{ "cells": [ { "cell_type": "markdown", "id": "7c2575dd", "metadata": {}, "source": [ "(sec-tutorial-schedulegettable)=\n", "\n", "# Tutorial: ScheduleGettable\n", "\n", "```{seealso}\n", "The complete source code of this tutorial can be found in\n", "\n", "{nb-download}`ScheduleGettable.ipynb`\n", "```\n", "\n", "This tutorial covers the {class}`~quantify_scheduler.gettables.ScheduleGettable` in-depth. If you're looking for more information on how to set up an experiment in general, please see {ref}`sec-tutorial-experiment`.\n", "\n", "The {class}`~quantify_scheduler.gettables.ScheduleGettable` forms the top-level interface to {mod}`quantify_scheduler`. Under the hood, it uses `quantify-scheduler` modules to compile {ref}`Schedules `, run them on your hardware and retrieve measurement data from the hardware. As the {class}`~quantify_scheduler.gettables.ScheduleGettable` uses functions that return {class}`~quantify_scheduler.schedules.schedule.Schedule`s, you can dynamically set function parameters during experiments.\n", "\n", "For those familiar with [quantify-core](https://quantify-os.org/docs/quantify-core), the interface of the {class}`~quantify_scheduler.gettables.ScheduleGettable` is also designed to be used as a [gettable](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#settables-and-gettables) for [MeasurementControl](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#measurement-control). This is convenient for large, possibly multi-dimensional measurement loops, as is demonstrated in {ref}`2D (and ND) measurement loops`.\n", "\n", "Two things are always required when using a {class}`~quantify_scheduler.gettables.ScheduleGettable`: a {ref}`QuantumDevice ` and a function that returns a {class}`~quantify_scheduler.schedules.schedule.Schedule`. We will set these up in a few example scenarios below and show how to use the {class}`~quantify_scheduler.gettables.ScheduleGettable`. More commonly used schedule functions are also included in `quantify-scheduler` out of the box. You can find them in {mod}`~.quantify_scheduler.schedules.spectroscopy_schedules`, {mod}`~.quantify_scheduler.schedules.timedomain_schedules` and {mod}`~.quantify_scheduler.schedules.trace_schedules`.\n", "\n", "(sec-schedulegettable-1dsweep-usage)=\n", "\n", "## 1D iterative measurement loop\n", "\n", "\n", "```{admonition} Setup and hardware configuration\n", "The device setup and hardware configuration for this tutorial can be viewed in the collapsed code cells. In places where you would communicate with actual hardware, dummy objects have been used. If you want to learn more about how to set up the {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` and hardware configuration, please see our other tutorials, in particular {ref}`sec-tutorial-experiment` and {ref}`sec-tutorial-compiling`.\n", "```" ] }, { "cell_type": "code", "execution_count": 1, "id": "51512084", "metadata": { "mystnb": { "code_prompt_show": "Set up the quantum device, dummy hardware and hardware configuration" }, "tags": [ "hide-cell" ] }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_1985/1151456847.py:2: DeprecationWarning: This package has reached its end of life. It is no longer maintained and will not receive any further updates or support. For further developments, please refer to the new Quantify repository: https://gitlab.com/quantify-os/quantify.All existing functionalities can be accessed via the new Quantify repository.\n", " from quantify_core.data import handling as dh\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Data will be saved in:\n", "/root/quantify-data\n" ] } ], "source": [ "from qblox_instruments import Cluster, ClusterType\n", "from quantify_core.data import handling as dh\n", "\n", "from quantify_scheduler import BasicTransmonElement, InstrumentCoordinator, QuantumDevice\n", "from quantify_scheduler.qblox import ClusterComponent, start_dummy_cluster_armed_sequencers\n", "\n", "# First, don't forget to set the data directory!\n", "dh.set_datadir() # change me!\n", "\n", "# We define a single transmon qubit as an element (BasicTransmonElement) of the\n", "# QuantumDevice, and populate the parameters with some reasonable values.\n", "\n", "# Device parameters\n", "ACQ_DELAY = 100e-9\n", "FREQ_01 = 4e9\n", "READOUT_AMP = 0.1\n", "READOUT_FREQ = 4.3e9\n", "PI_PULSE_AMP = 0.15\n", "LO_FREQ_QUBIT = 3.9e9\n", "LO_FREQ_READOUT = 4.5e9\n", "\n", "single_qubit_device = QuantumDevice(\"single_qubit_device\")\n", "\n", "q0 = BasicTransmonElement(\"q0\")\n", "single_qubit_device.add_element(q0)\n", "\n", "# Assign device parameters to transmon element\n", "q0.measure.pulse_amp(READOUT_AMP)\n", "q0.clock_freqs.readout(READOUT_FREQ)\n", "q0.clock_freqs.f01(FREQ_01)\n", "q0.measure.acq_delay(ACQ_DELAY)\n", "q0.rxy.amp180(PI_PULSE_AMP)\n", "\n", "# For this example, we will set up a Qblox cluster hardware setup with two modules: a\n", "# QRM-RF and a QCM-RF.\n", "\n", "# Note: if you are connecting to an actual cluster, you would provide the\n", "# 'identifier' argument (the ip address, device name or serial number) instead\n", "# of the 'dummy_cfg' argument.\n", "cluster = Cluster(\n", " \"cluster\",\n", " dummy_cfg={\n", " 1: ClusterType.CLUSTER_QRM_RF,\n", " 2: ClusterType.CLUSTER_QCM_RF,\n", " },\n", ")\n", "\n", "ic_cluster = ClusterComponent(cluster)\n", "\n", "# Temporarily fixing dummy cluster's deficiency.\n", "cluster.start_sequencer = lambda : start_dummy_cluster_armed_sequencers(ic_cluster)\n", "\n", "# We create an InstrumentCoordinator to control the cluster and add it to the\n", "# QuantumDevice.\n", "\n", "instrument_coordinator = InstrumentCoordinator(\"instrument_coordinator\")\n", "instrument_coordinator.add_component(ic_cluster)\n", "\n", "single_qubit_device.instr_instrument_coordinator(instrument_coordinator.name)\n", "\n", "# A basic hardware configuration will be used for the two cluster modules.\n", "\n", "hardware_cfg = {\n", " \"version\": \"0.2\",\n", " \"config_type\": \"quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig\",\n", " \"hardware_description\": {\n", " f\"{cluster.name}\": {\n", " \"instrument_type\": \"Cluster\",\n", " \"modules\": {\n", " \"1\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"2\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " }\n", " },\n", " \"ref\": \"internal\"\n", " }\n", " },\n", " \"hardware_options\": {\n", " \"modulation_frequencies\": {\n", " \"q0:res-q0.ro\": {\n", " \"lo_freq\": LO_FREQ_READOUT\n", " },\n", " \"q0:mw-q0.01\": {\n", " \"lo_freq\": LO_FREQ_QUBIT\n", " }\n", " }\n", " },\n", " \"connectivity\": {\n", " \"graph\": [\n", " [f\"{cluster.name}.module1.complex_output_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module1.complex_input_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module2.complex_output_0\", \"q0:mw\"]\n", " ]\n", " }\n", "}\n", "\n", "\n", "# This hardware configuration should also be added to the quantum device.\n", "single_qubit_device.hardware_config(hardware_cfg)" ] }, { "cell_type": "markdown", "id": "3f8183bf", "metadata": {}, "source": [ "For this experiment, we have set up a basic {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` called `single_qubit_device`, representing a single transmon qubit.\n", "\n", "We'll now define the schedule function. A valid schedule function must contain a `repetitions` (integer) parameter (see {ref}`Repetitions`), and can contain any number of additional parameters. It must return a {class}`~quantify_scheduler.schedules.schedule.Schedule` object.\n", "\n", "The schedule function can be parameterized to loop over different values. The parameters can be scalars or arrays. For example, the schedule function defined below takes an array of values for the parameter `times`. This is called a _batched_ measurement, as will be explained further in this tutorial." ] }, { "cell_type": "code", "execution_count": 2, "id": "64e6175b", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import Schedule\n", "from quantify_scheduler.operations import Measure, Reset, X\n", "\n", "def t1_sched(times, repetitions=1):\n", " schedule = Schedule(\"T1\", repetitions)\n", " for i, tau in enumerate(times):\n", " schedule.add(Reset(\"q0\"), label=f\"Reset {i}\")\n", " schedule.add(X(\"q0\"), label=f\"pi {i}\")\n", " # Measure tau seconds after the start of the X gate\n", " schedule.add(\n", " Measure(\"q0\"),\n", " ref_pt=\"start\",\n", " rel_time=tau,\n", " label=f\"Measurement {i}\",\n", " )\n", " return schedule" ] }, { "cell_type": "markdown", "id": "805e2e6a", "metadata": {}, "source": [ "Now, let's create the {class}`~quantify_scheduler.gettables.ScheduleGettable`. The {class}`~quantify_scheduler.gettables.ScheduleGettable` provides a convenient way to compile and execute schedules in just a few lines of code. The parameters can be set directly, with arrays and scalars, or through QCoDeS parameters, as shown below." ] }, { "cell_type": "code", "execution_count": 3, "id": "ac9bc076", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "from qcodes.instrument.parameter import ManualParameter\n", "\n", "from quantify_scheduler import ScheduleGettable\n", "\n", "# The points we want to measure.\n", "times = np.linspace(start=1.6e-7, stop=4.976e-5, num=125)\n", "\n", "# As QCoDeS parameter:\n", "time = ManualParameter(\"sample\", label=\"Sample time\", unit=\"s\")\n", "# Set the parameter. This can be done even after defining the gettable!\n", "time(times)\n", "\n", "# Or as array:\n", "time = times\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=t1_sched,\n", " schedule_kwargs={\"times\": time},\n", " batched=True\n", ")" ] }, { "cell_type": "markdown", "id": "13a93e80", "metadata": {}, "source": [ "Note that `batched=True` here. This means we are doing a _batched_ measurement, which simply means that we tell the {class}`~quantify_scheduler.gettables.ScheduleGettable` to expect an array of values in the acquisition result. In this case, our schedule function creates one schedule for an array of times, and it includes an acquisition (the {class}`~quantify_scheduler.operations.gate_library.Measure` operation) for each point." ] }, { "cell_type": "code", "execution_count": 4, "id": "6ed68d05", "metadata": { "mystnb": { "code_prompt_show": "Provide the dummy hardware with acquisition data" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "import xarray\n", "\n", "from quantify_scheduler.waveforms import soft_square\n", "\n", "from qblox_instruments import DummyScopeAcquisitionData, DummyBinnedAcquisitionData\n", "\n", "\n", "soft_sq_samples = round(q0.measure.integration_time() * 1e9)\n", "soft_sq_times = np.arange(soft_sq_samples)\n", "soft_sq = soft_square(t=soft_sq_times, amp=0.5)\n", "scope_data_real = np.zeros(16384) # Scope trace acquires 16384 points\n", "scope_data_real[:soft_sq_samples] = soft_sq\n", "scope_data_real += np.random.randn(16384) / 500 # add some \"noise\"\n", "\n", "# Create dummy scope data with the soft square pulse on the I path and noise on\n", "# the Q path\n", "scope_data = list(zip(scope_data_real, np.random.randn(16384) / 500))\n", "\n", "dummy_scope_acquisition_data = DummyScopeAcquisitionData(\n", " data=scope_data, out_of_range=(False, False), avg_cnt=(0, 0)\n", " )\n", "\n", "ic_cluster.instrument.set_dummy_scope_acquisition_data(\n", " slot_idx=1, sequencer=None, data=dummy_scope_acquisition_data\n", ")\n", "\n", "\n", "# Dataset with T1 experiment data\n", "example_dataset = xarray.open_dataset(\"../examples/dataset.hdf5\")\n", "\n", "def get_dummy_binned_acquisition_data(real: float, imag: float):\n", " return DummyBinnedAcquisitionData(data=(real, imag), thres=0, avg_cnt=0)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1,\n", " sequencer=0,\n", " acq_index_name=\"0\",\n", " data=[\n", " get_dummy_binned_acquisition_data(float(re) * 1024, float(im) * 1024)\n", " for re, im in zip(example_dataset[\"y0\"], example_dataset[\"y1\"])\n", " ],\n", ")" ] }, { "cell_type": "markdown", "id": "e5ea0704", "metadata": {}, "source": [ "Let's now run the experiment and retrieve the acquisitions using the {meth}`~quantify_scheduler.gettables.ScheduleGettable.get` method." ] }, { "cell_type": "code", "execution_count": 5, "id": "3bb61b3b", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUP0lEQVR4nO3deVhU9eIG8HcGEWUbZAdFEXdzww0x1yTXuGlqaiZqtvy6apFLYddcyjIrS23Rsky9N9My5XqtKFPLNFNESS33NIxFRGKQRSA4vz/GGWeGMzNnYPZ5P88zj86Zs3znUJ6X7yoTBEEAERERkRuS27sARERERPbCIERERERui0GIiIiI3BaDEBEREbktBiEiIiJyWwxCRERE5LYYhIiIiMhtNbB3ARxdTU0NcnJy4OfnB5lMZu/iEBERkQSCIODmzZuIjIyEXG643odByIScnBxERUXZuxhERERUB1evXkWzZs0Mfs4gZIKfnx8A1Y309/e3c2mIiIhIiuLiYkRFRWme44YwCJmgbg7z9/dnECIiInIyprq1sLM0ERERuS0GISIiInJbDEJERETkthiEiIiIyG0xCBEREZHbYhAiIiIit8UgRERERG6LQYiIiIjcFoMQERERuS0GISIiInJbDEJERETkthiEiIiIyD6U2cDlA6o/7YSLrhIREZHtHd8M/O9pQKgBZHIgcTXQPcnmxWCNkL04QAomIiKyC2X2nRAEqP78X7JdnomsEbIHB0nBREREdlF46U4IUhOqgcLfAUVTmxaFNUK25kApmIiIyC4CW6kqArTJPIDAGJsXhUHI1oylYCIiInegaKpqDZF5qN7LPIDEVTavDQLYNGZ76hSsHYbslIKJiIjspnsS0GqIqiIgMMYuIQhgjZDtOVAKJiIisitFU6Blf7s+A1kjZA8OkoKJiIjcHYOQvSiaMgARERHZGZvGiIiIyG0xCBEREZHbYhByFJxpmoiIyObYR8gRcKZpIiIiu2CNkL1xpmkiIiK7cbog9O677yI6OhqNGjVCXFwcjh49anDf9evXo3///mjSpAmaNGmChIQEo/vbhaGZpq8eZVMZERGRlTlVENq2bRvmzJmDxYsX4/jx4+jatSuGDRuG/Px80f2///57TJo0Cfv378fhw4cRFRWFoUOHIjvbgcKF2HorkAFfPAJsSgRWdVI1nREREZHFyQRBEOxdCKni4uLQq1cvvPPOOwCAmpoaREVFYfbs2UhJSTF5fHV1NZo0aYJ33nkHSUnS+uAUFxdDoVBAqVTC39+/XuU36PhmVXOYUA1VNhVuv26TeQDJpzjvEBERkURSn99OUyNUWVmJjIwMJCQkaLbJ5XIkJCTg8OHDks5RVlaGqqoqBAYGGtynoqICxcXFOi+r656kCjpTdwPjPoJOCAJUAenXVDaTERERWZjTBKGCggJUV1cjLCxMZ3tYWBjy8vIkneO5555DZGSkTpjSt3z5cigUCs0rKiqqXuWWTL3eSlScSFMZgG+fZzMZERGRhTlNEKqvV199FVu3bsXOnTvRqFEjg/stWLAASqVS87p69aoNS4nai7Jq44gyIiIii3KaeYSCg4Ph4eGBa9eu6Wy/du0awsPDjR77xhtv4NVXX8V3332HLl26GN3Xy8sLXl5e9S5vvagXZf01VVUTpE2oVi3Wyv5CRERE9eY0NUINGzZEjx49sHfvXs22mpoa7N27F/Hx8QaPe+211/DSSy8hLS0NPXv2tEVRLUPRFLhrdO1mMpmHasV6IiIiqjenCUIAMGfOHKxfvx6bNm3CmTNn8OSTT6K0tBTTp08HACQlJWHBggWa/VesWIEXXngBGzZsQHR0NPLy8pCXl4eSkhJ7fQXz6DeTyTyAxFWsDSIiIrIQp2kaA4AJEybg+vXrWLRoEfLy8tCtWzekpaVpOlBnZWVBLr+T7dauXYvKykqMGzdO5zyLFy/GkiVLbFn0ulM3kxX+rqoJYggiIiKyGKeaR8gebDKPEBEREVmUy80jRERERGRpDELOSJnNdciIiIgswKn6CBFuL8dxe7V6mVzVmbq7tOVCiIiISBdrhJyJMvtOCAI4wSIREVE9sUbImRReuhOC1IRq4OpRoDBItZI9R5URERFJxiDkTAJbqZrDdMKQDPjiETaVERER1QGbxpxJrXXIbv/42FRGRERUJ6wRcjbaEyyWXge2T9f9nGuRERERScYg5IwUTVUvZXbtpjKuRUZERCQZm8acGdciIyIiqhfWCDk7rkVGRERUZwxCrkDdVEZERERmYdOYq+HyG0RERJKxRsiVcPkNIiIiszAIuQpDy2+E3gVUlXLWaSIiIhEMQq7C0PIbHw0BBIE1RERERCLYR8hVqJff0CcIt//krNNERET6GIRchaHlN7SpZ50mIiIiAGwacy3acwp5egMfJdSeddrTWzWqjH2GiIiIGIRcjvacQomrVc1hQrUqBHWZcCccsc8QERERg5BLM1ZDJNQAu54GGvoCUXGsHSIiIrfEPkKuTtEUaNlfNYRef1QZalSr16/qpJqDiIiIyM0wCLkLQ6PKAI4oIyIit8Ug5C5qjSrTwxFlRETkhhiE3En3JCD5FDBuY+3aIZmHavV6IiIiN8Ig5G4UTYFOY3Rrh2QeQOIq1d+5YCsREbkRjhpzV9ojygJjgEt7VZ2mObSeiIjcCGuE3Jl6RBkgvmAra4aIiMjFMQiR4QVb2XmaiIhcHIMQGRhaLwdKr7NWiIiIXBqDEIkMrZcBEHQnW1RmsyM1ERG5HJkgCIK9C+HIiouLoVAooFQq4e/vb+/iWJcyG7h6FPjiEb2mMhkgk7EjNREROQ2pz2/WCNEdiqaAT5DIUhwCO1ITEZFLYhAiXcaW4lBjR2oiInIRDEKkq1Z/ITlUfYa0cBZqIiJyEZxQkWoTm2zxf8mqmiD1LNSKpvYuJRERUb05XY3Qu+++i+joaDRq1AhxcXE4evSo0f0///xztG/fHo0aNULnzp3x1Vdf2aikTk492aKi6Z01yqbuVv3JjtJEROQinCoIbdu2DXPmzMHixYtx/PhxdO3aFcOGDUN+fr7o/j/99BMmTZqEGTNm4MSJExg9ejRGjx6N06dP27jkLkA7GBEREbkIpxo+HxcXh169euGdd94BANTU1CAqKgqzZ89GSkpKrf0nTJiA0tJS7N69W7OtT58+6NatG9atWyfpmm41fJ6IiMhFuNzw+crKSmRkZCAhIUGzTS6XIyEhAYcPHxY95vDhwzr7A8CwYcMM7g8AFRUVKC4u1nmRCE6wSERELsBpglBBQQGqq6sRFhamsz0sLAx5eXmix+Tl5Zm1PwAsX74cCoVC84qKiqp/4V3N8c2qGac3Jd6ZeZqIiMgJOU0QspUFCxZAqVRqXlevXrV3kRyLMtv0SvWsLSIiIifhNMPng4OD4eHhgWvXrulsv3btGsLDw0WPCQ8PN2t/APDy8oKXl1f9C+yqjK1Ur2iqqh1SByUux0FERA7OaWqEGjZsiB49emDv3r2abTU1Ndi7dy/i4+NFj4mPj9fZHwD27NljcH+SwNhK9X9mmK4tIiIiciBOUyMEAHPmzMHUqVPRs2dP9O7dG6tWrUJpaSmmT58OAEhKSkLTpk2xfPlyAMDTTz+NgQMHYuXKlRg1ahS2bt2KY8eO4YMPPrDn13Bu6pmn1RMsaq9Ur/67Nu3aIiIiIgfjVEFowoQJuH79OhYtWoS8vDx069YNaWlpmg7RWVlZkMvv1Fb07dsXW7ZswcKFC/H888+jTZs2SE1NRadOnez1FVyDeubpWivVi8zEwOU4iIjIgTnVPEL2wHmEjLh8QDVyTJ9MfruP0O3lOFoNUfUtCmzFmiEiIrIJqc9vp6oRIgej7i+k3Xla5gHM2ANUld1Zp2xVJ3aeJiIih+Q0naXJAemvVK+uAWrWQ7UcB8DO00RE5NBYI0T1o79SvXbTl6Gh9r+mAneNZjMZERHZHWuEqP4MLcgqOtQewLfPc0ZqIiJyCAxCZD36TWfa2ExGREQOgEGIrKt7EpB8Chj6Su3PhGrVEHxDy3FwqQ4iIrIy9hEi61M0VfUJ2rNQr8+Q7M48RPojyrhUBxER2QBrhMg2ajWT3f5PT2xEmZSFXYmIiCyANUJkO9ojzEqv316WQ4t6OQ4I4qPNrh4FCoNUnbABTtJIRET1xiBEtqVoqnops8UnY/T0Bor+qP2ZdjMaZLe3CXeazTh7NRER1QGDENmH/uKtMg+gywTgo4Q7YUcmAwQBqmY0QXxNM6EG2PXU7X3Zn4iIiMzDIET2o91U5umtFYIAVfCRA+M+xp3V7Q0Rbgcm3OlP1GoIa4aIiMgkBiGyL3VT2eUDtfsFoQbwCVbNWF2rqcwI/f5EDERERGQAR42RYxCbhVrmcWfZDp0RZ7ebzQCo/hOWQe9AVX+iTYmcwZqIiIxijRA5BrE+Q4mr7tTm6K9pBtz5+6W9d47T70/EpjIiIjJCJgiCYHo391VcXAyFQgGlUgl/f397F8f1KbPFF3CVepzYsHwAmLpbtR4aERG5BanPb9YIkWNR9xmq63GGhuWra5GIiIi0sI8QuRb9/kT6TWxERERaWCNErke/P5GpEKTM5mSMRERuikGIXJN2E5uxoMPFXYmI3BqDELk2saCjXo7D00d8cVftEWasLSIicmkMQuS6xFax116OAzLoLNcBqIbg/5oK3DX69rB8AyGKwYiIyCVw+LwJHD7vxC4fUE2qWCdaC7tqb+OaZkREToHD54nUs1WbWppDdB+x3w/01jTb9TTQ0BeIirszdF9dWwSw5oiIyAkwCJHr0p+tWj3rtHbIkXkAM/YAWT8D3z5v5gVqVJM3yuRAl4nAya1aTW5QXcdQkxr7HhEROQQ2jZnApjEXoD1btfZyHOo5hronqfZZ1UmvZkirKUwsREmm16SmHZrYxEZEZBVSn98MQiYwCLkgQ8t4HN9cOyRpz0eks6aZBck8gORTrBkiIrIgBiELYRByM6bWOlNmA1ePqla3N9X3yBxcC42IyKKkPr+5xAaRNkVTVSAxVDujaAp0GlN7GY+uD915r24KA6D6X0wmciItXAuNiMhu2FmaqC7ElvG4Z+Gd94DhfkldJgAnt+k2wWkHL3akJiKyGTaNmcCmMbII/SY37ffAneAjNomjsY7UDE1ERKI4jxCRI9Fe+0z7vfYSIPqTOKqX/Ai9C6gqrR12uE4aEVG9sUbIBNYIkdWIDtkXIZOpJnLUDjtix+qPPmNtERG5MdYIETm6wkvSRp6JzWatfq+zX7WquU2/pqkuTWwMUUTkJhiEiOxFdAkQ/Ukc9YPS7dmsIUOtRWPVo8/EFps1p4mNEz4SkRthECKyF/0lQPQncfT0Bj5KMFBrJEAVmm4HKfWxAPDrTvHaoo+G3GliS1gCRMYCnj61Q9MvW7SOux2iWg0xXDPE2iMicmJOE4QKCwsxe/Zs/O9//4NcLsfYsWOxevVq+Pr6Gtx/8eLF+Pbbb5GVlYWQkBCMHj0aL730EhQKhY1LT2SA2DB84M6fOmul6ROAsR8DPsF3hukb63Ok3cS2Z9HtjXq1SqLHaTW56WOHbSJyck4zoeLkyZPx66+/Ys+ePdi9ezcOHDiAxx9/3OD+OTk5yMnJwRtvvIHTp09j48aNSEtLw4wZM2xYaiIJjE3i2D1J1QF63EZV0NAm8wCiet+ZkVq7ZkeHsf/NpYyVkAOl11U1P4Dqz8sHgD8zxJvg1PsRETkBpxg1dubMGXTs2BHp6eno2bMnACAtLQ0jR47En3/+icjISEnn+fzzz/Hwww+jtLQUDRqIV4ZVVFSgoqJC8764uBhRUVEcNUb2J7YWmrr25fIBYFNi7WOGvQJE9THSxHabdhOb9oSP2kP69fsPGapNssZyIfVpfmPTHZFbcqlRY4cPH0ZAQIAmBAFAQkIC5HI5jhw5gjFjxkg6j/pmGApBALB8+XIsXbq03mUmsjhDzWiAeMdrmQfQcXTtvkj6ZB7AjD1AVZnuLNn6a6rp9x8SrU3Sqj0ytFabOpQA0gJKfZrf2HRHRCY4RRDKy8tDaGiozrYGDRogMDAQeXl5ks5RUFCAl156yWhzGgAsWLAAc+bM0bxX1wgROQT9iRm1t4t1vFbvqx2ick4A3y3R3a9Zj9rnKwySNrxfE8Bu1xBtn34ndLQaIj5rtn5Nk6GAYmgEnLHO25Y4lojchl2DUEpKClasWGF0nzNnztT7OsXFxRg1ahQ6duyIJUuWGN3Xy8sLXl5e9b4mkc0ZqzEC7oSolv2BTmMN76cmOrxfj7o2qSirdu3Rrqe0pgLQmzVbuzbJ2PB+sbmWjHXe1lafY8WwiY3IJdk1CM2dOxfTpk0zuk9MTAzCw8ORn5+vs/3vv/9GYWEhwsPDjR5/8+ZNDB8+HH5+fti5cyc8PT3rW2wix2Woxqgu+4nVMoktGNushyrA1ApMwp2RalJGphka3i/W5Kdeo80YQ82Fxo411HTHNeCIXJZdg1BISAhCQkJM7hcfH4+ioiJkZGSgRw9VFf6+fftQU1ODuLg4g8cVFxdj2LBh8PLywq5du9CoUSOLlZ3ILYjVMt2zsHZtkpTaI1PEhvdrOmjrhS9A1UFcrK+Rdggx1lyoz+C6byJrwKln+I6Kq30+V+6XZCrg1aUPmC3LR8a56QzzTjFqDABGjBiBa9euYd26daiqqsL06dPRs2dPbNmi6ryZnZ2NIUOGYPPmzejduzeKi4sxdOhQlJWVYefOnfDx8dGcKyQkBB4eHpKuy7XGiCTSHtUGOVTBQfufF5luU5kMt8OP2Aza2ofpdeY21tdIbFZs7SAHiP9D7+ljemSdaNn0go7o+nFyYNxH4qFJnyM8eAyVwVTAMxQkxfY153tKfThbM4Da4+di61AiZYZ57T5/ThCMpD6/nSYIFRYWYtasWToTKq5Zs0YzoeKVK1fQsmVL7N+/H4MGDcL333+PwYMHi57r8uXLiI6OlnRdBiEiMyiz74SOS3sNz5qtCSWmZtC+TT0kX+pCtWraC9Ea+4deysSSxq4xY4+qebC04PYSKGL7GXg4qx9wOZnAd4uNP3iMPQwt8ZmhJkBDi/yqv7epIGns52DsASt1+RcpixDrf1fA8L3V/sxUs6g1Akp9l70xt0yS/r/S+kXGSWo6XS4I2QuDEFE9aAcjk0Pkkw0P71c/0AzNl2TM1N2q65sToGoXQqs2S+xj2e3aLf1O4fr7aYWHWiPpjFzT1MNQ/8Gp7mNl6kFusDlQq7zJp1QPVbH7rvO9TTxKDP4cRB6wrYYAV48AX8yQ1lk/6zDw7b/Er6me08pYjVWtUKy+D0buidTFjc0NqFJCiVjIU6vLgsu/7hS/f8bol8ERajP1uNQ8QkTkpKR23jY1vL+ufZHUnaPFRpCJ7q81FYC66U67Nkt/biU1nU7hMsNl1O4Ubio0aXc2N7YGHFB7mgCdJVS0rqE9Qq/oD70QJlIOoVr1ndWBwej3NsLoz0Hve+qMNjRB534auCZQeyoF/VGLBufHMnJPrgqmFzeWGkK1A6DYWoFiZfg1FbhrdO0aL/0y6fdnM1QDaC7tEZh1CV8OFJpYI2QCa4SI7MBYTZJO7ZFeYBEb1Wao6USffl8kQLwMtfpCiZxz3EbVn2KhyZKGvgL4RxhujjNEU5Njckfz+nWZDJISanksQacp9pLxJkvzT16P2sHb/cUCWog0JZo4r+i19JoWTTXNGqz50t9X7/8lsT5/6hohQFqzpJoNBxOwacxCGISIHJB2UAJ0A4uhEKW/RImh0GTO9cX6N9VqOkk2HppEiXU2N8RUzZI5tB/GYmWQA+M2AAHNxb+3oSCp38FdJ1BJ/J6iD2eR+znsFdWM6oY61ZvN1D2pCzP6pNX63sbKZ4H/FtT3T///JbE+f92TDDdXD33lTo2VsUEJxkJTPTEIWQiDEJEL0Q9JUvswGWNsDTjta4p2CtfuH+MBJCwGIruLP3gkPwyNfWYkjOl3aC+9Ll67oO53Y+p7a39/0ZF0G1SLBmt/T2PhK6q37s/MWAgFjPdFMlaTaKg2y9g9UZdTctCVSD+U/JoKfPu8iYPqULOkOdREKKn1C4iJEZf2XJ8QDEIWwyBERCbVpVO42Eg60c60esHN0MNw3EbAJ1i8j5X6GqJhTC9oaF/bVJOHlO9tqMZA++EnpeZB6v00VkuhvkemahL1PzN2T4zVkplsRpPDYE2ToVFvUjr9S26a1QviUmtFRUe1GQrpJrBGyPExCBGRRdW3Fqq+AUVqTY65+9anvGLHSL1HYvvW5ZpSGbsnhoKuWCd70fmxDJzX0PVNBSgpzcHGgrgYY1MpZP0socYKdwJgXf+bkohByEIYhIjI4dQ3oNQ3aNi6vI52TWP3RGofNbHySL3X5tSgWbo52FgNn5RpKvQDoBVHjTEIWQiDEBE5JEsEFFuyR3kd7R5Zqzy2/J6matssOSihnhiELIRBiIiISIvUAQKWHJRQBwxCFsIgREREpMfRattEcGZpIiIisg6ps8Y7Abm9C0BERERkLwxCRERE5LYYhIiIiMhtMQgRERGR2zKrs3RRURF27tyJH3/8EX/88QfKysoQEhKC2NhYDBs2DH379rVWOYmIiIgsTlKNUE5ODh599FFERERg2bJlKC8vR7du3TBkyBA0a9YM+/fvx7333ouOHTti27Zt1i4zERERkUVIqhGKjY3F1KlTkZGRgY4dO4ruU15ejtTUVKxatQpXr17FvHnzLFpQIiIiIkuTNKHijRs3EBQUJPmk5u7vyDihIhERkfOR+vyW1DQWFBSE3bt3o6bGyEJqevsTEREROTrJo8ZGjx6NqKgo/Otf/8LFixetWSYiIiIim5AchC5fvownnngCW7duRbt27TBw4ED8+9//Rnl5uTXLR0RERGQ1koNQVFQUFi1ahEuXLuG7775DdHQ0nnzySUREROD//u//kJ6ebs1yEhEREVlcnSZUHDx4MDZt2oTc3Fy8/vrrOHXqFPr06YOuXbtaunxEREREVlOv1ef9/PwwZMgQ/PHHHzh79ix+++03S5WLiIiIyOrqVCNUXl6OzZs3Y9CgQWjTpg22bt2KOXPm4MqVKxYuHhEREZH1mFUj9PPPP2PDhg347LPPUFlZiQceeADfffcdBg8ebK3yEREREVmN5CDUsWNHnDt3DrGxsVi+fDkeeughKBQKa5aNiIjIYqqrq1FVVWXvYpCFeHp6wsPDo97nkRyEEhIS8Omnn7JDNBERORVBEJCXl4eioiJ7F4UsLCAgAOHh4ZDJZHU+h+QgtGbNmjpfhIiIyF7UISg0NBTe3t71emiSYxAEAWVlZcjPzwcARERE1PlckoLQ8OHDsWTJEvTp08fofjdv3sR7770HX19fzJw5s86FIiIisoTq6mpNCOLyT66lcePGAID8/HyEhobWuZlMUhAaP348xo4dC4VCgcTERPTs2RORkZFo1KgR/vrrL/z22284ePAgvvrqK4waNQqvv/56nQpDRERkSeo+Qd7e3nYuCVmD+udaVVVl3SA0Y8YMPPzww/j888+xbds2fPDBB1AqlQAAmUyGjh07YtiwYUhPT0eHDh3qVBAiIiJrYXOYa7LEz1VyHyEvLy88/PDDePjhhwEASqUS5eXlCAoKgqenZ70LQkRERGRrdZpQEQAUCgXCw8MZgoiIiJzElStXIJPJkJmZae+iOIw6ByEiIiIiZ+c0QaiwsBCTJ0+Gv78/AgICMGPGDJSUlEg6VhAEjBgxAjKZDKmpqdYtKBERkRVUVlbauwguyWmC0OTJk/Hrr79iz5492L17Nw4cOIDHH39c0rGrVq1iRzkiIqqXXGU5frpUgFxluU2uN2jQIMyaNQvJyckIDg7GsGHDcPr0aYwYMQK+vr4ICwvDlClTUFBQoDkmLS0N/fr1Q0BAAIKCgnDffffh0qVLNimvs3KKIHTmzBmkpaXhww8/RFxcHPr164e3334bW7duRU5OjtFjMzMzsXLlSmzYsEHStSoqKlBcXKzzIiIi97YtPQt3v7oPD60/grtf3Ydt6Vk2ue6mTZvQsGFDHDp0CK+++iruuecexMbG4tixY0hLS8O1a9fw4IMPavYvLS3FnDlzcOzYMezduxdyuRxjxoxBTU2NTcrrjMxadFWtqKgI27dvx6VLlzB//nwEBgbi+PHjCAsLQ9OmTS1dRhw+fBgBAQHo2bOnZltCQgLkcjmOHDmCMWPGiB5XVlaGhx56CO+++y7Cw8MlXWv58uVYunSpRcpNRETOL1dZjgU7TqFGUL2vEYDnd5zGgLYhiFA0tuq127Rpg9deew0AsGzZMsTGxuKVV17RfL5hwwZERUXh/PnzaNu2LcaOHatz/IYNGxASEoLffvsNnTp1smpZnZXZNUInT55E27ZtsWLFCrzxxhuatVt27NiBBQsWWLp8AFTTo4eGhupsa9CgAQIDA5GXl2fwuGeeeQZ9+/bF/fffL/laCxYsgFKp1LyuXr1a53ITEZHzu1xQqglBatWCgCsFZVa/do8ePTR//+WXX7B//374+vpqXu3btwcATfPXhQsXMGnSJMTExMDf3x/R0dEAgKws29RgOSOza4TmzJmDadOm4bXXXoOfn59m+8iRI/HQQw+Zda6UlBSsWLHC6D5nzpwxt4gAgF27dmHfvn04ceKEWcd5eXnBy8urTtckIiLX0zLYB3IZdMKQh0yG6GDrz1bt4+Oj+XtJSQkSExNFn5vqtbYSExPRokULrF+/HpGRkaipqUGnTp3Y0doIs4NQeno63n///VrbmzZtarR2RszcuXMxbdo0o/vExMQgPDxcs7Ca2t9//43CwkKDTV779u3DpUuXEBAQoLN97Nix6N+/P77//nuzykpERO4pQtEYyx/ojOd3nEa1IMBDJsMrD3SyerOYvu7du+OLL75AdHQ0GjSo/fi+ceMGzp07h/Xr16N///4AgIMHD9q0jM7I7CDk5eUl2oH4/PnzCAkJMetcISEhko6Jj49HUVERMjIyNNWE+/btQ01NDeLi4kSPSUlJwaOPPqqzrXPnznjrrbeQmJhoVjmJiMi9TejVHAPahuBKQRmig71tHoIAYObMmVi/fj0mTZqEZ599FoGBgbh48SK2bt2KDz/8EE2aNEFQUBA++OADREREICsrCykpKTYvp7Mxu4/QP/7xD7z44ouahexkMhmysrLw3HPP1eqkZSkdOnTA8OHD8dhjj+Ho0aM4dOgQZs2ahYkTJyIyMhIAkJ2djfbt2+Po0aMAgPDwcHTq1EnnBQDNmzdHy5YtrVJOIiJyXRGKxohvFWSXEAQAkZGROHToEKqrqzF06FB07twZycnJCAgIgFwuh1wux9atW5GRkYFOnTrhmWee4SLoEphdI7Ry5UqMGzcOoaGhKC8vx8CBA5GXl4f4+Hi8/PLL1igjAOCTTz7BrFmzMGTIEMjlcowdOxZr1qzRfF5VVYVz586hrMz6ndeIiIisTawLR5s2bbBjxw6DxyQkJOC3337T2SYIdzo3RUdH67ynOgQhhUKBPXv24ODBgzh58iRKSkrQvXt3JCQkWKN8GoGBgdiyZYvBz6X8cPnDJyIiIm11mkcIAPr164d+/fpZsixERERENmV2ENJujtImk8nQqFEjtG7dGgMGDICHh0e9C0dERERkTWYHobfeegvXr19HWVkZmjRpAgD466+/4O3tDV9fX+Tn5yMmJgb79+9HVFSUxQtMREREZClmjxp75ZVX0KtXL1y4cAE3btzAjRs3cP78ecTFxWH16tXIyspCeHg4nnnmGWuUl4iIiMhizK4RWrhwIb744gu0atVKs61169Z44403MHbsWPz+++947bXXrDaUnoiIiMhSzK4Rys3Nxd9//11r+99//62ZWToyMhI3b96sf+mIiIiIrMjsIDR48GA88cQTOmt4nThxAk8++STuueceAMCpU6c4aSERERE5PLOD0EcffYTAwED06NFDs0Bpz549ERgYiI8++ggA4Ovri5UrV1q8sERERESWZHYfofDwcOzZswdnz57F+fPnAQDt2rVDu3btNPsMHjzYciUkIiJyQ4MGDUK3bt2watUqu5YjOjoaycnJSE5Otms5rKXOEyq2b98e7du3t2RZiIiI6LYdO3bA09PT3sVAeno6fHx87F0Mq6lTEPrzzz+xa9cuZGVlobKyUuezN9980yIFIyIicmeBgYH2LgIAICQkxOrXqKysRMOGDa1+HTFm9xHau3cv2rVrh7Vr12LlypXYv38/Pv74Y2zYsAGZmZlWKCIREZEDUGYDlw+o/rSBQYMGaZqjoqOjsWzZMiQlJcHX1xctWrTArl27cP36ddx///3w9fVFly5dcOzYMc3xN27cwKRJk9C0aVN4e3ujc+fO+PTTT3WucfPmTUyePBk+Pj6IiIjAW2+9pXNd9bW1m+dkMhk+/PBDjBkzBt7e3mjTpg127dql+by6uhozZsxAy5Yt0bhxY7Rr1w6rV6/Wue60adMwevRovPzyy4iMjES7du3w4osvolOnTrXuQ7du3fDCCy/U404aZ3YQWrBgAebNm4dTp06hUaNG+OKLL3D16lUMHDgQ48ePt0YZiYiI7Ov4ZmBVJ2BTourP45ttXoS33noLd999N06cOIFRo0ZhypQpSEpKwsMPP4zjx4+jVatWSEpK0iwwfuvWLfTo0QNffvklTp8+jccffxxTpkzB0aNHNeecM2cODh06hF27dmHPnj348ccfcfz4cZNlWbp0KR588EGcPHkSI0eOxOTJk1FYWAgAqKmpQbNmzfD555/jt99+w6JFi/D888/js88+0znH3r17ce7cOezZswe7d+/GI488gjNnziA9PV2zz4kTJ3Dy5ElMnz7dErdQnGAmX19f4eLFi4IgCEJAQIBw+vRpQRAEITMzU2jRooW5p3N4SqVSACAolUp7F4WIiMxUXl4u/Pbbb0J5eXndT1L0pyAsCRCExf53XkuaqLZb0cCBA4Wnn35aEARBaNGihfDwww9rPsvNzRUACC+88IJm2+HDhwUAQm5ursFzjho1Spg7d64gCIJQXFwseHp6Cp9//rnm86KiIsHb21tzXfW133rrLc17AMLChQs170tKSgQAwtdff23wujNnzhTGjh2reT916lQhLCxMqKio0NlvxIgRwpNPPql5P3v2bGHQoEEGz2vs5yv1+W12jZCPj4+mX1BERAQuXbqk+aygoMAS2YyIiMhxFF4ChBrdbUI1UPi7TYvRpUsXzd/DwsIAAJ07d661LT8/H4Cqieqll15C586dERgYCF9fX3zzzTfIysoCAPz++++oqqpC7969NedQKBQ6o8CllMXHxwf+/v6a6wLAu+++ix49eiAkJAS+vr744IMPNNdV69y5c61+QY899hg+/fRT3Lp1C5WVldiyZQseeeQRk+WpD7M7S/fp0wcHDx5Ehw4dMHLkSMydOxenTp3Cjh070KdPH2uUkYiIyH4CWwEyuW4YknkAgTE2LYb2CDKZTGZwW02Nqpyvv/46Vq9ejVWrVqFz587w8fFBcnJyrUFO9S2L+trq627duhXz5s3DypUrER8fDz8/P7z++us4cuSIzjFiI9ESExPh5eWFnTt3omHDhqiqqsK4cePqXV5jzA5Cb775JkpKSgCo2ghLSkqwbds2tGnThiPGiIjI9SiaAomrgf8lq2qCZB5A4irVdgd26NAh3H///Xj44YcBqALS+fPn0bFjRwBATEwMPD09kZ6ejubNmwMAlEolzp8/jwEDBtTrun379sU///lPzTbt1iNjGjRogKlTp+Ljjz9Gw4YNMXHiRDRu3LjOZZF0TXMPiIm5k4B9fHywbt06ixaIiIjI4XRPAloNUTWHBcY4fAgCgDZt2mD79u346aef0KRJE7z55pu4du2aJgj5+flh6tSpmD9/PgIDAxEaGorFixdDLpdrapfqet3Nmzfjm2++QcuWLfHvf/8b6enpkpfeevTRR9GhQwcAqlBlbWb3EYqJicGNGzdqbS8qKtIJSURERC5F0RRo2d8pQhAALFy4EN27d8ewYcMwaNAghIeHY/To0Tr7vPnmm4iPj8d9992HhIQE3H333ejQoQMaNWpU5+s+8cQTeOCBBzBhwgTExcXhxo0bOrVDprRp0wZ9+/ZF+/btERcXV+dySCW73QNcMrlcjry8PISGhupsv3btGpo3b46KigqLFtDeiouLoVAooFQq4e/vb+/iEBGRGW7duoXLly+jZcuW9Xq4u4vS0lI0bdoUK1euxIwZM+xSBkEQ0KZNG/zzn//EnDlzjO5r7Ocr9fktuWlMe7Kkb775BgqFQvO+uroae/fuRXR0tNTTERERkZ2dOHECZ8+eRe/evaFUKvHiiy8CAO6//367lOf69evYunUr8vLyrDt3kBbJQUhdnSaTyTB16lSdzzw9PREdHc0V54mIiJzMG2+8gXPnzqFhw4bo0aMHfvzxRwQHB9ulLKGhoQgODsYHH3yAJk2a2OSakoOQelhcy5YtkZ6ebrebRERERJYRGxuLjIwMexdDw8zeOhZh9qixy5cvW6McRERERDYnKQitWbNG8gmfeuqpOheGiIjIGuxR00DWZ4mfq6Qg9NZbb0k6mUwmYxAiIiKHoZ4BuayszOoT85HtlZWVAag907U5JAUhNocREZEz8vDwQEBAgGYdLG9v73pNFkiOQRAElJWVIT8/HwEBAfDw8KjzuczuI6RfEAD8j4qIiBxWeHg4AOgsCkquISAgQPPzras6BaHNmzfj9ddfx4ULFwAAbdu2xfz58zFlypR6FYaIiMjSZDIZIiIiEBoaiqqqKnsXhyzE09OzXjVBanVadPWFF17ArFmzcPfddwMADh48iP/7v/9DQUEBnnnmmXoXioiIyNI8PDws8uAk12L2EhstW7bE0qVLkZSUpLN906ZNWLJkicv1J+ISG0RERM5H6vPb7EVXc3Nz0bdv31rb+/bti9zcXHNPR0RERGQ3Zgeh1q1b47PPPqu1fdu2bWjTpo1FCkVERERkC2b3EVq6dCkmTJiAAwcOaPoIHTp0CHv37hUNSERERESOSnKN0OnTpwEAY8eOxZEjRxAcHIzU1FSkpqYiODgYR48exZgxY6xWUCIiIiJLk9xZWi6Xo1evXnj00UcxceJE+Pn5WbtsDoGdpYmIiJyPxTtL//DDD7jrrrswd+5cREREYNq0afjxxx8tUlgpCgsLMXnyZPj7+yMgIAAzZsxASUmJyeMOHz6Me+65Bz4+PvD398eAAQNQXl5ugxITERGRo5MchPr3748NGzYgNzcXb7/9Ni5fvoyBAweibdu2WLFiBfLy8qxZTkyePBm//vor9uzZg927d+PAgQN4/PHHjR5z+PBhDB8+HEOHDsXRo0eRnp6OWbNmQS43u484ERERuSCz5xHSdvHiRXz88cf497//jby8PAwfPhy7du2yZPkAAGfOnEHHjh2Rnp6Onj17AgDS0tIwcuRI/Pnnn4iMjBQ9rk+fPrj33nvx0ksvSb5WRUUFKioqNO+Li4sRFRXFpjEiIiInYrV5hLS1bt0azz//PBYuXAg/Pz98+eWX9TmdQYcPH0ZAQIAmBAFAQkIC5HI5jhw5InpMfn4+jhw5gtDQUPTt2xdhYWEYOHAgDh48aPRay5cvh0Kh0LyioqIs+l2IiIjIcdQ5CB04cADTpk1DeHg45s+fjwceeACHDh2yZNk08vLyEBoaqrOtQYMGCAwMNNgk9/vvvwMAlixZgsceewxpaWno3r07hgwZolkjTcyCBQugVCo1r6tXr1ruixAREZFDMSsI5eTk4JVXXkHbtm0xaNAgXLx4EWvWrEFOTg7Wr1+PPn36mHXxlJQUyGQyo6+zZ8+adU61mpoaAMATTzyB6dOnIzY2Fm+99RbatWuHDRs2GDzOy8sL/v7+Oi8iIiJyTZInVBwxYgS+++47BAcHIykpCY888gjatWtXr4vPnTsX06ZNM7pPTEwMwsPDkZ+fr7P977//RmFhIcLDw0WPi4iIAAB07NhRZ3uHDh2QlZVV90ITERGRy5AchDw9PbF9+3bcd999Flu9NyQkBCEhISb3i4+PR1FRETIyMtCjRw8AwL59+1BTU4O4uDjRY6KjoxEZGYlz587pbD9//jxGjBhR/8ITERGR05MchKwxGkyqDh06YPjw4Xjsscewbt06VFVVYdasWZg4caJmxFh2djaGDBmCzZs3o3fv3pDJZJg/fz4WL16Mrl27olu3bti0aRPOnj2L7du32+27EBERkeMwe60xe/nkk08wa9YsDBkyBHK5HGPHjsWaNWs0n1dVVeHcuXMoKyvTbEtOTsatW7fwzDPPoLCwEF27dsWePXvQqlUre3wFIiIicjD1mkfIHXCJDSIiIudjk3mEiIiIiJwZgxARERG5LQYhIiIiclsMQkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBEREREbotBiIiIiNwWgxARERG5LQYhIiIiclsMQkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBEREREbotBiIiIiNwWgxARERG5LQYhIiIiB5CrLMdPlwqQqyy3d1HcSgN7F4CIiNxbrrIclwtK0TLYBxGKxrXeu4Nt6VlYsOMUagRALgOWP9AZE3o1t3ex6sTZfn4MQkREZJC1H2r6AWBMbFPsPJHt0IHAnHuivS8A0eNyleWaewAANQLw/I7TGNA2RLOfsWvW9TNrnFdKoHO0oMQgRERUT5b6h90eNSPGrmHqoVbXQKD9cNcPAF8cz9YcIxYI6vpd9D8HUKd7bc49OXD+umZf2e3PBdQ+7nJBqeYeqFULAq4UlCFC0bjWNZ8b3h6dmylqXUP/vGJlHdA2RLR8Uo41dd5jVwpFA137cD+UVlabvKa9yARBEEzv5r6Ki4uhUCigVCrh7+9v7+IQkQm2/m3T3LAg9TdpUzUjxs4LiNc86B97KluJFV+fFb1GrrIcd7+6T+cBLQew5qFY9GjRxKwHmqF79NOlAjy0/ojJe/zpY30Q3yrI7J+DoYe+fijRv9faQUP73vo09MCY936SdE+0ryHGQybDjn/Go7SyWvS8HjIZDqYMBoBaPwc1sWuoz5tVWIant2bqHCcDIJPBYPmMXdPYZ9rnFSOTAYKJa1rj/1Wpz28GIRMYhIich637WYiFBe0HnH7QEAs36t+k9R9a+qSeV6zmwVAgMHaNwtJKzNpyQrQsUh5oxsKDlIe8mnbQEAuSucpy0ftn6qEvhdi9NXSOulxDHRDU10k9kYNqQYCHTIZnh7dD52YKoz8HU+eti4WjOiBc0Uj0mu9MikVucTle/vJs3U5ugJSgWxcMQhbCIERkOVJra+rS5GLsgSuln0Vdym6oRkPqg8jUb9J1Pa+ha0h5WBv77d0U9QNNO5AaCg8LR3XAqC4ROHD+Op7fcVoTAEbHRmoCgamaG+33zk4dQssqa3Ayu0gTdOsa4upD7Jrm/rcKqEJsjYl9HKFGiH2EiMgmpNbWmFOrY+qBa6yfhX5NiTnNVuqmE5+GHpCLPBykhhXBjH3NOa+ha0g5XHtfGSD6/cR4yGSIDvau1e/H0KHLvjyDV746g+UPdMbBlMG4UlCG6GBvRCgaY96wdsi48hee2nrCaP8h7fe2JPWe1Aqh6hog1A4I1YKAssoaRAd7Y/KHP+vcP2M/B+1rGAse8tvnkhJu9K+pPlbs+mLnlQN4+6FYNGvSuNYvJ9rX9JDJ8MoDnezeYZpBiIisTsqoGHP30++YKfZcMvRwrhGAlC9O3XmAGOkn4tPQo9axy79WNQ3oN2lI+Q1YCv2aEUud1xixawgA3p4YCwA6oQQQf6ABwO6TOeIPTJEHrvrnezBlsE7TSISiMQJ9a3cgNue7GHvoa4cS/Xttirrm5mphuaR7MqBtiCbkAcCVgjJ4N5SL1l5GB3uLdpxW/xyCfL1wMrsIr319TlODpn0NsfOqQ0n3232YtGvf1Md+eTIXy748Y/CaN0orRJvKXhjVASNFavVeeaATRnWJBKD6hUPsmtrB194YhIjIYgzVqBgaFfPlyVyM6hKh2dfU6BlAt3ZGjFzkt82fLhWIPlwErXCjX9ugDjvG+oXUCEDqiRxNk4bYg0hNLNwY+k26++3+MPOGtTP4gDN0Xv2aB2OBQN0XpUuzAIMP5x7RqrKUVv5t9IF24Px1g/191OEh/cpftR64+j9ftZbBPpJrXsTun6GHvn4o0a6FulJQVitoaN9b9Xm6RjVB16gmJu+J+jtpfzf138UCgvoz/e+t/XOIbxWEf3SNNHgNsfOqQ8mEXs1FyzeqSwRe+eqMwWvmKstFyzTy9v+7hs5r7JqOEIDU2EfIBPYRIpLGWJOWWKdiNVOdhk2NrtGm3c9C/Y+uoc60lqTd2XNbepbOg0gdNLTLox0e9B9axpoBpZ4XgNFrGHpo6V9Dvzza19CvoTMWgtTnMdS53FAfEf3y6IcSsZAipbym6B9n7Dx1vYaxY039HOp6XmNMXbO+ZbIHdpa2EAYhckfmzLdiKGjoP+C0/yHVZ6rZQsqoHUP/eOsMZzZSU2KKodoJsQe5OQ8ia+1ry2sY6jSubjqpz0PeVCipTxBxZPb4Xqau6Wz3mkHIQhiEyN3UCg+o+6iddybFItC3oU5oEuuPoM9YZ0tD+6qbk9QMzYNjqOnEWD8R/RE9+n00HP03Y2szt6bH2R6o5Jw4aoyIdEiZLl+/Y7B2JDB31I4MdzrYajeVifVH0FcDINDHC6WV1UY73ur3gdAm1t9IfV5D/RoM9RNR9wsBYLCPhjuLUDQ22udFbH/eN3IUDEJEbkDqFP3Gmp7MoT/cVn/0l/ZDU6yZSj2CBhDvOKrfD0iMWGdb7fMCtR/I6vemwg4f5LUZ6zBL5MgYhIiciKnlGqSu56Q9Igq4E0LqG4LUTU8CUGu4rfboIP2HpliHXmOjYNS1M8aYW0shdjwf5ubhPSNnxCBEZGd1XezRWH8d7aYosSYiNUPBR26k47KpUTujukQaHG5rqDamLsNvpWAtBRGZws7SJrCzNFmTlFmU6zr8W71GU5SEDsfa9JueANRp1I4zDrclItfhcqPGCgsLMXv2bPzvf/+DXC7H2LFjsXr1avj6+ho8Ji8vD/Pnz8eePXtw8+ZNtGvXDv/6178wduxYyddlECJLMNRkZWqkjanJA6XQn/1Yn9hsuJYKLBwdRET24nKjxiZPnozc3Fzs2bMHVVVVmD59Oh5//HFs2bLF4DFJSUkoKirCrl27EBwcjC1btuDBBx/EsWPHEBsba8PSkzszVOtjaBbljCt/IdC39giuutKf/djYFP2WDizsM0JEjs4paoTOnDmDjh07Ij09HT179gQApKWlYeTIkfjzzz8RGVl76CwA+Pr6Yu3atZgyZYpmW1BQEFasWIFHH31U9JiKigpUVFRo3hcXFyMqKoo1QlQnhmp9dvwzHlmFZbWau/QnFjQ2eaCx/jpitGc/Zk0NEbk6l6oROnz4MAICAjQhCAASEhIgl8tx5MgRjBkzRvS4vn37Ytu2bRg1ahQCAgLw2Wef4datWxg0aJDBay1fvhxLly619FcgNyDW/GWo1mf0ez9BEO4EH+3Zjo0tImpoLSpjq3YDpoeNExG5K6cIQnl5eQgNDdXZ1qBBAwQGBiIvL8/gcZ999hkmTJiAoKAgNGjQAN7e3ti5cydat25t8JgFCxZgzpw5mvfqGiEiYww1fxlaOFLQCjtyAXjHwJBzwPjkgWLz4NzXVXyBTAYfIqLa7BqEUlJSsGLFCqP7nDljfCp+Y1544QUUFRXhu+++Q3BwMFJTU/Hggw/ixx9/ROfOnUWP8fLygpeXV52vSe7D0GzMNQKw4ItT8PFqgB4tmtSaPLBG7zzq2Y6jg73rPHmgPg4bJyKSxq59hK5fv44bN24Y3ScmJgb/+c9/MHfuXPz111+a7X///TcaNWqEzz//XLRp7NKlS2jdujVOnz6Nu+66S7M9ISEBrVu3xrp16ySVkaPG3Etd5vQx1pdHe2X1KwVl8G4orzWUXXukGIecExFZhlP0EQoJCUFISIjJ/eLj41FUVISMjAz06NEDALBv3z7U1NQgLi5O9JiysjIAgFwu19nu4eGBmhr938nJnanDz6lsJVZ8fVbSnD6G1uPSp15a4mDKYE1HZWOzHbMmh4jItpxi1BgAjBgxAteuXcO6des0w+d79uypGT6fnZ2NIUOGYPPmzejduzeqqqrQsWNHRERE4I033kBQUBBSU1Mxf/587N69GyNHjpR0XdYIuTZj8/SYO6ePWF8gNe0RWwBHbRERWZtT1AiZ45NPPsGsWbMwZMgQzYSKa9as0XxeVVWFc+fOaWqCPD098dVXXyElJQWJiYkoKSlB69atsWnTJskhiFyTob49+syZ00fdl+dqYbnJEVsAR20RETkKp6kRshfWCDk/7X4/5qy0bs6cPtp9edjPh4jI/lyuRoioLvQ7NQPSVlqvy5w+auznQ0TkPBiEyCWZ06lZe56eZ4e3Q5dmAbhRWmH2nD7a2PRFROQcGITI5ZizUKmheXpyleUWm9OHiIgcF4MQuZRcZbnRECS20nrXqCa19otQNBYd5i62LxEROS8GIXJK+hMfqt8XllYaHdllzkrr7OtDROT6GITI6eiv6zUmtil2nsjWdIjWH+El1qlZaqhhXx8iItfGIEQOxdgSF2IdoGsE4Ivj2Zp9BKiCkNROzURE5N4YhMhhGFrBXf8zUwQAb0+MRZCvF5u0iIjIKAYhcgj6nZzVa3QNaKtai05qCAJUtUA9opswABERkUly07sQWd/lgtJaQadaEHCloEz0MzUPmQxjuzeFh0ymea+9iCkREZExrBEih9Ay2KfWvD1yADdKKxDVpLHoZ9odoOcNa8fRXUREZDauNWYC1xqzLv11wNTz9mgvh6EeGZZ6IofrdxERkSRca4wckqEFUNWdow+mDEbGlb90VnCvEYDUEzmc1ZmIiCyOQYhsxtgCqOrO0QdTBiPQt6Fof6GyyhrEtwqyZZGJiMjFsbM02YT+qDABtRdBVXeOVvcX0uYhkyE62NsWRSUiIjfCIERWl6ssx+6TOSaHv6vDjnqdL44EIyIia2PTGFmVsYkQxRZAVYcdrvNFRES2wCBEVmNsJXgpC6BynS8iIrI2BiGqN3NXgn9hVAeM7BJh9gKoRERElsYgRPVi7krwHjKZTggiIiKyJ3aWpjoTWx/si+PZOiPDAGhGgLHTMxERORrWCFGdSB0JxpXgiYjIkTEIkdmMjQTTx5XgiYjIkbFpjMxiaiQYV4InIiJnwhohMsvlglKTI8G4EjwRETkLBiEyi3r5C+0wpD8SjPP/EBGRs2DTGJmFy18QEZErYY0QidKfJFEbl78gIiJXwSBEtehPkrj8gc6Y0Ku5zj5s/iIiIlfAIEQ6xCZJfH7HabQP90NpZbVoDREREZGzYhAiHWKjwqoFAaPf+wmCkRoiIiIiZ8TO0qRDPSpMn6BXQ5SrLLdtwYiIiKyAQYh06I8KE/sPpFoQcKWgzLYFIyIisgI2jZGGeqTYgLYhOJgyGFcKyuDdUI4x7/1Ua96g6GBv+xWUiIjIQhiECIDxkWLLH+iM53ecRrUgcN4gIiJyKU7TNPbyyy+jb9++8Pb2RkBAgKRjBEHAokWLEBERgcaNGyMhIQEXLlywbkGdkKGRYup+QBN6NcfBlMH49LE+OJgymB2liYjIZThNEKqsrMT48ePx5JNPSj7mtddew5o1a7Bu3TocOXIEPj4+GDZsGG7dumXFkjofQyPFtPsBRSgaI75VEGuCiIjIpThN09jSpUsBABs3bpS0vyAIWLVqFRYuXIj7778fALB582aEhYUhNTUVEydOtFZRnYa6T5BPQw/R9cPYD4iIiFyd0wQhc12+fBl5eXlISEjQbFMoFIiLi8Phw4cNBqGKigpUVFRo3hcXF1u9rLakDj+nspVY8fVZTZ+gMbFNkXoih/2AiIjIrbhsEMrLywMAhIWF6WwPCwvTfCZm+fLlmtonV6PdIVpbjQCknsjBjn/Go6yyhuuHERGR27BrH6GUlBTIZDKjr7Nnz9q0TAsWLIBSqdS8rl69atPrW4t+h2h91YKAssoa9gMiIiK3Ytcaoblz52LatGlG94mJianTucPDwwEA165dQ0REhGb7tWvX0K1bN4PHeXl5wcvLq07XdETqprDC0kqDIQhgnyAiInJPdg1CISEhCAkJscq5W7ZsifDwcOzdu1cTfIqLi3HkyBGzRp45M+2mMBlUL7EsxD5BRETkrpymj1BWVhYKCwuRlZWF6upqZGZmAgBat24NX19fAED79u2xfPlyjBkzBjKZDMnJyVi2bBnatGmDli1b4oUXXkBkZCRGjx5tvy9iI/pNYQJUQUg9OsxDJsOzw9uhS7MA9gkiIiK35TRBaNGiRdi0aZPmfWxsLABg//79GDRoEADg3LlzUCqVmn2effZZlJaW4vHHH0dRURH69euHtLQ0NGrUyKZltwexuYEEAG9PjEWQrxfDDxEREQCZIAhGeo5QcXExFAoFlEol/P397V0ck7TnBhJbI+xgymAGICIicnlSn99OUyNEpumvF8a5gYiIiIxjEHIRYuuFcW4gIiIi4xiEXISh9cLUcwMRERFRbU6z6CoZ1zLYB3KZ7jbODURERGQcg5ATylWW46dLBchVlmveXy4oxXMj2sNDpkpD7BNERERkGpvGnIxYh+idJ7I1758b3p5zAxEREUnEGiEnItYh+ovj2TrvX0s7xxBEREQkEYOQExHrEK2vWhBwpaDMNgUiIiJycgxCTkSsQ7Q+dpAmIiKSjkHIiUQoGmP5A511OkSP7d6UHaSJiIjqiEtsmOCIS2zkKstxpaBM0xdI/z0REZG74xIbLixC0Vgn8Oi/JyIiImnYNEZERERui0GIiIiI3BaDkBPQn0maiIiILIN9hByc/kzSyx/ojAm9mtu7WERERC6BNUIOKldZjv/9kl1rJunnd5xmzRAREZGFsEbIAWnXAulTzxzNUWJERET1xxohB6O/npg+zhxNRERkOQxCDsbYemKcOZqIiMiy2DTmYNTriWmHITmAtx+KRfcWTRiCiIiILIg1Qg5GbD2x5WM7Y1SXSIYgIiIiC2ONkAOa0Ks5BrQN4fphREREVsYg5CByleW4XFCKlsE+mrXDGICIiIisi0HIAXDSRCIiIvtgHyE70x8uz0kTiYiIbIdByM7EhsurJ00kIiIi62IQsjP1cHltnDSRiIjINhiE7ExsuDwnTSQiIrINdpa2E+1RYhwuT0RE7kh/xLQ9MAjZgaFRYgxARETkLhxlxDSbxmyMo8SIiMjdOdKzkEHIxjhKjIiI3J0jPQsZhGyMo8SIiMjdOdKzkEHIxjhKjIiI3J0jPQtlgiAIpndzX8XFxVAoFFAqlfD397fYeXOV5RwlRkREbs2az0Kpz2+nqRF6+eWX0bdvX3h7eyMgIMDk/lVVVXjuuefQuXNn+Pj4IDIyEklJScjJybF+YSWIUDRGfKsghiAiInJbjvAsdJogVFlZifHjx+PJJ5+UtH9ZWRmOHz+OF154AcePH8eOHTtw7tw5/OMf/7BySYmIiMhZOF3T2MaNG5GcnIyioiKzj01PT0fv3r3xxx9/oHlzaXMVWKtpjIiIiKxH6vPbrSZUVCqVkMlkRpvWKioqUFFRoXlfXFxsg5IRERGRPThN01h93bp1C8899xwmTZpkNBkuX74cCoVC84qKirJhKYmIiMiW7BqEUlJSIJPJjL7Onj1b7+tUVVXhwQcfhCAIWLt2rdF9FyxYAKVSqXldvXq13tcnIiIix2TXprG5c+di2rRpRveJiYmp1zXUIeiPP/7Avn37TPbz8fLygpeXV72uSURERM7BrkEoJCQEISEhVju/OgRduHAB+/fvR1BQkNWuRURERM7HafoIZWVlITMzE1lZWaiurkZmZiYyMzNRUlKi2ad9+/bYuXMnAFUIGjduHI4dO4ZPPvkE1dXVyMvLQ15eHiorK+31NYiIiMiBOM2osUWLFmHTpk2a97GxsQCA/fv3Y9CgQQCAc+fOQalUAgCys7Oxa9cuAEC3bt10zqV9DBEREbkvp5tHyNY4jxAREZHzcbklNoiIiIgszWmaxuxFXWHGiRWJiIich/q5barhi0HIhJs3bwIAJ1YkIiJyQjdv3oRCoTD4OfsImVBTU4OcnBz4+flBJpNZ5JzFxcWIiorC1atX2e/IynivbYf32nZ4r22H99p2LH2vBUHAzZs3ERkZCbnccE8g1giZIJfL0axZM6uc29/fn/9j2Qjvte3wXtsO77Xt8F7bjiXvtbGaIDV2liYiIiK3xSBEREREbotByA68vLywePFirmlmA7zXtsN7bTu817bDe2079rrX7CxNREREbos1QkREROS2GISIiIjIbTEIERERkdtiECIiIiK3xSBkY++++y6io6PRqFEjxMXF4ejRo/Yukks6cOAAEhMTERkZCZlMhtTUVHsXySUtX74cvXr1gp+fH0JDQzF69GicO3fO3sVySWvXrkWXLl00k83Fx8fj66+/tnex3MKrr74KmUyG5ORkexfF5SxZsgQymUzn1b59e5uWgUHIhrZt24Y5c+Zg8eLFOH78OLp27Yphw4YhPz/f3kVzOaWlpejatSveffddexfFpf3www+YOXMmfv75Z+zZswdVVVUYOnQoSktL7V00l9OsWTO8+uqryMjIwLFjx3DPPffg/vvvx6+//mrvorm09PR0vP/+++jSpYu9i+Ky7rrrLuTm5mpeBw8etOn1OXzehuLi4tCrVy+88847AFTrmEVFRWH27NlISUmxc+lcl0wmw86dOzF69Gh7F8XlXb9+HaGhofjhhx8wYMAAexfH5QUGBuL111/HjBkz7F0Ul1RSUoLu3bvjvffew7Jly9CtWzesWrXK3sVyKUuWLEFqaioyMzPtVgbWCNlIZWUlMjIykJCQoNkml8uRkJCAw4cP27FkRJajVCoBqB7QZD3V1dXYunUrSktLER8fb+/iuKyZM2di1KhROv9uk+VduHABkZGRiImJweTJk5GVlWXT63PRVRspKChAdXU1wsLCdLaHhYXh7NmzdioVkeXU1NQgOTkZd999Nzp16mTv4rikU6dOIT4+Hrdu3YKvry927tyJjh072rtYLmnr1q04fvw40tPT7V0UlxYXF4eNGzeiXbt2yM3NxdKlS9G/f3+cPn0afn5+NikDgxARWcTMmTNx+vRpm7fvu5N27dohMzMTSqUS27dvx9SpU/HDDz8wDFnY1atX8fTTT2PPnj1o1KiRvYvj0kaMGKH5e5cuXRAXF4cWLVrgs88+s1mTL4OQjQQHB8PDwwPXrl3T2X7t2jWEh4fbqVREljFr1izs3r0bBw4cQLNmzexdHJfVsGFDtG7dGgDQo0cPpKenY/Xq1Xj//fftXDLXkpGRgfz8fHTv3l2zrbq6GgcOHMA777yDiooKeHh42LGErisgIABt27bFxYsXbXZN9hGykYYNG6JHjx7Yu3evZltNTQ327t3LNn5yWoIgYNasWdi5cyf27duHli1b2rtIbqWmpgYVFRX2LobLGTJkCE6dOoXMzEzNq2fPnpg8eTIyMzMZgqyopKQEly5dQkREhM2uyRohG5ozZw6mTp2Knj17onfv3li1ahVKS0sxffp0exfN5ZSUlOj8RnH58mVkZmYiMDAQzZs3t2PJXMvMmTOxZcsW/Pe//4Wfnx/y8vIAAAqFAo0bN7Zz6VzLggULMGLECDRv3hw3b97Eli1b8P333+Obb76xd9Fcjp+fX61+bj4+PggKCmL/NwubN28eEhMT0aJFC+Tk5GDx4sXw8PDApEmTbFYGBiEbmjBhAq5fv45FixYhLy8P3bp1Q1paWq0O1FR/x44dw+DBgzXv58yZAwCYOnUqNm7caKdSuZ61a9cCAAYNGqSz/eOPP8a0adNsXyAXlp+fj6SkJOTm5kKhUKBLly745ptvcO+999q7aER19ueff2LSpEm4ceMGQkJC0K9fP/z8888ICQmxWRk4jxARERG5LfYRIiIiIrfFIERERERui0GIiIiI3BaDEBEREbktBiEiIiJyWwxCRERE5LYYhIiIiMhtMQgRERGRRRw4cACJiYmIjIyETCZDamqqVa+3ZMkSyGQynVf79u3NOgeDEBHZ1aBBg5CcnKx5Hx0djVWrVln8OtOmTcPo0aMtfl6ppkyZgldeeUXSvhMnTsTKlSutXCIiyystLUXXrl3x7rvv2uyad911F3JzczWvgwcPmnU8gxARWY09wseVK1cgk8mQmZmps3316tV2W17ll19+wVdffYWnnnpK0v4LFy7Eyy+/DKVSaeWSEVnWiBEjsGzZMowZM0b084qKCsybNw9NmzaFj48P4uLi8P3339frmg0aNEB4eLjmFRwcbNbxDEJE5BYUCgUCAgLscu23334b48ePh6+vr6T9O3XqhFatWuE///mPlUtGZFuzZs3C4cOHsXXrVpw8eRLjx4/H8OHDceHChTqf88KFC4iMjERMTAwmT56MrKwss45nECIimyktLUVSUhJ8fX0REREhqfmnqKgIjz76KEJCQuDv74977rkHv/zyi8H9W7ZsCQCIjY2FTCbTLAirXzs1aNAgzJ49G8nJyWjSpAnCwsKwfv16lJaWYvr06fDz80Pr1q3x9ddf65z/9OnTGDFiBHx9fREWFoYpU6agoKDAYHmqq6uxfft2JCYm6mx/77330KZNGzRq1AhhYWEYN26czueJiYnYunWryftD5CyysrLw8ccf4/PPP0f//v3RqlUrzJs3D/369cPHH39cp3PGxcVh48aNSEtLw9q1a3H58mX0798fN2/elHwOBiEispn58+fjhx9+wH//+198++23+P7773H8+HGjx4wfPx75+fn4+uuvkZGRge7du2PIkCEoLCwU3f/o0aMAgO+++w65ubnYsWOHwXNv2rQJwcHBOHr0KGbPno0nn3wS48ePR9++fXH8+HEMHToUU6ZMQVlZGQBVKLvnnnsQGxuLY8eOIS0tDdeuXcODDz5o8BonT56EUqlEz549NduOHTuGp556Ci+++CLOnTuHtLQ0DBgwQOe43r174+jRo6ioqDB6f4icxalTp1BdXY22bdvC19dX8/rhhx9w6dIlAMDZs2drdX7Wf6WkpGjOOWLECIwfPx5dunTBsGHD8NVXX6GoqAifffaZ5HI1sPg3JSISUVJSgo8++gj/+c9/MGTIEACqINKsWTODxxw8eBBHjx5Ffn4+vLy8AABvvPEGUlNTsX37djz++OO1jgkJCQEABAUFITw83GiZunbtioULFwIAFixYgFdffRXBwcF47LHHAACLFi3C2rVrcfLkSfTp0wfvvPMOYmNjdTo9b9iwAVFRUTh//jzatm1b6xp//PEHPDw8EBoaqtmWlZUFHx8f3HffffDz80OLFi0QGxurc1xkZCQqKyuRl5eHFi1aGP0eRM6gpKQEHh4eyMjIgIeHh85n6mbjmJgYnDlzxuh5goKCDH4WEBCAtm3b4uLFi5LLxSBERDZx6dIlVFZWIi4uTrMtMDAQ7dq1M3jML7/8gpKSklr/8JWXl2t+g6yPLl26aP7u4eGBoKAgdO7cWbMtLCwMAJCfn68pz/79+0X7+ly6dEk0CJWXl8PLywsymUyz7d5770WLFi0QExOD4cOHY/jw4RgzZgy8vb01+zRu3BgANLVRRM4uNjYW1dXVyM/PR//+/UX3adiwodnD37WVlJTg0qVLmDJliuRjGISIyGGVlJQgIiJCdFSJJTo+e3p66ryXyWQ629ThpaamRlOexMRErFixota5IiIiRK8RHByMsrIyVFZWomHDhgAAPz8/HD9+HN9//z2+/fZbLFq0CEuWLEF6errme6mb/tQ1XETOoKSkRKc25vLly8jMzERgYCDatm2LyZMnIykpCStXrkRsbCyuX7+OvXv3okuXLhg1apTZ15s3bx4SExPRokUL5OTkYPHixfDw8MCkSZMkn4NBiIhsolWrVvD09MSRI0fQvHlzAMBff/2F8+fPY+DAgaLHdO/eHXl5eWjQoAGio6MlXUcdNqqrqy1Sbv3yfPHFF4iOjkaDBtL++ezWrRsA4LffftP8HVAN+U1ISEBCQgIWL16MgIAA7Nu3Dw888AAAVafsZs2amT0UmMiejh07hsGDB2vez5kzBwAwdepUbNy4ER9//DGWLVuGuXPnIjs7G8HBwejTpw/uu+++Ol3vzz//xKRJk3Djxg2EhISgX79++Pnnn836BYJBiIhswtfXFzNmzMD8+fMRFBSE0NBQ/Otf/4JcbnjMRkJCAuLj4zF69Gi89tpraNu2LXJycvDll19izJgxOh2Q1UJDQ9G4cWOkpaWhWbNmaNSoERQKhUW+w8yZM7F+/XpMmjQJzz77LAIDA3Hx4kVs3boVH374Ya1+D4CqRqd79+44ePCgJgjt3r0bv//+OwYMGIAmTZrgq6++Qk1NjU4z4Y8//oihQ4dapNxEtjJo0CAIgmDwc09PTyxduhRLly61yPUsMbKSo8aIyGZef/119O/fH4mJiUhISEC/fv3Qo0cPg/vLZDJ89dVXGDBgAKZPn462bdti4sSJ+OOPPzT9d/Q1aNAAa9aswfvvv4/IyEjcf//9Fit/ZGQkDh06hOrqagwdOhSdO3dGcnIyAgICjAa6Rx99FJ988onmfUBAAHbs2IF77rkHHTp0wLp16/Dpp5/irrvuAgDcunULqampmk7bRGQ9MsFYdCMionorLy9Hu3btsG3bNsTHx5vcf+3atdi5cye+/fZbG5SOyL2xRoiIyMoaN26MzZs3G514UZunpyfefvttK5eKiADWCBEREZEbY40QERERuS0GISIiInJbDEJERETkthiEiIiIyG0xCBEREZHbYhAiIiIit8UgRERERG6LQYiIiIjcFoMQERERua3/B3pqCi8/4RlXAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "\n", "data = gettable.get()\n", "\n", "plt.plot(times, data[0], '.', label=\"real\")\n", "plt.plot(times, data[1], '.', label=\"imaginary\")\n", "plt.legend()\n", "plt.xlabel(\"Idle time (s)\")\n", "plt.ylabel(\"Voltage (V)\")\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "e7f28b8d", "metadata": {}, "source": [ "Note that the data used here is the same as in {ref}`sec-tutorial-experiment`. The example dataset can be downloaded {download}`here <../examples/dataset.hdf5>`.\n", "\n", "As we defined 125 points in our `times` array which were measured in 125 different `acq_index`es, the acquisition result also contains 125 _I_ values (in `data[0][:]`) and 125 _Q_ values (in `data[1][:]`). The general format of the data returned by the {class}`~quantify_scheduler.gettables.ScheduleGettable` is also explained in the {ref}`user guide `.\n", "\n", "## Trace measurement\n", "\n", "The previous experiment's acquisition results had one data point for each acquisition in the schedule. For a trace measurement, the data format is slightly different. To illustrate this, let us set up an experiment with a trace measurement." ] }, { "cell_type": "code", "execution_count": 6, "id": "0b661b40", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler.operations import IdlePulse, SoftSquarePulse\n", "\n", "\n", "def trace_schedule(pulse_amp, acq_delay, port=\"q0:res\", clock=\"q0.ro\", repetitions=1):\n", " schedule = Schedule(\"Trace a pulse\", repetitions=repetitions)\n", "\n", " schedule.add(\n", " SoftSquarePulse(\n", " duration=q0.measure.integration_time(),\n", " amp=pulse_amp,\n", " port=port,\n", " clock=clock,\n", " ),\n", " label=\"trace_pulse\",\n", " )\n", "\n", " # Add acq_delay to compensate for time-of-flight of the pulse\n", " schedule.add(\n", " Measure(q0.name, acq_protocol=\"Trace\"),\n", " ref_pt=\"start\",\n", " rel_time=acq_delay,\n", " label=\"acquisition\"\n", " )\n", "\n", " return schedule" ] }, { "cell_type": "markdown", "id": "dba30e3e", "metadata": {}, "source": [ "Again, we define the gettable and run the experiment." ] }, { "cell_type": "code", "execution_count": 7, "id": "4e24145b", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.9/site-packages/quantify_scheduler/backends/qblox/compiler_abc.py:627: RuntimeWarning: Operation is interrupting previous Pulse because it starts before the previous ends, offending operation: Pulse \"UpdateParameters\" (t0=1.0000000000000001e-07, duration=0)\n", " warnings.warn(\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAABX4UlEQVR4nO3deVxU9foH8M8MCrI5gsimIIsLmgiIguCulLtZlmblQmXeUrtKdZMWbRXXMpdyubnUvSlZav7K5RpqbqSIkpg7opACisugSGLM+f0xzsjAzDADsx4+79drSs76nO+cmfPMOd9FIgiCACIiIiKRkFo7ACIiIiJTYnJDREREosLkhoiIiESFyQ0RERGJCpMbIiIiEhUmN0RERCQqTG6IiIhIVBpYOwBLUygUuHLlCtzd3SGRSKwdDhERERlAEATcvn0b/v7+kEr135upd8nNlStXEBAQYO0wiIiIqBby8/PRokULvcvUu+TG3d0dgLJwGjdubOVoiIiIyBAlJSUICAhQX8f1qXfJjepRVOPGjZncEBER2RlDqpSwQjERERGJCpMbIiIiEhUmN0RERCQqTG6IiIhIVJjcEBERkagwuSEiIiJRYXJDREREosLkhoiIiESFyQ0RERGJCpMbIiIiEhUmN0RERCQqTG6ICAXyMhzMKUaBvKxexGErx2vrWE5kr+rdwJlEplAgL0NucSmCvVzhJ3Ou9TKm3F9tpWbkIXljNhQCIJUAKU+GY1SXQJPuozZxvDUgDOEtZHB1dEBpeYXGsde2PArkZVi1Pxdf7c+16PGa6v2rzXZqu29d54U5z0UiU5EIgiBYOwhLKikpgUwmg1wu56jgIqPtS7fyNADV/l1W/jcuFJcixMsVzo4N4OrogLwbd3Gr7D4AwMPFEdEtPTS+xFMz8jB9YzZUn5zkgWGY2CtUI5aaEoaqsar+1nYhr7wtAIhu2QTDI5sjob0PAODIxRuQSCTV4gSA3/Nv4pdTRfB2b4SOLWQoLa9QH6NEIoFzQyle+joTlb8FpAA2TYpHRICH0WWu7++qZR4T5KneR4G8DN1m71IfozYSABN6BKOpuxPmbDsNhfBwWmL3YPX2tV10C+RlmL3tFH7MKqi2XSmAA8l9a7xQG3p+VX4Pr5b8hc/TzmHX6Wvq7fRv7w1/DxeEeLlWew8DPJw13v/K29979pr6PFAd9+COfsi7cReXbtxF3vW7cHVsgPb+7rhVdh8hXq5IO3UV6w7nQ1Ws47q2ROdgD43zu+o+AeV5M/yLgxrnhQTApD6h+GJPTrWy11Z2hp4blT+Dl2+VofhOOfqFeavPjd/zb+LwxRvqz6i28tf2udH1npH9Mub6bRPJzdKlSzFv3jwUFhYiIiICixcvRkxMjNZl16xZg8TERI1pTk5O+OuvvwzaF5MbcSmQl+HIxRtIO3UVP2ZdgYCHycStsvuYve006nqGSwC82jsUUilwo7Qc/z2UX22ZcXEt8Y/eoeov2ie+OFjtQp0YH4T2/u7YdqJQ42LXs7UX9p8vrrb88Eg/tPJxx4IdZ2HoIUzqHYpurb3g6uiA+f87i33nio072MrH1LUl+of7qi8clS8gALA47Zz6wikB0KO1F/adK1bH2qdtM+w+c03X5gEAAzv44svno/HT8SuY/O2xWseKBzGo9t0t1BMDOvihYwsZfjpegJX7cvWu2y/MG1Etm+D6nXKEeLmqE8Gy8r+RlX8L+TfK8OPvVyA8uKhPHxgGSICUrafrFLO+YxnYwRfb/yjUm/CZep+PR/rh2p1yHDh/3eD1VHfZ/Js0UifZlRMxAIgMkCErX65ep71fY5wqKNF7Xg/s4AsXRwf8cPRytf2lPBkOABr7UB3D7BHKHxK2ckeSTMeukpvU1FSMHTsWy5YtQ2xsLBYuXIgNGzbgzJkz8Pb2rrb8mjVr8M9//hNnzpxRT5NIJPDx8TFof0xu7J/q11j2ZTlmbz1t8IWfbFOghzPybrJOBxmncjJb1Rv921T7USABcNCAO3Rku+wquYmNjUWXLl2wZMkSAIBCoUBAQACmTJmC6dOnV1t+zZo1mDp1Km7dulWr/TG5sV8F8jKNuwVERMbo2doLX78Yq37UpXo0ysdX9sGY67dVKxSXl5cjMzMTycnJ6mlSqRQJCQlIT0/Xud6dO3fQsmVLKBQKdOrUCbNmzcIjjzyiddl79+7h3r176r9LSkpMdwBkMcv35pjtEQAR1Q97zxUj5uOduHqnXD0tuKkLLl6/q/FIm4+v7J9Vm4IXFxejoqKi2iMlHx8fFBYWal2nbdu2WLVqFX788Uf85z//gUKhQHx8PP7880+ty6ekpEAmk6lfAQEBJj8OMp8CeRle/jqDiQ0RmUTlxAYAch8kNgCgEIC3fsjGT8evsPm7nbO7puBxcXGIi4tT/x0fH4927dph+fLl+Oijj6otn5ycjKSkJPXfJSUlTHDsxPwdp7Fkd461wyCiekZVuV1bS0iyD1ZNbry8vODg4ICioiKN6UVFRfD19TVoGw0bNkRUVBTOnz+vdb6TkxOcnJzqHCtZ1rMr0nHwwg1rh0FE9VjKttOABJjYkwmOvbFqcuPo6Ijo6GikpaVh+PDhAJQVitPS0jB58mSDtlFRUYHs7GwMGjTIjJGSuaiaclfud2P5rznIvmy7daPGxbXEgA5+cHGU4m65AnfL7+Oznedw4orumIdH+KNb66b41/fZtaoMrWoZomp2u+v0VRzKvaF1mdqSABgW4Y8ff79Sh60Yvi9jYx0e6QenBg747sifdl+hvK7vlc7tSgBBUNY3eKlnMAaH++FuuQIHzl/D0t05ynMIwIAampk/GxuA5k2cUf63Ah1byHDowk2s3HehzjFP6hOK57u2xOK081ifkQeFADhIJBge5Y/Nx66gQkf7FnOVlyHmbDuNYRH+rGhsZ6zeWio1NRXjxo3D8uXLERMTg4ULF+K7777D6dOn4ePjg7Fjx6J58+ZISUkBAHz44Yfo2rUrWrVqhVu3bmHevHnYvHkzMjMz0b59+xr3x9ZStuH3/JtYsfcCfs7WXrfK1CQAHnvEBzv+KFL/PX1gGA6cL8beSn3BdApsgt/z5agQBEgAtPdzxx8FtzXW0XabukBehviUXVq/gH+s1CFeakYe3t54AhWCAAeJBP0f8cG2E4XqvmJGxwagW6gXGjWU4ni+HM0aO6FfO2WdtIvFdxHk5aLR0dquU1erLXO3/D42Hb2Cn7MLqjWFVV3cnnmwn04tPTS2DUDncajWV5VD1xBPLEo7j12nr1bbDyrta0AHX+z4o0h9zLOe7ICebZph9f6LNV4w+7fzwbAof3Sq1EFh5TJUHUt7P+Vn2cPFES08nJF/owy/nCpS932kMqJTc/VFVLXu3XsV2PL7FXXHdLri0TZveIQ/2jVvjLnbzmhcmCUP/qPqF6dyebw1MAzDIv01yvyt749rnIeV9WnbDHvPFqvPSV3xLRkdheggj2rniUqBvExjnupvF0cp8m+U4VZZOTxcHDXKuur6mRdv4laZss6Kh4sj/rxVptEdw7MxAXBsIMXa9EvVOoZ8q8pnp6Z4JBKghYcz7pYr4OIo1dp3lKU8EeWP8fFBBnVsSeZjV03BAWDJkiXqTvwiIyOxaNEixMbGAgB69+6NoKAgrFmzBgAwbdo0bNy4EYWFhfDw8EB0dDQ+/vhjREVFGbQvJjfW9/p3WdU65qqrHyfFq78E75YrcPzyLfUFR3VBVXUdry1JOHLxJjoHeaibhWr70tV2wagsNSMP0394eGdGIgFma2l5UdvtG0t1MZJIUC2J0bef5b/mKG/HV+IgkWDjq3G4W66otn7li5JqftV96TpGbT3hAso7B1P6ttY7tIUhx1K1DHTFUnmaKnbV8VQ9rqrbM6QMDCl71XkY5OWCsnKFzpivlvyF4UsPaiQ5DhIJ9k/vY5W7C/rKs3J51DW2ykmtBMDomABM6ddaWR5aziFz6N22GV7uGcIm41Zid8mNJTG5sZ4CeRl2nizEjB9P1mk7scEeyLh4s8aeR82VNOij7WJqj5bvzVEPcVA5OTSHqndiqv7Cp+qq3gE05/tjS3R9pquWx78GtEXHFk0Q5OWC+TvOaPyYMsUjrso9IZPlMLnRg8mNdVQdH8kYvo2dMLlvK41b5tZIXOobS5Yx30/jscw06SuPyndnvRs3Ui/3n98uYWkdWmT+aOAYbGQaTG70YHJjeQXyMsTP3lXr28bp7DKdiMxk+d6cOg3johrPjY+qzI/JjR5Mbixv1PKDOJR7s1brzuGtXyIyswJ5GVbvv4h/779Q60rL7N3Y/Jjc6MHkxnIK5GV4/8cT2HHyqtHrDo/wx1uDwvhLiIgsRvVo6/jlW7W6myMFcIB3ms3GbsaWIvGq7VhQUgCb+BybiKzAT+YMP5kz4kKbYliEP9YdysOiXdo7iNVGAWD1/ot4e3A78wVJBrHq2FIkTst/NTyx6dO2GaQPOgJxkEiQMiKciQ0RWZ2fzBmjYwPV30+GWrnvAselsgG8c0MmVSAvw+xtht+xeblnKGY9Gc5WH0Rkc/xkzkh5MlzdzNwQAoBfThZhTFyQWWMj/ZjckEllXrpp8HNqB4lEndAwqSEiWzSqSyB6tmlmVPPx9378A6cKSjCln+6OKMm8+FiKTGb+jtPq0XRroup4jB98IrJ1qno4fjJnvNk/DMmDwmpc59vD+YhP2YXUjDwLREhV8c4NmYQho3irxiRS9RzKxIaI7NHEnqHoGuyJx5ce1LucACB5YzZ6tmnG7zsL450bqrPxqw/XmNgAwOLRUZjYK1T9C4iIyF5FBHjg5R7BNS6nEJTjkZFlMbmhOkk7VYg9Z67VuJxUAkQHsRUUEYlHYvdgGNKYavK6Y1j+a+2HeSDjMbmhWkvNyMOLazNrXE4CZc+dvFtDRGLiJ3PG9IE1178BgJRtp7F8LxMcS2FyQ7VSIC/D9B+yDVr2w8cfYZfkRCRKE3uFInlQmEF3cGZvPc0+cCyEyQ0ZrUBeho9/OmlQk28JgIT2PuYOiYjIaib2DMXmSfE1LidA2YMxmR+TGzJKakYe4lN24efswhqXlQKYPYKPo4hI/CICPDBnRHiNy7EHY8tgU3AyWIG8DMkbs2u8YyMBsOTZKHRq6cHEhojqjVFdAhHm6663ibgA4Oilmxjckd+N5sQ7N2Sw3OJSKAx4FjV9UBgGd/RnYkNE9Y4hd3B2niyyUDT1F5MbMkiBvAznr96ucblJfUIxsWeoBSIiIrJNo7oEIj25L4ZH+mudvznrCv65/hgfT5mRRBAMHA1MJEpKSiCTySCXy9G4cWNrh2MXUjPyMP2Hmh9HJQ8Mw8ReTGyIiFTe3nQc3x7K1zpPAmW9RLYmNYwx12/euSG9VE2+a0psvhoXzcSGiKiKUZ0DdM5TDc/AOzimx+SG9MotLq0xsenZ2gv92vlaJB4iIntSWl6hdz6HZzAPJjek14FzxTUuM+epjhaIhIjI/gR7uda4zJR1xzh6uIkxuSGdCuRl+GKP/u7CkweFsVUUEZEOfjJnTOqt/5G9AGD6D3w8ZUpMbkgnQx5JdWzexBKhEBHZrTcHhGFQuP5H9+y92LSY3JBOro4OeudLJUCQl4uFoiEisl9fPBeNr8ZF613m3/vZe7GpMLkhrQrkZViUdk7nfImEI30TERmjXztfvNwjWOd8hQBcLL5rwYjEi8MvUDWpGXl4S8+I32/2b4MnO7VgYkNEZKTE7sFYsS9X5/z9568hLrSpBSMSJ965IQ0F8jK9iQ0AdAr0ZGJDRFQLfjJnJA8M0zl/6e4cLN+rvyEH1YzJDWnIvKS/vwXWsyEiqpuJvULxbKzuzv3mbDvNujd1xOSGNBw8r79fm7cGsuk3EVFdTenbWuc8hQD8wsE164TJDan9nn8T3x7WPgYKADwbE8hBMYmITKCmx1Pv/fgHXv8uy3IBiQyTGwIALN+bg8eXHtQ5XwpgSr9WlguIiEjkano89cPRy/g9n0Mz1AaTG8LyX3OQsvW0zvlSCZAygs2+iYhMTd/jKQD48dgVC0UiLkxu6rkCeRlStulObABg0TNRGNUl0EIRERHVH34yZwzR03vxqoMX+XiqFpjc1HO5xaV650slQHSQh4WiISKqfyb0DNE7n4+njMfkpp6racRa9kJMRGReEQEe6NHaS+8yNfU/RpqY3NRz//ntktbpPVt7IT25Lx9HERFZwNynOuqdf7rwNubv0F+FgB5iclOPLf81B0t3a+8J85XerXjHhojIQvxkzpjUW39XG0v35LBzPwMxuamn9FUkZi/ERESW9+aAMAzSU7lY4MCaBmNyU08duXhD57zRMYG8a0NEZAVfPBeNHyfFo6Wn9u/gu+X3LRyRfWJyU0+l51zXOW9yX3bWR0RkLREBHng+rqXWecfz5RaOxj4xuamHCuRlOodZmNwnlHdtiIisLCbIU+v0RbvOIzUjz8LR2B8mN/WQvr5turVqZsFIiIhIm4gADwzsUL3+jQBg+g/ZrFhcAyY39dCOE4Vap7MiMRGR7Rij49GUAGD1/osWjcXeMLmpZ5b/moO16dr7tnmpewgfSRER2QhXRwed8/69/wLv3ujB5KYe+T3/ps7m3xIAid2DLBoPERHpVlpeoXOeQgAyL3JIBl2Y3NQTqRl5eHzpQZ3z2fybiMi2BHu5QqJn/uR1x1i5WAcmN/VAgbwMyRv1j0sypR+bfxMR2RI/mTNmjwjXu0zyRlYu1obJTT2QW1wKhaB7fvKgMN61ISKyQaO6BOLHSfE65yvYa7FWTG7qAX2V0oZH+mNiT/3jmRARkfVEBHjoHHdKArZy1YbJTT2Qf1P3LctH2/tYMBIiIqqNNweEoU9Y9X7I9NyUr9eY3IhcakYeJn97TOs8CYBOLT0sGxAREdXKhB4hWqe/9f1xC0di+5jciFiBvAzTf9BdkXhCD/ZrQ0RkL3RVMdh7rhhpp7R3zlpfMbkRsdziUp23LNmvDRGRfdHX782LazPZLLwSm0huli5diqCgIDRq1AixsbE4fPiwQeutX78eEokEw4cPN2+Adir7T92jx7JfGyIi+xLs5ap3PsecesjqyU1qaiqSkpIwc+ZMHD16FBEREejfvz+uXr2qd72LFy/ijTfeQI8ePSwUqX0pkJdhto7eiAH2a0NEZG/8ZM6Yo6ffGwHstVjF6snNp59+igkTJiAxMRHt27fHsmXL4OLiglWrVulcp6KiAs899xw++OADhIRor2Clcu/ePZSUlGi86oPMSzd1PpJ6mXVtiIjs0qgugfhqXLTO+d/8pn3swPrGqslNeXk5MjMzkZCQoJ4mlUqRkJCA9PR0net9+OGH8Pb2xosvvljjPlJSUiCTydSvgIAAk8Ruy2pqIcW6NkRE9qtfO18M7OCrdd6h3BusXAwrJzfFxcWoqKiAj49mXys+Pj4oLNT+5uzfvx9fffUVVq5cadA+kpOTIZfL1a/8/Pw6x23LCuRleEtPC6np7I2YiMjuffl8NLqFNtU6j5WLbeCxlDFu376NMWPGYOXKlfDy8jJoHScnJzRu3FjjJWa5xaV653ds3sQygRARkVn9a0BbnfPq+5hTDay5cy8vLzg4OKCoqEhjelFREXx9q99yy8nJwcWLFzF06FD1NIVCAQBo0KABzpw5g9DQ+j2UgL4WUlIJu+kmIhKLiAAPxAR54LCWSsSqMafq6516q965cXR0RHR0NNLS0tTTFAoF0tLSEBcXV235sLAwZGdnIysrS/0aNmwY+vTpg6ysrHpRn0afmlpIpTwZXm9PdCIiMRoS4adz3oHz1ywYiW2x6p0bAEhKSsK4cePQuXNnxMTEYOHChSgtLUViYiIAYOzYsWjevDlSUlLQqFEjdOjQQWP9Jk2aAEC16fWRvk77loyOwpAIf4vGQ0RE5uXp6qRz3hd7cvBc15b18ket1ZObUaNG4dq1a5gxYwYKCwsRGRmJ7du3qysZ5+XlQSq1q6pBVqOra24JgOggjiFFRCQ20XrGB6zPj6YkgiDUq0FFS0pKIJPJIJfLRVe5eNbPJ7FiX2616RIAB5P71ssTnIhI7FIz8rS2knWQSLB/eh/RfPcbc/3mLRGRKJCXaU1sAGWvlReL71o2ICIisohRXQKRntwXscGeGtN7tPESTWJjLCY3IrE47ZzOeQ4SCVtJERGJXMbFGxp/7zlzDa/+N9NK0VgXkxsRKJCX4dvD2jsnlEqAWU92qLfZOxFRfZBbXAqFlkomW7ML8Xt+/RtvismNCOhr/r3p1XiM6hJowWiIiMjS9I0Y/t7mPywYiW1gcmPnlv+agx+zrmid92xMICIC2EqKiEjs/GTOmNRbeye2xy/L693dGyY3dqxAXoYUPXdtpvRrZcFoiIjImt4cEIYwXzet845o6cVYzJjc2LEjVSqPVZbMATKJiOqdN/trH2/qdGGJhSOxLiY3diw957rOeV2rNAkkIiLxc3bU3jfvhszLWL43x8LRWA+TGztVIC/DOh0tpID6dwuSiIiUFYslOubN3nq63owUzuTGTukbRwoAOnO4BSKiesdP5oxXdVQsFgAcvVQ/fvgyubFTusaRAoARnZqzlRQRUT3VrbWXznk3SsstGIn1WH3gTKqdn48XaJ3+0eOPYExckGWDISIim6F6NKXt7v57P/4BxwZS0fd/xjs3dkjXOFJSCZDQ3scKERERka3wkzlj9ohwnfOTN2aLvu4Nkxs7pKtH4tExgWz+TUREGNUlEK/p6OtMIYh/MGUmN3ZGX4/EcSFNLRwNERHZqn5h3jrnuTiK+/Iv7qMTmQJ5mc67NhIA0WwhRURED0QEeKCHjsrFC/531sLRWBaTGzuir/n3pD6hfCRFREQa5j7VUev0veeKRT3eFJMbO6Jv1NdurZpZMBIiIrIHfjJnDAn31Tpv5d7qDVPEgsmNHZm/44zW6Q4SCYK8XCwcDRER2YMJPUO0Tt96okC0raaY3NiJ3/Nv4oejl7XOm/VkBz6SIiIirSICPNDau/qdfzG3mmJyYydW7r2gc16Yr7sFIyEiIntSIC/D+aulWueJ9a4/kxs7UCAvw0/ZhTrnc5BMIiLSRV9jFF3VHewdkxs7kFusPeNW4SCZRESki76Rwn84elmUraaY3NiB7D/lOudxkEwiItLHT+aMCT2Cdc5flHbegtFYBpMbG1cgL8Oc7dU77mvn64YfJ8VjwchIywdFRER2JbG77uQm7fRVLN+bY8FozI/JjY3LLS6FQsvD0jNFd+DduJHlAyIiIrvjJ3PGHD2Dac7ZdlpUzcKZ3Ni4HSe0VyQWcxM+IiIyvVFdAvHVuGit88R2TWFyY8OW/5qDtemXtM6TSsTbhI+IiMzD2bGBznkHzl+zYCTmxeTGRhXIy5CiY5BMAHhrYBg77iMiIqPoazm1dHeOaB5NMbmxUfqafz8R6Y+JPUMtGA0REYmBn8wZ0weGaZ0nAMgUSb9pTG5slKujg855/9JxYhIREdVkYq9QPB7pr3Ve+oXrFo7GPJjc2Kifjxdonf5yjxA+jiIiojp5oVuQ1unfHsoTxaMpJjc2qEBehpX7tA9Fn9g9yLLBEBGR6JSWV2idLpZHU0xubJCucUB0VQIjIiIyRrBX9VHCVW6VlVswEvNgcmODdNW3ESCufgiIiMg6/GTOSNZRf3PGj38gNSPPwhGZFpMbG7N8bw4eX3pQ6zwHiYR92xARkUlM7BWK5EHVExyFALy98YRd171hcmNDlv+ag5Stuvu2+dfAtqxMTEREJtM12FPr9ApBsOsnBUxubESBvAyz9XTaBwAdmzexTDBERFQvHL54Q+c8e35SwOTGRuiqRKzC4RaIiMjUYoK037kBgPk7zlgwEtNicmMj9NVcB4CUJ8P5SIqIiEwqIsADAzv4ap33w9HL+D3fPpuFM7mxA0tGR2FUl0Brh0FERCI0Jq6lznlH7LTPGyY3NmLOtlNap0slQHSQh4WjISKi+kLfk4POdnr9YXJjA5b/moPNWdqHWxgdE8jHUUREZDb6+rz5LVd3hWNbxuTGympqJTW5bysLRkNERPVReAuZ1umzt562y/5umNxYmb5WUsmDwnjXhoiIzC7Yy1XrED8CgNX7L1o4mrpjcmNlwV6ukGo5oyb1CcXEnqGWD4iIiOodP5kzXu2t/Zqzct8Fu7t7w+TGyvaevQaFlls3gZ7s04aIiCynW2svrdPt8e4NkxsrKpCXYfoP2Vrn2fu4HkREZF/0tZr69377unvD5MaKjly8obO+jb2P60FERPbFT+aMl3sEa52nEGBX1yQmN1YkkWirvqXE4RaIiMjSErsHa61YDADHL9+yZCh1wuTGiqJb6u4c6aXuIWwpRUREFuUnc8bsEeFa583ddsZuHk0xubGy4ZF+1aZJASR2D7J4LERERKO6BOLZ2IBq0+2pukQDawdQX6Vm5GH6D9nV6tw4SCSY9WQH3rUhIiKrKJCX4dtD+Vrnrdybg7jQphaOyHi8c2MFqlZS2ioTb3w1joNkEhGR1eQWl+qct+vMNbsYKZzJjRXo65X4z5v28TyTiIjESVdvxSr2MFK4UcnNrVu3sHr1arzwwgvo168f4uLiMGzYMMycORMHDx6sdRBLly5FUFAQGjVqhNjYWBw+fFjnshs3bkTnzp3RpEkTuLq6IjIyEt98802t920NZeV/65wn6Mp6iIiILEBfpWLAPkYKNyi5uXLlCl566SX4+fnh448/RllZGSIjI9GvXz+0aNECu3fvxqOPPor27dsjNTXVqABSU1ORlJSEmTNn4ujRo4iIiED//v1x9epVrct7enrinXfeQXp6Oo4fP47ExEQkJiZix44dRu3Xmi7oueUXbQcnDRERiduoLoFIT+5brWO/tj5uiAiw/euURBBqvlfg4+ODcePGYfz48Wjfvr3WZcrKyrB582YsWrQII0aMwBtvvGFQALGxsejSpQuWLFkCAFAoFAgICMCUKVMwffp0g7bRqVMnDB48GB999FG1effu3cO9e/fUf5eUlCAgIAByuRyNGzc2aPum9nv+TTy+tPqdrsl9QvFGf+3DzhMREVlSgbwM3WbvqjZEUFyoJ9ZNiLN4PCUlJZDJZAZdvw26c3Py5EnMnTtXZ2IDAM7Ozhg9ejTS09ORmJhoUKDl5eXIzMxEQkLCw4CkUiQkJCA9Pb3G9QVBQFpaGs6cOYOePXtqXSYlJQUymUz9Cgio3rzN0k4X3q42bWAHXyY2RERkM3KLS7WOfZiecwMvrNZdfcQWGJTcNG3aFD/99BMUCoVBG23a1LBmYsXFxaioqICPj4/GdB8fHxQWFupcTy6Xw83NDY6Ojhg8eDAWL16MRx99VOuyycnJkMvl6ld+vvbmbZZSIC9D8kbN8aQkAGYM1Z04EhERWZq+saZsvdWUwRWKhw8fjoCAALzzzjs4f/68OWOqkbu7O7KyspCRkYFPPvkESUlJ2LNnj9ZlnZyc0LhxY42XNS3eda5aJizAvsbsICIi8fOTOWNS71Cd82251ZTByU1ubi4mTpyI9evXo23btujVqxe++eYblJXVvumyl5cXHBwcUFRUpDG9qKgIvr6+uoOWStGqVStERkbi9ddfx1NPPYWUlJRax2Epy3/N0dkxkosjW+UTEZFteXNAGOJCPbXOs+VWUwZfUQMCAjBjxgzk5OTgl19+QVBQEF555RX4+fnhH//4BzIyMozeuaOjI6Kjo5GWlqaeplAokJaWhrg4wysrKRQKjUrDtqhAXoaUbad1zr9bbtgjPyIiIktaNyEOfds2qzb9tws3rBCNYWp1u6BPnz5Yu3YtCgoKMG/ePGRnZ6Nr166IiIgweltJSUlYuXIl1q5di1OnTuGVV15BaWmpulLy2LFjkZycrF4+JSUFO3fuxIULF3Dq1CksWLAA33zzDZ5//vnaHIrFrN6fq3MeRwAnIiJb9smT4ZBU6dkvZdtpLN+bY52AalCnsaXc3d3Rr18/XLp0CadPn8bJkyeN3saoUaNw7do1zJgxA4WFhYiMjMT27dvVlYzz8vIglT7MwUpLS/Hqq6/izz//hLOzM8LCwvCf//wHo0aNqsuhmFWBvAwr9ulObt4aGMaxpIiIyGblFpdq7WR2zrbTGBbhb3PXMIP6uamqrKwMGzZswKpVq7Bv3z4EBwcjMTER48ePR/Pmzc0Rp8kY007eVH46fgWTvz2mdd6kPqF4k03AiYjIhhXIyxCfskvr0EHrJnS1yGCaxly/jbpz89tvv2HVqlX47rvvUF5ejieffBK//PIL+vTpU6eAxe7g+WKd87q3qv4ck4iIyJb4yZwxoIMvtp2o3k2LLVarMDi5ad++Pc6cOYOoqCikpKTg2WefhUwmM2dsolAgL8O6w9pbSLGuDVlSRUUF7t+/b+0wyIQcHR01HtsTmUuBvAzbtSQ2ALDl9yuY2FN3k3FrMDi5SUhIwLp162pVabg+0zUCuARAypPhNvecksRHEAQUFhbi1q1b1g6FTEwqlSI4OBiOjo7WDoVETte1DLDNejcGJzeLFi0yZxyipRo6vupJsXlSvF0MPkb2T5XYeHt7w8XFBZKqTR7ILikUCly5cgUFBQUIDAzk+0pmpetaBgAKQdkRrd0lNwMGDMD777+Prl276l3u9u3b+OKLL+Dm5oZJkyaZJEB7tyXritaTwbtxI4vHQvVPRUWFOrExdFgUsh/NmjXDlStX8Pfff6Nhw4bWDodEzE/mjNkjwvHWD9la5x+/fMsilYoNZVBy8/TTT2PEiBGQyWQYOnQoOnfuDH9/fzRq1Ag3b97EyZMnsX//fmzduhWDBw/GvHnzzB23XdDXcd/RSzcxuKPtZLkkTqo6Ni4urNslRqrHURUVFUxuyOxGdQmEl5sjXlybWW2erT2aMii5efHFF/H8889jw4YNSE1NxYoVKyCXywEAEokE7du3R//+/ZGRkYF27dqZNWB7kltcqnOe8Q3wiWqPjyzEie8rWdoFHdc1W3s0ZXCdGycnJzz//PPqnoDlcjnKysrQtGlT/mLQIftPudbpEgDRNjwmBxERkTYxQdrHmQKAA+ev2cyjqVq3IZTJZPD19WVio0OBvAxztmt/JDV7BFtJEVnDxYsXIZFIkJWVZe1QiOxSRIAHerT20jrviz05KJDXfjBtU2IHCWaSW1wKhZZHTxIAPduw4z4iIrJPc5/qqHW66tGULWByYybBXq5apwuwnTefyJ6Ul5dbOwQigrLl1KTe2jvtO3D+moWj0Y7JjZm8vUl7czn2Skz2rEBehoM5xRa59dy7d29MnjwZU6dOhZeXF/r3748TJ05g4MCBcHNzg4+PD8aMGYPi4ofDm2zfvh3du3dHkyZN0LRpUwwZMgQ5ObY5ajGRPeum49HU0t228WiKyY0ZzNt+GrtPa89eX+oewvo2ZJdSM/LQbfYuPLvyELrN3oXUjDyz73Pt2rVwdHTEgQMHMHv2bPTt2xdRUVE4cuQItm/fjqKiIowcOVK9fGlpKZKSknDkyBGkpaVBKpXiiSeegEKhMHusRPWJvqcTmRdvWjYYLYwaOFPl1q1b+P7775GTk4M333wTnp6eOHr0KHx8fGx+VHBzK5CXYeke3b8UE7sHWS4YIhMpkJcheWO2uh6ZQgDe3ngCPds0M2uy3rp1a8ydOxcA8PHHHyMqKgqzZs1Sz1+1ahUCAgJw9uxZtGnTBiNGjNBYf9WqVWjWrBlOnjyJDh06mC1OovrGT+aMZ2MC8K2WsRPTL1zHkAh/K0T1kNF3bo4fP442bdpgzpw5mD9/vnq8mo0bNyI5OdnU8dkdfX3bTO4Tyrs2ZJe0VZCvEASz1x+Ljo5W//v333/H7t274ebmpn6FhYUBgPrR07lz5zB69GiEhISgcePGCAoKAgDk5Zn/LhNRfTOlX2ut09cdzrP6oymjk5ukpCSMHz8e586dQ6NGD4cQGDRoEPbu3WvS4OyRavyNqvqENcMb/cMsHg+RKQR7uUJa5cR2kEjMXn/M1fXhre87d+5g6NChyMrK0nidO3cOPXv2BAAMHToUN27cwMqVK3Ho0CEcOnQIACsjE5mDn8wZL/cIrjZdIVj/0ZTRyU1GRgYmTpxYbXrz5s1RWKh9OPT6Rlvnw7OeCLd4HESm4idzRsqT4XB40COug0SCWU92sOidyE6dOuGPP/5AUFAQWrVqpfFydXXF9evXcebMGbz77rvo168f2rVrh5s3rf/sn0jMErsHa/1BP2XdMYvUy9PF6OTGyckJJSUl1aafPXsWzZqx/5ZfThZpnX70Er9kyb6N6hKI/dP7YN2Ertg/vQ9GdQm06P4nTZqEGzduYPTo0cjIyEBOTg527NiBxMREVFRUwMPDA02bNsWKFStw/vx57Nq1C0lJSRaNkag+0vaDXgCQvDHbao+njE5uhg0bhg8//FA9IJ9EIkFeXh7eeuutapX56pvUjDy89+MfWudxLCkSAz+ZM+JCm1ql7pi/vz8OHDiAiooKPPbYYwgPD8fUqVPRpEkTSKVSSKVSrF+/HpmZmejQoQOmTZvGQXyJzExfPVNrdupndGupBQsW4KmnnoK3tzfKysrQq1cvFBYWIi4uDp988ok5YrQLBfIynUPBcywpIuPt2bOn2rTWrVtj48aNOtdJSEjAyZMnNaYJlX5ZBAUFafxNRHXj6uigd76Lo3V6nDE6uZHJZNi5cyf279+P48eP486dO+jUqRMSEhLMEZ/d0Je9Dg73YyspIiISndLyCr3z75Zbp4+pWvVzAwDdu3dH9+7dTRmLXdPVoREATOhZvTY5ERGRvVO1pNQ2liIAHL98yyojhRud3CxatEjrdIlEgkaNGqFVq1bo2bMnHBz036oSGz+ZM5IHhSFlq+ZI4CM6NUdEAB9JERGR+KhaUr698QQqtDzynbvtDIZF+Fv86YXRyc1nn32Ga9eu4e7du/DwUF60b968CRcXF7i5ueHq1asICQnB7t27ERAQYPKAbVVqRh5mV0lsJvUOxZsD2LcNERGJ16gugejZphl+Pl6Aj38+pTFP1dmnpZMbo2v6zJo1C126dMG5c+dw/fp1XL9+HWfPnkVsbCw+//xz5OXlwdfXF9OmTTNHvDapQF6G6T9kV2sO9+WvtjGAGBERkTn5yZwxuKOfVTr71Mbo5Obdd9/FZ599htDQh8Odt2rVCvPnz0dycjJatGiBuXPn4sCBAyYN1JblFpdqbedvzWZwRERElmQLnX2qGP1YqqCgAH///Xe16X///be6h2J/f3/cvn277tHZCV1N4aQSWCVjJSIisgbVI6qLxXcR5OVitZbCRt+56dOnDyZOnIhjx46ppx07dgyvvPIK+vbtCwDIzs5GcHD9aSGkqyncS91D2ASciIjqFWt29qlidHLz1VdfwdPTE9HR0XBycoKTkxM6d+4MT09PfPXVVwAANzc3LFiwwOTB2iptgwpKASR2D7JGOERERPWa0Y+lfH19sXPnTpw+fRpnz54FALRt2xZt27ZVL9OnTx/TRWgHqjaFs+ZzRiKx6N27NyIjI7Fw4UKrxhEUFISpU6di6tSpVo2DiAxX6078wsLCEBbGZs4qtvKckUgsNm7ciIYNG1o7DGRkZMDVVXcnnURke2qV3Pz555/YsmUL8vLyUF5erjHv008/NUlg9shP5sykhshEPD09rR0CAKBZs2Zm30d5eTkcHR3Nvh+i+sLoOjdpaWlo27YtvvzySyxYsAC7d+/G6tWrsWrVKmRlZZkhRCKyGfLLQO5e5f/NrHfv3upHQUFBQfj4448xduxYuLm5oWXLltiyZQuuXbuGxx9/HG5ubujYsSOOHDmiXv/69esYPXo0mjdvDhcXF4SHh2PdunUa+7h9+zaee+45uLq6ws/PD5999pnGflX7rvxoTCKR4N///jeeeOIJuLi4oHXr1tiyZYt6fkVFBV588UUEBwfD2dkZbdu2xeeff66x3/Hjx2P48OH45JNP4O/vj7Zt2+LDDz9Ehw4dqpVDZGQk3nvvvTqUJFH9Y3Ryk5ycjDfeeAPZ2dlo1KgRfvjhB+Tn56NXr154+umnzREjEdmCo18DCzsAa4cq/3/0a4vu/rPPPkO3bt1w7NgxDB48GGPGjMHYsWPx/PPP4+jRowgNDcXYsWPVo37/9ddfiI6Oxs8//4wTJ07g5ZdfxpgxY3D48GH1NpOSknDgwAFs2bIFO3fuxL59+3D06NEaY/nggw8wcuRIHD9+HIMGDcJzzz2HGzduAAAUCgVatGiBDRs24OTJk5gxYwbefvttfPfddxrbSEtLw5kzZ7Bz50789NNPeOGFF3Dq1ClkZGSolzl27BiOHz+OxMREUxQhUf0hGMnNzU04f/68IAiC0KRJE+HEiROCIAhCVlaW0LJlS2M3Z3FyuVwAIMjlcmuHQmR2ZWVlwsmTJ4WysrK6bejWn4LwfhNBmNn44et9D+V0M+nVq5fwz3/+UxAEQWjZsqXw/PPPq+cVFBQIAIT33ntPPS09PV0AIBQUFOjc5uDBg4XXX39dEARBKCkpERo2bChs2LBBPf/WrVuCi4uLer+qfX/22WfqvwEI7777rvrvO3fuCACEbdu26dzvpEmThBEjRqj/HjdunODj4yPcu3dPY7mBAwcKr7zyivrvKVOmCL1799a5XZO9v0R2wJjrt9F3blxdXdX1bPz8/JCTk6OeV1xcbIp8i4hszY0cQFBoThMqgBsXLBZCx44d1f/28fEBAISHh1ebdvXqVQDKx0MfffQRwsPD4enpCTc3N+zYsQN5eXkAgAsXLuD+/fuIiYlRb0Mmk2m0/DQkFldXVzRu3Fi9XwBYunQpoqOj0axZM7i5uWHFihXq/aqEh4dXq2czYcIErFu3Dn/99RfKy8vx7bff4oUXXqgxHiLSZHSF4q5du2L//v1o164dBg0ahNdffx3Z2dnYuHEjunbtao4YicjaPEMBiVQzwZE4AJ4hFguhcsspyYPu3bVNUyiUMc6bNw+ff/45Fi5ciPDwcLi6umLq1KnVGkHUNRbVvlX7Xb9+Pd544w0sWLAAcXFxcHd3x7x583Do0CGNdbS1wBo6dCicnJywadMmODo64v79+3jqqafqHC9RfWN0cvPpp5/izp07AJTPne/cuYPU1FS0bt26XreUIhI1WXNg6OfA/01V3rGROABDFyqn26gDBw7g8ccfx/PPPw9AmfScPXsW7du3BwCEhISgYcOGyMjIQGBgIABALpfj7Nmz6NmzZ532Gx8fj1dffVU9rfIdbn0aNGiAcePGYfXq1XB0dMQzzzwDZ2e2wCQyltHJTUjIw19qrq6uWLZsmUkDIiIb1WksENpP+SjKM8SmExsAaN26Nb7//nscPHgQHh4e+PTTT1FUVKRObtzd3TFu3Di8+eab8PT0hLe3N2bOnAmpVKq+C1Tb/X799dfYsWMHgoOD8c033yAjI8PgIWleeukltGvXDgDq1QDERKZkdJ2bkJAQXL9+vdr0W7duaSQ+RCRCsuZAcA+bT2wA4N1330WnTp3Qv39/9O7dG76+vhg+fLjGMp9++ini4uIwZMgQJCQkoFu3bmjXrh0aNWpU6/1OnDgRTz75JEaNGoXY2Fhcv35d4y5OTVq3bo34+HiEhYUhNja21nEQ1WcSQXjQbtJAUqkUhYWF8Pb21pheVFSEwMBA3Lt3z6QBmlpJSQlkMhnkcjkaN25s7XCIzOqvv/5Cbm4ugoOD63TBri9KS0vRvHlzLFiwAC+++KJVYhAEAa1bt8arr76KpKQkvcvy/aX6xJjrt8GPpSp3UrVjxw7IZDL13xUVFUhLS0NQUJDx0RIRWcmxY8dw+vRpxMTEQC6X48MPPwQAPP7441aJ59q1a1i/fj0KCwvZtw1RHRic3Khu50okEowbN05jXsOGDREUFFSvRgInInGYP38+zpw5A0dHR0RHR2Pfvn3w8vKySize3t7w8vLCihUr4OHhYZUYiMTA4ORG1cwxODgYGRkZVvvwExGZSlRUFDIzM60dhpqRtQSISAejW0vl5uaaIw4iIiIikzAouVm0aJHBG3zttddqHQwRmQfvCIgT31ci7QxKbj777DODNiaRSJjcENkQVU+6d+/eZWdwIqTqbdnBwcHKkRDZFoOSGz6KIrJPDg4OaNKkiXrcIxcXlzp1UEe2Q6FQ4Nq1a3BxcUGDBkbXMCAStTp9IlS3RPllSWS7fH19AUBjYEcSB6lUisDAQH4HE1VRq+Tm66+/xrx583Du3DkAQJs2bfDmm29izJgxJg2OiOpOIpHAz88P3t7euH//vrXDIRNydHSEVGp0R/NEolergTPfe+89TJ48Gd26dQMA7N+/H//4xz9QXFyMadOmmTxIIqo7BwcH1s0gonrB6OEXgoOD8cEHH2Ds2LEa09euXYv333/f5uvncPgFIiIi+2PM9dvo+5kFBQWIj4+vNj0+Ph4FBQXGbo6IiIjIpIxOblq1aoXvvvuu2vTU1FS0bt3aJEERERER1ZbRdW4++OADjBo1Cnv37lXXuTlw4ADS0tK0Jj2GWLp0KebNm4fCwkJERERg8eLFiImJ0brsypUr8fXXX+PEiRMAgOjoaMyaNUvn8kRERFS/GHznRpVMjBgxAocOHYKXlxc2b96MzZs3w8vLC4cPH8YTTzxhdACpqalISkrCzJkzcfToUURERKB///46m63u2bMHo0ePxu7du5Geno6AgAA89thjuHz5stH7JiIiIvExuEKxVCpFly5d8NJLL+GZZ56Bu7u7SQKIjY1Fly5dsGTJEgDKjqkCAgIwZcoUTJ8+vcb1Kyoq4OHhgSVLllSr5KwNKxQTERHZH7NUKP7111/xyCOP4PXXX4efnx/Gjx+Pffv21SnQ8vJyZGZmIiEh4WFAUikSEhKQnp5u0Dbu3r2L+/fvw9PTU+v8e/fuoaSkRONFRERE4mVwctOjRw+sWrUKBQUFWLx4MXJzc9GrVy+0adMGc+bMQWFhodE7Ly4uRkVFBXx8fDSm+/j4GLy9t956C/7+/hoJUmUpKSmQyWTqV0BAgNFxEhERkf0wurWUq6srEhMT8euvv+Ls2bN4+umnsXTpUgQGBmLYsGHmiFGn2bNnY/369di0aRMaNWqkdZnk5GTI5XL1Kz8/36IxEhERkWXVaWypVq1a4e2330bLli2RnJyMn3/+2aj1vby84ODggKKiIo3pRUVF6vFwdJk/fz5mz56NX375BR07dtS5nJOTE5ycnIyKi4iIiOxXrQcl2bt3L8aPHw9fX1+8+eabePLJJ3HgwAGjtuHo6Ijo6GikpaWppykUCqSlpSEuLk7nenPnzsVHH32E7du3o3PnzrU9BCIiIhIho+7cXLlyBWvWrMGaNWtw/vx5xMfHY9GiRRg5ciRcXV1rFUBSUhLGjRuHzp07IyYmBgsXLkRpaSkSExMBAGPHjkXz5s2RkpICAJgzZw5mzJiBb7/9FkFBQeq6OW5ubnBzc6tVDERERCQeBic3AwcOxC+//AIvLy+MHTsWL7zwAtq2bVvnAEaNGoVr165hxowZKCwsRGRkJLZv366uZJyXl6cx6u2XX36J8vJyPPXUUxrbmTlzJt5///06x0NERET2zeB+boYNG4YXX3wRQ4YMseuRhdnPDRERkf0x5vpt8J2bLVu21DkwIiIiInOrdYViIiIiIlvE5IaIiIhEhckNERERiQqTGyIiIhIVJjdEREQkKkxuiIiISFSY3BAREZGoMLkhIiIiUWFyQ0RERKLC5IaIiIhEhckNERERiQqTGyIiIhIVJjdEREQkKkxuiIiISFSY3BAREZGoMLkhIiIiUWFyQ0RERKLC5IaIiIhEhckNERERiQqTGyIiIhIVJjdEREQkKkxuiIiISFSY3BAREZGoMLkhIiIiUWFyQ0RERKLC5IaIiIhEhckNERERiQqTGyIiIhIVJjdEREQkKkxuiIiISFSY3BAREZGoMLkhIiIiUWFyQ0RERKLC5IaIiIhEhckNERERiQqTGyIiIhIVJjdEREQkKkxuiIiISFSY3BAREZGoMLkhIiIiUWFyQ0RERKLC5IaIiIhEhckNERERiQqTGyIiIhIVJjdEREQkKkxuiIiISFSY3BAREZGoMLkhIiIiUWFyQ0RERKLC5IaIiIhEhckNERERiQqTGyIiIhIVJjdEREQkKkxuiIiISFSsntwsXboUQUFBaNSoEWJjY3H48GGdy/7xxx8YMWIEgoKCIJFIsHDhQssFSkRERHbBqslNamoqkpKSMHPmTBw9ehQRERHo378/rl69qnX5u3fvIiQkBLNnz4avr6+FoyUiIiJ7YNXk5tNPP8WECROQmJiI9u3bY9myZXBxccGqVau0Lt+lSxfMmzcPzzzzDJycnCwcLREREdkDqyU35eXlyMzMREJCwsNgpFIkJCQgPT3dZPu5d+8eSkpKNF5EREQkXlZLboqLi1FRUQEfHx+N6T4+PigsLDTZflJSUiCTydSvgIAAk22biIiIbI/VKxSbW3JyMuRyufqVn59v7ZCIiIjIjBpYa8deXl5wcHBAUVGRxvSioiKTVhZ2cnJi/RwiIqJ6xGp3bhwdHREdHY20tDT1NIVCgbS0NMTFxVkrLCIiIrJzVrtzAwBJSUkYN24cOnfujJiYGCxcuBClpaVITEwEAIwdOxbNmzdHSkoKAGUl5JMnT6r/ffnyZWRlZcHNzQ2tWrWy2nEQERGR7bBqcjNq1Chcu3YNM2bMQGFhISIjI7F9+3Z1JeO8vDxIpQ9vLl25cgVRUVHqv+fPn4/58+ejV69e2LNnj6XDJyIiIhskEQRBsHYQllRSUgKZTAa5XI7GjRtbOxwiIiIygDHXb9G3liIiIqL6hckNERERiQqTGyIiIhIVJjdEREQkKkxuiIiISFSY3BAREZGoMLkhIiIiUWFyQ0RERKLC5IaIiIhEhckNERERiQqTGyIiIhIVJjdEREQkKkxuiIiISFSY3BAREZGoMLkhIiIiUWFyQ0RERKLC5IaIiIhEhckNERERiQqTGyIiIhIVJjdEREQkKkxuiIiISFSY3BAREZGoMLkhIiIiUWFyQ0RERKLC5IaIiIhEhckNERERiQqTGyIiIhIVJjdEREQkKkxuiIiISFSY3BAREZGoMLkhIiIiUWFyQ0RERKLC5IaIiIhEhckNERERiQqTGyIiIhIVJjdEREQkKkxuiIiISFSY3BAREZGoMLkhIiIiUWFyQ0RERKLC5IaIiIhEhckNERERiQqTGyIiIhIVJjdEREQkKkxuiIiISFSY3BAREZGoMLkhIiIiUWFyQ0RERKLC5IaIiIhEhckNERERiQqTGyIiIhIVJjdERLZEfhnI3av8P1Ft1fPzqIG1AyAb8mcmkJcOBMYBLaKtHY1tkl8GbuQAnqGArLm1oyGxvR9Hvwb+75+AoAAkUmDo50CnsdaOyjbY+3ttyfjNcR7ZWfkzuTG1yicAAOQfUv4/INZ0J4S2JKSuJ96mV4Dfv334d7vhwKi1hq9fdf9Vy6EusckvA2e2AXeKgDYDDEu8jCkP1bINXYFbl5TTKr9fqvlXsoBfZlb/wvgzEzi7HXBwApqGGP5e6yuz2qyvmqY655q01H88Vfejb/81zavpPDfk2Cq/D/dLq5dL1fcnJ03zCzzhfcA/Svc+zP3lrK8cdO278mfZ3ffh8QDK/2/5J+DoVvP2TPm9Y+xnt7blWtP7XflYcvcCR9c+KBsJED8ZiH3F8PNX3zKGnL81rV/TNg05V6t+dlVlAuj+vFaNWzVN23nk/Yjyu7M2340XfgX2LwAEwbDPmg2QCIIgWDsISyopKYFMJoNcLkfjxo1Nu/HK2TIkACoXrQQYtggI7af5RX33hnK2i2f1E/TuDaDsFlBxT3lRd/cFNk4ALh14uNnAbkDbAZoX3aonnq47MqoTt/wusG5U9eMJHwnE/kPzQ6YtyTiwCPhlhvLEB4DmnYHLmZWO/0FZVI0N0F8WAHDoS+DgYs24QvsBwxZrrn+/9OH/K38QK38Ralv+0DIge0OV9+qB6MQH7+vah18UGqRA807A5SNVpj94r70fUZZ701aA/E9luTWPBu7fVZajer8SoP0w4NT/Gf7lV/QHsG/+w10OW6w8V3a+pyXOSjEB2n/RafulpzpXKyd1kAA9kgCfDg9i+hPYOUOz/Hq8DoT0fvgeH/oSSF9a/dgqvw/HvgEyV1ePObQPcGGPjvKv+hlTTZYC3acBEgdlwuncRFluld/n6PFA1FjNc7vyhQJQvkfXzwMuXsqkVXXB0ZYEH/0a2PIaNM75Rz9QHueVrEplVOnc+Pl1oODYw7j9OwNXqp5LlYQ/DQR0BYpOAJlrHm4vYjRwfL3uMhq26OGv9j8zH5TDg+25+z680N0uBH6dC5zb8XDbwMN/V37fVWWhK+HXl0DnH6py/lfi8whw9ZSOY6l6aDrOX0iAmAnKGJu2AhxdlHGc+OHh95Rq3ZuXND9HABA/5WHiVPm7WOMcevC94uCkedEf+rlyGxrnwoP3Qdu5ConyXAS0nP+q9fBwn9Hjle+BxjnwQLXvXS3aP/7we0ZVTo2aaP4wA5Tv3amfgMPLdW8LePh5lgUoy8jFE2joovzcmOEJgDHXb5tIbpYuXYp58+ahsLAQERERWLx4MWJiYnQuv2HDBrz33nu4ePEiWrdujTlz5mDQoEEG7ctsyY38MrCwg2EfSn1aPwac2wm9J6gxvNsDV08+/Duo18MLae6vdduPf2egkQy4kFbLDej6wJuLpfdnIj1eB27lA9nfmWBjWpLuyOeBrP/ALsvGFgT3BnL3WDmIGvT8F1Dw+4PExczCRwInvn94AX30A6DDU8DeeTou4HUU908gfRFMfv76hgOF2UauVDkZIUQ8Czzxpck2Z1fJTWpqKsaOHYtly5YhNjYWCxcuxIYNG3DmzBl4e3tXW/7gwYPo2bMnUlJSMGTIEHz77beYM2cOjh49ig4dOtS4P7MlN/97t/odBiIiovrspV0mu4NjV8lNbGwsunTpgiVLlgAAFAoFAgICMGXKFEyfPr3a8qNGjUJpaSl++ukn9bSuXbsiMjISy5Ytq7b8vXv3cO/ePfXfJSUlCAgIMG1yI78MfNbeNNsiIiISi0eeBJ42zR07Y5IbqzYFLy8vR2ZmJhISEtTTpFIpEhISkJ6ernWd9PR0jeUBoH///jqXT0lJgUwmU78CAgJMdwAqqmf1RERE9NDJzVZpjm7V5Ka4uBgVFRXw8fHRmO7j44PCwkKt6xQWFhq1fHJyMuRyufqVn59vmuCJiIhIP0EB3Lhg8d2Kvim4k5MTnJyczLuTgFjYbWVVIiIic5E4AJ4hFt+tVe/ceHl5wcHBAUVFRRrTi4qK4Ovrq3UdX19fo5a3CFnzB81sJTUuSiRawb2sHYG4OJm4qwoiY0mkyubjhvLuoGw9KHmQWkgcgKELrdIXjlWTG0dHR0RHRyMt7WFTYoVCgbS0NMTFxWldJy4uTmN5ANi5c6fO5S2m01hg2h9A/GsP31gAiHkZaD9cc1m/SM1lwoZo/q2XBHj0Q2DaSeW+qiZUEqmyObkhWnYzfJ99Zij7fhj0KTBogfbFWsRUOg4JIKltsidV9rFS52SxltvR+l5IlOX96EfVZ3m1A3q8Ydh+DH6frUmqbH4+7idlSwfV/8NH6l4l/jVg3Bblcm0G4GFZ6CmTsKGGl4dPhPLcM7r8tOy/eecaVlHtQ6rs6+ipNcrjemqN8nMQOUb7dmsTizY931J+vl/9rYbjrbS96ETDz8GYlw2PRds+JZXeW9V+a3pfHhkBxE1VfoeEj9S+fGA3w49Bl8c+UZ4nPd8CHv8C6PWWdT9zEgdlclA5Bq+2Bq4sVX5H1xR/dKLuZcKGKMsiZqKB+1R58H039QQw8mvl+V+TdsOBVw8A435UrjfuJ2BqttV62LZ6a6nU1FSMGzcOy5cvR0xMDBYuXIjvvvsOp0+fho+PD8aOHYvmzZsjJSUFgLIpeK9evTB79mwMHjwY69evx6xZs6zfFLwy+WXlM0bPkIcZ65+ZQP5vyk641L1EVlrm6NfA/00FhAqoO1dq0AhIX/Kgvwjpg87o/qGlV84Lyo6T7t99uL0DizQ7DlP1NZF/WLleQMzDTqrObFd2MCdUAPs/exDDA6rMu/IJqq1PH4mD8kQGHh6X6t9XjgG/vP9gu1IgepzyV35AjLLjMFW5uPtqlon8sjJeVedQTQKBW3nADy9U3/eLO5XzAOVylctCtR3VcaviaugCfJWgfVuq9SsfT+XO9LLWA9fPAY8MV3aiqJqu2k+TQGVFOtX7V7mDL/X7LAUefV/5vugqJ5/wB50aPoi78vbv39V+DKoLkLozSTw8D5oEPuyADlB+IQ2Ypf0c0ubPTOCrfg87bASUsU47of28VJXhlinKXlpVVP1fVD1/K8dQ+dxQNSWt/DlRnZtA9U7T4l9TflZy0qovr+pVOv83ZSduGSu1dF54QX85aHxetZEofwT4R1Y/ly7sAfZ/qr1PLNXnSLXfqsfbfSrg0lT750Xn+yMBRq8HHF2rfN9U6sU2fCTQdpDyPDvx/YPvjsqkwFOrND8/VT8TqmlHVgH7FijfD23fH5WXLy9VdhhX+T2u+nnNSVP2sIsH34M9pinLQOO907GfqmWotR+ayp+XSgZ9Cty+Uum9qvQdDGjGqDpXPUOV5Vz1s1T1+17j+7nSMen6HtT3fVX5e7ehy8PvQdV3fOUyV8Usz9f8rql8XLrO/aNfa74Pj74PNHR70Klrf4sM2WNXTcEBYMmSJepO/CIjI7Fo0SLExip7SuzduzeCgoKwZs0a9fIbNmzAu+++q+7Eb+7cudbvxM8UtCVF2qbVZXuGrlPThU7bRUZfhl6X46jrvi21LW2MfU9rU07ajqHyBRrQ3GbVRNtYtS2zuu5XRVeZVk3c9S1f0/aMjePED5V66jXi81A5oa0pETA0PkPfH33bPbDIuOMxZtu1oWt7hu6n8nLaEl5Ad5mZ+liMjb0yU35f1eX6YOqyMJDdJTeWZNPJjb2x5oluyn1b+QNrEpY+BjGUmamZIkkyVVmaYptifo9N/UPSkuwlTjNgcqMHkxsiIiL7Yzed+BERERGZGpMbIiIiEhUmN0RERCQqTG6IiIhIVJjcEBERkagwuSEiIiJRYXJDREREosLkhoiIiESFyQ0RERGJCpMbIiIiEhUmN0RERCQqDawdgKWphtIqKSmxciRERERkKNV125AhMetdcnP79m0AQEBAgJUjISIiImPdvn0bMplM7zL1blRwhUKBK1euwN3dHRKJxKTbLikpQUBAAPLz8zniuBmxnC2D5Ww5LGvLYDlbhrnKWRAE3L59G/7+/pBK9deqqXd3bqRSKVq0aGHWfTRu3JgfHAtgOVsGy9lyWNaWwXK2DHOUc013bFRYoZiIiIhEhckNERERiQqTGxNycnLCzJkz4eTkZO1QRI3lbBksZ8thWVsGy9kybKGc612FYiIiIhI33rkhIiIiUWFyQ0RERKLC5IaIiIhEhckNERERiQqTGyMtXboUQUFBaNSoEWJjY3H48GG9y2/YsAFhYWFo1KgRwsPDsXXrVgtFat+MKeeVK1eiR48e8PDwgIeHBxISEmp8X0jJ2PNZZf369ZBIJBg+fLh5AxQRY8v61q1bmDRpEvz8/ODk5IQ2bdrw+8MAxpbzwoUL0bZtWzg7OyMgIADTpk3DX3/9ZaFo7dPevXsxdOhQ+Pv7QyKRYPPmzTWus2fPHnTq1AlOTk5o1aoV1qxZY94gBTLY+vXrBUdHR2HVqlXCH3/8IUyYMEFo0qSJUFRUpHX5AwcOCA4ODsLcuXOFkydPCu+++67QsGFDITs728KR2xdjy/nZZ58Vli5dKhw7dkw4deqUMH78eEEmkwl//vmnhSO3L8aWs0pubq7QvHlzoUePHsLjjz9umWDtnLFlfe/ePaFz587CoEGDhP379wu5ubnCnj17hKysLAtHbl+MLef//ve/gpOTk/Df//5XyM3NFXbs2CH4+fkJ06ZNs3Dk9mXr1q3CO++8I2zcuFEAIGzatEnv8hcuXBBcXFyEpKQk4eTJk8LixYsFBwcHYfv27WaLkcmNEWJiYoRJkyap/66oqBD8/f2FlJQUrcuPHDlSGDx4sMa02NhYYeLEiWaN094ZW85V/f3334K7u7uwdu1ac4UoCrUp57///luIj48X/v3vfwvjxo1jcmMgY8v6yy+/FEJCQoTy8nJLhSgKxpbzpEmThL59+2pMS0pKErp162bWOMXEkOTmX//6l/DII49oTBs1apTQv39/s8XFx1IGKi8vR2ZmJhISEtTTpFIpEhISkJ6ernWd9PR0jeUBoH///jqXp9qVc1V3797F/fv34enpaa4w7V5ty/nDDz+Et7c3XnzxRUuEKQq1KestW7YgLi4OkyZNgo+PDzp06IBZs2ahoqLCUmHbndqUc3x8PDIzM9WPri5cuICtW7di0KBBFom5vrDGtbDeDZxZW8XFxaioqICPj4/GdB8fH5w+fVrrOoWFhVqXLywsNFuc9q425VzVW2+9BX9//2ofJnqoNuW8f/9+fPXVV8jKyrJAhOJRm7K+cOECdu3aheeeew5bt27F+fPn8eqrr+L+/fuYOXOmJcK2O7Up52effRbFxcXo3r07BEHA33//jX/84x94++23LRFyvaHrWlhSUoKysjI4OzubfJ+8c0OiMnv2bKxfvx6bNm1Co0aNrB2OaNy+fRtjxozBypUr4eXlZe1wRE+hUMDb2xsrVqxAdHQ0Ro0ahXfeeQfLli2zdmiismfPHsyaNQtffPEFjh49io0bN+Lnn3/GRx99ZO3QqI5458ZAXl5ecHBwQFFRkcb0oqIi+Pr6al3H19fXqOWpduWsMn/+fMyePRu//PILOnbsaM4w7Z6x5ZyTk4OLFy9i6NCh6mkKhQIA0KBBA5w5cwahoaHmDdpO1eac9vPzQ8OGDeHg4KCe1q5dOxQWFqK8vByOjo5mjdke1aac33vvPYwZMwYvvfQSACA8PBylpaV4+eWX8c4770Aq5e9/U9B1LWzcuLFZ7toAvHNjMEdHR0RHRyMtLU09TaFQIC0tDXFxcVrXiYuL01geAHbu3KlzeapdOQPA3Llz8dFHH2H79u3o3LmzJUK1a8aWc1hYGLKzs5GVlaV+DRs2DH369EFWVhYCAgIsGb5dqc053a1bN5w/f16dQALA2bNn4efnx8RGh9qU8927d6slMKqEUuCwiyZjlWuh2aoqi9D69esFJycnYc2aNcLJkyeFl19+WWjSpIlQWFgoCIIgjBkzRpg+fbp6+QMHDggNGjQQ5s+fL5w6dUqYOXMmm4IbwNhynj17tuDo6Ch8//33QkFBgfp1+/Ztax2CXTC2nKtiaynDGVvWeXl5gru7uzB58mThzJkzwk8//SR4e3sLH3/8sbUOwS4YW84zZ84U3N3dhXXr1gkXLlwQ/ve//wmhoaHCyJEjrXUIduH27dvCsWPHhGPHjgkAhE8//VQ4duyYcOnSJUEQBGH69OnCmDFj1MurmoK/+eabwqlTp4SlS5eyKbitWbx4sRAYGCg4OjoKMTExwm+//aae16tXL2HcuHEay3/33XdCmzZtBEdHR+GRRx4Rfv75ZwtHbJ+MKeeWLVsKAKq9Zs6cafnA7Yyx53NlTG6MY2xZHzx4UIiNjRWcnJyEkJAQ4ZNPPhH+/vtvC0dtf4wp5/v37wvvv/++EBoaKjRq1EgICAgQXn31VeHmzZuWD9yO7N69W+t3rqpsx40bJ/Tq1avaOpGRkYKjo6MQEhIirF692qwxSgSB996IiIhIPFjnhoiIiESFyQ0RERGJCpMbIiIiEhUmN0RERCQqTG6IiIhIVJjcEBERkagwuSEiIiJRYXJDREREWu3duxdDhw6Fv78/JBIJNm/ebPZ9Xr58Gc8//zyaNm0KZ2dnhIeH48iRI0Ztg8kNEVnd+PHjMXz4cKvtf8yYMZg1a5ZByz7zzDNYsGCBmSMisg2lpaWIiIjA0qVLLbK/mzdvolu3bmjYsCG2bduGkydPYsGCBfDw8DBqO+yhmIjMSiKR6J0/c+ZMTJs2DYIgoEmTJpYJqpLff/8dffv2xaVLl+Dm5lbj8idOnEDPnj2Rm5sLmUxmgQiJbINEIsGmTZs0fojcu3cP77zzDtatW4dbt26hQ4cOmDNnDnr37l2rfUyfPh0HDhzAvn376hQr79wQkVkVFBSoXwsXLkTjxo01pr3xxhuQyWRWSWwAYPHixXj66acNSmwAoEOHDggNDcV//vMfM0dGZPsmT56M9PR0rF+/HsePH8fTTz+NAQMG4Ny5c7Xa3pYtW9C5c2c8/fTT8Pb2RlRUFFauXGn0dpjcEJFZ+fr6ql8ymQwSiURjmpubW7XHUr1798aUKVMwdepUeHh4wMfHBytXrkRpaSkSExPh7u6OVq1aYdu2bRr7OnHiBAYOHAg3Nzf4+PhgzJgxKC4u1hlbRUUFvv/+ewwdOlRj+hdffIHWrVujUaNG8PHxwVNPPaUxf+jQoVi/fn3dC4fIjuXl5WH16tXYsGEDevTogdDQULzxxhvo3r07Vq9eXattXrhwAV9++SVat26NHTt24JVXXsFrr72GtWvXGrUdJjdEZJPWrl0LLy8vHD58GFOmTMErr7yCp59+GvHx8Th69Cgee+wxjBkzBnfv3gUA3Lp1C3379kVUVBSOHDmC7du3o6ioCCNHjtS5j+PHj0Mul6Nz587qaUeOHMFrr72GDz/8EGfOnMH27dvRs2dPjfViYmJw+PBh3Lt3zzwHT2QHsrOzUVFRgTZt2sDNzU39+vXXX5GTkwMAOH36NCQSid7X9OnT1dtUKBTo1KkTZs2ahaioKLz88suYMGECli1bZlRsDUx6pEREJhIREYF3330XAJCcnIzZs2fDy8sLEyZMAADMmDEDX375JY4fP46uXbtiyZIliIqK0qgYvGrVKgQEBODs2bNo06ZNtX1cunQJDg4O8Pb2Vk/Ly8uDq6srhgwZAnd3d7Rs2RJRUVEa6/n7+6O8vByFhYVo2bKlOQ6fyObduXMHDg4OyMzMhIODg8Y81WPekJAQnDp1Su92mjZtqv63n58f2rdvrzG/Xbt2+OGHH4yKjckNEdmkjh07qv/t4OCApk2bIjw8XD3Nx8cHAHD16lUAyorBu3fv1lp3JicnR2tyU1ZWBicnJ41Kz48++ihatmyJkJAQDBgwAAMGDMATTzwBFxcX9TLOzs4AoL5rRFQfRUVFoaKiAlevXkWPHj20LuPo6IiwsDCDt9mtWzecOXNGY9rZs2eN/hHB5IaIbFLDhg01/pZIJBrTVAmJQqEAoPwVOXToUMyZM6fatvz8/LTuw8vLC3fv3kV5eTkcHR0BAO7u7jh69Cj27NmD//3vf5gxYwbef/99ZGRkqCs937hxAwDQrFmzuh0kkY27c+cOzp8/r/47NzcXWVlZ8PT0RJs2bfDcc89h7NixWLBgAaKionDt2jWkpaWhY8eOGDx4sNH7mzZtGuLj4zFr1iyMHDkShw8fxooVK7BixQqjtsM6N0QkCp06dcIff/yBoKAgtGrVSuPl6uqqdZ3IyEgAwMmTJzWmN2jQAAkJCZg7dy6OHz+OixcvYteuXer5J06cQIsWLeDl5WW24yGyBUeOHEFUVJT60WxSUhKioqIwY8YMAMDq1asxduxYvP7662jbti2GDx+OjIwMBAYG1mp/Xbp0waZNm7Bu3Tp06NABH330ERYuXIjnnnvOqO3wzg0RicKkSZOwcuVKjB49Gv/617/g6emJ8+fPY/369fj3v/9drU4AoLzz0qlTJ+zfv1+d6Pz000+4cOECevbsCQ8PD2zduhUKhQJt27ZVr7dv3z489thjljo0Iqvp3bs39HWH17BhQ3zwwQf44IMPTLbPIUOGYMiQIXXaBu/cEJEo+Pv748CBA6ioqMBjjz2G8PBwTJ06FU2aNIFUqvur7qWXXsJ///tf9d9NmjTBxo0b0bdvX7Rr1w7Lli3DunXr8MgjjwAA/vrrL2zevFldsZmIbA97KCaieq2srAxt27ZFamoq4uLialz+yy+/xKZNm/C///3PAtERUW3wzg0R1WvOzs74+uuv9Xb2V1nDhg2xePFiM0dFRHXBOzdEREQkKrxzQ0RERKLC5IaIiIhEhckNERERiQqTGyIiIhIVJjdEREQkKkxuiIiISFSY3BAREZGoMLkhIiIiUWFyQ0RERKLy/zHqADq5Ns5oAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=trace_schedule,\n", " schedule_kwargs={\n", " \"pulse_amp\": 0.5,\n", " \"acq_delay\": 100e-9,\n", " },\n", " batched=True,\n", ")\n", "\n", "data = gettable.get()\n", "\n", "plt.plot(np.arange(1000)/1e9, data[0], '.', label=\"real\")\n", "plt.plot(np.arange(1000)/1e9, data[1], '.', label=\"imaginary\")\n", "plt.legend()\n", "plt.xlabel(\"Time (s)\")\n", "plt.ylabel(\"Voltage (V)\")\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "5951ba46", "metadata": {}, "source": [ "This time, there is only one acquisition operation in the schedule. The measurement result contains two arrays: one for the _I_ values (`data[0][:]`), and one for the _Q_ values (`data[1][:]`) of the acquired trace.\n", "\n", "## MeasurementControl\n", "\n", "Iterating through different parameters can be done with some help from `quantify-core` as well, through the {class}`~quantify_core.measurement.control.MeasurementControl` class. The {class}`~quantify_core.measurement.control.MeasurementControl` uses settables (parameters to vary in an experiment) and gettables (in this case, our {class}`~quantify_scheduler.gettables.ScheduleGettable`). The settable must be a class that implements `set()`, such as a QCoDeS {class}`~qcodes.parameters.ManualParameter`.\n", "\n", "In this example, the settable is the `time` object, and the setpoints are a numpy array of values (`times`). These are added to the {class}`~quantify_core.measurement.control.MeasurementControl` as shown, together with the {class}`~quantify_scheduler.gettables.ScheduleGettable`. The {class}`~quantify_core.measurement.control.MeasurementControl` object will be in charge of setting the setpoints, and retrieving the measurement results through the gettable." ] }, { "cell_type": "code", "execution_count": 8, "id": "b6fe1bd2", "metadata": {}, "outputs": [], "source": [ "from quantify_core.measurement.control import MeasurementControl\n", "\n", "\n", "measurement_control = MeasurementControl(\"measurement_control\")\n", "\n", "# Configure the settable\n", "time = ManualParameter(\"sample\", label=\"Sample time\", unit=\"s\")\n", "time.batched = True\n", "\n", "times = np.linspace(start=1.6e-7, stop=4.976e-5, num=125)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=single_qubit_device,\n", " schedule_function=t1_sched,\n", " schedule_kwargs={\"times\": time},\n", " batched=True\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables(time)\n", "measurement_control.setpoints(times)\n", "measurement_control.gettables(gettable)" ] }, { "cell_type": "markdown", "id": "c98b0a82", "metadata": {}, "source": [ "The experiment is set to run fully in _batched_ mode. When using {class}`~quantify_core.measurement.control.MeasurementControl`, settables and gettables can be either batched (an array of points is set for each measurement iteration) or iterative (only one point is set per iteration). Combinations of batched and iterative settables are possible, as explained in detail in the [quantify-core documentation](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#mixing-iterative-and-batched-settables).\n", "\n", "Settables and gettables are batched if they have the attribute `batched=True`. In {class}`~quantify_scheduler.gettables.ScheduleGettable`, this can be controlled through the `batched` argument when creating the class. For other classes, the attribute can be added dynamically if needed, as shown above for the `time` parameter.\n", "\n", "With both the gettable and the settable having `batched=True`, the {class}`~quantify_core.measurement.control.MeasurementControl` knows that it should set the entire `times` array as the settable's value (instead of repeating the experiment for each value in the array). All data points are measured without interruption and all measurement results are returned in one go. Now, let's run the experiment and retrieve the data." ] }, { "cell_type": "code", "execution_count": 9, "id": "33838dea", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t --- (None) --- \n", "Batched settable(s):\n", "\t sample \n", "Batch size limit: 125\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6793074fb535440984c28ba3de195a01", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dataset = measurement_control.run()" ] }, { "cell_type": "markdown", "id": "4f95563a", "metadata": {}, "source": [ "The {class}`~quantify_core.measurement.control.MeasurementControl` class processes the data returned by the {class}`~quantify_scheduler.gettables.ScheduleGettable`, and turns it into a {class}`~xarray.Dataset`. More information on the format of this dataset can be found in the [quantify-core documentation](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#dataset)." ] }, { "cell_type": "code", "execution_count": 10, "id": "5854a989", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 3kB\n",
       "Dimensions:  (dim_0: 125)\n",
       "Coordinates:\n",
       "    x0       (dim_0) float64 1kB 1.6e-07 5.6e-07 9.6e-07 ... 4.936e-05 4.976e-05\n",
       "Dimensions without coordinates: dim_0\n",
       "Data variables:\n",
       "    y0       (dim_0) float64 1kB -1.166 -1.141 -1.109 ... -0.737 -0.7305 -1.164\n",
       "    y1       (dim_0) float64 1kB 0.2569 0.2138 0.2035 ... -0.2533 -0.247 0.2671\n",
       "Attributes:\n",
       "    tuid:                             20260204-174745-574-1ced9d\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         False\n",
       "    1d_2_settables_uniformly_spaced:  False
" ], "text/plain": [ " Size: 3kB\n", "Dimensions: (dim_0: 125)\n", "Coordinates:\n", " x0 (dim_0) float64 1kB 1.6e-07 5.6e-07 9.6e-07 ... 4.936e-05 4.976e-05\n", "Dimensions without coordinates: dim_0\n", "Data variables:\n", " y0 (dim_0) float64 1kB -1.166 -1.141 -1.109 ... -0.737 -0.7305 -1.164\n", " y1 (dim_0) float64 1kB 0.2569 0.2138 0.2035 ... -0.2533 -0.247 0.2671\n", "Attributes:\n", " tuid: 20260204-174745-574-1ced9d\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: False\n", " 1d_2_settables_uniformly_spaced: False" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset" ] }, { "cell_type": "markdown", "id": "a92039f0", "metadata": {}, "source": [ "The dataset coordinates and data variables are named as generic `x` and `y` parameters. You can click on the 'Show/Hide attributes' button next to the coordinates and variables to see what they refer to.\n", "\n", "(sec-tutorial-schedulegettable-repetitions)=\n", "## Repetitions\n", "\n", "Repetition defines how many times the defined schedule will run on the hardware. Running the schedule multiple times can be useful for example if the user would like to reduce errors of acquisitions by averaging the result of multiple measurements.\n", "\n", "There are multiple ways the repetitions can be set. They are not completely independent of each other, and which setting will be taken into account depends on how you create and use the schedule.\n", "\n", "1. {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice`: via `cfg_sched_repetitions` (by default it is `1024`),\n", "2. schedule function: via the `repetitions` function argument,\n", "3. {class}`~quantify_scheduler.schedules.schedule.Schedule` object: via the `repetitions` function argument of its constructor, or via its `repetitions` attribute directly,\n", "4. ({class}`~quantify_scheduler.gettables.ScheduleGettable`: currently, it is not possible to supply `repetitions` via `schedule_kwargs`).\n", "\n", "Ultimately, the {class}`~quantify_scheduler.schedules.schedule.Schedule` object is what governs the repetitions, via its `repetitions` attribute.\n", "\n", "When using a schedule function, the `repetitions` function argument sets the repetitions, provided that the schedule function passes it to the `Schedule` object. This is true for the pre-defined schedules, see {mod}`!quantify_scheduler.schedules`.\n", "\n", "However, if the experiment is run using `ScheduleGettable`, this `repetitions` function argument is set to `QuantumDevice.cfg_sched_repetitions`. Hence, typically, the schedule will run `QuantumDevice.cfg_sched_repetitions` times.\n", "\n", "### Possible mistake: ignoring `repetitions` argument\n", "\n", "Keep in mind that the schedule function should pass the `repetitions` argument to the `Schedule` initializer, otherwise both `QuantumDevice.cfg_sched_repetitions` and the `repetitions` argument of the schedule function will be ignored. For example, in the following setup, the `repetitions` will always be `1` (default for the `Schedule` object), even if `cfg_sched_repetitions` is set to `2`." ] }, { "cell_type": "code", "execution_count": 11, "id": "20e8a121", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import QuantumDevice, ScheduleGettable\n", "\n", "def schedule_function(q0: str, repetitions: int):\n", " schedule = Schedule(\"Example schedule\")\n", " schedule.add(Measure(q0))\n", " return schedule\n", "\n", "quantum_device = QuantumDevice(name=\"quantum_sample\")\n", "quantum_device.cfg_sched_repetitions(2)\n", "\n", "schedule_gettable = ScheduleGettable(\n", " quantum_device=quantum_device,\n", " schedule_function=schedule_function,\n", " schedule_kwargs={\"q0\": \"q0\"},\n", ")" ] }, { "cell_type": "markdown", "id": "5439f4a6", "metadata": {}, "source": [ "### Possible mistake: ignoring `cfg_sched_repetitions` default value\n", "\n", "Also note, that the default value of the `repetitions` argument of the schedule function will be ignored if `ScheduleGettable` is used, and it will be set to `QuantumDevice.cfg_sched_repetitions`. For example, in the following setup, `repetitions` will be `1024` (default for `QuantumDevice`), even if the default argument for `repetitions` is `2`." ] }, { "cell_type": "code", "execution_count": 12, "id": "28b5842a", "metadata": { "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "quantum_device.close()" ] }, { "cell_type": "code", "execution_count": 13, "id": "fcac0755", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import QuantumDevice, ScheduleGettable\n", "\n", "def schedule_function(q0: str, repetitions: int = 2):\n", " schedule = Schedule(\"Example schedule\", repetitions=repetitions)\n", " schedule.add(Measure(q0))\n", " return schedule\n", "\n", "quantum_device = QuantumDevice(name=\"quantum_sample\")\n", "\n", "schedule_gettable = ScheduleGettable(\n", " quantum_device=quantum_device,\n", " schedule_function=schedule_function,\n", " schedule_kwargs={\"q0\": \"q0\"},\n", ")" ] }, { "cell_type": "markdown", "id": "c7d800f3", "metadata": {}, "source": [ "(sec-schedulegettable-2dsweep-usage)=\n", "\n", "## 2D (and ND) measurement loops" ] }, { "cell_type": "code", "execution_count": 14, "id": "9fad704c", "metadata": { "mystnb": { "code_prompt_show": "Set up the quantum device, dummy hardware and hardware configuration" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "from qblox_instruments import Cluster, ClusterType, DummyBinnedAcquisitionData\n", "\n", "from quantify_scheduler import BasicTransmonElement, InstrumentCoordinator, QuantumDevice\n", "from quantify_scheduler.qblox import ClusterComponent\n", "\n", "\n", "single_qubit_device.close_all()\n", "\n", "# Device parameters\n", "Q0_ACQ_DELAY = 100e-9\n", "Q0_FREQ_01 = 4e9\n", "Q0_READOUT_AMP = 0.1\n", "Q0_READOUT_FREQ = 4.3e9\n", "Q0_PI_PULSE_AMP = 0.15\n", "Q0_LO_FREQ_QUBIT = 3.9e9\n", "Q0_LO_FREQ_READOUT = 4.5e9\n", "\n", "Q1_ACQ_DELAY = 120e-9\n", "Q1_FREQ_01 = 4.1e9\n", "Q1_READOUT_AMP = 0.1\n", "Q1_READOUT_FREQ = 3.8e9\n", "Q1_PI_PULSE_AMP = 0.15\n", "Q1_LO_FREQ_QUBIT = 4.1e9\n", "Q1_LO_FREQ_READOUT = 3.8e9\n", "\n", "two_qubit_device = QuantumDevice(\"two_qubit_device\")\n", "\n", "q0 = BasicTransmonElement(\"q0\")\n", "q0.measure.acq_channel(0)\n", "q0.measure.pulse_amp(Q0_READOUT_AMP)\n", "q0.clock_freqs.readout(Q0_READOUT_FREQ)\n", "q0.clock_freqs.f01(Q0_FREQ_01)\n", "q0.measure.acq_delay(Q0_ACQ_DELAY)\n", "q0.rxy.amp180(Q0_PI_PULSE_AMP)\n", "\n", "q1 = BasicTransmonElement(\"q1\")\n", "q1.measure.acq_channel(1) # Note that we're specifying that measurements on q1 should use a different measurement channel\n", "q1.measure.pulse_amp(Q1_READOUT_AMP)\n", "q1.clock_freqs.readout(Q1_READOUT_FREQ)\n", "q1.clock_freqs.f01(Q1_FREQ_01)\n", "q1.measure.acq_delay(Q1_ACQ_DELAY)\n", "q1.rxy.amp180(Q1_PI_PULSE_AMP)\n", "\n", "two_qubit_device.add_element(q0)\n", "two_qubit_device.add_element(q1)\n", "\n", "# We will need to adjust the hardware configuration.\n", "\n", "# Note: if you are connecting to an actual cluster, you would provide the\n", "# 'identifier' argument (the ip address, device name or serial number) instead\n", "# of the 'dummy_cfg' argument.\n", "cluster = Cluster(\n", " \"cluster\",\n", " dummy_cfg={\n", " 1: ClusterType.CLUSTER_QRM_RF,\n", " 2: ClusterType.CLUSTER_QCM_RF,\n", " 3: ClusterType.CLUSTER_QRM_RF,\n", " 4: ClusterType.CLUSTER_QCM_RF,\n", " },\n", ")\n", "\n", "ic_cluster = ClusterComponent(cluster)\n", "\n", "# Temporarily fixing dummy cluster's deficiency.\n", "cluster.start_sequencer = lambda : start_dummy_cluster_armed_sequencers(ic_cluster)\n", "\n", "instrument_coordinator = InstrumentCoordinator(\"instrument_coordinator\")\n", "instrument_coordinator.add_component(ic_cluster)\n", "\n", "two_qubit_device.instr_instrument_coordinator(instrument_coordinator.name)\n", "\n", "hardware_cfg = {\n", " \"version\": \"0.2\",\n", " \"config_type\": \"quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig\",\n", " \"hardware_description\": {\n", " f\"{cluster.name}\": {\n", " \"instrument_type\": \"Cluster\",\n", " \"modules\": {\n", " \"1\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"2\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " },\n", " \"3\": {\n", " \"instrument_type\": \"QRM_RF\"\n", " },\n", " \"4\": {\n", " \"instrument_type\": \"QCM_RF\"\n", " }\n", " },\n", " \"ref\": \"internal\"\n", " }\n", " },\n", " \"hardware_options\": {\n", " \"modulation_frequencies\": {\n", " \"q0:res-q0.ro\": {\n", " \"lo_freq\": Q0_LO_FREQ_READOUT\n", " },\n", " \"q0:mw-q0.01\": {\n", " \"lo_freq\": Q0_LO_FREQ_QUBIT\n", " },\n", " \"q1:res-q1.ro\": {\n", " \"lo_freq\": Q1_LO_FREQ_READOUT\n", " },\n", " \"q1:mw-q1.01\": {\n", " \"lo_freq\": Q1_LO_FREQ_QUBIT\n", " }\n", " }\n", " },\n", " \"connectivity\": {\n", " \"graph\": [\n", " [f\"{cluster.name}.module1.complex_output_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module1.complex_input_0\", \"q0:res\"],\n", " [f\"{cluster.name}.module2.complex_output_0\", \"q0:mw\"],\n", " [f\"{cluster.name}.module3.complex_output_0\", \"q1:res\"],\n", " [f\"{cluster.name}.module3.complex_input_0\", \"q1:res\"],\n", " [f\"{cluster.name}.module4.complex_output_0\", \"q1:mw\"]\n", " ]\n", " }\n", "}\n", "\n", "\n", "two_qubit_device.hardware_config(hardware_cfg)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1, sequencer=0, acq_index_name=\"0\", data=[DummyBinnedAcquisitionData(data=(0.0, 0.0), thres=0, avg_cnt=0)]\n", ")\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=3, sequencer=0, acq_index_name=\"0\", data=[DummyBinnedAcquisitionData(data=(0.0, 0.0), thres=0, avg_cnt=0)]\n", ")" ] }, { "cell_type": "markdown", "id": "87b17796", "metadata": {}, "source": [ "2D and higher-dimensional measurement loops are easy to realize. Below we show an example Chevron experiment, which is a type of two-qubit experiment often performed on transmon qubits. The experiment includes a square pulse, and we want to vary both its amplitude and duration in a 2D grid. We have already set up a two-qubit {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` under the variable name `two_qubit_device`.\n", "\n", "We define simple schedule below with a parameterized amplitude and duration of the square pulse. `duration` and `amp` are scalars, so for each measurement point the schedule will be recompiled." ] }, { "cell_type": "code", "execution_count": 15, "id": "9111b429", "metadata": {}, "outputs": [], "source": [ "from quantify_scheduler import Schedule\n", "from quantify_scheduler.operations import Measure, Reset, SquarePulse, X, X90\n", "\n", "def chevron_schedule_not_batched(duration, amp, repetitions=1):\n", " sched = Schedule(\"Chevron Experiment\", repetitions=repetitions)\n", "\n", " acq_idx = 0\n", "\n", " reset = sched.add(Reset(\"q0\", \"q1\"))\n", " sched.add(X(\"q0\"), ref_op=reset, ref_pt=\"end\") # Start at the end of the reset\n", " # We specify a clock for tutorial purposes, Chevron experiments do not necessarily use modulated square pulses\n", " square = sched.add(SquarePulse(amp=amp, duration=duration, port=\"q0:mw\", clock=\"q0.01\"))\n", " sched.add(X90(\"q0\"), ref_op=square) # Start at the end of the square pulse\n", " sched.add(X90(\"q1\"), ref_op=square)\n", " sched.add(Measure(\"q0\"), label=f\"M q0 {acq_idx}\")\n", " sched.add(\n", " Measure(\"q1\"),\n", " label=f\"M q1 {acq_idx}\",\n", " ref_pt=\"start\", # Start at the same time as the other measure\n", " )\n", "\n", " return sched" ] }, { "cell_type": "markdown", "id": "f173a13c", "metadata": {}, "source": [ "We set up a non-batched measurement with {class}`~quantify_core.measurement.control.MeasurementControl` and a {class}`~quantify_scheduler.gettables.ScheduleGettable`. For this {class}`~quantify_scheduler.gettables.ScheduleGettable`, notice the keyword argument `num_channels=2`, which is needed since we specified in the quantum device elements that the measurements on `\"q0\"` and `\"q1\"` should end up in two different channels.\n", "\n", "In addition, we used another new argument in the {class}`~quantify_scheduler.gettables.ScheduleGettable`: `real_imag=False`. `real_imag` can be used to transform the acquisition data. If it is `True` (the default), the I and Q values will be returned, and if it is `False`, the data will be transformed to the absolute value and the phase (in degrees, in the interval `(-180, 180]`)." ] }, { "cell_type": "code", "execution_count": 16, "id": "632baec0", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting iterative measurement...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ec5208ae1777420c89f7b300fd15cad3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "measurement_control = MeasurementControl(\"measurement_control\")\n", "\n", "# Configure the settables\n", "duration = ManualParameter(\"duration\", label=\"Duration\", unit=\"s\")\n", "duration.batched = False\n", "\n", "durations = np.linspace(start=20e-9, stop=60e-9, num=6)\n", "\n", "amplitude = ManualParameter(\"amplitude\", label=\"Amplitude\", unit=\"V\")\n", "amplitude.batched = False\n", "\n", "amplitudes = np.linspace(start=0.1, stop=1.0, num=10)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=two_qubit_device,\n", " schedule_function=chevron_schedule_not_batched,\n", " schedule_kwargs={\"duration\": duration, \"amp\": amplitude},\n", " batched=False,\n", " real_imag=False,\n", " num_channels=2,\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables([duration, amplitude])\n", "measurement_control.setpoints_grid([durations, amplitudes]) # note: setpoints_grid instead of setpoints\n", "measurement_control.gettables(gettable)\n", "\n", "# Run!\n", "dataset = measurement_control.run()\n", "dset_grid = dh.to_gridded_dataset(dataset)" ] }, { "cell_type": "code", "execution_count": 17, "id": "2064c29b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 2kB\n",
       "Dimensions:  (x0: 6, x1: 10)\n",
       "Coordinates:\n",
       "  * x0       (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n",
       "  * x1       (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n",
       "Data variables:\n",
       "    y0       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y1       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y2       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "    y3       (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "Attributes:\n",
       "    tuid:                             20260204-174746-539-1cd018\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         True\n",
       "    1d_2_settables_uniformly_spaced:  False\n",
       "    xlen:                             6\n",
       "    ylen:                             10
" ], "text/plain": [ " Size: 2kB\n", "Dimensions: (x0: 6, x1: 10)\n", "Coordinates:\n", " * x0 (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n", " * x1 (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n", "Data variables:\n", " y0 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y1 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y2 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", " y3 (x0, x1) float64 480B 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", "Attributes:\n", " tuid: 20260204-174746-539-1cd018\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: True\n", " 1d_2_settables_uniformly_spaced: False\n", " xlen: 6\n", " ylen: 10" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dset_grid" ] }, { "cell_type": "markdown", "id": "cba7e65d", "metadata": {}, "source": [ "As expected, this dataset contains double the amount of coordinates and data variables (note that the actual data has been mocked and set to 0.0). The two coordinates refer to the settables, `duration` and `amplitude`. With `real_imag` now set to `False`, the data variables contain the magnitude and phase (as opposed to the I and Q voltages) for measurements on `\"q0\"` and `\"q1\"`.\n", "\n", "### Batched 2D experiment\n", "\n", "Since this measurement is not batched, it's rather slow. Let's make this faster with (partial) batching.\n", "\n", "We will batch the amplitudes together, so we change the amplitudes parameter in the schedule function to an array." ] }, { "cell_type": "code", "execution_count": 18, "id": "ba9d397c", "metadata": { "mystnb": { "code_prompt_show": "Provide the dummy hardware with acquisition data" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "from qblox_instruments import DummyBinnedAcquisitionData\n", "\n", "\n", "def get_dummy_binned_acquisition_data(real: float, imag: float):\n", " return DummyBinnedAcquisitionData(data=(real, imag), thres=0, avg_cnt=0)\n", "\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=1, sequencer=0, acq_index_name=\"0\", data=[get_dummy_binned_acquisition_data(re * 10, im * 10) for re, im in zip(range(-5, 5), range(5, -5, -1))]\n", ")\n", "ic_cluster.instrument.set_dummy_binned_acquisition_data(\n", " slot_idx=3, sequencer=0, acq_index_name=\"0\", data=[get_dummy_binned_acquisition_data(re * 10, im * 10) for re, im in zip(range(-5, 5), range(5, -5, -1))]\n", ")" ] }, { "cell_type": "code", "execution_count": 19, "id": "02f167e9", "metadata": {}, "outputs": [], "source": [ "def chevron_schedule_batched(duration, amps, repetitions=1):\n", " sched = Schedule(\"Chevron Experiment\", repetitions=repetitions)\n", "\n", " acq_idx = 0\n", "\n", " for amp in amps:\n", " reset = sched.add(Reset(\"q0\", \"q1\"))\n", " sched.add(X(\"q0\"), ref_op=reset, ref_pt=\"end\")\n", " square = sched.add(SquarePulse(amp=amp, duration=duration, port=\"q0:mw\", clock=\"q0.01\"))\n", " sched.add(X90(\"q0\"), ref_op=square)\n", " sched.add(X90(\"q1\"), ref_op=square)\n", " sched.add(Measure(\"q0\"), label=f\"M q0 {acq_idx}\")\n", " sched.add(\n", " Measure(\"q1\"),\n", " label=f\"M q1 {acq_idx}\",\n", " ref_pt=\"start\",\n", " )\n", "\n", " acq_idx += 1\n", "\n", " return sched" ] }, { "cell_type": "markdown", "id": "756716f6", "metadata": {}, "source": [ "We specify that we want to batch the amplitudes by setting ``amplitude.batched = True`` and ``batched=True``as keyword argument for the gettable. Finally, we run this experiment just as before." ] }, { "cell_type": "code", "execution_count": 20, "id": "6488e8a9", "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t duration \n", "Batched settable(s):\n", "\t amplitude \n", "Batch size limit: 60\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b0a1529b7c994c3bb8eb03ad836294e8", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Configure the settables\n", "duration = ManualParameter(\"duration\", label=\"Duration\", unit=\"s\")\n", "duration.batched = False\n", "\n", "durations = np.linspace(start=20e-9, stop=60e-9, num=6)\n", "\n", "amplitude = ManualParameter(\"amplitude\", label=\"Amplitude\", unit=\"V\")\n", "amplitude.batched = True\n", "\n", "amplitudes = np.linspace(start=0.1, stop=1.0, num=10)\n", "\n", "# Configure the gettable\n", "gettable = ScheduleGettable(\n", " quantum_device=two_qubit_device,\n", " schedule_function=chevron_schedule_batched,\n", " schedule_kwargs={\"duration\": duration, \"amps\": amplitude},\n", " batched=True,\n", " real_imag=False,\n", " data_labels=[\"Magnitude Q0\", \"Phase Q0\", \"Magnitude Q1\", \"Phase Q1\"],\n", " num_channels=2,\n", ")\n", "\n", "# Configure MeasurementControl\n", "measurement_control.settables([duration, amplitude])\n", "measurement_control.setpoints_grid([durations, amplitudes])\n", "measurement_control.gettables(gettable)\n", "\n", "# Run!\n", "dataset = measurement_control.run()\n", "dset_grid = dh.to_gridded_dataset(dataset)" ] }, { "cell_type": "code", "execution_count": 21, "id": "d025f035", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 2kB\n",
       "Dimensions:  (x0: 6, x1: 10)\n",
       "Coordinates:\n",
       "  * x0       (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n",
       "  * x1       (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n",
       "Data variables:\n",
       "    y0       (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n",
       "    y1       (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n",
       "    y2       (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n",
       "    y3       (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n",
       "Attributes:\n",
       "    tuid:                             20260204-174751-827-b7b360\n",
       "    name:                             \n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         True\n",
       "    1d_2_settables_uniformly_spaced:  False\n",
       "    xlen:                             6\n",
       "    ylen:                             10
" ], "text/plain": [ " Size: 2kB\n", "Dimensions: (x0: 6, x1: 10)\n", "Coordinates:\n", " * x0 (x0) float64 48B 2e-08 2.8e-08 3.6e-08 4.4e-08 5.2e-08 6e-08\n", " * x1 (x1) float64 80B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n", "Data variables:\n", " y0 (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n", " y1 (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n", " y2 (x0, x1) float64 480B 0.07071 0.05657 0.04243 ... 0.04243 0.05657\n", " y3 (x0, x1) float64 480B 135.0 135.0 135.0 135.0 ... -45.0 -45.0 -45.0\n", "Attributes:\n", " tuid: 20260204-174751-827-b7b360\n", " name: \n", " grid_2d: False\n", " grid_2d_uniformly_spaced: True\n", " 1d_2_settables_uniformly_spaced: False\n", " xlen: 6\n", " ylen: 10" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dset_grid" ] }, { "cell_type": "markdown", "id": "1e2db91f", "metadata": {}, "source": [ "The shape of the dataset is no different from the previous (non-batched) experiment, but the metadata is a little different. Some coordinates and data variables now have the `batched=True` attribute. We also introduced another keyword argument: the `data_labels`. These `data_labels` are picked up by the {class}`~quantify_core.measurement.control.MeasurementControl`and end up in the {class}`xarray.Dataset` as the \"long_name\" of attributes. For example, `\"y0\"`s label can be accessed through `dataset[\"y0\"].attrs[\"long_name\"]`. The various plotting features of `quantify-core` will use this name to get labels for the figure axes." ] } ], "metadata": { "file_format": "mystnb", "kernelspec": { "display_name": "python3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.25" }, "source_map": [ 6, 34, 141, 149, 166, 170, 195, 199, 247, 251, 263, 273, 299, 303, 322, 332, 356, 364, 369, 373, 375, 401, 417, 423, 430, 445, 451, 588, 594, 617, 623, 660, 662, 672, 692, 714, 718, 754, 756 ], "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "15f0be5d08b24cdcb1f1a17da678d3a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_30858da452634bc69ebddfd989d989c6", "placeholder": "​", "style": "IPY_MODEL_a1b770b38238405eb32ea3f82c25a6df", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "235931f90b3648f999bab2296bb83e63": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_913b6d2c5545453aa8eb335f0016777f", "placeholder": "​", "style": "IPY_MODEL_c534d1aa000440b1b2a053bfe51e4067", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:04 | time left: 00:00 ] " } }, "30858da452634bc69ebddfd989d989c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3fdc1b3e9d4c440ab747c98230125fdc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4f8adb9ef94b4a93bdcbbb5533d02586": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5148ff9691774d6a8d6e1207ec74dcda": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5248087278b34d4f92405a4ccb231abe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "6793074fb535440984c28ba3de195a01": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_6e0b0b13b7f742a28431808f3f98f8e8", "IPY_MODEL_810840c81f024898ab5e7292c7ac65fc", "IPY_MODEL_d813f809dcfa459f9548137b58aee877" ], "layout": "IPY_MODEL_4f8adb9ef94b4a93bdcbbb5533d02586", "tabbable": null, "tooltip": null } }, "6e0b0b13b7f742a28431808f3f98f8e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3fdc1b3e9d4c440ab747c98230125fdc", "placeholder": "​", "style": "IPY_MODEL_ee8769a724f7480dbdafcc9b03cdfccc", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "810840c81f024898ab5e7292c7ac65fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e70dd162bd534d649cd3a6154957e2bb", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_96edca250605440d934d7edf03e699b3", "tabbable": null, "tooltip": null, "value": 100.0 } }, "87cd9da9d86c4919a8777e97d4b65d06": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "88a6ff19895b4bceb6f1f4ea19dbfb4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8ef319d8886545e29eed2153811d0371": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "913b6d2c5545453aa8eb335f0016777f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "96edca250605440d934d7edf03e699b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "978f1ef49bd5472ebf4127fd2bba55a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8ef319d8886545e29eed2153811d0371", "placeholder": "​", "style": "IPY_MODEL_f2a3fd17bf6b439f84b8db15fe46f304", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "9f8d1a73fff54321a8f6c3cf45ab36b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a1b770b38238405eb32ea3f82c25a6df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "a58b074b1e0c43adb02e45f41cf3089a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bda79ab499d5497e9ce9dc7723de5743", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f9d421b0942848e69fdd6b38e1b24a56", "tabbable": null, "tooltip": null, "value": 100.0 } }, "a7e4ad7f721e4f89ba83a2fc0f651696": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "ad868947a9bf447abbaef58bc32cddea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "b0a1529b7c994c3bb8eb03ad836294e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_978f1ef49bd5472ebf4127fd2bba55a1", "IPY_MODEL_a58b074b1e0c43adb02e45f41cf3089a", "IPY_MODEL_f56864b0b34e4d8ca2f3b0be7c5fdce3" ], "layout": "IPY_MODEL_b712e350ca734829bac146977fa2957a", "tabbable": null, "tooltip": null } }, "b712e350ca734829bac146977fa2957a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bda79ab499d5497e9ce9dc7723de5743": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c534d1aa000440b1b2a053bfe51e4067": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "d02858b55b7c4214998d04b8082b230a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5148ff9691774d6a8d6e1207ec74dcda", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5248087278b34d4f92405a4ccb231abe", "tabbable": null, "tooltip": null, "value": 100.0 } }, "d813f809dcfa459f9548137b58aee877": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_87cd9da9d86c4919a8777e97d4b65d06", "placeholder": "​", "style": "IPY_MODEL_a7e4ad7f721e4f89ba83a2fc0f651696", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 125" } }, "e70dd162bd534d649cd3a6154957e2bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ec5208ae1777420c89f7b300fd15cad3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_15f0be5d08b24cdcb1f1a17da678d3a0", "IPY_MODEL_d02858b55b7c4214998d04b8082b230a", "IPY_MODEL_235931f90b3648f999bab2296bb83e63" ], "layout": "IPY_MODEL_9f8d1a73fff54321a8f6c3cf45ab36b2", "tabbable": null, "tooltip": null } }, "ee8769a724f7480dbdafcc9b03cdfccc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "f2a3fd17bf6b439f84b8db15fe46f304": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "f56864b0b34e4d8ca2f3b0be7c5fdce3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_88a6ff19895b4bceb6f1f4ea19dbfb4c", "placeholder": "​", "style": "IPY_MODEL_ad868947a9bf447abbaef58bc32cddea", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 10" } }, "f9d421b0942848e69fdd6b38e1b24a56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }