Source code for quantify_scheduler.schedules.schedule

# Repository: https://gitlab.com/quantify-os/quantify-scheduler
# Licensed according to the LICENCE file on the main branch
"""Module containing the core concepts of the scheduler."""
from __future__ import annotations

import dataclasses
import json
import warnings
from abc import ABC
from collections import UserDict
from copy import copy
from itertools import chain
from typing import TYPE_CHECKING, Any, Hashable, Literal
from uuid import uuid4

import numpy as np
import pandas as pd

from quantify_scheduler import enums, json_utils, resources
from quantify_scheduler.backends.types.common import ThresholdedTriggerCountMetadata
from quantify_scheduler.helpers.collections import make_hash
from quantify_scheduler.helpers.importers import export_python_object_to_path_string
from quantify_scheduler.json_utils import JSONSchemaValMixin
from quantify_scheduler.operations.control_flow_library import (
    ConditionalOperation,
    LoopOperation,
)
from quantify_scheduler.operations.operation import Operation
from quantify_scheduler.resources import Resource

if TYPE_CHECKING:
    import plotly.graph_objects as go
    from matplotlib.axes import Axes
    from matplotlib.figure import Figure

    from quantify_scheduler.operations.control_flow_library import ControlFlowSpec

[docs] DictOrdered = dict
""" An ordered dictionary type hint, which makes it clear and obvious that order is significant and used by the logic. Note: dict is ordered from Python version 3.7. Note: collections.OrderedDict can be slow in some cases. """
[docs] class ScheduleBase(JSONSchemaValMixin, UserDict, ABC): """ Interface to be used for :class:`~.Schedule`. The :class:`~.ScheduleBase` is a data structure that is at the core of the Quantify-scheduler and describes when what operations are applied where. The :class:`~.ScheduleBase` is a collection of :class:`quantify_scheduler.operations.operation.Operation` objects and timing constraints that define relations between the operations. The schedule data structure is based on a dictionary. This dictionary contains: - operation_dict - a hash table containing the unique :class:`quantify_scheduler.operations.operation.Operation` s added to the schedule. - schedulables - an ordered dictionary of all timing constraints added between operations; when multiple schedulables have the same absolute time, the order defined in the dictionary decides precedence. The :class:`~.Schedule` provides an API to create schedules. The :class:`~.CompiledSchedule` represents a schedule after it has been compiled for execution on a backend. The :class:`~.Schedule` contains information on the :attr:`~.ScheduleBase.operations` and :attr:`~.ScheduleBase.schedulables`. The :attr:`~.ScheduleBase.operations` is a dictionary of all unique operations used in the schedule and contain the information on *what* operation to apply *where*. The :attr:`~.ScheduleBase.schedulables` is a dictionary of Schedulables describing timing constraints between operations, i.e. when to apply an operation. **JSON schema of a valid Schedule** .. jsonschema:: https://gitlab.com/quantify-os/quantify-scheduler/-/raw/main/quantify_scheduler/schemas/schedule.json """ # noqa: E501 @property
[docs] def name(self) -> str: """Returns the name of the schedule.""" return self["name"]
@property
[docs] def repetitions(self) -> int: """ Returns the amount of times this Schedule will be repeated. Returns ------- : The repetitions count. """ return self["repetitions"]
@repetitions.setter def repetitions(self, value: int) -> None: if value <= 0: raise ValueError( f"Attempting to set repetitions for the schedule. " f"Must be a positive number. Got {value}." ) self["repetitions"] = int(value) @property
[docs] def operations(self) -> dict[str, Operation | Schedule]: """ A dictionary of all unique operations used in the schedule. This specifies information on *what* operation to apply *where*. The keys correspond to the :attr:`~.Operation.hash` and values are instances of :class:`quantify_scheduler.operations.operation.Operation`. """ return self["operation_dict"]
@property
[docs] def schedulables(self) -> DictOrdered[str, Schedulable]: """ Ordered dictionary of schedulables describing timing and order of operations. A schedulable uses timing constraints to constrain the operation in time by specifying the time (:code:`"rel_time"`) between a reference operation and the added operation. The time can be specified with respect to a reference point (:code:`"ref_pt"') on the reference operation (:code:`"ref_op"`) and a reference point on the next added operation (:code:`"ref_pt_new"'). A reference point can be either the "start", "center", or "end" of an operation. The reference operation (:code:`"ref_op"`) is specified using its label property. Each item in the list represents a timing constraint and is a dictionary with the following keys: .. code-block:: ['label', 'rel_time', 'ref_op', 'ref_pt_new', 'ref_pt', 'operation_id'] The label is used as a unique identifier that can be used as a reference for other operations, the operation_id refers to the hash of an operation in :attr:`~.ScheduleBase.operations`. .. note:: timing constraints are not intended to be modified directly. Instead use the :meth:`~.Schedule.add` """ return self["schedulables"]
@property
[docs] def resources(self) -> dict[str, Resource]: """ A dictionary containing resources. Keys are names (str), values are instances of :class:`~quantify_scheduler.resources.Resource`. """ return self["resource_dict"]
def __hash__(self) -> int: return make_hash(self.data) @property
[docs] def hash(self) -> str: """A hash based on the contents of the Schedule.""" return str(hash(self))
def __repr__(self) -> str: """Return a string representation of this instance.""" return ( f'{self.__class__.__name__} "{self["name"]}" containing ' f'({len(self["operation_dict"])}) ' f"{len(self.schedulables)} (unique) operations." )
[docs] def to_json(self) -> str: """ Convert the Schedule data structure to a JSON string. Returns ------- : The json string result. """ return json.dumps(self, cls=json_utils.SchedulerJSONEncoder)
@classmethod
[docs] def from_json(cls, data: str) -> Schedule: """ Convert the JSON data to a Schedule. Parameters ---------- data The JSON data. Returns ------- : The Schedule object. """ return json_utils.SchedulerJSONDecoder().decode(data)
[docs] def get_used_port_clocks(self) -> set[tuple[str, str]]: """ Extracts which port-clock combinations are used in this schedule. Returns ------- : All (port, clock) combinations that operations in this schedule uses """ port_clocks_used = set() for op_data in self.operations.values(): port_clocks_used |= op_data.get_used_port_clocks() return port_clocks_used
[docs] def plot_circuit_diagram( self, figsize: tuple[int, int] = None, ax: Axes | None = None, plot_backend: Literal["mpl"] = "mpl", ) -> tuple[Figure, Axes | list[Axes]]: """ Create a circuit diagram visualization of the schedule using the specified plotting backend. The circuit diagram visualization depicts the schedule at the quantum circuit layer. Because quantify-scheduler uses a hybrid gate-pulse paradigm, operations for which no information is specified at the gate level are visualized using an icon (e.g., a stylized wavy pulse) depending on the information specified at the quantum device layer. Alias of :func:`quantify_scheduler.schedules._visualization.circuit_diagram.circuit_diagram_matplotlib`. Parameters ---------- schedule the schedule to render. figsize matplotlib figsize. ax Axis handle to use for plotting. plot_backend Plotting backend to use, currently only 'mpl' is supported Returns ------- fig matplotlib figure object. ax matplotlib axis object. Each gate, pulse, measurement, and any other operation are plotted in the order of execution, but no timing information is provided. .. admonition:: Example :class: tip .. jupyter-execute:: from quantify_scheduler import Schedule from quantify_scheduler.operations.gate_library import Reset, X90, CZ, Rxy, Measure sched = Schedule(f"Bell experiment on q0-q1") sched.add(Reset("q0", "q1")) sched.add(X90("q0")) sched.add(X90("q1"), ref_pt="start", rel_time=0) sched.add(CZ(qC="q0", qT="q1")) sched.add(Rxy(theta=45, phi=0, qubit="q0") ) sched.add(Measure("q0", acq_index=0)) sched.add(Measure("q1", acq_index=0), ref_pt="start") sched.plot_circuit_diagram(); .. note:: Gates that are started simultaneously on the same qubit will overlap. .. jupyter-execute:: from quantify_scheduler import Schedule from quantify_scheduler.operations.gate_library import X90, Measure sched = Schedule(f"overlapping gates") sched.add(X90("q0")) sched.add(Measure("q0"), ref_pt="start", rel_time=0) sched.plot_circuit_diagram(); .. note:: If the pulse's port address was not found then the pulse will be plotted on the 'other' timeline. """ # noqa: E501 # NB imported here to avoid circular import if plot_backend == "mpl": import quantify_scheduler.schedules._visualization.circuit_diagram as cd return cd.circuit_diagram_matplotlib(schedule=self, figsize=figsize, ax=ax) raise ValueError(f"plot_backend must be equal to 'mpl', value given: {repr(plot_backend)}")
[docs] def plot_pulse_diagram( self, port_list: list[str] | None = None, sampling_rate: float = 1e9, modulation: Literal["off", "if", "clock"] = "off", modulation_if: float = 0.0, plot_backend: Literal["mpl", "plotly"] = "mpl", x_range: tuple[float, float] = (-np.inf, np.inf), combine_waveforms_on_same_port: bool = False, **backend_kwargs, ) -> tuple[Figure, Axes] | go.Figure: """ Create a visualization of all the pulses in a schedule using the specified plotting backend. The pulse diagram visualizes the schedule at the quantum device layer. For this visualization to work, all operations need to have the information present (e.g., pulse info) to represent these on the quantum-circuit level and requires the absolute timing to have been determined. This information is typically added when the quantum-device level compilation is performed. Alias of :func:`quantify_scheduler.schedules._visualization.pulse_diagram.pulse_diagram_matplotlib` and :func:`quantify_scheduler.schedules._visualization.pulse_diagram.pulse_diagram_plotly`. Parameters ---------- port_list : A list of ports to show. If ``None`` (default) the first 8 ports encountered in the sequence are used. modulation : Determines if modulation is included in the visualization. modulation_if : Modulation frequency used when modulation is set to "if". sampling_rate : The time resolution used to sample the schedule in Hz. plot_backend: Plotting library to use, can either be 'mpl' or 'plotly'. x_range: The range of the x-axis that is plotted, given as a tuple (left limit, right limit). This can be used to reduce memory usage when plotting a small section of a long pulse sequence. By default (-np.inf, np.inf). combine_waveforms_on_same_port: By default False. If True, combines all waveforms on the same port into one single waveform. The resulting waveform is the sum of all waveforms on that port (small inaccuracies may occur due to floating point approximation). If False, the waveforms are shown individually. backend_kwargs: Keyword arguments to be passed on to the plotting backend. The arguments that can be used for either backend can be found in the documentation of :func:`quantify_scheduler.schedules._visualization.pulse_diagram.pulse_diagram_matplotlib` and :func:`quantify_scheduler.schedules._visualization.pulse_diagram.pulse_diagram_plotly`. Returns ------- Union[tuple[Figure, Axes], :class:`!plotly.graph_objects.Figure`] the plot .. admonition:: Example :class: tip A simple plot with matplotlib can be created as follows: .. jupyter-execute:: from quantify_scheduler.backends.graph_compilation import SerialCompiler from quantify_scheduler.device_under_test.quantum_device import QuantumDevice from quantify_scheduler.operations.pulse_library import ( DRAGPulse, SquarePulse, RampPulse, VoltageOffset, ) from quantify_scheduler.resources import ClockResource schedule = Schedule("Multiple waveforms") schedule.add(DRAGPulse(G_amp=0.2, D_amp=0.2, phase=0, duration=4e-6, port="P", clock="C")) schedule.add(RampPulse(amp=0.2, offset=0.0, duration=6e-6, port="P")) schedule.add(SquarePulse(amp=0.1, duration=4e-6, port="Q"), ref_pt='start') schedule.add_resource(ClockResource(name="C", freq=4e9)) quantum_device = QuantumDevice("quantum_device") device_compiler = SerialCompiler("Device compiler", quantum_device) compiled_schedule = device_compiler.compile(schedule) _ = compiled_schedule.plot_pulse_diagram(sampling_rate=20e6) The backend can be changed to the plotly backend by specifying the ``plot_backend=plotly`` argument. With the plotly backend, pulse diagrams include a separate plot for each port/clock combination: .. jupyter-execute:: _ = compiled_schedule.plot_pulse_diagram(sampling_rate=20e6, plot_backend='plotly') The same can be achieved in the default ``plot_backend`` (``matplotlib``) by passing the keyword argument ``multiple_subplots=True``: .. jupyter-execute:: _ = compiled_schedule.plot_pulse_diagram(sampling_rate=20e6, multiple_subplots=True) By default, waveforms overlapping in time on the same port are shown separately: .. jupyter-execute:: schedule = Schedule("Overlapping waveforms") schedule.add(VoltageOffset(offset_path_I=0.25, offset_path_Q=0.0, port="Q")) schedule.add(SquarePulse(amp=0.1, duration=4e-6, port="Q"), rel_time=2e-6) schedule.add(VoltageOffset(offset_path_I=0.0, offset_path_Q=0.0, port="Q"), ref_pt="start", rel_time=2e-6) compiled_schedule = device_compiler.compile(schedule) _ = compiled_schedule.plot_pulse_diagram(sampling_rate=20e6) This behaviour can be changed with the parameter ``combine_waveforms_on_same_port``: .. jupyter-execute:: _ = compiled_schedule.plot_pulse_diagram(sampling_rate=20e6, combine_waveforms_on_same_port=True) """ # noqa: E501 # NB imported here to avoid circular import from quantify_scheduler.schedules._visualization.pulse_diagram import ( sample_schedule, ) sampled_pulses_and_acqs = sample_schedule( self, sampling_rate=sampling_rate, port_list=port_list, modulation=modulation, modulation_if=modulation_if, x_range=x_range, combine_waveforms_on_same_port=combine_waveforms_on_same_port, ) if plot_backend == "mpl": # NB imported here to avoid circular import from quantify_scheduler.schedules._visualization.pulse_diagram import ( pulse_diagram_matplotlib, ) return pulse_diagram_matplotlib( sampled_pulses_and_acqs=sampled_pulses_and_acqs, title=self["name"], **backend_kwargs, ) if plot_backend == "plotly": # NB imported here to avoid circular import from quantify_scheduler.schedules._visualization.pulse_diagram import ( pulse_diagram_plotly, ) return pulse_diagram_plotly( sampled_pulses_and_acqs=sampled_pulses_and_acqs, title=self["name"], **backend_kwargs, ) raise ValueError( f"plot_backend must be equal to either 'mpl' or 'plotly', " f"value given: {repr(plot_backend)}" )
@classmethod
[docs] def _generate_timing_table_list( cls, operation: Operation | ScheduleBase, time_offset: float, timing_table_list: list, operation_id: str | None, ) -> None: if isinstance(operation, ScheduleBase): for schedulable in operation.schedulables.values(): if "abs_time" not in schedulable: # when this exception is encountered raise ValueError( "Absolute time has not been determined yet. " "Please compile your schedule." ) cls._generate_timing_table_list( operation.operations[schedulable["operation_id"]], time_offset + schedulable["abs_time"], timing_table_list, schedulable["operation_id"], ) elif isinstance(operation, LoopOperation): for i in range(operation.data["control_flow_info"]["repetitions"]): cls._generate_timing_table_list( operation.body, time_offset + i * operation.body.duration, timing_table_list, operation_id, ) elif isinstance(operation, ConditionalOperation): cls._generate_timing_table_list( operation.body, time_offset, timing_table_list, operation_id, ) else: for i, op_info in chain( enumerate(operation["pulse_info"]), enumerate(operation["acquisition_info"]), ): t0 = time_offset + op_info["t0"] df_row = { "waveform_op_id": str(operation) + f"_acq_{i}", "port": op_info["port"], "clock": op_info["clock"], "abs_time": t0, "duration": op_info["duration"], "is_acquisition": "acq_channel" in op_info or "bin_mode" in op_info, "operation": str(operation), "wf_idx": i, "operation_hash": operation_id, } timing_table_list.append(pd.DataFrame(df_row, index=range(1)))
@property
[docs] def timing_table(self) -> pd.io.formats.style.Styler: """ A styled pandas dataframe containing the absolute timing of pulses and acquisitions in a schedule. This table is constructed based on the ``abs_time`` key in the :attr:`~quantify_scheduler.schedules.schedule.ScheduleBase.schedulables`. This requires the timing to have been determined. The table consists of the following columns: - `operation`: a ``repr`` of :class:`~quantify_scheduler.operations.operation.Operation` corresponding to the pulse/acquisition. - `waveform_op_id`: an id corresponding to each pulse/acquisition inside an :class:`~quantify_scheduler.operations.operation.Operation`. - `port`: the port the pulse/acquisition is to be played/acquired on. - `clock`: the clock used to (de)modulate the pulse/acquisition. - `abs_time`: the absolute time the pulse/acquisition is scheduled to start. - `duration`: the duration of the pulse/acquisition that is scheduled. - `is_acquisition`: whether the pulse/acquisition is an acquisition or not (type ``numpy.bool_``). - `wf_idx`: the waveform index of the pulse/acquisition belonging to the Operation. - `operation_hash`: the unique hash corresponding to the :class:`~.Schedulable` that the pulse/acquisition belongs to. .. admonition:: Example .. jupyter-execute:: :hide-code: from quantify_scheduler.backends import SerialCompiler from quantify_scheduler.device_under_test.quantum_device import QuantumDevice from quantify_scheduler.device_under_test.transmon_element import BasicTransmonElement from quantify_scheduler.operations.gate_library import ( Measure, Reset, X, Y, ) from quantify_scheduler.schedules.schedule import Schedule from quantify_scheduler.schemas.examples import utils compiler = SerialCompiler("compiler") q0 = BasicTransmonElement("q0") q4 = BasicTransmonElement("q4") for qubit in [q0, q4]: qubit.rxy.amp180(0.115) qubit.rxy.motzoi(0.1) qubit.clock_freqs.f01(7.3e9) qubit.clock_freqs.f12(7.0e9) qubit.clock_freqs.readout(8.0e9) qubit.measure.acq_delay(100e-9) quantum_device = QuantumDevice(name="quantum_device0") quantum_device.add_element(q0) quantum_device.add_element(q4) device_config = quantum_device.generate_device_config() hardware_config = utils.load_json_example_scheme( "qblox_hardware_config_transmon.json" ) hardware_config["hardware_options"].pop("distortion_corrections") quantum_device.hardware_config(hardware_config) compiler = SerialCompiler("compiler") compiler.quantum_device = quantum_device .. jupyter-execute:: schedule = Schedule("demo timing table") schedule.add(Reset("q0", "q4")) schedule.add(X("q0")) schedule.add(Y("q4")) schedule.add(Measure("q0", acq_index=0)) schedule.add(Measure("q4", acq_index=0)) compiled_schedule = compiler.compile(schedule) compiled_schedule.timing_table Parameters ---------- schedule a schedule for which the absolute timing has been determined. Returns ------- : styled_timing_table, a pandas Styler containing a dataframe with an overview of the timing of the pulses and acquisitions present in the schedule. The dataframe can be accessed through the .data attribute of the Styler. Raises ------ ValueError When the absolute timing has not been determined during compilation. """ # noqa: E501 timing_table_list = [] self._generate_timing_table_list(self, 0, timing_table_list, None) timing_table = pd.concat(timing_table_list, ignore_index=True) timing_table = timing_table.sort_values(by="abs_time") # apply a style so that time is easy to read. # this works under the assumption that we are using timings on the order of # nanoseconds. styled_timing_table = timing_table.style.format( { "abs_time": lambda val: f"{val*1e9:,.1f} ns", "duration": lambda val: f"{val*1e9:,.1f} ns", } ) return styled_timing_table
[docs] def get_schedule_duration(self) -> float: """ Return the duration of the schedule. Returns ------- schedule_duration : float Duration of current schedule """ schedule_duration = 0 # find last timestamp for schedulable in self.schedulables.values(): timestamp = schedulable["abs_time"] operation_id = schedulable["operation_id"] operation = self["operation_dict"][operation_id] tmp_time = timestamp + operation.duration # keep track of longest found schedule schedule_duration = max(tmp_time, schedule_duration) schedule_duration *= self.repetitions return schedule_duration
@property
[docs] def duration(self) -> float | None: """ Determine the cached duration of the schedule. Will return None if get_schedule_duration() has not been called before. """ return self.get("duration", None)
def __getstate__(self) -> dict[str, Any]: data = copy(self.data) # For serialization, we need to keep the order # of keys in the serialized data too. data["schedulables"] = list(data["schedulables"].items()) return { "deserialization_type": export_python_object_to_path_string(self.__class__), "data": data, } def __setstate__(self, state: dict[str, Any]) -> None: # Logic to allow legacy (old serialized, saved) and current serialization. data = state["data"] if ("deserialization_type" in state) and ("data" in state) else state if isinstance(data["schedulables"], list): # Schedulables can be a list of pair of key values to store # the order of schedulables too in the serialized data. data["schedulables"] = {k: v for k, v in data["schedulables"]} self.data = data
[docs] class Schedule(ScheduleBase): """ A modifiable schedule. Operations :class:`quantify_scheduler.operations.operation.Operation` can be added using the :meth:`~.Schedule.add` method, allowing precise specification *when* to perform an operation using timing constraints. When adding an operation, it is not required to specify how to represent this :class:`quantify_scheduler.operations.operation.Operation` on all layers. Instead, this information can be added later during :ref:`compilation <sec-compilation>`. This allows the user to effortlessly mix the gate- and pulse-level descriptions as required for many (calibration) experiments. Parameters ---------- name The name of the schedule repetitions The amount of times the schedule will be repeated, by default 1 data A dictionary containing a pre-existing schedule, by default None """
[docs] schema_filename = "schedule.json"
def __init__(self, name: str, repetitions: int = 1, data: dict = None) -> None: # noqa: E501 # validate the input data to ensure it is valid schedule data super().__init__() # ensure keys exist self["operation_dict"] = {} self["resource_dict"] = {} self["name"] = name self["repetitions"] = repetitions # Note the order of schedulables is important. # If two schedulables have the same absolute time, # the order is determined by the order of their keys. self["schedulables"] = {} # This is used to define baseband pulses and is expected to always be present # in any schedule. self.add_resource(resources.BasebandClockResource(resources.BasebandClockResource.IDENTITY)) # This is used to define operations on marker and digital channels. self.add_resource(resources.DigitalClockResource(resources.DigitalClockResource.IDENTITY)) if data is not None: self.data.update(data)
[docs] def add_resources(self, resources_list: list) -> None: """Add wrapper for adding multiple resources.""" for resource in resources_list: self.add_resource(resource)
[docs] def add_resource(self, resource: Resource) -> None: """Add a resource such as a channel or qubit to the schedule.""" if not isinstance(resource, Resource): raise ValueError( f"Attempting to add resource to schedule. " f"'{resource}' is not a Resource instance." ) if resource.name in self["resource_dict"]: raise ValueError(f"Key {resource.name} is already present") self["resource_dict"][resource.name] = resource
[docs] def add( self, operation: Operation | Schedule, rel_time: float = 0, ref_op: Schedulable | str | None = None, ref_pt: Literal["start", "center", "end"] | None = None, ref_pt_new: Literal["start", "center", "end"] | None = None, label: str | None = None, control_flow: ControlFlowSpec | None = None, ) -> Schedulable: """ Add an operation or a subschedule to the schedule. Parameters ---------- operation The operation to add to the schedule, or another schedule to add as a subschedule. rel_time relative time between the reference operation and the added operation. the time is the time between the "ref_pt" in the reference operation and "ref_pt_new" of the operation that is added. ref_op reference schedulable. If set to :code:`None`, will default to the last added operation. ref_pt reference point in reference operation must be one of :code:`"start"`, :code:`"center"`, :code:`"end"`, or :code:`None`; in case of :code:`None`, :func:`~quantify_scheduler.compilation._determine_absolute_timing` assumes :code:`"end"`. ref_pt_new reference point in added operation must be one of :code:`"start"`, :code:`"center"`, :code:`"end"`, or :code:`None`; in case of :code:`None`, :func:`~quantify_scheduler.compilation._determine_absolute_timing` assumes :code:`"start"`. label a unique string that can be used as an identifier when adding operations. if set to `None`, a random hash will be generated instead. control_flow Virtual operation describing if the operation should be subject to control flow (loop, conditional, ...). See :ref:`control flow reference documentation <sec-control-flow>` for a detailed explanation. Returns ------- : Returns the schedulable created in the schedule. """ if label is None: label = str(uuid4()) self._validate_add_arguments(operation, label, control_flow) # ensure the schedulable name is unique if label in self.schedulables: raise ValueError(f"Schedulable name '{label}' must be unique.") # ensure that reference schedulable exists in current schedule if ( ref_op is not None and (ref_op not in self.schedulables) and (not any([ref_op is op for op in self.schedulables.values()])) ): raise ValueError( f"Reference schedulable '{ref_op}' does not exist in this schedule. Please " "ensure that `ref_op` corresponds to a label, for example\n\n" " schedule.add(operationA, label='my_label')\n" " schedule.add(operationB, ref_op='my_label')\n\n" "or a schedulable that has been added to the schedule, for example\n\n" " my_operation = schedule.add(operationA)\n" " schedule.add(operationB, ref_op=my_operation)." ) if control_flow is not None: return self._add( control_flow.create_operation(operation), rel_time, ref_op, ref_pt, ref_pt_new, label, ) else: return self._add(operation, rel_time, ref_op, ref_pt, ref_pt_new, label)
[docs] def _add( self, operation: Operation | Schedule, rel_time: float = 0, ref_op: Schedulable | str | None = None, ref_pt: Literal["start", "center", "end"] | None = None, ref_pt_new: Literal["start", "center", "end"] | None = None, label: str | None = None, ) -> Schedulable: operation_id = operation.hash self["operation_dict"][operation_id] = operation element = Schedulable(name=label, operation_id=operation_id) element.add_timing_constraint( rel_time=rel_time, ref_schedulable=ref_op, ref_pt=ref_pt, ref_pt_new=ref_pt_new, ) self.schedulables.update({label: element}) return element
[docs] def _validate_add_arguments( self, operation: Operation | Schedule, label: str, control_flow: Operation | None, ) -> None: if not isinstance(operation, (Operation, Schedule)): raise ValueError( f"Attempting to add operation to schedule. " f"The provided object '{operation=}' is not" " an instance of Operation or Schedule" ) if control_flow is not None: warnings.warn( "Using the `control_flow` argument in `Schedule.add` is deprecated, and " "will be removed from the public interface in quantify-scheduler >= 0.23.0. " "Please add control flow operations directly to the schedule instead.", FutureWarning, ) # ensure the schedulable name is unique if label in self.schedulables: raise ValueError(f"Schedulable name '{label}' must be unique.")
[docs] class Schedulable(JSONSchemaValMixin, UserDict): """ A representation of an element on a schedule. All elements on a schedule are schedulables. A schedulable contains all information regarding the timing of this element as well as the operation being executed by this element. This operation is currently represented by an operation ID. Schedulables can contain an arbitrary number of timing constraints to determine the timing. Multiple different constraints are currently resolved by delaying the element until after all timing constraints have been met, to aid compatibility. To specify an exact timing between two schedulables, please ensure to only specify exactly one timing constraint. Parameters ---------- name The name of this schedulable, by which it can be referenced by other schedulables. Separate schedulables cannot share the same name. operation_id Reference to the operation which is to be executed by this schedulable. """
[docs] schema_filename = "schedulable.json"
def __init__(self, name: str, operation_id: str, control_flow: Operation | None = None) -> None: super().__init__() self["name"] = name self["operation_id"] = operation_id self["timing_constraints"] = [] # the next lines are to prevent breaking the existing API self["label"] = name if control_flow is not None: self["control_flow"] = control_flow
[docs] def add_timing_constraint( self, rel_time: float = 0, ref_schedulable: Schedulable | str | None = None, ref_pt: Literal["start", "center", "end"] | None = None, ref_pt_new: Literal["start", "center", "end"] | None = None, ) -> None: """ Add timing constraint. A timing constraint constrains the operation in time by specifying the time (:code:`"rel_time"`) between a reference schedulable and the added schedulable. The time can be specified with respect to the "start", "center", or "end" of the operations. The reference schedulable (:code:`"ref_schedulable"`) is specified using its name property. See also :attr:`~.ScheduleBase.schedulables`. Parameters ---------- rel_time relative time between the reference schedulable and the added schedulable. the time is the time between the "ref_pt" in the reference operation and "ref_pt_new" of the operation that is added. ref_schedulable name of the reference schedulable. If set to :code:`None`, will default to the last added operation. ref_pt reference point in reference operation must be one of :code:`"start"`, :code:`"center"`, :code:`"end"`, or :code:`None`; in case of :code:`None`, :meth:`~quantify_scheduler.compilation._determine_absolute_timing` assumes :code:`"end"`. ref_pt_new reference point in added operation must be one of :code:`"start"`, :code:`"center"`, :code:`"end"`, or :code:`None`; in case of :code:`None`, :meth:`~quantify_scheduler.compilation._determine_absolute_timing` assumes :code:`"start"`. """ # Save as str to help serialization of schedules. if ref_schedulable is not None: ref_schedulable = str(ref_schedulable) timing_constr = { "rel_time": rel_time, "ref_schedulable": ref_schedulable, "ref_pt_new": ref_pt_new, "ref_pt": ref_pt, } self["timing_constraints"].append(timing_constr)
def __hash__(self) -> int: return make_hash(self.data) @property
[docs] def hash(self) -> str: """A hash based on the contents of the Operation.""" return str(hash(self))
def __str__(self) -> str: return str(self["name"]) def __getstate__(self) -> dict[str, Any]: return { "deserialization_type": export_python_object_to_path_string(self.__class__), "data": self.data, } def __setstate__(self, state: dict[str, Any]) -> None: self.data = state["data"]
[docs] class CompiledSchedule(ScheduleBase): """ A schedule that contains compiled instructions ready for execution using the :class:`~.InstrumentCoordinator`. The :class:`CompiledSchedule` differs from a :class:`.Schedule` in that it is considered immutable (no new operations or resources can be added), and that it contains :attr:`~.compiled_instructions`. .. tip:: A :class:`~.CompiledSchedule` can be obtained by compiling a :class:`~.Schedule` using :meth:`~quantify_scheduler.backends.graph_compilation.QuantifyCompiler.compile`. """ # noqa: E501
[docs] schema_filename = "schedule.json"
def __init__(self, schedule: Schedule) -> None: # validate the input data to ensure it is valid schedule data super().__init__()
[docs] self._hardware_timing_table: pd.DataFrame = pd.DataFrame()
# N.B. this relies on a bit of a dirty monkey patch way of adding these # properties. Not so nice. if hasattr(schedule, "_hardware_timing_table"): self._hardware_timing_table = schedule._hardware_timing_table
[docs] self._hardware_waveform_dict: dict[str, np.ndarray] = {}
if hasattr(schedule, "_hardware_waveform_dict"): self._hardware_waveform_dict = schedule._hardware_waveform_dict # ensure keys exist self["compiled_instructions"] = {} self.data.update(schedule.data) @property
[docs] def compiled_instructions(self) -> dict[str, Resource]: """ A dictionary containing compiled instructions. The contents of this dictionary depend on the backend it was compiled for. However, we assume that the general format consists of a dictionary in which the keys are instrument names corresponding to components added to a :class:`~.InstrumentCoordinator`, and the values are the instructions for that component. These values typically contain a combination of sequence files, waveform definitions, and parameters to configure on the instrument. """ return self["compiled_instructions"]
@classmethod
[docs] def is_valid(cls, object_to_be_validated: Any) -> bool: # noqa: ANN401 """ Check if the contents of the object_to_be_validated are valid. Additionally checks if the object_to_be_validated is an instance of :class:`~.CompiledSchedule`. """ valid_schedule = super().is_valid(object_to_be_validated) if valid_schedule: return isinstance(object_to_be_validated, CompiledSchedule) return False
@property
[docs] def hardware_timing_table(self) -> pd.io.formats.style.Styler: """ Return a timing table representing all operations at the Control-hardware layer. Note that this timing table is typically different from the `.timing_table` in that it contains more hardware specific information such as channels, clock cycles and samples and corrections for things such as gain. This hardware timing table is intended to provide a more This table is constructed based on the timing_table and modified during compilation in one of the hardware back ends and optionally added to the schedule. Not all back ends support this feature. """ styled_hardware_timing_table = self._hardware_timing_table.style.format( { "abs_time": lambda val: f"{val*1e9:,.1f} ns", "duration": lambda val: f"{val*1e9:,.1f} ns", "clock_cycle_start": lambda val: f"{val:,.1f}", "sample_start": lambda val: f"{val:,.1f}", } ) return styled_hardware_timing_table
@property
[docs] def hardware_waveform_dict(self) -> dict[str, np.ndarray]: """ Return a waveform dictionary representing all waveforms at the Control-hardware layer. Where the waveforms are represented as abstract waveforms in the Operations, this dictionary contains the numerical arrays that are uploaded to the hardware. This dictionary is constructed during compilation in the hardware back ends and optionally added to the schedule. Not all back ends support this feature. """ # noqa: E501 return self._hardware_waveform_dict
@dataclasses.dataclass
[docs] class AcquisitionChannelMetadata: """A description of the acquisition channel and it's indices."""
[docs] acq_channel: Hashable
"""The acquisition channel given in the schedule."""
[docs] acq_indices: list[int]
"""The indices reserved for this acquisition channel."""
[docs] thresholded_trigger_count: ThresholdedTriggerCountMetadata | None = None
""" Optional metadata for ThresholdedTriggerCount. Must be filled in if the this protocol is used. The metadata is allowed to be different per acquisition channel. """ def __getstate__(self) -> dict[str, Any]: data = dataclasses.asdict(self) return { "deserialization_type": export_python_object_to_path_string(self.__class__), "data": data, } def __setstate__(self, state: dict[str, Any]) -> None: self.__init__(**state["data"])
@dataclasses.dataclass
[docs] class AcquisitionMetadata: """ A description of the shape and type of data that a schedule will return when executed. .. note:: The acquisition protocol, bin-mode and return types are assumed to be the same for all acquisitions in a schedule. """ # noqa: E501
[docs] acq_protocol: str
"""The acquisition protocol that is used for all acquisitions in the schedule."""
[docs] bin_mode: enums.BinMode
"""How the data is stored in the bins indexed by acq_channel and acq_index."""
[docs] acq_return_type: type
"""The datatype returned by the individual acquisitions."""
[docs] acq_channels_metadata: dict[int, AcquisitionChannelMetadata]
"""A dictionary mapping a numeric key, to the corresponding channel metadata."""
[docs] repetitions: int
"""How many times the acquisition was repeated on this specific sequencer.""" def __getstate__(self) -> dict[str, Any]: data = dataclasses.asdict(self) return { "deserialization_type": export_python_object_to_path_string(self.__class__), "data": data, } def __setstate__(self, state: dict[str, Any]) -> None: self.__init__(**state["data"]) self.acq_channels_metadata = {} for numeric_key, acq_channel_metadata in state["data"]["acq_channels_metadata"].items(): # TODO this is ugly, but won't be needed after changing these classes to # pydantic models. thresholded_trigger_count = ( ThresholdedTriggerCountMetadata(**acq_channel_metadata["thresholded_trigger_count"]) if acq_channel_metadata["thresholded_trigger_count"] is not None else None ) self.acq_channels_metadata[int(numeric_key)] = AcquisitionChannelMetadata( acq_channel_metadata["acq_channel"], acq_channel_metadata["acq_indices"], thresholded_trigger_count=thresholded_trigger_count, )
[docs] def acq_channel_metadata_by_acq_channel_name( self, acq_channel: Hashable ) -> AcquisitionChannelMetadata: """Retrieve acq_channel_metadata by acq_channel.""" for md in self.acq_channels_metadata.values(): if md.acq_channel == acq_channel: return md else: # noqa: PLW0120 # ruff doesn't pick up return statement raise KeyError(f"{acq_channel=} is not present.")