Source code for quantify_scheduler.gettables

# Repository: https://gitlab.com/quantify-os/quantify-scheduler
# Licensed according to the LICENCE file on the main branch
r"""
Module containing :class:`quantify_core.measurement.types.Gettable`\s for use with
quantify-scheduler.

.. warning::

    The gettable module is expected to change significantly as the
    acquisition protocols (#36 and #80) get fully supported by the scheduler.
    Currently different Gettables are required for different acquisition modes.
    The intent is to have one generic ``ScheduleGettable``.
    Expect breaking changes.
"""
from __future__ import annotations

import json
import logging
import os
import time
import zipfile
from typing import Any, Callable, Dict, Tuple, Union, List, Optional

import numpy as np
from qcodes import Parameter
from qcodes.utils.helpers import NumpyJSONEncoder

from quantify_core.data.handling import gen_tuid, get_datadir, snapshot

from quantify_scheduler import Schedule
from quantify_scheduler.device_under_test.quantum_device import QuantumDevice
from quantify_scheduler.enums import BinMode
from quantify_scheduler.helpers.schedule import (
    extract_acquisition_metadata_from_schedule,
    AcquisitionMetadata,
)

[docs]logger = logging.getLogger(__name__)
# pylint: disable=too-many-instance-attributes # pylint: disable=too-few-public-methods
[docs]class ScheduleGettable: """ Generic gettable for a quantify schedule using vector (I,Q) acquisition. Can be set to return either static (demodulated) I and Q values or magnitude and phase. The gettable evaluates the parameters passed as `schedule_kwargs`, then generates the :class:`quantify_scheduler.schedules.schedule.Schedule` using the `schedule_function`, this is then compiled and finally executed by the :class:`~.InstrumentCoordinator`. """ # pylint: disable=line-too-long # pylint: disable=too-many-arguments # pylint: disable=line-too-long def __init__( self, quantum_device: QuantumDevice, schedule_function: Callable[..., Schedule], schedule_kwargs: Dict[str, Any], num_channels: int = 1, data_labels: Optional[List[str]] = None, real_imag: bool = True, batched: bool = False, max_batch_size: int = 1024, always_initialize=True, ): """ Create a new instance of ScheduleGettable which is used to do I and Q acquisition or alternatively magnitude and phase. Parameters ---------- quantum_device The qcodes instrument representing the quantum device under test (DUT) containing quantum device properties and setup configuration information. schedule_function A function which returns a :class:`quantify_scheduler.schedules.schedule.Schedule`. The function is required to have the `repetitions` keyword argument. schedule_kwargs The schedule function keyword arguments, when a value in this dictionary is a :class:`~qcodes.instrument.parameter.Parameter`, this parameter will be evaluated every time :code:`.get()` is called before being passed to the :code:`schedule_function`. num_channels The number of channels to expect in the acquisition data. data_labels Allows to specify custom labels. Needs to be precisely 2*num_channels if specified. The order is [Voltage I 0, Voltage Q 0, Voltage I 1, Voltage Q 1, ...], in case real_imag==True, otherwise [Magnitude 0, Phase 0, Magnitude 1, Phase 1, ...]. real_imag If true, the gettable returns I, Q values. Otherwise, magnitude and phase (degrees) are returned. batched Used to indicate if the experiment is performed in batches or in an iterative fashion. max_batch_size: Determines the maximum number of points to acquire when acquiring in batched mode. Can be used to split up a program in parts if required due to hardware constraints. always_initialize: If True, then reinitialize the schedule on each invocation of `get`. If False, then only initialize the first invocation of `get`. """ self._data_labels_specified = data_labels is not None self.always_initialize = always_initialize self.is_initialized = False self._compiled_schedule = None self.real_imag = real_imag if self.real_imag: self.name = ["I", "Q"] * num_channels if data_labels: self.label = data_labels else: self.label = [ f"Voltage {iq}{ch}" for ch in range(num_channels) for iq in ["I", "Q"] ] logger.info(f"Auto-generating labels. {self.label}") self.unit = ["V", "V"] * num_channels else: self.name = ["magn", "phase"] * num_channels if data_labels: self.label = data_labels else: self.label = [ f"{val_label}{ch}" for ch in range(num_channels) for val_label in ["Magnitude", "Phase"] ] logger.info(f"Auto-generating labels. {self.label}") self.unit = ["V", "deg"] * num_channels self.batched = batched self.batch_size = max_batch_size # schedule arguments self.schedule_function = schedule_function self.schedule_kwargs = schedule_kwargs self._evaluated_sched_kwargs = {} # the quantum device object containing setup configuration information self.quantum_device = quantum_device # The backend used for compilation. Available as a private variable # to facilitate debugging. Will be assigned upon compilation in self.initialize self._backend = None def __call__(self) -> Union[Tuple[float, ...], Tuple[np.ndarray, ...]]: """Acquire and return data""" return self.get()
[docs] def _compile(self, sched): """Compile schedule, separated to allow for profiling compilation duration.""" compilation_config = self.quantum_device.generate_compilation_config() # made into a private variable for debugging and future caching functionality self._backend = compilation_config.backend(name=compilation_config.name) self._compiled_schedule = self._backend.compile( schedule=sched, config=compilation_config )
[docs] def initialize(self): """ This generates the schedule and uploads the compiled instructions to the hardware using the instrument coordinator. """ logger.debug("Initializing schedule gettable.") self._evaluated_sched_kwargs = _evaluate_parameter_dict(self.schedule_kwargs) # generate a schedule using the evaluated keyword arguments dict sched = self.schedule_function( **self._evaluated_sched_kwargs, repetitions=self.quantum_device.cfg_sched_repetitions(), ) self._compile(sched) instr_coordinator = self.quantum_device.instr_instrument_coordinator.get_instr() instr_coordinator.prepare(self._compiled_schedule) self.is_initialized = True
@property
[docs] def compiled_schedule(self) -> Schedule: """Return the schedule used in this class""" return self._compiled_schedule
[docs] def get(self) -> Union[Tuple[float, ...], Tuple[np.ndarray, ...]]: """ Start the experimental sequence and retrieve acquisition data. Returns ------- : The acquired I/Q voltage signal as a complex number, split into a tuple of floats: either real/imaginary parts or magnitude/phase, depending on whether :code:`real_imag` is :code:`True`. """ instr_coordinator = self.quantum_device.instr_instrument_coordinator.get_instr() # ensure the instruments are not running and we are starting from a clean state # We switch on allow_failure so that some instruments which require the prepare # before the stop can fail. instr_coordinator.stop(allow_failure=True) if not self.is_initialized or self.always_initialize: self.initialize() instr_coordinator.start() acquired_data = instr_coordinator.retrieve_acquisition() instr_coordinator.stop() acq_metadata = extract_acquisition_metadata_from_schedule( self.compiled_schedule ) result = self.process_acquired_data( acquired_data, acq_metadata, self.compiled_schedule.repetitions ) return result
[docs] def _reshape_data(self, acq_metadata, vals): if acq_metadata.acq_protocol == "TriggerCount": return [vals.real.astype(np.uint64)] if ( acq_metadata.acq_protocol == "Trace" or acq_metadata.acq_protocol == "SSBIntegrationComplex" or acq_metadata.acq_protocol == "WeightedIntegratedComplex" ): ret_val = [] if self.real_imag: ret_val.append(vals.real) ret_val.append(vals.imag) return ret_val else: ret_val.append(np.abs(vals)) ret_val.append(np.angle(vals, deg=True)) return ret_val raise NotImplementedError( f"Acquisition protocol {acq_metadata.acq_protocol} with bin" f" mode {acq_metadata.bin_mode} is not supported." )
[docs] def _process_acquired_data_trigger_count( self, acquired_data, acq_metadata: AcquisitionMetadata, repetitions: int ) -> Dict[int, np.ndarray]: """Reformat acquired data in a dictionary. Used by process_acquired_data. Parameters ---------- acquired_data Acquired data as returned by instrument coordinator acq_metadata Acquisition metadata from schedule repetitions Number of repetitions of the schedule Returns ------- : Dictionary with reformatted data. Keys correspond to the acquisition channel. Values are 1d numpy arrays with trigger counts. Raises ------ NotImplementedError If acquisition protocol other than BinMode.APPEND is used. """ dataset = {} if acq_metadata.bin_mode == BinMode.APPEND: for acq_channel, acq_indices in acq_metadata.acq_indices.items(): dataset[acq_channel] = ( acquired_data[acq_channel] .sel(repetition=0) .coords["acq_index"] .values ) return dataset raise NotImplementedError( f"Acquisition protocol {acq_metadata.acq_protocol} with bin" f" mode {acq_metadata.bin_mode} is not supported." )
[docs] def process_acquired_data( self, acquired_data, acq_metadata: AcquisitionMetadata, repetitions: int ) -> Union[Tuple[float, ...], Tuple[np.ndarray, ...]]: """ Reshapes the data as returned from the instrument coordinator into the form accepted by the measurement control. """ # pylint: disable=fixme # FIXME: this reshaping should happen inside the instrument coordinator # blocked by quantify-core#187, and quantify-core#233 # retrieve the acquisition results # FIXME: acq_metadata should be an attribute of the schedule, see also #192 if acq_metadata.acq_protocol == "TriggerCount": dataset = self._process_acquired_data_trigger_count( acquired_data, acq_metadata, repetitions ) elif acq_metadata.acq_protocol == "Trace": dataset = {} for acq_channel, acq_indices in acq_metadata.acq_indices.items(): # Trace only supports AVERAGE binmode, therefore only has values at repetition=0. dataset[acq_channel] = ( acquired_data[acq_channel].sel(repetition=0).values ) elif acq_metadata.bin_mode == BinMode.AVERAGE: dataset = {} for acq_channel, acq_indices in acq_metadata.acq_indices.items(): dataset[acq_channel] = np.zeros(len(acq_indices), dtype=complex) for acq_idx in acq_indices: dataset[acq_channel][acq_idx] = ( acquired_data[acq_channel].sel(acq_index=acq_idx).values ) elif acq_metadata.bin_mode == BinMode.APPEND: dataset = {} for acq_channel, acq_indices in acq_metadata.acq_indices.items(): dataset[acq_channel] = np.zeros( len(acq_indices) * repetitions, dtype=complex ) acq_stride = len(acq_indices) for acq_idx in acq_indices: dataset[acq_channel][acq_idx::acq_stride] = ( acquired_data[acq_channel].sel(acq_index=acq_idx).values ) else: raise NotImplementedError( f"Acquisition protocol {acq_metadata.acq_protocol} with bin" f" mode {acq_metadata.bin_mode} is not supported." ) # Reshaping of the data before returning return_data = [] for idx, (acq_channel, vals) in enumerate(dataset.items()): if not self._data_labels_specified and idx != acq_channel: logger.warning( f"Default data_labels may not match the acquisition channel. " f"Element {idx} with label {self.label[idx]} corresponds to " f"acq_channel {acq_channel}, while they were expected to match. To " f"fix this behavior either specify custom data_labels, or ensure " f"your acquisition channels are sequential starting from 0." ) if self.batched is False: if len(vals) != 1: raise ValueError( f"For iterative mode, only one value is expected for each acquisition channel." f"Got {len(vals)} values for acquisition channel '{acq_channel}' instead." ) return_data.extend(self._reshape_data(acq_metadata, vals)) logger.debug(f"Returning {len(return_data)} values.") return tuple(return_data)
[docs] def generate_diagnostics_report( self, execute_get: bool = False, update: bool = False ) -> str: """ Create a report that saves all information contained in this `ScheduleGettable` and save it in the quantify datadir with its own `tuid`. The information in the report includes the generated schedule, device config, hardware config and snapshot of the instruments. Parameters ---------- execute_get When ``True``, executes ``self.get()`` before generating the report. update When ``True``, updates all parameters before saving the snapshot. Returns ------- : The `tuid` of the generated report. """ tuid = gen_tuid() if execute_get: self.get() if not self.is_initialized: raise RuntimeError( "`generate_diagnostics_report` can only run for an initialized `ScheduleGettable`. " "Please initialize manually or run with `execute_get=True`" ) device_cfg = self.quantum_device.generate_device_config().dict() hardware_cfg = self.quantum_device.generate_hardware_config() gettable_config = { "repetitions": self.quantum_device.cfg_sched_repetitions(), "evaluated_schedule_kwargs": self._evaluated_sched_kwargs, } sched = self.schedule_function( **self._evaluated_sched_kwargs, repetitions=self.quantum_device.cfg_sched_repetitions(), ) filename = os.path.join(get_datadir(), f"{tuid}.zip") with zipfile.ZipFile( filename, mode="w", compression=zipfile.ZIP_DEFLATED, compresslevel=9 ) as zip_file: zip_file.writestr("time.txt", str(time.time())) zip_file.writestr( "device_cfg.json", json.dumps(device_cfg, cls=NumpyJSONEncoder, indent=4), ) zip_file.writestr( "hardware_cfg.json", json.dumps(hardware_cfg, cls=NumpyJSONEncoder, indent=4), ) zip_file.writestr( "gettable.json", json.dumps(gettable_config, cls=NumpyJSONEncoder, indent=4), ) zip_file.writestr("schedule.json", sched.to_json()) zip_file.writestr( "snapshot.json", json.dumps(snapshot(update=update), cls=NumpyJSONEncoder, indent=4), ) return filename
[docs]def _evaluate_parameter_dict(parameters: Dict[str, Any]) -> Dict[str, Any]: r""" Loop over the keys and values in a dict and replaces parameters with their current value. Parameters ---------- parameters A dictionary containing a mix of :class:`~qcodes.instrument.parameter.Parameter`\s and normal values. Returns ------- : The `parameters` dictionary, but with the parameters replaced by their current value. Raises ------ TypeError If a parameter returns None """ evaluated_parameters = dict() for key, val in parameters.items(): if isinstance(val, Parameter): # evaluate the parameter evaluated_parameters[key] = val.get() # verify that the parameter has a value, a missing value typically indicates # that it was not initialized. if evaluated_parameters[key] is None: raise TypeError( f"{key}: parameter {val} returns None. " "It is possible this parameter was not configured correctly." ) else: evaluated_parameters[key] = val return evaluated_parameters