Source code for quantify_scheduler.operations.pulse_library

# Repository: https://gitlab.com/quantify-os/quantify-scheduler
# Licensed according to the LICENCE file on the main branch
"""Standard pulse-level operations for use with the quantify_scheduler."""
# pylint: disable= too-many-arguments, too-many-ancestors
from __future__ import annotations

import warnings
from dataclasses import dataclass
from typing import Any, Dict, List, Literal, Optional, Union

import numpy as np
from numpy.typing import NDArray
from qcodes import InstrumentChannel, validators

from quantify_scheduler import Operation
from quantify_scheduler.backends.qblox.enums import ChannelMode
from quantify_scheduler.helpers.deprecation import deprecated_arg_alias
from quantify_scheduler.helpers.waveforms import area_pulses
from quantify_scheduler.resources import BasebandClockResource


@dataclass
[docs] class ReferenceMagnitude: """Dataclass defining a reference level for pulse amplitudes in units of 'V', 'dBm', or 'A'."""
[docs] value: float
[docs] unit: Literal["V", "dBm", "A"]
@classmethod
[docs] def from_parameter(cls, parameter: InstrumentChannel): """Initialize from ReferenceMagnitude QCoDeS InstrumentChannel values.""" value, unit = parameter.get_val_unit() if np.isnan(value): return None if unit not in (allowed_units := ["V", "dBm", "A", "W"]): raise ValueError(f"Invalid unit: {unit}. Allowed units: {allowed_units}") return cls(value, unit)
def __hash__(self): return hash((self.value, self.unit))
[docs] class ShiftClockPhase(Operation): """ Operation that shifts the phase of a clock by a specified amount. This is a low-level operation and therefore depends on the backend. Currently only implemented for Qblox backend, refer to :class:`~quantify_scheduler.backends.qblox.operation_handling.virtual.NcoPhaseShiftStrategy` for more details. Parameters ---------- phase_shift The phase shift in degrees. clock The clock of which to shift the phase. t0 Time in seconds when to execute the command relative to the start time of the Operation in the Schedule. duration (deprecated) The duration of the operation in seconds. """ def __init__( self, phase_shift: float, clock: str, t0: float = 0, duration: float = 0.0, ): if duration != 0.0: warnings.warn( "The duration parameter will be removed in quantify-scheduler >= " "0.20.0, and the duration will be fixed to 0.0.", FutureWarning, ) super().__init__(name=self.__class__.__name__) self.data["pulse_info"] = [ { "wf_func": None, "t0": t0, "phase_shift": phase_shift, "clock": clock, "port": None, "duration": 0, } ] self._update() def __str__(self) -> str: pulse_info = self.data["pulse_info"][0] return self._get_signature(pulse_info)
[docs] class ResetClockPhase(Operation): """ An operation that resets the phase of a clock. Parameters ---------- clock The clock of which to reset the phase. """ def __init__(self, clock: str, t0: float = 0): super().__init__(name=self.__class__.__name__) self.data["pulse_info"] = [ { "wf_func": None, "clock": clock, "t0": t0, "duration": 0, "port": None, "reset_clock_phase": True, } ] self._update() def __str__(self) -> str: pulse_info = self.data["pulse_info"][0] return self._get_signature(pulse_info)
[docs] class SetClockFrequency(Operation): """ Operation that sets updates the frequency of a clock. This is a low-level operation and therefore depends on the backend. Currently only implemented for Qblox backend, refer to :class:`~quantify_scheduler.backends.qblox.operation_handling.virtual.NcoSetClockFrequencyStrategy` for more details. Parameters ---------- clock The clock for which a new frequency is to be set. clock_freq_new The new frequency in Hz. t0 Time in seconds when to execute the command relative to the start time of the Operation in the Schedule. duration (deprecated) The duration of the operation in seconds. """ def __init__( self, clock: str, clock_freq_new: float, t0: float = 0, duration: float = 0.0, ): if duration != 0.0: warnings.warn( "The duration parameter will be removed in quantify-scheduler >= " "0.20.0, and the duration will be fixed to 0.0.", FutureWarning, ) super().__init__(name=self.__class__.__name__) self.data["pulse_info"] = [ { "wf_func": None, "t0": t0, "clock": clock, "clock_freq_new": clock_freq_new, "clock_freq_old": None, "interm_freq_old": None, "port": None, "duration": 0, } ] self._update() def __str__(self) -> str: pulse_info = self.data["pulse_info"][0] return self._get_signature(pulse_info)
[docs] class VoltageOffset(Operation): """ Operation that represents setting a constant offset to the output voltage. Please refer to :ref:`sec-qblox-offsets-long-voltage-offsets` in the reference guide for more details. Parameters ---------- offset_path_I : float Offset of path I. offset_path_Q : float Offset of path Q. port : str Port of the voltage offset. clock : str, optional Clock used to modulate the voltage offset. By default a BasebandClock is used. duration : float, optional (deprecated) The time to hold the offset for (in seconds). t0 : float, optional Time in seconds when to start the pulses relative to the start time of the Operation in the Schedule. reference_magnitude : Scaling value and unit for the unitless amplitude. Uses settings in hardware config if not provided. """ @deprecated_arg_alias( "0.20.0", offset_path_0="offset_path_I", offset_path_1="offset_path_Q" ) def __init__( self, offset_path_I: float, offset_path_Q: float, port: str, clock: str = BasebandClockResource.IDENTITY, duration: float = 0.0, t0: float = 0, reference_magnitude: ReferenceMagnitude | None = None, ) -> None: if duration != 0.0: warnings.warn( "The duration parameter will be removed in quantify-scheduler >= " "0.20.0, and the duration will be fixed to 0.0.", FutureWarning, ) super().__init__(name=self.__class__.__name__) self.data["pulse_info"] = [ { "wf_func": None, "t0": t0, "offset_path_I": offset_path_I, "offset_path_Q": offset_path_Q, "clock": clock, "port": port, "duration": duration, "reference_magnitude": reference_magnitude, } ] self._update() def __str__(self) -> str: pulse_info = self.data["pulse_info"][0] return self._get_signature(pulse_info)
[docs] class IdlePulse(Operation): """ The IdlePulse Operation is a placeholder for a specified duration of time. The IdlePulse Operation is a placeholder for a specified duration of time. Parameters ---------- duration The duration of idle time in seconds. """ def __init__(self, duration: float): super().__init__(name=self.__class__.__name__) self.data["pulse_info"] = [ { "wf_func": None, "t0": 0, "duration": duration, "clock": BasebandClockResource.IDENTITY, "port": None, } ] self._update() def __str__(self) -> str: pulse_info = self.data["pulse_info"][0] return self._get_signature(pulse_info)
[docs] class RampPulse(Operation): r""" RampPulse Operation is a pulse that ramps from zero to a set amplitude over its duration. The pulse is given as a function of time :math:`t` and the parameters offset and amplitude by .. math:: P(t) = \mathrm{offset} + t \times \mathrm{amp}. Parameters ---------- amp Unitless amplitude of the ramp envelope function. duration The pulse duration in seconds. offset Starting point of the ramp pulse port Port of the pulse. clock Clock used to modulate the pulse, by default a BasebandClock is used. reference_magnitude Scaling value and unit for the unitless amplitude. Uses settings in hardware config if not provided. t0 Time in seconds when to start the pulses relative to the start time of the Operation in the Schedule. """ def __init__( self, amp: float, duration: float, port: str, clock: str = BasebandClockResource.IDENTITY, reference_magnitude: Optional[ReferenceMagnitude] = None, offset: float = 0, t0: float = 0, ): super().__init__(name=self.__class__.__name__) self.data["pulse_info"] = [ { "wf_func": "quantify_scheduler.waveforms.ramp", "amp": amp, "reference_magnitude": reference_magnitude, "duration": duration, "offset": offset, "t0": t0, "clock": clock, "port": port, } ] self._update() def __str__(self) -> str: pulse_info = self.data["pulse_info"][0] return self._get_signature(pulse_info)
[docs] class StaircasePulse(Operation): # pylint: disable=too-many-ancestors """ A real valued staircase pulse, which reaches it's final amplitude in discrete steps. In between it will maintain a plateau. Parameters ---------- start_amp Starting unitless amplitude of the staircase envelope function. final_amp Final unitless amplitude of the staircase envelope function. num_steps The number of plateaus. duration Duration of the pulse in seconds. port Port of the pulse. clock Clock used to modulate the pulse. reference_magnitude Scaling value and unit for the unitless amplitude. Uses settings in hardware config if not provided. t0 Time in seconds when to start the pulses relative to the start time of the Operation in the Schedule. """ def __init__( self, start_amp: float, final_amp: float, num_steps: int, duration: float, port: str, clock: str = BasebandClockResource.IDENTITY, reference_magnitude: Optional[ReferenceMagnitude] = None, t0: float = 0, ): super().__init__(name=self.__class__.__name__) self.data["pulse_info"] = [ { "wf_func": "quantify_scheduler.waveforms.staircase", "start_amp": start_amp, "final_amp": final_amp, "reference_magnitude": reference_magnitude, "num_steps": num_steps, "duration": duration, "t0": t0, "clock": clock, "port": port, } ] self._update() def __str__(self) -> str: pulse_info = self.data["pulse_info"][0] return self._get_signature(pulse_info)
[docs] class MarkerPulse(Operation): """ Digital pulse that is HIGH for the specified duration. Marker pulse is played on marker output. Currently only implemented for Qblox backend. Parameters ---------- duration Duration of the HIGH signal. port Name of associated port. clock As digital channels technically do not have a clock, this parameter is by default set to "digital". In circuit to device compilation digital channels get assigned the digital clock. """ def __init__( self, duration: float, port: str, t0: float = 0, clock: str = ChannelMode.DIGITAL, ): super().__init__(name=self.__class__.__name__) self.data["pulse_info"] = [ { "wf_func": None, "marker_pulse": True, # This distinguishes MarkerPulse from other operations "t0": t0, "clock": clock, "port": port, "duration": duration, } ] self._update() def __str__(self) -> str: pulse_info = self.data["pulse_info"][0] return self._get_signature(pulse_info)
[docs] class SquarePulse(Operation): """ A real-valued pulse with the specified amplitude during the pulse. Parameters ---------- amp Unitless complex valued amplitude of the envelope. duration The pulse duration in seconds. port Port of the pulse, must be capable of playing a complex waveform. clock Clock used to modulate the pulse. reference_magnitude Scaling value and unit for the unitless amplitude. Uses settings in hardware config if not provided. t0 Time in seconds when to start the pulses relative to the start time of the Operation in the Schedule. """ def __init__( self, amp: complex, duration: float, port: str, clock: str = BasebandClockResource.IDENTITY, reference_magnitude: Optional[ReferenceMagnitude] = None, t0: float = 0, ): super().__init__(name=self.__class__.__name__) self.data["pulse_info"] = [ { "wf_func": "quantify_scheduler.waveforms.square", "amp": amp, "reference_magnitude": reference_magnitude, "duration": duration, "t0": t0, "clock": clock, "port": port, } ] self._update() def __str__(self) -> str: pulse_info = self.data["pulse_info"][0] return self._get_signature(pulse_info)
[docs] class SuddenNetZeroPulse(Operation): """ A pulse that can be used to implement a conditional phase gate in transmon qubits. The sudden net-zero (SNZ) pulse is defined in :cite:t:`negirneac_high_fidelity_2021`. Parameters ---------- amp_A Unitless amplitude of the main square pulse. amp_B Unitless scaling correction for the final sample of the first square and first sample of the second square pulse. net_zero_A_scale Amplitude scaling correction factor of the negative arm of the net-zero pulse. t_pulse The total duration of the two half square pulses t_phi The idling duration between the two half pulses t_integral_correction The duration in which any non-zero pulse amplitude needs to be corrected. port Port of the pulse, must be capable of playing a complex waveform. clock Clock used to modulate the pulse. reference_magnitude Scaling value and unit for the unitless amplitude. Uses settings in hardware config if not provided. t0 Time in seconds when to start the pulses relative to the start time of the Operation in the Schedule. """ def __init__( self, amp_A: float, amp_B: float, net_zero_A_scale: float, t_pulse: float, t_phi: float, t_integral_correction: float, port: str, clock: str = BasebandClockResource.IDENTITY, reference_magnitude: Optional[ReferenceMagnitude] = None, t0: float = 0, ): duration = t_pulse + t_phi + t_integral_correction super().__init__(name=self.__class__.__name__) self.data["pulse_info"] = [ { "wf_func": "quantify_scheduler.waveforms.sudden_net_zero", "amp_A": amp_A, "amp_B": amp_B, "reference_magnitude": reference_magnitude, "net_zero_A_scale": net_zero_A_scale, "t_pulse": t_pulse, "t_phi": t_phi, "t_integral_correction": t_integral_correction, "duration": duration, "phase": 0, "t0": t0, "clock": clock, "port": port, } ] self._update() def __str__(self) -> str: pulse_info = self.data["pulse_info"][0] return self._get_signature(pulse_info)
[docs] def decompose_long_square_pulse( duration: float, duration_max: float, single_duration: bool = False, **kwargs ) -> list: """ Generates a list of square pulses equivalent to a (very) long square pulse. Intended to be used for waveform-memory-limited devices. Effectively, only two square pulses, at most, will be needed: a main one of duration ``duration_max`` and a second one for potential mismatch between N ``duration_max`` and overall `duration`. Parameters ---------- duration Duration of the long pulse in seconds. duration_max Maximum duration of square pulses to be generated in seconds. single_duration If ``True``, only square pulses of duration ``duration_max`` will be generated. If ``False``, a square pulse of ``duration`` < ``duration_max`` might be generated if necessary. **kwargs Other keyword arguments to be passed to the :class:`~SquarePulse`. Returns ------- : A list of :class`SquarePulse` s equivalent to the desired long pulse. """ # Sanity checks validator_dur = validators.Numbers(min_value=0.0, max_value=7 * 24 * 3600.0) validator_dur.validate(duration) validator_dur_max = validators.Numbers(min_value=0.0, max_value=duration) validator_dur_max.validate(duration_max) duration_last_pulse = duration % duration_max num_pulses = int(duration // duration_max) pulses = [SquarePulse(duration=duration_max, **kwargs) for _ in range(num_pulses)] if duration_last_pulse != 0.0: duration_last_pulse = duration_max if single_duration else duration_last_pulse pulses.append(SquarePulse(duration=duration_last_pulse, **kwargs)) return pulses
[docs] class SoftSquarePulse(Operation): """ A real valued square pulse convolved with a Hann window for smoothing. Parameters ---------- amp Unitless amplitude of the envelope. duration The pulse duration in seconds. port Port of the pulse, must be capable of playing a complex waveform. clock Clock used to modulate the pulse. reference_magnitude Scaling value and unit for the unitless amplitude. Uses settings in hardware config if not provided. t0 Time in seconds when to start the pulses relative to the start time of the Operation in the Schedule. """ def __init__( self, amp: float, duration: float, port: str, clock: str, reference_magnitude: Optional[ReferenceMagnitude] = None, t0: float = 0, ): super().__init__(name=self.__class__.__name__) self.data["pulse_info"] = [ { "wf_func": "quantify_scheduler.waveforms.soft_square", "amp": amp, "reference_magnitude": reference_magnitude, "duration": duration, "t0": t0, "clock": clock, "port": port, } ] self._update() def __str__(self) -> str: pulse_info = self.data["pulse_info"][0] return self._get_signature(pulse_info)
[docs] class ChirpPulse(Operation): # pylint: disable=too-many-ancestors """ A linear chirp signal. A sinusoidal signal that ramps up in frequency. Parameters ---------- amp Unitless amplitude of the envelope. duration Duration of the pulse. port The port of the pulse. clock Clock used to modulate the pulse. start_freq Start frequency of the Chirp. Note that this is the frequency at which the waveform is calculated, this may differ from the clock frequency. end_freq End frequency of the Chirp. reference_magnitude Scaling value and unit for the unitless amplitude. Uses settings in hardware config if not provided. t0 Shift of the start time with respect to the start of the operation. """ def __init__( self, amp: float, duration: float, port: str, clock: str, start_freq: float, end_freq: float, reference_magnitude: Optional[ReferenceMagnitude] = None, t0: float = 0, ): super().__init__(name=self.__class__.__name__) self.data["pulse_info"] = [ { "wf_func": "quantify_scheduler.waveforms.chirp", "amp": amp, "reference_magnitude": reference_magnitude, "duration": duration, "start_freq": start_freq, "end_freq": end_freq, "t0": t0, "clock": clock, "port": port, } ] self._update() def __str__(self) -> str: pulse_info = self.data["pulse_info"][0] return self._get_signature(pulse_info)
[docs] class DRAGPulse(Operation): # pylint: disable=line-too-long, too-many-ancestors r""" A Gaussian pulse with a derivative component added to the out-of-phase channel. The DRAG pulse is intended for single qubit gates in transmon based systems. It can be calibrated to reduce unwanted excitations of the :math:`|1\rangle - |2\rangle` transition (:cite:t:`motzoi_simple_2009` and :cite:t:`gambetta_analytic_2011`). The waveform is generated using :func:`.waveforms.drag` . Parameters ---------- G_amp Unitless amplitude of the Gaussian envelope. D_amp Unitless amplitude of the derivative component, the DRAG-pulse parameter. duration The pulse duration in seconds. phase Phase of the pulse in degrees. clock Clock used to modulate the pulse. port Port of the pulse, must be capable of carrying a complex waveform. reference_magnitude Scaling value and unit for the unitless amplitude. Uses settings in hardware config if not provided. t0 Time in seconds when to start the pulses relative to the start time of the Operation in the Schedule. """ def __init__( self, G_amp: float, D_amp: float, phase: float, duration: float, port: str, clock: str, reference_magnitude: Optional[ReferenceMagnitude] = None, t0: float = 0, ): super().__init__(name=self.__class__.__name__) self.data["pulse_info"] = [ { "wf_func": "quantify_scheduler.waveforms.drag", "G_amp": G_amp, "D_amp": D_amp, "reference_magnitude": reference_magnitude, "duration": duration, "phase": phase, "nr_sigma": 4, "clock": clock, "port": port, "t0": t0, } ] self._update() def __str__(self) -> str: pulse_info = self.data["pulse_info"][0] return self._get_signature(pulse_info)
[docs] class GaussPulse(Operation): # pylint: disable=line-too-long, too-many-ancestors r""" The GaussPulse Operation is a real-valued pulse with the specified amplitude and width 4 sigma. The waveform is generated using :func:`.waveforms.drag` whith a D_amp set to zero, corresponding to a Gaussian pulse. Parameters ---------- G_amp Unitless amplitude of the Gaussian envelope. duration The pulse duration in seconds. phase Phase of the pulse in degrees. clock Clock used to modulate the pulse. port Port of the pulse, must be capable of carrying a complex waveform. reference_magnitude Scaling value and unit for the unitless amplitude. Uses settings in hardware config if not provided. t0 Time in seconds when to start the pulses relative to the start time of the Operation in the Schedule. """ def __init__( self, G_amp: float, phase: float, duration: float, port: str, clock: str, reference_magnitude: Optional[ReferenceMagnitude] = None, t0: float = 0, ): super().__init__(name=self.__class__.__name__) self.data["pulse_info"] = [ { "wf_func": "quantify_scheduler.waveforms.drag", "G_amp": G_amp, "D_amp": 0, "reference_magnitude": reference_magnitude, "duration": duration, "phase": phase, "nr_sigma": 4, "clock": clock, "port": port, "t0": t0, } ] self._update() def __str__(self) -> str: pulse_info = self.data["pulse_info"][0] return self._get_signature(pulse_info)
[docs] def create_dc_compensation_pulse( pulses: List[Operation], sampling_rate: float, port: str, t0: float = 0, amp: Optional[float] = None, reference_magnitude: Optional[ReferenceMagnitude] = None, duration: Optional[float] = None, ) -> SquarePulse: """ Calculates a SquarePulse to counteract charging effects based on a list of pulses. The compensation is calculated by summing the area of all pulses on the specified port. This gives a first order approximation for the pulse required to compensate the charging. All modulated pulses ignored in the calculation. Parameters ---------- pulses List of pulses to compensate sampling_rate Resolution to calculate the enclosure of the pulses to calculate the area to compensate. amp Desired unitless amplitude of the DC compensation SquarePulse. Leave to None to calculate the value for compensation, in this case you must assign a value to duration. The sign of the amplitude is ignored and adjusted automatically to perform the compensation. duration Desired pulse duration in seconds. Leave to None to calculate the value for compensation, in this case you must assign a value to amp. The sign of the value of amp given in the previous step is adjusted to perform the compensation. port Port to perform the compensation. Any pulse that does not belong to the specified port is ignored. clock Clock used to modulate the pulse. reference_magnitude Scaling value and unit for the unitless amplitude. Uses settings in hardware config if not provided. phase Phase of the pulse in degrees. t0 Time in seconds when to start the pulses relative to the start time of the Operation in the Schedule. Returns ------- : Returns a SquarePulse object that compensates all pulses passed as argument. """ def _extract_pulses(pulses: List[Operation], port: str) -> List[Dict[str, Any]]: # Collect all pulses for the given port pulse_info_list: List[Dict[str, Any]] = [] for pulse in pulses: for pulse_info in pulse["pulse_info"]: if ( pulse_info["port"] == port and pulse_info["clock"] == BasebandClockResource.IDENTITY ): pulse_info_list.append(pulse_info) return pulse_info_list # Make sure that the list contains at least one element if len(pulses) == 0: raise ValueError( "Attempting to create a DC compensation SquarePulse with no pulses. " "At least one pulse is necessary." ) pulse_info_list: List[Dict[str, Any]] = _extract_pulses(pulses, port) # Calculate the area given by the list of pulses area: float = area_pulses(pulse_info_list, sampling_rate) # Calculate the compensation amplitude and duration based on area c_duration: float c_amp: float if amp is None and duration is not None: if not duration > 0: raise ValueError( f"Attempting to create a DC compensation SquarePulse specified by {duration=}. " f"Duration must be a positive number." ) c_duration = duration c_amp = -area / c_duration elif amp is not None and duration is None: if area > 0: c_amp = -abs(amp) else: c_amp = abs(amp) c_duration = abs(area / c_amp) else: raise ValueError( "The DC compensation SquarePulse allows either amp or duration to " + "be specified, not both. Both amp and duration were passed." ) return SquarePulse( amp=c_amp, duration=c_duration, port=port, clock=BasebandClockResource.IDENTITY, t0=t0, )
[docs] class WindowOperation(Operation): """ The WindowOperation is an operation for visualization purposes. The :class:`~WindowOperation` has a starting time and duration. """ def __init__( self, window_name: str, duration: float, t0: float = 0.0, ): super().__init__(name=self.__class__.__name__) self.data["pulse_info"] = [ { "wf_func": None, "window_name": window_name, "duration": duration, "t0": t0, "port": None, } ] self._update() @property
[docs] def window_name(self) -> str: """Return the window name of this operation.""" return self.data["pulse_info"][0]["window_name"]
def __str__(self) -> str: pulse_info = self.data["pulse_info"][0] return self._get_signature(pulse_info)
[docs] class NumericalPulse(Operation): """ A pulse where the shape is determined by specifying an array of (complex) points. If points are required between the specified samples (such as could be required by the sampling rate of the hardware), meaning :math:`t[n] < t' < t[n+1]`, `scipy.interpolate.interp1d` will be used to interpolate between the two points and determine the value. Parameters ---------- samples An array of (possibly complex) values specifying the shape of the pulse. t_samples An array of values specifying the corresponding times at which the ``samples`` are evaluated. port The port that the pulse should be played on. clock Clock used to (de)modulate the pulse. reference_magnitude Scaling value and unit for the unitless samples. Uses settings in hardware config if not provided. t0 Time in seconds when to start the pulses relative to the start time of the Operation in the Schedule. interpolation Specifies the type of interpolation used. This is passed as the "kind" argument to `scipy.interpolate.interp1d`. """ def __init__( self, samples: Union[np.ndarray, list], t_samples: Union[np.ndarray, list], port: str, clock: str, reference_magnitude: Optional[ReferenceMagnitude] = None, t0: float = 0, interpolation: str = "linear", ): def make_list_from_array( val: Union[NDArray[float], List[float]] ) -> List[float]: """Needed since numpy arrays break the (de)serialization code (#146).""" if isinstance(val, np.ndarray): new_val: List[float] = val.tolist() return new_val return val duration = t_samples[-1] - t_samples[0] samples, t_samples = map(make_list_from_array, [samples, t_samples]) super().__init__(name=self.__class__.__name__) self.data["pulse_info"] = [ { # pylint: disable=line-too-long "wf_func": "quantify_scheduler.waveforms.interpolated_complex_waveform", "samples": samples, "t_samples": t_samples, "reference_magnitude": reference_magnitude, "duration": duration, "interpolation": interpolation, "clock": clock, "port": port, "t0": t0, } ] self._update() def __str__(self) -> str: """Provides a string representation of the Pulse.""" pulse_info = self.data["pulse_info"][0] return self._get_signature(pulse_info)
[docs] class SkewedHermitePulse(Operation): # pylint: disable=line-too-long, too-many-ancestors """ Hermite pulse intended for single qubit gates in diamond based systems. The waveform is generated using :func:`~quantify_scheduler.waveforms.skewed_hermite`. Parameters ---------- duration The pulse duration in seconds. amplitude Unitless amplitude of the hermite pulse. skewness Skewness in the frequency space. phase Phase of the pulse in degrees. clock Clock used to modulate the pulse. port Port of the pulse, must be capable of carrying a complex waveform. reference_magnitude Scaling value and unit for the unitless amplitude. Uses settings in hardware config if not provided. t0 Time in seconds when to start the pulses relative to the start time of the Operation in the Schedule. By default 0. """ def __init__( self, duration: float, amplitude: float, skewness: float, phase: float, port: str, clock: str, reference_magnitude: Optional[ReferenceMagnitude] = None, t0: float = 0, ): super().__init__(name=self.__class__.__name__) self.data["pulse_info"] = [ { "wf_func": "quantify_scheduler.waveforms.skewed_hermite", "duration": duration, "amplitude": amplitude, "reference_magnitude": reference_magnitude, "skewness": skewness, "phase": phase, "clock": clock, "port": port, "t0": t0, } ] self._update() def __str__(self) -> str: pulse_info = self.data["pulse_info"][0] return self._get_signature(pulse_info)