDCYnkY/cXtQuTQRFoNc4VxOpdPp169f//3vf7948WLrxX379h06dGjfvn1PP/30H/7wh08//fSxxx6j02GngT9ZIwqraBuFnDqDDol6TG2AVWd/RCWTnlyd+NB73xqMZoTQydqBP+1ZBIVm0ylvGVmXBhO/LnJuPfXixYvx8fG2CRUhFBsbW1BQcOrUKYTQww8/rNfre3t73Rkj8Lz81PArsEt1Rp/c6H0Eeif5p7o+xRfV/VhCRQjJNPrnjtc09MvxjcpnlTdL1qVD300XOZdTZTLZlGeYWywWmUyGEAoJCUEImUwmtwQHvEbIZXAY1LYRNd6B+C442c1/wWmgToGdqXPh9P7UL7744vr16ytWrLBe7O7uLisrKyoqQggNDg6i7zOrj7At94V6pRlgS6qiCDbegfiWuj7Fydr+9hH1alF4ENXF84YB8Bd1ffL40GBoE+Yy53JqYWHhyZMnX3zxxSVLllhrlK5evSoQCPbu3YsQKi8vFwqF4eE+NG8AedRBa1LDj1ztenI19Ef9QUXr8OHP66VqA0KIw6RfbR+FRTh/BKeBOg4WU+eINOVc7gx0Ot2xY8cuXLgwMjKCEOLxePn5+QcOHAgNDfVMhHOSn59/5coVvKPwD2aLJeXlks7/V4R3IL6irk+x78ObtnOGgmD6sSeXZsfAUcH+52r76HOf1sg0BnT3NNDclcnw8WgK97997bWdmQtj4Y/cRU7vtGMwGE8//fTTTz+t0+nMZnNwMJxQSBBkEmllcigMxaymW4SDnOqPVqeEHdu/9MTNvr9/13/8QB6cBjolqcbQJxuHhDoXrq8PMRgMSKgEA9W/gMCyY/i/eSA7iEaOEcAb19Rg4nfuHMqpKpVKoVAghIxGo2IaGo3Gw6ECj8N2qeIdha8ozo3h31upAYtwBCCK4LSNqPCOwkfBLpq5c2ju94knnhgbG/vmm28qKiqm603os2e9Qd2v4zKiuCMq3ZjaEMqGqj+UHcN7e2/O40dums0WdHcRLgfmDP2dKILdNqKGJkFTKm8Z+e2D2XhH4d8cyqlPPfWUTqdDCKWlpR0+fHjKe8LCfHQRDvKoU7AzaopzYTSGEEIa/URekiAziocQeiAnBhIqAaREstuHYR/2FG51S+dHcaGd9Rw59M+3detW7IvY2NjY2FhPxgNwli8Kr4Cc+r0Prnb9y6Y06EdIJKIITnnzCN5R+CJo9eAWrn8kGRkZOXPmzNDQUHR09I4dO3yqzwNw2RpR+Otnb+MdhU9o7FeMG0yQUAlGFMlug3HqVMpbJH/YvRDvKPyeQzlVKpU+/vjjTz311P33349d6ezsPHjwoFarxR5+9dVXf/nLXyIi4DOO3wtl0yO5jNsDyvnRXLxjwdmRa137V0EHDKIRchlq/YRaP8GGSU4bQ0qdXGNIjwr0/+vnzqG63++++06lUuXn51uvvPXWW3q9/sUXX/z73//+8ssvq1SqDz/80NmfbTAYBgYG2tvbBwcHjUbjlPcoFIqOjo6enp4pbzCZTGKxuL29fWxszNmfDqazRhReEfBHlMvGDeXNMAdOTDBUnQwOIXcXhz6p9fT0REVFWWd3lUplTU1NQUHB9u3bEUJbt26tr6+/deuWUz/4/PnzPT09ZvPdkyKYTOaKFSvS0u45nLKioqKpqYlMJpvN5qCgoI0bN8bH/3AwiEQiKSkp0Wg0FArFZDIlJSUVFhZSKBS7HwR1v87KF4W9e7nj4NpkvAPB05GrXfuhTSNBYdtpcuKhs8EPylsku+ATpDs4lFMVCoVt68H6+nqz2WzbRj8jI+PcuXNO/WC1Wr1ixYqEhITg4GCpVFpRUXHp0iUulxsVFYXd0NDQ0NTUlJeXt2jRIr1ef+HChdLS0j179rBYLITQxMRESUkJjUbbu3cvj8dra2srKyurrKxcuXKl3Q+CPOqsVSlhjx+5aTJbKGQS3rHg5oOrXVW/KMQ7CuARME6drLx55J29OXhHQQQOzf0KBAKJ5IfJwPr6eoRQRkaG9QqFQnH2EPIHH3xwwYIFPB6PRqNFRkauX78eIdTR0WG9oba2NiIiIjc3l0wmM5nMgoICo9HY1NSEPdve3q7RaFatWsXj8RBCIpEoJSWlsbFxujlk4JR8UdiVAG7+cOJW346F0cF0+zkPQAzQ9sHOtfbRZUkhNAocu+QGDv0jpqamDg4OfvPNNwghjUZz8eLFyMjIhIQfzpLs7e11tkCJRLpnDMRms5HNwatyuVytVicmJlpv4PP5fD5fLBZjD8ViMZVKtd3Yk5CQYDKZsMPmwBwF+JLqB1c6n8yfh3cUwFOwtg94R+FDylsk69KgfZJ7ODT3u3LlytTU1F/96lfz5s0bHR2Vy+V2nR+uXbuWlZU1lzja29sRQtYcibVC5PPvWfDg8XhDQ0PY13K5nMPhkMk/fCbAbsZeCOYoPzX82Y+r8Y4CH1faRoU8BpwjS2AxAqZUbdAaTUwaTEUghFB588h7jy/GOwqCcGicSiKR3njjjaKiIp1OFxUVdfjw4eLiYuuzt2/ftlgsa9eudTkIuVx+48aN6OjoefPuDg4MBgNCyG4+mU6nY9exGyY/ixDS6/UuhwGsRBFstX5iUKHDOxAcfHC188nVMEglOFhSteqVjhtN5uRw+BDpHo7u0AoJCXnxxRenfGr+/PmffPLJDK8dHx+3Dh9JJJJQKLR9VqPRnD17lsFgFBYW2k0IO3W2K3az3XdACNluAbKCQ1VnlS8Kv9Im2b0kDu9AvKprVNMzNl4A82BEhy2pLoiFZpOwi8bNvLHrubOz05rDKBTK008/bX1qfHz89OnTZrN5586dtifHBQUFoUmDTr1ez2AwsK8ZDAbWgtj2WesLbUH6dM2a1LDzjcOBllPfv9J1IB+20BAfdP21Km8Z+fFK+Jt3G2/k1PT0dOukru04UqvVnj592mg07ty5k8Ph2L5EIBAghGQyme1FmUyGXcduaG1tnZiYoFKp1metLwRzt0YU/vJXjXhH4VWGCfMX1X2tD2zFOxDgcaII9ombfXhH4RMut0g+3LcM7yiIwxvF01QqNfh7TCYTu6jVak+dOqXX63fs2MHl2jfE4nA4AoGgs7PTOv0rkUhUKpW150N8fLzZbO7u7ra+pLOzk06n200sA5dxmbSkUFadWI53IN7zwdWuJ6HPQ2CA7TQYOITc7XDbkHT69GmZTCYSiQYHB+98r6/vh0+OixcvlslkFRUVSqVyeHi4rKyMyWTOnz8fezYpKUkgEFy7dq2vr0+tVldXV/f09OTk5EzuowRclp8adqU1gHapQk4NHAmhwQNyndFkxjsQnMFiqtvh00XabDZLpVKEUF1dne31hISEuLi7C3gikUitVldVVd2+fRshxOPxtm3bZl0uJZPJRUVFpaWlZ86cwR4uWLAgJwf6gLjTGlH4m6UtP1mfgncg3nC6bmBlcmgY2349HhAVVvob4GdFlLdInoKt2G6FT04lk8mHDh2a9bacnJysrCyZTEalUiefJcflcnft2iWXy/V6PY/Hs5Yv2YF+vy5blhRS1yfXT5iDqMRvsPLB1a7XdmTiHQXwHqzzQyDn1A6Jmk4hx4UEz34rcJivn3ZEo9Fm7tBk1xdiMsijc7EmNbyiVVI4PxLvQDyrukdGJZMWxkFT9QACS6ow8esJxB9/gLnAdqniHYXHwSk0AQjaPlxqHlkPOdXdIKeCmaxJDasgepnSkFJX3SPblh2FdyDAqwJ8nGqYMFf1yFYmh85+K3AG5FQwE8X4xKjG8C9f1Df0E7aR8gdXup6EPg+BZ144q3t03OxMszYigV00HgI5FUyronV4319vqnXGL6v7Hj9y62o7MQesR6517V8FOTUQBfIBNbCY6iHEz6nlNvCOxZ/U9SkOf1YvVd89tECm0T93vKahn2gtID78tvux5QmBfPp6IAvkJVU4381DfL3ud+6g7tc1J2v7pRqD7RXZuOFUzUB2DKGKY49c7fr4QB7eUQB8pERw2kdUCAXcUvqdQWUIix7JnXr/IZgL4o9TAZjO17eH04SceNifF6gCdpwKE7+eAzkVTK04N4YffM8JtTwm/YGcGLzi8QRYSQ1wAbueChO/ngM5FUwtO4b39t4cAetuWiUh9F8PZmXGEOe8yTuDSvm4cQXsJQhggbmdRqOfuD2oXJpo35kOuAXx11OBy1anhB3bv/RUzQBCSKkzdkk0eEfkTtAxH5BIaF4Yu0OiTg5n4x2L90CrB48ifk6Ffr9zkR3Dx4qSesbGHz9S+ew6gvTTV2qNpbeH33xoId6BAJxhS6oBlVNhZ6pHET+nQh51i4TQ4Egu42aXdFkSEaaMYCUVYLAl1S14h+FN5c2SX26fj3cUhAXrqcBRDy+J+6yqb/b7/MH7V7oOQO8kgJAoktM2HEBLqnV98vjQYMG95YfAjYg/TgXu8uDi2H/9sv6NXQvIJH/tkFDXpzhZ2982rFqeHMoOgj9+gEQR7D9f7sA7Cm/A/vhremWZ0cSpNPRB8LYCnLB7SeznVeIfLY3DOxBXVLQOH/78bmcoLpN+tX10dUoY3kEBnAVI6a/tH3/H6HhRthD++D0E5n6BE3Yvjfv8ll9O/9q1WlRqDYRstQicRaWQYvnB3WOEqmm3Y/fHr4I/fk8i/jgV6n7dKDdeoNAa/XHvQYC0WgQuwEp//397dx7eRLk9DvzNnrRNkzRtmu4LDaV0gbYUZKkgFsUiXLYHbxUXRED9iSLqlbUsguIKivciKqIi/GSRTbiVpS0WsFBQuq+hpTSlS9ImaZs0W5PvH+ONsRtdJpl0ej5/NZOZyUk6T07mfc+cCRa6Eh2IvcDB70jkz6mQR/H1RELA4Rs165IjiA4EAHyEidykjW0zRnsTHQggAxj7Bf2zaFzAkSFY/Ts/zo/HIXmrRTAwpJ9SHQ59Rp0H5FTQP3wXRkKwx4XiBqID6Z9oPx6HSXXnMLCHPA5jz+JYMrVaBANG+k76WJ9ROu3Pb3s4+O2K/GO/AHfYqerQGit782jem4+Eh4vdsFaL82L94DsFYIZDJ30uix7i6TJV4oXg4LczyKmg32aM9v7XsXyl1jBUrhz/8UYNnUpZGO+PEIK6DNAJm0HzdGPKlO3+Ag7RsdjL7gzp2zNHJUUMpd/BQxT5c+r+/fttHy5ZsoSoSMgEu1B1xYOhRAdyf9LGtq8vV15cPZXoQIDzwqZUyZpTS+taZKp2SKiOQf6cCknUHhYlBCz//vchkVPn7/ntyr+g9hv0BptSJWtn+d0Z0pXTSXL3C+cHNUpgIEZ4ufFdGL9XK4kO5D6e//bGrifGWkuTAOgWiadUqxSa4rqWWdE+RAcyXEBOBQPk/BfV/CdTOsrHHW4VCe6LxJ30P0uvePVhCdFRDCOQU8EAOXlOzalqvlQu/9ej4UQHAoYAsp6n1irbc+40w6WojgQ5FQwQhYIWxPkf+11GdCDd6DBbUr66dmTFRKIDAUODK4vuzqbXqXVEB4Kz3RkVK6fDSapDkb9GCfr92s+icQEfnS/DrlFxKgv2/PbTS5OIjgIMJWEirrSx1YfHJjoQ3Cja9BdLGncsiCE6kOGF/DkV8qj9jA/xaGzR32nSOFX/8W1nSx6P8RkbANehgn7ASn8TJV5EB4IbKPclBIz9gkHBLlQlOoq//FJYL1NqX0gcAhf5AKdCsinVVp3p+B+yZycFEx3IsAM5FQzKEwmBh2/cJTqKPyna9BtOFn6xOJ7oQMDQQ7LSX5hJJQrkVDAoQjfmGH9+Rmkj0YEgBNOoYBDIdJ5qMJm//e3O8qHQkoV8IKeCwXKSi2reOJL36sOSIKEL0YGAIYnHYTDpVHmrnuhAcAAnqQQif40S1P3a28wo8VvH8lp1Ji6bsMPpUM5dFp26IM7pKpDBEIKdqnpxWUQHMli7M6R3dswiOophivw5FfKoA2CnqkunhDjyRfNq1CdzaxFC44IF3169c/71Bx356oB8sCnVSSOERAcyKFDuSyzy51TgAIsSAl49dMuROTWrvGHVkfzmNgNCaP9vd758GuqSwGBJRG6l9UO+TGl3RkXh5keJjmL4gvlUgINwby6bScurUTnm5fJq1KsO/5lQEULIYnn7WH5BrYNeHZAVCcqUvsyqfG5SMJMOX+yEgY8e4OOJcQGHHVWpdDK3tlljsF2i1BpO3brnmFcHZEWCy2mgOolwkFMBPpyk+heAAfNwZSKEOv1cG0K+++3O/Dh/AksFARoOOTXTBtGxkBmdRpkd43viVq0DXmt+nB/fhWm7hMdhws03wOCFidykQ3b4F6qTnAH5f9FA3a/DLBoX8FlGhQNyW7QfL1zsVljbotGbEEI8DmPP4thIP569XxeQnkTErWhsHR/iQXQg/fbjjZqkCJGn25C/EGioI39OBQ4zcYTwrWN5MmW7v4Bj1xc69rssQOCyYVYENoc6L9YPEirABdZJn+goBuKz9IpjL8LNDYkHORXgCZtVXT1jpP1eQtGm35FWenNDEkIo2g9uPgPwJBG5XShuIDqKfjv+R+0DoR6+fPv+lgV9Qf75VOBITyQEHL5h30qlZ7/J+e758XZ9CTBsDdHSXyj3dR5OkVP1er1KpWpr62bIRa1W3759u7q62mg0dn22o6NDJpNJpdKmpib7hwnuz9udHS7mZpXL7bT/D86VzYr2ifR1t9P+wTAn4rJ0JnNLezffNk7rbEHdaB/3EE8nuofxcEb82K/FYjl79mxDQ0NQUFBycrLtU1lZWUVFRVQq1Ww2s1ispKSkwMBA67NyuTwtLU2j0dBotI6OjpCQkBkzZtBotE77h36/DrZoXMCXWVWZZXKE0Pw4v2j8Zjpzqppv3mk+sgImjYAdjRS5lTe2jQsSEB1IX+3OkO5aNIboKMCfiM+p+fn5Wq2WTu8cSUFBQVFR0YQJE8aOHavX68+dO3f+/PmUlBRXV1eEkMlkSktLYzAYTz75JI/Hq6ioSE9Pv379+qRJnW/1BXnUwdzZ1Cu35VekcoTQydx7u1PGTgnzxGXPz+3PublhBi67AqAn2PDvUMmpF0sa/PmcUT4wcuMsCB77VavVOTk5Dz74IJXaOZLc3FyRSBQXF0elUjkczrRp04xGY1FREfasVCrVaDSTJ0/m8XgIIYlEEhYWVlhY2O0QMXAYrGsgsvz5UKnRrzx0C5eugS/98PvHi8a6MDuPQwCAryHRoTCvRr3l5+ItPxd/cK4Mrkl1KgTn1EuXLoWGhtqO6GKw6dXg4GDrEj6fz+fzZTIZ9lAmk9HpdH//v+7tFRQU1NHRUVdXZ/+oQY/s1DXw8I0adw7jsSjxIPcDwH05/+U0WeUNS77L2X+1av/Vqkq5tlVvIjoi8Bcic2phYWFzc/PkyZO7PqVWqxFCfP7frpTg8Xgq1Z9nPCqVisvl2p7dYitjGwIyaWjRfXKh/P0FMUQHAoaFMBFX2ui8pb+dbiBh6ujAaygI4IKwnNra2nrt2rUpU6aw2eyuzxoMBoQQk/m3/nNMJhNbjq3Q9VmEkF6vt1fEoA+6dg10YzEG2Vnp2f03vluSMLi4AOgrHx67RWfSOOvJH9xAwsk5okZJq9VaTx8pFIpYLEYIXbp0ycfHRyLp7Zoqi8XSy7PdrkyhUDotT0xM7Lry5cuX+75n0HfRfrzPn4xd+f9vKTUGhBCPw/DiMrOkigH3OdqRVjp3rC+UYABHwqZUxwZARxHQb47IqZWVldYcRqPRli9fXllZKZPJkpKSrNOfFotFr9fX1dW5u7u7urqyWCzU5aRTr9dbT2rZbLZOp+v0LEII29AWpE8HmxLm+f3zCbZdA99PK31uf863S/rdqOFaZVNujerH5Q/YIUwAeoSV/jpnTp0f53fiVq1K+9epKtxAwqk4IqeOGjUqNDQU+xs7j9RqtQihixcv2q5WX19/8uTJyZMnx8TECAQChJBSqbRdQalUYssRQgKBoLy83GQyWS/CwVa2rgAIFO3Ht+0a+PZjoy6VyUdt/OXwigfG+Pfje+rZb3LyNz9qhwAB6I0zl/5G+/GWJYbuvFhu6jAjuIGE83FETqXT6Z0uPx05cmRAQIDtkqNHj4pEoqlTp3I4HIQQl8sVCASVlZUJCQlYGpbL5a2trZGRkdj6gYGBpaWld+7cCQv7s468srKSyWRiA8vA2UwL98pNnfHE3muzYnyWPxjal02WH/h9d0osi+4Urb7AsCLxdsu+7aSt2Uxmy84LZSf+3yS4gYRzIqbnA5PJ7FRhRKFQ6HQ6drEpJj4+/uLFi1lZWbGxse3t7ZmZmRwOZ/To0dizISEhAoHg6tWrLBZLIBCUlZVVV1dPmDChax8l4CTYDNqpVya/+9+Spd/d2PfsfWqODuXc9XRlPhIJv5AAAbA7vhEdRfcWf339hxcmdBoKAs6D+D5KPZFIJG1tbTdv3iwuLkYI8Xi8WbNmWadLqVRqcnLy+fPnz5w5gz2MiYmJjY0lMmLQB+uSI9JLGiM3nTuyYmJPbXvr1O2706XZa6c7ODYAMP4CjqLNoDN2sBnO9Rv935nS+CDBA6FCogMBPaL0q7bW8YxGo1KppNPpHh7d3yVYpVLp9Xoej9ftNTmJiYlbt261PoQ+hU5Cozct2ps9P85/6ZSQrs8+sjPr8ydjR3pzHR8YAJjZu6+8Oz8ax27Vg5cnU6WeLDr1SjcX9APn4ew5dZASExOh7tdpvXOm+G6z9qtnxiGE8mrUJ3NrEUIqrWG0r/uyxD7NuQJgJ6uP5E4J85of50T1tNGbz/225mEu23kHFwFy5rFfQHobHx99obghZsv5tx+VfHxRirWGodNoC+L977stAHblbFOqLx/84/0FMZBQnR8UVQIizRjt/cVT8amnS6DXGnAqYSI3qdNcTnMo5y6fw0iO9iE6EHB/kFMBwS6UNHSY/zYBAb3WAOGcp5O+TNn+n0zpu/OjiQ4E9AnkVAAA6CxY6CpTaU0dxJebYBfPEB0F6Cvyj85nZmZa/4a6XycEvdaAc8KmVCMI7TW94WThC4khwUJXAmMA/UL+nAp51Ml1bbsPvdaAM8A6FBKYU88V1ctb9dvmRhEVABgA8udU4Py6tt0nOiIA/uykT9Srawym1YfzirZCv+shBnIqcArQaw04G4nIDbtmmhAwjTpEQY0SAAB0g8DS308ulD8ULooNhF+ZQw/kVAAA6MYIL7dKRZvjG83lVDVfq2x69WGJo18Y4IH8Y79Q9wsAGBis9NfBracX77teCLcNHrLIn1MhjwIABgYr/bV3TrU2u54f5/fpxYr/PBXHhNsGD1nkz6kAADAwf06p2rOFUVZ5w6oj+Vhvzh9v1CRKhEkR3nZ8PWBn8GsIAAC6FybiSu3ZST+vRr3qcL612XW7wXSjSgnNroc0yKkAANA9swVdkTZt+bm4oFZtj/2fzK1t1hhsl0Cz66EOcioAAHQjq7xh88+FKq1h/9WqZ765cUWqIDoiMASQfz4V6n4BAP3156js/04ilRr9ykO3vl+agFdnkgvFDf8tqPtvYT2dRjV1mK3Lodn1UEf+nAp5FADQXz2Nyt43p9oW8Ub/vctmh9mSVlj/S2FdWmH99FGi5Gif9+ZH36xWQrNrMiF/TgUAAFwcuFZdVNcySswNF7tHiLnhYi6bQbNdwbaI92Tuvd0pY6eEeeqMHf8tqE8rrMsobXwsSjwzyufTf8bSqBRsE2h2TTIUi+PbhDhQYmLi5cuXiY4CADDEFNSqn96X0+kWhF8sjkWIUlrfWlbfUlLfWlbf6u3OGiV2HyXmjvJxRxa0/mSB7dmtC5Me4eNWdK81OVr8WJTPjNFwkQz5wXkqAAB01u0tCCeO8EQITRwhtK5W3aQtrW8prW89nVt79XZTS7vRdidag8nTjV36zmQHBw8IBDkVAAC60ZdR2SChS5DQ5dFIMUJoy8/F+69WdVohQMBxQKjAeZA/p+7fv9/24ZIlS4iKBAAwtPTrFoTz4/xO3KrtNFwMRbzDDcynAgAAPq5IFX8fLo6bNMKT6KCAQ5H/PBUAABwDingB5FSKDEAKAAAUNElEQVQAAMBNv4aLAflAb0IAAAAAH5BTAQAAAHyQf+wX+v0CAABwDPLnVMijAAAAHAPGfgEAAAB8QE4FAAAA8AE5FQAAAMAH5NQ+SUxMJDqE4QU+cMeDz9zB4AN3PAd85uSvUYK6XwAAAI5B/vPUh2wQHQtCXXr6E74fp90VXpzw3TlhSDhyznfnnLvCixO+OycMyTHIn1Pvy/ZE1hn245y7csKQcNyVE4aE466cMCQcd+WEITnnrpwwJBx35TwhQU4FAAAA8AE5FQAAAMAH+e+fSnQIAAAASKWX23KTPKcCAAAADgNjvwAAAAA+IKcCAAAA+ICcCgAAAOCD/H2UBqmjo6Ourk6n0wkEAqFQSHQ4pKJWqxUKBZ1O9/X1ZTAYva/ZaeKfzWaz2Ww7B0hCWq3WYDC4uLgwmcz7rqzT6erq6iwWi0gkcnNzc0B45GMwGLRaLZPJdHFx6X1NOMgHz2AwKBQKrVbr6urq6enZ+7cKBveDHHJqb+RyeVpamkajodFoHR0dISEhM2bMoNFoRMdFBllZWUVFRVQq1Ww2s1ispKSkwMDAnlY+fvy4TqezXRIfHz9+/Hj7h0kS7e3tmZmZcrlcq9UihKZNmxYREdH7JqWlpVlZWWazmUKhWCyWhISE+Ph4hwRLEllZWTKZTK1WI4QkEklSUlLv68NBPki//PJLdXW12WzGHnI4nIkTJ4aHh/eyiT0OcsipPTKZTGlpaQwG48knn+TxeBUVFenp6devX580aRLRoQ15BQUFRUVFEyZMGDt2rF6vP3fu3Pnz51NSUlxdXXvaJCwsLCYmxvqwlzVBVyaTSavVBgcHMxiMvLy8+64vl8svXboUHBw8ffp0Go2WnZ2dk5MjFAqDg4PtHyxJqFQqkUgUGRmZnZ3dx03gIB+Mtra2iRMnBgUFubi4NDc3Z2VlZWRkuLu7+/j4dLu+nQ5ymE/tkVQq1Wg0kydP5vF4CCGJRBIWFlZYWGg0GokObcjLzc0ViURxcXFUKpXD4UybNs1oNBYVFfWyiYuLi7cNGIrsFy6Xu3DhwqlTp4aEhPRl/fz8fCqV+tBDDzGZTBqNNnnyZDc3t9zcXHvHSSZz5sxJSkoaM2ZM3zeBg3wwFixYEBMTw+PxGAyGt7f39OnTEUK3b9/uaX07HeSQU3skk8nodLq/v791SVBQEDa9SmBUJKBSqdra2mx/DPL5fD6fL5PJet/QYrHA5dSOIZPJfHx8WCwW9pBCoQQGBtbX18MPSnuDg3zAKBSK7UPsF0lHR0dP69vpIIex3x6pVCoul0ul/vWzg8/nI4SwCRIwYNgHiH2YVjwer76+vpetysrKCgsLzWazQCCIioqKioqyb5TDmNFo1Gq1nc5o+Xy+xWJpaWmBSj37gYMcR1KpFCFke1Jky34HOeTUHhkMhk5Fd1ippF6vJygikjAYDOh/H6YVk8nElnfL09NTLBZzuVydTldWVnb58mW1Wj158mS7xzos9fQPQnDw2xMc5DhSqVTXrl3z9fUNDQ3tdgX7HeSQU/sBG5PpNMIABqZfA1yzZ8+2/h0TE3P69OmCgoLo6Gh3d3c7hAa6AQe/vcFBjheNRnP27Fk2mz1jxox+HbG4HOQwn9ojNpvdqbQd+/1iHX8HA4N9gJ1+DOr1+j5eikelUqOioiwWS0NDg13iG/Z6+gchhOBySceAg3zAtFrt6dOnzWbznDlzerkm2H4HOeTUHgkEgtbWVpPJZF2iVCqx5cQFRQbYB4h9mFZKpbLvHyx2ibD1QjSALzqdzuVyu/6DqFQqnDM5DBzkA9De3n769Gmj0fiPf/yDy+X2sqb9DnLIqT0KDAw0m8137tyxLqmsrGQymWKxmLigyIDL5QoEgsrKSuvwr1wub21ttfZ8sFgser2+l4I9rD4eimVwZDQabX+zBwYGNjQ0tLW1YQ9NJtPdu3f9/f2h4Qle4CDHXXt7+6lTp/R6/Zw5c7rNiwaDwbam104HOW3z5s2D2Z7E+Hx+ZWVlVVWVUCik0WgFBQXFxcXjxo3z8/MjOrQhj8ViFRcXa7VaDw8PlUqVkZFBoVCmT59Op9MRQk1NTQcPHkQIYR91aWlpWVmZxWIxmUzNzc05OTkVFRWBgYFjx44l+G0MKeXl5Y2NjQ0NDfX19SwWS6fTKRQKDw8PrLL9woULmZmZ8fHx2GQSn88vLi6ur68XiUQGg+Hy5csKheKhhx7q/bc/sCWTyWpraxUKRXV1NXZgKxQKNpuNjTrCQY6748ePK5XK0aNHm0wmxf/odDqswQBC6Ntvv62pqbF2ELPTQQ41Sj2iUqnJycnnz58/c+YM9jAmJiY2NpbouMhAIpG0tbXdvHmzuLgYIcTj8WbNmtXTRDWdTi8rK8vPz8ceUqnUiIgIqIfsr6tXr1rrA8rKysrKyhBCISEh3f4q5/F4M2fOzMjIOHLkCEKIyWROnz69p340oFtFRUWVlZXY3w0NDdjM6COPPNLtVzYc5INkNpubm5sRQp3ahAUFBQUEBHS7iZ0Ocrgn+f2pVCq9Xs/j8aBAA19Go1GpVNLpdA8Pj97XtFgsra2t7e3tVCqVz+f3pTU2GDzse8pisXh4eMCor73BQU4I3A9yyKkAAAAAPqBGCQAAAMAH5FQAAAAAH5BTAQAAAHxATgUAAADwATkVAAAAwAfkVAAAAAAf0EcJkITZbL57965arVar1W1tbUwmE2teM6xotdp79+6x2exO710ulyuVyj42Mj127FhGRsb48eO7fVYul3/44YcikcjLy2vwAdfX1zc1Nal7QKFQCgsLv/zyy4SEhE635bIfnU73wQcf+Pn59d6A2mg0fvTRR0KhEJfPAZDGsPvSAWSlUqkWL15suyQoKOjFF1+cMmUKUSH1XV1d3c6dO59++uno6OjB7Cc7O3vz5s3vv//+pEmTbJfv2LGjrKwM6wh2X4WFhRUVFa+88kq3z7a2tqanp0+bNm306NGDCRWzadMmrJdWt5YsWeLh4ZGenv7qq6+6uroO/uX64uDBg8XFxcHBwb2vxmAwWCzWzp079+7dC7fAA1aQUwGpzJw5c9GiRRaLpaam5uuvv163bt2uXbvi4uKIjus+2trasrOzk5OTiQ7E0dasWaPVarG/z507d+LEiQ0bNvj7+2NLRCIRnU6XSCQOux9OS0vLjz/++Prrr2NtkHv31FNPLVy48MqVK4mJiQ6IDQwJkFMBqfD5fIlEghAaOXKkn5/fsmXL0tLSsJza3NxcXV3d2trq7e0tkUhsvzTVarXZbBYIBI2NjRUVFd7e3mFhYX3cpL6+XiqVCoVCa2/umpqa6urqgICAoKCgTuEZDIaSkhK1Wi0WiyUSCXZ+g/VoRAi1tLTI5XKEEJfLtTbCbGlpKSkpMRqNI0aMsG1GqtVqNRqNp6enVqstKiqiUCgJCQl9/6AsFotUKq2rq+PxeKNHj+69E15bW1tBQQGNRouJiel2hQEHGRISYv371q1bCKHQ0FDsP4jR6XQikcj6ycvlchcXF1dX14qKioaGhpCQEKwHvcViKS0tValUEonE09Ozj+F1lZaWZrFYpk2bZrtQrVbfvn1bo9HweLywsDDrXTm9vLxiY2NPnDgBORVYQU4FpDVixAiEUFNTE0Jo48aNv/76K4VCodPpBoMhNDR0x44d1q/XrVu3qtXqCRMmHDhwwGKxPPbYY+vWrevLJhMnTvzuu+8oFIrZbJ4yZcrWrVs/+eSTM2fOUKlUs9m8YMGCVatWWeO5dOnSRx99pFarmUymwWCIjIzcvn27UCj8448/3nzzTYTQhx9+iK35xhtvzJ0712Kx7Nu379ChQyaTiU6nm0ym5OTkN998E5srPX78+N69e1NTUz/88MP29naxWHz06NE+fjL19fXr168vLy9nMBhGo1EoFKampvZ0Np+VlbV9+3atVstisdhs9gsvvGD7rP2CxPzyyy8ff/zxqVOnsKbQTzzxxOzZs2Uy2Y0bNxBCFAplxYoVycnJb7/9dmlpqdlsZjAY69atS0pK6kt4XV28eHHMmDG297L+6aef9uzZYzKZOBxOW1sbjUY7ePCg9eZUkyZN+vzzz1UqFZ/P79f7AmQFORWQFnbrFeysJS4ubsmSJUFBQVQqtaioKDU1dfv27Z9//rl15aqqKgqFsm/fvsDAwJaWlj5u4ubmduTIEU9Pz8OHD3/xxRerVq3y8vI6deoUl8vds2fP0aNHH3nkEWzeMT8/f9OmTUlJSa+88opAICgpKdm4cePmzZt3796dkJCwZ8+el156aePGjdgZD1aP88MPP3z//fcvv/zyvHnzGAxGZmbmtm3bRCLR888/b41h7969mzdvjo2NxWLGNDQ0WO+Igmlvb7f+bTab16xZI5fLd+7cGRcXV1tbu3HjxrVr1x44cEAkEnX6DO/du7dly5aIiIgtW7YIBILLly+/9957tisMOMgBO3PmzPz587du3UqhULZt2/bll19mZWVNmzbt008/1ev12Gj/lClTsBP9voRnpdVqy8vLn3nmGeuS5ubmzz77bOHChStWrGAymTqd7vr167Yzu5GRkRaLJTc3t9OpLRi24FoaQCpyuTw/Pz8vL+/MmTNbtmyhUCjYJOW8efNCQ0NpNBqFQomKinr22Wfz8vJUKpV1Q5PJtGnTJolEwmKxsErO+25iNptTU1PFYjGdTk9JSXFzc6uurl6zZo2HhweDwVi6dClC6Pfff8dW/vbbb319fdeuXYtVk0ZERLz44ou5ubmVlZVUKhW7zx2TyeRwOBwOh0ajGQyGgwcPzpw585///CeLxaJSqQ8//HBycvLx48dt73uxZMmSSZMmcTgcb29v68JPPvnk2b8rKCiwPnvz5s3bt28vXbp03LhxVCo1ICBg/fr1Wq325MmTXT/P06dPm0ymDRs2CIVCKpU6depU20nfwQQ5YAEBAS+//LKrq6uLi8tzzz3X0dHB5XJTUlLYbDaPx0tJSVGr1VKptO/hWclkMrPZLBaLrUvq6urMZvMDDzyA/cphs9lTp061PSXFxi2qq6sH/74AOcB5KiCV9PT09PR0hBCVSg0NDV29ejV2V2etVnv69OnCwkKVSmU2m1tbWxFCjY2N1u9HLy8va2kM5r6b+Pr6Wu9SR6VSvby8PDw8rPOgrq6urq6uCoUCIWSxWPLy8kaNGnXhwgXr/rGnqqqqQkNDu76R8vJyjUZDo9HS0tKsCw0Gg1qtViqV1tftdsB25cqVnSY+P/3005qaGuxvrM7WtjAYm4Pstv62pKQkICDANs2MHz/eOn47mCAHLCoqylpniyXpqKgo67PYEuyz7WN4Vmq1GiFke3/T0NBQDw+Pbdu2zZo1Kz4+PiYmptPEM1Y8hW0IAIKcCkhm9uzZzzzzDJVK9fDwsM6Z6XS65cuXq1SqGTNmjBkzhsFgVFVV3blzx2g0WjfsNB/Wl004HI7tJjQardMSOp3e0dGBENLr9QaDQSaT/fTTT7YrhIeH93QndiyF5+bmVlRUdNoE22e3YWP8/f1HjRplu8R2glCj0XTdkM/nY8s7wQpzbJfYXrU5mCAHzPZDxm542XUJ9up9DM8K+190+hf/+9///uabb06cOHHgwAEXF5e5c+euWLHCWjOl1+utGwKAIKcCknF1dbU9qcJcvny5urp6z5491hOa+16pOYBNesFisZhMZlxc3KZNm/q4CXYClJKSMmfOnAG/bi97bmpqshbaYA9tq21tV66rq7Nd0tzc7IAgcdHf8IRCIULIdngfIeTv75+ammqxWMrLy0+cOHHo0CEfH5+5c+diz2JnqF1PecGwBfOpgPyw0pjAwEDrkqysLNw36QWFQomPj8/Jyen0fW2FTdfpdDrrkpEjR7q7u58/f77bmb/BwIaFbd9OXl6eUqns9jqZ6Ojo2tpa2/lC2w3tFyQu+huer68vn8+/fft216coFEp4ePiaNWvYbHZ5ebl1OTZxGxkZiVfMYKiDnArIDxsI/eKLL5qamu7du7d79+78/HzcN+ndsmXLdDrd6tWrc3Jympub7927d/Xq1Q0bNmAjjb6+vhwO58yZM9nZ2bdu3VIoFAwGY9myZXl5eZs2bSotLVWr1Xfu3Dl79uyuXbsGEwZCaMyYMdHR0d98801aWppCobh58+a2bdt4PF63J3Nz5sxxcXFJTU0tKSlpbm4+evTopUuXrM/aL0hc9Dc87PLZwsJC65IbN27s3r27qKhIpVI1NzcfPnxYp9OFh4dbV8jPz3d3d7ddAoY5GPsF5BcZGfncc899//33P//8M0IoKipq5cqVO3bswHeT3kkkkl27dn388cdvvPEGtoTBYGCVt9jfa9as2bdv39q1azs6OrDrU+fOnUun07/66qvMzExsE3d393nz5g04Bqt3331327Zt7777LvYwODh4+/bt3ba3FQqF77333pYtW5YvX44QEovFr7/++jvvvGNdwX5B4qK/4T3++OOvvfZaZWUlVjjG4XB+/fXXI0eOYM+y2ezFixfPnj0be2g2mzMyMh577DFsEhcAhBDFOQdtAMCdWq2ura3l8Xi284i4b3Jf9fX1CoWCy+WKxeK+1LaYzebq6mqNRuPh4eHt7Y3j17dcLm9oaHB3d7cd4u6WyWSSSqV0Oj00NLTbpn32CxIX/Qrv+eefHzNmzGuvvWZd0tjYqFAo2Gy2r6+vta4bIZSdnb1+/fqDBw/23psJDCuQUwEA4C9//PHHW2+99eOPP973hjPLly+PiYnp6WYDYHiCnAoAAH8jlUq9vLw6XUTUCXbuHhwcbHvmCgDkVAAAAAAfUPcLAAAA4ANyKgAAAIAPyKkAAAAAPiCnAgAAAPiAnAoAAADgA3IqAAAAgA/IqQAAAAA+IKcCAAAA+ICcCgAAAOADcioAAACAD8ipAAAAAD7+DwShf9tz5btVAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"plotmon.main_QtPlot"
]
},
{
"cell_type": "markdown",
"id": "b2e180c6",
"metadata": {},
"source": [
"## Manual analysis steps\n",
"\n",
"### Loading the data\n",
"\n",
"The {class}`~xarray.Dataset` contains all the information required to perform a basic analysis of the experiment.\n",
"We can alternatively load the dataset from disk based on its {class}`~quantify_core.data.types.TUID`, a timestamp-based unique identifier. If you do not know the tuid of the experiment you can find the latest tuid containing a certain string in the experiment name using {meth}`~quantify_core.data.handling.get_latest_tuid`.\n",
"See the {ref}`data-storage` documentation for more details on the folder structure and files contained in the data directory."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "6210845e",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
],
"text/plain": [
" Size: 480B\n",
"Dimensions: (dim_0: 30)\n",
"Coordinates:\n",
" x0 (dim_0) float64 240B 0.0 0.06897 0.1379 0.2069 ... 1.862 1.931 2.0\n",
"Dimensions without coordinates: dim_0\n",
"Data variables:\n",
" y0 (dim_0) float64 240B 0.4667 0.5139 0.3329 ... 0.331 0.4592 0.4563\n",
"Attributes:\n",
" tuid: 20250818-113135-911-b75356\n",
" name: Cosine experiment\n",
" grid_2d: False\n",
" grid_2d_uniformly_spaced: False\n",
" 1d_2_settables_uniformly_spaced: False"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tuid = get_latest_tuid(contains=\"Cosine experiment\")\n",
"dataset = load_dataset(tuid)\n",
"dataset"
]
},
{
"cell_type": "markdown",
"id": "868ba095",
"metadata": {},
"source": [
"### Performing a fit\n",
"\n",
"We have a sinusoidal signal in the experiment dataset, the goal is to find the underlying parameters.\n",
"We extract these parameters by performing a fit to a model, a cosine function in this case.\n",
"For fitting we recommend using the lmfit library. See [the lmfit documentation](https://lmfit.github.io/lmfit-py/model.html) on how to fit data to a custom model."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e8f19380",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyA0lEQVR4nOzdd3ib5fXw8e8jyfLe245jZzrD2QkZZJKEBAh7Q5kp/RVKC4RSVgsU2gJlQ2l52dBCCyUQUkbIJpMMJ85ydmIn8d57yNLz/iFLseNty3ok63yuyxdEfmQdO7F0dN/nPkdRVVVFCCGEEMID6bQOQAghhBBCK5IICSGEEMJjSSIkhBBCCI8liZAQQgghPJYkQkIIIYTwWJIICSGEEMJjSSIkhBBCCI8liZAQQgghPJYkQkIIIYTwWJIICSGcSlEUnnrqqS7fLyMjA0VR+PDDD1t87p577mH+/Pk9D66XvfDCCwwcOBC9Xs/YsWM1jWXKlCn87ne/0zQGIVyBJEJCeKgPP/wQRVFQFIVNmza1+LyqqiQkJKAoCosWLdIgws45efIk7777Lo899pjWobRr5cqV/O53v+P888/ngw8+4C9/+Yum8Tz88MO8+eab5ObmahqHEFqTREgID+fj48Onn37a4vYff/yRM2fO4O3trUFUnffaa68xYMAA5syZo3Uo7Vq7di06nY733nuPW2+9lYsvvljTeC6//HKCgoL4+9//rmkcQmhNEiEhPNzFF1/Mf//7XxoaGprd/umnnzJhwgRiYmI0iqxjJpOJTz75hOuuu07rUDqUn5+Pr68vRqNR61AA0Ol0XHPNNXz88cfI7G3hySQREsLD3XjjjRQVFbFq1Sr7bfX19XzxxRfcdNNNLa6vqqriwQcfJCEhAW9vb5KTk3nxxRdbvJjW1dXxwAMPEBkZSWBgIJdddhlnzpxpNYasrCzuvPNOoqOj8fb2ZuTIkbz//vsdxr5p0yYKCwuZN29ei8/V1tby1FNPMXToUHx8fIiNjeWqq67i+PHjXf5eVq1axfTp0wkJCSEgIIDk5OQubcUpisIHH3xAVVWVfTvyww8/bLfu6dxaqqeeegpFUTh27Bi33347ISEhBAcHc8cdd1BdXd3i/v/6178477zz8PPzIzQ0lJkzZ7Jy5cpm18yfP5/MzEzS0tI6/b0I0dcYtA5ACKGtpKQkpk6dyr///W8uuugiAL7//nvKysq44YYbeP311+3XqqrKZZddxrp161i8eDFjx47lhx9+4KGHHiIrK4tXXnnFfu3Pf/5z/vWvf3HTTTcxbdo01q5dyyWXXNLi8fPy8pgyZQqKonDvvfcSGRnJ999/z+LFiykvL+f+++9vM/YtW7agKArjxo1rdrvZbGbRokWsWbOGG264gfvuu4+KigpWrVrF/v37GTRoUKe/lwMHDrBo0SJGjx7N008/jbe3N8eOHWPz5s2d/hn/85//5O2332b79u28++67AEybNq3T92/quuuuY8CAATz77LPs2rWLd999l6ioKJ5//nn7NX/84x956qmnmDZtGk8//TRGo5Ft27axdu1aLrzwQvt1EyZMAGDz5s0tfoZCeAxVCOGRPvjgAxVQd+zYof7tb39TAwMD1erqalVVVfXaa69V58yZo6qqqiYmJqqXXHKJqqqqumzZMhVQ//SnPzX7Wtdcc42qKIp67NgxVVVVNS0tTQXUe+65p9l1N910kwqoTz75pP22xYsXq7GxsWphYWGza2+44QY1ODjYHtPJkydVQP3ggw/s1/zsZz9Tw8PDW3xv77//vgqoL7/8covPWSyWLn0vr7zyigqoBQUFrfwUO++2225T/f39m93W2vdkc+7P6cknn1QB9c4772x23ZVXXtnsZ3D06FFVp9OpV155pWo2m5tda/vemzIajerdd9/dje9IiL5BtsaEEFx33XXU1NTwzTffUFFRwTfffNPqtth3332HXq/nN7/5TbPbH3zwQVRV5fvvv7dfB7S47tzVHVVVWbp0KZdeeimqqlJYWGj/WLBgAWVlZezatavNuIuKiggNDW1x+9KlS4mIiODXv/51i88pitKl7yUkJASAr7/+GovF0mYszvLLX/6y2Z9nzJhBUVER5eXlACxbtgyLxcITTzyBTtf8Kd72vTcVGhpKYWFh7wUshIuTREgIQWRkJPPmzePTTz/lyy+/xGw2c80117S4LjMzk7i4OAIDA5vdPnz4cPvnbf/V6XQMGjSo2XXJycnN/lxQUEBpaSlvv/02kZGRzT7uuOMOwFpk3B61lULf48ePk5ycjMHQ9u5/Z7+X66+/nvPPP5+f//znREdHc8MNN/D5559rlhT179+/2Z9tiWBJSQlg/d51Oh0jRozo1NdTVbXVBEkITyE1QkIIAG666SbuuusucnNzueiii+wrIb3Jlkz87Gc/47bbbmv1mtGjR7d5//DwcHsC0Ft8fX3ZsGED69at49tvv2XFihV89tlnXHDBBaxcuRK9Xt/tr91WAmI2m9u8T1uP11pC2BmlpaVERER0675C9AWyIiSEAODKK69Ep9Px008/tbotBpCYmEh2djYVFRXNbj906JD987b/WiyWZie0AA4fPtzsz7YTZWazmXnz5rX6ERUV1WbMw4YNo6SkhLKysma3Dxo0iMOHD2Mymdq8b2e/F7AeNZ87dy4vv/wy6enp/PnPf2bt2rWsW7euza/fGbbVnNLS0ma321ajumPQoEFYLBbS09M7vDYrK4v6+nr7KpgQnkgSISEEAAEBAfzjH//gqaee4tJLL231mosvvhiz2czf/va3Zre/8sorKIpiP3Vm+2/TE2cAr776arM/6/V6rr76apYuXcr+/ftbPF5BQUG7MU+dOhVVVUlNTW12+9VXX01hYWGLOOHsyklnv5fi4uIWX8M2HqOurq7d+DoSFBREREQEGzZsaHZ7T5ocXnHFFeh0Op5++ukW23fnrhrZfm7dPcEmRF8gW2NCCLu2tqdsLr30UubMmcPjjz9ORkYGY8aMYeXKlXz99dfcf//99pqgsWPHcuONN/L3v/+dsrIypk2bxpo1azh27FiLr/ncc8+xbt06Jk+ezF133cWIESMoLi5m165drF69utVExGb69OmEh4ezevVqLrjgAvvtt956Kx9//DFLlixh+/btzJgxg6qqKlavXs0999zD5Zdf3unv5emnn2bDhg1ccsklJCYmkp+fz9///nf69evH9OnTu/NjbubnP/85zz33HD//+c+ZOHEiGzZs4MiRI93+eoMHD+bxxx/nmWeeYcaMGVx11VV4e3uzY8cO4uLiePbZZ+3Xrlq1iv79+8vReeHZtDquJoTQVtPj8+1penxeVVW1oqJCfeCBB9S4uDjVy8tLHTJkiPrCCy+0OJpdU1Oj/uY3v1HDw8NVf39/9dJLL1VPnz7d4li4qqpqXl6e+qtf/UpNSEhQvby81JiYGHXu3Lnq22+/bb+mraPmv/nNb9TBgwe3iLu6ulp9/PHH1QEDBti/5jXXXKMeP368S9/LmjVr1Msvv1yNi4tTjUajGhcXp954443qkSNH2v25nau14/O2OBcvXqwGBwergYGB6nXXXafm5+e3eXz+3GP8tr/HkydPNrv9/fffV8eNG6d6e3uroaGh6qxZs9RVq1bZP282m9XY2Fj197//fZe+DyH6GkVVpbe6EMJ9nThxgmHDhvH9998zd+5crcNxG8uWLeOmm27i+PHjxMbGah2OEJqRREgI4fbuvvtujh071mxMiGjf1KlTmTFjBn/961+1DkUITUkiJIQQPVBQUNDucXej0UhYWJgTIxJCdIUkQkII0QNJSUntHnefNWsW69evd15AQogukVNjQgjRA5988gk1NTVtfr61ESBCCNchK0JCCCGE8FjSUFEIIYQQHku2xjpgsVjIzs4mMDBQBhMKIYQQbkJVVSoqKoiLi0Ona3vdRxKhDmRnZ5OQkKB1GEIIIYTohtOnT9OvX782P+92idCbb77JCy+8QG5uLmPGjOGNN97gvPPOa/P60tJSHn/8cb788kuKi4tJTEzk1Vdf5eKLL+7U4wUGBgLWH2RQUJBDvgchhBBC9K7y8nISEhLsr+NtcatE6LPPPmPJkiW89dZbTJ48mVdffZUFCxZw+PDhVidU19fXM3/+fKKiovjiiy+Ij48nMzOTkJCQTj+mbTssKChIEiEhhBDCzXRU1uJWp8YmT57MpEmT7NOiLRYLCQkJ/PrXv+aRRx5pcf1bb73FCy+8wKFDh/Dy8urWY5aXlxMcHExZWZkkQkIIIYSb6Ozrt9ucGquvryc1NZV58+bZb9PpdMybN4+tW7e2ep/ly5czdepUfvWrXxEdHU1KSgp/+ctf2u0CW1dXR3l5ebMPIYQQQvRNbpMIFRYWYjabiY6ObnZ7dHQ0ubm5rd7nxIkTfPHFF5jNZr777jv+8Ic/8NJLL/GnP/2pzcd59tlnCQ4Otn9IobQQQgjRd7lNItQdFouFqKgo3n77bSZMmMD111/P448/zltvvdXmfR599FHKysrsH6dPn3ZixEIIIYRwJrcplo6IiECv15OXl9fs9ry8PGJiYlq9T2xsLF5eXuj1evttw4cPJzc3l/r6eoxGY4v7eHt74+3t7djghRBCCOGS3GZFyGg0MmHCBNasWWO/zWKxsGbNGqZOndrqfc4//3yOHTuGxWKx33bkyBFiY2NbTYKEEEII4VncJhECWLJkCe+88w4fffQRBw8e5O6776aqqoo77rgDgFtvvZVHH33Ufv3dd99NcXEx9913H0eOHOHbb7/lL3/5C7/61a+0+haEEEII4ULcZmsM4Prrr6egoIAnnniC3Nxcxo4dy4oVK+wF1KdOnWrWRjshIYEffviBBx54gNGjRxMfH899993Hww8/rNW3IIQQQggX4lZ9hLQgfYSEEEII99PZ12+3WhESQohOs5ghcwtU5kFANCROA52+4/sJITyKJEJCiL4nfTmseBjKs8/eFhQHC5+HEZdpF5cQwuW4VbG0EEJ0KH05fH5r8yQIoDzHenv6cm3iEkK4JEmEhBB9h8VsXQmitdLHxttWPGK9TgghkERICNGXZG5puRLUjArlWdbrhBACSYSEEH1JZV7H13TlOiFEnyeJkBCi7wiI7viarlwnhOjzJBESQvQdidOsp8NQ2rhAgaB463VCCIEkQkKIvkSntx6RB1omQ41/Xvic9BMSQthJIiSE6FtGXAbXfQxBsc1vD4qz3i59hIQQTUhDRSFE3zPiMhh2iXSWFkJ0SBIhIUTfpNPDgBlaRyGEcHGyNSaEEEIIjyWJkBBCCCE8liRCQgghhPBYUiPkjixmKQIVQgghHEASIXeTvtw6VLLpPKWgOGvvFDkWLIQQQnSJbI25k/Tl8PmtLYdKludYb09frk1cQgghhJuSRMhdWMzWlSDUVj7ZeNuKR6zXCSGEEKJTJBFyF5lbWq4ENaNCeZb1OiGEEEJ0iiRC7qIyz7HXCSGEEEISIbcREO3Y64QQQgghiZDbSJxmPR3WYqK2jQJB8dbrhBBCCNEpkghpSFVbK3xug05vPSIPtEyGGv+88DnpJySEALr4/CKEB5NESEPvbTrJg5/vobCyrnN3GHEZXPcxBMU2vz0oznq79BESQgB/XXGICX9azV9XHCK/vFbrcIRwaYoqbxvaVV5eTnBwMGVlZQQFBTns6248vY17lr9ORdZVBBkDeGhBMjdNTkSva2vrqwnpLC2EaEdWaQ0z/7oOs0XFqNdxxbg47poxkCHRgVqHJkQzB4sOsvToUh6b/Bg6xbFrM519/ZZEqAO9kQiZzCYu+eoScqpyMJijKMu8CUtdDCnxQTxzeQrj+oc65HGEEJ7BbFHZcryQGUMi7X/+fn8OH2zOIDWzxH7dBcOiuGvGQKYMDENROvGmS4heYlEt/DP9n7y661UaLA08Nvkxbhx2o0MfQxIhB+mtFaG9BXtZsn4JedV5eCnemPKuoaJoFIoCN0xK4HcLhhHqb3TY4wkh+qbCyjoe+CyNjUcL+X+3TGDByJhmn0/NLOadDSf5IT0XVQUfLx0/PTqXED95fhHaKKwp5PFNj7Ml29r37oKEC/jjtD8S4hPi0Mfp7Ou3zBrTyOjI0Xx+6ef8bsPv2JazDaI+YWTsAg7sn8l/d57hzvMHSCIkRA8V1hSSVZmFt94bo95o/a/OePb/9ca2l+PdYAv6pxNF/Obfu8mvqMPHS0etqWVn+QmJYUy4JYyThVW8t+kEvl76ZknQ8j3ZzB0Whb+3vByI3rfhzAb+sPkPFNcW46P34Xfn/Y5rhlyj6QqlrAh1oLdWhGzMFjN/S/sb7+57F4DBQaOYF/5bfjVzvP2a/PJaooJ8HP7YQvRlxbXFXLHsCkrqStq9zkvnZU+K7AmSqRbvilz8TXXcW1LK2Lp6lxpubLGo/OPH47y08jAWFQZHBfD3m8cztIs1QLtPlXDl37cQ5GPgZ1MSuX1akjzXiF5RZ67j5Z0v8+mhTwEYGjqUv878K4NCBvXaY8qKkCtr8k5THxDNfWPvZVTEKB7f9DjHyvdRUr+EybkvMjFmIgeyy7jizc3ceF5/HrwwmWBfL62jF8It/CPtH5TUleBn8MPfy586cx0mi4nahlrUJjP7TBYTJosJTOd8AYMCBh/y9eF8mZWDwTbcWOMTmsVV9TzwWRo/HikA4Krx8fzpihT8jF1/Oq+obSAp3I+Momr+vv447248yeVj4/jFTCmsFo5zrOQYv9v4O46WHAXgZ8N/xv0T7sdb761xZFayItQBh68IpS+3Dk9tOjes8Z1mZr8x3L/ufo6VHkOv6FkyYQlluVN4aZX1H09EgJFHLxrOVePjpdBRiHacKD3BVcuvwqyaeX/B+0yKmWT/nKqqNKgN1JvrqTPX2f9bZ66j3lRD/X9uoK66iFqdjiciwijV63misIhrK6qwNi6Ng/v3abZNtmJ/Lr/8VyreBh3PXJ7CtRP79ej5wGxRWX0wj7c3nGhWWP2rOYN4aMEwR4QsPJSqqnx++HNe2PkCdeY6wnzC+NP5f2JGvxlOeXwplnYQhyZC6cut7yhbTJBvfBK77mOqh8zjj1v/yHcnvwNgQdICLo65jz9/c5zjBVUAnJcUxtNXjGRYjOO36oToC+5ZfQ8bszZyQcIFvHbBa52/48mN8NEi+x//FRTI8+GhRDSY+fZMNn62p8vbvoEBznkyb83f1x/jgmFRDn8OsBVWrziQS6C3gfUPzSY8wDXetQv3UlJbwhNbnmD96fUAnB93Pn+a/icifCOcFoMkQg7isETIYoZXU9qZIH/2naaq6Pj3oX/zwo4XaFAbGBg8kL/OeJm1++D1NUepMZnR6xQevHAo98we3P2YhOiDtmRt4f9W/x8GxcCyK5aRGJTY+Tvv+wKWLrb/0QRc1i+WM15e/KqklF+Wlls/cfV7MOoaxwbehpKqev707UEeXpjstPqdT7ZlcsGwKGKDfZ3yeMKNtXKoYFveTh7b+Bj5Nfl46bx4YMID3Dz8Zof3CeqI1Ai5mswt7SRBACqUZ0HmFpQBM7hp+E2MCB/Bg+sf5ETZCW5dcRN/mv4nVj84i2f+l86KA7lkl9ZgsajoOtOEUQgPYLaYeWHnCwDcMOyGriVB0GJosRdwX0kZD0VF8EFwENeUVxJhsThtuPGuUyXc+8kusstqKaqq48M7znPK4948uYs/N+GZzin1MAF/i+nHB756VFSSgpL468y/Mjx8eOv3d5GTmZIIOUtlXpevGxs1ls8u/YyHfnyInXk7WbJ+CXeMvIO/3fwbcsuG0y/Ur5eCFcI9fXXsK46VHiPIGMQvx/yy61/ANty4PAfbFvaFVdV8VFfHfm9v3goN5vcmv14fbqyqKu9tOslz3x+iwaKSFO7HQwuSe/Ux27LxaAFJ4f4khMnzjWjinFKPTIOBh6PCOeCtA1SuiZzEQ/P/hp9XG/9u2qmXdfZhBJk15iydfQd5znURvhG8c+E73D7ydgA+OPABv1j1C3x8qh0coBDurcpUxRu73wDgnrH3EOwd3PUv0spwYx2wpLgUgKWBAWTM/m2vv2v9bMdp/vTtQRosKpeMjuV/v57OyLhufD899NaPx7nlve384ev9MsRVnGUxW5OYxiTo6wB/ro2P4YC3N0FmMy/nFfLkoZ/wa+tUmC2JOneXxHYyM31578Z/DkmEnMX2TrPF5HgbBYLiW32nadAZeHDig7w06yX8DH7syN3B9f+7nr0FezmWX8GDn++hpr5lIzUhPMl7+96juLaYpKAkrku+rvtfqJXhxpNq65hZr9KgKLxevt8B0batpt7My6uOAPDrCwbztxvHEeijTduM+SOiMep1rD9cwHf7cjWJQbigJqUe6/x8+X1kODU6HRNralmalcv86mp7qUcL5yRRzTXetuIR63VOIomQs7TyTvOsxj8vfK7dd5oXJl3Ivxf9m4HBA8mvyefXa3/NnR9tZemuM7y94USvhC2EO8iuzOajAx8BsGTCErx0PUwcRlwG9++3ng67+j247Rvuv2opOkXHqsxVpOWn9TzoNnyw5ST5FXX0C/Xl3gsGa9oqY1BkAL+cbW1498f/HaC89txmS8IjNSnh+FeQtd/UVRWVvJubT4zZ3Op1dl2ol3UWSYScqZV3moB1paiTTdoGBg/k00s+JcoviuLaYi6cZG2q9taPx8kpq+mNqIVwea/teo16Sz3nxZzH7ITZjvmiOr31iPyoa2DADIaEJ3PF4CsAeDn15fa3iixm61H8fV9Y/9uFd7eXj43nmgn9+O2FyXgbtB/pcc/sQQyI8Ce/oo6XfjisdTjCFTSWcJzwMrDd1wedqvLLkjJa/GttrSSkG/WyvU0SIWdr5Z0m9+/rUnGYv5c/Vw+5GoDjtauZlBRKjcnM898f6q2ohXBZewv28t3J71BQ+O3E3/bqCso9Y+7BR+/D7vzdrDu9rvWL0pdbW2V8tMh6FP+jRdY/d7LuIT7ElxevHcMV4+IdGHn3+XjpeebyFAA+/imTtNOl2gYktNdY6vF5oHU1aGZ1DbFNV4LaKfXobr1sb5JESAvnvNPsTuHlVUOuQqfo2Jm3k8VzAlAUWJaWza5T7c9VEqIvUVWVF3ZYj8tfPvjyto/pOki0fzS3jLgFgFdSX6HB0tD8gh4UgZotrluMPH1IBFeOi0dV4bEv97l0rMIJdHqq5z/D8gB/AK6vqGzyyQ5KPXpQL9tbJBFyUzH+McyMnwnA3vIVXDO+HwB//F86FnmSEh7ih8wfSCtIw9fgy6/H/dopj3lHyh2EeoeSUZ7Bl0e/PPuJHhaBPv7VPu7+VyoZhVUOj9kRHr9kOMnRgfz6gsFI6zKxwkdHhV5HP7PKtJras5/oqNTDAfWyjiaJkBu7NvlaAJYfX85985PwN+rZc7qU7/bnaByZEL2vzlzHq6mvAtbkJMovyimPG2gM5P/G/B8Af0/7O9WmxlYWPSgCPZZfyec7T/P9/lyKqup6IeqeiwjwZsX9M7hoVKzMOvRwqqryn0P/AeDaSfej62qphwPqZR1JGiq6sfPjzifWP5acqhx2F23goQUp1JstzB/hvL1VIbTyycFPyKrMIsovittG3ObUx75u6HV8cvATTlec5qP0j7h7zN09KgJ98YfDWFSYNzyaCYlhDo7WcZomQBW1Js2O9Qtt7S/cz8Hig3jpvLhiyFXg041/syMug2GXuERnaVkRcmN6nd5eNP3fI//l9vMH8IuZg1zipIkQvamopoh39r4DwH3j72u7e20v8dJ78ZvxvwHgg/0fUFhT2O0i0N2nSlhxIBedAr9bqE336K76avcZZv51HavSnXeyR7iOzw5/BliHgod1JwmycUC9rCNIIuTmrhxyJXpFz+783RwrOWa/3WS2UFYtPT9E3/SPPf+g0lTJ8LDhLBq4qOM79IIFiQtICU+hpqGGt/a81a0iUFVVeX6F9bTnVeP7MTQ6sPcDd4DDuZWUVJt48uv9VNU1dHwH0WeU1ZWxImMFANcnX69xNI4hiZCbi/KLsvdN+e+R/wLWQY0XvbaRx5bt0zAyIXrHsZJj9n/rv5v0O6dPtLZRFIUlE5cA8MWRLzhZcarLRaAbjhby04lijHod988b0vtBO8h9c4fQL9SX7LJaXl19ROtwhBMtO7aMOnMdQ0OHMiZyjNbhOIQkQn3AtUOtRdP/O/4/ahpq8DHoOVFQybd7c9h+sljj6IRwrJdSX8KiWpjXfx4TYyZqGsukmEnM6jcLs2rm9V2vd7kI9IPNJwG4ZWqiWw1R9jWe7S30/uYM0rPLNY5IOINFtdjfhFyffH2fKZqXRKgPmBo3lfiAeCpMFfyQ8QMj4oK4flJ/AJ7+5oAcpxd9xuaszWzK2oRBZ+CBCQ9oHQ4A94+/H52iY/Wp1dbRG11omvqPmyfwyEXD+NWcwc4PvIfmDIviklGxmC0qj30lvYU8wbacbWSWZ+Lv5a/ZlnRvkESoD9ApOq4Zeg1wdnvswQuHEuhtYH9WOV+kntEyPCEcosHSwIs7XwTgpmE30T+ov8YRWQ0OHcyVg68E4KWdL1lHb3SyCNTXqOeXswYR5m90ZsgO88SlIwj0NpB2upRPt5/SOhzRy2xF0osGLnL6AYXeJIlQH3HF4CswKAb2FuzlcPFhIgK8+c1ca83BX384TIUMSxRu7sujX3Ks9BjB3sH8YvQvtA6nmXvGWkdvpBWksfbU2g6vP1lY1SdWaqODfPjtAutJt9PF1RpHI3pTXlUe60+vB/pOkbSN2yVCb775JklJSfj4+DB58mS2b9/eqfv95z//QVEUrrjiit4NUCMRvhFc0P8C4Oyq0G3TkkgK96Owso431x3XMjwheqSyvpI3094E4O4xdxPsHaxxRM1F+UXZR2+8uutVTJa233hU1TVw7Vtbufj1jX0iefjZlET+d+90Hru4d8ebCG0tPboUs2pmfNR4hoS6T2F/Z7hVIvTZZ5+xZMkSnnzySXbt2sWYMWNYsGAB+fn57d4vIyOD3/72t8yYMcNJkWrD1mn6mxPfUG2qxmjQ8fglIwA4lFveJ96BCs/07r53Ka4tJikoieuSr9M6nFbdmXKnffTGV0e/avO69zedpLCyjup6M9FBPk6MsHfodQqj+rlWYiocy2QxsfTIUqDvrQaBmyVCL7/8MnfddRd33HEHI0aM4K233sLPz4/333+/zfuYzWZuvvlm/vjHPzJw4EAnRut858WcR//A/lSZqvj+5PcAzBsexWe/mMIHt09CJwOChBvKqszin+n/BODBiQ/ipXPNbsYBxgB+OeaXALyZ9iZVppYzw4qr6nl7wwnAWsdnNLjVU3CHMouq+N0Xe6ipb32emnBP60+vJ78mnzCfMOYlztM6HIdzm9/C+vp6UlNTmTfv7F+CTqdj3rx5bN26tc37Pf3000RFRbF48eJOPU5dXR3l5eXNPtxFa0XTiqIweWB4nznmKDzPa6mvUW+pZ3LMZGb1m6V1OO26dui19A/sT3FtMR8d+KjF5/++7hgVdQ2MiA3i0tFxGkTYeywWlTs+2MHnO8/wxtqjWocjHMhWJH3VkKsw6t2zsL89bpMIFRYWYjabiY5u3p4+Ojqa3NzcVu+zadMm3nvvPd55551OP86zzz5LcHCw/SMhIaFHcTvb5YMvx0vnxYGiA6QXpTf7XGl1PW+uOybHXIXb2FOwh+8zvkdB4beTfuvyCX3T0RsfHvjQOnqjUVZpDR9vzQSsozT62gqtTqfw8EXDAHh7wwmOF1RqHJFwhJNlJ9mWsw0Fxf5Gu69xm0SoqyoqKrjlllt45513iIiI6PT9Hn30UcrKyuwfp0+f7sUoHS/MJ4x5/a2rZrZVIQCzReWKNzfzwg+H+WyHe31PwnP9K/1fgDXBHxY2TONoOufCxAsZFTGKmoYa/pH2D/vtr646Qr3ZwpSBYcwaGqlhhL1nwcgYZidH0mBR+ddPmVqHIxzg88OfAzCj3wziA+I1jqZ3uE0iFBERgV6vJy+v+ZC/vLw8YmJiWlx//PhxMjIyuPTSSzEYDBgMBj7++GOWL1+OwWDg+PHWT1F5e3sTFBTU7MPd2Iqmvz3xLZX11ndlep3CrVOTAHhp5WHK5Ti9cHEms4lNWZsA3OqdqKIoLJlgHb2x9OhS8qryMJktnCy01gw9vHCYy69s9cRt05IA+Gp3FnUNUivkzmoaavj6+NdA3yyStnGbRMhoNDJhwgTWrFljv81isbBmzRqmTp3a4vphw4axb98+0tLS7B+XXXYZc+bMIS0tze22vLpiYvREBgQPoKahhu9Ofme//ZapiQyK9Keoqp431sgevnBtO3J3UGmqJMI3glERo7QOp0smxkxkTOQYzKqZH8/8iJdex39/OZWld09jXP9QrcPrVTOHRBIb7ENptYmVB2Q6vTtbcXIFFfUVxAfEc37c+VqH02vcJhECWLJkCe+88w4fffQRBw8e5O6776aqqoo77rgDgFtvvZVHH30UAB8fH1JSUpp9hISEEBgYSEpKCkZj3yv4slEUhWuGnC2aVlVrTZCXXsfvF1mP03+4JcP+DlUIV7Tu9DoAZvWbpdlg1Z6YkzAHOPt9KIrChMS+nQSBdfX52gn9AGQb3s3ZtsWuGXoN+ja6o/cFbvXscv311/Piiy/yxBNPMHbsWNLS0lixYoW9gPrUqVPk5ORoHKVruHzw5Rh1Rg4VH2J/4X777XOSo5idHInJrPL+ppMaRihE21RVZf2Z9QD2RqHuxpYIbc3+ibyKMo2jca5rJyaQEObL5AFh9jdiwr0cKDzA/qL9eOm87CNk+iq3SoQA7r33XjIzM6mrq2Pbtm1MnjzZ/rn169fz4YcftnnfDz/8kGXLlvV+kC4g2DuYC5MuBJoXTQMsnj4AgOV7smUPX7ikg8UHya3Kxdfgy3kx52kdTrcMCB5AhHccZrWBRe++51G/awlhfmx4aA6/njukT9dD9WW2I/PzE+cT7huucTS9y+0SIdF51w61Fk2vyFhBef3ZfkjTBkUwJCqAi1JiqKrznCdn4T5s20nT4qbhY3DP7suqCjVl1pNusbEn8Tb03a2F1kgC5L7K6srsTXn7cpG0jSRCfdi4qHEMDhlMTUMN3xz/xn67Xqew8oGZPHf1aLedei36NttwR9v2kjtaviebgrxBABSraZgtnvemo77Bwor9OaSdLtU6FNEFy48vp9Zcy+CQwYyLGqd1OL1OEqE+TFGUZp2mm+7Vy7s14aqyK7M5VHwInaJjZr+ZWofTLRaLyiurj2CuTsJbF0BZfSl7C/dqHZbTvbzqCL/81y7eWi9Dn92Fqqr2Iukbkm/wiNcKSYT6uEsHXYqP3odjpcfYU7Cn2edUVWXP6VI2HS1s495COJ9tW2xs5FhCfdzzlNWOjGIyi6oJ9PZmToI1mbN9X57kinHWMSKrD+ZRUFGncTSiM7bnbiejPAM/gx+LBi3SOhynkESojwsyBrEgaQHQsmh6+Z5sLn9zM09/c0BOdgiXYUsY3PW0GMCytCwALhoVw9xE6/aebbvPkwyLCWJMQggNFpWvdp/ROhzRCbYi6UUDF+Hv5a9xNM4hiZAHsHWa/iHjB8rqzh7jnZ0chdGg40heJfuz3Ge4rOi7yuvLSc1NBdy7PqjBrOKlV7hiXDznx5+PQTFwsuwkmeWeN3bihknW5rX/2XFa3nC5uPzqfNaeWgvAdcnXaRyN80gi5AFGR4xmaOhQ6sx1/O/4/+y3B/t6sWCkdTzJF6nS+Exob9OZTTSoDQwKHkT/oP5ah9NtL1w7hh2Pz2PKgHACjYFMjJkIeOaq0KLRsfh66TlRUEVqZonW4Yh2LD26FLNqZlzUOJLDkrUOx2kkEfIAiqJw3VBrdv/5kc+bvSu7prED7NfSU0i4ANu22OyE2doG4gAhfkb7hHnb9+OJiVCgjxeLRscC1lUh4ZoaLA18ceQLwLNWg0ASIY9xycBL8DX4crLsJKl5qfbbpw+OIDrIm9JqE+sO5WsYofB0TYeszunvntti5bUmMloZXWNLhHbn76a0ttS5QbmA6xu3x7JLa2R7zEX9ePpH8qvzCfUO5cLEC7UOx6kkEfIQAcYALh5wMdC8aFqvU7hqvHVV6ItUKWYU2tmR575DVm2+Tstm9ovr+d0XzU9oxgfEMyR0CGbVzMasjRpFp50JiaGsemAmn941xSOOY7sjW5H0lUOuxKj3rP5ykgh5EFun6VUZKynZ/TGc3AgWM1c3JkIHcypke0xoZt0p9x6yCrBst/W02NDowBafm91vNgA/nvnRmSG5BEVRGNLKz0S4AIuZzPSlbM3ZioLCtYOv1joip3PPZxvRLSPzjzO8QcWkNrB83WPw0SJ4NYXBhWtZevdUNvxujseNARCuoemQVXc9LZZZZC0G1ilw2Zi4Fp+3fV+bsjZhMpucHZ7LKKs2UVgpPYVcQvpyeDWF/65eAsD51dX0e2+B9XYPIomQp0hfDp/fyrWlxQB8ERiAClCeA5/fyoSqTeh1smQttHGo+JB9yOrk2Mkd38EFLdudDcD5gyOICmo5H21kxEgifCOoMlWxI2+Hs8NzCR9uPsl5f1nNm+uOaR2KaHxNsJRn878Aa7+g68sr7a8JnpQMSSLkCSxmWPEwoHJxZTV+FgsZRi92+HgDjYWLKx4Bi5kGs4XyWs99tyq04e5DVlX1bMPAK8fFt3qNTtExq98swDNPjwEkRvhT12Dhq91Zsg2vpSavCYeMXhTr9fhZLJxfU8O5rwmeQBIhT5C5Bcqt71b9VZWLqqoBWO3n13iBCuVZbFqznKnPreXllUc0ClR4Klsi5K7bYmmnS8koqsbXS2/vzdWapsfoPfH01MwhkcQG+1BabWLlgTytw/FcTV4Ttvj6AnBeTS1e9gusrwlkbtEkPGeTRMgTVDZ/wplRXQPAVt/m77zDLMUUVNTxdVoW9Q0Wp4UnPFubQ1YtZmtB/74v7IX9rmr5HuuLyoKR0fh7G9q8bnLsZHz0PuRU5XCkxPPecOh1CtdOtB6l/0x6CmmnyWvCT42vA1Nqa9u9ri+TRMgTBEQ3++Ok2lp0qkqG0Ytc/dni6OQhQ4gK9Kak2sRa6SkknMS2TdRsyGpjEScfLYKli+2F/a5at/DwwmH87aZx3Dl9QLvX+Rp8mRI3BfDc7bFrJ/RDUWDTsUJOF1drHY5nanxNqFEUdvl4AzCtppVE6JzXjr5KEiFPkDgNguIAazF0kEUlpa4esK0KKRAUjz7pfK4cb61vkJ5CwllaDFltLOK0Ld3buXARp4+XnkWj4xjdL6TDa23bf56aCCWE+TF9cAQA/90pq0KaaHxNSPXxwaQoxDQ0kGRqaHKB9TWBxGmahehMkgh5Ap0eFj7f+AdrMjS1Mfu3b48tfA50eq5p7Cm0/nC+HHEVva68vpyduTuBxvqZJkWcLfWNIk7b9t/+ov3kV3vmyqut0/SXu7M8slZKc42vCbbn/2k1tZw9M9z4f42vCZ5AEiFPMeIyuO5jCLLO/LHtB//k54fl2g+tnweGRAcypl8wDRaVr9Oy2/pqQjiEbcjqwOCBJAYlNivibJ1rFXGW15q46LWNvLHmKCZz5+rqInwjGB0xGvDM5ooA80dE89jFw/jy7mnSaVorIy5jS8xg4OwbY8C6e3Ddx/bXBE8giZAnGXEZ3L8fbvuGMRe9ga/OmxKdwuGY5lOGbYNYZXtM9Dbb9pD9tFhnizNdpIhzxb5cDuaUs3xPNoYu9OGynR778bRnJkLeBj2/mDmo1X5LwjkKqgs4VpOHgsLky9+Hq9+D276B+/d5VBIE0PbxBtE36fQwYAZewKTCDWw4s4Gfcn5iePhw+yWXjonjRGEVV4/vh6qq8o5N9AqT2WSfu2UfstrZ4kwXKeL8srF30BXj4rv0ezI7YTav736dn3J+otpUjZ+XX8d36sPkecb5tuZsBWB4+HBCh16kcTTakhUhDzY1dioAW7O3Nrs9xM/Ik5eOJCU+WJ6cRK+xDVkN9wk/O2T1nML+llyniDOrtIafTlg7tV/RRhPFtgwOGUx8QDx15jp+yvmpN8JzCxuPFnDTOz/x7saTWoficWzP+7bXAU8miZAHmxpn/QXYlb+LOrMURgvnsg1ZnZ0w++yQ1VYK+89yrSLOr9OsA1YnDwgjPsS3S/dVFKVZc0VPdaakhi3Hi/j3jlNSNO1EqqraE6Fpcdq/qdCaJEIebGDwQKJ8o6gz17Erb1eLz6dmlvDg53tYJz2FhIO1O2T1nMJ+Oxcq4lRVla92WROhq8Z3bTXIxl4ndOZHLKpnNjBdNDoWXy89JwqsA2uFcxwpOUJRbRG+Bl/GRo3VOhzNSSLkwRRFsTd3s+0XN7XyQC5Ld53h39tPOTs00cd1OGS1SWG/KxZxHsgu52h+JUaDjoUpsR3foRUToicQ6BVIcW0x+wr3OThC9xDo48Wi0daf33+k07TT2LZjJ0RPwKg3ahyN9iQR8nBTYq2J0E/ZLesUrm48Pbb2UD5F0lNIOJCtieLU2KltD1ltLOxn1DXW/7rAdpiNj5eOq8bHc/mYOIJ9vTq+Qyu8dF5Mj58OePb2mK2n0Ld7c6iQgc9OsSXb2n5C6oOsJBHycLY6oYPFBymuLW72uaHSU0j0EvuQ1f7uOWR1cFQgL183lheuHdOjrzMrwbOn0QNMSAxlUKQ/NSYz/9uTo3U4fV6duY7UvFTg7PO/p5NEyMNF+EYwJHQIANtztrf4/NXSU0g4WE5ljn3I6qx+s7QOR1PT46ejV/QcKz3G6fImW0NuNHC2pxRF4YZJ/QH4TEZu9LpdedbDMZG+kQwOGax1OC5BEiFx9hh9K3VCl46Ow6jXkZ5TTnp2ubNDE+6ulRd022pQsyGrbuTrtCwOZJc55JRTsHcwE6InANiLx91t4KwjXDk+nikDw7h1SqKcHutltuf5qXFTpT1KI2moKJgaN5WP0z9ma/bWFo3NQv2NzBsRxXf7rIXTI+JGaBipcCvpy61zw5qOzAiKY90AayfzFqfF3EB1fQOPfrmP6noz/7t3OqP6Bff4a85OmM323O38ePpHbiHYOlj23FlrtoGzLnJqztEiArz5zy9km8YZbPWgsi12lqwICcZHjcdL50VOVQ6Z5ZktPn/1+H4khvuRENq1XinCg7UxQb68MpedZccA96wPWnkgj+p6M4nhfqTEBznka87uNxuAnXk7Kfuhbw+cFdoqqiniYPFB4OxBGSGJkAD8vPzsvSRa2x6bkxzF+t/O5vbzBzg5MuGW2pkgv9nXhwZFYWCDSmJAP+fH1kNf7rb2DrpibNdGarQnISiBQcGDMKtmNjeUtnOlaw2c7Q1FlXW8u/EE6w9L77LesC1nGwDJoclE+EZoHI3rkERIAG2P2wDQ6RTZSxad184E+XV+1lXFOZXlbveCnl9ey6ajBQBc2cWRGh2xd5n268Sqq4sMnO0NH23N5E/fHuSdjSe0DqVPsh+bl22xZiQREsDZX4wduTtosDS0ek2tycy3e3Morqp3ZmjC3bTxQm0CNja+0M+urnG7F/Tle7KxqDCufwhJEf4O/dq2RGiTry8ddtJxkYGzveHaxlOqW48XyfOMg6mqerZQWvoHNSOJkABgeNhwgoxBVJoq2V+4v9Vr7vhgB7/6dBfLG2csCdGqNl6od/j4UKnTEd5gZnRdvdu9oH/VuC12lYNXgwBGRYwizCeMCr2OXT5tNJh0oYGzvSUhzI/hsUFYVGsjV+E4J8tOkl+dj1FnZHz0eK3DcSmSCAkA9Dq9fdRBa3VCAAtGWl+4vtglPYVEO9qYIG/b9pldU4POzV7QiyrryC2rxaBTuGR0nMO/vl6nt/dUsv6cXHvgbG+aP8L6PLMqPVfjSPoW27bY+OjxbXdz91CSCAk72/ZYa+M2AC4bG4+XXmF/VjkHc6SnkGhDKxPkVWCdf2N9UFWN272ghwd489Njc1l69zTC/HtnNpOty/S6qP6oLjxwtrdd2JgIbThSSK1JTsg5iu0Nrkybb0kSIWFn2zfeW7CXKlNVi8+H+RuZO8z6JLVUOk2L9pwzQf6Q0YtcgwFfVWXyJW+65Qu6l17HmISQXvv6U2OnYtQZyaor4dhty1x24GxvGxkXRHyILzUmM5uOFmodTp9gMpvYkbsDkELp1kgiJOz6BfajX0A/GtQG+y/Nua5pLGZclpaF2SIdYEU7mkyQXzfhBgCm9r8An5SrNQ6sa8prTVic8G/dz8uPKXHW3i7rsza47MDZ3qYoCvOGR2HU68gsrtY6nD4hrSCNmoYawnzCGBo6VOtwXI4kQqIZ27uF1o7RA8xKjiTY14vCynp2nSpxZmjCHTVOkF9fby18ndP/Ao0D6ro/f3OQ859fy4r9vT8Q1H6M3jZuw0Pde8EQdj0xn8XTpXeZI9iez6fETkGnyMv+ueQnIpqxJ0JtFEx76XXMSY4EYGeGJEKiYzmVORwsPohO0TGz30ytw+mSWpOZ7/blkFNWS4hf79QGNWUrmN5XsI/CGs/dFooM9CbAWyZAOYotEZJtsdZJIiSaOS/mPHSKjpNlJ8mtav3Uxq/nDmH9b2dz9+xBTo5OuKOmQ1bDfMI0jqZr1hzMp6KugfgQX85L6v3Yo/yiGBk+EhWVDWc29PrjuYOqutb7monOKasr40DRAUD6B7VFEiHRTLB3MCPDRwLwU07rp8cGRQY4vKGc6LtsiZA7Dlm19Q66fGwcOp1zuqvbtsdsPzdPdSy/gkte38ilb2ySifQ98FPOT6ioDAoeRLS/e/XuchZJhEQLtmF8bdUJNSVPUKI9lfWV7MzdCbjfkNXiqnr7zCtHj9Rojy1h/Cn7J2obap32uK4mOsiHo3mVnCis4nhBpdbhuC3ZFuuYJEKiBXs/oZyfsKiWVq85ll/BLz7eye0ftH66TAiAXfm7aFAb6B/Yn8SgRK3D6ZJv9+XQYFFJiQ9iSHSg0x53aOhQYv1jqTXX2odkeqJAHy+mDgoH4IcD7jWOxVWoqiqJUCdIIiRaGBM5Bl+DL8W1xRwtOdrqNT5eelam57HxaIHMBBJt2plnXQ2aGDNR40i6blW69cV3US90km6Poij2omlP3x4722VaEqHuOFVxiuyqbAw6AxOj3e930FkkERItGPVGJkRPANreHusXenYm0DqZCSTakJqXCmD/9+ROfjV7EIunD2DByBinP/aMfjMA2uzn5SlsiVDa6VLyyz13m7C7bM/f46LG4eflp3E0rksSIdEq2+mCto7RA8wfHgXA6oPybk20VG2qJr0wHcAt341OHhjOHxaNYIAGBwPGRY1DQeFUxSnyqz33jUZ0kI+9m/fqg577c+gu23wxOS3WPkmERKts+8mpeanUmetavWZe47u1H48UyEwg0cLewr00qA3E+scSF+Dc7SV3F2gMZFjYMAB25e3SOBpt2WaPrZQhrF1ispwdqyHzxdoniZBo1eCQwUT6RlJnriMtP63Va1LigokO8qa63sxPJ4qcG6BwebbTYu62LWaxqDz3/SE2HS2kwdz6YQFnsP3cbHVWnmrByGguGxPHDZMStA7Frewv3E+lqZJg72B7Ui1aJ4mQaJWiKB0eo9fpFC5oHMIq22PiXO5aH5R2ppS3fjzO3f9KRctxerafm+3n6KkGRwXy+o3jWJgSq3UobqXpWA29B82q6w63S4TefPNNkpKS8PHxYfLkyWzfvr3Na9955x1mzJhBaGgooaGhzJs3r93rRXMdjdsAuHBkNBMTQxkZF+yssIQbqDfXs7dgL+B+idCaxqR+ZnIkRoN2T5Hjo8cDcKz0GGV1ZZrFIdyT1Ad1nlslQp999hlLlizhySefZNeuXYwZM4YFCxaQn996Ed369eu58cYbWbduHVu3biUhIYELL7yQrKwsJ0funibHTgbgYNFBSmtLW71mTnIUX9w9jRvP6+/EyISr21+4n3pLPeE+4SQFJWkdTpesaSzKndd4GEArYT5hDAi2Dh319DohVVU5lFvOm+uOYdJwu9JdVNRXsL9wPyD9gzrDrRKhl19+mbvuuos77riDESNG8NZbb+Hn58f777/f6vWffPIJ99xzD2PHjmXYsGG8++67WCwW1qxZ4+TI3VOUXxSDQwajovJTbuvjNoRoTdNtMUVxzmgKRzhTUs2h3Ap0Csweqm0iBLI9ZmNR4eZ3tvHCD4fZcbJY63Bc3vbc7ZhVM0lBSXJQoRPcJhGqr68nNTWVefPm2W/T6XTMmzePrVs7HgUBUF1djclkIizMvQY/aslWJ/RTdvuJUGl1Paul6ZloZCvwdbdtsbWNPbEmJIYS6t/70+Y7IomQlV6nMLdxhW6lPM90SLpJd43bJEKFhYWYzWaio5sPjYuOjiY3t3PHKh9++GHi4uKaJVPnqquro7y8vNmHJ7PXCWVvbXOuWHmtiUl/Xs3PP95JTlmNM8MTLqjB0sDu/N2A+yVCtl41c4e7xnBKW/+lg8UHqTJVaRyNtuaPsDa2XJWeJzMOO2BPhKQ+qFPcJhHqqeeee47//Oc/fPXVV/j4+LR53bPPPktwcLD9IyHBs49sToyeiEFnILsqm1MVp1q9JsjHizH9QgBpeibgUPEhahpqCDQGMiR0iNbhdJrZonK6uBrQvj7IJsY/hviAeMyqmT35e7QOR1PTB0fg46Ujq7SG9BzPfoPanjMVZzhVcQq9omdSzCStw3ELbpMIRUREoNfryctrviyal5dHTEz7LfBffPFFnnvuOVauXMno0aPbvfbRRx+lrKzM/nH69Okex+7O/Lz8GBs5Fmh/e8zWXFG2x4S9PihqAjrFbZ5i0OsU1j44ix/un8mgyACtw7GTfkJWvkY9M4ZEAjJ7rD22U75jIscQYHSdf8euzG2epYxGIxMmTGhW6GwrfJ46te3lv7/+9a8888wzrFixgokTO27z7+3tTVBQULMPT9eZY/S2d9BbjxdRWdfglLiEa3LX+iCw9s9Kjgl0qQJvqRM660IZwtohe/+guCkaR+I+3CYRAliyZAnvvPMOH330EQcPHuTuu++mqqqKO+64A4Bbb72VRx991H79888/zx/+8Afef/99kpKSyM3NJTc3l8rKSq2+BbdkK5jenrOdBkvrSc6gyACSwv2oN1vYeKTAmeEJF2JRLfaj3u40cd5iUTXtIt0eWyK0r3Bfm+NuPMXc4dHoFMgsqqa0ul7rcFyO2WJmW842QMZqdIVbJULXX389L774Ik888QRjx44lLS2NFStW2AuoT506RU5Ojv36f/zjH9TX13PNNdcQGxtr/3jxxRe1+hbc0sjwkQQaA6kwVXCg6ECr1yiKwrzGAtNV0mXaYx0tOUp5fTm+Bl+3auufdqaUiX9ezR+W7dc6lBb6B/YnwjcCk8XEvoJ9WoejqTB/I1/cPY3UP8wjxE/7U32uJr0onfL6cgK9AhkZPlLrcNyGQesAuuree+/l3nvvbfVz69evb/bnjIyM3g/IA+h1eibHTGb1qdVszd7KmMgxrV43b0Q07246yfrDBVgsKjqd62wvCOewbd+MixqHQec+Ty9rDuZRWm2i2AVXGRRFYUL0BH7I+IHUvFS3WmnrDeP7h2odgsuydZOeHDvZrX7/tOZWK0JCO02P0bdlYmIoz101ihX3zZAkyEO563wxV+km3RapE2pJVVUsWg6Dc0G2Ok7pH9Q1kgiJTrH1o9hbsLfNfiYGvY4bzutPVFDb7QlE36WqqlsmQq7WTbo1tp9nWkEaJotJ42i09/6mk8x5cT3L92RrHYrLqDJV2VssSP+grpFESHRKQlAC8QHxNKgN8q5UtCqzPJOi2iKMOiMpESlah9NprtZNujWDQwYTZAyipqGGQ0WHtA5Hc0VVdWQUVbMyvXPNdD3BztydNKgN9AvoR0KQZ/e/6ypJhESndWZ7DOBfP2Xys3e3cbxATud5Etux+dGRo/HWe2scTee5Wjfp1ugUnX0avbwROdtl+sfDBdQ1mDWOxjXItlj3SSIkOs12jL6jROiHA7lsOlYozRU9jDtui1XWNfDT8SLAdeuDbGzjNiQRgtHxwUQHeVNVb2ZL49+fR7OY2ZKxGoBphhCwSHLYFZIIiU6bHDMZBYXjZcfJq2o7yZlv6zItx+g9ijsmQg1mC7+cNZB5w6Ndqpt0a8ZHWVeEduXvwqK6Zs8jZ9HpmrTr8PQ3XOnLyX09hZM1eehUlfO+fwJeTYH05VpH5jYkERKdFuITwojwEQD8lNP2uA3bFkNqZgnFVa53HFk4XnZlNjlVORgUQ5vtFVxRiJ+RJRcm8+5tE12qm3RrhoUPw9fgS3l9OcdKj2kdjubmNxnr47Gnx9KXw+e3srWhDICUunqCLCqU58Dnt0oy1EmSCIkumRo7GYCt6Z/ByY2tLsHGh/gyIjYIiwrrDskQVk9gWw0aET4CPy8/jaPpm7x0Xva5f7I9BlMHhRPgbSC/oo49Z0q1Dsf5LGZY8TCgkupjrck7r7a28ZONieGKR2SbrBMkERKdl76cqZvfAeCngjTUjxa1uQQ7T7bHPIp9WyzGfbbFThZW8cOBXKrr3Wc2nvQTOsvboOfq8fHceF5/An08sHlg5hYot7YP2N2YCI2vbTqCRYXyLOt1ol2SCInOaVyCHVuchdGiUmTQk+FlaHMJdn7j9tiPRwqoNck7kr7OdmLMVtDrDpamnuH//pnKw0vdZ2xF00RIVT10O6iJP16ewrNXjWJwVKDWoThfpfVNZqFexykvLxRVZWxtK7PoKuXNaEckERIda7IEawRS6q2/bLu9vWlrCTYlPoiEMF8mJoVJnVAfV1BdQGZ5JgoKY6PGah1Op9lWK+ckR2ocSeeNihyFl86LwppCTlWc0jocoaUA65vNXd7W1aCh9SYCW0uOA1y3LYSrkERIdKzJEiycXX7d5WPrFdNyCVZRFNY9OJuP7zyPuBBfZ0YrnCw137pNkxyWTJAxSONoOqdpN+k5ya59bL4pb703oyJGAbI9ZmOxqKRmFrPthIcdo0+cBkFx7PaxdvIfV3fuapACQfHW60S7JBESHTtnaXVcYyK028e73esMevnn5QlSc93v2Lw7dJNui9QJNfefHae5+h9beXHlYa1DcS6dHhY+b39D2rw+qPEE5MLnrNeJdskrlejYOUurY+vqUFSVU15eFDZNdtpYgs0pq6GgopW9a9En2FaE3CkRWuMG3aTbIo0Vm5vduLW5M7OEwkrPep6pGjKXQ41bY+OaJkJBcXDdxzDiMo0icy+SCImONS7B2t5lBFlUhtRbBz9a64TaXoL9y3cHmfrsWv71U6YTAxbOUlpbytGSo4D7JEJVdQ1sbexGPHeY+2yL2YyJGoNe0ZNVmUVOZY7W4WguLsSXlPggVBXWHvSsdh17CvZgQSXeP46Yn30NV78Ht30D9++TJKgLJBESHWtcgrWyJkO2/ehdjfvTbS3BDo22nuaQY/R90678XQAMDB5ImE+YxtF0zo6MYurNFvqH+TE4yrW7SbfG38uf4WHDgbOrcZ7uwsbZYys9rMv07vzdAIyLHg8DZsCoa6z/le2wLpFESHTOiMusS61BsUCTgmn/gHaXYOckR6IocCC7nOzSGqeFK5zDHcdqzE6OYv1vZ/P81aNdvpt0W6ROqDlbl+mNRwvcqi9UT+3Oa0yEosZpHIl7k0RIdN6Iy+D+/XDbN4y/4E8AHPLSUzVkbpt3CQ/wZkL/UADWyKpQn+OOiRBAUoQ/UweFax1Gt0ki1NywmED6hfpS12Bh49FCrcNxCpPFxN7CvcDZOXSieyQREl2j08OAGcRMWEysfywW1cLegr3t3sXWZXqVh+3f93VVpioOFh8E3C8Rcnfjo60vfCfLTlJU42HHxluhKIp9e2yThyRCh4sPU9NQQ5AxiIEhA7UOx61JIiS6zbYca9unbottSvTW44VU1Jp6PS7hHLvzd2NRLcQHxBPjH6N1OJ3y5rpj/OLjnWw57t4vlsHewQwJHQKcrdPydLdMTWTp3VN56rKRWofiFLbVwPFR49Ep8lLeE/LTE91mW47t6Il4UKQ/AyL8MZlVj1m29gS2J2J3Gqvxvz3ZrEzPI6+8tuOLXZz99y9PEiGAARH+TEgMQ69zz7qvrjpbKC31QT3lgZPqhKPYluf3FuzFZDHhpfNq9TpFUbhv7hAUBc4fHOHMEEUvcrf6oKbdpGcPdb9j8+eaGD2Rzw5/JnVCHkhVVXsiJPVBPSeJkOi2QSGDCDQGUlFfwZHiI4yMaHtJ+opx8U6MTPS22oZa9hVah5W6y4rQOjfuJt0a2xuRQ8WHqKivINDogYNHz5FTVsPra46SXVrLR3eep3U4vSazPJPi2mKMOiMjwkdoHY7bk60x0W06RWevE5I6Bc+yr3AfDZYGonyj6BfYT+twOmW1G3eTbk2UXxT9A/ujonZYp+cpfAx6Pttxmh+PFPTpdh22v++UiBSMevdP6rUmiZDoEXsi1Ik6hdPF1by57hj/3JrRy1GJ3rYzbydg3RZzh148TbtJzxvu/ttiNnKMvrlQfyNjE0IA+PFIgbbB9CJ325Z2dZIIiR5pWjCtqmq71+7LKuOFHw7zweYMJ0QmepNt0OrEGPfYFtt4tNDeTXpQpPt1k26LJEItzU62JrrrD/fddh32QmlppOgQkgiJHhkZMRIvnRfFtcWcqjjV7rUzh0Zi1Os4UVjF8YJKJ0UoHM1kNrGnYA/gPu9Ivb10TEwM5cIR0W6xgtVZtp//gcID1DT03a2grrANYd10tJD6BovG0TheYU0hpypOoaAwJmqM1uH0CZIIiR7x1nuTEpECdLw9FuBtYEpjN9/VHjYTqC85UHSAWnMtod6hDAx2j0Zuc5Kj+OLuaTx+yXCtQ3Go+IB4ov2iaVAbOmxs6ilS4oKJCDBSVW9mZ2ax1uE4nG01aEjoEIKMQRpH0zdIIiR6rLONFeHstO91fXjZuq+zN3KLHu92qyvuFm9HFEWR7bFz6HQKM4dYV4V+PNz36oRsbzhlW8xxJBESPWarE+pMImRbtt6ZUSJdpt2UuxVqHswpp7S6Xusweo0kQi3NSo5kYIQ/EQHeWoficLbnWXf5/XMHkgiJHhsbNRaAjPKMDuceJYZbu0w3WFQ2H5Mu0+7GbDG73RPxA5+lMeFPq/ts8aytj9Oegj2YzPLmAuDS0XGs/e1s7prpHlu3nVVtquZQ8SFAVoQcSRIh0WPB3sEMDhkMQFp+WofXz06OxM+oJ6+8rpcjE452uOQwlaZKArwCSA5N1jqcDmWV1nAotwJVVRnTL0TrcHrFgOABhHqHUmeu40DRAa3DcQm6PjpmY0/BHsyqmTj/OLeZ7+cOJBESDmHbHkvN73h5/r65Q9j9xHxum5bUy1EJR7Ntv4yLGodep9c4mo6tPWgtyu8r3aRb07ROyNbfSVjVN1g4lFuudRgOI/PFeockQsIhbL+Yu/M6rhMK8TPibXD9F1HRkrvVB/W1btJtkTqhljKLqhj39Equ+cfWPnOM3tbBX+aLOZYkQsIhbL+YB4sPUm2q7vT9qusbeisk4WCqqrpVIlRd38DWE9aaNdtpxb7K9vexO383ZotZ42hcQ0KoH75GPZV1DaRmlmgdTo+ZLCZ7iwRJhBxLEiHhELH+sUT7RWNWzfZhnO3ZfrKYC15cz50f7nBCdMIRTpSdoLSuFB+9DyPD2x6w6yq2HCuivsFCv1BfBkf1nW7SrRkaOpQArwCqTFUcLjmsdTguQadTmDnUekq1LxTKHy4+TE1DDUHGIAaG9K0icK1JIiQcQlGUZuM2OhIV6M2Jwio5Ru9GduZa60/GRI7BS++lcTQdW3/E+uI3Jzmqz/UPOpdep7ef3uzM3D9PcXbchvv3E2raP0inyEu3I8lPUzhMV+qEkiL8SQr3azxG3/6Re+Ea7NtiMa6/LQZw75whPHfVKK6Z0E/rUJxC6oRamjkkAp0Ch/Mq3H4avcwX6z2SCAmHsa0I7SnYQ4Ol49of27u1H4+4/7J1X9e0PsjWt8bVxQT7cMN5/RnTOI28r7P9vaTmpXY4ANlThPj1jWn0qqqeLZSOlvogR5NESDjM4JDBBHoFUt1QzZGSIx1ePyvZtn9fIE/cLu5MxRnya/Ix6AyMihildTiiFSPDR+Kt96akroSTZSe1Dsdl2N5wrTvkvm+4TlWcori2GKPO6Bb1ee5GEiHhMHqd3j4NuTN1ClMHhuNt0JFTVsuRPJlG78ps/WlGRYzCx+CjcTQde+GHQ3yw+STFVX13tMa5vPRejIm0/v5JP6GzLkqJ4aEFyTwwf6jWoXSb7fk0JSIFo75v9sPSkiRCwqG6UjDt46VnykDrNPq+cKqjL7O9sLrDsfmqugbe2XCSP/4v3aMSIZA6odYMiQ7kV3MGMzzWfSe1y7ZY7zJoHYDoW5pOoldVtcPTOpePjSMuxIfxiaHOCE90kzv1D9p6vIh6s/XY/KBIf63DcaqmHaY78/sn3IMUSvcuWRESDpUSkYJBZ6CwppAzFWc6vP6q8f149qrRTEoKc0J0ojtyq3LJqsxCp+jc4onYdmx+dnKkxyUCoyNHY1AM5Ffnk1WZpXU4LqOm3szXaVk8v+KQ1qF0WWFNIZnlmSgo9hYJwrG6nAjddtttbNiwoTdiEX2Aj+Fss73ObI8J12dbDRoeNhx/L9deYVFV1d4zZvbQvt1NujW+Bl9GRlh//2R77Kxak5kHPkvjH+uPu90xetsg6yGhQwgyuu/2nivrciJUVlbGvHnzGDJkCH/5y1/IypJ3HaI5W52QbTm3I2aLSmpmCavS83ozLNFN7rQtdrygijMlNRj1OqYNDtc6HE1InVBLof5GexsFdztG33TQsegdXU6Eli1bRlZWFnfffTefffYZSUlJXHTRRXzxxReYTNIhWJwt6OvsitCGowVc/Y8tPPn1fjlG74JsT8TuUKhpK7o/b0AYfkbPLIGURKh1c+xdpt3rYIbtDaXMF+s93aoRioyMZMmSJezZs4dt27YxePBgbrnlFuLi4njggQc4evSoo+MUbmRs5FgATpadpLi2uMPrpwwIx2jQkV1Wy9F8OUbvSkpqSzhRdgJwjyfioqp6jHodsxt7VHmicVHjUFA4VXGK/Gr3etHvTbZ/E5sbZ9C5g2pTNYeKrXVN7vBGxF31qFg6JyeHVatWsWrVKvR6PRdffDH79u1jxIgRvPLKK46KUbiZEJ8QBgUPAs7ub7fH1yjH6F2V7d3owOCBhPq4/sm+hxcOY/cT87l+UoLWoWgm0BhIclgyIHPHmkqJCyYiwEhlXQM7Mzt+g+YK9hbuxayaifWPJcY/Rutw+qwuJ0Imk4mlS5eyaNEiEhMT+e9//8v9999PdnY2H330EatXr+bzzz/n6aef7o14hZuwzR3r7BPx7KFnu0wL12H7+3Ond6P+3gYCfVx/KGxvsq3eyfbYWTqdwswh1ueZH93kecY2t9Gdfv/cUZcTodjYWO666y4SExPZvn07O3fu5Je//CVBQWer2efMmUNISIgj4xRupqsF07Zl6x0ZxVTWdTynTDiHvZGbG2yL1dSbtQ7BZdheODv7++cpbGN9zpS4x8mx1PzG+jw3+P1zZ12uJnzllVe49tpr8fFpu81+SEgIJ0/KrBtPZjvhkF6UTk1DDb4G33avHxDhT/8wP04VV7PlWCEXjpRlYK1Vm6o5WHQQcP13pKqqsvC1DQR4G3jthnEMjgrQOiRN2Qqmj5Qcoby+XI5dN5o3PJqtj15AbHD7z0euwGQxsbdgLyAnxnpbl1eEbrnllnaTICEA4gPiifKNokFtYH/h/g6vVxTFviq05XhRb4cnOmFf4T4a1Aai/aKJ84/TOpx2nSisIrOomqN5lcQGy/NThG8E/QP7o6J2qk7PU/h7G9wiCQI4UnyEmoYaAo2BDAoZpHU4fZrbdZZ+8803SUpKwsfHh8mTJ7N9+/Z2r//vf//LsGHD8PHxYdSoUXz33XdOitSzKYrS5TqhW6cmsfTuqfz+kuG9GZropKb1Qa7eodlWWzZpQCj+3p55bP5c9jYWUjDdqgaza58cs21Lj4sah05xu5dqt+JWP93PPvuMJUuW8OSTT7Jr1y7GjBnDggULyM9v/aTRli1buPHGG1m8eDG7d+/miiuu4IorrmD//o5XKETPdbVOaHBUABMSwzDo3eqfZZ9lq0+YEOX6jRRtpw09sZt0W7oyANmTFFfVc8t725jy7BqXPkYv/YOcx61ecV5++WXuuusu7rjjDkaMGMFbb72Fn58f77//fqvXv/baayxcuJCHHnqI4cOH88wzzzB+/Hj+9re/OTlyz2R7R5pWkIbZIoWs7qRpfYKr1wfV1JvZdtJ6HNqT+wedy1YntL9wP3XmOo2jcR0hvl6kZ5dTWFlPamaJ1uG0SlVVt2pk6u7cJhGqr68nNTWVefPm2W/T6XTMmzePrVu3tnqfrVu3NrseYMGCBW1eD1BXV0d5eXmzD9E9Q0KG4O/lT5WpiqOlnWuymVFYxaNf7mPJ52m9G5xo16GiQ9Q01BBkDGJQSTbs+wJObgQXTGi3niikvsFCfIivxxdJN5UQmECEbwQmi4l9Bfu0Dsdl6HQKM23tOo64Zt+yUxWnKK4txqgz2mc3it7jNolQYWEhZrOZ6OjoZrdHR0eTm5vb6n1yc3O7dD3As88+S3BwsP0jIcFzG7P1lF6nt3eZ7mw/E7Oq8u/tp/hmTw5VcoxeM/b6hMpSdB9fBksXw0eL4NUUSF+ucXTN2YeseuC0+fYoiiLbY22wrRy6aj8hW11XSkQKRr1R42j6PrdJhJzl0UcfpayszP5x+vRprUNya7Zjn52tExrYeIy+3myR02Ma2nXsWwDGV5Y1/0R5Dnx+q0slQzOHRHLF2DgWpkjLhXNJwXTrZg6JRKfAodwKcspcr6eQ7flSjs07h9skQhEREej1evLymk8oz8vLIyam9SfAmJiYLl0P4O3tTVBQULMP0X32xm55uzs1ULXpMXoZt6EN1dzA7uJ0AMbXnltb0vh3uOIRl9kmmzcimldvGMeMIVIfdC7bipDU6TXXdBq9K3aztxdKS32QU7hNImQ0GpkwYQJr1qyx32axWFizZg1Tp05t9T5Tp05tdj3AqlWr2rxeOF5KRAoGxUB+TT5ZlVmdus/ZRKhAptFr4OShLynRKXhbLIysq2/lChXKsyBzi9NjE10zNHQoAV4BVJmqOFxyWOtwXIrthKGrveEqrCkkozwDBYUxkWO0DscjuE0iBLBkyRLeeecdPvroIw4ePMjdd99NVVUVd9xxBwC33norjz76qP36++67jxUrVvDSSy9x6NAhnnrqKXbu3Mm9996r1bfgcXwNvowIHwF0fnts6sAIjAYdWaU1HJNp9E63q/HvaVRdPe1O7KrMa++zTvG/PdkczCmXhLkNep2eMVHWF1PZHmtu7vAopg+OsBdOuwpbA8zBoYMJ9g7WNhgP4VaJ0PXXX8+LL77IE088wdixY0lLS2PFihX2guhTp06Rk5Njv37atGl8+umnvP3224wZM4YvvviCZcuWkZKSotW34JHsdQqdLNj0NeqZPCAMcM1l675uV631HXLLbbFzBES3//leVlNv5sH/7uGi1zZyvEAS5rbY+kBJwXRzKfHB/Ovnk7l5cqLWoTTjTvP9+gq3a8F67733trmis379+ha3XXvttVx77bW9HJVoz7iocXx44EPrJGWL2bqlUplnfSFNnAY6fYv7zE6O4kxJDT7Glp8TvWtX1RkAJtS1lQgpEBRn/bvTUNNj84Mi5dh8W2xvRFLzUlFVVU7WuTjbxHkplHYet0uEhPsZGzUWgONlxyl9LYWQsuyznwyKg4XPw4jLmt3n9mlJLJ4+wIlRCoDcqlyyqrLRoTCmth5QsBdIQ+OfgYXPtZrAOpNttXCWHJtvV0pECl46L4pri8kszyQpOEnrkFxKfnktqZklXDQqVutQrIOOi62Djm0NMUXvc6utMeGewnzCGOBj3YffbTqnk2sbx7H1Onlh04KtjiQ5bBj+134EQee8OATFwXUft0hcnU1V1bP9g1ysxsPVeOu9GRUxCuh8nZ6nKK81MfW5tdz9yS6yS7U/Rr+3cC9m1Uysfywx/tIOwlkkERK9z2JmfKm1sHa3t/c5n2z/OHZ9g4WThVW9HKCwsdUnTIieYE127t8Pt30DV79n/e/9+zRPggBOFlZxqrgaL73CtMERWofj8ppuj4mzgny8GN3PWpD84xHt6xFlW0wbkgiJ3pe5hXEV1pWgXT7nJkLQ1nHsvWdKGff0Sn727jY5FeQk9kJNW/8SnR4GzIBR11j/q/F2mI192nxSGAEybb5D0mG6ba50jF4KpbUhiZDofZV59hNIB7yN1LZVz3HOcezBUQGYzCpZpTVyKsgJyurKOFZyDHD9d6RbjhcCMCdZps23YDFb58I1mQ83NmosCgqnK05TUK39yocrsfUt23ysSNNp9A2WBvYU7AFgXLRr//71NfJWSvS+gGj6NTQQ0WCm0KBnv7eRia0dzT7nOLaf0cDkgWFsPFrI+sMFDI4KdFLAniktPw0VlaSgJCJ8XXu76W83jWdHRrEMWT1X+nJY8TCUNz+QELjweZLDkjlUfIjU/FQWJi3ULkYXMyo+mHB/I0VV1mn0UweFaxLH4ZLD1DTUEGgMZHDIYE1i8FSyIiR6X+I0lKA4xjUex25ZJ6RAUHyrx7FnDT3bZVr0LvugVRdfDQLw8dIzY0gkscG+WofiOtKXWw8eNE2CwH4gYbwhFJDGiufS6ZQmzzPabY/Z/l7GRY1Dp8hLszPJT1v0Pp0eFj7PhMZVoOZ1Qu0fx57duPWx/WSxTKPvZbYnYplv5IYsZutKEK3V0llvG398EyCJUGtm2abRa1gwLYNWtSOJkHCOEZcxbsbjAOzx9sZ+PqyD49iDIv3pF+pLvdnCVplG32tqG2rZX7QfONuJ2FXd/sF2/vRNOkWVHXS+9iSZW1quBDWjMqHE2nX/SMkRyuvLnROXm5g9NIpXrx/LJz+frMnjq6p69o2IFEo7nSRCwmmGTrgLP4MfFXodxy76c6eOYzebRn9E+1MdfdW+wn00WBqI9I2kX2A/rcNp08nCKtYfLuCjrRl4e7nGCTaX0Im5bxFmC/29w1BR7fOshFWwnxdXjIsnPKC1U629L6M8g6LaIow6IyMjRmoSgyeTREg4jUFnsE9TTg0K6/Rx7CvGxvPbC4fysymuNROoL2m6LebKXZptNRxybP4cnZz7Ni5kKCDbY65mZ95OAMZEjcFbr00y5skkERJOZTsW2pV+JhOTwrj3giEMiwnqrbA8nrvUJ9i7SSdLN+lmEqdZt5lpK4m1HkiYMNB6Wkz6CbVUazLz9/XHuPX97U4/Rr8jdwcAE6MnOvVxhZUkQsKpJkVPAqy/+NIk0TWYLWbSCtIA155vVGsy89MJa53YbOkf1FzjgQSrc5OhswcSxsdYX2j3F+6nziw1Vk0Z9Tre35TBhiMF7MgodtrjqqrKzlzritCkmElOe1xxliRCwqlGRY7CW+9NcW0xJ8tOdvp+lXUNLN+Tzf/78XgvRueZDpccpspURYBXAENChmgdTpu2niiirsFCXLAPQ6R/UEsjLrMePGhnPlz/wP6E+4RjspjYV7BPmzhdlE6ncMEw60rjmoPOq0c8VXGKgpoCjDojoyNHO+1xxVmSCAmn8tZ72+uEbMvBnZFbVsNv/r2bl1YeobpejtE7kq1eZGzUWPQuMkKjNT/ap81HuXQdk6Y6mA+nKIq9PYJsj7V0wTBrrdWaQ3lOW7G2PQ/a3iQK55NESDjdxMbl+R15nU+EBkUGEB8ix+h7g7vMNwry9SI6yFvqgzrSwXw42/anFEy3NGNIBEa9jsyiao4XOGfYsy0RmuQd3WwsinAeSYSE03WnTqjZMXrpMu0wzfqXuHgjxSXzh/LTo3OZN7xzJ6RE62wJb1pBGmZ5wW3G39vAlMYRG2sPddySoKdUVWXnGWujy0nbPoCli+GjRfBqirVTuHAKSYSE03W3TshWILv+SL4UWjvIqYpTFNUW4aXzIiUiRetwOqQoCnqdbIv1xNDQoQR4BVBlquJIyRGtw3E5c4dZn2dWO6FO6PTuD8k3leOlqoyuqz/7icaxKJIMOYckQsLpulsnNG1QOEa9jtPFMo3eUWyrQaMiXLs+4URBJRaLJL+OoNfpGRNl/f2TOqGWLhgWha+XnjA/Y+/+m7OY2bH1BQBG1dXh0+zNXeP/r3hEtsmcQBIhoYnu1Ak1XbZ2xrs1T5Calwq49rZYrcnMRa9tZOKfV5NXXqt1OH2CbYyK7e9fnJUQ5kfak/N565YJ6Hpz9TFzCzux/nueWNNaKwMVyrOs41NEr5JESGiiu/2E5g23LlufkBUhh3CHRoq2Y/M+Bh1Rga67auVO7CfH8nbJNnMrvA29f3pSrchlR+MA6km17ST4nRifInpGetQLTZxbJzQwZGCn7nf5mHjmDY8mLsS3lyPs+wprCjlVcQoFhbFRY7UOp01ybN7xUiJS8NJ5UVRbxKmKUyQGyfia1pwqqiYuxAeD3vFrBmcMevIMBgyqypim9UHn6uT4FNF9siIkNNHdOqFgPy9JghzEti0yNHQoQUbXHV9imy8mx+Ydx1vvzaiIUYAco2/LdW9tZeYL69h1qrRXvv5Og3UlblRdPb6trspZx6KQOK1XHl+cJYmQ0Ex36oSaMpmdOw+or3GHY/MZhVVkFFXjpVc4f3CE1uH0Kba/d6kTal18qPUN15qDvbM1taPx5z6xtpb2xqJ0ZjC16BlJhIRmbHVCO3N3dqlOobS6nts/2M6Uv6xx+nDEvsRWH+TKiZBtNWhiokybdzRbPyE5Oda6CxqP0a855PiDGaqq2t8ATjrv/nbHoojeJ88sQjO2OqGi2iJOlp9kYHDn6oSCfLw4kF1OUVU9204WMWOIbJl0VWV9JYdLDgOu3VHa9iIk22KONyZqDAoKpytOU1BdQKSf/Iybmjk0EoNO4Vh+JZlFVSSG+zvsa2dVZpFblYtBMTBm4i9h8n3W02GVedaaoMRpshLkRLIiJDTTtE7INn25M3Q65WzTs3Q5UdEdaQVpWFQL/QL6EeXnupPcl8wfyi9nDWJhSozWofQ5QcYghoYOBSA1X7bHzhXs68WkpDDA8UNYbXWRKREp+Hn5dTgWRfQuSYSEpux1Ql0omAbsYxZWH5Qu093hDvVBAOP6h/LIRcMc+m5cnNX0GL1oaW5ju461Dt4e25lnfeM3KWaSQ7+u6B5JhISmuttP6PzBEXgbdGSV1nAot6K3wuuzbAWytgGcwjNJItS+uY1vuLadLKKi1uSwr2tbAZ8YPdFhX1N0nyRCQlPn1gl1lq9Rz/TGU0S9daqjr6o317O/cD/guvVBJrOFJ7/ez9pDeZhltEavsXWYPlJyhPL6co2jcT0DIvz5v1kDeePG8RgNjnm5zKrMIrsqG4NicOn+XZ5EEiGhqe7WCcHZd2sybqNrDhQdoN5ST5hPmMs20ttxspiPtmby0H/3ah1KnxbpF0lCYAIqKmn5aVqH45IevWg4C1NiHNZt2vY8NzJipLU+SGhOEiGhue7WCc0dHsW0QeFcPjZO6oS6wD5fLGq8y3ZqXtlYBH/BsCiZNt/LbKuCtnYKonfZnudkW8x1yPF5oblz64Q6++IcHeTDp3dN6c3Q+iRXL5RWVZXVjdud80fIeIHeNiF6Al8f//psnZDFLEe5z7E/q4yV6XksHBnDiLiedWGXQmnXI4mQ0Fx3+wmJrrOoFvsWiKsmQodyKzhTUoO3Qcf0IdJNurfZ/h3sK9xH3f6leK/8PZRnn70gKA4WPu/Rzf3e+vE43+zNwWJRe5QIZVdmk1WZhV7Ru/SgY08jW2NCcz2pEwIoqKjj8x2nqTWZHR1an3O05CgVpgr8DH4khyZrHU6rbL2hZgyJwM8o79V6W//A/oT7hGOymNj/v7ubJ0EA5Tnw+a2QvlybAF2A7Rj96h4ezLCtBo0Ml/ogVyKJkHAJ3a0TUlWVK97czO+W7mXL8cLeCK1PsY1TGBM5BoPONZOMVY0vNrZeUaJ3KYrC+MbViV0+3q1c0Vh/t+IR67aZB5o1NAqdYl2tzCqt6fbXsdcHxUh9kCuRREi4hO72E1IUxT4TSE6PtcFihpMbYd8X7DrxA+C622I19WYqahtQlLOnAkXvm+AVCkBqq4kQgArlWdbaIQ8U5m9kfH/rz6gnzRVtK95SH+RaJBESLqG7/YTg7LL1moN5cnrsXOnL4dUU+GgR6tLF7MrZBsCEmlqNA2udr1HP2gdnseGhOUQGtvWiLBxtfGMitMfHm3bXfCo9t2eXLTHvbt+ynMoczlSekfogFySJkHAJPakTmjIwHD+jnrzyOvZnSVM4u/Tl1tqOxpqPLIOefIMBg6qS8sMfXbbmQ1EUEsKkfsKZhkaOJsBioVKn44jRq+0LAzx3lc72hmvL8SKq6xu6fH9bfdCI8BH4e8nIGFciiZBwGd2tE/Lx0jOzcQJ9T4sZ+wyLGVY8jL2+A9jl4wPAiLp6fFXV5Wo+6hss1DdYtA7DI+mTpjOm8bW99TohBYLirUfpPdSQqAD6hfri66XneH5Vl+9vS4Skf5DrkURIuIzu1glBk+2xQ5IIAdZajnNO/9he4CbU1uGKNR+rD+Yx/plV/PnbdK1D8Tw6PRMGLAAgtTFhPquxr9fC5zy6n5CiKHz68ymk/n4eo/oFd/n+UijtuiQREi6jJ3VCc4ZFoShwMKeCosq6XorQjbRSy5HqbU2ExtfWtXudVlal51FZ1/UtB+EY41JuAmCXry/N3oYExcF1H3t0HyGb/uF+GPRdf9nMrcrldMVpdIrOZef7eTLXPD8rPJKtTmh77nZ25u7sUmPFiABv3rttImMTQgnzN/ZilG7inFqOYp2OjMbaj3F1dW1epxWT2WI/jTN/RIzG0XimUZGj8NJ5UYSJU9e9T6JZlc7SbVBVlXqzpdPzx2zbYsPDhhNgDOjN0EQ3yIqQcCndrRMCuGBYtCRBNonTrO/kG7c1djduiw2uryfYYsHVaj52ZpRQVmMi1M+LCYmhWofjkbz13qREpACwy0sHo66BATMkCTrHf7afYvrz6/jH+uOdvo8cm3dtkggJl9KTOiHRhE5vHYsAgGLvD2PdFnO9mo9V9iGr0TJkVUO2bRvbYF7Rkk5RyCqt6VI/IdsbO0mEXJMkQsKl9KROCOC/O09z3Vtb7S+sHm3EZdbajqBYe6H0+No6l6v5UFWVVQdzARmyqjVbo01bB3LR0pzGBq57z5SRV95xP668qjxOVZxCp+ikf5CLkkRIuJSezh1Lzylne0YxKw/kOjo09zTiMqp/tZ1D3r4ATFj0Fty/z2WSIIAjeZWcLq7BaNAxQ4asamps1FgUFE5XnKagukDrcFxSZKA3YxJCAFjXiVUhW33QsLBhBBoDezM00U2SCAmX05M6Idt8qnWH87FYZGsNYHfhXsxYiPOPI2b45S6zHWYT6ufFg/OHctvURPy95fyGloKMQQwNHQrIqlB75g6ztevoOBGyb4tFy7aYq5JESLicntQJnTcgjEAfA4WV9aSdKe2F6NzPpqxNAEyNm6pxJK2LCvLh13OH8PglI7QORdBkeyxPEqG22PqWbTpaSK2p/aaktnor6R/kuiQREi6nJ3VCXnods4Y2dpmWOiHgbCI0PX66xpEId2BLhLbnbtc4Etc1IjaImCAfakxmtp4oavO6/Op8MsozUFBcdtCxkERIuKCe1gnNsw9HlGn0pytOk1GegUExMCV2itbhtLDlWCH/25NNea1J61BEoykxU1BQOFZ6jNwqqbVrjaIo3HBeArdNTSQ+xLfN62zPX8PChhFkDHJWeKKLJBESLqkndUKzkyPR6xQO51Vwurja0aG5Fdtq0NiosS7ZyO2djSf49b9388+tmVqHIhqF+IQwKnIUcPbfj2jp/nlD+ePlKQyNbrsA2j5fTLbFXJrbJELFxcXcfPPNBAUFERISwuLFi6msrGz3+l//+tckJyfj6+tL//79+c1vfkNZWZkToxbd1ZM6oRA/IzOGRDBveBTV9a4zVFQLm7M2A3B+/PkaR9JSVV0Dm49btxXk2LxrmRE/A5BEqKekUNo9uE0idPPNN3PgwAFWrVrFN998w4YNG/jFL37R5vXZ2dlkZ2fz4osvsn//fj788ENWrFjB4sWLnRi16K6e9hP64PZJvHvbJJJjPPe4ap25zl7nYXthcyUbjxZQ32AhMdyPIVGut1rlyWz/XrZmb8Vklm3LtpjMFrYeL2LzscIWnyuoLpD6IDfhFmdVDx48yIoVK9ixYwcTJ1qXGN944w0uvvhiXnzxReLi4lrcJyUlhaVLl9r/PGjQIP785z/zs5/9jIaGBgwGt/jWPVZP5o6BdQ/f06XmpVLTUEOUb5T9SLQrWdlYzD5/eLT8fbmY4eHDCfMJo7i2mF35u5gcO1nrkFzSf3ee4bGv9jG+fwjnD27eA8t2Wiw5LJlg765PqxfO4xYrQlu3biUkJMSeBAHMmzcPnU7Htm3bOv11ysrKCAoKajcJqquro7y8vNmH0EZP6oRsThVVc6Kg7S3Uvsy2rXF+/Pkul2g0mC32ZnTzZFvM5egUnf2UoWyPtW3OMOsJ1d2nSymqrGv2Odvz1sRoqQ9ydW6RCOXm5hIVFdXsNoPBQFhYGLm5nTvVUFhYyDPPPNPudhrAs88+S3BwsP0jISGh23GLnunp3LG3fjzOzBfW8fqao44OzS3Y6oNc8dh8amYJJdUmQvy8mChDVl2SbXts45mNGkfiumKDfRkZF4SqwvrDzTtx78hrTISkUNrlaZoIPfLIIyiK0u7HoUOHevw45eXlXHLJJYwYMYKnnnqq3WsfffRRysrK7B+nT5/u8eOL7ulpndD4/tYX2HWHC2gwWxwdnkvLrszmRNkJ9IqeKXGud2x+T2OzywuSozDo3eL9mMeZGjcVnaLjeNlxsiuztQ7HZZ3tMn22b1lhTSEny06ioMiKkBvQtFDmwQcf5Pbbb2/3moEDBxITE0N+fvOeMA0NDRQXFxMTE9Pu/SsqKli4cCGBgYF89dVXeHl5tXu9t7c33t7enYpf9K6e1gmN7x9CiJ8XpdUmUjNLmDwwvJcidT227YwxkWNcsn/JL2YO4pLRcZgaPCtBdSfB3sGMiRzD7vzdbMraxHXJ12kdkku6YHg0r689xoYjhdQ3WDAadPZj80NDh0p9kBvQ9K1YZGQkw4YNa/fDaDQydepUSktLSU1Ntd937dq1WCwWJk9uu4ivvLycCy+8EKPRyPLly/Hx8XHGtyUcqCd1Qga9jjnJnZ8J1JdszLJuZ7jitphNfIgvSRH+Woch2mH792P79yRaGh0fTESAN5V1DezIKAbONlKUbTH34BZr0sOHD2fhwoXcddddbN++nc2bN3Pvvfdyww032E+MZWVlMWzYMLZvtx4XtiVBVVVVvPfee5SXl5Obm0tubi5ms2f3lnEnPa0TsnWZ9qRxGyaziW051kMErpgIyTBc92GrE9qWs416c73G0bgmnU7hgsaiadsxelsiJP2D3IPbnCH/5JNPuPfee5k7dy46nY6rr76a119/3f55k8nE4cOHqa62dhLetWuX/UTZ4MGDm32tkydPkpSU5LTYRfedWyfU1e2xmUMj8NIrnCis4kRBJQMj+36/ml35u6hpqCHcJ5zksGStw2nhpnd/wsdLz+MXD2dIO115hfaGhQ0jwjeCwppCUvNSXXZwr9bumjGQW6YkMTIuiKKaIo6XHQdgQvQEjSMTneEWK0IAYWFhfPrpp1RUVFBWVsb7779PQMDZF7WkpCRUVWX27NkAzJ49G1VVW/2QJMh99HTuWKCPF1Maa4M8ZfZY02PzOsW1fsXzK2rZdrKY9YcLCPRpv15PaE9RFNke64Qh0YGM6heMTqfY+wcNCR1CiE+ItoGJTnGtZ0khWtHTfkL/N3MQb/1sPDdO7u/IsFyWLRFyxW7Saw/mo6owul8wMcFSs+cOpJ9Q18hYDffjNltjwnOdWyfU1eaA04dEdHxRH5Fblcux0mPoFJ1LbmOsatJNWriHqXFT0St6Tpad5EzFGfoF9tM6JJeUXVrDq6uPsLZiA+hgUowkQu5CVoSEy2tWJ5T+Bez7Ak5uBIsUvZ/L9q59VMQolzu2W13fwKbGYtL5IyURchdBxiD79rSsCrXNx0vPl3sOU6ez9lyS+iD3IYmQcHneem/G+MUDsHPF/bB0MXy0CF5NgfTlnfoaWaU1vLLqCC/+cLgXI9We7YXKFU+LbTxaSF2DhX6hviRLkbRbmdGvscu01Am1KczfyKhBRQCEGPoT6iMd092FJELC9aUvZ+Kp3QDs8GnS7LI8Bz6/tVPJUF55La+tOcpHWzKo76NN/ExmEz/l/AS4Zn2QrYXB/BEyZNXd2P49bc/ZTp25roOrPVdE5BkAqssTu9XuQ2hDEiHh2ixmWPEwk2prAdjh48PZp5fG/1vxSIfbZGP7hRARYKSiSdOzviatII0qUxVhPmEMDx+udTgtTBoQxtSB4Vw4ov1u8ML1DA0dSpRvFLXm2m6d3vQUhaaDAJQV92fXqRKNoxGdJYmQcG2ZW6A8m1F1dXhbLBQZ9Jz0alrjr0J5lvW6duh0ir3L9Ko+2lzRfmw+zvWOzQNcNzGBf/9iClMHec6ok75CURSm95PTY+0pqS3hWJl1wLO5egDLdst8Nnfhes+WQjRVaU1avFUYU2ftbLuztVEplR0nNwtTrCsR3+zN7pNDWJv2DxLC0ezT6KVOqFW2/kGxvkmo5gC+3ZeDqQ8+z/RFkggJ1xZw9nTRRPv2WCtDcQM6PoU0c2gk4f5GCivr2Xi00GEhuoK8qjyOlBxBQWFa3DStw2nh67QsCiqktsSdTYmdgkExkFmeyanyU1qH43K2Zm8FYEbCZCYmhvKzKYnU9dF6xL5GEiHh2hKnQVAcoDCp1vpC2rxOSIGgeOt1HfDS67hsrHU23dJdZ3olXK1szt4MWI/Nu9pplWP5ldz3nzSmP7+WmnppeeCuAowBjIseB8iq0LnMFjNrTq0BYE7/2Xxx9zSWzB9KgLe06nMHkggJ16bTw8LnARhdW49PY53QYaMX0HjyaOFz1us64erx/Qj0NhDub+ylgLXhysfmVx+0bltOHhiOr7Fzf0/CNUmX6dbtzt9NUW0RgcZAJsdM1joc0UWSCAnXN+IyuO5jjEGxnF9j3R5b6e9nXSm67mPr5ztpZFwQO34/jz9entJb0Tpdg6WBn7Ktx+ZdsT7Ifmx+eJTGkYiestUJ7cjdQW1DrcbRuI6VmSsBuCDhArz01hl6tSYzK/bnsu1EkZahiU6QREi4hxGXwf37WTDhXgBWxg5BvW9vl5IgsJ5+8fHqW6sSewr2UGGqIMQ7hJHhI7UOp5n8ilpSG48Rzxsh3aTd3eCQwUT7RVNnruv27L++xqJaWJ25GoALky603/7OhhP88l+p/H39ca1CE50kiZBwHzo9s8b/H956bzJr8jlcdqzbX0pVVdJOl5JX7v7vam3bFNPipqHv5BahsyzbnYWqwvj+IcQG+2odjughRVGky/Q59hTsoaCmgACvAKbETrHfvmiMtR5x07FCCivloIArk0RIuBU/Lz/78vzKjJXd/jqPLN3HFW9u5t/b3eD0i8Vsna3Wxow1V60PUlWVz3dai9KvnZigcTTCUWz/zjae2Sjdkzn7PDQ7dATG9OX239EBEf6M6ReM2aLyzR7pKeTKJBESbse2/PxDxg/dfiK2NfX7cleWaz+Zpy+3zlT7aFGrM9YKqgs4VHwIwOWOzWcWVXOqqBofLx2LRsdqHY5wkCmxUzDoDJypPENmeabW4WjKolpYdex/AFy479sWv6OXj7XOSFyWJomQK5NESLidWf1m4a335lTFKQ6XdG+I6oUjo/E36jlVXE1qpou2wk9fbp2lVn7Ok2iTGWu2Y/Mjw0cS7utaHZuTIvzZ9thc3r5lIoE+XlqHIxzE38ufCVHWyeqefnps346/k2cqw89iYVpNzdlPNP6OXu23C50CaadLySis0i5Q0S5JhITbabo99kPGD937GkYDF42yrlIs3ZXlsNgcpnHGGrS2WnV2xtqmM9Y6DVfbFrMJ9Tcyc2ik1mEIB5M6IcBiZtWufwAwq7oG72a/qtY/BK//A9MHWft6fS2rQi5LEiHhlhYkLQCs+/Pd3dq6arx12fqbvdnUmlys0V/jjLW2qTSUZ7ElyzUTIZf7eQqHsv1725m7k2pTtcbRaEPN2Mwqg7Vz9IKq1n4G1jmIixNyATiSX+HE6ERXSCIk3NLMfjPt22O2GpmumjIgnPgQXypqG1hzMN/BEfZQJ2an7fc2UtFQQ5AxiFERo5wQVOfd8cEOrvr7ZvZnlWkdiugFA4MHEucfR72l3mOP0R/I3022lwFfi8Xe36w1kyNNrF4yizdvGu/E6ERXSCIk3JKflx8z+80EzjYz6yqdTuHKcdZVoTUHXWwifSdmp230tR5Hd7Vj86eKqtl6oojdp0sJ7WMdvIWVoihnT4956PbYyiprofjM6hp82lmV9gmNY3BUgLPCEt0giZBwWxcm9vz02I2T+/PPxefxwrVjHBlazzWZsdY6hU2BQYDrbYt90TjHbfrgCOJDpHdQX2WrE9qUtcm1T172AlVVWVV6EID5VTVtXNVyDmJ5rQmzxbN+Vu5AEiHhtmb2m4mP3ofTFae7vT0WH+LLjCGR6HVtJRwaaTJjrWUypFCo05FusN7uSmM1LBaVpanSO8gTnBdzHl46L7IqszhZflLrcJzqYPFBzlSewUfnxYyaWlr7HQWazUF87Kt9TPzTarYcL3RqrKJjkggJt+Xn5Wd/V9rd02NNudw7tcYZawSd04MnKI6ts+8DYHjYcCJ8IzQIrnVbjheRVVpDkI+BC2WkRp/m5+XHxOiJgLW5oidZlbkKgBkJs/G79qNWf0dbm4NY32Bh2W45PeZqJBESbs3WXHFlZvdPjwH8dcUhpjy7hkO55Y4KzTEaZ6xx2zdw9XvW/96/j41Ye5K42rbY5ztPA3D52Pg+N9NNtOSJ0+hVVbV3k56fOL/N39Fzk6ArGpsr/nAgV05VuhhJhIRbmxl/dnvsYPHBbn+d4wWVFFTU8ZUr9hTS6WHADBh1DQyYgRnYkr0FcK1EqKzaxIoD1qPC18m2mEewrcim5qV6zDH6IyVHOFVxCqPOaD+wce7vKK0cXpiYGEp8iC+VdQ2sdrXDGR5OEiHh1ppuj/Vk9thV4/sB8NXuLNfbIjvH/qL9lNWVEWgMZHTkaK3DsfM16nn5ujHcPLk/KfFBWocjnCApKIn4gHhMFhPbcrZpHY5T2E6pTo+fjr+Xf6fvp9MpXDbWOohVtsdciyRCwu05YvbYnOQoQvy8yK+oY/Mx1y5mtG1DTI2dikFn0Dias4wGHYtGx/HnK0ehKC5WfC56haIo9i7vnnCMvtm2WNL8Lt/ftj3245F8SqvrHRqb6D5JhITbs22Pnak80+3tMaNBx2VjrO/Wvmw8/u2qNmdZ54u50raY8FyedIz+eOlxMsoz8NJ5MavfrC7fPzkmkOGxQZjMKt/uy+mFCEV3SCIk3J6jTo/ZtsdWHMilsq7BIbE5WnFtMfsL9wOudWz+//14nL+tPUp+edsddkXfNClmEkadkZyqHI6XHtc6nF5lOy12ftz5BBoDu/U1/m/mQB6/eDjzhsupSlfhOuvqQvTAhUkXsipzFSszVnL/+Pu7tTUzpl8wAyP9OVFQxff7clyyD86W7C2oqCSHJhPlF6VJDGazGZPJZP9zfYOFr1MzKKsxkRLjS9BA1znO74mMRiM6nfPe4/oafJkUM4nN2ZvZlLWJwaGDnfbYzmarD+rOtpjNFY3d7IXrkERI9AlNt8fSi9MZGT6yy19DURTumJbEicIqxvUPcXyQDmCrD9JiW0xVVXJzcyktLW12e029mQemhKLXKURRzsmTMlxSSzqdjgEDBmA0Om+8yYx+M9icvZmNWRu5PeV2pz2uM50oPcGx0mMYdIZubYsJ1yWJkOgTbNtjtlWh7iRCALdMTXJsYA5kUS1sybIem9diW8yWBEVFReHn52dfdcsqqUZf10Cov5GoQB+nxyXOslgsZGdnk5OTQ//+/Z1WtG5LzHfl76KyvpIAY9+brWXbFpsSO4Vg7+Aefa1ak5lv9+aQeqqEv1zpWgOTPZEkQqLPWJC0gFWZq/gh44dub4+5svSidErqSgjwCmBs1FinPrbZbLYnQeHh4fbbTWYL1eZaFIORqJBAaaLoAiIjI8nOzqahoQEvLy+nPGZiUCL9A/tzquIU23K2MTdxrlMe15ls22K2GYc9Uddg4dEv91FvtnDLlESGx0q7CS1JsbToM2bEz8BH70NWZRbpxend/joWi8qW44U8+91BlzoFYzuePCV2Cl4657zA2dhqgvz8/JrdXlJdjwr4GQ2SBLkI25aY2ezc7sW2Awt98Rh9RlkGR0qOYFAMXND/gh5/vWBfL+YMiwRgWZoLNnH1MJIIiT7Dz8vP3um1J6fHqk1mFn+4k/+34QRpp0sdFF3PaVkfZNN0lU1VVUqqrAlSmL9zEzPRNq1WQm3/LjdmbXSpNxCOsPrUagDOiz2vx9tiNraeQv9Ly8bi4k1c+zpJhESfYp89ltH92WMB3gYWpsQA8KWLjNworS11uWPzFhX8jHoMOh3Bvs4rzBWuaWL0RHz0PuRX53O09KjW4ThUs9liDjJnWBSBPgayy2rZkVHssK8ruk4SIdGnzIifga/B17o9VtT97bGrxlvfrS3fk01dgwO2GCxmOLkR9n1h/a+la19za85WLKqFwSGDifGP6Xk8DqDXKSSE+TEsNhC9znXrsWbPns3999/f6eszMjJQFIW0tDSHft3169ejKEqLU3dN5ebmMn/+fPz9/QkJCQGsKzzLli3r9ONoxcfgw6SYSUDfmkZvm2OoV/TM7e+42icfLz0XNb7hWpYmIze0JImQ6FP8vPzsLf9/yOz+9ti0QRFEB3lTVmNi3aH8ngWVvhxeTYGPFsHSxdb/vppivb2TbNtitu/NlehcvCj9yy+/5Jlnnun09QkJCeTk5JCSkgK0ncB09et2xiuvvEJOTg5paWkcOXIEgJycHC666CKg80maVpp2me4rbKfFJsZMJNQn1KFf27Y99t2+HOobLA792qLzJBESfc6CpAVAz7bH9DrF3vhsaU+2x9KXw+e3Qvk57/jKc6y3dyIZKqktsS/Nz0pwjf4l1XUN1NS7Zvftc4WFhREY2PkuwHq9npiYGAyG9g/VdvXrdsbx48eZMGECQ4YMISrK2jAzJiYGb29vhz5Ob7HVCe3O301Ffd/oJ7Uqw5oIOeK02LkmDwwnNtiHYTGBFFTWOfzri86RREj0OTP6OWh7bJx15Ma6Q/kUV3VjQKLFDCseBlpLxhpvW/FIh9tk/zn8H2rNtQwPG874qPFdj6MX5JTXcjS/kqLKOqrrG9r8qDU1/94ccW1XnbuFlZSUxF/+8hfuvPNOAgMD6d+/P2+//bb9801XXTIyMpgzZw4AoaGhKIrC7bff3urX/ec//8nEiRMJDAwkJiaGm266ifz8zq8mJiUlsXTpUj7++ONmj9N0a2zAgAEAjBs3DkVRmD17dpd/Hr0pITCBpKAkzKqZtafWah1Oj2VXZrO/aD86ReeQ02Ln0usU1jw4i8/+byrxIb4O//qic6SPkOhzfA2+zOw3kx8yfuCHjB8YGdG95orJMYGkxAdRWdvA6eJqwvy7WBCcuaXlSlAzKpRnWa8b0PqWV01DDf8++G8A7ky50yV6I9WZzFQ1zmIL9PFi6O+/b/PaOcmRfHDHefY/T3hmNTWm1hO/yQPC+Oz/ptr/PP35da0moBnPXdLd0O1eeuklnnnmGR577DG++OIL7r77bmbNmkVycnKz6xISEli6dClXX301hw8fJigoCF/f1l+wTCYTzzzzDMnJyeTn57NkyRJuv/12vvvuu07FtGPHDm699VaCgoJ47bXXWn2c7du3c95557F69WpGjhzp1O7RnXX54Mt5bddrfHjgQy4ddCk6xX3fb9u2xSZETyDCt3dGx/gZ5WVYa+77L1SIdtiWsVdmdn97DODDO85j3W9nMyYhpOt3rszr8XXLji2jpK6E+IB45iXO63oMvaCk2npkPtDHC6PBPZ9CLr74Yu655x4GDx7Mww8/TEREBOvWrWtxnV6vJywsDICoqChiYmIIDm79+PSdd97JRRddxMCBA5kyZQqvv/4633//PZWVlZ2KKTIyEm9vb3x9fdt8nMhIa++Z8PBwYmJi7LG5kuuTryfAK4BjpcdYf3q91uH0iH22mANPi7WloKKOo3l9YzvR3UgqKvqkpttjB4oOkBKR0q2vExHQg9qMgE5Ol27jugZLAx8d+AiA20behkGn/a+rqqr2RCjUz9o7KP3pBW1ef24hdeof2k7mzr1208Nzuhtmh0aPHm3/f0VRiImJ6dI2VmtSU1N56qmn2LNnDyUlJVgs1uLXU6dOMWLEiB59bXcSaAzk+uTreW//e7y37z3mJMxxiZXMrsqtymVvwV4UFOb17903IV+nZbHk8z1MHRjOv34+uVcfS7Tknm/nhOiAbXsMzvYA6Ylak5kjXX23ljgNguKAtl4EFAiKt17XitWZq8mqzCLUO5QrBl/RtcfuJdX1DZjMFvQ6hSAfayLkZzS0+XFut2lHXOsI546eUBTFnrh0R1VVFQsWLCAoKIhPPvmEHTt28NVXXwFQX9+N+jI397MRP8Nb783ewr3syN2hdTjdsjrT2kRxXNQ4Iv0ie/WxxvcPxdzY0f5EQedWEIXjSCIk+izb6bEfMn7o0fbY/qwyzvvzam57f3vXOsDq9LDw+cY/nJsMNf554XPW686hqirv738fgBuH34ivwTUKKUsbV4NC/IzoXLh3kCN1ZmTFoUOHKCoq4rnnnmPGjBkMGzasxytM3Y3FFUT4RnDl4CsBeHffuxpH0z322WJJjj8tdq6EMD/mDovCosJra/pWM0p3IImQ6LOmx0/H1+BLdlU2B4oOdPvrDI6yTtLOKavlpxNFXbvziMvguo8hKLb57UFx1ttHXNbq3X7K+YmDxQfxNfhyY/KN3Qnb4VRVpc5kXTUJ8/OckRqJiYkoisI333xDQUFBqzU//fv3x2g08sYbb3DixAmWL1/u8B5DYK1T8vX1ZcWKFeTl5VFWVubwx3CU21NuR6/o2ZqzlQOF3f/900JeVR6783cDOLSJYnsemD8UsDZxPZwrtULOJImQ6LOabo/1ZPaYj5eeRWPigG72FBpxGdy/H277Bq5+z/rf+/e1mQQBfLD/AwCuHHwlIT4h3Qnb4RRFISnSn4ER/vh60EmX+Ph4/vjHP/LII48QHR3Nvffe2+KayMhIPvzwQ/773/8yYsQInnvuOV588UWHx2IwGHj99df5f//v/xEXF8fll1/u8MdwlPiAeC4ecDHgfqtCa06tAWBM5BindXJPiQ/m4lExqCq8suqIUx5TWClqX5uO52Dl5eUEBwdTVlZGUFCQ1uGILlqVuYol65cQ5x/HiqtXdLtoMzWzmKv/sRU/o54dj8/D37v3EoGDRQe57pvr0Ct6vr3qW+ID4nvtsTqrtraWkydPMmDAAHx8fLQOR7TDlf6ujpUc48rlV6KgsOyKZQwMHqhpPJ11+4rbSc1L5aGJD3HryFud9rhH8yq48NUNqCr8797pjOrnmAGvnqqzr9+yIiT6tKbbY/sL9nR73tf4/qEMjPCnut7Me5tO9mLEZ1eDFiQtcIkkCKCqvgF5yyS6anDoYC5IuAAVlff3va91OJ1SWFPIrrxdgHOOzTc1JDqQK8bG42/Uc1yKpp1GEiHRp/kafJnVzzqWYuWXN3d73peiKNzfuIf/1o/Hya+o7ZV4z1Scsc9IuyPljl55jO74YNNJ8sprKa/xvBNQomd+PurnAHx74ltyKnM0jqZjazLXoKIyKmIUsQGxHd/BwR69aBgbfjfHPuJH9D5JhESfd6HeOihxpcHSfNhFF+Z9AVw6OpYxCSHUmsxsOdbFoulO+jj9YyyqhWlx0xgWNqxXHqOr6hrMrDmYR4NF9ZiTYsJxRkWOYnLMZBrUBj5K/0jrcNpmMcPJjaxK/wSAC3u5d1BbooJ8CO9J/zLRZW6TCBUXF3PzzTcTFBRESEgIixcv7nTHVlVVueiii5rN7BEewmJm+vZ/4muxkO1lYH+zkQSdn/cF1lWhv1yZwg/3z+yVd2sltSV8ddTae8aVVoPWHMynvLYBvU7B34OKpIXjLB61GIClR5ZSXFuscTStSF8Or6ZQ9M/L2FF+AoB5a17o9Juk3rLlWCG7T5VoGoMncJtE6Oabb+bAgQOsWrWKb775hg0bNvCLX/yiU/d99dVX3bKzqXCAzC34lmczq7oGgB8C/M65oMm8r04YGRfMkGjHThy3+fehf1NrrmVE+Agmx7hGd1mLReWdjdYXBj+jXn6PRLdMiZ3CyPCR1Jpr+Vf6v7QOp7n05daV4fJs1vr7YlEURtTV0a+0ayvGjvbh5pPc9O42nv4mvUd90ETH3CIROnjwICtWrODdd99l8uTJTJ8+nTfeeIP//Oc/ZGe3N9QS0tLSeOmll3j/ffco1BMO1jjHa0FVNQAr/f1anQXf6blgTRzNq2B/lmP6uFSbqvn3Ietw1TtS7nCZhGPprjPsPlWKj5eegF48KSf6NkVRuGvUXQD859B/qKx3kUJgixlWPIxtdXiVv/WN0vyqGrq6YuxoF4+OxcdLx+5Tpaw77PjmnOIst0iEtm7dSkhICBMnTrTfNm/ePHQ6Hdu2bWvzftXV1dx00028+eabxMR0rhdEXV0d5eXlzT6EG2uc4zW9phZfi4Ucg4F93q1M7O7sXLBGy/dks+DVDTzy5d6udZtuw7JjyyitK6VfQL9en2vUWWU1Jp77/hAAt05JRC/1QaIH5vSfw8DggVSYKvj8yOdah2OVuQXKrW+mMwwGtje2G7iw8Y1TV1eMHSkq0IfbpiUB8OIPRxzyPCNa5xaJUG5uLlFRUc1uMxgMhIWFkZub2+b9HnjgAaZNm9alpmPPPvsswcHB9o+EhIRuxy1cQOO8Lx8VZjduj30d4N/kgvbnfbXl/EHh+BsN7M8q5+s93Wiy2ESDpYGP0z8GXGe4KsDGowUUV9czKNKfK8f30zoc4eZ0io47U+4E4OMDH1NnrtM4IuwrwWbg95HhmBWF86tr6N/Q0Op1zvbLmYMI8DaQnlPOigNtv9aJntE0EXrkkUdQFKXdj0OHDnXray9fvpy1a9fy6quvdul+jz76KGVlZfaP06dPd+vxhYtoMu/rqooqAP4bGMAOH286mvfVnvAAb+6eMwiAF1YcptbU/aXzlRkryarMIswnzGWGqwIsGh3H8l9N54Vrx2A0uMV7pk6bPXs2999/v9ZheJyLB15MrH8sRbVFLDu6TOtw7CvBHwcHssfHmwCLhacKWynm7uKKsaOE+htZPH0AAC+vOoK5j60KmcwWnv5fOjllNZrGoemz24MPPsjBgwfb/Rg4cCAxMTEtBhg2NDRQXFzc5pbX2rVrOX78OCEhIRgMBgwG67vsq6++mtmzZ7cZk7e3N0FBQc0+hJtrnPc1xRjG1RWVqIrCY5HhlAe3P++rI3eeP4C4YB+yy2r5YHNGt76Gqqp8cMDaQPHGYTfiY3Ctrs2j+gUzvn+oY79o4zHl7jS21ML69etRFIXS0lKtQ3F7Xjovbht5GwAfHPiABktDB/foZYnTOB4ax99CQgD4XVEJMc0G2nZvxdiRFs8YQLCvF8fyK1new9VnV7PmYB7vbz7J9f/vJxrMFs3i0HQNPjIyksjIyA6vmzp1KqWlpaSmpjJhwgTAmuhYLBYmT279dM0jjzzCz3/+82a3jRo1ildeeYVLL72058EL9zLiMhh2Cb87sZbtO5/hNCX8ZcLFPNfNJAisM8geWpjMA5/t4e/rjnHdxH5d7v+xNWcrh4oP4Wvw5YbkG7odiyNtPlZIbLAPAyMDHP/F05dbi1PLmxxyCIqzrtr14O9CuI+rhlzF23vfJqsyixUZK1g0cJFmsTSg8vv4ROqrsphRXcMVlVVNPtv9FWNHCvLx4v9mDeTzHacJ8ulbw44XpsTy9i0TsKhg0Gu3LuMW693Dhw9n4cKF3HXXXWzfvp3Nmzdz7733csMNNxAXZx2GmZWVxbBhw9i+fTsAMTExpKSkNPsA65ToAQMGaPa9CA3p9PgNns+zc9+wzvE6+R3fn/y+R1/y8jHxpMQHUVHXwBtrj3X5/rZxGlcNucolhqtW1Jq4/7M0Fry6ga3HHdw0sskx5Wa62Niyq6qqqrj11lsJCAggNjaWl156qdnn//nPfzJx4kQCAwOJiYnhpptusq9AZ2RkMGfOHABCQ0NRFIXbb78dgBUrVjB9+nRCQkIIDw9n0aJFHD9+vFe+h77E1+DLz4b/DID39r2HRdVuJeCD/R+wvyqLQL0PT9Z50ew4QFDPVowdafH0AaxaMou5w7XZoutNF46MYWGKcwbbtsUtEiGATz75hGHDhjF37lwuvvhipk+fzttvv23/vMlk4vDhw1RXV7fzVYSwTpS+a7T1KO8zPz1DblX3ixB1OoXHLhpOkI+BxPBzexS1L70onZ9yfkKv6LllxC3djsGRXlt9lIKKOvqF+jE+McRxX/icY8rN9e4x5Yceeogff/yRr7/+mpUrV7J+/Xp27dpl/7zJZOKZZ55hz549LFu2jIyMDHuyk5CQwNKlSwE4fPgwOTk5vPbaa4A1wVqyZAk7d+5kzZo16HQ6rrzySiwW7V7Y3cX1w67H38ufY6XH2HBmgyYxHCk5wt/3/B2AR6c+QfRv9sNt38DV71n/e/8+l0iCALwNerw0XDFxtHWH8nttTFF3uMbxlE4ICwvj008/bfPzSUlJHTadkqZUwuYXo3/B5qzN7Cvcx+83/Z63L3wbndK9J5ppgyPY8ujcLvfZsa0GLRyw0CWGqx7Jq+CDLRkAPHnpCLwNDtwOaHJMuXVNjikPmOGwh62srOS9997jX//6F3PnzgXgo48+ol+/s6fg7rzzTvv/Dxw4kNdff51JkyZRWVlJQEAAYWFhAERFRRHSWEsC1nrDpt5//30iIyNJT0+3r0CL1gUZg7g++Xre3/8+7+x7h1n9Zjm1d5bJYuL3m35Pg6WB2QmzrdtziuLQf3u9ob7Bwmc7TuFnNHD1BPc8yXm6uJp7PtmF0aDjy3umMag3tuC7qO+kmEJ0gZfOi2dnPIuvwZdtudv4Z/o/279DBwW+XU2CTlecZmXmSgDuGKn9OA1VVXni6/2YLSoXjohmdnJUx3fqis4eP3bwMeXjx49TX1/frJYwLCyM5ORk+59TU1O59NJL6d+/P4GBgcyaZR3Se+rUqXa/9tGjR7nxxhsZOHAgQUFBJCUldep+wuqWEbdg1BnZW7CXnXk7nfrY7+59l4PFBwn2DubJqU+6TAPTjnydlsUfvj7As98foqbetQ8ZtEZVVR77ah81JjPJMYEMCPfv+E5OIImQ8FiJQYn8duJvAXht12scKTnS+oWNc4g6mlyvqiprDuax5LO0DlcfPz5gHa56ftz5JIclt3utM/xvbw4/nSjG26DjD4tGOP4BOnv82MnHlKuqqliwYAFBQUF88skn7Nixg6++ss57q6+vb/e+l156KcXFxbzzzjts27bN3ty1o/sJqwjfCK4cciUA7+5712mPe7DoIG/vtZZVPD75cSJ8I5z22D11+dh4EsJ8Kays46OtGVqH02VfpJ5h49FCvA06nrtqlMsMcZZESHi0a4dey6x+szBZTDyy8ZGWTd66UOBbWm3i1//ezZe7s/hmb06bj1lcW8yyY8sA1xiuWlnXwJ+/TQfgV3MGkxDWtVqnTmlsbAltPfH1zjHlQYMG4eXl1awDfUlJCUeOWJPeQ4cOUVRUxHPPPceMGTMYNmxYi1YdxsZBveYmx6qLioo4fPgwv//975k7dy7Dhw+npESGY3bVHSl3oFf0bMnewoGiA73+eCazicc3P06D2sD8xPksTFrY64/pSEaDjvvmDgXgrR+PU1Fr0jiizsuvqOWZb6zPMw/MH9o7p1K7SRIh4dEUReGpaU8R5hPG0ZKjvLHrjbOf7GKBb6i/kV/OsjZZfH7FIeoaWl+6tg1XHRk+kvNiznPgd9M9Rr2O26cNYFhMIL+YObB3HqRJY8uWyVDvHVMOCAhg8eLFPPTQQ6xdu5b9+/dz++23o9NZn/r69++P0WjkjTfe4MSJEyxfvpxnnnmm2ddITExEURS++eYbCgoKqKysJDQ0lPDwcN5++22OHTvG2rVrWbJkiUNj9wTxAfFcNOAiwHqCrLf9Y88/OFpylDCfMH4/5fdusyXW1JXj4hkU6U9ptYn3N2VoHU6nPfn1AcprGxgVH8zPp7vWyW1JhITHi/CN4I/T/gjA/2/vzuOirNq4gf9mBoZ9kdhlEVRQEFwDIQlQUJRMyq1yf93yBYtM03ozonxyLW0h6ykDtRIX3HLBhRxXlEJQkEJENpVFTWGQfea8f4zO48Q6OMMMM9f38+GDc99n7jkXZ2buy/uc+5xtOduQViqZgkGuAb6PzQtwgbWJHm49qMX21KJmz1DHxVX5OlwsCuqNw28FQF9XifOlPJ7YEqZ2stuVfJvy+vXrERAQgPHjxyMkJAQjRoyQzkdmZWWFhIQE7N69Gx4eHlizZg02bNgg8/yePXsiNjYWK1asgI2NDaKiosDlcpGYmIj09HQMGDAA77zzDtavX6+U+mu6uQPmAgBOFp3EzcqbSnud7HvZ+Clbsvj2h8M/hIW+hdJeS5l4XA7eCZVcFfrx7E08rFH/rtjj18pwNLsMOlwO1k70VumcQS3hMLqVqk1VVVUwMzNDZWUlzTKt4WJTY7Hn+h7YGNog6eUkmF0/IRkT1J6JWwCvSdKHu/4owXtJV2Gqr4Mz7wXD3PB/i7z+8tcvWJO2Bg7GDjj0yiHwVDhRG2MMIjHr0JdSXV0dCgoK4OLiAn39Z5z9WiySJI/V5ZIxQc7+Kp2wTtMotK26yOLfF0NQIkBEnwh8+sKn7ZaXV72oHlN+m4KblTcxttdYrAtcp/DX6EpiMcO4r87i7zIhFgX1xvKwfqquUpuq65uwPvlvmBnoYsnorhsT2dHzt3qlZYSo0LJhy+Bk4oTymnL859J/Oj3Ad+JQB/SzNUFVnewki03iJmy7JllcdbbnbJUmQQBwNLsM4746q/iJE9vD5UluU/aaJPlNSZDWm+clWQXgUP6hZ5rXqzVxmXG4WXkTz+k/hw98P1D48bsal8vBu6Pd8aKbFcaqeDLCjjDW00HshAHSK1nqhhIhQh4z1DXE6oDV4HF4OFpwFEfElZ0a4MvjcvD+uP4AgG2phdIFBY8VHsOdR3dgoW+BCX0mKDGS9tU0NGHVoRxcL69G6s0uToQI+ZeBVgPhY+uDJtaErde2KvTYmRWZ0mN+5PeRWszgrgihHjbY9n984O1gruqqtOrOw1qIn1ooVh2GArSEEiFCnuJt5Y0F3gsAAKsufYbS4Pcf75FvgG+gmxVmDHfG5mlDYWuqL1lc9fEEim/0e0Pli6t+8/sN3Kmsg0MPA/zfoN4qrQshADDXS9INnZSXhH/qWlgBvhNqm2qx8vxKiJkY413HY6TTSIUcl7TvUX0TJn+Xijd+vIjyKvWZRbollAgR8i/zvefD29IbwkYhPqw4DfHkhE4N8P00YgBGuJnhYP5BTD8yHbkPciWLq/ZT7eKqN+9W44ezkkGpH73kodwB0oR0kJ+dHzye80BtUy3iMuJQ0/jsyyV9nfE1CqsKYW1gjeU+yxVQS/VzV1iPjw9eQ+xvyp9+QB7rj+Xi9sNa3HpQK/eEs11NvWtHiArocnXxWcBnmPzbZKSVpWG7w4uYFZ0t1wDfgsoC7MrdhYP5B1HVUAUA0OHoIHpINMz0zLoqlGYYY/j4txw0ihgC3awQ6qF5iziS7onD4WCe1zwsESzBruuSz06gYyDG9hqLEQ4joMfTk+t46eXp+DnnZwBAjH+MSj93ynTzbjUSLhRCh8vBHH8XOMm55qEypBf9I53wcfWrXjCiRIiQ7sfZ1BnLnl+GT1I/wZeXv8Rwu+Fwb2cdokZRI1JKUrA7dzfSytKk2011rCG8OxTvB87ClP6eyq56m47nlOPM9bvg87j4+GVPte2zJ9opxCkE7z3/Hnbm7kRRVRGOFR7DscJjMNY1xkinkRjnMg6+dr7Q4bZ96qpprMHK8yvBwPBKn1fwosOLXRRB1/N1fQ4BfS1xNu8eFv2Sjh9nDYOdmYHK6lPXKMJ7e66CMWDyUAcE9LVSWV06irrGCGnFpL6TEOQQ1Pqs04/drr6Nry5/hdA9oVh2ehnSytLA5XAR5BCEuFFxiLD8GlVlgfj2ZAUamlS7Mvnxa5K1vOa/6AIXS/VY54eQJzgcDmZ4zMBvEb8h8aVEzPacDRtDG1Q3VuNg/kG8efJNjNw1EqsurkJ6eTrErOXP06bLm1AiLIGtkS2WPb+si6Poeitf8oCFER/X7lTh5W/OI6NYdbOcx526gfy7j2BloocPw5WwXI8S0DxC7aB5hLTb/dr7ePXgq/in7h/M9Jgp/VIViUU4d/scdubuxLnb58AezzRtaWCJV/u+ikl9J8HOWDKuqLq+CUHrT+FedQOWhLph8cg+KrsSwxjD0ewyBLlbwZDf8QvC3XFuGm2laW0lZmJkVmTiSMERnCg6ITOQ2sbQBmG9wjDWZSw8eriDU5yKtNKLmJsnmabi+9Dv4W+v2GVb1FXJPzWYv+1P/F0mBF+Hi7UTvfDK4K5doT7nThVe/uYcmsQM300fgrABdu0/SYk6ev6mRKgdlAiR0yWnEfV7FABg3YvrUFxVjD15e2TmOxluNxxT3KcgyDEIulzdZsf49VIxPtiXBQAY7WGD/7ziBSsT+cY8qJKmnVw1mSa3VZO4CWmlaThScAQpxSmobqyW7nMSMYRVVeGwsRFu6+pgcp0YHwWsVtqM5eqour4J7+zMxImcctiY6iHl3aAuHah87U4lluy8AlcrI2yePrTLXrc1lAgpCCVCBAA+Sf0Eu6/vltlmrmeOiD4RmOQ2Cc6mzm0+nzGGbwX52HTyOhpFDBZGfKyb6I2QLhisLBYzbL9YhIjBPWFm0DxJ64jufHINCgrCoEGDsGnTJlVXBfv378fSpUtRUFCAxYsXY9CgQYiOjsbDhw8V9hrdua3kUS+qx7nb53A0cwtO37+COu7/Rnr0bGxC0u0yGDGm1OVb1JFYzLDp5HWM6m+DgY7mXf76DU1i1DaKOv1do0gdPX/TYGlCOmDpsKVIL0/HzcqbGGw9GJPdJmN0r9EdvpOFw+EgMrgPgt2t8e7uK/irtApNYuWOF2KM4WzePaxN/hvX7lRhsyAfgmVBdLu8ggkEAgQHB+PBgwcwNzdvs+zChQsxZ84cvPXWWzAxMYGOjg7GjRsn3f/xxx9j//79yMzMVG6llaULl0/R4+lhlEMQRu2JQo2wFKcMDZBsZIh8vi7+c/c+jJgYAEeyMHK/cK2ZwZzL5TRbxuLU3xXoY20MRwvl3FEmFjNwuZLufr4OF3yd7jX8mBIhQjrAUNcQv4b/isr6Stgb23f6OB72pjgQ+QJO5JTL9J/fq66HpbHiusoyih9gXXKudNZoIz4P74T2pSRIhaqrq1FRUYExY8bA3v5/7yEDA9Xd4aNQOQeB5OWyCxWb2gNha5V3RebxwsiGAMIf1SD80b/nHnpqYeR27vrUVFm3KrHol3QY8nWwedoQ+Lo+p9DjNzSJMXfrH/B1scDCwN7QVbMFVTui+9WYEBUx0jV6piToCb4OF+He/0uCKoR1CP3iNJbvuQphXeMzHftGhRALtv2JV769gNSb98HncTF3hAvOvBeMqc87PWvVu62mpiZERUXBzMwMlpaWWLlyJZ4eFVBfX4+lS5eiZ8+eMDIygq+vLwQCgXR/UVERxo8fjx49esDIyAienp44cuQICgsLERwcDADo0aMHOBwOZs+e3ez1BQIBTExMAAAjR44Eh8OBQCBAQkKC9CpSQkICYmNjceXKFXA4HHA4HCQkJCjrT6JYOQeBXTNlkyAAqCqVbM85qJzXrS5XbDkNZGnCR19rE/zzqAHTfryExLRihRz3r9IqfPJbDoavTsHZvHv4VpCPCmHLd9aqO7oiRIiKnbl+Dw9rG7HzzxKcu3EP6yd5w7+PZaeOlV70AMdzysHlABOHOCA61A09zZVzxYExhtqmWqUcuz0GOgZy3Xm3detWzJ07F2lpafjzzz+xYMECODk5Yf78+QCAqKgo5OTkIDExEfb29ti3bx/CwsKQlZWFvn37IjIyEg0NDThz5gyMjIyQk5MDY2NjODo6IikpCRMnTkRubi5MTU1bvMLj7++P3NxcuLu7IykpCf7+/rCwsEBhYaG0zNSpU5GdnY3k5GScPHkSAGBm1g0mARSLJFeC0NJwUwa5uqfk7Vrr5MLI2sTOzAC7Fvph6Z4rOHy1FCv2ZiG3XIj/N64/dOS8evOwpgEHMu9gd3oJsm9XSbdbmejhk5c9lfZdo2yUCBGiYpOGOsDJwhBLd19B8T81eOPHS5jl54zlY/u1e4v7vep6lPxTg8FOPQBIkp+cO1WY4eeMPtYmSq13bVMtfH/1VeprtObSG5dgqNvx8Q6Ojo7YuHEjOBwO3N3dkZWVhY0bN2L+/PkoLi5GfHw8iouLpV1WS5cuRXJyMuLj4/HZZ5+huLgYEydOhJeXFwDA1dVVemwLCwsAgLW1datjhPh8PqytraXlbW2brxhuYGAAY2Nj6OjotLhfbT3unmpdB7unOtO15uwvKVNVipYTMY5kv7N23ELfGgM+D9+8PhjuNib44sR1xJ8vxI2KanzzxhC5BjWfv3EfMQclS3no8jgY1c8Gk4c5INDNSu6kSp1035oTokF8XCxw9O0ATB8u6b7amlqEcV+eRXpRy4tPVtU14ovjuXhx3SlE/ZqB+iYRAECHx0XshAFKT4K6m+HDh8tcQfLz80NeXh5EIhGysrIgEong5uYGY2Nj6c/p06eRn58PAHjrrbewatUqvPDCC4iJicHVq1dVFYr6UUT3VGe71rg8SaIEQN6FkbUNh8PBW6P6YvO0ITDQ5eFs3j3saKOb7ObdaqxN/hvbHy+VAQAhHtYY7mqBj17ywKUPQvDdjKEY1d+mWydBAF0RIkRtGOnpYFWEF0Z72GJ50lUU3q/B3su3MdTZQlqmrlGE7alF+FZwAw9qJOOJ+ljzUVFVr7Q7QlpjoGOAS29c6tLXfPq1FaW6uho8Hg/p6eng8WRPmMbGxgCAefPmYcyYMTh8+DCOHz+O1atX4/PPP8fixYsVVo9u61m7p561a83jZckt8i1eTVqjVbfOd8RYLzs4PWeIny8WY36Aq8w+YV0jDl8txe70W0gvksxO7WRhiGm+zuByOdDT4SFxgZ8qqq1UlAgRomZedLNCcvSLiDt1A2+P6gsAaBKJsTv9Fr5KyUNpZR0AwNXKCMtGuyNsgK1KZqrmcDhydU+p0qVLsgnbxYsX0bdvX/B4PAwePBgikQgVFRUICGi968bR0RFvvvkm3nzzTbz//vv44YcfsHjxYvD5fACASCR65nry+XyFHKdLPWv3lCK61jxeliRKXXTrfnfnaW+G1a96SR/XNDRhdvwfyLpVidpGyfuPywEC3awweZhji62qSSgRIkQNmRno4oNx/aWPuRwOktJvobSyDnZm+ngnxA2vDunZ7S9Jd5Xi4mIsWbIECxcuxOXLl/H111/j888/BwC4ublh2rRpmDlzJj7//HMMHjwYd+/eRUpKCry9vREeHo7o6GiMHTsWbm5uePDgAU6dOoX+/SXt4+zsDA6Hg0OHDmHcuHHSsT6d0atXLxQUFCAzMxMODg4wMTGBnp6az0D+pHtq10xIuqOePm12oHtKUXd+cXlae4v8s2CM4aMD15BWIOmGd7UywuShjnh1SE/YmGruhJxPo0SIkG7gfP49lFbW4cPw/pg+3JnmA5LTzJkzUVtbCx8fH/B4PLz99ttYsGCBdH98fDxWrVqFd999F7dv34alpSWGDx+Ol156CYDkak9kZCRu3boFU1NThIWFYePGjQCAnj17IjY2FitWrMCcOXMwc+bMTt/2PnHiROzduxfBwcF4+PAh4uPjW7wdX+08S/cU3fmlcoOdzGGsp4PxA+0xxMlcZWshqgotsdEOWmKDEO1ZtkETqLStOjOztFgEbBrQftdadBZ1dRG50BIbhBBCulZnuqeetWuNkGdEAwwIIYSo1pOuNVM72e2m9lq3aCrpenRFiBBCiOrRnV9ERSgRIoQQoh7ozi+iAtQ1RgghhBCtRYkQIaTD6CZT9UdtRIh8KBEihLRLV1eyMGNNTY2Ka0La09DQAADNlgshhLSMxggRQtrF4/Fgbm6OiooKAIChoaHWTbrWHYjFYty9exeGhobQ0aGvd0I6gj4phJAOsbW1BQBpMkTUE5fLhZOTEyWqhHQQJUKEkA7hcDiws7ODtbU1GhsbVV0d0go+nw8ul0Y9ENJRlAgRQuTC4/Fo/AkhRGPQfxsIIYQQorUoESKEEEKI1qJEiBBCCCFai8YItePJ5GRVVVUqrgkhhBBCOurJebu9SUYpEWqHUCgEADg6Oqq4JoQQQgiRl1AohJmZWav7OYzmY2+TWCzGnTt3YGJiotB5OaqqquDo6IiSkhKYmpoq7LjqRNNjpPi6P02PUdPjAzQ/Roqv8xhjEAqFsLe3b3NKCboi1A4ulwsHBwelHd/U1FQj39xP0/QYKb7uT9Nj1PT4AM2PkeLrnLauBD1Bg6UJIYQQorUoESKEEEKI1qJESEX09PQQExMDPT09VVdFaTQ9Roqv+9P0GDU9PkDzY6T4lI8GSxNCCCFEa9EVIUIIIYRoLUqECCGEEKK1KBEihBBCiNaiRIgQQgghWosSIQWKi4tDr169oK+vD19fX6SlpbVZfvfu3ejXrx/09fXh5eWFI0eOyOxnjOGjjz6CnZ0dDAwMEBISgry8PGWG0CZ54vvhhx8QEBCAHj16oEePHggJCWlWfvbs2eBwODI/YWFhyg6jTfLEmJCQ0Kz++vr6MmW6cxsGBQU1i4/D4SA8PFxaRp3a8MyZMxg/fjzs7e3B4XCwf//+dp8jEAgwZMgQ6OnpoU+fPkhISGhWRt7PtbLIG9/evXsRGhoKKysrmJqaws/PD8eOHZMp8/HHHzdrv379+ikxirbJG6NAIGjxPVpWViZTrru2YUufLw6HA09PT2kZdWrD1atX4/nnn4eJiQmsra0RERGB3Nzcdp+n6nMhJUIKsnPnTixZsgQxMTG4fPkyBg4ciDFjxqCioqLF8hcuXMDrr7+OuXPnIiMjAxEREYiIiEB2dra0zLp16/DVV1/hu+++w6VLl2BkZIQxY8agrq6uq8KSkjc+gUCA119/HadOnUJqaiocHR0xevRo3L59W6ZcWFgYSktLpT87duzoinBaJG+MgGQ21KfrX1RUJLO/O7fh3r17ZWLLzs4Gj8fD5MmTZcqpSxs+evQIAwcORFxcXIfKFxQUIDw8HMHBwcjMzER0dDTmzZsnkyx05j2hLPLGd+bMGYSGhuLIkSNIT09HcHAwxo8fj4yMDJlynp6eMu137tw5ZVS/Q+SN8Ync3FyZGKytraX7unMbfvnllzJxlZSUwMLCotlnUF3a8PTp04iMjMTFixdx4sQJNDY2YvTo0Xj06FGrz1GLcyEjCuHj48MiIyOlj0UiEbO3t2erV69usfyUKVNYeHi4zDZfX1+2cOFCxhhjYrGY2drasvXr10v3P3z4kOnp6bEdO3YoIYK2yRvfvzU1NTETExO2detW6bZZs2axCRMmKLqqnSZvjPHx8czMzKzV42laG27cuJGZmJiw6upq6TZ1a8MnALB9+/a1Wea9995jnp6eMtumTp3KxowZI338rH8zZelIfC3x8PBgsbGx0scxMTFs4MCBiquYAnUkxlOnTjEA7MGDB62W0aQ23LdvH+NwOKywsFC6TZ3bsKKiggFgp0+fbrWMOpwL6YqQAjQ0NCA9PR0hISHSbVwuFyEhIUhNTW3xOampqTLlAWDMmDHS8gUFBSgrK5MpY2ZmBl9f31aPqSydie/fampq0NjYCAsLC5ntAoEA1tbWcHd3x6JFi3D//n2F1r2jOhtjdXU1nJ2d4ejoiAkTJuDatWvSfZrWhlu2bMFrr70GIyMjme3q0obyau8zqIi/mToRi8UQCoXNPoN5eXmwt7eHq6srpk2bhuLiYhXVsPMGDRoEOzs7hIaG4vz589LtmtaGW7ZsQUhICJydnWW2q2sbVlZWAkCz99zT1OFcSImQAty7dw8ikQg2NjYy221sbJr1VT9RVlbWZvknv+U5prJ0Jr5/W758Oezt7WXezGFhYdi2bRtSUlKwdu1anD59GmPHjoVIJFJo/TuiMzG6u7vjp59+woEDB/Dzzz9DLBbD398ft27dAqBZbZiWlobs7GzMmzdPZrs6taG8WvsMVlVVoba2ViHve3WyYcMGVFdXY8qUKdJtvr6+SEhIQHJyMjZv3oyCggIEBARAKBSqsKYdZ2dnh++++w5JSUlISkqCo6MjgoKCcPnyZQCK+e5SF3fu3MHRo0ebfQbVtQ3FYjGio6PxwgsvYMCAAa2WU4dzIa0+T5RuzZo1SExMhEAgkBlM/Nprr0n/7eXlBW9vb/Tu3RsCgQCjRo1SRVXl4ufnBz8/P+ljf39/9O/fH99//z0+/fRTFdZM8bZs2QIvLy/4+PjIbO/ubagtfv31V8TGxuLAgQMy42fGjh0r/be3tzd8fX3h7OyMXbt2Ye7cuaqoqlzc3d3h7u4ufezv74/8/Hxs3LgR27dvV2HNFG/r1q0wNzdHRESEzHZ1bcPIyEhkZ2erdMxZR9EVIQWwtLQEj8dDeXm5zPby8nLY2tq2+BxbW9s2yz/5Lc8xlaUz8T2xYcMGrFmzBsePH4e3t3ebZV1dXWFpaYkbN248c53l9SwxPqGrq4vBgwdL668pbfjo0SMkJiZ26EtVlW0or9Y+g6ampjAwMFDIe0IdJCYmYt68edi1a1ezLoh/Mzc3h5ubW7dov9b4+PhI668pbcgYw08//YQZM2aAz+e3WVYd2jAqKgqHDh3CqVOn4ODg0GZZdTgXUiKkAHw+H0OHDkVKSop0m1gsRkpKiswVg6f5+fnJlAeAEydOSMu7uLjA1tZWpkxVVRUuXbrU6jGVpTPxAZKR/p9++imSk5MxbNiwdl/n1q1buH//Puzs7BRSb3l0NsaniUQiZGVlSeuvCW0ISG5tra+vx/Tp09t9HVW2obza+wwq4j2hajt27MCcOXOwY8cOmWkPWlNdXY38/Pxu0X6tyczMlNZfE9oQkNyNdePGjQ79Z0SVbcgYQ1RUFPbt24fff/8dLi4u7T5HLc6FChlyTVhiYiLT09NjCQkJLCcnhy1YsICZm5uzsrIyxhhjM2bMYCtWrJCWP3/+PNPR0WEbNmxgf/31F4uJiWG6urosKytLWmbNmjXM3NycHThwgF29epVNmDCBubi4sNraWrWPb82aNYzP57M9e/aw0tJS6Y9QKGSMMSYUCtnSpUtZamoqKygoYCdPnmRDhgxhffv2ZXV1dV0eX2dijI2NZceOHWP5+fksPT2dvfbaa0xfX59du3ZNWqY7t+ETI0aMYFOnTm22Xd3aUCgUsoyMDJaRkcEAsC+++IJlZGSwoqIixhhjK1asYDNmzJCWv3nzJjM0NGTLli1jf/31F4uLi2M8Ho8lJydLy7T3N1Pn+H755Remo6PD4uLiZD6DDx8+lJZ59913mUAgYAUFBez8+fMsJCSEWVpasoqKii6PjzH5Y9y4cSPbv38/y8vLY1lZWeztt99mXC6XnTx5UlqmO7fhE9OnT2e+vr4tHlOd2nDRokXMzMyMCQQCmfdcTU2NtIw6ngspEVKgr7/+mjk5OTE+n898fHzYxYsXpfsCAwPZrFmzZMrv2rWLubm5MT6fzzw9Pdnhw4dl9ovFYrZy5UpmY2PD9PT02KhRo1hubm5XhNIieeJzdnZmAJr9xMTEMMYYq6mpYaNHj2ZWVlZMV1eXOTs7s/nz56vky+lp8sQYHR0tLWtjY8PGjRvHLl++LHO87tyGjDH2999/MwDs+PHjzY6lbm345Fbqf/88iWnWrFksMDCw2XMGDRrE+Hw+c3V1ZfHx8c2O29bfrCvJG19gYGCb5RmTTBdgZ2fH+Hw+69mzJ5s6dSq7ceNG1wb2FHljXLt2LevduzfT19dnFhYWLCgoiP3+++/Njttd25Axya3iBgYG7L///W+Lx1SnNmwpNgAynyt1PBdyHleeEEIIIUTr0BghQgghhGgtSoQIIYQQorUoESKEEEKI1qJEiBBCCCFaixIhQgghhGgtSoQIIYQQorUoESKEEEKI1qJEiBBCCCFaixIhQgghhGgtSoQIIYQQorUoESKEaJW7d+/C1tYWn332mXTbhQsXwOfzm62CTQjRfLTWGCFE6xw5cgQRERG4cOEC3N3dMWjQIEyYMAFffPGFqqtGCOlilAgRQrRSZGQkTp48iWHDhiErKwt//PEH9PT0VF0tQkgXo0SIEKKVamtrMWDAAJSUlCA9PR1eXl6qrhIhRAVojBAhRCvl5+fjzp07EIvFKCwsVHV1CCEqQleECCFap6GhAT4+Phg0aBDc3d2xadMmZGVlwdraWtVVI4R0MUqECCFaZ9myZdizZw+uXLkCY2NjBAYGwszMDIcOHVJ11QghXYy6xgghWkUgEGDTpk3Yvn07TE1NweVysX37dpw9exabN29WdfUIIV2MrggRQgghRGvRFSFCCCGEaC1KhAghhBCitSgRIoQQQojWokSIEEIIIVqLEiFCCCGEaC1KhAghhBCitSgRIoQQQojWokSIEEIIIVqLEiFCCCGEaC1KhAghhBCitSgRIoQQQojWokSIEEIIIVrr/wPXKlmxBVYiJwAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# create a fitting model based on a cosine function\n",
"fitting_model = lmfit.Model(cos_func)\n",
"\n",
"# specify initial guesses for each parameter\n",
"fitting_model.set_param_hint(\"amplitude\", value=0.5, min=0.1, max=2, vary=True)\n",
"fitting_model.set_param_hint(\"frequency\", value=0.8, vary=True)\n",
"fitting_model.set_param_hint(\"phase\", value=0)\n",
"fitting_model.set_param_hint(\"offset\", value=0)\n",
"params = fitting_model.make_params()\n",
"\n",
"# here we run the fit\n",
"fit_result = fitting_model.fit(dataset.y0.values, x=dataset.x0.values, params=params)\n",
"\n",
"# It is possible to get a quick visualization of our fit using a build-in method of lmfit\n",
"_ = fit_result.plot_fit(show_init=True)"
]
},
{
"cell_type": "markdown",
"id": "488679bd",
"metadata": {},
"source": [
"The summary of the fit result can be nicely printed in a Jupyter-like notebook:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "e6f191c1",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
Fit Result
Model: Model(cos_func)
Fit Statistics
fitting method
leastsq
# function evals
37
# data points
30
# variables
4
chi-square
0.07213340
reduced chi-square
0.00277436
Akaike info crit.
-172.913063
Bayesian info crit.
-167.308273
R-squared
0.98069047
Parameters
name
value
standard error
relative error
initial value
min
max
vary
frequency
1.00661775
0.00878297
(0.87%)
0.8
-inf
inf
True
amplitude
0.48553175
0.01344018
(2.77%)
0.5
0.10000000
2.00000000
True
offset
0.00963743
0.01039241
(107.83%)
0.0
-inf
inf
True
phase
-0.03439362
0.06210019
(180.56%)
0.0
-inf
inf
True
Correlations (unreported values are < 0.100)
Parameter1
Parameter 2
Correlation
frequency
phase
-0.8878
frequency
offset
-0.3757
offset
phase
+0.3337
frequency
amplitude
-0.1082
"
],
"text/plain": [
""
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fit_result"
]
},
{
"cell_type": "markdown",
"id": "3a6641e6",
"metadata": {},
"source": [
"### Analyzing the fit result and saving key quantities"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "4c8a7ea6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'amplitude': 0.4855317458599758, 'frequency': 1.006617745826255}"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"quantities_of_interest = {\n",
" \"amplitude\": fit_result.params[\"amplitude\"].value,\n",
" \"frequency\": fit_result.params[\"frequency\"].value,\n",
"}\n",
"quantities_of_interest"
]
},
{
"cell_type": "markdown",
"id": "54821380",
"metadata": {},
"source": [
"Now that we have the relevant quantities, we want to store them in the same\n",
"`experiment directory` where the raw dataset is stored.\n",
"\n",
"First, we determine the experiment directory on the file system."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "2084197a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"PosixPath('/root/quantify-data/20250818/20250818-113135-911-b75356-Cosine experiment')"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# the experiment folder is retrieved with a convenience function\n",
"exp_folder = Path(locate_experiment_container(dataset.tuid))\n",
"exp_folder"
]
},
{
"cell_type": "markdown",
"id": "033c7543",
"metadata": {},
"source": [
"Then, we save the quantities of interest to disk in the human-readable JSON format."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "57d7ca8f",
"metadata": {},
"outputs": [],
"source": [
"with open(exp_folder / \"quantities_of_interest.json\", \"w\", encoding=\"utf-8\") as file:\n",
" json.dump(quantities_of_interest, file)"
]
},
{
"cell_type": "markdown",
"id": "9054cdd5",
"metadata": {},
"source": [
"### Plotting and saving figures\n",
"\n",
"We would like to save a plot of our data and the fit in our lab logbook but the figure above is not fully satisfactory: there are no units and no reference to the original dataset.\n",
"\n",
"Below we create our own plot for full control over the appearance and we store it on disk in the same `experiment directory`.\n",
"For plotting, we use the ubiquitous matplotlib and some visualization utilities."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "81af206d",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHgCAYAAAChG7dTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC77UlEQVR4nOzdd3hUZfbA8e+dSZl0SA9JSIMQQuiQ0IuisCqIHdeCvayu7qqri7oirg39rau7dta69rqKChYEAaVDgBBqSEggPYH0OnN/f9zJkCEJJJDkziTn8zx5SO7cmTmZMDNn3ve851VUVVURQgghhOjBDHoHIIQQQgjR1SThEUIIIUSPJwmPEEIIIXo8SXiEEEII0eNJwiOEEEKIHk8SHiGEEEL0eJLwCCGEEKLHk4RHCCGEED2eJDxCCCGE6PEk4RFC2CiKwqOPPqp3GE4nOjqa6667Tu8whBAnIQmPEA4qIyODW2+9ldjYWEwmE76+vkycOJEXXniBmpoavcMTTiY9PZ1HH32UrKwsvUMRQhcuegcghGjp22+/5bLLLsPd3Z1rr72WpKQk6uvrWbt2LX/5y1/YtWsXr7/+eqffb01NDS4u8rLQUXv37sVgcOzPj+np6SxatIhp06YRHR2tdzhCdDt5ZRPCwWRmZjJv3jyioqL4+eefCQsLs112xx13cODAAb799tsuuW+TydQlt9sTqapKbW0tHh4euLu76x2OEOIUHPsjiRC90DPPPENlZSVvvPGGXbLTZMCAAdx99922nxsbG/n73/9OXFwc7u7uREdH8+CDD1JXV2d3vc2bNzNz5kwCAwPx8PAgJiaGG264we6cE2t4Hn30URRF4cCBA1x33XX06dMHPz8/rr/+eqqrq1vE9t577zF69Gg8PDzw9/dn3rx55OTktOv3PnLkCDfccAMhISG4u7szZMgQ3nzzTdvlNTU1JCQkkJCQYDelV1paSlhYGBMmTMBsNgNw3XXX4e3tzcGDB5k5cyZeXl7069ePxx57DFVV7e7XYrHw/PPPM2TIEEwmEyEhIdx6660cPXrU7rzo6GguuOACvv/+e8aMGYOHhwevvfaa7bLmNTxvv/02iqKwdu1a7rrrLoKCgujTpw+33nor9fX1HDt2jGuvvZa+ffvSt29f7r///jOOa+3atSQnJ2MymYiNjeXdd9+1i+eyyy4DYPr06SiKgqIorFq1ql1/GyF6BFUI4VDCw8PV2NjYdp8/f/58FVAvvfRS9aWXXlKvvfZaFVDnzp1rO6egoEDt27evGh8frz777LPqkiVL1IceekgdPHiw3W0B6sKFC20/L1y4UAXUkSNHqhdffLH68ssvqzfddJMKqPfff7/ddR9//HFVURT1iiuuUF9++WV10aJFamBgoBodHa0ePXr0pL9Dfn6+GhERoUZGRqqPPfaY+sorr6hz5sxRAfWf//yn7bz169erRqNR/fOf/2w7Nm/ePNXDw0Pdu3ev3WNiMpnUgQMHqtdcc4364osvqhdccIEKqH/729/s7vumm25SXVxc1Jtvvll99dVX1QceeED18vJSx44dq9bX19vOi4qKUgcMGKD27dtX/etf/6q++uqr6sqVK22XzZ8/33buW2+9pQLqiBEj1FmzZqkvvfSSes0119get0mTJqm///3v1ZdfftkW1zvvvHPacQ0aNEgNCQlRH3zwQfXFF19UR40apSqKoqalpamqqqoZGRnqXXfdpQLqgw8+qP73v/9V//vf/6r5+fkn/bsI0ZNIwiOEAykrK1MB9cILL2zX+ampqSqg3nTTTXbH77vvPhVQf/75Z1VVVfXLL79UAXXTpk0nvb22Ep4bbrjB7ryLLrpIDQgIsP2clZWlGo1G9YknnrA7b+fOnaqLi0uL4ye68cYb1bCwMLW4uNju+Lx581Q/Pz+1urradmzBggWqwWBQV69erX766acqoD7//PN212tKAv/4xz/ajlksFvX8889X3dzc1KKiIlVVVXXNmjUqoL7//vt211++fHmL41FRUSqgLl++vEX8bSU8M2fOVC0Wi+34+PHjVUVR1Ntuu812rLGxUY2IiFCnTp1qO3Y6ca1evdp2rLCwUHV3d1fvvfde27Gmx6opSROit5EpLSEcSHl5OQA+Pj7tOv+7774D4J577rE7fu+99wLYan369OkDwDfffENDQ0OH47rtttvsfp48eTIlJSW2eL/44gssFguXX345xcXFtq/Q0FAGDhzIypUr27xtVVX5/PPPmT17Nqqq2l1/5syZlJWVsXXrVtv5jz76KEOGDGH+/Pn84Q9/YOrUqdx1112t3vadd95p+15RFO68807q6+v56aefAPj000/x8/PjnHPOsbvf0aNH4+3t3SLumJgYZs6c2e7H7cYbb0RRFNvPKSkpqKrKjTfeaDtmNBoZM2YMBw8etB3raFyJiYlMnjzZ9nNQUBCDBg2yu00hejspWhbCgfj6+gJQUVHRrvMPHTqEwWBgwIABdsdDQ0Pp06cPhw4dAmDq1KlccsklLFq0iH/+859MmzaNuXPn8vvf/75dBbf9+/e3+7lv374AHD16FF9fX/bv34+qqgwcOLDV67u6urZ520VFRRw7dozXX3+9zZVnhYWFtu/d3Nx48803GTt2LCaTibfeessuqWhiMBiIjY21OxYfHw9gW5q9f/9+ysrKCA4OPuX9gpbwdMSJj5ufnx8AkZGRLY43r83paFwn3g9of6MT632E6M0k4RHCgfj6+tKvXz/S0tI6dL3W3vBPvPyzzz5j/fr1LF26lO+//54bbriBf/zjH6xfvx5vb++TXt9oNLZ6XLUW2losFhRFYdmyZa2ee7Lbt1gsAFx99dXMnz+/1XOGDRtm9/P3338PQG1tLfv37+9wItL8voODg3n//fdbvTwoKMjuZw8Pjw7dfluPW2vH1WZFyx2N61R/HyGEJDxCOJwLLriA119/nXXr1jF+/PiTnhsVFYXFYmH//v0MHjzYdrygoIBjx44RFRVld/64ceMYN24cTzzxBB988AFXXXUVH330ETfddNMZxRwXF4eqqsTExNhGUdorKCgIHx8fzGYzM2bMOOX5O3bs4LHHHuP6668nNTWVm266iZ07d9pGT5pYLBYOHjxoF8++ffsAbH1o4uLi+Omnn5g4cWKHk5mu1BVxnSopFqKnkxoeIRzM/fffj5eXFzfddBMFBQUtLs/IyOCFF14A4LzzzgPg+eeftzvnueeeA+D8888HtKmnEz/tjxgxAqDF8vXTcfHFF2M0Glm0aFGL+1FVlZKSkjavazQaueSSS/j8889bHdkqKiqyfd/Q0MB1111Hv379eOGFF3j77bcpKCjgz3/+c6u3/eKLL9rF8eKLL+Lq6srZZ58NwOWXX47ZbObvf/97i+s2NjZy7Nixk/7eXaUr4vLy8gLQ7XcSQm8ywiOEg4mLi+ODDz7giiuuYPDgwXadln/77Tc+/fRTW8+X4cOHM3/+fF5//XWOHTvG1KlT2bhxI++88w5z585l+vTpALzzzju8/PLLXHTRRcTFxVFRUcGSJUvw9fW1JU1nGvPjjz/OggULyMrKYu7cufj4+JCZmcmXX37JLbfcwn333dfm9Z9++mlWrlxJSkoKN998M4mJiZSWlrJ161Z++uknSktLAXj88cdJTU1lxYoV+Pj4MGzYMB555BEefvhhLr30UrvfxWQysXz5cubPn09KSgrLli3j22+/5cEHH7RNCU2dOpVbb72Vp556itTUVM4991xcXV3Zv38/n376KS+88AKXXnrpGT8+HdUVcY0YMQKj0cjixYspKyvD3d2ds846q806ISF6HH0WhwkhTmXfvn3qzTffrEZHR6tubm6qj4+POnHiRPXf//63WltbazuvoaFBXbRokRoTE6O6urqqkZGR6oIFC+zO2bp1q3rllVeq/fv3V93d3dXg4GD1ggsuUDdv3mx3n7SxLL1pGXeTpmXXmZmZdsc///xzddKkSaqXl5fq5eWlJiQkqHfccYddj5y2FBQUqHfccYcaGRmpurq6qqGhoerZZ5+tvv7666qqquqWLVtUFxcXu6Xmqqot6x47dqzar18/W7+f+fPnq15eXmpGRoZ67rnnqp6enmpISIi6cOFC1Ww2t7jv119/XR09erTq4eGh+vj4qEOHDlXvv/9+NTc313ZOVFSUev7557cae1vL0k9sA9DW49kUb2fGNXXqVLul7qqqqkuWLFFjY2NVo9EoS9RFr6OoqlS1CSF6luuuu47PPvuMyspKvUMRQjgIqeERQgghRI8nCY8QQgghejxJeIQQQgjR40kNjxBCCCF6PBnhEUIIIUSPJwmPEEIIIXo8SXiEU3n77bdRFMW2+ePJREdH2xr0CSHOXNOO80I4I0l4RLf57bffePTRR52itf2ePXu4//77GTFiBD4+PoSFhXH++eezefPmVs8/cuQIl19+OX369MHX15cLL7yQgwcP2p2Tk5PDokWLSE5Opm/fvgQGBjJt2jR++umnFrfXlNi19pWfn9/i/K+//ppRo0ZhMpno378/CxcupLGxscV5W7Zs4YILLiA0NBRvb2+GDRvGv/71L8xms915H3/8MVdffTUDBw5EURSmTZvW5mO1f/9+5s2bR0REBJ6eniQkJPDYY49RXV3d5nVO574qKytZuHAhs2bNwt/fH0VRePvtt1s9d8mSJUydOpWQkBDc3d2JiYnh+uuvbzVRfuWVV7jsssvo378/iqK0mSSvXr2aOXPmEBkZiclkIjQ0lFmzZvHrr7+2OHfatGmt/u1mzZrVrscE4Mcff2TSpEl4enrSt29fLr300lbj74rH70xdd911bf7/VRSFI0eO2M5t72O1a9cuLrvsMmJjY/H09CQwMJApU6awdOnSdt9/QkJCq/FmZGTw+9//nuDgYDw8PBg4cCAPPfRQ5z4oQneytYToNr/99huLFi3iuuuuo0+fPqd1G9dccw3z5s3D3d29c4M7wX/+8x/eeOMNLrnkEv7whz9QVlbGa6+9xrhx41i+fLndJpeVlZVMnz6dsrIyHnzwQVxdXfnnP//J1KlTSU1NJSAgAICvvvqKxYsXM3fuXObPn09jYyPvvvsu55xzDm+++SbXX399izgee+yxFjuBn/jYLVu2jLlz5zJt2jT+/e9/s3PnTh5//HEKCwt55ZVXbOdt2bKFCRMmMHDgQB544AE8PT1ZtmwZd999t93+XKAlAVu2bGHs2LEn3QcrJyeH5ORk/Pz8uPPOO/H392fdunUsXLiQLVu28NVXX53ysW7vfRUXF/PYY4/Rv39/hg8fzqpVq9o8d9u2bcTExDBnzhz69u1LZmYmS5Ys4ZtvvmH79u3069fPdu7ixYupqKggOTmZvLy8Nm9z3759GAwGbrvtNkJDQzl69CjvvfceU6ZM4dtvv23xBh0REcFTTz1ld6z5/Z7MN998w4UXXsioUaN4+umnKS8v54UXXmDSpEls27bNbrf0rnj8ztStt97aYiNYVVW57bbbiI6OJjw83O6y9jxWhw4doqKigvnz59OvXz+qq6v5/PPPmTNnDq+99hq33HKL3fnu7u785z//sTt24gazAKmpqUybNo3w8HDuvfdeAgICyM7OJicnp8O/t3BwuvZ5Fr3Ks88+2+p2BF3lxHb/HbF582a1oqLC7lhxcbEaFBSkTpw40e744sWLVUDduHGj7dju3btVo9GoLliwwHYsLS2txZYCtbW1akJCghoREWF3vK2tCVqTmJioDh8+XG1oaLAde+ihh1RFUdTdu3fbjt18882qm5ubWlJSYnf9KVOmqL6+vnbHsrOzbVswDBkypMUWBU2eeOIJFVDT0tLsjl977bUqoJaWlp4y/vbeV21trZqXl6eqqqpu2rRJBdS33nrrlLffZPPmzSqgPvXUU3bHs7KyVIvFoqqqqnp5eXXo/0xVVZUaEhKizpw50+741KlT1SFDhrT7dk6UmJioDhgwQK2rq7MdS01NVQ0Gg3rPPffYndtdj5+qaluP3HHHHR26TpM1a9aogPrEE0/YHT+Tx6qxsVEdPny4OmjQILvjbW3VcSKz2awmJSWpKSkpanV19WnFIJyHTGmJbvHoo4/yl7/8BYCYmBjbEHNWVhZZWVltDq8risKjjz5q+7m1Gh5VVXn88cdtUyrTp09n165drcaRkZFBRkbGKeMdPXo03t7edscCAgKYPHkyu3fvtjv+2WefMXbsWMaOHWs7lpCQwNlnn80nn3xiOzZkyBACAwPtruvu7s55553H4cOHqaioaDWWioqKFlNOTdLT00lPT+eWW27BxeX4gO0f/vAHVFXls88+sx0rLy/HZDK1GCEKCwvDw8PD7lhkZCQGw6lfHsrLywEICQlpcZsGgwE3N7dT3kZ778vd3Z3Q0NBTnteW6OhooOVu4VFRUSiKclq36enpSVBQUJvTtI2NjR3e3qK0tJT09HQuuugiu8dv+PDhDB48mI8++sju/O56/Jp7//33GTRoECaTidGjR7N69epTXueDDz5AURR+//vft3r56TxWRqORyMjINh9/s9ls+z/amh9++IG0tDQWLlyIh4cH1dXVbT7XhPOThEd0i4svvpgrr7wSgH/+85/897//5b///a/d0PzpeuSRR/jb3/7G8OHDefbZZ4mNjeXcc8+lqqqqxblnn302Z5999mnfV35+vl3SYrFY2LFjB2PGjGlxbnJyMhkZGW0mMs1v09PTE09PzxaXTZ8+HV9fXzw9PZkzZw779++3u3zbtm0ALe6/X79+RERE2C4HrVaivLycW2+9ld27d3Po0CFeffVVvvjiCxYsWHDqX74VTfUiN954I6mpqeTk5PDxxx/zyiuvcNddd+Hl5XVat9tZSkpKKCwsZPPmzbYpwzP5+4OW5BUXF7Nnzx4efPBB0tLSWr3Nffv24eXlhY+PD6Ghofztb3+joaHhlLdfV1cH0CIJBS3Bys3NbbWOq7v88ssv/OlPf+Lqq6/mscceo6SkhFmzZpGWltbmdRoaGvjkk0+YMGGCLfFsriOPVVVVFcXFxWRkZPDPf/6TZcuWtfr4V1dX4+vri5+fH/7+/txxxx0tEqqm+jl3d3fGjBmDl5cXnp6ezJs3j9LS0g48KsIZSA2P6BbDhg1j1KhRfPjhh8ydO9fuRa+oqOi0b7eoqIhnnnmG888/n6VLl9o+qT/00EM8+eSTZxq2nTVr1rBu3Toefvhh27HS0lLq6uoICwtrcX7TsdzcXAYNGtTqbR44cIAvvviCyy67DKPRaDvu6enJddddZ0t4tmzZwnPPPceECRPYunUrkZGRALaak7buPzc31/bzzTffzK5du3jttddstQ1Go5EXX3yR2267raMPBwCzZs3i73//O08++SRff/217fhDDz3E448/flq32ZnCw8NtCURAQAD/+te/OOecc87oNi+//HK+//57ANzc3Lj11lv529/+ZndOXFwc06dPZ+jQoVRVVfHZZ5/x+OOPs2/fPj7++OOT3n5ISAh9+vRpUQxdUlJCeno6oBXJd9ZoTUelpaWxefNmRo8eDcC8efMYNGgQjzzyCF988UWr1/n+++8pKSnhqquuanFZRx+re++9l9deew0Ag8HAxRdfzIsvvmh3TlhYGPfffz+jRo3CYrGwfPlyXn75ZbZv386qVatso6FNHyAuv/xyZs2axYIFC9i+fTtPPfUUOTk5rF279rRH/4TjkYRHOLWffvqJ+vp6/vjHP9q9MP3pT39qNeFpz3L21hQWFvL73/+emJgY7r//ftvxmpoagFaLqE0mk905J6quruayyy7Dw8ODp59+2u6yyy+/nMsvv9z289y5c5k5cyZTpkzhiSee4NVXX23X/TcfzjcajcTFxTFz5kwuu+wyTCYTH374IX/84x8JDQ1l7ty57XkoWoiOjmbKlClccsklBAQE8O233/Lkk08SGhqq+xLmZcuWUVtby+7du3nvvfdaHfXrqKeffpp7772XnJwc3nnnHerr61usiHvjjTfsfr7mmmu45ZZbWLJkCX/+858ZN25cm7dvMBi49dZbWbx4MQsWLOCGG26gvLyc+++/n/r6eqDt/1PdYfz48bZkB6B///5ceOGFLF26FLPZbJe4N/nggw9wdXW1+z/dpKOP1Z/+9CcuvfRScnNz+eSTTzCbzbbHpcmJBdDz5s0jPj6ehx56iM8++4x58+YB2EZ8xo4dy3vvvQfAJZdcgqenJwsWLGDFihUtiq+F85IpLeHUDh06BMDAgQPtjgcFBdG3b99OuY+qqiouuOACKioq+Oqrr+xqe5qmHZpGEZqrra21O6c5s9nMvHnzSE9P57PPPmvX6p1JkyaRkpJit4z9VPff/L6ffvppFi9ezIcffsi1117L5ZdfzpdffsmkSZO44447Wl3GfiofffQRt9xyC//5z3+4+eabufjii3njjTeYP38+DzzwgG3VUGlpKfn5+bavsrKyDt/X6Zg+fTq/+93vuOeee/j0009ZtGhRi9GAjhoxYgTnnHMON9xwAz/++CMbN25sV7+ne++9Fzg+jVJfX2/3mOTn59vqRx577DFuvPFGnnnmGeLj4xkzZgwuLi7ceOONAC3qyzpTWVmZXUwnTu2c+FwDiI+Pp7q6utXR2srKSr766itmzpxpW7F4Kic+Vs0lJCQwY8YMrr32Wr755hsqKyuZPXs26il2Sfrzn/+MwWBo9fnTNN3epKnO6LfffmtXvMI5SMIjdNfWkLEjFA/W19dz8cUXs2PHDr766iuSkpLsLvf398fd3b3V5cxNx1pLZm6++Wa++eYb3n77bc4666x2xxMZGWn3BtQ0ldXW/Te/75dffpmzzjqrxZvlnDlzyM3NPa3Rr5dffpmRI0cSERHR4jarq6ttNUQXX3wxYWFhtq+77767w/d1puLi4hg5ciTvv/9+p92mm5sbc+bM4YsvvjjlqEvTNGTT3++3336ze0zCwsJsS6Hd3Nz4z3/+Q25uLqtXr2bv3r18//33lJWVYTAYGDBgQKf9Die6++677WK6+OKLz+j2/ve//1FdXd3qdFZbTnysTubSSy9l06ZN7Nu376TneXh4EBAQYHebTc+PE4vug4ODATh69Gi7YxaOT6a0RLdpK7FpGok5caVF0+jNyURFRQHaXHxsbKzteFFR0Rm/WFksFq699lpWrFjBJ598wtSpU1ucYzAYGDp0aKsNCTds2EBsbCw+Pj52x//yl7/w1ltv8fzzz7f4ZHkqBw8etCv0HjFiBACbN28mOTnZdjw3N5fDhw/b9SYpKChoNYlsKg49nRGegoKCVkfSTrzNf/zjH3Z/j/b2o+lsNTU1rY6GneltqqpKRUVFq6N5TZoaUTb9/YYPH86PP/5od86JdTkhISG2N2Oz2cyqVatISUnp0hGe+++/n6uvvtr284l/3xML50ErOm5asXai999/H29vb+bMmdPuGE58rE6mKdE81ahhRUUFxcXFdrc5evRolixZYtcIEbDVvnXGogrhQPRdFS96k1deeUUF1G3btrW4LDAwUL3ooovsjt17770qoC5cuNB2rKk/TVMvn8LCQtXV1VU9//zzbb1UVFVVH3zwQRVo0VPlwIED6oEDB9oV7x/+8AcVUF977bWTnvf000+36JmzZ88e1Wg0qg888IDduc8884wKqA8++OBJb7OwsLDFsW+//VYF1LvuusvueEJCgjp8+HC1sbHRduzhhx9WFUVR09PTbceSkpJUf39/tbi42HassbFRHT16tOrj46PW19e3GsvJertccMEFqpubm7p3716743PnzlUNBoN65MiRk/6eHbmv5k7WR6ahoaHV/j8bNmxQjUajes0117R5uyfrw1NQUNDi2NGjR9XIyEg1MjLSdqysrEytra21O89isahXXHGFCqhbtmxp8/5Ppun/2WeffdbmOZ3x+J0M0OJ3yM7OVk0mkzp37twW5xcWFqouLi5tPuYdeaxae/zr6+vVUaNGqR4eHra+WTU1NWp5eXmLc//yl7+ogPrFF1/YjuXl5anu7u7qpEmTbL2MVFVVFyxY0KK3lnB+MsIjuk1ToeNDDz3EvHnzcHV1Zfbs2Xh5eXHTTTfx9NNPc9NNNzFmzBhWr159yiFq0D6B3XfffTz11FNccMEFnHfeeWzbto1ly5a16HkDx5ckn2r65vnnn+fll19m/PjxeHp62goam1x00UW2Jdd/+MMfWLJkCeeffz733Xcfrq6uPPfcc4SEhNhqEQC+/PJL7r//fgYOHMjgwYNb3OY555xj+zQ/YcIERo4cyZgxY/Dz82Pr1q28+eabREZG8uCDD9pd79lnn2XOnDmce+65zJs3j7S0NF588UVuuukmBg8ebDvvr3/9K1dffTUpKSnccssteHh48OGHH7JlyxYef/xxXF1dbeeuXr3a1lulqKiIqqoq26qrKVOmMGXKFEAbrVq2bBmTJ0/mzjvvJCAggG+++YZly5Zx0003tWskp733BfDiiy9y7Ngx2yfwpUuXcvjwYQD++Mc/4ufnR2VlJZGRkVxxxRUMGTIELy8vdu7cyVtvvYWfn1+LFVVLly5l+/btgDYytWPHDtv9z5kzh2HDhgHwu9/9joiICFJSUggODiY7O5u33nqL3Nxcu9VEW7du5corr+TKK69kwIAB1NTU8OWXX/Lrr79yyy23MGrUqFM+Ju+99x6ff/45U6ZMwdvbm59++olPPvmEm266iUsuuaRLH79TSUpKYubMmdx11124u7vz8ssvA7Bo0aIW53788cc0Nja2OZ3Vkcfq1ltvpby8nClTphAeHk5+fj7vv/8+e/bs4R//+Idt1Cs/P5+RI0dy5ZVX2raS+P777/nuu++YNWsWF154oe02Q0NDeeihh3jkkUeYNWsWc+fOZfv27SxZsoQrr7zSrreW6AH0zrhE7/L3v/9dDQ8PVw0Gg91ITXV1tXrjjTeqfn5+qo+Pj3r55ZerhYWFpxzhUVWtW+qiRYvUsLAw1cPDQ502bZqalpbWaqflqKgoNSoq6pRxzp8/3/ZptrWvE7tF5+TkqJdeeqnq6+urent7qxdccIG6f/9+u3MWLlx40ttcuXKl7dyHHnpIHTFihOrn56e6urqq/fv3V2+//XY1Pz+/1Xi//PJLdcSIEaq7u7saERGhPvzww62O2CxfvlydOnWqGhgYqLq5ualDhw5VX3311RbnnSzW5n8PVdVGTn73u9+poaGhqqurqxofH68+8cQTdp2fT6Yj9xUVFXXKv0ldXZ169913q8OGDVN9fX1VV1dXNSoqSr3xxhtb7fJ9sr918xGQF198UZ00aZIaGBiouri4qEFBQers2bPV1atX293ewYMH1csuu0yNjo5WTSaT6unpqY4ePVp99dVX7UYhT2bDhg3qlClT1L59+6omk0kdPnx4m9fv7MfvZLB2Wn7vvffUgQMHqu7u7urIkSPt/u82N27cODU4ONhu9LG5jjxWH374oTpjxgw1JCREdXFxUfv27avOmDFD/eqrr+zOO3r0qHr11VerAwYMUD09PVV3d3d1yJAh6pNPPtnqc8Jisaj//ve/1fj4eNXV1VWNjIxs8/kjnJuiqqcobRdCCCGEcHKySksIIYQQPZ4kPEIIIYTo8SThEUIIIUSPJwmPEEIIIXo8SXiEEEII0eNJwiOEEEKIHk8SHiGEEEL0eJLwCCGEEKLHk4RHCCGEED2eJDxCCCGE6PFk81DAYrGQm5uLj48PiqLoHY4QQggh2kFVVSoqKujXrx8Gw8nHcCThAXJzc4mMjNQ7DCGEEEKchpycHCIiIk56jiQ8gI+PD6A9YL6+vjpHI4QQQoj2KC8vJzIy0vY+fjIOmfC89NJLPPvss+Tn5zN8+HD+/e9/k5yc3Ob5x44d46GHHuKLL76gtLSUqKgonn/+ec4777x23V/TNJavr68kPEIIIYSTaU85isMlPB9//DH33HMPr776KikpKTz//PPMnDmTvXv3Ehwc3OL8+vp6zjnnHIKDg/nss88IDw/n0KFD9OnTp/uDF0IIIYRDUlRVVfUOormUlBTGjh3Liy++CGgFxZGRkfzxj3/kr3/9a4vzX331VZ599ln27NmDq6tru+6jrq6Ouro6289NQ2JlZWUywiOEEEI4ifLycvz8/Nr1/u1Qy9Lr6+vZsmULM2bMsB0zGAzMmDGDdevWtXqdr7/+mvHjx3PHHXcQEhJCUlISTz75JGazuc37eeqpp/Dz87N9ScGyEEII0bM5VMJTXFyM2WwmJCTE7nhISAj5+fmtXufgwYN89tlnmM1mvvvuO/72t7/xj3/8g8cff7zN+1mwYAFlZWW2r5ycnE79PYQQQgjhWByuhqejLBYLwcHBvP766xiNRkaPHs2RI0d49tlnWbhwYavXcXd3x93dvZsjFUIIIYReHCrhCQwMxGg0UlBQYHe8oKCA0NDQVq8TFhaGq6srRqPRdmzw4MHk5+dTX1+Pm5tbl8YshBBCCMfnUFNabm5ujB49mhUrVtiOWSwWVqxYwfjx41u9zsSJEzlw4AAWi8V2bN++fYSFhUmyI4QQQgjAwRIegHvuuYclS5bwzjvvsHv3bm6//Xaqqqq4/vrrAbj22mtZsGCB7fzbb7+d0tJS7r77bvbt28e3337Lk08+yR133KHXryCEEEIIB+NQU1oAV1xxBUVFRTzyyCPk5+czYsQIli9fbitkzs7OttsvIzIyku+//54///nPDBs2jPDwcO6++24eeOABvX4FIYQQQjgYh+vDo4eOrOMXQjgOs0VlY2YphRW1BPuYSI7xx2iQDYCF6C068v7tcCM8QgjRHsvT8li0NJ28slrbsTA/EwtnJzIrKUzHyIQQjsjhaniEEOJUlqflcft7W+2SHYD8slpuf28ry9PydIpMCOGoJOERQjgVs0Vl0dJ0WpuLbzq2aGk6Zkuvn60XQjQjCY8QwqlszCxtMbLTnArkldWyMbO0+4ISQjg8SXiEEE6lsKLtZOd0zhNC9A6S8AghnEqwj6lTzxNC9A6S8AghnEpyjD9hfibaWnyuoK3WSo7x786whBAOThIeIYRTMRoUFs5ObPNyFVg4O1H68Qgh7EjCI4RwOrOSwnjl6lG4ubR8CfN0MzI+LlCHqIQQjkwSHiGEU5o5JBRvNyMA95wTz3s3JhMX5EV1vZmXVx7QOTohhKORhEcI4ZTyy2sprW7AaFC4ZUoskwYG8dD5gwF469csckqrdY5QCOFIJOERQjilnYfLABgY7I3JVRvpmT4omAlxAdSbLTz7/V49wxNCOBhJeIQQTikttxyApHA/2zFFUXjo/MEoCny9PZfUnGM6RSeEcDSS8AghnFLaEW2EZ2izhAdgSD8/Lh4ZAcCT3+5GVWWLCSGEJDxCCCe105rwJIX7trjsvpnxuLsY2JhVyg/pBd0dmhDCAUnC46DMFpV1GSV8lXqEdRklshGiEM0UltdSVFGHQYHBYS0TnjA/D26eHAvA08v20GC2dHeIQggH46J3AKKl5Wl5LFqabrdBYpifiYWzE5mVFKZjZEI4hqbRnbggbzzdWn8Zu21aHB9tyiazuIoPNmQzf0J0N0YohHA0MsLjYJan5XH7e1tb7AadX1bL7e9tZXlank6RCeE40o5oBcsn1u805+3uwp9mxAPw/E/7KK9t6JbYhBCOSRIeB2K2qCxamk5rk1dNxxYtTZfpLdHrNY3wDDlJwgMwb2wkcUFeHK1u4CVpRihEryYJjwPZmFnaYmSnORXIK6tlY2Zp9wUlhAPaldv6Cq0TuRgNPHieNCMUQkjC41AKK9pOdk7nPCF6ouLKOvLKalEUSOzXsmD5RGclBDM+NoD6Rgv/94M0IxSit5KEx4EE+5g69TwheqKm/jsxgV54u5963UVTM0KAr1Jz2S7NCIXolSThcSCpOUdPermCtlorOca/ewISwgG11XDwZJLC/bh4ZDgAT3wnzQiF6I0k4XEAqqrywk/7Wbz8+HC70sa5C2cnYjS0dakQPV/TCq2kfu1PeADumzlIa0aYWcqP0oxQiF5H+vB0pZxNcGgt1JaB0Q38IiF6IvjH2k5RVZVnvt/LK6syAPjLzEHEBXm16MPj5W7kH5cNlz48otc73mH5JAlPYz1kr4P8HVBdCgYX+vWN5t6xYTy5roanl+1hekIwrkb5zCdEp2uotT7/dkJNqfb+16c/9BsFIYm6hSUJT1fKXAU/P97yeL+RMP5O1CEXs+ib3bz9WxYAD58/mJus3WHPSQxlY2Ypy9PyeGfdISL6eEiyI3q9o1X1HDlWA8CQVraUoLIIfn0etr0HtcdaXHwLMME0gBdLL+DDDVFcOyGmS+MVolepKIC1/4TtH2gf9E807g6Y9WT3x2UlCU9XChsBw68EUx9orIWivXB4E+Rug89v5NCy51l19DogjMfnJnH1uCjbVY0GhfFxAcSHePPOukPsLaikqKKOIB93nX4ZIfSXZl2OHh3gia/J9fgFqgpb3oYfHob6Su2Ydwj0Hwc+YdBYB0V7IGcjSeoBXnV7nk0//EhFzNv4hMV3/y8iRE+iqrD5DfjhEWio0o75hEFkivX5VwPHsqHfCF3DlISnKw08R/tqrqoY84YlNK55nujqnSx1e5idYxczoVmy01yAtztD+vmyK7ecXw8UM9daeClEb9RUv2PXcLCxDv73B0j7TPs5bARMfwgGnA0Go/0NVBZhXv8qDWv/xVh2Ufuf6eye8k/2+U0k2EdbECA1ckJ0QEMNfHEL7P5a+zl8NEx/EGLPAoNjTRk7VjS9QIPJn7vyZjKt5lk2WBLwUWqYsOVP2hB8GyYNDARg9f6ibopSCMfUYoVWzTF4d66W7Bhc4NzH4eafIf7clskOgHcQxhl/Y/N5y9hsicdkriT+51tY+cmLXLlkPZMW/yzbtwjRXtWl8O6FWrJjdINZT8ONP8GAGQ6X7IAkPN2qtsHM7e9t4dudeRQbAym77HMYeQ2oFvjqDtjyTqvXmzIwCIC1+4tlOa3o1ZqmtJL6+UF9NXxwBWT/Bu6+cPXnMOGPrSc6J6jwCOfK+of5tHEKRkXlOddXuNiwWvasE6K96irh/UshZwOY/OCaL2Hc7Q6Z6DSRKa0uZLaobMwspbCilj4erixZc5C1B0pwdzHw2jWjmTYoGJL+rb1Yr38Jvvkz+PZrMQ02Oqov7i4GCivq2F9YSXyIj06/kRD6Katp4FCJtjVEUpgnfDofctaDux9c9w2EDWvX7ZgtKo99k04DLtzfeAv1uHKVywqecX2dgoa+/GYZyqKl6ZyTGCrTW0K0prEePrkGjmwBj75w3Xe6rr5qL0l4usjytLwWS8sB3FwMvHXdWCYM0KapUBSY+QTUHNUq2z+9Dm780e4/j8nVSHKMP2v2F7Nmf7EkPKJXato/K6KvB33WLYb9P4CLB1z1SbuTHbDfs07FwEONN+Cp1HKR8Vdedn2Bi+of42BZPzZmljI+LqBLfhchnNqPf4OMn8HVC676zCmSHZAprS6xPC2P29/b2upGoPWNFsprG+wPKgrMfgFipmgrTD67Xhuub6ZpWmuN1PGIXqqpfudqv53a0nOAi17RVmJ1QMu96BT+2nAzmy3x+CnVvOz6Au7Uy551QliZLSrrMkr4KvUI+1a8Cxte1S645D8QMUbf4DpAEp5OZraoLFqaTluVNgqwaGk6ZssJZ7i4wSVvgneotnx2+QN2FzcVLm84WEpdo7nzAxfCwe08Uk4IpVxf9Ix2YNwdMOSiDt9Oa3vR1eHGbfV/pkj1I8GQw19dPpQ964RA+wA/afHPXLlkPc9+/CP9Vv8FgIODboaE8055/ebJ0rqMkpbvfd1IEp5O1ny4vDUqkFdWy8bM0pYXegfBxa8DCmx9F/Z9b7soIdSHQG93ahrMbD10rNPjFsLR7Tp8jKddl+BurtQ6tp6z6LRuJznGnzA/U4vtW4rx476G2wC43uV7IorXnmHEQjg3+9kKlcUur+Ot1LLJMohzt085ZXF/82Tp7o9SdV8JKQlPJ2vvMHib58VOhfF3aN9/cw/UVQDajs+TraM8Mq0lepuK2gZGH/uO6cbtqEZ3uOhVMLqe+oqtMBoUFs7Wag5OTHp+sQznrcaZ2mXf3csXG/adSdhCOK0TZyt+b/yZicZd1Khu3NdwK2aMrc9WWLVV2qHnSkhJeDpZe4fBT3re9IegTxSUH4YVf7cdnmQtdF57oPiMYhTC2ew7eIgHXT4AQJn+IAQNOqPbm5UUxitXjyLUz/55GOZnwvf8v1NsDCJCKaJg6WPc80kqVXWNZ3R/Qjib5rMVAZTxV+vz79nGKzikhtpmK6Y9u5LLX13HjW9v4k8fbeORr9JYvHw3f/lsR6ulHU3HTpYsdRVZpdXJmobL88tqW/1jK0Con9bRtU1unjD7efjvRbBpCYyeDyFDbHU8O4+UcbSqnr5ebl3xKwjhcDx+fZq+SiWH3WKIGH9np9zmrKQw2551hRW1dp2WzX3+BR9fyU3G7zhv22Tm5BzjpatGkRDayv5dQvRAzWch7nX5BF+lhp2WaN42z7Q7L+doDTlHazp0281LO7pzJaSM8HSykw2XN/28cHbiqft7xJ0FiRdqTQm/fxBUlRBfE/Eh3qgq/Johozyil8jbQcKRzwHYMOivYOy8z2lNe9ZdOCKc8XEBtuelcfB5MOh8XBUzj5o+IqOoigtf/JUPN2ZL80/RKzTNQgxRsphnXAXAooZrsZyQNjx4XgIvXzWKpy8eykPnDeaPZw1givXD+al090pISXi6QFvD5aF+Jl65elT7dz2fsUhr131wla2AeXKzrstC9Ao//g0DFpaax+E/5Kzuu99z/w4GFyaqW7m9fw51jRYWfLGTuz5KpaK2waFWnwjR2ZJj/AnzdecR13cxKCpfm8ezWU2wXa6gTQHfOCmW84aGMS+5PzdPieXecwdx+7QB7bqP7l4JKVNaXeRkw+Xt5h+jter+9QX46VEYeC6TBgbyxtpM1li3mVAU6QQrerDMNXBwFfWqkcWNV/JFeDdOKQXEwZgbYeNr3G94jz6z3uKZH/azdHsu6zOKUYHiynrb6WF+JhbOTmz/BxohHJjRoPDimEJG/7aHWtWVpxuutF12qtmKTint6AIywtOF2hou75BJ92j7lBTthvQvSYnxx81o4MixGrJKqk99fSGclarCz1rR/kfms2jwiej+3jhTHwB3X5T8ndwavJtPbh2Pv6cbRZX1dskO6Lv6RIhOp6qMzHwNgLfNM8nl+DTVqWYrOq20o5NJwuPoPPpoDdYAfnkGTxeF0VF9AVmeLnq4/T9CzgYaDe682DhX2zC0u3kFQIrWm4dfnmFEhC+uLq2/SOu5+kSITrd3GYa8VKpUd740Xcz7N6XwwrwRfHjzONY+cNYpRzI7rbSjE8mUljMYd5u2uWjRHtj1JZMGjmDdwRLW7C/m2vHRekcnROdTVVj5BABr+l5MYXVfksJ1SHhAm1Ze/woU7GT/mk8pKG97Lzu9Vp8I0alUFVY9BcA75pnMmDCEiQPaV4jcXKeUdnQiGeFxBiY/aFqK+8tiJg/Q5j3XZ5TQYLboGJgQXSTzF8hLBRcPXmk4H0C/hMfTH1JuASB02wvQ5sYxx8k+XMKp7V0G+TuoVE283ng+l42OPO2b6pTSjk4iCY+zSLkN3P2geB9DKtfRx9OVirpGtucc0zsyITrf2ucBaBxxDVuKjQAM1SvhAW1a2dWLPmXpTDOknvJ02YdLOLXf/gXAf83nEB8TRXSgl84BdQ5JeJyFyRfGXAeAcf1LtuHFNbI8XfQ0edvh4EpQjOyNuQazRSXQ240QX3f9YvIKgDHXA3CH+/ctCjGbNC3V7e7VJ0J0msObIXsdDbjwVuMsLh9z+qM7jkYSHmeSfCsYXODQr8wJLABkmwnRA/2qfbok6WK2lmvL0JPC/fRvwZByKygGxqo7SFCy20x69Fh9IkSn+e3fAHxlnkCVWyDnDQ3VOaDOIwmPM/ELh6RLAJhc/BEAqTnHKK9t0DMqITrPsRzY9aX2/YS7SDtSDqDPCq0T9ekPg+cAsGTQxharTwwKvPR7fVafCNEpjmbB7q8B+E/jecwe3g9Pt56ztkkSHmdjLV723L+Ucf7Vtm6vQvQIW94C1QzRkyFsGDuPlAE6FiyfaLzWIiIi5xvW3pHEhzeP47nLh+PhasCiQmgfqd0RTmz9q6BaWKsOY4/an8vGROgdUaeShMfZhA3T3gxUM7f7rAFkmwnRQzTWwZZ3tO+Tb6Gu0cy+ggoAkrqzw/LJRCZD+Bgw12Pc+hbj4wK4eFQEZw8OAWDF7gKdAxTiNNVXQaq2I/p/GmYRG+TFqP59dQ6qc0nC44zG3gTAuGPf4kKj1PGIniH9a6guBp9+MOg89uZX0GhR6evpSngfD72jO27c7dq/W94BcyMAM2wJT6FeUQlxZtK+gLoy8o2h/GIZxuVjIvWvm+tkDpnwvPTSS0RHR2MymUhJSWHjxo3tut5HH32EoijMnTu3awPUW8L54B2Ce10xM41bySyuIqdUtpkQTm7TEu3fMdeD0cVuOsuhXngHzwbPAKjIhf0/ADA1PgiDAnvyKzhyrEbnAIU4DZvfAOCt2ukYDEYuHhmuc0Cdz+ESno8//ph77rmHhQsXsnXrVoYPH87MmTMpLDz5J6esrCzuu+8+Jk+e3E2R6sjoCiOvAeBWr1WArNYSTi5vB+RsAIMrjJoPcLxg2VHqd5q4uMOI32vfb3kbgL5ebrYtX36WaS3hbI5shdxtNCqufGqeyvRBQQT79rx6NIdLeJ577jluvvlmrr/+ehITE3n11Vfx9PTkzTffbPM6ZrOZq666ikWLFhEbG9uN0epo9HxAYVh9KjFKntTxCOe27b/av4MvAB9teiitaYTHEVZonWi01pOHAz9qK8vgeB3PHpnWEk5ms/b++hPjKMWXy3pQ753mHCrhqa+vZ8uWLcyYMcN2zGAwMGPGDNatW9fm9R577DGCg4O58cYb23U/dXV1lJeX2305nT79IX4mAPOMP7P2QLFsWCicU2Md7PxU+946clnfaGFvvlawrGuH5bYExEHMFFAtsPVdAM5OCAbgt4wSqusb9YxOiParq4C0zwF4o3Y6gd5unGX9v9zTOFTCU1xcjNlsJiQkxO54SEgI+fn5rV5n7dq1vPHGGyxZsqTd9/PUU0/h5+dn+4qMdNJs1vrmcLHxVypram2fiIVwKnu/g5qj4BsOsdMA2FdQQb3Zgq/JhUh/BypYbm70ddq/294Di5kBwd5E+ntQ32iREVfhPNK/hoZqClzD2aQO4qKR4bgaHSo16DRO/VtVVFRwzTXXsGTJEgID27+T64IFCygrK7N95eTkdGGUXWjgueDhT5ByjMmGnVLHI5zTtve0f4fPA4O2b9auXActWG4u4QIw9dGKl7PWoCgKZydoH9Z+lmkt4Sy2fwjAezUTAaXHTmeBgyU8gYGBGI1GCgrsi/4KCgoIDW3Z3jojI4OsrCxmz56Ni4sLLi4uvPvuu3z99de4uLiQkZHR6v24u7vj6+tr9+WUXNxg6GUAXGJczep9RToHJEQHledCxs/a9yOush1uWqHlkNNZTVzcIeli7fvtWufzswdrUwE/7ynEIlPMwtEdPQRZa1BR+LxxEsMj+xAf4qN3VF3GoRIeNzc3Ro8ezYoVK2zHLBYLK1asYPz48S3OT0hIYOfOnaSmptq+5syZw/Tp00lNTXXeqaqOGHElAOcatrA/+zBVdVI7IJzI9g+1Opj+47W6GKumFVpDHDnhARiuPf9I/xrqKkmO8cfLzUhhRR1puTLFLBzcjo8BSDUOJZdALu9hnZVP5FAJD8A999zDkiVLeOedd9i9eze33347VVVVXH+9tiri2muvZcGCBQCYTCaSkpLsvvr06YOPjw9JSUm4ubnp+at0j7ARqEGDcVcaOJf1bMws1TsiIdpHVW2dXZuP7jSaLezO0xIehx7hAYgYC/6x0FAFe77B3cXIlPggQJoQCgenqrbprP/WTMDdxcDs4f10DqprOVzCc8UVV/B///d/PPLII4wYMYLU1FSWL19uK2TOzs4mLy9P5ygdiKKgWEd5LjGuZo0USwpncWQrlBwAV08YMtd2+EBRJXWNFrzdXYjy99QvvvZQlOOjPNZpraYVLlLHIxxazgYoPUidwYPllmTOGxqGr8lV76i6lENug3rnnXdy5513tnrZqlWrTnrdt99+u/MDcnTDrkD98VHGGvbx4t7tMDtR74iEODXrUlgG/Q7cj9cN7DysTQUN6eeLweCgBcvNDbscVj4BB1dBeS7TE4JRFK0OqaC8lpAe2MBN9ADW0Z3l5mSqMfW4jUJb43AjPOI0+ITSGD0FgKSjP5NfVqtzQEKcgsUCu77Qvk+6xO6iXbkO2mG5LX2jof8EQIUdnxDo7c6IyD6AjPIIB2VugPSvAPikYQKR/h6MiwnQOaiuJwlPD+E67FIALjCuk+XpwvFl/wYVeeDuBwNm2F3kFCu0TjTscu1faxLX1IRQdk8XDungL1BzlDKDH+stiVw2OtI5RlPPkCQ8PcXgCzArLgw25LAvbbPe0Qhxck3TWYNna8u7rcwWlXTbCI8TtYsYPAcUI+Rth5IMzrL241l7oJjaBrPOwQlxAmti/nX9WCyKkUtG9/zpLJCEp+fw6Et5P23j1MCsb6QHiHBc5gbY9T/t+6H201kHiyqpaTDj6WYkJtC7+2M7XV4B2lYTAOn/Y3CYD/38TNQ2WFiXUaJvbEI011gHu78B4BvzeCYNCCS8j4N2M+9kkvD0ID6jtWH1s8y/sifPCfcHE73DwV+gphS8gsBae9akqXdNYpgvRmcbYh9ykfbvri9RFIWzrE0If5JpLeFIMn6GujKK6MsmdVCP7qx8Ikl4ehCXxAtowJUBhlx2pf6mdzhCtK5pOitxLhjtF4ruPOxkBcvNDZ6tTWvl74TiA3bbTKiqjLgKB5GmTWd905iMt8mNcxNDTnGFnkMSnp7E5Etu0CQA3PZ+pXMwQrTC3AB7v9W+b9qWoZm0ZntoOR1Pf9vmp6R/yfi4ADxcjeSV1bI7r0LX0IQAoKFG26wXWGoez9yR4ZhcjToH1X0k4elh3IZrq7WGl62ktl62mRAOJmsN1JZp01mRKXYXWZoVLDvVCq3mbNNa/8PkamTiAG1TY1mtJRzCgZ+gvpJcNYBt6gAu70XTWSAJT48TOvZC6nAlWsknffsGvcMRwt7updq/CefbdkZvkllSRWVdIyZXA3FBXjoE1wkSzgeDCxSkQdE+22aiK6Qfj3AEe7TR1WXmZBLC+jCknxOthOwEkvD0MIq7DxneYwHIXf8ZX6UeYV1GCWZZtSX0ZrHYXnBJmN3i4jRr/53BYb64GJ30pan5tNaeb2zbTGw/fIyiijr94hLC3AB7lwHwvXkMl4+JQFGcbGHAGXLSVxVxMgcCpgLQv2gld3+UypVL1jNp8c8sT5M9yISODm+CygJw9z2+hLuZNGdsONiaQedp/+75lhBfE0PD/VBVWLlXRnmEPswWlV3rlkPtMUpUH7YrCcwdEa53WN1OEp4eZnlaHo/ujcKsKgwzZBKG1gMkv6yW29/bKkmP0M8e63RW/ExwcWtxcdoR6wqtfj0k4TmyGSryj28mKrunCx0sT8tj0uKf2bj8vwD8ZB6NYjSyIbP39YeShKcHMVtUFi1NpxRfNquDADjXqHVdbprQWrQ0Xaa3RPdTVVuzMxIuaOVi1blXaDXnGwbho7Xv9y5jxmBt2e+a/UXUNUrXZdF9lqflcft7W8krq7G9F/xgGU1tg6VXfgCWhKcH2ZhZSp5149AfzNoL7rmG49tMqEBeWS0bM0v1CE/0ZgW74GgmGN1b7J0FkF1aTUVtI24uBgaGOFGH5bYknK/9u+dbhvTzJdjHnap6MxsOynNPdI+mD8AqkKRkEq6UUK26s9Yy1HZOb/sALAlPD1JYcXyX9B8tYwBIMezGj8o2zxOiW+yxju4MOBvcWyY0TRuGDg71wdVZC5abG2RNeDJ/wdBQeXxaS1ZriW7S/ANw0+jOL5Zh1KFNJ/fGD8A94JVFNAn2Mdm+z1ZD2G2JxEWxcJZhW5vnCdEtbMvRW05nmS0q3+/S+tQE+rj3jE+cQYPAPxbM9XBgBWdbp7VW7CmQrsuiWzT/YHuuYQsA35vHnvS8nk4Snh4kOcafMD8TTQsNf7CO8jRl9woQ5mciOcZfnwBF73QsR+tLoxhg0O/sLmoqqFy6PReAFbsLe8aKQkWxm9aaOCAANxcDOaU17C+sPPl1hegETR9so5R8Egw5NKoGfraMaPO83kASnh7EaFBYODsR0JKbH8xawjPVsAMT9QAsnJ3ofJsyCue2/3vt34hkrU+N1fGCSvtPmD1mRWHTtNb+7/E0qkyICwC0pE6Irtb0AbhpdGe9ZTDlHJ9O7o0fgCXh6WFmJYXxytWjCPUzsUuNJlf1x1Op43feB3jl6lHMSgrTO0TR2+z7Qfs3/lzboeYFlSfqMSsKI5PBM1DbSuPQr7ZprZ/3yDYTous1fQCebi1p+Mky2nZZ00fe3vYBWBKeHmhWUhhrHziLd25I5hfLSAAeGZQjyY7ofvXVkPmL9n38LNvh5gWVrekRBZUG4/Hfed8PtsLlLYeOcrSqXsfARG8xa4An41z2AbCy2XRWqJ+pV34AloSnhzIaFKbGB3MkaDIArgd/1HqhCNGdstZAYy34RkBwou1wewslnb6gsmlUa/8PhPfxICHUB4sKq/bJtJboBgdXYVAbybCEYe4TzQvzRvDhzeNY+8BZvS7ZAUl4ejyvhLOoU13wrsmF4v16hyN6m33W+p34mVohr1VDo6VdV3f6gsrYadpmoiX7ofSgrQnhT1LHI7qDdTp5pWUEM4eEceGIcMbHBfSqaazmJOHp4cbER7LBMhgAy77lOkcjehVVtU94rNbuL+bRpbtOetUeU1Bp8oP+47Xv9//EWdbd01fvLaLB3L6kT4jTYrGgHvgR0BKeyQMDdQ5If5Lw9HDDI/qwVhkFQE26JDyiGxWmQ/lhcDFBtDa1+uHGbOa/tZHKOjNxQV4oHC+gbNLjCioHnqP9u/8Hhkf0IcDLjYq6RjZlOXF9knB8+dtRKguoVE2kGhJJiQnQOyLdScLTw7m5GCjtNw0Aj9wNUFuub0Ci92ga3YmZitnFgye/282CL3ZitqhcNDKc7+6ebFtR2FyPK6gcaK3jyVqD0VzLdGvxsixPF11qvza686sliZHRIXi4GXUOSH8uegcgul5swjAO5oYSa8iHg6sgcY7eIYnewJrw1MfO4M73tvBDurYc+88z4rnr7AEoisKspDDOSQxlY2YphRW1BPto01g9YmSnSVAC+EVCWQ5kreXshCQ+23KYn/cU8rcLEk99fSFOh/X597NlpExnWckITy8wIS6QVdYliZb9P+gbjOgdqkvh8EYAbt0QwA/pBbgZDbwwbwR3zxiI0qyA2WhQGB8X0HMLKhXl+Iap+39g0sBAXI0KmcVVHCySrsuiC1QVox7RGg6uMg9nSnyQzgE5Bkl4eoGkfr6sN2pNp8x7v5fl6aLrZf4CqoWDSiQr8034e7nxwc0pXDgiXO/I9DHw+PJ0H3cXWz2FTGuJLnHgJxRUdlmiMHuHkRDqo3dEDkESnl7AxWiA6IlUq+64VhdC3na9QxI9iNmisi6jhK9Sj7AuowSzReXIZm139J8bkogL8uJ/f5jImGgnX3F1JmKmgNENjmZByQHOtq7W+mLbYbvHTYhOsf/4cvQpAwPtRlR7M6nh6SWSB4Tx68EhnGPcChk/Q78ReockeoDlaXksWppu1zXZ12RkmboSFCgOncQXN07Ez8NVxygdgLs3RE2Egyth/w+4GLR9tnbnVXD3R6mAtgx/4ezEnlOsLfRhsWi1mmjTWVfLdJaNjPD0EuNiA1hjGQqAJWOlztGInqCtzT+D6rIJV0qox5V7b7pOkp0m1uXpRanf8chXLfsQ9ZhNU4W+8ndAdQkVqgep6gAmDpCC5SaS8PQSiWG+pLpq+2qRvR7qq/QNSDi1k23+OcWwA4BtSiIGN6/uDcyRxZ0FgE/BRtxouZdWj9k0Vegr42cA1lsSiQ/zJ8jHXeeAHIckPL2EwaAQFpvEYTUQg6UeDv2md0jCiZ1s88+mhOen+iHOvflnZwtKoN4jBBP1jDbsa/WUHrFpqtCXNeFZbRkqq7NOIAlPLzI+LpA1Zm1aC5nWEmegrU093WhgnGE3AKstw5x/88/OpCjkB44DYLJh50lPlcdNnJb6KtTs9QCssQxlivTfsSMJTy8yPi6wWR3PCp2jEc6srU09xxj24qHUU6D2Ya8a6fybf3ayuv5TAZh0ioRHHjdxWrJ+RbE0kGMJosAlnNHRffWOyKFIwtOLxId4s8c0EouqYCjaA+W5eocknFRyjD9hfqYW+2BNsb6Rr7EMI8zPw/k3/+xksSkXADDUkIU/Lbd56TGbpgp9WKez1liSGBcbgLuLbCfRnCQ8vYiiKAweEM0ONUY7YF26KERHGQ0KC2e33BahqX5njXloz9n8sxMZfUMo9xsEwERDmt1lPW7TVNH9DmqlCmssw5g8UOp3TiQJTy8zPjaANZZh2g/WTwNCnI5ZSWG8cvUo3F20l5EgjpFoOATAnEuukn4ybfBN1Jann2vabXe8x22aKrpX2REo2oNZVfjNMoQp8VK/cyJJeHqZ8XEBtsJlNWOl1qRKiNM0KymMYOuy10VJ2uagathwzh49RM+wHJt1efoF3nv46yxttCe8j4m1D5wlyY44fdbRnR1qHF5+gcQFeesckOORhKeXiQ304oj3EKpUd5TqYihIO/WVhGhDdX0jOUdrADjbTWump8SdrWdIji9qAhjdUcqPcGGE1g+rqKJlXx4hOqRZ/c7kgUGynUQrJOHpZRRFYWxcKOss1voLmdYSZ2B/gbbbd6CXG+7Za7WDsdP0C8gZuHpAf215ekjxOtxcDNSbLRw+Wq1zYMJpNdtOYo15GJNlOqtVkvD0QuPjpI5HdI69BRUATAs8CpX54GKCyBSdo3ICcdMBMBxcSUyA1o36YLF0PxenybqdRKVqIpUBTJLtJFolCU8vNCEukLWWJACtSVWDNDkTp2dfvpbwTHfbox2ITAFX6SFzStY6HrLWMiBQq4E6WCQJjzhNmb8AsN4ymMSIQPp4uukckGOShKcXivT3pNY3jgK1D4q5Dg5v1Dsk4aSaRniG1W/XDsRM0TEaJxIyFDwDob6Sie4HAcgsrtQ5KOG0MlcDsM4yRLorn4QkPL3U+AGB/GaxrqTJXKNvMMJp7SuoQMFC2NFN2oGYqfoG5CwMBoieBMBws9asUUZ4xGkxN6AeWgdgXY4u/XfaIglPLzUhLqBZwrNa32CEUzpWXU9BeR2JSjYu9WXg5gP9RuodlvOwjob1L9sCSMIjTtORrSgNVZSq3hx2i2FEZB+9I3JYkvD0UuPjAmwrtdQjm6FOhtNFx+yzrtD6ndde7UD0RDC66BiRk7EmPN5FW3GnnvzyWqrqGnUOSjidLO0D63pLIuPignA1ytt6W+SR6aXC/Dxw8Y8mxxKEYmkE6w67QrRXU/3OFFdrx2Cp3+mYgAHgE4ZirmeaZyYAmbJSS3SUrX4nUaazTkESnl5sfPNprSyZ1hIdsy+/AhcaSaiz7vwtCU/HKApETwbgHA9tlEwSHtEhDbWoOdqik9+kYPmUJOHpxcbHBfJbUwNCqeMRHbS3oILhSgZulhrwDIBg2U6iw6xJ4hiL1vFc6nhEhxzehNJYS6Hah4Y+A4iy9nQSrZOEpxcbF+vPOusIj5q3HWqO6hyRcBaqqrI3v4IJBm07CaInayuPRMfEaCM8kbW78aSWg7I0XXRElrbCdp0lkSmDZDrrVOQVqhcL9jHhGxxJhiUMRbXAod/0Dkk4icKKOspqGphoTNcOyHTW6ekbDX79Mapmxhr2ypSW6BjryPxvliFMHigJz6lIwtPL2S9Pl348on325lfgTj2jDPu0A7J/1umzJovjDekcLKpCVVWdAxJOob4K9fBmADaqQxgfF6BzQI7PIROel156iejoaEwmEykpKWzc2HYn4CVLljB58mT69u1L3759mTFjxknPF/bGxx5fni51PKK99hVUMMawFzcawTcc/GP1Dsl5Wae1Jhh2UVnXSFFFnc4BCaeQvR7F0sBhNZDAyHh8Ta56R+TwHC7h+fjjj7nnnntYuHAhW7duZfjw4cycOZPCwsJWz1+1ahVXXnklK1euZN26dURGRnLuuedy5MiRbo7cOaXEBrC+KeEp3AVVxfoGJJyCXf1OzBRtxZE4PdaVWkMMWfhSJZuIivbJPN5/Z3J8sM7BOAeHS3iee+45br75Zq6//noSExN59dVX8fT05M0332z1/Pfff58//OEPjBgxgoSEBP7zn/9gsVhYsWJFm/dRV1dHeXm53Vdv5e/lRkhYBLst/bUDWTKtJU5tX0EFEwxSv9Mp/MLBPw4jFpINe2SllmgX1VqC8Js5kcmyHL1dHCrhqa+vZ8uWLcyYMcN2zGAwMGPGDNatW9eu26iurqahoQF/f/82z3nqqafw8/OzfUVGRp5x7M5sfKxsMyHaz2JROVxQzFBF2/SyaU8ocQas01rjDemyiag4tdoyyNsGQJrbcIZF9NE3HifhUAlPcXExZrOZkJAQu+MhISHk5+e36zYeeOAB+vXrZ5c0nWjBggWUlZXZvnJycs4obmfXfJsJSXjEqRw+WkOieTcuigXVLxL69Nc7JOd3QuGyECd1aB2KaiHTEsLAgQkYDTKl3B49auObp59+mo8++ohVq1ZhMpnaPM/d3R13d/dujMyxJcf4c5+agEVVMJQcgIp88AnVOyzhoPYWVJBs2AOAIqM7ncNax5NoOERxUZ7OwQiHZ9tOYohMZ3VAuxKeUaNGdehGFUXh66+/Jjw8vEPXCwwMxGg0UlBQYHe8oKCA0NCTvwH/3//9H08//TQ//fQTw4YN69D99nZ+Hq5EhfcjvTCKJCULDv0KSZfoHZZwUPsKKkgxWPfPipqgbzA9hXcwDQGDcC3ZS/ixLTSYL5BNIEWbzJmrMaI1HPyr7J/Vbu1KeFJTU7n33nvx9vY+5bmqqvL0009TV9fxpZVubm6MHj2aFStWMHfuXABbAfKdd97Z5vWeeeYZnnjiCb7//nvGjBnT4fsVWh3PxvwEkgxZWgNCSXhEGw7mFnOTkqH9EDVR32B6EJeYyVCylzHKHrJLq4kLOvXrreiFassxFGgrJAv6jiK8j4fOATmPdk9p/eUvfyE4uH1L3/7xj3+cdkD33HMP8+fPZ8yYMSQnJ/P8889TVVXF9ddfD8C1115LeHg4Tz31FACLFy/mkUce4YMPPiA6OtpW6+Pt7d2uBE1oxsUF8NHawdzAcsj6Ve9whAMz5m7GXWmkziMEd+m/02mU6Amw+T8kG/aQWVQlCY9o3eGNKFg4ZAkmcVCC3tE4lXYlPJmZmQQFtX/YLD09nX79+p1WQFdccQVFRUU88sgj5OfnM2LECJYvX24rZM7OzsbQbM+eV155hfr6ei699FK721m4cCGPPvroacXQG42N9ucBrE+eot1QVQJe0rlT2GswWwgv3wpGMPefIP13OpN1tCxROcTmvDxIDDnFFURvpB5ahwJsVgcxVaazOqRdCU9UVBRpaWkkJSW160bPdJn3nXfe2eYU1qpVq+x+zsrKOqP7EhpvdxciIiLZlx9OvOEIZP8Gg2frHZZwMJnFVYxFq9/xGCD9dzqVTyhHTZH0rc1BzV4PjNA7IuGAajN+xQPYqg7iodi226+IltpdFTds2DBSUlJYsmQJFRUVXRmT0Mn4uAA2WAZrP8hGoqIV+4+UMMqwH5AVWl2hLDgZAP/izTpHIhxSYz2u+VsBqA1LwdOtRy207nLtTnh++eUXhgwZwr333ktYWBjz589nzRrpytuTTIgLZKNFm9ZSs9bqHI1wRBUHN2BSGqhw6QuBA/UOp8cxxGjTWjFV23WORDikvO24WOooVb0ZkNix1dOiAwnP5MmTefPNN8nLy+Pf//43WVlZTJ06lfj4eBYvXtzuxoDCcY2O6ss2xdqAMH+n1s1TiGZMR9YDUOw/Wup3uoD/4GkADFYzKC8/pmsswrGYLSoHt/wIwGbLICYMkP47HdXhRg9eXl5cf/31/PLLL+zbt4/LLruMl156if79+zNnzpyuiFF0E5OrkX79Y8m0hKCgQvZ6vUMSDqZfuTacrspy9C7hHRpHHoG4KmaK0mWUVWiWp+UxafHPZGz5CYCNlgRu/e8WlqdJk8qOOKPOVgMGDODBBx/k4YcfxsfHh2+//baz4hI6mWBXxyPL08VxNTW1DGnUCpb7Jk7XOZqea7+H1ji14aCUDAgt2bn9va3kl1Uz2rAX0EZ4Cspruf29rZL0dMBpJzyrV6/muuuuIzQ0lL/85S9cfPHF/PqrvEE6u/GxAc3qeOTvKY47sns9Xkodx/Cmb9RwvcPpsYr9RwPglb9R50iE3swWlUVL01GBOCUXf6WSGtWNXWo0qvWcRUvTMVvUk92MsOpQwpObm8uTTz5JfHw806ZN48CBA/zrX/8iNzeXJUuWMG7cuK6KU3STEf37sNVax2PJTWXDnmx5MgkAqvf/AsB+01AwyLYHXaUxUpsuDK3YCQ21Okcj9LQxs5S8Mu3/wFjr6M42ywAarB1lVCCvrJaNmaV6hehU2r2m7Xe/+x0//fQTgYGBXHvttdxwww0MGjSoK2MTOli5p5BcgjmsBhJBMf9+9wMyfMaycHYis5LC9A5P6MgzV6vpKgkYq3MkPZt/5GCK1vkRRBnkbpX9ynqxworjCe8Ya8KzSW35vtv8PNG2dn9Mc3V15bPPPuPw4cMsXrxYkp0eqGmuuN5ssU1rJRt2k18mc8W9nsVMv/JU7ftoKVjuSrHB3mywPv8sMq3cqwX7mGzfJyvH63dOdp5oW7sTnq+//poLL7wQo9HYlfEInTSfKwZshcsphj0yVywgfyeeajXlqidBA2SD3q4U6e/JZlWbVq7PkJVavVlyjD9hfibCKCHSUIRZVdhqOd7/SgHC/Ewkx0jH5fZoV8Jz8cUXU15e3u4bveqqqygsLDztoET3az5XDNhGeEYoB3CnXuaKe7ma/asB2GQZRHyYn87R9GyuRgM5PiO073M3grlR34CEbowGhYWzExlt2AdAuhpFFdru6E1dsBbOTsRokJ5Y7dGuhOerr76iqKiI8vLyU36VlZWxdOlSKisruzp20YlOnAPOVEMpVPvgrjQyXMlo8zzRO9RmaEuk97gPxcfkqnM0PZ8hZDDHVC+MjdWQJ12Xe7NZSWH8cUARYD+dFepn4pWrR0ltZQe0q2hZVVXi4+O7Ohaho5ZzwAobLQlcYFxPimE3G82D2zhP9HiqikfeJgCOBo7WOZjeITrIh00ZCZxj3KL1w4qQx703Cy1LBSDLezgvzBpBsI82jSUjOx3TroRn5cqVHb7h8PDwDl9H6Kdprji/rNZWs7PeMpgLjOtJNuxBMWufKGSuuBcqOYCp4Si1qiuukbJ/T3eIDfJmvaUp4fkNJt6ld0hCL7Vl+JZpBcsesRO4cIS8t56udiU8U6dO7eo4hM6a5opvf28rClp/h6Y6ntGG/bjQKHPFvVX2OgBS1QEMDJOEtzvEBnrxQVPH8+zfwGKR3ke9Vc4mFFSyLCHExgzQOxqnJs8gYTMrKYxXrh5FqJ82bbVfDeeY6oWnUsc753nIXHEvpVoTnk2WQcSH+OgcTe8QE+RFuhpFheqhbeJbuEvvkIRO1EO/Adrzb2iELBg4E5LwCDuzksJY+8BZfHjzOK6fGMtmi1a7NcF1v86RCb2Ys7SEZ4tlEAOCvXWOpncI8nbH0939+BJk2ci316o9qPViSjUkMFCef2dEEh7RgtGgMD4ugLtnxLNF1aa1qg9IP5BeqaIAl2OZWFSFkr7DMblKH67uoCgKMUFebGpalWMdZRO9TGMdbvnbAKgIGouLUd6yz4Q8eqJNfh6ulAVpq0MMOetBlaaDvU6ONrKwV40kIixU52B6l9hALzY3bSNwaJ08/3qj3FSMljqKVV8CohL1jsbpScIjTips8HjqVFdM9aVQelDvcER3y94ASP2OHmKDvEm1xGHGCBW5UJajd0iiu1lH9jZbBjE8sq/OwTi/dq3SGjlyJIrSvtU5W7duPaOAhGOZmBDO9rWxJCt7MWf9hjEgTu+QRHdq9oI7K1QSnu4UE+hFLe5kuAwgvnGvVsfTp7/eYYluZDm0DgOwyRLPVVKwfMbalfDMnTu3i8MQjmp4RB/eNgwmmb0c3bOawNHX6B2S6C71Vah521HQRnjukhGebhUb5AXAhsaBxLNXSz6HXa5zVKLbWCxYsrWEZ5frEKIDvPSOyOm1K+FZuHBhV8chHJTRoFDXLxly/6fV8Yje4/BmFNXMYTWQEmMQ0QGeekfUq8QEam9wa+sHco0bslKrtynei0tdGdWqO67hwzFID7Qzdlo1PMeOHeM///kPCxYsoLRU20xy69atHDlypFODE44hZMgUAPxrs6GySOdoRLexvsFutsQTF+wtK0S6maebC2F+JltrCArToeaovkGJ7mOdTt5mGcCQyECdg+kZOvwKtmPHDuLj41m8eDH/93//x7FjxwD44osvWLBgQWfHJxzA+CED2GOJBKDqwK86RyO6TbP6nUEh0v9DD7FBXpTgR4VXtHYgZ6Ou8YhudMj6/FMHMVzqdzpFhxOee+65h+uuu479+/djMh3fSPK8885j9erVnRqccAz9+niw330IAAW7Or6vmnBC5kY4rG0YutkyiHgpWNZF07RWpudQ7YD04+k1mjqcb7QMYlhkH32D6SE6nPBs2rSJW2+9tcXx8PBw8vPzOyUo4XgawscB4HJ4g86RiG5RuAvqK6nEi31qBIOkYFkXsYHayNo2tAagUsfTS5QdRinLoVE1kG1KpJ+f6dTXEafU4YTH3d2d8vLyFsf37dtHUFBQpwQlHE/osGkA9KvZh1pXqW8woutZ31i3WAZiwSA9eHQSY12ptarGumnkka3QWKdjRKJbWJ9/6WoUAyJD290WRpxchxOeOXPm8Nhjj9HQ0ABoLdCzs7N54IEHuOSSSzo9QOEYRiYNI1cNwAUzuemyzUSPZx1O32COx8vNSERfD50D6p3irCM8vx7zRfUKAnMd5KbqG5ToerYNexMYFtFH31h6kA4nPP/4xz+orKwkODiYmpoapk6dyoABA/Dx8eGJJ57oihiFA/BwM5LlOQyA/J2/6ByN6FKq2myFlla/I58w9RHe1wM3o4H6RpWa0LHaQanj6fmsz79NlkEMj5SC5c7Srj48zfn5+fHjjz+ydu1aduzYQWVlJaNGjWLGjBldEZ9wIJbIFNi3ErdcqePp0Y4dgoo8zIoL29U4LpLpLN0YDQpRAZ7sL6wk128EA/hO6nh6uppjqAW7UNA+cPw9vI/eEfUYHU54cnJyiIyMZNKkSUyaNKkrYhIOqt+ws2Df08TW7KK2rg6Tu7veIYmuYH1DPeQWT12Nm9Tv6Cw2yIv9hZXsdklkAGgbulosYJC+SD1SzkYUVA5aQnHzCyHIR15nO0uHnzHR0dFMnTqVJUuWcPSoNMHqTWIGj6YCT7yUWnanyqfMHsua8Gy0NrwbJEvSdRUbpNXxbK6LBFdPrflg8T6doxJdpln/K6nf6VwdTng2b95McnIyjz32GGFhYcydO5fPPvuMujpZOdDTKUYXDntr/UCKpR9Pz2VNeH6ujgWQER6dNfXiySipg4gx2kGp4+m5mgqW1UEMk/qdTtXhhGfkyJE8++yzZGdns2zZMoKCgrjlllsICQnhhhtu6IoYhQNRI7V+PO550vG1R6ouhaLdAGw2x+Pv5Uagt5vOQfVucdal6QeLKqH/eO2g1PH0TA21cGQLoBUsD5P6nU512pPAiqIwffp0lixZwk8//URMTAzvvPNOZ8YmHFD4sLMAGFS/i8KyGp2jEZ3OunVBuXcspfgSH+ItK7R0FmNdmp5bVktdmKzU6tHyUsFcT5HqS5YaylDZUqJTnXbCc/jwYZ555hlGjBhBcnIy3t7evPTSS50Zm3BAfgNSaMCFEOUYW7en6h2O6GzWN9KDHkkA0mHZAfh7udHH0xWATFMiKAZtJV15rs6RiU536DdAq9+JCfTGz8NV54B6lg4nPK+99hpTp04lOjqad999lyuuuIKMjAzWrFnDbbfd1hUxCkfi6kGh92AAindLP54ep9kO6YDsoeUgYq11PAfKFQjRklGZ1uqBbP13EhgmozudrsMJz+OPP05KSgpbtmwhLS2NBQsWEBUV1RWxCQelRGl1BJ75m7BYVJ2jEZ2moRZytwLwfUUMICM8jqJpWiuzqErqeHoqi0VrOYBWvzM0XBKeztbhPjzZ2dkyp9/LBQ2ZCrteZ6h5N7tyy2Weuaew1g9YvILZVNIHkBEeRxHbVLhcXAVDxsHG16SOp6cp2g21ZVRjIl2N4hHZIb3TdXiER1EU1qxZw9VXX8348eM5cuQIAP/9739Zu1b2WOoNXK0jPAMNR9iYLv1AegzrG2hZ4ChAoZ+fCV+T1BA4gqYprYPFVdBfWylJQRrUttzIWTgp6/Nvi3kAqmJkSD9fnQPqeTqc8Hz++efMnDkTDw8Ptm3bZuu/U1ZWxpNPPtnpAQoH5BXAMS+tR0vJ7jU6ByM6jXWK5KCHtmeajO44jqbmgweLKlF9wqBPFKgWOLxJ58hEp2m+f12ID55uHZ6AEadwWjU8r776KkuWLMHV9finv4kTJ7J169ZODU44LqN1lKdv8RYq6xp1jkacMYvF9oK7RR0ESP2OI4kK8ERRoKK2keLKeqnj6YkOHW84KPU7XaPDCc/evXuZMmVKi+N+fn4cO3asM2ISTsAnfjIAo5S9rMso0TkaccaK90LtMXD14pfyMEA6LDsSk6uR8D4eAGQ2n9aSOp6e4VgOlB/GjIFtlgEMk/qdLtHhhCc0NJQDBw60OL527VpiY2M7JSjhBKwvuEOVg6zbe1jnYMQZs75xqhGj2V1YDcgeWo6m+bSWbYTn8GYwN+gYlegU1pG63cRQg4nhshCkS3Q44bn55pu5++672bBhA4qikJuby/vvv899993H7bff3hUxCkfUN5paUxBuipnivfIp0+lZX3CrQ8ZSWlWPosCAYG+dgxLNNRUuZxZXQWA8ePSFxhrI26FzZOKMZWsNB9c3xuNmNMiHjS7S4aqov/71r1gsFs4++2yqq6uZMmUK7u7u3Hffffzxj3/sihiFI1IUjNETYM9XRFTsILukmv4BnnpHJU6XNeHJ9NIKlqMDvDC5GvWMSJygaWl6RlEVGAwQOQ72LdNG5yJG6xydOCPNGg4m9PPB3UWee13htJalP/TQQ5SWlpKWlsb69espKiri73//e1fEJxyYa/QEAMYY9vLL/iKdoxGnrTxX26pAMbDVPACA+BAZ3XE0sdbmgweLK7UD/VO0f6WOx7nVHIXCdEDrcC4dlrvOae+l5ebmRmJiom0fLdELWet4xhj2sXZvgc7BiNPWtNIndCjpJRZAVmg5ohjrCE92STWNZov9Si1VOp47rewNAOQawynBj2ERffSNpwdr15TWxRdf3O4b/OKLL047GOFkQpIwu3rh21BF4cHtNJjH4Go87Rxa6KUp4ek/nr2ZFQAMCpWmZ44mzNeEydVAbYOFnKM1xPQbCUZ3qC6GkgwIHKB3iOJ0WEfofmvU9q+TEZ6u0653Jz8/v3Z/iV7E6IIhYiwAQxp3sS37mL7xiNPTtEIrMoV9+U0Jj4zaOhqDQTm+p1ZxJbi4Q/go7cIc6cfjtKwfONY3xuPhamRAkDz3ukq7Rnjeeuutro5DOCklajxkrmKMYS9r9heRHOOvd0iiI2rLtS0KgDy/4VTV78HNaCAqwEvnwERrYgO92J1XzsGiKs5KQJtWzl6nfY28Wu/wREc127B3k2UQSZG+uMgoeZfpMY/sSy+9RHR0NCaTiZSUFDZu3Kh3SL1Dszqe1fukcNnpHN6kbVHQJ4o9Vdony9ggL5madFB2K7VAOi47u9ytYK6nwiWAQ2qI1O90sR7xqvbxxx9zzz33sHDhQrZu3crw4cOZOXMmhYWFeofW84WPQVWMRCjFFB05SGlVvd4RiY7I0Qom6T+evfna6h/pAeK4Ymy9eKwrtSKTtX9LDkClfOBwOtbp5B2GwYAi9TtdrEckPM899xw333wz119/PYmJibz66qt4enry5ptv6h1az+fujRKm9W4Zrexl7YFinQMSHWJ9wbVEjuNX69/O5GrEbJFVP47oeLdl6wiPR18ITtS+lzoe52PdP2tljbZLgYzwdC2nT3jq6+vZsmULM2bMsB0zGAzMmDGDdeta709RV1dHeXm53Zc4A9Zh9TGGvayRaS3nYW7QtiYArvpBsSWrH2/KYdLin1melqdndKIVTSM8hRV1xzftjWzqxyMJj1OxmCFHK71Y1zgIX5ML0dK8tUs5fcJTXFyM2WwmJCTE7nhISAj5+fmtXuepp56yW1kWGRnZHaH2XNYX3LGGfazeX4QqPUGcQ/4OaKjmmOrF+ooA+4vKarn9va2S9DgYPw9XAr3dAMiUOh7nVrgb6spoMHqyR+3PsIg+KIqid1Q9WrtWaf3rX/9q9w3eddddpx1Md1mwYAH33HOP7efy8nJJes6EtXA5Qcmmuvwo+woqpQ7ECVgOrcOA1t1VPeGzjwoowKKl6ZyTGIrRIC/EjiI20JviylIOFlcyNMLv+M7pealQXw1uMkrgFKzTyZkeQzBXGbW/pehS7Up4/vnPf7brxhRF6faEJzAwEKPRSEGBfaffgoICQkNDW72Ou7s77u7u3RFe7+ATCn1jMBzNZJRhP6v3jZaExwkc3bOaAGCzZVCrl6tAXlktGzNLGR8X0Oo5ovvFBHqxMav0eB1Pn/7g0w8qcuHIFoiZrG+Aon2sCc8Ga8NB2SG967Ur4cnMzOzqOE6bm5sbo0ePZsWKFcydOxcAi8XCihUruPPOO/UNrjfpPx6OZjLasJfV+4u4eUqs3hGJk1FVvAq0+p1NbSQ8TQorarsjItFOTUvTDxZbEx5F0UZ5dn2hTWtJwuP4VNVWsLy8IgaQguXu4PQ1PAD33HMPS5Ys4Z133mH37t3cfvvtVFVVcf311+sdWu9hHVYfq+xjY2YptQ1mnQMSJ1V6EFNdCXWqC2lqzElPDfYxdVNQoj2aVmrZlqZDszoe2UjUKRzLhopcVMWFLeY4Ar3dCfOT51lXa9cIz4kOHz7M119/TXZ2NvX19n1XnnvuuU4JrCOuuOIKioqKeOSRR8jPz2fEiBEsX768RSGz6ELWF9yRxgNYauvZkFnK1PggnYMSbbIWuO42DKQOt1ZPUYBQP5N0z3Ywtl48RVWoqqoVujbV8eRs1Fb/GIw6RihOyfr8K/IdTG2NOxMi/KRguRt0OOFZsWIFc+bMITY2lj179pCUlERWVhaqqjJq1KiuiLFd7rzzTpnC0lPgQPDwx1RTyhAli483RnCsup5gH+0NU4peHYx1JMA3fhJsb3lx019r4exE+ds5mP7+nhgNClX1ZgrK6wj1M0HIEHDzgfoKKEyH0KF6hylOxvr822XUeihJw8Hu0eEprQULFnDfffexc+dOTCYTn3/+OTk5OUydOpXLLrusK2IUzqDZp8wxhr18l5bP3R+lcuWS9dLTxRFZP2GGDz8bN5eWLwOhfiZeuXoUs5LCujsycQpuLgYi+3oAcLBpWstghEhtI19Znu4ErAnPymqt1nG41O90iw4nPLt37+baa68FwMXFhZqaGry9vXnsscdYvHhxpwconMcetyEAjDXstTsuPV0cTFUxlOwHYGVVNPWNFiL7evDhzSm8MG8EH948jrUPnCXJjgNr0XEZpI7HWVSXQtEeAL4tiwKQJendpMMJj5eXl61uJywsjIyMDNtlxcWyrUBvZbao/GOPVusx2rAPbVGzpum7RUvTZcsCR9A0AhCcyOe7tTfMOSP6MT4ukAtHhDM+LkCmsRxcrG1PreYJj7WO59A6bRWQcEzW/euqfeMoUX0J7+NBoLe0SekOHU54xo0bx9q1awE477zzuPfee3niiSe44YYbGDduXKcHKJzDxsxSfqnoR63qSqBSToxi3+W6eU8XoTPrCEBdv2R+2attBTJneLieEYkOimlaml7UbKVW+GgwuGj9eMpydIpMnNKh37R/vLQ9CKV+p/t0OOF57rnnSEnRthJYtGgRZ599Nh9//DHR0dG88cYbnR6gcA6FFbXU48p2NQ7Q6njaOk/ozDrCs40E6s0WBoX4SKNIJxPtryU8O4+UsS6jRBs5dfOCsOHaCVLH47isf5uN1v5X0n+n+3R4lVZs7PGGcl5eXrz66qudGpBwTk29WjZZBpFi2MNYZS+fMq3N84RO6qu1LQiAD/O1UZ05I/rpGJDoqOVpeTzy1S4AiivruXLJesL8TCycncis/uO1bsvZ62HY5TpHKlpoqIHcbQB8e0yr35EOy93ntPrwgLZLeWFhIRaLxe54//79zzgo4XySY/wJ8zOxpUJrk37iCI/0dHEQR7aApRGzdz+WHtIGeGcPk4THWSxPy+P297ZyYoVO08KAL6bHMxJkhMdRHdkKlgYsXiFsLPEFYEi4JDzdpcNTWvv27WPy5Ml4eHgQFRVFTEwMMTExREdHExNz8o6toucyGhQWzk5kq2UgFlUh1pBPIGWA9HRxKNY3wkNew7CoCiMi+9A/QDabdAZmi8qipektkh04vjDgoS3a6i0K06HmaHeFJtorW6vfKQ4YDSjEBnrh5+Gqb0y9SIdHeK6//npcXFz45ptvCAsLk+6QwmZWUhhcPYWDn/dngHqI0YZ9fG8ZS2jTcLssc9aftWD5pyrtw8mFMp3lNDZmlpJX1nYNnAqkl5uoCYrGoyILcjZB/LndFp9oB+sHjnQXaTiohw4nPKmpqWzZsoWEhISuiEc4uVlJYViyZsDmNxhj2Mv3lrF88YcJhPl56B2asJi1rQeAL0v6Y1Dg/GGShDqL9hb8F/YdSVRFlpbcSsLjOJo9/36p1RZ3SMFy9+rwlFZiYqL02xEnZbA2QJvsfgCAbdnHdIxG2BTsgvoK6oxe7FUjGR8XIEXkTqS9f6uGcG0VrdTxOJiCXVBXDm4+LCsMAGSEp7t1OOFZvHgx999/P6tWraKkpITy8nK7LyGaGqANNGfggfTecRjWN8AdyiAsGJgzXKaznEnTwoCTFRGE+ZmIGTVD+yF3KzTWdUtsoh2sz7+6sDHkVzZiNCgM6ScJT3fq8JTWjBnak+nss8+2O960a6/ZbO6cyITz6hMJvhEYyw8zwpDB5kPBekckwFa/s6pmAK5GhVlDZDrLmTQtDLj9va0o0Grx8iMXJGIMDAXPQKguhrztEJnc3aGK1liff9neWsPBgcHeeLjJrvbdqcMJz8qVK7siDtHT9E+BtMOMUfbyUu4QKmob8DHJagTdqKrtBXezZRBTE4Lx85S/h7OZlRTGK1ePYtHS9FYLmN1dDcc38t3zjfY3l4RHf82ef1tUreGgbBja/Tqc8EydOrUr4hA9Tf/xkPY5k90P8O9qrY5nSnyQ3lH1XseyoSKPBlzYrsbyjKzOclqzksI4JzGUjZmlFFbUEuxj4uc9BSxZk8mT3+1hysAgXGwJz3qYeLfeIYtjh6AiDwyu/FgWAVTKhqE66HDCs2PHjlaPK4qCyWSif//+uLvLRmi9nrWOZxj7MGBhU1apJDx6stYP7LREo7h6MmOwTDM6M6NBYXxcgO3nxH6+fLblMAcKK/lwUw7X2HZOXw8WCxg6XK4pOtMhbXSnwj+JdTk1ACRJ/U636/CzYMSIEYwcObLF14gRI0hISMDPz4/58+dTWyt7JvVqwYng7ovJUk2Cks2mLClc1pV1OH2TZRDnJIbg6XbaTdaFA/LzcOVPM7Qu58//uI+KvoPBxQNqSqFkv87RiZztKwB4Pz+c6nqtzvW297awPC1Pz7B6nQ4nPF9++SUDBw7k9ddfJzU1ldTUVF5//XUGDRrEBx98wBtvvMHPP//Mww8/3BXxCmdhMNpqB8YY9rIt+xj1jZZTXEl0FdU6wrPZMkhWZ/VQv0/pT2yQFyVV9by8JgcixmgXyPJ0XS1Py6M+Yy2gfeBoUlCubQciSU/36XDC88QTT/DCCy9w4403MnToUIYOHcqNN97IP//5T/7xj39w1VVX8e9//5svv/yyK+IVzsQ6rTXRdT91jRZ2HinTOaBeqroUpWg3APvdEmVqsYdyNRpY8LvBALyxNpPy4NHaBZLw6MZsUfnX178RZ9CSms3NEp6mVXaLlqZru92LLtfhhGfnzp1ERUW1OB4VFcXOnTsBbdorL0+y1l7PWkeQbNwLqGyWaS19HN4EwAFLP8YNHYSbi9Rz9FQzBgczLtaf+kYL7+daR/Ks05mi+23MLKV/pVb3uscSSRnedperQF6Z9CrrLh1+5UtISODpp5+mvr7edqyhoYGnn37att3EkSNHCAkJ6bwohXPqNwoMLvQ1lxChFEsdj07MWdqGhZst8cyR1Vk9mqIoPHx+IooCLx3wR1UMcDQTKvL1Dq1XKqyoJdmwB7CfzmrtPNH1Oly5+NJLLzFnzhwiIiIYNkxroLRz507MZjPffPMNAAcPHuQPf/hD50YqnI+bJ4SNgCObGa3s5ZdD/bBYVAyyY3q3Kt+3hr7AXvchXBYTcMrzhXNLCvfjopHhfLH1CIeM0UQ3HtSmtYbM1Tu0XifYx0SsNeHZaGl7/0nZ4qV7dDjhmTBhApmZmbz//vvs27cPgMsuu4zf//73+Pj4AHDNNdd0bpTCefUfB0c2M85lH19VT+JAUSXxIT56R9V7NNTiU6INqfsnTMUoyWav8JeZg/huZx6/1MYR7SIJj16S+7mAIRtoPeFRgFA/E8kx/t0cWe90WmtTfXx8uO222zo7FtET9R8P615kotsBqIdNWaWS8HSj2uwtmNQGilQ/JqdIx93eIszPg5snx7J51SDm8yOW7PUdr18QZ8x4ZBNgIdsSRAH2SU3TR4+FsxPlg0g3aVfC8/XXX/O73/0OV1dXvv7665OeO2fOnE4JTPQQ1pVa/Ruz8KWSTZmlXJXSsuhddI2MLT8xBNjlksjUyD56hyO60a1T47h8wzAwA/k7oK4S3L1PeT3RiawNB5WoCXBCO6RQPxMLZycyK0n2tOsu7Up45s6dS35+PsHBwcydO7fN82TzUNGCVyAEDISS/Yw27GdTliyJ7k6NmVrBsiVyHIoinyJ7E293F66dOZ7D3wYSQTGVB9fjPXiG3mH1LtYVcnXhKbAf+nq68ujsIQT7atNYMrLTvdo1ymmxWAgODrZ939aXJDuiVf1TAG15+pFjNeQeq9E5oN7hWGUNMdVa/U7caHmj640uGxPJPrckADavXqZzNL1MYx0c3gzA2rqBAEyJD+LCkeGMjwuQZEcHMq0rup61H89k9wwAWZ7eTdavX4uvUk0VHkQljtM7HKEDo0EhcsRZALgeWU9WcZXOEfUiudvAXAdeQSzL06YSU2SVpK7anfCsW7fOtuy8ybvvvktMTAzBwcHccsst1NXVdXqAogewJjwJ5v240SAJTzcp2Knt31PcdyQYZe+s3mrgGG10b4Syn2e+26VzNL3IIW062RyRwrbDWpf5cbGyGktP7U54HnvsMXbtOv5k2blzJzfeeCMzZszgr3/9K0uXLuWpp57qkiCFk/OPBa8gXNR6kpRMNmcd1TuiHq+wvJbg0i0A+CVM1TkaoaugwZjdfPFS6sjevUG6+nYXa/1Ots8I6hstBPu4ExPopXNQvVu7E57U1FTOPvts288fffQRKSkpLFmyhHvuuYd//etffPLJJ10SpHByimJbrZVi2MPeggrKqht0Dqpn+2Z7LmOtDc/6DJ6uczRCVwYDxihtlDXFsIcnvk3HIns3dS2LGbI3ALCuUdvFflxsgCwc0Fm7E56jR4/abRfxyy+/8Lvf/c7289ixY8nJyenc6ETPETURgKmm/agqbMmWT5ldacvWjQQq5TQa3KHfSL3DEXqLmgDABJc9bD9cxtIduToH1MMVpkNdGbh5802BVreTItNZumt3whMSEkJmZiYA9fX1bN26lXHjjhdCVlRU4Orq2vkRip7BmvCMUHdjxMzGTJnW6iqHSqrwK9wIgCV8LLi46RyR0F30JAAmuu5HwcLiZXv4ZV8hX6UeYV1GiezW3dls9Ttj2ZxTAWgjPEJf7a5kPO+88/jrX//K4sWL+d///oenpyeTJ0+2Xb5jxw7i4uK6JEjRA4QMAZMfptoyEpVDbM4K1DuiHmvp9lySDbsBcIudpHM0wiGEDQdXL0wNZYz2yGdzWT/mv7np+MXSBK9zWROeI76jqG+0EOTjTqzU7+iu3SM8f//733FxcWHq1KksWbKEJUuW4OZ2/JPjm2++ybnnntslQYoewGC0rdZKMexmx+Eyahukb1NX+Dr1CCnW+h2iJ+objHAMRldbP6zE+p0tLs4vq+X297ayPC2vuyPreVTVVrC8wSz1O46k3QlPYGAgq1ev5ujRoxw9epSLLrrI7vJPP/2UhQsXdnqAogexTmtNcdtLvdnCDutSTdF59uSXU1N0kDClFNXgCuFj9A5JOAhLf62OJ8U6+tdc04TWoqXpMr11pkoPQmUBGN1YWtwPgBTZHNQhdLjxoJ+fH0ajscVxf39/uxEfIVqwjjaMUfagYJF+PJ3IbFFZl1HCP77faxvdUcJHgZunzpEJR5HuNhSAZMMejqc4x6lAXlmtLFs/U9bRHUvYSDbkaI0epX7HMUg3MtF9QoeDmw+e9RUkKDlsygo59XXEKS1Py2PR0nTyymoBeMZFS3gOeg4jVs/AhEPJdBvEANWVIKWcOCWXDDW81fMKK2q7ObIexrphaH6fkdQ1Wgj0dicuSOp3HIFsLSG6j9HFVkeQYtjNlqyjMnx+hpan5XH7e1ttyQ40fYKHx3b2lZoMYRPYx5etFm1PJ1uNVyuCfUzdFVLPlLUGgI1qIqB1V5b6HccgCY/oXtZ+IBNd9lBR18je/AqdA3JeZovKoqXpdpMTIZQSbSjArCpsscRLTYawSY7xJ926kWhrdTwK2mqtZKk3OX3HcuDYIVCMfF0aCUCKTGc5DEl4RPeK0pZJpxj3AqrU8ZyBjZmldiM7cPyT+y41mgo8pSZD2BgNCsMmngc0JTzHE+Gm8YeFsxNlF+8zcehXACz9RvBrjra35HhpOOgwJOER3avfSHDxwNdSxkDliCQ8Z6C1Woum/jsbLQknPU/0TsmTZ2ExuBKqHKW/Umg7Hupn4pWrR0kfnjNlnc7K7zvWWr/jRlyQt85BiSaS8Iju5eIGkcmA9ilzU1YpqipTLqejtVqLpvqd5gmP1GQIG1cPDBFaq4KnRmltIQK8XFn7wFmS7HSGrLUAbLLW76RI/x2HIgmP6H7WNvfjjHsoKK/j8NEanQNyTskx/oT5mWzTEf6UE284AsAmyyCpyRCts/bDGq2mA1BS1UCD2aJnRD3DsRw4mqXV7xzV6ndkObpjkYRHdD/rC+4EF60fiNSYnB6jQWHh7ERbJUbT7uh7LJEcwxeQmgzRCuvCAfcj6/Bx1zqT5JRW6xlRz9BK/c44+bDhUCThEd0vfDQY3fG3HCVGyWfzIUl4TtespDAi+3oAxwuWN1oSpCZDtC0yBRQjSlkOY/tqjfGySiThOWPW+p2CvmOpbbAQ4OXGgGCp33EkkvCI7udqAmsdQYpht4zwnIH03HJyjtbgYoBLA7IAGDftAqnJEG1z99YWDwBTTfsAOFRSpWdEPYOtfmcwIPtnOSJJeIQ+rNNaKYbdZBRVUVJZp3NAzunTLTkAzB3kgW+ZNsITP+48mcYSJ2fd5mWkZRcAWZLwnJlm9TtLj/YHtIaDwrFIwiP0YX3Bneii9ePZfOiovvE4ofpGC1+l5gIwv99h7WBQAngH6xiVcArWDxwxlakAZBXLlNYZaarfCRvBGmv9jjQcdDyS8Ah9RCSDwZVgtZgIpYhNMq3VYT/vKaS0qp5gH3eG1G3XDkZP1jco4Rz6jwPFgE91NsEclRGeM2WdzirwH0NtgwV/LzcGSv2Ow5GER+jDzRPCRwEw3pDOJhnh6bDPrNNZF40Kx3BIe8ElZoqOEQmnYfKDUG339HGGdHKP1VDXaNY5KCfWVL+D7J/lyCThEfqxjkaMN6Sz60gZ1fWNOgfkPAoralm5twiAeYPdoGgPoNh6HAlxStbkeIprOhYV6Yd1usoOw9FMrX6ntKl+R6azHJFDJTyqqvLII48QFhaGh4cHM2bMYP/+/Se9zlNPPcXYsWPx8fEhODiYuXPnsnfv3m6KWJwR6wvuZGM6jRYLqdnH9I3Hifxv2xHMFpURkX2IqdimHQxNAk8plBTtFDMNgIlGrQGhrNQ6TVnH63fW5tQDkBIjCY8jcqiE55lnnuFf//oXr776Khs2bMDLy4uZM2dSW9v2XkC//PILd9xxB+vXr+fHH3+koaGBc889l6oqefI6vMhkMLoTRCmxSh4bZV+tdlFVlc+2aEXKl42JsPX/IFqms0QH9B8HBhfCLAVEKIVSuHy6rM+/Qv8x1DSYpX7HgTlMwqOqKs8//zwPP/wwF154IcOGDePdd98lNzeX//3vf21eb/ny5Vx33XUMGTKE4cOH8/bbb5Odnc2WLVu6L3hxelw9oH8KABMMu9icJXU87bHjcBn7CipxdzEwe3g/yFytXRAjBcuiA9y9IVzrhzXBsEtGeE6XrX5nCAApMf4YpC2EQ3KYhCczM5P8/HxmzJhhO+bn50dKSgrr1q1r9+2UlWkb4vn7tz20X1dXR3l5ud2X0Il1WmuCYRdbs4/SKHv6nFJT751ZSaH41hVC6UFQDLYtA4Rot2bPv0zpttxxtvodg+yf5QQcJuHJz88HICQkxO54SEiI7bJTsVgs/OlPf2LixIkkJSW1ed5TTz2Fn5+f7SsyMvL0AxdnJmYqABOM6dTUN5CeJ8nnydQ2mPna2nvnstGRx6ezwkZoK2+E6IhY6/PPkM6h4kqdg3FCB38BwNJvFGuzrfU70nDQYemW8Lz//vt4e3vbvhoaGs74Nu+44w7S0tL46KOPTnreggULKCsrs33l5OSc8X2L09RvFLj50IdKEpVs2WbiFH5IL6C8tpF+fibGxwXIdJY4MxFjUY0mgpVjmI4dkF3TOypTS3gKAlKoaTDT19OV+GAfnYMSbdEt4ZkzZw6pqam2r8DAQAAKCgrszisoKCA0NPSUt3fnnXfyzTffsHLlSiIiIk56rru7O76+vnZfQidGF9tUzHip4zmlpmLlS0ZHYFRolvBIwbI4DS7uWvEykKKkcUSWprefqtpGeDag9TRKiQmQ+h0HplvC4+Pjw4ABA2xfiYmJhIaGsmLFCts55eXlbNiwgfHjx7d5O6qqcuedd/Lll1/y888/ExMT0x3hi87UrI5gU1YpqqrqHJBjyiurYc1+rffOpaMjtL17ynLA4AKR4/QNTjgtJbbp+ZcuHZc7omgvVOaDi4mvS7UP2bJ/lmNzmBoeRVH405/+xOOPP87XX3/Nzp07ufbaa+nXrx9z5861nXf22Wfz4osv2n6+4447eO+99/jggw/w8fEhPz+f/Px8amrkk4rTsNYRJBv2UFZVTWaxvOi25outR1BVSI7xJyrA63j9TvgYbcWNEKcjZhqgdVzOLq7QNRSnYp3OskSOY3229pol+2c5Nhe9A2ju/vvvp6qqiltuuYVjx44xadIkli9fjslksp2TkZFBcXGx7edXXnkFgGnTptnd1ltvvcV1113XHWGLMxU8BDz88a4pZZhykE1ZI4kNkjfw5lRV5dPNWq3ZZaOtU7aZ1oRH6nfEmQgbTq3Riz7mKmpzUoE4vSNyDgdXAZAXkEL1bjN9PF0ZFCL1O47MoRIeRVF47LHHeOyxx9o8Jysry+5nmf7oAQwG7U07/SvrtNZZXDG2v95ROZQth46SVVKNp5uR84aGafUD1k+YsmGoOCNGF4oDxhJRuAq//HXAJXpH5PjMjbb+O79ZtBXB0n/H8TnMlJbo5azL0yda63iEvU83a8XK5w0Nw8vdBQrTobIAXDxsRadCnK6GSG0PtugKadjaLnmpUFcOJj++KQoCpP+OM5CERzgGa8IzyrCP/JJjFJa3vZ1Ib1Nd38g3O5p671inszJWav9GT9RW2ghxBjwHnw1AUuMuGuvluXdKB7XnnyV6CpsPac1uZf8sxycJj3AMAXHg0w93pZHRhn28siqDdRklmC0yZblsZz5V9WaiAjxJjrGuArG+4BI7Xb/ARI8RFDOcEtUXL6WOkn3t72zfa1mXox/pm0xVvRk/D1cSQqV+x9FJwiMcg6JwxH8sAJMNO3nrtyyuXLKeSYt/Znlans7B6atpK4lLR0WgKAo01tl2aCZOEh5x5gxGIztchwNQu/cnnaNxcPXVkLMBgLVm2T/LmUjCIxzC8rQ8nt0fDmgJT5P8slpuf29rr016ckqrWX+wFEWBi5ums7LXQ2MNeIdAcKK+AYoeI6uPVgvmmf2LzpE4uJz1YK4H33CW52mrSaV+xzlIwiN0Z7aoLFqazhqL1q00yZBFINq8eNOE1qKl6b1yequps/LEuEDC+3hoB5tPZynyqVJ0jvJ+WuFyQNkuqJaFA21q2j8regqbD2md4WX/LOcgCY/Q3cbMUvLKainBjzRLNACTmo3yqEBeWW2v22fLYlFtCc9lY5ptl9JUsCzTWaIT+feLYZ8lHAOW4y0PREvWDxw5fY7X7wwOle2JnIEkPEJ3hRXHV4U0jfJMNu446Xm9wfqDJRw5VoOPyYWZQ6z7yVWXQt527fvYabrFJnqe6ABPVluGaT9k/KxvMI6qstD2/Ftl1vrvJEv9jtOQhEfoLtjneCftphfcKYadKFjaPK83aBrdmT28HyZXo3bw4CpA1Wp3fE69qa4Q7RUd4MUa6/NPPfCz1txS2GsaXQ0dxkrt6Sn1O05EEh6hu+QYf8L8TCjAFks8Vao7QUoZCYq2OkkBwvxMx5dk9wIVtQ18Zy3UvnR08+ks6yfvuLN0iEr0ZGF+JrYqg6lTXVHKD0Pxfr1DcjwHtBVslriz2WSdYk/pRa9Lzk4SHqE7o0Fh4WxttVEDrqy3aN9PMRyf1lo4OxFjLxo2/nZHHrUNFuKCvBgZ2Uc7qKq2/Xuk/47obC5GA0F9+7LRMkg7INNa9iwW22Ny0G8cVfVmfE0uDA6T+h1nIQmPcAizksJ45epRhPqZbNNakw07MCjw0u9HMSspTOcIu9entmLlSK33DkBJBpTlgNENoiboGJ3oqaLs6nhW6BuMo8nfDtXF4ObDyqpoAJJjAnrVBzFnJwmPcBizksJY+8BZzL3kGgCSDXtxV2sJ9OldWydkFFWy5dBRjAaFi0eGN7vA+ok7MgXcPPUJTvRo0YHH63jIWqs1uRQa63QWsVP5LascgHGyHN2pSMIjHIrRoDBy5Bjw64+b0kiKYTff7exdTQc/t47uTI0PIti3WaH2gR+1fweeo0NUojeIDvBijxpJmdEfGqq1JpdCc0D7wGGOnc6mLK3/jhQsOxdJeITjURRbj5kphp0sS8vD0guaDpotKr8eKOb9DdkAXNJ8dKehBjJXa98PkIRHdI2oAE9AYaNhhHZA6ng0tWW27SSWVg6msq4RD1cD8SGyf5YzkYRHOKYB2u7N04w7KSivY2v2UZ0D6lrL0/KYtPhnrvrPBspqGgD4+7fpx7fUyFoLjbXgGwHBg3WMVPRk0QFeAHxfZ92yROp4NAd/AdXMISWcP/1wDICaBgtTn13Za7e9cUaS8AjHFDMVFCOxyhEilCK+25mvd0RdZnlaHre/t5W8MvvGigXldcf3Edv/g3Zw4DmynYToMuF9PTAaFFbWD0FFgfydUC5v6DmblgLwc0OS3fHevtefs5GERzgmjz5acS4w3bCtx05rNe0j1tpvZttH7OtdqLaE59zuCk30Qq5GAxF9PSjBj6pAa/Fy0/+9XspstuCSqU3t/WIZbndZb9/rz9lIwiMcV7z25n6OSyp5ZbWkHj6mbzxdoGkfsbaogKkiC+VolrYcPWZKt8Umeqco67RWpr+2mWhvT3h2bt9EGMXUqa6st7ScTu6te/05I0l4hOOKnwXAeMMuPKhlWQ9crdWe/cGmG1K1b6ImgLt31wYker2YAK3lwRb3ZO1AxspevTzdJUNbHbnBkkAtbbfI6G17/TkjSXiE4wpKAL/+uKoNTDDs4rud+ag9bH+f9uwPNq0p4ZHpLNENmkZ4NtZEgHcoNFRpRfO9VGSxtjryZ8vIk57X2/b6c0aS8AjHpSgQPxOAc123c+RYDTsOl+kcVOdKjvHHz8O1zcu9qGWccbf2gyQ8ohtEB2ojPJklNbZp5V47rVVzFN/CzQD8ZBnV6im9ca8/ZyUJj3BszRIeUHtcE8KC8lrqGsytXqYAEwy7cKMR+kRBwIDuDU70Sk0jPIdKqlCbkux9y3vn7un7f0JRzVT4DuSwGtzi4qb1kr1trz9nJQmPcGzRk8HVk76NRQxWsvkuLa/HTGupqsqCL3ZS22ghJtCTUF/7IfFQPxOPDNJ2jJfl6KK7RPT1wKBAdb2Z4uAJWrH80azeuXv6vuUAlEVqfcFOfAaG+pl45eret9efs3LROwAhTsrVpPXk2beMc11TeaE0irQj5QyN8NM7sjP26ZbD/LKvCDcXA0uuHUtMoBcbM0sprKgl2MdEcnQfjP+8XTt50O/0DVb0Gu4uRvr18eDw0RqyKhSCoidpHZf3fw9B8XqH133MDbbtXD4q0xoxXpEcyYXDw48/R2P8ZWTHicgIj3B81jqCCz13AvBdD2jylV9Wy9+/SQfg3nPiGRDsjdGgMD4ugAtHhDM+LgBj3jaoLAA3H22kS4hu0tRxOau4CgZq08rs+17HiHSQvR5qy7B4BPDaQW3PrOsmRNs/RyXZcSqS8AjHZ33BjandjT/lfLfTuae1VFXlwS93UlHbyPDIPtw0Obb1E/d8o/07cAa49K4d44W+oqxL0w+VVB8vXM5eBzXH9Auqu1mns3Z7j6PBopAc7U9CqK/OQYkzIQmPcHx+4RA6FAWVma6pHCqpJj2vXO+oTtuX247w855C3IwG/u/SYW1/StzznfZvwgXdF5wQQEygdYSnpAr8Y7UWEZbG3rVaa+8yAN4t1ZoNXjM+Ss9oRCeQhEc4h4TZAMzz2Q7AMifdW6uwvJZHv94FwN0zBjKwrd2WSzKgeC8YXGDAjG6MUIjjK7WySqq0A01J9+6lOkXUzYr3Q2kGFsWVb6sSCPJxZ+aQUL2jEmdIEh7hHAZrCU9S7Ra8qHHKaS1tKiuN8tpGhob7ceuUNqayAPZ8q/0bPUnbV0yIbhTdNKVVXK09zwZbE54DP0FDjY6RdRPr6M5O16FU4smVyf1xc5G3S2cnf0HhHIIHg38sRks9Z7vu5GBxFXsLKvSOqkO+3p7LT7sLcDUq/N9lw3ExnuTp15TwDDq/e4IToplIf8//b+/O46Kq98ePv2aAYZPFhVURcBcXFFc0rxsmlkvbTVtUKltMb/rr3tutvuVaqd1Ss5vlLUMz0izXvGrlgqW5oyZuuYArSio7IjBzfn8cGR3ZBphhYHw/H495MHPmnDPvD4cZ3vNZ0Wgg62Yh13PyIaADeAVBQa46Ysve3arJ+j5HbXJ+smtjGwckLEESHlE7aDTGWp6nPdVmrfW/157RWn9m3WTyraasV/o1p6V/KU1ZANl/wvnd6v1WD1RDdEKYcnFyIODWvFDJ13LV95+xWWudDSOrBpmX4MIeAH7Ud2FgGz/8vWTZCHsgCY+oPW714+l4cw86ClifWDv68SiKwturE0nPLaBNoCcv9Wla9gF/bAQUCAgHr0bVEqMQd7tzxmXgdrPWHxtAX2ijqKrBrYQuQWlBKnUZ2T3EtvEIi5GER9QeDTuBRwBOhTn0djzKqdRs/qgFzVr/O5zCxiOXcdRq+Pdj4TiV1ZQF0pwlaoSiNbWSr+WqGxpHglt9uJEGZ3fYMDIrO7YWgPWFXWjuW4fuTWSNLHshCY+oPbRaaKUmASO9fweo8WtrXcu+yaQ1alPWuL7NCAssZx6PvAw4vVm931qGowvbCbm7hkfrAC1vNbHa62itnKsot5K5jYYujIwMRiNLutgNSXhE7XKrH0/X/N1oMdT4hGfS2iNcz8mnlb8H4/qasfjniQ2gz4cGLcE3zPoBClGK4DtnWy5y6/3H8f+BwWCDqKzs+Do0ioHDhhDSnAJ4uGNDW0ckLEgSHlG7BPcEF29c8q8T6XiCP65kcyq1ZjZrbTicwv9+T8FBq47KMmtY65FV6s82D8tiocKmijVpgbquna4OZF2Ci/ttFJkVHVWbszbou/JIRCM8XJxsHJCwJEl4RO3i4GRs1nrW+yAA62vIJIR6g8LO09dYc/AiPx25zFur1bW/Xu7TlLYNzVjs9Eb67SG/bR6yWpxCmKNxPTXhybhRQHpuvrrRyeX2QrZHVtooMiu5kY6StA2AjYauMrOyHZKER9Q+bR8BoGf+DhzQ14hmrY2JKdw3awtPfL6LCcsO8sKS/VzLKSDAy4Xx/cxoyoLbzVk+rdV5h4SwITedI36e6hpuJrU8bR9VfyauBIPeBpFZyfF1aAyFnDA0wje0LS1KmwVd1FqS8IjaJ7QPuDXAJf86f3E4wvHLWZz5M9tm4WxMTGHs1wmkZOQVey4lI4+tx1PNO9GdzVlC1ADFhqYDNO0HLl6QfRnO/majyCzP8PtyANbqezAqMsS2wQirkIRH1D4OjsYmn2e8EwDYYKM5efQGhak/HKW0RS40wNQfjqI3lLMMxo00ac4SNU7REhPJV++o4XF0vt15OXGFDaKygqwraJJ+BeA3t94MCPOzcUDCGiThEbXTrWr17jd/w5l8mzVr7Um6XmLNThEFtZZnT9L1sk90/H9gKFBHZvm0tGyQQlRSSIMSangA2j6m/jy6BvQF1RyVFRxZhQYDCYZm9O7Wtfy5skStJFdV1E5B3cGzIbrCbPo5/M6RS5nFP5SrQWpW6clOhfb7/Vv1563+SULUBCF3r5pufKIXuPvAjetwJr76A7Ow3IRlAKwz9JR1s+yYJDyidtJqjcnBaE91eKwtRmv5epi3xk6Z+2VcgFvV6bQfboGohLCM4PolDE0HtVk57CH1fm1v1rp+BrfUA+gVDTdaDMXXU9bNsleS8Ija61azVuebu6lDrk2atbqG1iOgjIUFNUCAlwtdQ8uYnv735YACwfeBt3y7FDVHUafl6zn5ZNy4q+mq3a1mrWM/QH71165aSt6B7wDYYWjLQ/d1tHE0wpok4RG1V0AHaNACR0Megx12c/hiBuev55Z7mCU5aDW82LtJic8VTRs4eUgYDtpSJhFUFDikVqcTPsLyAQpRBXWcHWlQRx2afu7uWp5GXcE7GPKza+9SE4rCjVvNWXvq9Cv7i4mo9SThEbWXRgMdngQgxl0dHlvdtTyKovDz0SsAON81k7K/lwufPh1BdNuA0k+QchCungBHFwgbZsVIhagc40itu/vxaLXQ4Sn1/sG4ao7KMgzn91E35wx5ihNBPR6XdbPsnKOtAxCiStqPgM3TaJV/hFBNCusTvXmxd9Nqe/m1hy6x49Q1nB21bJzwFy5n5pGalYevh9qMVWrNTpGi2p1WD4JLOQuLCmEDwfXd2Xc2reRBAR2egPgZkPQLpJ2FurVrduIrv3xBAPAz3RnctZWtwxFWJjU8onbzDIBmUQA85rCNQ+fTuZBWPc1aGbkFTF93FIBX+jcn1MedyKb1GdahIZFN65ef7OgL4PD36v3wJ6wcrRCVE1Jax2VQ+5yF/kW9f2hpNUZlAfk5eJ9W18661mI47s7y/d/eScIjar9b1eojdL+hxcBn206z5uBFdp6+Vv6Ef1Xw75+OczU7n6Y+7jzfq+R+PGX6YyPkXgV3X2jS1/IBCmEBpc7FU6Tj0+rPg3G1agX163u/w1XJ5azBl/uihto6HFENJKWtAL1eT0GBHUyyZSM6nQ6t1go5dstB4FqP+jeu0kt7mK93afl61zlAHSE1eUhY2f1oKuHg+XTidquv8c5D7cxbCf1u+2LVnx2fUof5ClEDFc3Fk3S1lJrTVoPB2RPSz8HZHRDaqxqjq7zsXYuoB+zyHsRwPzMW9xW1nnzKmkFRFC5fvkx6erqtQ6nVtFotoaGh6HQ6y57Y0Znkhg8ScmoJf3WIZ5sh3PjU5Yw8xn6dUH7n4Qoo1Bv4v1WHURR4JEJtvqqwtOTbS0lEjLJIXEJYQ+NbTVpXs2+SfbOQOnc3/ejc1Dmx9i+CA0tqdMKjNyjsSbpO5oVjDMxS597xve8ZW4clqokkPGYoSnZ8fX1xc3OTnvyVYDAYuHTpEikpKTRu3Niiv0O9QeGtsx35miUM1O7DhzT+pC6gLu1QtJ7VgDD/8vvVmOGrnWc5cikTL1cn3nygkquaJyxRo2vSF+pVojlMiGri5epEPXcd13PyOXsthzaBJdSGRIxSE54jq2Dge+DeoNrjLM/GxBSm/nCUlIw8XnNcBo7wq6E9uS6ybta9okb14VEUhUmTJhEQEICrqytRUVGcPHnS7ONnzpyJRqNh4sSJFotJr9cbk5369evj6uqKi4uL3Cp4c3Nzw8fHh9zcXAoLCy12fUBdz2p7lj97DS1w0uh5wmGryfNmr2dlhssZeXz40wkAXh/UyjhHSYXoC9RvwgCdYqockxDWVjTj8tmSOi4DNOwEgRGgz7/9t12DbExMYezXCaRk5OFMPsNvfUYs1fdl/DcH2Jhom7X4RPWqUQnP+++/z7x58/jss8/YvXs37u7uDBw4kLy88tcr2rt3LwsWLKB9+/YWjamoz46bm5tFz3svKmrK0uv1Fj1v0TpVSwrvB+BJx804UjypMnfdq7JMW3eEnHw9EY29Gd45qHInObEBsq+onZVbPVjlmISwtlLX1LpTlzHqz71fgsGy7/Gq0BsUpv5wlKLhC4O1u6ivyeKiUp9Nhk6AWgNszQEOomaoMQmPoijMnTuXt956i2HDhtG+fXu++uorLl26xOrVq8s8Njs7m6eeeorPP/+cunXrlvtaN2/eJDMz0+RWHmnGqjpr/Q6L1qnaYOjKn4oX/po0Bmj3l7pfZW09nsr6w5dx0Gp49+F2aCvbPLbrU/VnxEhwcKpSTEJUB2MNT2kdl0Htx+NaFzLOwcmfqymy8u1Juk5KRtGXHYXRjj8CEFcYhR4Hi9YAi5qtxiQ8SUlJXL58maioKOM2Ly8vunXrxs6dO8s8dty4cTz44IMmx5ZlxowZeHl5GW9BQZX8pi5qhKL1rApxZKleHd49ysH0A7e+u65K08bfyNczaW0iAM/2DKF1QCUnCbx0AM79BlpH6PJ8peMRojqFNjCjhsfJ9fYQ9b2fV0NU5rmzZrej5hTttUncVJyMnxUl7SfsU41JeC5fVle69vMz7UDm5+dnfK4ky5YtIyEhgRkzZpj9Wm+88QYZGRnG2/nz5ysXdAXoDQo7T1+rlvlh7jUOWg2Th4QBsLSwP4WKlkiHo7TRJBv3Sb+Rz9pDFyv9Gv/ZepLz128Q4OXCxKgWlQ9253z1Z5tH1EkThagFgs1p0gLo/ByggVOb4MpR6wdmhjtrdotqd9bqI0nDs9T9hH2yWcITFxdHnTp1jLfKzG9z/vx5JkyYQFxcHC4u5v+xOjs74+npaXKzpo2JKdw3awtPfL6LCcsO8sTnu7hv1hard5SLiYlBo9Gg0WhwcnLCz8+PAQMG8OWXX2KowARhixYtwtvb23qBWkB02wA+fToCvBqyztAdgBcdf8Dfy4WIYG/0Bvh/3x7iP1tOoigVSzZPpWbx31/OADBlaJvKz8iaeQmOrFTvR75cuXMIYQNFsy1fybxJbn4Zgw7qhULYrUn8fvu4GiIrX1ENcEP+5EHtbgAW6Qcan9egztclC4faP5slPEOHDuXgwYPGW4MG6jDGK1eumOx35coV/P39SzzH/v37SU1NJSIiAkdHRxwdHdm2bRvz5s3D0dHR4p1jK+PO0QF3KpofxtpJT3R0NCkpKSQnJ7Nhwwb69u3LhAkTGDx4sMVHS9ladNsAtv+rH6FD3wRgiONudrzQhO9f7MGLf1GHfn/w0x+8sfIwBXrzEj5FUfi/VYkU6BWiWvtyf1gVhrDu+RwMhdC4BwR2rPx5hKhm3m46vFzV/mbnrpezdEvPCerPw8sho/K1qpbioNXwt37NGOO4HieNnu36NhxRQgE12QGYPCTMIlNWiJrNZgmPh4cHzZo1M97CwsLw9/dn8+bNxn0yMzPZvXs3kZGRJZ6jf//+HD582CRx6ty5M0899RQHDx7EwcHBKrErikJufmG5t6y8AiavPUJJ9QlF26asPUpWXoFZ56tozQSotVn+/v40bNiQiIgI3nzzTdasWcOGDRtYtGgRALNnz6Zdu3a4u7sTFBTEyy+/THZ2NgDx8fE888wzZGRkGGuLpkyZAsCSJUvo3LkzHh4e+Pv78+STT5KamlrxX6gFOWg1hHfpBU37o1EMOOz6BK1WwxsPtGbasDZoNbBs73nGLN5H9s3yE76VCRfZnXQdVycHpgxtU/mO1zfSYO8X6n2p3RG1kHFNrbI6LoM6RD2kl5rc75pfDZGVb+/Rk4y4NRR9vn6Ycbu/l4tFJyUVNVuNmXiwaP6cd955h+bNmxMaGsrbb79NYGAgDz30kHG//v378/DDDzN+/Hg8PDxo27atyXnc3d2pX79+se2WdKNAT9ikH6t8HgW4nJlHuyk/mbX/0WkDcdNV/ZL169eP8PBwVq5cyZgxY9BqtcybN4/Q0FDOnDnDyy+/zGuvvcb8+fPp0aMHc+fOZdKkSZw4oc4/U6dOHUAdsj99+nRatmxJamoqr776KjExMaxfv77KMVZZzwlwejMc+Br6vA7uDRgVGUKAlyt/W5rAtj/+ZPiCnXwZ0wU/z5KbQ9Nz83l3/TFAXRy0Ud0qTE2wewHczATfMGgpQ9FF7RNc351DFzJKX1PrTj0nQPKv6mSEvf4ObrZrLtqYeJkmp5fg6pjPDZ9w/jbwOYZn38TXQ23Gkpqde0eNSXgAXnvtNXJycnjhhRdIT0/nvvvuY+PGjSb9c06fPs3Vq1dtGKV9aNWqFb///juAyUSNISEhvPPOO7z00kvMnz8fnU6Hl5cXGo2mWNPis88+a7zfpEkT5s2bR5cuXcjOzjYmRTYT+hd1IrRLCbBjLtz/DgADwvxY9kIkYxbv5cilTB6Z/xuxz3ShhZ9HsVPM2nic6zn5tPCrw5heoZWPJS/j9jfdv/wTrLGemBBWVuaq6XdrFgV+beFKIuz8D/SfZOXoSpaVV8C/1+xhlYP6pdK17z+IbFbzZoEW1aNGJTwajYZp06Yxbdq0UvdJTk4u8xzx8fGWDaoErk4OHJ02sNz99iRdJyZ2b7n7LXqmi1kd5lydLNdEpyiKsXlm06ZNzJgxg+PHj5OZmUlhYSF5eXnk5uaWOeHi/v37mTJlCocOHSItLc3YEfrcuXOEhYVZLNZK0Wig75sQ95jad6b7OOOoqA5B3qwc25OY2D2cuZrDo5/+xoKRnegWWp89SddJzcojPTefpXvU0XvvPNQOJ4cqJCl7/qsmPQ1aQtiw8vcXogYqGqllVg2PRgN93oBvn4Jdn0G3sVDHx8oRFvfBjyd46MYKPB1zMTRogbbV4GqPQdQc8lWzEjQaDW46x3JvvZr7EODlQmkVpkWjA3o19zHrfJacuO/YsWOEhoaSnJzM4MGDad++PStWrGD//v188sknAOTn55d6fE5ODgMHDsTT05O4uDj27t3LqlWryj2uWjWLgsaRUJgHv/zb5KnG9d1YMbYHXULqkpVXyMiFu+k0/WfjSLrJa9UhtT2a1q/a6I0bafDbf9T7f/knaK3Tr0wIawspmovnqhkJD6iziAdGQEEObJ9txchKduBcGut3HeI5hw0AaPtPktrVe5xcfSu6c36Yu1MVW44O2LJlC4cPH+bRRx9l//79GAwGPvzwQ7p3706LFi24dOmSyf46na7YiLfjx49z7do1Zs6cSa9evWjVqpXNOywXo9FAv7fV+wmL4XqSydN13XUsea6bcdh6+o3iUyPsPH2taiPpfvkA8tLVvjttH6n8eYSwsaImrUsZeeQVmDECVqOBfm+p9/cuhIwLVozOVIHewBsrD/M3h1W4aW5Cw84gtTv3PEl4rKxofhh/L9OOsdU1OuDmzZtcvnyZixcvkpCQwHvvvcewYcMYPHgwo0aNolmzZhQUFPDxxx9z5swZlixZwmeffWZyjpCQELKzs9m8eTNXr14lNzeXxo0bo9PpjMetXbuW6dOnW7UslRLSE5r2V0eMbJ5a7GknBy2X0sqeYbXS6+ykJavNWQADpkntjqjV6rnr8Lg1B9X58oamF2naD4J7gv4mbC69q4Klfbk9idwrp3jCcYu6IWqKmoCJe5okPNWgaH6Ypc9356MRHVj6fHe2/6tftQyF3LhxIwEBAYSEhBAdHc3WrVuZN28ea9aswcHBgfDwcGbPns2sWbNo27YtcXFxxWat7tGjBy+99BLDhw/Hx8eH999/Hx8fHxYtWsR3331HWFgYM2fO5IMPPrB6eSplwFTQaOHIKkj61eSpPUnXuZxZesJTpXV2Nk1RV48O7a02rwlRi2k0GoIbVKDjsnrQrQEDGvj9Wzj7m/UCvOX89VzmbPqDSY5f4YRefe+F9rL664qaT6NUZnIXO5OZmYmXlxcZGRnFZl3Oy8sjKSmJ0NDQCs3mLIqz6e9y3auwb6HatPTir+CgflNdc/AiE5YdLPfwj0Z0YFiHhua/3qlN8PWjaqL1wjYIaF/JwIWoOcZ9k8D/fk/hrQdbM6ZXE/MP/GGCOkTdr636fnCwzngZRVGIid2L06mNfKH7EEXrhGbsb+BTheVgRI1W1v/vu0kNj7g39HtLXck59Sjs+sS42dz1cyq0zk7BDfjf39X73V6SZEfYjdtD083suFyk3yT1/Xcl8fYEnFbww+8p7PnjPFOcFgOg6TFekh1hJAmPuDe41YMBt/oYbXkX/lQnUSxaZ6e8kXQVGqm19V21/45nQ3VovBB24vbQdDObtIq41789gGDzVLh22sKRQUZuAdN+OMKbjt/QSHMVvILUkZFC3CIJj7h3dHwamg1QO1CuHgv6AsuPpDsTf3vRxAc/BOfiExoKUVuFNjBz1fSSdHpGXXKiIBdWvQh6y67lN3PjMdrk7mWk4yZ1w9CPQedu0dcQtZskPOLeodHA0Hng7AUX96udirHgSLqca7DqJfV+p2eg5SALBi+E7QXfatK6mHaD/ELzFuA10mrhoU/B2RMu7IX4GeUfY6a9ydfZtOd3/u20QN3Q9UVo2tdi5xf2oUbNtCyE1XkGwrD/wPKR6pT3jTpDm4eJbhvAgDB/40zLFV5npzAflo+CrBSo3xwGvmvdcghhAz51nHHTOZCbr+d8Wi5NfSq4hIx3EDw4G1aOgV8/gIBwCBtapZjyCw1MXpHAAt0cfDXp4NNKHYYuxF2khkfce8KGQo9X1PurX4ZzuwF1osjIpvUZ1qEhkU3rm5/sKAqs/zuc3Q46Dxi+RKrShV3SaDQVW2KiJO3/Ct1fVu+vHguXDlYppgXxJ3kufS4R2lMYnL1gxDegq8JCv8JuScIj7k39J6vzcxTkQtxf4fLhyp1HUeDHNyHhK3UI+mNfgm9ry8YqRA1iHKl1tYIdl+80YLo6P1V+Nix5CC4nVuo0Z1KzqPfL//Gow68oaNH+9Uuo37TycQm7JgmPuDc5OMLjSyCoO9zMgNgH1Q7HFaEvVIefF62E/uBsaHG/xUMVoiapcg0PqO+/4V+rSz7cSIOvhpo9KaHeoLDz9DXW7k/i5BfP8pT2Zwxo4OHPZIJPUSZJeMS9S+cGT357O+n5+lHY+QkYzOiMmXFB/Wa6byGgUUeEdH7G2hELYXO35+KpQg0PgIsnPL0CAjtC7jVYPBR2/7fM99/GxBTum7WFf37xA35rRjAw/yf0ioZdbaagCR9etXiE3ZOE5x7Up08fJk6caOswagZXbxi1Bto+qq639eObsDAKTm4q+YP3Rhps+zd80g2SfwVdHXj8K4gYVe2hC2ELFqnhKeLqDTHroc3DYCiADf+E2Gg4vUVtLr7DxsQU3vw6nuE5X7NR9y+6aY+TrbgwpuAfPLW/edUW+RX3BBmlZcdiYmJYvHhxse27d++mdevb/UxCQkKYOHHivZsEObnAowsh5D746W11yHrco+ARCMGR6siuwpuQegzO7VI/mAGCusHQ/8hMruKeUjQXz7nruaxMuECAl2vFRjTeTecGj8WqNa2bp8H53bDkYXXizuAe4BGAoeAGPvt2stv5GE4adaX2PYaW/LPgRc4q/mhQF/kdEOZf+TiE3ZOEx85FR0cTGxtrss3HxwcHB1m524RGA52fhZYPwvY5cPAbyLoEiSuK7+vXDnpOUGuFtFJJKu4tCWfTADAo8OryQ4A6G/nkIWGVXxBZo4HuL0HrIfDbPEhYApkX4fB3gNoU0QlAA4cNIcwvHMZGQxeUW40Udy7yG9m0ftUKKOyWLB5KJRYPVRR1dE91c3JTPxjMFBMTQ3p6OqtXrzbZ3qdPHzp06MDcuXPp06cP27ZtM3neWn8StWoh1sKbkLwdLv+u9i/QOEC9UAjuCQ2a2zo6IWxiY2IKY79O4O5PiKJPpQpN1FmWgjz1/XclkYw/L/Lb2Sy2/OnBfkMLziiBpR5W4UV+Ra1XkcVDpYanMgpy4b3S33RW8+Yli8/vsnLlSsLDw3nhhRd4/vnnLXruWs3RGZr1V29CCPQGhak/HC2W7IBaw2Jus5LeoJQ7wWeOwZH/ZbTk+0R39iRfNzvGCi3yK+45kvDYuXXr1lGnzu3ZUAcNMl3uoF69ejg4OODh4YG/v391hyeEqCX2JF0nJSOv1OeLmpX+d/gSQ9oHoimhNnpjYgpTfzhqcp6i5rCBbdSZzr/bf4H1h1PIzVf76mg0cF+zBhy+kEHGjYISEy4N6lIwFVrkV9xzJOGpDCc3tbbFFq9bQX379uXTTz81PnZ3d+eJJ56wZFRCiHtAalbpyc6dXll6kKlrj9K+kRftGnkT3siL9o282X/2eonNYSkZebz0dQI+dXT8mZ1v3B7awJ3HOjXikYiGBHi5GpvTNGByjkot8ivuSZLwVIZGU2uWDnB3d6dZs2a2DkMIUcuZ21yk1cC1nHy2nviTrSf+NNleVu/AP7PzcXPSMiS8IX/t3IhOwXVNaomKFvm9u4bIv6odpsU9QxIegU6nQ6/X2zoMIUQN1jW0HgFeLlzOyCuzWWnTq73540oWv1/I4NCFdA5fyOBkajYGM8ZCzH+6E31a+pb6fJUX+RX3NEl4BCEhIfzyyy+MGDECZ2dnGjRoYOuQhBA1jINWw+QhYeU2K7k7O9KxcV06Nq5rfH75vvO89v3v5b5Gxo0Cs+KQoeeiMmQSEcG0adNITk6madOm+Pj42DocIUQNVdSs5O9l2rzl7+VS5pD0oLrm9T+UUVbCmqSGx44tWrSoxO3x8fEmj7t3786hQ4esH5AQotarTLOSuc1hMspKWJMkPEIIISqkos1K5jaHSV8cYU3SpCWEEMLqKtscJoSlSA2PEEKIaiGjrIQtScIjhBCi2sgoK2Er0qRlJlljterkdyiEEMJWJOEph5OTEwC5uTZYHd3O5Oer08Y7ODjYOBIhhBD3GmnSKoeDgwPe3t6kpqYC4ObmVuKieKJsBoOBP//8Ezc3Nxwd5c9OCCFE9ZL/PGYoWkW8KOkRlaPVamncuLEkjEIIIaqdJDxm0Gg0BAQE4OvrS0FB+VOfi5LpdDq0WmlFFUIIUf0k4akABwcH6X8ihBBC1ELydVsIIYQQdk8SHiGEEELYPUl4hBBCCGH3pA8PtyfEy8zMtHEkQgghhDBX0f9tcya2lYQHyMrKAiAoKMjGkQghhBCiorKysvDy8ipzH40i8/1jMBi4dOkSHh4eFp8jJjMzk6CgIM6fP4+np6dFz10TSPlqP3svo5Sv9rP3Mkr5Kk9RFLKysggMDCx32hOp4UGdEK9Ro0ZWfQ1PT0+7/EMuIuWr/ey9jFK+2s/eyyjlq5zyanaKSKdlIYQQQtg9SXiEEEIIYfck4bEyZ2dnJk+ejLOzs61DsQopX+1n72WU8tV+9l5GKV/1kE7LQgghhLB7UsMjhBBCCLsnCY8QQggh7J4kPEIIIYSwe5LwCCGEEMLuScJjRZ988gkhISG4uLjQrVs39uzZY+uQylWRmD///HN69epF3bp1qVu3LlFRUcX2j4mJQaPRmNyio6OtXYwKqUiZFy1aVKw8Li4u1Rht+SpSnj59+hQrj0aj4cEHHzTuUxuuYUl++eUXhgwZQmBgIBqNhtWrV9s6JLNUNO6VK1cyYMAAfHx88PT0JDIykh9//NFknylTphS7hq1atbJiKcxX0fLGx8eX+Dd7+fLl6gm4HBUtT0nvL41GQ5s2bYz71OTrV5YZM2bQpUsXPDw88PX15aGHHuLEiRM2i0cSHiv59ttvefXVV5k8eTIJCQmEh4czcOBAUlNTbR1aqSoac3x8PE888QRbt25l586dBAUFcf/993Px4kWT/aKjo0lJSTHeli5dWh3FMUtlrpOnp6dJec6ePVuNEZetouVZuXKlSVkSExNxcHDgr3/9q8l+NfkaliYnJ4fw8HA++eQTW4dSIRWN+5dffmHAgAGsX7+e/fv307dvX4YMGcKBAwdM9mvTpo3JNdy+fbs1wq+wyl6nEydOmJTH19fXShFWTEXL89FHH5mU4/z589SrV6/Ye7CmXr+ybNu2jXHjxrFr1y5+/vlnCgoKuP/++8nJybFNQIqwiq5duyrjxo0zPtbr9UpgYKAyY8YMG0ZVtqrGXFhYqHh4eCiLFy82bhs9erQybNgwS4dqMRUtc2xsrOLl5VVN0VVcVa/hnDlzFA8PDyU7O9u4raZfQ3MAyqpVq2wdRoVVNu6wsDBl6tSpxseTJ09WwsPDLReYlZhT3q1btyqAkpaWVi0xVUVlrt+qVasUjUajJCcnG7fVlutXntTUVAVQtm3bZpPXlxoeK8jPz2f//v1ERUUZt2m1WqKioti5c6cNIyudJWLOzc2loKCAevXqmWyPj4/H19eXli1bMnbsWK5du2bR2CursmXOzs4mODiYoKAghg0bxpEjR6oj3HJZ4houXLiQESNG4O7ubrK9pl5DUZzBYCArK6vY+/DkyZMEBgbSpEkTnnrqKc6dO2ejCC2jQ4cOBAQEMGDAAHbs2GHrcCxm4cKFREVFERwcbLLdHq5fRkYGQLG/zeoiCY8VXL16Fb1ej5+fn8l2Pz+/GtPOfDdLxPyvf/2LwMBAk3+40dHRfPXVV2zevJlZs2axbds2Bg0ahF6vt2j8lVGZMrds2ZIvv/ySNWvW8PXXX2MwGOjRowcXLlyojpDLVNVruGfPHhITExkzZozJ9pp8DUVxH3zwAdnZ2Tz++OPGbd26dWPRokVs3LiRTz/9lKSkJHr16kVWVpYNI62cgIAAPvvsM1asWMGKFSsICgqiT58+JCQk2Dq0Krt06RIbNmwo9h60h+tnMBiYOHEiPXv2pG3btjaJQVZLFxYxc+ZMli1bRnx8vEkn3hEjRhjvt2vXjvbt29O0aVPi4+Pp37+/LUKtksjISCIjI42Pe/ToQevWrVmwYAHTp0+3YWRVt3DhQtq1a0fXrl1NttvbNbRn33zzDVOnTmXNmjUmfVoGDRpkvN++fXu6detGcHAwy5cv57nnnrNFqJXWsmVLWrZsaXzco0cPTp8+zZw5c1iyZIkNI6u6xYsX4+3tzUMPPWSy3R6u37hx40hMTLRp3yOp4bGCBg0a4ODgwJUrV0y2X7lyBX9/fxtFVbaqxPzBBx8wc+ZMfvrpJ9q3b1/mvk2aNKFBgwacOnWqyjFXlSWuk5OTEx07dqz15cnJyWHZsmVmfXjWpGsoblu2bBljxoxh+fLlJrWsJfH29qZFixZ2cw27du1a68uiKApffvklI0eORKfTlblvbbt+48ePZ926dWzdupVGjRrZLA5JeKxAp9PRqVMnNm/ebNxmMBjYvHmzSe1ATVLZmN9//32mT5/Oxo0b6dy5c7mvc+HCBa5du0ZAQIBF4q4KS1wnvV7P4cOHa315vvvuO27evMnTTz9d7uvUpGsoVEuXLuWZZ55h6dKlJlMKlCY7O5vTp0/bzTU8ePBgrS/Ltm3bOHXqlFlfOmrL9VMUhfHjx7Nq1Sq2bNlCaGiozQMSVrBs2TLF2dlZWbRokXL06FHlhRdeULy9vZXLly/bOrRSlRfzyJEjlddff924/8yZMxWdTqd8//33SkpKivGWlZWlKIqiZGVlKf/4xz+UnTt3KklJScqmTZuUiIgIpXnz5kpeXp5Nyni3ipZ56tSpyo8//qicPn1a2b9/vzJixAjFxcVFOXLkiK2KYKKi5Sly3333KcOHDy+2vTZcw9JkZWUpBw4cUA4cOKAAyuzZs5UDBw4oZ8+etXVoZSov7tdff10ZOXKkcf+4uDjF0dFR+eSTT0zeh+np6cZ9/v73vyvx8fFKUlKSsmPHDiUqKkpp0KCBkpqaWu3lu1tFyztnzhxl9erVysmTJ5XDhw8rEyZMULRarbJp0yZbFcFERctT5Omnn1a6detW4jlr8vUry9ixYxUvLy8lPj7e5G8zNzfXJvFIwmNFH3/8sdK4cWNFp9MpXbt2VXbt2mXrkMpVVsy9e/dWRo8ebXwcHBysAMVukydPVhRFUXJzc5X7779f8fHxUZycnJTg4GDl+eefr3FJX0XKPHHiROO+fn5+ygMPPKAkJCTYIOrSVaQ8iqIox48fVwDlp59+Knau2nINS1I0fPnu293lr2nKi3v06NFK7969jfv37t273HIOHz5cCQgIUHQ6ndKwYUNl+PDhyqlTp6q3YKWoaHlnzZqlNG3aVHFxcVHq1aun9OnTR9myZYttgi9BRcujKIqSnp6uuLq6Kv/9739LPGdNvn5lKen3ACixsbE2iUdzKyghhBBCCLslfXiEEEIIYfck4RFCCCGE3ZOERwghhBB2TxIeIYQQQtg9SXiEEEIIYfck4RFCCCGE3ZOERwghhBB2TxIeIYQQQtg9SXiEEPeMRYsW4e3tXeY+U6ZMoUOHDtUSz91CQkKYO3dutb9uTEwMGo0GjUbD6tWrzTomJCTEeEx6erpV4xPCEiThEcLG7vxno9PpaNasGdOmTaOwsNDWoVVaRf5xlic5ORmNRsPBgweLPdenTx8mTpxokdexpvj4eOM1Lu0WHx/P3r17eeGFF2wSY3R0NCkpKQwaNMis/ffu3cuKFSusHJUQluNo6wCEEOo/m9jYWG7evMn69esZN24cTk5OvPHGGxU+l16vR6PRoNXW/u8zBQUFtg6hUgoKCnBycjI+7tGjBykpKcbHEyZMIDMzk9jYWOO2evXqodPpqjXOOzk7O+Pv72/2/j4+PtSrV8+KEQlhWbX/E1EIO1D0zyY4OJixY8cSFRXF2rVrAZg9ezbt2rXD3d2doKAgXn75ZbKzs43HFjXTrF27lrCwMJydnTl37hx79+5lwIABNGjQAC8vL3r37k1CQoLJ62o0GhYsWMDgwYNxc3OjdevW7Ny5k1OnTtGnTx/c3d3p0aMHp0+fNjluzZo1RERE4OLiQpMmTZg6daqxRiokJASAhx9+GI1GY3xc3nFF8Xz66acMHToUd3d33n333Qr9HtPS0hg1ahR169bFzc2NQYMGcfLkyTKPmTlzJn5+fnh4ePDcc8+Rl5dXbJ8vvviC1q1b4+LiQqtWrZg/f77xuaIaqG+//ZbevXvj4uJCXFycyfE6nQ5/f3/jzdXV1XjNi246na5Yk5Y1ro+58vPzGT9+PAEBAbi4uBAcHMyMGTMqdA4hahJJeISogVxdXcnPzwdAq9Uyb948jhw5wuLFi9myZQuvvfaayf65ubnMmjWLL774giNHjuDr60tWVhajR49m+/bt7Nq1i+bNm/PAAw+QlZVlcuz06dMZNWoUBw8epFWrVjz55JO8+OKLvPHGG+zbtw9FURg/frxx/19//ZVRo0YxYcIEjh49yoIFC1i0aJExOdm7dy8AsbGxpKSkGB+Xd1yRKVOm8PDDD3P48GGeffbZCv3eYmJi2LdvH2vXrmXnzp0oisIDDzxQak3R8uXLmTJlCu+99x779u0jICDAJJkBiIuLY9KkSbz77rscO3aM9957j7fffpvFixeb7Pf6668zYcIEjh07xsCBAysUd1ksfX3MNW/ePNauXcvy5cs5ceIEcXFxJsmrELWOTdZoF0IYjR49Whk2bJiiKIpiMBiUn3/+WXF2dlb+8Y9/lLj/d999p9SvX9/4ODY2VgGUgwcPlvk6er1e8fDwUH744QfjNkB56623jI937typAMrChQuN25YuXaq4uLgYH/fv31957733TM69ZMkSJSAgwOS8q1atMtnH3OMmTpxosk9SUpICKK6uroq7u7vJTavVKhMmTFAURVH++OMPBVB27NhhPPbq1auKq6ursnz5cuPvysvLy/h8ZGSk8vLLL5u8Xrdu3ZTw8HDj46ZNmyrffPONyT7Tp09XIiMjTeKbO3euYq47r/mdgoODlTlz5hgfW+v6mBPP3/72N6Vfv36KwWAo9bitW7cqgJKWllbqPkLUFNKHR4gaYN26ddSpU4eCggIMBgNPPvkkU6ZMAWDTpk3MmDGD48ePk5mZSWFhIXl5eeTm5uLm5gaoTSbt27c3OeeVK1d46623iI+PJzU1Fb1eT25uLufOnTPZ787j/Pz8AGjXrp3Jtry8PDIzM/H09OTQoUPs2LHDpMZAr9cXi+lu5h7XuXPnEo//9ttvad26tcm2p556ynj/2LFjODo60q1bN+O2+vXr07JlS44dO1biOY8dO8ZLL71ksi0yMpKtW7cCkJOTw+nTp3nuued4/vnnjfsUFhbi5eVlclxpcVdVdV2fu8XExDBgwABatmxJdHQ0gwcP5v7777dQqYSofpLwCFED9O3bl08//RSdTkdgYCCOjupbMzk5mcGDBzN27Fjeffdd6tWrx/bt23nuuefIz883/vNydXVFo9GYnHP06NFcu3aNjz76iODgYJydnYmMjDQ2lRW5s3Nt0TlK2mYwGADIzs5m6tSpPPLII8XK4eLiUmoZzT3O3d29xOODgoJo1qyZyTZXV9dSX88SivpKff755yaJFICDg4PJ49Lirqrquj53i4iIICkpiQ0bNrBp0yYef/xxoqKi+P777ytVDiFsTRIeIWoAd3f3Yv/MAfbv34/BYODDDz80jrpavny5WefcsWMH8+fP54EHHgDg/PnzXL16tcqxRkREcOLEiRLjLeLk5IRer6/wcVXRunVrCgsL2b17Nz169ADg2rVrnDhxgrCwsFKP2b17N6NGjTJu27Vrl/G+n58fgYGBnDlzxqQ2qSaz5O/Z09OT4cOHM3z4cB577DGio6O5fv26jM4StZIkPELUYM2aNaOgoICPP/6YIUOGsGPHDj777DOzjm3evDlLliyhc+fOZGZm8s9//tMiNSKTJk1i8ODBNG7cmMceewytVsuhQ4dITEzknXfeAdSRWps3b6Znz544OztTt25ds46riubNmzNs2DCef/55FixYgIeHB6+//joNGzZk2LBhJR4zYcIEYmJi6Ny5Mz179iQuLo4jR47QpEkT4z5Tp07llVdewcvLi+joaG7evMm+fftIS0vj1VdfrXLclmap3/Ps2bMJCAigY8eOaLVavvvuO/z9/cuduFGImkpGaQlRg4WHhzN79mxmzZpF27ZtiYuLM3to8MKFC0lLSyMiIoKRI0fyyiuv4OvrW+WYBg4cyLp16/jpp5/o0qUL3bt3Z86cOQQHBxv3+fDDD/n5558JCgqiY8eOZh9XVbGxsXTq1InBgwcTGRmJoiisX7/epAnoTsOHD+ftt9/mtddeo1OnTpw9e5axY8ea7DNmzBi++OILYmNjadeuHb1792bRokWEhoZaLG5LstTv2cPDg/fff5/OnTvTpUsXkpOTWb9+vV3M7yTuTRpFURRbByGEEMJ2YmJiSE9Pr/Ds2PHx8fTt25e0tDSp+RE1nqTqQgghjCMF161bZ9b+bdq0MXsZCiFqAqnhEUKIe1xqaiqZmZkABAQEmDXi7OzZs8YJHZs0aSJNXaLGk4RHCCGEEHZPUnIhhBBC2D1JeIQQQghh9yThEUIIIYTdk4RHCCGEEHZPEh4hhBBC2D1JeIQQQghh9yThEUIIIYTdk4RHCCGEEHbv/wNLmMRim826+wAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# create matplotlib figure\n",
"fig, ax = plt.subplots()\n",
"\n",
"# plot data\n",
"dataset.y0.plot.line(ax=ax, x=\"x0\", marker=\"o\", label=\"Data\")\n",
"\n",
"# plot fit\n",
"x_fit = np.linspace(dataset[\"x0\"][0].values, dataset[\"x0\"][-1].values, 1000)\n",
"y_fit = cos_func(x=x_fit, **fit_result.best_values)\n",
"ax.plot(x_fit, y_fit, label=\"Fit\")\n",
"ax.legend()\n",
"\n",
"# set units-aware tick labels\n",
"set_xlabel(dataset.x0.long_name, dataset.x0.units)\n",
"set_ylabel(dataset.y0.long_name, dataset.y0.units)\n",
"\n",
"# add a reference to the origal dataset in the figure title\n",
"fig.suptitle(f\"{dataset.attrs['name']}\\ntuid: {dataset.attrs['tuid']}\")\n",
"\n",
"# Save figure\n",
"fig.savefig(exp_folder / \"Cosine fit.png\", dpi=300, bbox_inches=\"tight\")"
]
},
{
"cell_type": "markdown",
"id": "ccfab7e1",
"metadata": {},
"source": [
"## Reusable fitting model and analysis steps\n",
"\n",
"The previous steps achieve our goal, however, the code above is not easily reusable and hard to maintain or debug.\n",
"We can do better than this! We can package our code in functions that perform specific tasks.\n",
"In addition, we will use the objected-oriented interface of `lmfit` to further structure our code.\n",
"We explore the details of the object-oriented approach later in this tutorial."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "652768c7",
"metadata": {},
"outputs": [],
"source": [
"class MyCosineModel(lmfit.model.Model):\n",
" \"\"\"\n",
" `lmfit` model with a guess for a cosine fit.\n",
" \"\"\"\n",
"\n",
" def __init__(self, *args, **kwargs):\n",
" \"\"\"Configures the constraints of the model.\"\"\"\n",
" # pass in the model's equation\n",
" super().__init__(cos_func, *args, **kwargs)\n",
"\n",
" # configure constraints that are independent from the data to be fitted\n",
"\n",
" self.set_param_hint(\"frequency\", min=0, vary=True) # enforce positive frequency\n",
" self.set_param_hint(\"amplitude\", min=0, vary=True) # enforce positive amplitude\n",
" self.set_param_hint(\"offset\", vary=True)\n",
" self.set_param_hint(\n",
" \"phase\", vary=True, min=-np.pi, max=np.pi\n",
" ) # enforce phase range\n",
"\n",
" def guess(self, data, **kws) -> lmfit.parameter.Parameters:\n",
" \"\"\"Guess parameters based on the data.\"\"\"\n",
"\n",
" self.set_param_hint(\"offset\", value=np.average(data))\n",
" self.set_param_hint(\"amplitude\", value=(np.max(data) - np.min(data)) / 2)\n",
" # a simple educated guess based on experiment type\n",
" # a more elaborate but general approach is to use a Fourier transform\n",
" self.set_param_hint(\"frequency\", value=1.2)\n",
"\n",
" params_ = self.make_params()\n",
" return lmfit.models.update_param_vals(params_, self.prefix, **kws)"
]
},
{
"cell_type": "markdown",
"id": "47143c62",
"metadata": {},
"source": [
"Most of the code related to the fitting model is now packed in a single object, while the analysis steps are split into functions that take care of specific tasks."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "d288a58c",
"metadata": {},
"outputs": [],
"source": [
"def extract_data(label: str) -> xr.Dataset:\n",
" \"\"\"Loads a dataset from its label.\"\"\"\n",
" tuid_ = get_latest_tuid(contains=label)\n",
" dataset_ = load_dataset(tuid_)\n",
" return dataset_\n",
"\n",
"\n",
"def run_fitting(dataset_: xr.Dataset) -> lmfit.model.ModelResult:\n",
" \"\"\"Executes fitting.\"\"\"\n",
" model = MyCosineModel() # create the fitting model\n",
" params_guess = model.guess(data=dataset_.y0.values)\n",
" result = model.fit(\n",
" data=dataset_.y0.values, x=dataset_.x0.values, params=params_guess\n",
" )\n",
" return result\n",
"\n",
"\n",
"def analyze_fit_results(fit_result_: lmfit.model.ModelResult) -> dict:\n",
" \"\"\"Analyzes the fit results and saves quantities of interest.\"\"\"\n",
" quantities = {\n",
" \"amplitude\": fit_result_.params[\"amplitude\"].value,\n",
" \"frequency\": fit_result_.params[\"frequency\"].value,\n",
" }\n",
" return quantities\n",
"\n",
"\n",
"def plot_fit(\n",
" fig_: matplotlib.figure.Figure,\n",
" ax_: matplotlib.axes.Axes,\n",
" dataset_: xr.Dataset,\n",
" fit_result_: lmfit.model.ModelResult,\n",
") -> Tuple[matplotlib.figure.Figure, matplotlib.axes.Axes]:\n",
" \"\"\"Plots a fit result.\"\"\"\n",
" dataset_.y0.plot.line(ax=ax_, x=\"x0\", marker=\"o\", label=\"Data\") # plot data\n",
"\n",
" x_fit_ = np.linspace(dataset_[\"x0\"][0].values, dataset_[\"x0\"][-1].values, 1000)\n",
" y_fit_ = cos_func(x=x_fit_, **fit_result_.best_values)\n",
" ax_.plot(x_fit, y_fit_, label=\"Fit\") # plot fit\n",
" ax_.legend()\n",
"\n",
" # set units-aware tick labels\n",
" set_xlabel(dataset_.x0.long_name, dataset_.x0.units, ax_)\n",
" set_ylabel(dataset_.y0.long_name, dataset_.y0.units, ax_)\n",
"\n",
" # add a reference to the original dataset_ in the figure title\n",
" fig_.suptitle(f\"{dataset_.attrs['name']}\\ntuid: {dataset_.attrs['tuid']}\")\n",
"\n",
"\n",
"def save_quantities_of_interest(tuid_: str, quantities_of_interest_: dict) -> None:\n",
" \"\"\"Saves the quantities of interest to disk in JSON format.\"\"\"\n",
" exp_folder_ = Path(locate_experiment_container(tuid_))\n",
" # Save fit results\n",
" with open(exp_folder_ / \"quantities_of_interest.json\", \"w\", encoding=\"utf-8\") as f_:\n",
" json.dump(quantities_of_interest_, f_)\n",
"\n",
"\n",
"def save_mpl_figure(tuid_: str, fig_: matplotlib.figure.Figure) -> None:\n",
" \"\"\"Saves a matplotlib figure as PNG.\"\"\"\n",
" exp_folder_ = Path(locate_experiment_container(tuid_))\n",
" fig_.savefig(exp_folder_ / \"Cosine fit.png\", dpi=300, bbox_inches=\"tight\")\n",
" plt.close(fig_)"
]
},
{
"cell_type": "markdown",
"id": "c9d139bd",
"metadata": {},
"source": [
"Now the execution of the entire analysis becomes much more readable and clean:"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "358959d4",
"metadata": {},
"outputs": [],
"source": [
"dataset = extract_data(label=\"Cosine experiment\")\n",
"fit_result = run_fitting(dataset)\n",
"quantities_of_interest = analyze_fit_results(fit_result)\n",
"save_quantities_of_interest(dataset.tuid, quantities_of_interest)\n",
"fig, ax = plt.subplots()\n",
"plot_fit(fig_=fig, ax_=ax, dataset_=dataset, fit_result_=fit_result)\n",
"save_mpl_figure(dataset.tuid, fig)"
]
},
{
"cell_type": "markdown",
"id": "31482522",
"metadata": {},
"source": [
"If we inspect the experiment directory, we will find a structure that looks like the following:\n",
"\n",
"```{code-block}\n",
"20230125-172712-018-87b9bf-Cosine experiment/\n",
"├── Cosine fit.png\n",
"├── dataset.hdf5\n",
"├── quantities_of_interest.json\n",
"└── snapshot.json\n",
"```\n",
"\n",
"## Creating a simple analysis class\n",
"\n",
"Even though we have improved code structure greatly, in order to execute the same analysis against some other dataset we would have to copy-paste a significant portion of code (the analysis steps).\n",
"\n",
"We tackle this by taking advantage of the Object Oriented Programming (OOP) in python.\n",
"We will create a python class that serves as a structured container for data (attributes) and the methods (functions) that act on the information.\n",
"\n",
"Some of the advantages of OOP are:\n",
"\n",
"- the same class can be instantiated multiple times to act on different data while reusing the same methods;\n",
"- all the methods have access to all the data (attributes) associated with a particular instance of the class;\n",
"- subclasses can inherit from other classes and extend their functionalities.\n",
"\n",
"Let's now observe what such a class could look like.\n",
"\n",
"```{warning}\n",
"This analysis class is intended for educational purposes only.\n",
"It is not intended to be used as a template!\n",
"See the end of the tutorial for the recommended usage of the analysis framework.\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "da4a3264",
"metadata": {},
"outputs": [],
"source": [
"class MyCosineAnalysis:\n",
" \"\"\"Analysis as a class.\"\"\"\n",
"\n",
" def __init__(self, label: str):\n",
" \"\"\"This is a special method that python calls when an instance of this class is\n",
" created.\"\"\"\n",
"\n",
" self.label = label\n",
"\n",
" # objects to be filled up later when running the analysis\n",
" self.tuid = None\n",
" self.dataset = None\n",
" self.fit_results = {}\n",
" self.quantities_of_interest = {}\n",
" self.figs_mpl = {}\n",
" self.axs_mpl = {}\n",
"\n",
" # with just slight modification our functions become methods\n",
" # with the advantage that we have access to all the necessary information from self\n",
" def run(self):\n",
" \"\"\"Execute the analysis steps.\"\"\"\n",
" self.extract_data()\n",
" self.run_fitting()\n",
" self.analyze_fit_results()\n",
" self.create_figures()\n",
" self.save_quantities_of_interest()\n",
" self.save_figures()\n",
"\n",
" def extract_data(self):\n",
" \"\"\"Load data from disk.\"\"\"\n",
" self.tuid = get_latest_tuid(contains=self.label)\n",
" self.dataset = load_dataset(tuid)\n",
"\n",
" def run_fitting(self):\n",
" \"\"\"Fits the model to the data.\"\"\"\n",
" model = MyCosineModel()\n",
" guess = model.guess(self.dataset.y0.values)\n",
" result = model.fit(\n",
" self.dataset.y0.values, x=self.dataset.x0.values, params=guess\n",
" )\n",
" self.fit_results.update({\"cosine\": result})\n",
"\n",
" def analyze_fit_results(self):\n",
" \"\"\"Analyzes the fit results and saves quantities of interest.\"\"\"\n",
" self.quantities_of_interest.update(\n",
" {\n",
" \"amplitude\": self.fit_results[\"cosine\"].params[\"amplitude\"].value,\n",
" \"frequency\": self.fit_results[\"cosine\"].params[\"frequency\"].value,\n",
" }\n",
" )\n",
"\n",
" def save_quantities_of_interest(self):\n",
" \"\"\"Save quantities of interest to disk.\"\"\"\n",
" exp_folder_ = Path(locate_experiment_container(self.tuid))\n",
" with open(\n",
" exp_folder_ / \"quantities_of_interest.json\", \"w\", encoding=\"utf-8\"\n",
" ) as file_:\n",
" json.dump(self.quantities_of_interest, file_)\n",
"\n",
" def plot_fit(self, fig_: matplotlib.figure.Figure, ax_: matplotlib.axes.Axes):\n",
" \"\"\"Plot the fit result.\"\"\"\n",
"\n",
" self.dataset.y0.plot.line(ax=ax_, x=\"x0\", marker=\"o\", label=\"Data\") # plot data\n",
"\n",
" x_fit_ = np.linspace(\n",
" self.dataset[\"x0\"][0].values, self.dataset[\"x0\"][-1].values, 1000\n",
" )\n",
" y_fit_ = cos_func(x=x_fit_, **self.fit_results[\"cosine\"].best_values)\n",
" ax_.plot(x_fit_, y_fit_, label=\"Fit\") # plot fit\n",
" ax_.legend()\n",
"\n",
" # set units-aware tick labels\n",
" set_xlabel(self.dataset.x0.long_name, self.dataset.x0.attrs[\"units\"], ax_)\n",
" set_ylabel(self.dataset.y0.long_name, self.dataset.y0.attrs[\"units\"], ax_)\n",
"\n",
" # add a reference to the original dataset in the figure title\n",
" fig_.suptitle(f\"{dataset.attrs['name']}\\ntuid: {dataset.attrs['tuid']}\")\n",
"\n",
" def create_figures(self):\n",
" \"\"\"Create figures.\"\"\"\n",
" fig_, ax_ = plt.subplots()\n",
" self.plot_fit(fig_, ax_)\n",
"\n",
" fig_id = \"cos-data-and-fit\"\n",
" self.figs_mpl.update({fig_id: fig_})\n",
" # keep a reference to `ax` as well\n",
" # it can be accessed later to apply modifications (e.g., in a notebook)\n",
" self.axs_mpl.update({fig_id: ax_})\n",
"\n",
" def save_figures(self):\n",
" \"\"\"Save figures to disk.\"\"\"\n",
" exp_folder_ = Path(locate_experiment_container(self.tuid))\n",
" for fig_name, fig_ in self.figs_mpl.items():\n",
" fig_.savefig(exp_folder_ / f\"{fig_name}.png\", dpi=300, bbox_inches=\"tight\")\n",
" plt.close(fig_)"
]
},
{
"cell_type": "markdown",
"id": "b56c4016",
"metadata": {},
"source": [
"Running the analysis is now as simple as:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "ba6ee364",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHgCAYAAAChG7dTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC77UlEQVR4nOzdd3hUZfbA8e+dSZl0SA9JSIMQQuiQ0IuisCqIHdeCvayu7qqri7oirg39rau7dta69rqKChYEAaVDgBBqSEggPYH0OnN/f9zJkCEJJJDkziTn8zx5SO7cmTmZMDNn3ve851VUVVURQgghhOjBDHoHIIQQQgjR1SThEUIIIUSPJwmPEEIIIXo8SXiEEEII0eNJwiOEEEKIHk8SHiGEEEL0eJLwCCGEEKLHk4RHCCGEED2eJDxCCCGE6PEk4RFC2CiKwqOPPqp3GE4nOjqa6667Tu8whBAnIQmPEA4qIyODW2+9ldjYWEwmE76+vkycOJEXXniBmpoavcMTTiY9PZ1HH32UrKwsvUMRQhcuegcghGjp22+/5bLLLsPd3Z1rr72WpKQk6uvrWbt2LX/5y1/YtWsXr7/+eqffb01NDS4u8rLQUXv37sVgcOzPj+np6SxatIhp06YRHR2tdzhCdDt5ZRPCwWRmZjJv3jyioqL4+eefCQsLs112xx13cODAAb799tsuuW+TydQlt9sTqapKbW0tHh4euLu76x2OEOIUHPsjiRC90DPPPENlZSVvvPGGXbLTZMCAAdx99922nxsbG/n73/9OXFwc7u7uREdH8+CDD1JXV2d3vc2bNzNz5kwCAwPx8PAgJiaGG264we6cE2t4Hn30URRF4cCBA1x33XX06dMHPz8/rr/+eqqrq1vE9t577zF69Gg8PDzw9/dn3rx55OTktOv3PnLkCDfccAMhISG4u7szZMgQ3nzzTdvlNTU1JCQkkJCQYDelV1paSlhYGBMmTMBsNgNw3XXX4e3tzcGDB5k5cyZeXl7069ePxx57DFVV7e7XYrHw/PPPM2TIEEwmEyEhIdx6660cPXrU7rzo6GguuOACvv/+e8aMGYOHhwevvfaa7bLmNTxvv/02iqKwdu1a7rrrLoKCgujTpw+33nor9fX1HDt2jGuvvZa+ffvSt29f7r///jOOa+3atSQnJ2MymYiNjeXdd9+1i+eyyy4DYPr06SiKgqIorFq1ql1/GyF6BFUI4VDCw8PV2NjYdp8/f/58FVAvvfRS9aWXXlKvvfZaFVDnzp1rO6egoEDt27evGh8frz777LPqkiVL1IceekgdPHiw3W0B6sKFC20/L1y4UAXUkSNHqhdffLH68ssvqzfddJMKqPfff7/ddR9//HFVURT1iiuuUF9++WV10aJFamBgoBodHa0ePXr0pL9Dfn6+GhERoUZGRqqPPfaY+sorr6hz5sxRAfWf//yn7bz169erRqNR/fOf/2w7Nm/ePNXDw0Pdu3ev3WNiMpnUgQMHqtdcc4364osvqhdccIEKqH/729/s7vumm25SXVxc1Jtvvll99dVX1QceeED18vJSx44dq9bX19vOi4qKUgcMGKD27dtX/etf/6q++uqr6sqVK22XzZ8/33buW2+9pQLqiBEj1FmzZqkvvfSSes0119get0mTJqm///3v1ZdfftkW1zvvvHPacQ0aNEgNCQlRH3zwQfXFF19UR40apSqKoqalpamqqqoZGRnqXXfdpQLqgw8+qP73v/9V//vf/6r5+fkn/bsI0ZNIwiOEAykrK1MB9cILL2zX+ampqSqg3nTTTXbH77vvPhVQf/75Z1VVVfXLL79UAXXTpk0nvb22Ep4bbrjB7ryLLrpIDQgIsP2clZWlGo1G9YknnrA7b+fOnaqLi0uL4ye68cYb1bCwMLW4uNju+Lx581Q/Pz+1urradmzBggWqwWBQV69erX766acqoD7//PN212tKAv/4xz/ajlksFvX8889X3dzc1KKiIlVVVXXNmjUqoL7//vt211++fHmL41FRUSqgLl++vEX8bSU8M2fOVC0Wi+34+PHjVUVR1Ntuu812rLGxUY2IiFCnTp1qO3Y6ca1evdp2rLCwUHV3d1fvvfde27Gmx6opSROit5EpLSEcSHl5OQA+Pj7tOv+7774D4J577rE7fu+99wLYan369OkDwDfffENDQ0OH47rtttvsfp48eTIlJSW2eL/44gssFguXX345xcXFtq/Q0FAGDhzIypUr27xtVVX5/PPPmT17Nqqq2l1/5syZlJWVsXXrVtv5jz76KEOGDGH+/Pn84Q9/YOrUqdx1112t3vadd95p+15RFO68807q6+v56aefAPj000/x8/PjnHPOsbvf0aNH4+3t3SLumJgYZs6c2e7H7cYbb0RRFNvPKSkpqKrKjTfeaDtmNBoZM2YMBw8etB3raFyJiYlMnjzZ9nNQUBCDBg2yu00hejspWhbCgfj6+gJQUVHRrvMPHTqEwWBgwIABdsdDQ0Pp06cPhw4dAmDq1KlccsklLFq0iH/+859MmzaNuXPn8vvf/75dBbf9+/e3+7lv374AHD16FF9fX/bv34+qqgwcOLDV67u6urZ520VFRRw7dozXX3+9zZVnhYWFtu/d3Nx48803GTt2LCaTibfeessuqWhiMBiIjY21OxYfHw9gW5q9f/9+ysrKCA4OPuX9gpbwdMSJj5ufnx8AkZGRLY43r83paFwn3g9of6MT632E6M0k4RHCgfj6+tKvXz/S0tI6dL3W3vBPvPyzzz5j/fr1LF26lO+//54bbriBf/zjH6xfvx5vb++TXt9oNLZ6XLUW2losFhRFYdmyZa2ee7Lbt1gsAFx99dXMnz+/1XOGDRtm9/P3338PQG1tLfv37+9wItL8voODg3n//fdbvTwoKMjuZw8Pjw7dfluPW2vH1WZFyx2N61R/HyGEJDxCOJwLLriA119/nXXr1jF+/PiTnhsVFYXFYmH//v0MHjzYdrygoIBjx44RFRVld/64ceMYN24cTzzxBB988AFXXXUVH330ETfddNMZxRwXF4eqqsTExNhGUdorKCgIHx8fzGYzM2bMOOX5O3bs4LHHHuP6668nNTWVm266iZ07d9pGT5pYLBYOHjxoF8++ffsAbH1o4uLi+Omnn5g4cWKHk5mu1BVxnSopFqKnkxoeIRzM/fffj5eXFzfddBMFBQUtLs/IyOCFF14A4LzzzgPg+eeftzvnueeeA+D8888HtKmnEz/tjxgxAqDF8vXTcfHFF2M0Glm0aFGL+1FVlZKSkjavazQaueSSS/j8889bHdkqKiqyfd/Q0MB1111Hv379eOGFF3j77bcpKCjgz3/+c6u3/eKLL9rF8eKLL+Lq6srZZ58NwOWXX47ZbObvf/97i+s2NjZy7Nixk/7eXaUr4vLy8gLQ7XcSQm8ywiOEg4mLi+ODDz7giiuuYPDgwXadln/77Tc+/fRTW8+X4cOHM3/+fF5//XWOHTvG1KlT2bhxI++88w5z585l+vTpALzzzju8/PLLXHTRRcTFxVFRUcGSJUvw9fW1JU1nGvPjjz/OggULyMrKYu7cufj4+JCZmcmXX37JLbfcwn333dfm9Z9++mlWrlxJSkoKN998M4mJiZSWlrJ161Z++uknSktLAXj88cdJTU1lxYoV+Pj4MGzYMB555BEefvhhLr30UrvfxWQysXz5cubPn09KSgrLli3j22+/5cEHH7RNCU2dOpVbb72Vp556itTUVM4991xcXV3Zv38/n376KS+88AKXXnrpGT8+HdUVcY0YMQKj0cjixYspKyvD3d2ds846q806ISF6HH0WhwkhTmXfvn3qzTffrEZHR6tubm6qj4+POnHiRPXf//63WltbazuvoaFBXbRokRoTE6O6urqqkZGR6oIFC+zO2bp1q3rllVeq/fv3V93d3dXg4GD1ggsuUDdv3mx3n7SxLL1pGXeTpmXXmZmZdsc///xzddKkSaqXl5fq5eWlJiQkqHfccYddj5y2FBQUqHfccYcaGRmpurq6qqGhoerZZ5+tvv7666qqquqWLVtUFxcXu6Xmqqot6x47dqzar18/W7+f+fPnq15eXmpGRoZ67rnnqp6enmpISIi6cOFC1Ww2t7jv119/XR09erTq4eGh+vj4qEOHDlXvv/9+NTc313ZOVFSUev7557cae1vL0k9sA9DW49kUb2fGNXXqVLul7qqqqkuWLFFjY2NVo9EoS9RFr6OoqlS1CSF6luuuu47PPvuMyspKvUMRQjgIqeERQgghRI8nCY8QQgghejxJeIQQQgjR40kNjxBCCCF6PBnhEUIIIUSPJwmPEEIIIXo8SXiEU3n77bdRFMW2+ePJREdH2xr0CSHOXNOO80I4I0l4RLf57bffePTRR52itf2ePXu4//77GTFiBD4+PoSFhXH++eezefPmVs8/cuQIl19+OX369MHX15cLL7yQgwcP2p2Tk5PDokWLSE5Opm/fvgQGBjJt2jR++umnFrfXlNi19pWfn9/i/K+//ppRo0ZhMpno378/CxcupLGxscV5W7Zs4YILLiA0NBRvb2+GDRvGv/71L8xms915H3/8MVdffTUDBw5EURSmTZvW5mO1f/9+5s2bR0REBJ6eniQkJPDYY49RXV3d5nVO574qKytZuHAhs2bNwt/fH0VRePvtt1s9d8mSJUydOpWQkBDc3d2JiYnh+uuvbzVRfuWVV7jsssvo378/iqK0mSSvXr2aOXPmEBkZiclkIjQ0lFmzZvHrr7+2OHfatGmt/u1mzZrVrscE4Mcff2TSpEl4enrSt29fLr300lbj74rH70xdd911bf7/VRSFI0eO2M5t72O1a9cuLrvsMmJjY/H09CQwMJApU6awdOnSdt9/QkJCq/FmZGTw+9//nuDgYDw8PBg4cCAPPfRQ5z4oQneytYToNr/99huLFi3iuuuuo0+fPqd1G9dccw3z5s3D3d29c4M7wX/+8x/eeOMNLrnkEv7whz9QVlbGa6+9xrhx41i+fLndJpeVlZVMnz6dsrIyHnzwQVxdXfnnP//J1KlTSU1NJSAgAICvvvqKxYsXM3fuXObPn09jYyPvvvsu55xzDm+++SbXX399izgee+yxFjuBn/jYLVu2jLlz5zJt2jT+/e9/s3PnTh5//HEKCwt55ZVXbOdt2bKFCRMmMHDgQB544AE8PT1ZtmwZd999t93+XKAlAVu2bGHs2LEn3QcrJyeH5ORk/Pz8uPPOO/H392fdunUsXLiQLVu28NVXX53ysW7vfRUXF/PYY4/Rv39/hg8fzqpVq9o8d9u2bcTExDBnzhz69u1LZmYmS5Ys4ZtvvmH79u3069fPdu7ixYupqKggOTmZvLy8Nm9z3759GAwGbrvtNkJDQzl69CjvvfceU6ZM4dtvv23xBh0REcFTTz1ld6z5/Z7MN998w4UXXsioUaN4+umnKS8v54UXXmDSpEls27bNbrf0rnj8ztStt97aYiNYVVW57bbbiI6OJjw83O6y9jxWhw4doqKigvnz59OvXz+qq6v5/PPPmTNnDq+99hq33HKL3fnu7u785z//sTt24gazAKmpqUybNo3w8HDuvfdeAgICyM7OJicnp8O/t3BwuvZ5Fr3Ks88+2+p2BF3lxHb/HbF582a1oqLC7lhxcbEaFBSkTpw40e744sWLVUDduHGj7dju3btVo9GoLliwwHYsLS2txZYCtbW1akJCghoREWF3vK2tCVqTmJioDh8+XG1oaLAde+ihh1RFUdTdu3fbjt18882qm5ubWlJSYnf9KVOmqL6+vnbHsrOzbVswDBkypMUWBU2eeOIJFVDT0tLsjl977bUqoJaWlp4y/vbeV21trZqXl6eqqqpu2rRJBdS33nrrlLffZPPmzSqgPvXUU3bHs7KyVIvFoqqqqnp5eXXo/0xVVZUaEhKizpw50+741KlT1SFDhrT7dk6UmJioDhgwQK2rq7MdS01NVQ0Gg3rPPffYndtdj5+qaluP3HHHHR26TpM1a9aogPrEE0/YHT+Tx6qxsVEdPny4OmjQILvjbW3VcSKz2awmJSWpKSkpanV19WnFIJyHTGmJbvHoo4/yl7/8BYCYmBjbEHNWVhZZWVltDq8risKjjz5q+7m1Gh5VVXn88cdtUyrTp09n165drcaRkZFBRkbGKeMdPXo03t7edscCAgKYPHkyu3fvtjv+2WefMXbsWMaOHWs7lpCQwNlnn80nn3xiOzZkyBACAwPtruvu7s55553H4cOHqaioaDWWioqKFlNOTdLT00lPT+eWW27BxeX4gO0f/vAHVFXls88+sx0rLy/HZDK1GCEKCwvDw8PD7lhkZCQGw6lfHsrLywEICQlpcZsGgwE3N7dT3kZ778vd3Z3Q0NBTnteW6OhooOVu4VFRUSiKclq36enpSVBQUJvTtI2NjR3e3qK0tJT09HQuuugiu8dv+PDhDB48mI8++sju/O56/Jp7//33GTRoECaTidGjR7N69epTXueDDz5AURR+//vft3r56TxWRqORyMjINh9/s9ls+z/amh9++IG0tDQWLlyIh4cH1dXVbT7XhPOThEd0i4svvpgrr7wSgH/+85/897//5b///a/d0PzpeuSRR/jb3/7G8OHDefbZZ4mNjeXcc8+lqqqqxblnn302Z5999mnfV35+vl3SYrFY2LFjB2PGjGlxbnJyMhkZGW0mMs1v09PTE09PzxaXTZ8+HV9fXzw9PZkzZw779++3u3zbtm0ALe6/X79+RERE2C4HrVaivLycW2+9ld27d3Po0CFeffVVvvjiCxYsWHDqX74VTfUiN954I6mpqeTk5PDxxx/zyiuvcNddd+Hl5XVat9tZSkpKKCwsZPPmzbYpwzP5+4OW5BUXF7Nnzx4efPBB0tLSWr3Nffv24eXlhY+PD6Ghofztb3+joaHhlLdfV1cH0CIJBS3Bys3NbbWOq7v88ssv/OlPf+Lqq6/mscceo6SkhFmzZpGWltbmdRoaGvjkk0+YMGGCLfFsriOPVVVVFcXFxWRkZPDPf/6TZcuWtfr4V1dX4+vri5+fH/7+/txxxx0tEqqm+jl3d3fGjBmDl5cXnp6ezJs3j9LS0g48KsIZSA2P6BbDhg1j1KhRfPjhh8ydO9fuRa+oqOi0b7eoqIhnnnmG888/n6VLl9o+qT/00EM8+eSTZxq2nTVr1rBu3Toefvhh27HS0lLq6uoICwtrcX7TsdzcXAYNGtTqbR44cIAvvviCyy67DKPRaDvu6enJddddZ0t4tmzZwnPPPceECRPYunUrkZGRALaak7buPzc31/bzzTffzK5du3jttddstQ1Go5EXX3yR2267raMPBwCzZs3i73//O08++SRff/217fhDDz3E448/flq32ZnCw8NtCURAQAD/+te/OOecc87oNi+//HK+//57ANzc3Lj11lv529/+ZndOXFwc06dPZ+jQoVRVVfHZZ5/x+OOPs2/fPj7++OOT3n5ISAh9+vRpUQxdUlJCeno6oBXJd9ZoTUelpaWxefNmRo8eDcC8efMYNGgQjzzyCF988UWr1/n+++8pKSnhqquuanFZRx+re++9l9deew0Ag8HAxRdfzIsvvmh3TlhYGPfffz+jRo3CYrGwfPlyXn75ZbZv386qVatso6FNHyAuv/xyZs2axYIFC9i+fTtPPfUUOTk5rF279rRH/4TjkYRHOLWffvqJ+vp6/vjHP9q9MP3pT39qNeFpz3L21hQWFvL73/+emJgY7r//ftvxmpoagFaLqE0mk905J6quruayyy7Dw8ODp59+2u6yyy+/nMsvv9z289y5c5k5cyZTpkzhiSee4NVXX23X/TcfzjcajcTFxTFz5kwuu+wyTCYTH374IX/84x8JDQ1l7ty57XkoWoiOjmbKlClccsklBAQE8O233/Lkk08SGhqq+xLmZcuWUVtby+7du3nvvfdaHfXrqKeffpp7772XnJwc3nnnHerr61usiHvjjTfsfr7mmmu45ZZbWLJkCX/+858ZN25cm7dvMBi49dZbWbx4MQsWLOCGG26gvLyc+++/n/r6eqDt/1PdYfz48bZkB6B///5ceOGFLF26FLPZbJe4N/nggw9wdXW1+z/dpKOP1Z/+9CcuvfRScnNz+eSTTzCbzbbHpcmJBdDz5s0jPj6ehx56iM8++4x58+YB2EZ8xo4dy3vvvQfAJZdcgqenJwsWLGDFihUtiq+F85IpLeHUDh06BMDAgQPtjgcFBdG3b99OuY+qqiouuOACKioq+Oqrr+xqe5qmHZpGEZqrra21O6c5s9nMvHnzSE9P57PPPmvX6p1JkyaRkpJit4z9VPff/L6ffvppFi9ezIcffsi1117L5ZdfzpdffsmkSZO44447Wl3GfiofffQRt9xyC//5z3+4+eabufjii3njjTeYP38+DzzwgG3VUGlpKfn5+bavsrKyDt/X6Zg+fTq/+93vuOeee/j0009ZtGhRi9GAjhoxYgTnnHMON9xwAz/++CMbN25sV7+ne++9Fzg+jVJfX2/3mOTn59vqRx577DFuvPFGnnnmGeLj4xkzZgwuLi7ceOONAC3qyzpTWVmZXUwnTu2c+FwDiI+Pp7q6utXR2srKSr766itmzpxpW7F4Kic+Vs0lJCQwY8YMrr32Wr755hsqKyuZPXs26il2Sfrzn/+MwWBo9fnTNN3epKnO6LfffmtXvMI5SMIjdNfWkLEjFA/W19dz8cUXs2PHDr766iuSkpLsLvf398fd3b3V5cxNx1pLZm6++Wa++eYb3n77bc4666x2xxMZGWn3BtQ0ldXW/Te/75dffpmzzjqrxZvlnDlzyM3NPa3Rr5dffpmRI0cSERHR4jarq6ttNUQXX3wxYWFhtq+77767w/d1puLi4hg5ciTvv/9+p92mm5sbc+bM4YsvvjjlqEvTNGTT3++3336ze0zCwsJsS6Hd3Nz4z3/+Q25uLqtXr2bv3r18//33lJWVYTAYGDBgQKf9Die6++677WK6+OKLz+j2/ve//1FdXd3qdFZbTnysTubSSy9l06ZN7Nu376TneXh4EBAQYHebTc+PE4vug4ODATh69Gi7YxaOT6a0RLdpK7FpGok5caVF0+jNyURFRQHaXHxsbKzteFFR0Rm/WFksFq699lpWrFjBJ598wtSpU1ucYzAYGDp0aKsNCTds2EBsbCw+Pj52x//yl7/w1ltv8fzzz7f4ZHkqBw8etCv0HjFiBACbN28mOTnZdjw3N5fDhw/b9SYpKChoNYlsKg49nRGegoKCVkfSTrzNf/zjH3Z/j/b2o+lsNTU1rY6GneltqqpKRUVFq6N5TZoaUTb9/YYPH86PP/5od86JdTkhISG2N2Oz2cyqVatISUnp0hGe+++/n6uvvtr284l/3xML50ErOm5asXai999/H29vb+bMmdPuGE58rE6mKdE81ahhRUUFxcXFdrc5evRolixZYtcIEbDVvnXGogrhQPRdFS96k1deeUUF1G3btrW4LDAwUL3ooovsjt17770qoC5cuNB2rKk/TVMvn8LCQtXV1VU9//zzbb1UVFVVH3zwQRVo0VPlwIED6oEDB9oV7x/+8AcVUF977bWTnvf000+36JmzZ88e1Wg0qg888IDduc8884wKqA8++OBJb7OwsLDFsW+//VYF1LvuusvueEJCgjp8+HC1sbHRduzhhx9WFUVR09PTbceSkpJUf39/tbi42HassbFRHT16tOrj46PW19e3GsvJertccMEFqpubm7p3716743PnzlUNBoN65MiRk/6eHbmv5k7WR6ahoaHV/j8bNmxQjUajes0117R5uyfrw1NQUNDi2NGjR9XIyEg1MjLSdqysrEytra21O89isahXXHGFCqhbtmxp8/5Ppun/2WeffdbmOZ3x+J0M0OJ3yM7OVk0mkzp37twW5xcWFqouLi5tPuYdeaxae/zr6+vVUaNGqR4eHra+WTU1NWp5eXmLc//yl7+ogPrFF1/YjuXl5anu7u7qpEmTbL2MVFVVFyxY0KK3lnB+MsIjuk1ToeNDDz3EvHnzcHV1Zfbs2Xh5eXHTTTfx9NNPc9NNNzFmzBhWr159yiFq0D6B3XfffTz11FNccMEFnHfeeWzbto1ly5a16HkDx5ckn2r65vnnn+fll19m/PjxeHp62goam1x00UW2Jdd/+MMfWLJkCeeffz733Xcfrq6uPPfcc4SEhNhqEQC+/PJL7r//fgYOHMjgwYNb3OY555xj+zQ/YcIERo4cyZgxY/Dz82Pr1q28+eabREZG8uCDD9pd79lnn2XOnDmce+65zJs3j7S0NF588UVuuukmBg8ebDvvr3/9K1dffTUpKSnccssteHh48OGHH7JlyxYef/xxXF1dbeeuXr3a1lulqKiIqqoq26qrKVOmMGXKFEAbrVq2bBmTJ0/mzjvvJCAggG+++YZly5Zx0003tWskp733BfDiiy9y7Ngx2yfwpUuXcvjwYQD++Mc/4ufnR2VlJZGRkVxxxRUMGTIELy8vdu7cyVtvvYWfn1+LFVVLly5l+/btgDYytWPHDtv9z5kzh2HDhgHwu9/9joiICFJSUggODiY7O5u33nqL3Nxcu9VEW7du5corr+TKK69kwIAB1NTU8OWXX/Lrr79yyy23MGrUqFM+Ju+99x6ff/45U6ZMwdvbm59++olPPvmEm266iUsuuaRLH79TSUpKYubMmdx11124u7vz8ssvA7Bo0aIW53788cc0Nja2OZ3Vkcfq1ltvpby8nClTphAeHk5+fj7vv/8+e/bs4R//+Idt1Cs/P5+RI0dy5ZVX2raS+P777/nuu++YNWsWF154oe02Q0NDeeihh3jkkUeYNWsWc+fOZfv27SxZsoQrr7zSrreW6AH0zrhE7/L3v/9dDQ8PVw0Gg91ITXV1tXrjjTeqfn5+qo+Pj3r55ZerhYWFpxzhUVWtW+qiRYvUsLAw1cPDQ502bZqalpbWaqflqKgoNSoq6pRxzp8/3/ZptrWvE7tF5+TkqJdeeqnq6+urent7qxdccIG6f/9+u3MWLlx40ttcuXKl7dyHHnpIHTFihOrn56e6urqq/fv3V2+//XY1Pz+/1Xi//PJLdcSIEaq7u7saERGhPvzww62O2CxfvlydOnWqGhgYqLq5ualDhw5VX3311RbnnSzW5n8PVdVGTn73u9+poaGhqqurqxofH68+8cQTdp2fT6Yj9xUVFXXKv0ldXZ169913q8OGDVN9fX1VV1dXNSoqSr3xxhtb7fJ9sr918xGQF198UZ00aZIaGBiouri4qEFBQers2bPV1atX293ewYMH1csuu0yNjo5WTSaT6unpqY4ePVp99dVX7UYhT2bDhg3qlClT1L59+6omk0kdPnx4m9fv7MfvZLB2Wn7vvffUgQMHqu7u7urIkSPt/u82N27cODU4ONhu9LG5jjxWH374oTpjxgw1JCREdXFxUfv27avOmDFD/eqrr+zOO3r0qHr11VerAwYMUD09PVV3d3d1yJAh6pNPPtnqc8Jisaj//ve/1fj4eNXV1VWNjIxs8/kjnJuiqqcobRdCCCGEcHKySksIIYQQPZ4kPEIIIYTo8SThEUIIIUSPJwmPEEIIIXo8SXiEEEII0eNJwiOEEEKIHk8SHiGEEEL0eJLwCCGEEKLHk4RHCCGEED2eJDxCCCGE6PFk81DAYrGQm5uLj48PiqLoHY4QQggh2kFVVSoqKujXrx8Gw8nHcCThAXJzc4mMjNQ7DCGEEEKchpycHCIiIk56jiQ8gI+PD6A9YL6+vjpHI4QQQoj2KC8vJzIy0vY+fjIOmfC89NJLPPvss+Tn5zN8+HD+/e9/k5yc3Ob5x44d46GHHuKLL76gtLSUqKgonn/+ec4777x23V/TNJavr68kPEIIIYSTaU85isMlPB9//DH33HMPr776KikpKTz//PPMnDmTvXv3Ehwc3OL8+vp6zjnnHIKDg/nss88IDw/n0KFD9OnTp/uDF0IIIYRDUlRVVfUOormUlBTGjh3Liy++CGgFxZGRkfzxj3/kr3/9a4vzX331VZ599ln27NmDq6tru+6jrq6Ouro6289NQ2JlZWUywiOEEEI4ifLycvz8/Nr1/u1Qy9Lr6+vZsmULM2bMsB0zGAzMmDGDdevWtXqdr7/+mvHjx3PHHXcQEhJCUlISTz75JGazuc37eeqpp/Dz87N9ScGyEEII0bM5VMJTXFyM2WwmJCTE7nhISAj5+fmtXufgwYN89tlnmM1mvvvuO/72t7/xj3/8g8cff7zN+1mwYAFlZWW2r5ycnE79PYQQQgjhWByuhqejLBYLwcHBvP766xiNRkaPHs2RI0d49tlnWbhwYavXcXd3x93dvZsjFUIIIYReHCrhCQwMxGg0UlBQYHe8oKCA0NDQVq8TFhaGq6srRqPRdmzw4MHk5+dTX1+Pm5tbl8YshBBCCMfnUFNabm5ujB49mhUrVtiOWSwWVqxYwfjx41u9zsSJEzlw4AAWi8V2bN++fYSFhUmyI4QQQgjAwRIegHvuuYclS5bwzjvvsHv3bm6//Xaqqqq4/vrrAbj22mtZsGCB7fzbb7+d0tJS7r77bvbt28e3337Lk08+yR133KHXryCEEEIIB+NQU1oAV1xxBUVFRTzyyCPk5+czYsQIli9fbitkzs7OttsvIzIyku+//54///nPDBs2jPDwcO6++24eeOABvX4FIYQQQjgYh+vDo4eOrOMXQjgOs0VlY2YphRW1BPuYSI7xx2iQDYCF6C068v7tcCM8QgjRHsvT8li0NJ28slrbsTA/EwtnJzIrKUzHyIQQjsjhaniEEOJUlqflcft7W+2SHYD8slpuf28ry9PydIpMCOGoJOERQjgVs0Vl0dJ0WpuLbzq2aGk6Zkuvn60XQjQjCY8QwqlszCxtMbLTnArkldWyMbO0+4ISQjg8SXiEEE6lsKLtZOd0zhNC9A6S8AghnEqwj6lTzxNC9A6S8AghnEpyjD9hfibaWnyuoK3WSo7x786whBAOThIeIYRTMRoUFs5ObPNyFVg4O1H68Qgh7EjCI4RwOrOSwnjl6lG4ubR8CfN0MzI+LlCHqIQQjkwSHiGEU5o5JBRvNyMA95wTz3s3JhMX5EV1vZmXVx7QOTohhKORhEcI4ZTyy2sprW7AaFC4ZUoskwYG8dD5gwF469csckqrdY5QCOFIJOERQjilnYfLABgY7I3JVRvpmT4omAlxAdSbLTz7/V49wxNCOBhJeIQQTikttxyApHA/2zFFUXjo/MEoCny9PZfUnGM6RSeEcDSS8AghnFLaEW2EZ2izhAdgSD8/Lh4ZAcCT3+5GVWWLCSGEJDxCCCe105rwJIX7trjsvpnxuLsY2JhVyg/pBd0dmhDCAUnC46DMFpV1GSV8lXqEdRklshGiEM0UltdSVFGHQYHBYS0TnjA/D26eHAvA08v20GC2dHeIQggH46J3AKKl5Wl5LFqabrdBYpifiYWzE5mVFKZjZEI4hqbRnbggbzzdWn8Zu21aHB9tyiazuIoPNmQzf0J0N0YohHA0MsLjYJan5XH7e1tb7AadX1bL7e9tZXlank6RCeE40o5oBcsn1u805+3uwp9mxAPw/E/7KK9t6JbYhBCOSRIeB2K2qCxamk5rk1dNxxYtTZfpLdHrNY3wDDlJwgMwb2wkcUFeHK1u4CVpRihEryYJjwPZmFnaYmSnORXIK6tlY2Zp9wUlhAPaldv6Cq0TuRgNPHieNCMUQkjC41AKK9pOdk7nPCF6ouLKOvLKalEUSOzXsmD5RGclBDM+NoD6Rgv/94M0IxSit5KEx4EE+5g69TwheqKm/jsxgV54u5963UVTM0KAr1Jz2S7NCIXolSThcSCpOUdPermCtlorOca/ewISwgG11XDwZJLC/bh4ZDgAT3wnzQiF6I0k4XEAqqrywk/7Wbz8+HC70sa5C2cnYjS0dakQPV/TCq2kfu1PeADumzlIa0aYWcqP0oxQiF5H+vB0pZxNcGgt1JaB0Q38IiF6IvjH2k5RVZVnvt/LK6syAPjLzEHEBXm16MPj5W7kH5cNlz48otc73mH5JAlPYz1kr4P8HVBdCgYX+vWN5t6xYTy5roanl+1hekIwrkb5zCdEp2uotT7/dkJNqfb+16c/9BsFIYm6hSUJT1fKXAU/P97yeL+RMP5O1CEXs+ib3bz9WxYAD58/mJus3WHPSQxlY2Ypy9PyeGfdISL6eEiyI3q9o1X1HDlWA8CQVraUoLIIfn0etr0HtcdaXHwLMME0gBdLL+DDDVFcOyGmS+MVolepKIC1/4TtH2gf9E807g6Y9WT3x2UlCU9XChsBw68EUx9orIWivXB4E+Rug89v5NCy51l19DogjMfnJnH1uCjbVY0GhfFxAcSHePPOukPsLaikqKKOIB93nX4ZIfSXZl2OHh3gia/J9fgFqgpb3oYfHob6Su2Ydwj0Hwc+YdBYB0V7IGcjSeoBXnV7nk0//EhFzNv4hMV3/y8iRE+iqrD5DfjhEWio0o75hEFkivX5VwPHsqHfCF3DlISnKw08R/tqrqoY84YlNK55nujqnSx1e5idYxczoVmy01yAtztD+vmyK7ecXw8UM9daeClEb9RUv2PXcLCxDv73B0j7TPs5bARMfwgGnA0Go/0NVBZhXv8qDWv/xVh2Ufuf6eye8k/2+U0k2EdbECA1ckJ0QEMNfHEL7P5a+zl8NEx/EGLPAoNjTRk7VjS9QIPJn7vyZjKt5lk2WBLwUWqYsOVP2hB8GyYNDARg9f6ibopSCMfUYoVWzTF4d66W7Bhc4NzH4eafIf7clskOgHcQxhl/Y/N5y9hsicdkriT+51tY+cmLXLlkPZMW/yzbtwjRXtWl8O6FWrJjdINZT8ONP8GAGQ6X7IAkPN2qtsHM7e9t4dudeRQbAym77HMYeQ2oFvjqDtjyTqvXmzIwCIC1+4tlOa3o1ZqmtJL6+UF9NXxwBWT/Bu6+cPXnMOGPrSc6J6jwCOfK+of5tHEKRkXlOddXuNiwWvasE6K96irh/UshZwOY/OCaL2Hc7Q6Z6DSRKa0uZLaobMwspbCilj4erixZc5C1B0pwdzHw2jWjmTYoGJL+rb1Yr38Jvvkz+PZrMQ02Oqov7i4GCivq2F9YSXyIj06/kRD6Katp4FCJtjVEUpgnfDofctaDux9c9w2EDWvX7ZgtKo99k04DLtzfeAv1uHKVywqecX2dgoa+/GYZyqKl6ZyTGCrTW0K0prEePrkGjmwBj75w3Xe6rr5qL0l4usjytLwWS8sB3FwMvHXdWCYM0KapUBSY+QTUHNUq2z+9Dm780e4/j8nVSHKMP2v2F7Nmf7EkPKJXato/K6KvB33WLYb9P4CLB1z1SbuTHbDfs07FwEONN+Cp1HKR8Vdedn2Bi+of42BZPzZmljI+LqBLfhchnNqPf4OMn8HVC676zCmSHZAprS6xPC2P29/b2upGoPWNFsprG+wPKgrMfgFipmgrTD67Xhuub6ZpWmuN1PGIXqqpfudqv53a0nOAi17RVmJ1QMu96BT+2nAzmy3x+CnVvOz6Au7Uy551QliZLSrrMkr4KvUI+1a8Cxte1S645D8QMUbf4DpAEp5OZraoLFqaTluVNgqwaGk6ZssJZ7i4wSVvgneotnx2+QN2FzcVLm84WEpdo7nzAxfCwe08Uk4IpVxf9Ix2YNwdMOSiDt9Oa3vR1eHGbfV/pkj1I8GQw19dPpQ964RA+wA/afHPXLlkPc9+/CP9Vv8FgIODboaE8055/ebJ0rqMkpbvfd1IEp5O1ny4vDUqkFdWy8bM0pYXegfBxa8DCmx9F/Z9b7soIdSHQG93ahrMbD10rNPjFsLR7Tp8jKddl+BurtQ6tp6z6LRuJznGnzA/U4vtW4rx476G2wC43uV7IorXnmHEQjg3+9kKlcUur+Ot1LLJMohzt085ZXF/82Tp7o9SdV8JKQlPJ2vvMHib58VOhfF3aN9/cw/UVQDajs+TraM8Mq0lepuK2gZGH/uO6cbtqEZ3uOhVMLqe+oqtMBoUFs7Wag5OTHp+sQznrcaZ2mXf3csXG/adSdhCOK0TZyt+b/yZicZd1Khu3NdwK2aMrc9WWLVV2qHnSkhJeDpZe4fBT3re9IegTxSUH4YVf7cdnmQtdF57oPiMYhTC2ew7eIgHXT4AQJn+IAQNOqPbm5UUxitXjyLUz/55GOZnwvf8v1NsDCJCKaJg6WPc80kqVXWNZ3R/Qjib5rMVAZTxV+vz79nGKzikhtpmK6Y9u5LLX13HjW9v4k8fbeORr9JYvHw3f/lsR6ulHU3HTpYsdRVZpdXJmobL88tqW/1jK0Con9bRtU1unjD7efjvRbBpCYyeDyFDbHU8O4+UcbSqnr5ebl3xKwjhcDx+fZq+SiWH3WKIGH9np9zmrKQw2551hRW1dp2WzX3+BR9fyU3G7zhv22Tm5BzjpatGkRDayv5dQvRAzWch7nX5BF+lhp2WaN42z7Q7L+doDTlHazp0281LO7pzJaSM8HSykw2XN/28cHbiqft7xJ0FiRdqTQm/fxBUlRBfE/Eh3qgq/Johozyil8jbQcKRzwHYMOivYOy8z2lNe9ZdOCKc8XEBtuelcfB5MOh8XBUzj5o+IqOoigtf/JUPN2ZL80/RKzTNQgxRsphnXAXAooZrsZyQNjx4XgIvXzWKpy8eykPnDeaPZw1givXD+al090pISXi6QFvD5aF+Jl65elT7dz2fsUhr131wla2AeXKzrstC9Ao//g0DFpaax+E/5Kzuu99z/w4GFyaqW7m9fw51jRYWfLGTuz5KpaK2waFWnwjR2ZJj/AnzdecR13cxKCpfm8ezWU2wXa6gTQHfOCmW84aGMS+5PzdPieXecwdx+7QB7bqP7l4JKVNaXeRkw+Xt5h+jter+9QX46VEYeC6TBgbyxtpM1li3mVAU6QQrerDMNXBwFfWqkcWNV/JFeDdOKQXEwZgbYeNr3G94jz6z3uKZH/azdHsu6zOKUYHiynrb6WF+JhbOTmz/BxohHJjRoPDimEJG/7aHWtWVpxuutF12qtmKTint6AIywtOF2hou75BJ92j7lBTthvQvSYnxx81o4MixGrJKqk99fSGclarCz1rR/kfms2jwiej+3jhTHwB3X5T8ndwavJtPbh2Pv6cbRZX1dskO6Lv6RIhOp6qMzHwNgLfNM8nl+DTVqWYrOq20o5NJwuPoPPpoDdYAfnkGTxeF0VF9AVmeLnq4/T9CzgYaDe682DhX2zC0u3kFQIrWm4dfnmFEhC+uLq2/SOu5+kSITrd3GYa8VKpUd740Xcz7N6XwwrwRfHjzONY+cNYpRzI7rbSjE8mUljMYd5u2uWjRHtj1JZMGjmDdwRLW7C/m2vHRekcnROdTVVj5BABr+l5MYXVfksJ1SHhAm1Ze/woU7GT/mk8pKG97Lzu9Vp8I0alUFVY9BcA75pnMmDCEiQPaV4jcXKeUdnQiGeFxBiY/aFqK+8tiJg/Q5j3XZ5TQYLboGJgQXSTzF8hLBRcPXmk4H0C/hMfTH1JuASB02wvQ5sYxx8k+XMKp7V0G+TuoVE283ng+l42OPO2b6pTSjk4iCY+zSLkN3P2geB9DKtfRx9OVirpGtucc0zsyITrf2ucBaBxxDVuKjQAM1SvhAW1a2dWLPmXpTDOknvJ02YdLOLXf/gXAf83nEB8TRXSgl84BdQ5JeJyFyRfGXAeAcf1LtuHFNbI8XfQ0edvh4EpQjOyNuQazRSXQ240QX3f9YvIKgDHXA3CH+/ctCjGbNC3V7e7VJ0J0msObIXsdDbjwVuMsLh9z+qM7jkYSHmeSfCsYXODQr8wJLABkmwnRA/2qfbok6WK2lmvL0JPC/fRvwZByKygGxqo7SFCy20x69Fh9IkSn+e3fAHxlnkCVWyDnDQ3VOaDOIwmPM/ELh6RLAJhc/BEAqTnHKK9t0DMqITrPsRzY9aX2/YS7SDtSDqDPCq0T9ekPg+cAsGTQxharTwwKvPR7fVafCNEpjmbB7q8B+E/jecwe3g9Pt56ztkkSHmdjLV723L+Ucf7Vtm6vQvQIW94C1QzRkyFsGDuPlAE6FiyfaLzWIiIi5xvW3pHEhzeP47nLh+PhasCiQmgfqd0RTmz9q6BaWKsOY4/an8vGROgdUaeShMfZhA3T3gxUM7f7rAFkmwnRQzTWwZZ3tO+Tb6Gu0cy+ggoAkrqzw/LJRCZD+Bgw12Pc+hbj4wK4eFQEZw8OAWDF7gKdAxTiNNVXQaq2I/p/GmYRG+TFqP59dQ6qc0nC44zG3gTAuGPf4kKj1PGIniH9a6guBp9+MOg89uZX0GhR6evpSngfD72jO27c7dq/W94BcyMAM2wJT6FeUQlxZtK+gLoy8o2h/GIZxuVjIvWvm+tkDpnwvPTSS0RHR2MymUhJSWHjxo3tut5HH32EoijMnTu3awPUW8L54B2Ce10xM41bySyuIqdUtpkQTm7TEu3fMdeD0cVuOsuhXngHzwbPAKjIhf0/ADA1PgiDAnvyKzhyrEbnAIU4DZvfAOCt2ukYDEYuHhmuc0Cdz+ESno8//ph77rmHhQsXsnXrVoYPH87MmTMpLDz5J6esrCzuu+8+Jk+e3E2R6sjoCiOvAeBWr1WArNYSTi5vB+RsAIMrjJoPcLxg2VHqd5q4uMOI32vfb3kbgL5ebrYtX36WaS3hbI5shdxtNCqufGqeyvRBQQT79rx6NIdLeJ577jluvvlmrr/+ehITE3n11Vfx9PTkzTffbPM6ZrOZq666ikWLFhEbG9uN0epo9HxAYVh9KjFKntTxCOe27b/av4MvAB9teiitaYTHEVZonWi01pOHAz9qK8vgeB3PHpnWEk5ms/b++hPjKMWXy3pQ753mHCrhqa+vZ8uWLcyYMcN2zGAwMGPGDNatW9fm9R577DGCg4O58cYb23U/dXV1lJeX2305nT79IX4mAPOMP7P2QLFsWCicU2Md7PxU+946clnfaGFvvlawrGuH5bYExEHMFFAtsPVdAM5OCAbgt4wSqusb9YxOiParq4C0zwF4o3Y6gd5unGX9v9zTOFTCU1xcjNlsJiQkxO54SEgI+fn5rV5n7dq1vPHGGyxZsqTd9/PUU0/h5+dn+4qMdNJs1vrmcLHxVypram2fiIVwKnu/g5qj4BsOsdMA2FdQQb3Zgq/JhUh/BypYbm70ddq/294Di5kBwd5E+ntQ32iREVfhPNK/hoZqClzD2aQO4qKR4bgaHSo16DRO/VtVVFRwzTXXsGTJEgID27+T64IFCygrK7N95eTkdGGUXWjgueDhT5ByjMmGnVLHI5zTtve0f4fPA4O2b9auXActWG4u4QIw9dGKl7PWoCgKZydoH9Z+lmkt4Sy2fwjAezUTAaXHTmeBgyU8gYGBGI1GCgrsi/4KCgoIDW3Z3jojI4OsrCxmz56Ni4sLLi4uvPvuu3z99de4uLiQkZHR6v24u7vj6+tr9+WUXNxg6GUAXGJczep9RToHJEQHledCxs/a9yOush1uWqHlkNNZTVzcIeli7fvtWufzswdrUwE/7ynEIlPMwtEdPQRZa1BR+LxxEsMj+xAf4qN3VF3GoRIeNzc3Ro8ezYoVK2zHLBYLK1asYPz48S3OT0hIYOfOnaSmptq+5syZw/Tp00lNTXXeqaqOGHElAOcatrA/+zBVdVI7IJzI9g+1Opj+47W6GKumFVpDHDnhARiuPf9I/xrqKkmO8cfLzUhhRR1puTLFLBzcjo8BSDUOJZdALu9hnZVP5FAJD8A999zDkiVLeOedd9i9eze33347VVVVXH+9tiri2muvZcGCBQCYTCaSkpLsvvr06YOPjw9JSUm4ubnp+at0j7ARqEGDcVcaOJf1bMws1TsiIdpHVW2dXZuP7jSaLezO0xIehx7hAYgYC/6x0FAFe77B3cXIlPggQJoQCgenqrbprP/WTMDdxcDs4f10DqprOVzCc8UVV/B///d/PPLII4wYMYLU1FSWL19uK2TOzs4mLy9P5ygdiKKgWEd5LjGuZo0USwpncWQrlBwAV08YMtd2+EBRJXWNFrzdXYjy99QvvvZQlOOjPNZpraYVLlLHIxxazgYoPUidwYPllmTOGxqGr8lV76i6lENug3rnnXdy5513tnrZqlWrTnrdt99+u/MDcnTDrkD98VHGGvbx4t7tMDtR74iEODXrUlgG/Q7cj9cN7DysTQUN6eeLweCgBcvNDbscVj4BB1dBeS7TE4JRFK0OqaC8lpAe2MBN9ADW0Z3l5mSqMfW4jUJb43AjPOI0+ITSGD0FgKSjP5NfVqtzQEKcgsUCu77Qvk+6xO6iXbkO2mG5LX2jof8EQIUdnxDo7c6IyD6AjPIIB2VugPSvAPikYQKR/h6MiwnQOaiuJwlPD+E67FIALjCuk+XpwvFl/wYVeeDuBwNm2F3kFCu0TjTscu1faxLX1IRQdk8XDungL1BzlDKDH+stiVw2OtI5RlPPkCQ8PcXgCzArLgw25LAvbbPe0Qhxck3TWYNna8u7rcwWlXTbCI8TtYsYPAcUI+Rth5IMzrL241l7oJjaBrPOwQlxAmti/nX9WCyKkUtG9/zpLJCEp+fw6Et5P23j1MCsb6QHiHBc5gbY9T/t+6H201kHiyqpaTDj6WYkJtC7+2M7XV4B2lYTAOn/Y3CYD/38TNQ2WFiXUaJvbEI011gHu78B4BvzeCYNCCS8j4N2M+9kkvD0ID6jtWH1s8y/sifPCfcHE73DwV+gphS8gsBae9akqXdNYpgvRmcbYh9ykfbvri9RFIWzrE0If5JpLeFIMn6GujKK6MsmdVCP7qx8Ikl4ehCXxAtowJUBhlx2pf6mdzhCtK5pOitxLhjtF4ruPOxkBcvNDZ6tTWvl74TiA3bbTKiqjLgKB5GmTWd905iMt8mNcxNDTnGFnkMSnp7E5Etu0CQA3PZ+pXMwQrTC3AB7v9W+b9qWoZm0ZntoOR1Pf9vmp6R/yfi4ADxcjeSV1bI7r0LX0IQAoKFG26wXWGoez9yR4ZhcjToH1X0k4elh3IZrq7WGl62ktl62mRAOJmsN1JZp01mRKXYXWZoVLDvVCq3mbNNa/8PkamTiAG1TY1mtJRzCgZ+gvpJcNYBt6gAu70XTWSAJT48TOvZC6nAlWsknffsGvcMRwt7updq/CefbdkZvkllSRWVdIyZXA3FBXjoE1wkSzgeDCxSkQdE+22aiK6Qfj3AEe7TR1WXmZBLC+jCknxOthOwEkvD0MIq7DxneYwHIXf8ZX6UeYV1GCWZZtSX0ZrHYXnBJmN3i4jRr/53BYb64GJ30pan5tNaeb2zbTGw/fIyiijr94hLC3AB7lwHwvXkMl4+JQFGcbGHAGXLSVxVxMgcCpgLQv2gld3+UypVL1jNp8c8sT5M9yISODm+CygJw9z2+hLuZNGdsONiaQedp/+75lhBfE0PD/VBVWLlXRnmEPswWlV3rlkPtMUpUH7YrCcwdEa53WN1OEp4eZnlaHo/ujcKsKgwzZBKG1gMkv6yW29/bKkmP0M8e63RW/ExwcWtxcdoR6wqtfj0k4TmyGSryj28mKrunCx0sT8tj0uKf2bj8vwD8ZB6NYjSyIbP39YeShKcHMVtUFi1NpxRfNquDADjXqHVdbprQWrQ0Xaa3RPdTVVuzMxIuaOVi1blXaDXnGwbho7Xv9y5jxmBt2e+a/UXUNUrXZdF9lqflcft7W8krq7G9F/xgGU1tg6VXfgCWhKcH2ZhZSp5149AfzNoL7rmG49tMqEBeWS0bM0v1CE/0ZgW74GgmGN1b7J0FkF1aTUVtI24uBgaGOFGH5bYknK/9u+dbhvTzJdjHnap6MxsOynNPdI+mD8AqkKRkEq6UUK26s9Yy1HZOb/sALAlPD1JYcXyX9B8tYwBIMezGj8o2zxOiW+yxju4MOBvcWyY0TRuGDg71wdVZC5abG2RNeDJ/wdBQeXxaS1ZriW7S/ANw0+jOL5Zh1KFNJ/fGD8A94JVFNAn2Mdm+z1ZD2G2JxEWxcJZhW5vnCdEtbMvRW05nmS0q3+/S+tQE+rj3jE+cQYPAPxbM9XBgBWdbp7VW7CmQrsuiWzT/YHuuYQsA35vHnvS8nk4Snh4kOcafMD8TTQsNf7CO8jRl9woQ5mciOcZfnwBF73QsR+tLoxhg0O/sLmoqqFy6PReAFbsLe8aKQkWxm9aaOCAANxcDOaU17C+sPPl1hegETR9so5R8Egw5NKoGfraMaPO83kASnh7EaFBYODsR0JKbH8xawjPVsAMT9QAsnJ3ofJsyCue2/3vt34hkrU+N1fGCSvtPmD1mRWHTtNb+7/E0qkyICwC0pE6Irtb0AbhpdGe9ZTDlHJ9O7o0fgCXh6WFmJYXxytWjCPUzsUuNJlf1x1Op43feB3jl6lHMSgrTO0TR2+z7Qfs3/lzboeYFlSfqMSsKI5PBM1DbSuPQr7ZprZ/3yDYTous1fQCebi1p+Mky2nZZ00fe3vYBWBKeHmhWUhhrHziLd25I5hfLSAAeGZQjyY7ofvXVkPmL9n38LNvh5gWVrekRBZUG4/Hfed8PtsLlLYeOcrSqXsfARG8xa4An41z2AbCy2XRWqJ+pV34AloSnhzIaFKbGB3MkaDIArgd/1HqhCNGdstZAYy34RkBwou1wewslnb6gsmlUa/8PhPfxICHUB4sKq/bJtJboBgdXYVAbybCEYe4TzQvzRvDhzeNY+8BZvS7ZAUl4ejyvhLOoU13wrsmF4v16hyN6m33W+p34mVohr1VDo6VdV3f6gsrYadpmoiX7ofSgrQnhT1LHI7qDdTp5pWUEM4eEceGIcMbHBfSqaazmJOHp4cbER7LBMhgAy77lOkcjehVVtU94rNbuL+bRpbtOetUeU1Bp8oP+47Xv9//EWdbd01fvLaLB3L6kT4jTYrGgHvgR0BKeyQMDdQ5If5Lw9HDDI/qwVhkFQE26JDyiGxWmQ/lhcDFBtDa1+uHGbOa/tZHKOjNxQV4oHC+gbNLjCioHnqP9u/8Hhkf0IcDLjYq6RjZlOXF9knB8+dtRKguoVE2kGhJJiQnQOyLdScLTw7m5GCjtNw0Aj9wNUFuub0Ci92ga3YmZitnFgye/282CL3ZitqhcNDKc7+6ebFtR2FyPK6gcaK3jyVqD0VzLdGvxsixPF11qvza686sliZHRIXi4GXUOSH8uegcgul5swjAO5oYSa8iHg6sgcY7eIYnewJrw1MfO4M73tvBDurYc+88z4rnr7AEoisKspDDOSQxlY2YphRW1BPto01g9YmSnSVAC+EVCWQ5kreXshCQ+23KYn/cU8rcLEk99fSFOh/X597NlpExnWckITy8wIS6QVdYliZb9P+gbjOgdqkvh8EYAbt0QwA/pBbgZDbwwbwR3zxiI0qyA2WhQGB8X0HMLKhXl+Iap+39g0sBAXI0KmcVVHCySrsuiC1QVox7RGg6uMg9nSnyQzgE5Bkl4eoGkfr6sN2pNp8x7v5fl6aLrZf4CqoWDSiQr8034e7nxwc0pXDgiXO/I9DHw+PJ0H3cXWz2FTGuJLnHgJxRUdlmiMHuHkRDqo3dEDkESnl7AxWiA6IlUq+64VhdC3na9QxI9iNmisi6jhK9Sj7AuowSzReXIZm139J8bkogL8uJ/f5jImGgnX3F1JmKmgNENjmZByQHOtq7W+mLbYbvHTYhOsf/4cvQpAwPtRlR7M6nh6SWSB4Tx68EhnGPcChk/Q78ReockeoDlaXksWppu1zXZ12RkmboSFCgOncQXN07Ez8NVxygdgLs3RE2Egyth/w+4GLR9tnbnVXD3R6mAtgx/4ezEnlOsLfRhsWi1mmjTWVfLdJaNjPD0EuNiA1hjGQqAJWOlztGInqCtzT+D6rIJV0qox5V7b7pOkp0m1uXpRanf8chXLfsQ9ZhNU4W+8ndAdQkVqgep6gAmDpCC5SaS8PQSiWG+pLpq+2qRvR7qq/QNSDi1k23+OcWwA4BtSiIGN6/uDcyRxZ0FgE/BRtxouZdWj9k0Vegr42cA1lsSiQ/zJ8jHXeeAHIckPL2EwaAQFpvEYTUQg6UeDv2md0jCiZ1s88+mhOen+iHOvflnZwtKoN4jBBP1jDbsa/WUHrFpqtCXNeFZbRkqq7NOIAlPLzI+LpA1Zm1aC5nWEmegrU093WhgnGE3AKstw5x/88/OpCjkB44DYLJh50lPlcdNnJb6KtTs9QCssQxlivTfsSMJTy8yPi6wWR3PCp2jEc6srU09xxj24qHUU6D2Ya8a6fybf3ayuv5TAZh0ioRHHjdxWrJ+RbE0kGMJosAlnNHRffWOyKFIwtOLxId4s8c0EouqYCjaA+W5eocknFRyjD9hfqYW+2BNsb6Rr7EMI8zPw/k3/+xksSkXADDUkIU/Lbd56TGbpgp9WKez1liSGBcbgLuLbCfRnCQ8vYiiKAweEM0ONUY7YF26KERHGQ0KC2e33BahqX5njXloz9n8sxMZfUMo9xsEwERDmt1lPW7TVNH9DmqlCmssw5g8UOp3TiQJTy8zPjaANZZh2g/WTwNCnI5ZSWG8cvUo3F20l5EgjpFoOATAnEuukn4ybfBN1Jann2vabXe8x22aKrpX2REo2oNZVfjNMoQp8VK/cyJJeHqZ8XEBtsJlNWOl1qRKiNM0KymMYOuy10VJ2uagathwzh49RM+wHJt1efoF3nv46yxttCe8j4m1D5wlyY44fdbRnR1qHF5+gcQFeesckOORhKeXiQ304oj3EKpUd5TqYihIO/WVhGhDdX0jOUdrADjbTWump8SdrWdIji9qAhjdUcqPcGGE1g+rqKJlXx4hOqRZ/c7kgUGynUQrJOHpZRRFYWxcKOss1voLmdYSZ2B/gbbbd6CXG+7Za7WDsdP0C8gZuHpAf215ekjxOtxcDNSbLRw+Wq1zYMJpNdtOYo15GJNlOqtVkvD0QuPjpI5HdI69BRUATAs8CpX54GKCyBSdo3ICcdMBMBxcSUyA1o36YLF0PxenybqdRKVqIpUBTJLtJFolCU8vNCEukLWWJACtSVWDNDkTp2dfvpbwTHfbox2ITAFX6SFzStY6HrLWMiBQq4E6WCQJjzhNmb8AsN4ymMSIQPp4uukckGOShKcXivT3pNY3jgK1D4q5Dg5v1Dsk4aSaRniG1W/XDsRM0TEaJxIyFDwDob6Sie4HAcgsrtQ5KOG0MlcDsM4yRLorn4QkPL3U+AGB/GaxrqTJXKNvMMJp7SuoQMFC2NFN2oGYqfoG5CwMBoieBMBws9asUUZ4xGkxN6AeWgdgXY4u/XfaIglPLzUhLqBZwrNa32CEUzpWXU9BeR2JSjYu9WXg5gP9RuodlvOwjob1L9sCSMIjTtORrSgNVZSq3hx2i2FEZB+9I3JYkvD0UuPjAmwrtdQjm6FOhtNFx+yzrtD6ndde7UD0RDC66BiRk7EmPN5FW3GnnvzyWqrqGnUOSjidLO0D63pLIuPignA1ytt6W+SR6aXC/Dxw8Y8mxxKEYmkE6w67QrRXU/3OFFdrx2Cp3+mYgAHgE4ZirmeaZyYAmbJSS3SUrX4nUaazTkESnl5sfPNprSyZ1hIdsy+/AhcaSaiz7vwtCU/HKApETwbgHA9tlEwSHtEhDbWoOdqik9+kYPmUJOHpxcbHBfJbUwNCqeMRHbS3oILhSgZulhrwDIBg2U6iw6xJ4hiL1vFc6nhEhxzehNJYS6Hah4Y+A4iy9nQSrZOEpxcbF+vPOusIj5q3HWqO6hyRcBaqqrI3v4IJBm07CaInayuPRMfEaCM8kbW78aSWg7I0XXRElrbCdp0lkSmDZDrrVOQVqhcL9jHhGxxJhiUMRbXAod/0Dkk4icKKOspqGphoTNcOyHTW6ekbDX79Mapmxhr2ypSW6BjryPxvliFMHigJz6lIwtPL2S9Pl348on325lfgTj2jDPu0A7J/1umzJovjDekcLKpCVVWdAxJOob4K9fBmADaqQxgfF6BzQI7PIROel156iejoaEwmEykpKWzc2HYn4CVLljB58mT69u1L3759mTFjxknPF/bGxx5fni51PKK99hVUMMawFzcawTcc/GP1Dsl5Wae1Jhh2UVnXSFFFnc4BCaeQvR7F0sBhNZDAyHh8Ta56R+TwHC7h+fjjj7nnnntYuHAhW7duZfjw4cycOZPCwsJWz1+1ahVXXnklK1euZN26dURGRnLuuedy5MiRbo7cOaXEBrC+KeEp3AVVxfoGJJyCXf1OzBRtxZE4PdaVWkMMWfhSJZuIivbJPN5/Z3J8sM7BOAeHS3iee+45br75Zq6//noSExN59dVX8fT05M0332z1/Pfff58//OEPjBgxgoSEBP7zn/9gsVhYsWJFm/dRV1dHeXm53Vdv5e/lRkhYBLst/bUDWTKtJU5tX0EFEwxSv9Mp/MLBPw4jFpINe2SllmgX1VqC8Js5kcmyHL1dHCrhqa+vZ8uWLcyYMcN2zGAwMGPGDNatW9eu26iurqahoQF/f/82z3nqqafw8/OzfUVGRp5x7M5sfKxsMyHaz2JROVxQzFBF2/SyaU8ocQas01rjDemyiag4tdoyyNsGQJrbcIZF9NE3HifhUAlPcXExZrOZkJAQu+MhISHk5+e36zYeeOAB+vXrZ5c0nWjBggWUlZXZvnJycs4obmfXfJsJSXjEqRw+WkOieTcuigXVLxL69Nc7JOd3QuGyECd1aB2KaiHTEsLAgQkYDTKl3B49auObp59+mo8++ohVq1ZhMpnaPM/d3R13d/dujMyxJcf4c5+agEVVMJQcgIp88AnVOyzhoPYWVJBs2AOAIqM7ncNax5NoOERxUZ7OwQiHZ9tOYohMZ3VAuxKeUaNGdehGFUXh66+/Jjw8vEPXCwwMxGg0UlBQYHe8oKCA0NCTvwH/3//9H08//TQ//fQTw4YN69D99nZ+Hq5EhfcjvTCKJCULDv0KSZfoHZZwUPsKKkgxWPfPipqgbzA9hXcwDQGDcC3ZS/ixLTSYL5BNIEWbzJmrMaI1HPyr7J/Vbu1KeFJTU7n33nvx9vY+5bmqqvL0009TV9fxpZVubm6MHj2aFStWMHfuXABbAfKdd97Z5vWeeeYZnnjiCb7//nvGjBnT4fsVWh3PxvwEkgxZWgNCSXhEGw7mFnOTkqH9EDVR32B6EJeYyVCylzHKHrJLq4kLOvXrreiFassxFGgrJAv6jiK8j4fOATmPdk9p/eUvfyE4uH1L3/7xj3+cdkD33HMP8+fPZ8yYMSQnJ/P8889TVVXF9ddfD8C1115LeHg4Tz31FACLFy/mkUce4YMPPiA6OtpW6+Pt7d2uBE1oxsUF8NHawdzAcsj6Ve9whAMz5m7GXWmkziMEd+m/02mU6Amw+T8kG/aQWVQlCY9o3eGNKFg4ZAkmcVCC3tE4lXYlPJmZmQQFtX/YLD09nX79+p1WQFdccQVFRUU88sgj5OfnM2LECJYvX24rZM7OzsbQbM+eV155hfr6ei699FK721m4cCGPPvroacXQG42N9ucBrE+eot1QVQJe0rlT2GswWwgv3wpGMPefIP13OpN1tCxROcTmvDxIDDnFFURvpB5ahwJsVgcxVaazOqRdCU9UVBRpaWkkJSW160bPdJn3nXfe2eYU1qpVq+x+zsrKOqP7EhpvdxciIiLZlx9OvOEIZP8Gg2frHZZwMJnFVYxFq9/xGCD9dzqVTyhHTZH0rc1BzV4PjNA7IuGAajN+xQPYqg7iodi226+IltpdFTds2DBSUlJYsmQJFRUVXRmT0Mn4uAA2WAZrP8hGoqIV+4+UMMqwH5AVWl2hLDgZAP/izTpHIhxSYz2u+VsBqA1LwdOtRy207nLtTnh++eUXhgwZwr333ktYWBjz589nzRrpytuTTIgLZKNFm9ZSs9bqHI1wRBUHN2BSGqhw6QuBA/UOp8cxxGjTWjFV23WORDikvO24WOooVb0ZkNix1dOiAwnP5MmTefPNN8nLy+Pf//43WVlZTJ06lfj4eBYvXtzuxoDCcY2O6ss2xdqAMH+n1s1TiGZMR9YDUOw/Wup3uoD/4GkADFYzKC8/pmsswrGYLSoHt/wIwGbLICYMkP47HdXhRg9eXl5cf/31/PLLL+zbt4/LLruMl156if79+zNnzpyuiFF0E5OrkX79Y8m0hKCgQvZ6vUMSDqZfuTacrspy9C7hHRpHHoG4KmaK0mWUVWiWp+UxafHPZGz5CYCNlgRu/e8WlqdJk8qOOKPOVgMGDODBBx/k4YcfxsfHh2+//baz4hI6mWBXxyPL08VxNTW1DGnUCpb7Jk7XOZqea7+H1ji14aCUDAgt2bn9va3kl1Uz2rAX0EZ4Cspruf29rZL0dMBpJzyrV6/muuuuIzQ0lL/85S9cfPHF/PqrvEE6u/GxAc3qeOTvKY47sns9Xkodx/Cmb9RwvcPpsYr9RwPglb9R50iE3swWlUVL01GBOCUXf6WSGtWNXWo0qvWcRUvTMVvUk92MsOpQwpObm8uTTz5JfHw806ZN48CBA/zrX/8iNzeXJUuWMG7cuK6KU3STEf37sNVax2PJTWXDnmx5MgkAqvf/AsB+01AwyLYHXaUxUpsuDK3YCQ21Okcj9LQxs5S8Mu3/wFjr6M42ywAarB1lVCCvrJaNmaV6hehU2r2m7Xe/+x0//fQTgYGBXHvttdxwww0MGjSoK2MTOli5p5BcgjmsBhJBMf9+9wMyfMaycHYis5LC9A5P6MgzV6vpKgkYq3MkPZt/5GCK1vkRRBnkbpX9ynqxworjCe8Ya8KzSW35vtv8PNG2dn9Mc3V15bPPPuPw4cMsXrxYkp0eqGmuuN5ssU1rJRt2k18mc8W9nsVMv/JU7ftoKVjuSrHB3mywPv8sMq3cqwX7mGzfJyvH63dOdp5oW7sTnq+//poLL7wQo9HYlfEInTSfKwZshcsphj0yVywgfyeeajXlqidBA2SD3q4U6e/JZlWbVq7PkJVavVlyjD9hfibCKCHSUIRZVdhqOd7/SgHC/Ewkx0jH5fZoV8Jz8cUXU15e3u4bveqqqygsLDztoET3az5XDNhGeEYoB3CnXuaKe7ma/asB2GQZRHyYn87R9GyuRgM5PiO073M3grlR34CEbowGhYWzExlt2AdAuhpFFdru6E1dsBbOTsRokJ5Y7dGuhOerr76iqKiI8vLyU36VlZWxdOlSKisruzp20YlOnAPOVEMpVPvgrjQyXMlo8zzRO9RmaEuk97gPxcfkqnM0PZ8hZDDHVC+MjdWQJ12Xe7NZSWH8cUARYD+dFepn4pWrR0ltZQe0q2hZVVXi4+O7Ohaho5ZzwAobLQlcYFxPimE3G82D2zhP9HiqikfeJgCOBo7WOZjeITrIh00ZCZxj3KL1w4qQx703Cy1LBSDLezgvzBpBsI82jSUjOx3TroRn5cqVHb7h8PDwDl9H6Kdprji/rNZWs7PeMpgLjOtJNuxBMWufKGSuuBcqOYCp4Si1qiuukbJ/T3eIDfJmvaUp4fkNJt6ld0hCL7Vl+JZpBcsesRO4cIS8t56udiU8U6dO7eo4hM6a5opvf28rClp/h6Y6ntGG/bjQKHPFvVX2OgBS1QEMDJOEtzvEBnrxQVPH8+zfwGKR3ke9Vc4mFFSyLCHExgzQOxqnJs8gYTMrKYxXrh5FqJ82bbVfDeeY6oWnUsc753nIXHEvpVoTnk2WQcSH+OgcTe8QE+RFuhpFheqhbeJbuEvvkIRO1EO/Adrzb2iELBg4E5LwCDuzksJY+8BZfHjzOK6fGMtmi1a7NcF1v86RCb2Ys7SEZ4tlEAOCvXWOpncI8nbH0939+BJk2ci316o9qPViSjUkMFCef2dEEh7RgtGgMD4ugLtnxLNF1aa1qg9IP5BeqaIAl2OZWFSFkr7DMblKH67uoCgKMUFebGpalWMdZRO9TGMdbvnbAKgIGouLUd6yz4Q8eqJNfh6ulAVpq0MMOetBlaaDvU6ONrKwV40kIixU52B6l9hALzY3bSNwaJ08/3qj3FSMljqKVV8CohL1jsbpScIjTips8HjqVFdM9aVQelDvcER3y94ASP2OHmKDvEm1xGHGCBW5UJajd0iiu1lH9jZbBjE8sq/OwTi/dq3SGjlyJIrSvtU5W7duPaOAhGOZmBDO9rWxJCt7MWf9hjEgTu+QRHdq9oI7K1QSnu4UE+hFLe5kuAwgvnGvVsfTp7/eYYluZDm0DgOwyRLPVVKwfMbalfDMnTu3i8MQjmp4RB/eNgwmmb0c3bOawNHX6B2S6C71Vah521HQRnjukhGebhUb5AXAhsaBxLNXSz6HXa5zVKLbWCxYsrWEZ5frEKIDvPSOyOm1K+FZuHBhV8chHJTRoFDXLxly/6fV8Yje4/BmFNXMYTWQEmMQ0QGeekfUq8QEam9wa+sHco0bslKrtynei0tdGdWqO67hwzFID7Qzdlo1PMeOHeM///kPCxYsoLRU20xy69atHDlypFODE44hZMgUAPxrs6GySOdoRLexvsFutsQTF+wtK0S6maebC2F+JltrCArToeaovkGJ7mOdTt5mGcCQyECdg+kZOvwKtmPHDuLj41m8eDH/93//x7FjxwD44osvWLBgQWfHJxzA+CED2GOJBKDqwK86RyO6TbP6nUEh0v9DD7FBXpTgR4VXtHYgZ6Ou8YhudMj6/FMHMVzqdzpFhxOee+65h+uuu479+/djMh3fSPK8885j9erVnRqccAz9+niw330IAAW7Or6vmnBC5kY4rG0YutkyiHgpWNZF07RWpudQ7YD04+k1mjqcb7QMYlhkH32D6SE6nPBs2rSJW2+9tcXx8PBw8vPzOyUo4XgawscB4HJ4g86RiG5RuAvqK6nEi31qBIOkYFkXsYHayNo2tAagUsfTS5QdRinLoVE1kG1KpJ+f6dTXEafU4YTH3d2d8vLyFsf37dtHUFBQpwQlHE/osGkA9KvZh1pXqW8woutZ31i3WAZiwSA9eHQSY12ptarGumnkka3QWKdjRKJbWJ9/6WoUAyJD290WRpxchxOeOXPm8Nhjj9HQ0ABoLdCzs7N54IEHuOSSSzo9QOEYRiYNI1cNwAUzuemyzUSPZx1O32COx8vNSERfD50D6p3irCM8vx7zRfUKAnMd5KbqG5ToerYNexMYFtFH31h6kA4nPP/4xz+orKwkODiYmpoapk6dyoABA/Dx8eGJJ57oihiFA/BwM5LlOQyA/J2/6ByN6FKq2myFlla/I58w9RHe1wM3o4H6RpWa0LHaQanj6fmsz79NlkEMj5SC5c7Srj48zfn5+fHjjz+ydu1aduzYQWVlJaNGjWLGjBldEZ9wIJbIFNi3ErdcqePp0Y4dgoo8zIoL29U4LpLpLN0YDQpRAZ7sL6wk128EA/hO6nh6uppjqAW7UNA+cPw9vI/eEfUYHU54cnJyiIyMZNKkSUyaNKkrYhIOqt+ws2Df08TW7KK2rg6Tu7veIYmuYH1DPeQWT12Nm9Tv6Cw2yIv9hZXsdklkAGgbulosYJC+SD1SzkYUVA5aQnHzCyHIR15nO0uHnzHR0dFMnTqVJUuWcPSoNMHqTWIGj6YCT7yUWnanyqfMHsua8Gy0NrwbJEvSdRUbpNXxbK6LBFdPrflg8T6doxJdpln/K6nf6VwdTng2b95McnIyjz32GGFhYcydO5fPPvuMujpZOdDTKUYXDntr/UCKpR9Pz2VNeH6ujgWQER6dNfXiySipg4gx2kGp4+m5mgqW1UEMk/qdTtXhhGfkyJE8++yzZGdns2zZMoKCgrjlllsICQnhhhtu6IoYhQNRI7V+PO550vG1R6ouhaLdAGw2x+Pv5Uagt5vOQfVucdal6QeLKqH/eO2g1PH0TA21cGQLoBUsD5P6nU512pPAiqIwffp0lixZwk8//URMTAzvvPNOZ8YmHFD4sLMAGFS/i8KyGp2jEZ3OunVBuXcspfgSH+ItK7R0FmNdmp5bVktdmKzU6tHyUsFcT5HqS5YaylDZUqJTnXbCc/jwYZ555hlGjBhBcnIy3t7evPTSS50Zm3BAfgNSaMCFEOUYW7en6h2O6GzWN9KDHkkA0mHZAfh7udHH0xWATFMiKAZtJV15rs6RiU536DdAq9+JCfTGz8NV54B6lg4nPK+99hpTp04lOjqad999lyuuuIKMjAzWrFnDbbfd1hUxCkfi6kGh92AAindLP54ep9kO6YDsoeUgYq11PAfKFQjRklGZ1uqBbP13EhgmozudrsMJz+OPP05KSgpbtmwhLS2NBQsWEBUV1RWxCQelRGl1BJ75m7BYVJ2jEZ2moRZytwLwfUUMICM8jqJpWiuzqErqeHoqi0VrOYBWvzM0XBKeztbhPjzZ2dkyp9/LBQ2ZCrteZ6h5N7tyy2Weuaew1g9YvILZVNIHkBEeRxHbVLhcXAVDxsHG16SOp6cp2g21ZVRjIl2N4hHZIb3TdXiER1EU1qxZw9VXX8348eM5cuQIAP/9739Zu1b2WOoNXK0jPAMNR9iYLv1AegzrG2hZ4ChAoZ+fCV+T1BA4gqYprYPFVdBfWylJQRrUttzIWTgp6/Nvi3kAqmJkSD9fnQPqeTqc8Hz++efMnDkTDw8Ptm3bZuu/U1ZWxpNPPtnpAQoH5BXAMS+tR0vJ7jU6ByM6jXWK5KCHtmeajO44jqbmgweLKlF9wqBPFKgWOLxJ58hEp2m+f12ID55uHZ6AEadwWjU8r776KkuWLMHV9finv4kTJ7J169ZODU44LqN1lKdv8RYq6xp1jkacMYvF9oK7RR0ESP2OI4kK8ERRoKK2keLKeqnj6YkOHW84KPU7XaPDCc/evXuZMmVKi+N+fn4cO3asM2ISTsAnfjIAo5S9rMso0TkaccaK90LtMXD14pfyMEA6LDsSk6uR8D4eAGQ2n9aSOp6e4VgOlB/GjIFtlgEMk/qdLtHhhCc0NJQDBw60OL527VpiY2M7JSjhBKwvuEOVg6zbe1jnYMQZs75xqhGj2V1YDcgeWo6m+bSWbYTn8GYwN+gYlegU1pG63cRQg4nhshCkS3Q44bn55pu5++672bBhA4qikJuby/vvv899993H7bff3hUxCkfUN5paUxBuipnivfIp0+lZX3CrQ8ZSWlWPosCAYG+dgxLNNRUuZxZXQWA8ePSFxhrI26FzZOKMZWsNB9c3xuNmNMiHjS7S4aqov/71r1gsFs4++2yqq6uZMmUK7u7u3Hffffzxj3/sihiFI1IUjNETYM9XRFTsILukmv4BnnpHJU6XNeHJ9NIKlqMDvDC5GvWMSJygaWl6RlEVGAwQOQ72LdNG5yJG6xydOCPNGg4m9PPB3UWee13htJalP/TQQ5SWlpKWlsb69espKiri73//e1fEJxyYa/QEAMYY9vLL/iKdoxGnrTxX26pAMbDVPACA+BAZ3XE0sdbmgweLK7UD/VO0f6WOx7nVHIXCdEDrcC4dlrvOae+l5ebmRmJiom0fLdELWet4xhj2sXZvgc7BiNPWtNIndCjpJRZAVmg5ohjrCE92STWNZov9Si1VOp47rewNAOQawynBj2ERffSNpwdr15TWxRdf3O4b/OKLL047GOFkQpIwu3rh21BF4cHtNJjH4Go87Rxa6KUp4ek/nr2ZFQAMCpWmZ44mzNeEydVAbYOFnKM1xPQbCUZ3qC6GkgwIHKB3iOJ0WEfofmvU9q+TEZ6u0653Jz8/v3Z/iV7E6IIhYiwAQxp3sS37mL7xiNPTtEIrMoV9+U0Jj4zaOhqDQTm+p1ZxJbi4Q/go7cIc6cfjtKwfONY3xuPhamRAkDz3ukq7Rnjeeuutro5DOCklajxkrmKMYS9r9heRHOOvd0iiI2rLtS0KgDy/4VTV78HNaCAqwEvnwERrYgO92J1XzsGiKs5KQJtWzl6nfY28Wu/wREc127B3k2UQSZG+uMgoeZfpMY/sSy+9RHR0NCaTiZSUFDZu3Kh3SL1Dszqe1fukcNnpHN6kbVHQJ4o9Vdony9ggL5madFB2K7VAOi47u9ytYK6nwiWAQ2qI1O90sR7xqvbxxx9zzz33sHDhQrZu3crw4cOZOXMmhYWFeofW84WPQVWMRCjFFB05SGlVvd4RiY7I0Qom6T+evfna6h/pAeK4Ymy9eKwrtSKTtX9LDkClfOBwOtbp5B2GwYAi9TtdrEckPM899xw333wz119/PYmJibz66qt4enry5ptv6h1az+fujRKm9W4Zrexl7YFinQMSHWJ9wbVEjuNX69/O5GrEbJFVP47oeLdl6wiPR18ITtS+lzoe52PdP2tljbZLgYzwdC2nT3jq6+vZsmULM2bMsB0zGAzMmDGDdeta709RV1dHeXm53Zc4A9Zh9TGGvayRaS3nYW7QtiYArvpBsSWrH2/KYdLin1melqdndKIVTSM8hRV1xzftjWzqxyMJj1OxmCFHK71Y1zgIX5ML0dK8tUs5fcJTXFyM2WwmJCTE7nhISAj5+fmtXuepp56yW1kWGRnZHaH2XNYX3LGGfazeX4QqPUGcQ/4OaKjmmOrF+ooA+4vKarn9va2S9DgYPw9XAr3dAMiUOh7nVrgb6spoMHqyR+3PsIg+KIqid1Q9WrtWaf3rX/9q9w3eddddpx1Md1mwYAH33HOP7efy8nJJes6EtXA5Qcmmuvwo+woqpQ7ECVgOrcOA1t1VPeGzjwoowKKl6ZyTGIrRIC/EjiI20JviylIOFlcyNMLv+M7pealQXw1uMkrgFKzTyZkeQzBXGbW/pehS7Up4/vnPf7brxhRF6faEJzAwEKPRSEGBfaffgoICQkNDW72Ou7s77u7u3RFe7+ATCn1jMBzNZJRhP6v3jZaExwkc3bOaAGCzZVCrl6tAXlktGzNLGR8X0Oo5ovvFBHqxMav0eB1Pn/7g0w8qcuHIFoiZrG+Aon2sCc8Ga8NB2SG967Ur4cnMzOzqOE6bm5sbo0ePZsWKFcydOxcAi8XCihUruPPOO/UNrjfpPx6OZjLasJfV+4u4eUqs3hGJk1FVvAq0+p1NbSQ8TQorarsjItFOTUvTDxZbEx5F0UZ5dn2hTWtJwuP4VNVWsLy8IgaQguXu4PQ1PAD33HMPS5Ys4Z133mH37t3cfvvtVFVVcf311+sdWu9hHVYfq+xjY2YptQ1mnQMSJ1V6EFNdCXWqC2lqzElPDfYxdVNQoj2aVmrZlqZDszoe2UjUKRzLhopcVMWFLeY4Ar3dCfOT51lXa9cIz4kOHz7M119/TXZ2NvX19n1XnnvuuU4JrCOuuOIKioqKeOSRR8jPz2fEiBEsX768RSGz6ELWF9yRxgNYauvZkFnK1PggnYMSbbIWuO42DKQOt1ZPUYBQP5N0z3Ywtl48RVWoqqoVujbV8eRs1Fb/GIw6RihOyfr8K/IdTG2NOxMi/KRguRt0OOFZsWIFc+bMITY2lj179pCUlERWVhaqqjJq1KiuiLFd7rzzTpnC0lPgQPDwx1RTyhAli483RnCsup5gH+0NU4peHYx1JMA3fhJsb3lx019r4exE+ds5mP7+nhgNClX1ZgrK6wj1M0HIEHDzgfoKKEyH0KF6hylOxvr822XUeihJw8Hu0eEprQULFnDfffexc+dOTCYTn3/+OTk5OUydOpXLLrusK2IUzqDZp8wxhr18l5bP3R+lcuWS9dLTxRFZP2GGDz8bN5eWLwOhfiZeuXoUs5LCujsycQpuLgYi+3oAcLBpWstghEhtI19Znu4ErAnPymqt1nG41O90iw4nPLt37+baa68FwMXFhZqaGry9vXnsscdYvHhxpwconMcetyEAjDXstTsuPV0cTFUxlOwHYGVVNPWNFiL7evDhzSm8MG8EH948jrUPnCXJjgNr0XEZpI7HWVSXQtEeAL4tiwKQJendpMMJj5eXl61uJywsjIyMDNtlxcWyrUBvZbao/GOPVusx2rAPbVGzpum7RUvTZcsCR9A0AhCcyOe7tTfMOSP6MT4ukAtHhDM+LkCmsRxcrG1PreYJj7WO59A6bRWQcEzW/euqfeMoUX0J7+NBoLe0SekOHU54xo0bx9q1awE477zzuPfee3niiSe44YYbGDduXKcHKJzDxsxSfqnoR63qSqBSToxi3+W6eU8XoTPrCEBdv2R+2attBTJneLieEYkOimlaml7UbKVW+GgwuGj9eMpydIpMnNKh37R/vLQ9CKV+p/t0OOF57rnnSEnRthJYtGgRZ599Nh9//DHR0dG88cYbnR6gcA6FFbXU48p2NQ7Q6njaOk/ozDrCs40E6s0WBoX4SKNIJxPtryU8O4+UsS6jRBs5dfOCsOHaCVLH47isf5uN1v5X0n+n+3R4lVZs7PGGcl5eXrz66qudGpBwTk29WjZZBpFi2MNYZS+fMq3N84RO6qu1LQiAD/O1UZ05I/rpGJDoqOVpeTzy1S4AiivruXLJesL8TCycncis/uO1bsvZ62HY5TpHKlpoqIHcbQB8e0yr35EOy93ntPrwgLZLeWFhIRaLxe54//79zzgo4XySY/wJ8zOxpUJrk37iCI/0dHEQR7aApRGzdz+WHtIGeGcPk4THWSxPy+P297ZyYoVO08KAL6bHMxJkhMdRHdkKlgYsXiFsLPEFYEi4JDzdpcNTWvv27WPy5Ml4eHgQFRVFTEwMMTExREdHExNz8o6toucyGhQWzk5kq2UgFlUh1pBPIGWA9HRxKNY3wkNew7CoCiMi+9A/QDabdAZmi8qipektkh04vjDgoS3a6i0K06HmaHeFJtorW6vfKQ4YDSjEBnrh5+Gqb0y9SIdHeK6//npcXFz45ptvCAsLk+6QwmZWUhhcPYWDn/dngHqI0YZ9fG8ZS2jTcLssc9aftWD5pyrtw8mFMp3lNDZmlpJX1nYNnAqkl5uoCYrGoyILcjZB/LndFp9oB+sHjnQXaTiohw4nPKmpqWzZsoWEhISuiEc4uVlJYViyZsDmNxhj2Mv3lrF88YcJhPl56B2asJi1rQeAL0v6Y1Dg/GGShDqL9hb8F/YdSVRFlpbcSsLjOJo9/36p1RZ3SMFy9+rwlFZiYqL02xEnZbA2QJvsfgCAbdnHdIxG2BTsgvoK6oxe7FUjGR8XIEXkTqS9f6uGcG0VrdTxOJiCXVBXDm4+LCsMAGSEp7t1OOFZvHgx999/P6tWraKkpITy8nK7LyGaGqANNGfggfTecRjWN8AdyiAsGJgzXKaznEnTwoCTFRGE+ZmIGTVD+yF3KzTWdUtsoh2sz7+6sDHkVzZiNCgM6ScJT3fq8JTWjBnak+nss8+2O960a6/ZbO6cyITz6hMJvhEYyw8zwpDB5kPBekckwFa/s6pmAK5GhVlDZDrLmTQtDLj9va0o0Grx8iMXJGIMDAXPQKguhrztEJnc3aGK1liff9neWsPBgcHeeLjJrvbdqcMJz8qVK7siDtHT9E+BtMOMUfbyUu4QKmob8DHJagTdqKrtBXezZRBTE4Lx85S/h7OZlRTGK1ePYtHS9FYLmN1dDcc38t3zjfY3l4RHf82ef1tUreGgbBja/Tqc8EydOrUr4hA9Tf/xkPY5k90P8O9qrY5nSnyQ3lH1XseyoSKPBlzYrsbyjKzOclqzksI4JzGUjZmlFFbUEuxj4uc9BSxZk8mT3+1hysAgXGwJz3qYeLfeIYtjh6AiDwyu/FgWAVTKhqE66HDCs2PHjlaPK4qCyWSif//+uLvLRmi9nrWOZxj7MGBhU1apJDx6stYP7LREo7h6MmOwTDM6M6NBYXxcgO3nxH6+fLblMAcKK/lwUw7X2HZOXw8WCxg6XK4pOtMhbXSnwj+JdTk1ACRJ/U636/CzYMSIEYwcObLF14gRI0hISMDPz4/58+dTWyt7JvVqwYng7ovJUk2Cks2mLClc1pV1OH2TZRDnJIbg6XbaTdaFA/LzcOVPM7Qu58//uI+KvoPBxQNqSqFkv87RiZztKwB4Pz+c6nqtzvW297awPC1Pz7B6nQ4nPF9++SUDBw7k9ddfJzU1ldTUVF5//XUGDRrEBx98wBtvvMHPP//Mww8/3BXxCmdhMNpqB8YY9rIt+xj1jZZTXEl0FdU6wrPZMkhWZ/VQv0/pT2yQFyVV9by8JgcixmgXyPJ0XS1Py6M+Yy2gfeBoUlCubQciSU/36XDC88QTT/DCCy9w4403MnToUIYOHcqNN97IP//5T/7xj39w1VVX8e9//5svv/yyK+IVzsQ6rTXRdT91jRZ2HinTOaBeqroUpWg3APvdEmVqsYdyNRpY8LvBALyxNpPy4NHaBZLw6MZsUfnX178RZ9CSms3NEp6mVXaLlqZru92LLtfhhGfnzp1ERUW1OB4VFcXOnTsBbdorL0+y1l7PWkeQbNwLqGyWaS19HN4EwAFLP8YNHYSbi9Rz9FQzBgczLtaf+kYL7+daR/Ks05mi+23MLKV/pVb3uscSSRnedperQF6Z9CrrLh1+5UtISODpp5+mvr7edqyhoYGnn37att3EkSNHCAkJ6bwohXPqNwoMLvQ1lxChFEsdj07MWdqGhZst8cyR1Vk9mqIoPHx+IooCLx3wR1UMcDQTKvL1Dq1XKqyoJdmwB7CfzmrtPNH1Oly5+NJLLzFnzhwiIiIYNkxroLRz507MZjPffPMNAAcPHuQPf/hD50YqnI+bJ4SNgCObGa3s5ZdD/bBYVAyyY3q3Kt+3hr7AXvchXBYTcMrzhXNLCvfjopHhfLH1CIeM0UQ3HtSmtYbM1Tu0XifYx0SsNeHZaGl7/0nZ4qV7dDjhmTBhApmZmbz//vvs27cPgMsuu4zf//73+Pj4AHDNNdd0bpTCefUfB0c2M85lH19VT+JAUSXxIT56R9V7NNTiU6INqfsnTMUoyWav8JeZg/huZx6/1MYR7SIJj16S+7mAIRtoPeFRgFA/E8kx/t0cWe90WmtTfXx8uO222zo7FtET9R8P615kotsBqIdNWaWS8HSj2uwtmNQGilQ/JqdIx93eIszPg5snx7J51SDm8yOW7PUdr18QZ8x4ZBNgIdsSRAH2SU3TR4+FsxPlg0g3aVfC8/XXX/O73/0OV1dXvv7665OeO2fOnE4JTPQQ1pVa/Ruz8KWSTZmlXJXSsuhddI2MLT8xBNjlksjUyD56hyO60a1T47h8wzAwA/k7oK4S3L1PeT3RiawNB5WoCXBCO6RQPxMLZycyK0n2tOsu7Up45s6dS35+PsHBwcydO7fN82TzUNGCVyAEDISS/Yw27GdTliyJ7k6NmVrBsiVyHIoinyJ7E293F66dOZ7D3wYSQTGVB9fjPXiG3mH1LtYVcnXhKbAf+nq68ujsIQT7atNYMrLTvdo1ymmxWAgODrZ939aXJDuiVf1TAG15+pFjNeQeq9E5oN7hWGUNMdVa/U7caHmj640uGxPJPrckADavXqZzNL1MYx0c3gzA2rqBAEyJD+LCkeGMjwuQZEcHMq0rup61H89k9wwAWZ7eTdavX4uvUk0VHkQljtM7HKEDo0EhcsRZALgeWU9WcZXOEfUiudvAXAdeQSzL06YSU2SVpK7anfCsW7fOtuy8ybvvvktMTAzBwcHccsst1NXVdXqAogewJjwJ5v240SAJTzcp2Knt31PcdyQYZe+s3mrgGG10b4Syn2e+26VzNL3IIW062RyRwrbDWpf5cbGyGktP7U54HnvsMXbtOv5k2blzJzfeeCMzZszgr3/9K0uXLuWpp57qkiCFk/OPBa8gXNR6kpRMNmcd1TuiHq+wvJbg0i0A+CVM1TkaoaugwZjdfPFS6sjevUG6+nYXa/1Ots8I6hstBPu4ExPopXNQvVu7E57U1FTOPvts288fffQRKSkpLFmyhHvuuYd//etffPLJJ10SpHByimJbrZVi2MPeggrKqht0Dqpn+2Z7LmOtDc/6DJ6uczRCVwYDxihtlDXFsIcnvk3HIns3dS2LGbI3ALCuUdvFflxsgCwc0Fm7E56jR4/abRfxyy+/8Lvf/c7289ixY8nJyenc6ETPETURgKmm/agqbMmWT5ldacvWjQQq5TQa3KHfSL3DEXqLmgDABJc9bD9cxtIduToH1MMVpkNdGbh5802BVreTItNZumt3whMSEkJmZiYA9fX1bN26lXHjjhdCVlRU4Orq2vkRip7BmvCMUHdjxMzGTJnW6iqHSqrwK9wIgCV8LLi46RyR0F30JAAmuu5HwcLiZXv4ZV8hX6UeYV1GiezW3dls9Ttj2ZxTAWgjPEJf7a5kPO+88/jrX//K4sWL+d///oenpyeTJ0+2Xb5jxw7i4uK6JEjRA4QMAZMfptoyEpVDbM4K1DuiHmvp9lySDbsBcIudpHM0wiGEDQdXL0wNZYz2yGdzWT/mv7np+MXSBK9zWROeI76jqG+0EOTjTqzU7+iu3SM8f//733FxcWHq1KksWbKEJUuW4OZ2/JPjm2++ybnnntslQYoewGC0rdZKMexmx+Eyahukb1NX+Dr1CCnW+h2iJ+objHAMRldbP6zE+p0tLs4vq+X297ayPC2vuyPreVTVVrC8wSz1O46k3QlPYGAgq1ev5ujRoxw9epSLLrrI7vJPP/2UhQsXdnqAogexTmtNcdtLvdnCDutSTdF59uSXU1N0kDClFNXgCuFj9A5JOAhLf62OJ8U6+tdc04TWoqXpMr11pkoPQmUBGN1YWtwPgBTZHNQhdLjxoJ+fH0ajscVxf39/uxEfIVqwjjaMUfagYJF+PJ3IbFFZl1HCP77faxvdUcJHgZunzpEJR5HuNhSAZMMejqc4x6lAXlmtLFs/U9bRHUvYSDbkaI0epX7HMUg3MtF9QoeDmw+e9RUkKDlsygo59XXEKS1Py2PR0nTyymoBeMZFS3gOeg4jVs/AhEPJdBvEANWVIKWcOCWXDDW81fMKK2q7ObIexrphaH6fkdQ1Wgj0dicuSOp3HIFsLSG6j9HFVkeQYtjNlqyjMnx+hpan5XH7e1ttyQ40fYKHx3b2lZoMYRPYx5etFm1PJ1uNVyuCfUzdFVLPlLUGgI1qIqB1V5b6HccgCY/oXtZ+IBNd9lBR18je/AqdA3JeZovKoqXpdpMTIZQSbSjArCpsscRLTYawSY7xJ926kWhrdTwK2mqtZKk3OX3HcuDYIVCMfF0aCUCKTGc5DEl4RPeK0pZJpxj3AqrU8ZyBjZmldiM7cPyT+y41mgo8pSZD2BgNCsMmngc0JTzHE+Gm8YeFsxNlF+8zcehXACz9RvBrjra35HhpOOgwJOER3avfSHDxwNdSxkDliCQ8Z6C1Woum/jsbLQknPU/0TsmTZ2ExuBKqHKW/Umg7Hupn4pWrR0kfnjNlnc7K7zvWWr/jRlyQt85BiSaS8Iju5eIGkcmA9ilzU1YpqipTLqejtVqLpvqd5gmP1GQIG1cPDBFaq4KnRmltIQK8XFn7wFmS7HSGrLUAbLLW76RI/x2HIgmP6H7WNvfjjHsoKK/j8NEanQNyTskx/oT5mWzTEf6UE284AsAmyyCpyRCts/bDGq2mA1BS1UCD2aJnRD3DsRw4mqXV7xzV6ndkObpjkYRHdD/rC+4EF60fiNSYnB6jQWHh7ERbJUbT7uh7LJEcwxeQmgzRCuvCAfcj6/Bx1zqT5JRW6xlRz9BK/c44+bDhUCThEd0vfDQY3fG3HCVGyWfzIUl4TtespDAi+3oAxwuWN1oSpCZDtC0yBRQjSlkOY/tqjfGySiThOWPW+p2CvmOpbbAQ4OXGgGCp33EkkvCI7udqAmsdQYpht4zwnIH03HJyjtbgYoBLA7IAGDftAqnJEG1z99YWDwBTTfsAOFRSpWdEPYOtfmcwIPtnOSJJeIQ+rNNaKYbdZBRVUVJZp3NAzunTLTkAzB3kgW+ZNsITP+48mcYSJ2fd5mWkZRcAWZLwnJlm9TtLj/YHtIaDwrFIwiP0YX3Bneii9ePZfOiovvE4ofpGC1+l5gIwv99h7WBQAngH6xiVcArWDxwxlakAZBXLlNYZaarfCRvBGmv9jjQcdDyS8Ah9RCSDwZVgtZgIpYhNMq3VYT/vKaS0qp5gH3eG1G3XDkZP1jco4Rz6jwPFgE91NsEclRGeM2WdzirwH0NtgwV/LzcGSv2Ow5GER+jDzRPCRwEw3pDOJhnh6bDPrNNZF40Kx3BIe8ElZoqOEQmnYfKDUG339HGGdHKP1VDXaNY5KCfWVL+D7J/lyCThEfqxjkaMN6Sz60gZ1fWNOgfkPAoralm5twiAeYPdoGgPoNh6HAlxStbkeIprOhYV6Yd1usoOw9FMrX6ntKl+R6azHJFDJTyqqvLII48QFhaGh4cHM2bMYP/+/Se9zlNPPcXYsWPx8fEhODiYuXPnsnfv3m6KWJwR6wvuZGM6jRYLqdnH9I3Hifxv2xHMFpURkX2IqdimHQxNAk8plBTtFDMNgIlGrQGhrNQ6TVnH63fW5tQDkBIjCY8jcqiE55lnnuFf//oXr776Khs2bMDLy4uZM2dSW9v2XkC//PILd9xxB+vXr+fHH3+koaGBc889l6oqefI6vMhkMLoTRCmxSh4bZV+tdlFVlc+2aEXKl42JsPX/IFqms0QH9B8HBhfCLAVEKIVSuHy6rM+/Qv8x1DSYpX7HgTlMwqOqKs8//zwPP/wwF154IcOGDePdd98lNzeX//3vf21eb/ny5Vx33XUMGTKE4cOH8/bbb5Odnc2WLVu6L3hxelw9oH8KABMMu9icJXU87bHjcBn7CipxdzEwe3g/yFytXRAjBcuiA9y9IVzrhzXBsEtGeE6XrX5nCAApMf4YpC2EQ3KYhCczM5P8/HxmzJhhO+bn50dKSgrr1q1r9+2UlWkb4vn7tz20X1dXR3l5ud2X0Il1WmuCYRdbs4/SKHv6nFJT751ZSaH41hVC6UFQDLYtA4Rot2bPv0zpttxxtvodg+yf5QQcJuHJz88HICQkxO54SEiI7bJTsVgs/OlPf2LixIkkJSW1ed5TTz2Fn5+f7SsyMvL0AxdnJmYqABOM6dTUN5CeJ8nnydQ2mPna2nvnstGRx6ezwkZoK2+E6IhY6/PPkM6h4kqdg3FCB38BwNJvFGuzrfU70nDQYemW8Lz//vt4e3vbvhoaGs74Nu+44w7S0tL46KOPTnreggULKCsrs33l5OSc8X2L09RvFLj50IdKEpVs2WbiFH5IL6C8tpF+fibGxwXIdJY4MxFjUY0mgpVjmI4dkF3TOypTS3gKAlKoaTDT19OV+GAfnYMSbdEt4ZkzZw6pqam2r8DAQAAKCgrszisoKCA0NPSUt3fnnXfyzTffsHLlSiIiIk56rru7O76+vnZfQidGF9tUzHip4zmlpmLlS0ZHYFRolvBIwbI4DS7uWvEykKKkcUSWprefqtpGeDag9TRKiQmQ+h0HplvC4+Pjw4ABA2xfiYmJhIaGsmLFCts55eXlbNiwgfHjx7d5O6qqcuedd/Lll1/y888/ExMT0x3hi87UrI5gU1YpqqrqHJBjyiurYc1+rffOpaMjtL17ynLA4AKR4/QNTjgtJbbp+ZcuHZc7omgvVOaDi4mvS7UP2bJ/lmNzmBoeRVH405/+xOOPP87XX3/Nzp07ufbaa+nXrx9z5861nXf22Wfz4osv2n6+4447eO+99/jggw/w8fEhPz+f/Px8amrkk4rTsNYRJBv2UFZVTWaxvOi25outR1BVSI7xJyrA63j9TvgYbcWNEKcjZhqgdVzOLq7QNRSnYp3OskSOY3229pol+2c5Nhe9A2ju/vvvp6qqiltuuYVjx44xadIkli9fjslksp2TkZFBcXGx7edXXnkFgGnTptnd1ltvvcV1113XHWGLMxU8BDz88a4pZZhykE1ZI4kNkjfw5lRV5dPNWq3ZZaOtU7aZ1oRH6nfEmQgbTq3Riz7mKmpzUoE4vSNyDgdXAZAXkEL1bjN9PF0ZFCL1O47MoRIeRVF47LHHeOyxx9o8Jysry+5nmf7oAQwG7U07/SvrtNZZXDG2v95ROZQth46SVVKNp5uR84aGafUD1k+YsmGoOCNGF4oDxhJRuAq//HXAJXpH5PjMjbb+O79ZtBXB0n/H8TnMlJbo5azL0yda63iEvU83a8XK5w0Nw8vdBQrTobIAXDxsRadCnK6GSG0PtugKadjaLnmpUFcOJj++KQoCpP+OM5CERzgGa8IzyrCP/JJjFJa3vZ1Ib1Nd38g3O5p671inszJWav9GT9RW2ghxBjwHnw1AUuMuGuvluXdKB7XnnyV6CpsPac1uZf8sxycJj3AMAXHg0w93pZHRhn28siqDdRklmC0yZblsZz5V9WaiAjxJjrGuArG+4BI7Xb/ARI8RFDOcEtUXL6WOkn3t72zfa1mXox/pm0xVvRk/D1cSQqV+x9FJwiMcg6JwxH8sAJMNO3nrtyyuXLKeSYt/Znlans7B6atpK4lLR0WgKAo01tl2aCZOEh5x5gxGIztchwNQu/cnnaNxcPXVkLMBgLVm2T/LmUjCIxzC8rQ8nt0fDmgJT5P8slpuf29rr016ckqrWX+wFEWBi5ums7LXQ2MNeIdAcKK+AYoeI6uPVgvmmf2LzpE4uJz1YK4H33CW52mrSaV+xzlIwiN0Z7aoLFqazhqL1q00yZBFINq8eNOE1qKl6b1yequps/LEuEDC+3hoB5tPZynyqVJ0jvJ+WuFyQNkuqJaFA21q2j8regqbD2md4WX/LOcgCY/Q3cbMUvLKainBjzRLNACTmo3yqEBeWW2v22fLYlFtCc9lY5ptl9JUsCzTWaIT+feLYZ8lHAOW4y0PREvWDxw5fY7X7wwOle2JnIEkPEJ3hRXHV4U0jfJMNu446Xm9wfqDJRw5VoOPyYWZQ6z7yVWXQt527fvYabrFJnqe6ABPVluGaT9k/KxvMI6qstD2/Ftl1vrvJEv9jtOQhEfoLtjneCftphfcKYadKFjaPK83aBrdmT28HyZXo3bw4CpA1Wp3fE69qa4Q7RUd4MUa6/NPPfCz1txS2GsaXQ0dxkrt6Sn1O05EEh6hu+QYf8L8TCjAFks8Vao7QUoZCYq2OkkBwvxMx5dk9wIVtQ18Zy3UvnR08+ks6yfvuLN0iEr0ZGF+JrYqg6lTXVHKD0Pxfr1DcjwHtBVslriz2WSdYk/pRa9Lzk4SHqE7o0Fh4WxttVEDrqy3aN9PMRyf1lo4OxFjLxo2/nZHHrUNFuKCvBgZ2Uc7qKq2/Xuk/47obC5GA0F9+7LRMkg7INNa9iwW22Ny0G8cVfVmfE0uDA6T+h1nIQmPcAizksJ45epRhPqZbNNakw07MCjw0u9HMSspTOcIu9entmLlSK33DkBJBpTlgNENoiboGJ3oqaLs6nhW6BuMo8nfDtXF4ObDyqpoAJJjAnrVBzFnJwmPcBizksJY+8BZzL3kGgCSDXtxV2sJ9OldWydkFFWy5dBRjAaFi0eGN7vA+ok7MgXcPPUJTvRo0YHH63jIWqs1uRQa63QWsVP5LascgHGyHN2pSMIjHIrRoDBy5Bjw64+b0kiKYTff7exdTQc/t47uTI0PIti3WaH2gR+1fweeo0NUojeIDvBijxpJmdEfGqq1JpdCc0D7wGGOnc6mLK3/jhQsOxdJeITjURRbj5kphp0sS8vD0guaDpotKr8eKOb9DdkAXNJ8dKehBjJXa98PkIRHdI2oAE9AYaNhhHZA6ng0tWW27SSWVg6msq4RD1cD8SGyf5YzkYRHOKYB2u7N04w7KSivY2v2UZ0D6lrL0/KYtPhnrvrPBspqGgD4+7fpx7fUyFoLjbXgGwHBg3WMVPRk0QFeAHxfZ92yROp4NAd/AdXMISWcP/1wDICaBgtTn13Za7e9cUaS8AjHFDMVFCOxyhEilCK+25mvd0RdZnlaHre/t5W8MvvGigXldcf3Edv/g3Zw4DmynYToMuF9PTAaFFbWD0FFgfydUC5v6DmblgLwc0OS3fHevtefs5GERzgmjz5acS4w3bCtx05rNe0j1tpvZttH7OtdqLaE59zuCk30Qq5GAxF9PSjBj6pAa/Fy0/+9XspstuCSqU3t/WIZbndZb9/rz9lIwiMcV7z25n6OSyp5ZbWkHj6mbzxdoGkfsbaogKkiC+VolrYcPWZKt8Umeqco67RWpr+2mWhvT3h2bt9EGMXUqa6st7ScTu6te/05I0l4hOOKnwXAeMMuPKhlWQ9crdWe/cGmG1K1b6ImgLt31wYker2YAK3lwRb3ZO1AxspevTzdJUNbHbnBkkAtbbfI6G17/TkjSXiE4wpKAL/+uKoNTDDs4rud+ag9bH+f9uwPNq0p4ZHpLNENmkZ4NtZEgHcoNFRpRfO9VGSxtjryZ8vIk57X2/b6c0aS8AjHpSgQPxOAc123c+RYDTsOl+kcVOdKjvHHz8O1zcu9qGWccbf2gyQ8ohtEB2ojPJklNbZp5V47rVVzFN/CzQD8ZBnV6im9ca8/ZyUJj3BszRIeUHtcE8KC8lrqGsytXqYAEwy7cKMR+kRBwIDuDU70Sk0jPIdKqlCbkux9y3vn7un7f0JRzVT4DuSwGtzi4qb1kr1trz9nJQmPcGzRk8HVk76NRQxWsvkuLa/HTGupqsqCL3ZS22ghJtCTUF/7IfFQPxOPDNJ2jJfl6KK7RPT1wKBAdb2Z4uAJWrH80azeuXv6vuUAlEVqfcFOfAaG+pl45eret9efs3LROwAhTsrVpPXk2beMc11TeaE0irQj5QyN8NM7sjP26ZbD/LKvCDcXA0uuHUtMoBcbM0sprKgl2MdEcnQfjP+8XTt50O/0DVb0Gu4uRvr18eDw0RqyKhSCoidpHZf3fw9B8XqH133MDbbtXD4q0xoxXpEcyYXDw48/R2P8ZWTHicgIj3B81jqCCz13AvBdD2jylV9Wy9+/SQfg3nPiGRDsjdGgMD4ugAtHhDM+LgBj3jaoLAA3H22kS4hu0tRxOau4CgZq08rs+17HiHSQvR5qy7B4BPDaQW3PrOsmRNs/RyXZcSqS8AjHZ33BjandjT/lfLfTuae1VFXlwS93UlHbyPDIPtw0Obb1E/d8o/07cAa49K4d44W+oqxL0w+VVB8vXM5eBzXH9Auqu1mns3Z7j6PBopAc7U9CqK/OQYkzIQmPcHx+4RA6FAWVma6pHCqpJj2vXO+oTtuX247w855C3IwG/u/SYW1/StzznfZvwgXdF5wQQEygdYSnpAr8Y7UWEZbG3rVaa+8yAN4t1ZoNXjM+Ss9oRCeQhEc4h4TZAMzz2Q7AMifdW6uwvJZHv94FwN0zBjKwrd2WSzKgeC8YXGDAjG6MUIjjK7WySqq0A01J9+6lOkXUzYr3Q2kGFsWVb6sSCPJxZ+aQUL2jEmdIEh7hHAZrCU9S7Ra8qHHKaS1tKiuN8tpGhob7ceuUNqayAPZ8q/0bPUnbV0yIbhTdNKVVXK09zwZbE54DP0FDjY6RdRPr6M5O16FU4smVyf1xc5G3S2cnf0HhHIIHg38sRks9Z7vu5GBxFXsLKvSOqkO+3p7LT7sLcDUq/N9lw3ExnuTp15TwDDq/e4IToplIf8//b+/O46Kq98ePv2aAYZPFhVURcBcXFFc0rxsmlkvbTVtUKltMb/rr3tutvuVaqd1Ss5vlLUMz0izXvGrlgqW5oyZuuYArSio7IjBzfn8cGR3ZBphhYHw/H495MHPmnDPvD4cZ3vNZ0Wgg62Yh13PyIaADeAVBQa46Ysve3arJ+j5HbXJ+smtjGwckLEESHlE7aDTGWp6nPdVmrfW/157RWn9m3WTyraasV/o1p6V/KU1ZANl/wvnd6v1WD1RDdEKYcnFyIODWvFDJ13LV95+xWWudDSOrBpmX4MIeAH7Ud2FgGz/8vWTZCHsgCY+oPW714+l4cw86ClifWDv68SiKwturE0nPLaBNoCcv9Wla9gF/bAQUCAgHr0bVEqMQd7tzxmXgdrPWHxtAX2ijqKrBrYQuQWlBKnUZ2T3EtvEIi5GER9QeDTuBRwBOhTn0djzKqdRs/qgFzVr/O5zCxiOXcdRq+Pdj4TiV1ZQF0pwlaoSiNbWSr+WqGxpHglt9uJEGZ3fYMDIrO7YWgPWFXWjuW4fuTWSNLHshCY+oPbRaaKUmASO9fweo8WtrXcu+yaQ1alPWuL7NCAssZx6PvAw4vVm931qGowvbCbm7hkfrAC1vNbHa62itnKsot5K5jYYujIwMRiNLutgNSXhE7XKrH0/X/N1oMdT4hGfS2iNcz8mnlb8H4/qasfjniQ2gz4cGLcE3zPoBClGK4DtnWy5y6/3H8f+BwWCDqKzs+Do0ioHDhhDSnAJ4uGNDW0ckLEgSHlG7BPcEF29c8q8T6XiCP65kcyq1ZjZrbTicwv9+T8FBq47KMmtY65FV6s82D8tiocKmijVpgbquna4OZF2Ci/ttFJkVHVWbszbou/JIRCM8XJxsHJCwJEl4RO3i4GRs1nrW+yAA62vIJIR6g8LO09dYc/AiPx25zFur1bW/Xu7TlLYNzVjs9Eb67SG/bR6yWpxCmKNxPTXhybhRQHpuvrrRyeX2QrZHVtooMiu5kY6StA2AjYauMrOyHZKER9Q+bR8BoGf+DhzQ14hmrY2JKdw3awtPfL6LCcsO8sKS/VzLKSDAy4Xx/cxoyoLbzVk+rdV5h4SwITedI36e6hpuJrU8bR9VfyauBIPeBpFZyfF1aAyFnDA0wje0LS1KmwVd1FqS8IjaJ7QPuDXAJf86f3E4wvHLWZz5M9tm4WxMTGHs1wmkZOQVey4lI4+tx1PNO9GdzVlC1ADFhqYDNO0HLl6QfRnO/majyCzP8PtyANbqezAqMsS2wQirkIRH1D4OjsYmn2e8EwDYYKM5efQGhak/HKW0RS40wNQfjqI3lLMMxo00ac4SNU7REhPJV++o4XF0vt15OXGFDaKygqwraJJ+BeA3t94MCPOzcUDCGiThEbXTrWr17jd/w5l8mzVr7Um6XmLNThEFtZZnT9L1sk90/H9gKFBHZvm0tGyQQlRSSIMSangA2j6m/jy6BvQF1RyVFRxZhQYDCYZm9O7Wtfy5skStJFdV1E5B3cGzIbrCbPo5/M6RS5nFP5SrQWpW6clOhfb7/Vv1563+SULUBCF3r5pufKIXuPvAjetwJr76A7Ow3IRlAKwz9JR1s+yYJDyidtJqjcnBaE91eKwtRmv5epi3xk6Z+2VcgFvV6bQfboGohLCM4PolDE0HtVk57CH1fm1v1rp+BrfUA+gVDTdaDMXXU9bNsleS8Ija61azVuebu6lDrk2atbqG1iOgjIUFNUCAlwtdQ8uYnv735YACwfeBt3y7FDVHUafl6zn5ZNy4q+mq3a1mrWM/QH71165aSt6B7wDYYWjLQ/d1tHE0wpok4RG1V0AHaNACR0Megx12c/hiBuev55Z7mCU5aDW82LtJic8VTRs4eUgYDtpSJhFUFDikVqcTPsLyAQpRBXWcHWlQRx2afu7uWp5GXcE7GPKza+9SE4rCjVvNWXvq9Cv7i4mo9SThEbWXRgMdngQgxl0dHlvdtTyKovDz0SsAON81k7K/lwufPh1BdNuA0k+QchCungBHFwgbZsVIhagc40itu/vxaLXQ4Sn1/sG4ao7KMgzn91E35wx5ihNBPR6XdbPsnKOtAxCiStqPgM3TaJV/hFBNCusTvXmxd9Nqe/m1hy6x49Q1nB21bJzwFy5n5pGalYevh9qMVWrNTpGi2p1WD4JLOQuLCmEDwfXd2Xc2reRBAR2egPgZkPQLpJ2FurVrduIrv3xBAPAz3RnctZWtwxFWJjU8onbzDIBmUQA85rCNQ+fTuZBWPc1aGbkFTF93FIBX+jcn1MedyKb1GdahIZFN65ef7OgL4PD36v3wJ6wcrRCVE1Jax2VQ+5yF/kW9f2hpNUZlAfk5eJ9W18661mI47s7y/d/eScIjar9b1eojdL+hxcBn206z5uBFdp6+Vv6Ef1Xw75+OczU7n6Y+7jzfq+R+PGX6YyPkXgV3X2jS1/IBCmEBpc7FU6Tj0+rPg3G1agX163u/w1XJ5azBl/uihto6HFENJKWtAL1eT0GBHUyyZSM6nQ6t1go5dstB4FqP+jeu0kt7mK93afl61zlAHSE1eUhY2f1oKuHg+XTidquv8c5D7cxbCf1u+2LVnx2fUof5ClEDFc3Fk3S1lJrTVoPB2RPSz8HZHRDaqxqjq7zsXYuoB+zyHsRwPzMW9xW1nnzKmkFRFC5fvkx6erqtQ6nVtFotoaGh6HQ6y57Y0Znkhg8ScmoJf3WIZ5sh3PjU5Yw8xn6dUH7n4Qoo1Bv4v1WHURR4JEJtvqqwtOTbS0lEjLJIXEJYQ+NbTVpXs2+SfbOQOnc3/ejc1Dmx9i+CA0tqdMKjNyjsSbpO5oVjDMxS597xve8ZW4clqokkPGYoSnZ8fX1xc3OTnvyVYDAYuHTpEikpKTRu3Niiv0O9QeGtsx35miUM1O7DhzT+pC6gLu1QtJ7VgDD/8vvVmOGrnWc5cikTL1cn3nygkquaJyxRo2vSF+pVojlMiGri5epEPXcd13PyOXsthzaBJdSGRIxSE54jq2Dge+DeoNrjLM/GxBSm/nCUlIw8XnNcBo7wq6E9uS6ybta9okb14VEUhUmTJhEQEICrqytRUVGcPHnS7ONnzpyJRqNh4sSJFotJr9cbk5369evj6uqKi4uL3Cp4c3Nzw8fHh9zcXAoLCy12fUBdz2p7lj97DS1w0uh5wmGryfNmr2dlhssZeXz40wkAXh/UyjhHSYXoC9RvwgCdYqockxDWVjTj8tmSOi4DNOwEgRGgz7/9t12DbExMYezXCaRk5OFMPsNvfUYs1fdl/DcH2Jhom7X4RPWqUQnP+++/z7x58/jss8/YvXs37u7uDBw4kLy88tcr2rt3LwsWLKB9+/YWjamoz46bm5tFz3svKmrK0uv1Fj1v0TpVSwrvB+BJx804UjypMnfdq7JMW3eEnHw9EY29Gd45qHInObEBsq+onZVbPVjlmISwtlLX1LpTlzHqz71fgsGy7/Gq0BsUpv5wlKLhC4O1u6ivyeKiUp9Nhk6AWgNszQEOomaoMQmPoijMnTuXt956i2HDhtG+fXu++uorLl26xOrVq8s8Njs7m6eeeorPP/+cunXrlvtaN2/eJDMz0+RWHmnGqjpr/Q6L1qnaYOjKn4oX/po0Bmj3l7pfZW09nsr6w5dx0Gp49+F2aCvbPLbrU/VnxEhwcKpSTEJUB2MNT2kdl0Htx+NaFzLOwcmfqymy8u1Juk5KRtGXHYXRjj8CEFcYhR4Hi9YAi5qtxiQ8SUlJXL58maioKOM2Ly8vunXrxs6dO8s8dty4cTz44IMmx5ZlxowZeHl5GW9BQZX8pi5qhKL1rApxZKleHd49ysH0A7e+u65K08bfyNczaW0iAM/2DKF1QCUnCbx0AM79BlpH6PJ8peMRojqFNjCjhsfJ9fYQ9b2fV0NU5rmzZrej5hTttUncVJyMnxUl7SfsU41JeC5fVle69vMz7UDm5+dnfK4ky5YtIyEhgRkzZpj9Wm+88QYZGRnG2/nz5ysXdAXoDQo7T1+rlvlh7jUOWg2Th4QBsLSwP4WKlkiHo7TRJBv3Sb+Rz9pDFyv9Gv/ZepLz128Q4OXCxKgWlQ9253z1Z5tH1EkThagFgs1p0gLo/ByggVOb4MpR6wdmhjtrdotqd9bqI0nDs9T9hH2yWcITFxdHnTp1jLfKzG9z/vx5JkyYQFxcHC4u5v+xOjs74+npaXKzpo2JKdw3awtPfL6LCcsO8sTnu7hv1hard5SLiYlBo9Gg0WhwcnLCz8+PAQMG8OWXX2KowARhixYtwtvb23qBWkB02wA+fToCvBqyztAdgBcdf8Dfy4WIYG/0Bvh/3x7iP1tOoigVSzZPpWbx31/OADBlaJvKz8iaeQmOrFTvR75cuXMIYQNFsy1fybxJbn4Zgw7qhULYrUn8fvu4GiIrX1ENcEP+5EHtbgAW6Qcan9egztclC4faP5slPEOHDuXgwYPGW4MG6jDGK1eumOx35coV/P39SzzH/v37SU1NJSIiAkdHRxwdHdm2bRvz5s3D0dHR4p1jK+PO0QF3KpofxtpJT3R0NCkpKSQnJ7Nhwwb69u3LhAkTGDx4sMVHS9ladNsAtv+rH6FD3wRgiONudrzQhO9f7MGLf1GHfn/w0x+8sfIwBXrzEj5FUfi/VYkU6BWiWvtyf1gVhrDu+RwMhdC4BwR2rPx5hKhm3m46vFzV/mbnrpezdEvPCerPw8sho/K1qpbioNXwt37NGOO4HieNnu36NhxRQgE12QGYPCTMIlNWiJrNZgmPh4cHzZo1M97CwsLw9/dn8+bNxn0yMzPZvXs3kZGRJZ6jf//+HD582CRx6ty5M0899RQHDx7EwcHBKrErikJufmG5t6y8AiavPUJJ9QlF26asPUpWXoFZ56tozQSotVn+/v40bNiQiIgI3nzzTdasWcOGDRtYtGgRALNnz6Zdu3a4u7sTFBTEyy+/THZ2NgDx8fE888wzZGRkGGuLpkyZAsCSJUvo3LkzHh4e+Pv78+STT5KamlrxX6gFOWg1hHfpBU37o1EMOOz6BK1WwxsPtGbasDZoNbBs73nGLN5H9s3yE76VCRfZnXQdVycHpgxtU/mO1zfSYO8X6n2p3RG1kHFNrbI6LoM6RD2kl5rc75pfDZGVb+/Rk4y4NRR9vn6Ycbu/l4tFJyUVNVuNmXiwaP6cd955h+bNmxMaGsrbb79NYGAgDz30kHG//v378/DDDzN+/Hg8PDxo27atyXnc3d2pX79+se2WdKNAT9ikH6t8HgW4nJlHuyk/mbX/0WkDcdNV/ZL169eP8PBwVq5cyZgxY9BqtcybN4/Q0FDOnDnDyy+/zGuvvcb8+fPp0aMHc+fOZdKkSZw4oc4/U6dOHUAdsj99+nRatmxJamoqr776KjExMaxfv77KMVZZzwlwejMc+Br6vA7uDRgVGUKAlyt/W5rAtj/+ZPiCnXwZ0wU/z5KbQ9Nz83l3/TFAXRy0Ud0qTE2wewHczATfMGgpQ9FF7RNc351DFzJKX1PrTj0nQPKv6mSEvf4ObrZrLtqYeJkmp5fg6pjPDZ9w/jbwOYZn38TXQ23Gkpqde0eNSXgAXnvtNXJycnjhhRdIT0/nvvvuY+PGjSb9c06fPs3Vq1dtGKV9aNWqFb///juAyUSNISEhvPPOO7z00kvMnz8fnU6Hl5cXGo2mWNPis88+a7zfpEkT5s2bR5cuXcjOzjYmRTYT+hd1IrRLCbBjLtz/DgADwvxY9kIkYxbv5cilTB6Z/xuxz3ShhZ9HsVPM2nic6zn5tPCrw5heoZWPJS/j9jfdv/wTrLGemBBWVuaq6XdrFgV+beFKIuz8D/SfZOXoSpaVV8C/1+xhlYP6pdK17z+IbFbzZoEW1aNGJTwajYZp06Yxbdq0UvdJTk4u8xzx8fGWDaoErk4OHJ02sNz99iRdJyZ2b7n7LXqmi1kd5lydLNdEpyiKsXlm06ZNzJgxg+PHj5OZmUlhYSF5eXnk5uaWOeHi/v37mTJlCocOHSItLc3YEfrcuXOEhYVZLNZK0Wig75sQ95jad6b7OOOoqA5B3qwc25OY2D2cuZrDo5/+xoKRnegWWp89SddJzcojPTefpXvU0XvvPNQOJ4cqJCl7/qsmPQ1aQtiw8vcXogYqGqllVg2PRgN93oBvn4Jdn0G3sVDHx8oRFvfBjyd46MYKPB1zMTRogbbV4GqPQdQc8lWzEjQaDW46x3JvvZr7EODlQmkVpkWjA3o19zHrfJacuO/YsWOEhoaSnJzM4MGDad++PStWrGD//v188sknAOTn55d6fE5ODgMHDsTT05O4uDj27t3LqlWryj2uWjWLgsaRUJgHv/zb5KnG9d1YMbYHXULqkpVXyMiFu+k0/WfjSLrJa9UhtT2a1q/a6I0bafDbf9T7f/knaK3Tr0wIawspmovnqhkJD6iziAdGQEEObJ9txchKduBcGut3HeI5hw0AaPtPktrVe5xcfSu6c36Yu1MVW44O2LJlC4cPH+bRRx9l//79GAwGPvzwQ7p3706LFi24dOmSyf46na7YiLfjx49z7do1Zs6cSa9evWjVqpXNOywXo9FAv7fV+wmL4XqSydN13XUsea6bcdh6+o3iUyPsPH2taiPpfvkA8tLVvjttH6n8eYSwsaImrUsZeeQVmDECVqOBfm+p9/cuhIwLVozOVIHewBsrD/M3h1W4aW5Cw84gtTv3PEl4rKxofhh/L9OOsdU1OuDmzZtcvnyZixcvkpCQwHvvvcewYcMYPHgwo0aNolmzZhQUFPDxxx9z5swZlixZwmeffWZyjpCQELKzs9m8eTNXr14lNzeXxo0bo9PpjMetXbuW6dOnW7UslRLSE5r2V0eMbJ5a7GknBy2X0sqeYbXS6+ykJavNWQADpkntjqjV6rnr8Lg1B9X58oamF2naD4J7gv4mbC69q4Klfbk9idwrp3jCcYu6IWqKmoCJe5okPNWgaH6Ypc9356MRHVj6fHe2/6tftQyF3LhxIwEBAYSEhBAdHc3WrVuZN28ea9aswcHBgfDwcGbPns2sWbNo27YtcXFxxWat7tGjBy+99BLDhw/Hx8eH999/Hx8fHxYtWsR3331HWFgYM2fO5IMPPrB6eSplwFTQaOHIKkj61eSpPUnXuZxZesJTpXV2Nk1RV48O7a02rwlRi2k0GoIbVKDjsnrQrQEDGvj9Wzj7m/UCvOX89VzmbPqDSY5f4YRefe+F9rL664qaT6NUZnIXO5OZmYmXlxcZGRnFZl3Oy8sjKSmJ0NDQCs3mLIqz6e9y3auwb6HatPTir+CgflNdc/AiE5YdLPfwj0Z0YFiHhua/3qlN8PWjaqL1wjYIaF/JwIWoOcZ9k8D/fk/hrQdbM6ZXE/MP/GGCOkTdr636fnCwzngZRVGIid2L06mNfKH7EEXrhGbsb+BTheVgRI1W1v/vu0kNj7g39HtLXck59Sjs+sS42dz1cyq0zk7BDfjf39X73V6SZEfYjdtD083suFyk3yT1/Xcl8fYEnFbww+8p7PnjPFOcFgOg6TFekh1hJAmPuDe41YMBt/oYbXkX/lQnUSxaZ6e8kXQVGqm19V21/45nQ3VovBB24vbQdDObtIq41789gGDzVLh22sKRQUZuAdN+OMKbjt/QSHMVvILUkZFC3CIJj7h3dHwamg1QO1CuHgv6AsuPpDsTf3vRxAc/BOfiExoKUVuFNjBz1fSSdHpGXXKiIBdWvQh6y67lN3PjMdrk7mWk4yZ1w9CPQedu0dcQtZskPOLeodHA0Hng7AUX96udirHgSLqca7DqJfV+p2eg5SALBi+E7QXfatK6mHaD/ELzFuA10mrhoU/B2RMu7IX4GeUfY6a9ydfZtOd3/u20QN3Q9UVo2tdi5xf2oUbNtCyE1XkGwrD/wPKR6pT3jTpDm4eJbhvAgDB/40zLFV5npzAflo+CrBSo3xwGvmvdcghhAz51nHHTOZCbr+d8Wi5NfSq4hIx3EDw4G1aOgV8/gIBwCBtapZjyCw1MXpHAAt0cfDXp4NNKHYYuxF2khkfce8KGQo9X1PurX4ZzuwF1osjIpvUZ1qEhkU3rm5/sKAqs/zuc3Q46Dxi+RKrShV3SaDQVW2KiJO3/Ct1fVu+vHguXDlYppgXxJ3kufS4R2lMYnL1gxDegq8JCv8JuScIj7k39J6vzcxTkQtxf4fLhyp1HUeDHNyHhK3UI+mNfgm9ry8YqRA1iHKl1tYIdl+80YLo6P1V+Nix5CC4nVuo0Z1KzqPfL//Gow68oaNH+9Uuo37TycQm7JgmPuDc5OMLjSyCoO9zMgNgH1Q7HFaEvVIefF62E/uBsaHG/xUMVoiapcg0PqO+/4V+rSz7cSIOvhpo9KaHeoLDz9DXW7k/i5BfP8pT2Zwxo4OHPZIJPUSZJeMS9S+cGT357O+n5+lHY+QkYzOiMmXFB/Wa6byGgUUeEdH7G2hELYXO35+KpQg0PgIsnPL0CAjtC7jVYPBR2/7fM99/GxBTum7WFf37xA35rRjAw/yf0ioZdbaagCR9etXiE3ZOE5x7Up08fJk6caOswagZXbxi1Bto+qq639eObsDAKTm4q+YP3Rhps+zd80g2SfwVdHXj8K4gYVe2hC2ELFqnhKeLqDTHroc3DYCiADf+E2Gg4vUVtLr7DxsQU3vw6nuE5X7NR9y+6aY+TrbgwpuAfPLW/edUW+RX3BBmlZcdiYmJYvHhxse27d++mdevb/UxCQkKYOHHivZsEObnAowsh5D746W11yHrco+ARCMGR6siuwpuQegzO7VI/mAGCusHQ/8hMruKeUjQXz7nruaxMuECAl2vFRjTeTecGj8WqNa2bp8H53bDkYXXizuAe4BGAoeAGPvt2stv5GE4adaX2PYaW/LPgRc4q/mhQF/kdEOZf+TiE3ZOEx85FR0cTGxtrss3HxwcHB1m524RGA52fhZYPwvY5cPAbyLoEiSuK7+vXDnpOUGuFtFJJKu4tCWfTADAo8OryQ4A6G/nkIWGVXxBZo4HuL0HrIfDbPEhYApkX4fB3gNoU0QlAA4cNIcwvHMZGQxeUW40Udy7yG9m0ftUKKOyWLB5KJRYPVRR1dE91c3JTPxjMFBMTQ3p6OqtXrzbZ3qdPHzp06MDcuXPp06cP27ZtM3neWn8StWoh1sKbkLwdLv+u9i/QOEC9UAjuCQ2a2zo6IWxiY2IKY79O4O5PiKJPpQpN1FmWgjz1/XclkYw/L/Lb2Sy2/OnBfkMLziiBpR5W4UV+Ra1XkcVDpYanMgpy4b3S33RW8+Yli8/vsnLlSsLDw3nhhRd4/vnnLXruWs3RGZr1V29CCPQGhak/HC2W7IBaw2Jus5LeoJQ7wWeOwZH/ZbTk+0R39iRfNzvGCi3yK+45kvDYuXXr1lGnzu3ZUAcNMl3uoF69ejg4OODh4YG/v391hyeEqCX2JF0nJSOv1OeLmpX+d/gSQ9oHoimhNnpjYgpTfzhqcp6i5rCBbdSZzr/bf4H1h1PIzVf76mg0cF+zBhy+kEHGjYISEy4N6lIwFVrkV9xzJOGpDCc3tbbFFq9bQX379uXTTz81PnZ3d+eJJ56wZFRCiHtAalbpyc6dXll6kKlrj9K+kRftGnkT3siL9o282X/2eonNYSkZebz0dQI+dXT8mZ1v3B7awJ3HOjXikYiGBHi5GpvTNGByjkot8ivuSZLwVIZGU2uWDnB3d6dZs2a2DkMIUcuZ21yk1cC1nHy2nviTrSf+NNleVu/AP7PzcXPSMiS8IX/t3IhOwXVNaomKFvm9u4bIv6odpsU9QxIegU6nQ6/X2zoMIUQN1jW0HgFeLlzOyCuzWWnTq73540oWv1/I4NCFdA5fyOBkajYGM8ZCzH+6E31a+pb6fJUX+RX3NEl4BCEhIfzyyy+MGDECZ2dnGjRoYOuQhBA1jINWw+QhYeU2K7k7O9KxcV06Nq5rfH75vvO89v3v5b5Gxo0Cs+KQoeeiMmQSEcG0adNITk6madOm+Pj42DocIUQNVdSs5O9l2rzl7+VS5pD0oLrm9T+UUVbCmqSGx44tWrSoxO3x8fEmj7t3786hQ4esH5AQotarTLOSuc1hMspKWJMkPEIIISqkos1K5jaHSV8cYU3SpCWEEMLqKtscJoSlSA2PEEKIaiGjrIQtScIjhBCi2sgoK2Er0qRlJlljterkdyiEEMJWJOEph5OTEwC5uTZYHd3O5Oer08Y7ODjYOBIhhBD3GmnSKoeDgwPe3t6kpqYC4ObmVuKieKJsBoOBP//8Ezc3Nxwd5c9OCCFE9ZL/PGYoWkW8KOkRlaPVamncuLEkjEIIIaqdJDxm0Gg0BAQE4OvrS0FB+VOfi5LpdDq0WmlFFUIIUf0k4akABwcH6X8ihBBC1ELydVsIIYQQdk8SHiGEEELYPUl4hBBCCGH3pA8PtyfEy8zMtHEkQgghhDBX0f9tcya2lYQHyMrKAiAoKMjGkQghhBCiorKysvDy8ipzH40i8/1jMBi4dOkSHh4eFp8jJjMzk6CgIM6fP4+np6dFz10TSPlqP3svo5Sv9rP3Mkr5Kk9RFLKysggMDCx32hOp4UGdEK9Ro0ZWfQ1PT0+7/EMuIuWr/ey9jFK+2s/eyyjlq5zyanaKSKdlIYQQQtg9SXiEEEIIYfck4bEyZ2dnJk+ejLOzs61DsQopX+1n72WU8tV+9l5GKV/1kE7LQgghhLB7UsMjhBBCCLsnCY8QQggh7J4kPEIIIYSwe5LwCCGEEMLuScJjRZ988gkhISG4uLjQrVs39uzZY+uQylWRmD///HN69epF3bp1qVu3LlFRUcX2j4mJQaPRmNyio6OtXYwKqUiZFy1aVKw8Li4u1Rht+SpSnj59+hQrj0aj4cEHHzTuUxuuYUl++eUXhgwZQmBgIBqNhtWrV9s6JLNUNO6VK1cyYMAAfHx88PT0JDIykh9//NFknylTphS7hq1atbJiKcxX0fLGx8eX+Dd7+fLl6gm4HBUtT0nvL41GQ5s2bYz71OTrV5YZM2bQpUsXPDw88PX15aGHHuLEiRM2i0cSHiv59ttvefXVV5k8eTIJCQmEh4czcOBAUlNTbR1aqSoac3x8PE888QRbt25l586dBAUFcf/993Px4kWT/aKjo0lJSTHeli5dWh3FMUtlrpOnp6dJec6ePVuNEZetouVZuXKlSVkSExNxcHDgr3/9q8l+NfkaliYnJ4fw8HA++eQTW4dSIRWN+5dffmHAgAGsX7+e/fv307dvX4YMGcKBAwdM9mvTpo3JNdy+fbs1wq+wyl6nEydOmJTH19fXShFWTEXL89FHH5mU4/z589SrV6/Ye7CmXr+ybNu2jXHjxrFr1y5+/vlnCgoKuP/++8nJybFNQIqwiq5duyrjxo0zPtbr9UpgYKAyY8YMG0ZVtqrGXFhYqHh4eCiLFy82bhs9erQybNgwS4dqMRUtc2xsrOLl5VVN0VVcVa/hnDlzFA8PDyU7O9u4raZfQ3MAyqpVq2wdRoVVNu6wsDBl6tSpxseTJ09WwsPDLReYlZhT3q1btyqAkpaWVi0xVUVlrt+qVasUjUajJCcnG7fVlutXntTUVAVQtm3bZpPXlxoeK8jPz2f//v1ERUUZt2m1WqKioti5c6cNIyudJWLOzc2loKCAevXqmWyPj4/H19eXli1bMnbsWK5du2bR2CursmXOzs4mODiYoKAghg0bxpEjR6oj3HJZ4houXLiQESNG4O7ubrK9pl5DUZzBYCArK6vY+/DkyZMEBgbSpEkTnnrqKc6dO2ejCC2jQ4cOBAQEMGDAAHbs2GHrcCxm4cKFREVFERwcbLLdHq5fRkYGQLG/zeoiCY8VXL16Fb1ej5+fn8l2Pz+/GtPOfDdLxPyvf/2LwMBAk3+40dHRfPXVV2zevJlZs2axbds2Bg0ahF6vt2j8lVGZMrds2ZIvv/ySNWvW8PXXX2MwGOjRowcXLlyojpDLVNVruGfPHhITExkzZozJ9pp8DUVxH3zwAdnZ2Tz++OPGbd26dWPRokVs3LiRTz/9lKSkJHr16kVWVpYNI62cgIAAPvvsM1asWMGKFSsICgqiT58+JCQk2Dq0Krt06RIbNmwo9h60h+tnMBiYOHEiPXv2pG3btjaJQVZLFxYxc+ZMli1bRnx8vEkn3hEjRhjvt2vXjvbt29O0aVPi4+Pp37+/LUKtksjISCIjI42Pe/ToQevWrVmwYAHTp0+3YWRVt3DhQtq1a0fXrl1NttvbNbRn33zzDVOnTmXNmjUmfVoGDRpkvN++fXu6detGcHAwy5cv57nnnrNFqJXWsmVLWrZsaXzco0cPTp8+zZw5c1iyZIkNI6u6xYsX4+3tzUMPPWSy3R6u37hx40hMTLRp3yOp4bGCBg0a4ODgwJUrV0y2X7lyBX9/fxtFVbaqxPzBBx8wc+ZMfvrpJ9q3b1/mvk2aNKFBgwacOnWqyjFXlSWuk5OTEx07dqz15cnJyWHZsmVmfXjWpGsoblu2bBljxoxh+fLlJrWsJfH29qZFixZ2cw27du1a68uiKApffvklI0eORKfTlblvbbt+48ePZ926dWzdupVGjRrZLA5JeKxAp9PRqVMnNm/ebNxmMBjYvHmzSe1ATVLZmN9//32mT5/Oxo0b6dy5c7mvc+HCBa5du0ZAQIBF4q4KS1wnvV7P4cOHa315vvvuO27evMnTTz9d7uvUpGsoVEuXLuWZZ55h6dKlJlMKlCY7O5vTp0/bzTU8ePBgrS/Ltm3bOHXqlFlfOmrL9VMUhfHjx7Nq1Sq2bNlCaGiozQMSVrBs2TLF2dlZWbRokXL06FHlhRdeULy9vZXLly/bOrRSlRfzyJEjlddff924/8yZMxWdTqd8//33SkpKivGWlZWlKIqiZGVlKf/4xz+UnTt3KklJScqmTZuUiIgIpXnz5kpeXp5Nyni3ipZ56tSpyo8//qicPn1a2b9/vzJixAjFxcVFOXLkiK2KYKKi5Sly3333KcOHDy+2vTZcw9JkZWUpBw4cUA4cOKAAyuzZs5UDBw4oZ8+etXVoZSov7tdff10ZOXKkcf+4uDjF0dFR+eSTT0zeh+np6cZ9/v73vyvx8fFKUlKSsmPHDiUqKkpp0KCBkpqaWu3lu1tFyztnzhxl9erVysmTJ5XDhw8rEyZMULRarbJp0yZbFcFERctT5Omnn1a6detW4jlr8vUry9ixYxUvLy8lPj7e5G8zNzfXJvFIwmNFH3/8sdK4cWNFp9MpXbt2VXbt2mXrkMpVVsy9e/dWRo8ebXwcHBysAMVukydPVhRFUXJzc5X7779f8fHxUZycnJTg4GDl+eefr3FJX0XKPHHiROO+fn5+ygMPPKAkJCTYIOrSVaQ8iqIox48fVwDlp59+Knau2nINS1I0fPnu293lr2nKi3v06NFK7969jfv37t273HIOHz5cCQgIUHQ6ndKwYUNl+PDhyqlTp6q3YKWoaHlnzZqlNG3aVHFxcVHq1aun9OnTR9myZYttgi9BRcujKIqSnp6uuLq6Kv/9739LPGdNvn5lKen3ACixsbE2iUdzKyghhBBCCLslfXiEEEIIYfck4RFCCCGE3ZOERwghhBB2TxIeIYQQQtg9SXiEEEIIYfck4RFCCCGE3ZOERwghhBB2TxIeIYQQQtg9SXiEEPeMRYsW4e3tXeY+U6ZMoUOHDtUSz91CQkKYO3dutb9uTEwMGo0GjUbD6tWrzTomJCTEeEx6erpV4xPCEiThEcLG7vxno9PpaNasGdOmTaOwsNDWoVVaRf5xlic5ORmNRsPBgweLPdenTx8mTpxokdexpvj4eOM1Lu0WHx/P3r17eeGFF2wSY3R0NCkpKQwaNMis/ffu3cuKFSusHJUQluNo6wCEEOo/m9jYWG7evMn69esZN24cTk5OvPHGGxU+l16vR6PRoNXW/u8zBQUFtg6hUgoKCnBycjI+7tGjBykpKcbHEyZMIDMzk9jYWOO2evXqodPpqjXOOzk7O+Pv72/2/j4+PtSrV8+KEQlhWbX/E1EIO1D0zyY4OJixY8cSFRXF2rVrAZg9ezbt2rXD3d2doKAgXn75ZbKzs43HFjXTrF27lrCwMJydnTl37hx79+5lwIABNGjQAC8vL3r37k1CQoLJ62o0GhYsWMDgwYNxc3OjdevW7Ny5k1OnTtGnTx/c3d3p0aMHp0+fNjluzZo1RERE4OLiQpMmTZg6daqxRiokJASAhx9+GI1GY3xc3nFF8Xz66acMHToUd3d33n333Qr9HtPS0hg1ahR169bFzc2NQYMGcfLkyTKPmTlzJn5+fnh4ePDcc8+Rl5dXbJ8vvviC1q1b4+LiQqtWrZg/f77xuaIaqG+//ZbevXvj4uJCXFycyfE6nQ5/f3/jzdXV1XjNi246na5Yk5Y1ro+58vPzGT9+PAEBAbi4uBAcHMyMGTMqdA4hahJJeISogVxdXcnPzwdAq9Uyb948jhw5wuLFi9myZQuvvfaayf65ubnMmjWLL774giNHjuDr60tWVhajR49m+/bt7Nq1i+bNm/PAAw+QlZVlcuz06dMZNWoUBw8epFWrVjz55JO8+OKLvPHGG+zbtw9FURg/frxx/19//ZVRo0YxYcIEjh49yoIFC1i0aJExOdm7dy8AsbGxpKSkGB+Xd1yRKVOm8PDDD3P48GGeffbZCv3eYmJi2LdvH2vXrmXnzp0oisIDDzxQak3R8uXLmTJlCu+99x779u0jICDAJJkBiIuLY9KkSbz77rscO3aM9957j7fffpvFixeb7Pf6668zYcIEjh07xsCBAysUd1ksfX3MNW/ePNauXcvy5cs5ceIEcXFxJsmrELWOTdZoF0IYjR49Whk2bJiiKIpiMBiUn3/+WXF2dlb+8Y9/lLj/d999p9SvX9/4ODY2VgGUgwcPlvk6er1e8fDwUH744QfjNkB56623jI937typAMrChQuN25YuXaq4uLgYH/fv31957733TM69ZMkSJSAgwOS8q1atMtnH3OMmTpxosk9SUpICKK6uroq7u7vJTavVKhMmTFAURVH++OMPBVB27NhhPPbq1auKq6ursnz5cuPvysvLy/h8ZGSk8vLLL5u8Xrdu3ZTw8HDj46ZNmyrffPONyT7Tp09XIiMjTeKbO3euYq47r/mdgoODlTlz5hgfW+v6mBPP3/72N6Vfv36KwWAo9bitW7cqgJKWllbqPkLUFNKHR4gaYN26ddSpU4eCggIMBgNPPvkkU6ZMAWDTpk3MmDGD48ePk5mZSWFhIXl5eeTm5uLm5gaoTSbt27c3OeeVK1d46623iI+PJzU1Fb1eT25uLufOnTPZ787j/Pz8AGjXrp3Jtry8PDIzM/H09OTQoUPs2LHDpMZAr9cXi+lu5h7XuXPnEo//9ttvad26tcm2p556ynj/2LFjODo60q1bN+O2+vXr07JlS44dO1biOY8dO8ZLL71ksi0yMpKtW7cCkJOTw+nTp3nuued4/vnnjfsUFhbi5eVlclxpcVdVdV2fu8XExDBgwABatmxJdHQ0gwcP5v7777dQqYSofpLwCFED9O3bl08//RSdTkdgYCCOjupbMzk5mcGDBzN27Fjeffdd6tWrx/bt23nuuefIz883/vNydXVFo9GYnHP06NFcu3aNjz76iODgYJydnYmMjDQ2lRW5s3Nt0TlK2mYwGADIzs5m6tSpPPLII8XK4eLiUmoZzT3O3d29xOODgoJo1qyZyTZXV9dSX88SivpKff755yaJFICDg4PJ49Lirqrquj53i4iIICkpiQ0bNrBp0yYef/xxoqKi+P777ytVDiFsTRIeIWoAd3f3Yv/MAfbv34/BYODDDz80jrpavny5WefcsWMH8+fP54EHHgDg/PnzXL16tcqxRkREcOLEiRLjLeLk5IRer6/wcVXRunVrCgsL2b17Nz169ADg2rVrnDhxgrCwsFKP2b17N6NGjTJu27Vrl/G+n58fgYGBnDlzxqQ2qSaz5O/Z09OT4cOHM3z4cB577DGio6O5fv26jM4StZIkPELUYM2aNaOgoICPP/6YIUOGsGPHDj777DOzjm3evDlLliyhc+fOZGZm8s9//tMiNSKTJk1i8ODBNG7cmMceewytVsuhQ4dITEzknXfeAdSRWps3b6Znz544OztTt25ds46riubNmzNs2DCef/55FixYgIeHB6+//joNGzZk2LBhJR4zYcIEYmJi6Ny5Mz179iQuLo4jR47QpEkT4z5Tp07llVdewcvLi+joaG7evMm+fftIS0vj1VdfrXLclmap3/Ps2bMJCAigY8eOaLVavvvuO/z9/cuduFGImkpGaQlRg4WHhzN79mxmzZpF27ZtiYuLM3to8MKFC0lLSyMiIoKRI0fyyiuv4OvrW+WYBg4cyLp16/jpp5/o0qUL3bt3Z86cOQQHBxv3+fDDD/n5558JCgqiY8eOZh9XVbGxsXTq1InBgwcTGRmJoiisX7/epAnoTsOHD+ftt9/mtddeo1OnTpw9e5axY8ea7DNmzBi++OILYmNjadeuHb1792bRokWEhoZaLG5LstTv2cPDg/fff5/OnTvTpUsXkpOTWb9+vV3M7yTuTRpFURRbByGEEMJ2YmJiSE9Pr/Ds2PHx8fTt25e0tDSp+RE1nqTqQgghjCMF161bZ9b+bdq0MXsZCiFqAqnhEUKIe1xqaiqZmZkABAQEmDXi7OzZs8YJHZs0aSJNXaLGk4RHCCGEEHZPUnIhhBBC2D1JeIQQQghh9yThEUIIIYTdk4RHCCGEEHZPEh4hhBBC2D1JeIQQQghh9yThEUIIIYTdk4RHCCGEEHbv/wNLmMRim826+wAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a_obj = MyCosineAnalysis(label=\"Cosine experiment\")\n",
"a_obj.run()\n",
"a_obj.figs_mpl[\"cos-data-and-fit\"]"
]
},
{
"cell_type": "markdown",
"id": "6b1d19bb",
"metadata": {},
"source": [
"The first line will instantiate the class by calling the {code}`.__init__()` method.\n",
"\n",
"As expected this will save similar files into the `experiment directory`:\n",
"\n",
"```{code-block}\n",
"20230125-172712-018-87b9bf-Cosine experiment/\n",
"├── cos-data-and-fit.png\n",
"├── Cosine fit.png\n",
"├── dataset.hdf5\n",
"├── quantities_of_interest.json\n",
"└── snapshot.json\n",
"```\n",
"\n",
"## Extending the BaseAnalysis\n",
"\n",
"While the above stand-alone class provides the gist of an analysis, we can do even better by defining a structured framework that all analyses need to adhere to and factoring out the pieces of code that are common to most analyses.\n",
"Besides that, the overall functionality can be improved.\n",
"\n",
"Here is where the {class}`~quantify_core.analysis.base_analysis.BaseAnalysis` enters the scene.\n",
"It allows us to focus only on the particular aspect of our custom analysis by implementing only the relevant methods. Take a look at how the above class is implemented where we are making use of the analysis framework. For completeness, a fully documented {class}`~quantify_core.analysis.fitting_models.CosineModel` which can serve as a template is shown as well."
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "0909e0d6",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
classCosineModel(lmfit.model.Model):\n",
""""\n",
" Exemplary lmfit model with a guess for a cosine.\n",
"\n",
" .. note::\n",
"\n",
" The :mod:`lmfit.models` module provides several fitting models that might fit\n",
" your needs out of the box.\n",
" """\n",
"\n",
" def__init__(self,*args,**kwargs):\n",
" # pass in the model's equation\n",
" super().__init__(cos_func,*args,**kwargs)\n",
"\n",
" # configure constraints that are independent from the data to be fitted\n",
" self.set_param_hint("frequency",min=0,vary=True)# enforce positive frequency\n",
" self.set_param_hint("amplitude",min=0,vary=True)# enforce positive amplitude\n",
" self.set_param_hint("offset",vary=True)\n",
" self.set_param_hint(\n",
" "phase",vary=True,min=-np.pi,max=np.pi\n",
" )# enforce phase range\n",
"\n",
" # pylint: disable=missing-function-docstring\n",
" defguess(self,data,x,**kws)->lmfit.parameter.Parameters:\n",
""""\n",
" Guess parameters based on the data\n",
"\n",
" Parameters\n",
" ----------\n",
" data: np.ndarray\n",
" Data to fit to\n",
" x: np.ndarray\n",
" Independet variable\n",
" """\n",
"\n",
" self.set_param_hint("offset",value=np.average(data))\n",
" self.set_param_hint("amplitude",value=(np.max(data)-np.min(data))/2)\n",
"\n",
" # Guess frequency and phase using Fourier Transform\n",
" freq_guess,phase_guess=fft_freq_phase_guess(data,x)\n",
" phase_wrap=(phase_guess+np.pi)%(2*np.pi)-np.pi\n",
" self.set_param_hint("frequency",value=freq_guess)\n",
" self.set_param_hint("phase",value=phase_wrap)\n",
"\n",
" params=self.make_params()\n",
" returnlmfit.models.update_param_vals(params,self.prefix,**kws)\n",
"\n",
" # Same design patter is used in lmfit.models to inherit common docstrings.\n",
" # We adjust these common docstrings to our docs build pipeline\n",
" __init__.__doc__=get_model_common_doc()+mk_seealso("cos_func")\n",
" guess.__doc__=get_guess_common_doc()\n",
"
\n"
],
"text/latex": [
"\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n",
"\\PY{k}{class}\\PY{+w}{ }\\PY{n+nc}{CosineModel}\\PY{p}{(}\\PY{n}{lmfit}\\PY{o}{.}\\PY{n}{model}\\PY{o}{.}\\PY{n}{Model}\\PY{p}{)}\\PY{p}{:}\n",
"\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\\PY{l+s+sd}{ Exemplary lmfit model with a guess for a cosine.}\n",
"\n",
"\\PY{l+s+sd}{ .. note::}\n",
"\n",
"\\PY{l+s+sd}{ The :mod:`lmfit.models` module provides several fitting models that might fit}\n",
"\\PY{l+s+sd}{ your needs out of the box.}\n",
"\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\n",
" \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf+fm}{\\PYZus{}\\PYZus{}init\\PYZus{}\\PYZus{}}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{,} \\PY{o}{*}\\PY{n}{args}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)}\\PY{p}{:}\n",
" \\PY{c+c1}{\\PYZsh{} pass in the model\\PYZsq{}s equation}\n",
" \\PY{n+nb}{super}\\PY{p}{(}\\PY{p}{)}\\PY{o}{.}\\PY{n+nf+fm}{\\PYZus{}\\PYZus{}init\\PYZus{}\\PYZus{}}\\PY{p}{(}\\PY{n}{cos\\PYZus{}func}\\PY{p}{,} \\PY{o}{*}\\PY{n}{args}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kwargs}\\PY{p}{)}\n",
"\n",
" \\PY{c+c1}{\\PYZsh{} configure constraints that are independent from the data to be fitted}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n+nb}{min}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{)} \\PY{c+c1}{\\PYZsh{} enforce positive frequency}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n+nb}{min}\\PY{o}{=}\\PY{l+m+mi}{0}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{)} \\PY{c+c1}{\\PYZsh{} enforce positive amplitude}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{offset}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{)}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\n",
" \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{phase}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{vary}\\PY{o}{=}\\PY{k+kc}{True}\\PY{p}{,} \\PY{n+nb}{min}\\PY{o}{=}\\PY{o}{\\PYZhy{}}\\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\\PY{p}{,} \\PY{n+nb}{max}\\PY{o}{=}\\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\n",
" \\PY{p}{)} \\PY{c+c1}{\\PYZsh{} enforce phase range}\n",
"\n",
" \\PY{c+c1}{\\PYZsh{} pylint: disable=missing\\PYZhy{}function\\PYZhy{}docstring}\n",
" \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{guess}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{,} \\PY{n}{data}\\PY{p}{,} \\PY{n}{x}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kws}\\PY{p}{)} \\PY{o}{\\PYZhy{}}\\PY{o}{\\PYZgt{}} \\PY{n}{lmfit}\\PY{o}{.}\\PY{n}{parameter}\\PY{o}{.}\\PY{n}{Parameters}\\PY{p}{:}\n",
"\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\\PY{l+s+sd}{ Guess parameters based on the data}\n",
"\n",
"\\PY{l+s+sd}{ Parameters}\n",
"\\PY{l+s+sd}{ \\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}\\PYZhy{}}\n",
"\\PY{l+s+sd}{ data: np.ndarray}\n",
"\\PY{l+s+sd}{ Data to fit to}\n",
"\\PY{l+s+sd}{ x: np.ndarray}\n",
"\\PY{l+s+sd}{ Independet variable}\n",
"\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{offset}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{n}{np}\\PY{o}{.}\\PY{n}{average}\\PY{p}{(}\\PY{n}{data}\\PY{p}{)}\\PY{p}{)}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{p}{(}\\PY{n}{np}\\PY{o}{.}\\PY{n}{max}\\PY{p}{(}\\PY{n}{data}\\PY{p}{)} \\PY{o}{\\PYZhy{}} \\PY{n}{np}\\PY{o}{.}\\PY{n}{min}\\PY{p}{(}\\PY{n}{data}\\PY{p}{)}\\PY{p}{)} \\PY{o}{/} \\PY{l+m+mi}{2}\\PY{p}{)}\n",
"\n",
" \\PY{c+c1}{\\PYZsh{} Guess frequency and phase using Fourier Transform}\n",
" \\PY{n}{freq\\PYZus{}guess}\\PY{p}{,} \\PY{n}{phase\\PYZus{}guess} \\PY{o}{=} \\PY{n}{fft\\PYZus{}freq\\PYZus{}phase\\PYZus{}guess}\\PY{p}{(}\\PY{n}{data}\\PY{p}{,} \\PY{n}{x}\\PY{p}{)}\n",
" \\PY{n}{phase\\PYZus{}wrap} \\PY{o}{=} \\PY{p}{(}\\PY{n}{phase\\PYZus{}guess} \\PY{o}{+} \\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\\PY{p}{)} \\PY{o}{\\PYZpc{}} \\PY{p}{(}\\PY{l+m+mi}{2} \\PY{o}{*} \\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\\PY{p}{)} \\PY{o}{\\PYZhy{}} \\PY{n}{np}\\PY{o}{.}\\PY{n}{pi}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{n}{freq\\PYZus{}guess}\\PY{p}{)}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{set\\PYZus{}param\\PYZus{}hint}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{phase}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{value}\\PY{o}{=}\\PY{n}{phase\\PYZus{}wrap}\\PY{p}{)}\n",
"\n",
" \\PY{n}{params} \\PY{o}{=} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{make\\PYZus{}params}\\PY{p}{(}\\PY{p}{)}\n",
" \\PY{k}{return} \\PY{n}{lmfit}\\PY{o}{.}\\PY{n}{models}\\PY{o}{.}\\PY{n}{update\\PYZus{}param\\PYZus{}vals}\\PY{p}{(}\\PY{n}{params}\\PY{p}{,} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{prefix}\\PY{p}{,} \\PY{o}{*}\\PY{o}{*}\\PY{n}{kws}\\PY{p}{)}\n",
"\n",
" \\PY{c+c1}{\\PYZsh{} Same design patter is used in lmfit.models to inherit common docstrings.}\n",
" \\PY{c+c1}{\\PYZsh{} We adjust these common docstrings to our docs build pipeline}\n",
" \\PY{n+nf+fm}{\\PYZus{}\\PYZus{}init\\PYZus{}\\PYZus{}}\\PY{o}{.}\\PY{n+nv+vm}{\\PYZus{}\\PYZus{}doc\\PYZus{}\\PYZus{}} \\PY{o}{=} \\PY{n}{get\\PYZus{}model\\PYZus{}common\\PYZus{}doc}\\PY{p}{(}\\PY{p}{)} \\PY{o}{+} \\PY{n}{mk\\PYZus{}seealso}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cos\\PYZus{}func}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n",
" \\PY{n}{guess}\\PY{o}{.}\\PY{n+nv+vm}{\\PYZus{}\\PYZus{}doc\\PYZus{}\\PYZus{}} \\PY{o}{=} \\PY{n}{get\\PYZus{}guess\\PYZus{}common\\PYZus{}doc}\\PY{p}{(}\\PY{p}{)}\n",
"\\end{Verbatim}\n"
],
"text/plain": [
"class CosineModel(lmfit.model.Model):\n",
" \"\"\"\n",
" Exemplary lmfit model with a guess for a cosine.\n",
"\n",
" .. note::\n",
"\n",
" The :mod:`lmfit.models` module provides several fitting models that might fit\n",
" your needs out of the box.\n",
" \"\"\"\n",
"\n",
" def __init__(self, *args, **kwargs):\n",
" # pass in the model's equation\n",
" super().__init__(cos_func, *args, **kwargs)\n",
"\n",
" # configure constraints that are independent from the data to be fitted\n",
" self.set_param_hint(\"frequency\", min=0, vary=True) # enforce positive frequency\n",
" self.set_param_hint(\"amplitude\", min=0, vary=True) # enforce positive amplitude\n",
" self.set_param_hint(\"offset\", vary=True)\n",
" self.set_param_hint(\n",
" \"phase\", vary=True, min=-np.pi, max=np.pi\n",
" ) # enforce phase range\n",
"\n",
" # pylint: disable=missing-function-docstring\n",
" def guess(self, data, x, **kws) -> lmfit.parameter.Parameters:\n",
" \"\"\"\n",
" Guess parameters based on the data\n",
"\n",
" Parameters\n",
" ----------\n",
" data: np.ndarray\n",
" Data to fit to\n",
" x: np.ndarray\n",
" Independet variable\n",
" \"\"\"\n",
"\n",
" self.set_param_hint(\"offset\", value=np.average(data))\n",
" self.set_param_hint(\"amplitude\", value=(np.max(data) - np.min(data)) / 2)\n",
"\n",
" # Guess frequency and phase using Fourier Transform\n",
" freq_guess, phase_guess = fft_freq_phase_guess(data, x)\n",
" phase_wrap = (phase_guess + np.pi) % (2 * np.pi) - np.pi\n",
" self.set_param_hint(\"frequency\", value=freq_guess)\n",
" self.set_param_hint(\"phase\", value=phase_wrap)\n",
"\n",
" params = self.make_params()\n",
" return lmfit.models.update_param_vals(params, self.prefix, **kws)\n",
"\n",
" # Same design patter is used in lmfit.models to inherit common docstrings.\n",
" # We adjust these common docstrings to our docs build pipeline\n",
" __init__.__doc__ = get_model_common_doc() + mk_seealso(\"cos_func\")\n",
" guess.__doc__ = get_guess_common_doc()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"
classCosineAnalysis(ba.BaseAnalysis):\n",
""""\n",
" Exemplary analysis subclass that fits a cosine to a dataset.\n",
" """\n",
"\n",
" defprocess_data(self):\n",
""""\n",
" In some cases, you might need to process the data, e.g., reshape, filter etc.,\n",
" before starting the analysis. This is the method where it should be done.\n",
"\n",
" See :meth:`~quantify_core.analysis.spectroscopy_analysis.ResonatorSpectroscopyAnalysis.process_data`\n",
" for an implementation example.\n",
" """# pylint: disable=line-too-long\n",
"\n",
" defrun_fitting(self):\n",
""""\n",
" Fits a :class:`~quantify_core.analysis.fitting_models.CosineModel` to the data.\n",
" """\n",
" # create a fitting model based on a cosine function\n",
" model=CosineModel()\n",
" guess=model.guess(self.dataset.y0.values,x=self.dataset.x0.values)\n",
" result=model.fit(\n",
" self.dataset.y0.values,x=self.dataset.x0.values,params=guess\n",
" )\n",
" self.fit_results.update({"cosine":result})\n",
"\n",
" defcreate_figures(self):\n",
""""\n",
" Creates a figure with the data and the fit.\n",
" """\n",
" fig,ax=plt.subplots()\n",
" fig_id="cos_fit"\n",
" self.figs_mpl.update({fig_id:fig})\n",
" self.axs_mpl.update({fig_id:ax})\n",
"\n",
" self.dataset.y0.plot(ax=ax,x="x0",marker="o",linestyle="")\n",
" qpl.plot_fit(ax,self.fit_results["cosine"])\n",
" qpl.plot_textbox(ax,ba.wrap_text(self.quantities_of_interest["fit_msg"]))\n",
"\n",
" adjust_axeslabels_SI(ax)\n",
" qpl.set_suptitle_from_dataset(fig,self.dataset,"x0-y0")\n",
" ax.legend()\n",
"\n",
" defanalyze_fit_results(self):\n",
""""\n",
" Checks fit success and populates :code:`quantities_of_interest`.\n",
" """\n",
" fit_result=self.fit_results["cosine"]\n",
" fit_warning=ba.check_lmfit(fit_result)\n",
"\n",
" # If there is a problem with the fit, display an error message in the text box.\n",
" # Otherwise, display the parameters as normal.\n",
" iffit_warningisNone:\n",
" self.quantities_of_interest["fit_success"]=True\n",
" unit=self.dataset.y0.units\n",
" text_msg="Summary\\n"\n",
" text_msg+=format_value_string(\n",
" r"$f$",fit_result.params["frequency"],end_char="\\n",unit="Hz"\n",
" )\n",
" text_msg+=format_value_string(\n",
" r"$A$",fit_result.params["amplitude"],unit=unit\n",
" )\n",
" else:\n",
" text_msg=fit_warning\n",
" self.quantities_of_interest["fit_success"]=False\n",
"\n",
" # save values and fit uncertainty\n",
" forparameter_namein["frequency","amplitude"]:\n",
" self.quantities_of_interest[parameter_name]=ba.lmfit_par_to_ufloat(\n",
" fit_result.params[parameter_name]\n",
" )\n",
" self.quantities_of_interest["fit_msg"]=text_msg\n",
"
\n"
],
"text/latex": [
"\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n",
"\\PY{k}{class}\\PY{+w}{ }\\PY{n+nc}{CosineAnalysis}\\PY{p}{(}\\PY{n}{ba}\\PY{o}{.}\\PY{n}{BaseAnalysis}\\PY{p}{)}\\PY{p}{:}\n",
"\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\\PY{l+s+sd}{ Exemplary analysis subclass that fits a cosine to a dataset.}\n",
"\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\n",
" \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{process\\PYZus{}data}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{)}\\PY{p}{:}\n",
"\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\\PY{l+s+sd}{ In some cases, you might need to process the data, e.g., reshape, filter etc.,}\n",
"\\PY{l+s+sd}{ before starting the analysis. This is the method where it should be done.}\n",
"\n",
"\\PY{l+s+sd}{ See :meth:`\\PYZti{}quantify\\PYZus{}core.analysis.spectroscopy\\PYZus{}analysis.ResonatorSpectroscopyAnalysis.process\\PYZus{}data`}\n",
"\\PY{l+s+sd}{ for an implementation example.}\n",
"\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}} \\PY{c+c1}{\\PYZsh{} pylint: disable=line\\PYZhy{}too\\PYZhy{}long}\n",
"\n",
" \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{run\\PYZus{}fitting}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{)}\\PY{p}{:}\n",
"\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\\PY{l+s+sd}{ Fits a :class:`\\PYZti{}quantify\\PYZus{}core.analysis.fitting\\PYZus{}models.CosineModel` to the data.}\n",
"\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
" \\PY{c+c1}{\\PYZsh{} create a fitting model based on a cosine function}\n",
" \\PY{n}{model} \\PY{o}{=} \\PY{n}{CosineModel}\\PY{p}{(}\\PY{p}{)}\n",
" \\PY{n}{guess} \\PY{o}{=} \\PY{n}{model}\\PY{o}{.}\\PY{n}{guess}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{y0}\\PY{o}{.}\\PY{n}{values}\\PY{p}{,} \\PY{n}{x}\\PY{o}{=}\\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{x0}\\PY{o}{.}\\PY{n}{values}\\PY{p}{)}\n",
" \\PY{n}{result} \\PY{o}{=} \\PY{n}{model}\\PY{o}{.}\\PY{n}{fit}\\PY{p}{(}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{y0}\\PY{o}{.}\\PY{n}{values}\\PY{p}{,} \\PY{n}{x}\\PY{o}{=}\\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{x0}\\PY{o}{.}\\PY{n}{values}\\PY{p}{,} \\PY{n}{params}\\PY{o}{=}\\PY{n}{guess}\n",
" \\PY{p}{)}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{fit\\PYZus{}results}\\PY{o}{.}\\PY{n}{update}\\PY{p}{(}\\PY{p}{\\PYZob{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cosine}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{:} \\PY{n}{result}\\PY{p}{\\PYZcb{}}\\PY{p}{)}\n",
"\n",
" \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{create\\PYZus{}figures}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{)}\\PY{p}{:}\n",
"\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\\PY{l+s+sd}{ Creates a figure with the data and the fit.}\n",
"\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
" \\PY{n}{fig}\\PY{p}{,} \\PY{n}{ax} \\PY{o}{=} \\PY{n}{plt}\\PY{o}{.}\\PY{n}{subplots}\\PY{p}{(}\\PY{p}{)}\n",
" \\PY{n}{fig\\PYZus{}id} \\PY{o}{=} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cos\\PYZus{}fit}\\PY{l+s+s2}{\\PYZdq{}}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{figs\\PYZus{}mpl}\\PY{o}{.}\\PY{n}{update}\\PY{p}{(}\\PY{p}{\\PYZob{}}\\PY{n}{fig\\PYZus{}id}\\PY{p}{:} \\PY{n}{fig}\\PY{p}{\\PYZcb{}}\\PY{p}{)}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{axs\\PYZus{}mpl}\\PY{o}{.}\\PY{n}{update}\\PY{p}{(}\\PY{p}{\\PYZob{}}\\PY{n}{fig\\PYZus{}id}\\PY{p}{:} \\PY{n}{ax}\\PY{p}{\\PYZcb{}}\\PY{p}{)}\n",
"\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{y0}\\PY{o}{.}\\PY{n}{plot}\\PY{p}{(}\\PY{n}{ax}\\PY{o}{=}\\PY{n}{ax}\\PY{p}{,} \\PY{n}{x}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{x0}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{marker}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{o}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{linestyle}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n",
" \\PY{n}{qpl}\\PY{o}{.}\\PY{n}{plot\\PYZus{}fit}\\PY{p}{(}\\PY{n}{ax}\\PY{p}{,} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{fit\\PYZus{}results}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cosine}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{)}\n",
" \\PY{n}{qpl}\\PY{o}{.}\\PY{n}{plot\\PYZus{}textbox}\\PY{p}{(}\\PY{n}{ax}\\PY{p}{,} \\PY{n}{ba}\\PY{o}{.}\\PY{n}{wrap\\PYZus{}text}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{fit\\PYZus{}msg}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{)}\\PY{p}{)}\n",
"\n",
" \\PY{n}{adjust\\PYZus{}axeslabels\\PYZus{}SI}\\PY{p}{(}\\PY{n}{ax}\\PY{p}{)}\n",
" \\PY{n}{qpl}\\PY{o}{.}\\PY{n}{set\\PYZus{}suptitle\\PYZus{}from\\PYZus{}dataset}\\PY{p}{(}\\PY{n}{fig}\\PY{p}{,} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{p}{,} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{x0\\PYZhy{}y0}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n",
" \\PY{n}{ax}\\PY{o}{.}\\PY{n}{legend}\\PY{p}{(}\\PY{p}{)}\n",
"\n",
" \\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{analyze\\PYZus{}fit\\PYZus{}results}\\PY{p}{(}\\PY{n+nb+bp}{self}\\PY{p}{)}\\PY{p}{:}\n",
"\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
"\\PY{l+s+sd}{ Checks fit success and populates :code:`quantities\\PYZus{}of\\PYZus{}interest`.}\n",
"\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n",
" \\PY{n}{fit\\PYZus{}result} \\PY{o}{=} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{fit\\PYZus{}results}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{cosine}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\n",
" \\PY{n}{fit\\PYZus{}warning} \\PY{o}{=} \\PY{n}{ba}\\PY{o}{.}\\PY{n}{check\\PYZus{}lmfit}\\PY{p}{(}\\PY{n}{fit\\PYZus{}result}\\PY{p}{)}\n",
"\n",
" \\PY{c+c1}{\\PYZsh{} If there is a problem with the fit, display an error message in the text box.}\n",
" \\PY{c+c1}{\\PYZsh{} Otherwise, display the parameters as normal.}\n",
" \\PY{k}{if} \\PY{n}{fit\\PYZus{}warning} \\PY{o+ow}{is} \\PY{k+kc}{None}\\PY{p}{:}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{fit\\PYZus{}success}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]} \\PY{o}{=} \\PY{k+kc}{True}\n",
" \\PY{n}{unit} \\PY{o}{=} \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{dataset}\\PY{o}{.}\\PY{n}{y0}\\PY{o}{.}\\PY{n}{units}\n",
" \\PY{n}{text\\PYZus{}msg} \\PY{o}{=} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Summary}\\PY{l+s+se}{\\PYZbs{}n}\\PY{l+s+s2}{\\PYZdq{}}\n",
" \\PY{n}{text\\PYZus{}msg} \\PY{o}{+}\\PY{o}{=} \\PY{n}{format\\PYZus{}value\\PYZus{}string}\\PY{p}{(}\n",
" \\PY{l+s+sa}{r}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{\\PYZdl{}f\\PYZdl{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{fit\\PYZus{}result}\\PY{o}{.}\\PY{n}{params}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{,} \\PY{n}{end\\PYZus{}char}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+se}{\\PYZbs{}n}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{Hz}\\PY{l+s+s2}{\\PYZdq{}}\n",
" \\PY{p}{)}\n",
" \\PY{n}{text\\PYZus{}msg} \\PY{o}{+}\\PY{o}{=} \\PY{n}{format\\PYZus{}value\\PYZus{}string}\\PY{p}{(}\n",
" \\PY{l+s+sa}{r}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{\\PYZdl{}A\\PYZdl{}}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{n}{fit\\PYZus{}result}\\PY{o}{.}\\PY{n}{params}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{,} \\PY{n}{unit}\\PY{o}{=}\\PY{n}{unit}\n",
" \\PY{p}{)}\n",
" \\PY{k}{else}\\PY{p}{:}\n",
" \\PY{n}{text\\PYZus{}msg} \\PY{o}{=} \\PY{n}{fit\\PYZus{}warning}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{fit\\PYZus{}success}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]} \\PY{o}{=} \\PY{k+kc}{False}\n",
"\n",
" \\PY{c+c1}{\\PYZsh{} save values and fit uncertainty}\n",
" \\PY{k}{for} \\PY{n}{parameter\\PYZus{}name} \\PY{o+ow}{in} \\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{frequency}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{,} \\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{amplitude}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]}\\PY{p}{:}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{n}{parameter\\PYZus{}name}\\PY{p}{]} \\PY{o}{=} \\PY{n}{ba}\\PY{o}{.}\\PY{n}{lmfit\\PYZus{}par\\PYZus{}to\\PYZus{}ufloat}\\PY{p}{(}\n",
" \\PY{n}{fit\\PYZus{}result}\\PY{o}{.}\\PY{n}{params}\\PY{p}{[}\\PY{n}{parameter\\PYZus{}name}\\PY{p}{]}\n",
" \\PY{p}{)}\n",
" \\PY{n+nb+bp}{self}\\PY{o}{.}\\PY{n}{quantities\\PYZus{}of\\PYZus{}interest}\\PY{p}{[}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{fit\\PYZus{}msg}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{]} \\PY{o}{=} \\PY{n}{text\\PYZus{}msg}\n",
"\\end{Verbatim}\n"
],
"text/plain": [
"class CosineAnalysis(ba.BaseAnalysis):\n",
" \"\"\"\n",
" Exemplary analysis subclass that fits a cosine to a dataset.\n",
" \"\"\"\n",
"\n",
" def process_data(self):\n",
" \"\"\"\n",
" In some cases, you might need to process the data, e.g., reshape, filter etc.,\n",
" before starting the analysis. This is the method where it should be done.\n",
"\n",
" See :meth:`~quantify_core.analysis.spectroscopy_analysis.ResonatorSpectroscopyAnalysis.process_data`\n",
" for an implementation example.\n",
" \"\"\" # pylint: disable=line-too-long\n",
"\n",
" def run_fitting(self):\n",
" \"\"\"\n",
" Fits a :class:`~quantify_core.analysis.fitting_models.CosineModel` to the data.\n",
" \"\"\"\n",
" # create a fitting model based on a cosine function\n",
" model = CosineModel()\n",
" guess = model.guess(self.dataset.y0.values, x=self.dataset.x0.values)\n",
" result = model.fit(\n",
" self.dataset.y0.values, x=self.dataset.x0.values, params=guess\n",
" )\n",
" self.fit_results.update({\"cosine\": result})\n",
"\n",
" def create_figures(self):\n",
" \"\"\"\n",
" Creates a figure with the data and the fit.\n",
" \"\"\"\n",
" fig, ax = plt.subplots()\n",
" fig_id = \"cos_fit\"\n",
" self.figs_mpl.update({fig_id: fig})\n",
" self.axs_mpl.update({fig_id: ax})\n",
"\n",
" self.dataset.y0.plot(ax=ax, x=\"x0\", marker=\"o\", linestyle=\"\")\n",
" qpl.plot_fit(ax, self.fit_results[\"cosine\"])\n",
" qpl.plot_textbox(ax, ba.wrap_text(self.quantities_of_interest[\"fit_msg\"]))\n",
"\n",
" adjust_axeslabels_SI(ax)\n",
" qpl.set_suptitle_from_dataset(fig, self.dataset, \"x0-y0\")\n",
" ax.legend()\n",
"\n",
" def analyze_fit_results(self):\n",
" \"\"\"\n",
" Checks fit success and populates :code:`quantities_of_interest`.\n",
" \"\"\"\n",
" fit_result = self.fit_results[\"cosine\"]\n",
" fit_warning = ba.check_lmfit(fit_result)\n",
"\n",
" # If there is a problem with the fit, display an error message in the text box.\n",
" # Otherwise, display the parameters as normal.\n",
" if fit_warning is None:\n",
" self.quantities_of_interest[\"fit_success\"] = True\n",
" unit = self.dataset.y0.units\n",
" text_msg = \"Summary\\n\"\n",
" text_msg += format_value_string(\n",
" r\"$f$\", fit_result.params[\"frequency\"], end_char=\"\\n\", unit=\"Hz\"\n",
" )\n",
" text_msg += format_value_string(\n",
" r\"$A$\", fit_result.params[\"amplitude\"], unit=unit\n",
" )\n",
" else:\n",
" text_msg = fit_warning\n",
" self.quantities_of_interest[\"fit_success\"] = False\n",
"\n",
" # save values and fit uncertainty\n",
" for parameter_name in [\"frequency\", \"amplitude\"]:\n",
" self.quantities_of_interest[parameter_name] = ba.lmfit_par_to_ufloat(\n",
" fit_result.params[parameter_name]\n",
" )\n",
" self.quantities_of_interest[\"fit_msg\"] = text_msg"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display_source_code(CosineModel)\n",
"display_source_code(CosineAnalysis)"
]
},
{
"cell_type": "markdown",
"id": "4c1eee01",
"metadata": {},
"source": [
"Now we can simply execute it against our latest experiment as follows:"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "c030ad1e",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAucAAAHgCAYAAAAG6sPtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjg0lEQVR4nOzdd3zU9f3A8df7LuOyd0gIAcLeK4giLoaCA3fdbdUWlVpr62y1rbX+1FqtLdZR9yits4AbcYGiIMreG5JAFoTsnfv8/vjehSNkXEKSu4T38/G4B+R7n+/dOxeOvO/zfX/eHzHGoJRSSimllPI9m68DUEoppZRSSlk0OVdKKaWUUspPaHKulFJKKaWUn9DkXCmllFJKKT+hyblSSimllFJ+QpNzpZRSSiml/IQm50oppZRSSvkJTc6VUkoppZTyE5qcK6WUUkop5Sc0OVdKdSoRuVZEjIj09XUsXYmInOF63c7wdSxKKaU6jibnSnUAEYkWkedEJF9EykTkSxEZ54/PIyIXicjHInJARKpFZL+IvCUiU9o7XtX9ichVIvJrX8ehlFJdlRhjfB2DUt2KiNiAr4HRwKPAAeAXQCqQbozZ7g/PIyICvARcC6wG3gFygGTgIiAdmGSM+bY94vV4XjsQCFQZ/Q/Ia66fdxBQbYxx+jqepojIB8AIY0xfX8eilFJdkSbnSrUzEbkMeBP4kTHmHdexBGAb8LEx5ip/eB4RuQMrqf8HcFvDRFlEfgxsNcasaI94VduIiAM/T8g9aXKulFLHRstalPKCiISIyBbXLcTjeKyIZIvIt64ZYYBLgVxgnnucMSYfeAu4QESCm3meya664osaue8q130T2+F5QoDfAVuAOxqbwTbG/NszMReRfiLytogUiEi5iCwXkXMbeexbRGSja8whEflBRK7yuP+omnMR2SMiH4jIKSKyQkQqRWSXiPykkcePFpF/iEimiFSJyA4Ruds1s9wiETlbRL52lQGViMiHIjLc4/4pIuIUkT83OM/9+s/2OGZE5EkRuVpEtrriXikipzXyvCki8pKI5Lri3igi1zcY464rv0JE/k9E9gHlQGRjNecislhENojIKBFZ4nrNd4jIpa77TxeR70SkwhXftGOM6zIRuVdEslzf6+ciMsAzHuBcoI9rvBGRPd78XJRSSlk0OVfKC8aYCuCnwADgQY+7ngKigGuNMXWuY2OBVY3MdK4AQoFBzTzVYiATuLqR+64GdhpjlrXD85wCxAL/9Yi7SSLSA/gWmA48DdwLOID3PD9IiMgs4AlgE/Br4D5gDXBiS8+B9dq+A3wK3A4cAl5pkDiHAkuAa4DXgF8B3wAPA4978X38GPgQKAXuBh4AhgFL3R8WjDFfuL7H34mrfl9EkoF/Ap8B/2rwsKdjXX2YC/wRiAMWisgIj+ftASwHpgFPArcCO4AXpfH67D9gJbmPAfcA1c18WzHAB8B3wF1AFfCGiFwOvAF8BPwWCAPeEZGIY4jrt1glT49hveYnAf/xuP9BrJ/3AeDHrltjj6OUUqopxhi96U1vXt6Ah4A64FSsmWsD3NpgTCnwYiPnnuMaP92L56gEojyOJQA1wJ/a43mwkloDXOjl9/131/hTPI6FA7uA3YDNdWwBsKGFx7rW9Vh9PY7tcR07tcH3XAk85nHs967ve2CDx3wYqAVSm3necKyE/7kGx3sAhZ7HsT7cbAc2AMFYyW8R0LvBucZ1S/c41huoAOZ5HHsB2A/ENTj/dddzh7i+PsP1eDvdxzzGuu87w+PYYtexKz2ODXYdqwNO9Dh+luv4tccQ1yYgqJF/RyM8jn0A7PHF+1NvetOb3rrDTWfOlWqdPwEbgVexZleXYM0UewrBmr1sqNLj/ua8hpUQXupx7HIgAGt2tj2eJ9L1Z0kLsbidA6wwxix1HzDGlALPAX2xZp/BSuh6icgJXj6up03GmK89Hj8f2Ar08xjzI6xFsIdEJN59w5rRtgNHlZN4OBOIBl5vcG4d1qzzZI/nLsf6EDEU+AprFvs3xpiMRh53mTFmpce5GcC7wHQRsYuIAJcA72Otw/V87k+wrrw07LDzqrGu1nijFGuG3P38W7F+DpuNMd95jHP/vR/ULwhubVwvG2M8Z/HdP69+KKWUahcBvg5Aqa7EGFPtqsf9HisJvs4Y07BeuwIruW7I4XG/e/Gm3eP+UmNMqTFmi4h8j1XG8qLrvquB5caYHa19niYUu/6MaGaMpz4cTu48bfa4fwPwCFaJxAoR2QEswiqd+caL52gs8T2EVbbhNhAYBeQ38RiJzTz+QNefXzRxf7HnF8aYb0TkGeBm4BNjzEtNnNdYV5xtWLPvCYAT60PBDa5bYxrGvbuJcY3JauTfYBFWeVQ9Y0yRlY/Xv54JbYir4c/okOvPGJRSSrULTc6Var3prj8dWAlfw0QqG6sdYUPuY/tdf36PldS63Y81Mw/W7PkcEemFlYCfBPyyjc/TmC2uP0dilaK0C2PMZhEZDJwHzMCamf2FiPzZGHNfC6c3VfsuHn+3YdWk/7WJsduaeXz3lcIfY7WMbKj2iCe1FtSe4fqyv4iEumbUW8v9vHOxrrg0Zl2Dr72dNYemX7eWXs+2xOXNz0gppdQx0ORcqVYQkVFYi/5eBsYAL4jISGNMkcewNcCpImIzRy7WPBGr84Y7gbyaI0tPdnn8/Q2sBY5XusbUYLVN9OTt8zRmKdas55Ui8pBpeVHoXqxa5oaGeNwPgDGmzBXrmyIShNVN5l4RedgYU9nIY7TGTiDcGPNZG88FyPPy/PuxylruwLoi8BesGuuGBjZybBDWz8A9w18C2NsYd0fJp2Pi0v68Sil1DLTmXCkviUgg8ArWjPStWDXJPbAWS3p6x3X8Yo9z47Hqpd83xlSBVTZhjPnM41afnBtjDgAfY3UluRpY6DrW6udpjGsG+BGs5PMRV/1xw+/3GhGZ4PryI2CCHG7jiIiEYZVD7MFaKIiIxDV4nmrXfYK18dCxeguYKCLTG94hVovF5iYcPsEqXbnH9bNseH6Cx99PxErK/2GM+RtWP/hfisjpjTzuRPHYlVVEUoELgEXGmDrXB5//AZd4dnBp7Hk7UwfGVYZVr66UUqoNdOZcKe/9Hmu2fKoxpgRYJ1Yv7P8TkXeMMR+5xr2D1Z7uZREZxuGdO+1YrQW99ZrrscBqrdfQsT7Po8BwrLaFk0XEvUNoEnAhMAE42TX2L1iz+B+LyBNAAVZryTTgEo+Z+0UikoPV3jAXK/n/JfCh6zU7Vo8C5wMfiMgrwEqsFoEjsRbQ9sV6HY5ijCkWq0f5v4FVIvIG1uxxb6wFn99gJeAOrDKP7VgtI8F6PWdivdYjXVcH3DYAn7helyqsn4H7HLffYi04/U5Ensf6wBKLteBymuvvvtARca0ELheRx7FKt0qNMe+3U7xKKdX9+bpdjN701hVuWMlKDfBEg+N2rL7i+4Boj+MxWG3qDmDNJC4GxrfyOYOwkuBCwNHEmPZ4nkuwZpUPur7H/VhlNac3GNcPeBurHKYCa4HouQ3G3IDVweYA1oLZHVj14ZEeY66l8VaKHzQS22JgcYNj4VjtJrdjJcP5WIn17UCgF9/vGcBC1+ta4YrxZVztELHKiWqBCQ3OS3e9Pk97HDNY/cGvxiojqgRW4dHu0GNsomtsBlbf8mysLjOzGsRmgEubiLuxVopHta5s5vU0wJPtFRfWh6GG7RnDsHqfH3Ldt8fX71+96U1veutKNzFGywOV8keuEo39WCUqP/N1POpoImKAp4wxDRfrKqWUUm2iNedK+a8LsdrdvebjOJRSSinVSbTmXCk/41qMOAqrzny1MWaJj0NSSimlVCfRmXOl/M9s4BkgD/iJj2NRSimlVCfSmnOllFJKKaX8hM6cK6WUUkop5Sc0OVdKKaWUUspPaHKuuhQRuVZEjIj09WLsHtdGNUqpduB67z3p6ziUUqo70+RcdRoROVlE/iQi0b6OpSUiMkRE/ioia0SkRESyReRDERnfxPgUEXlLRApFpFhE3hWRfg3GpIrIfSKyQkQOicgBEVksItMaeTz3h5DGbkmNjD9fRFaJSKWIZIjI/Y1tZS8i6SLygYjkiEipiKwTkV+JiL3BuMtFZK6IbHc95+JmXquBIvKGiGSJSLmIbBGRP4pIaDMvcaufS0TCXd/XQhEpcI29tomxs0RkiYjkikiViOwWkZcb+1AnIrNF5G3X62aa+kAnIqeJyHsikul6nXNcsUxqZOziJn52C715TVyPcaaILHW9podE5J0m4m/31+9Yicgrzfz7NSKS4jHWq9dKRIa7fk67XK/JARH5SkRmtuL5tzQRb38R+a+I5IlIheu1fLD9XxmllGqZtlJUnelkrC3NX8HanbEt/o21e2VV+4TUpJ8DPwP+BzwNRAE3AstFZIYx5jP3QBEJB750jXkIaxfJ3wBLRGSMMeaga+gFwN3AAqzt4QOwurF8KiLXG2NebiSOPwK7Gxwr9PxCRM52PeZi4Basrex/j7Xz42yPcenAt1g7az4ClANnA3OA/sCtHg87G2tHzO+BuCZeI0QkFWuH1CKsXSYLgInA/a7zL2jq3NY+FxCP9XpkAGuxdq1sylis1+09rJ0q04BZwHkiMtoYs99j7N1AhOv7SG7mMQcBTuBfQA7W7qzXAF+JyLnGmIaJdxbwuwbH9uMFETkPeBdrt9HfApFYP5+lIjLWGJPvMbwjXr9j9SzWLqOeBOu122OM2dfgPm9eqz5YP6dXXfeFYu1u+56I3GiMea7B+Cqs97GnooaBisgYrPfOPuBvWDvl9gZSG/m+lFKq4/l6i1K9HT834A4abNvewc+3B3iljeemA+ENjsVhtTdc2uD4Xa7v6wSPY0OwtoB/yOPYcCC+wbnBwGYgs8Hxa12POd6LWDcCa4AAj2P/h5VIDvE49hxWwhLb4PwlQFGDY6mAzfX3DcDiJp77Hlecwxscf9V1PMaL+L19rmAgyfX38TTYNt7Ln6kBftvgeB8Od64qbc2/GawEMQdY2OD4YmDDMfzb3Yj1ISrI49hooA74my9eP9d5Bniyjd/TKa7z72mv1wqwu/7tb2lw/BWg1IvzbcB6YDkQ0tafl970pje9tedNy1pUpxCRPwGPur7c7XGZua/r1ugldtfxP3l8fVTNuVh+L4fLKr4UkeFNxNFfRPq3FK8xZqUxprTBsYPA18DQBsMvBb43xnzvMXYL8DlwmcexjcaYAw0eswr4COglIhFNxBwhDcpOPO4bBgwDnjPG1Hrc9TTWTOWlHscigUqOvmqRDVQ0iCvTGONs7DkbiHT9mdvIYzqB6pYewNvnMsZUGWNyvIipKXtcf0Y3eNy9xpg29ZQ1xpQD+Q0f001EAlxXVrwmIrFYP9P5xpj6188Ysxbrg9wVDWLorNfPM8arRWSrq7xnpYic5sVpV2El5/9t4jFb/VoZY+qATJp+/e0iEtnYfS5nASOA+40xFSIS2tR7TSmlOosm56qzzANed/39N8CPXbf8Js/w3p+BB7Au1d8J7AIWAWGNjP3cdWurJKA+wRYRG9Zunj80MnYF0L+ppLvBY5a7bg19CRQD5a5654EN7h/r+vOI5zdW2UaWx/1gzVBGAs+KyFAR6SMiNwEXAw+3EGNTFrv+fFFExohVV385VqnFE8aYsjY+brsQkTgRSRRrrYC7bOhYfv6ISKSIxIu1LuEhrOSuscccBJQBJWLVpz8gIoFePEWw68+KRu4rB3pKI+sOOtHpwD+AuVhlMnHAQhEZ0dQJru/7MuBbY8yeRoZ4/VqJSJjr9e8vIr/BKs1q7PUPxXrvFLlq7J9qJPl3r/eoEpEfXDGUi7WGIrap70cppTqS1pyrTmGMWSciq4ArgQWev6BFJKGtj+s69y7gQ2CmewbUtZjrnmMK+ujnOhWrnvr/PA7HYiVT2Y2c4j7WE9jaxGMOwEqO33bNArqVY12adyfn6cBtwLciMs4Yk+ka566Rbur5e3p8/TxWac2NHK7FrQN+aYz5V2PxtcQYs1BE/oD1Wp/vcdeDxpjft+Ux29k+Die7B4FfGWM+PcbHfAuY7vp7NVZ99QMNxuzE+tmtx/qQeCnWOoBBwOUtPH4u1tWNIxaaikgc1ow6QApWOY0vjMAqt1rpiusNrH/ff8b6t9yY6VhJ/H8aua+1r9XfsP4Ng3V1Zh7wywZjsoG/YtXs24AZwC+A0SJyhsdVJveH3beAhVgfUkdj1b+nisgpbb2qopRSbaXJuerqpgFBwD8b/BL9B40k58aYvm15EhFJxLocvxvrl75biOvPxhaoVjYY0/AxQ4G3sWZIf9sgzrewEga3BSLyCfAVcC9wk5fPX39J3xhTJyI7gU9cz1uJ9WHpnyKSY4xZ0FicXtjjiut/WAnwucA9rsf0ddu9swEHVinSNTR+NaW1fouVIKYCP8X693fE/6XGmJ81OOffIvIcMEtE/m6MWd7UgxtjnCLyLHC3iDwMvIT1c/yr67mgiX9TnWSZOzEHMMZkiMi7wEwRsTf4kOl2FdZC6bca3tGG1+ofwDtYHzwvw6o7D/IcYIxpuLj0DRHZBjyIlfy/4Trunkn/3hhzjevv/xORcqxEfSpHL2xVSqkOpWUtqqvr4/pzu+dBY3WzONQeTyAiYcAHWJ0iLmhQi+4uPQg+6kQrKfQc4/mYdqwEYRhwqTmye0ijjDFLge84fCnem+evf24R+S1WZ5IrjTGvGWPeMsZcBCwFnpJGWi+2RESuwFpo+nNjzPPGmHmuZOtV4BHXbC8iEisiSR63qNY+V1sYY740xnxsjHkc+BFwn4g0nGVt7WOuMcZ8aox5CTgTmIB1laMlf3P9OQ1ARIIavCZJHvXOfwRexLoqtA2rbKnWdQyshasdQkSiGsTUsLxjeyOnbcMqIznqKpirlOQC4BNzuHNRS454rTwZY7YYYz5z/Rs+DyvBfl9EpIXH/DvWTHtj75/XG4x118Wf7GW8SinVbjQ5V/6g0cvG/rAwS0SCsC6bj8JKzDc0GFKANWvdWAs+97HGEu/ngfOwumV80YqQMrFKadzc5SxNPb/nc/8C+KLhQlesdoM9gb6tiMPzMVcbY7IaecxQDte8z3PF6r7NacNzHRNjzE5gNXB1Oz5mNdb3erGItDSb7S5Fcv/8TubI1yQbV/s+Y0y1MebnWD+X04DBxpjpWO06ncCO9voeGjGnQUzzjvHxLsT6t9BYSUtTGr5WzXkHOAGrDKZJxpgKrCs7no/pfn80XNCc5/ozxovnV0qpdqVlLaozNVW76Z7hjm5wvA8t2+v6cyDWQlCgvhb9mH6xuhZ7voZ1afsyY8yShmNcJQjrsVrTNXQisMsYU9LgcR8FrgN+bYxpOGPXkn4cuYh2jevP8VgLUN3P0RPohTWr7dYDqwSgIffCu7b8f9CDxq9QNHzM2zny5+FVv+8OEELjVxmO9TEF68pKY4s43dybUrl/fmuxZt49HVFHbozJxZU4uj6sngF818gHrPb0V6zFnm4Nf74NFyWDlRi7O9c0dDXWTP97rYih4WvVHPeHomavxrgWZsc3eMyVWP3vUxoMd6/VaI8F60op1So6c646k7tzR7TnQWNMMVYHlIbt2H7hxWN+hlXLekuDy9q/bmywt60UXf6JtSDtF8aY5mYP3wFOEI/dQ0VkMDAFq7bb8/nvxOr3/pAxpsnZ48YWyYrIOVgLQ+s3uzHGbAS2ADc0uNIwG+vD0Dsex7YBZ7pLTVyPaceq2y3BWpjXWtuAsSLScNbySqwZ3nWuOFe6ShHct01teC6vuFryHfXBTEQmYG3Q1FhnHW8eN7GRY9FYG+FkGmPyXMciRSS4wTjBWuQIVs0/xphDDV6Tz4wxlTTtDqyrIX9rZswxM8ZsahDTygZDJorIOPcXYm1EdQGwqGG9uevf8TSstpBHdSPy9rVyHW/s9Q/E2sirAtjkOuaQxjsk/QHrQ5TnZlHvYl35us71YdzNvWD6WBcPK6VUq+nMuepM7l/yD7o6PNQA77va7b0A/FZEXsBKnk6jhcvUYNWWi8hjWN0VPhCRj7BKKc7Go+WhB3fLtb7NPa6I/Brrw8EyrNZq1zQYMt+jTeDTWLNvH7piqcHqrJKLRyIlIhdhzUpuBzY38pifumZKwerKshrrtSgCxgHXY13uf6jBeXdizUoucr2uI7C6V7xgjNnsMe4vWDOi37kW3FVgJdHpwO+NMTUesZ7G4Q9LCUCYiLgTpq+MMV+5/v4o1mv9tYg8iVU2cJ7r2Ave1NK34rlw1YtHc3hmc6aI9HL9/Z/GmCKsGuRMEXkTazOfMqyk/Dqs1/KIzipibf8+2vVlIDDK4/nfM8asc/39YxHJwqr7z8PaRfI6VyyeXUXGAa+LyOtY5SchwEVY3VeeM8as8uI1uQYr6f8Ka9Z5GtaHqBeMMf9rMLa9X7+WbAA+EZEnsBJb94fo+xoZeznW75mmSlpa81o9K1bP8q+wuvAkYc3KDwFu97iakASsdj3mFtex6cA5WIn5u+4HNMbkiNXZ6c9Y7SAXYP1bmAW8bjz2LlBKqU5j/GAnJL0dPzesGbEsrBZ+9buFYv1SfgGrhVwx8CZWomGAP3mcf63nea5jNqwFdPuxLq1/idUycA8Ndnt0HdvjRZyvuJ6nqVvfBuN7Yc2SF2HNQr8PDGgw5k8tPOYZHmP/D6s+uhCrXd9erA8BPZqI90LX+EqsBP4BILCRcdOxepPnYyVW64AbGxnXXKx/ajB2AtZGStmuWLdidcoJaOl1bsNz7WnpZ4LVueMfWGUjRa6Y9rj+ffVt5Pmb+1lf6zHuZqxNqPKxPoDlYX0oOrXB46VhdSXZjfUBqAzrQ9aNuHYi9eI1mYC1c2uB6zHWNHV+e79+LcRlgCexkuJtrn9vq/D4t9tg/DKsD6n2Ju73+rXC2nzpU6zSnxrXa/MpcH6DcdHAv7E+BJe5YtyA9QG+sfeEYH2Y3er6t5JBE+8fvelNb3rrjJt7y2qllFJKKaWUj2nNuVJKKaWUUn5Ck3OllFJKKaX8hCbnSimllFJK+QlNzpVSSimllPITmpwrpZRSSinlJzQ5V0oppZRSyk9ocq6UUkoppZSf0ORcKaWUUkopP6HJuVJKKaWUUn5Ck3OllFJKKaX8RICvA/AHIiJAT6DE17EopZRSqlUigP3GGOPrQJRqD5qcW3oCWb4OQimllFJt0gvY5+sglGoPmpxbSgAyMzOJjIz0dSxKKaWU8kJxcTGpqamgV75VN+KXybmI3AzcCSQBa4FbjDErmhkfDTwIXAzEAnuBXxtjPmrN80ZGRmpyrpRSSimlfMbvknMRuRx4HLgJ+A74NfCJiAw2xuQ1Mj4I+BTIAy7FuqzVByjspJCVUkoppZRqF36XnAO3Ac8bY14GEJGbgHOB64G/NDL+eqzZ8pONMTWuY3uaewIRCQaCPQ5FHGPMSimllFJKHTO/aqXomgVPBz5zHzPGOF1fT2zitPOBZcBTIpIrIhtE5B4RsTfzVL8DijxuuhhUKaWUUkr5nF8l50A8YAdyGxzPxao/b0w/rHIWO3AO8ABwO/D7Zp7nYSDK49ar7SErpZRSSinVPvyxrKW1bFj15jcYY+qAlSKSgrWg9P7GTjDGVAFV7q+tNudKKaWUUkr5lr8l5weAOqBHg+M9gJwmzskGalyJudtmIElEgowx1e0fplJKKaWUUu3Pr8paXIn0SmCq+5iI2FxfL2vitG+AAa5xboOAbE3MlVJKKaVUV+JXybnL48AsEfmpiAwFngHCAHf3ltdE5GGP8c9gdWuZIyKDRORc4B7gqU6OWymllFJKqWPib2UtGGPeFJEE4M9Yi0DXADOMMe5For0Bp8f4TBGZDvwdWIfV53wO8Ehnxq2UUkoppdSxEmOMr2PwORGJBIqKiop0h1ClupA6p2HF7gLySipJjHAwIS0Wu00XeCt1vCguLiYqKgogyhhT3F6P6yqV7QsMwLp674+VBqrrqQPKgG1AhmkiCfe7mXOllPLGwg3Z3P/+JrKLKuuPJUc5uG/mMGaMSPZhZEqprkxE0hITE3/au3fvtH79+oX16NHDBARouqSOXU1NDbm5ubJr167SvXv3bheRV40xR+21o//alFJdzsIN2cyeu4qGUw45RZXMnruKZ64Zpwm6UqrVRKRv3759b77kkkv6XH311RmjR4/ebbPppLlqP06nk1WrVkW+9tpr4+bPnx8hIv80xuzzHKPJuVKqS6lzGu5/f9NRiTmAAQS4//1NnDksSUtclFKtEhYWNmPmzJn9/u///m+Dw+FwtnyGUq1js9kYP3588aBBgzZVVVWNeOWVV6YCrx0xxkexKaVUm6zYXXBEKUtDBsguqmTF7oLOC0op1eWJSFRqauqYadOm5WpirjpaZGRk3RlnnHEgNTV1vIiEeN6nM+dKqS4lr6QSMMRJOUn2EiKkChuGVTUpVBLYYJxSyldKSkrYtm0bBw4cYNCgQaSlpfk6pJb0TkhIiDnllFO2+zoQdXyYNGnSwcTExNSdO3f2Aur/3WlyrpTqMpxOJ9U5O7koeCPRtiOT79U1Pev/Hi0VhFPV2eEppTzs27ePDz74AACHw9EVknNHcHCwPTo6utbXgajjQ3x8fHVQUFAgoDPnSqmuJy8vjwULFpCdnU20DWqMjWxnBIecIdRho8r135lgmBySwbfvbyag6DROPfVUdEGXUh2voqKC0tJSEhISAOjduzd9+vShZ8+epKam+jg6r4jdbjf6/4XqLAEBAUZEBGu51OHjPopHKaVapaioiOzsbBwOB4kDx/DQiipqsR+xMFSAQOrokxhFUW4JixcvZu/evfzoRz8iJCSkqYdWSh2jnJwcXn/9dex2OzfeeCPBwcGEhoZy7bXX+jq0drV169bQ2bNnT161atWg0tLSsJCQkMrU1NScu+66a8m1116b6ev4VPegyblSqksYOHAgF1xwAQMGDCA8PJzkQUf3OU/y6HO+bt06PvzwQ3bv3s3LL7/MT37yE8LDw334HSjVPWVkZPDf//6XqqoqYmNjKS0tJTg42NdhdYhzzz338traWvtf/vKX+WPGjDm0e/fu8A8//DAtJycn1NextYfS0lJ7eHh4na/jON7ptRullN/avHkz5eXl9V+PGTOmPsGeMSKZpXdP4fVZJzHnijG8Pusklt49pb6/+ahRo7j++uuJiIggPz+ff//731RUVPjk+1Cqu9q3bx9z586lqqqK3r17M2vWLOLi4nwdVofIyMhw7Ny5s/e999776U033bTnpJNOKrryyiv3zZ07d+lvf/vbrcuWLYsWkfvmz5+f5HmOiNz33HPP9QV47rnn+orIfXPmzOmfkpJyY2Bg4L2DBg366ebNm8Mef/zxAT169LjZ4XD87sQTT7zkwIED9SvcBw4ceO2ZZ5559owZM2aEhITcHR4efsett946Li8vL/CUU065IDg4+Hfx8fG/evzxxwe4z6murpbTTjvt/NjY2FsDAwPvTUxM/OWsWbNO9PyeJk2adOGYMWOuuOqqq06NjIy8vXfv3r+8/PLLT09KSvpFw+8/JSXlpksuuWRyh7y46gianCul/NK2bdt4++23eeGFF45I0D3ZbcLE/nFcMCaFif3jjupr3qNHD6677jrCw8Pra9aVUu2joKCA//73v9TU1NC/f3+uueYaHA6Hr8PqMImJidVBQUHV8+bNG1JcXGw/lsf6+9//fsaDDz740ZtvvvliQUFB5Pnnn/+jF1544aRnnnnmf0899dR/NmzY0P+2226b4HnO119/PSYmJqb8o48+en7mzJkrnnzyyfOmTJlyWXp6eubChQufHT169M4//OEPF7uT+traWunRo0fxM8888/bixYuf+vnPf77k1VdfnXrfffcN93zczZs3p+3Zsyf+jTfeeG3u3Ln/veuuu1bn5eXFv/HGG/Wr7OfNm5eUnZ3d4ze/+c2aY/m+lXe0rEUp5Xfy8vJ45513MMbQp0+fY6oXj4mJ4cc//jGffPIJZ599djtGqdTxq6qqiv/+97+Ul5eTnJzMZZddRmBgYMsndmEOh8P5+9//fsHDDz98flxc3PjU1NTsUaNG7b3++us3nH/++bmteay77rrrC3eN+vz581fPnTt36tdff/3EKaeccgjgP//5z6YffvghDfjGfU5KSkrO66+//hXApEmTvp43b94pkZGR5XPmzFkFkJCQsGTkyJHjFy5c2OOaa67JCg0Ndb799tuL3edPmjSp8Pvvv0/94IMPht9///0b3ceDgoJqFi1a9J5nOcuwYcN2Pv/882OvuOKK/QD/+te/xg4YMGCPOz7VsXTmXCnlV2pqanjnnXeoqakhLS2N8847D2sxe9slJiby4x//mOjo6PYJUqnjXHl5OSJCZGQkV111FUFBQb4OqVP84Q9/2Lx///6/Pf74469PmDBhx9q1a/tedNFFN95xxx1jWvM4U6dOrU/mExMTSwMDA2s8E9+4uLjS4uLiMM9z0tLS6s8JCgoyoaGh5YMGDao/NmzYsFKArKys+vNmz559Qmpq6g1hYWF3BgcH3/Pll1+mHzhwIMrzcVNSUnIb1plfeeWVK7/99tsRhYWFAaWlpfZvvvlm5MUXX7y6Nd+jajtNzpVSfmXhwoXk5+cTHh7OJZdcgt1+TFePG7V7924KCnQHUaXaKiYmhlmzZnHNNdccdwuto6Oja2+55ZZdb7zxxle7d+9+cdKkSWtefPHFM+x2uwEw5nAPqYqKikbzrJCQkPodSEUEu91+xI6kIoIx5sj2egEBR43xPOZuAel0OgXgD3/4w4gXXnjhrJkzZ67+97///e9Fixb969RTT11dW1t7xH+qDoejpmF8t99++7aAgIC6xx57bMjf//73QXV1dba77rprU0uvjWofWtbip+qchhW7C8grqSQxwsGEtNij6mmV6m62b9/OqlWrALjooosICwtr4YzW+/777/noo49ITU3l2muv1R7oSrWCMab+SlZQUFB9T/Pj2YABA/JXrlw5ZMCAAWUAu3fvjgByABYtWpTU7MkdaPny5an9+vXLfPrpp793H8vOzo715lyHw+GcPHnymv/9739jAwIC6iZOnLghNjZWN2fqJJqc+6GFG45uEZfs0SJOqe7IGMOSJUsAOPHEE+nXr1+HPM/AgQMJCgoiMzOTFStWcNJJJ3XI8yjV3RhjmDdvHklJSUycOPG4+2C7Y8eOkHPOOeeySy65ZPXEiRNz4+Liqj799NOeb7/99qT09PQtsbGxtX369Ml65plnThkxYsShjIyMsMcee2yKr+JNS0sr+Prrr0fPmTOn/8iRIwufeuqpUXv27OkZFxdX6M35v/nNb1ZNmzbtlwCvvfbaix0arDrC8fXO6gIWbshm9txVRyTmADlFlcyeu4qFG7J9FJlSHUtEuPrqq5k4cSJTpnTc77Po6GjOOussAL788ktKSko67LmU6k42b97Mhg0b+OKLL47LsrDExMTqoUOHZs2dO/ekyy+//LrJkyf/4umnn55y1llnrVywYMFHAM8+++y7dXV1tpkzZ974pz/9acYdd9zxha/ifeyxx34YP3785t/+9rc/Ovfcc39eWFgYOn369O9bPtMyefLkgrS0tMyEhIQDV1999b6OjFUdSTxro45XIhIJFBUVFREZGemzOOqchlMe+eKoxNxNsDZZWXr3FC1xUeoYGGN48cUX2bdvH6NGjeKiiy7ydUhK+bXa2lqeeuopCgsLOfXUUzv0A3RrFBcXExUVBRBljCk+lscSkQnTp0+/c+HChRtbHt39OZ1OEhMTf3X++ed//9JLLy3zdTzdUXV1tUyfPn3Y4sWL/88Ys9Z9XGfO/ciK3QVNJuYABsguqmTF7uNvxkJ1b1lZWXTmRIGI1LdVXLduHRkZGZ323Ep1Rd999x2FhYVERERw6qmn+joc1cG2bt0aOnv27AklJSXhf/zjH7VLSyfT5LyDFRYWsnGjdx/C80qaTszbMk6prmDPnj28+OKLzJ07F6fT2fIJ7SQlJYWxY8cC8Nlnn3XqhwOlupKysjK+/vprAKZMmdLt+5krGDJkyJ1z5849/Y477ni/b9++mnR0Ml0Q2oHy8/P517/+hc1mo3fv3kRERDQ7PjHCu53VvB2nlL8zxrBo0SIAYmNjO32B2RlnnEFGRkZ9kq6UOtqSJUuoqqoiOTmZ0aNH+zoc1QmMMff7Oobjmc6cd6D4+HhSUlKora2tn3VozoS0WJKjHDRVTS5YXVsmpHnVCUkpv7dlyxays7MJCgrijDPO6PTnj4yM5Oabb2bs2LHHvNGRUt1RRUUFq1dbVQ1nnnmmvk+U6gSanHcgEWHy5MkArFq1iqKiombH223CfTOHWec2fCzXn/fNHKaLQVW3YIzhq6++AqzWiR3R09wbmmwo1bSQkBBuuOEGJk+eTFpamq/DUeq4oMl5B0tLS6Nv377U1dXVJyLNmTEimWeuGUdS1JGlK0lRDp65Zpz2OVfdxrZt28jJySEoKMjnvcadTierV6/mv//9r9aeK9VAQkICp512mq/DUOq4oTXnHajs228pXbKEkSWl7AkOYs2qVZwYG0vCSSchzWxJPmNEMmcOS9IdQlW35TlrPn78eEJDQ9v18WsPHaJs6VIqN2+hrrAQsdsITO1N6PjxhIweddT7r7q6moULF1JdXc2OHTsYOHBgu8ajVFdUWVmJw9H6NU61BQXW+2/TZuqKipCAAAJTUgg9YTyh6ekdEGnnu/HGGye89dZbJxcXF0fOmDFj+YcffrjI1zGp7kNnzjtQxfoNFLz6GiHz5hGfn48T+PKJJ9hx5pkcfOUVnNXVTZ5rtwkT+8dxwZgUJvaP08RcdStlZWVUVVUREBDAySef3G6PW7VrN/tuv4Ptp53O/jvvouCllyiaN4/Ct98h//HH2XvVVew88ywK/j0X4/H+czgcpLuShm+++abd4lGqqyorK+Pvf/878+fPp6amxqtzqnbuJOvXv7Hef3fdTcErr1A0fz6Fb79N/j/+QcnnPtuPp10tWLCgxwsvvDD997///YerV69+/NVXX/2yufEvvPBCn1GjRl0ZGRl5u4jc99BDDw3x9rlmz559Qmxs7K8DAwN/36dPn5+//vrrKa0ds3r16oiTTjrp4tDQ0LsCAwPvTU5Onv3mm2/2bO2Y1vIm9o74fqurq+WSSy6ZHBsbe2tgYOC9cXFxv7riiitOc3cDa+n+pkyaNOnCMWPGXNHw+HPPPddXRO7LyMhot24dmpx3oJCxY4ib9XMSbr+N8f36EWgMAQGB1O7PJu8vj7B75vlUrF3b8gMp1c2Eh4fzi1/8guuvv75das1NTQ35Tz7FrvPPp/jDD6GmhuDBg4m5+moSbruN+F/+kogZM7BFRFCzfz+5Dz7I7ksuoWL9+vrHOOmkk7DZbOzdu5esrKxjjkmprmzlypVUV1eTn59PQEDzF9lNdTV5//gHu2aeT8nChVBbS/CwocRccw0Jt99G/M03E3XBBYSO6x5dkd56661Bffr02Xf77bdvHzVqVGl8fHyzn16Ki4sDBwwYkHv33Xd/2Jrn+eMf/zj8+eefn37dddctfv/9959NS0vLvf7666/ZvHlzmLdj9uzZ45g6derPAgIC6l588cX/LF68+Knf/e53i5KTkyvcj+HNmIYGDhx47R133DHmWGLviO8X4Lrrrjtl4cKFJ9xzzz0fffXVV0/deuutn82fP3/STTfddKI39/sD3SGUztkh1BhDVVUVQSIUvfsu+U/8k7oDByAggKR77yHmyis75HmV6u7qiovJ+tWtlC9fDkD46aeTcOuvcAwbdtRYZ2UlRfPnk//PJ6krKEACAymbfRtZJ59JYoSDnPVfs27tWoYOHcpll13W2d+KUn6htraWOXPmUFpaykUXXcSoUaOaHnvoEFm/vIWKlSsBCJ86lYRf3YJj8OBOibWzdwiNj4//1cGDB2PcX0+cOHHdt99+O78Vz3Hfgw8++OY999yzpaWxffr0+fmgQYP2f/rppx8B1NbWSlxc3G/OP//8Ff/+97+XejPmggsumLZhw4bUnTt3vtzU83gzpqGBAwdee8EFF6x57LHH1rQ19o74fgFGjhx5VUxMTOlXX331nvuxx40bd1lQUFDt8uXL57V0f1Pf86RJky4sKytzrFmz5g3P488991zfG2+88ad79+59ZN++fY6TTz751obnDhgwYO/27dtfaXhcdwj1MRHB4XBgCw4m5rLL6P/xR0ScPQNqa8m5/8/kP/20LkRTx4XMzExqa2vb5bFqcnPZc+VVlC9fji00lJ5/e4xe/3qm0cQcwOZwEHPllfT/6EPKJ5yCqakh9IlHWPrnx7ny+eU8tcmqRd+8eTOFhYXtEqNSXc3GjRspLS0lIiKC4cOHNzmuZt8+9l51NRUrV2KLiCDlH/8g9aknOy0x94Wvv/76xdjY2EM//elPP12/fv3fRo0atU9E7mvv5yktLbVnZWX1nDx58i73sYCAADNixIhd69at6+XtmOXLlw8eNGjQ/vT09B+Fh4ffmZKScuOtt946zvO5vBnT3rF31PcLMGrUqMwNGzb0++KLL+LAKkPatm1b7ylTpmz35v5jkZ6eXrR+/fq/uW/z5s17NjQ0tGL06NF7W/M4uiC0A9U5zVGLOm0CGRkZBAQEkPL44xzo158DTz3FgSf+CU5Dwi9v9nXYSnWY8vJyXnvtNYKDg7nhhhuO6UpV7aFDZFz/M6p37iSgRw9Sn/0XjiHelXJ+mlXB7OQLuGaQg6u2fcb1mz5CMLw9aCr9giJJsRfzww8/MG3atDbHp1RXZIxhuesq1AknnIC9ieYFtQcOsPf666nZm0FAcjK9n3uW4ONgIXVCQkL1oUOHoqdNm5YxYsSI0tTU1OKEhISD7f08O3bsCHU6nZKamlrqeTw2NrYsKysr3tsxBQUFMZ999tkJ55577rJ7773368WLF6c8/fTTZwcFBdU9+uija70dc/XVV5/6zjvvnOp+jpqamoA5c+b0+uc//3mO+9jXX3/91IQJE4q8iaujvl+AV199dekll1wSPG3atF+KiNMYY7vqqqs+f+ihh9Z7c39z1q9fPyg4OPgez2NOp7N+UWBQUJAZMWJEKUBhYWHAeeedd0X//v0z33jjjcUtPbYnTc47yMIN2dz//iayiw7vepsc5eCGwTVkrP+Ofv368eMf/5iEW36JLSKcvL88woEnnySwZ0+iL77Ih5Er1XFWrVpFbW0t8fHxLe6Y2xxnRQWZN9xYn5j3+c9/COrV4lojwPrQfP/7mzAi/HvYDGrsAfx080Ku2/QxeSExbO7Tj8AAO33T+rU5PqW6qoyMDHJycggICGD8+PGNjqkrLSPjhhuo2ZtBYM+e9PnvfwhMSurkSH1j4cKFPQDOOuusXIB77713y7333ttiiYqvGGMkNTV1/4IFCz4HuPjii3O2bNmS+Pbbb493J97ejHnggQd+uOGGG+rLfX7yk59cfMYZZ2y+/vrrN7uPjRo1qqRzv7vG3X///cOXLFky8t577/3fhAkT8r755pukJ554Ysadd95Z8uijj65t6f7mHnvgwIG7n3322SPWDnzyyScpDz/88MUNx06fPv2CysrKoGXLlr0WEBDQqtIITc47wMIN2cyeu4qGP4mcokoe/76KSx2wa9cuDh48SFxcHHHXXktdwSEOPvcc2X/8I0GpvQg94QSfxK5URzHGsNJVl3riiSe2efMfYww5f/oTlevXY4+OpvdLL3qdmAOs2F1wxIfmNwZPI7S2kh9tX8xvVr/F3WE38WFsf64higFtilCprmvVqlUAjBw5kpCQkKPuN8aQ/fvfU7VpM/a4OHq/9OJxk5gDLF++PCk+Pr4gMTHRuxY2bTRgwIBym81mMjMzwz2PFxQUhEVHR5d6OyYiIqIkNTU13/P+gQMH5n/33XdD3V97M6Zfv34V/fr1q18gGhQUVJuQkFB2+umnF7Ql9o76fgH++c9/nnnllVcufeCBBzYAzJw5M2/v3r3Rr7766qmPPvro2pbubyw+N4fDUdPwe966detRl4CvvPLK09avX99/4cKFzycnJzfdmq8JWnPezupn5Rq5zwClJpg8sdaSuBMVgIRf30rkOedAbS377riT2kOHOidgpTrJrl27KCwsJDg4uNk61pYUvvEGRe++B3Y7KXPmENy/f6vOzyupPOrYy8PO4duk4QQ5a/nd93MJry5vdJxS3d306dM566yzmDBhQv2xOqdh2c6DvLtmH6v+/i+rI0tAAL2e/CdBffv6Llgf2LRpU1Lv3r1zO/p5wsPD63r16rX/yy+/rN+Wtba2VjZs2NBv1KhRWd6OGTRoUOa+ffviPB97165dcbGxsfVblnszpr1j76jvF6C6ujrQZrMdkYbZ7XanMUa8uf9YPfDAA0Pffvvt0x977LG3TzvttDYlc5qct7OGs3INGWBtpfUeWLNmTX3/WLHZSH7gzwSlpVGbm0v2b3+nC0RVt7J69WoARo0aRWBgYJseo2rHDnIfehiAxNtvJ+zECS2ccbTEiKNb0Rqx8Vj6lewLiyexopBb1rxDBFV89tln5OTktClWpbqi0NBQJk6cSJJrNnzhhmxOeeQLrnx+OXP+9SFBzz8JQMFPbiJ0bMutET0T+2U7D1Ln7Nq/13bt2pU0ePDg+v8UHnzwwSGJiYm/bO6c3NzcoPnz5yfNnz8/CWDnzp3R8+fPT1qxYkWUe8xNN900YfDgwT/xPO+nP/3pssWLF6ffeeedoz/55JP4M88889zq6urA3/72t6u9HfOb3/xm2Z49e3pdffXVpy5ZsiT23nvvHfn555+nX3nllSvcj+HNmNzc3KANGzaEu2/z589/59prr93heay6ulq8jaujvl+AsWPHbps7d+5pjz322MBly5ZFP/jgg0Pmz58/ceLEiZu9uf9YfPjhh4kPPPDARRdccMHS0047Ld/92uzatevoy1DN0LKWdubNbNs+ZxSBIeFUVJSyefPm+jZVtrAwUv7+OHsuu5zSJUsomjef6EuOKmNSqsspKytj82br/71x49rWBMDU1rL/t7/D1NQQdvppxF53bZseZ0JaLMlRDnKKKo+4wlUR6OCv46/ib189yWn717FmyftsKyykurqac845p8nHU6q78izRDHDWctuqNwkwTr5JHsGDB/vwzIZsZoxIbvb8xtZe3TdzWLPn+ava2lrZv39/4tixY5e4jx06dMiRn58f19x57777bs8bb7zxp+6vX3rppekvvfQSJ5988tpvvvlmAUBBQUFofn5+rOd5f/7znzfm5eWFvfDCC5P//ve/h6ekpOS88MILc4cPH17m7Zgrrrhif2Zm5puPP/741Lfeeuv02NjYQ7Nnz17oufjRmzG33HLLyW+//fbpzX2f33777ZyJEycWehNXR32/AO+8885H11133ZQHH3zw3NLS0rDIyMiS6dOnr3zttdeWeHP/sfjyyy971tTUBM6bN++0efPmneY+3lQrxaZon3Pat8/5sp0HufL55S2O+78T7exc9x1paWn85CdHfHjk4IsvkvfoY9giI+n/4QcEJCQcU0xK+dq6deuYP38+PXv2ZNasWW16jAPPPkf+3/+OLTKSfu+/R2CPHm2Ox510AEck6AJctvVzrt38MXkD+rP4hBNwOBzcfvvtLW7EolRXlpmZyaeffsqECRMYMWIEdU7DKY98UZ9YX7VlET/esoiioFBumnInRY4IkqIcLL17SqM7WDe19so98plrxrVLgt7Zfc6Vak/a57yTuGflmipcEqyZg7NPtzaiKiwsPGpr5Nif/hTHsGE4i4vJefChjg1YqU4watQofvGLXzBjxow2nV+dtY8DTz8NQI97fndMiTnAjBHJPHPNOJKijixxSYpyMPm+3xA8aBDxO3cRZgyVlZVs3br1mJ5PKX+3atUqMjMz2bFjB3BkiWZy6QGu2PY5AE+PuphCRwQGyC6qZMXuo9YDtrj2CuD+9zd1+RIXpTqKTgW1M7tNuG/mMGbPXYVw9KwcwH0zhxEXG8MNN9xAUlLSUV0rJCCA5Af/j92X/oiShQspW34FYSf5za6ySrVJwjFcAcp75BFMVRWhEyYQdcEF7RLPjBHJnDks6ai9COw2ofz+P7H3qqvpvWkTm4cPZ82aNce0iFUpf1ZVVcXGjdZksbvszLNE8+cb3ifQWccPiYP5KmX0Eec2Vsrpzdord2I/sX+zFSFKHZd05rwDNDcr53kpLzk5ucl2co6hQ4m53No+PPcvf8HU1XVs0Ep1kLpj/Ldb9u23lHz6Kdjt9Lj33ja3YGyM3SZM7B/HBWNSmNg/rv7yfOjYsURfeil9d+0GYOfOnZSUHNnCt7stdFPHry1btlBTU0NcXBypqanA4YXTY/O2cXLORurExnMjz4cG77/GFlh72+lIOyIp1TidOe8gzc3KNVRXV0dVVRWhoaFHHI+/5RaK3v+Aqi1bKJo/n+hLL+2s8JVqF7W1tTzxxBOkpqZy3nnnNdo3uTnG6ST3sccAiLnqKhyDB3VEmI1KuPVXFH/4IfH5+RxISGDt2rWccsopQPdb6KaOb+vWrQOs3ubuD78T0mJJiQjkxs/fBeD9tElkRhwuJxOsCacJabFHPV5jCXtjvB2n1PFGZ847UFOzcp7WrVvH3/72Nz7//POj7guIiSH+5l8AkP/EP3FWVXV4zEq1px07dlBSUkJmZibBwcGtPr9k0SKqNm3GFhZG/C9md0CETQuIjyfuhln03bWbwNpa6lxrQ9wL3Rpets8pqmT23FUs3JDdqXEqdSxKSkrYvdu6QjRy5Mj643ab8JfIffQpyaUoKJT/DDmz/j7PEs3Gfq95u/aqscReKaXJuc9FRERQUVHBxo0bqa2tPer+mKuuIiA5mdq8PArfetsHESrVduvXW524RowYgc3Wuv9uTG0t+U/8E4DY664jICam3eNrSexPf0r/8nJmzpvPqNxcXeimup0NGzZgjKFXr17Exh5Olk1NDcnv/heAhSPPojTo8JXdhiWaDbnXXgFHJegtJfZdybx585LsdvsfBg4ceO2xPtaPf/zjU0TkvhkNVs1XV1fLJZdcMjk2NvbWwMDAe+Pi4n51xRVXnOZ0OuvHrF69OuKkk066ODQ09K7AwMB7k5OTZ7/55ps92xrLCy+80GfUqFFXRkZG3i4i9z300ENDGo65+eabx/fs2XO2w+H4ncPh+F3fvn1/9vjjj7f7psqjRo26ctiwYdc0dt+LL77YW0Tue++9946tQ4Af0uTcx/r27UtkZCRVVVVs3779qPttQUHE33gDAAefew5npdboqa7Bs8uJu5d/axS99z7Vu3Zhj44m9tqftnxCB7CFhJD4s58RUFfHgeeeY8W2XK8XuinVFcTHx9O/f39Gjz5yoWfhggXUZGVhj4vj3md/z+uzTmLOFWN4fdZJLL17SovlW96uverK7rzzzrPPO++8b7Oyso4pOXzjjTd6fvjhh+nJyclH7Tx63XXXnbJw4cIT7rnnno+++uqrp2699dbP5s+fP+mmm246EWDPnj2OqVOn/iwgIKDuxRdf/M/ixYuf+t3vfrcoOTm5oqnnGzhw4LV33HHHmKbuLy4uDhwwYEDu3Xff/WFTY/r06VN8++23f/bxxx8/+9FHHz03duzY3XfdddeVH330Ubv2fr7iiitWb9mypd/KlSuP6nP9yiuvjE1NTd1//vnnd/iOrZ1Na859TEQYPnw4y5YtY+PGjQwdOvSoMdEXX8yB556jdn82hW+9RWyDvuhK+aPNmzdTV1dHQkICPVrZ+tDU1ta3ToybNQt7eHhHhOiV6Mt+xMHnnqNmfzYH3n0H6MvR84FH0oVuqqsYOHAgAwcOPOKYqa7m4DP/AiBu1s8JDA9jYnhYqx+7NWuvupp77713ZFhYWOUf//jH7997771Tli1bFu3egKc1cnNzg2655ZZL/vznP78/Z86c0xrev27dutT09PQtd9xxx3aAiRMnFi5YsGDEunXrUgBuvfXWU2JiYoqWLl36rvucSZMmtToOT7fddtuO2267bQfA73//+0bH3HXXXds8v54yZcoXoaGhJ3z66ae9zjnnnPzGzhk4cOC1ffv2zbXb7WbJkiWj7XZ73c9+9rMv7r333vUXX3zxOd9///2wiIiIsnvuuecj9/Pfdttt2x5++OHyxx57bMzrr7/+lfuxcnNzg1asWDFs1qxZnx7L9+qvdObcD4wYMQKAbdu2UV1dfdT9EhRE/E03AXDg+ee19lx1Ce6SFs9FZt4qXviJNWsXE0PMVVd2RHheswUHE/vzn/Hp9LNYVXmQJFre50QXuqmurPDdd6nZvx97QjwxV1xxTI/lzdqrriYvLy/wmWeemfroo49+mp6eXuxwOKq+/PLLJM8xd9xxxxgRua+lx7r44ovPGT9+/LZf/vKXuxq7f9SoUZkbNmzo98UXX8QBLFiwoMe2bdt6T5kyZTvA8uXLBw8aNGh/enr6j8LDw+9MSUm58dZbb23bNsxtVF1dLX/4wx9GVFdXB06fPj2rubFff/31mJiYmPKPPvro+ZkzZ6548sknz5syZcpl6enpmQsXLnx29OjRO//whz9cfODAgUAAh8PhPOOMM9Z++umnYzxLef76178OM8bY7r777vVNPlkXpsm5H0hOTiYmJoaamhq2bdvW6Jjoiy4iIDmZuvwDFL//fidHqFTrNLXIzBvGGA6+8AIAMT++BlsrO7x0hJjLLye60vpQPLV2hy50U12eMYaVK1dSVFR05HGnk4KXXwEg7vqfYXPoB82GbrzxxlPHjBmzY/r06QcAkpKS8tesWXNEch4TE1OZkJBwsLnH+cMf/jBi165dya+//vrRHSFcXn311aWnnnrqhmnTpv3Sbrf/4eKLL77pwgsvXP7QQw+tBygoKIj57LPPTkhNTS147bXX/n3JJZf88PTTT59955131tcpXX311acGBwff477t3Lmz95w5c87zPLZixYqo1r4O77//fmJwcPA9ISEhf3jsscfOe+SRR96cMWNGo7PmbikpKTmvv/76V5MnTy549dVXvw4ICKiNjIwsnzNnzqrJkycXzJkzZ0l5eXnIwoUL6y+3/upXv1p98ODBmBdeeKGv+9i77747Nj09fVNqamq3nK3U5NwPuEtbgPqNII4aExhI7I9/DMDBl1/BeHyCVMrf2O12pk2bxrhx44iOjm7VuWXffEvVli1IaCixV13VMQG2ks3hYPgI6z0aEVyFGGe3Xuimur/c3Fw++OADnnzyySN2qS5dsoTqXbuwRUQQ/aMf+TBC/7R06dKYRYsWjX/iiScWu4/16dMnb9u2bUck5/fee++WvLy8J5t6nB9++CHy73//+4xnn312XnR09NHdIFzuv//+4UuWLBl57733/m/BggXP3nXXXfPnzZt3sjv5NsZIr169shcsWPD5xRdfnPPEE0+snDx58qq33357vPsxHnjggR8WLVr0L/ctNTV1/1VXXfWl57FRo0aVNBVDUyZPnnxw0aJF/3rjjTeeP+uss77/4x//eOHChQubrTlPS0urrw8PCgoyoaGh5YMGDao/NmzYsFKArKys+jqqM88880BaWlrmK6+8MhZgyZIlsTt37ux93XXXrW5tzF2F1pz7CfeCOXeJS2OiL/sRB55+muqdOyn7+mvCTz+9s8JTqlVCQ0OZNGlSm86tnzX/0aXYW5nYd6RRV1/Np3/7G1VBQfwtrZS/5icesTg0Sfucqy5k06ZNAAwYMIDAwMD64wUvvQxYv2/sbagz7+5uvvnm6eXl5SGjR4++zX3MGCPR0dFFzZ3X0KJFi3qWlZWFXXTRRTe6jzmdTtm5c2cfu90+oaKi4oGgoCDzz3/+88wrr7xy6QMPPLABYObMmXl79+6NfvXVV0999NFH10ZERJSkpqYeMVs9cODA/O+++65+AVu/fv0q+vXrV79ANCgoqDYhIaHs9NNPP6aV6+Hh4XXux/jRj36UPWTIkJRHHnnkxBkzZnzQ1DkBAQFHzCyKyBHH3F29nE7nETMcF1544eonn3zy7Ozs7A//8Y9/jImLizv085//fM+xxO/PNDn3EwkJCUydOrXZMfbwcKJ/9CMKXn6Zgy+/osm56nYqN2+mfPlyCAgg9qe+6dDSlKDYWPoFBbEFqNy2hqV/+Uu3XOimuj9jTH1yPmzYsPrjFes3UP7999b7z3WlVh32xBNP9N+xY0fvefPmPRsUFFSfUH7xxRc9H3/88QsyMjIcvXv39mo1+HXXXbdr9OjRz3gemz179gUpKSkHfv/7338TFBRkAKqrqwNtNtsRvVntdrvTGCMAgwYNyty3b1+c5/27du2Ki42NbdWHhfbgdDqlurq6Q/LKu+++e+NTTz0146GHHhr55Zdfjj733HN/aG173q5Ek/MuJvYnP6bg3/+mfPlyKjdvxtFIdxelfGnnzp2UlpYyePBgHK2sVz30X6uvcuRZZxLYs81tejvMmDPPZMunn7LXbqN6104mDmj3tr5Kdbj8/HwOHjyI3W5n0KDDu+4WvPoqAFHnnkNgUlJTpx+XysvLbQ8++OCMSy655JuLLroox/O+hISEqscff5yFCxcm3XDDDXsAHnzwwSFz5syZ1lRpS3JycvW5556b53ksODi4JioqqsLz+NixY7fNnTv3tLS0tKJJkyblf/HFF0nz58+fOHXq1NUAv/nNb5ZdffXVP7v66qtPveGGGzYuWrQo5fPPP0+/44476hen5ebmBuXn5we5v54/f/47ABs2bKhvgzVo0KAy9weC3NzcoG+//bZ+4czOnTuj58+fn5SSklIxYcKEIoALLrhg6syZM3cMHz686MCBA0EvvPDCyB07dvS95ZZb/t2Gl7dFPXr0qD7xxBM3vvjii9OqqqqC77zzzjUd8Tz+QpNzP2KMYevWrWzdupUZM2Y0uqNiYHIykWedRfFHH3Hov6+T/MCffRCpUk379ttv2bVrF1OnTq3f7t4bdUVFFL1vXQ2N8ZNa84YGnHgiQZ98QpXDweb//Idx97XYjEEpv+OeNe/fv3/975nagwcp/uQTAGK0Xe9RbrnllgllZWUhjz322IqG940fP74oMDCwZsWKFfXJ+aFDhxz5+flxRz1QK73zzjsfXXfddVMefPDBc0tLS8MiIyNLpk+fvvK1115bAnDFFVfsz8zMfPPxxx+f+tZbb50eGxt7aPbs2QvdC0ZdsZ/89ttvN3up/dtvv53jbgX57rvv9rzxxhvrL12+9NJL01966SVOPvnktd98880C1/cXdtddd11UXFwc7nA4qnr16pU7Z86cf99yyy2Ndp1pD7NmzVr19ddfjx0+fPj2MWPGtLpGvisRY3QnOxGJBIqKioqIjDyqz32nMcbw5JNPUlBQwKWXXlq/SLSh8u+/Z++Pf4KEhjJwyWLsERGdHKlSjSsvL+exxx7DGMMtt9xyxI6DLTn4yivk/eURggcPJm3B/Fa3X+ws3/3vf1Q88U96lJUxeMlibGFal6u6lqeffpr8/HwuvPDC+s2HDjz3PPmPP45j1CjS3nrTxxF6r7i4mKioKIAoY0zLfU6bISITpk+ffufChQsb78ygVDurrq6W6dOnD1u8ePH/GWPWuo/7ZcGOiNwsIntEpFJEvhORCV6ed4WIGBFZ0MEhdggRYcgQa5fcLVu2NDkuZPx4ggb0x5SXU/Tee50VnlIt2rp1K8YYkpKSWpWYG6eTQ6+/Dliz5v6amANMuPhiUh0OKC2l6KOPfB2OUq1SXFxMQUEBNpuNwYMHA2Dq6ih800rIj7WvuVLq2Pldci4ilwOPA/cD44C1wCciktjCeX2Bx4CvOzrGjuROzrdv305dXV2jY0SEmMut/0AL33gDvfqh/MXmzZsBGt3ptjll3y6jZm8GtogIomae1xGhtRsRIfqyywAofPMtH0ejVOtERkZy5513cs0119SvCSlbupSaffuwRUURec7ZPo7Qp5y1tbXi1FbFqpNUV1fbnNY/uCMSPr9LzoHbgOeNMS8bYzYBNwHlwPVNnSAiduA/wH1Ai/VOIhIsIpHuG+A3dSG9evUiLCyMqqqq+k1cGhN14QVISAhV23dQsWpVJ0aoVOOqq6vZtct6+7U2OS/83zsARJ1/PrbQ0HaPrb1VnX4aa8ans76qiooNegVcdS3BwcGkpaXVf33o9TcAiL7wwuN906HyysrKmuzs7KMXfCnVATIzMx2VlZXVWHluPb9KzkUkCEgHPnMfM8Y4XV9PbObUPwJ5xpgXvXyq3wFFHrdmt5vtTCJSf6mxudIWe0QEkeeeA0DhW293SmxKNWfnzp3U1dURExNDfHy81+fVFRZS+pm1QV70pZd0VHjtKr+sjG0DB7JzQP/6cgCl/F1jV1lrcvMo/eorAKIvv7yzQ/I3u3NycvK++uor7/8DU+oYfPPNN/E5OTnZQKbncb9KzoF4wA7kNjieCzTa10lETgF+BsxqxfM8DER53Hq1OtIO5J51dNfvNiX6YiuRKf70U5xlZZ0Sm1JNyc213raDBw9uVc140QcfYmpqCB46tMu0Bh00aBA2EYqjo9m3eDHOioqWT1LKx1avXs1zzz3H6tWHN1Ys/uB9cDoJGTeO4H5pzZzd/RljKrKysn74+OOP47Ozs4NaPkOpttuzZ4/js88+i87KylphjKnxvK9Lt1IUkQjg38AsY8wBb88zxlQBVR6P0wHRtV3fvn0JCgoiJCSEkpKSJjvIhIwdQ1CfPlTv3Uvxok+JvujCzg1UKQ9nnHEG6enprV4DUTRvHgDRF13UEWF1iJCQEPqmpbFr1y4y4+IY+Nnnfl8rr9S2bdvIzs6mpMTqQmeMoXD+fMAqlVRQVVX14ccff9xbRMafc845+ZMnT85PTEysaflMpbyTnZ0d9MUXXyR88MEH8Z9++ukyp9O5qOEYf0vOD2AVxfdocLwHkHP0cPoDfYH3PRJsG4CI1AKDjTE7OyTSDhQQEMCvfvUrwlpo0SYiRF10Ifn/mEPR/PmanCufi2hlW8/KLVuo3LQJCQwksoslt4MGDWLXrl1k9+xJ0bvvanKu/FpNTQ07d1q/Dt2lk5UbNlC9YycSHEzk2cf1QtB6xpgCEXnmrbfeOv/bb79NT05O7h8aGhoQGBionRfUMaupqZGysrKa7OzsvKysrP9VVVW911gLUL9Kzo0x1SKyEpgKLAAQEZvr68Z22doCjGxw7P+wFnjeSoManq6kpcTcLer888mf8wTlK1ZQnbWPoF4pHRyZUkdzOp20ZSvlQtesefiUKQTExLR3WB1q0KBBLFy4kAMJ8Rxa8C7JuXkE9mi2qZRSPrNr1y5qa2uJiooiMdH6d1o0fwEAEdOm6X4ZHowxBcArIvLWjh07+gNh+F8ZsOqa6oBSYJcxpsl6SL9Kzl0eB14VkR+AFcCvsd4YLwOIyGvAPmPM74wxlcAGz5NFpBDAGHPE8a6qtrYWYwyBgYGN3h/YsyehJ51I+bLlFL33Lgm/+EUnR6gUPP/884SEhHDuuecSF+fdpnimuppi146g0Rd3nZIWN/fC1wMHDpCbmEivD94n7mc/83VYSjVq27ZtgPWhUkRwVldT9OGHAER1oZKyzmSMKQfWtzhQqXbmd58EjTFvAncAfwbWAGOAGcYY9yLR3kCyT4LrZJ9//jl//etfWbNmTbPjoi+8EICiBe9qz3PV6QoKCsjJyWHv3r2EtqINYuk331B36BD2hHjCJk3qwAg7zsCBAwkLCKA2IICiBQv0/af8kjGmPjl3l7SUfvElzqIiAnr0IGziSb4MTynVgN8l5wDGmCeNMX2MMcHGmBONMd953HeGMebaZs691hhzYWfE2dGCgoKoqalhx44dzY6LOPNMbKGh1GRkUOGxCl+pzuD+pd+7d29CQkK8Pq/4Q2t3zcgZZyMB/ngRr2WTJ0/m1zffTL99+6javoMq1yZMSvmT/fv3U1paSlBQEH379gWg6P33AYg6fyZit/swOqVUQ36ZnCvLoEGDAKtWsKam6cXittBQIs6cBkDxRx93SmxKuTWckfOGs6KCki++ACDK1a+/KwoMDCQgOprwKVMAKHr3PR9HpNTR7HY7w4cPZ/jw4djtduqKiylz9TaPPG+mj6NTSjWkybkfS0xMJDIyktraWvbs2dPs2MhzrASn+JOFmLq6Zscq1V6qqqrYu3cvcPjDpDdKv/wSU15OYK9eOEaP7qjwOk3EeedSHhJC8cKFGN36W/mZpKQkLr30Us4//3wASj7/AlNTQ9CA/gQPGujj6JRSDWly7sdEhAEDBgCwffv2ZseGTZyILSqKuvwDlH//Q2eEpxS7d+/G6XQSGxtLbGys1+cVuUtazjnH7/YZaK2MjAyeXbWKpZPPoDY3l4oW1ogo5WvFH7nef2ef3eXff0p1R5qc+zn3bOT27dubXWwmQUGHS1s+1tIW1Tnc6yH69+/v9TlHXFI/99wOiaszxcXFUVFRQWFUlDV7/vFCX4ekVL38/Hzy8/Prf3/UHjpE2bJlAESe3XVLypTqzjQ593NpaWnY7XYKCws5cKD5TVDdm0iULFqEaaZGXan20rt3bwYOHNiqevOSTz/D1NQQPHAAjsHel8L4q7CwMHr16gVAds+elCzU0jLlP77++muefvppli5dCkDJok+htpbgoUMJ7pfm4+iUUo3R5NzPBQUFceKJJzJt2rQWO2GEnXgi9thY6g4domz5d82OVao9jBo1iquuuqpVM+f1l9S7way528CBVt1ubmoqtfn5VKxa5eOIlLI2B3Nf3erTpw9w+Mqq7giqlP/S5LwLOPPMM5k0aRLh4eHNjpOAACKmnwVoaYvyT3VFRZR9Z31wjJwxw8fRtB/3h5PcpB44RfT9p/xCdnY2FRUVBAcH06tXL2rz8ylfsQKAyHM0OVfKX2ly3s3Ul7Z89pmWtqgOtX37doqKilp1TunixdYl9YEDCXL1W+4OkpOTCQkJoUaEgrg4ij9ZpKUtyufcs+b9+vXDZrNR8tln4HTiGDWKIFcpllLK/2hy3kWUlZWxfv16cnJymh0Xmp6OPS4OZ3Ex5d9/30nRqeNNTU0Nb731Fv/4xz9aXAvhqfjTTwFr46zuxGaz0a9fPwBy+/ah7uBB7ZqkfM6dnLu7fpV8+hkAkWd1r/efUt2NJuddxOeff868efNYu3Zts+PEbidiymQAtv/vA95ds49lOw9S59RtxVX7ycjIoLa2loiICOLi4rw6x1leTtnX1qK0iG6YHIwaNYpTTz2VQb2t2t6Szz/3cUTqeFZRUcG+ffsA6JvWj+Vr91DqKikLnTLVl6EppVqgyXkX4a5p3bVrV4tjtw4cB1gbTfz69VVc+fxyTnnkCxZuyO7QGNXxw3NGzts+yaVfL8VUVRGYmkpwK7q7dBWDBg1iypQppE21dgst/fzzZtufKtWRdu7ciTGGkMgYzv3XSp7967+Rujr2RvRgypu79PeBUn5Mk/MuIi3NanmVl5dHSUlJk+MWbsjmhvVCeUAw8ZVFDCzMAiCnqJLZc1fpf8iqXezcuRNoXX/zEndJy7Rp3Xrjk7CTT0YcDmr276dqyxZfh6OOU4MHD2bwpLP5MD+W7KJKTs5eD8C3ySP094FSfk6T8y4iNDSUnj17Ak3Pntc5Dfe/v4lqeyDf9xgCwMTsDQC45+/uf3+TlrioY1JUVER+fj4iUl9n3RJTXW0tBqX71Zt7qq6uZntGBjlTrNnzks+0tEX5hs0ewJzvS9jrjCGorob03K0ALEseob8PlPJzmpx3Ie5EyD1r2dCK3QVkF1UC1n/AACe7knOwEvTsokpW7C7o2EBVt+YuaUlJSWmx975b2Xff4SwtxZ4QT8iY0R0Znk9lZGTwxhtvsDI+DgOUfPGFr0NSxynP3wdj87YRUldNfkgU26OtLi36+0Ap/6XJeRfiWXfeWC1rXkll/d+/7zGEGrHTuySPlJK8Jscp1VruKzetKmlZ5FHSYjvyv506p2HZzoPdYvFynz59sNvtlNbUUBIVRdXmzVRn7fN1WOo4s2nTJtYs/4o4KQMOT9IsSxoBDUrK9PeBUv4nwNcBKO/16tWLwMBAysrKOHDgAAkJCUfcnxjhqP97eWAIaxMGMD5vKydnb+DtiCmNjlOqtc4991yGDx9Ojx49vBpvnM76GeSIadOOuG/hhmzuf39T/QwfQHKUg/tmDmPGiOT2C7qTBAYG0qdPH3bt2kXBCeOJ/OxzSr/4nNif/MTXoanjyLp168jbsZWe9hQOVTs4MWcjAN/2HHHUWP19oJT/0ZnzLiQgIIArrriC22677ajEHGBCWizJUQ7c8yLLkocDh2dNBCvxmZAW20kRq+4oNDSUYcOGed1CsXL9euoOHsQWHk7YCSfUH1+4IZvZc1cdkZhD11+8XL9baO/egNU1SanO4nQ62bNnDwDVIfEML9hDVHU5JYEhbIg7vEZEfx8o5b80Oe9i+vXrR0RERKP32W3CfTOHAdZ/vO668yGHMoitLAbgvpnDsNu6b6cM5X9KlywBIOyUU5CgIODw4uXGCli6+mI199qQ7JoanCKU//ADtYcO+TgqdbzYv38/VVVVOBwOfn3+CUzMtmbNv0saRp3NDlA/gaO/D5TyT5qcdzMzRiTzzDXjSIpycMgRydboVACmFu/kmWvGdclSAeU/Pv/8c5YsWUJxcbHX55S4urSEn356/THPxWqN6cqL1Xr06EFISAjVtbWUjh0DdXX1H1CU6mjuNSF9+/bl7JEpnFdhff1d0rD6MUlRDv19oJQf05rzLmjVqlVs3LiRU045pb7/uacZI5I5c1gSK3YXUBuwDt55jV+F5ZGq/xGrY1BXV8d3331HTU0NgwcPJjIyssVzanJzqdq0GUQIP+3U+uPeLkLriovVRIS0tDQ2bdpE8ejRRK5aTdlXXxF94YW+Dk0dB3bv3g1YV3Cq9+4lcH8WBARw851X8yNnAIkRVimLzpgr5b80Oe+CMjIy2LVrF8nJyY0m52CVuEzsH0fF5TPZ885rlH/7Laa6ur6sQKnW2rdvHzU1NYSGhnq9GLR0sTVjHDJqFAEeNereLkLrqovVzjjjDKZOnUrwnj1kvPwKpUu/wdTWIgH6X67qODU1NWRmZgJWcl764UcAhI4bx9BRfXwZmlKqFbSspQtyJ+TuRT/NcQwfhj0+HmdZGeUrV3ZwZKo7c18uT0tL83qHT3c5R/jkM4443nDxckNdfbFaQkICsbGxhI4ejT0qCmdxMRVr1vg6LNXNFRQU4HA4iIyMJDY29vD7z6OkTCnl/zQ574L69u0LWAt/Kiubv+wvNhvhp1rlBO5ZTKXawn25vKmrNQ05KyspW7YMODo5aLh42VN3Wqwmdjth7vffkq98HI3q7nr06MHtt9/Oz3/+c0x5OeUrVgAQfoYm50p1JZqcd0FRUVHExsZijCEjI6PF8e7ESBelqbaqrq4mKysL8D45L1+xAlNRQUCPHgQPGXLU/Z6Llz11l8Vqu3bt4q233mLz4MEAlH6lybnqeCJCREQEZcuXY2pqCOzVi6B+/Vo+USnlN7QAsovq27cvBQUF7N69m0GDBjU7NmzSyRAQQPWePVTv3UtQH609VK2TkZGB0+kkKiqKmJgYr85xX6kJP+OMJstgPBcv55VUdqvFasXFxWzevJmUpCRSRKjaupWanBwCk5J8HZrqhpxOJyJS/15zX6kJP/10r8vQlFL+QWfOu6jW1J3bIyIIHTcO0Evrqm1KSkoICgryut7cGENpIy0UG+NevHzBmBQm9o/rFok5HH6P7s/NxT52LKCz56rjbNmyhccff5zPP//cev+5/q1pSYtSXY8m511U3759CQwMJDw8HKfT2eJ4LW1Rx2Ls2LHcfffdnHXWWV6Nr965k5r9+5GgIMJOOrGDo/NPnuVnxROsnVH1w7HqKHv27KG0tJSqqiqqtm6lNicHCQkhdMIEX4emlGolTc67qPDwcO6++26uvvpqbLaWf4zu2ZPyFStwlpV1dHiqG7LZbISEhHg1tnTpUgBCx4/HFhrakWH5Nffi7dzERADKli3DWV0NWLukLtt5kHfX7GPZzoNdcjdU5T/cV1HT0tLqS8rCTjoJW3CwD6NSSrWF1px3YXa73euxQf36EdirFzVZWZR99x0RU6Z0YGSqO3E6nc1+AKxzmqNqxsuWfgNA2CmndFaYfiktLY1Vq1aRWVzMoIQEavPzqfjhB76OTOP+9zcdsUtqcpSD+2YO6/ILYVXnKysrIz8/H4A+ffqQt/RrAMJPP82XYSml2kiT826grKyMsLCwZseICGGnTKLwjTcp++ZbTc6V1z755BO2b9/OGWecwahRo464b+GG7KOSzN5hNp5ZsQIbEHbKpE6O1r/Uz5zn5mI/7VRq/zePDfM+ZnbASTScJ88pqmT23FXdolON6lx79+4FIDExkWCnk4o1awH9cKxUV6VlLV1YbW0tTz/9NI899hilpaUtjg+bZCVKZd9809GhqW5k7969HDp06KgrNQs3ZDN77qojEnOA+N1bsFVXUxsbT/DAgZ0Zqt8JDw8nOTmZ1NRUSE8HoHjpN0cl5kD9sfvf36QlLqpV3CUtffr0sXqb19YS2Kc3Qb16+TYwpVSbaHLehQUEBNQnTN50bQk76SSw262Wiln7Ojg61R1UVFSQm5sLWL/43eqchvvf39RokjkubysAy2IHoDkmzJo1i+uvv54+U6ZgROhVmE1sRVGjYw2QXVTJit0FnRuk6tLcM+d9+/alzLXeI3ySzpor1VVpct7FuS+bu3dvbI49IoKQ0aMBKPtWZ89Vy9y/9OPi4ggPD68/vmJ3wVEz5m7u5Hxp9ABNMqG+9aQ9OpqqftaeBOPytzV7Tl5J8zv/KuVmjGHAgAH07NmTPn36UPqNe73H8V1SplRXpsl5F9eafufg2pAIKPvm244KSXUjnjNynppKHuMqikgrzsGJsDpxoCaZHiorK6kbb7W1G5fXfHKeGOFo9n6l3ESEM888k1mzZhFYUEDN3gwICNAWikp1YZqcd3G9e/cGoKCggJKSkhbHh7vrzpctw9TVdWhsquvzrGX11FTy6J413x7di5KgME0yXd555x3++te/Yk8fCcCY/O2IOXp/AsHq2jIhLbaTI1TdgXvSJWTMaOweV7qUUl2LJuddnMPhIMm1HXhGRkbL40eMwBYZibO4mMoNGzo6PNWFVVZWkpOTAxw9cz4hLZbkKAcN9/J0zwivShysSaYHh8OBMYbcADtOh4OYqlL6FWUfMcb9Wt43c1i32SVVdbyMjAyqXb3z3Yv93ZMwSqmuSZPzbsA9q+kuQWiOBARYC0OhvjZRqcbU1NSQnp7OwIEDiYiIOOI+u024b+Yw4HBSaTNOxrpqqVf2GKxJpgf3ezQjK4tI1/vvtJIj14kkRTm0jaJqlfLycl5++WUeeeQRKkpLKVu+HDjcmUsp1TVpn/NuYNCgQVRXVzNgwACvxodNmkTJokWUffMtCb/4RQdHp7qqiIgIzjvvvCbvnzEimWeuGVff53xAYRZR1eWUBzq45eYLNMn04L7ykJOTQ8BJJ8HixVwblMtZs046YvMm/TCjWsNzwbbZvh1nSQm2qCgcw4f7ODKl1LHQ5Lwb6NevH/369fN6vHtRaMWaNdSVlmptomqzGSOSOXNYEit2F1D7qlUmlXj6KaSPSfVxZP4lIiKC2NhYCgoKKOiXhg2oWLmSE1PCsDnifB2e6qI814TU78o7cSLSit2jlVL+R8tajkNBvXoR1KcP1NVR/t13vg5H+aHq6moyMzOp82LRsN0mTOwfR+9dVnIeri3cGuUubdlXWUlAUhKmupryH1b6OCrVlR3R39zdQtE1+aKU6ro0Oe8mnE4n+/bta0VLRd0tVDVt7969vPTSSzz33HNejXeWl1O+1rVl+MSJHRlal1Vfd56R4dHSVN9/qm3Ky8vrNwhLjYujYt06AMJP1uRcqa5Ok/NuYuPGjbzwwgt8+umnXo13b1Chi0JVY9wzcj179vRqfPmq1VBTQ0DPZAJd7T3Vkfr27cuIESMYN24cYSdrcq6Ojfs9Gh8fD+vXg9NJUN++BKak+DgypdSx0przbsLd7zw7O5uqqiqCg4ObHR86YQLY7dTszaBm/34CvUzC1PHB/Yu/YX/zppQvXwZA2Ikn1e+IqY4UFRXFJZdcAkDtoUMgQtW2bdTk5RGYmOjj6FRX426d26dPH8qXW+WJYSfrVSulugOdOe8moqKiiI6OxhhDVlZWi+Pt4eE4Rlgr+su+W9HR4akupLq6mn379gFH9zdvSpk7OZh4UkeF1a0ExMTgGDoUgHJ9/6k2SE9P5+yzz2bUqFGUr7Def6En6vtPqe5Ak/NupDX9zsGa5QQod/XGVQogMzMTY0z9B76W1BUVUblxI6DJQUuMMeTn57N582ZCXf3Oy77T959qvfj4eCZMmEDP0FCqtu8AIHTCCT6OSinVHjQ570bcpS1eJ+cnnQhA2XffYYzpsLhU1+J5udwbZStWgDEE9etHYA8tz2jOoUOHePrpp/nf//5H0Ph0gPqSBKXaoszVcSt46FACYmJ8HI1Sqj1oct6N1Ldq27eP2traFseHjB2LBAZSm5NDjZcJver+MjMzAUhN9a5XeX2960k6a96SmJgYIiIiqKuroyAp2Vr3kZVFddY+X4emupAtW7awatUqioqKDr//TjzRx1EppdqLJufdSGxsLOHh4dTV1XlVd24LCSFkzBjgcM2wUlOnTmXatGn079/fq/HuLcNDT9LkoCUiUv8hOis/j5CRIwF0vwHVKitWrOD9999n+/bt9TPn+v5TqvvQ5LwbERHOOeccrr32Wnr16uXVOaH1pS1a96osKSkpTJo0iRgvLpHX5OVRvXMniBA2YUInRNf1ua9IZGRkEHqivv9U63hOvvR0OKjJyAC7ndDx430cmVKqvWhy3s0MHTqUPn36EBDgXZdMdylC+XcrME5nR4amuiH3jK9j6FDsXiweVYfXhmRlZRHiWsBXvlzXfSjv5OTkUFNTQ0hICCFbtwHgGDEce3i4jyNTSrUXTc6PcyEjRyIhIdQVFNSv+FfHrx9++IH169dTUVHh1fiyZa6SFm2h6LXExESCg4Oprq6mOCXFWveRl0e1l7v7quObe8F2amoqFSusNpxh2iVJqW5Fk/NuaNu2bXz00Uf1Wzs3R4KCCE13dY3QS+vHNWMMX375JfPmzePAgQNejS9zbz50km5+4i2bzVZf2pKVm0vI2LGA1p0r73gm5+568zCtN1eqW/HL5FxEbhaRPSJSKSLfiUiTxawiMktEvhaRQ67bZ82NPx6sWrWK77//np07d3o1vr6loi4KPa4dPHiQ8vJy7HY7ycnJLY6vycykdn82BAYSmj6uEyLsPiZNmsTVV1/N6NGjCT3R+u9K33+qJcaY+uS8Z1AQtTk5SGBg/Qc8pVT34HfJuYhcDjwO3A+MA9YCn4hIUw2UzwBeByYDE4FMYJGIpHR8tP7JPSvnbonXEvfGMeUrVmC8aMGouif3L/2UlBSv1iy4u7SEjB6FLTS0Q2Prbvr27cuAAQNwOByH132s0HUfqnmFhYWUl5cTEBBA5M5dAISMGYMtJMTHkSml2pPfJefAbcDzxpiXjTGbgJuAcuD6xgYbY642xjxtjFljjNkC/Bzr+5raaRH7Gc9uEN4sMnMMG4otIgJnaSmVmzd3dHjKT7k/zLkXLLbEvbOs1rseG133obwVExPDXXfdxU9+8hMqV2gLRaW6K79KzkUkCEgHPnMfM8Y4XV97W9QaCgQCBc08T7CIRLpvQETbo/Y/PXv2xG63U15eTkFBky9DPbHbCZ3gvrSudefHK/fMuTfJuTGGshXfA1rv2lYZGRl89tln7MrMJHScVRak6z5US0JCQujVqxfl37kXg+r7T6nuxq+ScyAesAMNVzLmAklePsYjwH48EvxG/A4o8ri1vGNPFxIQEEDPnj0B70tb3P/B61bix6fS0tL6D3Le7AxavXsPdQcOIEFBOEaN6ujwuqUtW7bwzTffsHnz5sP7Dej7T3mhavt26goKEIeDEH3/KdXt+FtyfkxE5LfAFcBFxpjKZoY+DER53LzbsacL8Sxt8YY7OShfuRJTXd1hcSn/tH//fgB69OiBw+FocXz599asecjo0diCgzs0tu7KfYUiIyPjcN35999j6up8GZbyUyUlJbzyyit8+eWXh1uYpqcjQUE+jkwp1d78LTk/ANQBPRoc7wHkNHeiiNwB/BY4yxizrrmxxpgqY0yx+waUHEPMfsn9i7+wsNCr8cEDB2KPicFUVlKxcWMHRqb80aBBg/jNb37DBRdc4NX4cld/5dATTujIsLo19wfo/Px8TN++2MLDcZaUULlpk48jU/4oIyODvXv3sm3btsPvPy0pU6pb8mobSRFZ1crHNcD5xph9rTrJmGoRWYm1mHOB67ndizufbCa+u4B7genGmB9aGWu31K9fP379618TFRXl1XgRIXR8OiWffkb59z8Qqq25jjuRkZFERka2OM4YUz9z7l6roFovLCyMuLg4Dh48SFZ2NqHjx1O6eDHl3/9AyMiRvg5P+Zm9e/cC1sRLxUsvAxCm7z+luiVvZ87HAJ8D73pxew8YDrT1WvfjwCwR+amIDAWeAcKAlwFE5DURedg9WETuBh7A6uayR0SSXLfjei/jwMBArxNzN/csqDvxUqoxNRkZ1OblWf2Vx4z2dThdmmf5mb7/VHPc64d6BgVRV1SEhITgGDbMx1EppTqCVzPnLo8aY/K8GSgit7cxHowxb4pIAvBnrEWga4AZxhj3ItHegGcz4NlAEPBOg4e6H/hTW+M4HrmTg4qVKzG1tYgXva5V17d3716WLl3K4MGDGT9+fIvj3cmjY9QobF7Up6um9e7dmzVr1pCRkcGkE6zXvnzlSozTidj8repQ+UplZSU5OVZlZ1x2NiVY6z0kMNC3gSmlOoS32VcakN+Kxx2G1TGlTYwxT9JEGYsx5owGX/dt6/N0d7m5uXz++efYbDauuOKKFscHDxqELTISZ3ExlZu3EDJyRCdEqXxt9+7d7Nixg5CQkFYl56EntDxWNc+9NqSoqIigIUOQ0FCcxcVUbduGY8gQH0en/EVWltVQLCYmBllrLalyt99USnU/Xk3NGGP2YpWqeMUYk2mM0ZYDPhYQEMD27dvZsWMHtV7s/Cl2++F+y3pp/bjRmv7mAGX1ybkuBj1WsbGx3Hzzzfz617/GHhRUv9aj/HtdOqMO83yPlq+0/m2Ejk/3ZUhKqQ7Umuum60TkOxGZJSLdatOe7io2NpbQ0FDq6urIzs726hytez2+1NXV1c/KeZOcV2fto3Z/NgQE6KLhdiAixMfHIyKAvv9U00JCQugZGWm9/+x2Qkbreg+luqvWJOenAxuBvwHZIvKqiJzaMWGp9iAi9QvOvN2MKHSCKzlYuVL7LR8HcnJyqKmpweFwkJCQ0OL4+v7mw4djCw3t6PCOO+5SofIffsAY4+NolL+YMmUKd955JwNKywBwDB2KLSzMx1EppTqK18m5MeZrY8z1QDJwC9AXWCIi20TkbhHxdgdP1Ylam5w7hg7F5q573b69I0NTfsA9a56amlo/e9ucwy0UtaSlvZSVlfHOO+/wzDPPEDxiBBIcTF1BAdW7dvk6NOVHnAYyFn8LQOGA4dQ59cObUt1Vq9sBGGPKjDEvG2NOBwYBbwM3Axki8l57B6iOjecuhN7MxElAACHuuvMVemm9u3N/aOvVy7tNcsu13rzdORwOtm7dSl5eHgXFxYSMGQNo3bmy1NbWsnBDNqc88gX7l1o7gz6638Epj3zBwg3elSsqpbqWY+rVZYzZATwE/B/WLpvntkdQqv0kJydjt9spLy+noKDAq3O07vX4YbPZCAwMrL/C0pyanBxqMjPBZqv/AKeOnd1ur/9wlJGRQairY46+/xTAv157k8/ffoXIQ3tIK7baKW6M60tOUSWz567SBF2pbqjNjaxF5DSsjX8uweo7/hbwYjvFpdpJQEAAffr0oa6ujurqaq/OcbiSg0PLV5C54wAT+sVht7Vc8qC6nosvvhin09nyQDz6mw8bhj38uN7jq92lpqayZ88esrKyGOL+cOyqO/em3Eh1T3VOQ2ZmJuG2anoWW92Ms8ITKAq2ejIIcP/7mzhzWJL+H61UN9KqmXMR6Ski94jINmAxMAD4FdDTGDPLGLO8A2JUx+iaa67h2muvJTk5ucWxCzdkM+PjfCrtgQSUFHH34+/q5dNuzmazYfNiwxt3mVOobhne7jzXhoSMHgWBgdTm5lpXKtRx6+uNmYRShTHQN9tqp7ghLq3+fgNkF1WyYrd3V0WVUl2D18m5iHwM7MVaDDofGGqMOcVVf17WUQGqY+ftzNvCDdnMnruKrNJatsT0AWDkwV16+bSbqmtlNx7dfKjjuMtaDh48SKUxhIwcCWjd+fFub6aVkB8yIYzItxYIb/RIzt3ySio7NS6lVMdqzcx5DXAp0MsYc7cxZmsHxaQ6SEVFRZObEdU5Dfe/vwn3ktH18f0AGHlgV/2x+9/fpB0CupFXXnmFp556yqtOPjV5eVTv2QMihKbr5iftLSQkhPj4eMDqoKN15wrAlB4E4EBdKAMPWZ2VGkvOEyMcnRqXUqpjtaaV4vnGmHd158+u6Y033uCvf/0rO3fubPT+FbsLyC46PPuyPr4/ACMP7ARj9PJpN1NbW8v+/fs5cOAA4V7Uj7uTxOChQ7BHRnZ0eMelPn360LNnT8BjUfYPOnN+PKsrOQBAQHEFgaaOg45IskPj6u8XIDnKwYS0WB9FqJTqCF4tCBWRecC1xphiL8f/B/iNMSbvWIJT7SfUtWFMZmYmgwcPPur+hpdFt8b0psZmJ7aqhJ5lB9gfntDoONU17d+/H6fTSVhYGNHR0S2OdyfnYdpCscOce+659SVodT1TwG6nJiuLmuxsAr1YL6K6l9ra2vqdnXvmurq0xPYF178Rd7HifTOH6WJQpboZb2fOLwASRCTSi1sUMBPQdg5+xL3gLCMjo9H7G14WrbYHsiXG6pE+8sCuJseprsldyuLt5kMVK1cCEDJe6807iufPwR4ehmPYMEBnz49XNTU1pKen069fPy4Vq1PLxrh+9fcnRTl45ppxzBihH9yU6m68baUowLaODER1LHdyvn//furq6rDb7UfcPyEtluQoBzlFlYfrzuP6M/LgbkYe2MmivieSpJdPuw33zqDebD5UV1hI1fYdAFpv3glqamowxhB6wglUrl9P+YrviZo509dhqU4WEhLC2WefjamrY9s/5uAErpl1AVMTU0mMsP4v1hlzpbonb5PzyW147H1tOEd1kLi4OEJCQqioqCAnJ4eUlJQj7rfbhPtmDmP23FUIVouu9fH9YJvVsQX08ml3YYw5Yua8JeWrVwMQlJZGQKx+OOtIH3/8MT/88APTp09n6PjxFLz0ks6cH+eqtm7FWVaGLTycE6aegDSYWFFKdT9eJefGmCUdHYjqWCJCr1692L59O5mZmUcl5wAzRiTzzDXjuP/9TWQXVbIltg91YiOxopDnpqdwpl4+7RYKCwspKyvDZrPVL0BsTsWqVQCEjtdZ844WGhqK0+kkKyuL9KlTQYTq3bupzc8nICHB1+GpTuL+AJ2cnEz5D66SsrFjNTFX6jjR5h1CVdfjTs7dJQ2NmTEimTOHJbFidwF5JZWYbYNh22YmlGYBYzotVtVxjDGMGTOGuro6AgJa/i+gfKWVnIeM0+S8o3luRmSPiiJ48GCqtmyhfOUqImdM93F0qrMUFhby8ssvExgYyNV5Vr15aPo4H0ellOosrdohVHVt/fr1Y8yYMQwdOrTZcXabMLF/HBeMSSFxorUbZPmqlZ0RouoEsbGxXHDBBVx88cUtjnVWVVG5fj2gyUFncF/RKiwspKSkpL7GX99/xxd32VliYiJVK62yJl3vodTxQ5Pz40ivXr244IILGD58uNfnhLgSsoofNDk4HlVu2ICpqcGeEE+gF/Xp6tgEBwfTo0cPwLUZkfv957p6oY4P7uS8Z3Q0dfkHkMBAHKNG+TgqpVRn0eRcNcs9W1O1fTt1RUU+jkYdq5qamvqOPd5w17uGjkv3quWiOnbuDjqZmZmEjLOS88rNm6krLfNlWKoTuUsPE0pKAHCMGIEtONiXISmlOpEm58cZp9NJdna2V1u2AwTExRHUty9wuGuH6rqysrJ4/vnneeaZZ7wa7y6n0JKWzuNZdx6YlERgSgo4nVSsXePbwFSnqKqqIjc3F4DoHa4WproYW6njilfJuYisFpFV3tw6OmB1bDZs2MBzzz3HokWLvD6nvrRlpZa2dHXuD2VJSUktjjVOJxWrrA9kuhi08/Tu3Zvhw4czylXG4E7MtLTl+LBv3z6MMURFRWGrX4ytH46VOp54261lQUcGoTqP+5J5dnY2tbW1XnXrCB2XTtH/5tV37VBdl/tyuTf9zau278BZUoItNBTHkMEdHZpyiYmJ4dJLL63/OmRcOkXvvkf5Kn3/HQ/cH6B7JSZSvWcPiBCqyblSxxVv+5zf39GBqM4RExNDaGgo5eXl5OTkeLVDpHvmrnL9epxVVVr72EUZY1q1M2iFq6QlZMwYxIsPcapj1C8KXbsWU1ODBAb6OCLVkYYNG0ZQUBBhGRkABA8ciD0qysdRKaU6U5tqzkUkWkR+LiIPi0is69g4ETl6ZxvlV0TkiJpWbwT27o09Ph5TU1PfVk91PQcPHqSiooKAgACvylrq+5trvXmnM8Zw8OBBdu/eTVC/ftijojAVFVRu3uzr0FQHS0hIYOLEifTYZe3MrO8/pY4/rU7ORWQUsA24G7gDiHbddTHwcLtFpjqMe9a0uc2IPInHZVUtbem66tuz9eyJ3YudBg8vBtV6886WmZnJk08+ybx580CEEHe/c33/HTfqOyWlj/dxJEqpztaWmfPHgVeMMQOBSo/jHwGntUtUqkN5tmrzlru0RTdD6bpaU29es38/tfuzwW4nRPsrd7rk5GRsNhulpaUUFRUdLm3R91+3lpGRwZo1azi4f3/9VRLtlKTU8acthaQnADc2cnwf0PK1cuVzPXv2REQoKSmhqKiIKC/qGd3dOipWrcY4nYhNu3B2NePGjSMqKop+/fq1ONY9Q+sYNgxbaGhHh6YaCAwMJCkpif3795OZmUl/jytXxhjtOd9NrV69mjVr1nBi3770cToJ7NmTwORkX4ellOpkbUnOq4DIRo4PAvKPLRzVGYKCgjj33HOJiYkhLCzMq3McQwZjCw3FWVJC1fbtOAZr946uJiUlpX57+JbUl7Rolwif6dWrF/v37ycrK4sRU6ciwcHUFRRQvXsPwf3SfB2e6gDuq5lxBw4AEKL9zZU6LrVl+vM94I8i4m4ZYESkN/AI8L92i0x1qPT0dPr16+dVK0UACQggZMwYAMq133m3V6GLQX3Oc+G2BAXVlxdpaUv3VF5ezsGDBwGI3LARsNrYKqWOP21Jzm8HwoE8IARYAuwASoB72y805W8Ob0aki9K6mh07drBx40bKylreAr6uqIiq7dsBnTn3JXdynpOTQ3V1df37z71QUHUv7jUh8XFxGNduzLozqFLHp1Yn58aYImPMmcBM4FfAk8A5xpjTjTEt/+ZXfsEYw6ZNm1i0aBG1tbVenRNa3zFiJcaYjgxPtbNly5bxzjvvsGnTphbHVqxZA8YQ1KcPAfHxHR+calRUVBQREREYY9i/f//h959uRtQtuUtaksPCMJWV2KOiCPJifYhSqvtpdc25iKQaYzKNMUuBpR0Qk+okH330EWVlZQwZMoTevXu3OD5k1CgICKA2J4fa/fsJ9LJ+WfmW0+lsVaeW+v7mOmvnc9OmTSM4OJikpCQC4+JAhJqMDGry8ghMTPR1eKoduZPz+JISAELS03XhvVLHqba88/eIyBIRmSUiMe0ekeoUnpsRedvv3BYaimPYMEBn77qS/Px8qqurCQoKItGLhO7wYlBNzn1t1KhRDB48GIfDgT0iguAhQwCra5LqPpxOJ/v37wcgesdOQPcXUOp41pbkfDywAvgjkC0iC0TkUhHRPd27mNZuRgSHa5C17rXrcM/IpaSkYGthJs5ZXU3lOmsXWO2v7H8Obwam77/uxGazceutt3L5ZZcRvGIFoO8/pY5nbak5X22MuRPoDZyN1T7xOSBXRF5q5/hUB/LcjMjbGnL3AiXtGNF1uJNzb0paKjdsxFRXY4+LI7BPn44OTXlh165dfPnllxQWFh7ejEiT824nLCyMtMBAnIWFiMNRf5VSKXX8aXNBm7F8aYyZBUwDdgM/bbfIVIfr2bPnEbsQeiPENXNXtX0HdYWFHRidai/uKyPuD2PNKV/5A2DN0OpGN/5h8eLFfPXVV+zZs6f+/Ve5ZQt1pbr+vrupX+8xahQSFOTjaJRSvtLm5FxEeonIXSKyBqvMpRS4ub0CUx3PvQshHJ5dbUlAbCxBadYGKOVa9+r3ysrKKCgoALxLzrW/uf/xvMIVmJRkLcR2OqlYu8a3gal2s2DBAr788ksK3B+OdTG2Use1VifnInKjiCwB9gA/Ad4E+htjTjXG/Kud41MdzP2LPycnx+tztLSl6wgNDeXWW2/liiuuICQkpNmxxumk3N1fWRej+Y2GC7fr339a2tItlJWVsXbtWr766iuq1qwFrE4tSqnjV6tbKQK/B14HfmWMWdvO8ahONnHiRE466SSio6O9PidkXDqFb79TfwlW+S8RITo62qufb/XOnTiLipCQEByuriDK99zJeV5eHlVVVYSMS6fo3ff0/ddN1LdQjIlBMjLAZiNk9BjfBqWU8qm2JOe9je5A0220Jil3q1+UtmEDzspKbA5HO0elfKG+3nX0aCQw0MfRKLfw8HCio6MpLCwkKyuLXu7339q1mJoa/Vl1ce4rIkl2OwCOoUOxh4f5MiSllI+1pVuLEZFTRWSuiCwTkRQAEfmxiJzS/iEqfxOYmkpAQgLU1FC5fr2vw1FNqKur46233uKbb77xahfY+v7meknd73iWtgT164c9KgpTWUnl5s0+jkwdK3dyHnfgAKDrPZRSbas5vwT4BKgAxgLu/uZRwD3tF5rqLFu3buXNN9/khx9+8Gq8iNTXROqldf+Vm5vL5s2bWbp0KXbXrFxz3ItBtb+y//FcGyI22+H3n+430KXV1dWxb98+AKI2bgIgNH28L0NSSvmBtnRr+T1wk6uFYo3H8W8A/a3eBR08eJAtW7awY8cOr8/RzVD8n7uWtVevXi22RazJyaFm3z6w23GMGt0Z4alWGD58OLNnz+ayyy4DDn+AKtdF2V1abm4utbW1OIKDCV6vm38ppSxtqTkfDHzVyPEiIPqYolE+4b5k7t6MyJv+1vUdI9aswdTVIV7MzKrO1br+5laS5xgyROtd/VBYWBhhYYd/Lu5+5xUrV3n9nlX+p7i4mODgYJJCQxFjCOrTh4D4eF+HpZTysbbMnOcAAxo5fgqw69jCUb6QnJyMzWajvLycQ4cOeXVO8KBB2MLCcJaUULV9ewdHqNrCnZx7szOo9jfvWkKGD0eCg6k7dIjq3Xt8HY5qoyFDhnDXXXcxuboagBDtb66Uom3J+fPAHBE5ETBATxG5GngMeKY9g1OdIyAggOTkZOBwQtcSCQggZMwYQEtb/FFJSQmFrh1cU1JSWhxfvspVbz5OkwN/lZWVxbx58/jiiy+QoCBCRo0CdL+Brs5ms+F0beim7z+lFLQtOf8L8F/gcyAcq8TlBeBZY8w/2zE21Yk8dyH0lnuWtUIXhfod94esxMREgoODmx1bV1JC1datAISMG9vhsam2KS8vZ/369Wx2dWhxv/90UXbX5O5I7Kyqqu96pTuDKqWgDTXnrh7nD4rIo1jlLeHAJmNMaXsHpzpPamoq3333ndcz53B4lqd85Uqte/UzJSUl2O12r+rNK9asAWMI7N2bwMTEjg9OtYn7Z3ngwAEqKioITU/nILootKvaunUrixYtYkhcHKk1NdgT4gns3dvXYSml/EBbFoQCYIypBja1YyzKh1JTU7Hb7QQFBeF0OrHZWr6oEjJqJAQEUJubS+3+/QR6UT6hOseECRNIT0+n2lXL2hx3WZK7A4/yT6GhocTGxlJQUEBWVhb9xowBEWr2ZlCbn2/tPaC6jMzMTA4dOkRRZSWpWJMdOsGhlAIvk3MRmeftAxpjLm57OMpXIiMj+e1vf0tAgPef12yhoTiGDaNy3TrKV60iSpNzv2K32wkJCWlxXH1/c72k7vdSU1MpKCggMzOTgQMHEjx4MFVbtlC+chWRM6b7OjzVCu6rlLH79gO6+ZdS6jBva86LWnFTXVRrEnM37XfetZnqairWrQMgRBej+T13aYs7sat//2lpS5dSV1fH/v1WUh65dg2gnZKUUod5lY0ZY67r6ECOlYjcDNwJJAFrgVuMMSt8G1XXVFtb63WiHjo+nYJXXtFFoX5kxYoVrFy5kvHjx3PCCSc0O7Zy0yZMVRX2mBiC0vp2ToCqzdxtMfft24fT6SQkfRyH/vtfff91MfWbDwUFEZaTiy0sDMeQIb4OSynlJ9rSrcXviMjlwOPA/Vi7lK4FPhERXd3WCkVFRfzrX//iH//4R30ngZa4N0Op2r6duiK9cOIPMjIyyMvLo6KiosWx7iseIenjtN61C0hISMDhcBATE0NZWVl9KUTl5s3UlZb5ODrlLXdXrB4BAQgQMnasbuSmlKrXLZJz4DbgeWPMy8aYTcBNQDlwvW/D6lrCw8M5ePAgZWVlHDx40KtzAmJjCUpLA6B89eqODE95qTWbD7nb8DnGjmPZzoO8u2Yfy3YepM7p3Ycz1blsNhu33347N910ExEREQQmJRHYsyc4nVSuW+vr8JSX3O/RONf/s6Fa0qKU8tDlk3MRCQLSgc/cx4wxTtfXE5s4J1hEIt03IKJTgvVzdrudnj17At5vRgSe/c617tXXSkpKKCoqQkRa3HzIOJ1UuDYf+vVGw5XPL+fWN9Zw5fPLOeWRL1i4IbszQlat1LDkzL2rpPY77zpiY2Pp0aMH0Zu3ABCii0GVUh66fHIOxAN2ILfB8Vys+vPG/I4jF7F6n4l2c23ZjOhwv3NNDnzN/XNLTEwkKCio2bHVu3dTV1hIpT2Q7wLij7gvp6iS2XNXaYLux+rq6gCP958uCu0yJk+ezPXnnkv81q0QGFi/26tSSkH3SM7b4mEgyuPW8k4txwl3KUSrNiNyzZxXrl+Ps6qqQ+JS3mlNSUvpD1YytzWmN7W2I2dj3UUt97+/SUtc/ExdXR0vvfQSDz/8sKvu3HXlau06TE2Nj6NT3ip3vf9Chg/H5nD4OBqllD/xts/5r7x9QGPME20Pp00OAHVAjwbHewA5jZ1gjKkC6rNIXQh3mHvmPC8vj8rKShxe/NII7N0be3w8dQcOULlhg/br9SF3cu7NzqBZXy0jCNgYm9bo/QbILqpkxe4CJvaPa8co1bGw2+1UVlZSV1dHVlYWgwYOxBYVhbOoiMotWwkZOcLXIapmFBcXExYWRoXrSofuL6CUasjbxta/8XKcATo1OTfGVIvISmAqsABARGyur5/szFi6g/DwcGJiYjh06BD79u2jf//+LZ4jIoSOG0fJokWUr1ylybkPJSQkUFZW5tXMOeutBYQb4xtPzt3ySirbIzTVjnr16kV+fj6ZmZkMHjyY0LFjKV28mPKVP2hy7ufeeecd9u/fz6k7dpKI7i+glDqat33Om//t7XuPA6+KyA/ACuDXQBjwsi+D6qqGDh1KSUmJV7PmbqHpVnJuLQqd1XHBqWbNnDnTq3E1uXkE5WVTh7Alpk+zYxMj9JK7v0lNTWX16tX1V0pC0sdRunix1e/82mt9G5xqknvzobq6Ohw7dgAQOm6sj6NSSvmb1m8J6YeMMW+KSALwZ6xFoGuAGcaYhotElRfOPPPMVp8Tkj4esNopGqcTsR2vyxm6Bvcl9azYFCoCG0++BUiKcjAhLbYTI1PecJct7du3j7q6uvqrVeWrVmGM0VI9P5WTk2Ml5gEBRJSUEDxwAPboaF+HpZTyM21KzkWkF3A+0Bs4oiWEMea2doir1YwxT6JlLD7jGDIYCQ3FWVxMxfYdrA2II6+kksQIK7mz2zRZ6GjFxcWEh4dj8+KDkbuzTsyJ1g6iwuFFoO6vAe6bOUx/dn4oPj4eh8NBZWUlubm5JI0YgQQFUXfwIDV79xLUt6+vQ1SNqO+mVOe0Nh/SEkClVCNanZyLyFTgPWAXMATYAPTF+n2uvfS6CWMM+fn5hIeHExoa2uJ4CQggdMxoyr5dxgMP/5fXkw5vG58c5eC+mcOYMSK5I0M+7r344otUVlZy3XXXkZTUVBdRi7vt3tCzTuWZ1DHc//4msosO15Yn6c/Mr4kIvXr1YseOHWRmZtKzZ08cI0dSsXIl5StXaXLup9xlSLE5VovSUNcVR6WU8tSWmfOHgceMMfeJSAlwCZAH/AdY2J7BKd9544032LZtG+eddx7pXs7u7Os1iGiWkZq1DTySc3fP7GeuGafJXgcpKiqiuLgYESE2tvkylLrSUqq2bAWsxWgzeiRy5rAkVuwu0KsdXcjAgQMJCAggJiYGgNBx46zkfNVKoi+52MfRqca4k/OozZsB3RlUKdW4thQGDwVec/29FggxxpQCfwTubq/AlG/16GF1pvS233md0/B8YSQAww7uPuI+7Znd8dw/px49erS4+VDF6jXgdBKYmkpgj0QA7DZhYv84LhiTwsT+cZqYdwETJkzg8ssvZ9CgQcDhlnwVuhmYX6rfvReIzT9AQM9kAl07MiullKe2JOdlHK4zzwY8e+3FHz1cdUWt3Sl0xe4Cvg1Kok5s9KgoJKH80BH3e/bMVu3P/XPypr+5u6QldJzO2nUnIWPGgAjVe/ZQe/Cgr8NRDdjtdqZNm8bIYAeBtbX1O7sqpVRDbUnOlwOnuP7+EfA3EbkXeMl1n+oG3EnewYMHKS8vb3F8XkkllQHB7IyyZoKGFexpcpxqf63ZGdQ9sxqil9S7rDqnYdnOgyxYncXna3dTcKgQe1QUwQMHAlbXFuVfQkNDmTRpEuO2bLG+1s2HlFJNaEvN+W1AuOvv97n+fjmw3XWf6gZCQ0OJi4vj4MGD1i6ErkvnTXH3wt4Yl8agwiyGH9zNkl5H9+/Vntntr7a2luxsa4FZSzPnprqainXrAAgdr4vRuqKFG7LrF/CeEJDJiMBc/m1L4YqLzmV0+jiqtm2j4oeVRLahJarqWKamhoq11uZfIXrlSinVhFbPnBtjdhlj1rn+XmaMuckYM8oYc4kxZm/7h6h8xT0L601py4S0WJKjHGxybQU/vEHduWB1bdGe2e0vOzsbp9NJWFhY/eLAplRu2oSprMQeHU1Qmr/vLaYaWrghm9lzV9V31vn/9u47vq3qfvz/60iWLcvbjle2M8lw9iQhJIGEQAmrfGgZBT5tKU0nHR8o3/ZTCu2vBbqgH1poKRQoZbSU0TACCRBG9p5k2okTx473lOUhnd8fV1Jkx0OyJUu238/H4z4SX50rv6+UG7117vucU6FjAbA1V7Hq+Z0czTCqDKXnPLK0tLSwb98+irdvx9XQgCkpiZgxY8IdlhAiQnV7ESKlVDSQQZsEX2td0NOgRGQYOnQou3fv9mtQqNmkuG/lRO49WwrAyJpi4poaqI+OlTmzQyw+Pp6LL74YoMvFZ+zekpaZslBNH+N0ae5ffbDVfPQlLuMm5iCTHRMuHjodw28wvoS57HZMfkyDKkKvuLiYV199FavJxEqM8R6yUJsQoiPdmed8HPAUcGHbhzDG/ZmDEJeIADk5OSxatIgRIzpf3t1jxeRs+OrFFG9MJ6umlAmVJ9ieOUHmzA6xlJQUFi9e7FdbT4+qDAbte7bmV7Saix6gVsfg0FFYVQupys4BZzyu9AxMpSU07N1L3Lx5YYpW+PLcfUxvaEAhUygKITrXnZ7zv2FMoXglxmwtMjdeP5WamsqSJUsCOmbF5GwKL1lIzWuvcVdmA+Y75smc2RFCa03DDvdMLZIc9DntD6ZWlLjiGG6uJsNcR2lLPHVjJ5FYWoJ9xw5JziOE5+5jykmj8lNWBhVCdKY799WmAXdqrd/RWu/WWu/x3YIcn+iD4tyzEAw9fVjmzA6x+vp6Dh06RH19fZdtm/LzcVZVoaxWrBMn9kJ0Ipg6GkztKW1JNxn/BqKmGgOxZb7zyOFdGfTUaVRMDLGTJoU5IiFEJOtOcn4Qmc98wHA4HBw+fJj9+/f7fYxnFgLH3n24mppCFZoA8vPzefnll/nHP/7RZVv79u0AxE6ZgupioSIReTyDrtt+1fUk5xmmOrITY5hw2SIAGnbvRre09HKUoq2amhpj9V4gpaJCrj8hRJe6k5zfAzyslFqslEpTSiX6bsEOUIRXYWEhL730Eu+//77fx0SPHIk5NRXd1IRj/4EQRicCWXxI5jfv2zyDroFWCXqZy8b+5ky2NA3npysnEjtuLKaEBFx2O47Dh8MTrPDyXKOpLheWlhZiZX5zIUQXupOcrwPmAe8DJUCle6ty/yn6EU/SV1VVRV1dnV/HKKW8Nc0N7tUoRWgEsvjQucGgkhz0VSsmZ/P4LTPISjpX4uLEzOm4sdx70yVcnjsYZTIRO0NKWyKFt6Sl+Cwg158QomvdGRAa2AhB0afFxMSQkZFBSUkJp06dYsKECX4dFztjJrVr12HfsZO0r4Y4yAGqubmZ4uJioOue8+azJTSfOgUmE7HTp/VCdCJUVkzOZtnELLbmV1BS6yAjwXreoGvbjJnUf/Qx9p07Sb31S2GMVixYsIDshARqf/hDuf6EEH4JODnXWn8UikBE5Bo6dGjAyblnaeqGnTvRLpfM6RsCZ86c8S4+lJyc3Glbzx2MmAvGY46P77StiHxmk2L+6DTvzy0tLeSdKKCyspKZM2d671zZd2xHay1z2odRfHw8IyorOVNRScvocbx5rJqMhEaZxUoI0aHuzHM+pYOHNOAACrTWjT2KSkSUYcOGsXPnTr8WI/KwXnABKjYWZ3U1TXl5shpeCHhqWYcNG+b34kNyS71/qqur4+9//zsmk4kpU6Zgzc1FWSw4S8toPnWK6OHDwx3igHb4vU9IAN7Umfz5pd2AsWKyrP8ghGhPd7ozdwO72tl2A4eAaqXUs0qp9uf9En2Op575zJkzOJ1Ov45RFguxU6cC5xJDEVy+yXlX7DtlfvP+LCkpifj4eFwuF0VFRZhiYrBOngzI9RdOBw8e5Kl/vUWBe2D8/rQc72PF1Q5WPb+TNfuLwhWeECJCdSc5vxY4CnwNY87zae6/HwZuAr4CLAV+EZQIRdilpqYSGxuL0+mkqMj/DxLPKpQyKDQ0VqxYwdVXX80FF1zQaTtnXR2Nh4xZO2Kl57xfUkp5v6R5vrTJoOzw2717N6cPbscSb3zU7h90Ljn3rN53/+qDOF2ylp8Q4pzuDAj9MfBdrfW7Pvv2KaVOAz/XWs9RStUDvwV+GIwgRXgppfj85z9PUlISaWlpXR/g5pmyz75dkoNQSElJISUlpct2Dbv3gMuFZdgwLJkZvRCZCIehQ4fy2WefecvPjC9iT0nPeZhorTlxsgCAtNIyTsWnUx2T0LoNUFTtYGt+RasxBEKIga07Pee5wMl29p90PwZGiYsU0vUjo0ePZtCgQQENLIudOg1MJpoLC2l2zyoiep99h7H4kOdOhuiffHvOtdbY3NMpNuXl0VJREc7QBqSysjKamxrBqUmprGR/2qgO25bUOnoxMiFEpOtOcn4I+JFSyrvEmVLKAvzI/RjAEOBsz8MTfZk5Pg6ru+SiYaf03gXT9u3b2bRpE1VVVV22lcWHBobs7GxMJhP19fVUVVVhTk4mZqwxELth164wRzfweMqL4qprMGndaXKekSBDtIQQ53QnOf8mcCVwWim1Tim1Djjt3rfK3WYU8KfghCgixdatW3nllVeoqanx+5jYmUaNs9xaD67Nmzfz3nvvUVJS0mk73dREw969ANhmzeqN0ESYREVFMXjwYOBcYugZYyDXX+/zrt5bVAi0HgzqoTBmbZmTk9qboQkhIlx35jnfqJTKAW4Gxrl3/wt4QWtd627z9+CFKCLF7t27KSoqYsKECUyaNMmvY2wzZ1D59797V6cUPWe32ykvLwe6nqnF8dlnaIcDc3Iy0TnnJweif1m2bBkWi4XMzEzAuP6qXn6Zhh0y7qO3eZLz9LJSSmOTKLW1Hh/iKRC8b+VEme9cCNFKdwaE4k7CnwhyLCLCDR06lKKiIk6dOuV3ch7rrnNuPHwYZ20t5oSELo4QXfF86A8aNIjY2NhO23oG48bOnCkL0QwAw9vMZ+7pOW84eBBXQwOmLv69iOBobGz03mFMKyunZc5FZCXHUlR9rrY8S+Y5F0J0wK/kXCl1FfCO1rrZ/fcOaa3/E5TIRMQZNmwY27ZtC2gxIktGBpbhw2kuKKBh9x7iL1oYwggHhoICYwYI/+Y39yw+JPXmA5FlyGCiMjNpOXuWhr37iJs7J9whDQgxMTH86Ec/Yu+dXyemqYkRly7k0xuWsjW/gpJaBxkJVlkhVAjRIX97zl8HsoAS9987ogFzz0ISkcqTDBYVFdHc3IzFYvHrONuMGVQXFGDfuUOS8yDw9Jy37SVtS7tcNGx3z9Qig0EHjAMHDnDs2DFmzpzJ0KFDsc2cQc3b79Cwc4ck571ItbRg3bYNjTHew2xSMl2iEMIvfg0I1VqbtNYlPn/vaJPEvB9LSkoiISEBl8tFYWGh38d5ZglpkEFpPdbS0sKZM2eArnvOG48dw1ldjbLZsPpZhiT6vs8++4zdu3eTl5cHyKDQcHEcPHhuvMfo0eEORwjRh3RnthYxQCmlvL21ntIKf9jcM7Y07N2LbmoKSWwDRXl5uTGHtc1GamrnMzzYt20DwDZtGsrPuxyi7xs6dCiAt/zMu1Lorl1opzNscQ0ULS0tPPHEE6xeu5YWs1nGewghAuZ3cq6Umq+UurLNvluVUvlKqRKl1F+UUjHBD1FEkmHDhnnnUvZXdE4O5uRktMOB4+DBEEbX/2VmZvKjH/2I22+/vcsPfLunpGW2TKE4kLRdjChm3DhM8fG46utpPHw4zNH1f0VFRZw9e5b82lrMTqdMYSqECFggPec/Bbz3xpVSucBTwDrgQWAlcG9QoxMRZ9q0adxzzz1cfvnlfh+jlPKZ71ymdOspi8VCenp6p2201ti3eZLz2b0RlogQWVlZWCwWHA4HpaWlKLOZ2OnGaqGeL2widDxjQtJKy1CAbdbM8AYkhOhzAknOpwHv+/z8RWCL1voOrfXvgO8ANwQxNhGBYmJiiI6O7rphG57eI/vWbcEOSbSj6cQJnGVlqOhorLm54Q5H9CKz2ewtbfGUn3m+oHlKnUToeJPzoiJjvMeECWGOSAjR1wSSnKcAZ31+vhh4x+fnbUDXc7uJfkNr7Xdbb3KwY4fUvXZTeXk5f/7zn3nvvfe6bOtJwmKnTsUUI9VmA03bsSGe0ib7tu1olwunS7PpeDlv7C5k0/FynC7/r2XRMa219zUfVFZqjPeI6tZyIkKIASyQ/zXOAjnAKaVUNDADuM/n8QSgOYixiQh1/PhxPvjgAwYNGsS1117r1zHWCRcYda91dTgOHSJWZg8JWEFBAcXFxX7duThX0iL1rgORJzm32+0AxE6ejIqNxVlVxQdrNvOTPQ2tFsTJlgVxgqKyshK73Y5Ja1IqKomVkhYhRDcE0nP+NvCgUuoi4FeAHfjE5/EpwPEgxiYilNls5syZM+Tn5/vde67MZu+sLXJrvXs8t8u7mkLRqDd3z9Qi9eYD0ogRI7j77ru55ZZbAFAWC7bp0wB4/Zk3WyXmAMXVDlY9v5M1+4t6O9R+xdNrnlpdjdnlwjZTvhwLIQIXSHL+v0AL8BFwB3CH1tp3XrwvA13fbxd93pAhQzCZTNTW1lJdXe33cbY57tIWqTvvFn+T8+bCQlqKiyEqitipU3sjNBFhzGYzsbGxrfZZZxnX3+Sy8/tQPF+x7199UEpcekApRVpSEmlnisBiIXbqlHCHJITog/wua9FalwGLlFJJQJ3Wum3h8H8BdcEMTkQmi8VCdnY2hYWFFBQUkJyc7NdxrerOXS6USabZ95fdbqesrAxoPzl3urR3afAhW9YTh1HKYLLZejlSEWm01iilODFkPAlAbnkeaA1tpuLUQFG1g635FbKSZTdNnTqVEcfzOPPEn4mdPh2T1RrukIQQfVDAI1W01u12lWqtK3oejugrhg8f7k3Op0zxr3fIOnEiJpsNV3U1jUeOYL3gghBH2X94es0HDRqErU3CvWZ/EfevPugtVfjezvdYDhSPvICRvRyniBylpaW89dZbtLS08NWvfpXiwTlEm6JIaaxjaF0ppxMy2j2upNbR7n7hH/v27TKFohCiR6TrUnSLZ8CZJ2n0h4qKInaGsVqhlLYEpqOSljX7i1j1/M5WNcSTy41l2397Nk5qiAcwm83GyZMnKSwspKGhgfTURA6ljgAgt53SFo+MBOnt7Q6Hw4HT6cS+dSsAtjlzwhyREKKvkuRcdIsnSSwpKaGhocHv42S+5e6Jjo4mMTGxVXLudGnuX30Q3wrhtIZqBteX40RxIDVHaogHsLi4ONLSjPKUU6dOMScnlRNDxgHu0pY2FMasLXNyUnszzH7j448/5qEHH2R/XByYzcROnxHukIQQfZQk56Jb4uLiGDlyJJMmTaKxsdHv47zJ+fbtAc2TPtAtWrSI733ve0z1GeC5Nb/ivFk3PL3mx5OHYLdYvTXEYmDyfJkrKCjAbFLMvfZSwN1z7nP9earP71s5EbNJtX0a4YeCggKaW1qwNjqwTp6EOT4u3CEJIfooSc5Ft912221cf/31fg8IBYidPAllteKsrKTp2LHQBddPmXwG0bZXG+wpV9ifNqrTdmJgaLsY0cXXLEVHWRjkqCG7vtzbLivJyuO3zJB5zrupqamJoiKjhGxQSSlxUtIihOgBWbpM9CoVHY1txnTqN26ifts2YsaODXdIEa+hoQGr1YpqM7tGe7XBuWVGz/m+QaM6bScGhhEjjBrzM2fO0NLSQpTVim3qFBp27OCxiXD6wmlkJBilLNJj3n2nT5/G5XJhcziIs9uxzZkb7pCEEH2Y9JyLHtFaU1ZWhtPZdmbNjnlLW2RQqF9eeeUVfv3rX3PkyJFW++fkpJKdZPWWJCQ11jK8rgSAA2k5UkMsSElJIS4uDqfTyZkzZ4Bzq8ZmnzzI1dOGMH90miTmPXTy5EkABhUXg9mMbcb0MEckhOjLJDkXPfLEE0/wxz/+kcLCQr+P8R0UKnXnnXO5XJw6dYqGhgaSkpJaPWY2Ke5bOREwaoY9veb5iVnURRv1rlJDPLAppRg3bhzjxo3zlkR5rr/6rXL9BYunbCi9pNRYXyBO6s2FEN0nybnoEc9sEJ4PJ39Yp0xBxcTgLC+nKT8/VKH1C0VFRTQ3N2O1WsnIOH9e6hWTs3n8lhlkJVmZXG68lvvSRkkNsfC66qqruPHGGxk6dCgAtunTISqKlqIimgP4Ui3a53Q6OX36NACDSktlCkUhRI9Jci56pO2AM3+YoqO9y8pLaUvnPLfLhw8ffl7NuceKydl8es9SrnQZA9Iu+cJlfHrPUknMRbtMNhuxkycDcv0FQ0tLC4sWLWJ4aSmJNTWSnAshekySc9EjvosRuVwuv4+T+c794/nS4xnY1xFdVYn5hDFTy7SVl0gpizhPdXW1d00Cuf6CJyYmhrk5o5i37n1UVJTUmwshekySc9EjWVlZREdH43A4KCkp8fs4qTvvmta6Vc95ZzyrEsaMG0eUu9RICI9XX32VRx55hP379wNgmyPJeTB5XkepNxdCBIMk56JHTCaTN3E8ceKE38fFTpuKslhoKSmhOYCSmIGkpKQEh8OBxWIhO7vzEpX6zZsBsM2VKdzE+dqODYmdPgPMZppPn6bZPT+3CJzL5eLAgQOUbtkCICUtQoigkORc9Jin5MLTy+sPk9WKdeoUAOrdH2yitZiYGC666CJmzpyJ2WzutK19i9FzHjdPknNxPs8X6JMnT6K1xhwfh3XSJECuv54oKSnhlVde4Z+WKFxKSXIuhAgKSc5Fj40dO5YLL7yQOQF+MMW5F+qwb5bkoD3JycksXbqUyy67rNN2zWfPGrPemEzeciEhfA0dOhSz2UxtbS0VFRUAxM2V66+nPHci0kpLMZnN2KZPC29AQoh+IaKSc2V4QClVpJRqUEqtU0p1uoSkUupepdQ2pVStUqpEKfW6Ump8b8UsIDMzk2XLlpGTkxPQcXHz5wFGz53UnXef3d3zaZ0wAXNiYpijEZHIYrEwZMgQ4NwdLpv7Lkv95s1y/XWTd37zUpnfXAgRPBGVnAN3A98Bvg7MBeqBd5VSna0/fjHwR2AesAywAO8ppeR/yQhnnToVZbXiLC+n8ejRcIcTUerq6jhy5AgOh6PLtp6yBJuUtIhOjBw5Ejg3NsQ2Y4Yx7qO4mOYAStKEwXfAdnpJqYz3EEIETcQk58qYxPku4Bda6ze01nuBW4HBwDUdHae1XqG1fkZrfUBrvQe4HRgOzAx50MKrqamJY8eOsXfvXr+PMUVHY5tpvE1294BGYTh69CgvvvgiL774YpdtPWUJcfPmhTos0Yf5jg3RWmOKjSV22jTg3IBi4b/Kykrq6uowuVyklpd7Z8ARQoieipjkHMgBsoB1nh1a62pgCzA/gOfxrHFe0VEDpVSMUirRswEJ3YhX+CguLuYf//gH7733XkC3yM/dWpe6V1+e2+VdTaHYdPq0scpjVBS2GTN6IzTRRw0bNozZs2e3GsNg85SWyfUXME+veWpZOWaTyVh5VQghgiCSkvMs959n2+w/6/NYp5RSJuARYIPWen8nTe8Fqn220wFFKs4zePBgoqKiqK+vp6yszO/j4uYZ37vsW7eiW1pCFV6f4/ng72rxIU+9eWxurtS7ik5ZLBauuOIKJk6c6F1t1nO3xb55MzqARcTEuWt0UGkpsVOnYrLZwhyREKK/CFtyrpS6WSlV59kwasV76o/AZOCLXbT7FUYPu2cbGoTfPaBFRUUxdKjxMgYypaJ14gRMiYm46upwHDwYqvD6lJqaGiorK1FKMWzYsE7beno8pd5cdEdsbi7KZsNZVUXjkSPhDqdPueSSS1hstzPi5Eni5gdyc1cIIToXzp7z/wDTfDZPd2tmm3aZQHFXT6aUegy4Eliite60J1xr3ai1rvFsQG1AkYt2tR1w5g9lNntrNes3Sd0rnPtyk5WVRUxMTIfttNbeWv04GYwm/OByuTh58iSbNm1Ca42yWLDNMsZ9yPUXmPi4OLI//oSk6mrvzFNCCBEMYUvOtda1Wutjng04iJGEX+Jp464Hnwts6uh53NMvPgZcCyzVWueHOHTRgbYDzvzlKW2p39zh2zyg5Ocb/4Q9X3Y60pR/gpbSUlR0tHdgnxCdaWlp4bnnnuO9996jqqoK8Cktk0GhAWk8fBhnZSUmm43YKVPCHY4Qoh+JmJpzbWRzjwA/UUpdpZTKBZ4DzgCve9oppd5XSn3L59A/ArcANwG1Sqks9xbba8EL4NxCJ3V1dd6FTvzh6XVq2LkLV2NjqMLrMzx3HrqaN96+xUimYqdPx2TtbLZRIQzR0dEMHjwYOHeHxrOqrH3bNnRzc9hi60s2bNjAx2vepd5mwzZ7NsoSjKpMIYQwRExy7vYw8H/AX4BtQDywQmvtO9nzaGCQz8+rMOrG1wNFPtsXeiFe4cO37twz24g/okeNIio9Hd3YSMOu3SGKru+4+eabufLKK7ucqcVbbz5XlgwX/vPc4fJ8CYy54ALMycm47HYa9nc2jl6AUU62efNmNtVUUx8f753xRgghgiUq3AH4cvee/9S9ddRmZJufVYjDEgFYtmwZFouF9PR0v49RSmGbN4+a1aup37zJ25M3UKWlpZGWltZpG+10nqs3l/nNRQBGjhzJhg0bvD3nymTCNncute++i33zZpkSsAvl5eXG/OZOJ2llZcTNvzDcIQkh+plI6zkXfdyQIUPIyMjwTtXmL++tdZlv2S+Og5/hrK7GFB9PbG5uuMMRfciwYcNQSlFVVeVTd+5eb0AGhXbJc8chrayc6JQUYsaNDW9AQoh+R5JzERE8vb8N+/bhrKsLczThobVm9erVbN26laampk7b1m/YAIBt7lypdxUBiYmJOa/u3Oa5/nbtwuVwdHisOJecZ5ScJW7evIA7IoQQoiuSnIugO3z4MP/+9785cOCA38dYhgzBMnw4OJ3sXP0Bb+wuZNPxcpwu/2d96euqqqrYuXMn7777bpdt6zduBCBugdxSF4Hz1J17xoZEjxxJVGYmurmZhp07wxlaRNNan0vOz5YQd6HMby6ECL6IqjkX/UNhYSH79+9HKcWkSZP8Pq5i/BQSCgpY9/fV/HmKGYDsJCv3rZzIisnZoQo3YnimUBwyZAjR0dEdtnPV12PftQuA+AULeiU20b/MnDmTiRMnkp1tXFdKKeLmz6f69dep27CBuAvlS197ysrKqK+vx9ziJLW8XMZ7CCFCQnrORdCNGjUKMJJNf+c7X7O/iD9UpQIws+Swd39xtYNVz+9kzf6i4AcaYTw9cl3Nb27fvh2am8/dbRAiQKmpqQwZMgST6dxHQNzChQDUf7ohXGFFvPLycqJMJtLKSrEOG4plyJBwhySE6IckORdBN3ToUKKioqirq6O0tLTL9k6X5v7VB9mVPhanMjGsrpQMuzFPuie1v3/1wX5d4qK19vacdzW/eZ273jxuwQKpdxVBE7fgQlCKxsOHaS4pCXc4EemCCy7gdmVizuYtxM2XkhYhRGhIci6CLioqyjtHtyfh7MzW/AqKqh3UR8dyKMU4bkbJEe/jGiiqdrA13/+Fjfoaz/RsZrOZYcOGddrWW28upQeiB0pKSvjPf/7jHeMQlZKC1V2GVr9hYzhDi2iOjRuxNTR4V1YVQohgk+RchISn9zcvL6/LtiW152aH2JkxDmhd2tJeu/7GU9IybNgwoqI6HgrSXFxM07HjYDIN+PngRc84HA527drF3r17veVnce4xDJ7ZgMQ5WmuaThfSlJcHZrMMBhVChIwk5yIkPHXnJ0+exOVyddo2I+Hc0vM7MsYDMK3kKCaXs8N2/U1NTQ1KqS7rzes3bgLAOnky5uTk0Acm+i3PwGO73c7Zs2cBiF94LjnXXVy3A83WrVv589+f49iYMcROnYo5MTHcIQkh+ilJzkVIZGVlYbPZSE1Npa6Lecvn5KSSnWRFAUdThlFjsRHf4mB85SkAFMasLXNyUkMfeJgsXbqUe+65hzlz5nTart5bby4lLaJnzGazd0pFT/lZ7LRpmOLicFZW4jj4WTjDizh5eXlUNDXRbLEQf9HCcIcjhOjHJDkXIWEymbjrrrv42te+RmIXPUxmk+K+lRMB0MrErgxjxb2ZJYfxDHe8b+VEzKb+PfgxJiaG2NjYDh/XLhf1m4yec5lCUQRD2/IzZbF4FySq//TTsMUVaZxOp7f0LLO4mLiFF4U3ICFEvybJuQgZSwArV66YnM3jt8wgK8nKzvRzdedZSVYev2VGv57nvKuyH4/GQ4dwVlRgstmInTo1xFGJgcC3/MzpNMrIPHdlpO78nMLCQpqamohubGQQYJ00MdwhCSH6MVmESIRcU1MTZrMZs9ncabsVk7NZNjGLbdsGw23/Ynz1aT66cwbRqSm9FGl4vPDCCzQ0NLBixYpOZ2qpc88/bZszBxXAFx8hOpKRkYHNZsNut1NYWMjw4cOJX7iQs4B91y6cdfWY4+PCHWbYHT9+HDB6zeMXLkSZpF9LCBE68j+MCKlXXnmFhx56yHtLuCtmk2Le3AlEjxmNcrlwbN0S2gDDrLm5mRMnTnDmzJlOS1oA6j7+CID4ixf1RmhiAFBKkZOTQ1paGg6HMRtS9PDhxuJWLS3Y+/n15y9P2U9m8VmpNxdChJwk5yKkoqKicLlcfk2p6Ct+gfEBWNfP614LCgpwOp0kJiaSnJLKpuPlvLG7kE3Hy1stuuSsrqZh124A4i6S5FwEz7XXXsu3vvUtxo0b593nLW3p59efPxwOB4WFhYDRc/7ZkIntXqNCCBEsUtYiQionJ4c9e/b4tRiRr7iFC6l49lnqP92A1rrfroTpuV0ek5LFRQ9/SFH1ubncs5Os3LdyIismZxsLDzmdRI8ZTfRQWTJcBE975WbxCxdS9eJL3lKqgaypqYmJKSmUHjxIaWwaq/51bg0G32tUCCGCRXrORUh5BpwVFRVht9v9Ps42exYqJoaW4mIajx4NVXhh57mj8MrRllaJOUBxtYNVz+9kzf4i6j76GID4RRf3eoxiYHA6nTQ0NABgmzsPLBaaCwpoDPCLdX+TmJjIyD2HWPzhejaljWv1mO81KoQQwSLJuQiphIQEMjIyAP9WC/UwWa3Euad0q1v/UUhiC7e6ujrv4i+FzoTzHvfcMH/gP/up++QTAOIXSUmLCL4tW7bw0EMP8dFHxrVmjo8jbvYsoP9ef/5qaW7Btc2ovd+ReUGrxzzX6P2rD0qJixAiaCQ5FyE3evRo4FwJh7/ilywGoG79+uAGFCE8X1bKXTYaaX/2FQ3EnTyOs7wcU1wcthnTezFCMVAkJibS3NzMsWPHvPviFy8G+u/15w+73c4Hr71LXJOduigrn6UMP6+NBoqqHWzNr+j9AIUQ/ZIk5yLkxowZA8CxY8fQ2v/eJU8vccPu3bRUVoYktnBKTEwkeXAO+c7Op4qcfdZYqTHuwgtR0dG9EZoYYHJyclBKUV5eTqX7WvMk5/YdO3DW1oYxuvD57LPP2PTZdj69eBG7M8biMnU8HWxJraPDx4QQIhCSnIuQGz58OBMmTOCiiy7ye8EdAMvgwcSMHw8uF/Xuso7+ZOTIkcxZ+jn2tXQ+mMyTnMsUiiJUrFard459T+959PDhROfkQEvLgF2QyHN3K62sjC1ZnS88lJFg7Y2QhBADgCTnIuSioqK44YYbmDNnTpcLEbV17tZ6/6x7nZOTSnaSlY7moklurGVc5WlAplAUoeW5w+Vbftbfr7/OuFwu8tyvRXrxWbZlTmi3ncKYtWVOTmovRieE6M8kORcRLX6xMTtJ3aefopubwxxN8BQVFVFaWopJwX0rjR65tgm6AmaePYIJTcyECVgyM3o9TjFweJLzvLw8nE4nAPEXu6+/jz9Gu/cNFEVFRTgaG7E0NRGflklNTHy71ygY17DZ1D+nexVC9D5JzkWvqaqqYvv27TQ2Nvp9TOyUKZhTUnDV1GDftSuE0fWudevW8ac//Ynt27ezYnI2j98yg6yk1rfFs5KsrLIaU7TJLC0i1LKysoiLi6O5uZmCggIAbDNnYIqPx1lRgWPfvjBH2LuOuqdwzSwuZsSVl3V4jT5+ywyZ51wIEVSyCJHoNc899xyVlZXEx8dzwQUXdH0AoMxm4hddRPUb/6Fu/UfEzZkT4ihDr6mpiZMnTwLGQDyAFZOzWTYxi635FZTUOshIsDJrSDx5F96NC0i4ZGkYIxYDgVKKee7pS1NTjRINZbEQd9FCat9ZQ+1HHxE7bVoYI+xdRw8biw1lnykiYckSVow5/xqdk5MqPeZCiKCTnnPRa3xnbQlEf5vSLT8/H6fTSUpKCmlpad79ZpNi/ug0rp42hPmj02jcthWX3U5UejrWyZPDGLEYKBYuXMjChQtJSkry7vOWtgyguvO6ujrOFBcDMEwpot3Twba9RiUxF0KEgiTnotf4DjgLZErFuAULICqKprw8mty32/uyI0eOADB27FiU6vjDvXbd+wDEX7IUZZJLVYRH/KJFoBSNn31Gc9HAWAnTZrOxsqmZaTt2kL5wQafXqRBCBJt84oteM3LkSMxmM1VVVZSXl/t9nDkxEdssY7VCT8LaV2mtvXcOxo4d23E7l4vaD4xzTbjk0l6JTQgwFt7Zt28fJ06cACAqNZXYGTOAvn/9+UtpTfyHHzLuyFESlkpJmRCid0lyLnpNdHQ0w4cbK+wFWtqSsMxIUGvXrg16XL2ppKSEmpoaoqKiGDFiRIftHPv24SwtM1YFndv36+xF37FlyxZeffVVtm3b5t3XX64/fzXs3YuzogJTQgK2mTPDHY4QYoCR5Fz0qu7WnSdcaiQHDbt20VxSEvS4eotnBoicnBwsFkuH7bwlLRcvwiSrgope5Lmjk5eX5100LOHSZQDYt2+npaJ/L1NfWFjIW2+/Q3FWJvEXLUR1cp0KIUQoSHIuetW4ceMAKCgooKWlxe/jLJmZxE6dCkDd+3331vrcuXO56aabWLBgQaftat3nGL/0kt4ISwivwYMHExsbi8Ph8E6pGD10CDETJ4DLRd2HH4Y5wtD67LPPONjSzImcHG+ngBBC9CZJzkWvSktL4wtf+ALf//73iYoKbCbPhOVG711fvrVusVgYO3ZspyUtjXn5NOXlgcVC/MUyv7noXSaTyfsl+rB7OkGAxGXu6++9vnv9+ePIgQMAZJeUErfo4jBHI4QYiCQ5F71KKcUFF1yA1WrtunEbnl6s+i1bcVZVBTmyyFHnHggaN2cO5oSEMEcjBqLx48cDRnLumVnJe/1t3Iizri5ssYVSTU0NpVVVoDWjR47EHB8X7pCEEAOQJOeiz4geMYKYcePA6aT2w/XhDidgH374IWvXrqWii5rd2rXrAGMKRSHCYfTo0ZjNZiorKykrKwMgeswYokeORDc3U//xx2GOMDQ805ymlZeTvkxKWoQQ4SHJuQiLLVu28OSTT3pXyvRXgufW+rp1oQgrZFwuF1u3bmXjxo3U1NR02K65sJCGPXtAKal3FWETHR3tXb329OnTgHHXy3P91fTh0rLOfLZrFwCD3auCCiFEOEhyLsKisLCQM2fOtKpp9Yen7rz+009x1deHIrSQOHnyJA6HA5vN5p1Osj01a94FwDZrFpaMjN4KT4jzLF++nO9///tMnz7du88zpWL9Rx/jamwMV2gh0djYyIkzZwAYk5GB2WeVVCGE6E2SnIuw8NS0em4j+ytm3Dgsw4ejGxup60O31g8dOgQYs9WYOlnts2bNGgASr7i8V+ISoiPp6ekktBnzYJ08maisLFx2O/WffhqmyEKjsrKSuMZGEmpqGLpkcbjDEUIMYJKci7AYPXo0JpOJ8vJyb02rP5RSJF62HICat98OVXjd4nRpNh0v543dhWw6Xo7TZQyk01p77xBccMEFHR7fdPo0jn37wGTylg8IEQk8g0KVyUTiZZcBUPNWZF1/PZXa0sKKV19j6fsfkCglZUKIMApsLjshgsRqtTJy5Ejy8vI4cuQIgwYN8vvYxM99jvIn/0rdRx/jrK2NiBlN1uwv4v7VBymqdnj3ZSdZuW/lRKYNUlRXVxMVFcWoUaM6fI5ad6+5bc4cogJ4PYQIlcLCQj744ANiY2O5/vrrAUi88nNUPPsstR9+iMtux2SzhTnK4Kh5620UkDJ9GlGpqeEORwgxgEnPuQib9uZS9kfM+PFEjx6NbmryzmwSTmv2F7Hq+Z2tEnOA4moHq57fyZsfG8ugjxkzptNVQWvecZe0rFgRumCFCIDZbPZ+gW5ubgaM0hbL8OHohgZqP+gfCxLV19dT+dabACRdeWWYoxFCDHSSnIuw8ZR4FBQUUBfAvMlKKRI/dwUANW+9FZLY/OV0ae5ffRDdzmOefR8eKcdms3nr7NvTdPIkjgMHwGz2DnoVItwyMzNJSkqiubmZ48ePA+7rzz0mItzXX7C8//rr/Cs3l7xxY6WkTAgRdpKci7BJSkoiJyeHSZMm0dTUFNixn/scAPWbN9NSXh6K8PyyNb/ivB5zXxrYUJfOgmtuJzc3t8N2Ne+8A0Dc3DlyS11EDM+iYWAsa+/huf7qPv0UZ3V1WGILFq01R44fpzk6mtQxYzEnJoY7JCHEACfJuQirL33pS1x//fWkBpiQRo8YgTU3F5xO7wwn4VBS23Fi7qu0vgmz2dzuY1prql9/A4DElVcFLTYhgmHSpEmAUX7W0tICQMzYscaCYM3N1PbxOc9PnTpFvdZENTczXnrNhRARQJJzEVZKqW4fe660JXyzRmQkWDt9PFXZAd1pO8fevTSdOIGyWuWWuog4Q4cOJSEhgcbGRvLy8rz7E68wrr/qPl7asnf9egCGnD1L8pLF4QxFCCEASc5FhCgtLeWMewEQfyVefgUoRcPOnTSdOhWiyDo3JyeV7CQr7X3FiFeNXG09yBdj9zN9aMczylS/YfSaJyxbhjk+LkSRCtE9SikmTJgAwMGDB737PV+O7Zu30FxUFJbYekprzaH8fADGZ2Risnb+ZVsIIXqDJOci7LZv386f/vQn3n///YCOs2RmEDd/PgDVr70egsi6ZjYp7ls5EeC8BH2kuRKAzPQ0rDHR7R7vamry9vwnXX11yOIUoicmTZpETk4OOTk53n3Rw4ZhmzULtPZ+wexrCvLzqQcsTU1McK+fIIQQ4SbJuQg7z9zf+fn52O32gI5Nuu46AKpefw3tcgU9Nn+smJzN47fMICupda/buOgqAC6aM72dowx1H32Es7qaqPR04ubPC2WYQnTb8OHDufXWW5k6dWqr/d7r77XXvAsV9SW733sPgCHlFSQtWBDmaIQQwiDJuQi71NRUsrKyjFvM7mXu/ZVw6SWYEhNpOVOEffPmEEXYtRWTs/n0nqW8eMc8Hv3iNJ764gSSdF2rkoD2eHocE69aiepgwKgQkSrxsuUom43mkwU07NgR7nACNmrXbibt3cfUMaPl+hNCRAxJzkVEmDjRKA3Zv39/QMeZrFZv7WvVq68FPa5AmE2K+aPTuHraEGLqjPr5nJwc4uLaryNvqayk7qOPASlpEX1DXV0dW7Zs8c7aYoqLI/FyY9GscF9/gWouLCTq44+ZdOAAE7/whXCHI4QQXpKci4jgmQM8Pz+fmpqagI5Nvu7zANSuXUtTVTWbjpfzxu5CNh0vx+kKz632AwcOAOe+dLSn+rXXobkZ68SJWN2rpQoRqbTWPPXUU6xZs4ajR4969ye7S1tq1qzBVV8frvACVvXa66A1trlziR42LNzhCCGElyTnIiIkJyczfPhwIPDec+vkScSMHYtubOS+u37PjU9u5rsv7ebGJzez8KEPWLO/d2eSKC8vp7i4uNOSFq01Vf/8JwDJ0msn+gCllPfL5t69e737Y2fMIHrECLTdTs2ad8MVXkBampt5++ABTg8dSuLnrwt3OEII0UpUuAMQwiM3N5eCggKOHj3KhRde6PdxSimKLryU1KNHmf/Zp7yYOQvc86cXVztY9fxOHr9lBismZ4cq9FZSU1P58pe/TFFRETabrd029i1baTpxApPNRqJ7tUUhIt2UKVPYuHEjR48epaGhgdjYWJRSJF13HaW//z1V//oXyRGc7Dpdmq35FRSsfZsTmZkUJSez5NJLe/acTifNzc1BilC0ZbFYOlzATYj+KqKSc2WsSHM/cAeQDGwAVmmtj3Z2nM/xPwJ+BTyqtb4rRGGKEJk0aRIJCQmMGTMmoOOcLs3PHCP4jSmKsdWFjK8s4HDqCAA0xhSH968+yLKJWZhN3V/0yF9KKYYNG8awTm6VV/3zZQASV66Uuc1Fn5GZmUlmZiZnz57l4MGDzJw5E4Dk666l9LHHaNi9G8fBg1g7KecKlzX7i7h/9UGKqh2sqt0FGUmoqmbW5VWzYnL7X6I7o7WmuLiYqqqq4AcrWklOTiYrK6tHi9YJ0ZdEVHIO3A18B7gNyAd+DryrlJqote50nXSl1GzgTmBvZ+1E5IqNjWX8+PEBH7c1v4KjjVF8NGQay05tZ2XeBm9yDkaCXlTtYGt+BfNHpwUx4u5pqaigZu06AFK+cEOYoxEiMLm5uZw9e5a9e/d6k/Oo9HQSly2j5u23qXjhBQb/4hdhjrK1NfuLWPX8TjSQ7SinKS0egE/NOTzRzTtrnsQ8IyMDm80miWMIaK2x2+2UlJQAkJ3dO3c/hQi3iEnO3b3mdwG/0Fq/4d53K3AWuAZ4qZNj44F/YPS4/yTUsYrQ88yZ7M8HXkmt8b1t9agFLDu1nUVn9vBk40qqYxLabRdK77zzDk6nk/nz55OW1v4Xgap/vWIMBM3NjcgeRiE6k5uby7p16ygoKKCqqork5GQAUm6+iZq336bmzbfI/J//wZyUFN5A3Zwuzf2rD+IZGr68Zi+ulARiau3sixverTtrTqfTm5h3dJ2L4IiNjQWgpKSEjIwMKXERA0IkDQjNAbKAdZ4dWutqYAswv4tj/wi8pbVe10U7AJRSMUqpRM8GdLy2uuh1GzZs4A9/+AMnTpzwq31GgrH4z9GUYRxKGYbF5WTFia0dtguVpqYmdu3axY4dOzpcTEk3NVH5j38ARjIjRF+TmJhITk4OZrOZwsJC7/7YGTOIGT8e7XBE1LSKW/MrKKo2vphbnM2kxhn14acaEwDV6s6avzw15h2NKRHB5XmdpbZfDBSRlJxnuf8822b/WZ/HzqOU+iIwA7g3gN91L1Dts50O4FgRYpWVlVRVVbFz506/2s/JSSU7yYoC3swxVvn73ImNmF1OwKg5z06yMicnNUQRGw4ePEhzczOpqakMHTq03TY1775LS0kJUenpJF1xRUjjESJUrrjiCn7wgx8wadIk7z6lFCk3GV84K194Ae10hiu8VnzvmC0t2U3VoFTQmvW2CR2285eUsvQOeZ3FQBO25FwpdbNSqs6zAZZuPMcw4FHg5q5q0tv4FZDks7WfSYmwmDFjBgCfffZZhz3QvswmxX0rjfKQT4ZMpTImnvSGahYV7sHzX/p9KyeGfDDonj17AJg6dWq7HyZaayr+9gxg9Jqr6OiQxiNEqAwaNMhbbuAraeWVmJOSaD51itq1a8MQ2fm8d8y0ZknRblLLy2mpdVKvrO23E0KIMAtnz/l/gGk+W5l7f2abdplAcQfPMRPIAHYqpVqUUi3AxcB33D+3W5ymtW7UWtd4NqC2Jycigmvw4MFkZ2fjdDq9CW9XVkzO5vFbZpCWmsB/Ri0E4PqjH5KVGNMr0yiWlZVx4sQJlFJMnTq13TYN27fjOHgQFRMjc5uLfsN30TCTzUbKzTcDUP7kX71jR8LJc2dtRukRphYcZuH763nT5dPjT+/cWYt0ixcv5q677gp3GEIIwpica61rtdbHPBtwECMJv8TTxl0PPhfY1MHTvA/k0jrJ344xOHSa1joy7quKgHl6z3fu3On3B/yKydl8es9SrrnvO7issYyqKeLdCy29Mr/5jh07ABg7dixJHQyEK3/qaQCSrrmGqJSUkMckRCg1NTXx9NNP8+ijj1JXV+fdn3LLzSirFceBA9i3bAljhAbPnbUbjnwAwDsj51HpHizem3fWIsXtt9+OUuq87eGHH+bnP/+5t93IkSN55JFHwheoEANYxNScayMDewT4iVLqKqVULvAccAZ43dNOKfW+Uupb7mNqtdb7fTegHih3/130Ubm5uVgsFsrKyjh16pTfx5lNinnTchh04xcBqHzqqVCF6NXc3Ozt4fdMLddWw4ED1K1fDyYTqbffFvKYhAi16OhoXC4XLpeL3bt3e/dHpaaSfJ2xEFH5X0N//fljUXMxadZG7DFWXh1zsXd/VpK1VxcoixQrVqygqKio1TZz5kwSEmRuBCEiQcRMpej2MBAH/AVjEaJPgRVt6slHA4N6PzTRm2JiYpg0aRK7d+9m586dDB8+PKDjU2+/jYrnn8e+bRv2nbuwzZgeokjB5XIxe/Zs8vLyOlxAqezxxwFI/NzniMnJCVksQvSmmTNnUlhYyM6dO1mwYIF3rEXql/+bypdfpv7TT2nYt5/Y3MlhjTP/qafZeNFCLFrzuxsWU9lk1JjPyUkNSo+51hrd0BCESAOn3Ku0BiImJoasrNbzLCxevJhp06bxyCOPsHjxYk6ePMn3vvc9vve97wFERImSEANFRCXn7t7zn7q3jtqM7OI5Fgc3KhEus2bNavVnICyZmSRfczVV/3qF0kceYfizz3T5AeZZ2ruk1hHQB3dMTAxLlixhyZIl7T7uOHSIunXvg1IMWvX1gM9FiEg1adIk1qxZQ2VlJXl5eYwePRqA6KFDSbrySqrfeIPSRx9l+F+fDFuMDQcOsK+0FNIHMWzIEBZNHBL036EbGjg8o/27ZqE2fucOVJCndHz11VeZOnUqX/va17jjjjuC+txCiK5FVHIuhK8hQ4YwZEj3P0gHrVpF9etvYN+6FfumTcRdeGGHbX2X9vbITrJy38qJPb7lXfbHPwGQePnlxIwa1aPnEiKSREdHM3XqVLZt28aWLVu8yTnAoG99k+q33qL+00+xb9uGbfbssMR45vePkD/auO5mX3RRWGKING+++Sbx8fHeny+//PJWj6empmI2m0lISDivh10IEXqSnIt+yzJ4MMk3fpHK5/5Oye8fYeT8+e32nvsu7e2ruNrBqi6W9v70009JT09n3Lhx7T53w+7dxpRy0msu+ql58+axbds2jh49SmlpKenp6QBEDxtG8vWfp+qllyl55FFGPP/3Xp+vun7zZg6cLaZp2FBSEhMZN25cSH6Pio1l/M4dIXluf353oJYsWcLj7lI7gLi4OG688cZghiWE6IGIGRAqREdKSkp444032L8/8DG+g+68E2Wz4di3r915l9su7e3Ls+/+1Qdxus5vUV1dzQcffMBLL73E2bNt184yajTPPvxrAJKuvZaYsWMDjl+ISJeamsr48eMBWg0MBePulYqJoWHHDuo++qhX49JaU/zb33HUHdu8BQswmULzkaeUwmSzhWXrzheeuLg4xowZ492yswfWgFghIp0k5yLiHT58mN27d7Nhw4aAByVFpaWRetutAJT8+je4GhtbPe67tHd7Olvae+vWrWitGTlyZLu3fmvXrqVh506U1Ur6d78TUNxC9CWLFi3i85//PEuXLm2135KZScotxrznZ3/1K1xNTb0WU83bb5NfUUFdQgLWmBimTZvWa7+7P4iOjsYZIau8CjHQSHIuIt7MmTOJioqiuLiY/Pz8gI8f9NWvEpWRQfOpU1Q8/XSrx/xdsrttu8bGRu/c5vPnzz+vvauhgZKHHgYg9b9vx5LZdm0tIfqPwYMHM3nyZMzm89d9G7RqFeb0QTSfLKDi6b/1SjzOujpKHnyI6qQkFDBz1iyiZUXegIwcOZKPP/6YwsJCysrKuj5ACBE0kpyLiGez2Zg+3ZgK8eOPPw74eFNcHBn33A1A2Z//QtPpQu9j/i7Z3bbdtm3baGxsJC0tjbHtlKuU/elPNBcWEpWdzaCvfjXgmIXoq1paWmhubvb+bI6PJ/Nu9/X3xBM0nzkT8hjK/u8xWkpLmVpXx7e/8Y12v0CLzj3wwAOcOHGC0aNHe8cRCCF6hyTnok9YuHAhZrOZkydPcuLEiYCPT7ziCmyzZ6MdDop/+r/e8hjP0t4dVW22t7R3Y2MjGzduBOCiiy46r+bTcfgI5X97BoCs//1fTHFxAccrRF+0f/9+/vCHP7B58+ZW+xOvvJLYWTON6++Bn4d0zuyG/QeoeP55ALL+9yekpKcTJ9eg1zPPPMPrr79+3v7169e3WhF03rx57NmzB4fDIXOcC9HLJDkXfUJiYmKPes+VUmQ9cD/KaqV+4yaqXnoJOLe0N3Begt7R0t5bt26loaGB1NRUcnNzWx3jamrizD33QEsLCcsuJWFp+3OfC9EfuVwuamtr2bRpE40+4zuUUmT99Kcoi4W69eup/ve/Q/P7HQ7O3H03VfHxtFz5OeJl6kQhRB8kybnoMxYuXIjJZCI/P5+CgoKAj4/JySHj+8Zqd2d//Rsa8/IAWDE5m8dvmUFWUuvSlY6W9s7MzCQzM5OLL774vNkfSn/7OxoPHcKcmkrWTztcS0uIfmny5MmkpaXR0NDAtm3bWj1mHTeO9Lu+C8DZX/6KplOngv77S37zW5ry8tgzby6vJiR4x4UIIURfIvOciz4jKSmJOXPmYLVauz31V8ott1D7wYfYN2/m9Le+zch//hNzfBwrJmezbGKWXyuEjhs3rt0689oPPqDi2WcByP7/fkGU1GmKAcZkMnHRRRfx+uuvs2HDBmbOnEmszzzcqbffTu2HH9KwfQenv/0dRr7wD0xBWt2y5u23qXz+ec5mZnA2NRWTycSYMWOC8txCCNGbpOdc9CmXXXYZF198MRaLpVvHK5OJIb/5NVEZGTTl5VF0771o93RhZpNi/ug0rp42hPmj09pNzL3Po1SrWnPHoUMU/vB/AOMLQMISKWcRA1Nubi6ZmZk4HA7Wr1/f6jFlNjPk17/GnJZG46FDnPnxj4NSz+w4eJAz/+/HuJRi/6WXAjBr1iySkpJ6/NxCCNHbJDkXfZbWulvz8EYNGsSQRx8Bi4XatWsp/rl/A9TWrFnDhg0baGlpabW/6XQhp1Z9A223Y5s/j0z3zDBCDEQmk4nly5cDsH379vOm4bNkZzP00UcgKorad9ZQ8uCDPUrQm06c4NSdX0c7HBRdtpxylwur1crFF1/ck9MQQoiwkeRc9EkFBQU8+eSTbNq0qVvH26ZPZ8hDD4JSxvLiDz6Idrk6bH/mzBm2bNnCunXrWq0G2lRQwMlbv0RLURHROTkMfeQRVDd79YXoL0aNGsW4ceNwuVwcPXr0vMdts2aR/cADAFQ8+xwlv/lNtxL0poICTt52Oy2lpagJE9gzZAhgLIpkC1K5jBBC9DZJzkWfVFlZSVFRER999BGVlZXdeo7EK64g6/6fAUaCUPjdu3A1NJzXzuVysXr1asC4ZT/EnQDYd+7kxM0303KmiOiRIxn+zN8wy210IQCjBO0rX/lKh3OMJ193LVn3GYOmK556mjM/+AEuu73L53W6NJuOl/Pei+9w9Pov0HL2LNFjRnP0lpups9tJTU1l9uzZQT0XIYToTZKciz5pypQpjBw5kpaWFt58881u3xZPueEGBv/6YZS7xCX/mmup37q1VZtNmzZRXFyM1Wpl+fLluBwOSh59lJO33oaztIyYceMY8ffnZBVQIXykpqYydOjQTtuk3HgjWT9/AKKiqHn7HfL/6wbsncywsmZ/EZf84h3eveunDL7/B5hqqjiRNozj9zzE0FGjiI2NZeXKlURFyVwHQoi+S8niAqCUSgSqq6urSUxMDHc4wk8VFRU8/vjjtLS0cOWVVzJz5sxuP5d9xw4Kv/d9WkpKALDNn0fytddiHzOGp197jZaWFi6fOYucvDwq//lPnO462sQrriD75w/IQkNiQHG6tF8zG3lUVlZy6NChDnvR7du3c/qu73mvq7gFC0i65hpsc2YTlZ6Obmpi/ZpNrH/6VS4/sYnkpnoA1g2byR+nfp7GqGgev2UGS8amEhMTE/wTbsPhcJCfn09OTg5Wq3+rDIvu6+z1rqmp8Qz8TdJa14QlQCGCTJJzJDnvyzZu3MjatWuJiorijjvuICMjo9vP5aypoeR3v6PqlX9DSwstZjPvL19GdXIymUVFLFr/kXdhoqjB2WT+6EckLFt23gqhQvRna/YXcf/qgxRVO7z7spOs3Ldy4nlrAgDU19fzhz/8gaamJq699lqmTJnS7vM6q6oo+e1vqXr1NehioHdh3CCenvQ5Ng7OxYKTFsxkJVn59J6lnX5JCBZJznuXJOdioJGyFtGnzZ8/n9GjR9PS0sIrr7xCU1NTt5/LnJhI9s9+xug17zDoG9+gbupU6hISiHE4mLN5C+bEROKXLmXwrx9mzLvvkrh8uSTmYkBZs7+IVc/vbJWYAxRXO1j1/E7W7C8675i4uDjmzZsHwJtvvnne7C0e5uRksn/+c0a/+y5pX/saMePGgdnsfbw62samrEk8OOtm7rzkf9g4OJfR5jKus+4j21RNUbWDrfkVQTzb/qu4uJjvfve7jBkzBqvVSmZmJgsWLODxxx/H7kfdvxAitKTnHOk57+vq6+t54oknyMjI4IYbbgjqbe3i06exV1YyYtgwTElJkoyLAcvp0ix86IPzEnMPBR32XrtcLp5//nny8/NJSU1l6tJrqWpWXZbE6OZmnFVVvHO4nG+vPgY+11+mqZbLoo9gVppdzYPZ3TKYR784jaunDQnaOXekL/ec5+XlsWDBApKTk7n//vvJzc0lJiaGffv28Ze//IU777yTq666KtxhtiI952KgkZ5z0efFxcVx2223cdNNNwUlMW9sbPT+PWvoUEbl5mJOTpbEXAxoW/MrOkzMATR02HttMpm47rrriLElUFlRwb/++SI/eGkHNz65mYUPfdBujzuAsliISk9nUHZ6q8Q8STWwNPoYZqU54Uxhd4tRTpOREN5EuampqcPtvPUROmnb3NzsV9vu+MY3vkFUVBTbt2/nhhtuYMKECYwaNYqrr76at956i5UrV3LixAmUUuzevdt7XFVVFUqpVgtL7d+/n8svv5z4+HgyMzP50pe+1OrOyCuvvEJubi6xsbGkpaVx6aWXUl9vjBdYv349c+bMIS4ujuTkZBYsWMDJkye7dU5C9DcypF30C4MGDfL+XWvNvn37mDx5MiZTYN8/9+zZw7vvvsutt95KVlZWsMMUos8qqe04Mfen3acnanmxYgRXxBwi3WTnspgjrG0c6y2JefyWGe3WrAPMyUklO8lKcbWDVFXP8pijWJWTElccHzfloFBkJRm98OH0q1/9qsPHxo4dy0033eT9+Te/+c15SbjHiBEjuP32270/P/roo+2Wm9x3330BxVdeXs57773HL3/5S+I6GMTubydEVVUVS5cu5atf/Sq///3vaWho4J577uGGG27ggw8+oKioiBtvvJGHH36Ya6+9ltraWj755BO01rS0tHDNNddwxx138OKLL9LU1MTWrVulA0QIN0nORb/z4Ycf8sknn3DgwAGuueYaYmNjuzzG5XLxySefeHuF9uzZI8m5ED787ZVur53Tpbl/9UGqtZW1jWNYHnMUpzbRggmNURJz/+qDLJuY1W6Ji9mkuG/lRH71wvssjM4nWrkoddlY1zgWl/sG8H0rJ/bKYNC+7NixY2itGT9+fKv9gwYNwuEwvlR985vfZNWqVV0+12OPPcb06dP55S9/6d339NNPM2zYMI4cOUJdXR0tLS1cd911jBgxAjDWiQBjpq3q6mquvPJKRo8eDcCECROCco5C9AeSnIt+Jzs7G7PZzJEjR3jiiSe47LLLmDBhQoe9MmfPnuWdd97x3lKdO3eud/lxIYTBt/e6vZFKnprz9nqvfUtiynQ8bzVegF1bvIm1hRbOVtvZml/B/NFp7f7+FZOzOT7OTNlJF0XOBN5vGkMz5k5niult9957b4ePtb2L98Mf/rDDtm3/r/rud7/bs8C6sHXrVlwuFzfffHOrsr7O7Nmzhw8//JD4+PjzHjt+/DjLly/nkksuITc3l8suu4zly5dz/fXXk5KSQmpqKrfffjuXXXYZy5Yt49JLL+WGG24gOzv876EQkUCSc9HvTJgwgS9/+cv8+9//pqKign/961+kp6czZcoUJk6cSGqqkTycPn2ajz76iGPHjgFgsVi44oormDZtWhijFyIyeXqvVz2/EwWtEnRPKtlR73XbUpdq3fpu1lzLKQaba9i9uYV0nUtSUhIul4uysjJiYmIYM2YMAHfc9Hm2bN2KKXMcl9c3+zXHem+Kjo4Oe9vOjBkzBqUUhw8fbrV/1KhRAN67jJ4vEr4TRrQtwamrq2PlypU89NBD5/0eTwfJ2rVr2bhxI++99x7/93//x49//GO2bNlCTk4Of/vb3/jOd77DmjVrePnll/nJT37C2rVrvTP7CDGQSXIu+qXBgwdz5513smHDBjZt2kRpaSnvv/8+SikWLFgAgN1u9ybmEydOZNmyZSQnJ4cxaiEi24rJ2Tx+y4zz5jnP6qL3urOSGAtOsk012FQzJcf28o9je1s9npOT403Oo6OjuWjhwiCcycCUlpbGsmXLeOyxx/j2t7/dYd15eno6AEVFRUyfPh2g1eBQgBkzZvDvf/+bkSNHdrgiq+f/2wULFvDTn/6UESNG8Nprr/H9738fgOnTpzN9+nTuvfde5s+fzwsvvCDJuRBIci76sejoaJYsWcL8+fPZt28fx48fJyUlxfv48OHDWbRoEVOnTvX2pgshOrdicjbLJmYFtEJoZyUxzZj5d2MuuQl2vnSBhaKiM9TX16OUIikpSUodguxPf/oTCxYsYNasWfzsZz9jypQpmEwmtm3bxqFDh5g5cyaxsbHMmzePBx98kJycHEpKSvjJT37S6nm++c1v8uSTT3LjjTdy9913k5qayrFjx3jppZf461//yvbt23n//fdZvnw5GRkZbNmyhdLSUiZMmEB+fj5/+ctfuOqqqxg8eDCHDx/m6NGj3HrrrWF6VYSILJKci37ParUye/ZsZs+efd7+JUuWhCkqIfous0l1WBveUfvOSmJcmPj61Ysiom68vxs9ejS7du3il7/8Jffeey+nT58mJiaGiRMn8sMf/pBvfOMbgDG48ytf+QozZ85k/PjxPPzww63G4gwePJgNGzZwzz33sHz5chobGxkxYgQrVqzAZDKRmJjIxx9/zCOPPEJNTQ0jRozgt7/9LZdffjlnz57l0KFDPPvss5SXl5Odnc03v/lN7rzzznC9LEJEFFmECFmESAghesOa/UXnlcRE0oBOf/XlRYj6IlmESAw00nMuhBCiV3SnJEYIIQYaSc6FEEL0mkBLYoQQYqAJbPlEIYQQQgghRMhIci6EEEIIIUSEkORcCCGE6AaZUKF3yOssBhpJzoUQQogAWCwWwFjITISe53X2vO5C9HcyIFQIIYQIgNlsJjk5mZKSEgBsNhtKyYwzwaa1xm63U1JSQnJyMmazOdwhCdErJDkXQgghApSVlQXgTdBF6CQnJ3tfbyEGAknOhRBCiAAppcjOziYjI4Pm5uZwh9NvWSwW6TEXA44k50IIIUQ3mc1mSR6FEEElA0KFEEIIIYSIEJKcCyGEEEIIESEkORdCCCGEECJCSM25j5qamnCHIIQQQgg/yee26I+UrLwFSqkhwOlwxyGEEEKIbhmqtS4MdxBCBIMk54AyVo8YDNSG4OkTMBL/oSF6/nCT8+v7+vs5yvn1ff39HOX8ev78Z7QkNKKfkLIWwH1Bh+Qbt8+qcbVa6353/03Or+/r7+co59f39fdzlPPrsX73momBTQaECiGEEEIIESEkORdCCCGEECJCSHIeeo3A/e4/+yM5v76vv5+jnF/f19/PUc5PCOElA0KFEEIIIYSIENJzLoQQQgghRISQ5FwIIYQQQogIIcm5EEIIIYQQEUKScyGEEEIIISKEJOchpJT6plLqhFLKoZTaopSaE+6YuhJIzEqpO5RSnyilKt3burbtlVLPKKV0m21N6M/EfwGe8+3tnI+jN+PtSoDns76d89FKqbd82kT8e9gepdQipdRqpdQZd8zXhDsmfwQat1LqOqXUWqVUqVKqRim1SSl1WZs2P2vnPTwU0hPxUzfOd3EH/2azeinkTnXjfNq7vrRS6oBPm4h9/zqjlLpXKbVNKVWrlCpRSr2ulBof7riEiHSSnIeIUuoLwO8wpo+aAewB3lVKZYQ1sE50I+bFwIvAEmA+cAp4Tyk1pE27NUC2z3Zj0IPvpm6+TzW0Pp8RoY7TX904n+tofS6TASfwrzbtIvY97EQcxvl/M9yBBCjQuBcBa4ErgJnAh8BqpdT0Nu0O0Po9XBiUaHuuu+/TeFqfT0mQ4+quQM/nu7Q+j2FABedfg5H6/nXmYuCPwDxgGWDB+IyIC2tUQkQ4mUoxRJRSW4BtWutvuX82YSSv/6e1fjCswXWgpzErpcxAJfAtrfVz7n3PAMla62tCFXdPBHrOSqnbgUe01sm9Gae/gvAe3gU8AGRrrevd+54hgt9DfyilNHCt1vr1cMcSiO7G7e51fVlr/YD7558B12itpwU7xmDy53yVUosxvoCkaK2reiWwburO++fuaX8VyNFan3Tv+xl94P3rilIqHeNL1MVa64/DHY8QkUp6zkNAKRWN0YO1zrNPa+1y/zw/XHF1Jkgx2zB6Rira7F/svqV5WCn1uFIqLRgx91QPzjleKXVSKXVKKfWGUmpSiEP1S5Dew68AL3kScx8R+R6K87m/kCVw/nU41l1qkaeU+odSangYwgum3UqpIndJz4JwBxNEXwHWeRJzH/3h/Uty/9n236YQwock56ExCDADZ9vsPwtERF1kO4IR80PAGXySQ4xyiFuBS4B7MG5zvuPuZQ+37pzzYeDLwNXALRjX0Eal1NBQBRmAHr2HyqhNnwz8tc1DkfweivP9EIgH/umzbwtwO7ACWAXkAJ8opRJ6PbqeKwK+DnzevZ0C1iulZoQ1qiBQSg0GLuf8a7DPv3/uL42PABu01vvDHI4QES0q3AGI/kEp9SPgi8BirbV3gKTW+iWfZvuUUnuB4xj16u/3apBBoLXeBGzy/KyU2gh8BtwJ/G+44gqSrwD7tNZbfXf2t/ewP1NK3QTcB1yttfbWYGut3/Fpttdd/nQSuAF4qnej7Bmt9WGML8keG5VSo4HvAV8KT1RBcxtQBbzuu7OfvH9/xPjy3xdq5YUIK+k5D40yjEF1mW32ZwLFvR+OX7ods1Lqh8CPgOVa672dtdVa57l/15juhxo0PX6ftNbNwC76+Pm4B2h9ET8+6CPsPRRuSqkvYvS43qC1XtdZW3et9hH6z3u4lT5+LkophXFX7u9a66bO2va1908p9RhwJbBEa3063PEIEekkOQ8B93+sOzDKAADvLb1L8Ol1jSTdjVkpdTdGj/EKrfX2rn6Pu/wjDePWdFgF431yl3bk0vfP57+AGOD5rn5PJL2HwqCUuhH4G3Cj1votP9rHA6PpP+/hNPr+uVyMkWx3+QW5r7x/yvAYcC2wVGudH+6YhOgLpKwldH4HPKuU2o7Rq3MXxhRbfwtnUF3oNGal1HNAodb6XvfP92DM7HETcEKdm2e4Tmtd5/4AuQ/4N0bP7WjgYeAY8G5vnVQXAj3nnwKbMc4hGfgfjKkU29aIhktA5+PjK8DrWuty35195D1slzt2357FHKXUNKBCa10Qnqi61lXcSqlfAUO01re6298EPIsxJd8Wn+uwQWtd7W7zG2A1RinEYIypNp0YU6GGVTfO9y4gH2NqQSvwVWApsLw34+5IoOfj4yvAlvbqsSP5/evCHzE+H64Gan3+bVZrrRvCF5YQEU5rLVuINuBbGP+ZNmIM6Jkb7ph6EjOwHnjG5+cTgG5n+5n78ViMBK4EaHK3/wuQGe7z7ME5/96nbTHwFjA93OfQ3fNx7xvvft+WtfNcfeI97OB1WNzBv89nwh1bT+IGngHWt3lPOz1P4CWMwdqNwGn3z6PDfa7dPN+7Mb4cNgDlGNMqLgn3eXT3fNz7kgA7cEcHzxmx718Xr0V7r4MGbg93bLLJFsmbzHMuhBBCCCFEhJCacyGEEEIIISKEJOdCCCGEEEJECEnOhRBCCCGEiBCSnAshhBBCCBEhJDkXQgghhBAiQkhyLoQQQgghRISQ5FwIIYQQQogIIcm5EEIIIYQQEUKScyHEgKGUul0pVdVFm58ppXb3TkTn/e4T7uXpe/v3PqOU0u7tGj+POeFzTHJoIxRCiIFDknMhwqxNYtSklDqmlPqpUioq3LF1VyBJnh/PNdL9fNPaeWy9UuqRYPyeUFJKLfZ5jzvaFgOzgb+EKcw1QDbwjp/tZwOfD104QggxMPXZD38h+pk1wH8DMcAVwB+BZuBXgT6RUsoMaK21K6gRhoFSyhLuGLpDKWXRWjf77NqIkfh6PAokYrznHhVa66beiK8DjVrrYn8ba61LlVIVoQxICCEGIuk5FyIyNGqti7XWJ7XWjwPrgKsAlFLfV0rtU0rVK6VOKaX+pJSK9xzoKdVQSl2llDoINALDlVKzlVJrlVJlSqlqpdRHSqkZvr/U3WN7p1LqTaWUXSn1mVJqvlJqjLtXul4ptVEpNbrNcVcrpXYqpRxKqTyl1H2enn6l1Al3s9fcz3/Cn+N84lmllPqPUqoe+HEgL6JSKkUp9ZxSqtJ9Pu8opcZ2ccyPlFJnlVK1SqmnAGs7bb7qfm0cSqlDSqlv+Dzm6dn/gvs1dgA3+x6vtW5yv7/F7gS4gXPvuWdralvWEor3J4DXMlop9ZhSqsj9PCeVUvcG8hxCCCECJ8m5EJGpAYh2/90FfAeYBNwGLAUebtPeBtwDfNXdrgRIAJ4FFgLzgKPA20qphDbH/i/wHDANOAS8APwZo9d+FqCAxzyNlVIXuds/CkwE7gRu51wiPdv9539j9BbP9vM4j58BrwG5wNPtvzwdesYd81XAfHfsb3fUA6+UusH9+/6f+7gi4Btt2twMPOCOc4K77c+VUre1eboH3ec2AXg3wLg7E+z3x1/fwXgdbwDGY3zhONHdkxBCCOEnrbVssskWxg0joXzd/XcFXAo4gF930P56oMzn59sBDUzt4veYgBrgSp99Gvi5z8/z3Pu+7LPvi0CDz8/rgHvbPPctwJk2z3tNmzb+Hvf7Nm1Guvfbgbo2mxN4xN1urLvdhT7HprmP+y+f16rK5/GNwB/b/L7NwG6fn48BN7Zp8xNgY5v4vtud97zN/hPAXaF+f/yJB/gD8D6gOjlusTue5HBeQ7LJJpts/WmTmnMhIsOVSqk6wIKRRL+A0aOLUupS4F7gAow65SjAqpSyaa3t7uObgL2+T6iUygR+gZFAZQBmjB724W1+t+9xZ91/7muzz6qUStRa1wBTgQVKKd+eWHM7MbXl73HbOzj+C8Bnbfb9w+fvE4AWYItnh9a6XCl12P1YeyYAT7TZtwlYAqCUigNGA08ppZ70aRMFVLc5rqO4e6q33p+2ngHWAoeVUmuAN7XW73XrDIQQQvhNknMhIsOHwCqMJPuM1roFjHpm4E3gcYyyhAqMMpWnMMpePIlWg9Zat3nOZzF6jr8LnMSoRd/EuXIZD9+Bi7qTfZ4yuHjgPuDVds7D0ck5+ntcfQfHn9JaH/PdoZRq6OT3BYOntv8OfJJ+N2ebnzuKu6d66/1pRWu9UymVA1yOcTfnn0qpdVrr6/19DiGEEIGT5FyIyFDfNvF0m4mRdP1Au2dfcddJ+2MB8A2t9dvu44YBg4IQ605gfAfxejRj9NYGelxPfIbxf9pcjHIVlFJpGPXSBzs5Zi5GjbbHPM9ftNZnlVJngFFa63+0PThCBe11dvfEvwy8rJR6BVijlErVWsssLUIIESKSnAsR2Y5hlLp8Wym1GiPh/rqfxx4FvqSU2o5RDvNrjIGmPfUA8KZSqgB4BWPA6lRgstb6J+42J4BLlFIbMGYlqfTzuG7TWh9VSr0BPKmUuhOoxRikWQi80cFhjwLPuF+jDRiDHicBeT5t7gP+oJSqxpjyMgZjIGaK1vp3PY07BILyOiulvo8xQHaX+zn+CygGqoIdsBBCiHNkthYhIpjWeg/wfYyZWPZjJI/+Tmf3FSAFoyf17xgD/EqCENO7wJXAcmAbxgDK72GUznj8AFgGnMJI7vw9rqf+G9iBUQq0CWOA7RW69ZzjvufyMvBzjNlvdgAjMEqIfNv8FWMWnP/GqPX+CGNgaX4Q4w6aIL7OtcDdGLX02zAGvl6h+8H8+UIIEcnU+WWqQgghBhKl1DMYM65cE+BxizHGS6RorauCHZcQQgxE0nMuhBAC3DMGKaWu9KexUuoA8E6IYxJCiAFHes6FEGKAU0plYIxLACjSWnc584xSagTGeAiAPCl3EUKI4JDkXAghhBBCiAghZS1CCCGEEEJECEnOhRBCCCGEiBCSnAshhBBCCBEhJDkXQgghhBAiQkhyLoQQQgghRISQ5FwIIYQQQogIIcm5EEIIIYQQEUKScyGEEEIIISLE/w91vUjWkCJKyQAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"a_obj = CosineAnalysis(label=\"Cosine experiment\").run()\n",
"a_obj.display_figs_mpl()"
]
},
{
"cell_type": "markdown",
"id": "5f30a46e",
"metadata": {},
"source": [
"Inspecting the `experiment directory` will show something like this:\n",
"\n",
"```{code-block}\n",
"20230125-172712-018-87b9bf-Cosine experiment/\n",
"├── analysis_CosineAnalysis/\n",
"│ ├── dataset_processed.hdf5\n",
"│ ├── figs_mpl/\n",
"│ │ ├── cos_fit.png\n",
"│ │ └── cos_fit.svg\n",
"│ ├── fit_results/\n",
"│ │ └── cosine.txt\n",
"│ └── quantities_of_interest.json\n",
"├── cos-data-and-fit.png\n",
"├── Cosine fit.png\n",
"├── dataset.hdf5\n",
"├── quantities_of_interest.json\n",
"└── snapshot.json\n",
"```\n",
"\n",
"As you can conclude from the {class}`!CosineAnalysis` code, we did not implement quite a few methods in there.\n",
"These are provided by the {class}`~quantify_core.analysis.base_analysis.BaseAnalysis`.\n",
"To gain some insight into what exactly is being executed we can enable the logging module and use the internal logger of the analysis instance:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "62be0929",
"metadata": {
"myst_nb": {
"output_stderr": "show"
}
},
"outputs": [],
"source": [
"# activate logging and set global level to show warnings only\n",
"logging.basicConfig(level=logging.WARNING)\n",
"\n",
"# set analysis logger level to info (the logger is inherited from BaseAnalysis)\n",
"a_obj.logger.setLevel(level=logging.INFO)\n",
"_ = a_obj.run()"
]
}
],
"metadata": {
"file_format": "mystnb",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.23"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
"1df78b6097b741f58d4ac5ef51852d73": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border_bottom": null,
"border_left": null,
"border_right": null,
"border_top": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"2d96b0a18a594bf6a492b1d339da5aea": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border_bottom": null,
"border_left": null,
"border_right": null,
"border_top": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"33ec9315e6e04332b2fbf25a22f339f8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
"layout": "IPY_MODEL_75432d34e8214b698aaa94463baba4e7",
"placeholder": "",
"style": "IPY_MODEL_ec130e90cd404d1b8830840d87bf6e52",
"tabbable": null,
"tooltip": null,
"value": "Completed: 100%"
}
},
"4c31ea5ab9aa4fcfbb8e17675025b6fb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_allow_html": false,
"layout": "IPY_MODEL_1df78b6097b741f58d4ac5ef51852d73",
"max": 100.0,
"min": 0.0,
"orientation": "horizontal",
"style": "IPY_MODEL_f082aeb14bfc47b398713dd48606c023",
"tabbable": null,
"tooltip": null,
"value": 100.0
}
},
"75432d34e8214b698aaa94463baba4e7": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border_bottom": null,
"border_left": null,
"border_right": null,
"border_top": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a361045940754609b6f490aa138384cf": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border_bottom": null,
"border_left": null,
"border_right": null,
"border_top": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a95b1bdb81a7485ca23ed76d34b6a7d5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_33ec9315e6e04332b2fbf25a22f339f8",
"IPY_MODEL_4c31ea5ab9aa4fcfbb8e17675025b6fb",
"IPY_MODEL_d19a46f98aac42bbba1716076704aca2"
],
"layout": "IPY_MODEL_2d96b0a18a594bf6a492b1d339da5aea",
"tabbable": null,
"tooltip": null
}
},
"ac16aa9be9404453bb08c25df00a1454": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
"background": null,
"description_width": "",
"font_size": null,
"text_color": null
}
},
"d19a46f98aac42bbba1716076704aca2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
"layout": "IPY_MODEL_a361045940754609b6f490aa138384cf",
"placeholder": "",
"style": "IPY_MODEL_ac16aa9be9404453bb08c25df00a1454",
"tabbable": null,
"tooltip": null,
"value": " [ elapsed time: 00:00 | time left: 00:00 ] "
}
},
"ec130e90cd404d1b8830840d87bf6e52": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
"background": null,
"description_width": "",
"font_size": null,
"text_color": null
}
},
"f082aeb14bfc47b398713dd48606c023": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
}
},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}