{ "cells": [ { "cell_type": "markdown", "id": "507ab476", "metadata": {}, "source": [ "(sec-tutorial-schedulegettable)=\n", "\n", "# Tutorial: ScheduleGettable\n", "\n", "```{seealso}\n", "The complete source code of this tutorial can be found in\n", "\n", "{nb-download}`ScheduleGettable.ipynb`\n", "```\n", "\n", "This tutorial covers the {class}`~quantify_scheduler.gettables.ScheduleGettable` in-depth. If you're looking for more information on how to set up an experiment in general, please see {ref}`sec-tutorial-experiment`.\n", "\n", "The {class}`~quantify_scheduler.gettables.ScheduleGettable` forms the top-level interface to {mod}`quantify_scheduler`. Under the hood, it uses `quantify-scheduler` modules to compile {ref}`Schedules `, run them on your hardware and retrieve measurement data from the hardware. As the {class}`~quantify_scheduler.gettables.ScheduleGettable` uses functions that return {class}`~quantify_scheduler.schedules.schedule.Schedule`s, you can dynamically set function parameters during experiments.\n", "\n", "For those familiar with [quantify-core](https://quantify-os.org/docs/quantify-core), the interface of the {class}`~quantify_scheduler.gettables.ScheduleGettable` is also designed to be used as a [gettable](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#settables-and-gettables) for [MeasurementControl](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#measurement-control). This is convenient for large, possibly multi-dimensional measurement loops, as is demonstrated in {ref}`2D (and ND) measurement loops`.\n", "\n", "Two things are always required when using a {class}`~quantify_scheduler.gettables.ScheduleGettable`: a {ref}`QuantumDevice ` and a function that returns a {class}`~quantify_scheduler.schedules.schedule.Schedule`. We will set these up in a few example scenarios below and show how to use the {class}`~quantify_scheduler.gettables.ScheduleGettable`. More commonly used schedule functions are also included in `quantify-scheduler` out of the box. You can find them in {mod}`~.quantify_scheduler.schedules.spectroscopy_schedules`, {mod}`~.quantify_scheduler.schedules.timedomain_schedules` and {mod}`~.quantify_scheduler.schedules.trace_schedules`.\n", "\n", "(sec-schedulegettable-1dsweep-usage)=\n", "\n", "## 1D iterative measurement loop\n", "\n", "\n", "```{admonition} Setup and hardware configuration\n", "The device setup and hardware configuration for this tutorial can be viewed in the collapsed code cells. In places where you would communicate with actual hardware, dummy objects have been used. If you want to learn more about how to set up the {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` and hardware configuration, please see our other tutorials, in particular {ref}`sec-tutorial-experiment` and {ref}`sec-tutorial-compiling`.\n", "```" ] }, { "cell_type": "code", "execution_count": 1, "id": "ea865213", "metadata": { "mystnb": { "code_prompt_show": "Set up the quantum device, dummy hardware and hardware configuration" }, "tags": [ "hide-cell" ] }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_1980/1151456847.py:2: DeprecationWarning: This package has reached its end of life. It is no longer maintained and will not receive any further updates or support. For further developments, please refer to the new Quantify repository: https://gitlab.com/quantify-os/quantify.All existing functionalities can be accessed via the new Quantify repository.\n", " from quantify_core.data import handling as dh\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Data will be saved in:\n", "/root/quantify-data\n" ] } ], "source": [ "from qblox_instruments import Cluster, ClusterType\n", "from quantify_core.data import handling as dh\n", "\n", "from quantify_scheduler import BasicTransmonElement, InstrumentCoordinator, QuantumDevice\n", "from quantify_scheduler.qblox import ClusterComponent, start_dummy_cluster_armed_sequencers\n", "\n", "# First, don't forget to set the data directory!\n", "dh.set_datadir() # change me!\n", "\n", "# We define a single transmon qubit as an element (BasicTransmonElement) of the\n", "# QuantumDevice, and populate the parameters with some reasonable values.\n", "\n", "# Device parameters\n", "ACQ_DELAY = 100e-9\n", "FREQ_01 = 4e9\n", "READOUT_AMP = 0.1\n", "READOUT_FREQ = 4.3e9\n", "PI_PULSE_AMP = 0.15\n", "LO_FREQ_QUBIT = 3.9e9\n", "LO_FREQ_READOUT = 4.5e9\n", "\n", "single_qubit_device = QuantumDevice(\"single_qubit_device\")\n", "\n", "q0 = BasicTransmonElement(\"q0\")\n", "single_qubit_device.add_element(q0)\n", "\n", "# Assign device parameters to transmon element\n", "q0.measure.pulse_amp(READOUT_AMP)\n", "q0.clock_freqs.readout(READOUT_FREQ)\n", "q0.clock_freqs.f01(FREQ_01)\n", "q0.measure.acq_delay(ACQ_DELAY)\n", "q0.rxy.amp180(PI_PULSE_AMP)\n", "\n", "# For this example, we will set up a Qblox cluster hardware setup with two modules: a\n", "# QRM-RF and a QCM-RF.\n", "\n", "# Note: if you are connecting to an actual cluster, you would provide the\n", "# 'identifier' argument (the ip address, device name or serial number) instead\n", "# of the 'dummy_cfg' argument.\n", "cluster = Cluster(\n", " \"cluster\",\n", " dummy_cfg={\n", " 1: ClusterType.CLUSTER_QRM_RF,\n", " 2: ClusterType.CLUSTER_QCM_RF,\n", " },\n", ")\n", "\n", "ic_cluster = ClusterComponent(cluster)\n", "\n", "# Temporarily fixing dummy cluster's deficiency.\n", "cluster.start_sequencer = lambda : start_dummy_cluster_armed_sequencers(ic_cluster)\n", "\n", "# We create an InstrumentCoordinator to control the cluster and add it to the\n", "# QuantumDevice.\n", "\n", "instrument_coordinator = InstrumentCoordinator(\"instrument_coordinator\")\n", "instrument_coordinator.add_component(ic_cluster)\n", "\n", "single_qubit_device.instr_instrument_coordinator(instrument_coordinator.name)\n", "\n", "# A basic hardware configuration will be used for the two cluster modules.\n", "\n", "hardware_cfg = {\n", " \"version\": \"0.2\",\n", " \"config_type\": \"quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig\",\n", " \"hardware_description\": {\n", " f\"{cluster.name}\": {\n", " \"instrument_type\": \"Cluster\",\n", " \"modules\": {\n", " \"1\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"2\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " }\n", " },\n", " \"ref\": \"internal\"\n", " }\n", " },\n", " \"hardware_options\": {\n", " \"modulation_frequencies\": {\n", " \"q0:res-q0.ro\": {\n", " \"lo_freq\": LO_FREQ_READOUT\n", " },\n", " \"q0:mw-q0.01\": {\n", " \"lo_freq\": LO_FREQ_QUBIT\n", " }\n", " }\n", " },\n", " \"connectivity\": {\n", " \"graph\": [\n", " [f\"{cluster.name}.module1.complex_output_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module1.complex_input_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module2.complex_output_0\", \"q0:mw\"]\n", " ]\n", " }\n", "}\n", "\n", "\n", "# This hardware configuration should also be added to the quantum device.\n", "single_qubit_device.hardware_config(hardware_cfg)" ] }, { "cell_type": "markdown", "id": "bcfeb6a3", "metadata": {}, "source": [ "For this experiment, we have set up a basic {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` called `single_qubit_device`, representing a single transmon qubit.\n", "\n", "We'll now define the schedule function. A valid schedule function must contain a `repetitions` (integer) parameter (see {ref}`Repetitions`), and can contain any number of additional parameters. It must return a {class}`~quantify_scheduler.schedules.schedule.Schedule` object.\n", "\n", "The schedule function can be parameterized to loop over different values. The parameters can be scalars or arrays. For example, the schedule function defined below takes an array of values for the parameter `times`. This is called a _batched_ measurement, as will be explained further in this tutorial." ] }, { "cell_type": "code", "execution_count": 2, "id": "17a13fc4", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import Schedule\n", "from quantify_scheduler.operations import Measure, Reset, X\n", "\n", "def t1_sched(times, repetitions=1):\n", " schedule = Schedule(\"T1\", repetitions)\n", " for i, tau in enumerate(times):\n", " schedule.add(Reset(\"q0\"), label=f\"Reset {i}\")\n", " schedule.add(X(\"q0\"), label=f\"pi {i}\")\n", " # Measure tau seconds after the start of the X gate\n", " schedule.add(\n", " Measure(\"q0\", acq_index=i),\n", " ref_pt=\"start\",\n", " rel_time=tau,\n", " label=f\"Measurement {i}\",\n", " )\n", " return schedule" ] }, { "cell_type": "markdown", "id": "801ed3a4", "metadata": {}, "source": [ "Now, let's create the {class}`~quantify_scheduler.gettables.ScheduleGettable`. The {class}`~quantify_scheduler.gettables.ScheduleGettable` provides a convenient way to compile and execute schedules in just a few lines of code. The parameters can be set directly, with arrays and scalars, or through QCoDeS parameters, as shown below." ] }, { "cell_type": "code", "execution_count": 3, "id": "d74de74d", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "from qcodes.instrument.parameter import ManualParameter\n", "\n", "from quantify_scheduler import ScheduleGettable\n", "\n", "# The points we want to measure.\n", "times = np.linspace(start=1.6e-7, stop=4.976e-5, num=125)\n", "\n", "# As QCoDeS parameter:\n", "time = ManualParameter(\"sample\", label=\"Sample time\", unit=\"s\")\n", "# Set the parameter. This can be done even after defining the gettable!\n", "time(times)\n", "\n", "# Or as array:\n", "time = times\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=t1_sched,\n", " schedule_kwargs={\"times\": time},\n", " batched=True\n", ")" ] }, { "cell_type": "markdown", "id": "fdb1622b", "metadata": {}, "source": [ "Note that `batched=True` here. This means we are doing a _batched_ measurement, which simply means that we tell the {class}`~quantify_scheduler.gettables.ScheduleGettable` to expect an array of values in the acquisition result. In this case, our schedule function creates one schedule for an array of times, and it includes an acquisition (the {class}`~quantify_scheduler.operations.gate_library.Measure` operation) for each point." ] }, { "cell_type": "code", "execution_count": 4, "id": "18dfb37c", "metadata": { "mystnb": { "code_prompt_show": "Provide the dummy hardware with acquisition data" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "import xarray\n", "\n", "from quantify_scheduler.waveforms import soft_square\n", "\n", "from qblox_instruments import DummyScopeAcquisitionData, DummyBinnedAcquisitionData\n", "\n", "\n", "soft_sq_samples = round(q0.measure.integration_time() * 1e9)\n", "soft_sq_times = np.arange(soft_sq_samples)\n", "soft_sq = soft_square(t=soft_sq_times, amp=0.5)\n", "scope_data_real = np.zeros(16384) # Scope trace acquires 16384 points\n", "scope_data_real[:soft_sq_samples] = soft_sq\n", "scope_data_real += np.random.randn(16384) / 500 # add some \"noise\"\n", "\n", "# Create dummy scope data with the soft square pulse on the I path and noise on\n", "# the Q path\n", "scope_data = list(zip(scope_data_real, np.random.randn(16384) / 500))\n", "\n", "dummy_scope_acquisition_data = DummyScopeAcquisitionData(\n", " data=scope_data, out_of_range=(False, False), avg_cnt=(0, 0)\n", " )\n", "\n", "ic_cluster.instrument.set_dummy_scope_acquisition_data(\n", " slot_idx=1, sequencer=None, data=dummy_scope_acquisition_data\n", ")\n", "\n", "\n", "# Dataset with T1 experiment data\n", "example_dataset = xarray.open_dataset(\"../examples/dataset.hdf5\")\n", "\n", "def get_dummy_binned_acquisition_data(real: float, imag: float):\n", " return DummyBinnedAcquisitionData(data=(real, imag), thres=0, avg_cnt=0)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1,\n", " sequencer=0,\n", " acq_index_name=\"0\",\n", " data=[\n", " get_dummy_binned_acquisition_data(float(re) * 1024, float(im) * 1024)\n", " for re, im in zip(example_dataset[\"y0\"], example_dataset[\"y1\"])\n", " ],\n", ")" ] }, { "cell_type": "markdown", "id": "8752bd47", "metadata": {}, "source": [ "Let's now run the experiment and retrieve the acquisitions using the {meth}`~quantify_scheduler.gettables.ScheduleGettable.get` method." ] }, { "cell_type": "code", "execution_count": 5, "id": "ab54159a", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUP0lEQVR4nO3deVhU9eIG8HcGEWUbZAdFEXdzww0x1yTXuGlqaiZqtvy6apFLYddcyjIrS23Rsky9N9My5XqtKFPLNFNESS33NIxFRGKQRSA4vz/GGWeGMzNnYPZ5P88zj86Zs3znUJ6X7yoTBEEAERERkRuS27sARERERPbCIERERERui0GIiIiI3BaDEBEREbktBiEiIiJyWwxCRERE5LYYhIiIiMhtNbB3ARxdTU0NcnJy4OfnB5lMZu/iEBERkQSCIODmzZuIjIyEXG643odByIScnBxERUXZuxhERERUB1evXkWzZs0Mfs4gZIKfnx8A1Y309/e3c2mIiIhIiuLiYkRFRWme44YwCJmgbg7z9/dnECIiInIyprq1sLM0ERERuS0GISIiInJbDEJERETkthiEiIiIyG0xCBEREZHbYhAiIiIit8UgRERERG6LQYiIiIjcFoMQERERuS0GISIiInJbDEJERETkthiEiIiIyD6U2cDlA6o/7YSLrhIREZHtHd8M/O9pQKgBZHIgcTXQPcnmxWCNkL04QAomIiKyC2X2nRAEqP78X7JdnomsEbIHB0nBREREdlF46U4IUhOqgcLfAUVTmxaFNUK25kApmIiIyC4CW6kqArTJPIDAGJsXhUHI1oylYCIiInegaKpqDZF5qN7LPIDEVTavDQLYNGZ76hSsHYbslIKJiIjspnsS0GqIqiIgMMYuIQhgjZDtOVAKJiIisitFU6Blf7s+A1kjZA8OkoKJiIjcHYOQvSiaMgARERHZGZvGiIiIyG0xCBEREZHbYhByFJxpmoiIyObYR8gRcKZpIiIiu2CNkL1xpmkiIiK7cbog9O677yI6OhqNGjVCXFwcjh49anDf9evXo3///mjSpAmaNGmChIQEo/vbhaGZpq8eZVMZERGRlTlVENq2bRvmzJmDxYsX4/jx4+jatSuGDRuG/Px80f2///57TJo0Cfv378fhw4cRFRWFoUOHIjvbgcKF2HorkAFfPAJsSgRWdVI1nREREZHFyQRBEOxdCKni4uLQq1cvvPPOOwCAmpoaREVFYfbs2UhJSTF5fHV1NZo0aYJ33nkHSUnS+uAUFxdDoVBAqVTC39+/XuU36PhmVXOYUA1VNhVuv26TeQDJpzjvEBERkURSn99OUyNUWVmJjIwMJCQkaLbJ5XIkJCTg8OHDks5RVlaGqqoqBAYGGtynoqICxcXFOi+r656kCjpTdwPjPoJOCAJUAenXVDaTERERWZjTBKGCggJUV1cjLCxMZ3tYWBjy8vIkneO5555DZGSkTpjSt3z5cigUCs0rKiqqXuWWTL3eSlScSFMZgG+fZzMZERGRhTlNEKqvV199FVu3bsXOnTvRqFEjg/stWLAASqVS87p69aoNS4nai7Jq44gyIiIii3KaeYSCg4Ph4eGBa9eu6Wy/du0awsPDjR77xhtv4NVXX8V3332HLl26GN3Xy8sLXl5e9S5vvagXZf01VVUTpE2oVi3Wyv5CRERE9eY0NUINGzZEjx49sHfvXs22mpoa7N27F/Hx8QaPe+211/DSSy8hLS0NPXv2tEVRLUPRFLhrdO1mMpmHasV6IiIiqjenCUIAMGfOHKxfvx6bNm3CmTNn8OSTT6K0tBTTp08HACQlJWHBggWa/VesWIEXXngBGzZsQHR0NPLy8pCXl4eSkhJ7fQXz6DeTyTyAxFWsDSIiIrIQp2kaA4AJEybg+vXrWLRoEfLy8tCtWzekpaVpOlBnZWVBLr+T7dauXYvKykqMGzdO5zyLFy/GkiVLbFn0ulM3kxX+rqoJYggiIiKyGKeaR8gebDKPEBEREVmUy80jRERERGRpDELOSJnNdciIiIgswKn6CBFuL8dxe7V6mVzVmbq7tOVCiIiISBdrhJyJMvtOCAI4wSIREVE9sUbImRReuhOC1IRq4OpRoDBItZI9R5URERFJxiDkTAJbqZrDdMKQDPjiETaVERER1QGbxpxJrXXIbv/42FRGRERUJ6wRcjbaEyyWXge2T9f9nGuRERERScYg5IwUTVUvZXbtpjKuRUZERCQZm8acGdciIyIiqhfWCDk7rkVGRERUZwxCrkDdVEZERERmYdOYq+HyG0RERJKxRsiVcPkNIiIiszAIuQpDy2+E3gVUlXLWaSIiIhEMQq7C0PIbHw0BBIE1RERERCLYR8hVqJff0CcIt//krNNERET6GIRchaHlN7SpZ50mIiIiAGwacy3acwp5egMfJdSeddrTWzWqjH2GiIiIGIRcjvacQomrVc1hQrUqBHWZcCccsc8QERERg5BLM1ZDJNQAu54GGvoCUXGsHSIiIrfEPkKuTtEUaNlfNYRef1QZalSr16/qpJqDiIiIyM0wCLkLQ6PKAI4oIyIit8Ug5C5qjSrTwxFlRETkhhiE3En3JCD5FDBuY+3aIZmHavV6IiIiN8Ig5G4UTYFOY3Rrh2QeQOIq1d+5YCsREbkRjhpzV9ojygJjgEt7VZ2mObSeiIjcCGuE3Jl6RBkgvmAra4aIiMjFMQiR4QVb2XmaiIhcHIMQGRhaLwdKr7NWiIiIXBqDEIkMrZcBEHQnW1RmsyM1ERG5HJkgCIK9C+HIiouLoVAooFQq4e/vb+/iWJcyG7h6FPjiEb2mMhkgk7EjNREROQ2pz2/WCNEdiqaAT5DIUhwCO1ITEZFLYhAiXcaW4lBjR2oiInIRDEKkq1Z/ITlUfYa0cBZqIiJyEZxQkWoTm2zxf8mqmiD1LNSKpvYuJRERUb05XY3Qu+++i+joaDRq1AhxcXE4evSo0f0///xztG/fHo0aNULnzp3x1Vdf2aikTk492aKi6Z01yqbuVv3JjtJEROQinCoIbdu2DXPmzMHixYtx/PhxdO3aFcOGDUN+fr7o/j/99BMmTZqEGTNm4MSJExg9ejRGjx6N06dP27jkLkA7GBEREbkIpxo+HxcXh169euGdd94BANTU1CAqKgqzZ89GSkpKrf0nTJiA0tJS7N69W7OtT58+6NatG9atWyfpmm41fJ6IiMhFuNzw+crKSmRkZCAhIUGzTS6XIyEhAYcPHxY95vDhwzr7A8CwYcMM7g8AFRUVKC4u1nmRCE6wSERELsBpglBBQQGqq6sRFhamsz0sLAx5eXmix+Tl5Zm1PwAsX74cCoVC84qKiqp/4V3N8c2qGac3Jd6ZeZqIiMgJOU0QspUFCxZAqVRqXlevXrV3kRyLMtv0SvWsLSIiIifhNMPng4OD4eHhgWvXrulsv3btGsLDw0WPCQ8PN2t/APDy8oKXl1f9C+yqjK1Ur2iqqh1SByUux0FERA7OaWqEGjZsiB49emDv3r2abTU1Ndi7dy/i4+NFj4mPj9fZHwD27NljcH+SwNhK9X9mmK4tIiIiciBOUyMEAHPmzMHUqVPRs2dP9O7dG6tWrUJpaSmmT58OAEhKSkLTpk2xfPlyAMDTTz+NgQMHYuXKlRg1ahS2bt2KY8eO4YMPPrDn13Bu6pmn1RMsaq9Ur/67Nu3aIiIiIgfjVEFowoQJuH79OhYtWoS8vDx069YNaWlpmg7RWVlZkMvv1Fb07dsXW7ZswcKFC/H888+jTZs2SE1NRadOnez1FVyDeubpWivVi8zEwOU4iIjIgTnVPEL2wHmEjLh8QDVyTJ9MfruP0O3lOFoNUfUtCmzFmiEiIrIJqc9vp6oRIgej7i+k3Xla5gHM2ANUld1Zp2xVJ3aeJiIih+Q0naXJAemvVK+uAWrWQ7UcB8DO00RE5NBYI0T1o79SvXbTl6Gh9r+mAneNZjMZERHZHWuEqP4MLcgqOtQewLfPc0ZqIiJyCAxCZD36TWfa2ExGREQOgEGIrKt7EpB8Chj6Su3PhGrVEHxDy3FwqQ4iIrIy9hEi61M0VfUJ2rNQr8+Q7M48RPojyrhUBxER2QBrhMg2ajWT3f5PT2xEmZSFXYmIiCyANUJkO9ojzEqv316WQ4t6OQ4I4qPNrh4FCoNUnbABTtJIRET1xiBEtqVoqnops8UnY/T0Bor+qP2ZdjMaZLe3CXeazTh7NRER1QGDENmH/uKtMg+gywTgo4Q7YUcmAwQBqmY0QXxNM6EG2PXU7X3Zn4iIiMzDIET2o91U5umtFYIAVfCRA+M+xp3V7Q0Rbgcm3OlP1GoIa4aIiMgkBiGyL3VT2eUDtfsFoQbwCVbNWF2rqcwI/f5EDERERGQAR42RYxCbhVrmcWfZDp0RZ7ebzQCo/hOWQe9AVX+iTYmcwZqIiIxijRA5BrE+Q4mr7tTm6K9pBtz5+6W9d47T70/EpjIiIjJCJgiCYHo391VcXAyFQgGlUgl/f397F8f1KbPFF3CVepzYsHwAmLpbtR4aERG5BanPb9YIkWNR9xmq63GGhuWra5GIiIi0sI8QuRb9/kT6TWxERERaWCNErke/P5GpEKTM5mSMRERuikGIXJN2E5uxoMPFXYmI3BqDELk2saCjXo7D00d8cVftEWasLSIicmkMQuS6xFax116OAzLoLNcBqIbg/5oK3DX69rB8AyGKwYiIyCVw+LwJHD7vxC4fUE2qWCdaC7tqb+OaZkREToHD54nUs1WbWppDdB+x3w/01jTb9TTQ0BeIirszdF9dWwSw5oiIyAkwCJHr0p+tWj3rtHbIkXkAM/YAWT8D3z5v5gVqVJM3yuRAl4nAya1aTW5QXcdQkxr7HhEROQQ2jZnApjEXoD1btfZyHOo5hronqfZZ1UmvZkirKUwsREmm16SmHZrYxEZEZBVSn98MQiYwCLkgQ8t4HN9cOyRpz0eks6aZBck8gORTrBkiIrIgBiELYRByM6bWOlNmA1ePqla3N9X3yBxcC42IyKKkPr+5xAaRNkVTVSAxVDujaAp0GlN7GY+uD915r24KA6D6X0wmciItXAuNiMhu2FmaqC7ElvG4Z+Gd94DhfkldJgAnt+k2wWkHL3akJiKyGTaNmcCmMbII/SY37ffAneAjNomjsY7UDE1ERKI4jxCRI9Fe+0z7vfYSIPqTOKqX/Ai9C6gqrR12uE4aEVG9sUbIBNYIkdWIDtkXIZOpJnLUDjtix+qPPmNtERG5MdYIETm6wkvSRp6JzWatfq+zX7WquU2/pqkuTWwMUUTkJhiEiOxFdAkQ/Ukc9YPS7dmsIUOtRWPVo8/EFps1p4mNEz4SkRthECKyF/0lQPQncfT0Bj5KMFBrJEAVmm4HKfWxAPDrTvHaoo+G3GliS1gCRMYCnj61Q9MvW7SOux2iWg0xXDPE2iMicmJOE4QKCwsxe/Zs/O9//4NcLsfYsWOxevVq+Pr6Gtx/8eLF+Pbbb5GVlYWQkBCMHj0aL730EhQKhY1LT2SA2DB84M6fOmul6ROAsR8DPsF3hukb63Ok3cS2Z9HtjXq1SqLHaTW56WOHbSJyck4zoeLkyZPx66+/Ys+ePdi9ezcOHDiAxx9/3OD+OTk5yMnJwRtvvIHTp09j48aNSEtLw4wZM2xYaiIJjE3i2D1J1QF63EZV0NAm8wCiet+ZkVq7ZkeHsf/NpYyVkAOl11U1P4Dqz8sHgD8zxJvg1PsRETkBpxg1dubMGXTs2BHp6eno2bMnACAtLQ0jR47En3/+icjISEnn+fzzz/Hwww+jtLQUDRqIV4ZVVFSgoqJC8764uBhRUVEcNUb2J7YWmrr25fIBYFNi7WOGvQJE9THSxHabdhOb9oSP2kP69fsPGapNssZyIfVpfmPTHZFbcqlRY4cPH0ZAQIAmBAFAQkIC5HI5jhw5gjFjxkg6j/pmGApBALB8+XIsXbq03mUmsjhDzWiAeMdrmQfQcXTtvkj6ZB7AjD1AVZnuLNn6a6rp9x8SrU3Sqj0ytFabOpQA0gJKfZrf2HRHRCY4RRDKy8tDaGiozrYGDRogMDAQeXl5ks5RUFCAl156yWhzGgAsWLAAc+bM0bxX1wgROQT9iRm1t4t1vFbvqx2ick4A3y3R3a9Zj9rnKwySNrxfE8Bu1xBtn34ndLQaIj5rtn5Nk6GAYmgEnLHO25Y4lojchl2DUEpKClasWGF0nzNnztT7OsXFxRg1ahQ6duyIJUuWGN3Xy8sLXl5e9b4mkc0ZqzEC7oSolv2BTmMN76cmOrxfj7o2qSirdu3Rrqe0pgLQmzVbuzbJ2PB+sbmWjHXe1lafY8WwiY3IJdk1CM2dOxfTpk0zuk9MTAzCw8ORn5+vs/3vv/9GYWEhwsPDjR5/8+ZNDB8+HH5+fti5cyc8PT3rW2wix2Woxqgu+4nVMoktGNushyrA1ApMwp2RalJGphka3i/W5Kdeo80YQ82Fxo411HTHNeCIXJZdg1BISAhCQkJM7hcfH4+ioiJkZGSgRw9VFf6+fftQU1ODuLg4g8cVFxdj2LBh8PLywq5du9CoUSOLlZ3ILYjVMt2zsHZtkpTaI1PEhvdrOmjrhS9A1UFcrK+Rdggx1lyoz+C6byJrwKln+I6Kq30+V+6XZCrg1aUPmC3LR8a56QzzTjFqDABGjBiBa9euYd26daiqqsL06dPRs2dPbNmi6ryZnZ2NIUOGYPPmzejduzeKi4sxdOhQlJWVYefOnfDx8dGcKyQkBB4eHpKuy7XGiCTSHtUGOVTBQfufF5luU5kMt8OP2Aza2ofpdeY21tdIbFZs7SAHiP9D7+ljemSdaNn0go7o+nFyYNxH4qFJnyM8eAyVwVTAMxQkxfY153tKfThbM4Da4+di61AiZYZ57T5/ThCMpD6/nSYIFRYWYtasWToTKq5Zs0YzoeKVK1fQsmVL7N+/H4MGDcL333+PwYMHi57r8uXLiI6OlnRdBiEiMyiz74SOS3sNz5qtCSWmZtC+TT0kX+pCtWraC9Ea+4deysSSxq4xY4+qebC04PYSKGL7GXg4qx9wOZnAd4uNP3iMPQwt8ZmhJkBDi/yqv7epIGns52DsASt1+RcpixDrf1fA8L3V/sxUs6g1Akp9l70xt0yS/r/S+kXGSWo6XS4I2QuDEFE9aAcjk0Pkkw0P71c/0AzNl2TM1N2q65sToGoXQqs2S+xj2e3aLf1O4fr7aYWHWiPpjFzT1MNQ/8Gp7mNl6kFusDlQq7zJp1QPVbH7rvO9TTxKDP4cRB6wrYYAV48AX8yQ1lk/6zDw7b/Er6me08pYjVWtUKy+D0buidTFjc0NqFJCiVjIU6vLgsu/7hS/f8bol8ERajP1uNQ8QkTkpKR23jY1vL+ufZHUnaPFRpCJ7q81FYC66U67Nkt/biU1nU7hMsNl1O4Ubio0aXc2N7YGHFB7mgCdJVS0rqE9Qq/oD70QJlIOoVr1ndWBwej3NsLoz0Hve+qMNjRB534auCZQeyoF/VGLBufHMnJPrgqmFzeWGkK1A6DYWoFiZfg1FbhrdO0aL/0y6fdnM1QDaC7tEZh1CV8OFJpYI2QCa4SI7MBYTZJO7ZFeYBEb1Wao6USffl8kQLwMtfpCiZxz3EbVn2KhyZKGvgL4RxhujjNEU5Njckfz+nWZDJISanksQacp9pLxJkvzT16P2sHb/cUCWog0JZo4r+i19JoWTTXNGqz50t9X7/8lsT5/6hohQFqzpJoNBxOwacxCGISIHJB2UAJ0A4uhEKW/RImh0GTO9cX6N9VqOkk2HppEiXU2N8RUzZI5tB/GYmWQA+M2AAHNxb+3oSCp38FdJ1BJ/J6iD2eR+znsFdWM6oY61ZvN1D2pCzP6pNX63sbKZ4H/FtT3T///JbE+f92TDDdXD33lTo2VsUEJxkJTPTEIWQiDEJEL0Q9JUvswGWNsDTjta4p2CtfuH+MBJCwGIruLP3gkPwyNfWYkjOl3aC+9Ll67oO53Y+p7a39/0ZF0G1SLBmt/T2PhK6q37s/MWAgFjPdFMlaTaKg2y9g9UZdTctCVSD+U/JoKfPu8iYPqULOkOdREKKn1C4iJEZf2XJ8QDEIWwyBERCbVpVO42Eg60c60esHN0MNw3EbAJ1i8j5X6GqJhTC9oaF/bVJOHlO9tqMZA++EnpeZB6v00VkuhvkemahL1PzN2T4zVkplsRpPDYE2ToVFvUjr9S26a1QviUmtFRUe1GQrpJrBGyPExCBGRRdW3Fqq+AUVqTY65+9anvGLHSL1HYvvW5ZpSGbsnhoKuWCd70fmxDJzX0PVNBSgpzcHGgrgYY1MpZP0socYKdwJgXf+bkohByEIYhIjI4dQ3oNQ3aNi6vI52TWP3RGofNbHySL3X5tSgWbo52FgNn5RpKvQDoBVHjTEIWQiDEBE5JEsEFFuyR3kd7R5Zqzy2/J6matssOSihnhiELIRBiIiISIvUAQKWHJRQBwxCFsIgREREpMfRattEcGZpIiIisg6ps8Y7Abm9C0BERERkLwxCRERE5LYYhIiIiMhtMQgRERGR2zKrs3RRURF27tyJH3/8EX/88QfKysoQEhKC2NhYDBs2DH379rVWOYmIiIgsTlKNUE5ODh599FFERERg2bJlKC8vR7du3TBkyBA0a9YM+/fvx7333ouOHTti27Zt1i4zERERkUVIqhGKjY3F1KlTkZGRgY4dO4ruU15ejtTUVKxatQpXr17FvHnzLFpQIiIiIkuTNKHijRs3EBQUJPmk5u7vyDihIhERkfOR+vyW1DQWFBSE3bt3o6bGyEJqevsTEREROTrJo8ZGjx6NqKgo/Otf/8LFixetWSYiIiIim5AchC5fvownnngCW7duRbt27TBw4ED8+9//Rnl5uTXLR0RERGQ1koNQVFQUFi1ahEuXLuG7775DdHQ0nnzySUREROD//u//kJ6ebs1yEhEREVlcnSZUHDx4MDZt2oTc3Fy8/vrrOHXqFPr06YOuXbtaunxEREREVlOv1ef9/PwwZMgQ/PHHHzh79ix+++03S5WLiIiIyOrqVCNUXl6OzZs3Y9CgQWjTpg22bt2KOXPm4MqVKxYuHhEREZH1mFUj9PPPP2PDhg347LPPUFlZiQceeADfffcdBg8ebK3yEREREVmN5CDUsWNHnDt3DrGxsVi+fDkeeughKBQKa5aNiIjIYqqrq1FVVWXvYpCFeHp6wsPDo97nkRyEEhIS8Omnn7JDNBERORVBEJCXl4eioiJ7F4UsLCAgAOHh4ZDJZHU+h+QgtGbNmjpfhIiIyF7UISg0NBTe3t71emiSYxAEAWVlZcjPzwcARERE1PlckoLQ8OHDsWTJEvTp08fofjdv3sR7770HX19fzJw5s86FIiIisoTq6mpNCOLyT66lcePGAID8/HyEhobWuZlMUhAaP348xo4dC4VCgcTERPTs2RORkZFo1KgR/vrrL/z22284ePAgvvrqK4waNQqvv/56nQpDRERkSeo+Qd7e3nYuCVmD+udaVVVl3SA0Y8YMPPzww/j888+xbds2fPDBB1AqlQAAmUyGjh07YtiwYUhPT0eHDh3qVBAiIiJrYXOYa7LEz1VyHyEvLy88/PDDePjhhwEASqUS5eXlCAoKgqenZ70LQkRERGRrdZpQEQAUCgXCw8MZgoiIiJzElStXIJPJkJmZae+iOIw6ByEiIiIiZ+c0QaiwsBCTJ0+Gv78/AgICMGPGDJSUlEg6VhAEjBgxAjKZDKmpqdYtKBERkRVUVlbauwguyWmC0OTJk/Hrr79iz5492L17Nw4cOIDHH39c0rGrVq1iRzkiIqqXXGU5frpUgFxluU2uN2jQIMyaNQvJyckIDg7GsGHDcPr0aYwYMQK+vr4ICwvDlClTUFBQoDkmLS0N/fr1Q0BAAIKCgnDffffh0qVLNimvs3KKIHTmzBmkpaXhww8/RFxcHPr164e3334bW7duRU5OjtFjMzMzsXLlSmzYsEHStSoqKlBcXKzzIiIi97YtPQt3v7oPD60/grtf3Ydt6Vk2ue6mTZvQsGFDHDp0CK+++iruuecexMbG4tixY0hLS8O1a9fw4IMPavYvLS3FnDlzcOzYMezduxdyuRxjxoxBTU2NTcrrjMxadFWtqKgI27dvx6VLlzB//nwEBgbi+PHjCAsLQ9OmTS1dRhw+fBgBAQHo2bOnZltCQgLkcjmOHDmCMWPGiB5XVlaGhx56CO+++y7Cw8MlXWv58uVYunSpRcpNRETOL1dZjgU7TqFGUL2vEYDnd5zGgLYhiFA0tuq127Rpg9deew0AsGzZMsTGxuKVV17RfL5hwwZERUXh/PnzaNu2LcaOHatz/IYNGxASEoLffvsNnTp1smpZnZXZNUInT55E27ZtsWLFCrzxxhuatVt27NiBBQsWWLp8AFTTo4eGhupsa9CgAQIDA5GXl2fwuGeeeQZ9+/bF/fffL/laCxYsgFKp1LyuXr1a53ITEZHzu1xQqglBatWCgCsFZVa/do8ePTR//+WXX7B//374+vpqXu3btwcATfPXhQsXMGnSJMTExMDf3x/R0dEAgKws29RgOSOza4TmzJmDadOm4bXXXoOfn59m+8iRI/HQQw+Zda6UlBSsWLHC6D5nzpwxt4gAgF27dmHfvn04ceKEWcd5eXnBy8urTtckIiLX0zLYB3IZdMKQh0yG6GDrz1bt4+Oj+XtJSQkSExNFn5vqtbYSExPRokULrF+/HpGRkaipqUGnTp3Y0doIs4NQeno63n///VrbmzZtarR2RszcuXMxbdo0o/vExMQgPDxcs7Ca2t9//43CwkKDTV779u3DpUuXEBAQoLN97Nix6N+/P77//nuzykpERO4pQtEYyx/ojOd3nEa1IMBDJsMrD3SyerOYvu7du+OLL75AdHQ0GjSo/fi+ceMGzp07h/Xr16N///4AgIMHD9q0jM7I7CDk5eUl2oH4/PnzCAkJMetcISEhko6Jj49HUVERMjIyNNWE+/btQ01NDeLi4kSPSUlJwaOPPqqzrXPnznjrrbeQmJhoVjmJiMi9TejVHAPahuBKQRmig71tHoIAYObMmVi/fj0mTZqEZ599FoGBgbh48SK2bt2KDz/8EE2aNEFQUBA++OADREREICsrCykpKTYvp7Mxu4/QP/7xD7z44ouahexkMhmysrLw3HPP1eqkZSkdOnTA8OHD8dhjj+Ho0aM4dOgQZs2ahYkTJyIyMhIAkJ2djfbt2+Po0aMAgPDwcHTq1EnnBQDNmzdHy5YtrVJOIiJyXRGKxohvFWSXEAQAkZGROHToEKqrqzF06FB07twZycnJCAgIgFwuh1wux9atW5GRkYFOnTrhmWee4SLoEphdI7Ry5UqMGzcOoaGhKC8vx8CBA5GXl4f4+Hi8/PLL1igjAOCTTz7BrFmzMGTIEMjlcowdOxZr1qzRfF5VVYVz586hrMz6ndeIiIisTawLR5s2bbBjxw6DxyQkJOC3337T2SYIdzo3RUdH67ynOgQhhUKBPXv24ODBgzh58iRKSkrQvXt3JCQkWKN8GoGBgdiyZYvBz6X8cPnDJyIiIm11mkcIAPr164d+/fpZsixERERENmV2ENJujtImk8nQqFEjtG7dGgMGDICHh0e9C0dERERkTWYHobfeegvXr19HWVkZmjRpAgD466+/4O3tDV9fX+Tn5yMmJgb79+9HVFSUxQtMREREZClmjxp75ZVX0KtXL1y4cAE3btzAjRs3cP78ecTFxWH16tXIyspCeHg4nnnmGWuUl4iIiMhizK4RWrhwIb744gu0atVKs61169Z44403MHbsWPz+++947bXXrDaUnoiIiMhSzK4Rys3Nxd9//11r+99//62ZWToyMhI3b96sf+mIiIiIrMjsIDR48GA88cQTOmt4nThxAk8++STuueceAMCpU6c4aSERERE5PLOD0EcffYTAwED06NFDs0Bpz549ERgYiI8++ggA4Ovri5UrV1q8sERERESWZHYfofDwcOzZswdnz57F+fPnAQDt2rVDu3btNPsMHjzYciUkIiJyQ4MGDUK3bt2watUqu5YjOjoaycnJSE5Otms5rKXOEyq2b98e7du3t2RZiIiI6LYdO3bA09PT3sVAeno6fHx87F0Mq6lTEPrzzz+xa9cuZGVlobKyUuezN9980yIFIyIicmeBgYH2LgIAICQkxOrXqKysRMOGDa1+HTFm9xHau3cv2rVrh7Vr12LlypXYv38/Pv74Y2zYsAGZmZlWKCIREZEDUGYDlw+o/rSBQYMGaZqjoqOjsWzZMiQlJcHX1xctWrTArl27cP36ddx///3w9fVFly5dcOzYMc3xN27cwKRJk9C0aVN4e3ujc+fO+PTTT3WucfPmTUyePBk+Pj6IiIjAW2+9pXNd9bW1m+dkMhk+/PBDjBkzBt7e3mjTpg127dql+by6uhozZsxAy5Yt0bhxY7Rr1w6rV6/Wue60adMwevRovPzyy4iMjES7du3w4osvolOnTrXuQ7du3fDCCy/U404aZ3YQWrBgAebNm4dTp06hUaNG+OKLL3D16lUMHDgQ48ePt0YZiYiI7Ov4ZmBVJ2BTourP45ttXoS33noLd999N06cOIFRo0ZhypQpSEpKwsMPP4zjx4+jVatWSEpK0iwwfuvWLfTo0QNffvklTp8+jccffxxTpkzB0aNHNeecM2cODh06hF27dmHPnj348ccfcfz4cZNlWbp0KR588EGcPHkSI0eOxOTJk1FYWAgAqKmpQbNmzfD555/jt99+w6JFi/D888/js88+0znH3r17ce7cOezZswe7d+/GI488gjNnziA9PV2zz4kTJ3Dy5ElMnz7dErdQnGAmX19f4eLFi4IgCEJAQIBw+vRpQRAEITMzU2jRooW5p3N4SqVSACAolUp7F4WIiMxUXl4u/Pbbb0J5eXndT1L0pyAsCRCExf53XkuaqLZb0cCBA4Wnn35aEARBaNGihfDwww9rPsvNzRUACC+88IJm2+HDhwUAQm5ursFzjho1Spg7d64gCIJQXFwseHp6Cp9//rnm86KiIsHb21tzXfW133rrLc17AMLChQs170tKSgQAwtdff23wujNnzhTGjh2reT916lQhLCxMqKio0NlvxIgRwpNPPql5P3v2bGHQoEEGz2vs5yv1+W12jZCPj4+mX1BERAQuXbqk+aygoMAS2YyIiMhxFF4ChBrdbUI1UPi7TYvRpUsXzd/DwsIAAJ07d661LT8/H4Cqieqll15C586dERgYCF9fX3zzzTfIysoCAPz++++oqqpC7969NedQKBQ6o8CllMXHxwf+/v6a6wLAu+++ix49eiAkJAS+vr744IMPNNdV69y5c61+QY899hg+/fRT3Lp1C5WVldiyZQseeeQRk+WpD7M7S/fp0wcHDx5Ehw4dMHLkSMydOxenTp3Cjh070KdPH2uUkYiIyH4CWwEyuW4YknkAgTE2LYb2CDKZTGZwW02Nqpyvv/46Vq9ejVWrVqFz587w8fFBcnJyrUFO9S2L+trq627duhXz5s3DypUrER8fDz8/P7z++us4cuSIzjFiI9ESExPh5eWFnTt3omHDhqiqqsK4cePqXV5jzA5Cb775JkpKSgCo2ghLSkqwbds2tGnThiPGiIjI9SiaAomrgf8lq2qCZB5A4irVdgd26NAh3H///Xj44YcBqALS+fPn0bFjRwBATEwMPD09kZ6ejubNmwMAlEolzp8/jwEDBtTrun379sU///lPzTbt1iNjGjRogKlTp+Ljjz9Gw4YNMXHiRDRu3LjOZZF0TXMPiIm5k4B9fHywbt06ixaIiIjI4XRPAloNUTWHBcY4fAgCgDZt2mD79u346aef0KRJE7z55pu4du2aJgj5+flh6tSpmD9/PgIDAxEaGorFixdDLpdrapfqet3Nmzfjm2++QcuWLfHvf/8b6enpkpfeevTRR9GhQwcAqlBlbWb3EYqJicGNGzdqbS8qKtIJSURERC5F0RRo2d8pQhAALFy4EN27d8ewYcMwaNAghIeHY/To0Tr7vPnmm4iPj8d9992HhIQE3H333ejQoQMaNWpU5+s+8cQTeOCBBzBhwgTExcXhxo0bOrVDprRp0wZ9+/ZF+/btERcXV+dySCW73QNcMrlcjry8PISGhupsv3btGpo3b46KigqLFtDeiouLoVAooFQq4e/vb+/iEBGRGW7duoXLly+jZcuW9Xq4u4vS0lI0bdoUK1euxIwZM+xSBkEQ0KZNG/zzn//EnDlzjO5r7Ocr9fktuWlMe7Kkb775BgqFQvO+uroae/fuRXR0tNTTERERkZ2dOHECZ8+eRe/evaFUKvHiiy8CAO6//367lOf69evYunUr8vLyrDt3kBbJQUhdnSaTyTB16lSdzzw9PREdHc0V54mIiJzMG2+8gXPnzqFhw4bo0aMHfvzxRwQHB9ulLKGhoQgODsYHH3yAJk2a2OSakoOQelhcy5YtkZ6ebrebRERERJYRGxuLjIwMexdDw8zeOhZh9qixy5cvW6McRERERDYnKQitWbNG8gmfeuqpOheGiIjIGuxR00DWZ4mfq6Qg9NZbb0k6mUwmYxAiIiKHoZ4BuayszOoT85HtlZWVAag907U5JAUhNocREZEz8vDwQEBAgGYdLG9v73pNFkiOQRAElJWVIT8/HwEBAfDw8KjzuczuI6RfEAD8j4qIiBxWeHg4AOgsCkquISAgQPPzras6BaHNmzfj9ddfx4ULFwAAbdu2xfz58zFlypR6FYaIiMjSZDIZIiIiEBoaiqqqKnsXhyzE09OzXjVBanVadPWFF17ArFmzcPfddwMADh48iP/7v/9DQUEBnnnmmXoXioiIyNI8PDws8uAk12L2EhstW7bE0qVLkZSUpLN906ZNWLJkicv1J+ISG0RERM5H6vPb7EVXc3Nz0bdv31rb+/bti9zcXHNPR0RERGQ3Zgeh1q1b47PPPqu1fdu2bWjTpo1FCkVERERkC2b3EVq6dCkmTJiAAwcOaPoIHTp0CHv37hUNSERERESOSnKN0OnTpwEAY8eOxZEjRxAcHIzU1FSkpqYiODgYR48exZgxY6xWUCIiIiJLk9xZWi6Xo1evXnj00UcxceJE+Pn5WbtsDoGdpYmIiJyPxTtL//DDD7jrrrswd+5cREREYNq0afjxxx8tUlgpCgsLMXnyZPj7+yMgIAAzZsxASUmJyeMOHz6Me+65Bz4+PvD398eAAQNQXl5ugxITERGRo5MchPr3748NGzYgNzcXb7/9Ni5fvoyBAweibdu2WLFiBfLy8qxZTkyePBm//vor9uzZg927d+PAgQN4/PHHjR5z+PBhDB8+HEOHDsXRo0eRnp6OWbNmQS43u484ERERuSCz5xHSdvHiRXz88cf497//jby8PAwfPhy7du2yZPkAAGfOnEHHjh2Rnp6Onj17AgDS0tIwcuRI/Pnnn4iMjBQ9rk+fPrj33nvx0ksvSb5WRUUFKioqNO+Li4sRFRXFpjEiIiInYrV5hLS1bt0azz//PBYuXAg/Pz98+eWX9TmdQYcPH0ZAQIAmBAFAQkIC5HI5jhw5InpMfn4+jhw5gtDQUPTt2xdhYWEYOHAgDh48aPRay5cvh0Kh0LyioqIs+l2IiIjIcdQ5CB04cADTpk1DeHg45s+fjwceeACHDh2yZNk08vLyEBoaqrOtQYMGCAwMNNgk9/vvvwMAlixZgsceewxpaWno3r07hgwZolkjTcyCBQugVCo1r6tXr1ruixAREZFDMSsI5eTk4JVXXkHbtm0xaNAgXLx4EWvWrEFOTg7Wr1+PPn36mHXxlJQUyGQyo6+zZ8+adU61mpoaAMATTzyB6dOnIzY2Fm+99RbatWuHDRs2GDzOy8sL/v7+Oi8iIiJyTZInVBwxYgS+++47BAcHIykpCY888gjatWtXr4vPnTsX06ZNM7pPTEwMwsPDkZ+fr7P977//RmFhIcLDw0WPi4iIAAB07NhRZ3uHDh2QlZVV90ITERGRy5AchDw9PbF9+3bcd999Flu9NyQkBCEhISb3i4+PR1FRETIyMtCjRw8AwL59+1BTU4O4uDjRY6KjoxEZGYlz587pbD9//jxGjBhR/8ITERGR05MchKwxGkyqDh06YPjw4Xjsscewbt06VFVVYdasWZg4caJmxFh2djaGDBmCzZs3o3fv3pDJZJg/fz4WL16Mrl27olu3bti0aRPOnj2L7du32+27EBERkeMwe60xe/nkk08wa9YsDBkyBHK5HGPHjsWaNWs0n1dVVeHcuXMoKyvTbEtOTsatW7fwzDPPoLCwEF27dsWePXvQqlUre3wFIiIicjD1mkfIHXCJDSIiIudjk3mEiIiIiJwZgxARERG5LQYhIiIiclsMQkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBEREREbotBiIiIiNwWgxARERG5LQYhIiIiclsMQkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBEREREbotBiIiIiNwWgxARERG5LQYhIiIiB5CrLMdPlwqQqyy3d1HcSgN7F4CIiNxbrrIclwtK0TLYBxGKxrXeu4Nt6VlYsOMUagRALgOWP9AZE3o1t3ex6sTZfn4MQkREZJC1H2r6AWBMbFPsPJHt0IHAnHuivS8A0eNyleWaewAANQLw/I7TGNA2RLOfsWvW9TNrnFdKoHO0oMQgRERUT5b6h90eNSPGrmHqoVbXQKD9cNcPAF8cz9YcIxYI6vpd9D8HUKd7bc49OXD+umZf2e3PBdQ+7nJBqeYeqFULAq4UlCFC0bjWNZ8b3h6dmylqXUP/vGJlHdA2RLR8Uo41dd5jVwpFA137cD+UVlabvKa9yARBEEzv5r6Ki4uhUCigVCrh7+9v7+IQkQm2/m3T3LAg9TdpUzUjxs4LiNc86B97KluJFV+fFb1GrrIcd7+6T+cBLQew5qFY9GjRxKwHmqF79NOlAjy0/ojJe/zpY30Q3yrI7J+DoYe+fijRv9faQUP73vo09MCY936SdE+0ryHGQybDjn/Go7SyWvS8HjIZDqYMBoBaPwc1sWuoz5tVWIant2bqHCcDIJPBYPmMXdPYZ9rnFSOTAYKJa1rj/1Wpz28GIRMYhIich637WYiFBe0HnH7QEAs36t+k9R9a+qSeV6zmwVAgMHaNwtJKzNpyQrQsUh5oxsKDlIe8mnbQEAuSucpy0ftn6qEvhdi9NXSOulxDHRDU10k9kYNqQYCHTIZnh7dD52YKoz8HU+eti4WjOiBc0Uj0mu9MikVucTle/vJs3U5ugJSgWxcMQhbCIERkOVJra+rS5GLsgSuln0Vdym6oRkPqg8jUb9J1Pa+ha0h5WBv77d0U9QNNO5AaCg8LR3XAqC4ROHD+Op7fcVoTAEbHRmoCgamaG+33zk4dQssqa3Ayu0gTdOsa4upD7Jrm/rcKqEJsjYl9HKFGiH2EiMgmpNbWmFOrY+qBa6yfhX5NiTnNVuqmE5+GHpCLPBykhhXBjH3NOa+ha0g5XHtfGSD6/cR4yGSIDvau1e/H0KHLvjyDV746g+UPdMbBlMG4UlCG6GBvRCgaY96wdsi48hee2nrCaP8h7fe2JPWe1Aqh6hog1A4I1YKAssoaRAd7Y/KHP+vcP2M/B+1rGAse8tvnkhJu9K+pPlbs+mLnlQN4+6FYNGvSuNYvJ9rX9JDJ8MoDnezeYZpBiIisTsqoGHP30++YKfZcMvRwrhGAlC9O3XmAGOkn4tPQo9axy79WNQ3oN2lI+Q1YCv2aEUud1xixawgA3p4YCwA6oQQQf6ABwO6TOeIPTJEHrvrnezBlsE7TSISiMQJ9a3cgNue7GHvoa4cS/Xttirrm5mphuaR7MqBtiCbkAcCVgjJ4N5SL1l5GB3uLdpxW/xyCfL1wMrsIr319TlODpn0NsfOqQ0n3232YtGvf1Md+eTIXy748Y/CaN0orRJvKXhjVASNFavVeeaATRnWJBKD6hUPsmtrB194YhIjIYgzVqBgaFfPlyVyM6hKh2dfU6BlAt3ZGjFzkt82fLhWIPlwErXCjX9ugDjvG+oXUCEDqiRxNk4bYg0hNLNwY+k26++3+MPOGtTP4gDN0Xv2aB2OBQN0XpUuzAIMP5x7RqrKUVv5t9IF24Px1g/191OEh/cpftR64+j9ftZbBPpJrXsTun6GHvn4o0a6FulJQVitoaN9b9Xm6RjVB16gmJu+J+jtpfzf138UCgvoz/e+t/XOIbxWEf3SNNHgNsfOqQ8mEXs1FyzeqSwRe+eqMwWvmKstFyzTy9v+7hs5r7JqOEIDU2EfIBPYRIpLGWJOWWKdiNVOdhk2NrtGm3c9C/Y+uoc60lqTd2XNbepbOg0gdNLTLox0e9B9axpoBpZ4XgNFrGHpo6V9Dvzza19CvoTMWgtTnMdS53FAfEf3y6IcSsZAipbym6B9n7Dx1vYaxY039HOp6XmNMXbO+ZbIHdpa2EAYhckfmzLdiKGjoP+C0/yHVZ6rZQsqoHUP/eOsMZzZSU2KKodoJsQe5OQ8ia+1ry2sY6jSubjqpz0PeVCipTxBxZPb4Xqau6Wz3mkHIQhiEyN3UCg+o+6iddybFItC3oU5oEuuPoM9YZ0tD+6qbk9QMzYNjqOnEWD8R/RE9+n00HP03Y2szt6bH2R6o5Jw4aoyIdEiZLl+/Y7B2JDB31I4MdzrYajeVifVH0FcDINDHC6WV1UY73ur3gdAm1t9IfV5D/RoM9RNR9wsBYLCPhjuLUDQ22udFbH/eN3IUDEJEbkDqFP3Gmp7MoT/cVn/0l/ZDU6yZSj2CBhDvOKrfD0iMWGdb7fMCtR/I6vemwg4f5LUZ6zBL5MgYhIiciKnlGqSu56Q9Igq4E0LqG4LUTU8CUGu4rfboIP2HpliHXmOjYNS1M8aYW0shdjwf5ubhPSNnxCBEZGd1XezRWH8d7aYosSYiNUPBR26k47KpUTujukQaHG5rqDamLsNvpWAtBRGZws7SJrCzNFmTlFmU6zr8W71GU5SEDsfa9JueANRp1I4zDrclItfhcqPGCgsLMXv2bPzvf/+DXC7H2LFjsXr1avj6+ho8Ji8vD/Pnz8eePXtw8+ZNtGvXDv/6178wduxYyddlECJLMNRkZWqkjanJA6XQn/1Yn9hsuJYKLBwdRET24nKjxiZPnozc3Fzs2bMHVVVVmD59Oh5//HFs2bLF4DFJSUkoKirCrl27EBwcjC1btuDBBx/EsWPHEBsba8PSkzszVOtjaBbljCt/IdC39giuutKf/djYFP2WDizsM0JEjs4paoTOnDmDjh07Ij09HT179gQApKWlYeTIkfjzzz8RGVl76CwA+Pr6Yu3atZgyZYpmW1BQEFasWIFHH31U9JiKigpUVFRo3hcXFyMqKoo1QlQnhmp9dvwzHlmFZbWau/QnFjQ2eaCx/jpitGc/Zk0NEbk6l6oROnz4MAICAjQhCAASEhIgl8tx5MgRjBkzRvS4vn37Ytu2bRg1ahQCAgLw2Wef4datWxg0aJDBay1fvhxLly619FcgNyDW/GWo1mf0ez9BEO4EH+3Zjo0tImpoLSpjq3YDpoeNExG5K6cIQnl5eQgNDdXZ1qBBAwQGBiIvL8/gcZ999hkmTJiAoKAgNGjQAN7e3ti5cydat25t8JgFCxZgzpw5mvfqGiEiYww1fxlaOFLQCjtyAXjHwJBzwPjkgWLz4NzXVXyBTAYfIqLa7BqEUlJSsGLFCqP7nDljfCp+Y1544QUUFRXhu+++Q3BwMFJTU/Hggw/ixx9/ROfOnUWP8fLygpeXV52vSe7D0GzMNQKw4ItT8PFqgB4tmtSaPLBG7zzq2Y6jg73rPHmgPg4bJyKSxq59hK5fv44bN24Y3ScmJgb/+c9/MHfuXPz111+a7X///TcaNWqEzz//XLRp7NKlS2jdujVOnz6Nu+66S7M9ISEBrVu3xrp16ySVkaPG3Etd5vQx1pdHe2X1KwVl8G4orzWUXXukGIecExFZhlP0EQoJCUFISIjJ/eLj41FUVISMjAz06NEDALBv3z7U1NQgLi5O9JiysjIAgFwu19nu4eGBmhr938nJnanDz6lsJVZ8fVbSnD6G1uPSp15a4mDKYE1HZWOzHbMmh4jItpxi1BgAjBgxAteuXcO6des0w+d79uypGT6fnZ2NIUOGYPPmzejduzeqqqrQsWNHRERE4I033kBQUBBSU1Mxf/587N69GyNHjpR0XdYIuTZj8/SYO6ePWF8gNe0RWwBHbRERWZtT1AiZ45NPPsGsWbMwZMgQzYSKa9as0XxeVVWFc+fOaWqCPD098dVXXyElJQWJiYkoKSlB69atsWnTJskhiFyTob49+syZ00fdl+dqYbnJEVsAR20RETkKp6kRshfWCDk/7X4/5qy0bs6cPtp9edjPh4jI/lyuRoioLvQ7NQPSVlqvy5w+auznQ0TkPBiEyCWZ06lZe56eZ4e3Q5dmAbhRWmH2nD7a2PRFROQcGITI5ZizUKmheXpyleUWm9OHiIgcF4MQuZRcZbnRECS20nrXqCa19otQNBYd5i62LxEROS8GIXJK+hMfqt8XllYaHdllzkrr7OtDROT6GITI6eiv6zUmtil2nsjWdIjWH+El1qlZaqhhXx8iItfGIEQOxdgSF2IdoGsE4Ivj2Zp9BKiCkNROzURE5N4YhMhhGFrBXf8zUwQAb0+MRZCvF5u0iIjIKAYhcgj6nZzVa3QNaKtai05qCAJUtUA9opswABERkUly07sQWd/lgtJaQadaEHCloEz0MzUPmQxjuzeFh0ymea+9iCkREZExrBEih9Ay2KfWvD1yADdKKxDVpLHoZ9odoOcNa8fRXUREZDauNWYC1xqzLv11wNTz9mgvh6EeGZZ6IofrdxERkSRca4wckqEFUNWdow+mDEbGlb90VnCvEYDUEzmc1ZmIiCyOQYhsxtgCqOrO0QdTBiPQt6Fof6GyyhrEtwqyZZGJiMjFsbM02YT+qDABtRdBVXeOVvcX0uYhkyE62NsWRSUiIjfCIERWl6ssx+6TOSaHv6vDjnqdL44EIyIia2PTGFmVsYkQxRZAVYcdrvNFRES2wCBEVmNsJXgpC6BynS8iIrI2BiGqN3NXgn9hVAeM7BJh9gKoRERElsYgRPVi7krwHjKZTggiIiKyJ3aWpjoTWx/si+PZOiPDAGhGgLHTMxERORrWCFGdSB0JxpXgiYjIkTEIkdmMjQTTx5XgiYjIkbFpjMxiaiQYV4InIiJnwhohMsvlglKTI8G4EjwRETkLBiEyi3r5C+0wpD8SjPP/EBGRs2DTGJmFy18QEZErYY0QidKfJFEbl78gIiJXwSBEtehPkrj8gc6Y0Ku5zj5s/iIiIlfAIEQ6xCZJfH7HabQP90NpZbVoDREREZGzYhAiHWKjwqoFAaPf+wmCkRoiIiIiZ8TO0qRDPSpMn6BXQ5SrLLdtwYiIiKyAQYh06I8KE/sPpFoQcKWgzLYFIyIisgI2jZGGeqTYgLYhOJgyGFcKyuDdUI4x7/1Ua96g6GBv+xWUiIjIQhiECIDxkWLLH+iM53ecRrUgcN4gIiJyKU7TNPbyyy+jb9++8Pb2RkBAgKRjBEHAokWLEBERgcaNGyMhIQEXLlywbkGdkKGRYup+QBN6NcfBlMH49LE+OJgymB2liYjIZThNEKqsrMT48ePx5JNPSj7mtddew5o1a7Bu3TocOXIEPj4+GDZsGG7dumXFkjofQyPFtPsBRSgaI75VEGuCiIjIpThN09jSpUsBABs3bpS0vyAIWLVqFRYuXIj7778fALB582aEhYUhNTUVEydOtFZRnYa6T5BPQw/R9cPYD4iIiFyd0wQhc12+fBl5eXlISEjQbFMoFIiLi8Phw4cNBqGKigpUVFRo3hcXF1u9rLakDj+nspVY8fVZTZ+gMbFNkXoih/2AiIjIrbhsEMrLywMAhIWF6WwPCwvTfCZm+fLlmtonV6PdIVpbjQCknsjBjn/Go6yyhuuHERGR27BrH6GUlBTIZDKjr7Nnz9q0TAsWLIBSqdS8rl69atPrW4t+h2h91YKAssoa9gMiIiK3Ytcaoblz52LatGlG94mJianTucPDwwEA165dQ0REhGb7tWvX0K1bN4PHeXl5wcvLq07XdETqprDC0kqDIQhgnyAiInJPdg1CISEhCAkJscq5W7ZsifDwcOzdu1cTfIqLi3HkyBGzRp45M+2mMBlUL7EsxD5BRETkrpymj1BWVhYKCwuRlZWF6upqZGZmAgBat24NX19fAED79u2xfPlyjBkzBjKZDMnJyVi2bBnatGmDli1b4oUXXkBkZCRGjx5tvy9iI/pNYQJUQUg9OsxDJsOzw9uhS7MA9gkiIiK35TRBaNGiRdi0aZPmfWxsLABg//79GDRoEADg3LlzUCqVmn2effZZlJaW4vHHH0dRURH69euHtLQ0NGrUyKZltwexuYEEAG9PjEWQrxfDDxEREQCZIAhGeo5QcXExFAoFlEol/P397V0ck7TnBhJbI+xgymAGICIicnlSn99OUyNEpumvF8a5gYiIiIxjEHIRYuuFcW4gIiIi4xiEXISh9cLUcwMRERFRbU6z6CoZ1zLYB3KZ7jbODURERGQcg5ATylWW46dLBchVlmveXy4oxXMj2sNDpkpD7BNERERkGpvGnIxYh+idJ7I1758b3p5zAxEREUnEGiEnItYh+ovj2TrvX0s7xxBEREQkEYOQExHrEK2vWhBwpaDMNgUiIiJycgxCTkSsQ7Q+dpAmIiKSjkHIiUQoGmP5A511OkSP7d6UHaSJiIjqiEtsmOCIS2zkKstxpaBM0xdI/z0REZG74xIbLixC0Vgn8Oi/JyIiImnYNEZERERui0GIiIiI3BaDkBPQn0maiIiILIN9hByc/kzSyx/ojAm9mtu7WERERC6BNUIOKldZjv/9kl1rJunnd5xmzRAREZGFsEbIAWnXAulTzxzNUWJERET1xxohB6O/npg+zhxNRERkOQxCDsbYemKcOZqIiMiy2DTmYNTriWmHITmAtx+KRfcWTRiCiIiILIg1Qg5GbD2x5WM7Y1SXSIYgIiIiC2ONkAOa0Ks5BrQN4fphREREVsYg5CByleW4XFCKlsE+mrXDGICIiIisi0HIAXDSRCIiIvtgHyE70x8uz0kTiYiIbIdByM7EhsurJ00kIiIi62IQsjP1cHltnDSRiIjINhiE7ExsuDwnTSQiIrINdpa2E+1RYhwuT0RE7kh/xLQ9MAjZgaFRYgxARETkLhxlxDSbxmyMo8SIiMjdOdKzkEHIxjhKjIiI3J0jPQsZhGyMo8SIiMjdOdKzkEHIxjhKjIiI3J0jPQtlgiAIpndzX8XFxVAoFFAqlfD397fYeXOV5RwlRkREbs2az0Kpz2+nqRF6+eWX0bdvX3h7eyMgIMDk/lVVVXjuuefQuXNn+Pj4IDIyEklJScjJybF+YSWIUDRGfKsghiAiInJbjvAsdJogVFlZifHjx+PJJ5+UtH9ZWRmOHz+OF154AcePH8eOHTtw7tw5/OMf/7BySYmIiMhZOF3T2MaNG5GcnIyioiKzj01PT0fv3r3xxx9/oHlzaXMVWKtpjIiIiKxH6vPbrSZUVCqVkMlkRpvWKioqUFFRoXlfXFxsg5IRERGRPThN01h93bp1C8899xwmTZpkNBkuX74cCoVC84qKirJhKYmIiMiW7BqEUlJSIJPJjL7Onj1b7+tUVVXhwQcfhCAIWLt2rdF9FyxYAKVSqXldvXq13tcnIiIix2TXprG5c+di2rRpRveJiYmp1zXUIeiPP/7Avn37TPbz8fLygpeXV72uSURERM7BrkEoJCQEISEhVju/OgRduHAB+/fvR1BQkNWuRURERM7HafoIZWVlITMzE1lZWaiurkZmZiYyMzNRUlKi2ad9+/bYuXMnAFUIGjduHI4dO4ZPPvkE1dXVyMvLQ15eHiorK+31NYiIiMiBOM2osUWLFmHTpk2a97GxsQCA/fv3Y9CgQQCAc+fOQalUAgCys7Oxa9cuAEC3bt10zqV9DBEREbkvp5tHyNY4jxAREZHzcbklNoiIiIgszWmaxuxFXWHGiRWJiIich/q5barhi0HIhJs3bwIAJ1YkIiJyQjdv3oRCoTD4OfsImVBTU4OcnBz4+flBJpNZ5JzFxcWIiorC1atX2e/IynivbYf32nZ4r22H99p2LH2vBUHAzZs3ERkZCbnccE8g1giZIJfL0axZM6uc29/fn/9j2Qjvte3wXtsO77Xt8F7bjiXvtbGaIDV2liYiIiK3xSBEREREbotByA68vLywePFirmlmA7zXtsN7bTu817bDe2079rrX7CxNREREbos1QkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBkY++++y6io6PRqFEjxMXF4ejRo/Yukks6cOAAEhMTERkZCZlMhtTUVHsXySUtX74cvXr1gp+fH0JDQzF69GicO3fO3sVySWvXrkWXLl00k83Fx8fj66+/tnex3MKrr74KmUyG5ORkexfF5SxZsgQymUzn1b59e5uWgUHIhrZt24Y5c+Zg8eLFOH78OLp27Yphw4YhPz/f3kVzOaWlpejatSveffddexfFpf3www+YOXMmfv75Z+zZswdVVVUYOnQoSktL7V00l9OsWTO8+uqryMjIwLFjx3DPPffg/vvvx6+//mrvorm09PR0vP/+++jSpYu9i+Ky7rrrLuTm5mpeBw8etOn1OXzehuLi4tCrVy+88847AFTrmEVFRWH27NlISUmxc+lcl0wmw86dOzF69Gh7F8XlXb9+HaGhofjhhx8wYMAAexfH5QUGBuL111/HjBkz7F0Ul1RSUoLu3bvjvffew7Jly9CtWzesWrXK3sVyKUuWLEFqaioyMzPtVgbWCNlIZWUlMjIykJCQoNkml8uRkJCAw4cP27FkRJajVCoBqB7QZD3V1dXYunUrSktLER8fb+/iuKyZM2di1KhROv9uk+VduHABkZGRiImJweTJk5GVlWXT63PRVRspKChAdXU1wsLCdLaHhYXh7NmzdioVkeXU1NQgOTkZd999Nzp16mTv4rikU6dOIT4+Hrdu3YKvry927tyJjh072rtYLmnr1q04fvw40tPT7V0UlxYXF4eNGzeiXbt2yM3NxdKlS9G/f3+cPn0afn5+NikDgxARWcTMmTNx+vRpm7fvu5N27dohMzMTSqUS27dvx9SpU/HDDz8wDFnY1atX8fTTT2PPnj1o1KiRvYvj0kaMGKH5e5cuXRAXF4cWLVrgs88+s1mTL4OQjQQHB8PDwwPXrl3T2X7t2jWEh4fbqVREljFr1izs3r0bBw4cQLNmzexdHJfVsGFDtG7dGgDQo0cPpKenY/Xq1Xj//fftXDLXkpGRgfz8fHTv3l2zrbq6GgcOHMA777yDiooKeHh42LGErisgIABt27bFxYsXbXZN9hGykYYNG6JHjx7Yu3evZltNTQ327t3LNn5yWoIgYNasWdi5cyf27duHli1b2rtIbqWmpgYVFRX2LobLGTJkCE6dOoXMzEzNq2fPnpg8eTIyMzMZgqyopKQEly5dQkREhM2uyRohG5ozZw6mTp2Knj17onfv3li1ahVKS0sxffp0exfN5ZSUlOj8RnH58mVkZmYiMDAQzZs3t2PJXMvMmTOxZcsW/Pe//4Wfnx/y8vIAAAqFAo0bN7Zz6VzLggULMGLECDRv3hw3b97Eli1b8P333+Obb76xd9Fcjp+fX61+bj4+PggKCmL/NwubN28eEhMT0aJFC+Tk5GDx4sXw8PDApEmTbFYGBiEbmjBhAq5fv45FixYhLy8P3bp1Q1paWq0O1FR/x44dw+DBgzXv58yZAwCYOnUqNm7caKdSuZ61a9cCAAYNGqSz/eOPP8a0adNsXyAXlp+fj6SkJOTm5kKhUKBLly745ptvcO+999q7aER19ueff2LSpEm4ceMGQkJC0K9fP/z8888ICQmxWRk4jxARERG5LfYRIiIiIrfFIERERERui0GIiIiI3BaDEBEREbktBiEiIiJyWwxCRERE5LYYhIiIiMhtMQgRERGRRRw4cACJiYmIjIyETCZDamqqVa+3ZMkSyGQynVf79u3NOgeDEBHZ1aBBg5CcnKx5Hx0djVWrVln8OtOmTcPo0aMtfl6ppkyZgldeeUXSvhMnTsTKlSutXCIiyystLUXXrl3x7rvv2uyad911F3JzczWvgwcPmnU8gxARWY09wseVK1cgk8mQmZmps3316tV2W17ll19+wVdffYWnnnpK0v4LFy7Eyy+/DKVSaeWSEVnWiBEjsGzZMowZM0b084qKCsybNw9NmzaFj48P4uLi8P3339frmg0aNEB4eLjmFRwcbNbxDEJE5BYUCgUCAgLscu23334b48ePh6+vr6T9O3XqhFatWuE///mPlUtGZFuzZs3C4cOHsXXrVpw8eRLjx4/H8OHDceHChTqf88KFC4iMjERMTAwmT56MrKwss45nECIimyktLUVSUhJ8fX0REREhqfmnqKgIjz76KEJCQuDv74977rkHv/zyi8H9W7ZsCQCIjY2FTCbTLAirXzs1aNAgzJ49G8nJyWjSpAnCwsKwfv16lJaWYvr06fDz80Pr1q3x9ddf65z/9OnTGDFiBHx9fREWFoYpU6agoKDAYHmqq6uxfft2JCYm6mx/77330KZNGzRq1AhhYWEYN26czueJiYnYunWryftD5CyysrLw8ccf4/PPP0f//v3RqlUrzJs3D/369cPHH39cp3PGxcVh48aNSEtLw9q1a3H58mX0798fN2/elHwOBiEispn58+fjhx9+wH//+198++23+P7773H8+HGjx4wfPx75+fn4+uuvkZGRge7du2PIkCEoLCwU3f/o0aMAgO+++w65ubnYsWOHwXNv2rQJwcHBOHr0KGbPno0nn3wS48ePR9++fXH8+HEMHToUU6ZMQVlZGQBVKLvnnnsQGxuLY8eOIS0tDdeuXcODDz5o8BonT56EUqlEz549NduOHTuGp556Ci+++CLOnTuHtLQ0DBgwQOe43r174+jRo6ioqDB6f4icxalTp1BdXY22bdvC19dX8/rhhx9w6dIlAMDZs2drdX7Wf6WkpGjOOWLECIwfPx5dunTBsGHD8NVXX6GoqAifffaZ5HI1sPg3JSISUVJSgo8++gj/+c9/MGTIEACqINKsWTODxxw8eBBHjx5Ffn4+vLy8AABvvPEGUlNTsX37djz++OO1jgkJCQEABAUFITw83GiZunbtioULFwIAFixYgFdffRXBwcF47LHHAACLFi3C2rVrcfLkSfTp0wfvvPMOYmNjdTo9b9iwAVFRUTh//jzatm1b6xp//PEHPDw8EBoaqtmWlZUFHx8f3HffffDz80OLFi0QGxurc1xkZCQqKyuRl5eHFi1aGP0eRM6gpKQEHh4eyMjIgIeHh85n6mbjmJgYnDlzxuh5goKCDH4WEBCAtm3b4uLFi5LLxSBERDZx6dIlVFZWIi4uTrMtMDAQ7dq1M3jML7/8gpKSklr/8JWXl2t+g6yPLl26aP7u4eGBoKAgdO7cWbMtLCwMAJCfn68pz/79+0X7+ly6dEk0CJWXl8PLywsymUyz7d5770WLFi0QExOD4cOHY/jw4RgzZgy8vb01+zRu3BgANLVRRM4uNjYW1dXVyM/PR//+/UX3adiwodnD37WVlJTg0qVLmDJliuRjGISIyGGVlJQgIiJCdFSJJTo+e3p66ryXyWQ629ThpaamRlOexMRErFixota5IiIiRK8RHByMsrIyVFZWomHDhgAAPz8/HD9+HN9//z2+/fZbLFq0CEuWLEF6errme6mb/tQ1XETOoKSkRKc25vLly8jMzERgYCDatm2LyZMnIykpCStXrkRsbCyuX7+OvXv3okuXLhg1apTZ15s3bx4SExPRokUL5OTkYPHixfDw8MCkSZMkn4NBiIhsolWrVvD09MSRI0fQvHlzAMBff/2F8+fPY+DAgaLHdO/eHXl5eWjQoAGio6MlXUcdNqqrqy1Sbv3yfPHFF4iOjkaDBtL++ezWrRsA4LffftP8HVAN+U1ISEBCQgIWL16MgIAA7Nu3Dw888AAAVafsZs2amT0UmMiejh07hsGDB2vez5kzBwAwdepUbNy4ER9//DGWLVuGuXPnIjs7G8HBwejTpw/uu+++Ol3vzz//xKRJk3Djxg2EhISgX79++Pnnn836BYJBiIhswtfXFzNmzMD8+fMRFBSE0NBQ/Otf/4JcbnjMRkJCAuLj4zF69Gi89tpraNu2LXJycvDll19izJgxOh2Q1UJDQ9G4cWOkpaWhWbNmaNSoERQKhUW+w8yZM7F+/XpMmjQJzz77LAIDA3Hx4kVs3boVH374Ya1+D4CqRqd79+44ePCgJgjt3r0bv//+OwYMGIAmTZrgq6++Qk1NjU4z4Y8//oihQ4dapNxEtjJo0CAIgmDwc09PTyxduhRLly61yPUsMbKSo8aIyGZef/119O/fH4mJiUhISEC/fv3Qo0cPg/vLZDJ89dVXGDBgAKZPn462bdti4sSJ+OOPPzT9d/Q1aNAAa9aswfvvv4/IyEjcf//9Fit/ZGQkDh06hOrqagwdOhSdO3dGcnIyAgICjAa6Rx99FJ988onmfUBAAHbs2IF77rkHHTp0wLp16/Dpp5/irrvuAgDcunULqampmk7bRGQ9MsFYdCMionorLy9Hu3btsG3bNsTHx5vcf+3atdi5cye+/fZbG5SOyL2xRoiIyMoaN26MzZs3G514UZunpyfefvttK5eKiADWCBEREZEbY40QERERuS0GISIiInJbDEJERETkthiEiIiIyG0xCBEREZHbYhAiIiIit8UgRERERG6LQYiIiIjcFoMQERERua3/B3pqCi8/4RlXAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "\n", "data = gettable.get()\n", "\n", "plt.plot(times, data[0], '.', label=\"real\")\n", "plt.plot(times, data[1], '.', label=\"imaginary\")\n", "plt.legend()\n", "plt.xlabel(\"Idle time (s)\")\n", "plt.ylabel(\"Voltage (V)\")\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "67909720", "metadata": {}, "source": [ "Note that the data used here is the same as in {ref}`sec-tutorial-experiment`. The example dataset can be downloaded {download}`here <../examples/dataset.hdf5>`.\n", "\n", "As we defined 125 points in our `times` array which were measured in 125 different `acq_index`es, the acquisition result also contains 125 _I_ values (in `data[0][:]`) and 125 _Q_ values (in `data[1][:]`). The general format of the data returned by the {class}`~quantify_scheduler.gettables.ScheduleGettable` is also explained in the {ref}`user guide `.\n", "\n", "## Trace measurement\n", "\n", "The previous experiment's acquisition results had one data point for each acquisition in the schedule. For a trace measurement, the data format is slightly different. To illustrate this, let us set up an experiment with a trace measurement." ] }, { "cell_type": "code", "execution_count": 6, "id": "13108225", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler.operations import IdlePulse, SoftSquarePulse\n", "\n", "\n", "def trace_schedule(pulse_amp, acq_delay, port=\"q0:res\", clock=\"q0.ro\", repetitions=1):\n", " schedule = Schedule(\"Trace a pulse\", repetitions=repetitions)\n", "\n", " schedule.add(\n", " SoftSquarePulse(\n", " duration=q0.measure.integration_time(),\n", " amp=pulse_amp,\n", " port=port,\n", " clock=clock,\n", " ),\n", " label=\"trace_pulse\",\n", " )\n", "\n", " # Add acq_delay to compensate for time-of-flight of the pulse\n", " schedule.add(\n", " Measure(q0.name, acq_protocol=\"Trace\"),\n", " ref_pt=\"start\",\n", " rel_time=acq_delay,\n", " label=\"acquisition\"\n", " )\n", "\n", " return schedule" ] }, { "cell_type": "markdown", "id": "96eb7326", "metadata": {}, "source": [ "Again, we define the gettable and run the experiment." ] }, { "cell_type": "code", "execution_count": 7, "id": "eab0dd87", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.9/site-packages/quantify_scheduler/backends/qblox/compiler_abc.py:731: RuntimeWarning: Operation is interrupting previous Pulse because it starts before the previous ends, offending operation: Pulse \"UpdateParameters\" (t0=1.0000000000000001e-07, duration=0)\n", " warnings.warn(\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXGUlEQVR4nO3deVxU5f4H8M8Myo4jiqyiLC5ooiAK4r5Q7mVZmpUYmXnLuldtUVq0VTS1vCnlUprVTck061cu11BzvYooiSmoiEIKKCqDIonB+f2BMzDMmWEGZz183q/XvJTnnDnnO8+cmfOd5zzneWSCIAggIiIikgi5tQMgIiIiMiUmN0RERCQpTG6IiIhIUpjcEBERkaQwuSEiIiJJYXJDREREksLkhoiIiCSlibUDsLSqqipcunQJHh4ekMlk1g6HiIiIDCAIAm7cuAF/f3/I5frbZhpdcnPp0iUEBgZaOwwiIiJqgPz8fLRu3VrvOo0uufHw8ABQXTnNmjWzcjRERERkiNLSUgQGBqrP4/o0uuRGdSmqWbNmTG6IiIjsjCFdStihmIiIiCSFyQ0RERFJCpMbIiIikhQmN0RERCQpTG6IiIhIUpjcEBERkaQwuSEiIiJJYXJDREREksLkhoiIiCSFyQ0RERFJCpMbIiIikhQmN0Rk1wqU5TiQU4wCZbm1QyE9+D6RJTW6iTOJ6ipQliO3uAzBXm7wU7hYOxwyQkpaHhI3ZaJKAOQyIOmRcPTv0Erj/TTk/bXVY8BW4rrXOMTep/E925ghUqJqMkEQBGsHYUmlpaVQKBRQKpWcFbwRqvslvWJPDuZvzYJw90t31rAwhLdWWOxkYisnL3Or73WKLf89/zp+PVUEbw9nxHX20UpUAKDP/J2oqvUNJgMgkwFVQvX/+7X3wt4zxRDuLps/VvukWvcYqJsgARCNvSGvyZj329QJgb59q5a5OTog79otyGQyRLX1hJ/CRSsOYz8jBcpyrffJQSbDvtmDJH3Mk+kZc/5mckOSU/dLXPV35kUlFmzNUn9JD+jQCruyr4huQwZg9vAwPBjh36AT2JHz19QnCADYcbIQxTcr0K21Ai6OTRDs5Yaffr+kPqnKALwwMBQ+CicU36zAkDBvdAv0NOh1uTk6oKyiUuvf+mKq+7fYyfxy6V84fP4aooNaqOPRd9KufXIM9HRBWUWlRr3LAEzpF4yEvsHq59Y+eQLAQ938caeqClsyCzVe/4guvtj6R6G6viZEB+Lbw/kGHhU1vpgUhVsVlSgpv4N9p4ux/WSRxnLZ3X+FOv8HgFHhvhjQsRW2nijErqwr6nVeGBiKPu294ObogN//LMH2P4pw4OxVCKhJTACoX6dYPdQmlhDIAbwz5j54ujqKvod13+uS8jvq56afv44fMy6p450QHYhO/s20ltWth9nDw7BgW5ZGHOp4DEx0fj5+CS9+e0yr/JUHOqB7W0/R4/X3/Otax13tutGXNALiySjZP7tLbpKTk7Fw4UIUFhaiW7duWLp0KaKjo0XX/fLLL5GQkKBR5uTkhL/++sugfTG5kYa6J2uxE6VcBgy7zxdbThTWs7X61U52VCeOfWeK8d8/itQnsOcHhOL81TL8knnv+wOAMB93TO4XjJLyO1DeuoNPd+eoT4zRwZ44nHtd64RU19DO3rhZUYn9Z6/eczzdAhXo184LybtzoPrWuM/PA1WCgKzCm/XGUlvt+qx7EpcqGSBaR4l1kmgA+PbQBSzdmWPU9oeEtcLflQJ+O1N878EaSezz4enqiKyCUizbZfjreCI6ECXldzQS24jWCozt0RoAcKrgBtYdzlMff2Mi/ODq1FSjTFXPvPwlPXaV3KSkpCA+Ph7Lly9HTEwMlixZgg0bNiA7Oxve3t5a63/55Zf417/+hezsbHWZTCaDj4+PQftjcmO/VAnNwXPXsO5QnvpEobrc4OXuiGfXpht1kiXrauPpjLzrhv0wIWoIVUtd3R9CZH/sKrmJiYlBz549sWzZMgBAVVUVAgMD8dJLL2H27Nla63/55ZeYPn06SkpKGrQ/Jjf2acWeHCRtybJ2GERk58ZE+CGusy8THTtkzPnbqndLVVRUID09HYmJieoyuVyOuLg4HDx4UOfzbt68ibZt26Kqqgrdu3fHvHnzcN9994mue/v2bdy+fVv9d2lpqeleAJldgbIcc388gf+evGztUIhIAjZnFGBzRgEAYNrdvlLsnyM9Vh3npri4GJWVlVqXlHx8fFBYKN5voWPHjli9ejV+/PFHfPPNN6iqqkLv3r3x559/iq6flJQEhUKhfgQGBpr8dZBp1B0HY8WeHMQm7WRiQ0Rmkbw7B0+sOoTeSTux4rfqvkEcj0carHpZ6tKlSwgICMCBAwcQGxurLn/ttdfw22+/4dChQ/Vu486dO+jUqRMmTJiA9957T2u5WMtNYGAgL0vZmNq34wKAj4cjim5UWDcoImpUOvs1w6mCUnW/vSeiA/HSkPZs1bERxlyWsmrLjZeXFxwcHFBUpHkrZlFREXx9fQ3aRtOmTREZGYmzZ8+KLndyckKzZs00HmRbFm7PQtKWmsQGgEUTG1n9qxDRPeoV5InRXQ37XreWk7USGwD49nA+eiftREpantViooaxanLj6OiIqKgopKamqsuqqqqQmpqq0ZKjT2VlJTIzM+Hn52euMMmMFm7PQrIRt4qaUkSgAgcTB2P+2HA4yCyT4oyJ8BctH9+jNZ7pE4Qfp/VG4ogwqydcxux/eBdfyM0UsAzAo5EB9cbz3kP3YVS4n9niMESgp4t6/3IAgZ7OJtv2PwYE45FI8WOntrdGdsIXk6IwJEz7TlMVB5kMY7vXX6emNCisFdb/ozeWPhGFBWPD7WreHwHArI2ZSN55hpeq7IjV75ZKSUnBpEmTsGLFCkRHR2PJkiX47rvvkJWVBR8fH8THxyMgIABJSUkAgHfffRe9evVCu3btUFJSgoULF2Lz5s1IT09H586d690f75ayrtqDbf2UcQlJW01/B9TAjq2wW2RwPnmtkWtfGBiKV4eFacR1vvgWXB3lyL9WjpLy6pYjZfkdLNx+Wmtb6rE0AAzr4ottfxTWO1aLalTWn36/pB7UzkEmw7xHumiNxVGgLEf6+esoKa/AnB//0BqF95WhHaBwaQqgZuwPfft3kMkwJtIfm49dQqUgQA5g1vAw9AppgSPnr6NHkCe8mznjfPEtBHm5Ys/pK3h90wlUCkL1SVAGjcHzhnTyxvniW+gR5IlugZ5ISctTr+8gk+G1YR3RtXVzHL9YggVbslAF7RGD9XnvofvQztsDQV6u6lFyVdvXVa+qgQ3FXoO+elHFGuTlCgDq59d9n2rXX92B/lTHU+39+ylcsGh7lsa4QED1MfNs/2CMDPfDL8cLsWrvOfWxlDS2erC/2nWpOj7EBvbTVQ9A9aXe2vHXfp2quko/fx0yGfBnSbl63dpxPj8wFH3bt9J4H2urPSK0KlYAGoMyTqvzWQM0P2+/HC/E5/vOae171vAwNHdtqnEcig00aOkT2AKRUa7JMuzqVnAAWLZsmXoQv4iICHzyySeIiYkBAAwcOBBBQUH48ssvAQAzZszApk2bUFhYCE9PT0RFReH9999HZGSkQfticmM9dUeiNZUhYd7o3rY5Kv6uwuC7I/umpOUhcWMmqlBz0ujfoZXGiachcdcenr/2tuomR6oTxodbs7VOUgC0ToL17V/sZFdb7f3fqqjS+rdunIbst/a6AOp9nq5t1y2vfVJt7emChz89YNDQ/KrtHL9YorNedcVU9zl1T/SG1EHd+jOkTmpvo+57oa/edNVl7WOhdtJZ33FhzPutL841+86rExHVPsU+V8bst759161z1bHTva2nRgKrkVzd/ewD1f1mIAO+PWT8aNZiZAA2T+utNXIymZ/dJTeWxOTGOur71dlQcgD7EwfrHMK+IcmMmIZuy1QxmPK12BpDkre6GlIfUqnDhiRY5tq/LdSjIcmhOb5/2IJjeUxu9GByYx0HcorxxKr6736rT+3LAYaeCMn22doJk6RH7NLpqYJSbM641OBtHtTxw4rMg8mNHkxurGPFbzlG9a9576H7ENfZR+Pyhaq5GrD8r1Uisn+6WnmWpp7F+jT9/dbEhLZywzfPxvB7yEKY3OjB5Mbyfs+/joeSDxi8vlwG7J/NX0REZDmqxCclLc/o1pzE4WGYOiDUTJGRit1Mv0DSt2h7llGzAstQ3WGXiQ0RWZKfwgV+Chf1nXLGtOIkbc0CZMDU/kxwbIU9DTdAdibhy8NGJzabp/VmHxoisho/hQuSHjF+7KukLVkcB8eGsOWGTK5AWY75W09hV5b2WDO6qG6x5u2VRGRt43u2Ud/irro9/VbFHby+KVPv6OlTvzqCFfE92PJsA9jnhkwqJS0PszdmGjWw1qhwP7wxqhO/EIjIpv3f7xfx0rqMetfjbeLmwT43ZBUFynIkbjIusZEDTGyIyC70CGph0KjIszZm4mJJOYbcHVSULI99bshkcovLDOqEp5p/x0EmQ9JYdh4mIvvgp3DBfAPnxvok9SweSj6A579JN3tcpI0tN2QyP6T/We86DjIZNr0QKzq8OxGRrVP1x0k/fx0vrjtW7/pbTxRi0fYsvDI0rN51yXSY3JBJPP9NOraeKNS7jlwGzHukC5tpiciu+SlcMKqbC8oq/sasjZn1rr9sVw7u7+zD7z4L4mUpumeppwrrTWyeiAnE/tmD2cmOiCRjfM82+HFab4PWHZN8AClpeWaOiFSY3NA9WbEnB5PX6r+mnDg8DPMe7spLUEQkOd0CPZE4vP5LTgKAxE2ZHAvHQnhZihqkQFmOBVtPYXNGgc517vPzwOdP92RSQ0SSNnVAKC6VlGPtwQt616sSqufF43ei+bHlhoyWkpaH2KSdehMbAMgqvGmhiIiIrGtoF1+D1jt7+QZbbyyAyQ0ZpUBZjtkGdKADgEpBwPniW2aOiIjI+oK93NTDXOjz1o9/oHfSTva/MTMmN2SU3OIygwfpc5DJEOTlatZ4iIhsgWpOKkNOqgKA2RvZ/8acmNyQUbbXc1eU6oeLg0yGeY904bVlImo0xvdsg/2JgzEq3K/edQUAa/adN3tMjRU7FJPBVvyWo7fD3LRBoXiqV1ucL77FAfqIqFHyU7jgjVGd8EtmQb2t3J/vO4eEvkH8rjQDttyQQX7Pv46krVk6l4+J8MerQ8Pgp3BBbGhLfliJqNFSTdNQH9XdU2R6TG6oXiv25OCh5AN615llwDgPRESNxfiebXAwcTDGRPjrXW/l3hwLRdS4MLkhvVb8loOkLbpbbAAgcUQYW2qIiOrwU7hgyeORmDYoVOc6u7KuYNF2/d+xZDwmN6RTgbIc8/VcilLpGtDc/MEQEdmpPu289C5ftiuHd06ZGJMb0smQ277lMvB2byIiPYK93FDfEDi/niyySCyNBZMb0snN0aHedWYN5yUpIiJ9VB2M9SU4b/34Bwf2MyEmN6RT/nX9zaTTBoVian/d15KJiKja+J5tcCBxMN576D6d63BiTdNhckM6fb73nM5l0waF4tWhvEOKiMhQfgoXTIwNwpCwVqLLeWu46TC5IVFzfzyBjHyl6DImNkREDTcwzFvnsv1nr1gwEulickNaFm7P0jkS8ZAwbyY2RET3IK6Tj85ly3blIPWU/mluqH5MbkjDit9ykLxL96BS/xzSzoLREBFJj5/CBYl6Bj6dvDYdL3+XYbmAJIjJDanVN8VCTHALdAv0tGBERETSNHVAKCbFttW5fOPRi/g9/7oFI5IWJjcEAEhJy6t3ioUlj0dYJhgiokZgaBdfvcvf2vyHhSKRHiY3hAJlOWZtzNS7DqdYICIyrWAvN73Lj19UsvWmgZjcEHKLy/Qu53g2RESmV1/fG4CtNw3F5Ibq/fXQt534mAxERHRvpg4IReII3QkOW28ahslNI1egLMfqfbk6l3PuKCIi85raPxTLnojUufzIeSY3xmpi7QDIelLS8jB7Y6beyTE5dxQRkflFtdV9J2qPIN6laiy23DRSBcpyJG7Sn9g8Ed2GfW2IiCzAT+GCBWPDRZf979w1C0dj/5jcNFK5xWWo0pPZyAC8xAH7iIgsZnzPNvhxWm+t2cOTtmZh7o8nrBKTvWJy00jV14l4Nm/9JiKyuLKKStEW9bUHLyDhy8MWj8deMblppC6X/qVz2cMR/rwcRURkBW6ODjqX7cq6gkXbdY8iTzWY3DRSq/ac07nstXrGXSAiIvMoq6jUuzx5dw4KlOUWisZ+MblphH7Pv46fM8VnnX1xUCgvRxERWUmwl5tWn5vaBAE4X3zLYvHYKyY3jYy+OaQiApvjlaFstSEishY/hQum9AvWu87xiyWWCcaOMblpRAqU5ZitZw6p+j5QRERkfgl9g/W23iRtyeKlqXowuWlElqae0TmujQxAdz2DSBERkWX4KVwwX8eYNypLU89aKBr7xOSmkShQluPbw/k6l48M92NfGyIiG6Ea80aXbw/ncc4pPZjcNBL1zfw9pT8vSRER2ZJugZ56Zw0fk3wAKWl5FozIfjC5aST2nynWuWxs9wB0C+QlKSIiWzN1QCjGRPiJLhMAzN6Uyf43IpjcNAIFynIk784RXfbeQ/dh8bgIywZEREQGmzW8k85lggAcvcDLU3UxuWkE5m8VH9FSLgPiOvtYOBoiIjKGn8IFo8J9dS4X9M2A3EgxuZG4Fb/l4MeMS6LLHu/Zhp2IiYjswJT+ITqXZRWWWjAS+8DkRsIKlOU6W20AYHzP1haMhoiIGqpboCf6tfcSXZa8i1My1MXkRsJyi8t0jmsDALcqqiwWCxER3ZsPH+0qWi6A497UxeRGwvTNLusgkyHIy9WC0RAR0b3wU7hg2sBQ0WXfHs7Dij3iN440RjaR3CQnJyMoKAjOzs6IiYnB4cOHDXre+vXrIZPJMGbMGPMGaIf0zSEFAK8N78j+NkREdqaPjktTADCf0zKoWT25SUlJwcyZMzF37lwcPXoU3bp1w9ChQ3H58mW9zzt//jxeeeUV9OvXz0KR2o8CZTlm6ZlDCgC6BjS3TDBERGQywV5uOpcJ4G3hKlZPbj766CNMmTIFCQkJ6Ny5M5YvXw5XV1esXr1a53MqKyvx5JNP4p133kFIiO4e5ABw+/ZtlJaWajykrr7RiOUy8JIUEZEd8lO46B21+FpZhQWjsV1WTW4qKiqQnp6OuLg4dZlcLkdcXBwOHjyo83nvvvsuvL29MXny5Hr3kZSUBIVCoX4EBgaaJHZbpq+vjQxA0iPhvCRFRGSnpg4IxbRB4n1v5vz4B1b8xr43Vk1uiouLUVlZCR8fzYHkfHx8UFhYKPqcffv24YsvvsCqVasM2kdiYiKUSqX6kZ+ve/JIqfjleIFoeScfdxxIHIzxPdtYOCIiIjKlV4eGIXGEdguOACBpa1aj71xs9ctSxrhx4wYmTpyIVatWwctLd6eq2pycnNCsWTONh5QVKMuxam+u6LLVz0SzxYaISCJ6BbfQuWzB1sbdubiJNXfu5eUFBwcHFBUVaZQXFRXB11d7qOmcnBycP38eo0ePVpdVVVWP1dKkSRNkZ2cjNFS8qa6xWLMvV3Rsm+f6hTCxISKSkMPnr+lcViUA54tvNdrvfau23Dg6OiIqKgqpqanqsqqqKqSmpiI2NlZr/bCwMGRmZiIjI0P9ePDBBzFo0CBkZGQ0iv40+hQoy7FSR6tNTAhn/SYikpLoIN0tNzI07htHrNpyAwAzZ87EpEmT0KNHD0RHR2PJkiUoKytDQkICACA+Ph4BAQFISkqCs7MzunTpovH85s2bA4BWeWO0Zp94YgNUZ/BERCQd3QI9ER3kicPntW//FgDsOX2l0faxtHpyM378eFy5cgVz5sxBYWEhIiIisG3bNnUn47y8PMjldtU1yCr09bUBgB5BbLkhIpKaf0+IRGzSTtFliZsy0b9Dq0Z5aUomCI1rsvTS0lIoFAoolUpJdS6e98tJnZekxnYPwOJxEZYNiIiILELf9/+6Kb0QG9rSwhGZhzHnbzaJSIC+vjYA8MrQjhaMhoiILCmhbzBkIuWNud8NkxsJeO3743qXs78NEZF0+SlcMH9suFa5qt9NY8Tkxs79nn8de88U61zOqRaIiKSvf4dWoq03szZmNsrxbpjc2Dl94xwAwKzhYY2yMxkRUWOSW1wmOsYZAExfn2HJUGwCkxs7p2+cg2mDQjG1f+Me1JCIqDHQN1v4odxr+D2/cc0WzuTGzv3vnO6Wm77tWlkwEiIispb6Zgs/IjIWjpQxubFjBcpyzN+aJbqMfW2IiBqXqQNC8Wj3ANFlW06IT6gsVUxu7NjSnWd0XmNlXxsiosbnkajWouXpF0qwaLv4j2EpYnJjp1b8loNvD+WLLmNfGyKixklf35tlu3IazZ1TTG7sUIGyHEk6LkcBwFO92lowGiIishV+ChdMG6j7x216I+l7w+TGDuUWl+ldzkH7iIgar1eHhSEiUCG67OC5qxaOxjqY3Nghfc2O7EhMRESfPRUlWv7tobxGcWmKyY2EyAAkPRLOjsRERI2cn8IFz/UL1ioXAKzZd97i8Vgakxs7NH39MdHypRMiMb5nGwtHQ0REtiihr3ZyAwCf7zsn+dYbJjd2ZuG2LBzK1e4QJpcBUUGeVoiIiIjsSZUg/b6ZTG7sSIGyHMm7c0SXjejix8tRRESkpu/mk+MXSywXiBUwubEjv54q0rlsSn/x5kciImqcgr3cIBebKhxA0pYsSV+aYnJjRy6X/iVa3snXA90CeUmKiIhq+ClcMGuY7vmmFugZL83eMbmxI3GdfETL548Nt3AkRERkD8Jbi493AwA/ZlySbOsNkxs7smLPOa2ysd0D2GpDRESi9I2LJkC6HYuZ3NiJuT+ewJbMQq3y+FhOtUBEROL8FC5YoKd1X6odi5nc2IEVv+Vg7cELosuONJJ5QoiIqGHG92yDH6f1Fl02X6Idi5nc2LgCZTnm6+n01YNj2xARUT3KKipFy6U6YjGTGxuXW1wGQceywR1bsb8NERHVS1/fm1V7pTdiMZMbG6fvgJzSX/e09kRERCq65poCpNl6w+TGxi3ani1a7iCTcfZvIiIymK65pgBgpcRab5jc2LDf869j49GLosteG96R0y0QEZHB9LXeAMDS1LMWjMa8mNzYsDc3n9C5rGtAc8sFQkREkqCv9WZ9Wp5kWm+Y3Nio3/OvI/NiqegyuQy8JEVEREbzU7ggcbj4lAxSmi2cyY2NOnz+ms5lSY+E85IUERE1yNQBoZikYwBYV0dppAXSeBUSFKLjLqmFj4ZjfM82Fo6GiIikZGgXX9HyWxVVFo7EPJjc2KjUrMui5a09dd8aTkREZAg3RwfR8v1nr1g4EvNgcmODVvyWg28P5WuVs68NERGZgq4Ri5ftypFEp2ImNzZG33QLz/YNYV8bIiK6Z/oGiJXCLeFMbmyMrukWZAAS+gZZOBoiIpIiP4ULnogOFF327WH7vyWcyY2NCfZyg1ymXT483JetNkREZDIvDWmvc5m9t94wubExe05fQZVI0832E0V2n0kTEZHt0Nd6Y+8D+jG5sSEFynLM2pgpuqxSECQzuBIREdkGXa039j6gH5MbG5J+4brOZbxTioiITM1P4YJpA0NFl9nzbeFMbmzIgbPFOpfNGh7GPjdERGRyfdp7iZYn2/Ft4UxubESBshzfHtYe2wYApg0KxdT+4pk1ERHRvdB1W7gAIP287isKtozJjY3QdUnq4Qh/vDpUfJIzIiKie+WncMGYCD/RZSXlFRaOxjSY3NiIX08WipZHBXlaOBIiImps4jqLzzV1quCGhSMxDSY3NqBAWY7NGQWiy5q7OFo4GiIiamyi2or/kF5npwP6MbmxAUfOXxMtl4EtN0REZH5+Chc81y9Yq9xebwlncmMDDuZcFS1/IqYN75AiIiKLSOgbDJEB8nH8YomlQ7lnTG6sTN9dUi8ObmfhaIiIqDETm9swaUuW3V2aYnJjZc9/ky5a/kQ0W22IiMhycovLdC6b9f1xC0Zy75jcWNHCbVnIyFeKLuvTrqWFoyEiosZM13g3ALDnTDFST4nf1WuLmNxYSYGyHMm7c0SXyQB019FznYiIyBx0dSpWmbw2HSlpeRaMqOGY3FiJvua/aYNCeUmKiIgsLqGv7uQGABI3ZdpF/xsmN1ay/4z4PFK9Q1rgFY5ITEREVuCncMGCseE6l9vLreFMbqygQFmOT3VcknppSAcLR0NERFRjfM82+GJSlOgyuQwI8nK1cETGY3JjBbnFZaK329nLQUNERNLm4thEtPzZviF20W3CqOSmpKQEa9aswTPPPIMhQ4YgNjYWDz74IObOnYsDBw40OIjk5GQEBQXB2dkZMTExOHz4sM51N23ahB49eqB58+Zwc3NDREQEvv766wbv2xrcHB1Ey18YyL42RERkfcFebpCLjOjX0sM+pgQyKLm5dOkSnn32Wfj5+eH9999HeXk5IiIiMGTIELRu3Rq7du3C/fffj86dOyMlJcWoAFJSUjBz5kzMnTsXR48eRbdu3TB06FBcvnxZdP0WLVrgjTfewMGDB3H8+HEkJCQgISEB27dvN2q/1pR/XbwzVie/ZhaOhIiISJufwgWzhmn3//xwa7ZddCgWb3eqIzIyEpMmTUJ6ejo6d+4suk55eTk2b96MJUuWID8/H6+88opBAXz00UeYMmUKEhISAADLly/HL7/8gtWrV2P27Nla6w8cOFDj73/9619Yu3Yt9u3bh6FDhxq0T2s7cFa8M7Egdq2KiIjICsJbK7TKKgUB54tv2fxVBoOSm5MnT6JlS/2Dyrm4uGDChAmYMGECrl4VnyuproqKCqSnpyMxMVFdJpfLERcXh4MHD9b7fEEQsHPnTmRnZ2PBggWi69y+fRu3b99W/11aWmpQbOaia7oFTpJJRES2RFcXilV7chAbatsDzRp0Waply5b4+eefUVVVZdBG60uEVIqLi1FZWQkfHx+Nch8fHxQW6h4JUalUwt3dHY6Ojhg5ciSWLl2K+++/X3TdpKQkKBQK9SMwMNCg2Mwl/cJ10XJOkklERLakrKJStHxn9hWbH63Y4A7FY8aMQWBgIN544w2cPXvWnDHVy8PDAxkZGUhLS8MHH3yAmTNnYvfu3aLrJiYmQqlUqh/5+eKTVFrKVwfOi5bHhth2FkxERI2LvukYbH20YoOTm9zcXEydOhXr169Hx44dMWDAAHz99dcoL294xyIvLy84ODigqKhIo7yoqAi+vr66g5bL0a5dO0RERODll1/Go48+iqSkJNF1nZyc0KxZM42HtaSeKsTh89otN7wkRUREtsZP4YJpA0N1Lrfl0YoNTm4CAwMxZ84c5OTk4Ndff0VQUBCef/55+Pn54R//+AfS0tKM3rmjoyOioqKQmpqqLquqqkJqaipiY2MN3k5VVZVGvxpblJKWh8lrxWcAHxnux0tSRERkc14dFoaYYPEf37Y8WnGDBvEbNGgQ1q5di4KCAixcuBCZmZno1asXunXrZvS2Zs6ciVWrVmHt2rU4deoUnn/+eZSVlanvnoqPj9focJyUlIQdO3bg3LlzOHXqFBYvXoyvv/4aTz31VENeikUUKMsxe2OmzuVT+uufy4OIiMhaXh/RSbTclgeeNehuKV08PDwwZMgQXLhwAVlZWTh58qTR2xg/fjyuXLmCOXPmoLCwEBEREdi2bZu6k3FeXh7k8pocrKysDC+88AL+/PNPuLi4ICwsDN988w3Gjx9/Ly/FrHSNSAwA/dt7oVsgL0kREZFt0tWx+MFu/jZ71UEmCMaPrlJeXo4NGzZg9erV2Lt3L4KDg5GQkICnn34aAQEB5ojTZEpLS6FQKKBUKi3W/6ZAWY7YpJ2iy36c1pvJDRER2awCZTn6zN+JKpFsYWz3ACweF2GROIw5fxt1Wep///sfnnvuOXU/m9atW+PXX3/F2bNn8cYbb9h8YmMte05f0bnsVoVht9cTERFZg5/CBUmPiM8UvvHoRfyeLz7EiTUZfFmqc+fOyM7ORmRkJJKSkvDEE09AodAevZA0FSjLkbhJvL+Ng0xms9crSXoqKytx584da4dBJuTo6Khx2Z7IXPp3aKVz2ao9uVj2pG1dgTA4uYmLi8O6desa1Gm4McstLhNtygOA14Z3tNnrlSQdgiCgsLAQJSUl1g6FTEwulyM4OBiOjvYxmSHZr9ziMp3LtpwoQIGy3KbOZwYnN5988ok545CsYC83yADRDsVdA5pbOBpqjFSJjbe3N1xdXSGTiUz1S3anqqoKly5dQkFBAdq0acP3lcxKNUu42I911S3hdpfcDBs2DG+//TZ69eqld70bN27g008/hbu7O6ZNm2aSAO2dn8IFw7r4YusJzaGqeUmKLKGyslKd2Bg6LQrZj1atWuHSpUv4+++/0bRpU2uHQxKm6ncze2Om6I91V0fbujxqUHLz2GOPYezYsVAoFBg9ejR69OgBf39/ODs74/r16zh58iT27duHLVu2YOTIkVi4cKG547Ybv+df10psAF6SIstQ9bFxdWUiLUWqy1GVlZVMbsjsxvdsg4rKKry1+Q+tZSlpf9rUnb8GJTeTJ0/GU089hQ0bNiAlJQUrV66EUqkEAMhkMnTu3BlDhw5FWloaOnUSH+ynMUpJy8MsHYP3BTCxIQviJQtp4vtKlubpKt6/a31aHl4a0s5mfrQb3OfGyckJTz31lHokYKVSifLycrRs2ZK/GEQUKMt1JjYAwO8kIiKyN1Ft9U/FYCvJTYMvkikUCvj6+jKx0eHI+Ws6l8kAdNdxgBCR+Zw/fx4ymQwZGRnWDoXILumbTHP/Wd1julmabfUAkhB9zcVPxLSxmeyWiIjIGH3ae4mWf7o7x2ZmCWdyYyaBnrqTlxcHt7NgJETSUFFRYe0QiAg1Q5zUZUuzhDO5MYOUtDyMST6gVS4DsGBsOFttyG4VKMtxIKfYIr/OBg4ciBdffBHTp0+Hl5cXhg4dihMnTmD48OFwd3eHj48PJk6ciOLiYvVztm3bhr59+6J58+Zo2bIlRo0ahZycHLPHStSY+ClcMHt4mOiy4xdLLBuMDkxuTKxAWa5zHIDN03pjfM82Fo+JyBRS0vLQZ/5OPLHqEPrM34mUtDyz73Pt2rVwdHTE/v37MX/+fAwePBiRkZE4cuQItm3bhqKiIowbN069fllZGWbOnIkjR44gNTUVcrkcDz/8MKqqOIcbkSk9GOEvWp60JcsmLk0ZfLdUbSUlJfj++++Rk5ODV199FS1atMDRo0fh4+PT6CfPzC0uE01sACD/WrlNjQNAZCjVHGmq0UmrBOD1TSfQv0Mrs7ZEtm/fHh9++CEA4P3330dkZCTmzZunXr569WoEBgbi9OnT6NChA8aOHavx/NWrV6NVq1Y4efIkunTpYrY4iRobfdMxLE09i3k6Jtq0FKNbbo4fP44OHTpgwYIFWLRokXq+mk2bNiExMdHU8dkdN0cHnct4+zfZK7E50ioFwezX16OiotT///3337Fr1y64u7urH2Fh1U3jqktPZ86cwYQJExASEoJmzZohKCgIAJCXZ/5WJqLGJNjLTeey9Wl5Vm+9MTq5mTlzJp5++mmcOXMGzs7O6vIRI0Zgz549Jg3OHpVVVIqW8/ZvsmeqeWVqs8QUIm5uNV+gN2/exOjRo5GRkaHxOHPmDPr37w8AGD16NK5du4ZVq1bh0KFDOHToEAB2RiYyNT+FCxJ19LuxhY7FRl+WSktLw4oVK7TKAwICUFioPc1AY6Or5WbaoFB2JCa7pZpX5vVNJ1ApCHCQyTDvkS4WPaa7d++OjRs3IigoCE2aaH91Xb16FdnZ2Vi1ahX69esHANi3b5/F4iNqbKYOCMWlknKsPXhBa9n+s1cQG2q9+eyMbrlxcnJCaWmpVvnp06fRqlUrkwRlz345XiBa3qcd64bs2/iebbBv9iCsm9IL+2YPsnjn+GnTpuHatWuYMGEC0tLSkJOTg+3btyMhIQGVlZXw9PREy5YtsXLlSpw9exY7d+7EzJkzLRojUWMztIuvaHnyLuuOeWN0cvPggw/i3XffVU/IJ5PJkJeXh1mzZml15mtsCpTlWLU3V6tcLgNnACdJ8FO4IDa0pVVaIf39/bF//35UVlbigQceQHh4OKZPn47mzZtDLpdDLpdj/fr1SE9PR5cuXTBjxgxO4ktkZrquVggAjl64btlgajH6stTixYvx6KOPwtvbG+Xl5RgwYAAKCwsRGxuLDz74wBwx2g1dd0o92zeEl6SIjLR7926tsvbt22PTpk06nxMXF4eTJ09qlAlCzacyKChI428iuje6+pkCwP6zVzGyq/gt4+ZmdHKjUCiwY8cO7Nu3D8ePH8fNmzfRvXt3xMXFmSM+u7L/bLFoeULfIMsGQkREZAGq0YrFfjKsO2y9mcIbNM4NAPTt2xd9+/Y1ZSx2bcVvOUjepT0SKu/+JiIiqfJTuGD+2HDM2piptUwAsGbfebw+spPF4zI6ufnkk09Ey2UyGZydndGuXTv0798fDg66x3uRmgJlOeZvzRJdJsC2poEnIiIypfE92yDM1wMPiUw79Pm+c0joG2Txc6DRyc3HH3+MK1eu4NatW/D0rB635fr163B1dYW7uzsuX76MkJAQ7Nq1C4GBgSYP2BbpG5WYnYmJiEjqvJs5i5arxryxdHJj9N1S8+bNQ8+ePXHmzBlcvXoVV69exenTpxETE4N///vfyMvLg6+vL2bMmGGOeG2SvlGJ2ZmYiIikTtd0DNb6gW90y82bb76JjRs3IjQ0VF3Wrl07LFq0CGPHjsW5c+fw4YcfNqrbwvWNSszOxEREJHWqUczrTtMya3iYVX7gG91yU1BQgL///lur/O+//1aPUOzv748bN27ce3R2QmxoegCYPcI6byoREZElqUYxd7g7iaIcQOLwMEztH6r/iWZidMvNoEGDMHXqVHz++eeIjIwEABw7dgzPP/88Bg8eDADIzMxEcHCwaSO1YXWHppejOlu11ptKRERkaeN7tkH/Dq1wvvgWgrxcrfrj3ujk5osvvsDEiRMRFRWFpk2bAqhutRkyZAi++OILAIC7uzsWL15s2khtnC29qURERNbgp3CxifOf0cmNr68vduzYgaysLJw+fRoA0LFjR3Ts2FG9zqBBg0wXoR2xlTeVSAoGDhyIiIgILFmyxKpxBAUFYfr06Zg+fbpV4yAiwzV4EL+wsDCEhYlPd05EdK82bdqkbh22prS0NLi5uVk7DCIyQoOSmz///BM//fQT8vLyUFFRobHso48+MklgRNS4tWjRwtohAABatWpl9n1UVFTA0dHR7PshaiyMvlsqNTUVHTt2xGeffYbFixdj165dWLNmDVavXo2MjAwzhEhENkN5EcjdU/2vmQ0cOFB9KSgoKAjvv/8+4uPj4e7ujrZt2+Knn37ClStX8NBDD8Hd3R1du3bFkSNH1M+/evUqJkyYgICAALi6uiI8PBzr1q3T2MeNGzfw5JNPws3NDX5+fvj444819qvad+1LYzKZDJ9//jkefvhhuLq6on379vjpp5/UyysrKzF58mQEBwfDxcUFHTt2xL///W+N/T799NMYM2YMPvjgA/j7+6Njx45499130aVLF616iIiIwFtvvXUPNUnU+Bid3CQmJuKVV15BZmYmnJ2dsXHjRuTn52PAgAF47LHHzBEjEdmCo18BS7oAa0dX/3v0K4vu/uOPP0afPn1w7NgxjBw5EhMnTkR8fDyeeuopHD16FKGhoYiPj1fP+v3XX38hKioKv/zyC06cOIHnnnsOEydOxOHDh9XbnDlzJvbv34+ffvoJO3bswN69e3H06NF6Y3nnnXcwbtw4HD9+HCNGjMCTTz6Ja9euAQCqqqrQunVrbNiwASdPnsScOXPw+uuv47vvvtPYRmpqKrKzs7Fjxw78/PPPeOaZZ3Dq1CmkpaWp1zl27BiOHz+OhIQEU1QhUeMhGMnd3V04e/asIAiC0Lx5c+HEiROCIAhCRkaG0LZtW2M3Z3FKpVIAICiVSmuHQmR25eXlwsmTJ4Xy8vJ721DJn4LwdnNBmNus5vG2Z3W5mQwYMED417/+JQiCILRt21Z46qmn1MsKCgoEAMJbb72lLjt48KAAQCgoKNC5zZEjRwovv/yyIAiCUFpaKjRt2lTYsGGDenlJSYng6uqq3q9q3x9//LH6bwDCm2++qf775s2bAgBh69atOvc7bdo0YezYseq/J02aJPj4+Ai3b9/WWG/48OHC888/r/77pZdeEgYOHKhzuyZ7f4nsgDHnb6Nbbtzc3NT9bPz8/JCTUzMTdnFxsSnyLSKyNddyAKFKs0yoBK6ds1gIXbt2Vf/fx8cHABAeHq5VdvnyZQDVl4fee+89hIeHo0WLFnB3d8f27duRl5cHADh37hzu3LmD6Oho9TYUCoXGnZ+GxOLm5oZmzZqp9wsAycnJiIqKQqtWreDu7o6VK1eq96sSHh6u1c9mypQpWLduHf766y9UVFTg22+/xTPPPFNvPESkyegOxb169cK+ffvQqVMnjBgxAi+//DIyMzOxadMm9OrVyxwxEpG1tQgFZHLNBEfmALQIsVgIte+ckt0dBVWsrKqqOsaFCxfi3//+N5YsWYLw8HC4ublh+vTpWjdB3Gssqn2r9rt+/Xq88sorWLx4MWJjY+Hh4YGFCxfi0KFDGs8RuwNr9OjRcHJywg8//ABHR0fcuXMHjz766D3HS9TYGJ3cfPTRR7h58yaA6uvON2/eREpKCtq3b887pYikShEAjP438H/Tq1tsZA7A6CXV5TZq//79eOihh/DUU08BqE56Tp8+jc6dOwMAQkJC0LRpU6SlpaFNmzYAAKVSidOnT6N///73tN/evXvjhRdeUJfVbuHWp0mTJpg0aRLWrFkDR0dHPP7443Bx4dhZRMYyOrkJCan5pebm5obly5ebNCAislHd44HQIdWXolqE2HRiAwDt27fH999/jwMHDsDT0xMfffQRioqK1MmNh4cHJk2ahFdffRUtWrSAt7c35s6dC7lcrm4Fauh+v/rqK2zfvh3BwcH4+uuvkZaWZvCUNM8++yw6deoEoDpRIiLjGd3nJiQkBFevXtUqLykp0Uh8iEiCFAFAcD+bT2wA4M0330T37t0xdOhQDBw4EL6+vhgzZozGOh999BFiY2MxatQoxMXFoU+fPujUqROcnZ0bvN+pU6fikUcewfjx4xETE4OrV69qtOLUp3379ujduzfCwsIQExPT4DiIGjOZIAhC/avVkMvlKCwshLe3t0Z5UVER2rRpg9u3b5s0QFMrLS2FQqGAUqlEs2bNrB0OkVn99ddfyM3NRXBw8D2dsBuLsrIyBAQEYPHixZg8ebJVYhAEAe3bt8cLL7yAmTNn6l2X7y81Jsacvw2+LFV7kKrt27dDoVCo/66srERqaiqCgoKMj5aIyEqOHTuGrKwsREdHQ6lU4t133wUAPPTQQ1aJ58qVK1i/fj0KCws5tg3RPTA4uVE158pkMkyaNEljWdOmTREUFNToZgInIvu3aNEiZGdnw9HREVFRUdi7dy+8vLysEou3tze8vLywcuVKeHp6WiUGIikwOLlR3eYYHByMtLQ0q334iYhMJTIyEunp6dYOQ83IXgJEpIPRd0vl5uaaIw4iIiIikzAoufnkk08M3uA///nPBgdDRObBFgFp4vtKJM6g5Objjz82aGMymYzJDZENUY2ke+vWLQ4GJ0Gq0ZYdHBysHAmRbTEoueGlKCL75ODggObNm6vnPXJ1db2nAerIdlRVVeHKlStwdXVFkyZG9zAgkrR7+kSomkT5ZUlku3x9fQFAY2JHkga5XI42bdrwO5iojgYlN1999RUWLlyIM2fOAAA6dOiAV199FRMnTjRpcER072QyGfz8/ODt7Y07d+5YOxwyIUdHR8jlRg80TyR5DZo486233sKLL76IPn36AAD27duHf/zjHyguLsaMGTNMHiQR3TsHBwf2zSCiRsHo6ReCg4PxzjvvID4+XqN87dq1ePvtt22+fw6nXyAiIrI/xpy/jW7PLCgoQO/evbXKe/fujYKCAmM3R0RERGRSRic37dq1w3fffadVnpKSgvbt25skKCIiIqKGMrrPzTvvvIPx48djz5496j43+/fvR2pqqmjSQ0RERGRJBrfcnDhxAgAwduxYHDp0CF5eXti8eTM2b94MLy8vHD58GA8//HCDgkhOTkZQUBCcnZ0RExODw4cP61x31apV6NevHzw9PeHp6Ym4uDi96xMREVHjYnCHYrlcjp49e+LZZ5/F448/Dg8PD5MEkJKSgvj4eCxfvhwxMTFYsmQJNmzYgOzsbHh7e2ut/+STT6JPnz7o3bs3nJ2dsWDBAvzwww/4448/EBAQUO/+2KGYiIjI/hhz/jY4udm7dy/WrFmD77//HlVVVXj00UcxefJk9OvX756CjYmJQc+ePbFs2TIA1aNuBgYG4qWXXsLs2bPrfX5lZSU8PT2xbNkyrTu4AOD27du4ffu2+u/S0lIEBgYyuSEiIrIjZrlbql+/fli9ejUKCgqwdOlS5ObmYsCAAejQoQMWLFiAwsJCowOtqKhAeno64uLiagKSyxEXF4eDBw8atI1bt27hzp07aNGihejypKQkKBQK9SMwMNDoOImIiMh+GH23lJubGxISEvDbb7/h9OnTeOyxx5CcnIw2bdrgwQcfNGpbxcXFqKyshI+Pj0a5j4+PwcnSrFmz4O/vr5Eg1ZaYmAilUql+5OfnGxUjERER2Zd7mluqXbt2eP3119G2bVskJibil19+MVVcBpk/fz7Wr1+P3bt3w9nZWXQdJycnODk5WTQuIiIisp4GJzd79uzB6tWrsXHjRsjlcowbNw6TJ082ahteXl5wcHBAUVGRRnlRUZF6sj9dFi1ahPnz5+PXX39F165djY6fiIiIpMmoy1KXLl3CvHnz0KFDBwwcOBBnz57FJ598gkuXLmHVqlXo1auXUTt3dHREVFQUUlNT1WVVVVVITU1FbGyszud9+OGHeO+997Bt2zb06NHDqH0SERGRtBnccjN8+HD8+uuv8PLyQnx8PJ555hl07NjxngOYOXMmJk2ahB49eiA6OhpLlixBWVkZEhISAADx8fEICAhAUlISAGDBggWYM2cOvv32WwQFBan75ri7u8Pd3f2e4yEiIiL7ZnBy07RpU3z//fcYNWqUSWcWHj9+PK5cuYI5c+agsLAQERER2LZtm7qTcV5eHuTymgamzz77DBUVFXj00Uc1tjN37ly8/fbbJouLiIiI7JPRs4LbOw7iR0REZH/MOis4ERERkS1jckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClMboiIiEhSmNwQERGRpDC5ISIiIklhckNERESSwuSGiIiIJIXJDREREUkKkxsiIiKSFCY3REREJClWT26Sk5MRFBQEZ2dnxMTE4PDhwzrX/eOPPzB27FgEBQVBJpNhyZIllguUiIiI7IJVk5uUlBTMnDkTc+fOxdGjR9GtWzcMHToUly9fFl3/1q1bCAkJwfz58+Hr62vhaImIiMgeWDW5+eijjzBlyhQkJCSgc+fOWL58OVxdXbF69WrR9Xv27ImFCxfi8ccfh5OTk4WjJSIiIntgteSmoqIC6enpiIuLqwlGLkdcXBwOHjxosv3cvn0bpaWlGg8iIiKSLqslN8XFxaisrISPj49GuY+PDwoLC022n6SkJCgUCvUjMDDQZNsmIiIi22P1DsXmlpiYCKVSqX7k5+dbOyQiIiIyoybW2rGXlxccHBxQVFSkUV5UVGTSzsJOTk7sn0NERNSIWK3lxtHREVFRUUhNTVWXVVVVITU1FbGxsdYKi4iIiOyc1VpuAGDmzJmYNGkSevTogejoaCxZsgRlZWVISEgAAMTHxyMgIABJSUkAqjshnzx5Uv3/ixcvIiMjA+7u7mjXrp3VXgcRERHZDqsmN+PHj8eVK1cwZ84cFBYWIiIiAtu2bVN3Ms7Ly4NcXtO4dOnSJURGRqr/XrRoERYtWoQBAwZg9+7dlg6fiIiIbJBMEATB2kFYUmlpKRQKBZRKJZo1a2btcIiIiMgAxpy/JX+3FBERETUuTG6IiIhIUpjcEBERkaQwuSEiIiJJYXJDREREksLkhoiIiCSFyQ0RERFJCpMbIiIikhQmN0RERCQpTG6IiIhIUpjcEBERkaQwuSEiIiJJYXJDREREksLkhoiIiCSFyQ0RERFJCpMbIiIikhQmN0RERCQpTG6IiIhIUpjcEBERkaQwuSEiIiJJYXJDREREksLkhoiIiCSFyQ0RERFJCpMbIiIikhQmN0RERCQpTG6IiIhIUpjcEBERkaQwuSEiIiJJYXJDREREksLkhoiIiCSFyQ0RERFJCpMbIiIikhQmN0RERCQpTG6IiIhIUpjcEBERkaQwuSEiIiJJYXJDREREksLkhoiIiCSFyQ0RERFJCpMbIiIikhQmN0RERCQpTG6IiIhIUpjcEBERkaQwuSEiIiJJYXJDREREksLkhoiIiCSFyQ0RERFJCpMbIiIikhQmN0RERCQpTG6IiIhIUpjcEBERkaQwuSEiamyUF4HcPdX/EklQE2sHQHUoLwLXcoAWoYAiwHLPJd1Yr/fGUvXH98kwR78C/u9fgFAFyOTA6H8D3eMtt39bfZ9sNS4x9hSrlTC5MTWxg07fgVh7WU5qzZcOZEDU00BwfyAwpnpdfQdz7S8soPq5/V8Tj0G1rYpbwNWzQJtYoHXUvb9OY8uVF4H8Q9X/b94WuFOmGV9Tt5oysddc+/mG1JGhr0Hlz3TgwFLg1I/i9Vr3+br+ru91mIrYe6yrvgNjDCs39H3QVY9HvwJ++icAAYAMePAT05xI68Z2KQP4da72CVvfa6jvswpU18uta4BrC826aUishn5WdG3jXo712tup/T0hVAH/Nx0IHVKzzaZuQMkF07zuusdVfYmVIXVS33Eutq7qu65lO8DRVfu5tb9768al6xgyJg5j663u/mpv/8RGYMccAILpk1MJJU0yQRAEawdhSaWlpVAoFFAqlWjWrJlpN173g9t3BnD1XK2Towzo/SLQ+eHqL4+j3wDnUmttQIbqk4CYu8tkciDubUARWF0cGAPcKAS+GAKIvZUPLq3+t/YXmth+2g0F+rwonlxU3ALO7a4uDxkIXNgHHFgGjRNW6BDg0GfAweSa13r/O0CXR8XLIQN2vKX/tar/vFuXLi2qEzEP3+ptHliq43l399HnX9XF9X3J1k0kbxQCv7wMFBzTHV/nB4GTP9Xsr/39wJkdUL9HXR8Hjq+vVefQ3I8qmVOdSADtBC97a80Xsn+k9sn5z3Tg9DbA3Qe4c6vm5F63DqOeBly9gL2LNF9G+GOAb9eaL0qVqKcBByfg8Ert96Fu0nDuN2Df4ppjT5X8qeLf8rJ29c04adjJXPX6Xb2AliE63jtd5EC/mcC+j7Tfg94vAm7eterr7vHi4ql5TIh9FsNGAiGDa076gP4TnNjJPHQIsGchkP4lNE5Q3vdVv58OToBL85p9Fp2oWbf261D93WEY0O5+oOPwmhjqnhhVx/+ta+LvSfg44MQG8e8QAAgdDAT0qN6Xvh9CquPiUob2cRU+DsjcoFkmcwCmZ4p/Jut+hlXbrf2+ATXba90TaNMbaN6m+v1R/lnnM1FX7fdY5P2ekFL9Xaf+7qoloAdwMR3qz3/t597/bvX3nthxofp/xa3q5zs41RzbAPDr29p1VPd1ipmQUv0dAOhPflXfhXUTV+VFze/p2t+5LdtVb1v1nOZttZNfsddohgTJmPO3TSQ3ycnJWLhwIQoLC9GtWzcsXboU0dHROtffsGED3nrrLZw/fx7t27fHggULMGLECIP2ZbbkRnkRWNKlni9ca9GXNNnTPowUPg5wdNM+MQQPBHJ/g83Fa6jwx4DL2UDRcSvsXA5ETwHSVuo+EdYnfFzNiViV0NX+si/OBjK/E3mirHrfh1fBPO9dQ45hsROkrDqx8ukCbJysnVzZ63GnEjQA6PBA9UlP+WdNAq6VYBso5vnqY/qLOO3ndhhWXY9aSao9qXVcWOO97zAU6PRQ9Y+xM9u0l3uGANfPmXCHOn5kmoBdJTcpKSmIj4/H8uXLERMTgyVLlmDDhg3Izs6Gt7e31voHDhxA//79kZSUhFGjRuHbb7/FggULcPToUXTp0qXe/ZktufnvmyItCURERI3Y/e8Bff5pkk3ZVXITExODnj17YtmyZQCAqqoqBAYG4qWXXsLs2bO11h8/fjzKysrw888/q8t69eqFiIgILF++XGv927dv4/bt2+q/S0tLERgYaNrkRnkR+LizabZFREQkFTI5MP2ESS5RGZPcWPVW8IqKCqSnpyMuLk5dJpfLERcXh4MHD4o+5+DBgxrrA8DQoUN1rp+UlASFQqF+BAYGmu4FqKiuZxMREVENoQq4ZsrLXoaxanJTXFyMyspK+Pj4aJT7+PigsLBQ9DmFhYVGrZ+YmAilUql+5OfnmyZ4IiIi0k8mB1qEWHy3kr8V3MnJCU5OTubdiaq3OBEREdWIe8cqt5VbteXGy8sLDg4OKCoq0igvKiqCr6+v6HN8fX2NWt8iFAHVt/+RhMmrb/+kxil6qmX3FxJX/zqkTVbfKU1Wz3IyqfvfNVlnYmNZteXG0dERUVFRSE1NxZgxYwBUdyhOTU3Fiy++KPqc2NhYpKamYvr06eqyHTt2IDY21gIR69HnXwBkmmMw3Pcw0HV89e3ITV2rb5W8dKx6LAOhsnqMh9FLqse3OLMdcPOpvi1WtVwXmUP1dtXjqIjdYqhvDAdZdWtT/v+Me439XgZ8wqv/37xN9eupKKsez6I4u2a9oAFAj4TqcRBqy/+fjlt8Uf2l1O7+6nq4F6rxGeRNgPx04Nyvmss7DAOuXQCKTxm2vX4vAyGDqptVFQHA/k/qjLOhpz9+zAvAbSWQ8a3+9YIH3sOt6XLgoWXV4064+QA3LtW6bVbP+Bgyh+oxkH58QWSZXP+YSADQrDVQ+mfN3237AM0CdL+/dQX2AjwCgJMb9axk5K2zPl2qx4QxiVrjSqnG9lG01h67xRDh46rH0Dm8Qny5oi1Qmn93fJG73wnd46uPtdr7Cx9XXW/lJUDl7epbfC//UWuQxDqxA9Xvy4UDOmKW3V1Vx+tp0a76FmFDjnV9ZHJg8q/Asa9FxuupR+eHgZM/1N2g9jZkMmD03fG2rp0DSvKA83urPxOqcW8Co+8O1jf97vdrne1EJQCRE4HPh+iIUQ5MWFc9FtHRtSa4NV3kdajGyMk/XP39WV4CXM8FnDyAkAE155KTm+/enVvn+epb5z+ueY0RE6rHRfvtQ2gdJ+GPASe+r3mP2/YG8g4aMDbQ3eEObl2rVRcyIHgAoGgD+EcAHYdZdSBAq98tlZKSgkmTJmHFihWIjo7GkiVL8N133yErKws+Pj6Ij49HQEAAkpKSAFTfCj5gwADMnz8fI0eOxPr16zFv3jzr3wquorxY/eFSnQwbso5qed1EKG4u4N+95nm1twNUfyCA6g8xoLns2rmaBEtVpjUuj/zusVvnwI56Buj/iv4D9c/06uQlsFf9g3zVHsAMqPli6h4PpL4H7F18d5n87qCHY7QTw7rLar82rUGratWLapnGfu4Orhc5sfpLUT04VbT+96d2vef+VvMhr32Cqr1+RRmw/nHNk4lqEDNA8z2q+16pvuyKMnXvRyw+jS/zWvtUPe+H54Hfv61Z1u0JYPCb4sdOSZ5mPYq957Xru+iE5nt5/9vax6/YMfjoau1jWON1yO9uU9B83oy7ic2h5cDBZXe3e3e/tU8Yri2qT3jHvtb8Yg5/DOg4QnvfWqMK360PsXFZ1INsttGsK9Vzs7cBN4sAz7bAXyU1dafrO8HQ7xNdn31VPdd97bWPrdrv79VzNYlT3biAmu3k7AKyf4bWybJtb81kqvZnG6g+ZnQNOKraBgTNY7R2nYt9JvR9VnXVV93ju3b9ig0SqeszLfajFXKgbWyterh7DKqOibr1L/b9ZOjr0FUHYsfN0a9qPkNi9Vv3eNn4jHYdTN6h/T1ryDFqInZ1KzgALFu2TD2IX0REBD755BPExFT3Yxk4cCCCgoLw5ZdfqtffsGED3nzzTfUgfh9++KH1B/EzF3MeOGIHO6B5Ern/bZMOwqSmK+lQLdP1mk1ZH6auW0O2p+sLxtT7EVtfVwJoaGLaEPXFakx96EraxJ5naB3dyzFQO3ZVsh3zD7sftt5guo4rfZ9tQPs9r/2jDbDYiVKv+j4z+p4j9uPTVo4JY2IyxXeVidldcmNJdpfcmJvYwW6LH0opYf1qamh92EI92kIM9oj1Zh9s7H1icqMHkxsiIiL7YzeD+BERERGZGpMbIiIikhQmN0RERCQpTG6IiIhIUpjcEBERkaQwuSEiIiJJYXJDREREksLkhoiIiCSFyQ0RERFJCpMbIiIikhQmN0RERCQpTawdgKWpptIqLS21ciRERERkKNV525ApMRtdcnPjxg0AQGBgoJUjISIiImPduHEDCoVC7zqNblbwqqoqXLp0CR4eHpDJZCbddmlpKQIDA5Gfn88Zx82I9WwZrGfLYV1bBuvZMsxVz4Ig4MaNG/D394dcrr9XTaNruZHL5WjdurVZ99GsWTN+cCyA9WwZrGfLYV1bBuvZMsxRz/W12KiwQzERERFJCpMbIiIikhQmNybk5OSEuXPnwsnJydqhSBrr2TJYz5bDurYM1rNl2EI9N7oOxURERCRtbLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSQqTGyMlJycjKCgIzs7OiImJweHDh/Wuv2HDBoSFhcHZ2Rnh4eHYsmWLhSK1b8bU86pVq9CvXz94enrC09MTcXFx9b4vVM3Y41ll/fr1kMlkGDNmjHkDlBBj67qkpATTpk2Dn58fnJyc0KFDB35/GMDYel6yZAk6duwIFxcXBAYGYsaMGfjrr78sFK192rNnD0aPHg1/f3/IZDJs3ry53ufs3r0b3bt3h5OTE9q1a4cvv/zSvEEKZLD169cLjo6OwurVq4U//vhDmDJlitC8eXOhqKhIdP39+/cLDg4OwocffiicPHlSePPNN4WmTZsKmZmZFo7cvhhbz0888YSQnJwsHDt2TDh16pTw9NNPCwqFQvjzzz8tHLl9MbaeVXJzc4WAgAChX79+wkMPPWSZYO2csXV9+/ZtoUePHsKIESOEffv2Cbm5ucLu3buFjIwMC0duX4yt5//85z+Ck5OT8J///EfIzc0Vtm/fLvj5+QkzZsywcOT2ZcuWLcIbb7whbNq0SQAg/PDDD3rXP3funODq6irMnDlTOHnypLB06VLBwcFB2LZtm9liZHJjhOjoaGHatGnqvysrKwV/f38hKSlJdP1x48YJI0eO1CiLiYkRpk6datY47Z2x9VzX33//LXh4eAhr1641V4iS0JB6/vvvv4XevXsLn3/+uTBp0iQmNwYytq4/++wzISQkRKioqLBUiJJgbD1PmzZNGDx4sEbZzJkzhT59+pg1TikxJLl57bXXhPvuu0+jbPz48cLQoUPNFhcvSxmooqIC6enpiIuLU5fJ5XLExcXh4MGDos85ePCgxvoAMHToUJ3rU8Pqua5bt27hzp07aNGihbnCtHsNred3330X3t7emDx5siXClISG1PVPP/2E2NhYTJs2DT4+PujSpQvmzZuHyspKS4VtdxpSz71790Z6err60tW5c+ewZcsWjBgxwiIxNxbWOBc2uokzG6q4uBiVlZXw8fHRKPfx8UFWVpbocwoLC0XXLywsNFuc9q4h9VzXrFmz4O/vr/VhohoNqed9+/bhiy++QEZGhgUilI6G1PW5c+ewc+dOPPnkk9iyZQvOnj2LF154AXfu3MHcuXMtEbbdaUg9P/HEEyguLkbfvn0hCAL+/vtv/OMf/8Drr79uiZAbDV3nwtLSUpSXl8PFxcXk+2TLDUnK/PnzsX79evzwww9wdna2djiScePGDUycOBGrVq2Cl5eXtcORvKqqKnh7e2PlypWIiorC+PHj8cYbb2D58uXWDk1Sdu/ejXnz5uHTTz/F0aNHsWnTJvzyyy947733rB0a3SO23BjIy8sLDg4OKCoq0igvKiqCr6+v6HN8fX2NWp8aVs8qixYtwvz58/Hrr7+ia9eu5gzT7hlbzzk5OTh//jxGjx6tLquqqgIANGnSBNnZ2QgNDTVv0HaqIce0n58fmjZtCgcHB3VZp06dUFhYiIqKCjg6Opo1ZnvUkHp+6623MHHiRDz77LMAgPDwcJSVleG5557DG2+8Abmcv/9NQde5sFmzZmZptQHYcmMwR0dHREVFITU1VV1WVVWF1NRUxMbGij4nNjZWY30A2LFjh871qWH1DAAffvgh3nvvPWzbtg09evSwRKh2zdh6DgsLQ2ZmJjIyMtSPBx98EIMGDUJGRgYCAwMtGb5dacgx3adPH5w9e1adQALA6dOn4efnx8RGh4bU861bt7QSGFVCKXDaRZOxyrnQbF2VJWj9+vWCk5OT8OWXXwonT54UnnvuOaF58+ZCYWGhIAiCMHHiRGH27Nnq9ffv3y80adJEWLRokXDq1Clh7ty5vBXcAMbW8/z58wVHR0fh+++/FwoKCtSPGzduWOsl2AVj67ku3i1lOGPrOi8vT/Dw8BBefPFFITs7W/j5558Fb29v4f3337fWS7ALxtbz3LlzBQ8PD2HdunXCuXPnhP/+979CaGioMG7cOGu9BLtw48YN4dixY8KxY8cEAMJHH30kHDt2TLhw4YIgCIIwe/ZsYeLEier1VbeCv/rqq8KpU6eE5ORk3gpua5YuXSq0adNGcHR0FKKjo4X//e9/6mUDBgwQJk2apLH+d999J3To0EFwdHQU7rvvPuGXX36xcMT2yZh6btu2rQBA6zF37lzLB25njD2ea2NyYxxj6/rAgQNCTEyM4OTkJISEhAgffPCB8Pfff1s4avtjTD3fuXNHePvtt4XQ0FDB2dlZCAwMFF544QXh+vXrlg/cjuzatUv0O1dVt5MmTRIGDBig9ZyIiAjB0dFRCAkJEdasWWPWGGWCwLY3IiIikg72uSEiIiJJYXJDREREksLkhoiIiCSFyQ0RERFJCpMbIiIikhQmN0RERCQpTG6IiIhIUpjcEBERkag9e/Zg9OjR8Pf3h0wmw+bNm82+z4sXL+Kpp55Cy5Yt4eLigvDwcBw5csSobTC5ISKre/rppzFmzBir7X/ixImYN2+eQes+/vjjWLx4sZkjIrINZWVl6NatG5KTky2yv+vXr6NPnz5o2rQptm7dipMnT2Lx4sXw9PQ0ajscoZiIzEomk+ldPnfuXMyYMQOCIKB58+aWCaqW33//HYMHD8aFCxfg7u5e7/onTpxA//79kZubC4VCYYEIiWyDTCbDDz/8oPFD5Pbt23jjjTewbt06lJSUoEuXLliwYAEGDhzYoH3Mnj0b+/fvx969e+8pVrbcEJFZFRQUqB9LlixBs2bNNMpeeeUVKBQKqyQ2ALB06VI89thjBiU2ANClSxeEhobim2++MXNkRLbvxRdfxMGDB7F+/XocP34cjz32GIYNG4YzZ840aHs//fQTevTogcceewze3t6IjIzEqlWrjN4OkxsiMitfX1/1Q6FQQCaTaZS5u7trXZYaOHAgXnrpJUyfPh2enp7w8fHBqlWrUFZWhoSEBHh4eKBdu3bYunWrxr5OnDiB4cOHw93dHT4+Ppg4cSKKi4t1xlZZWYnvv/8eo0eP1ij/9NNP0b59ezg7O8PHxwePPvqoxvLRo0dj/fr19145RHYsLy8Pa9aswYYNG9CvXz+EhobilVdeQd++fbFmzZoGbfPcuXP47LPP0L59e2zfvh3PP/88/vnPf2Lt2rVGbYfJDRHZpLVr18LLywuHDx/GSy+9hOeffx6PPfYYevfujaNHj+KBBx7AxIkTcevWLQBASUkJBg8ejMjISBw5cgTbtm1DUVERxo0bp3Mfx48fh1KpRI8ePdRlR44cwT//+U+8++67yM7OxrZt29C/f3+N50VHR+Pw4cO4ffu2eV48kR3IzMxEZWUlOnToAHd3d/Xjt99+Q05ODgAgKysLMplM72P27NnqbVZVVaF79+6YN28eIiMj8dxzz2HKlClYvny5UbE1MekrJSIykW7duuHNN98EACQmJmL+/Pnw8vLClClTAABz5szBZ599huPHj6NXr15YtmwZIiMjNToGr169GoGBgTh9+jQ6dOigtY8LFy7AwcEB3t7e6rK8vDy4ublh1KhR8PDwQNu2bREZGanxPH9/f1RUVKCwsBBt27Y1x8snsnk3b96Eg4MD0tPT4eDgoLFMdZk3JCQEp06d0rudli1bqv/v5+eHzp07ayzv1KkTNm7caFRsTG6IyCZ17dpV/X8HBwe0bNkS4eHh6jIfHx8AwOXLlwFUdwzetWuXaN+ZnJwc0eSmvLwcTk5OGp2e77//frRt2xYhISEYNmwYhg0bhocffhiurq7qdVxcXABA3WpE1BhFRkaisrISly9fRr9+/UTXcXR0RFhYmMHb7NOnD7KzszXKTp8+bfSPCCY3RGSTmjZtqvG3TCbTKFMlJFVVVQCqf0WOHj0aCxYs0NqWn5+f6D68vLxw69YtVFRUwNHREQDg4eGBo0ePYvfu3fjvf/+LOXPm4O2330ZaWpq60/O1a9cAAK1atbq3F0lk427evImzZ8+q/87NzUVGRgZatGiBDh064Mknn0R8fDwWL16MyMhIXLlyBampqejatStGjhxp9P5mzJiB3r17Y968eRg3bhwOHz6MlStXYuXKlUZth31uiEgSunfvjj/++ANBQUFo166dxsPNzU30OREREQCAkydPapQ3adIEcXFx+PDDD3H8+HGcP38eO3fuVC8/ceIEWrduDS8vL7O9HiJbcOTIEURGRqovzc6cORORkZGYM2cOAGDNmjWIj4/Hyy+/jI4dO2LMmDFIS0tDmzZtGrS/nj174ocffsC6devQpUsXvPfee1iyZAmefPJJo7bDlhsikoRp06Zh1apVmDBhAl577TW0aNECZ8+exfr16/H5559r9QkAqlteunfvjn379qkTnZ9//hnnzp1D//794enpiS1btqCqqgodO3ZUP2/v3r144IEHLPXSiKxm4MCB0DccXtOmTfHOO+/gnXfeMdk+R40ahVGjRt3TNthyQ0SS4O/vj/3796OyshIPPPAAwsPDMX36dDRv3hxyue6vumeffRb/+c9/1H83b94cmzZtwuDBg9GpUycsX74c69atw3333QcA+Ouvv7B582Z1x2Yisj0coZiIGrXy8nJ07NgRKSkpiI2NrXf9zz77DD/88AP++9//WiA6ImoIttwQUaPm4uKCr776Su9gf7U1bdoUS5cuNXNURHQv2HJDREREksKWGyIiIpIUJjdEREQkKUxuiIiISFKY3BAREZGkMLkhIiIiSWFyQ0RERJLC5IaIiIgkhckNERERSQqTGyIiIpKU/wd7n0kDNwbBTwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=trace_schedule,\n", " schedule_kwargs={\n", " \"pulse_amp\": 0.5,\n", " \"acq_delay\": 100e-9,\n", " },\n", " batched=True,\n", ")\n", "\n", "data = gettable.get()\n", "\n", "plt.plot(np.arange(1000)/1e9, data[0], '.', label=\"real\")\n", "plt.plot(np.arange(1000)/1e9, data[1], '.', label=\"imaginary\")\n", "plt.legend()\n", "plt.xlabel(\"Time (s)\")\n", "plt.ylabel(\"Voltage (V)\")\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "632a99ef", "metadata": {}, "source": [ "This time, there is only one acquisition operation in the schedule. The measurement result contains two arrays: one for the _I_ values (`data[0][:]`), and one for the _Q_ values (`data[1][:]`) of the acquired trace.\n", "\n", "## MeasurementControl\n", "\n", "Iterating through different parameters can be done with some help from `quantify-core` as well, through the {class}`~quantify_core.measurement.control.MeasurementControl` class. The {class}`~quantify_core.measurement.control.MeasurementControl` uses settables (parameters to vary in an experiment) and gettables (in this case, our {class}`~quantify_scheduler.gettables.ScheduleGettable`). The settable must be a class that implements `set()`, such as a QCoDeS {class}`~qcodes.parameters.ManualParameter`.\n", "\n", "In this example, the settable is the `time` object, and the setpoints are a numpy array of values (`times`). These are added to the {class}`~quantify_core.measurement.control.MeasurementControl` as shown, together with the {class}`~quantify_scheduler.gettables.ScheduleGettable`. The {class}`~quantify_core.measurement.control.MeasurementControl` object will be in charge of setting the setpoints, and retrieving the measurement results through the gettable." ] }, { "cell_type": "code", "execution_count": 8, "id": "e2b2363f", "metadata": {}, "outputs": [], "source": [ "from quantify_core.measurement.control import MeasurementControl\n", "\n", "\n", "measurement_control = MeasurementControl(\"measurement_control\")\n", "\n", "# Configure the settable\n", "time = ManualParameter(\"sample\", label=\"Sample time\", unit=\"s\")\n", "time.batched = True\n", "\n", "times = np.linspace(start=1.6e-7, stop=4.976e-5, num=125)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=t1_sched,\n", " schedule_kwargs={\"times\": time},\n", " batched=True\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables(time)\n", "measurement_control.setpoints(times)\n", "measurement_control.gettables(gettable)" ] }, { "cell_type": "markdown", "id": "7daf9403", "metadata": {}, "source": [ "The experiment is set to run fully in _batched_ mode. When using {class}`~quantify_core.measurement.control.MeasurementControl`, settables and gettables can be either batched (an array of points is set for each measurement iteration) or iterative (only one point is set per iteration). Combinations of batched and iterative settables are possible, as explained in detail in the [quantify-core documentation](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#mixing-iterative-and-batched-settables).\n", "\n", "Settables and gettables are batched if they have the attribute `batched=True`. In {class}`~quantify_scheduler.gettables.ScheduleGettable`, this can be controlled through the `batched` argument when creating the class. For other classes, the attribute can be added dynamically if needed, as shown above for the `time` parameter.\n", "\n", "With both the gettable and the settable having `batched=True`, the {class}`~quantify_core.measurement.control.MeasurementControl` knows that it should set the entire `times` array as the settable's value (instead of repeating the experiment for each value in the array). All data points are measured without interruption and all measurement results are returned in one go. Now, let's run the experiment and retrieve the data." ] }, { "cell_type": "code", "execution_count": 9, "id": "f23301fa", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t --- (None) --- \n", "Batched settable(s):\n", "\t sample \n", "Batch size limit: 125\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "dcde30b8f26147fca6a6759dae35c553", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dataset = measurement_control.run()" ] }, { "cell_type": "markdown", "id": "b67ce99a", "metadata": {}, "source": [ "The {class}`~quantify_core.measurement.control.MeasurementControl` class processes the data returned by the {class}`~quantify_scheduler.gettables.ScheduleGettable`, and turns it into a {class}`~xarray.Dataset`. More information on the format of this dataset can be found in the [quantify-core documentation](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#dataset)." ] }, { "cell_type": "code", "execution_count": 10, "id": "21345725", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 3kB\n",
       "Dimensions:  (dim_0: 125)\n",
       "Coordinates:\n",
       "    x0       (dim_0) float64 1kB 1.6e-07 5.6e-07 9.6e-07 ... 4.936e-05 4.976e-05\n",
       "Dimensions without coordinates: dim_0\n",
       "Data variables:\n",
       "    y0       (dim_0) float64 1kB -1.166 -1.141 -1.109 ... -0.737 -0.7305 -1.164\n",
       "    y1       (dim_0) float64 1kB 0.2569 0.2138 0.2035 ... -0.2533 -0.247 0.2671\n",
       "Attributes:\n",
       "    tuid:                             20250925-134418-687-2be780\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         False\n",
       "    1d_2_settables_uniformly_spaced:  False
" ], "text/plain": [ " Size: 3kB\n", "Dimensions: (dim_0: 125)\n", "Coordinates:\n", " x0 (dim_0) float64 1kB 1.6e-07 5.6e-07 9.6e-07 ... 4.936e-05 4.976e-05\n", "Dimensions without coordinates: dim_0\n", "Data variables:\n", " y0 (dim_0) float64 1kB -1.166 -1.141 -1.109 ... -0.737 -0.7305 -1.164\n", " y1 (dim_0) float64 1kB 0.2569 0.2138 0.2035 ... -0.2533 -0.247 0.2671\n", "Attributes:\n", " tuid: 20250925-134418-687-2be780\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: False\n", " 1d_2_settables_uniformly_spaced: False" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset" ] }, { "cell_type": "markdown", "id": "910067c8", "metadata": {}, "source": [ "The dataset coordinates and data variables are named as generic `x` and `y` parameters. You can click on the 'Show/Hide attributes' button next to the coordinates and variables to see what they refer to.\n", "\n", "(sec-tutorial-schedulegettable-repetitions)=\n", "## Repetitions\n", "\n", "Repetition defines how many times the defined schedule will run on the hardware. Running the schedule multiple times can be useful for example if the user would like to reduce errors of acquisitions by averaging the result of multiple measurements.\n", "\n", "There are multiple ways the repetitions can be set. They are not completely independent of each other, and which setting will be taken into account depends on how you create and use the schedule.\n", "\n", "1. {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice`: via `cfg_sched_repetitions` (by default it is `1024`),\n", "2. schedule function: via the `repetitions` function argument,\n", "3. {class}`~quantify_scheduler.schedules.schedule.Schedule` object: via the `repetitions` function argument of its constructor, or via its `repetitions` attribute directly,\n", "4. ({class}`~quantify_scheduler.gettables.ScheduleGettable`: currently, it is not possible to supply `repetitions` via `schedule_kwargs`).\n", "\n", "Ultimately, the {class}`~quantify_scheduler.schedules.schedule.Schedule` object is what governs the repetitions, via its `repetitions` attribute.\n", "\n", "When using a schedule function, the `repetitions` function argument sets the repetitions, provided that the schedule function passes it to the `Schedule` object. This is true for the pre-defined schedules, see {mod}`!quantify_scheduler.schedules`.\n", "\n", "However, if the experiment is run using `ScheduleGettable`, this `repetitions` function argument is set to `QuantumDevice.cfg_sched_repetitions`. Hence, typically, the schedule will run `QuantumDevice.cfg_sched_repetitions` times.\n", "\n", "### Possible mistake: ignoring `repetitions` argument\n", "\n", "Keep in mind that the schedule function should pass the `repetitions` argument to the `Schedule` initializer, otherwise both `QuantumDevice.cfg_sched_repetitions` and the `repetitions` argument of the schedule function will be ignored. For example, in the following setup, the `repetitions` will always be `1` (default for the `Schedule` object), even if `cfg_sched_repetitions` is set to `2`." ] }, { "cell_type": "code", "execution_count": 11, "id": "8ff929af", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import QuantumDevice, ScheduleGettable\n", "\n", "def schedule_function(q0: str, repetitions: int):\n", " schedule = Schedule(\"Example schedule\")\n", " schedule.add(Measure(q0, acq_index=0))\n", " return schedule\n", "\n", "quantum_device = QuantumDevice(name=\"quantum_sample\")\n", "quantum_device.cfg_sched_repetitions(2)\n", "\n", "schedule_gettable = ScheduleGettable(\n", " quantum_device=quantum_device,\n", " schedule_function=schedule_function,\n", " schedule_kwargs={\"q0\": \"q0\"},\n", ")" ] }, { "cell_type": "markdown", "id": "4f76530f", "metadata": {}, "source": [ "### Possible mistake: ignoring `cfg_sched_repetitions` default value\n", "\n", "Also note, that the default value of the `repetitions` argument of the schedule function will be ignored if `ScheduleGettable` is used, and it will be set to `QuantumDevice.cfg_sched_repetitions`. For example, in the following setup, `repetitions` will be `1024` (default for `QuantumDevice`), even if the default argument for `repetitions` is `2`." ] }, { "cell_type": "code", "execution_count": 12, "id": "508bfcb6", "metadata": { "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "quantum_device.close()" ] }, { "cell_type": "code", "execution_count": 13, "id": "111c7421", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import QuantumDevice, ScheduleGettable\n", "\n", "def schedule_function(q0: str, repetitions: int = 2):\n", " schedule = Schedule(\"Example schedule\", repetitions=repetitions)\n", " schedule.add(Measure(q0, acq_index=0))\n", " return schedule\n", "\n", "quantum_device = QuantumDevice(name=\"quantum_sample\")\n", "\n", "schedule_gettable = ScheduleGettable(\n", " quantum_device=quantum_device,\n", " schedule_function=schedule_function,\n", " schedule_kwargs={\"q0\": \"q0\"},\n", ")" ] }, { "cell_type": "markdown", "id": "3dd19fbd", "metadata": {}, "source": [ "(sec-schedulegettable-2dsweep-usage)=\n", "\n", "## 2D (and ND) measurement loops" ] }, { "cell_type": "code", "execution_count": 14, "id": "72e1302b", "metadata": { "mystnb": { "code_prompt_show": "Set up the quantum device, dummy hardware and hardware configuration" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "from qblox_instruments import Cluster, ClusterType, DummyBinnedAcquisitionData\n", "\n", "from quantify_scheduler import BasicTransmonElement, InstrumentCoordinator, QuantumDevice\n", "from quantify_scheduler.qblox import ClusterComponent\n", "\n", "\n", "single_qubit_device.close_all()\n", "\n", "# Device parameters\n", "Q0_ACQ_DELAY = 100e-9\n", "Q0_FREQ_01 = 4e9\n", "Q0_READOUT_AMP = 0.1\n", "Q0_READOUT_FREQ = 4.3e9\n", "Q0_PI_PULSE_AMP = 0.15\n", "Q0_LO_FREQ_QUBIT = 3.9e9\n", "Q0_LO_FREQ_READOUT = 4.5e9\n", "\n", "Q1_ACQ_DELAY = 120e-9\n", "Q1_FREQ_01 = 4.1e9\n", "Q1_READOUT_AMP = 0.1\n", "Q1_READOUT_FREQ = 3.8e9\n", "Q1_PI_PULSE_AMP = 0.15\n", "Q1_LO_FREQ_QUBIT = 4.1e9\n", "Q1_LO_FREQ_READOUT = 3.8e9\n", "\n", "two_qubit_device = QuantumDevice(\"two_qubit_device\")\n", "\n", "q0 = BasicTransmonElement(\"q0\")\n", "q0.measure.acq_channel(0)\n", "q0.measure.pulse_amp(Q0_READOUT_AMP)\n", "q0.clock_freqs.readout(Q0_READOUT_FREQ)\n", "q0.clock_freqs.f01(Q0_FREQ_01)\n", "q0.measure.acq_delay(Q0_ACQ_DELAY)\n", "q0.rxy.amp180(Q0_PI_PULSE_AMP)\n", "\n", "q1 = BasicTransmonElement(\"q1\")\n", "q1.measure.acq_channel(1) # Note that we're specifying that measurements on q1 should use a different measurement channel\n", "q1.measure.pulse_amp(Q1_READOUT_AMP)\n", "q1.clock_freqs.readout(Q1_READOUT_FREQ)\n", "q1.clock_freqs.f01(Q1_FREQ_01)\n", "q1.measure.acq_delay(Q1_ACQ_DELAY)\n", "q1.rxy.amp180(Q1_PI_PULSE_AMP)\n", "\n", "two_qubit_device.add_element(q0)\n", "two_qubit_device.add_element(q1)\n", "\n", "# We will need to adjust the hardware configuration.\n", "\n", "# Note: if you are connecting to an actual cluster, you would provide the\n", "# 'identifier' argument (the ip address, device name or serial number) instead\n", "# of the 'dummy_cfg' argument.\n", "cluster = Cluster(\n", " \"cluster\",\n", " dummy_cfg={\n", " 1: ClusterType.CLUSTER_QRM_RF,\n", " 2: ClusterType.CLUSTER_QCM_RF,\n", " 3: ClusterType.CLUSTER_QRM_RF,\n", " 4: ClusterType.CLUSTER_QCM_RF,\n", " },\n", ")\n", "\n", "ic_cluster = ClusterComponent(cluster)\n", "\n", "# Temporarily fixing dummy cluster's deficiency.\n", "cluster.start_sequencer = lambda : start_dummy_cluster_armed_sequencers(ic_cluster)\n", "\n", "instrument_coordinator = InstrumentCoordinator(\"instrument_coordinator\")\n", "instrument_coordinator.add_component(ic_cluster)\n", "\n", "two_qubit_device.instr_instrument_coordinator(instrument_coordinator.name)\n", "\n", "hardware_cfg = {\n", " \"version\": \"0.2\",\n", " \"config_type\": \"quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig\",\n", " \"hardware_description\": {\n", " f\"{cluster.name}\": {\n", " \"instrument_type\": \"Cluster\",\n", " \"modules\": {\n", " \"1\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"2\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " },\n", " \"3\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"4\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " }\n", " },\n", " \"ref\": \"internal\"\n", " }\n", " },\n", " \"hardware_options\": {\n", " \"modulation_frequencies\": {\n", " \"q0:res-q0.ro\": {\n", " \"lo_freq\": Q0_LO_FREQ_READOUT\n", " },\n", " \"q0:mw-q0.01\": {\n", " \"lo_freq\": Q0_LO_FREQ_QUBIT\n", " },\n", " \"q1:res-q1.ro\": {\n", " \"lo_freq\": Q1_LO_FREQ_READOUT\n", " },\n", " \"q1:mw-q1.01\": {\n", " \"lo_freq\": Q1_LO_FREQ_QUBIT\n", " }\n", " }\n", " },\n", " \"connectivity\": {\n", " \"graph\": [\n", " [f\"{cluster.name}.module1.complex_output_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module1.complex_input_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module2.complex_output_0\", \"q0:mw\"],\n", " [f\"{cluster.name}.module3.complex_output_0\", \"q1:res\"],\n", " [f\"{cluster.name}.module3.complex_input_0\", \"q1:res\"],\n", " [f\"{cluster.name}.module4.complex_output_0\", \"q1:mw\"]\n", " ]\n", " }\n", "}\n", "\n", "\n", "two_qubit_device.hardware_config(hardware_cfg)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1, sequencer=0, acq_index_name=\"0\", data=[DummyBinnedAcquisitionData(data=(0.0, 0.0), thres=0, avg_cnt=0)]\n", ")\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=3, sequencer=0, acq_index_name=\"0\", data=[DummyBinnedAcquisitionData(data=(0.0, 0.0), thres=0, avg_cnt=0)]\n", ")" ] }, { "cell_type": "markdown", "id": "2c4e86e7", "metadata": {}, "source": [ "2D and higher-dimensional measurement loops are easy to realize. Below we show an example Chevron experiment, which is a type of two-qubit experiment often performed on transmon qubits. The experiment includes a square pulse, and we want to vary both its amplitude and duration in a 2D grid. We have already set up a two-qubit {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` under the variable name `two_qubit_device`.\n", "\n", "We define simple schedule below with a parameterized amplitude and duration of the square pulse. `duration` and `amp` are scalars, so for each measurement point the schedule will be recompiled." ] }, { "cell_type": "code", "execution_count": 15, "id": "7fdb7bd0", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import Schedule\n", "from quantify_scheduler.operations import Measure, Reset, SquarePulse, X, X90\n", "\n", "def chevron_schedule_not_batched(duration, amp, repetitions=1):\n", " sched = Schedule(\"Chevron Experiment\", repetitions=repetitions)\n", "\n", " acq_idx = 0\n", "\n", " reset = sched.add(Reset(\"q0\", \"q1\"))\n", " sched.add(X(\"q0\"), ref_op=reset, ref_pt=\"end\") # Start at the end of the reset\n", " # We specify a clock for tutorial purposes, Chevron experiments do not necessarily use modulated square pulses\n", " square = sched.add(SquarePulse(amp=amp, duration=duration, port=\"q0:mw\", clock=\"q0.01\"))\n", " sched.add(X90(\"q0\"), ref_op=square) # Start at the end of the square pulse\n", " sched.add(X90(\"q1\"), ref_op=square)\n", " sched.add(Measure(\"q0\", acq_index=acq_idx), label=f\"M q0 {acq_idx}\")\n", " sched.add(\n", " Measure(\"q1\", acq_index=acq_idx),\n", " label=f\"M q1 {acq_idx}\",\n", " ref_pt=\"start\", # Start at the same time as the other measure\n", " )\n", "\n", " return sched" ] }, { "cell_type": "markdown", "id": "ef28488e", "metadata": {}, "source": [ "We set up a non-batched measurement with {class}`~quantify_core.measurement.control.MeasurementControl` and a {class}`~quantify_scheduler.gettables.ScheduleGettable`. For this {class}`~quantify_scheduler.gettables.ScheduleGettable`, notice the keyword argument `num_channels=2`, which is needed since we specified in the quantum device elements that the measurements on `\"q0\"` and `\"q1\"` should end up in two different channels.\n", "\n", "In addition, we used another new argument in the {class}`~quantify_scheduler.gettables.ScheduleGettable`: `real_imag=False`. `real_imag` can be used to transform the acquisition data. If it is `True` (the default), the I and Q values will be returned, and if it is `False`, the data will be transformed to the absolute value and the phase (in degrees, in the interval `(-180, 180]`)." ] }, { "cell_type": "code", "execution_count": 16, "id": "4f1eeffc", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting iterative measurement...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a14cea82ec8d4ba79757b3542c3178a5", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "measurement_control = MeasurementControl(\"measurement_control\")\n", "\n", "# Configure the settables\n", "duration = ManualParameter(\"duration\", label=\"Duration\", unit=\"s\")\n", "duration.batched = False\n", "\n", "durations = np.linspace(start=20e-9, stop=60e-9, num=6)\n", "\n", "amplitude = ManualParameter(\"amplitude\", label=\"Amplitude\", unit=\"V\")\n", "amplitude.batched = False\n", "\n", "amplitudes = np.linspace(start=0.1, stop=1.0, num=10)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=two_qubit_device,\n", " schedule_function=chevron_schedule_not_batched,\n", " schedule_kwargs={\"duration\": duration, \"amp\": amplitude},\n", " batched=False,\n", " real_imag=False,\n", " num_channels=2,\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables([duration, amplitude])\n", "measurement_control.setpoints_grid([durations, amplitudes]) # note: setpoints_grid instead of setpoints\n", "measurement_control.gettables(gettable)\n", "\n", "# Run!\n", "dataset = measurement_control.run()\n", "dset_grid = dh.to_gridded_dataset(dataset)" ] }, { "cell_type": "code", "execution_count": 17, "id": "d2ace397", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 2kB\n",
       "Dimensions:  (x0: 6, x1: 10)\n",
       "Coordinates:\n",
       "  * x0       (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n",
       "  * x1       (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n",
       "Data variables:\n",
       "    y0       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y1       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y2       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y3       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "Attributes:\n",
       "    tuid:                             20250925-134419-927-8ef820\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         True\n",
       "    1d_2_settables_uniformly_spaced:  False\n",
       "    xlen:                             6\n",
       "    ylen:                             10
" ], "text/plain": [ " Size: 2kB\n", "Dimensions: (x0: 6, x1: 10)\n", "Coordinates:\n", " * x0 (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n", " * x1 (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n", "Data variables:\n", " y0 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y1 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y2 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y3 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", "Attributes:\n", " tuid: 20250925-134419-927-8ef820\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: True\n", " 1d_2_settables_uniformly_spaced: False\n", " xlen: 6\n", " ylen: 10" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dset_grid" ] }, { "cell_type": "markdown", "id": "b32e9d9b", "metadata": {}, "source": [ "As expected, this dataset contains double the amount of coordinates and data variables (note that the actual data has been mocked and set to 0.0). The two coordinates refer to the settables, `duration` and `amplitude`. With `real_imag` now set to `False`, the data variables contain the magnitude and phase (as opposed to the I and Q voltages) for measurements on `\"q0\"` and `\"q1\"`.\n", "\n", "### Batched 2D experiment\n", "\n", "Since this measurement is not batched, it's rather slow. Let's make this faster with (partial) batching.\n", "\n", "We will batch the amplitudes together, so we change the amplitudes parameter in the schedule function to an array." ] }, { "cell_type": "code", "execution_count": 18, "id": "95ed7c4e", "metadata": { "mystnb": { "code_prompt_show": "Provide the dummy hardware with acquisition data" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "from qblox_instruments import DummyBinnedAcquisitionData\n", "\n", "\n", "def get_dummy_binned_acquisition_data(real: float, imag: float):\n", " return DummyBinnedAcquisitionData(data=(real, imag), thres=0, avg_cnt=0)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1, sequencer=0, acq_index_name=\"0\", data=[get_dummy_binned_acquisition_data(re * 10, im * 10) for re, im in zip(range(-5, 5), range(5, -5, -1))]\n", ")\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=3, sequencer=0, acq_index_name=\"0\", data=[get_dummy_binned_acquisition_data(re * 10, im * 10) for re, im in zip(range(-5, 5), range(5, -5, -1))]\n", ")" ] }, { "cell_type": "code", "execution_count": 19, "id": "c2009e95", "metadata": {}, "outputs": [], "source": [ "def chevron_schedule_batched(duration, amps, repetitions=1):\n", " sched = Schedule(\"Chevron Experiment\", repetitions=repetitions)\n", "\n", " acq_idx = 0\n", "\n", " for amp in amps:\n", " reset = sched.add(Reset(\"q0\", \"q1\"))\n", " sched.add(X(\"q0\"), ref_op=reset, ref_pt=\"end\")\n", " square = sched.add(SquarePulse(amp=amp, duration=duration, port=\"q0:mw\", clock=\"q0.01\"))\n", " sched.add(X90(\"q0\"), ref_op=square)\n", " sched.add(X90(\"q1\"), ref_op=square)\n", " sched.add(Measure(\"q0\", acq_index=acq_idx), label=f\"M q0 {acq_idx}\")\n", " sched.add(\n", " Measure(\"q1\", acq_index=acq_idx),\n", " label=f\"M q1 {acq_idx}\",\n", " ref_pt=\"start\",\n", " )\n", "\n", " acq_idx += 1\n", "\n", " return sched" ] }, { "cell_type": "markdown", "id": "78c655c4", "metadata": {}, "source": [ "We specify that we want to batch the amplitudes by setting ``amplitude.batched = True`` and ``batched=True``as keyword argument for the gettable. Finally, we run this experiment just as before." ] }, { "cell_type": "code", "execution_count": 20, "id": "98a971bd", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t duration \n", "Batched settable(s):\n", "\t amplitude \n", "Batch size limit: 60\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7803afdec2a14ad0a88b49d83fc7065d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Configure the settables\n", "duration = ManualParameter(\"duration\", label=\"Duration\", unit=\"s\")\n", "duration.batched = False\n", "\n", "durations = np.linspace(start=20e-9, stop=60e-9, num=6)\n", "\n", "amplitude = ManualParameter(\"amplitude\", label=\"Amplitude\", unit=\"V\")\n", "amplitude.batched = True\n", "\n", "amplitudes = np.linspace(start=0.1, stop=1.0, num=10)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=two_qubit_device,\n", " schedule_function=chevron_schedule_batched,\n", " schedule_kwargs={\"duration\": duration, \"amps\": amplitude},\n", " batched=True,\n", " real_imag=False,\n", " data_labels=[\"Magnitude Q0\", \"Phase Q0\", \"Magnitude Q1\", \"Phase Q1\"],\n", " num_channels=2,\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables([duration, amplitude])\n", "measurement_control.setpoints_grid([durations, amplitudes])\n", "measurement_control.gettables(gettable)\n", "\n", "# Run!\n", "dataset = measurement_control.run()\n", "dset_grid = dh.to_gridded_dataset(dataset)" ] }, { "cell_type": "code", "execution_count": 21, "id": "a951bedd", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 2kB\n",
       "Dimensions:  (x0: 6, x1: 10)\n",
       "Coordinates:\n",
       "  * x0       (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n",
       "  * x1       (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n",
       "Data variables:\n",
       "    y0       (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n",
       "    y1       (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n",
       "    y2       (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n",
       "    y3       (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n",
       "Attributes:\n",
       "    tuid:                             20250925-134425-395-81a605\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         True\n",
       "    1d_2_settables_uniformly_spaced:  False\n",
       "    xlen:                             6\n",
       "    ylen:                             10
" ], "text/plain": [ " Size: 2kB\n", "Dimensions: (x0: 6, x1: 10)\n", "Coordinates:\n", " * x0 (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n", " * x1 (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n", "Data variables:\n", " y0 (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n", " y1 (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n", " y2 (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n", " y3 (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n", "Attributes:\n", " tuid: 20250925-134425-395-81a605\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: True\n", " 1d_2_settables_uniformly_spaced: False\n", " xlen: 6\n", " ylen: 10" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dset_grid" ] }, { "cell_type": "markdown", "id": "225f955e", "metadata": {}, "source": [ "The shape of the dataset is no different from the previous (non-batched) experiment, but the metadata is a little different. Some coordinates and data variables now have the `batched=True` attribute. We also introduced another keyword argument: the `data_labels`. These `data_labels` are picked up by the {class}`~quantify_core.measurement.control.MeasurementControl`and end up in the {class}`xarray.Dataset` as the \"long_name\" of attributes. For example, `\"y0\"`s label can be accessed through `dataset[\"y0\"].attrs[\"long_name\"]`. The various plotting features of `quantify-core` will use this name to get labels for the figure axes." ] } ], "metadata": { "file_format": "mystnb", "kernelspec": { "display_name": "python3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.23" }, "source_map": [ 6, 34, 141, 149, 166, 170, 195, 199, 247, 251, 263, 273, 299, 303, 322, 332, 356, 364, 369, 373, 375, 401, 417, 423, 430, 445, 451, 588, 594, 617, 623, 660, 662, 672, 692, 714, 718, 754, 756 ], "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "0114d124ee834900962b243dab3f2231": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "0131fb8ff2c9417c92db3411bcc5df03": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8c620e4e8dde4d85a8136e78b5760daf", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a17268a9a1504bba8ebe5a1bb000e86c", "tabbable": null, "tooltip": null, "value": 100.0 } }, "0202a5d4453744d4be2597d63baeed04": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_72b7d7a56e6749a891d6bdc974361b43", "placeholder": "​", "style": "IPY_MODEL_0114d124ee834900962b243dab3f2231", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 10" } }, "0dd348f70fed4bdc8219bfe8ed819575": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "156c9925bb104abfac9cfccd95fa577f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "19e5292280294af6a17dd7ade7ff1e22": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1bf443f0678d4969817c8e2672d89d7c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "279df64f115a46c482350b29d276bc30": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "30b02fadb14944859a72d17a07c0c22a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "3789fed179164775beb25889f0f3ec9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5c6d5bb21d6a46cd82fd26d164d6abe6", "placeholder": "​", "style": "IPY_MODEL_fa9ed96656834b85829113fb34a650ca", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "44b4b18546fd4bb9a7249d1463f0b3b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "492878088ac74fee84da825e30a7798d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "54c0342ae8c940b99be71aab253ba0bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_492878088ac74fee84da825e30a7798d", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_30b02fadb14944859a72d17a07c0c22a", "tabbable": null, "tooltip": null, "value": 100.0 } }, "5c6d5bb21d6a46cd82fd26d164d6abe6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "63187638dabd46fc84a702155eadac3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "6424e2a473cf4366be3e9d4df8437382": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6a56bb2a063348d2ac0e80be39b7dc46": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_19e5292280294af6a17dd7ade7ff1e22", "placeholder": "​", "style": "IPY_MODEL_44b4b18546fd4bb9a7249d1463f0b3b7", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:04 | time left: 00:00 ] " } }, "6b64fcc0c064463db95a9e711cbaa6f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "72b7d7a56e6749a891d6bdc974361b43": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7803afdec2a14ad0a88b49d83fc7065d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_8921bcb8c60d409d801db0cd2f91c2e5", "IPY_MODEL_54c0342ae8c940b99be71aab253ba0bc", "IPY_MODEL_0202a5d4453744d4be2597d63baeed04" ], "layout": "IPY_MODEL_1bf443f0678d4969817c8e2672d89d7c", "tabbable": null, "tooltip": null } }, "8921bcb8c60d409d801db0cd2f91c2e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6b64fcc0c064463db95a9e711cbaa6f2", "placeholder": "​", "style": "IPY_MODEL_924e8c1610164663997ca8aab1b2b656", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "8c620e4e8dde4d85a8136e78b5760daf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "924e8c1610164663997ca8aab1b2b656": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "a14cea82ec8d4ba79757b3542c3178a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_e20e880ba5d64689baa130d4ccad72c4", "IPY_MODEL_0131fb8ff2c9417c92db3411bcc5df03", "IPY_MODEL_6a56bb2a063348d2ac0e80be39b7dc46" ], "layout": "IPY_MODEL_d0ca90817b914525b727780592402042", "tabbable": null, "tooltip": null } }, "a17268a9a1504bba8ebe5a1bb000e86c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "a7821151109c4a34af57e9b2a33d59d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_baf551db4127497aba9b3cf5d4982ea9", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ea9ac257efe94a04a54369fbcc8b750c", "tabbable": null, "tooltip": null, "value": 100.0 } }, "baf551db4127497aba9b3cf5d4982ea9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c521ab0842774ac6b022652e14c40787": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0dd348f70fed4bdc8219bfe8ed819575", "placeholder": "​", "style": "IPY_MODEL_63187638dabd46fc84a702155eadac3f", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 125" } }, "d0ca90817b914525b727780592402042": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "dcde30b8f26147fca6a6759dae35c553": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_3789fed179164775beb25889f0f3ec9f", "IPY_MODEL_a7821151109c4a34af57e9b2a33d59d2", "IPY_MODEL_c521ab0842774ac6b022652e14c40787" ], "layout": "IPY_MODEL_279df64f115a46c482350b29d276bc30", "tabbable": null, "tooltip": null } }, "e20e880ba5d64689baa130d4ccad72c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6424e2a473cf4366be3e9d4df8437382", "placeholder": "​", "style": "IPY_MODEL_156c9925bb104abfac9cfccd95fa577f", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "ea9ac257efe94a04a54369fbcc8b750c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "fa9ed96656834b85829113fb34a650ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }