Source code for quantify_scheduler.json_utils

# Repository: https://gitlab.com/quantify-os/quantify-scheduler
# Licensed according to the LICENCE file on the main branch
"""Module containing quantify JSON utilities."""
from __future__ import annotations

import functools
import json
import pathlib
import sys
from types import ModuleType
from typing import Any, Callable, Dict, List, Type, Union

import fastjsonschema
import numpy as np

from qcodes import Instrument

from quantify_scheduler.helpers import inspect as inspect_helpers
from quantify_scheduler import enums

[docs]current_python_version = sys.version_info
[docs]lru_cache = functools.lru_cache(maxsize=200)
[docs]def validate_json(data, schema): """Validate schema using jsonschema-rs""" return fastjsonschema.validate(schema, data)
[docs]def load_json_schema(relative_to: Union[str, pathlib.Path], filename: str): """ Load a JSON schema from file. Expects a 'schemas' directory in the same directory as `relative_to`. .. tip:: Typical usage of the form `schema = load_json_schema(__file__, 'definition.json')` Parameters ---------- relative_to the file to begin searching from filename the JSON file to load Returns ------- dict the schema """ path = pathlib.Path(relative_to).resolve().parent.joinpath("schemas", filename) with path.open(mode="r", encoding="utf-8") as file: return json.load(file)
@lru_cache
[docs]def load_json_validator( relative_to: Union[str, pathlib.Path], filename: str ) -> Callable: """ Load a JSON validator from file. Expects a 'schemas' directory in the same directory as `relative_to`. Parameters ---------- relative_to the file to begin searching from filename the JSON file to load Returns ------- Callable The validator """ definition = load_json_schema(relative_to, filename) validator = fastjsonschema.compile(definition, handlers={}, formats={}) return validator
[docs]class JSONSchemaValMixin: # pylint: disable=too-few-public-methods """ A mixin that adds validation utilities to classes that have a data attribute like a :class:`UserDict` based on JSONSchema. This requires the class to have a class variable "schema_filename" """ @classmethod
[docs] def is_valid(cls, object_to_be_validated) -> bool: """Checks if the object is valid according to its schema Raises ------ fastjsonschema.JsonSchemaException if the data is invalid Returns ------- : """ validator_method = load_json_validator(__file__, cls.schema_filename) validator_method(object_to_be_validated.data) return True # if no exception was raised during validation
[docs]class SchedulerJSONDecoder(json.JSONDecoder): """ The Quantify Scheduler JSONDecoder. The SchedulerJSONDecoder is used to convert a string with JSON content into instances of classes in quantify-scheduler. To avoid the execution of malicious code SchedulerJSONDecoder uses :func:`ast.literal_eval` instead of :func:`eval` to convert the data to an instance. """
[docs] classes: Dict[str, Type[Any]]
def __init__(self, *args, **kwargs) -> None: """ Create new instance of SchedulerJSONDecoder to decode a string into an object. The list of serializable classes can be extended with custom classes by providing the `modules` keyword argument. These classes have overload the :code:`__str__` and :code:`__repr__` methods in order to serialize and deserialize domain objects into a valid JSON-format. Keyword Arguments ----------------- modules : List[ModuleType], *optional* A list of custom modules containing serializable classes, by default [] """ extended_modules: List[ModuleType] = kwargs.pop("modules", []) invalid_modules = list( filter(lambda o: not isinstance(o, ModuleType), extended_modules) ) if invalid_modules: raise ValueError( f"Attempting to create a Schedule decoder class SchedulerJSONDecoder. " f"The following modules provided are not an instance of the ModuleType:" f" {invalid_modules} ." ) super().__init__( object_hook=self.custom_object_hook, *args, **kwargs, ) # Use local import to void Error('Operation' from partially initialized module # 'quantify_scheduler') # pylint: disable=import-outside-toplevel from quantify_scheduler import resources from quantify_scheduler.device_under_test.quantum_device import QuantumDevice from quantify_scheduler.device_under_test.composite_square_edge import ( CompositeSquareEdge, ) from quantify_scheduler.schedules.schedule import ( AcquisitionMetadata, Schedulable, ) from quantify_scheduler.operations import ( acquisition_library, gate_library, operation, nv_native_library, pulse_library, shared_native_library, ) from quantify_scheduler.device_under_test import transmon_element self._modules: List[ModuleType] = [ enums, operation, transmon_element, acquisition_library, gate_library, pulse_library, nv_native_library, shared_native_library, resources, ] + extended_modules self.classes = inspect_helpers.get_classes(*self._modules) self.classes.update( { c.__name__: c for c in [ AcquisitionMetadata, Schedulable, QuantumDevice, CompositeSquareEdge, ] } ) self.classes.update( { t.__name__: t for t in [ complex, float, int, bool, str, np.ndarray, np.complex128, np.int32, np.int64, ] } )
[docs] def decode_dict( self, obj: Dict[str, Any] ) -> Union[Dict[str, Any], np.ndarray, type]: """ Returns the deserialized JSON dictionary. Parameters ---------- obj The dictionary to deserialize. Returns ------- : The deserialized result. """ # If "deserialization_type" is present in `obj` it means the object was # serialized using `__getstate__` and should be deserialized using # `__setstate__`. if "deserialization_type" in obj: class_type: Type = self.classes[obj["deserialization_type"]] if "mode" in obj and obj["mode"] == "__init__": if class_type == np.ndarray: return np.array(obj["data"]) if issubclass(class_type, Instrument): return class_type(**obj["data"]) return class_type(obj["data"]) if "mode" in obj and obj["mode"] == "type": return class_type new_obj = class_type.__new__(class_type) new_obj.__setstate__(obj) return new_obj return obj
[docs] def custom_object_hook(self, obj: object) -> object: """ The `object_hook` hook will be called with the result of every JSON object decoded and its return value will be used in place of the given ``dict``. Parameters ---------- obj A pair of JSON objects. Returns ------- : The deserialized result. """ if isinstance(obj, dict): return self.decode_dict(obj) return obj
[docs]class SchedulerJSONEncoder(json.JSONEncoder): """ Custom JSONEncoder which encodes a Quantify Scheduler object into a JSON file format string. """
[docs] def default(self, o): """ Overloads the json.JSONEncoder default method that returns a serializable object. It will try 3 different serialization methods which are, in order, check if the object is to be serialized to a string using repr. If not, try to use `__getstate__`. Finally, try to serialize the `__dict__` property. """ if hasattr(o, "__getstate__"): return o.__getstate__() if isinstance(o, (complex, np.int32, np.complex128, np.int64, enums.BinMode)): return { "deserialization_type": type(o).__name__, "mode": "__init__", "data": str(o), } if isinstance(o, (np.ndarray,)): return { "deserialization_type": type(o).__name__, "mode": "__init__", "data": list(o), } if o in [ complex, float, int, bool, str, np.ndarray, np.complex128, np.int32, np.int64, ]: return {"deserialization_type": o.__name__, "mode": "type"} if hasattr(o, "__dict__"): return o.__dict__ # Let the base class default method raise the TypeError return json.JSONEncoder.default(self, o)