# Repository: https://gitlab.com/quantify-os/quantify-scheduler
# Licensed according to the LICENCE file on the main branch
"""Compiler base and utility classes for Qblox backend."""
# pylint: disable=too-many-lines
from __future__ import annotations
import dataclasses
import json
import logging
import warnings
from abc import ABC, ABCMeta, abstractmethod
from collections import defaultdict, deque
from functools import partial
from os import makedirs, path
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
Generator,
List,
Literal,
Optional,
Set,
Tuple,
Union,
)
import numpy as np
from pathvalidate import sanitize_filename
from qcodes.utils.helpers import NumpyJSONEncoder
from quantify_core.data.handling import gen_tuid, get_datadir
from quantify_scheduler.backends.qblox import (
constants,
driver_version_check,
helpers,
instrument_compilers,
q1asm_instructions,
register_manager,
)
from quantify_scheduler.backends.qblox.operation_handling.acquisitions import (
AcquisitionStrategyPartial,
)
from quantify_scheduler.backends.qblox.operation_handling.base import IOperationStrategy
from quantify_scheduler.backends.qblox.operation_handling.factory import (
get_operation_strategy,
)
from quantify_scheduler.backends.qblox.qasm_program import QASMProgram
from quantify_scheduler.backends.types.qblox import (
BasebandModuleSettings,
BaseModuleSettings,
OpInfo,
PulsarRFSettings,
PulsarSettings,
RFModuleSettings,
SequencerSettings,
StaticHardwareProperties,
)
from quantify_scheduler.enums import BinMode
from quantify_scheduler.operations.pulse_library import SetClockFrequency
if TYPE_CHECKING:
from quantify_scheduler.backends.qblox.instrument_compilers import LocalOscillator
[docs]logger = logging.getLogger(__name__)
logger.setLevel(logging.WARNING)
[docs]class InstrumentCompiler(ABC):
"""
Abstract base class that defines a generic instrument compiler. The subclasses that
inherit from this are meant to implement the compilation steps needed to compile the
lists of :class:`quantify_scheduler.backends.types.qblox.OpInfo` representing the
pulse and acquisition information to device-specific instructions.
Each device that needs to be part of the compilation process requires an associated
`InstrumentCompiler`.
"""
def __init__(
self,
parent, # No type hint due to circular import, added to docstring
name: str,
total_play_time: float,
instrument_cfg: Dict[str, Any],
latency_corrections: Optional[Dict[str, float]] = None,
):
# pylint: disable=line-too-long
"""
Constructor for an InstrumentCompiler object.
Parameters
----------
parent: :class:`~quantify_scheduler.backends.qblox.compiler_container.CompilerContainer`
Reference to the parent object.
name
Name of the `QCoDeS` instrument this compiler object corresponds to.
total_play_time
Total time execution of the schedule should go on for. This parameter is
used to ensure that the different devices, potentially with different clock
rates, can work in a synchronized way when performing multiple executions of
the schedule.
instrument_cfg
The part of the hardware configuration dictionary referring to this device. This is one
of the inner dictionaries of the overall hardware config.
latency_corrections
Dict containing the delays for each port-clock combination. This is specified in
the top layer of hardware config.
"""
self.parent = parent
self.name = name
self.total_play_time = total_play_time
self.instrument_cfg = instrument_cfg
self.latency_corrections = latency_corrections or {}
[docs] def prepare(self) -> None:
"""
Method that can be overridden to implement logic before the main compilation
starts. This step is to extract all settings for the devices that are dependent
on settings of other devices. This step happens after instantiation of the
compiler object but before the start of the main compilation.
"""
@abstractmethod
[docs] def compile(self, repetitions: int) -> Any:
"""
An abstract method that should be overridden in a subclass to implement the
actual compilation. It should turn the pulses and acquisitions added to the
device into device-specific instructions.
Parameters
----------
repetitions
Number of times execution of the schedule is repeated.
Returns
-------
:
A data structure representing the compiled program. The type is
dependent on implementation.
"""
[docs]class ControlDeviceCompiler(InstrumentCompiler, metaclass=ABCMeta):
"""
Abstract class for any device requiring logic for acquisition and playback of
pulses.
"""
def __init__(
self,
parent, # No type hint due to circular import, added to docstring
name: str,
total_play_time: float,
instrument_cfg: Dict[str, Any],
latency_corrections: Optional[Dict[str, float]] = None,
):
# pylint: disable=line-too-long
"""
Constructor for a ControlDeviceCompiler object.
Parameters
----------
parent: :class:`~quantify_scheduler.backends.qblox.compiler_container.CompilerContainer`
Reference to the parent object.
name
Name of the `QCoDeS` instrument this compiler object corresponds to.
total_play_time
Total time execution of the schedule should go on for. This parameter is
used to ensure that the different devices, potentially with different clock
rates, can work in a synchronized way when performing multiple executions of
the schedule.
instrument_cfg
The part of the hardware configuration dictionary referring to this device. This is one
of the inner dictionaries of the overall hardware config.
latency_corrections
Dict containing the delays for each port-clock combination. This is specified in
the top layer of hardware config.
"""
super().__init__(
parent=parent,
name=name,
total_play_time=total_play_time,
instrument_cfg=instrument_cfg,
latency_corrections=latency_corrections,
)
self._pulses: Dict[Tuple[str, str], List[OpInfo]] = defaultdict(list)
self._acquisitions: Dict[Tuple[str, str], List[OpInfo]] = defaultdict(list)
@property
@abstractmethod
[docs] def supports_acquisition(self) -> bool:
"""
Specifies whether the device can perform acquisitions.
Returns
-------
:
The maximum amount of sequencers
"""
[docs] def add_pulse(self, port: str, clock: str, pulse_info: OpInfo):
"""
Assigns a certain pulse to this device.
Parameters
----------
port
The port the pulse needs to be sent to.
clock
The clock for modulation of the pulse. Can be a BasebandClock.
pulse_info
Data structure containing all the information regarding this specific pulse
operation.
"""
self._pulses[(port, clock)].append(pulse_info)
[docs] def add_acquisition(self, port: str, clock: str, acq_info: OpInfo):
"""
Assigns a certain acquisition to this device.
Parameters
----------
port
The port the pulse needs to be sent to.
clock
The clock for modulation of the pulse. Can be a BasebandClock.
acq_info
Data structure containing all the information regarding this specific
acquisition operation.
"""
if not self.supports_acquisition:
raise RuntimeError(
f"{self.__class__.__name__} {self.name} does not support acquisitions. "
f"Attempting to add acquisition {repr(acq_info)} "
f"on port {port} with clock {clock}."
)
self._acquisitions[(port, clock)].append(acq_info)
@property
[docs] def _portclocks_with_data(self) -> Set[Tuple[str, str]]:
"""
All the port-clock combinations associated with at least one pulse and/or
acquisition.
Returns
-------
:
A set containing all the port-clock combinations that are used by this
InstrumentCompiler.
"""
portclocks_used = set()
portclocks_used.update(self._pulses.keys())
portclocks_used.update(self._acquisitions.keys())
return portclocks_used
@property
[docs] def _portclocks_with_pulses(self) -> Set[Tuple[str, str]]:
"""
All the port-clock combinations associated with at least one pulse.
Returns
-------
:
A set containing all the port-clock combinations that are used by this
InstrumentCompiler.
"""
portclocks_used = set()
portclocks_used.update(self._pulses.keys())
return portclocks_used
@abstractmethod
[docs] def compile(self, repetitions: int = 1) -> Dict[str, Any]:
"""
An abstract method that should be overridden by a subclass to implement the
actual compilation. Method turns the pulses and acquisitions added to the device
into device-specific instructions.
Parameters
----------
repetitions
Number of times execution the schedule is repeated.
Returns
-------
:
A data structure representing the compiled program.
"""
# pylint: disable=too-many-instance-attributes
[docs]class Sequencer:
"""
Class that performs the compilation steps on the sequencer level.
"""
# pylint: disable=too-many-arguments
def __init__(
self,
parent: QbloxBaseModule,
index: int,
portclock: Tuple[str, str],
static_hw_properties: StaticHardwareProperties,
connected_outputs: Optional[Union[Tuple[int], Tuple[int, int]]],
connected_inputs: Optional[Union[Tuple[int], Tuple[int, int]]],
seq_settings: Dict[str, Any],
latency_corrections: Dict[str, float],
lo_name: Optional[str] = None,
downconverter_freq: Optional[float] = None,
mix_lo: bool = True,
marker_debug_mode_enable: bool = False,
default_marker: int = 0,
):
"""
Constructor for the sequencer compiler.
Parameters
----------
parent
A reference to the parent instrument this sequencer belongs to.
index
Index of the sequencer.
portclock
Tuple that specifies the unique port and clock combination for this
sequencer. The first value is the port, second is the clock.
seq_settings
Sequencer settings dictionary.
latency_corrections
Dict containing the delays for each port-clock combination.
lo_name
The name of the local oscillator instrument connected to the same output via
an IQ mixer. This is used for frequency calculations.
downconverter_freq
.. warning::
Using `downconverter_freq` requires custom Qblox hardware, do not use otherwise.
Frequency of the external downconverter if one is being used.
Defaults to ``None``, in which case the downconverter is inactive.
mix_lo
Boolean flag for IQ mixing with LO.
Defaults to ``True`` meaning IQ mixing is applied.
marker_debug_mode_enable
Boolean flag to indicate if markers should be pulled high at the start of operations.
Defaults to False, which means the markers will not be used during the sequence.
default_marker
The default marker value to use, will be set in the beginning of program.
Especially important for RF where the set_mrk command is used to enable/disable the RF path.
"""
self.parent = parent
self.index = index
self.port = portclock[0]
self.clock = portclock[1]
self.pulses: List[IOperationStrategy] = []
self.acquisitions: List[IOperationStrategy] = []
self.associated_ext_lo: str = lo_name
self.downconverter_freq: float = downconverter_freq
self.mix_lo: bool = mix_lo
self._marker_debug_mode_enable: bool = marker_debug_mode_enable
self.default_marker = default_marker
self.static_hw_properties: StaticHardwareProperties = static_hw_properties
self.register_manager = register_manager.RegisterManager()
self.instruction_generated_pulses_enabled = seq_settings.get(
"instruction_generated_pulses_enabled", None
)
if self.instruction_generated_pulses_enabled is not None:
warnings.warn(
"Support for the instruction_generated_pulses_enabled configuration "
"field will be dropped in quantify-scheduler >= 0.15.0.\nFor long "
"square, ramp, or staircase pulses, please look at the pulse library "
"in quantify_scheduler.operations.pulse_factories.",
FutureWarning,
)
else:
self.instruction_generated_pulses_enabled = False
self._settings = SequencerSettings.initialize_from_config_dict(
seq_settings=seq_settings,
connected_outputs=connected_outputs,
connected_inputs=connected_inputs,
)
[docs] self.qasm_hook_func: Optional[Callable] = seq_settings.get(
"qasm_hook_func", None
)
"""Allows the user to inject custom Q1ASM code into the compilation, just prior
to returning the final string."""
portclock_key = f"{seq_settings['port']}-{seq_settings['clock']}"
[docs] self.latency_correction: float = latency_corrections.get(portclock_key, 0)
"""Latency correction accounted for by delaying the start of the program."""
@property
[docs] def connected_outputs(self) -> Optional[Union[Tuple[int], Tuple[int, int]]]:
"""
The indices of the output paths that this sequencer is producing awg
data for.
For the baseband modules, these indices correspond directly to a physical output
(e.g. index 0 corresponds to output 1 etc.).
For the RF modules, indexes 0 and 1 correspond to path0 and path1 of output 1,
respectively, while indexes 2 and 3 correspond to path0 and path1 of output 2.
"""
return self._settings.connected_outputs
@property
@property
[docs] def io_mode(self) -> Literal["complex", "real", "imag"]:
"""
Specifies whether the sequencer is using only path0 (real), path1 (imag) or
both (complex).
If real or imag, the sequencer is restricted to only using real valued data.
"""
if self._settings.connected_outputs is not None:
return helpers.io_mode_from_ios(self._settings.connected_outputs)
else:
return helpers.io_mode_from_ios(self._settings.connected_inputs)
@property
[docs] def portclock(self) -> Tuple[str, str]:
"""
A tuple containing the unique port and clock combination for this sequencer.
Returns
-------
:
The portclock.
"""
return self.port, self.clock
@property
[docs] def settings(self) -> SequencerSettings:
"""
Gives the current settings.
Returns
-------
:
The settings set to this sequencer.
"""
return self._settings
@property
[docs] def name(self) -> str:
"""
The name assigned to this specific sequencer.
Returns
-------
:
The name.
"""
return f"seq{self.index}"
@property
[docs] def has_data(self) -> bool:
"""
Whether or not the sequencer has any data (meaning pulses or acquisitions)
assigned to it or not.
Returns
-------
:
Has data been assigned to this sequencer?
"""
return len(self.acquisitions) > 0 or len(self.pulses) > 0
@property
[docs] def frequency(self) -> float:
"""
The frequency used for modulation of the pulses.
Returns
-------
:
The frequency.
"""
return self._settings.modulation_freq
@frequency.setter
def frequency(self, freq: float):
"""
Assigns a modulation frequency to the sequencer.
Parameters
----------
freq
The frequency to be used for modulation.
Raises
------
ValueError
Attempting to set the modulation frequency to a new value even though a
different value has been previously assigned.
"""
if self._settings.modulation_freq is not None and not np.isclose(
self._settings.modulation_freq, freq
):
raise ValueError(
f"Attempting to set the modulation frequency of '{self.name}' of "
f"'{self.parent.name}' to {freq:e}, while it has previously been set "
f"to {self._settings.modulation_freq:e}."
)
self._settings.modulation_freq = freq
self._settings.nco_en = freq is not None
[docs] def _generate_awg_dict(self) -> Dict[str, Any]:
"""
Generates the dictionary that contains the awg waveforms in the
format accepted by the driver.
Notes
-----
The final dictionary to be included in the json that is uploaded to the module
is of the form:
.. code-block::
program
awg
waveform_name
data
index
acq
waveform_name
data
index
This function generates the awg dictionary.
Returns
-------
:
The awg dictionary.
Raises
------
ValueError
I or Q amplitude is being set outside of maximum range.
RuntimeError
When the total waveform size specified for a port-clock combination exceeds
the waveform sample limit of the hardware.
"""
wf_dict: Dict[str, Any] = {}
for pulse in self.pulses:
pulse.generate_data(wf_dict=wf_dict)
self._validate_awg_dict(wf_dict=wf_dict)
return wf_dict
[docs] def _generate_weights_dict(self) -> Dict[str, Any]:
"""
Generates the dictionary that corresponds that contains the acq weights
waveforms in the format accepted by the driver.
Notes
-----
The final dictionary to be included in the json that is uploaded to the module
is of the form:
.. code-block::
program
awg
waveform_name
data
index
acq
waveform_name
data
index
This function generates the acq dictionary.
Returns
-------
:
The acq dictionary.
Raises
------
NotImplementedError
Currently, only two one dimensional waveforms can be used as acquisition
weights. This exception is raised when either or both waveforms contain
both a real and imaginary part.
"""
wf_dict: Dict[str, Any] = {}
for acq in self.acquisitions:
acq.generate_data(wf_dict)
return wf_dict
[docs] def _validate_awg_dict(self, wf_dict: Dict[str, Any]) -> None:
total_size = 0
for waveform in wf_dict.values():
total_size += len(waveform["data"])
if total_size > constants.MAX_SAMPLE_SIZE_WAVEFORMS:
raise RuntimeError(
f"Total waveform size specified for port-clock {self.port}-"
f"{self.clock} is {total_size} samples, which exceeds the sample "
f"limit of {constants.MAX_SAMPLE_SIZE_WAVEFORMS}. The compiled "
f"schedule cannot be uploaded to the sequencer.",
)
[docs] def _prepare_acq_settings(
self, acquisitions: List[IOperationStrategy], repetitions: int
):
"""
Sets sequencer settings that are specific to certain acquisitions.
For example for a TTL acquisition strategy.
Parameters
----------
acquisitions
List of the acquisitions assigned to this sequencer.
repetitions
The number of times to repeat execution of the schedule.
"""
acquisition_infos: List[OpInfo] = list(
map(lambda acq: acq.operation_info, acquisitions)
)
acq_metadata = helpers.extract_acquisition_metadata_from_acquisitions(
acquisitions=acquisition_infos, repetitions=repetitions
)
if acq_metadata.acq_protocol == "TriggerCount":
self._settings.ttl_acq_auto_bin_incr_en = (
acq_metadata.bin_mode == BinMode.AVERAGE
)
if self.connected_inputs is not None:
if len(self.connected_inputs) == 1:
self._settings.ttl_acq_input_select = self.connected_inputs[0]
else:
raise ValueError(
f"Please make sure you use a single real input for this "
f"portclock combination. "
f"Found: {len(self.connected_inputs)} connected. "
f"TTL acquisition does not support multiple inputs."
f"Problem occurred for port {self.port} with"
f"clock {self.clock}, which corresponds to {self.name} of "
f"{self.parent.name}."
)
[docs] def _generate_acq_declaration_dict(
self,
acquisitions: List[IOperationStrategy],
repetitions: int,
) -> Dict[str, Any]:
"""
Generates the "acquisitions" entry of the program json. It contains declaration
of the acquisitions along with the number of bins and the corresponding index.
For the name of the acquisition (in the hardware), the acquisition channel
(cast to str) is used, and is thus identical to the index. Number of bins is
taken to be the highest acq_index specified for that channel.
Parameters
----------
acquisitions:
List of the acquisitions assigned to this sequencer.
repetitions:
The number of times to repeat execution of the schedule.
Returns
-------
:
The "acquisitions" entry of the program json as a dict. The keys correspond
to the names of the acquisitions (i.e. the acq_channel in the scheduler).
"""
acquisition_infos: List[OpInfo] = list(
map(lambda acq: acq.operation_info, acquisitions)
)
# acquisition metadata for acquisitions relevant to this sequencer only
acq_metadata = helpers.extract_acquisition_metadata_from_acquisitions(
acquisitions=acquisition_infos, repetitions=repetitions
)
# initialize an empty dictionary for the format required by module
acq_declaration_dict = {}
for acq_channel, acq_indices in acq_metadata.acq_indices.items():
# Some sanity checks on the input for easier debugging.
if min(acq_indices) != 0:
raise ValueError(
f"Please make sure the lowest acquisition index used is 0. "
f"Found: {min(acq_indices)} as lowest index for channel "
f"{acq_channel}. Problem occurred for port {self.port} with"
f" clock {self.clock}, which corresponds to {self.name} of "
f"{self.parent.name}."
)
if len(acq_indices) != max(acq_indices) + 1:
raise ValueError(
f"Found {max(acq_indices)} as the highest index out of "
f"{len(acq_indices)} for channel {acq_channel}, indicating "
f"an acquisition index was skipped or an acquisition index was repeated. "
f"Please make sure the used indices increment by 1 starting from 0. "
f"Problem occurred for port {self.port} with clock {self.clock}, "
f"which corresponds to {self.name} of {self.parent.name}."
)
unique_acq_indices = len(set(acq_indices))
if len(acq_indices) != unique_acq_indices:
raise ValueError(
f"Found {unique_acq_indices} unique indices out of "
f"{len(acq_indices)} for channel {acq_channel}, indicating "
f"an acquisition index was skipped or an acquisition index was repeated. "
f"Please make sure the used indices increment by 1 starting from 0. "
f"Problem occurred for port {self.port} with clock {self.clock}, "
f"which corresponds to {self.name} of {self.parent.name}."
)
# Add the acquisition metadata to the acquisition declaration dict
if acq_metadata.bin_mode == BinMode.APPEND:
num_bins = repetitions * (max(acq_indices) + 1)
elif acq_metadata.bin_mode == BinMode.AVERAGE:
if acq_metadata.acq_protocol == "TriggerCount":
num_bins = constants.MAX_NUMBER_OF_BINS
else:
num_bins = max(acq_indices) + 1
else:
# currently the BinMode enum only has average and append.
# this check exists to catch unexpected errors if we add more
# BinModes in the future.
raise NotImplementedError(f"Unknown bin mode {acq_metadata.bin_mode}.")
if acq_metadata.acq_protocol == "looped_periodic_acquisition":
if len(acquisition_infos) > 1:
raise ValueError(
"only one acquisition allowed if "
"looped_periodic_acquisition is used"
)
num_bins = acquisition_infos[0].data["num_times"]
acq_declaration_dict[str(acq_channel)] = {
"num_bins": num_bins,
"index": acq_channel,
}
return acq_declaration_dict
# pylint: disable=too-many-locals
[docs] def generate_qasm_program(
self,
total_sequence_time: float,
repetitions: int = 1,
) -> str:
"""
Generates a QASM program for a sequencer. Requires the awg and acq dicts to
already have been generated.
Example of a program generated by this function:
.. code-block::
wait_sync 4
set_mrk 1
move 10,R0 # iterator for loop with label start
start:
wait 4
set_awg_gain 22663,10206 # setting gain for 9056793381316377208
play 0,1,4
wait 176
loop R0,@start
set_mrk 0
upd_param 4
stop
Parameters
----------
total_sequence_time
Total time the program needs to play for. If the sequencer would be done
before this time, a wait is added at the end to ensure synchronization.
repetitions
Number of times to repeat execution of the schedule.
Returns
-------
:
The generated QASM program.
Warns
-----
RuntimeWarning
When number of instructions in the generated QASM program exceeds the
maximum supported number of instructions for sequencers in the type of
module.
Raises
------
RuntimeError
Upon `total_sequence_time` exceeding :attr:`.QASMProgram.elapsed_time`.
"""
loop_label = "start"
qasm = QASMProgram(self.static_hw_properties, self.register_manager)
qasm.set_marker(self.default_marker)
qasm.emit(q1asm_instructions.UPDATE_PARAMETERS, constants.GRID_TIME)
# program header
qasm.emit(q1asm_instructions.WAIT_SYNC, constants.GRID_TIME)
qasm.emit(q1asm_instructions.UPDATE_PARAMETERS, constants.GRID_TIME)
pulses = [] if self.pulses is None else self.pulses
acquisitions = [] if self.acquisitions is None else self.acquisitions
self._initialize_append_mode_registers(qasm, acquisitions)
# Program body. The operations are sorted such that real-time IO operations
# always come after any other operations. E.g., an offset instruction should
# always come before the parameter update, play, or acquisition instruction.
op_list = pulses + acquisitions
op_list = sorted(
op_list,
# Note: round to nanoseconds below such that e.g. 1.0000000001 == 1
key=lambda op: (
round(op.operation_info.timing, ndigits=9),
op.operation_info.is_real_time_io_operation,
),
)
# Adds the latency correction, this needs to be a minimum of 4 ns,
# so all sequencers get delayed by at least that.
latency_correction_ns: int = self._get_latency_correction_ns(
self.latency_correction
)
qasm.auto_wait(
wait_time=constants.GRID_TIME + latency_correction_ns,
count_as_elapsed_time=False,
comment=f"latency correction of {constants.GRID_TIME} + "
f"{latency_correction_ns} ns",
)
with qasm.loop(label=loop_label, repetitions=repetitions):
qasm.emit(q1asm_instructions.RESET_PHASE)
qasm.emit(q1asm_instructions.UPDATE_PARAMETERS, constants.GRID_TIME)
op_queue = deque(op_list)
while len(op_queue) > 0:
operation = op_queue.popleft()
valid_operation = (
operation.operation_info.is_acquisition
or operation.operation_info.data.get("wf_func") is not None
)
qasm.wait_till_start_operation(operation.operation_info)
if self._marker_debug_mode_enable and valid_operation:
qasm.set_marker(self._decide_markers(operation))
operation.insert_qasm(qasm)
qasm.set_marker(self.default_marker)
qasm.emit(q1asm_instructions.UPDATE_PARAMETERS, constants.GRID_TIME)
qasm.elapsed_time += constants.GRID_TIME
else:
operation.insert_qasm(qasm)
end_time = helpers.to_grid_time(total_sequence_time)
wait_time = end_time - qasm.elapsed_time
if wait_time < 0:
raise RuntimeError(
f"Invalid timing detected, attempting to insert wait "
f"of {wait_time} ns. The total duration of the "
f"schedule is {end_time} but {qasm.elapsed_time} ns "
f"already processed."
)
qasm.auto_wait(wait_time)
# program footer
qasm.emit(q1asm_instructions.STOP)
if self.qasm_hook_func:
self.qasm_hook_func(qasm)
self._settings.integration_length_acq = qasm.integration_length_acq
max_instructions = (
constants.MAX_NUMBER_OF_INSTRUCTIONS_QCM
if self.parent.__class__
in [instrument_compilers.QcmModule, instrument_compilers.QcmRfModule]
else constants.MAX_NUMBER_OF_INSTRUCTIONS_QRM
)
if (num_instructions := len(qasm.instructions)) > max_instructions:
warnings.warn(
f"Number of instructions ({num_instructions}) compiled for "
f"'{self.name}' of {self.parent.__class__.__name__} "
f"'{self.parent.name}' exceeds the maximum supported number of "
f"instructions in Q1ASM programs for {self.parent.__class__.__name__} "
f"({max_instructions}).",
RuntimeWarning,
)
return str(qasm)
[docs] def _initialize_append_mode_registers(
self, qasm: QASMProgram, acquisitions: List[AcquisitionStrategyPartial]
):
"""
Adds the instructions to initialize the registers needed to use the append
bin mode to the program. This should be added in the header.
Parameters
----------
qasm:
The program to add the instructions to.
acquisitions:
A list with all the acquisitions to consider.
"""
channel_to_reg = {}
for acq in acquisitions:
if acq.operation_info.data["bin_mode"] != BinMode.APPEND:
continue
channel = acq.operation_info.data["acq_channel"]
if channel in channel_to_reg:
acq_bin_idx_reg = channel_to_reg[channel]
else:
acq_bin_idx_reg = self.register_manager.allocate_register()
channel_to_reg[channel] = acq_bin_idx_reg
qasm.emit(
q1asm_instructions.MOVE,
0,
acq_bin_idx_reg,
comment=f"Initialize acquisition bin_idx for "
f"ch{acq.operation_info.data['acq_channel']}",
)
acq.bin_idx_register = acq_bin_idx_reg
[docs] def _get_latency_correction_ns(self, latency_correction: float) -> int:
if latency_correction == 0:
return 0
latency_correction_ns = int(round(latency_correction * 1e9))
if latency_correction_ns % 4 != 0:
logger.warning(
f"Latency correction of {latency_correction_ns} ns specified"
f" for {self.name} of {self.parent.name}, which is not a"
f" multiple of {constants.GRID_TIME} ns. This feature should"
f" be considered experimental and stable results are not guaranteed at "
f"this stage."
)
return latency_correction_ns
@staticmethod
@staticmethod
[docs] def compile(
self,
repetitions: int = 1,
sequence_to_file: Optional[bool] = None,
) -> Optional[Dict[str, Any]]:
"""
Performs the full sequencer level compilation based on the assigned data and
settings. If no data is assigned to this sequencer, the compilation is skipped
and None is returned instead.
Parameters
----------
repetitions
Number of times execution the schedule is repeated.
sequence_to_file
Dump waveforms and program dict to JSON file, filename stored in
`Sequencer.settings.seq_fn`.
Returns
-------
:
The compiled program. If no data is assigned to this sequencer, the
compilation is skipped and None is returned instead.
"""
if not self.has_data:
return None
awg_dict = self._generate_awg_dict()
weights_dict = None
acq_declaration_dict = None
if self.parent.supports_acquisition:
weights_dict = {}
acq_declaration_dict = {}
if len(self.acquisitions) > 0:
self._prepare_acq_settings(
acquisitions=self.acquisitions, repetitions=repetitions
)
weights_dict = self._generate_weights_dict()
acq_declaration_dict = self._generate_acq_declaration_dict(
acquisitions=self.acquisitions, repetitions=repetitions
)
qasm_program = self.generate_qasm_program(
self.parent.total_play_time,
repetitions=repetitions,
)
wf_and_prog = self._generate_waveforms_and_program_dict(
qasm_program, awg_dict, weights_dict, acq_declaration_dict
)
self._settings.sequence = wf_and_prog
self._settings.seq_fn = None
if sequence_to_file:
self._settings.seq_fn = self._dump_waveforms_and_program_json(
wf_and_pr_dict=wf_and_prog, label=f"{self.port}_{self.clock}"
)
seq_settings = self._settings.to_dict()
return seq_settings
[docs] def _decide_markers(self, operation) -> int:
"""
Helper method to decide what markers should be pulled high when enable_marker is set to True.
Checks what module and operation are being processed, then builds a bit string accordingly.
Note that with the current quantify structure a sequencer cannot have connected inputs and outputs simultaneously.
Therefore, the QRM baseband module pulls both input or output markers high when doing an operation,
as it is impossible during compile time to find out what physical port is being used.
Parameters
----------
sequencer
The sequencer currently in the process of constructing a Q1ASM program.
operation
The operation currently being processed by the sequence.
Returns
-------
A bit string passed on to the set_mrk function of the Q1ASM object.
"""
marker_bit_string = 0
instrument_type = self.static_hw_properties.instrument_type
if instrument_type == "QCM":
for output in self.connected_outputs:
marker_bit_string |= 1 << output
elif instrument_type == "QRM":
if operation.operation_info.is_acquisition:
marker_bit_string = 0b1100
else:
marker_bit_string = 0b0011
# For RF modules, the first two indices correspond to path enable/disable.
# Therefore, the index of the output is shifted by 2.
elif instrument_type == "QCM-RF":
for output in self.connected_outputs:
marker_bit_string |= 1 << (output + 2)
marker_bit_string |= self.default_marker
elif instrument_type == "QRM-RF":
if operation.operation_info.is_acquisition:
marker_bit_string = 0b1011
else:
marker_bit_string = 0b0111
return marker_bit_string
[docs]class QbloxBaseModule(ControlDeviceCompiler, ABC):
"""
Qblox specific implementation of
:class:`quantify_scheduler.backends.qblox.compiler_abc.InstrumentCompiler`.
This class is defined as an abstract base class since the distinctions between the
different devices are defined in subclasses.
Effectively, this base class contains the functionality shared by all Qblox
devices and serves to avoid repeated code between them.
"""
def __init__(
self,
parent, # No type hint due to circular import, added to docstring
name: str,
total_play_time: float,
instrument_cfg: Dict[str, Any],
latency_corrections: Optional[Dict[str, float]] = None,
):
# pylint: disable=line-too-long
"""
Constructor function.
Parameters
----------
parent: :class:`quantify_scheduler.backends.qblox.compiler_container.CompilerContainer`
Reference to the parent object.
name
Name of the `QCoDeS` instrument this compiler object corresponds to.
total_play_time
Total time execution of the schedule should go on for. This parameter is
used to ensure that the different devices, potentially with different clock
rates, can work in a synchronized way when performing multiple executions of
the schedule.
instrument_cfg
The part of the hardware configuration dictionary referring to this device. This is one
of the inner dictionaries of the overall hardware config.
latency_corrections
Dict containing the delays for each port-clock combination. This is specified in
the top layer of hardware config.
"""
super().__init__(
parent=parent,
name=name,
total_play_time=total_play_time,
instrument_cfg=instrument_cfg,
latency_corrections=latency_corrections,
)
driver_version_check.verify_qblox_instruments_version()
[docs] self.is_pulsar: bool = True
"""Specifies if it is a standalone Pulsar or a cluster module. To be overridden
by the cluster compiler if needed."""
self._settings: Union[
BaseModuleSettings, None
] = None # set in the prepare method.
self.sequencers: Dict[str, Sequencer] = {}
@property
[docs] def portclocks(self) -> List[Tuple[str, str]]:
"""Returns all the port-clock combinations that this device can target."""
portclocks = []
for io in self.static_hw_properties.valid_ios:
if io not in self.instrument_cfg:
continue
portclock_configs = self.instrument_cfg[io].get("portclock_configs", [])
if not portclock_configs:
raise KeyError(
f"No 'portclock_configs' entry found in '{io}' of {self.name}."
)
portclocks += [
(target["port"], target["clock"]) for target in portclock_configs
]
return portclocks
@property
@abstractmethod
[docs] def settings_type(self) -> PulsarSettings:
"""
Specifies the PulsarSettings class used by the instrument.
"""
@property
@abstractmethod
[docs] def static_hw_properties(self) -> StaticHardwareProperties:
"""
The static properties of the hardware. This effectively gathers all the
differences between the different modules.
"""
[docs] def _construct_sequencers(self):
"""
Constructs `Sequencer` objects for each port and clock combination
belonging to this device.
Raises
------
ValueError
When the output names do not conform to the
`complex_output_X`/`real_output_X` norm,
where X is the index of the output.
KeyError
Raised if no 'portclock_configs' entry is found in the specific outputs of
the hardware config.
ValueError
Raised when the same port-clock is multiply assigned in the hardware config.
ValueError
Attempting to use more sequencers than available.
"""
# Figure out which outputs need to be turned on.
default_marker = self.static_hw_properties.default_marker
for io, io_cfg in self.instrument_cfg.items():
if (
not isinstance(io_cfg, dict)
or io not in self.static_hw_properties.valid_ios
):
continue
portclock_configs: List[Dict[str, Any]] = io_cfg.get(
"portclock_configs", []
)
if not portclock_configs:
continue
for target in portclock_configs:
portclock = (target["port"], target["clock"])
if portclock in self._portclocks_with_pulses:
if io in self.static_hw_properties.output_map:
default_marker = self.static_hw_properties.output_map[io]
# Setup each sequencer.
sequencers: Dict[str, Sequencer] = {}
portclock_io_map: Dict[Tuple, str] = {}
for io, io_cfg in self.instrument_cfg.items():
if not isinstance(io_cfg, dict):
continue
if io not in self.static_hw_properties.valid_ios:
raise ValueError(
f"Invalid hardware config: '{io}' of "
f"{self.name} ({self.__class__.__name__}) "
f"is not a valid name of an input/output."
f"\n\nSupported names for {self.__class__.__name__}:\n"
f"{self.static_hw_properties.valid_ios}"
)
lo_name = io_cfg.get("lo_name", None)
downconverter_freq = io_cfg.get("downconverter_freq", None)
mix_lo = io_cfg.get("mix_lo", True)
marker_debug_mode_enable = io_cfg.get("marker_debug_mode_enable", False)
portclock_configs: List[Dict[str, Any]] = io_cfg.get(
"portclock_configs", []
)
if not portclock_configs:
raise KeyError(
f"No 'portclock_configs' entry found in '{io}' of {self.name}."
)
for target in portclock_configs:
portclock = (target["port"], target["clock"])
if portclock in self._portclocks_with_data:
connected_outputs = helpers.output_name_to_outputs(io)
connected_inputs = helpers.input_name_to_inputs(io)
seq_idx = len(sequencers)
new_seq = Sequencer(
parent=self,
index=seq_idx,
portclock=portclock,
static_hw_properties=self.static_hw_properties,
connected_outputs=connected_outputs,
connected_inputs=connected_inputs,
seq_settings=target,
latency_corrections=self.latency_corrections,
lo_name=lo_name,
mix_lo=mix_lo,
marker_debug_mode_enable=marker_debug_mode_enable,
downconverter_freq=downconverter_freq,
default_marker=default_marker,
)
sequencers[new_seq.name] = new_seq
# Check if the portclock was not multiply specified, which is not allowed
if portclock in portclock_io_map:
raise ValueError(
f"Portclock {portclock} was assigned to multiple "
f"portclock_configs of {self.name}. This portclock was "
f"used in io '{io}' despite being already previously "
f"used in io '{portclock_io_map[portclock]}'. When using "
f"the same portclock for output and input, assigning only "
f"the output suffices."
)
portclock_io_map[portclock] = io
# Check if more portclock_configs than sequencers are active
if len(sequencers) > self.static_hw_properties.max_sequencers:
raise ValueError(
"Number of simultaneously active port-clock combinations exceeds "
"number of sequencers. "
f"Maximum allowed for {self.name} ({self.__class__.__name__}) is "
f"{self.static_hw_properties.max_sequencers}!"
)
self.sequencers = sequencers
[docs] def distribute_data(self):
"""
Distributes the pulses and acquisitions assigned to this module over the
different sequencers based on their portclocks. Raises an exception in case
the device does not support acquisitions.
"""
if (
any(len(acq) > 0 for acq in self._acquisitions.values())
and not self.supports_acquisition
):
raise RuntimeError(
f"Attempting to add acquisitions to {self.__class__} {self.name}, "
f"which is not supported by hardware."
)
compiler_container = self.parent if self.is_pulsar else self.parent.parent
portclock: Tuple[str, str]
pulse_data_list: List[OpInfo]
for portclock, pulse_data_list in self._pulses.items():
for seq in self.sequencers.values():
if seq.portclock == portclock or (
portclock[0] is None and portclock[1] == seq.clock
):
clock_freq = compiler_container.resources.get(seq.clock, {}).get(
"freq", None
)
pulse_data: OpInfo
for pulse_data in pulse_data_list:
if pulse_data.name == SetClockFrequency.__name__:
pulse_data.data.update(
{
"clock_freq_old": clock_freq,
"interm_freq_old": seq.frequency,
}
)
op_info_to_op_strategy_func = partial(
get_operation_strategy,
instruction_generated_pulses_enabled=seq.instruction_generated_pulses_enabled,
io_mode=seq.io_mode,
)
strategies_for_pulses = map(
op_info_to_op_strategy_func,
pulse_data_list,
)
if seq.pulses is None:
seq.pulses = []
for pulse_strategy in strategies_for_pulses:
seq.pulses.append(pulse_strategy)
acq_data_list: List[OpInfo]
for portclock, acq_data_list in self._acquisitions.items():
for seq in self.sequencers.values():
if seq.portclock == portclock:
op_info_to_op_strategy_func = partial(
get_operation_strategy,
instruction_generated_pulses_enabled=seq.instruction_generated_pulses_enabled,
io_mode=seq.io_mode,
)
strategies_for_acquisitions = map(
op_info_to_op_strategy_func,
acq_data_list,
)
seq.acquisitions = list(strategies_for_acquisitions)
@abstractmethod
[docs] def assign_frequencies(self, sequencer: Sequencer):
r"""
An abstract method that should be overridden. Meant to assign an IF frequency
to each sequencer, and an LO frequency to each output (if applicable).
"""
[docs] def _set_lo_interm_freqs(
self,
freqs: helpers.Frequencies,
sequencer: Sequencer,
compiler_lo_baseband: Optional[LocalOscillator] = None,
lo_freq_setting_rf: Optional[str] = None,
):
"""
Sets the LO/IF frequencies, for baseband and RF modules.
Parameters
----------
freqs
LO, IF, and clock frequencies, supplied via an :class:`.helpers.Frequencies`
object.
sequencer
The sequencer for which frequences are to be set.
compiler_lo_baseband
For baseband modules, supply the :class:`.instrument_compilers.LocalOscillator` instrument
compiler of which the frequency is to be set.
lo_freq_setting_rf
For RF modules, supply the name of the LO frequency param from the
:class:`.RFModuleSettings` that is to be set.
Raises
------
ValueError
In case neither LO frequency nor IF has been supplied.
ValueError
In case both LO frequency and IF have been supplied and do not adhere to
:math:`f_{RF} = f_{LO} + f_{IF}`.
ValueError
In case of RF, when the LO frequency was already set to a different value.
"""
underconstr = freqs.LO is None and freqs.IF is None
overconstr = (
freqs.LO is not None
and freqs.IF is not None
and not np.isclose(freqs.LO + freqs.IF, freqs.clock)
)
if underconstr or overconstr:
raise ValueError(
f"Frequency settings {'under' if underconstr else 'over'}constrained for "
f"sequencer '{sequencer.name}' of '{self.name}' "
f"with port '{sequencer.port}' and clock '{sequencer.clock}'. "
f"It is required to either supply an "
f"'lo_freq' or an 'interm_freq' "
f"({'neither' if underconstr else 'both'} supplied)"
+ "{}.".format(
""
if sequencer.associated_ext_lo is None
else f" in using an external local oscillator "
f"({sequencer.associated_ext_lo})"
)
)
if freqs.LO is not None:
if compiler_lo_baseband is not None:
compiler_lo_baseband.frequency = freqs.LO
elif lo_freq_setting_rf is not None:
previous_lo_freq = getattr(self._settings, lo_freq_setting_rf)
if previous_lo_freq is not None and not np.isclose(
freqs.LO, previous_lo_freq
):
raise ValueError(
f"Attempting to set '{lo_freq_setting_rf}' to frequency "
f"'{freqs.LO:e}', while it has previously already been set to "
f"'{previous_lo_freq:e}'!"
)
setattr(self._settings, lo_freq_setting_rf, freqs.LO)
if freqs.IF is not None:
sequencer.frequency = freqs.IF
@abstractmethod
[docs] def assign_attenuation(self):
"""
An abstract method that should be overridden. Meant to assign
attenuation settings from the hardware configuration if there is any.
"""
[docs] def prepare(self) -> None:
"""
Performs the logic needed before being able to start the compilation. In effect,
this means assigning the pulses and acquisitions to the sequencers and
calculating the relevant frequencies in case an external local oscillator is
used.
"""
self._settings = self.settings_type.extract_settings_from_mapping(
self.instrument_cfg
)
self._configure_input_gains()
self._configure_mixer_offsets()
self._construct_sequencers()
self._insert_update_parameters()
for seq in self.sequencers.values():
self.assign_frequencies(seq)
self.distribute_data()
self._ensure_single_scope_mode_acquisition_sequencer()
self.assign_attenuation()
[docs] def _ensure_single_scope_mode_acquisition_sequencer(self) -> None:
"""
Raises an error if multiple sequencers use scope mode acquisition,
because that's not supported by the hardware.
Also, see
:func:`~quantify_scheduler.instrument_coordinator.components.qblox.QRMComponent._determine_scope_mode_acquisition_sequencer_and_channel`
which also ensures the program that gets uploaded to the hardware satisfies this requirement.
Raises
------
ValueError
Multiple sequencers have to perform trace acquisition. This is not
supported by the hardware.
"""
def is_scope_acquisition(acquisition: OpInfo) -> bool:
return acquisition.data["protocol"] == "Trace"
scope_acq_seq = None
for seq in self.sequencers.values():
op_infos = [acq.operation_info for acq in seq.acquisitions]
has_scope = any(map(is_scope_acquisition, op_infos))
if has_scope:
if scope_acq_seq is not None:
helpers.single_scope_mode_acquisition_raise(
sequencer_0=scope_acq_seq,
sequencer_1=seq.index,
module_name=self.name,
)
scope_acq_seq = seq.index
[docs] def _insert_update_parameters(self):
"""
Insert update parameter instructions to activate offsets, if they are not
already activated by a play, acquire or acquire_weighed instruction (see also
`the Q1ASM reference
<https://qblox-qblox-instruments.readthedocs-hosted.com/en/master/documentation/sequencer.html#instructions>`_).
"""
for portclock, pulses in self._pulses.items():
upd_params = self._new_update_parameters_for_port_clock(
pulses_and_acqs=pulses + self._acquisitions[portclock]
)
self._pulses[portclock] += upd_params
[docs] def _new_update_parameters_for_port_clock(
self,
pulses_and_acqs: List[OpInfo],
) -> List[OpInfo]:
def any_other_updating_instruction_at_timing(timing: float) -> bool:
return any(
np.isclose(op.timing, timing) and op.is_real_time_io_operation
for op in pulses_and_acqs
)
# Collect all (port, clock, time) triples where an upd_param needs to be
# inserted
upd_param_infos: Set[Tuple[str, str, float]] = set()
for op in pulses_and_acqs:
if op.is_offset_instruction and not (
np.isclose(self.total_play_time, op.timing)
or any_other_updating_instruction_at_timing(op.timing)
):
upd_param_infos.add(
(op.data["port"], op.data["clock"], round(op.timing, ndigits=9))
) # Note: round to nanoseconds
return [
OpInfo(
name="UpdateParameters",
data={
"t0": 0,
"port": port,
"clock": clock,
"duration": 0,
"instruction": q1asm_instructions.UPDATE_PARAMETERS,
},
timing=timing,
)
for port, clock, timing in upd_param_infos
]
[docs] def compile(
self,
repetitions: int = 1,
sequence_to_file: Optional[bool] = None,
) -> Optional[Dict[str, Any]]:
"""
Performs the actual compilation steps for this module, by calling the sequencer
level compilation functions and combining them into a single dictionary.
Parameters
----------
repetitions
Number of times execution the schedule is repeated.
sequence_to_file
Dump waveforms and program dict to JSON file, filename stored in
`Sequencer.settings.seq_fn`.
Returns
-------
:
The compiled program corresponding to this module.
It contains an entry for every sequencer under the key `"sequencers"`,
and acquisition metadata under the key `"acq_metadata"`,
and the `"repetitions"` is an integer with
the number of times the defined schedule is repeated.
All the other generic settings are under the key `"settings"`.
If the device is not actually used,
and an empty program is compiled, None is returned instead.
"""
program = {}
if sequence_to_file is None:
sequence_to_file = self.instrument_cfg.get("sequence_to_file", True)
program["sequencers"] = {}
for seq_name, seq in self.sequencers.items():
seq_program = seq.compile(
repetitions=repetitions, sequence_to_file=sequence_to_file
)
if seq_program is not None:
program["sequencers"][seq_name] = seq_program
if len(program) == 0:
return None
program["settings"] = self._settings.to_dict()
if self.supports_acquisition:
program["acq_metadata"] = {}
for sequencer in self.sequencers.values():
if not sequencer.acquisitions:
continue
acq_metadata = helpers.extract_acquisition_metadata_from_acquisitions(
acquisitions=[acq.operation_info for acq in sequencer.acquisitions],
repetitions=repetitions,
)
program["acq_metadata"][sequencer.name] = acq_metadata
program["repetitions"] = repetitions
return program
[docs]class QbloxBasebandModule(QbloxBaseModule):
"""
Abstract class with all the shared functionality between the QRM and QCM baseband
modules.
"""
@property
[docs] def settings_type(self) -> type:
"""The settings type used by baseband-type devices."""
return PulsarSettings if self.is_pulsar else BasebandModuleSettings
[docs] def assign_frequencies(self, sequencer: Sequencer):
"""
Determines LO/IF frequencies and assigns them, for baseband modules.
In case of **no** external local oscillator, the NCO is given the same
frequency as the clock -- unless NCO was permanently disabled via
`"interm_freq": 0` in the hardware config.
In case of **an** external local oscillator and `sequencer.mix_lo` is
``False``, the LO is given the same frequency as the clock
(via :func:`.helpers.determine_clock_lo_interm_freqs`).
"""
compiler_container = self.parent if self.is_pulsar else self.parent.parent
if sequencer.clock not in compiler_container.resources:
return
clock_freq = compiler_container.resources[sequencer.clock]["freq"]
if sequencer.associated_ext_lo is None:
# Set NCO frequency to the clock frequency, unless NCO was permanently
# disabled via `"interm_freq": 0` in the hardware config
if sequencer.frequency != 0:
sequencer.frequency = clock_freq
else:
# In using external local oscillator, determine clock and LO/IF freqs,
# and then set LO/IF freqs, and enable NCO (via setter)
if (
compiler_lo := compiler_container.instrument_compilers.get(
sequencer.associated_ext_lo
)
) is None:
raise RuntimeError(
f"External local oscillator '{sequencer.associated_ext_lo}' set to "
f"be used by '{sequencer.name}' of '{self.name}' not found! Make "
f"sure it is present in the hardware configuration."
)
try:
freqs = helpers.determine_clock_lo_interm_freqs(
clock_freq=clock_freq,
lo_freq=compiler_lo.frequency,
interm_freq=sequencer.frequency,
downconverter_freq=sequencer.downconverter_freq,
mix_lo=sequencer.mix_lo,
)
except Exception as error: # Adding sequencer info to exception message
raise error.__class__(
f"{error} (for '{sequencer.name}' of '{self.name}' "
f"with port '{sequencer.port}' and clock '{sequencer.clock}')."
)
self._set_lo_interm_freqs(
freqs=freqs, sequencer=sequencer, compiler_lo_baseband=compiler_lo
)
[docs] def assign_attenuation(self):
"""
Meant to assign attenuation settings from the hardware configuration, if there
is any. For baseband modules there is no attenuation parameters currently.
"""
[docs]class QbloxRFModule(QbloxBaseModule):
"""
Abstract class with all the shared functionality between the QRM-RF and QCM-RF
modules.
"""
@property
[docs] def settings_type(self) -> type:
"""The settings type used by RF-type devices"""
return PulsarRFSettings if self.is_pulsar else RFModuleSettings
[docs] def assign_frequencies(self, sequencer: Sequencer):
"""
Determines LO/IF frequencies and assigns them for RF modules.
"""
compiler_container = self.parent if self.is_pulsar else self.parent.parent
if (
sequencer.connected_outputs is None
or sequencer.clock not in compiler_container.resources
):
return
for lo_idx in QbloxRFModule._get_connected_lo_indices(sequencer):
lo_freq_setting_name = f"lo{lo_idx}_freq"
try:
freqs = helpers.determine_clock_lo_interm_freqs(
clock_freq=compiler_container.resources[sequencer.clock]["freq"],
lo_freq=getattr(self._settings, lo_freq_setting_name),
interm_freq=sequencer.frequency,
downconverter_freq=sequencer.downconverter_freq,
mix_lo=True,
)
except Exception as error: # Adding sequencer info to exception message
raise error.__class__(
f"{error} (for '{sequencer.name}' of '{self.name}' "
f"with port '{sequencer.port}' and clock '{sequencer.clock}')."
)
self._set_lo_interm_freqs(
freqs=freqs,
sequencer=sequencer,
lo_freq_setting_rf=lo_freq_setting_name,
)
@staticmethod
[docs] def _get_connected_lo_indices(sequencer: Sequencer) -> Generator[int]:
"""
Identify the LO the sequencer is outputting.
Use the sequencer output to module output correspondence, and then
use the fact that LOX is connected to module output X.
"""
for sequencer_output_index in sequencer.connected_outputs:
if sequencer_output_index % 2 != 0:
# We will only use real output 0 and 2, as they are part of the same
# complex outputs as real output 1 and 3
continue
module_output_index = 0 if sequencer_output_index == 0 else 1
yield module_output_index
[docs] def assign_attenuation(self):
"""
Assigns attenuation settings from the hardware configuration.
Floats that are a multiple of 1 are converted to ints.
This is needed because the :func:`quantify_core.measurement.control.grid_setpoints`
converts setpoints to floats when using an attenuation as settable.
"""
def _convert_to_int(value, label: str) -> Optional[int]:
if value is not None:
if not np.isclose(value % 1, 0):
raise ValueError(
f'Trying to set "{label}" to non-integer value {value}'
)
return int(value)
return None
complex_input_0 = self.instrument_cfg.get("complex_input_0", {})
complex_output_0 = self.instrument_cfg.get("complex_output_0", {})
input_att = complex_input_0.get("input_att", None)
if (input_att_output := complex_output_0.get("input_att", None)) is not None:
if input_att is not None:
raise ValueError(
f"'input_att' is defined for both 'complex_input_0' and "
f"'complex_output_0' on module '{self.name}', which is prohibited. "
f"Make sure you define it at a single place."
)
input_att = input_att_output
self._settings.in0_att = _convert_to_int(input_att, label="in0_att")
self._settings.out0_att = _convert_to_int(
complex_output_0.get("output_att", None),
label="out0_att",
)
complex_output_1 = self.instrument_cfg.get("complex_output_1", {})
self._settings.out1_att = _convert_to_int(
complex_output_1.get("output_att", None),
label="out1_att",
)