Source code for quantify_core.analysis.spectroscopy_analysis

# Repository: https://gitlab.com/quantify-os/quantify-core
# Licensed according to the LICENCE file on the main branch
import lmfit
import matplotlib.pyplot as plt
import numpy as np
import xarray as xr

import quantify_core.data.handling as dh
from quantify_core.analysis import base_analysis as ba
from quantify_core.analysis import fitting_models as fm
from quantify_core.visualization import mpl_plotting as qpl
from quantify_core.visualization.SI_utilities import format_value_string


[docs] class QubitFluxSpectroscopyAnalysis(ba.BaseAnalysis): # pylint: disable=line-too-long """ Analysis class for qubit flux spectroscopy. .. admonition:: Example .. jupyter-execute:: from quantify_core.analysis.spectroscopy_analysis import QubitFluxSpectroscopyAnalysis import quantify_core.data.handling as dh # load example data test_data_dir = "../tests/test_data" dh.set_datadir(test_data_dir) # run analysis and plot results analysis = ( QubitFluxSpectroscopyAnalysis(tuid="20230309-235354-353-9c94c5") .run() .display_figs_mpl() ) """ # pylint: disable=invalid-name # pylint: disable=no-member # pylint: arguments-differ
[docs] def process_data(self) -> None: """Process the data so that the analysis can make assumptions on the format.""" ds = dh.to_gridded_dataset(self.dataset) self.dataset_processed = xr.Dataset( { "Magnitude": (("Frequency", "Offset"), ds.y0.data), "Phase": (("Frequency", "Offset"), np.mod(ds.y1.data, 360.0)), }, coords={ "Frequency": ds.x0.data, "Offset": ds.x1.data, }, ) self.dataset_processed.Magnitude.attrs["name"] = "Magnitude" self.dataset_processed.Magnitude.attrs["units"] = ds.y0.units self.dataset_processed.Magnitude.attrs["long_name"] = "Magnitude, $|S_{21}|$" self.dataset_processed.Phase.attrs["name"] = "Phase" self.dataset_processed.Phase.attrs["units"] = ds.y1.units self.dataset_processed.Phase.attrs["long_name"] = ( r"Phase, $\angle S_{21}$ mod 360°" ) self.dataset_processed.Frequency.attrs["name"] = "Frequency" self.dataset_processed.Frequency.attrs["units"] = ds.x0.units self.dataset_processed.Frequency.attrs["long_name"] = ( "Frequency of excitation pulse" ) self.dataset_processed.Offset.attrs["name"] = "Offset" self.dataset_processed.Offset.attrs["units"] = ds.x1.units self.dataset_processed.Offset.attrs["long_name"] = "External flux offset"
[docs] def run_fitting(self) -> None: """Fits a QuadraticModel model to the frequency response vs. flux offset.""" # Calculate the mean and standard deviation along each column # Calculate the absolute difference from the mean for each element # Create a boolean mask where elements are more than 3*sigma away from the mean s21 = self.dataset_processed.Magnitude.data * np.exp( 1j * np.deg2rad(self.dataset_processed.Phase.data) ) column_means = np.mean(s21, axis=0) column_stddevs = np.std(s21, axis=0) abs_diff = np.abs(s21 - column_means) mask = abs_diff > 3 * column_stddevs # Find the middle index for each column where the condition is met # You can use np.where to find the indices where the condition is True row_indices, col_indices = np.where(mask) # Split the data into x and y arrays x_values = self.dataset_processed.Offset[col_indices].data y_values = self.dataset_processed.Frequency[row_indices].data # Calculate the unique x values and their corresponding mean y values unique_x = np.unique(x_values) mean_y = np.array([np.mean(y_values[x_values == x]) for x in unique_x]) # Fit a model to data quad_model = lmfit.models.QuadraticModel() guess = quad_model.guess(mean_y, x=unique_x) result = quad_model.fit(mean_y, x=unique_x, params=guess) self.fit_results.update({"poly2": result})
[docs] def analyze_fit_results(self) -> None: """Check the fit success and populate :code:`.quantities_of_interest`.""" self.quantities_of_interest = {} # If there is a problem with the fit, display an error message in the text box. # Otherwise, display the parameters as normal. fit_warning = ba.wrap_text(ba.check_lmfit(self.fit_results["poly2"])) if fit_warning is not None: self.quantities_of_interest["fit_success"] = False self.quantities_of_interest["fit_msg"] = ba.wrap_text(fit_warning) return # Set fitted parameters as quantities of interest for parameter, value in self.fit_results["poly2"].params.items(): self.quantities_of_interest[parameter] = ba.lmfit_par_to_ufloat(value) a = self.quantities_of_interest["a"] b = self.quantities_of_interest["b"] c = self.quantities_of_interest["c"] off_0_unc = -b / (2.0 * a) frq_0_unc = a * (off_0_unc**2) + b * off_0_unc + c self.quantities_of_interest["sweetspot"] = off_0_unc self.quantities_of_interest["sweetspot_freq"] = frq_0_unc text_msg = "Summary:\n" text_msg += format_value_string( "Sweetspot", off_0_unc, unit=self.dataset_processed.Offset.units, end_char="\n", ) text_msg += format_value_string( "Freq.", frq_0_unc, unit="Hz", end_char="\n", ) self.quantities_of_interest["fit_success"] = True self.quantities_of_interest["fit_msg"] = text_msg
[docs] def create_figures(self) -> None: """Generate plot of magnitude and phase images, with superposed model fit.""" fig, ax = plt.subplots(1, 1, figsize=(9, 6)) # Plot using xarrays plotting function self.dataset_processed.Magnitude.plot(ax=ax) # type: ignore if self.quantities_of_interest["fit_success"]: # Interpolate with the model for nice curve interp_offsets = np.arange( start=self.dataset_processed.Offset.data.min(), stop=self.dataset_processed.Offset.data.max(), step=np.diff(self.dataset_processed.Offset)[0] / 2.0, ) a = self.quantities_of_interest["a"] b = self.quantities_of_interest["b"] c = self.quantities_of_interest["c"] # Plot model interpolation ax.plot( interp_offsets, a.nominal_value * (interp_offsets**2) + b.nominal_value * interp_offsets + c.nominal_value, color="red", ls="-", ) # Plot also the zero which we found ax.axvline( self.quantities_of_interest["sweetspot"].nominal_value - self.quantities_of_interest["sweetspot"].std_dev, color="red", ls="--", alpha=0.5, ) ax.axvline( self.quantities_of_interest["sweetspot"].nominal_value, color="red", ls="-", ) ax.axvline( self.quantities_of_interest["sweetspot"].nominal_value + self.quantities_of_interest["sweetspot"].std_dev, color="red", ls="--", alpha=0.5, ) # Put a text box summarizing the QOI qpl.plot_textbox( ax=ax, transform=ax.transAxes, text=self.quantities_of_interest["fit_msg"], x=1.3, ) qpl.set_suptitle_from_dataset(fig, self.dataset) # type: ignore ax.set_title(self.dataset_processed.Magnitude.attrs["name"]) fig.tight_layout() # type: ignore self.figs_mpl["qfs"] = fig # type: ignore self.axs_mpl["qfs"] = (ax,) # type: ignore
# Custom analysis class for QubitSpectroscopy
[docs] class QubitSpectroscopyAnalysis(ba.BaseAnalysis): """ Analysis for a qubit spectroscopy experiment. Fits a Lorentzian function to qubit spectroscopy data and finds the 0-1 transistion frequency. """ # pylint: disable=invalid-name # pylint: disable=no-member
[docs] def process_data(self) -> None: """Populate the :code:`.dataset_processed`.""" # y0 = amplitude, no check for the amplitude unit as the name/label is # often different. self.dataset_processed["Magnitude"] = self.dataset.y0 self.dataset_processed.Magnitude.attrs["name"] = "Magnitude" self.dataset_processed.Magnitude.attrs["units"] = self.dataset.y0.units self.dataset_processed.Magnitude.attrs["long_name"] = "Magnitude, $|S_{21}|$" self.dataset_processed["x0"] = self.dataset.x0 self.dataset_processed = self.dataset_processed.set_coords("x0") # replace the default dim_0 with x0 self.dataset_processed = self.dataset_processed.swap_dims({"dim_0": "x0"})
[docs] def run_fitting(self) -> None: """Fit a Lorentzian function to the data.""" mod = fm.LorentzianModel() magnitude = self.dataset_processed["Magnitude"].values frequency = self.dataset_processed.x0.values guess = mod.guess(magnitude, x=frequency) fit_result = mod.fit(magnitude, params=guess, x=frequency) self.fit_results.update({"Lorentzian_peak": fit_result})
[docs] def analyze_fit_results(self) -> None: """Check fit success and populates :code:`.quantities_of_interest`.""" fit_result = self.fit_results["Lorentzian_peak"] fit_warning = ba.wrap_text(ba.check_lmfit(fit_result)) # If there is a problem with the fit, display an error message in the text box. # Otherwise, display the parameters as normal. if fit_warning is None: self.quantities_of_interest["fit_success"] = True text_msg = "Summary\n" text_msg += format_value_string( "Frequency 0-1", fit_result.params["x0"], unit="Hz", end_char="\n", ) text_msg += format_value_string( "Peak width", fit_result.params["width"], unit="Hz", end_char="\n", ) else: text_msg = ba.wrap_text(fit_warning) self.quantities_of_interest["fit_success"] = False self.quantities_of_interest["frequency_01"] = ba.lmfit_par_to_ufloat( fit_result.params["x0"] ) self.quantities_of_interest["fit_msg"] = text_msg
[docs] def create_figures(self) -> None: """Create qubit spectroscopy figure.""" fig_id = "QubitSpectroscopyAnalysis" fig, ax = plt.subplots() self.figs_mpl[fig_id] = fig # type: ignore self.axs_mpl[fig_id] = ax # type: ignore self.dataset_processed.Magnitude.plot(ax=ax, marker=".", linestyle="") qpl.plot_fit( ax=ax, fit_res=self.fit_results["Lorentzian_peak"], plot_init=not self.quantities_of_interest["fit_success"], range_casting="real", ) qpl.set_suptitle_from_dataset(fig, self.dataset, "S21") # type: ignore fig.tight_layout() # type: ignore # Add a textbox with the fit_message qpl.plot_textbox(ax, self.quantities_of_interest["fit_msg"]) # type: ignore
[docs] class ResonatorSpectroscopyAnalysis(ba.BaseAnalysis): """ Analysis for a spectroscopy experiment of a hanger resonator. """
[docs] def process_data(self): """ Verifies that the data is measured as magnitude and phase and casts it to a dataset of complex valued transmission :math:`S_{21}`. """ # y0 = amplitude, no check for the amplitude unit as the name/label is # often different. # y1 = phase in deg, this unit should always be correct assert self.dataset.y1.units == "deg" S21 = self.dataset.y0 * np.cos( np.deg2rad(self.dataset.y1) ) + 1j * self.dataset.y0 * np.sin(np.deg2rad(self.dataset.y1)) self.dataset_processed["S21"] = S21 self.dataset_processed.S21.attrs["name"] = "S21" self.dataset_processed.S21.attrs["units"] = self.dataset.y0.units self.dataset_processed.S21.attrs["long_name"] = "Transmission, $S_{21}$" self.dataset_processed["x0"] = self.dataset.x0 self.dataset_processed = self.dataset_processed.set_coords("x0") # replace the default dim_0 with x0 self.dataset_processed = self.dataset_processed.swap_dims({"dim_0": "x0"})
[docs] def run_fitting(self): """ Fits a :class:`~quantify_core.analysis.fitting_models.ResonatorModel` to the data. """ model = fm.ResonatorModel() S21 = self.dataset_processed.S21.values frequency = self.dataset_processed.x0.values guess = model.guess(S21, f=frequency) fit_result = model.fit(S21, params=guess, f=frequency) self.fit_results.update({"hanger_func_complex_SI": fit_result})
[docs] def analyze_fit_results(self): """ Checks fit success and populates :code:`.quantities_of_interest`. """ fit_result = self.fit_results["hanger_func_complex_SI"] fit_warning = ba.wrap_text(ba.check_lmfit(fit_result)) if fit_warning is None: self.quantities_of_interest["fit_success"] = True text_msg = "Summary\n" text_msg += format_value_string( r"$Q_I$", fit_result.params["Qi"], unit="SI_PREFIX_ONLY", end_char="\n" ) text_msg += format_value_string( r"$Q_C$", fit_result.params["Qc"], unit="SI_PREFIX_ONLY", end_char="\n" ) text_msg += format_value_string( r"$f_{res}$", fit_result.params["fr"], unit="Hz" ) else: text_msg = ba.wrap_text(fit_warning) self.quantities_of_interest["fit_success"] = False for parameter in ["Qi", "Qe", "Ql", "Qc", "fr"]: self.quantities_of_interest[parameter] = ba.lmfit_par_to_ufloat( fit_result.params[parameter] ) self.quantities_of_interest["fit_msg"] = text_msg
[docs] def create_figures(self): """ Plots the measured and fitted transmission :math:`S_{21}` as the I and Q component vs frequency, the magnitude and phase vs frequency, and on the complex I,Q plane. """ self._create_fig_s21_real_imag() self._create_fig_s21_magn_phase() self._create_fig_s21_complex()
def _create_fig_s21_real_imag(self): fig_id = "S21-RealImag" fig, axs = plt.subplots(2, 1, sharex=True) self.figs_mpl[fig_id] = fig self.axs_mpl[fig_id + "_Re"] = axs[0] self.axs_mpl[fig_id + "_Im"] = axs[1] # Add a textbox with the fit_message qpl.plot_textbox(axs[0], self.quantities_of_interest["fit_msg"]) self.dataset_processed.S21.real.plot(ax=axs[0], marker=".") self.dataset_processed.S21.imag.plot(ax=axs[1], marker=".") qpl.plot_fit( ax=axs[0], fit_res=self.fit_results["hanger_func_complex_SI"], plot_init=False, range_casting="real", ) qpl.plot_fit( ax=axs[1], fit_res=self.fit_results["hanger_func_complex_SI"], plot_init=False, range_casting="imag", ) qpl.set_ylabel(r"Re$(S_{21})$", self.dataset_processed.S21.units, axs[0]) qpl.set_ylabel(r"Im$(S_{21})$", self.dataset_processed.S21.units, axs[1]) axs[0].set_xlabel("") qpl.set_xlabel( self.dataset_processed.x0.long_name, self.dataset_processed.x0.units, axs[1] ) qpl.set_suptitle_from_dataset(fig, self.dataset, "S21") def _create_fig_s21_magn_phase(self): fig_id = "S21-MagnPhase" fig, axs = plt.subplots(2, 1, sharex=True) self.figs_mpl[fig_id] = fig self.axs_mpl[fig_id + "_Magn"] = axs[0] self.axs_mpl[fig_id + "_Phase"] = axs[1] # Add a textbox with the fit_message qpl.plot_textbox(axs[0], self.quantities_of_interest["fit_msg"]) axs[0].plot( self.dataset_processed.x0, np.abs(self.dataset_processed.S21), marker="." ) axs[1].plot( self.dataset_processed.x0, np.angle(self.dataset_processed.S21, deg=True), marker=".", ) qpl.plot_fit( ax=axs[0], fit_res=self.fit_results["hanger_func_complex_SI"], plot_init=False, range_casting="abs", ) qpl.plot_fit( ax=axs[1], fit_res=self.fit_results["hanger_func_complex_SI"], plot_init=False, range_casting="angle", ) qpl.set_ylabel(r"$|S_{21}|$", self.dataset_processed.S21.units, axs[0]) qpl.set_ylabel(r"$\angle S_{21}$", "deg", axs[1]) axs[0].set_xlabel("") qpl.set_xlabel( self.dataset_processed.x0.long_name, self.dataset_processed.x0.units, axs[1] ) qpl.set_suptitle_from_dataset(fig, self.dataset, "S21") def _create_fig_s21_complex(self): fig_id = "S21-complex" fig, ax = plt.subplots() self.figs_mpl[fig_id] = fig self.axs_mpl[fig_id] = ax # Add a textbox with the fit_message qpl.plot_textbox(ax, self.quantities_of_interest["fit_msg"]) ax.plot( self.dataset_processed.S21.real, self.dataset_processed.S21.imag, marker="." ) qpl.plot_fit_complex_plane( ax=ax, fit_res=self.fit_results["hanger_func_complex_SI"], plot_init=False, ) qpl.set_xlabel(r"Re$(S_{21})$", self.dataset_processed.S21.units, ax) qpl.set_ylabel(r"Im$(S_{21})$", self.dataset_processed.S21.units, ax) qpl.set_suptitle_from_dataset(fig, self.dataset, "S21")
[docs] class ResonatorFluxSpectroscopyAnalysis(ba.BaseAnalysis): """ Analysis class for resonator flux spectroscopy. .. admonition:: Example .. jupyter-execute:: from quantify_core.analysis.spectroscopy_analysis import ( ResonatorFluxSpectroscopyAnalysis ) import quantify_core.data.handling as dh # load example data test_data_dir = "../tests/test_data" dh.set_datadir(test_data_dir) # run analysis and plot results analysis = ( ResonatorFluxSpectroscopyAnalysis(tuid="20230308-235659-059-cf471e") .run() .display_figs_mpl() ) """ # pylint: disable=no-member # pylint: disable=broad-exception-caught # pylint: disable=attribute-defined-outside-init
[docs] def process_data(self) -> None: """Process the data so that the analysis can make assumptions on the format.""" ds = dh.to_gridded_dataset(self.dataset) self.dataset_processed = xr.Dataset( { "Magnitude": (("Frequency", "Offset"), ds.y0.data), "Phase": (("Frequency", "Offset"), np.mod(ds.y1.data, 360.0)), }, coords={ "Frequency": ds.x0.data, "Offset": ds.x1.data, }, ) self.dataset_processed.Magnitude.attrs["name"] = "Magnitude" self.dataset_processed.Magnitude.attrs["units"] = ds.y0.units self.dataset_processed.Magnitude.attrs["long_name"] = "Magnitude, $|S_{21}|$" self.dataset_processed.Phase.attrs["name"] = "Phase" self.dataset_processed.Phase.attrs["units"] = ds.y1.units self.dataset_processed.Phase.attrs["long_name"] = ( r"Phase, $\angle S_{21}$ mod 360°" ) self.dataset_processed.Frequency.attrs["name"] = "Frequency" self.dataset_processed.Frequency.attrs["units"] = ds.x0.units self.dataset_processed.Frequency.attrs["long_name"] = ( "Frequency of readout pulse" ) self.dataset_processed.Offset.attrs["name"] = "Offset" self.dataset_processed.Offset.attrs["units"] = ds.x1.units self.dataset_processed.Offset.attrs["long_name"] = "External flux offset"
[docs] def run_fitting(self) -> None: """Fits a sinusoidal model to the frequency response vs. flux offset.""" # Calculate the mean and standard deviation along each column # Calculate the absolute difference from the mean for each element # Create a boolean mask where elements are more than 3*sigma away from the mean try: column_means = np.mean(self.dataset_processed.Magnitude.data, axis=0) abs_diff = np.abs(self.dataset_processed.Magnitude.data - column_means) mask = abs_diff > 3 * np.std(self.dataset_processed.Magnitude.data, axis=0) # Find the middle index for each column where the condition is met # You can use np.where to find the indices where the condition is True row_indices, col_indices = np.where(mask) # Split the data into x and y arrays x_values = self.dataset_processed.Offset[col_indices].data y_values = self.dataset_processed.Frequency[row_indices].data # Calculate the unique x values and their corresponding mean y values unique_x = np.unique(x_values) mean_y = np.array([np.mean(y_values[x_values == x]) for x in unique_x]) # Fit a sinusoidal model to centered data center = mean_y.mean() sine_model = lmfit.models.SineModel() guess = sine_model.guess(mean_y - center, x=unique_x) result = sine_model.fit(mean_y - center, x=unique_x, params=guess) # Also add the offset with estimate standard error result.params.add("center", value=center, vary=False) result.params["center"].stderr = mean_y.std() / np.sqrt(len(mean_y)) self.fit_results.update({"sin": result}) self._fit_success = bool(result.success) except Exception as fit_error: # we use these private members to avoid errors during fit failure self._fit_error = "Error during fit:\n" + str(fit_error) self._fit_success = False
[docs] def analyze_fit_results(self) -> None: """Check the fit success and populate :code:`.quantities_of_interest`.""" self.quantities_of_interest = {"fit_success": self._fit_success} if not self._fit_success: self.quantities_of_interest["fit_msg"] = self._fit_error return # Set fitted sinus parameters as quantities of interest for parameter, value in self.fit_results["sin"].params.items(): self.quantities_of_interest[parameter] = ba.lmfit_par_to_ufloat(value) # Scale frequency of the sinusoid self.quantities_of_interest["frequency"] /= 2.0 * np.pi text_msg = "Summary:\n" for parameter, value in self.fit_results["sin"].params.items(): # Build text box text_msg += format_value_string( parameter, self.quantities_of_interest[parameter], unit=dict( amplitude=None, frequency=self.dataset_processed.Offset.units, shift=self.dataset_processed.Offset.units, center=self.dataset_processed.Frequency.units, )[parameter], end_char="\n", ) # Find some zeros of the derivative of the fitted sinusoidal model root_indices = np.arange(-20, 20, 1) roots = ( -2.0 * self.quantities_of_interest["shift"] - 2 * np.pi * root_indices + np.pi ) / (4.0 * np.pi * self.quantities_of_interest["frequency"]) # Don't extrapolate sweetspots roots = np.asarray( sorted( filter( lambda root: ( (root.nominal_value <= self.dataset_processed.Offset.max()) and (root.nominal_value >= self.dataset_processed.Offset.min()) ), roots, ) ) ) # Save all visible sweetspots, since we have computed them text_msg += "\nSweetspots:\n" for root_index, root in enumerate(roots): # Save sweetspot self.quantities_of_interest[f"sweetspot_{root_index}"] = root # Build text box at the same time text_msg += format_value_string( f"sweetspot {root_index}", root, unit=self.dataset_processed.Offset.units, end_char="\n", ) self.quantities_of_interest["fit_msg"] = text_msg[:-1]
[docs] def create_figures(self) -> None: """Generate plot of magnitude and phase images, with superposed model fit.""" if not self.quantities_of_interest["fit_success"]: print(self.quantities_of_interest["fit_msg"]) return fig, ax = plt.subplots(1, 2, figsize=(13, 6), sharey=True) # Plot using xarrays plotting function self.dataset_processed.Magnitude.plot(ax=ax[0]) # type: ignore self.dataset_processed.Phase.plot(ax=ax[1], cmap="jet") if self.quantities_of_interest["fit_success"]: # Interpolate with the model for nice curve interp_offsets = np.arange( start=self.dataset_processed.Offset.data.min(), stop=self.dataset_processed.Offset.data.max(), step=np.diff(self.dataset_processed.Offset)[0] / 2.0, ) # Plot model interpolation ax[0].plot( interp_offsets, fm.cos_func( x=interp_offsets, frequency=self.quantities_of_interest["frequency"].nominal_value, amplitude=self.quantities_of_interest["amplitude"].nominal_value, offset=self.quantities_of_interest["center"].nominal_value, phase=self.quantities_of_interest["shift"].nominal_value - np.pi / 2, ), color="red", ) # Plot also the zeros which we found that are visible for _, root_ufloat in filter( lambda item: (item[0].startswith("sweetspot_")), self.quantities_of_interest.items(), ): ax[0].axvline( root_ufloat.nominal_value - root_ufloat.std_dev, color="red", ls="--", alpha=0.5, ) ax[0].axvline( root_ufloat.nominal_value, color="red", ls="-", ) ax[0].axvline( root_ufloat.nominal_value + root_ufloat.std_dev, color="red", ls="--", alpha=0.5, ) # Put a text box summarizing the QOI qpl.plot_textbox( ax=ax[1], transform=ax[1].transAxes, text=self.quantities_of_interest["fit_msg"], x=1.4, ) qpl.set_suptitle_from_dataset(fig, self.dataset) # type: ignore ax[0].set_title(self.dataset_processed.Magnitude.attrs["name"]) ax[1].set_title(self.dataset_processed.Phase.attrs["name"]) fig.tight_layout() # type: ignore self.figs_mpl["rfs"] = fig # type: ignore self.axs_mpl["rfs"] = (ax,) # type: ignore