Source code for quantify_scheduler.operations.gate_library

# Repository: https://gitlab.com/quantify-os/quantify-scheduler
# Licensed according to the LICENCE file on the main branch
"""Standard gateset for use with the quantify_scheduler."""
from __future__ import annotations

from typing import TYPE_CHECKING, Hashable, Iterable, Literal

import numpy as np

from .operation import Operation, _generate_acq_indices_for_gate

if TYPE_CHECKING:
    from quantify_scheduler.enums import BinMode


[docs] class Rxy(Operation): r""" A single qubit rotation around an axis in the equator of the Bloch sphere. This operation can be represented by the following unitary as defined in https://doi.org/10.1109/TQE.2020.2965810: .. math:: \mathsf {R}_{xy} \left(\theta, \varphi\right) = \begin{bmatrix} \textrm {cos}(\theta /2) & -ie^{-i\varphi }\textrm {sin}(\theta /2) \\ -ie^{i\varphi }\textrm {sin}(\theta /2) & \textrm {cos}(\theta /2) \end{bmatrix} Parameters ---------- theta Rotation angle in degrees, will be casted to the [-180, 180) domain. phi Phase of the rotation axis, will be casted to the [0, 360) domain. qubit The target device element. device_overrides Device level parameters that override device configuration values when compiling from circuit to device level. """ def __init__( self, theta: float, phi: float, qubit: str, **device_overrides, ) -> None: device_element = qubit if not isinstance(theta, float): theta = float(theta) if not isinstance(phi, float): phi = float(phi) # this solves an issue where different rotations with the same rotation angle # modulo a full period are treated as distinct operations in the OperationDict # Here we map [0,360[ onto ]-180,180] so that X180 has positive amplitude theta = round(_modulo_360_with_mapping(theta), 8) phi = round(phi % 360, 8) tex = r"$R_{xy}^{" + f"{theta:.0f}, {phi:.0f}" + r"}$" plot_func = "quantify_scheduler.schedules._visualization.circuit_diagram.gate_box" theta_r = np.deg2rad(theta) phi_r = np.deg2rad(phi) # not all operations have a valid unitary description # (e.g., measure and init) unitary = np.array( [ [ np.cos(theta_r / 2), -1j * np.exp(-1j * phi_r) * np.sin(theta_r / 2), ], [ -1j * np.exp(1j * phi_r) * np.sin(theta_r / 2), np.cos(theta_r / 2), ], ] ) super().__init__(f"Rxy({theta:.8g}, {phi:.8g}, '{device_element}')") self.data["gate_info"] = { "unitary": unitary, "tex": tex, "plot_func": plot_func, "device_elements": [device_element], "operation_type": "Rxy", "theta": theta, "phi": phi, "device_overrides": device_overrides, } self._update() def __str__(self) -> str: gate_info = self.data["gate_info"] theta = gate_info["theta"] phi = gate_info["phi"] device_element = gate_info["device_elements"][0] return f"{self.__class__.__name__}({theta=:.8g}, {phi=:.8g}, qubit='{device_element}')"
[docs] class X(Rxy): r""" A single qubit rotation of 180 degrees around the X-axis. This operation can be represented by the following unitary: .. math:: X180 = R_{X180} = \begin{bmatrix} 0 & -i \\ -i & 0 \\ \end{bmatrix} Parameters ---------- qubit The target device element. device_overrides Device level parameters that override device configuration values when compiling from circuit to device level. """ def __init__(self, qubit: str, **device_overrides) -> None: device_element = qubit super().__init__(theta=180.0, phi=0, qubit=device_element, **device_overrides) self.data["name"] = f"X {device_element}" self.data["gate_info"]["tex"] = r"$X_{\pi}$" self._update() def __str__(self) -> str: device_element = self.data["gate_info"]["device_elements"][0] return f"{self.__class__.__name__}(qubit='{device_element}')"
[docs] class X90(Rxy): r""" A single qubit rotation of 90 degrees around the X-axis. It is identical to the Rxy gate with theta=90 and phi=0 Defined by the unitary: .. math:: X90 = R_{X90} = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -i \\ -i & 1 \\ \end{bmatrix} Parameters ---------- qubit The target device element. device_overrides Device level parameters that override device configuration values when compiling from circuit to device level. """ def __init__( self, qubit: str, **device_overrides, ) -> None: device_element = qubit super().__init__(theta=90.0, phi=0.0, qubit=device_element, **device_overrides) self.data["name"] = f"X_90 {device_element}" self.data["gate_info"]["tex"] = r"$X_{\pi/2}$" self._update() def __str__(self) -> str: device_element = self.data["gate_info"]["device_elements"][0] return f"{self.__class__.__name__}(qubit='{device_element}')"
[docs] class Y(Rxy): r""" A single qubit rotation of 180 degrees around the Y-axis. It is identical to the Rxy gate with theta=180 and phi=90 Defined by the unitary: .. math:: Y180 = R_{Y180} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ \end{bmatrix} Parameters ---------- qubit The target device element. device_overrides Device level parameters that override device configuration values when compiling from circuit to device level. """ def __init__( self, qubit: str, **device_overrides, ) -> None: device_element = qubit super().__init__(theta=180.0, phi=90.0, qubit=device_element, **device_overrides) self.data["name"] = f"Y {device_element}" self.data["gate_info"]["tex"] = r"$Y_{\pi}$" self._update() def __str__(self) -> str: device_element = self.data["gate_info"]["device_elements"][0] return f"{self.__class__.__name__}(qubit='{device_element}')"
[docs] class Y90(Rxy): r""" A single qubit rotation of 90 degrees around the Y-axis. It is identical to the Rxy gate with theta=90 and phi=90 Defined by the unitary: .. math:: Y90 = R_{Y90} = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ \end{bmatrix} Parameters ---------- qubit The target device element. device_overrides Device level parameters that override device configuration values when compiling from circuit to device level. """ def __init__(self, qubit: str, **device_overrides) -> None: device_element = qubit super().__init__(theta=90.0, phi=90.0, qubit=device_element, **device_overrides) self.data["name"] = f"Y_90 {device_element}" self.data["gate_info"]["tex"] = r"$Y_{\pi/2}$" self._update() def __str__(self) -> str: """ Returns a unique, evaluable string for unchanged data. Returns a concise string representation which can be evaluated into a new instance using :code:`eval(str(operation))` only when the data dictionary has not been modified. This representation is guaranteed to be unique. """ device_element = self.data["gate_info"]["device_elements"][0] return f"{self.__class__.__name__}(qubit='{device_element}')"
[docs] class Rz(Operation): r""" A single qubit rotation about the Z-axis of the Bloch sphere. This operation can be represented by the following unitary as defined in https://www.quantum-inspire.com/kbase/rz-gate/: .. math:: \mathsf {R}_{z} \left(\theta\right) = \begin{bmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{bmatrix} Parameters ---------- theta Rotation angle in degrees, will be cast to the [-180, 180) domain. qubit The target device element. device_overrides Device level parameters that override device configuration values when compiling from circuit to device level. """ def __init__(self, theta: float, qubit: str, **device_overrides) -> None: device_element = qubit if not isinstance(theta, float): theta = float(theta) # this solves an issue where different rotations with the same rotation angle # modulo a full period are treated as distinct operations in the OperationDict # Here we map [0,360[ onto ]-180,180] so that X180 has positive amplitude theta = _modulo_360_with_mapping(theta) tex = r"$R_{z}^{" + f"{theta:.0f}" + r"}$" plot_func = "quantify_scheduler.schedules._visualization.circuit_diagram.gate_box" theta_r = np.deg2rad(theta) # not all operations have a valid unitary description # (e.g., measure and init) unitary = np.array( [ [np.exp(-1j * theta_r / 2), 0], [0, np.exp(1j * theta_r / 2)], ] ) super().__init__(f"Rz({theta:.8g}, '{device_element}')") self.data["gate_info"] = { "unitary": unitary, "tex": tex, "plot_func": plot_func, "device_elements": [device_element], "operation_type": "Rz", "theta": theta, "device_overrides": device_overrides, } self._update() def __str__(self) -> str: gate_info = self.data["gate_info"] theta = gate_info["theta"] device_element = gate_info["device_elements"][0] return f"{self.__class__.__name__}({theta=:.8g}, qubit='{device_element}')"
[docs] class Z(Rz): r""" A single qubit rotation of 180 degrees around the Z-axis. Note that the gate implements :math:`R_z(\pi) = -iZ`, adding a global phase of :math:`-\pi/2`. This operation can be represented by the following unitary: .. math:: Z180 = R_{Z180} = -iZ = e^{-\frac{\pi}{2}}Z = \begin{bmatrix} -i & 0 \\ 0 & i \\ \end{bmatrix} Parameters ---------- qubit The target device element. device_overrides Device level parameters that override device configuration values when compiling from circuit to device level. """ def __init__(self, qubit: str, **device_overrides) -> None: device_element = qubit super().__init__(theta=180.0, qubit=device_element, **device_overrides) self.data["name"] = f"Z {device_element}" self.data["gate_info"]["tex"] = r"$Z_{\pi}$" self._update() def __str__(self) -> str: device_element = self.data["gate_info"]["device_elements"][0] return f"{self.__class__.__name__}(qubit='{device_element}')"
[docs] class Z90(Rz): r""" A single qubit rotation of 90 degrees around the Z-axis. This operation can be represented by the following unitary: .. math:: Z90 = R_{Z90} = e^{-\frac{\pi/2}{2}}S = e^{-\frac{\pi/2}{2}}\sqrt{Z} = \frac{1}{\sqrt{2}}\begin{bmatrix} 1-i & 0 \\ 0 & 1+i \\ \end{bmatrix} Parameters ---------- qubit The target device element. device_overrides Device level parameters that override device configuration values when compiling from circuit to device level. """ def __init__(self, qubit: str, **device_overrides) -> None: device_element = qubit super().__init__(theta=90.0, qubit=device_element, **device_overrides) self.data["name"] = f"Z_90 {device_element}" self.data["gate_info"]["tex"] = r"$Z_{\pi/2}$" self._update() def __str__(self) -> str: device_element = self.data["gate_info"]["device_elements"][0] return f"{self.__class__.__name__}(qubit='{device_element}')"
[docs] class H(Operation): r""" A single qubit Hadamard gate. Note that the gate uses :math:`R_z(\pi) = -iZ`, adding a global phase of :math:`-\pi/2`. This operation can be represented by the following unitary: .. math:: H = Y90 \cdot Z = \frac{-i}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ 1 & -1 \\ \end{bmatrix} Parameters ---------- qubit The target device element. device_overrides Device level parameters that override device configuration values when compiling from circuit to device level. """ def __init__(self, *qubits: str, **device_overrides) -> None: device_elements = qubits tex = r"$H$" plot_func = "quantify_scheduler.schedules._visualization.circuit_diagram.gate_box" unitary = -1j / np.sqrt(2) * np.array([[1, 1], [1, -1]], dtype=complex) super().__init__(f"H, '{device_elements}')") self.data["gate_info"] = { "unitary": unitary, "tex": tex, "plot_func": plot_func, "device_elements": list(device_elements), "operation_type": "H", "device_overrides": device_overrides, } self._update() def __str__(self) -> str: device_elements = map(lambda x: f"'{x}'", self.data["gate_info"]["device_elements"]) return f'{self.__class__.__name__}({",".join(device_elements)})'
[docs] class CNOT(Operation): r""" Conditional-NOT gate, a common entangling gate. Performs an X gate on the target qubit qT conditional on the state of the control qubit qC. This operation can be represented by the following unitary: .. math:: \mathrm{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \end{bmatrix} Parameters ---------- qC The control device element. qT The target device element device_overrides Device level parameters that override device configuration values when compiling from circuit to device level. """ def __init__(self, qC: str, qT: str, **device_overrides) -> None: device_element_control, device_element_target = qC, qT plot_func = "quantify_scheduler.schedules._visualization.circuit_diagram.cnot" super().__init__(f"CNOT ({device_element_control}, {device_element_target})") self.data.update( { "name": f"CNOT ({device_element_control}, {device_element_target})", "gate_info": { "unitary": np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]), "tex": r"CNOT", "plot_func": plot_func, "device_elements": [device_element_control, device_element_target], "symmetric": False, "operation_type": "CNOT", "device_overrides": device_overrides, }, } ) self._update() def __str__(self) -> str: gate_info = self.data["gate_info"] device_element_control = gate_info["device_elements"][0] device_element_target = gate_info["device_elements"][1] return ( f"{self.__class__.__name__}(qC='{device_element_control}',qT='{device_element_target}')" )
[docs] class CZ(Operation): r""" Conditional-phase gate, a common entangling gate. Performs a Z gate on the target device element qT conditional on the state of the control device element qC. This operation can be represented by the following unitary: .. math:: \mathrm{CZ} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix} Parameters ---------- qC The control device element. qT The target device element device_overrides Device level parameters that override device configuration values when compiling from circuit to device level. """ def __init__(self, qC: str, qT: str, **device_overrides) -> None: device_element_control, device_element_target = qC, qT plot_func = "quantify_scheduler.schedules._visualization.circuit_diagram.cz" super().__init__(f"CZ ({device_element_control}, {device_element_target})") self.data.update( { "name": f"CZ ({device_element_control}, {device_element_target})", "gate_info": { "unitary": np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]]), "tex": r"CZ", "plot_func": plot_func, "device_elements": [device_element_control, device_element_target], "symmetric": True, "operation_type": "CZ", "device_overrides": device_overrides, }, } ) self._update() def __str__(self) -> str: gate_info = self.data["gate_info"] device_element_control = gate_info["device_elements"][0] device_element_target = gate_info["device_elements"][1] return ( f"{self.__class__.__name__}(qC='{device_element_control}',qT='{device_element_target}')" )
[docs] class Reset(Operation): r""" Reset a qubit to the :math:`|0\rangle` state. The Reset gate is an idle operation that is used to initialize one or more qubits. .. note:: Strictly speaking this is not a gate as it can not be described by a unitary. .. admonition:: Examples :class: tip The operation can be used in several ways: .. jupyter-execute:: from quantify_scheduler.operations.gate_library import Reset reset_1 = Reset("q0") reset_2 = Reset("q1", "q2") reset_3 = Reset(*[f"q{i}" for i in range(3, 6)]) Parameters ---------- qubits The device element(s) to reset. NB one or more device element can be specified, e.g., :code:`Reset("q0")`, :code:`Reset("q0", "q1", "q2")`, etc.. device_overrides Device level parameters that override device configuration values when compiling from circuit to device level. """ def __init__(self, *qubits: str, **device_overrides) -> None: device_elements = qubits super().__init__(f"Reset {', '.join(device_elements)}") plot_func = "quantify_scheduler.schedules._visualization.circuit_diagram.reset" self.data.update( { "name": f"Reset {', '.join(device_elements)}", "gate_info": { "unitary": None, "tex": r"$|0\rangle$", "plot_func": plot_func, "device_elements": list(device_elements), "operation_type": "reset", "device_overrides": device_overrides, }, } ) self._update() def __str__(self) -> str: device_elements = map(lambda x: f"'{x}'", self.data["gate_info"]["device_elements"]) return f'{self.__class__.__name__}({",".join(device_elements)})'
[docs] class Measure(Operation): """ A projective measurement in the Z-basis. The measurement is compiled according to the type of acquisition specified in the device configuration. .. note:: Strictly speaking this is not a gate as it can not be described by a unitary. Parameters ---------- qubits The device elements you want to measure. acq_channel Only for special use cases. By default (if None): the acquisition channel specified in the device element is used. If set, this acquisition channel is used for this measurement. acq_index Index of the register where the measurement is stored. If None specified, this defaults to writing the result of all device elements to acq_index 0. By default None. acq_protocol : "SSBIntegrationComplex" | "Trace" | "TriggerCount" | \ "NumericalSeparatedWeightedIntegration" | \ "NumericalWeightedIntegration" | None, optional Acquisition protocols that are supported. If ``None`` is specified, the default protocol is chosen based on the device and backend configuration. By default None. bin_mode The binning mode that is to be used. If not None, it will overwrite the binning mode used for Measurements in the circuit-to-device compilation step. By default None. feedback_trigger_label : str The label corresponding to the feedback trigger, which is mapped by the compiler to a feedback trigger address on hardware, by default None. device_overrides Device level parameters that override device configuration values when compiling from circuit to device level. """ def __init__( self, *qubits: str, acq_channel: Hashable | None = None, acq_index: tuple[int, ...] | int | None = None, # These are the currently supported acquisition protocols. acq_protocol: ( Literal[ "SSBIntegrationComplex", "Timetag", "TimetagTrace", "Trace", "TriggerCount", "ThresholdedTriggerCount", "NumericalSeparatedWeightedIntegration", "NumericalWeightedIntegration", "ThresholdedAcquisition", ] | None ) = None, bin_mode: BinMode | str | None = None, feedback_trigger_label: str | None = None, **device_overrides, ) -> None: device_elements = qubits acq_index: int | Iterable[int] = _generate_acq_indices_for_gate( device_elements=device_elements, acq_index=acq_index ) plot_func = "quantify_scheduler.schedules._visualization.circuit_diagram.meter" super().__init__(f"Measure {', '.join(device_elements)}") self.data.update( { "name": f"Measure {', '.join(device_elements)}", "gate_info": { "unitary": None, "plot_func": plot_func, "tex": r"$\langle0|$", "device_elements": list(device_elements), "acq_channel_override": acq_channel, "acq_index": acq_index, "acq_protocol": acq_protocol, "bin_mode": bin_mode, "operation_type": "measure", "feedback_trigger_label": feedback_trigger_label, "device_overrides": device_overrides, }, } ) self._update() def __str__(self) -> str: gate_info = self.data["gate_info"] device_elements = map(lambda x: f"'{x}'", gate_info["device_elements"]) acq_channel = gate_info["acq_channel_override"] acq_index = gate_info["acq_index"] acq_protocol = gate_info["acq_protocol"] bin_mode = gate_info["bin_mode"] feedback_trigger_label = gate_info["feedback_trigger_label"] return ( f'{self.__class__.__name__}({",".join(device_elements)}, ' f"acq_channel={acq_channel}, " f"acq_index={acq_index}, " f'acq_protocol="{acq_protocol}", ' f"bin_mode={str(bin_mode)}, " f"feedback_trigger_label={feedback_trigger_label})" )
[docs] def _modulo_360_with_mapping(theta: float) -> float: """ Maps an input angle ``theta`` (in degrees) onto the range ``]-180, 180]``. By mapping the input angle to the range ``]-180, 180]`` (where -180 is excluded), it ensures that the output amplitude is always minimized on the hardware. This mapping should not have an effect on the device element in general. -180 degrees is excluded to ensure positive amplitudes in the gates like X180 and Z180. Note that an input of -180 degrees is remapped to 180 degrees to maintain the positive amplitude constraint. Parameters ---------- theta : float The rotation angle in degrees. This angle will be mapped to the interval ``]-180, 180]``. Returns ------- float The mapped angle in degrees, which will be in the range ``]-180, 180]``. This mapping ensures the output amplitude is always minimized for transmon operations. Example ------- ``` >>> _modulo_360_with_mapping(360) 0.0 >>> _modulo_360_with_mapping(-180) 180.0 >>> _modulo_360_with_mapping(270) -90.0 ``` """ mapped_theta = -((-theta - 180) % 360) + 180 return mapped_theta