gate_library#
Standard gateset for use with the quantify_scheduler.
Module Contents#
Classes#
A single qubit rotation around an axis in the equator of the Bloch sphere. |
|
A single qubit rotation of 180 degrees around the X-axis. |
|
A single qubit rotation of 90 degrees around the X-axis. |
|
A single qubit rotation of 180 degrees around the Y-axis. |
|
A single qubit rotation of 90 degrees around the Y-axis. |
|
A single qubit rotation about the Z-axis of the Bloch sphere. |
|
A single qubit rotation of 180 degrees around the Z-axis. |
|
A single qubit rotation of 90 degrees around the Z-axis. |
|
Conditional-NOT gate, a common entangling gate. |
|
Conditional-phase gate, a common entangling gate. |
|
Reset a qubit to the \(|0\rangle\) state. |
|
A projective measurement in the Z-basis. |
- class Rxy(theta: float, phi: float, qubit: str)[source]#
Bases:
quantify_scheduler.operations.operation.Operation
A single qubit rotation around an axis in the equator of the Bloch sphere.
This operation can be represented by the following unitary as defined in https://doi.org/10.1109/TQE.2020.2965810:
\[\begin{split}\mathsf {R}_{xy} \left(\theta, \varphi\right) = \begin{bmatrix} \textrm {cos}(\theta /2) & -ie^{-i\varphi }\textrm {sin}(\theta /2) \\ -ie^{i\varphi }\textrm {sin}(\theta /2) & \textrm {cos}(\theta /2) \end{bmatrix}\end{split}\]- Parameters
theta – Rotation angle in degrees, will be casted to the [-180, 180) domain.
phi – Phase of the rotation axis, will be casted to the [0, 360) domain.
qubit – The target qubit.
- class X(qubit: str)[source]#
Bases:
Rxy
A single qubit rotation of 180 degrees around the X-axis.
This operation can be represented by the following unitary:
\[\begin{split}X180 = R_{X180} = \begin{bmatrix} 0 & -i \\ -i & 0 \\ \end{bmatrix}\end{split}\]- Parameters
qubit – The target qubit.
- class X90(qubit: str)[source]#
Bases:
Rxy
A single qubit rotation of 90 degrees around the X-axis.
It is identical to the Rxy gate with theta=90 and phi=0
Defined by the unitary:
\[\begin{split}X90 = R_{X90} = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -i \\ -i & 1 \\ \end{bmatrix}\end{split}\]- Parameters
qubit – The target qubit.
- class Y(qubit: str)[source]#
Bases:
Rxy
A single qubit rotation of 180 degrees around the Y-axis.
It is identical to the Rxy gate with theta=180 and phi=90
Defined by the unitary:
\[\begin{split}Y180 = R_{Y180} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ \end{bmatrix}\end{split}\]- Parameters
qubit – The target qubit.
- class Y90(qubit: str)[source]#
Bases:
Rxy
A single qubit rotation of 90 degrees around the Y-axis.
It is identical to the Rxy gate with theta=90 and phi=90
Defined by the unitary:
\[\begin{split}Y90 = R_{Y90} = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ \end{bmatrix}\end{split}\]- Parameters
qubit – The target qubit.
- class Rz(theta: float, qubit: str)[source]#
Bases:
quantify_scheduler.operations.operation.Operation
A single qubit rotation about the Z-axis of the Bloch sphere.
This operation can be represented by the following unitary as defined in https://www.quantum-inspire.com/kbase/rz-gate/:
\[\begin{split}\mathsf {R}_{z} \left(\theta\right) = \begin{bmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{bmatrix}\end{split}\]- Parameters
theta – Rotation angle in degrees, will be cast to the [-180, 180) domain.
qubit – The target qubit.
- class Z(qubit: str)[source]#
Bases:
Rz
A single qubit rotation of 180 degrees around the Z-axis.
Note that the gate implements \(R_z(\pi) = -iZ\), adding a global phase of \(-\pi/2\). This operation can be represented by the following unitary:
\[\begin{split}Z180 = R_{Z180} = -iZ = e^{-\frac{\pi}{2}}Z = \begin{bmatrix} -i & 0 \\ 0 & i \\ \end{bmatrix}\end{split}\]- Parameters
qubit – The target qubit.
- class Z90(qubit: str)[source]#
Bases:
Rz
A single qubit rotation of 90 degrees around the Z-axis.
This operation can be represented by the following unitary:
\[\begin{split}Z90 = R_{Z90} = e^{-\frac{\pi/2}{2}}S = e^{-\frac{\pi/2}{2}}\sqrt{Z} = \frac{1}{\sqrt{2}}\begin{bmatrix} 1-i & 0 \\ 0 & 1+i \\ \end{bmatrix}\end{split}\]- Parameters
qubit – The target qubit.
- class CNOT(qC: str, qT: str)[source]#
Bases:
quantify_scheduler.operations.operation.Operation
Conditional-NOT gate, a common entangling gate.
Performs an X gate on the target qubit qT conditional on the state of the control qubit qC.
This operation can be represented by the following unitary:
\[\begin{split}\mathrm{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \end{bmatrix}\end{split}\]- Parameters
qC – The control qubit.
qT – The target qubit
- class CZ(qC: str, qT: str)[source]#
Bases:
quantify_scheduler.operations.operation.Operation
Conditional-phase gate, a common entangling gate.
Performs a Z gate on the target qubit qT conditional on the state of the control qubit qC.
This operation can be represented by the following unitary:
\[\begin{split}\mathrm{CZ} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}\end{split}\]- Parameters
qC – The control qubit.
qT – The target qubit
- class Reset(*qubits: str)[source]#
Bases:
quantify_scheduler.operations.operation.Operation
Reset a qubit to the \(|0\rangle\) state.
The Reset gate is an idle operation that is used to initialize one or more qubits.
Note
Strictly speaking this is not a gate as it can not be described by a unitary.
Examples
The operation can be used in several ways:
from quantify_scheduler.operations.gate_library import Reset reset_1 = Reset("q0") reset_2 = Reset("q1", "q2") reset_3 = Reset(*[f"q{i}" for i in range(3, 6)])
- Parameters
qubits – The qubit(s) to reset. NB one or more qubits can be specified, e.g.,
Reset("q0")
,Reset("q0", "q1", "q2")
, etc..
- class Measure(*qubits: str, acq_index: Tuple[int, Ellipsis] | int | None = None, acq_protocol: Optional[Literal[SSBIntegrationComplex, Trace, TriggerCount, NumericalWeightedIntegrationComplex, ThresholdedAcquisition]] = None, bin_mode: quantify_scheduler.enums.BinMode | None = None)[source]#
Bases:
quantify_scheduler.operations.operation.Operation
A projective measurement in the Z-basis.
The measurement is compiled according to the type of acquisition specified in the device configuration.
Note
Strictly speaking this is not a gate as it can not be described by a unitary.
- Parameters
qubits (str) – The qubits you want to measure.
acq_index (Tuple[int, ...] | int | None, optional) – Index of the register where the measurement is stored. If None specified, this defaults to writing the result of all qubits to acq_index 0. By default None.
acq_protocol ("SSBIntegrationComplex" | "Trace" | "TriggerCount" | "NumericalWeightedIntegrationComplex" | None, optional) – Acquisition protocols that are supported. If
None
is specified, the default protocol is chosen based on the device and backend configuration. By default None.bin_mode (BinMode or None, optional) – The binning mode that is to be used. If not None, it will overwrite the binning mode used for Measurements in the circuit-to-device compilation step. By default None.