Cluster (HardwareCompilationConfig)#

Under construction

The HardwareCompilationConfig replaces the the old-style unvalidated json/dict hardware configuration, adding validation of the contents and restructuring into "hardware_description", "hardware_options" and "connectivity". It is still under construction, once finished the old-style hardware config will be deprecated but still supported until further notice.

In this section we introduce how to configure Qblox Clusters and the options available for them via Quantify. For information about their lower-level functionality, you can consult the Qblox Instruments documentation. For information on the process of compilation to hardware, see Tutorial: Compiling to Hardware.

General hardware compilation config structure, example#

We start by looking at an example config for a single Cluster. The hardware compilation configuration specifies which modules are used ("hardware_descriptions") and how they are connected to the quantum device ("connectivity"), along with some (optional) "hardware_options", like modulation frequencies, gains and attenuations, or mixer corrections. The general structure of this configuration file is described in the Hardware compilation configuration section of the User guide.

 1hardware_compilation_cfg = {
 2    "backend": "quantify_scheduler.backends.qblox_backend.hardware_compile",
 3    "hardware_description": {
 4        "cluster0": {
 5            "instrument_type": "Cluster",
 6            "ref": "internal",
 7            "modules": {
 8                "1": {
 9                    "instrument_type": "QCM"
10                },
11                "2": {
12                    "instrument_type": "QCM_RF"
13                },
14            }
15        },
16        "lo0": {
17            "instrument_type": "LocalOscillator",
18            "power": 20
19        },
20    },
21    "hardware_options": {
22        "modulation_frequencies": {
23            "q4:mw-q4.01": {
24                "interm_freq": 200e6
25            },
26            "q5:mw-q5.01": {
27                "interm_freq": 50e6
28            },
29        },
30        "mixer_corrections": {
31            "q4:mw-q4.01": {
32                "amp_ratio": 0.9999,
33                "phase_error": -4.2
34            }
35        },
36    },
37    "connectivity": {
38        "cluster0": {
39            "cluster0_module1": {
40                "complex_output_0": {
41                    "lo_name": "lo0",
42                    "portclock_configs": [
43                        {
44                            "clock": "q4.01",
45                            "port": "q4:mw",
46                        },
47                    ]
48                },
49            },
50            "cluster0_module2": {
51                "complex_output_0": {
52                    "portclock_configs": [
53                        {
54                            "clock": "q5.01",
55                            "port": "q5:mw"
56                        }
57                    ]
58                },
59            },
60        },
61    },
62}

Notice the "quantify_scheduler.backends.qblox_backend.hardware_compile" backend is used. In the example, the Cluster is specified using an instrument with "instrument_type": "Cluster". In the backend, the Cluster instrument functions as a collection of modules.

The only instrument types that can be at the top level are:

  • "Cluster",

  • "LocalOscillator".

Hardware description#

To compile to a Cluster, one should include a valid ClusterDescription in the "hardware_description" part of the hardware compilation config. The name of the Cluster (the key of the structure, "cluster0" in the example) can be chosen freely.

class ClusterDescription[source]

Information needed to specify a Cluster in the CompilationConfig.

instrument_type[source]

The instrument type, used to select this datastructure when parsing a CompilationConfig.

modules[source]

Description of the modules of this Cluster, using slot index as key.

ref[source]

The reference source for the instrument.

sequence_to_file = True[source]

Write sequencer programs to files for (all modules in this) instrument.

Here the modules are described by their respective ClusterModuleDescription. For example, a QRM-RF module is described by

class QRMRFDescription[source]

Information needed to specify a QRM-RF in the QbloxHardwareCompilationConfig.

complex_input_0[source]

Description of the complex input channel on this QRM, corresponding to port I1.

complex_output_0[source]

Description of the complex output channel on this QRM, corresponding to port O1.

digital_output_0[source]

Description of the digital (marker) output channel on this QRM, corresponding to port M1.

digital_output_1[source]

Description of the digital (marker) output channel on this QRM, corresponding to port M2.

instrument_type[source]

The instrument type of this module.

sequence_to_file = True[source]

Write sequencer programs to files, for this module.

Channel-specific settings can be set in the {Complex,Real,Digital}ChannelDescription datastructures. For example, for a QRM-RF module, the ComplexChannelDescription is used to describe the settings for the complex output. To use the default settings, one can omit the channel description from the ClusterModuleDescription, as is done in the General hardware compilation config structure, example above.

For a complex input/output, this datastructure is:

class ComplexChannelDescription[source]

Information needed to specify an complex input/output in the QbloxHardwareCompilationConfig.

downconverter_freq[source]

Downconverter frequency that should be taken into account when determining the modulation frequencies for this channel. Only relevant for users with custom Qblox downconverter hardware.

marker_debug_mode_enable = False[source]

Setting to send 4 ns trigger pulse on the marker located next to the I/O port along with each operation. The marker will be pulled high at the same time as the module starts playing or acquiring.

mix_lo = True[source]

Whether IQ mixing with a local oscillator is enabled for this channel. Effectively always True for RF modules.

Marker configuration#

The markers can be configured by adding a "marker_debug_mode_enable" key to the ComplexChannelDescription (or RealChannelDescription). If the value is set to True, the operations defined for this I/O will be accompanied by a 4 ns trigger pulse on the marker located next to the I/O port. The marker will be pulled high at the same time as the module starts playing or acquiring.

 1hardware_compilation_cfg = {
 2    "backend": "quantify_scheduler.backends.qblox_backend.hardware_compile",
 3    "hardware_description": {
 4        "cluster0": {
 5            "instrument_type": "Cluster",
 6            "ref": "internal",
 7            "modules": {
 8                "1": {
 9                    "instrument_type": "QCM",
10                    "complex_output_0": {
11                        "marker_debug_mode_enable": True,
12                    }
13                }
14            }
15        }
16    },
17    "hardware_options": {...},
18    "connectivity": {...},
19}

Write sequencer program to files#

It is possible to optionally include the "sequence_to_file" key. If set to True, a file will be created for each sequencer with the program that’s uploaded to the sequencer with the filename <data_dir>/schedules/<year><month><day>-<hour><minute><seconds>-<milliseconds>-<random>_<port>_<clock>.json in a JSON format, where <random> is 6 random characters in the range 0-9, a-f. The value defaults to False in case "sequence_to_file" is not included.

It is also possible to set this parameter per module via its module configuration.

 1hardware_compilation_cfg = {
 2    "backend": "quantify_scheduler.backends.qblox_backend.hardware_compile",
 3    "hardware_description": {
 4        "cluster0": {
 5            "instrument_type": "Cluster",
 6            "ref": "internal",
 7            "sequence_to_file": True,
 8            "modules": {...}
 9        }
10    },
11    "hardware_options": {...},
12    "connectivity": {...}
13}

Downconverter#

Note

This section is only relevant for users with custom Qblox downconverter hardware.

Some users employ a custom Qblox downconverter module. In order to use it with this backend, we specify a "downconverter_freq" entry in the outputs that are connected to this module, as exemplified below.

The result is that the clock frequency is downconverted such that the signal reaching the target port is at the desired clock frequency, i.e. \(f_\mathrm{out} = f_\mathrm{downconverter} - f_\mathrm{in}\).

For baseband modules, downconversion will not happen if "mix_lo" is not True and there is no external LO specified ("mix_lo" is True by default). For RF modules, the "mix_lo" setting is not used (effectively, always True). Also see helper function determine_clock_lo_interm_freqs().

 1hardware_compilation_cfg = {
 2    "backend": "quantify_scheduler.backends.qblox_backend.hardware_compile",
 3    "hardware_description": {
 4        "cluster0": {
 5            "instrument_type": "Cluster",
 6            "ref": "internal",
 7            "modules": {
 8                "1": {
 9                    "instrument_type": "QCM",
10                    "complex_output_0": {
11                        "downconverter_freq": 9e9,
12                        "mix_lo": True,
13                    }
14                },
15                "2": {
16                    "instrument_type": "QCM_RF",
17                    "complex_output_0": {
18                        "downconverter_freq": 9e9,
19                    }
20                },
21            }
22        },
23        "lo1": {"instrument_type": "LocalOscillator", "power": 20},
24    },
25    "hardware_options": {
26        "modulation_frequencies": {
27            "q0:mw-q0.01": {
28                "interm_freq": 50e6
29            },
30        },
31    },
32    "connectivity": {
33        "cluster0": {
34            "cluster0_module1": {
35                "complex_output_0": {
36                    "portclock_configs": [
37                        {
38                            "clock": "q0.01",
39                            "port": "q0:mw"
40                        }
41                    ]
42                },
43            },
44            "cluster0_module2": {
45                "complex_output_0": {
46                    "portclock_configs": [
47                        {
48                            "clock": "q0.01",
49                            "port": "q0:mw"
50                        }
51                    ]
52                },
53            },
54        },
55    },
56}

QASM program indentation#

By default, the fields of the compiled QASM program are separated by a space, but this formatting can be made more human-readable by adding indentation. If the "align_qasm_fields" key in the hardware configuration is set to True (False by default), then for the whole program, labels, instructions, argument lists and comments are aligned in columns (same indentation level). Note that adding indentation worsens performance and has no functional value besides making the program more human-readable.

 1hardware_compilation_cfg = {
 2    "backend": "quantify_scheduler.backends.qblox_backend.hardware_compile",
 3    "hardware_description":
 4    {
 5        "cluster0": {
 6            "instrument_type": "Cluster",
 7            "ref": "internal",
 8            "align_qasm_fields": True,
 9            "modules": {...}
10        }
11    },
12    "hardware_options": {...},
13    "connectivity": {...}
14}

Local Oscillator description#

A local oscillator instrument can be used with baseband modules. After adding the instrument, we can reference it in a baseband-module output via the "lo_name" key.

The two mandatory parameters are the "instrument_type" (which should be "LocalOscillator"), and "power". The local oscillator frequency is then controlled through the "modulation_frequencies" hardware option (see Modulation frequencies), under the key of the port-clock combination associated with the baseband-module output.

Note that it is possible to add "generic_icc_name" as an optional parameter to the local oscillator hardware description, but only the default name "generic" is supported currently with the Qblox backend.

 1hardware_compilation_cfg = {
 2    "backend": "quantify_scheduler.backends.qblox_backend.hardware_compile",
 3    "hardware_description": {
 4        "cluster0": {...},
 5        "lo1": {
 6            "instrument_type": "LocalOscillator",
 7            "power": 20
 8        },
 9    },
10    "hardware_options": {
11        "modulation_frequencies": {
12            "q1:mw-q1.01": {
13                "lo_freq": 5e9
14            }
15        }
16    },
17    "connectivity": {
18        "cluster0": {
19            "cluster0_module1": {
20                "complex_output_1": {
21                    "lo_name": "lo1",
22                    "portclock_configs": [
23                        {
24                            "clock": "q1.01",
25                            "port": "q1:mw"
26                        }
27                    ]
28                },
29            },
30        },
31    }
32}

Connectivity#

The Connectivity describes how the inputs/outputs of the Cluster modules are connected to ports on the QuantumDevice.

Note

The Connectivity datastructure is currently under development. Information on the connectivity between port-clock combinations on the quantum device and ports on the control hardware is currently included in the old-style hardware configuration file, which should be included in the "connectivity" field of the HardwareCompilationConfig.

The possible inputs/outputs are

  • for "QCM": "complex_output_{0,1}", "real_output_{0,1,2,3}",

  • for "QRM": "complex_{output,input}_0", "real_{output,input}_{0,1}",

  • for "QCM_RF": "complex_output_{0,1}",

  • for "QRM_RF": "complex_{output,input}_0".

Note

For RF hardware, if an output is unused, it will be turned off. This is to ensure that unused local oscillators do not interfere with used outputs.

Port-clock configuration#

Under these "{complex,real}_{x}" keys, we specify the port-clock combinations an output may target (see the Ports and clocks for more information on the role of ports and clocks within quantify-scheduler).

Each module can have at most 6 port-clock combinations defined, and the name for each "port" and "clock" combination must be unique. Each of these port-clock combinations is associated with one sequencer in the Qblox hardware.

Note

If you use gate-level operations, you have to follow strict rules for each kind of operation on which port name you can use (what’s the naming convention for each port resource).

  • "<device element name>:mw" for Rxy operation (and its derived operations),

  • "<device element name>:res" for any measure operation,

  • "<device element name>:fl" for the flux port.

Frequency multiplexing#

It is possible to do frequency multiplexing of the signals by adding multiple port-clock configurations to the same output.

 1hardware_compilation_cfg = {
 2    "backend": "quantify_scheduler.backends.qblox_backend.hardware_compile",
 3    "hardware_description": {
 4        "cluster0": {
 5            "instrument_type": "Cluster",
 6            "ref": "internal",
 7            "modules": {
 8                "1": {
 9                    "instrument_type": "QCM"
10                },
11            }
12        },
13    },
14    "connectivity": {
15        "cluster0": {
16            "cluster0_module1": {
17                "complex_output_0": {
18                    "portclock_configs": [
19                        {
20                            "port": "q0:mw",
21                            "clock": "q0.01",
22                        },
23                        {
24                            "port": "q0:mw",
25                            "clock": "some_other_clock",
26                        }
27                    ]
28                },
29                "complex_output_1": {
30                    "portclock_configs": [
31                        {
32                            "port": "q1:mw",
33                            "clock": "q1.01",
34                        }
35                    ]
36                }
37            },
38        }
39    }
40}

In the given example, we added a second port-clock configuration to output 0. Now any signal on port "q0:mw" with clock "some_other_clock" will be added digitally to the signal with the same port but clock "q0.01". The Qblox modules have six sequencers available, which sets the upper limit to our multiplexing capabilities.

Note

The backend requires that each combination of a port and a clock is unique, that is, it is possible to use a certain port or clock multiple times but the combination of a port with a certain clock can only be used once in the hardware compilation config.

Complex I/O#

A complex I/O is defined by adding a "complex_{output, input}_<n>" to the module configuration. Complex outputs (e.g. complex_output_0) are used for playbacks, while complex inputs (e.g. complex_input_0) are used for acquisitions. However, for readout modules it is possible to use the complex_output_<n> key for both playbacks and acquisitions.

Note

It is not possible to use the same port-clock combination multiple times in the hardware compilation config. In that case, it is required to use only the complex_output_<n> key.

 1hardware_compilation_cfg = {
 2    "backend": "quantify_scheduler.backends.qblox_backend.hardware_compile",
 3    "hardware_description": {
 4        "cluster0": {
 5            "instrument_type": "Cluster",
 6            "ref": "internal",
 7            "modules": {
 8                "1": {
 9                    "instrument_type": "QRM"
10                },
11            }
12        }
13    }
14    "hardware_options": {...},
15    "connectivity": {
16        "cluster0": {
17            "cluster0_module1": {
18                "complex_output_0": {
19                    "portclock_configs": [
20                        {
21                            "port": "q0:mw",
22                            "clock": "q0.01",
23                        }
24                    ]
25                },
26                "complex_output_1": {
27                    "portclock_configs": [
28                        {
29                            "port": "q0:res",
30                            "clock": "q0.ro",
31                        }
32                    ]
33                },
34                "complex_input_0": {
35                    "portclock_configs": [
36                        {
37                            "port": "q1:res",
38                            "clock": "q1.ro",
39                        }
40                    ]
41                }
42            }
43        },
44    }
45}

Real I/O#

A real I/O is defined by adding a real_{output, input}_<n> to the module configuration. Real outputs (e.g. real_output_0) are used for playbacks, while real inputs (e.g. real_input_0) are used for acquisitions. However, for readout modules it is possible to use the real_output_<n> key for both playbacks and acquisitions. When using a real I/O, the backend automatically maps the signals to the correct output paths.

Note

It is not possible to use the same port-clock combination multiple times in the hardware compilation config. In that case, it is required to use only the real_output_<n> key.

For a real I/O, it is not allowed to use any pulses that have an imaginary component, i.e., only real valued pulses are allowed. If you were to use a complex pulse, the backend will produce an error, e.g., square and ramp pulses are allowed but DRAG pulses are not.

 1hardware_compilation_cfg = {
 2    "backend": "quantify_scheduler.backends.qblox_backend.hardware_compile",
 3    "hardware_description": {
 4        "cluster0": {
 5            "instrument_type": "Cluster",
 6            "ref": "internal",
 7            "modules": {
 8                "1": {
 9                    "instrument_type": "QRM"
10                },
11            }
12        }
13    }
14    "hardware_options": {...},
15    "connectivity": {
16        "cluster0": {
17            "cluster0_module1": {
18                "real_output_0": {
19                    "portclock_configs": [
20                        {
21                            "port": "q0:mw",
22                            "clock": "q0.01",
23                        }
24                    ]
25                },
26                "real_output_1": {
27                    "portclock_configs": [
28                        {
29                            "port": "q0:res",
30                            "clock": "q0.ro",
31                        }
32                    ]
33                },
34                "real_input_0": {
35                    "portclock_configs": [
36                        {
37                            "port": "q1:res",
38                            "clock": "q1.ro",
39                        }
40                    ]
41                }
42            }
43        },
44    }
45}

Digital I/O#

The markers can be controlled by defining a digital I/O, and adding a MarkerPulse on this I/O. A digital I/O is defined by adding a "digital_output_n" to the module configuration. n is the number of the digital output port. For a digital I/O only a port is required, no clocks or other parameters are needed.

 1hardware_compilation_cfg = {
 2    "backend": "quantify_scheduler.backends.qblox_backend.hardware_compile",
 3    "hardware_description": {...},
 4    "hardware_options": {...},
 5    "connectivity": {
 6        "cluster0": {
 7            "cluster0_module1": {
 8                "digital_output_0": {
 9                    "portclock_configs": [
10                        {
11                            "port": "q0:switch",
12                        },
13                    ],   
14                },
15            },
16        },
17    }
18}

The MarkerPulse is defined by adding a MarkerPulse to the sequence in question. It takes the same parameters as any other pulse.

schedule.add(MarkerPulse(duration=52e-9, port="q0:switch"))

Hardware options#

The QbloxHardwareOptions datastructure contains the settings used in compiling from the quantum-device layer to a set of instructions for the control hardware.

class QbloxHardwareOptions[source]

Datastructure containing the hardware options for each port-clock combination.

distortion_corrections[source]

Dictionary containing the distortion corrections (values) that should be applied to waveforms on a certain port-clock combination (keys).

input_att[source]

Dictionary containing the attenuation settings (values) that should be applied to the inputs that are connected to a certain port-clock combination (keys).

input_gain[source]

Dictionary containing the input gain settings (values) that should be applied to the inputs that are connected to a certain port-clock combination (keys).

latency_corrections[source]

Dictionary containing the latency corrections (values) that should be applied to operations on a certain port-clock combination (keys).

mixer_corrections[source]

Dictionary containing the mixer corrections (values) that should be used for signals on a certain port-clock combination (keys).

modulation_frequencies[source]

Dictionary containing the modulation frequencies (values) that should be used for signals on a certain port-clock combination (keys).

output_att[source]

Dictionary containing the attenuation settings (values) that should be applied to the outputs that are connected to a certain port-clock combination (keys).

sequencer_options[source]

Dictionary containing the options (values) that should be set on the sequencer that is used for a certain port-clock combination (keys).

Modulation frequencies#

The aim of quantify-scheduler is to only specify the final RF frequency when the signal arrives at the chip, rather than any parameters related to I/Q modulation. However, you still need to provide some parameters for the up/downconversion.

The backend assumes that upconversion happens according to the relation

\[f_{RF} = f_{IF} + f_{LO}\]

These frequencies are specified for each port-clock combination in the "modulation_frequencies" in the "hardware_options".

You can specify \(f_{RF}\) in multiple ways. You can specify it when you add a ClockResource with freq argument to your Schedule, or when you specify the BasicTransmonElement.clock_freqs.

Note

If you use gate-level operations, you have to follow strict rules for the naming of the clock resource, for each kind of operation:

  • "<transmon name>.01" for Rxy operation (and its derived operations),

  • "<transmon name>.ro" for any measure operation,

  • "<transmon name>.12" for the \(|1\rangle \rightarrow |2\rangle\) transition.

Then:

  • For baseband modules, you can optionally specify a local oscillator by its name using the "lo_name" key in the Connectivity. If you specify it, the "lo_freq" key in the "modulation_frequencies" (see the example below) specifies \(f_{LO}\) of this local oscillator. Otherwise, \(f_{LO} = 0\) and \(f_{RF} = f_{IF}\). \(f_{RF} = f_{IF}\) can also be set in the hardware options explicitly with the "interm_freq" key in the "modulation_frequencies".

  • For RF modules, you can specify \(f_{IF}\) through the "interm_freq" key, and/or you can specify the local oscillator frequency for the output used for the port-clock combination with the "lo_freq", because they have internal local oscillators. Note, if you specify both, the relationship between these frequencies should hold, otherwise you get an error message. It’s important to note, that fast frequency sweeps only work when \(f_{LO}\) is fixed, and \(f_{IF}\) is unspecified. Because of this, it is generally advised to specify \(f_{LO}\) only.

In the following example:

  • For the baseband modules, "complex_output_0"’s \(f_{IF}\) is the same as the "q0.01" clock resource’s frequency, and "complex_output_1"’s \(f_{IF}\) is calculated using the frequency of "lo1" (specified in "modulation_frequencies" under "q1:mw-q1.01" ) and "q1.01".

  • For the RF modules, "complex_output_0"’s \(f_{IF}\) is calculated using the provided "lo_freq" for "q2:mw-q2.01" and the frequency of "q2.01", and for "complex_output_1", the \(f_{LO}\) is calculated using the provided "interm_freq" for "q3:mw-q3.01" and the frequency of "q3.01".

 1from quantify_scheduler import Schedule
 2from quantify_scheduler.backends.graph_compilation import SerialCompiler
 3from quantify_scheduler.device_under_test.quantum_device import QuantumDevice
 4from quantify_scheduler.operations.pulse_library import SquarePulse
 5from quantify_scheduler.resources import ClockResource
 6
 7hardware_compilation_cfg = {
 8    "backend": "quantify_scheduler.backends.qblox_backend.hardware_compile",
 9    "hardware_description": {
10        "cluster0": {
11            "instrument_type": "Cluster",
12            "ref": "internal",
13            "modules": {
14                "1": {
15                    "instrument_type": "QCM"
16                },
17                "2": {
18                    "instrument_type": "QCM_RF"
19                },
20            }
21        },
22        "lo1": {"instrument_type": "LocalOscillator", "power": 20},
23    },
24    "hardware_options": {
25        "modulation_frequencies": {
26            "q1:mw-q1.01": {
27                "lo_freq": 5e9
28            },
29            "q2:mw-q2.01": {
30                "lo_freq": 7e9
31            },
32            "q3:mw-q3.01": {
33                "interm_freq": 50e6
34            },
35        },
36    },
37    "connectivity": {
38        "cluster0": {
39            "cluster0_module1": {
40                "complex_output_0": {
41                    "portclock_configs": [
42                        {
43                            "clock": "q0.01",
44                            "port": "q0:mw"
45                        }
46                    ]
47                },
48                "complex_output_1": {
49                    "lo_name": "lo1",
50                    "portclock_configs": [
51                        {
52                            "clock": "q1.01",
53                            "port": "q1:mw"
54                        }
55                    ]
56                },
57            },
58            "cluster0_module2": {
59                "complex_output_0": {
60                    "portclock_configs": [
61                        {
62                            "clock": "q2.01",
63                            "port": "q2:mw"
64                        }
65                    ]
66                },
67                "complex_output_1": {
68                    "portclock_configs": [
69                        {
70                            "clock": "q3.01",
71                            "port": "q3:mw"
72                        }
73                    ]
74                },
75            },
76        },
77    },
78}
79
80test_sched = Schedule("test_sched")
81test_sched.add_resource(ClockResource(name="q0.01", freq=8e9))
82test_sched.add_resource(ClockResource(name="q1.01", freq=9e9))
83test_sched.add_resource(ClockResource(name="q2.01", freq=8e9))
84test_sched.add_resource(ClockResource(name="q3.01", freq=9e9))
85
86test_sched.add(SquarePulse(amp=1, duration=1e-6, port="q0:mw", clock="q0.01"))
87test_sched.add(SquarePulse(amp=0.25, duration=1e-6, port="q1:mw", clock="q1.01"))
88test_sched.add(SquarePulse(amp=0.25, duration=1e-6, port="q2:mw", clock="q2.01"))
89test_sched.add(SquarePulse(amp=0.25, duration=1e-6, port="q3:mw", clock="q3.01"))
90
91quantum_device = QuantumDevice("DUT")
92quantum_device.hardware_config(hardware_compilation_cfg)
93compiler = SerialCompiler(name="compiler")
94_ = compiler.compile(
95    schedule=test_sched, config=quantum_device.generate_compilation_config()
96)

Mixer corrections#

The backend also supports setting the parameters that are used by the hardware to correct for mixer imperfections in real-time.

We configure this by adding the "mixer_corrections" to the hardware options for a specific port-clock combination. See the following example.

 1hardware_compilation_cfg = {
 2    "backend": "quantify_scheduler.backends.qblox_backend.hardware_compile",
 3    "hardware_description": {...},
 4    "connectivity": {...},
 5    "hardware_options": {
 6        "mixer_corrections": {
 7            "q4:mw-q4.01": {
 8                "dc_offset_i": -0.054,
 9                "dc_offset_q": -0.034,
10                "amp_ratio": 0.9997,
11                "phase_error": -4.0,
12            }
13        }
14    }
15}

Gain and attenuation#

For QRM, QRM-RF and QCM-RF modules you can set the gain and attenuation parameters in dB in the "hardware_options".

Gain configuration#

  • The "input_gain" parameter for QRM corresponds to the qcodes parameters in0_gain and in1_gain.

Note, these parameters only affect the QRM modules. For complex inputs you have to specify a tuple (for the I and Q inputs), and for real inputs a scalar value.

 1hardware_compilation_cfg = {
 2    "backend": "quantify_scheduler.backends.qblox_backend.hardware_compile",
 3    "hardware_description": {
 4        "cluster0": {
 5            "instrument_type": "Cluster",
 6            "ref": "internal",
 7            "modules": {
 8                "1": {
 9                    "instrument_type": "QRM"
10                },
11                "2": {
12                    "instrument_type": "QRM"
13                },
14            }
15        },
16    },
17    "hardware_options": {
18        "input_gain": {
19            "q0:res-q0.ro": {
20                "gain_I": 2,
21                "gain_Q": 3
22            }
23            "q0:fl-cl0.baseband": 2
24        },
25    },
26    "connectivity": {
27        "cluster0": {
28            "cluster0_module1": {
29                "complex_input_0": {
30                    "portclock_configs": [
31                        {
32                            "clock": "q0.ro",
33                            "port": "q0:res",
34                        },
35                    ]
36                },
37            },
38            "cluster0_module2": {
39                "real_input_0": {
40                    "portclock_configs": [
41                        {
42                            "clock": "cl0.baseband",
43                            "port": "q0:fl"
44                        }
45                    ]
46                },
47            },
48        }
49    }
50}

Attenuation configuration#

  • The parameters "output_att" and "input_att" for QRM-RF correspond to the qcodes parameters out0_att and in0_att respectively.

  • The parameter "output_att" for QCM-RF correspond to the qcodes parameters out0_att and out1_att.

Note, that these parameters only affect RF modules. See Qblox Instruments: QCM-QRM documentation for allowed values.

 1hardware_compilation_cfg = {
 2    "backend": "quantify_scheduler.backends.qblox_backend.hardware_compile",
 3    "hardware_description": {
 4        "cluster0": {
 5            "instrument_type": "Cluster",
 6            "ref": "internal",
 7            "modules": {
 8                "1": {
 9                    "instrument_type": "QRM_RF"
10                },
11                "2": {
12                    "instrument_type": "QCM_RF"
13                },
14            }
15        },
16    },
17    "hardware_options": {
18        "output_att": {
19            "q0:res-q0.ro": 12,
20            "q0:mw-q0.01": 4
21        },
22        "input_att": {
23            "q0:res-q0.ro": 10
24        }
25    },
26    "connectivity": {
27        "cluster0": {
28            "cluster0_module1": {
29                "complex_output_0": {
30                    "portclock_configs": [
31                        {
32                            "clock": "q0.res",
33                            "port": "q0:ro",
34                        },
35                    ]
36                },
37            },
38            "cluster0_module2": {
39                "complex_output_0": {
40                    "portclock_configs": [
41                        {
42                            "clock": "q0.01",
43                            "port": "q0:mw"
44                        }
45                    ]
46                },
47            },
48        }
49    }
50}

Maximum AWG output voltage#

Note

This subsection on max_awg_output_voltage is still under construction.

Latency corrections#

Latency corrections is a dict containing the delays for each port-clock combination. It is possible to specify them under the key "latency_corrections" in the hardware options. See the following example.

 1hardware_compilation_cfg = {
 2    "backend": "quantify_scheduler.backends.qblox_backend.hardware_compile",
 3    "hardware_description": {...},
 4    "connectivity": {...},
 5    "hardware_options": {
 6        "latency_corrections": {
 7            "q4:mw-q4.01": 8e-9,
 8            "q5:mw-q5.01": 4e-9
 9        }
10    }
11}

Each correction is in nanoseconds. For each specified port-clock, the program start will be delayed by this amount of time. Note, the delay still has to be a multiple of the grid time.

Distortion corrections#

Distortion corrections apply a function on the pulses which are in the schedule. Note, that this will not be applied to outputs generated by modifying the offset and gain/attenuation. The "distortion_corrections" is an optional key in the hardware options. See the following example.

 1hardware_compilation_cfg = {
 2    "backend": "quantify_scheduler.backends.qblox_backend.hardware_compile",
 3    "hardware_description": {...},
 4    "connectivity": {...},
 5    "hardware_options": {
 6        "distortion_corrections": {
 7            "q0:fl-cl0.baseband": {
 8                "filter_func": "scipy.signal.lfilter",
 9                "input_var_name": "x",
10                "kwargs": {
11                    "b": [0.0, 0.5, 1.0],
12                    "a": [1]
13                },
14                "clipping_values": [-2.5, 2.5]
15            }
16        }
17    }

If "distortion_corrections" are set, then "filter_func", "input_var_name" and "kwargs" are required. If "clipping_values" are set, its value must be a list with exactly 2 floats.

Clipping values are the boundaries to which the corrected pulses will be clipped, upon exceeding, these are optional to supply.

The "filter_func" is a python function that we apply with "kwargs" arguments. The waveform to be modified will be passed to this function in the argument name specified by "input_var_name". The waveform will be passed as a np.ndarray.

Sequencer options#

Several options are available that are set on the sequencer that is assigned to a certain port-clock combination. These can be set by adding "sequencer_options" to the hardware options.

class SequencerOptions[source]

Configuration options for a sequencer.

init_gain_awg_path_0 = 1.0[source]

Specifies what value the sequencer gain for AWG path 0 will be reset to before the start of the experiment.

init_gain_awg_path_1 = 1.0[source]

Specifies what value the sequencer gain for AWG path 0 will be reset to before the start of the experiment.

init_offset_awg_path_0 = 0.0[source]

Specifies what value the sequencer offset for AWG path 0 will be reset to before the start of the experiment.

init_offset_awg_path_1 = 0.0[source]

Specifies what value the sequencer offset for AWG path 1 will be reset to before the start of the experiment.

instruction_generated_pulses_enabled = False[source]

(deprecated) Generate certain specific waveforms from the pulse library using a more complicated series of sequencer instructions, which helps conserve waveform memory.

Note: this setting is deprecated and will be removed in a future version. Long square pulses and staircase pulses can be generated with the newly introduced StitchedPulseBuilder

qasm_hook_func[source]

Function to inject custom qasm instructions after the compiler inserts the footer and the stop instruction in the generated qasm program.

ttl_acq_threshold[source]

Threshold value with which to compare the input ADC values of the selected input path.

QASM hook#

It is possible to inject custom qasm instructions for each port-clock combination (sequencer), see the following example to insert a NOP (no operation) at the beginning of the program at line 0.

 1def _func_for_hook_test(qasm: QASMProgram):
 2    qasm.instructions.insert(
 3        0, QASMProgram.get_instruction_as_list(q1asm_instructions.NOP)
 4    )
 5
 6hardware_compilation_cfg = {
 7    "backend": "quantify_scheduler.backends.qblox_backend.hardware_compile",
 8    "hardware_description": {...},
 9    "hardware_options": {
10        "sequencer_options": {
11            "q0:mw-q0.01": {
12                "qasm_hook_func": _func_for_hook_test,
13            }
14        }
15    },
16    "connectivity": {...}
17}

Long waveform support#

The sequencers in Qblox modules have a sample limit of MAX_SAMPLE_SIZE_WAVEFORMS per sequencer. For certain waveforms, however, it is possible to use the sequencers more efficiently and using less waveform memory, allowing for longer waveforms. This section explains how to do this, utilizing the StitchedPulse. Also see Long waveforms via StitchedPulse of Tutorial: Schedules and Pulses.

  • For a few standard waveforms, the square pulse, ramp pulse and staircase pulse, the following helper functions create a StitchedPulse that can readily be added to schedules:

 1from quantify_scheduler.operations.pulse_factories import (
 2    long_ramp_pulse,
 3    long_square_pulse,
 4    staircase_pulse,
 5)
 6
 7ramp_pulse = long_ramp_pulse(amp=0.5, duration=1e-3, port="q0:mw")
 8square_pulse = long_square_pulse(amp=0.5, duration=1e-3, port="q0:mw")
 9staircase_pulse = staircase_pulse(
10    start_amp=0.0, final_amp=1.0, num_steps=20, duration=1e-4, port="q0:mw"
11)
  • More complex waveforms can be created from the StitchedPulseBuilder. This class allows you to construct complex waveforms by stitching together available pulses, and adding voltage offsets in between. Voltage offsets can be specified with or without a duration. In the latter case, the offset will hold until the last operation in the StitchedPulse ends. For example:

 1from quantify_scheduler.operations.pulse_library import RampPulse
 2from quantify_scheduler.operations.stitched_pulse import StitchedPulseBuilder
 3
 4trapezoid_pulse = (
 5    StitchedPulseBuilder(port="q0:mw", clock="q0.01")
 6    .add_pulse(RampPulse(amp=0.5, duration=1e-8, port="q0:mw"))
 7    .add_voltage_offset(path_0=0.5, path_1=0.0, duration=1e-7)
 8    .add_pulse(RampPulse(amp=-0.5, offset=0.5, duration=1e-8, port="q0:mw"))
 9    .build()
10)
11
12repeat_pulse_with_offset = (
13    StitchedPulseBuilder(port="q0:mw", clock="q0.01")
14    .add_pulse(RampPulse(amp=0.2, duration=8e-6, port="q0:mw"))
15    .add_voltage_offset(path_0=0.4, path_1=0.0)
16    .add_pulse(RampPulse(amp=0.2, duration=8e-6, port="q0:mw"))
17    .build()
18)
  • Pulses and offsets are appended to the end of the last added operation by default. By specifying the append=False keyword argument in the add_pulse and add_voltage_offset methods, in combination with the rel_time argument, you can insert an operation at the specified time relative to the start of the StitchedPulse. The example below uses this to generate a series of square pulses of various durations and amplitudes:

 1from quantify_scheduler.operations.stitched_pulse import StitchedPulseBuilder
 2
 3offsets = [0.3, 0.4, 0.5]
 4durations = [1e-6, 2e-6, 1e-6]
 5start_times = [0.0, 2e-6, 6e-6]
 6
 7builder = StitchedPulseBuilder(port="q0:mw", clock="q0.01")
 8
 9for offset, duration, t_start in zip(offsets, durations, start_times):
10    builder.add_voltage_offset(
11        path_0=offset, path_1=0.0, duration=duration, append=False, rel_time=t_start
12    )
13
14pulse = builder.build()