Source code for quantify_scheduler.operations.gate_library

# Repository: https://gitlab.com/quantify-os/quantify-scheduler
# Licensed according to the LICENCE file on the main branch
# pylint: disable=invalid-name
"""Standard gateset for use with the quantify_scheduler."""
from typing import Literal, Optional, Tuple, Union
import warnings

import numpy as np

from .operation import Operation
from ..enums import BinMode


# pylint: disable=too-many-ancestors
[docs]class Rxy(Operation): # pylint: disable=line-too-long r""" A single qubit rotation around an axis in the equator of the Bloch sphere. This operation can be represented by the following unitary as defined in https://doi.org/10.1109/TQE.2020.2965810: .. math:: \mathsf {R}_{xy} \left(\theta, \varphi\right) = \begin{bmatrix} \textrm {cos}(\theta /2) & -ie^{-i\varphi }\textrm {sin}(\theta /2) \\ -ie^{i\varphi }\textrm {sin}(\theta /2) & \textrm {cos}(\theta /2) \end{bmatrix} """ def __init__( self, theta: float, phi: float, qubit: str, data: Optional[dict] = None ): """ A single qubit rotation around an axis in the equator of the Bloch sphere. Parameters ---------- theta rotation angle in degrees, will be casted to the [-180, 180) domain. phi phase of the rotation axis, will be casted to the [0, 360) domain. qubit the target qubit data The operation's dictionary, by default None\n Note: if the data parameter is not None all other parameters are overwritten using the contents of data.\n Deprecated: support for the data argument will be dropped in quantify-scheduler >= 0.13.0. Please consider updating the data dictionary after initialization. """ if not isinstance(theta, float): theta = float(theta) if not isinstance(phi, float): phi = float(phi) # this solves an issue where different rotations with the same rotation angle # modulo a full period are treated as distinct operations in the OperationDict. theta = (theta + 180) % 360 - 180 phi = phi % 360 if data is None: tex = r"$R_{xy}^{" + f"{theta:.0f}, {phi:.0f}" + r"}$" plot_func = ( "quantify_scheduler.schedules._visualization.circuit_diagram.gate_box" ) theta_r = np.deg2rad(theta) phi_r = np.deg2rad(phi) # not all operations have a valid unitary description # (e.g., measure and init) unitary = np.array( [ [ np.cos(theta_r / 2), -1j * np.exp(-1j * phi_r) * np.sin(theta_r / 2), ], [ -1j * np.exp(1j * phi_r) * np.sin(theta_r / 2), np.cos(theta_r / 2), ], ] ) super().__init__(f"Rxy({theta:.8g}, {phi:.8g}, '{qubit}')") self.data.update( { "name": f"Rxy({theta:.8g}, {phi:.8g}, '{qubit}')", "gate_info": { "unitary": unitary, "tex": tex, "plot_func": plot_func, "qubits": [qubit], "operation_type": "Rxy", "theta": theta, "phi": phi, }, } ) self._update() else: warnings.warn( "Support for the data argument will be dropped in" "quantify-scheduler >= 0.13.0.\n" "Please consider updating the data " "dictionary after initialization.", FutureWarning, ) super().__init__(name=data["name"], data=data) def __str__(self) -> str: gate_info = self.data["gate_info"] theta = gate_info["theta"] phi = gate_info["phi"] qubit = gate_info["qubits"][0] return f"{self.__class__.__name__}(theta={theta:.8g}, phi={phi:.8g}, qubit='{qubit}')"
[docs]class X(Rxy): r""" A single qubit rotation of 180 degrees around the X-axis. This operation can be represented by the following unitary: .. math:: X180 = R_{X180} = \begin{bmatrix} 0 & -i \\ -i & 0 \\ \end{bmatrix} """ def __init__(self, qubit: str, data: Optional[dict] = None): """ Parameters ---------- qubit the target qubit data The operation's dictionary, by default None\n Note: if the data parameter is not None all other parameters are overwritten using the contents of data.\n Deprecated: support for the data argument will be dropped in quantify-scheduler >= 0.13.0. Please consider updating the data dictionary after initialization. """ if data is not None: warnings.warn( "Support for the data argument will be dropped in" "quantify-scheduler >= 0.13.0.\n" "Please consider updating the data " "dictionary after initialization.", FutureWarning, ) super().__init__(theta=180, phi=0, qubit=qubit, data=data) self.data["name"] = f"X {qubit}" self.data["gate_info"]["tex"] = r"$X_{\pi}$" def __str__(self) -> str: qubit = self.data["gate_info"]["qubits"][0] return f"{self.__class__.__name__}(qubit='{qubit}')"
[docs]class X90(Rxy): r""" A single qubit rotation of 90 degrees around the X-axis. It is identical to the Rxy gate with theta=90 and phi=0 Defined by the unitary: .. math:: X90 = R_{X90} = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -i \\ -i & 1 \\ \end{bmatrix} """ def __init__(self, qubit: str, data: Optional[dict] = None): """ Create a new instance of X90. Parameters ---------- qubit The target qubit. data The operation's dictionary, by default None\n Note: if the data parameter is not None all other parameters are overwritten using the contents of data.\n Deprecated: support for the data argument will be dropped in quantify-scheduler >= 0.13.0. Please consider updating the data dictionary after initialization. """ if data is not None: warnings.warn( "Support for the data argument will be dropped in" "quantify-scheduler >= 0.13.0.\n" "Please consider updating the data " "dictionary after initialization.", FutureWarning, ) super().__init__(theta=90.0, phi=0.0, qubit=qubit, data=data) self.qubit = qubit self.data["name"] = f"X_90 {qubit}" self.data["gate_info"]["tex"] = r"$X_{\pi/2}$" def __str__(self) -> str: qubit = self.data["gate_info"]["qubits"][0] return f"{self.__class__.__name__}(qubit='{qubit}')"
[docs]class Y(Rxy): r""" A single qubit rotation of 180 degrees around the Y-axis. It is identical to the Rxy gate with theta=180 and phi=90 Defined by the unitary: .. math:: Y180 = R_{Y180} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ \end{bmatrix} """ def __init__(self, qubit: str, data: Optional[dict] = None): """ Create a new instance of Y. The Y gate corresponds to a rotation of 180 degrees around the y-axis in the single-qubit Bloch sphere. Parameters ---------- qubit The target qubit. data The operation's dictionary, by default None\n Note: if the data parameter is not None all other parameters are overwritten using the contents of data.\n Deprecated: support for the data argument will be dropped in quantify-scheduler >= 0.13.0. Please consider updating the data dictionary after initialization. """ if data is not None: warnings.warn( "Support for the data argument will be dropped in" "quantify-scheduler >= 0.13.0.\n" "Please consider updating the data " "dictionary after initialization.", FutureWarning, ) super().__init__(theta=180.0, phi=90.0, qubit=qubit, data=data) self.data["name"] = f"Y {qubit}" self.data["gate_info"]["tex"] = r"$Y_{\pi}$" def __str__(self) -> str: qubit = self.data["gate_info"]["qubits"][0] return f"{self.__class__.__name__}(qubit='{qubit}')"
[docs]class Y90(Rxy): r""" A single qubit rotation of 90 degrees around the Y-axis. It is identical to the Rxy gate with theta=90 and phi=90 Defined by the unitary: .. math:: Y90 = R_{Y90} = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ \end{bmatrix} """ def __init__(self, qubit: str, data: Optional[dict] = None): """ Create a new instance of Y90. The Y gate corresponds to a rotation of 90 degrees around the y-axis in the single-qubit Bloch sphere. Parameters ---------- qubit The target qubit. data The operation's dictionary, by default None\n Note: if the data parameter is not None all other parameters are overwritten using the contents of data.\n Deprecated: support for the data argument will be dropped in quantify-scheduler >= 0.13.0. Please consider updating the data dictionary after initialization. """ if data is not None: warnings.warn( "Support for the data argument will be dropped in" "quantify-scheduler >= 0.13.0.\n" "Please consider updating the data " "dictionary after initialization.", FutureWarning, ) super().__init__(theta=90.0, phi=90.0, qubit=qubit, data=data) self.data["name"] = f"Y_90 {qubit}" self.data["gate_info"]["tex"] = r"$Y_{\pi/2}$" def __str__(self) -> str: """ Returns a concise string representation which can be evaluated into a new instance using :code:`eval(str(operation))` only when the data dictionary has not been modified. This representation is guaranteed to be unique. """ qubit = self.data["gate_info"]["qubits"][0] return f"{self.__class__.__name__}(qubit='{qubit}')"
[docs]class CNOT(Operation): r""" Conditional-NOT gate, a common entangling gate. Performs an X gate on the target qubit qT conditional on the state of the control qubit qC. This operation can be represented by the following unitary: .. math:: \mathrm{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \end{bmatrix} """ def __init__(self, qC: str, qT: str, data: Optional[dict] = None): """ Create a new instance of the two-qubit CNOT or Controlled-NOT gate. The CNOT gate performs an X gate on the target qubit(qT) conditional on the state of the control qubit(qC). Parameters ---------- qC The control qubit. qT The target qubit data The operation's dictionary, by default None\n Note: if the data parameter is not None all other parameters are overwritten using the contents of data.\n Deprecated: support for the data argument will be dropped in quantify-scheduler >= 0.13.0. Please consider updating the data dictionary after initialization. """ if data is None: plot_func = ( "quantify_scheduler.schedules._visualization.circuit_diagram.cnot" ) super().__init__(f"CNOT ({qC}, {qT})") self.data.update( { "name": f"CNOT ({qC}, {qT})", "gate_info": { "unitary": np.array( [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]] ), "tex": r"CNOT", "plot_func": plot_func, "qubits": [qC, qT], "symmetric": False, "operation_type": "CNOT", }, } ) self._update() else: warnings.warn( "Support for the data argument will be dropped in" "quantify-scheduler >= 0.13.0.\n" "Please consider updating the data " "dictionary after initialization.", FutureWarning, ) super().__init__(name=data["name"], data=data) def __str__(self) -> str: gate_info = self.data["gate_info"] qC = gate_info["qubits"][0] qT = gate_info["qubits"][1] return f"{self.__class__.__name__}(qC='{qC}',qT='{qT}')"
[docs]class CZ(Operation): r""" Conditional-phase gate, a common entangling gate. Performs a Z gate on the target qubit qT conditional on the state of the control qubit qC. This operation can be represented by the following unitary: .. math:: \mathrm{CZ} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix} """ def __init__(self, qC: str, qT: str, data: Optional[dict] = None): """ Create a new instance of the two-qubit CZ or conditional-phase gate. The CZ gate performs an Z gate on the target qubit(qT) conditional on the state of the control qubit(qC). Parameters ---------- qC The control qubit. qT The target qubit data The operation's dictionary, by default None\n Note: if the data parameter is not None all other parameters are overwritten using the contents of data.\n Deprecated: support for the data argument will be dropped in quantify-scheduler >= 0.13.0. Please consider updating the data dictionary after initialization. """ if data is None: plot_func = "quantify_scheduler.schedules._visualization.circuit_diagram.cz" super().__init__(f"CZ ({qC}, {qT})") self.data.update( { "name": f"CZ ({qC}, {qT})", "gate_info": { "unitary": np.array( [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]] ), "tex": r"CZ", "plot_func": plot_func, "qubits": [qC, qT], "symmetric": True, "operation_type": "CZ", }, } ) self._update() else: warnings.warn( "Support for the data argument will be dropped in" "quantify-scheduler >= 0.13.0.\n" "Please consider updating the data " "dictionary after initialization.", FutureWarning, ) super().__init__(name=data["name"], data=data) def __str__(self) -> str: gate_info = self.data["gate_info"] qC = gate_info["qubits"][0] qT = gate_info["qubits"][1] return f"{self.__class__.__name__}(qC='{qC}',qT='{qT}')"
[docs]class Reset(Operation): r""" Reset a qubit to the :math:`|0\rangle` state. The Reset gate is an idle operation that is used to initialize one or more qubits. .. note:: Strictly speaking this is not a gate as it can not be described by a unitary. .. admonition:: Examples :class: tip The operation can be used in several ways: .. jupyter-execute:: from quantify_scheduler.operations.gate_library import Reset reset_1 = Reset("q0") reset_2 = Reset("q1", "q2") reset_3 = Reset(*[f"q{i}" for i in range(3, 6)]) """ def __init__(self, *qubits: str, data: Optional[dict] = None): """ Create a new instance of Reset operation that is used to initialize one or more qubits. Parameters ---------- qubits The qubit(s) to reset. NB one or more qubits can be specified, e.g., :code:`Reset("q0")`, :code:`Reset("q0", "q1", "q2")`, etc.. data The operation's dictionary, by default None\n Note: if the data parameter is not None all other parameters are overwritten using the contents of data.\n Deprecated: support for the data argument will be dropped in quantify-scheduler >= 0.13.0. Please consider updating the data dictionary after initialization. """ if data is None: super().__init__(f"Reset {', '.join(qubits)}") plot_func = ( "quantify_scheduler.schedules._visualization.circuit_diagram.reset" ) self.data.update( { "name": f"Reset {', '.join(qubits)}", "gate_info": { "unitary": None, "tex": r"$|0\rangle$", "plot_func": plot_func, "qubits": list(qubits), "operation_type": "reset", }, } ) self._update() else: warnings.warn( "Support for the data argument will be dropped in" "quantify-scheduler >= 0.13.0.\n" "Please consider updating the data " "dictionary after initialization.", FutureWarning, ) super().__init__(name=data["name"], data=data) def __str__(self) -> str: qubits = map(lambda x: f"'{x}'", self.data["gate_info"]["qubits"]) return f'{self.__class__.__name__}({",".join(qubits)})'
[docs]class Measure(Operation): """ A projective measurement in the Z-basis. .. note:: Strictly speaking this is not a gate as it can not be described by a unitary. """ def __init__( self, *qubits: str, acq_channel: Union[Tuple[int, ...], int] = None, acq_index: Union[Tuple[int, ...], int] = None, # These are the currently supported acquisition protocols. acq_protocol: Literal[ "SSBIntegrationComplex", "Trace", "TriggerCount", None, ] = None, bin_mode: BinMode = None, data: Optional[dict] = None, ): """ Gate level description for a measurement. The measurement is compiled according to the type of acquisition specified in the device configuration. Parameters ---------- qubits The qubits you want to measure acq_channel Acquisition channel on which the measurement is performed acq_index Index of the register where the measurement is stored. If None specified, it will default if a tuple(0 acq_protocol Acquisition protocol (currently ``"SSBIntegrationComplex"`` and ``"Trace"``) are supported. If ``None`` is specified, the default protocol is chosen based on the device and backend configuration. bin_mode The binning mode that is to be used. If not None, it will overwrite the binning mode used for Measurements in the quantum-circuit to quantum-device compilation step. data The operation's dictionary, by default None\n Note: if the data parameter is not None all other parameters are overwritten using the contents of data.\n Deprecated: support for the data argument will be dropped in quantify-scheduler >= 0.13.0. Please consider updating the data dictionary after initialization. """ # this if else statement a workaround to support multiplexed measurements (#262) # this snippet has some automatic behaviour that is error prone. # see #262 if len(qubits) == 1: if acq_channel is None: acq_channel = 0 if acq_index is None: acq_index = 0 else: if isinstance(acq_index, int): acq_index = [ acq_index, ] * len(qubits) elif acq_index is None: # defaults to writing the result of all qubits to acq_index 0. # note that this will result in averaging data together if multiple # measurements are present in the same schedule (#262) acq_index = list(0 for i in range(len(qubits))) # defaults to mapping qubits to channels dependent on the order of the # arguments. note that this will result in mislabeling data if not all # measurements in an experiment contain the same order of qubits (#262) if acq_channel is None: acq_channel = list(i for i in range(len(qubits))) else: warnings.warn( "`acq_channel` keyword argument does not have any effect if specified here" "and should be set in the device layer. See `BasicTransmonElement.measure.acq_channel`" "for more info on how to set it. This keyword argument will be removed in " "quantify-scheduler >= 0.12.0.", FutureWarning, ) if data is None: plot_func = ( "quantify_scheduler.schedules._visualization.circuit_diagram.meter" ) super().__init__(f"Measure {', '.join(qubits)}") self.data.update( { "name": f"Measure {', '.join(qubits)}", "gate_info": { "unitary": None, "plot_func": plot_func, "tex": r"$\langle0|$", "qubits": list(qubits), "acq_channel": acq_channel, "acq_index": acq_index, "acq_protocol": acq_protocol, "bin_mode": bin_mode, "operation_type": "measure", }, } ) self._update() else: warnings.warn( "Support for the data argument will be dropped in" "quantify-scheduler >= 0.13.0.\n" "Please consider updating the data " "dictionary after initialization.", FutureWarning, ) super().__init__(name=data["name"], data=data) def __str__(self) -> str: gate_info = self.data["gate_info"] qubits = map(lambda x: f"'{x}'", gate_info["qubits"]) acq_index = gate_info["acq_index"] acq_protocol = gate_info["acq_protocol"] bin_mode = gate_info["bin_mode"] return ( f'{self.__class__.__name__}({",".join(qubits)}, ' f'acq_index={acq_index}, acq_protocol="{acq_protocol}", ' f"bin_mode={str(bin_mode)})" )