Data handling#
Converting dataset coordinates from flat list to grid#
By default measurement control returnds data in a sparse format. The resulting dataset has a single dimension, and all settables and gettables share it, for example:
from pathlib import Path
import numpy as np
from qcodes import ManualParameter, Parameter, validators
from quantify_core.data.handling import set_datadir, to_gridded_dataset
from quantify_core.measurement import MeasurementControl
set_datadir(Path.home() / "quantify-data")
time_a = ManualParameter(
name="time_a",
label="Time A",
unit="s",
vals=validators.Numbers(),
initial_value=1,
)
time_b = ManualParameter(
name="time_b",
label="Time B",
unit="s",
vals=validators.Numbers(),
initial_value=1,
)
signal = Parameter(
name="sig_a",
label="Signal A",
unit="V",
get_cmd=lambda: np.exp(time_a()) + 0.5 * np.exp(time_b()),
)
meas_ctrl = MeasurementControl("meas_ctrl")
meas_ctrl.settables([time_a, time_b])
meas_ctrl.gettables(signal)
meas_ctrl.setpoints_grid([np.linspace(0, 5, 10), np.linspace(5, 0, 12)])
dset = meas_ctrl.run("2D-single-float-valued-settable-gettable")
dset
Starting iterative measurement...
<xarray.Dataset> Size: 3kB Dimensions: (dim_0: 120) Coordinates: x0 (dim_0) float64 960B 0.0 0.5556 1.111 1.667 ... 3.889 4.444 5.0 x1 (dim_0) float64 960B 5.0 5.0 5.0 5.0 5.0 ... 0.0 0.0 0.0 0.0 0.0 Dimensions without coordinates: dim_0 Data variables: y0 (dim_0) float64 960B 75.21 75.95 77.24 79.5 ... 49.36 85.65 148.9 Attributes: tuid: 20250122-040805-106-aed4a6 name: 2D-single-float-valued-settable-gettable grid_2d: True grid_2d_uniformly_spaced: True 1d_2_settables_uniformly_spaced: False xlen: 10 ylen: 12
This format is very close to COO sparse matrix
, except that coordinates are not integer.
If the initial data is gridded, it is more convenient to resotre this structure in the dataset for processing.
There is a utility function quantify_core.data.handling.to_gridded_dataset()
for that:
dset_grid = to_gridded_dataset(dset)
dset_grid
<xarray.Dataset> Size: 1kB Dimensions: (x0: 10, x1: 12) Coordinates: * x0 (x0) float64 80B 0.0 0.5556 1.111 1.667 ... 3.333 3.889 4.444 5.0 * x1 (x1) float64 96B 0.0 0.4545 0.9091 1.364 ... 3.636 4.091 4.545 5.0 Data variables: y0 (x0, x1) float64 960B 1.5 1.788 2.241 2.955 ... 178.3 195.5 222.6 Attributes: tuid: 20250122-040805-106-aed4a6 name: 2D-single-float-valued-settable-gettable grid_2d: False grid_2d_uniformly_spaced: True 1d_2_settables_uniformly_spaced: False xlen: 10 ylen: 12
We see that now dataset has two dimensions (x0
and x1
), that represent the initial grid for settables time_a
and time_b
.
Frecuently this simplifies data processing and analysis a lot, for example, we can display the data straight away:
dset_grid.y0.plot(cmap="viridis")
<matplotlib.collections.QuadMesh at 0x7ec2291b0100>