{ "cells": [ { "cell_type": "markdown", "id": "95838654", "metadata": {}, "source": [ "(sec-tutorial-schedulegettable)=\n", "\n", "# Tutorial: ScheduleGettable\n", "\n", "```{seealso}\n", "The complete source code of this tutorial can be found in\n", "\n", "{nb-download}`ScheduleGettable.ipynb`\n", "```\n", "\n", "This tutorial covers the {class}`~quantify_scheduler.gettables.ScheduleGettable` in-depth. If you're looking for more information on how to set up an experiment in general, please see {ref}`sec-tutorial-experiment`.\n", "\n", "The {class}`~quantify_scheduler.gettables.ScheduleGettable` forms the top-level interface to {mod}`quantify_scheduler`. Under the hood, it uses `quantify-scheduler` modules to compile {ref}`Schedules `, run them on your hardware and retrieve measurement data from the hardware. As the {class}`~quantify_scheduler.gettables.ScheduleGettable` uses functions that return {class}`~quantify_scheduler.schedules.schedule.Schedule`s, you can dynamically set function parameters during experiments.\n", "\n", "For those familiar with [quantify-core](https://quantify-os.org/docs/quantify-core), the interface of the {class}`~quantify_scheduler.gettables.ScheduleGettable` is also designed to be used as a [gettable](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#settables-and-gettables) for [MeasurementControl](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#measurement-control). This is convenient for large, possibly multi-dimensional measurement loops, as is demonstrated in {ref}`2D (and ND) measurement loops`.\n", "\n", "Two things are always required when using a {class}`~quantify_scheduler.gettables.ScheduleGettable`: a {ref}`QuantumDevice ` and a function that returns a {class}`~quantify_scheduler.schedules.schedule.Schedule`. We will set these up in a few example scenarios below and show how to use the {class}`~quantify_scheduler.gettables.ScheduleGettable`. More commonly used schedule functions are also included in `quantify-scheduler` out of the box. You can find them in {mod}`~.quantify_scheduler.schedules.spectroscopy_schedules`, {mod}`~.quantify_scheduler.schedules.timedomain_schedules` and {mod}`~.quantify_scheduler.schedules.trace_schedules`.\n", "\n", "(sec-schedulegettable-1dsweep-usage)=\n", "\n", "## 1D iterative measurement loop\n", "\n", "\n", "```{admonition} Setup and hardware configuration\n", "The device setup and hardware configuration for this tutorial can be viewed in the collapsed code cells. In places where you would communicate with actual hardware, dummy objects have been used. If you want to learn more about how to set up the {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` and hardware configuration, please see our other tutorials, in particular {ref}`sec-tutorial-experiment` and {ref}`sec-tutorial-compiling`.\n", "```" ] }, { "cell_type": "code", "execution_count": 1, "id": "53a5a023", "metadata": { "mystnb": { "code_prompt_show": "Set up the quantum device, dummy hardware and hardware configuration" }, "tags": [ "hide-cell" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Data will be saved in:\n", "/home/gabor/quantify-data\n" ] } ], "source": [ "from qblox_instruments import Cluster, ClusterType\n", "from quantify_core.data import handling as dh\n", "\n", "from quantify_scheduler import BasicTransmonElement, InstrumentCoordinator, QuantumDevice\n", "from quantify_scheduler.qblox import ClusterComponent, start_dummy_cluster_armed_sequencers\n", "\n", "# First, don't forget to set the data directory!\n", "dh.set_datadir() # change me!\n", "\n", "# We define a single transmon qubit as an element (BasicTransmonElement) of the\n", "# QuantumDevice, and populate the parameters with some reasonable values.\n", "\n", "# Device parameters\n", "ACQ_DELAY = 100e-9\n", "FREQ_01 = 4e9\n", "READOUT_AMP = 0.1\n", "READOUT_FREQ = 4.3e9\n", "PI_PULSE_AMP = 0.15\n", "LO_FREQ_QUBIT = 3.9e9\n", "LO_FREQ_READOUT = 4.5e9\n", "\n", "single_qubit_device = QuantumDevice(\"single_qubit_device\")\n", "\n", "q0 = BasicTransmonElement(\"q0\")\n", "single_qubit_device.add_element(q0)\n", "\n", "# Assign device parameters to transmon element\n", "q0.measure.pulse_amp(READOUT_AMP)\n", "q0.clock_freqs.readout(READOUT_FREQ)\n", "q0.clock_freqs.f01(FREQ_01)\n", "q0.measure.acq_delay(ACQ_DELAY)\n", "q0.rxy.amp180(PI_PULSE_AMP)\n", "\n", "# For this example, we will set up a Qblox cluster hardware setup with two modules: a\n", "# QRM-RF and a QCM-RF.\n", "\n", "# Note: if you are connecting to an actual cluster, you would provide the\n", "# 'identifier' argument (the ip address, device name or serial number) instead\n", "# of the 'dummy_cfg' argument.\n", "cluster = Cluster(\n", " \"cluster\",\n", " dummy_cfg={\n", " 1: ClusterType.CLUSTER_QRM_RF,\n", " 2: ClusterType.CLUSTER_QCM_RF,\n", " },\n", ")\n", "\n", "ic_cluster = ClusterComponent(cluster)\n", "\n", "# Temporarily fixing dummy cluster's deficiency.\n", "cluster.start_sequencer = lambda : start_dummy_cluster_armed_sequencers(ic_cluster)\n", "\n", "# We create an InstrumentCoordinator to control the cluster and add it to the\n", "# QuantumDevice.\n", "\n", "instrument_coordinator = InstrumentCoordinator(\"instrument_coordinator\")\n", "instrument_coordinator.add_component(ic_cluster)\n", "\n", "single_qubit_device.instr_instrument_coordinator(instrument_coordinator.name)\n", "\n", "# A basic hardware configuration will be used for the two cluster modules.\n", "\n", "hardware_cfg = {\n", " \"version\": \"0.2\",\n", " \"config_type\": \"quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig\",\n", " \"hardware_description\": {\n", " f\"{cluster.name}\": {\n", " \"instrument_type\": \"Cluster\",\n", " \"modules\": {\n", " \"1\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"2\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " }\n", " },\n", " \"ref\": \"internal\"\n", " }\n", " },\n", " \"hardware_options\": {\n", " \"modulation_frequencies\": {\n", " \"q0:res-q0.ro\": {\n", " \"lo_freq\": LO_FREQ_READOUT\n", " },\n", " \"q0:mw-q0.01\": {\n", " \"lo_freq\": LO_FREQ_QUBIT\n", " }\n", " }\n", " },\n", " \"connectivity\": {\n", " \"graph\": [\n", " [f\"{cluster.name}.module1.complex_output_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module1.complex_input_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module2.complex_output_0\", \"q0:mw\"]\n", " ]\n", " }\n", "}\n", "\n", "\n", "# This hardware configuration should also be added to the quantum device.\n", "single_qubit_device.hardware_config(hardware_cfg)" ] }, { "cell_type": "markdown", "id": "075824bd", "metadata": {}, "source": [ "For this experiment, we have set up a basic {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` called `single_qubit_device`, representing a single transmon qubit.\n", "\n", "We'll now define the schedule function. A valid schedule function must contain a `repetitions` (integer) parameter (see {ref}`Repetitions`), and can contain any number of additional parameters. It must return a {class}`~quantify_scheduler.schedules.schedule.Schedule` object.\n", "\n", "The schedule function can be parameterized to loop over different values. The parameters can be scalars or arrays. For example, the schedule function defined below takes an array of values for the parameter `times`. This is called a _batched_ measurement, as will be explained further in this tutorial." ] }, { "cell_type": "code", "execution_count": 2, "id": "79c3548d", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import Schedule\n", "from quantify_scheduler.operations import Measure, Reset, X\n", "\n", "def t1_sched(times, repetitions=1):\n", " schedule = Schedule(\"T1\", repetitions)\n", " for i, tau in enumerate(times):\n", " schedule.add(Reset(\"q0\"), label=f\"Reset {i}\")\n", " schedule.add(X(\"q0\"), label=f\"pi {i}\")\n", " # Measure tau seconds after the start of the X gate\n", " schedule.add(\n", " Measure(\"q0\", acq_index=i),\n", " ref_pt=\"start\",\n", " rel_time=tau,\n", " label=f\"Measurement {i}\",\n", " )\n", " return schedule" ] }, { "cell_type": "markdown", "id": "f467769c", "metadata": {}, "source": [ "Now, let's create the {class}`~quantify_scheduler.gettables.ScheduleGettable`. The {class}`~quantify_scheduler.gettables.ScheduleGettable` provides a convenient way to compile and execute schedules in just a few lines of code. The parameters can be set directly, with arrays and scalars, or through QCoDeS parameters, as shown below." ] }, { "cell_type": "code", "execution_count": 3, "id": "fb72d804", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "from qcodes.instrument.parameter import ManualParameter\n", "\n", "from quantify_scheduler import ScheduleGettable\n", "\n", "# The points we want to measure.\n", "times = np.linspace(start=1.6e-7, stop=4.976e-5, num=125)\n", "\n", "# As QCoDeS parameter:\n", "time = ManualParameter(\"sample\", label=\"Sample time\", unit=\"s\")\n", "# Set the parameter. This can be done even after defining the gettable!\n", "time(times)\n", "\n", "# Or as array:\n", "time = times\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=t1_sched,\n", " schedule_kwargs={\"times\": time},\n", " batched=True\n", ")" ] }, { "cell_type": "markdown", "id": "bdf38e33", "metadata": {}, "source": [ "Note that `batched=True` here. This means we are doing a _batched_ measurement, which simply means that we tell the {class}`~quantify_scheduler.gettables.ScheduleGettable` to expect an array of values in the acquisition result. In this case, our schedule function creates one schedule for an array of times, and it includes an acquisition (the {class}`~quantify_scheduler.operations.gate_library.Measure` operation) for each point." ] }, { "cell_type": "code", "execution_count": 4, "id": "2747ba9e", "metadata": { "mystnb": { "code_prompt_show": "Provide the dummy hardware with acquisition data" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "import xarray\n", "\n", "from quantify_scheduler.waveforms import soft_square\n", "\n", "from qblox_instruments import DummyScopeAcquisitionData, DummyBinnedAcquisitionData\n", "\n", "\n", "soft_sq_samples = round(q0.measure.integration_time() * 1e9)\n", "soft_sq_times = np.arange(soft_sq_samples)\n", "soft_sq = soft_square(t=soft_sq_times, amp=0.5)\n", "scope_data_real = np.zeros(16384) # Scope trace acquires 16384 points\n", "scope_data_real[:soft_sq_samples] = soft_sq\n", "scope_data_real += np.random.randn(16384) / 500 # add some \"noise\"\n", "\n", "# Create dummy scope data with the soft square pulse on the I path and noise on\n", "# the Q path\n", "scope_data = list(zip(scope_data_real, np.random.randn(16384) / 500))\n", "\n", "dummy_scope_acquisition_data = DummyScopeAcquisitionData(\n", " data=scope_data, out_of_range=(False, False), avg_cnt=(0, 0)\n", " )\n", "\n", "ic_cluster.instrument.set_dummy_scope_acquisition_data(\n", " slot_idx=1, sequencer=None, data=dummy_scope_acquisition_data\n", ")\n", "\n", "\n", "# Dataset with T1 experiment data\n", "example_dataset = xarray.open_dataset(\"../examples/dataset.hdf5\")\n", "\n", "def get_dummy_binned_acquisition_data(real: float, imag: float):\n", " return DummyBinnedAcquisitionData(data=(real, imag), thres=0, avg_cnt=0)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1,\n", " sequencer=0,\n", " acq_index_name=\"0\",\n", " data=[\n", " get_dummy_binned_acquisition_data(float(re) * 1024, float(im) * 1024)\n", " for re, im in zip(example_dataset[\"y0\"], example_dataset[\"y1\"])\n", " ],\n", ")" ] }, { "cell_type": "markdown", "id": "6a4d6128", "metadata": {}, "source": [ "Let's now run the experiment and retrieve the acquisitions using the {meth}`~quantify_scheduler.gettables.ScheduleGettable.get` method." ] }, { "cell_type": "code", "execution_count": 5, "id": "52ee0565", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUP0lEQVR4nO3deVhU9eIG8HcGEWUbZAdFEXdzww0x1yTXuGlqaiZqtvy6apFLYddcyjIrS23Rsky9N9My5XqtKFPLNFNESS33NIxFRGKQRSA4vz/GGWeGMzNnYPZ5P88zj86Zs3znUJ6X7yoTBEEAERERkRuS27sARERERPbCIERERERui0GIiIiI3BaDEBEREbktBiEiIiJyWwxCRERE5LYYhIiIiMhtNbB3ARxdTU0NcnJy4OfnB5lMZu/iEBERkQSCIODmzZuIjIyEXG643odByIScnBxERUXZuxhERERUB1evXkWzZs0Mfs4gZIKfnx8A1Y309/e3c2mIiIhIiuLiYkRFRWme44YwCJmgbg7z9/dnECIiInIyprq1sLM0ERERuS0GISIiInJbDEJERETkthiEiIiIyG0xCBEREZHbYhAiIiIit8UgRERERG6LQYiIiIjcFoMQERERuS0GISIiInJbDEJERETkthiEiIiIyD6U2cDlA6o/7YSLrhIREZHtHd8M/O9pQKgBZHIgcTXQPcnmxWCNkL04QAomIiKyC2X2nRAEqP78X7JdnomsEbIHB0nBREREdlF46U4IUhOqgcLfAUVTmxaFNUK25kApmIiIyC4CW6kqArTJPIDAGJsXhUHI1oylYCIiInegaKpqDZF5qN7LPIDEVTavDQLYNGZ76hSsHYbslIKJiIjspnsS0GqIqiIgMMYuIQhgjZDtOVAKJiIisitFU6Blf7s+A1kjZA8OkoKJiIjcHYOQvSiaMgARERHZGZvGiIiIyG0xCBEREZHbYhByFJxpmoiIyObYR8gRcKZpIiIiu2CNkL1xpmkiIiK7cbog9O677yI6OhqNGjVCXFwcjh49anDf9evXo3///mjSpAmaNGmChIQEo/vbhaGZpq8eZVMZERGRlTlVENq2bRvmzJmDxYsX4/jx4+jatSuGDRuG/Px80f2///57TJo0Cfv378fhw4cRFRWFoUOHIjvbgcKF2HorkAFfPAJsSgRWdVI1nREREZHFyQRBEOxdCKni4uLQq1cvvPPOOwCAmpoaREVFYfbs2UhJSTF5fHV1NZo0aYJ33nkHSUnS+uAUFxdDoVBAqVTC39+/XuU36PhmVXOYUA1VNhVuv26TeQDJpzjvEBERkURSn99OUyNUWVmJjIwMJCQkaLbJ5XIkJCTg8OHDks5RVlaGqqoqBAYGGtynoqICxcXFOi+r656kCjpTdwPjPoJOCAJUAenXVDaTERERWZjTBKGCggJUV1cjLCxMZ3tYWBjy8vIkneO5555DZGSkTpjSt3z5cigUCs0rKiqqXuWWTL3eSlScSFMZgG+fZzMZERGRhTlNEKqvV199FVu3bsXOnTvRqFEjg/stWLAASqVS87p69aoNS4nai7Jq44gyIiIii3KaeYSCg4Ph4eGBa9eu6Wy/du0awsPDjR77xhtv4NVXX8V3332HLl26GN3Xy8sLXl5e9S5vvagXZf01VVUTpE2oVi3Wyv5CRERE9eY0NUINGzZEjx49sHfvXs22mpoa7N27F/Hx8QaPe+211/DSSy8hLS0NPXv2tEVRLUPRFLhrdO1mMpmHasV6IiIiqjenCUIAMGfOHKxfvx6bNm3CmTNn8OSTT6K0tBTTp08HACQlJWHBggWa/VesWIEXXngBGzZsQHR0NPLy8pCXl4eSkhJ7fQXz6DeTyTyAxFWsDSIiIrIQp2kaA4AJEybg+vXrWLRoEfLy8tCtWzekpaVpOlBnZWVBLr+T7dauXYvKykqMGzdO5zyLFy/GkiVLbFn0ulM3kxX+rqoJYggiIiKyGKeaR8gebDKPEBEREVmUy80jRERERGRpDELOSJnNdciIiIgswKn6CBFuL8dxe7V6mVzVmbq7tOVCiIiISBdrhJyJMvtOCAI4wSIREVE9sUbImRReuhOC1IRq4OpRoDBItZI9R5URERFJxiDkTAJbqZrDdMKQDPjiETaVERER1QGbxpxJrXXIbv/42FRGRERUJ6wRcjbaEyyWXge2T9f9nGuRERERScYg5IwUTVUvZXbtpjKuRUZERCQZm8acGdciIyIiqhfWCDk7rkVGRERUZwxCrkDdVEZERERmYdOYq+HyG0RERJKxRsiVcPkNIiIiszAIuQpDy2+E3gVUlXLWaSIiIhEMQq7C0PIbHw0BBIE1RERERCLYR8hVqJff0CcIt//krNNERET6GIRchaHlN7SpZ50mIiIiAGwacy3acwp5egMfJdSeddrTWzWqjH2GiIiIGIRcjvacQomrVc1hQrUqBHWZcCccsc8QERERg5BLM1ZDJNQAu54GGvoCUXGsHSIiIrfEPkKuTtEUaNlfNYRef1QZalSr16/qpJqDiIiIyM0wCLkLQ6PKAI4oIyIit8Ug5C5qjSrTwxFlRETkhhiE3En3JCD5FDBuY+3aIZmHavV6IiIiN8Ig5G4UTYFOY3Rrh2QeQOIq1d+5YCsREbkRjhpzV9ojygJjgEt7VZ2mObSeiIjcCGuE3Jl6RBkgvmAra4aIiMjFMQiR4QVb2XmaiIhcHIMQGRhaLwdKr7NWiIiIXBqDEIkMrZcBEHQnW1RmsyM1ERG5HJkgCIK9C+HIiouLoVAooFQq4e/vb+/iWJcyG7h6FPjiEb2mMhkgk7EjNREROQ2pz2/WCNEdiqaAT5DIUhwCO1ITEZFLYhAiXcaW4lBjR2oiInIRDEKkq1Z/ITlUfYa0cBZqIiJyEZxQkWoTm2zxf8mqmiD1LNSKpvYuJRERUb05XY3Qu+++i+joaDRq1AhxcXE4evSo0f0///xztG/fHo0aNULnzp3x1Vdf2aikTk492aKi6Z01yqbuVv3JjtJEROQinCoIbdu2DXPmzMHixYtx/PhxdO3aFcOGDUN+fr7o/j/99BMmTZqEGTNm4MSJExg9ejRGjx6N06dP27jkLkA7GBEREbkIpxo+HxcXh169euGdd94BANTU1CAqKgqzZ89GSkpKrf0nTJiA0tJS7N69W7OtT58+6NatG9atWyfpmm41fJ6IiMhFuNzw+crKSmRkZCAhIUGzTS6XIyEhAYcPHxY95vDhwzr7A8CwYcMM7g8AFRUVKC4u1nmRCE6wSERELsBpglBBQQGqq6sRFhamsz0sLAx5eXmix+Tl5Zm1PwAsX74cCoVC84qKiqp/4V3N8c2qGac3Jd6ZeZqIiMgJOU0QspUFCxZAqVRqXlevXrV3kRyLMtv0SvWsLSIiIifhNMPng4OD4eHhgWvXrulsv3btGsLDw0WPCQ8PN2t/APDy8oKXl1f9C+yqjK1Ur2iqqh1SByUux0FERA7OaWqEGjZsiB49emDv3r2abTU1Ndi7dy/i4+NFj4mPj9fZHwD27NljcH+SwNhK9X9mmK4tIiIiciBOUyMEAHPmzMHUqVPRs2dP9O7dG6tWrUJpaSmmT58OAEhKSkLTpk2xfPlyAMDTTz+NgQMHYuXKlRg1ahS2bt2KY8eO4YMPPrDn13Bu6pmn1RMsaq9Ur/67Nu3aIiIiIgfjVEFowoQJuH79OhYtWoS8vDx069YNaWlpmg7RWVlZkMvv1Fb07dsXW7ZswcKFC/H888+jTZs2SE1NRadOnez1FVyDeubpWivVi8zEwOU4iIjIgTnVPEL2wHmEjLh8QDVyTJ9MfruP0O3lOFoNUfUtCmzFmiEiIrIJqc9vp6oRIgej7i+k3Xla5gHM2ANUld1Zp2xVJ3aeJiIih+Q0naXJAemvVK+uAWrWQ7UcB8DO00RE5NBYI0T1o79SvXbTl6Gh9r+mAneNZjMZERHZHWuEqP4MLcgqOtQewLfPc0ZqIiJyCAxCZD36TWfa2ExGREQOgEGIrKt7EpB8Chj6Su3PhGrVEHxDy3FwqQ4iIrIy9hEi61M0VfUJ2rNQr8+Q7M48RPojyrhUBxER2QBrhMg2ajWT3f5PT2xEmZSFXYmIiCyANUJkO9ojzEqv316WQ4t6OQ4I4qPNrh4FCoNUnbABTtJIRET1xiBEtqVoqnops8UnY/T0Bor+qP2ZdjMaZLe3CXeazTh7NRER1QGDENmH/uKtMg+gywTgo4Q7YUcmAwQBqmY0QXxNM6EG2PXU7X3Zn4iIiMzDIET2o91U5umtFYIAVfCRA+M+xp3V7Q0Rbgcm3OlP1GoIa4aIiMgkBiGyL3VT2eUDtfsFoQbwCVbNWF2rqcwI/f5EDERERGQAR42RYxCbhVrmcWfZDp0RZ7ebzQCo/hOWQe9AVX+iTYmcwZqIiIxijRA5BrE+Q4mr7tTm6K9pBtz5+6W9d47T70/EpjIiIjJCJgiCYHo391VcXAyFQgGlUgl/f397F8f1KbPFF3CVepzYsHwAmLpbtR4aERG5BanPb9YIkWNR9xmq63GGhuWra5GIiIi0sI8QuRb9/kT6TWxERERaWCNErke/P5GpEKTM5mSMRERuikGIXJN2E5uxoMPFXYmI3BqDELk2saCjXo7D00d8cVftEWasLSIicmkMQuS6xFax116OAzLoLNcBqIbg/5oK3DX69rB8AyGKwYiIyCVw+LwJHD7vxC4fUE2qWCdaC7tqb+OaZkREToHD54nUs1WbWppDdB+x3w/01jTb9TTQ0BeIirszdF9dWwSw5oiIyAkwCJHr0p+tWj3rtHbIkXkAM/YAWT8D3z5v5gVqVJM3yuRAl4nAya1aTW5QXcdQkxr7HhEROQQ2jZnApjEXoD1btfZyHOo5hronqfZZ1UmvZkirKUwsREmm16SmHZrYxEZEZBVSn98MQiYwCLkgQ8t4HN9cOyRpz0eks6aZBck8gORTrBkiIrIgBiELYRByM6bWOlNmA1ePqla3N9X3yBxcC42IyKKkPr+5xAaRNkVTVSAxVDujaAp0GlN7GY+uD915r24KA6D6X0wmciItXAuNiMhu2FmaqC7ElvG4Z+Gd94DhfkldJgAnt+k2wWkHL3akJiKyGTaNmcCmMbII/SY37ffAneAjNomjsY7UDE1ERKI4jxCRI9Fe+0z7vfYSIPqTOKqX/Ai9C6gqrR12uE4aEVG9sUbIBNYIkdWIDtkXIZOpJnLUDjtix+qPPmNtERG5MdYIETm6wkvSRp6JzWatfq+zX7WquU2/pqkuTWwMUUTkJhiEiOxFdAkQ/Ukc9YPS7dmsIUOtRWPVo8/EFps1p4mNEz4SkRthECKyF/0lQPQncfT0Bj5KMFBrJEAVmm4HKfWxAPDrTvHaoo+G3GliS1gCRMYCnj61Q9MvW7SOux2iWg0xXDPE2iMicmJOE4QKCwsxe/Zs/O9//4NcLsfYsWOxevVq+Pr6Gtx/8eLF+Pbbb5GVlYWQkBCMHj0aL730EhQKhY1LT2SA2DB84M6fOmul6ROAsR8DPsF3hukb63Ok3cS2Z9HtjXq1SqLHaTW56WOHbSJyck4zoeLkyZPx66+/Ys+ePdi9ezcOHDiAxx9/3OD+OTk5yMnJwRtvvIHTp09j48aNSEtLw4wZM2xYaiIJjE3i2D1J1QF63EZV0NAm8wCiet+ZkVq7ZkeHsf/NpYyVkAOl11U1P4Dqz8sHgD8zxJvg1PsRETkBpxg1dubMGXTs2BHp6eno2bMnACAtLQ0jR47En3/+icjISEnn+fzzz/Hwww+jtLQUDRqIV4ZVVFSgoqJC8764uBhRUVEcNUb2J7YWmrr25fIBYFNi7WOGvQJE9THSxHabdhOb9oSP2kP69fsPGapNssZyIfVpfmPTHZFbcqlRY4cPH0ZAQIAmBAFAQkIC5HI5jhw5gjFjxkg6j/pmGApBALB8+XIsXbq03mUmsjhDzWiAeMdrmQfQcXTtvkj6ZB7AjD1AVZnuLNn6a6rp9x8SrU3Sqj0ytFabOpQA0gJKfZrf2HRHRCY4RRDKy8tDaGiozrYGDRogMDAQeXl5ks5RUFCAl156yWhzGgAsWLAAc+bM0bxX1wgROQT9iRm1t4t1vFbvqx2ick4A3y3R3a9Zj9rnKwySNrxfE8Bu1xBtn34ndLQaIj5rtn5Nk6GAYmgEnLHO25Y4lojchl2DUEpKClasWGF0nzNnztT7OsXFxRg1ahQ6duyIJUuWGN3Xy8sLXl5e9b4mkc0ZqzEC7oSolv2BTmMN76cmOrxfj7o2qSirdu3Rrqe0pgLQmzVbuzbJ2PB+sbmWjHXe1lafY8WwiY3IJdk1CM2dOxfTpk0zuk9MTAzCw8ORn5+vs/3vv/9GYWEhwsPDjR5/8+ZNDB8+HH5+fti5cyc8PT3rW2wix2Woxqgu+4nVMoktGNushyrA1ApMwp2RalJGphka3i/W5Kdeo80YQ82Fxo411HTHNeCIXJZdg1BISAhCQkJM7hcfH4+ioiJkZGSgRw9VFf6+fftQU1ODuLg4g8cVFxdj2LBh8PLywq5du9CoUSOLlZ3ILYjVMt2zsHZtkpTaI1PEhvdrOmjrhS9A1UFcrK+Rdggx1lyoz+C6byJrwKln+I6Kq30+V+6XZCrg1aUPmC3LR8a56QzzTjFqDABGjBiBa9euYd26daiqqsL06dPRs2dPbNmi6ryZnZ2NIUOGYPPmzejduzeKi4sxdOhQlJWVYefOnfDx8dGcKyQkBB4eHpKuy7XGiCTSHtUGOVTBQfufF5luU5kMt8OP2Aza2ofpdeY21tdIbFZs7SAHiP9D7+ljemSdaNn0go7o+nFyYNxH4qFJnyM8eAyVwVTAMxQkxfY153tKfThbM4Da4+di61AiZYZ57T5/ThCMpD6/nSYIFRYWYtasWToTKq5Zs0YzoeKVK1fQsmVL7N+/H4MGDcL333+PwYMHi57r8uXLiI6OlnRdBiEiMyiz74SOS3sNz5qtCSWmZtC+TT0kX+pCtWraC9Ea+4deysSSxq4xY4+qebC04PYSKGL7GXg4qx9wOZnAd4uNP3iMPQwt8ZmhJkBDi/yqv7epIGns52DsASt1+RcpixDrf1fA8L3V/sxUs6g1Akp9l70xt0yS/r/S+kXGSWo6XS4I2QuDEFE9aAcjk0Pkkw0P71c/0AzNl2TM1N2q65sToGoXQqs2S+xj2e3aLf1O4fr7aYWHWiPpjFzT1MNQ/8Gp7mNl6kFusDlQq7zJp1QPVbH7rvO9TTxKDP4cRB6wrYYAV48AX8yQ1lk/6zDw7b/Er6me08pYjVWtUKy+D0buidTFjc0NqFJCiVjIU6vLgsu/7hS/f8bol8ERajP1uNQ8QkTkpKR23jY1vL+ufZHUnaPFRpCJ7q81FYC66U67Nkt/biU1nU7hMsNl1O4Ubio0aXc2N7YGHFB7mgCdJVS0rqE9Qq/oD70QJlIOoVr1ndWBwej3NsLoz0Hve+qMNjRB534auCZQeyoF/VGLBufHMnJPrgqmFzeWGkK1A6DYWoFiZfg1FbhrdO0aL/0y6fdnM1QDaC7tEZh1CV8OFJpYI2QCa4SI7MBYTZJO7ZFeYBEb1Wao6USffl8kQLwMtfpCiZxz3EbVn2KhyZKGvgL4RxhujjNEU5Njckfz+nWZDJISanksQacp9pLxJkvzT16P2sHb/cUCWog0JZo4r+i19JoWTTXNGqz50t9X7/8lsT5/6hohQFqzpJoNBxOwacxCGISIHJB2UAJ0A4uhEKW/RImh0GTO9cX6N9VqOkk2HppEiXU2N8RUzZI5tB/GYmWQA+M2AAHNxb+3oSCp38FdJ1BJ/J6iD2eR+znsFdWM6oY61ZvN1D2pCzP6pNX63sbKZ4H/FtT3T///JbE+f92TDDdXD33lTo2VsUEJxkJTPTEIWQiDEJEL0Q9JUvswGWNsDTjta4p2CtfuH+MBJCwGIruLP3gkPwyNfWYkjOl3aC+9Ll67oO53Y+p7a39/0ZF0G1SLBmt/T2PhK6q37s/MWAgFjPdFMlaTaKg2y9g9UZdTctCVSD+U/JoKfPu8iYPqULOkOdREKKn1C4iJEZf2XJ8QDEIWwyBERCbVpVO42Eg60c60esHN0MNw3EbAJ1i8j5X6GqJhTC9oaF/bVJOHlO9tqMZA++EnpeZB6v00VkuhvkemahL1PzN2T4zVkplsRpPDYE2ToVFvUjr9S26a1QviUmtFRUe1GQrpJrBGyPExCBGRRdW3Fqq+AUVqTY65+9anvGLHSL1HYvvW5ZpSGbsnhoKuWCd70fmxDJzX0PVNBSgpzcHGgrgYY1MpZP0socYKdwJgXf+bkohByEIYhIjI4dQ3oNQ3aNi6vI52TWP3RGofNbHySL3X5tSgWbo52FgNn5RpKvQDoBVHjTEIWQiDEBE5JEsEFFuyR3kd7R5Zqzy2/J6matssOSihnhiELIRBiIiISIvUAQKWHJRQBwxCFsIgREREpMfRattEcGZpIiIisg6ps8Y7Abm9C0BERERkLwxCRERE5LYYhIiIiMhtMQgRERGR2zKrs3RRURF27tyJH3/8EX/88QfKysoQEhKC2NhYDBs2DH379rVWOYmIiIgsTlKNUE5ODh599FFERERg2bJlKC8vR7du3TBkyBA0a9YM+/fvx7333ouOHTti27Zt1i4zERERkUVIqhGKjY3F1KlTkZGRgY4dO4ruU15ejtTUVKxatQpXr17FvHnzLFpQIiIiIkuTNKHijRs3EBQUJPmk5u7vyDihIhERkfOR+vyW1DQWFBSE3bt3o6bGyEJqevsTEREROTrJo8ZGjx6NqKgo/Otf/8LFixetWSYiIiIim5AchC5fvownnngCW7duRbt27TBw4ED8+9//Rnl5uTXLR0RERGQ1koNQVFQUFi1ahEuXLuG7775DdHQ0nnzySUREROD//u//kJ6ebs1yEhEREVlcnSZUHDx4MDZt2oTc3Fy8/vrrOHXqFPr06YOuXbtaunxEREREVlOv1ef9/PwwZMgQ/PHHHzh79ix+++03S5WLiIiIyOrqVCNUXl6OzZs3Y9CgQWjTpg22bt2KOXPm4MqVKxYuHhEREZH1mFUj9PPPP2PDhg347LPPUFlZiQceeADfffcdBg8ebK3yEREREVmN5CDUsWNHnDt3DrGxsVi+fDkeeughKBQKa5aNiIjIYqqrq1FVVWXvYpCFeHp6wsPDo97nkRyEEhIS8Omnn7JDNBERORVBEJCXl4eioiJ7F4UsLCAgAOHh4ZDJZHU+h+QgtGbNmjpfhIiIyF7UISg0NBTe3t71emiSYxAEAWVlZcjPzwcARERE1PlckoLQ8OHDsWTJEvTp08fofjdv3sR7770HX19fzJw5s86FIiIisoTq6mpNCOLyT66lcePGAID8/HyEhobWuZlMUhAaP348xo4dC4VCgcTERPTs2RORkZFo1KgR/vrrL/z22284ePAgvvrqK4waNQqvv/56nQpDRERkSeo+Qd7e3nYuCVmD+udaVVVl3SA0Y8YMPPzww/j888+xbds2fPDBB1AqlQAAmUyGjh07YtiwYUhPT0eHDh3qVBAiIiJrYXOYa7LEz1VyHyEvLy88/PDDePjhhwEASqUS5eXlCAoKgqenZ70LQkRERGRrdZpQEQAUCgXCw8MZgoiIiJzElStXIJPJkJmZae+iOIw6ByEiIiIiZ+c0QaiwsBCTJ0+Gv78/AgICMGPGDJSUlEg6VhAEjBgxAjKZDKmpqdYtKBERkRVUVlbauwguyWmC0OTJk/Hrr79iz5492L17Nw4cOIDHH39c0rGrVq1iRzkiIqqXXGU5frpUgFxluU2uN2jQIMyaNQvJyckIDg7GsGHDcPr0aYwYMQK+vr4ICwvDlClTUFBQoDkmLS0N/fr1Q0BAAIKCgnDffffh0qVLNimvs3KKIHTmzBmkpaXhww8/RFxcHPr164e3334bW7duRU5OjtFjMzMzsXLlSmzYsEHStSoqKlBcXKzzIiIi97YtPQt3v7oPD60/grtf3Ydt6Vk2ue6mTZvQsGFDHDp0CK+++iruuecexMbG4tixY0hLS8O1a9fw4IMPavYvLS3FnDlzcOzYMezduxdyuRxjxoxBTU2NTcrrjMxadFWtqKgI27dvx6VLlzB//nwEBgbi+PHjCAsLQ9OmTS1dRhw+fBgBAQHo2bOnZltCQgLkcjmOHDmCMWPGiB5XVlaGhx56CO+++y7Cw8MlXWv58uVYunSpRcpNRETOL1dZjgU7TqFGUL2vEYDnd5zGgLYhiFA0tuq127Rpg9deew0AsGzZMsTGxuKVV17RfL5hwwZERUXh/PnzaNu2LcaOHatz/IYNGxASEoLffvsNnTp1smpZnZXZNUInT55E27ZtsWLFCrzxxhuatVt27NiBBQsWWLp8AFTTo4eGhupsa9CgAQIDA5GXl2fwuGeeeQZ9+/bF/fffL/laCxYsgFKp1LyuXr1a53ITEZHzu1xQqglBatWCgCsFZVa/do8ePTR//+WXX7B//374+vpqXu3btwcATfPXhQsXMGnSJMTExMDf3x/R0dEAgKws29RgOSOza4TmzJmDadOm4bXXXoOfn59m+8iRI/HQQw+Zda6UlBSsWLHC6D5nzpwxt4gAgF27dmHfvn04ceKEWcd5eXnBy8urTtckIiLX0zLYB3IZdMKQh0yG6GDrz1bt4+Oj+XtJSQkSExNFn5vqtbYSExPRokULrF+/HpGRkaipqUGnTp3Y0doIs4NQeno63n///VrbmzZtarR2RszcuXMxbdo0o/vExMQgPDxcs7Ca2t9//43CwkKDTV779u3DpUuXEBAQoLN97Nix6N+/P77//nuzykpERO4pQtEYyx/ojOd3nEa1IMBDJsMrD3SyerOYvu7du+OLL75AdHQ0GjSo/fi+ceMGzp07h/Xr16N///4AgIMHD9q0jM7I7CDk5eUl2oH4/PnzCAkJMetcISEhko6Jj49HUVERMjIyNNWE+/btQ01NDeLi4kSPSUlJwaOPPqqzrXPnznjrrbeQmJhoVjmJiMi9TejVHAPahuBKQRmig71tHoIAYObMmVi/fj0mTZqEZ599FoGBgbh48SK2bt2KDz/8EE2aNEFQUBA++OADREREICsrCykpKTYvp7Mxu4/QP/7xD7z44ouahexkMhmysrLw3HPP1eqkZSkdOnTA8OHD8dhjj+Ho0aM4dOgQZs2ahYkTJyIyMhIAkJ2djfbt2+Po0aMAgPDwcHTq1EnnBQDNmzdHy5YtrVJOIiJyXRGKxohvFWSXEAQAkZGROHToEKqrqzF06FB07twZycnJCAgIgFwuh1wux9atW5GRkYFOnTrhmWee4SLoEphdI7Ry5UqMGzcOoaGhKC8vx8CBA5GXl4f4+Hi8/PLL1igjAOCTTz7BrFmzMGTIEMjlcowdOxZr1qzRfF5VVYVz586hrMz6ndeIiIisTawLR5s2bbBjxw6DxyQkJOC3337T2SYIdzo3RUdH67ynOgQhhUKBPXv24ODBgzh58iRKSkrQvXt3JCQkWKN8GoGBgdiyZYvBz6X8cPnDJyIiIm11mkcIAPr164d+/fpZsixERERENmV2ENJujtImk8nQqFEjtG7dGgMGDICHh0e9C0dERERkTWYHobfeegvXr19HWVkZmjRpAgD466+/4O3tDV9fX+Tn5yMmJgb79+9HVFSUxQtMREREZClmjxp75ZVX0KtXL1y4cAE3btzAjRs3cP78ecTFxWH16tXIyspCeHg4nnnmGWuUl4iIiMhizK4RWrhwIb744gu0atVKs61169Z44403MHbsWPz+++947bXXrDaUnoiIiMhSzK4Rys3Nxd9//11r+99//62ZWToyMhI3b96sf+mIiIiIrMjsIDR48GA88cQTOmt4nThxAk8++STuueceAMCpU6c4aSERERE5PLOD0EcffYTAwED06NFDs0Bpz549ERgYiI8++ggA4Ovri5UrV1q8sERERESWZHYfofDwcOzZswdnz57F+fPnAQDt2rVDu3btNPsMHjzYciUkIiJyQ4MGDUK3bt2watUqu5YjOjoaycnJSE5Otms5rKXOEyq2b98e7du3t2RZiIiI6LYdO3bA09PT3sVAeno6fHx87F0Mq6lTEPrzzz+xa9cuZGVlobKyUuezN9980yIFIyIicmeBgYH2LgIAICQkxOrXqKysRMOGDa1+HTFm9xHau3cv2rVrh7Vr12LlypXYv38/Pv74Y2zYsAGZmZlWKCIREZEDUGYDlw+o/rSBQYMGaZqjoqOjsWzZMiQlJcHX1xctWrTArl27cP36ddx///3w9fVFly5dcOzYMc3xN27cwKRJk9C0aVN4e3ujc+fO+PTTT3WucfPmTUyePBk+Pj6IiIjAW2+9pXNd9bW1m+dkMhk+/PBDjBkzBt7e3mjTpg127dql+by6uhozZsxAy5Yt0bhxY7Rr1w6rV6/Wue60adMwevRovPzyy4iMjES7du3w4osvolOnTrXuQ7du3fDCCy/U404aZ3YQWrBgAebNm4dTp06hUaNG+OKLL3D16lUMHDgQ48ePt0YZiYiI7Ov4ZmBVJ2BTourP45ttXoS33noLd999N06cOIFRo0ZhypQpSEpKwsMPP4zjx4+jVatWSEpK0iwwfuvWLfTo0QNffvklTp8+jccffxxTpkzB0aNHNeecM2cODh06hF27dmHPnj348ccfcfz4cZNlWbp0KR588EGcPHkSI0eOxOTJk1FYWAgAqKmpQbNmzfD555/jt99+w6JFi/D888/js88+0znH3r17ce7cOezZswe7d+/GI488gjNnziA9PV2zz4kTJ3Dy5ElMnz7dErdQnGAmX19f4eLFi4IgCEJAQIBw+vRpQRAEITMzU2jRooW5p3N4SqVSACAolUp7F4WIiMxUXl4u/Pbbb0J5eXndT1L0pyAsCRCExf53XkuaqLZb0cCBA4Wnn35aEARBaNGihfDwww9rPsvNzRUACC+88IJm2+HDhwUAQm5ursFzjho1Spg7d64gCIJQXFwseHp6Cp9//rnm86KiIsHb21tzXfW133rrLc17AMLChQs170tKSgQAwtdff23wujNnzhTGjh2reT916lQhLCxMqKio0NlvxIgRwpNPPql5P3v2bGHQoEEGz2vs5yv1+W12jZCPj4+mX1BERAQuXbqk+aygoMAS2YyIiMhxFF4ChBrdbUI1UPi7TYvRpUsXzd/DwsIAAJ07d661LT8/H4Cqieqll15C586dERgYCF9fX3zzzTfIysoCAPz++++oqqpC7969NedQKBQ6o8CllMXHxwf+/v6a6wLAu+++ix49eiAkJAS+vr744IMPNNdV69y5c61+QY899hg+/fRT3Lp1C5WVldiyZQseeeQRk+WpD7M7S/fp0wcHDx5Ehw4dMHLkSMydOxenTp3Cjh070KdPH2uUkYiIyH4CWwEyuW4YknkAgTE2LYb2CDKZTGZwW02Nqpyvv/46Vq9ejVWrVqFz587w8fFBcnJyrUFO9S2L+trq627duhXz5s3DypUrER8fDz8/P7z++us4cuSIzjFiI9ESExPh5eWFnTt3omHDhqiqqsK4cePqXV5jzA5Cb775JkpKSgCo2ghLSkqwbds2tGnThiPGiIjI9SiaAomrgf8lq2qCZB5A4irVdgd26NAh3H///Xj44YcBqALS+fPn0bFjRwBATEwMPD09kZ6ejubNmwMAlEolzp8/jwEDBtTrun379sU///lPzTbt1iNjGjRogKlTp+Ljjz9Gw4YNMXHiRDRu3LjOZZF0TXMPiIm5k4B9fHywbt06ixaIiIjI4XRPAloNUTWHBcY4fAgCgDZt2mD79u346aef0KRJE7z55pu4du2aJgj5+flh6tSpmD9/PgIDAxEaGorFixdDLpdrapfqet3Nmzfjm2++QcuWLfHvf/8b6enpkpfeevTRR9GhQwcAqlBlbWb3EYqJicGNGzdqbS8qKtIJSURERC5F0RRo2d8pQhAALFy4EN27d8ewYcMwaNAghIeHY/To0Tr7vPnmm4iPj8d9992HhIQE3H333ejQoQMaNWpU5+s+8cQTeOCBBzBhwgTExcXhxo0bOrVDprRp0wZ9+/ZF+/btERcXV+dySCW73QNcMrlcjry8PISGhupsv3btGpo3b46KigqLFtDeiouLoVAooFQq4e/vb+/iEBGRGW7duoXLly+jZcuW9Xq4u4vS0lI0bdoUK1euxIwZM+xSBkEQ0KZNG/zzn//EnDlzjO5r7Ocr9fktuWlMe7Kkb775BgqFQvO+uroae/fuRXR0tNTTERERkZ2dOHECZ8+eRe/evaFUKvHiiy8CAO6//367lOf69evYunUr8vLyrDt3kBbJQUhdnSaTyTB16lSdzzw9PREdHc0V54mIiJzMG2+8gXPnzqFhw4bo0aMHfvzxRwQHB9ulLKGhoQgODsYHH3yAJk2a2OSakoOQelhcy5YtkZ6ebrebRERERJYRGxuLjIwMexdDw8zeOhZh9qixy5cvW6McRERERDYnKQitWbNG8gmfeuqpOheGiIjIGuxR00DWZ4mfq6Qg9NZbb0k6mUwmYxAiIiKHoZ4BuayszOoT85HtlZWVAag907U5JAUhNocREZEz8vDwQEBAgGYdLG9v73pNFkiOQRAElJWVIT8/HwEBAfDw8KjzuczuI6RfEAD8j4qIiBxWeHg4AOgsCkquISAgQPPzras6BaHNmzfj9ddfx4ULFwAAbdu2xfz58zFlypR6FYaIiMjSZDIZIiIiEBoaiqqqKnsXhyzE09OzXjVBanVadPWFF17ArFmzcPfddwMADh48iP/7v/9DQUEBnnnmmXoXioiIyNI8PDws8uAk12L2EhstW7bE0qVLkZSUpLN906ZNWLJkicv1J+ISG0RERM5H6vPb7EVXc3Nz0bdv31rb+/bti9zcXHNPR0RERGQ3Zgeh1q1b47PPPqu1fdu2bWjTpo1FCkVERERkC2b3EVq6dCkmTJiAAwcOaPoIHTp0CHv37hUNSERERESOSnKN0OnTpwEAY8eOxZEjRxAcHIzU1FSkpqYiODgYR48exZgxY6xWUCIiIiJLk9xZWi6Xo1evXnj00UcxceJE+Pn5WbtsDoGdpYmIiJyPxTtL//DDD7jrrrswd+5cREREYNq0afjxxx8tUlgpCgsLMXnyZPj7+yMgIAAzZsxASUmJyeMOHz6Me+65Bz4+PvD398eAAQNQXl5ugxITERGRo5MchPr3748NGzYgNzcXb7/9Ni5fvoyBAweibdu2WLFiBfLy8qxZTkyePBm//vor9uzZg927d+PAgQN4/PHHjR5z+PBhDB8+HEOHDsXRo0eRnp6OWbNmQS43u484ERERuSCz5xHSdvHiRXz88cf497//jby8PAwfPhy7du2yZPkAAGfOnEHHjh2Rnp6Onj17AgDS0tIwcuRI/Pnnn4iMjBQ9rk+fPrj33nvx0ksvSb5WRUUFKioqNO+Li4sRFRXFpjEiIiInYrV5hLS1bt0azz//PBYuXAg/Pz98+eWX9TmdQYcPH0ZAQIAmBAFAQkIC5HI5jhw5InpMfn4+jhw5gtDQUPTt2xdhYWEYOHAgDh48aPRay5cvh0Kh0LyioqIs+l2IiIjIcdQ5CB04cADTpk1DeHg45s+fjwceeACHDh2yZNk08vLyEBoaqrOtQYMGCAwMNNgk9/vvvwMAlixZgsceewxpaWno3r07hgwZolkjTcyCBQugVCo1r6tXr1ruixAREZFDMSsI5eTk4JVXXkHbtm0xaNAgXLx4EWvWrEFOTg7Wr1+PPn36mHXxlJQUyGQyo6+zZ8+adU61mpoaAMATTzyB6dOnIzY2Fm+99RbatWuHDRs2GDzOy8sL/v7+Oi8iIiJyTZInVBwxYgS+++47BAcHIykpCY888gjatWtXr4vPnTsX06ZNM7pPTEwMwsPDkZ+fr7P977//RmFhIcLDw0WPi4iIAAB07NhRZ3uHDh2QlZVV90ITERGRy5AchDw9PbF9+3bcd999Flu9NyQkBCEhISb3i4+PR1FRETIyMtCjRw8AwL59+1BTU4O4uDjRY6KjoxEZGYlz587pbD9//jxGjBhR/8ITERGR05MchKwxGkyqDh06YPjw4Xjsscewbt06VFVVYdasWZg4caJmxFh2djaGDBmCzZs3o3fv3pDJZJg/fz4WL16Mrl27olu3bti0aRPOnj2L7du32+27EBERkeMwe60xe/nkk08wa9YsDBkyBHK5HGPHjsWaNWs0n1dVVeHcuXMoKyvTbEtOTsatW7fwzDPPoLCwEF27dsWePXvQqlUre3wFIiIicjD1mkfIHXCJDSIiIudjk3mEiIiIiJwZgxARERG5LQYhIiIiclsMQkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBEREREbotBiIiIiNwWgxARERG5LQYhIiIiclsMQkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBEREREbotBiIiIiNwWgxARERG5LQYhIiIiB5CrLMdPlwqQqyy3d1HcSgN7F4CIiNxbrrIclwtK0TLYBxGKxrXeu4Nt6VlYsOMUagRALgOWP9AZE3o1t3ex6sTZfn4MQkREZJC1H2r6AWBMbFPsPJHt0IHAnHuivS8A0eNyleWaewAANQLw/I7TGNA2RLOfsWvW9TNrnFdKoHO0oMQgRERUT5b6h90eNSPGrmHqoVbXQKD9cNcPAF8cz9YcIxYI6vpd9D8HUKd7bc49OXD+umZf2e3PBdQ+7nJBqeYeqFULAq4UlCFC0bjWNZ8b3h6dmylqXUP/vGJlHdA2RLR8Uo41dd5jVwpFA137cD+UVlabvKa9yARBEEzv5r6Ki4uhUCigVCrh7+9v7+IQkQm2/m3T3LAg9TdpUzUjxs4LiNc86B97KluJFV+fFb1GrrIcd7+6T+cBLQew5qFY9GjRxKwHmqF79NOlAjy0/ojJe/zpY30Q3yrI7J+DoYe+fijRv9faQUP73vo09MCY936SdE+0ryHGQybDjn/Go7SyWvS8HjIZDqYMBoBaPwc1sWuoz5tVWIant2bqHCcDIJPBYPmMXdPYZ9rnFSOTAYKJa1rj/1Wpz28GIRMYhIich637WYiFBe0HnH7QEAs36t+k9R9a+qSeV6zmwVAgMHaNwtJKzNpyQrQsUh5oxsKDlIe8mnbQEAuSucpy0ftn6qEvhdi9NXSOulxDHRDU10k9kYNqQYCHTIZnh7dD52YKoz8HU+eti4WjOiBc0Uj0mu9MikVucTle/vJs3U5ugJSgWxcMQhbCIERkOVJra+rS5GLsgSuln0Vdym6oRkPqg8jUb9J1Pa+ha0h5WBv77d0U9QNNO5AaCg8LR3XAqC4ROHD+Op7fcVoTAEbHRmoCgamaG+33zk4dQssqa3Ayu0gTdOsa4upD7Jrm/rcKqEJsjYl9HKFGiH2EiMgmpNbWmFOrY+qBa6yfhX5NiTnNVuqmE5+GHpCLPBykhhXBjH3NOa+ha0g5XHtfGSD6/cR4yGSIDvau1e/H0KHLvjyDV746g+UPdMbBlMG4UlCG6GBvRCgaY96wdsi48hee2nrCaP8h7fe2JPWe1Aqh6hog1A4I1YKAssoaRAd7Y/KHP+vcP2M/B+1rGAse8tvnkhJu9K+pPlbs+mLnlQN4+6FYNGvSuNYvJ9rX9JDJ8MoDnezeYZpBiIisTsqoGHP30++YKfZcMvRwrhGAlC9O3XmAGOkn4tPQo9axy79WNQ3oN2lI+Q1YCv2aEUud1xixawgA3p4YCwA6oQQQf6ABwO6TOeIPTJEHrvrnezBlsE7TSISiMQJ9a3cgNue7GHvoa4cS/Xttirrm5mphuaR7MqBtiCbkAcCVgjJ4N5SL1l5GB3uLdpxW/xyCfL1wMrsIr319TlODpn0NsfOqQ0n3232YtGvf1Md+eTIXy748Y/CaN0orRJvKXhjVASNFavVeeaATRnWJBKD6hUPsmtrB194YhIjIYgzVqBgaFfPlyVyM6hKh2dfU6BlAt3ZGjFzkt82fLhWIPlwErXCjX9ugDjvG+oXUCEDqiRxNk4bYg0hNLNwY+k26++3+MPOGtTP4gDN0Xv2aB2OBQN0XpUuzAIMP5x7RqrKUVv5t9IF24Px1g/191OEh/cpftR64+j9ftZbBPpJrXsTun6GHvn4o0a6FulJQVitoaN9b9Xm6RjVB16gmJu+J+jtpfzf138UCgvoz/e+t/XOIbxWEf3SNNHgNsfOqQ8mEXs1FyzeqSwRe+eqMwWvmKstFyzTy9v+7hs5r7JqOEIDU2EfIBPYRIpLGWJOWWKdiNVOdhk2NrtGm3c9C/Y+uoc60lqTd2XNbepbOg0gdNLTLox0e9B9axpoBpZ4XgNFrGHpo6V9Dvzza19CvoTMWgtTnMdS53FAfEf3y6IcSsZAipbym6B9n7Dx1vYaxY039HOp6XmNMXbO+ZbIHdpa2EAYhckfmzLdiKGjoP+C0/yHVZ6rZQsqoHUP/eOsMZzZSU2KKodoJsQe5OQ8ia+1ry2sY6jSubjqpz0PeVCipTxBxZPb4Xqau6Wz3mkHIQhiEyN3UCg+o+6iddybFItC3oU5oEuuPoM9YZ0tD+6qbk9QMzYNjqOnEWD8R/RE9+n00HP03Y2szt6bH2R6o5Jw4aoyIdEiZLl+/Y7B2JDB31I4MdzrYajeVifVH0FcDINDHC6WV1UY73ur3gdAm1t9IfV5D/RoM9RNR9wsBYLCPhjuLUDQ22udFbH/eN3IUDEJEbkDqFP3Gmp7MoT/cVn/0l/ZDU6yZSj2CBhDvOKrfD0iMWGdb7fMCtR/I6vemwg4f5LUZ6zBL5MgYhIiciKnlGqSu56Q9Igq4E0LqG4LUTU8CUGu4rfboIP2HpliHXmOjYNS1M8aYW0shdjwf5ubhPSNnxCBEZGd1XezRWH8d7aYosSYiNUPBR26k47KpUTujukQaHG5rqDamLsNvpWAtBRGZws7SJrCzNFmTlFmU6zr8W71GU5SEDsfa9JueANRp1I4zDrclItfhcqPGCgsLMXv2bPzvf/+DXC7H2LFjsXr1avj6+ho8Ji8vD/Pnz8eePXtw8+ZNtGvXDv/6178wduxYyddlECJLMNRkZWqkjanJA6XQn/1Yn9hsuJYKLBwdRET24nKjxiZPnozc3Fzs2bMHVVVVmD59Oh5//HFs2bLF4DFJSUkoKirCrl27EBwcjC1btuDBBx/EsWPHEBsba8PSkzszVOtjaBbljCt/IdC39giuutKf/djYFP2WDizsM0JEjs4paoTOnDmDjh07Ij09HT179gQApKWlYeTIkfjzzz8RGVl76CwA+Pr6Yu3atZgyZYpmW1BQEFasWIFHH31U9JiKigpUVFRo3hcXFyMqKoo1QlQnhmp9dvwzHlmFZbWau/QnFjQ2eaCx/jpitGc/Zk0NEbk6l6oROnz4MAICAjQhCAASEhIgl8tx5MgRjBkzRvS4vn37Ytu2bRg1ahQCAgLw2Wef4datWxg0aJDBay1fvhxLly619FcgNyDW/GWo1mf0ez9BEO4EH+3Zjo0tImpoLSpjq3YDpoeNExG5K6cIQnl5eQgNDdXZ1qBBAwQGBiIvL8/gcZ999hkmTJiAoKAgNGjQAN7e3ti5cydat25t8JgFCxZgzpw5mvfqGiEiYww1fxlaOFLQCjtyAXjHwJBzwPjkgWLz4NzXVXyBTAYfIqLa7BqEUlJSsGLFCqP7nDljfCp+Y1544QUUFRXhu+++Q3BwMFJTU/Hggw/ixx9/ROfOnUWP8fLygpeXV52vSe7D0GzMNQKw4ItT8PFqgB4tmtSaPLBG7zzq2Y6jg73rPHmgPg4bJyKSxq59hK5fv44bN24Y3ScmJgb/+c9/MHfuXPz111+a7X///TcaNWqEzz//XLRp7NKlS2jdujVOnz6Nu+66S7M9ISEBrVu3xrp16ySVkaPG3Etd5vQx1pdHe2X1KwVl8G4orzWUXXukGIecExFZhlP0EQoJCUFISIjJ/eLj41FUVISMjAz06NEDALBv3z7U1NQgLi5O9JiysjIAgFwu19nu4eGBmhr938nJnanDz6lsJVZ8fVbSnD6G1uPSp15a4mDKYE1HZWOzHbMmh4jItpxi1BgAjBgxAteuXcO6des0w+d79uypGT6fnZ2NIUOGYPPmzejduzeqqqrQsWNHRERE4I033kBQUBBSU1Mxf/587N69GyNHjpR0XdYIuTZj8/SYO6ePWF8gNe0RWwBHbRERWZtT1AiZ45NPPsGsWbMwZMgQzYSKa9as0XxeVVWFc+fOaWqCPD098dVXXyElJQWJiYkoKSlB69atsWnTJskhiFyTob49+syZ00fdl+dqYbnJEVsAR20RETkKp6kRshfWCDk/7X4/5qy0bs6cPtp9edjPh4jI/lyuRoioLvQ7NQPSVlqvy5w+auznQ0TkPBiEyCWZ06lZe56eZ4e3Q5dmAbhRWmH2nD7a2PRFROQcGITI5ZizUKmheXpyleUWm9OHiIgcF4MQuZRcZbnRECS20nrXqCa19otQNBYd5i62LxEROS8GIXJK+hMfqt8XllYaHdllzkrr7OtDROT6GITI6eiv6zUmtil2nsjWdIjWH+El1qlZaqhhXx8iItfGIEQOxdgSF2IdoGsE4Ivj2Zp9BKiCkNROzURE5N4YhMhhGFrBXf8zUwQAb0+MRZCvF5u0iIjIKAYhcgj6nZzVa3QNaKtai05qCAJUtUA9opswABERkUly07sQWd/lgtJaQadaEHCloEz0MzUPmQxjuzeFh0ymea+9iCkREZExrBEih9Ay2KfWvD1yADdKKxDVpLHoZ9odoOcNa8fRXUREZDauNWYC1xqzLv11wNTz9mgvh6EeGZZ6IofrdxERkSRca4wckqEFUNWdow+mDEbGlb90VnCvEYDUEzmc1ZmIiCyOQYhsxtgCqOrO0QdTBiPQt6Fof6GyyhrEtwqyZZGJiMjFsbM02YT+qDABtRdBVXeOVvcX0uYhkyE62NsWRSUiIjfCIERWl6ssx+6TOSaHv6vDjnqdL44EIyIia2PTGFmVsYkQxRZAVYcdrvNFRES2wCBEVmNsJXgpC6BynS8iIrI2BiGqN3NXgn9hVAeM7BJh9gKoRERElsYgRPVi7krwHjKZTggiIiKyJ3aWpjoTWx/si+PZOiPDAGhGgLHTMxERORrWCFGdSB0JxpXgiYjIkTEIkdmMjQTTx5XgiYjIkbFpjMxiaiQYV4InIiJnwhohMsvlglKTI8G4EjwRETkLBiEyi3r5C+0wpD8SjPP/EBGRs2DTGJmFy18QEZErYY0QidKfJFEbl78gIiJXwSBEtehPkrj8gc6Y0Ku5zj5s/iIiIlfAIEQ6xCZJfH7HabQP90NpZbVoDREREZGzYhAiHWKjwqoFAaPf+wmCkRoiIiIiZ8TO0qRDPSpMn6BXQ5SrLLdtwYiIiKyAQYh06I8KE/sPpFoQcKWgzLYFIyIisgI2jZGGeqTYgLYhOJgyGFcKyuDdUI4x7/1Ua96g6GBv+xWUiIjIQhiECIDxkWLLH+iM53ecRrUgcN4gIiJyKU7TNPbyyy+jb9++8Pb2RkBAgKRjBEHAokWLEBERgcaNGyMhIQEXLlywbkGdkKGRYup+QBN6NcfBlMH49LE+OJgymB2liYjIZThNEKqsrMT48ePx5JNPSj7mtddew5o1a7Bu3TocOXIEPj4+GDZsGG7dumXFkjofQyPFtPsBRSgaI75VEGuCiIjIpThN09jSpUsBABs3bpS0vyAIWLVqFRYuXIj7778fALB582aEhYUhNTUVEydOtFZRnYa6T5BPQw/R9cPYD4iIiFyd0wQhc12+fBl5eXlISEjQbFMoFIiLi8Phw4cNBqGKigpUVFRo3hcXF1u9rLakDj+nspVY8fVZTZ+gMbFNkXoih/2AiIjIrbhsEMrLywMAhIWF6WwPCwvTfCZm+fLlmtonV6PdIVpbjQCknsjBjn/Go6yyhuuHERGR27BrH6GUlBTIZDKjr7Nnz9q0TAsWLIBSqdS8rl69atPrW4t+h2h91YKAssoa9gMiIiK3Ytcaoblz52LatGlG94mJianTucPDwwEA165dQ0REhGb7tWvX0K1bN4PHeXl5wcvLq07XdETqprDC0kqDIQhgnyAiInJPdg1CISEhCAkJscq5W7ZsifDwcOzdu1cTfIqLi3HkyBGzRp45M+2mMBlUL7EsxD5BRETkrpymj1BWVhYKCwuRlZWF6upqZGZmAgBat24NX19fAED79u2xfPlyjBkzBjKZDMnJyVi2bBnatGmDli1b4oUXXkBkZCRGjx5tvy9iI/pNYQJUQUg9OsxDJsOzw9uhS7MA9gkiIiK35TRBaNGiRdi0aZPmfWxsLABg//79GDRoEADg3LlzUCqVmn2effZZlJaW4vHHH0dRURH69euHtLQ0NGrUyKZltwexuYEEAG9PjEWQrxfDDxEREQCZIAhGeo5QcXExFAoFlEol/P397V0ck7TnBhJbI+xgymAGICIicnlSn99OUyNEpumvF8a5gYiIiIxjEHIRYuuFcW4gIiIi4xiEXISh9cLUcwMRERFRbU6z6CoZ1zLYB3KZ7jbODURERGQcg5ATylWW46dLBchVlmveXy4oxXMj2sNDpkpD7BNERERkGpvGnIxYh+idJ7I1758b3p5zAxEREUnEGiEnItYh+ovj2TrvX0s7xxBEREQkEYOQExHrEK2vWhBwpaDMNgUiIiJycgxCTkSsQ7Q+dpAmIiKSjkHIiUQoGmP5A511OkSP7d6UHaSJiIjqiEtsmOCIS2zkKstxpaBM0xdI/z0REZG74xIbLixC0Vgn8Oi/JyIiImnYNEZERERui0GIiIiI3BaDkBPQn0maiIiILIN9hByc/kzSyx/ojAm9mtu7WERERC6BNUIOKldZjv/9kl1rJunnd5xmzRAREZGFsEbIAWnXAulTzxzNUWJERET1xxohB6O/npg+zhxNRERkOQxCDsbYemKcOZqIiMiy2DTmYNTriWmHITmAtx+KRfcWTRiCiIiILIg1Qg5GbD2x5WM7Y1SXSIYgIiIiC2ONkAOa0Ks5BrQN4fphREREVsYg5CByleW4XFCKlsE+mrXDGICIiIisi0HIAXDSRCIiIvtgHyE70x8uz0kTiYiIbIdByM7EhsurJ00kIiIi62IQsjP1cHltnDSRiIjINhiE7ExsuDwnTSQiIrINdpa2E+1RYhwuT0RE7kh/xLQ9MAjZgaFRYgxARETkLhxlxDSbxmyMo8SIiMjdOdKzkEHIxjhKjIiI3J0jPQsZhGyMo8SIiMjdOdKzkEHIxjhKjIiI3J0jPQtlgiAIpndzX8XFxVAoFFAqlfD397fYeXOV5RwlRkREbs2az0Kpz2+nqRF6+eWX0bdvX3h7eyMgIMDk/lVVVXjuuefQuXNn+Pj4IDIyEklJScjJybF+YSWIUDRGfKsghiAiInJbjvAsdJogVFlZifHjx+PJJ5+UtH9ZWRmOHz+OF154AcePH8eOHTtw7tw5/OMf/7BySYmIiMhZOF3T2MaNG5GcnIyioiKzj01PT0fv3r3xxx9/oHlzaXMVWKtpjIiIiKxH6vPbrSZUVCqVkMlkRpvWKioqUFFRoXlfXFxsg5IRERGRPThN01h93bp1C8899xwmTZpkNBkuX74cCoVC84qKirJhKYmIiMiW7BqEUlJSIJPJjL7Onj1b7+tUVVXhwQcfhCAIWLt2rdF9FyxYAKVSqXldvXq13tcnIiIix2TXprG5c+di2rRpRveJiYmp1zXUIeiPP/7Avn37TPbz8fLygpeXV72uSURERM7BrkEoJCQEISEhVju/OgRduHAB+/fvR1BQkNWuRURERM7HafoIZWVlITMzE1lZWaiurkZmZiYyMzNRUlKi2ad9+/bYuXMnAFUIGjduHI4dO4ZPPvkE1dXVyMvLQ15eHiorK+31NYiIiMiBOM2osUWLFmHTpk2a97GxsQCA/fv3Y9CgQQCAc+fOQalUAgCys7Oxa9cuAEC3bt10zqV9DBEREbkvp5tHyNY4jxAREZHzcbklNoiIiIgszWmaxuxFXWHGiRWJiIich/q5barhi0HIhJs3bwIAJ1YkIiJyQjdv3oRCoTD4OfsImVBTU4OcnBz4+flBJpNZ5JzFxcWIiorC1atX2e/IynivbYf32nZ4r22H99p2LH2vBUHAzZs3ERkZCbnccE8g1giZIJfL0axZM6uc29/fn/9j2Qjvte3wXtsO77Xt8F7bjiXvtbGaIDV2liYiIiK3xSBEREREbotByA68vLywePFirmlmA7zXtsN7bTu817bDe2079rrX7CxNREREbos1QkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBkY++++y6io6PRqFEjxMXF4ejRo/Yukks6cOAAEhMTERkZCZlMhtTUVHsXySUtX74cvXr1gp+fH0JDQzF69GicO3fO3sVySWvXrkWXLl00k83Fx8fj66+/tnex3MKrr74KmUyG5ORkexfF5SxZsgQymUzn1b59e5uWgUHIhrZt24Y5c+Zg8eLFOH78OLp27Yphw4YhPz/f3kVzOaWlpejatSveffddexfFpf3www+YOXMmfv75Z+zZswdVVVUYOnQoSktL7V00l9OsWTO8+uqryMjIwLFjx3DPPffg/vvvx6+//mrvorm09PR0vP/+++jSpYu9i+Ky7rrrLuTm5mpeBw8etOn1OXzehuLi4tCrVy+88847AFTrmEVFRWH27NlISUmxc+lcl0wmw86dOzF69Gh7F8XlXb9+HaGhofjhhx8wYMAAexfH5QUGBuL111/HjBkz7F0Ul1RSUoLu3bvjvffew7Jly9CtWzesWrXK3sVyKUuWLEFqaioyMzPtVgbWCNlIZWUlMjIykJCQoNkml8uRkJCAw4cP27FkRJajVCoBqB7QZD3V1dXYunUrSktLER8fb+/iuKyZM2di1KhROv9uk+VduHABkZGRiImJweTJk5GVlWXT63PRVRspKChAdXU1wsLCdLaHhYXh7NmzdioVkeXU1NQgOTkZd999Nzp16mTv4rikU6dOIT4+Hrdu3YKvry927tyJjh072rtYLmnr1q04fvw40tPT7V0UlxYXF4eNGzeiXbt2yM3NxdKlS9G/f3+cPn0afn5+NikDgxARWcTMmTNx+vRpm7fvu5N27dohMzMTSqUS27dvx9SpU/HDDz8wDFnY1atX8fTTT2PPnj1o1KiRvYvj0kaMGKH5e5cuXRAXF4cWLVrgs88+s1mTL4OQjQQHB8PDwwPXrl3T2X7t2jWEh4fbqVREljFr1izs3r0bBw4cQLNmzexdHJfVsGFDtG7dGgDQo0cPpKenY/Xq1Xj//fftXDLXkpGRgfz8fHTv3l2zrbq6GgcOHMA777yDiooKeHh42LGErisgIABt27bFxYsXbXZN9hGykYYNG6JHjx7Yu3evZltNTQ327t3LNn5yWoIgYNasWdi5cyf27duHli1b2rtIbqWmpgYVFRX2LobLGTJkCE6dOoXMzEzNq2fPnpg8eTIyMzMZgqyopKQEly5dQkREhM2uyRohG5ozZw6mTp2Knj17onfv3li1ahVKS0sxffp0exfN5ZSUlOj8RnH58mVkZmYiMDAQzZs3t2PJXMvMmTOxZcsW/Pe//4Wfnx/y8vIAAAqFAo0bN7Zz6VzLggULMGLECDRv3hw3b97Eli1b8P333+Obb76xd9Fcjp+fX61+bj4+PggKCmL/NwubN28eEhMT0aJFC+Tk5GDx4sXw8PDApEmTbFYGBiEbmjBhAq5fv45FixYhLy8P3bp1Q1paWq0O1FR/x44dw+DBgzXv58yZAwCYOnUqNm7caKdSuZ61a9cCAAYNGqSz/eOPP8a0adNsXyAXlp+fj6SkJOTm5kKhUKBLly745ptvcO+999q7aER19ueff2LSpEm4ceMGQkJC0K9fP/z8888ICQmxWRk4jxARERG5LfYRIiIiIrfFIERERERui0GIiIiI3BaDEBEREbktBiEiIiJyWwxCRERE5LYYhIiIiMhtMQgRERGRRRw4cACJiYmIjIyETCZDamqqVa+3ZMkSyGQynVf79u3NOgeDEBHZ1aBBg5CcnKx5Hx0djVWrVln8OtOmTcPo0aMtfl6ppkyZgldeeUXSvhMnTsTKlSutXCIiyystLUXXrl3x7rvv2uyad911F3JzczWvgwcPmnU8gxARWY09wseVK1cgk8mQmZmps3316tV2W17ll19+wVdffYWnnnpK0v4LFy7Eyy+/DKVSaeWSEVnWiBEjsGzZMowZM0b084qKCsybNw9NmzaFj48P4uLi8P3339frmg0aNEB4eLjmFRwcbNbxDEJE5BYUCgUCAgLscu23334b48ePh6+vr6T9O3XqhFatWuE///mPlUtGZFuzZs3C4cOHsXXrVpw8eRLjx4/H8OHDceHChTqf88KFC4iMjERMTAwmT56MrKwss45nECIimyktLUVSUhJ8fX0REREhqfmnqKgIjz76KEJCQuDv74977rkHv/zyi8H9W7ZsCQCIjY2FTCbTLAirXzs1aNAgzJ49G8nJyWjSpAnCwsKwfv16lJaWYvr06fDz80Pr1q3x9ddf65z/9OnTGDFiBHx9fREWFoYpU6agoKDAYHmqq6uxfft2JCYm6mx/77330KZNGzRq1AhhYWEYN26czueJiYnYunWryftD5CyysrLw8ccf4/PPP0f//v3RqlUrzJs3D/369cPHH39cp3PGxcVh48aNSEtLw9q1a3H58mX0798fN2/elHwOBiEispn58+fjhx9+wH//+198++23+P7773H8+HGjx4wfPx75+fn4+uuvkZGRge7du2PIkCEoLCwU3f/o0aMAgO+++w65ubnYsWOHwXNv2rQJwcHBOHr0KGbPno0nn3wS48ePR9++fXH8+HEMHToUU6ZMQVlZGQBVKLvnnnsQGxuLY8eOIS0tDdeuXcODDz5o8BonT56EUqlEz549NduOHTuGp556Ci+++CLOnTuHtLQ0DBgwQOe43r174+jRo6ioqDB6f4icxalTp1BdXY22bdvC19dX8/rhhx9w6dIlAMDZs2drdX7Wf6WkpGjOOWLECIwfPx5dunTBsGHD8NVXX6GoqAifffaZ5HI1sPg3JSISUVJSgo8++gj/+c9/MGTIEACqINKsWTODxxw8eBBHjx5Ffn4+vLy8AABvvPEGUlNTsX37djz++OO1jgkJCQEABAUFITw83GiZunbtioULFwIAFixYgFdffRXBwcF47LHHAACLFi3C2rVrcfLkSfTp0wfvvPMOYmNjdTo9b9iwAVFRUTh//jzatm1b6xp//PEHPDw8EBoaqtmWlZUFHx8f3HffffDz80OLFi0QGxurc1xkZCQqKyuRl5eHFi1aGP0eRM6gpKQEHh4eyMjIgIeHh85n6mbjmJgYnDlzxuh5goKCDH4WEBCAtm3b4uLFi5LLxSBERDZx6dIlVFZWIi4uTrMtMDAQ7dq1M3jML7/8gpKSklr/8JWXl2t+g6yPLl26aP7u4eGBoKAgdO7cWbMtLCwMAJCfn68pz/79+0X7+ly6dEk0CJWXl8PLywsymUyz7d5770WLFi0QExOD4cOHY/jw4RgzZgy8vb01+zRu3BgANLVRRM4uNjYW1dXVyM/PR//+/UX3adiwodnD37WVlJTg0qVLmDJliuRjGISIyGGVlJQgIiJCdFSJJTo+e3p66ryXyWQ629ThpaamRlOexMRErFixota5IiIiRK8RHByMsrIyVFZWomHDhgAAPz8/HD9+HN9//z2+/fZbLFq0CEuWLEF6errme6mb/tQ1XETOoKSkRKc25vLly8jMzERgYCDatm2LyZMnIykpCStXrkRsbCyuX7+OvXv3okuXLhg1apTZ15s3bx4SExPRokUL5OTkYPHixfDw8MCkSZMkn4NBiIhsolWrVvD09MSRI0fQvHlzAMBff/2F8+fPY+DAgaLHdO/eHXl5eWjQoAGio6MlXUcdNqqrqy1Sbv3yfPHFF4iOjkaDBtL++ezWrRsA4LffftP8HVAN+U1ISEBCQgIWL16MgIAA7Nu3Dw888AAAVafsZs2amT0UmMiejh07hsGDB2vez5kzBwAwdepUbNy4ER9//DGWLVuGuXPnIjs7G8HBwejTpw/uu+++Ol3vzz//xKRJk3Djxg2EhISgX79++Pnnn836BYJBiIhswtfXFzNmzMD8+fMRFBSE0NBQ/Otf/4JcbnjMRkJCAuLj4zF69Gi89tpraNu2LXJycvDll19izJgxOh2Q1UJDQ9G4cWOkpaWhWbNmaNSoERQKhUW+w8yZM7F+/XpMmjQJzz77LAIDA3Hx4kVs3boVH374Ya1+D4CqRqd79+44ePCgJgjt3r0bv//+OwYMGIAmTZrgq6++Qk1NjU4z4Y8//oihQ4dapNxEtjJo0CAIgmDwc09PTyxduhRLly61yPUsMbKSo8aIyGZef/119O/fH4mJiUhISEC/fv3Qo0cPg/vLZDJ89dVXGDBgAKZPn462bdti4sSJ+OOPPzT9d/Q1aNAAa9aswfvvv4/IyEjcf//9Fit/ZGQkDh06hOrqagwdOhSdO3dGcnIyAgICjAa6Rx99FJ988onmfUBAAHbs2IF77rkHHTp0wLp16/Dpp5/irrvuAgDcunULqampmk7bRGQ9MsFYdCMionorLy9Hu3btsG3bNsTHx5vcf+3atdi5cye+/fZbG5SOyL2xRoiIyMoaN26MzZs3G514UZunpyfefvttK5eKiADWCBEREZEbY40QERERuS0GISIiInJbDEJERETkthiEiIiIyG0xCBEREZHbYhAiIiIit8UgRERERG6LQYiIiIjcFoMQERERua3/B3pqCi8/4RlXAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "\n", "data = gettable.get()\n", "\n", "plt.plot(times, data[0], '.', label=\"real\")\n", "plt.plot(times, data[1], '.', label=\"imaginary\")\n", "plt.legend()\n", "plt.xlabel(\"Idle time (s)\")\n", "plt.ylabel(\"Voltage (V)\")\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "cd1833ad", "metadata": {}, "source": [ "Note that the data used here is the same as in {ref}`sec-tutorial-experiment`. The example dataset can be downloaded {download}`here <../examples/dataset.hdf5>`.\n", "\n", "As we defined 125 points in our `times` array which were measured in 125 different `acq_index`es, the acquisition result also contains 125 _I_ values (in `data[0][:]`) and 125 _Q_ values (in `data[1][:]`). The general format of the data returned by the {class}`~quantify_scheduler.gettables.ScheduleGettable` is also explained in the {ref}`user guide `.\n", "\n", "## Trace measurement\n", "\n", "The previous experiment's acquisition results had one data point for each acquisition in the schedule. For a trace measurement, the data format is slightly different. To illustrate this, let us set up an experiment with a trace measurement." ] }, { "cell_type": "code", "execution_count": 6, "id": "a5d61a21", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler.operations import IdlePulse, SoftSquarePulse\n", "\n", "\n", "def trace_schedule(pulse_amp, acq_delay, port=\"q0:res\", clock=\"q0.ro\", repetitions=1):\n", " schedule = Schedule(\"Trace a pulse\", repetitions=repetitions)\n", "\n", " schedule.add(\n", " SoftSquarePulse(\n", " duration=q0.measure.integration_time(),\n", " amp=pulse_amp,\n", " port=port,\n", " clock=clock,\n", " ),\n", " label=\"trace_pulse\",\n", " )\n", "\n", " # Add acq_delay to compensate for time-of-flight of the pulse\n", " schedule.add(\n", " Measure(q0.name, acq_protocol=\"Trace\"),\n", " ref_pt=\"start\",\n", " rel_time=acq_delay,\n", " label=\"acquisition\"\n", " )\n", "\n", " return schedule" ] }, { "cell_type": "markdown", "id": "bec09dbb", "metadata": {}, "source": [ "Again, we define the gettable and run the experiment." ] }, { "cell_type": "code", "execution_count": 7, "id": "65b47d51", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/gabor/projects/quantify-scheduler/quantify_scheduler/backends/qblox/compiler_abc.py:730: RuntimeWarning: Operation is interrupting previous Pulse because it starts before the previous ends, offending operation: Pulse \"UpdateParameters\" (t0=1.0000000000000001e-07, duration=0)\n", " warnings.warn(\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAABX4klEQVR4nO3deVhU9f4H8PeAgiwygsjqKIsLLiiIguBulHuZVmblds28ZnaVsqRFK7uiqeVVKdNy65aQVy1/ZVqh5kaKKIqpqAhCCigqgwKJwfn9Mc7IwMwwA8x2eL+eZx7lrJ85c2bmPed8z/dIBEEQQERERCQSNuYugIiIiKghMdwQERGRqDDcEBERkagw3BAREZGoMNwQERGRqDDcEBERkagw3BAREZGoNDF3AaZWWVmJa9euoXnz5pBIJOYuh4iIiPQgCALu3LkDHx8f2NjoPjbT6MLNtWvXIJPJzF0GERER1UFubi5at26tc5pGF26aN28OQLFxXFxczFwNERER6aO4uBgymUz1Pa5Lows3ylNRLi4uDDdERERWRp8mJWxQTERERKLCcENERESiwnBDREREosJwQ0RERKLCcENERESiwnBDREREosJwQ0RERKLCcENERESiwnBDREREosJwQ0RERKLCcENERESiwnBDZGXy5GU4klmIPHmZuUshIrJIje7GmdQ45cnLkFVYAn93J3hLHQyax8nOFiXlFVrnrcuy67qMxJQcxG5PR6UA2EiAuDHBGNerTZ3WaQ7Vn2dDbLuGqEOf6Y9n34JEIkFYW1eT1lq9jobeXsZ8DeqzbH3nNdc+RJaN4YZEQdcHXNVAIAEwPlyGqHbual9SVb+8ZK4O+OF0Hr44mAWhynI0hQltYaNqPQC01nYq9zbWHriMXWfyITxY2egQb0R39lLVVzVkKdcFAJUCELstHeUVlXB1tNP4pXsq9zaOZd9CgLsTHOya6BUqTuXexq/nCuDRvBmiO3uqjdc0X/Vtl3OrVPV/ZSgEgPWHsvDloSzV6zCwYyvsv3ADgobXpfo201avpuenbXsrl5F+VY4lP51XbcfnwmWY9Uj7GtMqn9PVojIs3nVetS9IACweqz1UKuctKrtf43VR1hvu54buMlet21TT9j5w4YbWYFt1uuvFf6mtQ1nPlVuluHm3HC2d7CB1bApXRztcLSpTbQtdy9QWGuryvlPuF7p+NHx+IBOLfzqvek+MDPbCtP4B6C5zVe2f9k1scen6XXyfdg3Cg9dlWj9/TOnrX+s+S+InEQRBqH0y44qPj8fSpUuRn5+P7t27Y9WqVQgPD9c47caNGzFlyhS1Yfb29vjrr7/0WldxcTGkUinkcjlcXFzqXTuZX2JKDuZtS1d9+TwXLsMjnTyQllsE+ya2+PiXC6ovsupGh3jD0b4pthzNgb5vhIVPdEF0Z09cL/4Loz89gurvoMlRbbE5+UqNdSo/fEd080bOrVJ8eSgLablynesKkUlxKleuV20SAPOGBcHBzgaFd8tx5k859mbcqDHNmB6+2HHyqupLZ2LvtnBxbAL7Jrb49VxBjZpGBnvhyR6+SDp3HVuO5UKA4otwxoBAZN8swY/p+XpUV3dVt4HyOU4fEIiXv07Frmrrljz4VzntywMD0ae9e41Ao0mfQDd09ZXi0o0SJJ27XmtdX04KqxEY1x/KqhGKlWHotws31OoNaS1FZ18pEo7lqOp6JKgVQtu4AhLgZE6RWh2SB8+rqoVPdEHmjbvYdOSKxn2ko6czLhTc1XvftgGwblIYfr98SxVEAeCxTp54PNRHLbyezytG/P5M1f7/XLgM43rJUFJegbLyv/Hi5tQa7w1tZg4MxNyhQQCAz3/LRNxP5zVO5+5kh8KScp3LkkiAxWOC0b9DK7VAbY1HOkmdId/fZg83iYmJmDhxItasWYOIiAisWLECW7duRUZGBjw8PGpMv3HjRvzrX/9CRkaGaphEIoGnp6de62O4sW5VfxXLy+4j52Ypvj3+p7nLIhPr0aYFTuQUmbsMlagANxy5fMvcZVi1zt7NMbybN5btuWC0ddhKJDg0bxAAqB1t1HXamSyHVYWbiIgI9OrVC6tXrwYAVFZWQiaTYdasWZg3b16N6Tdu3IjZs2ejqKioTutjuLE+ykCTfPmWQUdYiIiq6+rjgjPXimsM55Edy2fI97dZ29yUl5cjNTUVsbGxqmE2NjaIjo5GcnKy1vnu3r2Ltm3borKyEj169MCiRYvQpUsXjdPeu3cP9+7dU/1dXFxzpybL9fmBTMTt0nyImojIUJqCDaBow/bW9jPo36EVj+CIgFkvBS8sLERFRUWNU0qenp7Iz9d8Hr9jx45Yv349vv/+e/z3v/9FZWUloqKi8Oefmk9NxMXFQSqVqh4ymazBnwcZx3vfn2GwISKTqRAEpGbfNncZ1ACsrp+byMhITJw4ESEhIRgwYAC2b9+OVq1a4fPPP9c4fWxsLORyueqRm5tr4orJUHnyMoyOP4SNyVfMXQoRNTKvbDmJBd+dMXcZVE9mPS3l7u4OW1tbFBQUqA0vKCiAl5eXXsto2rQpQkNDcenSJY3j7e3tYW9vX+9ayfjy5GVY/NM5fJ+WZ+5SiKgR2/T7FZzIvY3/m9XP3KVQHZn1yI2dnR3CwsKQlJSkGlZZWYmkpCRERkbqtYyKigqkp6fD29vbWGWSCXx+IBORcXtNEmw+HN0FQzrrd3WdKUjw8BJmcwppLcWHo7vgw9FdILGEgkxI+XxtoLjyydz83R0Nnkf5+v2jj5/O6fq3d8fgjq3qWJlpPd3DF6vHh+LD0V3Q2bu5SdedfrUYUzcew6lcnqayRmbvxC8mJgaTJk1Cz549ER4ejhUrVqCkpETVl83EiRPh6+uLuLg4AMAHH3yA3r17o127digqKsLSpUtx5coVvPjii+Z8GlQHys61fj6Tb7JTUBIAj3TyxAu9/fD5gUxV3ye2EgmGdPHET2fya70aa0gXT/z8R4GivxcAbw4LQrfWLVBafh8vbkqt0cfJF5PCUFZeiV/PFah1OPbywED0bd8Kfu6OOHDhBt7afgYVggAbAH3bu+PQpUJVbaNDffDdyWuo0HBxo6b+TwDFF7ayg7wR3bzg0NQWW1Ovqk0T0lqKAR1bYXCQh6pTOQBoamuD2G3pqNSxHZXPY/yDTvB2nrqm2p4SAOMjZOjs7YLj2bdVz1vTcqClfgCIfy4UfxaV4aOfMlTPvWfbFghs5Yw2LR3h19IJrV0dUFpeidLy+zidK4ddUxv4tXRCs6Y2OJ0rR9qfRThwoVDrOmKHB+Hx7j7ILiyFn7ujqs+a1OzbKCp72KfK/O//qNFPjo0EqmFdvF1wLr9Y9fxfHhiIx7p4YnT8kRr7hOTBfNX75RlfpUPBU7m3cTz7NnJvl6r6TVJOM66XTPWcswtL0dPPVa1TwI1HstVqlQB49ZF2aq+zcvk9/RR/H8++DT93Rxy9fBtfHLqs6BsGNffFRWO6oqjsvtp7Z9GYrujfoZVqm7k62qG1qwNyb5Xhyq0S3Lxbjlsl5dh56prG/p80vTbDunph6TMhqr9f6O2HZXvOq/rWsZVI8MbQjvBt4aBa5/6M6zX28fpIOn8DSedvoHeAGx7p5KHW+SJZNrNfCg4Aq1evVnXiFxISgpUrVyIiIgIAMHDgQPj5+WHjxo0AgDlz5mD79u3Iz8+Hq6srwsLC8OGHHyI0NFSvdfFScMtQvQfS+qr+JRnh74qjWZp/cW2Z1huRgS0BKL4Iqn+pZReWwtHOBqXllTh86QY+3Z+p9iGu7IG46nxKiSk5qpBSdXolbfPpqkVTbbm3yiCRAD3autYIRi/298eUPv4AUGNdefIy/Hq2AIV379UINNXlycuw4VC22hedrmXren7KsJB8+Sa2POi0Trl9gryaa+wMMXZ4EKb3D6x1u+lDOf/pq0WqoKQMptMHBOq1DE2vbf8OrXS+ZvrMp21baqpf3+df235Ym9r2xbrUVHUe5fur+vO/XvyXKnBp2zdrW+/nBzLVepRuaMO6emFCZFv2i2MGVtXPjakx3JiPsr+aH07lYc/Zgtpn0IMNgFXPhaLHgy77q37oncq9XeNXs7ITL0M+lAz9EK/vF3FdGHOdDb3s2gKAoaGjIdZv7HnFtk9Yuuo/BGYlnGywH1JKVXvLJtNguNGB4cY8qt8iwVAv9QvAl4ey1E7L6POLtL6/YMl0GvOXMRmXps8BAGr3aqurqkcYybgYbnRguDG9PHkZouL21jnYVO0yvfohbUs9kkJElkXXqTXlZ8pXv2fXuF+ZPr6fGcW2OCZgNT0UU+Ow4VBWvYLNojFdVR9GdQkn3lIHhhqiRk7T50D1YZGBLXEq9za++T0Hian637NudPwRnXeKJ9NjuCGjypOXYe3BLIPmUV4F0a11Cx5tISKT6i5zRUl5hUHhRgAwb1s6b91gQRhuyKhSr+jfR8TMKpdG8wOCiMzF391J7TJ/fQgAZm85icR/RhmtLtIfww0ZzbI957F6X6bOaUaHeOPRzl7o0daVgYaILIK31AFxY4JVjZD1dTT7NpbtOY/XhwQZsTrSB8MNGcWM/6bipzPaG+aFyKT47IUwBhoiskjjerVR649o56lrevWfs3pfJh7t7MkGxmZmdTfOJMuWJy/D5uQsncEGAN4c2onBhogsmrfUAZGBLeEtdcD0/oE4EjsYU6L8ap1vdPwRJKbkGL9A0opHbqhB5MnLsCrpIrYcy631l42NBKqeSYmIrIW31AEvDQjAxiPZOj/nBADztrOBsTnxyA3VW2JKDiLj9uIbPYINoOh9lm94IrJG3lIHLB4bXOuXpyAACcdykCcvM0ldpI6d+FG9GNpBXyy7KyciEVDeL+2VLSd1TmcjAeLGsA+chmDI9zeP3FC96NtBX9/AlkiOHcxgQ0Si4C11wMjuPnguXKZzukoBeHNbOo/gmBjDDdVZnrwM6/TsoO/Z8DY8FUVEojPrkfaQ6DHd7IQ0Y5dCVTDcUJ3pe9RGAiDMj5dFEpH4KNvg1OZo1i1sPc4rqEyF4YbqxJDbKiweG8yjNkQkWuN6tcH3M2vvmXju/9Lx2rdpxi+IeCk41c3in87rHD8lyg89/VzZ8zARNQrdZa6YOTAQ8ft198q+7cRVDA/2wiOdvExUWePEIzdksM9/y8T3ade0jpcAeGlAAEZ082GwIaJGY+7QIAwKalXrdFM3pbKTPyNjuCGDnMq9jbhajtrMG85+bIiocdowORyvDKr9qtDY7byCypgYbkhviSk5eCL+iM5pYocFYXp/Xu5NRI3X60OC8P3MKJ1XUVUKQHZhqclqamwYbkgvefIyxG5P1znN6vGh7MeGiAiKNji1XUXlaMevYGPhliW9pF65jUod133bSHi5NxFRVeN6tcHq50K1jv90n+7Gx1R3DDdUq8SUHLzyje4uxnm/KCKimsLaav/Rt+dsAaZsPGbCahoPhhvSKU9ehnnbdJ+OmhzZlu1siIg08JY6IHZYkNbx+87fwHvfnzFhRY0Dww3plHrlts5eiCP8XPHeE11NVg8RkbWZPiAQo0O8tY7fmHwFnx/gKaqGxHBDWulzOmrFeO3nk4mISOHNYZ10jo/bdR5fJWfz8vAGwnBDGuXJy/BmLaejYtmfDRGRXrylDlhSy9VT737/B6Li9rKDvwbAcEMaZRWW6Bw/c1Ag29kQERlAn3tQCWAHfw2B4YY0Kiv/W+f4vu1q72KciIjUlZRX1DoNO/irP944k2r4/EAm4nZpv8WCrUQCP3dHE1ZERCQO/u5Oek3HDv7qh1uP1Czdc15nsLGRAIvGdGVbGyKiOqjt0nCl0vJKE1QjXgw3pPL5b5mI19Fj5ugQHxyeNxjjerUxYVVEROIyfUAgYocHwUbHzadW7r1guoJEiOGGACiujqrtbt/BvlIesSEiagDT+wfi8LzB2DKtN57u4VtjfHLmLfxjA3svriuGGwJQ+9VRANCT944iImow3lIHRAa2RAfv5hrH7824gVO5t01clTgw3BAAIP1Puc7xY3v4oruM4YaIqKGF+7lpHbcy6ZIJKxEPXi1FSDqXr/WUVJ/AlnhjaEcGGyIiI+kuc0V3mRSncmv+yNybcR158jI2CTAQj9w0cq99m4apm1K1jn8uog2DDRGRka15IUzjcEEAfjydx079DMRw04idyr2NbSeu6pxG0HXXTCIiahC6LhH/8Mdz6LOYt2UwBMNNI3Ys+5bO8RIAYWxETERkEo+H+GgdVykAb20/wyM4emK4acSKSu7rHD+PN8YkIjKZ2q5arRAE3pZBTww3jVSevAyf7tfeYR9vjElEZFr63JqBt2XQD7dSI3U8+xa0NaeJHRaEuUNq7x6ciIgajj63Zsi9xdNS+mC4aaQkEs39fn84ugumD+ARGyIic5g+IBCjQ7y1jk++fNOE1VgvhptGSuaquS1NsK/UxJUQEVFVbw7rpHXc10dz2GuxHhhuGqE8eRlWJl3UOI53oiUiMi9vqQOWjA3WOn50/BFeFl4LhptGJjElB5Fxe5F0/kaNcTYSwM/d0QxVERFRVeN6tcGXk7R07Adg3rZ0XhauA8NNI5InL8O8belaxz/bqw0v/SYishAOdtrvkCQA2HAo22S1WBuGm0Zkw6EsrVdIAUCfdi1NVgsREenm7+4EzZd+KHxx6DKP3mjBcNNI5MnLsPZgltbxEgA92rI3YiIiS+EtdcA8HZeGVwpgp35aMNw0EqlXdLeuZ2/ERESWJ7i19itYJWCnftpwqzQSXxy8rHXcc+Ft2BsxEZEF8nd3go2Wc1MCeOWUNgw3jcCC788gLVeucZwEwKxH2pm2ICIi0ou31AFvDtV+akoAELudV05Vx3Ajcp//lolNyVc0jpMAWDw2mKejiIgsmK5TUwDb3mii/Tozsnp58jLE/XRe6/gvJoXhkU5eJqyIiIgMpbxqStvVrhKwj7LqeORGxDYc0n51FAB09uGtFoiILJ231AGLdfRYLAA4cKFmx6yNGcONSOXJy7BOx6XfAA9jEhFZi3G92mDhE120jme7G3UWEW7i4+Ph5+eHZs2aISIiAseOHdNrvoSEBEgkEowePdq4BVqhrMISnR322UokPIxJRGRFojt7ah1XKQCp2byhppLZw01iYiJiYmKwYMECnDhxAt27d8eQIUNw/fp1nfNlZ2fj9ddfR79+/UxUqXVJ/1Pz1VGAItgsGtOVDYmJiKyIt9QBsTo69Xtly0leFv6A2cPNxx9/jGnTpmHKlCno3Lkz1qxZA0dHR6xfv17rPBUVFXj++efx/vvvIyAgQOfy7927h+LiYrWH2OXJy7Bkt+aGxDYAtr8ciXG92pi2KCIiqrfpAwLxXIRM63jeUFPBrOGmvLwcqampiI6OVg2zsbFBdHQ0kpOTtc73wQcfwMPDA1OnTq11HXFxcZBKpaqHTKZ9pxCLrMISVGo5J1UJoLS80qT1EBFRw5k1uL3WcQJ4egowc7gpLCxERUUFPD3VzyN6enoiPz9f4zyHDh3Cl19+iXXr1um1jtjYWMjlctUjNze33nVbOic7W63jbCS8ZJCIyJp5Sx0wc6D2XuWTL980YTWWyeynpQxx584dTJgwAevWrYO7u7te89jb28PFxUXtIXbLfr6gddybw3gPKSIiazd3aBAGBbXSOO7rozmN/tSUWcONu7s7bG1tUVBQoDa8oKAAXl41O5fLzMxEdnY2Ro0ahSZNmqBJkybYvHkzdu7ciSZNmiAzM9NUpVusU7m3cfBiocZxMwcF8h5SREQisWFyOIZouYJqVdIlE1djWcwabuzs7BAWFoakpCTVsMrKSiQlJSEyMrLG9EFBQUhPT0daWprq8fjjj2PQoEFIS0trFO1parMy6aLG4X3atcTcIdpb2RMRkfUZFeKjcXhCSuM+emP22y/ExMRg0qRJ6NmzJ8LDw7FixQqUlJRgypQpAICJEyfC19cXcXFxaNasGbp27ao2f4sWLQCgxvDGKE9ehqTzmnupHNqFt1kgIhIbmavmZgbK+0011mYIZg8348aNw40bNzB//nzk5+cjJCQEu3fvVjUyzsnJgY2NVTUNMptVWo7aALo7fyIiIutUUl6hddxXv2cjMrClCauxHBJBEHR1ZCs6xcXFkEqlkMvlompcnCcvQ2TcXo3jno9og38/qf2+JEREZJ3y5GXos3iv1u4/vhTRDZIN+f7mIRGRSL2ivV+DVwa3M2ElRERkKt5SB7w5VHt7yqmbUhtlr8UMNyJx5JLmK6SeC2/TaM+5EhE1BsGtpTrHN8abajLciECevAzfHNPcOeGsR3jUhohIzPzdnWAj0T5e2bi4MWG4EYFfzxZoHP58BI/aEBGJnbfUAXFjgrV+oTfGnukZbqxcYkoO3v3+D43jIgMaZyt5IqLGZlyvNtgxMwqaDuDMGBjY6H7oMtxYsTx5Gd7clq5xnARAmJ+raQsiIiKzKSmvgKaLpuL3ZTa6RsUMN1Ysq7BE67iIALdGl9SJiBozf3cnjUduAGDetsbVqJjhxood1nIPKQCY1s/fhJUQEZG5eUsdMD5c822IBACp2dq7DBEbhhsrlScvw6f7Nd8otL2Hs2g6bSIiIv3p6pFYouOKKrFhuLFSWYUlGs+tAsDmqeEmrYWIiCxDTz83reP+LOJpKbJw/u5OGlN47PAgtrUhImqkvKUOWDJW8+124nadbzTtbhhurNTCH86i+l3BhnX1wvT+geYpiIiILMK4Xm2w8IkuGsfN+O8JE1djHgw3Vmjp7vPYlZ5fY/ieP/IbTSonIiLtWjg21Tg8LbcIy/acN3E1psdwY2Xy5GWI19KQuDF2sU1ERDXpansTvz9T9D+EGW6szIZDWVrHNcYutomIqCZvqQNmDtTcTEFoBD+EGW6sSJ68DGsPag83cWOC2ZiYiIgAAHOHBiEyUPMRnHUHNJ8BEAuGGyuyKumi1nHfz4zCuF5tTFgNERFZulmD22scvjfjBpLO1Wy7KRYMN1YiT16Gb47lah1fWl5pwmqIiMga+Ls7aR334qZU0d5ziuHGSui6jxTb2hARkSbeUgdM6t1W4zgBwFvbz4iycTHDjZXQmb77BrCtDRERaTQkWPvteCoEQZSNixlurJwEwJS+fuYug4iILJSuH8cSiPPIP8ONldB2Cfi0fjxqQ0RE2nlLHfCclruFixXDjRU4lXtb4yXgPGpDRET6mPWI5qumBIizzxuGGwuXmJKDJ+KPaBzHozZERKQPb6kDYocFaRz31e/Zpi3GBBhuLFievAzztqVrHT+im/ZGYkRERFVNHxCISZE1r5zalZ6PU7m3zVCR8TDcWLCswhIIOsazbxsiIjJEazfNR/uPZzPckImk/ynXOo592xARkaHCtdxQ8/ClQhNXYlwMNxYqT16GJbu135b+zWFBbG9DREQG6S5zxcCOrWoM35txQ1SnphhuLFRWYQkqtZyTih0WhOn9Nd/tlYiISJc+7VpqHL7ugPYbM1sbhhsL5WRnq3G4BMDjIT6mLYaIiERD26mpH9PzRHMrBoYbC5V7W/MOJtY+CYiIyDS6y1zRr717jeECgA2Hsk1ejzEw3FioI1oad7EhMRER1ddHT3XTOHzdwcuiOHrDcGOB8uRl2HIsV+M4NiQmIiJjEQCkiuCycIYbC5R65bbG/m2eC2/DhsRERFRvWYUlWsclX75pwkqMg+HGwiSm5OCVb05qHDeuV2sTV0NERGKk7aIVAPjmaI7Vn5piuLEgtd1ugT0SExFRQygpr9A6TgwNixluLIiu2y2wITERETUUf3cn2Ei0j//ikHU3LGa4sSC6DhO+PDCQDYmJiKhBeEsdEDcmWGsIqBSsu9sRhhsL8uPpPK3j+rSr2V02ERFRXY3r1QY7ZkZpHW/NZwsYbixEnrwM6w5q7vqap6SIiMgYustcETssSOO4hT+cNXE1DYfhxkJoa28jARA3JpinpIiIyCiCW0s1Dt+Vnm+1N9NkuLEQ/u5O0NS267uZURjXq43J6yEiosbB391J67i956+bsJKGw3BjQTQdufFwaWbyOoiIqPHwljpgdIi3xnFXblpno2KGGwuxKumixuFi6AabiIgs25vDOmkcvvPUNau8JJzhxgLkycvwjZZ7SUl09ENARETUELylDnipn3+N4dZ6STjDjQXYcEjzVVISAD3aupq2GCIiapRGdNN8asrRzvqigvVVLDJ58jKs1XIJ+MxB7LiPiIhMQ9stGRJT/jRxJfXHcGNmqVe0t6lhx31ERGQq2q7a/eZYDj4/kGnyeuqD4cbMbpeWaxzOjvuIiMiUvKUOGB8u0zhuyU/nraphMcONGSWm5ODd7/7QOO7NYUE8JUVERCYV1c5d43Bra1jMcGMmefIyvLktXeO4mYMCMb1/oIkrIiKixi5Mx0UspeX3TVhJ/TDcmImutjZ92daGiIjMQNsl4QAwdVMqElNyTFxR3TDcmIkgaOqPWMEaL7sjIiJxmNJXc7gBgNjt6VbR9obfomayKz1f67jS8koTVkJERPSQt9QBI4O9NI6zlrY3FhFu4uPj4efnh2bNmiEiIgLHjh3TOu327dvRs2dPtGjRAk5OTggJCcFXX31lwmrr71Tubfx0RnO4sZVIeJUUERGZ1bT+AVrHWcN3VBNDJi4qKsKOHTtw8OBBXLlyBaWlpWjVqhVCQ0MxZMgQREVFGVxAYmIiYmJisGbNGkRERGDFihUYMmQIMjIy4OHhUWN6Nzc3vP322wgKCoKdnR1++OEHTJkyBR4eHhgyZIjB6zeHlVruIyUBsGhMV14lRUREZtVd5ophXb00/hDfeeqaxV/0IhF0Nf544Nq1a5g/fz6+/vpr+Pj4IDw8HD4+PnBwcMCtW7dw5swZpKamom3btliwYAHGjRundwERERHo1asXVq9eDQCorKyETCbDrFmzMG/ePL2W0aNHD4wYMQILFy6sddri4mJIpVLI5XK4uLjoXWdDyZOXITJur8Zxc4d0wMxB7U1cERERUU1HMgvx3LqjNYZLAByJHWzyH+KGfH/rdeQmNDQUkyZNQmpqKjp37qxxmrKyMnz33XdYsWIFcnNz8frrr9e63PLycqSmpiI2NlY1zMbGBtHR0UhOTq51fkEQsHfvXmRkZGDJkiUap7l37x7u3bun+ru4uLjW5RqTtvtIAcCYHq1NWAkREZF2Tna2GocLAE5cuY0R3Sz3LINe4ebs2bNo2bKlzmkcHBwwfvx4jB8/Hjdv3tRr5YWFhaioqICnp6facE9PT5w/f17rfHK5HL6+vrh37x5sbW3x6aef4tFHH9U4bVxcHN5//3296jG2PHkZ1mm5j1TscHbaR0RElkPbvaYAoPZzPualV4Pili1b4ocffkBlpX5X8dQWhOqrefPmSEtLQ0pKCv79738jJiYG+/fv1zhtbGws5HK56pGbm2vU2nTJKiyBpv0hws/V4s9fEhFR46LtXlMAsOtMnklrMZTeV0uNHj0aMpkMb7/9Ni5dutQgK3d3d4etrS0KCgrUhhcUFMDLS/NlaIDi1FW7du0QEhKC1157DU899RTi4uI0Tmtvbw8XFxe1h7loO8SXcuW2VfQbQEREjYe31AGLxwZrHLcrPR+ncrV3RmtueoebrKwsTJ8+HQkJCejYsSMGDBiAr776CmVldf9StrOzQ1hYGJKSklTDKisrkZSUhMjISL2XU1lZqdauxlJpO8RnLf0GEBFR4zKuVxu8+kg7jeP2nrtu4mr0p3e4kclkmD9/PjIzM/Hrr7/Cz88PM2bMgLe3N/75z38iJSWlTgXExMRg3bp12LRpE86dO4cZM2agpKQEU6ZMAQBMnDhRrcFxXFwcfvnlF1y+fBnnzp3D8uXL8dVXX+GFF16o0/pNJU9ehv87dU3jON4BnIiILNUjQTW7ZQGAlfsuWeztGAzq50Zp0KBBGDRoEFavXo2EhARs3LgRvXv3RteuXXHq1CmDljVu3DjcuHED8+fPR35+PkJCQrB7925VI+OcnBzY2DzMYCUlJXj55Zfx559/wsHBAUFBQfjvf/9r0OXnppaYkoN529I1treRAIgbE8zGxEREZJG6y1wxtocvtp24qjZcEIC3tp9B/w6tLO47TK9+bnS5fPky1q9fj88++wzFxcW4f9+y7xpq6n5u8uRl6LN4Lyq1bOXV40MxsruP0esgIiKqK119tG2Z1huRgca9kAgw7Pu7TrdfKCsrw+bNmzFw4EC0b98eCQkJiImJQXZ2dl0WJ2pZhSVagw0AyNwsK+0SERFVdzz7ltZxp68Wma4QPRl0Wur333/H+vXr8e2336K8vBxjxozBr7/+ikGDBhmrPqvn7+6kczxvkklERJZOItF2UTjw0U8ZeLy7j0WdmtI73HTu3BkZGRkIDQ1FXFwcnnvuOUilUmPWJnpsSEymVFFRYfGnjckwdnZ2am0SiYwlrK2r1nEVgoDswlLrDDfR0dHYsmULunfvbsx6RCf1ivZ+AF4eGGhROwOJkyAIyM/PR1FRkblLoQZmY2MDf39/2NnZmbsUEjlvqQNe6uePtVp62Xe0s6yQrXe4WblypTHrEC1d7bX7tGtlwkqosVIGGw8PDzg6Ouo8vEzWo7KyEteuXUNeXh7atGnD15WMbkpf7eEm91YZusu0H90xNb3CzdChQ/Hee++hd+/eOqe7c+cOPv30Uzg7O2PmzJkNUqC1u1b0l8bhPCVFplBRUaEKNsa+LQqZXqtWrXDt2jX8/fffaNq0qbnLIZHzljrguXAZvjlW8zZGyZdvWtSVv3qFm6effhpjx46FVCrFqFGj0LNnT/j4+KBZs2a4ffs2zp49i0OHDmHXrl0YMWIEli5dauy6rUKevAyLf6p5A1D2bUOmomxj4+jIIC1GytNRFRUVDDdkErMeaa8x3HxzNAevDG5nMd9reoWbqVOn4oUXXsDWrVuRmJiItWvXQi6XA1C0oO7cuTOGDBmClJQUdOrUyagFW5Pj2bc0dtz3wRNdMK5XG5PXQ40XT1mIE19XMjVtR28EAKnZtzGyuxWFG0BxA8oXXnhBdZsDuVyOsrIytGzZkr8YtPjykOZzk25ObPxHRETWKaqdu8ajN5aUtevcvFkqlcLLy4vBRoulu88jLVdeY7gEQA8dl9QRkfFkZ2dDIpEgLS3N3KUQWa2wtq7QlGP+LKr7jbQbmmVduyUSefIyxO/P1DhuRLC3xZyTJCIiMpS31AHzhgXVGB636zzy5JYRcBhujCCrsETruGn9/U1YCZF4lJeXm7sEInrAp0UzjcNnJ6SZthAtGG6MwN/dSeMhu+HBXhbVDwCRofLkZTiSWWiSX2cDBw7EK6+8gtmzZ8Pd3R1DhgzBmTNnMGzYMDg7O8PT0xMTJkxAYWGhap7du3ejb9++aNGiBVq2bImRI0ciM1PzUVQiqjttjdmPZt3CqVztndeaCsONCb07srO5SyCqs8SUHPRZvBfPrTuKPov3IjElx+jr3LRpE+zs7HD48GEsXrwYgwcPRmhoKI4fP47du3ejoKAAzzzzjGr6kpISxMTE4Pjx40hKSoKNjQ2efPJJVFbyHm5EDUnX7RiOZ5s/3Bh040yloqIi/O9//0NmZibmzp0LNzc3nDhxAp6envD19W3oGq3OxC+ParwE3NLuvUGkrzx5GWK3p6vucF8pAG9tP4P+HVoZdZ9u3749PvroIwDAhx9+iNDQUCxatEg1fv369ZDJZLhw4QI6dOiAsWPHqs2/fv16tGrVCmfPnkXXrl2NVidRY+MtdcDMgYEa25feLjX/KWSDj9ycPn0aHTp0wJIlS7Bs2TLV/Wq2b9+O2NjYhq7P6iSdy8fF6zXb3LBHYrJmWYUlqmCjpLxZnjGFhYWp/n/q1Cns27cPzs7OqkdQkKJRo/LU08WLFzF+/HgEBATAxcUFfn5+AICcHOMfZSJqbOYODcKgoJq3EVq9L9PsDYsNDjcxMTGYPHkyLl68iGbNHjYoGj58OA4cONCgxVmjveevaxwe7u/GozZktfzdnWBT7RS7rURi9MDu5OSk+v/du3cxatQopKWlqT0uXryI/v37AwBGjRqFW7duYd26dTh69CiOHj0KgI2RiYxlTKjmszWrki6ZuBJ1BoeblJQUTJ8+vcZwX19f5OfnN0hR1qyJRPMmndaPV0mR9fKWOiBuTDBsHzQitJVIsGhMV5MG9h49euCPP/6An58f2rVrp/ZwcnLCzZs3kZGRgXfeeQePPPIIOnXqhNu3zX/un0jMtDUsTkjJMevRG4Pb3Njb26O4uLjG8AsXLqBVq8Z9l+s8eRm+OnqlxvBgXxc80snLDBURNZxxvdqgf4dWyC4shZ+7o8mPRM6cORPr1q3D+PHj8cYbb8DNzQ2XLl1CQkICvvjiC7i6uqJly5ZYu3YtvL29kZOTg3nz5pm0RqLGRuaq+XOgUjBvO1ODj9w8/vjj+OCDD1Q35JNIJMjJycGbb75ZozFfY5N65XaNdgkA8NZwXiVF4uAtdUBkYEuzfGD5+Pjg8OHDqKiowGOPPYbg4GDMnj0bLVq0gI2NDWxsbJCQkIDU1FR07doVc+bM4U18iYyspLxC6zhztjOVCIKg6cIereRyOZ566ikcP34cd+7cgY+PD/Lz8xEZGYldu3apnSO3RMXFxZBKpZDL5XBxcWmw5Sam5ODNbekax30/M4r925BZ/PXXX8jKyoK/v79aGzkSB76+ZG558jJExe3VeIXwoKBW2DA5vMHWZcj3t8GnpaRSKX755RccOnQIp0+fxt27d9GjRw9ER0fXuWBrlycvwzwtwQYASsvZxwYREYmPt9QB0/r5Y+3BmjeK3nf+BpbtOY/Xh9S8VYOx1amfGwDo27cv+vbt25C1WK2swhKNqRXgJeBERCRuU/pqDjcAEL8/E8/3bmvyU9kGh5uVK1dqHC6RSNCsWTO0a9cO/fv3h62tbb2Lsxb+7tpPxb08MJCXgBMRkWjp6tBPMFPDYoPDzSeffIIbN26gtLQUrq6KdiS3b9+Go6MjnJ2dcf36dQQEBGDfvn2QyWQNXrAl8pY64CUth+X6tGvcV5AREZH4zR0ahLP5xdh3/obacFP0h6WJwVdLLVq0CL169cLFixdx8+ZN3Lx5ExcuXEBERAT+85//ICcnB15eXpgzZ44x6rVYLZ3tawwz14tKRERkahsmh+OVQYFQdn1jjv6wlAw+cvPOO+9g27ZtCAwMVA1r164dli1bhrFjx+Ly5cv46KOPGtVl4XnyMizZfb7G8DeGdeQpKSIiajReHxKE53u3NVt/WEoGh5u8vDz8/fffNYb//fffqh6KfXx8cOfOnfpXZyU03XcHALr5tjB5LURERObkLXUw+w97g09LDRo0CNOnT8fJkydVw06ePIkZM2Zg8ODBAID09HT4+zee2w2Y6747REREVJPB4ebLL7+Em5sbwsLCYG9vD3t7e/Ts2RNubm748ssvAQDOzs5Yvnx5gxdrqSzhvjtERESkYPBpKS8vL/zyyy84f/48Lly4AADo2LEjOnbsqJpm0KBBDVehlTD3fXeIxGbgwIEICQnBihUrzFqHn58fZs+ejdmzZ5u1DiLSX5078QsKCkJQkOl7HbRklnCekUgstm/fjqZNm5q7DKSkpFj8bWWISF2dws2ff/6JnTt3IicnB+Xl5WrjPv744wYpjIgaNzc3N3OXAABo1cr4fVWVl5fDzs7O6OshaiwMbnOTlJSEjh074rPPPsPy5cuxb98+bNiwAevXr0daWpoRSiQiiyG/CmQdUPxrZAMHDlSdCvLz88OHH36IiRMnwtnZGW3btsXOnTtx48YNPPHEE3B2dka3bt1w/Phx1fw3b97E+PHj4evrC0dHRwQHB2PLli1q67hz5w6ef/55ODk5wdvbG5988onaepXrrnpqTCKR4IsvvsCTTz4JR0dHtG/fHjt37lSNr6iowNSpU+Hv7w8HBwd07NgR//nPf9TWO3nyZIwePRr//ve/4ePjg44dO+KDDz5A165da2yHkJAQvPvuu/XYkkSNj8HhJjY2Fq+//jrS09PRrFkzbNu2Dbm5uRgwYACefvppY9RIRJbgxGZgRVdg0yjFvyc2m3T1n3zyCfr06YOTJ09ixIgRmDBhAiZOnIgXXngBJ06cQGBgICZOnAhBUPTL8NdffyEsLAw//vgjzpw5g5deegkTJkzAsWPHVMuMiYnB4cOHsXPnTvzyyy84ePAgTpw4UWst77//Pp555hmcPn0aw4cPx/PPP49bt24BACorK9G6dWts3boVZ8+exfz58/HWW2/h22+/VVtGUlISMjIy8Msvv+CHH37AP/7xD5w7dw4pKSmqaU6ePInTp09jypQpDbEJiRoPwUDOzs7CpUuXBEEQhBYtWghnzpwRBEEQ0tLShLZt2xq6OJOTy+UCAEEul5u7FCKjKysrE86ePSuUlZXVb0FFfwrCey0EYYHLw8d7rorhRjJgwADhX//6lyAIgtC2bVvhhRdeUI3Ly8sTAAjvvvuualhycrIAQMjLy9O6zBEjRgivvfaaIAiCUFxcLDRt2lTYunWranxRUZHg6OioWq9y3Z988onqbwDCO++8o/r77t27AgDhp59+0rremTNnCmPHjlX9PWnSJMHT01O4d++e2nTDhg0TZsyYofp71qxZwsCBA7Uut8FeXyIrYMj3t8FHbpycnFTtbLy9vZGZ+fBGWYWFhQ2Rt4jI0tzKBIRK9WFCBXDrsslK6Natm+r/np6eAIDg4OAaw65fvw5AcXpo4cKFCA4OhpubG5ydnbFnzx7k5OQAAC5fvoz79+8jPDxctQypVKp25ac+tTg5OcHFxUW1XgCIj49HWFgYWrVqBWdnZ6xdu1a1XqXg4OAa7WymTZuGLVu24K+//kJ5eTm++eYb/OMf/6i1HiJSZ3CD4t69e+PQoUPo1KkThg8fjtdeew3p6enYvn07evfubYwaicjc3AIBiY16wJHYAm4BJiuh6pVTkgd9SmkaVlmpqHHp0qX4z3/+gxUrViA4OBhOTk6YPXt2jYsg6luLct3K9SYkJOD111/H8uXLERkZiebNm2Pp0qU4evSo2jyarsAaNWoU7O3tsWPHDtjZ2eH+/ft46qmn6l0vUWNjcLj5+OOPcffuXQCK8853795FYmIi2rdvzyuliMRK6guM+g/wf7MVR2wktsCoFYrhFurw4cN44okn8MILLwBQhJ4LFy6gc+fOAICAgAA0bdoUKSkpaNOmDQBALpfjwoUL6N+/f73WGxUVhZdfflk1rOoRbl2aNGmCSZMmYcOGDbCzs8Ozzz4LBwd2L0FkKIPDTUDAw19qTk5OWLNmTYMWREQWqsdEIPARxakotwCLDjYA0L59e/zvf//DkSNH4Orqio8//hgFBQWqcNO8eXNMmjQJc+fOhZubGzw8PLBgwQLY2NiojgLVdb2bN2/Gnj174O/vj6+++gopKSl635LmxRdfRKdOnQAoghIRGc7gNjcBAQG4efNmjeFFRUVqwYeIREjqC/j3s/hgAwDvvPMOevTogSFDhmDgwIHw8vLC6NGj1ab5+OOPERkZiZEjRyI6Ohp9+vRBp06d0KxZszqvd/r06RgzZgzGjRuHiIgI3Lx5U+0oTm3at2+PqKgoBAUFISIios51EDVmEkEQNNzPWjsbGxvk5+fDw8NDbXhBQQHatGmDe/fuNWiBDa24uBhSqRRyuRwuLi7mLofIqP766y9kZWXB39+/Xl/YjUVJSQl8fX2xfPlyTJ061Sw1CIKA9u3b4+WXX0ZMTIzOafn6UmNiyPe33qelqnZStWfPHkilUtXfFRUVSEpKgp+fn+HVEhGZycmTJ3H+/HmEh4dDLpfjgw8+AAA88cQTZqnnxo0bSEhIQH5+Pvu2IaoHvcON8nCuRCLBpEmT1MY1bdoUfn5+jepO4EQkDsuWLUNGRgbs7OwQFhaGgwcPwt3d3Sy1eHh4wN3dHWvXroWrq6tZaiASA73DjfIyR39/f6SkpJjtzU9E1FBCQ0ORmppq7jJUDGwlQERaGHy1VFZWljHqICIiImoQeoWblStX6r3AV199tc7FEJFx8IiAOPF1JdJMr3DzySef6LUwiUTCcENkQZQ96ZaWlrIzOBFS9rZsa2tr5kqILIte4Yanooisk62tLVq0aKG675Gjo2O9Oqgjy1FZWYkbN27A0dERTZoY3MKASNTq9Y5QHhLlhyWR5fLy8gIAtRs7kjjY2NigTZs2/AwmqqZO4Wbz5s1YunQpLl68CADo0KED5s6diwkTJjRocURUfxKJBN7e3vDw8MD9+/fNXQ41IDs7O9jYGNzRPJHo1enGme+++y5eeeUV9OnTBwBw6NAh/POf/0RhYSHmzJnT4EUSUf3Z2tqybQYRNQoG337B398f77//PiZOnKg2fNOmTXjvvfcsvn0Ob79ARERkfQz5/jb4eGZeXh6ioqJqDI+KikJeXp6hiyMiIiJqUAaHm3bt2uHbb7+tMTwxMRHt27dvkKKIiIiI6srgNjfvv/8+xo0bhwMHDqja3Bw+fBhJSUkaQ48+4uPjsXTpUuTn56N79+5YtWoVwsPDNU67bt06bN68GWfOnAEAhIWFYdGiRVqnJyIiosZF7yM3yjAxduxYHD16FO7u7vjuu+/w3Xffwd3dHceOHcOTTz5pcAGJiYmIiYnBggULcOLECXTv3h1DhgzRetnq/v37MX78eOzbtw/JycmQyWR47LHHcPXqVYPXTUREROKjd4NiGxsb9OrVCy+++CKeffZZNG/evEEKiIiIQK9evbB69WoAio6pZDIZZs2ahXnz5tU6f0VFBVxdXbF69eoajZwB4N69e7h3757q7+LiYshkMjYoJiIisiJGaVD822+/oUuXLnjttdfg7e2NyZMn4+DBg/UqtLy8HKmpqYiOjn5YkI0NoqOjkZycrNcySktLcf/+fbi5uWkcHxcXB6lUqnrIZLJ61UxERESWTe9w069fP6xfvx55eXlYtWoVsrKyMGDAAHTo0AFLlixBfn6+wSsvLCxERUUFPD091YZ7enrqvbw333wTPj4+agGpqtjYWMjlctUjNzfX4DqJiIjIehh8tZSTkxOmTJmC3377DRcuXMDTTz+N+Ph4tGnTBo8//rgxatRq8eLFSEhIwI4dO9CsWTON09jb28PFxUXtQUREROJVr36727Vrh7feegvvvPMOmjdvjh9//NGg+d3d3WFra4uCggK14QUFBar74WizbNkyLF68GD///DO6detmcO1EREQkTnUONwcOHMDkyZPh5eWFuXPnYsyYMTh8+LBBy7Czs0NYWBiSkpJUwyorK5GUlITIyEit83300UdYuHAhdu/ejZ49e9b1KRAREZEIGdTPzbVr17Bx40Zs3LgRly5dQlRUFFauXIlnnnkGTk5OdSogJiYGkyZNQs+ePREeHo4VK1agpKQEU6ZMAQBMnDgRvr6+iIuLAwAsWbIE8+fPxzfffAM/Pz9V2xxnZ2c4OzvXqQYiIiISD73DzbBhw/Drr7/C3d0dEydOxD/+8Q907Nix3gWMGzcON27cwPz585Gfn4+QkBDs3r1b1cg4JydH7a63n332GcrLy/HUU0+pLWfBggV477336l0PERERWTe9+7l5/PHHMXXqVIwcOdKq7yzMG2cSERFZH0O+v/U+crNz5856F0ZERERkbPW6WoqIiIjI0jDcEBERkagw3BAREZGoMNwQERGRqDDcEBERkagw3BAREZGoMNwQERGRqDDcEBERkagw3BAREZGoMNwQERGRqDDcEBERkagw3BAREZGoMNwQERGRqDDcEBERkagw3BAREZGoMNwQERGRqDDcEBERkagw3BAREZGoMNwQERGRqDDcEBERkagw3BAREZGoMNwQERGRqDDcEBERkagw3BAREZGoMNwQERGRqDDcEBERkagw3BAREZGoMNwQERGRqDDcEBERkagw3BAREZGoMNwQERGRqDDcEBERkagw3BAREZGoMNwQERGRqDDcEBERkagw3BAREZGoMNwQERGRqDDcEBERkagw3BAREZGoMNwQERGRqDDcEBERkagw3BAREZGoMNwQERGRqDDcEBERkagw3BAREZGoMNwQERGRqDDcEBERkagw3BAREZGoMNwQERGRqDDcEBERkagw3BAREZGoMNwQERGRqDDcEBERkaiYPdzEx8fDz88PzZo1Q0REBI4dO6Z12j/++ANjx46Fn58fJBIJVqxYYbpCiYiIyCqYNdwkJiYiJiYGCxYswIkTJ9C9e3cMGTIE169f1zh9aWkpAgICsHjxYnh5eZm4WiIiIrIGZg03H3/8MaZNm4YpU6agc+fOWLNmDRwdHbF+/XqN0/fq1QtLly7Fs88+C3t7exNXS0RERNbAbOGmvLwcqampiI6OfliMjQ2io6ORnJzcYOu5d+8eiouL1R5EREQkXmYLN4WFhaioqICnp6facE9PT+Tn5zfYeuLi4iCVSlUPmUzWYMsmIiIiy2P2BsXGFhsbC7lcrnrk5uaauyQiIiIyoibmWrG7uztsbW1RUFCgNrygoKBBGwvb29uzfQ4REVEjYrYjN3Z2dggLC0NSUpJqWGVlJZKSkhAZGWmusoiIiMjKme3IDQDExMRg0qRJ6NmzJ8LDw7FixQqUlJRgypQpAICJEyfC19cXcXFxABSNkM+ePav6/9WrV5GWlgZnZ2e0a9fObM+DiIiILIdZw824ceNw48YNzJ8/H/n5+QgJCcHu3btVjYxzcnJgY/Pw4NK1a9cQGhqq+nvZsmVYtmwZBgwYgP3795u6fCIiIrJAEkEQBHMXYUrFxcWQSqWQy+VwcXExdzlERESkB0O+v0V/tRQRERE1Lgw3REREJCoMN0RERCQqDDdEREQkKgw3REREJCoMN0RERCQqDDdEREQkKgw3REREJCoMN0RERCQqDDdEREQkKgw3REREJCoMN0RERCQqDDdEREQkKgw3REREJCoMN0RERCQqDDdEREQkKgw3REREJCoMN0RERCQqDDdEREQkKgw3REREJCoMN0RERCQqDDdEREQkKgw3REREJCoMN0RERCQqDDdEREQkKgw3REREJCoMN0RERCQqDDdEREQkKgw3REREJCoMN0RERCQqDDdEREQkKgw3REREJCoMN0RERCQqDDdEREQkKgw3REREJCoMN0RERCQqDDdEREQkKgw3REREJCoMN0RERCQqDDdEREQkKgw3REREJCoMN0RERCQqDDdEREQkKgw3REREJCoMN0RERCQqDDdEREQkKgw3REREJCoMN0RERCQqDDdEREQkKgw3REREJCoMN0RERCQqDDdEREQkKgw3Yie/CmQdUPwrdvV5rtxOhk/TUOuyFPrWak3PqTHj69SoNTF3AaL1ZyqQkwy0iQSaewG3MgG3QEDqqxgvv6o+rPrf+tI2n/wqcPQzIDkeECoBiQ0w6j9Aj4m659FWQ9Xn0zpMdx1A7c/XULXNf2Iz8H//qvlc9aFt3trWqRzf1Am4X9Kwz1ef9ehavz7PFQDCX1K8pgDQoq1iOdfSgF8X1G1baltXfZaja1tW3+9yjyr+lUUYtt31qVXTeyr6PcAntG6vsyH7SPXPk7o+T0NrqMt+rOvzRVvdVffloiuapzHkOWn77KtL3XVZf0N/ljfU661vjcbYL0xMIgiCYO4iTKm4uBhSqRRyuRwuLi4Nu3DlC35kNXBxj4YJJEDUK4CtPXBoOSAIijdep1HAuZ2KvwHFF06nUZqDD/Dw/2e2Ab/OfzDfg2VHzAAyk4CdszSvP2wycGLTgy83CdAvBvDsCmT8BKRvBSA8nM6/P9DUEdi/GMg7+XAxnUYD4VMffhBlHaiyzAfrUS7n0fcV/1at89H3gT7/UjyvjJ+AuwVAh6EPQ1P1IHV4JfDLfMUylR9UgY88fMM3dQQSnn24/QAANsCLv6oHS0AxT+ktxf8d3RRf6F9GV6n9Qf0dRwAZP6qvUxl4co9qeM54+NwcXIGdrz7cBo+vVMyrfF4t2wF2jkB5KXA1FXD2BDoO0x7aVMtSrkbDPqMcPuo/gEcX9e2nrPnmZWDfh+rL0osEmPOH5uAGaA4XGrcrgOHLFdtdFgHcydcemDVt5+ph4sw24Jd3tZcdNhno/8bDGpUhsOq/RVcU+8NPc9VrldgCz34D3LykqO/KYd3rAoDgp4Ho9/X7sFcLmVXeu4D6PlpWBPyxA7h+Rvuyqn9eKFV9f/mGAfdLFctVbv8z29TfV9HvAVKZYl5ZBHB8PXBwufp45bavuk2rhpHMpJrPq21f4FQCcPY7PNz3qrwvqgfuqsKmKD6flDUrPw+rf9kr98lraQ+fkxoJMOgdoGWA5oBQ/X0WNALo+lTNdVbdfrX9yAKAfq8BPadqD+DK7Vj1B4XyczlgoIbnU2W71fYDuXrNLdoqXqvqn/XKdWn7PA8aAXj3ACruKT6nr/9R84eARxfFMu8UAM09Fe8FTT+C68mQ72+LCDfx8fFYunQp8vPz0b17d6xatQrh4eFap9+6dSveffddZGdno3379liyZAmGDx+u17qMFm50vUHrTAL49wOyDkJt5zb4y8kC+fYErh5XH9ZptOJL/9Q3D4e17ADcvKBhAWbYDm16Azm/121eWcTDDzVt/AcAjyxQBLK0LUBeGnD+/+q2PiVpG0CeU79lAIBnFyDsH4rnkP5t/ZdXXafRQJcnFP/P+R049nkDLtzE+4r/AMCvv+L/pYWKMOsT+jBIlRXVMWTque5OjyuCTG1hzCgM3NaB0YpApO88rgHA7cvqw9o/Blz6pdqPm1r4DwQ8OgFewcDtbODAUu01aPqsUv6Q8Ql9GApq/fHQgPthx5EPf3xBAgQOAi7vf/j9o7FmE2vTBxi7rkGP7FhVuElMTMTEiROxZs0aREREYMWKFdi6dSsyMjLg4eFRY/ojR46gf//+iIuLw8iRI/HNN99gyZIlOHHiBLp27Vrr+owSbuRXgRVdGzjYEBERWbMqR5oagFWFm4iICPTq1QurV68GAFRWVkImk2HWrFmYN29ejenHjRuHkpIS/PDDD6phvXv3RkhICNasWVNj+nv37uHevXuqv4uLiyGTyRo23GQdADaNaphlERERiYXEBph9pkGO4BgSbsx6tVR5eTlSU1MRHR2tGmZjY4Po6GgkJydrnCc5OVltegAYMmSI1unj4uIglUpVD5lM1nBPQKmpU8Mvk4iIyNoJlcCty7VP18DMGm4KCwtRUVEBT09PteGenp7Iz8/XOE9+fr5B08fGxkIul6seubm5DVN8VfdLGn6ZRERE1k5iA7gFmHy1or8U3N7eHvb29sZdibIVPBERET2k7xWEDcysR27c3d1ha2uLgoICteEFBQXw8vLSOI+Xl5dB05uE1FdxyR+RITy7QnEFBZGFauZqnvV2fhJ8b1gpiTJWSIBHPwD6vGqWMswabuzs7BAWFoakpCTVsMrKSiQlJSEyMlLjPJGRkWrTA8Avv/yidXqTeWQ+0Hm0hhF6vEH9B8DkL0XwM8BTG4EX9wKTfgAeXQi1WiUS7YFt0HxF/xOGfPh4dTNsekURD//rP7CW+W0U/X1omiZqdpU3XF1Jqiy7nh+6T20E5pwFZhxW9B/T/00911/H8X79gPGJitdYbTtUn0cCtO1T920VNlXzMuu97at44lPFvll9HQa9JlVex36vKd4DvWcAES8rtlPUq+of0NWFTVG8f5TTSGyBzk8Y+DwfbGt96g4aqdhH+r1eZZ02wOOrFMO0kfVWPJ8ademxzg5DFdtlXrbmdUS9qtiHNX7maVF1m8p6a5/u0YXAMxsV7w3lZ5PE9sGstorXrPcM/Z6HxvXXNl2V/aOuP0CCRhm2P+jaHtW5d9Rzwlrq7jQaGP7xg3VreE+1fwy6v5eqzaPcJ2efUbxuc/5Q9GdmJma/WioxMRGTJk3C559/jvDwcKxYsQLffvstzp8/D09PT0ycOBG+vr6Ii4sDoLgUfMCAAVi8eDFGjBiBhIQELFq0yLyXglf1ZyqQ+7viVJWd08NzjbnHgIxdVTpPeuDRDx52aHd0DZC8Wvsl5VGvKj5M7pcqOq5T/nst7UFHXT0UnY0plyGxBbqNA04nAkIFVJ3z9Z+rvdfJ3GOK/8vCFdOc2Azs/BeASgA2wONVevqsUbPNg04K7YBDHz8c9uh7D59j7rGHnUoVnFGfLmwS4Bn8oJOsB/0c3bqs2IbKWv5v9oPn8mC5XZ/SPo3EFhi1okpHYVWGV90uqr8TanbkFr0A8Onx8HVUrkv5/6qvQ9GD/mRatFEMcwt40NFiLb39auxKwAYYv0V9H7p1Gbh2Evj1vYfbIOoVIOKfmutR1lCjJ1gtz0E5bdVp7uQDBz4CLuyBojO3B9v09pUqHbzp2M6jVig6XFQuLzNJ/TXsNwcIGPSwnozdin1ZqHi4fMWLUa3TNw3rUO67yu1fXgJcOwHY2AMOLbTvV5pU307V3xfVp6m63cpLFJ2pyXo/6E24yj5fdd+oOs/l/TXfC/4D1NenaZ3KYdWfe9XxtW0v5TbR9Byrrlfb+D9TgTNbgd/XQGc/Lk9tBJzc1d+r1TuoVH4e6no9tD2vTiOBc//3sCM8AGr7Z439sEq/ZB2GAu0eAzoOVfyt6XVVftbuiqlZn8Tm4Weu8r1Qdb6iHCB9G5DxA1R90wQ/DXQcXu2ztlrnq55dgc5j1Pdfqa9im3/5iOa+fSQSYNTKh89X7TPjwXPt/4Z6J3tVa62+f2r6jNf0maPr/dRArOpScABYvXq1qhO/kJAQrFy5EhERit4bBw4cCD8/P2zcuFE1/datW/HOO++oOvH76KOPzN+Jn750fUgox9f2oarPOjS9Oeu689U2v7YPXH3WaWht+kyvbZratou2N3h96VOztlBW1+U1NENe47rsL9rWqW3/N8c2MDZjPidTbC+1Hx/VSGyB2emGhSZ96HpPAw2zH1an6Qdf1eBUn887+dWHAb/DEN29/Kptbw1hqSGea0PN30CsLtyYktnDDZE2FvIBQlRnyn246tGC2sK6NbKU96ql1GEiDDc6MNwQEZlAI/viJeMz5Ptb9JeCExGRGUh9GWrIbMx6tRQRERFRQ2O4ISIiIlFhuCEiIiJRYbghIiIiUWG4ISIiIlFhuCEiIiJRYbghIiIiUWG4ISIiIlFhuCEiIiJRYbghIiIiUWG4ISIiIlFpdPeWUt4ntLi42MyVEBERkb6U39v63O+70YWbO3fuAABkMpmZKyEiIiJD3blzB1KpVOc0EkGfCCQilZWVuHbtGpo3bw6JRNKgyy4uLoZMJkNubm6tt2OnuuN2Ng1uZ9PhtjYNbmfTMNZ2FgQBd+7cgY+PD2xsdLeqaXRHbmxsbNC6dWujrsPFxYVvHBPgdjYNbmfT4bY2DW5n0zDGdq7tiI0SGxQTERGRqDDcEBERkagw3DQge3t7LFiwAPb29uYuRdS4nU2D29l0uK1Ng9vZNCxhOze6BsVEREQkbjxyQ0RERKLCcENERESiwnBDREREosJwQ0RERKLCcGOg+Ph4+Pn5oVmzZoiIiMCxY8d0Tr9161YEBQWhWbNmCA4Oxq5du0xUqXUzZDuvW7cO/fr1g6urK1xdXREdHV3r60IKhu7PSgkJCZBIJBg9erRxCxQRQ7d1UVERZs6cCW9vb9jb26NDhw78/NCDodt5xYoV6NixIxwcHCCTyTBnzhz89ddfJqrWOh04cACjRo2Cj48PJBIJvvvuu1rn2b9/P3r06AF7e3u0a9cOGzduNG6RAuktISFBsLOzE9avXy/88ccfwrRp04QWLVoIBQUFGqc/fPiwYGtrK3z00UfC2bNnhXfeeUdo2rSpkJ6ebuLKrYuh2/m5554T4uPjhZMnTwrnzp0TJk+eLEilUuHPP/80ceXWxdDtrJSVlSX4+voK/fr1E5544gnTFGvlDN3W9+7dE3r27CkMHz5cOHTokJCVlSXs379fSEtLM3Hl1sXQ7fz1118L9vb2wtdffy1kZWUJe/bsEby9vYU5c+aYuHLrsmvXLuHtt98Wtm/fLgAQduzYoXP6y5cvC46OjkJMTIxw9uxZYdWqVYKtra2we/duo9XIcGOA8PBwYebMmaq/KyoqBB8fHyEuLk7j9M8884wwYsQItWERERHC9OnTjVqntTN0O1f3999/C82bNxc2bdpkrBJFoS7b+e+//xaioqKEL774Qpg0aRLDjZ4M3dafffaZEBAQIJSXl5uqRFEwdDvPnDlTGDx4sNqwmJgYoU+fPkatU0z0CTdvvPGG0KVLF7Vh48aNE4YMGWK0unhaSk/l5eVITU1FdHS0apiNjQ2io6ORnJyscZ7k5GS16QFgyJAhWqenum3n6kpLS3H//n24ubkZq0yrV9ft/MEHH8DDwwNTp041RZmiUJdtvXPnTkRGRmLmzJnw9PRE165dsWjRIlRUVJiqbKtTl+0cFRWF1NRU1amry5cvY9euXRg+fLhJam4szPFd2OhunFlXhYWFqKiogKenp9pwT09PnD9/XuM8+fn5GqfPz883Wp3Wri7bubo333wTPj4+Nd5M9FBdtvOhQ4fw5ZdfIi0tzQQVikddtvXly5exd+9ePP/889i1axcuXbqEl19+Gffv38eCBQtMUbbVqct2fu6551BYWIi+fftCEAT8/fff+Oc//4m33nrLFCU3Gtq+C4uLi1FWVgYHB4cGXyeP3JCoLF68GAkJCdixYweaNWtm7nJE486dO5gwYQLWrVsHd3d3c5cjepWVlfDw8MDatWsRFhaGcePG4e2338aaNWvMXZqo7N+/H4sWLcKnn36KEydOYPv27fjxxx+xcOFCc5dG9cQjN3pyd3eHra0tCgoK1IYXFBTAy8tL4zxeXl4GTU91285Ky5Ytw+LFi/Hrr7+iW7duxizT6hm6nTMzM5GdnY1Ro0aphlVWVgIAmjRpgoyMDAQGBhq3aCtVl33a29sbTZs2ha2trWpYp06dkJ+fj/LyctjZ2Rm1ZmtUl+387rvvYsKECXjxxRcBAMHBwSgpKcFLL72Et99+GzY2/P3fELR9F7q4uBjlqA3AIzd6s7OzQ1hYGJKSklTDKisrkZSUhMjISI3zREZGqk0PAL/88ovW6alu2xkAPvroIyxcuBC7d+9Gz549TVGqVTN0OwcFBSE9PR1paWmqx+OPP45BgwYhLS0NMpnMlOVblbrs03369MGlS5dUARIALly4AG9vbwYbLeqynUtLS2sEGGWgFHjbxQZjlu9CozVVFqGEhATB3t5e2Lhxo3D27FnhpZdeElq0aCHk5+cLgiAIEyZMEObNm6ea/vDhw0KTJk2EZcuWCefOnRMWLFjAS8H1YOh2Xrx4sWBnZyf873//E/Ly8lSPO3fumOspWAVDt3N1vFpKf4Zu65ycHKF58+bCK6+8ImRkZAg//PCD4OHhIXz44YfmegpWwdDtvGDBAqF58+bCli1bhMuXLws///yzEBgYKDzzzDPmegpW4c6dO8LJkyeFkydPCgCEjz/+WDh58qRw5coVQRAEYd68ecKECRNU0ysvBZ87d65w7tw5IT4+npeCW5pVq1YJbdq0Eezs7ITw8HDh999/V40bMGCAMGnSJLXpv/32W6FDhw6CnZ2d0KVLF+HHH380ccXWyZDt3LZtWwFAjceCBQtMX7iVMXR/rorhxjCGbusjR44IERERgr29vRAQECD8+9//Fv7++28TV219DNnO9+/fF9577z0hMDBQaNasmSCTyYSXX35ZuH37tukLtyL79u3T+Jmr3LaTJk0SBgwYUGOekJAQwc7OTggICBA2bNhg1BolgsBjb0RERCQebHNDREREosJwQ0RERKLCcENERESiwnBDREREosJwQ0RERKLCcENERESiwnBDREREosJwQ0RERBodOHAAo0aNgo+PDyQSCb777jujr/Pq1at44YUX0LJlSzg4OCA4OBjHjx83aBkMN0RkdpMnT8bo0aPNtv4JEyZg0aJFek377LPPYvny5UauiMgylJSUoHv37oiPjzfJ+m7fvo0+ffqgadOm+Omnn3D27FksX74crq6uBi2HPRQTkVFJJBKd4xcsWIA5c+ZAEAS0aNHCNEVVcerUKQwePBhXrlyBs7NzrdOfOXMG/fv3R1ZWFqRSqQkqJLIMEokEO3bsUPshcu/ePbz99tvYsmULioqK0LVrVyxZsgQDBw6s0zrmzZuHw4cP4+DBg/WqlUduiMio8vLyVI8VK1bAxcVFbdjrr78OqVRqlmADAKtWrcLTTz+tV7ABgK5duyIwMBD//e9/jVwZkeV75ZVXkJycjISEBJw+fRpPP/00hg4diosXL9ZpeTt37kTPnj3x9NNPw8PDA6GhoVi3bp3By2G4ISKj8vLyUj2kUikkEonaMGdn5xqnpQYOHIhZs2Zh9uzZcHV1haenJ9atW4eSkhJMmTIFzZs3R7t27fDTTz+prevMmTMYNmwYnJ2d4enpiQkTJqCwsFBrbRUVFfjf//6HUaNGqQ3/9NNP0b59ezRr1gyenp546qmn1MaPGjUKCQkJ9d84RFYsJycHGzZswNatW9GvXz8EBgbi9ddfR9++fbFhw4Y6LfPy5cv47LPP0L59e+zZswczZszAq6++ik2bNhm0HIYbIrJImzZtgru7O44dO4ZZs2ZhxowZePrppxEVFYUTJ07gsccew4QJE1BaWgoAKCoqwuDBgxEaGorjx49j9+7dKCgowDPPPKN1HadPn4ZcLkfPnj1Vw44fP45XX30VH3zwATIyMrB79270799fbb7w8HAcO3YM9+7dM86TJ7IC6enpqKioQIcOHeDs7Kx6/Pbbb8jMzAQAnD9/HhKJROdj3rx5qmVWVlaiR48eWLRoEUJDQ/HSSy9h2rRpWLNmjUG1NWnQZ0pE1EC6d++Od955BwAQGxuLxYsXw93dHdOmTQMAzJ8/H5999hlOnz6N3r17Y/Xq1QgNDVVrGLx+/XrIZDJcuHABHTp0qLGOK1euwNbWFh4eHqphOTk5cHJywsiRI9G8eXO0bdsWoaGhavP5+PigvLwc+fn5aNu2rTGePpHFu3v3LmxtbZGamgpbW1u1ccrTvAEBATh37pzO5bRs2VL1f29vb3Tu3FltfKdOnbBt2zaDamO4ISKL1K1bN9X/bW1t0bJlSwQHB6uGeXp6AgCuX78OQNEweN++fRrbzmRmZmoMN2VlZbC3t1dr9Pzoo4+ibdu2CAgIwNChQzF06FA8+eSTcHR0VE3j4OAAAKqjRkSNUWhoKCoqKnD9+nX069dP4zR2dnYICgrSe5l9+vRBRkaG2rALFy4Y/COC4YaILFLTpk3V/pZIJGrDlIGksrISgOJX5KhRo7BkyZIay/L29ta4Dnd3d5SWlqK8vBx2dnYAgObNm+PEiRPYv38/fv75Z8yfPx/vvfceUlJSVI2eb926BQBo1apV/Z4kkYW7e/cuLl26pPo7KysLaWlpcHNzQ4cOHfD8889j4sSJWL58OUJDQ3Hjxg0kJSWhW7duGDFihMHrmzNnDqKiorBo0SI888wzOHbsGNauXYu1a9catBy2uSEiUejRowf++OMP+Pn5oV27dmoPJycnjfOEhIQAAM6ePas2vEmTJoiOjsZHH32E06dPIzs7G3v37lWNP3PmDFq3bg13d3ejPR8iS3D8+HGEhoaqTs3GxMQgNDQU8+fPBwBs2LABEydOxGuvvYaOHTti9OjRSElJQZs2beq0vl69emHHjh3YsmULunbtioULF2LFihV4/vnnDVoOj9wQkSjMnDkT69atw/jx4/HGG2/Azc0Nly5dQkJCAr744osabQIAxZGXHj164NChQ6qg88MPP+Dy5cvo378/XF1dsWvXLlRWVqJjx46q+Q4ePIjHHnvMVE+NyGwGDhwIXd3hNW3aFO+//z7ef//9BlvnyJEjMXLkyHotg0duiEgUfHx8cPjwYVRUVOCxxx5DcHAwZs+ejRYtWsDGRvtH3Ysvvoivv/5a9XeLFi2wfft2DB48GJ06dcKaNWuwZcsWdOnSBQDw119/4bvvvlM1bCYiy8MeiomoUSsrK0PHjh2RmJiIyMjIWqf/7LPPsGPHDvz8888mqI6I6oJHboioUXNwcMDmzZt1dvZXVdOmTbFq1SojV0VE9cEjN0RERCQqPHJDREREosJwQ0RERKLCcENERESiwnBDREREosJwQ0RERKLCcENERESiwnBDREREosJwQ0RERKLCcENERESi8v9OY8ikPAJcvQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=trace_schedule,\n", " schedule_kwargs={\n", " \"pulse_amp\": 0.5,\n", " \"acq_delay\": 100e-9,\n", " },\n", " batched=True,\n", ")\n", "\n", "data = gettable.get()\n", "\n", "plt.plot(np.arange(1000)/1e9, data[0], '.', label=\"real\")\n", "plt.plot(np.arange(1000)/1e9, data[1], '.', label=\"imaginary\")\n", "plt.legend()\n", "plt.xlabel(\"Time (s)\")\n", "plt.ylabel(\"Voltage (V)\")\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "c61edf62", "metadata": {}, "source": [ "This time, there is only one acquisition operation in the schedule. The measurement result contains two arrays: one for the _I_ values (`data[0][:]`), and one for the _Q_ values (`data[1][:]`) of the acquired trace.\n", "\n", "## MeasurementControl\n", "\n", "Iterating through different parameters can be done with some help from `quantify-core` as well, through the {class}`~quantify_core.measurement.control.MeasurementControl` class. The {class}`~quantify_core.measurement.control.MeasurementControl` uses settables (parameters to vary in an experiment) and gettables (in this case, our {class}`~quantify_scheduler.gettables.ScheduleGettable`). The settable must be a class that implements `set()`, such as a QCoDeS {class}`~qcodes.parameters.ManualParameter`.\n", "\n", "In this example, the settable is the `time` object, and the setpoints are a numpy array of values (`times`). These are added to the {class}`~quantify_core.measurement.control.MeasurementControl` as shown, together with the {class}`~quantify_scheduler.gettables.ScheduleGettable`. The {class}`~quantify_core.measurement.control.MeasurementControl` object will be in charge of setting the setpoints, and retrieving the measurement results through the gettable." ] }, { "cell_type": "code", "execution_count": 8, "id": "40ed295a", "metadata": {}, "outputs": [], "source": [ "from quantify_core.measurement.control import MeasurementControl\n", "\n", "\n", "measurement_control = MeasurementControl(\"measurement_control\")\n", "\n", "# Configure the settable\n", "time = ManualParameter(\"sample\", label=\"Sample time\", unit=\"s\")\n", "time.batched = True\n", "\n", "times = np.linspace(start=1.6e-7, stop=4.976e-5, num=125)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=t1_sched,\n", " schedule_kwargs={\"times\": time},\n", " batched=True\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables(time)\n", "measurement_control.setpoints(times)\n", "measurement_control.gettables(gettable)" ] }, { "cell_type": "markdown", "id": "9d788d7a", "metadata": {}, "source": [ "The experiment is set to run fully in _batched_ mode. When using {class}`~quantify_core.measurement.control.MeasurementControl`, settables and gettables can be either batched (an array of points is set for each measurement iteration) or iterative (only one point is set per iteration). Combinations of batched and iterative settables are possible, as explained in detail in the [quantify-core documentation](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#mixing-iterative-and-batched-settables).\n", "\n", "Settables and gettables are batched if they have the attribute `batched=True`. In {class}`~quantify_scheduler.gettables.ScheduleGettable`, this can be controlled through the `batched` argument when creating the class. For other classes, the attribute can be added dynamically if needed, as shown above for the `time` parameter.\n", "\n", "With both the gettable and the settable having `batched=True`, the {class}`~quantify_core.measurement.control.MeasurementControl` knows that it should set the entire `times` array as the settable's value (instead of repeating the experiment for each value in the array). All data points are measured without interruption and all measurement results are returned in one go. Now, let's run the experiment and retrieve the data." ] }, { "cell_type": "code", "execution_count": 9, "id": "cd7a39f2", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t --- (None) --- \n", "Batched settable(s):\n", "\t sample \n", "Batch size limit: 125\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4be79ba1036c42e9920e4c8f05ab7af8", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dataset = measurement_control.run()" ] }, { "cell_type": "markdown", "id": "c53df45f", "metadata": {}, "source": [ "The {class}`~quantify_core.measurement.control.MeasurementControl` class processes the data returned by the {class}`~quantify_scheduler.gettables.ScheduleGettable`, and turns it into a {class}`~xarray.Dataset`. More information on the format of this dataset can be found in the [quantify-core documentation](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#dataset)." ] }, { "cell_type": "code", "execution_count": 10, "id": "778b76a1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 3kB\n",
       "Dimensions:  (dim_0: 125)\n",
       "Coordinates:\n",
       "    x0       (dim_0) float64 1kB 1.6e-07 5.6e-07 9.6e-07 ... 4.936e-05 4.976e-05\n",
       "Dimensions without coordinates: dim_0\n",
       "Data variables:\n",
       "    y0       (dim_0) float64 1kB -1.166 -1.141 -1.109 ... -0.737 -0.7305 -1.164\n",
       "    y1       (dim_0) float64 1kB 0.2569 0.2138 0.2035 ... -0.2533 -0.247 0.2671\n",
       "Attributes:\n",
       "    tuid:                             20250620-151054-355-99befd\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         False\n",
       "    1d_2_settables_uniformly_spaced:  False
" ], "text/plain": [ " Size: 3kB\n", "Dimensions: (dim_0: 125)\n", "Coordinates:\n", " x0 (dim_0) float64 1kB 1.6e-07 5.6e-07 9.6e-07 ... 4.936e-05 4.976e-05\n", "Dimensions without coordinates: dim_0\n", "Data variables:\n", " y0 (dim_0) float64 1kB -1.166 -1.141 -1.109 ... -0.737 -0.7305 -1.164\n", " y1 (dim_0) float64 1kB 0.2569 0.2138 0.2035 ... -0.2533 -0.247 0.2671\n", "Attributes:\n", " tuid: 20250620-151054-355-99befd\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: False\n", " 1d_2_settables_uniformly_spaced: False" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset" ] }, { "cell_type": "markdown", "id": "1c04469d", "metadata": {}, "source": [ "The dataset coordinates and data variables are named as generic `x` and `y` parameters. You can click on the 'Show/Hide attributes' button next to the coordinates and variables to see what they refer to.\n", "\n", "(sec-tutorial-schedulegettable-repetitions)=\n", "## Repetitions\n", "\n", "Repetition defines how many times the defined schedule will run on the hardware. Running the schedule multiple times can be useful for example if the user would like to reduce errors of acquisitions by averaging the result of multiple measurements.\n", "\n", "There are multiple ways the repetitions can be set. They are not completely independent of each other, and which setting will be taken into account depends on how you create and use the schedule.\n", "\n", "1. {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice`: via `cfg_sched_repetitions` (by default it is `1024`),\n", "2. schedule function: via the `repetitions` function argument,\n", "3. {class}`~quantify_scheduler.schedules.schedule.Schedule` object: via the `repetitions` function argument of its constructor, or via its `repetitions` attribute directly,\n", "4. ({class}`~quantify_scheduler.gettables.ScheduleGettable`: currently, it is not possible to supply `repetitions` via `schedule_kwargs`).\n", "\n", "Ultimately, the {class}`~quantify_scheduler.schedules.schedule.Schedule` object is what governs the repetitions, via its `repetitions` attribute.\n", "\n", "When using a schedule function, the `repetitions` function argument sets the repetitions, provided that the schedule function passes it to the `Schedule` object. This is true for the pre-defined schedules, see {mod}`!quantify_scheduler.schedules`.\n", "\n", "However, if the experiment is run using `ScheduleGettable`, this `repetitions` function argument is set to `QuantumDevice.cfg_sched_repetitions`. Hence, typically, the schedule will run `QuantumDevice.cfg_sched_repetitions` times.\n", "\n", "### Possible mistake: ignoring `repetitions` argument\n", "\n", "Keep in mind that the schedule function should pass the `repetitions` argument to the `Schedule` initializer, otherwise both `QuantumDevice.cfg_sched_repetitions` and the `repetitions` argument of the schedule function will be ignored. For example, in the following setup, the `repetitions` will always be `1` (default for the `Schedule` object), even if `cfg_sched_repetitions` is set to `2`." ] }, { "cell_type": "code", "execution_count": 11, "id": "aa81b2ee", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import QuantumDevice, ScheduleGettable\n", "\n", "def schedule_function(q0: str, repetitions: int):\n", " schedule = Schedule(\"Example schedule\")\n", " schedule.add(Measure(q0, acq_index=0))\n", " return schedule\n", "\n", "quantum_device = QuantumDevice(name=\"quantum_sample\")\n", "quantum_device.cfg_sched_repetitions(2)\n", "\n", "schedule_gettable = ScheduleGettable(\n", " quantum_device=quantum_device,\n", " schedule_function=schedule_function,\n", " schedule_kwargs={\"q0\": \"q0\"},\n", ")" ] }, { "cell_type": "markdown", "id": "70fc72e3", "metadata": {}, "source": [ "### Possible mistake: ignoring `cfg_sched_repetitions` default value\n", "\n", "Also note, that the default value of the `repetitions` argument of the schedule function will be ignored if `ScheduleGettable` is used, and it will be set to `QuantumDevice.cfg_sched_repetitions`. For example, in the following setup, `repetitions` will be `1024` (default for `QuantumDevice`), even if the default argument for `repetitions` is `2`." ] }, { "cell_type": "code", "execution_count": 12, "id": "c8d6fea4", "metadata": { "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "quantum_device.close()" ] }, { "cell_type": "code", "execution_count": 13, "id": "582e7ff3", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import QuantumDevice, ScheduleGettable\n", "\n", "def schedule_function(q0: str, repetitions: int = 2):\n", " schedule = Schedule(\"Example schedule\", repetitions=repetitions)\n", " schedule.add(Measure(q0, acq_index=0))\n", " return schedule\n", "\n", "quantum_device = QuantumDevice(name=\"quantum_sample\")\n", "\n", "schedule_gettable = ScheduleGettable(\n", " quantum_device=quantum_device,\n", " schedule_function=schedule_function,\n", " schedule_kwargs={\"q0\": \"q0\"},\n", ")" ] }, { "cell_type": "markdown", "id": "1a71bd38", "metadata": {}, "source": [ "(sec-schedulegettable-2dsweep-usage)=\n", "\n", "## 2D (and ND) measurement loops" ] }, { "cell_type": "code", "execution_count": 14, "id": "dd8ebd11", "metadata": { "mystnb": { "code_prompt_show": "Set up the quantum device, dummy hardware and hardware configuration" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "from qblox_instruments import Cluster, ClusterType, DummyBinnedAcquisitionData\n", "\n", "from quantify_scheduler import BasicTransmonElement, InstrumentCoordinator, QuantumDevice\n", "from quantify_scheduler.qblox import ClusterComponent\n", "\n", "\n", "single_qubit_device.close_all()\n", "\n", "# Device parameters\n", "Q0_ACQ_DELAY = 100e-9\n", "Q0_FREQ_01 = 4e9\n", "Q0_READOUT_AMP = 0.1\n", "Q0_READOUT_FREQ = 4.3e9\n", "Q0_PI_PULSE_AMP = 0.15\n", "Q0_LO_FREQ_QUBIT = 3.9e9\n", "Q0_LO_FREQ_READOUT = 4.5e9\n", "\n", "Q1_ACQ_DELAY = 120e-9\n", "Q1_FREQ_01 = 4.1e9\n", "Q1_READOUT_AMP = 0.1\n", "Q1_READOUT_FREQ = 3.8e9\n", "Q1_PI_PULSE_AMP = 0.15\n", "Q1_LO_FREQ_QUBIT = 4.1e9\n", "Q1_LO_FREQ_READOUT = 3.8e9\n", "\n", "two_qubit_device = QuantumDevice(\"two_qubit_device\")\n", "\n", "q0 = BasicTransmonElement(\"q0\")\n", "q0.measure.acq_channel(0)\n", "q0.measure.pulse_amp(Q0_READOUT_AMP)\n", "q0.clock_freqs.readout(Q0_READOUT_FREQ)\n", "q0.clock_freqs.f01(Q0_FREQ_01)\n", "q0.measure.acq_delay(Q0_ACQ_DELAY)\n", "q0.rxy.amp180(Q0_PI_PULSE_AMP)\n", "\n", "q1 = BasicTransmonElement(\"q1\")\n", "q1.measure.acq_channel(1) # Note that we're specifying that measurements on q1 should use a different measurement channel\n", "q1.measure.pulse_amp(Q1_READOUT_AMP)\n", "q1.clock_freqs.readout(Q1_READOUT_FREQ)\n", "q1.clock_freqs.f01(Q1_FREQ_01)\n", "q1.measure.acq_delay(Q1_ACQ_DELAY)\n", "q1.rxy.amp180(Q1_PI_PULSE_AMP)\n", "\n", "two_qubit_device.add_element(q0)\n", "two_qubit_device.add_element(q1)\n", "\n", "# We will need to adjust the hardware configuration.\n", "\n", "# Note: if you are connecting to an actual cluster, you would provide the\n", "# 'identifier' argument (the ip address, device name or serial number) instead\n", "# of the 'dummy_cfg' argument.\n", "cluster = Cluster(\n", " \"cluster\",\n", " dummy_cfg={\n", " 1: ClusterType.CLUSTER_QRM_RF,\n", " 2: ClusterType.CLUSTER_QCM_RF,\n", " 3: ClusterType.CLUSTER_QRM_RF,\n", " 4: ClusterType.CLUSTER_QCM_RF,\n", " },\n", ")\n", "\n", "ic_cluster = ClusterComponent(cluster)\n", "\n", "# Temporarily fixing dummy cluster's deficiency.\n", "cluster.start_sequencer = lambda : start_dummy_cluster_armed_sequencers(ic_cluster)\n", "\n", "instrument_coordinator = InstrumentCoordinator(\"instrument_coordinator\")\n", "instrument_coordinator.add_component(ic_cluster)\n", "\n", "two_qubit_device.instr_instrument_coordinator(instrument_coordinator.name)\n", "\n", "hardware_cfg = {\n", " \"version\": \"0.2\",\n", " \"config_type\": \"quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig\",\n", " \"hardware_description\": {\n", " f\"{cluster.name}\": {\n", " \"instrument_type\": \"Cluster\",\n", " \"modules\": {\n", " \"1\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"2\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " },\n", " \"3\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"4\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " }\n", " },\n", " \"ref\": \"internal\"\n", " }\n", " },\n", " \"hardware_options\": {\n", " \"modulation_frequencies\": {\n", " \"q0:res-q0.ro\": {\n", " \"lo_freq\": Q0_LO_FREQ_READOUT\n", " },\n", " \"q0:mw-q0.01\": {\n", " \"lo_freq\": Q0_LO_FREQ_QUBIT\n", " },\n", " \"q1:res-q1.ro\": {\n", " \"lo_freq\": Q1_LO_FREQ_READOUT\n", " },\n", " \"q1:mw-q1.01\": {\n", " \"lo_freq\": Q1_LO_FREQ_QUBIT\n", " }\n", " }\n", " },\n", " \"connectivity\": {\n", " \"graph\": [\n", " [f\"{cluster.name}.module1.complex_output_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module1.complex_input_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module2.complex_output_0\", \"q0:mw\"],\n", " [f\"{cluster.name}.module3.complex_output_0\", \"q1:res\"],\n", " [f\"{cluster.name}.module3.complex_input_0\", \"q1:res\"],\n", " [f\"{cluster.name}.module4.complex_output_0\", \"q1:mw\"]\n", " ]\n", " }\n", "}\n", "\n", "\n", "two_qubit_device.hardware_config(hardware_cfg)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1, sequencer=0, acq_index_name=\"0\", data=[DummyBinnedAcquisitionData(data=(0.0, 0.0), thres=0, avg_cnt=0)]\n", ")\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=3, sequencer=0, acq_index_name=\"0\", data=[DummyBinnedAcquisitionData(data=(0.0, 0.0), thres=0, avg_cnt=0)]\n", ")" ] }, { "cell_type": "markdown", "id": "43588642", "metadata": {}, "source": [ "2D and higher-dimensional measurement loops are easy to realize. Below we show an example Chevron experiment, which is a type of two-qubit experiment often performed on transmon qubits. The experiment includes a square pulse, and we want to vary both its amplitude and duration in a 2D grid. We have already set up a two-qubit {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` under the variable name `two_qubit_device`.\n", "\n", "We define simple schedule below with a parameterized amplitude and duration of the square pulse. `duration` and `amp` are scalars, so for each measurement point the schedule will be recompiled." ] }, { "cell_type": "code", "execution_count": 15, "id": "915f9055", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import Schedule\n", "from quantify_scheduler.operations import Measure, Reset, SquarePulse, X, X90\n", "\n", "def chevron_schedule_not_batched(duration, amp, repetitions=1):\n", " sched = Schedule(\"Chevron Experiment\", repetitions=repetitions)\n", "\n", " acq_idx = 0\n", "\n", " reset = sched.add(Reset(\"q0\", \"q1\"))\n", " sched.add(X(\"q0\"), ref_op=reset, ref_pt=\"end\") # Start at the end of the reset\n", " # We specify a clock for tutorial purposes, Chevron experiments do not necessarily use modulated square pulses\n", " square = sched.add(SquarePulse(amp=amp, duration=duration, port=\"q0:mw\", clock=\"q0.01\"))\n", " sched.add(X90(\"q0\"), ref_op=square) # Start at the end of the square pulse\n", " sched.add(X90(\"q1\"), ref_op=square)\n", " sched.add(Measure(\"q0\", acq_index=acq_idx), label=f\"M q0 {acq_idx}\")\n", " sched.add(\n", " Measure(\"q1\", acq_index=acq_idx),\n", " label=f\"M q1 {acq_idx}\",\n", " ref_pt=\"start\", # Start at the same time as the other measure\n", " )\n", "\n", " return sched" ] }, { "cell_type": "markdown", "id": "19e48410", "metadata": {}, "source": [ "We set up a non-batched measurement with {class}`~quantify_core.measurement.control.MeasurementControl` and a {class}`~quantify_scheduler.gettables.ScheduleGettable`. For this {class}`~quantify_scheduler.gettables.ScheduleGettable`, notice the keyword argument `num_channels=2`, which is needed since we specified in the quantum device elements that the measurements on `\"q0\"` and `\"q1\"` should end up in two different channels.\n", "\n", "In addition, we used another new argument in the {class}`~quantify_scheduler.gettables.ScheduleGettable`: `real_imag=False`. `real_imag` can be used to transform the acquisition data. If it is `True` (the default), the I and Q values will be returned, and if it is `False`, the data will be transformed to the absolute value and the phase (in degrees, in the interval `(-180, 180]`)." ] }, { "cell_type": "code", "execution_count": 16, "id": "95aaed0f", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting iterative measurement...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "beaf813e8a114f9bba7da40f5cb28730", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "measurement_control = MeasurementControl(\"measurement_control\")\n", "\n", "# Configure the settables\n", "duration = ManualParameter(\"duration\", label=\"Duration\", unit=\"s\")\n", "duration.batched = False\n", "\n", "durations = np.linspace(start=20e-9, stop=60e-9, num=6)\n", "\n", "amplitude = ManualParameter(\"amplitude\", label=\"Amplitude\", unit=\"V\")\n", "amplitude.batched = False\n", "\n", "amplitudes = np.linspace(start=0.1, stop=1.0, num=10)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=two_qubit_device,\n", " schedule_function=chevron_schedule_not_batched,\n", " schedule_kwargs={\"duration\": duration, \"amp\": amplitude},\n", " batched=False,\n", " real_imag=False,\n", " num_channels=2,\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables([duration, amplitude])\n", "measurement_control.setpoints_grid([durations, amplitudes]) # note: setpoints_grid instead of setpoints\n", "measurement_control.gettables(gettable)\n", "\n", "# Run!\n", "dataset = measurement_control.run()\n", "dset_grid = dh.to_gridded_dataset(dataset)" ] }, { "cell_type": "code", "execution_count": 17, "id": "c0a388d5", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 2kB\n",
       "Dimensions:  (x0: 6, x1: 10)\n",
       "Coordinates:\n",
       "  * x0       (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n",
       "  * x1       (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n",
       "Data variables:\n",
       "    y0       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y1       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y2       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y3       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "Attributes:\n",
       "    tuid:                             20250620-151055-182-f1116b\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         True\n",
       "    1d_2_settables_uniformly_spaced:  False\n",
       "    xlen:                             6\n",
       "    ylen:                             10
" ], "text/plain": [ " Size: 2kB\n", "Dimensions: (x0: 6, x1: 10)\n", "Coordinates:\n", " * x0 (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n", " * x1 (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n", "Data variables:\n", " y0 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y1 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y2 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y3 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", "Attributes:\n", " tuid: 20250620-151055-182-f1116b\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: True\n", " 1d_2_settables_uniformly_spaced: False\n", " xlen: 6\n", " ylen: 10" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dset_grid" ] }, { "cell_type": "markdown", "id": "ef8e2c7c", "metadata": {}, "source": [ "As expected, this dataset contains double the amount of coordinates and data variables (note that the actual data has been mocked and set to 0.0). The two coordinates refer to the settables, `duration` and `amplitude`. With `real_imag` now set to `False`, the data variables contain the magnitude and phase (as opposed to the I and Q voltages) for measurements on `\"q0\"` and `\"q1\"`.\n", "\n", "### Batched 2D experiment\n", "\n", "Since this measurement is not batched, it's rather slow. Let's make this faster with (partial) batching.\n", "\n", "We will batch the amplitudes together, so we change the amplitudes parameter in the schedule function to an array." ] }, { "cell_type": "code", "execution_count": 18, "id": "1a790df9", "metadata": { "mystnb": { "code_prompt_show": "Provide the dummy hardware with acquisition data" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "from qblox_instruments import DummyBinnedAcquisitionData\n", "\n", "\n", "def get_dummy_binned_acquisition_data(real: float, imag: float):\n", " return DummyBinnedAcquisitionData(data=(real, imag), thres=0, avg_cnt=0)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1, sequencer=0, acq_index_name=\"0\", data=[get_dummy_binned_acquisition_data(re * 10, im * 10) for re, im in zip(range(-5, 5), range(5, -5, -1))]\n", ")\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=3, sequencer=0, acq_index_name=\"0\", data=[get_dummy_binned_acquisition_data(re * 10, im * 10) for re, im in zip(range(-5, 5), range(5, -5, -1))]\n", ")" ] }, { "cell_type": "code", "execution_count": 19, "id": "2a3433a7", "metadata": {}, "outputs": [], "source": [ "def chevron_schedule_batched(duration, amps, repetitions=1):\n", " sched = Schedule(\"Chevron Experiment\", repetitions=repetitions)\n", "\n", " acq_idx = 0\n", "\n", " for amp in amps:\n", " reset = sched.add(Reset(\"q0\", \"q1\"))\n", " sched.add(X(\"q0\"), ref_op=reset, ref_pt=\"end\")\n", " square = sched.add(SquarePulse(amp=amp, duration=duration, port=\"q0:mw\", clock=\"q0.01\"))\n", " sched.add(X90(\"q0\"), ref_op=square)\n", " sched.add(X90(\"q1\"), ref_op=square)\n", " sched.add(Measure(\"q0\", acq_index=acq_idx), label=f\"M q0 {acq_idx}\")\n", " sched.add(\n", " Measure(\"q1\", acq_index=acq_idx),\n", " label=f\"M q1 {acq_idx}\",\n", " ref_pt=\"start\",\n", " )\n", "\n", " acq_idx += 1\n", "\n", " return sched" ] }, { "cell_type": "markdown", "id": "d93a2e65", "metadata": {}, "source": [ "We specify that we want to batch the amplitudes by setting ``amplitude.batched = True`` and ``batched=True``as keyword argument for the gettable. Finally, we run this experiment just as before." ] }, { "cell_type": "code", "execution_count": 20, "id": "aab1467d", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t duration \n", "Batched settable(s):\n", "\t amplitude \n", "Batch size limit: 60\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "83e4ecf607d54bf49169b06bfde5fedc", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Configure the settables\n", "duration = ManualParameter(\"duration\", label=\"Duration\", unit=\"s\")\n", "duration.batched = False\n", "\n", "durations = np.linspace(start=20e-9, stop=60e-9, num=6)\n", "\n", "amplitude = ManualParameter(\"amplitude\", label=\"Amplitude\", unit=\"V\")\n", "amplitude.batched = True\n", "\n", "amplitudes = np.linspace(start=0.1, stop=1.0, num=10)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=two_qubit_device,\n", " schedule_function=chevron_schedule_batched,\n", " schedule_kwargs={\"duration\": duration, \"amps\": amplitude},\n", " batched=True,\n", " real_imag=False,\n", " data_labels=[\"Magnitude Q0\", \"Phase Q0\", \"Magnitude Q1\", \"Phase Q1\"],\n", " num_channels=2,\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables([duration, amplitude])\n", "measurement_control.setpoints_grid([durations, amplitudes])\n", "measurement_control.gettables(gettable)\n", "\n", "# Run!\n", "dataset = measurement_control.run()\n", "dset_grid = dh.to_gridded_dataset(dataset)" ] }, { "cell_type": "code", "execution_count": 21, "id": "8d34e072", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 2kB\n",
       "Dimensions:  (x0: 6, x1: 10)\n",
       "Coordinates:\n",
       "  * x0       (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n",
       "  * x1       (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n",
       "Data variables:\n",
       "    y0       (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n",
       "    y1       (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n",
       "    y2       (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n",
       "    y3       (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n",
       "Attributes:\n",
       "    tuid:                             20250620-151101-267-2608fe\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         True\n",
       "    1d_2_settables_uniformly_spaced:  False\n",
       "    xlen:                             6\n",
       "    ylen:                             10
" ], "text/plain": [ " Size: 2kB\n", "Dimensions: (x0: 6, x1: 10)\n", "Coordinates:\n", " * x0 (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n", " * x1 (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n", "Data variables:\n", " y0 (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n", " y1 (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n", " y2 (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n", " y3 (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n", "Attributes:\n", " tuid: 20250620-151101-267-2608fe\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: True\n", " 1d_2_settables_uniformly_spaced: False\n", " xlen: 6\n", " ylen: 10" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dset_grid" ] }, { "cell_type": "markdown", "id": "4ec39143", "metadata": {}, "source": [ "The shape of the dataset is no different from the previous (non-batched) experiment, but the metadata is a little different. Some coordinates and data variables now have the `batched=True` attribute. We also introduced another keyword argument: the `data_labels`. These `data_labels` are picked up by the {class}`~quantify_core.measurement.control.MeasurementControl`and end up in the {class}`xarray.Dataset` as the \"long_name\" of attributes. For example, `\"y0\"`s label can be accessed through `dataset[\"y0\"].attrs[\"long_name\"]`. The various plotting features of `quantify-core` will use this name to get labels for the figure axes." ] } ], "metadata": { "file_format": "mystnb", "kernelspec": { "display_name": "python3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.23" }, "source_map": [ 6, 34, 141, 149, 166, 170, 195, 199, 247, 251, 263, 273, 299, 303, 322, 332, 356, 364, 369, 373, 375, 401, 417, 423, 430, 445, 451, 588, 594, 617, 623, 660, 662, 672, 692, 714, 718, 754, 756 ], "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "02b9fddea3fe46608b3d38e8902f25ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "096bcc759d864a1fabfcf425328fd336": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f3401c64badd4a94af4e20e1dc7f87d1", "placeholder": "​", "style": "IPY_MODEL_2c8966d040704a81ab4a153598d37298", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "09d2200b86d14cafa4773f21ec2ee076": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0a227c869a6c41c589ea25d33ec2138d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0ea1802917464c41bd59833d6b89d778": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "102f98f1814a4c8a93aa042087915c8e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6678ba0a80494c4fac7c3bb5a7a1b5e4", "placeholder": "​", "style": "IPY_MODEL_02b9fddea3fe46608b3d38e8902f25ed", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:05 | time left: 00:00 ] " } }, "2a4fd7003abf4e2d881c43139255464d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "2c8966d040704a81ab4a153598d37298": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "331c640ce4b7439f9a725d7530f9d232": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0ea1802917464c41bd59833d6b89d778", "placeholder": "​", "style": "IPY_MODEL_516eaf5b807943a4966a771e84841735", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "3575dc60e3b443feb5ad788a85d8e823": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9a161fef2b524040869017b2ad377d4e", "placeholder": "​", "style": "IPY_MODEL_c9ef6383d115489baaf10ab7aff24a51", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "3a699c2822ae407c9e8b151328ef1626": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4be79ba1036c42e9920e4c8f05ab7af8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_3575dc60e3b443feb5ad788a85d8e823", "IPY_MODEL_b2ea1968041a4dda8ef81569d1a2ca7f", "IPY_MODEL_b1cd9d9c272b435baa9e4f4b60837ade" ], "layout": "IPY_MODEL_09d2200b86d14cafa4773f21ec2ee076", "tabbable": null, "tooltip": null } }, "516eaf5b807943a4966a771e84841735": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "5cb1d81207dc447abb1c3e32af395ec5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6678ba0a80494c4fac7c3bb5a7a1b5e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6f5eeb69a0c84578a0ea81b35821fb65": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7ce7a2467b14407395dbba0e2e12b194": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cb6b109aeb77470db883ac18f4c248dc", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b67e94df5ad64018b253d83909704dda", "tabbable": null, "tooltip": null, "value": 100.0 } }, "7ffe39c37f32495592e28001ea4e8b8a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "83e4ecf607d54bf49169b06bfde5fedc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_331c640ce4b7439f9a725d7530f9d232", "IPY_MODEL_f652a9f21c5247da9e007ca59df3024c", "IPY_MODEL_f0b7b5821b564a6f8480398cf49620a1" ], "layout": "IPY_MODEL_0a227c869a6c41c589ea25d33ec2138d", "tabbable": null, "tooltip": null } }, "86de8136e7a543dfb276b835082d4d57": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "88265366c01945ccbce700b52bcad3fb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9a161fef2b524040869017b2ad377d4e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b1cd9d9c272b435baa9e4f4b60837ade": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3a699c2822ae407c9e8b151328ef1626", "placeholder": "​", "style": "IPY_MODEL_ee360c267d52414aa7c7dca14ef6322c", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 125" } }, "b2ea1968041a4dda8ef81569d1a2ca7f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7ffe39c37f32495592e28001ea4e8b8a", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_86de8136e7a543dfb276b835082d4d57", "tabbable": null, "tooltip": null, "value": 100.0 } }, "b67e94df5ad64018b253d83909704dda": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "bc4fb66673e0436c9b516b02f552a150": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "beaf813e8a114f9bba7da40f5cb28730": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_096bcc759d864a1fabfcf425328fd336", "IPY_MODEL_7ce7a2467b14407395dbba0e2e12b194", "IPY_MODEL_102f98f1814a4c8a93aa042087915c8e" ], "layout": "IPY_MODEL_5cb1d81207dc447abb1c3e32af395ec5", "tabbable": null, "tooltip": null } }, "c9ef6383d115489baaf10ab7aff24a51": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "cb6b109aeb77470db883ac18f4c248dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ee360c267d52414aa7c7dca14ef6322c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "f0b7b5821b564a6f8480398cf49620a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6f5eeb69a0c84578a0ea81b35821fb65", "placeholder": "​", "style": "IPY_MODEL_bc4fb66673e0436c9b516b02f552a150", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 10" } }, "f3401c64badd4a94af4e20e1dc7f87d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f652a9f21c5247da9e007ca59df3024c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_88265366c01945ccbce700b52bcad3fb", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2a4fd7003abf4e2d881c43139255464d", "tabbable": null, "tooltip": null, "value": 100.0 } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }