{ "cells": [ { "cell_type": "markdown", "id": "b55723cf", "metadata": {}, "source": [ "(sec-tutorial-ops-qubits)=\n", "\n", "# Tutorial: Operations and Qubits\n", "\n", "```{seealso}\n", "The complete source code of this tutorial can be found in\n", "\n", "{nb-download}`Operations and Qubits.ipynb`\n", "```\n", "\n", "## Gates, measurements and qubits\n", "\n", "In the previous tutorials, experiments were created on the {ref}`quantum-device level`. On this level,\n", "operations are defined in terms of explicit signals and locations on the chip, rather than the qubit and the intended operation.\n", "To work at a greater level of abstraction, `quantify-scheduler` allows creating operations on the\n", "{ref}`quantum-circuit level`.\n", "Instead of signals, clocks, and ports, operations are defined by the effect they have on specific qubits. This representation of the schedules can be compiled to the quantum-device level to create the pulse schemes.\n", "\n", "In this tutorial we show how to define operations on the {ref}`quantum-circuit level`, combine them into schedules, and show their circuit-level visualization.\n", "We go through the configuration file needed to compile the schedule to the quantum-device level and show how these configuration files can be created automatically and dynamically.\n", "Finally, we showcase the hybrid nature of `quantify-scheduler`, allowing the scheduling of circuit-level and device-level operations side by side in the same schedule.\n", "\n", "Many of the gates used in the circuit layer description are defined in\n", "{class}`~quantify_scheduler.operations.gate_library` such as {class}`~quantify_scheduler.operations.gate_library.Reset`, {class}`~quantify_scheduler.operations.gate_library.X90` and\n", "{class}`~quantify_scheduler.operations.gate_library.Measure`.\n", "Operations are instantiated by providing them with the name of the qubit(s) on which\n", "they operate:" ] }, { "cell_type": "code", "execution_count": 1, "id": "0930d8a4", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler.operations.gate_library import CZ, Measure, Reset, X90\n", "\n", "q0, q1 = (\"q0\", \"q1\")\n", "X90(q0)\n", "Measure(q1)\n", "CZ(q0, q1)\n", "Reset(q0);\n" ] }, { "cell_type": "markdown", "id": "1eabd2eb", "metadata": {}, "source": [ "Let's investigate the different components present in the circuit-level description of\n", "the operation. As an example, we create a 45 degree rotation operation over the\n", "x-axis." ] }, { "cell_type": "code", "execution_count": 2, "id": "03b35304", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'acquisition_info': [],\n", " 'gate_info': {'device_overrides': {},\n", " 'operation_type': 'Rxy',\n", " 'phi': 0.0,\n", " 'plot_func': 'quantify_scheduler.schedules._visualization.circuit_diagram.gate_box',\n", " 'qubits': ['q0'],\n", " 'tex': '$R_{xy}^{45, 0}$',\n", " 'theta': 45.0,\n", " 'unitary': array([[0.92387953+0.j , 0. -0.38268343j],\n", " [0. -0.38268343j, 0.92387953+0.j ]])},\n", " 'logic_info': {},\n", " 'name': \"Rxy(45, 0, 'q0')\",\n", " 'pulse_info': []}\n" ] } ], "source": [ "from pprint import pprint\n", "from quantify_scheduler.operations.gate_library import Rxy\n", "\n", "rxy45 = Rxy(theta=45.0, phi=0.0, qubit=q0)\n", "pprint(rxy45.data)\n" ] }, { "cell_type": "markdown", "id": "56c70181", "metadata": {}, "source": [ "As we can see, the structure of a circuit-level operation is similar to a pulse-level\n", "operation. However, the information is contained inside the {code}`gate_info` entry rather\n", "than the {code}`pulse_info` entry of the data dictionary.\n", "Importantly, there is no device-specific information coupled to the operation such that\n", "it represents the abstract notion of this qubit rotation, rather than how to perform it\n", "on any physical qubit implementation.\n", "\n", "The entries present above are documented in the `operation` schema.\n", "Generally, these schemas are only important when defining custom operations, which is\n", "not part of this tutorial. This schema can be inspected via:" ] }, { "cell_type": "code", "execution_count": 3, "id": "52aa4980", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'operation_type': {'description': 'Defines what class of operations this gate '\n", " 'refers to (e.g. Rxy, CZ etc.).',\n", " 'type': 'string'},\n", " 'plot_func': {'description': 'reference to a function for plotting this '\n", " 'operation. If not specified, defaults to using '\n", " ':func:`~quantify_scheduler.schedules._visualization.circuit_diagram.gate_box`.',\n", " 'type': ['string', 'null']},\n", " 'qubits': {'description': 'A list of strings indicating the qubits the gate '\n", " 'acts on. Valid qubits are strings that appear in '\n", " 'the device_config.json file.',\n", " 'type': 'array'},\n", " 'symmetric': {'description': 'A boolean to indicate whether a two qubit gate '\n", " 'is symmetric. This is used in the device config '\n", " 'compilation stage. By default, it is set as '\n", " 'False',\n", " 'type': 'boolean'},\n", " 'tex': {'description': 'latex snippet for plotting', 'type': 'string'},\n", " 'unitary': {'description': 'A unitary matrix describing the operation.'}}\n" ] } ], "source": [ "import importlib.resources\n", "import json\n", "from quantify_scheduler import schemas\n", "\n", "operation_schema = json.loads(importlib.resources.read_text(schemas, \"operation.json\"))\n", "pprint(operation_schema[\"properties\"][\"gate_info\"][\"properties\"])\n" ] }, { "cell_type": "markdown", "id": "1455df7f", "metadata": {}, "source": [ "## Schedule creation from the circuit layer (Bell)\n", "\n", "The circuit-level operations can be used to create a {class}`~quantify_scheduler.schedules.schedule.Schedule` within\n", "`quantify-scheduler` using the same method as for the pulse-level operations.\n", "This enables creating schedules on a more abstract level.\n", "Here, we demonstrate this extra layer of abstraction by creating a {class}`~quantify_scheduler.schedules.schedule.Schedule` for measuring\n", "Bell violations.\n", "\n", "```{note}\n", "Within a single {class}`~quantify_scheduler.schedules.schedule.Schedule`, high-level circuit layer operations can be mixed with quantum-device level operations. This mixed representation is useful for experiments where some pulses cannot easily be represented as qubit gates. An example of this is given by the `Chevron` experiment given in {ref}`Mixing pulse and circuit layer operations (Chevron)`.\n", "```\n", "\n", "As the first example, we want to create a schedule for performing the\n", "[Bell experiment](https://en.wikipedia.org/wiki/Bell%27s_theorem).\n", "The goal of the Bell experiment is to create a Bell state\n", "{math}`|\\Phi ^+\\rangle=\\frac{1}{2}(|00\\rangle+|11\\rangle)` which is a perfectly entangled state, followed by a measurement.\n", "By rotating the measurement basis, or equivalently one of the qubits, it is possible\n", "to observe violations of the CSHS inequality.\n", "\n", "We create this experiment using the\n", "{ref}`quantum-circuit level` description.\n", "This allows defining the Bell schedule as:" ] }, { "cell_type": "code", "execution_count": 4, "id": "2da2b624", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Schedule \"Bell experiment\" containing (66) 147 (unique) operations." ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "from quantify_scheduler import Schedule\n", "from quantify_scheduler.operations.gate_library import CZ, Measure, Reset, Rxy, X90\n", "\n", "sched = Schedule(\"Bell experiment\")\n", "\n", "for acq_idx, theta in enumerate(np.linspace(0, 360, 21)):\n", " sched.add(Reset(q0, q1))\n", " sched.add(X90(q0))\n", " sched.add(X90(q1), ref_pt=\"start\") # Start at the same time as the other X90\n", " sched.add(CZ(q0, q1))\n", " sched.add(Rxy(theta=theta, phi=0, qubit=q0))\n", "\n", " sched.add(Measure(q0, acq_index=acq_idx), label=\"M q0 {:.2f} deg\".format(theta))\n", " sched.add( \n", " Measure(q1, acq_index=acq_idx),\n", " label=\"M q1 {:.2f} deg\".format(theta),\n", " ref_pt=\"start\", # Start at the same time as the other measure\n", " )\n", "\n", "sched\n" ] }, { "cell_type": "markdown", "id": "61d911a5", "metadata": {}, "source": [ "By scheduling 7 operations for 21 different values for {code}`theta` we indeed get a schedule containing 7\\*21=147 operations. To minimize the size of the schedule, identical operations are stored only once. For example, the {class}`~quantify_scheduler.operations.gate_library.CZ` operation is stored only once but used 21 times, which leaves only 66 unique operations in the schedule.\n", "\n", "```{note}\n", "The acquisitions are different for every iteration due to their different {code}`acq_index`. The {class}`~quantify_scheduler.operations.gate_library.Rxy`-gate rotates over a different angle every iteration and must therefore also be different for every iteration (except for the last since {math}`R^{360}=R^0`). Hence the number of unique operations is 3\\*21-1+4=66.\n", "```\n", "\n", "(sec-tutorial-ops-qubits-vis)=\n", "## Visualizing the quantum circuit\n", "\n", "We can directly visualize the created schedule on the\n", "{ref}`quantum-circuit level` with the {meth}`~quantify_scheduler.schedules.schedule.ScheduleBase.plot_circuit_diagram` method.\n", "This visualization shows every operation on a line representing the different qubits." ] }, { "cell_type": "code", "execution_count": 5, "id": "c6c7da01", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzEAAADECAYAAACvIa+3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtKElEQVR4nO3deXxU1f3/8deZyQIIhCWETTAssgURK4gKAgqaQCi7pVZcIl8VLVRLfyoColVoRamCyxcoilasllJQR7CoLAFExW/RGsEgiGHVBAISNiFk5vz+mBCTkECWSWZu8n4+HvMIc++Zcz8ZZu4nn3vPPddYaxEREREREXEKV7ADEBERERERKQ0VMSIiIiIi4igqYkRERERExFFUxIiIiIiIiKOoiBEREREREUdRESMiIiIiIo6iIkZERERERBxFRYyIiIiIiDiKihgREREREXEUFTEiItWEMSbZGJOc73msMcYaY24PXlQVr/DvLSIizqciRkQkxBhjbs8tLvI/9htj1hhjBgQ7Pgk8Y0wzY8xjxpiuwY5FRMQJwoIdgIiIFGsqkAYYoDFwO/CeMeaX1tplwQzMYW4IdgAl0Ax4FNgJ/DeokYiIOICKGBGR0PVva+1/zjwxxrwMZAA3ASpizsMYU8tae8Jamx3sWEREJLA0nExExDkOAz8BOfkXGmNcxpj7jTFbjDEnjTEZxph5xpj6gdqwMaaeMWaWMWaPMeaUMeZbY8xDxhhX7nqTO9ztgDEmJt/rIowxXxljdhhjLshd9ljuELkOxph/GmOOGGMOGmNmG2NqFLHt0caYTcaYn4wxh4wx/zDGtCjUJtkYs9kYc7kxZp0x5gTwp3zrkvO17Zu7/V8ZYx41xuwzxhw1xvzLGBNljInM/V33G2OOGWNeMcZEljOuTrnvz4nc7T2YPx7g/3KfvpJvCOHtpfxvEhGpNnQmRkQkdEUZY6LxDyeLAcYDtYHXC7Wbh3+o2SvAc0ArYBxwmTGmp7X2dHmCMMbUAtYCzXO3tRu4Gvgz0BS431prjTF3ACnAXGB47sv/CMQBfa21xwt1/U/8w6ceBq4EfgfUB27Nt+3JwBO5bV8CGuF/H9YZYy6z1h7O119D4N/AP/C/Rxnn+dUexl8UPgm0ze33NODLjeOx3Lhuxz+s7/EyxlUfWAEszW0/EphhjPnKWvtvIBX/0MHHgb8C63Nf9/F54hcRqb6stXrooYceeoTQA/8fzbaIx0ngtkJte+Wu+02h5fGFlwPJQHK+57G5bW4/TzxTgGPAxYWW/xn/WaEW+ZbdldvnzUCP3PXPFnrdY7lt3im0/MXc5V1yn1+U+/pJhdp1xl9sTCr0u1ng7iLiL/x7981t+xUQnm/5G/gLmPcKvf5jYGe+52WJ65Z8yyKAH4B/5VvWrST/F3rooYceevgfGk4mIhK6fgtcn/sYDawBXjLGDM/X5kYgC/jQGBN95gFswl94XBuAOG7Ef3bgx0LbWAm4gd5nGlpr/wq8DzwPLAR2AJOK6ffFQs+fz/05MPfncPzDnv9ZaLvpwHbO/t1O4T8bVVKv2YJnqTbiP+u1oFC7jUALY8yZ0QuljesY+c6eWf81Op8BrUsRq4iI5KPhZCIioeszW/DC/jeBL4AXjDHLcv8YvhiIAvYX00dMMctL42KgC3CghNsYg794uRi42lr7UzGv217o+Q78Z0Ji823XFNHujMLD5PbZ0l3Ev7vQ86zcn3uKWO7C/z4fLENce621ttCyH/G/pyIiUgYqYkREHMJa6zPGrAHuw/+H9Bb8f1zvxz98qyjFFR6l4QI+BJ4qZv22Qs/7AmcuhL8E+KSE2yn8h74rd9kAwFtE+2OFnhdXLBWnqD7PtdyUMa7z9SciIqWkIkZExFnO7Ldr5/7cAfQHNpzjjEd57QBqW2tXnq+hMaYp/mFhHwDZwExjzPvW2l1FNL8Y/wXzZ7TFXyDszLddA6RZawsXSsFUEXEVLuBEROQcdE2MiIhDGGPC8d+4MRv/jFbgn+3KDTxSRPswY0y9AGz6n8BVxpj4IrZRL9+1IgDz8eeWMfgv8s8BXjbGFHXW4beFno/P/fnv3J9L8Z/FeLTw63OndG5Y6t8kMCoirjMzt9UrZ2wiItWCzsSIiISuAcaYDrn/jgF+g//sxZPW2iMA1tq1xph5wMPGmK74z4Cczm13I/6hZ/8qZxxPA4OBZcaYV/FPGnAB/qFiI/Ffw5JpjEkCEvHPsLUXwBgzHv9F7fcA/1uo31bGGA/+6Yevwj95wRvW2i9zf7cdxpgp+GdBizXGvA0cxT+F9DD80xHPLOfvVmoVFNcO/PcBGmuMOYq/qNlorU0756tERKopFTEiIqHr8Xz/PglsxV8MzMvfyFo71hizCbgb/w0ec/APyXod2FDeIKy1J4wxffDPMnYj/vu4HMF/LcyjQJYx5kLgWeBda+3f8r3278aYEcBTxph/F/qjfFTu7/hkbswvAA8U2vaTxphtwO9ztwX+C+8/ADzl/d3KKtBxWWtPG2Nuw18YzcWfn5MoONxORERymbMnTBEREak4xpjH8P/h38hamxnkcERExIF0TYyIiIiIiDiKihgREREREXEUFTEiIiIiIuIouiZGREREREQcRWdiRERERETEUVTEiIiIiIiIo6iIERERERERRwnVm13qQh0RERERkerHlKSRzsSIiIiIiIijqIgRERERERFHUREjIiIiIiKOoiJGREREREQcRUWMiIiIiIg4iooYERERERFxFBUxIiIiIiLiKCpiRERERETEUVTEiIiIiIiIo6iIERERERERR1ERIyIiIiIijqIiRkREREREHEVFjIiIiIiIOIqKGBERERERcRQVMSIiIiIi4igqYkRERERExFFUxIiIiIiIiKOoiBEREREREUcJC3YAUjmeX70z2CEExfjrYoMdgsg5bd26NdghBEWHDh2CHUK1ohwgEpqUA8pOZ2JERERERMRRVMSIiIiIiIijqIgRERERERFHUREjIiIiIiKOoiJGRESKdPz4cXbt2hXsMEREJAhCPQeoiBERkbP4fD4efPBBEhISSE1NDXY4IiJSiZyQA1TEiIjIWebPn8/q1asBcLvdQY5GREQqkxNygIoYEREpYN26dcyePTvveXh4eBCjERGRyuSUHKCbXYqEAGstaZnZfLv/FHt+zCY7xxIRZmhRP4K2MZG0io7AGBPsMKUa2L17NxMmTCiwLCIiIkjRiFQPygESKpyUA1TEiARRjteyMvUIy1Ky+CErBwC3C7CAAa/P365pVBiDukTRv2NdwtxKZFIxTpw4wb333svJkyex1uYtD9UEJuJ0ygESSpyWA1TEiATJ7oPZzFq1n10HswssP5O0+Hn/wQ9ZOcxff5APvj7K/f1iaNkwNHco4lzWWiZPnkxaWho+n6/AulBNYCJOphwgocSJOUDXxIgEwZbvf+KhJfvYcyj7/I3z2XMom4eW7GPL9z9VUGRSXS1cuJAVK1aclbwgdBOYiFMpB0iocWIOUBFTSHJyMrGxsaV6zYIFC9i6dWvFBBSifD4f027vx7KXny6wfMunq/l9fDu+XL8iSJGFvt0Hs5m2LJ3TPovPnr99fj4Lp32WacvS2X2wdMlP5FwOHToEFD0LTagmsIqgHFAyygFlpxwgociJOUBFTAm8+OKLxMbGUqNGDXr06MFnn31WYP3GjRuZN29ekKILDpfLxfU33cv6dxby07EjAOzZtplXnhjP4Dsf4tJrEoIcYWjK8VpmrdpPjs9iS5m8zrAWcnyW2av2k+MtYycihdx3331MmDABr9cL+L/jxhhcLlfITq9ZWZQDzqYcUDbKARKqnJgDAn5NjDFmODAWuBxoAFxmrf1voLdTWRYtWsSECROYO3cuPXr0YNasWcTHx/PNN98QExMDwJAhQxg/fjzPPvtskKOtXN36D2HFwtmse+c1uvcfxrwpY7gyYSTXjhwT7NBC1srUI2eNfy4Ln4WdB7NZmXqEhM5RAYhMqiJrLenp6Wzbti3vsXfvXo4ePcqxY8cwxlC7dm3q1KlDixYtSE1NxeVy4fP5aNCgAZ07d6Zp06bB/jWCSjmgeMoBpaccIJWpqueAiriw/wLgI+CfwPwK6L9SPfPMM9x5550kJSUBMHfuXJYvX86CBQuYOHEiAP369SMjI4PNmzfTuXPnYIZbqdzuMPqPGsuyV/7C56vfpWX7Lgz/7aPBDitkWWtZlpIVsP4MsDzlCPFxdTX1puQ5ceIEK1euxOPxsGHDhhK/7osvvijwPDMzE4Du3btz8uRJatSoEdA4nUI5oHjKAaWjHCCVoTrlgFIXMcaYC4A5wHDgKDAT+CXwX2vt/dbahbntYgMYZ1BkZ2ezadMmHn744bxlLpeL/v3788knn+Qti4yM5IYbbsDj8VSrBAb+I3FL//dxaNCI2yc/h8tVshGKr077HdcMHs3yV5/h6I8HcbvdxN8ynsv6JFZwxMGTlpmdN4VmIFjg+6zTpGVm07pRZMD6Fefxer18+umneDwePB5PwPpNTk4mOTkZgBEjRjB48GC6detW4u+50ykHnJ9yQMkpB0hFqa45oCxnYp4G+gBDgP3An4BfAP8NXFihITMzE6/XS+PGjQssb9y48VkXcQ4ZMoQ5c+YwadKkygwx6BY/5z/qdjzrEKaEH2qfz0fm97uIbh7L8HuncmHbThw5dICnx/6STldcS2TNWhUZctB8u/9UxfR74JQSWDVlreXDDz9k8uTJHDt2rMg2HTt2JC4ujnbt2tG+fXtiY2OpVatW3oWa2dnZHD9+nDFjxvDdd99hrSUyMpJTpwp+XpcsWcKSJUuIjo5m2rRp9OnTp8J/v2BTDjg/5YCSUw6QQKvuOaBURYwxpjYwBhhtrV2Vu+w2YG9ZAzDGRAIFvn3ffvtthc6E0KJFi4D3OXDgQJKSksjMzCQ6OrrINnv27An4doNp+St/YcvGNUx4YSkvPHALn7y3iN5Db81bn7F7B8/+biQ1a9elRq0LOLBvFxe27cSwe6bQ4uLORDWMIaqhf0x53QaNuCCqPieOHg5oAgul9/zr3V7cBgJ5HabbQOquQ3SsE7ghCuIMW7du5YknnuDzzz8/a12/fv0YOnQovXv3Pu++NCIigsOHD7Njxw4AjDFMnDiRoUOHsmbNGt555x3Wrl2b1z4zM5OxY8fSs2dPJk2aROvWrcsUfzC/m8oBgaEcUDrKARJIVTkHlHQfXdozMW2ACGDjmQXW2kPGmG9K2U9+DwMFBtH27t27HN2d3759+0rULjo6GrfbTUZGRoHlGRkZNGnSpMCytLQ06tWrR7169Yrt78orryx1rIEycWHJx0WWxMfL32T14pcYN/MNmrfpRN8RSaxaNI+eg27CHRYOQOOWbYjt2JXBdz5Es9YdmHbbddzz5N9IXrqADt2uKdDf7m1fYX0+6sc0C2icwXzPC2uV+CCNugzA5Q7cpWinc3JY/Na/eep/ngpYn1K5Vq1aVar2P/74I7Nnz2bRokUFlrds2ZKkpCQSEhLOuR8qisfjybuY0+12k5CQQI0aNRgwYAADBgzg0KFDvPfee8yfP5/9+/cDsGHDBhITE7n11lsZN24cderUKdU2g/ndVA4oP+WA0lMOkKIoB5ytpPvoiriwv7T+DDyTf8G6deuyQmFO6oiICC6//HJWrVrF0KFDAf9p8FWrVjFu3LgCbT0eDwMHDiQsrPi39NNPP63IcM/p7e3egPW1ZeMaFj//GLdPeY5WnS4DoPeQW1m96K989uFbXDXgV3ltM/Z8R0yL1mSf/Amfz0dkzVps+/xjeg/5+Wjd8SOHef3JP/DrP/w5YDGeEcz3vLAlm718vMsX0KNw4WFh3DhsCMMfGR64TqVSHT9+vMRtU1JSuPnmm8nJKTiu/vHHH2f48OFlmgbTWsvSpUvzklefPn3OSoANGjRg9OjRjBo1ikWLFjF9+vS8da+99hpvvfUWCxcupH379iXebih9N4ujHFA05YCyUQ6QoigHlF1pi5gdwGmgB7AbwBhTH2gHrD3H64plrT0FVMxA0QCYMGECt912G926deOKK65g1qxZHD9+PG+mmjM8Hg+PPPLIOfuqiCEMJbZ9Z0C62b3tK155fBxD7pzIpb3i85bXrF2X3sNuZ+Wbc+hxwwhcbjcnTxwjLDyCsPAIdu34ksYt23DyxDGs9VGzdl0ATmef4qWpd9H/prG0jrs8IDHmF9T3vJBOR46wfmdmQPv0Wuh4UQNatKgb0H6l8pT0JomLFy9m6tSpBZbdcccdjB07ttRHwPJLSUnJO+rl9Xrz/lgvSnh4OKNHjyYxMZEXXniBN954A4CjR48ydOhQZs6cSWJiyS7MDqXv5rkoBxSkHFB2ygFSFOWAsitVEWOtPWaMeRl42hhzEP+F/dMB35k2xpgGQEvgzDnh9rlT/6Vba9PLHXElGzVqFAcOHGDq1Kmkp6fTtWtXVqxYUeBCz7S0NL755hsSEqr+zb1atruEmcu3FLkuMWkCiUkT8p6n79pOk4vaApCx+1tiLmzFti8+5uKuVwH+6v/vTz3AxZddzRXXV/2jSG1jKubCy7a6oLPK279/PzNmzMh73rRpU+bPn0+bNm3K3bfH48HtduP1eqldu3aJhvPWr1+fRx55hJEjR5KUlERWln88/vTp0+nVqxdRUVXnvhXKAQUpB5SdcoCUlXJA0coyR9oDwHrgXWAl/nvCbMq3fjDwBbA89/k/cp+PLXuYwTVu3Dh27drFqVOn2LhxIz169Ciw3uPx0Ldv33JVwlXRDzu30zS2HQARNWqxddNHpP7fOjpc7h8L/d3m//BF8jK+2vABM+4ayIy7BvL9dyU7IuFEraIjaBoVuBGcBmgWFU6r6OAPvZSKFRMTwzPP+EfdxsfH8+677wYkeWVnZ+PxePB6vbjdbgYNGlSqSVU6duzI+++/T69evQB47rnnqlQBc4ZyQNkoBxSkHCBlpRxQtFJ/m6y1x4Bbch8AGGMS861/FXg1ALE5hsfjYfjwqn8UqbTyj4vu2nsAXXsP4Ol7BnPj+D8C0OaS7sxe+V2wwqt0xhgGdYli/vqDAenPAolddJOz6qJ3794sXryYuLi4gP2fr1+/Pm9aTq/Xy+DBg0vdR1RUFPPmzSM1NZW4uLiAxOU0ygFFUw4oSDlAykM54GyhcGG/45V2Zonq7IE5gbsJkxP171iXD74+yp5D2fjKcXGny0DLBhFc30njoKuTQN9I8e23384bRtC8eXO6du1apn5cLle1LWBAOaA0lAOUA6TslAMKbbfStxjiYmNjuf/++4MdhlRRYW7D/f1iCHMZynogxRgIcxnu6xeD26UjcFI2WVlZJCcn4/V6cblcDBs2TEd0UQ6QiqUcIKGiKuSAgBQx1tq+1tr7A9FXsCmBSUVr2TCCKYOaEO4ylDb/uAyEuwxTBjWhZUONg5ayW7FiRd40nT6fr0zDCKoi5QCpaMoBEgqqQg7QmRiRIIhrVpMZI5rTskHJktCZPNeyQQQzRjQnrlnNigtOqoWlS5dijMEYQ5cuXUJqKlqRqk45QIKtKuQAXRMjEiQtG/qT0crUIyxLyeKHrII3r3K7wJs7eXnTqHASu9Slf8e6hLmddbpXQs+ePXtISUnJez5ixIggRiNSPSkHSLBUlRygIkYkiMLchoTOUcTH1SUtM5ut6Sd5+SP/zDX9O9YhNjqSto0iaRUd4bixqhK6VqxYkffvsLAw4uPjz9FaRCqKcoAEQ1XJASpiREKAMYbWjSJpVi88L4HdelVDaoRrxKcEXvfu3WnYsCEHDx7kuuuuq5L3dhFxEuUAqUxVJQeoiBERqWa6du3K2rVr2bJlCx06dAh2OCIiUomqSg5QESMiUg253W66dOkS7DBERCQIqkIO0HlKERERERFxFBUxIiIiIiLiKCpiRERERETEUVTEiIiIiIiIo+jC/mpi/HWxwQ5BRIrg5JlhxDmUA0RCk3JA2elMjIiIiIiIOIqKGBERERERcRQVMSIiIiIi4igqYkRERERExFFUxIiIiIiIiKOoiBEREREREUdRESMiIiIiIo6iIkZERERERBxFRYyIiIiIiDiKihgREREREXEUFTEiIiIiIuIoKmJERERERMRRVMSIiIiIiIijqIgRERERERFHUREjIiIiIiKOoiJGREREREQcRUWMiIiIiIg4iooYERERERFxFBUxIiIiIiLiKCpiRERERETEUVTEiIiIiIiIo6iIERERERERR1ERIyIiIiIijqIiRkREREREHEVFjIiIiIiIOIqKGBERERERcRQVMSIiIiIi4igqYkRERERExFFUxIiIiIiIiKOoiBEREREREUdRESMiIiIiIo6iIkZERERERBxFRYyIiIiIiDiKihgREREREXEUFTEiIiIiIuIoKmJERERERMRRVMSIiIiIiIijhAU7AKkcz6/eGewQgmL8dbHBDqFa0ees9LZu3Rq4QBykQ4cOwQ6hWtF3UyqDPmelpxxQdjoTIyIiIiIijqIiRkREREREHEVFjIiIiIiIOIqKGBERERERcRQVMSIiUqTjx4+za9euYIchIiJBEOo5QEWMiIicxefz8eCDD5KQkEBqamqwwxERkUrkhBygIkZERM4yf/58Vq9eDYDb7Q5yNCIiUpmckANUxIiISAHr1q1j9uzZec/Dw8ODGI2IiFQmp+QA3exSJARYa0nLzCb1h5N5y/728UFaRUfSNiaSVtERGGOCGGFo2vzJKt6eOx1rLf1G3c3Vib8OSNvqbPfu3UyYMKHAsoiIiCBFI1I9KAeU3EtT72b7l5/S7rKrGfPYnLzla/71Mp+8twhrLe0v78mI3z5a7HumfFA8J+UAFTEiQZTjtaxMPcKylCx+yMopsG7V1qN4fUcBaBoVxqAuUfTvWJcwtxIZgNebw1tzpjH+L29Ss3Ydnh77Sy7tFc8FUfXL1bY6O3HiBPfeey8nT57EWpu3PFQTmIjTKQeUXp/hSfRIuJHPPliSt+zo4YOse/s1Ji34ALc7jNm/H8XOr7+gVdwvznq98kHxnJYDNJxMJEh2H8zmwSX7mL/+4FnJC8Dr+/nfP2TlMH/9QR5cso/dB7MrMcrQtWvrlzSNbUe9Rk2IrHkBHa/oy9ZN68vdtrqy1jJ58mTS0tLwer0F1oVqAhNxMuWAsrm465XUqFX7rOU+bw6ns0/h9ebgzTlN7foNi3y98kHRnJgDdCZGJAi2fP8T05alk+Oz52+cz55D2Ty0ZB9TBjUhrlnNCoouNMz+/Sh2pHwGgDssnOhmLYkfPZ5u/YYAkJWZQVR047z29aIbczgzvci+StO2ulq4cCErVqwocl2oJjARp1IOKNr59vvFqVOvIdf96k4evaknbrebnoNuplGzi4psq3xQNCfmAJ2JKSQ5OZnY2NhSvWbBggVs3bq1YgIKUT6fj2m392PZy08XWL7l09X8Pr4dX64v+osg/qNv05alc9pnKWX+wmfhtM8ybVl6lT4aZ61l77dfM/TuSUxb/BlTXl1Fx+59eP3JP3Dwhz3BDq9KOnToEFD0LDShmsAqgnJAySgHlJ1yQNHKs98/cTSLLZ+u5rG/r+fxRZ+S9vUmvk3ZWEmRVw1OzAEqYkrgxRdfJDY2lho1atCjRw8+++yzAus3btzIvHnzghRdcLhcLq6/6V7Wv7OQn44dAWDPts288sR4Bt/5EJdekxDkCENTjtcya9V+cnwWW8rkdYa1kOOzzF61nxxvGTsJcQf2pnHqxDE6XtGHug0a0bBpC64c8Ct8Pi8Ze74DICq6MVmZGXmvOZyZQVTDxkX2V5q21dV9993HhAkT8oYRuFwujDG4XK6QnV6zsigHnE05oGyUA4pXkv1+cb75/COim13EBXXrERFZg7ge17Lz6y+KbKt8UDQn5oCADycz/qkg/gjcCdQDNgD3WGu3B3pblWHRokVMmDCBuXPn0qNHD2bNmkV8fDzffPMNMTExAAwZMoTx48fz7LPPBjnaytWt/xBWLJzNundeo3v/YcybMoYrE0Zy7cgxwQ4tZK1MPcKuABw981nYeTCblalHSOgcFYDIQsue7ZupVSeKJhddDMCPB35g2YKZhIVH0Lx1BwAu6nApP+zcxuED6dSsXYfUz5JJGD0egBf+382Mfugv1GvU5LxtqzJrLenp6Wzbti3vsXfvXo4ePcqxY8cwxlC7dm3q1KlDixYtSE1NxeVy4fP5aNCgAZ07d6Zp06bB/jWCSjmgeMoBpaccULyS7PeLU69RM9K+/pzT2adwu8PY/uXGvBnHqnM+qOo5oCKuiXkQ+B1wG5AGPAG8b4zpZK09ec5XhqBnnnmGO++8k6SkJADmzp3L8uXLWbBgARMnTgSgX79+ZGRksHnzZjp37hzMcCuV2x1G/1FjWfbKX/h89bu0bN+F4b99NNhhhSxrLctSsgLWnwGWpxwhPq5ulZt6c8/2zfx0/CgPDOqM9Xk5nX2K8MgajLp/et5YZrc7jKFjJ/H8H27KnSbzLi6Iqo+1lgP7dlKrbr28/oprWxWdOHGClStX4vF42LBhQ4lf98UXBY9aZmZmAtC9e3dOnjxJjRo1AhqnUygHFE85oHSUA86tJPt9gBceGM2+HalknzzBI6Ou4o6pL9Iq7hfEXdGXp+5OxBgX7X5xNZdcfX21zAfVKQeUuogxxlwAzAGGA0eBmcAvgf8CvwfuB6ZZa9/JbX8rkAEMBf4RgJgrTXZ2Nps2beLhhx/OW+Zyuejfvz+ffPJJ3rLIyEhuuOEGPB5PtUpg4D8St/R/H4cGjbh98nO4XCUbofjqtN9xzeDRLH/1GY7+eBC32038LeO5rE9iBUccPGmZ2UXOQFNWFvg+6zRpmdm0bhQZsH5Dwd7tW7hmyC30GXY7Px07wtvz/kTruMvpkTCyQLtLrr6eS66+vsCyjN07uPSaAURE1jhv26rC6/Xy6aef4vF48Hg8Aes3OTmZ5ORkAEaMGMHgwYPp1q1bib/nTqcccH7KASWnHHBuJd3vj3v69SJfP2jMAwwa80CBZem7vq0W+aC65oCynIl5GugDDAH2A38CfoG/iGkFNAFWnmlsrc0yxmwErqKERUzhqd0CraRj+zIzM/F6vTRuXHCsZOPGjc+6iHPIkCHMmTOHSZMmFdtfRf9ewbD4Of9Rt+NZhzAl/FD7fD4yv99FdPNYht87lQvbduLIoQM8PfaXdLriWiJr1gpYfKH0nm9L/6lC+t2e8RMXNahaEw3u2b6Zqwb+mkbNYwG48XdPMOPOAVyVeBMNm1x4ztc2uagtw++dUglR/ixYnzNrLR9++CGTJ0/m2LFjRbbp2LEjcXFxtGvXjvbt2xMbG0utWrXyLtTMzs7m+PHjjBkzhu+++w5rLZGRkZw6dapAP0uWLGHJkiVER0czbdo0+vTpU67Yg/ndVA4IHOWAklMOOLfy7PeLU1n5QDmg9M71npV0H12qT70xpjYwBhhtrV2Vu+w2YG9ukya5PzMKvTQj37rCfUYCBQ4hzJkzp6imATN27NiA9zlw4ECSkpLIzMwkOjq6yDbz588P+HZLrF3gL7Jc/spf2LJxDRNeWMoLD9zCJ+8tovfQW/PWZ+zewbO/G0nN2nWpUesCDuzbxYVtOzHsnim0uLgzUQ1jiGroH1Net0EjLoiqz4mjhwOawIL6nhey1bbH0AIbwPk0DD7+vf4L0j76JmB9lksAPmeZ3+/mp2NHaNqqXd6yprEXE92sJZtWvcMNN/+23NsItPJ8zvr27Vum123dupUnnniCzz///Kx1/fr1Y+jQofTu3fu8s8pERERw+PBhduzYAYAxhokTJzJ06FDWrFnDO++8w9q1a/PaZ2ZmMnbsWHr27MmkSZNo3bp1meIP5ndTOSAwlANKRzmgeE7c7+enHFB653rPSrqPLm3p3gaIAPLmrbPWHjLGlOfb8zBQYBDtE088UY7uzq+kb050dDRut5uMjII1WUZGBk2aFKzJ0tLSqFevHvXq1Su2v4r+vc5l4sLAJrCPl7/J6sUvMW7mGzRv04m+I5JYtWgePQfdhDssHIDGLdsQ27Erg+98iGatOzDttuu458m/kbx0AR26XVOgv93bvsL6fNSPaRbQOIP5nhfWKvFBGnVpjssduATm9fr4T0oKi5c/FbA+yyMQn7M927/CHRZOzIWtCixv94uepGz4IC+ZPfu7kQy7ZzKxHS/jjacfommrdrS99ErefWkG9854DYCUDR/w9cY1/HrCn8sd17mU53NW2gT2448/Mnv2bBYtWlRgecuWLUlKSiIhIeGc+6GieDyevIs53W43CQkJ1KhRgwEDBjBgwAAOHTrEe++9x/z589m/fz8AGzZsIDExkVtvvZVx48ZRp06dUm0zmN9N5YDyUw4oPeWA4jlxv5+fckBgc0BFFTHnc+ZuQY2BH/Itb4x/uFlR/gw8k3/Bm2++mRUeHh7g0EovIiKCyy+/nFWrVjF06FDAfxp81apVjBs3rkBbj8fDwIEDCQsr/i3917/+VZHhntN/AngWe8vGNSx+/jFun/IcrTpdBkDvIbeyetFf+ezDt7hqwK/y2mbs+Y6YFq3JPvkTPp+PyJq12Pb5x/Qe8vPRuuNHDvP6k3/g138I/A4nmO95Yav21uHLTDe+8zctsTC3mwHX9+O6pCsC2GvZBeJztmf7Fho1jyUsvODRo/a/6MmGd//Ojwd+oH6jpsSPHs/KN+fS+pLuGJfh2pFj8HpzSN/1LQBebw4rFj7P3dNfLn9Q51FZn7OUlBRuvvlmcnIKjqt//PHHGT58eJmmwbTWsnTp0rzk1adPn7MSYIMGDRg9ejSjRo1i0aJFTJ8+PW/da6+9xltvvcXChQtp3759ibcbSt/N4igHFE05oGyUA4rnxP1+fsoBwckBpS1idgCngR7AbgBjTH2gHbAW/2xk6UA/cosWY0zd3PZFjhGz1p4CThW1LhRMmDCB2267jW7dunHFFVcwa9Ysjh8/njdTzRkej4dHHnnknH1dddVVFRnqOf1n9c6A9LN721e88vg4htw5kUt7xectr1m7Lr2H3c7KN+fQ44YRuNxuTp44Rlh4BGHhEeza8SWNW7bh5IljWOujZu26AJzOPsVLU++i/01jaR13eUBizC+Y73lhR7cc4Yt1mQHt04ehe1xLrupUN6D9llUgPmeD/+dBBv/Pg2ctv/SaBGav/PleAZ2u6MOyBTM5uXEN9zz5KuCfdaZeo6YcTN/L1xvXENfj2rzhKhWpPJ+zkt4kcfHixUydOrXAsjvuuIOxY8eW+ghYfikpKezbtw/wj1E+88d6UcLDwxk9ejSJiYm88MILvPHGGwAcPXqUoUOHMnPmTBITS3Zhdih9N89FOaAg5YCyUw4onhP3+/kpBwQnB5SqiLHWHjPGvAw8bYw5iP/C/ungP7BgrbXGmFnAFGPMdn6eYvl74O1yRxsEo0aN4sCBA0ydOpX09HS6du3KihUrClzomZaWxjfffENCQtW/uVfLdpcwc/mWItclJk0gMWlC3vP0XdtpclFbADJ2f0vMha3Y9sXHXNzV/8G11vL3px7g4suu5orrh1d88EHWNqZiZo9pWwVmpSmLXVu/5MTRwzRo3Dxv+Ar47wGw/b+f8NG7f+f3z4XOUdjy2L9/PzNmzMh73rRpU+bPn0+bNm3K3bfH48HtduP1eqlduza9e/c+72vq16/PI488wsiRI0lKSiIryz9t7PTp0+nVqxdRUVXjvhWgHFCYckDZKQeUX3Xa7+enHFC0sgzMfABYD7yLfxayj4BN+dY/BTwP/BX4P6A2kODEe8ScMW7cOHbt2sWpU6fYuHEjPXr0KLDe4/HQt2/fclXCVdEPO7fTNNZ/kV5EjVps3fQRqf+3jg6X+8dCf7f5P3yRvIyvNnzAjLsGMuOugXz/XcmOSDhRq+gImkYFbgSnAZpFhdMq+twX7VVFhw+k8+ZfJjJ+5hscSt/L92k/X5Z3UYdLeXvun+g56DfUqFU7iFEGTkxMDM884x91Gx8fz7vvvhuQ5JWdnY3H48Hr9eJ2uxk0aNB5LwLNr2PHjrz//vv06tULgOeee65KFTBnKAeUjXJAQcoB5VPd9vv5KQcUrdTfJmvtMeCW3AcAxpjEfOstMDX3US14PB6GD6/6R5FKK/+46K69B9C19wCevmcwN47/IwBtLule4DRxVWeMYVCXKOavPxiQ/iyQ2KVq3OSsNLJPnWTB479l5PjHaNi0Bdf/5h7ef/15kh55AYCYC1txQd169Pzlb4IcaWD17t2bxYsXExcXF7D/8/Xr1+dNy+n1ehk8eHCp+4iKimLevHmkpqYSFxcXkLicRjmgaMoBBSkHlF113e/npxxwNudPLB4CVq1aFewQHOOBOYG7CZMT9e9Ylw++PsqeQ9n4bNn7cRlo2SCC60NkHHRlioiswYTnl+Q9v6xPYoEb5K33vM6Qux/G7a56u7dA30jx7bffzhtG0Lx5c7p27VqmflwuV7UtYEA5oDSUA5QDyqI67/fzUw4otN1K32KIi42N5f777w92GFJFhbkN9/eLIcxlKOuBFGMgzGW4r18MblfVPwJXUge+38W0264jskZNuvS8IdjhhLysrCySk5Pxer24XC6GDRtWLY7ono9ygFQk5YDA0n6/7KpCDghIyWqt7RuIfkKBEphUtJYNI5gyqAnTlqWT47OlOhrnyk1eUwY1oWXD6jEOuqQaNbuIKX9bHewwHGPFihV503T6fL4yDSOoipQDpKIpBwSO9vtlVxVygM7EiARBXLOazBjRnJYNSpaEzhwbadkgghkjmhPXrGbFBSfVwtKlSzHGYIyhS5cutGjRItghiVQbygESbFUhB1TtwYMiIaxlQ38yWpl6hGUpWfyQ5T8i4nbhv2LTgDf3rmhNo8JJ7FKX/h3rEuZ21uleCT179uwhJSUl7/mIESOCGI1I9aQcIMFSVXKAihiRIApzGxI6RxEfV5e0zGy+PXCKPYeyyc6xRIQZWjSIoG2jSFpFRzhurKqErhUrVuT9OywsjPj4+HO0FpGKohwgwVBVcoCKGJEQYIyhdaNIWlejm5ZJ8HTv3p2GDRty8OBBrrvuuip5bxcRJ1EOkMpUVXKAihgRkWqma9eurF27li1bttChQ4dghyMiIpWoquQAFTEiItWQ2+2mS5cuwQ5DRESCoCrkAM1OJiIiIiIijqIiRkREREREHEVFjIiIiIiIOIqKGBERERERcRRjrQ12DEUJyaBERERERKRCleimSDoTIyIiIiIijqIiRkREREREHEVFjIiIiIiIOIqKGBERERERcRQVMSIiIiIi4igqYkRERERExFFUxIiIiIiIiKOoiBEREREREUdRESMiIiIiIo6iIkZERERERBxFRYyIiIiIiDiKihgREREREXEUFTEiIiIiIuIoKmJERERERMRRVMSIiIiIiIijqIgRERERERFHUREjIiIiIiKOoiJGREREREQcJSzYARTDBDsAEREREREJTToTIyIiIiIijqIiRkREREREHEVFjIiIiIiIOIqKGBERERERcRQVMSIiIiIi4igqYkRERERExFFUxIiIiIiIiKOoiBEREREREUdRESMiIiIiIo7y/wGU2lZ37LD6FgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "_, ax = sched.plot_circuit_diagram()\n", "# all gates are plotted, but it doesn't all fit in a matplotlib figure.\n", "# Therefore we use :code:`set_xlim` to limit the number of gates shown.\n", "ax.set_xlim(-0.5, 9.5)\n", "plt.show()\n" ] }, { "cell_type": "markdown", "id": "d4e72960", "metadata": {}, "source": [ "In previous tutorials, we visualized the `schedules` on the pulse level using {meth}`~quantify_scheduler.schedules.schedule.ScheduleBase.plot_pulse_diagram` .\n", "Up until now, however, all gates have been defined on the\n", "{ref}`quantum-circuit level` without defining the\n", "corresponding pulse shapes.\n", "Therefore, trying to run {meth}`~quantify_scheduler.schedules.schedule.ScheduleBase.plot_pulse_diagram` will raise an error which\n", "signifies no {code}`pulse_info` is present in the schedule:" ] }, { "cell_type": "code", "execution_count": 6, "id": "2cfc136e", "metadata": { "tags": [ "raises-exception" ] }, "outputs": [ { "ename": "KeyError", "evalue": "'abs_time'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[6], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43msched\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mplot_pulse_diagram\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", "File \u001b[0;32m/usr/local/lib/python3.9/site-packages/quantify_scheduler/schedules/schedule.py:436\u001b[0m, in \u001b[0;36mScheduleBase.plot_pulse_diagram\u001b[0;34m(self, port_list, sampling_rate, modulation, modulation_if, plot_backend, x_range, combine_waveforms_on_same_port, **backend_kwargs)\u001b[0m\n\u001b[1;32m 430\u001b[0m \u001b[38;5;66;03m# NB imported here to avoid circular import\u001b[39;00m\n\u001b[1;32m 432\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mquantify_scheduler\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mschedules\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_visualization\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpulse_diagram\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[1;32m 433\u001b[0m sample_schedule,\n\u001b[1;32m 434\u001b[0m )\n\u001b[0;32m--> 436\u001b[0m sampled_pulses_and_acqs \u001b[38;5;241m=\u001b[39m \u001b[43msample_schedule\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 437\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 438\u001b[0m \u001b[43m \u001b[49m\u001b[43msampling_rate\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msampling_rate\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 439\u001b[0m \u001b[43m \u001b[49m\u001b[43mport_list\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mport_list\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 440\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodulation\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmodulation\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 441\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodulation_if\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmodulation_if\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 442\u001b[0m \u001b[43m \u001b[49m\u001b[43mx_range\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mx_range\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 443\u001b[0m \u001b[43m \u001b[49m\u001b[43mcombine_waveforms_on_same_port\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcombine_waveforms_on_same_port\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 444\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 446\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m plot_backend \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmpl\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 447\u001b[0m \u001b[38;5;66;03m# NB imported here to avoid circular import\u001b[39;00m\n\u001b[1;32m 449\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mquantify_scheduler\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mschedules\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_visualization\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpulse_diagram\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[1;32m 450\u001b[0m pulse_diagram_matplotlib,\n\u001b[1;32m 451\u001b[0m )\n", "File \u001b[0;32m/usr/local/lib/python3.9/site-packages/quantify_scheduler/schedules/_visualization/pulse_diagram.py:448\u001b[0m, in \u001b[0;36msample_schedule\u001b[0;34m(schedule, port_list, modulation, modulation_if, sampling_rate, x_range, combine_waveforms_on_same_port)\u001b[0m\n\u001b[1;32m 445\u001b[0m pulse_infos: \u001b[38;5;28mdict\u001b[39m[\u001b[38;5;28mstr\u001b[39m, \u001b[38;5;28mlist\u001b[39m[ScheduledInfo]] \u001b[38;5;241m=\u001b[39m defaultdict(\u001b[38;5;28mlist\u001b[39m)\n\u001b[1;32m 446\u001b[0m acq_infos: \u001b[38;5;28mdict\u001b[39m[\u001b[38;5;28mstr\u001b[39m, \u001b[38;5;28mlist\u001b[39m[ScheduledInfo]] \u001b[38;5;241m=\u001b[39m defaultdict(\u001b[38;5;28mlist\u001b[39m)\n\u001b[0;32m--> 448\u001b[0m \u001b[43m_extract_schedule_infos\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 449\u001b[0m \u001b[43m \u001b[49m\u001b[43mschedule\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 450\u001b[0m \u001b[43m \u001b[49m\u001b[43mport_list\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 451\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 452\u001b[0m \u001b[43m \u001b[49m\u001b[43moffset_infos\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 453\u001b[0m \u001b[43m \u001b[49m\u001b[43mpulse_infos\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 454\u001b[0m \u001b[43m \u001b[49m\u001b[43macq_infos\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 455\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 457\u001b[0m x_min, x_max \u001b[38;5;241m=\u001b[39m x_range\n\u001b[1;32m 459\u001b[0m sampled_pulses \u001b[38;5;241m=\u001b[39m get_sampled_pulses_from_voltage_offsets(\n\u001b[1;32m 460\u001b[0m schedule\u001b[38;5;241m=\u001b[39mschedule,\n\u001b[1;32m 461\u001b[0m offset_infos\u001b[38;5;241m=\u001b[39moffset_infos,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 465\u001b[0m modulation_if\u001b[38;5;241m=\u001b[39mmodulation_if,\n\u001b[1;32m 466\u001b[0m )\n", "File \u001b[0;32m/usr/local/lib/python3.9/site-packages/quantify_scheduler/schedules/_visualization/pulse_diagram.py:342\u001b[0m, in \u001b[0;36m_extract_schedule_infos\u001b[0;34m(operation, port_list, time_offset, offset_infos, pulse_infos, acq_infos)\u001b[0m\n\u001b[1;32m 340\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m schedulable \u001b[38;5;129;01min\u001b[39;00m operation\u001b[38;5;241m.\u001b[39mschedulables\u001b[38;5;241m.\u001b[39mvalues():\n\u001b[1;32m 341\u001b[0m inner_operation \u001b[38;5;241m=\u001b[39m operation\u001b[38;5;241m.\u001b[39moperations[schedulable[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124moperation_id\u001b[39m\u001b[38;5;124m\"\u001b[39m]]\n\u001b[0;32m--> 342\u001b[0m abs_time \u001b[38;5;241m=\u001b[39m \u001b[43mschedulable\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mabs_time\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\n\u001b[1;32m 343\u001b[0m _extract_schedule_infos(\n\u001b[1;32m 344\u001b[0m inner_operation,\n\u001b[1;32m 345\u001b[0m port_list,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 349\u001b[0m acq_infos,\n\u001b[1;32m 350\u001b[0m )\n\u001b[1;32m 351\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(operation, ConditionalOperation):\n", "File \u001b[0;32m/usr/local/lib/python3.9/collections/__init__.py:1058\u001b[0m, in \u001b[0;36mUserDict.__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 1056\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m__missing__\u001b[39m\u001b[38;5;124m\"\u001b[39m):\n\u001b[1;32m 1057\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__missing__\u001b[39m(\u001b[38;5;28mself\u001b[39m, key)\n\u001b[0;32m-> 1058\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m(key)\n", "\u001b[0;31mKeyError\u001b[0m: 'abs_time'" ] } ], "source": [ "sched.plot_pulse_diagram()" ] }, { "cell_type": "markdown", "id": "b9cf5f92", "metadata": {}, "source": [ "And similarly for the {code}`timing_table`:" ] }, { "cell_type": "code", "execution_count": 7, "id": "3f136a36", "metadata": { "tags": [ "raises-exception" ] }, "outputs": [ { "ename": "ValueError", "evalue": "Absolute time has not been determined yet. Please compile your schedule.", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[7], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43msched\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtiming_table\u001b[49m\n", "File \u001b[0;32m/usr/local/lib/python3.9/site-packages/quantify_scheduler/schedules/schedule.py:626\u001b[0m, in \u001b[0;36mScheduleBase.timing_table\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 533\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 534\u001b[0m \u001b[38;5;124;03mA styled pandas dataframe containing the absolute timing of pulses and acquisitions in a schedule.\u001b[39;00m\n\u001b[1;32m 535\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 623\u001b[0m \u001b[38;5;124;03m When the absolute timing has not been determined during compilation.\u001b[39;00m\n\u001b[1;32m 624\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m \u001b[38;5;66;03m# noqa: E501\u001b[39;00m\n\u001b[1;32m 625\u001b[0m timing_table_list \u001b[38;5;241m=\u001b[39m []\n\u001b[0;32m--> 626\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_generate_timing_table_list\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtiming_table_list\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[1;32m 627\u001b[0m timing_table \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mconcat(timing_table_list, ignore_index\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[1;32m 628\u001b[0m timing_table \u001b[38;5;241m=\u001b[39m timing_table\u001b[38;5;241m.\u001b[39msort_values(by\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mabs_time\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", "File \u001b[0;32m/usr/local/lib/python3.9/site-packages/quantify_scheduler/schedules/schedule.py:487\u001b[0m, in \u001b[0;36mScheduleBase._generate_timing_table_list\u001b[0;34m(cls, operation, time_offset, timing_table_list, operation_id)\u001b[0m\n\u001b[1;32m 484\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m schedulable \u001b[38;5;129;01min\u001b[39;00m operation\u001b[38;5;241m.\u001b[39mschedulables\u001b[38;5;241m.\u001b[39mvalues():\n\u001b[1;32m 485\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mabs_time\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m schedulable:\n\u001b[1;32m 486\u001b[0m \u001b[38;5;66;03m# when this exception is encountered\u001b[39;00m\n\u001b[0;32m--> 487\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 488\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAbsolute time has not been determined yet. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 489\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPlease compile your schedule.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 490\u001b[0m )\n\u001b[1;32m 491\u001b[0m \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39m_generate_timing_table_list(\n\u001b[1;32m 492\u001b[0m operation\u001b[38;5;241m.\u001b[39moperations[schedulable[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124moperation_id\u001b[39m\u001b[38;5;124m\"\u001b[39m]],\n\u001b[1;32m 493\u001b[0m time_offset \u001b[38;5;241m+\u001b[39m schedulable[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mabs_time\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[1;32m 494\u001b[0m timing_table_list,\n\u001b[1;32m 495\u001b[0m schedulable[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124moperation_id\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[1;32m 496\u001b[0m )\n\u001b[1;32m 497\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(operation, LoopOperation):\n", "\u001b[0;31mValueError\u001b[0m: Absolute time has not been determined yet. Please compile your schedule." ] } ], "source": [ "sched.timing_table" ] }, { "cell_type": "markdown", "id": "7d69c2e0", "metadata": {}, "source": [ "## Device configuration\n", "\n", "Up until now, the schedule is not specific to any qubit implementation.\n", "The aim of this section is to add device-specific information to the schedule.\n", "This knowledge is contained in the {ref}`device configuration`, which we introduce in this section.\n", "By compiling the schedule to the quantum-device layer, we incorporate the device configuration into the schedule (for example by adding pulse information to every gate) and thereby enable it to run on a specific qubit implementation.\n", "\n", "To start this section, we will unpack the structure of the device configuration.\n", "Here we will use an example device configuration for a transmon-based system that is used in the\n", "`quantify-scheduler` test suite." ] }, { "cell_type": "code", "execution_count": 8, "id": "557f8ef1", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['clocks', 'elements', 'edges', 'scheduling_strategy', 'compilation_passes']" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from quantify_scheduler.backends.circuit_to_device import DeviceCompilationConfig\n", "from quantify_scheduler.schemas.examples.device_example_cfgs import (\n", " example_transmon_cfg,\n", ")\n", "\n", "device_cfg = DeviceCompilationConfig.model_validate(example_transmon_cfg)\n", "\n", "list(device_cfg.model_dump())" ] }, { "cell_type": "markdown", "id": "6fdf3bcc", "metadata": {}, "source": [ "Before explaining how this can be used to compile schedules, let us first investigate\n", "the contents of the device configuration." ] }, { "cell_type": "code", "execution_count": 9, "id": "2bf61851", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[SimpleNodeConfig(name='circuit_to_device', compilation_func=)]" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "device_cfg.compilation_passes\n" ] }, { "cell_type": "markdown", "id": "dcaf7f96", "metadata": {}, "source": [ "The compilation passes of the device configuration specifies which function(s) will be used to \n", "compile the {class}`~.Schedule` to the {ref}`sec-user-guide-quantum-device`. In other words, \n", "it specifies how to interpret the qubit parameters present in the device configuration and achieve\n", "the required gates. Let us briefly investigate the compilation function:" ] }, { "cell_type": "code", "execution_count": 10, "id": "231d2d99", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Help on function compile_circuit_to_device_with_config_validation in module quantify_scheduler.backends.circuit_to_device:\n", "\n", "compile_circuit_to_device_with_config_validation(schedule: 'Schedule', config: 'CompilationConfig') -> 'Schedule'\n", " Add pulse information to all gates in the schedule.\n", " \n", " Before calling this function, the schedule can contain abstract operations (gates or\n", " measurements). This function adds pulse and acquisition information with respect to\n", " ``config`` as they are expected to arrive to device (latency or distortion corrections\n", " are not taken into account).\n", " \n", " From a point of view of :ref:`sec-compilation`, this function converts a schedule\n", " defined on a quantum-circuit layer to a schedule defined on a quantum-device layer.\n", " \n", " Parameters\n", " ----------\n", " schedule\n", " The schedule to be compiled.\n", " config\n", " Compilation config for\n", " :class:`~quantify_scheduler.backends.graph_compilation.QuantifyCompiler`, of\n", " which only the :attr:`.CompilationConfig.device_compilation_config`\n", " is used in this compilation step.\n", " \n", " Returns\n", " -------\n", " :\n", " The modified ``schedule`` with pulse information added to all gates, or the unmodified\n", " schedule if circuit to device compilation is not necessary.\n", "\n" ] } ], "source": [ "help(device_cfg.compilation_passes[0].compilation_func)\n" ] }, { "cell_type": "markdown", "id": "8356dc08", "metadata": {}, "source": [ "The {ref}`device configuration ` also contains the\n", "parameters required by the backend for all qubits and edges." ] }, { "cell_type": "code", "execution_count": 11, "id": "895d89aa", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['q0', 'q1']\n", "['q0_q1']\n", "['q0.01', 'q0.ro', 'q1.01', 'q1.ro']\n" ] } ], "source": [ "print(list(device_cfg.elements))\n", "print(list(device_cfg.edges))\n", "print(list(device_cfg.clocks))\n" ] }, { "cell_type": "markdown", "id": "028c71b8", "metadata": {}, "source": [ "For every qubit and edge, we can investigate the contained parameters." ] }, { "cell_type": "code", "execution_count": 12, "id": "58f2b6d5", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'reset': OperationCompilationConfig(factory_func=, factory_kwargs={'duration': 0.0002}, gate_info_factory_kwargs=None), 'Rxy': OperationCompilationConfig(factory_func=, factory_kwargs={'amp180': 0.32, 'motzoi': 0.45, 'port': 'q0:mw', 'clock': 'q0.01', 'duration': 2e-08}, gate_info_factory_kwargs=['theta', 'phi']), 'Rz': OperationCompilationConfig(factory_func=, factory_kwargs={'clock': 'q0.01'}, gate_info_factory_kwargs=['theta']), 'H': OperationCompilationConfig(factory_func=, factory_kwargs={'qubit': 'q0'}, gate_info_factory_kwargs=None), 'measure': OperationCompilationConfig(factory_func=, factory_kwargs={'port': 'q0:res', 'clock': 'q0.ro', 'pulse_type': 'SquarePulse', 'pulse_amp': 0.25, 'pulse_duration': 1.6e-07, 'acq_delay': 1.2e-07, 'acq_duration': 3e-07, 'acq_channel': 0, 'acq_rotation': 0, 'acq_threshold': 0, 'freq': None}, gate_info_factory_kwargs=['acq_channel_override', 'acq_index', 'bin_mode', 'acq_protocol'])}\n", "{'amp180': 0.32, 'motzoi': 0.45, 'port': 'q0:mw', 'clock': 'q0.01', 'duration': 2e-08}\n" ] } ], "source": [ "print(device_cfg.elements[\"q0\"])\n", "print(device_cfg.elements[\"q0\"][\"Rxy\"].factory_kwargs)\n" ] }, { "cell_type": "code", "execution_count": 13, "id": "f7f48cd3", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'q0_q1': {'CZ': OperationCompilationConfig(factory_func=, factory_kwargs={'square_port': 'q0:fl', 'square_clock': 'cl0.baseband', 'square_amp': 0.5, 'square_duration': 2e-08, 'virt_z_parent_qubit_phase': 44, 'virt_z_parent_qubit_clock': 'q0.01', 'virt_z_child_qubit_phase': 63, 'virt_z_child_qubit_clock': 'q1.01'}, gate_info_factory_kwargs=None)}}\n" ] } ], "source": [ "print(device_cfg.edges)\n" ] }, { "cell_type": "code", "execution_count": 14, "id": "39009a52", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'q0.01': 6020000000.0, 'q0.ro': 7040000000.0, 'q1.01': 5020000000.0, 'q1.ro': 6900000000.0}\n" ] } ], "source": [ "print(device_cfg.clocks)\n", "\n" ] }, { "cell_type": "markdown", "id": "826c2dd9", "metadata": {}, "source": [ "Lastly, the complete example device configuration (also see {class}`~quantify_scheduler.backends.graph_compilation.DeviceCompilationConfig`):" ] }, { "cell_type": "code", "execution_count": 15, "id": "541d5952", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'clocks': {'q0.01': 6020000000.0,\n", " 'q0.ro': 7040000000.0,\n", " 'q1.01': 5020000000.0,\n", " 'q1.ro': 6900000000.0},\n", " 'compilation_passes': [{'compilation_func': 'quantify_scheduler.backends.circuit_to_device.compile_circuit_to_device_with_config_validation',\n", " 'name': 'circuit_to_device'}],\n", " 'edges': {'q0_q1': {'CZ': {'factory_func': 'quantify_scheduler.operations.pulse_factories.composite_square_pulse',\n", " 'factory_kwargs': {'square_amp': 0.5,\n", " 'square_clock': 'cl0.baseband',\n", " 'square_duration': 2e-08,\n", " 'square_port': 'q0:fl',\n", " 'virt_z_child_qubit_clock': 'q1.01',\n", " 'virt_z_child_qubit_phase': 63,\n", " 'virt_z_parent_qubit_clock': 'q0.01',\n", " 'virt_z_parent_qubit_phase': 44}}}},\n", " 'elements': {'q0': {'H': {'factory_func': 'quantify_scheduler.operations.composite_factories.hadamard_as_y90z',\n", " 'factory_kwargs': {'qubit': 'q0'}},\n", " 'Rxy': {'factory_func': 'quantify_scheduler.operations.pulse_factories.rxy_drag_pulse',\n", " 'factory_kwargs': {'amp180': 0.32,\n", " 'clock': 'q0.01',\n", " 'duration': 2e-08,\n", " 'motzoi': 0.45,\n", " 'port': 'q0:mw'},\n", " 'gate_info_factory_kwargs': ['theta', 'phi']},\n", " 'Rz': {'factory_func': 'quantify_scheduler.operations.pulse_factories.phase_shift',\n", " 'factory_kwargs': {'clock': 'q0.01'},\n", " 'gate_info_factory_kwargs': ['theta']},\n", " 'measure': {'factory_func': 'quantify_scheduler.operations.measurement_factories.dispersive_measurement_transmon',\n", " 'factory_kwargs': {'acq_channel': 0,\n", " 'acq_delay': 1.2e-07,\n", " 'acq_duration': 3e-07,\n", " 'acq_rotation': 0,\n", " 'acq_threshold': 0,\n", " 'clock': 'q0.ro',\n", " 'freq': None,\n", " 'port': 'q0:res',\n", " 'pulse_amp': 0.25,\n", " 'pulse_duration': 1.6e-07,\n", " 'pulse_type': 'SquarePulse'},\n", " 'gate_info_factory_kwargs': ['acq_channel_override',\n", " 'acq_index',\n", " 'bin_mode',\n", " 'acq_protocol']},\n", " 'reset': {'factory_func': 'quantify_scheduler.operations.pulse_library.IdlePulse',\n", " 'factory_kwargs': {'duration': 0.0002}}},\n", " 'q1': {'Rxy': {'factory_func': 'quantify_scheduler.operations.pulse_factories.rxy_drag_pulse',\n", " 'factory_kwargs': {'amp180': 0.4,\n", " 'clock': 'q1.01',\n", " 'duration': 2e-08,\n", " 'motzoi': 0.25,\n", " 'port': 'q1:mw'},\n", " 'gate_info_factory_kwargs': ['theta', 'phi']},\n", " 'Rz': {'factory_func': 'quantify_scheduler.operations.pulse_factories.phase_shift',\n", " 'factory_kwargs': {'clock': 'q1.01'},\n", " 'gate_info_factory_kwargs': ['theta']},\n", " 'measure': {'factory_func': 'quantify_scheduler.operations.measurement_factories.dispersive_measurement_transmon',\n", " 'factory_kwargs': {'acq_channel': 1,\n", " 'acq_delay': 1.2e-07,\n", " 'acq_duration': 3e-07,\n", " 'acq_rotation': 0,\n", " 'acq_threshold': 0,\n", " 'clock': 'q1.ro',\n", " 'freq': None,\n", " 'port': 'q1:res',\n", " 'pulse_amp': 0.21,\n", " 'pulse_duration': 1.6e-07,\n", " 'pulse_type': 'SquarePulse'},\n", " 'gate_info_factory_kwargs': ['acq_channel_override',\n", " 'acq_index',\n", " 'bin_mode',\n", " 'acq_protocol']},\n", " 'reset': {'factory_func': 'quantify_scheduler.operations.pulse_library.IdlePulse',\n", " 'factory_kwargs': {'duration': 0.0002}}}}}\n" ] } ], "source": [ "pprint(example_transmon_cfg)\n" ] }, { "cell_type": "markdown", "id": "31c65216", "metadata": {}, "source": [ "## Quantum Devices and Elements\n", "\n", "The {ref}`device configuration` contains all knowledge\n", "of the physical device under test (DUT).\n", "To generate these device configurations on the fly, `quantify-scheduler` provides the\n", "{class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` and\n", "{class}`~quantify_scheduler.device_under_test.device_element.DeviceElement` classes.\n", "\n", "These classes contain the information necessary to generate the device configs and allow\n", "changing their parameters on-the-fly.\n", "The {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` class\n", "represents the DUT containing different {class}`~quantify_scheduler.device_under_test.device_element.DeviceElement` s.\n", "Currently, `quantify-scheduler` contains the\n", "{class}`~quantify_scheduler.device_under_test.transmon_element.BasicTransmonElement` class\n", "to represent a fixed-frequency transmon qubit connected to a feedline. We show their interaction below:" ] }, { "cell_type": "code", "execution_count": 16, "id": "3911548d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(, ['qubit'])" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from quantify_scheduler.device_under_test.quantum_device import QuantumDevice\n", "from quantify_scheduler.device_under_test.transmon_element import BasicTransmonElement\n", "\n", "# First create a device under test\n", "dut = QuantumDevice(\"DUT\")\n", "\n", "# Then create a transmon element\n", "qubit = BasicTransmonElement(\"qubit\")\n", "\n", "# Finally, add the transmon element to the QuantumDevice\n", "dut.add_element(qubit)\n", "dut, dut.elements()\n" ] }, { "cell_type": "markdown", "id": "16e91cb8", "metadata": {}, "source": [ "The different transmon properties can be set through attributes of the {class}`~quantify_scheduler.device_under_test.transmon_element.BasicTransmonElement` class instance, e.g.:" ] }, { "cell_type": "code", "execution_count": 17, "id": "4a60b2fa", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['reset', 'rxy', 'measure', 'ports', 'clock_freqs']\n", "\n", "qubit.reset: ['duration']\n", "qubit.rxy: ['amp180', 'motzoi', 'duration']\n", "qubit.measure: ['pulse_type', 'pulse_amp', 'pulse_duration', 'acq_channel', 'acq_delay', 'integration_time', 'reset_clock_phase', 'acq_weights_a', 'acq_weights_b', 'acq_weights_sampling_rate', 'acq_weight_type', 'acq_rotation', 'acq_threshold', 'num_points']\n", "qubit.ports: ['microwave', 'flux', 'readout']\n", "qubit.clock_freqs: ['f01', 'f12', 'readout']\n" ] } ], "source": [ "qubit.clock_freqs.f01(6e9)\n", "\n", "print(list(qubit.submodules.keys()))\n", "print()\n", "for submodule_name, submodule in qubit.submodules.items():\n", " print(f\"{qubit.name}.{submodule_name}: {list(submodule.parameters.keys())}\")\n" ] }, { "cell_type": "markdown", "id": "aa31a8b9", "metadata": {}, "source": [ "The device configuration is now simply obtained using {code}`dut.generate_device_config()`.\n", "In order for this command to provide a correct device configuration, the different properties need to be set to applicable values in the {class}`~quantify_scheduler.device_under_test.transmon_element.BasicTransmonElement` and {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` objects." ] }, { "cell_type": "code", "execution_count": 18, "id": "7f4bd4d7", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "DeviceCompilationConfig(clocks={'qubit.01': 6000000000.0, 'qubit.12': nan, 'qubit.ro': nan}, elements={'qubit': {'reset': OperationCompilationConfig(factory_func=, factory_kwargs={'duration': 0.0002}, gate_info_factory_kwargs=None), 'Rxy': OperationCompilationConfig(factory_func=, factory_kwargs={'amp180': nan, 'motzoi': 0, 'port': 'qubit:mw', 'clock': 'qubit.01', 'duration': 2e-08, 'reference_magnitude': None}, gate_info_factory_kwargs=['theta', 'phi']), 'Rz': OperationCompilationConfig(factory_func=, factory_kwargs={'clock': 'qubit.01'}, gate_info_factory_kwargs=['theta']), 'H': OperationCompilationConfig(factory_func=, factory_kwargs={'qubit': 'qubit'}, gate_info_factory_kwargs=None), 'measure': OperationCompilationConfig(factory_func=, factory_kwargs={'port': 'qubit:res', 'clock': 'qubit.ro', 'pulse_type': 'SquarePulse', 'pulse_amp': 0.25, 'pulse_duration': 3e-07, 'acq_delay': 0, 'acq_duration': 1e-06, 'acq_channel': 0, 'acq_protocol_default': 'SSBIntegrationComplex', 'reset_clock_phase': True, 'reference_magnitude': None, 'acq_weights_a': array([], dtype=float64), 'acq_weights_b': array([], dtype=float64), 'acq_weights_sampling_rate': None, 'acq_rotation': 0, 'acq_threshold': 0, 'num_points': None, 'freq': None}, gate_info_factory_kwargs=['acq_channel_override', 'acq_index', 'bin_mode', 'acq_protocol', 'feedback_trigger_label'])}}, edges={}, scheduling_strategy='asap', compilation_passes=[SimpleNodeConfig(name='circuit_to_device', compilation_func=), SimpleNodeConfig(name='set_pulse_and_acquisition_clock', compilation_func=), SimpleNodeConfig(name='determine_absolute_timing', compilation_func=)])\n" ] } ], "source": [ "pprint(dut.generate_device_config())\n" ] }, { "cell_type": "markdown", "id": "75ca251a", "metadata": {}, "source": [ "## Specifying pulse magnitudes\n", "\n", "```{warning}\n", "Please note that currently only the user interface of the reference magnitude is defined. The physical magnitude scaling has not yet been implemented in any hardware backend. Therefore, changing the reference magnitude parameter will not have any physical effect in the current version of `quantify-scheduler`.\n", "```\n", "\n", "In the course of a quantum experiment, we may use a variety of electronic pulses of varying amplitudes or powers. The size of the pulses can potentially vary across many orders of magnitude. Additionally, there are many ways in which we might express the magnitude of said pulses (such as amplitude in volts, current in amps or power in dBm), which we may use in different contexts. When generating arbitrary waveforms, it is typical to use a DAC with limited dynamic range, so only a limited range of pulse amplitudes may be generated electronically. Therefore, devices such as variable attenuators or amplifiers are often used to produce pulses over many different orders of magnitude. In quantify, we provide the functionality to express the absolute magnitude of pulses in a range of different units, as well as to define the amplitude of any signal produced by an arbitrary waveform generator.\n", "\n", "In the definition of any pulse operation in `quantify-scheduler`, there will typically be two parameters related to the magnitude of the pulse: the `amplitude` and the `reference_magnitude`. The `amplitude` is a unitless parameter which expresses the amplitude of the signal produced by the DAC of the signal generator, relative to the maximum output level of the DAC. The `amplitude` can vary from -1 to 1, where 1 is the maximum output level. Since `amplitude` is a relative scale, it does not express the absolute power level of the signal that reaches the device. This will be affected by a number of different variables, including any attenuation or gain that is applied to the signal after it produced by the DAC. In order to specify the magnitude of the signal in absolute terms, we have the `reference_magnitude` parameter. This provides a reference scale for the absolute magnitude of the signal when it reaches the device port in question. The reference magnitude can be specified in a number of different units: Volts, current in Amperes or power in dBm or W, depending on the physical implementation of the control pulse. The scaling is defined such that the power/amplitude of a pulse with amplitude 1 will have a value equal to the `reference_magnitude` when it reaches the port. How exactly this scaling is implemented physically will depend on the hardware backend. For example, it may be that a variable attenuation is applied to the pulse in order to scale its power to the right level. Or the gain of an amplifier will be varied. Whenever a quantify schedule is compiled, the quantify compilation backend will automatically compile all instructions necessary for all hardware instruments required to scale the pulse magnitude to the correct level.\n", "\n", "The reference magnitude and amplitude of a pulse can both be configured via QCoDeS parameters in the device element. The pulse amplitude can be configured via a standard QCoDeS parameter, for example `qubit.rxy.amp180` can be used to set the pi-pulse amplitude of an RXY operation of a transmon qubit (between -1 and 1). The reference magnitude is configured slightly differently. Because of the need to express the reference magnitude in a variety of different units in different contexts, the reference magnitude is configured via a custom QCoDeS submodule within the device element - of class {class}`~quantify_scheduler.device_under_test.transmon_element.ReferenceMagnitude`. For example, we may have the submodule `qubit.rxy.reference_magnitude`, which is used to scale the amplitudes of the aforementioned RXY pulses. The {class}`~quantify_scheduler.device_under_test.transmon_element.ReferenceMagnitude` submodule contains three parameters, one for each of the possible units which the reference magnitude may be expressed in: Volts, dBm and Amperes. Only one of these unit parameters may have a defined numerical value at any given time. That is, if `reference_magnitude.dBm` is set to a particular value, both of the other parameters will automatically be set to `nan`. This allows the reference magnitude to be uniquely defined with respect to a particular unit. The defined unit and value of reference magnitude can be inquired via the `get_val_unit` method of the submodule, which returns both the numerical value and the unit in a tuple. If all of the reference magnitude parameters are `nan`, then no reference magnitude is defined and no extra scaling will be applied to the pulse.\n", "\n", "## Mixing pulse and circuit layer operations (Chevron)\n", "\n", "As well as defining our schedules in terms of gates, we can also mix the circuit layer\n", "representation with pulse-level operations.\n", "This can be useful for experiments involving pulses not easily represented by Gates,\n", "such as the Chevron experiment.\n", "In this experiment, we want to vary the length and amplitude of a square pulse between\n", "X gates on a pair of qubits." ] }, { "cell_type": "code", "execution_count": 19, "id": "22e968cd", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import Schedule\n", "from quantify_scheduler.operations.gate_library import Measure, Reset, X, X90\n", "from quantify_scheduler.operations.pulse_library import SquarePulse\n", "from quantify_scheduler.resources import ClockResource\n", "\n", "sched = Schedule(\"Chevron Experiment\")\n", "acq_idx = 0\n", "\n", "for duration in np.linspace(start=20e-9, stop=60e-9, num=6):\n", " for amp in np.linspace(start=0.1, stop=1.0, num=10):\n", " reset = sched.add(Reset(\"q0\", \"q1\"))\n", " sched.add(X(\"q0\"), ref_op=reset, ref_pt=\"end\") # Start at the end of the reset\n", " # We specify a clock for tutorial purposes, Chevron experiments do not necessarily use modulated square pulses\n", " square = sched.add(SquarePulse(amp=amp, duration=duration, port=\"q0:mw\", clock=\"q0.01\"))\n", " sched.add(X90(\"q0\"), ref_op=square) # Start at the end of the square pulse\n", " sched.add(X90(\"q1\"), ref_op=square)\n", " sched.add(Measure(q0, acq_index=acq_idx), label=f\"M q0 {acq_idx}\")\n", " sched.add(\n", " Measure(q1, acq_index=acq_idx),\n", " label=f\"M q1 {acq_idx}\",\n", " ref_pt=\"start\", # Start at the same time as the other measure\n", " )\n", "\n", " acq_idx += 1\n", "\n", "\n", "# Specify the frequencies for the clocks; this can also be done via the DeviceElement (BasicTransmonElement) instead\n", "sched.add_resources([ClockResource(\"q0.01\", 6.02e9), ClockResource(\"q1.01\", 6.02e9), ClockResource(\"q0.ro\", 5.02e9), ClockResource(\"q1.ro\", 5.02e9)]) " ] }, { "cell_type": "code", "execution_count": 20, "id": "667bea4d", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzEAAADECAYAAACvIa+3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2SElEQVR4nO3de5yMdf/H8dd3d63FOp9C2JAzKaTu5FxWwkbd3d3JodJNUW6dqEgHd7dOKN24VSrdSXJoS+l2WvkpOilxO8U6JJZ1XrLLzPf3xzW7dtZiDzM7M7vv5+Mxj2uu43xmzM7H57q+3+9lrLWIiIiIiIiEirBAByAiIiIiIpIbKmJERERERCSkqIgREREREZGQoiJGRERERERCiooYEREREREJKSpiREREREQkpKiIERERERGRkKIiRkREREREQoqKGBERERERCSkqYkRECpgxxhpjJgc6Dsk9z7/d2EDHISJS1KmIERHxEWNMXWPMNGPMdmPMKWPMMWPMKmPMQ8aYEoGOLxgYY3Z4CoHsHosCHV9hYIz5kzFmrDGmXKBjERHxl4hAByAiUhgYY7oDc4BU4D1gPRAJtAVeApoA9wUswODyE/BKNst/L+A48qIEcCbQQVzEn4CngXeAIwGNRETET1TEiIjkkzHmMuBDYCfQyVq7N9PqN4wx9YDuAQnuIowxpay1Jwr4ZfdYa98v4NfMM2NMGBBprT1lrT0V6HhERETNyUREfOExIBq4J0sBA4C19ldr7aSsy40xccaY9caYVGPMBmNMbDbb1DDGvG2MScq03d2Z1lc1xpwxxjydzb4NPM20hnrmB3jm2xtj/mWM2Q/8lmn7+z3HTzXG/G6MeSNrkyRjTIIn5sbGmOXGmJPGmD3GmMdy95GdnzGmijHmgOe1TKbl9YwxJ4wxs7OJp6Ux5mtjzB/GmERjzOBsjlvcGPOMMeZXz3vcbYx50RhTPMt21hgz2RhzpzFmA87VtdhM68Zm2nasZ1l9Y8z7xpijntifM46axphPPE0L9xljHvZBXOf93nhie8kzm5ipqV5Mrv4RRESCnK7EiIjkXw9gu7X261zs0xboDfwLOA48CMw1xtSy1h4Ep0ABVgMWmAwcALoBbxljylhrJ1prk4wxK4A/A89keY3bARdOM7fM/uU51rNAKc9rjcVpgrQEmAI0AIYArY0x11lrT2favzywCJgHfATcCow3xvxirf0iB++9mDGmUjbLT1hr/7DW7jfGDPHEPQx4zXM15B3PZ3V/lv3KA597YpmF81lMMcakWWvf9ry/MCAe53P/N7ARaAb8HagPxGU5ZifPcSYDycCOi7yn2Z5jjsS56vYUcAj4G7AMeBy4E3jZGPOdtfarPMZ1se/NPM9+d3iOkezZ78BF4hcRCS3WWj300EMPPfL4AMrgFBkLcrGPxTm7XzfTsuae5UMzLXsTp59IxSz7z8Lp61DCM3+fZ9+mWbbbACzNND/As91KIDzT8sqeeL4EwjItf8Cz/cBMyxI8y+7KtCwS2At8nIP3vsOzf3aPkVm2/QA4AVwOPOLZpleWbdLjGZElnrVAElDMs6wvTkHXNsv+f/Ps/6cs/z4uoPF5/u3GZpof61k2LdOycGA34AYez7S8HHASeCfTstzGlZPvTfpnFRPovw899NBDD3891JxMRCR/ynimx3O53xJr7bb0GWvtOuAYUAfA04yqD/CpZ7ZS+gOn2CgLXOXZfR5OZ/Pb049njGkKNMa5QpDVdGutK9N8F5z/+E+01rozb+eJKWt/nhQgo0+LtTYN+DY99hxYA9yQzWNWlu2GAkeBj4HngJnW2k+yOd4ZYFqWeKYBVYCWnsW34Vzl2JTls1zmWd8xyzFXWGv/l8P3A07Bmf76LuB7wABvZVp+BNiM9+eU27gu+L0RESkq1JxMRCR/jnmmpXO5365slh3GaRoFztWRcjhXWc43qlkVAGttsjFmKU7zp9Gedbfj/Od+Xjb7JWaZr+2Zbs680FqbZozZnml9ut+stTab2JufJ86skq21Sy62kbX2kDHmQZxmZUk4Taey87s9d3CCLZ5pDE6TvMuBRpy/WVWVLPNZP6OLyfrveRQ4Za1NzmZ5xUzzuY3rYt8bEZEiQUWMiEg+WGuPGWN+B5rmclfXeZand2RPv1L+PvDuebZdl+n5h8AMY0wLa+1POAXN0mz+Ew3wRy5jzepisftSV8+0PHApeR8yOAz4BRhxnvW7s8zn9jPK7jPJyeeU27gK8rMXEQlaKmJERPLvM+A+Y8y11tpvfHTMAzhN1MJzctUCWIDThOp2z4Be9YEXcvhaOz3TBsD29IXGmEjgMpzO/gXOM+rWvcCLOJ3i3zXGtLHWZr1PS3Vz7lDR9T3THZ7pNuAKnMIu61WkQPJHXMH0/kRE/EJ9YkRE8u9FnA7ob3pGFPNijKlrjHkoNwf09KuYC/Tx9G/JeszKWbY/gtNX5s/AX4A0nMImJ5Z4tn8w85DGwD04fW8W5iZ2X/AM7fwmTl+bJ3CKmas8z7OKwOkIn75vpGf+APCDZ/FHQA1gUDavVcIYU8qH4eeGP+JKL+bK5SMuEZGgpisxIiL5ZK3dZoz5K55hdo0x7wHrcTrL/wmn8/Y7eTj0SJyO3WuMMdOB/wEVcP4z38XzPLPZOM3P7ge+9BQ2OYn/gDHmBZwhlhcZY+JxrsrcD3xHpk78PlLDGNM3m+Up1toFnueTcPqOdPEUdIuMMW8CTxljPrHW/pxpv9+Bxz33QtmC0x+oBXCfPTs09EycAm+qMaYjsApnFLGGnuVdcTrjFzR/xJVeuI0zxnwInAY+zabfkIhIyFIRIyLiA9baeGNMc+BRoBfOPVZScfqtPIwz0lduj5lkjLkaGINzb5D7gYM4Qyc/ns0u8Th9OUqT/ahkF3qtscaYAzgjgk3AucfJv4EnrPc9YnyhBc5/3rPaCSwwxvQE+gEPW2s3ZVo/AmcUs3eNMa0zxXUY6A+8jnNFIwlnyOGMz9xa6zbGxOHcO6UfcAvOcMfbcQqm9IEACpQ/4rLWfmeMGQ0MxrlJZxhOs0AVMSJSaJjgahosIiKSc8aYBKCStTa3AyuIiEgIU58YEREREREJKSpiREREREQkpKiIERERERGRkKI+MSIiIiIiElJ0JUZEREREREKKihgREREREQkpKmJERERERCSkBOvNLtVRR0RERESk6DE52UhXYkREREREJKSoiBERERERkZCiIkZEREREREKKihgREREREQkpKmJERERERCSkqIgREREREZGQoiJGRERERERCiooYEREREREJKSpiREREREQkpKiIERERERGRkKIiRkREREREQoqKGBERERERCSkqYkREREREJKSoiBERERERkZCiIkZEREREREKKihgREREREQkpKmJERERERCSkqIgREREREZGQEhHoAESk8Hh92Y5AhxAQwzrF5HnfTZs2+S6QENKwYcNAhyAiPqYckHvKAXmnKzEiIiIiIhJSVMSIiIiIiEhIUREjIiIiIiIhRUWMiIiIiIiEFBUxIiKSrRMnTrBz585AhyEiIgEQ7DlARYyIiJzD7Xbz2GOPERsby8aNGwMdjoiIFKBQyAEqYkRE5BzTp09n2bJlAISHhwc4GhERKUihkANUxIiIiJevvvqKSZMmZcwXK1YsgNGIiEhBCpUcoCJGREQy7Nq1ixEjRngti4yMDFA0IiJSkEIpB6iIERERAE6ePMn999/PqVOnsNZmLA/WBCYiIr4TajkgItABiIhI4FlrefLJJ0lMTMTtdnutC9YEJiIivhGKOUBFjIiIMHPmTBYtWpTtumBNYCIi4huhmAPUnCyLhIQEYmJicrXP22+/zaZNm/wTkEgR5na7eX5AZz576yWv5RtWL+PvXevz88rsf3Al9w4dOgRkPwpNsCYwf1AOEAkeygEFJxRzgIqYHHjjjTeIiYkhKiqKNm3a8O2333qtX7NmDdOmTQtQdCKFV1hYGDfccT8rP5nJHynHANi9ZT0znhtGz0GPc8X1sQGOsPB46KGHGDFiBC6XC3A+e2MMYWFhQTu8ZkFRDhAJDOWAghOKOcDnzcmMMb2BwUBLoAJwpbX2J1+/TkGZPXs2I0aMYOrUqbRp04aJEyfStWtXNm/eTJUqVQDo1asXw4YNY8KECQGOVqTwadWlF4tmTuKrT96jdZdbmPbUPVwTeysdb70n0KEFPWst+/btY8uWLRmP3377jePHj5OSkoIxhujoaEqXLk3NmjXZuHEjYWFhuN1uKlSoQNOmTalWrVqg30ZAKQeIBJZyQN4V9hzgjz4xpYD/Az4Cpvvh+AXq1VdfZdCgQQwcOBCAqVOnsnDhQt5++21GjhwJQOfOnUlKSmL9+vU0bdo0kOGKFDrh4RF0uX0wn814hR+XfUqtBs3p/cDTgQ4raJ08eZIlS5YQHx/PqlWrcrzf2rVrveaTk5MBaN26NadOnSIqKsqncYYK5QCRwFIOyJ2ilANyXcQYY0oBU4DewHHgZaAH8JO1dri1dqZnuxgfxhkQaWlp/PDDD4waNSpjWVhYGF26dOGbb77JWFa8eHFuvPFG4uPjlcBE/KBVl17M+9ezUKEyA558jbCwnLWEfef5B7m+Z18WvvMqxw8fJDw8nK53DePK9t39HHHBcrlcrF69mvj4eOLj43123ISEBBISEgDo06cPPXv2pFWrVjn+/EOdcoBIcFAOuLCimgPyciXmJaA90AvYD/wDuAr4yXdhBYfk5GRcLhdVq1b1Wl61atVzOnH26tWLKVOm8MQTTxRkiCJFwpzXnLNuJ44ewuTwx9PtdpP8+04q1Yih9/1juLReY44dOsBLg3vQ+OqOFC9R0p8hFwhrLYsXL+bJJ58kJSUl220aNWpEkyZNqF+/Pg0aNCAmJoaSJUtmdNRMS0vjxIkT3HPPPWzfvh1rLcWLFyc1NdXrOHPnzmXu3LlUqlSJ559/nvbt2/v9/QWacoBIcFAOyF5RzwG5KmKMMdHAPUBfa+1Sz7L+wG95DcAYUxwonnnZr7/+6teREGrWrOnzY950000MHDiQ5ORkKlWqlO02u3fv9vnrihR2C2e8woY1yxkxeR6TH72Lbz6fTbu4fhnrk3ZtY8KDt1IiugxRJUtxYM9OLq3XmFuGPEXNy5tStmIVylZ0+i6UqVCZUmXLc/L4EZ8msED8bW/atInnnnuOH3/88Zx1nTt3Ji4ujnbt2l30tzQyMpIjR46wbds2AIwxjBw5kri4OJYvX84nn3zCihUrMrZPTk5m8ODBXHfddTzxxBPUqVMnT/EH8vdQOUAkdCgHZK8w54Cc/kbn9kpMXSASWJO+wFp7yBizOZfHyWwU4NW4sV27dvk43MXt2bMnR9tVqlSJ8PBwkpKSvJYnJSVxySWXeC1LTEykXLlylCtX7rzHu+aaa3Idq0goGTkz5+1vc+LrhbNYNudNhr78ATXqNqZDn4EsnT2N626+g/CIYgBUrVWXmEYt6DnocarXacjz/Tsx5J/vkjDvbRq2ut7reLu2/IJ1uylfpbpP48zP3/bSpUtztf3hw4eZNGkSs2fP9lpeq1YtBg4cSGxs7AV/h7ITHx+f0ZkzPDyc2NhYoqKi6NatG926dePQoUN8/vnnTJ8+nf379wOwatUqunfvTr9+/Rg6dCilS5fO1WsG8vdQOUDEP5QDck854Fw5/Y0OhptdvgC8mnnBV199dTQYxqSOjIykZcuWLF26lLi4OMC5PLl06VKGDh3qtW18fDw33XQTERHn/0hXr17tz3BFAm7BVpfPjrVhzXLmvD6WAU+9xmWNrwSgXa9+LJv9b75dPJ9ru/05Y9uk3dupUrMOaaf+wO12U7xESbb8+DXtep09W3fi2BHe/+fD/OXhF3wWY7r8/G2fOHEix9uuW7eOO++8kzNnzngtf/bZZ+ndu3eehsG01jJv3ryM5NW+fftzEmCFChXo27cvt99+O7Nnz2bcuHEZ69577z3mz5/PzJkzadCgQY5fNxR+D5UDRHJHOSD3lAPyLrdFzDbgNNAG2AVgjCkP1AdWXGC/87LWpgKpF90wQEaMGEH//v1p1aoVV199NRMnTuTEiRMZI9Wki4+PZ/To0Rc8lj+aMIgEla07fHKYXVt+YcazQ+k1aCRXtO2asbxEdBna3TKAJbOm0ObGPoSFh3PqZAoRxSKJKBbJzm0/U7VWXU6dTMFaNyWiywBwOi2VN8fcR5c7BlOnSUufxJhZfv62c3qTxDlz5jBmzBivZXfffTeDBw/O9RmwzNatW5dx1svlcmX8Zz07xYoVo2/fvnTv3p3JkyfzwQcfAHD8+HHi4uJ4+eWX6d49Zx1mQ+X3UDlAJBeUA3JNOSDvclXEWGtTjDFvAS8ZYw7idOwfB7jTtzHGVABqAenX6hoYYwD2WWv35TviAnb77bdz4MABxowZw759+2jRogWLFi3y6uiZmJjI5s2biY3VTZdEfKFW/Wa8vHBDtuu6DxxB94EjMub37dzKJbXrAZC061eqXHoZW9Z+zeUtrgWcs0z/efFRLr/yT1x9Q2//B+8H+/fvZ/z48Rnz1apVY/r06dStWzffx46Pjyc8PByXy0V0dHSOmvOWL1+e0aNHc+uttzJw4ECOHj0KwLhx42jbti1ly5bNd1zBQjlApOApB3hTDsheXsZIexRYCXwKLMG5J8wPmdb3BNYCCz3zH3rmB+c9zMAaOnQoO3fuJDU1lTVr1tCmTRuv9fHx8XTo0CFflbCI5M3eHVupFlMfgMiokmz64f/Y+N1XNGzptIXevv571iZ8xi+r/sv4+25i/H038fv2nJ35ChZVqlTh1VedVrddu3bl008/9UnySktLIz4+HpfLRXh4ODfffHOuBlVp1KgRX375JW3btgXgtddeK1QFTDrlAJHgpRyQd6GeA3LdJ8ZamwLc5XkAYIzpnmn9O8A7PogtZMTHx9O7d2hW9yKhLnO76BbtutGiXTdeGtKT24Y9A0DdZq2ZtGR7oMLzmXbt2jFnzhyaNGmC5+p2vq1cuTJjWE6Xy0XPnj1zfYyyZcsybdo0Nm7cSJMmTXwSV6hRDhAJHOWAvAv1HBAMHftDXm5HlhAR/3p0iu9u9hVMfH0jxQULFmQ0I6hRowYtWrTI03HCwsKKbAEDygEiwUY5IGdCPQcExy03g0hMTAzDhw8PdBgiIn519OhREhIScLlchIWFccstt/js7F4oUw4QkaKgMOQAn1yJsdZ28MVxgoESmIgUBYsWLcoYptPtduepGUFhpBwgIkVBYcgBak4mIlIEzZs3L+OsW7NmzTT8r4hIEVIYcoCKGBGRImb37t2sW7cuY75Pnz4BjEZERApSYckB6hMjIlLELFq0KON5REQEXbt2vcDWIiJSmBSWHKAiRkSkiGndujUVK1YEoFOnToXy3i4iIpK9wpID1JxMRKSIadGiBStWrGDDhg00bNgw0OGIiEgBKiw5QEWMiEgRFB4eTvPmzQMdhoiIBEBhyAFqTiYiIiIiIiFFRYyIiIiIiIQUFTEiIiIiIhJSVMSIiIiIiEhIMdbaQMeQnaAMSkRERERE/MrkZCNdiRERERERkZCiIkZEREREREKKihgREREREQkpKmJERERERCSkqIgREREREZGQoiJGRERERERCiooYEREREREJKSpiREREREQkpKiIERERERGRkKIiRkREREREQoqKGBERERERCSkqYkREREREJKSoiBERERERkZCiIkZEREREREKKihgREREREQkpKmJEiqCYmBgmTpwY6DBERCQAlAOkMFARI0XOgQMHGDJkCLVq1aJ48eJccskldO3alVWrVgU6tBwZMGAAxhiMMURGRlKvXj2effZZzpw5E+jQRESCnnKASOEQEegARApanz59SEtL491336VOnTokJSWxdOlSDh48GNC40tLSiIyMzNG2sbGxzJgxg9TUVD7//HMeeOABihUrxqhRo/wcpYhIaFMOECkcdCVGipQjR46wcuVKxo8fT8eOHalduzZXX301o0aNomfPngBs3bqVdu3aERUVRePGjVm8eDHGGBYsWABAQkICxhiOHDmScdyffvoJYww7duwA4ODBg9xxxx3UqFGDkiVL0qxZM2bNmuUVS4cOHRg6dCjDhw+nUqVKdO3aFYD169fTrVs3oqOjqVq1KnfddRfJycle+6afPaxduzZDhgyhS5cuxMfHZxx3+PDhXtvHxcUxYMCAbD8Tay1jx47NOCtZvXp1HnzwwYz1qampPPLII9SoUYNSpUrRpk0bEhIScvGpi4gEB+WAcykHSKhSESNFSnR0NNHR0SxYsIDU1NRz1rvdbnr37k1kZCRr1qxh6tSpPP7447l+nVOnTtGyZUsWLlzI+vXrue+++7jrrrv49ttvvbZ79913iYyMZNWqVUydOpUjR47QqVMnrrzySr7//nsWLVpEUlISf/7zny/4eiVKlCAtLS3XcQLMnTuXCRMmMG3aNLZu3cqCBQto1qxZxvqhQ4fyzTff8OGHH7Ju3Tpuu+02YmNj2bp1a55eT0QkUJQDzqUcICHLWhuMDxG/+fjjj2358uVtVFSU/dOf/mRHjRplf/75Z2uttV9++aWNiIiwe/bsydj+iy++sICdP3++tdba5cuXW8AePnw4Y5u1a9dawCYmJp73dbt3724ffvjhjPn27dvbK6+80mub5557zt54441ey3bv3m0Bu3nzZmuttf3797e9evWy1lrrdrvt4sWLbfHixe0jjzyScdyHHnrI6xi9evWy/fv3z5ivXbu2nTBhgrXW2ldeecXWr1/fpqWlnRPzzp07bXh4uNfnYa21nTt3tqNGjTrvexURCVbKAcoBEvRyVC+oT4wUOX369KF79+6sXLmS1atX88UXX/Diiy/y5ptvcvToUWrWrEn16tUztr/22mtz/Roul4t//OMffPTRR+zZs4e0tDRSU1MpWbKk13YtW7b0mv/5559Zvnw50dHR5xxz27Zt1K9fH4DPPvuM6OhoTp8+jdvt5q9//Stjx47NdZwAt912GxMnTqROnTrExsZy00030aNHDyIiIvjll19wuVwZr5suNTWVihUr5un1REQCSTnAm3KAhCoVMVIkRUVFccMNN3DDDTcwevRo7r33Xp5++mlGjBhx0X3DwpxWmNbajGWnT5/22uall15i0qRJTJw4kWbNmlGqVCmGDx9+zuX+UqVKec2npKTQo0cPxo8ff87rVqtWLeN5x44dmTJlCpGRkVSvXp2IiLN/ymFhYV6xZRdfZjVr1mTz5s0sWbKExYsXc//99/PSSy+xYsUKUlJSCA8P54cffiA8PNxrv+ySrIhIKFAOOEs5QEKVihgRoHHjxixYsIBGjRqxe/du9u7dm5EwVq9e7bVt5cqVAdi7dy/ly5cHnE6dma1atYpevXrRt29fwGlnvWXLFho3bnzBOK666irmzp1LTEyMV1LKqlSpUtSrVy/bdZUrV2bv3r0Z8y6Xi/Xr19OxY8fzHq9EiRL06NGDHj168MADD9CwYUN++eUXrrzySlwuF/v37+f666+/YOwiIqFKOUA5QEKPOvZLkXLw4EE6derE+++/z7p160hMTGTOnDm8+OKL9OrViy5dulC/fn369+/Pzz//zMqVK3nyySe9jlGvXj1q1qzJ2LFj2bp1KwsXLuSVV17x2ubyyy9n8eLFfP3112zcuJG//e1vJCUlXTS+Bx54gEOHDnHHHXfw3XffsW3bNr788ksGDhyIy+XK0Xvs1KkTCxcuZOHChWzatIkhQ4Z4jaKT1TvvvMNbb73F+vXr2b59O++//z4lSpSgdu3a1K9fnzvvvJN+/foxb948EhMT+fbbb3nhhRdYuHBhjuIREQkWygHnUg6QUKUiRoqU6Oho2rRpw4QJE2jXrh1NmzZl9OjRDBo0iMmTJxMWFsb8+fP5448/uPrqq7n33nsZN26c1zGKFSvGrFmz2LRpE82bN2f8+PE8//zzXts89dRTXHXVVXTt2pUOHTpwySWXEBcXd9H4qlevzqpVq3C5XNx44400a9aM4cOHU65cuYwmDBdz9913079/f/r160f79u2pU6fOBc/AlStXjunTp3PdddfRvHlzlixZwqeffprR3nnGjBn069ePhx9+mAYNGhAXF8d3331HrVq1chSPiEiwUA44l3KAhCqTtd1kkAjKoKToMsYwf/78HCUhEREpXJQDRAqUyclGuhIjIiIiIiIhRUWMiIiIiIiEFDUnExERERGRYJGj5mQaYlkkWOxPhPiX4H8JYMKgWWfo8ShUvDTQkYmIiL8pB4jkiq7EiASLhRNg/j+8l5UsC0NnQv3c3zFaRERCiHKASLocXYlRESMSLKyFLybB5deAywVzn4XEHyEiEobPhoZtAx2hiIj4i3KASDoVMSJBL/UERJYEk83fa+pJeLgJnEpxtpmcCDm8T4CIiIQA5QCR7GiIZZGgN+NBmHQHHN1/7rrfNjjJCyDtJGz+v4KNTURE/Es5QCTPVMSIBMq6/8L38U4nziN7z13/y5Is80sLJCwRESkAygEi+aIiRiQQTqfCrCed5zcMhtpXnLvNjp+dad3WznTrGvjfCnC7CiZGERHxD+UAkXzTEMtFxOvLdgQ6hIAY1ikm0CFkb9lbcGAHlK0CPR7Jfptd65xpp3tg23ewYy28eiv0exXa3VVgoeaGvme5t2nTJt8FEkIaNmwY6BCKFP1tBhnlgEJFOSD3fJEDdCVGpKCdOOIMpQkQNwqios/dJuUwHDvgPL+iKxQvCdbtzH8y3ukMKiIioUc5QMQnVMSIFLQvXoOTR6BGI7jujuy32b/dmZav5iS4Go2d+dKV4GgSLJ1eIKGKiIiPKQeI+ISKGJGC5DoDP33hPO/9FISFZ79dkieBVanjTKvXd6aXX+NMv3jdOVMnIiKhQzlAxGdUxIgUpPAIeHo53DsFmt9w/u2SdzrTKpc506p1nWlEJFzaBP445pzNExGR0KEcIOIzKmJEClqxKLjm1uxvbpbu4G5nWvFSZ3pJPWeatA16P+E8X/YmHPrdf3FKkXfixAl27twZ6DBEChflAAkRwZ4DVMSIFJT1y5ymBDlx8DdnWsGTwNKbFOxPhKZdnCYFFWrAsWxukCbiA263m8cee4zY2Fg2btwY6HBEQp9ygISQUMgBGmJZpCBsXQ0Tb3c6Zz71XyhW/MLbZz0LV7m2M/3jmNMh9G/TIboiRBTzW8hStE2fPp1ly5YBEB5+nnb7IpIzygESYkIhB+hKjIi/uV3w5gPO80vqXjx5WQuHPXdvrlDDmUaWgHKXOM/3JzrPlbzET7766ismTZqUMV+smL5rInmmHCAhJlRygIoYEX97Zzgc3OU83/w1/HH8wtufOAynTznP05MWQOUYZ3pgx9llZ07Df6fA9/E+ClaKul27djFixAivZZGRkQGKRqQQUA6QEBJKOUBFjIg/Je+Cr2efnU85CCv/c+F90s/ARVd0OoCmy0hgmTrZffUufDQG/jMSUg75JGQpuk6ePMn999/PqVOnsNZmLA/WBCYS9JQDJISEWg5QESPiL9bC63cBFsKLwW1jneU/fnrh/Y54Elj5at7L0xNYcqYEdv1dUL0BHD8A/3nceU2RPLDW8uSTT5KYmIjL5fJaF6wJTCSoKQdICAnFHKAiRsRflr0Je/7nPG/fH1r1cp5v/wFOpZx/v/SzcJmbEcDZjp37d5xdVqw4DHzduWHadwtg5fu+iFyKoJkzZ7Jo0SLcbvc564I1gYkENeUACSGhmANUxGSRkJBATExMrvZ5++232bRpk38CChFut5vnB3Tms7de8lq+YfUy/t61Pj+vXBSgyAIopoXniYHYoc4oMxVrOp08t31//v2OeobMPCeBxTjT5Cxjtl92JdziuW/Afx6HLV/nM/Dgoe9VwTl0yGmKkt0oNMGawPxBOSBv9LeaDeWAfNP3quCEYg5QEZMDb7zxBjExMURFRdGmTRu+/fZbr/Vr1qxh2rRpAYouOISFhXHDHfez8pOZ/JFyDIDdW9Yz47lh9Bz0OFdcHxvgCANg8ypn2uC6syPM1G3tTHf+dP79juxzpmWrei9PPwt3+Hc4neq9rutQaNkDXKfh9b7Omb5CQN+rgvPQQw8xYsSIjGYEYWFhGGMICwsL2uE1C4pywMXpbzUbygH5pu9VwQnFHODz+8QYYwzwDDAIKAesAoZYa7f6+rUKwuzZsxkxYgRTp06lTZs2TJw4ka5du7J582aqVKkCQK9evRg2bBgTJkwIcLSB1apLLxbNnMRXn7xH6y63MO2pe7gm9lY63npPoEMrOKs+dMbw7/I3+GaOs+zaW8+ur9kUvp0Hu9af/xhHk5xp1rNwpStB8VKQesLpLFrt8rPrwsLgnjfgeDJs//HsyDaFgL5XeWetZd++fWzZsiXj8dtvv3H8+HFSUlIwxhAdHU3p0qWpWbMmGzduJCwsDLfbTYUKFWjatCnVqlW7+AsVYsoBOae/VZQD/EDfq7wr7DnAHze7fAx4EOgPJALPAV8aYxpba0Pur+rVV19l0KBBDBw4EICpU6eycOFC3n77bUaOHAlA586dSUpKYv369TRt2jSQ4QZUeHgEXW4fzGczXuHHZZ9Sq0Fzej/wdKDDKhj7tsHc52DtQjAGoqJh7xZnbP+repzdrmYTZ7o7Bwks61k4Y6BKDOze4NwnIHMCA+e1HvwAdv0CJcrAF685cdRpBbWb5/stBkqR/l7lwcmTJ1myZAnx8fGsWrUqx/utXbvWaz45ORmA1q1bc+rUKaKiorLbrdBTDsi5Iv23qhzgN0X6e5UHRSkH5LqIMcaUAqYAvYHjwMtAD+An4O/AcOB5a+0nnu37AUlAHPChD2IuMGlpafzwww+MGjUqY1lYWBhdunThm2++yVhWvHhxbrzxRuLj44t0AgPnjMm8fz0LFSoz4MnXCAsrpC0W3W44kAhbvoEfPoMNy5xRYcIj4OZHYOsaZ7urboaSZc7uV72hMz2wA86kQUQ27UzP15QAoEodTwLbnn1cUdHw2/9g1ijvUWoqXAqd7oGWN0Ol2k4yDCF5/V698/yDXN+zLwvfeZXjhw8SHh5O17uGcWX77n6OuGC5XC5Wr15NfHw88fG+u19EQkICCQkJAPTp04eePXvSqlWrwvt3nYVyQO4pBygH+INywIUV1RyQlysxLwHtgV7AfuAfwFU4RcxlwCXAkvSNrbVHjTFrgGvJYRGTdWg3X8tp277k5GRcLhdVq3r/kFStWvWcTpy9evViypQpPPHEE+c9nr/fVzCY85pzduTE0UOYIPiS++Uzd53GTO5H2P+Wey22zW7AfcsTUKIMYU9dgwFc7QdA5hjKVCEsKhpzKgXX3l+doTEzc7sJO3bA2bd0Je99AVM5hjDAvW8bNrv39usawmaNwliLbdoZ9mzEHP4dDv0GHz8DHz+Du9O92Nhh2SfIIJWX75Xb7Sb5951UqhFD7/vHcGm9xhw7dICXBveg8dUdKV6ipM/iC9TftrWWxYsX8+STT5KSkv1oR40aNaJJkybUr1+fBg0aEBMTQ8mSJTM6aqalpXHixAnuuecetm/fjrWW4sWLk5rq3eZ+7ty5zJ07l0qVKvH888/Tvn37fMUeyN9D5QD/UQ5QDvAH5YDsFdYckNPf6FwVMcaYaOAeoK+1dqlnWX/gN88m6Q04k7LsmpRpXdZjFgeKZ142ZcqU3ISVa4MHD/b5MW+66SYGDhxIcnIylSpVynab6dOn+/x1c6y+/zu/LZzxChvWLGfE5HlMfvQuvvl8Nu3i+mWsT9q1jQkP3kqJ6DJElSzFgT07ubReY4ZPmuO3mPzxmVc6sYdbN55NXn+El+T76h3ZUPwaWLiSG7fNoo7rNHtKX8anS3+EpT967X9LeDmqksKS96eQWL6J17qo0ycY4DoNwFtz4nGHef+JNkjeTUfg9x9X8tmJLO/NWvpsnEpla9lc8UqWF28PdTtwxd6VXLXvK4q7nNacYcve5IP90RyLquijTyQTP3zP8vq9umXIU9S8vCllK1ahbEWn70KZCpUpVbY8J48f8WkCy8/3rEOHDnnab9OmTTz33HP8+OOP56zr3LkzcXFxtGvX7qKjykRGRnLkyBG2bdsGgDGGkSNHEhcXx/Lly/nkk09YsWJFxvbJyckMHjyY6667jieeeII6derkKf5A/h4qB/iHcoBygHJA7ikHnCunv9G5vRJTF4gE1qQvsNYeMsZszuVxMhsFeDVufO655/JxuIvL6YdTqVIlwsPDSUryrsmSkpK45BLvmiwxMZFy5cpRrly58x7P3+/rQkbO9G8C+3rhLJbNeZOhL39AjbqN6dBnIEtnT+O6m+8gPKIYAFVr1SWmUQt6Dnqc6nUa8nz/Tgz557t+jcsfn3n1KMupumH0reWMpV7CdZLrdy+kybaFbD9hqFPectoNA7/YzYaPzn39ys3P0KcGfP/5HP61fZ7XugbRbgZcD4fS4JlxL5yzb6tybjpeC2H7t/FclmO3r+RmcOsznDgDt360nkNpGxhZ/wzX1vUe8/2LfYZHv3gD8H1zAl9/z/LzvUqY9zYNW13vdbxdW37But2Ur1Ldp3Hm53uW2wR2+PBhJk2axOzZs72W16pVi4EDBxIbG3vB36HsxMfHZ3TmDA8PJzY2lqioKLp160a3bt04dOgQn3/+OdOnT2f/fmf411WrVtG9e3f69evH0KFDKV26dK5eM5C/h8oBvqccoBwAygF5oRxwLn8VMRfjachJVWBvpuVVcZqbZecF4NXMC2bNmnW0WLFiPg4t9yIjI2nZsiVLly4lLi4OcC5PLl26lKFDh3ptGx8fz0033URExPk/0o8//tif4V7Q93/479gb1ixnzutjGfDUa1zW+EoA2vXqx7LZ/+bbxfO5ttufM7ZN2r2dKjXrkHbqD9xut0/PhGTHb5+5dbP22D4qJq6k6sYviDx5iAqRUCHSYjHsbD+MZwZ1yXbXS3+cBWtncW+PTnS6fpjXurJ71sKip4mqUouPP558zr7hqSnw/l+pXgLmffAe7sizn1+Dxc/Drm85dkUP/v23QQBEJ23CLhzJ4ZqtOBRzLceqNqFc6ap87Kf20L78nuX3e7Xlx69p1+vs2boTx47w/j8f5i8Pn/sfg/wqqL/tdevWceedd3LmzBmv5c8++yy9e/fO0zCY1lrmzZuXkbzat29/TgKsUKECffv25fbbb2f27NmMGzcuY917773H/PnzmTlzJg0aZGkacwGB/D3MKeWAnFEOUA5IpxzgX8oB3nJbxGwDTgNtgF0AxpjyQH1gBc5oZPuAzniKFmNMGc/22bYRs9amAqnZrQsGI0aMoH///rRq1Yqrr76aiRMncuLEiYyRatLFx8czevToCx7r2muv9WeoF/T9sh1+Oe6uLb8w49mh9Bo0kivads1YXiK6DO1uGcCSWVNoc2MfwsLDOXUyhYhikUQUi2Tntp+pWquuX2LKzP+feR9gImxcCbNHw28bMFjqtY2lXvr9ALIK+x3WzqIqKVTNGt/XuwAoWe2y88f+aRU4up82NctBnZbOsqNJMMO5L0C1a7pRLWPfa6FjdyqUrUKF/LzNHPLV9yy/36tTJ1Ow1k2JaKdD7em0VN4ccx9d7hhMnSYtfRJjZvn5nuX0Jolz5sxhzJgxXsvuvvtuBg8enOszYJmtW7eOPXv2AE4b5fT/rGenWLFi9O3bl+7duzN58mQ++OADAI4fP05cXBwvv/wy3bvnrMNsIH8Pc0M54MKUA5QDMlMOyD3lgLzLVRFjrU0xxrwFvGSMOYjTsX8c4Past8aYicBTxpitnB1i+XdgQb6jDYDbb7+dAwcOMGbMGPbt20eLFi1YtGiRV0fPxMRENm/eTGxs0bvpUq36zXh54YZs13UfOILuA0dkzO/buZVLatcDIGnXr1S59LICibFANLoexiacvUfA+ZIXnL3r8oEd565LH5Wm3AU6XF7axLmj8+4NZxPYmvnOXaCjouHdv0OF6s4N1gDKVsndewkC+f1ebVn7NZe3cH4grbX858VHufzKP3H1Db39H7wf7N+/n/Hjx2fMV6tWjenTp1O3bv7/ExgfH094eDgul4vo6GjatWt30X3Kly/P6NGjufXWWxk4cCBHjx4FYNy4cbRt25ayZcvmO65goRxwYcoBHsoBPqUc4E05IHt5GTrkUWAl8CnOKGT/B2S+NeyLwOvAv4HvgGggNhTvEZNu6NCh7Ny5k9TUVNasWUObNm281sfHx9OhQ4d8VcJFwd4dW6kWUx+AyKiSbPrh/zhx9HCAo/Kx6/4CN2Rqy3k61XuYSzibwA7vhbQs197Pd3+AzGp6hnDdte7sstWejrGnUqBYJBQLvvHc/SW779XG776iYUunLfT29d+zNuEzfln1X8bfdxPj77uJ37fn7MxXsKhSpQqvvuq0uu3atSuffvqpT5JXWloa8fHxuFwuwsPDufnmmy/aCTSzRo0a8eWXX9K2bVsAXnvttUJVwKRTDvAN5QAP5QCfUg7Iu1DPAbnuE2OtTQHu8jwAMMZ0z7TeAmM8jyIhPj6e3r1Ds7ovSJnbr7Zo140W7boFMJoCcGgPTO4H1/eFjpmankRXcM6WnUqB5N1Qvf7ZdRln4bIdzM9xmdM2mG3fO9PfN59NZuHFYNj7Z8/OFQHZfa9eGtKT24Y9A0DdZq2ZtOQ891QIIe3atWPOnDk0adIE46P27CtXrswYltPlctGzZ89cH6Ns2bJMmzaNjRs30qRJk4vvUAgpB+SMcoCHcoBPKQfkXajnAF937C+Sli5dGugQJBit/dxJLLNHQ/1roYbnJmfGOGfidq93mhNkTmDpZ+Eu1JSg3tXOdM//IOUwfD7p7Lo7x0P9P/nyXYSkR6f47mZfwcTXN1JcsGBBRjOCGjVq0KJFizwdJywsrMgWMKAcIOehHBAwygE5E+o5IPB3ogoyMTExDB8+PNBhSGHQ6V5o2hnOpMKMB532yukq13amyTu998k4C1ft/MctWxVqNHKaKKz+GNbMdZbXa+Oc8RPJgaNHj5KQkIDL5SIsLIxbbrnFZ2f3QplygPiMcoAEscKQA3xSxFhrO1hrh/viWIGmBCY+YwwMmAglysCOtbDsrbPrMjp2ZkpgbrfTRhqg/AUSGEDLHs70wyfAusGEwf0znNcUyYFFixZlDNPpdrvz1IygMFIOEJ9RDpAgVhhygK7EiPhTuUvgVk/3sE/+CccOOM+zG50m5SB47tR8wU6d4LSvLlHm7PyNQ6BMZV9ELEXEvHnzMMZgjKF58+bUrFkz0CGJFD7KARKkCkMOUBEj4m/X94XaV8Afx2GB5yZb6U0JMiewI54zcGUqQ8RFRgcpXQkemec0VxjyNtw21tdRSyG2e/du1q1bh7UWay19+vQJdEgihZdygASZwpIDVMSI+FtYOPzleef59h+dITereO6PcGCn04QA4NDvzrR89Ysf88g+qNEY/vrC2WYFIjm0aNGijOcRERF07dr1AluLSL4oB0iQKSw5QEWMSEG4/Br4+0cwegkUKw4VLoXwCDh96mxHzoO7nWnFSy98LGth2iB4+nrY8ZNfw5bCqXXr1lSsWBGATp06Fcp7u4gEFeUACSKFJQdoiGWRgtKk49nn4RFQqRYkbYf92527Kx/8zVlX8SLtUn9ZDFtXOzczKxN6d2KWwGvRogUrVqxgw4YNNGzYMNDhiBQNygESJApLDtCVGJGCdvqUMyxmFc/ddpO2OdOcnIVzu2HeP5znne51Ep9IHoSHh9O8efNc3Z1ZRHxAOUCCQGHIAboSI1KQXGfgmY6w71do4blb9b5fnen+RGdaqfb59/92Hvy2wRmVptuD/o1VRER8SzlAxGd0JUakIIVHnE1cO9Y60983OW2c92935qvWzX7f06mw4J/O827DILq8f2MVERHfUg4Q8RkVMSIFrduDULLc2c6cv22Eo0mQetK5YVnl85yFWz7Dubtz2arQeVCBhSsiIj6kHCDiEypiRApaqXLQ/e9n548mwcaVzvMql53//gCJPzjTXo9D8VJ+DVFERPxEOUDEJ4y1NtAxZCcogxLxmdOpMKbt2Rud1WkF27+Hq2+B+/6d/T7WwqaV0OA6574DIiISmpQDRC7E5GQjXYkRCYRixeGOcWfnt3/vTGu3OP8+xkCjdkpeIiKhTjlAJN9UxIgESvMboW5r72XNunjPnzgC7z8GKYcKLCwRESkAygEi+aIiRiSQHvwPVI5xnje4DqrXP7vu9CmYcjckzIA3+gckPBER8SPlAJE8U58YkUA7uh/W/Reu6gErZsDl14DLBXOfhcQfoXhJePwzqNUs0JGKiIivKQeIZJWjPjEqYkSCxcIJMP8f3stKloWhM6H+tYGJSURECoZygEi6HBUxEf6OQkRyqHUc7N0K/0tw7hXQrDP0eBQqXhroyERExN+UA0RyRVdiREREREQkWGiIZRERERERKXxUxIiIiIiISEhRESMiIiIiIiFFRYyIiIiIiIQUFTEiIiIiIhJSVMSIiIiIiEhIUREjIiIiIiIhRUWMiIiIiIiEFBUxIiIiIiISUlTEiIiIiIhISFERIyIiIiIiISUi0AGchwl0ACIiIiIiEpx0JUZEREREREKKihgREREREQkpKmJERERERCSkqIgREREREZGQoiJGRERERERCiooYEREREREJKSpiREREREQkpKiIERERERGRkKIiRkREREREQsr/A4q5IEaYw1TvAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = sched.plot_circuit_diagram()\n", "ax.set_xlim(-0.5, 9.5)\n", "for t in ax.texts:\n", " if t.get_position()[0] > 9.5:\n", " t.set_visible(False)\n" ] }, { "cell_type": "markdown", "id": "c3b9c6b7", "metadata": {}, "source": [ "This example shows that we add gates using the same interface as pulses. Gates are Operations, and\n", "as such support the same timing and reference operators as Pulses.\n", "\n", "\n", "## Device and Hardware compilation combined: Serial Compiler\n", "\n", "{class}`~quantify_scheduler.backends.graph_compilation.SerialCompiler` can be used to execute the device and hardware compilation separately, or execute both in one call. Here we will not set the hardware configuration thus only executing device compilation. The {ref}`Compiling to Hardware ` tutorial demonstrates how to set the hardware configuration.\n", "\n", "{class}`~quantify_scheduler.backends.graph_compilation.SerialCompiler` requires a {class}`~quantify_scheduler.backends.graph_compilation.CompilationConfig` and this holds both the device and hardware configurations (when set). In the example below, we generate a {class}`~quantify_scheduler.backends.graph_compilation.CompilationConfig` via {meth}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice.generate_compilation_config` of {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice`." ] }, { "cell_type": "code", "execution_count": 21, "id": "1d91dd0c", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler.backends import SerialCompiler\n", "from quantify_scheduler.device_under_test.quantum_device import QuantumDevice\n", "from quantify_scheduler.device_under_test.transmon_element import BasicTransmonElement\n", "\n", "dut.close()\n", "dut = QuantumDevice(\"DUT\")\n", "q0 = BasicTransmonElement(\"q0\")\n", "q1 = BasicTransmonElement(\"q1\")\n", "dut.add_element(q0)\n", "dut.add_element(q1)\n", "dut.get_element(\"q0\").rxy.amp180(0.65)\n", "dut.get_element(\"q1\").rxy.amp180(0.55)\n", "dut.get_element(\"q0\").measure.pulse_amp(0.28)\n", "dut.get_element(\"q1\").measure.pulse_amp(0.22)\n", "\n", "compiler = SerialCompiler(name='compiler')\n", "compiled_sched = compiler.compile(schedule=sched, config=dut.generate_compilation_config())" ] }, { "cell_type": "markdown", "id": "30a53fab", "metadata": {}, "source": [ "So, finally, we can show the timing table associated with the Chevron schedule and plot\n", "its pulse diagram:" ] }, { "cell_type": "code", "execution_count": 22, "id": "69abf183", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
 portclockabs_timedurationis_acquisitionoperationwf_idxoperation_hash
0Nonecl0.baseband0.0 ns200,000.0 nsFalseReset('q0','q1')0-4440842276797834138
1Nonecl0.baseband0.0 ns200,000.0 nsFalseReset('q0','q1')1-4440842276797834138
2q0:mwq0.01200,000.0 ns20.0 nsFalseX(qubit='q0')0557602109313640992
3q0:mwq0.01200,020.0 ns20.0 nsFalseSquarePulse(amp=0.1,duration=2e-08,port='q0:mw',clock='q0.01',reference_magnitude=None,t0=0)0-3293810466829943418
4q0:mwq0.01200,040.0 ns20.0 nsFalseX90(qubit='q0')07068801840824339541
5q1:mwq1.01200,040.0 ns20.0 nsFalseX90(qubit='q1')0-4362188789533466437
\n" ], "text/plain": [ "" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "compiled_sched.timing_table.hide(slice(11, None), axis=\"index\").hide(\n", " \"waveform_op_id\", axis=\"columns\"\n", ")\n" ] }, { "cell_type": "code", "execution_count": 23, "id": "9350225f", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB75klEQVR4nO3deVxU9f4/8NeZYYZ9EZVNEXeU3FJLKUsSvi6Z6c1MvSaahmVammb+7JZmi5Zd07TUSlNbvdkt9Za5pEKpiPuWhksYlQJugGyzfn5/DHOYkW0GBmaA1/Px4PFgzpw58zkMxcv3Z5OEEAJERERE9ZTC2Q0gIiIiqkkMO0RERFSvMewQERFRvcawQ0RERPUaww4RERHVaww7REREVK8x7BAREVG9xrBDRERE9RrDDhEREdVrDDtEdZwkSZg6daqzm0FVIEkSXn31VWc3g6jeY9ghclEXL17EU089hdatW8PDwwN+fn6499578d5776GwsNDZzXMJLVu2hCRJZX4NHDjQ2c2rF/bv349XX30V2dnZzm4KUZW5ObsBRFTaDz/8gBEjRsDd3R3x8fHo1KkTtFot9u7di1mzZuHXX3/FRx995OxmuoRu3bph5syZpY6HhYU5oTX2KSwshJuba/9veP/+/Zg/fz7Gjx+PgIAAZzeHqEpc+78yogYoLS0No0aNQkREBHbv3o3Q0FD5uSlTpuDChQv44YcfnNjC8uXn58Pb27tW37NZs2Z4/PHHa/U9q8NoNEKr1cLDwwMeHh7Obg5Rg8BuLCIXs2jRIuTl5WHNmjVWQcesbdu2mDZtWqnjmzZtQqdOneDu7o477rgD27ZtK3XO33//jQkTJiA4OFg+75NPPpGfz8zMhJubG+bPn1/qtampqZAkCe+//z4AYN26dZAkCUlJSXjmmWcQFBSE5s2by+evWLECd9xxB9zd3REWFoYpU6aU6gqJiYlBp06dcObMGTzwwAPw8vJCs2bNsGjRIpt/XpXJyspC06ZNERMTAyGEfPzChQvw9vbGyJEjS7XnyJEjuOeee+Dp6YlWrVph1apVpa6r0Wgwb948tG3bFu7u7ggPD8eLL74IjUZjdZ55TNUXX3wh/zzMn83tY3ZeffVVSJKEc+fO4fHHH4e/vz+aNm2KV155BUII/Pnnnxg6dCj8/PwQEhKCxYsXV7tdFf3evPrqq5g1axYAoFWrVnIX4aVLl2z/AIhcgSAil9KsWTPRunVrm88HILp27SpCQ0PF66+/LpYuXSpat24tvLy8xLVr1+TzMjIyRPPmzUV4eLh47bXXxMqVK8XDDz8sAIglS5bI5/Xr109ERUWVep/58+cLpVIpMjIyhBBCrF27VgAQUVFRom/fvmL58uXirbfeEkIIMW/ePAFAxMXFieXLl4upU6cKpVIp7rrrLqHVauVr9u3bV4SFhYnw8HAxbdo0sWLFCtGvXz8BQGzdurXSe4+IiBD9+/cXV69eLfVVUFAgn7dx40YBQLz33ntCCCEMBoO49957RXBwsNXPyNyeoKAgMXXqVLFs2TLRp08fAUCsWbNGPs9gMIj+/fsLLy8vMX36dPHhhx+KqVOnCjc3NzF06NBSn0/Hjh1F06ZNxfz588UHH3wgjh07Jj83b948+Vzzz61bt25i9OjRYsWKFWLw4MECgHj33XdFZGSkmDx5slixYoW49957BQCRlJRU5XZV9ntz4sQJMXr0aPl35LPPPhOfffaZyMvLq/SzIXIlDDtELiQnJ0cAKPWHqSIAhFqtFhcuXJCPnThxQgAQy5cvl49NnDhRhIaGWv1xF0KIUaNGCX9/fzkcfPjhhwKAOHXqlNV5UVFRol+/fvJjc9jp06eP0Ov18vGsrCyhVqtF//79hcFgkI+///77AoD45JNP5GN9+/YVAMSnn34qH9NoNCIkJEQMHz680nuPiIgQAMr8WrhwodW5o0ePFl5eXuLcuXPinXfeEQDEpk2brM4xt2fx4sVW7enWrZsICgqSg9pnn30mFAqF+OWXX6xev2rVKgFA7Nu3Tz4GQCgUCvHrr7+Wan95YWfSpEnyMb1eL5o3by4kSZLDpBBC3Lx5U3h6eopx48bJx+xtly2/N+afVVpaWqn2E9UV7MYiciG5ubkAAF9fX7teFxcXhzZt2siPu3TpAj8/P/z+++8AACEE/vvf/2LIkCEQQuDatWvy14ABA5CTk4OjR48CAB555BG4ubnhP//5j3y906dP48yZM1ZdPmYJCQlQKpXy459++glarRbTp0+HQqGwOs/Pz6/UeCMfHx+rMTdqtRp333233PbK9OrVCzt37iz1NXr0aKvz3n//ffj7++PRRx/FK6+8grFjx2Lo0KGlrufm5oannnrKqj1PPfUUsrKycOTIEQDAxo0b0bFjR3To0MHqZ9mvXz8AwJ49e6yu2bdvX0RFRdl0PwDw5JNPyt8rlUr07NkTQghMnDhRPh4QEIDIyEirn5O97ars94aovuAAZSIX4ufnBwC4deuWXa9r0aJFqWONGjXCzZs3AQBXr15FdnY2Pvroo3JncWVlZQEAmjRpgtjYWHz99dd4/fXXAQD/+c9/4ObmhkceeaTU61q1amX1+I8//gAAREZGWh1Xq9Vo3bq1/LxZ8+bNIUlSqbafPHmy3Pu11KRJE8TFxVV6XmBgIJYtW4YRI0YgODgYy5YtK/O8sLCwUoOs27dvDwC4dOkSevfujfPnz+Ps2bNo2rRpmdcw/yzNbv8ZVeb2z9Pf3x8eHh5o0qRJqePXr1+XH9vbrsp+b4jqC4YdIhfi5+eHsLAwnD592q7XWVZWLIniAblGoxEA8Pjjj2PcuHFlntulSxf5+1GjRuGJJ57A8ePH0a1bN3z99deIjY0t9ccWADw9Pe1qq71td6Tt27cDAG7evIm//vqrylOpjUYjOnfujHfffbfM58PDw60e2/szKutnYsvPyd521ebPnsiZGHaIXMxDDz2Ejz76CMnJyYiOjnbINZs2bQpfX18YDAabqiDDhg3DU089JXdlnTt3DnPmzLHpvSIiIgCYZm+1bt1aPq7VapGWlmbT+9eEbdu2YfXq1XjxxRfxxRdfYNy4cUhJSSm1zs3ly5dLTaE/d+4cANMihgDQpk0bnDhxArGxsaWqUs5UE+1ypfsjqiqO2SFyMS+++CK8vb3x5JNPIjMzs9TzFy9exHvvvWfXNZVKJYYPH47//ve/ZVaNrl69avU4ICAAAwYMwNdff40NGzZArVZj2LBhNr1XXFwc1Go1li1bZlUhWLNmDXJycjB48GC72u4I2dnZePLJJ3H33XdjwYIFWL16NY4ePYoFCxaUOlev1+PDDz+UH2u1Wnz44Ydo2rQpevToAQB47LHH8Pfff+Pjjz8u9frCwkLk5+fX3M1UoCbaZQ59XEGZ6jJWdohcTJs2bfDll19i5MiR6Nixo9UKyvv378fGjRsxfvx4u6/71ltvYc+ePejVqxcSEhIQFRWFGzdu4OjRo/jpp59w48YNq/NHjhyJxx9/HCtWrMCAAQNs7vJp2rQp5syZg/nz52PgwIF4+OGHkZqaihUrVuCuu+5y+AKAf//9Nz7//PNSx318fOSANm3aNFy/fh0//fQTlEolBg4ciCeffBJvvPEGhg4diq5du8qvCwsLw9tvv41Lly6hffv2+M9//oPjx4/jo48+gkqlAgCMHTsWX3/9NZ5++mns2bMH9957LwwGA3777Td8/fXX2L59O3r27OnQ+7RFTbTLHPD+9a9/YdSoUVCpVBgyZEitLx5JVC3OmwhGRBU5d+6cSEhIEC1bthRqtVr4+vqKe++9VyxfvlwUFRXJ5wEQU6ZMKfX6iIgIq2nJQgiRmZkppkyZIsLDw4VKpRIhISEiNjZWfPTRR6Ven5ubKzw9PQUA8fnnn5d63jz1/NChQ2W2//333xcdOnQQKpVKBAcHi8mTJ4ubN29andO3b19xxx13lHrtuHHjRERERJnXvf0eUc7Uc/PrN2/eXGo6ufn+IiIiRNeuXeUp5eb2HD58WERHRwsPDw8REREh3n///VLvrdVqxdtvvy3uuOMO4e7uLho1aiR69Ogh5s+fL3JycuTzyvt8zM+VNfX86tWrpX4e3t7epV5f1s+vuu0q6/fm9ddfF82aNRMKhYLT0KlOkoTgSDQiIsC0gvK1a9fsHiBORK6NY3aIiIioXmPYISIionqNYYeIiIjqNY7ZISIionqNlR0iIiKq1xh2iIiIqF7jooIw7Sdz+fJl+Pr6cml0IiKiOkIIgVu3biEsLAwKRfn1G4YdmPbCuX2DPCIiIqob/vzzTzRv3rzc5xl2APj6+gIw/bD8/Pyc3BoiIiKyRW5uLsLDw+W/4+Vh2EHJrr5+fn4MO0RERHVMZUNQOECZiIiI6jWGHSIiIqrXGHaIiIioXuOYHSIicmkGgwE6nc7ZzSAnUKlUUCqV1b4Oww4REbkkIQQyMjKQnZ3t7KaQEwUEBCAkJKRa6+Ax7BARkUsyB52goCB4eXlx0dcGRgiBgoICZGVlAQBCQ0OrfC2GHSIicjkGg0EOOo0bN3Z2c8hJPD09AQBZWVkICgqqcpcWBygTEZHLMY/R8fLycnJLyNnMvwPVGbfFsENERC6LXVfkiN8Bhh0iIiKq1xh2iIiIqF5j2CEiIqojxo8fj2HDhjnkWkIIzJ07F6GhofD09ERcXBzOnz/vkGu7GoYdF1OoNUAI4exmEBGRCzEYDDAajQ695qJFi7Bs2TKsWrUKKSkp8Pb2xoABA1BUVOTQ93EFDDsuJO1aPrq9tgOvbP7V2U0hIqIqiomJwdSpUzF16lT4+/ujSZMmeOWVV6z+IXvz5k3Ex8ejUaNG8PLywqBBg6yqKuvWrUNAQAC2bNmCqKgouLu7Y8KECVi/fj02b94MSZIgSRISExPLbEN+fj7i4+Ph4+OD0NBQLF68GDExMZg+fToAU1Vn6dKlePnllzF06FB06dIFn376KS5fvoxNmzaVe2+vvvoqunXrhk8++QQtWrSAj48PnnnmGRgMBixatAghISEICgrCm2++Kb/mhRdewEMPPSQ/Xrp0KSRJwrZt2+Rjbdu2xerVq+38SduO6+y4kNN/50CjN2L/hWvObgoRkcsRQqBQZ3DKe3uqlHbNClq/fj0mTpyIgwcP4vDhw5g0aRJatGiBhIQEAKbuqPPnz2PLli3w8/PD7Nmz8eCDD+LMmTNQqVQAgIKCArz99ttYvXo1GjdujNDQUBQWFiI3Nxdr164FAAQGBpb5/rNmzUJSUhI2b96MoKAgvPTSSzh69Ci6desGAEhLS0NGRgbi4uLk1/j7+6NXr15ITk7GqFGjAJiCW8uWLbFu3Tr5vIsXL+LHH3/Etm3bcPHiRTz66KP4/fff0b59eyQlJWH//v2YMGEC4uLi0KtXL/Tt2xerV6+GwWCAUqlEUlISmjRpgsTERAwcOBB///03Ll68iJiYGJt/vvZi2HEhBVo9ADjtP2YiIldWqDMgau52p7z3mdcGwEtt+5/M8PBwLFmyBJIkITIyEqdOncKSJUuQkJAgh5x9+/bhnnvuAQB88cUXCA8Px6ZNmzBixAgApnVlVqxYga5du8rX9fT0hEajQUhISLnvnZeXhzVr1uDzzz9HbGwsAFP4at68uXxORkYGACA4ONjqtcHBwfJzANCiRYtSKxcbjUZ88skn8PX1RVRUFB544AGkpqZi69atUCgUiIyMxNtvv409e/agV69euO+++3Dr1i0cO3YMPXr0wM8//4xZs2bJFaTExEQ0a9YMbdu2tfnnay+GHReSrzGFnEKdAUajgELB9SWIiOqi3r17W1WCoqOjsXjxYhgMBpw9exZubm7o1auX/Hzjxo0RGRmJs2fPysfUajW6dOli93tfvHgRWq3W6vqBgYGIjIy0+1qffvppqWMtW7aEr6+v/Dg4OBhKpRIKhcLqmHmbh4CAAHTt2hWJiYlQq9VQq9WYNGkS5s2bh7y8PCQlJaFv3752t80eDDsuJF9TXNnRGmAUAgow7BARmXmqlDjz2gCnvXetv6enZ40tqmiuDGVmZlpVbjIzM+WurvKYu9nMJEkq85jlgOqYmBgkJibC3d0dffv2RWBgIDp27Ii9e/ciKSkJM2fOrOYdVYwDlF1IvtZU2dHojdAZHDvqnoiorpMkCV5qN6d82Rs6UlJSrB4fOHAA7dq1g1KpRMeOHaHX663OuX79OlJTUxEVFVXhddVqNQyGioc6tGnTBiqVyur6N2/exLlz5+THrVq1QkhICHbt2iUfy83NRUpKCqKjo226R3v07dsXe/fuxa5du+SxOTExMfjqq69w7ty5Gh2vAzDsuBRzZQcoCT5ERFT3pKenY8aMGUhNTcVXX32F5cuXY9q0aQCAdu3aYejQoUhISMDevXtx4sQJPP7442jWrBmGDh1a4XVbtmyJkydPIjU1FdeuXStzvygfHx9MnDgRs2bNwu7du3H69GmMHz/eqptJkiRMnz4db7zxBrZs2YJTp04hPj4eYWFhVuv4xMfHY86cOdX+edx///24desWvv/+e6uw88UXXyA0NBTt27ev9ntUhN1YLiRfWxJ28or0aOLj7sTWEBFRVcXHx6OwsBB33303lEolpk2bhkmTJsnPr127FtOmTcNDDz0ErVaL+++/H1u3bi3VHXS7hIQEJCYmomfPnsjLy8OePXvKrIq88847yMvLw5AhQ+Dr64uZM2ciJyfH6pwXX3wR+fn5mDRpErKzs9GnTx9s27YNHh4e8jnp6elWIamqGjVqhM6dOyMzMxMdOnQAYApARqOxxsfrAIAkuIIdcnNz4e/vj5ycHPj5+TmtHU9/dgTbfjWNgv/+2XvRqVmA09pCRORMRUVFSEtLQ6tWraz++NYFMTEx6NatG5YuXersplhx1XZVpqLfBVv/frMby4VYVXY07MYiIiJyBIYdF2I5ZievSF/BmURERGQrjtlxIfkW1Zw8DcMOEVFdVN4WDs7mqu2qDazsuBDLbizL74mIiKjqGHZcSIFFZaeAY3aIiIgcgmHHheRZDVBmZYeIiMgRGHZchM5ghFZfsmoyu7GIiIgcg2HHRdzebZXPbiwiIiKHYNhxEbdXcgrYjUVEROQQDDsuIv+2cMNuLCIiIsdg2HERt2/8WcCNQImI6Dbjx4+32qizOr799lv0798fjRs3hiRJOH78uEOu64oYdlzE7d1WDDtERGRmMBhgNBorP9EO+fn56NOnD95++22HXtcVMey4iNunmhewG4uIqE6KiYnB1KlTMXXqVPj7+6NJkyZ45ZVXYLnv9s2bNxEfH49GjRrBy8sLgwYNwvnz5+Xn161bh4CAAGzZsgVRUVFwd3fHhAkTsH79emzevBmSJEGSpHJXRc7Pz0d8fDx8fHwQGhqKxYsXIyYmBtOnT5fPGTt2LObOnYu4uDib783cru+//x6RkZHw8vLCo48+ioKCAqxfvx4tW7ZEo0aN8Nxzz8FgMP2j/f3330enTp3ka2zatAmSJGHVqlXysbi4OLz88ss2t8NeTg87f//9Nx5//HE0btwYnp6e6Ny5Mw4fPiw/L4TA3LlzERoaCk9PT8TFxVn9QgDAjRs3MGbMGPj5+SEgIAATJ05EXl5ebd9KtZgrOZJkelyoY2WHiMiKEIA23zlfFkHFFuvXr4ebmxsOHjyI9957D++++y5Wr14tPz9+/HgcPnwYW7ZsQXJyMoQQePDBB6HT6eRzCgoK8Pbbb2P16tX49ddfsWzZMjz22GMYOHAgrly5gitXruCee+4p8/1nzZqFpKQkbN68GTt27EBiYiKOHj1q9498/PjxiImJsTpWUFCAZcuWYcOGDdi2bRsSExPxj3/8A1u3bsXWrVvx2Wef4cMPP8Q333wDAOjbty/OnDmDq1evAgCSkpLQpEkTOajpdDokJyeXeh9HcureWDdv3sS9996LBx54AD/++COaNm2K8+fPo1GjRvI5ixYtwrJly7B+/Xq0atUKr7zyCgYMGIAzZ87IW72PGTMGV65cwc6dO6HT6fDEE09g0qRJ+PLLL511a3YzV3b8PFTIKdShkN1YRETWdAXAgjDnvPdLlwG1t82nh4eHY8mSJZAkCZGRkTh16hSWLFmChIQEnD9/Hlu2bMG+ffvksPLFF18gPDwcmzZtwogRIwCYQsCKFSvQtWtX+bqenp7QaDQICQkp973z8vKwZs0afP7554iNjQVgCl/Nmze3+7ZDQ0NLdZ/pdDqsXLkSbdq0AQA8+uij+Oyzz5CZmQkfHx9ERUXhgQcewJ49ezBy5Eh06tQJgYGBSEpKwqOPPorExETMnDkT7733HgDg4MGD0Ol05QY3R3BqZeftt99GeHg41q5di7vvvhutWrVC//795R+gEAJLly7Fyy+/jKFDh6JLly749NNPcfnyZWzatAkAcPbsWWzbtg2rV69Gr1690KdPHyxfvhwbNmzA5cuXnXh39jF3W/l7qgAARTojDEb7/iVBRESuoXfv3pDMpXoA0dHROH/+PAwGA86ePQs3Nzf06tVLfr5x48aIjIzE2bNn5WNqtRpdunSx+70vXrwIrVZrdf3AwEBERkbafa2FCxfi008/tTrm5eUl/50GgODgYLRs2RI+Pj5Wx7KysgAAkiTh/vvvR2JiIrKzs3HmzBk888wz0Gg0+O2335CUlIS77roLXl5edrfPVk6t7GzZsgUDBgzAiBEjkJSUhGbNmuGZZ55BQkICACAtLQ0ZGRlW/Yn+/v7o1asXkpOTMWrUKCQnJyMgIAA9e/aUz4mLi4NCoUBKSgr+8Y9/lHpfjUYDjUYjP87Nza3Bu7SNeRFBf0/TR6LRG2AUAkpIFb2MiKjhUHmZKizOeu9a5unpaRWYXIVKpbJ6LElSmccsK0IxMTH46KOP8Msvv+DOO++En5+fHICSkpLQt2/fGm2zUys7v//+O1auXIl27dph+/btmDx5Mp577jmsX78eAJCRkQHAlBAtBQcHy89lZGQgKCjI6nk3NzcEBgbK59xu4cKF8Pf3l7/Cw8MdfWt2u72yozMIaPTsyiIikkmSqSvJGV92ho6UlBSrxwcOHEC7du2gVCrRsWNH6PV6q3OuX7+O1NRUREVFVXhdtVotD/wtT5s2baBSqayuf/PmTZw7d86ue3Ak87idjRs3ymNzYmJi8NNPP2Hfvn01Ol4HcHLYMRqN6N69OxYsWIA777wTkyZNQkJCgtUI7ZowZ84c5OTkyF9//vlnjb6fLTTF+2J5qJTysSKtY6cZEhFR7UhPT8eMGTOQmpqKr776CsuXL8e0adMAAO3atcPQoUORkJCAvXv34sSJE3j88cfRrFkzDB06tMLrtmzZEidPnkRqaiquXbtmNaDZzMfHBxMnTsSsWbOwe/dunD59GuPHj4dCYf0n/8aNGzh+/DjOnDkDAEhNTcXx48etCgVz5sxBfHx8dX8c6NKlCxo1aoQvv/zSKuxs2rQJGo0G9957b7XfoyJODTuhoaGlUmzHjh2Rnp4OAPIArMzMTKtzMjMz5edCQkLkfkEzvV6PGzdulDuAy93dHX5+flZfzqYzmMbnqN1Kwo7ewWsqEBFR7YiPj0dhYSHuvvtuTJkyBdOmTcOkSZPk59euXYsePXrgoYceQnR0NIQQ2Lp1a6nuoNslJCQgMjISPXv2RNOmTbFv374yz3vnnXdw3333YciQIYiLi0OfPn3Qo0cPq3O2bNmCO++8E4MHDwYAjBo1CnfeeadVweHKlSvy3+TqkCQJ9913HyRJQp8+fQCYApCfnx969uwJb2/bB39X6f2FsHM+nQP985//xJ9//olffvlFPvb8888jJSUF+/fvhxACYWFheOGFFzBz5kwApvE1QUFBWLduHUaNGoWzZ88iKioKhw8flj/IHTt2YODAgfjrr78QFlb5yP3c3Fz4+/sjJyfHacHnxW9O4OvDf2FYtzBsOm7qk/7lxQcQHlj7/cRERM5WVFSEtLQ0tGrVSp55W1fExMSgW7duWLp0qbObYsVV21WZin4XbP377dQBys8//zzuueceLFiwAI899hgOHjyIjz76CB999BEAUxKcPn063njjDbRr106eeh4WFiYvl92xY0cMHDhQ7v7S6XSYOnUqRo0aZVPQcRX64sqOSqmAQgKMAtAZWNkhIiKqLqeGnbvuugvfffcd5syZg9deew2tWrXC0qVLMWbMGPmcF198Efn5+Zg0aRKys7PRp08fbNu2zSrdffHFF5g6dSpiY2OhUCgwfPhwLFu2zBm3VGW64mnmSoUEpUKC0SCg59RzIiKianNqN5arcIVurMmfH8GPpzMwplcL/PfoXyjSGfHDs31wRzN/p7SHiMiZ6nI3FjmWI7qxnL5dBJmYBygrFRLcikfM6zhAmYiIqNoYdlyEeeaVW3E3FlAyjoeIiIiqjmHHRZi3hmDYISIiciyGHRdhnnll6saSrI4RERFR1THsuAhzFcdNoZArOww7RERE1cew4yJ0Ft1YcmWHU8+JiIiqjWHHReiLqzgKizE7Oj0rO0RERNXFsOMiSrqxSqae67kEEhERWRg/fry8g0B1CSEwd+5chIaGwtPTE3FxcTh//rxDru1qGHZchHlNHTdlyZgdPSs7REQEwGAwwOjgtdcWLVqEZcuWYdWqVUhJSYG3tzcGDBiAoqIim6+h1Wod2qaawrDjIgy3bRcBcFFBIqK6KCYmBlOnTsXUqVPh7++PJk2a4JVXXoHlhgU3b95EfHw8GjVqBC8vLwwaNMiqqrJu3ToEBARgy5YtiIqKgru7OyZMmID169dj8+bNkCQJkiQhMTGxzDbk5+cjPj4ePj4+CA0NxeLFixETE4Pp06cDMFV1li5dipdffhlDhw5Fly5d8Omnn+Ly5cvYtGlTuff26quvolu3bli9erXVisbZ2dl48skn0bRpU/j5+aFfv344ceKE/LoTJ07ggQcegK+vL/z8/NCjRw8cPny46j9kOzl1bywqYZ55ZTlAmevsEBGVEEKgUF/olPf2dPOEJEk2n79+/XpMnDgRBw8exOHDhzFp0iS0aNECCQkJAEzdUefPn8eWLVvg5+eH2bNn48EHH8SZM2egUqkAAAUFBXj77bexevVqNG7cGKGhoSgsLERubi7Wrl0LAAgMDCzz/WfNmoWkpCRs3rwZQUFBeOmll3D06FF069YNAJCWloaMjAzExcXJr/H390evXr2QnJyMUaNGATAFt5YtW2LdunXyeRcuXMB///tffPvtt1AqlQCAESNGwNPTEz/++CP8/f3x4YcfIjY2FufOnUNgYCDGjBmDO++8EytXroRSqcTx48fl+6wNDDsuQh6zo7RYVJCzsYiIZIX6QvT6spdT3jvlnynwUnnZfH54eDiWLFkCSZIQGRmJU6dOYcmSJUhISJBDzr59+3DPPfcAMG1oHR4ejk2bNmHEiBEAAJ1OhxUrVqBr167ydT09PaHRaBASElLue+fl5WHNmjX4/PPPERsbC8AUvpo3by6fk5GRAQAIDg62em1wcLD8HAC0aNECoaGhVudotVp8+umnaNq0KQBg7969OHjwILKysuDu7g4A+Pe//41Nmzbhm2++waRJk5Ceno5Zs2ahQ4cOAIB27drZ/LN0BIYdFyGHHclynR2GHSKiuqh3795WlaDo6GgsXrwYBoMBZ8+ehZubG3r1KglujRs3RmRkJM6ePSsfU6vV6NKli93vffHiRWi1WqvrBwYGIjIy0u5rffrpp6WORUREyEEHMHVR5eXloXHjxlbnFRYW4uLFiwCAGTNm4Mknn8Rnn32GuLg4jBgxAm3atLG7PVXFsOMizONzlEoJbkpzZYdjdoiIzDzdPJHyzxSnvXetv6enfV1n9jBXhjIzM60qN5mZmXJXV3m8vb2tHufl5SE0NLTM8UMBAQEATGN9/vnPf+KHH37Ajz/+iHnz5mHDhg34xz/+Ua37sBXDjouwnHqulDhmh4jodpIk2dWV5EwpKdah7MCBA2jXrh2USiU6duwIvV6PlJQUuRvr+vXrSE1NRVRUVIXXVavVMBgMFZ7Tpk0bqFQqpKSkoEWLFgBMA6LPnTuHvn37AgBatWqFkJAQ7Nq1Sw43ubm5SElJweTJk+261+7duyMjIwNubm5o2bJluee1b98e7du3x/PPP4/Ro0dj7dq1tRZ2OBvLRci7nislKIvX2eF2EUREdVN6ejpmzJiB1NRUfPXVV1i+fDmmTZsGwDReZejQoUhISMDevXtx4sQJPP7442jWrBmGDh1a4XVbtmyJkydPIjU1FdeuXYNOpyt1jo+PDyZOnIhZs2Zh9+7dOH36NMaPHw+FouRPviRJmD59Ot544w1s2bIFp06dQnx8PMLCwqzW8YmPj8ecOXMqbFNcXByio6MxbNgw7NixA5cuXcL+/fvxr3/9C4cPH0ZhYSGmTp2KxMRE/PHHH9i3bx8OHTqEjh072vETrR5WdlyEvoztItiNRURUN8XHx6OwsBB33303lEolpk2bhkmTJsnPr127FtOmTcNDDz0ErVaL+++/H1u3bq10hlJCQgISExPRs2dP5OXlYc+ePYiJiSl13jvvvIO8vDwMGTIEvr6+mDlzJnJycqzOefHFF5Gfn49JkyYhOzsbffr0wbZt2+Tp5IAptFmGpLJIkoStW7fiX//6F5544glcvXoVISEhuP/++xEcHAylUonr168jPj4emZmZaNKkCR555BHMnz/fhp+kY0hCcJne3Nxc+Pv7IycnB35+frX+/gajQJuXtgIA1sT3xIbDf2LnmUwk3NcK/xpccUmTiKg+KioqQlpamtVaLnVFTEwMunXrhqVLlzq7KVZctV2Vqeh3wda/3+zGcgGW3VVuSq6zQ0RE5EgMOy7Acj0dpcR1doiIiByJY3ZcgL68yg7H7BAR1TnlbeHgbK7artrAyo4LsFw80E1hsREou7GIiIiqjWHHBcibgEoSFApOPSciInIkhh0XYA415oqOG8fsEBEROQzDjgswhxqlQoIEWHRjsbJDRERUXQw7LsAcahQK0+JMrOwQERE5DsOOCzAPUDbvicUBykRERI7DsOMCzFPMlQoJkgROPSciInIghh0XYDlmBwAU7MYiIqIyjB8/3mqjzur49ttv0b9/fzRu3BiSJOH48eMOua4rYthxAebuKvMAZW4XQURElgwGA4wOrvbn5+ejT58+ePvtt6t8jZpoV01g2HEB5gHKSkmCJJWss8PKDhFR3RMTE4OpU6di6tSp8Pf3R5MmTfDKK6/Act/tmzdvIj4+Ho0aNYKXlxcGDRqE8+fPy8+vW7cOAQEB2LJlC6KiouDu7o4JEyZg/fr12Lx5M6TivxflrYqcn5+P+Ph4+Pj4IDQ0FIsXL0ZMTAymT58unzN27FjMnTsXcXFxNt9bWe1KT0+HRqPBCy+8gGbNmsHb2xu9evWyatsff/yBIUOGoFGjRvD29sYdd9yBrVu32vy+1cXtIlyArjjUKG5bZ8fAsENEJBNCQBQWOuW9JU9PSMWTSGyxfv16TJw4EQcPHsThw4cxadIktGjRAgkJCQBM3VHnz5/Hli1b4Ofnh9mzZ+PBBx/EmTNnoFKpAAAFBQV4++23sXr1ajRu3BihoaEoLCxEbm4u1q5dCwAIDAws8/1nzZqFpKQkbN68GUFBQXjppZdw9OhRdOvWza77Hj9+PC5dumQVXG5vV1BQEKZOnYozZ85gw4YNCAsLw3fffYeBAwfi1KlTaNeuHaZMmQKtVouff/4Z3t7eOHPmDHx8fOxqS3Uw7LgAy8oOYDEbqw6UBomIaosoLERq9x5Oee/Io0cgeXnZfH54eDiWLFkCSZIQGRmJU6dOYcmSJUhISJBDzr59+3DPPfcAAL744guEh4dj06ZNGDFiBABAp9NhxYoV6Nq1q3xdT09PaDQahISElPveeXl5WLNmDT7//HPExsYCMIWv5s2b233foaGhpbqpbm9Xeno61q5di/T0dISFhQEAXnjhBWzbtg1r167FggULkJ6ejuHDh6Nz584AgNatW9vdlupg2HEB8tRzZXFlR8kxO0REdVnv3r2tKkHR0dFYvHgxDAYDzp49Czc3N/Tq1Ut+vnHjxoiMjMTZs2flY2q1Gl26dLH7vS9evAitVmt1/cDAQERGRtp9rYULF5Y6dnu7Tp06BYPBgPbt21udp9Fo0LhxYwDAc889h8mTJ2PHjh2Ii4vD8OHDq3RvVcWw4wLkqefmyo7EbiwiottJnp6IPHrEae9d2zzt7DqrLbe3Ky8vD0qlEkeOHIFSqbQ619xV9eSTT2LAgAH44YcfsGPHDixcuBCLFy/Gs88+WyttZthxAYbbpp4rOfWciKgUSZLs6kpyppSUFKvHBw4cQLt27aBUKtGxY0fo9XqkpKTI3VjXr19HamoqoqKiKryuWq2GwWCo8Jw2bdpApVIhJSUFLVq0AGAaEH3u3Dn07du3GndVtjvvvBMGgwFZWVm47777yj0vPDwcTz/9NJ5++mnMmTMHH3/8ca2FHc7GcgE6g3XY4aKCRER1W3p6OmbMmIHU1FR89dVXWL58OaZNmwYAaNeuHYYOHYqEhATs3bsXJ06cwOOPP45mzZph6NChFV63ZcuWOHnyJFJTU3Ht2jXodLpS5/j4+GDixImYNWsWdu/ejdOnT2P8+PFQKKz/5N+4cQPHjx/HmTNnAACpqak4fvw4MjIy5HPmzJmD+Pj4CtvUvn17jBkzBvHx8fj222+RlpaGgwcPYuHChfjhhx8AANOnT8f27duRlpaGo0ePYs+ePejYsWPlP0gHYdhxAfLeWOZuLKXpY2HWISKqm+Lj41FYWIi7774bU6ZMwbRp0zBp0iT5+bVr16JHjx546KGHEB0dDSEEtm7dKs/EKk9CQgIiIyPRs2dPNG3aFPv27SvzvHfeeQf33XcfhgwZgri4OPTp0wc9elgP7t6yZQvuvPNODB48GAAwatQo3HnnnVi1apV8zpUrV5Cenl7p/a5duxbx8fGYOXMmIiMjMWzYMBw6dEiuLBkMBkyZMgUdO3bEwIED0b59e6xYsaLS6zqKJCwn/jdQubm58Pf3R05ODvz8/Gr9/T878Ade2XQa3cID8PrQTjiXeQszN55AEx81Dv0rziX7bImIalJRURHS0tLQqlUreHh4OLs5domJiUG3bt2wdOlSZzfFiqu2qzIV/S7Y+veblR0XIE89L/40lBbr7DCKEhERVQ/Djgso2S7C9HFYLirIrENERFQ9Tg07r776qrzktfmrQ4cO8vNFRUWYMmUKGjduDB8fHwwfPhyZmZlW10hPT8fgwYPh5eWFoKAgzJo1C3q9vrZvpVrkjUCl0huBspeRiKhuSUxMdMmuIldtV21w+tTzO+64Az/99JP82M2tpEnPP/88fvjhB2zcuBH+/v6YOnUqHnnkEXlAlsFgwODBgxESEoL9+/fjypUriI+Ph0qlwoIFC2r9Xqrq9m4sVnaIiIgcx+lhx83Nrcxlr3NycrBmzRp8+eWX6NevHwDTaO+OHTviwIED6N27N3bs2IEzZ87gp59+QnBwMLp164bXX38ds2fPxquvvgq1Wl3bt1MlOqN1N5Z5zI5RcMwOETVsrG6TI34HnD5m5/z58wgLC0Pr1q0xZswYeYrbkSNHoNPprHZj7dChA1q0aIHk5GQAQHJyMjp37ozg4GD5nAEDBiA3Nxe//vprue+p0WiQm5tr9eVMJZUd8zo7Jbues7ZDRA2R5WaY1LCZfwcqm5ZfEadWdnr16oV169YhMjISV65cwfz583Hffffh9OnTyMjIgFqtRkBAgNVrgoOD5QWPMjIyrIKO+Xnzc+VZuHAh5s+f79ibqYbbx+yYQ48QgMEgXKD+RkRUu5RKJQICApCVlQUA8PLy4jIcDYwQAgUFBcjKykJAQECprSjs4dQ/o4MGDZK/79KlC3r16oWIiAh8/fXX8KzBfUjmzJmDGTNmyI9zc3MRHh5eY+9XGV2pyk7Jf9DcMoKIGirzEAdz4KGGKSAgoMJd3m3hUjWDgIAAtG/fHhcuXMD//d//QavVIjs726q6k5mZKd90SEgIDh48aHUN82ytin4w7u7ucHd3d/wNVJF56rnbbXtjAYBWz2WUiahhkiQJoaGhCAoKKnNbBKr/VCpVtSo6Zi4VdvLy8nDx4kWMHTsWPXr0gEqlwq5duzB8+HAApn070tPTER0dDQCIjo7Gm2++iaysLAQFBQEAdu7cCT8/v0o3U3MlcjeWsnTY0XHPCCJq4JRKpUP+4FHD5dSw88ILL2DIkCGIiIjA5cuXMW/ePCiVSowePRr+/v6YOHEiZsyYgcDAQPj5+eHZZ59FdHQ0evfuDQDo378/oqKiMHbsWCxatAgZGRl4+eWXMWXKFJeq3FRGHqAsldGNZWA3FhERUXU4Nez89ddfGD16NK5fv46mTZuiT58+OHDgAJo2bQoAWLJkCRQKBYYPHw6NRoMBAwZYbRymVCrx/fffY/LkyYiOjoa3tzfGjRuH1157zVm3VCVyZac45EiSBIUEGEXJeB4iIiKqGqeGnQ0bNlT4vIeHBz744AN88MEH5Z4TERGBrVu3Orppter2AcqAafq51mBk2CEiIqomp6+zQ5YDlEs+DnPwYTcWERFR9TDsuAC9sXRlx/w9BygTERFVD8OOC9DdNvUcsAg7rOwQERFVC8OOCzDIA5RLjsmbgTLsEBERVQvDjgsoa4BySWWH3VhERETVwbDjAsxTzy0HKLsx7BARETkEw44LMC8qaDVmp7hPS8e9sYiIiKqFYccFmAchm7eLACwqO9wbi4iIqFoYdlyAwVj+bCy9YGWHiIioOhh2XEDJOjsWiwpKXFSQiIjIERh2XIDhtr2xLL83cFFBIiKiamHYcQHyRqBSGd1YrOwQERFVC8OOC5ArO8oyKjscs0NERFQtDDsuwFzZsejFkr83cOo5ERFRtTDsuADzlhBuUsnHoeAAZSIiIodg2HEB5tlYijK6sfQcoExERFQtDDsuQF5np6wByuzGIiIiqhaGHRdgHoRsscyOxdRzhh0iIqLqYNhxAWWuoCwx7BARETkCw44L0JexqKCCY3aIiIgcgmHHyYxGAfNSOlbbRXBRQSIiIodg2HEyywHI7MYiIiJyPIYdJ7MMM4oy98Zi2CEiIqoOhh0nsxyTU9beWAw7RERE1cOw42SWYcbNYlFBeQVlhh0iIqJqYdhxMssww8oOERGR4zHsOJnBYhPQssbssLJDRERUPQw7Tlay47lkdVzJXc+JiIgcgmHHycw7nlsuKGj52MBFBYmIiKqFYcfJ5B3PJQmWcUfBMTtEREQOwbDjZAaLrSIkqfSighyzQ0REVD1utpy0bNkyuy/8xBNPwNfX1+7XNTR6iwHKljgbi4iIyDFsCjvTp09H8+bNoVQqbbron3/+iYceeohhxwaGMjYBtXzMyg4REVH12BR2AODw4cMICgqy6VyGHNtZzsaynJDFyg4REZFj2DRmZ968efDx8bH5oi+99BICAwOr3KiGxDzbSqG4bYAyNwIlIiJyCJsqO/PmzbPronPmzKlSYxoivaFkzI7EFZSJiIgczubZWD179sSqVauQm5tbk+1pcOQxO7cvKsiwQ0RE5BA2h52uXbvixRdfRGhoKMaOHYvExMQabFbDIY/ZuX2AMruxiIiIHMLmsLNmzRpkZGTggw8+wJ9//onY2Fi0bdsWCxYswN9//12TbazXDOVtF2GejSUYdoiIiKrDrkUFvby8MH78eCQmJuLcuXMYNWoUPvzwQ7Rs2RKDBw/Gt99+W1PtrLf05Uw95wrKREREjlHlFZTbtGmDN954A5cuXcJXX32FAwcOYMSIEY5sW4Mgz8a6fVFBdmMRERE5RLW2i0hMTMT48eMxfvx4GAwGJCQkVPlab731FiRJwvTp0+VjRUVFmDJlCho3bgwfHx8MHz4cmZmZVq9LT0/H4MGD4eXlhaCgIMyaNQt6vb7K7aht5VV2zI+NDDtERETVYnfY+euvv/DGG2+gbdu26NevHy5duoQVK1bgypUrWLVqVZUacejQIXz44Yfo0qWL1fHnn38e//vf/7Bx40YkJSXh8uXLeOSRR+TnDQYDBg8eDK1Wi/3792P9+vVYt24d5s6dW6V2OENlY3ZY2SEiIqoem8PO119/jYEDB6JVq1ZYuXIlHnvsMZw7dw5JSUmIj4+Hp6dnlRqQl5eHMWPG4OOPP0ajRo3k4zk5OVizZg3effdd9OvXDz169MDatWuxf/9+HDhwAACwY8cOnDlzBp9//jm6deuGQYMG4fXXX8cHH3wArVZbpfbUNvM6O6UqO8UPDRygTEREVC02h53HH38cnp6e+O677/Dnn39iwYIFaNu2bbUbMGXKFAwePBhxcXFWx48cOQKdTmd1vEOHDmjRogWSk5MBAMnJyejcuTOCg4PlcwYMGIDc3Fz8+uuv5b6nRqNBbm6u1ZezlFfZ4QBlIiIix7B5b6y//vrL5r2xbLVhwwYcPXoUhw4dKvVcRkYG1Go1AgICrI4HBwcjIyNDPscy6JifNz9XnoULF2L+/PnVbL1jcNdzIiKimmVz2LEMOpcvX8bevXuRlZUFY/FsIrPnnnvOpuv9+eefmDZtGnbu3AkPDw9bm+EQc+bMwYwZM+THubm5CA8Pr9U2mJlnY5XuxioeoCwEhBBWW0kQERGR7WwOO2br1q3DU089BbVajcaNG1v9EZYkyeawc+TIEWRlZaF79+7yMYPBgJ9//hnvv/8+tm/fDq1Wi+zsbKvqTmZmJkJCQgAAISEhOHjwoNV1zbO1zOeUxd3dHe7u7ja1s6bpbRigLATArENERFQ1ds/GeuWVVzB37lzk5OTg0qVLSEtLk79+//13m68TGxuLU6dO4fjx4/JXz549MWbMGPl7lUqFXbt2ya9JTU1Feno6oqOjAQDR0dE4deoUsrKy5HN27twJPz8/REVF2XtrTmEob7sIy7BT660iIiKqP+yu7BQUFGDUqFFQKKq1RA98fX3RqVMnq2Pe3t5o3LixfHzixImYMWMGAgMD4efnh2effRbR0dHo3bs3AKB///6IiorC2LFjsWjRImRkZODll1/GlClTXKZyUxl9ORuBmsOPUQBCCAAs7RAREVWF3Yll4sSJ2LhxY020pZQlS5bgoYcewvDhw3H//fcjJCTEaksKpVKJ77//HkqlEtHR0Xj88ccRHx+P1157rVba5wjyrue3fRJcQZmIiMgxJCHsW8jFYDDgoYceQmFhITp37gyVSmX1/LvvvuvQBtaG3Nxc+Pv7IycnB35+frX63u/9dB5LfjqH+9s1wawBHeTjmblFePLTw3B3U+D0/AFQ3Z6GiIiIGjhb/37b3Y21cOFCbN++HZGRkQBQaoAy2adkb6yKBygTERFR1dgddhYvXoxPPvkE48ePr4HmNDz68gYom7uxhACHKBMREVWd3X0j7u7uuPfee2uiLQ2SoZIBykIABgPDDhERUVXZHXamTZuG5cuX10RbGiR9eQOULSo93B+LiIio6uzuxjp48CB2796N77//HnfccUepAcqWs6WocuXuem7xmDOyiIiIqs7usBMQEIBHHnmkJtrSIOnL2y7C4rGe3VhERERVZnfYWbt2bU20o8GqbAVlANDdtv8YERER2Y6LtziZuWpTaoCyVPocIiIisp9NYad79+64efOmzRft06cP/v777yo3qiEpWUHZOuxIkiQHHo7ZISIiqjqburGOHz+OEydOIDAw0KaLHj9+HBqNploNayjMM61ur+wApgBkNAh2YxEREVWDzWN2YmNjYevOElxJ2XblLSoImAKQDgJ6A8MOERFRVdkUdtLS0uy+cPPmze1+TUNkXjDw9m4soCQA6dmNRUREVGU2hZ2IiIiabkeDpS9nzI7lMQ5QJiIiqjrOxnIy80agZY7ZkUo2AyUiIqKqYdhxsvK2izAdY2WHiIiouhh2nKy87SIAi7DD2VhERERVxrDjZObKjlsZpR1zAOIAZSIioqqrUtjJzs7G6tWrMWfOHNy4cQMAcPToUS4kWAXyooIVVnYYdoiIiKrK7r2xTp48ibi4OPj7++PSpUtISEhAYGAgvv32W6Snp+PTTz+tiXbWWyXr7JR+zhx2OECZiIio6uyu7MyYMQPjx4/H+fPn4eHhIR9/8MEH8fPPPzu0cQ2BoZxdzy2PcVFBIiKiqrM77Bw6dAhPPfVUqePNmjVDRkaGQxrVkJS3EajlMXZjERERVZ3dYcfd3R25ubmljp87dw5NmzZ1SKMaEnnMThkDlDn1nIiIqPrsDjsPP/wwXnvtNeh0OgCmfbDS09Mxe/ZsDB8+3OENrO8qGqCs4NRzIiKiarM77CxevBh5eXkICgpCYWEh+vbti7Zt28LX1xdvvvlmTbSxXqtwUcHi/GOwcQNWIiIiKs3u2Vj+/v7YuXMn9u7di5MnTyIvLw/du3dHXFxcTbSv3tNXtF2EeTYWu7GIiIiqzO6wY9anTx/06dPHkW1pkErG7HCdHSIioppgU9hZtmyZzRd87rnnqtyYhsg8+NhNKn8FZa6zQ0REVHU2hZ0lS5ZYPb569SoKCgoQEBAAwLSispeXF4KCghh27CTvjVVhZYcDlImIiKrKpgHKaWlp8tebb76Jbt264ezZs7hx4wZu3LiBs2fPonv37nj99ddrur31jrw3VkVjdljZISIiqjK7Z2O98sorWL58OSIjI+VjkZGRWLJkCV5++WWHNq4hMNiwXQTX2SEiIqo6u8POlStXoNfrSx03GAzIzMx0SKMaEnMXlVtZ20XU4RWUs24VoUhncHYziIiI7A87sbGxeOqpp3D06FH52JEjRzB58mROP68CeTZWGWFHUUe7sTJzi9DnrT0Y98lBZzeFiIjI/rDzySefICQkBD179oS7uzvc3d1x9913Izg4GKtXr66JNtZbRqOAOccoy+jHqqtTz89eyYXWYMTJv3LqXFAjIqL6x+51dpo2bYqtW7fi3Llz+O233wAAHTp0QPv27R3euPrOcmXkirqx6lpgyLqlAQAU6gzIKdQi0NvdyS0iIqKGrMqLCrZv354Bp5osQ4yirLBTR7uxrhaHHQDIyCli2CEiIqeyO+xMmDChwuc/+eSTKjemobHsnqpwu4g6Fnaycovk7zNzNIgKc2JjiIiowbM77Ny8edPqsU6nw+nTp5GdnY1+/fo5rGENgeWeV2VtBGpeQVlnqFuLCl7Ns6js3Cqq4EwiIqKaZ3fY+e6770odMxqNmDx5Mtq0aeOQRjUUOouVkd0qGKBc9yo7GovvGXaIiMi57J6NVeZFFArMmDGj1LYSVDF52rkklTlmx62OzsbKshizY/k9ERGRMzgk7ADAxYsXy1xskMpn7p4qa/VkoKSyU5e6sYQQyLLourrKsENERE5mdzfWjBkzrB4LIXDlyhX88MMPGDdunF3XWrlyJVauXIlLly4BAO644w7MnTsXgwYNAgAUFRVh5syZ2LBhAzQaDQYMGIAVK1YgODhYvkZ6ejomT56MPXv2wMfHB+PGjcPChQvh5lbliWa1pqIFBS2P16VurDyNHkW6knB2LY9hh4iInMvuRHDs2DGrxwqFAk2bNsXixYsrnal1u+bNm+Ott95Cu3btIITA+vXrMXToUBw7dgx33HEHnn/+efzwww/YuHEj/P39MXXqVDzyyCPYt28fANMWFYMHD0ZISAj279+PK1euID4+HiqVCgsWLLD31mqdrniAskKSUFbcKdkbq+5Udm7vtrqep3VSS4iIiEzsDjt79uxx2JsPGTLE6vGbb76JlStX4sCBA2jevDnWrFmDL7/8Up7ltXbtWnTs2BEHDhxA7969sWPHDpw5cwY//fQTgoOD0a1bN7z++uuYPXs2Xn31VajVaoe1tSaY98VSKiRIFUw9r0tjdsyDkyUJEAK4UaCFEKLM+yMiIqoNdo/Z6devH7Kzs0sdz83NrdbUc4PBgA0bNiA/Px/R0dE4cuQIdDqd1X5bHTp0QIsWLZCcnAwASE5ORufOna26tQYMGIDc3Fz8+uuvVW5LbTHvZl7WGjuWx+tU2CkerxPq5wEAuFWkR76GG4ISEZHz2F3ZSUxMhFZbumuiqKgIv/zyi90NOHXqFKKjo1FUVAQfHx989913iIqKwvHjx6FWqxEQEGB1fnBwMDIyMgAAGRkZVkHH/Lz5ufJoNBpoNCXdLbm5uXa32xH0FmN2yso7bsq6N2bHPCA5NMATmbc0MBhNA5Z9PHyc3DIiImqobA47J0+elL8/c+aMVZgwGAzYtm0bmjVrZncDIiMjcfz4ceTk5OCbb77BuHHjkJSUZPd17LFw4ULMnz+/Rt/DFgbLbqwyni/pxqo7Y3bMVRwvtRKeKiXyNHrkFumc3CoiImrIbA473bp1gySZxpaU1V3l6emJ5cuX290AtVqNtm3bAgB69OiBQ4cO4b333sPIkSOh1WqRnZ1tVd3JzMxESEgIACAkJAQHDx60ul5mZqb8XHnmzJljNassNzcX4eHhdre9uqwGKJc1ZsfcjWWoO5WdIr0p7KjdFHB3UyBPAxRp605YIyKi+sfmsJOWlgYhBFq3bo2DBw+iadOm8nNqtRpBQUFQKpXVbpDRaIRGo0GPHj2gUqmwa9cuDB8+HACQmpqK9PR0REdHAwCio6Px5ptvIisrC0FBQQCAnTt3ws/PD1FRUeW+h7u7O9zdnb85pTxmpx5NPS/UFocdpQJqN9OQsAIt118iIiLnsTnsREREADCFEUeZM2cOBg0ahBYtWuDWrVv48ssvkZiYiO3bt8Pf3x8TJ07EjBkzEBgYCD8/Pzz77LOIjo5G7969AQD9+/dHVFQUxo4di0WLFiEjIwMvv/wypkyZ4hJhpjLm7qlysk6dnI1VpDOFHffiyg4AFGg5QJmIiJzHprCzZcsWDBo0CCqVClu2bKnw3IcfftjmN8/KykJ8fDyuXLkCf39/dOnSBdu3b8f//d//AQCWLFkChUKB4cOHWy0qaKZUKvH9999j8uTJiI6Ohre3N8aNG4fXXnvN5jY4U2WVHbc6WNkxhx1TN5bS6hgREZEz2BR2hg0bhoyMDAQFBWHYsGHlnidJEgwG2/+wrVmzpsLnPTw88MEHH+CDDz4o95yIiAhs3brV5vd0JXobV1CuS5WdQsvKjkphdYyIiMgZbAo7ll1XjuzGaugsFxUsi7J406y6VNkpLN4qwt1NCbVSYXWMiIjIGRy2ESjZz3LX87LUxQHKVmN2VOzGIiIi57OpsrNs2TKbL/jcc89VuTENjTz1vNJurLpTGSkJO0p5gLKtYed64XXojFyTh4iovgn0CIRa6bwtnGwKO0uWLLHpYpIkMezYwbzBZ2UDlOtQ1pGnnrurSmZjFdowG2vNqTVYenRpTTaNiIicJMgrCD/84wd4uHk45f1tCjtpaWk13Y4GyTzwWFFJN5beaKwzm2kWVrGyc/KqaYVuCRIUEntXiYjqC4MwIKsgC3/k/oHIwEintMHuvbEsCWH6Y10X/gi7opLKTtnPKy0qO0KgzP2zXI052ITnHEGG0cfqmC1GRo7E4NaDa6RtRERU+xJ2JKDIUASjcF43RZXCzpo1a7BkyRKcP38eANCuXTtMnz4dTz75pEMbV9+VTD0vO+2U7HpuRF0ZolyoM6CldAWxB2ciyqMNVuF1u6aeS5IElVJVgy0kIqJa5QL/ULc77MydOxfvvvuuvJoxACQnJ+P5559Henp6nVnQzxXoK5uNZd71XIjiKpoL/MZUokhnRHvpLwBAUNEfkGBEEaeeExGRE9kddlauXImPP/4Yo0ePlo89/PDD6NKlC5599lmGHTvIU8/L68aSSqae14XKjs5ghMEoEKa8DgBQQo8myEWRvomTW0ZERA2Z3SNBdTodevbsWep4jx49oNdzw0d76GycjWUwCog6kHbM3VWh0nX5WJh0jZUdIiJyKrvDztixY7Fy5cpSxz/66COMGTPGIY1qKMx7Y1U2G6uuTD0vKp5iHmYRdkKlG9BwUUEiInKiKg9Q3rFjh7z7eEpKCtLT0xEfH48ZM2bI57377ruOaWU9JU89r2RRQYMQxaPYXXtKtrmC00xhWdm5jnP6OpLWiIioXrI77Jw+fRrdu3cHAFy8eBEA0KRJEzRp0gSnT5+Wz+N09MrJU8/L+Vm5WczS0hsE4OKTlMzdWGHSDflYqHQdRXpWdoiIyHnsDjt79uypiXY0SObKjls5lR3LGel1YefzQp0BShjQFCVhJ0y6Bq2+7iyKSERE9Y9r94vUc5Xtel6qsuPiinQGBOMmlBZzx8KkG8Vhx4kNIyKiBs3uyk5RURGWL1+OPXv2ICsrC8bbRs8ePXrUYY2r70qmnlc8ZgcAtAbX7woq1BmsZmIBpm4sjd4IoxBQ1IF1goiIqP6xO+xMnDgRO3bswKOPPoq7776bXRPVYN71vLywY3lYVxcqO1qDPBNL5xUCVUEGgpANo14Lg1HATenkBhIRUYNkd9j5/vvvsXXrVtx777010Z4GpbJdzyVJglIhwWAUdWLMTpHegGDpJgBA49sCysJrUECPpsiGRm+Eu4pph4iIap/dY3aaNWsGX1/fmmhLg6OvpBvL8jldHZi+Xag1wlcqBAAYVV4wqrwAAN5SEQq0rt8NR0RE9ZPdYWfx4sWYPXs2/vjjj5poT4NiHnTsJpX/MZhnatWFyk6hzgAvFAEAhFINofQAAHijCAVarq5NRETOYXc3Vs+ePVFUVITWrVvDy8sLKpX14i83btwo55V0O7myoyy/smNeXdm8tYQrK9IZEAANAMCo9ITRzRR2PCUNww4RETmN3WFn9OjR+Pvvv7FgwQIEBwdzgHI1yFPPK/gZyvtj1YUByjoDvCRTZceodIdwK6nsFHJ/LCIichK7w87+/fuRnJyMrl271kR7GhR9JbOxLJ+rE91YWgO8iis7ws0DxuJuLC9oUMjKDhEROYndY3Y6dOiAwsLCmmhLg1OyqGD558gDlOtAN1ahzgBPczeWm4fcjeUlFaFA6/rtJyKi+snusPPWW29h5syZSExMxPXr15Gbm2v1RbaTBygryv8Y6lJlp0hnhLe5G8vNA8LNE4CpslPEnc+JiMhJ7O7GGjhwIAAgNjbW6rh57yNDHVjp11XYMvXcrQ5Vdop0Ft1YSg8Yle4AAC8UoUDHbiwiInIObgTqRJXtjWX5nL4OhB3LqedGN08YzZUdSYMidmMREZGT2B12+vbtW+5zp0+frlZjGpqSbiwbFhWsA91YGr0BXpJ5zI6nvM6OF4pQoGfFj4iInKPau57funULH330Ee6++27O0LJTyTo7FS0qaHquLux6rtEZSyo7SosBytBAw6nnRETkJFUOOz///DPGjRuH0NBQ/Pvf/0a/fv1w4MABR7at3jN3TVVU2VHIA5RdPyxodXp4QgsAECqvkqnnkgYaVnaIiMhJ7OrGysjIwLp167BmzRrk5ubiscceg0ajwaZNmxAVFVVTbay35MqODYsK1oXKDvSFUEimdhrcPOVFBb1QBG0d2NuLiIjqJ5srO0OGDEFkZCROnjyJpUuX4vLly1i+fHlNtq3ek8fsVLBdRF2aei7pC+TvhdU6OxpoGHaIiMhJbK7s/Pjjj3juuecwefJktGvXribb1GDYsl1EXVpUUKEzLTapV6gByc1iBeUihh0iInIam8PO3r17sWbNGvTo0QMdO3bE2LFjMWrUqJpsW71n06KCxUHIUAcqO276fACAQeEOIUkW3VgaaGxYVNCrSECdWwTczKnRdhIRUe3xzRfQuTn3b5jNYad3797o3bs3li5div/85z/45JNPMGPGDBiNRuzcuRPh4eHw9fWtybbWO7bseq6sQwOUlYZCQGHaBBSSwmKAcuWVnS67LuHp/xoAbCz+IiKi+uADAFn+AAZqndYGu2djeXt7Y8KECdi7dy9OnTqFmTNn4q233kJQUBAefvjhmmhjvWXL3ljm8Tx1YYCyymDqxjIq1KawY1nZqWQ2VuiF7JpuHhEROUlQDiD+uuy097d7UUFLkZGRWLRoERYuXIj//e9/+OSTTxzVrgbBHGBUFaQdczeWqw9Q1huM8BCmNXZE8TYRlosKam2cen5ycHt0GhJfM40kIqJap3nuZXhqATjx71i1wo6ZUqnEsGHDMGzYMEdcrkEQQsgBpoJldupMN5ZGX7KgINxMYce8XYRaMsCoLbLpOkKSAJWqRtpIREQNU7VXUKaqsRxwrLJl13MX78bS6I3yVhHmyo6xOPQAgKQvdEq7iIiIGHacxLJbyq2ibqw6E3YMpSo7UKhgkJQAAKXFGjxERES1iWHHSSzDTgWFnTqzqKBpXyxzZUctHzcoTON23AwVhx0B174/IiKqu5wadhYuXIi77roLvr6+CAoKwrBhw5Cammp1TlFREaZMmYLGjRvDx8cHw4cPR2ZmptU56enpGDx4MLy8vBAUFIRZs2ZBr9fX5q3YzWBRqalogLJbXRqzY97xvHhgMgDoi793YzcWERE5iVPDTlJSEqZMmYIDBw5g586d0Ol06N+/P/Lz8+Vznn/+efzvf//Dxo0bkZSUhMuXL+ORRx6RnzcYDBg8eDC0Wi3279+P9evXY926dZg7d64zbslmOovwYssKyoY61I1lHrMDAAZz2DEy7BARkXM4ZDZWVW3bts3q8bp16xAUFIQjR47g/vvvR05ODtasWYMvv/wS/fr1AwCsXbsWHTt2xIEDB9C7d2/s2LEDZ86cwU8//YTg4GB069YNr7/+OmbPno1XX30VarW6rLd2OvMYHKUkyTubl0VZ3Melc/VuLL1FN5ZbSWXHXOVRG4pgNIoK75WIiKgmuNSYnZwc0zYBgYGBAIAjR45Ap9MhLi5OPqdDhw5o0aIFkpOTAQDJycno3LkzgoOD5XMGDBiA3Nxc/Prrr2W+j0ajQW5urtVXbTN3S1U0XgeoQ91YOiO8JFNlx2gZdoq/VxkLOSqHiIicwmXCjtFoxPTp03HvvfeiU6dOAICMjAyo1WoEBARYnRscHIyMjAz5HMugY37e/FxZFi5cCH9/f/krPDzcwXdTObmyU0mlQ1GnZmOVruyYFxZUG4tgFK59D0REVD+5TNiZMmUKTp8+jQ0bNtT4e82ZMwc5OTny159//lnj73k7eV8shYSK4o65suPqG4Fq9EZ4SqZ9T4yKkjE75mnoaqGBwcWrU0REVD85dcyO2dSpU/H999/j559/RvPmzeXjISEh0Gq1yM7OtqruZGZmIiQkRD7n4MGDVtczz9Yyn3M7d3d3uLu7l/lcbZG7sSQJUkUDlIuf07l4UNDoDfCAKewIt9Jhxx1aaPUCHlwcmYiIaplTKztCCEydOhXfffcddu/ejVatWlk936NHD6hUKuzatUs+lpqaivT0dERHRwMAoqOjcerUKWRlZcnn7Ny5E35+foiKiqqdG6kCc7eUWyXdWHVmUUGdsSTsWMzGQvGaO57QQqNz7cBGRET1k1MrO1OmTMGXX36JzZs3w9fXVx5j4+/vD09PT/j7+2PixImYMWMGAgMD4efnh2effRbR0dHo3bs3AKB///6IiorC2LFjsWjRImRkZODll1/GlClTnF69qUjJvlgSKijslEw9rwPdWOawY7AIO1JxZcdD0qJIrwfgup8JERHVT04NOytXrgQAxMTEWB1fu3Ytxo8fDwBYsmQJFAoFhg8fDo1GgwEDBmDFihXyuUqlEt9//z0mT56M6OhoeHt7Y9y4cXjttddq6zaqRG8wVTkqG7NTdzYCNcBDKl3ZMXdpeUCLIlZ2iIjICZwadoQNs3M8PDzwwQcf4IMPPij3nIiICGzdutWRTatx1pUdGxYVdPGcoNEZ4SlvF2ExG0th6sbygAaFOoNT2kZERA2by8zGamhsnXour7Pj4mlHazDCAzoA1gOUjUpzN5YOGr1r3wMREdUcZ+6ByLDjJOZuqcrCTl0Zs6PV6eAumcKOwWLqublLyxMaFLGyQ0RETsCw4yTmyk5luyfUlV3PDZqSva+st4soGbPD2VhEROQMDDtOYmtlx62OhB2hKyj53s2ysmMes6NjZYeIiJyCYcdJtPI6OxV/BObnXX3MjlFn2hdLDzdAKhn3LndjSRoUccwOERE5AcOOk2iL//C7KSuu7KiKn9e5+KKC5sqOTqGGsJhdZu7GcocWGj0rO0REVPsYdpxEV1ypqWwFZZVSYXW+q5K0pjE7ekkNy1UShcUKylpWdoiIyAkYdpykpLJTSTdW8fN6o4DRlcft6E3dWAaFCoBl2ClZQVnDMTtEROQEDDtOIoedSis7JevsuHDUgaQ3VXYMkhqQSn6tjPIAZYYdIiJyDoYdJ9Ha3Y0lbFpx2lmk4sqOsXjFZLOSdXY4ZoeIiJyDYcdJbB2g7GaxN5Yr92Ip5bCjsjpuDjvukg4arbbW20VERMSw4yQllZ2KPwJzZUdvEDAK1x3gqzCYurHM3VZmlo8t1+K5neTCQY6IiOo2hh0nMVd2KltU0Bx2BFx7+rnCWLwJaKnKTknYMWqLarVNREREAMOO05inkqsqnY1VEoZceeq2m6E4yNxW2YGkNC00CEBoy6/sEBER1RSGHScxBxdVpYsKlnxErjzAtyTsqEo9py8etCxV0I1FRERUUxh2nKRk6nnFH4FSIcmbhWr1rtuN5SZM3Vi4bTYWAOiKd0E3bylBRERUmxh2nERrsK2yA5QEIlet7OgMRrgL00wrya10ZccgFVd29Aw7RERU+xh2nKSkG6vyj8A8bkfjomN2inQGeMJU2VFY7HhuZiiefo7ihQeJiIhqE8OOk2htHKBseY6rDlAu0hnhLpkqOwq30t1YBgUrO0RE5DwMO04ibwRqUzeWubLjmt1YRToDPGAKO+ZFBC2Zp58rDQw7RERU+xh2nMSebqySyo5rDlA2dWMVh50yurGMCg8AgMKgqdV2ERERAQw7TmPr1HMAULkVhx2D63ZjVVjZKe7aUhoZdoiIGiwn/nudYcdJtMWrIbvZVNlx8W4svQGexWN2UMaYHXMAUhk1MFa2wVfl2Y+IiOoQ4QL/X2fYcRJtcXBR2xJ2FK7fjVVRZUcqHrPjZtTA6MI7txMRUf3EsOMkdq2zU3yO1uCilR2dER7FU8+NSo/SJxSP41EJTblVTEYgIiKqKQw7TqIrrtJUtoIyUBemnhvgIekAAMYyBihLxcfUQivPQiMiIqotDDtOYg4uajcbFhUsnnquqxPdWKUrO+aw4wEtinSuWZ0iIqL6i2HHSTTFXVJ2TT132W6skhWUxe27ngNQqExhx1PSoFDrmvdARET1F8OOk+iKZ2PZNPVcad4byzUrOxqtTu7GMig9S59QXNnxhBYFrOwQEVEtY9hxAiGEXevsyAOUXXTquV5TIH8vVKXDjnnQsidY2SEiotrHsOME5qoOAKiVykrPN1d2LF/nSgyaPPn7shcVNIUdL0mDIh0HKBMRUe1i2HECyxlJtnVjmSs7rhkUjFpTZUcDNSCVDm9GpbkbS4NCrb5W20ZERMSw4wSWoUVl02wsc2XHNcOO0OQDAHQKdwipdHgzV3u8oEEhKztERFTLGHacwLygoEKydZ0d167siOLKjk5yB6TS92Ms7sbylDQoYmWHiIhqGcOOE5hDi5tCgTIKIaWUTD13zbADnTnsqMsMO+a1d0yVHV2tNo2IiIhhxwnMocVNKdm076Wrr6AsFYcdg6L0GjuARWUHGhRxNhYREdUyhh0nKKnsSJBsKO2Yp5676pgdSW8OO6VnYgElY3Y8JB20Wm2ttYuIiAhg2HEKc2ixuxvLRSs7Sn0hAMBQxurJQMlsLADQWUxTJyIiqg0MO04gV3Zs7sYy73rummFHUVzZMVZQ2TEW36mRYYeIiGoZw44T2N2NVTxjS++iiwqaKztl7YsFAJAk0+BlAKIov7aaRUREBIBhxynMFRqlDQsKAq5f2VEZigBUEHYAaCXTIGWhKyjzeQmuGeSIiKjuc2rY+fnnnzFkyBCEhYVBkiRs2rTJ6nkhBObOnYvQ0FB4enoiLi4O58+ftzrnxo0bGDNmDPz8/BAQEICJEyciL8+1u0osp57bomS7CNcMO25GU2UHFYQdnbmLS1t22CEiIqopTg07+fn56Nq1Kz744IMyn1+0aBGWLVuGVatWISUlBd7e3hgwYACKiorkc8aMGYNff/0VO3fuxPfff4+ff/4ZkyZNqq1bqBJzhcaWrSIAy9lYrln9UBeHHal4inlZ9OawU05lh4iIqKa4OfPNBw0ahEGDBpX5nBACS5cuxcsvv4yhQ4cCAD799FMEBwdj06ZNGDVqFM6ePYtt27bh0KFD6NmzJwBg+fLlePDBB/Hvf/8bYWFhtXYv9jBXaJQKW7uxKq7saPQGiBrOQSqlotz2qowaQAlIqrIHKAOAXmEKQlLx+B4iIqLa4tSwU5G0tDRkZGQgLi5OPubv749evXohOTkZo0aNQnJyMgICAuSgAwBxcXFQKBRISUnBP/7xjzKvrdFooNFo5Me5ubk1dyNlqGo3VlkDlN/deQ7Ldp0vddzRArxU2PTMPWjZxMfquM5ghCdMP0vJrYKwUzz9XMHKDhER1TKXHaCckZEBAAgODrY6HhwcLD+XkZGBoKAgq+fd3NwQGBgon1OWhQsXwt/fX/4KDw93cOsrZg47NndjKUoWFRS3lXCSzl11bOPKkV2gw76L10sdL9IZ4AVTt6KigsqOsXjLCCUrO0REVMtctrJTk+bMmYMZM2bIj3Nzc2s18GiLKzT2dmPpjQJCoMyFCCfd1xr3tm3ssDZamv+/M/j9Wj7KmjBVpDPCUzJVdpSq8sfsGIrDjsJQVO45RERENcFlw05ISAgAIDMzE6GhofLxzMxMdOvWTT4nKyvL6nV6vR43btyQX18Wd3d3uLuXX4WoafZ3Y5VUdoxCQFHGUoTe7koEetfMPfm4l/9rYqrsmMKOUHmWe555WrrKyLBDRES1y2W7sVq1aoWQkBDs2rVLPpabm4uUlBRER0cDAKKjo5GdnY0jR47I5+zevRtGoxG9evWq9Tbbyt5uLMsxO642H0ujN8ADpv2uzLubl0UUz9Ri2CEiotrm1MpOXl4eLly4ID9OS0vD8ePHERgYiBYtWmD69Ol444030K5dO7Rq1QqvvPIKwsLCMGzYMABAx44dMXDgQCQkJGDVqlXQ6XSYOnUqRo0a5bIzsQD7Z2OZx+zojcYan3VlryKdEY2Lu7FEBVPPwbBDRNSgOfPvl1PDzuHDh/HAAw/Ij83jaMaNG4d169bhxRdfRH5+PiZNmoTs7Gz06dMH27Ztg4dHyR/VL774AlOnTkVsbCwUCgWGDx+OZcuW1fq92ENrqNpsLKMwBSW1m+sU5Aq0BoQXD1CGW/ndWOawozYWwWgUUJQb9GwLgERERLZyatiJiYkpNbvIkiRJeO211/Daa6+Ve05gYCC+/PLLmmhejalqNxZg6jbyrmAMTW3L1+jlqefGCgYoK4qfU4uicscdERER1QTXKRE0IPkaPQDAXaW06Xx3VcnHVKA11EibqiqvsBBqydQmo7L8yo6b2jR4Wi200Ohd6x6IiKh+Y9hxAnNg8bQx7CgkCR7FXVe3ivQ11q6q0BSU7ENW0Zgd87R0T2iQV8SwQ0REtYdhxwnytabAYmvYAQCP4nPzNK4Wdm4BAIyQIJTlT31XqE1VHy9Jg9wiXa20jYiICGDYcYoCjamy4aGy/cdvDjv5LhZ2tIWmyo5GcoeoYMC1OQh5QYNbLnYPRERUvzHsOIFc2VHbXtkxn5vnYt1Y+iJT2NFK7qjo18noZu7GKkIeKztERFSLGHacoGTMju2zquTKjosNUDaHHb3kXvY+FsXMCw56SxrcKnStwEZERPUbw44TmLui7OnG8iw+t0DrYkGhKAcAoFF4AlL592NQeQMAfFGAvCJtrTSNiIgIYNhxCnM3lpe6CpUdFxvvotDkAgB0Sq8KzzOqfAAAnpIWBRYzuIiIqKFw3hLKDDu1TAghd2N5qe0foOxq6+wotaawo69o9WQARotNQnX5N2u0TURERJYYdmpZka5kfytPOyo7ni5a2VHpiqeeV1LZgaREoWQKPMaCMsKOi+35RURE9QfDTi3LtxhzU5Wp56UqO7W4s1pZW3uo9KawI1SVhB0ARQrTOcbCHMc2jIiIqAIMO7XMvMaOu5vC5o1AAcsBymV3Y0kVzISqtgou7aEvHn+jqrgbCwA0StMgZRTlOqBRREREtmHYqWXmyo67mwIKOwJKydRz1+rG8jCawo7kXnllR1scdiQtww4REdUehp1aZrkJqD3FGFccoKzVG+Ej8gEACnXlYUfnZgo7btpbNdouIiIiSww7tcy8KKC9lR3zAOVCFwo7+Ro9/CRT2FF5+FR6vsHNdI55UDMREVFtYNipZQWakm4se5grO4U61+nGytPo4YtCAIDk7lvp+cbiQcwqA9fZISKi2sOwU8vMlR0PO3Y8B0oGKBdqjQ5vU1XlWVR2DKrKKztCberGcjfk12i7iIiILDHs1LICbfUqO0U6Q5lTwJ0hv0gHPxSYHthQ2YG6eBVlY57L3AMREdV/DDu1LF+eem5fZcejeNfzIr0BRhfJCQUF+XCXTOHNoK68sqNwN1V2vI0FMLjKTRARUb3HsFPL5MqOHQsKAiUDlIt0RpcJCpq8GwAAAySbFhVUuJsCkTfyoTO4TnccERHVbww7tSzfYlFBe5i7sQxGgSKda8zI0hVkAwAK4AWhqHzrCzd3887nhfLPgYiIqKYx7NQyc2XHw95uLItw5Cr7Y+kLTNs+FEpegFT5r5K5G8tPykduobZG20ZERGTGsFPLzLOxPO2cjeWmVEClNK3Lk+cqYSfPtKFnkcITkCq/H1E8rscPBbiRX1SjbSMiIjJj2Kll5nV27J16bvkaVwk7mnzTmB1dZTueFzOoTJUdH6kI125yYUEiIqodDDu1zLy3lT07npt5uljY0eWburGMbpVvAgoAxuKwAwA3sq/VSJuIiIhux7BTy8x7W3mqq17ZcZnBvYWmbixhY9iBwg1FkjsAIP8mww4REdUOhp1all2gAwB4qyufvXQ7b3fTa24WuMbgXq+iLACA8PC3+TV5ykYAAEPO3zXSJiIiotsx7NQiIQQyck0Dc5v4uNv9+kBvNQAgK9c5g3stV/cxGgX89VcBAAqvQJuvkaduYnpN3hVHNo2IiKhcDDu1KKdQB63etJheVcJO4+Kwk5mrkY/V5vKClu+VU6hDCExdUSrfJjZfQ+tuOtejINORTSMiIioXw04tMocUb3clvNztH7NjDjtZt0pXdqTqNa1CZV37ap4GIZJpNpbkHWTztfReprDjrb3qiKYRERFVimGnFmUWdz8FeKrhprA/nsjdWLc0lZxZ865l56KplAsAMPiE2Pw6ydsUdgIM12F0kW0viIiofmPYqUXm8Tr+XipIkv1hx1zZuZbn/LCTd/VPAIAGKhjtGKCs8m0KAAgS1+Rp+ERERDWJYacWZcmVHVWVXh/obRrnczNf6/TNQDXXTWHnhiIQQmn7/ZjH94RIN5CZU1gjbSMiIrLEsFOLzGN2/KscdkyVnUKd0enTz405fwEAbikb2bRVhJney1TZaSrlIvP6zRppGxERkSWGnVpkHrNj7o6yl6daCa/ixQiv5Dh3bynFrcsAgHxVI7teZ1T5QgNT2LuV+bvD20VERHQ7hp1alFk8sDiwimHH8rUZ2c7tAlLlm9bJ0antCzuQJNxQmLqy8q+mO7pZREREpTDs1KLM4mpM4yqssWNmDjuXnVjZMRgF1Pmmyo63r51hB0ChujEAIDfzkiObRUREVCaGnVpiMApcLZ5FVZUFBc1KFhZ0Xti5mHULnXEBAODdtIXdr9f6RQAA/G6ecWi7iIiIysKwU0suXc+HwSjgppCqPGYHAJr6egAA0q7lO6ppdrv42wk0lXKghQqGpnfY/XplWCcAQJT+DLJdZJ8vIiKqvxh2asm+C6atFdo09anSjudmd4T5AQAOXroBIZwz/Vxz8RcAwB+qVjB6+Nn9emWIKexESn/iZOoFh7aNiIjodvUm7HzwwQdo2bIlPDw80KtXLxw8eNDZTbLyy3lT2OkY6gtFFRYUNIsK9YObQsL1PC3OXsl1VPPs4p91CABw06cdINn/K2TwaITLijAoJIEbZxId3DoiIiJr9SLs/Oc//8GMGTMwb948HD16FF27dsWAAQOQlZXl7KYBAPQGIw5cvA4A6BYeUK1reaiUiAo1VVN2p9b+/f15NQcdio4DAJRBHap8nQzfKNM1/vjZaRUqIiJqGOpF2Hn33XeRkJCAJ554AlFRUVi1ahW8vLzwySefOLtpAIBfLlzDLY0e3molOoTY3+1zu24tAgAAO3/NRG3nhBNfv4lQ6QZy4QPf8C5Vvo5n62gAQH/NTvy87xdHNY+IiKiUOh92tFotjhw5gri4OPmYQqFAXFwckpOTndgy0zidFzaewMR1pm6f7hGN5EUBq+Oe1k2gVEg48VcO/rhuGqhsrMHU06zwN8xzW4+gxFn4vyxTgExt/igkn8ZVvqZbi7tx1rM73CU9Wv30JHSFeQAAo0NaTEREVMLN2Q2ormvXrsFgMCA4ONjqeHBwMH777bcyX6PRaKDRlGymmZtbM2NfXvruFP64XgAAaBHohUe6N0N2ga7a1/VSK/HEPS2xem8acotMm2n+lnELd4bbv+aNLZ7OW4EubhcBDQAJOKHqBnVELxRmX63WdbV3/BPXD19EC2TitCEEgAKa3OvIu3rFIe0mIiLnq/4/8auvzoedqli4cCHmz59f4+8zokdzfJGSji7N/fFoj2bVWkzwdg92CUEjbxXe2X4O7m4KBPm6w8ezZn6ltvuPgJT9NW6pAqFvcR+atr8bklvVp8+bqb39cCV2GU4d+wEiYDf+CFND4ecPD7+aCW1ERFT70sO94aY1INI3wGltkEQdHx2q1Wrh5eWFb775BsOGDZOPjxs3DtnZ2di8eXOp15RV2QkPD0dOTg78/Ko/psaS0SigUFR99hURERGVLTc3F/7+/pX+/a7zY3bUajV69OiBXbt2yceMRiN27dqF6OjoMl/j7u4OPz8/q6+awqBDRETkXPWiG2vGjBkYN24cevbsibvvvhtLly5Ffn4+nnjiCWc3jYiIiJysXoSdkSNH4urVq5g7dy4yMjLQrVs3bNu2rdSgZSIiImp46vyYHUewtc+PiIiIXEeDGbNDREREVBGGHSIiIqrXGHaIiIioXmPYISIionqNYYeIiIjqNYYdIiIiqtcYdoiIiKheY9ghIiKieo1hh4iIiOo1hh0iIiKq1+rF3ljVZd4xIzc318ktISIiIluZ/25XtvMVww6AW7duAQDCw8Od3BIiIiKy161bt+Dv71/u89wIFIDRaMTly5fh6+sLSZIcdt3c3FyEh4fjzz//bHAbjDbUe2+o9w3w3hvivTfU+wZ4765y70II3Lp1C2FhYVAoyh+Zw8oOAIVCgebNm9fY9f38/Jz+C+EsDfXeG+p9A7z3hnjvDfW+Ad67K9x7RRUdMw5QJiIionqNYYeIiIjqNYadGuTu7o558+bB3d3d2U2pdQ313hvqfQO894Z47w31vgHee127dw5QJiIionqNlR0iIiKq1xh2iIiIqF5j2CEiIqJ6jWGHiIiI6rUGFXZ0Oh1mz56Nzp07w9vbG2FhYYiPj8fly5crfN2tW7cwffp0REREwNPTE/fccw8OHTpkdc63336L/v37o3HjxpAkCcePH3dIm3/99VcMHz4cLVu2hCRJWLp0aalzfv75ZwwZMgRhYWGQJAmbNm1yyHtX5tVXX4UkSVZfHTp0kJ8vKirClClT0LhxY/j4+GD48OHIzMyslbY5WmU/YyEE5s6di9DQUHh6eiIuLg7nz5+3OufGjRsYM2YM/Pz8EBAQgIkTJyIvL68W78J+ld33+PHjS/0ODBw40OqcunjfALBw4ULcdddd8PX1RVBQEIYNG4bU1FSrc2z5HU9PT8fgwYPh5eWFoKAgzJo1C3q9vjZvxS623HdMTEypz/3pp5+2Oqeu3TcArFy5El26dJEXy4uOjsaPP/4oP18fP2+zyu69rn/mDSrsFBQU4OjRo3jllVdw9OhRfPvtt0hNTcXDDz9c4euefPJJ7Ny5E5999hlOnTqF/v37Iy4uDn///bd8Tn5+Pvr06YO3337b4W1u3bo13nrrLYSEhJR5Tn5+Prp27YoPPvjAoe9tizvuuANXrlyRv/bu3Ss/9/zzz+N///sfNm7ciKSkJFy+fBmPPPJIrbfRESr7GS9atAjLli3DqlWrkJKSAm9vbwwYMABFRUXyOWPGjMGvv/6KnTt34vvvv8fPP/+MSZMm1dYtVIktv1sDBw60+h346quvrJ6vi/cNAElJSZgyZQoOHDiAnTt3QqfToX///sjPz5fPqex33GAwYPDgwdBqtdi/fz/Wr1+PdevWYe7cuc64JZvYct8AkJCQYPW5L1q0SH6uLt43ADRv3hxvvfUWjhw5gsOHD6Nfv34YOnQofv31VwD18/M2q+zegTr+mYsG7uDBgwKA+OOPP8p8vqCgQCiVSvH9999bHe/evbv417/+Ver8tLQ0AUAcO3as1HM3b94UEydOFE2aNBG+vr7igQceEMePH7e5rREREWLJkiUVngNAfPfddzZfszrmzZsnunbtWuZz2dnZQqVSiY0bN8rHzp49KwCI5OTkWmlfTbn9Z2w0GkVISIh455135GPZ2dnC3d1dfPXVV0IIIc6cOSMAiEOHDsnn/Pjjj0KSJPH333/XWturo6zfrXHjxomhQ4eW+5r6cN9mWVlZAoBISkoSQtj2O75161ahUChERkaGfM7KlSuFn5+f0Gg0tXsDVXT7fQshRN++fcW0adPKfU19uG+zRo0aidWrVzeYz9uS+d6FqPufeYOq7JQlJycHkiQhICCgzOf1ej0MBgM8PDysjnt6elpVMWwxYsQIZGVl4ccff8SRI0fQvXt3xMbG4saNG1VtvtOdP38eYWFhaN26NcaMGYP09HQAwJEjR6DT6RAXFyef26FDB7Ro0QLJycnOam6NSEtLQ0ZGhtW9+vv7o1evXvK9JicnIyAgAD179pTPiYuLg0KhQEpKSq232ZESExMRFBSEyMhITJ48GdevX5efq0/3nZOTAwAIDAwEYNvveHJyMjp37ozg4GD5nAEDBiA3N9fqX8yu7Pb7Nvviiy/QpEkTdOrUCXPmzEFBQYH8XH24b4PBgA0bNiA/Px/R0dEN5vMGSt+7WV3+zBv0RqBFRUWYPXs2Ro8eXe5mZr6+voiOjsbrr7+Ojh07Ijg4GF999RWSk5PRtm1bm99r7969OHjwILKysuRVJ//9739j06ZN+Oabb+pEWf92vXr1wrp16xAZGYkrV65g/vz5uO+++3D69GlkZGRArVaXCpHBwcHIyMhwToNriPl+LP8jNz82P5eRkYGgoCCr593c3BAYGFinfx4DBw7EI488glatWuHixYt46aWXMGjQICQnJ0OpVNab+zYajZg+fTruvfdedOrUCQBs+h3PyMgo8/fC/JyrK+u+AeCf//wnIiIiEBYWhpMnT2L27NlITU3Ft99+C6Bu3/epU6cQHR2NoqIi+Pj44LvvvkNUVBSOHz9e7z/v8u4dqPufeb0OO1988QWeeuop+fGPP/6I++67D4BpsPJjjz0GIQRWrlxZ4XU+++wzTJgwAc2aNYNSqUT37t0xevRoHDlyxOa2nDhxAnl5eWjcuLHV8cLCQly8eBHp6enyLxUAvPTSS3jppZdsvr4zDBo0SP6+S5cu6NWrFyIiIvD111/D09PTiS2j2jJq1Cj5+86dO6NLly5o06YNEhMTERsb68SWOdaUKVNw+vRpu6u5dV159235j7POnTsjNDQUsbGxuHjxItq0aVPbzXSoyMhIHD9+HDk5Ofjmm28wbtw4JCUlObtZtaK8e4+Kiqrzn3m9DjsPP/wwevXqJT9u1qwZgJKg88cff2D37t2VblHfpk0bJCUlIT8/H7m5uQgNDcXIkSPRunVrm9uSl5eH0NBQJCYmlnouICAAAQEBVjO4bi8Z1wUBAQFo3749Lly4gP/7v/+DVqtFdna21b+EMjMzyx1oXVeZ7yczMxOhoaHy8czMTHTr1k0+Jysry+p1er0eN27cqFc/j9atW6NJkya4cOECYmNj68V9T506VR5Y3bx5c/l4SEhIpb/jISEhOHjwoNX1zLN3XP3+y7vvspj/P3vhwgW0adOmTt+3Wq2Wq/Y9evTAoUOH8N5772HkyJH1+vMGyr/3Dz/8sNS5de0zr9djdnx9fdG2bVv5y9PTUw4658+fx08//VSq0lIRb29vhIaG4ubNm9i+fTuGDh1q82u7d++OjIwMuLm5WbWpbdu2aNKkSanjdTHs5OXl4eLFiwgNDUWPHj2gUqmwa9cu+fnU1FSkp6db9QHXB61atUJISIjVvebm5iIlJUW+1+joaGRnZ1tVA3fv3g2j0WgVyOu6v/76C9evX5dDX12+byEEpk6diu+++w67d+9Gq1atrJ635Xc8Ojoap06dsgp8O3fuhJ+fn1Ul15VUdt9lMf9DzfJzr2v3XR6j0QiNRlNvP++KmO+9LHXuM3fyAOlapdVqxcMPPyyaN28ujh8/Lq5cuSJ/WY4W79evn1i+fLn8eNu2beLHH38Uv//+u9ixY4fo2rWr6NWrl9BqtfI5169fF8eOHRM//PCDACA2bNggjh07Jq5cuSKEMM3Y6dOnj+jatavYvn27SEtLE/v27RMvvfSS1UyV22k0GnHs2DFx7NgxERoaKl544QVx7Ngxcf78efmcW7duyecAEO+++644duxYuTPMHGXmzJkiMTFRvpe4uDjRpEkTkZWVJYQQ4umnnxYtWrQQu3fvFocPHxbR0dEiOjq6RttUUyr7Gb/11lsiICBAbN68WZw8eVIMHTpUtGrVShQWFsrXGDhwoLjzzjtFSkqK2Lt3r2jXrp0YPXq0s27JJhXd961bt8QLL7wgkpOTRVpamvjpp59E9+7dRbt27URRUZF8jbp430IIMXnyZOHv7y8SExOt/l9RUFAgn1PZ77herxedOnUS/fv3F8ePHxfbtm0TTZs2FXPmzHHGLdmksvu+cOGCeO2118Thw4dFWlqa2Lx5s2jdurW4//775WvUxfsWQoj/9//+n0hKShJpaWni5MmT4v/9v/8nJEkSO3bsEELUz8/brKJ7rw+feYMKO+Zp4WV97dmzRz4vIiJCzJs3T378n//8R7Ru3Vqo1WoREhIipkyZIrKzs62uvXbt2jKva3md3Nxc8eyzz4qwsDChUqlEeHi4GDNmjEhPT7e7zX379pXP2bNnT5nnjBs3rpo/sYqNHDlShIaGCrVaLZo1ayZGjhwpLly4ID9fWFgonnnmGdGoUSPh5eUl/vGPf8jhr66p7GdsNBrFK6+8IoKDg4W7u7uIjY0VqampVte4fv26GD16tPDx8RF+fn7iiSeeELdu3XLC3diuovsuKCgQ/fv3F02bNhUqlUpERESIhIQEq6mnQtTN+xZClPv/irVr18rn2PI7funSJTFo0CDh6ekpmjRpImbOnCl0Ol0t343tKrvv9PR0cf/994vAwEDh7u4u2rZtK2bNmiVycnKsrlPX7lsIISZMmCAiIiKEWq0WTZs2FbGxsXLQEaJ+ft5mFd17ffjMJSGEqIGCEREREZFLqNdjdoiIiIgYdoiIiKheY9ghIiKieo1hh4iIiOo1hh0iIiKq1xh2iIiIqF5j2CEiIqJ6jWGHiJxu/PjxGDZsWK2/77p16yBJEiRJwvTp0x123ZYtW8rXzc7Odth1iWrSpUuXMHHiRLRq1Qqenp5o06YN5s2bB61Wa3XeyZMncd9998HDwwPh4eFYtGhRqWtt3LgRHTp0gIeHBzp37oytW7fW1m2UqV5vBEpEzidJUoXPz5s3D++99x6ctb6pn58fUlNT4e3t7bBrHjp0CL/88guGDx/usGsSOUJMTAzGjx+P8ePHl3rut99+g9FoxIcffoi2bdvi9OnTSEhIQH5+Pv79738DMO37179/f8TFxWHVqlU4deoUJkyYgICAAHln9P3792P06NFYuHAhHnroIXz55ZcYNmwYjh49ik6dOtXm7ZZw8grORFTPWe6vtHTpUuHn52d1zJlbR6xdu1b4+/vXyLXNW23cvHmzRq5PVBV9+/a12vKkMosWLRKtWrWSH69YsUI0atTIaj/J2bNni8jISPnxY489JgYPHmx1nV69eomnnnqq3PcZN26cGDp0qNWxadOmWW2NtHHjRtGpUyfh4eEhAgMDRWxsrMjLy7PpPtiNRUQ1KiQkRP7y9/eHJElWx3x8fEp1Y8XExODZZ5/F9OnT0ahRIwQHB+Pjjz9Gfn4+nnjiCfj6+qJt27b48ccfrd7r9OnTGDRoEHx8fBAcHIyxY8fi2rVrdre5ZcuWWLBgASZMmABfX1+0aNECH330kfy8VqvF1KlTERoaCg8PD0RERGDhwoVV/hkRuaqcnBwEBgbKj5OTk3H//fdDrVbLxwYMGIDU1FTcvHlTPicuLs7qOgMGDEBycnKV23HlyhWMHj0aEyZMwNmzZ5GYmIhHHnnE5oowww4RuaT169ejSZMmOHjwIJ599llMnjwZI0aMwD333IOjR4+if//+GDt2LAoKCgAA2dnZ6NevH+68804cPnwY27ZtQ2ZmJh577LEqvf/ixYvRs2dPHDt2DM888wwmT56M1NRUAMCyZcuwZcsWfP3110hNTcUXX3yBli1bOurWiVzChQsXsHz5cjz11FPysYyMDAQHB1udZ36ckZFR4Tnm56viypUr0Ov1eOSRR9CyZUt07twZzzzzDHx8fGx6PcMOEbmkrl274uWXX0a7du0wZ84ceHh4oEmTJkhISEC7du0wd+5cXL9+HSdPngQAvP/++7jzzjuxYMECdOjQAXfeeSc++eQT7NmzB+fOnbP7/R988EE888wzaNu2LWbPno0mTZpgz549AID09HS0a9cOffr0QUREBPr06YPRo0c79P6JHGHBggXw8fGRv3755Rc8/fTTVsfS09NLve7vv//GwIEDMWLECCQkJDih5da6du2K2NhYdO7cGSNGjMDHH38sV5JswbBDRC6pS5cu8vdKpRKNGzdG586d5WPmfzlmZWUBAE6cOIE9e/ZY/U+8Q4cOAICLFy9W6/3NXW/m9xo/fjyOHz+OyMhIPPfcc9ixY4f9N0hUC55++mkcP35c/urZsydee+01q2NhYWFWr7l8+TIeeOAB3HPPPVbdt4CpWzozM9PqmPlxSEhIheeYn7eVwWCQv1cqldi5cyd+/PFHREVFYfny5YiMjERaWppN12LYISKXpFKprB5LkmR1zDzLy2g0AgDy8vIwZMgQq/+JHz9+HOfPn8f999/vkPc3v1f37t2RlpaG119/HYWFhXjsscfw6KOP2v0eRDUtMDAQbdu2lb88PT0RFBRkdczNrWRi9t9//42YmBj06NEDa9euhUJhHROio6Px888/Q6fTycd27tyJyMhINGrUSD5n165dVq/buXMnoqOjK2zr7QHp999/t3osSRLuvfdezJ8/H8eOHYNarcZ3331n08+BU8+JqF7o3r07/vvf/6Jly5ZW//OuKX5+fhg5ciRGjhyJRx99FAMHDsSNGzesBnMS1SXmoBMREYF///vfuHr1qvycuSrzz3/+E/Pnz8fEiRMxe/ZsnD59Gu+99x6WLFkinztt2jT07dsXixcvxuDBg7FhwwYcPny4VJXodikpKfj4448RGxuL3bt3Y/v27WjTpg3S0tKQlZWFXbt2oX///ggKCkJKSgquXr2Kjh072nRvrOwQUb0wZcoU3LhxA6NHj8ahQ4dw8eJFbN++HU888YRVOdwR3n33XXz11Vf47bffcO7cOWzcuBEhISEICAhw6PsQ1aadO3fiwoUL2LVrF5o3b47Q0FD5y8zf3x87duxAWloaevTogZkzZ2Lu3LnyGjsAcM899+DLL7/ERx99hK5du+Kbb77Bpk2bKl1j54EHHsB///tfdOzYER9//DHWrl2LK1eu4J133oGfnx9+/vlnPPjgg2jfvj1efvllLF68GIMGDbLp3ljZIaJ6ISwsDPv27cPs2bPRv39/aDQaREREYODAgaVK8dXl6+uLRYsW4fz581AqlbjrrruwdetWh78PkaMlJiaW+1x5iw3erkuXLvjll18qPGfEiBEYMWKEXW3z9fXFpk2brI6NHTtW/n7btm12Xc+SJGydpE5EVM+sW7cO06dPr5EtHRITE/HAAw/g5s2brPgQVWL8+PHIzs4uFXYchf8MIaIGLScnBz4+Ppg9e7bDrnnHHXfYXF4noprHyg4RNVi3bt2SZ4AEBASgSZMmDrnuH3/8Ic9Wad26Nbu3iJyMYYeIiIjqNf5zg4iIiOo1hh0iIiKq1xh2iIiIqF5j2CEiIqJ6jWGHiIiI6jWGHSIiIqrXGHaIiIioXmPYISIionqNYYeIiIjqtf8PFoaN0Ju/fggAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f, ax = compiled_sched.plot_pulse_diagram(x_range=(200e-6, 200.4e-6))" ] } ], "metadata": { "file_format": "mystnb", "kernelspec": { "display_name": "python3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.20" }, "mystnb": { "execution_timeout": 120 }, "source_map": [ 8, 38, 47, 53, 60, 73, 81, 106, 129, 144, 153, 162, 167, 171, 175, 188, 197, 202, 205, 212, 215, 220, 225, 229, 235, 240, 244, 248, 251, 269, 283, 287, 295, 300, 303, 326, 357, 364, 376, 394, 399, 406 ] }, "nbformat": 4, "nbformat_minor": 5 }