{ "cells": [ { "cell_type": "markdown", "id": "f2cada0d", "metadata": {}, "source": [ "(sec-tutorial-schedulegettable)=\n", "\n", "# Tutorial: ScheduleGettable\n", "\n", "```{seealso}\n", "The complete source code of this tutorial can be found in\n", "\n", "{nb-download}`ScheduleGettable.ipynb`\n", "```\n", "\n", "This tutorial covers the {class}`~quantify_scheduler.gettables.ScheduleGettable` in-depth. If you're looking for more information on how to set up an experiment in general, please see {ref}`sec-tutorial-experiment`.\n", "\n", "The {class}`~quantify_scheduler.gettables.ScheduleGettable` forms the top-level interface to {mod}`quantify_scheduler`. Under the hood, it uses `quantify-scheduler` modules to compile {ref}`Schedules `, run them on your hardware and retrieve measurement data from the hardware. As the {class}`~quantify_scheduler.gettables.ScheduleGettable` uses functions that return {class}`~quantify_scheduler.schedules.schedule.Schedule`s, you can dynamically set function parameters during experiments.\n", "\n", "For those familiar with [quantify-core](https://quantify-os.org/docs/quantify-core), the interface of the {class}`~quantify_scheduler.gettables.ScheduleGettable` is also designed to be used as a [gettable](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#settables-and-gettables) for [MeasurementControl](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#measurement-control). This is convenient for large, possibly multi-dimensional measurement loops, as is demonstrated in {ref}`2D (and ND) measurement loops`.\n", "\n", "Two things are always required when using a {class}`~quantify_scheduler.gettables.ScheduleGettable`: a {ref}`QuantumDevice ` and a function that returns a {class}`~quantify_scheduler.schedules.schedule.Schedule`. We will set these up in a few example scenarios below and show how to use the {class}`~quantify_scheduler.gettables.ScheduleGettable`. More commonly used schedule functions are also included in `quantify-scheduler` out of the box. You can find them in {mod}`~.quantify_scheduler.schedules.spectroscopy_schedules`, {mod}`~.quantify_scheduler.schedules.timedomain_schedules` and {mod}`~.quantify_scheduler.schedules.trace_schedules`.\n", "\n", "(sec-schedulegettable-1dsweep-usage)=\n", "\n", "## 1D iterative measurement loop\n", "\n", "\n", "```{admonition} Setup and hardware configuration\n", "The device setup and hardware configuration for this tutorial can be viewed in the collapsed code cells. In places where you would communicate with actual hardware, dummy objects have been used. If you want to learn more about how to set up the {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` and hardware configuration, please see our other tutorials, in particular {ref}`sec-tutorial-experiment` and {ref}`sec-tutorial-compiling`.\n", "```" ] }, { "cell_type": "code", "execution_count": 1, "id": "424ceff6", "metadata": { "mystnb": { "code_prompt_show": "Set up the quantum device, dummy hardware and hardware configuration" }, "tags": [ "hide-cell" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Data will be saved in:\n", "/root/quantify-data\n" ] } ], "source": [ "from qblox_instruments import Cluster, ClusterType\n", "from quantify_core.data import handling as dh\n", "\n", "from quantify_scheduler import BasicTransmonElement, InstrumentCoordinator, QuantumDevice\n", "from quantify_scheduler.qblox import ClusterComponent, start_dummy_cluster_armed_sequencers\n", "\n", "# First, don't forget to set the data directory!\n", "dh.set_datadir() # change me!\n", "\n", "# We define a single transmon qubit as an element (BasicTransmonElement) of the\n", "# QuantumDevice, and populate the parameters with some reasonable values.\n", "\n", "# Device parameters\n", "ACQ_DELAY = 100e-9\n", "FREQ_01 = 4e9\n", "READOUT_AMP = 0.1\n", "READOUT_FREQ = 4.3e9\n", "PI_PULSE_AMP = 0.15\n", "LO_FREQ_QUBIT = 3.9e9\n", "LO_FREQ_READOUT = 4.5e9\n", "\n", "single_qubit_device = QuantumDevice(\"single_qubit_device\")\n", "\n", "q0 = BasicTransmonElement(\"q0\")\n", "single_qubit_device.add_element(q0)\n", "\n", "# Assign device parameters to transmon element\n", "q0.measure.pulse_amp(READOUT_AMP)\n", "q0.clock_freqs.readout(READOUT_FREQ)\n", "q0.clock_freqs.f01(FREQ_01)\n", "q0.measure.acq_delay(ACQ_DELAY)\n", "q0.rxy.amp180(PI_PULSE_AMP)\n", "\n", "# For this example, we will set up a Qblox cluster hardware setup with two modules: a\n", "# QRM-RF and a QCM-RF.\n", "\n", "# Note: if you are connecting to an actual cluster, you would provide the\n", "# 'identifier' argument (the ip address, device name or serial number) instead\n", "# of the 'dummy_cfg' argument.\n", "cluster = Cluster(\n", " \"cluster\",\n", " dummy_cfg={\n", " 1: ClusterType.CLUSTER_QRM_RF,\n", " 2: ClusterType.CLUSTER_QCM_RF,\n", " },\n", ")\n", "\n", "ic_cluster = ClusterComponent(cluster)\n", "\n", "# Temporarily fixing dummy cluster's deficiency.\n", "cluster.start_sequencer = lambda : start_dummy_cluster_armed_sequencers(ic_cluster)\n", "\n", "# We create an InstrumentCoordinator to control the cluster and add it to the\n", "# QuantumDevice.\n", "\n", "instrument_coordinator = InstrumentCoordinator(\"instrument_coordinator\")\n", "instrument_coordinator.add_component(ic_cluster)\n", "\n", "single_qubit_device.instr_instrument_coordinator(instrument_coordinator.name)\n", "\n", "# A basic hardware configuration will be used for the two cluster modules.\n", "\n", "hardware_cfg = {\n", " \"version\": \"0.2\",\n", " \"config_type\": \"quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig\",\n", " \"hardware_description\": {\n", " f\"{cluster.name}\": {\n", " \"instrument_type\": \"Cluster\",\n", " \"modules\": {\n", " \"1\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"2\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " }\n", " },\n", " \"ref\": \"internal\"\n", " }\n", " },\n", " \"hardware_options\": {\n", " \"modulation_frequencies\": {\n", " \"q0:res-q0.ro\": {\n", " \"lo_freq\": LO_FREQ_READOUT\n", " },\n", " \"q0:mw-q0.01\": {\n", " \"lo_freq\": LO_FREQ_QUBIT\n", " }\n", " }\n", " },\n", " \"connectivity\": {\n", " \"graph\": [\n", " [f\"{cluster.name}.module1.complex_output_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module1.complex_input_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module2.complex_output_0\", \"q0:mw\"]\n", " ]\n", " }\n", "}\n", "\n", "\n", "# This hardware configuration should also be added to the quantum device.\n", "single_qubit_device.hardware_config(hardware_cfg)" ] }, { "cell_type": "markdown", "id": "d7d95604", "metadata": {}, "source": [ "For this experiment, we have set up a basic {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` called `single_qubit_device`, representing a single transmon qubit.\n", "\n", "We'll now define the schedule function. A valid schedule function must contain a `repetitions` (integer) parameter (see {ref}`Repetitions`), and can contain any number of additional parameters. It must return a {class}`~quantify_scheduler.schedules.schedule.Schedule` object.\n", "\n", "The schedule function can be parameterized to loop over different values. The parameters can be scalars or arrays. For example, the schedule function defined below takes an array of values for the parameter `times`. This is called a _batched_ measurement, as will be explained further in this tutorial." ] }, { "cell_type": "code", "execution_count": 2, "id": "d778a3ad", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import Schedule\n", "from quantify_scheduler.operations import Measure, Reset, X\n", "\n", "def t1_sched(times, repetitions=1):\n", " schedule = Schedule(\"T1\", repetitions)\n", " for i, tau in enumerate(times):\n", " schedule.add(Reset(\"q0\"), label=f\"Reset {i}\")\n", " schedule.add(X(\"q0\"), label=f\"pi {i}\")\n", " # Measure tau seconds after the start of the X gate\n", " schedule.add(\n", " Measure(\"q0\", acq_index=i),\n", " ref_pt=\"start\",\n", " rel_time=tau,\n", " label=f\"Measurement {i}\",\n", " )\n", " return schedule" ] }, { "cell_type": "markdown", "id": "5e941c45", "metadata": {}, "source": [ "Now, let's create the {class}`~quantify_scheduler.gettables.ScheduleGettable`. The {class}`~quantify_scheduler.gettables.ScheduleGettable` provides a convenient way to compile and execute schedules in just a few lines of code. The parameters can be set directly, with arrays and scalars, or through QCoDeS parameters, as shown below." ] }, { "cell_type": "code", "execution_count": 3, "id": "94f4281e", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "from qcodes.instrument.parameter import ManualParameter\n", "\n", "from quantify_scheduler import ScheduleGettable\n", "\n", "# The points we want to measure.\n", "times = np.linspace(start=1.6e-7, stop=4.976e-5, num=125)\n", "\n", "# As QCoDeS parameter:\n", "time = ManualParameter(\"sample\", label=\"Sample time\", unit=\"s\")\n", "# Set the parameter. This can be done even after defining the gettable!\n", "time(times)\n", "\n", "# Or as array:\n", "time = times\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=t1_sched,\n", " schedule_kwargs={\"times\": time},\n", " batched=True\n", ")" ] }, { "cell_type": "markdown", "id": "231c0e05", "metadata": {}, "source": [ "Note that `batched=True` here. This means we are doing a _batched_ measurement, which simply means that we tell the {class}`~quantify_scheduler.gettables.ScheduleGettable` to expect an array of values in the acquisition result. In this case, our schedule function creates one schedule for an array of times, and it includes an acquisition (the {class}`~quantify_scheduler.operations.gate_library.Measure` operation) for each point." ] }, { "cell_type": "code", "execution_count": 4, "id": "65f64aad", "metadata": { "mystnb": { "code_prompt_show": "Provide the dummy hardware with acquisition data" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "import xarray\n", "\n", "from quantify_scheduler.waveforms import soft_square\n", "\n", "from qblox_instruments import DummyScopeAcquisitionData, DummyBinnedAcquisitionData\n", "\n", "\n", "soft_sq_samples = round(q0.measure.integration_time() * 1e9)\n", "soft_sq_times = np.arange(soft_sq_samples)\n", "soft_sq = soft_square(t=soft_sq_times, amp=0.5)\n", "scope_data_real = np.zeros(16384) # Scope trace acquires 16384 points\n", "scope_data_real[:soft_sq_samples] = soft_sq\n", "scope_data_real += np.random.randn(16384) / 500 # add some \"noise\"\n", "\n", "# Create dummy scope data with the soft square pulse on the I path and noise on\n", "# the Q path\n", "scope_data = list(zip(scope_data_real, np.random.randn(16384) / 500))\n", "\n", "dummy_scope_acquisition_data = DummyScopeAcquisitionData(\n", " data=scope_data, out_of_range=(False, False), avg_cnt=(0, 0)\n", " )\n", "\n", "ic_cluster.instrument.set_dummy_scope_acquisition_data(\n", " slot_idx=1, sequencer=None, data=dummy_scope_acquisition_data\n", ")\n", "\n", "\n", "# Dataset with T1 experiment data\n", "example_dataset = xarray.open_dataset(\"../examples/dataset.hdf5\")\n", "\n", "def get_dummy_binned_acquisition_data(real: float, imag: float):\n", " return DummyBinnedAcquisitionData(data=(real, imag), thres=0, avg_cnt=0)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1,\n", " sequencer=0,\n", " acq_index_name=\"0\",\n", " data=[\n", " get_dummy_binned_acquisition_data(float(re) * 1024, float(im) * 1024)\n", " for re, im in zip(example_dataset[\"y0\"], example_dataset[\"y1\"])\n", " ],\n", ")" ] }, { "cell_type": "markdown", "id": "3e76dabd", "metadata": {}, "source": [ "Let's now run the experiment and retrieve the acquisitions using the {meth}`~quantify_scheduler.gettables.ScheduleGettable.get` method." ] }, { "cell_type": "code", "execution_count": 5, "id": "19e4478e", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUP0lEQVR4nO3deVhU9eIG8HcGEWUbZAdFEXdzww0x1yTXuGlqaiZqtvy6apFLYddcyjIrS23Rsky9N9My5XqtKFPLNFNESS33NIxFRGKQRSA4vz/GGWeGMzNnYPZ5P88zj86Zs3znUJ6X7yoTBEEAERERkRuS27sARERERPbCIERERERui0GIiIiI3BaDEBEREbktBiEiIiJyWwxCRERE5LYYhIiIiMhtNbB3ARxdTU0NcnJy4OfnB5lMZu/iEBERkQSCIODmzZuIjIyEXG643odByIScnBxERUXZuxhERERUB1evXkWzZs0Mfs4gZIKfnx8A1Y309/e3c2mIiIhIiuLiYkRFRWme44YwCJmgbg7z9/dnECIiInIyprq1sLM0ERERuS0GISIiInJbDEJERETkthiEiIiIyG0xCBEREZHbYhAiIiIit8UgRERERG6LQYiIiIjcFoMQERERuS0GISIiInJbDEJERETkthiEiIiIyD6U2cDlA6o/7YSLrhIREZHtHd8M/O9pQKgBZHIgcTXQPcnmxWCNkL04QAomIiKyC2X2nRAEqP78X7JdnomsEbIHB0nBREREdlF46U4IUhOqgcLfAUVTmxaFNUK25kApmIiIyC4CW6kqArTJPIDAGJsXhUHI1oylYCIiInegaKpqDZF5qN7LPIDEVTavDQLYNGZ76hSsHYbslIKJiIjspnsS0GqIqiIgMMYuIQhgjZDtOVAKJiIisitFU6Blf7s+A1kjZA8OkoKJiIjcHYOQvSiaMgARERHZGZvGiIiIyG0xCBEREZHbYhByFJxpmoiIyObYR8gRcKZpIiIiu2CNkL1xpmkiIiK7cbog9O677yI6OhqNGjVCXFwcjh49anDf9evXo3///mjSpAmaNGmChIQEo/vbhaGZpq8eZVMZERGRlTlVENq2bRvmzJmDxYsX4/jx4+jatSuGDRuG/Px80f2///57TJo0Cfv378fhw4cRFRWFoUOHIjvbgcKF2HorkAFfPAJsSgRWdVI1nREREZHFyQRBEOxdCKni4uLQq1cvvPPOOwCAmpoaREVFYfbs2UhJSTF5fHV1NZo0aYJ33nkHSUnS+uAUFxdDoVBAqVTC39+/XuU36PhmVXOYUA1VNhVuv26TeQDJpzjvEBERkURSn99OUyNUWVmJjIwMJCQkaLbJ5XIkJCTg8OHDks5RVlaGqqoqBAYGGtynoqICxcXFOi+r656kCjpTdwPjPoJOCAJUAenXVDaTERERWZjTBKGCggJUV1cjLCxMZ3tYWBjy8vIkneO5555DZGSkTpjSt3z5cigUCs0rKiqqXuWWTL3eSlScSFMZgG+fZzMZERGRhTlNEKqvV199FVu3bsXOnTvRqFEjg/stWLAASqVS87p69aoNS4nai7Jq44gyIiIii3KaeYSCg4Ph4eGBa9eu6Wy/du0awsPDjR77xhtv4NVXX8V3332HLl26GN3Xy8sLXl5e9S5vvagXZf01VVUTpE2oVi3Wyv5CRERE9eY0NUINGzZEjx49sHfvXs22mpoa7N27F/Hx8QaPe+211/DSSy8hLS0NPXv2tEVRLUPRFLhrdO1mMpmHasV6IiIiqjenCUIAMGfOHKxfvx6bNm3CmTNn8OSTT6K0tBTTp08HACQlJWHBggWa/VesWIEXXngBGzZsQHR0NPLy8pCXl4eSkhJ7fQXz6DeTyTyAxFWsDSIiIrIQp2kaA4AJEybg+vXrWLRoEfLy8tCtWzekpaVpOlBnZWVBLr+T7dauXYvKykqMGzdO5zyLFy/GkiVLbFn0ulM3kxX+rqoJYggiIiKyGKeaR8gebDKPEBEREVmUy80jRERERGRpDELOSJnNdciIiIgswKn6CBFuL8dxe7V6mVzVmbq7tOVCiIiISBdrhJyJMvtOCAI4wSIREVE9sUbImRReuhOC1IRq4OpRoDBItZI9R5URERFJxiDkTAJbqZrDdMKQDPjiETaVERER1QGbxpxJrXXIbv/42FRGRERUJ6wRcjbaEyyWXge2T9f9nGuRERERScYg5IwUTVUvZXbtpjKuRUZERCQZm8acGdciIyIiqhfWCDk7rkVGRERUZwxCrkDdVEZERERmYdOYq+HyG0RERJKxRsiVcPkNIiIiszAIuQpDy2+E3gVUlXLWaSIiIhEMQq7C0PIbHw0BBIE1RERERCLYR8hVqJff0CcIt//krNNERET6GIRchaHlN7SpZ50mIiIiAGwacy3acwp5egMfJdSeddrTWzWqjH2GiIiIGIRcjvacQomrVc1hQrUqBHWZcCccsc8QERERg5BLM1ZDJNQAu54GGvoCUXGsHSIiIrfEPkKuTtEUaNlfNYRef1QZalSr16/qpJqDiIiIyM0wCLkLQ6PKAI4oIyIit8Ug5C5qjSrTwxFlRETkhhiE3En3JCD5FDBuY+3aIZmHavV6IiIiN8Ig5G4UTYFOY3Rrh2QeQOIq1d+5YCsREbkRjhpzV9ojygJjgEt7VZ2mObSeiIjcCGuE3Jl6RBkgvmAra4aIiMjFMQiR4QVb2XmaiIhcHIMQGRhaLwdKr7NWiIiIXBqDEIkMrZcBEHQnW1RmsyM1ERG5HJkgCIK9C+HIiouLoVAooFQq4e/vb+/iWJcyG7h6FPjiEb2mMhkgk7EjNREROQ2pz2/WCNEdiqaAT5DIUhwCO1ITEZFLYhAiXcaW4lBjR2oiInIRDEKkq1Z/ITlUfYa0cBZqIiJyEZxQkWoTm2zxf8mqmiD1LNSKpvYuJRERUb05XY3Qu+++i+joaDRq1AhxcXE4evSo0f0///xztG/fHo0aNULnzp3x1Vdf2aikTk492aKi6Z01yqbuVv3JjtJEROQinCoIbdu2DXPmzMHixYtx/PhxdO3aFcOGDUN+fr7o/j/99BMmTZqEGTNm4MSJExg9ejRGjx6N06dP27jkLkA7GBEREbkIpxo+HxcXh169euGdd94BANTU1CAqKgqzZ89GSkpKrf0nTJiA0tJS7N69W7OtT58+6NatG9atWyfpmm41fJ6IiMhFuNzw+crKSmRkZCAhIUGzTS6XIyEhAYcPHxY95vDhwzr7A8CwYcMM7g8AFRUVKC4u1nmRCE6wSERELsBpglBBQQGqq6sRFhamsz0sLAx5eXmix+Tl5Zm1PwAsX74cCoVC84qKiqp/4V3N8c2qGac3Jd6ZeZqIiMgJOU0QspUFCxZAqVRqXlevXrV3kRyLMtv0SvWsLSIiIifhNMPng4OD4eHhgWvXrulsv3btGsLDw0WPCQ8PN2t/APDy8oKXl1f9C+yqjK1Ur2iqqh1SByUux0FERA7OaWqEGjZsiB49emDv3r2abTU1Ndi7dy/i4+NFj4mPj9fZHwD27NljcH+SwNhK9X9mmK4tIiIiciBOUyMEAHPmzMHUqVPRs2dP9O7dG6tWrUJpaSmmT58OAEhKSkLTpk2xfPlyAMDTTz+NgQMHYuXKlRg1ahS2bt2KY8eO4YMPPrDn13Bu6pmn1RMsaq9Ur/67Nu3aIiIiIgfjVEFowoQJuH79OhYtWoS8vDx069YNaWlpmg7RWVlZkMvv1Fb07dsXW7ZswcKFC/H888+jTZs2SE1NRadOnez1FVyDeubpWivVi8zEwOU4iIjIgTnVPEL2wHmEjLh8QDVyTJ9MfruP0O3lOFoNUfUtCmzFmiEiIrIJqc9vp6oRIgej7i+k3Xla5gHM2ANUld1Zp2xVJ3aeJiIih+Q0naXJAemvVK+uAWrWQ7UcB8DO00RE5NBYI0T1o79SvXbTl6Gh9r+mAneNZjMZERHZHWuEqP4MLcgqOtQewLfPc0ZqIiJyCAxCZD36TWfa2ExGREQOgEGIrKt7EpB8Chj6Su3PhGrVEHxDy3FwqQ4iIrIy9hEi61M0VfUJ2rNQr8+Q7M48RPojyrhUBxER2QBrhMg2ajWT3f5PT2xEmZSFXYmIiCyANUJkO9ojzEqv316WQ4t6OQ4I4qPNrh4FCoNUnbABTtJIRET1xiBEtqVoqnops8UnY/T0Bor+qP2ZdjMaZLe3CXeazTh7NRER1QGDENmH/uKtMg+gywTgo4Q7YUcmAwQBqmY0QXxNM6EG2PXU7X3Zn4iIiMzDIET2o91U5umtFYIAVfCRA+M+xp3V7Q0Rbgcm3OlP1GoIa4aIiMgkBiGyL3VT2eUDtfsFoQbwCVbNWF2rqcwI/f5EDERERGQAR42RYxCbhVrmcWfZDp0RZ7ebzQCo/hOWQe9AVX+iTYmcwZqIiIxijRA5BrE+Q4mr7tTm6K9pBtz5+6W9d47T70/EpjIiIjJCJgiCYHo391VcXAyFQgGlUgl/f397F8f1KbPFF3CVepzYsHwAmLpbtR4aERG5BanPb9YIkWNR9xmq63GGhuWra5GIiIi0sI8QuRb9/kT6TWxERERaWCNErke/P5GpEKTM5mSMRERuikGIXJN2E5uxoMPFXYmI3BqDELk2saCjXo7D00d8cVftEWasLSIicmkMQuS6xFax116OAzLoLNcBqIbg/5oK3DX69rB8AyGKwYiIyCVw+LwJHD7vxC4fUE2qWCdaC7tqb+OaZkREToHD54nUs1WbWppDdB+x3w/01jTb9TTQ0BeIirszdF9dWwSw5oiIyAkwCJHr0p+tWj3rtHbIkXkAM/YAWT8D3z5v5gVqVJM3yuRAl4nAya1aTW5QXcdQkxr7HhEROQQ2jZnApjEXoD1btfZyHOo5hronqfZZ1UmvZkirKUwsREmm16SmHZrYxEZEZBVSn98MQiYwCLkgQ8t4HN9cOyRpz0eks6aZBck8gORTrBkiIrIgBiELYRByM6bWOlNmA1ePqla3N9X3yBxcC42IyKKkPr+5xAaRNkVTVSAxVDujaAp0GlN7GY+uD915r24KA6D6X0wmciItXAuNiMhu2FmaqC7ElvG4Z+Gd94DhfkldJgAnt+k2wWkHL3akJiKyGTaNmcCmMbII/SY37ffAneAjNomjsY7UDE1ERKI4jxCRI9Fe+0z7vfYSIPqTOKqX/Ai9C6gqrR12uE4aEVG9sUbIBNYIkdWIDtkXIZOpJnLUDjtix+qPPmNtERG5MdYIETm6wkvSRp6JzWatfq+zX7WquU2/pqkuTWwMUUTkJhiEiOxFdAkQ/Ukc9YPS7dmsIUOtRWPVo8/EFps1p4mNEz4SkRthECKyF/0lQPQncfT0Bj5KMFBrJEAVmm4HKfWxAPDrTvHaoo+G3GliS1gCRMYCnj61Q9MvW7SOux2iWg0xXDPE2iMicmJOE4QKCwsxe/Zs/O9//4NcLsfYsWOxevVq+Pr6Gtx/8eLF+Pbbb5GVlYWQkBCMHj0aL730EhQKhY1LT2SA2DB84M6fOmul6ROAsR8DPsF3hukb63Ok3cS2Z9HtjXq1SqLHaTW56WOHbSJyck4zoeLkyZPx66+/Ys+ePdi9ezcOHDiAxx9/3OD+OTk5yMnJwRtvvIHTp09j48aNSEtLw4wZM2xYaiIJjE3i2D1J1QF63EZV0NAm8wCiet+ZkVq7ZkeHsf/NpYyVkAOl11U1P4Dqz8sHgD8zxJvg1PsRETkBpxg1dubMGXTs2BHp6eno2bMnACAtLQ0jR47En3/+icjISEnn+fzzz/Hwww+jtLQUDRqIV4ZVVFSgoqJC8764uBhRUVEcNUb2J7YWmrr25fIBYFNi7WOGvQJE9THSxHabdhOb9oSP2kP69fsPGapNssZyIfVpfmPTHZFbcqlRY4cPH0ZAQIAmBAFAQkIC5HI5jhw5gjFjxkg6j/pmGApBALB8+XIsXbq03mUmsjhDzWiAeMdrmQfQcXTtvkj6ZB7AjD1AVZnuLNn6a6rp9x8SrU3Sqj0ytFabOpQA0gJKfZrf2HRHRCY4RRDKy8tDaGiozrYGDRogMDAQeXl5ks5RUFCAl156yWhzGgAsWLAAc+bM0bxX1wgROQT9iRm1t4t1vFbvqx2ick4A3y3R3a9Zj9rnKwySNrxfE8Bu1xBtn34ndLQaIj5rtn5Nk6GAYmgEnLHO25Y4lojchl2DUEpKClasWGF0nzNnztT7OsXFxRg1ahQ6duyIJUuWGN3Xy8sLXl5e9b4mkc0ZqzEC7oSolv2BTmMN76cmOrxfj7o2qSirdu3Rrqe0pgLQmzVbuzbJ2PB+sbmWjHXe1lafY8WwiY3IJdk1CM2dOxfTpk0zuk9MTAzCw8ORn5+vs/3vv/9GYWEhwsPDjR5/8+ZNDB8+HH5+fti5cyc8PT3rW2wix2Woxqgu+4nVMoktGNushyrA1ApMwp2RalJGphka3i/W5Kdeo80YQ82Fxo411HTHNeCIXJZdg1BISAhCQkJM7hcfH4+ioiJkZGSgRw9VFf6+fftQU1ODuLg4g8cVFxdj2LBh8PLywq5du9CoUSOLlZ3ILYjVMt2zsHZtkpTaI1PEhvdrOmjrhS9A1UFcrK+Rdggx1lyoz+C6byJrwKln+I6Kq30+V+6XZCrg1aUPmC3LR8a56QzzTjFqDABGjBiBa9euYd26daiqqsL06dPRs2dPbNmi6ryZnZ2NIUOGYPPmzejduzeKi4sxdOhQlJWVYefOnfDx8dGcKyQkBB4eHpKuy7XGiCTSHtUGOVTBQfufF5luU5kMt8OP2Aza2ofpdeY21tdIbFZs7SAHiP9D7+ljemSdaNn0go7o+nFyYNxH4qFJnyM8eAyVwVTAMxQkxfY153tKfThbM4Da4+di61AiZYZ57T5/ThCMpD6/nSYIFRYWYtasWToTKq5Zs0YzoeKVK1fQsmVL7N+/H4MGDcL333+PwYMHi57r8uXLiI6OlnRdBiEiMyiz74SOS3sNz5qtCSWmZtC+TT0kX+pCtWraC9Ea+4deysSSxq4xY4+qebC04PYSKGL7GXg4qx9wOZnAd4uNP3iMPQwt8ZmhJkBDi/yqv7epIGns52DsASt1+RcpixDrf1fA8L3V/sxUs6g1Akp9l70xt0yS/r/S+kXGSWo6XS4I2QuDEFE9aAcjk0Pkkw0P71c/0AzNl2TM1N2q65sToGoXQqs2S+xj2e3aLf1O4fr7aYWHWiPpjFzT1MNQ/8Gp7mNl6kFusDlQq7zJp1QPVbH7rvO9TTxKDP4cRB6wrYYAV48AX8yQ1lk/6zDw7b/Er6me08pYjVWtUKy+D0buidTFjc0NqFJCiVjIU6vLgsu/7hS/f8bol8ERajP1uNQ8QkTkpKR23jY1vL+ufZHUnaPFRpCJ7q81FYC66U67Nkt/biU1nU7hMsNl1O4Ubio0aXc2N7YGHFB7mgCdJVS0rqE9Qq/oD70QJlIOoVr1ndWBwej3NsLoz0Hve+qMNjRB534auCZQeyoF/VGLBufHMnJPrgqmFzeWGkK1A6DYWoFiZfg1FbhrdO0aL/0y6fdnM1QDaC7tEZh1CV8OFJpYI2QCa4SI7MBYTZJO7ZFeYBEb1Wao6USffl8kQLwMtfpCiZxz3EbVn2KhyZKGvgL4RxhujjNEU5Njckfz+nWZDJISanksQacp9pLxJkvzT16P2sHb/cUCWog0JZo4r+i19JoWTTXNGqz50t9X7/8lsT5/6hohQFqzpJoNBxOwacxCGISIHJB2UAJ0A4uhEKW/RImh0GTO9cX6N9VqOkk2HppEiXU2N8RUzZI5tB/GYmWQA+M2AAHNxb+3oSCp38FdJ1BJ/J6iD2eR+znsFdWM6oY61ZvN1D2pCzP6pNX63sbKZ4H/FtT3T///JbE+f92TDDdXD33lTo2VsUEJxkJTPTEIWQiDEJEL0Q9JUvswGWNsDTjta4p2CtfuH+MBJCwGIruLP3gkPwyNfWYkjOl3aC+9Ll67oO53Y+p7a39/0ZF0G1SLBmt/T2PhK6q37s/MWAgFjPdFMlaTaKg2y9g9UZdTctCVSD+U/JoKfPu8iYPqULOkOdREKKn1C4iJEZf2XJ8QDEIWwyBERCbVpVO42Eg60c60esHN0MNw3EbAJ1i8j5X6GqJhTC9oaF/bVJOHlO9tqMZA++EnpeZB6v00VkuhvkemahL1PzN2T4zVkplsRpPDYE2ToVFvUjr9S26a1QviUmtFRUe1GQrpJrBGyPExCBGRRdW3Fqq+AUVqTY65+9anvGLHSL1HYvvW5ZpSGbsnhoKuWCd70fmxDJzX0PVNBSgpzcHGgrgYY1MpZP0socYKdwJgXf+bkohByEIYhIjI4dQ3oNQ3aNi6vI52TWP3RGofNbHySL3X5tSgWbo52FgNn5RpKvQDoBVHjTEIWQiDEBE5JEsEFFuyR3kd7R5Zqzy2/J6matssOSihnhiELIRBiIiISIvUAQKWHJRQBwxCFsIgREREpMfRattEcGZpIiIisg6ps8Y7Abm9C0BERERkLwxCRERE5LYYhIiIiMhtMQgRERGR2zKrs3RRURF27tyJH3/8EX/88QfKysoQEhKC2NhYDBs2DH379rVWOYmIiIgsTlKNUE5ODh599FFERERg2bJlKC8vR7du3TBkyBA0a9YM+/fvx7333ouOHTti27Zt1i4zERERkUVIqhGKjY3F1KlTkZGRgY4dO4ruU15ejtTUVKxatQpXr17FvHnzLFpQIiIiIkuTNKHijRs3EBQUJPmk5u7vyDihIhERkfOR+vyW1DQWFBSE3bt3o6bGyEJqevsTEREROTrJo8ZGjx6NqKgo/Otf/8LFixetWSYiIiIim5AchC5fvownnngCW7duRbt27TBw4ED8+9//Rnl5uTXLR0RERGQ1koNQVFQUFi1ahEuXLuG7775DdHQ0nnzySUREROD//u//kJ6ebs1yEhEREVlcnSZUHDx4MDZt2oTc3Fy8/vrrOHXqFPr06YOuXbtaunxEREREVlOv1ef9/PwwZMgQ/PHHHzh79ix+++03S5WLiIiIyOrqVCNUXl6OzZs3Y9CgQWjTpg22bt2KOXPm4MqVKxYuHhEREZH1mFUj9PPPP2PDhg347LPPUFlZiQceeADfffcdBg8ebK3yEREREVmN5CDUsWNHnDt3DrGxsVi+fDkeeughKBQKa5aNiIjIYqqrq1FVVWXvYpCFeHp6wsPDo97nkRyEEhIS8Omnn7JDNBERORVBEJCXl4eioiJ7F4UsLCAgAOHh4ZDJZHU+h+QgtGbNmjpfhIiIyF7UISg0NBTe3t71emiSYxAEAWVlZcjPzwcARERE1PlckoLQ8OHDsWTJEvTp08fofjdv3sR7770HX19fzJw5s86FIiIisoTq6mpNCOLyT66lcePGAID8/HyEhobWuZlMUhAaP348xo4dC4VCgcTERPTs2RORkZFo1KgR/vrrL/z22284ePAgvvrqK4waNQqvv/56nQpDRERkSeo+Qd7e3nYuCVmD+udaVVVl3SA0Y8YMPPzww/j888+xbds2fPDBB1AqlQAAmUyGjh07YtiwYUhPT0eHDh3qVBAiIiJrYXOYa7LEz1VyHyEvLy88/PDDePjhhwEASqUS5eXlCAoKgqenZ70LQkRERGRrdZpQEQAUCgXCw8MZgoiIiJzElStXIJPJkJmZae+iOIw6ByEiIiIiZ+c0QaiwsBCTJ0+Gv78/AgICMGPGDJSUlEg6VhAEjBgxAjKZDKmpqdYtKBERkRVUVlbauwguyWmC0OTJk/Hrr79iz5492L17Nw4cOIDHH39c0rGrVq1iRzkiIqqXXGU5frpUgFxluU2uN2jQIMyaNQvJyckIDg7GsGHDcPr0aYwYMQK+vr4ICwvDlClTUFBQoDkmLS0N/fr1Q0BAAIKCgnDffffh0qVLNimvs3KKIHTmzBmkpaXhww8/RFxcHPr164e3334bW7duRU5OjtFjMzMzsXLlSmzYsEHStSoqKlBcXKzzIiIi97YtPQt3v7oPD60/grtf3Ydt6Vk2ue6mTZvQsGFDHDp0CK+++iruuecexMbG4tixY0hLS8O1a9fw4IMPavYvLS3FnDlzcOzYMezduxdyuRxjxoxBTU2NTcrrjMxadFWtqKgI27dvx6VLlzB//nwEBgbi+PHjCAsLQ9OmTS1dRhw+fBgBAQHo2bOnZltCQgLkcjmOHDmCMWPGiB5XVlaGhx56CO+++y7Cw8MlXWv58uVYunSpRcpNRETOL1dZjgU7TqFGUL2vEYDnd5zGgLYhiFA0tuq127Rpg9deew0AsGzZMsTGxuKVV17RfL5hwwZERUXh/PnzaNu2LcaOHatz/IYNGxASEoLffvsNnTp1smpZnZXZNUInT55E27ZtsWLFCrzxxhuatVt27NiBBQsWWLp8AFTTo4eGhupsa9CgAQIDA5GXl2fwuGeeeQZ9+/bF/fffL/laCxYsgFKp1LyuXr1a53ITEZHzu1xQqglBatWCgCsFZVa/do8ePTR//+WXX7B//374+vpqXu3btwcATfPXhQsXMGnSJMTExMDf3x/R0dEAgKws29RgOSOza4TmzJmDadOm4bXXXoOfn59m+8iRI/HQQw+Zda6UlBSsWLHC6D5nzpwxt4gAgF27dmHfvn04ceKEWcd5eXnBy8urTtckIiLX0zLYB3IZdMKQh0yG6GDrz1bt4+Oj+XtJSQkSExNFn5vqtbYSExPRokULrF+/HpGRkaipqUGnTp3Y0doIs4NQeno63n///VrbmzZtarR2RszcuXMxbdo0o/vExMQgPDxcs7Ca2t9//43CwkKDTV779u3DpUuXEBAQoLN97Nix6N+/P77//nuzykpERO4pQtEYyx/ojOd3nEa1IMBDJsMrD3SyerOYvu7du+OLL75AdHQ0GjSo/fi+ceMGzp07h/Xr16N///4AgIMHD9q0jM7I7CDk5eUl2oH4/PnzCAkJMetcISEhko6Jj49HUVERMjIyNNWE+/btQ01NDeLi4kSPSUlJwaOPPqqzrXPnznjrrbeQmJhoVjmJiMi9TejVHAPahuBKQRmig71tHoIAYObMmVi/fj0mTZqEZ599FoGBgbh48SK2bt2KDz/8EE2aNEFQUBA++OADREREICsrCykpKTYvp7Mxu4/QP/7xD7z44ouahexkMhmysrLw3HPP1eqkZSkdOnTA8OHD8dhjj+Ho0aM4dOgQZs2ahYkTJyIyMhIAkJ2djfbt2+Po0aMAgPDwcHTq1EnnBQDNmzdHy5YtrVJOIiJyXRGKxohvFWSXEAQAkZGROHToEKqrqzF06FB07twZycnJCAgIgFwuh1wux9atW5GRkYFOnTrhmWee4SLoEphdI7Ry5UqMGzcOoaGhKC8vx8CBA5GXl4f4+Hi8/PLL1igjAOCTTz7BrFmzMGTIEMjlcowdOxZr1qzRfF5VVYVz586hrMz6ndeIiIisTawLR5s2bbBjxw6DxyQkJOC3337T2SYIdzo3RUdH67ynOgQhhUKBPXv24ODBgzh58iRKSkrQvXt3JCQkWKN8GoGBgdiyZYvBz6X8cPnDJyIiIm11mkcIAPr164d+/fpZsixERERENmV2ENJujtImk8nQqFEjtG7dGgMGDICHh0e9C0dERERkTWYHobfeegvXr19HWVkZmjRpAgD466+/4O3tDV9fX+Tn5yMmJgb79+9HVFSUxQtMREREZClmjxp75ZVX0KtXL1y4cAE3btzAjRs3cP78ecTFxWH16tXIyspCeHg4nnnmGWuUl4iIiMhizK4RWrhwIb744gu0atVKs61169Z44403MHbsWPz+++947bXXrDaUnoiIiMhSzK4Rys3Nxd9//11r+99//62ZWToyMhI3b96sf+mIiIiIrMjsIDR48GA88cQTOmt4nThxAk8++STuueceAMCpU6c4aSERERE5PLOD0EcffYTAwED06NFDs0Bpz549ERgYiI8++ggA4Ovri5UrV1q8sERERESWZHYfofDwcOzZswdnz57F+fPnAQDt2rVDu3btNPsMHjzYciUkIiJyQ4MGDUK3bt2watUqu5YjOjoaycnJSE5Otms5rKXOEyq2b98e7du3t2RZiIiI6LYdO3bA09PT3sVAeno6fHx87F0Mq6lTEPrzzz+xa9cuZGVlobKyUuezN9980yIFIyIicmeBgYH2LgIAICQkxOrXqKysRMOGDa1+HTFm9xHau3cv2rVrh7Vr12LlypXYv38/Pv74Y2zYsAGZmZlWKCIREZEDUGYDlw+o/rSBQYMGaZqjoqOjsWzZMiQlJcHX1xctWrTArl27cP36ddx///3w9fVFly5dcOzYMc3xN27cwKRJk9C0aVN4e3ujc+fO+PTTT3WucfPmTUyePBk+Pj6IiIjAW2+9pXNd9bW1m+dkMhk+/PBDjBkzBt7e3mjTpg127dql+by6uhozZsxAy5Yt0bhxY7Rr1w6rV6/Wue60adMwevRovPzyy4iMjES7du3w4osvolOnTrXuQ7du3fDCCy/U404aZ3YQWrBgAebNm4dTp06hUaNG+OKLL3D16lUMHDgQ48ePt0YZiYiI7Ov4ZmBVJ2BTourP45ttXoS33noLd999N06cOIFRo0ZhypQpSEpKwsMPP4zjx4+jVatWSEpK0iwwfuvWLfTo0QNffvklTp8+jccffxxTpkzB0aNHNeecM2cODh06hF27dmHPnj348ccfcfz4cZNlWbp0KR588EGcPHkSI0eOxOTJk1FYWAgAqKmpQbNmzfD555/jt99+w6JFi/D888/js88+0znH3r17ce7cOezZswe7d+/GI488gjNnziA9PV2zz4kTJ3Dy5ElMnz7dErdQnGAmX19f4eLFi4IgCEJAQIBw+vRpQRAEITMzU2jRooW5p3N4SqVSACAolUp7F4WIiMxUXl4u/Pbbb0J5eXndT1L0pyAsCRCExf53XkuaqLZb0cCBA4Wnn35aEARBaNGihfDwww9rPsvNzRUACC+88IJm2+HDhwUAQm5ursFzjho1Spg7d64gCIJQXFwseHp6Cp9//rnm86KiIsHb21tzXfW133rrLc17AMLChQs170tKSgQAwtdff23wujNnzhTGjh2reT916lQhLCxMqKio0NlvxIgRwpNPPql5P3v2bGHQoEEGz2vs5yv1+W12jZCPj4+mX1BERAQuXbqk+aygoMAS2YyIiMhxFF4ChBrdbUI1UPi7TYvRpUsXzd/DwsIAAJ07d661LT8/H4Cqieqll15C586dERgYCF9fX3zzzTfIysoCAPz++++oqqpC7969NedQKBQ6o8CllMXHxwf+/v6a6wLAu+++ix49eiAkJAS+vr744IMPNNdV69y5c61+QY899hg+/fRT3Lp1C5WVldiyZQseeeQRk+WpD7M7S/fp0wcHDx5Ehw4dMHLkSMydOxenTp3Cjh070KdPH2uUkYiIyH4CWwEyuW4YknkAgTE2LYb2CDKZTGZwW02Nqpyvv/46Vq9ejVWrVqFz587w8fFBcnJyrUFO9S2L+trq627duhXz5s3DypUrER8fDz8/P7z++us4cuSIzjFiI9ESExPh5eWFnTt3omHDhqiqqsK4cePqXV5jzA5Cb775JkpKSgCo2ghLSkqwbds2tGnThiPGiIjI9SiaAomrgf8lq2qCZB5A4irVdgd26NAh3H///Xj44YcBqALS+fPn0bFjRwBATEwMPD09kZ6ejubNmwMAlEolzp8/jwEDBtTrun379sU///lPzTbt1iNjGjRogKlTp+Ljjz9Gw4YNMXHiRDRu3LjOZZF0TXMPiIm5k4B9fHywbt06ixaIiIjI4XRPAloNUTWHBcY4fAgCgDZt2mD79u346aef0KRJE7z55pu4du2aJgj5+flh6tSpmD9/PgIDAxEaGorFixdDLpdrapfqet3Nmzfjm2++QcuWLfHvf/8b6enpkpfeevTRR9GhQwcAqlBlbWb3EYqJicGNGzdqbS8qKtIJSURERC5F0RRo2d8pQhAALFy4EN27d8ewYcMwaNAghIeHY/To0Tr7vPnmm4iPj8d9992HhIQE3H333ejQoQMaNWpU5+s+8cQTeOCBBzBhwgTExcXhxo0bOrVDprRp0wZ9+/ZF+/btERcXV+dySCW73QNcMrlcjry8PISGhupsv3btGpo3b46KigqLFtDeiouLoVAooFQq4e/vb+/iEBGRGW7duoXLly+jZcuW9Xq4u4vS0lI0bdoUK1euxIwZM+xSBkEQ0KZNG/zzn//EnDlzjO5r7Ocr9fktuWlMe7Kkb775BgqFQvO+uroae/fuRXR0tNTTERERkZ2dOHECZ8+eRe/evaFUKvHiiy8CAO6//367lOf69evYunUr8vLyrDt3kBbJQUhdnSaTyTB16lSdzzw9PREdHc0V54mIiJzMG2+8gXPnzqFhw4bo0aMHfvzxRwQHB9ulLKGhoQgODsYHH3yAJk2a2OSakoOQelhcy5YtkZ6ebrebRERERJYRGxuLjIwMexdDw8zeOhZh9qixy5cvW6McRERERDYnKQitWbNG8gmfeuqpOheGiIjIGuxR00DWZ4mfq6Qg9NZbb0k6mUwmYxAiIiKHoZ4BuayszOoT85HtlZWVAag907U5JAUhNocREZEz8vDwQEBAgGYdLG9v73pNFkiOQRAElJWVIT8/HwEBAfDw8KjzuczuI6RfEAD8j4qIiBxWeHg4AOgsCkquISAgQPPzras6BaHNmzfj9ddfx4ULFwAAbdu2xfz58zFlypR6FYaIiMjSZDIZIiIiEBoaiqqqKnsXhyzE09OzXjVBanVadPWFF17ArFmzcPfddwMADh48iP/7v/9DQUEBnnnmmXoXioiIyNI8PDws8uAk12L2EhstW7bE0qVLkZSUpLN906ZNWLJkicv1J+ISG0RERM5H6vPb7EVXc3Nz0bdv31rb+/bti9zcXHNPR0RERGQ3Zgeh1q1b47PPPqu1fdu2bWjTpo1FCkVERERkC2b3EVq6dCkmTJiAAwcOaPoIHTp0CHv37hUNSERERESOSnKN0OnTpwEAY8eOxZEjRxAcHIzU1FSkpqYiODgYR48exZgxY6xWUCIiIiJLk9xZWi6Xo1evXnj00UcxceJE+Pn5WbtsDoGdpYmIiJyPxTtL//DDD7jrrrswd+5cREREYNq0afjxxx8tUlgpCgsLMXnyZPj7+yMgIAAzZsxASUmJyeMOHz6Me+65Bz4+PvD398eAAQNQXl5ugxITERGRo5MchPr3748NGzYgNzcXb7/9Ni5fvoyBAweibdu2WLFiBfLy8qxZTkyePBm//vor9uzZg927d+PAgQN4/PHHjR5z+PBhDB8+HEOHDsXRo0eRnp6OWbNmQS43u484ERERuSCz5xHSdvHiRXz88cf497//jby8PAwfPhy7du2yZPkAAGfOnEHHjh2Rnp6Onj17AgDS0tIwcuRI/Pnnn4iMjBQ9rk+fPrj33nvx0ksvSb5WRUUFKioqNO+Li4sRFRXFpjEiIiInYrV5hLS1bt0azz//PBYuXAg/Pz98+eWX9TmdQYcPH0ZAQIAmBAFAQkIC5HI5jhw5InpMfn4+jhw5gtDQUPTt2xdhYWEYOHAgDh48aPRay5cvh0Kh0LyioqIs+l2IiIjIcdQ5CB04cADTpk1DeHg45s+fjwceeACHDh2yZNk08vLyEBoaqrOtQYMGCAwMNNgk9/vvvwMAlixZgsceewxpaWno3r07hgwZolkjTcyCBQugVCo1r6tXr1ruixAREZFDMSsI5eTk4JVXXkHbtm0xaNAgXLx4EWvWrEFOTg7Wr1+PPn36mHXxlJQUyGQyo6+zZ8+adU61mpoaAMATTzyB6dOnIzY2Fm+99RbatWuHDRs2GDzOy8sL/v7+Oi8iIiJyTZInVBwxYgS+++47BAcHIykpCY888gjatWtXr4vPnTsX06ZNM7pPTEwMwsPDkZ+fr7P977//RmFhIcLDw0WPi4iIAAB07NhRZ3uHDh2QlZVV90ITERGRy5AchDw9PbF9+3bcd999Flu9NyQkBCEhISb3i4+PR1FRETIyMtCjRw8AwL59+1BTU4O4uDjRY6KjoxEZGYlz587pbD9//jxGjBhR/8ITERGR05MchKwxGkyqDh06YPjw4Xjsscewbt06VFVVYdasWZg4caJmxFh2djaGDBmCzZs3o3fv3pDJZJg/fz4WL16Mrl27olu3bti0aRPOnj2L7du32+27EBERkeMwe60xe/nkk08wa9YsDBkyBHK5HGPHjsWaNWs0n1dVVeHcuXMoKyvTbEtOTsatW7fwzDPPoLCwEF27dsWePXvQqlUre3wFIiIicjD1mkfIHXCJDSIiIudjk3mEiIiIiJwZgxARERG5LQYhIiIiclsMQkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBEREREbotBiIiIiNwWgxARERG5LQYhIiIiclsMQkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBEREREbotBiIiIiNwWgxARERG5LQYhIiIiB5CrLMdPlwqQqyy3d1HcSgN7F4CIiNxbrrIclwtK0TLYBxGKxrXeu4Nt6VlYsOMUagRALgOWP9AZE3o1t3ex6sTZfn4MQkREZJC1H2r6AWBMbFPsPJHt0IHAnHuivS8A0eNyleWaewAANQLw/I7TGNA2RLOfsWvW9TNrnFdKoHO0oMQgRERUT5b6h90eNSPGrmHqoVbXQKD9cNcPAF8cz9YcIxYI6vpd9D8HUKd7bc49OXD+umZf2e3PBdQ+7nJBqeYeqFULAq4UlCFC0bjWNZ8b3h6dmylqXUP/vGJlHdA2RLR8Uo41dd5jVwpFA137cD+UVlabvKa9yARBEEzv5r6Ki4uhUCigVCrh7+9v7+IQkQm2/m3T3LAg9TdpUzUjxs4LiNc86B97KluJFV+fFb1GrrIcd7+6T+cBLQew5qFY9GjRxKwHmqF79NOlAjy0/ojJe/zpY30Q3yrI7J+DoYe+fijRv9faQUP73vo09MCY936SdE+0ryHGQybDjn/Go7SyWvS8HjIZDqYMBoBaPwc1sWuoz5tVWIant2bqHCcDIJPBYPmMXdPYZ9rnFSOTAYKJa1rj/1Wpz28GIRMYhIich637WYiFBe0HnH7QEAs36t+k9R9a+qSeV6zmwVAgMHaNwtJKzNpyQrQsUh5oxsKDlIe8mnbQEAuSucpy0ftn6qEvhdi9NXSOulxDHRDU10k9kYNqQYCHTIZnh7dD52YKoz8HU+eti4WjOiBc0Uj0mu9MikVucTle/vJs3U5ugJSgWxcMQhbCIERkOVJra+rS5GLsgSuln0Vdym6oRkPqg8jUb9J1Pa+ha0h5WBv77d0U9QNNO5AaCg8LR3XAqC4ROHD+Op7fcVoTAEbHRmoCgamaG+33zk4dQssqa3Ayu0gTdOsa4upD7Jrm/rcKqEJsjYl9HKFGiH2EiMgmpNbWmFOrY+qBa6yfhX5NiTnNVuqmE5+GHpCLPBykhhXBjH3NOa+ha0g5XHtfGSD6/cR4yGSIDvau1e/H0KHLvjyDV746g+UPdMbBlMG4UlCG6GBvRCgaY96wdsi48hee2nrCaP8h7fe2JPWe1Aqh6hog1A4I1YKAssoaRAd7Y/KHP+vcP2M/B+1rGAse8tvnkhJu9K+pPlbs+mLnlQN4+6FYNGvSuNYvJ9rX9JDJ8MoDnezeYZpBiIisTsqoGHP30++YKfZcMvRwrhGAlC9O3XmAGOkn4tPQo9axy79WNQ3oN2lI+Q1YCv2aEUud1xixawgA3p4YCwA6oQQQf6ABwO6TOeIPTJEHrvrnezBlsE7TSISiMQJ9a3cgNue7GHvoa4cS/Xttirrm5mphuaR7MqBtiCbkAcCVgjJ4N5SL1l5GB3uLdpxW/xyCfL1wMrsIr319TlODpn0NsfOqQ0n3232YtGvf1Md+eTIXy748Y/CaN0orRJvKXhjVASNFavVeeaATRnWJBKD6hUPsmtrB194YhIjIYgzVqBgaFfPlyVyM6hKh2dfU6BlAt3ZGjFzkt82fLhWIPlwErXCjX9ugDjvG+oXUCEDqiRxNk4bYg0hNLNwY+k26++3+MPOGtTP4gDN0Xv2aB2OBQN0XpUuzAIMP5x7RqrKUVv5t9IF24Px1g/191OEh/cpftR64+j9ftZbBPpJrXsTun6GHvn4o0a6FulJQVitoaN9b9Xm6RjVB16gmJu+J+jtpfzf138UCgvoz/e+t/XOIbxWEf3SNNHgNsfOqQ8mEXs1FyzeqSwRe+eqMwWvmKstFyzTy9v+7hs5r7JqOEIDU2EfIBPYRIpLGWJOWWKdiNVOdhk2NrtGm3c9C/Y+uoc60lqTd2XNbepbOg0gdNLTLox0e9B9axpoBpZ4XgNFrGHpo6V9Dvzza19CvoTMWgtTnMdS53FAfEf3y6IcSsZAipbym6B9n7Dx1vYaxY039HOp6XmNMXbO+ZbIHdpa2EAYhckfmzLdiKGjoP+C0/yHVZ6rZQsqoHUP/eOsMZzZSU2KKodoJsQe5OQ8ia+1ry2sY6jSubjqpz0PeVCipTxBxZPb4Xqau6Wz3mkHIQhiEyN3UCg+o+6iddybFItC3oU5oEuuPoM9YZ0tD+6qbk9QMzYNjqOnEWD8R/RE9+n00HP03Y2szt6bH2R6o5Jw4aoyIdEiZLl+/Y7B2JDB31I4MdzrYajeVifVH0FcDINDHC6WV1UY73ur3gdAm1t9IfV5D/RoM9RNR9wsBYLCPhjuLUDQ22udFbH/eN3IUDEJEbkDqFP3Gmp7MoT/cVn/0l/ZDU6yZSj2CBhDvOKrfD0iMWGdb7fMCtR/I6vemwg4f5LUZ6zBL5MgYhIiciKnlGqSu56Q9Igq4E0LqG4LUTU8CUGu4rfboIP2HpliHXmOjYNS1M8aYW0shdjwf5ubhPSNnxCBEZGd1XezRWH8d7aYosSYiNUPBR26k47KpUTujukQaHG5rqDamLsNvpWAtBRGZws7SJrCzNFmTlFmU6zr8W71GU5SEDsfa9JueANRp1I4zDrclItfhcqPGCgsLMXv2bPzvf/+DXC7H2LFjsXr1avj6+ho8Ji8vD/Pnz8eePXtw8+ZNtGvXDv/6178wduxYyddlECJLMNRkZWqkjanJA6XQn/1Yn9hsuJYKLBwdRET24nKjxiZPnozc3Fzs2bMHVVVVmD59Oh5//HFs2bLF4DFJSUkoKirCrl27EBwcjC1btuDBBx/EsWPHEBsba8PSkzszVOtjaBbljCt/IdC39giuutKf/djYFP2WDizsM0JEjs4paoTOnDmDjh07Ij09HT179gQApKWlYeTIkfjzzz8RGVl76CwA+Pr6Yu3atZgyZYpmW1BQEFasWIFHH31U9JiKigpUVFRo3hcXFyMqKoo1QlQnhmp9dvwzHlmFZbWau/QnFjQ2eaCx/jpitGc/Zk0NEbk6l6oROnz4MAICAjQhCAASEhIgl8tx5MgRjBkzRvS4vn37Ytu2bRg1ahQCAgLw2Wef4datWxg0aJDBay1fvhxLly619FcgNyDW/GWo1mf0ez9BEO4EH+3Zjo0tImpoLSpjq3YDpoeNExG5K6cIQnl5eQgNDdXZ1qBBAwQGBiIvL8/gcZ999hkmTJiAoKAgNGjQAN7e3ti5cydat25t8JgFCxZgzpw5mvfqGiEiYww1fxlaOFLQCjtyAXjHwJBzwPjkgWLz4NzXVXyBTAYfIqLa7BqEUlJSsGLFCqP7nDljfCp+Y1544QUUFRXhu+++Q3BwMFJTU/Hggw/ixx9/ROfOnUWP8fLygpeXV52vSe7D0GzMNQKw4ItT8PFqgB4tmtSaPLBG7zzq2Y6jg73rPHmgPg4bJyKSxq59hK5fv44bN24Y3ScmJgb/+c9/MHfuXPz111+a7X///TcaNWqEzz//XLRp7NKlS2jdujVOnz6Nu+66S7M9ISEBrVu3xrp16ySVkaPG3Etd5vQx1pdHe2X1KwVl8G4orzWUXXukGIecExFZhlP0EQoJCUFISIjJ/eLj41FUVISMjAz06NEDALBv3z7U1NQgLi5O9JiysjIAgFwu19nu4eGBmhr938nJnanDz6lsJVZ8fVbSnD6G1uPSp15a4mDKYE1HZWOzHbMmh4jItpxi1BgAjBgxAteuXcO6des0w+d79uypGT6fnZ2NIUOGYPPmzejduzeqqqrQsWNHRERE4I033kBQUBBSU1Mxf/587N69GyNHjpR0XdYIuTZj8/SYO6ePWF8gNe0RWwBHbRERWZtT1AiZ45NPPsGsWbMwZMgQzYSKa9as0XxeVVWFc+fOaWqCPD098dVXXyElJQWJiYkoKSlB69atsWnTJskhiFyTob49+syZ00fdl+dqYbnJEVsAR20RETkKp6kRshfWCDk/7X4/5qy0bs6cPtp9edjPh4jI/lyuRoioLvQ7NQPSVlqvy5w+auznQ0TkPBiEyCWZ06lZe56eZ4e3Q5dmAbhRWmH2nD7a2PRFROQcGITI5ZizUKmheXpyleUWm9OHiIgcF4MQuZRcZbnRECS20nrXqCa19otQNBYd5i62LxEROS8GIXJK+hMfqt8XllYaHdllzkrr7OtDROT6GITI6eiv6zUmtil2nsjWdIjWH+El1qlZaqhhXx8iItfGIEQOxdgSF2IdoGsE4Ivj2Zp9BKiCkNROzURE5N4YhMhhGFrBXf8zUwQAb0+MRZCvF5u0iIjIKAYhcgj6nZzVa3QNaKtai05qCAJUtUA9opswABERkUly07sQWd/lgtJaQadaEHCloEz0MzUPmQxjuzeFh0ymea+9iCkREZExrBEih9Ay2KfWvD1yADdKKxDVpLHoZ9odoOcNa8fRXUREZDauNWYC1xqzLv11wNTz9mgvh6EeGZZ6IofrdxERkSRca4wckqEFUNWdow+mDEbGlb90VnCvEYDUEzmc1ZmIiCyOQYhsxtgCqOrO0QdTBiPQt6Fof6GyyhrEtwqyZZGJiMjFsbM02YT+qDABtRdBVXeOVvcX0uYhkyE62NsWRSUiIjfCIERWl6ssx+6TOSaHv6vDjnqdL44EIyIia2PTGFmVsYkQxRZAVYcdrvNFRES2wCBEVmNsJXgpC6BynS8iIrI2BiGqN3NXgn9hVAeM7BJh9gKoRERElsYgRPVi7krwHjKZTggiIiKyJ3aWpjoTWx/si+PZOiPDAGhGgLHTMxERORrWCFGdSB0JxpXgiYjIkTEIkdmMjQTTx5XgiYjIkbFpjMxiaiQYV4InIiJnwhohMsvlglKTI8G4EjwRETkLBiEyi3r5C+0wpD8SjPP/EBGRs2DTGJmFy18QEZErYY0QidKfJFEbl78gIiJXwSBEtehPkrj8gc6Y0Ku5zj5s/iIiIlfAIEQ6xCZJfH7HabQP90NpZbVoDREREZGzYhAiHWKjwqoFAaPf+wmCkRoiIiIiZ8TO0qRDPSpMn6BXQ5SrLLdtwYiIiKyAQYh06I8KE/sPpFoQcKWgzLYFIyIisgI2jZGGeqTYgLYhOJgyGFcKyuDdUI4x7/1Ua96g6GBv+xWUiIjIQhiECIDxkWLLH+iM53ecRrUgcN4gIiJyKU7TNPbyyy+jb9++8Pb2RkBAgKRjBEHAokWLEBERgcaNGyMhIQEXLlywbkGdkKGRYup+QBN6NcfBlMH49LE+OJgymB2liYjIZThNEKqsrMT48ePx5JNPSj7mtddew5o1a7Bu3TocOXIEPj4+GDZsGG7dumXFkjofQyPFtPsBRSgaI75VEGuCiIjIpThN09jSpUsBABs3bpS0vyAIWLVqFRYuXIj7778fALB582aEhYUhNTUVEydOtFZRnYa6T5BPQw/R9cPYD4iIiFyd0wQhc12+fBl5eXlISEjQbFMoFIiLi8Phw4cNBqGKigpUVFRo3hcXF1u9rLakDj+nspVY8fVZTZ+gMbFNkXoih/2AiIjIrbhsEMrLywMAhIWF6WwPCwvTfCZm+fLlmtonV6PdIVpbjQCknsjBjn/Go6yyhuuHERGR27BrH6GUlBTIZDKjr7Nnz9q0TAsWLIBSqdS8rl69atPrW4t+h2h91YKAssoa9gMiIiK3Ytcaoblz52LatGlG94mJianTucPDwwEA165dQ0REhGb7tWvX0K1bN4PHeXl5wcvLq07XdETqprDC0kqDIQhgnyAiInJPdg1CISEhCAkJscq5W7ZsifDwcOzdu1cTfIqLi3HkyBGzRp45M+2mMBlUL7EsxD5BRETkrpymj1BWVhYKCwuRlZWF6upqZGZmAgBat24NX19fAED79u2xfPlyjBkzBjKZDMnJyVi2bBnatGmDli1b4oUXXkBkZCRGjx5tvy9iI/pNYQJUQUg9OsxDJsOzw9uhS7MA9gkiIiK35TRBaNGiRdi0aZPmfWxsLABg//79GDRoEADg3LlzUCqVmn2effZZlJaW4vHHH0dRURH69euHtLQ0NGrUyKZltwexuYEEAG9PjEWQrxfDDxEREQCZIAhGeo5QcXExFAoFlEol/P397V0ck7TnBhJbI+xgymAGICIicnlSn99OUyNEpumvF8a5gYiIiIxjEHIRYuuFcW4gIiIi4xiEXISh9cLUcwMRERFRbU6z6CoZ1zLYB3KZ7jbODURERGQcg5ATylWW46dLBchVlmveXy4oxXMj2sNDpkpD7BNERERkGpvGnIxYh+idJ7I1758b3p5zAxEREUnEGiEnItYh+ovj2TrvX0s7xxBEREQkEYOQExHrEK2vWhBwpaDMNgUiIiJycgxCTkSsQ7Q+dpAmIiKSjkHIiUQoGmP5A511OkSP7d6UHaSJiIjqiEtsmOCIS2zkKstxpaBM0xdI/z0REZG74xIbLixC0Vgn8Oi/JyIiImnYNEZERERui0GIiIiI3BaDkBPQn0maiIiILIN9hByc/kzSyx/ojAm9mtu7WERERC6BNUIOKldZjv/9kl1rJunnd5xmzRAREZGFsEbIAWnXAulTzxzNUWJERET1xxohB6O/npg+zhxNRERkOQxCDsbYemKcOZqIiMiy2DTmYNTriWmHITmAtx+KRfcWTRiCiIiILIg1Qg5GbD2x5WM7Y1SXSIYgIiIiC2ONkAOa0Ks5BrQN4fphREREVsYg5CByleW4XFCKlsE+mrXDGICIiIisi0HIAXDSRCIiIvtgHyE70x8uz0kTiYiIbIdByM7EhsurJ00kIiIi62IQsjP1cHltnDSRiIjINhiE7ExsuDwnTSQiIrINdpa2E+1RYhwuT0RE7kh/xLQ9MAjZgaFRYgxARETkLhxlxDSbxmyMo8SIiMjdOdKzkEHIxjhKjIiI3J0jPQsZhGyMo8SIiMjdOdKzkEHIxjhKjIiI3J0jPQtlgiAIpndzX8XFxVAoFFAqlfD397fYeXOV5RwlRkREbs2az0Kpz2+nqRF6+eWX0bdvX3h7eyMgIMDk/lVVVXjuuefQuXNn+Pj4IDIyEklJScjJybF+YSWIUDRGfKsghiAiInJbjvAsdJogVFlZifHjx+PJJ5+UtH9ZWRmOHz+OF154AcePH8eOHTtw7tw5/OMf/7BySYmIiMhZOF3T2MaNG5GcnIyioiKzj01PT0fv3r3xxx9/oHlzaXMVWKtpjIiIiKxH6vPbrSZUVCqVkMlkRpvWKioqUFFRoXlfXFxsg5IRERGRPThN01h93bp1C8899xwmTZpkNBkuX74cCoVC84qKirJhKYmIiMiW7BqEUlJSIJPJjL7Onj1b7+tUVVXhwQcfhCAIWLt2rdF9FyxYAKVSqXldvXq13tcnIiIix2TXprG5c+di2rRpRveJiYmp1zXUIeiPP/7Avn37TPbz8fLygpeXV72uSURERM7BrkEoJCQEISEhVju/OgRduHAB+/fvR1BQkNWuRURERM7HafoIZWVlITMzE1lZWaiurkZmZiYyMzNRUlKi2ad9+/bYuXMnAFUIGjduHI4dO4ZPPvkE1dXVyMvLQ15eHiorK+31NYiIiMiBOM2osUWLFmHTpk2a97GxsQCA/fv3Y9CgQQCAc+fOQalUAgCys7Oxa9cuAEC3bt10zqV9DBEREbkvp5tHyNY4jxAREZHzcbklNoiIiIgszWmaxuxFXWHGiRWJiIich/q5barhi0HIhJs3bwIAJ1YkIiJyQjdv3oRCoTD4OfsImVBTU4OcnBz4+flBJpNZ5JzFxcWIiorC1atX2e/IynivbYf32nZ4r22H99p2LH2vBUHAzZs3ERkZCbnccE8g1giZIJfL0axZM6uc29/fn/9j2Qjvte3wXtsO77Xt8F7bjiXvtbGaIDV2liYiIiK3xSBEREREbotByA68vLywePFirmlmA7zXtsN7bTu817bDe2079rrX7CxNREREbos1QkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBkY++++y6io6PRqFEjxMXF4ejRo/Yukks6cOAAEhMTERkZCZlMhtTUVHsXySUtX74cvXr1gp+fH0JDQzF69GicO3fO3sVySWvXrkWXLl00k83Fx8fj66+/tnex3MKrr74KmUyG5ORkexfF5SxZsgQymUzn1b59e5uWgUHIhrZt24Y5c+Zg8eLFOH78OLp27Yphw4YhPz/f3kVzOaWlpejatSveffddexfFpf3www+YOXMmfv75Z+zZswdVVVUYOnQoSktL7V00l9OsWTO8+uqryMjIwLFjx3DPPffg/vvvx6+//mrvorm09PR0vP/+++jSpYu9i+Ky7rrrLuTm5mpeBw8etOn1OXzehuLi4tCrVy+88847AFTrmEVFRWH27NlISUmxc+lcl0wmw86dOzF69Gh7F8XlXb9+HaGhofjhhx8wYMAAexfH5QUGBuL111/HjBkz7F0Ul1RSUoLu3bvjvffew7Jly9CtWzesWrXK3sVyKUuWLEFqaioyMzPtVgbWCNlIZWUlMjIykJCQoNkml8uRkJCAw4cP27FkRJajVCoBqB7QZD3V1dXYunUrSktLER8fb+/iuKyZM2di1KhROv9uk+VduHABkZGRiImJweTJk5GVlWXT63PRVRspKChAdXU1wsLCdLaHhYXh7NmzdioVkeXU1NQgOTkZd999Nzp16mTv4rikU6dOIT4+Hrdu3YKvry927tyJjh072rtYLmnr1q04fvw40tPT7V0UlxYXF4eNGzeiXbt2yM3NxdKlS9G/f3+cPn0afn5+NikDgxARWcTMmTNx+vRpm7fvu5N27dohMzMTSqUS27dvx9SpU/HDDz8wDFnY1atX8fTTT2PPnj1o1KiRvYvj0kaMGKH5e5cuXRAXF4cWLVrgs88+s1mTL4OQjQQHB8PDwwPXrl3T2X7t2jWEh4fbqVREljFr1izs3r0bBw4cQLNmzexdHJfVsGFDtG7dGgDQo0cPpKenY/Xq1Xj//fftXDLXkpGRgfz8fHTv3l2zrbq6GgcOHMA777yDiooKeHh42LGErisgIABt27bFxYsXbXZN9hGykYYNG6JHjx7Yu3evZltNTQ327t3LNn5yWoIgYNasWdi5cyf27duHli1b2rtIbqWmpgYVFRX2LobLGTJkCE6dOoXMzEzNq2fPnpg8eTIyMzMZgqyopKQEly5dQkREhM2uyRohG5ozZw6mTp2Knj17onfv3li1ahVKS0sxffp0exfN5ZSUlOj8RnH58mVkZmYiMDAQzZs3t2PJXMvMmTOxZcsW/Pe//4Wfnx/y8vIAAAqFAo0bN7Zz6VzLggULMGLECDRv3hw3b97Eli1b8P333+Obb76xd9Fcjp+fX61+bj4+PggKCmL/NwubN28eEhMT0aJFC+Tk5GDx4sXw8PDApEmTbFYGBiEbmjBhAq5fv45FixYhLy8P3bp1Q1paWq0O1FR/x44dw+DBgzXv58yZAwCYOnUqNm7caKdSuZ61a9cCAAYNGqSz/eOPP8a0adNsXyAXlp+fj6SkJOTm5kKhUKBLly745ptvcO+999q7aER19ueff2LSpEm4ceMGQkJC0K9fP/z8888ICQmxWRk4jxARERG5LfYRIiIiIrfFIERERERui0GIiIiI3BaDEBEREbktBiEiIiJyWwxCRERE5LYYhIiIiMhtMQgRERGRRRw4cACJiYmIjIyETCZDamqqVa+3ZMkSyGQynVf79u3NOgeDEBHZ1aBBg5CcnKx5Hx0djVWrVln8OtOmTcPo0aMtfl6ppkyZgldeeUXSvhMnTsTKlSutXCIiyystLUXXrl3x7rvv2uyad911F3JzczWvgwcPmnU8gxARWY09wseVK1cgk8mQmZmps3316tV2W17ll19+wVdffYWnnnpK0v4LFy7Eyy+/DKVSaeWSEVnWiBEjsGzZMowZM0b084qKCsybNw9NmzaFj48P4uLi8P3339frmg0aNEB4eLjmFRwcbNbxDEJE5BYUCgUCAgLscu23334b48ePh6+vr6T9O3XqhFatWuE///mPlUtGZFuzZs3C4cOHsXXrVpw8eRLjx4/H8OHDceHChTqf88KFC4iMjERMTAwmT56MrKwss45nECIimyktLUVSUhJ8fX0REREhqfmnqKgIjz76KEJCQuDv74977rkHv/zyi8H9W7ZsCQCIjY2FTCbTLAirXzs1aNAgzJ49G8nJyWjSpAnCwsKwfv16lJaWYvr06fDz80Pr1q3x9ddf65z/9OnTGDFiBHx9fREWFoYpU6agoKDAYHmqq6uxfft2JCYm6mx/77330KZNGzRq1AhhYWEYN26czueJiYnYunWryftD5CyysrLw8ccf4/PPP0f//v3RqlUrzJs3D/369cPHH39cp3PGxcVh48aNSEtLw9q1a3H58mX0798fN2/elHwOBiEispn58+fjhx9+wH//+198++23+P7773H8+HGjx4wfPx75+fn4+uuvkZGRge7du2PIkCEoLCwU3f/o0aMAgO+++w65ubnYsWOHwXNv2rQJwcHBOHr0KGbPno0nn3wS48ePR9++fXH8+HEMHToUU6ZMQVlZGQBVKLvnnnsQGxuLY8eOIS0tDdeuXcODDz5o8BonT56EUqlEz549NduOHTuGp556Ci+++CLOnTuHtLQ0DBgwQOe43r174+jRo6ioqDB6f4icxalTp1BdXY22bdvC19dX8/rhhx9w6dIlAMDZs2drdX7Wf6WkpGjOOWLECIwfPx5dunTBsGHD8NVXX6GoqAifffaZ5HI1sPg3JSISUVJSgo8++gj/+c9/MGTIEACqINKsWTODxxw8eBBHjx5Ffn4+vLy8AABvvPEGUlNTsX37djz++OO1jgkJCQEABAUFITw83GiZunbtioULFwIAFixYgFdffRXBwcF47LHHAACLFi3C2rVrcfLkSfTp0wfvvPMOYmNjdTo9b9iwAVFRUTh//jzatm1b6xp//PEHPDw8EBoaqtmWlZUFHx8f3HffffDz80OLFi0QGxurc1xkZCQqKyuRl5eHFi1aGP0eRM6gpKQEHh4eyMjIgIeHh85n6mbjmJgYnDlzxuh5goKCDH4WEBCAtm3b4uLFi5LLxSBERDZx6dIlVFZWIi4uTrMtMDAQ7dq1M3jML7/8gpKSklr/8JWXl2t+g6yPLl26aP7u4eGBoKAgdO7cWbMtLCwMAJCfn68pz/79+0X7+ly6dEk0CJWXl8PLywsymUyz7d5770WLFi0QExOD4cOHY/jw4RgzZgy8vb01+zRu3BgANLVRRM4uNjYW1dXVyM/PR//+/UX3adiwodnD37WVlJTg0qVLmDJliuRjGISIyGGVlJQgIiJCdFSJJTo+e3p66ryXyWQ629ThpaamRlOexMRErFixota5IiIiRK8RHByMsrIyVFZWomHDhgAAPz8/HD9+HN9//z2+/fZbLFq0CEuWLEF6errme6mb/tQ1XETOoKSkRKc25vLly8jMzERgYCDatm2LyZMnIykpCStXrkRsbCyuX7+OvXv3okuXLhg1apTZ15s3bx4SExPRokUL5OTkYPHixfDw8MCkSZMkn4NBiIhsolWrVvD09MSRI0fQvHlzAMBff/2F8+fPY+DAgaLHdO/eHXl5eWjQoAGio6MlXUcdNqqrqy1Sbv3yfPHFF4iOjkaDBtL++ezWrRsA4LffftP8HVAN+U1ISEBCQgIWL16MgIAA7Nu3Dw888AAAVafsZs2amT0UmMiejh07hsGDB2vez5kzBwAwdepUbNy4ER9//DGWLVuGuXPnIjs7G8HBwejTpw/uu+++Ol3vzz//xKRJk3Djxg2EhISgX79++Pnnn836BYJBiIhswtfXFzNmzMD8+fMRFBSE0NBQ/Otf/4JcbnjMRkJCAuLj4zF69Gi89tpraNu2LXJycvDll19izJgxOh2Q1UJDQ9G4cWOkpaWhWbNmaNSoERQKhUW+w8yZM7F+/XpMmjQJzz77LAIDA3Hx4kVs3boVH374Ya1+D4CqRqd79+44ePCgJgjt3r0bv//+OwYMGIAmTZrgq6++Qk1NjU4z4Y8//oihQ4dapNxEtjJo0CAIgmDwc09PTyxduhRLly61yPUsMbKSo8aIyGZef/119O/fH4mJiUhISEC/fv3Qo0cPg/vLZDJ89dVXGDBgAKZPn462bdti4sSJ+OOPPzT9d/Q1aNAAa9aswfvvv4/IyEjcf//9Fit/ZGQkDh06hOrqagwdOhSdO3dGcnIyAgICjAa6Rx99FJ988onmfUBAAHbs2IF77rkHHTp0wLp16/Dpp5/irrvuAgDcunULqampmk7bRGQ9MsFYdCMionorLy9Hu3btsG3bNsTHx5vcf+3atdi5cye+/fZbG5SOyL2xRoiIyMoaN26MzZs3G514UZunpyfefvttK5eKiADWCBEREZEbY40QERERuS0GISIiInJbDEJERETkthiEiIiIyG0xCBEREZHbYhAiIiIit8UgRERERG6LQYiIiIjcFoMQERERua3/B3pqCi8/4RlXAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "\n", "data = gettable.get()\n", "\n", "plt.plot(times, data[0], '.', label=\"real\")\n", "plt.plot(times, data[1], '.', label=\"imaginary\")\n", "plt.legend()\n", "plt.xlabel(\"Idle time (s)\")\n", "plt.ylabel(\"Voltage (V)\")\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "539a5154", "metadata": {}, "source": [ "Note that the data used here is the same as in {ref}`sec-tutorial-experiment`. The example dataset can be downloaded {download}`here <../examples/dataset.hdf5>`.\n", "\n", "As we defined 125 points in our `times` array which were measured in 125 different `acq_index`es, the acquisition result also contains 125 _I_ values (in `data[0][:]`) and 125 _Q_ values (in `data[1][:]`). The general format of the data returned by the {class}`~quantify_scheduler.gettables.ScheduleGettable` is also explained in the {ref}`user guide `.\n", "\n", "## Trace measurement\n", "\n", "The previous experiment's acquisition results had one data point for each acquisition in the schedule. For a trace measurement, the data format is slightly different. To illustrate this, let us set up an experiment with a trace measurement." ] }, { "cell_type": "code", "execution_count": 6, "id": "99de1061", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler.operations import IdlePulse, SoftSquarePulse\n", "\n", "\n", "def trace_schedule(pulse_amp, acq_delay, port=\"q0:res\", clock=\"q0.ro\", repetitions=1):\n", " schedule = Schedule(\"Trace a pulse\", repetitions=repetitions)\n", "\n", " schedule.add(\n", " SoftSquarePulse(\n", " duration=q0.measure.integration_time(),\n", " amp=pulse_amp,\n", " port=port,\n", " clock=clock,\n", " ),\n", " label=\"trace_pulse\",\n", " )\n", "\n", " # Add acq_delay to compensate for time-of-flight of the pulse\n", " schedule.add(\n", " Measure(q0.name, acq_protocol=\"Trace\"),\n", " ref_pt=\"start\",\n", " rel_time=acq_delay,\n", " label=\"acquisition\"\n", " )\n", "\n", " return schedule" ] }, { "cell_type": "markdown", "id": "ff868cc3", "metadata": {}, "source": [ "Again, we define the gettable and run the experiment." ] }, { "cell_type": "code", "execution_count": 7, "id": "f3bcb3ed", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.9/site-packages/quantify_scheduler/backends/qblox/compiler_abc.py:638: RuntimeWarning: Operation is interrupting previous Pulse because it starts before the previous ends, offending operation: Pulse \"SquarePulse\" (t0=1.0000000000000001e-07, duration=3e-07)\n", " warnings.warn(\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXkklEQVR4nO3deVhUZf8/8PeAgmyOKLKKsojigoIoCO5GaaZmmZqmGE+ZT5mlVE/Sotki7llquZRLfZ+ELDV/5lKh5vokoijmlgiCCigugwKJwfn9Mc7IwJlhBpjt8H5d11zKWT/nPmfO+cw5930fmSAIAoiIiIgkwsbcARARERHVJyY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJKWRuQMwtYqKCly9ehUuLi6QyWTmDoeIiIj0IAgC7ty5A29vb9jY6L430+CSm6tXr8LX19fcYRAREVEt5ObmolWrVjqnaXDJjYuLCwBl4TRt2tTM0RAREZE+ioqK4Ovrq76O69LgkhvVo6imTZsyuSEiIrIy+lQpYYViIiIikhQmN0RERCQpTG6IiIhIUpjcEBERkaQwuSEiIiJJYXJDREREksLkhoiIiCSFyQ0RERFJCpMbIiIikhQmN0RERCQpTG6IiIhIUpjcEFmJPEUpDmUWIk9RKsl1m3P79KVPjNawHURS1+BenEkNW56iFFmFxfB3c4KX3MFk8xq6nBO5t3Ak+yYi/JoDAFbtu4jtp/IhCICNDEh8OgR927VEVmExnOxsUVxWbrS4klNzkLApAxWV1j2mR+t6K4+q65ABeKV/IHoFuYkuW2y9qmFOdrbIuVkCmUyG8DauAKB3GdW0PdrKQdd2TOrjj7je/nptg7aYjmbfVG9PXffv0eybuF16HwDg6minc5naYjTnd6g+jzmSNpkgCIK5gzCloqIiyOVyKBQKvhVc4ipf8E5cvo3fzxdi99lr6gTh7cHBCGkl17jwAVCfPAGoLwa/nS7A7+cLAWjOqzrJqi4cl26WoOyfCjwS7I6uvq44kXsLv50pgLtLE3RpJce2k3n4+kAWKh5868ZF+GJMD1+NC/LCXefw47ErOrdN9U5cocqwGY8HY3iot8YFQBWDfSNb+Lk5wdfVATk3S3C79L76Arfv/HX1RRkAegU2R1SgG+SOjTHrpz/Vw1XreayjB345XQABD5ORYC8X0aSi8raJXeR/PZ2PWT+dhrYTUa/A5hjc2Uu0/IaGeMLPzQlf7M3UiLFyrFXLSCzhqJqUqMpRlVj4ujrgqS8OaazDBsDmKdHqslSU3seiXeerbYcMwJOhXmjdQln2O07lY8/Z6+qyq7ouVfmtOZCFr/ZnaSxvYs82aNXCAQFuTigpK1fHVlxWrj6Oq/7r7+aErSeuInH7WdHyTXg8GJP7BWokP2fy7mDDkZxq35VDFwqxfG8mhAflNDbCF9Ft3dT7VpWUB7g5wcGukcZ3KuOKAvN2nNVIDoM9XdTfj5iOHhrJatXv0/+ybmLujrNQXbGGdPJEmF8zRPg1h3vTJhr7Suz7zGTI+hly/baI5Gb58uVYsGAB8vPz0bVrVyxduhQRERGi065btw5xcXEaw+zt7fH333/rtS4mN9JV+Vfdf/93Ccv2ZJpkvUM6e2LHqfxqFzW5QyMoSv8xSQzaeLjYoeBOmVljqGzeSOUdp6PZN7HtZB52/Vlgtli6t2mGEJ9m6B3UAi9+kwbznwnNZ0D7lthz7nqdlhHk7oy/rt2tNrxqgqnLxJ5tcOH6HRzMvFmnWMQ8EtwS/du7ayRRZF2sKrlJTk5GbGwsVqxYgcjISCxZsgQbN27EuXPn4O7uXm36devW4fXXX8e5c+fUw2QyGTw8PPRaH5Mb61X1Tkzh3TL1HZKV+zI1ftUREWkzb2T1R4pk+awquYmMjESPHj2wbNkyAEBFRQV8fX0xdepUzJgxo9r069atw7Rp03D79m29ln/v3j3cu3dP/XdRURF8fX2Z3FiRPEUp1hzI0ngcUVmzJra4/Xe56QMjIqsVF+2H3kEtqj3e4yMsy2VIcmPWCsVlZWVIS0tDQkKCepiNjQ1iYmJw+PBhrfPdvXsXbdq0QUVFBbp164Y5c+agU6dOotMmJiZi9uzZ9R47GZfqLk3GFQXmbj+r87Y2ExsiMtTaQ9lYeyi72nCxOnVkfcya3BQWFqK8vLzaIyUPDw+cPSte+a19+/ZYs2YNunTpAoVCgYULFyI6Ohp//vknWrVqVW36hIQExMfHq/9W3bkhy5SnKMXcHWfwU3qeuUMhogaoQgASdyivP9paxZHls7qm4FFRUYiKilL/HR0djQ4dOmDlypX46KOPqk1vb28Pe3t7U4ZItbRyX6bWFh1ERKZWIQDvbDqFvu1a8g6OlTFrJ35ubm6wtbVFQYFmi4mCggJ4enrqtYzGjRsjLCwMFy5cMEaIZGSqDs8W7DoricQm0M1R3Uxbl35t3fDxiE4Y1El3RfieAa71ExjRA528XPDxiE5o5+Fs7lCsQrkgILuwxNxhkIHMeufGzs4O4eHhSElJwYgRIwAoKxSnpKTg1Vdf1WsZ5eXlyMjIwJAhQ4wYKRlD5b5FjOWlvv54IsQLP5/Mx+r9F3X2pXIo86ZoHyU1hTesiydaujTBk6He6OrriuTUHLyz6RTKBQE2AF7uH4gOXk1xu7QMro526Fapv5fxPf2QpyjF2z+cxL6/CtXLjPBzxWdjw5Sxzd2tVxl9PTEcjnaN4Whng+TUy0hKzUGFANjKZPjP4PaYt/Nstf5qpgwIrNZk/qW+/vB1dcT7P/1Z4zptAPTwd0Vq9i1l/yUAno30Rcm9cmw9cVXdb4y28Kf0D8SXv4v3UVOTj0d0woWCu1h3+JLWaSL9XNG3fUuU/VOB8goBy/dk6tyf7T2cca6genPm+lS5PHSVzYD2LbHvfCHKBQG2Mhn+3S8AzZ3scDa/CBvTxPtBGtTRA5BBaxP7/u1bYl2cspuN8T398MFPp3SWX23IADzdzQebj11BRaVhqu0c0dUbcb39UFJWAT83RwBAWvYtXLpZjBt3yxDQ0gkhPnL1+GtFf2P3mWuwa2wDvxZOuHy7FPO2n0UFlMfbU918sOX4VZQbqW2MDFDHSdbD7K2lkpOTMXHiRKxcuRIRERFYsmQJvv/+e5w9exYeHh6IjY2Fj48PEhMTAQAffvghevbsibZt2+L27dtYsGABtmzZgrS0NHTs2LHG9bEpuGXIU5QiOnG33v1fGGJQBw8MD/PWSCJU60zLvgWZDGjl6oDcm6WQyaCernJSYiuTYc7TndG3XUv1PJdvl2pUbpbJgLlansfnKUqRXVgCPzdHvW9nn8i9haPZt9DdzxVdfR/esaka138Gt8eNu2X46sBFdfIy5+nO1eKoGoPY9ql6GlZto6os8hSlWpMqVQxdWjVTL1tseysP23f+unrdqs7fpj4SJBrXfwa3h08zB3Uy2MrVAT+fzNe6vSv3Zao7h6ucBFQtx8rHgGrZTRrb4GSuAi2b2uORDh7qjuiOZt+Cn5sjSssqNJLSrSeuPuyIDsrEtXdQS/U2zvgxo1qngarO+ib19UdcL38AUJeL6v8nr9zG/B3n1Anx25U61hM7jvIUpVh7IFtdJpXnqbydMhnQpLENsgtLRMujavmpktNegW6i2/vigx8LJy8rMPOnP6t9f0eEeuPtx4OrHROVt7k+Hu9ULZfKf289cVXjezoi1AuPdvTEmbyiGpNbbZ4J84GXaxN1Z5xsVWUeVtUUHACWLVum7sQvNDQUn3/+OSIjIwEA/fv3h5+fH9atWwcAmD59OjZt2oT8/Hy4uroiPDwcH3/8McLCwvRaF5Mby7Dt5FW8+t3xelmWqnVD5YttbdWUlIglAqZQU/KgbxyGzCN2B0p1Ia9t1/na1q1PXHWdv77UFEfl4wPQ/6Ju7P1Z2+VoG1f1+KicXJmbrqTwx7TLWPjL+Tqvg5WNTc/qkhtTYnJjfnmKUqz6PRNrD9Xtdrjql2Rcr+rv7qH6YcqkgayPtR4fb3yfXuMrTvRhK5PhwIwBVrXt1sxq+rmhhkXVGd/q/Vm1XobYIxEyHi+5A8uYtLLW42PR6FDERrXBT8evYvfZa8i+WbsKw6rKxtZYBlLHOzdkEsmpOdXqI9REBuCjEZ3U9S5UFQx5IiGi+qSqZ1UhCPjEwFabkf6uWPJsGM9LJsDHUjowuTG9PEUpoufuNui9T3yeTUTmUKsfYjoaF1D9MeT6bdZ+bqhh+M8PJw1KbLr4NMXBGQN5oiAikxvTozUOJQzEm4+103se4UFnf3mKUiNGRoZgckNGdSL3FvZX6r+lJjIAK2O78xYvEZmNl9wBrw4MwshuPnrPUy4ISMu+ZcSoyBBMbsgo8hSl+OZwFqZ8d6zGaVU9+trKZJg7MoSJDRFZhEWjQ/HTlGgMDfGCjR5dj7+64Tjm/Hyad3AsAOvcUL2p/CZvfV+l8PXEcHT0lltlc1IiajhUfRi9uqHm/rlYZ9A42BScTK42r1IYEuKJRzoo3yHGpIaILJmX3AFDuzrgyu1S9VvDtakQgIQfM+Bk3wjhJuzskx7iYymqszxFqcGJzZT+gfjiuXDjBUVEZAST+wViyoCae2KuAPDqd8cRnbgbyak5xg+MNDC5oTrLKiw2KLH5aUo03hocbLyAiIiM6K1BwRgX6avXtAKAGT9msB6OiTG5oTo7aEBrqHkjQ0Rf3kdEZE2mDgyCHnWMASgTHLakMi0mN1QneYpSLN+bWeN0I7p643AC+64hImnwkjtg7sgQvaeX6ZsJUb1ghWKqk6Upf9U4zU9Tonm3hogkZ0yP1gj2dMGTyw/VOK3qLfFkGrxzQ7WWciYf3x3J1TlNwpBgJjZEJFldfV0xT487OEt3/8V6NybEfm6oVl75bxq2Z+TrnCbh8WBM7ldzqwIiImuXpyjF0pQL+O6I9pZRMgCT+vgjrrc/m4fXAl+cqQOTm7pbsPNsjfVs+CiKiBqiE7m3anxMJQMwdyQ7+TMUX5xJRqNPBeKX+gQwsSGiBqmrryvGRehuJi4AeJvNw42KyQ3pLU9Rim0nr+qcRgYgrrefSeIhIrJEUx8J0mu6aUnpxg2kAWNrKdLLwl1nsWxPzU2+x0W25rNkImrQvOQOGBfhW2ODiz+ybuJE7i3e6TYC3rmhGr38f2l6JTYA8OrAtkaOhojI8ul79+YoO/czCiY3pNOJ3FvYcUp3qyhA2UHVvJEhvGtDRATl3Rt9mojn3izBocxC1r+pZ3wsRTodyb6p13RbXmHrKCKiyvTp5G/d4UtYd/gSbGRA4tNsQVVfeOeGdApwc6pxGraOIiIS19XXFQmP1/yi4AoBeGfTKd7BqSdMbkir5NQcvLA+Tec0NmDrKCIiXSb3C0TCkOAaX7RZLgjILiwxSUxSx+SGROUpSvH2jxmi41RfUFuZDImsZ0NEVKPJfQOxZUp0jdM52vGyXB9Y54ZEHdVR1+bDJzuhrbsL/NwcmdgQEempuKy8xmlKyipMEIn0MUUkUb+duaZ1XHMnO0QFtmBiQ0RkAH83pxofTZ28ctsUoUgekxuqZsGus/gpXXtPxN3asPIwEZGhvOQOmDsyRGeCM2/7WVYqrgdMbkjDyt8zsVxHh301/eogIiLtxvRojUMJA7FsbBjGdG9VbXwFgLUHsk0el9QwuSG1PEUpEnec1TmNALA2PxFRHXjJHTC0qzfGRYr3abNq/0WcyGXPxXXB5IbU1h7IqnEaW5kMfm6OJoiGiEjadFUwfnL5ISSn5pgwGmlhckMAlHdtVu3XndzYyIA5T3dmRWIionrgX0MnqW//mMH6N7XE5IYAAEtT/tI5/qW+/jg4YyC7Biciqidecocaey+eV0NVARLHfm4IeYpSfHckV+v4n6bwvVFERMYwuV8grt4uxfrDl0THb0m/ig7eTTG5b6CJI7NuvHND+O10gdZxCUOCmdgQERnR7Cc7Iyqwudbxc9k83GBMbhq45NQcvP/Tn1rHD+/qbcJoiIgapqkDg7SOE8Dm4YZictOA5SlKMUPL+6NU2OybiMj4auq9+KsDF3n3xgBMbhqwtEu3IOgYz2bfRESm4SV3wAwdlYsrBP7YNASTmwbsVkmZ1nFs9k1EZFqT+wViygDtFYcPXrhuwmisG5ObBio5NQfvb9Fe12b28E5s9k1EZGJvDQrGuEhf0XHL92Ty0ZSemNw0QDXVtZEBiOnoYbqAiIhIberAINH6N6xYrD8mNw1QVmGx1ro2MgBzR4bwcRQRkZnoqn+zej8rFuuDyU0DlHFZoXXcRyP4OIqIyNyGh4p3w8G7N/phctPA1PTm70c68HEUEZG5Hc2+qXXcKt69qRGTmwZG1zukdPWxQEREpiOT6T4jL025YKJIrBOTmwakpndICWA/CkREliC8je7X3iSl5vDujQ5MbhqQrMJinePZaR8RkWWo6Y3h7NRPNyY3DcjS3dofSdnKZOy0j4jIgkzuF4iEIdoTnKUp500YjXVhctNAzPrpFA5nildQe/+JDjgwYwBbSRERWZjJfQOxbFyY6LhDF29i4S7tDUQaMiY3DcDK3zOx/vAl0XEyGTCkixfv2BARWShd9W+WsddiUUxuJK6mpt9T+gcysSEismBecgdM6a/9nVPzdJzjGyomNxKnqxJxqG8zvDlI+/NcIiKyDG8NDkZgSyfRcVvSr/LuTRVMbiTu4F+FWsfNHt7RhJEQEVFdLB7dVeu4ZbvZ701lTG4kLE9RiuV7M7WOLymrMGE0RERUF119XRHhJ17/5rs/2O9NZRaR3Cxfvhx+fn5o0qQJIiMjceTIEb3mS0pKgkwmw4gRI4wboJX67UyB1nE2MrBPGyIiK/PZWPGWUwKAtOxbpg3Ggpk9uUlOTkZ8fDxmzZqFY8eOoWvXrhg0aBCuXbumc77s7Gy8+eab6NOnj4kitS7JqTl4f8ufouNkABKf5pu/iYisjZfcAeMifEXH3S4tM3E0lsvsyc3ixYsxadIkxMXFoWPHjlixYgUcHR2xZs0arfOUl5fjueeew+zZsxEQEGDCaK1DnqIUM37M0Dp+y5Ro9mlDRGSlpj4SJPouwPe2/ImVv2uvitCQmDW5KSsrQ1paGmJiYtTDbGxsEBMTg8OHD2ud78MPP4S7uzteeOGFGtdx7949FBUVaXykLquwGIKWcc9FtkZXX93vLCEiIsvlJXfAK1qahifuOIuV+5jgmDW5KSwsRHl5OTw8PDSGe3h4ID8/X3SeAwcO4Ouvv8bq1av1WkdiYiLkcrn64+srfjtPSpzsbLWOiwpoYcJIiIjIGJo5NdY6bu72sw2+crHZH0sZ4s6dO5gwYQJWr14NNzc3veZJSEiAQqFQf3Jztb8VWyoW/iL+vhEZgHAtNe2JiMh6RPg11zpOAHDsUsOuXNzInCt3c3ODra0tCgo0W/UUFBTA09Oz2vSZmZnIzs7GsGHD1MMqKpTNmRs1aoRz584hMFDzVp29vT3s7e2NEL1lOpF7C/u19G0zY0gwKxETEUlAV19XPN7ZEztOiT/lOHjhBp7o4m3iqCyHWe/c2NnZITw8HCkpKephFRUVSElJQVRUVLXpg4ODkZGRgfT0dPVn+PDhGDBgANLT0xvEI6eapJwVb2XWq20LTO6rvftuIiKyLl+OD8eobj6i45JSG3a/N2a9cwMA8fHxmDhxIrp3746IiAgsWbIExcXFiIuLAwDExsbCx8cHiYmJaNKkCTp37qwxf7NmzQCg2vCGKueG+OsWBneqfieMiIis21PhrbDx2JVqwysEZb83Q7s2zLv1Zk9uxowZg+vXr2PmzJnIz89HaGgodu7cqa5knJOTAxsbq6oaZDZ5ilJsSc8THRfT0UN0OBERWS9/NyfIANEWsq8lHUdx2T8NsusPmSAI2loNS1JRURHkcjkUCgWaNm1q7nDq1egVh3BEpIfK5yJb45OnQswQERERGVtyag5m/JghmuDYymQ4MGOAJOpbGnL95i0RiTiRe0s0sQHY/JuISMrG9GiN2Kg2ouPKBQHZhSUmjsj8mNxIxOcpf2kdx+bfRETSlacoxfrDl0THyRroewSZ3EjAyt8zkXL2uui4VwcESuJ2JBERicsqFG9IAgDPhPk0yGsAkxsrl6coxdwdZ0XHRfq54s1BwSaOiIiITMnfzQk2Yi+bArDx2BW88X26SeOxBExurJyu90i980QHk8ZCRESm5yV3QOLTIVov6D8eu4ITuQ2rx2ImN1autOwfreNKyipMGAkREZnLmB6t8fm4MK3jV+/LMmE05sfkxsptFum8CWi4lciIiBqq8DbaG4/8nJHXoHosZnJjxfIUpdiWIf5ekSn9WZGYiKgh8ZI74KU+/qLjBABrD2SbNB5zYnJjxbRVJA71bcaKxEREDVBcb39oqVuMrw5cbDB3b5jcWKmVv2fip/SrouNe7C2euRMRkbR5yR0w43HxH7cVAhpMh35MbqyQrubfMrDTPiKihiyklVzruAMXxPtEkxomN1ZIV/PvKey0j4ioQdPV783yPZlYuS/TtAGZAZMbK5RxWaF1XK+2LU0YCRERWRovuQPeHqy93uW8HWclX/eGyY2V0fVIyobNv4mICLofTTWEujdMbqyMrkdSL/YO4CMpIiKCv5uT1lZTMkj/hzCTGyuj7ZGUDEBcbz+TxkJERJbJS+6AuSNDRMdp+4EsJUxurEieohTzdoo/kpo7MoR3bYiISG1Mj9ZYpuWVDFLv0I/JjRXJKixGhUjKLQPQtx0rEhMRkabwNq6ij6dW7Zd2h35MbqyIk52t6HAB0q8cRkREhvOSO+DJUC/Rcb+dLjBxNKbD5MaKFJeViw5nKykiItKmdQsn0eF7z0u3Qz8mN1ZEW2Xitx8PZn0bIiIS9Uiwu+jwlDPXcCL3lomjMQ0mN1Yi5Uw+ErX0bzO8q7eJoyEiImvR1dcVfYLcRMeNWH4Iyak5Jo7I+JjcWIE3vk/HC+vTtI5nfRsiItJl/jNdRIcLABI2ZUiucjGTGwt3IvcWfjx2Ret41rchIqK6kGKPxUxuLNyR7Js6x7O+DRER1SSrsFjrOCn2WMzkxsLdLr6vddxTod6Y3DfQhNEQEZE10vU6BgHAPom1nGJyY8HyFKX48nftr6b/z+Pa3/pKRESkout1DID06t0wubFg2noktpEB8/i6BSIiMoCu1zFIrd4NkxsLpu024uZXojGmR2uTx0NERNYtvI2r1nEHL0jn0RSTGwu2Nf1qtbe3ygC4N21ijnCIiMjKeckd8FIff9Fxy/dkSubRFJMbC5WnKBXttI/vkSIiorqI6y2e3AgAjl2SRo/FTG4s1NKUv0SHs18bIiKqCy+5A0ZoeZnmrZIyE0djHExuLFCeohTfHckVHfdsj9asSExERHXySAcP0eFHs3nnhoxE210bABjTo5UJIyEiIinq7tdcdPiW9KtYuU97FyTWgsmNhdF11wYASsoqTBgNERFJkZfcAeMifEXHzdtx1uorFjO5sTBpOipzsb4NERHVl+i24m8Kl0KfN0xuLIwgiPTaB2UT8MSn2XEfERHVD2193kjhXVNMbizM9ox80eFbprDjPiIiqj9ecgfME3klgwBlP2vWjMmNBTmRews7TlVPbl4dEIiuvtp7lSQiIqqNvu1aivaEn7jjrFVXLGZyY0He23JKdLiro52JIyEiooYgq7C4Wk/4KnO3W2/FYiY3FuJE7i1kXCkSHdfdj3dtiIio/vm7OWkdZ809FjO5sRApZ6+JDu/g5cJHUkREZBRecgckPB6sdbyWNi4Wj8mNhXBzFn/0NC6ClYiJiMh4JvcLxJQBgaLjrvCxFNVFQdE90eExHcW7yCYiIqov43u2ER1urR36MbmxACt/z8TyPdVrpScMCWa/NkREZHRZhcWiw621Qz8mN2aWpyjF3B1nRcd18Wlm2mCIiKhB8ndzEm0SDlhnh35MbsxMVzM8RzvuHiIiMj4vuQNmaKlY/NG20yaOpu549TQzXc3w+JJMIiIylZBWctHh2zPycSLXupqEM7mxUHxJJhERmZKuH9ur92WZMJK6Y3JjZmsPiB8wL/YOYGViIiIyGS+5A6b0F28Svi0jz6paTTG5MaM8RSlW7a+e3MgAxPX2M3k8RETUsL01OBiR/uIdx779w0kTR1N7TG7MaGnKX6LDx0W25l0bIiIyi3eGdBAdvu+vQqupe8PkxkzyFKX47kiu6LiogBYmjoaIiEipuKxc6zhrqXvD5MZMXt9wXHS4DEA4X5RJRERmoqti8fZT1lH3hsmNGZzIvYUj2eK39sZG8JEUERGZj5fcAfNGhoiOs5Yeiy0iuVm+fDn8/PzQpEkTREZG4siRI1qn3bRpE7p3745mzZrByckJoaGh+Pbbb00Ybd0dyb6pddzUR9qaMBIiIqLqxvRojZ+mRIuOO3nltmmDqYVGhkx8+/ZtbN68Gfv378elS5dQUlKCli1bIiwsDIMGDUJ0tHhB6JKcnIz4+HisWLECkZGRWLJkCQYNGoRz587B3d292vTNmzfHu+++i+DgYNjZ2WHbtm2Ii4uDu7s7Bg0aZPD6zSFAyy2/56Pb8K4NERFZBPemTUSHz9txFsO7elv09UqvOzdXr17Fiy++CC8vL3z88ccoLS1FaGgoHnnkEbRq1Qp79uzBo48+io4dOyI5OdmgABYvXoxJkyYhLi4OHTt2xIoVK+Do6Ig1a9aITt+/f3889dRT6NChAwIDA/H666+jS5cuOHDggEHrNScHO/GcclAnLxNHQkREJM6aX6ap152bsLAwTJw4EWlpaejYsaPoNKWlpdiyZQuWLFmC3NxcvPnmmzUut6ysDGlpaUhISFAPs7GxQUxMDA4fPlzj/IIgYPfu3Th37hzmzZsnOs29e/dw79499d9FRUU1LtfYnOxsIQM03illK5OxR2IiIrIY2ioWy2D5PejrldycPn0aLVrobp7s4OCAsWPHYuzYsbhx44ZeKy8sLER5eTk8PDw0hnt4eODsWfE3ZQOAQqGAj48P7t27B1tbW3zxxRd49NFHRadNTEzE7Nmz9YrHFJJTczDjxwyNxEYmA+Y83dmib/EREVHDU/WHuMq+89cxpkdrU4ejN70eS7Vo0QLbtm1DRYV+L3KsKRGqKxcXF6SnpyM1NRWffPIJ4uPjsXfvXtFpExISoFAo1J/cXPG+ZUwhT1FaLbEBAEEA+rZraZaYiIiIxGQVFosmNgKAGZsyLLpJuN6tpUaMGAFfX1+8++67uHDhQr2s3M3NDba2tigoKNAYXlBQAE9PT63z2djYoG3btggNDcUbb7yBZ555BomJiaLT2tvbo2nTphofc1l7IEv0QAGAY5eso9dHIiJqGPzdnCDTMk4QLPu6pXdyk5WVhcmTJyMpKQnt27dHv3798O2336K0tPaZm52dHcLDw5GSkqIeVlFRgZSUFERFRem9nIqKCo16NZYoT1GK1SLvkVIRtGU9REREZuAld8CkPv5axx+8oF8VFHPQO7nx9fXFzJkzkZmZid9++w1+fn54+eWX4eXlhX//+99ITU2tVQDx8fFYvXo11q9fjzNnzuDll19GcXEx4uLiAACxsbEaFY4TExPx66+/4uLFizhz5gwWLVqEb7/9FuPHj6/V+k1F110b9kpMRESWKK63v9a7NxuO5FjsoymD+rlRGTBgAAYMGIBly5YhKSkJ69atQ8+ePdG5c2ecOHHCoGWNGTMG169fx8yZM5Gfn4/Q0FDs3LlTXck4JycHNjYPc7Di4mK88soruHz5MhwcHBAcHIz/+7//w5gxY2qzKSZR012bSX0CWJmYiIgsjpfcAXNHhuDtHzOqjRMApGXfwtCulnf9kglC3R6IXLx4EWvWrMGXX36JoqIi3L9/v75iM4qioiLI5XIoFAqT1b85lFmIcav/EB0nA3AoYSCTGyIisljfHs7G+z/9WW34U6He+PTZMJPEYMj1u1avXygtLcU333yD/v37IygoCElJSYiPj0d2dnZtFid5GZcVWsfxrg0REVm6mI4eosM3p1/Fyn2ZJo6mZgYlN//73//w0ksvqevZtGrVCr/99hsuXLiAd999Fz4+PsaK02rlKUqRuEO8zx4ZgLjefiaNh4iIyFBecgeMi/AVHTd3+1mLq3ujd52bjh074ty5cwgLC0NiYiLGjRsHuVxuzNgk4aiOl2Tyrg2ZUnl5ucU/NibD2NnZadRJJDKm6LZu+O5I9b7iLLHujd7JTUxMDDZs2ICuXbsaMx7JuV2i/WLCuzZkCoIgID8/H7dv3zZ3KFTPbGxs4O/vDzs7O3OHQg1AeBvtrXpvl5aZMJKa6Z3cfP7558aMQ7LO5Im/y2pcRGvetSGTUCU27u7ucHR0hEymrWEnWZOKigpcvXoVeXl5aN26NfcrGZ3q0ZTY3RtXR8tKsPVKbgYPHowPPvgAPXv21DndnTt38MUXX8DZ2RlTpkyplwCtWZ6iFBtEDgIAmPpIWxNHQw1ReXm5OrEx9mtRyPRatmyJq1ev4p9//kHjxo3NHQ41AFMfCcKGI7nV+m1r5WpZP9b1Sm5GjRqFkSNHQi6XY9iwYejevTu8vb3RpEkT3Lp1C6dPn8aBAwewfft2PPHEE1iwYIGx47YK2t7L8RLr2pCJqOrYODpa9ht8qXZUj6PKy8uZ3JBJaOv35snlhzBvZIjFvExTr+TmhRdewPjx47Fx40YkJydj1apVUCiUzZtlMhk6duyIQYMGITU1FR06dDBqwNbEyc5WdPgTXbS/N4vIGPjIQpq4X8kcgj1dRIcnbMpA33YtLeLHu951buzt7TF+/Hj1aw4UCgVKS0vRokUL/mLQIveWeNO4kjL93q5ORERkaY5oaQVcIQDZhSUWkdzUug2hXC6Hp6cnExstklNz8Op3x6sNt5XJ4OfGRwRE5pCdnQ2ZTIb09HRzh0JktSL8mmsdt9pCOvRjBwlGkKcoFX0PBwC83J/1bYiIyHp19XVFnyA30XG7z13HidxbJo6oOiY3RpBVWKx1nKU1lyOyFmVlltWPBlFDNv+ZLlrHHc1mciNJ/m5OWsd199PeCRKRpctTlOJQZqFJulrv378/Xn31VUybNg1ubm4YNGgQTp06hccffxzOzs7w8PDAhAkTUFhYqJ5n586d6N27N5o1a4YWLVpg6NChyMy0jNvkRFLiJXfAlP6BouNulZj/hwiTGyPYmn5VdPiQEE909WVyQ9YpOTUHvebuxrjVf6DX3N1ITs0x+jrXr18POzs7HDx4EHPnzsXAgQMRFhaGo0ePYufOnSgoKMDo0aPV0xcXFyM+Ph5Hjx5FSkoKbGxs8NRTT6GigpX4ierbW4ODMSC4ZbXhy/dmmv1dU3q3lqrs9u3b+OGHH5CZmYm33noLzZs3x7Fjx+Dh4dHgX56ZpyjFXC0vypzQ08+0wRDVkzxFKRI2ZaDiQcdNFQLwzqZTRm/2GRQUhPnz5wMAPv74Y4SFhWHOnDnq8WvWrIGvry/Onz+Pdu3aYeTIkRrzr1mzBi1btsTp06fRuXNno8VJ1FCN7NYKe85e1xgmCMCxS7fwRBfz1S81+M7NyZMn0a5dO8ybNw8LFy5Uv69m06ZNSEhIqO/4rI62jvtsZGArKbJaWYXF6sRGpVwQkF1YYtT1hoeHq/9/4sQJ7NmzB87OzupPcHAwAKgfPf31118YO3YsAgIC0LRpU/j5+QEAcnKMf5eJqCESBLErnjLBMSeD79zEx8fj+eefx/z58+Hi8rAjnyFDhmDcuHH1Gpw10tZx3yv9A9lKiqyWv5sTbGTQSHBM0a2Bk9PD+mt3797FsGHDMG/evGrTeXl5AQCGDRuGNm3aYPXq1fD29kZFRQU6d+7MyshERtJdS7PwcDPXLzU4uUlNTcXKlSurDffx8UF+fn69BGXN1h7MEh0e7NnUxJEQ1R8vuQMSnw7BO5tOoVwQYCuTYc7TnU2asHfr1g0//vgj/Pz80KhR9VPXjRs3cO7cOaxevRp9+vQBABw4cMBk8RE1VDKg2hOLa0V/m/UHvcGPpezt7VFUVP1N1+fPn0fLltUrFjUkK3/PxJb0PNFx7CWdrN2YHq1xYMYAbJjUEwdmDDD5O2SmTJmCmzdvYuzYsUhNTUVmZiZ27dqFuLg4lJeXw9XVFS1atMCqVatw4cIF7N69G/Hx8SaNkaih0VYVY8TyQyZpdKCNwcnN8OHD8eGHH6pfyCeTyZCTk4O33367WmW+hiRPUYpELRWJZQC6tWErKbJ+XnIHRAW2MMsvMm9vbxw8eBDl5eV47LHHEBISgmnTpqFZs2awsbGBjY0NkpKSkJaWhs6dO2P69Ol8iS+Rkfm7OUHst7sA5bumzNVqyuDHUosWLcIzzzwDd3d3lJaWol+/fsjPz0dUVBQ++eQTY8RoFXR13Dc2ojXr2xAZaO/evdWGBQUFYdOmTVrniYmJwenTpzWGVa7w6Ofnp7UCJBEZzkvugEl9/LFqf/UqGeZ815TByY1cLsevv/6KAwcO4OTJk7h79y66deuGmJgYY8RnNTIuK7SOm/pIWxNGQkREZDpxvcWTGxnM10q4Vv3cAEDv3r3Ru3fv+ozFaunq2yZhSDDv2hARkaSJVSoGgH3nr5u8fh5Qi+Tm888/Fx0uk8nQpEkTtG3bFn379oWtrXiTaCnSVqEKALr4NDNlKERERCal7RoowDSdfYoxOLn59NNPcf36dZSUlMDVVVlJ9tatW3B0dISzszOuXbuGgIAA7NmzB76+vvUesCXS9i4pdtxHRERSp6pULJbgqDr7NHVyY3BrqTlz5qBHjx7466+/cOPGDdy4cQPnz59HZGQkPvvsM+Tk5MDT0xPTp083RrwWS6y2+NuP85EUERFJm6pSsRhz/cg3OLl577338OmnnyIw8OHbQNu2bYuFCxciISEBrVq1wvz583Hw4MF6DdSSabslx0dSRETUEMT19oeNyK98c/3INzi5ycvLwz///FNt+D///KPuodjb2xt37type3RWQtU1fWWm6JqeiIjIEqh6Mbd90GOtDYCEx4MxuW+g7hmNxOA6NwMGDMDkyZPx1VdfISwsDABw/PhxvPzyyxg4cCAAICMjA/7+4reopMgSuqYnIiIypzE9WqNvu5bILiyBn5ujWa+BBic3X3/9NSZMmIDw8HA0btwYgPKuzSOPPIKvv/4aAODs7IxFixbVb6QWzpJ2KhERkTl4yR0s4vpncHLj6emJX3/9FWfPnsX58+cBAO3bt0f79u3V0wwYMKD+IrQilrJTiaSgf//+CA0NxZIlS8wah5+fH6ZNm4Zp06aZNQ4i0l+tO/ELDg5GcHBwfcZCRKS2adMm9d1hc0pNTYWTk3h3D0RkmWqV3Fy+fBlbt25FTk4OysrKNMYtXry4XgIjooatefPm5g4BANCyZUujr6OsrAx2dnZGXw9RQ2Fwa6mUlBS0b98eX375JRYtWoQ9e/Zg7dq1WLNmDdLT040QIhFZDMUVIGuf8l8j69+/v/pRkJ+fHz7++GPExsbC2dkZbdq0wdatW3H9+nU8+eSTcHZ2RpcuXXD06FH1/Ddu3MDYsWPh4+MDR0dHhISEYMOGDRrruHPnDp577jk4OTnBy8sLn376qcZ6Veuu/GhMJpPhq6++wlNPPQVHR0cEBQVh69at6vHl5eV44YUX4O/vDwcHB7Rv3x6fffaZxnqff/55jBgxAp988gm8vb3Rvn17fPjhh+jcuXO1cggNDcX7779fh5IkangMTm4SEhLw5ptvIiMjA02aNMGPP/6I3Nxc9OvXD6NGjTJGjERkCY59AyzpDKwfpvz32DcmXf2nn36KXr164fjx43jiiScwYcIExMbGYvz48Th27BgCAwMRGxurfuv333//jfDwcPz88884deoUXnrpJUyYMAFHjhxRLzM+Ph4HDx7E1q1b8euvv2L//v04duxYjbHMnj0bo0ePxsmTJzFkyBA899xzuHnzJgCgoqICrVq1wsaNG3H69GnMnDkT77zzDr7//nuNZaSkpODcuXP49ddfsW3bNvzrX//CmTNnkJqaqp7m+PHjOHnyJOLi4uqjCIkaDsFAzs7OwoULFwRBEIRmzZoJp06dEgRBENLT04U2bdoYujiTUygUAgBBoVCYOxQioystLRVOnz4tlJaW1m1Bty8LwgfNBGFW04efD1yVw42kX79+wuuvvy4IgiC0adNGGD9+vHpcXl6eAEB4//331cMOHz4sABDy8vK0LvOJJ54Q3njjDUEQBKGoqEho3LixsHHjRvX427dvC46Ojur1qtb96aefqv8GILz33nvqv+/evSsAEHbs2KF1vVOmTBFGjhyp/nvixImCh4eHcO/ePY3pHn/8ceHll19W/z116lShf//+Wpdbb/uXyAoYcv02+M6Nk5OTup6Nl5cXMjMz1eMKCwvrI98iIktzMxMQKjSHCeXAzYsmC6FLly7q/3t4eAAAQkJCqg27du0aAOXjoY8++gghISFo3rw5nJ2dsWvXLuTk5AAALl68iPv37yMiIkK9DLlcrtHyU59YnJyc0LRpU/V6AWD58uUIDw9Hy5Yt4ezsjFWrVqnXqxISElKtns2kSZOwYcMG/P333ygrK8N3332Hf/3rXzXGQ0SaDK5Q3LNnTxw4cAAdOnTAkCFD8MYbbyAjIwObNm1Cz549jREjEZlb80BAZqOZ4MhsgeYBJguhcssp2YNeUMWGVVQoY1ywYAE+++wzLFmyBCEhIXBycsK0adOqNYKoayyqdavWm5SUhDfffBOLFi1CVFQUXFxcsGDBAvzxxx8a84i1wBo2bBjs7e2xefNm2NnZ4f79+3jmmWfqHC9RQ2NwcrN48WLcvXsXgPK58927d5GcnIygoCC2lCKSKrkPMOwz4P9NU96xkdkCw5Yoh1uogwcP4sknn8T48eMBKJOe8+fPo2PHjgCAgIAANG7cGKmpqWjdujUAQKFQ4Pz58+jbt2+d1hsdHY1XXnlFPazyHW5dGjVqhIkTJ2Lt2rWws7PDs88+CwcH9p1FZCiDk5uAgIe/1JycnLBixYp6DYiILFS3WCDwEeWjqOYBFp3YAEBQUBB++OEHHDp0CK6urli8eDEKCgrUyY2LiwsmTpyIt956C82bN4e7uztmzZoFGxsb9V2g2q73m2++wa5du+Dv749vv/0Wqamper+S5sUXX0SHDh0AoEG9gJioPhlc5yYgIAA3btyoNvz27dsaiQ8RSZDcB/DvY/GJDQC899576NatGwYNGoT+/fvD09MTI0aM0Jhm8eLFiIqKwtChQxETE4NevXqhQ4cOaNKkSa3XO3nyZDz99NMYM2YMIiMjcePGDY27ODUJCgpCdHQ0goODERkZWes4iBoymSA8aDepJxsbG+Tn58Pd3V1jeEFBAVq3bo179+7Va4D1raioCHK5HAqFAk2bNjV3OERG9ffffyMrKwv+/v51umA3FMXFxfDx8cGiRYvwwgsvmCUGQRAQFBSEV155BfHx8Tqn5f6lhsSQ67fej6Uqd1K1a9cuyOVy9d/l5eVISUmBn5+f4dESEZnJ8ePHcfbsWUREREChUODDDz8EADz55JNmief69etISkpCfn4++7YhqgO9kxvV7VyZTIaJEydqjGvcuDH8/Pwa3JvAicj6LVy4EOfOnYOdnR3Cw8Oxf/9+uLm5mSUWd3d3uLm5YdWqVXB1dTVLDERSoHdyo2rm6O/vj9TUVLN9+YmI6ktYWBjS0tLMHYaagbUEiEgLg1tLZWVlGSMOIiIionqhV3Lz+eef673A1157rdbBEJFx8I6ANHG/EonTK7n59NNP9VqYTCZjckNkQVQ96ZaUlLAzOAlS9bZsa2tr5kiILIteyQ0fRRFZJ1tbWzRr1kz93iNHR8c6dVBHlqOiogLXr1+Ho6MjGjUyuIYBkaTV6RuhuiXKkyWR5fL09AQAjRc7kjTY2NigdevWPAcTVVGr5Oabb77BggUL8NdffwEA2rVrh7feegsTJkyo1+CIqO5kMhm8vLzg7u6O+/fvmzscqkd2dnawsTG4o3kiyavVizPff/99vPrqq+jVqxcA4MCBA/j3v/+NwsJCTJ8+vd6DJKK6s7W1Zd0MImoQDH79gr+/P2bPno3Y2FiN4evXr8cHH3xg8fVz+PoFIiIi62PI9dvg+5l5eXmIjo6uNjw6Ohp5eXmGLo6IiIioXhmc3LRt2xbff/99teHJyckICgqql6CIiIiIasvgOjezZ8/GmDFjsG/fPnWdm4MHDyIlJUU06dHH8uXLsWDBAuTn56Nr165YunQpIiIiRKddvXo1vvnmG5w6dQoAEB4ejjlz5midnoiIiBoWve/cqJKJkSNH4o8//oCbmxu2bNmCLVu2wM3NDUeOHMFTTz1lcADJycmIj4/HrFmzcOzYMXTt2hWDBg3S2mx17969GDt2LPbs2YPDhw/D19cXjz32GK5cuWLwuomIiEh69K5QbGNjgx49euDFF1/Es88+CxcXl3oJIDIyEj169MCyZcsAKDum8vX1xdSpUzFjxowa5y8vL4erqyuWLVtWrZIzANy7dw/37t1T/11UVARfX19WKCYiIrIiRqlQ/Pvvv6NTp05444034OXlheeffx779++vU6BlZWVIS0tDTEzMw4BsbBATE4PDhw/rtYySkhLcv38fzZs3Fx2fmJgIuVyu/vj6+tYpZiIiIrJseic3ffr0wZo1a5CXl4elS5ciKysL/fr1Q7t27TBv3jzk5+cbvPLCwkKUl5fDw8NDY7iHh4fey3v77bfh7e2tkSBVlpCQAIVCof7k5uYaHCcRERFZD4NbSzk5OSEuLg6///47zp8/j1GjRmH58uVo3bo1hg8fbowYtZo7dy6SkpKwefNmNGnSRHQae3t7NG3aVONDRERE0lWnfrvbtm2Ld955B++99x5cXFzw888/GzS/m5sbbG1tUVBQoDG8oKBA/T4cbRYuXIi5c+fil19+QZcuXQyOnYiIiKSp1snNvn378Pzzz8PT0xNvvfUWnn76aRw8eNCgZdjZ2SE8PBwpKSnqYRUVFUhJSUFUVJTW+ebPn4+PPvoIO3fuRPfu3Wu7CURERCRBBvVzc/XqVaxbtw7r1q3DhQsXEB0djc8//xyjR4+Gk5NTrQKIj4/HxIkT0b17d0RERGDJkiUoLi5GXFwcACA2NhY+Pj5ITEwEAMybNw8zZ87Ed999Bz8/P3XdHGdnZzg7O9cqBiIiIpIOvZObxx9/HL/99hvc3NwQGxuLf/3rX2jfvn2dAxgzZgyuX7+OmTNnIj8/H6Ghodi5c6e6knFOTo7GW2+//PJLlJWV4ZlnntFYzqxZs/DBBx/UOR4iIiKybnr3czN8+HC88MILGDp0qFW/WZgvziQiIrI+hly/9b5zs3Xr1joHRkRERGRsdWotRURERGRpmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJMXsyc3y5cvh5+eHJk2aIDIyEkeOHNE67Z9//omRI0fCz88PMpkMS5YsMV2gREREZBXMmtwkJycjPj4es2bNwrFjx9C1a1cMGjQI165dE52+pKQEAQEBmDt3Ljw9PU0cLREREVkDsyY3ixcvxqRJkxAXF4eOHTtixYoVcHR0xJo1a0Sn79GjBxYsWIBnn30W9vb2Jo6WiIiIrIHZkpuysjKkpaUhJibmYTA2NoiJicHhw4frbT337t1DUVGRxoeIiIiky2zJTWFhIcrLy+Hh4aEx3MPDA/n5+fW2nsTERMjlcvXH19e33pZNRERElsfsFYqNLSEhAQqFQv3Jzc01d0hERERkRI3MtWI3NzfY2tqioKBAY3hBQUG9Vha2t7dn/RwiIqIGxGx3buzs7BAeHo6UlBT1sIqKCqSkpCAqKspcYREREZGVM9udGwCIj4/HxIkT0b17d0RERGDJkiUoLi5GXFwcACA2NhY+Pj5ITEwEoKyEfPr0afX/r1y5gvT0dDg7O6Nt27Zm2w4iIiKyHGZNbsaMGYPr169j5syZyM/PR2hoKHbu3KmuZJyTkwMbm4c3l65evYqwsDD13wsXLsTChQvRr18/7N2719ThExERkQWSCYIgmDsIUyoqKoJcLodCoUDTpk3NHQ4RERHpwZDrt+RbSxEREVHDwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsislyKK0DWPuW/RDXh8WIZLGA/NDLbmqVKcQW4mQk0DwTkPvU3LVFDc+wb4P+9DggVgMwGGPYZ0C22dsuy5u9abWO3lm2ujzgVV4A/vgQOL6+f44Vqrz6/t3UgEwRBMPlazaioqAhyuRwKhQJNmzat34XXtFNVX+LGTsDpzbq/iLq+8PV5sqvvE2fV4TX9XdM6cv9Q/t83sn5O0MY44ZvyIlJ5XYBpL3qGzleXclFcAZZ0Vn4/VGS2wLSM6sduYyfgfrH29VT+XkIGRL8KRL6sOyZj7VNDj+mqsT86G+j1es3rqc026xt/bb/PNcUpswFiPgC8wwxb3rFvgK2vAahyKat6vNSH2pyT9D1XapuvpuO7tgw5lxhyvq/pe1sHhly/mdzUF7GdChvgma+VX4LMlEonGzEyIOo1oLG9cpoDizUTn8BHlAfR1XTgt1kPlxP+PBAWqzz4y0qAK2mAs4fyBHG/WPnFuHocOPP/gKy9D9f16Gyg+DpwaBnUJ4VHPwQ6P1P9IL6cBpzfCdjaAy0CAMVl4NeZD+eLnqo8cVbdRp/uynggKNfZcbgyDn1OZGInrPDngb7/Ae7kAxkblcNCRgGtwh/uA9XJ4Opx4G4B0G4w4OJZvezE1q/rZHI5Dcg5DLSO0lyfrl+LYvOohrVoC9g5Vk80K584Ac14qu57yJTlU3m9VcvgxgXAxk55XLUbDFw6CPz6/sMyVe27yjGc26Gcz9FNub99I4FTPwK/zQSEB/sy/HnAvy/QrI1mWanWf/F34MCiB9OLHKcX9wL37gLeoQ+PVdVJNvcP4MJuIP1bVPPMOqDzU1Uu3qriqPJdaR6oPFa+fuRhHA8nfpgoqLZZdbyc2w7sX/Tw2OvzBvDIzIf7p+Smcrhjc6Cxo/IYV303VBe8yvtZcVm57xS5lb6DDwxfqhlv1f2w/U1Uu2iHxynjvHEBcHAFSm9VPy6rnYtEtll1rDVrA9y+pLldYsMUlzWPv6DHgAu/iZ+nVMdsYyflclTrqbyftW2fal+qvp+qZdy4CJTfA3zClbHcLQCayIFf3hNfBvDweNG2vY7NH+6zyvu36vCbmcCZbcCRlZrLr3zOrHzeAHSfczS+yzKgTzwQ0P/hMXDw80rfN5H9p9rPYolW5e0ovQ3cylYOd2j+8Dxw7U/N5Bd4WIaq8yygXE7WPiBtHXSf7x9sg0Nz4Jd3q++HidsA/z7i+8gAVpfcLF++HAsWLEB+fj66du2KpUuXIiIiQuv0GzduxPvvv4/s7GwEBQVh3rx5GDJkiF7rMlpyk7UPWD+s/pZXzYMLmSmFPw8U5QF/7TL+ukJGKb8wqovfhjH6z+vdXXlhydiIWpWRzAZoGwP89Uv1ccFPADcvAddOPRzWYQTg4lH9RKfy4m7g93ma5ebdHXBqIV6W7QYD9k1rH79KyGjg1A86EmhtHpw0HVyBrVNrt26ZDdBhGHD6p9rNbwjfng9O6vXwffCNfHiB0KV5W+XFSp91tgwGrp/VPwaZzcN9FjIKgAzI+F7/+VXaDgLGfw+c2gT8EKd9Op/uwJWjhi9fL2Y4T+kkA9pEK5N6Xfz7Ks/hVbXpBVw6BN3bJLbNdSgHzy5A/knt48PjAMcWwP6FmsMf/bD6D1aj0nMbG+qdm+TkZMTGxmLFihWIjIzEkiVLsHHjRpw7dw7u7u7Vpj906BD69u2LxMREDB06FN999x3mzZuHY8eOoXPnzjWuz2jJzcHPHtzNICIyE9WdHCJLILMFhi2ptzo3VpXcREZGokePHli2bBkAoKKiAr6+vpg6dSpmzJhRbfoxY8aguLgY27ZtUw/r2bMnQkNDsWLFimrT37t3D/fu3VP/XVRUBF9f3/pNbhRXgE87wbJ+sRAREZnRox/qV0dMT4YkN2ZtCl5WVoa0tDTExMSoh9nY2CAmJgaHDx8Wnefw4cMa0wPAoEGDtE6fmJgIuVyu/vj6+tbfBqjoe7uaiIioofjtA7M1BzdrclNYWIjy8nJ4eHhoDPfw8EB+fr7oPPn5+QZNn5CQAIVCof7k5ubWT/CVqSqQERERkZJQAdy8aJZVS76fG3t7e9jb25tgTZZWkY6IiMjMGjuaZbVmvXPj5uYGW1tbFBQUaAwvKCiAp6en6Dyenp4GTW8SfCxFRESWKnio+dZ9v8QsqzVrcmNnZ4fw8HCkpKSoh1VUVCAlJQVRUVGi80RFRWlMDwC//vqr1ulNonmgsjmnXmQ1T6LBBhiyWNn8r/I6wuOA6aeBscn6L+qZdcp5XtwNeHfTHNe8rZ6xySpNJ1M2K9V3m/z7P5i+noTHKZs/Vy6XdoOBJ78AZIaW8wOVl1XjCaGGdchslM1QjUamLANDjoH6EDJaeUwOWaxsKquXSseM6tgdvrSWAciU+7n9MFTbB0GPKVtoaBMep/weDFmkZdGq/S+yb1XHVr+3lWVQeZvcO4ov79GPHmynAcdj8NAqy68NkXnd2tduUdGvVSpTmTK2ATOVXTcMWaw8nzyzTvl3ffHprlxe1e+3mAEzgZ4vA6GxynjGJkO87GooT/dO2qcJHqrcRtW26n2+18Kzi8i6bJTHZ/v67FJEpqzU+/h8kfWZgMwWaB5g+vXCAlpLJScnY+LEiVi5ciUiIiKwZMkSfP/99zh79iw8PDwQGxsLHx8fJCYmAlA2Be/Xrx/mzp2LJ554AklJSZgzZ475m4If+wb4f9MAoVy5Q3tPe9ARX+XitQFe/E2ZyTZ2BE5vAQ4ve9DB04Mmc7cuPexArGozOsUV5fPL5gGafQYc+wbY+jqACuU6wmMfdLpURdWOlC6nAbn/U/Yb0ir84fIbOypjVB2U2oap4qg83+2cB7HmKiuTCeXKmB794GGt+ctpyv5enDyUnbjdLwHKioENz0LzDtiDL2bl5YRPBPz7Ab4RVXqqrVIuVfdHzCxA3hr48V/i/cBodEJWaVlVOxOUyYCY2crkUFUWuUdElvtgX7t4ineoFjToQQdo5Q+3VbXPVbECQLPWVY4TVUdg3apvb9VODzs+qex4rPIxeTNLuTyxzruqFwrUHTCGjALaD9Esd5XKx9G1P6vHoe7oTOTYVVwB9i0Ajq1/+D2ImaXcvqvHNfd9n+lAwADNZSiuKMsfeBhb5eNBtX8qj1fNJ9aT6gu/ah7nYvNWjr3yNqV8VKnzvyrHfOU4T29RflQCHwEGvPtwvVW3Lev3h+UDmwe9Df9bOc3Ni8oOESuvd3il47jy91bdUd2DOBo7KO86l9wEDnxa6VisRNVHiWpdVfdf1fIQO9YHzFT2Q9WstfL8oLE9ldbTe5qy/xbV+ahqOTd2BL6O0a/326rf/2FLlGWSe6RKJ4wPyqDyOfCPFQ+/b1X3o9jyqwoZLd5P0dhkwM5J/Lypbd+f216p76oH34EDn1YpY5my0z2hvNJ+rHScaJwjVNeJB31bdX4GSE8C8k4Azf2V52PfB33MVf4O/bECOLQU6vNBm2hlJ5XVziOV/l/PzcABK2sKDgDLli1Td+IXGhqKzz//HJGRyh5a+/fvDz8/P6xbt049/caNG/Hee++pO/GbP3+++TvxA6qf7MS+YFV3tNiFWVsSo++6AaN2ga03Q7dDW3nVpjy0rV8s6amaKIgtR9dFTlfsVcdVPllW3We6tlGfMqjpQi92fAHiyVnVC72h5V5Teem7fbXd9/rQ5/tpKH3jrfrDoq7LrWs5qea/uLdS7+i1KBN9y1TXhb0+ll95HbUpE32/b1V/1KmO93p/L5qe1xVjHidV59V2/qr8/3r+zlpdcmNKRk1uxBjz5KyLMU7cpmCK8jLWOnQt11zHgb6s9XipK0vfL+ZQX4mSscrUWvaZMeO0ljKoZ0xudDB5cmNODfQLQLXE44WILJgh12/JNwVv0OQ+vEiR/ni8EJFEmLW1FBEREVF9Y3JDREREksLkhoiIiCSFyQ0RERFJCpMbIiIikhQmN0RERCQpTG6IiIhIUpjcEBERkaQwuSEiIiJJYXJDREREksLkhoiIiCSlwb1bSvWe0KKiIjNHQkRERPpSXbf1ed93g0tu7ty5AwDw9fU1cyRERERkqDt37kAul+ucRibokwJJSEVFBa5evQoXFxfIZLJ6XXZRURF8fX2Rm5tb4+vYqfZYzqbBcjYdlrVpsJxNw1jlLAgC7ty5A29vb9jY6K5V0+Du3NjY2KBVq1ZGXUfTpk35xTEBlrNpsJxNh2VtGixn0zBGOdd0x0aFFYqJiIhIUpjcEBERkaQwualH9vb2mDVrFuzt7c0diqSxnE2D5Ww6LGvTYDmbhiWUc4OrUExERETSxjs3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhcmOg5cuXw8/PD02aNEFkZCSOHDmic/qNGzciODgYTZo0QUhICLZv326iSK2bIeW8evVq9OnTB66urnB1dUVMTEyN+4WUDD2eVZKSkiCTyTBixAjjBighhpb17du3MWXKFHh5ecHe3h7t2rXj+UMPhpbzkiVL0L59ezg4OMDX1xfTp0/H33//baJordO+ffswbNgweHt7QyaTYcuWLTXOs3fvXnTr1g329vZo27Yt1q1bZ9wgBdJbUlKSYGdnJ6xZs0b4888/hUmTJgnNmjUTCgoKRKc/ePCgYGtrK8yfP184ffq08N577wmNGzcWMjIyTBy5dTG0nMeNGycsX75cOH78uHDmzBnh+eefF+RyuXD58mUTR25dDC1nlaysLMHHx0fo06eP8OSTT5omWCtnaFnfu3dP6N69uzBkyBDhwIEDQlZWlrB3714hPT3dxJFbF0PL+b///a9gb28v/Pe//xWysrKEXbt2CV5eXsL06dNNHLl12b59u/Duu+8KmzZtEgAImzdv1jn9xYsXBUdHRyE+Pl44ffq0sHTpUsHW1lbYuXOn0WJkcmOAiIgIYcqUKeq/y8vLBW9vbyExMVF0+tGjRwtPPPGExrDIyEhh8uTJRo3T2hlazlX9888/gouLi7B+/XpjhSgJtSnnf/75R4iOjha++uorYeLEiUxu9GRoWX/55ZdCQECAUFZWZqoQJcHQcp4yZYowcOBAjWHx8fFCr169jBqnlOiT3PznP/8ROnXqpDFszJgxwqBBg4wWFx9L6amsrAxpaWmIiYlRD7OxsUFMTAwOHz4sOs/hw4c1pgeAQYMGaZ2ealfOVZWUlOD+/fto3ry5scK0erUt5w8//BDu7u544YUXTBGmJNSmrLdu3YqoqChMmTIFHh4e6Ny5M+bMmYPy8nJThW11alPO0dHRSEtLUz+6unjxIrZv344hQ4aYJOaGwhzXwgb34szaKiwsRHl5OTw8PDSGe3h44OzZs6Lz5Ofni06fn59vtDitXW3Kuaq3334b3t7e1b5M9FBtyvnAgQP4+uuvkZ6eboIIpaM2ZX3x4kXs3r0bzz33HLZv344LFy7glVdewf379zFr1ixThG11alPO48aNQ2FhIXr37g1BEPDPP//g3//+N9555x1ThNxgaLsWFhUVobS0FA4ODvW+Tt65IUmZO3cukpKSsHnzZjRp0sTc4UjGnTt3MGHCBKxevRpubm7mDkfyKioq4O7ujlWrViE8PBxjxozBu+++ixUrVpg7NEnZu3cv5syZgy+++ALHjh3Dpk2b8PPPP+Ojjz4yd2hUR7xzoyc3NzfY2tqioKBAY3hBQQE8PT1F5/H09DRoeqpdOassXLgQc+fOxW+//YYuXboYM0yrZ2g5Z2ZmIjs7G8OGDVMPq6ioAAA0atQI586dQ2BgoHGDtlK1Oaa9vLzQuHFj2Nraqod16NAB+fn5KCsrg52dnVFjtka1Kef3338fEyZMwIsvvggACAkJQXFxMV566SW8++67sLHh7//6oO1a2LRpU6PctQF450ZvdnZ2CA8PR0pKinpYRUUFUlJSEBUVJTpPVFSUxvQA8Ouvv2qdnmpXzgAwf/58fPTRR9i5cye6d+9uilCtmqHlHBwcjIyMDKSnp6s/w4cPx4ABA5Ceng5fX19Thm9VanNM9+rVCxcuXFAnkABw/vx5eHl5MbHRojblXFJSUi2BUSWUAl+7WG/Mci00WlVlCUpKShLs7e2FdevWCadPnxZeeukloVmzZkJ+fr4gCIIwYcIEYcaMGerpDx48KDRq1EhYuHChcObMGWHWrFlsCq4HQ8t57ty5gp2dnfDDDz8IeXl56s+dO3fMtQlWwdByroqtpfRnaFnn5OQILi4uwquvviqcO3dO2LZtm+Du7i58/PHH5toEq2BoOc+aNUtwcXERNmzYIFy8eFH45ZdfhMDAQGH06NHm2gSrcOfOHeH48ePC8ePHBQDC4sWLhePHjwuXLl0SBEEQZsyYIUyYMEE9vaop+FtvvSWcOXNGWL58OZuCW5qlS5cKrVu3Fuzs7ISIiAjhf//7n3pcv379hIkTJ2pM//333wvt2rUT7OzshE6dOgk///yziSO2ToaUc5s2bQQA1T6zZs0yfeBWxtDjuTImN4YxtKwPHTokREZGCvb29kJAQIDwySefCP/884+Jo7Y+hpTz/fv3hQ8++EAIDAwUmjRpIvj6+gqvvPKKcOvWLdMHbkX27Nkjes5Vle3EiROFfv36VZsnNDRUsLOzEwICAoS1a9caNUaZIPDeGxEREUkH69wQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEjUvn37MGzYMHh7e0Mmk2HLli1GX+eVK1cwfvx4tGjRAg4ODggJCcHRo0cNWgaTGyIyu+effx4jRoww2/onTJiAOXPm6DXts88+i0WLFhk5IiLLUFxcjK5du2L58uUmWd+tW7fQq1cvNG7cGDt27MDp06exaNEiuLq6GrQc9lBMREYlk8l0jp81axamT58OQRDQrFkz0wRVyYkTJzBw4EBcunQJzs7ONU5/6tQp9O3bF1lZWZDL5SaIkMgyyGQybN68WeOHyL179/Duu+9iw4YNuH37Njp37ox58+ahf//+tVrHjBkzcPDgQezfv79OsfLODREZVV5envqzZMkSNG3aVGPYm2++CblcbpbEBgCWLl2KUaNG6ZXYAEDnzp0RGBiI//u//zNyZESW79VXX8Xhw4eRlJSEkydPYtSoURg8eDD++uuvWi1v69at6N69O0aNGgV3d3eEhYVh9erVBi+HyQ0RGZWnp6f6I5fLIZPJNIY5OztXeyzVv39/TJ06FdOmTYOrqys8PDywevVqFBcXIy4uDi4uLmjbti127Nihsa5Tp07h8ccfh7OzMzw8PDBhwgQUFhZqja28vBw//PADhg0bpjH8iy++QFBQEJo0aQIPDw8888wzGuOHDRuGpKSkuhcOkRXLycnB2rVrsXHjRvTp0weBgYF488030bt3b6xdu7ZWy7x48SK+/PJLBAUFYdeuXXj55Zfx2muvYf369QYth8kNEVmk9evXw83NDUeOHMHUqVPx8ssvY9SoUYiOjsaxY8fw2GOPYcKECSgpKQEA3L59GwMHDkRYWBiOHj2KnTt3oqCgAKNHj9a6jpMnT0KhUKB79+7qYUePHsVrr72GDz/8EOfOncPOnTvRt29fjfkiIiJw5MgR3Lt3zzgbT2QFMjIyUF5ejnbt2sHZ2Vn9+f3335GZmQkAOHv2LGQymc7PjBkz1MusqKhAt27dMGfOHISFheGll17CpEmTsGLFCoNia1SvW0pEVE+6du2K9957DwCQkJCAuXPnws3NDZMmTQIAzJw5E19++SVOnjyJnj17YtmyZQgLC9OoGLxmzRr4+vri/PnzaNeuXbV1XLp0Cba2tnB3d1cPy8nJgZOTE4YOHQoXFxe0adMGYWFhGvN5e3ujrKwM+fn5aNOmjTE2n8ji3b17F7a2tkhLS4Otra3GONVj3oCAAJw5c0bnclq0aKH+v5eXFzp27KgxvkOHDvjxxx8Nio3JDRFZpC5duqj/b2trixYtWiAkJEQ9zMPDAwBw7do1AMqKwXv27BGtO5OZmSma3JSWlsLe3l6j0vOjjz6KNm3aICAgAIMHD8bgwYPx1FNPwdHRUT2Ng4MDAKjvGhE1RGFhYSgvL8e1a9fQp08f0Wns7OwQHBys9zJ79eqFc+fOaQw7f/68wT8imNwQkUVq3Lixxt8ymUxjmCohqaioAKD8FTls2DDMmzev2rK8vLxE1+Hm5oaSkhKUlZXBzs4OAODi4oJjx45h7969+OWXXzBz5kx88MEHSE1NVVd6vnnzJgCgZcuWddtIIgt39+5dXLhwQf13VlYW0tPT0bx5c7Rr1w7PPfccYmNjsWjRIoSFheH69etISUlBly5d8MQTTxi8vunTpyM6Ohpz5szB6NGjceTIEaxatQqrVq0yaDmsc0NEktCtWzf8+eef8PPzQ9u2bTU+Tk5OovOEhoYCAE6fPq0xvFGjRoiJicH8+fNx8uRJZGdnY/fu3erxp06dQqtWreDm5ma07SGyBEePHkVYWJj60Wx8fDzCwsIwc+ZMAMDatWsRGxuLN954A+3bt8eIESOQmpqK1q1b12p9PXr0wObNm7FhwwZ07twZH330EZYsWYLnnnvOoOXwzg0RScKUKVOwevVqjB07Fv/5z3/QvHlzXLhwAUlJSfjqq6+q1QkAlHdeunXrhgMHDqgTnW3btuHixYvo27cvXF1dsX37dlRUVKB9+/bq+fbv34/HHnvMVJtGZDb9+/eHru7wGjdujNmzZ2P27Nn1ts6hQ4di6NChdVoG79wQkSR4e3vj4MGDKC8vx2OPPYaQkBBMmzYNzZo1g42N9lPdiy++iP/+97/qv5s1a4ZNmzZh4MCB6NChA1asWIENGzagU6dOAIC///4bW7ZsUVdsJiLLwx6KiahBKy0tRfv27ZGcnIyoqKgap//yyy+xefNm/PLLLyaIjohqg3duiKhBc3BwwDfffKOzs7/KGjdujKVLlxo5KiKqC965ISIiIknhnRsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSlP8PHF/nA2D/4LIAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=trace_schedule,\n", " schedule_kwargs={\n", " \"pulse_amp\": 0.5,\n", " \"acq_delay\": 100e-9,\n", " },\n", " batched=True,\n", ")\n", "\n", "data = gettable.get()\n", "\n", "plt.plot(np.arange(1000)/1e9, data[0], '.', label=\"real\")\n", "plt.plot(np.arange(1000)/1e9, data[1], '.', label=\"imaginary\")\n", "plt.legend()\n", "plt.xlabel(\"Time (s)\")\n", "plt.ylabel(\"Voltage (V)\")\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "ee49888f", "metadata": {}, "source": [ "This time, there is only one acquisition operation in the schedule. The measurement result contains two arrays: one for the _I_ values (`data[0][:]`), and one for the _Q_ values (`data[1][:]`) of the acquired trace.\n", "\n", "## MeasurementControl\n", "\n", "Iterating through different parameters can be done with some help from `quantify-core` as well, through the {class}`~quantify_core.measurement.control.MeasurementControl` class. The {class}`~quantify_core.measurement.control.MeasurementControl` uses settables (parameters to vary in an experiment) and gettables (in this case, our {class}`~quantify_scheduler.gettables.ScheduleGettable`). The settable must be a class that implements `set()`, such as a QCoDeS {class}`~qcodes.parameters.ManualParameter`.\n", "\n", "In this example, the settable is the `time` object, and the setpoints are a numpy array of values (`times`). These are added to the {class}`~quantify_core.measurement.control.MeasurementControl` as shown, together with the {class}`~quantify_scheduler.gettables.ScheduleGettable`. The {class}`~quantify_core.measurement.control.MeasurementControl` object will be in charge of setting the setpoints, and retrieving the measurement results through the gettable." ] }, { "cell_type": "code", "execution_count": 8, "id": "b15c7f57", "metadata": {}, "outputs": [], "source": [ "from quantify_core.measurement.control import MeasurementControl\n", "\n", "\n", "measurement_control = MeasurementControl(\"measurement_control\")\n", "\n", "# Configure the settable\n", "time = ManualParameter(\"sample\", label=\"Sample time\", unit=\"s\")\n", "time.batched = True\n", "\n", "times = np.linspace(start=1.6e-7, stop=4.976e-5, num=125)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=t1_sched,\n", " schedule_kwargs={\"times\": time},\n", " batched=True\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables(time)\n", "measurement_control.setpoints(times)\n", "measurement_control.gettables(gettable)" ] }, { "cell_type": "markdown", "id": "aabbd3f2", "metadata": {}, "source": [ "The experiment is set to run fully in _batched_ mode. When using {class}`~quantify_core.measurement.control.MeasurementControl`, settables and gettables can be either batched (an array of points is set for each measurement iteration) or iterative (only one point is set per iteration). Combinations of batched and iterative settables are possible, as explained in detail in the [quantify-core documentation](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#mixing-iterative-and-batched-settables).\n", "\n", "Settables and gettables are batched if they have the attribute `batched=True`. In {class}`~quantify_scheduler.gettables.ScheduleGettable`, this can be controlled through the `batched` argument when creating the class. For other classes, the attribute can be added dynamically if needed, as shown above for the `time` parameter.\n", "\n", "With both the gettable and the settable having `batched=True`, the {class}`~quantify_core.measurement.control.MeasurementControl` knows that it should set the entire `times` array as the settable's value (instead of repeating the experiment for each value in the array). All data points are measured without interruption and all measurement results are returned in one go. Now, let's run the experiment and retrieve the data." ] }, { "cell_type": "code", "execution_count": 9, "id": "30a340d5", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t --- (None) --- \n", "Batched settable(s):\n", "\t sample \n", "Batch size limit: 125\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1c6142655b1c478d986b66200d02469c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dataset = measurement_control.run()" ] }, { "cell_type": "markdown", "id": "7b1f9d56", "metadata": {}, "source": [ "The {class}`~quantify_core.measurement.control.MeasurementControl` class processes the data returned by the {class}`~quantify_scheduler.gettables.ScheduleGettable`, and turns it into a {class}`~xarray.Dataset`. More information on the format of this dataset can be found in the [quantify-core documentation](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#dataset)." ] }, { "cell_type": "code", "execution_count": 10, "id": "21afeab8", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 3kB\n",
       "Dimensions:  (dim_0: 125)\n",
       "Coordinates:\n",
       "    x0       (dim_0) float64 1kB 1.6e-07 5.6e-07 9.6e-07 ... 4.936e-05 4.976e-05\n",
       "Dimensions without coordinates: dim_0\n",
       "Data variables:\n",
       "    y0       (dim_0) float64 1kB -1.166 -1.141 -1.109 ... -0.737 -0.7305 -1.164\n",
       "    y1       (dim_0) float64 1kB 0.2569 0.2138 0.2035 ... -0.2533 -0.247 0.2671\n",
       "Attributes:\n",
       "    tuid:                             20241121-223943-492-7399d5\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         False\n",
       "    1d_2_settables_uniformly_spaced:  False
" ], "text/plain": [ " Size: 3kB\n", "Dimensions: (dim_0: 125)\n", "Coordinates:\n", " x0 (dim_0) float64 1kB 1.6e-07 5.6e-07 9.6e-07 ... 4.936e-05 4.976e-05\n", "Dimensions without coordinates: dim_0\n", "Data variables:\n", " y0 (dim_0) float64 1kB -1.166 -1.141 -1.109 ... -0.737 -0.7305 -1.164\n", " y1 (dim_0) float64 1kB 0.2569 0.2138 0.2035 ... -0.2533 -0.247 0.2671\n", "Attributes:\n", " tuid: 20241121-223943-492-7399d5\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: False\n", " 1d_2_settables_uniformly_spaced: False" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset" ] }, { "cell_type": "markdown", "id": "40c4c13f", "metadata": {}, "source": [ "The dataset coordinates and data variables are named as generic `x` and `y` parameters. You can click on the 'Show/Hide attributes' button next to the coordinates and variables to see what they refer to.\n", "\n", "(sec-tutorial-schedulegettable-repetitions)=\n", "## Repetitions\n", "\n", "Repetition defines how many times the defined schedule will run on the hardware. Running the schedule multiple times can be useful for example if the user would like to reduce errors of acquisitions by averaging the result of multiple measurements.\n", "\n", "There are multiple ways the repetitions can be set. They are not completely independent of each other, and which setting will be taken into account depends on how you create and use the schedule.\n", "\n", "1. {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice`: via `cfg_sched_repetitions` (by default it is `1024`),\n", "2. schedule function: via the `repetitions` function argument,\n", "3. {class}`~quantify_scheduler.schedules.schedule.Schedule` object: via the `repetitions` function argument of its constructor, or via its `repetitions` attribute directly,\n", "4. ({class}`~quantify_scheduler.gettables.ScheduleGettable`: currently, it is not possible to supply `repetitions` via `schedule_kwargs`).\n", "\n", "Ultimately, the {class}`~quantify_scheduler.schedules.schedule.Schedule` object is what governs the repetitions, via its `repetitions` attribute.\n", "\n", "When using a schedule function, the `repetitions` function argument sets the repetitions, provided that the schedule function passes it to the `Schedule` object. This is true for the pre-defined schedules, see {mod}`!quantify_scheduler.schedules`.\n", "\n", "However, if the experiment is run using `ScheduleGettable`, this `repetitions` function argument is set to `QuantumDevice.cfg_sched_repetitions`. Hence, typically, the schedule will run `QuantumDevice.cfg_sched_repetitions` times.\n", "\n", "### Possible mistake: ignoring `repetitions` argument\n", "\n", "Keep in mind that the schedule function should pass the `repetitions` argument to the `Schedule` initializer, otherwise both `QuantumDevice.cfg_sched_repetitions` and the `repetitions` argument of the schedule function will be ignored. For example, in the following setup, the `repetitions` will always be `1` (default for the `Schedule` object), even if `cfg_sched_repetitions` is set to `2`." ] }, { "cell_type": "code", "execution_count": 11, "id": "4808d011", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import QuantumDevice, ScheduleGettable\n", "\n", "def schedule_function(q0: str, repetitions: int):\n", " schedule = Schedule(\"Example schedule\")\n", " schedule.add(Measure(q0, acq_index=0))\n", " return schedule\n", "\n", "quantum_device = QuantumDevice(name=\"quantum_sample\")\n", "quantum_device.cfg_sched_repetitions(2)\n", "\n", "schedule_gettable = ScheduleGettable(\n", " quantum_device=quantum_device,\n", " schedule_function=schedule_function,\n", " schedule_kwargs={\"q0\": \"q0\"},\n", ")" ] }, { "cell_type": "markdown", "id": "4bdadbe5", "metadata": {}, "source": [ "### Possible mistake: ignoring `cfg_sched_repetitions` default value\n", "\n", "Also note, that the default value of the `repetitions` argument of the schedule function will be ignored if `ScheduleGettable` is used, and it will be set to `QuantumDevice.cfg_sched_repetitions`. For example, in the following setup, `repetitions` will be `1024` (default for `QuantumDevice`), even if the default argument for `repetitions` is `2`." ] }, { "cell_type": "code", "execution_count": 12, "id": "29d11704", "metadata": { "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "quantum_device.close()" ] }, { "cell_type": "code", "execution_count": 13, "id": "23eea0f1", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import QuantumDevice, ScheduleGettable\n", "\n", "def schedule_function(q0: str, repetitions: int = 2):\n", " schedule = Schedule(\"Example schedule\", repetitions=repetitions)\n", " schedule.add(Measure(q0, acq_index=0))\n", " return schedule\n", "\n", "quantum_device = QuantumDevice(name=\"quantum_sample\")\n", "\n", "schedule_gettable = ScheduleGettable(\n", " quantum_device=quantum_device,\n", " schedule_function=schedule_function,\n", " schedule_kwargs={\"q0\": \"q0\"},\n", ")" ] }, { "cell_type": "markdown", "id": "87251f75", "metadata": {}, "source": [ "(sec-schedulegettable-2dsweep-usage)=\n", "\n", "## 2D (and ND) measurement loops" ] }, { "cell_type": "code", "execution_count": 14, "id": "12bebd17", "metadata": { "mystnb": { "code_prompt_show": "Set up the quantum device, dummy hardware and hardware configuration" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "from qblox_instruments import Cluster, ClusterType, DummyBinnedAcquisitionData\n", "\n", "from quantify_scheduler import BasicTransmonElement, InstrumentCoordinator, QuantumDevice\n", "from quantify_scheduler.qblox import ClusterComponent\n", "\n", "\n", "single_qubit_device.close_all()\n", "\n", "# Device parameters\n", "Q0_ACQ_DELAY = 100e-9\n", "Q0_FREQ_01 = 4e9\n", "Q0_READOUT_AMP = 0.1\n", "Q0_READOUT_FREQ = 4.3e9\n", "Q0_PI_PULSE_AMP = 0.15\n", "Q0_LO_FREQ_QUBIT = 3.9e9\n", "Q0_LO_FREQ_READOUT = 4.5e9\n", "\n", "Q1_ACQ_DELAY = 120e-9\n", "Q1_FREQ_01 = 4.1e9\n", "Q1_READOUT_AMP = 0.1\n", "Q1_READOUT_FREQ = 3.8e9\n", "Q1_PI_PULSE_AMP = 0.15\n", "Q1_LO_FREQ_QUBIT = 4.1e9\n", "Q1_LO_FREQ_READOUT = 3.8e9\n", "\n", "two_qubit_device = QuantumDevice(\"two_qubit_device\")\n", "\n", "q0 = BasicTransmonElement(\"q0\")\n", "q0.measure.acq_channel(0)\n", "q0.measure.pulse_amp(Q0_READOUT_AMP)\n", "q0.clock_freqs.readout(Q0_READOUT_FREQ)\n", "q0.clock_freqs.f01(Q0_FREQ_01)\n", "q0.measure.acq_delay(Q0_ACQ_DELAY)\n", "q0.rxy.amp180(Q0_PI_PULSE_AMP)\n", "\n", "q1 = BasicTransmonElement(\"q1\")\n", "q1.measure.acq_channel(1) # Note that we're specifying that measurements on q1 should use a different measurement channel\n", "q1.measure.pulse_amp(Q1_READOUT_AMP)\n", "q1.clock_freqs.readout(Q1_READOUT_FREQ)\n", "q1.clock_freqs.f01(Q1_FREQ_01)\n", "q1.measure.acq_delay(Q1_ACQ_DELAY)\n", "q1.rxy.amp180(Q1_PI_PULSE_AMP)\n", "\n", "two_qubit_device.add_element(q0)\n", "two_qubit_device.add_element(q1)\n", "\n", "# We will need to adjust the hardware configuration.\n", "\n", "# Note: if you are connecting to an actual cluster, you would provide the\n", "# 'identifier' argument (the ip address, device name or serial number) instead\n", "# of the 'dummy_cfg' argument.\n", "cluster = Cluster(\n", " \"cluster\",\n", " dummy_cfg={\n", " 1: ClusterType.CLUSTER_QRM_RF,\n", " 2: ClusterType.CLUSTER_QCM_RF,\n", " 3: ClusterType.CLUSTER_QRM_RF,\n", " 4: ClusterType.CLUSTER_QCM_RF,\n", " },\n", ")\n", "\n", "ic_cluster = ClusterComponent(cluster)\n", "\n", "# Temporarily fixing dummy cluster's deficiency.\n", "cluster.start_sequencer = lambda : start_dummy_cluster_armed_sequencers(ic_cluster)\n", "\n", "instrument_coordinator = InstrumentCoordinator(\"instrument_coordinator\")\n", "instrument_coordinator.add_component(ic_cluster)\n", "\n", "two_qubit_device.instr_instrument_coordinator(instrument_coordinator.name)\n", "\n", "hardware_cfg = {\n", " \"version\": \"0.2\",\n", " \"config_type\": \"quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig\",\n", " \"hardware_description\": {\n", " f\"{cluster.name}\": {\n", " \"instrument_type\": \"Cluster\",\n", " \"modules\": {\n", " \"1\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"2\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " },\n", " \"3\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"4\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " }\n", " },\n", " \"ref\": \"internal\"\n", " }\n", " },\n", " \"hardware_options\": {\n", " \"modulation_frequencies\": {\n", " \"q0:res-q0.ro\": {\n", " \"lo_freq\": Q0_LO_FREQ_READOUT\n", " },\n", " \"q0:mw-q0.01\": {\n", " \"lo_freq\": Q0_LO_FREQ_QUBIT\n", " },\n", " \"q1:res-q1.ro\": {\n", " \"lo_freq\": Q1_LO_FREQ_READOUT\n", " },\n", " \"q1:mw-q1.01\": {\n", " \"lo_freq\": Q1_LO_FREQ_QUBIT\n", " }\n", " }\n", " },\n", " \"connectivity\": {\n", " \"graph\": [\n", " [f\"{cluster.name}.module1.complex_output_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module1.complex_input_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module2.complex_output_0\", \"q0:mw\"],\n", " [f\"{cluster.name}.module3.complex_output_0\", \"q1:res\"],\n", " [f\"{cluster.name}.module3.complex_input_0\", \"q1:res\"],\n", " [f\"{cluster.name}.module4.complex_output_0\", \"q1:mw\"]\n", " ]\n", " }\n", "}\n", "\n", "\n", "two_qubit_device.hardware_config(hardware_cfg)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1, sequencer=0, acq_index_name=\"0\", data=[DummyBinnedAcquisitionData(data=(0.0, 0.0), thres=0, avg_cnt=0)]\n", ")\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=3, sequencer=0, acq_index_name=\"0\", data=[DummyBinnedAcquisitionData(data=(0.0, 0.0), thres=0, avg_cnt=0)]\n", ")" ] }, { "cell_type": "markdown", "id": "7801c7a3", "metadata": {}, "source": [ "2D and higher-dimensional measurement loops are easy to realize. Below we show an example Chevron experiment, which is a type of two-qubit experiment often performed on transmon qubits. The experiment includes a square pulse, and we want to vary both its amplitude and duration in a 2D grid. We have already set up a two-qubit {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` under the variable name `two_qubit_device`.\n", "\n", "We define simple schedule below with a parameterized amplitude and duration of the square pulse. `duration` and `amp` are scalars, so for each measurement point the schedule will be recompiled." ] }, { "cell_type": "code", "execution_count": 15, "id": "74faceee", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import Schedule\n", "from quantify_scheduler.operations import Measure, Reset, SquarePulse, X, X90\n", "\n", "def chevron_schedule_not_batched(duration, amp, repetitions=1):\n", " sched = Schedule(\"Chevron Experiment\", repetitions=repetitions)\n", "\n", " acq_idx = 0\n", "\n", " reset = sched.add(Reset(\"q0\", \"q1\"))\n", " sched.add(X(\"q0\"), ref_op=reset, ref_pt=\"end\") # Start at the end of the reset\n", " # We specify a clock for tutorial purposes, Chevron experiments do not necessarily use modulated square pulses\n", " square = sched.add(SquarePulse(amp=amp, duration=duration, port=\"q0:mw\", clock=\"q0.01\"))\n", " sched.add(X90(\"q0\"), ref_op=square) # Start at the end of the square pulse\n", " sched.add(X90(\"q1\"), ref_op=square)\n", " sched.add(Measure(\"q0\", acq_index=acq_idx), label=f\"M q0 {acq_idx}\")\n", " sched.add(\n", " Measure(\"q1\", acq_index=acq_idx),\n", " label=f\"M q1 {acq_idx}\",\n", " ref_pt=\"start\", # Start at the same time as the other measure\n", " )\n", "\n", " return sched" ] }, { "cell_type": "markdown", "id": "0684ae2e", "metadata": {}, "source": [ "We set up a non-batched measurement with {class}`~quantify_core.measurement.control.MeasurementControl` and a {class}`~quantify_scheduler.gettables.ScheduleGettable`. For this {class}`~quantify_scheduler.gettables.ScheduleGettable`, notice the keyword argument `num_channels=2`, which is needed since we specified in the quantum device elements that the measurements on `\"q0\"` and `\"q1\"` should end up in two different channels.\n", "\n", "In addition, we used another new argument in the {class}`~quantify_scheduler.gettables.ScheduleGettable`: `real_imag=False`. `real_imag` can be used to transform the acquisition data. If it is `True` (the default), the I and Q values will be returned, and if it is `False`, the data will be transformed to the absolute value and the phase (in degrees, in the interval `(-180, 180]`)." ] }, { "cell_type": "code", "execution_count": 16, "id": "5986dcfa", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting iterative measurement...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fe73a1dc2f994d4fb4dfc850215e4aa4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "measurement_control = MeasurementControl(\"measurement_control\")\n", "\n", "# Configure the settables\n", "duration = ManualParameter(\"duration\", label=\"Duration\", unit=\"s\")\n", "duration.batched = False\n", "\n", "durations = np.linspace(start=20e-9, stop=60e-9, num=6)\n", "\n", "amplitude = ManualParameter(\"amplitude\", label=\"Amplitude\", unit=\"V\")\n", "amplitude.batched = False\n", "\n", "amplitudes = np.linspace(start=0.1, stop=1.0, num=10)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=two_qubit_device,\n", " schedule_function=chevron_schedule_not_batched,\n", " schedule_kwargs={\"duration\": duration, \"amp\": amplitude},\n", " batched=False,\n", " real_imag=False,\n", " num_channels=2,\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables([duration, amplitude])\n", "measurement_control.setpoints_grid([durations, amplitudes]) # note: setpoints_grid instead of setpoints\n", "measurement_control.gettables(gettable)\n", "\n", "# Run!\n", "dataset = measurement_control.run()\n", "dset_grid = dh.to_gridded_dataset(dataset)" ] }, { "cell_type": "code", "execution_count": 17, "id": "2a1560ea", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 2kB\n",
       "Dimensions:  (x0: 6, x1: 10)\n",
       "Coordinates:\n",
       "  * x0       (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n",
       "  * x1       (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n",
       "Data variables:\n",
       "    y0       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y1       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y2       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y3       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "Attributes:\n",
       "    tuid:                             20241121-223944-704-68e799\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         True\n",
       "    1d_2_settables_uniformly_spaced:  False\n",
       "    xlen:                             6\n",
       "    ylen:                             10
" ], "text/plain": [ " Size: 2kB\n", "Dimensions: (x0: 6, x1: 10)\n", "Coordinates:\n", " * x0 (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n", " * x1 (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n", "Data variables:\n", " y0 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y1 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y2 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y3 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", "Attributes:\n", " tuid: 20241121-223944-704-68e799\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: True\n", " 1d_2_settables_uniformly_spaced: False\n", " xlen: 6\n", " ylen: 10" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dset_grid" ] }, { "cell_type": "markdown", "id": "6748c9d0", "metadata": {}, "source": [ "As expected, this dataset contains double the amount of coordinates and data variables (note that the actual data has been mocked and set to 0.0). The two coordinates refer to the settables, `duration` and `amplitude`. With `real_imag` now set to `False`, the data variables contain the magnitude and phase (as opposed to the I and Q voltages) for measurements on `\"q0\"` and `\"q1\"`.\n", "\n", "### Batched 2D experiment\n", "\n", "Since this measurement is not batched, it's rather slow. Let's make this faster with (partial) batching.\n", "\n", "We will batch the amplitudes together, so we change the amplitudes parameter in the schedule function to an array." ] }, { "cell_type": "code", "execution_count": 18, "id": "d702d24b", "metadata": { "mystnb": { "code_prompt_show": "Provide the dummy hardware with acquisition data" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "from qblox_instruments import DummyBinnedAcquisitionData\n", "\n", "\n", "def get_dummy_binned_acquisition_data(real: float, imag: float):\n", " return DummyBinnedAcquisitionData(data=(real, imag), thres=0, avg_cnt=0)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1, sequencer=0, acq_index_name=\"0\", data=[get_dummy_binned_acquisition_data(re * 10, im * 10) for re, im in zip(range(-5, 5), range(5, -5, -1))]\n", ")\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=3, sequencer=0, acq_index_name=\"0\", data=[get_dummy_binned_acquisition_data(re * 10, im * 10) for re, im in zip(range(-5, 5), range(5, -5, -1))]\n", ")" ] }, { "cell_type": "code", "execution_count": 19, "id": "25a3d112", "metadata": {}, "outputs": [], "source": [ "def chevron_schedule_batched(duration, amps, repetitions=1):\n", " sched = Schedule(\"Chevron Experiment\", repetitions=repetitions)\n", "\n", " acq_idx = 0\n", "\n", " for amp in amps:\n", " reset = sched.add(Reset(\"q0\", \"q1\"))\n", " sched.add(X(\"q0\"), ref_op=reset, ref_pt=\"end\")\n", " square = sched.add(SquarePulse(amp=amp, duration=duration, port=\"q0:mw\", clock=\"q0.01\"))\n", " sched.add(X90(\"q0\"), ref_op=square)\n", " sched.add(X90(\"q1\"), ref_op=square)\n", " sched.add(Measure(\"q0\", acq_index=acq_idx), label=f\"M q0 {acq_idx}\")\n", " sched.add(\n", " Measure(\"q1\", acq_index=acq_idx),\n", " label=f\"M q1 {acq_idx}\",\n", " ref_pt=\"start\",\n", " )\n", "\n", " acq_idx += 1\n", "\n", " return sched" ] }, { "cell_type": "markdown", "id": "8991283d", "metadata": {}, "source": [ "We specify that we want to batch the amplitudes by setting ``amplitude.batched = True`` and ``batched=True``as keyword argument for the gettable. Finally, we run this experiment just as before." ] }, { "cell_type": "code", "execution_count": 20, "id": "06feed68", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t duration \n", "Batched settable(s):\n", "\t amplitude \n", "Batch size limit: 60\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "06ad09fb95214b3589d2a87dac35251e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Configure the settables\n", "duration = ManualParameter(\"duration\", label=\"Duration\", unit=\"s\")\n", "duration.batched = False\n", "\n", "durations = np.linspace(start=20e-9, stop=60e-9, num=6)\n", "\n", "amplitude = ManualParameter(\"amplitude\", label=\"Amplitude\", unit=\"V\")\n", "amplitude.batched = True\n", "\n", "amplitudes = np.linspace(start=0.1, stop=1.0, num=10)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=two_qubit_device,\n", " schedule_function=chevron_schedule_batched,\n", " schedule_kwargs={\"duration\": duration, \"amps\": amplitude},\n", " batched=True,\n", " real_imag=False,\n", " data_labels=[\"Magnitude Q0\", \"Phase Q0\", \"Magnitude Q1\", \"Phase Q1\"],\n", " num_channels=2,\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables([duration, amplitude])\n", "measurement_control.setpoints_grid([durations, amplitudes])\n", "measurement_control.gettables(gettable)\n", "\n", "# Run!\n", "dataset = measurement_control.run()\n", "dset_grid = dh.to_gridded_dataset(dataset)" ] }, { "cell_type": "code", "execution_count": 21, "id": "10bc4e0d", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 2kB\n",
       "Dimensions:  (x0: 6, x1: 10)\n",
       "Coordinates:\n",
       "  * x0       (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n",
       "  * x1       (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n",
       "Data variables:\n",
       "    y0       (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n",
       "    y1       (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n",
       "    y2       (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n",
       "    y3       (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n",
       "Attributes:\n",
       "    tuid:                             20241121-223953-588-8b1ac6\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         True\n",
       "    1d_2_settables_uniformly_spaced:  False\n",
       "    xlen:                             6\n",
       "    ylen:                             10
" ], "text/plain": [ " Size: 2kB\n", "Dimensions: (x0: 6, x1: 10)\n", "Coordinates:\n", " * x0 (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n", " * x1 (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n", "Data variables:\n", " y0 (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n", " y1 (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n", " y2 (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n", " y3 (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n", "Attributes:\n", " tuid: 20241121-223953-588-8b1ac6\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: True\n", " 1d_2_settables_uniformly_spaced: False\n", " xlen: 6\n", " ylen: 10" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dset_grid" ] }, { "cell_type": "markdown", "id": "4135a467", "metadata": {}, "source": [ "The shape of the dataset is no different from the previous (non-batched) experiment, but the metadata is a little different. Some coordinates and data variables now have the `batched=True` attribute. We also introduced another keyword argument: the `data_labels`. These `data_labels` are picked up by the {class}`~quantify_core.measurement.control.MeasurementControl`and end up in the {class}`xarray.Dataset` as the \"long_name\" of attributes. For example, `\"y0\"`s label can be accessed through `dataset[\"y0\"].attrs[\"long_name\"]`. The various plotting features of `quantify-core` will use this name to get labels for the figure axes." ] } ], "metadata": { "file_format": "mystnb", "kernelspec": { "display_name": "python3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.20" }, "source_map": [ 6, 34, 141, 149, 166, 170, 195, 199, 247, 251, 263, 273, 299, 303, 322, 332, 356, 364, 369, 373, 375, 401, 417, 423, 430, 445, 451, 588, 594, 617, 623, 660, 662, 672, 692, 714, 718, 754, 756 ], "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "00510d2127134cca9026adf34f0f2b8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0302de9c4f94424d81a1965b7d73f6eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "06ad09fb95214b3589d2a87dac35251e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_364021b84e724fef9247909506bb447d", "IPY_MODEL_2e28e414bee3415fa5d78b26777b4c6c", "IPY_MODEL_9dffa10c878840c09fa66f67e3f3201f" ], "layout": "IPY_MODEL_841d03b642f2494ab0030f0a11c7050b", "tabbable": null, "tooltip": null } }, "18517e5641e841409d79e46e36a3ab3d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_00510d2127134cca9026adf34f0f2b8d", "placeholder": "​", "style": "IPY_MODEL_6cc47da6488d4cedaa0235bd35969a09", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:08 | time left: 00:00 ] " } }, "1c6142655b1c478d986b66200d02469c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_fd563060fed343daa5e709aa60dbbdc1", "IPY_MODEL_f8fee2c8c7e24a50af7ba6ce75240b2b", "IPY_MODEL_6ffe7bc6e8b34004bf3c97f495172146" ], "layout": "IPY_MODEL_6d9ac68afc354a61aed8489a9dc564f2", "tabbable": null, "tooltip": null } }, "22002bcbd46e417fa92ad6aef4359fab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "2e28e414bee3415fa5d78b26777b4c6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c273bfff83794fb2b20a2be4ca0109b1", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_72b94eab42f444be80863066e48e360c", "tabbable": null, "tooltip": null, "value": 100.0 } }, "357e3bef1a794eff8c5c18982a7a57c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "364021b84e724fef9247909506bb447d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bbd85e06f54d459ebc2d9b7f182a1e0b", "placeholder": "​", "style": "IPY_MODEL_dfe3c67ec9284474b5c9a456e0a58841", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "391a3bd71b2346408e285396673932aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5dd947d52ced4ccf9c55e8c2d69dcba5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5e445fe337484048a0f66466bd258129": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "63a90ac574aa44f9a9c361e79d15450e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "64b6299a28d44f0fb49340a7e65d8e4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e9b7ee0fce384dd1b0dd4279d6b26cc6", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_cb4979a652374e10be6200802c0e2fb2", "tabbable": null, "tooltip": null, "value": 100.0 } }, "6cc47da6488d4cedaa0235bd35969a09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "6d9ac68afc354a61aed8489a9dc564f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6ffe7bc6e8b34004bf3c97f495172146": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5dd947d52ced4ccf9c55e8c2d69dcba5", "placeholder": "​", "style": "IPY_MODEL_22002bcbd46e417fa92ad6aef4359fab", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 125" } }, "72b94eab42f444be80863066e48e360c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "841d03b642f2494ab0030f0a11c7050b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8db15059edc94b79b35cadc110b40d69": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9dffa10c878840c09fa66f67e3f3201f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_391a3bd71b2346408e285396673932aa", "placeholder": "​", "style": "IPY_MODEL_c8db202d14fd40538136bcbc2bac380c", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 10" } }, "a84c21a17be34281bbe7a0e9bcfb6d21": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "bbd85e06f54d459ebc2d9b7f182a1e0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c273bfff83794fb2b20a2be4ca0109b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c8db202d14fd40538136bcbc2bac380c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "cb4979a652374e10be6200802c0e2fb2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "dfe3c67ec9284474b5c9a456e0a58841": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "e9b7ee0fce384dd1b0dd4279d6b26cc6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f0c1aeded1ad4d3e8da600b7c57bde82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f6902e92e4534290ad4c085e8bf01c68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8db15059edc94b79b35cadc110b40d69", "placeholder": "​", "style": "IPY_MODEL_63a90ac574aa44f9a9c361e79d15450e", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "f8fee2c8c7e24a50af7ba6ce75240b2b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0302de9c4f94424d81a1965b7d73f6eb", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5e445fe337484048a0f66466bd258129", "tabbable": null, "tooltip": null, "value": 100.0 } }, "fd563060fed343daa5e709aa60dbbdc1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_357e3bef1a794eff8c5c18982a7a57c2", "placeholder": "​", "style": "IPY_MODEL_a84c21a17be34281bbe7a0e9bcfb6d21", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "fe73a1dc2f994d4fb4dfc850215e4aa4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_f6902e92e4534290ad4c085e8bf01c68", "IPY_MODEL_64b6299a28d44f0fb49340a7e65d8e4b", "IPY_MODEL_18517e5641e841409d79e46e36a3ab3d" ], "layout": "IPY_MODEL_f0c1aeded1ad4d3e8da600b7c57bde82", "tabbable": null, "tooltip": null } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }