{ "cells": [ { "cell_type": "markdown", "id": "1ba65b1e", "metadata": {}, "source": [ "(sec-tutorial-schedulegettable)=\n", "\n", "# Tutorial: ScheduleGettable\n", "\n", "```{seealso}\n", "The complete source code of this tutorial can be found in\n", "\n", "{nb-download}`ScheduleGettable.ipynb`\n", "```\n", "\n", "This tutorial covers the {class}`~quantify_scheduler.gettables.ScheduleGettable` in-depth. If you're looking for more information on how to set up an experiment in general, please see {ref}`sec-tutorial-experiment`.\n", "\n", "The {class}`~quantify_scheduler.gettables.ScheduleGettable` forms the top-level interface to {mod}`quantify_scheduler`. Under the hood, it uses `quantify-scheduler` modules to compile {ref}`Schedules `, run them on your hardware and retrieve measurement data from the hardware. As the {class}`~quantify_scheduler.gettables.ScheduleGettable` uses functions that return {class}`~quantify_scheduler.schedules.schedule.Schedule`s, you can dynamically set function parameters during experiments.\n", "\n", "For those familiar with [quantify-core](https://quantify-os.org/docs/quantify-core), the interface of the {class}`~quantify_scheduler.gettables.ScheduleGettable` is also designed to be used as a [gettable](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#settables-and-gettables) for [MeasurementControl](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#measurement-control). This is convenient for large, possibly multi-dimensional measurement loops, as is demonstrated in {ref}`2D (and ND) measurement loops`.\n", "\n", "Two things are always required when using a {class}`~quantify_scheduler.gettables.ScheduleGettable`: a {ref}`QuantumDevice ` and a function that returns a {class}`~quantify_scheduler.schedules.schedule.Schedule`. We will set these up in a few example scenarios below and show how to use the {class}`~quantify_scheduler.gettables.ScheduleGettable`. More commonly used schedule functions are also included in `quantify-scheduler` out of the box. You can find them in {mod}`~.quantify_scheduler.schedules.spectroscopy_schedules`, {mod}`~.quantify_scheduler.schedules.timedomain_schedules` and {mod}`~.quantify_scheduler.schedules.trace_schedules`.\n", "\n", "(sec-schedulegettable-1dsweep-usage)=\n", "\n", "## 1D iterative measurement loop\n", "\n", "\n", "```{admonition} Setup and hardware configuration\n", "The device setup and hardware configuration for this tutorial can be viewed in the collapsed code cells. In places where you would communicate with actual hardware, dummy objects have been used. If you want to learn more about how to set up the {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` and hardware configuration, please see our other tutorials, in particular {ref}`sec-tutorial-experiment` and {ref}`sec-tutorial-compiling`.\n", "```" ] }, { "cell_type": "code", "execution_count": 1, "id": "d5388622", "metadata": { "mystnb": { "code_prompt_show": "Set up the quantum device, dummy hardware and hardware configuration" }, "tags": [ "hide-cell" ] }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_1984/1151456847.py:2: DeprecationWarning: This package has reached its end of life. It is no longer maintained and will not receive any further updates or support. For further developments, please refer to the new Quantify repository: https://gitlab.com/quantify-os/quantify.All existing functionalities can be accessed via the new Quantify repository.\n", " from quantify_core.data import handling as dh\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Data will be saved in:\n", "/root/quantify-data\n" ] } ], "source": [ "from qblox_instruments import Cluster, ClusterType\n", "from quantify_core.data import handling as dh\n", "\n", "from quantify_scheduler import BasicTransmonElement, InstrumentCoordinator, QuantumDevice\n", "from quantify_scheduler.qblox import ClusterComponent, start_dummy_cluster_armed_sequencers\n", "\n", "# First, don't forget to set the data directory!\n", "dh.set_datadir() # change me!\n", "\n", "# We define a single transmon qubit as an element (BasicTransmonElement) of the\n", "# QuantumDevice, and populate the parameters with some reasonable values.\n", "\n", "# Device parameters\n", "ACQ_DELAY = 100e-9\n", "FREQ_01 = 4e9\n", "READOUT_AMP = 0.1\n", "READOUT_FREQ = 4.3e9\n", "PI_PULSE_AMP = 0.15\n", "LO_FREQ_QUBIT = 3.9e9\n", "LO_FREQ_READOUT = 4.5e9\n", "\n", "single_qubit_device = QuantumDevice(\"single_qubit_device\")\n", "\n", "q0 = BasicTransmonElement(\"q0\")\n", "single_qubit_device.add_element(q0)\n", "\n", "# Assign device parameters to transmon element\n", "q0.measure.pulse_amp(READOUT_AMP)\n", "q0.clock_freqs.readout(READOUT_FREQ)\n", "q0.clock_freqs.f01(FREQ_01)\n", "q0.measure.acq_delay(ACQ_DELAY)\n", "q0.rxy.amp180(PI_PULSE_AMP)\n", "\n", "# For this example, we will set up a Qblox cluster hardware setup with two modules: a\n", "# QRM-RF and a QCM-RF.\n", "\n", "# Note: if you are connecting to an actual cluster, you would provide the\n", "# 'identifier' argument (the ip address, device name or serial number) instead\n", "# of the 'dummy_cfg' argument.\n", "cluster = Cluster(\n", " \"cluster\",\n", " dummy_cfg={\n", " 1: ClusterType.CLUSTER_QRM_RF,\n", " 2: ClusterType.CLUSTER_QCM_RF,\n", " },\n", ")\n", "\n", "ic_cluster = ClusterComponent(cluster)\n", "\n", "# Temporarily fixing dummy cluster's deficiency.\n", "cluster.start_sequencer = lambda : start_dummy_cluster_armed_sequencers(ic_cluster)\n", "\n", "# We create an InstrumentCoordinator to control the cluster and add it to the\n", "# QuantumDevice.\n", "\n", "instrument_coordinator = InstrumentCoordinator(\"instrument_coordinator\")\n", "instrument_coordinator.add_component(ic_cluster)\n", "\n", "single_qubit_device.instr_instrument_coordinator(instrument_coordinator.name)\n", "\n", "# A basic hardware configuration will be used for the two cluster modules.\n", "\n", "hardware_cfg = {\n", " \"version\": \"0.2\",\n", " \"config_type\": \"quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig\",\n", " \"hardware_description\": {\n", " f\"{cluster.name}\": {\n", " \"instrument_type\": \"Cluster\",\n", " \"modules\": {\n", " \"1\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"2\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " }\n", " },\n", " \"ref\": \"internal\"\n", " }\n", " },\n", " \"hardware_options\": {\n", " \"modulation_frequencies\": {\n", " \"q0:res-q0.ro\": {\n", " \"lo_freq\": LO_FREQ_READOUT\n", " },\n", " \"q0:mw-q0.01\": {\n", " \"lo_freq\": LO_FREQ_QUBIT\n", " }\n", " }\n", " },\n", " \"connectivity\": {\n", " \"graph\": [\n", " [f\"{cluster.name}.module1.complex_output_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module1.complex_input_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module2.complex_output_0\", \"q0:mw\"]\n", " ]\n", " }\n", "}\n", "\n", "\n", "# This hardware configuration should also be added to the quantum device.\n", "single_qubit_device.hardware_config(hardware_cfg)" ] }, { "cell_type": "markdown", "id": "a0f665c1", "metadata": {}, "source": [ "For this experiment, we have set up a basic {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` called `single_qubit_device`, representing a single transmon qubit.\n", "\n", "We'll now define the schedule function. A valid schedule function must contain a `repetitions` (integer) parameter (see {ref}`Repetitions`), and can contain any number of additional parameters. It must return a {class}`~quantify_scheduler.schedules.schedule.Schedule` object.\n", "\n", "The schedule function can be parameterized to loop over different values. The parameters can be scalars or arrays. For example, the schedule function defined below takes an array of values for the parameter `times`. This is called a _batched_ measurement, as will be explained further in this tutorial." ] }, { "cell_type": "code", "execution_count": 2, "id": "d97266de", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import Schedule\n", "from quantify_scheduler.operations import Measure, Reset, X\n", "\n", "def t1_sched(times, repetitions=1):\n", " schedule = Schedule(\"T1\", repetitions)\n", " for i, tau in enumerate(times):\n", " schedule.add(Reset(\"q0\"), label=f\"Reset {i}\")\n", " schedule.add(X(\"q0\"), label=f\"pi {i}\")\n", " # Measure tau seconds after the start of the X gate\n", " schedule.add(\n", " Measure(\"q0\"),\n", " ref_pt=\"start\",\n", " rel_time=tau,\n", " label=f\"Measurement {i}\",\n", " )\n", " return schedule" ] }, { "cell_type": "markdown", "id": "057cd2bd", "metadata": {}, "source": [ "Now, let's create the {class}`~quantify_scheduler.gettables.ScheduleGettable`. The {class}`~quantify_scheduler.gettables.ScheduleGettable` provides a convenient way to compile and execute schedules in just a few lines of code. The parameters can be set directly, with arrays and scalars, or through QCoDeS parameters, as shown below." ] }, { "cell_type": "code", "execution_count": 3, "id": "18093bd3", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "from qcodes.instrument.parameter import ManualParameter\n", "\n", "from quantify_scheduler import ScheduleGettable\n", "\n", "# The points we want to measure.\n", "times = np.linspace(start=1.6e-7, stop=4.976e-5, num=125)\n", "\n", "# As QCoDeS parameter:\n", "time = ManualParameter(\"sample\", label=\"Sample time\", unit=\"s\")\n", "# Set the parameter. This can be done even after defining the gettable!\n", "time(times)\n", "\n", "# Or as array:\n", "time = times\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=t1_sched,\n", " schedule_kwargs={\"times\": time},\n", " batched=True\n", ")" ] }, { "cell_type": "markdown", "id": "4d954fae", "metadata": {}, "source": [ "Note that `batched=True` here. This means we are doing a _batched_ measurement, which simply means that we tell the {class}`~quantify_scheduler.gettables.ScheduleGettable` to expect an array of values in the acquisition result. In this case, our schedule function creates one schedule for an array of times, and it includes an acquisition (the {class}`~quantify_scheduler.operations.gate_library.Measure` operation) for each point." ] }, { "cell_type": "code", "execution_count": 4, "id": "3fbb2606", "metadata": { "mystnb": { "code_prompt_show": "Provide the dummy hardware with acquisition data" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "import xarray\n", "\n", "from quantify_scheduler.waveforms import soft_square\n", "\n", "from qblox_instruments import DummyScopeAcquisitionData, DummyBinnedAcquisitionData\n", "\n", "\n", "soft_sq_samples = round(q0.measure.integration_time() * 1e9)\n", "soft_sq_times = np.arange(soft_sq_samples)\n", "soft_sq = soft_square(t=soft_sq_times, amp=0.5)\n", "scope_data_real = np.zeros(16384) # Scope trace acquires 16384 points\n", "scope_data_real[:soft_sq_samples] = soft_sq\n", "scope_data_real += np.random.randn(16384) / 500 # add some \"noise\"\n", "\n", "# Create dummy scope data with the soft square pulse on the I path and noise on\n", "# the Q path\n", "scope_data = list(zip(scope_data_real, np.random.randn(16384) / 500))\n", "\n", "dummy_scope_acquisition_data = DummyScopeAcquisitionData(\n", " data=scope_data, out_of_range=(False, False), avg_cnt=(0, 0)\n", " )\n", "\n", "ic_cluster.instrument.set_dummy_scope_acquisition_data(\n", " slot_idx=1, sequencer=None, data=dummy_scope_acquisition_data\n", ")\n", "\n", "\n", "# Dataset with T1 experiment data\n", "example_dataset = xarray.open_dataset(\"../examples/dataset.hdf5\")\n", "\n", "def get_dummy_binned_acquisition_data(real: float, imag: float):\n", " return DummyBinnedAcquisitionData(data=(real, imag), thres=0, avg_cnt=0)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1,\n", " sequencer=0,\n", " acq_index_name=\"0\",\n", " data=[\n", " get_dummy_binned_acquisition_data(float(re) * 1024, float(im) * 1024)\n", " for re, im in zip(example_dataset[\"y0\"], example_dataset[\"y1\"])\n", " ],\n", ")" ] }, { "cell_type": "markdown", "id": "d0472a1a", "metadata": {}, "source": [ "Let's now run the experiment and retrieve the acquisitions using the {meth}`~quantify_scheduler.gettables.ScheduleGettable.get` method." ] }, { "cell_type": "code", "execution_count": 5, "id": "075ba177", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUP0lEQVR4nO3deVhU9eIG8HcGEWUbZAdFEXdzww0x1yTXuGlqaiZqtvy6apFLYddcyjIrS23Rsky9N9My5XqtKFPLNFNESS33NIxFRGKQRSA4vz/GGWeGMzNnYPZ5P88zj86Zs3znUJ6X7yoTBEEAERERkRuS27sARERERPbCIERERERui0GIiIiI3BaDEBEREbktBiEiIiJyWwxCRERE5LYYhIiIiMhtNbB3ARxdTU0NcnJy4OfnB5lMZu/iEBERkQSCIODmzZuIjIyEXG643odByIScnBxERUXZuxhERERUB1evXkWzZs0Mfs4gZIKfnx8A1Y309/e3c2mIiIhIiuLiYkRFRWme44YwCJmgbg7z9/dnECIiInIyprq1sLM0ERERuS0GISIiInJbDEJERETkthiEiIiIyG0xCBEREZHbYhAiIiIit8UgRERERG6LQYiIiIjcFoMQERERuS0GISIiInJbDEJERETkthiEiIiIyD6U2cDlA6o/7YSLrhIREZHtHd8M/O9pQKgBZHIgcTXQPcnmxWCNkL04QAomIiKyC2X2nRAEqP78X7JdnomsEbIHB0nBREREdlF46U4IUhOqgcLfAUVTmxaFNUK25kApmIiIyC4CW6kqArTJPIDAGJsXhUHI1oylYCIiInegaKpqDZF5qN7LPIDEVTavDQLYNGZ76hSsHYbslIKJiIjspnsS0GqIqiIgMMYuIQhgjZDtOVAKJiIisitFU6Blf7s+A1kjZA8OkoKJiIjcHYOQvSiaMgARERHZGZvGiIiIyG0xCBEREZHbYhByFJxpmoiIyObYR8gRcKZpIiIiu2CNkL1xpmkiIiK7cbog9O677yI6OhqNGjVCXFwcjh49anDf9evXo3///mjSpAmaNGmChIQEo/vbhaGZpq8eZVMZERGRlTlVENq2bRvmzJmDxYsX4/jx4+jatSuGDRuG/Px80f2///57TJo0Cfv378fhw4cRFRWFoUOHIjvbgcKF2HorkAFfPAJsSgRWdVI1nREREZHFyQRBEOxdCKni4uLQq1cvvPPOOwCAmpoaREVFYfbs2UhJSTF5fHV1NZo0aYJ33nkHSUnS+uAUFxdDoVBAqVTC39+/XuU36PhmVXOYUA1VNhVuv26TeQDJpzjvEBERkURSn99OUyNUWVmJjIwMJCQkaLbJ5XIkJCTg8OHDks5RVlaGqqoqBAYGGtynoqICxcXFOi+r656kCjpTdwPjPoJOCAJUAenXVDaTERERWZjTBKGCggJUV1cjLCxMZ3tYWBjy8vIkneO5555DZGSkTpjSt3z5cigUCs0rKiqqXuWWTL3eSlScSFMZgG+fZzMZERGRhTlNEKqvV199FVu3bsXOnTvRqFEjg/stWLAASqVS87p69aoNS4nai7Jq44gyIiIii3KaeYSCg4Ph4eGBa9eu6Wy/du0awsPDjR77xhtv4NVXX8V3332HLl26GN3Xy8sLXl5e9S5vvagXZf01VVUTpE2oVi3Wyv5CRERE9eY0NUINGzZEjx49sHfvXs22mpoa7N27F/Hx8QaPe+211/DSSy8hLS0NPXv2tEVRLUPRFLhrdO1mMpmHasV6IiIiqjenCUIAMGfOHKxfvx6bNm3CmTNn8OSTT6K0tBTTp08HACQlJWHBggWa/VesWIEXXngBGzZsQHR0NPLy8pCXl4eSkhJ7fQXz6DeTyTyAxFWsDSIiIrIQp2kaA4AJEybg+vXrWLRoEfLy8tCtWzekpaVpOlBnZWVBLr+T7dauXYvKykqMGzdO5zyLFy/GkiVLbFn0ulM3kxX+rqoJYggiIiKyGKeaR8gebDKPEBEREVmUy80jRERERGRpDELOSJnNdciIiIgswKn6CBFuL8dxe7V6mVzVmbq7tOVCiIiISBdrhJyJMvtOCAI4wSIREVE9sUbImRReuhOC1IRq4OpRoDBItZI9R5URERFJxiDkTAJbqZrDdMKQDPjiETaVERER1QGbxpxJrXXIbv/42FRGRERUJ6wRcjbaEyyWXge2T9f9nGuRERERScYg5IwUTVUvZXbtpjKuRUZERCQZm8acGdciIyIiqhfWCDk7rkVGRERUZwxCrkDdVEZERERmYdOYq+HyG0RERJKxRsiVcPkNIiIiszAIuQpDy2+E3gVUlXLWaSIiIhEMQq7C0PIbHw0BBIE1RERERCLYR8hVqJff0CcIt//krNNERET6GIRchaHlN7SpZ50mIiIiAGwacy3acwp5egMfJdSeddrTWzWqjH2GiIiIGIRcjvacQomrVc1hQrUqBHWZcCccsc8QERERg5BLM1ZDJNQAu54GGvoCUXGsHSIiIrfEPkKuTtEUaNlfNYRef1QZalSr16/qpJqDiIiIyM0wCLkLQ6PKAI4oIyIit8Ug5C5qjSrTwxFlRETkhhiE3En3JCD5FDBuY+3aIZmHavV6IiIiN8Ig5G4UTYFOY3Rrh2QeQOIq1d+5YCsREbkRjhpzV9ojygJjgEt7VZ2mObSeiIjcCGuE3Jl6RBkgvmAra4aIiMjFMQiR4QVb2XmaiIhcHIMQGRhaLwdKr7NWiIiIXBqDEIkMrZcBEHQnW1RmsyM1ERG5HJkgCIK9C+HIiouLoVAooFQq4e/vb+/iWJcyG7h6FPjiEb2mMhkgk7EjNREROQ2pz2/WCNEdiqaAT5DIUhwCO1ITEZFLYhAiXcaW4lBjR2oiInIRDEKkq1Z/ITlUfYa0cBZqIiJyEZxQkWoTm2zxf8mqmiD1LNSKpvYuJRERUb05XY3Qu+++i+joaDRq1AhxcXE4evSo0f0///xztG/fHo0aNULnzp3x1Vdf2aikTk492aKi6Z01yqbuVv3JjtJEROQinCoIbdu2DXPmzMHixYtx/PhxdO3aFcOGDUN+fr7o/j/99BMmTZqEGTNm4MSJExg9ejRGjx6N06dP27jkLkA7GBEREbkIpxo+HxcXh169euGdd94BANTU1CAqKgqzZ89GSkpKrf0nTJiA0tJS7N69W7OtT58+6NatG9atWyfpmm41fJ6IiMhFuNzw+crKSmRkZCAhIUGzTS6XIyEhAYcPHxY95vDhwzr7A8CwYcMM7g8AFRUVKC4u1nmRCE6wSERELsBpglBBQQGqq6sRFhamsz0sLAx5eXmix+Tl5Zm1PwAsX74cCoVC84qKiqp/4V3N8c2qGac3Jd6ZeZqIiMgJOU0QspUFCxZAqVRqXlevXrV3kRyLMtv0SvWsLSIiIifhNMPng4OD4eHhgWvXrulsv3btGsLDw0WPCQ8PN2t/APDy8oKXl1f9C+yqjK1Ur2iqqh1SByUux0FERA7OaWqEGjZsiB49emDv3r2abTU1Ndi7dy/i4+NFj4mPj9fZHwD27NljcH+SwNhK9X9mmK4tIiIiciBOUyMEAHPmzMHUqVPRs2dP9O7dG6tWrUJpaSmmT58OAEhKSkLTpk2xfPlyAMDTTz+NgQMHYuXKlRg1ahS2bt2KY8eO4YMPPrDn13Bu6pmn1RMsaq9Ur/67Nu3aIiIiIgfjVEFowoQJuH79OhYtWoS8vDx069YNaWlpmg7RWVlZkMvv1Fb07dsXW7ZswcKFC/H888+jTZs2SE1NRadOnez1FVyDeubpWivVi8zEwOU4iIjIgTnVPEL2wHmEjLh8QDVyTJ9MfruP0O3lOFoNUfUtCmzFmiEiIrIJqc9vp6oRIgej7i+k3Xla5gHM2ANUld1Zp2xVJ3aeJiIih+Q0naXJAemvVK+uAWrWQ7UcB8DO00RE5NBYI0T1o79SvXbTl6Gh9r+mAneNZjMZERHZHWuEqP4MLcgqOtQewLfPc0ZqIiJyCAxCZD36TWfa2ExGREQOgEGIrKt7EpB8Chj6Su3PhGrVEHxDy3FwqQ4iIrIy9hEi61M0VfUJ2rNQr8+Q7M48RPojyrhUBxER2QBrhMg2ajWT3f5PT2xEmZSFXYmIiCyANUJkO9ojzEqv316WQ4t6OQ4I4qPNrh4FCoNUnbABTtJIRET1xiBEtqVoqnops8UnY/T0Bor+qP2ZdjMaZLe3CXeazTh7NRER1QGDENmH/uKtMg+gywTgo4Q7YUcmAwQBqmY0QXxNM6EG2PXU7X3Zn4iIiMzDIET2o91U5umtFYIAVfCRA+M+xp3V7Q0Rbgcm3OlP1GoIa4aIiMgkBiGyL3VT2eUDtfsFoQbwCVbNWF2rqcwI/f5EDERERGQAR42RYxCbhVrmcWfZDp0RZ7ebzQCo/hOWQe9AVX+iTYmcwZqIiIxijRA5BrE+Q4mr7tTm6K9pBtz5+6W9d47T70/EpjIiIjJCJgiCYHo391VcXAyFQgGlUgl/f397F8f1KbPFF3CVepzYsHwAmLpbtR4aERG5BanPb9YIkWNR9xmq63GGhuWra5GIiIi0sI8QuRb9/kT6TWxERERaWCNErke/P5GpEKTM5mSMRERuikGIXJN2E5uxoMPFXYmI3BqDELk2saCjXo7D00d8cVftEWasLSIicmkMQuS6xFax116OAzLoLNcBqIbg/5oK3DX69rB8AyGKwYiIyCVw+LwJHD7vxC4fUE2qWCdaC7tqb+OaZkREToHD54nUs1WbWppDdB+x3w/01jTb9TTQ0BeIirszdF9dWwSw5oiIyAkwCJHr0p+tWj3rtHbIkXkAM/YAWT8D3z5v5gVqVJM3yuRAl4nAya1aTW5QXcdQkxr7HhEROQQ2jZnApjEXoD1btfZyHOo5hronqfZZ1UmvZkirKUwsREmm16SmHZrYxEZEZBVSn98MQiYwCLkgQ8t4HN9cOyRpz0eks6aZBck8gORTrBkiIrIgBiELYRByM6bWOlNmA1ePqla3N9X3yBxcC42IyKKkPr+5xAaRNkVTVSAxVDujaAp0GlN7GY+uD915r24KA6D6X0wmciItXAuNiMhu2FmaqC7ElvG4Z+Gd94DhfkldJgAnt+k2wWkHL3akJiKyGTaNmcCmMbII/SY37ffAneAjNomjsY7UDE1ERKI4jxCRI9Fe+0z7vfYSIPqTOKqX/Ai9C6gqrR12uE4aEVG9sUbIBNYIkdWIDtkXIZOpJnLUDjtix+qPPmNtERG5MdYIETm6wkvSRp6JzWatfq+zX7WquU2/pqkuTWwMUUTkJhiEiOxFdAkQ/Ukc9YPS7dmsIUOtRWPVo8/EFps1p4mNEz4SkRthECKyF/0lQPQncfT0Bj5KMFBrJEAVmm4HKfWxAPDrTvHaoo+G3GliS1gCRMYCnj61Q9MvW7SOux2iWg0xXDPE2iMicmJOE4QKCwsxe/Zs/O9//4NcLsfYsWOxevVq+Pr6Gtx/8eLF+Pbbb5GVlYWQkBCMHj0aL730EhQKhY1LT2SA2DB84M6fOmul6ROAsR8DPsF3hukb63Ok3cS2Z9HtjXq1SqLHaTW56WOHbSJyck4zoeLkyZPx66+/Ys+ePdi9ezcOHDiAxx9/3OD+OTk5yMnJwRtvvIHTp09j48aNSEtLw4wZM2xYaiIJjE3i2D1J1QF63EZV0NAm8wCiet+ZkVq7ZkeHsf/NpYyVkAOl11U1P4Dqz8sHgD8zxJvg1PsRETkBpxg1dubMGXTs2BHp6eno2bMnACAtLQ0jR47En3/+icjISEnn+fzzz/Hwww+jtLQUDRqIV4ZVVFSgoqJC8764uBhRUVEcNUb2J7YWmrr25fIBYFNi7WOGvQJE9THSxHabdhOb9oSP2kP69fsPGapNssZyIfVpfmPTHZFbcqlRY4cPH0ZAQIAmBAFAQkIC5HI5jhw5gjFjxkg6j/pmGApBALB8+XIsXbq03mUmsjhDzWiAeMdrmQfQcXTtvkj6ZB7AjD1AVZnuLNn6a6rp9x8SrU3Sqj0ytFabOpQA0gJKfZrf2HRHRCY4RRDKy8tDaGiozrYGDRogMDAQeXl5ks5RUFCAl156yWhzGgAsWLAAc+bM0bxX1wgROQT9iRm1t4t1vFbvqx2ick4A3y3R3a9Zj9rnKwySNrxfE8Bu1xBtn34ndLQaIj5rtn5Nk6GAYmgEnLHO25Y4lojchl2DUEpKClasWGF0nzNnztT7OsXFxRg1ahQ6duyIJUuWGN3Xy8sLXl5e9b4mkc0ZqzEC7oSolv2BTmMN76cmOrxfj7o2qSirdu3Rrqe0pgLQmzVbuzbJ2PB+sbmWjHXe1lafY8WwiY3IJdk1CM2dOxfTpk0zuk9MTAzCw8ORn5+vs/3vv/9GYWEhwsPDjR5/8+ZNDB8+HH5+fti5cyc8PT3rW2wix2Woxqgu+4nVMoktGNushyrA1ApMwp2RalJGphka3i/W5Kdeo80YQ82Fxo411HTHNeCIXJZdg1BISAhCQkJM7hcfH4+ioiJkZGSgRw9VFf6+fftQU1ODuLg4g8cVFxdj2LBh8PLywq5du9CoUSOLlZ3ILYjVMt2zsHZtkpTaI1PEhvdrOmjrhS9A1UFcrK+Rdggx1lyoz+C6byJrwKln+I6Kq30+V+6XZCrg1aUPmC3LR8a56QzzTjFqDABGjBiBa9euYd26daiqqsL06dPRs2dPbNmi6ryZnZ2NIUOGYPPmzejduzeKi4sxdOhQlJWVYefOnfDx8dGcKyQkBB4eHpKuy7XGiCTSHtUGOVTBQfufF5luU5kMt8OP2Aza2ofpdeY21tdIbFZs7SAHiP9D7+ljemSdaNn0go7o+nFyYNxH4qFJnyM8eAyVwVTAMxQkxfY153tKfThbM4Da4+di61AiZYZ57T5/ThCMpD6/nSYIFRYWYtasWToTKq5Zs0YzoeKVK1fQsmVL7N+/H4MGDcL333+PwYMHi57r8uXLiI6OlnRdBiEiMyiz74SOS3sNz5qtCSWmZtC+TT0kX+pCtWraC9Ea+4deysSSxq4xY4+qebC04PYSKGL7GXg4qx9wOZnAd4uNP3iMPQwt8ZmhJkBDi/yqv7epIGns52DsASt1+RcpixDrf1fA8L3V/sxUs6g1Akp9l70xt0yS/r/S+kXGSWo6XS4I2QuDEFE9aAcjk0Pkkw0P71c/0AzNl2TM1N2q65sToGoXQqs2S+xj2e3aLf1O4fr7aYWHWiPpjFzT1MNQ/8Gp7mNl6kFusDlQq7zJp1QPVbH7rvO9TTxKDP4cRB6wrYYAV48AX8yQ1lk/6zDw7b/Er6me08pYjVWtUKy+D0buidTFjc0NqFJCiVjIU6vLgsu/7hS/f8bol8ERajP1uNQ8QkTkpKR23jY1vL+ufZHUnaPFRpCJ7q81FYC66U67Nkt/biU1nU7hMsNl1O4Ubio0aXc2N7YGHFB7mgCdJVS0rqE9Qq/oD70QJlIOoVr1ndWBwej3NsLoz0Hve+qMNjRB534auCZQeyoF/VGLBufHMnJPrgqmFzeWGkK1A6DYWoFiZfg1FbhrdO0aL/0y6fdnM1QDaC7tEZh1CV8OFJpYI2QCa4SI7MBYTZJO7ZFeYBEb1Wao6USffl8kQLwMtfpCiZxz3EbVn2KhyZKGvgL4RxhujjNEU5Njckfz+nWZDJISanksQacp9pLxJkvzT16P2sHb/cUCWog0JZo4r+i19JoWTTXNGqz50t9X7/8lsT5/6hohQFqzpJoNBxOwacxCGISIHJB2UAJ0A4uhEKW/RImh0GTO9cX6N9VqOkk2HppEiXU2N8RUzZI5tB/GYmWQA+M2AAHNxb+3oSCp38FdJ1BJ/J6iD2eR+znsFdWM6oY61ZvN1D2pCzP6pNX63sbKZ4H/FtT3T///JbE+f92TDDdXD33lTo2VsUEJxkJTPTEIWQiDEJEL0Q9JUvswGWNsDTjta4p2CtfuH+MBJCwGIruLP3gkPwyNfWYkjOl3aC+9Ll67oO53Y+p7a39/0ZF0G1SLBmt/T2PhK6q37s/MWAgFjPdFMlaTaKg2y9g9UZdTctCVSD+U/JoKfPu8iYPqULOkOdREKKn1C4iJEZf2XJ8QDEIWwyBERCbVpVO42Eg60c60esHN0MNw3EbAJ1i8j5X6GqJhTC9oaF/bVJOHlO9tqMZA++EnpeZB6v00VkuhvkemahL1PzN2T4zVkplsRpPDYE2ToVFvUjr9S26a1QviUmtFRUe1GQrpJrBGyPExCBGRRdW3Fqq+AUVqTY65+9anvGLHSL1HYvvW5ZpSGbsnhoKuWCd70fmxDJzX0PVNBSgpzcHGgrgYY1MpZP0socYKdwJgXf+bkohByEIYhIjI4dQ3oNQ3aNi6vI52TWP3RGofNbHySL3X5tSgWbo52FgNn5RpKvQDoBVHjTEIWQiDEBE5JEsEFFuyR3kd7R5Zqzy2/J6matssOSihnhiELIRBiIiISIvUAQKWHJRQBwxCFsIgREREpMfRattEcGZpIiIisg6ps8Y7Abm9C0BERERkLwxCRERE5LYYhIiIiMhtMQgRERGR2zKrs3RRURF27tyJH3/8EX/88QfKysoQEhKC2NhYDBs2DH379rVWOYmIiIgsTlKNUE5ODh599FFERERg2bJlKC8vR7du3TBkyBA0a9YM+/fvx7333ouOHTti27Zt1i4zERERkUVIqhGKjY3F1KlTkZGRgY4dO4ruU15ejtTUVKxatQpXr17FvHnzLFpQIiIiIkuTNKHijRs3EBQUJPmk5u7vyDihIhERkfOR+vyW1DQWFBSE3bt3o6bGyEJqevsTEREROTrJo8ZGjx6NqKgo/Otf/8LFixetWSYiIiIim5AchC5fvownnngCW7duRbt27TBw4ED8+9//Rnl5uTXLR0RERGQ1koNQVFQUFi1ahEuXLuG7775DdHQ0nnzySUREROD//u//kJ6ebs1yEhEREVlcnSZUHDx4MDZt2oTc3Fy8/vrrOHXqFPr06YOuXbtaunxEREREVlOv1ef9/PwwZMgQ/PHHHzh79ix+++03S5WLiIiIyOrqVCNUXl6OzZs3Y9CgQWjTpg22bt2KOXPm4MqVKxYuHhEREZH1mFUj9PPPP2PDhg347LPPUFlZiQceeADfffcdBg8ebK3yEREREVmN5CDUsWNHnDt3DrGxsVi+fDkeeughKBQKa5aNiIjIYqqrq1FVVWXvYpCFeHp6wsPDo97nkRyEEhIS8Omnn7JDNBERORVBEJCXl4eioiJ7F4UsLCAgAOHh4ZDJZHU+h+QgtGbNmjpfhIiIyF7UISg0NBTe3t71emiSYxAEAWVlZcjPzwcARERE1PlckoLQ8OHDsWTJEvTp08fofjdv3sR7770HX19fzJw5s86FIiIisoTq6mpNCOLyT66lcePGAID8/HyEhobWuZlMUhAaP348xo4dC4VCgcTERPTs2RORkZFo1KgR/vrrL/z22284ePAgvvrqK4waNQqvv/56nQpDRERkSeo+Qd7e3nYuCVmD+udaVVVl3SA0Y8YMPPzww/j888+xbds2fPDBB1AqlQAAmUyGjh07YtiwYUhPT0eHDh3qVBAiIiJrYXOYa7LEz1VyHyEvLy88/PDDePjhhwEASqUS5eXlCAoKgqenZ70LQkRERGRrdZpQEQAUCgXCw8MZgoiIiJzElStXIJPJkJmZae+iOIw6ByEiIiIiZ+c0QaiwsBCTJ0+Gv78/AgICMGPGDJSUlEg6VhAEjBgxAjKZDKmpqdYtKBERkRVUVlbauwguyWmC0OTJk/Hrr79iz5492L17Nw4cOIDHH39c0rGrVq1iRzkiIqqXXGU5frpUgFxluU2uN2jQIMyaNQvJyckIDg7GsGHDcPr0aYwYMQK+vr4ICwvDlClTUFBQoDkmLS0N/fr1Q0BAAIKCgnDffffh0qVLNimvs3KKIHTmzBmkpaXhww8/RFxcHPr164e3334bW7duRU5OjtFjMzMzsXLlSmzYsEHStSoqKlBcXKzzIiIi97YtPQt3v7oPD60/grtf3Ydt6Vk2ue6mTZvQsGFDHDp0CK+++iruuecexMbG4tixY0hLS8O1a9fw4IMPavYvLS3FnDlzcOzYMezduxdyuRxjxoxBTU2NTcrrjMxadFWtqKgI27dvx6VLlzB//nwEBgbi+PHjCAsLQ9OmTS1dRhw+fBgBAQHo2bOnZltCQgLkcjmOHDmCMWPGiB5XVlaGhx56CO+++y7Cw8MlXWv58uVYunSpRcpNRETOL1dZjgU7TqFGUL2vEYDnd5zGgLYhiFA0tuq127Rpg9deew0AsGzZMsTGxuKVV17RfL5hwwZERUXh/PnzaNu2LcaOHatz/IYNGxASEoLffvsNnTp1smpZnZXZNUInT55E27ZtsWLFCrzxxhuatVt27NiBBQsWWLp8AFTTo4eGhupsa9CgAQIDA5GXl2fwuGeeeQZ9+/bF/fffL/laCxYsgFKp1LyuXr1a53ITEZHzu1xQqglBatWCgCsFZVa/do8ePTR//+WXX7B//374+vpqXu3btwcATfPXhQsXMGnSJMTExMDf3x/R0dEAgKws29RgOSOza4TmzJmDadOm4bXXXoOfn59m+8iRI/HQQw+Zda6UlBSsWLHC6D5nzpwxt4gAgF27dmHfvn04ceKEWcd5eXnBy8urTtckIiLX0zLYB3IZdMKQh0yG6GDrz1bt4+Oj+XtJSQkSExNFn5vqtbYSExPRokULrF+/HpGRkaipqUGnTp3Y0doIs4NQeno63n///VrbmzZtarR2RszcuXMxbdo0o/vExMQgPDxcs7Ca2t9//43CwkKDTV779u3DpUuXEBAQoLN97Nix6N+/P77//nuzykpERO4pQtEYyx/ojOd3nEa1IMBDJsMrD3SyerOYvu7du+OLL75AdHQ0GjSo/fi+ceMGzp07h/Xr16N///4AgIMHD9q0jM7I7CDk5eUl2oH4/PnzCAkJMetcISEhko6Jj49HUVERMjIyNNWE+/btQ01NDeLi4kSPSUlJwaOPPqqzrXPnznjrrbeQmJhoVjmJiMi9TejVHAPahuBKQRmig71tHoIAYObMmVi/fj0mTZqEZ599FoGBgbh48SK2bt2KDz/8EE2aNEFQUBA++OADREREICsrCykpKTYvp7Mxu4/QP/7xD7z44ouahexkMhmysrLw3HPP1eqkZSkdOnTA8OHD8dhjj+Ho0aM4dOgQZs2ahYkTJyIyMhIAkJ2djfbt2+Po0aMAgPDwcHTq1EnnBQDNmzdHy5YtrVJOIiJyXRGKxohvFWSXEAQAkZGROHToEKqrqzF06FB07twZycnJCAgIgFwuh1wux9atW5GRkYFOnTrhmWee4SLoEphdI7Ry5UqMGzcOoaGhKC8vx8CBA5GXl4f4+Hi8/PLL1igjAOCTTz7BrFmzMGTIEMjlcowdOxZr1qzRfF5VVYVz586hrMz6ndeIiIisTawLR5s2bbBjxw6DxyQkJOC3337T2SYIdzo3RUdH67ynOgQhhUKBPXv24ODBgzh58iRKSkrQvXt3JCQkWKN8GoGBgdiyZYvBz6X8cPnDJyIiIm11mkcIAPr164d+/fpZsixERERENmV2ENJujtImk8nQqFEjtG7dGgMGDICHh0e9C0dERERkTWYHobfeegvXr19HWVkZmjRpAgD466+/4O3tDV9fX+Tn5yMmJgb79+9HVFSUxQtMREREZClmjxp75ZVX0KtXL1y4cAE3btzAjRs3cP78ecTFxWH16tXIyspCeHg4nnnmGWuUl4iIiMhizK4RWrhwIb744gu0atVKs61169Z44403MHbsWPz+++947bXXrDaUnoiIiMhSzK4Rys3Nxd9//11r+99//62ZWToyMhI3b96sf+mIiIiIrMjsIDR48GA88cQTOmt4nThxAk8++STuueceAMCpU6c4aSERERE5PLOD0EcffYTAwED06NFDs0Bpz549ERgYiI8++ggA4Ovri5UrV1q8sERERESWZHYfofDwcOzZswdnz57F+fPnAQDt2rVDu3btNPsMHjzYciUkIiJyQ4MGDUK3bt2watUqu5YjOjoaycnJSE5Otms5rKXOEyq2b98e7du3t2RZiIiI6LYdO3bA09PT3sVAeno6fHx87F0Mq6lTEPrzzz+xa9cuZGVlobKyUuezN9980yIFIyIicmeBgYH2LgIAICQkxOrXqKysRMOGDa1+HTFm9xHau3cv2rVrh7Vr12LlypXYv38/Pv74Y2zYsAGZmZlWKCIREZEDUGYDlw+o/rSBQYMGaZqjoqOjsWzZMiQlJcHX1xctWrTArl27cP36ddx///3w9fVFly5dcOzYMc3xN27cwKRJk9C0aVN4e3ujc+fO+PTTT3WucfPmTUyePBk+Pj6IiIjAW2+9pXNd9bW1m+dkMhk+/PBDjBkzBt7e3mjTpg127dql+by6uhozZsxAy5Yt0bhxY7Rr1w6rV6/Wue60adMwevRovPzyy4iMjES7du3w4osvolOnTrXuQ7du3fDCCy/U404aZ3YQWrBgAebNm4dTp06hUaNG+OKLL3D16lUMHDgQ48ePt0YZiYiI7Ov4ZmBVJ2BTourP45ttXoS33noLd999N06cOIFRo0ZhypQpSEpKwsMPP4zjx4+jVatWSEpK0iwwfuvWLfTo0QNffvklTp8+jccffxxTpkzB0aNHNeecM2cODh06hF27dmHPnj348ccfcfz4cZNlWbp0KR588EGcPHkSI0eOxOTJk1FYWAgAqKmpQbNmzfD555/jt99+w6JFi/D888/js88+0znH3r17ce7cOezZswe7d+/GI488gjNnziA9PV2zz4kTJ3Dy5ElMnz7dErdQnGAmX19f4eLFi4IgCEJAQIBw+vRpQRAEITMzU2jRooW5p3N4SqVSACAolUp7F4WIiMxUXl4u/Pbbb0J5eXndT1L0pyAsCRCExf53XkuaqLZb0cCBA4Wnn35aEARBaNGihfDwww9rPsvNzRUACC+88IJm2+HDhwUAQm5ursFzjho1Spg7d64gCIJQXFwseHp6Cp9//rnm86KiIsHb21tzXfW133rrLc17AMLChQs170tKSgQAwtdff23wujNnzhTGjh2reT916lQhLCxMqKio0NlvxIgRwpNPPql5P3v2bGHQoEEGz2vs5yv1+W12jZCPj4+mX1BERAQuXbqk+aygoMAS2YyIiMhxFF4ChBrdbUI1UPi7TYvRpUsXzd/DwsIAAJ07d661LT8/H4Cqieqll15C586dERgYCF9fX3zzzTfIysoCAPz++++oqqpC7969NedQKBQ6o8CllMXHxwf+/v6a6wLAu+++ix49eiAkJAS+vr744IMPNNdV69y5c61+QY899hg+/fRT3Lp1C5WVldiyZQseeeQRk+WpD7M7S/fp0wcHDx5Ehw4dMHLkSMydOxenTp3Cjh070KdPH2uUkYiIyH4CWwEyuW4YknkAgTE2LYb2CDKZTGZwW02Nqpyvv/46Vq9ejVWrVqFz587w8fFBcnJyrUFO9S2L+trq627duhXz5s3DypUrER8fDz8/P7z++us4cuSIzjFiI9ESExPh5eWFnTt3omHDhqiqqsK4cePqXV5jzA5Cb775JkpKSgCo2ghLSkqwbds2tGnThiPGiIjI9SiaAomrgf8lq2qCZB5A4irVdgd26NAh3H///Xj44YcBqALS+fPn0bFjRwBATEwMPD09kZ6ejubNmwMAlEolzp8/jwEDBtTrun379sU///lPzTbt1iNjGjRogKlTp+Ljjz9Gw4YNMXHiRDRu3LjOZZF0TXMPiIm5k4B9fHywbt06ixaIiIjI4XRPAloNUTWHBcY4fAgCgDZt2mD79u346aef0KRJE7z55pu4du2aJgj5+flh6tSpmD9/PgIDAxEaGorFixdDLpdrapfqet3Nmzfjm2++QcuWLfHvf/8b6enpkpfeevTRR9GhQwcAqlBlbWb3EYqJicGNGzdqbS8qKtIJSURERC5F0RRo2d8pQhAALFy4EN27d8ewYcMwaNAghIeHY/To0Tr7vPnmm4iPj8d9992HhIQE3H333ejQoQMaNWpU5+s+8cQTeOCBBzBhwgTExcXhxo0bOrVDprRp0wZ9+/ZF+/btERcXV+dySCW73QNcMrlcjry8PISGhupsv3btGpo3b46KigqLFtDeiouLoVAooFQq4e/vb+/iEBGRGW7duoXLly+jZcuW9Xq4u4vS0lI0bdoUK1euxIwZM+xSBkEQ0KZNG/zzn//EnDlzjO5r7Ocr9fktuWlMe7Kkb775BgqFQvO+uroae/fuRXR0tNTTERERkZ2dOHECZ8+eRe/evaFUKvHiiy8CAO6//367lOf69evYunUr8vLyrDt3kBbJQUhdnSaTyTB16lSdzzw9PREdHc0V54mIiJzMG2+8gXPnzqFhw4bo0aMHfvzxRwQHB9ulLKGhoQgODsYHH3yAJk2a2OSakoOQelhcy5YtkZ6ebrebRERERJYRGxuLjIwMexdDw8zeOhZh9qixy5cvW6McRERERDYnKQitWbNG8gmfeuqpOheGiIjIGuxR00DWZ4mfq6Qg9NZbb0k6mUwmYxAiIiKHoZ4BuayszOoT85HtlZWVAag907U5JAUhNocREZEz8vDwQEBAgGYdLG9v73pNFkiOQRAElJWVIT8/HwEBAfDw8KjzuczuI6RfEAD8j4qIiBxWeHg4AOgsCkquISAgQPPzras6BaHNmzfj9ddfx4ULFwAAbdu2xfz58zFlypR6FYaIiMjSZDIZIiIiEBoaiqqqKnsXhyzE09OzXjVBanVadPWFF17ArFmzcPfddwMADh48iP/7v/9DQUEBnnnmmXoXioiIyNI8PDws8uAk12L2EhstW7bE0qVLkZSUpLN906ZNWLJkicv1J+ISG0RERM5H6vPb7EVXc3Nz0bdv31rb+/bti9zcXHNPR0RERGQ3Zgeh1q1b47PPPqu1fdu2bWjTpo1FCkVERERkC2b3EVq6dCkmTJiAAwcOaPoIHTp0CHv37hUNSERERESOSnKN0OnTpwEAY8eOxZEjRxAcHIzU1FSkpqYiODgYR48exZgxY6xWUCIiIiJLk9xZWi6Xo1evXnj00UcxceJE+Pn5WbtsDoGdpYmIiJyPxTtL//DDD7jrrrswd+5cREREYNq0afjxxx8tUlgpCgsLMXnyZPj7+yMgIAAzZsxASUmJyeMOHz6Me+65Bz4+PvD398eAAQNQXl5ugxITERGRo5MchPr3748NGzYgNzcXb7/9Ni5fvoyBAweibdu2WLFiBfLy8qxZTkyePBm//vor9uzZg927d+PAgQN4/PHHjR5z+PBhDB8+HEOHDsXRo0eRnp6OWbNmQS43u484ERERuSCz5xHSdvHiRXz88cf497//jby8PAwfPhy7du2yZPkAAGfOnEHHjh2Rnp6Onj17AgDS0tIwcuRI/Pnnn4iMjBQ9rk+fPrj33nvx0ksvSb5WRUUFKioqNO+Li4sRFRXFpjEiIiInYrV5hLS1bt0azz//PBYuXAg/Pz98+eWX9TmdQYcPH0ZAQIAmBAFAQkIC5HI5jhw5InpMfn4+jhw5gtDQUPTt2xdhYWEYOHAgDh48aPRay5cvh0Kh0LyioqIs+l2IiIjIcdQ5CB04cADTpk1DeHg45s+fjwceeACHDh2yZNk08vLyEBoaqrOtQYMGCAwMNNgk9/vvvwMAlixZgsceewxpaWno3r07hgwZolkjTcyCBQugVCo1r6tXr1ruixAREZFDMSsI5eTk4JVXXkHbtm0xaNAgXLx4EWvWrEFOTg7Wr1+PPn36mHXxlJQUyGQyo6+zZ8+adU61mpoaAMATTzyB6dOnIzY2Fm+99RbatWuHDRs2GDzOy8sL/v7+Oi8iIiJyTZInVBwxYgS+++47BAcHIykpCY888gjatWtXr4vPnTsX06ZNM7pPTEwMwsPDkZ+fr7P977//RmFhIcLDw0WPi4iIAAB07NhRZ3uHDh2QlZVV90ITERGRy5AchDw9PbF9+3bcd999Flu9NyQkBCEhISb3i4+PR1FRETIyMtCjRw8AwL59+1BTU4O4uDjRY6KjoxEZGYlz587pbD9//jxGjBhR/8ITERGR05MchKwxGkyqDh06YPjw4Xjsscewbt06VFVVYdasWZg4caJmxFh2djaGDBmCzZs3o3fv3pDJZJg/fz4WL16Mrl27olu3bti0aRPOnj2L7du32+27EBERkeMwe60xe/nkk08wa9YsDBkyBHK5HGPHjsWaNWs0n1dVVeHcuXMoKyvTbEtOTsatW7fwzDPPoLCwEF27dsWePXvQqlUre3wFIiIicjD1mkfIHXCJDSIiIudjk3mEiIiIiJwZgxARERG5LQYhIiIiclsMQkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBEREREbotBiIiIiNwWgxARERG5LQYhIiIiclsMQkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBEREREbotBiIiIiNwWgxARERG5LQYhIiIiB5CrLMdPlwqQqyy3d1HcSgN7F4CIiNxbrrIclwtK0TLYBxGKxrXeu4Nt6VlYsOMUagRALgOWP9AZE3o1t3ex6sTZfn4MQkREZJC1H2r6AWBMbFPsPJHt0IHAnHuivS8A0eNyleWaewAANQLw/I7TGNA2RLOfsWvW9TNrnFdKoHO0oMQgRERUT5b6h90eNSPGrmHqoVbXQKD9cNcPAF8cz9YcIxYI6vpd9D8HUKd7bc49OXD+umZf2e3PBdQ+7nJBqeYeqFULAq4UlCFC0bjWNZ8b3h6dmylqXUP/vGJlHdA2RLR8Uo41dd5jVwpFA137cD+UVlabvKa9yARBEEzv5r6Ki4uhUCigVCrh7+9v7+IQkQm2/m3T3LAg9TdpUzUjxs4LiNc86B97KluJFV+fFb1GrrIcd7+6T+cBLQew5qFY9GjRxKwHmqF79NOlAjy0/ojJe/zpY30Q3yrI7J+DoYe+fijRv9faQUP73vo09MCY936SdE+0ryHGQybDjn/Go7SyWvS8HjIZDqYMBoBaPwc1sWuoz5tVWIant2bqHCcDIJPBYPmMXdPYZ9rnFSOTAYKJa1rj/1Wpz28GIRMYhIich637WYiFBe0HnH7QEAs36t+k9R9a+qSeV6zmwVAgMHaNwtJKzNpyQrQsUh5oxsKDlIe8mnbQEAuSucpy0ftn6qEvhdi9NXSOulxDHRDU10k9kYNqQYCHTIZnh7dD52YKoz8HU+eti4WjOiBc0Uj0mu9MikVucTle/vJs3U5ugJSgWxcMQhbCIERkOVJra+rS5GLsgSuln0Vdym6oRkPqg8jUb9J1Pa+ha0h5WBv77d0U9QNNO5AaCg8LR3XAqC4ROHD+Op7fcVoTAEbHRmoCgamaG+33zk4dQssqa3Ayu0gTdOsa4upD7Jrm/rcKqEJsjYl9HKFGiH2EiMgmpNbWmFOrY+qBa6yfhX5NiTnNVuqmE5+GHpCLPBykhhXBjH3NOa+ha0g5XHtfGSD6/cR4yGSIDvau1e/H0KHLvjyDV746g+UPdMbBlMG4UlCG6GBvRCgaY96wdsi48hee2nrCaP8h7fe2JPWe1Aqh6hog1A4I1YKAssoaRAd7Y/KHP+vcP2M/B+1rGAse8tvnkhJu9K+pPlbs+mLnlQN4+6FYNGvSuNYvJ9rX9JDJ8MoDnezeYZpBiIisTsqoGHP30++YKfZcMvRwrhGAlC9O3XmAGOkn4tPQo9axy79WNQ3oN2lI+Q1YCv2aEUud1xixawgA3p4YCwA6oQQQf6ABwO6TOeIPTJEHrvrnezBlsE7TSISiMQJ9a3cgNue7GHvoa4cS/Xttirrm5mphuaR7MqBtiCbkAcCVgjJ4N5SL1l5GB3uLdpxW/xyCfL1wMrsIr319TlODpn0NsfOqQ0n3232YtGvf1Md+eTIXy748Y/CaN0orRJvKXhjVASNFavVeeaATRnWJBKD6hUPsmtrB194YhIjIYgzVqBgaFfPlyVyM6hKh2dfU6BlAt3ZGjFzkt82fLhWIPlwErXCjX9ugDjvG+oXUCEDqiRxNk4bYg0hNLNwY+k26++3+MPOGtTP4gDN0Xv2aB2OBQN0XpUuzAIMP5x7RqrKUVv5t9IF24Px1g/191OEh/cpftR64+j9ftZbBPpJrXsTun6GHvn4o0a6FulJQVitoaN9b9Xm6RjVB16gmJu+J+jtpfzf138UCgvoz/e+t/XOIbxWEf3SNNHgNsfOqQ8mEXs1FyzeqSwRe+eqMwWvmKstFyzTy9v+7hs5r7JqOEIDU2EfIBPYRIpLGWJOWWKdiNVOdhk2NrtGm3c9C/Y+uoc60lqTd2XNbepbOg0gdNLTLox0e9B9axpoBpZ4XgNFrGHpo6V9Dvzza19CvoTMWgtTnMdS53FAfEf3y6IcSsZAipbym6B9n7Dx1vYaxY039HOp6XmNMXbO+ZbIHdpa2EAYhckfmzLdiKGjoP+C0/yHVZ6rZQsqoHUP/eOsMZzZSU2KKodoJsQe5OQ8ia+1ry2sY6jSubjqpz0PeVCipTxBxZPb4Xqau6Wz3mkHIQhiEyN3UCg+o+6iddybFItC3oU5oEuuPoM9YZ0tD+6qbk9QMzYNjqOnEWD8R/RE9+n00HP03Y2szt6bH2R6o5Jw4aoyIdEiZLl+/Y7B2JDB31I4MdzrYajeVifVH0FcDINDHC6WV1UY73ur3gdAm1t9IfV5D/RoM9RNR9wsBYLCPhjuLUDQ22udFbH/eN3IUDEJEbkDqFP3Gmp7MoT/cVn/0l/ZDU6yZSj2CBhDvOKrfD0iMWGdb7fMCtR/I6vemwg4f5LUZ6zBL5MgYhIiciKnlGqSu56Q9Igq4E0LqG4LUTU8CUGu4rfboIP2HpliHXmOjYNS1M8aYW0shdjwf5ubhPSNnxCBEZGd1XezRWH8d7aYosSYiNUPBR26k47KpUTujukQaHG5rqDamLsNvpWAtBRGZws7SJrCzNFmTlFmU6zr8W71GU5SEDsfa9JueANRp1I4zDrclItfhcqPGCgsLMXv2bPzvf/+DXC7H2LFjsXr1avj6+ho8Ji8vD/Pnz8eePXtw8+ZNtGvXDv/6178wduxYyddlECJLMNRkZWqkjanJA6XQn/1Yn9hsuJYKLBwdRET24nKjxiZPnozc3Fzs2bMHVVVVmD59Oh5//HFs2bLF4DFJSUkoKirCrl27EBwcjC1btuDBBx/EsWPHEBsba8PSkzszVOtjaBbljCt/IdC39giuutKf/djYFP2WDizsM0JEjs4paoTOnDmDjh07Ij09HT179gQApKWlYeTIkfjzzz8RGVl76CwA+Pr6Yu3atZgyZYpmW1BQEFasWIFHH31U9JiKigpUVFRo3hcXFyMqKoo1QlQnhmp9dvwzHlmFZbWau/QnFjQ2eaCx/jpitGc/Zk0NEbk6l6oROnz4MAICAjQhCAASEhIgl8tx5MgRjBkzRvS4vn37Ytu2bRg1ahQCAgLw2Wef4datWxg0aJDBay1fvhxLly619FcgNyDW/GWo1mf0ez9BEO4EH+3Zjo0tImpoLSpjq3YDpoeNExG5K6cIQnl5eQgNDdXZ1qBBAwQGBiIvL8/gcZ999hkmTJiAoKAgNGjQAN7e3ti5cydat25t8JgFCxZgzpw5mvfqGiEiYww1fxlaOFLQCjtyAXjHwJBzwPjkgWLz4NzXVXyBTAYfIqLa7BqEUlJSsGLFCqP7nDljfCp+Y1544QUUFRXhu+++Q3BwMFJTU/Hggw/ixx9/ROfOnUWP8fLygpeXV52vSe7D0GzMNQKw4ItT8PFqgB4tmtSaPLBG7zzq2Y6jg73rPHmgPg4bJyKSxq59hK5fv44bN24Y3ScmJgb/+c9/MHfuXPz111+a7X///TcaNWqEzz//XLRp7NKlS2jdujVOnz6Nu+66S7M9ISEBrVu3xrp16ySVkaPG3Etd5vQx1pdHe2X1KwVl8G4orzWUXXukGIecExFZhlP0EQoJCUFISIjJ/eLj41FUVISMjAz06NEDALBv3z7U1NQgLi5O9JiysjIAgFwu19nu4eGBmhr938nJnanDz6lsJVZ8fVbSnD6G1uPSp15a4mDKYE1HZWOzHbMmh4jItpxi1BgAjBgxAteuXcO6des0w+d79uypGT6fnZ2NIUOGYPPmzejduzeqqqrQsWNHRERE4I033kBQUBBSU1Mxf/587N69GyNHjpR0XdYIuTZj8/SYO6ePWF8gNe0RWwBHbRERWZtT1AiZ45NPPsGsWbMwZMgQzYSKa9as0XxeVVWFc+fOaWqCPD098dVXXyElJQWJiYkoKSlB69atsWnTJskhiFyTob49+syZ00fdl+dqYbnJEVsAR20RETkKp6kRshfWCDk/7X4/5qy0bs6cPtp9edjPh4jI/lyuRoioLvQ7NQPSVlqvy5w+auznQ0TkPBiEyCWZ06lZe56eZ4e3Q5dmAbhRWmH2nD7a2PRFROQcGITI5ZizUKmheXpyleUWm9OHiIgcF4MQuZRcZbnRECS20nrXqCa19otQNBYd5i62LxEROS8GIXJK+hMfqt8XllYaHdllzkrr7OtDROT6GITI6eiv6zUmtil2nsjWdIjWH+El1qlZaqhhXx8iItfGIEQOxdgSF2IdoGsE4Ivj2Zp9BKiCkNROzURE5N4YhMhhGFrBXf8zUwQAb0+MRZCvF5u0iIjIKAYhcgj6nZzVa3QNaKtai05qCAJUtUA9opswABERkUly07sQWd/lgtJaQadaEHCloEz0MzUPmQxjuzeFh0ymea+9iCkREZExrBEih9Ay2KfWvD1yADdKKxDVpLHoZ9odoOcNa8fRXUREZDauNWYC1xqzLv11wNTz9mgvh6EeGZZ6IofrdxERkSRca4wckqEFUNWdow+mDEbGlb90VnCvEYDUEzmc1ZmIiCyOQYhsxtgCqOrO0QdTBiPQt6Fof6GyyhrEtwqyZZGJiMjFsbM02YT+qDABtRdBVXeOVvcX0uYhkyE62NsWRSUiIjfCIERWl6ssx+6TOSaHv6vDjnqdL44EIyIia2PTGFmVsYkQxRZAVYcdrvNFRES2wCBEVmNsJXgpC6BynS8iIrI2BiGqN3NXgn9hVAeM7BJh9gKoRERElsYgRPVi7krwHjKZTggiIiKyJ3aWpjoTWx/si+PZOiPDAGhGgLHTMxERORrWCFGdSB0JxpXgiYjIkTEIkdmMjQTTx5XgiYjIkbFpjMxiaiQYV4InIiJnwhohMsvlglKTI8G4EjwRETkLBiEyi3r5C+0wpD8SjPP/EBGRs2DTGJmFy18QEZErYY0QidKfJFEbl78gIiJXwSBEtehPkrj8gc6Y0Ku5zj5s/iIiIlfAIEQ6xCZJfH7HabQP90NpZbVoDREREZGzYhAiHWKjwqoFAaPf+wmCkRoiIiIiZ8TO0qRDPSpMn6BXQ5SrLLdtwYiIiKyAQYh06I8KE/sPpFoQcKWgzLYFIyIisgI2jZGGeqTYgLYhOJgyGFcKyuDdUI4x7/1Ua96g6GBv+xWUiIjIQhiECIDxkWLLH+iM53ecRrUgcN4gIiJyKU7TNPbyyy+jb9++8Pb2RkBAgKRjBEHAokWLEBERgcaNGyMhIQEXLlywbkGdkKGRYup+QBN6NcfBlMH49LE+OJgymB2liYjIZThNEKqsrMT48ePx5JNPSj7mtddew5o1a7Bu3TocOXIEPj4+GDZsGG7dumXFkjofQyPFtPsBRSgaI75VEGuCiIjIpThN09jSpUsBABs3bpS0vyAIWLVqFRYuXIj7778fALB582aEhYUhNTUVEydOtFZRnYa6T5BPQw/R9cPYD4iIiFyd0wQhc12+fBl5eXlISEjQbFMoFIiLi8Phw4cNBqGKigpUVFRo3hcXF1u9rLakDj+nspVY8fVZTZ+gMbFNkXoih/2AiIjIrbhsEMrLywMAhIWF6WwPCwvTfCZm+fLlmtonV6PdIVpbjQCknsjBjn/Go6yyhuuHERGR27BrH6GUlBTIZDKjr7Nnz9q0TAsWLIBSqdS8rl69atPrW4t+h2h91YKAssoa9gMiIiK3Ytcaoblz52LatGlG94mJianTucPDwwEA165dQ0REhGb7tWvX0K1bN4PHeXl5wcvLq07XdETqprDC0kqDIQhgnyAiInJPdg1CISEhCAkJscq5W7ZsifDwcOzdu1cTfIqLi3HkyBGzRp45M+2mMBlUL7EsxD5BRETkrpymj1BWVhYKCwuRlZWF6upqZGZmAgBat24NX19fAED79u2xfPlyjBkzBjKZDMnJyVi2bBnatGmDli1b4oUXXkBkZCRGjx5tvy9iI/pNYQJUQUg9OsxDJsOzw9uhS7MA9gkiIiK35TRBaNGiRdi0aZPmfWxsLABg//79GDRoEADg3LlzUCqVmn2effZZlJaW4vHHH0dRURH69euHtLQ0NGrUyKZltwexuYEEAG9PjEWQrxfDDxEREQCZIAhGeo5QcXExFAoFlEol/P397V0ck7TnBhJbI+xgymAGICIicnlSn99OUyNEpumvF8a5gYiIiIxjEHIRYuuFcW4gIiIi4xiEXISh9cLUcwMRERFRbU6z6CoZ1zLYB3KZ7jbODURERGQcg5ATylWW46dLBchVlmveXy4oxXMj2sNDpkpD7BNERERkGpvGnIxYh+idJ7I1758b3p5zAxEREUnEGiEnItYh+ovj2TrvX0s7xxBEREQkEYOQExHrEK2vWhBwpaDMNgUiIiJycgxCTkSsQ7Q+dpAmIiKSjkHIiUQoGmP5A511OkSP7d6UHaSJiIjqiEtsmOCIS2zkKstxpaBM0xdI/z0REZG74xIbLixC0Vgn8Oi/JyIiImnYNEZERERui0GIiIiI3BaDkBPQn0maiIiILIN9hByc/kzSyx/ojAm9mtu7WERERC6BNUIOKldZjv/9kl1rJunnd5xmzRAREZGFsEbIAWnXAulTzxzNUWJERET1xxohB6O/npg+zhxNRERkOQxCDsbYemKcOZqIiMiy2DTmYNTriWmHITmAtx+KRfcWTRiCiIiILIg1Qg5GbD2x5WM7Y1SXSIYgIiIiC2ONkAOa0Ks5BrQN4fphREREVsYg5CByleW4XFCKlsE+mrXDGICIiIisi0HIAXDSRCIiIvtgHyE70x8uz0kTiYiIbIdByM7EhsurJ00kIiIi62IQsjP1cHltnDSRiIjINhiE7ExsuDwnTSQiIrINdpa2E+1RYhwuT0RE7kh/xLQ9MAjZgaFRYgxARETkLhxlxDSbxmyMo8SIiMjdOdKzkEHIxjhKjIiI3J0jPQsZhGyMo8SIiMjdOdKzkEHIxjhKjIiI3J0jPQtlgiAIpndzX8XFxVAoFFAqlfD397fYeXOV5RwlRkREbs2az0Kpz2+nqRF6+eWX0bdvX3h7eyMgIMDk/lVVVXjuuefQuXNn+Pj4IDIyEklJScjJybF+YSWIUDRGfKsghiAiInJbjvAsdJogVFlZifHjx+PJJ5+UtH9ZWRmOHz+OF154AcePH8eOHTtw7tw5/OMf/7BySYmIiMhZOF3T2MaNG5GcnIyioiKzj01PT0fv3r3xxx9/oHlzaXMVWKtpjIiIiKxH6vPbrSZUVCqVkMlkRpvWKioqUFFRoXlfXFxsg5IRERGRPThN01h93bp1C8899xwmTZpkNBkuX74cCoVC84qKirJhKYmIiMiW7BqEUlJSIJPJjL7Onj1b7+tUVVXhwQcfhCAIWLt2rdF9FyxYAKVSqXldvXq13tcnIiIix2TXprG5c+di2rRpRveJiYmp1zXUIeiPP/7Avn37TPbz8fLygpeXV72uSURERM7BrkEoJCQEISEhVju/OgRduHAB+/fvR1BQkNWuRURERM7HafoIZWVlITMzE1lZWaiurkZmZiYyMzNRUlKi2ad9+/bYuXMnAFUIGjduHI4dO4ZPPvkE1dXVyMvLQ15eHiorK+31NYiIiMiBOM2osUWLFmHTpk2a97GxsQCA/fv3Y9CgQQCAc+fOQalUAgCys7Oxa9cuAEC3bt10zqV9DBEREbkvp5tHyNY4jxAREZHzcbklNoiIiIgszWmaxuxFXWHGiRWJiIich/q5barhi0HIhJs3bwIAJ1YkIiJyQjdv3oRCoTD4OfsImVBTU4OcnBz4+flBJpNZ5JzFxcWIiorC1atX2e/IynivbYf32nZ4r22H99p2LH2vBUHAzZs3ERkZCbnccE8g1giZIJfL0axZM6uc29/fn/9j2Qjvte3wXtsO77Xt8F7bjiXvtbGaIDV2liYiIiK3xSBEREREbotByA68vLywePFirmlmA7zXtsN7bTu817bDe2079rrX7CxNREREbos1QkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBkY++++y6io6PRqFEjxMXF4ejRo/Yukks6cOAAEhMTERkZCZlMhtTUVHsXySUtX74cvXr1gp+fH0JDQzF69GicO3fO3sVySWvXrkWXLl00k83Fx8fj66+/tnex3MKrr74KmUyG5ORkexfF5SxZsgQymUzn1b59e5uWgUHIhrZt24Y5c+Zg8eLFOH78OLp27Yphw4YhPz/f3kVzOaWlpejatSveffddexfFpf3www+YOXMmfv75Z+zZswdVVVUYOnQoSktL7V00l9OsWTO8+uqryMjIwLFjx3DPPffg/vvvx6+//mrvorm09PR0vP/+++jSpYu9i+Ky7rrrLuTm5mpeBw8etOn1OXzehuLi4tCrVy+88847AFTrmEVFRWH27NlISUmxc+lcl0wmw86dOzF69Gh7F8XlXb9+HaGhofjhhx8wYMAAexfH5QUGBuL111/HjBkz7F0Ul1RSUoLu3bvjvffew7Jly9CtWzesWrXK3sVyKUuWLEFqaioyMzPtVgbWCNlIZWUlMjIykJCQoNkml8uRkJCAw4cP27FkRJajVCoBqB7QZD3V1dXYunUrSktLER8fb+/iuKyZM2di1KhROv9uk+VduHABkZGRiImJweTJk5GVlWXT63PRVRspKChAdXU1wsLCdLaHhYXh7NmzdioVkeXU1NQgOTkZd999Nzp16mTv4rikU6dOIT4+Hrdu3YKvry927tyJjh072rtYLmnr1q04fvw40tPT7V0UlxYXF4eNGzeiXbt2yM3NxdKlS9G/f3+cPn0afn5+NikDgxARWcTMmTNx+vRpm7fvu5N27dohMzMTSqUS27dvx9SpU/HDDz8wDFnY1atX8fTTT2PPnj1o1KiRvYvj0kaMGKH5e5cuXRAXF4cWLVrgs88+s1mTL4OQjQQHB8PDwwPXrl3T2X7t2jWEh4fbqVREljFr1izs3r0bBw4cQLNmzexdHJfVsGFDtG7dGgDQo0cPpKenY/Xq1Xj//fftXDLXkpGRgfz8fHTv3l2zrbq6GgcOHMA777yDiooKeHh42LGErisgIABt27bFxYsXbXZN9hGykYYNG6JHjx7Yu3evZltNTQ327t3LNn5yWoIgYNasWdi5cyf27duHli1b2rtIbqWmpgYVFRX2LobLGTJkCE6dOoXMzEzNq2fPnpg8eTIyMzMZgqyopKQEly5dQkREhM2uyRohG5ozZw6mTp2Knj17onfv3li1ahVKS0sxffp0exfN5ZSUlOj8RnH58mVkZmYiMDAQzZs3t2PJXMvMmTOxZcsW/Pe//4Wfnx/y8vIAAAqFAo0bN7Zz6VzLggULMGLECDRv3hw3b97Eli1b8P333+Obb76xd9Fcjp+fX61+bj4+PggKCmL/NwubN28eEhMT0aJFC+Tk5GDx4sXw8PDApEmTbFYGBiEbmjBhAq5fv45FixYhLy8P3bp1Q1paWq0O1FR/x44dw+DBgzXv58yZAwCYOnUqNm7caKdSuZ61a9cCAAYNGqSz/eOPP8a0adNsXyAXlp+fj6SkJOTm5kKhUKBLly745ptvcO+999q7aER19ueff2LSpEm4ceMGQkJC0K9fP/z8888ICQmxWRk4jxARERG5LfYRIiIiIrfFIERERERui0GIiIiI3BaDEBEREbktBiEiIiJyWwxCRERE5LYYhIiIiMhtMQgRERGRRRw4cACJiYmIjIyETCZDamqqVa+3ZMkSyGQynVf79u3NOgeDEBHZ1aBBg5CcnKx5Hx0djVWrVln8OtOmTcPo0aMtfl6ppkyZgldeeUXSvhMnTsTKlSutXCIiyystLUXXrl3x7rvv2uyad911F3JzczWvgwcPmnU8gxARWY09wseVK1cgk8mQmZmps3316tV2W17ll19+wVdffYWnnnpK0v4LFy7Eyy+/DKVSaeWSEVnWiBEjsGzZMowZM0b084qKCsybNw9NmzaFj48P4uLi8P3339frmg0aNEB4eLjmFRwcbNbxDEJE5BYUCgUCAgLscu23334b48ePh6+vr6T9O3XqhFatWuE///mPlUtGZFuzZs3C4cOHsXXrVpw8eRLjx4/H8OHDceHChTqf88KFC4iMjERMTAwmT56MrKwss45nECIimyktLUVSUhJ8fX0REREhqfmnqKgIjz76KEJCQuDv74977rkHv/zyi8H9W7ZsCQCIjY2FTCbTLAirXzs1aNAgzJ49G8nJyWjSpAnCwsKwfv16lJaWYvr06fDz80Pr1q3x9ddf65z/9OnTGDFiBHx9fREWFoYpU6agoKDAYHmqq6uxfft2JCYm6mx/77330KZNGzRq1AhhYWEYN26czueJiYnYunWryftD5CyysrLw8ccf4/PPP0f//v3RqlUrzJs3D/369cPHH39cp3PGxcVh48aNSEtLw9q1a3H58mX0798fN2/elHwOBiEispn58+fjhx9+wH//+198++23+P7773H8+HGjx4wfPx75+fn4+uuvkZGRge7du2PIkCEoLCwU3f/o0aMAgO+++w65ubnYsWOHwXNv2rQJwcHBOHr0KGbPno0nn3wS48ePR9++fXH8+HEMHToUU6ZMQVlZGQBVKLvnnnsQGxuLY8eOIS0tDdeuXcODDz5o8BonT56EUqlEz549NduOHTuGp556Ci+++CLOnTuHtLQ0DBgwQOe43r174+jRo6ioqDB6f4icxalTp1BdXY22bdvC19dX8/rhhx9w6dIlAMDZs2drdX7Wf6WkpGjOOWLECIwfPx5dunTBsGHD8NVXX6GoqAifffaZ5HI1sPg3JSISUVJSgo8++gj/+c9/MGTIEACqINKsWTODxxw8eBBHjx5Ffn4+vLy8AABvvPEGUlNTsX37djz++OO1jgkJCQEABAUFITw83GiZunbtioULFwIAFixYgFdffRXBwcF47LHHAACLFi3C2rVrcfLkSfTp0wfvvPMOYmNjdTo9b9iwAVFRUTh//jzatm1b6xp//PEHPDw8EBoaqtmWlZUFHx8f3HffffDz80OLFi0QGxurc1xkZCQqKyuRl5eHFi1aGP0eRM6gpKQEHh4eyMjIgIeHh85n6mbjmJgYnDlzxuh5goKCDH4WEBCAtm3b4uLFi5LLxSBERDZx6dIlVFZWIi4uTrMtMDAQ7dq1M3jML7/8gpKSklr/8JWXl2t+g6yPLl26aP7u4eGBoKAgdO7cWbMtLCwMAJCfn68pz/79+0X7+ly6dEk0CJWXl8PLywsymUyz7d5770WLFi0QExOD4cOHY/jw4RgzZgy8vb01+zRu3BgANLVRRM4uNjYW1dXVyM/PR//+/UX3adiwodnD37WVlJTg0qVLmDJliuRjGISIyGGVlJQgIiJCdFSJJTo+e3p66ryXyWQ629ThpaamRlOexMRErFixota5IiIiRK8RHByMsrIyVFZWomHDhgAAPz8/HD9+HN9//z2+/fZbLFq0CEuWLEF6errme6mb/tQ1XETOoKSkRKc25vLly8jMzERgYCDatm2LyZMnIykpCStXrkRsbCyuX7+OvXv3okuXLhg1apTZ15s3bx4SExPRokUL5OTkYPHixfDw8MCkSZMkn4NBiIhsolWrVvD09MSRI0fQvHlzAMBff/2F8+fPY+DAgaLHdO/eHXl5eWjQoAGio6MlXUcdNqqrqy1Sbv3yfPHFF4iOjkaDBtL++ezWrRsA4LffftP8HVAN+U1ISEBCQgIWL16MgIAA7Nu3Dw888AAAVafsZs2amT0UmMiejh07hsGDB2vez5kzBwAwdepUbNy4ER9//DGWLVuGuXPnIjs7G8HBwejTpw/uu+++Ol3vzz//xKRJk3Djxg2EhISgX79++Pnnn836BYJBiIhswtfXFzNmzMD8+fMRFBSE0NBQ/Otf/4JcbnjMRkJCAuLj4zF69Gi89tpraNu2LXJycvDll19izJgxOh2Q1UJDQ9G4cWOkpaWhWbNmaNSoERQKhUW+w8yZM7F+/XpMmjQJzz77LAIDA3Hx4kVs3boVH374Ya1+D4CqRqd79+44ePCgJgjt3r0bv//+OwYMGIAmTZrgq6++Qk1NjU4z4Y8//oihQ4dapNxEtjJo0CAIgmDwc09PTyxduhRLly61yPUsMbKSo8aIyGZef/119O/fH4mJiUhISEC/fv3Qo0cPg/vLZDJ89dVXGDBgAKZPn462bdti4sSJ+OOPPzT9d/Q1aNAAa9aswfvvv4/IyEjcf//9Fit/ZGQkDh06hOrqagwdOhSdO3dGcnIyAgICjAa6Rx99FJ988onmfUBAAHbs2IF77rkHHTp0wLp16/Dpp5/irrvuAgDcunULqampmk7bRGQ9MsFYdCMionorLy9Hu3btsG3bNsTHx5vcf+3atdi5cye+/fZbG5SOyL2xRoiIyMoaN26MzZs3G514UZunpyfefvttK5eKiADWCBEREZEbY40QERERuS0GISIiInJbDEJERETkthiEiIiIyG0xCBEREZHbYhAiIiIit8UgRERERG6LQYiIiIjcFoMQERERua3/B3pqCi8/4RlXAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "\n", "data = gettable.get()\n", "\n", "plt.plot(times, data[0], '.', label=\"real\")\n", "plt.plot(times, data[1], '.', label=\"imaginary\")\n", "plt.legend()\n", "plt.xlabel(\"Idle time (s)\")\n", "plt.ylabel(\"Voltage (V)\")\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "023ea7e9", "metadata": {}, "source": [ "Note that the data used here is the same as in {ref}`sec-tutorial-experiment`. The example dataset can be downloaded {download}`here <../examples/dataset.hdf5>`.\n", "\n", "As we defined 125 points in our `times` array which were measured in 125 different `acq_index`es, the acquisition result also contains 125 _I_ values (in `data[0][:]`) and 125 _Q_ values (in `data[1][:]`). The general format of the data returned by the {class}`~quantify_scheduler.gettables.ScheduleGettable` is also explained in the {ref}`user guide `.\n", "\n", "## Trace measurement\n", "\n", "The previous experiment's acquisition results had one data point for each acquisition in the schedule. For a trace measurement, the data format is slightly different. To illustrate this, let us set up an experiment with a trace measurement." ] }, { "cell_type": "code", "execution_count": 6, "id": "283b301c", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler.operations import IdlePulse, SoftSquarePulse\n", "\n", "\n", "def trace_schedule(pulse_amp, acq_delay, port=\"q0:res\", clock=\"q0.ro\", repetitions=1):\n", " schedule = Schedule(\"Trace a pulse\", repetitions=repetitions)\n", "\n", " schedule.add(\n", " SoftSquarePulse(\n", " duration=q0.measure.integration_time(),\n", " amp=pulse_amp,\n", " port=port,\n", " clock=clock,\n", " ),\n", " label=\"trace_pulse\",\n", " )\n", "\n", " # Add acq_delay to compensate for time-of-flight of the pulse\n", " schedule.add(\n", " Measure(q0.name, acq_protocol=\"Trace\"),\n", " ref_pt=\"start\",\n", " rel_time=acq_delay,\n", " label=\"acquisition\"\n", " )\n", "\n", " return schedule" ] }, { "cell_type": "markdown", "id": "6e08e77e", "metadata": {}, "source": [ "Again, we define the gettable and run the experiment." ] }, { "cell_type": "code", "execution_count": 7, "id": "4d46f236", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.9/site-packages/quantify_scheduler/backends/qblox/compiler_abc.py:627: RuntimeWarning: Operation is interrupting previous Pulse because it starts before the previous ends, offending operation: Pulse \"UpdateParameters\" (t0=1.0000000000000001e-07, duration=0)\n", " warnings.warn(\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYaElEQVR4nO3deVwU9f8H8NeCcssKIqcol4oHCqIgeBtlmpZlalpiVGZlllF9kw7N6iveUUp5lGn1TcnUvv5KLUPN8xuIopiKiSCkgKKyKCAYzO+PlYWF3WUX2Gt4PR+PfSifmZ15z+zszHtnPodEEAQBRERERCJhYewAiIiIiFoSkxsiIiISFSY3REREJCpMboiIiEhUmNwQERGRqDC5ISIiIlFhckNERESi0sbYARhadXU1rly5gnbt2kEikRg7HCIiItKCIAi4desWPD09YWGh+d5Mq0turly5Am9vb2OHQURERE2Ql5eHTp06aZyn1SU37dq1AyDfOY6OjkaOhoiIiLRRUlICb29vxXVck1aX3NQ8inJ0dGRyQ0REZGa0qVLCCsVEREQkKkxuiIiISFSY3BAREZGoMLkhIiIiUWFyQ0RERKLC5IaIiIhEhckNERERiQqTGyIiIhIVJjdEREQkKkxuiIiISFSY3BAREZGotLqxpYjIcPJl5TiWcwMSiQShXZzgIbVt9vKyi0rh62Lf7GWZMl22s7XsEyJdMLmhVq+xC3BzLx76er+x42psGWsOZCF+5znF3xIAiyYEYfKAzk1aR8ZlGRbvOodqAbCQAPGPNX1Z9laWKK2sUrvt2u4bXfehNvMnpeYibluGVtupbl5DJjza7lN172NSRvrA5IZES1XSUv9EnHFZhkU7z0Go87640YGYOcwfgPwCvWjXOQj3Zng8xAuP9e8EeytLnPy7GNlFZehgbwUfF3vYtrVAel4xXNvZIKqnGzyktlpdqOqf5OvGfbm4XHFBlwB4abg/BnV1QcZlmVLiMDXMG7Pv6woADS4Yqpa//lA2vjyUrVju3DrbrGl/1l1O3W2rv4w1v2chftc5pfcLAOZuzcDQbh0bxHky7yZScm4gzMcZro42is8oKTUPm1LylD4fAKgWgLe3nUagezu1F1RN8dZQ9ZmsOZClOCY0JQx1j42a+QLd2+G3s4WwbmMJHxd7pWS5/vqnhnlj8gBv5N4oUxyjV0vuYO7WDMX2VgtA3NYM2Fu3gbeTrWJbAeBYzg2l5dXMW1x+V+mYqflcao6rSzfKUPlPNfp2ksLWqo1ieXvOFOD05RLYW7XB+BBPpc+htLJKKXmp+fyOXCjCqn1ZSvu9/j6rOZbrxn/g/DWlYyd6YBd06mCr9PnXPV5r/r5acge/nS1U+o5pSpJa+s4hmQ+JIAj1zxsGl5iYiKVLl6KgoAB9+/bFypUrERYWpnLeDRs2ICYmRqnM2toad+7c0WpdJSUlkEqlkMlkcHR0bHbsZHja/vqte5EAgEg/Zxy5eEOrdTzQ0w12Vpb4Mf1Kk+McGuCCgxeKlGKwlEhwaO4IpSTji4PZinmCvaVIz5M1eZ11PT/EF1ZtLJC4P0txAR7WrSP2ZV5TOf/j/bzQ3aNdgwvM1ZI7WHvgInaeLoBw72L0SLAH/pue3yDpGNrVBe5SG3x/7G+1cQV0tMfFolLFRdnbyRZ5N8ubvb3jgz3QuYM97gt0xf+ybygSFAmACSFe2HricoN4AXnFw3XTQ3GxqBSXb5Rjw9FLDeaZGOqFH9IuK5bXr3N7pOUWaxXX0AAX+Ls5YMPhHJXrN4RQHeJtKYMCOuDwhevNWkZAR3tkXStVu9/CfZ2Qkn1T8bnUJP/2Vpb46VS+0nerqXcOyXTocv02enKTlJSE6OhorF69GuHh4UhISMCWLVuQmZkJV1fXBvNv2LABr776KjIzMxVlEokEbm5uWq2PyY15q//r95G+npg7JhCA/JdkeeU/SM8rxsq9WRqWYlyvjAxAyZ272HCk4UWUiPRHAuDHWZEN7g6ReTCr5CY8PBwDBgzAqlWrAADV1dXw9vbG7NmzMXfu3Abzb9iwAXPmzEFxcXGT1sfkxvzUfZT06GdHlB4rEBE1Fe/mmBddrt9GrXNTWVmJtLQ0xMXFKcosLCwQFRWFo0ePqn3f7du30aVLF1RXV6Nfv35YuHAhevXqpXLeiooKVFRUKP4uKSlpuQ0gvVFViZSIqCUJAN7amoFA93bo6+1k7HCoBRk1uSkqKkJVVVWDR0pubm44d+6cyvd0794d69evR58+fSCTybBs2TJERkbizz//RKdOnRrMHx8fjwULFuglftKP+pV4iYj06ZHEI4pK+XxMJQ5m14lfREQEoqOjERwcjGHDhmHbtm3o2LEj1qxZo3L+uLg4yGQyxSsvL8/AEZO28mXliNt2CvE7mdgQkWF9l5KHiPi9eHvbKeTLml/BnYzLqHduXFxcYGlpicLCQqXywsJCuLu7a7WMtm3bIiQkBBcuXFA53draGtbW1s2OlfSrfp8oRETG8F2KvPuBuaMDEdRJykrHZsqod26srKwQGhqK5ORkRVl1dTWSk5MRERGh1TKqqqqQkZEBDw8PfYVJenQy7yae2ZCi18Smu5uD0t8D/Zwx0Ne5RZZtKZFgfLBniyyrMRYS+b+SeuX1/zaWUT1ddY7F28lWsV369niIFzbNGIiR3Ttq/Z7xwR54c1Q3PDPIB5JmxunnYqdyWyUSed9KHz7SC6/eF4CnI7s0b0VaqBvG+GAPfDS+Fz4a3wtPhndu9udRdz9NDfPG0biRiBsTqPb4VcfPxU7ttBeG+er1uBcAxO86h6nr/kBk/F4s/PkM7+aYGaO3lkpKSsL06dOxZs0ahIWFISEhAd9//z3OnTsHNzc3REdHw8vLC/Hx8QCADz74AAMHDkRAQACKi4uxdOlS/Pjjj0hLS0PPnj0bXR9bS5mO179Px9bjl/Wy7EEBzhjd2wP39XBTdBJ3LOcm+vs4oa+3E/Jl5Ri0aG+DisoWEig6FoME8v5hADzY2x2//FmIqjpfF0uJBAsf642h3To2WJYFgJVTQ9DJyRZlldUoq7yLU3kypP9djAPnixT9cgBQdBb31oOB6NOpPXxc7LDj5BVFReq668kpKoPPvZN+/f+XVd5FTlEZHG3boKT8HzjatsG/fsjQ2LeKpUSCbS9F4NTfMhTdrsCV4nJsSav9TMYHe+D+nu7o5GSLvBvluHSjFJX/VKOqWsBn+7JQDeWO4pJSc/H2ttOoEgRYAHhrdCAggdK2vDDMD872VkqfRd1tScu5iaMXr+O7P3KVYrcA8NxQXzwU5IG8G+WQSKDYv3ZWFhifeETltiZODUG/eh24ncy7iU+TL2Bv5lW1j0Dj6nVsqGrbBvo5Y+/Zq7h0oww7Tl5RHANj+7hjxhA/uDraKLatpm+jnKIy2FlZKLahfmyA/BHtyuQL2JSSqzhWpoR7Y5C/Czo52TZoNVjzOdZ8Rsdzi5F89mqDbarbFLpuXPXXnZZzE7M3n1DaNxYAts+KBACsO5CNnafzG8RQ/zit36N2/c+5uLwSADDvv38qLasmTlWtI+PGBGLmUOVjTQLovQ8htqwyPrNqCg4Aq1atUnTiFxwcjE8//RTh4eEAgOHDh8PHxwcbNmwAALz22mvYtm0bCgoK4OTkhNDQUHz00UcICQnRal1MboyrphXUn5dl+Hcz79bERPqgv48T/i4ux5JdmUoXncZ62wWUL1aNJRD1L0xlldVKJ29Vy1J3Eqx/ktd0kVE3TVv1L8iDu7rg0IUipaRJVY/J2qxX3XyqypuyLZr2t7ptrdtxo0QCLGpkiAZVF1x1CUdj29ESn5e269PmeKtJkDan5mr8vNVpbB26fj5NWZeqhLLud7v+5/fVoRx8ceiiYnvHh3hi+/HLqG5SVKr9d1YkW1YZidklN4bE5MZ4VHV/31R1e/oFmn5hackLkj4ubi2hflymGmdLqLnroClBEYvmJqEtuY6WoEuyrMtyTubdxPjPjjS4CxUd2aXJHWkO8ndGNzdHjA/xZKJjQExuNGByYxzqHgM1RVMHTSSi1kndnaGaZPi3s4VNHmplQj8vLJ8U3LIBk0pMbjRgcmN4J/NuYuHOs/gj+6ZO75NIgNG93LH7zwL5wJOQ17mIGeQr6l/kRNTyGrsD9NOpK3j5uxNNWjYfVRmG2fRQTOLXlErDo3q64eFgT8VjBTE/RiEiw/CQ2mo8f4R2cVI0KNDVkt2Z+M+Mgc2Ijlqa2XXiR+bjZN5NnRObuNGBWBPdHw/18VSciDyktojw78DEhoj0xkNqi/jHgpp0UTycdR0v/SetxWOipmNyQ3qTfK5hU1R1avrD0KaVExGRPkwe0BmH40bi+SF+Ovf3szOjAMlnC/QTGOmMdW5IL3TpcZjPq4nI1NR9HH7or2t484cMrd7HMar0R5frN+/cUItb87t2iY0EwOIJQUxsiMjk1H0cPrF/Z0zo56XV+75LyUNk/F4kpebqOULShMkNtZh8WTn+7+RlLNrVeGIT4i3FkbiRbM5NRGZh+aRg/HdWpFZDtwgA3tqagZN5urUQpZbD5IZaRFJqLgYt2ovZm9Ib7QZ9ePeO2D5rMG/bEpFZ6evthI+fCNa6Ps4jiUew5vcs/QZFKjG5oWbLl5Vj7lbteh5e+ngQNsSE6T8oIiI9qGlVpW194/hd57DmABMcQ2NyQ82WdummVoPWjezeERP78zEUEZm3yQM640jcSIT7aFdfcPGucxxV3MCY3FCzfX0kp9F5IvydsZ53bIhIJDyktkh6IRIvj2i8+4pqQT4oKxkOkxtqspN5N7Fgx2mkNPKlndjPC5tmRBgoKiIiw3ljVCCOxo3E+GBPjfPN3nyCLagMiMMvUJO89J807MzQrsOqx0K99RwNEZHxeEhtkfBECLycbJG4T3X9GkEA5m7NwNBuHdmYwgB454Z0tnT3Oa0TG0uJBD4udnqOiIjI+N4cFYjpEV3UThcAzNnUtME5STdMbkgn+bJyJO7Xrua/pUSChY/15q8UImo1RvV21zj9j5ybeP+/pw0UTevFx1Kkk+yi0kbnkQBYNTVEMao3EVFr4eti3+g8G45egoeTLWYO5Vh6+sI7N6STX043/jhqxhA/pVG9iYhaCw+pLeJGBzY6H5uH6xeTG9Lamt+zsPHoJY3zSADEDPYxSDxERKZo5jB/xI0J1NjRX7UA5BSVGSym1obJDTWqZsyo+EbGjJJIgEUTgnjHhohavZlD/XEkbiReGRmgdp5DF64ZMKLWhXVuSKOk1FzEbWt8aIVXRgZgSnhnJjZERPd4SG0xJbwzVu69oLIX95pm42+OavwxFumGd25IrXxZuVaJjYUETGyIiFTwkNpiSpj6vr4S92Vx7Ck9YHJDamUXlWo1GOZzg/2Y2BARqREZ4KJxOisXtzwmN6SWNk0aWYGYiEiz0C6aB9hk5eKWx+SG1Pq2kZZRADB3TCDv2hARaaBN8/B3t58yUDStA5MbUkmbnojjRgeyEyoiIi3MHOaPWRpGEM8qKsP7O9hzcUthckMqrUz+S+P0/86KxMxhTGyIiLT15qhAjQnOhiOXcDLvpgEjEi8mN9TAybyb+C4lT+30xROC0Ndb8zNkIiJq6M1RgXi8n5fa6Y8kHkFSaq4BIxInJjekJCk1F48kHlE7/b+zIjF5QGcDRkREJC7LJgUj0N1B7fS5WzPYeqqZmNyQQr6sHG9tzVA7/eUR/rxjQ0TUAnbPGQafDqobYwgAvjqUY9B4xIbJDSkcy7mhcfqggI4GioSISNzyZeXIua7+7sy6gxd596YZmNyQwjcamn5bSAAfFzsDRkNEJF7ZRaUap/PuTfMwuSEA8krEKTnqa+nHP8YBMYmIWoqviz0sNA0bDmDtwYtsPdVETG4IAJCi5pFUb09HHI0byUrEREQtyENqi/jHgmAp0ZzhsPVU0zC5IQBAceldleX/frQ379gQEenB5AGdcWjuCKyaEqJxvrhtbD2lKyY3rVy+rBz/d/Ky2t6IXR1tDBwREVHr4SG1xdi+npg1XH3nfhx7SndtjB0AGU9Sai7itmVoHPk7p6iMd26IiPTszQcDcTzvJo5mqa4iYGfFexG64N5qpfJl5Zi7VXNiwxZSRESGM3tkV7XTfj5VYMBIzB+Tm1ZqZfJf0JDXAADeGs0Rv4mIDMXXxR7qqhez3xvdMLlphfJl5RrHjqrRx6u9/oMhIiIA8vo3iyYEqZwmAFiZfMGwAZkxJjetUGOdRwGApUTCR1JERAY2eUBnfDk9VOW071JysfSXcwaOyDwxuWmF7K0soalrBQsJsPAxNgEnIjIGWyv1bX0S92VhzQHVrVupFpObViYpNRePfnYEgpoKN1PDvXF4LjvtIyIyFl8Xe43TF+08x/o3jWBy04rky8obbfo9ro8X79gQERmRh9RWY783AoDjlzgsgyZMblqR7KJSNv0mIjIDg7q6aJyu7u47yTG5aUV8Xew11rVh028iItOgqVk4AOw8nW+wWMwRk5tW5MOfzqjN9p+O6IKZQ9XfBiUiIsPxkNpi7uhAtdN3ZhRwxHANmNy0Ekt3n8PODPU9XHo783EUEZEpmTnMH3Fj1Cc4x3KY3KjD5KYVyJeVqx0Ys0Z/HycDRUNERNqaOdRfbb83rFSsHpObVqCxTvvGBLmjrzeTGyIiU3RfD3eM7u3eoPzn0wUYt/KgESIyfUxuWgF7K0u102YN98dnT6r+VUBERKZhTFDD5AYAMi6XIPksB9Wsj8lNK1BaWaWyfNWUELz5oPrnuUREZBokGpq67s+8ZsBIzAOTm1bg8F9FKsu9ndnsm4jIHIR2UV914Ex+iQEjMQ9MbkTuZN5NtZWJyyqrDRwNERE1hYfUFovVjBiedqkYyzigphKTSG4SExPh4+MDGxsbhIeHIyUlRav3bd68GRKJBOPHj9dvgGZqzYEsPJJ4ROU09kZMRGReJg/ojFfuC1A5LXF/FsebqsPoyU1SUhJiY2Mxf/58HD9+HH379sWoUaNw9epVje/LycnBG2+8gSFDhhgoUvOy5vcsxO9Un8lPCevM3oiJiMzMfYGuKssFAcgpKjNwNKbL6MnNihUrMGPGDMTExKBnz55YvXo17OzssH79erXvqaqqwpNPPokFCxbAz8/PgNGah3xZOeJ3ab5F+fJI1dk/ERGZrr7eThjevaPKaRsOZ/PuzT1GTW4qKyuRlpaGqKgoRZmFhQWioqJw9OhRte/74IMP4OrqimeffbbRdVRUVKCkpETpJXaN9WszlXdtiIjM1vNDVf+o/+VMISLj9yIpNdfAEZkeoyY3RUVFqKqqgpubm1K5m5sbCgpUt9s/dOgQvvzyS6xbt06rdcTHx0MqlSpe3t7ezY7b1Gnq1wYAZqt5ZktERKbP18Ve7TQBQNy2jFZ/B8foj6V0cevWLUybNg3r1q2Di4vm4eBrxMXFQSaTKV55eXl6jtK4klJzMV5NJWIAWDwhiHdtiIjMmIfUFlPD1P9Qr2b9G7Qx5spdXFxgaWmJwsJCpfLCwkK4uzfsjTErKws5OTkYN26coqy6Wt6cuU2bNsjMzIS/v/LI1tbW1rC2ttZD9KYnX1aOuVszoGbgb/x3ViSHWSAiEoHZ93XFdynqf6wfvnANEf4dDBiRaTHqnRsrKyuEhoYiOTlZUVZdXY3k5GREREQ0mD8wMBAZGRlIT09XvB5++GGMGDEC6enpreKRkybZRaVqExuA/doQEYmFh9QWcaPV9zD/WStvGm7UOzcAEBsbi+nTp6N///4ICwtDQkICSktLERMTAwCIjo6Gl5cX4uPjYWNjg969eyu9v3379gDQoLw10vQclv3aEBGJy8xh/ii5cxeJ+xp21FrzaKq1VkMwenIzefJkXLt2DfPmzUNBQQGCg4Oxe/duRSXj3NxcWFiYVdUgozlwXv34IuzXhohIfJ4a2EVlcgMApy4Xt9pHUxJBEDQ9yRCdkpISSKVSyGQyODo6GjucFpMvK0dk/F61j6VWTQnB2L6eBo2JiIj060hWEaau+0Pt9KNxI0Xzw1aX6zdviYjEsZwbahMbCYBQH1YkJiISG18Xe6gfLxxYmXzBYLGYEiY3IiGRqD+8ZwzxE03mTkREtTyktpgxxFft9M2pua2yYjGTG5H4+VS+ynIJgJjBPgaNhYiIDCdmsK/auzettc8bJjcicDLvJnadbtijswTAInbaR0Qkah5SWyyaEKR2+qnLxYYLxkQwuRGBmd+kqSx/ZWQAJg/obOBoiIjI0CYP6IyjcSMR7N2+wbTFO8+1ukdTTG7M3PwfT6OgpELltJE9XA0cDRERGdPJvOIGZdUAvjqUY+hQjIrJjRnLl5Vj4/8uqZzm52LPoRaIiFoRTb3Urzt4sVXdvWFyY8aO5dxQO+2dh9R3y01EROLT2Gjhxy/dNFwwRsbkxowVl91VWe7rYo/7ejQceJSIiMTLQ2qLsUHqz/2tqcteJjdmKik1F+/990+V076bEW7gaIiIyBTMGOqnsry1debK5MYM5cvKMXdrhsppcWMC2fSbiKiV6uvthAn9vBqUzx3duq4NTG7MkKZKY16t6OAlIqKGlk8Kxn9nReK+wNoWs/G7zmHN76oH2BQjJjdm6JujqltIAYCGURiIiKiVcHW0wd5zV5XK4nedw5oDrSPBYXJjZtT1RgzIn6n269J6nqkSEZFq6gZTjt95DifzxN9qismNmUnR0PybA2QSERGgeTDlRxKPICk114DRGB6TGzMT5uOsspwDZBIRUY3QRu7ix23LEHWnfkxuzExfbyeM7N5RqYwDZBIRUV0eUlvEjVbfmavYRwtvY+wASDevf5+OvZnXFH/39ZZi9VOhTGyIiEjJzGH+uFJcjo1qGqHYWYn3/oZ4t0yETubdxNbjl+uVyXC15I6RIiIiIlO24JHeCPaWqpz2900+liITkFyvWV+N+s39iIiIajw72Fdl+dcauhUxd0xuzIiLg5WacmsDR0JEROaiv5qGKH9k3xBts3AmN2akvLJaZXlUTzcDR0JEROZC04Ca6w5kGzgaw2ByYybyZeVYtOtcg3KOJUVERI1RN6DmTxn5omwSzuTGTCzadU5lb5Od2jOxISIizfp6OyFMzajgK5MvGDga/WNyYwbW/J6F/6ZfUTlNUDeCJhERUR3RkT4qy79LyRXd3RsmNybuZN5NxKt4HAXIO+8LVZOJExER1aWp1+JVe8V194bJjQlLSs3FI4lH1E6fGt6Z9W2IiEgrHlJbTA3zVjltk8ju3jC5MVH5snLM3ZqhcZ6XRwYYKBoiIhKD2fd1VVkutuEYmNyYqOyiUpUViGuwlRQREelK3ZhTEgA+LnaGD0hPmNyYKF8Xe7XTxgd7YuZQfwNGQ0REYvFwsCck9crE1jaFyY0ZekvDSK9ERESaqHsy8NYPpwwei74wuTFRK5P/Uln+JCsRExFRM6h7MnDgryLRDMfA5MYE5cvK8V1KnsppEX4dDBwNERGJiabhGI7lMLkhPfnqkOqxPtivDRERtQR1wzHcLKs0cCT6weTGxOTLyrH2oOrkZtYIfz6SIiKiZnN1tFFZvmpflij6u2FyY2Kyi0rVThsU0NGAkRARkVhputa8+O1xA0aiH0xuTEzG3zKV5RYScfVBQERExqOpu5H0vGIs+0X1sD/mgsmNCcmXlWPxbtUHVPxjQXwkRURELUJdZ341zP3xFJMbE/LVoWxUq+h8QAJgaDc+kiIiopYzc5g/pkd0UTt9ZbL5DqbJ5MZEaKpILEBcY34QEZFpWPBIbwR7S1VO25xqvoNpMrkxEZoqd7G+DRER6cvnT4WqLDfnwTSZ3JgIeytLtdPeGs1BMomISD/U1b+xlEjM9oc1kxsTkZSqukfiRzlIJhER6dnMYf4I8nJUKgtwtTfbH9ZMbkyApuEW7uvhZuBoiIiotTmZdxMZl0uUyjILb+OZr1KMFFHzMLkxAerq23C4BSIiMoSUnBsqy/dmXjPLwTSZ3JgAXxd7WEgals8dw7o2RESkf2E+zmqnmeNgmkxuTICH1BbD6/VjM7q3O+vaEBGRQfT1dsLw7qr7U+tvhk8QmNyYgBe/TcPezGtKZb/+WWi2/QsQEZH52RAThpEqEpxzBbeMEE3zMLkxspN5N7HrdEGD8ipBMNv+BYiIyDz9+7GgBmVzt2aY3Y9tJjdG9mnyXyrLJey4j4iIDOyYiorFAoDfzhQaPphmYHJjRGt+z0LyuWsqp80a7s/KxEREZFASiYrWLQDe+++fSErNNXA0TcfkxkjyZeWI36V6BPBg7/Z4Y5T60VqJiIj0IbSL+srDcdvM5/EUkxsj0TSW1HODfQ0YCRERkZyH1BZjg9xVTjOnsaaY3BjJN0cvqSxnx31ERGRMM4b6qZ12+ILqqhSmhsmNEahrIQUAiyYEsa4NEREZTV9vJwzp6qJyWuK+LLN4NGUSyU1iYiJ8fHxgY2OD8PBwpKSoH8ti27Zt6N+/P9q3bw97e3sEBwfjm2++MWC0zaeum2sAGNpNdSdKREREhrLk8T4qywUAxy+Zfo/FbXSZubi4GNu3b8fBgwdx6dIllJWVoWPHjggJCcGoUaMQGRmpcwBJSUmIjY3F6tWrER4ejoSEBIwaNQqZmZlwdXVtML+zszPeeecdBAYGwsrKCj/99BNiYmLg6uqKUaNG6bx+Yyguvat2Wk5RGe/cEBGRUXlIbTE+2AM/puc3mHajtNIIEelGqzs3V65cwXPPPQcPDw989NFHKC8vR3BwMO677z506tQJ+/btw/3334+ePXsiKSlJpwBWrFiBGTNmICYmBj179sTq1athZ2eH9evXq5x/+PDhePTRR9GjRw/4+/vj1VdfRZ8+fXDo0CGd1mss+bJyfLY/S+U0C/ZtQ0REJiKqp+qKxc72VgaORHda3bkJCQnB9OnTkZaWhp49e6qcp7y8HD/++CMSEhKQl5eHN954o9HlVlZWIi0tDXFxcYoyCwsLREVF4ejRo42+XxAE7N27F5mZmVi8eLHKeSoqKlBRUaH4u6SkROV8hpJdVApBzbTnBvvxrg0REZmE0C5OkAANrlln8kvwUB9PY4SkNa2SmzNnzqBDhw4a57G1tcWUKVMwZcoUXL9+XauVFxUVoaqqCm5ubkrlbm5uOHdOdR8wACCTyeDl5YWKigpYWlris88+w/33369y3vj4eCxYsECreAwh42+ZynIJgJjBPgaNhYiISB0PqS3mjg5s0Cdb4r4sONq2NenBnbV6LNWhQwf89NNPqK6u1mqhjSVCzdWuXTukp6cjNTUV//73vxEbG4v9+/ernDcuLg4ymUzxysvL02tsmuTLyrF4t+qkja2kiIjI1Hi2t1FZvnjXOZNuNaV1heLx48fDzc0NTz/9NGJiYhAQENDslbu4uMDS0hKFhcpjVhQWFsLdXfWzPkD+6Kpm/cHBwTh79izi4+MxfPjwBvNaW1vD2tq62bG2hK8OZaNaxTMpCdhKioiITI+64RhqOvQz1R/lWjcFz87OxsyZM7F582Z0794dw4YNwzfffIPy8qZnblZWVggNDUVycrKirLq6GsnJyYiIiNB6OdXV1Ur1akxRvqwcaw9mq5wmwHx6fSQiotZD03AMptyhn9bJjbe3N+bNm4esrCz89ttv8PHxwYsvvggPDw+88MILSE1NbVIAsbGxWLduHTZu3IizZ8/ixRdfRGlpKWJiYgAA0dHRShWO4+PjsWfPHly8eBFnz57F8uXL8c033+Cpp55q0voNZaWa0b8BtpIiIiLT5CG1xfNDVA8JtMqEO/RrUid+I0aMwMaNG5Gfn4+lS5ciIyMDAwcORN++fXVe1uTJk7Fs2TLMmzcPwcHBSE9Px+7duxWVjHNzc5GfX9vOvrS0FC+99BJ69eqFQYMGYevWrfj222/x3HPPNWVTDCJfVo7vUtTX9XlrdKDJ3tojIqLWLUbDeIcrky8YMBLtSQRBUNcyWSsXL17E+vXr8fnnn6OkpAR376rvoM4UlJSUQCqVQiaTwdHR0SDrPJJVhKnr/lA5bdYIf7zJEcCJiMiEvb3tlMof6RIAR+JGGuQHui7X7ybduSkvL8fXX3+N4cOHo2vXrti8eTNiY2ORk5PTlMWJnr2VpcrypyO6MLEhIiKTN/u+rirLTXU4Bp2GX/jf//6H9evX4/vvv0dlZSUee+wx/PbbbxgxYoS+4hOF0soqleWjensYOBIiIiLdeUhtMTXMW+Xdm+Y9/9EPrZObnj17IjMzEyEhIYiPj8fUqVMhlUr1GZtofHP0UoMyS4mElYjJoKqqqkz+sTHpxsrKChYWJjH+MbUCs+/rik0peQ16LL5sgpWKtU5uoqKisGnTpiZVGm7NTubdxK7TBQ3KXxzOoRbIMARBQEFBAYqLi40dCrUwCwsL+Pr6wsrK9Mf6IfOnrsfi+J3n8HBfT5O6pmmd3Hz66af6jEO0UnJuqCx3suPJiAyjJrFxdXWFnZ2d2k65yLxUV1fjypUryM/PR+fOnfm5kkHYWqm+U/jbmUJMi/AxbDAaaJXcPPjgg3j//fcxcOBAjfPdunULn332GRwcHDBr1qwWCdDc+bnYqyznIykyhKqqKkVio+9hUcjwOnbsiCtXruCff/5B27ZtjR0OtQJFtytVln+Xkmt+yc3EiRMxYcIESKVSjBs3Dv3794enpydsbGxw8+ZNnDlzBocOHcLOnTvx0EMPYenSpfqO22zYWqnexXZWPBGR/tXUsbGzYzItRjWPo6qqqpjckEHcF+iKT1X0bXM2/xZO5t1EX2/1PRobklbJzbPPPounnnoKW7ZsQVJSEtauXQuZTD66tUQiQc+ePTFq1CikpqaiR48eeg3Y3KgaBZyVicnQ+MhCnPi5kqH19XZCkJcjMi6XNJh2LMfMkhtAPgDlU089pRjmQCaToby8HB06dOAvBjXyZeVYtKvhKOD/Gt3dpCpeERERaeuj8b3xSOKRBuWm9KO9yW0IpVIp3N3dmdhosHjX2QZN5gDAi4kNkVHk5ORAIpEgPT3d2KEQma2+3k6Y0M+rQfmzG9Ow5vcsI0TUEDtI0JM1v2fhx/R8ldN4J5mIiMzZG6O6qyyP33UOaw4YP8FhcqMH+bLyBv0A1JAA6KdhCHkiUq2yUnUrDSIyvGNqujkBgMW7zhl9tHAmN3qQXVSqdtqUsM6sb0NmK19WjiNZRQY5cQ0fPhwvv/wy5syZAxcXF4waNQqnT5/G6NGj4eDgADc3N0ybNg1FRUWK9+zevRuDBw9G+/bt0aFDB4wdOxZZWcb/FUkkNpoqs1cLQE5RmQGjaYjJjR6sPXBR7bTZ9wUYMBKilpOUmotBi/Zi6ro/MGjRXiSl5up9nRs3boSVlRUOHz6MRYsWYeTIkQgJCcGxY8ewe/duFBYWYtKkSYr5S0tLERsbi2PHjiE5ORkWFhZ49NFHUV1drfdYiVqT0C5OUJfemEKLYJ0GzqxRXFyMH374AVlZWXjzzTfh7OyM48ePw83NDV5eDSsZtSYn825if+Y1ldOeH8IhF8g85cvKEbctA9X3ashXC8Db205jaLeOej2mu3btiiVLlgAAPvroI4SEhGDhwoWK6evXr4e3tzfOnz+Pbt26YcKECUrvX79+PTp27IgzZ86gd+/eeouTqLXxkNpi0YQgzN2a0aDhzAO93Ix+rdP5zs2pU6fQrVs3LF68GMuWLVOMV7Nt2zbExcW1dHxmZ52GuzYxg30MFwhRC8ouKlUkNjWqBEHvt55DQ0MV/z958iT27dsHBwcHxSswMBAAFI+e/vrrL0yZMgV+fn5wdHSEj48PACA3V/93mYham6HdOqos33W6wOiVinW+cxMbG4unn34aS5YsQbt27RTlY8aMwdSpU1s0OHOTLyvHTxkNB8kEgJdH+Bs9kyVqKl8Xe1hIoJTgGOLWs7197fAlt2/fxrhx47B48eIG83l4eAAAxo0bhy5dumDdunXw9PREdXU1evfuzcrIRHqQXVSqsrsTQF6p2JiDaeqc3KSmpmLNmjUNyr28vFBQoPrC3lpoqkj85MAuBoyEqGV5SG0R/1gQ3t52GlWCAEuJBAsf623QE1e/fv2wdetW+Pj4oE2bhqeu69evIzMzE+vWrcOQIUMAAIcOHTJYfEStja+asROB2krFxkpudH4sZW1tjZKSht0unz9/Hh07qr5F1Vpo+qCNXXOcqLkmD+iMQ3NHYNOMgTg0dwQmD+hs0PXPmjULN27cwJQpU5CamoqsrCz88ssviImJQVVVFZycnNChQwesXbsWFy5cwN69exEbG2vQGIlaEw+pLZ4f4qt2+qnLxYYLph6dk5uHH34YH3zwgWJAPolEgtzcXLz11lsNKvO1NjvSr6gst5CYVrfURE3lIbVFhH8Ho/wa8/T0xOHDh1FVVYUHHngAQUFBmDNnDtq3bw8LCwtYWFhg8+bNSEtLQ+/evfHaa69xEF8iPYsZ7Ku21dSincbr70YiCIK6R2YqyWQyPP744zh27Bhu3boFT09PFBQUICIiAjt37lR6Rm6KSkpKIJVKIZPJ4Ojo2GLLzZeVIzJ+r8rnj88P8cPbD3FAUTK8O3fuIDs7G76+vrCxsTF2ONTC+PmSKVj48xmsPZitctqqKSEY29ezRdajy/Vb5zo3UqkUe/bswaFDh3Dq1Cncvn0b/fr1Q1RUVJMDFgN1FaskYCspIiISr5jBvmqTG2MNN9Skfm4AYPDgwRg8eHBLxmLWMv6WqSyfOyaQraSIiEi0PKS2iBsdqHLYob+LjfNYSufk5tNPP1VZLpFIYGNjg4CAAAwdOhSWlpbNDs5caBpL6uEWuh1HRERkqmYO80fJnbtI3Kfcv82SXZlGaRKuc3Lz8ccf49q1aygrK4OTk3wAyJs3b8LOzg4ODg64evUq/Pz8sG/fPnh7e7d4wKZI0wBixmwKR0REZCiDAlwaJDc1nX0a+jqoc2uphQsXYsCAAfjrr79w/fp1XL9+HefPn0d4eDg++eQT5Obmwt3dHa+99po+4jVJ6gYQYyspIiJqLWo6+6zLWONM6ZzcvPvuu/j444/h7++vKAsICMCyZcsQFxeHTp06YcmSJTh8+HCLBmrK1A0g9tZo1rchIqLWoaazT8t7P/iN0dlnDZ0fS+Xn5+Off/5pUP7PP/8oeij29PTErVu3mh+dmagZQKxmYEEJgLmjAzFzqH+j7yUiIhKLyQM6Y2i3jsgpKoOPi535DL8wYsQIzJw5E1988QVCQkIAACdOnMCLL76IkSNHAgAyMjLg66u+10IxMpUPlIiIyJg8pLZGvwbq/Fjqyy+/hLOzM0JDQ2FtbQ1ra2v0798fzs7O+PLLLwEADg4OWL58eYsHa+qM2XsrERERyel858bd3R179uzBuXPncP78eQBA9+7d0b17d8U8I0aMaLkIiahVGj58OIKDg5GQkGDUOHx8fDBnzhzMmTPHqHEQkfaa3IlfYGAgAgMDWzIWIiKFbdu2oW3btsYOA6mpqSY/rAwRKWtScvP3339jx44dyM3NRWVlpdK0FStWtEhgRNS6OTs7GzsEAEDHjh31vo7KykpYWVnpfT1ErYXOdW6Sk5PRvXt3fP7551i+fDn27duHr776CuvXr0d6eroeQiQikyG7DGQfkP+rZ8OHD1c8CvLx8cFHH32E6OhoODg4oEuXLtixYweuXbuGRx55BA4ODujTpw+OHTumeP/169cxZcoUeHl5wc7ODkFBQdi0aZPSOm7duoUnn3wS9vb28PDwwMcff6y03pp11300JpFI8MUXX+DRRx+FnZ0dunbtih07diimV1VV4dlnn4Wvry9sbW3RvXt3fPLJJ0rrffrppzF+/Hj8+9//hqenJ7p3744PPvgAvXv3brAfgoOD8d577zVjTxK1PjonN3FxcXjjjTeQkZEBGxsbbN26FXl5eRg2bBgmTpyojxiJyBQc/xpI6A1sHCf/9/jXBl39xx9/jEGDBuHEiRN46KGHMG3aNERHR+Opp57C8ePH4e/vj+joaAiCfAjbO3fuIDQ0FD///DNOnz6N559/HtOmTUNKSopimbGxsTh8+DB27NiBPXv24ODBgzh+/HijsSxYsACTJk3CqVOnMGbMGDz55JO4cUPeU3l1dTU6deqELVu24MyZM5g3bx7efvttfP/990rLSE5ORmZmJvbs2YOffvoJzzzzDM6ePYvU1FTFPCdOnMCpU6cQExPTEruQqPUQdOTg4CBcuHBBEARBaN++vXD69GlBEAQhPT1d6NKli66LMziZTCYAEGQymbFDIdK78vJy4cyZM0J5eXnzFlT8tyC8314Q5jvWvt53kpfrybBhw4RXX31VEARB6NKli/DUU08ppuXn5wsAhPfee09RdvToUQGAkJ+fr3aZDz30kPD6668LgiAIJSUlQtu2bYUtW7YophcXFwt2dnaK9das++OPP1b8DUB49913FX/fvn1bACDs2rVL7XpnzZolTJgwQfH39OnTBTc3N6GiokJpvtGjRwsvvvii4u/Zs2cLw4cPV7vcFvt8icyALtdvne/c2NvbK+rZeHh4ICurdhyJoqKilsi3iMjU3MgChGrlMqEKuHHRYCH06dNH8X83NzcAQFBQUIOyq1evApA/Hvrwww8RFBQEZ2dnODg44JdffkFubi4A4OLFi7h79y7CwsIUy5BKpUotP7WJxd7eHo6Ojor1AkBiYiJCQ0PRsWNHODg4YO3atYr11ggKCmpQz2bGjBnYtGkT7ty5g8rKSnz33Xd45plnGo2HiJTpXKF44MCBOHToEHr06IExY8bg9ddfR0ZGBrZt24aBAwfqI0YiMjZnf0BioZzgSCwBZz+DhVC35VTNeG6qyqqr5TEuXboUn3zyCRISEhAUFAR7e3vMmTOnQSOI5sZSs+6a9W7evBlvvPEGli9fjoiICLRr1w5Lly7FH3/8ofQeVS2wxo0bB2tra2zfvh1WVla4e/cuHn/88WbHS9Ta6JzcrFixArdv3wYgf+58+/ZtJCUloWvXrmwpRSRWUi9g3CfA/82R37GRWALjEuTlJurw4cN45JFH8NRTTwGQJz3nz59Hz549AQB+fn5o27YtUlNT0blzZwCATCbD+fPnMXTo0GatNzIyEi+99JKirO4dbk3atGmD6dOn46uvvoKVlRWeeOIJ2NqyU1AiXemc3Pj51f5Ss7e3x+rVq1s0ICIyUf2iAf/75I+inP1MOrEBgK5du+KHH37AkSNH4OTkhBUrVqCwsFCR3LRr1w7Tp0/Hm2++CWdnZ7i6umL+/PmwsLBQ3AVq6nq//vpr/PLLL/D19cU333yD1NRUrYekee6559CjRw8AaFUDEBO1JJ3r3Pj5+eH69esNyouLi5USHyISIakX4DvE5BMbAHj33XfRr18/jBo1CsOHD4e7uzvGjx+vNM+KFSsQERGBsWPHIioqCoMGDUKPHj1gY2PT5PXOnDkTjz32GCZPnozw8HBcv35d6S5OY7p27YrIyEgEBgYiPDy8yXEQtWYSQbjXblJLFhYWKCgogKurq1J5YWEhOnfujIqKihYNsKWVlJRAKpVCJpPB0dHR2OEQ6dWdO3eQnZ0NX1/fZl2wW4vS0lJ4eXlh+fLlePbZZ40SgyAI6Nq1K1566SXExsZqnJefL7Umuly/tX4sVbeTql9++QVSqVTxd1VVFZKTk+Hj46N7tERERnLixAmcO3cOYWFhkMlk+OCDDwAAjzzyiFHiuXbtGjZv3oyCggL2bUPUDFonNzW3cyUSCaZPn640rW3btvDx8WmVI4ETkXlbtmwZMjMzYWVlhdDQUBw8eBAuLi5GicXV1RUuLi5Yu3YtnJycjBIDkRhondzUNHP09fVFamqq0b78REQtJSQkBGlpacYOQ0HHWgJEpIbOraWys7P1EQcRERFRi9Aqufn000+1XuArr7zS5GCISD94R0Cc+LkSqaZVcvPxxx9rtTCJRMLkhsiE1PSkW1ZWxs7gRKimt2VLS0sjR0JkWrRKbvgoisg8WVpaon379opxj+zs7JrVQR2Zjurqaly7dg12dnZo00bnGgZEotasb0TNLVGeLIlMl7u7OwAoDexI4mBhYYHOnTvzHExUT5OSm6+//hpLly7FX3/9BQDo1q0b3nzzTUybNq1FgyOi5pNIJPDw8ICrqyvu3r1r7HCoBVlZWcHCQueO5olEr0kDZ7733nt4+eWXMWjQIADAoUOH8MILL6CoqAivvfZaiwdJRM1naWnJuhlE1CroPPyCr68vFixYgOjoaKXyjRs34v333zf5+jkcfoGIiMj86HL91vl+Zn5+PiIjIxuUR0ZGIj8/X9fFEREREbUonZObgIAAfP/99w3Kk5KS0LVr1yYFkZiYCB8fH9jY2CA8PBwpKSlq5123bh2GDBkCJycnODk5ISoqSuP8RERE1LroXOdmwYIFmDx5Mg4cOKCoc3P48GEkJyerTHoak5SUhNjYWKxevRrh4eFISEjAqFGjkJmZ2WDkcQDYv38/pkyZgsjISNjY2GDx4sV44IEH8Oeff8LLy0vn9RMREZG4aF3n5vTp0+jduzcAIC0tDR9//DHOnj0LAOjRowdef/11hISE6BxAeHg4BgwYgFWrVgGQ993g7e2N2bNnY+7cuY2+v6qqCk5OTli1alWDekCqsM4NERGR+dHl+q31nZs+ffpgwIABeO655/DEE0/g22+/bXaglZWVSEtLQ1xcnKLMwsICUVFROHr0qFbLKCsrw927d+Hs7KxyekVFBSoqKhR/l5SUNC9oIiIiMmla17n5/fff0atXL7z++uvw8PDA008/jYMHDzZr5UVFRaiqqoKbm5tSuZubGwoKCrRaxltvvQVPT09ERUWpnB4fHw+pVKp4eXt7NytmIiIiMm1aJzdDhgzB+vXrkZ+fj5UrVyI7OxvDhg1Dt27dsHjxYq2TkZa0aNEibN68Gdu3b4eNjY3KeeLi4iCTyRSvvLw8A0dJREREhqRzayl7e3vExMTg999/x/nz5zFx4kQkJiaic+fOePjhh3ValouLCywtLVFYWKhUXlhYqOgyXp1ly5Zh0aJF+PXXX9GnTx+181lbW8PR0VHpRUREROLVrH67AwIC8Pbbb+Pdd99Fu3bt8PPPP+v0fisrK4SGhiI5OVlRVl1djeTkZERERKh935IlS/Dhhx9i9+7d6N+/f5PjJyIiIvFp8sCZBw4cwPr167F161ZYWFhg0qRJePbZZ3VeTmxsLKZPn47+/fsjLCwMCQkJKC0tRUxMDAAgOjoaXl5eiI+PBwAsXrwY8+bNw3fffQcfHx/F4zAHBwc4ODg0dXOIiIhIJHRKbq5cuYINGzZgw4YNuHDhAiIjI/Hpp59i0qRJsLe3b1IAkydPxrVr1zBv3jwUFBQgODgYu3fvVlQyzs3NVRoY7vPPP0dlZSUef/xxpeXMnz8f77//fpNiICIiIvHQup+b0aNH47fffoOLiwuio6PxzDPPoHv37vqOr8WxnxsiIiLzo5d+btq2bYsffvgBY8eO5cjCREREZLK0Tm527NihzziIiIiIWkSzWksRERERmRomN0RERCQqTG6IiIhIVJjcEBERkagwuSEiIiJRYXJDREREosLkhoiIiESFyQ0RERGJCpMbIiIiEhUmN0RERCQqTG6IiIhIVJjcEBERkagwuSEiIiJRYXJDREREosLkhoiIiESFyQ0RERGJCpMbIiIiEhUmN0RERCQqTG6IiIhIVJjcEBERkagwuSEiIiJRYXJDREREosLkhoiIiESFyQ0RERGJCpMbIiIiEhUmN0RERCQqTG6IiIhIVJjcEBERkagwuSEiIiJRYXJDREREosLkhoiIiESFyQ0RERGJCpMbIiIiEhUmN0RERCQqTG6IiIhIVJjcEBERkagwuSEiIiJRYXJDREREosLkhoiIiESFyQ0RERGJCpMbIiIiEhUmN0RERCQqTG6IiIhIVJjcEBERkagwuSEiIiJRYXJDREREosLkhoiIiESFyQ0RERGJCpMbIiIiEhUmN0RERCQqTG6IiIhIVJjcEBERkagwuSEiIiJRMXpyk5iYCB8fH9jY2CA8PBwpKSlq5/3zzz8xYcIE+Pj4QCKRICEhwXCBEhERkVkwanKTlJSE2NhYzJ8/H8ePH0ffvn0xatQoXL16VeX8ZWVl8PPzw6JFi+Du7m7gaImIiMgcGDW5WbFiBWbMmIGYmBj07NkTq1evhp2dHdavX69y/gEDBmDp0qV44oknYG1tbeBoiYiIyBwYLbmprKxEWloaoqKiaoOxsEBUVBSOHj3aYuupqKhASUmJ0ouIiIjEy2jJTVFREaqqquDm5qZU7ubmhoKCghZbT3x8PKRSqeLl7e3dYssmIiIi02P0CsX6FhcXB5lMpnjl5eUZOyQiIiLSozbGWrGLiwssLS1RWFioVF5YWNiilYWtra1ZP4eIiKgVMdqdGysrK4SGhiI5OVlRVl1djeTkZERERBgrLCIiIjJzRrtzAwCxsbGYPn06+vfvj7CwMCQkJKC0tBQxMTEAgOjoaHh5eSE+Ph6AvBLymTNnFP+/fPky0tPT4eDggICAAKNtBxEREZkOoyY3kydPxrVr1zBv3jwUFBQgODgYu3fvVlQyzs3NhYVF7c2lK1euICQkRPH3smXLsGzZMgwbNgz79+83dPhERERkgiSCIAjGDsKQSkpKIJVKIZPJ4OjoaOxwiIiISAu6XL9F31qKiIiIWhcmN0RERCQqTG6IiIhIVJjcEBERkagwuSEiIiJRYXJDREREosLkhoiIiESFyQ0RERGJCpMbIiIiEhUmN0RERCQqTG6IiIhIVJjcEBERkagwuSEiIiJRYXJDREREosLkhoiIiESFyQ0RERGJCpMbIiIiEhUmN0RERCQqTG6IiIhIVJjcEBERkagwuSEiIiJRYXJDREREosLkhoiIiESFyQ0RERGJCpMbIiIiEhUmN0RERCQqTG6IiIhIVJjcEBERkagwuSEiIiJRYXJDREREosLkhoiIiESFyQ0RERGJCpMbIiIiEhUmN0RERCQqTG6IiIhIVJjcEBERkagwuSEiIiJRYXJDREREosLkhoiIiESFyQ0RERGJCpMbIiIiEhUmN0RERCQqTG6IiIhIVJjcEBERkagwuSEiIiJRYXJDREREosLkhoiIiESFyQ0RERGJCpMbIiIiEhUmN0RERCQqTG6o6WSXgewD8n+JiIhMRBtjB0Bm6vjXwP+9CgjVgMQCGPcJ0C/a2FGROZBdBm5kAc7+gNTL2NGQKeGxQS2EyY1Y1T1JAC17wpBdrk1sAPm//zcH8L9PPyek1nbCa872anqvKexHfSXFprBt1Dw8NuTMLV4TxeTGEBq74OT9If+/d7h8ev35Vb3/7zQg9yjQIQCwsgMqy4DrF4DOEcDVP+skH5J7KxKad8KoG8ONrNrEpoZQBdy4qNuXUd1+qdknZTeAwtPA8Y1NO+Fps3w7Z6B9F+BuaW0iWP/zULdsbearq+Yz6xwBdApVvcw/PgeOJtZub9T7gNRbu/VoujiomuZ/n/r9o8vJVduEClCdFLv2qt3/ja2v7n6v+dyupAO/zdd92wDtt7OxfdKU40GbddT/nmuKVdW2tbWX76Oaf5ub9Dbl2ND2+6TLDyZN21o3NnXfCW22Q92xUnd9xZca3zZt1f/+QwKEPg34DlW9fNllIHOX/LzfIQDwDNH+e9SU2Br7jms6xoxAIgiCYOwgDKmkpARSqRQymQyOjo4tv4K6B5ydC1Dyd+3FGQDCnpdf3ABA9jewZx6Amo9AAvSdApzcVFvWZRBw6ci9v+8d7EXngUuHmxigBfDa6dqkqe5Fvu4XqO4Be+IbIG2Dcgx1t6lG4Fj5hbhDANB9NHCrADi/G3Bwk3/xii/VrqvwT+Dg8tpl3r8A6P04cGApkPaV5vjHLK2Nt2YdltaAbXv5LDXLP7QcqDm8Q58Ghv4LOL0V2POe9rvr/g+AQa/K//93mnxdN3OAjC2o/dwADHkd8Btee/LL3AXcLgS8QuUXpdQvgTM/1s7vfx8w4h3gygn5sVJ2veEy1cXTZbDyBa/mJLv12XqfiQXw3G/ydex8Q8WyJbVl3UYBQ99qmBjXPbnW3dcd/ORl9fdnaEzt/FnJyhesbqOA87+o2Kg6cQRPBRw7yY8ZaSfg4n6g4jbg5CP/LimOw8bcW6bEAhj8GiCxBArPAJk/Q3HMAVA6/mo+57pkl4Hf3q/z2dzbJ269axPjM9uBI6uU4wqaCEQtkP//Rpb8x8fltNp919au9qJkZQdc/L3h9+HyceVjpobPYKDbaPn/axLl5A+V36/YNhUCH5J/12piV1xMAXR7EPAaUPv5ArXJiezv2iQSqP1O1Wxj3R9jmbuAs/8HZO9XXnfd78mtAvl+vVUIVNwCsvY0jDV4GhAwUvncVDdhUSdoonwbNz1Rbz9I5N+hutsR+BDgN1L+/7qfad39UvcYVSdyNtDzUeULfP3k7laB6h84x78GdryieR2hTwMh0fLlX/wdOLhM9Xz1E/y6SQfQMDGr+ZFQ8wO57nnlygngrz3AX79AcWwNiZV/hm3tVeyne4a8Dtw3T/P+agJdrt8mkdwkJiZi6dKlKCgoQN++fbFy5UqEhYWpnX/Lli147733kJOTg65du2Lx4sUYM2aMVuvSa3Jz+FPdLpzGEjhWfnLN+L7hNN9hQMdAIHVtbWLQ2gWOBSzaqL7QkAZaXBBMiXMA0CVCnqC1c9ci0TYRti5AeZGxo5DzDq+9mLe0wIcAj37Avo9g8seVxAIIiAL++lX9PD7DgGFvyJOEL6M0J2tNCwJG3U89xwOTNrboIs0quUlKSkJ0dDRWr16N8PBwJCQkYMuWLcjMzISrq2uD+Y8cOYKhQ4ciPj4eY8eOxXfffYfFixfj+PHj6N27d6Pr01tyc/iTe3dhiIiICFOSgO4PttjizCq5CQ8Px4ABA7Bq1SoAQHV1Nby9vTF79mzMnTu3wfyTJ09GaWkpfvrpJ0XZwIEDERwcjNWrVzeYv6KiAhUVFYq/S0pK4O3t3bLJjewy8HHPllkWERGRWDy8ssVa0uqS3Bi1n5vKykqkpaUhKipKUWZhYYGoqCgcPXpU5XuOHj2qND8AjBo1Su388fHxkEqlipe3t3fLbUANfd2GJSIiMmf/96pR+kIzanJTVFSEqqoquLm5KZW7ubmhoKBA5XsKCgp0mj8uLg4ymUzxysvLa5ngiYiISDOhWt6S1sBE3xTc2toa1tbW+l2JdziMXnmLiIjI1EgsAGc/g6/WqHduXFxcYGlpicLCQqXywsJCuLu7q3yPu7u7TvMbhNQLePhTmPVoFl0GGTsC/es5Qf4Kf0le0S3ylYbzOHqitimtqZDA9GJSw6OfdvO5dEeztslTy/UYRXM+KzP5nAHAvmGDj9bLiJ9bwCjjrr+GZ38V1xGJvFm6Efq9MeqdGysrK4SGhiI5ORnjx48HIK9QnJycjJdfflnleyIiIpCcnIw5c+Yoyvbs2YOIiAgDRKxBv+h7/QpclPcN8Nv78o7tAHmfGIV/QunOTt+pwKmk2nkAeV8cUfPlJ+62dvKmx0dX1TYR7PWYvFO7ovO17+kUDvgOadjnwZDXAb8RtRlzXoq8j5msfUDmT/disQAiXwbCX5AffCr7j7C4N6+qu1I63K3qFAb8nao8/5DX5f2X1O/fIWgS4D3wXp8TnYE/Vqtutq4UikR903VVnf/JLgObpzTcnmd/k//3xkV5Hyuq+pIY8gbQzvNePzb9gLvlwPWLwL4PNMdYn2vve0kx5P1I2LsBnsHKn7vEEhiXIJ/n/+bUOV5U7Hvf4cDAF+XbpW2z0iGvA4c+bnx+74H36pZp+LwllsAT38r/r9Q3TB2hMcDQN+v0AZJyb/n3un7ISwF+iGn4PonFvRgtgPvfl/dh8nEvzfHUvvne7tIwb9Dke8dYc+++3utb6G6Z/Lt3eqtynyqqBI6Vb0/NPvjzR+DXtxvON2YF0LGbfLlZycrHQ9Ak+ff4Srr8/GPdDgh6vLZJu6JfKgsgdDpQWaq5X6XQGCBkmnx5f/0K/LVbeXpN/09/p8mP3QNL621jE+5kd3tQvi5F56P13u/VH7hyvPZ70Wdyw3MoJIBrD+DqmdqigFHAoNnybb5yvPZ7duIb1U39fYfLv0d3y+XnzLp2vt4wLomF/Lxxt0z9OQMW8v5hDq2o3T63XvLzeV2Rr8gThJo4//rlXh8z9ZY14l2gqkLed1SnUBXn7hZ8kqD47tVbpu9wwD0YaGtdGwdQe0zYu8lbShmpQz+jt5ZKSkrC9OnTsWbNGoSFhSEhIQHff/89zp07Bzc3N0RHR8PLywvx8fEA5E3Bhw0bhkWLFuGhhx7C5s2bsXDhQuM3Ba9Pdll+gXT2U30iV/Q8fFGeyNScDFX2/nhReVrmbuDCHiDg/tpmdqqWr21sqqbVjUnpRHqvE7Ohb8rnr1nOrQIg73+ATXtgxyzlC4nEEpiTIf+/qhi1if3wp3V6ob2XBEo7176nJhalxLJe8lZX9gFg47iG65n+kzxZVLXemgurqs7eAGD7i8DJ72r/7jEe6DW+TieJYbX7yXug6l6Ka6j6jOqWKX0m9eI6/nW9RAgAJPc6GRsPFOfW7jdFUntv/ppkyv++hp9J/fnqXlxq3lc/gWzs+Fbl+NfAjlcB3NvnD39S+8Oh7jJU9T5bXqz8edV8/kDt8aHUcSZqL9SqOlKLfAWw7wjsmX8vnrq71FLeQWDNBUvVPqi/H4pzay+YNceEqu9gQm/lZKHmO9Sgt2U13+P61B1Pf6yu8wNKw/else9o/WMjav6976GKTiWLc4Gtz6jePqA2TkD9ObPueVXVMfZ3mnbfM12+3zXbWfcYkUiAcZ82PO7rJvd1jwttrgv11e2gUd0xVrPeuvuu7n65uL9OYlXve6GU/Krw+AbA3kV5udp+l1uYWTUFB4BVq1YpOvELDg7Gp59+ivBwee+Yw4cPh4+PDzZs2KCYf8uWLXj33XcVnfgtWbLENDrxEzNdTqSqLpYtNkaMFjFoM5+2FxBd1gtof1JtCbomqc3dZ6rm02Xf6KI5n3Vj79V0QVE3rX4ioOmC1RL09R1SpaXir78cTdtgyO3TNW5t5tfmh2RLHhctsazGzhd5KeqTThMYTgEww+TGkJjcGIi+LnotyZROsGQeDHlcm8N3qDHaJODmvH1iY+LnRCY3GjC5ISU8wRIR1TLhc6Iu12/RNwUn0kjqZXJfYCIioxHJOdGM2y4TERERNcTkhoiIiESFyQ0RERGJCpMbIiIiEhUmN0RERCQqTG6IiIhIVJjcEBERkagwuSEiIiJRYXJDREREosLkhoiIiESFyQ0RERGJSqsbW6pmnNCSkhIjR0JERETaqrluazPed6tLbm7dugUA8Pb2NnIkREREpKtbt25BKpVqnEciaJMCiUh1dTWuXLmCdu3aQSKRtOiyS0pK4O3tjby8vEaHY6em4342DO5nw+G+NgzuZ8PQ134WBAG3bt2Cp6cnLCw016ppdXduLCws0KlTJ72uw9HRkV8cA+B+NgzuZ8PhvjYM7mfD0Md+buyOTQ1WKCYiIiJRYXJDREREosLkpgVZW1tj/vz5sLa2NnYoosb9bBjcz4bDfW0Y3M+GYQr7udVVKCYiIiJx450bIiIiEhUmN0RERCQqTG6IiIhIVJjcEBERkagwudFRYmIifHx8YGNjg/DwcKSkpGicf8uWLQgMDISNjQ2CgoKwc+dOA0Vq3nTZz+vWrcOQIUPg5OQEJycnREVFNfq5kJyux3ONzZs3QyKRYPz48foNUER03dfFxcWYNWsWPDw8YG1tjW7duvH8oQVd93NCQgK6d+8OW1tbeHt747XXXsOdO3cMFK15OnDgAMaNGwdPT09IJBL8+OOPjb5n//796NevH6ytrREQEIANGzboN0iBtLZ582bByspKWL9+vfDnn38KM2bMENq3by8UFhaqnP/w4cOCpaWlsGTJEuHMmTPCu+++K7Rt21bIyMgwcOTmRdf9PHXqVCExMVE4ceKEcPbsWeHpp58WpFKp8Pfffxs4cvOi636ukZ2dLXh5eQlDhgwRHnnkEcMEa+Z03dcVFRVC//79hTFjxgiHDh0SsrOzhf379wvp6ekGjty86Lqf//Of/wjW1tbCf/7zHyE7O1v45ZdfBA8PD+G1114zcOTmZefOncI777wjbNu2TQAgbN++XeP8Fy9eFOzs7ITY2FjhzJkzwsqVKwVLS0th9+7deouRyY0OwsLChFmzZin+rqqqEjw9PYX4+HiV80+aNEl46KGHlMrCw8OFmTNn6jVOc6frfq7vn3/+Edq1ayds3LhRXyGKQlP28z///CNERkYKX3zxhTB9+nQmN1rSdV9//vnngp+fn1BZWWmoEEVB1/08a9YsYeTIkUplsbGxwqBBg/Qap5hok9z861//Enr16qVUNnnyZGHUqFF6i4uPpbRUWVmJtLQ0REVFKcosLCwQFRWFo0ePqnzP0aNHleYHgFGjRqmdn5q2n+srKyvD3bt34ezsrK8wzV5T9/MHH3wAV1dXPPvss4YIUxSasq937NiBiIgIzJo1C25ubujduzcWLlyIqqoqQ4VtdpqynyMjI5GWlqZ4dHXx4kXs3LkTY8aMMUjMrYUxroWtbuDMpioqKkJVVRXc3NyUyt3c3HDu3DmV7ykoKFA5f0FBgd7iNHdN2c/1vfXWW/D09GzwZaJaTdnPhw4dwpdffon09HQDRCgeTdnXFy9exN69e/Hkk09i586duHDhAl566SXcvXsX8+fPN0TYZqcp+3nq1KkoKirC4MGDIQgC/vnnH7zwwgt4++23DRFyq6HuWlhSUoLy8nLY2tq2+Dp554ZEZdGiRdi8eTO2b98OGxsbY4cjGrdu3cK0adOwbt06uLi4GDsc0auuroarqyvWrl2L0NBQTJ48Ge+88w5Wr15t7NBEZf/+/Vi4cCE+++wzHD9+HNu2bcPPP/+MDz/80NihUTPxzo2WXFxcYGlpicLCQqXywsJCuLu7q3yPu7u7TvNT0/ZzjWXLlmHRokX47bff0KdPH32GafZ03c9ZWVnIycnBuHHjFGXV1dUAgDZt2iAzMxP+/v76DdpMNeWY9vDwQNu2bWFpaako69GjBwoKClBZWQkrKyu9xmyOmrKf33vvPUybNg3PPfccACAoKAilpaV4/vnn8c4778DCgr//W4K6a6Gjo6Ne7toAvHOjNSsrK4SGhiI5OVlRVl1djeTkZERERKh8T0REhNL8ALBnzx6181PT9jMALFmyBB9++CF2796N/v37GyJUs6brfg4MDERGRgbS09MVr4cffhgjRoxAeno6vL29DRm+WWnKMT1o0CBcuHBBkUACwPnz5+Hh4cHERo2m7OeysrIGCUxNQilw2MUWY5Rrod6qKovQ5s2bBWtra2HDhg3CmTNnhOeff15o3769UFBQIAiCIEybNk2YO3euYv7Dhw8Lbdq0EZYtWyacPXtWmD9/PpuCa0HX/bxo0SLByspK+OGHH4T8/HzF69atW8baBLOg636uj62ltKfrvs7NzRXatWsnvPzyy0JmZqbw008/Ca6ursJHH31krE0wC7ru5/nz5wvt2rUTNm3aJFy8eFH49ddfBX9/f2HSpEnG2gSzcOvWLeHEiRPCiRMnBADCihUrhBMnTgiXLl0SBEEQ5s6dK0ybNk0xf01T8DfffFM4e/askJiYyKbgpmblypVC586dBSsrKyEsLEz43//+p5g2bNgwYfr06Urzf//990K3bt0EKysroVevXsLPP/9s4IjNky77uUuXLgKABq/58+cbPnAzo+vxXBeTG93ouq+PHDkihIeHC9bW1oKfn5/w73//W/jnn38MHLX50WU/3717V3j//fcFf39/wcbGRvD29hZeeukl4ebNm4YP3Izs27dP5Tm3Zt9Onz5dGDZsWIP3BAcHC1ZWVoKfn5/w1Vdf6TVGiSDw3hsRERGJB+vcEBERkagwuSEiIiJRYXJDREREosLkhoiIiESFyQ0RERGJCpMbIiIiEhUmN0RERCQqTG6IiIhIpQMHDmDcuHHw9PSERCLBjz/+qPd1Xr58GU899RQ6dOgAW1tbBAUF4dixYzotg8kNERnd008/jfHjxxtt/dOmTcPChQu1mveJJ57A8uXL9RwRkWkoLS1F3759kZiYaJD13bx5E4MGDULbtm2xa9cunDlzBsuXL4eTk5NOy2EPxUSkVxKJROP0+fPn47XXXoMgCGjfvr1hgqrj5MmTGDlyJC5dugQHB4dG5z99+jSGDh2K7OxsSKVSA0RIZBokEgm2b9+u9EOkoqIC77zzDjZt2oTi4mL07t0bixcvxvDhw5u0jrlz5+Lw4cM4ePBgs2LlnRsi0qv8/HzFKyEhAY6Ojkplb7zxBqRSqVESGwBYuXIlJk6cqFViAwC9e/eGv78/vv32Wz1HRmT6Xn75ZRw9ehSbN2/GqVOnMHHiRDz44IP466+/mrS8HTt2oH///pg4cSJcXV0REhKCdevW6bwcJjdEpFfu7u6Kl1QqhUQiUSpzcHBo8Fhq+PDhmD17NubMmQMnJye4ublh3bp1KC0tRUxMDNq1a4eAgADs2rVLaV2nT5/G6NGj4eDgADc3N0ybNg1FRUVqY6uqqsIPP/yAcePGKZV/9tln6Nq1K2xsbODm5obHH39cafq4ceOwefPm5u8cIjOWm5uLr776Clu2bMGQIUPg7++PN954A4MHD8ZXX33VpGVevHgRn3/+Obp27YpffvkFL774Il555RVs3LhRp+UwuSEik7Rx40a4uLggJSUFs2fPxosvvoiJEyciMjISx48fxwMPPIBp06ahrKwMAFBcXIyRI0ciJCQEx44dw+7du1FYWIhJkyapXcepU6cgk8nQv39/RdmxY8fwyiuv4IMPPkBmZiZ2796NoUOHKr0vLCwMKSkpqKio0M/GE5mBjIwMVFVVoVu3bnBwcFC8fv/9d2RlZQEAzp07B4lEovE1d+5cxTKrq6vRr18/LFy4ECEhIXj++ecxY8YMrF69WqfY2rTolhIRtZC+ffvi3XffBQDExcVh0aJFcHFxwYwZMwAA8+bNw+eff45Tp05h4MCBWLVqFUJCQpQqBq9fvx7e3t44f/48unXr1mAdly5dgqWlJVxdXRVlubm5sLe3x9ixY9GuXTt06dIFISEhSu/z9PREZWUlCgoK0KVLF31sPpHJu337NiwtLZGWlgZLS0ulaTWPef38/HD27FmNy+nQoYPi/x4eHujZs6fS9B49emDr1q06xcbkhohMUp8+fRT/t7S0RIcOHRAUFKQoc3NzAwBcvXoVgLxi8L59+1TWncnKylKZ3JSXl8Pa2lqp0vP999+PLl26wM/PDw8++CAefPBBPProo7Czs1PMY2trCwCKu0ZErVFISAiqqqpw9epVDBkyROU8VlZWCAwM1HqZgwYNQmZmplLZ+fPndf4RweSGiExS27Ztlf6WSCRKZTUJSXV1NQD5r8hx48Zh8eLFDZbl4eGhch0uLi4oKytDZWUlrKysAADt2rXD8ePHsX//fvz666+YN28e3n//faSmpioqPd+4cQMA0LFjx+ZtJJGJu337Ni5cuKD4Ozs7G+np6XB2dka3bt3w5JNPIjo6GsuXL0dISAiuXbuG5ORk9OnTBw899JDO63vttdcQGRmJhQsXYtKkSUhJScHatWuxdu1anZbDOjdEJAr9+vXDn3/+CR8fHwQEBCi97O3tVb4nODgYAHDmzBml8jZt2iAqKgpLlizBqVOnkJOTg7179yqmnz59Gp06dYKLi4vetofIFBw7dgwhISGKR7OxsbEICQnBvHnzAABfffUVoqOj8frrr6N79+4YP348UlNT0blz5yatb8CAAdi+fTs2bdqE3r1748MPP0RCQgKefPJJnZbDOzdEJAqzZs3CunXrMGXKFPzrX/+Cs7MzLly4gM2bN+OLL75oUCcAkN956devHw4dOqRIdH766SdcvHgRQ4cOhZOTE3bu3Inq6mp0795d8b6DBw/igQceMNSmERnN8OHDoak7vLZt22LBggVYsGBBi61z7NixGDt2bLOWwTs3RCQKnp6eOHz4MKqqqvDAAw8gKCgIc+bMQfv27WFhof5U99xzz+E///mP4u/27dtj27ZtGDlyJHr06IHVq1dj06ZN6NWrFwDgzp07+PHHHxUVm4nI9LCHYiJq1crLy9G9e3ckJSUhIiKi0fk///xzbN++Hb/++qsBoiOipuCdGyJq1WxtbfH1119r7OyvrrZt22LlypV6joqImoN3boiIiEhUeOeGiIiIRIXJDREREYkKkxsiIiISFSY3REREJCpMboiIiEhUmNwQERGRqDC5ISIiIlFhckNERESiwuSGiIiIROX/AevHEfT2BHQ0AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=trace_schedule,\n", " schedule_kwargs={\n", " \"pulse_amp\": 0.5,\n", " \"acq_delay\": 100e-9,\n", " },\n", " batched=True,\n", ")\n", "\n", "data = gettable.get()\n", "\n", "plt.plot(np.arange(1000)/1e9, data[0], '.', label=\"real\")\n", "plt.plot(np.arange(1000)/1e9, data[1], '.', label=\"imaginary\")\n", "plt.legend()\n", "plt.xlabel(\"Time (s)\")\n", "plt.ylabel(\"Voltage (V)\")\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "282569bb", "metadata": {}, "source": [ "This time, there is only one acquisition operation in the schedule. The measurement result contains two arrays: one for the _I_ values (`data[0][:]`), and one for the _Q_ values (`data[1][:]`) of the acquired trace.\n", "\n", "## MeasurementControl\n", "\n", "Iterating through different parameters can be done with some help from `quantify-core` as well, through the {class}`~quantify_core.measurement.control.MeasurementControl` class. The {class}`~quantify_core.measurement.control.MeasurementControl` uses settables (parameters to vary in an experiment) and gettables (in this case, our {class}`~quantify_scheduler.gettables.ScheduleGettable`). The settable must be a class that implements `set()`, such as a QCoDeS {class}`~qcodes.parameters.ManualParameter`.\n", "\n", "In this example, the settable is the `time` object, and the setpoints are a numpy array of values (`times`). These are added to the {class}`~quantify_core.measurement.control.MeasurementControl` as shown, together with the {class}`~quantify_scheduler.gettables.ScheduleGettable`. The {class}`~quantify_core.measurement.control.MeasurementControl` object will be in charge of setting the setpoints, and retrieving the measurement results through the gettable." ] }, { "cell_type": "code", "execution_count": 8, "id": "1965ed60", "metadata": {}, "outputs": [], "source": [ "from quantify_core.measurement.control import MeasurementControl\n", "\n", "\n", "measurement_control = MeasurementControl(\"measurement_control\")\n", "\n", "# Configure the settable\n", "time = ManualParameter(\"sample\", label=\"Sample time\", unit=\"s\")\n", "time.batched = True\n", "\n", "times = np.linspace(start=1.6e-7, stop=4.976e-5, num=125)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=t1_sched,\n", " schedule_kwargs={\"times\": time},\n", " batched=True\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables(time)\n", "measurement_control.setpoints(times)\n", "measurement_control.gettables(gettable)" ] }, { "cell_type": "markdown", "id": "a6efdb28", "metadata": {}, "source": [ "The experiment is set to run fully in _batched_ mode. When using {class}`~quantify_core.measurement.control.MeasurementControl`, settables and gettables can be either batched (an array of points is set for each measurement iteration) or iterative (only one point is set per iteration). Combinations of batched and iterative settables are possible, as explained in detail in the [quantify-core documentation](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#mixing-iterative-and-batched-settables).\n", "\n", "Settables and gettables are batched if they have the attribute `batched=True`. In {class}`~quantify_scheduler.gettables.ScheduleGettable`, this can be controlled through the `batched` argument when creating the class. For other classes, the attribute can be added dynamically if needed, as shown above for the `time` parameter.\n", "\n", "With both the gettable and the settable having `batched=True`, the {class}`~quantify_core.measurement.control.MeasurementControl` knows that it should set the entire `times` array as the settable's value (instead of repeating the experiment for each value in the array). All data points are measured without interruption and all measurement results are returned in one go. Now, let's run the experiment and retrieve the data." ] }, { "cell_type": "code", "execution_count": 9, "id": "aa853b57", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t --- (None) --- \n", "Batched settable(s):\n", "\t sample \n", "Batch size limit: 125\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1b70b78ecc4b47ab9e62038670fd9e96", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dataset = measurement_control.run()" ] }, { "cell_type": "markdown", "id": "50443e51", "metadata": {}, "source": [ "The {class}`~quantify_core.measurement.control.MeasurementControl` class processes the data returned by the {class}`~quantify_scheduler.gettables.ScheduleGettable`, and turns it into a {class}`~xarray.Dataset`. More information on the format of this dataset can be found in the [quantify-core documentation](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#dataset)." ] }, { "cell_type": "code", "execution_count": 10, "id": "b0d18920", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 3kB\n",
       "Dimensions:  (dim_0: 125)\n",
       "Coordinates:\n",
       "    x0       (dim_0) float64 1kB 1.6e-07 5.6e-07 9.6e-07 ... 4.936e-05 4.976e-05\n",
       "Dimensions without coordinates: dim_0\n",
       "Data variables:\n",
       "    y0       (dim_0) float64 1kB -1.166 -1.141 -1.109 ... -0.737 -0.7305 -1.164\n",
       "    y1       (dim_0) float64 1kB 0.2569 0.2138 0.2035 ... -0.2533 -0.247 0.2671\n",
       "Attributes:\n",
       "    tuid:                             20251106-100506-702-305189\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         False\n",
       "    1d_2_settables_uniformly_spaced:  False
" ], "text/plain": [ " Size: 3kB\n", "Dimensions: (dim_0: 125)\n", "Coordinates:\n", " x0 (dim_0) float64 1kB 1.6e-07 5.6e-07 9.6e-07 ... 4.936e-05 4.976e-05\n", "Dimensions without coordinates: dim_0\n", "Data variables:\n", " y0 (dim_0) float64 1kB -1.166 -1.141 -1.109 ... -0.737 -0.7305 -1.164\n", " y1 (dim_0) float64 1kB 0.2569 0.2138 0.2035 ... -0.2533 -0.247 0.2671\n", "Attributes:\n", " tuid: 20251106-100506-702-305189\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: False\n", " 1d_2_settables_uniformly_spaced: False" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset" ] }, { "cell_type": "markdown", "id": "1b36c348", "metadata": {}, "source": [ "The dataset coordinates and data variables are named as generic `x` and `y` parameters. You can click on the 'Show/Hide attributes' button next to the coordinates and variables to see what they refer to.\n", "\n", "(sec-tutorial-schedulegettable-repetitions)=\n", "## Repetitions\n", "\n", "Repetition defines how many times the defined schedule will run on the hardware. Running the schedule multiple times can be useful for example if the user would like to reduce errors of acquisitions by averaging the result of multiple measurements.\n", "\n", "There are multiple ways the repetitions can be set. They are not completely independent of each other, and which setting will be taken into account depends on how you create and use the schedule.\n", "\n", "1. {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice`: via `cfg_sched_repetitions` (by default it is `1024`),\n", "2. schedule function: via the `repetitions` function argument,\n", "3. {class}`~quantify_scheduler.schedules.schedule.Schedule` object: via the `repetitions` function argument of its constructor, or via its `repetitions` attribute directly,\n", "4. ({class}`~quantify_scheduler.gettables.ScheduleGettable`: currently, it is not possible to supply `repetitions` via `schedule_kwargs`).\n", "\n", "Ultimately, the {class}`~quantify_scheduler.schedules.schedule.Schedule` object is what governs the repetitions, via its `repetitions` attribute.\n", "\n", "When using a schedule function, the `repetitions` function argument sets the repetitions, provided that the schedule function passes it to the `Schedule` object. This is true for the pre-defined schedules, see {mod}`!quantify_scheduler.schedules`.\n", "\n", "However, if the experiment is run using `ScheduleGettable`, this `repetitions` function argument is set to `QuantumDevice.cfg_sched_repetitions`. Hence, typically, the schedule will run `QuantumDevice.cfg_sched_repetitions` times.\n", "\n", "### Possible mistake: ignoring `repetitions` argument\n", "\n", "Keep in mind that the schedule function should pass the `repetitions` argument to the `Schedule` initializer, otherwise both `QuantumDevice.cfg_sched_repetitions` and the `repetitions` argument of the schedule function will be ignored. For example, in the following setup, the `repetitions` will always be `1` (default for the `Schedule` object), even if `cfg_sched_repetitions` is set to `2`." ] }, { "cell_type": "code", "execution_count": 11, "id": "b494b72b", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import QuantumDevice, ScheduleGettable\n", "\n", "def schedule_function(q0: str, repetitions: int):\n", " schedule = Schedule(\"Example schedule\")\n", " schedule.add(Measure(q0))\n", " return schedule\n", "\n", "quantum_device = QuantumDevice(name=\"quantum_sample\")\n", "quantum_device.cfg_sched_repetitions(2)\n", "\n", "schedule_gettable = ScheduleGettable(\n", " quantum_device=quantum_device,\n", " schedule_function=schedule_function,\n", " schedule_kwargs={\"q0\": \"q0\"},\n", ")" ] }, { "cell_type": "markdown", "id": "a1c88312", "metadata": {}, "source": [ "### Possible mistake: ignoring `cfg_sched_repetitions` default value\n", "\n", "Also note, that the default value of the `repetitions` argument of the schedule function will be ignored if `ScheduleGettable` is used, and it will be set to `QuantumDevice.cfg_sched_repetitions`. For example, in the following setup, `repetitions` will be `1024` (default for `QuantumDevice`), even if the default argument for `repetitions` is `2`." ] }, { "cell_type": "code", "execution_count": 12, "id": "847129d7", "metadata": { "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "quantum_device.close()" ] }, { "cell_type": "code", "execution_count": 13, "id": "37ce5828", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import QuantumDevice, ScheduleGettable\n", "\n", "def schedule_function(q0: str, repetitions: int = 2):\n", " schedule = Schedule(\"Example schedule\", repetitions=repetitions)\n", " schedule.add(Measure(q0))\n", " return schedule\n", "\n", "quantum_device = QuantumDevice(name=\"quantum_sample\")\n", "\n", "schedule_gettable = ScheduleGettable(\n", " quantum_device=quantum_device,\n", " schedule_function=schedule_function,\n", " schedule_kwargs={\"q0\": \"q0\"},\n", ")" ] }, { "cell_type": "markdown", "id": "78fec46d", "metadata": {}, "source": [ "(sec-schedulegettable-2dsweep-usage)=\n", "\n", "## 2D (and ND) measurement loops" ] }, { "cell_type": "code", "execution_count": 14, "id": "c86b1d69", "metadata": { "mystnb": { "code_prompt_show": "Set up the quantum device, dummy hardware and hardware configuration" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "from qblox_instruments import Cluster, ClusterType, DummyBinnedAcquisitionData\n", "\n", "from quantify_scheduler import BasicTransmonElement, InstrumentCoordinator, QuantumDevice\n", "from quantify_scheduler.qblox import ClusterComponent\n", "\n", "\n", "single_qubit_device.close_all()\n", "\n", "# Device parameters\n", "Q0_ACQ_DELAY = 100e-9\n", "Q0_FREQ_01 = 4e9\n", "Q0_READOUT_AMP = 0.1\n", "Q0_READOUT_FREQ = 4.3e9\n", "Q0_PI_PULSE_AMP = 0.15\n", "Q0_LO_FREQ_QUBIT = 3.9e9\n", "Q0_LO_FREQ_READOUT = 4.5e9\n", "\n", "Q1_ACQ_DELAY = 120e-9\n", "Q1_FREQ_01 = 4.1e9\n", "Q1_READOUT_AMP = 0.1\n", "Q1_READOUT_FREQ = 3.8e9\n", "Q1_PI_PULSE_AMP = 0.15\n", "Q1_LO_FREQ_QUBIT = 4.1e9\n", "Q1_LO_FREQ_READOUT = 3.8e9\n", "\n", "two_qubit_device = QuantumDevice(\"two_qubit_device\")\n", "\n", "q0 = BasicTransmonElement(\"q0\")\n", "q0.measure.acq_channel(0)\n", "q0.measure.pulse_amp(Q0_READOUT_AMP)\n", "q0.clock_freqs.readout(Q0_READOUT_FREQ)\n", "q0.clock_freqs.f01(Q0_FREQ_01)\n", "q0.measure.acq_delay(Q0_ACQ_DELAY)\n", "q0.rxy.amp180(Q0_PI_PULSE_AMP)\n", "\n", "q1 = BasicTransmonElement(\"q1\")\n", "q1.measure.acq_channel(1) # Note that we're specifying that measurements on q1 should use a different measurement channel\n", "q1.measure.pulse_amp(Q1_READOUT_AMP)\n", "q1.clock_freqs.readout(Q1_READOUT_FREQ)\n", "q1.clock_freqs.f01(Q1_FREQ_01)\n", "q1.measure.acq_delay(Q1_ACQ_DELAY)\n", "q1.rxy.amp180(Q1_PI_PULSE_AMP)\n", "\n", "two_qubit_device.add_element(q0)\n", "two_qubit_device.add_element(q1)\n", "\n", "# We will need to adjust the hardware configuration.\n", "\n", "# Note: if you are connecting to an actual cluster, you would provide the\n", "# 'identifier' argument (the ip address, device name or serial number) instead\n", "# of the 'dummy_cfg' argument.\n", "cluster = Cluster(\n", " \"cluster\",\n", " dummy_cfg={\n", " 1: ClusterType.CLUSTER_QRM_RF,\n", " 2: ClusterType.CLUSTER_QCM_RF,\n", " 3: ClusterType.CLUSTER_QRM_RF,\n", " 4: ClusterType.CLUSTER_QCM_RF,\n", " },\n", ")\n", "\n", "ic_cluster = ClusterComponent(cluster)\n", "\n", "# Temporarily fixing dummy cluster's deficiency.\n", "cluster.start_sequencer = lambda : start_dummy_cluster_armed_sequencers(ic_cluster)\n", "\n", "instrument_coordinator = InstrumentCoordinator(\"instrument_coordinator\")\n", "instrument_coordinator.add_component(ic_cluster)\n", "\n", "two_qubit_device.instr_instrument_coordinator(instrument_coordinator.name)\n", "\n", "hardware_cfg = {\n", " \"version\": \"0.2\",\n", " \"config_type\": \"quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig\",\n", " \"hardware_description\": {\n", " f\"{cluster.name}\": {\n", " \"instrument_type\": \"Cluster\",\n", " \"modules\": {\n", " \"1\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"2\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " },\n", " \"3\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"4\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " }\n", " },\n", " \"ref\": \"internal\"\n", " }\n", " },\n", " \"hardware_options\": {\n", " \"modulation_frequencies\": {\n", " \"q0:res-q0.ro\": {\n", " \"lo_freq\": Q0_LO_FREQ_READOUT\n", " },\n", " \"q0:mw-q0.01\": {\n", " \"lo_freq\": Q0_LO_FREQ_QUBIT\n", " },\n", " \"q1:res-q1.ro\": {\n", " \"lo_freq\": Q1_LO_FREQ_READOUT\n", " },\n", " \"q1:mw-q1.01\": {\n", " \"lo_freq\": Q1_LO_FREQ_QUBIT\n", " }\n", " }\n", " },\n", " \"connectivity\": {\n", " \"graph\": [\n", " [f\"{cluster.name}.module1.complex_output_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module1.complex_input_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module2.complex_output_0\", \"q0:mw\"],\n", " [f\"{cluster.name}.module3.complex_output_0\", \"q1:res\"],\n", " [f\"{cluster.name}.module3.complex_input_0\", \"q1:res\"],\n", " [f\"{cluster.name}.module4.complex_output_0\", \"q1:mw\"]\n", " ]\n", " }\n", "}\n", "\n", "\n", "two_qubit_device.hardware_config(hardware_cfg)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1, sequencer=0, acq_index_name=\"0\", data=[DummyBinnedAcquisitionData(data=(0.0, 0.0), thres=0, avg_cnt=0)]\n", ")\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=3, sequencer=0, acq_index_name=\"0\", data=[DummyBinnedAcquisitionData(data=(0.0, 0.0), thres=0, avg_cnt=0)]\n", ")" ] }, { "cell_type": "markdown", "id": "4b0697a5", "metadata": {}, "source": [ "2D and higher-dimensional measurement loops are easy to realize. Below we show an example Chevron experiment, which is a type of two-qubit experiment often performed on transmon qubits. The experiment includes a square pulse, and we want to vary both its amplitude and duration in a 2D grid. We have already set up a two-qubit {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` under the variable name `two_qubit_device`.\n", "\n", "We define simple schedule below with a parameterized amplitude and duration of the square pulse. `duration` and `amp` are scalars, so for each measurement point the schedule will be recompiled." ] }, { "cell_type": "code", "execution_count": 15, "id": "0d81f8b3", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import Schedule\n", "from quantify_scheduler.operations import Measure, Reset, SquarePulse, X, X90\n", "\n", "def chevron_schedule_not_batched(duration, amp, repetitions=1):\n", " sched = Schedule(\"Chevron Experiment\", repetitions=repetitions)\n", "\n", " acq_idx = 0\n", "\n", " reset = sched.add(Reset(\"q0\", \"q1\"))\n", " sched.add(X(\"q0\"), ref_op=reset, ref_pt=\"end\") # Start at the end of the reset\n", " # We specify a clock for tutorial purposes, Chevron experiments do not necessarily use modulated square pulses\n", " square = sched.add(SquarePulse(amp=amp, duration=duration, port=\"q0:mw\", clock=\"q0.01\"))\n", " sched.add(X90(\"q0\"), ref_op=square) # Start at the end of the square pulse\n", " sched.add(X90(\"q1\"), ref_op=square)\n", " sched.add(Measure(\"q0\"), label=f\"M q0 {acq_idx}\")\n", " sched.add(\n", " Measure(\"q1\"),\n", " label=f\"M q1 {acq_idx}\",\n", " ref_pt=\"start\", # Start at the same time as the other measure\n", " )\n", "\n", " return sched" ] }, { "cell_type": "markdown", "id": "86e97df0", "metadata": {}, "source": [ "We set up a non-batched measurement with {class}`~quantify_core.measurement.control.MeasurementControl` and a {class}`~quantify_scheduler.gettables.ScheduleGettable`. For this {class}`~quantify_scheduler.gettables.ScheduleGettable`, notice the keyword argument `num_channels=2`, which is needed since we specified in the quantum device elements that the measurements on `\"q0\"` and `\"q1\"` should end up in two different channels.\n", "\n", "In addition, we used another new argument in the {class}`~quantify_scheduler.gettables.ScheduleGettable`: `real_imag=False`. `real_imag` can be used to transform the acquisition data. If it is `True` (the default), the I and Q values will be returned, and if it is `False`, the data will be transformed to the absolute value and the phase (in degrees, in the interval `(-180, 180]`)." ] }, { "cell_type": "code", "execution_count": 16, "id": "ab85d5fb", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting iterative measurement...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "813ae00757284d0788937e0062567e74", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "measurement_control = MeasurementControl(\"measurement_control\")\n", "\n", "# Configure the settables\n", "duration = ManualParameter(\"duration\", label=\"Duration\", unit=\"s\")\n", "duration.batched = False\n", "\n", "durations = np.linspace(start=20e-9, stop=60e-9, num=6)\n", "\n", "amplitude = ManualParameter(\"amplitude\", label=\"Amplitude\", unit=\"V\")\n", "amplitude.batched = False\n", "\n", "amplitudes = np.linspace(start=0.1, stop=1.0, num=10)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=two_qubit_device,\n", " schedule_function=chevron_schedule_not_batched,\n", " schedule_kwargs={\"duration\": duration, \"amp\": amplitude},\n", " batched=False,\n", " real_imag=False,\n", " num_channels=2,\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables([duration, amplitude])\n", "measurement_control.setpoints_grid([durations, amplitudes]) # note: setpoints_grid instead of setpoints\n", "measurement_control.gettables(gettable)\n", "\n", "# Run!\n", "dataset = measurement_control.run()\n", "dset_grid = dh.to_gridded_dataset(dataset)" ] }, { "cell_type": "code", "execution_count": 17, "id": "d8636862", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 2kB\n",
       "Dimensions:  (x0: 6, x1: 10)\n",
       "Coordinates:\n",
       "  * x0       (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n",
       "  * x1       (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n",
       "Data variables:\n",
       "    y0       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y1       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y2       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y3       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "Attributes:\n",
       "    tuid:                             20251106-100507-898-6f6f78\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         True\n",
       "    1d_2_settables_uniformly_spaced:  False\n",
       "    xlen:                             6\n",
       "    ylen:                             10
" ], "text/plain": [ " Size: 2kB\n", "Dimensions: (x0: 6, x1: 10)\n", "Coordinates:\n", " * x0 (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n", " * x1 (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n", "Data variables:\n", " y0 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y1 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y2 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y3 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", "Attributes:\n", " tuid: 20251106-100507-898-6f6f78\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: True\n", " 1d_2_settables_uniformly_spaced: False\n", " xlen: 6\n", " ylen: 10" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dset_grid" ] }, { "cell_type": "markdown", "id": "a6a3b8cb", "metadata": {}, "source": [ "As expected, this dataset contains double the amount of coordinates and data variables (note that the actual data has been mocked and set to 0.0). The two coordinates refer to the settables, `duration` and `amplitude`. With `real_imag` now set to `False`, the data variables contain the magnitude and phase (as opposed to the I and Q voltages) for measurements on `\"q0\"` and `\"q1\"`.\n", "\n", "### Batched 2D experiment\n", "\n", "Since this measurement is not batched, it's rather slow. Let's make this faster with (partial) batching.\n", "\n", "We will batch the amplitudes together, so we change the amplitudes parameter in the schedule function to an array." ] }, { "cell_type": "code", "execution_count": 18, "id": "24be9660", "metadata": { "mystnb": { "code_prompt_show": "Provide the dummy hardware with acquisition data" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "from qblox_instruments import DummyBinnedAcquisitionData\n", "\n", "\n", "def get_dummy_binned_acquisition_data(real: float, imag: float):\n", " return DummyBinnedAcquisitionData(data=(real, imag), thres=0, avg_cnt=0)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1, sequencer=0, acq_index_name=\"0\", data=[get_dummy_binned_acquisition_data(re * 10, im * 10) for re, im in zip(range(-5, 5), range(5, -5, -1))]\n", ")\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=3, sequencer=0, acq_index_name=\"0\", data=[get_dummy_binned_acquisition_data(re * 10, im * 10) for re, im in zip(range(-5, 5), range(5, -5, -1))]\n", ")" ] }, { "cell_type": "code", "execution_count": 19, "id": "00e6f5fd", "metadata": {}, "outputs": [], "source": [ "def chevron_schedule_batched(duration, amps, repetitions=1):\n", " sched = Schedule(\"Chevron Experiment\", repetitions=repetitions)\n", "\n", " acq_idx = 0\n", "\n", " for amp in amps:\n", " reset = sched.add(Reset(\"q0\", \"q1\"))\n", " sched.add(X(\"q0\"), ref_op=reset, ref_pt=\"end\")\n", " square = sched.add(SquarePulse(amp=amp, duration=duration, port=\"q0:mw\", clock=\"q0.01\"))\n", " sched.add(X90(\"q0\"), ref_op=square)\n", " sched.add(X90(\"q1\"), ref_op=square)\n", " sched.add(Measure(\"q0\"), label=f\"M q0 {acq_idx}\")\n", " sched.add(\n", " Measure(\"q1\"),\n", " label=f\"M q1 {acq_idx}\",\n", " ref_pt=\"start\",\n", " )\n", "\n", " acq_idx += 1\n", "\n", " return sched" ] }, { "cell_type": "markdown", "id": "1d68f36d", "metadata": {}, "source": [ "We specify that we want to batch the amplitudes by setting ``amplitude.batched = True`` and ``batched=True``as keyword argument for the gettable. Finally, we run this experiment just as before." ] }, { "cell_type": "code", "execution_count": 20, "id": "cf904cc2", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t duration \n", "Batched settable(s):\n", "\t amplitude \n", "Batch size limit: 60\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9c2d9d14d5334afdaad5c5345d702841", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Configure the settables\n", "duration = ManualParameter(\"duration\", label=\"Duration\", unit=\"s\")\n", "duration.batched = False\n", "\n", "durations = np.linspace(start=20e-9, stop=60e-9, num=6)\n", "\n", "amplitude = ManualParameter(\"amplitude\", label=\"Amplitude\", unit=\"V\")\n", "amplitude.batched = True\n", "\n", "amplitudes = np.linspace(start=0.1, stop=1.0, num=10)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=two_qubit_device,\n", " schedule_function=chevron_schedule_batched,\n", " schedule_kwargs={\"duration\": duration, \"amps\": amplitude},\n", " batched=True,\n", " real_imag=False,\n", " data_labels=[\"Magnitude Q0\", \"Phase Q0\", \"Magnitude Q1\", \"Phase Q1\"],\n", " num_channels=2,\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables([duration, amplitude])\n", "measurement_control.setpoints_grid([durations, amplitudes])\n", "measurement_control.gettables(gettable)\n", "\n", "# Run!\n", "dataset = measurement_control.run()\n", "dset_grid = dh.to_gridded_dataset(dataset)" ] }, { "cell_type": "code", "execution_count": 21, "id": "133bcc0b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 2kB\n",
       "Dimensions:  (x0: 6, x1: 10)\n",
       "Coordinates:\n",
       "  * x0       (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n",
       "  * x1       (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n",
       "Data variables:\n",
       "    y0       (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n",
       "    y1       (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n",
       "    y2       (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n",
       "    y3       (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n",
       "Attributes:\n",
       "    tuid:                             20251106-100513-247-17fa39\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         True\n",
       "    1d_2_settables_uniformly_spaced:  False\n",
       "    xlen:                             6\n",
       "    ylen:                             10
" ], "text/plain": [ " Size: 2kB\n", "Dimensions: (x0: 6, x1: 10)\n", "Coordinates:\n", " * x0 (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n", " * x1 (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n", "Data variables:\n", " y0 (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n", " y1 (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n", " y2 (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n", " y3 (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n", "Attributes:\n", " tuid: 20251106-100513-247-17fa39\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: True\n", " 1d_2_settables_uniformly_spaced: False\n", " xlen: 6\n", " ylen: 10" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dset_grid" ] }, { "cell_type": "markdown", "id": "1a558115", "metadata": {}, "source": [ "The shape of the dataset is no different from the previous (non-batched) experiment, but the metadata is a little different. Some coordinates and data variables now have the `batched=True` attribute. We also introduced another keyword argument: the `data_labels`. These `data_labels` are picked up by the {class}`~quantify_core.measurement.control.MeasurementControl`and end up in the {class}`xarray.Dataset` as the \"long_name\" of attributes. For example, `\"y0\"`s label can be accessed through `dataset[\"y0\"].attrs[\"long_name\"]`. The various plotting features of `quantify-core` will use this name to get labels for the figure axes." ] } ], "metadata": { "file_format": "mystnb", "kernelspec": { "display_name": "python3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.25" }, "source_map": [ 6, 34, 141, 149, 166, 170, 195, 199, 247, 251, 263, 273, 299, 303, 322, 332, 356, 364, 369, 373, 375, 401, 417, 423, 430, 445, 451, 588, 594, 617, 623, 660, 662, 672, 692, 714, 718, 754, 756 ], "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "0b87ac3a125245ddb841ec381a01090c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_13a1fb8a93ce4c3d9d577566489537ef", "placeholder": "​", "style": "IPY_MODEL_c2bf0073470f468baedd71957c2dcb4c", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 10" } }, "13a1fb8a93ce4c3d9d577566489537ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "171e4efa82394279b5653e6c7506b2bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "19eb8f4b6e814092b8be4a72d70a639c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1b70b78ecc4b47ab9e62038670fd9e96": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_b655432df8754bb6b787dbcd6c164e2e", "IPY_MODEL_d4651bf4058d443993ce1a22af1c80bc", "IPY_MODEL_3d06635cf0414248b70c8b79655e057e" ], "layout": "IPY_MODEL_799b5fcc7cdf4643bb3608967368eee7", "tabbable": null, "tooltip": null } }, "24e049604a9842debd3dd3bff3d91373": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "2cacbf7573464136956545d9728a5c9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "391048ed3e7d4cf4b5983c7c5e5b0b60": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3d06635cf0414248b70c8b79655e057e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f25fd2759a38498191213e7ff4b95d32", "placeholder": "​", "style": "IPY_MODEL_53e50710d21447c6bd6d53d499808d9b", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 125" } }, "53e50710d21447c6bd6d53d499808d9b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "550e4213947d416f8a0ea6f3553669d9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "5a0289f0e63341119b2289076ccf8587": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5b55e193523545ea862822f7335ade03": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6dbaff0d4f314d4d977f6af7260a36d4", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_24e049604a9842debd3dd3bff3d91373", "tabbable": null, "tooltip": null, "value": 100.0 } }, "640769df77ed4a2980e0532c01d81702": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c828ef8eb17c46bc8090deb696616784", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_660da3312a504c05b1f3e13ab7f83e43", "tabbable": null, "tooltip": null, "value": 100.0 } }, "660da3312a504c05b1f3e13ab7f83e43": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "6dbaff0d4f314d4d977f6af7260a36d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "705be5978b894307ab8b444f563046a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "799b5fcc7cdf4643bb3608967368eee7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7bb56ef88c784e9c8baf2594477279c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "813ae00757284d0788937e0062567e74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_c495a3b971ab40c2b88d780e4cb1f167", "IPY_MODEL_640769df77ed4a2980e0532c01d81702", "IPY_MODEL_b9e3ee6a83c04a7ea251b4415ecf6baf" ], "layout": "IPY_MODEL_5a0289f0e63341119b2289076ccf8587", "tabbable": null, "tooltip": null } }, "9c2d9d14d5334afdaad5c5345d702841": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_cba1e1098851441c897d5719dac499e2", "IPY_MODEL_5b55e193523545ea862822f7335ade03", "IPY_MODEL_0b87ac3a125245ddb841ec381a01090c" ], "layout": "IPY_MODEL_391048ed3e7d4cf4b5983c7c5e5b0b60", "tabbable": null, "tooltip": null } }, "ac748b29bfa14baca022e3ffbbdeb316": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "afc1e837607e4f78912dddef7a99ec6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "b655432df8754bb6b787dbcd6c164e2e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ac748b29bfa14baca022e3ffbbdeb316", "placeholder": "​", "style": "IPY_MODEL_2cacbf7573464136956545d9728a5c9c", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "b9e3ee6a83c04a7ea251b4415ecf6baf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_19eb8f4b6e814092b8be4a72d70a639c", "placeholder": "​", "style": "IPY_MODEL_705be5978b894307ab8b444f563046a3", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:04 | time left: 00:00 ] " } }, "c2bf0073470f468baedd71957c2dcb4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "c495a3b971ab40c2b88d780e4cb1f167": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_171e4efa82394279b5653e6c7506b2bd", "placeholder": "​", "style": "IPY_MODEL_7bb56ef88c784e9c8baf2594477279c1", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "c828ef8eb17c46bc8090deb696616784": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "cba1e1098851441c897d5719dac499e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e532cd5abe324d99b98ad9f927a73b77", "placeholder": "​", "style": "IPY_MODEL_550e4213947d416f8a0ea6f3553669d9", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "d4651bf4058d443993ce1a22af1c80bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dae86fe4419f4365a3366d70908f1e1f", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_afc1e837607e4f78912dddef7a99ec6c", "tabbable": null, "tooltip": null, "value": 100.0 } }, "dae86fe4419f4365a3366d70908f1e1f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e532cd5abe324d99b98ad9f927a73b77": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f25fd2759a38498191213e7ff4b95d32": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }