HardwareCompilationConfig
migration guide#
The HardwareCompilationConfig
replaces the old-style unvalidated JSON/dict hardware configuration, and restructures the contents into "hardware_description"
, "hardware_options"
and "connectivity"
(these fields are described in detail in Hardware compilation configuration). Using this new-style class has the advantage that all mutable and backend agnostic parameters for compiling between quantum-device and control-hardware layers are grouped in "hardware_options"
, separated from static and backend specific parameters for compiling between control-hardware and hardware-instructions layers, which are grouped in "hardware_options"
and "connectivity"
. In addition, the new-style configuration is validated automatically.
Here, we describe how to migrate from the old-style configuration to the new one for the current hardware backends, which each define their own HardwareCompilationConfig
datastructure with backend-specific fields (e.g., QbloxHardwareCompilationConfig
and ZIHardwareCompilationConfig
).
Custom backends
If you have implemented a custom backend, or have added custom instruments and/or options to the Qblox or Zurich Instruments backends, you will need to define your own HardwareCompilationConfig
datastructure, as is already done for the Qblox and Zurich Instruments backends.
Qblox#
The QbloxHardwareCompilationConfig
inherits from the HardwareCompilationConfig
and contains the following backend-specific fields:
The
QbloxHardwareDescription
, which specifies the instruments that are used in the setup, along with their instrument-specific settings. For the Qblox Cluster, we refer to the Hardware description for clusters section for the allowed instrument types and settings.The
QbloxHardwareOptions
, which adds some backend-specific options to the genericHardwareOptions
(see Hardware options for more details).The
compilation_passes
field, which specifies the compilation passes that are used to compile the schedule. In the example below, we do not specify the compilation passes, which means that the default passes are used.
To show how to migrate, we first load an example old-style hardware configuration for the Qblox backend:
import rich
from quantify_scheduler.backends.qblox.hardware_config_transmon_old_style import hardware_config as hardware_config_transmon_old_style
rich.print(hardware_config_transmon_old_style)
Show code cell output
{ 'backend': 'quantify_scheduler.backends.qblox_backend.hardware_compile', 'latency_corrections': {'q4:mw-q4.01': 8e-09, 'q5:mw-q5.01': 4e-09}, 'distortion_corrections': { 'q0:fl-cl0.baseband': { 'filter_func': 'scipy.signal.lfilter', 'input_var_name': 'x', 'kwargs': {'b': [0, 0.25, 0.5], 'a': [1]}, 'clipping_values': [-2.5, 2.5], 'sampling_rate': 1000000000.0 } }, 'cluster0': { 'ref': 'internal', 'instrument_type': 'Cluster', 'sequence_to_file': False, 'cluster0_module1': { 'instrument_type': 'QCM', 'sequence_to_file': False, 'complex_output_0': { 'lo_name': 'lo0', 'auto_lo_cal': <LoCalEnum.OFF: 'off'>, 'dc_mixer_offset_I': None, 'dc_mixer_offset_Q': None, 'downconverter_freq': None, 'marker_debug_mode_enable': True, 'distortion_correction_latency_compensation': <DistortionCorrectionLatencyEnum.NO_DELAY_COMP: 0>, 'mix_lo': True, 'portclock_configs': [ { 'port': 'q4:mw', 'clock': 'q4.01', 'interm_freq': 200000000.0, 'auto_sideband_cal': <SidebandCalEnum.OFF: 'off'>, 'mixer_amp_ratio': 0.9999, 'mixer_phase_error_deg': -4.2 } ] } }, 'cluster0_module2': { 'instrument_type': 'QCM_RF', 'sequence_to_file': False, 'complex_output_0': { 'lo_freq': None, 'output_att': 4, 'portclock_configs': [ {'port': 'q0:mw', 'clock': 'q0.01', 'interm_freq': 50000000.0}, {'port': 'q5:mw', 'clock': 'q5.01', 'interm_freq': 50000000.0} ] }, 'complex_output_1': { 'lo_freq': 5000000000.0, 'output_att': 6, 'portclock_configs': [{'port': 'q6:mw', 'clock': 'q6.01', 'interm_freq': None}] }, 'digital_output_0': {'portclock_configs': [{'port': 'q0:switch', 'clock': 'digital'}]} }, 'cluster0_module3': { 'instrument_type': 'QRM', 'sequence_to_file': False, 'complex_output_0': { 'lo_name': 'lo1', 'auto_lo_cal': <LoCalEnum.OFF: 'off'>, 'dc_mixer_offset_I': -0.054, 'dc_mixer_offset_Q': -0.034, 'input_gain_I': 2, 'input_gain_Q': 3, 'portclock_configs': [ { 'auto_sideband_cal': <SidebandCalEnum.OFF: 'off'>, 'mixer_amp_ratio': 0.9997, 'mixer_phase_error_deg': -4.0, 'port': 'q4:res', 'clock': 'q4.ro', 'interm_freq': None } ] }, 'complex_input_0': { 'portclock_configs': [ { 'port': 'qe0:optical_readout', 'clock': 'qe0.ge0', 'ttl_acq_threshold': 0.5, 'init_gain_awg_path_I': 1.0, 'init_gain_awg_path_Q': 1.0, 'init_offset_awg_path_I': 0.0, 'init_offset_awg_path_Q': 0.0, 'qasm_hook_func': None } ] } }, 'cluster0_module4': { 'instrument_type': 'QRM_RF', 'sequence_to_file': False, 'complex_input_0': { 'lo_freq': None, 'input_att': 10, 'portclock_configs': [{'port': 'q5:res', 'clock': 'q5.ro', 'interm_freq': 50000000.0}] }, 'complex_output_0': { 'lo_freq': 7800000000.0, 'output_att': 12, 'input_att': 4, 'portclock_configs': [{'port': 'q0:res', 'clock': 'q0.ro', 'interm_freq': None}] } }, 'cluster0_module7': { 'instrument_type': 'QCM', 'sequence_to_file': False, 'real_output_0': { 'lo_name': 'lo_real', 'portclock_configs': [{'port': 'q7:mw', 'clock': 'q7.01', 'interm_freq': None}] } }, 'cluster0_module10': { 'instrument_type': 'QCM', 'sequence_to_file': False, 'real_output_0': {'portclock_configs': [{'port': 'q0:fl', 'clock': 'cl0.baseband'}]}, 'real_output_1': {'portclock_configs': [{'port': 'q1:fl', 'clock': 'cl0.baseband'}]}, 'real_output_2': {'portclock_configs': [{'port': 'q2:fl', 'clock': 'cl0.baseband'}]}, 'real_output_3': {'portclock_configs': [{'port': 'q3:fl', 'clock': 'cl0.baseband'}]} }, 'cluster0_module12': { 'instrument_type': 'QCM', 'sequence_to_file': False, 'real_output_0': {'portclock_configs': [{'port': 'q4:fl', 'clock': 'cl0.baseband'}]} } }, 'lo0': {'instrument_type': 'LocalOscillator', 'frequency': None, 'power': 1}, 'lo1': {'instrument_type': 'LocalOscillator', 'frequency': 7200000000.0, 'power': 1}, 'lo_real': {'instrument_type': 'LocalOscillator', 'frequency': 5000000000.0, 'power': 1} }
This config can be migrated to the new QbloxHardwareCompilationConfig
datastructure using the built-in validation method .model_validate
, which will recognize the old-style config and convert it to the new-style config:
from quantify_scheduler.backends.qblox_backend import QbloxHardwareCompilationConfig
hardware_config_transmon_new_style = QbloxHardwareCompilationConfig.model_validate(
hardware_config_transmon_old_style
)
rich.print(hardware_config_transmon_new_style)
Show code cell output
/usr/local/lib/python3.9/site-packages/quantify_scheduler/backends/qblox/helpers.py:1421: FutureWarning: The hardware configuration dictionary is deprecated and will not be supported in quantify-scheduler >= 1.0.0. Please use a `HardwareCompilationConfig` instead. For more information on how to migrate from old- to new-style hardware specification, please visit https://quantify-os.org/docs/quantify-scheduler/dev/examples/hardware_config_migration.html in the documentation.
warnings.warn(
QbloxHardwareCompilationConfig( config_type=<class 'quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig'>, hardware_description={ 'cluster0': ClusterDescription( instrument_type='Cluster', ref='internal', sequence_to_file=False, modules={ 1: QCMDescription( instrument_type='QCM', sequence_to_file=False, complex_output_0=ComplexChannelDescription( marker_debug_mode_enable=True, mix_lo=True, downconverter_freq=None, distortion_correction_latency_compensation=<DistortionCorrectionLatencyEnum.NO_DELAY_COMP: 0> ), complex_output_1=None, real_output_0=None, real_output_1=None, real_output_2=None, real_output_3=None, digital_output_0=None, digital_output_1=None, digital_output_2=None, digital_output_3=None ), 2: QCMRFDescription( instrument_type='QCM_RF', sequence_to_file=False, complex_output_0=None, complex_output_1=None, digital_output_0=None, digital_output_1=None ), 3: QRMDescription( instrument_type='QRM', sequence_to_file=False, complex_output_0=None, complex_input_0=None, real_output_0=None, real_output_1=None, real_input_0=None, real_input_1=None, digital_output_0=None, digital_output_1=None, digital_output_2=None, digital_output_3=None ), 4: QRMRFDescription( instrument_type='QRM_RF', sequence_to_file=False, complex_output_0=None, complex_input_0=None, digital_output_0=None, digital_output_1=None ), 7: QCMDescription( instrument_type='QCM', sequence_to_file=False, complex_output_0=None, complex_output_1=None, real_output_0=None, real_output_1=None, real_output_2=None, real_output_3=None, digital_output_0=None, digital_output_1=None, digital_output_2=None, digital_output_3=None ), 10: QCMDescription( instrument_type='QCM', sequence_to_file=False, complex_output_0=None, complex_output_1=None, real_output_0=None, real_output_1=None, real_output_2=None, real_output_3=None, digital_output_0=None, digital_output_1=None, digital_output_2=None, digital_output_3=None ), 12: QCMDescription( instrument_type='QCM', sequence_to_file=False, complex_output_0=None, complex_output_1=None, real_output_0=None, real_output_1=None, real_output_2=None, real_output_3=None, digital_output_0=None, digital_output_1=None, digital_output_2=None, digital_output_3=None ) } ), 'iq_mixer_lo0': IQMixerDescription(instrument_type='IQMixer'), 'iq_mixer_lo1': IQMixerDescription(instrument_type='IQMixer'), 'iq_mixer_lo_real': IQMixerDescription(instrument_type='IQMixer'), 'lo0': LocalOscillatorDescription( instrument_type='LocalOscillator', instrument_name=None, generic_icc_name=None, frequency_param='frequency', power_param='power', power=1 ), 'lo1': LocalOscillatorDescription( instrument_type='LocalOscillator', instrument_name=None, generic_icc_name=None, frequency_param='frequency', power_param='power', power=1 ), 'lo_real': LocalOscillatorDescription( instrument_type='LocalOscillator', instrument_name=None, generic_icc_name=None, frequency_param='frequency', power_param='power', power=1 ) }, hardware_options=QbloxHardwareOptions( latency_corrections={'q4:mw-q4.01': 8e-09, 'q5:mw-q5.01': 4e-09}, distortion_corrections={ 'q0:fl-cl0.baseband': SoftwareDistortionCorrection( filter_func='scipy.signal.lfilter', input_var_name='x', kwargs={'b': [0, 0.25, 0.5], 'a': [1]}, clipping_values=[-2.5, 2.5], sampling_rate=1000000000.0 ) }, modulation_frequencies={ 'q4:mw-q4.01': ModulationFrequencies(interm_freq=200000000.0, lo_freq=None), 'q0:mw-q0.01': ModulationFrequencies(interm_freq=50000000.0, lo_freq=None), 'q5:mw-q5.01': ModulationFrequencies(interm_freq=50000000.0, lo_freq=None), 'q6:mw-q6.01': ModulationFrequencies(interm_freq=None, lo_freq=5000000000.0), 'q4:res-q4.ro': ModulationFrequencies(interm_freq=None, lo_freq=7200000000.0), 'q5:res-q5.ro': ModulationFrequencies(interm_freq=50000000.0, lo_freq=None), 'q0:res-q0.ro': ModulationFrequencies(interm_freq=None, lo_freq=7800000000.0), 'q7:mw-q7.01': ModulationFrequencies(interm_freq=None, lo_freq=5000000000.0) }, mixer_corrections={ 'q4:mw-q4.01': QbloxMixerCorrections( dc_offset_i=None, dc_offset_q=None, amp_ratio=0.9999, phase_error=-4.2, auto_lo_cal=<LoCalEnum.OFF: 'off'>, auto_sideband_cal=<SidebandCalEnum.OFF: 'off'> ), 'q4:res-q4.ro': QbloxMixerCorrections( dc_offset_i=-0.054, dc_offset_q=-0.034, amp_ratio=0.9997, phase_error=-4.0, auto_lo_cal=<LoCalEnum.OFF: 'off'>, auto_sideband_cal=<SidebandCalEnum.OFF: 'off'> ) }, input_gain={'q4:res-q4.ro': ComplexInputGain(gain_I=2, gain_Q=3)}, output_att={'q0:mw-q0.01': 4, 'q5:mw-q5.01': 4, 'q6:mw-q6.01': 6, 'q0:res-q0.ro': 12}, input_att={'q5:res-q5.ro': 10, 'q0:res-q0.ro': 4}, sequencer_options={ 'qe0:optical_readout-qe0.ge0': SequencerOptions( init_offset_awg_path_I=0.0, init_offset_awg_path_Q=0.0, init_gain_awg_path_I=1.0, init_gain_awg_path_Q=1.0, ttl_acq_threshold=0.5, qasm_hook_func=None ) }, digitization_thresholds=None ), connectivity=Connectivity(graph=<quantify_scheduler.structure.types.Graph object at 0x7ee25234bfd0>), compilation_passes=[ SimpleNodeConfig( name='compile_long_square_pulses_to_awg_offsets', compilation_func=<function compile_long_square_pulses_to_awg_offsets at 0x7ee25234df70> ), SimpleNodeConfig( name='qblox_compile_conditional_playback', compilation_func=<function compile_conditional_playback at 0x7ee25234dee0> ), SimpleNodeConfig( name='qblox_hardware_compile', compilation_func=<function hardware_compile at 0x7ee252351040> ) ], allow_off_grid_nco_ops=None )
This new-style config can then be passed to the QuantumDevice
in order to compile a schedule for the Qblox backend, as is shown in the Compilation section of the Tutorial: Compiling to Hardware.
The config can also be JSON serialized and deserialized using the built-in methods .model_dump_json
and .model_validate_json
, respectively, to make storing, visualization and modification easier.
serialized_config = hardware_config_transmon_new_style.model_dump_json(exclude_unset=True)
deserialized_config = QbloxHardwareCompilationConfig.model_validate_json(serialized_config)
Here we passed exclude_unset=True
to .model_dump_json
to prevent unnecessary clutter in the json
(e.g. None
and default settings).
Zurich Instruments#
The ZIHardwareCompilationConfig
inherits from the HardwareCompilationConfig
and contains the following backend-specific fields:
The
QbloxHardwareDescription
, which specifies the instruments that are used in the setup, along with their instrument-specific settings. We refer to the Zurich Instruments Hardware Description section for the allowed instrument types and settings.The
ZIHardwareOptions
, which adds backend-specific options to the genericHardwareOptions
, see Hardware Options for more details.The
compilation_passes
field, which specifies the compilation passes that are used to compile the schedule. In the example below, we do not specify the compilation passes, which means that the default passes are used.
To show how to migrate, we first load an example old-style hardware configuration for the Zurich Instruments backend:
import rich
from quantify_scheduler.backends.zhinst.zhinst_hardware_config_old_style import hardware_config as zhinst_hardware_config_old_style
rich.print(zhinst_hardware_config_old_style)
Show code cell output
{ 'backend': 'quantify_scheduler.backends.zhinst_backend.compile_backend', 'latency_corrections': { 'q0:mw-q0.01': 9.5e-08, 'q1:mw-q1.01': 9.5e-08, 'q0:res-q0.ro': -9.5e-08, 'q1:res-q1.ro': -9.5e-08 }, 'distortion_corrections': { 'q0:fl-cl0.baseband': { 'filter_func': 'scipy.signal.lfilter', 'input_var_name': 'x', 'kwargs': {'b': [0, 0.25, 0.5], 'a': [1]}, 'clipping_values': [-2.5, 2.5], 'sampling_rate': 1000000000.0 } }, 'local_oscillators': [ { 'unique_name': 'lo0_ch1', 'instrument_name': 'lo0', 'frequency': {'ch1.frequency': None}, 'frequency_param': 'ch1.frequency', 'power': {'power': 13} }, { 'unique_name': 'lo0_ch2', 'instrument_name': 'lo0', 'frequency': {'ch2.frequency': None}, 'frequency_param': 'ch2.frequency', 'power': {'ch2.power': 10} }, { 'unique_name': 'lo1', 'instrument_name': 'lo1', 'frequency': {'frequency': None}, 'frequency_param': 'frequency', 'power': {'power': 16} } ], 'devices': [ { 'name': 'ic_hdawg0', 'type': 'HDAWG8', 'clock_select': 0, 'ref': 'int', 'channelgrouping': 0, 'channel_0': { 'port': 'q0:mw', 'clock': 'q0.01', 'mode': 'complex', 'modulation': {'type': 'premod', 'interm_freq': -100000000.0}, 'local_oscillator': 'lo0_ch1', 'markers': ['AWG_MARKER1', 'AWG_MARKER2'], 'gain1': 1.0, 'gain2': 1.0, 'mixer_corrections': { 'amp_ratio': 0.95, 'phase_error': 0.07, 'dc_offset_i': -0.0542, 'dc_offset_q': -0.0328 }, 'trigger': None }, 'channel_1': { 'port': 'q1:mw', 'clock': 'q1.01', 'mode': 'complex', 'modulation': {'type': 'premod', 'interm_freq': -100000000.0}, 'local_oscillator': 'lo0_ch2', 'markers': ['AWG_MARKER1', 'AWG_MARKER2'], 'gain1': 1.0, 'gain2': 1.0, 'mixer_corrections': { 'amp_ratio': 0.95, 'phase_error': 0.07, 'dc_offset_i': 0.042, 'dc_offset_q': 0.028 }, 'trigger': None }, 'channel_2': { 'port': 'q2:mw', 'clock': 'q2.01', 'mode': 'complex', 'modulation': {'type': 'premod', 'interm_freq': -100000000.0}, 'local_oscillator': 'lo0_ch2', 'markers': ['AWG_MARKER1', 'AWG_MARKER2'], 'gain1': 1.0, 'gain2': 1.0, 'mixer_corrections': { 'amp_ratio': 0.95, 'phase_error': 0.07, 'dc_offset_i': 0.042, 'dc_offset_q': 0.028 }, 'trigger': None }, 'channel_3': { 'port': 'q3:mw', 'clock': 'q3.01', 'mode': 'complex', 'modulation': {'type': 'premod', 'interm_freq': -100000000.0}, 'local_oscillator': 'lo0_ch2', 'markers': ['AWG_MARKER1', 'AWG_MARKER2'], 'gain1': 1.0, 'gain2': 1.0, 'mixer_corrections': { 'amp_ratio': 0.95, 'phase_error': 0.07, 'dc_offset_i': 0.042, 'dc_offset_q': 0.028 }, 'trigger': None } }, { 'name': 'ic_uhfqa0', 'type': 'UHFQA', 'ref': 'ext', 'channel_0': { 'port': 'q0:res', 'clock': 'q0.ro', 'mode': 'real', 'modulation': {'type': 'premod', 'interm_freq': 200000000.0}, 'local_oscillator': 'lo1', 'trigger': 2, 'markers': [] } } ] }
This config can be migrated to the new ZIHardwareCompilationConfig
datastructure using the built-in validation, which will recognize the old-style config and convert it to the new-style config:
from quantify_scheduler.backends.zhinst_backend import ZIHardwareCompilationConfig
zhinst_hardware_config_new_style = ZIHardwareCompilationConfig.model_validate(
zhinst_hardware_config_old_style
)
rich.print(zhinst_hardware_config_new_style)
Show code cell output
ZIHardwareCompilationConfig( config_type=<class 'quantify_scheduler.backends.zhinst_backend.ZIHardwareCompilationConfig'>, hardware_description={ 'lo0_ch1': LocalOscillatorDescription( instrument_type='LocalOscillator', instrument_name='lo0', generic_icc_name=None, frequency_param='ch1.frequency', power_param='power', power=13 ), 'lo0_ch2': LocalOscillatorDescription( instrument_type='LocalOscillator', instrument_name='lo0', generic_icc_name=None, frequency_param='ch2.frequency', power_param='ch2.power', power=10 ), 'lo1': LocalOscillatorDescription( instrument_type='LocalOscillator', instrument_name='lo1', generic_icc_name=None, frequency_param='frequency', power_param='power', power=16 ), 'ic_hdawg0': ZIHDAWG8Description( instrument_type='HDAWG8', ref='int', channelgrouping=0, clock_select=0, channel_0=ZIChannelDescription(mode='complex', markers=['AWG_MARKER1', 'AWG_MARKER2'], trigger=None), channel_1=ZIChannelDescription(mode='complex', markers=['AWG_MARKER1', 'AWG_MARKER2'], trigger=None), channel_2=ZIChannelDescription(mode='complex', markers=['AWG_MARKER1', 'AWG_MARKER2'], trigger=None), channel_3=ZIChannelDescription(mode='complex', markers=['AWG_MARKER1', 'AWG_MARKER2'], trigger=None) ), 'iqm_ic_hdawg0_ch0': IQMixerDescription(instrument_type='IQMixer'), 'iqm_ic_hdawg0_ch1': IQMixerDescription(instrument_type='IQMixer'), 'iqm_ic_hdawg0_ch2': IQMixerDescription(instrument_type='IQMixer'), 'iqm_ic_hdawg0_ch3': IQMixerDescription(instrument_type='IQMixer'), 'ic_uhfqa0': ZIUHFQADescription( instrument_type='UHFQA', ref='ext', channel_0=ZIChannelDescription(mode='real', markers=[], trigger=2) ), 'iqm_ic_uhfqa0_ch0': IQMixerDescription(instrument_type='IQMixer') }, hardware_options=ZIHardwareOptions( latency_corrections={ 'q0:mw-q0.01': 9.5e-08, 'q1:mw-q1.01': 9.5e-08, 'q0:res-q0.ro': -9.5e-08, 'q1:res-q1.ro': -9.5e-08 }, distortion_corrections={ 'q0:fl-cl0.baseband': SoftwareDistortionCorrection( filter_func='scipy.signal.lfilter', input_var_name='x', kwargs={'b': [0, 0.25, 0.5], 'a': [1]}, clipping_values=[-2.5, 2.5], sampling_rate=1000000000.0 ) }, modulation_frequencies={ 'q0:mw-q0.01': ModulationFrequencies(interm_freq=-100000000.0, lo_freq=None), 'q1:mw-q1.01': ModulationFrequencies(interm_freq=-100000000.0, lo_freq=None), 'q2:mw-q2.01': ModulationFrequencies(interm_freq=-100000000.0, lo_freq=None), 'q3:mw-q3.01': ModulationFrequencies(interm_freq=-100000000.0, lo_freq=None), 'q0:res-q0.ro': ModulationFrequencies(interm_freq=200000000.0, lo_freq=None) }, mixer_corrections={ 'q0:mw-q0.01': MixerCorrections( dc_offset_i=-0.0542, dc_offset_q=-0.0328, amp_ratio=0.95, phase_error=0.07 ), 'q1:mw-q1.01': MixerCorrections( dc_offset_i=0.042, dc_offset_q=0.028, amp_ratio=0.95, phase_error=0.07 ), 'q2:mw-q2.01': MixerCorrections( dc_offset_i=0.042, dc_offset_q=0.028, amp_ratio=0.95, phase_error=0.07 ), 'q3:mw-q3.01': MixerCorrections( dc_offset_i=0.042, dc_offset_q=0.028, amp_ratio=0.95, phase_error=0.07 ) }, output_gain={ 'q0:mw-q0.01': OutputGain(gain_I=1.0, gain_Q=1.0), 'q1:mw-q1.01': OutputGain(gain_I=1.0, gain_Q=1.0), 'q2:mw-q2.01': OutputGain(gain_I=1.0, gain_Q=1.0), 'q3:mw-q3.01': OutputGain(gain_I=1.0, gain_Q=1.0) } ), connectivity=Connectivity(graph=<quantify_scheduler.structure.types.Graph object at 0x7ee28c357ca0>), compilation_passes=[ SimpleNodeConfig(name='flatten_schedule', compilation_func=<function flatten_schedule at 0x7ee25055c430>), SimpleNodeConfig( name='zhinst_hardware_compile', compilation_func=<function compile_backend at 0x7ee25055c550> ) ] )
This new-style config can then be passed to the QuantumDevice
in order to compile a schedule for the Zurich Instruments backend, as is shown in the Compilation section of the Tutorial: Compiling to Hardware.