device_under_test#
Module containing instruments that represent quantum devices and elements.
The elements and their components are intended to generate valid device configuration files for compilation from the quantum-circuit layer to the quantum-device layer description.
Submodules#
Package Contents#
Classes#
An example Edge implementation which connects two BasicTransmonElements. |
|
A device element representing an electronic qubit in an NV center. |
|
The QuantumDevice directly represents the device under test (DUT). |
|
A device element representing a Loss–DiVincenzo Spin qubit. |
|
A device element representing a single fixed-frequency transmon qubit. |
- class CompositeSquareEdge(parent_element_name: str, child_element_name: str, **kwargs)[source]#
Bases:
quantify_scheduler.device_under_test.edge.Edge
An example Edge implementation which connects two BasicTransmonElements.
This edge implements a square flux pulse and two virtual z phase corrections for the CZ operation between the two BasicTransmonElements.
- generate_edge_config() dict[str, dict[str, quantify_scheduler.backends.graph_compilation.OperationCompilationConfig]] [source]#
Generate valid device config.
Fills in the edges information to produce a valid device config for the quantify-scheduler making use of the
compile_circuit_to_device_with_config_validation()
function.
- class BasicElectronicNVElement(name: str, **kwargs)[source]#
Bases:
quantify_scheduler.device_under_test.device_element.DeviceElement
A device element representing an electronic qubit in an NV center.
The submodules contain the necessary qubit parameters to translate higher-level operations into pulses. Please see the documentation of these classes.
Examples
Qubit parameters can be set through submodule attributes
from quantify_scheduler import BasicElectronicNVElement qubit = BasicElectronicNVElement("q2") qubit.rxy.amp180(0.1) qubit.measure.pulse_amplitude(0.25) qubit.measure.pulse_duration(300e-9) qubit.measure.acq_delay(430e-9) qubit.measure.acq_duration(1e-6) ...
Ellipsis
- spectroscopy_operation: SpectroscopyOperationHermiteMW#
Submodule
SpectroscopyOperationHermiteMW
.
- clock_freqs: ClockFrequencies#
Submodule
ClockFrequencies
.
- reset: ResetSpinpump#
Submodule
ResetSpinpump
.
- charge_reset: ChargeReset#
Submodule
ChargeReset
.
- pulse_compensation: quantify_scheduler.device_under_test.transmon_element.PulseCompensationModule#
Submodule
PulseCompensationModule
.
- rxy: RxyHermite#
Submodule
Rxy
.
- _generate_config() dict[str, dict[str, quantify_scheduler.backends.graph_compilation.OperationCompilationConfig]] [source]#
Generate part of the device configuration specific to a single qubit.
This method is intended to be used when this object is part of a device object containing multiple elements.
- generate_device_config() quantify_scheduler.backends.graph_compilation.DeviceCompilationConfig [source]#
Generate a valid device config for the quantify-scheduler.
This makes use of the
compile_circuit_to_device_with_config_validation()
function.This enables the settings of this qubit to be used in isolation.
- class QuantumDevice(name: str)[source]#
Bases:
quantify_scheduler.json_utils.JSONSerializableMixin
,qcodes.instrument.base.Instrument
The QuantumDevice directly represents the device under test (DUT).
This contains a description of the connectivity to the control hardware as well as parameters specifying quantities like cross talk, attenuation and calibrated cable-delays. The QuantumDevice also contains references to individual DeviceElements, representations of elements on a device (e.g, a transmon qubit) containing the (calibrated) control-pulse parameters.
This object can be used to generate configuration files for the compilation step from the gate-level to the pulse level description. These configuration files should be compatible with the
compile()
function.- elements#
- edges#
- instr_measurement_control#
- instr_instrument_coordinator#
- cfg_sched_repetitions#
- keep_original_schedule#
- hardware_config: quantify_scheduler.device_under_test.hardware_config.HardwareConfig#
The input dictionary used to generate a valid HardwareCompilationConfig using
generate_hardware_compilation_config()
. This configures the compilation from the quantum-device layer to the control-hardware layer.Useful methods to write and reload the configuration from a json file are
load_from_json_file()
andwrite_to_json_file()
.
- scheduling_strategy#
- _instrument_references#
- to_json() str [source]#
Convert the
QuantumDevice
data structure to a JSON string. Overrides the base mixin method to perform additional checks.- Returns:
The json string containing the serialized QuantumDevice.
- generate_compilation_config() quantify_scheduler.backends.graph_compilation.SerialCompilationConfig [source]#
Generate a config for use with a
QuantifyCompiler
.
- generate_hardware_config() dict[str, Any] [source]#
Generate a valid hardware configuration describing the quantum device.
- Returns:
The hardware configuration file used for compiling from the quantum-device layer to a hardware backend.
.. warning – The config currently has to be specified by the user using the
hardware_config
parameter.
- generate_device_config() quantify_scheduler.backends.graph_compilation.DeviceCompilationConfig [source]#
Generate a device config.
This config is used to compile from the quantum-circuit to the quantum-device layer.
- generate_hardware_compilation_config() quantify_scheduler.backends.types.common.HardwareCompilationConfig | None [source]#
Generate a hardware compilation config.
The compilation config is used to compile from the quantum-device to the control-hardware layer.
- get_element(name: str) quantify_scheduler.device_under_test.device_element.DeviceElement [source]#
Return a
DeviceElement
by name.- Parameters:
name – The element name.
- Returns:
The element.
- Raises:
KeyError – If key
name
is not present in self.elements.
- add_element(element: quantify_scheduler.device_under_test.device_element.DeviceElement) None [source]#
Add an element to the elements collection.
- Parameters:
element – The element to add.
- Raises:
ValueError – If a element with a duplicated name is added to the collection.
TypeError – If
element
is not an instance of the base element.
- remove_element(name: str) None [source]#
Removes an element by name.
- Parameters:
name – The element name.
- get_edge(name: str) qcodes.instrument.base.Instrument [source]#
Returns an edge by name.
- Parameters:
name – The edge name.
- Returns:
The edge.
- Raises:
KeyError – If key
name
is not present inself.edges
.
- add_edge(edge: quantify_scheduler.device_under_test.edge.Edge) None [source]#
Add the edges.
- Parameters:
edge – The edge name connecting the elements. Has to follow the convention ‘element_0’-‘element_1’
- class BasicSpinElement(name: str, **kwargs: Any)[source]#
Bases:
quantify_scheduler.device_under_test.device_element.DeviceElement
A device element representing a Loss–DiVincenzo Spin qubit. The element refers to the intrinsic spin-1/2 degree of freedom of individual electrons/holes trapped in quantum dots. The charge of the particle is coupled to a resonator.
Examples
Qubit parameters can be set through submodule attributes
from quantify_scheduler import BasicSpinElement qubit = BasicSpinElement("q1") qubit.rxy.amp180(0.1) qubit.measure.pulse_amp(0.25) qubit.measure.pulse_duration(300e-9) qubit.measure.acq_delay(430e-9) qubit.measure.integration_time(1e-6) ...
Ellipsis
- Parameters:
name – The name of the spin element.
kwargs – Can be used to pass submodule initialization data by using submodule name as keyword and as argument a dictionary containing the submodule parameter names and their value.
- rxy: RxyGaussian#
Submodule
RxyGaussian
.
- measure: DispersiveMeasurementSpin#
Submodule
DispersiveMeasurementSpin
.
- pulse_compensation: quantify_scheduler.device_under_test.transmon_element.PulseCompensationModule#
Submodule
PulseCompensationModule
.
- clock_freqs: ClocksFrequenciesSpin#
Submodule
ClocksFrequenciesSpin
.
- _generate_config() dict[str, dict[str, quantify_scheduler.backends.graph_compilation.OperationCompilationConfig]] [source]#
Generate part of the device configuration specific to a single qubit.
This method is intended to be used when this object is part of a device object containing multiple elements.
- generate_device_config() quantify_scheduler.backends.graph_compilation.DeviceCompilationConfig [source]#
Generate a valid device config.
The config will be used for the quantify-scheduler making use of the
compile_circuit_to_device_with_config_validation()
function.This enables the settings of this qubit to be used in isolation.
- class BasicTransmonElement(name: str, **kwargs)[source]#
Bases:
quantify_scheduler.device_under_test.device_element.DeviceElement
A device element representing a single fixed-frequency transmon qubit.
The qubit is coupled to a readout resonator.
Examples
Qubit parameters can be set through submodule attributes
from quantify_scheduler import BasicTransmonElement qubit = BasicTransmonElement("q3") qubit.rxy.amp180(0.1) qubit.measure.pulse_amp(0.25) qubit.measure.pulse_duration(300e-9) qubit.measure.acq_delay(430e-9) qubit.measure.integration_time(1e-6) ...
Ellipsis
- Parameters:
name – The name of the transmon element.
kwargs – Can be used to pass submodule initialization data by using submodule name as keyword and as argument a dictionary containing the submodule parameter names and their value.
- reset: IdlingReset#
Submodule
IdlingReset
.
- measure: DispersiveMeasurement#
Submodule
DispersiveMeasurement
.
- pulse_compensation: PulseCompensationModule#
Submodule
PulseCompensationModule
.
- clock_freqs: ClocksFrequencies#
Submodule
ClocksFrequencies
.
- _generate_config() dict[str, dict[str, quantify_scheduler.backends.graph_compilation.OperationCompilationConfig]] [source]#
Generate part of the device configuration specific to a single qubit.
This method is intended to be used when this object is part of a device object containing multiple elements.
- generate_device_config() quantify_scheduler.backends.graph_compilation.DeviceCompilationConfig [source]#
Generate a valid device config.
The config will be used for the quantify-scheduler making use of the
compile_circuit_to_device_with_config_validation()
function.This enables the settings of this qubit to be used in isolation.