corrections =========== .. py:module:: quantify_scheduler.backends.corrections .. autoapi-nested-parse:: Pulse and acquisition corrections for hardware compilation. Module Contents --------------- Functions ~~~~~~~~~ .. autoapisummary:: quantify_scheduler.backends.corrections.determine_relative_latency_corrections quantify_scheduler.backends.corrections.distortion_correct_pulse quantify_scheduler.backends.corrections._is_distortion_correctable quantify_scheduler.backends.corrections.apply_software_distortion_corrections Attributes ~~~~~~~~~~ .. autoapisummary:: quantify_scheduler.backends.corrections.logger .. py:data:: logger .. py:function:: determine_relative_latency_corrections(hardware_cfg: quantify_scheduler.backends.types.common.HardwareCompilationConfig | dict[str, Any], schedule: quantify_scheduler.schedules.schedule.Schedule | None = None) -> dict[str, float] Generates the latency configuration dict for all port-clock combinations that are present in the schedule (or in the hardware config, if an old-style zhinst config is passed). This is done by first setting unspecified latency corrections to zero, and then subtracting the minimum latency from all latency corrections. .. py:function:: distortion_correct_pulse(pulse_data: dict[str, Any], distortion_correction: quantify_scheduler.backends.types.common.SoftwareDistortionCorrection) -> quantify_scheduler.operations.pulse_library.NumericalPulse Sample pulse and apply filter function to the sample to distortion correct it. :param pulse_data: Definition of the pulse. :param distortion_correction: The distortion_correction configuration for this pulse. :returns: The sampled, distortion corrected pulse wrapped in a ``NumericalPulse``. .. py:function:: _is_distortion_correctable(operation: quantify_scheduler.operations.operation.Operation) -> bool Checks whether distortion corrections can be applied to the given operation. .. py:function:: apply_software_distortion_corrections(operation: quantify_scheduler.operations.operation.Operation | quantify_scheduler.schedules.schedule.Schedule, distortion_corrections: dict) -> quantify_scheduler.operations.operation.Operation | quantify_scheduler.schedules.schedule.Schedule | None Apply distortion corrections to operations in the schedule. Defined via the hardware configuration file, example: .. code-block:: "distortion_corrections": { "q0:fl-cl0.baseband": { "filter_func": "scipy.signal.lfilter", "input_var_name": "x", "kwargs": { "b": [0.0, 0.5, 1.0], "a": [1] }, "clipping_values": [-2.5, 2.5] } } Clipping values are the boundaries to which the corrected pulses will be clipped, upon exceeding, these are optional to supply. For pulses in need of correcting (indicated by their port-clock combination) we are **only** replacing the dict in ``"pulse_info"`` associated to that specific pulse. This means that we can have a combination of corrected (i.e., pre-sampled) and uncorrected pulses in the same operation. Note that we are **not** updating the ``"operation_id"`` key, used to reference the operation from schedulables. :param operation: The operation that contains operations that are to be distortion corrected. Note, this function updates the operation. :param distortion_corrections: The distortion_corrections configuration of the setup. :returns: The new operation with distortion corrected operations, if it needs to be replaced. If it doesn't need to be replaced in the schedule or control flow, it returns ``None``. :Warns: **RuntimeWarning** -- If distortion correction can not be applied to the type of Operation in the schedule. :raises KeyError: when elements are missing in distortion correction config for a port-clock combination. :raises KeyError: when clipping values are supplied but not two values exactly, min and max.