{ "cells": [ { "cell_type": "markdown", "id": "893d2d5f", "metadata": {}, "source": [ "(sec-tutorial-schedulegettable)=\n", "\n", "# Tutorial: ScheduleGettable\n", "\n", "```{seealso}\n", "The complete source code of this tutorial can be found in\n", "\n", "{nb-download}`ScheduleGettable.ipynb`\n", "```\n", "\n", "This tutorial covers the {class}`~quantify_scheduler.gettables.ScheduleGettable` in-depth. If you're looking for more information on how to set up an experiment in general, please see {ref}`sec-tutorial-experiment`.\n", "\n", "The {class}`~quantify_scheduler.gettables.ScheduleGettable` forms the top-level interface to {mod}`quantify_scheduler`. Under the hood, it uses `quantify-scheduler` modules to compile {ref}`Schedules `, run them on your hardware and retrieve measurement data from the hardware. As the {class}`~quantify_scheduler.gettables.ScheduleGettable` uses functions that return {class}`~quantify_scheduler.schedules.schedule.Schedule`s, you can dynamically set function parameters during experiments.\n", "\n", "For those familiar with [quantify-core](https://quantify-os.org/docs/quantify-core), the interface of the {class}`~quantify_scheduler.gettables.ScheduleGettable` is also designed to be used as a [gettable](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#settables-and-gettables) for [MeasurementControl](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#measurement-control). This is convenient for large, possibly multi-dimensional measurement loops, as is demonstrated in {ref}`2D (and ND) measurement loops`.\n", "\n", "Two things are always required when using a {class}`~quantify_scheduler.gettables.ScheduleGettable`: a {ref}`QuantumDevice ` and a function that returns a {class}`~quantify_scheduler.schedules.schedule.Schedule`. We will set these up in a few example scenarios below and show how to use the {class}`~quantify_scheduler.gettables.ScheduleGettable`. More commonly used schedule functions are also included in `quantify-scheduler` out of the box. You can find them in {mod}`~.quantify_scheduler.schedules.spectroscopy_schedules`, {mod}`~.quantify_scheduler.schedules.timedomain_schedules` and {mod}`~.quantify_scheduler.schedules.trace_schedules`.\n", "\n", "(sec-schedulegettable-1dsweep-usage)=\n", "\n", "## 1D iterative measurement loop\n", "\n", "\n", "```{admonition} Setup and hardware configuration\n", "The device setup and hardware configuration for this tutorial can be viewed in the collapsed code cells. In places where you would communicate with actual hardware, dummy objects have been used. If you want to learn more about how to set up the {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` and hardware configuration, please see our other tutorials, in particular {ref}`sec-tutorial-experiment` and {ref}`sec-tutorial-compiling`.\n", "```" ] }, { "cell_type": "code", "execution_count": 1, "id": "c0e47742", "metadata": { "mystnb": { "code_prompt_show": "Set up the quantum device, dummy hardware and hardware configuration" }, "tags": [ "hide-cell" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Data will be saved in:\n", "/root/quantify-data\n" ] } ], "source": [ "from qblox_instruments import Cluster, ClusterType\n", "from quantify_core.data import handling as dh\n", "\n", "from quantify_scheduler import BasicTransmonElement, InstrumentCoordinator, QuantumDevice\n", "from quantify_scheduler.qblox import ClusterComponent, start_dummy_cluster_armed_sequencers\n", "\n", "# First, don't forget to set the data directory!\n", "dh.set_datadir() # change me!\n", "\n", "# We define a single transmon qubit as an element (BasicTransmonElement) of the\n", "# QuantumDevice, and populate the parameters with some reasonable values.\n", "\n", "# Device parameters\n", "ACQ_DELAY = 100e-9\n", "FREQ_01 = 4e9\n", "READOUT_AMP = 0.1\n", "READOUT_FREQ = 4.3e9\n", "PI_PULSE_AMP = 0.15\n", "LO_FREQ_QUBIT = 3.9e9\n", "LO_FREQ_READOUT = 4.5e9\n", "\n", "single_qubit_device = QuantumDevice(\"single_qubit_device\")\n", "\n", "q0 = BasicTransmonElement(\"q0\")\n", "single_qubit_device.add_element(q0)\n", "\n", "# Assign device parameters to transmon element\n", "q0.measure.pulse_amp(READOUT_AMP)\n", "q0.clock_freqs.readout(READOUT_FREQ)\n", "q0.clock_freqs.f01(FREQ_01)\n", "q0.measure.acq_delay(ACQ_DELAY)\n", "q0.rxy.amp180(PI_PULSE_AMP)\n", "\n", "# For this example, we will set up a Qblox cluster hardware setup with two modules: a\n", "# QRM-RF and a QCM-RF.\n", "\n", "# Note: if you are connecting to an actual cluster, you would provide the\n", "# 'identifier' argument (the ip address, device name or serial number) instead\n", "# of the 'dummy_cfg' argument.\n", "cluster = Cluster(\n", " \"cluster\",\n", " dummy_cfg={\n", " 1: ClusterType.CLUSTER_QRM_RF,\n", " 2: ClusterType.CLUSTER_QCM_RF,\n", " },\n", ")\n", "\n", "ic_cluster = ClusterComponent(cluster)\n", "\n", "# Temporarily fixing dummy cluster's deficiency.\n", "cluster.start_sequencer = lambda : start_dummy_cluster_armed_sequencers(ic_cluster)\n", "\n", "# We create an InstrumentCoordinator to control the cluster and add it to the\n", "# QuantumDevice.\n", "\n", "instrument_coordinator = InstrumentCoordinator(\"instrument_coordinator\")\n", "instrument_coordinator.add_component(ic_cluster)\n", "\n", "single_qubit_device.instr_instrument_coordinator(instrument_coordinator.name)\n", "\n", "# A basic hardware configuration will be used for the two cluster modules.\n", "\n", "hardware_cfg = {\n", " \"version\": \"0.2\",\n", " \"config_type\": \"quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig\",\n", " \"hardware_description\": {\n", " f\"{cluster.name}\": {\n", " \"instrument_type\": \"Cluster\",\n", " \"modules\": {\n", " \"1\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"2\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " }\n", " },\n", " \"ref\": \"internal\"\n", " }\n", " },\n", " \"hardware_options\": {\n", " \"modulation_frequencies\": {\n", " \"q0:res-q0.ro\": {\n", " \"lo_freq\": LO_FREQ_READOUT\n", " },\n", " \"q0:mw-q0.01\": {\n", " \"lo_freq\": LO_FREQ_QUBIT\n", " }\n", " }\n", " },\n", " \"connectivity\": {\n", " \"graph\": [\n", " [f\"{cluster.name}.module1.complex_output_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module1.complex_input_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module2.complex_output_0\", \"q0:mw\"]\n", " ]\n", " }\n", "}\n", "\n", "\n", "# This hardware configuration should also be added to the quantum device.\n", "single_qubit_device.hardware_config(hardware_cfg)" ] }, { "cell_type": "markdown", "id": "5624bad5", "metadata": {}, "source": [ "For this experiment, we have set up a basic {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` called `single_qubit_device`, representing a single transmon qubit.\n", "\n", "We'll now define the schedule function. A valid schedule function must contain a `repetitions` (integer) parameter (see {ref}`Repetitions`), and can contain any number of additional parameters. It must return a {class}`~quantify_scheduler.schedules.schedule.Schedule` object.\n", "\n", "The schedule function can be parameterized to loop over different values. The parameters can be scalars or arrays. For example, the schedule function defined below takes an array of values for the parameter `times`. This is called a _batched_ measurement, as will be explained further in this tutorial." ] }, { "cell_type": "code", "execution_count": 2, "id": "b3230c26", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import Schedule\n", "from quantify_scheduler.operations import Measure, Reset, X\n", "\n", "def t1_sched(times, repetitions=1):\n", " schedule = Schedule(\"T1\", repetitions)\n", " for i, tau in enumerate(times):\n", " schedule.add(Reset(\"q0\"), label=f\"Reset {i}\")\n", " schedule.add(X(\"q0\"), label=f\"pi {i}\")\n", " # Measure tau seconds after the start of the X gate\n", " schedule.add(\n", " Measure(\"q0\", acq_index=i),\n", " ref_pt=\"start\",\n", " rel_time=tau,\n", " label=f\"Measurement {i}\",\n", " )\n", " return schedule" ] }, { "cell_type": "markdown", "id": "2025f3c4", "metadata": {}, "source": [ "Now, let's create the {class}`~quantify_scheduler.gettables.ScheduleGettable`. The {class}`~quantify_scheduler.gettables.ScheduleGettable` provides a convenient way to compile and execute schedules in just a few lines of code. The parameters can be set directly, with arrays and scalars, or through QCoDeS parameters, as shown below." ] }, { "cell_type": "code", "execution_count": 3, "id": "4ec6b011", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "from qcodes.instrument.parameter import ManualParameter\n", "\n", "from quantify_scheduler import ScheduleGettable\n", "\n", "# The points we want to measure.\n", "times = np.linspace(start=1.6e-7, stop=4.976e-5, num=125)\n", "\n", "# As QCoDeS parameter:\n", "time = ManualParameter(\"sample\", label=\"Sample time\", unit=\"s\")\n", "# Set the parameter. This can be done even after defining the gettable!\n", "time(times)\n", "\n", "# Or as array:\n", "time = times\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=t1_sched,\n", " schedule_kwargs={\"times\": time},\n", " batched=True\n", ")" ] }, { "cell_type": "markdown", "id": "ab316a48", "metadata": {}, "source": [ "Note that `batched=True` here. This means we are doing a _batched_ measurement, which simply means that we tell the {class}`~quantify_scheduler.gettables.ScheduleGettable` to expect an array of values in the acquisition result. In this case, our schedule function creates one schedule for an array of times, and it includes an acquisition (the {class}`~quantify_scheduler.operations.gate_library.Measure` operation) for each point." ] }, { "cell_type": "code", "execution_count": 4, "id": "5daa96e0", "metadata": { "mystnb": { "code_prompt_show": "Provide the dummy hardware with acquisition data" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "import xarray\n", "\n", "from quantify_scheduler.waveforms import soft_square\n", "\n", "from qblox_instruments import DummyScopeAcquisitionData, DummyBinnedAcquisitionData\n", "\n", "\n", "soft_sq_samples = round(q0.measure.integration_time() * 1e9)\n", "soft_sq_times = np.arange(soft_sq_samples)\n", "soft_sq = soft_square(t=soft_sq_times, amp=0.5)\n", "scope_data_real = np.zeros(16384) # Scope trace acquires 16384 points\n", "scope_data_real[:soft_sq_samples] = soft_sq\n", "scope_data_real += np.random.randn(16384) / 500 # add some \"noise\"\n", "\n", "# Create dummy scope data with the soft square pulse on the I path and noise on\n", "# the Q path\n", "scope_data = list(zip(scope_data_real, np.random.randn(16384) / 500))\n", "\n", "dummy_scope_acquisition_data = DummyScopeAcquisitionData(\n", " data=scope_data, out_of_range=(False, False), avg_cnt=(0, 0)\n", " )\n", "\n", "ic_cluster.instrument.set_dummy_scope_acquisition_data(\n", " slot_idx=1, sequencer=None, data=dummy_scope_acquisition_data\n", ")\n", "\n", "\n", "# Dataset with T1 experiment data\n", "example_dataset = xarray.open_dataset(\"../examples/dataset.hdf5\")\n", "\n", "def get_dummy_binned_acquisition_data(real: float, imag: float):\n", " return DummyBinnedAcquisitionData(data=(real, imag), thres=0, avg_cnt=0)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1,\n", " sequencer=0,\n", " acq_index_name=\"0\",\n", " data=[\n", " get_dummy_binned_acquisition_data(float(re) * 1024, float(im) * 1024)\n", " for re, im in zip(example_dataset[\"y0\"], example_dataset[\"y1\"])\n", " ],\n", ")" ] }, { "cell_type": "markdown", "id": "d0b6d750", "metadata": {}, "source": [ "Let's now run the experiment and retrieve the acquisitions using the {meth}`~quantify_scheduler.gettables.ScheduleGettable.get` method." ] }, { "cell_type": "code", "execution_count": 5, "id": "5e23c7c6", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUP0lEQVR4nO3deVhU9eIG8HcGEWUbZAdFEXdzww0x1yTXuGlqaiZqtvy6apFLYddcyjIrS23Rsky9N9My5XqtKFPLNFNESS33NIxFRGKQRSA4vz/GGWeGMzNnYPZ5P88zj86Zs3znUJ6X7yoTBEEAERERkRuS27sARERERPbCIERERERui0GIiIiI3BaDEBEREbktBiEiIiJyWwxCRERE5LYYhIiIiMhtNbB3ARxdTU0NcnJy4OfnB5lMZu/iEBERkQSCIODmzZuIjIyEXG643odByIScnBxERUXZuxhERERUB1evXkWzZs0Mfs4gZIKfnx8A1Y309/e3c2mIiIhIiuLiYkRFRWme44YwCJmgbg7z9/dnECIiInIyprq1sLM0ERERuS0GISIiInJbDEJERETkthiEiIiIyG0xCBEREZHbYhAiIiIit8UgRERERG6LQYiIiIjcFoMQERERuS0GISIiInJbDEJERETkthiEiIiIyD6U2cDlA6o/7YSLrhIREZHtHd8M/O9pQKgBZHIgcTXQPcnmxWCNkL04QAomIiKyC2X2nRAEqP78X7JdnomsEbIHB0nBREREdlF46U4IUhOqgcLfAUVTmxaFNUK25kApmIiIyC4CW6kqArTJPIDAGJsXhUHI1oylYCIiInegaKpqDZF5qN7LPIDEVTavDQLYNGZ76hSsHYbslIKJiIjspnsS0GqIqiIgMMYuIQhgjZDtOVAKJiIisitFU6Blf7s+A1kjZA8OkoKJiIjcHYOQvSiaMgARERHZGZvGiIiIyG0xCBEREZHbYhByFJxpmoiIyObYR8gRcKZpIiIiu2CNkL1xpmkiIiK7cbog9O677yI6OhqNGjVCXFwcjh49anDf9evXo3///mjSpAmaNGmChIQEo/vbhaGZpq8eZVMZERGRlTlVENq2bRvmzJmDxYsX4/jx4+jatSuGDRuG/Px80f2///57TJo0Cfv378fhw4cRFRWFoUOHIjvbgcKF2HorkAFfPAJsSgRWdVI1nREREZHFyQRBEOxdCKni4uLQq1cvvPPOOwCAmpoaREVFYfbs2UhJSTF5fHV1NZo0aYJ33nkHSUnS+uAUFxdDoVBAqVTC39+/XuU36PhmVXOYUA1VNhVuv26TeQDJpzjvEBERkURSn99OUyNUWVmJjIwMJCQkaLbJ5XIkJCTg8OHDks5RVlaGqqoqBAYGGtynoqICxcXFOi+r656kCjpTdwPjPoJOCAJUAenXVDaTERERWZjTBKGCggJUV1cjLCxMZ3tYWBjy8vIkneO5555DZGSkTpjSt3z5cigUCs0rKiqqXuWWTL3eSlScSFMZgG+fZzMZERGRhTlNEKqvV199FVu3bsXOnTvRqFEjg/stWLAASqVS87p69aoNS4nai7Jq44gyIiIii3KaeYSCg4Ph4eGBa9eu6Wy/du0awsPDjR77xhtv4NVXX8V3332HLl26GN3Xy8sLXl5e9S5vvagXZf01VVUTpE2oVi3Wyv5CRERE9eY0NUINGzZEjx49sHfvXs22mpoa7N27F/Hx8QaPe+211/DSSy8hLS0NPXv2tEVRLUPRFLhrdO1mMpmHasV6IiIiqjenCUIAMGfOHKxfvx6bNm3CmTNn8OSTT6K0tBTTp08HACQlJWHBggWa/VesWIEXXngBGzZsQHR0NPLy8pCXl4eSkhJ7fQXz6DeTyTyAxFWsDSIiIrIQp2kaA4AJEybg+vXrWLRoEfLy8tCtWzekpaVpOlBnZWVBLr+T7dauXYvKykqMGzdO5zyLFy/GkiVLbFn0ulM3kxX+rqoJYggiIiKyGKeaR8gebDKPEBEREVmUy80jRERERGRpDELOSJnNdciIiIgswKn6CBFuL8dxe7V6mVzVmbq7tOVCiIiISBdrhJyJMvtOCAI4wSIREVE9sUbImRReuhOC1IRq4OpRoDBItZI9R5URERFJxiDkTAJbqZrDdMKQDPjiETaVERER1QGbxpxJrXXIbv/42FRGRERUJ6wRcjbaEyyWXge2T9f9nGuRERERScYg5IwUTVUvZXbtpjKuRUZERCQZm8acGdciIyIiqhfWCDk7rkVGRERUZwxCrkDdVEZERERmYdOYq+HyG0RERJKxRsiVcPkNIiIiszAIuQpDy2+E3gVUlXLWaSIiIhEMQq7C0PIbHw0BBIE1RERERCLYR8hVqJff0CcIt//krNNERET6GIRchaHlN7SpZ50mIiIiAGwacy3acwp5egMfJdSeddrTWzWqjH2GiIiIGIRcjvacQomrVc1hQrUqBHWZcCccsc8QERERg5BLM1ZDJNQAu54GGvoCUXGsHSIiIrfEPkKuTtEUaNlfNYRef1QZalSr16/qpJqDiIiIyM0wCLkLQ6PKAI4oIyIit8Ug5C5qjSrTwxFlRETkhhiE3En3JCD5FDBuY+3aIZmHavV6IiIiN8Ig5G4UTYFOY3Rrh2QeQOIq1d+5YCsREbkRjhpzV9ojygJjgEt7VZ2mObSeiIjcCGuE3Jl6RBkgvmAra4aIiMjFMQiR4QVb2XmaiIhcHIMQGRhaLwdKr7NWiIiIXBqDEIkMrZcBEHQnW1RmsyM1ERG5HJkgCIK9C+HIiouLoVAooFQq4e/vb+/iWJcyG7h6FPjiEb2mMhkgk7EjNREROQ2pz2/WCNEdiqaAT5DIUhwCO1ITEZFLYhAiXcaW4lBjR2oiInIRDEKkq1Z/ITlUfYa0cBZqIiJyEZxQkWoTm2zxf8mqmiD1LNSKpvYuJRERUb05XY3Qu+++i+joaDRq1AhxcXE4evSo0f0///xztG/fHo0aNULnzp3x1Vdf2aikTk492aKi6Z01yqbuVv3JjtJEROQinCoIbdu2DXPmzMHixYtx/PhxdO3aFcOGDUN+fr7o/j/99BMmTZqEGTNm4MSJExg9ejRGjx6N06dP27jkLkA7GBEREbkIpxo+HxcXh169euGdd94BANTU1CAqKgqzZ89GSkpKrf0nTJiA0tJS7N69W7OtT58+6NatG9atWyfpmm41fJ6IiMhFuNzw+crKSmRkZCAhIUGzTS6XIyEhAYcPHxY95vDhwzr7A8CwYcMM7g8AFRUVKC4u1nmRCE6wSERELsBpglBBQQGqq6sRFhamsz0sLAx5eXmix+Tl5Zm1PwAsX74cCoVC84qKiqp/4V3N8c2qGac3Jd6ZeZqIiMgJOU0QspUFCxZAqVRqXlevXrV3kRyLMtv0SvWsLSIiIifhNMPng4OD4eHhgWvXrulsv3btGsLDw0WPCQ8PN2t/APDy8oKXl1f9C+yqjK1Ur2iqqh1SByUux0FERA7OaWqEGjZsiB49emDv3r2abTU1Ndi7dy/i4+NFj4mPj9fZHwD27NljcH+SwNhK9X9mmK4tIiIiciBOUyMEAHPmzMHUqVPRs2dP9O7dG6tWrUJpaSmmT58OAEhKSkLTpk2xfPlyAMDTTz+NgQMHYuXKlRg1ahS2bt2KY8eO4YMPPrDn13Bu6pmn1RMsaq9Ur/67Nu3aIiIiIgfjVEFowoQJuH79OhYtWoS8vDx069YNaWlpmg7RWVlZkMvv1Fb07dsXW7ZswcKFC/H888+jTZs2SE1NRadOnez1FVyDeubpWivVi8zEwOU4iIjIgTnVPEL2wHmEjLh8QDVyTJ9MfruP0O3lOFoNUfUtCmzFmiEiIrIJqc9vp6oRIgej7i+k3Xla5gHM2ANUld1Zp2xVJ3aeJiIih+Q0naXJAemvVK+uAWrWQ7UcB8DO00RE5NBYI0T1o79SvXbTl6Gh9r+mAneNZjMZERHZHWuEqP4MLcgqOtQewLfPc0ZqIiJyCAxCZD36TWfa2ExGREQOgEGIrKt7EpB8Chj6Su3PhGrVEHxDy3FwqQ4iIrIy9hEi61M0VfUJ2rNQr8+Q7M48RPojyrhUBxER2QBrhMg2ajWT3f5PT2xEmZSFXYmIiCyANUJkO9ojzEqv316WQ4t6OQ4I4qPNrh4FCoNUnbABTtJIRET1xiBEtqVoqnops8UnY/T0Bor+qP2ZdjMaZLe3CXeazTh7NRER1QGDENmH/uKtMg+gywTgo4Q7YUcmAwQBqmY0QXxNM6EG2PXU7X3Zn4iIiMzDIET2o91U5umtFYIAVfCRA+M+xp3V7Q0Rbgcm3OlP1GoIa4aIiMgkBiGyL3VT2eUDtfsFoQbwCVbNWF2rqcwI/f5EDERERGQAR42RYxCbhVrmcWfZDp0RZ7ebzQCo/hOWQe9AVX+iTYmcwZqIiIxijRA5BrE+Q4mr7tTm6K9pBtz5+6W9d47T70/EpjIiIjJCJgiCYHo391VcXAyFQgGlUgl/f397F8f1KbPFF3CVepzYsHwAmLpbtR4aERG5BanPb9YIkWNR9xmq63GGhuWra5GIiIi0sI8QuRb9/kT6TWxERERaWCNErke/P5GpEKTM5mSMRERuikGIXJN2E5uxoMPFXYmI3BqDELk2saCjXo7D00d8cVftEWasLSIicmkMQuS6xFax116OAzLoLNcBqIbg/5oK3DX69rB8AyGKwYiIyCVw+LwJHD7vxC4fUE2qWCdaC7tqb+OaZkREToHD54nUs1WbWppDdB+x3w/01jTb9TTQ0BeIirszdF9dWwSw5oiIyAkwCJHr0p+tWj3rtHbIkXkAM/YAWT8D3z5v5gVqVJM3yuRAl4nAya1aTW5QXcdQkxr7HhEROQQ2jZnApjEXoD1btfZyHOo5hronqfZZ1UmvZkirKUwsREmm16SmHZrYxEZEZBVSn98MQiYwCLkgQ8t4HN9cOyRpz0eks6aZBck8gORTrBkiIrIgBiELYRByM6bWOlNmA1ePqla3N9X3yBxcC42IyKKkPr+5xAaRNkVTVSAxVDujaAp0GlN7GY+uD915r24KA6D6X0wmciItXAuNiMhu2FmaqC7ElvG4Z+Gd94DhfkldJgAnt+k2wWkHL3akJiKyGTaNmcCmMbII/SY37ffAneAjNomjsY7UDE1ERKI4jxCRI9Fe+0z7vfYSIPqTOKqX/Ai9C6gqrR12uE4aEVG9sUbIBNYIkdWIDtkXIZOpJnLUDjtix+qPPmNtERG5MdYIETm6wkvSRp6JzWatfq+zX7WquU2/pqkuTWwMUUTkJhiEiOxFdAkQ/Ukc9YPS7dmsIUOtRWPVo8/EFps1p4mNEz4SkRthECKyF/0lQPQncfT0Bj5KMFBrJEAVmm4HKfWxAPDrTvHaoo+G3GliS1gCRMYCnj61Q9MvW7SOux2iWg0xXDPE2iMicmJOE4QKCwsxe/Zs/O9//4NcLsfYsWOxevVq+Pr6Gtx/8eLF+Pbbb5GVlYWQkBCMHj0aL730EhQKhY1LT2SA2DB84M6fOmul6ROAsR8DPsF3hukb63Ok3cS2Z9HtjXq1SqLHaTW56WOHbSJyck4zoeLkyZPx66+/Ys+ePdi9ezcOHDiAxx9/3OD+OTk5yMnJwRtvvIHTp09j48aNSEtLw4wZM2xYaiIJjE3i2D1J1QF63EZV0NAm8wCiet+ZkVq7ZkeHsf/NpYyVkAOl11U1P4Dqz8sHgD8zxJvg1PsRETkBpxg1dubMGXTs2BHp6eno2bMnACAtLQ0jR47En3/+icjISEnn+fzzz/Hwww+jtLQUDRqIV4ZVVFSgoqJC8764uBhRUVEcNUb2J7YWmrr25fIBYFNi7WOGvQJE9THSxHabdhOb9oSP2kP69fsPGapNssZyIfVpfmPTHZFbcqlRY4cPH0ZAQIAmBAFAQkIC5HI5jhw5gjFjxkg6j/pmGApBALB8+XIsXbq03mUmsjhDzWiAeMdrmQfQcXTtvkj6ZB7AjD1AVZnuLNn6a6rp9x8SrU3Sqj0ytFabOpQA0gJKfZrf2HRHRCY4RRDKy8tDaGiozrYGDRogMDAQeXl5ks5RUFCAl156yWhzGgAsWLAAc+bM0bxX1wgROQT9iRm1t4t1vFbvqx2ick4A3y3R3a9Zj9rnKwySNrxfE8Bu1xBtn34ndLQaIj5rtn5Nk6GAYmgEnLHO25Y4lojchl2DUEpKClasWGF0nzNnztT7OsXFxRg1ahQ6duyIJUuWGN3Xy8sLXl5e9b4mkc0ZqzEC7oSolv2BTmMN76cmOrxfj7o2qSirdu3Rrqe0pgLQmzVbuzbJ2PB+sbmWjHXe1lafY8WwiY3IJdk1CM2dOxfTpk0zuk9MTAzCw8ORn5+vs/3vv/9GYWEhwsPDjR5/8+ZNDB8+HH5+fti5cyc8PT3rW2wix2Woxqgu+4nVMoktGNushyrA1ApMwp2RalJGphka3i/W5Kdeo80YQ82Fxo411HTHNeCIXJZdg1BISAhCQkJM7hcfH4+ioiJkZGSgRw9VFf6+fftQU1ODuLg4g8cVFxdj2LBh8PLywq5du9CoUSOLlZ3ILYjVMt2zsHZtkpTaI1PEhvdrOmjrhS9A1UFcrK+Rdggx1lyoz+C6byJrwKln+I6Kq30+V+6XZCrg1aUPmC3LR8a56QzzTjFqDABGjBiBa9euYd26daiqqsL06dPRs2dPbNmi6ryZnZ2NIUOGYPPmzejduzeKi4sxdOhQlJWVYefOnfDx8dGcKyQkBB4eHpKuy7XGiCTSHtUGOVTBQfufF5luU5kMt8OP2Aza2ofpdeY21tdIbFZs7SAHiP9D7+ljemSdaNn0go7o+nFyYNxH4qFJnyM8eAyVwVTAMxQkxfY153tKfThbM4Da4+di61AiZYZ57T5/ThCMpD6/nSYIFRYWYtasWToTKq5Zs0YzoeKVK1fQsmVL7N+/H4MGDcL333+PwYMHi57r8uXLiI6OlnRdBiEiMyiz74SOS3sNz5qtCSWmZtC+TT0kX+pCtWraC9Ea+4deysSSxq4xY4+qebC04PYSKGL7GXg4qx9wOZnAd4uNP3iMPQwt8ZmhJkBDi/yqv7epIGns52DsASt1+RcpixDrf1fA8L3V/sxUs6g1Akp9l70xt0yS/r/S+kXGSWo6XS4I2QuDEFE9aAcjk0Pkkw0P71c/0AzNl2TM1N2q65sToGoXQqs2S+xj2e3aLf1O4fr7aYWHWiPpjFzT1MNQ/8Gp7mNl6kFusDlQq7zJp1QPVbH7rvO9TTxKDP4cRB6wrYYAV48AX8yQ1lk/6zDw7b/Er6me08pYjVWtUKy+D0buidTFjc0NqFJCiVjIU6vLgsu/7hS/f8bol8ERajP1uNQ8QkTkpKR23jY1vL+ufZHUnaPFRpCJ7q81FYC66U67Nkt/biU1nU7hMsNl1O4Ubio0aXc2N7YGHFB7mgCdJVS0rqE9Qq/oD70QJlIOoVr1ndWBwej3NsLoz0Hve+qMNjRB534auCZQeyoF/VGLBufHMnJPrgqmFzeWGkK1A6DYWoFiZfg1FbhrdO0aL/0y6fdnM1QDaC7tEZh1CV8OFJpYI2QCa4SI7MBYTZJO7ZFeYBEb1Wao6USffl8kQLwMtfpCiZxz3EbVn2KhyZKGvgL4RxhujjNEU5Njckfz+nWZDJISanksQacp9pLxJkvzT16P2sHb/cUCWog0JZo4r+i19JoWTTXNGqz50t9X7/8lsT5/6hohQFqzpJoNBxOwacxCGISIHJB2UAJ0A4uhEKW/RImh0GTO9cX6N9VqOkk2HppEiXU2N8RUzZI5tB/GYmWQA+M2AAHNxb+3oSCp38FdJ1BJ/J6iD2eR+znsFdWM6oY61ZvN1D2pCzP6pNX63sbKZ4H/FtT3T///JbE+f92TDDdXD33lTo2VsUEJxkJTPTEIWQiDEJEL0Q9JUvswGWNsDTjta4p2CtfuH+MBJCwGIruLP3gkPwyNfWYkjOl3aC+9Ll67oO53Y+p7a39/0ZF0G1SLBmt/T2PhK6q37s/MWAgFjPdFMlaTaKg2y9g9UZdTctCVSD+U/JoKfPu8iYPqULOkOdREKKn1C4iJEZf2XJ8QDEIWwyBERCbVpVO42Eg60c60esHN0MNw3EbAJ1i8j5X6GqJhTC9oaF/bVJOHlO9tqMZA++EnpeZB6v00VkuhvkemahL1PzN2T4zVkplsRpPDYE2ToVFvUjr9S26a1QviUmtFRUe1GQrpJrBGyPExCBGRRdW3Fqq+AUVqTY65+9anvGLHSL1HYvvW5ZpSGbsnhoKuWCd70fmxDJzX0PVNBSgpzcHGgrgYY1MpZP0socYKdwJgXf+bkohByEIYhIjI4dQ3oNQ3aNi6vI52TWP3RGofNbHySL3X5tSgWbo52FgNn5RpKvQDoBVHjTEIWQiDEBE5JEsEFFuyR3kd7R5Zqzy2/J6matssOSihnhiELIRBiIiISIvUAQKWHJRQBwxCFsIgREREpMfRattEcGZpIiIisg6ps8Y7Abm9C0BERERkLwxCRERE5LYYhIiIiMhtMQgRERGR2zKrs3RRURF27tyJH3/8EX/88QfKysoQEhKC2NhYDBs2DH379rVWOYmIiIgsTlKNUE5ODh599FFERERg2bJlKC8vR7du3TBkyBA0a9YM+/fvx7333ouOHTti27Zt1i4zERERkUVIqhGKjY3F1KlTkZGRgY4dO4ruU15ejtTUVKxatQpXr17FvHnzLFpQIiIiIkuTNKHijRs3EBQUJPmk5u7vyDihIhERkfOR+vyW1DQWFBSE3bt3o6bGyEJqevsTEREROTrJo8ZGjx6NqKgo/Otf/8LFixetWSYiIiIim5AchC5fvownnngCW7duRbt27TBw4ED8+9//Rnl5uTXLR0RERGQ1koNQVFQUFi1ahEuXLuG7775DdHQ0nnzySUREROD//u//kJ6ebs1yEhEREVlcnSZUHDx4MDZt2oTc3Fy8/vrrOHXqFPr06YOuXbtaunxEREREVlOv1ef9/PwwZMgQ/PHHHzh79ix+++03S5WLiIiIyOrqVCNUXl6OzZs3Y9CgQWjTpg22bt2KOXPm4MqVKxYuHhEREZH1mFUj9PPPP2PDhg347LPPUFlZiQceeADfffcdBg8ebK3yEREREVmN5CDUsWNHnDt3DrGxsVi+fDkeeughKBQKa5aNiIjIYqqrq1FVVWXvYpCFeHp6wsPDo97nkRyEEhIS8Omnn7JDNBERORVBEJCXl4eioiJ7F4UsLCAgAOHh4ZDJZHU+h+QgtGbNmjpfhIiIyF7UISg0NBTe3t71emiSYxAEAWVlZcjPzwcARERE1PlckoLQ8OHDsWTJEvTp08fofjdv3sR7770HX19fzJw5s86FIiIisoTq6mpNCOLyT66lcePGAID8/HyEhobWuZlMUhAaP348xo4dC4VCgcTERPTs2RORkZFo1KgR/vrrL/z22284ePAgvvrqK4waNQqvv/56nQpDRERkSeo+Qd7e3nYuCVmD+udaVVVl3SA0Y8YMPPzww/j888+xbds2fPDBB1AqlQAAmUyGjh07YtiwYUhPT0eHDh3qVBAiIiJrYXOYa7LEz1VyHyEvLy88/PDDePjhhwEASqUS5eXlCAoKgqenZ70LQkRERGRrdZpQEQAUCgXCw8MZgoiIiJzElStXIJPJkJmZae+iOIw6ByEiIiIiZ+c0QaiwsBCTJ0+Gv78/AgICMGPGDJSUlEg6VhAEjBgxAjKZDKmpqdYtKBERkRVUVlbauwguyWmC0OTJk/Hrr79iz5492L17Nw4cOIDHH39c0rGrVq1iRzkiIqqXXGU5frpUgFxluU2uN2jQIMyaNQvJyckIDg7GsGHDcPr0aYwYMQK+vr4ICwvDlClTUFBQoDkmLS0N/fr1Q0BAAIKCgnDffffh0qVLNimvs3KKIHTmzBmkpaXhww8/RFxcHPr164e3334bW7duRU5OjtFjMzMzsXLlSmzYsEHStSoqKlBcXKzzIiIi97YtPQt3v7oPD60/grtf3Ydt6Vk2ue6mTZvQsGFDHDp0CK+++iruuecexMbG4tixY0hLS8O1a9fw4IMPavYvLS3FnDlzcOzYMezduxdyuRxjxoxBTU2NTcrrjMxadFWtqKgI27dvx6VLlzB//nwEBgbi+PHjCAsLQ9OmTS1dRhw+fBgBAQHo2bOnZltCQgLkcjmOHDmCMWPGiB5XVlaGhx56CO+++y7Cw8MlXWv58uVYunSpRcpNRETOL1dZjgU7TqFGUL2vEYDnd5zGgLYhiFA0tuq127Rpg9deew0AsGzZMsTGxuKVV17RfL5hwwZERUXh/PnzaNu2LcaOHatz/IYNGxASEoLffvsNnTp1smpZnZXZNUInT55E27ZtsWLFCrzxxhuatVt27NiBBQsWWLp8AFTTo4eGhupsa9CgAQIDA5GXl2fwuGeeeQZ9+/bF/fffL/laCxYsgFKp1LyuXr1a53ITEZHzu1xQqglBatWCgCsFZVa/do8ePTR//+WXX7B//374+vpqXu3btwcATfPXhQsXMGnSJMTExMDf3x/R0dEAgKws29RgOSOza4TmzJmDadOm4bXXXoOfn59m+8iRI/HQQw+Zda6UlBSsWLHC6D5nzpwxt4gAgF27dmHfvn04ceKEWcd5eXnBy8urTtckIiLX0zLYB3IZdMKQh0yG6GDrz1bt4+Oj+XtJSQkSExNFn5vqtbYSExPRokULrF+/HpGRkaipqUGnTp3Y0doIs4NQeno63n///VrbmzZtarR2RszcuXMxbdo0o/vExMQgPDxcs7Ca2t9//43CwkKDTV779u3DpUuXEBAQoLN97Nix6N+/P77//nuzykpERO4pQtEYyx/ojOd3nEa1IMBDJsMrD3SyerOYvu7du+OLL75AdHQ0GjSo/fi+ceMGzp07h/Xr16N///4AgIMHD9q0jM7I7CDk5eUl2oH4/PnzCAkJMetcISEhko6Jj49HUVERMjIyNNWE+/btQ01NDeLi4kSPSUlJwaOPPqqzrXPnznjrrbeQmJhoVjmJiMi9TejVHAPahuBKQRmig71tHoIAYObMmVi/fj0mTZqEZ599FoGBgbh48SK2bt2KDz/8EE2aNEFQUBA++OADREREICsrCykpKTYvp7Mxu4/QP/7xD7z44ouahexkMhmysrLw3HPP1eqkZSkdOnTA8OHD8dhjj+Ho0aM4dOgQZs2ahYkTJyIyMhIAkJ2djfbt2+Po0aMAgPDwcHTq1EnnBQDNmzdHy5YtrVJOIiJyXRGKxohvFWSXEAQAkZGROHToEKqrqzF06FB07twZycnJCAgIgFwuh1wux9atW5GRkYFOnTrhmWee4SLoEphdI7Ry5UqMGzcOoaGhKC8vx8CBA5GXl4f4+Hi8/PLL1igjAOCTTz7BrFmzMGTIEMjlcowdOxZr1qzRfF5VVYVz586hrMz6ndeIiIisTawLR5s2bbBjxw6DxyQkJOC3337T2SYIdzo3RUdH67ynOgQhhUKBPXv24ODBgzh58iRKSkrQvXt3JCQkWKN8GoGBgdiyZYvBz6X8cPnDJyIiIm11mkcIAPr164d+/fpZsixERERENmV2ENJujtImk8nQqFEjtG7dGgMGDICHh0e9C0dERERkTWYHobfeegvXr19HWVkZmjRpAgD466+/4O3tDV9fX+Tn5yMmJgb79+9HVFSUxQtMREREZClmjxp75ZVX0KtXL1y4cAE3btzAjRs3cP78ecTFxWH16tXIyspCeHg4nnnmGWuUl4iIiMhizK4RWrhwIb744gu0atVKs61169Z44403MHbsWPz+++947bXXrDaUnoiIiMhSzK4Rys3Nxd9//11r+99//62ZWToyMhI3b96sf+mIiIiIrMjsIDR48GA88cQTOmt4nThxAk8++STuueceAMCpU6c4aSERERE5PLOD0EcffYTAwED06NFDs0Bpz549ERgYiI8++ggA4Ovri5UrV1q8sERERESWZHYfofDwcOzZswdnz57F+fPnAQDt2rVDu3btNPsMHjzYciUkIiJyQ4MGDUK3bt2watUqu5YjOjoaycnJSE5Otms5rKXOEyq2b98e7du3t2RZiIiI6LYdO3bA09PT3sVAeno6fHx87F0Mq6lTEPrzzz+xa9cuZGVlobKyUuezN9980yIFIyIicmeBgYH2LgIAICQkxOrXqKysRMOGDa1+HTFm9xHau3cv2rVrh7Vr12LlypXYv38/Pv74Y2zYsAGZmZlWKCIREZEDUGYDlw+o/rSBQYMGaZqjoqOjsWzZMiQlJcHX1xctWrTArl27cP36ddx///3w9fVFly5dcOzYMc3xN27cwKRJk9C0aVN4e3ujc+fO+PTTT3WucfPmTUyePBk+Pj6IiIjAW2+9pXNd9bW1m+dkMhk+/PBDjBkzBt7e3mjTpg127dql+by6uhozZsxAy5Yt0bhxY7Rr1w6rV6/Wue60adMwevRovPzyy4iMjES7du3w4osvolOnTrXuQ7du3fDCCy/U404aZ3YQWrBgAebNm4dTp06hUaNG+OKLL3D16lUMHDgQ48ePt0YZiYiI7Ov4ZmBVJ2BTourP45ttXoS33noLd999N06cOIFRo0ZhypQpSEpKwsMPP4zjx4+jVatWSEpK0iwwfuvWLfTo0QNffvklTp8+jccffxxTpkzB0aNHNeecM2cODh06hF27dmHPnj348ccfcfz4cZNlWbp0KR588EGcPHkSI0eOxOTJk1FYWAgAqKmpQbNmzfD555/jt99+w6JFi/D888/js88+0znH3r17ce7cOezZswe7d+/GI488gjNnziA9PV2zz4kTJ3Dy5ElMnz7dErdQnGAmX19f4eLFi4IgCEJAQIBw+vRpQRAEITMzU2jRooW5p3N4SqVSACAolUp7F4WIiMxUXl4u/Pbbb0J5eXndT1L0pyAsCRCExf53XkuaqLZb0cCBA4Wnn35aEARBaNGihfDwww9rPsvNzRUACC+88IJm2+HDhwUAQm5ursFzjho1Spg7d64gCIJQXFwseHp6Cp9//rnm86KiIsHb21tzXfW133rrLc17AMLChQs170tKSgQAwtdff23wujNnzhTGjh2reT916lQhLCxMqKio0NlvxIgRwpNPPql5P3v2bGHQoEEGz2vs5yv1+W12jZCPj4+mX1BERAQuXbqk+aygoMAS2YyIiMhxFF4ChBrdbUI1UPi7TYvRpUsXzd/DwsIAAJ07d661LT8/H4Cqieqll15C586dERgYCF9fX3zzzTfIysoCAPz++++oqqpC7969NedQKBQ6o8CllMXHxwf+/v6a6wLAu+++ix49eiAkJAS+vr744IMPNNdV69y5c61+QY899hg+/fRT3Lp1C5WVldiyZQseeeQRk+WpD7M7S/fp0wcHDx5Ehw4dMHLkSMydOxenTp3Cjh070KdPH2uUkYiIyH4CWwEyuW4YknkAgTE2LYb2CDKZTGZwW02Nqpyvv/46Vq9ejVWrVqFz587w8fFBcnJyrUFO9S2L+trq627duhXz5s3DypUrER8fDz8/P7z++us4cuSIzjFiI9ESExPh5eWFnTt3omHDhqiqqsK4cePqXV5jzA5Cb775JkpKSgCo2ghLSkqwbds2tGnThiPGiIjI9SiaAomrgf8lq2qCZB5A4irVdgd26NAh3H///Xj44YcBqALS+fPn0bFjRwBATEwMPD09kZ6ejubNmwMAlEolzp8/jwEDBtTrun379sU///lPzTbt1iNjGjRogKlTp+Ljjz9Gw4YNMXHiRDRu3LjOZZF0TXMPiIm5k4B9fHywbt06ixaIiIjI4XRPAloNUTWHBcY4fAgCgDZt2mD79u346aef0KRJE7z55pu4du2aJgj5+flh6tSpmD9/PgIDAxEaGorFixdDLpdrapfqet3Nmzfjm2++QcuWLfHvf/8b6enpkpfeevTRR9GhQwcAqlBlbWb3EYqJicGNGzdqbS8qKtIJSURERC5F0RRo2d8pQhAALFy4EN27d8ewYcMwaNAghIeHY/To0Tr7vPnmm4iPj8d9992HhIQE3H333ejQoQMaNWpU5+s+8cQTeOCBBzBhwgTExcXhxo0bOrVDprRp0wZ9+/ZF+/btERcXV+dySCW73QNcMrlcjry8PISGhupsv3btGpo3b46KigqLFtDeiouLoVAooFQq4e/vb+/iEBGRGW7duoXLly+jZcuW9Xq4u4vS0lI0bdoUK1euxIwZM+xSBkEQ0KZNG/zzn//EnDlzjO5r7Ocr9fktuWlMe7Kkb775BgqFQvO+uroae/fuRXR0tNTTERERkZ2dOHECZ8+eRe/evaFUKvHiiy8CAO6//367lOf69evYunUr8vLyrDt3kBbJQUhdnSaTyTB16lSdzzw9PREdHc0V54mIiJzMG2+8gXPnzqFhw4bo0aMHfvzxRwQHB9ulLKGhoQgODsYHH3yAJk2a2OSakoOQelhcy5YtkZ6ebrebRERERJYRGxuLjIwMexdDw8zeOhZh9qixy5cvW6McRERERDYnKQitWbNG8gmfeuqpOheGiIjIGuxR00DWZ4mfq6Qg9NZbb0k6mUwmYxAiIiKHoZ4BuayszOoT85HtlZWVAag907U5JAUhNocREZEz8vDwQEBAgGYdLG9v73pNFkiOQRAElJWVIT8/HwEBAfDw8KjzuczuI6RfEAD8j4qIiBxWeHg4AOgsCkquISAgQPPzras6BaHNmzfj9ddfx4ULFwAAbdu2xfz58zFlypR6FYaIiMjSZDIZIiIiEBoaiqqqKnsXhyzE09OzXjVBanVadPWFF17ArFmzcPfddwMADh48iP/7v/9DQUEBnnnmmXoXioiIyNI8PDws8uAk12L2EhstW7bE0qVLkZSUpLN906ZNWLJkicv1J+ISG0RERM5H6vPb7EVXc3Nz0bdv31rb+/bti9zcXHNPR0RERGQ3Zgeh1q1b47PPPqu1fdu2bWjTpo1FCkVERERkC2b3EVq6dCkmTJiAAwcOaPoIHTp0CHv37hUNSERERESOSnKN0OnTpwEAY8eOxZEjRxAcHIzU1FSkpqYiODgYR48exZgxY6xWUCIiIiJLk9xZWi6Xo1evXnj00UcxceJE+Pn5WbtsDoGdpYmIiJyPxTtL//DDD7jrrrswd+5cREREYNq0afjxxx8tUlgpCgsLMXnyZPj7+yMgIAAzZsxASUmJyeMOHz6Me+65Bz4+PvD398eAAQNQXl5ugxITERGRo5MchPr3748NGzYgNzcXb7/9Ni5fvoyBAweibdu2WLFiBfLy8qxZTkyePBm//vor9uzZg927d+PAgQN4/PHHjR5z+PBhDB8+HEOHDsXRo0eRnp6OWbNmQS43u484ERERuSCz5xHSdvHiRXz88cf497//jby8PAwfPhy7du2yZPkAAGfOnEHHjh2Rnp6Onj17AgDS0tIwcuRI/Pnnn4iMjBQ9rk+fPrj33nvx0ksvSb5WRUUFKioqNO+Li4sRFRXFpjEiIiInYrV5hLS1bt0azz//PBYuXAg/Pz98+eWX9TmdQYcPH0ZAQIAmBAFAQkIC5HI5jhw5InpMfn4+jhw5gtDQUPTt2xdhYWEYOHAgDh48aPRay5cvh0Kh0LyioqIs+l2IiIjIcdQ5CB04cADTpk1DeHg45s+fjwceeACHDh2yZNk08vLyEBoaqrOtQYMGCAwMNNgk9/vvvwMAlixZgsceewxpaWno3r07hgwZolkjTcyCBQugVCo1r6tXr1ruixAREZFDMSsI5eTk4JVXXkHbtm0xaNAgXLx4EWvWrEFOTg7Wr1+PPn36mHXxlJQUyGQyo6+zZ8+adU61mpoaAMATTzyB6dOnIzY2Fm+99RbatWuHDRs2GDzOy8sL/v7+Oi8iIiJyTZInVBwxYgS+++47BAcHIykpCY888gjatWtXr4vPnTsX06ZNM7pPTEwMwsPDkZ+fr7P977//RmFhIcLDw0WPi4iIAAB07NhRZ3uHDh2QlZVV90ITERGRy5AchDw9PbF9+3bcd999Flu9NyQkBCEhISb3i4+PR1FRETIyMtCjRw8AwL59+1BTU4O4uDjRY6KjoxEZGYlz587pbD9//jxGjBhR/8ITERGR05MchKwxGkyqDh06YPjw4Xjsscewbt06VFVVYdasWZg4caJmxFh2djaGDBmCzZs3o3fv3pDJZJg/fz4WL16Mrl27olu3bti0aRPOnj2L7du32+27EBERkeMwe60xe/nkk08wa9YsDBkyBHK5HGPHjsWaNWs0n1dVVeHcuXMoKyvTbEtOTsatW7fwzDPPoLCwEF27dsWePXvQqlUre3wFIiIicjD1mkfIHXCJDSIiIudjk3mEiIiIiJwZgxARERG5LQYhIiIiclsMQkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBEREREbotBiIiIiNwWgxARERG5LQYhIiIiclsMQkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBEREREbotBiIiIiNwWgxARERG5LQYhIiIiB5CrLMdPlwqQqyy3d1HcSgN7F4CIiNxbrrIclwtK0TLYBxGKxrXeu4Nt6VlYsOMUagRALgOWP9AZE3o1t3ex6sTZfn4MQkREZJC1H2r6AWBMbFPsPJHt0IHAnHuivS8A0eNyleWaewAANQLw/I7TGNA2RLOfsWvW9TNrnFdKoHO0oMQgRERUT5b6h90eNSPGrmHqoVbXQKD9cNcPAF8cz9YcIxYI6vpd9D8HUKd7bc49OXD+umZf2e3PBdQ+7nJBqeYeqFULAq4UlCFC0bjWNZ8b3h6dmylqXUP/vGJlHdA2RLR8Uo41dd5jVwpFA137cD+UVlabvKa9yARBEEzv5r6Ki4uhUCigVCrh7+9v7+IQkQm2/m3T3LAg9TdpUzUjxs4LiNc86B97KluJFV+fFb1GrrIcd7+6T+cBLQew5qFY9GjRxKwHmqF79NOlAjy0/ojJe/zpY30Q3yrI7J+DoYe+fijRv9faQUP73vo09MCY936SdE+0ryHGQybDjn/Go7SyWvS8HjIZDqYMBoBaPwc1sWuoz5tVWIant2bqHCcDIJPBYPmMXdPYZ9rnFSOTAYKJa1rj/1Wpz28GIRMYhIich637WYiFBe0HnH7QEAs36t+k9R9a+qSeV6zmwVAgMHaNwtJKzNpyQrQsUh5oxsKDlIe8mnbQEAuSucpy0ftn6qEvhdi9NXSOulxDHRDU10k9kYNqQYCHTIZnh7dD52YKoz8HU+eti4WjOiBc0Uj0mu9MikVucTle/vJs3U5ugJSgWxcMQhbCIERkOVJra+rS5GLsgSuln0Vdym6oRkPqg8jUb9J1Pa+ha0h5WBv77d0U9QNNO5AaCg8LR3XAqC4ROHD+Op7fcVoTAEbHRmoCgamaG+33zk4dQssqa3Ayu0gTdOsa4upD7Jrm/rcKqEJsjYl9HKFGiH2EiMgmpNbWmFOrY+qBa6yfhX5NiTnNVuqmE5+GHpCLPBykhhXBjH3NOa+ha0g5XHtfGSD6/cR4yGSIDvau1e/H0KHLvjyDV746g+UPdMbBlMG4UlCG6GBvRCgaY96wdsi48hee2nrCaP8h7fe2JPWe1Aqh6hog1A4I1YKAssoaRAd7Y/KHP+vcP2M/B+1rGAse8tvnkhJu9K+pPlbs+mLnlQN4+6FYNGvSuNYvJ9rX9JDJ8MoDnezeYZpBiIisTsqoGHP30++YKfZcMvRwrhGAlC9O3XmAGOkn4tPQo9axy79WNQ3oN2lI+Q1YCv2aEUud1xixawgA3p4YCwA6oQQQf6ABwO6TOeIPTJEHrvrnezBlsE7TSISiMQJ9a3cgNue7GHvoa4cS/Xttirrm5mphuaR7MqBtiCbkAcCVgjJ4N5SL1l5GB3uLdpxW/xyCfL1wMrsIr319TlODpn0NsfOqQ0n3232YtGvf1Md+eTIXy748Y/CaN0orRJvKXhjVASNFavVeeaATRnWJBKD6hUPsmtrB194YhIjIYgzVqBgaFfPlyVyM6hKh2dfU6BlAt3ZGjFzkt82fLhWIPlwErXCjX9ugDjvG+oXUCEDqiRxNk4bYg0hNLNwY+k26++3+MPOGtTP4gDN0Xv2aB2OBQN0XpUuzAIMP5x7RqrKUVv5t9IF24Px1g/191OEh/cpftR64+j9ftZbBPpJrXsTun6GHvn4o0a6FulJQVitoaN9b9Xm6RjVB16gmJu+J+jtpfzf138UCgvoz/e+t/XOIbxWEf3SNNHgNsfOqQ8mEXs1FyzeqSwRe+eqMwWvmKstFyzTy9v+7hs5r7JqOEIDU2EfIBPYRIpLGWJOWWKdiNVOdhk2NrtGm3c9C/Y+uoc60lqTd2XNbepbOg0gdNLTLox0e9B9axpoBpZ4XgNFrGHpo6V9Dvzza19CvoTMWgtTnMdS53FAfEf3y6IcSsZAipbym6B9n7Dx1vYaxY039HOp6XmNMXbO+ZbIHdpa2EAYhckfmzLdiKGjoP+C0/yHVZ6rZQsqoHUP/eOsMZzZSU2KKodoJsQe5OQ8ia+1ry2sY6jSubjqpz0PeVCipTxBxZPb4Xqau6Wz3mkHIQhiEyN3UCg+o+6iddybFItC3oU5oEuuPoM9YZ0tD+6qbk9QMzYNjqOnEWD8R/RE9+n00HP03Y2szt6bH2R6o5Jw4aoyIdEiZLl+/Y7B2JDB31I4MdzrYajeVifVH0FcDINDHC6WV1UY73ur3gdAm1t9IfV5D/RoM9RNR9wsBYLCPhjuLUDQ22udFbH/eN3IUDEJEbkDqFP3Gmp7MoT/cVn/0l/ZDU6yZSj2CBhDvOKrfD0iMWGdb7fMCtR/I6vemwg4f5LUZ6zBL5MgYhIiciKnlGqSu56Q9Igq4E0LqG4LUTU8CUGu4rfboIP2HpliHXmOjYNS1M8aYW0shdjwf5ubhPSNnxCBEZGd1XezRWH8d7aYosSYiNUPBR26k47KpUTujukQaHG5rqDamLsNvpWAtBRGZws7SJrCzNFmTlFmU6zr8W71GU5SEDsfa9JueANRp1I4zDrclItfhcqPGCgsLMXv2bPzvf/+DXC7H2LFjsXr1avj6+ho8Ji8vD/Pnz8eePXtw8+ZNtGvXDv/6178wduxYyddlECJLMNRkZWqkjanJA6XQn/1Yn9hsuJYKLBwdRET24nKjxiZPnozc3Fzs2bMHVVVVmD59Oh5//HFs2bLF4DFJSUkoKirCrl27EBwcjC1btuDBBx/EsWPHEBsba8PSkzszVOtjaBbljCt/IdC39giuutKf/djYFP2WDizsM0JEjs4paoTOnDmDjh07Ij09HT179gQApKWlYeTIkfjzzz8RGVl76CwA+Pr6Yu3atZgyZYpmW1BQEFasWIFHH31U9JiKigpUVFRo3hcXFyMqKoo1QlQnhmp9dvwzHlmFZbWau/QnFjQ2eaCx/jpitGc/Zk0NEbk6l6oROnz4MAICAjQhCAASEhIgl8tx5MgRjBkzRvS4vn37Ytu2bRg1ahQCAgLw2Wef4datWxg0aJDBay1fvhxLly619FcgNyDW/GWo1mf0ez9BEO4EH+3Zjo0tImpoLSpjq3YDpoeNExG5K6cIQnl5eQgNDdXZ1qBBAwQGBiIvL8/gcZ999hkmTJiAoKAgNGjQAN7e3ti5cydat25t8JgFCxZgzpw5mvfqGiEiYww1fxlaOFLQCjtyAXjHwJBzwPjkgWLz4NzXVXyBTAYfIqLa7BqEUlJSsGLFCqP7nDljfCp+Y1544QUUFRXhu+++Q3BwMFJTU/Hggw/ixx9/ROfOnUWP8fLygpeXV52vSe7D0GzMNQKw4ItT8PFqgB4tmtSaPLBG7zzq2Y6jg73rPHmgPg4bJyKSxq59hK5fv44bN24Y3ScmJgb/+c9/MHfuXPz111+a7X///TcaNWqEzz//XLRp7NKlS2jdujVOnz6Nu+66S7M9ISEBrVu3xrp16ySVkaPG3Etd5vQx1pdHe2X1KwVl8G4orzWUXXukGIecExFZhlP0EQoJCUFISIjJ/eLj41FUVISMjAz06NEDALBv3z7U1NQgLi5O9JiysjIAgFwu19nu4eGBmhr938nJnanDz6lsJVZ8fVbSnD6G1uPSp15a4mDKYE1HZWOzHbMmh4jItpxi1BgAjBgxAteuXcO6des0w+d79uypGT6fnZ2NIUOGYPPmzejduzeqqqrQsWNHRERE4I033kBQUBBSU1Mxf/587N69GyNHjpR0XdYIuTZj8/SYO6ePWF8gNe0RWwBHbRERWZtT1AiZ45NPPsGsWbMwZMgQzYSKa9as0XxeVVWFc+fOaWqCPD098dVXXyElJQWJiYkoKSlB69atsWnTJskhiFyTob49+syZ00fdl+dqYbnJEVsAR20RETkKp6kRshfWCDk/7X4/5qy0bs6cPtp9edjPh4jI/lyuRoioLvQ7NQPSVlqvy5w+auznQ0TkPBiEyCWZ06lZe56eZ4e3Q5dmAbhRWmH2nD7a2PRFROQcGITI5ZizUKmheXpyleUWm9OHiIgcF4MQuZRcZbnRECS20nrXqCa19otQNBYd5i62LxEROS8GIXJK+hMfqt8XllYaHdllzkrr7OtDROT6GITI6eiv6zUmtil2nsjWdIjWH+El1qlZaqhhXx8iItfGIEQOxdgSF2IdoGsE4Ivj2Zp9BKiCkNROzURE5N4YhMhhGFrBXf8zUwQAb0+MRZCvF5u0iIjIKAYhcgj6nZzVa3QNaKtai05qCAJUtUA9opswABERkUly07sQWd/lgtJaQadaEHCloEz0MzUPmQxjuzeFh0ymea+9iCkREZExrBEih9Ay2KfWvD1yADdKKxDVpLHoZ9odoOcNa8fRXUREZDauNWYC1xqzLv11wNTz9mgvh6EeGZZ6IofrdxERkSRca4wckqEFUNWdow+mDEbGlb90VnCvEYDUEzmc1ZmIiCyOQYhsxtgCqOrO0QdTBiPQt6Fof6GyyhrEtwqyZZGJiMjFsbM02YT+qDABtRdBVXeOVvcX0uYhkyE62NsWRSUiIjfCIERWl6ssx+6TOSaHv6vDjnqdL44EIyIia2PTGFmVsYkQxRZAVYcdrvNFRES2wCBEVmNsJXgpC6BynS8iIrI2BiGqN3NXgn9hVAeM7BJh9gKoRERElsYgRPVi7krwHjKZTggiIiKyJ3aWpjoTWx/si+PZOiPDAGhGgLHTMxERORrWCFGdSB0JxpXgiYjIkTEIkdmMjQTTx5XgiYjIkbFpjMxiaiQYV4InIiJnwhohMsvlglKTI8G4EjwRETkLBiEyi3r5C+0wpD8SjPP/EBGRs2DTGJmFy18QEZErYY0QidKfJFEbl78gIiJXwSBEtehPkrj8gc6Y0Ku5zj5s/iIiIlfAIEQ6xCZJfH7HabQP90NpZbVoDREREZGzYhAiHWKjwqoFAaPf+wmCkRoiIiIiZ8TO0qRDPSpMn6BXQ5SrLLdtwYiIiKyAQYh06I8KE/sPpFoQcKWgzLYFIyIisgI2jZGGeqTYgLYhOJgyGFcKyuDdUI4x7/1Ua96g6GBv+xWUiIjIQhiECIDxkWLLH+iM53ecRrUgcN4gIiJyKU7TNPbyyy+jb9++8Pb2RkBAgKRjBEHAokWLEBERgcaNGyMhIQEXLlywbkGdkKGRYup+QBN6NcfBlMH49LE+OJgymB2liYjIZThNEKqsrMT48ePx5JNPSj7mtddew5o1a7Bu3TocOXIEPj4+GDZsGG7dumXFkjofQyPFtPsBRSgaI75VEGuCiIjIpThN09jSpUsBABs3bpS0vyAIWLVqFRYuXIj7778fALB582aEhYUhNTUVEydOtFZRnYa6T5BPQw/R9cPYD4iIiFyd0wQhc12+fBl5eXlISEjQbFMoFIiLi8Phw4cNBqGKigpUVFRo3hcXF1u9rLakDj+nspVY8fVZTZ+gMbFNkXoih/2AiIjIrbhsEMrLywMAhIWF6WwPCwvTfCZm+fLlmtonV6PdIVpbjQCknsjBjn/Go6yyhuuHERGR27BrH6GUlBTIZDKjr7Nnz9q0TAsWLIBSqdS8rl69atPrW4t+h2h91YKAssoa9gMiIiK3Ytcaoblz52LatGlG94mJianTucPDwwEA165dQ0REhGb7tWvX0K1bN4PHeXl5wcvLq07XdETqprDC0kqDIQhgnyAiInJPdg1CISEhCAkJscq5W7ZsifDwcOzdu1cTfIqLi3HkyBGzRp45M+2mMBlUL7EsxD5BRETkrpymj1BWVhYKCwuRlZWF6upqZGZmAgBat24NX19fAED79u2xfPlyjBkzBjKZDMnJyVi2bBnatGmDli1b4oUXXkBkZCRGjx5tvy9iI/pNYQJUQUg9OsxDJsOzw9uhS7MA9gkiIiK35TRBaNGiRdi0aZPmfWxsLABg//79GDRoEADg3LlzUCqVmn2effZZlJaW4vHHH0dRURH69euHtLQ0NGrUyKZltwexuYEEAG9PjEWQrxfDDxEREQCZIAhGeo5QcXExFAoFlEol/P397V0ck7TnBhJbI+xgymAGICIicnlSn99OUyNEpumvF8a5gYiIiIxjEHIRYuuFcW4gIiIi4xiEXISh9cLUcwMRERFRbU6z6CoZ1zLYB3KZ7jbODURERGQcg5ATylWW46dLBchVlmveXy4oxXMj2sNDpkpD7BNERERkGpvGnIxYh+idJ7I1758b3p5zAxEREUnEGiEnItYh+ovj2TrvX0s7xxBEREQkEYOQExHrEK2vWhBwpaDMNgUiIiJycgxCTkSsQ7Q+dpAmIiKSjkHIiUQoGmP5A511OkSP7d6UHaSJiIjqiEtsmOCIS2zkKstxpaBM0xdI/z0REZG74xIbLixC0Vgn8Oi/JyIiImnYNEZERERui0GIiIiI3BaDkBPQn0maiIiILIN9hByc/kzSyx/ojAm9mtu7WERERC6BNUIOKldZjv/9kl1rJunnd5xmzRAREZGFsEbIAWnXAulTzxzNUWJERET1xxohB6O/npg+zhxNRERkOQxCDsbYemKcOZqIiMiy2DTmYNTriWmHITmAtx+KRfcWTRiCiIiILIg1Qg5GbD2x5WM7Y1SXSIYgIiIiC2ONkAOa0Ks5BrQN4fphREREVsYg5CByleW4XFCKlsE+mrXDGICIiIisi0HIAXDSRCIiIvtgHyE70x8uz0kTiYiIbIdByM7EhsurJ00kIiIi62IQsjP1cHltnDSRiIjINhiE7ExsuDwnTSQiIrINdpa2E+1RYhwuT0RE7kh/xLQ9MAjZgaFRYgxARETkLhxlxDSbxmyMo8SIiMjdOdKzkEHIxjhKjIiI3J0jPQsZhGyMo8SIiMjdOdKzkEHIxjhKjIiI3J0jPQtlgiAIpndzX8XFxVAoFFAqlfD397fYeXOV5RwlRkREbs2az0Kpz2+nqRF6+eWX0bdvX3h7eyMgIMDk/lVVVXjuuefQuXNn+Pj4IDIyEklJScjJybF+YSWIUDRGfKsghiAiInJbjvAsdJogVFlZifHjx+PJJ5+UtH9ZWRmOHz+OF154AcePH8eOHTtw7tw5/OMf/7BySYmIiMhZOF3T2MaNG5GcnIyioiKzj01PT0fv3r3xxx9/oHlzaXMVWKtpjIiIiKxH6vPbrSZUVCqVkMlkRpvWKioqUFFRoXlfXFxsg5IRERGRPThN01h93bp1C8899xwmTZpkNBkuX74cCoVC84qKirJhKYmIiMiW7BqEUlJSIJPJjL7Onj1b7+tUVVXhwQcfhCAIWLt2rdF9FyxYAKVSqXldvXq13tcnIiIix2TXprG5c+di2rRpRveJiYmp1zXUIeiPP/7Avn37TPbz8fLygpeXV72uSURERM7BrkEoJCQEISEhVju/OgRduHAB+/fvR1BQkNWuRURERM7HafoIZWVlITMzE1lZWaiurkZmZiYyMzNRUlKi2ad9+/bYuXMnAFUIGjduHI4dO4ZPPvkE1dXVyMvLQ15eHiorK+31NYiIiMiBOM2osUWLFmHTpk2a97GxsQCA/fv3Y9CgQQCAc+fOQalUAgCys7Oxa9cuAEC3bt10zqV9DBEREbkvp5tHyNY4jxAREZHzcbklNoiIiIgszWmaxuxFXWHGiRWJiIich/q5barhi0HIhJs3bwIAJ1YkIiJyQjdv3oRCoTD4OfsImVBTU4OcnBz4+flBJpNZ5JzFxcWIiorC1atX2e/IynivbYf32nZ4r22H99p2LH2vBUHAzZs3ERkZCbnccE8g1giZIJfL0axZM6uc29/fn/9j2Qjvte3wXtsO77Xt8F7bjiXvtbGaIDV2liYiIiK3xSBEREREbotByA68vLywePFirmlmA7zXtsN7bTu817bDe2079rrX7CxNREREbos1QkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBkY++++y6io6PRqFEjxMXF4ejRo/Yukks6cOAAEhMTERkZCZlMhtTUVHsXySUtX74cvXr1gp+fH0JDQzF69GicO3fO3sVySWvXrkWXLl00k83Fx8fj66+/tnex3MKrr74KmUyG5ORkexfF5SxZsgQymUzn1b59e5uWgUHIhrZt24Y5c+Zg8eLFOH78OLp27Yphw4YhPz/f3kVzOaWlpejatSveffddexfFpf3www+YOXMmfv75Z+zZswdVVVUYOnQoSktL7V00l9OsWTO8+uqryMjIwLFjx3DPPffg/vvvx6+//mrvorm09PR0vP/+++jSpYu9i+Ky7rrrLuTm5mpeBw8etOn1OXzehuLi4tCrVy+88847AFTrmEVFRWH27NlISUmxc+lcl0wmw86dOzF69Gh7F8XlXb9+HaGhofjhhx8wYMAAexfH5QUGBuL111/HjBkz7F0Ul1RSUoLu3bvjvffew7Jly9CtWzesWrXK3sVyKUuWLEFqaioyMzPtVgbWCNlIZWUlMjIykJCQoNkml8uRkJCAw4cP27FkRJajVCoBqB7QZD3V1dXYunUrSktLER8fb+/iuKyZM2di1KhROv9uk+VduHABkZGRiImJweTJk5GVlWXT63PRVRspKChAdXU1wsLCdLaHhYXh7NmzdioVkeXU1NQgOTkZd999Nzp16mTv4rikU6dOIT4+Hrdu3YKvry927tyJjh072rtYLmnr1q04fvw40tPT7V0UlxYXF4eNGzeiXbt2yM3NxdKlS9G/f3+cPn0afn5+NikDgxARWcTMmTNx+vRpm7fvu5N27dohMzMTSqUS27dvx9SpU/HDDz8wDFnY1atX8fTTT2PPnj1o1KiRvYvj0kaMGKH5e5cuXRAXF4cWLVrgs88+s1mTL4OQjQQHB8PDwwPXrl3T2X7t2jWEh4fbqVREljFr1izs3r0bBw4cQLNmzexdHJfVsGFDtG7dGgDQo0cPpKenY/Xq1Xj//fftXDLXkpGRgfz8fHTv3l2zrbq6GgcOHMA777yDiooKeHh42LGErisgIABt27bFxYsXbXZN9hGykYYNG6JHjx7Yu3evZltNTQ327t3LNn5yWoIgYNasWdi5cyf27duHli1b2rtIbqWmpgYVFRX2LobLGTJkCE6dOoXMzEzNq2fPnpg8eTIyMzMZgqyopKQEly5dQkREhM2uyRohG5ozZw6mTp2Knj17onfv3li1ahVKS0sxffp0exfN5ZSUlOj8RnH58mVkZmYiMDAQzZs3t2PJXMvMmTOxZcsW/Pe//4Wfnx/y8vIAAAqFAo0bN7Zz6VzLggULMGLECDRv3hw3b97Eli1b8P333+Obb76xd9Fcjp+fX61+bj4+PggKCmL/NwubN28eEhMT0aJFC+Tk5GDx4sXw8PDApEmTbFYGBiEbmjBhAq5fv45FixYhLy8P3bp1Q1paWq0O1FR/x44dw+DBgzXv58yZAwCYOnUqNm7caKdSuZ61a9cCAAYNGqSz/eOPP8a0adNsXyAXlp+fj6SkJOTm5kKhUKBLly745ptvcO+999q7aER19ueff2LSpEm4ceMGQkJC0K9fP/z8888ICQmxWRk4jxARERG5LfYRIiIiIrfFIERERERui0GIiIiI3BaDEBEREbktBiEiIiJyWwxCRERE5LYYhIiIiMhtMQgRERGRRRw4cACJiYmIjIyETCZDamqqVa+3ZMkSyGQynVf79u3NOgeDEBHZ1aBBg5CcnKx5Hx0djVWrVln8OtOmTcPo0aMtfl6ppkyZgldeeUXSvhMnTsTKlSutXCIiyystLUXXrl3x7rvv2uyad911F3JzczWvgwcPmnU8gxARWY09wseVK1cgk8mQmZmps3316tV2W17ll19+wVdffYWnnnpK0v4LFy7Eyy+/DKVSaeWSEVnWiBEjsGzZMowZM0b084qKCsybNw9NmzaFj48P4uLi8P3339frmg0aNEB4eLjmFRwcbNbxDEJE5BYUCgUCAgLscu23334b48ePh6+vr6T9O3XqhFatWuE///mPlUtGZFuzZs3C4cOHsXXrVpw8eRLjx4/H8OHDceHChTqf88KFC4iMjERMTAwmT56MrKwss45nECIimyktLUVSUhJ8fX0REREhqfmnqKgIjz76KEJCQuDv74977rkHv/zyi8H9W7ZsCQCIjY2FTCbTLAirXzs1aNAgzJ49G8nJyWjSpAnCwsKwfv16lJaWYvr06fDz80Pr1q3x9ddf65z/9OnTGDFiBHx9fREWFoYpU6agoKDAYHmqq6uxfft2JCYm6mx/77330KZNGzRq1AhhYWEYN26czueJiYnYunWryftD5CyysrLw8ccf4/PPP0f//v3RqlUrzJs3D/369cPHH39cp3PGxcVh48aNSEtLw9q1a3H58mX0798fN2/elHwOBiEispn58+fjhx9+wH//+198++23+P7773H8+HGjx4wfPx75+fn4+uuvkZGRge7du2PIkCEoLCwU3f/o0aMAgO+++w65ubnYsWOHwXNv2rQJwcHBOHr0KGbPno0nn3wS48ePR9++fXH8+HEMHToUU6ZMQVlZGQBVKLvnnnsQGxuLY8eOIS0tDdeuXcODDz5o8BonT56EUqlEz549NduOHTuGp556Ci+++CLOnTuHtLQ0DBgwQOe43r174+jRo6ioqDB6f4icxalTp1BdXY22bdvC19dX8/rhhx9w6dIlAMDZs2drdX7Wf6WkpGjOOWLECIwfPx5dunTBsGHD8NVXX6GoqAifffaZ5HI1sPg3JSISUVJSgo8++gj/+c9/MGTIEACqINKsWTODxxw8eBBHjx5Ffn4+vLy8AABvvPEGUlNTsX37djz++OO1jgkJCQEABAUFITw83GiZunbtioULFwIAFixYgFdffRXBwcF47LHHAACLFi3C2rVrcfLkSfTp0wfvvPMOYmNjdTo9b9iwAVFRUTh//jzatm1b6xp//PEHPDw8EBoaqtmWlZUFHx8f3HffffDz80OLFi0QGxurc1xkZCQqKyuRl5eHFi1aGP0eRM6gpKQEHh4eyMjIgIeHh85n6mbjmJgYnDlzxuh5goKCDH4WEBCAtm3b4uLFi5LLxSBERDZx6dIlVFZWIi4uTrMtMDAQ7dq1M3jML7/8gpKSklr/8JWXl2t+g6yPLl26aP7u4eGBoKAgdO7cWbMtLCwMAJCfn68pz/79+0X7+ly6dEk0CJWXl8PLywsymUyz7d5770WLFi0QExOD4cOHY/jw4RgzZgy8vb01+zRu3BgANLVRRM4uNjYW1dXVyM/PR//+/UX3adiwodnD37WVlJTg0qVLmDJliuRjGISIyGGVlJQgIiJCdFSJJTo+e3p66ryXyWQ629ThpaamRlOexMRErFixota5IiIiRK8RHByMsrIyVFZWomHDhgAAPz8/HD9+HN9//z2+/fZbLFq0CEuWLEF6errme6mb/tQ1XETOoKSkRKc25vLly8jMzERgYCDatm2LyZMnIykpCStXrkRsbCyuX7+OvXv3okuXLhg1apTZ15s3bx4SExPRokUL5OTkYPHixfDw8MCkSZMkn4NBiIhsolWrVvD09MSRI0fQvHlzAMBff/2F8+fPY+DAgaLHdO/eHXl5eWjQoAGio6MlXUcdNqqrqy1Sbv3yfPHFF4iOjkaDBtL++ezWrRsA4LffftP8HVAN+U1ISEBCQgIWL16MgIAA7Nu3Dw888AAAVafsZs2amT0UmMiejh07hsGDB2vez5kzBwAwdepUbNy4ER9//DGWLVuGuXPnIjs7G8HBwejTpw/uu+++Ol3vzz//xKRJk3Djxg2EhISgX79++Pnnn836BYJBiIhswtfXFzNmzMD8+fMRFBSE0NBQ/Otf/4JcbnjMRkJCAuLj4zF69Gi89tpraNu2LXJycvDll19izJgxOh2Q1UJDQ9G4cWOkpaWhWbNmaNSoERQKhUW+w8yZM7F+/XpMmjQJzz77LAIDA3Hx4kVs3boVH374Ya1+D4CqRqd79+44ePCgJgjt3r0bv//+OwYMGIAmTZrgq6++Qk1NjU4z4Y8//oihQ4dapNxEtjJo0CAIgmDwc09PTyxduhRLly61yPUsMbKSo8aIyGZef/119O/fH4mJiUhISEC/fv3Qo0cPg/vLZDJ89dVXGDBgAKZPn462bdti4sSJ+OOPPzT9d/Q1aNAAa9aswfvvv4/IyEjcf//9Fit/ZGQkDh06hOrqagwdOhSdO3dGcnIyAgICjAa6Rx99FJ988onmfUBAAHbs2IF77rkHHTp0wLp16/Dpp5/irrvuAgDcunULqampmk7bRGQ9MsFYdCMionorLy9Hu3btsG3bNsTHx5vcf+3atdi5cye+/fZbG5SOyL2xRoiIyMoaN26MzZs3G514UZunpyfefvttK5eKiADWCBEREZEbY40QERERuS0GISIiInJbDEJERETkthiEiIiIyG0xCBEREZHbYhAiIiIit8UgRERERG6LQYiIiIjcFoMQERERua3/B3pqCi8/4RlXAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "\n", "data = gettable.get()\n", "\n", "plt.plot(times, data[0], '.', label=\"real\")\n", "plt.plot(times, data[1], '.', label=\"imaginary\")\n", "plt.legend()\n", "plt.xlabel(\"Idle time (s)\")\n", "plt.ylabel(\"Voltage (V)\")\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "3c8ef961", "metadata": {}, "source": [ "Note that the data used here is the same as in {ref}`sec-tutorial-experiment`. The example dataset can be downloaded {download}`here <../examples/dataset.hdf5>`.\n", "\n", "As we defined 125 points in our `times` array which were measured in 125 different `acq_index`es, the acquisition result also contains 125 _I_ values (in `data[0][:]`) and 125 _Q_ values (in `data[1][:]`). The general format of the data returned by the {class}`~quantify_scheduler.gettables.ScheduleGettable` is also explained in the {ref}`user guide `.\n", "\n", "## Trace measurement\n", "\n", "The previous experiment's acquisition results had one data point for each acquisition in the schedule. For a trace measurement, the data format is slightly different. To illustrate this, let us set up an experiment with a trace measurement." ] }, { "cell_type": "code", "execution_count": 6, "id": "7921da86", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler.operations import IdlePulse, SoftSquarePulse\n", "\n", "\n", "def trace_schedule(pulse_amp, acq_delay, port=\"q0:res\", clock=\"q0.ro\", repetitions=1):\n", " schedule = Schedule(\"Trace a pulse\", repetitions=repetitions)\n", "\n", " schedule.add(\n", " SoftSquarePulse(\n", " duration=q0.measure.integration_time(),\n", " amp=pulse_amp,\n", " port=port,\n", " clock=clock,\n", " ),\n", " label=\"trace_pulse\",\n", " )\n", "\n", " # Add acq_delay to compensate for time-of-flight of the pulse\n", " schedule.add(\n", " Measure(q0.name, acq_protocol=\"Trace\"),\n", " ref_pt=\"start\",\n", " rel_time=acq_delay,\n", " label=\"acquisition\"\n", " )\n", "\n", " return schedule" ] }, { "cell_type": "markdown", "id": "8658bfb3", "metadata": {}, "source": [ "Again, we define the gettable and run the experiment." ] }, { "cell_type": "code", "execution_count": 7, "id": "cae2c352", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.9/site-packages/quantify_scheduler/backends/qblox/compiler_abc.py:668: RuntimeWarning: Operation is interrupting previous Pulse because it starts before the previous ends, offending operation: Pulse \"SquarePulse\" (t0=1.0000000000000001e-07, duration=3e-07)\n", " warnings.warn(\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYP0lEQVR4nO3de1wU5f4H8M+Cglx0RZGrqyBe0ERBFATvRpGmZVmZpqilecosozpKF+12RFPLvKRmqdU5CZna8VdeKtS8cQRRFG+oCIIKJCqLAoHB/P7AXVmYXXaBvQ2f9+tFyczszHdnL/Nh5pnnkQmCIICIiIhIImzMXQARERFRY2K4ISIiIklhuCEiIiJJYbghIiIiSWG4ISIiIklhuCEiIiJJYbghIiIiSWlm7gJMrbKyEteuXUPLli0hk8nMXQ4RERHpQRAE3L59G15eXrCx0X1upsmFm2vXrkGhUJi7DCIiIqqHnJwctG/fXucyTS7ctGzZEkDVzmnVqpWZqyEiIiJ9FBUVQaFQqI/jujS5cKO6FNWqVSuGGyIiIiujT5MSNigmIiIiSWG4ISIiIklhuCEiIiJJYbghIiIiSWG4ISIiIklhuCEiIiJJYbghIiIiSWG4ISIiIklhuCEiIiJJYbghIiIiSWG4ISIiIklhuCHJy1WW4nBGAXKVpeYuRdKksp8t4XlYQg1E1qzJDZxJTUt8cjZitqahUgBsZEDskwEY16+DucsyWK6yFJkFxfB1dYKn3KHO6aamaz9bSo360Of9IvZ8GvM5itUwuGs7revPVZbiaNZNyGQyBHd00br9xqixIevQ97ENrdOa3m9kPDJBEARzF2FKRUVFkMvlUCqVHBVc4k7k3MKYVYdR/Q1uK5Nh68thKC6vUH/51fwyrP47ABzNuonC0rtwcbSDwsVB47G61OdLVqyW9Qcz8dWBTAgAZAAWjq064K7dn4GFO89BuHcQnPOIPwLay+FkZ4vsmyWQyWTqep3sbHXWrc8+qL6+6us5kXMLY744jOrfJDYAts0Mx7m825i7JU39GkwIUcDLxQHlf1fiQX839Fa4GLxPak5XPbea/zf04JarLMWAhXtQWe15qN4vqv15tbAUi3aeUwePOY/4o+BOGb4+mFlngFaFENV7SRVEqj+PE1cKMf+/ZzTes7J7/xFqhJ2jWTeReOkmNh3J1lg+ZoQ/ZgzxA1D12iRl3YSy5C6+2JeBSqFqfXPvLaOtJrF9v//8dY3QpXq/lZb/jUsFxejk6gQHu2aioS/tqlK93wDgQf92ePXBLuitcNG6DaDq/TLrwS46A722x1d/niQNhhy/LSLcrFq1CosXL0ZeXh569+6NFStWICQkRHTZjRs3YurUqRrT7O3t8ddff+m1LYabpmHt/gzE7jincxkZgBE9PbDzdB6Ee1+GIb4uSMq8pQ4Suj4cA/zaIMzPFZABN+6Uo5OrE3q1l6O4vAKHLxZg1b4M9QH/Qf92GNrNDb3ay9UHStWBJOFsHjYn5+BG8V0czb6lrmVQF1ccuFAgWsPTwd7YnHLV4P1S8wtfFZ5UB+ea+0CXCSEK2DWzwcbDlw2uQyXExwWjA73UB1YA6gN99s0SJF66ibik7FpnMarXrMvD3d0xqJsrAGhso3pYy75Zgss3S7AzLQ+nrxXV+7lUN7qXB0J82yKihzs85Q6IT87WCHkqoXrua0NNDuuIE1cKkZqj1LpMdw9nnM27U2t6zAh/ONjZYPfpfBy+eMPg2mQAHg/0xO2yCuw59yd0HWF6erXCmdwi9XsPEP/MTQhRoLtXK5zNva0OczIAT/bxxrbjV3U+PmakP2YMZsCRAqsKN/Hx8YiKisKaNWsQGhqKZcuWYfPmzUhPT4ebm1ut5Tdu3IjXXnsN6enp6mkymQzu7u56bY/hRhp0XRo4dLEAq/ZmmLlC/bg4Nsetkrsm3+6YQE+U3q3E7tP5Jt92Q+g6AFqqAO9WSLvaOKGJ6ue/M8MbdFaPLINVhZvQ0FD069cPK1euBABUVlZCoVBg1qxZmDt3bq3lN27ciNmzZ6OwsLBe22O4sW6qMw3rDmSqp80c6odbJeX4PinHjJURkaWqeRZW7JIV2+pYPkOO32ZtUFxeXo6UlBTExMSop9nY2CAiIgKJiYlaH3fnzh107NgRlZWV6NOnDxYsWIAHHnhAdNmysjKUlZWpfy8q4l9Q1kTVJuDyzRIczy5Ewtk/ay2zap91nKUhIvOo+Re8ACB25zlcyL8Nz9YtcD7vDn49kw8B1n3jAd1n1nBTUFCAioqKWpeU3N3dce6ceHuJbt26Yf369ejVqxeUSiWWLFmC8PBwnD59Gu3bt6+1fGxsLD744AOj1E/GFZ+cjTlb0sxdBhFJ1I/HardbqxSAt7eewuCu7XgGx4pZXT83YWFhiIqKQmBgIIYMGYKtW7eiXbt2WLt2rejyMTExUCqV6p+cHF66sHS5ylL834mrDDZEZBYVgoCsghJzl0ENYNYzN66urrC1tUV+vmajxvz8fHh4eOi1jubNmyMoKAgXL14UnW9vbw97e/sG10qmUb2PDyKSHid7WxSXVZi7jDo52tmwHY4VM+uZGzs7OwQHByMhIUE9rbKyEgkJCQgLC9NrHRUVFUhLS4Onp6exyiQjUvXEeiLnFr5NzMScLZYXbGSoarT84qBOsJHVuXiTJLPA/SID4OvqqPeyqv9PCFEg3K+Nxny/e/39WKPGrj24Q+sGvd7fTwuFBb5danl81WGExe7BhHVHMGDhHsQnZ5u7JDKA2Xsojo6OxuTJk9G3b1+EhIRg2bJlKC4uVvdlExUVBW9vb8TGxgIAPvzwQ/Tv3x+dO3dGYWEhFi9ejMuXL2PatGnmfBpUD+Y8S/NUkDe6e7WCj6sjSssrUVhaDhdHO/S51w9KVkEJHO1sUFJeCR9XR/VfbVMH+iCroAQnrxZi4Y5zte7AUPW/UVdfMSN7emDnqTy9bmmWAXh5qB+uFpbiv6nX1Nt4PNATfX3a4L3/ntbZl4hKqK8LjmTe0pg2oqcH5o3ugQ0Hs/DVwUtV/ckAmDbYF48GeKKkvFK9H05eLcQnO9NRIQiwlcnwz0e6oVf71vC5FyBU++zkFSXe++9prXXYAHhpqB9W/5Gh9bWXoSowqepp79IC2bdq92U1a5gfbGQynMu/jd/O5GvUP3WALzzlDjiRcwvr9mdix6ncWv2hqO6aeSzQC1kFJRqv9YmcWziadQt9fVzg1qoFwmP3iL5erwzzw+p9l1Bx70VQvQ9sZTIseLInBndth5SsW5DJgD4dXao6mtuShsoa63nQvx0mhHaAo11zjX0NVPVJk55/R/38BGg2klV1mrh2/yXsSMtTTx/R0wOrJwbjRM4t7Dn7J5bvvSj6Xqm+v7WxATCnWud/1T8jV24V458/1u7Hp/pdSjYAYscGoLfCBQvHBojuA5WPxzyAB7tXtcVctPMcfkq9VmuZUb08MKRrO5y9dhsbDmcZtXuASgGYuyUN/h4t9ep4kszP7LeCA8DKlSvVnfgFBgZi+fLlCA0NBQAMHToUPj4+2LhxIwDg9ddfx9atW5GXlwcXFxcEBwfj448/RlBQkF7b4q3gliFXWYrwhXv0OigbaoBfG4R3doXcoblGYKl+gGmMU8y5ylKNdQLQOEBWn9/exQE5N0s1ti/2eLGQoTpIq7ZZ8yAcn5yNt7eeQoUgiHY8+GK1deQqS/H7mXwU3CnD8Bo9BIutW+w517WMqqbqndbJZMDcR/zVYUjVsZ2qbjErxwehrbO9evnnNyRhT/p19fyxfbyx9JlAvWurPh+AXs+jrue08N5dNYauu2Y4EFu25vOp/vv+89fV+04VolR391QPZTUPxGL7vHoIq15Tzf/r85qr1l39vattf6iez8mrhRq9Pmsb8iIl65bGHyHV11XzM/B4oCf+eyLXKN8vYr0mk2lYVT83psZwY365ylJM/OoIMq4XN2g9qgOmd2sHrV961kjfAKHtMUDjB7n6qBnetAWOlKxbeDXueK1hDw7OHVbrMboO3Kagz3MyZS2Gvk+qP07f0GLKmhpSS8111Aw8Y4O88dfflfglLbfBZ3mqD4NCpsNwowPDjXnpMyyCLjIAb0Z2hU9bJ7MfXKjxVD8Q1TwTQVRfYqEpV1mqcYa0vmxkwKG5w/kdZEIMNzow3JjP2j8yELvT8GBTsw0DD3rS1Bh/vRPpS/V+Kym/i2nfpNTrbM7K8UEY1dur0WsjcQw3OjDcmEeushRhsXsMflyMlsaeRESNpa72X7q8OMgXUwf68rvJBBhudGC4MR3V0AkymQyLdp5FjsjdLmLGBHrioR4evOxERCZTs92atru0xHDIBtOwmrGlSLpq3lmij94KOdZMDGagISKT85Q7aHz3LHs2CN29Wqnv5NKFt4pbHp65oUaXqyzV2ieImNce7FzrtmQiIkugukPulU3H9Vp+5lA/vPWIv5GrapoMOX5b3dhSZPkyC4oNOmPTv5Mrgw0RWSRPuQNG9fbChBCFXsuv2peBl/+TYuSqqC4MN9Tort7Sf8A5GxnU17iJiCzVrAe76D1sxI60PJzIuVX3gmQ0DDfUKFRjRD2/IQlv/aj/aN5zRvizjQ0RWTxPuQMWjg3QO+B8sivdqPWQbmxzQw1WnzGiqo9TQ0RkLVSdAH554FKdyw7zb4cNU0JMUFXTwFvBdWC4aVy5ylIMWLhH72Dz0eMPoLNbS/ZZQ0RWLVdZivf/exq7z+TrXG5KWEe8/3hPE1UlbWxQTCaRqyzFzyev6R1sbGRARA93hPm1ZbAhIqvmKXfA2qi+GBngoXO5jYmX8eK3R/HzyWvIVZaaqDrimRuqF0MvRXGgOSKSqoSzeXjhm7rvkOL3YMPwzA0ZVa6y1KBgMyFEgcMxw/mBJiJJerC7BxaNDahzOQFAzNY0nsExAfZQTAbLLCjWK9jIAPw0M5x92BCR5I3r1wH+Hi3x+KrDOperFICsghJemjcynrkhg/m6OtW5jExWdfqVwYaImoreCheMqqMNjgzs28sUGG7IILnKUrymRzfkP70czstQRNTkTB/cSed8AcB2PQfkpPpjuCG9xSdnIyx2D5Ky6u55s6S80gQVERFZlt4KF4zoqfvsTezOc1i7P8NEFTVNDDeklxM5tzB3q349D9vKZDztSkRN1uqJwZgS1lHnMgt3nGPDYiNiuKE6xSdnY8yqw9Cn0wBbmQwLnuzJxnJE1KS9/3hPzBymvQd2AUCKHmfBqX54txTppLrtu65cw56HiYg0vRXpDwBYtVf8ElRhabkpy2lSeOaGdNLntm/2PExEJO6tSH+MCfQUnfdjylUTV9N0MNyQTvrc9s2RvYmItJszorvo9NScQsz49ijb3hgBww3p9OH/ndE5P2aEP2YM5sjeRETaeModtPZ/s/tMPsJi9yA+OdvEVUkbww1pdSLnFnaeyhOd193dGYkxwzFjCIMNEVFd6ur/Zs6WNJzIYQPjxsJwQ1pF/3BC67z1z4fwUhQRkZ56K1wQ4qO7x/Yxqw7zDE4jYbghUfP/ewoZ14tF540J9GKwISIy0Ofjg3TOFwC8vfUU2+A0AoYbqmXtHxn4JvGy1vlzRvibsBoiImnwlDsgpo7vzwpBQFZBiYkqki6GG9KQqyxF7M5zWue/MsyPZ22IiOppxhA/nZ37AUBJ+V0TVSNdDDek4WjWTa3zhvm3w5uRPGtDRNQQb0X6Y7KO4RmmfZvCtjcNxHBDGr4+mKl13oInAkxYCRGRdH3weE8M828nOk8QgLlb0tj2pgEYbkht8a5zSM1Rap3P68BERI1nw5QQrQNsCgDm/HjStAVJCMMNAahqa7Nqn/j4JwBH+iYiMoZgHbeH779QwL5v6onhhpCrLMXPJ69pnW8jA0f6JiIyAplMpnP+J7vTTVSJtHBU8CYuPjkbMVvTtA6OGaSQ44uJwQw2RERGENxRd8d+hy7ewNr9GRzmxkA8c9OE5SpLdQYbAHhhYCcGGyIiI9Gn75vYHefYuNhADDdNWGZBsc5gAwB1nDElIqIGmjHEDzEjdQecFQkXTVSNNDDcNGG+rk7QlV1kAPrUccqUiIgabsZgP/x3ZrjW+ZuSsnn2xgAMN02Yp9wBc3WcDp070p+XpIiITKS3wkXrJSoBQEoW75zSF8NNE5arLEV5RYXovJnD/NiAjYjIxGYM8cPjgV6i8xbvTufZGz0x3DRR8cnZCIvdg6W/XhCdP7CzeM+ZRERkXNrOqF++WYKw2D0cmkEPDDdNUK6yFHO2pGmdzw77iIjMx1PugFEBHlrnx2zl0Ax1YbhpglbsET9bo/LPEd3Y1oaIyIye6OOtdV6lwOFw6sJw08Ss/SMD3x/J0blML+/WpimGiIhEOdjp7mPX0Y6Hb124d5qQXGUpYnee07mMjQy8JEVEZGa+rk6w0dFXxxNfHGbbGx0YbpqQFQm6L0cBwJwRvP2biMjcPOUOiH0yQOtBulIA3t56im1vtGC4aSJylaX4Pkn35Sje/k1EZDnG9euAbTo69qsQBLa90YLhponILCjWOX9CSAe8Fam7+28iIjKt3goXTAhRiM5jMwLtGG6aiO8SL2udZwNg1oOdTVcMERHpLbyzq+j08SEd2IxAC4abJuBEzi3sPJUnOs9GBsSODeAHhIjIQgV3dBEdB7CZrhbHTRzDTROQlHVT67zlzwZhXL8OJqyGiIgMoW0cwG8SL2PqxiQzVGT5GG6agCs3xVvT28iAYB+O+k1EZOkC2stFp+89dx1Lduvu4qMpYriRuLV/ZOAbLe1teNs3EZF18HV10jpv5d4M3hJeA8ONhNXVaR97IiYisg6ecgdM7t9R6/w5P540YTWWj+FGwnTd/s1bCImIrEukjsE0918owImcWyasxrJZRLhZtWoVfHx80KJFC4SGhiIpSb8GUnFxcZDJZBgzZoxxC7RShy4UaJ3HS1JERNbF19VJ9K4pleUJF01Wi6Uze7iJj49HdHQ05s+fj2PHjqF3796IjIzEn3/+qfNxWVlZePPNNzFo0CATVWpdcpWl+GJfhui8CSEd2BMxEZGV0XbXlErCuT+xdr/4935TY/Zw8+mnn2L69OmYOnUqevTogTVr1sDR0RHr16/X+piKigo899xz+OCDD9CpUyed6y8rK0NRUZHGT1OQWVAMQWS6DOywj4jIWs0Y4oeYkdoDzqKd59i4GGYON+Xl5UhJSUFERIR6mo2NDSIiIpCYmKj1cR9++CHc3Nzwwgsv1LmN2NhYyOVy9Y9CId6NtdRsS7kiOn3mMD9ejiIismIzBvvh68nBovMqBXC8KZg53BQUFKCiogLu7u4a093d3ZGXJ96j7sGDB/H1119j3bp1em0jJiYGSqVS/ZOTo3vwSCl46d8p2Hzsqui8AZ3bmbgaIiJqbA52zbTOc7Qz+0UZs9O+dyzQ7du3MWnSJKxbtw6uruJjbdRkb28Pe3t7I1dmOeoaaoF3SBERWT9V42Kx5gcl5ZWmLsfimDXcuLq6wtbWFvn5+RrT8/Pz4eFR+5a3jIwMZGVlYfTo0epplZVVL2KzZs2Qnp4OP7+m3VBW11ALz/bjIGtERFKgalws1pfZwYvXEebX1gxVWQ6znruys7NDcHAwEhIS1NMqKyuRkJCAsLCwWsv7+/sjLS0Nqamp6p/HHnsMw4YNQ2pqapNpT6PLlRvaG5KxITERkXTMGOKHmcNq/0G/am9Gk79ryuyXpaKjozF58mT07dsXISEhWLZsGYqLizF16lQAQFRUFLy9vREbG4sWLVqgZ8+eGo9v3bo1ANSa3hTlKkvx7f/Eh1p4cVAnnrUhIpIY91bizS5id5zDY729muz3vtnDzbhx43D9+nXMmzcPeXl5CAwMxK5du9SNjLOzs2Fjw8ZR+lix54LW27+nDvQxcTVERGRsBXfKtc5LybqFUb2bZriRCYIgdjyUrKKiIsjlciiVSrRq1crc5TSatX9kaB1HKmakPzvtIyKSoBM5t/D4qsOi8z4e8wAm9vcxbUFGZMjxm6dEJEDXAJmBitYMNkREEtVb4YIRPcXHnHr3p9OIT842cUWWgeFGAjYczNQ67+SVQvZWSUQkYasnBuPpPt6i8+ZsSWuSxwCGGyuXqyzFlwe0hxv2VklEJH1dPVtqnTc7LtV0hVgIhhsrd1RHvzYAYCuTseM+IiKJC/Fpo3XekcybOJFzy4TVmB/DjZVLzLihdZ6NDFjwZM8meysgEVFToavtDQAczWK4ISuRqyzF90niY2XJAGx7ORzj+nUwbVFERGQWutre9PVxMXE15sVwY8VSLmtP4gvHBqC3omm9mYmImrrFzwRiZEDtMzjfJop38CpVDDdWTFsXRTIAg7ty9G8ioqbIt61TrWlbjl1FwlnxQZWliOHGinVoI95QWADvkCIiaopylaVYtU98XKkXvklpMv3eMNxYqfjkbIzR0isl75AiImqaMguKdc6P2do0+r1huLFCucpSzN2SJjqOFO+QIiJqunxdnWAj0z6/qfR9xnBjhTILikWDDQAsfzaId0gRETVRnnIHxD4ZAG35xkaGJnFmn+HGCvm61m4spqJowzM2RERN2bh+HbBiQpDovH4dXZrEmX2GG4kpKa80dwlERGRmwR1dRM/eHMm6hbX7xRscSwnDjRXS1r9NUzndSEREunnKHTB9kK/ovIU7zkm+UTHDjZVZuz8Dr3x/XHTenBH+TeJ0IxER1W3qQPFwIwBIkfhwDAw3VmTtHxmI3XFOdF7MCH/MGOxn4oqIiMhSecodMCFEITrvq4OZJq7GtBhurESushQLd4oHGwDo30n7iLBERNQ0zXqwi+j01JxCLNmt/Zhi7RhurISu27+BpjfiKxER1c1T7oBRImNNAcDKvRmSbXvDcGMlfF2dtPZbADS9EV+JiEg/0wd30jpvRcJFE1ZiOgw3VmL/+etaz9wM79aOI4ATEZGo3goX+LQVv5M2LjlbkmdvGG6sQK6yFDFb07TOn86GxEREpEWushSXb4gPuSDV4RgYbqzAhoOZqNRy2oZ92xARkS51tdl0tJNeFJDeM5KYXGUpvjyg/Za9aQM7sW8bIiLSqq7BNJf+et50xZgIw42F0zV8vQzA1IE+JquFiIisj2owTW0H/P0XCnAiR1p33DLcWDhdg2TOHckeiYmIqG7j+nXAoZjh6O8r3ifanrN/mrgi42K4sXDbU6+JTp85zI89EhMRkd485Q6IGekvOm/53ouIT842cUXGw3BjwXKVpYjV0ivxwM7tTFwNERFZu94KF4zt411ruiAAb289JZnbwhluLNhrm8QHyOQdUkREVF9vRnYTnV4hCJK5LZzhxkKdyLmFJC1DKjzbrwPb2hARUb0czbqpdZ5UbguXxrOQoHX7L2mdN+vBziashIiIpEQm035feHzyFRNWYjwMNxYoV1mKn9PyROdNCe/IszZERFRvwR21D9fzfZI0hmNguLFAuvq2iXzA04SVEBGR1HjKHRAzQvyuKUAag2ky3FggbSOAsyExERE1hhlD/PB4oJfoPCkMpslwY6F6K+Qav8sAxD4ZwEtSRETUKOZqOXsjhcE0GW4sTHxyNsJi9yA1R6kxXQZgcFf2bUNERI1D1+Upa79KwHBjQXKVpZizJU10XiWsP0kTEZFleSzQS7QZxPYT4r3jWwuGGwuic5BMtrchIqJGlllQDEFk+qKd56y63Q3DjQXRNUjmzKF+bG9DRESNStsNLNbe7obhxoJ8+H9nRKcP82+HNyO137ZHRERUH55yB60Ni09eLTRtMY2I4cZCnMi5hZ2nxDvue3EQR/8mIiLjeEzLLeELd1jvpSmGGwuRpGWsD7a1ISIiY9LW3lMAcOyy+BiHlo7hxkK0dmguOn1yGIdbICIi49HV3vNmcbkJK2k8DDcWID45G//8UfwWcA63QERExuQpd8CEEIXovJ9P5pq4msbBcGNmucpSxGxNE70Vz1Ym4yUpIiIyulkPdhGdfiTzJk7kWN+lKYYbM8ssKEalWLIB8NLQTrwkRURERucpd8CoAA/RecutcCBNhhszO3SxQOs8F0c7E1ZCRERN2fTBnUSnJ5z7E2v3Z5i4moZhuDGjtX9kYNVe7W+Yvj4uJqyGiIiast4KF4RoOe5YW4/FDDdmkqssRezOc1rnjwzwQG8Fww0REZlOVLiP6HRr67GY4cZMdI0jBQCT+vuYphAiIqJ7gjtq/6Pa0c56IoP1VCox2sbzAAAbdtxHRERm4Cl3QIyW4Rie+OIw4pOzTVxR/TDcmImn3AELxwbUCjgyGRD7ZADvkiIiIrMIaC8XnV4pAG9vPWUVbW+ambuApmxw13ZYPj4QytK7AKrujurT0YXBhoiIzEZ1ZUGsl5IKQUBWQYnFH6cYbswkPjkbc7emQbj37okZ4Y+J/cUHLyMiIjIVT7kDxoco8H1Sjuh8a2h7YxEVrlq1Cj4+PmjRogVCQ0ORlJSkddmtW7eib9++aN26NZycnBAYGIjvvvvOhNU2XK6yFHO23A82ABC785zV9SNARETSFN7ZVeu8kvJKE1ZSPwaduSksLMS2bdtw4MABXL58GSUlJWjXrh2CgoIQGRmJ8PBwgwuIj49HdHQ01qxZg9DQUCxbtgyRkZFIT0+Hm5tbreXbtGmDd955B/7+/rCzs8PPP/+MqVOnws3NDZGRkQZv3xwW7hC/BXzhznN4rLeXxZ/uIyIiadN115Q13PCi15mba9euYdq0afD09MTHH3+M0tJSBAYG4sEHH0T79u2xd+9ePPTQQ+jRowfi4+MNKuDTTz/F9OnTMXXqVPTo0QNr1qyBo6Mj1q9fL7r80KFD8cQTT6B79+7w8/PDa6+9hl69euHgwYMGbddccpWl+O+Ja6LzBCvrR4CIiKRJ111T27UcwyyJXmdugoKCMHnyZKSkpKBHjx6iy5SWluKnn37CsmXLkJOTgzfffLPO9ZaXlyMlJQUxMTHqaTY2NoiIiEBiYmKdjxcEAXv27EF6ejoWLVokukxZWRnKysrUvxcVFdW5XmM6mnVT6zzeAk5ERJZC211TC3dY/lUGvcLNmTNn0LZtW53LODg4YPz48Rg/fjxu3Lih18YLCgpQUVEBd3d3jenu7u44d057771KpRLe3t4oKyuDra0tvvjiCzz00EOiy8bGxuKDDz7Qqx5TkMm09W7DW8CJiMhy+Lo6iU4XABy7fAuP9rLc45Vel6Xatm2Ln3/+GZWV+jUiqisINVTLli2RmpqK5ORk/Otf/0J0dDT27dsnumxMTAyUSqX6JydHvPW3qVy9Jd4/wH9nhmNcvw4mroaIiEicp9wBE0IUovMOXdTvJIa56H231JgxY6BQKPDOO+/g4sXGGf7c1dUVtra2yM/P15ien58PDw/xodeBqktXnTt3RmBgIN544w089dRTiI2NFV3W3t4erVq10vgxl1xlKRaKjCcVM9Kf40gREZHFmfVgF9Hp3ydlW3RnfnqHm8zMTMyYMQNxcXHo1q0bhgwZgu+++w6lpfV/cnZ2dggODkZCQoJ6WmVlJRISEhAWFqb3eiorKzXa1Viqo1k3RTtF8ualKCIiskC6zt6sSGicEx3GoHe4USgUmDdvHjIyMvD777/Dx8cHL730Ejw9PfGPf/wDycnJ9SogOjoa69atwzfffIOzZ8/ipZdeQnFxMaZOnQoAiIqK0mhwHBsbi99++w2XLl3C2bNnsXTpUnz33XeYOHFivbZvSt8lXhadrqMZDhERkVlp6/MmLtlyz97Uq4fiYcOGYdiwYVi5ciXi4uKwceNG9O/fHz179sSJEycMWte4ceNw/fp1zJs3D3l5eQgMDMSuXbvUjYyzs7NhY3M/gxUXF+Pll1/GlStX4ODgAH9/f/z73//GuHHj6vNUTOZEzi0kZd2qNV0GoI+O/gSIiIjMSVufN5X3ui+xxBthZIIgiF0p0dulS5ewfv16rF69GkVFRbh7925j1WYURUVFkMvlUCqVJm1/M3rFAaRdrX0b+qgAT6x8ro/J6iAiIjLU2j8yECvSZnSYfztsmBJikhoMOX7Xa/iF0tJSfPvttxg6dCi6dOmCuLg4REdHIysrqz6rk7wTObdEgw0ATB/sa+JqiIiIDPNYoPjYh3vPXceS3dq7bjEXgy5L/e9//8P69evxww8/oLy8HE8++SR+//13DBs2zFj1ScK6/ZdEp/fylvMuKSIisniZBcVa563cm4Hn+ne0qMtTeoebHj16ID09HUFBQYiNjcWECRMgl4v3Xkj35SpL8XNanui8j8Y8YOJqqCmrqKiw+MvGZBg7OzuNNolExqKtQz+VlKxbGNXbCsNNREQENm3ahN69exuzHslZkXBBdHqobxuetSGTEAQBeXl5KCwsNHcp1MhsbGzg6+sLOzs7c5dCEucpd8CisQGYsyVNdL6l3fWrd7hZvny5MeuQpFxlKb5PEu8ROSqso4mroaZKFWzc3Nzg6OiocwgQsh6VlZW4du0acnNz0aFDB76uZHTj+nWAv0dLPL7qcK15lnbXr17h5pFHHsH777+P/v3761zu9u3b+OKLL+Ds7IyZM2c2SoHWTNc1Skt7I5A0VVRUqIONsYdFIdNr164drl27hr///hvNmzc3dznUBLi1agEZINohrSXRK9w8/fTTGDt2LORyOUaPHo2+ffvCy8sLLVq0wK1bt3DmzBkcPHgQO3bswKOPPorFixcbu26r4OvqJPom4N9XZCqqNjaOjhxtXopUl6MqKioYbsgkMguKRYPNhoNZePvR7iavRxu9ws0LL7yAiRMnYvPmzYiPj8eXX34JpVIJoGqU6x49eiAyMhLJycno3t1ynpy5ecodMLCLKw5cKNCYLsByOz4iaeIlC2ni60qmpu2P9i8PXMLUgT4Wc1zTu82Nvb09Jk6cqB7mQKlUorS0FG3btuVfDFrkKktxsEawAQAbGeDjyr+kiYjIunjKHTA+RCHannRFwkUseDLADFXVVu97COVyOTw8PBhsdFix54Lo6btpAztZTLolakqysrIgk8mQmppq7lKIrJa2saY2WdBI4ewgwUjW/pGB74/UTrYyAFMH+pi8HiIiosagbawpAUDC2XzTFqMFw40R5CpLRcfgAIDpg3jWhqg+ysvLzV0CEaHq0tSEEIXovPd+Oo345GwTV1Qbw40RpFyuPfq3yqO9PExYCVHjylWW4nBGgUlOPQ8dOhSvvPIKZs+eDVdXV0RGRuLUqVMYMWIEnJ2d4e7ujkmTJqGg4H67tl27dmHgwIFo3bo12rZti1GjRiEjI8PotRI1NbMe7CJ6568A4O2tp8x+eYrhxgh0DbReUl5pwkqIGk98cjYGLNyDCeuOYMDCPSb56+ybb76BnZ0dDh06hIULF2L48OEICgrC0aNHsWvXLuTn5+OZZ55RL19cXIzo6GgcPXoUCQkJsLGxwRNPPIHKSn7uiBqTp9wBLw/1E51XIQjIKigxcUWaDBo4U6WwsBA//vgjMjIy8NZbb6FNmzY4duwY3N3d4e3t3dg1Wp1rhX+JTuddUmStcpWliNmahsp7ub1SqPrrbHDXdka9zNqlSxd88sknAICPP/4YQUFBWLBggXr++vXroVAocP78eXTt2hVjx47VePz69evRrl07nDlzBj179jRanURNUWsn7TcUmftYZ/CZm5MnT6Jr165YtGgRlixZoh6vZuvWrYiJiWns+qyOtvY2MgCxTwawvQ1ZpcyCYnWwUTHFX2fBwcHqf584cQJ79+6Fs7Oz+sff3x8A1JeeLly4gPHjx6NTp05o1aoVfHx8AADZ2eZvA0AkNSE+bcxdglYGh5vo6GhMmTIFFy5cQIsWLdTTR44cif379zdqcdbope9SRKe/GdkV4/p1MHE1RI3D19UJNjUusNvKZEb/68zJ6f5IxHfu3MHo0aORmpqq8XPhwgUMHjwYADB69GjcvHkT69atw5EjR3DkyBEAbIxMZAy9FS4I8RG/c2pFwkUTV6PJ4HCTnJyMGTNm1Jru7e2NvLy8RinKWp3IuYXUK0rReWV3ec2frJen3AGxTwbA9l6PuLYyGRY82dOkZyL79OmD06dPw8fHB507d9b4cXJywo0bN5Ceno53330XDz74ILp3745bt7Q37ieihosK9xGdvikpGydyzPf5Mzjc2Nvbo6ioqNb08+fPo127do1SlLVKyrqpdd6D3d1MWAlR4xvXrwMOzh2GTdP74+DcYSY/Ezlz5kzcvHkT48ePR3JyMjIyMrB7925MnToVFRUVcHFxQdu2bfHll1/i4sWL2LNnD6Kjo01aI1FTo6vPmzFfHDbbbeEGh5vHHnsMH374oXpAPplMhuzsbMyZM6dWY76m5spN8Vvfhndrh94KjgJO1s9T7oAwv7ZmaTvm5eWFQ4cOoaKiAg8//DACAgIwe/ZstG7dGjY2NrCxsUFcXBxSUlLQs2dPvP766xzEl8jIPOUOiBnhLzpPEMx3W7hM0HXfsgilUomnnnoKR48exe3bt+Hl5YW8vDyEhYVhx44dGtfILVFRURHkcjmUSiVatWrVaOtd+0eGaEPiML822DQ9rNG2Q2SIv/76C5mZmfD19dVoI0fSwNeXLMXa/RmI3SHeee2m6f0R5te2wdsw5Pht8K3gcrkcv/32Gw4ePIiTJ0/izp076NOnDyIiIupdsLXLVZZioZYeiV8d3tXE1RAREZlWawfx28JNceOBmHr1cwMAAwcOxMCBAxuzFquVWVAsOkAm+7UhIiKpy1WWYs6WNNF5Lw01z5BDBoeb5cuXi06XyWRo0aIFOnfujMGDB8PW1rbBxVkL1W2yNfsBeaSnB/u1ISIiScssKNY6z8XRzoSV3GdwuPnss89w/fp1lJSUwMWlqpHsrVu34OjoCGdnZ/z555/o1KkT9u7dC4VCfGAtqfGUO2DOI/612tzsPpWPXGUpAw4REUmWr6v2trZ9tfSDY2wG3y21YMEC9OvXDxcuXMCNGzdw48YNnD9/HqGhofj888+RnZ0NDw8PvP7668ao12LduFNWa5oljK9BRERkTJ5yBywaG1Br+tg+3ma7U9jgMzfvvvsutmzZAj+/+wNmde7cGUuWLMHYsWNx6dIlfPLJJ03qtvBcZSnWHcisNZ1tboiIqCkY168DBndth9/P5KPgThmG+7uZtQsUg8NNbm4u/v7771rT//77b3UPxV5eXrh9+3bDq7MS2hoUTxtonoZUREREpuYpd8CkMB9zlwGgHpelhg0bhhkzZuD48ePqacePH8dLL72E4cOHAwDS0tLg6+vbeFVaOLFxd2wATB3oY45yiIiImjSDw83XX3+NNm3aIDg4GPb29rC3t0ffvn3Rpk0bfP311wAAZ2dnLF26tNGLtVRi4+7EjuUI4EREROZg8GUpDw8P/Pbbbzh37hzOnz8PAOjWrRu6deumXmbYsGGNV6GVUF1vzCoogY+rI4MNUQMNHToUgYGBWLZsmVnr8PHxwezZszF79myz1kFE+qt3J37+/v7w9xcfT6Kp8pQ7MNQQNZKtW7eieXPxXk9NKTk52eKHlSEiTfUKN1euXMH27duRnZ2N8vJyjXmffvppoxRGRE1bmzZtzF0CAKBdu3ZG30Z5eTns7MzT2RmRFBnc5iYhIQHdunXD6tWrsXTpUuzduxcbNmzA+vXrkZqaaoQSichiKK8Cmfur/m9kQ4cOVV8K8vHxwccff4yoqCg4OzujY8eO2L59O65fv47HH38czs7O6NWrF44ePap+/I0bNzB+/Hh4e3vD0dERAQEB2LRpk8Y2bt++jeeeew5OTk7w9PTEZ599prFd1barXxqTyWT46quv8MQTT8DR0RFdunTB9u3b1fMrKirwwgsvwNfXFw4ODujWrRs+//xzje1OmTIFY8aMwb/+9S94eXmhW7du+PDDD9GzZ89a+yEwMBDvvfdeA/YkUdNjcLiJiYnBm2++ibS0NLRo0QJbtmxBTk4OhgwZgqefftoYNRKRJTj2LbCsJ/DN6Kr/H/vWpJv/7LPPMGDAABw/fhyPPvooJk2ahKioKEycOBHHjh2Dn58foqKiIAhVHTP89ddfCA4Oxi+//IJTp07hxRdfxKRJk5CUlKReZ3R0NA4dOoTt27fjt99+w4EDB3Ds2LE6a/nggw/wzDPP4OTJkxg5ciSee+453Lx5EwBQWVmJ9u3bY/PmzThz5gzmzZuHt99+Gz/88IPGOhISEpCeno7ffvsNP//8M55//nmcPXsWycnJ6mWOHz+OkydPYurUqY2xC4maDsFAzs7OwsWLFwVBEITWrVsLp06dEgRBEFJTU4WOHTsaujqTUyqVAgBBqVSauxQioystLRXOnDkjlJaWNmxFhVcE4f3WgjC/1f2f912qphvJkCFDhNdee00QBEHo2LGjMHHiRPW83NxcAYDw3nvvqaclJiYKAITc3Fyt63z00UeFN954QxAEQSgqKhKaN28ubN68WT2/sLBQcHR0VG9Xte3PPvtM/TsA4d1331X/fufOHQGAsHPnTq3bnTlzpjB27Fj175MnTxbc3d2FsrIyjeVGjBghvPTSS+rfZ82aJQwdOlTrehvt9SWyAoYcvw0+c+Pk5KRuZ+Pp6YmMjAz1vIKCgsbIW0RkaW5mAEKl5jShArh5yWQl9OrVS/1vd3d3AEBAQECtaX/++SeAqstDH330EQICAtCmTRs4Oztj9+7dyM7OBgBcunQJd+/eRUhIiHodcrlc485PfWpxcnJCq1at1NsFgFWrViE4OBjt2rWDs7MzvvzyS/V2VQICAmq1s5k+fTo2bdqEv/76C+Xl5fj+++/x/PPP11kPEWkyuEFx//79cfDgQXTv3h0jR47EG2+8gbS0NGzduhX9+/c3Ro1EZG5t/ACZjWbAkdkCbTqZrITqd07J7vUpJTatsrKqxsWLF+Pzzz/HsmXLEBAQACcnJ8yePbvWTRANrUW1bdV24+Li8Oabb2Lp0qUICwtDy5YtsXjxYhw5ckTjMWJ3YI0ePRr29vbYtm0b7OzscPfuXTz11FMNrpeoqTE43Hz66ae4c+cOgKrrznfu3EF8fDy6dOnCO6WIpEruDYz+HPi/2VVnbGS2wOhlVdMt1KFDh/D4449j4sSJAKpCz/nz59GjRw8AQKdOndC8eXMkJyejQ4cOAAClUonz589j8ODBDdpueHg4Xn75ZfW06me4dWnWrBkmT56MDRs2wM7ODs8++ywcHNi9BJGhDA43nTrd/0vNyckJa9asadSCiMhC9YkC/B6suhTVppNFBxsA6NKlC3788UccPnwYLi4u+PTTT5Gfn68ONy1btsTkyZPx1ltvoU2bNnBzc8P8+fNhY2OjPgtU3+1+++232L17N3x9ffHdd98hOTlZ7yFppk2bhu7duwOoCkpEZDiD29x06tQJN27cqDW9sLBQI/gQkQTJvQHfQRYfbADg3XffRZ8+fRAZGYmhQ4fCw8MDY8aM0Vjm008/RVhYGEaNGoWIiAgMGDAA3bt3R4sWLeq93RkzZuDJJ5/EuHHjEBoaihs3bmicxalLly5dEB4eDn9/f4SGhta7DqKmTCYIgtiA1lrZ2NggLy8Pbm5uGtPz8/PRoUMHlJWVNWqBja2oqAhyuRxKpRKtWrUydzlERvXXX38hMzMTvr6+DTpgNxXFxcXw9vbG0qVL8cILL5ilBkEQ0KVLF7z88suIjo7WuSxfX2pKDDl+631ZqnonVbt374ZcLlf/XlFRgYSEBPj4+BheLRGRmRw/fhznzp1DSEgIlEolPvzwQwDA448/bpZ6rl+/jri4OOTl5bFvG6IG0DvcqE7nymQyTJ48WWNe8+bN4ePj06RGAiciaViyZAnS09NhZ2eH4OBgHDhwAK6urmapxc3NDa6urvjyyy/h4uJilhqIpEDvcKO6zdHX1xfJyclm+/ATETWWoKAgpKSkmLsMNQNbCRCRFgbfLZWZmWmMOoiIiIgahV7hZvny5Xqv8NVXX613MURkHDwjIE18XYnE6RVuPvvsM71WJpPJGG6ILIiqJ92SkhJ2BidBqt6WbW1tzVwJkWXRK9zwUhSRdbK1tUXr1q3V4x45Ojo2qIM6shyVlZW4fv06HB0d0ayZwS0MiCStQZ8I1SlRflkSWS4PDw8A0BjYkaTBxsYGHTp04HcwUQ31CjfffvstFi9ejAsXLgAAunbtirfeeguTJk1q1OKIqOFkMhk8PT3h5uaGu3fvmrscakR2dnawsTG4o3kiyavXwJnvvfceXnnlFQwYMAAAcPDgQfzjH/9AQUEBXn/99UYvkogaztbWlm0ziKhJMHj4BV9fX3zwwQeIiorSmP7NN9/g/ffft/j2ORx+gYiIyPoYcvw2+Hxmbm4uwsPDa00PDw9Hbm6uoasjIiIialQGh5vOnTvjhx9+qDU9Pj4eXbp0aZSiiIiIiOrL4DY3H3zwAcaNG4f9+/er29wcOnQICQkJoqFHH6tWrcLixYuRl5eH3r17Y8WKFQgJCRFddt26dfj2229x6tQpAEBwcDAWLFigdXkiIiJqWvQ+c6MKE2PHjsWRI0fg6uqKn376CT/99BNcXV2RlJSEJ554wuAC4uPjER0djfnz5+PYsWPo3bs3IiMjtd62um/fPowfPx579+5FYmIiFAoFHn74YVy9etXgbRMREZH06N2g2MbGBv369cO0adPw7LPPomXLlo1SQGhoKPr164eVK1cCqOqYSqFQYNasWZg7d26dj6+oqICLiwtWrlxZq5EzAJSVlaGsrEz9e1FRERQKBRsUExERWRGjNCj+448/8MADD+CNN96Ap6cnpkyZggMHDjSo0PLycqSkpCAiIuJ+QTY2iIiIQGJiol7rKCkpwd27d9GmTRvR+bGxsZDL5eofhULRoJqJiIjIsukdbgYNGoT169cjNzcXK1asQGZmJoYMGYKuXbti0aJFyMvLM3jjBQUFqKiogLu7u8Z0d3d3vdc3Z84ceHl5aQSk6mJiYqBUKtU/OTk5BtdJRERE1sPgu6WcnJwwdepU/PHHHzh//jyefvpprFq1Ch06dMBjjz1mjBq1WrhwIeLi4rBt2za0aNFCdBl7e3u0atVK44eIiIikq0H9dnfu3Blvv/023n33XbRs2RK//PKLQY93dXWFra0t8vPzNabn5+erx8PRZsmSJVi4cCF+/fVX9OrVy+DaiYiISJrqHW7279+PKVOmwMPDA2+99RaefPJJHDp0yKB12NnZITg4GAkJCepplZWVSEhIQFhYmNbHffLJJ/joo4+wa9cu9O3bt75PgYiIiCTIoH5url27ho0bN2Ljxo24ePEiwsPDsXz5cjzzzDNwcnKqVwHR0dGYPHky+vbti5CQECxbtgzFxcWYOnUqACAqKgre3t6IjY0FACxatAjz5s3D999/Dx8fH3XbHGdnZzg7O9erBiIiIpIOvcPNiBEj8Pvvv8PV1RVRUVF4/vnn0a1btwYXMG7cOFy/fh3z5s1DXl4eAgMDsWvXLnUj4+zsbI1Rb1evXo3y8nI89dRTGuuZP38+3n///QbXQ0RERNZN735uHnvsMbzwwgsYNWqUVY8szIEziYiIrI8hx2+9z9xs3769wYURERERGVuD7pYiIiIisjQMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpZg83q1atgo+PD1q0aIHQ0FAkJSVpXfb06dMYO3YsfHx8IJPJsGzZMtMVSkRERFbBrOEmPj4e0dHRmD9/Po4dO4bevXsjMjISf/75p+jyJSUl6NSpExYuXAgPDw8TV0tERETWwKzh5tNPP8X06dMxdepU9OjRA2vWrIGjoyPWr18vuny/fv2wePFiPPvss7C3tzdxtURERGQNzBZuysvLkZKSgoiIiPvF2NggIiICiYmJjbadsrIyFBUVafwQERGRdJkt3BQUFKCiogLu7u4a093d3ZGXl9do24mNjYVcLlf/KBSKRls3ERERWR6zNyg2tpiYGCiVSvVPTk6OuUsiIiIiI2pmrg27urrC1tYW+fn5GtPz8/MbtbGwvb092+cQERE1IWY7c2NnZ4fg4GAkJCSop1VWViIhIQFhYWHmKouIiIisnNnO3ABAdHQ0Jk+ejL59+yIkJATLli1DcXExpk6dCgCIioqCt7c3YmNjAVQ1Qj5z5oz631evXkVqaiqcnZ3RuXNnsz0PIiIishxmDTfjxo3D9evXMW/ePOTl5SEwMBC7du1SNzLOzs6Gjc39k0vXrl1DUFCQ+vclS5ZgyZIlGDJkCPbt22fq8omIiMgCyQRBEMxdhCkVFRVBLpdDqVSiVatW5i6HiIiI9GDI8Vvyd0sRERFR08JwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBD1NQorwKZ+6v+T0T38bMhGc3MXYBkKa8CNzOANn6A3LvxlzdFTeZYtzFqNMW+rQ9VXc2dgLvFxnnONdd97Fvg/14DhEpAZgOM/hzoE9U427QWde13Q94vNZdtyGMbS33XeyUFyE4EOoQB7YNNV6+Y+m6rId+7GQmW8dmoXhNgmd9dVoDhxhiOfQtsfxWAAEAGPLZc80NS8wNY84AT8T7gFVS/D3bOkap/K0I1H6vvQU3fL4fqB4gz24DEVQ3/UtBVoyF1Vd8HxvrCaugXffXnqqKqz+9B46w74n3g9/fvTxcqge2vAU5ugJ2j7u3pem+p5ovVrM9+qrluoOox5SXA1RTA1h5o2+n+dutap1jgUK1feQX4fb74fu8TZdjn5Mjq++97yAC/YcClfZqP1fZaarxGMuChD4ABr9WuX7Uv9H0v1Fxv+CtA6Et1P3bbS8CJ7+//3nsC8MRq8fWK7Ze63h+GENs3PZ+qez/UfNygaKDTUO0htubyAKq+s1E17f9mV71+hr7H9P18iE3TWpOW17IhnztdGvJ6WsgfkzJBEASzbd0MioqKIJfLoVQq0apVq8bfwJUU4Kvhtae/fqbq/0dWA4dXQv0hGvQGcPAzzS/b6rpGAsHPVx18mjsB144Dd/KBro9U/XWleiNd+gM4sKTaA+99KcgVwI1LwN6P729TNX/kEkDeHrhxEWjbGTi/C0jZCPWHaVA04N6z6vEVZfe3KXbw1CADpiUALT2qPiAlNwHHNkDrjkDhZc3fVc/HxQfYPhMQatQY+g/g+nngUsL9yeGzgB5PVK0LuH9A3L8YSNmgpSYVG2D8pvsHc+D+h1hV341LQElB1T7xCtL8YlRevbedavspeErVfrqVDRTnAQ88CXgEaB6gnd2BbiOA23lA2mbgyJoar0e15yyT1T5AqvZjaWHVa+EdDNwt0axbNb/Wa11t3aLTq80PfwXoOLDqIH07H2jpDtg5AQeWaj42eGrVc3ZsA2T/D0hae39eyItVf/1n7q+2n+49xndwVb2qfXpqC/DbezpqqsFv+P0AUf0Apu0PhV7PAic21fG8AchsgRd+A76OqP2+DpwEOLQBSm9W/V5RVvUa1rXOmgdM1fv22nFgx5u1H+8/qmpS+i/i6w6eAgRF1f4MqfYlACzrKfK5rBYQxA5Y6buATeNqb+/hfwF/KYG7ZUDics2aVPur8DKQvhNI+0HzsQ99eD+QNHfSrLn6tlUHUdV791YWkPpv8eevei6q7yXV86jzM6V66L2A39wJuJZax3buCX2p6nug+udO43sSgHdf4OpRzRofWw64PVB1Jqz0FnDw0/uvi6I/0KwFkLX//jTVZ2bLCzq+V+/pGgkMngP8eVozCIVMr3o/aGyvRiiqvr+rvxbVA4nYZzLkxap1Vz+rVzOE5xyp+swf+8ZoZ78MOX5bRLhZtWoVFi9ejLy8PPTu3RsrVqxASEiI1uU3b96M9957D1lZWejSpQsWLVqEkSNH6rUto4abQ8u1f1G36w5cP9u423NwBUpvoO4v2UbUORLI+K3uD6AU1foSI4shswH6TQOS1qHenwfXbkBBeqOWZToywL0HkH9a/4f4PwoU3wBy/me8srRR9AccXYH0n02/7aZK9PtLBvR4DDi7vcYfljr4DKkKRmf/W/dxQGYLzE5rtDM4VhVu4uPjERUVhTVr1iA0NBTLli3D5s2bkZ6eDjc3t1rLHz58GIMHD0ZsbCxGjRqF77//HosWLcKxY8fQs2fPOrdntHBz6HPgt3mNtz4iIiJrN/lnwHdQo6zKqsJNaGgo+vXrh5UrVwIAKisroVAoMGvWLMydO7fW8uPGjUNxcTF+/vl+4u/fvz8CAwOxZs2aWsuXlZWhrKxM/XtRUREUCkXjhhvlVeCzHo2zLiIiIqmYtke8gXo9GBJuzHoreHl5OVJSUhAREaGeZmNjg4iICCQmJoo+JjExUWN5AIiMjNS6fGxsLORyufpHoVA03hNQUV3HJiIiovvO/GSWzZo13BQUFKCiogLu7u4a093d3ZGXlyf6mLy8PIOWj4mJgVKpVP/k5OQ0TvFERESkW+JKs/QbJPlbwe3t7WFvb2/cjaju1iEiIqL7hErg5iWT3xZu1jM3rq6usLW1RX5+vsb0/Px8eHh4iD7Gw8PDoOVNQu4NPLYC92/9tBZmqFfRH+g22vjbCZ5adXeAJWnXA5r73NreL0bWJRJ675MWLkYtxST8IoCRn1bdAt5UtPYxYGEzfz68+5q3BnkH8227MclsgTadTL5Zs565sbOzQ3BwMBISEjBmzBgAVQ2KExIS8Morr4g+JiwsDAkJCZg9e7Z62m+//YawsDATVKxDn6h7/ZEkVeuDokPV9cbDK1BnvyPBUwFbO83+QlTLjFxadbvmqR9rdz7WfTRw9v+qTdfVl8m9/i68+tx/s928BDR3BI5/d79/gurLBzxdFUhy/ifel4VXH5HH2wDBkwH3gPvLOrYBFCGa/VscWVN733j1AXJT769n0Ov319O6Q1XfLuXFwLVjgM29M3Il1wHHdoBD69rbuZJSVXuL1sDF36teD1X/DzLcu/3x3vO0c9Lsv6IxyWyBiT9W/fvmJc39f2mfZr8UDzwBNHcAUv8jtiKI9zeSDWT+Ue01UPUBM6zq9SnMrnpfAkB+WrW+KGyB7qOAM//V3MygN6oee/b/RN6TAAa9CfR9vqqPlDv5VX1v/Hm6quMzoQLqfdptZNXrVpgNpO+o0T+M6rnYAA+9X9WJnfJq7c/Q3RLN/aX692cPoNZrFTKjaj05SVWnw3Xduh/+KtBxALDp2drreeijqnmJK++/Z2S2QMT8+wed1h2q+ku58Ctw8ddqHa+J9F9zTuSW54Gzq+4iCXmhqhsJdeeCNvfWoU8/OveWadUeKLpa4zE1+tlR6RwJyL003wMR84HigmqfRxvgsXt9LGn066SjFr/hQMYe3ctFzAd+nKpjNapOTKt9R1V/P5zYBFzYraOOe7WMj6vqr6Xmd5Zqfs0ah92707XkOtC2C9DtkWr9wiQByeuAy4fuL99hQNUyv79///1e1+vlOwTIOnh/+a6RgKw5cP6X2t+7qk4dlVerPmMa7zF93x+61HGcCJ4CBE2q+uw1d7z//7TNVX211RS5oOo4UfN7SGYLjF5mls78zH63VHx8PCZPnoy1a9ciJCQEy5Ytww8//IBz587B3d0dUVFR8Pb2RmxsLICqW8GHDBmChQsX4tFHH0VcXBwWLFhg/lvBdVFevR8iCrOrpinu9eOj+rJWvfjVv+RUbwyNXnov3X+zqR6nmq7rgBk8BRj8lh69Dousv/r8nKT79Yv2wnmp9uPq2jc111mf9ehLbF9V344qdCWuvP9FEv5KVWeCp7ZUOwDVCEeqf1c/UKjWUfN1rKsujR5Ma7weGQn3A4TYevXddzWX0/Xa1jzwqoKIvs/DkP1vCF29/Kqowq2i/71OJUWe47Fvq4Uykeenzz6t+byqbweo3bmeWP8f1ddR83X27gtcqXbjQu8JwPB3a7+GNd8vQNW08uKqDtcU/Wt0wqblPafrs6/MqXZQr/b5qP4+Krl57w8iVZitFpa0dTQYPuv+enS5klIVcJzcqwKGrs9EzfducNS9oFaDPrcrV38vie1DQPs+qh7e9fmc1/XZqfmca4XTe/uzx5iqcF7zuwio1ov+Pao/aOp6nxv6Xm7E73CruhUcAFauXKnuxC8wMBDLly9HaGhVO5ahQ4fCx8cHGzduVC+/efNmvPvuu+pO/D755BPL6MSvsTTWG8OYIUHqdH3Jix2cq/+7rgOFsWozJkt9L1nLZ6V6gNIn7IrVJHZwNZf6hmigdpisHo6MUU/Nz6w+B+fGYOz3lKHhVGxZXX+salOf93IjsbpwY0pWEW6ISHosNSCagzn3hRkPzpJhpteP4UYHhhsioiaOQdMqGXL8lvyt4ERERBrk3gw1EmfWW8GJiIiIGhvDDREREUkKww0RERFJCsMNERERSQrDDREREUkKww0RERFJCsMNERERSQrDDREREUkKww0RERFJCsMNERERSQrDDREREUlKkxtbSjVOaFFRkZkrISIiIn2pjtv6jPfd5MLN7du3AQAKhcLMlRAREZGhbt++DblcrnMZmaBPBJKQyspKXLt2DS1btoRMJmvUdRcVFUGhUCAnJ6fO4dip/rifTYP72XS4r02D+9k0jLWfBUHA7du34eXlBRsb3a1qmtyZGxsbG7Rv396o22jVqhU/OCbA/Wwa3M+mw31tGtzPpmGM/VzXGRsVNigmIiIiSWG4ISIiIklhuGlE9vb2mD9/Puzt7c1diqRxP5sG97PpcF+bBvezaVjCfm5yDYqJiIhI2njmhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4cZAq1atgo+PD1q0aIHQ0FAkJSXpXH7z5s3w9/dHixYtEBAQgB07dpioUutmyH5et24dBg0aBBcXF7i4uCAiIqLO14WqGPp+VomLi4NMJsOYMWOMW6CEGLqvCwsLMXPmTHh6esLe3h5du3bl94ceDN3Py5YtQ7du3eDg4ACFQoHXX38df/31l4mqtU779+/H6NGj4eXlBZlMhp9++qnOx+zbtw99+vSBvb09OnfujI0bNxq3SIH0FhcXJ9jZ2Qnr168XTp8+LUyfPl1o3bq1kJ+fL7r8oUOHBFtbW+GTTz4Rzpw5I7z77rtC8+bNhbS0NBNXbl0M3c8TJkwQVq1aJRw/flw4e/asMGXKFEEulwtXrlwxceXWxdD9rJKZmSl4e3sLgwYNEh5//HHTFGvlDN3XZWVlQt++fYWRI0cKBw8eFDIzM4V9+/YJqampJq7cuhi6n//zn/8I9vb2wn/+8x8hMzNT2L17t+Dp6Sm8/vrrJq7cuuzYsUN45513hK1btwoAhG3btulc/tKlS4Kjo6MQHR0tnDlzRlixYoVga2sr7Nq1y2g1MtwYICQkRJg5c6b694qKCsHLy0uIjY0VXf6ZZ54RHn30UY1poaGhwowZM4xap7UzdD/X9PfffwstW7YUvvnmG2OVKAn12c9///23EB4eLnz11VfC5MmTGW70ZOi+Xr16tdCpUyehvLzcVCVKgqH7eebMmcLw4cM1pkVHRwsDBgwwap1Sok+4+ec//yk88MADGtPGjRsnREZGGq0uXpbSU3l5OVJSUhAREaGeZmNjg4iICCQmJoo+JjExUWN5AIiMjNS6PNVvP9dUUlKCu3fvok2bNsYq0+rVdz9/+OGHcHNzwwsvvGCKMiWhPvt6+/btCAsLw8yZM+Hu7o6ePXtiwYIFqKioMFXZVqc++zk8PBwpKSnqS1eXLl3Cjh07MHLkSJPU3FSY41jY5AbOrK+CggJUVFTA3d1dY7q7uzvOnTsn+pi8vDzR5fPy8oxWp7Wrz36uac6cOfDy8qr1YaL76rOfDx48iK+//hqpqakmqFA66rOvL126hD179uC5557Djh07cPHiRbz88su4e/cu5s+fb4qyrU599vOECRNQUFCAgQMHQhAE/P333/jHP/6Bt99+2xQlNxnajoVFRUUoLS2Fg4NDo2+TZ25IUhYuXIi4uDhs27YNLVq0MHc5knH79m1MmjQJ69atg6urq7nLkbzKykq4ubnhyy+/RHBwMMaNG4d33nkHa9asMXdpkrJv3z4sWLAAX3zxBY4dO4atW7fil19+wUcffWTu0qiBeOZGT66urrC1tUV+fr7G9Pz8fHh4eIg+xsPDw6DlqX77WWXJkiVYuHAhfv/9d/Tq1cuYZVo9Q/dzRkYGsrKyMHr0aPW0yspKAECzZs2Qnp4OPz8/4xZtperznvb09ETz5s1ha2urnta9e3fk5eWhvLwcdnZ2Rq3ZGtVnP7/33nuYNGkSpk2bBgAICAhAcXExXnzxRbzzzjuwseHf/41B27GwVatWRjlrA/DMjd7s7OwQHByMhIQE9bTKykokJCQgLCxM9DFhYWEaywPAb7/9pnV5qt9+BoBPPvkEH330EXbt2oW+ffuaolSrZuh+9vf3R1paGlJTU9U/jz32GIYNG4bU1FQoFApTlm9V6vOeHjBgAC5evKgOkABw/vx5eHp6MthoUZ/9XFJSUivAqAKlwGEXG41ZjoVGa6osQXFxcYK9vb2wceNG4cyZM8KLL74otG7dWsjLyxMEQRAmTZokzJ07V738oUOHhGbNmglLliwRzp49K8yfP5+3guvB0P28cOFCwc7OTvjxxx+F3Nxc9c/t27fN9RSsgqH7uSbeLaU/Q/d1dna20LJlS+GVV14R0tPThZ9//llwc3MTPv74Y3M9Batg6H6eP3++0LJlS2HTpk3CpUuXhF9//VXw8/MTnnnmGXM9Batw+/Zt4fjx48Lx48cFAMKnn34qHD9+XLh8+bIgCIIwd+5cYdKkSerlVbeCv/XWW8LZs2eFVatW8VZwS7NixQqhQ4cOgp2dnRASEiL873//U88bMmSIMHnyZI3lf/jhB6Fr166CnZ2d8MADDwi//PKLiSu2Tobs544dOwoAav3Mnz/f9IVbGUPfz9Ux3BjG0H19+PBhITQ0VLC3txc6deok/Otf/xL+/vtvE1dtfQzZz3fv3hXef/99wc/PT2jRooWgUCiEl19+Wbh165bpC7cie/fuFf3OVe3byZMnC0OGDKn1mMDAQMHOzk7o1KmTsGHDBqPWKBMEnnsjIiIi6WCbGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiIStX//fowePRpeXl6QyWT46aefjL7Nq1evYuLEiWjbti0cHBwQEBCAo0ePGrQOhhsiMrspU6ZgzJgxZtv+pEmTsGDBAr2WffbZZ7F06VIjV0RkGYqLi9G7d2+sWrXKJNu7desWBgwYgObNm2Pnzp04c+YMli5dChcXF4PWwx6KicioZDKZzvnz58/H66+/DkEQ0Lp1a9MUVc2JEycwfPhwXL58Gc7OznUuf+rUKQwePBiZmZmQy+UmqJDIMshkMmzbtk3jD5GysjK888472LRpEwoLC9GzZ08sWrQIQ4cOrdc25s6di0OHDuHAgQMNqpVnbojIqHJzc9U/y5YtQ6tWrTSmvfnmm5DL5WYJNgCwYsUKPP3003oFGwDo2bMn/Pz88O9//9vIlRFZvldeeQWJiYmIi4vDyZMn8fTTT+ORRx7BhQsX6rW+7du3o2/fvnj66afh5uaGoKAgrFu3zuD1MNwQkVF5eHiof+RyOWQymcY0Z2fnWpelhg4dilmzZmH27NlwcXGBu7s71q1bh+LiYkydOhUtW7ZE586dsXPnTo1tnTp1CiNGjICzszPc3d0xadIkFBQUaK2toqICP/74I0aPHq0x/YsvvkCXLl3QokULuLu746mnntKYP3r0aMTFxTV85xBZsezsbGzYsAGbN2/GoEGD4OfnhzfffBMDBw7Ehg0b6rXOS5cuYfXq1ejSpQt2796Nl156Ca+++iq++eYbg9bDcENEFumbb76Bq6srkpKSMGvWLLz00kt4+umnER4ejmPHjuHhhx/GpEmTUFJSAgAoLCzE8OHDERQUhKNHj2LXrl3Iz8/HM888o3UbJ0+ehFKpRN++fdXTjh49ildffRUffvgh0tPTsWvXLgwePFjjcSEhIUhKSkJZWZlxnjyRFUhLS0NFRQW6du0KZ2dn9c8ff/yBjIwMAMC5c+cgk8l0/sydO1e9zsrKSvTp0wcLFixAUFAQXnzxRUyfPh1r1qwxqLZmjfpMiYgaSe/evfHuu+8CAGJiYrBw4UK4urpi+vTpAIB58+Zh9erVOHnyJPr374+VK1ciKChIo2Hw+vXroVAocP78eXTt2rXWNi5fvgxbW1u4ubmpp2VnZ8PJyQmjRo1Cy5Yt0bFjRwQFBWk8zsvLC+Xl5cjLy0PHjh2N8fSJLN6dO3dga2uLlJQU2NraasxTXebt1KkTzp49q3M9bdu2Vf/b09MTPXr00JjfvXt3bNmyxaDaGG6IyCL16tVL/W9bW1u0bdsWAQEB6mnu7u4AgD///BNAVcPgvXv3iradycjIEA03paWlsLe312j0/NBDD6Fjx47o1KkTHnnkETzyyCN44okn4OjoqF7GwcEBANRnjYiaoqCgIFRUVODPP//EoEGDRJexs7ODv7+/3uscMGAA0tPTNaadP3/e4D8iGG6IyCI1b95c43eZTKYxTRVIKisrAVT9FTl69GgsWrSo1ro8PT1Ft+Hq6oqSkhKUl5fDzs4OANCyZUscO3YM+/btw6+//op58+bh/fffR3JysrrR882bNwEA7dq1a9iTJLJwd+7cwcWLF9W/Z2ZmIjU1FW3atEHXrl3x3HPPISoqCkuXLkVQUBCuX7+OhIQE9OrVC48++qjB23v99dcRHh6OBQsW4JlnnkFSUhK+/PJLfPnllwath21uiEgS+vTpg9OnT8PHxwedO3fW+HFychJ9TGBgIADgzJkzGtObNWuGiIgIfPLJJzh58iSysrKwZ88e9fxTp06hffv2cHV1NdrzIbIER48eRVBQkPrSbHR0NIKCgjBv3jwAwIYNGxAVFYU33ngD3bp1w5gxY5CcnIwOHTrUa3v9+vXDtm3bsGnTJvTs2RMfffQRli1bhueee86g9fDMDRFJwsyZM7Fu3TqMHz8e//znP9GmTRtcvHgRcXFx+Oqrr2q1CQCqzrz06dMHBw8eVAedn3/+GZcuXcLgwYPh4uKCHTt2oLKyEt26dVM/7sCBA3j44YdN9dSIzGbo0KHQ1R1e8+bN8cEHH+CDDz5otG2OGjUKo0aNatA6eOaGiCTBy8sLhw4dQkVFBR5++GEEBARg9uzZaN26NWxstH/VTZs2Df/5z3/Uv7du3Rpbt27F8OHD0b17d6xZswabNm3CAw88AAD466+/8NNPP6kbNhOR5WEPxUTUpJWWlqJbt26Ij49HWFhYncuvXr0a27Ztw6+//mqC6oioPnjmhoiaNAcHB3z77bc6O/urrnnz5lixYoWRqyKihuCZGyIiIpIUnrkhIiIiSWG4ISIiIklhuCEiIiJJYbghIiIiSWG4ISIiIklhuCEiIiJJYbghIiIiSWG4ISIiIklhuCEiIiJJ+X+ebJRuJJX3fQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=trace_schedule,\n", " schedule_kwargs={\n", " \"pulse_amp\": 0.5,\n", " \"acq_delay\": 100e-9,\n", " },\n", " batched=True,\n", ")\n", "\n", "data = gettable.get()\n", "\n", "plt.plot(np.arange(1000)/1e9, data[0], '.', label=\"real\")\n", "plt.plot(np.arange(1000)/1e9, data[1], '.', label=\"imaginary\")\n", "plt.legend()\n", "plt.xlabel(\"Time (s)\")\n", "plt.ylabel(\"Voltage (V)\")\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "65864698", "metadata": {}, "source": [ "This time, there is only one acquisition operation in the schedule. The measurement result contains two arrays: one for the _I_ values (`data[0][:]`), and one for the _Q_ values (`data[1][:]`) of the acquired trace.\n", "\n", "## MeasurementControl\n", "\n", "Iterating through different parameters can be done with some help from `quantify-core` as well, through the {class}`~quantify_core.measurement.control.MeasurementControl` class. The {class}`~quantify_core.measurement.control.MeasurementControl` uses settables (parameters to vary in an experiment) and gettables (in this case, our {class}`~quantify_scheduler.gettables.ScheduleGettable`). The settable must be a class that implements `set()`, such as a QCoDeS {class}`~qcodes.parameters.ManualParameter`.\n", "\n", "In this example, the settable is the `time` object, and the setpoints are a numpy array of values (`times`). These are added to the {class}`~quantify_core.measurement.control.MeasurementControl` as shown, together with the {class}`~quantify_scheduler.gettables.ScheduleGettable`. The {class}`~quantify_core.measurement.control.MeasurementControl` object will be in charge of setting the setpoints, and retrieving the measurement results through the gettable." ] }, { "cell_type": "code", "execution_count": 8, "id": "5b6f4290", "metadata": {}, "outputs": [], "source": [ "from quantify_core.measurement.control import MeasurementControl\n", "\n", "\n", "measurement_control = MeasurementControl(\"measurement_control\")\n", "\n", "# Configure the settable\n", "time = ManualParameter(\"sample\", label=\"Sample time\", unit=\"s\")\n", "time.batched = True\n", "\n", "times = np.linspace(start=1.6e-7, stop=4.976e-5, num=125)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=t1_sched,\n", " schedule_kwargs={\"times\": time},\n", " batched=True\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables(time)\n", "measurement_control.setpoints(times)\n", "measurement_control.gettables(gettable)" ] }, { "cell_type": "markdown", "id": "426f7418", "metadata": {}, "source": [ "The experiment is set to run fully in _batched_ mode. When using {class}`~quantify_core.measurement.control.MeasurementControl`, settables and gettables can be either batched (an array of points is set for each measurement iteration) or iterative (only one point is set per iteration). Combinations of batched and iterative settables are possible, as explained in detail in the [quantify-core documentation](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#mixing-iterative-and-batched-settables).\n", "\n", "Settables and gettables are batched if they have the attribute `batched=True`. In {class}`~quantify_scheduler.gettables.ScheduleGettable`, this can be controlled through the `batched` argument when creating the class. For other classes, the attribute can be added dynamically if needed, as shown above for the `time` parameter.\n", "\n", "With both the gettable and the settable having `batched=True`, the {class}`~quantify_core.measurement.control.MeasurementControl` knows that it should set the entire `times` array as the settable's value (instead of repeating the experiment for each value in the array). All data points are measured without interruption and all measurement results are returned in one go. Now, let's run the experiment and retrieve the data." ] }, { "cell_type": "code", "execution_count": 9, "id": "959e9a94", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t --- (None) --- \n", "Batched settable(s):\n", "\t sample \n", "Batch size limit: 125\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ff8d2483b3aa4c2881d490c05267c032", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dataset = measurement_control.run()" ] }, { "cell_type": "markdown", "id": "b5340632", "metadata": {}, "source": [ "The {class}`~quantify_core.measurement.control.MeasurementControl` class processes the data returned by the {class}`~quantify_scheduler.gettables.ScheduleGettable`, and turns it into a {class}`~xarray.Dataset`. More information on the format of this dataset can be found in the [quantify-core documentation](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#dataset)." ] }, { "cell_type": "code", "execution_count": 10, "id": "c01ad886", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 3kB\n",
       "Dimensions:  (dim_0: 125)\n",
       "Coordinates:\n",
       "    x0       (dim_0) float64 1kB 1.6e-07 5.6e-07 9.6e-07 ... 4.936e-05 4.976e-05\n",
       "Dimensions without coordinates: dim_0\n",
       "Data variables:\n",
       "    y0       (dim_0) float64 1kB -1.166 -1.141 -1.109 ... -0.737 -0.7305 -1.164\n",
       "    y1       (dim_0) float64 1kB 0.2569 0.2138 0.2035 ... -0.2533 -0.247 0.2671\n",
       "Attributes:\n",
       "    tuid:                             20250117-153831-528-134b3e\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         False\n",
       "    1d_2_settables_uniformly_spaced:  False
" ], "text/plain": [ " Size: 3kB\n", "Dimensions: (dim_0: 125)\n", "Coordinates:\n", " x0 (dim_0) float64 1kB 1.6e-07 5.6e-07 9.6e-07 ... 4.936e-05 4.976e-05\n", "Dimensions without coordinates: dim_0\n", "Data variables:\n", " y0 (dim_0) float64 1kB -1.166 -1.141 -1.109 ... -0.737 -0.7305 -1.164\n", " y1 (dim_0) float64 1kB 0.2569 0.2138 0.2035 ... -0.2533 -0.247 0.2671\n", "Attributes:\n", " tuid: 20250117-153831-528-134b3e\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: False\n", " 1d_2_settables_uniformly_spaced: False" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset" ] }, { "cell_type": "markdown", "id": "9b60eaca", "metadata": {}, "source": [ "The dataset coordinates and data variables are named as generic `x` and `y` parameters. You can click on the 'Show/Hide attributes' button next to the coordinates and variables to see what they refer to.\n", "\n", "(sec-tutorial-schedulegettable-repetitions)=\n", "## Repetitions\n", "\n", "Repetition defines how many times the defined schedule will run on the hardware. Running the schedule multiple times can be useful for example if the user would like to reduce errors of acquisitions by averaging the result of multiple measurements.\n", "\n", "There are multiple ways the repetitions can be set. They are not completely independent of each other, and which setting will be taken into account depends on how you create and use the schedule.\n", "\n", "1. {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice`: via `cfg_sched_repetitions` (by default it is `1024`),\n", "2. schedule function: via the `repetitions` function argument,\n", "3. {class}`~quantify_scheduler.schedules.schedule.Schedule` object: via the `repetitions` function argument of its constructor, or via its `repetitions` attribute directly,\n", "4. ({class}`~quantify_scheduler.gettables.ScheduleGettable`: currently, it is not possible to supply `repetitions` via `schedule_kwargs`).\n", "\n", "Ultimately, the {class}`~quantify_scheduler.schedules.schedule.Schedule` object is what governs the repetitions, via its `repetitions` attribute.\n", "\n", "When using a schedule function, the `repetitions` function argument sets the repetitions, provided that the schedule function passes it to the `Schedule` object. This is true for the pre-defined schedules, see {mod}`!quantify_scheduler.schedules`.\n", "\n", "However, if the experiment is run using `ScheduleGettable`, this `repetitions` function argument is set to `QuantumDevice.cfg_sched_repetitions`. Hence, typically, the schedule will run `QuantumDevice.cfg_sched_repetitions` times.\n", "\n", "### Possible mistake: ignoring `repetitions` argument\n", "\n", "Keep in mind that the schedule function should pass the `repetitions` argument to the `Schedule` initializer, otherwise both `QuantumDevice.cfg_sched_repetitions` and the `repetitions` argument of the schedule function will be ignored. For example, in the following setup, the `repetitions` will always be `1` (default for the `Schedule` object), even if `cfg_sched_repetitions` is set to `2`." ] }, { "cell_type": "code", "execution_count": 11, "id": "47a87605", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import QuantumDevice, ScheduleGettable\n", "\n", "def schedule_function(q0: str, repetitions: int):\n", " schedule = Schedule(\"Example schedule\")\n", " schedule.add(Measure(q0, acq_index=0))\n", " return schedule\n", "\n", "quantum_device = QuantumDevice(name=\"quantum_sample\")\n", "quantum_device.cfg_sched_repetitions(2)\n", "\n", "schedule_gettable = ScheduleGettable(\n", " quantum_device=quantum_device,\n", " schedule_function=schedule_function,\n", " schedule_kwargs={\"q0\": \"q0\"},\n", ")" ] }, { "cell_type": "markdown", "id": "27af15b2", "metadata": {}, "source": [ "### Possible mistake: ignoring `cfg_sched_repetitions` default value\n", "\n", "Also note, that the default value of the `repetitions` argument of the schedule function will be ignored if `ScheduleGettable` is used, and it will be set to `QuantumDevice.cfg_sched_repetitions`. For example, in the following setup, `repetitions` will be `1024` (default for `QuantumDevice`), even if the default argument for `repetitions` is `2`." ] }, { "cell_type": "code", "execution_count": 12, "id": "8d3a3c64", "metadata": { "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "quantum_device.close()" ] }, { "cell_type": "code", "execution_count": 13, "id": "976399dd", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import QuantumDevice, ScheduleGettable\n", "\n", "def schedule_function(q0: str, repetitions: int = 2):\n", " schedule = Schedule(\"Example schedule\", repetitions=repetitions)\n", " schedule.add(Measure(q0, acq_index=0))\n", " return schedule\n", "\n", "quantum_device = QuantumDevice(name=\"quantum_sample\")\n", "\n", "schedule_gettable = ScheduleGettable(\n", " quantum_device=quantum_device,\n", " schedule_function=schedule_function,\n", " schedule_kwargs={\"q0\": \"q0\"},\n", ")" ] }, { "cell_type": "markdown", "id": "3cb8991b", "metadata": {}, "source": [ "(sec-schedulegettable-2dsweep-usage)=\n", "\n", "## 2D (and ND) measurement loops" ] }, { "cell_type": "code", "execution_count": 14, "id": "7d2aa4ab", "metadata": { "mystnb": { "code_prompt_show": "Set up the quantum device, dummy hardware and hardware configuration" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "from qblox_instruments import Cluster, ClusterType, DummyBinnedAcquisitionData\n", "\n", "from quantify_scheduler import BasicTransmonElement, InstrumentCoordinator, QuantumDevice\n", "from quantify_scheduler.qblox import ClusterComponent\n", "\n", "\n", "single_qubit_device.close_all()\n", "\n", "# Device parameters\n", "Q0_ACQ_DELAY = 100e-9\n", "Q0_FREQ_01 = 4e9\n", "Q0_READOUT_AMP = 0.1\n", "Q0_READOUT_FREQ = 4.3e9\n", "Q0_PI_PULSE_AMP = 0.15\n", "Q0_LO_FREQ_QUBIT = 3.9e9\n", "Q0_LO_FREQ_READOUT = 4.5e9\n", "\n", "Q1_ACQ_DELAY = 120e-9\n", "Q1_FREQ_01 = 4.1e9\n", "Q1_READOUT_AMP = 0.1\n", "Q1_READOUT_FREQ = 3.8e9\n", "Q1_PI_PULSE_AMP = 0.15\n", "Q1_LO_FREQ_QUBIT = 4.1e9\n", "Q1_LO_FREQ_READOUT = 3.8e9\n", "\n", "two_qubit_device = QuantumDevice(\"two_qubit_device\")\n", "\n", "q0 = BasicTransmonElement(\"q0\")\n", "q0.measure.acq_channel(0)\n", "q0.measure.pulse_amp(Q0_READOUT_AMP)\n", "q0.clock_freqs.readout(Q0_READOUT_FREQ)\n", "q0.clock_freqs.f01(Q0_FREQ_01)\n", "q0.measure.acq_delay(Q0_ACQ_DELAY)\n", "q0.rxy.amp180(Q0_PI_PULSE_AMP)\n", "\n", "q1 = BasicTransmonElement(\"q1\")\n", "q1.measure.acq_channel(1) # Note that we're specifying that measurements on q1 should use a different measurement channel\n", "q1.measure.pulse_amp(Q1_READOUT_AMP)\n", "q1.clock_freqs.readout(Q1_READOUT_FREQ)\n", "q1.clock_freqs.f01(Q1_FREQ_01)\n", "q1.measure.acq_delay(Q1_ACQ_DELAY)\n", "q1.rxy.amp180(Q1_PI_PULSE_AMP)\n", "\n", "two_qubit_device.add_element(q0)\n", "two_qubit_device.add_element(q1)\n", "\n", "# We will need to adjust the hardware configuration.\n", "\n", "# Note: if you are connecting to an actual cluster, you would provide the\n", "# 'identifier' argument (the ip address, device name or serial number) instead\n", "# of the 'dummy_cfg' argument.\n", "cluster = Cluster(\n", " \"cluster\",\n", " dummy_cfg={\n", " 1: ClusterType.CLUSTER_QRM_RF,\n", " 2: ClusterType.CLUSTER_QCM_RF,\n", " 3: ClusterType.CLUSTER_QRM_RF,\n", " 4: ClusterType.CLUSTER_QCM_RF,\n", " },\n", ")\n", "\n", "ic_cluster = ClusterComponent(cluster)\n", "\n", "# Temporarily fixing dummy cluster's deficiency.\n", "cluster.start_sequencer = lambda : start_dummy_cluster_armed_sequencers(ic_cluster)\n", "\n", "instrument_coordinator = InstrumentCoordinator(\"instrument_coordinator\")\n", "instrument_coordinator.add_component(ic_cluster)\n", "\n", "two_qubit_device.instr_instrument_coordinator(instrument_coordinator.name)\n", "\n", "hardware_cfg = {\n", " \"version\": \"0.2\",\n", " \"config_type\": \"quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig\",\n", " \"hardware_description\": {\n", " f\"{cluster.name}\": {\n", " \"instrument_type\": \"Cluster\",\n", " \"modules\": {\n", " \"1\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"2\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " },\n", " \"3\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"4\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " }\n", " },\n", " \"ref\": \"internal\"\n", " }\n", " },\n", " \"hardware_options\": {\n", " \"modulation_frequencies\": {\n", " \"q0:res-q0.ro\": {\n", " \"lo_freq\": Q0_LO_FREQ_READOUT\n", " },\n", " \"q0:mw-q0.01\": {\n", " \"lo_freq\": Q0_LO_FREQ_QUBIT\n", " },\n", " \"q1:res-q1.ro\": {\n", " \"lo_freq\": Q1_LO_FREQ_READOUT\n", " },\n", " \"q1:mw-q1.01\": {\n", " \"lo_freq\": Q1_LO_FREQ_QUBIT\n", " }\n", " }\n", " },\n", " \"connectivity\": {\n", " \"graph\": [\n", " [f\"{cluster.name}.module1.complex_output_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module1.complex_input_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module2.complex_output_0\", \"q0:mw\"],\n", " [f\"{cluster.name}.module3.complex_output_0\", \"q1:res\"],\n", " [f\"{cluster.name}.module3.complex_input_0\", \"q1:res\"],\n", " [f\"{cluster.name}.module4.complex_output_0\", \"q1:mw\"]\n", " ]\n", " }\n", "}\n", "\n", "\n", "two_qubit_device.hardware_config(hardware_cfg)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1, sequencer=0, acq_index_name=\"0\", data=[DummyBinnedAcquisitionData(data=(0.0, 0.0), thres=0, avg_cnt=0)]\n", ")\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=3, sequencer=0, acq_index_name=\"0\", data=[DummyBinnedAcquisitionData(data=(0.0, 0.0), thres=0, avg_cnt=0)]\n", ")" ] }, { "cell_type": "markdown", "id": "0889891e", "metadata": {}, "source": [ "2D and higher-dimensional measurement loops are easy to realize. Below we show an example Chevron experiment, which is a type of two-qubit experiment often performed on transmon qubits. The experiment includes a square pulse, and we want to vary both its amplitude and duration in a 2D grid. We have already set up a two-qubit {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` under the variable name `two_qubit_device`.\n", "\n", "We define simple schedule below with a parameterized amplitude and duration of the square pulse. `duration` and `amp` are scalars, so for each measurement point the schedule will be recompiled." ] }, { "cell_type": "code", "execution_count": 15, "id": "fe3892d6", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import Schedule\n", "from quantify_scheduler.operations import Measure, Reset, SquarePulse, X, X90\n", "\n", "def chevron_schedule_not_batched(duration, amp, repetitions=1):\n", " sched = Schedule(\"Chevron Experiment\", repetitions=repetitions)\n", "\n", " acq_idx = 0\n", "\n", " reset = sched.add(Reset(\"q0\", \"q1\"))\n", " sched.add(X(\"q0\"), ref_op=reset, ref_pt=\"end\") # Start at the end of the reset\n", " # We specify a clock for tutorial purposes, Chevron experiments do not necessarily use modulated square pulses\n", " square = sched.add(SquarePulse(amp=amp, duration=duration, port=\"q0:mw\", clock=\"q0.01\"))\n", " sched.add(X90(\"q0\"), ref_op=square) # Start at the end of the square pulse\n", " sched.add(X90(\"q1\"), ref_op=square)\n", " sched.add(Measure(\"q0\", acq_index=acq_idx), label=f\"M q0 {acq_idx}\")\n", " sched.add(\n", " Measure(\"q1\", acq_index=acq_idx),\n", " label=f\"M q1 {acq_idx}\",\n", " ref_pt=\"start\", # Start at the same time as the other measure\n", " )\n", "\n", " return sched" ] }, { "cell_type": "markdown", "id": "ca077e40", "metadata": {}, "source": [ "We set up a non-batched measurement with {class}`~quantify_core.measurement.control.MeasurementControl` and a {class}`~quantify_scheduler.gettables.ScheduleGettable`. For this {class}`~quantify_scheduler.gettables.ScheduleGettable`, notice the keyword argument `num_channels=2`, which is needed since we specified in the quantum device elements that the measurements on `\"q0\"` and `\"q1\"` should end up in two different channels.\n", "\n", "In addition, we used another new argument in the {class}`~quantify_scheduler.gettables.ScheduleGettable`: `real_imag=False`. `real_imag` can be used to transform the acquisition data. If it is `True` (the default), the I and Q values will be returned, and if it is `False`, the data will be transformed to the absolute value and the phase (in degrees, in the interval `(-180, 180]`)." ] }, { "cell_type": "code", "execution_count": 16, "id": "26e7cbdd", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting iterative measurement...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a14c6fef6d29467890334465a6c2b7e8", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "measurement_control = MeasurementControl(\"measurement_control\")\n", "\n", "# Configure the settables\n", "duration = ManualParameter(\"duration\", label=\"Duration\", unit=\"s\")\n", "duration.batched = False\n", "\n", "durations = np.linspace(start=20e-9, stop=60e-9, num=6)\n", "\n", "amplitude = ManualParameter(\"amplitude\", label=\"Amplitude\", unit=\"V\")\n", "amplitude.batched = False\n", "\n", "amplitudes = np.linspace(start=0.1, stop=1.0, num=10)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=two_qubit_device,\n", " schedule_function=chevron_schedule_not_batched,\n", " schedule_kwargs={\"duration\": duration, \"amp\": amplitude},\n", " batched=False,\n", " real_imag=False,\n", " num_channels=2,\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables([duration, amplitude])\n", "measurement_control.setpoints_grid([durations, amplitudes]) # note: setpoints_grid instead of setpoints\n", "measurement_control.gettables(gettable)\n", "\n", "# Run!\n", "dataset = measurement_control.run()\n", "dset_grid = dh.to_gridded_dataset(dataset)" ] }, { "cell_type": "code", "execution_count": 17, "id": "7d3e824b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 2kB\n",
       "Dimensions:  (x0: 6, x1: 10)\n",
       "Coordinates:\n",
       "  * x0       (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n",
       "  * x1       (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n",
       "Data variables:\n",
       "    y0       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y1       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y2       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y3       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "Attributes:\n",
       "    tuid:                             20250117-153832-694-a39dc9\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         True\n",
       "    1d_2_settables_uniformly_spaced:  False\n",
       "    xlen:                             6\n",
       "    ylen:                             10
" ], "text/plain": [ " Size: 2kB\n", "Dimensions: (x0: 6, x1: 10)\n", "Coordinates:\n", " * x0 (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n", " * x1 (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n", "Data variables:\n", " y0 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y1 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y2 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y3 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", "Attributes:\n", " tuid: 20250117-153832-694-a39dc9\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: True\n", " 1d_2_settables_uniformly_spaced: False\n", " xlen: 6\n", " ylen: 10" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dset_grid" ] }, { "cell_type": "markdown", "id": "df72b07a", "metadata": {}, "source": [ "As expected, this dataset contains double the amount of coordinates and data variables (note that the actual data has been mocked and set to 0.0). The two coordinates refer to the settables, `duration` and `amplitude`. With `real_imag` now set to `False`, the data variables contain the magnitude and phase (as opposed to the I and Q voltages) for measurements on `\"q0\"` and `\"q1\"`.\n", "\n", "### Batched 2D experiment\n", "\n", "Since this measurement is not batched, it's rather slow. Let's make this faster with (partial) batching.\n", "\n", "We will batch the amplitudes together, so we change the amplitudes parameter in the schedule function to an array." ] }, { "cell_type": "code", "execution_count": 18, "id": "2ac16e35", "metadata": { "mystnb": { "code_prompt_show": "Provide the dummy hardware with acquisition data" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "from qblox_instruments import DummyBinnedAcquisitionData\n", "\n", "\n", "def get_dummy_binned_acquisition_data(real: float, imag: float):\n", " return DummyBinnedAcquisitionData(data=(real, imag), thres=0, avg_cnt=0)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1, sequencer=0, acq_index_name=\"0\", data=[get_dummy_binned_acquisition_data(re * 10, im * 10) for re, im in zip(range(-5, 5), range(5, -5, -1))]\n", ")\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=3, sequencer=0, acq_index_name=\"0\", data=[get_dummy_binned_acquisition_data(re * 10, im * 10) for re, im in zip(range(-5, 5), range(5, -5, -1))]\n", ")" ] }, { "cell_type": "code", "execution_count": 19, "id": "eea61637", "metadata": {}, "outputs": [], "source": [ "def chevron_schedule_batched(duration, amps, repetitions=1):\n", " sched = Schedule(\"Chevron Experiment\", repetitions=repetitions)\n", "\n", " acq_idx = 0\n", "\n", " for amp in amps:\n", " reset = sched.add(Reset(\"q0\", \"q1\"))\n", " sched.add(X(\"q0\"), ref_op=reset, ref_pt=\"end\")\n", " square = sched.add(SquarePulse(amp=amp, duration=duration, port=\"q0:mw\", clock=\"q0.01\"))\n", " sched.add(X90(\"q0\"), ref_op=square)\n", " sched.add(X90(\"q1\"), ref_op=square)\n", " sched.add(Measure(\"q0\", acq_index=acq_idx), label=f\"M q0 {acq_idx}\")\n", " sched.add(\n", " Measure(\"q1\", acq_index=acq_idx),\n", " label=f\"M q1 {acq_idx}\",\n", " ref_pt=\"start\",\n", " )\n", "\n", " acq_idx += 1\n", "\n", " return sched" ] }, { "cell_type": "markdown", "id": "1731809b", "metadata": {}, "source": [ "We specify that we want to batch the amplitudes by setting ``amplitude.batched = True`` and ``batched=True``as keyword argument for the gettable. Finally, we run this experiment just as before." ] }, { "cell_type": "code", "execution_count": 20, "id": "ec634f2f", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t duration \n", "Batched settable(s):\n", "\t amplitude \n", "Batch size limit: 60\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6d31543df465444794c9bf216239a007", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Configure the settables\n", "duration = ManualParameter(\"duration\", label=\"Duration\", unit=\"s\")\n", "duration.batched = False\n", "\n", "durations = np.linspace(start=20e-9, stop=60e-9, num=6)\n", "\n", "amplitude = ManualParameter(\"amplitude\", label=\"Amplitude\", unit=\"V\")\n", "amplitude.batched = True\n", "\n", "amplitudes = np.linspace(start=0.1, stop=1.0, num=10)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=two_qubit_device,\n", " schedule_function=chevron_schedule_batched,\n", " schedule_kwargs={\"duration\": duration, \"amps\": amplitude},\n", " batched=True,\n", " real_imag=False,\n", " data_labels=[\"Magnitude Q0\", \"Phase Q0\", \"Magnitude Q1\", \"Phase Q1\"],\n", " num_channels=2,\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables([duration, amplitude])\n", "measurement_control.setpoints_grid([durations, amplitudes])\n", "measurement_control.gettables(gettable)\n", "\n", "# Run!\n", "dataset = measurement_control.run()\n", "dset_grid = dh.to_gridded_dataset(dataset)" ] }, { "cell_type": "code", "execution_count": 21, "id": "d2a702ea", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 2kB\n",
       "Dimensions:  (x0: 6, x1: 10)\n",
       "Coordinates:\n",
       "  * x0       (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n",
       "  * x1       (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n",
       "Data variables:\n",
       "    y0       (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n",
       "    y1       (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n",
       "    y2       (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n",
       "    y3       (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n",
       "Attributes:\n",
       "    tuid:                             20250117-153837-529-dda0bc\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         True\n",
       "    1d_2_settables_uniformly_spaced:  False\n",
       "    xlen:                             6\n",
       "    ylen:                             10
" ], "text/plain": [ " Size: 2kB\n", "Dimensions: (x0: 6, x1: 10)\n", "Coordinates:\n", " * x0 (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n", " * x1 (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n", "Data variables:\n", " y0 (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n", " y1 (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n", " y2 (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n", " y3 (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n", "Attributes:\n", " tuid: 20250117-153837-529-dda0bc\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: True\n", " 1d_2_settables_uniformly_spaced: False\n", " xlen: 6\n", " ylen: 10" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dset_grid" ] }, { "cell_type": "markdown", "id": "186b49e5", "metadata": {}, "source": [ "The shape of the dataset is no different from the previous (non-batched) experiment, but the metadata is a little different. Some coordinates and data variables now have the `batched=True` attribute. We also introduced another keyword argument: the `data_labels`. These `data_labels` are picked up by the {class}`~quantify_core.measurement.control.MeasurementControl`and end up in the {class}`xarray.Dataset` as the \"long_name\" of attributes. For example, `\"y0\"`s label can be accessed through `dataset[\"y0\"].attrs[\"long_name\"]`. The various plotting features of `quantify-core` will use this name to get labels for the figure axes." ] } ], "metadata": { "file_format": "mystnb", "kernelspec": { "display_name": "python3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.21" }, "source_map": [ 6, 34, 141, 149, 166, 170, 195, 199, 247, 251, 263, 273, 299, 303, 322, 332, 356, 364, 369, 373, 375, 401, 417, 423, 430, 445, 451, 588, 594, 617, 623, 660, 662, 672, 692, 714, 718, 754, 756 ], "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "0882476db85f4108acab278af166c2f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "0889376bc6d44463952091bd921d6ef4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0db24008c69741f9a3e30ea3cb303438": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "1409b2461c5c4c14b36a28389ffa1e41": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7f9df1261499433e8b04a67b7004adfc", "placeholder": "​", "style": "IPY_MODEL_c88e23dfcce3480690d011cf3ecf57ec", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 10" } }, "1457bedd0a3040849fb6faf81f2171de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "14c69fa28b484d10892ede1b5f299eef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "24b59732d1d042459da573c79f7af6b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "3cc4f98d4e624ea9a24c092c96192b17": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "414ab9444b23488abc59ea6ea53ff463": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4b27608d209349dda22393350ae62fe7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7d7ac3486fdd4cffbcffcba21e874949", "placeholder": "​", "style": "IPY_MODEL_d56e13f78c714019a042578f7910f1b3", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 125" } }, "59164ad888c249ccb13090795c247029": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6d31543df465444794c9bf216239a007": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_c27cfaa3ebb244418b62ef44c6979863", "IPY_MODEL_de5aaa413b914c9c9ca37117d2cb9363", "IPY_MODEL_1409b2461c5c4c14b36a28389ffa1e41" ], "layout": "IPY_MODEL_1457bedd0a3040849fb6faf81f2171de", "tabbable": null, "tooltip": null } }, "6dad0fb8469e41f48daa967e51bb2d0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7d7ac3486fdd4cffbcffcba21e874949": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7f01d97eecb449e1b18e2c53773ba679": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b19f84c8a1eb4d1f8905601e376366ba", "placeholder": "​", "style": "IPY_MODEL_915461013be14c03be1f8387bafb2322", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "7f9df1261499433e8b04a67b7004adfc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "865c45aded204c6597690d6c4c431b6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "915461013be14c03be1f8387bafb2322": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "a14c6fef6d29467890334465a6c2b7e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_c8151e30283b4932910182eba163291b", "IPY_MODEL_d6bafe2f352844fcaafb8b9a18776be1", "IPY_MODEL_ebcc0df23838403c9385013b629bef0f" ], "layout": "IPY_MODEL_59164ad888c249ccb13090795c247029", "tabbable": null, "tooltip": null } }, "b19f84c8a1eb4d1f8905601e376366ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bc7a32a11acc4ccba9d600fefd42d01d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "c27cfaa3ebb244418b62ef44c6979863": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d31ab77918b948c28af0d32086017ce0", "placeholder": "​", "style": "IPY_MODEL_0882476db85f4108acab278af166c2f0", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "c8151e30283b4932910182eba163291b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f51640efc54a4bd88550c6ec614a245c", "placeholder": "​", "style": "IPY_MODEL_24b59732d1d042459da573c79f7af6b0", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "c88e23dfcce3480690d011cf3ecf57ec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "ca35f3853a524c80ab6a50cf3859ef69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3cc4f98d4e624ea9a24c092c96192b17", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0db24008c69741f9a3e30ea3cb303438", "tabbable": null, "tooltip": null, "value": 100.0 } }, "d31ab77918b948c28af0d32086017ce0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d56e13f78c714019a042578f7910f1b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "d6bafe2f352844fcaafb8b9a18776be1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_865c45aded204c6597690d6c4c431b6b", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fc4e547952bb4325915da52ad67c0201", "tabbable": null, "tooltip": null, "value": 100.0 } }, "de5aaa413b914c9c9ca37117d2cb9363": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6dad0fb8469e41f48daa967e51bb2d0a", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_14c69fa28b484d10892ede1b5f299eef", "tabbable": null, "tooltip": null, "value": 100.0 } }, "ebcc0df23838403c9385013b629bef0f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0889376bc6d44463952091bd921d6ef4", "placeholder": "​", "style": "IPY_MODEL_bc7a32a11acc4ccba9d600fefd42d01d", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:04 | time left: 00:00 ] " } }, "f51640efc54a4bd88550c6ec614a245c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "fc4e547952bb4325915da52ad67c0201": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "ff8d2483b3aa4c2881d490c05267c032": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_7f01d97eecb449e1b18e2c53773ba679", "IPY_MODEL_ca35f3853a524c80ab6a50cf3859ef69", "IPY_MODEL_4b27608d209349dda22393350ae62fe7" ], "layout": "IPY_MODEL_414ab9444b23488abc59ea6ea53ff463", "tabbable": null, "tooltip": null } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }