corrections =========== .. py:module:: quantify_scheduler.backends.corrections .. autoapi-nested-parse:: Pulse and acquisition corrections for hardware compilation. Module Contents --------------- Functions ~~~~~~~~~ .. autoapisummary:: quantify_scheduler.backends.corrections.determine_relative_latency_corrections quantify_scheduler.backends.corrections.distortion_correct_pulse quantify_scheduler.backends.corrections._is_distortion_correctable quantify_scheduler.backends.corrections.apply_distortion_corrections Attributes ~~~~~~~~~~ .. autoapisummary:: quantify_scheduler.backends.corrections.logger .. py:data:: logger .. py:function:: determine_relative_latency_corrections(hardware_cfg: Dict[str, Any]) -> Dict[str, float] Generates the latency configuration dict for all port-clock combinations that are present in the hardware_cfg. This is done by first setting unspecified latency corrections to zero, and then subtracting the minimum latency from all latency corrections. .. py:function:: distortion_correct_pulse(pulse_data: Dict[str, Any], sampling_rate: int, filter_func_name: str, input_var_name: str, kwargs_dict: Dict[str, Any], clipping_values: Optional[Tuple[float]] = None) -> quantify_scheduler.operations.pulse_library.NumericalPulse Sample pulse and apply filter function to the sample to distortion correct it. :param pulse_data: Definition of the pulse. :param sampling_rate: The sampling rate used to generate the time axis values. :param filter_func_name: The filter function path of the dynamically loaded filter function. Example: ``"scipy.signal.lfilter"``. :param input_var_name: The input variable name of the dynamically loaded filter function, most likely: ``"x"``. :param kwargs_dict: Dictionary containing kwargs for the dynamically loaded filter function. Example: ``{"b": [0.0, 0.5, 1.0], "a": 1}``. :param clipping_values: Min and max value to which the corrected pulse will be clipped, depending on allowed output values for the instrument. :returns: The sampled, distortion corrected pulse wrapped in a ``NumericalPulse``. .. py:function:: _is_distortion_correctable(operation: quantify_scheduler.operations.operation.Operation) -> bool Checks whether distortion corrections can be applied to the given operation. .. py:function:: apply_distortion_corrections(schedule: quantify_scheduler.Schedule, hardware_cfg: Dict[str, Any]) -> quantify_scheduler.Schedule Apply distortion corrections to operations in the schedule. Defined via the hardware configuration file, example: .. code-block:: "distortion_corrections": { "q0:fl-cl0.baseband": { "filter_func": "scipy.signal.lfilter", "input_var_name": "x", "kwargs": { "b": [0.0, 0.5, 1.0], "a": [1] }, "clipping_values": [-2.5, 2.5] } } Clipping values are the boundaries to which the corrected pulses will be clipped, upon exceeding, these are optional to supply. For pulses in need of correcting (indicated by their port-clock combination) we are **only** replacing the dict in ``"pulse_info"`` associated to that specific pulse. This means that we can have a combination of corrected (i.e., pre-sampled) and uncorrected pulses in the same operation. Note that we are **not** updating the ``"operation_repr"`` key, used to reference the operation from the schedulable. :param schedule: The schedule that contains operations that are to be distortion corrected. :param hardware_cfg: The hardware configuration of the setup. :returns: The schedule with distortion corrected operations. :Warns: **RuntimeWarning** -- If distortion correction can not be applied to the type of Operation in the schedule. :raises KeyError: when elements are missing in distortion correction config for a port-clock combination. :raises KeyError: when clipping values are supplied but not two values exactly, min and max.