{ "cells": [ { "cell_type": "markdown", "id": "466a9a20", "metadata": {}, "source": [ "(sec-tutorial-schedulegettable)=\n", "\n", "# Tutorial: ScheduleGettable\n", "\n", "```{seealso}\n", "The complete source code of this tutorial can be found in\n", "\n", "{nb-download}`ScheduleGettable.ipynb`\n", "```\n", "\n", "This tutorial covers the {class}`~quantify_scheduler.gettables.ScheduleGettable` in-depth. If you're looking for more information on how to set up an experiment in general, please see {ref}`sec-tutorial-experiment`.\n", "\n", "The {class}`~quantify_scheduler.gettables.ScheduleGettable` forms the top-level interface to {mod}`quantify_scheduler`. Under the hood, it uses `quantify-scheduler` modules to compile {ref}`Schedules `, run them on your hardware and retrieve measurement data from the hardware. As the {class}`~quantify_scheduler.gettables.ScheduleGettable` uses functions that return {class}`~quantify_scheduler.schedules.schedule.Schedule`s, you can dynamically set function parameters during experiments.\n", "\n", "For those familiar with [quantify-core](https://quantify-os.org/docs/quantify-core), the interface of the {class}`~quantify_scheduler.gettables.ScheduleGettable` is also designed to be used as a [gettable](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#settables-and-gettables) for [MeasurementControl](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#measurement-control). This is convenient for large, possibly multi-dimensional measurement loops, as is demonstrated in {ref}`2D (and ND) measurement loops`.\n", "\n", "Two things are always required when using a {class}`~quantify_scheduler.gettables.ScheduleGettable`: a {ref}`QuantumDevice ` and a function that returns a {class}`~quantify_scheduler.schedules.schedule.Schedule`. We will set these up in a few example scenarios below and show how to use the {class}`~quantify_scheduler.gettables.ScheduleGettable`. More commonly used schedule functions are also included in `quantify-scheduler` out of the box. You can find them in {mod}`~.quantify_scheduler.schedules.spectroscopy_schedules`, {mod}`~.quantify_scheduler.schedules.timedomain_schedules` and {mod}`~.quantify_scheduler.schedules.trace_schedules`.\n", "\n", "(sec-schedulegettable-1dsweep-usage)=\n", "\n", "## 1D iterative measurement loop\n", "\n", "\n", "```{admonition} Setup and hardware configuration\n", "The device setup and hardware configuration for this tutorial can be viewed in the collapsed code cells. In places where you would communicate with actual hardware, dummy objects have been used. If you want to learn more about how to set up the {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` and hardware configuration, please see our other tutorials, in particular {ref}`sec-tutorial-experiment` and {ref}`sec-tutorial-compiling`.\n", "```" ] }, { "cell_type": "code", "execution_count": 1, "id": "63a666ca", "metadata": { "mystnb": { "code_prompt_show": "Set up the quantum device, dummy hardware and hardware configuration" }, "tags": [ "hide-cell" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Data will be saved in:\n", "/root/quantify-data\n" ] } ], "source": [ "from qblox_instruments import Cluster, ClusterType\n", "from quantify_core.data import handling as dh\n", "\n", "from quantify_scheduler import BasicTransmonElement, InstrumentCoordinator, QuantumDevice\n", "from quantify_scheduler.qblox import ClusterComponent, start_dummy_cluster_armed_sequencers\n", "\n", "# First, don't forget to set the data directory!\n", "dh.set_datadir() # change me!\n", "\n", "# We define a single transmon qubit as an element (BasicTransmonElement) of the\n", "# QuantumDevice, and populate the parameters with some reasonable values.\n", "\n", "# Device parameters\n", "ACQ_DELAY = 100e-9\n", "FREQ_01 = 4e9\n", "READOUT_AMP = 0.1\n", "READOUT_FREQ = 4.3e9\n", "PI_PULSE_AMP = 0.15\n", "LO_FREQ_QUBIT = 3.9e9\n", "LO_FREQ_READOUT = 4.5e9\n", "\n", "single_qubit_device = QuantumDevice(\"single_qubit_device\")\n", "\n", "q0 = BasicTransmonElement(\"q0\")\n", "single_qubit_device.add_element(q0)\n", "\n", "# Assign device parameters to transmon element\n", "q0.measure.pulse_amp(READOUT_AMP)\n", "q0.clock_freqs.readout(READOUT_FREQ)\n", "q0.clock_freqs.f01(FREQ_01)\n", "q0.measure.acq_delay(ACQ_DELAY)\n", "q0.rxy.amp180(PI_PULSE_AMP)\n", "\n", "# For this example, we will set up a Qblox cluster hardware setup with two modules: a\n", "# QRM-RF and a QCM-RF.\n", "\n", "# Note: if you are connecting to an actual cluster, you would provide the\n", "# 'identifier' argument (the ip address, device name or serial number) instead\n", "# of the 'dummy_cfg' argument.\n", "cluster = Cluster(\n", " \"cluster\",\n", " dummy_cfg={\n", " 1: ClusterType.CLUSTER_QRM_RF,\n", " 2: ClusterType.CLUSTER_QCM_RF,\n", " },\n", ")\n", "\n", "ic_cluster = ClusterComponent(cluster)\n", "\n", "# Temporarily fixing dummy cluster's deficiency.\n", "cluster.start_sequencer = lambda : start_dummy_cluster_armed_sequencers(ic_cluster)\n", "\n", "# We create an InstrumentCoordinator to control the cluster and add it to the\n", "# QuantumDevice.\n", "\n", "instrument_coordinator = InstrumentCoordinator(\"instrument_coordinator\")\n", "instrument_coordinator.add_component(ic_cluster)\n", "\n", "single_qubit_device.instr_instrument_coordinator(instrument_coordinator.name)\n", "\n", "# A basic hardware configuration will be used for the two cluster modules.\n", "\n", "hardware_cfg = {\n", " \"version\": \"0.2\",\n", " \"config_type\": \"quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig\",\n", " \"hardware_description\": {\n", " f\"{cluster.name}\": {\n", " \"instrument_type\": \"Cluster\",\n", " \"modules\": {\n", " \"1\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"2\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " }\n", " },\n", " \"ref\": \"internal\"\n", " }\n", " },\n", " \"hardware_options\": {\n", " \"modulation_frequencies\": {\n", " \"q0:res-q0.ro\": {\n", " \"lo_freq\": LO_FREQ_READOUT\n", " },\n", " \"q0:mw-q0.01\": {\n", " \"lo_freq\": LO_FREQ_QUBIT\n", " }\n", " }\n", " },\n", " \"connectivity\": {\n", " \"graph\": [\n", " [f\"{cluster.name}.module1.complex_output_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module1.complex_input_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module2.complex_output_0\", \"q0:mw\"]\n", " ]\n", " }\n", "}\n", "\n", "\n", "# This hardware configuration should also be added to the quantum device.\n", "single_qubit_device.hardware_config(hardware_cfg)" ] }, { "cell_type": "markdown", "id": "76c6afa4", "metadata": {}, "source": [ "For this experiment, we have set up a basic {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` called `single_qubit_device`, representing a single transmon qubit.\n", "\n", "We'll now define the schedule function. A valid schedule function must contain a `repetitions` (integer) parameter (see {ref}`Repetitions`), and can contain any number of additional parameters. It must return a {class}`~quantify_scheduler.schedules.schedule.Schedule` object.\n", "\n", "The schedule function can be parameterized to loop over different values. The parameters can be scalars or arrays. For example, the schedule function defined below takes an array of values for the parameter `times`. This is called a _batched_ measurement, as will be explained further in this tutorial." ] }, { "cell_type": "code", "execution_count": 2, "id": "dad1ea2d", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import Schedule\n", "from quantify_scheduler.operations import Measure, Reset, X\n", "\n", "def t1_sched(times, repetitions=1):\n", " schedule = Schedule(\"T1\", repetitions)\n", " for i, tau in enumerate(times):\n", " schedule.add(Reset(\"q0\"), label=f\"Reset {i}\")\n", " schedule.add(X(\"q0\"), label=f\"pi {i}\")\n", " # Measure tau seconds after the start of the X gate\n", " schedule.add(\n", " Measure(\"q0\", acq_index=i),\n", " ref_pt=\"start\",\n", " rel_time=tau,\n", " label=f\"Measurement {i}\",\n", " )\n", " return schedule" ] }, { "cell_type": "markdown", "id": "a864c2bb", "metadata": {}, "source": [ "Now, let's create the {class}`~quantify_scheduler.gettables.ScheduleGettable`. The {class}`~quantify_scheduler.gettables.ScheduleGettable` provides a convenient way to compile and execute schedules in just a few lines of code. The parameters can be set directly, with arrays and scalars, or through QCoDeS parameters, as shown below." ] }, { "cell_type": "code", "execution_count": 3, "id": "700593b6", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "from qcodes.instrument.parameter import ManualParameter\n", "\n", "from quantify_scheduler import ScheduleGettable\n", "\n", "# The points we want to measure.\n", "times = np.linspace(start=1.6e-7, stop=4.976e-5, num=125)\n", "\n", "# As QCoDeS parameter:\n", "time = ManualParameter(\"sample\", label=\"Sample time\", unit=\"s\")\n", "# Set the parameter. This can be done even after defining the gettable!\n", "time(times)\n", "\n", "# Or as array:\n", "time = times\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=t1_sched,\n", " schedule_kwargs={\"times\": time},\n", " batched=True\n", ")" ] }, { "cell_type": "markdown", "id": "ca84cbec", "metadata": {}, "source": [ "Note that `batched=True` here. This means we are doing a _batched_ measurement, which simply means that we tell the {class}`~quantify_scheduler.gettables.ScheduleGettable` to expect an array of values in the acquisition result. In this case, our schedule function creates one schedule for an array of times, and it includes an acquisition (the {class}`~quantify_scheduler.operations.gate_library.Measure` operation) for each point." ] }, { "cell_type": "code", "execution_count": 4, "id": "4f2f1a92", "metadata": { "mystnb": { "code_prompt_show": "Provide the dummy hardware with acquisition data" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "import xarray\n", "\n", "from quantify_scheduler.waveforms import soft_square\n", "\n", "from qblox_instruments import DummyScopeAcquisitionData, DummyBinnedAcquisitionData\n", "\n", "\n", "soft_sq_samples = round(q0.measure.integration_time() * 1e9)\n", "soft_sq_times = np.arange(soft_sq_samples)\n", "soft_sq = soft_square(t=soft_sq_times, amp=0.5)\n", "scope_data_real = np.zeros(16384) # Scope trace acquires 16384 points\n", "scope_data_real[:soft_sq_samples] = soft_sq\n", "scope_data_real += np.random.randn(16384) / 500 # add some \"noise\"\n", "\n", "# Create dummy scope data with the soft square pulse on the I path and noise on\n", "# the Q path\n", "scope_data = list(zip(scope_data_real, np.random.randn(16384) / 500))\n", "\n", "dummy_scope_acquisition_data = DummyScopeAcquisitionData(\n", " data=scope_data, out_of_range=(False, False), avg_cnt=(0, 0)\n", " )\n", "\n", "ic_cluster.instrument.set_dummy_scope_acquisition_data(\n", " slot_idx=1, sequencer=None, data=dummy_scope_acquisition_data\n", ")\n", "\n", "\n", "# Dataset with T1 experiment data\n", "example_dataset = xarray.open_dataset(\"../examples/dataset.hdf5\")\n", "\n", "def get_dummy_binned_acquisition_data(real: float, imag: float):\n", " return DummyBinnedAcquisitionData(data=(real, imag), thres=0, avg_cnt=0)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1,\n", " sequencer=0,\n", " acq_index_name=\"0\",\n", " data=[\n", " get_dummy_binned_acquisition_data(float(re) * 1024, float(im) * 1024)\n", " for re, im in zip(example_dataset[\"y0\"], example_dataset[\"y1\"])\n", " ],\n", ")" ] }, { "cell_type": "markdown", "id": "144d76cc", "metadata": {}, "source": [ "Let's now run the experiment and retrieve the acquisitions using the {meth}`~quantify_scheduler.gettables.ScheduleGettable.get` method." ] }, { "cell_type": "code", "execution_count": 5, "id": "1a13e272", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUP0lEQVR4nO3deVhU9eIG8HcGEWUbZAdFEXdzww0x1yTXuGlqaiZqtvy6apFLYddcyjIrS23Rsky9N9My5XqtKFPLNFNESS33NIxFRGKQRSA4vz/GGWeGMzNnYPZ5P88zj86Zs3znUJ6X7yoTBEEAERERkRuS27sARERERPbCIERERERui0GIiIiI3BaDEBEREbktBiEiIiJyWwxCRERE5LYYhIiIiMhtNbB3ARxdTU0NcnJy4OfnB5lMZu/iEBERkQSCIODmzZuIjIyEXG643odByIScnBxERUXZuxhERERUB1evXkWzZs0Mfs4gZIKfnx8A1Y309/e3c2mIiIhIiuLiYkRFRWme44YwCJmgbg7z9/dnECIiInIyprq1sLM0ERERuS0GISIiInJbDEJERETkthiEiIiIyG0xCBEREZHbYhAiIiIit8UgRERERG6LQYiIiIjcFoMQERERuS0GISIiInJbDEJERETkthiEiIiIyD6U2cDlA6o/7YSLrhIREZHtHd8M/O9pQKgBZHIgcTXQPcnmxWCNkL04QAomIiKyC2X2nRAEqP78X7JdnomsEbIHB0nBREREdlF46U4IUhOqgcLfAUVTmxaFNUK25kApmIiIyC4CW6kqArTJPIDAGJsXhUHI1oylYCIiInegaKpqDZF5qN7LPIDEVTavDQLYNGZ76hSsHYbslIKJiIjspnsS0GqIqiIgMMYuIQhgjZDtOVAKJiIisitFU6Blf7s+A1kjZA8OkoKJiIjcHYOQvSiaMgARERHZGZvGiIiIyG0xCBEREZHbYhByFJxpmoiIyObYR8gRcKZpIiIiu2CNkL1xpmkiIiK7cbog9O677yI6OhqNGjVCXFwcjh49anDf9evXo3///mjSpAmaNGmChIQEo/vbhaGZpq8eZVMZERGRlTlVENq2bRvmzJmDxYsX4/jx4+jatSuGDRuG/Px80f2///57TJo0Cfv378fhw4cRFRWFoUOHIjvbgcKF2HorkAFfPAJsSgRWdVI1nREREZHFyQRBEOxdCKni4uLQq1cvvPPOOwCAmpoaREVFYfbs2UhJSTF5fHV1NZo0aYJ33nkHSUnS+uAUFxdDoVBAqVTC39+/XuU36PhmVXOYUA1VNhVuv26TeQDJpzjvEBERkURSn99OUyNUWVmJjIwMJCQkaLbJ5XIkJCTg8OHDks5RVlaGqqoqBAYGGtynoqICxcXFOi+r656kCjpTdwPjPoJOCAJUAenXVDaTERERWZjTBKGCggJUV1cjLCxMZ3tYWBjy8vIkneO5555DZGSkTpjSt3z5cigUCs0rKiqqXuWWTL3eSlScSFMZgG+fZzMZERGRhTlNEKqvV199FVu3bsXOnTvRqFEjg/stWLAASqVS87p69aoNS4nai7Jq44gyIiIii3KaeYSCg4Ph4eGBa9eu6Wy/du0awsPDjR77xhtv4NVXX8V3332HLl26GN3Xy8sLXl5e9S5vvagXZf01VVUTpE2oVi3Wyv5CRERE9eY0NUINGzZEjx49sHfvXs22mpoa7N27F/Hx8QaPe+211/DSSy8hLS0NPXv2tEVRLUPRFLhrdO1mMpmHasV6IiIiqjenCUIAMGfOHKxfvx6bNm3CmTNn8OSTT6K0tBTTp08HACQlJWHBggWa/VesWIEXXngBGzZsQHR0NPLy8pCXl4eSkhJ7fQXz6DeTyTyAxFWsDSIiIrIQp2kaA4AJEybg+vXrWLRoEfLy8tCtWzekpaVpOlBnZWVBLr+T7dauXYvKykqMGzdO5zyLFy/GkiVLbFn0ulM3kxX+rqoJYggiIiKyGKeaR8gebDKPEBEREVmUy80jRERERGRpDELOSJnNdciIiIgswKn6CBFuL8dxe7V6mVzVmbq7tOVCiIiISBdrhJyJMvtOCAI4wSIREVE9sUbImRReuhOC1IRq4OpRoDBItZI9R5URERFJxiDkTAJbqZrDdMKQDPjiETaVERER1QGbxpxJrXXIbv/42FRGRERUJ6wRcjbaEyyWXge2T9f9nGuRERERScYg5IwUTVUvZXbtpjKuRUZERCQZm8acGdciIyIiqhfWCDk7rkVGRERUZwxCrkDdVEZERERmYdOYq+HyG0RERJKxRsiVcPkNIiIiszAIuQpDy2+E3gVUlXLWaSIiIhEMQq7C0PIbHw0BBIE1RERERCLYR8hVqJff0CcIt//krNNERET6GIRchaHlN7SpZ50mIiIiAGwacy3acwp5egMfJdSeddrTWzWqjH2GiIiIGIRcjvacQomrVc1hQrUqBHWZcCccsc8QERERg5BLM1ZDJNQAu54GGvoCUXGsHSIiIrfEPkKuTtEUaNlfNYRef1QZalSr16/qpJqDiIiIyM0wCLkLQ6PKAI4oIyIit8Ug5C5qjSrTwxFlRETkhhiE3En3JCD5FDBuY+3aIZmHavV6IiIiN8Ig5G4UTYFOY3Rrh2QeQOIq1d+5YCsREbkRjhpzV9ojygJjgEt7VZ2mObSeiIjcCGuE3Jl6RBkgvmAra4aIiMjFMQiR4QVb2XmaiIhcHIMQGRhaLwdKr7NWiIiIXBqDEIkMrZcBEHQnW1RmsyM1ERG5HJkgCIK9C+HIiouLoVAooFQq4e/vb+/iWJcyG7h6FPjiEb2mMhkgk7EjNREROQ2pz2/WCNEdiqaAT5DIUhwCO1ITEZFLYhAiXcaW4lBjR2oiInIRDEKkq1Z/ITlUfYa0cBZqIiJyEZxQkWoTm2zxf8mqmiD1LNSKpvYuJRERUb05XY3Qu+++i+joaDRq1AhxcXE4evSo0f0///xztG/fHo0aNULnzp3x1Vdf2aikTk492aKi6Z01yqbuVv3JjtJEROQinCoIbdu2DXPmzMHixYtx/PhxdO3aFcOGDUN+fr7o/j/99BMmTZqEGTNm4MSJExg9ejRGjx6N06dP27jkLkA7GBEREbkIpxo+HxcXh169euGdd94BANTU1CAqKgqzZ89GSkpKrf0nTJiA0tJS7N69W7OtT58+6NatG9atWyfpmm41fJ6IiMhFuNzw+crKSmRkZCAhIUGzTS6XIyEhAYcPHxY95vDhwzr7A8CwYcMM7g8AFRUVKC4u1nmRCE6wSERELsBpglBBQQGqq6sRFhamsz0sLAx5eXmix+Tl5Zm1PwAsX74cCoVC84qKiqp/4V3N8c2qGac3Jd6ZeZqIiMgJOU0QspUFCxZAqVRqXlevXrV3kRyLMtv0SvWsLSIiIifhNMPng4OD4eHhgWvXrulsv3btGsLDw0WPCQ8PN2t/APDy8oKXl1f9C+yqjK1Ur2iqqh1SByUux0FERA7OaWqEGjZsiB49emDv3r2abTU1Ndi7dy/i4+NFj4mPj9fZHwD27NljcH+SwNhK9X9mmK4tIiIiciBOUyMEAHPmzMHUqVPRs2dP9O7dG6tWrUJpaSmmT58OAEhKSkLTpk2xfPlyAMDTTz+NgQMHYuXKlRg1ahS2bt2KY8eO4YMPPrDn13Bu6pmn1RMsaq9Ur/67Nu3aIiIiIgfjVEFowoQJuH79OhYtWoS8vDx069YNaWlpmg7RWVlZkMvv1Fb07dsXW7ZswcKFC/H888+jTZs2SE1NRadOnez1FVyDeubpWivVi8zEwOU4iIjIgTnVPEL2wHmEjLh8QDVyTJ9MfruP0O3lOFoNUfUtCmzFmiEiIrIJqc9vp6oRIgej7i+k3Xla5gHM2ANUld1Zp2xVJ3aeJiIih+Q0naXJAemvVK+uAWrWQ7UcB8DO00RE5NBYI0T1o79SvXbTl6Gh9r+mAneNZjMZERHZHWuEqP4MLcgqOtQewLfPc0ZqIiJyCAxCZD36TWfa2ExGREQOgEGIrKt7EpB8Chj6Su3PhGrVEHxDy3FwqQ4iIrIy9hEi61M0VfUJ2rNQr8+Q7M48RPojyrhUBxER2QBrhMg2ajWT3f5PT2xEmZSFXYmIiCyANUJkO9ojzEqv316WQ4t6OQ4I4qPNrh4FCoNUnbABTtJIRET1xiBEtqVoqnops8UnY/T0Bor+qP2ZdjMaZLe3CXeazTh7NRER1QGDENmH/uKtMg+gywTgo4Q7YUcmAwQBqmY0QXxNM6EG2PXU7X3Zn4iIiMzDIET2o91U5umtFYIAVfCRA+M+xp3V7Q0Rbgcm3OlP1GoIa4aIiMgkBiGyL3VT2eUDtfsFoQbwCVbNWF2rqcwI/f5EDERERGQAR42RYxCbhVrmcWfZDp0RZ7ebzQCo/hOWQe9AVX+iTYmcwZqIiIxijRA5BrE+Q4mr7tTm6K9pBtz5+6W9d47T70/EpjIiIjJCJgiCYHo391VcXAyFQgGlUgl/f397F8f1KbPFF3CVepzYsHwAmLpbtR4aERG5BanPb9YIkWNR9xmq63GGhuWra5GIiIi0sI8QuRb9/kT6TWxERERaWCNErke/P5GpEKTM5mSMRERuikGIXJN2E5uxoMPFXYmI3BqDELk2saCjXo7D00d8cVftEWasLSIicmkMQuS6xFax116OAzLoLNcBqIbg/5oK3DX69rB8AyGKwYiIyCVw+LwJHD7vxC4fUE2qWCdaC7tqb+OaZkREToHD54nUs1WbWppDdB+x3w/01jTb9TTQ0BeIirszdF9dWwSw5oiIyAkwCJHr0p+tWj3rtHbIkXkAM/YAWT8D3z5v5gVqVJM3yuRAl4nAya1aTW5QXcdQkxr7HhEROQQ2jZnApjEXoD1btfZyHOo5hronqfZZ1UmvZkirKUwsREmm16SmHZrYxEZEZBVSn98MQiYwCLkgQ8t4HN9cOyRpz0eks6aZBck8gORTrBkiIrIgBiELYRByM6bWOlNmA1ePqla3N9X3yBxcC42IyKKkPr+5xAaRNkVTVSAxVDujaAp0GlN7GY+uD915r24KA6D6X0wmciItXAuNiMhu2FmaqC7ElvG4Z+Gd94DhfkldJgAnt+k2wWkHL3akJiKyGTaNmcCmMbII/SY37ffAneAjNomjsY7UDE1ERKI4jxCRI9Fe+0z7vfYSIPqTOKqX/Ai9C6gqrR12uE4aEVG9sUbIBNYIkdWIDtkXIZOpJnLUDjtix+qPPmNtERG5MdYIETm6wkvSRp6JzWatfq+zX7WquU2/pqkuTWwMUUTkJhiEiOxFdAkQ/Ukc9YPS7dmsIUOtRWPVo8/EFps1p4mNEz4SkRthECKyF/0lQPQncfT0Bj5KMFBrJEAVmm4HKfWxAPDrTvHaoo+G3GliS1gCRMYCnj61Q9MvW7SOux2iWg0xXDPE2iMicmJOE4QKCwsxe/Zs/O9//4NcLsfYsWOxevVq+Pr6Gtx/8eLF+Pbbb5GVlYWQkBCMHj0aL730EhQKhY1LT2SA2DB84M6fOmul6ROAsR8DPsF3hukb63Ok3cS2Z9HtjXq1SqLHaTW56WOHbSJyck4zoeLkyZPx66+/Ys+ePdi9ezcOHDiAxx9/3OD+OTk5yMnJwRtvvIHTp09j48aNSEtLw4wZM2xYaiIJjE3i2D1J1QF63EZV0NAm8wCiet+ZkVq7ZkeHsf/NpYyVkAOl11U1P4Dqz8sHgD8zxJvg1PsRETkBpxg1dubMGXTs2BHp6eno2bMnACAtLQ0jR47En3/+icjISEnn+fzzz/Hwww+jtLQUDRqIV4ZVVFSgoqJC8764uBhRUVEcNUb2J7YWmrr25fIBYFNi7WOGvQJE9THSxHabdhOb9oSP2kP69fsPGapNssZyIfVpfmPTHZFbcqlRY4cPH0ZAQIAmBAFAQkIC5HI5jhw5gjFjxkg6j/pmGApBALB8+XIsXbq03mUmsjhDzWiAeMdrmQfQcXTtvkj6ZB7AjD1AVZnuLNn6a6rp9x8SrU3Sqj0ytFabOpQA0gJKfZrf2HRHRCY4RRDKy8tDaGiozrYGDRogMDAQeXl5ks5RUFCAl156yWhzGgAsWLAAc+bM0bxX1wgROQT9iRm1t4t1vFbvqx2ick4A3y3R3a9Zj9rnKwySNrxfE8Bu1xBtn34ndLQaIj5rtn5Nk6GAYmgEnLHO25Y4lojchl2DUEpKClasWGF0nzNnztT7OsXFxRg1ahQ6duyIJUuWGN3Xy8sLXl5e9b4mkc0ZqzEC7oSolv2BTmMN76cmOrxfj7o2qSirdu3Rrqe0pgLQmzVbuzbJ2PB+sbmWjHXe1lafY8WwiY3IJdk1CM2dOxfTpk0zuk9MTAzCw8ORn5+vs/3vv/9GYWEhwsPDjR5/8+ZNDB8+HH5+fti5cyc8PT3rW2wix2Woxqgu+4nVMoktGNushyrA1ApMwp2RalJGphka3i/W5Kdeo80YQ82Fxo411HTHNeCIXJZdg1BISAhCQkJM7hcfH4+ioiJkZGSgRw9VFf6+fftQU1ODuLg4g8cVFxdj2LBh8PLywq5du9CoUSOLlZ3ILYjVMt2zsHZtkpTaI1PEhvdrOmjrhS9A1UFcrK+Rdggx1lyoz+C6byJrwKln+I6Kq30+V+6XZCrg1aUPmC3LR8a56QzzTjFqDABGjBiBa9euYd26daiqqsL06dPRs2dPbNmi6ryZnZ2NIUOGYPPmzejduzeKi4sxdOhQlJWVYefOnfDx8dGcKyQkBB4eHpKuy7XGiCTSHtUGOVTBQfufF5luU5kMt8OP2Aza2ofpdeY21tdIbFZs7SAHiP9D7+ljemSdaNn0go7o+nFyYNxH4qFJnyM8eAyVwVTAMxQkxfY153tKfThbM4Da4+di61AiZYZ57T5/ThCMpD6/nSYIFRYWYtasWToTKq5Zs0YzoeKVK1fQsmVL7N+/H4MGDcL333+PwYMHi57r8uXLiI6OlnRdBiEiMyiz74SOS3sNz5qtCSWmZtC+TT0kX+pCtWraC9Ea+4deysSSxq4xY4+qebC04PYSKGL7GXg4qx9wOZnAd4uNP3iMPQwt8ZmhJkBDi/yqv7epIGns52DsASt1+RcpixDrf1fA8L3V/sxUs6g1Akp9l70xt0yS/r/S+kXGSWo6XS4I2QuDEFE9aAcjk0Pkkw0P71c/0AzNl2TM1N2q65sToGoXQqs2S+xj2e3aLf1O4fr7aYWHWiPpjFzT1MNQ/8Gp7mNl6kFusDlQq7zJp1QPVbH7rvO9TTxKDP4cRB6wrYYAV48AX8yQ1lk/6zDw7b/Er6me08pYjVWtUKy+D0buidTFjc0NqFJCiVjIU6vLgsu/7hS/f8bol8ERajP1uNQ8QkTkpKR23jY1vL+ufZHUnaPFRpCJ7q81FYC66U67Nkt/biU1nU7hMsNl1O4Ubio0aXc2N7YGHFB7mgCdJVS0rqE9Qq/oD70QJlIOoVr1ndWBwej3NsLoz0Hve+qMNjRB534auCZQeyoF/VGLBufHMnJPrgqmFzeWGkK1A6DYWoFiZfg1FbhrdO0aL/0y6fdnM1QDaC7tEZh1CV8OFJpYI2QCa4SI7MBYTZJO7ZFeYBEb1Wao6USffl8kQLwMtfpCiZxz3EbVn2KhyZKGvgL4RxhujjNEU5Njckfz+nWZDJISanksQacp9pLxJkvzT16P2sHb/cUCWog0JZo4r+i19JoWTTXNGqz50t9X7/8lsT5/6hohQFqzpJoNBxOwacxCGISIHJB2UAJ0A4uhEKW/RImh0GTO9cX6N9VqOkk2HppEiXU2N8RUzZI5tB/GYmWQA+M2AAHNxb+3oSCp38FdJ1BJ/J6iD2eR+znsFdWM6oY61ZvN1D2pCzP6pNX63sbKZ4H/FtT3T///JbE+f92TDDdXD33lTo2VsUEJxkJTPTEIWQiDEJEL0Q9JUvswGWNsDTjta4p2CtfuH+MBJCwGIruLP3gkPwyNfWYkjOl3aC+9Ll67oO53Y+p7a39/0ZF0G1SLBmt/T2PhK6q37s/MWAgFjPdFMlaTaKg2y9g9UZdTctCVSD+U/JoKfPu8iYPqULOkOdREKKn1C4iJEZf2XJ8QDEIWwyBERCbVpVO42Eg60c60esHN0MNw3EbAJ1i8j5X6GqJhTC9oaF/bVJOHlO9tqMZA++EnpeZB6v00VkuhvkemahL1PzN2T4zVkplsRpPDYE2ToVFvUjr9S26a1QviUmtFRUe1GQrpJrBGyPExCBGRRdW3Fqq+AUVqTY65+9anvGLHSL1HYvvW5ZpSGbsnhoKuWCd70fmxDJzX0PVNBSgpzcHGgrgYY1MpZP0socYKdwJgXf+bkohByEIYhIjI4dQ3oNQ3aNi6vI52TWP3RGofNbHySL3X5tSgWbo52FgNn5RpKvQDoBVHjTEIWQiDEBE5JEsEFFuyR3kd7R5Zqzy2/J6matssOSihnhiELIRBiIiISIvUAQKWHJRQBwxCFsIgREREpMfRattEcGZpIiIisg6ps8Y7Abm9C0BERERkLwxCRERE5LYYhIiIiMhtMQgRERGR2zKrs3RRURF27tyJH3/8EX/88QfKysoQEhKC2NhYDBs2DH379rVWOYmIiIgsTlKNUE5ODh599FFERERg2bJlKC8vR7du3TBkyBA0a9YM+/fvx7333ouOHTti27Zt1i4zERERkUVIqhGKjY3F1KlTkZGRgY4dO4ruU15ejtTUVKxatQpXr17FvHnzLFpQIiIiIkuTNKHijRs3EBQUJPmk5u7vyDihIhERkfOR+vyW1DQWFBSE3bt3o6bGyEJqevsTEREROTrJo8ZGjx6NqKgo/Otf/8LFixetWSYiIiIim5AchC5fvownnngCW7duRbt27TBw4ED8+9//Rnl5uTXLR0RERGQ1koNQVFQUFi1ahEuXLuG7775DdHQ0nnzySUREROD//u//kJ6ebs1yEhEREVlcnSZUHDx4MDZt2oTc3Fy8/vrrOHXqFPr06YOuXbtaunxEREREVlOv1ef9/PwwZMgQ/PHHHzh79ix+++03S5WLiIiIyOrqVCNUXl6OzZs3Y9CgQWjTpg22bt2KOXPm4MqVKxYuHhEREZH1mFUj9PPPP2PDhg347LPPUFlZiQceeADfffcdBg8ebK3yEREREVmN5CDUsWNHnDt3DrGxsVi+fDkeeughKBQKa5aNiIjIYqqrq1FVVWXvYpCFeHp6wsPDo97nkRyEEhIS8Omnn7JDNBERORVBEJCXl4eioiJ7F4UsLCAgAOHh4ZDJZHU+h+QgtGbNmjpfhIiIyF7UISg0NBTe3t71emiSYxAEAWVlZcjPzwcARERE1PlckoLQ8OHDsWTJEvTp08fofjdv3sR7770HX19fzJw5s86FIiIisoTq6mpNCOLyT66lcePGAID8/HyEhobWuZlMUhAaP348xo4dC4VCgcTERPTs2RORkZFo1KgR/vrrL/z22284ePAgvvrqK4waNQqvv/56nQpDRERkSeo+Qd7e3nYuCVmD+udaVVVl3SA0Y8YMPPzww/j888+xbds2fPDBB1AqlQAAmUyGjh07YtiwYUhPT0eHDh3qVBAiIiJrYXOYa7LEz1VyHyEvLy88/PDDePjhhwEASqUS5eXlCAoKgqenZ70LQkRERGRrdZpQEQAUCgXCw8MZgoiIiJzElStXIJPJkJmZae+iOIw6ByEiIiIiZ+c0QaiwsBCTJ0+Gv78/AgICMGPGDJSUlEg6VhAEjBgxAjKZDKmpqdYtKBERkRVUVlbauwguyWmC0OTJk/Hrr79iz5492L17Nw4cOIDHH39c0rGrVq1iRzkiIqqXXGU5frpUgFxluU2uN2jQIMyaNQvJyckIDg7GsGHDcPr0aYwYMQK+vr4ICwvDlClTUFBQoDkmLS0N/fr1Q0BAAIKCgnDffffh0qVLNimvs3KKIHTmzBmkpaXhww8/RFxcHPr164e3334bW7duRU5OjtFjMzMzsXLlSmzYsEHStSoqKlBcXKzzIiIi97YtPQt3v7oPD60/grtf3Ydt6Vk2ue6mTZvQsGFDHDp0CK+++iruuecexMbG4tixY0hLS8O1a9fw4IMPavYvLS3FnDlzcOzYMezduxdyuRxjxoxBTU2NTcrrjMxadFWtqKgI27dvx6VLlzB//nwEBgbi+PHjCAsLQ9OmTS1dRhw+fBgBAQHo2bOnZltCQgLkcjmOHDmCMWPGiB5XVlaGhx56CO+++y7Cw8MlXWv58uVYunSpRcpNRETOL1dZjgU7TqFGUL2vEYDnd5zGgLYhiFA0tuq127Rpg9deew0AsGzZMsTGxuKVV17RfL5hwwZERUXh/PnzaNu2LcaOHatz/IYNGxASEoLffvsNnTp1smpZnZXZNUInT55E27ZtsWLFCrzxxhuatVt27NiBBQsWWLp8AFTTo4eGhupsa9CgAQIDA5GXl2fwuGeeeQZ9+/bF/fffL/laCxYsgFKp1LyuXr1a53ITEZHzu1xQqglBatWCgCsFZVa/do8ePTR//+WXX7B//374+vpqXu3btwcATfPXhQsXMGnSJMTExMDf3x/R0dEAgKws29RgOSOza4TmzJmDadOm4bXXXoOfn59m+8iRI/HQQw+Zda6UlBSsWLHC6D5nzpwxt4gAgF27dmHfvn04ceKEWcd5eXnBy8urTtckIiLX0zLYB3IZdMKQh0yG6GDrz1bt4+Oj+XtJSQkSExNFn5vqtbYSExPRokULrF+/HpGRkaipqUGnTp3Y0doIs4NQeno63n///VrbmzZtarR2RszcuXMxbdo0o/vExMQgPDxcs7Ca2t9//43CwkKDTV779u3DpUuXEBAQoLN97Nix6N+/P77//nuzykpERO4pQtEYyx/ojOd3nEa1IMBDJsMrD3SyerOYvu7du+OLL75AdHQ0GjSo/fi+ceMGzp07h/Xr16N///4AgIMHD9q0jM7I7CDk5eUl2oH4/PnzCAkJMetcISEhko6Jj49HUVERMjIyNNWE+/btQ01NDeLi4kSPSUlJwaOPPqqzrXPnznjrrbeQmJhoVjmJiMi9TejVHAPahuBKQRmig71tHoIAYObMmVi/fj0mTZqEZ599FoGBgbh48SK2bt2KDz/8EE2aNEFQUBA++OADREREICsrCykpKTYvp7Mxu4/QP/7xD7z44ouahexkMhmysrLw3HPP1eqkZSkdOnTA8OHD8dhjj+Ho0aM4dOgQZs2ahYkTJyIyMhIAkJ2djfbt2+Po0aMAgPDwcHTq1EnnBQDNmzdHy5YtrVJOIiJyXRGKxohvFWSXEAQAkZGROHToEKqrqzF06FB07twZycnJCAgIgFwuh1wux9atW5GRkYFOnTrhmWee4SLoEphdI7Ry5UqMGzcOoaGhKC8vx8CBA5GXl4f4+Hi8/PLL1igjAOCTTz7BrFmzMGTIEMjlcowdOxZr1qzRfF5VVYVz586hrMz6ndeIiIisTawLR5s2bbBjxw6DxyQkJOC3337T2SYIdzo3RUdH67ynOgQhhUKBPXv24ODBgzh58iRKSkrQvXt3JCQkWKN8GoGBgdiyZYvBz6X8cPnDJyIiIm11mkcIAPr164d+/fpZsixERERENmV2ENJujtImk8nQqFEjtG7dGgMGDICHh0e9C0dERERkTWYHobfeegvXr19HWVkZmjRpAgD466+/4O3tDV9fX+Tn5yMmJgb79+9HVFSUxQtMREREZClmjxp75ZVX0KtXL1y4cAE3btzAjRs3cP78ecTFxWH16tXIyspCeHg4nnnmGWuUl4iIiMhizK4RWrhwIb744gu0atVKs61169Z44403MHbsWPz+++947bXXrDaUnoiIiMhSzK4Rys3Nxd9//11r+99//62ZWToyMhI3b96sf+mIiIiIrMjsIDR48GA88cQTOmt4nThxAk8++STuueceAMCpU6c4aSERERE5PLOD0EcffYTAwED06NFDs0Bpz549ERgYiI8++ggA4Ovri5UrV1q8sERERESWZHYfofDwcOzZswdnz57F+fPnAQDt2rVDu3btNPsMHjzYciUkIiJyQ4MGDUK3bt2watUqu5YjOjoaycnJSE5Otms5rKXOEyq2b98e7du3t2RZiIiI6LYdO3bA09PT3sVAeno6fHx87F0Mq6lTEPrzzz+xa9cuZGVlobKyUuezN9980yIFIyIicmeBgYH2LgIAICQkxOrXqKysRMOGDa1+HTFm9xHau3cv2rVrh7Vr12LlypXYv38/Pv74Y2zYsAGZmZlWKCIREZEDUGYDlw+o/rSBQYMGaZqjoqOjsWzZMiQlJcHX1xctWrTArl27cP36ddx///3w9fVFly5dcOzYMc3xN27cwKRJk9C0aVN4e3ujc+fO+PTTT3WucfPmTUyePBk+Pj6IiIjAW2+9pXNd9bW1m+dkMhk+/PBDjBkzBt7e3mjTpg127dql+by6uhozZsxAy5Yt0bhxY7Rr1w6rV6/Wue60adMwevRovPzyy4iMjES7du3w4osvolOnTrXuQ7du3fDCCy/U404aZ3YQWrBgAebNm4dTp06hUaNG+OKLL3D16lUMHDgQ48ePt0YZiYiI7Ov4ZmBVJ2BTourP45ttXoS33noLd999N06cOIFRo0ZhypQpSEpKwsMPP4zjx4+jVatWSEpK0iwwfuvWLfTo0QNffvklTp8+jccffxxTpkzB0aNHNeecM2cODh06hF27dmHPnj348ccfcfz4cZNlWbp0KR588EGcPHkSI0eOxOTJk1FYWAgAqKmpQbNmzfD555/jt99+w6JFi/D888/js88+0znH3r17ce7cOezZswe7d+/GI488gjNnziA9PV2zz4kTJ3Dy5ElMnz7dErdQnGAmX19f4eLFi4IgCEJAQIBw+vRpQRAEITMzU2jRooW5p3N4SqVSACAolUp7F4WIiMxUXl4u/Pbbb0J5eXndT1L0pyAsCRCExf53XkuaqLZb0cCBA4Wnn35aEARBaNGihfDwww9rPsvNzRUACC+88IJm2+HDhwUAQm5ursFzjho1Spg7d64gCIJQXFwseHp6Cp9//rnm86KiIsHb21tzXfW133rrLc17AMLChQs170tKSgQAwtdff23wujNnzhTGjh2reT916lQhLCxMqKio0NlvxIgRwpNPPql5P3v2bGHQoEEGz2vs5yv1+W12jZCPj4+mX1BERAQuXbqk+aygoMAS2YyIiMhxFF4ChBrdbUI1UPi7TYvRpUsXzd/DwsIAAJ07d661LT8/H4Cqieqll15C586dERgYCF9fX3zzzTfIysoCAPz++++oqqpC7969NedQKBQ6o8CllMXHxwf+/v6a6wLAu+++ix49eiAkJAS+vr744IMPNNdV69y5c61+QY899hg+/fRT3Lp1C5WVldiyZQseeeQRk+WpD7M7S/fp0wcHDx5Ehw4dMHLkSMydOxenTp3Cjh070KdPH2uUkYiIyH4CWwEyuW4YknkAgTE2LYb2CDKZTGZwW02Nqpyvv/46Vq9ejVWrVqFz587w8fFBcnJyrUFO9S2L+trq627duhXz5s3DypUrER8fDz8/P7z++us4cuSIzjFiI9ESExPh5eWFnTt3omHDhqiqqsK4cePqXV5jzA5Cb775JkpKSgCo2ghLSkqwbds2tGnThiPGiIjI9SiaAomrgf8lq2qCZB5A4irVdgd26NAh3H///Xj44YcBqALS+fPn0bFjRwBATEwMPD09kZ6ejubNmwMAlEolzp8/jwEDBtTrun379sU///lPzTbt1iNjGjRogKlTp+Ljjz9Gw4YNMXHiRDRu3LjOZZF0TXMPiIm5k4B9fHywbt06ixaIiIjI4XRPAloNUTWHBcY4fAgCgDZt2mD79u346aef0KRJE7z55pu4du2aJgj5+flh6tSpmD9/PgIDAxEaGorFixdDLpdrapfqet3Nmzfjm2++QcuWLfHvf/8b6enpkpfeevTRR9GhQwcAqlBlbWb3EYqJicGNGzdqbS8qKtIJSURERC5F0RRo2d8pQhAALFy4EN27d8ewYcMwaNAghIeHY/To0Tr7vPnmm4iPj8d9992HhIQE3H333ejQoQMaNWpU5+s+8cQTeOCBBzBhwgTExcXhxo0bOrVDprRp0wZ9+/ZF+/btERcXV+dySCW73QNcMrlcjry8PISGhupsv3btGpo3b46KigqLFtDeiouLoVAooFQq4e/vb+/iEBGRGW7duoXLly+jZcuW9Xq4u4vS0lI0bdoUK1euxIwZM+xSBkEQ0KZNG/zzn//EnDlzjO5r7Ocr9fktuWlMe7Kkb775BgqFQvO+uroae/fuRXR0tNTTERERkZ2dOHECZ8+eRe/evaFUKvHiiy8CAO6//367lOf69evYunUr8vLyrDt3kBbJQUhdnSaTyTB16lSdzzw9PREdHc0V54mIiJzMG2+8gXPnzqFhw4bo0aMHfvzxRwQHB9ulLKGhoQgODsYHH3yAJk2a2OSakoOQelhcy5YtkZ6ebrebRERERJYRGxuLjIwMexdDw8zeOhZh9qixy5cvW6McRERERDYnKQitWbNG8gmfeuqpOheGiIjIGuxR00DWZ4mfq6Qg9NZbb0k6mUwmYxAiIiKHoZ4BuayszOoT85HtlZWVAag907U5JAUhNocREZEz8vDwQEBAgGYdLG9v73pNFkiOQRAElJWVIT8/HwEBAfDw8KjzuczuI6RfEAD8j4qIiBxWeHg4AOgsCkquISAgQPPzras6BaHNmzfj9ddfx4ULFwAAbdu2xfz58zFlypR6FYaIiMjSZDIZIiIiEBoaiqqqKnsXhyzE09OzXjVBanVadPWFF17ArFmzcPfddwMADh48iP/7v/9DQUEBnnnmmXoXioiIyNI8PDws8uAk12L2EhstW7bE0qVLkZSUpLN906ZNWLJkicv1J+ISG0RERM5H6vPb7EVXc3Nz0bdv31rb+/bti9zcXHNPR0RERGQ3Zgeh1q1b47PPPqu1fdu2bWjTpo1FCkVERERkC2b3EVq6dCkmTJiAAwcOaPoIHTp0CHv37hUNSERERESOSnKN0OnTpwEAY8eOxZEjRxAcHIzU1FSkpqYiODgYR48exZgxY6xWUCIiIiJLk9xZWi6Xo1evXnj00UcxceJE+Pn5WbtsDoGdpYmIiJyPxTtL//DDD7jrrrswd+5cREREYNq0afjxxx8tUlgpCgsLMXnyZPj7+yMgIAAzZsxASUmJyeMOHz6Me+65Bz4+PvD398eAAQNQXl5ugxITERGRo5MchPr3748NGzYgNzcXb7/9Ni5fvoyBAweibdu2WLFiBfLy8qxZTkyePBm//vor9uzZg927d+PAgQN4/PHHjR5z+PBhDB8+HEOHDsXRo0eRnp6OWbNmQS43u484ERERuSCz5xHSdvHiRXz88cf497//jby8PAwfPhy7du2yZPkAAGfOnEHHjh2Rnp6Onj17AgDS0tIwcuRI/Pnnn4iMjBQ9rk+fPrj33nvx0ksvSb5WRUUFKioqNO+Li4sRFRXFpjEiIiInYrV5hLS1bt0azz//PBYuXAg/Pz98+eWX9TmdQYcPH0ZAQIAmBAFAQkIC5HI5jhw5InpMfn4+jhw5gtDQUPTt2xdhYWEYOHAgDh48aPRay5cvh0Kh0LyioqIs+l2IiIjIcdQ5CB04cADTpk1DeHg45s+fjwceeACHDh2yZNk08vLyEBoaqrOtQYMGCAwMNNgk9/vvvwMAlixZgsceewxpaWno3r07hgwZolkjTcyCBQugVCo1r6tXr1ruixAREZFDMSsI5eTk4JVXXkHbtm0xaNAgXLx4EWvWrEFOTg7Wr1+PPn36mHXxlJQUyGQyo6+zZ8+adU61mpoaAMATTzyB6dOnIzY2Fm+99RbatWuHDRs2GDzOy8sL/v7+Oi8iIiJyTZInVBwxYgS+++47BAcHIykpCY888gjatWtXr4vPnTsX06ZNM7pPTEwMwsPDkZ+fr7P977//RmFhIcLDw0WPi4iIAAB07NhRZ3uHDh2QlZVV90ITERGRy5AchDw9PbF9+3bcd999Flu9NyQkBCEhISb3i4+PR1FRETIyMtCjRw8AwL59+1BTU4O4uDjRY6KjoxEZGYlz587pbD9//jxGjBhR/8ITERGR05MchKwxGkyqDh06YPjw4Xjsscewbt06VFVVYdasWZg4caJmxFh2djaGDBmCzZs3o3fv3pDJZJg/fz4WL16Mrl27olu3bti0aRPOnj2L7du32+27EBERkeMwe60xe/nkk08wa9YsDBkyBHK5HGPHjsWaNWs0n1dVVeHcuXMoKyvTbEtOTsatW7fwzDPPoLCwEF27dsWePXvQqlUre3wFIiIicjD1mkfIHXCJDSIiIudjk3mEiIiIiJwZgxARERG5LQYhIiIiclsMQkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBEREREbotBiIiIiNwWgxARERG5LQYhIiIiclsMQkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBEREREbotBiIiIiNwWgxARERG5LQYhIiIiB5CrLMdPlwqQqyy3d1HcSgN7F4CIiNxbrrIclwtK0TLYBxGKxrXeu4Nt6VlYsOMUagRALgOWP9AZE3o1t3ex6sTZfn4MQkREZJC1H2r6AWBMbFPsPJHt0IHAnHuivS8A0eNyleWaewAANQLw/I7TGNA2RLOfsWvW9TNrnFdKoHO0oMQgRERUT5b6h90eNSPGrmHqoVbXQKD9cNcPAF8cz9YcIxYI6vpd9D8HUKd7bc49OXD+umZf2e3PBdQ+7nJBqeYeqFULAq4UlCFC0bjWNZ8b3h6dmylqXUP/vGJlHdA2RLR8Uo41dd5jVwpFA137cD+UVlabvKa9yARBEEzv5r6Ki4uhUCigVCrh7+9v7+IQkQm2/m3T3LAg9TdpUzUjxs4LiNc86B97KluJFV+fFb1GrrIcd7+6T+cBLQew5qFY9GjRxKwHmqF79NOlAjy0/ojJe/zpY30Q3yrI7J+DoYe+fijRv9faQUP73vo09MCY936SdE+0ryHGQybDjn/Go7SyWvS8HjIZDqYMBoBaPwc1sWuoz5tVWIant2bqHCcDIJPBYPmMXdPYZ9rnFSOTAYKJa1rj/1Wpz28GIRMYhIich637WYiFBe0HnH7QEAs36t+k9R9a+qSeV6zmwVAgMHaNwtJKzNpyQrQsUh5oxsKDlIe8mnbQEAuSucpy0ftn6qEvhdi9NXSOulxDHRDU10k9kYNqQYCHTIZnh7dD52YKoz8HU+eti4WjOiBc0Uj0mu9MikVucTle/vJs3U5ugJSgWxcMQhbCIERkOVJra+rS5GLsgSuln0Vdym6oRkPqg8jUb9J1Pa+ha0h5WBv77d0U9QNNO5AaCg8LR3XAqC4ROHD+Op7fcVoTAEbHRmoCgamaG+33zk4dQssqa3Ayu0gTdOsa4upD7Jrm/rcKqEJsjYl9HKFGiH2EiMgmpNbWmFOrY+qBa6yfhX5NiTnNVuqmE5+GHpCLPBykhhXBjH3NOa+ha0g5XHtfGSD6/cR4yGSIDvau1e/H0KHLvjyDV746g+UPdMbBlMG4UlCG6GBvRCgaY96wdsi48hee2nrCaP8h7fe2JPWe1Aqh6hog1A4I1YKAssoaRAd7Y/KHP+vcP2M/B+1rGAse8tvnkhJu9K+pPlbs+mLnlQN4+6FYNGvSuNYvJ9rX9JDJ8MoDnezeYZpBiIisTsqoGHP30++YKfZcMvRwrhGAlC9O3XmAGOkn4tPQo9axy79WNQ3oN2lI+Q1YCv2aEUud1xixawgA3p4YCwA6oQQQf6ABwO6TOeIPTJEHrvrnezBlsE7TSISiMQJ9a3cgNue7GHvoa4cS/Xttirrm5mphuaR7MqBtiCbkAcCVgjJ4N5SL1l5GB3uLdpxW/xyCfL1wMrsIr319TlODpn0NsfOqQ0n3232YtGvf1Md+eTIXy748Y/CaN0orRJvKXhjVASNFavVeeaATRnWJBKD6hUPsmtrB194YhIjIYgzVqBgaFfPlyVyM6hKh2dfU6BlAt3ZGjFzkt82fLhWIPlwErXCjX9ugDjvG+oXUCEDqiRxNk4bYg0hNLNwY+k26++3+MPOGtTP4gDN0Xv2aB2OBQN0XpUuzAIMP5x7RqrKUVv5t9IF24Px1g/191OEh/cpftR64+j9ftZbBPpJrXsTun6GHvn4o0a6FulJQVitoaN9b9Xm6RjVB16gmJu+J+jtpfzf138UCgvoz/e+t/XOIbxWEf3SNNHgNsfOqQ8mEXs1FyzeqSwRe+eqMwWvmKstFyzTy9v+7hs5r7JqOEIDU2EfIBPYRIpLGWJOWWKdiNVOdhk2NrtGm3c9C/Y+uoc60lqTd2XNbepbOg0gdNLTLox0e9B9axpoBpZ4XgNFrGHpo6V9Dvzza19CvoTMWgtTnMdS53FAfEf3y6IcSsZAipbym6B9n7Dx1vYaxY039HOp6XmNMXbO+ZbIHdpa2EAYhckfmzLdiKGjoP+C0/yHVZ6rZQsqoHUP/eOsMZzZSU2KKodoJsQe5OQ8ia+1ry2sY6jSubjqpz0PeVCipTxBxZPb4Xqau6Wz3mkHIQhiEyN3UCg+o+6iddybFItC3oU5oEuuPoM9YZ0tD+6qbk9QMzYNjqOnEWD8R/RE9+n00HP03Y2szt6bH2R6o5Jw4aoyIdEiZLl+/Y7B2JDB31I4MdzrYajeVifVH0FcDINDHC6WV1UY73ur3gdAm1t9IfV5D/RoM9RNR9wsBYLCPhjuLUDQ22udFbH/eN3IUDEJEbkDqFP3Gmp7MoT/cVn/0l/ZDU6yZSj2CBhDvOKrfD0iMWGdb7fMCtR/I6vemwg4f5LUZ6zBL5MgYhIiciKnlGqSu56Q9Igq4E0LqG4LUTU8CUGu4rfboIP2HpliHXmOjYNS1M8aYW0shdjwf5ubhPSNnxCBEZGd1XezRWH8d7aYosSYiNUPBR26k47KpUTujukQaHG5rqDamLsNvpWAtBRGZws7SJrCzNFmTlFmU6zr8W71GU5SEDsfa9JueANRp1I4zDrclItfhcqPGCgsLMXv2bPzvf/+DXC7H2LFjsXr1avj6+ho8Ji8vD/Pnz8eePXtw8+ZNtGvXDv/6178wduxYyddlECJLMNRkZWqkjanJA6XQn/1Yn9hsuJYKLBwdRET24nKjxiZPnozc3Fzs2bMHVVVVmD59Oh5//HFs2bLF4DFJSUkoKirCrl27EBwcjC1btuDBBx/EsWPHEBsba8PSkzszVOtjaBbljCt/IdC39giuutKf/djYFP2WDizsM0JEjs4paoTOnDmDjh07Ij09HT179gQApKWlYeTIkfjzzz8RGVl76CwA+Pr6Yu3atZgyZYpmW1BQEFasWIFHH31U9JiKigpUVFRo3hcXFyMqKoo1QlQnhmp9dvwzHlmFZbWau/QnFjQ2eaCx/jpitGc/Zk0NEbk6l6oROnz4MAICAjQhCAASEhIgl8tx5MgRjBkzRvS4vn37Ytu2bRg1ahQCAgLw2Wef4datWxg0aJDBay1fvhxLly619FcgNyDW/GWo1mf0ez9BEO4EH+3Zjo0tImpoLSpjq3YDpoeNExG5K6cIQnl5eQgNDdXZ1qBBAwQGBiIvL8/gcZ999hkmTJiAoKAgNGjQAN7e3ti5cydat25t8JgFCxZgzpw5mvfqGiEiYww1fxlaOFLQCjtyAXjHwJBzwPjkgWLz4NzXVXyBTAYfIqLa7BqEUlJSsGLFCqP7nDljfCp+Y1544QUUFRXhu+++Q3BwMFJTU/Hggw/ixx9/ROfOnUWP8fLygpeXV52vSe7D0GzMNQKw4ItT8PFqgB4tmtSaPLBG7zzq2Y6jg73rPHmgPg4bJyKSxq59hK5fv44bN24Y3ScmJgb/+c9/MHfuXPz111+a7X///TcaNWqEzz//XLRp7NKlS2jdujVOnz6Nu+66S7M9ISEBrVu3xrp16ySVkaPG3Etd5vQx1pdHe2X1KwVl8G4orzWUXXukGIecExFZhlP0EQoJCUFISIjJ/eLj41FUVISMjAz06NEDALBv3z7U1NQgLi5O9JiysjIAgFwu19nu4eGBmhr938nJnanDz6lsJVZ8fVbSnD6G1uPSp15a4mDKYE1HZWOzHbMmh4jItpxi1BgAjBgxAteuXcO6des0w+d79uypGT6fnZ2NIUOGYPPmzejduzeqqqrQsWNHRERE4I033kBQUBBSU1Mxf/587N69GyNHjpR0XdYIuTZj8/SYO6ePWF8gNe0RWwBHbRERWZtT1AiZ45NPPsGsWbMwZMgQzYSKa9as0XxeVVWFc+fOaWqCPD098dVXXyElJQWJiYkoKSlB69atsWnTJskhiFyTob49+syZ00fdl+dqYbnJEVsAR20RETkKp6kRshfWCDk/7X4/5qy0bs6cPtp9edjPh4jI/lyuRoioLvQ7NQPSVlqvy5w+auznQ0TkPBiEyCWZ06lZe56eZ4e3Q5dmAbhRWmH2nD7a2PRFROQcGITI5ZizUKmheXpyleUWm9OHiIgcF4MQuZRcZbnRECS20nrXqCa19otQNBYd5i62LxEROS8GIXJK+hMfqt8XllYaHdllzkrr7OtDROT6GITI6eiv6zUmtil2nsjWdIjWH+El1qlZaqhhXx8iItfGIEQOxdgSF2IdoGsE4Ivj2Zp9BKiCkNROzURE5N4YhMhhGFrBXf8zUwQAb0+MRZCvF5u0iIjIKAYhcgj6nZzVa3QNaKtai05qCAJUtUA9opswABERkUly07sQWd/lgtJaQadaEHCloEz0MzUPmQxjuzeFh0ymea+9iCkREZExrBEih9Ay2KfWvD1yADdKKxDVpLHoZ9odoOcNa8fRXUREZDauNWYC1xqzLv11wNTz9mgvh6EeGZZ6IofrdxERkSRca4wckqEFUNWdow+mDEbGlb90VnCvEYDUEzmc1ZmIiCyOQYhsxtgCqOrO0QdTBiPQt6Fof6GyyhrEtwqyZZGJiMjFsbM02YT+qDABtRdBVXeOVvcX0uYhkyE62NsWRSUiIjfCIERWl6ssx+6TOSaHv6vDjnqdL44EIyIia2PTGFmVsYkQxRZAVYcdrvNFRES2wCBEVmNsJXgpC6BynS8iIrI2BiGqN3NXgn9hVAeM7BJh9gKoRERElsYgRPVi7krwHjKZTggiIiKyJ3aWpjoTWx/si+PZOiPDAGhGgLHTMxERORrWCFGdSB0JxpXgiYjIkTEIkdmMjQTTx5XgiYjIkbFpjMxiaiQYV4InIiJnwhohMsvlglKTI8G4EjwRETkLBiEyi3r5C+0wpD8SjPP/EBGRs2DTGJmFy18QEZErYY0QidKfJFEbl78gIiJXwSBEtehPkrj8gc6Y0Ku5zj5s/iIiIlfAIEQ6xCZJfH7HabQP90NpZbVoDREREZGzYhAiHWKjwqoFAaPf+wmCkRoiIiIiZ8TO0qRDPSpMn6BXQ5SrLLdtwYiIiKyAQYh06I8KE/sPpFoQcKWgzLYFIyIisgI2jZGGeqTYgLYhOJgyGFcKyuDdUI4x7/1Ua96g6GBv+xWUiIjIQhiECIDxkWLLH+iM53ecRrUgcN4gIiJyKU7TNPbyyy+jb9++8Pb2RkBAgKRjBEHAokWLEBERgcaNGyMhIQEXLlywbkGdkKGRYup+QBN6NcfBlMH49LE+OJgymB2liYjIZThNEKqsrMT48ePx5JNPSj7mtddew5o1a7Bu3TocOXIEPj4+GDZsGG7dumXFkjofQyPFtPsBRSgaI75VEGuCiIjIpThN09jSpUsBABs3bpS0vyAIWLVqFRYuXIj7778fALB582aEhYUhNTUVEydOtFZRnYa6T5BPQw/R9cPYD4iIiFyd0wQhc12+fBl5eXlISEjQbFMoFIiLi8Phw4cNBqGKigpUVFRo3hcXF1u9rLakDj+nspVY8fVZTZ+gMbFNkXoih/2AiIjIrbhsEMrLywMAhIWF6WwPCwvTfCZm+fLlmtonV6PdIVpbjQCknsjBjn/Go6yyhuuHERGR27BrH6GUlBTIZDKjr7Nnz9q0TAsWLIBSqdS8rl69atPrW4t+h2h91YKAssoa9gMiIiK3Ytcaoblz52LatGlG94mJianTucPDwwEA165dQ0REhGb7tWvX0K1bN4PHeXl5wcvLq07XdETqprDC0kqDIQhgnyAiInJPdg1CISEhCAkJscq5W7ZsifDwcOzdu1cTfIqLi3HkyBGzRp45M+2mMBlUL7EsxD5BRETkrpymj1BWVhYKCwuRlZWF6upqZGZmAgBat24NX19fAED79u2xfPlyjBkzBjKZDMnJyVi2bBnatGmDli1b4oUXXkBkZCRGjx5tvy9iI/pNYQJUQUg9OsxDJsOzw9uhS7MA9gkiIiK35TRBaNGiRdi0aZPmfWxsLABg//79GDRoEADg3LlzUCqVmn2effZZlJaW4vHHH0dRURH69euHtLQ0NGrUyKZltwexuYEEAG9PjEWQrxfDDxEREQCZIAhGeo5QcXExFAoFlEol/P397V0ck7TnBhJbI+xgymAGICIicnlSn99OUyNEpumvF8a5gYiIiIxjEHIRYuuFcW4gIiIi4xiEXISh9cLUcwMRERFRbU6z6CoZ1zLYB3KZ7jbODURERGQcg5ATylWW46dLBchVlmveXy4oxXMj2sNDpkpD7BNERERkGpvGnIxYh+idJ7I1758b3p5zAxEREUnEGiEnItYh+ovj2TrvX0s7xxBEREQkEYOQExHrEK2vWhBwpaDMNgUiIiJycgxCTkSsQ7Q+dpAmIiKSjkHIiUQoGmP5A511OkSP7d6UHaSJiIjqiEtsmOCIS2zkKstxpaBM0xdI/z0REZG74xIbLixC0Vgn8Oi/JyIiImnYNEZERERui0GIiIiI3BaDkBPQn0maiIiILIN9hByc/kzSyx/ojAm9mtu7WERERC6BNUIOKldZjv/9kl1rJunnd5xmzRAREZGFsEbIAWnXAulTzxzNUWJERET1xxohB6O/npg+zhxNRERkOQxCDsbYemKcOZqIiMiy2DTmYNTriWmHITmAtx+KRfcWTRiCiIiILIg1Qg5GbD2x5WM7Y1SXSIYgIiIiC2ONkAOa0Ks5BrQN4fphREREVsYg5CByleW4XFCKlsE+mrXDGICIiIisi0HIAXDSRCIiIvtgHyE70x8uz0kTiYiIbIdByM7EhsurJ00kIiIi62IQsjP1cHltnDSRiIjINhiE7ExsuDwnTSQiIrINdpa2E+1RYhwuT0RE7kh/xLQ9MAjZgaFRYgxARETkLhxlxDSbxmyMo8SIiMjdOdKzkEHIxjhKjIiI3J0jPQsZhGyMo8SIiMjdOdKzkEHIxjhKjIiI3J0jPQtlgiAIpndzX8XFxVAoFFAqlfD397fYeXOV5RwlRkREbs2az0Kpz2+nqRF6+eWX0bdvX3h7eyMgIMDk/lVVVXjuuefQuXNn+Pj4IDIyEklJScjJybF+YSWIUDRGfKsghiAiInJbjvAsdJogVFlZifHjx+PJJ5+UtH9ZWRmOHz+OF154AcePH8eOHTtw7tw5/OMf/7BySYmIiMhZOF3T2MaNG5GcnIyioiKzj01PT0fv3r3xxx9/oHlzaXMVWKtpjIiIiKxH6vPbrSZUVCqVkMlkRpvWKioqUFFRoXlfXFxsg5IRERGRPThN01h93bp1C8899xwmTZpkNBkuX74cCoVC84qKirJhKYmIiMiW7BqEUlJSIJPJjL7Onj1b7+tUVVXhwQcfhCAIWLt2rdF9FyxYAKVSqXldvXq13tcnIiIix2TXprG5c+di2rRpRveJiYmp1zXUIeiPP/7Avn37TPbz8fLygpeXV72uSURERM7BrkEoJCQEISEhVju/OgRduHAB+/fvR1BQkNWuRURERM7HafoIZWVlITMzE1lZWaiurkZmZiYyMzNRUlKi2ad9+/bYuXMnAFUIGjduHI4dO4ZPPvkE1dXVyMvLQ15eHiorK+31NYiIiMiBOM2osUWLFmHTpk2a97GxsQCA/fv3Y9CgQQCAc+fOQalUAgCys7Oxa9cuAEC3bt10zqV9DBEREbkvp5tHyNY4jxAREZHzcbklNoiIiIgszWmaxuxFXWHGiRWJiIich/q5barhi0HIhJs3bwIAJ1YkIiJyQjdv3oRCoTD4OfsImVBTU4OcnBz4+flBJpNZ5JzFxcWIiorC1atX2e/IynivbYf32nZ4r22H99p2LH2vBUHAzZs3ERkZCbnccE8g1giZIJfL0axZM6uc29/fn/9j2Qjvte3wXtsO77Xt8F7bjiXvtbGaIDV2liYiIiK3xSBEREREbotByA68vLywePFirmlmA7zXtsN7bTu817bDe2079rrX7CxNREREbos1QkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBkY++++y6io6PRqFEjxMXF4ejRo/Yukks6cOAAEhMTERkZCZlMhtTUVHsXySUtX74cvXr1gp+fH0JDQzF69GicO3fO3sVySWvXrkWXLl00k83Fx8fj66+/tnex3MKrr74KmUyG5ORkexfF5SxZsgQymUzn1b59e5uWgUHIhrZt24Y5c+Zg8eLFOH78OLp27Yphw4YhPz/f3kVzOaWlpejatSveffddexfFpf3www+YOXMmfv75Z+zZswdVVVUYOnQoSktL7V00l9OsWTO8+uqryMjIwLFjx3DPPffg/vvvx6+//mrvorm09PR0vP/+++jSpYu9i+Ky7rrrLuTm5mpeBw8etOn1OXzehuLi4tCrVy+88847AFTrmEVFRWH27NlISUmxc+lcl0wmw86dOzF69Gh7F8XlXb9+HaGhofjhhx8wYMAAexfH5QUGBuL111/HjBkz7F0Ul1RSUoLu3bvjvffew7Jly9CtWzesWrXK3sVyKUuWLEFqaioyMzPtVgbWCNlIZWUlMjIykJCQoNkml8uRkJCAw4cP27FkRJajVCoBqB7QZD3V1dXYunUrSktLER8fb+/iuKyZM2di1KhROv9uk+VduHABkZGRiImJweTJk5GVlWXT63PRVRspKChAdXU1wsLCdLaHhYXh7NmzdioVkeXU1NQgOTkZd999Nzp16mTv4rikU6dOIT4+Hrdu3YKvry927tyJjh072rtYLmnr1q04fvw40tPT7V0UlxYXF4eNGzeiXbt2yM3NxdKlS9G/f3+cPn0afn5+NikDgxARWcTMmTNx+vRpm7fvu5N27dohMzMTSqUS27dvx9SpU/HDDz8wDFnY1atX8fTTT2PPnj1o1KiRvYvj0kaMGKH5e5cuXRAXF4cWLVrgs88+s1mTL4OQjQQHB8PDwwPXrl3T2X7t2jWEh4fbqVREljFr1izs3r0bBw4cQLNmzexdHJfVsGFDtG7dGgDQo0cPpKenY/Xq1Xj//fftXDLXkpGRgfz8fHTv3l2zrbq6GgcOHMA777yDiooKeHh42LGErisgIABt27bFxYsXbXZN9hGykYYNG6JHjx7Yu3evZltNTQ327t3LNn5yWoIgYNasWdi5cyf27duHli1b2rtIbqWmpgYVFRX2LobLGTJkCE6dOoXMzEzNq2fPnpg8eTIyMzMZgqyopKQEly5dQkREhM2uyRohG5ozZw6mTp2Knj17onfv3li1ahVKS0sxffp0exfN5ZSUlOj8RnH58mVkZmYiMDAQzZs3t2PJXMvMmTOxZcsW/Pe//4Wfnx/y8vIAAAqFAo0bN7Zz6VzLggULMGLECDRv3hw3b97Eli1b8P333+Obb76xd9Fcjp+fX61+bj4+PggKCmL/NwubN28eEhMT0aJFC+Tk5GDx4sXw8PDApEmTbFYGBiEbmjBhAq5fv45FixYhLy8P3bp1Q1paWq0O1FR/x44dw+DBgzXv58yZAwCYOnUqNm7caKdSuZ61a9cCAAYNGqSz/eOPP8a0adNsXyAXlp+fj6SkJOTm5kKhUKBLly745ptvcO+999q7aER19ueff2LSpEm4ceMGQkJC0K9fP/z8888ICQmxWRk4jxARERG5LfYRIiIiIrfFIERERERui0GIiIiI3BaDEBEREbktBiEiIiJyWwxCRERE5LYYhIiIiMhtMQgRERGRRRw4cACJiYmIjIyETCZDamqqVa+3ZMkSyGQynVf79u3NOgeDEBHZ1aBBg5CcnKx5Hx0djVWrVln8OtOmTcPo0aMtfl6ppkyZgldeeUXSvhMnTsTKlSutXCIiyystLUXXrl3x7rvv2uyad911F3JzczWvgwcPmnU8gxARWY09wseVK1cgk8mQmZmps3316tV2W17ll19+wVdffYWnnnpK0v4LFy7Eyy+/DKVSaeWSEVnWiBEjsGzZMowZM0b084qKCsybNw9NmzaFj48P4uLi8P3339frmg0aNEB4eLjmFRwcbNbxDEJE5BYUCgUCAgLscu23334b48ePh6+vr6T9O3XqhFatWuE///mPlUtGZFuzZs3C4cOHsXXrVpw8eRLjx4/H8OHDceHChTqf88KFC4iMjERMTAwmT56MrKwss45nECIimyktLUVSUhJ8fX0REREhqfmnqKgIjz76KEJCQuDv74977rkHv/zyi8H9W7ZsCQCIjY2FTCbTLAirXzs1aNAgzJ49G8nJyWjSpAnCwsKwfv16lJaWYvr06fDz80Pr1q3x9ddf65z/9OnTGDFiBHx9fREWFoYpU6agoKDAYHmqq6uxfft2JCYm6mx/77330KZNGzRq1AhhYWEYN26czueJiYnYunWryftD5CyysrLw8ccf4/PPP0f//v3RqlUrzJs3D/369cPHH39cp3PGxcVh48aNSEtLw9q1a3H58mX0798fN2/elHwOBiEispn58+fjhx9+wH//+198++23+P7773H8+HGjx4wfPx75+fn4+uuvkZGRge7du2PIkCEoLCwU3f/o0aMAgO+++w65ubnYsWOHwXNv2rQJwcHBOHr0KGbPno0nn3wS48ePR9++fXH8+HEMHToUU6ZMQVlZGQBVKLvnnnsQGxuLY8eOIS0tDdeuXcODDz5o8BonT56EUqlEz549NduOHTuGp556Ci+++CLOnTuHtLQ0DBgwQOe43r174+jRo6ioqDB6f4icxalTp1BdXY22bdvC19dX8/rhhx9w6dIlAMDZs2drdX7Wf6WkpGjOOWLECIwfPx5dunTBsGHD8NVXX6GoqAifffaZ5HI1sPg3JSISUVJSgo8++gj/+c9/MGTIEACqINKsWTODxxw8eBBHjx5Ffn4+vLy8AABvvPEGUlNTsX37djz++OO1jgkJCQEABAUFITw83GiZunbtioULFwIAFixYgFdffRXBwcF47LHHAACLFi3C2rVrcfLkSfTp0wfvvPMOYmNjdTo9b9iwAVFRUTh//jzatm1b6xp//PEHPDw8EBoaqtmWlZUFHx8f3HffffDz80OLFi0QGxurc1xkZCQqKyuRl5eHFi1aGP0eRM6gpKQEHh4eyMjIgIeHh85n6mbjmJgYnDlzxuh5goKCDH4WEBCAtm3b4uLFi5LLxSBERDZx6dIlVFZWIi4uTrMtMDAQ7dq1M3jML7/8gpKSklr/8JWXl2t+g6yPLl26aP7u4eGBoKAgdO7cWbMtLCwMAJCfn68pz/79+0X7+ly6dEk0CJWXl8PLywsymUyz7d5770WLFi0QExOD4cOHY/jw4RgzZgy8vb01+zRu3BgANLVRRM4uNjYW1dXVyM/PR//+/UX3adiwodnD37WVlJTg0qVLmDJliuRjGISIyGGVlJQgIiJCdFSJJTo+e3p66ryXyWQ629ThpaamRlOexMRErFixota5IiIiRK8RHByMsrIyVFZWomHDhgAAPz8/HD9+HN9//z2+/fZbLFq0CEuWLEF6errme6mb/tQ1XETOoKSkRKc25vLly8jMzERgYCDatm2LyZMnIykpCStXrkRsbCyuX7+OvXv3okuXLhg1apTZ15s3bx4SExPRokUL5OTkYPHixfDw8MCkSZMkn4NBiIhsolWrVvD09MSRI0fQvHlzAMBff/2F8+fPY+DAgaLHdO/eHXl5eWjQoAGio6MlXUcdNqqrqy1Sbv3yfPHFF4iOjkaDBtL++ezWrRsA4LffftP8HVAN+U1ISEBCQgIWL16MgIAA7Nu3Dw888AAAVafsZs2amT0UmMiejh07hsGDB2vez5kzBwAwdepUbNy4ER9//DGWLVuGuXPnIjs7G8HBwejTpw/uu+++Ol3vzz//xKRJk3Djxg2EhISgX79++Pnnn836BYJBiIhswtfXFzNmzMD8+fMRFBSE0NBQ/Otf/4JcbnjMRkJCAuLj4zF69Gi89tpraNu2LXJycvDll19izJgxOh2Q1UJDQ9G4cWOkpaWhWbNmaNSoERQKhUW+w8yZM7F+/XpMmjQJzz77LAIDA3Hx4kVs3boVH374Ya1+D4CqRqd79+44ePCgJgjt3r0bv//+OwYMGIAmTZrgq6++Qk1NjU4z4Y8//oihQ4dapNxEtjJo0CAIgmDwc09PTyxduhRLly61yPUsMbKSo8aIyGZef/119O/fH4mJiUhISEC/fv3Qo0cPg/vLZDJ89dVXGDBgAKZPn462bdti4sSJ+OOPPzT9d/Q1aNAAa9aswfvvv4/IyEjcf//9Fit/ZGQkDh06hOrqagwdOhSdO3dGcnIyAgICjAa6Rx99FJ988onmfUBAAHbs2IF77rkHHTp0wLp16/Dpp5/irrvuAgDcunULqampmk7bRGQ9MsFYdCMionorLy9Hu3btsG3bNsTHx5vcf+3atdi5cye+/fZbG5SOyL2xRoiIyMoaN26MzZs3G514UZunpyfefvttK5eKiADWCBEREZEbY40QERERuS0GISIiInJbDEJERETkthiEiIiIyG0xCBEREZHbYhAiIiIit8UgRERERG6LQYiIiIjcFoMQERERua3/B3pqCi8/4RlXAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "\n", "data = gettable.get()\n", "\n", "plt.plot(times, data[0], '.', label=\"real\")\n", "plt.plot(times, data[1], '.', label=\"imaginary\")\n", "plt.legend()\n", "plt.xlabel(\"Idle time (s)\")\n", "plt.ylabel(\"Voltage (V)\")\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "7853f131", "metadata": {}, "source": [ "Note that the data used here is the same as in {ref}`sec-tutorial-experiment`. The example dataset can be downloaded {download}`here <../examples/dataset.hdf5>`.\n", "\n", "As we defined 125 points in our `times` array which were measured in 125 different `acq_index`es, the acquisition result also contains 125 _I_ values (in `data[0][:]`) and 125 _Q_ values (in `data[1][:]`). The general format of the data returned by the {class}`~quantify_scheduler.gettables.ScheduleGettable` is also explained in the {ref}`user guide `.\n", "\n", "## Trace measurement\n", "\n", "The previous experiment's acquisition results had one data point for each acquisition in the schedule. For a trace measurement, the data format is slightly different. To illustrate this, let us set up an experiment with a trace measurement." ] }, { "cell_type": "code", "execution_count": 6, "id": "147dd00f", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler.operations import IdlePulse, SoftSquarePulse\n", "\n", "\n", "def trace_schedule(pulse_amp, acq_delay, port=\"q0:res\", clock=\"q0.ro\", repetitions=1):\n", " schedule = Schedule(\"Trace a pulse\", repetitions=repetitions)\n", "\n", " schedule.add(\n", " SoftSquarePulse(\n", " duration=q0.measure.integration_time(),\n", " amp=pulse_amp,\n", " port=port,\n", " clock=clock,\n", " ),\n", " label=\"trace_pulse\",\n", " )\n", "\n", " # Add acq_delay to compensate for time-of-flight of the pulse\n", " schedule.add(\n", " Measure(q0.name, acq_protocol=\"Trace\"),\n", " ref_pt=\"start\",\n", " rel_time=acq_delay,\n", " label=\"acquisition\"\n", " )\n", "\n", " return schedule" ] }, { "cell_type": "markdown", "id": "1fb22d16", "metadata": {}, "source": [ "Again, we define the gettable and run the experiment." ] }, { "cell_type": "code", "execution_count": 7, "id": "83c4170a", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.9/site-packages/quantify_scheduler/backends/qblox/compiler_abc.py:638: RuntimeWarning: Operation is interrupting previous Pulse because it starts before the previous ends, offending operation: Pulse \"SquarePulse\" (t0=1.0000000000000001e-07, duration=3e-07)\n", " warnings.warn(\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYKklEQVR4nO3deVxU1f8/8NeAssuIIqsjIKhooiAK4r5Q5pplaVaitPkps4yypEVbxbVMpUzLpT4lZi5ff+WSkubGxwU33FARBRVQUgdFEoP7+2OckYE7wwww2+X1fDzmodxz5973PXPn3vfce+45MkEQBBARERFJhJ2lAyAiIiKqS0xuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSUoDSwdgbuXl5bhy5QoaNWoEmUxm6XCIiIjIAIIg4NatW/Dz84Odnf5rM/Uuubly5QoUCoWlwyAiIqIayM3NRfPmzfXOU++Sm0aNGgFQVY67u7uFoyEiIiJDFBUVQaFQaM7j+tS75EZ9K8rd3Z3JDRERkY0xpEkJGxQTERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGyIblKUuwN6sQecoSS4didvV524lIv3o3cCaRLnnKEmQXFiPI0xW+cmdLh1OtVQdykLg2A+UCYCcDkp4Iw6guLSwdlpa6rtM8ZQkOXriOtPPXkbI/x+q2vfL2VvwbQJW6UJe7OtijuLTM4Hoy575qqnXZ2veNbAuTG5IMsYOlrpNN5ZOJMYlCdesBjDuJ1eQgfzT3BqasyYBw/+9yAUhck4FQn0bIuX4HMpkMCg9nzboA4OCF65DJZIgM8KiyHl0xqJOJmyX3NNM8XByqLKPi9uVcv4ObJfdwKu+WJgEBgMc6+mHKoFCjtnHbqQI4NrBHoKcrLt8sQdLG01Xmq7jtHRUempgr10HlZKPy31eL/sH+C9fR0tMVzg4NtLZFbJsrb3vGZSVmbjqNcgGQAejZyhO7zxVqtl8GQIBq/3r30VAU3r6L73dna8rV87zUMwjxPYJE4wW0k1oZgCkDQzG+d7DOz/Jo7g3sv3AdUYFN0FHhoXM+Q9ZVMTaxeqi4jwFVvwdqhn7fKu9XFfff6r5z+pZlTCJJtkkmCIJQ/WymlZycjNmzZyM/Px8dO3bEggULEBUVJTrv8uXLER8frzXN0dER//zzj0HrKioqglwuh1KphLu7e61jJ8uofCBedSBH62SfODAUjV0aah1AH4/wx7rDl6ucTOK6BuCHfRchVJo+sX8IFB7OyLl+B44N7CF3aYj0Czfwf0euQLg/z6t9gnHjTilW7s/VrFt9ElOfeCrGoSZ2glPP37VlE2w7VQCvRk6IbeetddK9U1qG1FNXsf7IFYPrSh1PRf1Dm+GZ6BZwdmiAjMtKzNh4WitmZwc7bDlRgD3n/ta5zFf7BMPODsi9XoINR69obZ8+E/oEo3srT62TauWT4ju/HsOus4UGb6Na3zbNsD3zmmhZdJAH9mff0GxnnzbNsCPzWpW60eeZKAVGdVEg5/odXLx+B4dzbuLP01dhiqNor0rJUffgJmjvL8findlVYn6knTd6tvZE+oUbmn1DBqC9nzsyrhRp5gtvLkfsQ95Iy/obe8/9rVlO5bqZMjAUfo2d8PrKI1XWJZaMVP7+qddf8XviLXdEduEdlP5bhp/35VZZbny3QAyP8IOXu1OVZLGyivFWXpc6AQMeJDw7z1yr8h2UAZgxwjqu+JFhjDl/Wzy5WbVqFeLi4rBo0SJER0dj3rx5WL16NTIzM+Hl5VVl/uXLl+ONN95AZmamZppMJoO3t7dB62NyY9vylCVYujsb3+3OhnA/aXmldzCSd2RZOjSqgXCFHEdylZYOg2pgSJgPXBwaoGEDGX7al2vpcGpEBmBvYj9ewbERNpXcREdHo0uXLli4cCEAoLy8HAqFAhMnTsSUKVOqzL98+XJMmjQJN2/erNH6mNzYjspXZ77dmSV6W4KIqKYWjo7AkI5+lg6DDGDM+duibW5KS0uRnp6OxMREzTQ7OzvExsYiLS1N5/tu376NgIAAlJeXo1OnTpg+fToeeugh0Xnv3r2Lu3fvav4uKioSnY+sS8V78gAQ6uOG0/m3LRsUEUnOzZJSAGzgLDUWTW4KCwtRVlZW5ZaSt7c3Tp8W/4Xepk0bLF26FB06dIBSqcScOXPQrVs3nDhxAs2bN68yf1JSEj7++GOTxE+mkacsqXJ/nIkNEZnCh+tPIPXUVew4c03TdmpCn2BMfjTUsoFRrdhcPzcxMTGIi4tDeHg4evfujbVr16JZs2b49ttvRedPTEyEUqnUvHJzbfPecH2SXVhscONUIqLaEABsz7ym1Sg8eUcWXv0p3WIxUe1ZNLnx9PSEvb09CgoKtKYXFBTAx8fHoGU0bNgQEREROHfunGi5o6Mj3N3dtV5k3UpK/7V0CGTlQr3dLB0CSdzGjHwczb1h6TCohiya3Dg4OCAyMhKpqamaaeXl5UhNTUVMTIxByygrK0NGRgZ8fX1NFSaZ0aoDOXhhBX8xUVWdAxrj+e6B+L8J3bDs+SjYyap/z/BwXxgwm4YMwDPRCiQ/E4HEQaGwlxnzbsv4T+8g9AhpavL1DA+vf41u31t7HL8du8JesG2QxTvxS0hIwNixY9G5c2dERUVh3rx5KC4u1vRlExcXB39/fyQlJQEAPvnkE3Tt2hUhISG4efMmZs+ejYsXL+LFF1+05GZQDVTsVOvopZs4frkIvxy8ZNYYEgeG4tY/95C8PUu0v5MO/u7oFOCBH9IuavqiGdjeB1tOFKBMEDQnTgGqXwov9grC4DBf3Cktx5YTeVi+96LW8mQyGNwnyohO/ugb6oXXfj5cpUwG4KVeQWjq5oiZG0+j3PBNhh2AV/sG45sd51FWg4clZQBGRyvg1MAeS/dcqFL+er8QuDo10OrQThOrjn5Lqot33YRuWh3QAaq+Vt5bexxlggA7AD0q9AtjB+Dd+53bxQTnaM0noGq/PxP6BqNHSDMEerpoNSYd1tEPFwrvwMXBDndKy+HiYIdVBy4h5UBO1c73egUhvnsQrhb9gz9PXUUzd0cUl5Zp+hBSSxwYimHhD5abe70Er6ccNrpeKvfTkqcsQfqFG5oGsgcv3ND0P2Qvk+GdR9vAv7EzZDLgVF4Rvt6RpamrMV0DsOJ/F0XXU7Ffm3cHhmLbyQJkFxZj2d4LVfqGWj+hG07n30LimgyU40E/Ui2auuDGnVLNPqf+rjR1c8SsTZmaacPCfRHQ1BXNPZxx6XoJmrk7Isxfjse/3lulfj4b/hD6t/XGzjPXqvSxU1dO5BVpvn/PRCnQLcRTZ2eOZF0s/ig4ACxcuFDTiV94eDjmz5+P6OhoAECfPn0QGBiI5cuXAwDefPNNrF27Fvn5+fDw8EBkZCQ+++wzREREGLQuPgpuHSo/DWUssY7p1NMfC/fFw+184NTQDjtOX8OP+3KqzNc/1AufPd5eq5dg9cnm2CUlCm/fRb9QL80JVV2uPvlV/BuAVllF6hOOTAZ0ut9B3YXCO7hTek/znpLSck351aJ/cPDCDXQO9ND0ttt9xp/aHQBC+2SfpyzBst0X8N3u86L1KYMqqVKf5KY/0R6jurTQ2mb1iTv3eglulpTCw8UBzT2ckXu9pErsFeugcmz2Mhl2T+lbpY7E6vn3Y/mamNUn3w7NG2PPuWuaE2/FeMXo+1wq96Csnr7zzDWtZOfdSj38GqJy3Yl99hXnrbgPiM236sCDBEx2/0MTBOhMAl68n0hVd5LVVR9iZasO5GiSEnW9dGjeWOe2VYy58udkyOdQeZ/QV4f61lWxjtPO/42V+3NM2maPnf9Zjk31c2NuTG4sR32lpqT031rdelL3PlzxYKc+MYodTMWSgz021HFXdQd2NfVJ4tjlm5oToXr+Xq2bVXsCMWVsuhhzEqxLpl5+TVSXMJsjZmPXYc56NHRdur4HFa9c7ci8itXpl2sci50M2DPFdo4hUsHkRg8mN5ZR2ys1ahU73DL0YFfbE7A1kMJJh8jc9O2bte0U9PV+IRgd3YL7vBkxudGDyY35iV09qYmKtzxqEgNPwERUUZ6yRGcbIkPwFpV52UwPxVQ/bDtZUKPEpmUzV1wsvKN1xaWmiYmv3JlJDRFp8ZU7Y0xMIACgjU8jzRVeQwkA3l2TgV6tm/H4YmWY3JBJvfpTOjZm5Bv9PnUPobziQkTmMKpLC03btDul94xqFzhz02nMe9qwh1rIPJjckMnM3nzaqMRmQp9g9Gil/Tgur7gQkblUPN7MHBGGd9dkGPS+9UeuIL57YJXuCshy2OaGTCJPWYKYpD8NmvdlAx9rJSIypzxlCT76vxPYcrKg+pnBMalMjW1uyGLUj3tnXdU/0KV3I0dMHdpOZ78fRESW5it3xrdxnTF7y2kkb8+qdv7kHVnYk1WIb56L5HHNwpjcUJ0x5nHvxXGRvIRLRDZh8gDV1RhDEpwjuUrEJP2JxBp0Dkl1x+ZGBSfrlKcswZQ1hiU2Izr5M7EhIpsyeUAoEgeFGjxWWdKm05i9peb96FDtMLmhOpF+8YZBY7t8PzYSc0eGmzocIqI6N75XMPYm9sMzUYb1a5O8PQtv/3LEtEGRKCY3VCt5yhLszSrE/NQz1c47rlsA+rf1MUNURESm4St3xvQnwjChr2G3nH49dBlDF+wycVRUGdvcUI0ZO6TCgId8TRsQEZGZGNMOJ+NyEVJP5fPHnRnxyg3VSJ6yxKjExl4m0wwISEQkBd1DPA2e9/djeSaMhCpjckM1kl1YbFRiU5uhE4iIrFGQpyvsDGxhvPbwFXz7V/VXeahu8LYU1ciPaRf1lvvJnfDp8Ifg4tCQQycQkST5yp2R9ESYZkwqGaD3wYqkTadR9M89zS0tMh0mN2S0o7k3sOm4/mEV1rzajQkNEUlexTGp1LfeV+7Lwfw/z4nOn7w9C+7ODTG+F/vAMSXeliKjLdl5Xm954qBQJjZEVG/4yp0RE9xUMzZV/7ZeeuefsfE08pQlZoqufmJyQwbLU5bgh7Rs/FbNYJgd/BubJyAiIitUXFqmt1wAcOjiDfMEU0/xthQZZNWBHExZk1FtR312MvCpKCKq14I8Xattf7P1ZAEGd/AzV0j1Dq/cULXUQytUl9jIZEDSE2G8JUVE9Zqv3BkzRoTpnWf9kSscnsGEeOWGqpVdWFxtYjN5QGs80ak5ExsiIjxoaLwg9Rx+3p8jOo+6A0A+PVX3eOWGqpVxSam3vIO/HBP6tmJiQ0RUgXqohtlP6r6Kk7w9C9/uZP83dY3JDemVpyzBjE36L51+OvwhM0VDRGR7bpbc01vOp6fqHpMb0mvZ7my9t6R6tfJER4WH2eIhIrI1UYFN9JYLALadLDBPMPUEkxvSKU9ZgsW7svXOM/PJDmaKhojINnVUeGBEJ3+983z4fyew6oB42xwyHpMb0mlB6lmdZTIAM0fwySgiIkPMHRmO78dG6p0ncW0Gb0/VESY3JOpo7g38vD9XZ/n6Cd0wqksLM0ZERGTb+rf1wUw9j4iXC0D6BXbuVxeY3FAV3+7MwmPJe3WWv9Y3mO1siIhqYFSXFnj7kdY6yyemHObtqTrA5Ia0fPtXFpI26n86qntIMzNFQ0QkPYGerjrLBAFIXMPbU7XF5IY08pQlSKrmsW8Or0BEVDuRAfqvfJcDWLb7gllikSomN6Rx8MJ1veUycHgFIqLa8pU76217AwCLd53n1ZtaYHJDGt/v1v/YNxsRExHVjVFdWlT79NSC1HNmikZ6mNwQAGD25tM4kqt7mIWZI8LYiJiIqA71b+uDnq08dZb/vD8HR3P59FRNMLkh5ClLkLxDfGyTTorGSEvsxys2REQmMKuajlAfS97Lp6dqgMkNIbuwWGfZhH7BbGNDRGQihrS/Yed+xmNyQ9hzrlBnmYtDQzNGQkRU/4zq0gKfPqZ7AOJyAbhQeMeMEdk+Jjf13Ld/ZSF5u/gtKT72TURkHrHtvHWWycBjsbGY3NRjecoSzNDTr82LPVrylhQRkRn4yp2RODBUtEwAsPPMNfMGZOOY3NRjy3ZnQ9BRJgMQ3yPQjNEQEdVvYc3lOsveZa/FRmFyU0/lKUuweJfufm1e6smrNkRE5hTk6QqZnvKFf7LfG0Mxuamn9D0hxas2RETm5yt3xhQdt6YA4Kd9Obx6YyAmN/WUq4O9zrIpg0J51YaIyALG9w7GhL7BOstnVjP+H6kwuamH8pQl+Cr1rGjZ4+F+GN9L9xeLiIhMa/KAUDyi4+mp9Ueu4Nud4k+40gNMbuqZVQdy0C3pT/x5Wrzlff+2uh9HJCIi8xgW7qezLGnjad6eqgaTm3okT1mCxLUZep+Qigzk+FFERJYWGaD/WDwp5Yh5ArFRTG7qkezCYpTrymwATOjLoRaIiKyBvn5vAGBf9nUOqqkHk5t6RF8jYgDoHtLMTJEQEVF1qmtc/Oepq2aMxrYwualHikvLdJZxqAUiIuszeUAoxsYEiJbN//McRwzXgclNPbJk13mdZe8O5OPfRETW6OPH2qNvaNUr6wI4YrguTG7qidmbT2O7jiekEgeG8vFvIiIr9lLPlqLTOWK4OCY39UCesgTJO8T7RXijXwjG92ZiQ0RkzYI8XXWW/fi/C+YLxEYwuakHlu3WPYZUv7ZeZoyEiIhqSte4Uxsz8vnkVCVMbiRO3wCZ/do0Q0cF+7UhIrJ22YXFOvsoA4CDF5jcVMTkRuIW/Ck+zAIAPNGpuRkjISKimqpuxPDc62x3UxGTGwn79q8s/LwvV2e5TN83hYiIrIav3Bmv9tHdPnJ52kWOOVWBVSQ3ycnJCAwMhJOTE6Kjo7F//36D3peSkgKZTIbhw4ebNkAblKcswQw9o8fKAHSqpntvIiKyHt1beeotn8ExpzQsntysWrUKCQkJmDZtGg4dOoSOHTtiwIABuHpVf8+LFy5cwNtvv42ePXuaKVLbUt392SmD2K8NEZEtCfJ0hZ2eK+4CgHS2vQFgBcnNF198gZdeegnx8fFo164dFi1aBBcXFyxdulTne8rKyvDss8/i448/RsuW4s/+13c/pl3UWfZMVAv2a0NEZGN85c5IeiJM74n7Zkmp2eKxZhZNbkpLS5Geno7Y2FjNNDs7O8TGxiItLU3n+z755BN4eXnhhRdeqHYdd+/eRVFRkdZL6o7m3sCm4/miZXYAJvYPMW9ARERUJ0Z1aYE9if3wTFQL0fIP15/gkAywcHJTWFiIsrIyeHt7a0339vZGfr74yXn37t34/vvvsWTJEoPWkZSUBLlcrnkpFIpax23t9l+4rrPsXd6OIiKyab5yZ0x/Ikx0UE0OyaBi8dtSxrh16xbGjBmDJUuWwNNTf8MqtcTERCiVSs0rN1f300NScbP4ns6yDv6NzRcIERGZTKhPI9HpHJIBaGDJlXt6esLe3h4FBQVa0wsKCuDj41Nl/qysLFy4cAFDhw7VTCsvLwcANGjQAJmZmQgO1s5kHR0d4ejoaILorZO+oRbsZTKO/E1EJBEyPf153CnV/SO3PrDolRsHBwdERkYiNTVVM628vBypqamIiYmpMn9oaCgyMjJw5MgRzWvYsGHo27cvjhw5Ui9uOVVn2v+dEJ0ukwHTn2jPW1JERBIRqac7j3WHrpgxEutj0Ss3AJCQkICxY8eic+fOiIqKwrx581BcXIz4+HgAQFxcHPz9/ZGUlAQnJye0b99e6/2NGzcGgCrT66Nv/8rCHycLRMviYwIxqot4AzQiIrI9vnJnTOgTLHq1/veMPLyvLKm3P2gtntyMGjUK165dw9SpU5Gfn4/w8HBs3rxZ08g4JycHdnY21TTIIqrrtO+xCD8zRkNEROYw+dFQHLx4Hfuytfu3EQAsSD2H6U+EWSYwC5MJgqCvrzfJKSoqglwuh1KphLu7u6XDqTN7swrxzJJ9omWDwnzw9bORZo6IiIjM4WjuDTyWvFe0bELfYEweEGrmiEzDmPM3L4lIhKuDvc6yD4e0M2MkRERkTsWlZTrLkrdn1csxp5jcSMCqAzkYriNrB/hIIBGRlAV5uuotn7mp/o05xeTGxuUpSzBlTYbOcaTsZODj30REEuYrd0biQN23nupjvzdMbmxcdQNkvtijZb1tLU9EVF+M7x0s2mOx2p5z18wYjeUxubFx+i5HygDE9wg0WyxERGQ53UN099yfvD2rXt2aYnJj43zlzmjvJ95qfArHkSIiqjeCPF2hq89iAcCy3RfMGI1lMbmxcamn8nH8StWRzsfFBGB8L92XKImISFp85c6YMUJ3vzbf7T5fb67eMLmxYasO5OCFFemiZYombERMRFTfjOrSAomDxBsX16eGxUxubJT6KSldOgfqHnOEiIikKU9Zgpk6equvT4MnM7mxUfqekooOaoKOCiY3RET1TXZhMcp1nBwGtPeuN+0wmdzYKH1PSY3pGmDGSIiIyFroa1S8KSOfbW7Ius3Zkik6XQYgkrekiIjqJV+5M6bo6NBPAPD5b6fqRYLD5MYGHc29gTWHLouW8fFvIqL6TV+Hfr9l5KH7jD+x6kCOmaMyLyY3Nmj/hes6yzr4NzZfIEREZJUmDwjFM9EK0bJyAXhv7XFJX8FhcmOD/jx9VXQ6x5EiIiK1UZ3FkxsAKBMEST8WzuTGxszefBppWeJXbpKeCOMtKSIiAgAUl5bpLXdxkG4KIN0tk6A8ZQmSd2SJlr3RLwSjurQwc0RERGSt9D1VCwCXbvC2FFmB9Is3dJb1a+tlxkiIiMja+cqdMaGP7mF4BF2dpUkAkxsbIujYE9lpHxERiZn8aCj6hjYTLTuVX3VcQqlgcmND1h4Wf/x73tPh5g2EiIhsxrJxURgXU7Vz1+TtWfh2p3hTB1vH5MZGzN58GttPX6sy/bW+wWxETEREenUOaiI6feam05J8JJzJjQ3Q15BYyo/yERFR3dDVrEGqI4UzubEB2YXFOss2Hs+TZNZNRER1p3Og+JUbqfaPxuTGBrg62Ossk2rWTUREdcdX7oyZI8KqTH88wl+STRuY3NiAVQdzdZbZy2SSzLqJiKhu9WrdDHaVhgxfd+iyJK/+M7mxct/+lYWf94knN3YyYPoT7SWZdRMRUd3KLixGeaWmN+UAlu2+YIlwTIrJjRXLU5YgadNp0bLYtl7YM6UfeyUmIiKDBHm6QiYyffGu85K7esPkxorpa0g8PFya90mJiMg0fOXOGB0lPpjmTB0/pG0Vkxsrtudsoeh0GYDIQPZITERExukW4ik6ff2RK5Lq0I/JjZXKU5bgax1927zUsyWv2hARkdEiA3T/MJ6xUTod+jG5sVLZhcUQ63JJBiC+R6CZoyEiIinQN5imAOk0LmZyY6V09W0zgcMtEBFRLXRvJX5rCgC+2y2NxsVMbqzU57+fEp3e1tfdzJEQEZGUBHm66iyTSsewTG6s0NHcG9h/4YZomY7hQYiIiAziK3fGkDAfneUuDrafGtj+FkjQW78c1VnGp6SIiKi2XurVUmfZdB13DmwJkxsrM27Zfpy7Jt6/zWtsb0NERHWgo8IDA9uLX73Zd+EG5myx7X5vmNxYkaO5N7Aj85poWahPI7w9INTMERERkVR981wkugc3FS1L3pFl0w2LmdxYkf0XrussExvNlYiIqDbeebSN6HTBxhsWM7mxIlGBTUSn92vTDB0VbGtDRER1q6PCA33aNBMts+WGxbYbuQSdzr9VZVqfNs2wND7KAtEQEVF98LKOxsW/H8s3cyR1h8mNlchTlmDKmowq05Oe4O0oIiIyHV2jhS+x4dHCmdxYifSLN0SHWzh0Uby/GyIiorqga7RwAbZ7DmJyYyUEHb3zsdM+IiIytVDfRqLTt54sMHMkdYPJjZU4nVe1vQ0AKJqwXxsiIjKtJq6OotM3HL1ik7emmNxYgTxlCb7ekSVadqe03MzREBFRfRMZIP5Erq2ONcXkxgpkFxaLtrexkwGBni5mj4eIiOoXX7kzEgeKdxS7+5x457LWjMmNFci4pBSd/u7AUA63QEREZjG+dzD6hlbt8yZ5exa+3Sl+d8FaMbmxsDxlCZI2iY/hMayjn5mjISKi+ipPWYIdp8Wv0szYeNqm2t4wubGwBalndZbZ4n1OIiKyTbqaSACqx8KX7b5gxmhqh8mNBeUpS/Dz/lzRMra3ISIic9LVmZ+aLXXqx+TGgrILi3WWsb0NERGZk6/cGS/1DNJZLgBIv2AbnfoxubGgPWcLRaePiwnA+F7BZo6GiIjqu/geQXqv3sj0FVoRJjcWkqcsQbKOvm0GtPc1czRERESqqzczRuge07CTjv5wrA2TGwt5Y+Vh0elsa0NERJY0qksLpCX2wzNRLaqU7TxjG33eMLmxgKO5N7Bfx33Lp7u0YFsbIiKyKF+5Myb2D6ky/d01GTbRqNio5ObmzZtYtmwZnn/+efTv3x8xMTEYNmwYpk2bhr1799Y4iOTkZAQGBsLJyQnR0dHYv3+/znnXrl2Lzp07o3HjxnB1dUV4eDh+/PHHGq/bEvZfuK6zTGxnIiIiMretJ/NFp2+zgcE0DUpurly5ghdffBG+vr747LPPUFJSgvDwcPTv3x/NmzfH9u3b8fDDD6Ndu3ZYtWqVUQGsWrUKCQkJmDZtGg4dOoSOHTtiwIABuHr1quj8TZo0wfvvv4+0tDQcO3YM8fHxiI+Px5YtW4xaryXdLL4nOv21vsG8akNERFah8Hap6PQdNnBrSiYIgq4+ezS8vb0xduxYjBs3Du3atROdp6SkBOvXr8f8+fMxYsQIvP322wYFEB0djS5dumDhwoUAgPLycigUCkycOBFTpkwxaBmdOnXC4MGD8emnn1Ypu3v3Lu7evav5u6ioCAqFAkqlEu7u7gYtvy7lKUvQLelP0Y6S0hL7MbkhIiKrcDT3Bh5LrnpXxk4G7Jli/vNVUVER5HK5Qedvg67cnDx5ErNmzdKZ2ACAs7MzRo8ejbS0NMTHxxsUaGlpKdLT0xEbG/sgIDs7xMbGIi0trdr3C4KA1NRUZGZmolevXqLzJCUlQS6Xa14KhcKg2Exl2e5snT1AskdiIiKyFh0VHujZyrPKdFsYKdyg5KZp06b47bffUF5ebtBCmzZtatB8hYWFKCsrg7e3t9Z0b29v5OeL3+sDAKVSCTc3Nzg4OGDw4MFYsGABHn74YdF5ExMToVQqNa/cXPEegc0hT1mCJbuyRcv4lBQREVmbWU92EJ1+7PJN8wZiJIMbFA8fPhwKhQLvv/8+zp07Z8qYqtWoUSMcOXIEBw4cwOeff46EhATs2LFDdF5HR0e4u7trvSxF37gdSU+E8ZYUERHZBGsfSNPg5CY7Oxvjx49HSkoK2rRpg969e+PHH39ESUnNN87T0xP29vYoKNBueV1QUAAfHx/dQdvZISQkBOHh4Xjrrbfw5JNPIikpqcZxmIuucTtkAHq1rjrMPBERkSXpGibI2gfSNDi5USgUmDp1KrKysrBt2zYEBgbilVdega+vL/7zn//gwIEDRq/cwcEBkZGRSE1N1UwrLy9HamoqYmJiDF5OeXm5VqNha7Xh6BXRKzcCrP/+JRER1T/6BtO05oE0a9SJX9++fbFixQrk5eVh9uzZyMjIQNeuXdGxY0ejl5WQkIAlS5ZgxYoVOHXqFF555RUUFxdrGiXHxcUhMTFRM39SUhK2bt2K8+fP49SpU5g7dy5+/PFHPPfcczXZFLP59q8sJG08LVrG9jZERGSNfOXOmDIwVLRMAHDoonUOpNmgNm9u1KgR+vfvj4sXL+L06dM4efKk0csYNWoUrl27hqlTpyI/Px/h4eHYvHmzppFxTk4O7Owe5GDFxcV49dVXcenSJTg7OyM0NBT//e9/MWrUqNpsiknlKUswY5N4YgMAL/ZoyfY2RERklcKay3WWVd+ZjGUY1M9NZSUlJVi9ejWWLl2KXbt2ISgoCPHx8Rg3bhz8/f1NEWedMeY5+bqyN6sQzyzZJ1omA7CX/dsQEZGV0tc/26AwH3z9bKRZ4qjzfm7U/ve//+Hll1/WtLNp3rw5tm3bhnPnzuH999+3+sTGUlwd7HWWTRkUysSGiIislr6Rwjdm5ONorvXdmjL4tlS7du2QmZmJiIgIJCUl4ZlnnoFcrvtSFT3w+7E8nWUd/BubLxCq18rKynDvnvjQH2SbHBwctG7bE5nKqC4tcPlmCeanVu0KZsnObCx81sMCUelmcHITGxuLlStX1qjRcH3GjvvI0gRBQH5+Pm7evGnpUKiO2dnZISgoCA4ODpYOheqB/qFeosnNxuN5yFOWWNVdCIOTm/nz55syDsnS1XGfDOy4j8xDndh4eXnBxcUFMpmuBzvJlpSXl+PKlSvIy8tDixYt+LmSyamHY9h1tlBruno4Bms6nxmU3Dz66KP46KOP0LVrV73z3bp1C19//TXc3NwwYcKEOgnQ1ulqb/Pd2Ej0b6u7o0KiulBWVqZJbAwdFoVsR7NmzXDlyhX8+++/aNiwoaXDoXrg7UdaV0luAMDFwbpujxqU3Dz11FMYMWIE5HI5hg4dis6dO8PPzw9OTk64ceMGTp48id27d2Pjxo0YPHgwZs+ebeq4bcaqA+JjWZWUGjZOF1FtqNvYuLjw9qcUqW9HlZWVMbkhsyguLROd/vuxfHRUWE+7G4OSmxdeeAHPPfccVq9ejVWrVmHx4sVQKpUAAJlMhnbt2mHAgAE4cOAA2rZta9KAbUmesgQ/7xdPbngFmcyJtyykiZ8rmZvOuxG7zyO+R6DV3JoyuM2No6MjnnvuOU1PwEqlEiUlJWjatCl/MeiQrqPnRhmATgHWk+ESEREZQteVG2trd1Pjm2RyuRw+Pj5MbPT4Ye8F0emjo1pYzQ5AVJ9cuHABMpkMR44csXQoRDYpyNNVZ9mSnVlmjEQ/62oBJCFHc29g/wXxKzcT+4eYORoiIqLa85U74+WeQaJlf2Zes5oO/ZjcmMj81LOi04eE+fKqDVENlJaWWjoEIgIQ30M8uQGAgzp+1JsbkxsT+PavLKSeviZa9lIv3TsFkbXLU5Zgb1Yh8pQlJl9Xnz598Nprr2HSpEnw9PTEgAEDcPz4cQwcOBBubm7w9vbGmDFjUFj44LHUzZs3o0ePHmjcuDGaNm2KIUOGICvLei6VE0mBr9wZE/oEi5alniowczTimNzUsTxlCZJ0jAAeHdTEqh6VIzLGqgM56D7jTzyzZB+6z/gTqw7kmHydK1asgIODA/bs2YMZM2agX79+iIiIwMGDB7F582YUFBRg5MiRmvmLi4uRkJCAgwcPIjU1FXZ2dnj88cdRXs6uF4jq0uRHQxET3KTK9L3nr2POFvFzoDkZ/LRURTdv3sSvv/6KrKwsTJ48GU2aNMGhQ4fg7e1d7wfPzC4s1lkWFxNgxkiI6k6esgSJazNQfr+77XIBeG/tcfRq3cykt1lbtWqFWbNmAQA+++wzREREYPr06ZrypUuXQqFQ4MyZM2jdujVGjBih9f6lS5eiWbNmOHnyJNq3b2+yOInqo36hXkjLul5levKOLDzbNcCiTTCMvnJz7NgxtG7dGjNnzsScOXM049WsXbsWiYmJdR2fzQnydIVYzxN8/JtsWXZhsSaxUSsTBFwovGPS9UZGRmr+f/ToUWzfvh1ubm6aV2hoKABobj2dPXsWo0ePRsuWLeHu7o7AwEAAQE6O6a8yEdU3UYFVr9wAgHD/sXBLMjq5SUhIwLhx43D27Fk4OTlppg8aNAg7d+6s0+Bska/cGQPDqg6rMGMEx5Ei2xXk6Qq7Slm7vUxm8oFfXV0fPHZ6+/ZtDB06FEeOHNF6nT17Fr169QIADB06FNevX8eSJUuwb98+7Nu3DwAbIxOZQkeFB/q0aSZaZunhGIxe+4EDBzB+/Pgq0/39/ZGfn18nQdmyb//KwsaMqvXQq7X4DkBkC3zlzkh6Igz293vEtZfJMP2J9mZN2Dt16oQTJ04gMDAQISEhWi9XV1f8/fffyMzMxAcffID+/fujbdu2uHHDOp7cIJKqEZ3Em6Icu6Q0cyTajG5z4+joiKKioirTz5w5g2bN6vcJXF9j4kMXb2BwB165Ids1qksL9GrdDBcK7yDQ08XsVyInTJiAJUuWYPTo0XjnnXfQpEkTnDt3DikpKfjuu+/g4eGBpk2bYvHixfD19UVOTg6mTJli1hiJ6htdQ4B8+H8n4NDADqO6tDBzRCpGX7kZNmwYPvnkE82AfDKZDDk5OXj33XerNOarb3QNtwCo7kES2TpfuTNigpta5Barn58f9uzZg7KyMjzyyCMICwvDpEmT0LhxY9jZ2cHOzg4pKSlIT09H+/bt8eabb3IQXyITi9TTljRxbYZZuo0QY/SVm7lz5+LJJ5+El5cXSkpK0Lt3b+Tn5yMmJgaff/65KWK0GXvPVR0GHlA1Jo4MZGNiImPs2LGjyrRWrVph7dq1Ot8TGxuLkydPak0TKvyyCAwM1PqbiGrHV+6MIWE++E2kOYYlx5syOrmRy+XYunUrdu/ejWPHjuH27dvo1KkTYmNjTRGfzchTlmCljhHApwwKZWNiIiKSpJd6tRRNbuxkMPlDB7rUqJ8bAOjRowd69OhRl7HYtOzCYoj9HnwmqgXG9xLvyZGIiMjWdVR4YEQnf6w5dFlretITlntK2OjkZv78+aLTZTIZnJycEBISgl69esHe3r7WwdmSPWfFb0mN6tLczJEQERGZ19yR4fCVOyF5exYEqJpj3Lxzz2LxGJ3cfPnll7h27Rru3LkDDw9VO5IbN27AxcUFbm5uuHr1Klq2bInt27dDoVDUecDWKE9Zgq93iI9fc6eU3b4TEZG0qc+D6jsYAqB6elgGi9y9MPppqenTp6NLly44e/Ys/v77b/z99984c+YMoqOj8dVXXyEnJwc+Pj548803TRGvVdJ1S8qS9xuJiIjMRawXcwCYuem0RZ6YMvrKzQcffIA1a9YgOPhBJhYSEoI5c+ZgxIgROH/+PGbNmlWvHgtX995a+YN9dyAbEhMRkfSphx6qnN9Y6okpo6/c5OXl4d9//60y/d9//9X0UOzn54dbt27VPjob4St3xuMR2r00Dmzvw4bERERUL/jKnTFlYGiV6eYYpkWM0clN3759MX78eBw+fFgz7fDhw3jllVfQr18/AEBGRgaCgoLqLkorl6cswbrD2q3E/zhRYLHOi4iIiMxtfO9gJA4K1YxDZ4lhWtSMvi31/fffY8yYMYiMjETDhg0BqK7a9O/fH99//z0AwM3NDXPnzq3bSK2YvhGTeVuKiIjqi/G9gjGso5/FhmlRMzq58fHxwdatW3H69GmcOXMGANCmTRu0adNGM0/fvn3rLkIbINbmxlKX4oikok+fPggPD8e8efMsGkdgYCAmTZqESZMmWTQOIlvhK3e2+A/7GnfiFxoaitDQqvfX6iP1iMnvrT2OMkGw6KU4IqlYu3at5uqwJR04cACurq6WDoOIjFCj5ObSpUvYsGEDcnJyUFpaqlX2xRdf1ElgtsbSIyYTSU2TJk0sHQIAoFmzZiZfR2lpKRwcHEy+HqL6wugGxampqWjTpg2++eYbzJ07F9u3b8eyZcuwdOlSHDlyxAQh2g5LjphMZBbKy0D2TtW/JtanTx/NraDAwEB89tlniIuLg5ubGwICArBhwwZcu3YNjz32GNzc3NChQwccPHhQ8/6///4bo0ePhr+/P1xcXBAWFoaVK1dqrePWrVt49tln4erqCl9fX3z55Zda61Wvu+KtMZlMhu+++w6PP/44XFxc0KpVK2zYsEFTXlZWhhdeeAFBQUFwdnZGmzZt8NVXX2mtd9y4cRg+fDg+//xz+Pn5oU2bNvjkk0/Qvn37KvUQHh6ODz/8sBY1SVT/GJ3cJCYm4u2330ZGRgacnJywZs0a5Obmonfv3njqqadMESMRWYNDPwDz2gMrhqr+PfSDWVf/5Zdfonv37jh8+DAGDx6MMWPGIC4uDs899xwOHTqE4OBgxMXFaUb9/ueffxAZGYnff/8dx48fx8svv4wxY8Zg//79mmUmJCRgz5492LBhA7Zu3Ypdu3bh0KFD1cby8ccfY+TIkTh27BgGDRqEZ599FtevXwcAlJeXo3nz5li9ejVOnjyJqVOn4r333sMvv/yitYzU1FRkZmZi69at+O233/D888/j1KlTOHDggGaew4cP49ixY4iPj6+LKiSqPwQjubm5CefOnRMEQRAaN24sHD9+XBAEQThy5IgQEBBg7OLMTqlUCgAEpVJp6VCITK6kpEQ4efKkUFJSUrsF3bwkCB81FoRp7g9eH3mopptI7969hTfeeEMQBEEICAgQnnvuOU1ZXl6eAED48MMPNdPS0tIEAEJeXp7OZQ4ePFh46623BEEQhKKiIqFhw4bC6tWrNeU3b94UXFxcNOtVr/vLL7/U/A1A+OCDDzR/3759WwAgbNq0Sed6J0yYIIwYMULz99ixYwVvb2/h7t27WvMNHDhQeOWVVzR/T5w4UejTp4/O5dbZ50tkA4w5fxt95cbV1VXTzsbX1xdZWQ/GVCosFB88kohs3PUsQKg0TppQBlw/b7YQOnTooPm/t7c3ACAsLKzKtKtXrwJQ3R769NNPERYWhiZNmsDNzQ1btmxBTk4OAOD8+fO4d+8eoqKiNMuQy+VaT34aEourqyvc3d016wWA5ORkREZGolmzZnBzc8PixYs161ULCwur0s7mpZdewsqVK/HPP/+gtLQUP//8M55//vlq4yEibUY3KO7atSt2796Ntm3bYtCgQXjrrbeQkZGBtWvXomvXrqaIkYgsrUkwILPTTnBk9kCTlmYLoeKTUzKZTOe08nJVjLNnz8ZXX32FefPmISwsDK6urpg0aVKVhyBqG4t63er1pqSk4O2338bcuXMRExODRo0aYfbs2di3b5/We8SewBo6dCgcHR2xbt06ODg44N69e3jyySdrHS9RfWN0cvPFF1/g9u3bAFT3nW/fvo1Vq1ahVatW9fZJKSLJk/sDQ78C/t8k1RUbmT0wdJ5qupXas2cPHnvsMTz33HMAVEnPmTNn0K5dOwBAy5Yt0bBhQxw4cAAtWrQAACiVSpw5cwa9evWq1Xq7deuGV199VTOt4hVufRo0aICxY8di2bJlcHBwwNNPPw1nZz6gQGQso5Obli0f/FJzdXXFokWL6jQgIrJSneKA4P6qW1FNWlp1YgMArVq1wq+//oq9e/fCw8MDX3zxBQoKCjTJTaNGjTB27FhMnjwZTZo0gZeXF6ZNmwY7OzvNVaCarveHH37Ali1bEBQUhB9//BEHDhwweEiaF198EW3btgWgSpSIyHhGt7lp2bIl/v777yrTb968qZX4EJEEyf2BoJ5Wn9gAwAcffIBOnTphwIAB6NOnD3x8fDB8+HCteb744gvExMRgyJAhiI2NRffu3dG2bVs4OTnVeL3jx4/HE088gVGjRiE6Ohp///231lWc6rRq1QrdunVDaGgooqOjaxwHUX0mEwSh8gjletnZ2SE/Px9eXl5a0wsKCtCiRQvcvXu3TgOsa0VFRZDL5VAqlXB3d7d0OEQm9c8//yA7OxtBQUG1OmHXF8XFxfD398fcuXPxwgsvWCQGQRDQqlUrvPrqq0hISNA7Lz9fqk+MOX8bfFuqYidVW7ZsgVwu1/xdVlaG1NRUBAYGGh8tEZGFHD58GKdPn0ZUVBSUSiU++eQTAMBjjz1mkXiuXbuGlJQU5Ofns28bolowOLlRX86VyWQYO3asVlnDhg0RGBhYr0YCJyJpmDNnDjIzM+Hg4IDIyEjs2rULnp6eFonFy8sLnp6eWLx4MTw8PCwSA5EUGJzcqB9zDAoKwoEDByz25SciqisRERFIT0+3dBgaRrYSICIdjH5aKjs72xRxEBEREdUJg5Kb+fPnG7zA119/vcbBEJFp8IqANPFzJRJnUHLz5ZdfGrQwmUzG5IbIiqh70r1z5w47g5MgdW/L9vb2Fo6EyLoYlNzwVhSRbbK3t0fjxo014x65uLjUqoM6sh7l5eW4du0aXFxc0KCB0S0MiCStVt8I9SVRHiyJrJePjw8AaA3sSNJgZ2eHFi1a8BhMVEmNkpsffvgBs2fPxtmzZwEArVu3xuTJkzFmzJg6DY6Iak8mk8HX1xdeXl64d++epcOhOuTg4AA7O6M7mieSvBoNnPnhhx/itddeQ/fu3QEAu3fvxn/+8x8UFhbizTffrPMgiaj27O3t2TaDiOoFo4dfCAoKwscff4y4uDit6StWrMBHH31k9e1zOPwCERGR7THm/G309cy8vDx069atyvRu3bohLy/P2MURERER1Smjk5uQkBD88ssvVaavWrUKrVq1qpOgiIiIiGrK6DY3H3/8MUaNGoWdO3dq2tzs2bMHqampokmPIZKTkzF79mzk5+ejY8eOWLBgAaKiokTnXbJkCX744QccP34cABAZGYnp06frnJ+IiIjqF4Ov3KiTiREjRmDfvn3w9PTE+vXrsX79enh6emL//v14/PHHjQ5g1apVSEhIwLRp03Do0CF07NgRAwYM0PnY6o4dOzB69Ghs374daWlpUCgUeOSRR3D58mWj101ERETSY3CDYjs7O3Tp0gUvvvginn76aTRq1KhOAoiOjkaXLl2wcOFCAKqOqRQKBSZOnIgpU6ZU+/6ysjJ4eHhg4cKFVRo5i2GDYiIiIttjkgbFf/31Fx566CG89dZb8PX1xbhx47Br165aBVpaWor09HTExsY+CMjODrGxsUhLSzNoGXfu3MG9e/fQpEkT0fK7d++iqKhI60VERETSZXBy07NnTyxduhR5eXlYsGABsrOz0bt3b7Ru3RozZ85Efn6+0SsvLCxEWVkZvL29taZ7e3sbvLx3330Xfn5+WglSRUlJSZDL5ZqXQqEwOk4iIiKyHUY/LeXq6or4+Hj89ddfOHPmDJ566ikkJyejRYsWGDZsmCli1GnGjBlISUnBunXr4OTkJDpPYmIilEql5pWbm2vWGImIiMi8ajW2VEhICN577z0EBAQgMTERv//+u1Hv9/T0hL29PQoKCrSmFxQUaMbD0WXOnDmYMWMGtm3bhg4dOuicz9HREY6OjkbFRURERLarxoOS7Ny5E+PGjYOPjw8mT56MJ554Anv27DFqGQ4ODoiMjERqaqpmWnl5OVJTUxETE6PzfbNmzcKnn36KzZs3o3PnzjXdBCIiIpIgo67cXLlyBcuXL8fy5ctx7tw5dOvWDfPnz8fIkSPh6upaowASEhIwduxYdO7cGVFRUZg3bx6Ki4sRHx8PAIiLi4O/vz+SkpIAADNnzsTUqVPx888/IzAwUNM2x83NDW5ubjWKgYiIiKTD4ORm4MCB2LZtGzw9PREXF4fnn38ebdq0qXUAo0aNwrVr1zB16lTk5+cjPDwcmzdv1jQyzsnJ0Rr19ptvvkFpaSmefPJJreVMmzYNH330Ua3jISIiIttmcD83w4YNwwsvvIAhQ4bY9MjC7OeGiIjI9hhz/jb4ys2GDRtqHRgRERGRqdW4QTERERGRNWJyQ0RERJLC5IaIiIgkhckNERERSQqTGyIiIpIUJjdEREQkKUxuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSQqTGyIiIpIUJjdEREQkKUxuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSQqTGyIiIpIUJjdEREQkKUxuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSQqTGyIiIpIUJjdEREQkKUxuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSQqTGyIiIpIUJjdEREQkKUxuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSQqTGyIiIpIUJjdEREQkKUxuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSQqTGyIiIpIUJjdEREQkKRZPbpKTkxEYGAgnJydER0dj//79Ouc9ceIERowYgcDAQMhkMsybN898gRIREZFNsGhys2rVKiQkJGDatGk4dOgQOnbsiAEDBuDq1aui89+5cwctW7bEjBkz4OPjY+ZoiYiIyBbIBEEQLLXy6OhodOnSBQsXLgQAlJeXQ6FQYOLEiZgyZYre9wYGBmLSpEmYNGmS3vnu3r2Lu3fvav4uKiqCQqGAUqmEu7t7rbeBiIiITK+oqAhyudyg87fFrtyUlpYiPT0dsbGxD4Kxs0NsbCzS0tLqbD1JSUmQy+Wal0KhqLNlExERkfWxWHJTWFiIsrIyeHt7a0339vZGfn5+na0nMTERSqVS88rNza2zZRMREZH1aWDpAEzN0dERjo6Olg6DiIiIzMRiV248PT1hb2+PgoICrekFBQVsLExEREQ1ZrHkxsHBAZGRkUhNTdVMKy8vR2pqKmJiYiwVFhEREdk4i96WSkhIwNixY9G5c2dERUVh3rx5KC4uRnx8PAAgLi4O/v7+SEpKAqBqhHzy5EnN/y9fvowjR47Azc0NISEhFtsOIiIish4WTW5GjRqFa9euYerUqcjPz0d4eDg2b96saWSck5MDO7sHF5euXLmCiIgIzd9z5szBnDlz0Lt3b+zYscPc4RMREZEVsmg/N5ZgzHPyREREZB1sop8bIiIiIlNgckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJjTVSXgayd6r+JSIiIqMwubE2h34A5rUHVgxV/XvoB0tHRDVVl0mqNSW81cViTKyW3C5rqlNdzBmjudZlC/VONWcln28Di65dai6lAzlpQIsYoHmkdpnyMnA9C2joCtwrBpoEA3J/7fLcfcD/ewMQylXThHJgwxuAgxvQOED1vuref+c64NIEUESrytXrrTx/ZZXnM+R9uuapOB3Qvxx13ED1MRu6XH3zGbLsW/nan6NYjPrqo6ErcHIdkJZ8/7OUAd1eA6JfMTzuimWHfniwX8jsgNiPAL8I3fuCrrjU9VFdfVfc3or73c2LqoPWoRUPYhn6FdApzrBYb158sF4A2PeNdh09/DHQ/Q3d26GPsfv5lSPAtmni6674PW7kI77/6Kt7sVgqfz8bB2jXh1jMe+YD26YCgiBe17VVcTuvnqhw7Kmwv+r6zlasg4r/6tom9fZX3H/EPvOKy9ZXP5fSgTObATdvoM1Awz7z0jvA3+fEj8/VvdeY46K6XpuGAA4uxn8/9e07wIPj+638qnUgtn8Chh2/Kq+r8n6qb58V+3xNsc8aQSYIgmCRNVeQnJyM2bNnIz8/Hx07dsSCBQsQFRWlc/7Vq1fjww8/xIULF9CqVSvMnDkTgwYNMmhdRUVFkMvlUCqVcHd3r6tNANa9Ahz9+cHfHZ8BHv9G9aHvnA2kLwdQsarvH0DaPQ4c/lGkvDr3Dwztn1SdJPYurPr+gO7Axb33p8uAnglAyz4PDhzqHbjgBLB77oODaIengWMpVU9QFb9wFU9ikAGR4wD35sClA8DZLRVikan+r97Rg/s/+KIpLwFbp2rHXTHmiu/ROhFWWC5kQNhTgEtT1cHkVh6wa27VupDZAW2HAqc2qLZTHXNQL1UcmhNdJfIAQHlRe1pkvOp9DV1UB8umIaqDjEGfYYW41Z//veJKJ1sAoYMBeQvAxRPY8bl4bBW3LfYjQK5Q/a1OSJoEA1mp2p9T5fjaPQac+n8PPusOTwNHVxqwHRWMXgW0eVS1r89rrz/W6vR8G+j/oer/lQ+0DV2Ay+kPDuaAqjxzE5CxGlX2c/WBPXMTcLtAFdfuL3THFxkPlNwATq6vWqazbip9rw7/CKQve1Ac9TJQchPI+EX/dnebqJ1M7Pnq/nejkkFztU9klX/Q3MpX1cXd24BHINC0pWp/uHJYVQetH1UtZ/0rQGGm/phkdkCPN1VJAaD6nl3cA2z9UP/71IJ6A4G9VOvO/E33fFHjgRZdK32OlYQ9BbQZpNqW7Z8BWX9ql0eOA3q9U/XEXTFBrMivM9BtgvZ3BXiwr7R+FMjcWOFYIgMCulU9NqlP3OqkYu/C+8e/Cip+P/8+D5TdBfwjVYnP+b+01wE82P6HHlfFJXY8E+PZGig8W828MmDYfO2EQ70fZW6qfj+tSF3nWanAhtfF1yuzByZl6E+ojGDM+dviyc2qVasQFxeHRYsWITo6GvPmzcPq1auRmZkJLy+vKvPv3bsXvXr1QlJSEoYMGYKff/4ZM2fOxKFDh9C+fftq12eS5OZSOvBdv6rTo8YD+7+tm3VYi/BnAEc5sG8RjEvGyDJEEhpT8O6gSnB2zqr9skKHqE7Uhp5EdTLTttelsKdUSY7Y8aSigG7AxTTY3PaZWuQ4ICJO9ePN2JN1TTz2NXB+h+6kzFpFvwLYOQCX9gG5/zPtusb+BgT1rJNF2VRyEx0djS5dumDhwoUAgPLycigUCkycOBFTpkypMv+oUaNQXFyM33578Euga9euCA8Px6JFi6pdn0mSm70LgT/er5tlERERScXDnwLdX6+TRRlz/rZog+LS0lKkp6cjNjZWM83Ozg6xsbFIS0sTfU9aWprW/AAwYMAAnfPfvXsXRUVFWq861yKm7pdJRERk67Z9ZJHGxRZNbgoLC1FWVgZvb2+t6d7e3sjPzxd9T35+vlHzJyUlQS6Xa14KhaJugq+oeSTQonvdL5eIiMiWCWXA9fNmX63kHwVPTEyEUqnUvHJzc02zoqgXTbNcIiIiWyWzA5q0NPtqLfoouKenJ+zt7VFQUKA1vaCgAD4+PqLv8fHxMWp+R0dHODo61k3A+qgfbyUiIiKV2I/r7GkpY1j0yo2DgwMiIyORmpqqmVZeXo7U1FTExIi3Y4mJidGaHwC2bt2qc36zkfsDwxbUzbKiXwXCn9Vd7t+lbtZDdcu7A6DoZukoyBqFDADCRtbsvT4d6jaWuiQTO4XIdPy/jvWdqno0vr6LjAcGfWHpKMSFjayzxsTGsngnfgkJCRg7diw6d+6MqKgozJs3D8XFxYiPjwcAxMXFwd/fH0lJSQCAN954A71798bcuXMxePBgpKSk4ODBg1i8eLElN0OlU5yqT5a1L6n6g6jIv7Oqjw59jwvK7IGh8x70QdD3fdUj13sXQNMPgrpvmy8f0r+s6vR8C2jZFygtVvXPYO8IbHxLzxsq9cGgs8wOGHa/b5qdsyt02FWBIlrVH46mT5chgG8nVf8PQhmw+0vVv+q+aFyaVuifRN2vSN8Hlzqvn1f9Pz8DOLcVCHkY8AlTTT+/Q3/fJgY9LmwHPPzR/T6FFgFpC+8vz051O9IjEFB0VbW90tUtgFrYSFV/HYr7/ThlbgY2JojPO+gLIH0FUHBUPO4qdWPo9kDVN829EtX/FVHA8TVV+xyqsjx1n0X2QOw0VT882X+Jf8aVPfQEEPOaqrM4XX1iqNfR90Pg3B/3+0NS9/9RYf6wkYBnKLD900rLsQPCntR+LDeoD9D1FVU/RJrOxe7H79dJtX+I9iNSm8fI7+8vAT1Uj9mq9w1AtV9W7DzQPxK4cujB356ttfuf6fkW0H+qql8pvfVWQatHgHPbHuyjkWMB7zAga/v9/mYE7Tpo6KLqn0fzOdrdX48B/aUE91d9zxq6APfuVP1Oqv9ffA34NV5kMXYP1hnc937/NQZso8weCH9a9f+Nb+t+z0MjgBNrDVvmoC+AggztemgVC5zdiirfgWrZ3Z+14vdCBoxOUX3v7lyvtC5ozxfQreo5BHbA6JWAg6t2fauvijRoWHUfCeoDeLVTHU8N7Zak8v7T7TXg37vA/sUQ/T7qE/uRYfOZgMUfBQeAhQsXajrxCw8Px/z58xEdrbrN06dPHwQGBmL58uWa+VevXo0PPvhA04nfrFmzLN+JX2WX0lWdObl6q/r/0PQeWemEW/EgU3FHrUj9vorlh35Q9V6M+1+MoD5A22GqdR1fU+EAen/nbDccuJmjmlcRJd6rqq4O2NRJl/pAVjn+imWVt0Ede+Uvo9g26dteffNXR3kZyN0PrHm+0vbZAS9uU8XV0EXVeZs6cdH3uVQXS+UOHb3bA5HPP9gPKqt84pLJgKEVOtq6lP7gJNnIR3/dAFXrOysV+H+TVAe4ygm0WD1pOoWLerC8yictsfrQSiTtgJ5vPkhCq/Rmul/1/4LjVfclrY7R9Kz70A/i26Xr89E3vbrtVserzFU9/aFOvgFoknpd2ytWzxXjqO7viu/L3Hz/R0ilw3bfqaoO+9TfbWProHJZxX0GsvvnswqdX/aabNz3UOz4IrMHXtha9bigruvGLR6UVTymVd5PKh8LAWh+ZHWKE99PSm5WSOYrzFvd56NVL/cTx6De4vsxUP33Tt8+vme+7m3WV8/q+qt8nFfvP7cLAP9OqiSpSUtVx4+6zlX6jjO5+1WdElb5kQGT9U5sU/3cmJvZkpvq1OZkbcgyarL8ygcBfUlXXcRvbrpOhhXV1XZVTEgM6epd30GpLpjr86rJemqbuJp7P6wu6TI1Q/bjulDX21nbuA053old0dD13pruO8YkjrXdP23hOFvxc1X/mI7+j0niZXKjh9UkN9bKFr5MtSH17aP6wVb3Y1uNm/Qz0+fK5EYPJjdERES2x2Z6KCYiIiKqa0xuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSQqTGyIiIpIUJjdEREQkKUxuiIiISFKY3BAREZGkNLB0AOamHkqrqKjIwpEQERGRodTnbUOGxKx3yc2tW7cAAAqFwsKREBERkbFu3boFuVyud556Nyp4eXk5rly5gkaNGkEmk9XpsouKiqBQKJCbm8sRx02I9WwerGfzYV2bB+vZPExVz4Ig4NatW/Dz84Odnf5WNfXuyo2dnR2aN29u0nW4u7vzi2MGrGfzYD2bD+vaPFjP5mGKeq7uio0aGxQTERGRpDC5ISIiIklhclOHHB0dMW3aNDg6Olo6FEljPZsH69l8WNfmwXo2D2uo53rXoJiIiIikjVduiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5MZIycnJCAwMhJOTE6Kjo7F//369869evRqhoaFwcnJCWFgYNm7caKZIbZsx9bxkyRL07NkTHh4e8PDwQGxsbLWfC6kYuz+rpaSkQCaTYfjw4aYNUEKMreubN29iwoQJ8PX1haOjI1q3bs3jhwGMred58+ahTZs2cHZ2hkKhwJtvvol//vnHTNHapp07d2Lo0KHw8/ODTCbD+vXrq33Pjh070KlTJzg6OiIkJATLly83bZACGSwlJUVwcHAQli5dKpw4cUJ46aWXhMaNGwsFBQWi8+/Zs0ewt7cXZs2aJZw8eVL44IMPhIYNGwoZGRlmjty2GFvPzzzzjJCcnCwcPnxYOHXqlDBu3DhBLpcLly5dMnPktsXYelbLzs4W/P39hZ49ewqPPfaYeYK1ccbW9d27d4XOnTsLgwYNEnbv3i1kZ2cLO3bsEI4cOWLmyG2LsfX8008/CY6OjsJPP/0kZGdnC1u2bBF8fX2FN99808yR25aNGzcK77//vrB27VoBgLBu3Tq9858/f15wcXEREhIShJMnTwoLFiwQ7O3thc2bN5ssRiY3RoiKihImTJig+busrEzw8/MTkpKSROcfOXKkMHjwYK1p0dHRwvjx400ap60ztp4r+/fff4VGjRoJK1asMFWIklCTev7333+Fbt26Cd99950wduxYJjcGMrauv/nmG6Fly5ZCaWmpuUKUBGPrecKECUK/fv20piUkJAjdu3c3aZxSYkhy88477wgPPfSQ1rRRo0YJAwYMMFlcvC1loNLSUqSnpyM2NlYzzc7ODrGxsUhLSxN9T1pamtb8ADBgwACd81PN6rmyO3fu4N69e2jSpImpwrR5Na3nTz75BF5eXnjhhRfMEaYk1KSuN2zYgJiYGEyYMAHe3t5o3749pk+fjrKyMnOFbXNqUs/dunVDenq65tbV+fPnsXHjRgwaNMgsMdcXljgX1ruBM2uqsLAQZWVl8Pb21pru7e2N06dPi74nPz9fdP78/HyTxWnralLPlb377rvw8/Or8mWiB2pSz7t378b333+PI0eOmCFC6ahJXZ8/fx5//vknnn32WWzcuBHnzp3Dq6++inv37mHatGnmCNvm1KSen3nmGRQWFqJHjx4QBAH//vsv/vOf/+C9994zR8j1hq5zYVFREUpKSuDs7Fzn6+SVG5KUGTNmICUlBevWrYOTk5Olw5GMW7duYcyYMViyZAk8PT0tHY7klZeXw8vLC4sXL0ZkZCRGjRqF999/H4sWLbJ0aJKyY8cOTJ8+HV9//TUOHTqEtWvX4vfff8enn35q6dColnjlxkCenp6wt7dHQUGB1vSCggL4+PiIvsfHx8eo+alm9aw2Z84czJgxA9u2bUOHDh1MGabNM7aes7KycOHCBQwdOlQzrby8HADQoEEDZGZmIjg42LRB26ia7NO+vr5o2LAh7O3tNdPatm2L/Px8lJaWwsHBwaQx26Ka1POHH36IMWPG4MUXXwQAhIWFobi4GC+//DLef/992Nnx939d0HUudHd3N8lVG4BXbgzm4OCAyMhIpKamaqaVl5cjNTUVMTExou+JiYnRmh8Atm7dqnN+qlk9A8CsWbPw6aefYvPmzejcubM5QrVpxtZzaGgoMjIycOTIEc1r2LBh6Nu3L44cOQKFQmHO8G1KTfbp7t2749y5c5oEEgDOnDkDX19fJjY61KSe79y5UyWBUSeUAoddrDMWORearKmyBKWkpAiOjo7C8uXLhZMnTwovv/yy0LhxYyE/P18QBEEYM2aMMGXKFM38e/bsERo0aCDMmTNHOHXqlDBt2jQ+Cm4AY+t5xowZgoODg/Drr78KeXl5mtetW7cstQk2wdh6roxPSxnO2LrOyckRGjVqJLz22mtCZmam8NtvvwleXl7CZ599ZqlNsAnG1vO0adOERo0aCStXrhTOnz8v/PHHH0JwcLAwcuRIS22CTbh165Zw+PBh4fDhwwIA4YsvvhAOHz4sXLx4URAEQZgyZYowZswYzfzqR8EnT54snDp1SkhOTuaj4NZmwYIFQosWLQQHBwchKipK+N///qcp6927tzB27Fit+X/55RehdevWgoODg/DQQw8Jv//+u5kjtk3G1HNAQIAAoMpr2rRp5g/cxhi7P1fE5MY4xtb13r17hejoaMHR0VFo2bKl8Pnnnwv//vuvmaO2PcbU871794SPPvpICA4OFpycnASFQiG8+uqrwo0bN8wfuA3Zvn276DFXXbdjx44VevfuXeU94eHhgoODg9CyZUth2bJlJo1RJgi89kZERETSwTY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiIStXPnTgwdOhR+fn6QyWRYv369ydd5+fJlPPfcc2jatCmcnZ0RFhaGgwcPGrUMJjdEZHHjxo3D8OHDLbb+MWPGYPr06QbN+/TTT2Pu3LkmjojIOhQXF6Njx45ITk42y/pu3LiB7t27o2HDhti0aRNOnjyJuXPnwsPDw6jlsIdiIjIpmUymt3zatGl48803IQgCGjdubJ6gKjh69Cj69euHixcvws3Nrdr5jx8/jl69eiE7OxtyudwMERJZB5lMhnXr1mn9ELl79y7ef/99rFy5Ejdv3kT79u0xc+ZM9OnTp0brmDJlCvbs2YNdu3bVKlZeuSEik8rLy9O85s2bB3d3d61pb7/9NuRyuUUSGwBYsGABnnrqKYMSGwBo3749goOD8d///tfEkRFZv9deew1paWlISUnBsWPH8NRTT+HRRx/F2bNna7S8DRs2oHPnznjqqafg5eWFiIgILFmyxOjlMLkhIpPy8fHRvORyOWQymdY0Nze3Krel+vTpg4kTJ2LSpEnw8PCAt7c3lixZguLiYsTHx6NRo0YICQnBpk2btNZ1/PhxDBw4EG5ubvD29saYMWNQWFioM7aysjL8+uuvGDp0qNb0r7/+Gq1atYKTkxO8vb3x5JNPapUPHToUKSkpta8cIhuWk5ODZcuWYfXq1ejZsyeCg4Px9ttvo0ePHli2bFmNlnn+/Hl88803aNWqFbZs2YJXXnkFr7/+OlasWGHUcpjcEJFVWrFiBTw9PbF//35MnDgRr7zyCp566il069YNhw4dwiOPPIIxY8bgzp07AICbN2+iX79+iIiIwMGDB7F582YUFBRg5MiROtdx7NgxKJVKdO7cWTPt4MGDeP311/HJJ58gMzMTmzdvRq9evbTeFxUVhf379+Pu3bum2XgiG5CRkYGysjK0bt0abm5umtdff/2FrKwsAMDp06chk8n0vqZMmaJZZnl5OTp16oTp06cjIiICL7/8Ml566SUsWrTIqNga1OmWEhHVkY4dO+KDDz4AACQmJmLGjBnw9PTESy+9BACYOnUqvvnmGxw7dgxdu3bFwoULERERodUweOnSpVAoFDhz5gxat25dZR0XL16Evb09vLy8NNNycnLg6uqKIUOGoFGjRggICEBERITW+/z8/FBaWor8/HwEBASYYvOJrN7t27dhb2+P9PR02Nvba5Wpb/O2bNkSp06d0rucpk2bav7v6+uLdu3aaZW3bdsWa9asMSo2JjdEZJU6dOig+b+9vT2aNm2KsLAwzTRvb28AwNWrVwGoGgZv375dtO1MVlaWaHJTUlICR0dHrUbPDz/8MAICAtCyZUs8+uijePTRR/H444/DxcVFM4+zszMAaK4aEdVHERERKCsrw9WrV9GzZ0/ReRwcHBAaGmrwMrt3747MzEytaWfOnDH6RwSTGyKySg0bNtT6WyaTaU1TJyTl5eUAVL8ihw4dipkzZ1ZZlq+vr+g6PD09cefOHZSWlsLBwQEA0KhRIxw6dAg7duzAH3/8galTp+Kjjz7CgQMHNI2er1+/DgBo1qxZ7TaSyMrdvn0b586d0/ydnZ2NI0eOoEmTJmjdujWeffZZxMXFYe7cuYiIiMC1a9eQmpqKDh06YPDgwUav780330S3bt0wffp0jBw5Evv378fixYuxePFio5bDNjdEJAmdOnXCiRMnEBgYiJCQEK2Xq6ur6HvCw8MBACdPntSa3qBBA8TGxmLWrFk4duwYLly4gD///FNTfvz4cTRv3hyenp4m2x4ia3Dw4EFERERobs0mJCQgIiICU6dOBQAsW7YMcXFxeOutt9CmTRsMHz4cBw4cQIsWLWq0vi5dumDdunVYuXIl2rdvj08//RTz5s3Ds88+a9RyeOWGiCRhwoQJWLJkCUaPHo133nkHTZo0wblz55CSkoLvvvuuSpsAQHXlpVOnTti9e7cm0fntt99w/vx59OrVCx4eHti4cSPKy8vRpk0bzft27dqFRx55xFybRmQxffr0gb7u8Bo2bIiPP/4YH3/8cZ2tc8iQIRgyZEitlsErN0QkCX5+ftizZw/KysrwyCOPICwsDJMmTULjxo1hZ6f7UPfiiy/ip59+0vzduHFjrF27Fv369UPbtm2xaNEirFy5Eg899BAA4J9//sH69es1DZuJyPqwh2IiqtdKSkrQpk0brFq1CjExMdXO/80332DdunX4448/zBAdEdUEr9wQUb3m7OyMH374QW9nfxU1bNgQCxYsMHFURFQbvHJDREREksIrN0RERCQpTG6IiIhIUpjcEBERkaQwuSEiIiJJYXJDREREksLkhoiIiCSFyQ0RERFJCpMbIiIikhQmN0RERCQp/x/U2ILpGpqbLgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=trace_schedule,\n", " schedule_kwargs={\n", " \"pulse_amp\": 0.5,\n", " \"acq_delay\": 100e-9,\n", " },\n", " batched=True,\n", ")\n", "\n", "data = gettable.get()\n", "\n", "plt.plot(np.arange(1000)/1e9, data[0], '.', label=\"real\")\n", "plt.plot(np.arange(1000)/1e9, data[1], '.', label=\"imaginary\")\n", "plt.legend()\n", "plt.xlabel(\"Time (s)\")\n", "plt.ylabel(\"Voltage (V)\")\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "ee106faa", "metadata": {}, "source": [ "This time, there is only one acquisition operation in the schedule. The measurement result contains two arrays: one for the _I_ values (`data[0][:]`), and one for the _Q_ values (`data[1][:]`) of the acquired trace.\n", "\n", "## MeasurementControl\n", "\n", "Iterating through different parameters can be done with some help from `quantify-core` as well, through the {class}`~quantify_core.measurement.control.MeasurementControl` class. The {class}`~quantify_core.measurement.control.MeasurementControl` uses settables (parameters to vary in an experiment) and gettables (in this case, our {class}`~quantify_scheduler.gettables.ScheduleGettable`). The settable must be a class that implements `set()`, such as a QCoDeS {class}`~qcodes.parameters.ManualParameter`.\n", "\n", "In this example, the settable is the `time` object, and the setpoints are a numpy array of values (`times`). These are added to the {class}`~quantify_core.measurement.control.MeasurementControl` as shown, together with the {class}`~quantify_scheduler.gettables.ScheduleGettable`. The {class}`~quantify_core.measurement.control.MeasurementControl` object will be in charge of setting the setpoints, and retrieving the measurement results through the gettable." ] }, { "cell_type": "code", "execution_count": 8, "id": "64a421e7", "metadata": {}, "outputs": [], "source": [ "from quantify_core.measurement.control import MeasurementControl\n", "\n", "\n", "measurement_control = MeasurementControl(\"measurement_control\")\n", "\n", "# Configure the settable\n", "time = ManualParameter(\"sample\", label=\"Sample time\", unit=\"s\")\n", "time.batched = True\n", "\n", "times = np.linspace(start=1.6e-7, stop=4.976e-5, num=125)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=t1_sched,\n", " schedule_kwargs={\"times\": time},\n", " batched=True\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables(time)\n", "measurement_control.setpoints(times)\n", "measurement_control.gettables(gettable)" ] }, { "cell_type": "markdown", "id": "4d0c0081", "metadata": {}, "source": [ "The experiment is set to run fully in _batched_ mode. When using {class}`~quantify_core.measurement.control.MeasurementControl`, settables and gettables can be either batched (an array of points is set for each measurement iteration) or iterative (only one point is set per iteration). Combinations of batched and iterative settables are possible, as explained in detail in the [quantify-core documentation](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#mixing-iterative-and-batched-settables).\n", "\n", "Settables and gettables are batched if they have the attribute `batched=True`. In {class}`~quantify_scheduler.gettables.ScheduleGettable`, this can be controlled through the `batched` argument when creating the class. For other classes, the attribute can be added dynamically if needed, as shown above for the `time` parameter.\n", "\n", "With both the gettable and the settable having `batched=True`, the {class}`~quantify_core.measurement.control.MeasurementControl` knows that it should set the entire `times` array as the settable's value (instead of repeating the experiment for each value in the array). All data points are measured without interruption and all measurement results are returned in one go. Now, let's run the experiment and retrieve the data." ] }, { "cell_type": "code", "execution_count": 9, "id": "247c6e24", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t --- (None) --- \n", "Batched settable(s):\n", "\t sample \n", "Batch size limit: 125\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "10c4bc62454642ec8f7d3e6f9f6260c2", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dataset = measurement_control.run()" ] }, { "cell_type": "markdown", "id": "0809ddc1", "metadata": {}, "source": [ "The {class}`~quantify_core.measurement.control.MeasurementControl` class processes the data returned by the {class}`~quantify_scheduler.gettables.ScheduleGettable`, and turns it into a {class}`~xarray.Dataset`. More information on the format of this dataset can be found in the [quantify-core documentation](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#dataset)." ] }, { "cell_type": "code", "execution_count": 10, "id": "5c89b8b6", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 3kB\n",
       "Dimensions:  (dim_0: 125)\n",
       "Coordinates:\n",
       "    x0       (dim_0) float64 1kB 1.6e-07 5.6e-07 9.6e-07 ... 4.936e-05 4.976e-05\n",
       "Dimensions without coordinates: dim_0\n",
       "Data variables:\n",
       "    y0       (dim_0) float64 1kB -1.166 -1.141 -1.109 ... -0.737 -0.7305 -1.164\n",
       "    y1       (dim_0) float64 1kB 0.2569 0.2138 0.2035 ... -0.2533 -0.247 0.2671\n",
       "Attributes:\n",
       "    tuid:                             20241120-183415-678-604820\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         False\n",
       "    1d_2_settables_uniformly_spaced:  False
" ], "text/plain": [ " Size: 3kB\n", "Dimensions: (dim_0: 125)\n", "Coordinates:\n", " x0 (dim_0) float64 1kB 1.6e-07 5.6e-07 9.6e-07 ... 4.936e-05 4.976e-05\n", "Dimensions without coordinates: dim_0\n", "Data variables:\n", " y0 (dim_0) float64 1kB -1.166 -1.141 -1.109 ... -0.737 -0.7305 -1.164\n", " y1 (dim_0) float64 1kB 0.2569 0.2138 0.2035 ... -0.2533 -0.247 0.2671\n", "Attributes:\n", " tuid: 20241120-183415-678-604820\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: False\n", " 1d_2_settables_uniformly_spaced: False" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset" ] }, { "cell_type": "markdown", "id": "b98bf9c3", "metadata": {}, "source": [ "The dataset coordinates and data variables are named as generic `x` and `y` parameters. You can click on the 'Show/Hide attributes' button next to the coordinates and variables to see what they refer to.\n", "\n", "(sec-tutorial-schedulegettable-repetitions)=\n", "## Repetitions\n", "\n", "Repetition defines how many times the defined schedule will run on the hardware. Running the schedule multiple times can be useful for example if the user would like to reduce errors of acquisitions by averaging the result of multiple measurements.\n", "\n", "There are multiple ways the repetitions can be set. They are not completely independent of each other, and which setting will be taken into account depends on how you create and use the schedule.\n", "\n", "1. {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice`: via `cfg_sched_repetitions` (by default it is `1024`),\n", "2. schedule function: via the `repetitions` function argument,\n", "3. {class}`~quantify_scheduler.schedules.schedule.Schedule` object: via the `repetitions` function argument of its constructor, or via its `repetitions` attribute directly,\n", "4. ({class}`~quantify_scheduler.gettables.ScheduleGettable`: currently, it is not possible to supply `repetitions` via `schedule_kwargs`).\n", "\n", "Ultimately, the {class}`~quantify_scheduler.schedules.schedule.Schedule` object is what governs the repetitions, via its `repetitions` attribute.\n", "\n", "When using a schedule function, the `repetitions` function argument sets the repetitions, provided that the schedule function passes it to the `Schedule` object. This is true for the pre-defined schedules, see {mod}`!quantify_scheduler.schedules`.\n", "\n", "However, if the experiment is run using `ScheduleGettable`, this `repetitions` function argument is set to `QuantumDevice.cfg_sched_repetitions`. Hence, typically, the schedule will run `QuantumDevice.cfg_sched_repetitions` times.\n", "\n", "### Possible mistake: ignoring `repetitions` argument\n", "\n", "Keep in mind that the schedule function should pass the `repetitions` argument to the `Schedule` initializer, otherwise both `QuantumDevice.cfg_sched_repetitions` and the `repetitions` argument of the schedule function will be ignored. For example, in the following setup, the `repetitions` will always be `1` (default for the `Schedule` object), even if `cfg_sched_repetitions` is set to `2`." ] }, { "cell_type": "code", "execution_count": 11, "id": "eb752181", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import QuantumDevice, ScheduleGettable\n", "\n", "def schedule_function(q0: str, repetitions: int):\n", " schedule = Schedule(\"Example schedule\")\n", " schedule.add(Measure(q0, acq_index=0))\n", " return schedule\n", "\n", "quantum_device = QuantumDevice(name=\"quantum_sample\")\n", "quantum_device.cfg_sched_repetitions(2)\n", "\n", "schedule_gettable = ScheduleGettable(\n", " quantum_device=quantum_device,\n", " schedule_function=schedule_function,\n", " schedule_kwargs={\"q0\": \"q0\"},\n", ")" ] }, { "cell_type": "markdown", "id": "a3755351", "metadata": {}, "source": [ "### Possible mistake: ignoring `cfg_sched_repetitions` default value\n", "\n", "Also note, that the default value of the `repetitions` argument of the schedule function will be ignored if `ScheduleGettable` is used, and it will be set to `QuantumDevice.cfg_sched_repetitions`. For example, in the following setup, `repetitions` will be `1024` (default for `QuantumDevice`), even if the default argument for `repetitions` is `2`." ] }, { "cell_type": "code", "execution_count": 12, "id": "efa813be", "metadata": { "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "quantum_device.close()" ] }, { "cell_type": "code", "execution_count": 13, "id": "570725a6", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import QuantumDevice, ScheduleGettable\n", "\n", "def schedule_function(q0: str, repetitions: int = 2):\n", " schedule = Schedule(\"Example schedule\", repetitions=repetitions)\n", " schedule.add(Measure(q0, acq_index=0))\n", " return schedule\n", "\n", "quantum_device = QuantumDevice(name=\"quantum_sample\")\n", "\n", "schedule_gettable = ScheduleGettable(\n", " quantum_device=quantum_device,\n", " schedule_function=schedule_function,\n", " schedule_kwargs={\"q0\": \"q0\"},\n", ")" ] }, { "cell_type": "markdown", "id": "639aedbc", "metadata": {}, "source": [ "(sec-schedulegettable-2dsweep-usage)=\n", "\n", "## 2D (and ND) measurement loops" ] }, { "cell_type": "code", "execution_count": 14, "id": "94b73bf4", "metadata": { "mystnb": { "code_prompt_show": "Set up the quantum device, dummy hardware and hardware configuration" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "from qblox_instruments import Cluster, ClusterType, DummyBinnedAcquisitionData\n", "\n", "from quantify_scheduler import BasicTransmonElement, InstrumentCoordinator, QuantumDevice\n", "from quantify_scheduler.qblox import ClusterComponent\n", "\n", "\n", "single_qubit_device.close_all()\n", "\n", "# Device parameters\n", "Q0_ACQ_DELAY = 100e-9\n", "Q0_FREQ_01 = 4e9\n", "Q0_READOUT_AMP = 0.1\n", "Q0_READOUT_FREQ = 4.3e9\n", "Q0_PI_PULSE_AMP = 0.15\n", "Q0_LO_FREQ_QUBIT = 3.9e9\n", "Q0_LO_FREQ_READOUT = 4.5e9\n", "\n", "Q1_ACQ_DELAY = 120e-9\n", "Q1_FREQ_01 = 4.1e9\n", "Q1_READOUT_AMP = 0.1\n", "Q1_READOUT_FREQ = 3.8e9\n", "Q1_PI_PULSE_AMP = 0.15\n", "Q1_LO_FREQ_QUBIT = 4.1e9\n", "Q1_LO_FREQ_READOUT = 3.8e9\n", "\n", "two_qubit_device = QuantumDevice(\"two_qubit_device\")\n", "\n", "q0 = BasicTransmonElement(\"q0\")\n", "q0.measure.acq_channel(0)\n", "q0.measure.pulse_amp(Q0_READOUT_AMP)\n", "q0.clock_freqs.readout(Q0_READOUT_FREQ)\n", "q0.clock_freqs.f01(Q0_FREQ_01)\n", "q0.measure.acq_delay(Q0_ACQ_DELAY)\n", "q0.rxy.amp180(Q0_PI_PULSE_AMP)\n", "\n", "q1 = BasicTransmonElement(\"q1\")\n", "q1.measure.acq_channel(1) # Note that we're specifying that measurements on q1 should use a different measurement channel\n", "q1.measure.pulse_amp(Q1_READOUT_AMP)\n", "q1.clock_freqs.readout(Q1_READOUT_FREQ)\n", "q1.clock_freqs.f01(Q1_FREQ_01)\n", "q1.measure.acq_delay(Q1_ACQ_DELAY)\n", "q1.rxy.amp180(Q1_PI_PULSE_AMP)\n", "\n", "two_qubit_device.add_element(q0)\n", "two_qubit_device.add_element(q1)\n", "\n", "# We will need to adjust the hardware configuration.\n", "\n", "# Note: if you are connecting to an actual cluster, you would provide the\n", "# 'identifier' argument (the ip address, device name or serial number) instead\n", "# of the 'dummy_cfg' argument.\n", "cluster = Cluster(\n", " \"cluster\",\n", " dummy_cfg={\n", " 1: ClusterType.CLUSTER_QRM_RF,\n", " 2: ClusterType.CLUSTER_QCM_RF,\n", " 3: ClusterType.CLUSTER_QRM_RF,\n", " 4: ClusterType.CLUSTER_QCM_RF,\n", " },\n", ")\n", "\n", "ic_cluster = ClusterComponent(cluster)\n", "\n", "# Temporarily fixing dummy cluster's deficiency.\n", "cluster.start_sequencer = lambda : start_dummy_cluster_armed_sequencers(ic_cluster)\n", "\n", "instrument_coordinator = InstrumentCoordinator(\"instrument_coordinator\")\n", "instrument_coordinator.add_component(ic_cluster)\n", "\n", "two_qubit_device.instr_instrument_coordinator(instrument_coordinator.name)\n", "\n", "hardware_cfg = {\n", " \"version\": \"0.2\",\n", " \"config_type\": \"quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig\",\n", " \"hardware_description\": {\n", " f\"{cluster.name}\": {\n", " \"instrument_type\": \"Cluster\",\n", " \"modules\": {\n", " \"1\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"2\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " },\n", " \"3\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"4\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " }\n", " },\n", " \"ref\": \"internal\"\n", " }\n", " },\n", " \"hardware_options\": {\n", " \"modulation_frequencies\": {\n", " \"q0:res-q0.ro\": {\n", " \"lo_freq\": Q0_LO_FREQ_READOUT\n", " },\n", " \"q0:mw-q0.01\": {\n", " \"lo_freq\": Q0_LO_FREQ_QUBIT\n", " },\n", " \"q1:res-q1.ro\": {\n", " \"lo_freq\": Q1_LO_FREQ_READOUT\n", " },\n", " \"q1:mw-q1.01\": {\n", " \"lo_freq\": Q1_LO_FREQ_QUBIT\n", " }\n", " }\n", " },\n", " \"connectivity\": {\n", " \"graph\": [\n", " [f\"{cluster.name}.module1.complex_output_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module1.complex_input_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module2.complex_output_0\", \"q0:mw\"],\n", " [f\"{cluster.name}.module3.complex_output_0\", \"q1:res\"],\n", " [f\"{cluster.name}.module3.complex_input_0\", \"q1:res\"],\n", " [f\"{cluster.name}.module4.complex_output_0\", \"q1:mw\"]\n", " ]\n", " }\n", "}\n", "\n", "\n", "two_qubit_device.hardware_config(hardware_cfg)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1, sequencer=0, acq_index_name=\"0\", data=[DummyBinnedAcquisitionData(data=(0.0, 0.0), thres=0, avg_cnt=0)]\n", ")\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=3, sequencer=0, acq_index_name=\"0\", data=[DummyBinnedAcquisitionData(data=(0.0, 0.0), thres=0, avg_cnt=0)]\n", ")" ] }, { "cell_type": "markdown", "id": "34f62786", "metadata": {}, "source": [ "2D and higher-dimensional measurement loops are easy to realize. Below we show an example Chevron experiment, which is a type of two-qubit experiment often performed on transmon qubits. The experiment includes a square pulse, and we want to vary both its amplitude and duration in a 2D grid. We have already set up a two-qubit {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` under the variable name `two_qubit_device`.\n", "\n", "We define simple schedule below with a parameterized amplitude and duration of the square pulse. `duration` and `amp` are scalars, so for each measurement point the schedule will be recompiled." ] }, { "cell_type": "code", "execution_count": 15, "id": "2c7acd76", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import Schedule\n", "from quantify_scheduler.operations import Measure, Reset, SquarePulse, X, X90\n", "\n", "def chevron_schedule_not_batched(duration, amp, repetitions=1):\n", " sched = Schedule(\"Chevron Experiment\", repetitions=repetitions)\n", "\n", " acq_idx = 0\n", "\n", " reset = sched.add(Reset(\"q0\", \"q1\"))\n", " sched.add(X(\"q0\"), ref_op=reset, ref_pt=\"end\") # Start at the end of the reset\n", " # We specify a clock for tutorial purposes, Chevron experiments do not necessarily use modulated square pulses\n", " square = sched.add(SquarePulse(amp=amp, duration=duration, port=\"q0:mw\", clock=\"q0.01\"))\n", " sched.add(X90(\"q0\"), ref_op=square) # Start at the end of the square pulse\n", " sched.add(X90(\"q1\"), ref_op=square)\n", " sched.add(Measure(\"q0\", acq_index=acq_idx), label=f\"M q0 {acq_idx}\")\n", " sched.add(\n", " Measure(\"q1\", acq_index=acq_idx),\n", " label=f\"M q1 {acq_idx}\",\n", " ref_pt=\"start\", # Start at the same time as the other measure\n", " )\n", "\n", " return sched" ] }, { "cell_type": "markdown", "id": "a685ca40", "metadata": {}, "source": [ "We set up a non-batched measurement with {class}`~quantify_core.measurement.control.MeasurementControl` and a {class}`~quantify_scheduler.gettables.ScheduleGettable`. For this {class}`~quantify_scheduler.gettables.ScheduleGettable`, notice the keyword argument `num_channels=2`, which is needed since we specified in the quantum device elements that the measurements on `\"q0\"` and `\"q1\"` should end up in two different channels.\n", "\n", "In addition, we used another new argument in the {class}`~quantify_scheduler.gettables.ScheduleGettable`: `real_imag=False`. `real_imag` can be used to transform the acquisition data. If it is `True` (the default), the I and Q values will be returned, and if it is `False`, the data will be transformed to the absolute value and the phase (in degrees, in the interval `(-180, 180]`)." ] }, { "cell_type": "code", "execution_count": 16, "id": "4a4be1da", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting iterative measurement...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7fc35219b169443e8f25390476c7eef3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "measurement_control = MeasurementControl(\"measurement_control\")\n", "\n", "# Configure the settables\n", "duration = ManualParameter(\"duration\", label=\"Duration\", unit=\"s\")\n", "duration.batched = False\n", "\n", "durations = np.linspace(start=20e-9, stop=60e-9, num=6)\n", "\n", "amplitude = ManualParameter(\"amplitude\", label=\"Amplitude\", unit=\"V\")\n", "amplitude.batched = False\n", "\n", "amplitudes = np.linspace(start=0.1, stop=1.0, num=10)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=two_qubit_device,\n", " schedule_function=chevron_schedule_not_batched,\n", " schedule_kwargs={\"duration\": duration, \"amp\": amplitude},\n", " batched=False,\n", " real_imag=False,\n", " num_channels=2,\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables([duration, amplitude])\n", "measurement_control.setpoints_grid([durations, amplitudes]) # note: setpoints_grid instead of setpoints\n", "measurement_control.gettables(gettable)\n", "\n", "# Run!\n", "dataset = measurement_control.run()\n", "dset_grid = dh.to_gridded_dataset(dataset)" ] }, { "cell_type": "code", "execution_count": 17, "id": "86223750", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 2kB\n",
       "Dimensions:  (x0: 6, x1: 10)\n",
       "Coordinates:\n",
       "  * x0       (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n",
       "  * x1       (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n",
       "Data variables:\n",
       "    y0       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y1       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y2       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y3       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "Attributes:\n",
       "    tuid:                             20241120-183416-877-7e65fc\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         True\n",
       "    1d_2_settables_uniformly_spaced:  False\n",
       "    xlen:                             6\n",
       "    ylen:                             10
" ], "text/plain": [ " Size: 2kB\n", "Dimensions: (x0: 6, x1: 10)\n", "Coordinates:\n", " * x0 (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n", " * x1 (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n", "Data variables:\n", " y0 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y1 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y2 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y3 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", "Attributes:\n", " tuid: 20241120-183416-877-7e65fc\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: True\n", " 1d_2_settables_uniformly_spaced: False\n", " xlen: 6\n", " ylen: 10" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dset_grid" ] }, { "cell_type": "markdown", "id": "2aa8da38", "metadata": {}, "source": [ "As expected, this dataset contains double the amount of coordinates and data variables (note that the actual data has been mocked and set to 0.0). The two coordinates refer to the settables, `duration` and `amplitude`. With `real_imag` now set to `False`, the data variables contain the magnitude and phase (as opposed to the I and Q voltages) for measurements on `\"q0\"` and `\"q1\"`.\n", "\n", "### Batched 2D experiment\n", "\n", "Since this measurement is not batched, it's rather slow. Let's make this faster with (partial) batching.\n", "\n", "We will batch the amplitudes together, so we change the amplitudes parameter in the schedule function to an array." ] }, { "cell_type": "code", "execution_count": 18, "id": "bc60a6aa", "metadata": { "mystnb": { "code_prompt_show": "Provide the dummy hardware with acquisition data" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "from qblox_instruments import DummyBinnedAcquisitionData\n", "\n", "\n", "def get_dummy_binned_acquisition_data(real: float, imag: float):\n", " return DummyBinnedAcquisitionData(data=(real, imag), thres=0, avg_cnt=0)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1, sequencer=0, acq_index_name=\"0\", data=[get_dummy_binned_acquisition_data(re * 10, im * 10) for re, im in zip(range(-5, 5), range(5, -5, -1))]\n", ")\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=3, sequencer=0, acq_index_name=\"0\", data=[get_dummy_binned_acquisition_data(re * 10, im * 10) for re, im in zip(range(-5, 5), range(5, -5, -1))]\n", ")" ] }, { "cell_type": "code", "execution_count": 19, "id": "827c51bc", "metadata": {}, "outputs": [], "source": [ "def chevron_schedule_batched(duration, amps, repetitions=1):\n", " sched = Schedule(\"Chevron Experiment\", repetitions=repetitions)\n", "\n", " acq_idx = 0\n", "\n", " for amp in amps:\n", " reset = sched.add(Reset(\"q0\", \"q1\"))\n", " sched.add(X(\"q0\"), ref_op=reset, ref_pt=\"end\")\n", " square = sched.add(SquarePulse(amp=amp, duration=duration, port=\"q0:mw\", clock=\"q0.01\"))\n", " sched.add(X90(\"q0\"), ref_op=square)\n", " sched.add(X90(\"q1\"), ref_op=square)\n", " sched.add(Measure(\"q0\", acq_index=acq_idx), label=f\"M q0 {acq_idx}\")\n", " sched.add(\n", " Measure(\"q1\", acq_index=acq_idx),\n", " label=f\"M q1 {acq_idx}\",\n", " ref_pt=\"start\",\n", " )\n", "\n", " acq_idx += 1\n", "\n", " return sched" ] }, { "cell_type": "markdown", "id": "1667e255", "metadata": {}, "source": [ "We specify that we want to batch the amplitudes by setting ``amplitude.batched = True`` and ``batched=True``as keyword argument for the gettable. Finally, we run this experiment just as before." ] }, { "cell_type": "code", "execution_count": 20, "id": "fb4a3e2d", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t duration \n", "Batched settable(s):\n", "\t amplitude \n", "Batch size limit: 60\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a2db650b52324d809c44f67fe8c47513", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Configure the settables\n", "duration = ManualParameter(\"duration\", label=\"Duration\", unit=\"s\")\n", "duration.batched = False\n", "\n", "durations = np.linspace(start=20e-9, stop=60e-9, num=6)\n", "\n", "amplitude = ManualParameter(\"amplitude\", label=\"Amplitude\", unit=\"V\")\n", "amplitude.batched = True\n", "\n", "amplitudes = np.linspace(start=0.1, stop=1.0, num=10)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=two_qubit_device,\n", " schedule_function=chevron_schedule_batched,\n", " schedule_kwargs={\"duration\": duration, \"amps\": amplitude},\n", " batched=True,\n", " real_imag=False,\n", " data_labels=[\"Magnitude Q0\", \"Phase Q0\", \"Magnitude Q1\", \"Phase Q1\"],\n", " num_channels=2,\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables([duration, amplitude])\n", "measurement_control.setpoints_grid([durations, amplitudes])\n", "measurement_control.gettables(gettable)\n", "\n", "# Run!\n", "dataset = measurement_control.run()\n", "dset_grid = dh.to_gridded_dataset(dataset)" ] }, { "cell_type": "code", "execution_count": 21, "id": "7ba98f9d", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 2kB\n",
       "Dimensions:  (x0: 6, x1: 10)\n",
       "Coordinates:\n",
       "  * x0       (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n",
       "  * x1       (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n",
       "Data variables:\n",
       "    y0       (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n",
       "    y1       (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n",
       "    y2       (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n",
       "    y3       (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n",
       "Attributes:\n",
       "    tuid:                             20241120-183425-989-4257b4\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         True\n",
       "    1d_2_settables_uniformly_spaced:  False\n",
       "    xlen:                             6\n",
       "    ylen:                             10
" ], "text/plain": [ " Size: 2kB\n", "Dimensions: (x0: 6, x1: 10)\n", "Coordinates:\n", " * x0 (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n", " * x1 (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n", "Data variables:\n", " y0 (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n", " y1 (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n", " y2 (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n", " y3 (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n", "Attributes:\n", " tuid: 20241120-183425-989-4257b4\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: True\n", " 1d_2_settables_uniformly_spaced: False\n", " xlen: 6\n", " ylen: 10" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dset_grid" ] }, { "cell_type": "markdown", "id": "45056437", "metadata": {}, "source": [ "The shape of the dataset is no different from the previous (non-batched) experiment, but the metadata is a little different. Some coordinates and data variables now have the `batched=True` attribute. We also introduced another keyword argument: the `data_labels`. These `data_labels` are picked up by the {class}`~quantify_core.measurement.control.MeasurementControl`and end up in the {class}`xarray.Dataset` as the \"long_name\" of attributes. For example, `\"y0\"`s label can be accessed through `dataset[\"y0\"].attrs[\"long_name\"]`. The various plotting features of `quantify-core` will use this name to get labels for the figure axes." ] } ], "metadata": { "file_format": "mystnb", "kernelspec": { "display_name": "python3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.20" }, "source_map": [ 6, 34, 141, 149, 166, 170, 195, 199, 247, 251, 263, 273, 299, 303, 322, 332, 356, 364, 369, 373, 375, 401, 417, 423, 430, 445, 451, 588, 594, 617, 623, 660, 662, 672, 692, 714, 718, 754, 756 ], "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "01b720a125ce4ee794cadf11db098a03": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1d4e9570787b49d5bc55a33f9f422de8", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a36da37e27c34115a46e6ba8900f3eee", "tabbable": null, "tooltip": null, "value": 100.0 } }, "039153632c01428e98faaf2161bdc26c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d23d22709446466785ba8d7dff3051a7", "placeholder": "​", "style": "IPY_MODEL_411ffb3f527643c0b3581fed5c5aaaf0", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "0c96e70c872140fb9a372b4155b2e895": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "10b828b1d39b4b7ca1fce672c5c207dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "10c4bc62454642ec8f7d3e6f9f6260c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_039153632c01428e98faaf2161bdc26c", "IPY_MODEL_8265043a8ca149c8a56e9e300a86673f", "IPY_MODEL_a3e4584815614e9eb751d25f57979cfd" ], "layout": "IPY_MODEL_200c569e8ead40a88bf35d8d1ee17f84", "tabbable": null, "tooltip": null } }, "15cb81839d4d469588dc691eb28d8bba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "166aac4981a640198199134a87352b80": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1d4e9570787b49d5bc55a33f9f422de8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "200c569e8ead40a88bf35d8d1ee17f84": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "233ecc6cfd7c4a97bb287d66e2c81ec6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2582ae53268c4f928b2b7f0d9e12160c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_15cb81839d4d469588dc691eb28d8bba", "placeholder": "​", "style": "IPY_MODEL_e5a1116e6e50417c81f65294e8c85a4e", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "3db926632f5f4c33b1215c651c2f1166": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_233ecc6cfd7c4a97bb287d66e2c81ec6", "placeholder": "​", "style": "IPY_MODEL_8985648c88b54df38bf9ed004c5a9f02", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 10" } }, "411ffb3f527643c0b3581fed5c5aaaf0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "67b1a22847ce44a9a7b04d6a795d299e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "7fc35219b169443e8f25390476c7eef3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_2582ae53268c4f928b2b7f0d9e12160c", "IPY_MODEL_80770c2f531446b3b977192f2d29f0e8", "IPY_MODEL_de0b13fb5a264c42ba429ed825cea203" ], "layout": "IPY_MODEL_92d5c20c5ffe4ecb83b830535c2857fd", "tabbable": null, "tooltip": null } }, "80770c2f531446b3b977192f2d29f0e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_166aac4981a640198199134a87352b80", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9cf72662978a4223b1efcabdb390debf", "tabbable": null, "tooltip": null, "value": 100.0 } }, "8265043a8ca149c8a56e9e300a86673f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d612c452d7a247dab543e695afd45d55", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ec4bb24e12174487b24a252d3729993d", "tabbable": null, "tooltip": null, "value": 100.0 } }, "856103fa9b3147d4909b11a8c916202f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8985648c88b54df38bf9ed004c5a9f02": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "92d5c20c5ffe4ecb83b830535c2857fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9cf72662978a4223b1efcabdb390debf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "a2db650b52324d809c44f67fe8c47513": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_ff11393f784c490fb7d1483bcc22c4fb", "IPY_MODEL_01b720a125ce4ee794cadf11db098a03", "IPY_MODEL_3db926632f5f4c33b1215c651c2f1166" ], "layout": "IPY_MODEL_d12bbb9f6d4048d68442546af7023bf2", "tabbable": null, "tooltip": null } }, "a36da37e27c34115a46e6ba8900f3eee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "a3e4584815614e9eb751d25f57979cfd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0c96e70c872140fb9a372b4155b2e895", "placeholder": "​", "style": "IPY_MODEL_10b828b1d39b4b7ca1fce672c5c207dd", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 125" } }, "a6bdcc31131e43229a0b41469e9e8228": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "aca56133b0204ac2a0a94df535075c69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "d12bbb9f6d4048d68442546af7023bf2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d23d22709446466785ba8d7dff3051a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d612c452d7a247dab543e695afd45d55": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "de0b13fb5a264c42ba429ed825cea203": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_856103fa9b3147d4909b11a8c916202f", "placeholder": "​", "style": "IPY_MODEL_aca56133b0204ac2a0a94df535075c69", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:08 | time left: 00:00 ] " } }, "e5a1116e6e50417c81f65294e8c85a4e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "ec4bb24e12174487b24a252d3729993d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "ff11393f784c490fb7d1483bcc22c4fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a6bdcc31131e43229a0b41469e9e8228", "placeholder": "​", "style": "IPY_MODEL_67b1a22847ce44a9a7b04d6a795d299e", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }