# Repository: https://gitlab.com/quantify-os/quantify-scheduler
# Licensed according to the LICENCE file on the main branch
"""Module containing the core concepts of the scheduler."""
from __future__ import annotations
import dataclasses
import json
import warnings
from abc import ABC
from collections import UserDict
from itertools import chain
from typing import TYPE_CHECKING, Any, Literal
from uuid import uuid4
import pandas as pd
from quantify_scheduler import enums, json_utils, resources
from quantify_scheduler.helpers.collections import make_hash
from quantify_scheduler.json_utils import JSONSchemaValMixin
from quantify_scheduler.operations.control_flow_library import Loop
from quantify_scheduler.operations.operation import Operation
if TYPE_CHECKING:
import numpy as np
import plotly.graph_objects as go
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from quantify_scheduler.resources import Resource
# pylint: disable=too-many-ancestors
[docs]class ScheduleBase(JSONSchemaValMixin, UserDict, ABC):
# pylint: disable=line-too-long
"""
Interface to be used for :class:`~.Schedule`.
The :class:`~.ScheduleBase` is a data structure that is at
the core of the Quantify-scheduler and describes when what operations are applied
where.
The :class:`~.ScheduleBase` is a collection of
:class:`quantify_scheduler.operations.operation.Operation` objects and timing
constraints that define relations between the operations.
The schedule data structure is based on a dictionary.
This dictionary contains:
- operation_dict - a hash table containing the unique
:class:`quantify_scheduler.operations.operation.Operation` s added to the
schedule.
- schedulables - a dictionary of all timing constraints added
between operations.
The :class:`~.Schedule` provides an API to create schedules.
The :class:`~.CompiledSchedule` represents a schedule after
it has been compiled for execution on a backend.
The :class:`~.Schedule` contains information on the
:attr:`~.ScheduleBase.operations` and
:attr:`~.ScheduleBase.schedulables`.
The :attr:`~.ScheduleBase.operations` is a dictionary of all
unique operations used in the schedule and contain the information on *what*
operation to apply *where*.
The :attr:`~.ScheduleBase.schedulables` is a dictionary of
Schedulables describing timing constraints between operations, i.e. when to apply
an operation.
**JSON schema of a valid Schedule**
.. jsonschema:: https://gitlab.com/quantify-os/quantify-scheduler/-/raw/main/quantify_scheduler/schemas/schedule.json
""" # noqa: E501
# pylint: enable=line-too-long
@property
[docs] def name(self) -> str:
"""Returns the name of the schedule."""
return self["name"]
@property
[docs] def repetitions(self) -> int:
"""
Returns the amount of times this Schedule will be repeated.
Returns
-------
:
The repetitions count.
"""
return self["repetitions"]
@repetitions.setter
def repetitions(self, value: int) -> None:
if value <= 0:
raise ValueError(
f"Attempting to set repetitions for the schedule. "
f"Must be a positive number. Got {value}."
)
self["repetitions"] = int(value)
@property
[docs] def operations(self) -> dict[str, Operation | Schedule]:
"""
A dictionary of all unique operations used in the schedule.
This specifies information on *what* operation to apply *where*.
The keys correspond to the :attr:`~.Operation.hash` and values are instances
of :class:`quantify_scheduler.operations.operation.Operation`.
"""
return self["operation_dict"]
@property
[docs] def schedulables(self) -> dict[str, Any]:
"""
A list of schedulables describing the timing of operations.
A schedulable uses timing constraints to constrain the operation in time by
specifying the time (:code:`"rel_time"`) between a reference operation and the
added operation. The time can be specified with respect to a reference point
(:code:`"ref_pt"') on the reference operation (:code:`"ref_op"`) and a reference
point on the next added operation (:code:`"ref_pt_new"').
A reference point can be either the "start", "center", or "end" of an
operation. The reference operation (:code:`"ref_op"`) is specified using its
label property.
Each item in the list represents a timing constraint and is a dictionary with
the following keys:
.. code-block::
['label', 'rel_time', 'ref_op', 'ref_pt_new', 'ref_pt', 'operation_repr']
The label is used as a unique identifier that can be used as a reference for
other operations, the operation_repr refers to the string representation of a
operation in :attr:`~.ScheduleBase.operations`.
.. note::
timing constraints are not intended to be modified directly.
Instead use the :meth:`~.Schedule.add`
"""
return self["schedulables"]
@property
[docs] def resources(self) -> dict[str, Resource]:
"""
A dictionary containing resources.
Keys are names (str), values are instances of
:class:`~quantify_scheduler.resources.Resource`.
"""
return self["resource_dict"]
def __hash__(self) -> int:
return make_hash(self.data)
@property
[docs] def hash(self) -> str:
"""A hash based on the contents of the Schedule."""
return str(hash(self))
def __repr__(self) -> str:
"""Return a string representation of this instance."""
return (
f'{self.__class__.__name__} "{self["name"]}" containing '
f'({len(self["operation_dict"])}) '
f"{len(self.schedulables)} (unique) operations."
)
[docs] def to_json(self) -> str:
"""
Convert the Schedule data structure to a JSON string.
Returns
-------
:
The json string result.
"""
return json.dumps(self.data, cls=json_utils.SchedulerJSONEncoder)
@classmethod
[docs] def from_json(cls, data: str) -> Schedule:
"""
Convert the JSON data to a Schedule.
Parameters
----------
data
The JSON data.
Returns
-------
:
The Schedule object.
"""
schedule_data = json_utils.SchedulerJSONDecoder().decode(data)
sched = Schedule.__new__(Schedule)
sched.__setstate__(schedule_data)
return sched
[docs] def plot_circuit_diagram(
self,
figsize: tuple[int, int] = None,
ax: Axes | None = None,
plot_backend: Literal["mpl"] = "mpl",
) -> tuple[Figure, Axes | list[Axes]]:
# pylint: disable=line-too-long
"""
Create a circuit diagram visualization of the schedule using the specified plotting backend.
The circuit diagram visualization depicts the schedule at the quantum circuit
layer. Because quantify-scheduler uses a hybrid gate-pulse paradigm, operations
for which no information is specified at the gate level are visualized using an
icon (e.g., a stylized wavy pulse) depending on the information specified at
the quantum device layer.
Alias of :func:`quantify_scheduler.schedules._visualization.circuit_diagram.circuit_diagram_matplotlib`.
Parameters
----------
schedule
the schedule to render.
figsize
matplotlib figsize.
ax
Axis handle to use for plotting.
plot_backend
Plotting backend to use, currently only 'mpl' is supported
Returns
-------
fig
matplotlib figure object.
ax
matplotlib axis object.
Each gate, pulse, measurement, and any other operation are plotted in the order
of execution, but no timing information is provided.
.. admonition:: Example
:class: tip
.. jupyter-execute::
from quantify_scheduler import Schedule
from quantify_scheduler.operations.gate_library import Reset, X90, CZ, Rxy, Measure
sched = Schedule(f"Bell experiment on q0-q1")
sched.add(Reset("q0", "q1"))
sched.add(X90("q0"))
sched.add(X90("q1"), ref_pt="start", rel_time=0)
sched.add(CZ(qC="q0", qT="q1"))
sched.add(Rxy(theta=45, phi=0, qubit="q0") )
sched.add(Measure("q0", acq_index=0))
sched.add(Measure("q1", acq_index=0), ref_pt="start")
sched.plot_circuit_diagram();
.. note::
Gates that are started simultaneously on the same qubit will overlap.
.. jupyter-execute::
from quantify_scheduler import Schedule
from quantify_scheduler.operations.gate_library import X90, Measure
sched = Schedule(f"overlapping gates")
sched.add(X90("q0"))
sched.add(Measure("q0"), ref_pt="start", rel_time=0)
sched.plot_circuit_diagram();
.. note::
If the pulse's port address was not found then the pulse will be plotted on the
'other' timeline.
""" # noqa: E501
# NB imported here to avoid circular import
# pylint: disable=import-outside-toplevel
if plot_backend == "mpl":
import quantify_scheduler.schedules._visualization.circuit_diagram as cd
return cd.circuit_diagram_matplotlib(schedule=self, figsize=figsize, ax=ax)
raise ValueError(
f"plot_backend must be equal to 'mpl', value given: {repr(plot_backend)}"
)
# pylint: disable=too-many-arguments
[docs] def plot_pulse_diagram(
self,
port_list: list[str] | None = None,
sampling_rate: float = 1e9,
modulation: Literal["off", "if", "clock"] = "off",
modulation_if: float = 0.0,
plot_backend: Literal["mpl", "plotly"] = "mpl",
plot_kwargs: dict | None = None,
**backend_kwargs: Any, # noqa: ANN401
) -> tuple[Figure, Axes] | go.Figure:
# pylint: disable=line-too-long
"""
Create a visualization of all the pulses in a schedule using the specified plotting backend.
The pulse diagram visualizes the schedule at the quantum device layer.
For this visualization to work, all operations need to have the information
present (e.g., pulse info) to represent these on the quantum-circuit level and
requires the absolute timing to have been determined.
This information is typically added when the quantum-device level compilation is
performed.
Alias of
:func:`quantify_scheduler.schedules._visualization.pulse_diagram.pulse_diagram_matplotlib`
and
:func:`quantify_scheduler.schedules._visualization.pulse_diagram.pulse_diagram_plotly`.
Parameters
----------
port_list :
A list of ports to show. If `None` (default) the first 8 ports encountered in the sequence are used.
modulation :
Determines if modulation is included in the visualization.
modulation_if :
Modulation frequency used when modulation is set to "if".
sampling_rate :
The time resolution used to sample the schedule in Hz.
plot_backend:
Plotting library to use, can either be 'mpl' or 'plotly'.
plot_kwargs:
Keyword arguments to be passed on to the plotting backend. The arguments
that can be used for either backend can be found in the documentation of
:func:`quantify_scheduler.schedules._visualization.pulse_diagram.pulse_diagram_matplotlib`
and
:func:`quantify_scheduler.schedules._visualization.pulse_diagram.pulse_diagram_plotly`.
backend_kwargs:
Keyword arguments to be passed on to the plotting backend. The arguments
that can be used for either backend can be found in the documentation of
:func:`quantify_scheduler.schedules._visualization.pulse_diagram.pulse_diagram_matplotlib`
and
:func:`quantify_scheduler.schedules._visualization.pulse_diagram.pulse_diagram_plotly`.
Returns
-------
Union[Tuple[Figure, Axes], :class:`!plotly.graph_objects.Figure`]
the plot
.. admonition:: Example
:class: tip
A simple plot with matplotlib can be created as follows:
.. jupyter-execute::
from quantify_scheduler.backends.graph_compilation import SerialCompiler
from quantify_scheduler.device_under_test.quantum_device import QuantumDevice
from quantify_scheduler.operations.pulse_library import DRAGPulse, SquarePulse, RampPulse
from quantify_scheduler.resources import ClockResource
schedule = Schedule("Multiple waveforms")
schedule.add(DRAGPulse(G_amp=0.2, D_amp=0.2, phase=0, duration=4e-6, port="P", clock="C"))
schedule.add(RampPulse(amp=0.2, offset=0.0, duration=6e-6, port="P"))
schedule.add(SquarePulse(amp=0.1, duration=4e-6, port="Q"), ref_pt='start')
schedule.add_resource(ClockResource(name="C", freq=4e9))
quantum_device = QuantumDevice("quantum_device")
device_compiler = SerialCompiler("Device compiler", quantum_device)
compiled_schedule = device_compiler.compile(schedule)
_ = compiled_schedule.plot_pulse_diagram(sampling_rate=20e6)
The backend can be changed to the plotly backend by specifying the
``plot_backend=plotly`` argument. With the plotly backend, pulse
diagrams include a separate plot for each port/clock
combination:
.. jupyter-execute::
compiled_schedule.plot_pulse_diagram(sampling_rate=20e6, plot_backend='plotly')
The same can be achieved in the default ``plot_backend`` (``matplotlib``)
by passing the keyword argument ``multiple_subplots=True``:
.. jupyter-execute::
_ = compiled_schedule.plot_pulse_diagram(sampling_rate=20e6, multiple_subplots=True)
""" # noqa: E501
if plot_kwargs is None:
plot_kwargs = {}
else:
warnings.warn(
"Support for the 'plot_kwargs' argument will be dropped in "
"quantify-scheduler >= 0.18.0.\nPlease use regular keyword arguments "
"instead.",
FutureWarning,
)
kwargs = {**plot_kwargs, **backend_kwargs}
if plot_backend == "mpl":
# NB imported here to avoid circular import
# pylint: disable=import-outside-toplevel
from quantify_scheduler.schedules._visualization.pulse_diagram import (
pulse_diagram_matplotlib,
)
return pulse_diagram_matplotlib(
schedule=self,
sampling_rate=sampling_rate,
port_list=port_list,
modulation=modulation,
modulation_if=modulation_if,
**kwargs,
)
if plot_backend == "plotly":
# NB imported here to avoid circular import
# pylint: disable=import-outside-toplevel
from quantify_scheduler.schedules._visualization.pulse_diagram import (
pulse_diagram_plotly,
)
return pulse_diagram_plotly(
schedule=self,
sampling_rate=sampling_rate,
port_list=port_list,
modulation=modulation,
modulation_if=modulation_if,
**kwargs,
)
raise ValueError(
f"plot_backend must be equal to either 'mpl' or 'plotly', "
f"value given: {repr(plot_backend)}"
)
@property
[docs] def timing_table(self) -> pd.io.formats.style.Styler:
"""
A styled pandas dataframe containing the absolute timing of pulses and acquisitions in a schedule.
This table is constructed based on the abs_time key in the
:attr:`~quantify_scheduler.schedules.schedule.ScheduleBase.schedulables`.
This requires the timing to have been determined.
Parameters
----------
schedule
a schedule for which the absolute timing has been determined.
Returns
-------
:
styled_timing_table, a pandas Styler containing a dataframe with
an overview of the timing of the pulses and acquisitions present in the
schedule. The data frame can be accessed through the .data attribute of
the Styler.
Raises
------
ValueError
When the absolute timing has not been determined during compilation.
""" # noqa: E501
timing_table = pd.DataFrame(
columns=[
"waveform_op_id", # a readable id based on the operation
"port",
"clock",
"is_acquisition", # a bool which helps determine if an operation is
# an acquisition or not. (True is it is an acquisition operation)
"abs_time", # start of the operation in absolute time (s)
"duration", # duration of the operation in absolute time (s)
"operation",
"wf_idx",
"operation_hash",
]
)
timing_table_list = [timing_table]
for schedulable in self.schedulables.values():
if "abs_time" not in schedulable:
# when this exception is encountered
raise ValueError("Absolute time has not been determined yet.")
operation = self.operations[schedulable["operation_repr"]]
for i, op_info in chain(
enumerate(operation["pulse_info"]),
enumerate(operation["acquisition_info"]),
):
abs_time = op_info["t0"] + schedulable["abs_time"]
df_row = {
"waveform_op_id": str(operation) + f"_acq_{i}",
"port": op_info["port"],
"clock": op_info["clock"],
"abs_time": abs_time,
"duration": op_info["duration"],
"is_acquisition": "acq_channel" in op_info or "bin_mode" in op_info,
"operation": str(
operation
), # this field is not the operation itself, but its repr
"wf_idx": i,
"operation_hash": schedulable["operation_repr"],
}
timing_table_list.append(pd.DataFrame(df_row, index=range(1)))
timing_table = pd.concat(timing_table_list, ignore_index=True)
# apply a style so that time is easy to read.
# this works under the assumption that we are using timings on the order of
# nanoseconds.
styled_timing_table = timing_table.style.format(
{
"abs_time": lambda val: f"{val*1e9:,.1f} ns",
"duration": lambda val: f"{val*1e9:,.1f} ns",
}
)
return styled_timing_table
[docs] def get_schedule_duration(self) -> float:
"""
Return the duration of the schedule.
Returns
-------
schedule_duration : float
Duration of current schedule
"""
schedule_duration = 0
# find last timestamp
for schedulable in self.schedulables.values():
timestamp = schedulable["abs_time"]
operation_repr = schedulable["operation_repr"]
# find duration of last operation
operation = self["operation_dict"][operation_repr]
if isinstance(operation, Schedule):
final_op_len = operation.duration
else:
pulses_end_times = [
pulse.get("duration") + pulse.get("t0")
for pulse in operation["pulse_info"]
]
acquisitions_end_times = [
acquisition.get("duration") + acquisition.get("t0")
for acquisition in operation["acquisition_info"]
]
final_op_len = max(pulses_end_times + acquisitions_end_times, default=0)
tmp_time = timestamp + final_op_len
# keep track of longest found schedule
if tmp_time > schedule_duration:
schedule_duration = tmp_time
schedule_duration *= self.repetitions
return schedule_duration
@property
[docs] def duration(self) -> float | None:
"""
Determine the cached duration of the schedule.
Will return None if get_schedule_duration() has not been called before.
"""
return self.get("duration", None)
[docs]class Schedule(ScheduleBase): # pylint: disable=too-many-ancestors
"""
A modifiable schedule.
Operations :class:`quantify_scheduler.operations.operation.Operation` can be added
using the :meth:`~.Schedule.add` method, allowing precise
specification *when* to perform an operation using timing constraints.
When adding an operation, it is not required to specify how to represent this
:class:`quantify_scheduler.operations.operation.Operation` on all layers.
Instead, this information can be added later during
:ref:`compilation <sec-compilation>`.
This allows the user to effortlessly mix the gate- and pulse-level descriptions as
required for many (calibration) experiments.
Parameters
----------
name
The name of the schedule
repetitions
The amount of times the schedule will be repeated, by default 1
data
A dictionary containing a pre-existing schedule, by default None
""" # pylint: disable=line-too-long
[docs] schema_filename = "schedule.json"
def __init__(
self, name: str, repetitions: int = 1, data: dict = None
) -> None: # noqa: E501
# validate the input data to ensure it is valid schedule data
super().__init__()
# ensure keys exist
self["operation_dict"] = {}
self["schedulables"] = {}
self["resource_dict"] = {}
self["name"] = "nameless"
self["repetitions"] = repetitions
# This is used to define baseband pulses and is expected to always be present
# in any schedule.
self.add_resource(
resources.BasebandClockResource(resources.BasebandClockResource.IDENTITY)
)
if name is not None:
self["name"] = name
if data is not None:
self.data.update(data)
[docs] def add_resources(self, resources_list: list) -> None:
"""Add wrapper for adding multiple resources."""
for resource in resources_list:
self.add_resource(resource)
[docs] def add_resource(self, resource: Resource) -> None:
"""Add a resource such as a channel or qubit to the schedule."""
if not resources.Resource.is_valid(resource):
raise ValueError(
f"Attempting to add resource to schedule. "
f"Resource '{resource}' is not valid."
)
if resource.name in self["resource_dict"]:
raise ValueError(f"Key {resource.name} is already present")
self["resource_dict"][resource.name] = resource
# pylint: disable=too-many-arguments
[docs] def add(
self,
operation: Operation | Schedule,
rel_time: float = 0,
ref_op: Schedulable | str | None = None,
ref_pt: Literal["start", "center", "end"] | None = None,
ref_pt_new: Literal["start", "center", "end"] | None = None,
label: str | None = None,
control_flow: Loop | None = None,
validate: bool = True,
) -> Schedulable:
"""
Add an operation or a subschedule to the schedule.
Parameters
----------
operation
The operation to add to the schedule, or another schedule to add
as a subschedule.
rel_time
relative time between the reference operation and the added operation.
the time is the time between the "ref_pt" in the reference operation and
"ref_pt_new" of the operation that is added.
ref_op
reference schedulable. If set to :code:`None`, will default
to the last added operation.
ref_pt
reference point in reference operation must be one of
:code:`"start"`, :code:`"center"`, :code:`"end"`, or :code:`None`; in case
of :code:`None`,
:func:`~quantify_scheduler.compilation.determine_absolute_timing` assumes
:code:`"end"`.
ref_pt_new
reference point in added operation must be one of
:code:`"start"`, :code:`"center"`, :code:`"end"`, or :code:`None`; in case
of :code:`None`,
:func:`~quantify_scheduler.compilation.determine_absolute_timing` assumes
:code:`"start"`.
label
a unique string that can be used as an identifier when adding operations.
if set to `None`, a random hash will be generated instead.
control_flow
Virtual operation describing if the operation should be subject to control
flow (loop, conditional, ...). See
:ref:`control flow reference documentation <sec-control-flow>`
for a detailed explanation.
validate
Whether to validate arguments, used by the compiler. There is no benefit
to disable validation for users. USE AT OWN RISK.
Returns
-------
:
Returns the schedulable created in the schedule.
"""
if label is None:
label = str(uuid4())
if validate:
self._validate_add_arguments(operation, label, control_flow)
# ensure the schedulable name is unique
if label in self.schedulables:
raise ValueError(f"Schedulable name '{label}' must be unique.")
# ensure that reference schedulable exists in current schedule
if ref_op is not None and (
(isinstance(ref_op, str) and ref_op not in self.schedulables)
# in case a user references a schedulable from another schedule
# that has a label that exists in this schedule:
or (
isinstance(ref_op, Schedulable)
and self.schedulables.get(str(ref_op)) is not ref_op
)
):
raise ValueError(
f"Reference schedulable '{ref_op}' does not exists in "
f"schedule '{self.name}'."
)
operation_id = operation.hash
self["operation_dict"][operation_id] = operation
element = Schedulable(
name=label, operation_repr=operation_id, control_flow=control_flow
)
element.add_timing_constraint(
rel_time=rel_time,
ref_schedulable=ref_op,
ref_pt=ref_pt,
ref_pt_new=ref_pt_new,
)
self.schedulables.update({label: element})
return element
[docs] def _validate_add_arguments(
self,
operation: Operation | Schedule,
label: str,
control_flow: Operation | None,
) -> None:
if not isinstance(operation, (Operation, Schedule)):
raise ValueError(
f"Attempting to add operation to schedule. "
f"The provided object '{operation=}' is not"
" an instance of Operation or Schedule"
)
if isinstance(operation, Loop):
raise ValueError(
"Attempting to manually add control flow operation. "
"Use the 'control_flow' kwarg instead."
)
if control_flow is not None:
if isinstance(control_flow, Loop):
warnings.warn(
"Loops are an experimental feature."
" Please refer to the documentation:"
" https://quantify-os.org/docs/quantify-scheduler/latest/reference/control_flow.html"
)
else:
raise ValueError(
f"Attempting to add operation other than control flow as control flow."
f" Supplied: '{control_flow=}' of type '{type(control_flow)}'\n"
f" Valid: '{type(Loop)}' (or value 'None')."
)
# ensure the schedulable name is unique
if label in self.schedulables:
raise ValueError(f"Schedulable name '{label}' must be unique.")
def __getstate__(self) -> dict[str, Any]:
return self.data
def __setstate__(self, state: dict[str, Any]) -> None:
self.data = state
[docs]class Schedulable(JSONSchemaValMixin, UserDict):
"""
A representation of an element on a schedule.
All elements on a schedule are schedulables. A schedulable contains all
information regarding the timing of this element as well as the operation
being executed by this element. This operation is currently represented by
an operation ID.
Schedulables can contain an arbitrary number of timing constraints to
determine the timing. Multiple different constraints are currently resolved
by delaying the element until after all timing constraints have been met, to
aid compatibility. To specify an exact timing between two schedulables,
please ensure to only specify exactly one timing constraint.
Parameters
----------
name
The name of this schedulable, by which it can be referenced by other
schedulables. Separate schedulables cannot share the same name
operation_repr
The operation which is to be executed by this schedulable
"""
[docs] schema_filename = "schedulable.json"
def __init__(
self, name: str, operation_repr: str, control_flow: Operation | None = None
) -> None:
super().__init__()
self["name"] = name
self["operation_repr"] = operation_repr
self["timing_constraints"] = []
# the next lines are to prevent breaking the existing API
self["label"] = name
if control_flow is not None:
self["control_flow"] = control_flow
[docs] def add_timing_constraint(
self,
rel_time: float = 0,
ref_schedulable: Schedulable | str | None = None,
ref_pt: Literal["start", "center", "end"] | None = None,
ref_pt_new: Literal["start", "center", "end"] | None = None,
) -> None:
"""
Add timing constraint.
A timing constraint constrains the operation in time by specifying the time
(:code:`"rel_time"`) between a reference schedulable and the added schedulable.
The time can be specified with respect to the "start", "center", or "end" of
the operations.
The reference schedulable (:code:`"ref_schedulable"`) is specified using its
name property.
See also :attr:`~.ScheduleBase.schedulables`.
Parameters
----------
rel_time
relative time between the reference schedulable and the added schedulable.
the time is the time between the "ref_pt" in the reference operation and
"ref_pt_new" of the operation that is added.
ref_schedulable
name of the reference schedulable. If set to :code:`None`, will default
to the last added operation.
ref_pt
reference point in reference operation must be one of
:code:`"start"`, :code:`"center"`, :code:`"end"`, or :code:`None`; in case
of :code:`None`,
:meth:`~quantify_scheduler.compilation.determine_absolute_timing` assumes
:code:`"end"`.
ref_pt_new
reference point in added operation must be one of
:code:`"start"`, :code:`"center"`, :code:`"end"`, or :code:`None`; in case
of :code:`None`,
:meth:`~quantify_scheduler.compilation.determine_absolute_timing` assumes
:code:`"start"`.
"""
# Save as str to help serialization of schedules.
if ref_schedulable is not None:
ref_schedulable = str(ref_schedulable)
timing_constr = {
"rel_time": rel_time,
"ref_schedulable": ref_schedulable,
"ref_pt_new": ref_pt_new,
"ref_pt": ref_pt,
}
self["timing_constraints"].append(timing_constr)
def __hash__(self) -> int:
return make_hash(self.data)
@property
[docs] def hash(self) -> str:
"""A hash based on the contents of the Operation."""
return str(hash(self))
def __str__(self) -> str:
return str(self["name"])
def __getstate__(self) -> dict[str, Any]:
return {"deserialization_type": self.__class__.__name__, "data": self.data}
def __setstate__(self, state: dict[str, Any]) -> None:
self.data = state["data"]
# pylint: disable=too-many-ancestors
[docs]class CompiledSchedule(ScheduleBase):
"""
A schedule that contains compiled instructions ready for execution using the :class:`~.InstrumentCoordinator`.
The :class:`CompiledSchedule` differs from a :class:`.Schedule` in
that it is considered immutable (no new operations or resources can be added), and
that it contains :attr:`~.compiled_instructions`.
.. tip::
A :class:`~.CompiledSchedule` can be obtained by compiling a
:class:`~.Schedule` using :meth:`~quantify_scheduler.backends.graph_compilation.QuantifyCompiler.compile`.
""" # pylint: disable=line-too-long # noqa: E501
[docs] schema_filename = "schedule.json"
def __init__(self, schedule: Schedule) -> None:
# validate the input data to ensure it is valid schedule data
super().__init__()
self._hardware_timing_table: pd.DataFrame = pd.DataFrame()
# N.B. this relies on a bit of a dirty monkey patch way of adding these
# properties. Not so nice.
if hasattr(schedule, "_hardware_timing_table"):
self._hardware_timing_table = schedule._hardware_timing_table
self._hardware_waveform_dict: dict[str, np.ndarray] = {}
if hasattr(schedule, "_hardware_waveform_dict"):
self._hardware_waveform_dict = schedule._hardware_waveform_dict
# ensure keys exist
self["compiled_instructions"] = {}
self.data.update(schedule.data)
@property
[docs] def compiled_instructions(self) -> dict[str, Resource]:
"""
A dictionary containing compiled instructions.
The contents of this dictionary depend on the backend it was compiled for.
However, we assume that the general format consists of a dictionary in which
the keys are instrument names corresponding to components added to a
:class:`~.InstrumentCoordinator`, and the
values are the instructions for that component.
These values typically contain a combination of sequence files, waveform
definitions, and parameters to configure on the instrument.
""" # pylint: disable=line-too-long
return self["compiled_instructions"]
@classmethod
[docs] def is_valid(cls, object_to_be_validated: Any) -> bool: # noqa: ANN401
"""
Check if the contents of the object_to_be_validated are valid.
Additionally checks if the object_to_be_validated is
an instance of :class:`~.CompiledSchedule`.
"""
valid_schedule = super().is_valid(object_to_be_validated)
if valid_schedule:
return isinstance(object_to_be_validated, CompiledSchedule)
return False
@property
[docs] def hardware_timing_table(self) -> pd.io.formats.style.Styler:
"""
Return a timing table representing all operations at the Control-hardware layer.
Note that this timing table is typically different from the `.timing_table` in
that it contains more hardware specific information such as channels, clock
cycles and samples and corrections for things such as gain.
This hardware timing table is intended to provide a more
This table is constructed based on the timing_table and modified during
compilation in one of the hardware back ends and optionally added to the
schedule. Not all back ends support this feature.
"""
styled_hardware_timing_table = self._hardware_timing_table.style.format(
{
"abs_time": lambda val: f"{val*1e9:,.1f} ns",
"duration": lambda val: f"{val*1e9:,.1f} ns",
"clock_cycle_start": lambda val: f"{val:,.1f}",
"sample_start": lambda val: f"{val:,.1f}",
}
)
return styled_hardware_timing_table
@property
@dataclasses.dataclass