{ "cells": [ { "cell_type": "markdown", "id": "cd515092", "metadata": {}, "source": [ "(sec-tutorial-schedulegettable)=\n", "\n", "# Tutorial: ScheduleGettable\n", "\n", "```{seealso}\n", "The complete source code of this tutorial can be found in\n", "\n", "{nb-download}`ScheduleGettable.ipynb`\n", "```\n", "\n", "This tutorial covers the {class}`~quantify_scheduler.gettables.ScheduleGettable` in-depth. If you're looking for more information on how to set up an experiment in general, please see {ref}`sec-tutorial-experiment`.\n", "\n", "The {class}`~quantify_scheduler.gettables.ScheduleGettable` forms the top-level interface to {mod}`quantify_scheduler`. Under the hood, it uses `quantify-scheduler` modules to compile {ref}`Schedules `, run them on your hardware and retrieve measurement data from the hardware. As the {class}`~quantify_scheduler.gettables.ScheduleGettable` uses functions that return {class}`~quantify_scheduler.schedules.schedule.Schedule`s, you can dynamically set function parameters during experiments.\n", "\n", "For those familiar with [quantify-core](https://quantify-os.org/docs/quantify-core), the interface of the {class}`~quantify_scheduler.gettables.ScheduleGettable` is also designed to be used as a [gettable](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#settables-and-gettables) for [MeasurementControl](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#measurement-control). This is convenient for large, possibly multi-dimensional measurement loops, as is demonstrated in {ref}`2D (and ND) measurement loops`.\n", "\n", "Two things are always required when using a {class}`~quantify_scheduler.gettables.ScheduleGettable`: a {ref}`QuantumDevice ` and a function that returns a {class}`~quantify_scheduler.schedules.schedule.Schedule`. We will set these up in a few example scenarios below and show how to use the {class}`~quantify_scheduler.gettables.ScheduleGettable`. More commonly used schedule functions are also included in `quantify-scheduler` out of the box. You can find them in {mod}`~.quantify_scheduler.schedules.spectroscopy_schedules`, {mod}`~.quantify_scheduler.schedules.timedomain_schedules` and {mod}`~.quantify_scheduler.schedules.trace_schedules`.\n", "\n", "(sec-schedulegettable-1dsweep-usage)=\n", "\n", "## 1D iterative measurement loop\n", "\n", "\n", "```{admonition} Setup and hardware configuration\n", "The device setup and hardware configuration for this tutorial can be viewed in the collapsed code cells. In places where you would communicate with actual hardware, dummy objects have been used. If you want to learn more about how to set up the {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` and hardware configuration, please see our other tutorials, in particular {ref}`sec-tutorial-experiment` and {ref}`sec-tutorial-compiling`.\n", "```" ] }, { "cell_type": "code", "execution_count": 1, "id": "d33cff1a", "metadata": { "mystnb": { "code_prompt_show": "Set up the quantum device, dummy hardware and hardware configuration" }, "tags": [ "hide-cell" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Data will be saved in:\n", "/root/quantify-data\n" ] } ], "source": [ "from qblox_instruments import Cluster, ClusterType\n", "from quantify_core.data import handling as dh\n", "\n", "from quantify_scheduler import BasicTransmonElement, InstrumentCoordinator, QuantumDevice\n", "from quantify_scheduler.qblox import ClusterComponent, start_dummy_cluster_armed_sequencers\n", "\n", "# First, don't forget to set the data directory!\n", "dh.set_datadir() # change me!\n", "\n", "# We define a single transmon qubit as an element (BasicTransmonElement) of the\n", "# QuantumDevice, and populate the parameters with some reasonable values.\n", "\n", "# Device parameters\n", "ACQ_DELAY = 100e-9\n", "FREQ_01 = 4e9\n", "READOUT_AMP = 0.1\n", "READOUT_FREQ = 4.3e9\n", "PI_PULSE_AMP = 0.15\n", "LO_FREQ_QUBIT = 3.9e9\n", "LO_FREQ_READOUT = 4.5e9\n", "\n", "single_qubit_device = QuantumDevice(\"single_qubit_device\")\n", "\n", "q0 = BasicTransmonElement(\"q0\")\n", "single_qubit_device.add_element(q0)\n", "\n", "# Assign device parameters to transmon element\n", "q0.measure.pulse_amp(READOUT_AMP)\n", "q0.clock_freqs.readout(READOUT_FREQ)\n", "q0.clock_freqs.f01(FREQ_01)\n", "q0.measure.acq_delay(ACQ_DELAY)\n", "q0.rxy.amp180(PI_PULSE_AMP)\n", "\n", "# For this example, we will set up a Qblox cluster hardware setup with two modules: a\n", "# QRM-RF and a QCM-RF.\n", "\n", "# Note: if you are connecting to an actual cluster, you would provide the\n", "# 'identifier' argument (the ip address, device name or serial number) instead\n", "# of the 'dummy_cfg' argument.\n", "cluster = Cluster(\n", " \"cluster\",\n", " dummy_cfg={\n", " 1: ClusterType.CLUSTER_QRM_RF,\n", " 2: ClusterType.CLUSTER_QCM_RF,\n", " },\n", ")\n", "\n", "ic_cluster = ClusterComponent(cluster)\n", "\n", "# Temporarily fixing dummy cluster's deficiency.\n", "cluster.start_sequencer = lambda : start_dummy_cluster_armed_sequencers(ic_cluster)\n", "\n", "# We create an InstrumentCoordinator to control the cluster and add it to the\n", "# QuantumDevice.\n", "\n", "instrument_coordinator = InstrumentCoordinator(\"instrument_coordinator\")\n", "instrument_coordinator.add_component(ic_cluster)\n", "\n", "single_qubit_device.instr_instrument_coordinator(instrument_coordinator.name)\n", "\n", "# A basic hardware configuration will be used for the two cluster modules.\n", "\n", "hardware_cfg = {\n", " \"version\": \"0.2\",\n", " \"config_type\": \"quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig\",\n", " \"hardware_description\": {\n", " f\"{cluster.name}\": {\n", " \"instrument_type\": \"Cluster\",\n", " \"modules\": {\n", " \"1\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"2\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " }\n", " },\n", " \"ref\": \"internal\"\n", " }\n", " },\n", " \"hardware_options\": {\n", " \"modulation_frequencies\": {\n", " \"q0:res-q0.ro\": {\n", " \"lo_freq\": LO_FREQ_READOUT\n", " },\n", " \"q0:mw-q0.01\": {\n", " \"lo_freq\": LO_FREQ_QUBIT\n", " }\n", " }\n", " },\n", " \"connectivity\": {\n", " \"graph\": [\n", " [f\"{cluster.name}.module1.complex_output_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module1.complex_input_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module2.complex_output_0\", \"q0:mw\"]\n", " ]\n", " }\n", "}\n", "\n", "\n", "# This hardware configuration should also be added to the quantum device.\n", "single_qubit_device.hardware_config(hardware_cfg)" ] }, { "cell_type": "markdown", "id": "3de4cc4f", "metadata": {}, "source": [ "For this experiment, we have set up a basic {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` called `single_qubit_device`, representing a single transmon qubit.\n", "\n", "We'll now define the schedule function. A valid schedule function must contain a `repetitions` (integer) parameter (see {ref}`Repetitions`), and can contain any number of additional parameters. It must return a {class}`~quantify_scheduler.schedules.schedule.Schedule` object.\n", "\n", "The schedule function can be parameterized to loop over different values. The parameters can be scalars or arrays. For example, the schedule function defined below takes an array of values for the parameter `times`. This is called a _batched_ measurement, as will be explained further in this tutorial." ] }, { "cell_type": "code", "execution_count": 2, "id": "e1c39a20", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import Schedule\n", "from quantify_scheduler.operations import Measure, Reset, X\n", "\n", "def t1_sched(times, repetitions=1):\n", " schedule = Schedule(\"T1\", repetitions)\n", " for i, tau in enumerate(times):\n", " schedule.add(Reset(\"q0\"), label=f\"Reset {i}\")\n", " schedule.add(X(\"q0\"), label=f\"pi {i}\")\n", " # Measure tau seconds after the start of the X gate\n", " schedule.add(\n", " Measure(\"q0\", acq_index=i),\n", " ref_pt=\"start\",\n", " rel_time=tau,\n", " label=f\"Measurement {i}\",\n", " )\n", " return schedule" ] }, { "cell_type": "markdown", "id": "1eb7cb3a", "metadata": {}, "source": [ "Now, let's create the {class}`~quantify_scheduler.gettables.ScheduleGettable`. The {class}`~quantify_scheduler.gettables.ScheduleGettable` provides a convenient way to compile and execute schedules in just a few lines of code. The parameters can be set directly, with arrays and scalars, or through QCoDeS parameters, as shown below." ] }, { "cell_type": "code", "execution_count": 3, "id": "4b9134c9", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "from qcodes.instrument.parameter import ManualParameter\n", "\n", "from quantify_scheduler import ScheduleGettable\n", "\n", "# The points we want to measure.\n", "times = np.linspace(start=1.6e-7, stop=4.976e-5, num=125)\n", "\n", "# As QCoDeS parameter:\n", "time = ManualParameter(\"sample\", label=\"Sample time\", unit=\"s\")\n", "# Set the parameter. This can be done even after defining the gettable!\n", "time(times)\n", "\n", "# Or as array:\n", "time = times\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=t1_sched,\n", " schedule_kwargs={\"times\": time},\n", " batched=True\n", ")" ] }, { "cell_type": "markdown", "id": "aa2b579c", "metadata": {}, "source": [ "Note that `batched=True` here. This means we are doing a _batched_ measurement, which simply means that we tell the {class}`~quantify_scheduler.gettables.ScheduleGettable` to expect an array of values in the acquisition result. In this case, our schedule function creates one schedule for an array of times, and it includes an acquisition (the {class}`~quantify_scheduler.operations.gate_library.Measure` operation) for each point." ] }, { "cell_type": "code", "execution_count": 4, "id": "576d60d1", "metadata": { "mystnb": { "code_prompt_show": "Provide the dummy hardware with acquisition data" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "import xarray\n", "\n", "from quantify_scheduler.waveforms import soft_square\n", "\n", "from qblox_instruments import DummyScopeAcquisitionData, DummyBinnedAcquisitionData\n", "\n", "\n", "soft_sq_samples = round(q0.measure.integration_time() * 1e9)\n", "soft_sq_times = np.arange(soft_sq_samples)\n", "soft_sq = soft_square(t=soft_sq_times, amp=0.5)\n", "scope_data_real = np.zeros(16384) # Scope trace acquires 16384 points\n", "scope_data_real[:soft_sq_samples] = soft_sq\n", "scope_data_real += np.random.randn(16384) / 500 # add some \"noise\"\n", "\n", "# Create dummy scope data with the soft square pulse on the I path and noise on\n", "# the Q path\n", "scope_data = list(zip(scope_data_real, np.random.randn(16384) / 500))\n", "\n", "dummy_scope_acquisition_data = DummyScopeAcquisitionData(\n", " data=scope_data, out_of_range=(False, False), avg_cnt=(0, 0)\n", " )\n", "\n", "ic_cluster.instrument.set_dummy_scope_acquisition_data(\n", " slot_idx=1, sequencer=None, data=dummy_scope_acquisition_data\n", ")\n", "\n", "\n", "# Dataset with T1 experiment data\n", "example_dataset = xarray.open_dataset(\"../examples/dataset.hdf5\")\n", "\n", "def get_dummy_binned_acquisition_data(real: float, imag: float):\n", " return DummyBinnedAcquisitionData(data=(real, imag), thres=0, avg_cnt=0)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1,\n", " sequencer=0,\n", " acq_index_name=\"0\",\n", " data=[\n", " get_dummy_binned_acquisition_data(float(re) * 1024, float(im) * 1024)\n", " for re, im in zip(example_dataset[\"y0\"], example_dataset[\"y1\"])\n", " ],\n", ")" ] }, { "cell_type": "markdown", "id": "57289b84", "metadata": {}, "source": [ "Let's now run the experiment and retrieve the acquisitions using the {meth}`~quantify_scheduler.gettables.ScheduleGettable.get` method." ] }, { "cell_type": "code", "execution_count": 5, "id": "f3ccfd20", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUP0lEQVR4nO3deVhU9eIG8HcGEWUbZAdFEXdzww0x1yTXuGlqaiZqtvy6apFLYddcyjIrS23Rsky9N9My5XqtKFPLNFNESS33NIxFRGKQRSA4vz/GGWeGMzNnYPZ5P88zj86Zs3znUJ6X7yoTBEEAERERkRuS27sARERERPbCIERERERui0GIiIiI3BaDEBEREbktBiEiIiJyWwxCRERE5LYYhIiIiMhtNbB3ARxdTU0NcnJy4OfnB5lMZu/iEBERkQSCIODmzZuIjIyEXG643odByIScnBxERUXZuxhERERUB1evXkWzZs0Mfs4gZIKfnx8A1Y309/e3c2mIiIhIiuLiYkRFRWme44YwCJmgbg7z9/dnECIiInIyprq1sLM0ERERuS0GISIiInJbDEJERETkthiEiIiIyG0xCBEREZHbYhAiIiIit8UgRERERG6LQYiIiIjcFoMQERERuS0GISIiInJbDEJERETkthiEiIiIyD6U2cDlA6o/7YSLrhIREZHtHd8M/O9pQKgBZHIgcTXQPcnmxWCNkL04QAomIiKyC2X2nRAEqP78X7JdnomsEbIHB0nBREREdlF46U4IUhOqgcLfAUVTmxaFNUK25kApmIiIyC4CW6kqArTJPIDAGJsXhUHI1oylYCIiInegaKpqDZF5qN7LPIDEVTavDQLYNGZ76hSsHYbslIKJiIjspnsS0GqIqiIgMMYuIQhgjZDtOVAKJiIisitFU6Blf7s+A1kjZA8OkoKJiIjcHYOQvSiaMgARERHZGZvGiIiIyG0xCBEREZHbYhByFJxpmoiIyObYR8gRcKZpIiIiu2CNkL1xpmkiIiK7cbog9O677yI6OhqNGjVCXFwcjh49anDf9evXo3///mjSpAmaNGmChIQEo/vbhaGZpq8eZVMZERGRlTlVENq2bRvmzJmDxYsX4/jx4+jatSuGDRuG/Px80f2///57TJo0Cfv378fhw4cRFRWFoUOHIjvbgcKF2HorkAFfPAJsSgRWdVI1nREREZHFyQRBEOxdCKni4uLQq1cvvPPOOwCAmpoaREVFYfbs2UhJSTF5fHV1NZo0aYJ33nkHSUnS+uAUFxdDoVBAqVTC39+/XuU36PhmVXOYUA1VNhVuv26TeQDJpzjvEBERkURSn99OUyNUWVmJjIwMJCQkaLbJ5XIkJCTg8OHDks5RVlaGqqoqBAYGGtynoqICxcXFOi+r656kCjpTdwPjPoJOCAJUAenXVDaTERERWZjTBKGCggJUV1cjLCxMZ3tYWBjy8vIkneO5555DZGSkTpjSt3z5cigUCs0rKiqqXuWWTL3eSlScSFMZgG+fZzMZERGRhTlNEKqvV199FVu3bsXOnTvRqFEjg/stWLAASqVS87p69aoNS4nai7Jq44gyIiIii3KaeYSCg4Ph4eGBa9eu6Wy/du0awsPDjR77xhtv4NVXX8V3332HLl26GN3Xy8sLXl5e9S5vvagXZf01VVUTpE2oVi3Wyv5CRERE9eY0NUINGzZEjx49sHfvXs22mpoa7N27F/Hx8QaPe+211/DSSy8hLS0NPXv2tEVRLUPRFLhrdO1mMpmHasV6IiIiqjenCUIAMGfOHKxfvx6bNm3CmTNn8OSTT6K0tBTTp08HACQlJWHBggWa/VesWIEXXngBGzZsQHR0NPLy8pCXl4eSkhJ7fQXz6DeTyTyAxFWsDSIiIrIQp2kaA4AJEybg+vXrWLRoEfLy8tCtWzekpaVpOlBnZWVBLr+T7dauXYvKykqMGzdO5zyLFy/GkiVLbFn0ulM3kxX+rqoJYggiIiKyGKeaR8gebDKPEBEREVmUy80jRERERGRpDELOSJnNdciIiIgswKn6CBFuL8dxe7V6mVzVmbq7tOVCiIiISBdrhJyJMvtOCAI4wSIREVE9sUbImRReuhOC1IRq4OpRoDBItZI9R5URERFJxiDkTAJbqZrDdMKQDPjiETaVERER1QGbxpxJrXXIbv/42FRGRERUJ6wRcjbaEyyWXge2T9f9nGuRERERScYg5IwUTVUvZXbtpjKuRUZERCQZm8acGdciIyIiqhfWCDk7rkVGRERUZwxCrkDdVEZERERmYdOYq+HyG0RERJKxRsiVcPkNIiIiszAIuQpDy2+E3gVUlXLWaSIiIhEMQq7C0PIbHw0BBIE1RERERCLYR8hVqJff0CcIt//krNNERET6GIRchaHlN7SpZ50mIiIiAGwacy3acwp5egMfJdSeddrTWzWqjH2GiIiIGIRcjvacQomrVc1hQrUqBHWZcCccsc8QERERg5BLM1ZDJNQAu54GGvoCUXGsHSIiIrfEPkKuTtEUaNlfNYRef1QZalSr16/qpJqDiIiIyM0wCLkLQ6PKAI4oIyIit8Ug5C5qjSrTwxFlRETkhhiE3En3JCD5FDBuY+3aIZmHavV6IiIiN8Ig5G4UTYFOY3Rrh2QeQOIq1d+5YCsREbkRjhpzV9ojygJjgEt7VZ2mObSeiIjcCGuE3Jl6RBkgvmAra4aIiMjFMQiR4QVb2XmaiIhcHIMQGRhaLwdKr7NWiIiIXBqDEIkMrZcBEHQnW1RmsyM1ERG5HJkgCIK9C+HIiouLoVAooFQq4e/vb+/iWJcyG7h6FPjiEb2mMhkgk7EjNREROQ2pz2/WCNEdiqaAT5DIUhwCO1ITEZFLYhAiXcaW4lBjR2oiInIRDEKkq1Z/ITlUfYa0cBZqIiJyEZxQkWoTm2zxf8mqmiD1LNSKpvYuJRERUb05XY3Qu+++i+joaDRq1AhxcXE4evSo0f0///xztG/fHo0aNULnzp3x1Vdf2aikTk492aKi6Z01yqbuVv3JjtJEROQinCoIbdu2DXPmzMHixYtx/PhxdO3aFcOGDUN+fr7o/j/99BMmTZqEGTNm4MSJExg9ejRGjx6N06dP27jkLkA7GBEREbkIpxo+HxcXh169euGdd94BANTU1CAqKgqzZ89GSkpKrf0nTJiA0tJS7N69W7OtT58+6NatG9atWyfpmm41fJ6IiMhFuNzw+crKSmRkZCAhIUGzTS6XIyEhAYcPHxY95vDhwzr7A8CwYcMM7g8AFRUVKC4u1nmRCE6wSERELsBpglBBQQGqq6sRFhamsz0sLAx5eXmix+Tl5Zm1PwAsX74cCoVC84qKiqp/4V3N8c2qGac3Jd6ZeZqIiMgJOU0QspUFCxZAqVRqXlevXrV3kRyLMtv0SvWsLSIiIifhNMPng4OD4eHhgWvXrulsv3btGsLDw0WPCQ8PN2t/APDy8oKXl1f9C+yqjK1Ur2iqqh1SByUux0FERA7OaWqEGjZsiB49emDv3r2abTU1Ndi7dy/i4+NFj4mPj9fZHwD27NljcH+SwNhK9X9mmK4tIiIiciBOUyMEAHPmzMHUqVPRs2dP9O7dG6tWrUJpaSmmT58OAEhKSkLTpk2xfPlyAMDTTz+NgQMHYuXKlRg1ahS2bt2KY8eO4YMPPrDn13Bu6pmn1RMsaq9Ur/67Nu3aIiIiIgfjVEFowoQJuH79OhYtWoS8vDx069YNaWlpmg7RWVlZkMvv1Fb07dsXW7ZswcKFC/H888+jTZs2SE1NRadOnez1FVyDeubpWivVi8zEwOU4iIjIgTnVPEL2wHmEjLh8QDVyTJ9MfruP0O3lOFoNUfUtCmzFmiEiIrIJqc9vp6oRIgej7i+k3Xla5gHM2ANUld1Zp2xVJ3aeJiIih+Q0naXJAemvVK+uAWrWQ7UcB8DO00RE5NBYI0T1o79SvXbTl6Gh9r+mAneNZjMZERHZHWuEqP4MLcgqOtQewLfPc0ZqIiJyCAxCZD36TWfa2ExGREQOgEGIrKt7EpB8Chj6Su3PhGrVEHxDy3FwqQ4iIrIy9hEi61M0VfUJ2rNQr8+Q7M48RPojyrhUBxER2QBrhMg2ajWT3f5PT2xEmZSFXYmIiCyANUJkO9ojzEqv316WQ4t6OQ4I4qPNrh4FCoNUnbABTtJIRET1xiBEtqVoqnops8UnY/T0Bor+qP2ZdjMaZLe3CXeazTh7NRER1QGDENmH/uKtMg+gywTgo4Q7YUcmAwQBqmY0QXxNM6EG2PXU7X3Zn4iIiMzDIET2o91U5umtFYIAVfCRA+M+xp3V7Q0Rbgcm3OlP1GoIa4aIiMgkBiGyL3VT2eUDtfsFoQbwCVbNWF2rqcwI/f5EDERERGQAR42RYxCbhVrmcWfZDp0RZ7ebzQCo/hOWQe9AVX+iTYmcwZqIiIxijRA5BrE+Q4mr7tTm6K9pBtz5+6W9d47T70/EpjIiIjJCJgiCYHo391VcXAyFQgGlUgl/f397F8f1KbPFF3CVepzYsHwAmLpbtR4aERG5BanPb9YIkWNR9xmq63GGhuWra5GIiIi0sI8QuRb9/kT6TWxERERaWCNErke/P5GpEKTM5mSMRERuikGIXJN2E5uxoMPFXYmI3BqDELk2saCjXo7D00d8cVftEWasLSIicmkMQuS6xFax116OAzLoLNcBqIbg/5oK3DX69rB8AyGKwYiIyCVw+LwJHD7vxC4fUE2qWCdaC7tqb+OaZkREToHD54nUs1WbWppDdB+x3w/01jTb9TTQ0BeIirszdF9dWwSw5oiIyAkwCJHr0p+tWj3rtHbIkXkAM/YAWT8D3z5v5gVqVJM3yuRAl4nAya1aTW5QXcdQkxr7HhEROQQ2jZnApjEXoD1btfZyHOo5hronqfZZ1UmvZkirKUwsREmm16SmHZrYxEZEZBVSn98MQiYwCLkgQ8t4HN9cOyRpz0eks6aZBck8gORTrBkiIrIgBiELYRByM6bWOlNmA1ePqla3N9X3yBxcC42IyKKkPr+5xAaRNkVTVSAxVDujaAp0GlN7GY+uD915r24KA6D6X0wmciItXAuNiMhu2FmaqC7ElvG4Z+Gd94DhfkldJgAnt+k2wWkHL3akJiKyGTaNmcCmMbII/SY37ffAneAjNomjsY7UDE1ERKI4jxCRI9Fe+0z7vfYSIPqTOKqX/Ai9C6gqrR12uE4aEVG9sUbIBNYIkdWIDtkXIZOpJnLUDjtix+qPPmNtERG5MdYIETm6wkvSRp6JzWatfq+zX7WquU2/pqkuTWwMUUTkJhiEiOxFdAkQ/Ukc9YPS7dmsIUOtRWPVo8/EFps1p4mNEz4SkRthECKyF/0lQPQncfT0Bj5KMFBrJEAVmm4HKfWxAPDrTvHaoo+G3GliS1gCRMYCnj61Q9MvW7SOux2iWg0xXDPE2iMicmJOE4QKCwsxe/Zs/O9//4NcLsfYsWOxevVq+Pr6Gtx/8eLF+Pbbb5GVlYWQkBCMHj0aL730EhQKhY1LT2SA2DB84M6fOmul6ROAsR8DPsF3hukb63Ok3cS2Z9HtjXq1SqLHaTW56WOHbSJyck4zoeLkyZPx66+/Ys+ePdi9ezcOHDiAxx9/3OD+OTk5yMnJwRtvvIHTp09j48aNSEtLw4wZM2xYaiIJjE3i2D1J1QF63EZV0NAm8wCiet+ZkVq7ZkeHsf/NpYyVkAOl11U1P4Dqz8sHgD8zxJvg1PsRETkBpxg1dubMGXTs2BHp6eno2bMnACAtLQ0jR47En3/+icjISEnn+fzzz/Hwww+jtLQUDRqIV4ZVVFSgoqJC8764uBhRUVEcNUb2J7YWmrr25fIBYFNi7WOGvQJE9THSxHabdhOb9oSP2kP69fsPGapNssZyIfVpfmPTHZFbcqlRY4cPH0ZAQIAmBAFAQkIC5HI5jhw5gjFjxkg6j/pmGApBALB8+XIsXbq03mUmsjhDzWiAeMdrmQfQcXTtvkj6ZB7AjD1AVZnuLNn6a6rp9x8SrU3Sqj0ytFabOpQA0gJKfZrf2HRHRCY4RRDKy8tDaGiozrYGDRogMDAQeXl5ks5RUFCAl156yWhzGgAsWLAAc+bM0bxX1wgROQT9iRm1t4t1vFbvqx2ick4A3y3R3a9Zj9rnKwySNrxfE8Bu1xBtn34ndLQaIj5rtn5Nk6GAYmgEnLHO25Y4lojchl2DUEpKClasWGF0nzNnztT7OsXFxRg1ahQ6duyIJUuWGN3Xy8sLXl5e9b4mkc0ZqzEC7oSolv2BTmMN76cmOrxfj7o2qSirdu3Rrqe0pgLQmzVbuzbJ2PB+sbmWjHXe1lafY8WwiY3IJdk1CM2dOxfTpk0zuk9MTAzCw8ORn5+vs/3vv/9GYWEhwsPDjR5/8+ZNDB8+HH5+fti5cyc8PT3rW2wix2Woxqgu+4nVMoktGNushyrA1ApMwp2RalJGphka3i/W5Kdeo80YQ82Fxo411HTHNeCIXJZdg1BISAhCQkJM7hcfH4+ioiJkZGSgRw9VFf6+fftQU1ODuLg4g8cVFxdj2LBh8PLywq5du9CoUSOLlZ3ILYjVMt2zsHZtkpTaI1PEhvdrOmjrhS9A1UFcrK+Rdggx1lyoz+C6byJrwKln+I6Kq30+V+6XZCrg1aUPmC3LR8a56QzzTjFqDABGjBiBa9euYd26daiqqsL06dPRs2dPbNmi6ryZnZ2NIUOGYPPmzejduzeKi4sxdOhQlJWVYefOnfDx8dGcKyQkBB4eHpKuy7XGiCTSHtUGOVTBQfufF5luU5kMt8OP2Aza2ofpdeY21tdIbFZs7SAHiP9D7+ljemSdaNn0go7o+nFyYNxH4qFJnyM8eAyVwVTAMxQkxfY153tKfThbM4Da4+di61AiZYZ57T5/ThCMpD6/nSYIFRYWYtasWToTKq5Zs0YzoeKVK1fQsmVL7N+/H4MGDcL333+PwYMHi57r8uXLiI6OlnRdBiEiMyiz74SOS3sNz5qtCSWmZtC+TT0kX+pCtWraC9Ea+4deysSSxq4xY4+qebC04PYSKGL7GXg4qx9wOZnAd4uNP3iMPQwt8ZmhJkBDi/yqv7epIGns52DsASt1+RcpixDrf1fA8L3V/sxUs6g1Akp9l70xt0yS/r/S+kXGSWo6XS4I2QuDEFE9aAcjk0Pkkw0P71c/0AzNl2TM1N2q65sToGoXQqs2S+xj2e3aLf1O4fr7aYWHWiPpjFzT1MNQ/8Gp7mNl6kFusDlQq7zJp1QPVbH7rvO9TTxKDP4cRB6wrYYAV48AX8yQ1lk/6zDw7b/Er6me08pYjVWtUKy+D0buidTFjc0NqFJCiVjIU6vLgsu/7hS/f8bol8ERajP1uNQ8QkTkpKR23jY1vL+ufZHUnaPFRpCJ7q81FYC66U67Nkt/biU1nU7hMsNl1O4Ubio0aXc2N7YGHFB7mgCdJVS0rqE9Qq/oD70QJlIOoVr1ndWBwej3NsLoz0Hve+qMNjRB534auCZQeyoF/VGLBufHMnJPrgqmFzeWGkK1A6DYWoFiZfg1FbhrdO0aL/0y6fdnM1QDaC7tEZh1CV8OFJpYI2QCa4SI7MBYTZJO7ZFeYBEb1Wao6USffl8kQLwMtfpCiZxz3EbVn2KhyZKGvgL4RxhujjNEU5Njckfz+nWZDJISanksQacp9pLxJkvzT16P2sHb/cUCWog0JZo4r+i19JoWTTXNGqz50t9X7/8lsT5/6hohQFqzpJoNBxOwacxCGISIHJB2UAJ0A4uhEKW/RImh0GTO9cX6N9VqOkk2HppEiXU2N8RUzZI5tB/GYmWQA+M2AAHNxb+3oSCp38FdJ1BJ/J6iD2eR+znsFdWM6oY61ZvN1D2pCzP6pNX63sbKZ4H/FtT3T///JbE+f92TDDdXD33lTo2VsUEJxkJTPTEIWQiDEJEL0Q9JUvswGWNsDTjta4p2CtfuH+MBJCwGIruLP3gkPwyNfWYkjOl3aC+9Ll67oO53Y+p7a39/0ZF0G1SLBmt/T2PhK6q37s/MWAgFjPdFMlaTaKg2y9g9UZdTctCVSD+U/JoKfPu8iYPqULOkOdREKKn1C4iJEZf2XJ8QDEIWwyBERCbVpVO42Eg60c60esHN0MNw3EbAJ1i8j5X6GqJhTC9oaF/bVJOHlO9tqMZA++EnpeZB6v00VkuhvkemahL1PzN2T4zVkplsRpPDYE2ToVFvUjr9S26a1QviUmtFRUe1GQrpJrBGyPExCBGRRdW3Fqq+AUVqTY65+9anvGLHSL1HYvvW5ZpSGbsnhoKuWCd70fmxDJzX0PVNBSgpzcHGgrgYY1MpZP0socYKdwJgXf+bkohByEIYhIjI4dQ3oNQ3aNi6vI52TWP3RGofNbHySL3X5tSgWbo52FgNn5RpKvQDoBVHjTEIWQiDEBE5JEsEFFuyR3kd7R5Zqzy2/J6matssOSihnhiELIRBiIiISIvUAQKWHJRQBwxCFsIgREREpMfRattEcGZpIiIisg6ps8Y7Abm9C0BERERkLwxCRERE5LYYhIiIiMhtMQgRERGR2zKrs3RRURF27tyJH3/8EX/88QfKysoQEhKC2NhYDBs2DH379rVWOYmIiIgsTlKNUE5ODh599FFERERg2bJlKC8vR7du3TBkyBA0a9YM+/fvx7333ouOHTti27Zt1i4zERERkUVIqhGKjY3F1KlTkZGRgY4dO4ruU15ejtTUVKxatQpXr17FvHnzLFpQIiIiIkuTNKHijRs3EBQUJPmk5u7vyDihIhERkfOR+vyW1DQWFBSE3bt3o6bGyEJqevsTEREROTrJo8ZGjx6NqKgo/Otf/8LFixetWSYiIiIim5AchC5fvownnngCW7duRbt27TBw4ED8+9//Rnl5uTXLR0RERGQ1koNQVFQUFi1ahEuXLuG7775DdHQ0nnzySUREROD//u//kJ6ebs1yEhEREVlcnSZUHDx4MDZt2oTc3Fy8/vrrOHXqFPr06YOuXbtaunxEREREVlOv1ef9/PwwZMgQ/PHHHzh79ix+++03S5WLiIiIyOrqVCNUXl6OzZs3Y9CgQWjTpg22bt2KOXPm4MqVKxYuHhEREZH1mFUj9PPPP2PDhg347LPPUFlZiQceeADfffcdBg8ebK3yEREREVmN5CDUsWNHnDt3DrGxsVi+fDkeeughKBQKa5aNiIjIYqqrq1FVVWXvYpCFeHp6wsPDo97nkRyEEhIS8Omnn7JDNBERORVBEJCXl4eioiJ7F4UsLCAgAOHh4ZDJZHU+h+QgtGbNmjpfhIiIyF7UISg0NBTe3t71emiSYxAEAWVlZcjPzwcARERE1PlckoLQ8OHDsWTJEvTp08fofjdv3sR7770HX19fzJw5s86FIiIisoTq6mpNCOLyT66lcePGAID8/HyEhobWuZlMUhAaP348xo4dC4VCgcTERPTs2RORkZFo1KgR/vrrL/z22284ePAgvvrqK4waNQqvv/56nQpDRERkSeo+Qd7e3nYuCVmD+udaVVVl3SA0Y8YMPPzww/j888+xbds2fPDBB1AqlQAAmUyGjh07YtiwYUhPT0eHDh3qVBAiIiJrYXOYa7LEz1VyHyEvLy88/PDDePjhhwEASqUS5eXlCAoKgqenZ70LQkRERGRrdZpQEQAUCgXCw8MZgoiIiJzElStXIJPJkJmZae+iOIw6ByEiIiIiZ+c0QaiwsBCTJ0+Gv78/AgICMGPGDJSUlEg6VhAEjBgxAjKZDKmpqdYtKBERkRVUVlbauwguyWmC0OTJk/Hrr79iz5492L17Nw4cOIDHH39c0rGrVq1iRzkiIqqXXGU5frpUgFxluU2uN2jQIMyaNQvJyckIDg7GsGHDcPr0aYwYMQK+vr4ICwvDlClTUFBQoDkmLS0N/fr1Q0BAAIKCgnDffffh0qVLNimvs3KKIHTmzBmkpaXhww8/RFxcHPr164e3334bW7duRU5OjtFjMzMzsXLlSmzYsEHStSoqKlBcXKzzIiIi97YtPQt3v7oPD60/grtf3Ydt6Vk2ue6mTZvQsGFDHDp0CK+++iruuecexMbG4tixY0hLS8O1a9fw4IMPavYvLS3FnDlzcOzYMezduxdyuRxjxoxBTU2NTcrrjMxadFWtqKgI27dvx6VLlzB//nwEBgbi+PHjCAsLQ9OmTS1dRhw+fBgBAQHo2bOnZltCQgLkcjmOHDmCMWPGiB5XVlaGhx56CO+++y7Cw8MlXWv58uVYunSpRcpNRETOL1dZjgU7TqFGUL2vEYDnd5zGgLYhiFA0tuq127Rpg9deew0AsGzZMsTGxuKVV17RfL5hwwZERUXh/PnzaNu2LcaOHatz/IYNGxASEoLffvsNnTp1smpZnZXZNUInT55E27ZtsWLFCrzxxhuatVt27NiBBQsWWLp8AFTTo4eGhupsa9CgAQIDA5GXl2fwuGeeeQZ9+/bF/fffL/laCxYsgFKp1LyuXr1a53ITEZHzu1xQqglBatWCgCsFZVa/do8ePTR//+WXX7B//374+vpqXu3btwcATfPXhQsXMGnSJMTExMDf3x/R0dEAgKws29RgOSOza4TmzJmDadOm4bXXXoOfn59m+8iRI/HQQw+Zda6UlBSsWLHC6D5nzpwxt4gAgF27dmHfvn04ceKEWcd5eXnBy8urTtckIiLX0zLYB3IZdMKQh0yG6GDrz1bt4+Oj+XtJSQkSExNFn5vqtbYSExPRokULrF+/HpGRkaipqUGnTp3Y0doIs4NQeno63n///VrbmzZtarR2RszcuXMxbdo0o/vExMQgPDxcs7Ca2t9//43CwkKDTV779u3DpUuXEBAQoLN97Nix6N+/P77//nuzykpERO4pQtEYyx/ojOd3nEa1IMBDJsMrD3SyerOYvu7du+OLL75AdHQ0GjSo/fi+ceMGzp07h/Xr16N///4AgIMHD9q0jM7I7CDk5eUl2oH4/PnzCAkJMetcISEhko6Jj49HUVERMjIyNNWE+/btQ01NDeLi4kSPSUlJwaOPPqqzrXPnznjrrbeQmJhoVjmJiMi9TejVHAPahuBKQRmig71tHoIAYObMmVi/fj0mTZqEZ599FoGBgbh48SK2bt2KDz/8EE2aNEFQUBA++OADREREICsrCykpKTYvp7Mxu4/QP/7xD7z44ouahexkMhmysrLw3HPP1eqkZSkdOnTA8OHD8dhjj+Ho0aM4dOgQZs2ahYkTJyIyMhIAkJ2djfbt2+Po0aMAgPDwcHTq1EnnBQDNmzdHy5YtrVJOIiJyXRGKxohvFWSXEAQAkZGROHToEKqrqzF06FB07twZycnJCAgIgFwuh1wux9atW5GRkYFOnTrhmWee4SLoEphdI7Ry5UqMGzcOoaGhKC8vx8CBA5GXl4f4+Hi8/PLL1igjAOCTTz7BrFmzMGTIEMjlcowdOxZr1qzRfF5VVYVz586hrMz6ndeIiIisTawLR5s2bbBjxw6DxyQkJOC3337T2SYIdzo3RUdH67ynOgQhhUKBPXv24ODBgzh58iRKSkrQvXt3JCQkWKN8GoGBgdiyZYvBz6X8cPnDJyIiIm11mkcIAPr164d+/fpZsixERERENmV2ENJujtImk8nQqFEjtG7dGgMGDICHh0e9C0dERERkTWYHobfeegvXr19HWVkZmjRpAgD466+/4O3tDV9fX+Tn5yMmJgb79+9HVFSUxQtMREREZClmjxp75ZVX0KtXL1y4cAE3btzAjRs3cP78ecTFxWH16tXIyspCeHg4nnnmGWuUl4iIiMhizK4RWrhwIb744gu0atVKs61169Z44403MHbsWPz+++947bXXrDaUnoiIiMhSzK4Rys3Nxd9//11r+99//62ZWToyMhI3b96sf+mIiIiIrMjsIDR48GA88cQTOmt4nThxAk8++STuueceAMCpU6c4aSERERE5PLOD0EcffYTAwED06NFDs0Bpz549ERgYiI8++ggA4Ovri5UrV1q8sERERESWZHYfofDwcOzZswdnz57F+fPnAQDt2rVDu3btNPsMHjzYciUkIiJyQ4MGDUK3bt2watUqu5YjOjoaycnJSE5Otms5rKXOEyq2b98e7du3t2RZiIiI6LYdO3bA09PT3sVAeno6fHx87F0Mq6lTEPrzzz+xa9cuZGVlobKyUuezN9980yIFIyIicmeBgYH2LgIAICQkxOrXqKysRMOGDa1+HTFm9xHau3cv2rVrh7Vr12LlypXYv38/Pv74Y2zYsAGZmZlWKCIREZEDUGYDlw+o/rSBQYMGaZqjoqOjsWzZMiQlJcHX1xctWrTArl27cP36ddx///3w9fVFly5dcOzYMc3xN27cwKRJk9C0aVN4e3ujc+fO+PTTT3WucfPmTUyePBk+Pj6IiIjAW2+9pXNd9bW1m+dkMhk+/PBDjBkzBt7e3mjTpg127dql+by6uhozZsxAy5Yt0bhxY7Rr1w6rV6/Wue60adMwevRovPzyy4iMjES7du3w4osvolOnTrXuQ7du3fDCCy/U404aZ3YQWrBgAebNm4dTp06hUaNG+OKLL3D16lUMHDgQ48ePt0YZiYiI7Ov4ZmBVJ2BTourP45ttXoS33noLd999N06cOIFRo0ZhypQpSEpKwsMPP4zjx4+jVatWSEpK0iwwfuvWLfTo0QNffvklTp8+jccffxxTpkzB0aNHNeecM2cODh06hF27dmHPnj348ccfcfz4cZNlWbp0KR588EGcPHkSI0eOxOTJk1FYWAgAqKmpQbNmzfD555/jt99+w6JFi/D888/js88+0znH3r17ce7cOezZswe7d+/GI488gjNnziA9PV2zz4kTJ3Dy5ElMnz7dErdQnGAmX19f4eLFi4IgCEJAQIBw+vRpQRAEITMzU2jRooW5p3N4SqVSACAolUp7F4WIiMxUXl4u/Pbbb0J5eXndT1L0pyAsCRCExf53XkuaqLZb0cCBA4Wnn35aEARBaNGihfDwww9rPsvNzRUACC+88IJm2+HDhwUAQm5ursFzjho1Spg7d64gCIJQXFwseHp6Cp9//rnm86KiIsHb21tzXfW133rrLc17AMLChQs170tKSgQAwtdff23wujNnzhTGjh2reT916lQhLCxMqKio0NlvxIgRwpNPPql5P3v2bGHQoEEGz2vs5yv1+W12jZCPj4+mX1BERAQuXbqk+aygoMAS2YyIiMhxFF4ChBrdbUI1UPi7TYvRpUsXzd/DwsIAAJ07d661LT8/H4Cqieqll15C586dERgYCF9fX3zzzTfIysoCAPz++++oqqpC7969NedQKBQ6o8CllMXHxwf+/v6a6wLAu+++ix49eiAkJAS+vr744IMPNNdV69y5c61+QY899hg+/fRT3Lp1C5WVldiyZQseeeQRk+WpD7M7S/fp0wcHDx5Ehw4dMHLkSMydOxenTp3Cjh070KdPH2uUkYiIyH4CWwEyuW4YknkAgTE2LYb2CDKZTGZwW02Nqpyvv/46Vq9ejVWrVqFz587w8fFBcnJyrUFO9S2L+trq627duhXz5s3DypUrER8fDz8/P7z++us4cuSIzjFiI9ESExPh5eWFnTt3omHDhqiqqsK4cePqXV5jzA5Cb775JkpKSgCo2ghLSkqwbds2tGnThiPGiIjI9SiaAomrgf8lq2qCZB5A4irVdgd26NAh3H///Xj44YcBqALS+fPn0bFjRwBATEwMPD09kZ6ejubNmwMAlEolzp8/jwEDBtTrun379sU///lPzTbt1iNjGjRogKlTp+Ljjz9Gw4YNMXHiRDRu3LjOZZF0TXMPiIm5k4B9fHywbt06ixaIiIjI4XRPAloNUTWHBcY4fAgCgDZt2mD79u346aef0KRJE7z55pu4du2aJgj5+flh6tSpmD9/PgIDAxEaGorFixdDLpdrapfqet3Nmzfjm2++QcuWLfHvf/8b6enpkpfeevTRR9GhQwcAqlBlbWb3EYqJicGNGzdqbS8qKtIJSURERC5F0RRo2d8pQhAALFy4EN27d8ewYcMwaNAghIeHY/To0Tr7vPnmm4iPj8d9992HhIQE3H333ejQoQMaNWpU5+s+8cQTeOCBBzBhwgTExcXhxo0bOrVDprRp0wZ9+/ZF+/btERcXV+dySCW73QNcMrlcjry8PISGhupsv3btGpo3b46KigqLFtDeiouLoVAooFQq4e/vb+/iEBGRGW7duoXLly+jZcuW9Xq4u4vS0lI0bdoUK1euxIwZM+xSBkEQ0KZNG/zzn//EnDlzjO5r7Ocr9fktuWlMe7Kkb775BgqFQvO+uroae/fuRXR0tNTTERERkZ2dOHECZ8+eRe/evaFUKvHiiy8CAO6//367lOf69evYunUr8vLyrDt3kBbJQUhdnSaTyTB16lSdzzw9PREdHc0V54mIiJzMG2+8gXPnzqFhw4bo0aMHfvzxRwQHB9ulLKGhoQgODsYHH3yAJk2a2OSakoOQelhcy5YtkZ6ebrebRERERJYRGxuLjIwMexdDw8zeOhZh9qixy5cvW6McRERERDYnKQitWbNG8gmfeuqpOheGiIjIGuxR00DWZ4mfq6Qg9NZbb0k6mUwmYxAiIiKHoZ4BuayszOoT85HtlZWVAag907U5JAUhNocREZEz8vDwQEBAgGYdLG9v73pNFkiOQRAElJWVIT8/HwEBAfDw8KjzuczuI6RfEAD8j4qIiBxWeHg4AOgsCkquISAgQPPzras6BaHNmzfj9ddfx4ULFwAAbdu2xfz58zFlypR6FYaIiMjSZDIZIiIiEBoaiqqqKnsXhyzE09OzXjVBanVadPWFF17ArFmzcPfddwMADh48iP/7v/9DQUEBnnnmmXoXioiIyNI8PDws8uAk12L2EhstW7bE0qVLkZSUpLN906ZNWLJkicv1J+ISG0RERM5H6vPb7EVXc3Nz0bdv31rb+/bti9zcXHNPR0RERGQ3Zgeh1q1b47PPPqu1fdu2bWjTpo1FCkVERERkC2b3EVq6dCkmTJiAAwcOaPoIHTp0CHv37hUNSERERESOSnKN0OnTpwEAY8eOxZEjRxAcHIzU1FSkpqYiODgYR48exZgxY6xWUCIiIiJLk9xZWi6Xo1evXnj00UcxceJE+Pn5WbtsDoGdpYmIiJyPxTtL//DDD7jrrrswd+5cREREYNq0afjxxx8tUlgpCgsLMXnyZPj7+yMgIAAzZsxASUmJyeMOHz6Me+65Bz4+PvD398eAAQNQXl5ugxITERGRo5MchPr3748NGzYgNzcXb7/9Ni5fvoyBAweibdu2WLFiBfLy8qxZTkyePBm//vor9uzZg927d+PAgQN4/PHHjR5z+PBhDB8+HEOHDsXRo0eRnp6OWbNmQS43u484ERERuSCz5xHSdvHiRXz88cf497//jby8PAwfPhy7du2yZPkAAGfOnEHHjh2Rnp6Onj17AgDS0tIwcuRI/Pnnn4iMjBQ9rk+fPrj33nvx0ksvSb5WRUUFKioqNO+Li4sRFRXFpjEiIiInYrV5hLS1bt0azz//PBYuXAg/Pz98+eWX9TmdQYcPH0ZAQIAmBAFAQkIC5HI5jhw5InpMfn4+jhw5gtDQUPTt2xdhYWEYOHAgDh48aPRay5cvh0Kh0LyioqIs+l2IiIjIcdQ5CB04cADTpk1DeHg45s+fjwceeACHDh2yZNk08vLyEBoaqrOtQYMGCAwMNNgk9/vvvwMAlixZgsceewxpaWno3r07hgwZolkjTcyCBQugVCo1r6tXr1ruixAREZFDMSsI5eTk4JVXXkHbtm0xaNAgXLx4EWvWrEFOTg7Wr1+PPn36mHXxlJQUyGQyo6+zZ8+adU61mpoaAMATTzyB6dOnIzY2Fm+99RbatWuHDRs2GDzOy8sL/v7+Oi8iIiJyTZInVBwxYgS+++47BAcHIykpCY888gjatWtXr4vPnTsX06ZNM7pPTEwMwsPDkZ+fr7P977//RmFhIcLDw0WPi4iIAAB07NhRZ3uHDh2QlZVV90ITERGRy5AchDw9PbF9+3bcd999Flu9NyQkBCEhISb3i4+PR1FRETIyMtCjRw8AwL59+1BTU4O4uDjRY6KjoxEZGYlz587pbD9//jxGjBhR/8ITERGR05MchKwxGkyqDh06YPjw4Xjsscewbt06VFVVYdasWZg4caJmxFh2djaGDBmCzZs3o3fv3pDJZJg/fz4WL16Mrl27olu3bti0aRPOnj2L7du32+27EBERkeMwe60xe/nkk08wa9YsDBkyBHK5HGPHjsWaNWs0n1dVVeHcuXMoKyvTbEtOTsatW7fwzDPPoLCwEF27dsWePXvQqlUre3wFIiIicjD1mkfIHXCJDSIiIudjk3mEiIiIiJwZgxARERG5LQYhIiIiclsMQkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBEREREbotBiIiIiNwWgxARERG5LQYhIiIiclsMQkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBEREREbotBiIiIiNwWgxARERG5LQYhIiIiB5CrLMdPlwqQqyy3d1HcSgN7F4CIiNxbrrIclwtK0TLYBxGKxrXeu4Nt6VlYsOMUagRALgOWP9AZE3o1t3ex6sTZfn4MQkREZJC1H2r6AWBMbFPsPJHt0IHAnHuivS8A0eNyleWaewAANQLw/I7TGNA2RLOfsWvW9TNrnFdKoHO0oMQgRERUT5b6h90eNSPGrmHqoVbXQKD9cNcPAF8cz9YcIxYI6vpd9D8HUKd7bc49OXD+umZf2e3PBdQ+7nJBqeYeqFULAq4UlCFC0bjWNZ8b3h6dmylqXUP/vGJlHdA2RLR8Uo41dd5jVwpFA137cD+UVlabvKa9yARBEEzv5r6Ki4uhUCigVCrh7+9v7+IQkQm2/m3T3LAg9TdpUzUjxs4LiNc86B97KluJFV+fFb1GrrIcd7+6T+cBLQew5qFY9GjRxKwHmqF79NOlAjy0/ojJe/zpY30Q3yrI7J+DoYe+fijRv9faQUP73vo09MCY936SdE+0ryHGQybDjn/Go7SyWvS8HjIZDqYMBoBaPwc1sWuoz5tVWIant2bqHCcDIJPBYPmMXdPYZ9rnFSOTAYKJa1rj/1Wpz28GIRMYhIich637WYiFBe0HnH7QEAs36t+k9R9a+qSeV6zmwVAgMHaNwtJKzNpyQrQsUh5oxsKDlIe8mnbQEAuSucpy0ftn6qEvhdi9NXSOulxDHRDU10k9kYNqQYCHTIZnh7dD52YKoz8HU+eti4WjOiBc0Uj0mu9MikVucTle/vJs3U5ugJSgWxcMQhbCIERkOVJra+rS5GLsgSuln0Vdym6oRkPqg8jUb9J1Pa+ha0h5WBv77d0U9QNNO5AaCg8LR3XAqC4ROHD+Op7fcVoTAEbHRmoCgamaG+33zk4dQssqa3Ayu0gTdOsa4upD7Jrm/rcKqEJsjYl9HKFGiH2EiMgmpNbWmFOrY+qBa6yfhX5NiTnNVuqmE5+GHpCLPBykhhXBjH3NOa+ha0g5XHtfGSD6/cR4yGSIDvau1e/H0KHLvjyDV746g+UPdMbBlMG4UlCG6GBvRCgaY96wdsi48hee2nrCaP8h7fe2JPWe1Aqh6hog1A4I1YKAssoaRAd7Y/KHP+vcP2M/B+1rGAse8tvnkhJu9K+pPlbs+mLnlQN4+6FYNGvSuNYvJ9rX9JDJ8MoDnezeYZpBiIisTsqoGHP30++YKfZcMvRwrhGAlC9O3XmAGOkn4tPQo9axy79WNQ3oN2lI+Q1YCv2aEUud1xixawgA3p4YCwA6oQQQf6ABwO6TOeIPTJEHrvrnezBlsE7TSISiMQJ9a3cgNue7GHvoa4cS/Xttirrm5mphuaR7MqBtiCbkAcCVgjJ4N5SL1l5GB3uLdpxW/xyCfL1wMrsIr319TlODpn0NsfOqQ0n3232YtGvf1Md+eTIXy748Y/CaN0orRJvKXhjVASNFavVeeaATRnWJBKD6hUPsmtrB194YhIjIYgzVqBgaFfPlyVyM6hKh2dfU6BlAt3ZGjFzkt82fLhWIPlwErXCjX9ugDjvG+oXUCEDqiRxNk4bYg0hNLNwY+k26++3+MPOGtTP4gDN0Xv2aB2OBQN0XpUuzAIMP5x7RqrKUVv5t9IF24Px1g/191OEh/cpftR64+j9ftZbBPpJrXsTun6GHvn4o0a6FulJQVitoaN9b9Xm6RjVB16gmJu+J+jtpfzf138UCgvoz/e+t/XOIbxWEf3SNNHgNsfOqQ8mEXs1FyzeqSwRe+eqMwWvmKstFyzTy9v+7hs5r7JqOEIDU2EfIBPYRIpLGWJOWWKdiNVOdhk2NrtGm3c9C/Y+uoc60lqTd2XNbepbOg0gdNLTLox0e9B9axpoBpZ4XgNFrGHpo6V9Dvzza19CvoTMWgtTnMdS53FAfEf3y6IcSsZAipbym6B9n7Dx1vYaxY039HOp6XmNMXbO+ZbIHdpa2EAYhckfmzLdiKGjoP+C0/yHVZ6rZQsqoHUP/eOsMZzZSU2KKodoJsQe5OQ8ia+1ry2sY6jSubjqpz0PeVCipTxBxZPb4Xqau6Wz3mkHIQhiEyN3UCg+o+6iddybFItC3oU5oEuuPoM9YZ0tD+6qbk9QMzYNjqOnEWD8R/RE9+n00HP03Y2szt6bH2R6o5Jw4aoyIdEiZLl+/Y7B2JDB31I4MdzrYajeVifVH0FcDINDHC6WV1UY73ur3gdAm1t9IfV5D/RoM9RNR9wsBYLCPhjuLUDQ22udFbH/eN3IUDEJEbkDqFP3Gmp7MoT/cVn/0l/ZDU6yZSj2CBhDvOKrfD0iMWGdb7fMCtR/I6vemwg4f5LUZ6zBL5MgYhIiciKnlGqSu56Q9Igq4E0LqG4LUTU8CUGu4rfboIP2HpliHXmOjYNS1M8aYW0shdjwf5ubhPSNnxCBEZGd1XezRWH8d7aYosSYiNUPBR26k47KpUTujukQaHG5rqDamLsNvpWAtBRGZws7SJrCzNFmTlFmU6zr8W71GU5SEDsfa9JueANRp1I4zDrclItfhcqPGCgsLMXv2bPzvf/+DXC7H2LFjsXr1avj6+ho8Ji8vD/Pnz8eePXtw8+ZNtGvXDv/6178wduxYyddlECJLMNRkZWqkjanJA6XQn/1Yn9hsuJYKLBwdRET24nKjxiZPnozc3Fzs2bMHVVVVmD59Oh5//HFs2bLF4DFJSUkoKirCrl27EBwcjC1btuDBBx/EsWPHEBsba8PSkzszVOtjaBbljCt/IdC39giuutKf/djYFP2WDizsM0JEjs4paoTOnDmDjh07Ij09HT179gQApKWlYeTIkfjzzz8RGVl76CwA+Pr6Yu3atZgyZYpmW1BQEFasWIFHH31U9JiKigpUVFRo3hcXFyMqKoo1QlQnhmp9dvwzHlmFZbWau/QnFjQ2eaCx/jpitGc/Zk0NEbk6l6oROnz4MAICAjQhCAASEhIgl8tx5MgRjBkzRvS4vn37Ytu2bRg1ahQCAgLw2Wef4datWxg0aJDBay1fvhxLly619FcgNyDW/GWo1mf0ez9BEO4EH+3Zjo0tImpoLSpjq3YDpoeNExG5K6cIQnl5eQgNDdXZ1qBBAwQGBiIvL8/gcZ999hkmTJiAoKAgNGjQAN7e3ti5cydat25t8JgFCxZgzpw5mvfqGiEiYww1fxlaOFLQCjtyAXjHwJBzwPjkgWLz4NzXVXyBTAYfIqLa7BqEUlJSsGLFCqP7nDljfCp+Y1544QUUFRXhu+++Q3BwMFJTU/Hggw/ixx9/ROfOnUWP8fLygpeXV52vSe7D0GzMNQKw4ItT8PFqgB4tmtSaPLBG7zzq2Y6jg73rPHmgPg4bJyKSxq59hK5fv44bN24Y3ScmJgb/+c9/MHfuXPz111+a7X///TcaNWqEzz//XLRp7NKlS2jdujVOnz6Nu+66S7M9ISEBrVu3xrp16ySVkaPG3Etd5vQx1pdHe2X1KwVl8G4orzWUXXukGIecExFZhlP0EQoJCUFISIjJ/eLj41FUVISMjAz06NEDALBv3z7U1NQgLi5O9JiysjIAgFwu19nu4eGBmhr938nJnanDz6lsJVZ8fVbSnD6G1uPSp15a4mDKYE1HZWOzHbMmh4jItpxi1BgAjBgxAteuXcO6des0w+d79uypGT6fnZ2NIUOGYPPmzejduzeqqqrQsWNHRERE4I033kBQUBBSU1Mxf/587N69GyNHjpR0XdYIuTZj8/SYO6ePWF8gNe0RWwBHbRERWZtT1AiZ45NPPsGsWbMwZMgQzYSKa9as0XxeVVWFc+fOaWqCPD098dVXXyElJQWJiYkoKSlB69atsWnTJskhiFyTob49+syZ00fdl+dqYbnJEVsAR20RETkKp6kRshfWCDk/7X4/5qy0bs6cPtp9edjPh4jI/lyuRoioLvQ7NQPSVlqvy5w+auznQ0TkPBiEyCWZ06lZe56eZ4e3Q5dmAbhRWmH2nD7a2PRFROQcGITI5ZizUKmheXpyleUWm9OHiIgcF4MQuZRcZbnRECS20nrXqCa19otQNBYd5i62LxEROS8GIXJK+hMfqt8XllYaHdllzkrr7OtDROT6GITI6eiv6zUmtil2nsjWdIjWH+El1qlZaqhhXx8iItfGIEQOxdgSF2IdoGsE4Ivj2Zp9BKiCkNROzURE5N4YhMhhGFrBXf8zUwQAb0+MRZCvF5u0iIjIKAYhcgj6nZzVa3QNaKtai05qCAJUtUA9opswABERkUly07sQWd/lgtJaQadaEHCloEz0MzUPmQxjuzeFh0ymea+9iCkREZExrBEih9Ay2KfWvD1yADdKKxDVpLHoZ9odoOcNa8fRXUREZDauNWYC1xqzLv11wNTz9mgvh6EeGZZ6IofrdxERkSRca4wckqEFUNWdow+mDEbGlb90VnCvEYDUEzmc1ZmIiCyOQYhsxtgCqOrO0QdTBiPQt6Fof6GyyhrEtwqyZZGJiMjFsbM02YT+qDABtRdBVXeOVvcX0uYhkyE62NsWRSUiIjfCIERWl6ssx+6TOSaHv6vDjnqdL44EIyIia2PTGFmVsYkQxRZAVYcdrvNFRES2wCBEVmNsJXgpC6BynS8iIrI2BiGqN3NXgn9hVAeM7BJh9gKoRERElsYgRPVi7krwHjKZTggiIiKyJ3aWpjoTWx/si+PZOiPDAGhGgLHTMxERORrWCFGdSB0JxpXgiYjIkTEIkdmMjQTTx5XgiYjIkbFpjMxiaiQYV4InIiJnwhohMsvlglKTI8G4EjwRETkLBiEyi3r5C+0wpD8SjPP/EBGRs2DTGJmFy18QEZErYY0QidKfJFEbl78gIiJXwSBEtehPkrj8gc6Y0Ku5zj5s/iIiIlfAIEQ6xCZJfH7HabQP90NpZbVoDREREZGzYhAiHWKjwqoFAaPf+wmCkRoiIiIiZ8TO0qRDPSpMn6BXQ5SrLLdtwYiIiKyAQYh06I8KE/sPpFoQcKWgzLYFIyIisgI2jZGGeqTYgLYhOJgyGFcKyuDdUI4x7/1Ua96g6GBv+xWUiIjIQhiECIDxkWLLH+iM53ecRrUgcN4gIiJyKU7TNPbyyy+jb9++8Pb2RkBAgKRjBEHAokWLEBERgcaNGyMhIQEXLlywbkGdkKGRYup+QBN6NcfBlMH49LE+OJgymB2liYjIZThNEKqsrMT48ePx5JNPSj7mtddew5o1a7Bu3TocOXIEPj4+GDZsGG7dumXFkjofQyPFtPsBRSgaI75VEGuCiIjIpThN09jSpUsBABs3bpS0vyAIWLVqFRYuXIj7778fALB582aEhYUhNTUVEydOtFZRnYa6T5BPQw/R9cPYD4iIiFyd0wQhc12+fBl5eXlISEjQbFMoFIiLi8Phw4cNBqGKigpUVFRo3hcXF1u9rLakDj+nspVY8fVZTZ+gMbFNkXoih/2AiIjIrbhsEMrLywMAhIWF6WwPCwvTfCZm+fLlmtonV6PdIVpbjQCknsjBjn/Go6yyhuuHERGR27BrH6GUlBTIZDKjr7Nnz9q0TAsWLIBSqdS8rl69atPrW4t+h2h91YKAssoa9gMiIiK3Ytcaoblz52LatGlG94mJianTucPDwwEA165dQ0REhGb7tWvX0K1bN4PHeXl5wcvLq07XdETqprDC0kqDIQhgnyAiInJPdg1CISEhCAkJscq5W7ZsifDwcOzdu1cTfIqLi3HkyBGzRp45M+2mMBlUL7EsxD5BRETkrpymj1BWVhYKCwuRlZWF6upqZGZmAgBat24NX19fAED79u2xfPlyjBkzBjKZDMnJyVi2bBnatGmDli1b4oUXXkBkZCRGjx5tvy9iI/pNYQJUQUg9OsxDJsOzw9uhS7MA9gkiIiK35TRBaNGiRdi0aZPmfWxsLABg//79GDRoEADg3LlzUCqVmn2effZZlJaW4vHHH0dRURH69euHtLQ0NGrUyKZltwexuYEEAG9PjEWQrxfDDxEREQCZIAhGeo5QcXExFAoFlEol/P397V0ck7TnBhJbI+xgymAGICIicnlSn99OUyNEpumvF8a5gYiIiIxjEHIRYuuFcW4gIiIi4xiEXISh9cLUcwMRERFRbU6z6CoZ1zLYB3KZ7jbODURERGQcg5ATylWW46dLBchVlmveXy4oxXMj2sNDpkpD7BNERERkGpvGnIxYh+idJ7I1758b3p5zAxEREUnEGiEnItYh+ovj2TrvX0s7xxBEREQkEYOQExHrEK2vWhBwpaDMNgUiIiJycgxCTkSsQ7Q+dpAmIiKSjkHIiUQoGmP5A511OkSP7d6UHaSJiIjqiEtsmOCIS2zkKstxpaBM0xdI/z0REZG74xIbLixC0Vgn8Oi/JyIiImnYNEZERERui0GIiIiI3BaDkBPQn0maiIiILIN9hByc/kzSyx/ojAm9mtu7WERERC6BNUIOKldZjv/9kl1rJunnd5xmzRAREZGFsEbIAWnXAulTzxzNUWJERET1xxohB6O/npg+zhxNRERkOQxCDsbYemKcOZqIiMiy2DTmYNTriWmHITmAtx+KRfcWTRiCiIiILIg1Qg5GbD2x5WM7Y1SXSIYgIiIiC2ONkAOa0Ks5BrQN4fphREREVsYg5CByleW4XFCKlsE+mrXDGICIiIisi0HIAXDSRCIiIvtgHyE70x8uz0kTiYiIbIdByM7EhsurJ00kIiIi62IQsjP1cHltnDSRiIjINhiE7ExsuDwnTSQiIrINdpa2E+1RYhwuT0RE7kh/xLQ9MAjZgaFRYgxARETkLhxlxDSbxmyMo8SIiMjdOdKzkEHIxjhKjIiI3J0jPQsZhGyMo8SIiMjdOdKzkEHIxjhKjIiI3J0jPQtlgiAIpndzX8XFxVAoFFAqlfD397fYeXOV5RwlRkREbs2az0Kpz2+nqRF6+eWX0bdvX3h7eyMgIMDk/lVVVXjuuefQuXNn+Pj4IDIyEklJScjJybF+YSWIUDRGfKsghiAiInJbjvAsdJogVFlZifHjx+PJJ5+UtH9ZWRmOHz+OF154AcePH8eOHTtw7tw5/OMf/7BySYmIiMhZOF3T2MaNG5GcnIyioiKzj01PT0fv3r3xxx9/oHlzaXMVWKtpjIiIiKxH6vPbrSZUVCqVkMlkRpvWKioqUFFRoXlfXFxsg5IRERGRPThN01h93bp1C8899xwmTZpkNBkuX74cCoVC84qKirJhKYmIiMiW7BqEUlJSIJPJjL7Onj1b7+tUVVXhwQcfhCAIWLt2rdF9FyxYAKVSqXldvXq13tcnIiIix2TXprG5c+di2rRpRveJiYmp1zXUIeiPP/7Avn37TPbz8fLygpeXV72uSURERM7BrkEoJCQEISEhVju/OgRduHAB+/fvR1BQkNWuRURERM7HafoIZWVlITMzE1lZWaiurkZmZiYyMzNRUlKi2ad9+/bYuXMnAFUIGjduHI4dO4ZPPvkE1dXVyMvLQ15eHiorK+31NYiIiMiBOM2osUWLFmHTpk2a97GxsQCA/fv3Y9CgQQCAc+fOQalUAgCys7Oxa9cuAEC3bt10zqV9DBEREbkvp5tHyNY4jxAREZHzcbklNoiIiIgszWmaxuxFXWHGiRWJiIich/q5barhi0HIhJs3bwIAJ1YkIiJyQjdv3oRCoTD4OfsImVBTU4OcnBz4+flBJpNZ5JzFxcWIiorC1atX2e/IynivbYf32nZ4r22H99p2LH2vBUHAzZs3ERkZCbnccE8g1giZIJfL0axZM6uc29/fn/9j2Qjvte3wXtsO77Xt8F7bjiXvtbGaIDV2liYiIiK3xSBEREREbotByA68vLywePFirmlmA7zXtsN7bTu817bDe2079rrX7CxNREREbos1QkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBkY++++y6io6PRqFEjxMXF4ejRo/Yukks6cOAAEhMTERkZCZlMhtTUVHsXySUtX74cvXr1gp+fH0JDQzF69GicO3fO3sVySWvXrkWXLl00k83Fx8fj66+/tnex3MKrr74KmUyG5ORkexfF5SxZsgQymUzn1b59e5uWgUHIhrZt24Y5c+Zg8eLFOH78OLp27Yphw4YhPz/f3kVzOaWlpejatSveffddexfFpf3www+YOXMmfv75Z+zZswdVVVUYOnQoSktL7V00l9OsWTO8+uqryMjIwLFjx3DPPffg/vvvx6+//mrvorm09PR0vP/+++jSpYu9i+Ky7rrrLuTm5mpeBw8etOn1OXzehuLi4tCrVy+88847AFTrmEVFRWH27NlISUmxc+lcl0wmw86dOzF69Gh7F8XlXb9+HaGhofjhhx8wYMAAexfH5QUGBuL111/HjBkz7F0Ul1RSUoLu3bvjvffew7Jly9CtWzesWrXK3sVyKUuWLEFqaioyMzPtVgbWCNlIZWUlMjIykJCQoNkml8uRkJCAw4cP27FkRJajVCoBqB7QZD3V1dXYunUrSktLER8fb+/iuKyZM2di1KhROv9uk+VduHABkZGRiImJweTJk5GVlWXT63PRVRspKChAdXU1wsLCdLaHhYXh7NmzdioVkeXU1NQgOTkZd999Nzp16mTv4rikU6dOIT4+Hrdu3YKvry927tyJjh072rtYLmnr1q04fvw40tPT7V0UlxYXF4eNGzeiXbt2yM3NxdKlS9G/f3+cPn0afn5+NikDgxARWcTMmTNx+vRpm7fvu5N27dohMzMTSqUS27dvx9SpU/HDDz8wDFnY1atX8fTTT2PPnj1o1KiRvYvj0kaMGKH5e5cuXRAXF4cWLVrgs88+s1mTL4OQjQQHB8PDwwPXrl3T2X7t2jWEh4fbqVREljFr1izs3r0bBw4cQLNmzexdHJfVsGFDtG7dGgDQo0cPpKenY/Xq1Xj//fftXDLXkpGRgfz8fHTv3l2zrbq6GgcOHMA777yDiooKeHh42LGErisgIABt27bFxYsXbXZN9hGykYYNG6JHjx7Yu3evZltNTQ327t3LNn5yWoIgYNasWdi5cyf27duHli1b2rtIbqWmpgYVFRX2LobLGTJkCE6dOoXMzEzNq2fPnpg8eTIyMzMZgqyopKQEly5dQkREhM2uyRohG5ozZw6mTp2Knj17onfv3li1ahVKS0sxffp0exfN5ZSUlOj8RnH58mVkZmYiMDAQzZs3t2PJXMvMmTOxZcsW/Pe//4Wfnx/y8vIAAAqFAo0bN7Zz6VzLggULMGLECDRv3hw3b97Eli1b8P333+Obb76xd9Fcjp+fX61+bj4+PggKCmL/NwubN28eEhMT0aJFC+Tk5GDx4sXw8PDApEmTbFYGBiEbmjBhAq5fv45FixYhLy8P3bp1Q1paWq0O1FR/x44dw+DBgzXv58yZAwCYOnUqNm7caKdSuZ61a9cCAAYNGqSz/eOPP8a0adNsXyAXlp+fj6SkJOTm5kKhUKBLly745ptvcO+999q7aER19ueff2LSpEm4ceMGQkJC0K9fP/z8888ICQmxWRk4jxARERG5LfYRIiIiIrfFIERERERui0GIiIiI3BaDEBEREbktBiEiIiJyWwxCRERE5LYYhIiIiMhtMQgRERGRRRw4cACJiYmIjIyETCZDamqqVa+3ZMkSyGQynVf79u3NOgeDEBHZ1aBBg5CcnKx5Hx0djVWrVln8OtOmTcPo0aMtfl6ppkyZgldeeUXSvhMnTsTKlSutXCIiyystLUXXrl3x7rvv2uyad911F3JzczWvgwcPmnU8gxARWY09wseVK1cgk8mQmZmps3316tV2W17ll19+wVdffYWnnnpK0v4LFy7Eyy+/DKVSaeWSEVnWiBEjsGzZMowZM0b084qKCsybNw9NmzaFj48P4uLi8P3339frmg0aNEB4eLjmFRwcbNbxDEJE5BYUCgUCAgLscu23334b48ePh6+vr6T9O3XqhFatWuE///mPlUtGZFuzZs3C4cOHsXXrVpw8eRLjx4/H8OHDceHChTqf88KFC4iMjERMTAwmT56MrKwss45nECIimyktLUVSUhJ8fX0REREhqfmnqKgIjz76KEJCQuDv74977rkHv/zyi8H9W7ZsCQCIjY2FTCbTLAirXzs1aNAgzJ49G8nJyWjSpAnCwsKwfv16lJaWYvr06fDz80Pr1q3x9ddf65z/9OnTGDFiBHx9fREWFoYpU6agoKDAYHmqq6uxfft2JCYm6mx/77330KZNGzRq1AhhYWEYN26czueJiYnYunWryftD5CyysrLw8ccf4/PPP0f//v3RqlUrzJs3D/369cPHH39cp3PGxcVh48aNSEtLw9q1a3H58mX0798fN2/elHwOBiEispn58+fjhx9+wH//+198++23+P7773H8+HGjx4wfPx75+fn4+uuvkZGRge7du2PIkCEoLCwU3f/o0aMAgO+++w65ubnYsWOHwXNv2rQJwcHBOHr0KGbPno0nn3wS48ePR9++fXH8+HEMHToUU6ZMQVlZGQBVKLvnnnsQGxuLY8eOIS0tDdeuXcODDz5o8BonT56EUqlEz549NduOHTuGp556Ci+++CLOnTuHtLQ0DBgwQOe43r174+jRo6ioqDB6f4icxalTp1BdXY22bdvC19dX8/rhhx9w6dIlAMDZs2drdX7Wf6WkpGjOOWLECIwfPx5dunTBsGHD8NVXX6GoqAifffaZ5HI1sPg3JSISUVJSgo8++gj/+c9/MGTIEACqINKsWTODxxw8eBBHjx5Ffn4+vLy8AABvvPEGUlNTsX37djz++OO1jgkJCQEABAUFITw83GiZunbtioULFwIAFixYgFdffRXBwcF47LHHAACLFi3C2rVrcfLkSfTp0wfvvPMOYmNjdTo9b9iwAVFRUTh//jzatm1b6xp//PEHPDw8EBoaqtmWlZUFHx8f3HffffDz80OLFi0QGxurc1xkZCQqKyuRl5eHFi1aGP0eRM6gpKQEHh4eyMjIgIeHh85n6mbjmJgYnDlzxuh5goKCDH4WEBCAtm3b4uLFi5LLxSBERDZx6dIlVFZWIi4uTrMtMDAQ7dq1M3jML7/8gpKSklr/8JWXl2t+g6yPLl26aP7u4eGBoKAgdO7cWbMtLCwMAJCfn68pz/79+0X7+ly6dEk0CJWXl8PLywsymUyz7d5770WLFi0QExOD4cOHY/jw4RgzZgy8vb01+zRu3BgANLVRRM4uNjYW1dXVyM/PR//+/UX3adiwodnD37WVlJTg0qVLmDJliuRjGISIyGGVlJQgIiJCdFSJJTo+e3p66ryXyWQ629ThpaamRlOexMRErFixota5IiIiRK8RHByMsrIyVFZWomHDhgAAPz8/HD9+HN9//z2+/fZbLFq0CEuWLEF6errme6mb/tQ1XETOoKSkRKc25vLly8jMzERgYCDatm2LyZMnIykpCStXrkRsbCyuX7+OvXv3okuXLhg1apTZ15s3bx4SExPRokUL5OTkYPHixfDw8MCkSZMkn4NBiIhsolWrVvD09MSRI0fQvHlzAMBff/2F8+fPY+DAgaLHdO/eHXl5eWjQoAGio6MlXUcdNqqrqy1Sbv3yfPHFF4iOjkaDBtL++ezWrRsA4LffftP8HVAN+U1ISEBCQgIWL16MgIAA7Nu3Dw888AAAVafsZs2amT0UmMiejh07hsGDB2vez5kzBwAwdepUbNy4ER9//DGWLVuGuXPnIjs7G8HBwejTpw/uu+++Ol3vzz//xKRJk3Djxg2EhISgX79++Pnnn836BYJBiIhswtfXFzNmzMD8+fMRFBSE0NBQ/Otf/4JcbnjMRkJCAuLj4zF69Gi89tpraNu2LXJycvDll19izJgxOh2Q1UJDQ9G4cWOkpaWhWbNmaNSoERQKhUW+w8yZM7F+/XpMmjQJzz77LAIDA3Hx4kVs3boVH374Ya1+D4CqRqd79+44ePCgJgjt3r0bv//+OwYMGIAmTZrgq6++Qk1NjU4z4Y8//oihQ4dapNxEtjJo0CAIgmDwc09PTyxduhRLly61yPUsMbKSo8aIyGZef/119O/fH4mJiUhISEC/fv3Qo0cPg/vLZDJ89dVXGDBgAKZPn462bdti4sSJ+OOPPzT9d/Q1aNAAa9aswfvvv4/IyEjcf//9Fit/ZGQkDh06hOrqagwdOhSdO3dGcnIyAgICjAa6Rx99FJ988onmfUBAAHbs2IF77rkHHTp0wLp16/Dpp5/irrvuAgDcunULqampmk7bRGQ9MsFYdCMionorLy9Hu3btsG3bNsTHx5vcf+3atdi5cye+/fZbG5SOyL2xRoiIyMoaN26MzZs3G514UZunpyfefvttK5eKiADWCBEREZEbY40QERERuS0GISIiInJbDEJERETkthiEiIiIyG0xCBEREZHbYhAiIiIit8UgRERERG6LQYiIiIjcFoMQERERua3/B3pqCi8/4RlXAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "\n", "data = gettable.get()\n", "\n", "plt.plot(times, data[0], '.', label=\"real\")\n", "plt.plot(times, data[1], '.', label=\"imaginary\")\n", "plt.legend()\n", "plt.xlabel(\"Idle time (s)\")\n", "plt.ylabel(\"Voltage (V)\")\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "cce1ab44", "metadata": {}, "source": [ "Note that the data used here is the same as in {ref}`sec-tutorial-experiment`. The example dataset can be downloaded {download}`here <../examples/dataset.hdf5>`.\n", "\n", "As we defined 125 points in our `times` array which were measured in 125 different `acq_index`es, the acquisition result also contains 125 _I_ values (in `data[0][:]`) and 125 _Q_ values (in `data[1][:]`). The general format of the data returned by the {class}`~quantify_scheduler.gettables.ScheduleGettable` is also explained in the {ref}`user guide `.\n", "\n", "## Trace measurement\n", "\n", "The previous experiment's acquisition results had one data point for each acquisition in the schedule. For a trace measurement, the data format is slightly different. To illustrate this, let us set up an experiment with a trace measurement." ] }, { "cell_type": "code", "execution_count": 6, "id": "9f790b4f", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler.operations import IdlePulse, SoftSquarePulse\n", "\n", "\n", "def trace_schedule(pulse_amp, acq_delay, port=\"q0:res\", clock=\"q0.ro\", repetitions=1):\n", " schedule = Schedule(\"Trace a pulse\", repetitions=repetitions)\n", "\n", " schedule.add(\n", " SoftSquarePulse(\n", " duration=q0.measure.integration_time(),\n", " amp=pulse_amp,\n", " port=port,\n", " clock=clock,\n", " ),\n", " label=\"trace_pulse\",\n", " )\n", "\n", " # Add acq_delay to compensate for time-of-flight of the pulse\n", " schedule.add(\n", " Measure(q0.name, acq_protocol=\"Trace\"),\n", " ref_pt=\"start\",\n", " rel_time=acq_delay,\n", " label=\"acquisition\"\n", " )\n", "\n", " return schedule" ] }, { "cell_type": "markdown", "id": "d8ec6f1a", "metadata": {}, "source": [ "Again, we define the gettable and run the experiment." ] }, { "cell_type": "code", "execution_count": 7, "id": "1556c7a1", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.9/site-packages/quantify_scheduler/backends/qblox/compiler_abc.py:731: RuntimeWarning: Operation is interrupting previous Pulse because it starts before the previous ends, offending operation: Pulse \"UpdateParameters\" (t0=1.0000000000000001e-07, duration=0)\n", " warnings.warn(\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAABX30lEQVR4nO3deVxU5f4H8M8MCrI5giiLIpsLmgiIouCulLlmmZmWC6V1yxajukmLtl1xzzTLtFzqlpC5XH+ldo00N24ibpiiiSiogOIyKJAYnN8f0wwMnBlmgNnOfN6v17yU8zxzznfOnJnznec853lkgiAIICIiIpIIuaUDICIiImpMTG6IiIhIUpjcEBERkaQwuSEiIiJJYXJDREREksLkhoiIiCSFyQ0RERFJShNLB2BulZWVuHLlCtzd3SGTySwdDhERERlAEATcvn0bfn5+kMv1t83YXXJz5coV+Pv7WzoMIiIiqoe8vDy0bdtWbx27S27c3d0BqHZO8+bNLRwNERERGaK4uBj+/v6a87g+dpfcqC9FNW/enMkNERGRjTGkSwk7FBMREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSQqTGyIiIpIUJjdEREQkKUxuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIrFK+sgwHs4uQryyzdChmZa+vm6gx2d3EmUTmkq8sQ05RCYK8XOGrcLZ0OEaxdOwp6blI3JyJSgGQy4CkR8Iwvmc70brGxCpW11KvVWy7xrxufesxptwWSOE1kHkxuSHJq/7FCEDr/4cv3IBMJkNUgAd8Fc466+r6Qs1XltVaB1C/k5SumH0VzjiedxOHLtxAdKAnwv09ROu6OjqgpLyizhOArpjV68m8rMT8HVkGx27o/q1eVnNfV4/3eN5NzNqcCUFQ/V0pAG9uPon+HVvVel3V97MMwKxhoXh2QIhofAfPFWHFnmwIf9ed3i8ILd2dtF7rGw+GIqytQvS1GJIU1Xyf1Pv6Vtk9eLg4avb353uzMW97FgRU7eP+HVtpXouu111zm2LHWf+OrTR19p69plVe8/UdvnADF2+UovyvSoS3VcDZsUmt16h+D/09nDXHl9j+0HeMqeu7Ojog90ZprWNPn/p+loz9XJC0yARB/RViH4qLi6FQKKBUKtG8eXNLh0MNVPPLvubJ5PKtMs3Jqy6DOrXCnrPXNCdVGQD10yZG++PFIR0AVH2pbzt+BUnbs7TW8Uy/IPQK9sS09RmouckPHroP3doqNF/u/h7OyL1Rios3SnH9Tjlaujoi0MtVK2a5DIjwb4Ejubc06+nXwQsLHu2Gq8V/YtXe89h+sgA1P8UPdPZGv05e8HBx1DopffO/i/hkd7amngzAvLFhAKB1Yq1ODmDZxEitk5H6JH624Da+z7gM4e91odo+q0m9P+Uy4OHINth85LKm7pgIX8R18cHlW2Wak35NHzx0H1q4NNW8t/4eznj404O1Yp4xKAShPu64VXYPp/NvY8Oh3Fr7pyHGRPgCkOE/x65oJSeHcm5g05HLmnqdvN1wpvBOrX3wYFcf7DhZUGu98X0CsfbAhVrLP3joPsR18caa/Tn4Yn8OhGqJyvyd2se2DIBMBk2yB4i/HzIdy4GqdV+8XoJvD+Xp3A/q9VRPKPOVZao49+VorV/X9hJrPLdm0n087ybGfHqw1vu38NEwtPFwqfW5Vz932/ErmLcjS+t59fmRQdbFmPO3VSQ3K1aswMKFC1FQUIDw8HAsX74c0dHRonXXrVuH+Ph4rWVOTk74888/DdoWkxvp+HxvtuYLTAYgJtgTB8/fsHRYNknfya66Kb0DkFVYjN9ybpo6JLIhQ0Jbwd/TBesOXjT6ubEhLdG9XQus2J2tdQx29nHD6YI7Op+nFuGvwLE8pUHbkgPYMiO2Vusn2QabSm5SUlIwefJkrFy5Er169cLSpUuxceNGnDlzBq1bt65Vf926dXj55Zdx5swZzTKZTAZvb2+DtsfkxvblK8uwLPUPbKjjVyURUU0yGTCPLTg2yZjzt8X73CxZsgTTp0/XtMasXLkSP/74I9asWYNZs2aJPkcmk8HHx8eg9d+9exd3797V/F1cXNzwoMns1M3OqaevYuuxK5YOh4hslCAAszZlItTHHa2bN2NHZYmyaHJTXl6OjIwMJCYmapbJ5XLExcUhLS1N5/Pu3LmDgIAAVFZWonv37pg7dy7uu+8+0bpJSUl47733Gj12Mr3qHVxr9m0hIqovAcBDKw5q/lb3HVJ3tmaiY/ssmtwUFRWhoqKi1iUlb29vZGWJn8w6deqENWvWoFu3blAqlVi0aBFiY2Px+++/o23btrXqJyYmIiEhQfN3cXEx/P39G/eFUKOrfocEEZEpCQCSdqjOOeo76eL7BjHJsWEWvyxlrJiYGMTExGj+jo2NRefOnfH555/jgw8+qFXfyckJTk5O5gyR6kndUlNW/hdmbco0qIMrEVFjEgCs2qe6M413V9kuiyY3Xl5ecHBwQGFhodbywsJCg/vUNG3aFJGRkTh37pwpQiQzqT7uh5SN6uaDAuVdHL54U/Kv1VSGdvbGJWUZfr9iu/3n2rRohmZNHZB9rcTSoQAAxkT4qW6hPnYF6Rd5Jxygup1+1qZM0fGVyPpZNLlxdHREVFQUUlNTMWbMGABAZWUlUlNT8cILLxi0joqKCmRmZmL48OEmjJRMJV9Zhvk7TmPrsfxGX3f125sHtPdCiLcbWro5YtF/z9YaN0P+99ggplJzjI18ZRkuFJUi0MsFe89ew5ubT6LCgBsXowM98NaIzsi7UQaZDLh0qwzzt2ehsub2ADw/KERze60MwOTeAVj/P/236tZ1S/iwrt4IaOmCsDYt0NbDGaXllThw7ho+3ZOtGVuli687TuXfrjXOSbi/AicuKY3azzIAE6L9Mb6nP0rLKxHo5aI11s4vp6/i4o1SbDt+RTUuEIDHe/mji29zeLg4ollTObYcuYIfM/NFx12RA3hjWChauDTVugw6JLQVugd4iB4rjWHRuAgEerkgdt4vtdb/+tCOeKR7W63jQg6gbwcv7PujSPT9+ceAIHz+a47O9y7YyxU5RSU6y98YFgpfhTMmxQQiX1mG5annkJyeq3Pco9VTojD9qwyD3suax5S6f0vvYE8kbc/C/3L0D98gAzC9fxBGhPmitLwSLo5y5N0ow62ycijL7mHRT2dN9kNBAPDk6v/hlQc6GTzoIFkHq7gVfMqUKfj8888RHR2NpUuX4rvvvkNWVha8vb0xefJktGnTBklJSQCA999/H71790b79u1x69YtLFy4EFu3bkVGRga6dOlS5/Z4K7j1+HxvdqN2FFYnKA4yGeY+0hX9O7bSJBDVv5RS0nM1J42adat/cap5uDhqTuSBXi4AgIwLN7XqqOt1D/CodVKa1j8I8X30X7+vnuwA0MRSWl6J0vJ7uFBUih6BHqLjc+Qry7B2/wV8sf+81usf37Od1no1I9puyqyVDAHA2O5t8NrQTrhQVIrS8nv49rc8/HLmKoQa66wrfvWgatVfg67l1cuvFv+JwxduokegB1o3byb63hmy/3SNmJtx4SZkMqD73yPm1qwvto7qx4o6cUo+lKd1Ulef7F0cm+LE5VtYsOMMKgQBMgAPRfhi2/F8rfoOMhn2zxqkeT9qHovV97HYftX1XteMdXSELwJaumJwaGvNaMkXikpx4vItTUIsB5A0VvzSS/X66tekb3t9O3hh/7kiTZI7odrAl2LHgnobfeb9ojNJesaAz07NOKb1D0L5X5X1GnNHH/WAl7xMZTk2Nc4NAHzyySeaQfwiIiKwbNky9OrVCwAwcOBABAYGYt26dQCAV155BZs3b0ZBQQE8PDwQFRWFDz/8EJGRkQZti8mNdfj812xNBz5j3efXXOuShPpLR1cyI6auk2FDmXr9Ddlm9XrVEwpdiZO5X4e1EUsQjUlIjK1fn5iMXZex2zR0e/V5LdX3jzohvL+LD7ob0VIitt3qCe2PmfnYnll7VOj6+KTGaN1kPjaX3JgTkxvLy1eWITbpl3o3JW+Y3hsujnL8cvoqWjV3wpDO3vyiIbNqrOSAVMyxf47n3dRqGcy4cBNf7M/BsbxbRq+LUzlYBpMbPZjcWE6+sgy7ThXg4Lnr2Pl7Yd1PEFG9SZ+IqKHe/c9JrEsz/hIWp3IwP5saoZjsQ33711SfCFDdpM/Ehogay7sPdYWvh7PBE+yqVUI1EKB6Ul1+L1kXttyQydX3l5F6Dhhj+tIQEdVHzTsY39iUadTz57OzscnxspQeTG7MJ19ZhqfXpeNU/m2DnzNjYAg6+zbX3NXCZIaILCFfWYa3t5xEatZVg+rLABxMHMzvLBPiZSmyuJT0XKN++fQM8MCyiZH8YiAiq+CrcMaHD3dFatIvBtUXAGzKuITuAR6cn8oKyC0dAElPvrLM6CZdJjZEZG18Fc6YPzbM4PqL/nsWE1f/hj7zfkFKeq4JI6O6MLmhRpWvLMOHP5wy6jnzx4YxsSEiqzS+ZzukJQ7GmAg/g59TKQBvbMrE8TxOZWEp7HNDjcaYS1Fj6jFQFxGRJR3Pu4mHVhw0uD5HNW5cxpy/2XJDjSJfWYZZBiQ2cgCJw0Kx9PHuGNHNj4kNEdmMcH8PzB8bBpmB9QUAb24+iXxlmSnDIhHsUEyN4vCFG3WOODypdzs8P6g9Exoislnje7ZD/46t8POpQrzzn9/rrF8hCLhQVMrvPTNjyw01WL6yDMmH6u4892hUW37AicjmqWdQf6ZfkEH13/u/kyaOiGpickMNkpKei5ikX3Ag+4beemO7t+Ew5UQkKfF9gyA34BpVVsEdvL7xmMnjoSpMbqjeDOlnE+rthv/MiMXixyLMExQRkZn4KpyR9EgYHGR1ZzgbMy7j873ZZoiKAPa5oQbIKSrR28/mtQc64oXBHcwWDxGRuan74Px4Ih8f/nhab92k7VnoHeTJVmwzYMsN1Zuro4Pe8rFRbc0UCRGR5fgqnDGim69Bd1E9tOIgPv+VLTimxuSG6uXzvdl6x3uYGN2OnYeJyG74Kpwxa1ioQXWTdmTxEpWJMbkho+Qry5C4+QSStmfprffikPZmioiIyDo8OyAEicNDDWrBmbc9i+PfmBCTGzJYSnouYpN+wYZDeXrrPdMvmK02RGSXnu0fgq0zYlFXH2MBQMYFTs9gKkxuyCDH825i1qbMOgfqkwGI7xtohoiIiKxTuL8H5j1S90jGaeevmyUee8TkhuqUkp6Lh1YcrDOxAVTzqLDVhojs3fie7fD+Q/fprfPtb7m8NGUiTG5IL1Ufm7rnjOrq1xxpiYM5QRwR0d/iunjrbb0RAGzKuGSucOwKkxvSK6eoBJUGNNn86+GubLEhIqrGV+GMeXVMtLnov2fx6nfHzBWS3WByQ3qt2nu+zjrDw3w4KBURkYjxPdvhYOJgTIzW3aq96chlHM9j5+LGxOSGdDqedxN7zlzTW2fGwBB8+kSUmSIiIrI9vgpnzH0kDENCW+msc5h3TjUqJjek0xubTugt/3JKFF5/0LBBq4iI7N1LQ3RPR5N6utCMkUgfkxsSNec/J5FVcEdvHRfHpmaKhojI9oX7e2Bs9zaiZQfP38C7/zlp5oiki8kN1bLwpyysT7uot46DTIZALxczRUREJA2LH4tAfGygaNm6tIuclqGRMLkhLZ//mo0Vu/V/uOQyYO4jvDuKiKg+xkT66SxL4rQMjYLJDWnkK8uQtEP/nFFyAFuej+V4NkRE9dS6eTO95TOTj5knEAljckMaGRf199aXy4CksWG87ZuIqAFyikr0lv+Wc4O3hjcQkxvS+OrgBb3lyx6PZIsNEVEDBXm5Ql7HxFPLUs+ZJxiJYnJDAFRj2hzSM86CXAZEBbLFhoiooXwVzkh6JAwOeqYOT826ioU/6e8mQLo1sXQAZB1Ss67qLZ/WN5gdiImIGsn4nu3Qv2MrXCgqxYc//I7f82/XqrNidzYu3SzDrGGh/P41EltuCADg2ET3oSAHEN830GyxEBHZA1+FM2JCWuK5Qe111vnPsSuITfoFKem5ZozM9jG5IaSk52LRT2dFy9SdiPmrgYjINKIC9F/yFwAkbs7kLeJGYHJj547n3cQbmzJFyyb28seBWYPZiZiIyIR8Fc6YMTBEb51KAbhQVGqmiGwfkxs7lpKei4dWHNRZPqpbG7bYEBGZQZ8OXnXWcXHkKdtQ3FN2Kl9ZhsTN4i02avwgERGZhyG3h5eWV5onGAng2ctO5RSVoFLQX4cfJCIi86jr9nAZwPn8jMDkxk65OjroLefEmERE5jW+Zztsfj4GYvmNAOD9/ztl9phsFZMbO1VSXqGzjBNjEhFZRkl5BQQdreo7ThZgEQf2MwiTGzv1ddpFnWWcGJOIyDLq6nuzYk82bwk3AJMbO5R6ugA7ThaIliUOD+XEmEREFqLue6MrvxF4S7hBmNzYmZT0XDy9PkNnebc2LcwXDBER1TK+ZztsnRGrs7y0/J4Zo7FNTG7sSL6yDLN0DNgHqPrasBMxEZHl6esX+fT6DCzcyb43+jC5sSM5RSXQd/d30iOcZoGIyBoEebnqvDQFqPreTFidZrZ4bA2TGzui7/bvL6dEsRMxEZGV8FU4Y97YML110rJv4Km1h8wUkW1hcmMnUtJzMUbPVAsujk3NGA0REdVlfM92eGmI7hnDAeCXM9dwPO+mmSKyHUxu7IC6r42uS1Lsa0NEZJ2GhLaus87hC0xuamJyYwfq6mszrW8w+9oQEVmhcH8PjO3eRm+dHoEcvqMmJjd2IMjLVWeZDEB830CzxUJERMZZ/FgE/jMjFk/FBoqWt27ezLwB2QAmN3bgavGfOsum92OrDRGRtQv390Dcfd6iZctTz5k5GuvH5MYObD16RWcZW22IiGyDrtvDvz2Ui8/3Zps9HmvG5EbiXv3uGNYevCBa9sKgELbaEBHZCF+FM6b3CxItm7c9i3NOVWMVyc2KFSsQGBiIZs2aoVevXjh0yLD79pOTkyGTyTBmzBjTBmijjufdxKYjl0XLBoW2wmtDQ80cERERNUR8X/HkRgAvT1Vn8eQmJSUFCQkJmDNnDo4cOYLw8HAMHToUV69e1fu8Cxcu4LXXXkO/fv3MFKntWZb6h86yR7u3NWMkRERkarw8VcXiyc2SJUswffp0xMfHo0uXLli5ciVcXFywZs0anc+pqKjAE088gffeew/BwcFmjNZ2fP5rNlKzruksF/TdG05ERFYpp6hEbzkvT6lYNLkpLy9HRkYG4uLiNMvkcjni4uKQlqZ7zoz3338frVu3xtNPP13nNu7evYvi4mKth9TlK8uQtEP3pGoyAFEcF4GIyObUNeeUAODIRQ7qZ9HkpqioCBUVFfD21r69zdvbGwUFBaLP2b9/P7788kusXr3aoG0kJSVBoVBoHv7+/g2O29ot13M5SgZg3lhOkElEZIsMmXPqwLnrZorGeln8spQxbt++jUmTJmH16tXw8vIy6DmJiYlQKpWaR15enomjtKx8ZRm+PaT7NW6dEcsJMomIbNj4nu3wycRIneUbDuXa/aWpJpbcuJeXFxwcHFBYWKi1vLCwED4+PrXqZ2dn48KFCxg1apRmWWVlJQCgSZMmOHPmDEJCQrSe4+TkBCcnJxNEb50y9DRHJg4PRbg/L0cREdm6qAAPyGVApUj/SQHA2v0X8OaIzmaPy1pYtOXG0dERUVFRSE1N1SyrrKxEamoqYmJiatUPDQ1FZmYmjh07pnmMHj0agwYNwrFjx+ziklNdBB09hcdE+OHZ/iGiZUREZFt8Fc5IeiRMZ/+bL/aft+vWG4u23ABAQkICpkyZgh49eiA6OhpLly5FSUkJ4uPjAQCTJ09GmzZtkJSUhGbNmqFr165az2/RogUA1Fpur67cEp9q4Y1hHNOGiEhKxvdsh/KKSryz9fdaZZUCcKGo1G77V1o8uRk/fjyuXbuG2bNno6CgABEREdi5c6emk3Fubi7kcpvqGmQx+coyzBO5S0pfz3oiIrJdHi6OOstOXL6FmJCWZozGesgEXdcxJKq4uBgKhQJKpRLNmze3dDiN6mB2ESau/k20bMP03nZ7kBMRSVW+sgyxSb9A14k8LXGwZFpvjDl/s0lEIvKVZVh/IEe0TC4DAr1czBwRERGZmq/CGbP0dDuw1ykZmNxIQEp6LmKSfsFPp8SnrJjWN1gymTsREWkLa6vQWfatnd4WzuTGxuUryzBrU6bOchmA+L6BZouHiIjMq65Ri+2x9YbJjY3LKSrRea0VACb2asdWGyIiCatr1OLkdPtrvWFyY+OCvFz1lr8wuL2ZIiEiIksZ37Md/jMjVrRMfVu4PWFyI2HP9GNfGyIiexHu74FEHZ2L7e2mEiY3Nu7nU4Wiy9nXhojI/vQO9hRd/s3/Lpo5EsticmPDUtJz8c5/ao9MCQATotnXhojI3hy6cEN0+Se7s+2q3w2TGxuVryzDG3ruknpxCPvaEBHZm+hA8ZYbAMi4oHtiZalhcmOjcopKdJaNDPNlqw0RkR0K9/dAdKCHaFnqafFuDFLE5MZGHfijSGfZ9P5BZoyEiIisyccTIkWXbzl2BZ/vzTZzNJbB5MYGHc+7iRV7xA/Q/h28EO4vnrUTEZH0+Sqc8Uw/8R+587Zn2UXfGyY3NiYlPRdjVhzUWT7/0W5mjIaIiKxRfF/x5EYAcOSi9PveMLmxIfnKMiRuztQ5IvELg0LY14aIiPQS9A1rLxFMbmxITlEJKvUclH3atzJfMEREZLX03XSy6eglM0ZiGUxubIi+qRbkMvsbgZKIiMQFeblCrmM2zd1Z17DopyzzBmRmTG4k4o1hobwkRUREAFSdipMeCdM5W7jUB/VjcmND9DUzjg73M2MkRERk7cb3bIcvpkTpLF+7/4L5gjEzJjc2xNXRQWeZvc34SkREdRvS2UfnfFNf7D8v2dYbJjc25McT+aLL2d+GiIh0GdK5tejySkG6P4yZ3NiIfGUZVu3LES1jfxsiItJF33xTLo7STAOk+aokaHnqH6LLx0T44dn+IWaOhoiIbEW4vwf6dfASLUtJl+Zt4UxubEC+sgzfHsoTLbu/i7eZoyEiIluzQMfo9d8eypXkfFNMbmzA2v3il6NkALoHcB4pIiLSz1fhjInR/qJlUpxvismNldPX12bWcPa1ISIiw8SEtBRdLgDIuCCt+aaY3Fg5XX1tIvxbsK8NEREZrIeejsVp56+bMRLTY3JjxfT1tTlx6ZbkmhGJiMh0fBXOSBwWKlq24VCupM4pTG6s2OELN3SWSXl8AiIiMo1nB4RgYq/afW+kdk5hcmPF0rJ1NxM6yGQcuI+IiIw2vod4x+ID566ZORLTYXJjpfRdkpLLgLmPdGVnYiIiMlpJeYXo8hUSmkyTyY2V0tWROK5zaxyYNRjje7Yzc0RERCQFQV6uosuldNcUkxsrpK/VZkxEG7bYEBFRvekb80YmM3MwJsLkxgrlFJXoLPP3ZGJDREQNM76neHJzOr/YzJGYBpMbK5R5SamzrLS80oyREBGRFOnqd/OJRPrdMLmxMvnKMszbkSVaJpeBd0gREVGD6ep3AwDLU8+ZMRLTYHJjZXKKSiDoKJvWN5j9bYiIqMH09buRwoB+TG6sjK5LUjIA8X0DzRoLERFJ14tDOoguFwCs3X/BrLE0NiY3ViRfWYYkHZekOEkmERE1Jl+FM2YMFJ+j8Iv952269YbJjRXJuKh7fIFubVqYLxAiIrILfTp4iS639ekYmNxYkYPnikSXsyMxERGZgr6OxS6Otpsi2G7kEpOvLMMGHQP3vTGMl6SIiKjx+Sqc8Uy/INGyH08UmDmaxsPkxkrouktqYnQ7PNtf/JooERFRQ8X3DYLYwMSr99luvxsmN1ZC111SLw5pb+ZIiIjInvgqnDFB5LZwAcARPX1BrRmTGyugb+A+IiIiUwv1dRddfqOk3MyRNA4mN1Zg7f4cnQP32WrWTEREtsPT1Ul0ua1OpMnkxsLylWVYvS9HZ7mgK+shIiJqJFEBHqL9bt7e+jtS0nPNHk9DMbmxMH3TLcgARAV6mDMcIiKyQ74KZzyvY0C/WZsyba5jMZMbCzvwh/jYNgAwvR/nkiIiIvNo4dpUdLktTsfA5MaC8pVlWLEnW7SMc0kREZE5RQd66iyztekYmNxY0PLUP3SWcS4pIiIyp3B/D/STyHQMTG4sJF9Zhm91jEg8JsKPA/cREZHZLXi0m86yA+eumTGShmFyYyE5RSU6y94YFmrGSIiIiFT0Tcfw6Z5sm7k0xeTGQoK8XCEXue8ukZejiIjIgnRNx2BLl6aY3FiI+rY79QEkA5A4LJSXo4iIyKJ8Fc6YpeMKwonLt8wbTD0xubGQ57/JwCe7szVj3AgAWriI34ZHRERkTqMj/ESXz9ueZROXpoxKbm7duoW1a9fiqaeewpAhQxATE4PRo0djzpw5OHjwYL2DWLFiBQIDA9GsWTP06tULhw4d0ll38+bN6NGjB1q0aAFXV1dERETg66+/rve2LWHhzixsz6w9lXziZtsbKImIiKRHV79QWxnzxqDk5sqVK5g2bRp8fX3x4YcfoqysDBERERgyZAjatm2L3bt34/7770eXLl2QkpJiVAApKSlISEjAnDlzcOTIEYSHh2Po0KG4evWqaH1PT0+89dZbSEtLw4kTJxAfH4/4+Hj89NNPRm3XUvSNbWNL1zOJiEi6grxcdZat3mf9Y940MaRSZGQkpkyZgoyMDHTp0kW0TllZGbZu3YqlS5ciLy8Pr732mkEBLFmyBNOnT0d8fDwAYOXKlfjxxx+xZs0azJo1q1b9gQMHav398ssvY/369di/fz+GDh1aq/7du3dx9+5dzd/FxcUGxWUq+u6SksmAQC8XM0ZDRERUm6/CGSPDfPCDyFUGdevNmyM6mz8wAxnUcnPq1CksWLBAZ2IDAM7OzpgwYQLS0tI0iUpdysvLkZGRgbi4uKqA5HLExcUhLS2tzucLgoDU1FScOXMG/fv3F62TlJQEhUKhefj7+xsUm6lkXlLqLJs1jHdKERGRdZjeP1hnmbWPWGxQctOyZUv88MMPqKysNGilLVu2NKheUVERKioq4O3trbXc29sbBQW1s0U1pVIJNzc3ODo6YsSIEVi+fDnuv/9+0bqJiYlQKpWaR16e+MB55pCvLMO8HVmiZbxTioiIrEm4vweGdfURLbP2bhQGXZYCgDFjxsDb2xtTp05FfHw82rdvb8q49HJ3d8exY8dw584dpKamIiEhAcHBwbUuWQGAk5MTnJyczB+kiMMXbojOAC6D7p7pREREljIpJgA7TtZubJBbeTcKg++WysnJwbPPPovk5GR06tQJAwYMwNdff42ysvo3S3l5ecHBwQGFhYVaywsLC+HjI54tAqpLV+3bt0dERAReffVVPProo0hKSqp3HOYik4kNi6S6fmnNGTAREdknXQPODujUyqq7URic3Pj7+2P27NnIzs7Gzz//jMDAQDz33HPw9fXFP/7xD6Snpxu9cUdHR0RFRSE1NVWzrLKyEqmpqYiJiTF4PZWVlVqdhq3V5ZviiaC1Z8BERGSffBXOeOPB2gP67c66hs/3it/5aw3qNYjfoEGDsH79euTn52PhwoXIzMxE7969ER4ebvS6EhISsHr1aqxfvx6nT5/Gc889h5KSEk2n5MmTJyMxMVFTPykpCbt27cL58+dx+vRpLF68GF9//TWefPLJ+rwUs8lXlmH+ztr9bWQAkh4Js+oMmIiI7FdYW4Xo8iQrHtDP4D43Ytzd3TFkyBBcvHgRWVlZOHXqlNHrGD9+PK5du4bZs2ejoKAAERER2Llzp6aTcW5uLuTyqhyspKQEzz//PC5dugRnZ2eEhobi3//+N8aPH9+Ql2JyGRdvolKkw83yCZEYGc7+NkREZJ30jXmzPPUc5j4SZsZoDCMTBEGsj6teZWVl2LhxI9asWYN9+/YhKCgI8fHxmDp1Ktq0aWOKOBtNcXExFAoFlEolmjdvbpZtpqTnYtamzFqdiR1kMuyfNYitNkREZNXe3HwC3x6qfbexDMDBxMFmOY8Zc/42quXmf//7H9asWYPvvvsO5eXleOSRR/Dzzz9j0KBBDQpYyvKVZUjcXDuxkcuAuY90ZWJDRERW78UhHUSTGwFAxoWbGBluXecyg5ObLl264MyZM4iMjERSUhImTpwIhUL8OhxVySkqEb0cJbaMyJQqKipw7949S4dBjcjR0VHrsj2RqfgqnDEx2l+89Ub8RmCLMji5iYuLw4YNG+rVadieuTo66CxL3JyJ/h2t+3Y6sn2CIKCgoAC3bt2ydCjUyORyOYKCguDo6GjpUMgOvDikAzYcyqt1JeLSLevrVGxwcrNs2TJTxiFZJeUVOsvUIzwyuSFTUic2rVu3houLi87xlsi2VFZW4sqVK8jPz0e7du34vpLJ+SqcMWtYKJJqjLS/YMcZjA73s6pzmUHJzYMPPoh3330XvXv31lvv9u3b+PTTT+Hm5oYZM2Y0SoC2Tt9cUhzfhkytoqJCk9gYOi0K2Y5WrVrhypUr+Ouvv9C0aVNLh0N2QOy28ApBsLof6gYlN+PGjcPYsWOhUCgwatQo9OjRA35+fmjWrBlu3ryJU6dOYf/+/di+fTtGjBiBhQsXmjpum5CvLKuV4VbH8W3I1NR9bFxcmERLkfpyVEVFBZMbMouy8r9El//0ez5iQqznB5RByc3TTz+NJ598Ehs3bkRKSgpWrVoFpVLVIiGTydClSxcMHToU6enp6NzZeqdAN7eMizd1ln3C8W3IjHjJQpr4vpK5nS8qEV2+Pu0inh0QYjU/2A3uc+Pk5IQnn3xSMxKwUqlEWVkZWrZsyV8MOhw8VyS6XC4DogI9zBwNERFRw0QHeoouF6ysD2m97yFUKBTw8fFhYqNDvrJM9JY5AHhjWKjVHABE9uTChQuQyWQ4duyYpUMhsknh/h4Y2KmVaJmLo/UMS2A9kUiMrktSD0f44dn+IWaOhoiIqHE80z9YdPmy1HNWM9cUkxsT0XVJakhnbzNHQiQN5eXllg6BiKCaa0qst1dq1lXEJv2ClPRcs8dUE5MbE8hXlmGDjjk42NeGbFm+sgwHs4vM8uts4MCBeOGFFzBz5kx4eXlh6NChOHnyJIYNGwY3Nzd4e3tj0qRJKCqq+iGxc+dO9O3bFy1atEDLli0xcuRIZGdnmzxWInviq3DGhGh/0TIBqgFqLd2Cw+TGBNbuz6k1giMATO8XzL42ZLNS0nPRZ94vmLj6N/SZZ55fZ+vXr4ejoyMOHDiAefPmYfDgwYiMjMThw4exc+dOFBYW4rHHHtPULykpQUJCAg4fPozU1FTI5XI8/PDDqKysNHmsRPYktr2XzjL1ALWWZNTEmWq3bt3C999/j+zsbLz++uvw9PTEkSNH4O3tbfWzgptavrIMq/bliJaN6OZj5miIGod6Alj1nGiVAvDm5pMmnz6kQ4cOWLBgAQDgww8/RGRkJObOnaspX7NmDfz9/XH27Fl07NgRY8eO1Xr+mjVr0KpVK5w6dQpdu3Y1WZxE9iYqQPdVCGsYoNbolpsTJ06gY8eOmD9/PhYtWqSZr2bz5s1ITExs7PhsTo6OMQAAoLScvx7JNolNAKseldSUoqKiNP8/fvw4du/eDTc3N80jNDQUADSXnv744w9MmDABwcHBaN68OQIDAwEAubmW7wNAJCW+CmckDgsVLbOGO4KNbrlJSEjA1KlTsWDBAri7u2uWDx8+HBMnTmzU4GyRrokyrSGTJaqvIC9XyGXas9k7yGQmP6ZdXV01/79z5w5GjRqF+fPn16rn6+sLABg1ahQCAgKwevVq+Pn5obKyEl27dmVnZCITeHZACCAD5u/I0nw3PBTuh9FWMECt0clNeno6Pv/881rL27Rpg4KCgkYJypbl3hD/Jft4z3YWz2SJ6stX4YykR8Lw5uaTqBAEOMhkmPtIV7Me0927d8emTZsQGBiIJk1qf3Vdv34dZ86cwerVq9GvXz8AwP79+80WH5E9Ug9tkrRdNdXQf45fwX+OX0HisFBV8mMhRic3Tk5OKC4urrX87NmzaNVKfGAfe6JrOPQ+7a1nzg2i+hjfsx36d2yFC0WlCPRyMXuyPmPGDKxevRoTJkzAP//5T3h6euLcuXNITk7GF198AQ8PD7Rs2RKrVq2Cr68vcnNzMWvWLLPGSGRv8pVlmsSmuqQdWYAMFhvXzeg+N6NHj8b777+vmZBPJpMhNzcXb7zxRq3OfPboxxP5tZbJZEB3PZ2viGyFr8IZMSEtLdIK6efnhwMHDqCiogIPPPAAwsLCMHPmTLRo0QJyuRxyuRzJycnIyMhA165d8corr3ASXyITO3zhhs6y+TuyLHZLuNEtN4sXL8ajjz6K1q1bo6ysDAMGDEBBQQFiYmLwr3/9yxQx2ozU0wXYcbL2pbkZA61nMjEiW7Fnz55ayzp06IDNmzfrfE5cXBxOnTqltUwQqjoKBQYGav1NRA2jb/LWSgvON2V0cqNQKLBr1y7s378fJ06cwJ07d9C9e3fExcWZIj6bkZKeizc2ZYqWebg4mjkaIiIi07PWW8LrNc4NAPTt2xd9+/ZtzFhsVr6yDLN0JDYA0IOjEhMRkQT5KpzxTL8g0fHdegZ4WOyqhdHJzbJly0SXy2QyNGvWDO3bt0f//v3h4CB+S7QU5RSViI5IDAD9O3gh3J/JDRERSVN83yCs3ld7ZP7fLtzE53uzLdKp2Ojk5qOPPsK1a9dQWloKDw/VSfvmzZtwcXGBm5sbrl69iuDgYOzevRv+/uJzT0iNehIxsQRn/qPdzB0OERGR2fgqnDFdR+vN/B1ZGB3uZ/YWHKPvlpo7dy569uyJP/74A9evX8f169dx9uxZ9OrVCx9//DFyc3Ph4+ODV155xRTxWiVfhTNmiYzUqLubFRERkXTE9w0SPedZap4po5Obt99+Gx999BFCQqqamdq3b49FixYhMTERbdu2xYIFC3DgwIFGDdTaXb9zt9YyAZafPIyIiMjUdP3IN8dI5mKMviyVn5+Pv/76q9byv/76SzNCsZ+fH27fvt3w6GxEvrIMq0Wa4zjlAhER2Yua0zFYYiRzNaOTm0GDBuHZZ5/FF198gcjISADA0aNH8dxzz2Hw4MEAgMzMTAQFBTVupFZMV4fiaX2DOb4NERHZjWf7h2B0uJ/FRjJXM/qy1JdffglPT09ERUXByckJTk5O6NGjBzw9PfHll18CANzc3LB48eJGD9ZaqScVrE4OIL5voCXCISIishhLjmSuZnTLjY+PD3bt2oWsrCycPXsWANCpUyd06tRJU2fQoEGNF6ENsIZJBYmkZuDAgYiIiMDSpUstGkdgYCBmzpyJmTNnWjQOIjJcvQfxCw0NRWho7c5D9srSkwoSSc3mzZvRtGlTS4eB9PR0uLq6WjoMIjJCvZKbS5cuYdu2bcjNzUV5eblW2ZIlSxolMFvkq3BmUkPUSDw9PS0dAgCgVatWJt9GeXk5HB05TQtRYzG6z01qaio6deqEzz77DIsXL8bu3buxdu1arFmzBseOHTNBiERkNZSXgZy9qn9NbODAgZpLQYGBgfjwww8xefJkuLm5ISAgANu2bcO1a9fw0EMPwc3NDd26dcPhw4c1z79+/TomTJiANm3awMXFBWFhYdiwYYPWNm7fvo0nnngCrq6u8PX1xUcffaS1XfW2q18ak8lk+OKLL/Dwww/DxcUFHTp0wLZt2zTlFRUVePrppxEUFARnZ2d06tQJH3/8sdZ2p06dijFjxuBf//oX/Pz80KlTJ7z//vvo2rVrrf0QERGBd955pwF7ksj+GJ3cJCYm4rXXXkNmZiaaNWuGTZs2IS8vDwMGDMC4ceNMESMRWYMjXwFLuwLrR6n+PfKVWTf/0UcfoU+fPjh69ChGjBiBSZMmYfLkyXjyySdx5MgRhISEYPLkyZpZv//8809ERUXhxx9/xMmTJ/HMM89g0qRJOHTokGadCQkJOHDgALZt24Zdu3Zh3759OHLkSJ2xvPfee3jsscdw4sQJDB8+HE888QRu3LgBAKisrETbtm2xceNGnDp1CrNnz8abb76J7777TmsdqampOHPmDHbt2oUffvgBTz31FE6fPo309HRNnaNHj+LEiROIj49vjF1IZD8EI7m5uQnnzp0TBEEQWrRoIZw8eVIQBEE4duyYEBAQYOzqzE6pVAoABKVSaelQiEyurKxMOHXqlFBWVtawFd26JAjvthCEOc2rHu96qJabyIABA4SXX35ZEARBCAgIEJ588klNWX5+vgBAeOeddzTL0tLSBABCfn6+znWOGDFCePXVVwVBEITi4mKhadOmwsaNGzXlt27dElxcXDTbVW/7o48+0vwNQHj77bc1f9+5c0cAIOzYsUPndmfMmCGMHTtW8/eUKVMEb29v4e7du1r1hg0bJjz33HOav1988UVh4MCBOtfbaO8vkQ0w5vxtdMuNq6urpp+Nr68vsrOzNWVFRUWNkW8RkbW5kQ0IldrLhArgxnmzhdCtW9U8bd7e3gCAsLCwWsuuXr0KQHV56IMPPkBYWBg8PT3h5uaGn376Cbm5uQCA8+fP4969e4iOjtasQ6FQaN35aUgsrq6uaN68uWa7ALBixQpERUWhVatWcHNzw6pVqzTbVQsLC6vVz2b69OnYsGED/vzzT5SXl+Pbb7/FU089VWc8RKTN6A7FvXv3xv79+9G5c2cMHz4cr776KjIzM7F582b07t3bFDESkaV5hgAyuXaCI3MAPIPNFkL1O6dkMpnOZZWVqhgXLlyIjz/+GEuXLkVYWBhcXV0xc+bMWjdBNDQW9bbV201OTsZrr72GxYsXIyYmBu7u7li4cCF+++03reeI3YE1atQoODk5YcuWLXB0dMS9e/fw6KOPNjheIntjdHKzZMkS3LlzB4DquvOdO3eQkpKCDh062PWdUkSSpmgDjPoY+L+ZqhYbmQMwaqlquZU6cOAAHnroITz55JMAVEnP2bNn0aVLFwBAcHAwmjZtivT0dLRr1w4AoFQqcfbsWfTv379B242NjcXzzz+vWVa9hVufJk2aYMqUKVi7di0cHR3x+OOPw9mZd2ASGcvo5CY4uOqXmqurK1auXNmoARGRleo+GQgZoroU5Rls1YkNAHTo0AHff/89Dh48CA8PDyxZsgSFhYWa5Mbd3R1TpkzB66+/Dk9PT7Ru3Rpz5syBXC7XtALVd7tfffUVfvrpJwQFBeHrr79Genq6wVPSTJs2DZ07dwYAu5uAmKixGN3nJjg4GNevX6+1/NatW1qJDxFJkKINENTP6hMbAHj77bfRvXt3DB06FAMHDoSPjw/GjBmjVWfJkiWIiYnByJEjERcXhz59+qBz585o1qxZvbf77LPP4pFHHsH48ePRq1cvXL9+XasVpy4dOnRAbGwsQkND0atXr3rHQWTPZIIgiM35qJNcLkdBQQFat26ttbywsBDt2rXD3bt3GzXAxlZcXAyFQgGlUonmzZtbOhwik/rzzz+Rk5ODoKCgBp2w7UVJSQnatGmDxYsX4+mnn7ZIDIIgoEOHDnj++eeRkJCgty7fX7Inxpy/Db4sVX2Qqp9++gkKhULzd0VFBVJTUxEYGGh8tEREFnL06FFkZWUhOjoaSqUS77//PgDgoYceskg8165dQ3JyMgoKCji2DVEDGJzcqJtzZTIZpkyZolXWtGlTBAYG2tVM4EQkDYsWLcKZM2fg6OiIqKgo7Nu3D15eXhaJpXXr1vDy8sKqVavg4eFhkRiIpMDg5EZ9m2NQUBDS09Mt9uEnImoskZGRyMjIsHQYGkb2EiAiHYy+WyonJ8cUcRARERE1CoOSm2XLlhm8wpdeeqnewRCRabBFQJr4vhKJMyi5+eijjwxamUwmY3JDZEXUI+mWlpZyMDgJUo+27ODgYOFIiKyLQckNL0UR2SYHBwe0aNFCM++Ri4tLgwaoI+tRWVmJa9euwcXFBU2aGN3DgEjSGvSJUDeJ8suSyHr5+PgAgNbEjiQNcrkc7dq143cwUQ31Sm6++uorLFy4EH/88QcAoGPHjnj99dcxadKkRg2OiBpOJpPB19cXrVu3xr179ywdDjUiR0dHyOVGDzRPJHn1mjjznXfewQsvvIA+ffoAAPbv349//OMfKCoqwiuvvNLoQRJRwzk4OLBvBhHZBaOnXwgKCsJ7772HyZMnay1fv3493n33Xavvn8PpF4iIiGyPMedvo9sz8/PzERsbW2t5bGws8vPzjV0dERERUaMyOrlp3749vvvuu1rLU1JS0KFDh0YJioiIiKi+jO5z895772H8+PHYu3evps/NgQMHkJqaKpr0GGLFihVYuHAhCgoKEB4ejuXLlyM6Olq07urVq/HVV1/h5MmTAICoqCjMnTtXZ30iIiKyLwa33KiTibFjx+K3336Dl5cXtm7diq1bt8LLywuHDh3Cww8/bHQAKSkpSEhIwJw5c3DkyBGEh4dj6NChOm9b3bNnDyZMmIDdu3cjLS0N/v7+eOCBB3D58mWjt01ERETSY3CHYrlcjp49e2LatGl4/PHH4e7u3igB9OrVCz179sQnn3wCQDUwlb+/P1588UXMmjWrzudXVFTAw8MDn3zySa1OzmLYoZiIiMj2mKRD8a+//or77rsPr776Knx9fTF16lTs27evQYGWl5cjIyMDcXFxVQHJ5YiLi0NaWppB6ygtLcW9e/fg6ekpWn737l0UFxdrPYiIiEi6DE5u+vXrhzVr1iA/Px/Lly9HTk4OBgwYgI4dO2L+/PkoKCgweuNFRUWoqKiAt7e31nJvb2+D1/fGG2/Az89PK0GqLikpCQqFQvPw9/c3Ok4iIiKyHUbfLeXq6or4+Hj8+uuvOHv2LMaNG4cVK1agXbt2GD16tCli1GnevHlITk7Gli1b0KxZM9E6iYmJUCqVmkdeXp5ZYyQiIiLzatDcUu3bt8ebb76JgIAAJCYm4scffzTq+V5eXnBwcEBhYaHW8sLCQs18OLosWrQI8+bNw88//4xu3brprOfk5AQnJyej4iIiIiLbVe9JSfbu3YupU6fCx8cHr7/+Oh555BEcOHDAqHU4OjoiKioKqampmmWVlZVITU1FTEyMzuctWLAAH3zwAXbu3IkePXrU9yUQERGRBBnVcnPlyhWsW7cO69atw7lz5xAbG4tly5bhscceg6ura70CSEhIwJQpU9CjRw9ER0dj6dKlKCkpQXx8PABg8uTJaNOmDZKSkgAA8+fPx+zZs/Htt98iMDBQ0zfHzc0Nbm5u9YqBiIiIpMPg5GbYsGH4+eef4eXlhcmTJ+Opp55Cp06dGhzA+PHjce3aNcyePRsFBQWIiIjAzp07NZ2Mc3NztWa9/eyzz1BeXo5HH31Uaz1z5szBu+++2+B4iIiIyLYZPM7N6NGj8fTTT2PkyJE2PbMwx7khIiKyPcacvw1uudm2bVuDAyMiIiIytXp3KCYiIiKyRkxuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSQqTGyIiIpIUJjdEREQkKUxuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSQqTGyIiIpIUJjdEREQkKUxuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSQqTGyIiIpIUJjdEREQkKUxuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSQqTGyIiIpIUJjdEREQkKUxuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSQqTGyIiIpIUJjdEREQkKUxuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSQqTGyIiIpIUJjdEREQkKUxuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkxeLJzYoVKxAYGIhmzZqhV69eOHTokM66v//+O8aOHYvAwEDIZDIsXbrUfIESERGRTbBocpOSkoKEhATMmTMHR44cQXh4OIYOHYqrV6+K1i8tLUVwcDDmzZsHHx8fM0dLREREtsCiyc2SJUswffp0xMfHo0uXLli5ciVcXFywZs0a0fo9e/bEwoUL8fjjj8PJycnM0RIREZEtsFhyU15ejoyMDMTFxVUFI5cjLi4OaWlpjbadu3fvori4WOtBRERE0mWx5KaoqAgVFRXw9vbWWu7t7Y2CgoJG205SUhIUCoXm4e/v32jrJiIiIutj8Q7FppaYmAilUql55OXlWTokIiIiMqEmltqwl5cXHBwcUFhYqLW8sLCwUTsLOzk5sX8OERGRHbFYy42joyOioqKQmpqqWVZZWYnU1FTExMRYKiwiIiKycRZruQGAhIQETJkyBT169EB0dDSWLl2KkpISxMfHAwAmT56MNm3aICkpCYCqE/KpU6c0/798+TKOHTsGNzc3tG/f3mKvg4iIiKyHRZOb8ePH49q1a5g9ezYKCgoQERGBnTt3ajoZ5+bmQi6valy6cuUKIiMjNX8vWrQIixYtwoABA7Bnzx5zh09ERERWSCYIgmDpIMypuLgYCoUCSqUSzZs3t3Q4REREZABjzt+Sv1uKiIiI7AuTGyIiIpIUJjdEREQkKUxuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSQqTGyIiIpIUJjdEREQkKUxuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSQqTGyIiIpIUJjdEREQkKUxuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSQqTGyIiIpIUJjdEREQkKUxuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSQqTGyIiIpIUJjdEREQkKUxuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSQqTGyIiIpIUJjdEREQkKUxuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSQqTGyIiIpIUJjdEREQkKUxuqPEoLwM5e1X/2ht7fu3VWfN+sObYTM2eXzvZpSaWDoAaifIycCMb8AwBFG2ML2/odq8cA36eAwiVgEwOjPoY6D658bZTX6Z63dUd+Qr4v5d1v3ZzxGAN6toPgGpf5P2m+r9/L/PtD7HYQoZY7/vSmMeMIe+LpdnaZ8TU36eGfI8DlvnOr77upq7AvRLD4jEzmSAIgqWDMKfi4mIoFAoolUo0b97c9BsUOwjUb3z1g+92AZCbBrRsDzi6VB0sZ3YAdwqBjg8CbaO0130pQ/WcspvA/iW6v7wOLAN+ng0IQu3y6vHdugiU3gBcPMVPPDU/WL99BqStUG23Fjnwysm61yH2YVBeVr3u6+dU+6PTMN11de3rWxdV68jcCEDkdet6Xs33qK64AWBpV+19IHMAnt6lWlf1pA8yoF8CEDywahtiX0CGxFMzJrFjqub6AVVioX6PWwRor1/fl2FdX5SXMoAvh6iOMQ05MO3nquP2yFfAtpdU74dav1eBIbOrjuWax39jfFmKxiYDZLKq9yX2BaDXc8adUADV/rx+Hqi4C7SJAu6VqpbX3Ldi66r+nlV/X5SXqh0zAO57GIh5UfvzX/NYB1SfWXVM1f8WOz5nZoq/xzUTT33Hk65jTr2s5neXrmOo5nFx//tAn5d17/8zO1SfKyc3IGwc4O5j+Alf7DjTdazX/Pyp90/OXuDI+oYn8fq+T6uvV+wHpOqNhM7vtuoJLQBETQX6/1P1f2PeY/X+rL4vslO1162JBVXxxL0L+EU2eqJjzPnbKpKbFStWYOHChSgoKEB4eDiWL1+O6OhonfU3btyId955BxcuXECHDh0wf/58DB8+3KBtmTS5qfnBOf8rsH9xjS9VqA40z5AaB2pNfx+41bUfCkQ8rvoS/H0zcPGA7lim/aL60ju5Ccj6oUahHBi+ECg8WfUhFePfW3WAho1TbUudIBmq44PAiCWq/9f8UqgpKh5o3ha4lA78sVNkZer9oeNEVPPDLEoODHqr6kSk8z2qkYQcXgPsW4xa7wcAdBwKnP1JT7w6yORAt8eBE8lVMfd7FfAIFP/iuP89IKDv38kaVOWHVlXtk/vfU/2reY9kQMgg4PyeqhO4vngCYoGLadrrU/irypSXgF2zofPkc2AZsOsd3evu9yrg7gdsf1W8XOEPKPNECvS855cygLM7ATdv1TGqK0k7uUl/bDW3FzUVCOpflZzoOqEYqvqJ58Cyavux2ntmaHwBfYCe02onP/qEjas6Zqp7YC7QrndVYlT4O7BvkXadkMFVx49MDrSPA/7YVRV/9HTgzjXg1FZo9knYONW+q7kuRQCgzK16btRU1ee9tAj4bSVq7dOwx4Be/wBObdHzA6qm6u+NDBi9TNU6p05Af98CXD1Z+znV3/PfVlb9IKrO+z6g8FTt5Wq9nqtKtH5+F8j8Tnsbo5fpTz5EyYGwR8XjEXvtg94GWgarXseXcQbsMxkQPgE4vgGa90Xrbx3PAQyIR129cVsKbSq5SUlJweTJk7Fy5Ur06tULS5cuxcaNG3HmzBm0bt26Vv2DBw+if//+SEpKwsiRI/Htt99i/vz5OHLkCLp27Vrn9kyW3Gx5Djj+beOtj+ogU32ZeASqEpXkCQZ+AVKj6PIw4NVBlWScTzXfdsPGAVfPAIUnxMsDYoHc/1nZsSADop8BDn1u6UDIYmTAhGRVy17pDWDH61Z2jJqQrpbCerCp5KZXr17o2bMnPvnkEwBAZWUl/P398eKLL2LWrFm16o8fPx4lJSX44Yeq1ojevXsjIiICK1eurHN7JkluLmUAXwxunHURERFJyZQfgKB+DV6NMedvi94tVV5ejoyMDMTFxWmWyeVyxMXFIS0tTfQ5aWlpWvUBYOjQoTrr3717F8XFxVqPRpcrvm0iIiK7JpMDnsFm36xFk5uioiJUVFTA29tba7m3tzcKCgpEn1NQUGBU/aSkJCgUCs3D39+/cYKvrl1M46+TiIjI1vVNsMjdU5If5yYxMRFKpVLzyMsT67jYQG2jVJ19iYiIqErwQIts1qLj3Hh5ecHBwQGFhYVaywsLC+Hj4yP6HB8fH6PqOzk5wcnJqXEC1qfPC8A5sbtmiIiI7JCFLkkBFm65cXR0RFRUFFJTq+62qKysRGpqKmJixC/1xMTEaNUHgF27dumsbzaeIao30twiJgID3gA6jULVbXpkOjLVrZZEajKZ6nb33s/Bbj+DIXF11zGYhfdhxCTLx1CdTzfD6oUMMW0c9RH3nsUG9LP4CMUJCQmYMmUKevTogejoaCxduhQlJSWIj48HAEyePBlt2rRBUlISAODll1/GgAEDsHjxYowYMQLJyck4fPgwVq1aZcmXoXoDR30MbHsZQB23+LXqDFw7XfV32GOAo6vIGDB/j7fSrIX2QHBh44BOwwH/aO0DR99Aaqe2AgeXQ//4BPK/y2uM+VLzOR0eqDbehbqarGp8laipQOQk1Rghmd8Bef+rvamoeKD/60BBJrDhcZG4ZECX0cCp/4Nmf0bFV633ylHAyR24qwSOfaP7OTW16gxcy6pjP4iIfgboPLrqV8hH9xm/DnWMsS+qxvC4XSDyfv1dp/q6o+KBoAFAi3Yi41f8fTyc/N7AW0vlwP3vAop2qj/9o/8elGsmIFTU3nb17Td1BpIfFx/rSP3e3MpV/d2iner/pTdUf7t46n6+eiyM1vepjhX/3qrlv7yvGocIAjRjfri0BFp2AFw8gO/ja8fhEQzcPF9jYc3XJAdiXgLSPq79WnXp9ypwK6/a+CXq8VEGaH8OW3epti+r8Y1U7RN3HyD9i9rlgOqW2c4jgdP/9/fYMg7AqKV/j9VyCDiz3cAxT/5+jdN+rno/Ck9WDfQptt24OVXHRIt2Bn5fQPW5H7VMZByfv4+zXXMMjPdv4ROBwW+rXu+mp/Qf0+rB4m7kABlr9a932i9AyTXg3C7Ar7vqNTZ1qf15kjkAgxKBdtHV3kc56vxOB1TfyaEjVeu+ctS48ZU63A+c+7kqlo4PAu0fADo9qDq2DizTP7bRo+uArg//PX7OzKrPctRU1Wem5rhD6u1CqHr//bqr9on6c+viqTq2T27SHudK/d0NqMYFSvtEPK773wf6vGTgPmh8Fr8VHAA++eQTzSB+ERERWLZsGXr1Uo2uOXDgQAQGBmLdunWa+hs3bsTbb7+tGcRvwYIF1jGIH6AaQEzrDa8+6NHfH/g+L/890Nh51clSa6TP86oD7F6peFn1ZWKqH9zqL8fqoxHnHQJyfq02wma1A9szWPtEV/PLFaj6IlevS70M0B2fum71D0ytAfhmVn2RxL6gOvlrBmSr43XXrCP2Htz3MBDzQrWRUs8D5SWqwd5KbwD7PxI/4dQcZbd6zDVH21UneOp9WlJULYYar0vf+yW2v+t6f8WOHaBqPS3a1T6mdO3D6s8z5r0yhLHP1/X+Ky/XHnlXPSp2zfjFjunuk2vHEhCjuvNR7HNhzOdQ3+dYrLxmPX3bqP5cdeKiPgFppj+p8bk3dLtir6P658iQ47Nm7GKfk+pkMlWHU5eWqqS2+ues5okaQNWgji9qHzfVv4+UeX8nVX9/7kbrGUSuru9L9f6qa1A8sbFclJeBMztVozS36a76Aav+fIkdH3UdW+rXWDPpq7ltXeeWMzuB63+ofhx0erAqjrrOKbrWWbOs5jFpghYbmxrnxtzMNv1CzZOFoQdRY2/b2JOGoc9vbKbYpjHrVNe9clQ1wqjYl53Yc+pK8Br6XjRG/cbW0O03Vvz6TkyGblMsMbbkvm0IU8XeGO93zc+JruRI37aBxjkZ16duzUQ4ZBBwfrf+ZNJUjDnuJYbJjR5mn1uKbI8tn+DsDd8rMhdrSoTt9LhncqMHkxsiIiLbYzMjFBMRERE1NiY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmlg6AHNTT6VVXFxs4UiIiIjIUOrztiFTYtpdcnP79m0AgL+/v4UjISIiImPdvn0bCoVCbx27mxW8srISV65cgbu7O2QyWaOuu7i4GP7+/sjLy+OM4ybE/Wwe3M/mw31tHtzP5mGq/SwIAm7fvg0/Pz/I5fp71dhdy41cLkfbtm1Nuo3mzZvzg2MG3M/mwf1sPtzX5sH9bB6m2M91tdiosUMxERERSQqTGyIiIpIUJjeNyMnJCXPmzIGTk5OlQ5E07mfz4H42H+5r8+B+Ng9r2M9216GYiIiIpI0tN0RERCQpTG6IiIhIUpjcEBERkaQwuSEiIiJJYXJjpBUrViAwMBDNmjVDr169cOjQIb31N27ciNDQUDRr1gxhYWHYvn27mSK1bcbs59WrV6Nfv37w8PCAh4cH4uLi6nxfSMXY41ktOTkZMpkMY8aMMW2AEmLsvr516xZmzJgBX19fODk5oWPHjvz+MICx+3np0qXo1KkTnJ2d4e/vj1deeQV//vmnmaK1TXv37sWoUaPg5+cHmUyGrVu31vmcPXv2oHv37nByckL79u2xbt060wYpkMGSk5MFR0dHYc2aNcLvv/8uTJ8+XWjRooVQWFgoWv/AgQOCg4ODsGDBAuHUqVPC22+/LTRt2lTIzMw0c+S2xdj9PHHiRGHFihXC0aNHhdOnTwtTp04VFAqFcOnSJTNHbluM3c9qOTk5Qps2bYR+/foJDz30kHmCtXHG7uu7d+8KPXr0EIYPHy7s379fyMnJEfbs2SMcO3bMzJHbFmP38zfffCM4OTkJ33zzjZCTkyP89NNPgq+vr/DKK6+YOXLbsn37duGtt94SNm/eLAAQtmzZorf++fPnBRcXFyEhIUE4deqUsHz5csHBwUHYuXOnyWJkcmOE6OhoYcaMGZq/KyoqBD8/PyEpKUm0/mOPPSaMGDFCa1mvXr2EZ5991qRx2jpj93NNf/31l+Du7i6sX7/eVCFKQn32819//SXExsYKX3zxhTBlyhQmNwYydl9/9tlnQnBwsFBeXm6uECXB2P08Y8YMYfDgwVrLEhIShD59+pg0TikxJLn55z//Kdx3331ay8aPHy8MHTrUZHHxspSBysvLkZGRgbi4OM0yuVyOuLg4pKWliT4nLS1Nqz4ADB06VGd9qt9+rqm0tBT37t2Dp6enqcK0efXdz++//z5at26Np59+2hxhSkJ99vW2bdsQExODGTNmwNvbG127dsXcuXNRUVFhrrBtTn32c2xsLDIyMjSXrs6fP4/t27dj+PDhZonZXljiXGh3E2fWV1FRESoqKuDt7a213NvbG1lZWaLPKSgoEK1fUFBgsjhtXX32c01vvPEG/Pz8an2YqEp99vP+/fvx5Zdf4tixY2aIUDrqs6/Pnz+PX375BU888QS2b9+Oc+fO4fnnn8e9e/cwZ84cc4Rtc+qznydOnIiioiL07dsXgiDgr7/+wj/+8Q+8+eab5gjZbug6FxYXF6OsrAzOzs6Nvk223JCkzJs3D8nJydiyZQuaNWtm6XAk4/bt25g0aRJWr14NLy8vS4cjeZWVlWjdujVWrVqFqKgojB8/Hm+99RZWrlxp6dAkZc+ePZg7dy4+/fRTHDlyBJs3b8aPP/6IDz74wNKhUQOx5cZAXl5ecHBwQGFhodbywsJC+Pj4iD7Hx8fHqPpUv/2stmjRIsybNw8///wzunXrZsowbZ6x+zk7OxsXLlzAqFGjNMsqKysBAE2aNMGZM2cQEhJi2qBtVH2OaV9fXzRt2hQODg6aZZ07d0ZBQQHKy8vh6Oho0phtUX328zvvvINJkyZh2rRpAICwsDCUlJTgmWeewVtvvQW5nL//G4Ouc2Hz5s1N0moDsOXGYI6OjoiKikJqaqpmWWVlJVJTUxETEyP6nJiYGK36ALBr1y6d9al++xkAFixYgA8++AA7d+5Ejx49zBGqTTN2P4eGhiIzMxPHjh3TPEaPHo1Bgwbh2LFj8Pf3N2f4NqU+x3SfPn1w7tw5TQIJAGfPnoWvry8TGx3qs59LS0trJTDqhFLgtIuNxiLnQpN1VZag5ORkwcnJSVi3bp1w6tQp4ZlnnhFatGghFBQUCIIgCJMmTRJmzZqlqX/gwAGhSZMmwqJFi4TTp08Lc+bM4a3gBjB2P8+bN09wdHQUvv/+eyE/P1/zuH37tqVegk0wdj/XxLulDGfsvs7NzRXc3d2FF154QThz5ozwww8/CK1btxY+/PBDS70Em2Dsfp4zZ47g7u4ubNiwQTh//rzw3//+VwgJCREee+wxS70Em3D79m3h6NGjwtGjRwUAwpIlS4SjR48KFy9eFARBEGbNmiVMmjRJU199K/jrr78unD59WlixYgVvBbc2y5cvF9q1ayc4OjoK0dHRwv/+9z9N2YABA4QpU6Zo1f/uu++Ejh07Co6OjsJ9990n/Pjjj2aO2DYZs58DAgIEALUec+bMMX/gNsbY47k6JjfGMXZfHzx4UOjVq5fg5OQkBAcHC//617+Ev/76y8xR2x5j9vO9e/eEd999VwgJCRGaNWsm+Pv7C88//7xw8+ZN8wduQ3bv3i36navet1OmTBEGDBhQ6zkRERGCo6OjEBwcLKxdu9akMcoEgW1vREREJB3sc0NERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIlF79+7FqFGj4OfnB5lMhq1bt5p8m5cvX8aTTz6Jli1bwtnZGWFhYTh8+LBR62ByQ0QWN3XqVIwZM8Zi2580aRLmzp1rUN3HH38cixcvNnFERNahpKQE4eHhWLFihVm2d/PmTfTp0wdNmzbFjh07cOrUKSxevBgeHh5GrYcjFBORSclkMr3lc+bMwSuvvAJBENCiRQvzBFXN8ePHMXjwYFy8eBFubm511j958iT69++PnJwcKBQKM0RIZB1kMhm2bNmi9UPk7t27eOutt7BhwwbcunULXbt2xfz58zFw4MB6bWPWrFk4cOAA9u3b16BY2XJDRCaVn5+veSxduhTNmzfXWvbaa69BoVBYJLEBgOXLl2PcuHEGJTYA0LVrV4SEhODf//63iSMjsn4vvPAC0tLSkJycjBMnTmDcuHF48MEH8ccff9Rrfdu2bUOPHj0wbtw4tG7dGpGRkVi9erXR62FyQ0Qm5ePjo3koFArIZDKtZW5ubrUuSw0cOBAvvvgiZs6cCQ8PD3h7e2P16tUoKSlBfHw83N3d0b59e+zYsUNrWydPnsSwYcPg5uYGb29vTJo0CUVFRTpjq6iowPfff49Ro0ZpLf/000/RoUMHNGvWDN7e3nj00Ue1ykeNGoXk5OSG7xwiG5abm4u1a9di48aN6NevH0JCQvDaa6+hb9++WLt2bb3Wef78eXz22Wfo0KEDfvrpJzz33HN46aWXsH79eqPWw+SGiKzS+vXr4eXlhUOHDuHFF1/Ec889h3HjxiE2NhZHjhzBAw88gEmTJqG0tBQAcOvWLQwePBiRkZE4fPgwdu7cicLCQjz22GM6t3HixAkolUr06NFDs+zw4cN46aWX8P777+PMmTPYuXMn+vfvr/W86OhoHDp0CHfv3jXNiyeyAZmZmaioqEDHjh3h5uamefz666/Izs4GAGRlZUEmk+l9zJo1S7POyspKdO/eHXPnzkVkZCSeeeYZTJ8+HStXrjQqtiaN+kqJiBpJeHg43n77bQBAYmIi5s2bBy8vL0yfPh0AMHv2bHz22Wc4ceIEevfujU8++QSRkZFaHYPXrFkDf39/nD17Fh07dqy1jYsXL8LBwQGtW7fWLMvNzYWrqytGjhwJd3d3BAQEIDIyUut5fn5+KC8vR0FBAQICAkzx8oms3p07d+Dg4ICMjAw4ODholakv8wYHB+P06dN619OyZUvN/319fdGlSxet8s6dO2PTpk1GxcbkhoisUrdu3TT/d3BwQMuWLREWFqZZ5u3tDQC4evUqAFXH4N27d4v2ncnOzhZNbsrKyuDk5KTV6fn+++9HQEAAgoOD8eCDD+LBBx/Eww8/DBcXF00dZ2dnANC0GhHZo8jISFRUVODq1avo16+faB1HR0eEhoYavM4+ffrgzJkzWsvOnj1r9I8IJjdEZJWaNm2q9bdMJtNapk5IKisrAah+RY4aNQrz58+vtS5fX1/RbXh5eaG0tBTl5eVwdHQEALi7u+PIkSPYs2cP/vvf/2L27Nl49913kZ6erun0fOPGDQBAq1atGvYiiazcnTt3cO7cOc3fOTk5OHbsGDw9PdGxY0c88cQTmDx5MhYvXozIyEhcu3YNqamp6NatG0aMGGH09l555RXExsZi7ty5eOyxx3Do0CGsWrUKq1atMmo97HNDRJLQvXt3/P777wgMDET79u21Hq6urqLPiYiIAACcOnVKa3mTJk0QFxeHBQsW4MSJE7hw4QJ++eUXTfnJkyfRtm1beHl5mez1EFmDw4cPIzIyUnNpNiEhAZGRkZg9ezYAYO3atZg8eTJeffVVdOrUCWPGjEF6ejratWtXr+317NkTW7ZswYYNG9C1a1d88MEHWLp0KZ544gmj1sOWGyKShBkzZmD16tWYMGEC/vnPf8LT0xPnzp1DcnIyvvjii1p9AgBVy0v37t2xf/9+TaLzww8/4Pz58+jfvz88PDywfft2VFZWolOnTprn7du3Dw888IC5XhqRxQwcOBD6hsNr2rQp3nvvPbz33nuNts2RI0di5MiRDVoHW26ISBL8/Pxw4MABVFRU4IEHHkBYWBhmzpyJFi1aQC7X/VU3bdo0fPPNN5q/W7Rogc2bN2Pw4MHo3LkzVq5ciQ0bNuC+++4DAPz555/YunWrpmMzEVkfjlBMRHatrKwMnTp1QkpKCmJiYuqs/9lnn2HLli3473//a4boiKg+2HJDRHbN2dkZX331ld7B/qpr2rQpli9fbuKoiKgh2HJDREREksKWGyIiIpIUJjdEREQkKUxuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSQqTGyIiIpKU/weYjDkZv38cKAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=trace_schedule,\n", " schedule_kwargs={\n", " \"pulse_amp\": 0.5,\n", " \"acq_delay\": 100e-9,\n", " },\n", " batched=True,\n", ")\n", "\n", "data = gettable.get()\n", "\n", "plt.plot(np.arange(1000)/1e9, data[0], '.', label=\"real\")\n", "plt.plot(np.arange(1000)/1e9, data[1], '.', label=\"imaginary\")\n", "plt.legend()\n", "plt.xlabel(\"Time (s)\")\n", "plt.ylabel(\"Voltage (V)\")\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "4a2138b5", "metadata": {}, "source": [ "This time, there is only one acquisition operation in the schedule. The measurement result contains two arrays: one for the _I_ values (`data[0][:]`), and one for the _Q_ values (`data[1][:]`) of the acquired trace.\n", "\n", "## MeasurementControl\n", "\n", "Iterating through different parameters can be done with some help from `quantify-core` as well, through the {class}`~quantify_core.measurement.control.MeasurementControl` class. The {class}`~quantify_core.measurement.control.MeasurementControl` uses settables (parameters to vary in an experiment) and gettables (in this case, our {class}`~quantify_scheduler.gettables.ScheduleGettable`). The settable must be a class that implements `set()`, such as a QCoDeS {class}`~qcodes.parameters.ManualParameter`.\n", "\n", "In this example, the settable is the `time` object, and the setpoints are a numpy array of values (`times`). These are added to the {class}`~quantify_core.measurement.control.MeasurementControl` as shown, together with the {class}`~quantify_scheduler.gettables.ScheduleGettable`. The {class}`~quantify_core.measurement.control.MeasurementControl` object will be in charge of setting the setpoints, and retrieving the measurement results through the gettable." ] }, { "cell_type": "code", "execution_count": 8, "id": "d2aa13fe", "metadata": {}, "outputs": [], "source": [ "from quantify_core.measurement.control import MeasurementControl\n", "\n", "\n", "measurement_control = MeasurementControl(\"measurement_control\")\n", "\n", "# Configure the settable\n", "time = ManualParameter(\"sample\", label=\"Sample time\", unit=\"s\")\n", "time.batched = True\n", "\n", "times = np.linspace(start=1.6e-7, stop=4.976e-5, num=125)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=t1_sched,\n", " schedule_kwargs={\"times\": time},\n", " batched=True\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables(time)\n", "measurement_control.setpoints(times)\n", "measurement_control.gettables(gettable)" ] }, { "cell_type": "markdown", "id": "1b6afb66", "metadata": {}, "source": [ "The experiment is set to run fully in _batched_ mode. When using {class}`~quantify_core.measurement.control.MeasurementControl`, settables and gettables can be either batched (an array of points is set for each measurement iteration) or iterative (only one point is set per iteration). Combinations of batched and iterative settables are possible, as explained in detail in the [quantify-core documentation](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#mixing-iterative-and-batched-settables).\n", "\n", "Settables and gettables are batched if they have the attribute `batched=True`. In {class}`~quantify_scheduler.gettables.ScheduleGettable`, this can be controlled through the `batched` argument when creating the class. For other classes, the attribute can be added dynamically if needed, as shown above for the `time` parameter.\n", "\n", "With both the gettable and the settable having `batched=True`, the {class}`~quantify_core.measurement.control.MeasurementControl` knows that it should set the entire `times` array as the settable's value (instead of repeating the experiment for each value in the array). All data points are measured without interruption and all measurement results are returned in one go. Now, let's run the experiment and retrieve the data." ] }, { "cell_type": "code", "execution_count": 9, "id": "2d73b913", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t --- (None) --- \n", "Batched settable(s):\n", "\t sample \n", "Batch size limit: 125\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "93aed860c8bb47ffbc7217e174ab72df", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dataset = measurement_control.run()" ] }, { "cell_type": "markdown", "id": "c1bc18eb", "metadata": {}, "source": [ "The {class}`~quantify_core.measurement.control.MeasurementControl` class processes the data returned by the {class}`~quantify_scheduler.gettables.ScheduleGettable`, and turns it into a {class}`~xarray.Dataset`. More information on the format of this dataset can be found in the [quantify-core documentation](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#dataset)." ] }, { "cell_type": "code", "execution_count": 10, "id": "76cfbb74", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 3kB\n",
       "Dimensions:  (dim_0: 125)\n",
       "Coordinates:\n",
       "    x0       (dim_0) float64 1kB 1.6e-07 5.6e-07 9.6e-07 ... 4.936e-05 4.976e-05\n",
       "Dimensions without coordinates: dim_0\n",
       "Data variables:\n",
       "    y0       (dim_0) float64 1kB -1.166 -1.141 -1.109 ... -0.737 -0.7305 -1.164\n",
       "    y1       (dim_0) float64 1kB 0.2569 0.2138 0.2035 ... -0.2533 -0.247 0.2671\n",
       "Attributes:\n",
       "    tuid:                             20250723-152215-764-924303\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         False\n",
       "    1d_2_settables_uniformly_spaced:  False
" ], "text/plain": [ " Size: 3kB\n", "Dimensions: (dim_0: 125)\n", "Coordinates:\n", " x0 (dim_0) float64 1kB 1.6e-07 5.6e-07 9.6e-07 ... 4.936e-05 4.976e-05\n", "Dimensions without coordinates: dim_0\n", "Data variables:\n", " y0 (dim_0) float64 1kB -1.166 -1.141 -1.109 ... -0.737 -0.7305 -1.164\n", " y1 (dim_0) float64 1kB 0.2569 0.2138 0.2035 ... -0.2533 -0.247 0.2671\n", "Attributes:\n", " tuid: 20250723-152215-764-924303\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: False\n", " 1d_2_settables_uniformly_spaced: False" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset" ] }, { "cell_type": "markdown", "id": "82b3ae8d", "metadata": {}, "source": [ "The dataset coordinates and data variables are named as generic `x` and `y` parameters. You can click on the 'Show/Hide attributes' button next to the coordinates and variables to see what they refer to.\n", "\n", "(sec-tutorial-schedulegettable-repetitions)=\n", "## Repetitions\n", "\n", "Repetition defines how many times the defined schedule will run on the hardware. Running the schedule multiple times can be useful for example if the user would like to reduce errors of acquisitions by averaging the result of multiple measurements.\n", "\n", "There are multiple ways the repetitions can be set. They are not completely independent of each other, and which setting will be taken into account depends on how you create and use the schedule.\n", "\n", "1. {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice`: via `cfg_sched_repetitions` (by default it is `1024`),\n", "2. schedule function: via the `repetitions` function argument,\n", "3. {class}`~quantify_scheduler.schedules.schedule.Schedule` object: via the `repetitions` function argument of its constructor, or via its `repetitions` attribute directly,\n", "4. ({class}`~quantify_scheduler.gettables.ScheduleGettable`: currently, it is not possible to supply `repetitions` via `schedule_kwargs`).\n", "\n", "Ultimately, the {class}`~quantify_scheduler.schedules.schedule.Schedule` object is what governs the repetitions, via its `repetitions` attribute.\n", "\n", "When using a schedule function, the `repetitions` function argument sets the repetitions, provided that the schedule function passes it to the `Schedule` object. This is true for the pre-defined schedules, see {mod}`!quantify_scheduler.schedules`.\n", "\n", "However, if the experiment is run using `ScheduleGettable`, this `repetitions` function argument is set to `QuantumDevice.cfg_sched_repetitions`. Hence, typically, the schedule will run `QuantumDevice.cfg_sched_repetitions` times.\n", "\n", "### Possible mistake: ignoring `repetitions` argument\n", "\n", "Keep in mind that the schedule function should pass the `repetitions` argument to the `Schedule` initializer, otherwise both `QuantumDevice.cfg_sched_repetitions` and the `repetitions` argument of the schedule function will be ignored. For example, in the following setup, the `repetitions` will always be `1` (default for the `Schedule` object), even if `cfg_sched_repetitions` is set to `2`." ] }, { "cell_type": "code", "execution_count": 11, "id": "59e72f77", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import QuantumDevice, ScheduleGettable\n", "\n", "def schedule_function(q0: str, repetitions: int):\n", " schedule = Schedule(\"Example schedule\")\n", " schedule.add(Measure(q0, acq_index=0))\n", " return schedule\n", "\n", "quantum_device = QuantumDevice(name=\"quantum_sample\")\n", "quantum_device.cfg_sched_repetitions(2)\n", "\n", "schedule_gettable = ScheduleGettable(\n", " quantum_device=quantum_device,\n", " schedule_function=schedule_function,\n", " schedule_kwargs={\"q0\": \"q0\"},\n", ")" ] }, { "cell_type": "markdown", "id": "04c462c8", "metadata": {}, "source": [ "### Possible mistake: ignoring `cfg_sched_repetitions` default value\n", "\n", "Also note, that the default value of the `repetitions` argument of the schedule function will be ignored if `ScheduleGettable` is used, and it will be set to `QuantumDevice.cfg_sched_repetitions`. For example, in the following setup, `repetitions` will be `1024` (default for `QuantumDevice`), even if the default argument for `repetitions` is `2`." ] }, { "cell_type": "code", "execution_count": 12, "id": "7f3a41b4", "metadata": { "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "quantum_device.close()" ] }, { "cell_type": "code", "execution_count": 13, "id": "9efbe9e1", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import QuantumDevice, ScheduleGettable\n", "\n", "def schedule_function(q0: str, repetitions: int = 2):\n", " schedule = Schedule(\"Example schedule\", repetitions=repetitions)\n", " schedule.add(Measure(q0, acq_index=0))\n", " return schedule\n", "\n", "quantum_device = QuantumDevice(name=\"quantum_sample\")\n", "\n", "schedule_gettable = ScheduleGettable(\n", " quantum_device=quantum_device,\n", " schedule_function=schedule_function,\n", " schedule_kwargs={\"q0\": \"q0\"},\n", ")" ] }, { "cell_type": "markdown", "id": "a3b530d8", "metadata": {}, "source": [ "(sec-schedulegettable-2dsweep-usage)=\n", "\n", "## 2D (and ND) measurement loops" ] }, { "cell_type": "code", "execution_count": 14, "id": "d44bb420", "metadata": { "mystnb": { "code_prompt_show": "Set up the quantum device, dummy hardware and hardware configuration" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "from qblox_instruments import Cluster, ClusterType, DummyBinnedAcquisitionData\n", "\n", "from quantify_scheduler import BasicTransmonElement, InstrumentCoordinator, QuantumDevice\n", "from quantify_scheduler.qblox import ClusterComponent\n", "\n", "\n", "single_qubit_device.close_all()\n", "\n", "# Device parameters\n", "Q0_ACQ_DELAY = 100e-9\n", "Q0_FREQ_01 = 4e9\n", "Q0_READOUT_AMP = 0.1\n", "Q0_READOUT_FREQ = 4.3e9\n", "Q0_PI_PULSE_AMP = 0.15\n", "Q0_LO_FREQ_QUBIT = 3.9e9\n", "Q0_LO_FREQ_READOUT = 4.5e9\n", "\n", "Q1_ACQ_DELAY = 120e-9\n", "Q1_FREQ_01 = 4.1e9\n", "Q1_READOUT_AMP = 0.1\n", "Q1_READOUT_FREQ = 3.8e9\n", "Q1_PI_PULSE_AMP = 0.15\n", "Q1_LO_FREQ_QUBIT = 4.1e9\n", "Q1_LO_FREQ_READOUT = 3.8e9\n", "\n", "two_qubit_device = QuantumDevice(\"two_qubit_device\")\n", "\n", "q0 = BasicTransmonElement(\"q0\")\n", "q0.measure.acq_channel(0)\n", "q0.measure.pulse_amp(Q0_READOUT_AMP)\n", "q0.clock_freqs.readout(Q0_READOUT_FREQ)\n", "q0.clock_freqs.f01(Q0_FREQ_01)\n", "q0.measure.acq_delay(Q0_ACQ_DELAY)\n", "q0.rxy.amp180(Q0_PI_PULSE_AMP)\n", "\n", "q1 = BasicTransmonElement(\"q1\")\n", "q1.measure.acq_channel(1) # Note that we're specifying that measurements on q1 should use a different measurement channel\n", "q1.measure.pulse_amp(Q1_READOUT_AMP)\n", "q1.clock_freqs.readout(Q1_READOUT_FREQ)\n", "q1.clock_freqs.f01(Q1_FREQ_01)\n", "q1.measure.acq_delay(Q1_ACQ_DELAY)\n", "q1.rxy.amp180(Q1_PI_PULSE_AMP)\n", "\n", "two_qubit_device.add_element(q0)\n", "two_qubit_device.add_element(q1)\n", "\n", "# We will need to adjust the hardware configuration.\n", "\n", "# Note: if you are connecting to an actual cluster, you would provide the\n", "# 'identifier' argument (the ip address, device name or serial number) instead\n", "# of the 'dummy_cfg' argument.\n", "cluster = Cluster(\n", " \"cluster\",\n", " dummy_cfg={\n", " 1: ClusterType.CLUSTER_QRM_RF,\n", " 2: ClusterType.CLUSTER_QCM_RF,\n", " 3: ClusterType.CLUSTER_QRM_RF,\n", " 4: ClusterType.CLUSTER_QCM_RF,\n", " },\n", ")\n", "\n", "ic_cluster = ClusterComponent(cluster)\n", "\n", "# Temporarily fixing dummy cluster's deficiency.\n", "cluster.start_sequencer = lambda : start_dummy_cluster_armed_sequencers(ic_cluster)\n", "\n", "instrument_coordinator = InstrumentCoordinator(\"instrument_coordinator\")\n", "instrument_coordinator.add_component(ic_cluster)\n", "\n", "two_qubit_device.instr_instrument_coordinator(instrument_coordinator.name)\n", "\n", "hardware_cfg = {\n", " \"version\": \"0.2\",\n", " \"config_type\": \"quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig\",\n", " \"hardware_description\": {\n", " f\"{cluster.name}\": {\n", " \"instrument_type\": \"Cluster\",\n", " \"modules\": {\n", " \"1\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"2\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " },\n", " \"3\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"4\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " }\n", " },\n", " \"ref\": \"internal\"\n", " }\n", " },\n", " \"hardware_options\": {\n", " \"modulation_frequencies\": {\n", " \"q0:res-q0.ro\": {\n", " \"lo_freq\": Q0_LO_FREQ_READOUT\n", " },\n", " \"q0:mw-q0.01\": {\n", " \"lo_freq\": Q0_LO_FREQ_QUBIT\n", " },\n", " \"q1:res-q1.ro\": {\n", " \"lo_freq\": Q1_LO_FREQ_READOUT\n", " },\n", " \"q1:mw-q1.01\": {\n", " \"lo_freq\": Q1_LO_FREQ_QUBIT\n", " }\n", " }\n", " },\n", " \"connectivity\": {\n", " \"graph\": [\n", " [f\"{cluster.name}.module1.complex_output_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module1.complex_input_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module2.complex_output_0\", \"q0:mw\"],\n", " [f\"{cluster.name}.module3.complex_output_0\", \"q1:res\"],\n", " [f\"{cluster.name}.module3.complex_input_0\", \"q1:res\"],\n", " [f\"{cluster.name}.module4.complex_output_0\", \"q1:mw\"]\n", " ]\n", " }\n", "}\n", "\n", "\n", "two_qubit_device.hardware_config(hardware_cfg)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1, sequencer=0, acq_index_name=\"0\", data=[DummyBinnedAcquisitionData(data=(0.0, 0.0), thres=0, avg_cnt=0)]\n", ")\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=3, sequencer=0, acq_index_name=\"0\", data=[DummyBinnedAcquisitionData(data=(0.0, 0.0), thres=0, avg_cnt=0)]\n", ")" ] }, { "cell_type": "markdown", "id": "664fea2b", "metadata": {}, "source": [ "2D and higher-dimensional measurement loops are easy to realize. Below we show an example Chevron experiment, which is a type of two-qubit experiment often performed on transmon qubits. The experiment includes a square pulse, and we want to vary both its amplitude and duration in a 2D grid. We have already set up a two-qubit {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` under the variable name `two_qubit_device`.\n", "\n", "We define simple schedule below with a parameterized amplitude and duration of the square pulse. `duration` and `amp` are scalars, so for each measurement point the schedule will be recompiled." ] }, { "cell_type": "code", "execution_count": 15, "id": "bdfd234e", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import Schedule\n", "from quantify_scheduler.operations import Measure, Reset, SquarePulse, X, X90\n", "\n", "def chevron_schedule_not_batched(duration, amp, repetitions=1):\n", " sched = Schedule(\"Chevron Experiment\", repetitions=repetitions)\n", "\n", " acq_idx = 0\n", "\n", " reset = sched.add(Reset(\"q0\", \"q1\"))\n", " sched.add(X(\"q0\"), ref_op=reset, ref_pt=\"end\") # Start at the end of the reset\n", " # We specify a clock for tutorial purposes, Chevron experiments do not necessarily use modulated square pulses\n", " square = sched.add(SquarePulse(amp=amp, duration=duration, port=\"q0:mw\", clock=\"q0.01\"))\n", " sched.add(X90(\"q0\"), ref_op=square) # Start at the end of the square pulse\n", " sched.add(X90(\"q1\"), ref_op=square)\n", " sched.add(Measure(\"q0\", acq_index=acq_idx), label=f\"M q0 {acq_idx}\")\n", " sched.add(\n", " Measure(\"q1\", acq_index=acq_idx),\n", " label=f\"M q1 {acq_idx}\",\n", " ref_pt=\"start\", # Start at the same time as the other measure\n", " )\n", "\n", " return sched" ] }, { "cell_type": "markdown", "id": "5e3705ac", "metadata": {}, "source": [ "We set up a non-batched measurement with {class}`~quantify_core.measurement.control.MeasurementControl` and a {class}`~quantify_scheduler.gettables.ScheduleGettable`. For this {class}`~quantify_scheduler.gettables.ScheduleGettable`, notice the keyword argument `num_channels=2`, which is needed since we specified in the quantum device elements that the measurements on `\"q0\"` and `\"q1\"` should end up in two different channels.\n", "\n", "In addition, we used another new argument in the {class}`~quantify_scheduler.gettables.ScheduleGettable`: `real_imag=False`. `real_imag` can be used to transform the acquisition data. If it is `True` (the default), the I and Q values will be returned, and if it is `False`, the data will be transformed to the absolute value and the phase (in degrees, in the interval `(-180, 180]`)." ] }, { "cell_type": "code", "execution_count": 16, "id": "c062ffe3", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting iterative measurement...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d36ba9edbd85470b99d3e9e5dd9b767a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "measurement_control = MeasurementControl(\"measurement_control\")\n", "\n", "# Configure the settables\n", "duration = ManualParameter(\"duration\", label=\"Duration\", unit=\"s\")\n", "duration.batched = False\n", "\n", "durations = np.linspace(start=20e-9, stop=60e-9, num=6)\n", "\n", "amplitude = ManualParameter(\"amplitude\", label=\"Amplitude\", unit=\"V\")\n", "amplitude.batched = False\n", "\n", "amplitudes = np.linspace(start=0.1, stop=1.0, num=10)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=two_qubit_device,\n", " schedule_function=chevron_schedule_not_batched,\n", " schedule_kwargs={\"duration\": duration, \"amp\": amplitude},\n", " batched=False,\n", " real_imag=False,\n", " num_channels=2,\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables([duration, amplitude])\n", "measurement_control.setpoints_grid([durations, amplitudes]) # note: setpoints_grid instead of setpoints\n", "measurement_control.gettables(gettable)\n", "\n", "# Run!\n", "dataset = measurement_control.run()\n", "dset_grid = dh.to_gridded_dataset(dataset)" ] }, { "cell_type": "code", "execution_count": 17, "id": "33326df7", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 2kB\n",
       "Dimensions:  (x0: 6, x1: 10)\n",
       "Coordinates:\n",
       "  * x0       (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n",
       "  * x1       (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n",
       "Data variables:\n",
       "    y0       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y1       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y2       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y3       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "Attributes:\n",
       "    tuid:                             20250723-152216-940-6f2901\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         True\n",
       "    1d_2_settables_uniformly_spaced:  False\n",
       "    xlen:                             6\n",
       "    ylen:                             10
" ], "text/plain": [ " Size: 2kB\n", "Dimensions: (x0: 6, x1: 10)\n", "Coordinates:\n", " * x0 (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n", " * x1 (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n", "Data variables:\n", " y0 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y1 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y2 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y3 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", "Attributes:\n", " tuid: 20250723-152216-940-6f2901\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: True\n", " 1d_2_settables_uniformly_spaced: False\n", " xlen: 6\n", " ylen: 10" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dset_grid" ] }, { "cell_type": "markdown", "id": "17dadace", "metadata": {}, "source": [ "As expected, this dataset contains double the amount of coordinates and data variables (note that the actual data has been mocked and set to 0.0). The two coordinates refer to the settables, `duration` and `amplitude`. With `real_imag` now set to `False`, the data variables contain the magnitude and phase (as opposed to the I and Q voltages) for measurements on `\"q0\"` and `\"q1\"`.\n", "\n", "### Batched 2D experiment\n", "\n", "Since this measurement is not batched, it's rather slow. Let's make this faster with (partial) batching.\n", "\n", "We will batch the amplitudes together, so we change the amplitudes parameter in the schedule function to an array." ] }, { "cell_type": "code", "execution_count": 18, "id": "5760df4c", "metadata": { "mystnb": { "code_prompt_show": "Provide the dummy hardware with acquisition data" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "from qblox_instruments import DummyBinnedAcquisitionData\n", "\n", "\n", "def get_dummy_binned_acquisition_data(real: float, imag: float):\n", " return DummyBinnedAcquisitionData(data=(real, imag), thres=0, avg_cnt=0)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1, sequencer=0, acq_index_name=\"0\", data=[get_dummy_binned_acquisition_data(re * 10, im * 10) for re, im in zip(range(-5, 5), range(5, -5, -1))]\n", ")\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=3, sequencer=0, acq_index_name=\"0\", data=[get_dummy_binned_acquisition_data(re * 10, im * 10) for re, im in zip(range(-5, 5), range(5, -5, -1))]\n", ")" ] }, { "cell_type": "code", "execution_count": 19, "id": "27bd8937", "metadata": {}, "outputs": [], "source": [ "def chevron_schedule_batched(duration, amps, repetitions=1):\n", " sched = Schedule(\"Chevron Experiment\", repetitions=repetitions)\n", "\n", " acq_idx = 0\n", "\n", " for amp in amps:\n", " reset = sched.add(Reset(\"q0\", \"q1\"))\n", " sched.add(X(\"q0\"), ref_op=reset, ref_pt=\"end\")\n", " square = sched.add(SquarePulse(amp=amp, duration=duration, port=\"q0:mw\", clock=\"q0.01\"))\n", " sched.add(X90(\"q0\"), ref_op=square)\n", " sched.add(X90(\"q1\"), ref_op=square)\n", " sched.add(Measure(\"q0\", acq_index=acq_idx), label=f\"M q0 {acq_idx}\")\n", " sched.add(\n", " Measure(\"q1\", acq_index=acq_idx),\n", " label=f\"M q1 {acq_idx}\",\n", " ref_pt=\"start\",\n", " )\n", "\n", " acq_idx += 1\n", "\n", " return sched" ] }, { "cell_type": "markdown", "id": "7f189f23", "metadata": {}, "source": [ "We specify that we want to batch the amplitudes by setting ``amplitude.batched = True`` and ``batched=True``as keyword argument for the gettable. Finally, we run this experiment just as before." ] }, { "cell_type": "code", "execution_count": 20, "id": "da1e7884", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t duration \n", "Batched settable(s):\n", "\t amplitude \n", "Batch size limit: 60\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e71ec88b9e70400d979ea43c90f1176a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Configure the settables\n", "duration = ManualParameter(\"duration\", label=\"Duration\", unit=\"s\")\n", "duration.batched = False\n", "\n", "durations = np.linspace(start=20e-9, stop=60e-9, num=6)\n", "\n", "amplitude = ManualParameter(\"amplitude\", label=\"Amplitude\", unit=\"V\")\n", "amplitude.batched = True\n", "\n", "amplitudes = np.linspace(start=0.1, stop=1.0, num=10)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=two_qubit_device,\n", " schedule_function=chevron_schedule_batched,\n", " schedule_kwargs={\"duration\": duration, \"amps\": amplitude},\n", " batched=True,\n", " real_imag=False,\n", " data_labels=[\"Magnitude Q0\", \"Phase Q0\", \"Magnitude Q1\", \"Phase Q1\"],\n", " num_channels=2,\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables([duration, amplitude])\n", "measurement_control.setpoints_grid([durations, amplitudes])\n", "measurement_control.gettables(gettable)\n", "\n", "# Run!\n", "dataset = measurement_control.run()\n", "dset_grid = dh.to_gridded_dataset(dataset)" ] }, { "cell_type": "code", "execution_count": 21, "id": "7a6cca3a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 2kB\n",
       "Dimensions:  (x0: 6, x1: 10)\n",
       "Coordinates:\n",
       "  * x0       (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n",
       "  * x1       (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n",
       "Data variables:\n",
       "    y0       (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n",
       "    y1       (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n",
       "    y2       (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n",
       "    y3       (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n",
       "Attributes:\n",
       "    tuid:                             20250723-152222-043-047980\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         True\n",
       "    1d_2_settables_uniformly_spaced:  False\n",
       "    xlen:                             6\n",
       "    ylen:                             10
" ], "text/plain": [ " Size: 2kB\n", "Dimensions: (x0: 6, x1: 10)\n", "Coordinates:\n", " * x0 (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n", " * x1 (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n", "Data variables:\n", " y0 (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n", " y1 (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n", " y2 (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n", " y3 (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n", "Attributes:\n", " tuid: 20250723-152222-043-047980\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: True\n", " 1d_2_settables_uniformly_spaced: False\n", " xlen: 6\n", " ylen: 10" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dset_grid" ] }, { "cell_type": "markdown", "id": "f9853be6", "metadata": {}, "source": [ "The shape of the dataset is no different from the previous (non-batched) experiment, but the metadata is a little different. Some coordinates and data variables now have the `batched=True` attribute. We also introduced another keyword argument: the `data_labels`. These `data_labels` are picked up by the {class}`~quantify_core.measurement.control.MeasurementControl`and end up in the {class}`xarray.Dataset` as the \"long_name\" of attributes. For example, `\"y0\"`s label can be accessed through `dataset[\"y0\"].attrs[\"long_name\"]`. The various plotting features of `quantify-core` will use this name to get labels for the figure axes." ] } ], "metadata": { "file_format": "mystnb", "kernelspec": { "display_name": "python3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.23" }, "source_map": [ 6, 34, 141, 149, 166, 170, 195, 199, 247, 251, 263, 273, 299, 303, 322, 332, 356, 364, 369, 373, 375, 401, 417, 423, 430, 445, 451, 588, 594, 617, 623, 660, 662, 672, 692, 714, 718, 754, 756 ], "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "01cc9b3eb1914204a6971845ce276efa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "0400677879b44b32bdc0f0862362fa51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "110049819a1a4c3e8493b47431cb379c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ad6b03a8e0d14177955f673cb5405c22", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_dd605d2146084f5982d6ab3eeeeec789", "tabbable": null, "tooltip": null, "value": 100.0 } }, "14eeb3e2b0384b1fad3bff941f431572": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "31111bc809bf4a40b77455948735c5c1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "337e215d1e8b4a8eb5e8705adec8fbe1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "587820d3f68740f69487162642541204": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d25d9791adc14201b3dcf99bc5b62f53", "placeholder": "​", "style": "IPY_MODEL_01cc9b3eb1914204a6971845ce276efa", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 125" } }, "6d9044ffad144f55956fb39eabb005a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "6e28b494e0024923b73bd832491cfcae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_31111bc809bf4a40b77455948735c5c1", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6d9044ffad144f55956fb39eabb005a0", "tabbable": null, "tooltip": null, "value": 100.0 } }, "74540383e3db4c71930fb968037f886d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "7b4febc6ae7e470d9492a44b6d733d38": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f788244e83da4ef6baf0e8bbcdfca001", "placeholder": "​", "style": "IPY_MODEL_74540383e3db4c71930fb968037f886d", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "7de2c63d22a04450853c161669e2b6a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "8b02d783c5dd42e083acb20e6f38e272": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "8bf2370c013b488da0ad1f4353003e2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8dc2f71709b54133b660a90185d78638": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "93aed860c8bb47ffbc7217e174ab72df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_7b4febc6ae7e470d9492a44b6d733d38", "IPY_MODEL_110049819a1a4c3e8493b47431cb379c", "IPY_MODEL_587820d3f68740f69487162642541204" ], "layout": "IPY_MODEL_a915755903034746abef1e3a2bffcd04", "tabbable": null, "tooltip": null } }, "947f96b62c71406f85c8b19309de1cd9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9d0ce44681214b588c658a6bb12dd53c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_947f96b62c71406f85c8b19309de1cd9", "placeholder": "​", "style": "IPY_MODEL_ca471aeac0de41cd9a629e5e0a6798bb", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:04 | time left: 00:00 ] " } }, "a1ff73d7e6274c7aa119752287d35778": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a915755903034746abef1e3a2bffcd04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ac6727750cdf496ea2b20c189bcbfe1d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0400677879b44b32bdc0f0862362fa51", "placeholder": "​", "style": "IPY_MODEL_8b02d783c5dd42e083acb20e6f38e272", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 10" } }, "ad6b03a8e0d14177955f673cb5405c22": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b2212df563f744c3813782c58457ba8e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_337e215d1e8b4a8eb5e8705adec8fbe1", "placeholder": "​", "style": "IPY_MODEL_c2570569528e4db18b496a6d9ee69f2d", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "c2570569528e4db18b496a6d9ee69f2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "ca471aeac0de41cd9a629e5e0a6798bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "d25d9791adc14201b3dcf99bc5b62f53": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d36ba9edbd85470b99d3e9e5dd9b767a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_ed434b2e0a67437da06afcbca5c2ea43", "IPY_MODEL_e210fafd3d0b418681f276b8e8395233", "IPY_MODEL_9d0ce44681214b588c658a6bb12dd53c" ], "layout": "IPY_MODEL_a1ff73d7e6274c7aa119752287d35778", "tabbable": null, "tooltip": null } }, "d55f9e8f7a3548e587d87fc2549a1a8b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "dd605d2146084f5982d6ab3eeeeec789": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "e210fafd3d0b418681f276b8e8395233": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d55f9e8f7a3548e587d87fc2549a1a8b", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7de2c63d22a04450853c161669e2b6a6", "tabbable": null, "tooltip": null, "value": 100.0 } }, "e71ec88b9e70400d979ea43c90f1176a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_b2212df563f744c3813782c58457ba8e", "IPY_MODEL_6e28b494e0024923b73bd832491cfcae", "IPY_MODEL_ac6727750cdf496ea2b20c189bcbfe1d" ], "layout": "IPY_MODEL_14eeb3e2b0384b1fad3bff941f431572", "tabbable": null, "tooltip": null } }, "ed434b2e0a67437da06afcbca5c2ea43": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8bf2370c013b488da0ad1f4353003e2f", "placeholder": "​", "style": "IPY_MODEL_8dc2f71709b54133b660a90185d78638", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "f788244e83da4ef6baf0e8bbcdfca001": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }